1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/libata.h> 39 #include <linux/highmem.h> 40 41 #include "libata.h" 42 43 static struct workqueue_struct *ata_sff_wq; 44 45 const struct ata_port_operations ata_sff_port_ops = { 46 .inherits = &ata_base_port_ops, 47 48 .qc_prep = ata_noop_qc_prep, 49 .qc_issue = ata_sff_qc_issue, 50 .qc_fill_rtf = ata_sff_qc_fill_rtf, 51 52 .freeze = ata_sff_freeze, 53 .thaw = ata_sff_thaw, 54 .prereset = ata_sff_prereset, 55 .softreset = ata_sff_softreset, 56 .hardreset = sata_sff_hardreset, 57 .postreset = ata_sff_postreset, 58 .error_handler = ata_sff_error_handler, 59 60 .sff_dev_select = ata_sff_dev_select, 61 .sff_check_status = ata_sff_check_status, 62 .sff_tf_load = ata_sff_tf_load, 63 .sff_tf_read = ata_sff_tf_read, 64 .sff_exec_command = ata_sff_exec_command, 65 .sff_data_xfer = ata_sff_data_xfer, 66 .sff_irq_clear = ata_sff_irq_clear, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 msleep(50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_printk(ap, KERN_WARNING, 232 "port is slow to respond, please be patient " 233 "(Status 0x%x)\n", status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 msleep(50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_printk(ap, KERN_ERR, "port failed to respond " 247 "(%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 355 "device %u, wait %u\n", device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 msleep(150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 ap->ops->sff_irq_clear(ap); 399 } 400 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 401 402 /** 403 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 404 * @ap: Port associated with this ATA transaction. 405 * 406 * Clear interrupt and error flags in DMA status register. 407 * 408 * May be used as the irq_clear() entry in ata_port_operations. 409 * 410 * LOCKING: 411 * spin_lock_irqsave(host lock) 412 */ 413 void ata_sff_irq_clear(struct ata_port *ap) 414 { 415 void __iomem *mmio = ap->ioaddr.bmdma_addr; 416 417 if (!mmio) 418 return; 419 420 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 421 } 422 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 423 424 /** 425 * ata_sff_tf_load - send taskfile registers to host controller 426 * @ap: Port to which output is sent 427 * @tf: ATA taskfile register set 428 * 429 * Outputs ATA taskfile to standard ATA host controller. 430 * 431 * LOCKING: 432 * Inherited from caller. 433 */ 434 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 435 { 436 struct ata_ioports *ioaddr = &ap->ioaddr; 437 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 438 439 if (tf->ctl != ap->last_ctl) { 440 if (ioaddr->ctl_addr) 441 iowrite8(tf->ctl, ioaddr->ctl_addr); 442 ap->last_ctl = tf->ctl; 443 } 444 445 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 446 WARN_ON_ONCE(!ioaddr->ctl_addr); 447 iowrite8(tf->hob_feature, ioaddr->feature_addr); 448 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 449 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 450 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 451 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 452 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 453 tf->hob_feature, 454 tf->hob_nsect, 455 tf->hob_lbal, 456 tf->hob_lbam, 457 tf->hob_lbah); 458 } 459 460 if (is_addr) { 461 iowrite8(tf->feature, ioaddr->feature_addr); 462 iowrite8(tf->nsect, ioaddr->nsect_addr); 463 iowrite8(tf->lbal, ioaddr->lbal_addr); 464 iowrite8(tf->lbam, ioaddr->lbam_addr); 465 iowrite8(tf->lbah, ioaddr->lbah_addr); 466 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 467 tf->feature, 468 tf->nsect, 469 tf->lbal, 470 tf->lbam, 471 tf->lbah); 472 } 473 474 if (tf->flags & ATA_TFLAG_DEVICE) { 475 iowrite8(tf->device, ioaddr->device_addr); 476 VPRINTK("device 0x%X\n", tf->device); 477 } 478 } 479 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 480 481 /** 482 * ata_sff_tf_read - input device's ATA taskfile shadow registers 483 * @ap: Port from which input is read 484 * @tf: ATA taskfile register set for storing input 485 * 486 * Reads ATA taskfile registers for currently-selected device 487 * into @tf. Assumes the device has a fully SFF compliant task file 488 * layout and behaviour. If you device does not (eg has a different 489 * status method) then you will need to provide a replacement tf_read 490 * 491 * LOCKING: 492 * Inherited from caller. 493 */ 494 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 495 { 496 struct ata_ioports *ioaddr = &ap->ioaddr; 497 498 tf->command = ata_sff_check_status(ap); 499 tf->feature = ioread8(ioaddr->error_addr); 500 tf->nsect = ioread8(ioaddr->nsect_addr); 501 tf->lbal = ioread8(ioaddr->lbal_addr); 502 tf->lbam = ioread8(ioaddr->lbam_addr); 503 tf->lbah = ioread8(ioaddr->lbah_addr); 504 tf->device = ioread8(ioaddr->device_addr); 505 506 if (tf->flags & ATA_TFLAG_LBA48) { 507 if (likely(ioaddr->ctl_addr)) { 508 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 509 tf->hob_feature = ioread8(ioaddr->error_addr); 510 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 511 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 512 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 513 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 514 iowrite8(tf->ctl, ioaddr->ctl_addr); 515 ap->last_ctl = tf->ctl; 516 } else 517 WARN_ON_ONCE(1); 518 } 519 } 520 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 521 522 /** 523 * ata_sff_exec_command - issue ATA command to host controller 524 * @ap: port to which command is being issued 525 * @tf: ATA taskfile register set 526 * 527 * Issues ATA command, with proper synchronization with interrupt 528 * handler / other threads. 529 * 530 * LOCKING: 531 * spin_lock_irqsave(host lock) 532 */ 533 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 534 { 535 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 536 537 iowrite8(tf->command, ap->ioaddr.command_addr); 538 ata_sff_pause(ap); 539 } 540 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 541 542 /** 543 * ata_tf_to_host - issue ATA taskfile to host controller 544 * @ap: port to which command is being issued 545 * @tf: ATA taskfile register set 546 * 547 * Issues ATA taskfile register set to ATA host controller, 548 * with proper synchronization with interrupt handler and 549 * other threads. 550 * 551 * LOCKING: 552 * spin_lock_irqsave(host lock) 553 */ 554 static inline void ata_tf_to_host(struct ata_port *ap, 555 const struct ata_taskfile *tf) 556 { 557 ap->ops->sff_tf_load(ap, tf); 558 ap->ops->sff_exec_command(ap, tf); 559 } 560 561 /** 562 * ata_sff_data_xfer - Transfer data by PIO 563 * @dev: device to target 564 * @buf: data buffer 565 * @buflen: buffer length 566 * @rw: read/write 567 * 568 * Transfer data from/to the device data register by PIO. 569 * 570 * LOCKING: 571 * Inherited from caller. 572 * 573 * RETURNS: 574 * Bytes consumed. 575 */ 576 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 577 unsigned int buflen, int rw) 578 { 579 struct ata_port *ap = dev->link->ap; 580 void __iomem *data_addr = ap->ioaddr.data_addr; 581 unsigned int words = buflen >> 1; 582 583 /* Transfer multiple of 2 bytes */ 584 if (rw == READ) 585 ioread16_rep(data_addr, buf, words); 586 else 587 iowrite16_rep(data_addr, buf, words); 588 589 /* Transfer trailing byte, if any. */ 590 if (unlikely(buflen & 0x01)) { 591 unsigned char pad[2]; 592 593 /* Point buf to the tail of buffer */ 594 buf += buflen - 1; 595 596 /* 597 * Use io*16_rep() accessors here as well to avoid pointlessly 598 * swapping bytes to and from on the big endian machines... 599 */ 600 if (rw == READ) { 601 ioread16_rep(data_addr, pad, 1); 602 *buf = pad[0]; 603 } else { 604 pad[0] = *buf; 605 iowrite16_rep(data_addr, pad, 1); 606 } 607 words++; 608 } 609 610 return words << 1; 611 } 612 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 613 614 /** 615 * ata_sff_data_xfer32 - Transfer data by PIO 616 * @dev: device to target 617 * @buf: data buffer 618 * @buflen: buffer length 619 * @rw: read/write 620 * 621 * Transfer data from/to the device data register by PIO using 32bit 622 * I/O operations. 623 * 624 * LOCKING: 625 * Inherited from caller. 626 * 627 * RETURNS: 628 * Bytes consumed. 629 */ 630 631 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 632 unsigned int buflen, int rw) 633 { 634 struct ata_port *ap = dev->link->ap; 635 void __iomem *data_addr = ap->ioaddr.data_addr; 636 unsigned int words = buflen >> 2; 637 int slop = buflen & 3; 638 639 if (!(ap->pflags & ATA_PFLAG_PIO32)) 640 return ata_sff_data_xfer(dev, buf, buflen, rw); 641 642 /* Transfer multiple of 4 bytes */ 643 if (rw == READ) 644 ioread32_rep(data_addr, buf, words); 645 else 646 iowrite32_rep(data_addr, buf, words); 647 648 /* Transfer trailing bytes, if any */ 649 if (unlikely(slop)) { 650 unsigned char pad[4]; 651 652 /* Point buf to the tail of buffer */ 653 buf += buflen - slop; 654 655 /* 656 * Use io*_rep() accessors here as well to avoid pointlessly 657 * swapping bytes to and from on the big endian machines... 658 */ 659 if (rw == READ) { 660 if (slop < 3) 661 ioread16_rep(data_addr, pad, 1); 662 else 663 ioread32_rep(data_addr, pad, 1); 664 memcpy(buf, pad, slop); 665 } else { 666 memcpy(pad, buf, slop); 667 if (slop < 3) 668 iowrite16_rep(data_addr, pad, 1); 669 else 670 iowrite32_rep(data_addr, pad, 1); 671 } 672 } 673 return (buflen + 1) & ~1; 674 } 675 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 676 677 /** 678 * ata_sff_data_xfer_noirq - Transfer data by PIO 679 * @dev: device to target 680 * @buf: data buffer 681 * @buflen: buffer length 682 * @rw: read/write 683 * 684 * Transfer data from/to the device data register by PIO. Do the 685 * transfer with interrupts disabled. 686 * 687 * LOCKING: 688 * Inherited from caller. 689 * 690 * RETURNS: 691 * Bytes consumed. 692 */ 693 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 694 unsigned int buflen, int rw) 695 { 696 unsigned long flags; 697 unsigned int consumed; 698 699 local_irq_save(flags); 700 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 701 local_irq_restore(flags); 702 703 return consumed; 704 } 705 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 706 707 /** 708 * ata_pio_sector - Transfer a sector of data. 709 * @qc: Command on going 710 * 711 * Transfer qc->sect_size bytes of data from/to the ATA device. 712 * 713 * LOCKING: 714 * Inherited from caller. 715 */ 716 static void ata_pio_sector(struct ata_queued_cmd *qc) 717 { 718 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 719 struct ata_port *ap = qc->ap; 720 struct page *page; 721 unsigned int offset; 722 unsigned char *buf; 723 724 if (qc->curbytes == qc->nbytes - qc->sect_size) 725 ap->hsm_task_state = HSM_ST_LAST; 726 727 page = sg_page(qc->cursg); 728 offset = qc->cursg->offset + qc->cursg_ofs; 729 730 /* get the current page and offset */ 731 page = nth_page(page, (offset >> PAGE_SHIFT)); 732 offset %= PAGE_SIZE; 733 734 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 735 736 if (PageHighMem(page)) { 737 unsigned long flags; 738 739 /* FIXME: use a bounce buffer */ 740 local_irq_save(flags); 741 buf = kmap_atomic(page, KM_IRQ0); 742 743 /* do the actual data transfer */ 744 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 745 do_write); 746 747 kunmap_atomic(buf, KM_IRQ0); 748 local_irq_restore(flags); 749 } else { 750 buf = page_address(page); 751 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 752 do_write); 753 } 754 755 if (!do_write && !PageSlab(page)) 756 flush_dcache_page(page); 757 758 qc->curbytes += qc->sect_size; 759 qc->cursg_ofs += qc->sect_size; 760 761 if (qc->cursg_ofs == qc->cursg->length) { 762 qc->cursg = sg_next(qc->cursg); 763 qc->cursg_ofs = 0; 764 } 765 } 766 767 /** 768 * ata_pio_sectors - Transfer one or many sectors. 769 * @qc: Command on going 770 * 771 * Transfer one or many sectors of data from/to the 772 * ATA device for the DRQ request. 773 * 774 * LOCKING: 775 * Inherited from caller. 776 */ 777 static void ata_pio_sectors(struct ata_queued_cmd *qc) 778 { 779 if (is_multi_taskfile(&qc->tf)) { 780 /* READ/WRITE MULTIPLE */ 781 unsigned int nsect; 782 783 WARN_ON_ONCE(qc->dev->multi_count == 0); 784 785 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 786 qc->dev->multi_count); 787 while (nsect--) 788 ata_pio_sector(qc); 789 } else 790 ata_pio_sector(qc); 791 792 ata_sff_sync(qc->ap); /* flush */ 793 } 794 795 /** 796 * atapi_send_cdb - Write CDB bytes to hardware 797 * @ap: Port to which ATAPI device is attached. 798 * @qc: Taskfile currently active 799 * 800 * When device has indicated its readiness to accept 801 * a CDB, this function is called. Send the CDB. 802 * 803 * LOCKING: 804 * caller. 805 */ 806 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 807 { 808 /* send SCSI cdb */ 809 DPRINTK("send cdb\n"); 810 WARN_ON_ONCE(qc->dev->cdb_len < 12); 811 812 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 813 ata_sff_sync(ap); 814 /* FIXME: If the CDB is for DMA do we need to do the transition delay 815 or is bmdma_start guaranteed to do it ? */ 816 switch (qc->tf.protocol) { 817 case ATAPI_PROT_PIO: 818 ap->hsm_task_state = HSM_ST; 819 break; 820 case ATAPI_PROT_NODATA: 821 ap->hsm_task_state = HSM_ST_LAST; 822 break; 823 case ATAPI_PROT_DMA: 824 ap->hsm_task_state = HSM_ST_LAST; 825 /* initiate bmdma */ 826 ap->ops->bmdma_start(qc); 827 break; 828 } 829 } 830 831 /** 832 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 833 * @qc: Command on going 834 * @bytes: number of bytes 835 * 836 * Transfer Transfer data from/to the ATAPI device. 837 * 838 * LOCKING: 839 * Inherited from caller. 840 * 841 */ 842 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 843 { 844 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 845 struct ata_port *ap = qc->ap; 846 struct ata_device *dev = qc->dev; 847 struct ata_eh_info *ehi = &dev->link->eh_info; 848 struct scatterlist *sg; 849 struct page *page; 850 unsigned char *buf; 851 unsigned int offset, count, consumed; 852 853 next_sg: 854 sg = qc->cursg; 855 if (unlikely(!sg)) { 856 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 857 "buf=%u cur=%u bytes=%u", 858 qc->nbytes, qc->curbytes, bytes); 859 return -1; 860 } 861 862 page = sg_page(sg); 863 offset = sg->offset + qc->cursg_ofs; 864 865 /* get the current page and offset */ 866 page = nth_page(page, (offset >> PAGE_SHIFT)); 867 offset %= PAGE_SIZE; 868 869 /* don't overrun current sg */ 870 count = min(sg->length - qc->cursg_ofs, bytes); 871 872 /* don't cross page boundaries */ 873 count = min(count, (unsigned int)PAGE_SIZE - offset); 874 875 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 876 877 if (PageHighMem(page)) { 878 unsigned long flags; 879 880 /* FIXME: use bounce buffer */ 881 local_irq_save(flags); 882 buf = kmap_atomic(page, KM_IRQ0); 883 884 /* do the actual data transfer */ 885 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 886 count, rw); 887 888 kunmap_atomic(buf, KM_IRQ0); 889 local_irq_restore(flags); 890 } else { 891 buf = page_address(page); 892 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 893 count, rw); 894 } 895 896 bytes -= min(bytes, consumed); 897 qc->curbytes += count; 898 qc->cursg_ofs += count; 899 900 if (qc->cursg_ofs == sg->length) { 901 qc->cursg = sg_next(qc->cursg); 902 qc->cursg_ofs = 0; 903 } 904 905 /* 906 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 907 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 908 * check correctly as it doesn't know if it is the last request being 909 * made. Somebody should implement a proper sanity check. 910 */ 911 if (bytes) 912 goto next_sg; 913 return 0; 914 } 915 916 /** 917 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 918 * @qc: Command on going 919 * 920 * Transfer Transfer data from/to the ATAPI device. 921 * 922 * LOCKING: 923 * Inherited from caller. 924 */ 925 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 926 { 927 struct ata_port *ap = qc->ap; 928 struct ata_device *dev = qc->dev; 929 struct ata_eh_info *ehi = &dev->link->eh_info; 930 unsigned int ireason, bc_lo, bc_hi, bytes; 931 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 932 933 /* Abuse qc->result_tf for temp storage of intermediate TF 934 * here to save some kernel stack usage. 935 * For normal completion, qc->result_tf is not relevant. For 936 * error, qc->result_tf is later overwritten by ata_qc_complete(). 937 * So, the correctness of qc->result_tf is not affected. 938 */ 939 ap->ops->sff_tf_read(ap, &qc->result_tf); 940 ireason = qc->result_tf.nsect; 941 bc_lo = qc->result_tf.lbam; 942 bc_hi = qc->result_tf.lbah; 943 bytes = (bc_hi << 8) | bc_lo; 944 945 /* shall be cleared to zero, indicating xfer of data */ 946 if (unlikely(ireason & (1 << 0))) 947 goto atapi_check; 948 949 /* make sure transfer direction matches expected */ 950 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 951 if (unlikely(do_write != i_write)) 952 goto atapi_check; 953 954 if (unlikely(!bytes)) 955 goto atapi_check; 956 957 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 958 959 if (unlikely(__atapi_pio_bytes(qc, bytes))) 960 goto err_out; 961 ata_sff_sync(ap); /* flush */ 962 963 return; 964 965 atapi_check: 966 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 967 ireason, bytes); 968 err_out: 969 qc->err_mask |= AC_ERR_HSM; 970 ap->hsm_task_state = HSM_ST_ERR; 971 } 972 973 /** 974 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 975 * @ap: the target ata_port 976 * @qc: qc on going 977 * 978 * RETURNS: 979 * 1 if ok in workqueue, 0 otherwise. 980 */ 981 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 982 struct ata_queued_cmd *qc) 983 { 984 if (qc->tf.flags & ATA_TFLAG_POLLING) 985 return 1; 986 987 if (ap->hsm_task_state == HSM_ST_FIRST) { 988 if (qc->tf.protocol == ATA_PROT_PIO && 989 (qc->tf.flags & ATA_TFLAG_WRITE)) 990 return 1; 991 992 if (ata_is_atapi(qc->tf.protocol) && 993 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 994 return 1; 995 } 996 997 return 0; 998 } 999 1000 /** 1001 * ata_hsm_qc_complete - finish a qc running on standard HSM 1002 * @qc: Command to complete 1003 * @in_wq: 1 if called from workqueue, 0 otherwise 1004 * 1005 * Finish @qc which is running on standard HSM. 1006 * 1007 * LOCKING: 1008 * If @in_wq is zero, spin_lock_irqsave(host lock). 1009 * Otherwise, none on entry and grabs host lock. 1010 */ 1011 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1012 { 1013 struct ata_port *ap = qc->ap; 1014 unsigned long flags; 1015 1016 if (ap->ops->error_handler) { 1017 if (in_wq) { 1018 spin_lock_irqsave(ap->lock, flags); 1019 1020 /* EH might have kicked in while host lock is 1021 * released. 1022 */ 1023 qc = ata_qc_from_tag(ap, qc->tag); 1024 if (qc) { 1025 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1026 ata_sff_irq_on(ap); 1027 ata_qc_complete(qc); 1028 } else 1029 ata_port_freeze(ap); 1030 } 1031 1032 spin_unlock_irqrestore(ap->lock, flags); 1033 } else { 1034 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1035 ata_qc_complete(qc); 1036 else 1037 ata_port_freeze(ap); 1038 } 1039 } else { 1040 if (in_wq) { 1041 spin_lock_irqsave(ap->lock, flags); 1042 ata_sff_irq_on(ap); 1043 ata_qc_complete(qc); 1044 spin_unlock_irqrestore(ap->lock, flags); 1045 } else 1046 ata_qc_complete(qc); 1047 } 1048 } 1049 1050 /** 1051 * ata_sff_hsm_move - move the HSM to the next state. 1052 * @ap: the target ata_port 1053 * @qc: qc on going 1054 * @status: current device status 1055 * @in_wq: 1 if called from workqueue, 0 otherwise 1056 * 1057 * RETURNS: 1058 * 1 when poll next status needed, 0 otherwise. 1059 */ 1060 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1061 u8 status, int in_wq) 1062 { 1063 struct ata_eh_info *ehi = &ap->link.eh_info; 1064 unsigned long flags = 0; 1065 int poll_next; 1066 1067 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1068 1069 /* Make sure ata_sff_qc_issue() does not throw things 1070 * like DMA polling into the workqueue. Notice that 1071 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1072 */ 1073 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1074 1075 fsm_start: 1076 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1077 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1078 1079 switch (ap->hsm_task_state) { 1080 case HSM_ST_FIRST: 1081 /* Send first data block or PACKET CDB */ 1082 1083 /* If polling, we will stay in the work queue after 1084 * sending the data. Otherwise, interrupt handler 1085 * takes over after sending the data. 1086 */ 1087 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1088 1089 /* check device status */ 1090 if (unlikely((status & ATA_DRQ) == 0)) { 1091 /* handle BSY=0, DRQ=0 as error */ 1092 if (likely(status & (ATA_ERR | ATA_DF))) 1093 /* device stops HSM for abort/error */ 1094 qc->err_mask |= AC_ERR_DEV; 1095 else { 1096 /* HSM violation. Let EH handle this */ 1097 ata_ehi_push_desc(ehi, 1098 "ST_FIRST: !(DRQ|ERR|DF)"); 1099 qc->err_mask |= AC_ERR_HSM; 1100 } 1101 1102 ap->hsm_task_state = HSM_ST_ERR; 1103 goto fsm_start; 1104 } 1105 1106 /* Device should not ask for data transfer (DRQ=1) 1107 * when it finds something wrong. 1108 * We ignore DRQ here and stop the HSM by 1109 * changing hsm_task_state to HSM_ST_ERR and 1110 * let the EH abort the command or reset the device. 1111 */ 1112 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1113 /* Some ATAPI tape drives forget to clear the ERR bit 1114 * when doing the next command (mostly request sense). 1115 * We ignore ERR here to workaround and proceed sending 1116 * the CDB. 1117 */ 1118 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1119 ata_ehi_push_desc(ehi, "ST_FIRST: " 1120 "DRQ=1 with device error, " 1121 "dev_stat 0x%X", status); 1122 qc->err_mask |= AC_ERR_HSM; 1123 ap->hsm_task_state = HSM_ST_ERR; 1124 goto fsm_start; 1125 } 1126 } 1127 1128 /* Send the CDB (atapi) or the first data block (ata pio out). 1129 * During the state transition, interrupt handler shouldn't 1130 * be invoked before the data transfer is complete and 1131 * hsm_task_state is changed. Hence, the following locking. 1132 */ 1133 if (in_wq) 1134 spin_lock_irqsave(ap->lock, flags); 1135 1136 if (qc->tf.protocol == ATA_PROT_PIO) { 1137 /* PIO data out protocol. 1138 * send first data block. 1139 */ 1140 1141 /* ata_pio_sectors() might change the state 1142 * to HSM_ST_LAST. so, the state is changed here 1143 * before ata_pio_sectors(). 1144 */ 1145 ap->hsm_task_state = HSM_ST; 1146 ata_pio_sectors(qc); 1147 } else 1148 /* send CDB */ 1149 atapi_send_cdb(ap, qc); 1150 1151 if (in_wq) 1152 spin_unlock_irqrestore(ap->lock, flags); 1153 1154 /* if polling, ata_sff_pio_task() handles the rest. 1155 * otherwise, interrupt handler takes over from here. 1156 */ 1157 break; 1158 1159 case HSM_ST: 1160 /* complete command or read/write the data register */ 1161 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1162 /* ATAPI PIO protocol */ 1163 if ((status & ATA_DRQ) == 0) { 1164 /* No more data to transfer or device error. 1165 * Device error will be tagged in HSM_ST_LAST. 1166 */ 1167 ap->hsm_task_state = HSM_ST_LAST; 1168 goto fsm_start; 1169 } 1170 1171 /* Device should not ask for data transfer (DRQ=1) 1172 * when it finds something wrong. 1173 * We ignore DRQ here and stop the HSM by 1174 * changing hsm_task_state to HSM_ST_ERR and 1175 * let the EH abort the command or reset the device. 1176 */ 1177 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1178 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1179 "DRQ=1 with device error, " 1180 "dev_stat 0x%X", status); 1181 qc->err_mask |= AC_ERR_HSM; 1182 ap->hsm_task_state = HSM_ST_ERR; 1183 goto fsm_start; 1184 } 1185 1186 atapi_pio_bytes(qc); 1187 1188 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1189 /* bad ireason reported by device */ 1190 goto fsm_start; 1191 1192 } else { 1193 /* ATA PIO protocol */ 1194 if (unlikely((status & ATA_DRQ) == 0)) { 1195 /* handle BSY=0, DRQ=0 as error */ 1196 if (likely(status & (ATA_ERR | ATA_DF))) { 1197 /* device stops HSM for abort/error */ 1198 qc->err_mask |= AC_ERR_DEV; 1199 1200 /* If diagnostic failed and this is 1201 * IDENTIFY, it's likely a phantom 1202 * device. Mark hint. 1203 */ 1204 if (qc->dev->horkage & 1205 ATA_HORKAGE_DIAGNOSTIC) 1206 qc->err_mask |= 1207 AC_ERR_NODEV_HINT; 1208 } else { 1209 /* HSM violation. Let EH handle this. 1210 * Phantom devices also trigger this 1211 * condition. Mark hint. 1212 */ 1213 ata_ehi_push_desc(ehi, "ST-ATA: " 1214 "DRQ=0 without device error, " 1215 "dev_stat 0x%X", status); 1216 qc->err_mask |= AC_ERR_HSM | 1217 AC_ERR_NODEV_HINT; 1218 } 1219 1220 ap->hsm_task_state = HSM_ST_ERR; 1221 goto fsm_start; 1222 } 1223 1224 /* For PIO reads, some devices may ask for 1225 * data transfer (DRQ=1) alone with ERR=1. 1226 * We respect DRQ here and transfer one 1227 * block of junk data before changing the 1228 * hsm_task_state to HSM_ST_ERR. 1229 * 1230 * For PIO writes, ERR=1 DRQ=1 doesn't make 1231 * sense since the data block has been 1232 * transferred to the device. 1233 */ 1234 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1235 /* data might be corrputed */ 1236 qc->err_mask |= AC_ERR_DEV; 1237 1238 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1239 ata_pio_sectors(qc); 1240 status = ata_wait_idle(ap); 1241 } 1242 1243 if (status & (ATA_BUSY | ATA_DRQ)) { 1244 ata_ehi_push_desc(ehi, "ST-ATA: " 1245 "BUSY|DRQ persists on ERR|DF, " 1246 "dev_stat 0x%X", status); 1247 qc->err_mask |= AC_ERR_HSM; 1248 } 1249 1250 /* There are oddball controllers with 1251 * status register stuck at 0x7f and 1252 * lbal/m/h at zero which makes it 1253 * pass all other presence detection 1254 * mechanisms we have. Set NODEV_HINT 1255 * for it. Kernel bz#7241. 1256 */ 1257 if (status == 0x7f) 1258 qc->err_mask |= AC_ERR_NODEV_HINT; 1259 1260 /* ata_pio_sectors() might change the 1261 * state to HSM_ST_LAST. so, the state 1262 * is changed after ata_pio_sectors(). 1263 */ 1264 ap->hsm_task_state = HSM_ST_ERR; 1265 goto fsm_start; 1266 } 1267 1268 ata_pio_sectors(qc); 1269 1270 if (ap->hsm_task_state == HSM_ST_LAST && 1271 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1272 /* all data read */ 1273 status = ata_wait_idle(ap); 1274 goto fsm_start; 1275 } 1276 } 1277 1278 poll_next = 1; 1279 break; 1280 1281 case HSM_ST_LAST: 1282 if (unlikely(!ata_ok(status))) { 1283 qc->err_mask |= __ac_err_mask(status); 1284 ap->hsm_task_state = HSM_ST_ERR; 1285 goto fsm_start; 1286 } 1287 1288 /* no more data to transfer */ 1289 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1290 ap->print_id, qc->dev->devno, status); 1291 1292 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1293 1294 ap->hsm_task_state = HSM_ST_IDLE; 1295 1296 /* complete taskfile transaction */ 1297 ata_hsm_qc_complete(qc, in_wq); 1298 1299 poll_next = 0; 1300 break; 1301 1302 case HSM_ST_ERR: 1303 ap->hsm_task_state = HSM_ST_IDLE; 1304 1305 /* complete taskfile transaction */ 1306 ata_hsm_qc_complete(qc, in_wq); 1307 1308 poll_next = 0; 1309 break; 1310 default: 1311 poll_next = 0; 1312 BUG(); 1313 } 1314 1315 return poll_next; 1316 } 1317 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1318 1319 void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay) 1320 { 1321 /* may fail if ata_sff_flush_pio_task() in progress */ 1322 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task, 1323 msecs_to_jiffies(delay)); 1324 } 1325 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1326 1327 void ata_sff_flush_pio_task(struct ata_port *ap) 1328 { 1329 DPRINTK("ENTER\n"); 1330 1331 cancel_rearming_delayed_work(&ap->sff_pio_task); 1332 ap->hsm_task_state = HSM_ST_IDLE; 1333 1334 if (ata_msg_ctl(ap)) 1335 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1336 } 1337 1338 static void ata_sff_pio_task(struct work_struct *work) 1339 { 1340 struct ata_port *ap = 1341 container_of(work, struct ata_port, sff_pio_task.work); 1342 struct ata_queued_cmd *qc; 1343 u8 status; 1344 int poll_next; 1345 1346 /* qc can be NULL if timeout occurred */ 1347 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1348 if (!qc) 1349 return; 1350 1351 fsm_start: 1352 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1353 1354 /* 1355 * This is purely heuristic. This is a fast path. 1356 * Sometimes when we enter, BSY will be cleared in 1357 * a chk-status or two. If not, the drive is probably seeking 1358 * or something. Snooze for a couple msecs, then 1359 * chk-status again. If still busy, queue delayed work. 1360 */ 1361 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1362 if (status & ATA_BUSY) { 1363 msleep(2); 1364 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1365 if (status & ATA_BUSY) { 1366 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE); 1367 return; 1368 } 1369 } 1370 1371 /* move the HSM */ 1372 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1373 1374 /* another command or interrupt handler 1375 * may be running at this point. 1376 */ 1377 if (poll_next) 1378 goto fsm_start; 1379 } 1380 1381 /** 1382 * ata_sff_qc_issue - issue taskfile to a SFF controller 1383 * @qc: command to issue to device 1384 * 1385 * This function issues a PIO or NODATA command to a SFF 1386 * controller. 1387 * 1388 * LOCKING: 1389 * spin_lock_irqsave(host lock) 1390 * 1391 * RETURNS: 1392 * Zero on success, AC_ERR_* mask on failure 1393 */ 1394 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1395 { 1396 struct ata_port *ap = qc->ap; 1397 1398 /* Use polling pio if the LLD doesn't handle 1399 * interrupt driven pio and atapi CDB interrupt. 1400 */ 1401 if (ap->flags & ATA_FLAG_PIO_POLLING) 1402 qc->tf.flags |= ATA_TFLAG_POLLING; 1403 1404 /* select the device */ 1405 ata_dev_select(ap, qc->dev->devno, 1, 0); 1406 1407 /* start the command */ 1408 switch (qc->tf.protocol) { 1409 case ATA_PROT_NODATA: 1410 if (qc->tf.flags & ATA_TFLAG_POLLING) 1411 ata_qc_set_polling(qc); 1412 1413 ata_tf_to_host(ap, &qc->tf); 1414 ap->hsm_task_state = HSM_ST_LAST; 1415 1416 if (qc->tf.flags & ATA_TFLAG_POLLING) 1417 ata_sff_queue_pio_task(ap, 0); 1418 1419 break; 1420 1421 case ATA_PROT_PIO: 1422 if (qc->tf.flags & ATA_TFLAG_POLLING) 1423 ata_qc_set_polling(qc); 1424 1425 ata_tf_to_host(ap, &qc->tf); 1426 1427 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1428 /* PIO data out protocol */ 1429 ap->hsm_task_state = HSM_ST_FIRST; 1430 ata_sff_queue_pio_task(ap, 0); 1431 1432 /* always send first data block using the 1433 * ata_sff_pio_task() codepath. 1434 */ 1435 } else { 1436 /* PIO data in protocol */ 1437 ap->hsm_task_state = HSM_ST; 1438 1439 if (qc->tf.flags & ATA_TFLAG_POLLING) 1440 ata_sff_queue_pio_task(ap, 0); 1441 1442 /* if polling, ata_sff_pio_task() handles the 1443 * rest. otherwise, interrupt handler takes 1444 * over from here. 1445 */ 1446 } 1447 1448 break; 1449 1450 case ATAPI_PROT_PIO: 1451 case ATAPI_PROT_NODATA: 1452 if (qc->tf.flags & ATA_TFLAG_POLLING) 1453 ata_qc_set_polling(qc); 1454 1455 ata_tf_to_host(ap, &qc->tf); 1456 1457 ap->hsm_task_state = HSM_ST_FIRST; 1458 1459 /* send cdb by polling if no cdb interrupt */ 1460 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1461 (qc->tf.flags & ATA_TFLAG_POLLING)) 1462 ata_sff_queue_pio_task(ap, 0); 1463 break; 1464 1465 default: 1466 WARN_ON_ONCE(1); 1467 return AC_ERR_SYSTEM; 1468 } 1469 1470 return 0; 1471 } 1472 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1473 1474 /** 1475 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1476 * @qc: qc to fill result TF for 1477 * 1478 * @qc is finished and result TF needs to be filled. Fill it 1479 * using ->sff_tf_read. 1480 * 1481 * LOCKING: 1482 * spin_lock_irqsave(host lock) 1483 * 1484 * RETURNS: 1485 * true indicating that result TF is successfully filled. 1486 */ 1487 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1488 { 1489 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1490 return true; 1491 } 1492 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1493 1494 /** 1495 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1496 * @ap: Port on which interrupt arrived (possibly...) 1497 * @qc: Taskfile currently active in engine 1498 * 1499 * Handle host interrupt for given queued command. Currently, 1500 * only DMA interrupts are handled. All other commands are 1501 * handled via polling with interrupts disabled (nIEN bit). 1502 * 1503 * LOCKING: 1504 * spin_lock_irqsave(host lock) 1505 * 1506 * RETURNS: 1507 * One if interrupt was handled, zero if not (shared irq). 1508 */ 1509 unsigned int ata_sff_host_intr(struct ata_port *ap, 1510 struct ata_queued_cmd *qc) 1511 { 1512 struct ata_eh_info *ehi = &ap->link.eh_info; 1513 u8 status, host_stat = 0; 1514 bool bmdma_stopped = false; 1515 1516 VPRINTK("ata%u: protocol %d task_state %d\n", 1517 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1518 1519 /* Check whether we are expecting interrupt in this state */ 1520 switch (ap->hsm_task_state) { 1521 case HSM_ST_FIRST: 1522 /* Some pre-ATAPI-4 devices assert INTRQ 1523 * at this state when ready to receive CDB. 1524 */ 1525 1526 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1527 * The flag was turned on only for atapi devices. No 1528 * need to check ata_is_atapi(qc->tf.protocol) again. 1529 */ 1530 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1531 goto idle_irq; 1532 break; 1533 case HSM_ST_LAST: 1534 if (qc->tf.protocol == ATA_PROT_DMA || 1535 qc->tf.protocol == ATAPI_PROT_DMA) { 1536 /* check status of DMA engine */ 1537 host_stat = ap->ops->bmdma_status(ap); 1538 VPRINTK("ata%u: host_stat 0x%X\n", 1539 ap->print_id, host_stat); 1540 1541 /* if it's not our irq... */ 1542 if (!(host_stat & ATA_DMA_INTR)) 1543 goto idle_irq; 1544 1545 /* before we do anything else, clear DMA-Start bit */ 1546 ap->ops->bmdma_stop(qc); 1547 bmdma_stopped = true; 1548 1549 if (unlikely(host_stat & ATA_DMA_ERR)) { 1550 /* error when transfering data to/from memory */ 1551 qc->err_mask |= AC_ERR_HOST_BUS; 1552 ap->hsm_task_state = HSM_ST_ERR; 1553 } 1554 } 1555 break; 1556 case HSM_ST: 1557 break; 1558 default: 1559 goto idle_irq; 1560 } 1561 1562 1563 /* check main status, clearing INTRQ if needed */ 1564 status = ata_sff_irq_status(ap); 1565 if (status & ATA_BUSY) { 1566 if (bmdma_stopped) { 1567 /* BMDMA engine is already stopped, we're screwed */ 1568 qc->err_mask |= AC_ERR_HSM; 1569 ap->hsm_task_state = HSM_ST_ERR; 1570 } else 1571 goto idle_irq; 1572 } 1573 1574 /* clear irq events */ 1575 ap->ops->sff_irq_clear(ap); 1576 1577 ata_sff_hsm_move(ap, qc, status, 0); 1578 1579 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1580 qc->tf.protocol == ATAPI_PROT_DMA)) 1581 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1582 1583 return 1; /* irq handled */ 1584 1585 idle_irq: 1586 ap->stats.idle_irq++; 1587 1588 #ifdef ATA_IRQ_TRAP 1589 if ((ap->stats.idle_irq % 1000) == 0) { 1590 ap->ops->sff_check_status(ap); 1591 ap->ops->sff_irq_clear(ap); 1592 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1593 return 1; 1594 } 1595 #endif 1596 return 0; /* irq not handled */ 1597 } 1598 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1599 1600 /** 1601 * ata_sff_interrupt - Default ATA host interrupt handler 1602 * @irq: irq line (unused) 1603 * @dev_instance: pointer to our ata_host information structure 1604 * 1605 * Default interrupt handler for PCI IDE devices. Calls 1606 * ata_sff_host_intr() for each port that is not disabled. 1607 * 1608 * LOCKING: 1609 * Obtains host lock during operation. 1610 * 1611 * RETURNS: 1612 * IRQ_NONE or IRQ_HANDLED. 1613 */ 1614 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1615 { 1616 struct ata_host *host = dev_instance; 1617 bool retried = false; 1618 unsigned int i; 1619 unsigned int handled, idle, polling; 1620 unsigned long flags; 1621 1622 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1623 spin_lock_irqsave(&host->lock, flags); 1624 1625 retry: 1626 handled = idle = polling = 0; 1627 for (i = 0; i < host->n_ports; i++) { 1628 struct ata_port *ap = host->ports[i]; 1629 struct ata_queued_cmd *qc; 1630 1631 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1632 if (qc) { 1633 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1634 handled |= ata_sff_host_intr(ap, qc); 1635 else 1636 polling |= 1 << i; 1637 } else 1638 idle |= 1 << i; 1639 } 1640 1641 /* 1642 * If no port was expecting IRQ but the controller is actually 1643 * asserting IRQ line, nobody cared will ensue. Check IRQ 1644 * pending status if available and clear spurious IRQ. 1645 */ 1646 if (!handled && !retried) { 1647 bool retry = false; 1648 1649 for (i = 0; i < host->n_ports; i++) { 1650 struct ata_port *ap = host->ports[i]; 1651 1652 if (polling & (1 << i)) 1653 continue; 1654 1655 if (!ap->ops->sff_irq_check || 1656 !ap->ops->sff_irq_check(ap)) 1657 continue; 1658 1659 if (idle & (1 << i)) { 1660 ap->ops->sff_check_status(ap); 1661 ap->ops->sff_irq_clear(ap); 1662 } else { 1663 /* clear INTRQ and check if BUSY cleared */ 1664 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1665 retry |= true; 1666 /* 1667 * With command in flight, we can't do 1668 * sff_irq_clear() w/o racing with completion. 1669 */ 1670 } 1671 } 1672 1673 if (retry) { 1674 retried = true; 1675 goto retry; 1676 } 1677 } 1678 1679 spin_unlock_irqrestore(&host->lock, flags); 1680 1681 return IRQ_RETVAL(handled); 1682 } 1683 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1684 1685 /** 1686 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1687 * @ap: port that appears to have timed out 1688 * 1689 * Called from the libata error handlers when the core code suspects 1690 * an interrupt has been lost. If it has complete anything we can and 1691 * then return. Interface must support altstatus for this faster 1692 * recovery to occur. 1693 * 1694 * Locking: 1695 * Caller holds host lock 1696 */ 1697 1698 void ata_sff_lost_interrupt(struct ata_port *ap) 1699 { 1700 u8 status; 1701 struct ata_queued_cmd *qc; 1702 1703 /* Only one outstanding command per SFF channel */ 1704 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1705 /* We cannot lose an interrupt on a non-existent or polled command */ 1706 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1707 return; 1708 /* See if the controller thinks it is still busy - if so the command 1709 isn't a lost IRQ but is still in progress */ 1710 status = ata_sff_altstatus(ap); 1711 if (status & ATA_BUSY) 1712 return; 1713 1714 /* There was a command running, we are no longer busy and we have 1715 no interrupt. */ 1716 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1717 status); 1718 /* Run the host interrupt logic as if the interrupt had not been 1719 lost */ 1720 ata_sff_host_intr(ap, qc); 1721 } 1722 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1723 1724 /** 1725 * ata_sff_freeze - Freeze SFF controller port 1726 * @ap: port to freeze 1727 * 1728 * Freeze SFF controller port. 1729 * 1730 * LOCKING: 1731 * Inherited from caller. 1732 */ 1733 void ata_sff_freeze(struct ata_port *ap) 1734 { 1735 ap->ctl |= ATA_NIEN; 1736 ap->last_ctl = ap->ctl; 1737 1738 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1739 ata_sff_set_devctl(ap, ap->ctl); 1740 1741 /* Under certain circumstances, some controllers raise IRQ on 1742 * ATA_NIEN manipulation. Also, many controllers fail to mask 1743 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1744 */ 1745 ap->ops->sff_check_status(ap); 1746 1747 ap->ops->sff_irq_clear(ap); 1748 } 1749 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1750 1751 /** 1752 * ata_sff_thaw - Thaw SFF controller port 1753 * @ap: port to thaw 1754 * 1755 * Thaw SFF controller port. 1756 * 1757 * LOCKING: 1758 * Inherited from caller. 1759 */ 1760 void ata_sff_thaw(struct ata_port *ap) 1761 { 1762 /* clear & re-enable interrupts */ 1763 ap->ops->sff_check_status(ap); 1764 ap->ops->sff_irq_clear(ap); 1765 ata_sff_irq_on(ap); 1766 } 1767 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1768 1769 /** 1770 * ata_sff_prereset - prepare SFF link for reset 1771 * @link: SFF link to be reset 1772 * @deadline: deadline jiffies for the operation 1773 * 1774 * SFF link @link is about to be reset. Initialize it. It first 1775 * calls ata_std_prereset() and wait for !BSY if the port is 1776 * being softreset. 1777 * 1778 * LOCKING: 1779 * Kernel thread context (may sleep) 1780 * 1781 * RETURNS: 1782 * 0 on success, -errno otherwise. 1783 */ 1784 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1785 { 1786 struct ata_eh_context *ehc = &link->eh_context; 1787 int rc; 1788 1789 rc = ata_std_prereset(link, deadline); 1790 if (rc) 1791 return rc; 1792 1793 /* if we're about to do hardreset, nothing more to do */ 1794 if (ehc->i.action & ATA_EH_HARDRESET) 1795 return 0; 1796 1797 /* wait for !BSY if we don't know that no device is attached */ 1798 if (!ata_link_offline(link)) { 1799 rc = ata_sff_wait_ready(link, deadline); 1800 if (rc && rc != -ENODEV) { 1801 ata_link_printk(link, KERN_WARNING, "device not ready " 1802 "(errno=%d), forcing hardreset\n", rc); 1803 ehc->i.action |= ATA_EH_HARDRESET; 1804 } 1805 } 1806 1807 return 0; 1808 } 1809 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1810 1811 /** 1812 * ata_devchk - PATA device presence detection 1813 * @ap: ATA channel to examine 1814 * @device: Device to examine (starting at zero) 1815 * 1816 * This technique was originally described in 1817 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1818 * later found its way into the ATA/ATAPI spec. 1819 * 1820 * Write a pattern to the ATA shadow registers, 1821 * and if a device is present, it will respond by 1822 * correctly storing and echoing back the 1823 * ATA shadow register contents. 1824 * 1825 * LOCKING: 1826 * caller. 1827 */ 1828 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1829 { 1830 struct ata_ioports *ioaddr = &ap->ioaddr; 1831 u8 nsect, lbal; 1832 1833 ap->ops->sff_dev_select(ap, device); 1834 1835 iowrite8(0x55, ioaddr->nsect_addr); 1836 iowrite8(0xaa, ioaddr->lbal_addr); 1837 1838 iowrite8(0xaa, ioaddr->nsect_addr); 1839 iowrite8(0x55, ioaddr->lbal_addr); 1840 1841 iowrite8(0x55, ioaddr->nsect_addr); 1842 iowrite8(0xaa, ioaddr->lbal_addr); 1843 1844 nsect = ioread8(ioaddr->nsect_addr); 1845 lbal = ioread8(ioaddr->lbal_addr); 1846 1847 if ((nsect == 0x55) && (lbal == 0xaa)) 1848 return 1; /* we found a device */ 1849 1850 return 0; /* nothing found */ 1851 } 1852 1853 /** 1854 * ata_sff_dev_classify - Parse returned ATA device signature 1855 * @dev: ATA device to classify (starting at zero) 1856 * @present: device seems present 1857 * @r_err: Value of error register on completion 1858 * 1859 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1860 * an ATA/ATAPI-defined set of values is placed in the ATA 1861 * shadow registers, indicating the results of device detection 1862 * and diagnostics. 1863 * 1864 * Select the ATA device, and read the values from the ATA shadow 1865 * registers. Then parse according to the Error register value, 1866 * and the spec-defined values examined by ata_dev_classify(). 1867 * 1868 * LOCKING: 1869 * caller. 1870 * 1871 * RETURNS: 1872 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1873 */ 1874 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1875 u8 *r_err) 1876 { 1877 struct ata_port *ap = dev->link->ap; 1878 struct ata_taskfile tf; 1879 unsigned int class; 1880 u8 err; 1881 1882 ap->ops->sff_dev_select(ap, dev->devno); 1883 1884 memset(&tf, 0, sizeof(tf)); 1885 1886 ap->ops->sff_tf_read(ap, &tf); 1887 err = tf.feature; 1888 if (r_err) 1889 *r_err = err; 1890 1891 /* see if device passed diags: continue and warn later */ 1892 if (err == 0) 1893 /* diagnostic fail : do nothing _YET_ */ 1894 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1895 else if (err == 1) 1896 /* do nothing */ ; 1897 else if ((dev->devno == 0) && (err == 0x81)) 1898 /* do nothing */ ; 1899 else 1900 return ATA_DEV_NONE; 1901 1902 /* determine if device is ATA or ATAPI */ 1903 class = ata_dev_classify(&tf); 1904 1905 if (class == ATA_DEV_UNKNOWN) { 1906 /* If the device failed diagnostic, it's likely to 1907 * have reported incorrect device signature too. 1908 * Assume ATA device if the device seems present but 1909 * device signature is invalid with diagnostic 1910 * failure. 1911 */ 1912 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1913 class = ATA_DEV_ATA; 1914 else 1915 class = ATA_DEV_NONE; 1916 } else if ((class == ATA_DEV_ATA) && 1917 (ap->ops->sff_check_status(ap) == 0)) 1918 class = ATA_DEV_NONE; 1919 1920 return class; 1921 } 1922 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1923 1924 /** 1925 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1926 * @link: SFF link which is just reset 1927 * @devmask: mask of present devices 1928 * @deadline: deadline jiffies for the operation 1929 * 1930 * Wait devices attached to SFF @link to become ready after 1931 * reset. It contains preceding 150ms wait to avoid accessing TF 1932 * status register too early. 1933 * 1934 * LOCKING: 1935 * Kernel thread context (may sleep). 1936 * 1937 * RETURNS: 1938 * 0 on success, -ENODEV if some or all of devices in @devmask 1939 * don't seem to exist. -errno on other errors. 1940 */ 1941 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1942 unsigned long deadline) 1943 { 1944 struct ata_port *ap = link->ap; 1945 struct ata_ioports *ioaddr = &ap->ioaddr; 1946 unsigned int dev0 = devmask & (1 << 0); 1947 unsigned int dev1 = devmask & (1 << 1); 1948 int rc, ret = 0; 1949 1950 msleep(ATA_WAIT_AFTER_RESET); 1951 1952 /* always check readiness of the master device */ 1953 rc = ata_sff_wait_ready(link, deadline); 1954 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1955 * and TF status is 0xff, bail out on it too. 1956 */ 1957 if (rc) 1958 return rc; 1959 1960 /* if device 1 was found in ata_devchk, wait for register 1961 * access briefly, then wait for BSY to clear. 1962 */ 1963 if (dev1) { 1964 int i; 1965 1966 ap->ops->sff_dev_select(ap, 1); 1967 1968 /* Wait for register access. Some ATAPI devices fail 1969 * to set nsect/lbal after reset, so don't waste too 1970 * much time on it. We're gonna wait for !BSY anyway. 1971 */ 1972 for (i = 0; i < 2; i++) { 1973 u8 nsect, lbal; 1974 1975 nsect = ioread8(ioaddr->nsect_addr); 1976 lbal = ioread8(ioaddr->lbal_addr); 1977 if ((nsect == 1) && (lbal == 1)) 1978 break; 1979 msleep(50); /* give drive a breather */ 1980 } 1981 1982 rc = ata_sff_wait_ready(link, deadline); 1983 if (rc) { 1984 if (rc != -ENODEV) 1985 return rc; 1986 ret = rc; 1987 } 1988 } 1989 1990 /* is all this really necessary? */ 1991 ap->ops->sff_dev_select(ap, 0); 1992 if (dev1) 1993 ap->ops->sff_dev_select(ap, 1); 1994 if (dev0) 1995 ap->ops->sff_dev_select(ap, 0); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2000 2001 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2002 unsigned long deadline) 2003 { 2004 struct ata_ioports *ioaddr = &ap->ioaddr; 2005 2006 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2007 2008 /* software reset. causes dev0 to be selected */ 2009 iowrite8(ap->ctl, ioaddr->ctl_addr); 2010 udelay(20); /* FIXME: flush */ 2011 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2012 udelay(20); /* FIXME: flush */ 2013 iowrite8(ap->ctl, ioaddr->ctl_addr); 2014 ap->last_ctl = ap->ctl; 2015 2016 /* wait the port to become ready */ 2017 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2018 } 2019 2020 /** 2021 * ata_sff_softreset - reset host port via ATA SRST 2022 * @link: ATA link to reset 2023 * @classes: resulting classes of attached devices 2024 * @deadline: deadline jiffies for the operation 2025 * 2026 * Reset host port using ATA SRST. 2027 * 2028 * LOCKING: 2029 * Kernel thread context (may sleep) 2030 * 2031 * RETURNS: 2032 * 0 on success, -errno otherwise. 2033 */ 2034 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2035 unsigned long deadline) 2036 { 2037 struct ata_port *ap = link->ap; 2038 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2039 unsigned int devmask = 0; 2040 int rc; 2041 u8 err; 2042 2043 DPRINTK("ENTER\n"); 2044 2045 /* determine if device 0/1 are present */ 2046 if (ata_devchk(ap, 0)) 2047 devmask |= (1 << 0); 2048 if (slave_possible && ata_devchk(ap, 1)) 2049 devmask |= (1 << 1); 2050 2051 /* select device 0 again */ 2052 ap->ops->sff_dev_select(ap, 0); 2053 2054 /* issue bus reset */ 2055 DPRINTK("about to softreset, devmask=%x\n", devmask); 2056 rc = ata_bus_softreset(ap, devmask, deadline); 2057 /* if link is occupied, -ENODEV too is an error */ 2058 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2059 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2060 return rc; 2061 } 2062 2063 /* determine by signature whether we have ATA or ATAPI devices */ 2064 classes[0] = ata_sff_dev_classify(&link->device[0], 2065 devmask & (1 << 0), &err); 2066 if (slave_possible && err != 0x81) 2067 classes[1] = ata_sff_dev_classify(&link->device[1], 2068 devmask & (1 << 1), &err); 2069 2070 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2074 2075 /** 2076 * sata_sff_hardreset - reset host port via SATA phy reset 2077 * @link: link to reset 2078 * @class: resulting class of attached device 2079 * @deadline: deadline jiffies for the operation 2080 * 2081 * SATA phy-reset host port using DET bits of SControl register, 2082 * wait for !BSY and classify the attached device. 2083 * 2084 * LOCKING: 2085 * Kernel thread context (may sleep) 2086 * 2087 * RETURNS: 2088 * 0 on success, -errno otherwise. 2089 */ 2090 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2091 unsigned long deadline) 2092 { 2093 struct ata_eh_context *ehc = &link->eh_context; 2094 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2095 bool online; 2096 int rc; 2097 2098 rc = sata_link_hardreset(link, timing, deadline, &online, 2099 ata_sff_check_ready); 2100 if (online) 2101 *class = ata_sff_dev_classify(link->device, 1, NULL); 2102 2103 DPRINTK("EXIT, class=%u\n", *class); 2104 return rc; 2105 } 2106 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2107 2108 /** 2109 * ata_sff_postreset - SFF postreset callback 2110 * @link: the target SFF ata_link 2111 * @classes: classes of attached devices 2112 * 2113 * This function is invoked after a successful reset. It first 2114 * calls ata_std_postreset() and performs SFF specific postreset 2115 * processing. 2116 * 2117 * LOCKING: 2118 * Kernel thread context (may sleep) 2119 */ 2120 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2121 { 2122 struct ata_port *ap = link->ap; 2123 2124 ata_std_postreset(link, classes); 2125 2126 /* is double-select really necessary? */ 2127 if (classes[0] != ATA_DEV_NONE) 2128 ap->ops->sff_dev_select(ap, 1); 2129 if (classes[1] != ATA_DEV_NONE) 2130 ap->ops->sff_dev_select(ap, 0); 2131 2132 /* bail out if no device is present */ 2133 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2134 DPRINTK("EXIT, no device\n"); 2135 return; 2136 } 2137 2138 /* set up device control */ 2139 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2140 ata_sff_set_devctl(ap, ap->ctl); 2141 ap->last_ctl = ap->ctl; 2142 } 2143 } 2144 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2145 2146 /** 2147 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2148 * @qc: command 2149 * 2150 * Drain the FIFO and device of any stuck data following a command 2151 * failing to complete. In some cases this is necessary before a 2152 * reset will recover the device. 2153 * 2154 */ 2155 2156 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2157 { 2158 int count; 2159 struct ata_port *ap; 2160 2161 /* We only need to flush incoming data when a command was running */ 2162 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2163 return; 2164 2165 ap = qc->ap; 2166 /* Drain up to 64K of data before we give up this recovery method */ 2167 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2168 && count < 65536; count += 2) 2169 ioread16(ap->ioaddr.data_addr); 2170 2171 /* Can become DEBUG later */ 2172 if (count) 2173 ata_port_printk(ap, KERN_DEBUG, 2174 "drained %d bytes to clear DRQ.\n", count); 2175 2176 } 2177 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2178 2179 /** 2180 * ata_sff_error_handler - Stock error handler for SFF controller 2181 * @ap: port to handle error for 2182 * 2183 * Stock error handler for SFF controller. It can handle both 2184 * PATA and SATA controllers. Many controllers should be able to 2185 * use this EH as-is or with some added handling before and 2186 * after. 2187 * 2188 * LOCKING: 2189 * Kernel thread context (may sleep) 2190 */ 2191 void ata_sff_error_handler(struct ata_port *ap) 2192 { 2193 ata_reset_fn_t softreset = ap->ops->softreset; 2194 ata_reset_fn_t hardreset = ap->ops->hardreset; 2195 struct ata_queued_cmd *qc; 2196 unsigned long flags; 2197 2198 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2199 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2200 qc = NULL; 2201 2202 spin_lock_irqsave(ap->lock, flags); 2203 2204 /* 2205 * We *MUST* do FIFO draining before we issue a reset as 2206 * several devices helpfully clear their internal state and 2207 * will lock solid if we touch the data port post reset. Pass 2208 * qc in case anyone wants to do different PIO/DMA recovery or 2209 * has per command fixups 2210 */ 2211 if (ap->ops->sff_drain_fifo) 2212 ap->ops->sff_drain_fifo(qc); 2213 2214 spin_unlock_irqrestore(ap->lock, flags); 2215 2216 /* ignore ata_sff_softreset if ctl isn't accessible */ 2217 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2218 softreset = NULL; 2219 2220 /* ignore built-in hardresets if SCR access is not available */ 2221 if ((hardreset == sata_std_hardreset || 2222 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2223 hardreset = NULL; 2224 2225 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2226 ap->ops->postreset); 2227 } 2228 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2229 2230 /** 2231 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2232 * @ioaddr: IO address structure to be initialized 2233 * 2234 * Utility function which initializes data_addr, error_addr, 2235 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2236 * device_addr, status_addr, and command_addr to standard offsets 2237 * relative to cmd_addr. 2238 * 2239 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2240 */ 2241 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2242 { 2243 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2244 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2245 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2246 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2247 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2248 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2249 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2250 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2251 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2252 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2253 } 2254 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2255 2256 #ifdef CONFIG_PCI 2257 2258 static int ata_resources_present(struct pci_dev *pdev, int port) 2259 { 2260 int i; 2261 2262 /* Check the PCI resources for this channel are enabled */ 2263 port = port * 2; 2264 for (i = 0; i < 2; i++) { 2265 if (pci_resource_start(pdev, port + i) == 0 || 2266 pci_resource_len(pdev, port + i) == 0) 2267 return 0; 2268 } 2269 return 1; 2270 } 2271 2272 /** 2273 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2274 * @host: target ATA host 2275 * 2276 * Acquire native PCI ATA resources for @host and initialize the 2277 * first two ports of @host accordingly. Ports marked dummy are 2278 * skipped and allocation failure makes the port dummy. 2279 * 2280 * Note that native PCI resources are valid even for legacy hosts 2281 * as we fix up pdev resources array early in boot, so this 2282 * function can be used for both native and legacy SFF hosts. 2283 * 2284 * LOCKING: 2285 * Inherited from calling layer (may sleep). 2286 * 2287 * RETURNS: 2288 * 0 if at least one port is initialized, -ENODEV if no port is 2289 * available. 2290 */ 2291 int ata_pci_sff_init_host(struct ata_host *host) 2292 { 2293 struct device *gdev = host->dev; 2294 struct pci_dev *pdev = to_pci_dev(gdev); 2295 unsigned int mask = 0; 2296 int i, rc; 2297 2298 /* request, iomap BARs and init port addresses accordingly */ 2299 for (i = 0; i < 2; i++) { 2300 struct ata_port *ap = host->ports[i]; 2301 int base = i * 2; 2302 void __iomem * const *iomap; 2303 2304 if (ata_port_is_dummy(ap)) 2305 continue; 2306 2307 /* Discard disabled ports. Some controllers show 2308 * their unused channels this way. Disabled ports are 2309 * made dummy. 2310 */ 2311 if (!ata_resources_present(pdev, i)) { 2312 ap->ops = &ata_dummy_port_ops; 2313 continue; 2314 } 2315 2316 rc = pcim_iomap_regions(pdev, 0x3 << base, 2317 dev_driver_string(gdev)); 2318 if (rc) { 2319 dev_printk(KERN_WARNING, gdev, 2320 "failed to request/iomap BARs for port %d " 2321 "(errno=%d)\n", i, rc); 2322 if (rc == -EBUSY) 2323 pcim_pin_device(pdev); 2324 ap->ops = &ata_dummy_port_ops; 2325 continue; 2326 } 2327 host->iomap = iomap = pcim_iomap_table(pdev); 2328 2329 ap->ioaddr.cmd_addr = iomap[base]; 2330 ap->ioaddr.altstatus_addr = 2331 ap->ioaddr.ctl_addr = (void __iomem *) 2332 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2333 ata_sff_std_ports(&ap->ioaddr); 2334 2335 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2336 (unsigned long long)pci_resource_start(pdev, base), 2337 (unsigned long long)pci_resource_start(pdev, base + 1)); 2338 2339 mask |= 1 << i; 2340 } 2341 2342 if (!mask) { 2343 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2344 return -ENODEV; 2345 } 2346 2347 return 0; 2348 } 2349 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2350 2351 /** 2352 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2353 * @pdev: target PCI device 2354 * @ppi: array of port_info, must be enough for two ports 2355 * @r_host: out argument for the initialized ATA host 2356 * 2357 * Helper to allocate ATA host for @pdev, acquire all native PCI 2358 * resources and initialize it accordingly in one go. 2359 * 2360 * LOCKING: 2361 * Inherited from calling layer (may sleep). 2362 * 2363 * RETURNS: 2364 * 0 on success, -errno otherwise. 2365 */ 2366 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2367 const struct ata_port_info * const *ppi, 2368 struct ata_host **r_host) 2369 { 2370 struct ata_host *host; 2371 int rc; 2372 2373 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2374 return -ENOMEM; 2375 2376 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2377 if (!host) { 2378 dev_printk(KERN_ERR, &pdev->dev, 2379 "failed to allocate ATA host\n"); 2380 rc = -ENOMEM; 2381 goto err_out; 2382 } 2383 2384 rc = ata_pci_sff_init_host(host); 2385 if (rc) 2386 goto err_out; 2387 2388 /* init DMA related stuff */ 2389 ata_pci_bmdma_init(host); 2390 2391 devres_remove_group(&pdev->dev, NULL); 2392 *r_host = host; 2393 return 0; 2394 2395 err_out: 2396 devres_release_group(&pdev->dev, NULL); 2397 return rc; 2398 } 2399 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2400 2401 /** 2402 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2403 * @host: target SFF ATA host 2404 * @irq_handler: irq_handler used when requesting IRQ(s) 2405 * @sht: scsi_host_template to use when registering the host 2406 * 2407 * This is the counterpart of ata_host_activate() for SFF ATA 2408 * hosts. This separate helper is necessary because SFF hosts 2409 * use two separate interrupts in legacy mode. 2410 * 2411 * LOCKING: 2412 * Inherited from calling layer (may sleep). 2413 * 2414 * RETURNS: 2415 * 0 on success, -errno otherwise. 2416 */ 2417 int ata_pci_sff_activate_host(struct ata_host *host, 2418 irq_handler_t irq_handler, 2419 struct scsi_host_template *sht) 2420 { 2421 struct device *dev = host->dev; 2422 struct pci_dev *pdev = to_pci_dev(dev); 2423 const char *drv_name = dev_driver_string(host->dev); 2424 int legacy_mode = 0, rc; 2425 2426 rc = ata_host_start(host); 2427 if (rc) 2428 return rc; 2429 2430 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2431 u8 tmp8, mask; 2432 2433 /* TODO: What if one channel is in native mode ... */ 2434 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2435 mask = (1 << 2) | (1 << 0); 2436 if ((tmp8 & mask) != mask) 2437 legacy_mode = 1; 2438 #if defined(CONFIG_NO_ATA_LEGACY) 2439 /* Some platforms with PCI limits cannot address compat 2440 port space. In that case we punt if their firmware has 2441 left a device in compatibility mode */ 2442 if (legacy_mode) { 2443 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2444 return -EOPNOTSUPP; 2445 } 2446 #endif 2447 } 2448 2449 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2450 return -ENOMEM; 2451 2452 if (!legacy_mode && pdev->irq) { 2453 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2454 IRQF_SHARED, drv_name, host); 2455 if (rc) 2456 goto out; 2457 2458 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2459 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2460 } else if (legacy_mode) { 2461 if (!ata_port_is_dummy(host->ports[0])) { 2462 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2463 irq_handler, IRQF_SHARED, 2464 drv_name, host); 2465 if (rc) 2466 goto out; 2467 2468 ata_port_desc(host->ports[0], "irq %d", 2469 ATA_PRIMARY_IRQ(pdev)); 2470 } 2471 2472 if (!ata_port_is_dummy(host->ports[1])) { 2473 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2474 irq_handler, IRQF_SHARED, 2475 drv_name, host); 2476 if (rc) 2477 goto out; 2478 2479 ata_port_desc(host->ports[1], "irq %d", 2480 ATA_SECONDARY_IRQ(pdev)); 2481 } 2482 } 2483 2484 rc = ata_host_register(host, sht); 2485 out: 2486 if (rc == 0) 2487 devres_remove_group(dev, NULL); 2488 else 2489 devres_release_group(dev, NULL); 2490 2491 return rc; 2492 } 2493 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2494 2495 /** 2496 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 2497 * @pdev: Controller to be initialized 2498 * @ppi: array of port_info, must be enough for two ports 2499 * @sht: scsi_host_template to use when registering the host 2500 * @host_priv: host private_data 2501 * @hflag: host flags 2502 * 2503 * This is a helper function which can be called from a driver's 2504 * xxx_init_one() probe function if the hardware uses traditional 2505 * IDE taskfile registers. 2506 * 2507 * This function calls pci_enable_device(), reserves its register 2508 * regions, sets the dma mask, enables bus master mode, and calls 2509 * ata_device_add() 2510 * 2511 * ASSUMPTION: 2512 * Nobody makes a single channel controller that appears solely as 2513 * the secondary legacy port on PCI. 2514 * 2515 * LOCKING: 2516 * Inherited from PCI layer (may sleep). 2517 * 2518 * RETURNS: 2519 * Zero on success, negative on errno-based value on error. 2520 */ 2521 int ata_pci_sff_init_one(struct pci_dev *pdev, 2522 const struct ata_port_info * const *ppi, 2523 struct scsi_host_template *sht, void *host_priv, int hflag) 2524 { 2525 struct device *dev = &pdev->dev; 2526 const struct ata_port_info *pi = NULL; 2527 struct ata_host *host = NULL; 2528 int i, rc; 2529 2530 DPRINTK("ENTER\n"); 2531 2532 /* look up the first valid port_info */ 2533 for (i = 0; i < 2 && ppi[i]; i++) { 2534 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 2535 pi = ppi[i]; 2536 break; 2537 } 2538 } 2539 2540 if (!pi) { 2541 dev_printk(KERN_ERR, &pdev->dev, 2542 "no valid port_info specified\n"); 2543 return -EINVAL; 2544 } 2545 2546 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2547 return -ENOMEM; 2548 2549 rc = pcim_enable_device(pdev); 2550 if (rc) 2551 goto out; 2552 2553 /* prepare and activate SFF host */ 2554 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2555 if (rc) 2556 goto out; 2557 host->private_data = host_priv; 2558 host->flags |= hflag; 2559 2560 pci_set_master(pdev); 2561 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2562 out: 2563 if (rc == 0) 2564 devres_remove_group(&pdev->dev, NULL); 2565 else 2566 devres_release_group(&pdev->dev, NULL); 2567 2568 return rc; 2569 } 2570 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2571 2572 #endif /* CONFIG_PCI */ 2573 2574 const struct ata_port_operations ata_bmdma_port_ops = { 2575 .inherits = &ata_sff_port_ops, 2576 2577 .error_handler = ata_bmdma_error_handler, 2578 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2579 2580 .qc_prep = ata_bmdma_qc_prep, 2581 .qc_issue = ata_bmdma_qc_issue, 2582 2583 .bmdma_setup = ata_bmdma_setup, 2584 .bmdma_start = ata_bmdma_start, 2585 .bmdma_stop = ata_bmdma_stop, 2586 .bmdma_status = ata_bmdma_status, 2587 2588 .port_start = ata_bmdma_port_start, 2589 }; 2590 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2591 2592 const struct ata_port_operations ata_bmdma32_port_ops = { 2593 .inherits = &ata_bmdma_port_ops, 2594 2595 .sff_data_xfer = ata_sff_data_xfer32, 2596 .port_start = ata_bmdma_port_start32, 2597 }; 2598 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2599 2600 /** 2601 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2602 * @qc: Metadata associated with taskfile to be transferred 2603 * 2604 * Fill PCI IDE PRD (scatter-gather) table with segments 2605 * associated with the current disk command. 2606 * 2607 * LOCKING: 2608 * spin_lock_irqsave(host lock) 2609 * 2610 */ 2611 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2612 { 2613 struct ata_port *ap = qc->ap; 2614 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2615 struct scatterlist *sg; 2616 unsigned int si, pi; 2617 2618 pi = 0; 2619 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2620 u32 addr, offset; 2621 u32 sg_len, len; 2622 2623 /* determine if physical DMA addr spans 64K boundary. 2624 * Note h/w doesn't support 64-bit, so we unconditionally 2625 * truncate dma_addr_t to u32. 2626 */ 2627 addr = (u32) sg_dma_address(sg); 2628 sg_len = sg_dma_len(sg); 2629 2630 while (sg_len) { 2631 offset = addr & 0xffff; 2632 len = sg_len; 2633 if ((offset + sg_len) > 0x10000) 2634 len = 0x10000 - offset; 2635 2636 prd[pi].addr = cpu_to_le32(addr); 2637 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2638 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2639 2640 pi++; 2641 sg_len -= len; 2642 addr += len; 2643 } 2644 } 2645 2646 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2647 } 2648 2649 /** 2650 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2651 * @qc: Metadata associated with taskfile to be transferred 2652 * 2653 * Fill PCI IDE PRD (scatter-gather) table with segments 2654 * associated with the current disk command. Perform the fill 2655 * so that we avoid writing any length 64K records for 2656 * controllers that don't follow the spec. 2657 * 2658 * LOCKING: 2659 * spin_lock_irqsave(host lock) 2660 * 2661 */ 2662 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2663 { 2664 struct ata_port *ap = qc->ap; 2665 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2666 struct scatterlist *sg; 2667 unsigned int si, pi; 2668 2669 pi = 0; 2670 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2671 u32 addr, offset; 2672 u32 sg_len, len, blen; 2673 2674 /* determine if physical DMA addr spans 64K boundary. 2675 * Note h/w doesn't support 64-bit, so we unconditionally 2676 * truncate dma_addr_t to u32. 2677 */ 2678 addr = (u32) sg_dma_address(sg); 2679 sg_len = sg_dma_len(sg); 2680 2681 while (sg_len) { 2682 offset = addr & 0xffff; 2683 len = sg_len; 2684 if ((offset + sg_len) > 0x10000) 2685 len = 0x10000 - offset; 2686 2687 blen = len & 0xffff; 2688 prd[pi].addr = cpu_to_le32(addr); 2689 if (blen == 0) { 2690 /* Some PATA chipsets like the CS5530 can't 2691 cope with 0x0000 meaning 64K as the spec 2692 says */ 2693 prd[pi].flags_len = cpu_to_le32(0x8000); 2694 blen = 0x8000; 2695 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2696 } 2697 prd[pi].flags_len = cpu_to_le32(blen); 2698 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2699 2700 pi++; 2701 sg_len -= len; 2702 addr += len; 2703 } 2704 } 2705 2706 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2707 } 2708 2709 /** 2710 * ata_bmdma_qc_prep - Prepare taskfile for submission 2711 * @qc: Metadata associated with taskfile to be prepared 2712 * 2713 * Prepare ATA taskfile for submission. 2714 * 2715 * LOCKING: 2716 * spin_lock_irqsave(host lock) 2717 */ 2718 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2719 { 2720 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2721 return; 2722 2723 ata_bmdma_fill_sg(qc); 2724 } 2725 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2726 2727 /** 2728 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2729 * @qc: Metadata associated with taskfile to be prepared 2730 * 2731 * Prepare ATA taskfile for submission. 2732 * 2733 * LOCKING: 2734 * spin_lock_irqsave(host lock) 2735 */ 2736 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2737 { 2738 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2739 return; 2740 2741 ata_bmdma_fill_sg_dumb(qc); 2742 } 2743 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2744 2745 /** 2746 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2747 * @qc: command to issue to device 2748 * 2749 * This function issues a PIO, NODATA or DMA command to a 2750 * SFF/BMDMA controller. PIO and NODATA are handled by 2751 * ata_sff_qc_issue(). 2752 * 2753 * LOCKING: 2754 * spin_lock_irqsave(host lock) 2755 * 2756 * RETURNS: 2757 * Zero on success, AC_ERR_* mask on failure 2758 */ 2759 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2760 { 2761 struct ata_port *ap = qc->ap; 2762 2763 /* see ata_dma_blacklisted() */ 2764 BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) && 2765 qc->tf.protocol == ATAPI_PROT_DMA); 2766 2767 /* defer PIO handling to sff_qc_issue */ 2768 if (!ata_is_dma(qc->tf.protocol)) 2769 return ata_sff_qc_issue(qc); 2770 2771 /* select the device */ 2772 ata_dev_select(ap, qc->dev->devno, 1, 0); 2773 2774 /* start the command */ 2775 switch (qc->tf.protocol) { 2776 case ATA_PROT_DMA: 2777 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2778 2779 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2780 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2781 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2782 ap->hsm_task_state = HSM_ST_LAST; 2783 break; 2784 2785 case ATAPI_PROT_DMA: 2786 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2787 2788 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2789 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2790 ap->hsm_task_state = HSM_ST_FIRST; 2791 2792 /* send cdb by polling if no cdb interrupt */ 2793 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2794 ata_sff_queue_pio_task(ap, 0); 2795 break; 2796 2797 default: 2798 WARN_ON(1); 2799 return AC_ERR_SYSTEM; 2800 } 2801 2802 return 0; 2803 } 2804 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2805 2806 /** 2807 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2808 * @ap: port to handle error for 2809 * 2810 * Stock error handler for BMDMA controller. It can handle both 2811 * PATA and SATA controllers. Most BMDMA controllers should be 2812 * able to use this EH as-is or with some added handling before 2813 * and after. 2814 * 2815 * LOCKING: 2816 * Kernel thread context (may sleep) 2817 */ 2818 void ata_bmdma_error_handler(struct ata_port *ap) 2819 { 2820 struct ata_queued_cmd *qc; 2821 unsigned long flags; 2822 bool thaw = false; 2823 2824 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2825 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2826 qc = NULL; 2827 2828 /* reset PIO HSM and stop DMA engine */ 2829 spin_lock_irqsave(ap->lock, flags); 2830 2831 if (qc && ata_is_dma(qc->tf.protocol)) { 2832 u8 host_stat; 2833 2834 host_stat = ap->ops->bmdma_status(ap); 2835 2836 /* BMDMA controllers indicate host bus error by 2837 * setting DMA_ERR bit and timing out. As it wasn't 2838 * really a timeout event, adjust error mask and 2839 * cancel frozen state. 2840 */ 2841 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2842 qc->err_mask = AC_ERR_HOST_BUS; 2843 thaw = true; 2844 } 2845 2846 ap->ops->bmdma_stop(qc); 2847 2848 /* if we're gonna thaw, make sure IRQ is clear */ 2849 if (thaw) { 2850 ap->ops->sff_check_status(ap); 2851 ap->ops->sff_irq_clear(ap); 2852 } 2853 } 2854 2855 spin_unlock_irqrestore(ap->lock, flags); 2856 2857 if (thaw) 2858 ata_eh_thaw_port(ap); 2859 2860 ata_sff_error_handler(ap); 2861 } 2862 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2863 2864 /** 2865 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2866 * @qc: internal command to clean up 2867 * 2868 * LOCKING: 2869 * Kernel thread context (may sleep) 2870 */ 2871 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2872 { 2873 struct ata_port *ap = qc->ap; 2874 unsigned long flags; 2875 2876 if (ata_is_dma(qc->tf.protocol)) { 2877 spin_lock_irqsave(ap->lock, flags); 2878 ap->ops->bmdma_stop(qc); 2879 spin_unlock_irqrestore(ap->lock, flags); 2880 } 2881 } 2882 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2883 2884 /** 2885 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2886 * @qc: Info associated with this ATA transaction. 2887 * 2888 * LOCKING: 2889 * spin_lock_irqsave(host lock) 2890 */ 2891 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2892 { 2893 struct ata_port *ap = qc->ap; 2894 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2895 u8 dmactl; 2896 2897 /* load PRD table addr. */ 2898 mb(); /* make sure PRD table writes are visible to controller */ 2899 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2900 2901 /* specify data direction, triple-check start bit is clear */ 2902 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2903 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2904 if (!rw) 2905 dmactl |= ATA_DMA_WR; 2906 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2907 2908 /* issue r/w command */ 2909 ap->ops->sff_exec_command(ap, &qc->tf); 2910 } 2911 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2912 2913 /** 2914 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2915 * @qc: Info associated with this ATA transaction. 2916 * 2917 * LOCKING: 2918 * spin_lock_irqsave(host lock) 2919 */ 2920 void ata_bmdma_start(struct ata_queued_cmd *qc) 2921 { 2922 struct ata_port *ap = qc->ap; 2923 u8 dmactl; 2924 2925 /* start host DMA transaction */ 2926 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2927 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2928 2929 /* Strictly, one may wish to issue an ioread8() here, to 2930 * flush the mmio write. However, control also passes 2931 * to the hardware at this point, and it will interrupt 2932 * us when we are to resume control. So, in effect, 2933 * we don't care when the mmio write flushes. 2934 * Further, a read of the DMA status register _immediately_ 2935 * following the write may not be what certain flaky hardware 2936 * is expected, so I think it is best to not add a readb() 2937 * without first all the MMIO ATA cards/mobos. 2938 * Or maybe I'm just being paranoid. 2939 * 2940 * FIXME: The posting of this write means I/O starts are 2941 * unneccessarily delayed for MMIO 2942 */ 2943 } 2944 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2945 2946 /** 2947 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2948 * @qc: Command we are ending DMA for 2949 * 2950 * Clears the ATA_DMA_START flag in the dma control register 2951 * 2952 * May be used as the bmdma_stop() entry in ata_port_operations. 2953 * 2954 * LOCKING: 2955 * spin_lock_irqsave(host lock) 2956 */ 2957 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2958 { 2959 struct ata_port *ap = qc->ap; 2960 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2961 2962 /* clear start/stop bit */ 2963 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2964 mmio + ATA_DMA_CMD); 2965 2966 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2967 ata_sff_dma_pause(ap); 2968 } 2969 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2970 2971 /** 2972 * ata_bmdma_status - Read PCI IDE BMDMA status 2973 * @ap: Port associated with this ATA transaction. 2974 * 2975 * Read and return BMDMA status register. 2976 * 2977 * May be used as the bmdma_status() entry in ata_port_operations. 2978 * 2979 * LOCKING: 2980 * spin_lock_irqsave(host lock) 2981 */ 2982 u8 ata_bmdma_status(struct ata_port *ap) 2983 { 2984 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2985 } 2986 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2987 2988 2989 /** 2990 * ata_bmdma_port_start - Set port up for bmdma. 2991 * @ap: Port to initialize 2992 * 2993 * Called just after data structures for each port are 2994 * initialized. Allocates space for PRD table. 2995 * 2996 * May be used as the port_start() entry in ata_port_operations. 2997 * 2998 * LOCKING: 2999 * Inherited from caller. 3000 */ 3001 int ata_bmdma_port_start(struct ata_port *ap) 3002 { 3003 if (ap->mwdma_mask || ap->udma_mask) { 3004 ap->bmdma_prd = 3005 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3006 &ap->bmdma_prd_dma, GFP_KERNEL); 3007 if (!ap->bmdma_prd) 3008 return -ENOMEM; 3009 } 3010 3011 return 0; 3012 } 3013 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3014 3015 /** 3016 * ata_bmdma_port_start32 - Set port up for dma. 3017 * @ap: Port to initialize 3018 * 3019 * Called just after data structures for each port are 3020 * initialized. Enables 32bit PIO and allocates space for PRD 3021 * table. 3022 * 3023 * May be used as the port_start() entry in ata_port_operations for 3024 * devices that are capable of 32bit PIO. 3025 * 3026 * LOCKING: 3027 * Inherited from caller. 3028 */ 3029 int ata_bmdma_port_start32(struct ata_port *ap) 3030 { 3031 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3032 return ata_bmdma_port_start(ap); 3033 } 3034 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3035 3036 #ifdef CONFIG_PCI 3037 3038 /** 3039 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3040 * @pdev: PCI device 3041 * 3042 * Some PCI ATA devices report simplex mode but in fact can be told to 3043 * enter non simplex mode. This implements the necessary logic to 3044 * perform the task on such devices. Calling it on other devices will 3045 * have -undefined- behaviour. 3046 */ 3047 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3048 { 3049 unsigned long bmdma = pci_resource_start(pdev, 4); 3050 u8 simplex; 3051 3052 if (bmdma == 0) 3053 return -ENOENT; 3054 3055 simplex = inb(bmdma + 0x02); 3056 outb(simplex & 0x60, bmdma + 0x02); 3057 simplex = inb(bmdma + 0x02); 3058 if (simplex & 0x80) 3059 return -EOPNOTSUPP; 3060 return 0; 3061 } 3062 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3063 3064 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3065 { 3066 int i; 3067 3068 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n", 3069 reason); 3070 3071 for (i = 0; i < 2; i++) { 3072 host->ports[i]->mwdma_mask = 0; 3073 host->ports[i]->udma_mask = 0; 3074 } 3075 } 3076 3077 /** 3078 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3079 * @host: target ATA host 3080 * 3081 * Acquire PCI BMDMA resources and initialize @host accordingly. 3082 * 3083 * LOCKING: 3084 * Inherited from calling layer (may sleep). 3085 */ 3086 void ata_pci_bmdma_init(struct ata_host *host) 3087 { 3088 struct device *gdev = host->dev; 3089 struct pci_dev *pdev = to_pci_dev(gdev); 3090 int i, rc; 3091 3092 /* No BAR4 allocation: No DMA */ 3093 if (pci_resource_start(pdev, 4) == 0) { 3094 ata_bmdma_nodma(host, "BAR4 is zero"); 3095 return; 3096 } 3097 3098 /* 3099 * Some controllers require BMDMA region to be initialized 3100 * even if DMA is not in use to clear IRQ status via 3101 * ->sff_irq_clear method. Try to initialize bmdma_addr 3102 * regardless of dma masks. 3103 */ 3104 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3105 if (rc) 3106 ata_bmdma_nodma(host, "failed to set dma mask"); 3107 if (!rc) { 3108 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3109 if (rc) 3110 ata_bmdma_nodma(host, 3111 "failed to set consistent dma mask"); 3112 } 3113 3114 /* request and iomap DMA region */ 3115 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3116 if (rc) { 3117 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3118 return; 3119 } 3120 host->iomap = pcim_iomap_table(pdev); 3121 3122 for (i = 0; i < 2; i++) { 3123 struct ata_port *ap = host->ports[i]; 3124 void __iomem *bmdma = host->iomap[4] + 8 * i; 3125 3126 if (ata_port_is_dummy(ap)) 3127 continue; 3128 3129 ap->ioaddr.bmdma_addr = bmdma; 3130 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3131 (ioread8(bmdma + 2) & 0x80)) 3132 host->flags |= ATA_HOST_SIMPLEX; 3133 3134 ata_port_desc(ap, "bmdma 0x%llx", 3135 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3136 } 3137 } 3138 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3139 3140 #endif /* CONFIG_PCI */ 3141 3142 /** 3143 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3144 * @ap: Port to initialize 3145 * 3146 * Called on port allocation to initialize SFF/BMDMA specific 3147 * fields. 3148 * 3149 * LOCKING: 3150 * None. 3151 */ 3152 void ata_sff_port_init(struct ata_port *ap) 3153 { 3154 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3155 ap->ctl = ATA_DEVCTL_OBS; 3156 ap->last_ctl = 0xFF; 3157 } 3158 3159 int __init ata_sff_init(void) 3160 { 3161 /* 3162 * FIXME: In UP case, there is only one workqueue thread and if you 3163 * have more than one PIO device, latency is bloody awful, with 3164 * occasional multi-second "hiccups" as one PIO device waits for 3165 * another. It's an ugly wart that users DO occasionally complain 3166 * about; luckily most users have at most one PIO polled device. 3167 */ 3168 ata_sff_wq = create_workqueue("ata_sff"); 3169 if (!ata_sff_wq) 3170 return -ENOMEM; 3171 3172 return 0; 3173 } 3174 3175 void __exit ata_sff_exit(void) 3176 { 3177 destroy_workqueue(ata_sff_wq); 3178 } 3179