1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @dev: device to target 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @dev: device to target 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_port *ap = dev->link->ap; 617 void __iomem *data_addr = ap->ioaddr.data_addr; 618 unsigned int words = buflen >> 2; 619 int slop = buflen & 3; 620 621 if (!(ap->pflags & ATA_PFLAG_PIO32)) 622 return ata_sff_data_xfer(dev, buf, buflen, rw); 623 624 /* Transfer multiple of 4 bytes */ 625 if (rw == READ) 626 ioread32_rep(data_addr, buf, words); 627 else 628 iowrite32_rep(data_addr, buf, words); 629 630 /* Transfer trailing bytes, if any */ 631 if (unlikely(slop)) { 632 unsigned char pad[4] = { }; 633 634 /* Point buf to the tail of buffer */ 635 buf += buflen - slop; 636 637 /* 638 * Use io*_rep() accessors here as well to avoid pointlessly 639 * swapping bytes to and from on the big endian machines... 640 */ 641 if (rw == READ) { 642 if (slop < 3) 643 ioread16_rep(data_addr, pad, 1); 644 else 645 ioread32_rep(data_addr, pad, 1); 646 memcpy(buf, pad, slop); 647 } else { 648 memcpy(pad, buf, slop); 649 if (slop < 3) 650 iowrite16_rep(data_addr, pad, 1); 651 else 652 iowrite32_rep(data_addr, pad, 1); 653 } 654 } 655 return (buflen + 1) & ~1; 656 } 657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 658 659 /** 660 * ata_sff_data_xfer_noirq - Transfer data by PIO 661 * @dev: device to target 662 * @buf: data buffer 663 * @buflen: buffer length 664 * @rw: read/write 665 * 666 * Transfer data from/to the device data register by PIO. Do the 667 * transfer with interrupts disabled. 668 * 669 * LOCKING: 670 * Inherited from caller. 671 * 672 * RETURNS: 673 * Bytes consumed. 674 */ 675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 676 unsigned int buflen, int rw) 677 { 678 unsigned long flags; 679 unsigned int consumed; 680 681 local_irq_save(flags); 682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); 683 local_irq_restore(flags); 684 685 return consumed; 686 } 687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 688 689 /** 690 * ata_pio_sector - Transfer a sector of data. 691 * @qc: Command on going 692 * 693 * Transfer qc->sect_size bytes of data from/to the ATA device. 694 * 695 * LOCKING: 696 * Inherited from caller. 697 */ 698 static void ata_pio_sector(struct ata_queued_cmd *qc) 699 { 700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 701 struct ata_port *ap = qc->ap; 702 struct page *page; 703 unsigned int offset; 704 unsigned char *buf; 705 706 if (qc->curbytes == qc->nbytes - qc->sect_size) 707 ap->hsm_task_state = HSM_ST_LAST; 708 709 page = sg_page(qc->cursg); 710 offset = qc->cursg->offset + qc->cursg_ofs; 711 712 /* get the current page and offset */ 713 page = nth_page(page, (offset >> PAGE_SHIFT)); 714 offset %= PAGE_SIZE; 715 716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 717 718 if (PageHighMem(page)) { 719 unsigned long flags; 720 721 /* FIXME: use a bounce buffer */ 722 local_irq_save(flags); 723 buf = kmap_atomic(page); 724 725 /* do the actual data transfer */ 726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 727 do_write); 728 729 kunmap_atomic(buf); 730 local_irq_restore(flags); 731 } else { 732 buf = page_address(page); 733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 734 do_write); 735 } 736 737 if (!do_write && !PageSlab(page)) 738 flush_dcache_page(page); 739 740 qc->curbytes += qc->sect_size; 741 qc->cursg_ofs += qc->sect_size; 742 743 if (qc->cursg_ofs == qc->cursg->length) { 744 qc->cursg = sg_next(qc->cursg); 745 qc->cursg_ofs = 0; 746 } 747 } 748 749 /** 750 * ata_pio_sectors - Transfer one or many sectors. 751 * @qc: Command on going 752 * 753 * Transfer one or many sectors of data from/to the 754 * ATA device for the DRQ request. 755 * 756 * LOCKING: 757 * Inherited from caller. 758 */ 759 static void ata_pio_sectors(struct ata_queued_cmd *qc) 760 { 761 if (is_multi_taskfile(&qc->tf)) { 762 /* READ/WRITE MULTIPLE */ 763 unsigned int nsect; 764 765 WARN_ON_ONCE(qc->dev->multi_count == 0); 766 767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 768 qc->dev->multi_count); 769 while (nsect--) 770 ata_pio_sector(qc); 771 } else 772 ata_pio_sector(qc); 773 774 ata_sff_sync(qc->ap); /* flush */ 775 } 776 777 /** 778 * atapi_send_cdb - Write CDB bytes to hardware 779 * @ap: Port to which ATAPI device is attached. 780 * @qc: Taskfile currently active 781 * 782 * When device has indicated its readiness to accept 783 * a CDB, this function is called. Send the CDB. 784 * 785 * LOCKING: 786 * caller. 787 */ 788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 789 { 790 /* send SCSI cdb */ 791 DPRINTK("send cdb\n"); 792 WARN_ON_ONCE(qc->dev->cdb_len < 12); 793 794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 795 ata_sff_sync(ap); 796 /* FIXME: If the CDB is for DMA do we need to do the transition delay 797 or is bmdma_start guaranteed to do it ? */ 798 switch (qc->tf.protocol) { 799 case ATAPI_PROT_PIO: 800 ap->hsm_task_state = HSM_ST; 801 break; 802 case ATAPI_PROT_NODATA: 803 ap->hsm_task_state = HSM_ST_LAST; 804 break; 805 #ifdef CONFIG_ATA_BMDMA 806 case ATAPI_PROT_DMA: 807 ap->hsm_task_state = HSM_ST_LAST; 808 /* initiate bmdma */ 809 ap->ops->bmdma_start(qc); 810 break; 811 #endif /* CONFIG_ATA_BMDMA */ 812 default: 813 BUG(); 814 } 815 } 816 817 /** 818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 819 * @qc: Command on going 820 * @bytes: number of bytes 821 * 822 * Transfer Transfer data from/to the ATAPI device. 823 * 824 * LOCKING: 825 * Inherited from caller. 826 * 827 */ 828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 829 { 830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 831 struct ata_port *ap = qc->ap; 832 struct ata_device *dev = qc->dev; 833 struct ata_eh_info *ehi = &dev->link->eh_info; 834 struct scatterlist *sg; 835 struct page *page; 836 unsigned char *buf; 837 unsigned int offset, count, consumed; 838 839 next_sg: 840 sg = qc->cursg; 841 if (unlikely(!sg)) { 842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 843 "buf=%u cur=%u bytes=%u", 844 qc->nbytes, qc->curbytes, bytes); 845 return -1; 846 } 847 848 page = sg_page(sg); 849 offset = sg->offset + qc->cursg_ofs; 850 851 /* get the current page and offset */ 852 page = nth_page(page, (offset >> PAGE_SHIFT)); 853 offset %= PAGE_SIZE; 854 855 /* don't overrun current sg */ 856 count = min(sg->length - qc->cursg_ofs, bytes); 857 858 /* don't cross page boundaries */ 859 count = min(count, (unsigned int)PAGE_SIZE - offset); 860 861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 862 863 if (PageHighMem(page)) { 864 unsigned long flags; 865 866 /* FIXME: use bounce buffer */ 867 local_irq_save(flags); 868 buf = kmap_atomic(page); 869 870 /* do the actual data transfer */ 871 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 872 count, rw); 873 874 kunmap_atomic(buf); 875 local_irq_restore(flags); 876 } else { 877 buf = page_address(page); 878 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 879 count, rw); 880 } 881 882 bytes -= min(bytes, consumed); 883 qc->curbytes += count; 884 qc->cursg_ofs += count; 885 886 if (qc->cursg_ofs == sg->length) { 887 qc->cursg = sg_next(qc->cursg); 888 qc->cursg_ofs = 0; 889 } 890 891 /* 892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 894 * check correctly as it doesn't know if it is the last request being 895 * made. Somebody should implement a proper sanity check. 896 */ 897 if (bytes) 898 goto next_sg; 899 return 0; 900 } 901 902 /** 903 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 904 * @qc: Command on going 905 * 906 * Transfer Transfer data from/to the ATAPI device. 907 * 908 * LOCKING: 909 * Inherited from caller. 910 */ 911 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 912 { 913 struct ata_port *ap = qc->ap; 914 struct ata_device *dev = qc->dev; 915 struct ata_eh_info *ehi = &dev->link->eh_info; 916 unsigned int ireason, bc_lo, bc_hi, bytes; 917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 918 919 /* Abuse qc->result_tf for temp storage of intermediate TF 920 * here to save some kernel stack usage. 921 * For normal completion, qc->result_tf is not relevant. For 922 * error, qc->result_tf is later overwritten by ata_qc_complete(). 923 * So, the correctness of qc->result_tf is not affected. 924 */ 925 ap->ops->sff_tf_read(ap, &qc->result_tf); 926 ireason = qc->result_tf.nsect; 927 bc_lo = qc->result_tf.lbam; 928 bc_hi = qc->result_tf.lbah; 929 bytes = (bc_hi << 8) | bc_lo; 930 931 /* shall be cleared to zero, indicating xfer of data */ 932 if (unlikely(ireason & ATAPI_COD)) 933 goto atapi_check; 934 935 /* make sure transfer direction matches expected */ 936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 937 if (unlikely(do_write != i_write)) 938 goto atapi_check; 939 940 if (unlikely(!bytes)) 941 goto atapi_check; 942 943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 944 945 if (unlikely(__atapi_pio_bytes(qc, bytes))) 946 goto err_out; 947 ata_sff_sync(ap); /* flush */ 948 949 return; 950 951 atapi_check: 952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 953 ireason, bytes); 954 err_out: 955 qc->err_mask |= AC_ERR_HSM; 956 ap->hsm_task_state = HSM_ST_ERR; 957 } 958 959 /** 960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 961 * @ap: the target ata_port 962 * @qc: qc on going 963 * 964 * RETURNS: 965 * 1 if ok in workqueue, 0 otherwise. 966 */ 967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 968 struct ata_queued_cmd *qc) 969 { 970 if (qc->tf.flags & ATA_TFLAG_POLLING) 971 return 1; 972 973 if (ap->hsm_task_state == HSM_ST_FIRST) { 974 if (qc->tf.protocol == ATA_PROT_PIO && 975 (qc->tf.flags & ATA_TFLAG_WRITE)) 976 return 1; 977 978 if (ata_is_atapi(qc->tf.protocol) && 979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 980 return 1; 981 } 982 983 return 0; 984 } 985 986 /** 987 * ata_hsm_qc_complete - finish a qc running on standard HSM 988 * @qc: Command to complete 989 * @in_wq: 1 if called from workqueue, 0 otherwise 990 * 991 * Finish @qc which is running on standard HSM. 992 * 993 * LOCKING: 994 * If @in_wq is zero, spin_lock_irqsave(host lock). 995 * Otherwise, none on entry and grabs host lock. 996 */ 997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 998 { 999 struct ata_port *ap = qc->ap; 1000 unsigned long flags; 1001 1002 if (ap->ops->error_handler) { 1003 if (in_wq) { 1004 spin_lock_irqsave(ap->lock, flags); 1005 1006 /* EH might have kicked in while host lock is 1007 * released. 1008 */ 1009 qc = ata_qc_from_tag(ap, qc->tag); 1010 if (qc) { 1011 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1012 ata_sff_irq_on(ap); 1013 ata_qc_complete(qc); 1014 } else 1015 ata_port_freeze(ap); 1016 } 1017 1018 spin_unlock_irqrestore(ap->lock, flags); 1019 } else { 1020 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1021 ata_qc_complete(qc); 1022 else 1023 ata_port_freeze(ap); 1024 } 1025 } else { 1026 if (in_wq) { 1027 spin_lock_irqsave(ap->lock, flags); 1028 ata_sff_irq_on(ap); 1029 ata_qc_complete(qc); 1030 spin_unlock_irqrestore(ap->lock, flags); 1031 } else 1032 ata_qc_complete(qc); 1033 } 1034 } 1035 1036 /** 1037 * ata_sff_hsm_move - move the HSM to the next state. 1038 * @ap: the target ata_port 1039 * @qc: qc on going 1040 * @status: current device status 1041 * @in_wq: 1 if called from workqueue, 0 otherwise 1042 * 1043 * RETURNS: 1044 * 1 when poll next status needed, 0 otherwise. 1045 */ 1046 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1047 u8 status, int in_wq) 1048 { 1049 struct ata_link *link = qc->dev->link; 1050 struct ata_eh_info *ehi = &link->eh_info; 1051 unsigned long flags = 0; 1052 int poll_next; 1053 1054 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1055 1056 /* Make sure ata_sff_qc_issue() does not throw things 1057 * like DMA polling into the workqueue. Notice that 1058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1059 */ 1060 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1061 1062 fsm_start: 1063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1064 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1065 1066 switch (ap->hsm_task_state) { 1067 case HSM_ST_FIRST: 1068 /* Send first data block or PACKET CDB */ 1069 1070 /* If polling, we will stay in the work queue after 1071 * sending the data. Otherwise, interrupt handler 1072 * takes over after sending the data. 1073 */ 1074 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1075 1076 /* check device status */ 1077 if (unlikely((status & ATA_DRQ) == 0)) { 1078 /* handle BSY=0, DRQ=0 as error */ 1079 if (likely(status & (ATA_ERR | ATA_DF))) 1080 /* device stops HSM for abort/error */ 1081 qc->err_mask |= AC_ERR_DEV; 1082 else { 1083 /* HSM violation. Let EH handle this */ 1084 ata_ehi_push_desc(ehi, 1085 "ST_FIRST: !(DRQ|ERR|DF)"); 1086 qc->err_mask |= AC_ERR_HSM; 1087 } 1088 1089 ap->hsm_task_state = HSM_ST_ERR; 1090 goto fsm_start; 1091 } 1092 1093 /* Device should not ask for data transfer (DRQ=1) 1094 * when it finds something wrong. 1095 * We ignore DRQ here and stop the HSM by 1096 * changing hsm_task_state to HSM_ST_ERR and 1097 * let the EH abort the command or reset the device. 1098 */ 1099 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1100 /* Some ATAPI tape drives forget to clear the ERR bit 1101 * when doing the next command (mostly request sense). 1102 * We ignore ERR here to workaround and proceed sending 1103 * the CDB. 1104 */ 1105 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1106 ata_ehi_push_desc(ehi, "ST_FIRST: " 1107 "DRQ=1 with device error, " 1108 "dev_stat 0x%X", status); 1109 qc->err_mask |= AC_ERR_HSM; 1110 ap->hsm_task_state = HSM_ST_ERR; 1111 goto fsm_start; 1112 } 1113 } 1114 1115 /* Send the CDB (atapi) or the first data block (ata pio out). 1116 * During the state transition, interrupt handler shouldn't 1117 * be invoked before the data transfer is complete and 1118 * hsm_task_state is changed. Hence, the following locking. 1119 */ 1120 if (in_wq) 1121 spin_lock_irqsave(ap->lock, flags); 1122 1123 if (qc->tf.protocol == ATA_PROT_PIO) { 1124 /* PIO data out protocol. 1125 * send first data block. 1126 */ 1127 1128 /* ata_pio_sectors() might change the state 1129 * to HSM_ST_LAST. so, the state is changed here 1130 * before ata_pio_sectors(). 1131 */ 1132 ap->hsm_task_state = HSM_ST; 1133 ata_pio_sectors(qc); 1134 } else 1135 /* send CDB */ 1136 atapi_send_cdb(ap, qc); 1137 1138 if (in_wq) 1139 spin_unlock_irqrestore(ap->lock, flags); 1140 1141 /* if polling, ata_sff_pio_task() handles the rest. 1142 * otherwise, interrupt handler takes over from here. 1143 */ 1144 break; 1145 1146 case HSM_ST: 1147 /* complete command or read/write the data register */ 1148 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1149 /* ATAPI PIO protocol */ 1150 if ((status & ATA_DRQ) == 0) { 1151 /* No more data to transfer or device error. 1152 * Device error will be tagged in HSM_ST_LAST. 1153 */ 1154 ap->hsm_task_state = HSM_ST_LAST; 1155 goto fsm_start; 1156 } 1157 1158 /* Device should not ask for data transfer (DRQ=1) 1159 * when it finds something wrong. 1160 * We ignore DRQ here and stop the HSM by 1161 * changing hsm_task_state to HSM_ST_ERR and 1162 * let the EH abort the command or reset the device. 1163 */ 1164 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1165 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1166 "DRQ=1 with device error, " 1167 "dev_stat 0x%X", status); 1168 qc->err_mask |= AC_ERR_HSM; 1169 ap->hsm_task_state = HSM_ST_ERR; 1170 goto fsm_start; 1171 } 1172 1173 atapi_pio_bytes(qc); 1174 1175 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1176 /* bad ireason reported by device */ 1177 goto fsm_start; 1178 1179 } else { 1180 /* ATA PIO protocol */ 1181 if (unlikely((status & ATA_DRQ) == 0)) { 1182 /* handle BSY=0, DRQ=0 as error */ 1183 if (likely(status & (ATA_ERR | ATA_DF))) { 1184 /* device stops HSM for abort/error */ 1185 qc->err_mask |= AC_ERR_DEV; 1186 1187 /* If diagnostic failed and this is 1188 * IDENTIFY, it's likely a phantom 1189 * device. Mark hint. 1190 */ 1191 if (qc->dev->horkage & 1192 ATA_HORKAGE_DIAGNOSTIC) 1193 qc->err_mask |= 1194 AC_ERR_NODEV_HINT; 1195 } else { 1196 /* HSM violation. Let EH handle this. 1197 * Phantom devices also trigger this 1198 * condition. Mark hint. 1199 */ 1200 ata_ehi_push_desc(ehi, "ST-ATA: " 1201 "DRQ=0 without device error, " 1202 "dev_stat 0x%X", status); 1203 qc->err_mask |= AC_ERR_HSM | 1204 AC_ERR_NODEV_HINT; 1205 } 1206 1207 ap->hsm_task_state = HSM_ST_ERR; 1208 goto fsm_start; 1209 } 1210 1211 /* For PIO reads, some devices may ask for 1212 * data transfer (DRQ=1) alone with ERR=1. 1213 * We respect DRQ here and transfer one 1214 * block of junk data before changing the 1215 * hsm_task_state to HSM_ST_ERR. 1216 * 1217 * For PIO writes, ERR=1 DRQ=1 doesn't make 1218 * sense since the data block has been 1219 * transferred to the device. 1220 */ 1221 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1222 /* data might be corrputed */ 1223 qc->err_mask |= AC_ERR_DEV; 1224 1225 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1226 ata_pio_sectors(qc); 1227 status = ata_wait_idle(ap); 1228 } 1229 1230 if (status & (ATA_BUSY | ATA_DRQ)) { 1231 ata_ehi_push_desc(ehi, "ST-ATA: " 1232 "BUSY|DRQ persists on ERR|DF, " 1233 "dev_stat 0x%X", status); 1234 qc->err_mask |= AC_ERR_HSM; 1235 } 1236 1237 /* There are oddball controllers with 1238 * status register stuck at 0x7f and 1239 * lbal/m/h at zero which makes it 1240 * pass all other presence detection 1241 * mechanisms we have. Set NODEV_HINT 1242 * for it. Kernel bz#7241. 1243 */ 1244 if (status == 0x7f) 1245 qc->err_mask |= AC_ERR_NODEV_HINT; 1246 1247 /* ata_pio_sectors() might change the 1248 * state to HSM_ST_LAST. so, the state 1249 * is changed after ata_pio_sectors(). 1250 */ 1251 ap->hsm_task_state = HSM_ST_ERR; 1252 goto fsm_start; 1253 } 1254 1255 ata_pio_sectors(qc); 1256 1257 if (ap->hsm_task_state == HSM_ST_LAST && 1258 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1259 /* all data read */ 1260 status = ata_wait_idle(ap); 1261 goto fsm_start; 1262 } 1263 } 1264 1265 poll_next = 1; 1266 break; 1267 1268 case HSM_ST_LAST: 1269 if (unlikely(!ata_ok(status))) { 1270 qc->err_mask |= __ac_err_mask(status); 1271 ap->hsm_task_state = HSM_ST_ERR; 1272 goto fsm_start; 1273 } 1274 1275 /* no more data to transfer */ 1276 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1277 ap->print_id, qc->dev->devno, status); 1278 1279 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1280 1281 ap->hsm_task_state = HSM_ST_IDLE; 1282 1283 /* complete taskfile transaction */ 1284 ata_hsm_qc_complete(qc, in_wq); 1285 1286 poll_next = 0; 1287 break; 1288 1289 case HSM_ST_ERR: 1290 ap->hsm_task_state = HSM_ST_IDLE; 1291 1292 /* complete taskfile transaction */ 1293 ata_hsm_qc_complete(qc, in_wq); 1294 1295 poll_next = 0; 1296 break; 1297 default: 1298 poll_next = 0; 1299 BUG(); 1300 } 1301 1302 return poll_next; 1303 } 1304 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1305 1306 void ata_sff_queue_work(struct work_struct *work) 1307 { 1308 queue_work(ata_sff_wq, work); 1309 } 1310 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1311 1312 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1313 { 1314 queue_delayed_work(ata_sff_wq, dwork, delay); 1315 } 1316 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1317 1318 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1319 { 1320 struct ata_port *ap = link->ap; 1321 1322 WARN_ON((ap->sff_pio_task_link != NULL) && 1323 (ap->sff_pio_task_link != link)); 1324 ap->sff_pio_task_link = link; 1325 1326 /* may fail if ata_sff_flush_pio_task() in progress */ 1327 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1328 } 1329 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1330 1331 void ata_sff_flush_pio_task(struct ata_port *ap) 1332 { 1333 DPRINTK("ENTER\n"); 1334 1335 cancel_delayed_work_sync(&ap->sff_pio_task); 1336 1337 /* 1338 * We wanna reset the HSM state to IDLE. If we do so without 1339 * grabbing the port lock, critical sections protected by it which 1340 * expect the HSM state to stay stable may get surprised. For 1341 * example, we may set IDLE in between the time 1342 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1343 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1344 */ 1345 spin_lock_irq(ap->lock); 1346 ap->hsm_task_state = HSM_ST_IDLE; 1347 spin_unlock_irq(ap->lock); 1348 1349 ap->sff_pio_task_link = NULL; 1350 1351 if (ata_msg_ctl(ap)) 1352 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1353 } 1354 1355 static void ata_sff_pio_task(struct work_struct *work) 1356 { 1357 struct ata_port *ap = 1358 container_of(work, struct ata_port, sff_pio_task.work); 1359 struct ata_link *link = ap->sff_pio_task_link; 1360 struct ata_queued_cmd *qc; 1361 u8 status; 1362 int poll_next; 1363 1364 BUG_ON(ap->sff_pio_task_link == NULL); 1365 /* qc can be NULL if timeout occurred */ 1366 qc = ata_qc_from_tag(ap, link->active_tag); 1367 if (!qc) { 1368 ap->sff_pio_task_link = NULL; 1369 return; 1370 } 1371 1372 fsm_start: 1373 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1374 1375 /* 1376 * This is purely heuristic. This is a fast path. 1377 * Sometimes when we enter, BSY will be cleared in 1378 * a chk-status or two. If not, the drive is probably seeking 1379 * or something. Snooze for a couple msecs, then 1380 * chk-status again. If still busy, queue delayed work. 1381 */ 1382 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1383 if (status & ATA_BUSY) { 1384 ata_msleep(ap, 2); 1385 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1386 if (status & ATA_BUSY) { 1387 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1388 return; 1389 } 1390 } 1391 1392 /* 1393 * hsm_move() may trigger another command to be processed. 1394 * clean the link beforehand. 1395 */ 1396 ap->sff_pio_task_link = NULL; 1397 /* move the HSM */ 1398 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1399 1400 /* another command or interrupt handler 1401 * may be running at this point. 1402 */ 1403 if (poll_next) 1404 goto fsm_start; 1405 } 1406 1407 /** 1408 * ata_sff_qc_issue - issue taskfile to a SFF controller 1409 * @qc: command to issue to device 1410 * 1411 * This function issues a PIO or NODATA command to a SFF 1412 * controller. 1413 * 1414 * LOCKING: 1415 * spin_lock_irqsave(host lock) 1416 * 1417 * RETURNS: 1418 * Zero on success, AC_ERR_* mask on failure 1419 */ 1420 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1421 { 1422 struct ata_port *ap = qc->ap; 1423 struct ata_link *link = qc->dev->link; 1424 1425 /* Use polling pio if the LLD doesn't handle 1426 * interrupt driven pio and atapi CDB interrupt. 1427 */ 1428 if (ap->flags & ATA_FLAG_PIO_POLLING) 1429 qc->tf.flags |= ATA_TFLAG_POLLING; 1430 1431 /* select the device */ 1432 ata_dev_select(ap, qc->dev->devno, 1, 0); 1433 1434 /* start the command */ 1435 switch (qc->tf.protocol) { 1436 case ATA_PROT_NODATA: 1437 if (qc->tf.flags & ATA_TFLAG_POLLING) 1438 ata_qc_set_polling(qc); 1439 1440 ata_tf_to_host(ap, &qc->tf); 1441 ap->hsm_task_state = HSM_ST_LAST; 1442 1443 if (qc->tf.flags & ATA_TFLAG_POLLING) 1444 ata_sff_queue_pio_task(link, 0); 1445 1446 break; 1447 1448 case ATA_PROT_PIO: 1449 if (qc->tf.flags & ATA_TFLAG_POLLING) 1450 ata_qc_set_polling(qc); 1451 1452 ata_tf_to_host(ap, &qc->tf); 1453 1454 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1455 /* PIO data out protocol */ 1456 ap->hsm_task_state = HSM_ST_FIRST; 1457 ata_sff_queue_pio_task(link, 0); 1458 1459 /* always send first data block using the 1460 * ata_sff_pio_task() codepath. 1461 */ 1462 } else { 1463 /* PIO data in protocol */ 1464 ap->hsm_task_state = HSM_ST; 1465 1466 if (qc->tf.flags & ATA_TFLAG_POLLING) 1467 ata_sff_queue_pio_task(link, 0); 1468 1469 /* if polling, ata_sff_pio_task() handles the 1470 * rest. otherwise, interrupt handler takes 1471 * over from here. 1472 */ 1473 } 1474 1475 break; 1476 1477 case ATAPI_PROT_PIO: 1478 case ATAPI_PROT_NODATA: 1479 if (qc->tf.flags & ATA_TFLAG_POLLING) 1480 ata_qc_set_polling(qc); 1481 1482 ata_tf_to_host(ap, &qc->tf); 1483 1484 ap->hsm_task_state = HSM_ST_FIRST; 1485 1486 /* send cdb by polling if no cdb interrupt */ 1487 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1488 (qc->tf.flags & ATA_TFLAG_POLLING)) 1489 ata_sff_queue_pio_task(link, 0); 1490 break; 1491 1492 default: 1493 WARN_ON_ONCE(1); 1494 return AC_ERR_SYSTEM; 1495 } 1496 1497 return 0; 1498 } 1499 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1500 1501 /** 1502 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1503 * @qc: qc to fill result TF for 1504 * 1505 * @qc is finished and result TF needs to be filled. Fill it 1506 * using ->sff_tf_read. 1507 * 1508 * LOCKING: 1509 * spin_lock_irqsave(host lock) 1510 * 1511 * RETURNS: 1512 * true indicating that result TF is successfully filled. 1513 */ 1514 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1515 { 1516 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1517 return true; 1518 } 1519 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1520 1521 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1522 { 1523 ap->stats.idle_irq++; 1524 1525 #ifdef ATA_IRQ_TRAP 1526 if ((ap->stats.idle_irq % 1000) == 0) { 1527 ap->ops->sff_check_status(ap); 1528 if (ap->ops->sff_irq_clear) 1529 ap->ops->sff_irq_clear(ap); 1530 ata_port_warn(ap, "irq trap\n"); 1531 return 1; 1532 } 1533 #endif 1534 return 0; /* irq not handled */ 1535 } 1536 1537 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1538 struct ata_queued_cmd *qc, 1539 bool hsmv_on_idle) 1540 { 1541 u8 status; 1542 1543 VPRINTK("ata%u: protocol %d task_state %d\n", 1544 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1545 1546 /* Check whether we are expecting interrupt in this state */ 1547 switch (ap->hsm_task_state) { 1548 case HSM_ST_FIRST: 1549 /* Some pre-ATAPI-4 devices assert INTRQ 1550 * at this state when ready to receive CDB. 1551 */ 1552 1553 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1554 * The flag was turned on only for atapi devices. No 1555 * need to check ata_is_atapi(qc->tf.protocol) again. 1556 */ 1557 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1558 return ata_sff_idle_irq(ap); 1559 break; 1560 case HSM_ST_IDLE: 1561 return ata_sff_idle_irq(ap); 1562 default: 1563 break; 1564 } 1565 1566 /* check main status, clearing INTRQ if needed */ 1567 status = ata_sff_irq_status(ap); 1568 if (status & ATA_BUSY) { 1569 if (hsmv_on_idle) { 1570 /* BMDMA engine is already stopped, we're screwed */ 1571 qc->err_mask |= AC_ERR_HSM; 1572 ap->hsm_task_state = HSM_ST_ERR; 1573 } else 1574 return ata_sff_idle_irq(ap); 1575 } 1576 1577 /* clear irq events */ 1578 if (ap->ops->sff_irq_clear) 1579 ap->ops->sff_irq_clear(ap); 1580 1581 ata_sff_hsm_move(ap, qc, status, 0); 1582 1583 return 1; /* irq handled */ 1584 } 1585 1586 /** 1587 * ata_sff_port_intr - Handle SFF port interrupt 1588 * @ap: Port on which interrupt arrived (possibly...) 1589 * @qc: Taskfile currently active in engine 1590 * 1591 * Handle port interrupt for given queued command. 1592 * 1593 * LOCKING: 1594 * spin_lock_irqsave(host lock) 1595 * 1596 * RETURNS: 1597 * One if interrupt was handled, zero if not (shared irq). 1598 */ 1599 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1600 { 1601 return __ata_sff_port_intr(ap, qc, false); 1602 } 1603 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1604 1605 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1606 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1607 { 1608 struct ata_host *host = dev_instance; 1609 bool retried = false; 1610 unsigned int i; 1611 unsigned int handled, idle, polling; 1612 unsigned long flags; 1613 1614 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1615 spin_lock_irqsave(&host->lock, flags); 1616 1617 retry: 1618 handled = idle = polling = 0; 1619 for (i = 0; i < host->n_ports; i++) { 1620 struct ata_port *ap = host->ports[i]; 1621 struct ata_queued_cmd *qc; 1622 1623 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1624 if (qc) { 1625 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1626 handled |= port_intr(ap, qc); 1627 else 1628 polling |= 1 << i; 1629 } else 1630 idle |= 1 << i; 1631 } 1632 1633 /* 1634 * If no port was expecting IRQ but the controller is actually 1635 * asserting IRQ line, nobody cared will ensue. Check IRQ 1636 * pending status if available and clear spurious IRQ. 1637 */ 1638 if (!handled && !retried) { 1639 bool retry = false; 1640 1641 for (i = 0; i < host->n_ports; i++) { 1642 struct ata_port *ap = host->ports[i]; 1643 1644 if (polling & (1 << i)) 1645 continue; 1646 1647 if (!ap->ops->sff_irq_check || 1648 !ap->ops->sff_irq_check(ap)) 1649 continue; 1650 1651 if (idle & (1 << i)) { 1652 ap->ops->sff_check_status(ap); 1653 if (ap->ops->sff_irq_clear) 1654 ap->ops->sff_irq_clear(ap); 1655 } else { 1656 /* clear INTRQ and check if BUSY cleared */ 1657 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1658 retry |= true; 1659 /* 1660 * With command in flight, we can't do 1661 * sff_irq_clear() w/o racing with completion. 1662 */ 1663 } 1664 } 1665 1666 if (retry) { 1667 retried = true; 1668 goto retry; 1669 } 1670 } 1671 1672 spin_unlock_irqrestore(&host->lock, flags); 1673 1674 return IRQ_RETVAL(handled); 1675 } 1676 1677 /** 1678 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1679 * @irq: irq line (unused) 1680 * @dev_instance: pointer to our ata_host information structure 1681 * 1682 * Default interrupt handler for PCI IDE devices. Calls 1683 * ata_sff_port_intr() for each port that is not disabled. 1684 * 1685 * LOCKING: 1686 * Obtains host lock during operation. 1687 * 1688 * RETURNS: 1689 * IRQ_NONE or IRQ_HANDLED. 1690 */ 1691 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1692 { 1693 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1694 } 1695 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1696 1697 /** 1698 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1699 * @ap: port that appears to have timed out 1700 * 1701 * Called from the libata error handlers when the core code suspects 1702 * an interrupt has been lost. If it has complete anything we can and 1703 * then return. Interface must support altstatus for this faster 1704 * recovery to occur. 1705 * 1706 * Locking: 1707 * Caller holds host lock 1708 */ 1709 1710 void ata_sff_lost_interrupt(struct ata_port *ap) 1711 { 1712 u8 status; 1713 struct ata_queued_cmd *qc; 1714 1715 /* Only one outstanding command per SFF channel */ 1716 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1717 /* We cannot lose an interrupt on a non-existent or polled command */ 1718 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1719 return; 1720 /* See if the controller thinks it is still busy - if so the command 1721 isn't a lost IRQ but is still in progress */ 1722 status = ata_sff_altstatus(ap); 1723 if (status & ATA_BUSY) 1724 return; 1725 1726 /* There was a command running, we are no longer busy and we have 1727 no interrupt. */ 1728 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1729 status); 1730 /* Run the host interrupt logic as if the interrupt had not been 1731 lost */ 1732 ata_sff_port_intr(ap, qc); 1733 } 1734 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1735 1736 /** 1737 * ata_sff_freeze - Freeze SFF controller port 1738 * @ap: port to freeze 1739 * 1740 * Freeze SFF controller port. 1741 * 1742 * LOCKING: 1743 * Inherited from caller. 1744 */ 1745 void ata_sff_freeze(struct ata_port *ap) 1746 { 1747 ap->ctl |= ATA_NIEN; 1748 ap->last_ctl = ap->ctl; 1749 1750 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1751 ata_sff_set_devctl(ap, ap->ctl); 1752 1753 /* Under certain circumstances, some controllers raise IRQ on 1754 * ATA_NIEN manipulation. Also, many controllers fail to mask 1755 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1756 */ 1757 ap->ops->sff_check_status(ap); 1758 1759 if (ap->ops->sff_irq_clear) 1760 ap->ops->sff_irq_clear(ap); 1761 } 1762 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1763 1764 /** 1765 * ata_sff_thaw - Thaw SFF controller port 1766 * @ap: port to thaw 1767 * 1768 * Thaw SFF controller port. 1769 * 1770 * LOCKING: 1771 * Inherited from caller. 1772 */ 1773 void ata_sff_thaw(struct ata_port *ap) 1774 { 1775 /* clear & re-enable interrupts */ 1776 ap->ops->sff_check_status(ap); 1777 if (ap->ops->sff_irq_clear) 1778 ap->ops->sff_irq_clear(ap); 1779 ata_sff_irq_on(ap); 1780 } 1781 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1782 1783 /** 1784 * ata_sff_prereset - prepare SFF link for reset 1785 * @link: SFF link to be reset 1786 * @deadline: deadline jiffies for the operation 1787 * 1788 * SFF link @link is about to be reset. Initialize it. It first 1789 * calls ata_std_prereset() and wait for !BSY if the port is 1790 * being softreset. 1791 * 1792 * LOCKING: 1793 * Kernel thread context (may sleep) 1794 * 1795 * RETURNS: 1796 * 0 on success, -errno otherwise. 1797 */ 1798 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1799 { 1800 struct ata_eh_context *ehc = &link->eh_context; 1801 int rc; 1802 1803 rc = ata_std_prereset(link, deadline); 1804 if (rc) 1805 return rc; 1806 1807 /* if we're about to do hardreset, nothing more to do */ 1808 if (ehc->i.action & ATA_EH_HARDRESET) 1809 return 0; 1810 1811 /* wait for !BSY if we don't know that no device is attached */ 1812 if (!ata_link_offline(link)) { 1813 rc = ata_sff_wait_ready(link, deadline); 1814 if (rc && rc != -ENODEV) { 1815 ata_link_warn(link, 1816 "device not ready (errno=%d), forcing hardreset\n", 1817 rc); 1818 ehc->i.action |= ATA_EH_HARDRESET; 1819 } 1820 } 1821 1822 return 0; 1823 } 1824 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1825 1826 /** 1827 * ata_devchk - PATA device presence detection 1828 * @ap: ATA channel to examine 1829 * @device: Device to examine (starting at zero) 1830 * 1831 * This technique was originally described in 1832 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1833 * later found its way into the ATA/ATAPI spec. 1834 * 1835 * Write a pattern to the ATA shadow registers, 1836 * and if a device is present, it will respond by 1837 * correctly storing and echoing back the 1838 * ATA shadow register contents. 1839 * 1840 * LOCKING: 1841 * caller. 1842 */ 1843 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1844 { 1845 struct ata_ioports *ioaddr = &ap->ioaddr; 1846 u8 nsect, lbal; 1847 1848 ap->ops->sff_dev_select(ap, device); 1849 1850 iowrite8(0x55, ioaddr->nsect_addr); 1851 iowrite8(0xaa, ioaddr->lbal_addr); 1852 1853 iowrite8(0xaa, ioaddr->nsect_addr); 1854 iowrite8(0x55, ioaddr->lbal_addr); 1855 1856 iowrite8(0x55, ioaddr->nsect_addr); 1857 iowrite8(0xaa, ioaddr->lbal_addr); 1858 1859 nsect = ioread8(ioaddr->nsect_addr); 1860 lbal = ioread8(ioaddr->lbal_addr); 1861 1862 if ((nsect == 0x55) && (lbal == 0xaa)) 1863 return 1; /* we found a device */ 1864 1865 return 0; /* nothing found */ 1866 } 1867 1868 /** 1869 * ata_sff_dev_classify - Parse returned ATA device signature 1870 * @dev: ATA device to classify (starting at zero) 1871 * @present: device seems present 1872 * @r_err: Value of error register on completion 1873 * 1874 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1875 * an ATA/ATAPI-defined set of values is placed in the ATA 1876 * shadow registers, indicating the results of device detection 1877 * and diagnostics. 1878 * 1879 * Select the ATA device, and read the values from the ATA shadow 1880 * registers. Then parse according to the Error register value, 1881 * and the spec-defined values examined by ata_dev_classify(). 1882 * 1883 * LOCKING: 1884 * caller. 1885 * 1886 * RETURNS: 1887 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1888 */ 1889 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1890 u8 *r_err) 1891 { 1892 struct ata_port *ap = dev->link->ap; 1893 struct ata_taskfile tf; 1894 unsigned int class; 1895 u8 err; 1896 1897 ap->ops->sff_dev_select(ap, dev->devno); 1898 1899 memset(&tf, 0, sizeof(tf)); 1900 1901 ap->ops->sff_tf_read(ap, &tf); 1902 err = tf.feature; 1903 if (r_err) 1904 *r_err = err; 1905 1906 /* see if device passed diags: continue and warn later */ 1907 if (err == 0) 1908 /* diagnostic fail : do nothing _YET_ */ 1909 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1910 else if (err == 1) 1911 /* do nothing */ ; 1912 else if ((dev->devno == 0) && (err == 0x81)) 1913 /* do nothing */ ; 1914 else 1915 return ATA_DEV_NONE; 1916 1917 /* determine if device is ATA or ATAPI */ 1918 class = ata_dev_classify(&tf); 1919 1920 if (class == ATA_DEV_UNKNOWN) { 1921 /* If the device failed diagnostic, it's likely to 1922 * have reported incorrect device signature too. 1923 * Assume ATA device if the device seems present but 1924 * device signature is invalid with diagnostic 1925 * failure. 1926 */ 1927 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1928 class = ATA_DEV_ATA; 1929 else 1930 class = ATA_DEV_NONE; 1931 } else if ((class == ATA_DEV_ATA) && 1932 (ap->ops->sff_check_status(ap) == 0)) 1933 class = ATA_DEV_NONE; 1934 1935 return class; 1936 } 1937 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1938 1939 /** 1940 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1941 * @link: SFF link which is just reset 1942 * @devmask: mask of present devices 1943 * @deadline: deadline jiffies for the operation 1944 * 1945 * Wait devices attached to SFF @link to become ready after 1946 * reset. It contains preceding 150ms wait to avoid accessing TF 1947 * status register too early. 1948 * 1949 * LOCKING: 1950 * Kernel thread context (may sleep). 1951 * 1952 * RETURNS: 1953 * 0 on success, -ENODEV if some or all of devices in @devmask 1954 * don't seem to exist. -errno on other errors. 1955 */ 1956 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1957 unsigned long deadline) 1958 { 1959 struct ata_port *ap = link->ap; 1960 struct ata_ioports *ioaddr = &ap->ioaddr; 1961 unsigned int dev0 = devmask & (1 << 0); 1962 unsigned int dev1 = devmask & (1 << 1); 1963 int rc, ret = 0; 1964 1965 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1966 1967 /* always check readiness of the master device */ 1968 rc = ata_sff_wait_ready(link, deadline); 1969 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1970 * and TF status is 0xff, bail out on it too. 1971 */ 1972 if (rc) 1973 return rc; 1974 1975 /* if device 1 was found in ata_devchk, wait for register 1976 * access briefly, then wait for BSY to clear. 1977 */ 1978 if (dev1) { 1979 int i; 1980 1981 ap->ops->sff_dev_select(ap, 1); 1982 1983 /* Wait for register access. Some ATAPI devices fail 1984 * to set nsect/lbal after reset, so don't waste too 1985 * much time on it. We're gonna wait for !BSY anyway. 1986 */ 1987 for (i = 0; i < 2; i++) { 1988 u8 nsect, lbal; 1989 1990 nsect = ioread8(ioaddr->nsect_addr); 1991 lbal = ioread8(ioaddr->lbal_addr); 1992 if ((nsect == 1) && (lbal == 1)) 1993 break; 1994 ata_msleep(ap, 50); /* give drive a breather */ 1995 } 1996 1997 rc = ata_sff_wait_ready(link, deadline); 1998 if (rc) { 1999 if (rc != -ENODEV) 2000 return rc; 2001 ret = rc; 2002 } 2003 } 2004 2005 /* is all this really necessary? */ 2006 ap->ops->sff_dev_select(ap, 0); 2007 if (dev1) 2008 ap->ops->sff_dev_select(ap, 1); 2009 if (dev0) 2010 ap->ops->sff_dev_select(ap, 0); 2011 2012 return ret; 2013 } 2014 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2015 2016 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2017 unsigned long deadline) 2018 { 2019 struct ata_ioports *ioaddr = &ap->ioaddr; 2020 2021 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2022 2023 if (ap->ioaddr.ctl_addr) { 2024 /* software reset. causes dev0 to be selected */ 2025 iowrite8(ap->ctl, ioaddr->ctl_addr); 2026 udelay(20); /* FIXME: flush */ 2027 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2028 udelay(20); /* FIXME: flush */ 2029 iowrite8(ap->ctl, ioaddr->ctl_addr); 2030 ap->last_ctl = ap->ctl; 2031 } 2032 2033 /* wait the port to become ready */ 2034 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2035 } 2036 2037 /** 2038 * ata_sff_softreset - reset host port via ATA SRST 2039 * @link: ATA link to reset 2040 * @classes: resulting classes of attached devices 2041 * @deadline: deadline jiffies for the operation 2042 * 2043 * Reset host port using ATA SRST. 2044 * 2045 * LOCKING: 2046 * Kernel thread context (may sleep) 2047 * 2048 * RETURNS: 2049 * 0 on success, -errno otherwise. 2050 */ 2051 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2052 unsigned long deadline) 2053 { 2054 struct ata_port *ap = link->ap; 2055 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2056 unsigned int devmask = 0; 2057 int rc; 2058 u8 err; 2059 2060 DPRINTK("ENTER\n"); 2061 2062 /* determine if device 0/1 are present */ 2063 if (ata_devchk(ap, 0)) 2064 devmask |= (1 << 0); 2065 if (slave_possible && ata_devchk(ap, 1)) 2066 devmask |= (1 << 1); 2067 2068 /* select device 0 again */ 2069 ap->ops->sff_dev_select(ap, 0); 2070 2071 /* issue bus reset */ 2072 DPRINTK("about to softreset, devmask=%x\n", devmask); 2073 rc = ata_bus_softreset(ap, devmask, deadline); 2074 /* if link is occupied, -ENODEV too is an error */ 2075 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2076 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2077 return rc; 2078 } 2079 2080 /* determine by signature whether we have ATA or ATAPI devices */ 2081 classes[0] = ata_sff_dev_classify(&link->device[0], 2082 devmask & (1 << 0), &err); 2083 if (slave_possible && err != 0x81) 2084 classes[1] = ata_sff_dev_classify(&link->device[1], 2085 devmask & (1 << 1), &err); 2086 2087 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2088 return 0; 2089 } 2090 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2091 2092 /** 2093 * sata_sff_hardreset - reset host port via SATA phy reset 2094 * @link: link to reset 2095 * @class: resulting class of attached device 2096 * @deadline: deadline jiffies for the operation 2097 * 2098 * SATA phy-reset host port using DET bits of SControl register, 2099 * wait for !BSY and classify the attached device. 2100 * 2101 * LOCKING: 2102 * Kernel thread context (may sleep) 2103 * 2104 * RETURNS: 2105 * 0 on success, -errno otherwise. 2106 */ 2107 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2108 unsigned long deadline) 2109 { 2110 struct ata_eh_context *ehc = &link->eh_context; 2111 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2112 bool online; 2113 int rc; 2114 2115 rc = sata_link_hardreset(link, timing, deadline, &online, 2116 ata_sff_check_ready); 2117 if (online) 2118 *class = ata_sff_dev_classify(link->device, 1, NULL); 2119 2120 DPRINTK("EXIT, class=%u\n", *class); 2121 return rc; 2122 } 2123 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2124 2125 /** 2126 * ata_sff_postreset - SFF postreset callback 2127 * @link: the target SFF ata_link 2128 * @classes: classes of attached devices 2129 * 2130 * This function is invoked after a successful reset. It first 2131 * calls ata_std_postreset() and performs SFF specific postreset 2132 * processing. 2133 * 2134 * LOCKING: 2135 * Kernel thread context (may sleep) 2136 */ 2137 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2138 { 2139 struct ata_port *ap = link->ap; 2140 2141 ata_std_postreset(link, classes); 2142 2143 /* is double-select really necessary? */ 2144 if (classes[0] != ATA_DEV_NONE) 2145 ap->ops->sff_dev_select(ap, 1); 2146 if (classes[1] != ATA_DEV_NONE) 2147 ap->ops->sff_dev_select(ap, 0); 2148 2149 /* bail out if no device is present */ 2150 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2151 DPRINTK("EXIT, no device\n"); 2152 return; 2153 } 2154 2155 /* set up device control */ 2156 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2157 ata_sff_set_devctl(ap, ap->ctl); 2158 ap->last_ctl = ap->ctl; 2159 } 2160 } 2161 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2162 2163 /** 2164 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2165 * @qc: command 2166 * 2167 * Drain the FIFO and device of any stuck data following a command 2168 * failing to complete. In some cases this is necessary before a 2169 * reset will recover the device. 2170 * 2171 */ 2172 2173 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2174 { 2175 int count; 2176 struct ata_port *ap; 2177 2178 /* We only need to flush incoming data when a command was running */ 2179 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2180 return; 2181 2182 ap = qc->ap; 2183 /* Drain up to 64K of data before we give up this recovery method */ 2184 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2185 && count < 65536; count += 2) 2186 ioread16(ap->ioaddr.data_addr); 2187 2188 /* Can become DEBUG later */ 2189 if (count) 2190 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2191 2192 } 2193 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2194 2195 /** 2196 * ata_sff_error_handler - Stock error handler for SFF controller 2197 * @ap: port to handle error for 2198 * 2199 * Stock error handler for SFF controller. It can handle both 2200 * PATA and SATA controllers. Many controllers should be able to 2201 * use this EH as-is or with some added handling before and 2202 * after. 2203 * 2204 * LOCKING: 2205 * Kernel thread context (may sleep) 2206 */ 2207 void ata_sff_error_handler(struct ata_port *ap) 2208 { 2209 ata_reset_fn_t softreset = ap->ops->softreset; 2210 ata_reset_fn_t hardreset = ap->ops->hardreset; 2211 struct ata_queued_cmd *qc; 2212 unsigned long flags; 2213 2214 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2215 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2216 qc = NULL; 2217 2218 spin_lock_irqsave(ap->lock, flags); 2219 2220 /* 2221 * We *MUST* do FIFO draining before we issue a reset as 2222 * several devices helpfully clear their internal state and 2223 * will lock solid if we touch the data port post reset. Pass 2224 * qc in case anyone wants to do different PIO/DMA recovery or 2225 * has per command fixups 2226 */ 2227 if (ap->ops->sff_drain_fifo) 2228 ap->ops->sff_drain_fifo(qc); 2229 2230 spin_unlock_irqrestore(ap->lock, flags); 2231 2232 /* ignore built-in hardresets if SCR access is not available */ 2233 if ((hardreset == sata_std_hardreset || 2234 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2235 hardreset = NULL; 2236 2237 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2238 ap->ops->postreset); 2239 } 2240 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2241 2242 /** 2243 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2244 * @ioaddr: IO address structure to be initialized 2245 * 2246 * Utility function which initializes data_addr, error_addr, 2247 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2248 * device_addr, status_addr, and command_addr to standard offsets 2249 * relative to cmd_addr. 2250 * 2251 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2252 */ 2253 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2254 { 2255 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2256 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2257 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2258 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2259 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2260 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2261 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2262 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2263 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2264 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2265 } 2266 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2267 2268 #ifdef CONFIG_PCI 2269 2270 static int ata_resources_present(struct pci_dev *pdev, int port) 2271 { 2272 int i; 2273 2274 /* Check the PCI resources for this channel are enabled */ 2275 port = port * 2; 2276 for (i = 0; i < 2; i++) { 2277 if (pci_resource_start(pdev, port + i) == 0 || 2278 pci_resource_len(pdev, port + i) == 0) 2279 return 0; 2280 } 2281 return 1; 2282 } 2283 2284 /** 2285 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2286 * @host: target ATA host 2287 * 2288 * Acquire native PCI ATA resources for @host and initialize the 2289 * first two ports of @host accordingly. Ports marked dummy are 2290 * skipped and allocation failure makes the port dummy. 2291 * 2292 * Note that native PCI resources are valid even for legacy hosts 2293 * as we fix up pdev resources array early in boot, so this 2294 * function can be used for both native and legacy SFF hosts. 2295 * 2296 * LOCKING: 2297 * Inherited from calling layer (may sleep). 2298 * 2299 * RETURNS: 2300 * 0 if at least one port is initialized, -ENODEV if no port is 2301 * available. 2302 */ 2303 int ata_pci_sff_init_host(struct ata_host *host) 2304 { 2305 struct device *gdev = host->dev; 2306 struct pci_dev *pdev = to_pci_dev(gdev); 2307 unsigned int mask = 0; 2308 int i, rc; 2309 2310 /* request, iomap BARs and init port addresses accordingly */ 2311 for (i = 0; i < 2; i++) { 2312 struct ata_port *ap = host->ports[i]; 2313 int base = i * 2; 2314 void __iomem * const *iomap; 2315 2316 if (ata_port_is_dummy(ap)) 2317 continue; 2318 2319 /* Discard disabled ports. Some controllers show 2320 * their unused channels this way. Disabled ports are 2321 * made dummy. 2322 */ 2323 if (!ata_resources_present(pdev, i)) { 2324 ap->ops = &ata_dummy_port_ops; 2325 continue; 2326 } 2327 2328 rc = pcim_iomap_regions(pdev, 0x3 << base, 2329 dev_driver_string(gdev)); 2330 if (rc) { 2331 dev_warn(gdev, 2332 "failed to request/iomap BARs for port %d (errno=%d)\n", 2333 i, rc); 2334 if (rc == -EBUSY) 2335 pcim_pin_device(pdev); 2336 ap->ops = &ata_dummy_port_ops; 2337 continue; 2338 } 2339 host->iomap = iomap = pcim_iomap_table(pdev); 2340 2341 ap->ioaddr.cmd_addr = iomap[base]; 2342 ap->ioaddr.altstatus_addr = 2343 ap->ioaddr.ctl_addr = (void __iomem *) 2344 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2345 ata_sff_std_ports(&ap->ioaddr); 2346 2347 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2348 (unsigned long long)pci_resource_start(pdev, base), 2349 (unsigned long long)pci_resource_start(pdev, base + 1)); 2350 2351 mask |= 1 << i; 2352 } 2353 2354 if (!mask) { 2355 dev_err(gdev, "no available native port\n"); 2356 return -ENODEV; 2357 } 2358 2359 return 0; 2360 } 2361 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2362 2363 /** 2364 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2365 * @pdev: target PCI device 2366 * @ppi: array of port_info, must be enough for two ports 2367 * @r_host: out argument for the initialized ATA host 2368 * 2369 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2370 * all PCI resources and initialize it accordingly in one go. 2371 * 2372 * LOCKING: 2373 * Inherited from calling layer (may sleep). 2374 * 2375 * RETURNS: 2376 * 0 on success, -errno otherwise. 2377 */ 2378 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2379 const struct ata_port_info * const *ppi, 2380 struct ata_host **r_host) 2381 { 2382 struct ata_host *host; 2383 int rc; 2384 2385 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2386 return -ENOMEM; 2387 2388 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2389 if (!host) { 2390 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2391 rc = -ENOMEM; 2392 goto err_out; 2393 } 2394 2395 rc = ata_pci_sff_init_host(host); 2396 if (rc) 2397 goto err_out; 2398 2399 devres_remove_group(&pdev->dev, NULL); 2400 *r_host = host; 2401 return 0; 2402 2403 err_out: 2404 devres_release_group(&pdev->dev, NULL); 2405 return rc; 2406 } 2407 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2408 2409 /** 2410 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2411 * @host: target SFF ATA host 2412 * @irq_handler: irq_handler used when requesting IRQ(s) 2413 * @sht: scsi_host_template to use when registering the host 2414 * 2415 * This is the counterpart of ata_host_activate() for SFF ATA 2416 * hosts. This separate helper is necessary because SFF hosts 2417 * use two separate interrupts in legacy mode. 2418 * 2419 * LOCKING: 2420 * Inherited from calling layer (may sleep). 2421 * 2422 * RETURNS: 2423 * 0 on success, -errno otherwise. 2424 */ 2425 int ata_pci_sff_activate_host(struct ata_host *host, 2426 irq_handler_t irq_handler, 2427 struct scsi_host_template *sht) 2428 { 2429 struct device *dev = host->dev; 2430 struct pci_dev *pdev = to_pci_dev(dev); 2431 const char *drv_name = dev_driver_string(host->dev); 2432 int legacy_mode = 0, rc; 2433 2434 rc = ata_host_start(host); 2435 if (rc) 2436 return rc; 2437 2438 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2439 u8 tmp8, mask; 2440 2441 /* TODO: What if one channel is in native mode ... */ 2442 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2443 mask = (1 << 2) | (1 << 0); 2444 if ((tmp8 & mask) != mask) 2445 legacy_mode = 1; 2446 } 2447 2448 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2449 return -ENOMEM; 2450 2451 if (!legacy_mode && pdev->irq) { 2452 int i; 2453 2454 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2455 IRQF_SHARED, drv_name, host); 2456 if (rc) 2457 goto out; 2458 2459 for (i = 0; i < 2; i++) { 2460 if (ata_port_is_dummy(host->ports[i])) 2461 continue; 2462 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2463 } 2464 } else if (legacy_mode) { 2465 if (!ata_port_is_dummy(host->ports[0])) { 2466 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2467 irq_handler, IRQF_SHARED, 2468 drv_name, host); 2469 if (rc) 2470 goto out; 2471 2472 ata_port_desc(host->ports[0], "irq %d", 2473 ATA_PRIMARY_IRQ(pdev)); 2474 } 2475 2476 if (!ata_port_is_dummy(host->ports[1])) { 2477 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2478 irq_handler, IRQF_SHARED, 2479 drv_name, host); 2480 if (rc) 2481 goto out; 2482 2483 ata_port_desc(host->ports[1], "irq %d", 2484 ATA_SECONDARY_IRQ(pdev)); 2485 } 2486 } 2487 2488 rc = ata_host_register(host, sht); 2489 out: 2490 if (rc == 0) 2491 devres_remove_group(dev, NULL); 2492 else 2493 devres_release_group(dev, NULL); 2494 2495 return rc; 2496 } 2497 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2498 2499 static const struct ata_port_info *ata_sff_find_valid_pi( 2500 const struct ata_port_info * const *ppi) 2501 { 2502 int i; 2503 2504 /* look up the first valid port_info */ 2505 for (i = 0; i < 2 && ppi[i]; i++) 2506 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2507 return ppi[i]; 2508 2509 return NULL; 2510 } 2511 2512 static int ata_pci_init_one(struct pci_dev *pdev, 2513 const struct ata_port_info * const *ppi, 2514 struct scsi_host_template *sht, void *host_priv, 2515 int hflags, bool bmdma) 2516 { 2517 struct device *dev = &pdev->dev; 2518 const struct ata_port_info *pi; 2519 struct ata_host *host = NULL; 2520 int rc; 2521 2522 DPRINTK("ENTER\n"); 2523 2524 pi = ata_sff_find_valid_pi(ppi); 2525 if (!pi) { 2526 dev_err(&pdev->dev, "no valid port_info specified\n"); 2527 return -EINVAL; 2528 } 2529 2530 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2531 return -ENOMEM; 2532 2533 rc = pcim_enable_device(pdev); 2534 if (rc) 2535 goto out; 2536 2537 #ifdef CONFIG_ATA_BMDMA 2538 if (bmdma) 2539 /* prepare and activate BMDMA host */ 2540 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2541 else 2542 #endif 2543 /* prepare and activate SFF host */ 2544 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2545 if (rc) 2546 goto out; 2547 host->private_data = host_priv; 2548 host->flags |= hflags; 2549 2550 #ifdef CONFIG_ATA_BMDMA 2551 if (bmdma) { 2552 pci_set_master(pdev); 2553 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2554 } else 2555 #endif 2556 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2557 out: 2558 if (rc == 0) 2559 devres_remove_group(&pdev->dev, NULL); 2560 else 2561 devres_release_group(&pdev->dev, NULL); 2562 2563 return rc; 2564 } 2565 2566 /** 2567 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2568 * @pdev: Controller to be initialized 2569 * @ppi: array of port_info, must be enough for two ports 2570 * @sht: scsi_host_template to use when registering the host 2571 * @host_priv: host private_data 2572 * @hflag: host flags 2573 * 2574 * This is a helper function which can be called from a driver's 2575 * xxx_init_one() probe function if the hardware uses traditional 2576 * IDE taskfile registers and is PIO only. 2577 * 2578 * ASSUMPTION: 2579 * Nobody makes a single channel controller that appears solely as 2580 * the secondary legacy port on PCI. 2581 * 2582 * LOCKING: 2583 * Inherited from PCI layer (may sleep). 2584 * 2585 * RETURNS: 2586 * Zero on success, negative on errno-based value on error. 2587 */ 2588 int ata_pci_sff_init_one(struct pci_dev *pdev, 2589 const struct ata_port_info * const *ppi, 2590 struct scsi_host_template *sht, void *host_priv, int hflag) 2591 { 2592 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2593 } 2594 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2595 2596 #endif /* CONFIG_PCI */ 2597 2598 /* 2599 * BMDMA support 2600 */ 2601 2602 #ifdef CONFIG_ATA_BMDMA 2603 2604 const struct ata_port_operations ata_bmdma_port_ops = { 2605 .inherits = &ata_sff_port_ops, 2606 2607 .error_handler = ata_bmdma_error_handler, 2608 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2609 2610 .qc_prep = ata_bmdma_qc_prep, 2611 .qc_issue = ata_bmdma_qc_issue, 2612 2613 .sff_irq_clear = ata_bmdma_irq_clear, 2614 .bmdma_setup = ata_bmdma_setup, 2615 .bmdma_start = ata_bmdma_start, 2616 .bmdma_stop = ata_bmdma_stop, 2617 .bmdma_status = ata_bmdma_status, 2618 2619 .port_start = ata_bmdma_port_start, 2620 }; 2621 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2622 2623 const struct ata_port_operations ata_bmdma32_port_ops = { 2624 .inherits = &ata_bmdma_port_ops, 2625 2626 .sff_data_xfer = ata_sff_data_xfer32, 2627 .port_start = ata_bmdma_port_start32, 2628 }; 2629 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2630 2631 /** 2632 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2633 * @qc: Metadata associated with taskfile to be transferred 2634 * 2635 * Fill PCI IDE PRD (scatter-gather) table with segments 2636 * associated with the current disk command. 2637 * 2638 * LOCKING: 2639 * spin_lock_irqsave(host lock) 2640 * 2641 */ 2642 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2643 { 2644 struct ata_port *ap = qc->ap; 2645 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2646 struct scatterlist *sg; 2647 unsigned int si, pi; 2648 2649 pi = 0; 2650 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2651 u32 addr, offset; 2652 u32 sg_len, len; 2653 2654 /* determine if physical DMA addr spans 64K boundary. 2655 * Note h/w doesn't support 64-bit, so we unconditionally 2656 * truncate dma_addr_t to u32. 2657 */ 2658 addr = (u32) sg_dma_address(sg); 2659 sg_len = sg_dma_len(sg); 2660 2661 while (sg_len) { 2662 offset = addr & 0xffff; 2663 len = sg_len; 2664 if ((offset + sg_len) > 0x10000) 2665 len = 0x10000 - offset; 2666 2667 prd[pi].addr = cpu_to_le32(addr); 2668 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2669 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2670 2671 pi++; 2672 sg_len -= len; 2673 addr += len; 2674 } 2675 } 2676 2677 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2678 } 2679 2680 /** 2681 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2682 * @qc: Metadata associated with taskfile to be transferred 2683 * 2684 * Fill PCI IDE PRD (scatter-gather) table with segments 2685 * associated with the current disk command. Perform the fill 2686 * so that we avoid writing any length 64K records for 2687 * controllers that don't follow the spec. 2688 * 2689 * LOCKING: 2690 * spin_lock_irqsave(host lock) 2691 * 2692 */ 2693 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2694 { 2695 struct ata_port *ap = qc->ap; 2696 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2697 struct scatterlist *sg; 2698 unsigned int si, pi; 2699 2700 pi = 0; 2701 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2702 u32 addr, offset; 2703 u32 sg_len, len, blen; 2704 2705 /* determine if physical DMA addr spans 64K boundary. 2706 * Note h/w doesn't support 64-bit, so we unconditionally 2707 * truncate dma_addr_t to u32. 2708 */ 2709 addr = (u32) sg_dma_address(sg); 2710 sg_len = sg_dma_len(sg); 2711 2712 while (sg_len) { 2713 offset = addr & 0xffff; 2714 len = sg_len; 2715 if ((offset + sg_len) > 0x10000) 2716 len = 0x10000 - offset; 2717 2718 blen = len & 0xffff; 2719 prd[pi].addr = cpu_to_le32(addr); 2720 if (blen == 0) { 2721 /* Some PATA chipsets like the CS5530 can't 2722 cope with 0x0000 meaning 64K as the spec 2723 says */ 2724 prd[pi].flags_len = cpu_to_le32(0x8000); 2725 blen = 0x8000; 2726 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2727 } 2728 prd[pi].flags_len = cpu_to_le32(blen); 2729 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2730 2731 pi++; 2732 sg_len -= len; 2733 addr += len; 2734 } 2735 } 2736 2737 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2738 } 2739 2740 /** 2741 * ata_bmdma_qc_prep - Prepare taskfile for submission 2742 * @qc: Metadata associated with taskfile to be prepared 2743 * 2744 * Prepare ATA taskfile for submission. 2745 * 2746 * LOCKING: 2747 * spin_lock_irqsave(host lock) 2748 */ 2749 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2750 { 2751 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2752 return; 2753 2754 ata_bmdma_fill_sg(qc); 2755 } 2756 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2757 2758 /** 2759 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2760 * @qc: Metadata associated with taskfile to be prepared 2761 * 2762 * Prepare ATA taskfile for submission. 2763 * 2764 * LOCKING: 2765 * spin_lock_irqsave(host lock) 2766 */ 2767 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2768 { 2769 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2770 return; 2771 2772 ata_bmdma_fill_sg_dumb(qc); 2773 } 2774 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2775 2776 /** 2777 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2778 * @qc: command to issue to device 2779 * 2780 * This function issues a PIO, NODATA or DMA command to a 2781 * SFF/BMDMA controller. PIO and NODATA are handled by 2782 * ata_sff_qc_issue(). 2783 * 2784 * LOCKING: 2785 * spin_lock_irqsave(host lock) 2786 * 2787 * RETURNS: 2788 * Zero on success, AC_ERR_* mask on failure 2789 */ 2790 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2791 { 2792 struct ata_port *ap = qc->ap; 2793 struct ata_link *link = qc->dev->link; 2794 2795 /* defer PIO handling to sff_qc_issue */ 2796 if (!ata_is_dma(qc->tf.protocol)) 2797 return ata_sff_qc_issue(qc); 2798 2799 /* select the device */ 2800 ata_dev_select(ap, qc->dev->devno, 1, 0); 2801 2802 /* start the command */ 2803 switch (qc->tf.protocol) { 2804 case ATA_PROT_DMA: 2805 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2806 2807 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2808 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2809 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2810 ap->hsm_task_state = HSM_ST_LAST; 2811 break; 2812 2813 case ATAPI_PROT_DMA: 2814 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2815 2816 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2817 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2818 ap->hsm_task_state = HSM_ST_FIRST; 2819 2820 /* send cdb by polling if no cdb interrupt */ 2821 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2822 ata_sff_queue_pio_task(link, 0); 2823 break; 2824 2825 default: 2826 WARN_ON(1); 2827 return AC_ERR_SYSTEM; 2828 } 2829 2830 return 0; 2831 } 2832 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2833 2834 /** 2835 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2836 * @ap: Port on which interrupt arrived (possibly...) 2837 * @qc: Taskfile currently active in engine 2838 * 2839 * Handle port interrupt for given queued command. 2840 * 2841 * LOCKING: 2842 * spin_lock_irqsave(host lock) 2843 * 2844 * RETURNS: 2845 * One if interrupt was handled, zero if not (shared irq). 2846 */ 2847 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2848 { 2849 struct ata_eh_info *ehi = &ap->link.eh_info; 2850 u8 host_stat = 0; 2851 bool bmdma_stopped = false; 2852 unsigned int handled; 2853 2854 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2855 /* check status of DMA engine */ 2856 host_stat = ap->ops->bmdma_status(ap); 2857 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2858 2859 /* if it's not our irq... */ 2860 if (!(host_stat & ATA_DMA_INTR)) 2861 return ata_sff_idle_irq(ap); 2862 2863 /* before we do anything else, clear DMA-Start bit */ 2864 ap->ops->bmdma_stop(qc); 2865 bmdma_stopped = true; 2866 2867 if (unlikely(host_stat & ATA_DMA_ERR)) { 2868 /* error when transferring data to/from memory */ 2869 qc->err_mask |= AC_ERR_HOST_BUS; 2870 ap->hsm_task_state = HSM_ST_ERR; 2871 } 2872 } 2873 2874 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2875 2876 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2877 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2878 2879 return handled; 2880 } 2881 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2882 2883 /** 2884 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2885 * @irq: irq line (unused) 2886 * @dev_instance: pointer to our ata_host information structure 2887 * 2888 * Default interrupt handler for PCI IDE devices. Calls 2889 * ata_bmdma_port_intr() for each port that is not disabled. 2890 * 2891 * LOCKING: 2892 * Obtains host lock during operation. 2893 * 2894 * RETURNS: 2895 * IRQ_NONE or IRQ_HANDLED. 2896 */ 2897 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2898 { 2899 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2900 } 2901 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2902 2903 /** 2904 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2905 * @ap: port to handle error for 2906 * 2907 * Stock error handler for BMDMA controller. It can handle both 2908 * PATA and SATA controllers. Most BMDMA controllers should be 2909 * able to use this EH as-is or with some added handling before 2910 * and after. 2911 * 2912 * LOCKING: 2913 * Kernel thread context (may sleep) 2914 */ 2915 void ata_bmdma_error_handler(struct ata_port *ap) 2916 { 2917 struct ata_queued_cmd *qc; 2918 unsigned long flags; 2919 bool thaw = false; 2920 2921 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2922 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2923 qc = NULL; 2924 2925 /* reset PIO HSM and stop DMA engine */ 2926 spin_lock_irqsave(ap->lock, flags); 2927 2928 if (qc && ata_is_dma(qc->tf.protocol)) { 2929 u8 host_stat; 2930 2931 host_stat = ap->ops->bmdma_status(ap); 2932 2933 /* BMDMA controllers indicate host bus error by 2934 * setting DMA_ERR bit and timing out. As it wasn't 2935 * really a timeout event, adjust error mask and 2936 * cancel frozen state. 2937 */ 2938 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2939 qc->err_mask = AC_ERR_HOST_BUS; 2940 thaw = true; 2941 } 2942 2943 ap->ops->bmdma_stop(qc); 2944 2945 /* if we're gonna thaw, make sure IRQ is clear */ 2946 if (thaw) { 2947 ap->ops->sff_check_status(ap); 2948 if (ap->ops->sff_irq_clear) 2949 ap->ops->sff_irq_clear(ap); 2950 } 2951 } 2952 2953 spin_unlock_irqrestore(ap->lock, flags); 2954 2955 if (thaw) 2956 ata_eh_thaw_port(ap); 2957 2958 ata_sff_error_handler(ap); 2959 } 2960 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2961 2962 /** 2963 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2964 * @qc: internal command to clean up 2965 * 2966 * LOCKING: 2967 * Kernel thread context (may sleep) 2968 */ 2969 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2970 { 2971 struct ata_port *ap = qc->ap; 2972 unsigned long flags; 2973 2974 if (ata_is_dma(qc->tf.protocol)) { 2975 spin_lock_irqsave(ap->lock, flags); 2976 ap->ops->bmdma_stop(qc); 2977 spin_unlock_irqrestore(ap->lock, flags); 2978 } 2979 } 2980 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2981 2982 /** 2983 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2984 * @ap: Port associated with this ATA transaction. 2985 * 2986 * Clear interrupt and error flags in DMA status register. 2987 * 2988 * May be used as the irq_clear() entry in ata_port_operations. 2989 * 2990 * LOCKING: 2991 * spin_lock_irqsave(host lock) 2992 */ 2993 void ata_bmdma_irq_clear(struct ata_port *ap) 2994 { 2995 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2996 2997 if (!mmio) 2998 return; 2999 3000 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 3001 } 3002 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 3003 3004 /** 3005 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 3006 * @qc: Info associated with this ATA transaction. 3007 * 3008 * LOCKING: 3009 * spin_lock_irqsave(host lock) 3010 */ 3011 void ata_bmdma_setup(struct ata_queued_cmd *qc) 3012 { 3013 struct ata_port *ap = qc->ap; 3014 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3015 u8 dmactl; 3016 3017 /* load PRD table addr. */ 3018 mb(); /* make sure PRD table writes are visible to controller */ 3019 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3020 3021 /* specify data direction, triple-check start bit is clear */ 3022 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3023 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3024 if (!rw) 3025 dmactl |= ATA_DMA_WR; 3026 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3027 3028 /* issue r/w command */ 3029 ap->ops->sff_exec_command(ap, &qc->tf); 3030 } 3031 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3032 3033 /** 3034 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3035 * @qc: Info associated with this ATA transaction. 3036 * 3037 * LOCKING: 3038 * spin_lock_irqsave(host lock) 3039 */ 3040 void ata_bmdma_start(struct ata_queued_cmd *qc) 3041 { 3042 struct ata_port *ap = qc->ap; 3043 u8 dmactl; 3044 3045 /* start host DMA transaction */ 3046 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3047 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3048 3049 /* Strictly, one may wish to issue an ioread8() here, to 3050 * flush the mmio write. However, control also passes 3051 * to the hardware at this point, and it will interrupt 3052 * us when we are to resume control. So, in effect, 3053 * we don't care when the mmio write flushes. 3054 * Further, a read of the DMA status register _immediately_ 3055 * following the write may not be what certain flaky hardware 3056 * is expected, so I think it is best to not add a readb() 3057 * without first all the MMIO ATA cards/mobos. 3058 * Or maybe I'm just being paranoid. 3059 * 3060 * FIXME: The posting of this write means I/O starts are 3061 * unnecessarily delayed for MMIO 3062 */ 3063 } 3064 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3065 3066 /** 3067 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3068 * @qc: Command we are ending DMA for 3069 * 3070 * Clears the ATA_DMA_START flag in the dma control register 3071 * 3072 * May be used as the bmdma_stop() entry in ata_port_operations. 3073 * 3074 * LOCKING: 3075 * spin_lock_irqsave(host lock) 3076 */ 3077 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3078 { 3079 struct ata_port *ap = qc->ap; 3080 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3081 3082 /* clear start/stop bit */ 3083 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3084 mmio + ATA_DMA_CMD); 3085 3086 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3087 ata_sff_dma_pause(ap); 3088 } 3089 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3090 3091 /** 3092 * ata_bmdma_status - Read PCI IDE BMDMA status 3093 * @ap: Port associated with this ATA transaction. 3094 * 3095 * Read and return BMDMA status register. 3096 * 3097 * May be used as the bmdma_status() entry in ata_port_operations. 3098 * 3099 * LOCKING: 3100 * spin_lock_irqsave(host lock) 3101 */ 3102 u8 ata_bmdma_status(struct ata_port *ap) 3103 { 3104 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3105 } 3106 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3107 3108 3109 /** 3110 * ata_bmdma_port_start - Set port up for bmdma. 3111 * @ap: Port to initialize 3112 * 3113 * Called just after data structures for each port are 3114 * initialized. Allocates space for PRD table. 3115 * 3116 * May be used as the port_start() entry in ata_port_operations. 3117 * 3118 * LOCKING: 3119 * Inherited from caller. 3120 */ 3121 int ata_bmdma_port_start(struct ata_port *ap) 3122 { 3123 if (ap->mwdma_mask || ap->udma_mask) { 3124 ap->bmdma_prd = 3125 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3126 &ap->bmdma_prd_dma, GFP_KERNEL); 3127 if (!ap->bmdma_prd) 3128 return -ENOMEM; 3129 } 3130 3131 return 0; 3132 } 3133 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3134 3135 /** 3136 * ata_bmdma_port_start32 - Set port up for dma. 3137 * @ap: Port to initialize 3138 * 3139 * Called just after data structures for each port are 3140 * initialized. Enables 32bit PIO and allocates space for PRD 3141 * table. 3142 * 3143 * May be used as the port_start() entry in ata_port_operations for 3144 * devices that are capable of 32bit PIO. 3145 * 3146 * LOCKING: 3147 * Inherited from caller. 3148 */ 3149 int ata_bmdma_port_start32(struct ata_port *ap) 3150 { 3151 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3152 return ata_bmdma_port_start(ap); 3153 } 3154 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3155 3156 #ifdef CONFIG_PCI 3157 3158 /** 3159 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3160 * @pdev: PCI device 3161 * 3162 * Some PCI ATA devices report simplex mode but in fact can be told to 3163 * enter non simplex mode. This implements the necessary logic to 3164 * perform the task on such devices. Calling it on other devices will 3165 * have -undefined- behaviour. 3166 */ 3167 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3168 { 3169 unsigned long bmdma = pci_resource_start(pdev, 4); 3170 u8 simplex; 3171 3172 if (bmdma == 0) 3173 return -ENOENT; 3174 3175 simplex = inb(bmdma + 0x02); 3176 outb(simplex & 0x60, bmdma + 0x02); 3177 simplex = inb(bmdma + 0x02); 3178 if (simplex & 0x80) 3179 return -EOPNOTSUPP; 3180 return 0; 3181 } 3182 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3183 3184 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3185 { 3186 int i; 3187 3188 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3189 3190 for (i = 0; i < 2; i++) { 3191 host->ports[i]->mwdma_mask = 0; 3192 host->ports[i]->udma_mask = 0; 3193 } 3194 } 3195 3196 /** 3197 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3198 * @host: target ATA host 3199 * 3200 * Acquire PCI BMDMA resources and initialize @host accordingly. 3201 * 3202 * LOCKING: 3203 * Inherited from calling layer (may sleep). 3204 */ 3205 void ata_pci_bmdma_init(struct ata_host *host) 3206 { 3207 struct device *gdev = host->dev; 3208 struct pci_dev *pdev = to_pci_dev(gdev); 3209 int i, rc; 3210 3211 /* No BAR4 allocation: No DMA */ 3212 if (pci_resource_start(pdev, 4) == 0) { 3213 ata_bmdma_nodma(host, "BAR4 is zero"); 3214 return; 3215 } 3216 3217 /* 3218 * Some controllers require BMDMA region to be initialized 3219 * even if DMA is not in use to clear IRQ status via 3220 * ->sff_irq_clear method. Try to initialize bmdma_addr 3221 * regardless of dma masks. 3222 */ 3223 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3224 if (rc) 3225 ata_bmdma_nodma(host, "failed to set dma mask"); 3226 if (!rc) { 3227 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3228 if (rc) 3229 ata_bmdma_nodma(host, 3230 "failed to set consistent dma mask"); 3231 } 3232 3233 /* request and iomap DMA region */ 3234 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3235 if (rc) { 3236 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3237 return; 3238 } 3239 host->iomap = pcim_iomap_table(pdev); 3240 3241 for (i = 0; i < 2; i++) { 3242 struct ata_port *ap = host->ports[i]; 3243 void __iomem *bmdma = host->iomap[4] + 8 * i; 3244 3245 if (ata_port_is_dummy(ap)) 3246 continue; 3247 3248 ap->ioaddr.bmdma_addr = bmdma; 3249 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3250 (ioread8(bmdma + 2) & 0x80)) 3251 host->flags |= ATA_HOST_SIMPLEX; 3252 3253 ata_port_desc(ap, "bmdma 0x%llx", 3254 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3255 } 3256 } 3257 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3258 3259 /** 3260 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3261 * @pdev: target PCI device 3262 * @ppi: array of port_info, must be enough for two ports 3263 * @r_host: out argument for the initialized ATA host 3264 * 3265 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3266 * resources and initialize it accordingly in one go. 3267 * 3268 * LOCKING: 3269 * Inherited from calling layer (may sleep). 3270 * 3271 * RETURNS: 3272 * 0 on success, -errno otherwise. 3273 */ 3274 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3275 const struct ata_port_info * const * ppi, 3276 struct ata_host **r_host) 3277 { 3278 int rc; 3279 3280 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3281 if (rc) 3282 return rc; 3283 3284 ata_pci_bmdma_init(*r_host); 3285 return 0; 3286 } 3287 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3288 3289 /** 3290 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3291 * @pdev: Controller to be initialized 3292 * @ppi: array of port_info, must be enough for two ports 3293 * @sht: scsi_host_template to use when registering the host 3294 * @host_priv: host private_data 3295 * @hflags: host flags 3296 * 3297 * This function is similar to ata_pci_sff_init_one() but also 3298 * takes care of BMDMA initialization. 3299 * 3300 * LOCKING: 3301 * Inherited from PCI layer (may sleep). 3302 * 3303 * RETURNS: 3304 * Zero on success, negative on errno-based value on error. 3305 */ 3306 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3307 const struct ata_port_info * const * ppi, 3308 struct scsi_host_template *sht, void *host_priv, 3309 int hflags) 3310 { 3311 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3312 } 3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3314 3315 #endif /* CONFIG_PCI */ 3316 #endif /* CONFIG_ATA_BMDMA */ 3317 3318 /** 3319 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3320 * @ap: Port to initialize 3321 * 3322 * Called on port allocation to initialize SFF/BMDMA specific 3323 * fields. 3324 * 3325 * LOCKING: 3326 * None. 3327 */ 3328 void ata_sff_port_init(struct ata_port *ap) 3329 { 3330 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3331 ap->ctl = ATA_DEVCTL_OBS; 3332 ap->last_ctl = 0xFF; 3333 } 3334 3335 int __init ata_sff_init(void) 3336 { 3337 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3338 if (!ata_sff_wq) 3339 return -ENOMEM; 3340 3341 return 0; 3342 } 3343 3344 void ata_sff_exit(void) 3345 { 3346 destroy_workqueue(ata_sff_wq); 3347 } 3348