xref: /linux/drivers/ata/libata-sff.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40 
41 #include "libata.h"
42 
43 const struct ata_port_operations ata_sff_port_ops = {
44 	.inherits		= &ata_base_port_ops,
45 
46 	.qc_prep		= ata_sff_qc_prep,
47 	.qc_issue		= ata_sff_qc_issue,
48 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
49 
50 	.freeze			= ata_sff_freeze,
51 	.thaw			= ata_sff_thaw,
52 	.prereset		= ata_sff_prereset,
53 	.softreset		= ata_sff_softreset,
54 	.hardreset		= sata_sff_hardreset,
55 	.postreset		= ata_sff_postreset,
56 	.drain_fifo		= ata_sff_drain_fifo,
57 	.error_handler		= ata_sff_error_handler,
58 	.post_internal_cmd	= ata_sff_post_internal_cmd,
59 
60 	.sff_dev_select		= ata_sff_dev_select,
61 	.sff_check_status	= ata_sff_check_status,
62 	.sff_tf_load		= ata_sff_tf_load,
63 	.sff_tf_read		= ata_sff_tf_read,
64 	.sff_exec_command	= ata_sff_exec_command,
65 	.sff_data_xfer		= ata_sff_data_xfer,
66 	.sff_irq_on		= ata_sff_irq_on,
67 	.sff_irq_clear		= ata_sff_irq_clear,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 
71 	.port_start		= ata_sff_port_start,
72 };
73 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
74 
75 const struct ata_port_operations ata_bmdma_port_ops = {
76 	.inherits		= &ata_sff_port_ops,
77 
78 	.mode_filter		= ata_bmdma_mode_filter,
79 
80 	.bmdma_setup		= ata_bmdma_setup,
81 	.bmdma_start		= ata_bmdma_start,
82 	.bmdma_stop		= ata_bmdma_stop,
83 	.bmdma_status		= ata_bmdma_status,
84 };
85 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
86 
87 const struct ata_port_operations ata_bmdma32_port_ops = {
88 	.inherits		= &ata_bmdma_port_ops,
89 
90 	.sff_data_xfer		= ata_sff_data_xfer32,
91 	.port_start		= ata_sff_port_start32,
92 };
93 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
94 
95 /**
96  *	ata_fill_sg - Fill PCI IDE PRD table
97  *	@qc: Metadata associated with taskfile to be transferred
98  *
99  *	Fill PCI IDE PRD (scatter-gather) table with segments
100  *	associated with the current disk command.
101  *
102  *	LOCKING:
103  *	spin_lock_irqsave(host lock)
104  *
105  */
106 static void ata_fill_sg(struct ata_queued_cmd *qc)
107 {
108 	struct ata_port *ap = qc->ap;
109 	struct scatterlist *sg;
110 	unsigned int si, pi;
111 
112 	pi = 0;
113 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
114 		u32 addr, offset;
115 		u32 sg_len, len;
116 
117 		/* determine if physical DMA addr spans 64K boundary.
118 		 * Note h/w doesn't support 64-bit, so we unconditionally
119 		 * truncate dma_addr_t to u32.
120 		 */
121 		addr = (u32) sg_dma_address(sg);
122 		sg_len = sg_dma_len(sg);
123 
124 		while (sg_len) {
125 			offset = addr & 0xffff;
126 			len = sg_len;
127 			if ((offset + sg_len) > 0x10000)
128 				len = 0x10000 - offset;
129 
130 			ap->prd[pi].addr = cpu_to_le32(addr);
131 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
132 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
133 
134 			pi++;
135 			sg_len -= len;
136 			addr += len;
137 		}
138 	}
139 
140 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
141 }
142 
143 /**
144  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
145  *	@qc: Metadata associated with taskfile to be transferred
146  *
147  *	Fill PCI IDE PRD (scatter-gather) table with segments
148  *	associated with the current disk command. Perform the fill
149  *	so that we avoid writing any length 64K records for
150  *	controllers that don't follow the spec.
151  *
152  *	LOCKING:
153  *	spin_lock_irqsave(host lock)
154  *
155  */
156 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
157 {
158 	struct ata_port *ap = qc->ap;
159 	struct scatterlist *sg;
160 	unsigned int si, pi;
161 
162 	pi = 0;
163 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
164 		u32 addr, offset;
165 		u32 sg_len, len, blen;
166 
167 		/* determine if physical DMA addr spans 64K boundary.
168 		 * Note h/w doesn't support 64-bit, so we unconditionally
169 		 * truncate dma_addr_t to u32.
170 		 */
171 		addr = (u32) sg_dma_address(sg);
172 		sg_len = sg_dma_len(sg);
173 
174 		while (sg_len) {
175 			offset = addr & 0xffff;
176 			len = sg_len;
177 			if ((offset + sg_len) > 0x10000)
178 				len = 0x10000 - offset;
179 
180 			blen = len & 0xffff;
181 			ap->prd[pi].addr = cpu_to_le32(addr);
182 			if (blen == 0) {
183 				/* Some PATA chipsets like the CS5530 can't
184 				   cope with 0x0000 meaning 64K as the spec
185 				   says */
186 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
187 				blen = 0x8000;
188 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
189 			}
190 			ap->prd[pi].flags_len = cpu_to_le32(blen);
191 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
192 
193 			pi++;
194 			sg_len -= len;
195 			addr += len;
196 		}
197 	}
198 
199 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
200 }
201 
202 /**
203  *	ata_sff_qc_prep - Prepare taskfile for submission
204  *	@qc: Metadata associated with taskfile to be prepared
205  *
206  *	Prepare ATA taskfile for submission.
207  *
208  *	LOCKING:
209  *	spin_lock_irqsave(host lock)
210  */
211 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
212 {
213 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
214 		return;
215 
216 	ata_fill_sg(qc);
217 }
218 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
219 
220 /**
221  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
222  *	@qc: Metadata associated with taskfile to be prepared
223  *
224  *	Prepare ATA taskfile for submission.
225  *
226  *	LOCKING:
227  *	spin_lock_irqsave(host lock)
228  */
229 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
230 {
231 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
232 		return;
233 
234 	ata_fill_sg_dumb(qc);
235 }
236 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
237 
238 /**
239  *	ata_sff_check_status - Read device status reg & clear interrupt
240  *	@ap: port where the device is
241  *
242  *	Reads ATA taskfile status register for currently-selected device
243  *	and return its value. This also clears pending interrupts
244  *      from this device
245  *
246  *	LOCKING:
247  *	Inherited from caller.
248  */
249 u8 ata_sff_check_status(struct ata_port *ap)
250 {
251 	return ioread8(ap->ioaddr.status_addr);
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_check_status);
254 
255 /**
256  *	ata_sff_altstatus - Read device alternate status reg
257  *	@ap: port where the device is
258  *
259  *	Reads ATA taskfile alternate status register for
260  *	currently-selected device and return its value.
261  *
262  *	Note: may NOT be used as the check_altstatus() entry in
263  *	ata_port_operations.
264  *
265  *	LOCKING:
266  *	Inherited from caller.
267  */
268 static u8 ata_sff_altstatus(struct ata_port *ap)
269 {
270 	if (ap->ops->sff_check_altstatus)
271 		return ap->ops->sff_check_altstatus(ap);
272 
273 	return ioread8(ap->ioaddr.altstatus_addr);
274 }
275 
276 /**
277  *	ata_sff_irq_status - Check if the device is busy
278  *	@ap: port where the device is
279  *
280  *	Determine if the port is currently busy. Uses altstatus
281  *	if available in order to avoid clearing shared IRQ status
282  *	when finding an IRQ source. Non ctl capable devices don't
283  *	share interrupt lines fortunately for us.
284  *
285  *	LOCKING:
286  *	Inherited from caller.
287  */
288 static u8 ata_sff_irq_status(struct ata_port *ap)
289 {
290 	u8 status;
291 
292 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
293 		status = ata_sff_altstatus(ap);
294 		/* Not us: We are busy */
295 		if (status & ATA_BUSY)
296 			return status;
297 	}
298 	/* Clear INTRQ latch */
299 	status = ap->ops->sff_check_status(ap);
300 	return status;
301 }
302 
303 /**
304  *	ata_sff_sync - Flush writes
305  *	@ap: Port to wait for.
306  *
307  *	CAUTION:
308  *	If we have an mmio device with no ctl and no altstatus
309  *	method this will fail. No such devices are known to exist.
310  *
311  *	LOCKING:
312  *	Inherited from caller.
313  */
314 
315 static void ata_sff_sync(struct ata_port *ap)
316 {
317 	if (ap->ops->sff_check_altstatus)
318 		ap->ops->sff_check_altstatus(ap);
319 	else if (ap->ioaddr.altstatus_addr)
320 		ioread8(ap->ioaddr.altstatus_addr);
321 }
322 
323 /**
324  *	ata_sff_pause		-	Flush writes and wait 400nS
325  *	@ap: Port to pause for.
326  *
327  *	CAUTION:
328  *	If we have an mmio device with no ctl and no altstatus
329  *	method this will fail. No such devices are known to exist.
330  *
331  *	LOCKING:
332  *	Inherited from caller.
333  */
334 
335 void ata_sff_pause(struct ata_port *ap)
336 {
337 	ata_sff_sync(ap);
338 	ndelay(400);
339 }
340 EXPORT_SYMBOL_GPL(ata_sff_pause);
341 
342 /**
343  *	ata_sff_dma_pause	-	Pause before commencing DMA
344  *	@ap: Port to pause for.
345  *
346  *	Perform I/O fencing and ensure sufficient cycle delays occur
347  *	for the HDMA1:0 transition
348  */
349 
350 void ata_sff_dma_pause(struct ata_port *ap)
351 {
352 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
353 		/* An altstatus read will cause the needed delay without
354 		   messing up the IRQ status */
355 		ata_sff_altstatus(ap);
356 		return;
357 	}
358 	/* There are no DMA controllers without ctl. BUG here to ensure
359 	   we never violate the HDMA1:0 transition timing and risk
360 	   corruption. */
361 	BUG();
362 }
363 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
364 
365 /**
366  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
367  *	@ap: port containing status register to be polled
368  *	@tmout_pat: impatience timeout in msecs
369  *	@tmout: overall timeout in msecs
370  *
371  *	Sleep until ATA Status register bit BSY clears,
372  *	or a timeout occurs.
373  *
374  *	LOCKING:
375  *	Kernel thread context (may sleep).
376  *
377  *	RETURNS:
378  *	0 on success, -errno otherwise.
379  */
380 int ata_sff_busy_sleep(struct ata_port *ap,
381 		       unsigned long tmout_pat, unsigned long tmout)
382 {
383 	unsigned long timer_start, timeout;
384 	u8 status;
385 
386 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
387 	timer_start = jiffies;
388 	timeout = ata_deadline(timer_start, tmout_pat);
389 	while (status != 0xff && (status & ATA_BUSY) &&
390 	       time_before(jiffies, timeout)) {
391 		msleep(50);
392 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
393 	}
394 
395 	if (status != 0xff && (status & ATA_BUSY))
396 		ata_port_printk(ap, KERN_WARNING,
397 				"port is slow to respond, please be patient "
398 				"(Status 0x%x)\n", status);
399 
400 	timeout = ata_deadline(timer_start, tmout);
401 	while (status != 0xff && (status & ATA_BUSY) &&
402 	       time_before(jiffies, timeout)) {
403 		msleep(50);
404 		status = ap->ops->sff_check_status(ap);
405 	}
406 
407 	if (status == 0xff)
408 		return -ENODEV;
409 
410 	if (status & ATA_BUSY) {
411 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
412 				"(%lu secs, Status 0x%x)\n",
413 				DIV_ROUND_UP(tmout, 1000), status);
414 		return -EBUSY;
415 	}
416 
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
420 
421 static int ata_sff_check_ready(struct ata_link *link)
422 {
423 	u8 status = link->ap->ops->sff_check_status(link->ap);
424 
425 	return ata_check_ready(status);
426 }
427 
428 /**
429  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
430  *	@link: SFF link to wait ready status for
431  *	@deadline: deadline jiffies for the operation
432  *
433  *	Sleep until ATA Status register bit BSY clears, or timeout
434  *	occurs.
435  *
436  *	LOCKING:
437  *	Kernel thread context (may sleep).
438  *
439  *	RETURNS:
440  *	0 on success, -errno otherwise.
441  */
442 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
443 {
444 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
445 }
446 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
447 
448 /**
449  *	ata_sff_dev_select - Select device 0/1 on ATA bus
450  *	@ap: ATA channel to manipulate
451  *	@device: ATA device (numbered from zero) to select
452  *
453  *	Use the method defined in the ATA specification to
454  *	make either device 0, or device 1, active on the
455  *	ATA channel.  Works with both PIO and MMIO.
456  *
457  *	May be used as the dev_select() entry in ata_port_operations.
458  *
459  *	LOCKING:
460  *	caller.
461  */
462 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
463 {
464 	u8 tmp;
465 
466 	if (device == 0)
467 		tmp = ATA_DEVICE_OBS;
468 	else
469 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
470 
471 	iowrite8(tmp, ap->ioaddr.device_addr);
472 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
473 }
474 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
475 
476 /**
477  *	ata_dev_select - Select device 0/1 on ATA bus
478  *	@ap: ATA channel to manipulate
479  *	@device: ATA device (numbered from zero) to select
480  *	@wait: non-zero to wait for Status register BSY bit to clear
481  *	@can_sleep: non-zero if context allows sleeping
482  *
483  *	Use the method defined in the ATA specification to
484  *	make either device 0, or device 1, active on the
485  *	ATA channel.
486  *
487  *	This is a high-level version of ata_sff_dev_select(), which
488  *	additionally provides the services of inserting the proper
489  *	pauses and status polling, where needed.
490  *
491  *	LOCKING:
492  *	caller.
493  */
494 void ata_dev_select(struct ata_port *ap, unsigned int device,
495 			   unsigned int wait, unsigned int can_sleep)
496 {
497 	if (ata_msg_probe(ap))
498 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
499 				"device %u, wait %u\n", device, wait);
500 
501 	if (wait)
502 		ata_wait_idle(ap);
503 
504 	ap->ops->sff_dev_select(ap, device);
505 
506 	if (wait) {
507 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
508 			msleep(150);
509 		ata_wait_idle(ap);
510 	}
511 }
512 
513 /**
514  *	ata_sff_irq_on - Enable interrupts on a port.
515  *	@ap: Port on which interrupts are enabled.
516  *
517  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
518  *	wait for idle, clear any pending interrupts.
519  *
520  *	LOCKING:
521  *	Inherited from caller.
522  */
523 u8 ata_sff_irq_on(struct ata_port *ap)
524 {
525 	struct ata_ioports *ioaddr = &ap->ioaddr;
526 	u8 tmp;
527 
528 	ap->ctl &= ~ATA_NIEN;
529 	ap->last_ctl = ap->ctl;
530 
531 	if (ioaddr->ctl_addr)
532 		iowrite8(ap->ctl, ioaddr->ctl_addr);
533 	tmp = ata_wait_idle(ap);
534 
535 	ap->ops->sff_irq_clear(ap);
536 
537 	return tmp;
538 }
539 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
540 
541 /**
542  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
543  *	@ap: Port associated with this ATA transaction.
544  *
545  *	Clear interrupt and error flags in DMA status register.
546  *
547  *	May be used as the irq_clear() entry in ata_port_operations.
548  *
549  *	LOCKING:
550  *	spin_lock_irqsave(host lock)
551  */
552 void ata_sff_irq_clear(struct ata_port *ap)
553 {
554 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
555 
556 	if (!mmio)
557 		return;
558 
559 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
560 }
561 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
562 
563 /**
564  *	ata_sff_tf_load - send taskfile registers to host controller
565  *	@ap: Port to which output is sent
566  *	@tf: ATA taskfile register set
567  *
568  *	Outputs ATA taskfile to standard ATA host controller.
569  *
570  *	LOCKING:
571  *	Inherited from caller.
572  */
573 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
574 {
575 	struct ata_ioports *ioaddr = &ap->ioaddr;
576 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
577 
578 	if (tf->ctl != ap->last_ctl) {
579 		if (ioaddr->ctl_addr)
580 			iowrite8(tf->ctl, ioaddr->ctl_addr);
581 		ap->last_ctl = tf->ctl;
582 		ata_wait_idle(ap);
583 	}
584 
585 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
586 		WARN_ON_ONCE(!ioaddr->ctl_addr);
587 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
588 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
589 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
590 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
591 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
592 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
593 			tf->hob_feature,
594 			tf->hob_nsect,
595 			tf->hob_lbal,
596 			tf->hob_lbam,
597 			tf->hob_lbah);
598 	}
599 
600 	if (is_addr) {
601 		iowrite8(tf->feature, ioaddr->feature_addr);
602 		iowrite8(tf->nsect, ioaddr->nsect_addr);
603 		iowrite8(tf->lbal, ioaddr->lbal_addr);
604 		iowrite8(tf->lbam, ioaddr->lbam_addr);
605 		iowrite8(tf->lbah, ioaddr->lbah_addr);
606 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
607 			tf->feature,
608 			tf->nsect,
609 			tf->lbal,
610 			tf->lbam,
611 			tf->lbah);
612 	}
613 
614 	if (tf->flags & ATA_TFLAG_DEVICE) {
615 		iowrite8(tf->device, ioaddr->device_addr);
616 		VPRINTK("device 0x%X\n", tf->device);
617 	}
618 
619 	ata_wait_idle(ap);
620 }
621 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
622 
623 /**
624  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
625  *	@ap: Port from which input is read
626  *	@tf: ATA taskfile register set for storing input
627  *
628  *	Reads ATA taskfile registers for currently-selected device
629  *	into @tf. Assumes the device has a fully SFF compliant task file
630  *	layout and behaviour. If you device does not (eg has a different
631  *	status method) then you will need to provide a replacement tf_read
632  *
633  *	LOCKING:
634  *	Inherited from caller.
635  */
636 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
637 {
638 	struct ata_ioports *ioaddr = &ap->ioaddr;
639 
640 	tf->command = ata_sff_check_status(ap);
641 	tf->feature = ioread8(ioaddr->error_addr);
642 	tf->nsect = ioread8(ioaddr->nsect_addr);
643 	tf->lbal = ioread8(ioaddr->lbal_addr);
644 	tf->lbam = ioread8(ioaddr->lbam_addr);
645 	tf->lbah = ioread8(ioaddr->lbah_addr);
646 	tf->device = ioread8(ioaddr->device_addr);
647 
648 	if (tf->flags & ATA_TFLAG_LBA48) {
649 		if (likely(ioaddr->ctl_addr)) {
650 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
651 			tf->hob_feature = ioread8(ioaddr->error_addr);
652 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
653 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
654 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
655 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
656 			iowrite8(tf->ctl, ioaddr->ctl_addr);
657 			ap->last_ctl = tf->ctl;
658 		} else
659 			WARN_ON_ONCE(1);
660 	}
661 }
662 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
663 
664 /**
665  *	ata_sff_exec_command - issue ATA command to host controller
666  *	@ap: port to which command is being issued
667  *	@tf: ATA taskfile register set
668  *
669  *	Issues ATA command, with proper synchronization with interrupt
670  *	handler / other threads.
671  *
672  *	LOCKING:
673  *	spin_lock_irqsave(host lock)
674  */
675 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
676 {
677 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
678 
679 	iowrite8(tf->command, ap->ioaddr.command_addr);
680 	ata_sff_pause(ap);
681 }
682 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
683 
684 /**
685  *	ata_tf_to_host - issue ATA taskfile to host controller
686  *	@ap: port to which command is being issued
687  *	@tf: ATA taskfile register set
688  *
689  *	Issues ATA taskfile register set to ATA host controller,
690  *	with proper synchronization with interrupt handler and
691  *	other threads.
692  *
693  *	LOCKING:
694  *	spin_lock_irqsave(host lock)
695  */
696 static inline void ata_tf_to_host(struct ata_port *ap,
697 				  const struct ata_taskfile *tf)
698 {
699 	ap->ops->sff_tf_load(ap, tf);
700 	ap->ops->sff_exec_command(ap, tf);
701 }
702 
703 /**
704  *	ata_sff_data_xfer - Transfer data by PIO
705  *	@dev: device to target
706  *	@buf: data buffer
707  *	@buflen: buffer length
708  *	@rw: read/write
709  *
710  *	Transfer data from/to the device data register by PIO.
711  *
712  *	LOCKING:
713  *	Inherited from caller.
714  *
715  *	RETURNS:
716  *	Bytes consumed.
717  */
718 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
719 			       unsigned int buflen, int rw)
720 {
721 	struct ata_port *ap = dev->link->ap;
722 	void __iomem *data_addr = ap->ioaddr.data_addr;
723 	unsigned int words = buflen >> 1;
724 
725 	/* Transfer multiple of 2 bytes */
726 	if (rw == READ)
727 		ioread16_rep(data_addr, buf, words);
728 	else
729 		iowrite16_rep(data_addr, buf, words);
730 
731 	/* Transfer trailing byte, if any. */
732 	if (unlikely(buflen & 0x01)) {
733 		unsigned char pad[2];
734 
735 		/* Point buf to the tail of buffer */
736 		buf += buflen - 1;
737 
738 		/*
739 		 * Use io*16_rep() accessors here as well to avoid pointlessly
740 		 * swapping bytes to and from on the big endian machines...
741 		 */
742 		if (rw == READ) {
743 			ioread16_rep(data_addr, pad, 1);
744 			*buf = pad[0];
745 		} else {
746 			pad[0] = *buf;
747 			iowrite16_rep(data_addr, pad, 1);
748 		}
749 		words++;
750 	}
751 
752 	return words << 1;
753 }
754 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
755 
756 /**
757  *	ata_sff_data_xfer32 - Transfer data by PIO
758  *	@dev: device to target
759  *	@buf: data buffer
760  *	@buflen: buffer length
761  *	@rw: read/write
762  *
763  *	Transfer data from/to the device data register by PIO using 32bit
764  *	I/O operations.
765  *
766  *	LOCKING:
767  *	Inherited from caller.
768  *
769  *	RETURNS:
770  *	Bytes consumed.
771  */
772 
773 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
774 			       unsigned int buflen, int rw)
775 {
776 	struct ata_port *ap = dev->link->ap;
777 	void __iomem *data_addr = ap->ioaddr.data_addr;
778 	unsigned int words = buflen >> 2;
779 	int slop = buflen & 3;
780 
781 	if (!(ap->pflags & ATA_PFLAG_PIO32))
782 		return ata_sff_data_xfer(dev, buf, buflen, rw);
783 
784 	/* Transfer multiple of 4 bytes */
785 	if (rw == READ)
786 		ioread32_rep(data_addr, buf, words);
787 	else
788 		iowrite32_rep(data_addr, buf, words);
789 
790 	/* Transfer trailing bytes, if any */
791 	if (unlikely(slop)) {
792 		unsigned char pad[4];
793 
794 		/* Point buf to the tail of buffer */
795 		buf += buflen - slop;
796 
797 		/*
798 		 * Use io*_rep() accessors here as well to avoid pointlessly
799 		 * swapping bytes to and from on the big endian machines...
800 		 */
801 		if (rw == READ) {
802 			if (slop < 3)
803 				ioread16_rep(data_addr, pad, 1);
804 			else
805 				ioread32_rep(data_addr, pad, 1);
806 			memcpy(buf, pad, slop);
807 		} else {
808 			memcpy(pad, buf, slop);
809 			if (slop < 3)
810 				iowrite16_rep(data_addr, pad, 1);
811 			else
812 				iowrite32_rep(data_addr, pad, 1);
813 		}
814 	}
815 	return (buflen + 1) & ~1;
816 }
817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
818 
819 /**
820  *	ata_sff_data_xfer_noirq - Transfer data by PIO
821  *	@dev: device to target
822  *	@buf: data buffer
823  *	@buflen: buffer length
824  *	@rw: read/write
825  *
826  *	Transfer data from/to the device data register by PIO. Do the
827  *	transfer with interrupts disabled.
828  *
829  *	LOCKING:
830  *	Inherited from caller.
831  *
832  *	RETURNS:
833  *	Bytes consumed.
834  */
835 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
836 				     unsigned int buflen, int rw)
837 {
838 	unsigned long flags;
839 	unsigned int consumed;
840 
841 	local_irq_save(flags);
842 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
843 	local_irq_restore(flags);
844 
845 	return consumed;
846 }
847 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
848 
849 /**
850  *	ata_pio_sector - Transfer a sector of data.
851  *	@qc: Command on going
852  *
853  *	Transfer qc->sect_size bytes of data from/to the ATA device.
854  *
855  *	LOCKING:
856  *	Inherited from caller.
857  */
858 static void ata_pio_sector(struct ata_queued_cmd *qc)
859 {
860 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
861 	struct ata_port *ap = qc->ap;
862 	struct page *page;
863 	unsigned int offset;
864 	unsigned char *buf;
865 
866 	if (qc->curbytes == qc->nbytes - qc->sect_size)
867 		ap->hsm_task_state = HSM_ST_LAST;
868 
869 	page = sg_page(qc->cursg);
870 	offset = qc->cursg->offset + qc->cursg_ofs;
871 
872 	/* get the current page and offset */
873 	page = nth_page(page, (offset >> PAGE_SHIFT));
874 	offset %= PAGE_SIZE;
875 
876 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
877 
878 	if (PageHighMem(page)) {
879 		unsigned long flags;
880 
881 		/* FIXME: use a bounce buffer */
882 		local_irq_save(flags);
883 		buf = kmap_atomic(page, KM_IRQ0);
884 
885 		/* do the actual data transfer */
886 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
887 				       do_write);
888 
889 		kunmap_atomic(buf, KM_IRQ0);
890 		local_irq_restore(flags);
891 	} else {
892 		buf = page_address(page);
893 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
894 				       do_write);
895 	}
896 
897 	if (!do_write)
898 		flush_dcache_page(page);
899 
900 	qc->curbytes += qc->sect_size;
901 	qc->cursg_ofs += qc->sect_size;
902 
903 	if (qc->cursg_ofs == qc->cursg->length) {
904 		qc->cursg = sg_next(qc->cursg);
905 		qc->cursg_ofs = 0;
906 	}
907 }
908 
909 /**
910  *	ata_pio_sectors - Transfer one or many sectors.
911  *	@qc: Command on going
912  *
913  *	Transfer one or many sectors of data from/to the
914  *	ATA device for the DRQ request.
915  *
916  *	LOCKING:
917  *	Inherited from caller.
918  */
919 static void ata_pio_sectors(struct ata_queued_cmd *qc)
920 {
921 	if (is_multi_taskfile(&qc->tf)) {
922 		/* READ/WRITE MULTIPLE */
923 		unsigned int nsect;
924 
925 		WARN_ON_ONCE(qc->dev->multi_count == 0);
926 
927 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
928 			    qc->dev->multi_count);
929 		while (nsect--)
930 			ata_pio_sector(qc);
931 	} else
932 		ata_pio_sector(qc);
933 
934 	ata_sff_sync(qc->ap); /* flush */
935 }
936 
937 /**
938  *	atapi_send_cdb - Write CDB bytes to hardware
939  *	@ap: Port to which ATAPI device is attached.
940  *	@qc: Taskfile currently active
941  *
942  *	When device has indicated its readiness to accept
943  *	a CDB, this function is called.  Send the CDB.
944  *
945  *	LOCKING:
946  *	caller.
947  */
948 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
949 {
950 	/* send SCSI cdb */
951 	DPRINTK("send cdb\n");
952 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
953 
954 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
955 	ata_sff_sync(ap);
956 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
957 	   or is bmdma_start guaranteed to do it ? */
958 	switch (qc->tf.protocol) {
959 	case ATAPI_PROT_PIO:
960 		ap->hsm_task_state = HSM_ST;
961 		break;
962 	case ATAPI_PROT_NODATA:
963 		ap->hsm_task_state = HSM_ST_LAST;
964 		break;
965 	case ATAPI_PROT_DMA:
966 		ap->hsm_task_state = HSM_ST_LAST;
967 		/* initiate bmdma */
968 		ap->ops->bmdma_start(qc);
969 		break;
970 	}
971 }
972 
973 /**
974  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
975  *	@qc: Command on going
976  *	@bytes: number of bytes
977  *
978  *	Transfer Transfer data from/to the ATAPI device.
979  *
980  *	LOCKING:
981  *	Inherited from caller.
982  *
983  */
984 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
985 {
986 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
987 	struct ata_port *ap = qc->ap;
988 	struct ata_device *dev = qc->dev;
989 	struct ata_eh_info *ehi = &dev->link->eh_info;
990 	struct scatterlist *sg;
991 	struct page *page;
992 	unsigned char *buf;
993 	unsigned int offset, count, consumed;
994 
995 next_sg:
996 	sg = qc->cursg;
997 	if (unlikely(!sg)) {
998 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
999 				  "buf=%u cur=%u bytes=%u",
1000 				  qc->nbytes, qc->curbytes, bytes);
1001 		return -1;
1002 	}
1003 
1004 	page = sg_page(sg);
1005 	offset = sg->offset + qc->cursg_ofs;
1006 
1007 	/* get the current page and offset */
1008 	page = nth_page(page, (offset >> PAGE_SHIFT));
1009 	offset %= PAGE_SIZE;
1010 
1011 	/* don't overrun current sg */
1012 	count = min(sg->length - qc->cursg_ofs, bytes);
1013 
1014 	/* don't cross page boundaries */
1015 	count = min(count, (unsigned int)PAGE_SIZE - offset);
1016 
1017 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1018 
1019 	if (PageHighMem(page)) {
1020 		unsigned long flags;
1021 
1022 		/* FIXME: use bounce buffer */
1023 		local_irq_save(flags);
1024 		buf = kmap_atomic(page, KM_IRQ0);
1025 
1026 		/* do the actual data transfer */
1027 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1028 								count, rw);
1029 
1030 		kunmap_atomic(buf, KM_IRQ0);
1031 		local_irq_restore(flags);
1032 	} else {
1033 		buf = page_address(page);
1034 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1035 								count, rw);
1036 	}
1037 
1038 	bytes -= min(bytes, consumed);
1039 	qc->curbytes += count;
1040 	qc->cursg_ofs += count;
1041 
1042 	if (qc->cursg_ofs == sg->length) {
1043 		qc->cursg = sg_next(qc->cursg);
1044 		qc->cursg_ofs = 0;
1045 	}
1046 
1047 	/*
1048 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1049 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1050 	 * check correctly as it doesn't know if it is the last request being
1051 	 * made. Somebody should implement a proper sanity check.
1052 	 */
1053 	if (bytes)
1054 		goto next_sg;
1055 	return 0;
1056 }
1057 
1058 /**
1059  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1060  *	@qc: Command on going
1061  *
1062  *	Transfer Transfer data from/to the ATAPI device.
1063  *
1064  *	LOCKING:
1065  *	Inherited from caller.
1066  */
1067 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1068 {
1069 	struct ata_port *ap = qc->ap;
1070 	struct ata_device *dev = qc->dev;
1071 	struct ata_eh_info *ehi = &dev->link->eh_info;
1072 	unsigned int ireason, bc_lo, bc_hi, bytes;
1073 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1074 
1075 	/* Abuse qc->result_tf for temp storage of intermediate TF
1076 	 * here to save some kernel stack usage.
1077 	 * For normal completion, qc->result_tf is not relevant. For
1078 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1079 	 * So, the correctness of qc->result_tf is not affected.
1080 	 */
1081 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1082 	ireason = qc->result_tf.nsect;
1083 	bc_lo = qc->result_tf.lbam;
1084 	bc_hi = qc->result_tf.lbah;
1085 	bytes = (bc_hi << 8) | bc_lo;
1086 
1087 	/* shall be cleared to zero, indicating xfer of data */
1088 	if (unlikely(ireason & (1 << 0)))
1089 		goto atapi_check;
1090 
1091 	/* make sure transfer direction matches expected */
1092 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1093 	if (unlikely(do_write != i_write))
1094 		goto atapi_check;
1095 
1096 	if (unlikely(!bytes))
1097 		goto atapi_check;
1098 
1099 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1100 
1101 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1102 		goto err_out;
1103 	ata_sff_sync(ap); /* flush */
1104 
1105 	return;
1106 
1107  atapi_check:
1108 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1109 			  ireason, bytes);
1110  err_out:
1111 	qc->err_mask |= AC_ERR_HSM;
1112 	ap->hsm_task_state = HSM_ST_ERR;
1113 }
1114 
1115 /**
1116  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1117  *	@ap: the target ata_port
1118  *	@qc: qc on going
1119  *
1120  *	RETURNS:
1121  *	1 if ok in workqueue, 0 otherwise.
1122  */
1123 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1124 						struct ata_queued_cmd *qc)
1125 {
1126 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1127 		return 1;
1128 
1129 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1130 		if (qc->tf.protocol == ATA_PROT_PIO &&
1131 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1132 		    return 1;
1133 
1134 		if (ata_is_atapi(qc->tf.protocol) &&
1135 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1136 			return 1;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1144  *	@qc: Command to complete
1145  *	@in_wq: 1 if called from workqueue, 0 otherwise
1146  *
1147  *	Finish @qc which is running on standard HSM.
1148  *
1149  *	LOCKING:
1150  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1151  *	Otherwise, none on entry and grabs host lock.
1152  */
1153 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1154 {
1155 	struct ata_port *ap = qc->ap;
1156 	unsigned long flags;
1157 
1158 	if (ap->ops->error_handler) {
1159 		if (in_wq) {
1160 			spin_lock_irqsave(ap->lock, flags);
1161 
1162 			/* EH might have kicked in while host lock is
1163 			 * released.
1164 			 */
1165 			qc = ata_qc_from_tag(ap, qc->tag);
1166 			if (qc) {
1167 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1168 					ap->ops->sff_irq_on(ap);
1169 					ata_qc_complete(qc);
1170 				} else
1171 					ata_port_freeze(ap);
1172 			}
1173 
1174 			spin_unlock_irqrestore(ap->lock, flags);
1175 		} else {
1176 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1177 				ata_qc_complete(qc);
1178 			else
1179 				ata_port_freeze(ap);
1180 		}
1181 	} else {
1182 		if (in_wq) {
1183 			spin_lock_irqsave(ap->lock, flags);
1184 			ap->ops->sff_irq_on(ap);
1185 			ata_qc_complete(qc);
1186 			spin_unlock_irqrestore(ap->lock, flags);
1187 		} else
1188 			ata_qc_complete(qc);
1189 	}
1190 }
1191 
1192 /**
1193  *	ata_sff_hsm_move - move the HSM to the next state.
1194  *	@ap: the target ata_port
1195  *	@qc: qc on going
1196  *	@status: current device status
1197  *	@in_wq: 1 if called from workqueue, 0 otherwise
1198  *
1199  *	RETURNS:
1200  *	1 when poll next status needed, 0 otherwise.
1201  */
1202 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1203 		     u8 status, int in_wq)
1204 {
1205 	struct ata_eh_info *ehi = &ap->link.eh_info;
1206 	unsigned long flags = 0;
1207 	int poll_next;
1208 
1209 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1210 
1211 	/* Make sure ata_sff_qc_issue() does not throw things
1212 	 * like DMA polling into the workqueue. Notice that
1213 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1214 	 */
1215 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1216 
1217 fsm_start:
1218 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1219 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1220 
1221 	switch (ap->hsm_task_state) {
1222 	case HSM_ST_FIRST:
1223 		/* Send first data block or PACKET CDB */
1224 
1225 		/* If polling, we will stay in the work queue after
1226 		 * sending the data. Otherwise, interrupt handler
1227 		 * takes over after sending the data.
1228 		 */
1229 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1230 
1231 		/* check device status */
1232 		if (unlikely((status & ATA_DRQ) == 0)) {
1233 			/* handle BSY=0, DRQ=0 as error */
1234 			if (likely(status & (ATA_ERR | ATA_DF)))
1235 				/* device stops HSM for abort/error */
1236 				qc->err_mask |= AC_ERR_DEV;
1237 			else {
1238 				/* HSM violation. Let EH handle this */
1239 				ata_ehi_push_desc(ehi,
1240 					"ST_FIRST: !(DRQ|ERR|DF)");
1241 				qc->err_mask |= AC_ERR_HSM;
1242 			}
1243 
1244 			ap->hsm_task_state = HSM_ST_ERR;
1245 			goto fsm_start;
1246 		}
1247 
1248 		/* Device should not ask for data transfer (DRQ=1)
1249 		 * when it finds something wrong.
1250 		 * We ignore DRQ here and stop the HSM by
1251 		 * changing hsm_task_state to HSM_ST_ERR and
1252 		 * let the EH abort the command or reset the device.
1253 		 */
1254 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1255 			/* Some ATAPI tape drives forget to clear the ERR bit
1256 			 * when doing the next command (mostly request sense).
1257 			 * We ignore ERR here to workaround and proceed sending
1258 			 * the CDB.
1259 			 */
1260 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1261 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1262 					"DRQ=1 with device error, "
1263 					"dev_stat 0x%X", status);
1264 				qc->err_mask |= AC_ERR_HSM;
1265 				ap->hsm_task_state = HSM_ST_ERR;
1266 				goto fsm_start;
1267 			}
1268 		}
1269 
1270 		/* Send the CDB (atapi) or the first data block (ata pio out).
1271 		 * During the state transition, interrupt handler shouldn't
1272 		 * be invoked before the data transfer is complete and
1273 		 * hsm_task_state is changed. Hence, the following locking.
1274 		 */
1275 		if (in_wq)
1276 			spin_lock_irqsave(ap->lock, flags);
1277 
1278 		if (qc->tf.protocol == ATA_PROT_PIO) {
1279 			/* PIO data out protocol.
1280 			 * send first data block.
1281 			 */
1282 
1283 			/* ata_pio_sectors() might change the state
1284 			 * to HSM_ST_LAST. so, the state is changed here
1285 			 * before ata_pio_sectors().
1286 			 */
1287 			ap->hsm_task_state = HSM_ST;
1288 			ata_pio_sectors(qc);
1289 		} else
1290 			/* send CDB */
1291 			atapi_send_cdb(ap, qc);
1292 
1293 		if (in_wq)
1294 			spin_unlock_irqrestore(ap->lock, flags);
1295 
1296 		/* if polling, ata_pio_task() handles the rest.
1297 		 * otherwise, interrupt handler takes over from here.
1298 		 */
1299 		break;
1300 
1301 	case HSM_ST:
1302 		/* complete command or read/write the data register */
1303 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1304 			/* ATAPI PIO protocol */
1305 			if ((status & ATA_DRQ) == 0) {
1306 				/* No more data to transfer or device error.
1307 				 * Device error will be tagged in HSM_ST_LAST.
1308 				 */
1309 				ap->hsm_task_state = HSM_ST_LAST;
1310 				goto fsm_start;
1311 			}
1312 
1313 			/* Device should not ask for data transfer (DRQ=1)
1314 			 * when it finds something wrong.
1315 			 * We ignore DRQ here and stop the HSM by
1316 			 * changing hsm_task_state to HSM_ST_ERR and
1317 			 * let the EH abort the command or reset the device.
1318 			 */
1319 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1320 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1321 					"DRQ=1 with device error, "
1322 					"dev_stat 0x%X", status);
1323 				qc->err_mask |= AC_ERR_HSM;
1324 				ap->hsm_task_state = HSM_ST_ERR;
1325 				goto fsm_start;
1326 			}
1327 
1328 			atapi_pio_bytes(qc);
1329 
1330 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1331 				/* bad ireason reported by device */
1332 				goto fsm_start;
1333 
1334 		} else {
1335 			/* ATA PIO protocol */
1336 			if (unlikely((status & ATA_DRQ) == 0)) {
1337 				/* handle BSY=0, DRQ=0 as error */
1338 				if (likely(status & (ATA_ERR | ATA_DF))) {
1339 					/* device stops HSM for abort/error */
1340 					qc->err_mask |= AC_ERR_DEV;
1341 
1342 					/* If diagnostic failed and this is
1343 					 * IDENTIFY, it's likely a phantom
1344 					 * device.  Mark hint.
1345 					 */
1346 					if (qc->dev->horkage &
1347 					    ATA_HORKAGE_DIAGNOSTIC)
1348 						qc->err_mask |=
1349 							AC_ERR_NODEV_HINT;
1350 				} else {
1351 					/* HSM violation. Let EH handle this.
1352 					 * Phantom devices also trigger this
1353 					 * condition.  Mark hint.
1354 					 */
1355 					ata_ehi_push_desc(ehi, "ST-ATA: "
1356 						"DRQ=0 without device error, "
1357 						"dev_stat 0x%X", status);
1358 					qc->err_mask |= AC_ERR_HSM |
1359 							AC_ERR_NODEV_HINT;
1360 				}
1361 
1362 				ap->hsm_task_state = HSM_ST_ERR;
1363 				goto fsm_start;
1364 			}
1365 
1366 			/* For PIO reads, some devices may ask for
1367 			 * data transfer (DRQ=1) alone with ERR=1.
1368 			 * We respect DRQ here and transfer one
1369 			 * block of junk data before changing the
1370 			 * hsm_task_state to HSM_ST_ERR.
1371 			 *
1372 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1373 			 * sense since the data block has been
1374 			 * transferred to the device.
1375 			 */
1376 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1377 				/* data might be corrputed */
1378 				qc->err_mask |= AC_ERR_DEV;
1379 
1380 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1381 					ata_pio_sectors(qc);
1382 					status = ata_wait_idle(ap);
1383 				}
1384 
1385 				if (status & (ATA_BUSY | ATA_DRQ)) {
1386 					ata_ehi_push_desc(ehi, "ST-ATA: "
1387 						"BUSY|DRQ persists on ERR|DF, "
1388 						"dev_stat 0x%X", status);
1389 					qc->err_mask |= AC_ERR_HSM;
1390 				}
1391 
1392 				/* There are oddball controllers with
1393 				 * status register stuck at 0x7f and
1394 				 * lbal/m/h at zero which makes it
1395 				 * pass all other presence detection
1396 				 * mechanisms we have.  Set NODEV_HINT
1397 				 * for it.  Kernel bz#7241.
1398 				 */
1399 				if (status == 0x7f)
1400 					qc->err_mask |= AC_ERR_NODEV_HINT;
1401 
1402 				/* ata_pio_sectors() might change the
1403 				 * state to HSM_ST_LAST. so, the state
1404 				 * is changed after ata_pio_sectors().
1405 				 */
1406 				ap->hsm_task_state = HSM_ST_ERR;
1407 				goto fsm_start;
1408 			}
1409 
1410 			ata_pio_sectors(qc);
1411 
1412 			if (ap->hsm_task_state == HSM_ST_LAST &&
1413 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1414 				/* all data read */
1415 				status = ata_wait_idle(ap);
1416 				goto fsm_start;
1417 			}
1418 		}
1419 
1420 		poll_next = 1;
1421 		break;
1422 
1423 	case HSM_ST_LAST:
1424 		if (unlikely(!ata_ok(status))) {
1425 			qc->err_mask |= __ac_err_mask(status);
1426 			ap->hsm_task_state = HSM_ST_ERR;
1427 			goto fsm_start;
1428 		}
1429 
1430 		/* no more data to transfer */
1431 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1432 			ap->print_id, qc->dev->devno, status);
1433 
1434 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1435 
1436 		ap->hsm_task_state = HSM_ST_IDLE;
1437 
1438 		/* complete taskfile transaction */
1439 		ata_hsm_qc_complete(qc, in_wq);
1440 
1441 		poll_next = 0;
1442 		break;
1443 
1444 	case HSM_ST_ERR:
1445 		ap->hsm_task_state = HSM_ST_IDLE;
1446 
1447 		/* complete taskfile transaction */
1448 		ata_hsm_qc_complete(qc, in_wq);
1449 
1450 		poll_next = 0;
1451 		break;
1452 	default:
1453 		poll_next = 0;
1454 		BUG();
1455 	}
1456 
1457 	return poll_next;
1458 }
1459 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1460 
1461 void ata_pio_task(struct work_struct *work)
1462 {
1463 	struct ata_port *ap =
1464 		container_of(work, struct ata_port, port_task.work);
1465 	struct ata_queued_cmd *qc = ap->port_task_data;
1466 	u8 status;
1467 	int poll_next;
1468 
1469 fsm_start:
1470 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1471 
1472 	/*
1473 	 * This is purely heuristic.  This is a fast path.
1474 	 * Sometimes when we enter, BSY will be cleared in
1475 	 * a chk-status or two.  If not, the drive is probably seeking
1476 	 * or something.  Snooze for a couple msecs, then
1477 	 * chk-status again.  If still busy, queue delayed work.
1478 	 */
1479 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1480 	if (status & ATA_BUSY) {
1481 		msleep(2);
1482 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1483 		if (status & ATA_BUSY) {
1484 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1485 			return;
1486 		}
1487 	}
1488 
1489 	/* move the HSM */
1490 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1491 
1492 	/* another command or interrupt handler
1493 	 * may be running at this point.
1494 	 */
1495 	if (poll_next)
1496 		goto fsm_start;
1497 }
1498 
1499 /**
1500  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1501  *	@qc: command to issue to device
1502  *
1503  *	Using various libata functions and hooks, this function
1504  *	starts an ATA command.  ATA commands are grouped into
1505  *	classes called "protocols", and issuing each type of protocol
1506  *	is slightly different.
1507  *
1508  *	May be used as the qc_issue() entry in ata_port_operations.
1509  *
1510  *	LOCKING:
1511  *	spin_lock_irqsave(host lock)
1512  *
1513  *	RETURNS:
1514  *	Zero on success, AC_ERR_* mask on failure
1515  */
1516 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1517 {
1518 	struct ata_port *ap = qc->ap;
1519 
1520 	/* Use polling pio if the LLD doesn't handle
1521 	 * interrupt driven pio and atapi CDB interrupt.
1522 	 */
1523 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1524 		switch (qc->tf.protocol) {
1525 		case ATA_PROT_PIO:
1526 		case ATA_PROT_NODATA:
1527 		case ATAPI_PROT_PIO:
1528 		case ATAPI_PROT_NODATA:
1529 			qc->tf.flags |= ATA_TFLAG_POLLING;
1530 			break;
1531 		case ATAPI_PROT_DMA:
1532 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1533 				/* see ata_dma_blacklisted() */
1534 				BUG();
1535 			break;
1536 		default:
1537 			break;
1538 		}
1539 	}
1540 
1541 	/* select the device */
1542 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1543 
1544 	/* start the command */
1545 	switch (qc->tf.protocol) {
1546 	case ATA_PROT_NODATA:
1547 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1548 			ata_qc_set_polling(qc);
1549 
1550 		ata_tf_to_host(ap, &qc->tf);
1551 		ap->hsm_task_state = HSM_ST_LAST;
1552 
1553 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1554 			ata_pio_queue_task(ap, qc, 0);
1555 
1556 		break;
1557 
1558 	case ATA_PROT_DMA:
1559 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1560 
1561 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1562 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1563 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1564 		ap->hsm_task_state = HSM_ST_LAST;
1565 		break;
1566 
1567 	case ATA_PROT_PIO:
1568 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 			ata_qc_set_polling(qc);
1570 
1571 		ata_tf_to_host(ap, &qc->tf);
1572 
1573 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1574 			/* PIO data out protocol */
1575 			ap->hsm_task_state = HSM_ST_FIRST;
1576 			ata_pio_queue_task(ap, qc, 0);
1577 
1578 			/* always send first data block using
1579 			 * the ata_pio_task() codepath.
1580 			 */
1581 		} else {
1582 			/* PIO data in protocol */
1583 			ap->hsm_task_state = HSM_ST;
1584 
1585 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1586 				ata_pio_queue_task(ap, qc, 0);
1587 
1588 			/* if polling, ata_pio_task() handles the rest.
1589 			 * otherwise, interrupt handler takes over from here.
1590 			 */
1591 		}
1592 
1593 		break;
1594 
1595 	case ATAPI_PROT_PIO:
1596 	case ATAPI_PROT_NODATA:
1597 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1598 			ata_qc_set_polling(qc);
1599 
1600 		ata_tf_to_host(ap, &qc->tf);
1601 
1602 		ap->hsm_task_state = HSM_ST_FIRST;
1603 
1604 		/* send cdb by polling if no cdb interrupt */
1605 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1606 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1607 			ata_pio_queue_task(ap, qc, 0);
1608 		break;
1609 
1610 	case ATAPI_PROT_DMA:
1611 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1612 
1613 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1614 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1615 		ap->hsm_task_state = HSM_ST_FIRST;
1616 
1617 		/* send cdb by polling if no cdb interrupt */
1618 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1619 			ata_pio_queue_task(ap, qc, 0);
1620 		break;
1621 
1622 	default:
1623 		WARN_ON_ONCE(1);
1624 		return AC_ERR_SYSTEM;
1625 	}
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1630 
1631 /**
1632  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1633  *	@qc: qc to fill result TF for
1634  *
1635  *	@qc is finished and result TF needs to be filled.  Fill it
1636  *	using ->sff_tf_read.
1637  *
1638  *	LOCKING:
1639  *	spin_lock_irqsave(host lock)
1640  *
1641  *	RETURNS:
1642  *	true indicating that result TF is successfully filled.
1643  */
1644 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1645 {
1646 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1647 	return true;
1648 }
1649 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1650 
1651 /**
1652  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1653  *	@ap: Port on which interrupt arrived (possibly...)
1654  *	@qc: Taskfile currently active in engine
1655  *
1656  *	Handle host interrupt for given queued command.  Currently,
1657  *	only DMA interrupts are handled.  All other commands are
1658  *	handled via polling with interrupts disabled (nIEN bit).
1659  *
1660  *	LOCKING:
1661  *	spin_lock_irqsave(host lock)
1662  *
1663  *	RETURNS:
1664  *	One if interrupt was handled, zero if not (shared irq).
1665  */
1666 unsigned int ata_sff_host_intr(struct ata_port *ap,
1667 				      struct ata_queued_cmd *qc)
1668 {
1669 	struct ata_eh_info *ehi = &ap->link.eh_info;
1670 	u8 status, host_stat = 0;
1671 	bool bmdma_stopped = false;
1672 
1673 	VPRINTK("ata%u: protocol %d task_state %d\n",
1674 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1675 
1676 	/* Check whether we are expecting interrupt in this state */
1677 	switch (ap->hsm_task_state) {
1678 	case HSM_ST_FIRST:
1679 		/* Some pre-ATAPI-4 devices assert INTRQ
1680 		 * at this state when ready to receive CDB.
1681 		 */
1682 
1683 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1684 		 * The flag was turned on only for atapi devices.  No
1685 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1686 		 */
1687 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1688 			goto idle_irq;
1689 		break;
1690 	case HSM_ST_LAST:
1691 		if (qc->tf.protocol == ATA_PROT_DMA ||
1692 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1693 			/* check status of DMA engine */
1694 			host_stat = ap->ops->bmdma_status(ap);
1695 			VPRINTK("ata%u: host_stat 0x%X\n",
1696 				ap->print_id, host_stat);
1697 
1698 			/* if it's not our irq... */
1699 			if (!(host_stat & ATA_DMA_INTR))
1700 				goto idle_irq;
1701 
1702 			/* before we do anything else, clear DMA-Start bit */
1703 			ap->ops->bmdma_stop(qc);
1704 			bmdma_stopped = true;
1705 
1706 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1707 				/* error when transfering data to/from memory */
1708 				qc->err_mask |= AC_ERR_HOST_BUS;
1709 				ap->hsm_task_state = HSM_ST_ERR;
1710 			}
1711 		}
1712 		break;
1713 	case HSM_ST:
1714 		break;
1715 	default:
1716 		goto idle_irq;
1717 	}
1718 
1719 
1720 	/* check main status, clearing INTRQ if needed */
1721 	status = ata_sff_irq_status(ap);
1722 	if (status & ATA_BUSY) {
1723 		if (bmdma_stopped) {
1724 			/* BMDMA engine is already stopped, we're screwed */
1725 			qc->err_mask |= AC_ERR_HSM;
1726 			ap->hsm_task_state = HSM_ST_ERR;
1727 		} else
1728 			goto idle_irq;
1729 	}
1730 
1731 	/* ack bmdma irq events */
1732 	ap->ops->sff_irq_clear(ap);
1733 
1734 	ata_sff_hsm_move(ap, qc, status, 0);
1735 
1736 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1737 				       qc->tf.protocol == ATAPI_PROT_DMA))
1738 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1739 
1740 	return 1;	/* irq handled */
1741 
1742 idle_irq:
1743 	ap->stats.idle_irq++;
1744 
1745 #ifdef ATA_IRQ_TRAP
1746 	if ((ap->stats.idle_irq % 1000) == 0) {
1747 		ap->ops->sff_check_status(ap);
1748 		ap->ops->sff_irq_clear(ap);
1749 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1750 		return 1;
1751 	}
1752 #endif
1753 	return 0;	/* irq not handled */
1754 }
1755 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1756 
1757 /**
1758  *	ata_sff_interrupt - Default ATA host interrupt handler
1759  *	@irq: irq line (unused)
1760  *	@dev_instance: pointer to our ata_host information structure
1761  *
1762  *	Default interrupt handler for PCI IDE devices.  Calls
1763  *	ata_sff_host_intr() for each port that is not disabled.
1764  *
1765  *	LOCKING:
1766  *	Obtains host lock during operation.
1767  *
1768  *	RETURNS:
1769  *	IRQ_NONE or IRQ_HANDLED.
1770  */
1771 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1772 {
1773 	struct ata_host *host = dev_instance;
1774 	bool retried = false;
1775 	unsigned int i;
1776 	unsigned int handled, idle, polling;
1777 	unsigned long flags;
1778 
1779 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1780 	spin_lock_irqsave(&host->lock, flags);
1781 
1782 retry:
1783 	handled = idle = polling = 0;
1784 	for (i = 0; i < host->n_ports; i++) {
1785 		struct ata_port *ap = host->ports[i];
1786 		struct ata_queued_cmd *qc;
1787 
1788 		if (unlikely(ap->flags & ATA_FLAG_DISABLED))
1789 			continue;
1790 
1791 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1792 		if (qc) {
1793 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1794 				handled |= ata_sff_host_intr(ap, qc);
1795 			else
1796 				polling |= 1 << i;
1797 		} else
1798 			idle |= 1 << i;
1799 	}
1800 
1801 	/*
1802 	 * If no port was expecting IRQ but the controller is actually
1803 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1804 	 * pending status if available and clear spurious IRQ.
1805 	 */
1806 	if (!handled && !retried) {
1807 		bool retry = false;
1808 
1809 		for (i = 0; i < host->n_ports; i++) {
1810 			struct ata_port *ap = host->ports[i];
1811 
1812 			if (polling & (1 << i))
1813 				continue;
1814 
1815 			if (!ap->ops->sff_irq_check ||
1816 			    !ap->ops->sff_irq_check(ap))
1817 				continue;
1818 
1819 			if (idle & (1 << i)) {
1820 				ap->ops->sff_check_status(ap);
1821 				ap->ops->sff_irq_clear(ap);
1822 			} else {
1823 				/* clear INTRQ and check if BUSY cleared */
1824 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1825 					retry |= true;
1826 				/*
1827 				 * With command in flight, we can't do
1828 				 * sff_irq_clear() w/o racing with completion.
1829 				 */
1830 			}
1831 		}
1832 
1833 		if (retry) {
1834 			retried = true;
1835 			goto retry;
1836 		}
1837 	}
1838 
1839 	spin_unlock_irqrestore(&host->lock, flags);
1840 
1841 	return IRQ_RETVAL(handled);
1842 }
1843 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1844 
1845 /**
1846  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1847  *	@ap: port that appears to have timed out
1848  *
1849  *	Called from the libata error handlers when the core code suspects
1850  *	an interrupt has been lost. If it has complete anything we can and
1851  *	then return. Interface must support altstatus for this faster
1852  *	recovery to occur.
1853  *
1854  *	Locking:
1855  *	Caller holds host lock
1856  */
1857 
1858 void ata_sff_lost_interrupt(struct ata_port *ap)
1859 {
1860 	u8 status;
1861 	struct ata_queued_cmd *qc;
1862 
1863 	/* Only one outstanding command per SFF channel */
1864 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1865 	/* Check we have a live one.. */
1866 	if (qc == NULL ||  !(qc->flags & ATA_QCFLAG_ACTIVE))
1867 		return;
1868 	/* We cannot lose an interrupt on a polled command */
1869 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1870 		return;
1871 	/* See if the controller thinks it is still busy - if so the command
1872 	   isn't a lost IRQ but is still in progress */
1873 	status = ata_sff_altstatus(ap);
1874 	if (status & ATA_BUSY)
1875 		return;
1876 
1877 	/* There was a command running, we are no longer busy and we have
1878 	   no interrupt. */
1879 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1880 								status);
1881 	/* Run the host interrupt logic as if the interrupt had not been
1882 	   lost */
1883 	ata_sff_host_intr(ap, qc);
1884 }
1885 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1886 
1887 /**
1888  *	ata_sff_freeze - Freeze SFF controller port
1889  *	@ap: port to freeze
1890  *
1891  *	Freeze BMDMA controller port.
1892  *
1893  *	LOCKING:
1894  *	Inherited from caller.
1895  */
1896 void ata_sff_freeze(struct ata_port *ap)
1897 {
1898 	struct ata_ioports *ioaddr = &ap->ioaddr;
1899 
1900 	ap->ctl |= ATA_NIEN;
1901 	ap->last_ctl = ap->ctl;
1902 
1903 	if (ioaddr->ctl_addr)
1904 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1905 
1906 	/* Under certain circumstances, some controllers raise IRQ on
1907 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1908 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1909 	 */
1910 	ap->ops->sff_check_status(ap);
1911 
1912 	ap->ops->sff_irq_clear(ap);
1913 }
1914 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1915 
1916 /**
1917  *	ata_sff_thaw - Thaw SFF controller port
1918  *	@ap: port to thaw
1919  *
1920  *	Thaw SFF controller port.
1921  *
1922  *	LOCKING:
1923  *	Inherited from caller.
1924  */
1925 void ata_sff_thaw(struct ata_port *ap)
1926 {
1927 	/* clear & re-enable interrupts */
1928 	ap->ops->sff_check_status(ap);
1929 	ap->ops->sff_irq_clear(ap);
1930 	ap->ops->sff_irq_on(ap);
1931 }
1932 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1933 
1934 /**
1935  *	ata_sff_prereset - prepare SFF link for reset
1936  *	@link: SFF link to be reset
1937  *	@deadline: deadline jiffies for the operation
1938  *
1939  *	SFF link @link is about to be reset.  Initialize it.  It first
1940  *	calls ata_std_prereset() and wait for !BSY if the port is
1941  *	being softreset.
1942  *
1943  *	LOCKING:
1944  *	Kernel thread context (may sleep)
1945  *
1946  *	RETURNS:
1947  *	0 on success, -errno otherwise.
1948  */
1949 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1950 {
1951 	struct ata_eh_context *ehc = &link->eh_context;
1952 	int rc;
1953 
1954 	rc = ata_std_prereset(link, deadline);
1955 	if (rc)
1956 		return rc;
1957 
1958 	/* if we're about to do hardreset, nothing more to do */
1959 	if (ehc->i.action & ATA_EH_HARDRESET)
1960 		return 0;
1961 
1962 	/* wait for !BSY if we don't know that no device is attached */
1963 	if (!ata_link_offline(link)) {
1964 		rc = ata_sff_wait_ready(link, deadline);
1965 		if (rc && rc != -ENODEV) {
1966 			ata_link_printk(link, KERN_WARNING, "device not ready "
1967 					"(errno=%d), forcing hardreset\n", rc);
1968 			ehc->i.action |= ATA_EH_HARDRESET;
1969 		}
1970 	}
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1975 
1976 /**
1977  *	ata_devchk - PATA device presence detection
1978  *	@ap: ATA channel to examine
1979  *	@device: Device to examine (starting at zero)
1980  *
1981  *	This technique was originally described in
1982  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1983  *	later found its way into the ATA/ATAPI spec.
1984  *
1985  *	Write a pattern to the ATA shadow registers,
1986  *	and if a device is present, it will respond by
1987  *	correctly storing and echoing back the
1988  *	ATA shadow register contents.
1989  *
1990  *	LOCKING:
1991  *	caller.
1992  */
1993 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1994 {
1995 	struct ata_ioports *ioaddr = &ap->ioaddr;
1996 	u8 nsect, lbal;
1997 
1998 	ap->ops->sff_dev_select(ap, device);
1999 
2000 	iowrite8(0x55, ioaddr->nsect_addr);
2001 	iowrite8(0xaa, ioaddr->lbal_addr);
2002 
2003 	iowrite8(0xaa, ioaddr->nsect_addr);
2004 	iowrite8(0x55, ioaddr->lbal_addr);
2005 
2006 	iowrite8(0x55, ioaddr->nsect_addr);
2007 	iowrite8(0xaa, ioaddr->lbal_addr);
2008 
2009 	nsect = ioread8(ioaddr->nsect_addr);
2010 	lbal = ioread8(ioaddr->lbal_addr);
2011 
2012 	if ((nsect == 0x55) && (lbal == 0xaa))
2013 		return 1;	/* we found a device */
2014 
2015 	return 0;		/* nothing found */
2016 }
2017 
2018 /**
2019  *	ata_sff_dev_classify - Parse returned ATA device signature
2020  *	@dev: ATA device to classify (starting at zero)
2021  *	@present: device seems present
2022  *	@r_err: Value of error register on completion
2023  *
2024  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2025  *	an ATA/ATAPI-defined set of values is placed in the ATA
2026  *	shadow registers, indicating the results of device detection
2027  *	and diagnostics.
2028  *
2029  *	Select the ATA device, and read the values from the ATA shadow
2030  *	registers.  Then parse according to the Error register value,
2031  *	and the spec-defined values examined by ata_dev_classify().
2032  *
2033  *	LOCKING:
2034  *	caller.
2035  *
2036  *	RETURNS:
2037  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
2038  */
2039 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
2040 				  u8 *r_err)
2041 {
2042 	struct ata_port *ap = dev->link->ap;
2043 	struct ata_taskfile tf;
2044 	unsigned int class;
2045 	u8 err;
2046 
2047 	ap->ops->sff_dev_select(ap, dev->devno);
2048 
2049 	memset(&tf, 0, sizeof(tf));
2050 
2051 	ap->ops->sff_tf_read(ap, &tf);
2052 	err = tf.feature;
2053 	if (r_err)
2054 		*r_err = err;
2055 
2056 	/* see if device passed diags: continue and warn later */
2057 	if (err == 0)
2058 		/* diagnostic fail : do nothing _YET_ */
2059 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2060 	else if (err == 1)
2061 		/* do nothing */ ;
2062 	else if ((dev->devno == 0) && (err == 0x81))
2063 		/* do nothing */ ;
2064 	else
2065 		return ATA_DEV_NONE;
2066 
2067 	/* determine if device is ATA or ATAPI */
2068 	class = ata_dev_classify(&tf);
2069 
2070 	if (class == ATA_DEV_UNKNOWN) {
2071 		/* If the device failed diagnostic, it's likely to
2072 		 * have reported incorrect device signature too.
2073 		 * Assume ATA device if the device seems present but
2074 		 * device signature is invalid with diagnostic
2075 		 * failure.
2076 		 */
2077 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2078 			class = ATA_DEV_ATA;
2079 		else
2080 			class = ATA_DEV_NONE;
2081 	} else if ((class == ATA_DEV_ATA) &&
2082 		   (ap->ops->sff_check_status(ap) == 0))
2083 		class = ATA_DEV_NONE;
2084 
2085 	return class;
2086 }
2087 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2088 
2089 /**
2090  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
2091  *	@link: SFF link which is just reset
2092  *	@devmask: mask of present devices
2093  *	@deadline: deadline jiffies for the operation
2094  *
2095  *	Wait devices attached to SFF @link to become ready after
2096  *	reset.  It contains preceding 150ms wait to avoid accessing TF
2097  *	status register too early.
2098  *
2099  *	LOCKING:
2100  *	Kernel thread context (may sleep).
2101  *
2102  *	RETURNS:
2103  *	0 on success, -ENODEV if some or all of devices in @devmask
2104  *	don't seem to exist.  -errno on other errors.
2105  */
2106 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2107 			     unsigned long deadline)
2108 {
2109 	struct ata_port *ap = link->ap;
2110 	struct ata_ioports *ioaddr = &ap->ioaddr;
2111 	unsigned int dev0 = devmask & (1 << 0);
2112 	unsigned int dev1 = devmask & (1 << 1);
2113 	int rc, ret = 0;
2114 
2115 	msleep(ATA_WAIT_AFTER_RESET);
2116 
2117 	/* always check readiness of the master device */
2118 	rc = ata_sff_wait_ready(link, deadline);
2119 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
2120 	 * and TF status is 0xff, bail out on it too.
2121 	 */
2122 	if (rc)
2123 		return rc;
2124 
2125 	/* if device 1 was found in ata_devchk, wait for register
2126 	 * access briefly, then wait for BSY to clear.
2127 	 */
2128 	if (dev1) {
2129 		int i;
2130 
2131 		ap->ops->sff_dev_select(ap, 1);
2132 
2133 		/* Wait for register access.  Some ATAPI devices fail
2134 		 * to set nsect/lbal after reset, so don't waste too
2135 		 * much time on it.  We're gonna wait for !BSY anyway.
2136 		 */
2137 		for (i = 0; i < 2; i++) {
2138 			u8 nsect, lbal;
2139 
2140 			nsect = ioread8(ioaddr->nsect_addr);
2141 			lbal = ioread8(ioaddr->lbal_addr);
2142 			if ((nsect == 1) && (lbal == 1))
2143 				break;
2144 			msleep(50);	/* give drive a breather */
2145 		}
2146 
2147 		rc = ata_sff_wait_ready(link, deadline);
2148 		if (rc) {
2149 			if (rc != -ENODEV)
2150 				return rc;
2151 			ret = rc;
2152 		}
2153 	}
2154 
2155 	/* is all this really necessary? */
2156 	ap->ops->sff_dev_select(ap, 0);
2157 	if (dev1)
2158 		ap->ops->sff_dev_select(ap, 1);
2159 	if (dev0)
2160 		ap->ops->sff_dev_select(ap, 0);
2161 
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2165 
2166 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2167 			     unsigned long deadline)
2168 {
2169 	struct ata_ioports *ioaddr = &ap->ioaddr;
2170 
2171 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2172 
2173 	/* software reset.  causes dev0 to be selected */
2174 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2175 	udelay(20);	/* FIXME: flush */
2176 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2177 	udelay(20);	/* FIXME: flush */
2178 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2179 	ap->last_ctl = ap->ctl;
2180 
2181 	/* wait the port to become ready */
2182 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2183 }
2184 
2185 /**
2186  *	ata_sff_softreset - reset host port via ATA SRST
2187  *	@link: ATA link to reset
2188  *	@classes: resulting classes of attached devices
2189  *	@deadline: deadline jiffies for the operation
2190  *
2191  *	Reset host port using ATA SRST.
2192  *
2193  *	LOCKING:
2194  *	Kernel thread context (may sleep)
2195  *
2196  *	RETURNS:
2197  *	0 on success, -errno otherwise.
2198  */
2199 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2200 		      unsigned long deadline)
2201 {
2202 	struct ata_port *ap = link->ap;
2203 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2204 	unsigned int devmask = 0;
2205 	int rc;
2206 	u8 err;
2207 
2208 	DPRINTK("ENTER\n");
2209 
2210 	/* determine if device 0/1 are present */
2211 	if (ata_devchk(ap, 0))
2212 		devmask |= (1 << 0);
2213 	if (slave_possible && ata_devchk(ap, 1))
2214 		devmask |= (1 << 1);
2215 
2216 	/* select device 0 again */
2217 	ap->ops->sff_dev_select(ap, 0);
2218 
2219 	/* issue bus reset */
2220 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2221 	rc = ata_bus_softreset(ap, devmask, deadline);
2222 	/* if link is occupied, -ENODEV too is an error */
2223 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2224 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2225 		return rc;
2226 	}
2227 
2228 	/* determine by signature whether we have ATA or ATAPI devices */
2229 	classes[0] = ata_sff_dev_classify(&link->device[0],
2230 					  devmask & (1 << 0), &err);
2231 	if (slave_possible && err != 0x81)
2232 		classes[1] = ata_sff_dev_classify(&link->device[1],
2233 						  devmask & (1 << 1), &err);
2234 
2235 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2239 
2240 /**
2241  *	sata_sff_hardreset - reset host port via SATA phy reset
2242  *	@link: link to reset
2243  *	@class: resulting class of attached device
2244  *	@deadline: deadline jiffies for the operation
2245  *
2246  *	SATA phy-reset host port using DET bits of SControl register,
2247  *	wait for !BSY and classify the attached device.
2248  *
2249  *	LOCKING:
2250  *	Kernel thread context (may sleep)
2251  *
2252  *	RETURNS:
2253  *	0 on success, -errno otherwise.
2254  */
2255 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2256 		       unsigned long deadline)
2257 {
2258 	struct ata_eh_context *ehc = &link->eh_context;
2259 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2260 	bool online;
2261 	int rc;
2262 
2263 	rc = sata_link_hardreset(link, timing, deadline, &online,
2264 				 ata_sff_check_ready);
2265 	if (online)
2266 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2267 
2268 	DPRINTK("EXIT, class=%u\n", *class);
2269 	return rc;
2270 }
2271 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2272 
2273 /**
2274  *	ata_sff_postreset - SFF postreset callback
2275  *	@link: the target SFF ata_link
2276  *	@classes: classes of attached devices
2277  *
2278  *	This function is invoked after a successful reset.  It first
2279  *	calls ata_std_postreset() and performs SFF specific postreset
2280  *	processing.
2281  *
2282  *	LOCKING:
2283  *	Kernel thread context (may sleep)
2284  */
2285 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2286 {
2287 	struct ata_port *ap = link->ap;
2288 
2289 	ata_std_postreset(link, classes);
2290 
2291 	/* is double-select really necessary? */
2292 	if (classes[0] != ATA_DEV_NONE)
2293 		ap->ops->sff_dev_select(ap, 1);
2294 	if (classes[1] != ATA_DEV_NONE)
2295 		ap->ops->sff_dev_select(ap, 0);
2296 
2297 	/* bail out if no device is present */
2298 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2299 		DPRINTK("EXIT, no device\n");
2300 		return;
2301 	}
2302 
2303 	/* set up device control */
2304 	if (ap->ioaddr.ctl_addr) {
2305 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2306 		ap->last_ctl = ap->ctl;
2307 	}
2308 }
2309 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2310 
2311 /**
2312  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2313  *	@qc: command
2314  *
2315  *	Drain the FIFO and device of any stuck data following a command
2316  *	failing to complete. In some cases this is necessary before a
2317  *	reset will recover the device.
2318  *
2319  */
2320 
2321 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2322 {
2323 	int count;
2324 	struct ata_port *ap;
2325 
2326 	/* We only need to flush incoming data when a command was running */
2327 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2328 		return;
2329 
2330 	ap = qc->ap;
2331 	/* Drain up to 64K of data before we give up this recovery method */
2332 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2333 						&& count < 65536; count += 2)
2334 		ioread16(ap->ioaddr.data_addr);
2335 
2336 	/* Can become DEBUG later */
2337 	if (count)
2338 		ata_port_printk(ap, KERN_DEBUG,
2339 			"drained %d bytes to clear DRQ.\n", count);
2340 
2341 }
2342 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2343 
2344 /**
2345  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2346  *	@ap: port to handle error for
2347  *
2348  *	Stock error handler for SFF controller.  It can handle both
2349  *	PATA and SATA controllers.  Many controllers should be able to
2350  *	use this EH as-is or with some added handling before and
2351  *	after.
2352  *
2353  *	LOCKING:
2354  *	Kernel thread context (may sleep)
2355  */
2356 void ata_sff_error_handler(struct ata_port *ap)
2357 {
2358 	ata_reset_fn_t softreset = ap->ops->softreset;
2359 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2360 	struct ata_queued_cmd *qc;
2361 	unsigned long flags;
2362 	int thaw = 0;
2363 
2364 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2365 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2366 		qc = NULL;
2367 
2368 	/* reset PIO HSM and stop DMA engine */
2369 	spin_lock_irqsave(ap->lock, flags);
2370 
2371 	ap->hsm_task_state = HSM_ST_IDLE;
2372 
2373 	if (ap->ioaddr.bmdma_addr &&
2374 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2375 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2376 		u8 host_stat;
2377 
2378 		host_stat = ap->ops->bmdma_status(ap);
2379 
2380 		/* BMDMA controllers indicate host bus error by
2381 		 * setting DMA_ERR bit and timing out.  As it wasn't
2382 		 * really a timeout event, adjust error mask and
2383 		 * cancel frozen state.
2384 		 */
2385 		if (qc->err_mask == AC_ERR_TIMEOUT
2386 						&& (host_stat & ATA_DMA_ERR)) {
2387 			qc->err_mask = AC_ERR_HOST_BUS;
2388 			thaw = 1;
2389 		}
2390 
2391 		ap->ops->bmdma_stop(qc);
2392 	}
2393 
2394 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2395 	ap->ops->sff_check_status(ap);
2396 	ap->ops->sff_irq_clear(ap);
2397 	/* We *MUST* do FIFO draining before we issue a reset as several
2398 	 * devices helpfully clear their internal state and will lock solid
2399 	 * if we touch the data port post reset. Pass qc in case anyone wants
2400 	 *  to do different PIO/DMA recovery or has per command fixups
2401 	 */
2402 	if (ap->ops->drain_fifo)
2403 		ap->ops->drain_fifo(qc);
2404 
2405 	spin_unlock_irqrestore(ap->lock, flags);
2406 
2407 	if (thaw)
2408 		ata_eh_thaw_port(ap);
2409 
2410 	/* PIO and DMA engines have been stopped, perform recovery */
2411 
2412 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2413 	 * built-in hardresets if SCR access isn't available.
2414 	 */
2415 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2416 		softreset = NULL;
2417 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2418 		hardreset = NULL;
2419 
2420 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2421 		  ap->ops->postreset);
2422 }
2423 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2424 
2425 /**
2426  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2427  *	@qc: internal command to clean up
2428  *
2429  *	LOCKING:
2430  *	Kernel thread context (may sleep)
2431  */
2432 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2433 {
2434 	struct ata_port *ap = qc->ap;
2435 	unsigned long flags;
2436 
2437 	spin_lock_irqsave(ap->lock, flags);
2438 
2439 	ap->hsm_task_state = HSM_ST_IDLE;
2440 
2441 	if (ap->ioaddr.bmdma_addr)
2442 		ap->ops->bmdma_stop(qc);
2443 
2444 	spin_unlock_irqrestore(ap->lock, flags);
2445 }
2446 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2447 
2448 /**
2449  *	ata_sff_port_start - Set port up for dma.
2450  *	@ap: Port to initialize
2451  *
2452  *	Called just after data structures for each port are
2453  *	initialized.  Allocates space for PRD table if the device
2454  *	is DMA capable SFF.
2455  *
2456  *	May be used as the port_start() entry in ata_port_operations.
2457  *
2458  *	LOCKING:
2459  *	Inherited from caller.
2460  */
2461 int ata_sff_port_start(struct ata_port *ap)
2462 {
2463 	if (ap->ioaddr.bmdma_addr)
2464 		return ata_port_start(ap);
2465 	return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2468 
2469 /**
2470  *	ata_sff_port_start32 - Set port up for dma.
2471  *	@ap: Port to initialize
2472  *
2473  *	Called just after data structures for each port are
2474  *	initialized.  Allocates space for PRD table if the device
2475  *	is DMA capable SFF.
2476  *
2477  *	May be used as the port_start() entry in ata_port_operations for
2478  *	devices that are capable of 32bit PIO.
2479  *
2480  *	LOCKING:
2481  *	Inherited from caller.
2482  */
2483 int ata_sff_port_start32(struct ata_port *ap)
2484 {
2485 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2486 	if (ap->ioaddr.bmdma_addr)
2487 		return ata_port_start(ap);
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2491 
2492 /**
2493  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2494  *	@ioaddr: IO address structure to be initialized
2495  *
2496  *	Utility function which initializes data_addr, error_addr,
2497  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2498  *	device_addr, status_addr, and command_addr to standard offsets
2499  *	relative to cmd_addr.
2500  *
2501  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2502  */
2503 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2504 {
2505 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2506 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2507 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2508 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2509 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2510 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2511 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2512 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2513 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2514 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2515 }
2516 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2517 
2518 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2519 				    unsigned long xfer_mask)
2520 {
2521 	/* Filter out DMA modes if the device has been configured by
2522 	   the BIOS as PIO only */
2523 
2524 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2525 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2526 	return xfer_mask;
2527 }
2528 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2529 
2530 /**
2531  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2532  *	@qc: Info associated with this ATA transaction.
2533  *
2534  *	LOCKING:
2535  *	spin_lock_irqsave(host lock)
2536  */
2537 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2538 {
2539 	struct ata_port *ap = qc->ap;
2540 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2541 	u8 dmactl;
2542 
2543 	/* load PRD table addr. */
2544 	mb();	/* make sure PRD table writes are visible to controller */
2545 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2546 
2547 	/* specify data direction, triple-check start bit is clear */
2548 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2549 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2550 	if (!rw)
2551 		dmactl |= ATA_DMA_WR;
2552 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2553 
2554 	/* issue r/w command */
2555 	ap->ops->sff_exec_command(ap, &qc->tf);
2556 }
2557 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2558 
2559 /**
2560  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2561  *	@qc: Info associated with this ATA transaction.
2562  *
2563  *	LOCKING:
2564  *	spin_lock_irqsave(host lock)
2565  */
2566 void ata_bmdma_start(struct ata_queued_cmd *qc)
2567 {
2568 	struct ata_port *ap = qc->ap;
2569 	u8 dmactl;
2570 
2571 	/* start host DMA transaction */
2572 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2573 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2574 
2575 	/* Strictly, one may wish to issue an ioread8() here, to
2576 	 * flush the mmio write.  However, control also passes
2577 	 * to the hardware at this point, and it will interrupt
2578 	 * us when we are to resume control.  So, in effect,
2579 	 * we don't care when the mmio write flushes.
2580 	 * Further, a read of the DMA status register _immediately_
2581 	 * following the write may not be what certain flaky hardware
2582 	 * is expected, so I think it is best to not add a readb()
2583 	 * without first all the MMIO ATA cards/mobos.
2584 	 * Or maybe I'm just being paranoid.
2585 	 *
2586 	 * FIXME: The posting of this write means I/O starts are
2587 	 * unneccessarily delayed for MMIO
2588 	 */
2589 }
2590 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2591 
2592 /**
2593  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2594  *	@qc: Command we are ending DMA for
2595  *
2596  *	Clears the ATA_DMA_START flag in the dma control register
2597  *
2598  *	May be used as the bmdma_stop() entry in ata_port_operations.
2599  *
2600  *	LOCKING:
2601  *	spin_lock_irqsave(host lock)
2602  */
2603 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2604 {
2605 	struct ata_port *ap = qc->ap;
2606 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2607 
2608 	/* clear start/stop bit */
2609 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2610 		 mmio + ATA_DMA_CMD);
2611 
2612 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2613 	ata_sff_dma_pause(ap);
2614 }
2615 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2616 
2617 /**
2618  *	ata_bmdma_status - Read PCI IDE BMDMA status
2619  *	@ap: Port associated with this ATA transaction.
2620  *
2621  *	Read and return BMDMA status register.
2622  *
2623  *	May be used as the bmdma_status() entry in ata_port_operations.
2624  *
2625  *	LOCKING:
2626  *	spin_lock_irqsave(host lock)
2627  */
2628 u8 ata_bmdma_status(struct ata_port *ap)
2629 {
2630 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2631 }
2632 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2633 
2634 /**
2635  *	ata_bus_reset - reset host port and associated ATA channel
2636  *	@ap: port to reset
2637  *
2638  *	This is typically the first time we actually start issuing
2639  *	commands to the ATA channel.  We wait for BSY to clear, then
2640  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2641  *	result.  Determine what devices, if any, are on the channel
2642  *	by looking at the device 0/1 error register.  Look at the signature
2643  *	stored in each device's taskfile registers, to determine if
2644  *	the device is ATA or ATAPI.
2645  *
2646  *	LOCKING:
2647  *	PCI/etc. bus probe sem.
2648  *	Obtains host lock.
2649  *
2650  *	SIDE EFFECTS:
2651  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2652  *
2653  *	DEPRECATED:
2654  *	This function is only for drivers which still use old EH and
2655  *	will be removed soon.
2656  */
2657 void ata_bus_reset(struct ata_port *ap)
2658 {
2659 	struct ata_device *device = ap->link.device;
2660 	struct ata_ioports *ioaddr = &ap->ioaddr;
2661 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2662 	u8 err;
2663 	unsigned int dev0, dev1 = 0, devmask = 0;
2664 	int rc;
2665 
2666 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2667 
2668 	/* determine if device 0/1 are present */
2669 	if (ap->flags & ATA_FLAG_SATA_RESET)
2670 		dev0 = 1;
2671 	else {
2672 		dev0 = ata_devchk(ap, 0);
2673 		if (slave_possible)
2674 			dev1 = ata_devchk(ap, 1);
2675 	}
2676 
2677 	if (dev0)
2678 		devmask |= (1 << 0);
2679 	if (dev1)
2680 		devmask |= (1 << 1);
2681 
2682 	/* select device 0 again */
2683 	ap->ops->sff_dev_select(ap, 0);
2684 
2685 	/* issue bus reset */
2686 	if (ap->flags & ATA_FLAG_SRST) {
2687 		rc = ata_bus_softreset(ap, devmask,
2688 				       ata_deadline(jiffies, 40000));
2689 		if (rc && rc != -ENODEV)
2690 			goto err_out;
2691 	}
2692 
2693 	/*
2694 	 * determine by signature whether we have ATA or ATAPI devices
2695 	 */
2696 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2697 	if ((slave_possible) && (err != 0x81))
2698 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2699 
2700 	/* is double-select really necessary? */
2701 	if (device[1].class != ATA_DEV_NONE)
2702 		ap->ops->sff_dev_select(ap, 1);
2703 	if (device[0].class != ATA_DEV_NONE)
2704 		ap->ops->sff_dev_select(ap, 0);
2705 
2706 	/* if no devices were detected, disable this port */
2707 	if ((device[0].class == ATA_DEV_NONE) &&
2708 	    (device[1].class == ATA_DEV_NONE))
2709 		goto err_out;
2710 
2711 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2712 		/* set up device control for ATA_FLAG_SATA_RESET */
2713 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2714 		ap->last_ctl = ap->ctl;
2715 	}
2716 
2717 	DPRINTK("EXIT\n");
2718 	return;
2719 
2720 err_out:
2721 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2722 	ata_port_disable(ap);
2723 
2724 	DPRINTK("EXIT\n");
2725 }
2726 EXPORT_SYMBOL_GPL(ata_bus_reset);
2727 
2728 #ifdef CONFIG_PCI
2729 
2730 /**
2731  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2732  *	@pdev: PCI device
2733  *
2734  *	Some PCI ATA devices report simplex mode but in fact can be told to
2735  *	enter non simplex mode. This implements the necessary logic to
2736  *	perform the task on such devices. Calling it on other devices will
2737  *	have -undefined- behaviour.
2738  */
2739 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2740 {
2741 	unsigned long bmdma = pci_resource_start(pdev, 4);
2742 	u8 simplex;
2743 
2744 	if (bmdma == 0)
2745 		return -ENOENT;
2746 
2747 	simplex = inb(bmdma + 0x02);
2748 	outb(simplex & 0x60, bmdma + 0x02);
2749 	simplex = inb(bmdma + 0x02);
2750 	if (simplex & 0x80)
2751 		return -EOPNOTSUPP;
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2755 
2756 /**
2757  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2758  *	@host: target ATA host
2759  *
2760  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2761  *
2762  *	LOCKING:
2763  *	Inherited from calling layer (may sleep).
2764  *
2765  *	RETURNS:
2766  *	0 on success, -errno otherwise.
2767  */
2768 int ata_pci_bmdma_init(struct ata_host *host)
2769 {
2770 	struct device *gdev = host->dev;
2771 	struct pci_dev *pdev = to_pci_dev(gdev);
2772 	int i, rc;
2773 
2774 	/* No BAR4 allocation: No DMA */
2775 	if (pci_resource_start(pdev, 4) == 0)
2776 		return 0;
2777 
2778 	/* TODO: If we get no DMA mask we should fall back to PIO */
2779 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2780 	if (rc)
2781 		return rc;
2782 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2783 	if (rc)
2784 		return rc;
2785 
2786 	/* request and iomap DMA region */
2787 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2788 	if (rc) {
2789 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2790 		return -ENOMEM;
2791 	}
2792 	host->iomap = pcim_iomap_table(pdev);
2793 
2794 	for (i = 0; i < 2; i++) {
2795 		struct ata_port *ap = host->ports[i];
2796 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2797 
2798 		if (ata_port_is_dummy(ap))
2799 			continue;
2800 
2801 		ap->ioaddr.bmdma_addr = bmdma;
2802 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2803 		    (ioread8(bmdma + 2) & 0x80))
2804 			host->flags |= ATA_HOST_SIMPLEX;
2805 
2806 		ata_port_desc(ap, "bmdma 0x%llx",
2807 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2808 	}
2809 
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2813 
2814 static int ata_resources_present(struct pci_dev *pdev, int port)
2815 {
2816 	int i;
2817 
2818 	/* Check the PCI resources for this channel are enabled */
2819 	port = port * 2;
2820 	for (i = 0; i < 2; i++) {
2821 		if (pci_resource_start(pdev, port + i) == 0 ||
2822 		    pci_resource_len(pdev, port + i) == 0)
2823 			return 0;
2824 	}
2825 	return 1;
2826 }
2827 
2828 /**
2829  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2830  *	@host: target ATA host
2831  *
2832  *	Acquire native PCI ATA resources for @host and initialize the
2833  *	first two ports of @host accordingly.  Ports marked dummy are
2834  *	skipped and allocation failure makes the port dummy.
2835  *
2836  *	Note that native PCI resources are valid even for legacy hosts
2837  *	as we fix up pdev resources array early in boot, so this
2838  *	function can be used for both native and legacy SFF hosts.
2839  *
2840  *	LOCKING:
2841  *	Inherited from calling layer (may sleep).
2842  *
2843  *	RETURNS:
2844  *	0 if at least one port is initialized, -ENODEV if no port is
2845  *	available.
2846  */
2847 int ata_pci_sff_init_host(struct ata_host *host)
2848 {
2849 	struct device *gdev = host->dev;
2850 	struct pci_dev *pdev = to_pci_dev(gdev);
2851 	unsigned int mask = 0;
2852 	int i, rc;
2853 
2854 	/* request, iomap BARs and init port addresses accordingly */
2855 	for (i = 0; i < 2; i++) {
2856 		struct ata_port *ap = host->ports[i];
2857 		int base = i * 2;
2858 		void __iomem * const *iomap;
2859 
2860 		if (ata_port_is_dummy(ap))
2861 			continue;
2862 
2863 		/* Discard disabled ports.  Some controllers show
2864 		 * their unused channels this way.  Disabled ports are
2865 		 * made dummy.
2866 		 */
2867 		if (!ata_resources_present(pdev, i)) {
2868 			ap->ops = &ata_dummy_port_ops;
2869 			continue;
2870 		}
2871 
2872 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2873 					dev_driver_string(gdev));
2874 		if (rc) {
2875 			dev_printk(KERN_WARNING, gdev,
2876 				   "failed to request/iomap BARs for port %d "
2877 				   "(errno=%d)\n", i, rc);
2878 			if (rc == -EBUSY)
2879 				pcim_pin_device(pdev);
2880 			ap->ops = &ata_dummy_port_ops;
2881 			continue;
2882 		}
2883 		host->iomap = iomap = pcim_iomap_table(pdev);
2884 
2885 		ap->ioaddr.cmd_addr = iomap[base];
2886 		ap->ioaddr.altstatus_addr =
2887 		ap->ioaddr.ctl_addr = (void __iomem *)
2888 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2889 		ata_sff_std_ports(&ap->ioaddr);
2890 
2891 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2892 			(unsigned long long)pci_resource_start(pdev, base),
2893 			(unsigned long long)pci_resource_start(pdev, base + 1));
2894 
2895 		mask |= 1 << i;
2896 	}
2897 
2898 	if (!mask) {
2899 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2900 		return -ENODEV;
2901 	}
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2906 
2907 /**
2908  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2909  *	@pdev: target PCI device
2910  *	@ppi: array of port_info, must be enough for two ports
2911  *	@r_host: out argument for the initialized ATA host
2912  *
2913  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2914  *	resources and initialize it accordingly in one go.
2915  *
2916  *	LOCKING:
2917  *	Inherited from calling layer (may sleep).
2918  *
2919  *	RETURNS:
2920  *	0 on success, -errno otherwise.
2921  */
2922 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2923 			     const struct ata_port_info * const *ppi,
2924 			     struct ata_host **r_host)
2925 {
2926 	struct ata_host *host;
2927 	int rc;
2928 
2929 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2930 		return -ENOMEM;
2931 
2932 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2933 	if (!host) {
2934 		dev_printk(KERN_ERR, &pdev->dev,
2935 			   "failed to allocate ATA host\n");
2936 		rc = -ENOMEM;
2937 		goto err_out;
2938 	}
2939 
2940 	rc = ata_pci_sff_init_host(host);
2941 	if (rc)
2942 		goto err_out;
2943 
2944 	/* init DMA related stuff */
2945 	rc = ata_pci_bmdma_init(host);
2946 	if (rc)
2947 		goto err_bmdma;
2948 
2949 	devres_remove_group(&pdev->dev, NULL);
2950 	*r_host = host;
2951 	return 0;
2952 
2953 err_bmdma:
2954 	/* This is necessary because PCI and iomap resources are
2955 	 * merged and releasing the top group won't release the
2956 	 * acquired resources if some of those have been acquired
2957 	 * before entering this function.
2958 	 */
2959 	pcim_iounmap_regions(pdev, 0xf);
2960 err_out:
2961 	devres_release_group(&pdev->dev, NULL);
2962 	return rc;
2963 }
2964 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2965 
2966 /**
2967  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2968  *	@host: target SFF ATA host
2969  *	@irq_handler: irq_handler used when requesting IRQ(s)
2970  *	@sht: scsi_host_template to use when registering the host
2971  *
2972  *	This is the counterpart of ata_host_activate() for SFF ATA
2973  *	hosts.  This separate helper is necessary because SFF hosts
2974  *	use two separate interrupts in legacy mode.
2975  *
2976  *	LOCKING:
2977  *	Inherited from calling layer (may sleep).
2978  *
2979  *	RETURNS:
2980  *	0 on success, -errno otherwise.
2981  */
2982 int ata_pci_sff_activate_host(struct ata_host *host,
2983 			      irq_handler_t irq_handler,
2984 			      struct scsi_host_template *sht)
2985 {
2986 	struct device *dev = host->dev;
2987 	struct pci_dev *pdev = to_pci_dev(dev);
2988 	const char *drv_name = dev_driver_string(host->dev);
2989 	int legacy_mode = 0, rc;
2990 
2991 	rc = ata_host_start(host);
2992 	if (rc)
2993 		return rc;
2994 
2995 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2996 		u8 tmp8, mask;
2997 
2998 		/* TODO: What if one channel is in native mode ... */
2999 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
3000 		mask = (1 << 2) | (1 << 0);
3001 		if ((tmp8 & mask) != mask)
3002 			legacy_mode = 1;
3003 #if defined(CONFIG_NO_ATA_LEGACY)
3004 		/* Some platforms with PCI limits cannot address compat
3005 		   port space. In that case we punt if their firmware has
3006 		   left a device in compatibility mode */
3007 		if (legacy_mode) {
3008 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
3009 			return -EOPNOTSUPP;
3010 		}
3011 #endif
3012 	}
3013 
3014 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3015 		return -ENOMEM;
3016 
3017 	if (!legacy_mode && pdev->irq) {
3018 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
3019 				      IRQF_SHARED, drv_name, host);
3020 		if (rc)
3021 			goto out;
3022 
3023 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
3024 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
3025 	} else if (legacy_mode) {
3026 		if (!ata_port_is_dummy(host->ports[0])) {
3027 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
3028 					      irq_handler, IRQF_SHARED,
3029 					      drv_name, host);
3030 			if (rc)
3031 				goto out;
3032 
3033 			ata_port_desc(host->ports[0], "irq %d",
3034 				      ATA_PRIMARY_IRQ(pdev));
3035 		}
3036 
3037 		if (!ata_port_is_dummy(host->ports[1])) {
3038 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
3039 					      irq_handler, IRQF_SHARED,
3040 					      drv_name, host);
3041 			if (rc)
3042 				goto out;
3043 
3044 			ata_port_desc(host->ports[1], "irq %d",
3045 				      ATA_SECONDARY_IRQ(pdev));
3046 		}
3047 	}
3048 
3049 	rc = ata_host_register(host, sht);
3050 out:
3051 	if (rc == 0)
3052 		devres_remove_group(dev, NULL);
3053 	else
3054 		devres_release_group(dev, NULL);
3055 
3056 	return rc;
3057 }
3058 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
3059 
3060 /**
3061  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
3062  *	@pdev: Controller to be initialized
3063  *	@ppi: array of port_info, must be enough for two ports
3064  *	@sht: scsi_host_template to use when registering the host
3065  *	@host_priv: host private_data
3066  *	@hflag: host flags
3067  *
3068  *	This is a helper function which can be called from a driver's
3069  *	xxx_init_one() probe function if the hardware uses traditional
3070  *	IDE taskfile registers.
3071  *
3072  *	This function calls pci_enable_device(), reserves its register
3073  *	regions, sets the dma mask, enables bus master mode, and calls
3074  *	ata_device_add()
3075  *
3076  *	ASSUMPTION:
3077  *	Nobody makes a single channel controller that appears solely as
3078  *	the secondary legacy port on PCI.
3079  *
3080  *	LOCKING:
3081  *	Inherited from PCI layer (may sleep).
3082  *
3083  *	RETURNS:
3084  *	Zero on success, negative on errno-based value on error.
3085  */
3086 int ata_pci_sff_init_one(struct pci_dev *pdev,
3087 		 const struct ata_port_info * const *ppi,
3088 		 struct scsi_host_template *sht, void *host_priv, int hflag)
3089 {
3090 	struct device *dev = &pdev->dev;
3091 	const struct ata_port_info *pi = NULL;
3092 	struct ata_host *host = NULL;
3093 	int i, rc;
3094 
3095 	DPRINTK("ENTER\n");
3096 
3097 	/* look up the first valid port_info */
3098 	for (i = 0; i < 2 && ppi[i]; i++) {
3099 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3100 			pi = ppi[i];
3101 			break;
3102 		}
3103 	}
3104 
3105 	if (!pi) {
3106 		dev_printk(KERN_ERR, &pdev->dev,
3107 			   "no valid port_info specified\n");
3108 		return -EINVAL;
3109 	}
3110 
3111 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3112 		return -ENOMEM;
3113 
3114 	rc = pcim_enable_device(pdev);
3115 	if (rc)
3116 		goto out;
3117 
3118 	/* prepare and activate SFF host */
3119 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3120 	if (rc)
3121 		goto out;
3122 	host->private_data = host_priv;
3123 	host->flags |= hflag;
3124 
3125 	pci_set_master(pdev);
3126 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3127 out:
3128 	if (rc == 0)
3129 		devres_remove_group(&pdev->dev, NULL);
3130 	else
3131 		devres_release_group(&pdev->dev, NULL);
3132 
3133 	return rc;
3134 }
3135 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3136 
3137 #endif /* CONFIG_PCI */
3138