xref: /linux/drivers/ata/libata-sff.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.error_handler		= ata_sff_error_handler,
56 	.post_internal_cmd	= ata_sff_post_internal_cmd,
57 
58 	.sff_dev_select		= ata_sff_dev_select,
59 	.sff_check_status	= ata_sff_check_status,
60 	.sff_tf_load		= ata_sff_tf_load,
61 	.sff_tf_read		= ata_sff_tf_read,
62 	.sff_exec_command	= ata_sff_exec_command,
63 	.sff_data_xfer		= ata_sff_data_xfer,
64 	.sff_irq_on		= ata_sff_irq_on,
65 	.sff_irq_clear		= ata_sff_irq_clear,
66 
67 	.port_start		= ata_sff_port_start,
68 };
69 
70 const struct ata_port_operations ata_bmdma_port_ops = {
71 	.inherits		= &ata_sff_port_ops,
72 
73 	.mode_filter		= ata_bmdma_mode_filter,
74 
75 	.bmdma_setup		= ata_bmdma_setup,
76 	.bmdma_start		= ata_bmdma_start,
77 	.bmdma_stop		= ata_bmdma_stop,
78 	.bmdma_status		= ata_bmdma_status,
79 };
80 
81 /**
82  *	ata_fill_sg - Fill PCI IDE PRD table
83  *	@qc: Metadata associated with taskfile to be transferred
84  *
85  *	Fill PCI IDE PRD (scatter-gather) table with segments
86  *	associated with the current disk command.
87  *
88  *	LOCKING:
89  *	spin_lock_irqsave(host lock)
90  *
91  */
92 static void ata_fill_sg(struct ata_queued_cmd *qc)
93 {
94 	struct ata_port *ap = qc->ap;
95 	struct scatterlist *sg;
96 	unsigned int si, pi;
97 
98 	pi = 0;
99 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 		u32 addr, offset;
101 		u32 sg_len, len;
102 
103 		/* determine if physical DMA addr spans 64K boundary.
104 		 * Note h/w doesn't support 64-bit, so we unconditionally
105 		 * truncate dma_addr_t to u32.
106 		 */
107 		addr = (u32) sg_dma_address(sg);
108 		sg_len = sg_dma_len(sg);
109 
110 		while (sg_len) {
111 			offset = addr & 0xffff;
112 			len = sg_len;
113 			if ((offset + sg_len) > 0x10000)
114 				len = 0x10000 - offset;
115 
116 			ap->prd[pi].addr = cpu_to_le32(addr);
117 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
119 
120 			pi++;
121 			sg_len -= len;
122 			addr += len;
123 		}
124 	}
125 
126 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
127 }
128 
129 /**
130  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
131  *	@qc: Metadata associated with taskfile to be transferred
132  *
133  *	Fill PCI IDE PRD (scatter-gather) table with segments
134  *	associated with the current disk command. Perform the fill
135  *	so that we avoid writing any length 64K records for
136  *	controllers that don't follow the spec.
137  *
138  *	LOCKING:
139  *	spin_lock_irqsave(host lock)
140  *
141  */
142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
143 {
144 	struct ata_port *ap = qc->ap;
145 	struct scatterlist *sg;
146 	unsigned int si, pi;
147 
148 	pi = 0;
149 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 		u32 addr, offset;
151 		u32 sg_len, len, blen;
152 
153 		/* determine if physical DMA addr spans 64K boundary.
154 		 * Note h/w doesn't support 64-bit, so we unconditionally
155 		 * truncate dma_addr_t to u32.
156 		 */
157 		addr = (u32) sg_dma_address(sg);
158 		sg_len = sg_dma_len(sg);
159 
160 		while (sg_len) {
161 			offset = addr & 0xffff;
162 			len = sg_len;
163 			if ((offset + sg_len) > 0x10000)
164 				len = 0x10000 - offset;
165 
166 			blen = len & 0xffff;
167 			ap->prd[pi].addr = cpu_to_le32(addr);
168 			if (blen == 0) {
169 			   /* Some PATA chipsets like the CS5530 can't
170 			      cope with 0x0000 meaning 64K as the spec says */
171 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 				blen = 0x8000;
173 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
174 			}
175 			ap->prd[pi].flags_len = cpu_to_le32(blen);
176 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
177 
178 			pi++;
179 			sg_len -= len;
180 			addr += len;
181 		}
182 	}
183 
184 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
185 }
186 
187 /**
188  *	ata_sff_qc_prep - Prepare taskfile for submission
189  *	@qc: Metadata associated with taskfile to be prepared
190  *
191  *	Prepare ATA taskfile for submission.
192  *
193  *	LOCKING:
194  *	spin_lock_irqsave(host lock)
195  */
196 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
197 {
198 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 		return;
200 
201 	ata_fill_sg(qc);
202 }
203 
204 /**
205  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
206  *	@qc: Metadata associated with taskfile to be prepared
207  *
208  *	Prepare ATA taskfile for submission.
209  *
210  *	LOCKING:
211  *	spin_lock_irqsave(host lock)
212  */
213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
214 {
215 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 		return;
217 
218 	ata_fill_sg_dumb(qc);
219 }
220 
221 /**
222  *	ata_sff_check_status - Read device status reg & clear interrupt
223  *	@ap: port where the device is
224  *
225  *	Reads ATA taskfile status register for currently-selected device
226  *	and return its value. This also clears pending interrupts
227  *      from this device
228  *
229  *	LOCKING:
230  *	Inherited from caller.
231  */
232 u8 ata_sff_check_status(struct ata_port *ap)
233 {
234 	return ioread8(ap->ioaddr.status_addr);
235 }
236 
237 /**
238  *	ata_sff_altstatus - Read device alternate status reg
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile alternate status register for
242  *	currently-selected device and return its value.
243  *
244  *	Note: may NOT be used as the check_altstatus() entry in
245  *	ata_port_operations.
246  *
247  *	LOCKING:
248  *	Inherited from caller.
249  */
250 static u8 ata_sff_altstatus(struct ata_port *ap)
251 {
252 	if (ap->ops->sff_check_altstatus)
253 		return ap->ops->sff_check_altstatus(ap);
254 
255 	return ioread8(ap->ioaddr.altstatus_addr);
256 }
257 
258 /**
259  *	ata_sff_irq_status - Check if the device is busy
260  *	@ap: port where the device is
261  *
262  *	Determine if the port is currently busy. Uses altstatus
263  *	if available in order to avoid clearing shared IRQ status
264  *	when finding an IRQ source. Non ctl capable devices don't
265  *	share interrupt lines fortunately for us.
266  *
267  *	LOCKING:
268  *	Inherited from caller.
269  */
270 static u8 ata_sff_irq_status(struct ata_port *ap)
271 {
272 	u8 status;
273 
274 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
275 		status = ata_sff_altstatus(ap);
276 		/* Not us: We are busy */
277 		if (status & ATA_BUSY)
278 		    	return status;
279 	}
280 	/* Clear INTRQ latch */
281 	status = ap->ops->sff_check_status(ap);
282 	return status;
283 }
284 
285 /**
286  *	ata_sff_sync - Flush writes
287  *	@ap: Port to wait for.
288  *
289  *	CAUTION:
290  *	If we have an mmio device with no ctl and no altstatus
291  *	method this will fail. No such devices are known to exist.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 
297 static void ata_sff_sync(struct ata_port *ap)
298 {
299 	if (ap->ops->sff_check_altstatus)
300 		ap->ops->sff_check_altstatus(ap);
301 	else if (ap->ioaddr.altstatus_addr)
302 		ioread8(ap->ioaddr.altstatus_addr);
303 }
304 
305 /**
306  *	ata_sff_pause		-	Flush writes and wait 400nS
307  *	@ap: Port to pause for.
308  *
309  *	CAUTION:
310  *	If we have an mmio device with no ctl and no altstatus
311  *	method this will fail. No such devices are known to exist.
312  *
313  *	LOCKING:
314  *	Inherited from caller.
315  */
316 
317 void ata_sff_pause(struct ata_port *ap)
318 {
319 	ata_sff_sync(ap);
320 	ndelay(400);
321 }
322 
323 /**
324  *	ata_sff_dma_pause	-	Pause before commencing DMA
325  *	@ap: Port to pause for.
326  *
327  *	Perform I/O fencing and ensure sufficient cycle delays occur
328  *	for the HDMA1:0 transition
329  */
330 
331 void ata_sff_dma_pause(struct ata_port *ap)
332 {
333 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
334 		/* An altstatus read will cause the needed delay without
335 		   messing up the IRQ status */
336 		ata_sff_altstatus(ap);
337 		return;
338 	}
339 	/* There are no DMA controllers without ctl. BUG here to ensure
340 	   we never violate the HDMA1:0 transition timing and risk
341 	   corruption. */
342 	BUG();
343 }
344 
345 /**
346  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
347  *	@ap: port containing status register to be polled
348  *	@tmout_pat: impatience timeout in msecs
349  *	@tmout: overall timeout in msecs
350  *
351  *	Sleep until ATA Status register bit BSY clears,
352  *	or a timeout occurs.
353  *
354  *	LOCKING:
355  *	Kernel thread context (may sleep).
356  *
357  *	RETURNS:
358  *	0 on success, -errno otherwise.
359  */
360 int ata_sff_busy_sleep(struct ata_port *ap,
361 		       unsigned long tmout_pat, unsigned long tmout)
362 {
363 	unsigned long timer_start, timeout;
364 	u8 status;
365 
366 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
367 	timer_start = jiffies;
368 	timeout = ata_deadline(timer_start, tmout_pat);
369 	while (status != 0xff && (status & ATA_BUSY) &&
370 	       time_before(jiffies, timeout)) {
371 		msleep(50);
372 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
373 	}
374 
375 	if (status != 0xff && (status & ATA_BUSY))
376 		ata_port_printk(ap, KERN_WARNING,
377 				"port is slow to respond, please be patient "
378 				"(Status 0x%x)\n", status);
379 
380 	timeout = ata_deadline(timer_start, tmout);
381 	while (status != 0xff && (status & ATA_BUSY) &&
382 	       time_before(jiffies, timeout)) {
383 		msleep(50);
384 		status = ap->ops->sff_check_status(ap);
385 	}
386 
387 	if (status == 0xff)
388 		return -ENODEV;
389 
390 	if (status & ATA_BUSY) {
391 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
392 				"(%lu secs, Status 0x%x)\n",
393 				DIV_ROUND_UP(tmout, 1000), status);
394 		return -EBUSY;
395 	}
396 
397 	return 0;
398 }
399 
400 static int ata_sff_check_ready(struct ata_link *link)
401 {
402 	u8 status = link->ap->ops->sff_check_status(link->ap);
403 
404 	return ata_check_ready(status);
405 }
406 
407 /**
408  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
409  *	@link: SFF link to wait ready status for
410  *	@deadline: deadline jiffies for the operation
411  *
412  *	Sleep until ATA Status register bit BSY clears, or timeout
413  *	occurs.
414  *
415  *	LOCKING:
416  *	Kernel thread context (may sleep).
417  *
418  *	RETURNS:
419  *	0 on success, -errno otherwise.
420  */
421 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
422 {
423 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
424 }
425 
426 /**
427  *	ata_sff_dev_select - Select device 0/1 on ATA bus
428  *	@ap: ATA channel to manipulate
429  *	@device: ATA device (numbered from zero) to select
430  *
431  *	Use the method defined in the ATA specification to
432  *	make either device 0, or device 1, active on the
433  *	ATA channel.  Works with both PIO and MMIO.
434  *
435  *	May be used as the dev_select() entry in ata_port_operations.
436  *
437  *	LOCKING:
438  *	caller.
439  */
440 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
441 {
442 	u8 tmp;
443 
444 	if (device == 0)
445 		tmp = ATA_DEVICE_OBS;
446 	else
447 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
448 
449 	iowrite8(tmp, ap->ioaddr.device_addr);
450 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
451 }
452 
453 /**
454  *	ata_dev_select - Select device 0/1 on ATA bus
455  *	@ap: ATA channel to manipulate
456  *	@device: ATA device (numbered from zero) to select
457  *	@wait: non-zero to wait for Status register BSY bit to clear
458  *	@can_sleep: non-zero if context allows sleeping
459  *
460  *	Use the method defined in the ATA specification to
461  *	make either device 0, or device 1, active on the
462  *	ATA channel.
463  *
464  *	This is a high-level version of ata_sff_dev_select(), which
465  *	additionally provides the services of inserting the proper
466  *	pauses and status polling, where needed.
467  *
468  *	LOCKING:
469  *	caller.
470  */
471 void ata_dev_select(struct ata_port *ap, unsigned int device,
472 			   unsigned int wait, unsigned int can_sleep)
473 {
474 	if (ata_msg_probe(ap))
475 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
476 				"device %u, wait %u\n", device, wait);
477 
478 	if (wait)
479 		ata_wait_idle(ap);
480 
481 	ap->ops->sff_dev_select(ap, device);
482 
483 	if (wait) {
484 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
485 			msleep(150);
486 		ata_wait_idle(ap);
487 	}
488 }
489 
490 /**
491  *	ata_sff_irq_on - Enable interrupts on a port.
492  *	@ap: Port on which interrupts are enabled.
493  *
494  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
495  *	wait for idle, clear any pending interrupts.
496  *
497  *	LOCKING:
498  *	Inherited from caller.
499  */
500 u8 ata_sff_irq_on(struct ata_port *ap)
501 {
502 	struct ata_ioports *ioaddr = &ap->ioaddr;
503 	u8 tmp;
504 
505 	ap->ctl &= ~ATA_NIEN;
506 	ap->last_ctl = ap->ctl;
507 
508 	if (ioaddr->ctl_addr)
509 		iowrite8(ap->ctl, ioaddr->ctl_addr);
510 	tmp = ata_wait_idle(ap);
511 
512 	ap->ops->sff_irq_clear(ap);
513 
514 	return tmp;
515 }
516 
517 /**
518  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
519  *	@ap: Port associated with this ATA transaction.
520  *
521  *	Clear interrupt and error flags in DMA status register.
522  *
523  *	May be used as the irq_clear() entry in ata_port_operations.
524  *
525  *	LOCKING:
526  *	spin_lock_irqsave(host lock)
527  */
528 void ata_sff_irq_clear(struct ata_port *ap)
529 {
530 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
531 
532 	if (!mmio)
533 		return;
534 
535 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
536 }
537 
538 /**
539  *	ata_sff_tf_load - send taskfile registers to host controller
540  *	@ap: Port to which output is sent
541  *	@tf: ATA taskfile register set
542  *
543  *	Outputs ATA taskfile to standard ATA host controller.
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
549 {
550 	struct ata_ioports *ioaddr = &ap->ioaddr;
551 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
552 
553 	if (tf->ctl != ap->last_ctl) {
554 		if (ioaddr->ctl_addr)
555 			iowrite8(tf->ctl, ioaddr->ctl_addr);
556 		ap->last_ctl = tf->ctl;
557 		ata_wait_idle(ap);
558 	}
559 
560 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
561 		WARN_ON(!ioaddr->ctl_addr);
562 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
563 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
564 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
565 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
566 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
567 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
568 			tf->hob_feature,
569 			tf->hob_nsect,
570 			tf->hob_lbal,
571 			tf->hob_lbam,
572 			tf->hob_lbah);
573 	}
574 
575 	if (is_addr) {
576 		iowrite8(tf->feature, ioaddr->feature_addr);
577 		iowrite8(tf->nsect, ioaddr->nsect_addr);
578 		iowrite8(tf->lbal, ioaddr->lbal_addr);
579 		iowrite8(tf->lbam, ioaddr->lbam_addr);
580 		iowrite8(tf->lbah, ioaddr->lbah_addr);
581 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
582 			tf->feature,
583 			tf->nsect,
584 			tf->lbal,
585 			tf->lbam,
586 			tf->lbah);
587 	}
588 
589 	if (tf->flags & ATA_TFLAG_DEVICE) {
590 		iowrite8(tf->device, ioaddr->device_addr);
591 		VPRINTK("device 0x%X\n", tf->device);
592 	}
593 
594 	ata_wait_idle(ap);
595 }
596 
597 /**
598  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
599  *	@ap: Port from which input is read
600  *	@tf: ATA taskfile register set for storing input
601  *
602  *	Reads ATA taskfile registers for currently-selected device
603  *	into @tf. Assumes the device has a fully SFF compliant task file
604  *	layout and behaviour. If you device does not (eg has a different
605  *	status method) then you will need to provide a replacement tf_read
606  *
607  *	LOCKING:
608  *	Inherited from caller.
609  */
610 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
611 {
612 	struct ata_ioports *ioaddr = &ap->ioaddr;
613 
614 	tf->command = ata_sff_check_status(ap);
615 	tf->feature = ioread8(ioaddr->error_addr);
616 	tf->nsect = ioread8(ioaddr->nsect_addr);
617 	tf->lbal = ioread8(ioaddr->lbal_addr);
618 	tf->lbam = ioread8(ioaddr->lbam_addr);
619 	tf->lbah = ioread8(ioaddr->lbah_addr);
620 	tf->device = ioread8(ioaddr->device_addr);
621 
622 	if (tf->flags & ATA_TFLAG_LBA48) {
623 		if (likely(ioaddr->ctl_addr)) {
624 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
625 			tf->hob_feature = ioread8(ioaddr->error_addr);
626 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
627 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
628 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
629 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
630 			iowrite8(tf->ctl, ioaddr->ctl_addr);
631 			ap->last_ctl = tf->ctl;
632 		} else
633 			WARN_ON(1);
634 	}
635 }
636 
637 /**
638  *	ata_sff_exec_command - issue ATA command to host controller
639  *	@ap: port to which command is being issued
640  *	@tf: ATA taskfile register set
641  *
642  *	Issues ATA command, with proper synchronization with interrupt
643  *	handler / other threads.
644  *
645  *	LOCKING:
646  *	spin_lock_irqsave(host lock)
647  */
648 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
649 {
650 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
651 
652 	iowrite8(tf->command, ap->ioaddr.command_addr);
653 	ata_sff_pause(ap);
654 }
655 
656 /**
657  *	ata_tf_to_host - issue ATA taskfile to host controller
658  *	@ap: port to which command is being issued
659  *	@tf: ATA taskfile register set
660  *
661  *	Issues ATA taskfile register set to ATA host controller,
662  *	with proper synchronization with interrupt handler and
663  *	other threads.
664  *
665  *	LOCKING:
666  *	spin_lock_irqsave(host lock)
667  */
668 static inline void ata_tf_to_host(struct ata_port *ap,
669 				  const struct ata_taskfile *tf)
670 {
671 	ap->ops->sff_tf_load(ap, tf);
672 	ap->ops->sff_exec_command(ap, tf);
673 }
674 
675 /**
676  *	ata_sff_data_xfer - Transfer data by PIO
677  *	@dev: device to target
678  *	@buf: data buffer
679  *	@buflen: buffer length
680  *	@rw: read/write
681  *
682  *	Transfer data from/to the device data register by PIO.
683  *
684  *	LOCKING:
685  *	Inherited from caller.
686  *
687  *	RETURNS:
688  *	Bytes consumed.
689  */
690 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
691 			       unsigned int buflen, int rw)
692 {
693 	struct ata_port *ap = dev->link->ap;
694 	void __iomem *data_addr = ap->ioaddr.data_addr;
695 	unsigned int words = buflen >> 1;
696 
697 	/* Transfer multiple of 2 bytes */
698 	if (rw == READ)
699 		ioread16_rep(data_addr, buf, words);
700 	else
701 		iowrite16_rep(data_addr, buf, words);
702 
703 	/* Transfer trailing 1 byte, if any. */
704 	if (unlikely(buflen & 0x01)) {
705 		__le16 align_buf[1] = { 0 };
706 		unsigned char *trailing_buf = buf + buflen - 1;
707 
708 		if (rw == READ) {
709 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
710 			memcpy(trailing_buf, align_buf, 1);
711 		} else {
712 			memcpy(align_buf, trailing_buf, 1);
713 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
714 		}
715 		words++;
716 	}
717 
718 	return words << 1;
719 }
720 
721 /**
722  *	ata_sff_data_xfer_noirq - Transfer data by PIO
723  *	@dev: device to target
724  *	@buf: data buffer
725  *	@buflen: buffer length
726  *	@rw: read/write
727  *
728  *	Transfer data from/to the device data register by PIO. Do the
729  *	transfer with interrupts disabled.
730  *
731  *	LOCKING:
732  *	Inherited from caller.
733  *
734  *	RETURNS:
735  *	Bytes consumed.
736  */
737 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
738 				     unsigned int buflen, int rw)
739 {
740 	unsigned long flags;
741 	unsigned int consumed;
742 
743 	local_irq_save(flags);
744 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
745 	local_irq_restore(flags);
746 
747 	return consumed;
748 }
749 
750 /**
751  *	ata_pio_sector - Transfer a sector of data.
752  *	@qc: Command on going
753  *
754  *	Transfer qc->sect_size bytes of data from/to the ATA device.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sector(struct ata_queued_cmd *qc)
760 {
761 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
762 	struct ata_port *ap = qc->ap;
763 	struct page *page;
764 	unsigned int offset;
765 	unsigned char *buf;
766 
767 	if (qc->curbytes == qc->nbytes - qc->sect_size)
768 		ap->hsm_task_state = HSM_ST_LAST;
769 
770 	page = sg_page(qc->cursg);
771 	offset = qc->cursg->offset + qc->cursg_ofs;
772 
773 	/* get the current page and offset */
774 	page = nth_page(page, (offset >> PAGE_SHIFT));
775 	offset %= PAGE_SIZE;
776 
777 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
778 
779 	if (PageHighMem(page)) {
780 		unsigned long flags;
781 
782 		/* FIXME: use a bounce buffer */
783 		local_irq_save(flags);
784 		buf = kmap_atomic(page, KM_IRQ0);
785 
786 		/* do the actual data transfer */
787 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
788 				       do_write);
789 
790 		kunmap_atomic(buf, KM_IRQ0);
791 		local_irq_restore(flags);
792 	} else {
793 		buf = page_address(page);
794 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
795 				       do_write);
796 	}
797 
798 	qc->curbytes += qc->sect_size;
799 	qc->cursg_ofs += qc->sect_size;
800 
801 	if (qc->cursg_ofs == qc->cursg->length) {
802 		qc->cursg = sg_next(qc->cursg);
803 		qc->cursg_ofs = 0;
804 	}
805 }
806 
807 /**
808  *	ata_pio_sectors - Transfer one or many sectors.
809  *	@qc: Command on going
810  *
811  *	Transfer one or many sectors of data from/to the
812  *	ATA device for the DRQ request.
813  *
814  *	LOCKING:
815  *	Inherited from caller.
816  */
817 static void ata_pio_sectors(struct ata_queued_cmd *qc)
818 {
819 	if (is_multi_taskfile(&qc->tf)) {
820 		/* READ/WRITE MULTIPLE */
821 		unsigned int nsect;
822 
823 		WARN_ON(qc->dev->multi_count == 0);
824 
825 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
826 			    qc->dev->multi_count);
827 		while (nsect--)
828 			ata_pio_sector(qc);
829 	} else
830 		ata_pio_sector(qc);
831 
832 	ata_sff_sync(qc->ap); /* flush */
833 }
834 
835 /**
836  *	atapi_send_cdb - Write CDB bytes to hardware
837  *	@ap: Port to which ATAPI device is attached.
838  *	@qc: Taskfile currently active
839  *
840  *	When device has indicated its readiness to accept
841  *	a CDB, this function is called.  Send the CDB.
842  *
843  *	LOCKING:
844  *	caller.
845  */
846 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
847 {
848 	/* send SCSI cdb */
849 	DPRINTK("send cdb\n");
850 	WARN_ON(qc->dev->cdb_len < 12);
851 
852 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
853 	ata_sff_sync(ap);
854 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
855 	   or is bmdma_start guaranteed to do it ? */
856 	switch (qc->tf.protocol) {
857 	case ATAPI_PROT_PIO:
858 		ap->hsm_task_state = HSM_ST;
859 		break;
860 	case ATAPI_PROT_NODATA:
861 		ap->hsm_task_state = HSM_ST_LAST;
862 		break;
863 	case ATAPI_PROT_DMA:
864 		ap->hsm_task_state = HSM_ST_LAST;
865 		/* initiate bmdma */
866 		ap->ops->bmdma_start(qc);
867 		break;
868 	}
869 }
870 
871 /**
872  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
873  *	@qc: Command on going
874  *	@bytes: number of bytes
875  *
876  *	Transfer Transfer data from/to the ATAPI device.
877  *
878  *	LOCKING:
879  *	Inherited from caller.
880  *
881  */
882 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
883 {
884 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
885 	struct ata_port *ap = qc->ap;
886 	struct ata_device *dev = qc->dev;
887 	struct ata_eh_info *ehi = &dev->link->eh_info;
888 	struct scatterlist *sg;
889 	struct page *page;
890 	unsigned char *buf;
891 	unsigned int offset, count, consumed;
892 
893 next_sg:
894 	sg = qc->cursg;
895 	if (unlikely(!sg)) {
896 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
897 				  "buf=%u cur=%u bytes=%u",
898 				  qc->nbytes, qc->curbytes, bytes);
899 		return -1;
900 	}
901 
902 	page = sg_page(sg);
903 	offset = sg->offset + qc->cursg_ofs;
904 
905 	/* get the current page and offset */
906 	page = nth_page(page, (offset >> PAGE_SHIFT));
907 	offset %= PAGE_SIZE;
908 
909 	/* don't overrun current sg */
910 	count = min(sg->length - qc->cursg_ofs, bytes);
911 
912 	/* don't cross page boundaries */
913 	count = min(count, (unsigned int)PAGE_SIZE - offset);
914 
915 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
916 
917 	if (PageHighMem(page)) {
918 		unsigned long flags;
919 
920 		/* FIXME: use bounce buffer */
921 		local_irq_save(flags);
922 		buf = kmap_atomic(page, KM_IRQ0);
923 
924 		/* do the actual data transfer */
925 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
926 
927 		kunmap_atomic(buf, KM_IRQ0);
928 		local_irq_restore(flags);
929 	} else {
930 		buf = page_address(page);
931 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
932 	}
933 
934 	bytes -= min(bytes, consumed);
935 	qc->curbytes += count;
936 	qc->cursg_ofs += count;
937 
938 	if (qc->cursg_ofs == sg->length) {
939 		qc->cursg = sg_next(qc->cursg);
940 		qc->cursg_ofs = 0;
941 	}
942 
943 	/* consumed can be larger than count only for the last transfer */
944 	WARN_ON(qc->cursg && count != consumed);
945 
946 	if (bytes)
947 		goto next_sg;
948 	return 0;
949 }
950 
951 /**
952  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
953  *	@qc: Command on going
954  *
955  *	Transfer Transfer data from/to the ATAPI device.
956  *
957  *	LOCKING:
958  *	Inherited from caller.
959  */
960 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
961 {
962 	struct ata_port *ap = qc->ap;
963 	struct ata_device *dev = qc->dev;
964 	struct ata_eh_info *ehi = &dev->link->eh_info;
965 	unsigned int ireason, bc_lo, bc_hi, bytes;
966 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
967 
968 	/* Abuse qc->result_tf for temp storage of intermediate TF
969 	 * here to save some kernel stack usage.
970 	 * For normal completion, qc->result_tf is not relevant. For
971 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
972 	 * So, the correctness of qc->result_tf is not affected.
973 	 */
974 	ap->ops->sff_tf_read(ap, &qc->result_tf);
975 	ireason = qc->result_tf.nsect;
976 	bc_lo = qc->result_tf.lbam;
977 	bc_hi = qc->result_tf.lbah;
978 	bytes = (bc_hi << 8) | bc_lo;
979 
980 	/* shall be cleared to zero, indicating xfer of data */
981 	if (unlikely(ireason & (1 << 0)))
982 		goto atapi_check;
983 
984 	/* make sure transfer direction matches expected */
985 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
986 	if (unlikely(do_write != i_write))
987 		goto atapi_check;
988 
989 	if (unlikely(!bytes))
990 		goto atapi_check;
991 
992 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
993 
994 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
995 		goto err_out;
996 	ata_sff_sync(ap); /* flush */
997 
998 	return;
999 
1000  atapi_check:
1001 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1002 			  ireason, bytes);
1003  err_out:
1004 	qc->err_mask |= AC_ERR_HSM;
1005 	ap->hsm_task_state = HSM_ST_ERR;
1006 }
1007 
1008 /**
1009  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1010  *	@ap: the target ata_port
1011  *	@qc: qc on going
1012  *
1013  *	RETURNS:
1014  *	1 if ok in workqueue, 0 otherwise.
1015  */
1016 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1017 {
1018 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1019 		return 1;
1020 
1021 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1022 		if (qc->tf.protocol == ATA_PROT_PIO &&
1023 		    (qc->tf.flags & ATA_TFLAG_WRITE))
1024 		    return 1;
1025 
1026 		if (ata_is_atapi(qc->tf.protocol) &&
1027 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1028 			return 1;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1036  *	@qc: Command to complete
1037  *	@in_wq: 1 if called from workqueue, 0 otherwise
1038  *
1039  *	Finish @qc which is running on standard HSM.
1040  *
1041  *	LOCKING:
1042  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1043  *	Otherwise, none on entry and grabs host lock.
1044  */
1045 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1046 {
1047 	struct ata_port *ap = qc->ap;
1048 	unsigned long flags;
1049 
1050 	if (ap->ops->error_handler) {
1051 		if (in_wq) {
1052 			spin_lock_irqsave(ap->lock, flags);
1053 
1054 			/* EH might have kicked in while host lock is
1055 			 * released.
1056 			 */
1057 			qc = ata_qc_from_tag(ap, qc->tag);
1058 			if (qc) {
1059 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1060 					ap->ops->sff_irq_on(ap);
1061 					ata_qc_complete(qc);
1062 				} else
1063 					ata_port_freeze(ap);
1064 			}
1065 
1066 			spin_unlock_irqrestore(ap->lock, flags);
1067 		} else {
1068 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1069 				ata_qc_complete(qc);
1070 			else
1071 				ata_port_freeze(ap);
1072 		}
1073 	} else {
1074 		if (in_wq) {
1075 			spin_lock_irqsave(ap->lock, flags);
1076 			ap->ops->sff_irq_on(ap);
1077 			ata_qc_complete(qc);
1078 			spin_unlock_irqrestore(ap->lock, flags);
1079 		} else
1080 			ata_qc_complete(qc);
1081 	}
1082 }
1083 
1084 /**
1085  *	ata_sff_hsm_move - move the HSM to the next state.
1086  *	@ap: the target ata_port
1087  *	@qc: qc on going
1088  *	@status: current device status
1089  *	@in_wq: 1 if called from workqueue, 0 otherwise
1090  *
1091  *	RETURNS:
1092  *	1 when poll next status needed, 0 otherwise.
1093  */
1094 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1095 		     u8 status, int in_wq)
1096 {
1097 	struct ata_eh_info *ehi = &ap->link.eh_info;
1098 	unsigned long flags = 0;
1099 	int poll_next;
1100 
1101 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1102 
1103 	/* Make sure ata_sff_qc_issue() does not throw things
1104 	 * like DMA polling into the workqueue. Notice that
1105 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1106 	 */
1107 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1108 
1109 fsm_start:
1110 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1111 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1112 
1113 	switch (ap->hsm_task_state) {
1114 	case HSM_ST_FIRST:
1115 		/* Send first data block or PACKET CDB */
1116 
1117 		/* If polling, we will stay in the work queue after
1118 		 * sending the data. Otherwise, interrupt handler
1119 		 * takes over after sending the data.
1120 		 */
1121 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1122 
1123 		/* check device status */
1124 		if (unlikely((status & ATA_DRQ) == 0)) {
1125 			/* handle BSY=0, DRQ=0 as error */
1126 			if (likely(status & (ATA_ERR | ATA_DF)))
1127 				/* device stops HSM for abort/error */
1128 				qc->err_mask |= AC_ERR_DEV;
1129 			else {
1130 				/* HSM violation. Let EH handle this */
1131 				ata_ehi_push_desc(ehi,
1132 					"ST_FIRST: !(DRQ|ERR|DF)");
1133 				qc->err_mask |= AC_ERR_HSM;
1134 			}
1135 
1136 			ap->hsm_task_state = HSM_ST_ERR;
1137 			goto fsm_start;
1138 		}
1139 
1140 		/* Device should not ask for data transfer (DRQ=1)
1141 		 * when it finds something wrong.
1142 		 * We ignore DRQ here and stop the HSM by
1143 		 * changing hsm_task_state to HSM_ST_ERR and
1144 		 * let the EH abort the command or reset the device.
1145 		 */
1146 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1147 			/* Some ATAPI tape drives forget to clear the ERR bit
1148 			 * when doing the next command (mostly request sense).
1149 			 * We ignore ERR here to workaround and proceed sending
1150 			 * the CDB.
1151 			 */
1152 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1153 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1154 					"DRQ=1 with device error, "
1155 					"dev_stat 0x%X", status);
1156 				qc->err_mask |= AC_ERR_HSM;
1157 				ap->hsm_task_state = HSM_ST_ERR;
1158 				goto fsm_start;
1159 			}
1160 		}
1161 
1162 		/* Send the CDB (atapi) or the first data block (ata pio out).
1163 		 * During the state transition, interrupt handler shouldn't
1164 		 * be invoked before the data transfer is complete and
1165 		 * hsm_task_state is changed. Hence, the following locking.
1166 		 */
1167 		if (in_wq)
1168 			spin_lock_irqsave(ap->lock, flags);
1169 
1170 		if (qc->tf.protocol == ATA_PROT_PIO) {
1171 			/* PIO data out protocol.
1172 			 * send first data block.
1173 			 */
1174 
1175 			/* ata_pio_sectors() might change the state
1176 			 * to HSM_ST_LAST. so, the state is changed here
1177 			 * before ata_pio_sectors().
1178 			 */
1179 			ap->hsm_task_state = HSM_ST;
1180 			ata_pio_sectors(qc);
1181 		} else
1182 			/* send CDB */
1183 			atapi_send_cdb(ap, qc);
1184 
1185 		if (in_wq)
1186 			spin_unlock_irqrestore(ap->lock, flags);
1187 
1188 		/* if polling, ata_pio_task() handles the rest.
1189 		 * otherwise, interrupt handler takes over from here.
1190 		 */
1191 		break;
1192 
1193 	case HSM_ST:
1194 		/* complete command or read/write the data register */
1195 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1196 			/* ATAPI PIO protocol */
1197 			if ((status & ATA_DRQ) == 0) {
1198 				/* No more data to transfer or device error.
1199 				 * Device error will be tagged in HSM_ST_LAST.
1200 				 */
1201 				ap->hsm_task_state = HSM_ST_LAST;
1202 				goto fsm_start;
1203 			}
1204 
1205 			/* Device should not ask for data transfer (DRQ=1)
1206 			 * when it finds something wrong.
1207 			 * We ignore DRQ here and stop the HSM by
1208 			 * changing hsm_task_state to HSM_ST_ERR and
1209 			 * let the EH abort the command or reset the device.
1210 			 */
1211 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1212 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1213 					"DRQ=1 with device error, "
1214 					"dev_stat 0x%X", status);
1215 				qc->err_mask |= AC_ERR_HSM;
1216 				ap->hsm_task_state = HSM_ST_ERR;
1217 				goto fsm_start;
1218 			}
1219 
1220 			atapi_pio_bytes(qc);
1221 
1222 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1223 				/* bad ireason reported by device */
1224 				goto fsm_start;
1225 
1226 		} else {
1227 			/* ATA PIO protocol */
1228 			if (unlikely((status & ATA_DRQ) == 0)) {
1229 				/* handle BSY=0, DRQ=0 as error */
1230 				if (likely(status & (ATA_ERR | ATA_DF))) {
1231 					/* device stops HSM for abort/error */
1232 					qc->err_mask |= AC_ERR_DEV;
1233 
1234 					/* If diagnostic failed and this is
1235 					 * IDENTIFY, it's likely a phantom
1236 					 * device.  Mark hint.
1237 					 */
1238 					if (qc->dev->horkage &
1239 					    ATA_HORKAGE_DIAGNOSTIC)
1240 						qc->err_mask |=
1241 							AC_ERR_NODEV_HINT;
1242 				} else {
1243 					/* HSM violation. Let EH handle this.
1244 					 * Phantom devices also trigger this
1245 					 * condition.  Mark hint.
1246 					 */
1247 					ata_ehi_push_desc(ehi, "ST-ATA: "
1248 						"DRQ=1 with device error, "
1249 						"dev_stat 0x%X", status);
1250 					qc->err_mask |= AC_ERR_HSM |
1251 							AC_ERR_NODEV_HINT;
1252 				}
1253 
1254 				ap->hsm_task_state = HSM_ST_ERR;
1255 				goto fsm_start;
1256 			}
1257 
1258 			/* For PIO reads, some devices may ask for
1259 			 * data transfer (DRQ=1) alone with ERR=1.
1260 			 * We respect DRQ here and transfer one
1261 			 * block of junk data before changing the
1262 			 * hsm_task_state to HSM_ST_ERR.
1263 			 *
1264 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1265 			 * sense since the data block has been
1266 			 * transferred to the device.
1267 			 */
1268 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1269 				/* data might be corrputed */
1270 				qc->err_mask |= AC_ERR_DEV;
1271 
1272 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1273 					ata_pio_sectors(qc);
1274 					status = ata_wait_idle(ap);
1275 				}
1276 
1277 				if (status & (ATA_BUSY | ATA_DRQ)) {
1278 					ata_ehi_push_desc(ehi, "ST-ATA: "
1279 						"BUSY|DRQ persists on ERR|DF, "
1280 						"dev_stat 0x%X", status);
1281 					qc->err_mask |= AC_ERR_HSM;
1282 				}
1283 
1284 				/* ata_pio_sectors() might change the
1285 				 * state to HSM_ST_LAST. so, the state
1286 				 * is changed after ata_pio_sectors().
1287 				 */
1288 				ap->hsm_task_state = HSM_ST_ERR;
1289 				goto fsm_start;
1290 			}
1291 
1292 			ata_pio_sectors(qc);
1293 
1294 			if (ap->hsm_task_state == HSM_ST_LAST &&
1295 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1296 				/* all data read */
1297 				status = ata_wait_idle(ap);
1298 				goto fsm_start;
1299 			}
1300 		}
1301 
1302 		poll_next = 1;
1303 		break;
1304 
1305 	case HSM_ST_LAST:
1306 		if (unlikely(!ata_ok(status))) {
1307 			qc->err_mask |= __ac_err_mask(status);
1308 			ap->hsm_task_state = HSM_ST_ERR;
1309 			goto fsm_start;
1310 		}
1311 
1312 		/* no more data to transfer */
1313 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1314 			ap->print_id, qc->dev->devno, status);
1315 
1316 		WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1317 
1318 		ap->hsm_task_state = HSM_ST_IDLE;
1319 
1320 		/* complete taskfile transaction */
1321 		ata_hsm_qc_complete(qc, in_wq);
1322 
1323 		poll_next = 0;
1324 		break;
1325 
1326 	case HSM_ST_ERR:
1327 		ap->hsm_task_state = HSM_ST_IDLE;
1328 
1329 		/* complete taskfile transaction */
1330 		ata_hsm_qc_complete(qc, in_wq);
1331 
1332 		poll_next = 0;
1333 		break;
1334 	default:
1335 		poll_next = 0;
1336 		BUG();
1337 	}
1338 
1339 	return poll_next;
1340 }
1341 
1342 void ata_pio_task(struct work_struct *work)
1343 {
1344 	struct ata_port *ap =
1345 		container_of(work, struct ata_port, port_task.work);
1346 	struct ata_queued_cmd *qc = ap->port_task_data;
1347 	u8 status;
1348 	int poll_next;
1349 
1350 fsm_start:
1351 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1352 
1353 	/*
1354 	 * This is purely heuristic.  This is a fast path.
1355 	 * Sometimes when we enter, BSY will be cleared in
1356 	 * a chk-status or two.  If not, the drive is probably seeking
1357 	 * or something.  Snooze for a couple msecs, then
1358 	 * chk-status again.  If still busy, queue delayed work.
1359 	 */
1360 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1361 	if (status & ATA_BUSY) {
1362 		msleep(2);
1363 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1364 		if (status & ATA_BUSY) {
1365 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1366 			return;
1367 		}
1368 	}
1369 
1370 	/* move the HSM */
1371 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1372 
1373 	/* another command or interrupt handler
1374 	 * may be running at this point.
1375 	 */
1376 	if (poll_next)
1377 		goto fsm_start;
1378 }
1379 
1380 /**
1381  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1382  *	@qc: command to issue to device
1383  *
1384  *	Using various libata functions and hooks, this function
1385  *	starts an ATA command.  ATA commands are grouped into
1386  *	classes called "protocols", and issuing each type of protocol
1387  *	is slightly different.
1388  *
1389  *	May be used as the qc_issue() entry in ata_port_operations.
1390  *
1391  *	LOCKING:
1392  *	spin_lock_irqsave(host lock)
1393  *
1394  *	RETURNS:
1395  *	Zero on success, AC_ERR_* mask on failure
1396  */
1397 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1398 {
1399 	struct ata_port *ap = qc->ap;
1400 
1401 	/* Use polling pio if the LLD doesn't handle
1402 	 * interrupt driven pio and atapi CDB interrupt.
1403 	 */
1404 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1405 		switch (qc->tf.protocol) {
1406 		case ATA_PROT_PIO:
1407 		case ATA_PROT_NODATA:
1408 		case ATAPI_PROT_PIO:
1409 		case ATAPI_PROT_NODATA:
1410 			qc->tf.flags |= ATA_TFLAG_POLLING;
1411 			break;
1412 		case ATAPI_PROT_DMA:
1413 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1414 				/* see ata_dma_blacklisted() */
1415 				BUG();
1416 			break;
1417 		default:
1418 			break;
1419 		}
1420 	}
1421 
1422 	/* select the device */
1423 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1424 
1425 	/* start the command */
1426 	switch (qc->tf.protocol) {
1427 	case ATA_PROT_NODATA:
1428 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1429 			ata_qc_set_polling(qc);
1430 
1431 		ata_tf_to_host(ap, &qc->tf);
1432 		ap->hsm_task_state = HSM_ST_LAST;
1433 
1434 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 			ata_pio_queue_task(ap, qc, 0);
1436 
1437 		break;
1438 
1439 	case ATA_PROT_DMA:
1440 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1441 
1442 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1443 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1444 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1445 		ap->hsm_task_state = HSM_ST_LAST;
1446 		break;
1447 
1448 	case ATA_PROT_PIO:
1449 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1450 			ata_qc_set_polling(qc);
1451 
1452 		ata_tf_to_host(ap, &qc->tf);
1453 
1454 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1455 			/* PIO data out protocol */
1456 			ap->hsm_task_state = HSM_ST_FIRST;
1457 			ata_pio_queue_task(ap, qc, 0);
1458 
1459 			/* always send first data block using
1460 			 * the ata_pio_task() codepath.
1461 			 */
1462 		} else {
1463 			/* PIO data in protocol */
1464 			ap->hsm_task_state = HSM_ST;
1465 
1466 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1467 				ata_pio_queue_task(ap, qc, 0);
1468 
1469 			/* if polling, ata_pio_task() handles the rest.
1470 			 * otherwise, interrupt handler takes over from here.
1471 			 */
1472 		}
1473 
1474 		break;
1475 
1476 	case ATAPI_PROT_PIO:
1477 	case ATAPI_PROT_NODATA:
1478 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1479 			ata_qc_set_polling(qc);
1480 
1481 		ata_tf_to_host(ap, &qc->tf);
1482 
1483 		ap->hsm_task_state = HSM_ST_FIRST;
1484 
1485 		/* send cdb by polling if no cdb interrupt */
1486 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1487 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1488 			ata_pio_queue_task(ap, qc, 0);
1489 		break;
1490 
1491 	case ATAPI_PROT_DMA:
1492 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1493 
1494 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1495 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1496 		ap->hsm_task_state = HSM_ST_FIRST;
1497 
1498 		/* send cdb by polling if no cdb interrupt */
1499 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1500 			ata_pio_queue_task(ap, qc, 0);
1501 		break;
1502 
1503 	default:
1504 		WARN_ON(1);
1505 		return AC_ERR_SYSTEM;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1513  *	@qc: qc to fill result TF for
1514  *
1515  *	@qc is finished and result TF needs to be filled.  Fill it
1516  *	using ->sff_tf_read.
1517  *
1518  *	LOCKING:
1519  *	spin_lock_irqsave(host lock)
1520  *
1521  *	RETURNS:
1522  *	true indicating that result TF is successfully filled.
1523  */
1524 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1525 {
1526 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1527 	return true;
1528 }
1529 
1530 /**
1531  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1532  *	@ap: Port on which interrupt arrived (possibly...)
1533  *	@qc: Taskfile currently active in engine
1534  *
1535  *	Handle host interrupt for given queued command.  Currently,
1536  *	only DMA interrupts are handled.  All other commands are
1537  *	handled via polling with interrupts disabled (nIEN bit).
1538  *
1539  *	LOCKING:
1540  *	spin_lock_irqsave(host lock)
1541  *
1542  *	RETURNS:
1543  *	One if interrupt was handled, zero if not (shared irq).
1544  */
1545 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1546 				      struct ata_queued_cmd *qc)
1547 {
1548 	struct ata_eh_info *ehi = &ap->link.eh_info;
1549 	u8 status, host_stat = 0;
1550 
1551 	VPRINTK("ata%u: protocol %d task_state %d\n",
1552 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1553 
1554 	/* Check whether we are expecting interrupt in this state */
1555 	switch (ap->hsm_task_state) {
1556 	case HSM_ST_FIRST:
1557 		/* Some pre-ATAPI-4 devices assert INTRQ
1558 		 * at this state when ready to receive CDB.
1559 		 */
1560 
1561 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1562 		 * The flag was turned on only for atapi devices.  No
1563 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1564 		 */
1565 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1566 			goto idle_irq;
1567 		break;
1568 	case HSM_ST_LAST:
1569 		if (qc->tf.protocol == ATA_PROT_DMA ||
1570 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1571 			/* check status of DMA engine */
1572 			host_stat = ap->ops->bmdma_status(ap);
1573 			VPRINTK("ata%u: host_stat 0x%X\n",
1574 				ap->print_id, host_stat);
1575 
1576 			/* if it's not our irq... */
1577 			if (!(host_stat & ATA_DMA_INTR))
1578 				goto idle_irq;
1579 
1580 			/* before we do anything else, clear DMA-Start bit */
1581 			ap->ops->bmdma_stop(qc);
1582 
1583 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1584 				/* error when transfering data to/from memory */
1585 				qc->err_mask |= AC_ERR_HOST_BUS;
1586 				ap->hsm_task_state = HSM_ST_ERR;
1587 			}
1588 		}
1589 		break;
1590 	case HSM_ST:
1591 		break;
1592 	default:
1593 		goto idle_irq;
1594 	}
1595 
1596 
1597 	/* check main status, clearing INTRQ if needed */
1598 	status = ata_sff_irq_status(ap);
1599 	if (status & ATA_BUSY)
1600 		goto idle_irq;
1601 
1602 	/* ack bmdma irq events */
1603 	ap->ops->sff_irq_clear(ap);
1604 
1605 	ata_sff_hsm_move(ap, qc, status, 0);
1606 
1607 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1608 				       qc->tf.protocol == ATAPI_PROT_DMA))
1609 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1610 
1611 	return 1;	/* irq handled */
1612 
1613 idle_irq:
1614 	ap->stats.idle_irq++;
1615 
1616 #ifdef ATA_IRQ_TRAP
1617 	if ((ap->stats.idle_irq % 1000) == 0) {
1618 		ap->ops->sff_check_status(ap);
1619 		ap->ops->sff_irq_clear(ap);
1620 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1621 		return 1;
1622 	}
1623 #endif
1624 	return 0;	/* irq not handled */
1625 }
1626 
1627 /**
1628  *	ata_sff_interrupt - Default ATA host interrupt handler
1629  *	@irq: irq line (unused)
1630  *	@dev_instance: pointer to our ata_host information structure
1631  *
1632  *	Default interrupt handler for PCI IDE devices.  Calls
1633  *	ata_sff_host_intr() for each port that is not disabled.
1634  *
1635  *	LOCKING:
1636  *	Obtains host lock during operation.
1637  *
1638  *	RETURNS:
1639  *	IRQ_NONE or IRQ_HANDLED.
1640  */
1641 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1642 {
1643 	struct ata_host *host = dev_instance;
1644 	unsigned int i;
1645 	unsigned int handled = 0;
1646 	unsigned long flags;
1647 
1648 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1649 	spin_lock_irqsave(&host->lock, flags);
1650 
1651 	for (i = 0; i < host->n_ports; i++) {
1652 		struct ata_port *ap;
1653 
1654 		ap = host->ports[i];
1655 		if (ap &&
1656 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1657 			struct ata_queued_cmd *qc;
1658 
1659 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1660 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1661 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1662 				handled |= ata_sff_host_intr(ap, qc);
1663 		}
1664 	}
1665 
1666 	spin_unlock_irqrestore(&host->lock, flags);
1667 
1668 	return IRQ_RETVAL(handled);
1669 }
1670 
1671 /**
1672  *	ata_sff_freeze - Freeze SFF controller port
1673  *	@ap: port to freeze
1674  *
1675  *	Freeze BMDMA controller port.
1676  *
1677  *	LOCKING:
1678  *	Inherited from caller.
1679  */
1680 void ata_sff_freeze(struct ata_port *ap)
1681 {
1682 	struct ata_ioports *ioaddr = &ap->ioaddr;
1683 
1684 	ap->ctl |= ATA_NIEN;
1685 	ap->last_ctl = ap->ctl;
1686 
1687 	if (ioaddr->ctl_addr)
1688 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1689 
1690 	/* Under certain circumstances, some controllers raise IRQ on
1691 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1692 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1693 	 */
1694 	ap->ops->sff_check_status(ap);
1695 
1696 	ap->ops->sff_irq_clear(ap);
1697 }
1698 
1699 /**
1700  *	ata_sff_thaw - Thaw SFF controller port
1701  *	@ap: port to thaw
1702  *
1703  *	Thaw SFF controller port.
1704  *
1705  *	LOCKING:
1706  *	Inherited from caller.
1707  */
1708 void ata_sff_thaw(struct ata_port *ap)
1709 {
1710 	/* clear & re-enable interrupts */
1711 	ap->ops->sff_check_status(ap);
1712 	ap->ops->sff_irq_clear(ap);
1713 	ap->ops->sff_irq_on(ap);
1714 }
1715 
1716 /**
1717  *	ata_sff_prereset - prepare SFF link for reset
1718  *	@link: SFF link to be reset
1719  *	@deadline: deadline jiffies for the operation
1720  *
1721  *	SFF link @link is about to be reset.  Initialize it.  It first
1722  *	calls ata_std_prereset() and wait for !BSY if the port is
1723  *	being softreset.
1724  *
1725  *	LOCKING:
1726  *	Kernel thread context (may sleep)
1727  *
1728  *	RETURNS:
1729  *	0 on success, -errno otherwise.
1730  */
1731 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1732 {
1733 	struct ata_eh_context *ehc = &link->eh_context;
1734 	int rc;
1735 
1736 	rc = ata_std_prereset(link, deadline);
1737 	if (rc)
1738 		return rc;
1739 
1740 	/* if we're about to do hardreset, nothing more to do */
1741 	if (ehc->i.action & ATA_EH_HARDRESET)
1742 		return 0;
1743 
1744 	/* wait for !BSY if we don't know that no device is attached */
1745 	if (!ata_link_offline(link)) {
1746 		rc = ata_sff_wait_ready(link, deadline);
1747 		if (rc && rc != -ENODEV) {
1748 			ata_link_printk(link, KERN_WARNING, "device not ready "
1749 					"(errno=%d), forcing hardreset\n", rc);
1750 			ehc->i.action |= ATA_EH_HARDRESET;
1751 		}
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 /**
1758  *	ata_devchk - PATA device presence detection
1759  *	@ap: ATA channel to examine
1760  *	@device: Device to examine (starting at zero)
1761  *
1762  *	This technique was originally described in
1763  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1764  *	later found its way into the ATA/ATAPI spec.
1765  *
1766  *	Write a pattern to the ATA shadow registers,
1767  *	and if a device is present, it will respond by
1768  *	correctly storing and echoing back the
1769  *	ATA shadow register contents.
1770  *
1771  *	LOCKING:
1772  *	caller.
1773  */
1774 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1775 {
1776 	struct ata_ioports *ioaddr = &ap->ioaddr;
1777 	u8 nsect, lbal;
1778 
1779 	ap->ops->sff_dev_select(ap, device);
1780 
1781 	iowrite8(0x55, ioaddr->nsect_addr);
1782 	iowrite8(0xaa, ioaddr->lbal_addr);
1783 
1784 	iowrite8(0xaa, ioaddr->nsect_addr);
1785 	iowrite8(0x55, ioaddr->lbal_addr);
1786 
1787 	iowrite8(0x55, ioaddr->nsect_addr);
1788 	iowrite8(0xaa, ioaddr->lbal_addr);
1789 
1790 	nsect = ioread8(ioaddr->nsect_addr);
1791 	lbal = ioread8(ioaddr->lbal_addr);
1792 
1793 	if ((nsect == 0x55) && (lbal == 0xaa))
1794 		return 1;	/* we found a device */
1795 
1796 	return 0;		/* nothing found */
1797 }
1798 
1799 /**
1800  *	ata_sff_dev_classify - Parse returned ATA device signature
1801  *	@dev: ATA device to classify (starting at zero)
1802  *	@present: device seems present
1803  *	@r_err: Value of error register on completion
1804  *
1805  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1806  *	an ATA/ATAPI-defined set of values is placed in the ATA
1807  *	shadow registers, indicating the results of device detection
1808  *	and diagnostics.
1809  *
1810  *	Select the ATA device, and read the values from the ATA shadow
1811  *	registers.  Then parse according to the Error register value,
1812  *	and the spec-defined values examined by ata_dev_classify().
1813  *
1814  *	LOCKING:
1815  *	caller.
1816  *
1817  *	RETURNS:
1818  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1819  */
1820 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1821 				  u8 *r_err)
1822 {
1823 	struct ata_port *ap = dev->link->ap;
1824 	struct ata_taskfile tf;
1825 	unsigned int class;
1826 	u8 err;
1827 
1828 	ap->ops->sff_dev_select(ap, dev->devno);
1829 
1830 	memset(&tf, 0, sizeof(tf));
1831 
1832 	ap->ops->sff_tf_read(ap, &tf);
1833 	err = tf.feature;
1834 	if (r_err)
1835 		*r_err = err;
1836 
1837 	/* see if device passed diags: continue and warn later */
1838 	if (err == 0)
1839 		/* diagnostic fail : do nothing _YET_ */
1840 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1841 	else if (err == 1)
1842 		/* do nothing */ ;
1843 	else if ((dev->devno == 0) && (err == 0x81))
1844 		/* do nothing */ ;
1845 	else
1846 		return ATA_DEV_NONE;
1847 
1848 	/* determine if device is ATA or ATAPI */
1849 	class = ata_dev_classify(&tf);
1850 
1851 	if (class == ATA_DEV_UNKNOWN) {
1852 		/* If the device failed diagnostic, it's likely to
1853 		 * have reported incorrect device signature too.
1854 		 * Assume ATA device if the device seems present but
1855 		 * device signature is invalid with diagnostic
1856 		 * failure.
1857 		 */
1858 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1859 			class = ATA_DEV_ATA;
1860 		else
1861 			class = ATA_DEV_NONE;
1862 	} else if ((class == ATA_DEV_ATA) &&
1863 		   (ap->ops->sff_check_status(ap) == 0))
1864 		class = ATA_DEV_NONE;
1865 
1866 	return class;
1867 }
1868 
1869 /**
1870  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1871  *	@link: SFF link which is just reset
1872  *	@devmask: mask of present devices
1873  *	@deadline: deadline jiffies for the operation
1874  *
1875  *	Wait devices attached to SFF @link to become ready after
1876  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1877  *	status register too early.
1878  *
1879  *	LOCKING:
1880  *	Kernel thread context (may sleep).
1881  *
1882  *	RETURNS:
1883  *	0 on success, -ENODEV if some or all of devices in @devmask
1884  *	don't seem to exist.  -errno on other errors.
1885  */
1886 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1887 			     unsigned long deadline)
1888 {
1889 	struct ata_port *ap = link->ap;
1890 	struct ata_ioports *ioaddr = &ap->ioaddr;
1891 	unsigned int dev0 = devmask & (1 << 0);
1892 	unsigned int dev1 = devmask & (1 << 1);
1893 	int rc, ret = 0;
1894 
1895 	msleep(ATA_WAIT_AFTER_RESET);
1896 
1897 	/* always check readiness of the master device */
1898 	rc = ata_sff_wait_ready(link, deadline);
1899 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1900 	 * and TF status is 0xff, bail out on it too.
1901 	 */
1902 	if (rc)
1903 		return rc;
1904 
1905 	/* if device 1 was found in ata_devchk, wait for register
1906 	 * access briefly, then wait for BSY to clear.
1907 	 */
1908 	if (dev1) {
1909 		int i;
1910 
1911 		ap->ops->sff_dev_select(ap, 1);
1912 
1913 		/* Wait for register access.  Some ATAPI devices fail
1914 		 * to set nsect/lbal after reset, so don't waste too
1915 		 * much time on it.  We're gonna wait for !BSY anyway.
1916 		 */
1917 		for (i = 0; i < 2; i++) {
1918 			u8 nsect, lbal;
1919 
1920 			nsect = ioread8(ioaddr->nsect_addr);
1921 			lbal = ioread8(ioaddr->lbal_addr);
1922 			if ((nsect == 1) && (lbal == 1))
1923 				break;
1924 			msleep(50);	/* give drive a breather */
1925 		}
1926 
1927 		rc = ata_sff_wait_ready(link, deadline);
1928 		if (rc) {
1929 			if (rc != -ENODEV)
1930 				return rc;
1931 			ret = rc;
1932 		}
1933 	}
1934 
1935 	/* is all this really necessary? */
1936 	ap->ops->sff_dev_select(ap, 0);
1937 	if (dev1)
1938 		ap->ops->sff_dev_select(ap, 1);
1939 	if (dev0)
1940 		ap->ops->sff_dev_select(ap, 0);
1941 
1942 	return ret;
1943 }
1944 
1945 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1946 			     unsigned long deadline)
1947 {
1948 	struct ata_ioports *ioaddr = &ap->ioaddr;
1949 
1950 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1951 
1952 	/* software reset.  causes dev0 to be selected */
1953 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1954 	udelay(20);	/* FIXME: flush */
1955 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1956 	udelay(20);	/* FIXME: flush */
1957 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1958 
1959 	/* wait the port to become ready */
1960 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1961 }
1962 
1963 /**
1964  *	ata_sff_softreset - reset host port via ATA SRST
1965  *	@link: ATA link to reset
1966  *	@classes: resulting classes of attached devices
1967  *	@deadline: deadline jiffies for the operation
1968  *
1969  *	Reset host port using ATA SRST.
1970  *
1971  *	LOCKING:
1972  *	Kernel thread context (may sleep)
1973  *
1974  *	RETURNS:
1975  *	0 on success, -errno otherwise.
1976  */
1977 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1978 		      unsigned long deadline)
1979 {
1980 	struct ata_port *ap = link->ap;
1981 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1982 	unsigned int devmask = 0;
1983 	int rc;
1984 	u8 err;
1985 
1986 	DPRINTK("ENTER\n");
1987 
1988 	/* determine if device 0/1 are present */
1989 	if (ata_devchk(ap, 0))
1990 		devmask |= (1 << 0);
1991 	if (slave_possible && ata_devchk(ap, 1))
1992 		devmask |= (1 << 1);
1993 
1994 	/* select device 0 again */
1995 	ap->ops->sff_dev_select(ap, 0);
1996 
1997 	/* issue bus reset */
1998 	DPRINTK("about to softreset, devmask=%x\n", devmask);
1999 	rc = ata_bus_softreset(ap, devmask, deadline);
2000 	/* if link is occupied, -ENODEV too is an error */
2001 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2002 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2003 		return rc;
2004 	}
2005 
2006 	/* determine by signature whether we have ATA or ATAPI devices */
2007 	classes[0] = ata_sff_dev_classify(&link->device[0],
2008 					  devmask & (1 << 0), &err);
2009 	if (slave_possible && err != 0x81)
2010 		classes[1] = ata_sff_dev_classify(&link->device[1],
2011 						  devmask & (1 << 1), &err);
2012 
2013 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2014 	return 0;
2015 }
2016 
2017 /**
2018  *	sata_sff_hardreset - reset host port via SATA phy reset
2019  *	@link: link to reset
2020  *	@class: resulting class of attached device
2021  *	@deadline: deadline jiffies for the operation
2022  *
2023  *	SATA phy-reset host port using DET bits of SControl register,
2024  *	wait for !BSY and classify the attached device.
2025  *
2026  *	LOCKING:
2027  *	Kernel thread context (may sleep)
2028  *
2029  *	RETURNS:
2030  *	0 on success, -errno otherwise.
2031  */
2032 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2033 		       unsigned long deadline)
2034 {
2035 	struct ata_eh_context *ehc = &link->eh_context;
2036 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2037 	bool online;
2038 	int rc;
2039 
2040 	rc = sata_link_hardreset(link, timing, deadline, &online,
2041 				 ata_sff_check_ready);
2042 	if (online)
2043 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2044 
2045 	DPRINTK("EXIT, class=%u\n", *class);
2046 	return rc;
2047 }
2048 
2049 /**
2050  *	ata_sff_postreset - SFF postreset callback
2051  *	@link: the target SFF ata_link
2052  *	@classes: classes of attached devices
2053  *
2054  *	This function is invoked after a successful reset.  It first
2055  *	calls ata_std_postreset() and performs SFF specific postreset
2056  *	processing.
2057  *
2058  *	LOCKING:
2059  *	Kernel thread context (may sleep)
2060  */
2061 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2062 {
2063 	struct ata_port *ap = link->ap;
2064 
2065 	ata_std_postreset(link, classes);
2066 
2067 	/* is double-select really necessary? */
2068 	if (classes[0] != ATA_DEV_NONE)
2069 		ap->ops->sff_dev_select(ap, 1);
2070 	if (classes[1] != ATA_DEV_NONE)
2071 		ap->ops->sff_dev_select(ap, 0);
2072 
2073 	/* bail out if no device is present */
2074 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2075 		DPRINTK("EXIT, no device\n");
2076 		return;
2077 	}
2078 
2079 	/* set up device control */
2080 	if (ap->ioaddr.ctl_addr)
2081 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2082 }
2083 
2084 /**
2085  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2086  *	@ap: port to handle error for
2087  *
2088  *	Stock error handler for SFF controller.  It can handle both
2089  *	PATA and SATA controllers.  Many controllers should be able to
2090  *	use this EH as-is or with some added handling before and
2091  *	after.
2092  *
2093  *	LOCKING:
2094  *	Kernel thread context (may sleep)
2095  */
2096 void ata_sff_error_handler(struct ata_port *ap)
2097 {
2098 	ata_reset_fn_t softreset = ap->ops->softreset;
2099 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2100 	struct ata_queued_cmd *qc;
2101 	unsigned long flags;
2102 	int thaw = 0;
2103 
2104 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2105 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2106 		qc = NULL;
2107 
2108 	/* reset PIO HSM and stop DMA engine */
2109 	spin_lock_irqsave(ap->lock, flags);
2110 
2111 	ap->hsm_task_state = HSM_ST_IDLE;
2112 
2113 	if (ap->ioaddr.bmdma_addr &&
2114 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2115 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2116 		u8 host_stat;
2117 
2118 		host_stat = ap->ops->bmdma_status(ap);
2119 
2120 		/* BMDMA controllers indicate host bus error by
2121 		 * setting DMA_ERR bit and timing out.  As it wasn't
2122 		 * really a timeout event, adjust error mask and
2123 		 * cancel frozen state.
2124 		 */
2125 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2126 			qc->err_mask = AC_ERR_HOST_BUS;
2127 			thaw = 1;
2128 		}
2129 
2130 		ap->ops->bmdma_stop(qc);
2131 	}
2132 
2133 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2134 	ap->ops->sff_check_status(ap);
2135 	ap->ops->sff_irq_clear(ap);
2136 
2137 	spin_unlock_irqrestore(ap->lock, flags);
2138 
2139 	if (thaw)
2140 		ata_eh_thaw_port(ap);
2141 
2142 	/* PIO and DMA engines have been stopped, perform recovery */
2143 
2144 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2145 	 * built-in hardresets if SCR access isn't available.
2146 	 */
2147 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2148 		softreset = NULL;
2149 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2150 		hardreset = NULL;
2151 
2152 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2153 		  ap->ops->postreset);
2154 }
2155 
2156 /**
2157  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2158  *	@qc: internal command to clean up
2159  *
2160  *	LOCKING:
2161  *	Kernel thread context (may sleep)
2162  */
2163 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2164 {
2165 	struct ata_port *ap = qc->ap;
2166 	unsigned long flags;
2167 
2168 	spin_lock_irqsave(ap->lock, flags);
2169 
2170 	ap->hsm_task_state = HSM_ST_IDLE;
2171 
2172 	if (ap->ioaddr.bmdma_addr)
2173 		ata_bmdma_stop(qc);
2174 
2175 	spin_unlock_irqrestore(ap->lock, flags);
2176 }
2177 
2178 /**
2179  *	ata_sff_port_start - Set port up for dma.
2180  *	@ap: Port to initialize
2181  *
2182  *	Called just after data structures for each port are
2183  *	initialized.  Allocates space for PRD table if the device
2184  *	is DMA capable SFF.
2185  *
2186  *	May be used as the port_start() entry in ata_port_operations.
2187  *
2188  *	LOCKING:
2189  *	Inherited from caller.
2190  */
2191 int ata_sff_port_start(struct ata_port *ap)
2192 {
2193 	if (ap->ioaddr.bmdma_addr)
2194 		return ata_port_start(ap);
2195 	return 0;
2196 }
2197 
2198 /**
2199  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2200  *	@ioaddr: IO address structure to be initialized
2201  *
2202  *	Utility function which initializes data_addr, error_addr,
2203  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2204  *	device_addr, status_addr, and command_addr to standard offsets
2205  *	relative to cmd_addr.
2206  *
2207  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2208  */
2209 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2210 {
2211 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2212 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2213 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2214 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2215 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2216 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2217 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2218 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2219 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2220 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2221 }
2222 
2223 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2224 				    unsigned long xfer_mask)
2225 {
2226 	/* Filter out DMA modes if the device has been configured by
2227 	   the BIOS as PIO only */
2228 
2229 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2230 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2231 	return xfer_mask;
2232 }
2233 
2234 /**
2235  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2236  *	@qc: Info associated with this ATA transaction.
2237  *
2238  *	LOCKING:
2239  *	spin_lock_irqsave(host lock)
2240  */
2241 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2242 {
2243 	struct ata_port *ap = qc->ap;
2244 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2245 	u8 dmactl;
2246 
2247 	/* load PRD table addr. */
2248 	mb();	/* make sure PRD table writes are visible to controller */
2249 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2250 
2251 	/* specify data direction, triple-check start bit is clear */
2252 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2253 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2254 	if (!rw)
2255 		dmactl |= ATA_DMA_WR;
2256 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2257 
2258 	/* issue r/w command */
2259 	ap->ops->sff_exec_command(ap, &qc->tf);
2260 }
2261 
2262 /**
2263  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2264  *	@qc: Info associated with this ATA transaction.
2265  *
2266  *	LOCKING:
2267  *	spin_lock_irqsave(host lock)
2268  */
2269 void ata_bmdma_start(struct ata_queued_cmd *qc)
2270 {
2271 	struct ata_port *ap = qc->ap;
2272 	u8 dmactl;
2273 
2274 	/* start host DMA transaction */
2275 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2276 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2277 
2278 	/* Strictly, one may wish to issue an ioread8() here, to
2279 	 * flush the mmio write.  However, control also passes
2280 	 * to the hardware at this point, and it will interrupt
2281 	 * us when we are to resume control.  So, in effect,
2282 	 * we don't care when the mmio write flushes.
2283 	 * Further, a read of the DMA status register _immediately_
2284 	 * following the write may not be what certain flaky hardware
2285 	 * is expected, so I think it is best to not add a readb()
2286 	 * without first all the MMIO ATA cards/mobos.
2287 	 * Or maybe I'm just being paranoid.
2288 	 *
2289 	 * FIXME: The posting of this write means I/O starts are
2290 	 * unneccessarily delayed for MMIO
2291 	 */
2292 }
2293 
2294 /**
2295  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2296  *	@qc: Command we are ending DMA for
2297  *
2298  *	Clears the ATA_DMA_START flag in the dma control register
2299  *
2300  *	May be used as the bmdma_stop() entry in ata_port_operations.
2301  *
2302  *	LOCKING:
2303  *	spin_lock_irqsave(host lock)
2304  */
2305 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2306 {
2307 	struct ata_port *ap = qc->ap;
2308 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2309 
2310 	/* clear start/stop bit */
2311 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2312 		 mmio + ATA_DMA_CMD);
2313 
2314 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2315 	ata_sff_dma_pause(ap);
2316 }
2317 
2318 /**
2319  *	ata_bmdma_status - Read PCI IDE BMDMA status
2320  *	@ap: Port associated with this ATA transaction.
2321  *
2322  *	Read and return BMDMA status register.
2323  *
2324  *	May be used as the bmdma_status() entry in ata_port_operations.
2325  *
2326  *	LOCKING:
2327  *	spin_lock_irqsave(host lock)
2328  */
2329 u8 ata_bmdma_status(struct ata_port *ap)
2330 {
2331 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2332 }
2333 
2334 /**
2335  *	ata_bus_reset - reset host port and associated ATA channel
2336  *	@ap: port to reset
2337  *
2338  *	This is typically the first time we actually start issuing
2339  *	commands to the ATA channel.  We wait for BSY to clear, then
2340  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2341  *	result.  Determine what devices, if any, are on the channel
2342  *	by looking at the device 0/1 error register.  Look at the signature
2343  *	stored in each device's taskfile registers, to determine if
2344  *	the device is ATA or ATAPI.
2345  *
2346  *	LOCKING:
2347  *	PCI/etc. bus probe sem.
2348  *	Obtains host lock.
2349  *
2350  *	SIDE EFFECTS:
2351  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2352  *
2353  *	DEPRECATED:
2354  *	This function is only for drivers which still use old EH and
2355  *	will be removed soon.
2356  */
2357 void ata_bus_reset(struct ata_port *ap)
2358 {
2359 	struct ata_device *device = ap->link.device;
2360 	struct ata_ioports *ioaddr = &ap->ioaddr;
2361 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2362 	u8 err;
2363 	unsigned int dev0, dev1 = 0, devmask = 0;
2364 	int rc;
2365 
2366 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2367 
2368 	/* determine if device 0/1 are present */
2369 	if (ap->flags & ATA_FLAG_SATA_RESET)
2370 		dev0 = 1;
2371 	else {
2372 		dev0 = ata_devchk(ap, 0);
2373 		if (slave_possible)
2374 			dev1 = ata_devchk(ap, 1);
2375 	}
2376 
2377 	if (dev0)
2378 		devmask |= (1 << 0);
2379 	if (dev1)
2380 		devmask |= (1 << 1);
2381 
2382 	/* select device 0 again */
2383 	ap->ops->sff_dev_select(ap, 0);
2384 
2385 	/* issue bus reset */
2386 	if (ap->flags & ATA_FLAG_SRST) {
2387 		rc = ata_bus_softreset(ap, devmask,
2388 				       ata_deadline(jiffies, 40000));
2389 		if (rc && rc != -ENODEV)
2390 			goto err_out;
2391 	}
2392 
2393 	/*
2394 	 * determine by signature whether we have ATA or ATAPI devices
2395 	 */
2396 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2397 	if ((slave_possible) && (err != 0x81))
2398 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2399 
2400 	/* is double-select really necessary? */
2401 	if (device[1].class != ATA_DEV_NONE)
2402 		ap->ops->sff_dev_select(ap, 1);
2403 	if (device[0].class != ATA_DEV_NONE)
2404 		ap->ops->sff_dev_select(ap, 0);
2405 
2406 	/* if no devices were detected, disable this port */
2407 	if ((device[0].class == ATA_DEV_NONE) &&
2408 	    (device[1].class == ATA_DEV_NONE))
2409 		goto err_out;
2410 
2411 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2412 		/* set up device control for ATA_FLAG_SATA_RESET */
2413 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2414 	}
2415 
2416 	DPRINTK("EXIT\n");
2417 	return;
2418 
2419 err_out:
2420 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2421 	ata_port_disable(ap);
2422 
2423 	DPRINTK("EXIT\n");
2424 }
2425 
2426 #ifdef CONFIG_PCI
2427 
2428 /**
2429  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2430  *	@pdev: PCI device
2431  *
2432  *	Some PCI ATA devices report simplex mode but in fact can be told to
2433  *	enter non simplex mode. This implements the necessary logic to
2434  *	perform the task on such devices. Calling it on other devices will
2435  *	have -undefined- behaviour.
2436  */
2437 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2438 {
2439 	unsigned long bmdma = pci_resource_start(pdev, 4);
2440 	u8 simplex;
2441 
2442 	if (bmdma == 0)
2443 		return -ENOENT;
2444 
2445 	simplex = inb(bmdma + 0x02);
2446 	outb(simplex & 0x60, bmdma + 0x02);
2447 	simplex = inb(bmdma + 0x02);
2448 	if (simplex & 0x80)
2449 		return -EOPNOTSUPP;
2450 	return 0;
2451 }
2452 
2453 /**
2454  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2455  *	@host: target ATA host
2456  *
2457  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2458  *
2459  *	LOCKING:
2460  *	Inherited from calling layer (may sleep).
2461  *
2462  *	RETURNS:
2463  *	0 on success, -errno otherwise.
2464  */
2465 int ata_pci_bmdma_init(struct ata_host *host)
2466 {
2467 	struct device *gdev = host->dev;
2468 	struct pci_dev *pdev = to_pci_dev(gdev);
2469 	int i, rc;
2470 
2471 	/* No BAR4 allocation: No DMA */
2472 	if (pci_resource_start(pdev, 4) == 0)
2473 		return 0;
2474 
2475 	/* TODO: If we get no DMA mask we should fall back to PIO */
2476 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2477 	if (rc)
2478 		return rc;
2479 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2480 	if (rc)
2481 		return rc;
2482 
2483 	/* request and iomap DMA region */
2484 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2485 	if (rc) {
2486 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2487 		return -ENOMEM;
2488 	}
2489 	host->iomap = pcim_iomap_table(pdev);
2490 
2491 	for (i = 0; i < 2; i++) {
2492 		struct ata_port *ap = host->ports[i];
2493 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2494 
2495 		if (ata_port_is_dummy(ap))
2496 			continue;
2497 
2498 		ap->ioaddr.bmdma_addr = bmdma;
2499 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2500 		    (ioread8(bmdma + 2) & 0x80))
2501 			host->flags |= ATA_HOST_SIMPLEX;
2502 
2503 		ata_port_desc(ap, "bmdma 0x%llx",
2504 			(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static int ata_resources_present(struct pci_dev *pdev, int port)
2511 {
2512 	int i;
2513 
2514 	/* Check the PCI resources for this channel are enabled */
2515 	port = port * 2;
2516 	for (i = 0; i < 2; i ++) {
2517 		if (pci_resource_start(pdev, port + i) == 0 ||
2518 		    pci_resource_len(pdev, port + i) == 0)
2519 			return 0;
2520 	}
2521 	return 1;
2522 }
2523 
2524 /**
2525  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2526  *	@host: target ATA host
2527  *
2528  *	Acquire native PCI ATA resources for @host and initialize the
2529  *	first two ports of @host accordingly.  Ports marked dummy are
2530  *	skipped and allocation failure makes the port dummy.
2531  *
2532  *	Note that native PCI resources are valid even for legacy hosts
2533  *	as we fix up pdev resources array early in boot, so this
2534  *	function can be used for both native and legacy SFF hosts.
2535  *
2536  *	LOCKING:
2537  *	Inherited from calling layer (may sleep).
2538  *
2539  *	RETURNS:
2540  *	0 if at least one port is initialized, -ENODEV if no port is
2541  *	available.
2542  */
2543 int ata_pci_sff_init_host(struct ata_host *host)
2544 {
2545 	struct device *gdev = host->dev;
2546 	struct pci_dev *pdev = to_pci_dev(gdev);
2547 	unsigned int mask = 0;
2548 	int i, rc;
2549 
2550 	/* request, iomap BARs and init port addresses accordingly */
2551 	for (i = 0; i < 2; i++) {
2552 		struct ata_port *ap = host->ports[i];
2553 		int base = i * 2;
2554 		void __iomem * const *iomap;
2555 
2556 		if (ata_port_is_dummy(ap))
2557 			continue;
2558 
2559 		/* Discard disabled ports.  Some controllers show
2560 		 * their unused channels this way.  Disabled ports are
2561 		 * made dummy.
2562 		 */
2563 		if (!ata_resources_present(pdev, i)) {
2564 			ap->ops = &ata_dummy_port_ops;
2565 			continue;
2566 		}
2567 
2568 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2569 					dev_driver_string(gdev));
2570 		if (rc) {
2571 			dev_printk(KERN_WARNING, gdev,
2572 				   "failed to request/iomap BARs for port %d "
2573 				   "(errno=%d)\n", i, rc);
2574 			if (rc == -EBUSY)
2575 				pcim_pin_device(pdev);
2576 			ap->ops = &ata_dummy_port_ops;
2577 			continue;
2578 		}
2579 		host->iomap = iomap = pcim_iomap_table(pdev);
2580 
2581 		ap->ioaddr.cmd_addr = iomap[base];
2582 		ap->ioaddr.altstatus_addr =
2583 		ap->ioaddr.ctl_addr = (void __iomem *)
2584 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2585 		ata_sff_std_ports(&ap->ioaddr);
2586 
2587 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2588 			(unsigned long long)pci_resource_start(pdev, base),
2589 			(unsigned long long)pci_resource_start(pdev, base + 1));
2590 
2591 		mask |= 1 << i;
2592 	}
2593 
2594 	if (!mask) {
2595 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2596 		return -ENODEV;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 /**
2603  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2604  *	@pdev: target PCI device
2605  *	@ppi: array of port_info, must be enough for two ports
2606  *	@r_host: out argument for the initialized ATA host
2607  *
2608  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2609  *	resources and initialize it accordingly in one go.
2610  *
2611  *	LOCKING:
2612  *	Inherited from calling layer (may sleep).
2613  *
2614  *	RETURNS:
2615  *	0 on success, -errno otherwise.
2616  */
2617 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2618 			     const struct ata_port_info * const * ppi,
2619 			     struct ata_host **r_host)
2620 {
2621 	struct ata_host *host;
2622 	int rc;
2623 
2624 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2625 		return -ENOMEM;
2626 
2627 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2628 	if (!host) {
2629 		dev_printk(KERN_ERR, &pdev->dev,
2630 			   "failed to allocate ATA host\n");
2631 		rc = -ENOMEM;
2632 		goto err_out;
2633 	}
2634 
2635 	rc = ata_pci_sff_init_host(host);
2636 	if (rc)
2637 		goto err_out;
2638 
2639 	/* init DMA related stuff */
2640 	rc = ata_pci_bmdma_init(host);
2641 	if (rc)
2642 		goto err_bmdma;
2643 
2644 	devres_remove_group(&pdev->dev, NULL);
2645 	*r_host = host;
2646 	return 0;
2647 
2648  err_bmdma:
2649 	/* This is necessary because PCI and iomap resources are
2650 	 * merged and releasing the top group won't release the
2651 	 * acquired resources if some of those have been acquired
2652 	 * before entering this function.
2653 	 */
2654 	pcim_iounmap_regions(pdev, 0xf);
2655  err_out:
2656 	devres_release_group(&pdev->dev, NULL);
2657 	return rc;
2658 }
2659 
2660 /**
2661  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2662  *	@host: target SFF ATA host
2663  *	@irq_handler: irq_handler used when requesting IRQ(s)
2664  *	@sht: scsi_host_template to use when registering the host
2665  *
2666  *	This is the counterpart of ata_host_activate() for SFF ATA
2667  *	hosts.  This separate helper is necessary because SFF hosts
2668  *	use two separate interrupts in legacy mode.
2669  *
2670  *	LOCKING:
2671  *	Inherited from calling layer (may sleep).
2672  *
2673  *	RETURNS:
2674  *	0 on success, -errno otherwise.
2675  */
2676 int ata_pci_sff_activate_host(struct ata_host *host,
2677 			      irq_handler_t irq_handler,
2678 			      struct scsi_host_template *sht)
2679 {
2680 	struct device *dev = host->dev;
2681 	struct pci_dev *pdev = to_pci_dev(dev);
2682 	const char *drv_name = dev_driver_string(host->dev);
2683 	int legacy_mode = 0, rc;
2684 
2685 	rc = ata_host_start(host);
2686 	if (rc)
2687 		return rc;
2688 
2689 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2690 		u8 tmp8, mask;
2691 
2692 		/* TODO: What if one channel is in native mode ... */
2693 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2694 		mask = (1 << 2) | (1 << 0);
2695 		if ((tmp8 & mask) != mask)
2696 			legacy_mode = 1;
2697 #if defined(CONFIG_NO_ATA_LEGACY)
2698 		/* Some platforms with PCI limits cannot address compat
2699 		   port space. In that case we punt if their firmware has
2700 		   left a device in compatibility mode */
2701 		if (legacy_mode) {
2702 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2703 			return -EOPNOTSUPP;
2704 		}
2705 #endif
2706 	}
2707 
2708 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2709 		return -ENOMEM;
2710 
2711 	if (!legacy_mode && pdev->irq) {
2712 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2713 				      IRQF_SHARED, drv_name, host);
2714 		if (rc)
2715 			goto out;
2716 
2717 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2718 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2719 	} else if (legacy_mode) {
2720 		if (!ata_port_is_dummy(host->ports[0])) {
2721 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2722 					      irq_handler, IRQF_SHARED,
2723 					      drv_name, host);
2724 			if (rc)
2725 				goto out;
2726 
2727 			ata_port_desc(host->ports[0], "irq %d",
2728 				      ATA_PRIMARY_IRQ(pdev));
2729 		}
2730 
2731 		if (!ata_port_is_dummy(host->ports[1])) {
2732 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2733 					      irq_handler, IRQF_SHARED,
2734 					      drv_name, host);
2735 			if (rc)
2736 				goto out;
2737 
2738 			ata_port_desc(host->ports[1], "irq %d",
2739 				      ATA_SECONDARY_IRQ(pdev));
2740 		}
2741 	}
2742 
2743 	rc = ata_host_register(host, sht);
2744  out:
2745 	if (rc == 0)
2746 		devres_remove_group(dev, NULL);
2747 	else
2748 		devres_release_group(dev, NULL);
2749 
2750 	return rc;
2751 }
2752 
2753 /**
2754  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2755  *	@pdev: Controller to be initialized
2756  *	@ppi: array of port_info, must be enough for two ports
2757  *	@sht: scsi_host_template to use when registering the host
2758  *	@host_priv: host private_data
2759  *
2760  *	This is a helper function which can be called from a driver's
2761  *	xxx_init_one() probe function if the hardware uses traditional
2762  *	IDE taskfile registers.
2763  *
2764  *	This function calls pci_enable_device(), reserves its register
2765  *	regions, sets the dma mask, enables bus master mode, and calls
2766  *	ata_device_add()
2767  *
2768  *	ASSUMPTION:
2769  *	Nobody makes a single channel controller that appears solely as
2770  *	the secondary legacy port on PCI.
2771  *
2772  *	LOCKING:
2773  *	Inherited from PCI layer (may sleep).
2774  *
2775  *	RETURNS:
2776  *	Zero on success, negative on errno-based value on error.
2777  */
2778 int ata_pci_sff_init_one(struct pci_dev *pdev,
2779 			 const struct ata_port_info * const * ppi,
2780 			 struct scsi_host_template *sht, void *host_priv)
2781 {
2782 	struct device *dev = &pdev->dev;
2783 	const struct ata_port_info *pi = NULL;
2784 	struct ata_host *host = NULL;
2785 	int i, rc;
2786 
2787 	DPRINTK("ENTER\n");
2788 
2789 	/* look up the first valid port_info */
2790 	for (i = 0; i < 2 && ppi[i]; i++) {
2791 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2792 			pi = ppi[i];
2793 			break;
2794 		}
2795 	}
2796 
2797 	if (!pi) {
2798 		dev_printk(KERN_ERR, &pdev->dev,
2799 			   "no valid port_info specified\n");
2800 		return -EINVAL;
2801 	}
2802 
2803 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2804 		return -ENOMEM;
2805 
2806 	rc = pcim_enable_device(pdev);
2807 	if (rc)
2808 		goto out;
2809 
2810 	/* prepare and activate SFF host */
2811 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2812 	if (rc)
2813 		goto out;
2814 	host->private_data = host_priv;
2815 
2816 	pci_set_master(pdev);
2817 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2818  out:
2819 	if (rc == 0)
2820 		devres_remove_group(&pdev->dev, NULL);
2821 	else
2822 		devres_release_group(&pdev->dev, NULL);
2823 
2824 	return rc;
2825 }
2826 
2827 #endif /* CONFIG_PCI */
2828 
2829 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2830 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2831 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2832 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2833 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2834 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2835 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
2836 EXPORT_SYMBOL_GPL(ata_sff_pause);
2837 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2838 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2839 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2840 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2841 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2842 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2843 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2844 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2845 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2846 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2847 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2848 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
2849 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2850 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2851 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2852 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2853 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2854 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2855 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2856 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2857 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2858 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2859 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2860 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2861 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2862 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2863 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2864 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2865 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2866 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2867 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2868 EXPORT_SYMBOL_GPL(ata_bus_reset);
2869 #ifdef CONFIG_PCI
2870 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2871 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2872 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2873 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2874 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2875 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2876 #endif /* CONFIG_PCI */
2877