1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/libata.h> 39 #include <linux/highmem.h> 40 41 #include "libata.h" 42 43 const struct ata_port_operations ata_sff_port_ops = { 44 .inherits = &ata_base_port_ops, 45 46 .qc_prep = ata_sff_qc_prep, 47 .qc_issue = ata_sff_qc_issue, 48 .qc_fill_rtf = ata_sff_qc_fill_rtf, 49 50 .freeze = ata_sff_freeze, 51 .thaw = ata_sff_thaw, 52 .prereset = ata_sff_prereset, 53 .softreset = ata_sff_softreset, 54 .hardreset = sata_sff_hardreset, 55 .postreset = ata_sff_postreset, 56 .drain_fifo = ata_sff_drain_fifo, 57 .error_handler = ata_sff_error_handler, 58 .post_internal_cmd = ata_sff_post_internal_cmd, 59 60 .sff_dev_select = ata_sff_dev_select, 61 .sff_check_status = ata_sff_check_status, 62 .sff_tf_load = ata_sff_tf_load, 63 .sff_tf_read = ata_sff_tf_read, 64 .sff_exec_command = ata_sff_exec_command, 65 .sff_data_xfer = ata_sff_data_xfer, 66 .sff_irq_on = ata_sff_irq_on, 67 .sff_irq_clear = ata_sff_irq_clear, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 71 .port_start = ata_sff_port_start, 72 }; 73 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 74 75 const struct ata_port_operations ata_bmdma_port_ops = { 76 .inherits = &ata_sff_port_ops, 77 78 .mode_filter = ata_bmdma_mode_filter, 79 80 .bmdma_setup = ata_bmdma_setup, 81 .bmdma_start = ata_bmdma_start, 82 .bmdma_stop = ata_bmdma_stop, 83 .bmdma_status = ata_bmdma_status, 84 }; 85 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 86 87 const struct ata_port_operations ata_bmdma32_port_ops = { 88 .inherits = &ata_bmdma_port_ops, 89 90 .sff_data_xfer = ata_sff_data_xfer32, 91 .port_start = ata_sff_port_start32, 92 }; 93 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 94 95 /** 96 * ata_fill_sg - Fill PCI IDE PRD table 97 * @qc: Metadata associated with taskfile to be transferred 98 * 99 * Fill PCI IDE PRD (scatter-gather) table with segments 100 * associated with the current disk command. 101 * 102 * LOCKING: 103 * spin_lock_irqsave(host lock) 104 * 105 */ 106 static void ata_fill_sg(struct ata_queued_cmd *qc) 107 { 108 struct ata_port *ap = qc->ap; 109 struct scatterlist *sg; 110 unsigned int si, pi; 111 112 pi = 0; 113 for_each_sg(qc->sg, sg, qc->n_elem, si) { 114 u32 addr, offset; 115 u32 sg_len, len; 116 117 /* determine if physical DMA addr spans 64K boundary. 118 * Note h/w doesn't support 64-bit, so we unconditionally 119 * truncate dma_addr_t to u32. 120 */ 121 addr = (u32) sg_dma_address(sg); 122 sg_len = sg_dma_len(sg); 123 124 while (sg_len) { 125 offset = addr & 0xffff; 126 len = sg_len; 127 if ((offset + sg_len) > 0x10000) 128 len = 0x10000 - offset; 129 130 ap->prd[pi].addr = cpu_to_le32(addr); 131 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 132 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 133 134 pi++; 135 sg_len -= len; 136 addr += len; 137 } 138 } 139 140 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 141 } 142 143 /** 144 * ata_fill_sg_dumb - Fill PCI IDE PRD table 145 * @qc: Metadata associated with taskfile to be transferred 146 * 147 * Fill PCI IDE PRD (scatter-gather) table with segments 148 * associated with the current disk command. Perform the fill 149 * so that we avoid writing any length 64K records for 150 * controllers that don't follow the spec. 151 * 152 * LOCKING: 153 * spin_lock_irqsave(host lock) 154 * 155 */ 156 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 157 { 158 struct ata_port *ap = qc->ap; 159 struct scatterlist *sg; 160 unsigned int si, pi; 161 162 pi = 0; 163 for_each_sg(qc->sg, sg, qc->n_elem, si) { 164 u32 addr, offset; 165 u32 sg_len, len, blen; 166 167 /* determine if physical DMA addr spans 64K boundary. 168 * Note h/w doesn't support 64-bit, so we unconditionally 169 * truncate dma_addr_t to u32. 170 */ 171 addr = (u32) sg_dma_address(sg); 172 sg_len = sg_dma_len(sg); 173 174 while (sg_len) { 175 offset = addr & 0xffff; 176 len = sg_len; 177 if ((offset + sg_len) > 0x10000) 178 len = 0x10000 - offset; 179 180 blen = len & 0xffff; 181 ap->prd[pi].addr = cpu_to_le32(addr); 182 if (blen == 0) { 183 /* Some PATA chipsets like the CS5530 can't 184 cope with 0x0000 meaning 64K as the spec 185 says */ 186 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 187 blen = 0x8000; 188 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 189 } 190 ap->prd[pi].flags_len = cpu_to_le32(blen); 191 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 192 193 pi++; 194 sg_len -= len; 195 addr += len; 196 } 197 } 198 199 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 200 } 201 202 /** 203 * ata_sff_qc_prep - Prepare taskfile for submission 204 * @qc: Metadata associated with taskfile to be prepared 205 * 206 * Prepare ATA taskfile for submission. 207 * 208 * LOCKING: 209 * spin_lock_irqsave(host lock) 210 */ 211 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 212 { 213 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 214 return; 215 216 ata_fill_sg(qc); 217 } 218 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 219 220 /** 221 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 222 * @qc: Metadata associated with taskfile to be prepared 223 * 224 * Prepare ATA taskfile for submission. 225 * 226 * LOCKING: 227 * spin_lock_irqsave(host lock) 228 */ 229 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 230 { 231 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 232 return; 233 234 ata_fill_sg_dumb(qc); 235 } 236 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 237 238 /** 239 * ata_sff_check_status - Read device status reg & clear interrupt 240 * @ap: port where the device is 241 * 242 * Reads ATA taskfile status register for currently-selected device 243 * and return its value. This also clears pending interrupts 244 * from this device 245 * 246 * LOCKING: 247 * Inherited from caller. 248 */ 249 u8 ata_sff_check_status(struct ata_port *ap) 250 { 251 return ioread8(ap->ioaddr.status_addr); 252 } 253 EXPORT_SYMBOL_GPL(ata_sff_check_status); 254 255 /** 256 * ata_sff_altstatus - Read device alternate status reg 257 * @ap: port where the device is 258 * 259 * Reads ATA taskfile alternate status register for 260 * currently-selected device and return its value. 261 * 262 * Note: may NOT be used as the check_altstatus() entry in 263 * ata_port_operations. 264 * 265 * LOCKING: 266 * Inherited from caller. 267 */ 268 static u8 ata_sff_altstatus(struct ata_port *ap) 269 { 270 if (ap->ops->sff_check_altstatus) 271 return ap->ops->sff_check_altstatus(ap); 272 273 return ioread8(ap->ioaddr.altstatus_addr); 274 } 275 276 /** 277 * ata_sff_irq_status - Check if the device is busy 278 * @ap: port where the device is 279 * 280 * Determine if the port is currently busy. Uses altstatus 281 * if available in order to avoid clearing shared IRQ status 282 * when finding an IRQ source. Non ctl capable devices don't 283 * share interrupt lines fortunately for us. 284 * 285 * LOCKING: 286 * Inherited from caller. 287 */ 288 static u8 ata_sff_irq_status(struct ata_port *ap) 289 { 290 u8 status; 291 292 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 293 status = ata_sff_altstatus(ap); 294 /* Not us: We are busy */ 295 if (status & ATA_BUSY) 296 return status; 297 } 298 /* Clear INTRQ latch */ 299 status = ap->ops->sff_check_status(ap); 300 return status; 301 } 302 303 /** 304 * ata_sff_sync - Flush writes 305 * @ap: Port to wait for. 306 * 307 * CAUTION: 308 * If we have an mmio device with no ctl and no altstatus 309 * method this will fail. No such devices are known to exist. 310 * 311 * LOCKING: 312 * Inherited from caller. 313 */ 314 315 static void ata_sff_sync(struct ata_port *ap) 316 { 317 if (ap->ops->sff_check_altstatus) 318 ap->ops->sff_check_altstatus(ap); 319 else if (ap->ioaddr.altstatus_addr) 320 ioread8(ap->ioaddr.altstatus_addr); 321 } 322 323 /** 324 * ata_sff_pause - Flush writes and wait 400nS 325 * @ap: Port to pause for. 326 * 327 * CAUTION: 328 * If we have an mmio device with no ctl and no altstatus 329 * method this will fail. No such devices are known to exist. 330 * 331 * LOCKING: 332 * Inherited from caller. 333 */ 334 335 void ata_sff_pause(struct ata_port *ap) 336 { 337 ata_sff_sync(ap); 338 ndelay(400); 339 } 340 EXPORT_SYMBOL_GPL(ata_sff_pause); 341 342 /** 343 * ata_sff_dma_pause - Pause before commencing DMA 344 * @ap: Port to pause for. 345 * 346 * Perform I/O fencing and ensure sufficient cycle delays occur 347 * for the HDMA1:0 transition 348 */ 349 350 void ata_sff_dma_pause(struct ata_port *ap) 351 { 352 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 353 /* An altstatus read will cause the needed delay without 354 messing up the IRQ status */ 355 ata_sff_altstatus(ap); 356 return; 357 } 358 /* There are no DMA controllers without ctl. BUG here to ensure 359 we never violate the HDMA1:0 transition timing and risk 360 corruption. */ 361 BUG(); 362 } 363 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 364 365 /** 366 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 367 * @ap: port containing status register to be polled 368 * @tmout_pat: impatience timeout in msecs 369 * @tmout: overall timeout in msecs 370 * 371 * Sleep until ATA Status register bit BSY clears, 372 * or a timeout occurs. 373 * 374 * LOCKING: 375 * Kernel thread context (may sleep). 376 * 377 * RETURNS: 378 * 0 on success, -errno otherwise. 379 */ 380 int ata_sff_busy_sleep(struct ata_port *ap, 381 unsigned long tmout_pat, unsigned long tmout) 382 { 383 unsigned long timer_start, timeout; 384 u8 status; 385 386 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 387 timer_start = jiffies; 388 timeout = ata_deadline(timer_start, tmout_pat); 389 while (status != 0xff && (status & ATA_BUSY) && 390 time_before(jiffies, timeout)) { 391 msleep(50); 392 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 393 } 394 395 if (status != 0xff && (status & ATA_BUSY)) 396 ata_port_printk(ap, KERN_WARNING, 397 "port is slow to respond, please be patient " 398 "(Status 0x%x)\n", status); 399 400 timeout = ata_deadline(timer_start, tmout); 401 while (status != 0xff && (status & ATA_BUSY) && 402 time_before(jiffies, timeout)) { 403 msleep(50); 404 status = ap->ops->sff_check_status(ap); 405 } 406 407 if (status == 0xff) 408 return -ENODEV; 409 410 if (status & ATA_BUSY) { 411 ata_port_printk(ap, KERN_ERR, "port failed to respond " 412 "(%lu secs, Status 0x%x)\n", 413 DIV_ROUND_UP(tmout, 1000), status); 414 return -EBUSY; 415 } 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 420 421 static int ata_sff_check_ready(struct ata_link *link) 422 { 423 u8 status = link->ap->ops->sff_check_status(link->ap); 424 425 return ata_check_ready(status); 426 } 427 428 /** 429 * ata_sff_wait_ready - sleep until BSY clears, or timeout 430 * @link: SFF link to wait ready status for 431 * @deadline: deadline jiffies for the operation 432 * 433 * Sleep until ATA Status register bit BSY clears, or timeout 434 * occurs. 435 * 436 * LOCKING: 437 * Kernel thread context (may sleep). 438 * 439 * RETURNS: 440 * 0 on success, -errno otherwise. 441 */ 442 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 443 { 444 return ata_wait_ready(link, deadline, ata_sff_check_ready); 445 } 446 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 447 448 /** 449 * ata_sff_dev_select - Select device 0/1 on ATA bus 450 * @ap: ATA channel to manipulate 451 * @device: ATA device (numbered from zero) to select 452 * 453 * Use the method defined in the ATA specification to 454 * make either device 0, or device 1, active on the 455 * ATA channel. Works with both PIO and MMIO. 456 * 457 * May be used as the dev_select() entry in ata_port_operations. 458 * 459 * LOCKING: 460 * caller. 461 */ 462 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 463 { 464 u8 tmp; 465 466 if (device == 0) 467 tmp = ATA_DEVICE_OBS; 468 else 469 tmp = ATA_DEVICE_OBS | ATA_DEV1; 470 471 iowrite8(tmp, ap->ioaddr.device_addr); 472 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 473 } 474 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 475 476 /** 477 * ata_dev_select - Select device 0/1 on ATA bus 478 * @ap: ATA channel to manipulate 479 * @device: ATA device (numbered from zero) to select 480 * @wait: non-zero to wait for Status register BSY bit to clear 481 * @can_sleep: non-zero if context allows sleeping 482 * 483 * Use the method defined in the ATA specification to 484 * make either device 0, or device 1, active on the 485 * ATA channel. 486 * 487 * This is a high-level version of ata_sff_dev_select(), which 488 * additionally provides the services of inserting the proper 489 * pauses and status polling, where needed. 490 * 491 * LOCKING: 492 * caller. 493 */ 494 void ata_dev_select(struct ata_port *ap, unsigned int device, 495 unsigned int wait, unsigned int can_sleep) 496 { 497 if (ata_msg_probe(ap)) 498 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 499 "device %u, wait %u\n", device, wait); 500 501 if (wait) 502 ata_wait_idle(ap); 503 504 ap->ops->sff_dev_select(ap, device); 505 506 if (wait) { 507 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 508 msleep(150); 509 ata_wait_idle(ap); 510 } 511 } 512 513 /** 514 * ata_sff_irq_on - Enable interrupts on a port. 515 * @ap: Port on which interrupts are enabled. 516 * 517 * Enable interrupts on a legacy IDE device using MMIO or PIO, 518 * wait for idle, clear any pending interrupts. 519 * 520 * LOCKING: 521 * Inherited from caller. 522 */ 523 u8 ata_sff_irq_on(struct ata_port *ap) 524 { 525 struct ata_ioports *ioaddr = &ap->ioaddr; 526 u8 tmp; 527 528 ap->ctl &= ~ATA_NIEN; 529 ap->last_ctl = ap->ctl; 530 531 if (ioaddr->ctl_addr) 532 iowrite8(ap->ctl, ioaddr->ctl_addr); 533 tmp = ata_wait_idle(ap); 534 535 ap->ops->sff_irq_clear(ap); 536 537 return tmp; 538 } 539 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 540 541 /** 542 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 543 * @ap: Port associated with this ATA transaction. 544 * 545 * Clear interrupt and error flags in DMA status register. 546 * 547 * May be used as the irq_clear() entry in ata_port_operations. 548 * 549 * LOCKING: 550 * spin_lock_irqsave(host lock) 551 */ 552 void ata_sff_irq_clear(struct ata_port *ap) 553 { 554 void __iomem *mmio = ap->ioaddr.bmdma_addr; 555 556 if (!mmio) 557 return; 558 559 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 560 } 561 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 562 563 /** 564 * ata_sff_tf_load - send taskfile registers to host controller 565 * @ap: Port to which output is sent 566 * @tf: ATA taskfile register set 567 * 568 * Outputs ATA taskfile to standard ATA host controller. 569 * 570 * LOCKING: 571 * Inherited from caller. 572 */ 573 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 574 { 575 struct ata_ioports *ioaddr = &ap->ioaddr; 576 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 577 578 if (tf->ctl != ap->last_ctl) { 579 if (ioaddr->ctl_addr) 580 iowrite8(tf->ctl, ioaddr->ctl_addr); 581 ap->last_ctl = tf->ctl; 582 ata_wait_idle(ap); 583 } 584 585 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 586 WARN_ON_ONCE(!ioaddr->ctl_addr); 587 iowrite8(tf->hob_feature, ioaddr->feature_addr); 588 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 589 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 590 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 591 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 592 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 593 tf->hob_feature, 594 tf->hob_nsect, 595 tf->hob_lbal, 596 tf->hob_lbam, 597 tf->hob_lbah); 598 } 599 600 if (is_addr) { 601 iowrite8(tf->feature, ioaddr->feature_addr); 602 iowrite8(tf->nsect, ioaddr->nsect_addr); 603 iowrite8(tf->lbal, ioaddr->lbal_addr); 604 iowrite8(tf->lbam, ioaddr->lbam_addr); 605 iowrite8(tf->lbah, ioaddr->lbah_addr); 606 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 607 tf->feature, 608 tf->nsect, 609 tf->lbal, 610 tf->lbam, 611 tf->lbah); 612 } 613 614 if (tf->flags & ATA_TFLAG_DEVICE) { 615 iowrite8(tf->device, ioaddr->device_addr); 616 VPRINTK("device 0x%X\n", tf->device); 617 } 618 619 ata_wait_idle(ap); 620 } 621 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 622 623 /** 624 * ata_sff_tf_read - input device's ATA taskfile shadow registers 625 * @ap: Port from which input is read 626 * @tf: ATA taskfile register set for storing input 627 * 628 * Reads ATA taskfile registers for currently-selected device 629 * into @tf. Assumes the device has a fully SFF compliant task file 630 * layout and behaviour. If you device does not (eg has a different 631 * status method) then you will need to provide a replacement tf_read 632 * 633 * LOCKING: 634 * Inherited from caller. 635 */ 636 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 637 { 638 struct ata_ioports *ioaddr = &ap->ioaddr; 639 640 tf->command = ata_sff_check_status(ap); 641 tf->feature = ioread8(ioaddr->error_addr); 642 tf->nsect = ioread8(ioaddr->nsect_addr); 643 tf->lbal = ioread8(ioaddr->lbal_addr); 644 tf->lbam = ioread8(ioaddr->lbam_addr); 645 tf->lbah = ioread8(ioaddr->lbah_addr); 646 tf->device = ioread8(ioaddr->device_addr); 647 648 if (tf->flags & ATA_TFLAG_LBA48) { 649 if (likely(ioaddr->ctl_addr)) { 650 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 651 tf->hob_feature = ioread8(ioaddr->error_addr); 652 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 653 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 654 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 655 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 656 iowrite8(tf->ctl, ioaddr->ctl_addr); 657 ap->last_ctl = tf->ctl; 658 } else 659 WARN_ON_ONCE(1); 660 } 661 } 662 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 663 664 /** 665 * ata_sff_exec_command - issue ATA command to host controller 666 * @ap: port to which command is being issued 667 * @tf: ATA taskfile register set 668 * 669 * Issues ATA command, with proper synchronization with interrupt 670 * handler / other threads. 671 * 672 * LOCKING: 673 * spin_lock_irqsave(host lock) 674 */ 675 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 676 { 677 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 678 679 iowrite8(tf->command, ap->ioaddr.command_addr); 680 ata_sff_pause(ap); 681 } 682 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 683 684 /** 685 * ata_tf_to_host - issue ATA taskfile to host controller 686 * @ap: port to which command is being issued 687 * @tf: ATA taskfile register set 688 * 689 * Issues ATA taskfile register set to ATA host controller, 690 * with proper synchronization with interrupt handler and 691 * other threads. 692 * 693 * LOCKING: 694 * spin_lock_irqsave(host lock) 695 */ 696 static inline void ata_tf_to_host(struct ata_port *ap, 697 const struct ata_taskfile *tf) 698 { 699 ap->ops->sff_tf_load(ap, tf); 700 ap->ops->sff_exec_command(ap, tf); 701 } 702 703 /** 704 * ata_sff_data_xfer - Transfer data by PIO 705 * @dev: device to target 706 * @buf: data buffer 707 * @buflen: buffer length 708 * @rw: read/write 709 * 710 * Transfer data from/to the device data register by PIO. 711 * 712 * LOCKING: 713 * Inherited from caller. 714 * 715 * RETURNS: 716 * Bytes consumed. 717 */ 718 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 719 unsigned int buflen, int rw) 720 { 721 struct ata_port *ap = dev->link->ap; 722 void __iomem *data_addr = ap->ioaddr.data_addr; 723 unsigned int words = buflen >> 1; 724 725 /* Transfer multiple of 2 bytes */ 726 if (rw == READ) 727 ioread16_rep(data_addr, buf, words); 728 else 729 iowrite16_rep(data_addr, buf, words); 730 731 /* Transfer trailing byte, if any. */ 732 if (unlikely(buflen & 0x01)) { 733 unsigned char pad[2]; 734 735 /* Point buf to the tail of buffer */ 736 buf += buflen - 1; 737 738 /* 739 * Use io*16_rep() accessors here as well to avoid pointlessly 740 * swapping bytes to and from on the big endian machines... 741 */ 742 if (rw == READ) { 743 ioread16_rep(data_addr, pad, 1); 744 *buf = pad[0]; 745 } else { 746 pad[0] = *buf; 747 iowrite16_rep(data_addr, pad, 1); 748 } 749 words++; 750 } 751 752 return words << 1; 753 } 754 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 755 756 /** 757 * ata_sff_data_xfer32 - Transfer data by PIO 758 * @dev: device to target 759 * @buf: data buffer 760 * @buflen: buffer length 761 * @rw: read/write 762 * 763 * Transfer data from/to the device data register by PIO using 32bit 764 * I/O operations. 765 * 766 * LOCKING: 767 * Inherited from caller. 768 * 769 * RETURNS: 770 * Bytes consumed. 771 */ 772 773 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 774 unsigned int buflen, int rw) 775 { 776 struct ata_port *ap = dev->link->ap; 777 void __iomem *data_addr = ap->ioaddr.data_addr; 778 unsigned int words = buflen >> 2; 779 int slop = buflen & 3; 780 781 if (!(ap->pflags & ATA_PFLAG_PIO32)) 782 return ata_sff_data_xfer(dev, buf, buflen, rw); 783 784 /* Transfer multiple of 4 bytes */ 785 if (rw == READ) 786 ioread32_rep(data_addr, buf, words); 787 else 788 iowrite32_rep(data_addr, buf, words); 789 790 /* Transfer trailing bytes, if any */ 791 if (unlikely(slop)) { 792 unsigned char pad[4]; 793 794 /* Point buf to the tail of buffer */ 795 buf += buflen - slop; 796 797 /* 798 * Use io*_rep() accessors here as well to avoid pointlessly 799 * swapping bytes to and from on the big endian machines... 800 */ 801 if (rw == READ) { 802 if (slop < 3) 803 ioread16_rep(data_addr, pad, 1); 804 else 805 ioread32_rep(data_addr, pad, 1); 806 memcpy(buf, pad, slop); 807 } else { 808 memcpy(pad, buf, slop); 809 if (slop < 3) 810 iowrite16_rep(data_addr, pad, 1); 811 else 812 iowrite32_rep(data_addr, pad, 1); 813 } 814 } 815 return (buflen + 1) & ~1; 816 } 817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 818 819 /** 820 * ata_sff_data_xfer_noirq - Transfer data by PIO 821 * @dev: device to target 822 * @buf: data buffer 823 * @buflen: buffer length 824 * @rw: read/write 825 * 826 * Transfer data from/to the device data register by PIO. Do the 827 * transfer with interrupts disabled. 828 * 829 * LOCKING: 830 * Inherited from caller. 831 * 832 * RETURNS: 833 * Bytes consumed. 834 */ 835 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 836 unsigned int buflen, int rw) 837 { 838 unsigned long flags; 839 unsigned int consumed; 840 841 local_irq_save(flags); 842 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 843 local_irq_restore(flags); 844 845 return consumed; 846 } 847 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 848 849 /** 850 * ata_pio_sector - Transfer a sector of data. 851 * @qc: Command on going 852 * 853 * Transfer qc->sect_size bytes of data from/to the ATA device. 854 * 855 * LOCKING: 856 * Inherited from caller. 857 */ 858 static void ata_pio_sector(struct ata_queued_cmd *qc) 859 { 860 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 861 struct ata_port *ap = qc->ap; 862 struct page *page; 863 unsigned int offset; 864 unsigned char *buf; 865 866 if (qc->curbytes == qc->nbytes - qc->sect_size) 867 ap->hsm_task_state = HSM_ST_LAST; 868 869 page = sg_page(qc->cursg); 870 offset = qc->cursg->offset + qc->cursg_ofs; 871 872 /* get the current page and offset */ 873 page = nth_page(page, (offset >> PAGE_SHIFT)); 874 offset %= PAGE_SIZE; 875 876 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 877 878 if (PageHighMem(page)) { 879 unsigned long flags; 880 881 /* FIXME: use a bounce buffer */ 882 local_irq_save(flags); 883 buf = kmap_atomic(page, KM_IRQ0); 884 885 /* do the actual data transfer */ 886 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 887 do_write); 888 889 kunmap_atomic(buf, KM_IRQ0); 890 local_irq_restore(flags); 891 } else { 892 buf = page_address(page); 893 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 894 do_write); 895 } 896 897 if (!do_write) 898 flush_dcache_page(page); 899 900 qc->curbytes += qc->sect_size; 901 qc->cursg_ofs += qc->sect_size; 902 903 if (qc->cursg_ofs == qc->cursg->length) { 904 qc->cursg = sg_next(qc->cursg); 905 qc->cursg_ofs = 0; 906 } 907 } 908 909 /** 910 * ata_pio_sectors - Transfer one or many sectors. 911 * @qc: Command on going 912 * 913 * Transfer one or many sectors of data from/to the 914 * ATA device for the DRQ request. 915 * 916 * LOCKING: 917 * Inherited from caller. 918 */ 919 static void ata_pio_sectors(struct ata_queued_cmd *qc) 920 { 921 if (is_multi_taskfile(&qc->tf)) { 922 /* READ/WRITE MULTIPLE */ 923 unsigned int nsect; 924 925 WARN_ON_ONCE(qc->dev->multi_count == 0); 926 927 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 928 qc->dev->multi_count); 929 while (nsect--) 930 ata_pio_sector(qc); 931 } else 932 ata_pio_sector(qc); 933 934 ata_sff_sync(qc->ap); /* flush */ 935 } 936 937 /** 938 * atapi_send_cdb - Write CDB bytes to hardware 939 * @ap: Port to which ATAPI device is attached. 940 * @qc: Taskfile currently active 941 * 942 * When device has indicated its readiness to accept 943 * a CDB, this function is called. Send the CDB. 944 * 945 * LOCKING: 946 * caller. 947 */ 948 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 949 { 950 /* send SCSI cdb */ 951 DPRINTK("send cdb\n"); 952 WARN_ON_ONCE(qc->dev->cdb_len < 12); 953 954 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 955 ata_sff_sync(ap); 956 /* FIXME: If the CDB is for DMA do we need to do the transition delay 957 or is bmdma_start guaranteed to do it ? */ 958 switch (qc->tf.protocol) { 959 case ATAPI_PROT_PIO: 960 ap->hsm_task_state = HSM_ST; 961 break; 962 case ATAPI_PROT_NODATA: 963 ap->hsm_task_state = HSM_ST_LAST; 964 break; 965 case ATAPI_PROT_DMA: 966 ap->hsm_task_state = HSM_ST_LAST; 967 /* initiate bmdma */ 968 ap->ops->bmdma_start(qc); 969 break; 970 } 971 } 972 973 /** 974 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 975 * @qc: Command on going 976 * @bytes: number of bytes 977 * 978 * Transfer Transfer data from/to the ATAPI device. 979 * 980 * LOCKING: 981 * Inherited from caller. 982 * 983 */ 984 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 985 { 986 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 987 struct ata_port *ap = qc->ap; 988 struct ata_device *dev = qc->dev; 989 struct ata_eh_info *ehi = &dev->link->eh_info; 990 struct scatterlist *sg; 991 struct page *page; 992 unsigned char *buf; 993 unsigned int offset, count, consumed; 994 995 next_sg: 996 sg = qc->cursg; 997 if (unlikely(!sg)) { 998 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 999 "buf=%u cur=%u bytes=%u", 1000 qc->nbytes, qc->curbytes, bytes); 1001 return -1; 1002 } 1003 1004 page = sg_page(sg); 1005 offset = sg->offset + qc->cursg_ofs; 1006 1007 /* get the current page and offset */ 1008 page = nth_page(page, (offset >> PAGE_SHIFT)); 1009 offset %= PAGE_SIZE; 1010 1011 /* don't overrun current sg */ 1012 count = min(sg->length - qc->cursg_ofs, bytes); 1013 1014 /* don't cross page boundaries */ 1015 count = min(count, (unsigned int)PAGE_SIZE - offset); 1016 1017 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 1018 1019 if (PageHighMem(page)) { 1020 unsigned long flags; 1021 1022 /* FIXME: use bounce buffer */ 1023 local_irq_save(flags); 1024 buf = kmap_atomic(page, KM_IRQ0); 1025 1026 /* do the actual data transfer */ 1027 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1028 count, rw); 1029 1030 kunmap_atomic(buf, KM_IRQ0); 1031 local_irq_restore(flags); 1032 } else { 1033 buf = page_address(page); 1034 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1035 count, rw); 1036 } 1037 1038 bytes -= min(bytes, consumed); 1039 qc->curbytes += count; 1040 qc->cursg_ofs += count; 1041 1042 if (qc->cursg_ofs == sg->length) { 1043 qc->cursg = sg_next(qc->cursg); 1044 qc->cursg_ofs = 0; 1045 } 1046 1047 /* 1048 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 1049 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 1050 * check correctly as it doesn't know if it is the last request being 1051 * made. Somebody should implement a proper sanity check. 1052 */ 1053 if (bytes) 1054 goto next_sg; 1055 return 0; 1056 } 1057 1058 /** 1059 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 1060 * @qc: Command on going 1061 * 1062 * Transfer Transfer data from/to the ATAPI device. 1063 * 1064 * LOCKING: 1065 * Inherited from caller. 1066 */ 1067 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 1068 { 1069 struct ata_port *ap = qc->ap; 1070 struct ata_device *dev = qc->dev; 1071 struct ata_eh_info *ehi = &dev->link->eh_info; 1072 unsigned int ireason, bc_lo, bc_hi, bytes; 1073 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 1074 1075 /* Abuse qc->result_tf for temp storage of intermediate TF 1076 * here to save some kernel stack usage. 1077 * For normal completion, qc->result_tf is not relevant. For 1078 * error, qc->result_tf is later overwritten by ata_qc_complete(). 1079 * So, the correctness of qc->result_tf is not affected. 1080 */ 1081 ap->ops->sff_tf_read(ap, &qc->result_tf); 1082 ireason = qc->result_tf.nsect; 1083 bc_lo = qc->result_tf.lbam; 1084 bc_hi = qc->result_tf.lbah; 1085 bytes = (bc_hi << 8) | bc_lo; 1086 1087 /* shall be cleared to zero, indicating xfer of data */ 1088 if (unlikely(ireason & (1 << 0))) 1089 goto atapi_check; 1090 1091 /* make sure transfer direction matches expected */ 1092 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 1093 if (unlikely(do_write != i_write)) 1094 goto atapi_check; 1095 1096 if (unlikely(!bytes)) 1097 goto atapi_check; 1098 1099 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 1100 1101 if (unlikely(__atapi_pio_bytes(qc, bytes))) 1102 goto err_out; 1103 ata_sff_sync(ap); /* flush */ 1104 1105 return; 1106 1107 atapi_check: 1108 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1109 ireason, bytes); 1110 err_out: 1111 qc->err_mask |= AC_ERR_HSM; 1112 ap->hsm_task_state = HSM_ST_ERR; 1113 } 1114 1115 /** 1116 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1117 * @ap: the target ata_port 1118 * @qc: qc on going 1119 * 1120 * RETURNS: 1121 * 1 if ok in workqueue, 0 otherwise. 1122 */ 1123 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 1124 struct ata_queued_cmd *qc) 1125 { 1126 if (qc->tf.flags & ATA_TFLAG_POLLING) 1127 return 1; 1128 1129 if (ap->hsm_task_state == HSM_ST_FIRST) { 1130 if (qc->tf.protocol == ATA_PROT_PIO && 1131 (qc->tf.flags & ATA_TFLAG_WRITE)) 1132 return 1; 1133 1134 if (ata_is_atapi(qc->tf.protocol) && 1135 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1136 return 1; 1137 } 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * ata_hsm_qc_complete - finish a qc running on standard HSM 1144 * @qc: Command to complete 1145 * @in_wq: 1 if called from workqueue, 0 otherwise 1146 * 1147 * Finish @qc which is running on standard HSM. 1148 * 1149 * LOCKING: 1150 * If @in_wq is zero, spin_lock_irqsave(host lock). 1151 * Otherwise, none on entry and grabs host lock. 1152 */ 1153 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1154 { 1155 struct ata_port *ap = qc->ap; 1156 unsigned long flags; 1157 1158 if (ap->ops->error_handler) { 1159 if (in_wq) { 1160 spin_lock_irqsave(ap->lock, flags); 1161 1162 /* EH might have kicked in while host lock is 1163 * released. 1164 */ 1165 qc = ata_qc_from_tag(ap, qc->tag); 1166 if (qc) { 1167 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1168 ap->ops->sff_irq_on(ap); 1169 ata_qc_complete(qc); 1170 } else 1171 ata_port_freeze(ap); 1172 } 1173 1174 spin_unlock_irqrestore(ap->lock, flags); 1175 } else { 1176 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1177 ata_qc_complete(qc); 1178 else 1179 ata_port_freeze(ap); 1180 } 1181 } else { 1182 if (in_wq) { 1183 spin_lock_irqsave(ap->lock, flags); 1184 ap->ops->sff_irq_on(ap); 1185 ata_qc_complete(qc); 1186 spin_unlock_irqrestore(ap->lock, flags); 1187 } else 1188 ata_qc_complete(qc); 1189 } 1190 } 1191 1192 /** 1193 * ata_sff_hsm_move - move the HSM to the next state. 1194 * @ap: the target ata_port 1195 * @qc: qc on going 1196 * @status: current device status 1197 * @in_wq: 1 if called from workqueue, 0 otherwise 1198 * 1199 * RETURNS: 1200 * 1 when poll next status needed, 0 otherwise. 1201 */ 1202 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1203 u8 status, int in_wq) 1204 { 1205 struct ata_eh_info *ehi = &ap->link.eh_info; 1206 unsigned long flags = 0; 1207 int poll_next; 1208 1209 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1210 1211 /* Make sure ata_sff_qc_issue() does not throw things 1212 * like DMA polling into the workqueue. Notice that 1213 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1214 */ 1215 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1216 1217 fsm_start: 1218 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1219 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1220 1221 switch (ap->hsm_task_state) { 1222 case HSM_ST_FIRST: 1223 /* Send first data block or PACKET CDB */ 1224 1225 /* If polling, we will stay in the work queue after 1226 * sending the data. Otherwise, interrupt handler 1227 * takes over after sending the data. 1228 */ 1229 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1230 1231 /* check device status */ 1232 if (unlikely((status & ATA_DRQ) == 0)) { 1233 /* handle BSY=0, DRQ=0 as error */ 1234 if (likely(status & (ATA_ERR | ATA_DF))) 1235 /* device stops HSM for abort/error */ 1236 qc->err_mask |= AC_ERR_DEV; 1237 else { 1238 /* HSM violation. Let EH handle this */ 1239 ata_ehi_push_desc(ehi, 1240 "ST_FIRST: !(DRQ|ERR|DF)"); 1241 qc->err_mask |= AC_ERR_HSM; 1242 } 1243 1244 ap->hsm_task_state = HSM_ST_ERR; 1245 goto fsm_start; 1246 } 1247 1248 /* Device should not ask for data transfer (DRQ=1) 1249 * when it finds something wrong. 1250 * We ignore DRQ here and stop the HSM by 1251 * changing hsm_task_state to HSM_ST_ERR and 1252 * let the EH abort the command or reset the device. 1253 */ 1254 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1255 /* Some ATAPI tape drives forget to clear the ERR bit 1256 * when doing the next command (mostly request sense). 1257 * We ignore ERR here to workaround and proceed sending 1258 * the CDB. 1259 */ 1260 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1261 ata_ehi_push_desc(ehi, "ST_FIRST: " 1262 "DRQ=1 with device error, " 1263 "dev_stat 0x%X", status); 1264 qc->err_mask |= AC_ERR_HSM; 1265 ap->hsm_task_state = HSM_ST_ERR; 1266 goto fsm_start; 1267 } 1268 } 1269 1270 /* Send the CDB (atapi) or the first data block (ata pio out). 1271 * During the state transition, interrupt handler shouldn't 1272 * be invoked before the data transfer is complete and 1273 * hsm_task_state is changed. Hence, the following locking. 1274 */ 1275 if (in_wq) 1276 spin_lock_irqsave(ap->lock, flags); 1277 1278 if (qc->tf.protocol == ATA_PROT_PIO) { 1279 /* PIO data out protocol. 1280 * send first data block. 1281 */ 1282 1283 /* ata_pio_sectors() might change the state 1284 * to HSM_ST_LAST. so, the state is changed here 1285 * before ata_pio_sectors(). 1286 */ 1287 ap->hsm_task_state = HSM_ST; 1288 ata_pio_sectors(qc); 1289 } else 1290 /* send CDB */ 1291 atapi_send_cdb(ap, qc); 1292 1293 if (in_wq) 1294 spin_unlock_irqrestore(ap->lock, flags); 1295 1296 /* if polling, ata_pio_task() handles the rest. 1297 * otherwise, interrupt handler takes over from here. 1298 */ 1299 break; 1300 1301 case HSM_ST: 1302 /* complete command or read/write the data register */ 1303 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1304 /* ATAPI PIO protocol */ 1305 if ((status & ATA_DRQ) == 0) { 1306 /* No more data to transfer or device error. 1307 * Device error will be tagged in HSM_ST_LAST. 1308 */ 1309 ap->hsm_task_state = HSM_ST_LAST; 1310 goto fsm_start; 1311 } 1312 1313 /* Device should not ask for data transfer (DRQ=1) 1314 * when it finds something wrong. 1315 * We ignore DRQ here and stop the HSM by 1316 * changing hsm_task_state to HSM_ST_ERR and 1317 * let the EH abort the command or reset the device. 1318 */ 1319 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1320 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1321 "DRQ=1 with device error, " 1322 "dev_stat 0x%X", status); 1323 qc->err_mask |= AC_ERR_HSM; 1324 ap->hsm_task_state = HSM_ST_ERR; 1325 goto fsm_start; 1326 } 1327 1328 atapi_pio_bytes(qc); 1329 1330 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1331 /* bad ireason reported by device */ 1332 goto fsm_start; 1333 1334 } else { 1335 /* ATA PIO protocol */ 1336 if (unlikely((status & ATA_DRQ) == 0)) { 1337 /* handle BSY=0, DRQ=0 as error */ 1338 if (likely(status & (ATA_ERR | ATA_DF))) { 1339 /* device stops HSM for abort/error */ 1340 qc->err_mask |= AC_ERR_DEV; 1341 1342 /* If diagnostic failed and this is 1343 * IDENTIFY, it's likely a phantom 1344 * device. Mark hint. 1345 */ 1346 if (qc->dev->horkage & 1347 ATA_HORKAGE_DIAGNOSTIC) 1348 qc->err_mask |= 1349 AC_ERR_NODEV_HINT; 1350 } else { 1351 /* HSM violation. Let EH handle this. 1352 * Phantom devices also trigger this 1353 * condition. Mark hint. 1354 */ 1355 ata_ehi_push_desc(ehi, "ST-ATA: " 1356 "DRQ=0 without device error, " 1357 "dev_stat 0x%X", status); 1358 qc->err_mask |= AC_ERR_HSM | 1359 AC_ERR_NODEV_HINT; 1360 } 1361 1362 ap->hsm_task_state = HSM_ST_ERR; 1363 goto fsm_start; 1364 } 1365 1366 /* For PIO reads, some devices may ask for 1367 * data transfer (DRQ=1) alone with ERR=1. 1368 * We respect DRQ here and transfer one 1369 * block of junk data before changing the 1370 * hsm_task_state to HSM_ST_ERR. 1371 * 1372 * For PIO writes, ERR=1 DRQ=1 doesn't make 1373 * sense since the data block has been 1374 * transferred to the device. 1375 */ 1376 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1377 /* data might be corrputed */ 1378 qc->err_mask |= AC_ERR_DEV; 1379 1380 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1381 ata_pio_sectors(qc); 1382 status = ata_wait_idle(ap); 1383 } 1384 1385 if (status & (ATA_BUSY | ATA_DRQ)) { 1386 ata_ehi_push_desc(ehi, "ST-ATA: " 1387 "BUSY|DRQ persists on ERR|DF, " 1388 "dev_stat 0x%X", status); 1389 qc->err_mask |= AC_ERR_HSM; 1390 } 1391 1392 /* There are oddball controllers with 1393 * status register stuck at 0x7f and 1394 * lbal/m/h at zero which makes it 1395 * pass all other presence detection 1396 * mechanisms we have. Set NODEV_HINT 1397 * for it. Kernel bz#7241. 1398 */ 1399 if (status == 0x7f) 1400 qc->err_mask |= AC_ERR_NODEV_HINT; 1401 1402 /* ata_pio_sectors() might change the 1403 * state to HSM_ST_LAST. so, the state 1404 * is changed after ata_pio_sectors(). 1405 */ 1406 ap->hsm_task_state = HSM_ST_ERR; 1407 goto fsm_start; 1408 } 1409 1410 ata_pio_sectors(qc); 1411 1412 if (ap->hsm_task_state == HSM_ST_LAST && 1413 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1414 /* all data read */ 1415 status = ata_wait_idle(ap); 1416 goto fsm_start; 1417 } 1418 } 1419 1420 poll_next = 1; 1421 break; 1422 1423 case HSM_ST_LAST: 1424 if (unlikely(!ata_ok(status))) { 1425 qc->err_mask |= __ac_err_mask(status); 1426 ap->hsm_task_state = HSM_ST_ERR; 1427 goto fsm_start; 1428 } 1429 1430 /* no more data to transfer */ 1431 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1432 ap->print_id, qc->dev->devno, status); 1433 1434 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1435 1436 ap->hsm_task_state = HSM_ST_IDLE; 1437 1438 /* complete taskfile transaction */ 1439 ata_hsm_qc_complete(qc, in_wq); 1440 1441 poll_next = 0; 1442 break; 1443 1444 case HSM_ST_ERR: 1445 ap->hsm_task_state = HSM_ST_IDLE; 1446 1447 /* complete taskfile transaction */ 1448 ata_hsm_qc_complete(qc, in_wq); 1449 1450 poll_next = 0; 1451 break; 1452 default: 1453 poll_next = 0; 1454 BUG(); 1455 } 1456 1457 return poll_next; 1458 } 1459 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1460 1461 void ata_pio_task(struct work_struct *work) 1462 { 1463 struct ata_port *ap = 1464 container_of(work, struct ata_port, port_task.work); 1465 struct ata_queued_cmd *qc = ap->port_task_data; 1466 u8 status; 1467 int poll_next; 1468 1469 fsm_start: 1470 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1471 1472 /* 1473 * This is purely heuristic. This is a fast path. 1474 * Sometimes when we enter, BSY will be cleared in 1475 * a chk-status or two. If not, the drive is probably seeking 1476 * or something. Snooze for a couple msecs, then 1477 * chk-status again. If still busy, queue delayed work. 1478 */ 1479 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1480 if (status & ATA_BUSY) { 1481 msleep(2); 1482 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1483 if (status & ATA_BUSY) { 1484 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1485 return; 1486 } 1487 } 1488 1489 /* move the HSM */ 1490 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1491 1492 /* another command or interrupt handler 1493 * may be running at this point. 1494 */ 1495 if (poll_next) 1496 goto fsm_start; 1497 } 1498 1499 /** 1500 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1501 * @qc: command to issue to device 1502 * 1503 * Using various libata functions and hooks, this function 1504 * starts an ATA command. ATA commands are grouped into 1505 * classes called "protocols", and issuing each type of protocol 1506 * is slightly different. 1507 * 1508 * May be used as the qc_issue() entry in ata_port_operations. 1509 * 1510 * LOCKING: 1511 * spin_lock_irqsave(host lock) 1512 * 1513 * RETURNS: 1514 * Zero on success, AC_ERR_* mask on failure 1515 */ 1516 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1517 { 1518 struct ata_port *ap = qc->ap; 1519 1520 /* Use polling pio if the LLD doesn't handle 1521 * interrupt driven pio and atapi CDB interrupt. 1522 */ 1523 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1524 switch (qc->tf.protocol) { 1525 case ATA_PROT_PIO: 1526 case ATA_PROT_NODATA: 1527 case ATAPI_PROT_PIO: 1528 case ATAPI_PROT_NODATA: 1529 qc->tf.flags |= ATA_TFLAG_POLLING; 1530 break; 1531 case ATAPI_PROT_DMA: 1532 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1533 /* see ata_dma_blacklisted() */ 1534 BUG(); 1535 break; 1536 default: 1537 break; 1538 } 1539 } 1540 1541 /* select the device */ 1542 ata_dev_select(ap, qc->dev->devno, 1, 0); 1543 1544 /* start the command */ 1545 switch (qc->tf.protocol) { 1546 case ATA_PROT_NODATA: 1547 if (qc->tf.flags & ATA_TFLAG_POLLING) 1548 ata_qc_set_polling(qc); 1549 1550 ata_tf_to_host(ap, &qc->tf); 1551 ap->hsm_task_state = HSM_ST_LAST; 1552 1553 if (qc->tf.flags & ATA_TFLAG_POLLING) 1554 ata_pio_queue_task(ap, qc, 0); 1555 1556 break; 1557 1558 case ATA_PROT_DMA: 1559 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1560 1561 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1562 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1563 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1564 ap->hsm_task_state = HSM_ST_LAST; 1565 break; 1566 1567 case ATA_PROT_PIO: 1568 if (qc->tf.flags & ATA_TFLAG_POLLING) 1569 ata_qc_set_polling(qc); 1570 1571 ata_tf_to_host(ap, &qc->tf); 1572 1573 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1574 /* PIO data out protocol */ 1575 ap->hsm_task_state = HSM_ST_FIRST; 1576 ata_pio_queue_task(ap, qc, 0); 1577 1578 /* always send first data block using 1579 * the ata_pio_task() codepath. 1580 */ 1581 } else { 1582 /* PIO data in protocol */ 1583 ap->hsm_task_state = HSM_ST; 1584 1585 if (qc->tf.flags & ATA_TFLAG_POLLING) 1586 ata_pio_queue_task(ap, qc, 0); 1587 1588 /* if polling, ata_pio_task() handles the rest. 1589 * otherwise, interrupt handler takes over from here. 1590 */ 1591 } 1592 1593 break; 1594 1595 case ATAPI_PROT_PIO: 1596 case ATAPI_PROT_NODATA: 1597 if (qc->tf.flags & ATA_TFLAG_POLLING) 1598 ata_qc_set_polling(qc); 1599 1600 ata_tf_to_host(ap, &qc->tf); 1601 1602 ap->hsm_task_state = HSM_ST_FIRST; 1603 1604 /* send cdb by polling if no cdb interrupt */ 1605 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1606 (qc->tf.flags & ATA_TFLAG_POLLING)) 1607 ata_pio_queue_task(ap, qc, 0); 1608 break; 1609 1610 case ATAPI_PROT_DMA: 1611 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1612 1613 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1614 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1615 ap->hsm_task_state = HSM_ST_FIRST; 1616 1617 /* send cdb by polling if no cdb interrupt */ 1618 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1619 ata_pio_queue_task(ap, qc, 0); 1620 break; 1621 1622 default: 1623 WARN_ON_ONCE(1); 1624 return AC_ERR_SYSTEM; 1625 } 1626 1627 return 0; 1628 } 1629 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1630 1631 /** 1632 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1633 * @qc: qc to fill result TF for 1634 * 1635 * @qc is finished and result TF needs to be filled. Fill it 1636 * using ->sff_tf_read. 1637 * 1638 * LOCKING: 1639 * spin_lock_irqsave(host lock) 1640 * 1641 * RETURNS: 1642 * true indicating that result TF is successfully filled. 1643 */ 1644 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1645 { 1646 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1647 return true; 1648 } 1649 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1650 1651 /** 1652 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1653 * @ap: Port on which interrupt arrived (possibly...) 1654 * @qc: Taskfile currently active in engine 1655 * 1656 * Handle host interrupt for given queued command. Currently, 1657 * only DMA interrupts are handled. All other commands are 1658 * handled via polling with interrupts disabled (nIEN bit). 1659 * 1660 * LOCKING: 1661 * spin_lock_irqsave(host lock) 1662 * 1663 * RETURNS: 1664 * One if interrupt was handled, zero if not (shared irq). 1665 */ 1666 unsigned int ata_sff_host_intr(struct ata_port *ap, 1667 struct ata_queued_cmd *qc) 1668 { 1669 struct ata_eh_info *ehi = &ap->link.eh_info; 1670 u8 status, host_stat = 0; 1671 bool bmdma_stopped = false; 1672 1673 VPRINTK("ata%u: protocol %d task_state %d\n", 1674 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1675 1676 /* Check whether we are expecting interrupt in this state */ 1677 switch (ap->hsm_task_state) { 1678 case HSM_ST_FIRST: 1679 /* Some pre-ATAPI-4 devices assert INTRQ 1680 * at this state when ready to receive CDB. 1681 */ 1682 1683 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1684 * The flag was turned on only for atapi devices. No 1685 * need to check ata_is_atapi(qc->tf.protocol) again. 1686 */ 1687 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1688 goto idle_irq; 1689 break; 1690 case HSM_ST_LAST: 1691 if (qc->tf.protocol == ATA_PROT_DMA || 1692 qc->tf.protocol == ATAPI_PROT_DMA) { 1693 /* check status of DMA engine */ 1694 host_stat = ap->ops->bmdma_status(ap); 1695 VPRINTK("ata%u: host_stat 0x%X\n", 1696 ap->print_id, host_stat); 1697 1698 /* if it's not our irq... */ 1699 if (!(host_stat & ATA_DMA_INTR)) 1700 goto idle_irq; 1701 1702 /* before we do anything else, clear DMA-Start bit */ 1703 ap->ops->bmdma_stop(qc); 1704 bmdma_stopped = true; 1705 1706 if (unlikely(host_stat & ATA_DMA_ERR)) { 1707 /* error when transfering data to/from memory */ 1708 qc->err_mask |= AC_ERR_HOST_BUS; 1709 ap->hsm_task_state = HSM_ST_ERR; 1710 } 1711 } 1712 break; 1713 case HSM_ST: 1714 break; 1715 default: 1716 goto idle_irq; 1717 } 1718 1719 1720 /* check main status, clearing INTRQ if needed */ 1721 status = ata_sff_irq_status(ap); 1722 if (status & ATA_BUSY) { 1723 if (bmdma_stopped) { 1724 /* BMDMA engine is already stopped, we're screwed */ 1725 qc->err_mask |= AC_ERR_HSM; 1726 ap->hsm_task_state = HSM_ST_ERR; 1727 } else 1728 goto idle_irq; 1729 } 1730 1731 /* ack bmdma irq events */ 1732 ap->ops->sff_irq_clear(ap); 1733 1734 ata_sff_hsm_move(ap, qc, status, 0); 1735 1736 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1737 qc->tf.protocol == ATAPI_PROT_DMA)) 1738 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1739 1740 return 1; /* irq handled */ 1741 1742 idle_irq: 1743 ap->stats.idle_irq++; 1744 1745 #ifdef ATA_IRQ_TRAP 1746 if ((ap->stats.idle_irq % 1000) == 0) { 1747 ap->ops->sff_check_status(ap); 1748 ap->ops->sff_irq_clear(ap); 1749 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1750 return 1; 1751 } 1752 #endif 1753 return 0; /* irq not handled */ 1754 } 1755 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1756 1757 /** 1758 * ata_sff_interrupt - Default ATA host interrupt handler 1759 * @irq: irq line (unused) 1760 * @dev_instance: pointer to our ata_host information structure 1761 * 1762 * Default interrupt handler for PCI IDE devices. Calls 1763 * ata_sff_host_intr() for each port that is not disabled. 1764 * 1765 * LOCKING: 1766 * Obtains host lock during operation. 1767 * 1768 * RETURNS: 1769 * IRQ_NONE or IRQ_HANDLED. 1770 */ 1771 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1772 { 1773 struct ata_host *host = dev_instance; 1774 bool retried = false; 1775 unsigned int i; 1776 unsigned int handled, idle, polling; 1777 unsigned long flags; 1778 1779 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1780 spin_lock_irqsave(&host->lock, flags); 1781 1782 retry: 1783 handled = idle = polling = 0; 1784 for (i = 0; i < host->n_ports; i++) { 1785 struct ata_port *ap = host->ports[i]; 1786 struct ata_queued_cmd *qc; 1787 1788 if (unlikely(ap->flags & ATA_FLAG_DISABLED)) 1789 continue; 1790 1791 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1792 if (qc) { 1793 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1794 handled |= ata_sff_host_intr(ap, qc); 1795 else 1796 polling |= 1 << i; 1797 } else 1798 idle |= 1 << i; 1799 } 1800 1801 /* 1802 * If no port was expecting IRQ but the controller is actually 1803 * asserting IRQ line, nobody cared will ensue. Check IRQ 1804 * pending status if available and clear spurious IRQ. 1805 */ 1806 if (!handled && !retried) { 1807 bool retry = false; 1808 1809 for (i = 0; i < host->n_ports; i++) { 1810 struct ata_port *ap = host->ports[i]; 1811 1812 if (polling & (1 << i)) 1813 continue; 1814 1815 if (!ap->ops->sff_irq_check || 1816 !ap->ops->sff_irq_check(ap)) 1817 continue; 1818 1819 if (idle & (1 << i)) { 1820 ap->ops->sff_check_status(ap); 1821 ap->ops->sff_irq_clear(ap); 1822 } else { 1823 /* clear INTRQ and check if BUSY cleared */ 1824 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1825 retry |= true; 1826 /* 1827 * With command in flight, we can't do 1828 * sff_irq_clear() w/o racing with completion. 1829 */ 1830 } 1831 } 1832 1833 if (retry) { 1834 retried = true; 1835 goto retry; 1836 } 1837 } 1838 1839 spin_unlock_irqrestore(&host->lock, flags); 1840 1841 return IRQ_RETVAL(handled); 1842 } 1843 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1844 1845 /** 1846 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1847 * @ap: port that appears to have timed out 1848 * 1849 * Called from the libata error handlers when the core code suspects 1850 * an interrupt has been lost. If it has complete anything we can and 1851 * then return. Interface must support altstatus for this faster 1852 * recovery to occur. 1853 * 1854 * Locking: 1855 * Caller holds host lock 1856 */ 1857 1858 void ata_sff_lost_interrupt(struct ata_port *ap) 1859 { 1860 u8 status; 1861 struct ata_queued_cmd *qc; 1862 1863 /* Only one outstanding command per SFF channel */ 1864 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1865 /* Check we have a live one.. */ 1866 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE)) 1867 return; 1868 /* We cannot lose an interrupt on a polled command */ 1869 if (qc->tf.flags & ATA_TFLAG_POLLING) 1870 return; 1871 /* See if the controller thinks it is still busy - if so the command 1872 isn't a lost IRQ but is still in progress */ 1873 status = ata_sff_altstatus(ap); 1874 if (status & ATA_BUSY) 1875 return; 1876 1877 /* There was a command running, we are no longer busy and we have 1878 no interrupt. */ 1879 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1880 status); 1881 /* Run the host interrupt logic as if the interrupt had not been 1882 lost */ 1883 ata_sff_host_intr(ap, qc); 1884 } 1885 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1886 1887 /** 1888 * ata_sff_freeze - Freeze SFF controller port 1889 * @ap: port to freeze 1890 * 1891 * Freeze BMDMA controller port. 1892 * 1893 * LOCKING: 1894 * Inherited from caller. 1895 */ 1896 void ata_sff_freeze(struct ata_port *ap) 1897 { 1898 struct ata_ioports *ioaddr = &ap->ioaddr; 1899 1900 ap->ctl |= ATA_NIEN; 1901 ap->last_ctl = ap->ctl; 1902 1903 if (ioaddr->ctl_addr) 1904 iowrite8(ap->ctl, ioaddr->ctl_addr); 1905 1906 /* Under certain circumstances, some controllers raise IRQ on 1907 * ATA_NIEN manipulation. Also, many controllers fail to mask 1908 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1909 */ 1910 ap->ops->sff_check_status(ap); 1911 1912 ap->ops->sff_irq_clear(ap); 1913 } 1914 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1915 1916 /** 1917 * ata_sff_thaw - Thaw SFF controller port 1918 * @ap: port to thaw 1919 * 1920 * Thaw SFF controller port. 1921 * 1922 * LOCKING: 1923 * Inherited from caller. 1924 */ 1925 void ata_sff_thaw(struct ata_port *ap) 1926 { 1927 /* clear & re-enable interrupts */ 1928 ap->ops->sff_check_status(ap); 1929 ap->ops->sff_irq_clear(ap); 1930 ap->ops->sff_irq_on(ap); 1931 } 1932 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1933 1934 /** 1935 * ata_sff_prereset - prepare SFF link for reset 1936 * @link: SFF link to be reset 1937 * @deadline: deadline jiffies for the operation 1938 * 1939 * SFF link @link is about to be reset. Initialize it. It first 1940 * calls ata_std_prereset() and wait for !BSY if the port is 1941 * being softreset. 1942 * 1943 * LOCKING: 1944 * Kernel thread context (may sleep) 1945 * 1946 * RETURNS: 1947 * 0 on success, -errno otherwise. 1948 */ 1949 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1950 { 1951 struct ata_eh_context *ehc = &link->eh_context; 1952 int rc; 1953 1954 rc = ata_std_prereset(link, deadline); 1955 if (rc) 1956 return rc; 1957 1958 /* if we're about to do hardreset, nothing more to do */ 1959 if (ehc->i.action & ATA_EH_HARDRESET) 1960 return 0; 1961 1962 /* wait for !BSY if we don't know that no device is attached */ 1963 if (!ata_link_offline(link)) { 1964 rc = ata_sff_wait_ready(link, deadline); 1965 if (rc && rc != -ENODEV) { 1966 ata_link_printk(link, KERN_WARNING, "device not ready " 1967 "(errno=%d), forcing hardreset\n", rc); 1968 ehc->i.action |= ATA_EH_HARDRESET; 1969 } 1970 } 1971 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1975 1976 /** 1977 * ata_devchk - PATA device presence detection 1978 * @ap: ATA channel to examine 1979 * @device: Device to examine (starting at zero) 1980 * 1981 * This technique was originally described in 1982 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1983 * later found its way into the ATA/ATAPI spec. 1984 * 1985 * Write a pattern to the ATA shadow registers, 1986 * and if a device is present, it will respond by 1987 * correctly storing and echoing back the 1988 * ATA shadow register contents. 1989 * 1990 * LOCKING: 1991 * caller. 1992 */ 1993 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1994 { 1995 struct ata_ioports *ioaddr = &ap->ioaddr; 1996 u8 nsect, lbal; 1997 1998 ap->ops->sff_dev_select(ap, device); 1999 2000 iowrite8(0x55, ioaddr->nsect_addr); 2001 iowrite8(0xaa, ioaddr->lbal_addr); 2002 2003 iowrite8(0xaa, ioaddr->nsect_addr); 2004 iowrite8(0x55, ioaddr->lbal_addr); 2005 2006 iowrite8(0x55, ioaddr->nsect_addr); 2007 iowrite8(0xaa, ioaddr->lbal_addr); 2008 2009 nsect = ioread8(ioaddr->nsect_addr); 2010 lbal = ioread8(ioaddr->lbal_addr); 2011 2012 if ((nsect == 0x55) && (lbal == 0xaa)) 2013 return 1; /* we found a device */ 2014 2015 return 0; /* nothing found */ 2016 } 2017 2018 /** 2019 * ata_sff_dev_classify - Parse returned ATA device signature 2020 * @dev: ATA device to classify (starting at zero) 2021 * @present: device seems present 2022 * @r_err: Value of error register on completion 2023 * 2024 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 2025 * an ATA/ATAPI-defined set of values is placed in the ATA 2026 * shadow registers, indicating the results of device detection 2027 * and diagnostics. 2028 * 2029 * Select the ATA device, and read the values from the ATA shadow 2030 * registers. Then parse according to the Error register value, 2031 * and the spec-defined values examined by ata_dev_classify(). 2032 * 2033 * LOCKING: 2034 * caller. 2035 * 2036 * RETURNS: 2037 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 2038 */ 2039 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 2040 u8 *r_err) 2041 { 2042 struct ata_port *ap = dev->link->ap; 2043 struct ata_taskfile tf; 2044 unsigned int class; 2045 u8 err; 2046 2047 ap->ops->sff_dev_select(ap, dev->devno); 2048 2049 memset(&tf, 0, sizeof(tf)); 2050 2051 ap->ops->sff_tf_read(ap, &tf); 2052 err = tf.feature; 2053 if (r_err) 2054 *r_err = err; 2055 2056 /* see if device passed diags: continue and warn later */ 2057 if (err == 0) 2058 /* diagnostic fail : do nothing _YET_ */ 2059 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 2060 else if (err == 1) 2061 /* do nothing */ ; 2062 else if ((dev->devno == 0) && (err == 0x81)) 2063 /* do nothing */ ; 2064 else 2065 return ATA_DEV_NONE; 2066 2067 /* determine if device is ATA or ATAPI */ 2068 class = ata_dev_classify(&tf); 2069 2070 if (class == ATA_DEV_UNKNOWN) { 2071 /* If the device failed diagnostic, it's likely to 2072 * have reported incorrect device signature too. 2073 * Assume ATA device if the device seems present but 2074 * device signature is invalid with diagnostic 2075 * failure. 2076 */ 2077 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 2078 class = ATA_DEV_ATA; 2079 else 2080 class = ATA_DEV_NONE; 2081 } else if ((class == ATA_DEV_ATA) && 2082 (ap->ops->sff_check_status(ap) == 0)) 2083 class = ATA_DEV_NONE; 2084 2085 return class; 2086 } 2087 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 2088 2089 /** 2090 * ata_sff_wait_after_reset - wait for devices to become ready after reset 2091 * @link: SFF link which is just reset 2092 * @devmask: mask of present devices 2093 * @deadline: deadline jiffies for the operation 2094 * 2095 * Wait devices attached to SFF @link to become ready after 2096 * reset. It contains preceding 150ms wait to avoid accessing TF 2097 * status register too early. 2098 * 2099 * LOCKING: 2100 * Kernel thread context (may sleep). 2101 * 2102 * RETURNS: 2103 * 0 on success, -ENODEV if some or all of devices in @devmask 2104 * don't seem to exist. -errno on other errors. 2105 */ 2106 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 2107 unsigned long deadline) 2108 { 2109 struct ata_port *ap = link->ap; 2110 struct ata_ioports *ioaddr = &ap->ioaddr; 2111 unsigned int dev0 = devmask & (1 << 0); 2112 unsigned int dev1 = devmask & (1 << 1); 2113 int rc, ret = 0; 2114 2115 msleep(ATA_WAIT_AFTER_RESET); 2116 2117 /* always check readiness of the master device */ 2118 rc = ata_sff_wait_ready(link, deadline); 2119 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 2120 * and TF status is 0xff, bail out on it too. 2121 */ 2122 if (rc) 2123 return rc; 2124 2125 /* if device 1 was found in ata_devchk, wait for register 2126 * access briefly, then wait for BSY to clear. 2127 */ 2128 if (dev1) { 2129 int i; 2130 2131 ap->ops->sff_dev_select(ap, 1); 2132 2133 /* Wait for register access. Some ATAPI devices fail 2134 * to set nsect/lbal after reset, so don't waste too 2135 * much time on it. We're gonna wait for !BSY anyway. 2136 */ 2137 for (i = 0; i < 2; i++) { 2138 u8 nsect, lbal; 2139 2140 nsect = ioread8(ioaddr->nsect_addr); 2141 lbal = ioread8(ioaddr->lbal_addr); 2142 if ((nsect == 1) && (lbal == 1)) 2143 break; 2144 msleep(50); /* give drive a breather */ 2145 } 2146 2147 rc = ata_sff_wait_ready(link, deadline); 2148 if (rc) { 2149 if (rc != -ENODEV) 2150 return rc; 2151 ret = rc; 2152 } 2153 } 2154 2155 /* is all this really necessary? */ 2156 ap->ops->sff_dev_select(ap, 0); 2157 if (dev1) 2158 ap->ops->sff_dev_select(ap, 1); 2159 if (dev0) 2160 ap->ops->sff_dev_select(ap, 0); 2161 2162 return ret; 2163 } 2164 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2165 2166 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2167 unsigned long deadline) 2168 { 2169 struct ata_ioports *ioaddr = &ap->ioaddr; 2170 2171 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2172 2173 /* software reset. causes dev0 to be selected */ 2174 iowrite8(ap->ctl, ioaddr->ctl_addr); 2175 udelay(20); /* FIXME: flush */ 2176 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2177 udelay(20); /* FIXME: flush */ 2178 iowrite8(ap->ctl, ioaddr->ctl_addr); 2179 ap->last_ctl = ap->ctl; 2180 2181 /* wait the port to become ready */ 2182 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2183 } 2184 2185 /** 2186 * ata_sff_softreset - reset host port via ATA SRST 2187 * @link: ATA link to reset 2188 * @classes: resulting classes of attached devices 2189 * @deadline: deadline jiffies for the operation 2190 * 2191 * Reset host port using ATA SRST. 2192 * 2193 * LOCKING: 2194 * Kernel thread context (may sleep) 2195 * 2196 * RETURNS: 2197 * 0 on success, -errno otherwise. 2198 */ 2199 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2200 unsigned long deadline) 2201 { 2202 struct ata_port *ap = link->ap; 2203 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2204 unsigned int devmask = 0; 2205 int rc; 2206 u8 err; 2207 2208 DPRINTK("ENTER\n"); 2209 2210 /* determine if device 0/1 are present */ 2211 if (ata_devchk(ap, 0)) 2212 devmask |= (1 << 0); 2213 if (slave_possible && ata_devchk(ap, 1)) 2214 devmask |= (1 << 1); 2215 2216 /* select device 0 again */ 2217 ap->ops->sff_dev_select(ap, 0); 2218 2219 /* issue bus reset */ 2220 DPRINTK("about to softreset, devmask=%x\n", devmask); 2221 rc = ata_bus_softreset(ap, devmask, deadline); 2222 /* if link is occupied, -ENODEV too is an error */ 2223 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2224 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2225 return rc; 2226 } 2227 2228 /* determine by signature whether we have ATA or ATAPI devices */ 2229 classes[0] = ata_sff_dev_classify(&link->device[0], 2230 devmask & (1 << 0), &err); 2231 if (slave_possible && err != 0x81) 2232 classes[1] = ata_sff_dev_classify(&link->device[1], 2233 devmask & (1 << 1), &err); 2234 2235 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2236 return 0; 2237 } 2238 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2239 2240 /** 2241 * sata_sff_hardreset - reset host port via SATA phy reset 2242 * @link: link to reset 2243 * @class: resulting class of attached device 2244 * @deadline: deadline jiffies for the operation 2245 * 2246 * SATA phy-reset host port using DET bits of SControl register, 2247 * wait for !BSY and classify the attached device. 2248 * 2249 * LOCKING: 2250 * Kernel thread context (may sleep) 2251 * 2252 * RETURNS: 2253 * 0 on success, -errno otherwise. 2254 */ 2255 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2256 unsigned long deadline) 2257 { 2258 struct ata_eh_context *ehc = &link->eh_context; 2259 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2260 bool online; 2261 int rc; 2262 2263 rc = sata_link_hardreset(link, timing, deadline, &online, 2264 ata_sff_check_ready); 2265 if (online) 2266 *class = ata_sff_dev_classify(link->device, 1, NULL); 2267 2268 DPRINTK("EXIT, class=%u\n", *class); 2269 return rc; 2270 } 2271 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2272 2273 /** 2274 * ata_sff_postreset - SFF postreset callback 2275 * @link: the target SFF ata_link 2276 * @classes: classes of attached devices 2277 * 2278 * This function is invoked after a successful reset. It first 2279 * calls ata_std_postreset() and performs SFF specific postreset 2280 * processing. 2281 * 2282 * LOCKING: 2283 * Kernel thread context (may sleep) 2284 */ 2285 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2286 { 2287 struct ata_port *ap = link->ap; 2288 2289 ata_std_postreset(link, classes); 2290 2291 /* is double-select really necessary? */ 2292 if (classes[0] != ATA_DEV_NONE) 2293 ap->ops->sff_dev_select(ap, 1); 2294 if (classes[1] != ATA_DEV_NONE) 2295 ap->ops->sff_dev_select(ap, 0); 2296 2297 /* bail out if no device is present */ 2298 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2299 DPRINTK("EXIT, no device\n"); 2300 return; 2301 } 2302 2303 /* set up device control */ 2304 if (ap->ioaddr.ctl_addr) { 2305 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2306 ap->last_ctl = ap->ctl; 2307 } 2308 } 2309 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2310 2311 /** 2312 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2313 * @qc: command 2314 * 2315 * Drain the FIFO and device of any stuck data following a command 2316 * failing to complete. In some cases this is necessary before a 2317 * reset will recover the device. 2318 * 2319 */ 2320 2321 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2322 { 2323 int count; 2324 struct ata_port *ap; 2325 2326 /* We only need to flush incoming data when a command was running */ 2327 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2328 return; 2329 2330 ap = qc->ap; 2331 /* Drain up to 64K of data before we give up this recovery method */ 2332 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2333 && count < 65536; count += 2) 2334 ioread16(ap->ioaddr.data_addr); 2335 2336 /* Can become DEBUG later */ 2337 if (count) 2338 ata_port_printk(ap, KERN_DEBUG, 2339 "drained %d bytes to clear DRQ.\n", count); 2340 2341 } 2342 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2343 2344 /** 2345 * ata_sff_error_handler - Stock error handler for BMDMA controller 2346 * @ap: port to handle error for 2347 * 2348 * Stock error handler for SFF controller. It can handle both 2349 * PATA and SATA controllers. Many controllers should be able to 2350 * use this EH as-is or with some added handling before and 2351 * after. 2352 * 2353 * LOCKING: 2354 * Kernel thread context (may sleep) 2355 */ 2356 void ata_sff_error_handler(struct ata_port *ap) 2357 { 2358 ata_reset_fn_t softreset = ap->ops->softreset; 2359 ata_reset_fn_t hardreset = ap->ops->hardreset; 2360 struct ata_queued_cmd *qc; 2361 unsigned long flags; 2362 int thaw = 0; 2363 2364 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2365 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2366 qc = NULL; 2367 2368 /* reset PIO HSM and stop DMA engine */ 2369 spin_lock_irqsave(ap->lock, flags); 2370 2371 ap->hsm_task_state = HSM_ST_IDLE; 2372 2373 if (ap->ioaddr.bmdma_addr && 2374 qc && (qc->tf.protocol == ATA_PROT_DMA || 2375 qc->tf.protocol == ATAPI_PROT_DMA)) { 2376 u8 host_stat; 2377 2378 host_stat = ap->ops->bmdma_status(ap); 2379 2380 /* BMDMA controllers indicate host bus error by 2381 * setting DMA_ERR bit and timing out. As it wasn't 2382 * really a timeout event, adjust error mask and 2383 * cancel frozen state. 2384 */ 2385 if (qc->err_mask == AC_ERR_TIMEOUT 2386 && (host_stat & ATA_DMA_ERR)) { 2387 qc->err_mask = AC_ERR_HOST_BUS; 2388 thaw = 1; 2389 } 2390 2391 ap->ops->bmdma_stop(qc); 2392 } 2393 2394 ata_sff_sync(ap); /* FIXME: We don't need this */ 2395 ap->ops->sff_check_status(ap); 2396 ap->ops->sff_irq_clear(ap); 2397 /* We *MUST* do FIFO draining before we issue a reset as several 2398 * devices helpfully clear their internal state and will lock solid 2399 * if we touch the data port post reset. Pass qc in case anyone wants 2400 * to do different PIO/DMA recovery or has per command fixups 2401 */ 2402 if (ap->ops->drain_fifo) 2403 ap->ops->drain_fifo(qc); 2404 2405 spin_unlock_irqrestore(ap->lock, flags); 2406 2407 if (thaw) 2408 ata_eh_thaw_port(ap); 2409 2410 /* PIO and DMA engines have been stopped, perform recovery */ 2411 2412 /* Ignore ata_sff_softreset if ctl isn't accessible and 2413 * built-in hardresets if SCR access isn't available. 2414 */ 2415 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2416 softreset = NULL; 2417 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2418 hardreset = NULL; 2419 2420 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2421 ap->ops->postreset); 2422 } 2423 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2424 2425 /** 2426 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2427 * @qc: internal command to clean up 2428 * 2429 * LOCKING: 2430 * Kernel thread context (may sleep) 2431 */ 2432 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2433 { 2434 struct ata_port *ap = qc->ap; 2435 unsigned long flags; 2436 2437 spin_lock_irqsave(ap->lock, flags); 2438 2439 ap->hsm_task_state = HSM_ST_IDLE; 2440 2441 if (ap->ioaddr.bmdma_addr) 2442 ap->ops->bmdma_stop(qc); 2443 2444 spin_unlock_irqrestore(ap->lock, flags); 2445 } 2446 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2447 2448 /** 2449 * ata_sff_port_start - Set port up for dma. 2450 * @ap: Port to initialize 2451 * 2452 * Called just after data structures for each port are 2453 * initialized. Allocates space for PRD table if the device 2454 * is DMA capable SFF. 2455 * 2456 * May be used as the port_start() entry in ata_port_operations. 2457 * 2458 * LOCKING: 2459 * Inherited from caller. 2460 */ 2461 int ata_sff_port_start(struct ata_port *ap) 2462 { 2463 if (ap->ioaddr.bmdma_addr) 2464 return ata_port_start(ap); 2465 return 0; 2466 } 2467 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2468 2469 /** 2470 * ata_sff_port_start32 - Set port up for dma. 2471 * @ap: Port to initialize 2472 * 2473 * Called just after data structures for each port are 2474 * initialized. Allocates space for PRD table if the device 2475 * is DMA capable SFF. 2476 * 2477 * May be used as the port_start() entry in ata_port_operations for 2478 * devices that are capable of 32bit PIO. 2479 * 2480 * LOCKING: 2481 * Inherited from caller. 2482 */ 2483 int ata_sff_port_start32(struct ata_port *ap) 2484 { 2485 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 2486 if (ap->ioaddr.bmdma_addr) 2487 return ata_port_start(ap); 2488 return 0; 2489 } 2490 EXPORT_SYMBOL_GPL(ata_sff_port_start32); 2491 2492 /** 2493 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2494 * @ioaddr: IO address structure to be initialized 2495 * 2496 * Utility function which initializes data_addr, error_addr, 2497 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2498 * device_addr, status_addr, and command_addr to standard offsets 2499 * relative to cmd_addr. 2500 * 2501 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2502 */ 2503 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2504 { 2505 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2506 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2507 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2508 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2509 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2510 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2511 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2512 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2513 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2514 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2515 } 2516 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2517 2518 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2519 unsigned long xfer_mask) 2520 { 2521 /* Filter out DMA modes if the device has been configured by 2522 the BIOS as PIO only */ 2523 2524 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2525 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2526 return xfer_mask; 2527 } 2528 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2529 2530 /** 2531 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2532 * @qc: Info associated with this ATA transaction. 2533 * 2534 * LOCKING: 2535 * spin_lock_irqsave(host lock) 2536 */ 2537 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2538 { 2539 struct ata_port *ap = qc->ap; 2540 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2541 u8 dmactl; 2542 2543 /* load PRD table addr. */ 2544 mb(); /* make sure PRD table writes are visible to controller */ 2545 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2546 2547 /* specify data direction, triple-check start bit is clear */ 2548 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2549 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2550 if (!rw) 2551 dmactl |= ATA_DMA_WR; 2552 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2553 2554 /* issue r/w command */ 2555 ap->ops->sff_exec_command(ap, &qc->tf); 2556 } 2557 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2558 2559 /** 2560 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2561 * @qc: Info associated with this ATA transaction. 2562 * 2563 * LOCKING: 2564 * spin_lock_irqsave(host lock) 2565 */ 2566 void ata_bmdma_start(struct ata_queued_cmd *qc) 2567 { 2568 struct ata_port *ap = qc->ap; 2569 u8 dmactl; 2570 2571 /* start host DMA transaction */ 2572 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2573 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2574 2575 /* Strictly, one may wish to issue an ioread8() here, to 2576 * flush the mmio write. However, control also passes 2577 * to the hardware at this point, and it will interrupt 2578 * us when we are to resume control. So, in effect, 2579 * we don't care when the mmio write flushes. 2580 * Further, a read of the DMA status register _immediately_ 2581 * following the write may not be what certain flaky hardware 2582 * is expected, so I think it is best to not add a readb() 2583 * without first all the MMIO ATA cards/mobos. 2584 * Or maybe I'm just being paranoid. 2585 * 2586 * FIXME: The posting of this write means I/O starts are 2587 * unneccessarily delayed for MMIO 2588 */ 2589 } 2590 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2591 2592 /** 2593 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2594 * @qc: Command we are ending DMA for 2595 * 2596 * Clears the ATA_DMA_START flag in the dma control register 2597 * 2598 * May be used as the bmdma_stop() entry in ata_port_operations. 2599 * 2600 * LOCKING: 2601 * spin_lock_irqsave(host lock) 2602 */ 2603 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2604 { 2605 struct ata_port *ap = qc->ap; 2606 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2607 2608 /* clear start/stop bit */ 2609 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2610 mmio + ATA_DMA_CMD); 2611 2612 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2613 ata_sff_dma_pause(ap); 2614 } 2615 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2616 2617 /** 2618 * ata_bmdma_status - Read PCI IDE BMDMA status 2619 * @ap: Port associated with this ATA transaction. 2620 * 2621 * Read and return BMDMA status register. 2622 * 2623 * May be used as the bmdma_status() entry in ata_port_operations. 2624 * 2625 * LOCKING: 2626 * spin_lock_irqsave(host lock) 2627 */ 2628 u8 ata_bmdma_status(struct ata_port *ap) 2629 { 2630 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2631 } 2632 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2633 2634 /** 2635 * ata_bus_reset - reset host port and associated ATA channel 2636 * @ap: port to reset 2637 * 2638 * This is typically the first time we actually start issuing 2639 * commands to the ATA channel. We wait for BSY to clear, then 2640 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2641 * result. Determine what devices, if any, are on the channel 2642 * by looking at the device 0/1 error register. Look at the signature 2643 * stored in each device's taskfile registers, to determine if 2644 * the device is ATA or ATAPI. 2645 * 2646 * LOCKING: 2647 * PCI/etc. bus probe sem. 2648 * Obtains host lock. 2649 * 2650 * SIDE EFFECTS: 2651 * Sets ATA_FLAG_DISABLED if bus reset fails. 2652 * 2653 * DEPRECATED: 2654 * This function is only for drivers which still use old EH and 2655 * will be removed soon. 2656 */ 2657 void ata_bus_reset(struct ata_port *ap) 2658 { 2659 struct ata_device *device = ap->link.device; 2660 struct ata_ioports *ioaddr = &ap->ioaddr; 2661 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2662 u8 err; 2663 unsigned int dev0, dev1 = 0, devmask = 0; 2664 int rc; 2665 2666 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2667 2668 /* determine if device 0/1 are present */ 2669 if (ap->flags & ATA_FLAG_SATA_RESET) 2670 dev0 = 1; 2671 else { 2672 dev0 = ata_devchk(ap, 0); 2673 if (slave_possible) 2674 dev1 = ata_devchk(ap, 1); 2675 } 2676 2677 if (dev0) 2678 devmask |= (1 << 0); 2679 if (dev1) 2680 devmask |= (1 << 1); 2681 2682 /* select device 0 again */ 2683 ap->ops->sff_dev_select(ap, 0); 2684 2685 /* issue bus reset */ 2686 if (ap->flags & ATA_FLAG_SRST) { 2687 rc = ata_bus_softreset(ap, devmask, 2688 ata_deadline(jiffies, 40000)); 2689 if (rc && rc != -ENODEV) 2690 goto err_out; 2691 } 2692 2693 /* 2694 * determine by signature whether we have ATA or ATAPI devices 2695 */ 2696 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2697 if ((slave_possible) && (err != 0x81)) 2698 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2699 2700 /* is double-select really necessary? */ 2701 if (device[1].class != ATA_DEV_NONE) 2702 ap->ops->sff_dev_select(ap, 1); 2703 if (device[0].class != ATA_DEV_NONE) 2704 ap->ops->sff_dev_select(ap, 0); 2705 2706 /* if no devices were detected, disable this port */ 2707 if ((device[0].class == ATA_DEV_NONE) && 2708 (device[1].class == ATA_DEV_NONE)) 2709 goto err_out; 2710 2711 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2712 /* set up device control for ATA_FLAG_SATA_RESET */ 2713 iowrite8(ap->ctl, ioaddr->ctl_addr); 2714 ap->last_ctl = ap->ctl; 2715 } 2716 2717 DPRINTK("EXIT\n"); 2718 return; 2719 2720 err_out: 2721 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2722 ata_port_disable(ap); 2723 2724 DPRINTK("EXIT\n"); 2725 } 2726 EXPORT_SYMBOL_GPL(ata_bus_reset); 2727 2728 #ifdef CONFIG_PCI 2729 2730 /** 2731 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2732 * @pdev: PCI device 2733 * 2734 * Some PCI ATA devices report simplex mode but in fact can be told to 2735 * enter non simplex mode. This implements the necessary logic to 2736 * perform the task on such devices. Calling it on other devices will 2737 * have -undefined- behaviour. 2738 */ 2739 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2740 { 2741 unsigned long bmdma = pci_resource_start(pdev, 4); 2742 u8 simplex; 2743 2744 if (bmdma == 0) 2745 return -ENOENT; 2746 2747 simplex = inb(bmdma + 0x02); 2748 outb(simplex & 0x60, bmdma + 0x02); 2749 simplex = inb(bmdma + 0x02); 2750 if (simplex & 0x80) 2751 return -EOPNOTSUPP; 2752 return 0; 2753 } 2754 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2755 2756 /** 2757 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2758 * @host: target ATA host 2759 * 2760 * Acquire PCI BMDMA resources and initialize @host accordingly. 2761 * 2762 * LOCKING: 2763 * Inherited from calling layer (may sleep). 2764 * 2765 * RETURNS: 2766 * 0 on success, -errno otherwise. 2767 */ 2768 int ata_pci_bmdma_init(struct ata_host *host) 2769 { 2770 struct device *gdev = host->dev; 2771 struct pci_dev *pdev = to_pci_dev(gdev); 2772 int i, rc; 2773 2774 /* No BAR4 allocation: No DMA */ 2775 if (pci_resource_start(pdev, 4) == 0) 2776 return 0; 2777 2778 /* TODO: If we get no DMA mask we should fall back to PIO */ 2779 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2780 if (rc) 2781 return rc; 2782 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2783 if (rc) 2784 return rc; 2785 2786 /* request and iomap DMA region */ 2787 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2788 if (rc) { 2789 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2790 return -ENOMEM; 2791 } 2792 host->iomap = pcim_iomap_table(pdev); 2793 2794 for (i = 0; i < 2; i++) { 2795 struct ata_port *ap = host->ports[i]; 2796 void __iomem *bmdma = host->iomap[4] + 8 * i; 2797 2798 if (ata_port_is_dummy(ap)) 2799 continue; 2800 2801 ap->ioaddr.bmdma_addr = bmdma; 2802 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2803 (ioread8(bmdma + 2) & 0x80)) 2804 host->flags |= ATA_HOST_SIMPLEX; 2805 2806 ata_port_desc(ap, "bmdma 0x%llx", 2807 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2808 } 2809 2810 return 0; 2811 } 2812 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2813 2814 static int ata_resources_present(struct pci_dev *pdev, int port) 2815 { 2816 int i; 2817 2818 /* Check the PCI resources for this channel are enabled */ 2819 port = port * 2; 2820 for (i = 0; i < 2; i++) { 2821 if (pci_resource_start(pdev, port + i) == 0 || 2822 pci_resource_len(pdev, port + i) == 0) 2823 return 0; 2824 } 2825 return 1; 2826 } 2827 2828 /** 2829 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2830 * @host: target ATA host 2831 * 2832 * Acquire native PCI ATA resources for @host and initialize the 2833 * first two ports of @host accordingly. Ports marked dummy are 2834 * skipped and allocation failure makes the port dummy. 2835 * 2836 * Note that native PCI resources are valid even for legacy hosts 2837 * as we fix up pdev resources array early in boot, so this 2838 * function can be used for both native and legacy SFF hosts. 2839 * 2840 * LOCKING: 2841 * Inherited from calling layer (may sleep). 2842 * 2843 * RETURNS: 2844 * 0 if at least one port is initialized, -ENODEV if no port is 2845 * available. 2846 */ 2847 int ata_pci_sff_init_host(struct ata_host *host) 2848 { 2849 struct device *gdev = host->dev; 2850 struct pci_dev *pdev = to_pci_dev(gdev); 2851 unsigned int mask = 0; 2852 int i, rc; 2853 2854 /* request, iomap BARs and init port addresses accordingly */ 2855 for (i = 0; i < 2; i++) { 2856 struct ata_port *ap = host->ports[i]; 2857 int base = i * 2; 2858 void __iomem * const *iomap; 2859 2860 if (ata_port_is_dummy(ap)) 2861 continue; 2862 2863 /* Discard disabled ports. Some controllers show 2864 * their unused channels this way. Disabled ports are 2865 * made dummy. 2866 */ 2867 if (!ata_resources_present(pdev, i)) { 2868 ap->ops = &ata_dummy_port_ops; 2869 continue; 2870 } 2871 2872 rc = pcim_iomap_regions(pdev, 0x3 << base, 2873 dev_driver_string(gdev)); 2874 if (rc) { 2875 dev_printk(KERN_WARNING, gdev, 2876 "failed to request/iomap BARs for port %d " 2877 "(errno=%d)\n", i, rc); 2878 if (rc == -EBUSY) 2879 pcim_pin_device(pdev); 2880 ap->ops = &ata_dummy_port_ops; 2881 continue; 2882 } 2883 host->iomap = iomap = pcim_iomap_table(pdev); 2884 2885 ap->ioaddr.cmd_addr = iomap[base]; 2886 ap->ioaddr.altstatus_addr = 2887 ap->ioaddr.ctl_addr = (void __iomem *) 2888 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2889 ata_sff_std_ports(&ap->ioaddr); 2890 2891 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2892 (unsigned long long)pci_resource_start(pdev, base), 2893 (unsigned long long)pci_resource_start(pdev, base + 1)); 2894 2895 mask |= 1 << i; 2896 } 2897 2898 if (!mask) { 2899 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2900 return -ENODEV; 2901 } 2902 2903 return 0; 2904 } 2905 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2906 2907 /** 2908 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2909 * @pdev: target PCI device 2910 * @ppi: array of port_info, must be enough for two ports 2911 * @r_host: out argument for the initialized ATA host 2912 * 2913 * Helper to allocate ATA host for @pdev, acquire all native PCI 2914 * resources and initialize it accordingly in one go. 2915 * 2916 * LOCKING: 2917 * Inherited from calling layer (may sleep). 2918 * 2919 * RETURNS: 2920 * 0 on success, -errno otherwise. 2921 */ 2922 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2923 const struct ata_port_info * const *ppi, 2924 struct ata_host **r_host) 2925 { 2926 struct ata_host *host; 2927 int rc; 2928 2929 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2930 return -ENOMEM; 2931 2932 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2933 if (!host) { 2934 dev_printk(KERN_ERR, &pdev->dev, 2935 "failed to allocate ATA host\n"); 2936 rc = -ENOMEM; 2937 goto err_out; 2938 } 2939 2940 rc = ata_pci_sff_init_host(host); 2941 if (rc) 2942 goto err_out; 2943 2944 /* init DMA related stuff */ 2945 rc = ata_pci_bmdma_init(host); 2946 if (rc) 2947 goto err_bmdma; 2948 2949 devres_remove_group(&pdev->dev, NULL); 2950 *r_host = host; 2951 return 0; 2952 2953 err_bmdma: 2954 /* This is necessary because PCI and iomap resources are 2955 * merged and releasing the top group won't release the 2956 * acquired resources if some of those have been acquired 2957 * before entering this function. 2958 */ 2959 pcim_iounmap_regions(pdev, 0xf); 2960 err_out: 2961 devres_release_group(&pdev->dev, NULL); 2962 return rc; 2963 } 2964 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2965 2966 /** 2967 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2968 * @host: target SFF ATA host 2969 * @irq_handler: irq_handler used when requesting IRQ(s) 2970 * @sht: scsi_host_template to use when registering the host 2971 * 2972 * This is the counterpart of ata_host_activate() for SFF ATA 2973 * hosts. This separate helper is necessary because SFF hosts 2974 * use two separate interrupts in legacy mode. 2975 * 2976 * LOCKING: 2977 * Inherited from calling layer (may sleep). 2978 * 2979 * RETURNS: 2980 * 0 on success, -errno otherwise. 2981 */ 2982 int ata_pci_sff_activate_host(struct ata_host *host, 2983 irq_handler_t irq_handler, 2984 struct scsi_host_template *sht) 2985 { 2986 struct device *dev = host->dev; 2987 struct pci_dev *pdev = to_pci_dev(dev); 2988 const char *drv_name = dev_driver_string(host->dev); 2989 int legacy_mode = 0, rc; 2990 2991 rc = ata_host_start(host); 2992 if (rc) 2993 return rc; 2994 2995 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2996 u8 tmp8, mask; 2997 2998 /* TODO: What if one channel is in native mode ... */ 2999 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 3000 mask = (1 << 2) | (1 << 0); 3001 if ((tmp8 & mask) != mask) 3002 legacy_mode = 1; 3003 #if defined(CONFIG_NO_ATA_LEGACY) 3004 /* Some platforms with PCI limits cannot address compat 3005 port space. In that case we punt if their firmware has 3006 left a device in compatibility mode */ 3007 if (legacy_mode) { 3008 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 3009 return -EOPNOTSUPP; 3010 } 3011 #endif 3012 } 3013 3014 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3015 return -ENOMEM; 3016 3017 if (!legacy_mode && pdev->irq) { 3018 rc = devm_request_irq(dev, pdev->irq, irq_handler, 3019 IRQF_SHARED, drv_name, host); 3020 if (rc) 3021 goto out; 3022 3023 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 3024 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 3025 } else if (legacy_mode) { 3026 if (!ata_port_is_dummy(host->ports[0])) { 3027 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 3028 irq_handler, IRQF_SHARED, 3029 drv_name, host); 3030 if (rc) 3031 goto out; 3032 3033 ata_port_desc(host->ports[0], "irq %d", 3034 ATA_PRIMARY_IRQ(pdev)); 3035 } 3036 3037 if (!ata_port_is_dummy(host->ports[1])) { 3038 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 3039 irq_handler, IRQF_SHARED, 3040 drv_name, host); 3041 if (rc) 3042 goto out; 3043 3044 ata_port_desc(host->ports[1], "irq %d", 3045 ATA_SECONDARY_IRQ(pdev)); 3046 } 3047 } 3048 3049 rc = ata_host_register(host, sht); 3050 out: 3051 if (rc == 0) 3052 devres_remove_group(dev, NULL); 3053 else 3054 devres_release_group(dev, NULL); 3055 3056 return rc; 3057 } 3058 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 3059 3060 /** 3061 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 3062 * @pdev: Controller to be initialized 3063 * @ppi: array of port_info, must be enough for two ports 3064 * @sht: scsi_host_template to use when registering the host 3065 * @host_priv: host private_data 3066 * @hflag: host flags 3067 * 3068 * This is a helper function which can be called from a driver's 3069 * xxx_init_one() probe function if the hardware uses traditional 3070 * IDE taskfile registers. 3071 * 3072 * This function calls pci_enable_device(), reserves its register 3073 * regions, sets the dma mask, enables bus master mode, and calls 3074 * ata_device_add() 3075 * 3076 * ASSUMPTION: 3077 * Nobody makes a single channel controller that appears solely as 3078 * the secondary legacy port on PCI. 3079 * 3080 * LOCKING: 3081 * Inherited from PCI layer (may sleep). 3082 * 3083 * RETURNS: 3084 * Zero on success, negative on errno-based value on error. 3085 */ 3086 int ata_pci_sff_init_one(struct pci_dev *pdev, 3087 const struct ata_port_info * const *ppi, 3088 struct scsi_host_template *sht, void *host_priv, int hflag) 3089 { 3090 struct device *dev = &pdev->dev; 3091 const struct ata_port_info *pi = NULL; 3092 struct ata_host *host = NULL; 3093 int i, rc; 3094 3095 DPRINTK("ENTER\n"); 3096 3097 /* look up the first valid port_info */ 3098 for (i = 0; i < 2 && ppi[i]; i++) { 3099 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 3100 pi = ppi[i]; 3101 break; 3102 } 3103 } 3104 3105 if (!pi) { 3106 dev_printk(KERN_ERR, &pdev->dev, 3107 "no valid port_info specified\n"); 3108 return -EINVAL; 3109 } 3110 3111 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3112 return -ENOMEM; 3113 3114 rc = pcim_enable_device(pdev); 3115 if (rc) 3116 goto out; 3117 3118 /* prepare and activate SFF host */ 3119 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 3120 if (rc) 3121 goto out; 3122 host->private_data = host_priv; 3123 host->flags |= hflag; 3124 3125 pci_set_master(pdev); 3126 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 3127 out: 3128 if (rc == 0) 3129 devres_remove_group(&pdev->dev, NULL); 3130 else 3131 devres_release_group(&pdev->dev, NULL); 3132 3133 return rc; 3134 } 3135 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 3136 3137 #endif /* CONFIG_PCI */ 3138