xref: /linux/drivers/ata/libata-sff.c (revision 8b1935e6a36b0967efc593d67ed3aebbfbc1f5b1)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.drain_fifo		= ata_sff_drain_fifo,
56 	.error_handler		= ata_sff_error_handler,
57 	.post_internal_cmd	= ata_sff_post_internal_cmd,
58 
59 	.sff_dev_select		= ata_sff_dev_select,
60 	.sff_check_status	= ata_sff_check_status,
61 	.sff_tf_load		= ata_sff_tf_load,
62 	.sff_tf_read		= ata_sff_tf_read,
63 	.sff_exec_command	= ata_sff_exec_command,
64 	.sff_data_xfer		= ata_sff_data_xfer,
65 	.sff_irq_on		= ata_sff_irq_on,
66 	.sff_irq_clear		= ata_sff_irq_clear,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 
70 	.port_start		= ata_sff_port_start,
71 };
72 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
73 
74 const struct ata_port_operations ata_bmdma_port_ops = {
75 	.inherits		= &ata_sff_port_ops,
76 
77 	.mode_filter		= ata_bmdma_mode_filter,
78 
79 	.bmdma_setup		= ata_bmdma_setup,
80 	.bmdma_start		= ata_bmdma_start,
81 	.bmdma_stop		= ata_bmdma_stop,
82 	.bmdma_status		= ata_bmdma_status,
83 };
84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
85 
86 const struct ata_port_operations ata_bmdma32_port_ops = {
87 	.inherits		= &ata_bmdma_port_ops,
88 
89 	.sff_data_xfer		= ata_sff_data_xfer32,
90 	.port_start		= ata_sff_port_start32,
91 };
92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
93 
94 /**
95  *	ata_fill_sg - Fill PCI IDE PRD table
96  *	@qc: Metadata associated with taskfile to be transferred
97  *
98  *	Fill PCI IDE PRD (scatter-gather) table with segments
99  *	associated with the current disk command.
100  *
101  *	LOCKING:
102  *	spin_lock_irqsave(host lock)
103  *
104  */
105 static void ata_fill_sg(struct ata_queued_cmd *qc)
106 {
107 	struct ata_port *ap = qc->ap;
108 	struct scatterlist *sg;
109 	unsigned int si, pi;
110 
111 	pi = 0;
112 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
113 		u32 addr, offset;
114 		u32 sg_len, len;
115 
116 		/* determine if physical DMA addr spans 64K boundary.
117 		 * Note h/w doesn't support 64-bit, so we unconditionally
118 		 * truncate dma_addr_t to u32.
119 		 */
120 		addr = (u32) sg_dma_address(sg);
121 		sg_len = sg_dma_len(sg);
122 
123 		while (sg_len) {
124 			offset = addr & 0xffff;
125 			len = sg_len;
126 			if ((offset + sg_len) > 0x10000)
127 				len = 0x10000 - offset;
128 
129 			ap->prd[pi].addr = cpu_to_le32(addr);
130 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
131 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
132 
133 			pi++;
134 			sg_len -= len;
135 			addr += len;
136 		}
137 	}
138 
139 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
140 }
141 
142 /**
143  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
144  *	@qc: Metadata associated with taskfile to be transferred
145  *
146  *	Fill PCI IDE PRD (scatter-gather) table with segments
147  *	associated with the current disk command. Perform the fill
148  *	so that we avoid writing any length 64K records for
149  *	controllers that don't follow the spec.
150  *
151  *	LOCKING:
152  *	spin_lock_irqsave(host lock)
153  *
154  */
155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
156 {
157 	struct ata_port *ap = qc->ap;
158 	struct scatterlist *sg;
159 	unsigned int si, pi;
160 
161 	pi = 0;
162 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
163 		u32 addr, offset;
164 		u32 sg_len, len, blen;
165 
166 		/* determine if physical DMA addr spans 64K boundary.
167 		 * Note h/w doesn't support 64-bit, so we unconditionally
168 		 * truncate dma_addr_t to u32.
169 		 */
170 		addr = (u32) sg_dma_address(sg);
171 		sg_len = sg_dma_len(sg);
172 
173 		while (sg_len) {
174 			offset = addr & 0xffff;
175 			len = sg_len;
176 			if ((offset + sg_len) > 0x10000)
177 				len = 0x10000 - offset;
178 
179 			blen = len & 0xffff;
180 			ap->prd[pi].addr = cpu_to_le32(addr);
181 			if (blen == 0) {
182 				/* Some PATA chipsets like the CS5530 can't
183 				   cope with 0x0000 meaning 64K as the spec
184 				   says */
185 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
186 				blen = 0x8000;
187 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
188 			}
189 			ap->prd[pi].flags_len = cpu_to_le32(blen);
190 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
191 
192 			pi++;
193 			sg_len -= len;
194 			addr += len;
195 		}
196 	}
197 
198 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
199 }
200 
201 /**
202  *	ata_sff_qc_prep - Prepare taskfile for submission
203  *	@qc: Metadata associated with taskfile to be prepared
204  *
205  *	Prepare ATA taskfile for submission.
206  *
207  *	LOCKING:
208  *	spin_lock_irqsave(host lock)
209  */
210 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
211 {
212 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
213 		return;
214 
215 	ata_fill_sg(qc);
216 }
217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
218 
219 /**
220  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
221  *	@qc: Metadata associated with taskfile to be prepared
222  *
223  *	Prepare ATA taskfile for submission.
224  *
225  *	LOCKING:
226  *	spin_lock_irqsave(host lock)
227  */
228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
229 {
230 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
231 		return;
232 
233 	ata_fill_sg_dumb(qc);
234 }
235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
236 
237 /**
238  *	ata_sff_check_status - Read device status reg & clear interrupt
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile status register for currently-selected device
242  *	and return its value. This also clears pending interrupts
243  *      from this device
244  *
245  *	LOCKING:
246  *	Inherited from caller.
247  */
248 u8 ata_sff_check_status(struct ata_port *ap)
249 {
250 	return ioread8(ap->ioaddr.status_addr);
251 }
252 EXPORT_SYMBOL_GPL(ata_sff_check_status);
253 
254 /**
255  *	ata_sff_altstatus - Read device alternate status reg
256  *	@ap: port where the device is
257  *
258  *	Reads ATA taskfile alternate status register for
259  *	currently-selected device and return its value.
260  *
261  *	Note: may NOT be used as the check_altstatus() entry in
262  *	ata_port_operations.
263  *
264  *	LOCKING:
265  *	Inherited from caller.
266  */
267 static u8 ata_sff_altstatus(struct ata_port *ap)
268 {
269 	if (ap->ops->sff_check_altstatus)
270 		return ap->ops->sff_check_altstatus(ap);
271 
272 	return ioread8(ap->ioaddr.altstatus_addr);
273 }
274 
275 /**
276  *	ata_sff_irq_status - Check if the device is busy
277  *	@ap: port where the device is
278  *
279  *	Determine if the port is currently busy. Uses altstatus
280  *	if available in order to avoid clearing shared IRQ status
281  *	when finding an IRQ source. Non ctl capable devices don't
282  *	share interrupt lines fortunately for us.
283  *
284  *	LOCKING:
285  *	Inherited from caller.
286  */
287 static u8 ata_sff_irq_status(struct ata_port *ap)
288 {
289 	u8 status;
290 
291 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
292 		status = ata_sff_altstatus(ap);
293 		/* Not us: We are busy */
294 		if (status & ATA_BUSY)
295 			return status;
296 	}
297 	/* Clear INTRQ latch */
298 	status = ap->ops->sff_check_status(ap);
299 	return status;
300 }
301 
302 /**
303  *	ata_sff_sync - Flush writes
304  *	@ap: Port to wait for.
305  *
306  *	CAUTION:
307  *	If we have an mmio device with no ctl and no altstatus
308  *	method this will fail. No such devices are known to exist.
309  *
310  *	LOCKING:
311  *	Inherited from caller.
312  */
313 
314 static void ata_sff_sync(struct ata_port *ap)
315 {
316 	if (ap->ops->sff_check_altstatus)
317 		ap->ops->sff_check_altstatus(ap);
318 	else if (ap->ioaddr.altstatus_addr)
319 		ioread8(ap->ioaddr.altstatus_addr);
320 }
321 
322 /**
323  *	ata_sff_pause		-	Flush writes and wait 400nS
324  *	@ap: Port to pause for.
325  *
326  *	CAUTION:
327  *	If we have an mmio device with no ctl and no altstatus
328  *	method this will fail. No such devices are known to exist.
329  *
330  *	LOCKING:
331  *	Inherited from caller.
332  */
333 
334 void ata_sff_pause(struct ata_port *ap)
335 {
336 	ata_sff_sync(ap);
337 	ndelay(400);
338 }
339 EXPORT_SYMBOL_GPL(ata_sff_pause);
340 
341 /**
342  *	ata_sff_dma_pause	-	Pause before commencing DMA
343  *	@ap: Port to pause for.
344  *
345  *	Perform I/O fencing and ensure sufficient cycle delays occur
346  *	for the HDMA1:0 transition
347  */
348 
349 void ata_sff_dma_pause(struct ata_port *ap)
350 {
351 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
352 		/* An altstatus read will cause the needed delay without
353 		   messing up the IRQ status */
354 		ata_sff_altstatus(ap);
355 		return;
356 	}
357 	/* There are no DMA controllers without ctl. BUG here to ensure
358 	   we never violate the HDMA1:0 transition timing and risk
359 	   corruption. */
360 	BUG();
361 }
362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
363 
364 /**
365  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
366  *	@ap: port containing status register to be polled
367  *	@tmout_pat: impatience timeout in msecs
368  *	@tmout: overall timeout in msecs
369  *
370  *	Sleep until ATA Status register bit BSY clears,
371  *	or a timeout occurs.
372  *
373  *	LOCKING:
374  *	Kernel thread context (may sleep).
375  *
376  *	RETURNS:
377  *	0 on success, -errno otherwise.
378  */
379 int ata_sff_busy_sleep(struct ata_port *ap,
380 		       unsigned long tmout_pat, unsigned long tmout)
381 {
382 	unsigned long timer_start, timeout;
383 	u8 status;
384 
385 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
386 	timer_start = jiffies;
387 	timeout = ata_deadline(timer_start, tmout_pat);
388 	while (status != 0xff && (status & ATA_BUSY) &&
389 	       time_before(jiffies, timeout)) {
390 		msleep(50);
391 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
392 	}
393 
394 	if (status != 0xff && (status & ATA_BUSY))
395 		ata_port_printk(ap, KERN_WARNING,
396 				"port is slow to respond, please be patient "
397 				"(Status 0x%x)\n", status);
398 
399 	timeout = ata_deadline(timer_start, tmout);
400 	while (status != 0xff && (status & ATA_BUSY) &&
401 	       time_before(jiffies, timeout)) {
402 		msleep(50);
403 		status = ap->ops->sff_check_status(ap);
404 	}
405 
406 	if (status == 0xff)
407 		return -ENODEV;
408 
409 	if (status & ATA_BUSY) {
410 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
411 				"(%lu secs, Status 0x%x)\n",
412 				DIV_ROUND_UP(tmout, 1000), status);
413 		return -EBUSY;
414 	}
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
419 
420 static int ata_sff_check_ready(struct ata_link *link)
421 {
422 	u8 status = link->ap->ops->sff_check_status(link->ap);
423 
424 	return ata_check_ready(status);
425 }
426 
427 /**
428  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
429  *	@link: SFF link to wait ready status for
430  *	@deadline: deadline jiffies for the operation
431  *
432  *	Sleep until ATA Status register bit BSY clears, or timeout
433  *	occurs.
434  *
435  *	LOCKING:
436  *	Kernel thread context (may sleep).
437  *
438  *	RETURNS:
439  *	0 on success, -errno otherwise.
440  */
441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
442 {
443 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
446 
447 /**
448  *	ata_sff_dev_select - Select device 0/1 on ATA bus
449  *	@ap: ATA channel to manipulate
450  *	@device: ATA device (numbered from zero) to select
451  *
452  *	Use the method defined in the ATA specification to
453  *	make either device 0, or device 1, active on the
454  *	ATA channel.  Works with both PIO and MMIO.
455  *
456  *	May be used as the dev_select() entry in ata_port_operations.
457  *
458  *	LOCKING:
459  *	caller.
460  */
461 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
462 {
463 	u8 tmp;
464 
465 	if (device == 0)
466 		tmp = ATA_DEVICE_OBS;
467 	else
468 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
469 
470 	iowrite8(tmp, ap->ioaddr.device_addr);
471 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
472 }
473 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
474 
475 /**
476  *	ata_dev_select - Select device 0/1 on ATA bus
477  *	@ap: ATA channel to manipulate
478  *	@device: ATA device (numbered from zero) to select
479  *	@wait: non-zero to wait for Status register BSY bit to clear
480  *	@can_sleep: non-zero if context allows sleeping
481  *
482  *	Use the method defined in the ATA specification to
483  *	make either device 0, or device 1, active on the
484  *	ATA channel.
485  *
486  *	This is a high-level version of ata_sff_dev_select(), which
487  *	additionally provides the services of inserting the proper
488  *	pauses and status polling, where needed.
489  *
490  *	LOCKING:
491  *	caller.
492  */
493 void ata_dev_select(struct ata_port *ap, unsigned int device,
494 			   unsigned int wait, unsigned int can_sleep)
495 {
496 	if (ata_msg_probe(ap))
497 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
498 				"device %u, wait %u\n", device, wait);
499 
500 	if (wait)
501 		ata_wait_idle(ap);
502 
503 	ap->ops->sff_dev_select(ap, device);
504 
505 	if (wait) {
506 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
507 			msleep(150);
508 		ata_wait_idle(ap);
509 	}
510 }
511 
512 /**
513  *	ata_sff_irq_on - Enable interrupts on a port.
514  *	@ap: Port on which interrupts are enabled.
515  *
516  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
517  *	wait for idle, clear any pending interrupts.
518  *
519  *	LOCKING:
520  *	Inherited from caller.
521  */
522 u8 ata_sff_irq_on(struct ata_port *ap)
523 {
524 	struct ata_ioports *ioaddr = &ap->ioaddr;
525 	u8 tmp;
526 
527 	ap->ctl &= ~ATA_NIEN;
528 	ap->last_ctl = ap->ctl;
529 
530 	if (ioaddr->ctl_addr)
531 		iowrite8(ap->ctl, ioaddr->ctl_addr);
532 	tmp = ata_wait_idle(ap);
533 
534 	ap->ops->sff_irq_clear(ap);
535 
536 	return tmp;
537 }
538 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
539 
540 /**
541  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
542  *	@ap: Port associated with this ATA transaction.
543  *
544  *	Clear interrupt and error flags in DMA status register.
545  *
546  *	May be used as the irq_clear() entry in ata_port_operations.
547  *
548  *	LOCKING:
549  *	spin_lock_irqsave(host lock)
550  */
551 void ata_sff_irq_clear(struct ata_port *ap)
552 {
553 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
554 
555 	if (!mmio)
556 		return;
557 
558 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
559 }
560 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
561 
562 /**
563  *	ata_sff_tf_load - send taskfile registers to host controller
564  *	@ap: Port to which output is sent
565  *	@tf: ATA taskfile register set
566  *
567  *	Outputs ATA taskfile to standard ATA host controller.
568  *
569  *	LOCKING:
570  *	Inherited from caller.
571  */
572 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
573 {
574 	struct ata_ioports *ioaddr = &ap->ioaddr;
575 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
576 
577 	if (tf->ctl != ap->last_ctl) {
578 		if (ioaddr->ctl_addr)
579 			iowrite8(tf->ctl, ioaddr->ctl_addr);
580 		ap->last_ctl = tf->ctl;
581 		ata_wait_idle(ap);
582 	}
583 
584 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
585 		WARN_ON_ONCE(!ioaddr->ctl_addr);
586 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
587 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
588 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
589 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
590 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
591 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
592 			tf->hob_feature,
593 			tf->hob_nsect,
594 			tf->hob_lbal,
595 			tf->hob_lbam,
596 			tf->hob_lbah);
597 	}
598 
599 	if (is_addr) {
600 		iowrite8(tf->feature, ioaddr->feature_addr);
601 		iowrite8(tf->nsect, ioaddr->nsect_addr);
602 		iowrite8(tf->lbal, ioaddr->lbal_addr);
603 		iowrite8(tf->lbam, ioaddr->lbam_addr);
604 		iowrite8(tf->lbah, ioaddr->lbah_addr);
605 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
606 			tf->feature,
607 			tf->nsect,
608 			tf->lbal,
609 			tf->lbam,
610 			tf->lbah);
611 	}
612 
613 	if (tf->flags & ATA_TFLAG_DEVICE) {
614 		iowrite8(tf->device, ioaddr->device_addr);
615 		VPRINTK("device 0x%X\n", tf->device);
616 	}
617 
618 	ata_wait_idle(ap);
619 }
620 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
621 
622 /**
623  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
624  *	@ap: Port from which input is read
625  *	@tf: ATA taskfile register set for storing input
626  *
627  *	Reads ATA taskfile registers for currently-selected device
628  *	into @tf. Assumes the device has a fully SFF compliant task file
629  *	layout and behaviour. If you device does not (eg has a different
630  *	status method) then you will need to provide a replacement tf_read
631  *
632  *	LOCKING:
633  *	Inherited from caller.
634  */
635 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
636 {
637 	struct ata_ioports *ioaddr = &ap->ioaddr;
638 
639 	tf->command = ata_sff_check_status(ap);
640 	tf->feature = ioread8(ioaddr->error_addr);
641 	tf->nsect = ioread8(ioaddr->nsect_addr);
642 	tf->lbal = ioread8(ioaddr->lbal_addr);
643 	tf->lbam = ioread8(ioaddr->lbam_addr);
644 	tf->lbah = ioread8(ioaddr->lbah_addr);
645 	tf->device = ioread8(ioaddr->device_addr);
646 
647 	if (tf->flags & ATA_TFLAG_LBA48) {
648 		if (likely(ioaddr->ctl_addr)) {
649 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
650 			tf->hob_feature = ioread8(ioaddr->error_addr);
651 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
652 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
653 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
654 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
655 			iowrite8(tf->ctl, ioaddr->ctl_addr);
656 			ap->last_ctl = tf->ctl;
657 		} else
658 			WARN_ON_ONCE(1);
659 	}
660 }
661 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
662 
663 /**
664  *	ata_sff_exec_command - issue ATA command to host controller
665  *	@ap: port to which command is being issued
666  *	@tf: ATA taskfile register set
667  *
668  *	Issues ATA command, with proper synchronization with interrupt
669  *	handler / other threads.
670  *
671  *	LOCKING:
672  *	spin_lock_irqsave(host lock)
673  */
674 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
675 {
676 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
677 
678 	iowrite8(tf->command, ap->ioaddr.command_addr);
679 	ata_sff_pause(ap);
680 }
681 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
682 
683 /**
684  *	ata_tf_to_host - issue ATA taskfile to host controller
685  *	@ap: port to which command is being issued
686  *	@tf: ATA taskfile register set
687  *
688  *	Issues ATA taskfile register set to ATA host controller,
689  *	with proper synchronization with interrupt handler and
690  *	other threads.
691  *
692  *	LOCKING:
693  *	spin_lock_irqsave(host lock)
694  */
695 static inline void ata_tf_to_host(struct ata_port *ap,
696 				  const struct ata_taskfile *tf)
697 {
698 	ap->ops->sff_tf_load(ap, tf);
699 	ap->ops->sff_exec_command(ap, tf);
700 }
701 
702 /**
703  *	ata_sff_data_xfer - Transfer data by PIO
704  *	@dev: device to target
705  *	@buf: data buffer
706  *	@buflen: buffer length
707  *	@rw: read/write
708  *
709  *	Transfer data from/to the device data register by PIO.
710  *
711  *	LOCKING:
712  *	Inherited from caller.
713  *
714  *	RETURNS:
715  *	Bytes consumed.
716  */
717 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
718 			       unsigned int buflen, int rw)
719 {
720 	struct ata_port *ap = dev->link->ap;
721 	void __iomem *data_addr = ap->ioaddr.data_addr;
722 	unsigned int words = buflen >> 1;
723 
724 	/* Transfer multiple of 2 bytes */
725 	if (rw == READ)
726 		ioread16_rep(data_addr, buf, words);
727 	else
728 		iowrite16_rep(data_addr, buf, words);
729 
730 	/* Transfer trailing byte, if any. */
731 	if (unlikely(buflen & 0x01)) {
732 		unsigned char pad[2];
733 
734 		/* Point buf to the tail of buffer */
735 		buf += buflen - 1;
736 
737 		/*
738 		 * Use io*16_rep() accessors here as well to avoid pointlessly
739 		 * swapping bytes to and from on the big endian machines...
740 		 */
741 		if (rw == READ) {
742 			ioread16_rep(data_addr, pad, 1);
743 			*buf = pad[0];
744 		} else {
745 			pad[0] = *buf;
746 			iowrite16_rep(data_addr, pad, 1);
747 		}
748 		words++;
749 	}
750 
751 	return words << 1;
752 }
753 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
754 
755 /**
756  *	ata_sff_data_xfer32 - Transfer data by PIO
757  *	@dev: device to target
758  *	@buf: data buffer
759  *	@buflen: buffer length
760  *	@rw: read/write
761  *
762  *	Transfer data from/to the device data register by PIO using 32bit
763  *	I/O operations.
764  *
765  *	LOCKING:
766  *	Inherited from caller.
767  *
768  *	RETURNS:
769  *	Bytes consumed.
770  */
771 
772 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
773 			       unsigned int buflen, int rw)
774 {
775 	struct ata_port *ap = dev->link->ap;
776 	void __iomem *data_addr = ap->ioaddr.data_addr;
777 	unsigned int words = buflen >> 2;
778 	int slop = buflen & 3;
779 
780 	if (!(ap->pflags & ATA_PFLAG_PIO32))
781 		return ata_sff_data_xfer(dev, buf, buflen, rw);
782 
783 	/* Transfer multiple of 4 bytes */
784 	if (rw == READ)
785 		ioread32_rep(data_addr, buf, words);
786 	else
787 		iowrite32_rep(data_addr, buf, words);
788 
789 	/* Transfer trailing bytes, if any */
790 	if (unlikely(slop)) {
791 		unsigned char pad[4];
792 
793 		/* Point buf to the tail of buffer */
794 		buf += buflen - slop;
795 
796 		/*
797 		 * Use io*_rep() accessors here as well to avoid pointlessly
798 		 * swapping bytes to and from on the big endian machines...
799 		 */
800 		if (rw == READ) {
801 			if (slop < 3)
802 				ioread16_rep(data_addr, pad, 1);
803 			else
804 				ioread32_rep(data_addr, pad, 1);
805 			memcpy(buf, pad, slop);
806 		} else {
807 			memcpy(pad, buf, slop);
808 			if (slop < 3)
809 				iowrite16_rep(data_addr, pad, 1);
810 			else
811 				iowrite32_rep(data_addr, pad, 1);
812 		}
813 	}
814 	return (buflen + 1) & ~1;
815 }
816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
817 
818 /**
819  *	ata_sff_data_xfer_noirq - Transfer data by PIO
820  *	@dev: device to target
821  *	@buf: data buffer
822  *	@buflen: buffer length
823  *	@rw: read/write
824  *
825  *	Transfer data from/to the device data register by PIO. Do the
826  *	transfer with interrupts disabled.
827  *
828  *	LOCKING:
829  *	Inherited from caller.
830  *
831  *	RETURNS:
832  *	Bytes consumed.
833  */
834 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
835 				     unsigned int buflen, int rw)
836 {
837 	unsigned long flags;
838 	unsigned int consumed;
839 
840 	local_irq_save(flags);
841 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
842 	local_irq_restore(flags);
843 
844 	return consumed;
845 }
846 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
847 
848 /**
849  *	ata_pio_sector - Transfer a sector of data.
850  *	@qc: Command on going
851  *
852  *	Transfer qc->sect_size bytes of data from/to the ATA device.
853  *
854  *	LOCKING:
855  *	Inherited from caller.
856  */
857 static void ata_pio_sector(struct ata_queued_cmd *qc)
858 {
859 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
860 	struct ata_port *ap = qc->ap;
861 	struct page *page;
862 	unsigned int offset;
863 	unsigned char *buf;
864 
865 	if (qc->curbytes == qc->nbytes - qc->sect_size)
866 		ap->hsm_task_state = HSM_ST_LAST;
867 
868 	page = sg_page(qc->cursg);
869 	offset = qc->cursg->offset + qc->cursg_ofs;
870 
871 	/* get the current page and offset */
872 	page = nth_page(page, (offset >> PAGE_SHIFT));
873 	offset %= PAGE_SIZE;
874 
875 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
876 
877 	if (PageHighMem(page)) {
878 		unsigned long flags;
879 
880 		/* FIXME: use a bounce buffer */
881 		local_irq_save(flags);
882 		buf = kmap_atomic(page, KM_IRQ0);
883 
884 		/* do the actual data transfer */
885 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
886 				       do_write);
887 
888 		kunmap_atomic(buf, KM_IRQ0);
889 		local_irq_restore(flags);
890 	} else {
891 		buf = page_address(page);
892 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
893 				       do_write);
894 	}
895 
896 	if (!do_write)
897 		flush_dcache_page(page);
898 
899 	qc->curbytes += qc->sect_size;
900 	qc->cursg_ofs += qc->sect_size;
901 
902 	if (qc->cursg_ofs == qc->cursg->length) {
903 		qc->cursg = sg_next(qc->cursg);
904 		qc->cursg_ofs = 0;
905 	}
906 }
907 
908 /**
909  *	ata_pio_sectors - Transfer one or many sectors.
910  *	@qc: Command on going
911  *
912  *	Transfer one or many sectors of data from/to the
913  *	ATA device for the DRQ request.
914  *
915  *	LOCKING:
916  *	Inherited from caller.
917  */
918 static void ata_pio_sectors(struct ata_queued_cmd *qc)
919 {
920 	if (is_multi_taskfile(&qc->tf)) {
921 		/* READ/WRITE MULTIPLE */
922 		unsigned int nsect;
923 
924 		WARN_ON_ONCE(qc->dev->multi_count == 0);
925 
926 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
927 			    qc->dev->multi_count);
928 		while (nsect--)
929 			ata_pio_sector(qc);
930 	} else
931 		ata_pio_sector(qc);
932 
933 	ata_sff_sync(qc->ap); /* flush */
934 }
935 
936 /**
937  *	atapi_send_cdb - Write CDB bytes to hardware
938  *	@ap: Port to which ATAPI device is attached.
939  *	@qc: Taskfile currently active
940  *
941  *	When device has indicated its readiness to accept
942  *	a CDB, this function is called.  Send the CDB.
943  *
944  *	LOCKING:
945  *	caller.
946  */
947 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
948 {
949 	/* send SCSI cdb */
950 	DPRINTK("send cdb\n");
951 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
952 
953 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
954 	ata_sff_sync(ap);
955 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
956 	   or is bmdma_start guaranteed to do it ? */
957 	switch (qc->tf.protocol) {
958 	case ATAPI_PROT_PIO:
959 		ap->hsm_task_state = HSM_ST;
960 		break;
961 	case ATAPI_PROT_NODATA:
962 		ap->hsm_task_state = HSM_ST_LAST;
963 		break;
964 	case ATAPI_PROT_DMA:
965 		ap->hsm_task_state = HSM_ST_LAST;
966 		/* initiate bmdma */
967 		ap->ops->bmdma_start(qc);
968 		break;
969 	}
970 }
971 
972 /**
973  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
974  *	@qc: Command on going
975  *	@bytes: number of bytes
976  *
977  *	Transfer Transfer data from/to the ATAPI device.
978  *
979  *	LOCKING:
980  *	Inherited from caller.
981  *
982  */
983 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
984 {
985 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
986 	struct ata_port *ap = qc->ap;
987 	struct ata_device *dev = qc->dev;
988 	struct ata_eh_info *ehi = &dev->link->eh_info;
989 	struct scatterlist *sg;
990 	struct page *page;
991 	unsigned char *buf;
992 	unsigned int offset, count, consumed;
993 
994 next_sg:
995 	sg = qc->cursg;
996 	if (unlikely(!sg)) {
997 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
998 				  "buf=%u cur=%u bytes=%u",
999 				  qc->nbytes, qc->curbytes, bytes);
1000 		return -1;
1001 	}
1002 
1003 	page = sg_page(sg);
1004 	offset = sg->offset + qc->cursg_ofs;
1005 
1006 	/* get the current page and offset */
1007 	page = nth_page(page, (offset >> PAGE_SHIFT));
1008 	offset %= PAGE_SIZE;
1009 
1010 	/* don't overrun current sg */
1011 	count = min(sg->length - qc->cursg_ofs, bytes);
1012 
1013 	/* don't cross page boundaries */
1014 	count = min(count, (unsigned int)PAGE_SIZE - offset);
1015 
1016 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1017 
1018 	if (PageHighMem(page)) {
1019 		unsigned long flags;
1020 
1021 		/* FIXME: use bounce buffer */
1022 		local_irq_save(flags);
1023 		buf = kmap_atomic(page, KM_IRQ0);
1024 
1025 		/* do the actual data transfer */
1026 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1027 								count, rw);
1028 
1029 		kunmap_atomic(buf, KM_IRQ0);
1030 		local_irq_restore(flags);
1031 	} else {
1032 		buf = page_address(page);
1033 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1034 								count, rw);
1035 	}
1036 
1037 	bytes -= min(bytes, consumed);
1038 	qc->curbytes += count;
1039 	qc->cursg_ofs += count;
1040 
1041 	if (qc->cursg_ofs == sg->length) {
1042 		qc->cursg = sg_next(qc->cursg);
1043 		qc->cursg_ofs = 0;
1044 	}
1045 
1046 	/*
1047 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1048 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1049 	 * check correctly as it doesn't know if it is the last request being
1050 	 * made. Somebody should implement a proper sanity check.
1051 	 */
1052 	if (bytes)
1053 		goto next_sg;
1054 	return 0;
1055 }
1056 
1057 /**
1058  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1059  *	@qc: Command on going
1060  *
1061  *	Transfer Transfer data from/to the ATAPI device.
1062  *
1063  *	LOCKING:
1064  *	Inherited from caller.
1065  */
1066 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1067 {
1068 	struct ata_port *ap = qc->ap;
1069 	struct ata_device *dev = qc->dev;
1070 	struct ata_eh_info *ehi = &dev->link->eh_info;
1071 	unsigned int ireason, bc_lo, bc_hi, bytes;
1072 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1073 
1074 	/* Abuse qc->result_tf for temp storage of intermediate TF
1075 	 * here to save some kernel stack usage.
1076 	 * For normal completion, qc->result_tf is not relevant. For
1077 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1078 	 * So, the correctness of qc->result_tf is not affected.
1079 	 */
1080 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1081 	ireason = qc->result_tf.nsect;
1082 	bc_lo = qc->result_tf.lbam;
1083 	bc_hi = qc->result_tf.lbah;
1084 	bytes = (bc_hi << 8) | bc_lo;
1085 
1086 	/* shall be cleared to zero, indicating xfer of data */
1087 	if (unlikely(ireason & (1 << 0)))
1088 		goto atapi_check;
1089 
1090 	/* make sure transfer direction matches expected */
1091 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1092 	if (unlikely(do_write != i_write))
1093 		goto atapi_check;
1094 
1095 	if (unlikely(!bytes))
1096 		goto atapi_check;
1097 
1098 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1099 
1100 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1101 		goto err_out;
1102 	ata_sff_sync(ap); /* flush */
1103 
1104 	return;
1105 
1106  atapi_check:
1107 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1108 			  ireason, bytes);
1109  err_out:
1110 	qc->err_mask |= AC_ERR_HSM;
1111 	ap->hsm_task_state = HSM_ST_ERR;
1112 }
1113 
1114 /**
1115  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1116  *	@ap: the target ata_port
1117  *	@qc: qc on going
1118  *
1119  *	RETURNS:
1120  *	1 if ok in workqueue, 0 otherwise.
1121  */
1122 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1123 						struct ata_queued_cmd *qc)
1124 {
1125 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1126 		return 1;
1127 
1128 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1129 		if (qc->tf.protocol == ATA_PROT_PIO &&
1130 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1131 		    return 1;
1132 
1133 		if (ata_is_atapi(qc->tf.protocol) &&
1134 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1135 			return 1;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1143  *	@qc: Command to complete
1144  *	@in_wq: 1 if called from workqueue, 0 otherwise
1145  *
1146  *	Finish @qc which is running on standard HSM.
1147  *
1148  *	LOCKING:
1149  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1150  *	Otherwise, none on entry and grabs host lock.
1151  */
1152 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1153 {
1154 	struct ata_port *ap = qc->ap;
1155 	unsigned long flags;
1156 
1157 	if (ap->ops->error_handler) {
1158 		if (in_wq) {
1159 			spin_lock_irqsave(ap->lock, flags);
1160 
1161 			/* EH might have kicked in while host lock is
1162 			 * released.
1163 			 */
1164 			qc = ata_qc_from_tag(ap, qc->tag);
1165 			if (qc) {
1166 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1167 					ap->ops->sff_irq_on(ap);
1168 					ata_qc_complete(qc);
1169 				} else
1170 					ata_port_freeze(ap);
1171 			}
1172 
1173 			spin_unlock_irqrestore(ap->lock, flags);
1174 		} else {
1175 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1176 				ata_qc_complete(qc);
1177 			else
1178 				ata_port_freeze(ap);
1179 		}
1180 	} else {
1181 		if (in_wq) {
1182 			spin_lock_irqsave(ap->lock, flags);
1183 			ap->ops->sff_irq_on(ap);
1184 			ata_qc_complete(qc);
1185 			spin_unlock_irqrestore(ap->lock, flags);
1186 		} else
1187 			ata_qc_complete(qc);
1188 	}
1189 }
1190 
1191 /**
1192  *	ata_sff_hsm_move - move the HSM to the next state.
1193  *	@ap: the target ata_port
1194  *	@qc: qc on going
1195  *	@status: current device status
1196  *	@in_wq: 1 if called from workqueue, 0 otherwise
1197  *
1198  *	RETURNS:
1199  *	1 when poll next status needed, 0 otherwise.
1200  */
1201 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1202 		     u8 status, int in_wq)
1203 {
1204 	struct ata_eh_info *ehi = &ap->link.eh_info;
1205 	unsigned long flags = 0;
1206 	int poll_next;
1207 
1208 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1209 
1210 	/* Make sure ata_sff_qc_issue() does not throw things
1211 	 * like DMA polling into the workqueue. Notice that
1212 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1213 	 */
1214 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1215 
1216 fsm_start:
1217 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1218 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1219 
1220 	switch (ap->hsm_task_state) {
1221 	case HSM_ST_FIRST:
1222 		/* Send first data block or PACKET CDB */
1223 
1224 		/* If polling, we will stay in the work queue after
1225 		 * sending the data. Otherwise, interrupt handler
1226 		 * takes over after sending the data.
1227 		 */
1228 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1229 
1230 		/* check device status */
1231 		if (unlikely((status & ATA_DRQ) == 0)) {
1232 			/* handle BSY=0, DRQ=0 as error */
1233 			if (likely(status & (ATA_ERR | ATA_DF)))
1234 				/* device stops HSM for abort/error */
1235 				qc->err_mask |= AC_ERR_DEV;
1236 			else {
1237 				/* HSM violation. Let EH handle this */
1238 				ata_ehi_push_desc(ehi,
1239 					"ST_FIRST: !(DRQ|ERR|DF)");
1240 				qc->err_mask |= AC_ERR_HSM;
1241 			}
1242 
1243 			ap->hsm_task_state = HSM_ST_ERR;
1244 			goto fsm_start;
1245 		}
1246 
1247 		/* Device should not ask for data transfer (DRQ=1)
1248 		 * when it finds something wrong.
1249 		 * We ignore DRQ here and stop the HSM by
1250 		 * changing hsm_task_state to HSM_ST_ERR and
1251 		 * let the EH abort the command or reset the device.
1252 		 */
1253 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1254 			/* Some ATAPI tape drives forget to clear the ERR bit
1255 			 * when doing the next command (mostly request sense).
1256 			 * We ignore ERR here to workaround and proceed sending
1257 			 * the CDB.
1258 			 */
1259 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1260 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1261 					"DRQ=1 with device error, "
1262 					"dev_stat 0x%X", status);
1263 				qc->err_mask |= AC_ERR_HSM;
1264 				ap->hsm_task_state = HSM_ST_ERR;
1265 				goto fsm_start;
1266 			}
1267 		}
1268 
1269 		/* Send the CDB (atapi) or the first data block (ata pio out).
1270 		 * During the state transition, interrupt handler shouldn't
1271 		 * be invoked before the data transfer is complete and
1272 		 * hsm_task_state is changed. Hence, the following locking.
1273 		 */
1274 		if (in_wq)
1275 			spin_lock_irqsave(ap->lock, flags);
1276 
1277 		if (qc->tf.protocol == ATA_PROT_PIO) {
1278 			/* PIO data out protocol.
1279 			 * send first data block.
1280 			 */
1281 
1282 			/* ata_pio_sectors() might change the state
1283 			 * to HSM_ST_LAST. so, the state is changed here
1284 			 * before ata_pio_sectors().
1285 			 */
1286 			ap->hsm_task_state = HSM_ST;
1287 			ata_pio_sectors(qc);
1288 		} else
1289 			/* send CDB */
1290 			atapi_send_cdb(ap, qc);
1291 
1292 		if (in_wq)
1293 			spin_unlock_irqrestore(ap->lock, flags);
1294 
1295 		/* if polling, ata_pio_task() handles the rest.
1296 		 * otherwise, interrupt handler takes over from here.
1297 		 */
1298 		break;
1299 
1300 	case HSM_ST:
1301 		/* complete command or read/write the data register */
1302 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1303 			/* ATAPI PIO protocol */
1304 			if ((status & ATA_DRQ) == 0) {
1305 				/* No more data to transfer or device error.
1306 				 * Device error will be tagged in HSM_ST_LAST.
1307 				 */
1308 				ap->hsm_task_state = HSM_ST_LAST;
1309 				goto fsm_start;
1310 			}
1311 
1312 			/* Device should not ask for data transfer (DRQ=1)
1313 			 * when it finds something wrong.
1314 			 * We ignore DRQ here and stop the HSM by
1315 			 * changing hsm_task_state to HSM_ST_ERR and
1316 			 * let the EH abort the command or reset the device.
1317 			 */
1318 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1319 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1320 					"DRQ=1 with device error, "
1321 					"dev_stat 0x%X", status);
1322 				qc->err_mask |= AC_ERR_HSM;
1323 				ap->hsm_task_state = HSM_ST_ERR;
1324 				goto fsm_start;
1325 			}
1326 
1327 			atapi_pio_bytes(qc);
1328 
1329 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1330 				/* bad ireason reported by device */
1331 				goto fsm_start;
1332 
1333 		} else {
1334 			/* ATA PIO protocol */
1335 			if (unlikely((status & ATA_DRQ) == 0)) {
1336 				/* handle BSY=0, DRQ=0 as error */
1337 				if (likely(status & (ATA_ERR | ATA_DF))) {
1338 					/* device stops HSM for abort/error */
1339 					qc->err_mask |= AC_ERR_DEV;
1340 
1341 					/* If diagnostic failed and this is
1342 					 * IDENTIFY, it's likely a phantom
1343 					 * device.  Mark hint.
1344 					 */
1345 					if (qc->dev->horkage &
1346 					    ATA_HORKAGE_DIAGNOSTIC)
1347 						qc->err_mask |=
1348 							AC_ERR_NODEV_HINT;
1349 				} else {
1350 					/* HSM violation. Let EH handle this.
1351 					 * Phantom devices also trigger this
1352 					 * condition.  Mark hint.
1353 					 */
1354 					ata_ehi_push_desc(ehi, "ST-ATA: "
1355 						"DRQ=0 without device error, "
1356 						"dev_stat 0x%X", status);
1357 					qc->err_mask |= AC_ERR_HSM |
1358 							AC_ERR_NODEV_HINT;
1359 				}
1360 
1361 				ap->hsm_task_state = HSM_ST_ERR;
1362 				goto fsm_start;
1363 			}
1364 
1365 			/* For PIO reads, some devices may ask for
1366 			 * data transfer (DRQ=1) alone with ERR=1.
1367 			 * We respect DRQ here and transfer one
1368 			 * block of junk data before changing the
1369 			 * hsm_task_state to HSM_ST_ERR.
1370 			 *
1371 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1372 			 * sense since the data block has been
1373 			 * transferred to the device.
1374 			 */
1375 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1376 				/* data might be corrputed */
1377 				qc->err_mask |= AC_ERR_DEV;
1378 
1379 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1380 					ata_pio_sectors(qc);
1381 					status = ata_wait_idle(ap);
1382 				}
1383 
1384 				if (status & (ATA_BUSY | ATA_DRQ)) {
1385 					ata_ehi_push_desc(ehi, "ST-ATA: "
1386 						"BUSY|DRQ persists on ERR|DF, "
1387 						"dev_stat 0x%X", status);
1388 					qc->err_mask |= AC_ERR_HSM;
1389 				}
1390 
1391 				/* There are oddball controllers with
1392 				 * status register stuck at 0x7f and
1393 				 * lbal/m/h at zero which makes it
1394 				 * pass all other presence detection
1395 				 * mechanisms we have.  Set NODEV_HINT
1396 				 * for it.  Kernel bz#7241.
1397 				 */
1398 				if (status == 0x7f)
1399 					qc->err_mask |= AC_ERR_NODEV_HINT;
1400 
1401 				/* ata_pio_sectors() might change the
1402 				 * state to HSM_ST_LAST. so, the state
1403 				 * is changed after ata_pio_sectors().
1404 				 */
1405 				ap->hsm_task_state = HSM_ST_ERR;
1406 				goto fsm_start;
1407 			}
1408 
1409 			ata_pio_sectors(qc);
1410 
1411 			if (ap->hsm_task_state == HSM_ST_LAST &&
1412 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1413 				/* all data read */
1414 				status = ata_wait_idle(ap);
1415 				goto fsm_start;
1416 			}
1417 		}
1418 
1419 		poll_next = 1;
1420 		break;
1421 
1422 	case HSM_ST_LAST:
1423 		if (unlikely(!ata_ok(status))) {
1424 			qc->err_mask |= __ac_err_mask(status);
1425 			ap->hsm_task_state = HSM_ST_ERR;
1426 			goto fsm_start;
1427 		}
1428 
1429 		/* no more data to transfer */
1430 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1431 			ap->print_id, qc->dev->devno, status);
1432 
1433 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1434 
1435 		ap->hsm_task_state = HSM_ST_IDLE;
1436 
1437 		/* complete taskfile transaction */
1438 		ata_hsm_qc_complete(qc, in_wq);
1439 
1440 		poll_next = 0;
1441 		break;
1442 
1443 	case HSM_ST_ERR:
1444 		ap->hsm_task_state = HSM_ST_IDLE;
1445 
1446 		/* complete taskfile transaction */
1447 		ata_hsm_qc_complete(qc, in_wq);
1448 
1449 		poll_next = 0;
1450 		break;
1451 	default:
1452 		poll_next = 0;
1453 		BUG();
1454 	}
1455 
1456 	return poll_next;
1457 }
1458 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1459 
1460 void ata_pio_task(struct work_struct *work)
1461 {
1462 	struct ata_port *ap =
1463 		container_of(work, struct ata_port, port_task.work);
1464 	struct ata_queued_cmd *qc = ap->port_task_data;
1465 	u8 status;
1466 	int poll_next;
1467 
1468 fsm_start:
1469 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1470 
1471 	/*
1472 	 * This is purely heuristic.  This is a fast path.
1473 	 * Sometimes when we enter, BSY will be cleared in
1474 	 * a chk-status or two.  If not, the drive is probably seeking
1475 	 * or something.  Snooze for a couple msecs, then
1476 	 * chk-status again.  If still busy, queue delayed work.
1477 	 */
1478 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1479 	if (status & ATA_BUSY) {
1480 		msleep(2);
1481 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1482 		if (status & ATA_BUSY) {
1483 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1484 			return;
1485 		}
1486 	}
1487 
1488 	/* move the HSM */
1489 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1490 
1491 	/* another command or interrupt handler
1492 	 * may be running at this point.
1493 	 */
1494 	if (poll_next)
1495 		goto fsm_start;
1496 }
1497 
1498 /**
1499  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1500  *	@qc: command to issue to device
1501  *
1502  *	Using various libata functions and hooks, this function
1503  *	starts an ATA command.  ATA commands are grouped into
1504  *	classes called "protocols", and issuing each type of protocol
1505  *	is slightly different.
1506  *
1507  *	May be used as the qc_issue() entry in ata_port_operations.
1508  *
1509  *	LOCKING:
1510  *	spin_lock_irqsave(host lock)
1511  *
1512  *	RETURNS:
1513  *	Zero on success, AC_ERR_* mask on failure
1514  */
1515 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1516 {
1517 	struct ata_port *ap = qc->ap;
1518 
1519 	/* Use polling pio if the LLD doesn't handle
1520 	 * interrupt driven pio and atapi CDB interrupt.
1521 	 */
1522 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1523 		switch (qc->tf.protocol) {
1524 		case ATA_PROT_PIO:
1525 		case ATA_PROT_NODATA:
1526 		case ATAPI_PROT_PIO:
1527 		case ATAPI_PROT_NODATA:
1528 			qc->tf.flags |= ATA_TFLAG_POLLING;
1529 			break;
1530 		case ATAPI_PROT_DMA:
1531 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1532 				/* see ata_dma_blacklisted() */
1533 				BUG();
1534 			break;
1535 		default:
1536 			break;
1537 		}
1538 	}
1539 
1540 	/* select the device */
1541 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1542 
1543 	/* start the command */
1544 	switch (qc->tf.protocol) {
1545 	case ATA_PROT_NODATA:
1546 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1547 			ata_qc_set_polling(qc);
1548 
1549 		ata_tf_to_host(ap, &qc->tf);
1550 		ap->hsm_task_state = HSM_ST_LAST;
1551 
1552 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1553 			ata_pio_queue_task(ap, qc, 0);
1554 
1555 		break;
1556 
1557 	case ATA_PROT_DMA:
1558 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1559 
1560 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1561 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1562 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1563 		ap->hsm_task_state = HSM_ST_LAST;
1564 		break;
1565 
1566 	case ATA_PROT_PIO:
1567 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1568 			ata_qc_set_polling(qc);
1569 
1570 		ata_tf_to_host(ap, &qc->tf);
1571 
1572 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1573 			/* PIO data out protocol */
1574 			ap->hsm_task_state = HSM_ST_FIRST;
1575 			ata_pio_queue_task(ap, qc, 0);
1576 
1577 			/* always send first data block using
1578 			 * the ata_pio_task() codepath.
1579 			 */
1580 		} else {
1581 			/* PIO data in protocol */
1582 			ap->hsm_task_state = HSM_ST;
1583 
1584 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1585 				ata_pio_queue_task(ap, qc, 0);
1586 
1587 			/* if polling, ata_pio_task() handles the rest.
1588 			 * otherwise, interrupt handler takes over from here.
1589 			 */
1590 		}
1591 
1592 		break;
1593 
1594 	case ATAPI_PROT_PIO:
1595 	case ATAPI_PROT_NODATA:
1596 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1597 			ata_qc_set_polling(qc);
1598 
1599 		ata_tf_to_host(ap, &qc->tf);
1600 
1601 		ap->hsm_task_state = HSM_ST_FIRST;
1602 
1603 		/* send cdb by polling if no cdb interrupt */
1604 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1605 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1606 			ata_pio_queue_task(ap, qc, 0);
1607 		break;
1608 
1609 	case ATAPI_PROT_DMA:
1610 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1611 
1612 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1613 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1614 		ap->hsm_task_state = HSM_ST_FIRST;
1615 
1616 		/* send cdb by polling if no cdb interrupt */
1617 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1618 			ata_pio_queue_task(ap, qc, 0);
1619 		break;
1620 
1621 	default:
1622 		WARN_ON_ONCE(1);
1623 		return AC_ERR_SYSTEM;
1624 	}
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1629 
1630 /**
1631  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1632  *	@qc: qc to fill result TF for
1633  *
1634  *	@qc is finished and result TF needs to be filled.  Fill it
1635  *	using ->sff_tf_read.
1636  *
1637  *	LOCKING:
1638  *	spin_lock_irqsave(host lock)
1639  *
1640  *	RETURNS:
1641  *	true indicating that result TF is successfully filled.
1642  */
1643 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1644 {
1645 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1646 	return true;
1647 }
1648 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1649 
1650 /**
1651  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1652  *	@ap: Port on which interrupt arrived (possibly...)
1653  *	@qc: Taskfile currently active in engine
1654  *
1655  *	Handle host interrupt for given queued command.  Currently,
1656  *	only DMA interrupts are handled.  All other commands are
1657  *	handled via polling with interrupts disabled (nIEN bit).
1658  *
1659  *	LOCKING:
1660  *	spin_lock_irqsave(host lock)
1661  *
1662  *	RETURNS:
1663  *	One if interrupt was handled, zero if not (shared irq).
1664  */
1665 unsigned int ata_sff_host_intr(struct ata_port *ap,
1666 				      struct ata_queued_cmd *qc)
1667 {
1668 	struct ata_eh_info *ehi = &ap->link.eh_info;
1669 	u8 status, host_stat = 0;
1670 
1671 	VPRINTK("ata%u: protocol %d task_state %d\n",
1672 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1673 
1674 	/* Check whether we are expecting interrupt in this state */
1675 	switch (ap->hsm_task_state) {
1676 	case HSM_ST_FIRST:
1677 		/* Some pre-ATAPI-4 devices assert INTRQ
1678 		 * at this state when ready to receive CDB.
1679 		 */
1680 
1681 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1682 		 * The flag was turned on only for atapi devices.  No
1683 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1684 		 */
1685 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1686 			goto idle_irq;
1687 		break;
1688 	case HSM_ST_LAST:
1689 		if (qc->tf.protocol == ATA_PROT_DMA ||
1690 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1691 			/* check status of DMA engine */
1692 			host_stat = ap->ops->bmdma_status(ap);
1693 			VPRINTK("ata%u: host_stat 0x%X\n",
1694 				ap->print_id, host_stat);
1695 
1696 			/* if it's not our irq... */
1697 			if (!(host_stat & ATA_DMA_INTR))
1698 				goto idle_irq;
1699 
1700 			/* before we do anything else, clear DMA-Start bit */
1701 			ap->ops->bmdma_stop(qc);
1702 
1703 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1704 				/* error when transfering data to/from memory */
1705 				qc->err_mask |= AC_ERR_HOST_BUS;
1706 				ap->hsm_task_state = HSM_ST_ERR;
1707 			}
1708 		}
1709 		break;
1710 	case HSM_ST:
1711 		break;
1712 	default:
1713 		goto idle_irq;
1714 	}
1715 
1716 
1717 	/* check main status, clearing INTRQ if needed */
1718 	status = ata_sff_irq_status(ap);
1719 	if (status & ATA_BUSY)
1720 		goto idle_irq;
1721 
1722 	/* ack bmdma irq events */
1723 	ap->ops->sff_irq_clear(ap);
1724 
1725 	ata_sff_hsm_move(ap, qc, status, 0);
1726 
1727 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1728 				       qc->tf.protocol == ATAPI_PROT_DMA))
1729 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1730 
1731 	return 1;	/* irq handled */
1732 
1733 idle_irq:
1734 	ap->stats.idle_irq++;
1735 
1736 #ifdef ATA_IRQ_TRAP
1737 	if ((ap->stats.idle_irq % 1000) == 0) {
1738 		ap->ops->sff_check_status(ap);
1739 		ap->ops->sff_irq_clear(ap);
1740 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1741 		return 1;
1742 	}
1743 #endif
1744 	return 0;	/* irq not handled */
1745 }
1746 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1747 
1748 /**
1749  *	ata_sff_interrupt - Default ATA host interrupt handler
1750  *	@irq: irq line (unused)
1751  *	@dev_instance: pointer to our ata_host information structure
1752  *
1753  *	Default interrupt handler for PCI IDE devices.  Calls
1754  *	ata_sff_host_intr() for each port that is not disabled.
1755  *
1756  *	LOCKING:
1757  *	Obtains host lock during operation.
1758  *
1759  *	RETURNS:
1760  *	IRQ_NONE or IRQ_HANDLED.
1761  */
1762 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1763 {
1764 	struct ata_host *host = dev_instance;
1765 	unsigned int i;
1766 	unsigned int handled = 0, polling = 0;
1767 	unsigned long flags;
1768 
1769 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1770 	spin_lock_irqsave(&host->lock, flags);
1771 
1772 	for (i = 0; i < host->n_ports; i++) {
1773 		struct ata_port *ap = host->ports[i];
1774 		struct ata_queued_cmd *qc;
1775 
1776 		if (unlikely(ap->flags & ATA_FLAG_DISABLED))
1777 			continue;
1778 
1779 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1780 		if (qc) {
1781 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1782 				handled |= ata_sff_host_intr(ap, qc);
1783 			else
1784 				polling |= 1 << i;
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * If no port was expecting IRQ but the controller is actually
1790 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1791 	 * pending status if available and clear spurious IRQ.
1792 	 */
1793 	if (!handled) {
1794 		for (i = 0; i < host->n_ports; i++) {
1795 			struct ata_port *ap = host->ports[i];
1796 
1797 			if (polling & (1 << i))
1798 				continue;
1799 
1800 			if (!ap->ops->sff_irq_check ||
1801 			    !ap->ops->sff_irq_check(ap))
1802 				continue;
1803 
1804 			if (printk_ratelimit())
1805 				ata_port_printk(ap, KERN_INFO,
1806 						"clearing spurious IRQ\n");
1807 
1808 			ap->ops->sff_check_status(ap);
1809 			ap->ops->sff_irq_clear(ap);
1810 		}
1811 	}
1812 
1813 	spin_unlock_irqrestore(&host->lock, flags);
1814 
1815 	return IRQ_RETVAL(handled);
1816 }
1817 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1818 
1819 /**
1820  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1821  *	@ap: port that appears to have timed out
1822  *
1823  *	Called from the libata error handlers when the core code suspects
1824  *	an interrupt has been lost. If it has complete anything we can and
1825  *	then return. Interface must support altstatus for this faster
1826  *	recovery to occur.
1827  *
1828  *	Locking:
1829  *	Caller holds host lock
1830  */
1831 
1832 void ata_sff_lost_interrupt(struct ata_port *ap)
1833 {
1834 	u8 status;
1835 	struct ata_queued_cmd *qc;
1836 
1837 	/* Only one outstanding command per SFF channel */
1838 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1839 	/* Check we have a live one.. */
1840 	if (qc == NULL ||  !(qc->flags & ATA_QCFLAG_ACTIVE))
1841 		return;
1842 	/* We cannot lose an interrupt on a polled command */
1843 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1844 		return;
1845 	/* See if the controller thinks it is still busy - if so the command
1846 	   isn't a lost IRQ but is still in progress */
1847 	status = ata_sff_altstatus(ap);
1848 	if (status & ATA_BUSY)
1849 		return;
1850 
1851 	/* There was a command running, we are no longer busy and we have
1852 	   no interrupt. */
1853 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1854 								status);
1855 	/* Run the host interrupt logic as if the interrupt had not been
1856 	   lost */
1857 	ata_sff_host_intr(ap, qc);
1858 }
1859 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1860 
1861 /**
1862  *	ata_sff_freeze - Freeze SFF controller port
1863  *	@ap: port to freeze
1864  *
1865  *	Freeze BMDMA controller port.
1866  *
1867  *	LOCKING:
1868  *	Inherited from caller.
1869  */
1870 void ata_sff_freeze(struct ata_port *ap)
1871 {
1872 	struct ata_ioports *ioaddr = &ap->ioaddr;
1873 
1874 	ap->ctl |= ATA_NIEN;
1875 	ap->last_ctl = ap->ctl;
1876 
1877 	if (ioaddr->ctl_addr)
1878 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1879 
1880 	/* Under certain circumstances, some controllers raise IRQ on
1881 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1882 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1883 	 */
1884 	ap->ops->sff_check_status(ap);
1885 
1886 	ap->ops->sff_irq_clear(ap);
1887 }
1888 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1889 
1890 /**
1891  *	ata_sff_thaw - Thaw SFF controller port
1892  *	@ap: port to thaw
1893  *
1894  *	Thaw SFF controller port.
1895  *
1896  *	LOCKING:
1897  *	Inherited from caller.
1898  */
1899 void ata_sff_thaw(struct ata_port *ap)
1900 {
1901 	/* clear & re-enable interrupts */
1902 	ap->ops->sff_check_status(ap);
1903 	ap->ops->sff_irq_clear(ap);
1904 	ap->ops->sff_irq_on(ap);
1905 }
1906 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1907 
1908 /**
1909  *	ata_sff_prereset - prepare SFF link for reset
1910  *	@link: SFF link to be reset
1911  *	@deadline: deadline jiffies for the operation
1912  *
1913  *	SFF link @link is about to be reset.  Initialize it.  It first
1914  *	calls ata_std_prereset() and wait for !BSY if the port is
1915  *	being softreset.
1916  *
1917  *	LOCKING:
1918  *	Kernel thread context (may sleep)
1919  *
1920  *	RETURNS:
1921  *	0 on success, -errno otherwise.
1922  */
1923 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1924 {
1925 	struct ata_eh_context *ehc = &link->eh_context;
1926 	int rc;
1927 
1928 	rc = ata_std_prereset(link, deadline);
1929 	if (rc)
1930 		return rc;
1931 
1932 	/* if we're about to do hardreset, nothing more to do */
1933 	if (ehc->i.action & ATA_EH_HARDRESET)
1934 		return 0;
1935 
1936 	/* wait for !BSY if we don't know that no device is attached */
1937 	if (!ata_link_offline(link)) {
1938 		rc = ata_sff_wait_ready(link, deadline);
1939 		if (rc && rc != -ENODEV) {
1940 			ata_link_printk(link, KERN_WARNING, "device not ready "
1941 					"(errno=%d), forcing hardreset\n", rc);
1942 			ehc->i.action |= ATA_EH_HARDRESET;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1949 
1950 /**
1951  *	ata_devchk - PATA device presence detection
1952  *	@ap: ATA channel to examine
1953  *	@device: Device to examine (starting at zero)
1954  *
1955  *	This technique was originally described in
1956  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1957  *	later found its way into the ATA/ATAPI spec.
1958  *
1959  *	Write a pattern to the ATA shadow registers,
1960  *	and if a device is present, it will respond by
1961  *	correctly storing and echoing back the
1962  *	ATA shadow register contents.
1963  *
1964  *	LOCKING:
1965  *	caller.
1966  */
1967 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1968 {
1969 	struct ata_ioports *ioaddr = &ap->ioaddr;
1970 	u8 nsect, lbal;
1971 
1972 	ap->ops->sff_dev_select(ap, device);
1973 
1974 	iowrite8(0x55, ioaddr->nsect_addr);
1975 	iowrite8(0xaa, ioaddr->lbal_addr);
1976 
1977 	iowrite8(0xaa, ioaddr->nsect_addr);
1978 	iowrite8(0x55, ioaddr->lbal_addr);
1979 
1980 	iowrite8(0x55, ioaddr->nsect_addr);
1981 	iowrite8(0xaa, ioaddr->lbal_addr);
1982 
1983 	nsect = ioread8(ioaddr->nsect_addr);
1984 	lbal = ioread8(ioaddr->lbal_addr);
1985 
1986 	if ((nsect == 0x55) && (lbal == 0xaa))
1987 		return 1;	/* we found a device */
1988 
1989 	return 0;		/* nothing found */
1990 }
1991 
1992 /**
1993  *	ata_sff_dev_classify - Parse returned ATA device signature
1994  *	@dev: ATA device to classify (starting at zero)
1995  *	@present: device seems present
1996  *	@r_err: Value of error register on completion
1997  *
1998  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1999  *	an ATA/ATAPI-defined set of values is placed in the ATA
2000  *	shadow registers, indicating the results of device detection
2001  *	and diagnostics.
2002  *
2003  *	Select the ATA device, and read the values from the ATA shadow
2004  *	registers.  Then parse according to the Error register value,
2005  *	and the spec-defined values examined by ata_dev_classify().
2006  *
2007  *	LOCKING:
2008  *	caller.
2009  *
2010  *	RETURNS:
2011  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
2012  */
2013 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
2014 				  u8 *r_err)
2015 {
2016 	struct ata_port *ap = dev->link->ap;
2017 	struct ata_taskfile tf;
2018 	unsigned int class;
2019 	u8 err;
2020 
2021 	ap->ops->sff_dev_select(ap, dev->devno);
2022 
2023 	memset(&tf, 0, sizeof(tf));
2024 
2025 	ap->ops->sff_tf_read(ap, &tf);
2026 	err = tf.feature;
2027 	if (r_err)
2028 		*r_err = err;
2029 
2030 	/* see if device passed diags: continue and warn later */
2031 	if (err == 0)
2032 		/* diagnostic fail : do nothing _YET_ */
2033 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2034 	else if (err == 1)
2035 		/* do nothing */ ;
2036 	else if ((dev->devno == 0) && (err == 0x81))
2037 		/* do nothing */ ;
2038 	else
2039 		return ATA_DEV_NONE;
2040 
2041 	/* determine if device is ATA or ATAPI */
2042 	class = ata_dev_classify(&tf);
2043 
2044 	if (class == ATA_DEV_UNKNOWN) {
2045 		/* If the device failed diagnostic, it's likely to
2046 		 * have reported incorrect device signature too.
2047 		 * Assume ATA device if the device seems present but
2048 		 * device signature is invalid with diagnostic
2049 		 * failure.
2050 		 */
2051 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2052 			class = ATA_DEV_ATA;
2053 		else
2054 			class = ATA_DEV_NONE;
2055 	} else if ((class == ATA_DEV_ATA) &&
2056 		   (ap->ops->sff_check_status(ap) == 0))
2057 		class = ATA_DEV_NONE;
2058 
2059 	return class;
2060 }
2061 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2062 
2063 /**
2064  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
2065  *	@link: SFF link which is just reset
2066  *	@devmask: mask of present devices
2067  *	@deadline: deadline jiffies for the operation
2068  *
2069  *	Wait devices attached to SFF @link to become ready after
2070  *	reset.  It contains preceding 150ms wait to avoid accessing TF
2071  *	status register too early.
2072  *
2073  *	LOCKING:
2074  *	Kernel thread context (may sleep).
2075  *
2076  *	RETURNS:
2077  *	0 on success, -ENODEV if some or all of devices in @devmask
2078  *	don't seem to exist.  -errno on other errors.
2079  */
2080 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2081 			     unsigned long deadline)
2082 {
2083 	struct ata_port *ap = link->ap;
2084 	struct ata_ioports *ioaddr = &ap->ioaddr;
2085 	unsigned int dev0 = devmask & (1 << 0);
2086 	unsigned int dev1 = devmask & (1 << 1);
2087 	int rc, ret = 0;
2088 
2089 	msleep(ATA_WAIT_AFTER_RESET);
2090 
2091 	/* always check readiness of the master device */
2092 	rc = ata_sff_wait_ready(link, deadline);
2093 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
2094 	 * and TF status is 0xff, bail out on it too.
2095 	 */
2096 	if (rc)
2097 		return rc;
2098 
2099 	/* if device 1 was found in ata_devchk, wait for register
2100 	 * access briefly, then wait for BSY to clear.
2101 	 */
2102 	if (dev1) {
2103 		int i;
2104 
2105 		ap->ops->sff_dev_select(ap, 1);
2106 
2107 		/* Wait for register access.  Some ATAPI devices fail
2108 		 * to set nsect/lbal after reset, so don't waste too
2109 		 * much time on it.  We're gonna wait for !BSY anyway.
2110 		 */
2111 		for (i = 0; i < 2; i++) {
2112 			u8 nsect, lbal;
2113 
2114 			nsect = ioread8(ioaddr->nsect_addr);
2115 			lbal = ioread8(ioaddr->lbal_addr);
2116 			if ((nsect == 1) && (lbal == 1))
2117 				break;
2118 			msleep(50);	/* give drive a breather */
2119 		}
2120 
2121 		rc = ata_sff_wait_ready(link, deadline);
2122 		if (rc) {
2123 			if (rc != -ENODEV)
2124 				return rc;
2125 			ret = rc;
2126 		}
2127 	}
2128 
2129 	/* is all this really necessary? */
2130 	ap->ops->sff_dev_select(ap, 0);
2131 	if (dev1)
2132 		ap->ops->sff_dev_select(ap, 1);
2133 	if (dev0)
2134 		ap->ops->sff_dev_select(ap, 0);
2135 
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2139 
2140 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2141 			     unsigned long deadline)
2142 {
2143 	struct ata_ioports *ioaddr = &ap->ioaddr;
2144 
2145 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2146 
2147 	/* software reset.  causes dev0 to be selected */
2148 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2149 	udelay(20);	/* FIXME: flush */
2150 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2151 	udelay(20);	/* FIXME: flush */
2152 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2153 	ap->last_ctl = ap->ctl;
2154 
2155 	/* wait the port to become ready */
2156 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2157 }
2158 
2159 /**
2160  *	ata_sff_softreset - reset host port via ATA SRST
2161  *	@link: ATA link to reset
2162  *	@classes: resulting classes of attached devices
2163  *	@deadline: deadline jiffies for the operation
2164  *
2165  *	Reset host port using ATA SRST.
2166  *
2167  *	LOCKING:
2168  *	Kernel thread context (may sleep)
2169  *
2170  *	RETURNS:
2171  *	0 on success, -errno otherwise.
2172  */
2173 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2174 		      unsigned long deadline)
2175 {
2176 	struct ata_port *ap = link->ap;
2177 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2178 	unsigned int devmask = 0;
2179 	int rc;
2180 	u8 err;
2181 
2182 	DPRINTK("ENTER\n");
2183 
2184 	/* determine if device 0/1 are present */
2185 	if (ata_devchk(ap, 0))
2186 		devmask |= (1 << 0);
2187 	if (slave_possible && ata_devchk(ap, 1))
2188 		devmask |= (1 << 1);
2189 
2190 	/* select device 0 again */
2191 	ap->ops->sff_dev_select(ap, 0);
2192 
2193 	/* issue bus reset */
2194 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2195 	rc = ata_bus_softreset(ap, devmask, deadline);
2196 	/* if link is occupied, -ENODEV too is an error */
2197 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2198 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2199 		return rc;
2200 	}
2201 
2202 	/* determine by signature whether we have ATA or ATAPI devices */
2203 	classes[0] = ata_sff_dev_classify(&link->device[0],
2204 					  devmask & (1 << 0), &err);
2205 	if (slave_possible && err != 0x81)
2206 		classes[1] = ata_sff_dev_classify(&link->device[1],
2207 						  devmask & (1 << 1), &err);
2208 
2209 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2210 	return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2213 
2214 /**
2215  *	sata_sff_hardreset - reset host port via SATA phy reset
2216  *	@link: link to reset
2217  *	@class: resulting class of attached device
2218  *	@deadline: deadline jiffies for the operation
2219  *
2220  *	SATA phy-reset host port using DET bits of SControl register,
2221  *	wait for !BSY and classify the attached device.
2222  *
2223  *	LOCKING:
2224  *	Kernel thread context (may sleep)
2225  *
2226  *	RETURNS:
2227  *	0 on success, -errno otherwise.
2228  */
2229 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2230 		       unsigned long deadline)
2231 {
2232 	struct ata_eh_context *ehc = &link->eh_context;
2233 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2234 	bool online;
2235 	int rc;
2236 
2237 	rc = sata_link_hardreset(link, timing, deadline, &online,
2238 				 ata_sff_check_ready);
2239 	if (online)
2240 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2241 
2242 	DPRINTK("EXIT, class=%u\n", *class);
2243 	return rc;
2244 }
2245 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2246 
2247 /**
2248  *	ata_sff_postreset - SFF postreset callback
2249  *	@link: the target SFF ata_link
2250  *	@classes: classes of attached devices
2251  *
2252  *	This function is invoked after a successful reset.  It first
2253  *	calls ata_std_postreset() and performs SFF specific postreset
2254  *	processing.
2255  *
2256  *	LOCKING:
2257  *	Kernel thread context (may sleep)
2258  */
2259 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2260 {
2261 	struct ata_port *ap = link->ap;
2262 
2263 	ata_std_postreset(link, classes);
2264 
2265 	/* is double-select really necessary? */
2266 	if (classes[0] != ATA_DEV_NONE)
2267 		ap->ops->sff_dev_select(ap, 1);
2268 	if (classes[1] != ATA_DEV_NONE)
2269 		ap->ops->sff_dev_select(ap, 0);
2270 
2271 	/* bail out if no device is present */
2272 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2273 		DPRINTK("EXIT, no device\n");
2274 		return;
2275 	}
2276 
2277 	/* set up device control */
2278 	if (ap->ioaddr.ctl_addr) {
2279 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2280 		ap->last_ctl = ap->ctl;
2281 	}
2282 }
2283 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2284 
2285 /**
2286  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2287  *	@qc: command
2288  *
2289  *	Drain the FIFO and device of any stuck data following a command
2290  *	failing to complete. In some cases this is neccessary before a
2291  *	reset will recover the device.
2292  *
2293  */
2294 
2295 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2296 {
2297 	int count;
2298 	struct ata_port *ap;
2299 
2300 	/* We only need to flush incoming data when a command was running */
2301 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2302 		return;
2303 
2304 	ap = qc->ap;
2305 	/* Drain up to 64K of data before we give up this recovery method */
2306 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2307 						&& count < 65536; count += 2)
2308 		ioread16(ap->ioaddr.data_addr);
2309 
2310 	/* Can become DEBUG later */
2311 	if (count)
2312 		ata_port_printk(ap, KERN_DEBUG,
2313 			"drained %d bytes to clear DRQ.\n", count);
2314 
2315 }
2316 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2317 
2318 /**
2319  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2320  *	@ap: port to handle error for
2321  *
2322  *	Stock error handler for SFF controller.  It can handle both
2323  *	PATA and SATA controllers.  Many controllers should be able to
2324  *	use this EH as-is or with some added handling before and
2325  *	after.
2326  *
2327  *	LOCKING:
2328  *	Kernel thread context (may sleep)
2329  */
2330 void ata_sff_error_handler(struct ata_port *ap)
2331 {
2332 	ata_reset_fn_t softreset = ap->ops->softreset;
2333 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2334 	struct ata_queued_cmd *qc;
2335 	unsigned long flags;
2336 	int thaw = 0;
2337 
2338 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2339 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2340 		qc = NULL;
2341 
2342 	/* reset PIO HSM and stop DMA engine */
2343 	spin_lock_irqsave(ap->lock, flags);
2344 
2345 	ap->hsm_task_state = HSM_ST_IDLE;
2346 
2347 	if (ap->ioaddr.bmdma_addr &&
2348 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2349 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2350 		u8 host_stat;
2351 
2352 		host_stat = ap->ops->bmdma_status(ap);
2353 
2354 		/* BMDMA controllers indicate host bus error by
2355 		 * setting DMA_ERR bit and timing out.  As it wasn't
2356 		 * really a timeout event, adjust error mask and
2357 		 * cancel frozen state.
2358 		 */
2359 		if (qc->err_mask == AC_ERR_TIMEOUT
2360 						&& (host_stat & ATA_DMA_ERR)) {
2361 			qc->err_mask = AC_ERR_HOST_BUS;
2362 			thaw = 1;
2363 		}
2364 
2365 		ap->ops->bmdma_stop(qc);
2366 	}
2367 
2368 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2369 	ap->ops->sff_check_status(ap);
2370 	ap->ops->sff_irq_clear(ap);
2371 	/* We *MUST* do FIFO draining before we issue a reset as several
2372 	 * devices helpfully clear their internal state and will lock solid
2373 	 * if we touch the data port post reset. Pass qc in case anyone wants
2374 	 *  to do different PIO/DMA recovery or has per command fixups
2375 	 */
2376 	if (ap->ops->drain_fifo)
2377 		ap->ops->drain_fifo(qc);
2378 
2379 	spin_unlock_irqrestore(ap->lock, flags);
2380 
2381 	if (thaw)
2382 		ata_eh_thaw_port(ap);
2383 
2384 	/* PIO and DMA engines have been stopped, perform recovery */
2385 
2386 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2387 	 * built-in hardresets if SCR access isn't available.
2388 	 */
2389 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2390 		softreset = NULL;
2391 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2392 		hardreset = NULL;
2393 
2394 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2395 		  ap->ops->postreset);
2396 }
2397 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2398 
2399 /**
2400  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2401  *	@qc: internal command to clean up
2402  *
2403  *	LOCKING:
2404  *	Kernel thread context (may sleep)
2405  */
2406 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2407 {
2408 	struct ata_port *ap = qc->ap;
2409 	unsigned long flags;
2410 
2411 	spin_lock_irqsave(ap->lock, flags);
2412 
2413 	ap->hsm_task_state = HSM_ST_IDLE;
2414 
2415 	if (ap->ioaddr.bmdma_addr)
2416 		ap->ops->bmdma_stop(qc);
2417 
2418 	spin_unlock_irqrestore(ap->lock, flags);
2419 }
2420 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2421 
2422 /**
2423  *	ata_sff_port_start - Set port up for dma.
2424  *	@ap: Port to initialize
2425  *
2426  *	Called just after data structures for each port are
2427  *	initialized.  Allocates space for PRD table if the device
2428  *	is DMA capable SFF.
2429  *
2430  *	May be used as the port_start() entry in ata_port_operations.
2431  *
2432  *	LOCKING:
2433  *	Inherited from caller.
2434  */
2435 int ata_sff_port_start(struct ata_port *ap)
2436 {
2437 	if (ap->ioaddr.bmdma_addr)
2438 		return ata_port_start(ap);
2439 	return 0;
2440 }
2441 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2442 
2443 /**
2444  *	ata_sff_port_start32 - Set port up for dma.
2445  *	@ap: Port to initialize
2446  *
2447  *	Called just after data structures for each port are
2448  *	initialized.  Allocates space for PRD table if the device
2449  *	is DMA capable SFF.
2450  *
2451  *	May be used as the port_start() entry in ata_port_operations for
2452  *	devices that are capable of 32bit PIO.
2453  *
2454  *	LOCKING:
2455  *	Inherited from caller.
2456  */
2457 int ata_sff_port_start32(struct ata_port *ap)
2458 {
2459 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2460 	if (ap->ioaddr.bmdma_addr)
2461 		return ata_port_start(ap);
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2465 
2466 /**
2467  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2468  *	@ioaddr: IO address structure to be initialized
2469  *
2470  *	Utility function which initializes data_addr, error_addr,
2471  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2472  *	device_addr, status_addr, and command_addr to standard offsets
2473  *	relative to cmd_addr.
2474  *
2475  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2476  */
2477 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2478 {
2479 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2480 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2481 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2482 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2483 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2484 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2485 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2486 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2487 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2488 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2489 }
2490 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2491 
2492 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2493 				    unsigned long xfer_mask)
2494 {
2495 	/* Filter out DMA modes if the device has been configured by
2496 	   the BIOS as PIO only */
2497 
2498 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2499 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2500 	return xfer_mask;
2501 }
2502 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2503 
2504 /**
2505  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2506  *	@qc: Info associated with this ATA transaction.
2507  *
2508  *	LOCKING:
2509  *	spin_lock_irqsave(host lock)
2510  */
2511 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2512 {
2513 	struct ata_port *ap = qc->ap;
2514 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2515 	u8 dmactl;
2516 
2517 	/* load PRD table addr. */
2518 	mb();	/* make sure PRD table writes are visible to controller */
2519 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2520 
2521 	/* specify data direction, triple-check start bit is clear */
2522 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2523 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2524 	if (!rw)
2525 		dmactl |= ATA_DMA_WR;
2526 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2527 
2528 	/* issue r/w command */
2529 	ap->ops->sff_exec_command(ap, &qc->tf);
2530 }
2531 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2532 
2533 /**
2534  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2535  *	@qc: Info associated with this ATA transaction.
2536  *
2537  *	LOCKING:
2538  *	spin_lock_irqsave(host lock)
2539  */
2540 void ata_bmdma_start(struct ata_queued_cmd *qc)
2541 {
2542 	struct ata_port *ap = qc->ap;
2543 	u8 dmactl;
2544 
2545 	/* start host DMA transaction */
2546 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2547 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2548 
2549 	/* Strictly, one may wish to issue an ioread8() here, to
2550 	 * flush the mmio write.  However, control also passes
2551 	 * to the hardware at this point, and it will interrupt
2552 	 * us when we are to resume control.  So, in effect,
2553 	 * we don't care when the mmio write flushes.
2554 	 * Further, a read of the DMA status register _immediately_
2555 	 * following the write may not be what certain flaky hardware
2556 	 * is expected, so I think it is best to not add a readb()
2557 	 * without first all the MMIO ATA cards/mobos.
2558 	 * Or maybe I'm just being paranoid.
2559 	 *
2560 	 * FIXME: The posting of this write means I/O starts are
2561 	 * unneccessarily delayed for MMIO
2562 	 */
2563 }
2564 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2565 
2566 /**
2567  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2568  *	@qc: Command we are ending DMA for
2569  *
2570  *	Clears the ATA_DMA_START flag in the dma control register
2571  *
2572  *	May be used as the bmdma_stop() entry in ata_port_operations.
2573  *
2574  *	LOCKING:
2575  *	spin_lock_irqsave(host lock)
2576  */
2577 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2578 {
2579 	struct ata_port *ap = qc->ap;
2580 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2581 
2582 	/* clear start/stop bit */
2583 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2584 		 mmio + ATA_DMA_CMD);
2585 
2586 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2587 	ata_sff_dma_pause(ap);
2588 }
2589 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2590 
2591 /**
2592  *	ata_bmdma_status - Read PCI IDE BMDMA status
2593  *	@ap: Port associated with this ATA transaction.
2594  *
2595  *	Read and return BMDMA status register.
2596  *
2597  *	May be used as the bmdma_status() entry in ata_port_operations.
2598  *
2599  *	LOCKING:
2600  *	spin_lock_irqsave(host lock)
2601  */
2602 u8 ata_bmdma_status(struct ata_port *ap)
2603 {
2604 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2605 }
2606 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2607 
2608 /**
2609  *	ata_bus_reset - reset host port and associated ATA channel
2610  *	@ap: port to reset
2611  *
2612  *	This is typically the first time we actually start issuing
2613  *	commands to the ATA channel.  We wait for BSY to clear, then
2614  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2615  *	result.  Determine what devices, if any, are on the channel
2616  *	by looking at the device 0/1 error register.  Look at the signature
2617  *	stored in each device's taskfile registers, to determine if
2618  *	the device is ATA or ATAPI.
2619  *
2620  *	LOCKING:
2621  *	PCI/etc. bus probe sem.
2622  *	Obtains host lock.
2623  *
2624  *	SIDE EFFECTS:
2625  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2626  *
2627  *	DEPRECATED:
2628  *	This function is only for drivers which still use old EH and
2629  *	will be removed soon.
2630  */
2631 void ata_bus_reset(struct ata_port *ap)
2632 {
2633 	struct ata_device *device = ap->link.device;
2634 	struct ata_ioports *ioaddr = &ap->ioaddr;
2635 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2636 	u8 err;
2637 	unsigned int dev0, dev1 = 0, devmask = 0;
2638 	int rc;
2639 
2640 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2641 
2642 	/* determine if device 0/1 are present */
2643 	if (ap->flags & ATA_FLAG_SATA_RESET)
2644 		dev0 = 1;
2645 	else {
2646 		dev0 = ata_devchk(ap, 0);
2647 		if (slave_possible)
2648 			dev1 = ata_devchk(ap, 1);
2649 	}
2650 
2651 	if (dev0)
2652 		devmask |= (1 << 0);
2653 	if (dev1)
2654 		devmask |= (1 << 1);
2655 
2656 	/* select device 0 again */
2657 	ap->ops->sff_dev_select(ap, 0);
2658 
2659 	/* issue bus reset */
2660 	if (ap->flags & ATA_FLAG_SRST) {
2661 		rc = ata_bus_softreset(ap, devmask,
2662 				       ata_deadline(jiffies, 40000));
2663 		if (rc && rc != -ENODEV)
2664 			goto err_out;
2665 	}
2666 
2667 	/*
2668 	 * determine by signature whether we have ATA or ATAPI devices
2669 	 */
2670 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2671 	if ((slave_possible) && (err != 0x81))
2672 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2673 
2674 	/* is double-select really necessary? */
2675 	if (device[1].class != ATA_DEV_NONE)
2676 		ap->ops->sff_dev_select(ap, 1);
2677 	if (device[0].class != ATA_DEV_NONE)
2678 		ap->ops->sff_dev_select(ap, 0);
2679 
2680 	/* if no devices were detected, disable this port */
2681 	if ((device[0].class == ATA_DEV_NONE) &&
2682 	    (device[1].class == ATA_DEV_NONE))
2683 		goto err_out;
2684 
2685 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2686 		/* set up device control for ATA_FLAG_SATA_RESET */
2687 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2688 		ap->last_ctl = ap->ctl;
2689 	}
2690 
2691 	DPRINTK("EXIT\n");
2692 	return;
2693 
2694 err_out:
2695 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2696 	ata_port_disable(ap);
2697 
2698 	DPRINTK("EXIT\n");
2699 }
2700 EXPORT_SYMBOL_GPL(ata_bus_reset);
2701 
2702 #ifdef CONFIG_PCI
2703 
2704 /**
2705  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2706  *	@pdev: PCI device
2707  *
2708  *	Some PCI ATA devices report simplex mode but in fact can be told to
2709  *	enter non simplex mode. This implements the necessary logic to
2710  *	perform the task on such devices. Calling it on other devices will
2711  *	have -undefined- behaviour.
2712  */
2713 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2714 {
2715 	unsigned long bmdma = pci_resource_start(pdev, 4);
2716 	u8 simplex;
2717 
2718 	if (bmdma == 0)
2719 		return -ENOENT;
2720 
2721 	simplex = inb(bmdma + 0x02);
2722 	outb(simplex & 0x60, bmdma + 0x02);
2723 	simplex = inb(bmdma + 0x02);
2724 	if (simplex & 0x80)
2725 		return -EOPNOTSUPP;
2726 	return 0;
2727 }
2728 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2729 
2730 /**
2731  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2732  *	@host: target ATA host
2733  *
2734  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2735  *
2736  *	LOCKING:
2737  *	Inherited from calling layer (may sleep).
2738  *
2739  *	RETURNS:
2740  *	0 on success, -errno otherwise.
2741  */
2742 int ata_pci_bmdma_init(struct ata_host *host)
2743 {
2744 	struct device *gdev = host->dev;
2745 	struct pci_dev *pdev = to_pci_dev(gdev);
2746 	int i, rc;
2747 
2748 	/* No BAR4 allocation: No DMA */
2749 	if (pci_resource_start(pdev, 4) == 0)
2750 		return 0;
2751 
2752 	/* TODO: If we get no DMA mask we should fall back to PIO */
2753 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2754 	if (rc)
2755 		return rc;
2756 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2757 	if (rc)
2758 		return rc;
2759 
2760 	/* request and iomap DMA region */
2761 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2762 	if (rc) {
2763 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2764 		return -ENOMEM;
2765 	}
2766 	host->iomap = pcim_iomap_table(pdev);
2767 
2768 	for (i = 0; i < 2; i++) {
2769 		struct ata_port *ap = host->ports[i];
2770 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2771 
2772 		if (ata_port_is_dummy(ap))
2773 			continue;
2774 
2775 		ap->ioaddr.bmdma_addr = bmdma;
2776 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2777 		    (ioread8(bmdma + 2) & 0x80))
2778 			host->flags |= ATA_HOST_SIMPLEX;
2779 
2780 		ata_port_desc(ap, "bmdma 0x%llx",
2781 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2782 	}
2783 
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2787 
2788 static int ata_resources_present(struct pci_dev *pdev, int port)
2789 {
2790 	int i;
2791 
2792 	/* Check the PCI resources for this channel are enabled */
2793 	port = port * 2;
2794 	for (i = 0; i < 2; i++) {
2795 		if (pci_resource_start(pdev, port + i) == 0 ||
2796 		    pci_resource_len(pdev, port + i) == 0)
2797 			return 0;
2798 	}
2799 	return 1;
2800 }
2801 
2802 /**
2803  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2804  *	@host: target ATA host
2805  *
2806  *	Acquire native PCI ATA resources for @host and initialize the
2807  *	first two ports of @host accordingly.  Ports marked dummy are
2808  *	skipped and allocation failure makes the port dummy.
2809  *
2810  *	Note that native PCI resources are valid even for legacy hosts
2811  *	as we fix up pdev resources array early in boot, so this
2812  *	function can be used for both native and legacy SFF hosts.
2813  *
2814  *	LOCKING:
2815  *	Inherited from calling layer (may sleep).
2816  *
2817  *	RETURNS:
2818  *	0 if at least one port is initialized, -ENODEV if no port is
2819  *	available.
2820  */
2821 int ata_pci_sff_init_host(struct ata_host *host)
2822 {
2823 	struct device *gdev = host->dev;
2824 	struct pci_dev *pdev = to_pci_dev(gdev);
2825 	unsigned int mask = 0;
2826 	int i, rc;
2827 
2828 	/* request, iomap BARs and init port addresses accordingly */
2829 	for (i = 0; i < 2; i++) {
2830 		struct ata_port *ap = host->ports[i];
2831 		int base = i * 2;
2832 		void __iomem * const *iomap;
2833 
2834 		if (ata_port_is_dummy(ap))
2835 			continue;
2836 
2837 		/* Discard disabled ports.  Some controllers show
2838 		 * their unused channels this way.  Disabled ports are
2839 		 * made dummy.
2840 		 */
2841 		if (!ata_resources_present(pdev, i)) {
2842 			ap->ops = &ata_dummy_port_ops;
2843 			continue;
2844 		}
2845 
2846 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2847 					dev_driver_string(gdev));
2848 		if (rc) {
2849 			dev_printk(KERN_WARNING, gdev,
2850 				   "failed to request/iomap BARs for port %d "
2851 				   "(errno=%d)\n", i, rc);
2852 			if (rc == -EBUSY)
2853 				pcim_pin_device(pdev);
2854 			ap->ops = &ata_dummy_port_ops;
2855 			continue;
2856 		}
2857 		host->iomap = iomap = pcim_iomap_table(pdev);
2858 
2859 		ap->ioaddr.cmd_addr = iomap[base];
2860 		ap->ioaddr.altstatus_addr =
2861 		ap->ioaddr.ctl_addr = (void __iomem *)
2862 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2863 		ata_sff_std_ports(&ap->ioaddr);
2864 
2865 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2866 			(unsigned long long)pci_resource_start(pdev, base),
2867 			(unsigned long long)pci_resource_start(pdev, base + 1));
2868 
2869 		mask |= 1 << i;
2870 	}
2871 
2872 	if (!mask) {
2873 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2874 		return -ENODEV;
2875 	}
2876 
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2880 
2881 /**
2882  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2883  *	@pdev: target PCI device
2884  *	@ppi: array of port_info, must be enough for two ports
2885  *	@r_host: out argument for the initialized ATA host
2886  *
2887  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2888  *	resources and initialize it accordingly in one go.
2889  *
2890  *	LOCKING:
2891  *	Inherited from calling layer (may sleep).
2892  *
2893  *	RETURNS:
2894  *	0 on success, -errno otherwise.
2895  */
2896 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2897 			     const struct ata_port_info * const *ppi,
2898 			     struct ata_host **r_host)
2899 {
2900 	struct ata_host *host;
2901 	int rc;
2902 
2903 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2904 		return -ENOMEM;
2905 
2906 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2907 	if (!host) {
2908 		dev_printk(KERN_ERR, &pdev->dev,
2909 			   "failed to allocate ATA host\n");
2910 		rc = -ENOMEM;
2911 		goto err_out;
2912 	}
2913 
2914 	rc = ata_pci_sff_init_host(host);
2915 	if (rc)
2916 		goto err_out;
2917 
2918 	/* init DMA related stuff */
2919 	rc = ata_pci_bmdma_init(host);
2920 	if (rc)
2921 		goto err_bmdma;
2922 
2923 	devres_remove_group(&pdev->dev, NULL);
2924 	*r_host = host;
2925 	return 0;
2926 
2927 err_bmdma:
2928 	/* This is necessary because PCI and iomap resources are
2929 	 * merged and releasing the top group won't release the
2930 	 * acquired resources if some of those have been acquired
2931 	 * before entering this function.
2932 	 */
2933 	pcim_iounmap_regions(pdev, 0xf);
2934 err_out:
2935 	devres_release_group(&pdev->dev, NULL);
2936 	return rc;
2937 }
2938 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2939 
2940 /**
2941  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2942  *	@host: target SFF ATA host
2943  *	@irq_handler: irq_handler used when requesting IRQ(s)
2944  *	@sht: scsi_host_template to use when registering the host
2945  *
2946  *	This is the counterpart of ata_host_activate() for SFF ATA
2947  *	hosts.  This separate helper is necessary because SFF hosts
2948  *	use two separate interrupts in legacy mode.
2949  *
2950  *	LOCKING:
2951  *	Inherited from calling layer (may sleep).
2952  *
2953  *	RETURNS:
2954  *	0 on success, -errno otherwise.
2955  */
2956 int ata_pci_sff_activate_host(struct ata_host *host,
2957 			      irq_handler_t irq_handler,
2958 			      struct scsi_host_template *sht)
2959 {
2960 	struct device *dev = host->dev;
2961 	struct pci_dev *pdev = to_pci_dev(dev);
2962 	const char *drv_name = dev_driver_string(host->dev);
2963 	int legacy_mode = 0, rc;
2964 
2965 	rc = ata_host_start(host);
2966 	if (rc)
2967 		return rc;
2968 
2969 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2970 		u8 tmp8, mask;
2971 
2972 		/* TODO: What if one channel is in native mode ... */
2973 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2974 		mask = (1 << 2) | (1 << 0);
2975 		if ((tmp8 & mask) != mask)
2976 			legacy_mode = 1;
2977 #if defined(CONFIG_NO_ATA_LEGACY)
2978 		/* Some platforms with PCI limits cannot address compat
2979 		   port space. In that case we punt if their firmware has
2980 		   left a device in compatibility mode */
2981 		if (legacy_mode) {
2982 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2983 			return -EOPNOTSUPP;
2984 		}
2985 #endif
2986 	}
2987 
2988 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2989 		return -ENOMEM;
2990 
2991 	if (!legacy_mode && pdev->irq) {
2992 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2993 				      IRQF_SHARED, drv_name, host);
2994 		if (rc)
2995 			goto out;
2996 
2997 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2998 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2999 	} else if (legacy_mode) {
3000 		if (!ata_port_is_dummy(host->ports[0])) {
3001 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
3002 					      irq_handler, IRQF_SHARED,
3003 					      drv_name, host);
3004 			if (rc)
3005 				goto out;
3006 
3007 			ata_port_desc(host->ports[0], "irq %d",
3008 				      ATA_PRIMARY_IRQ(pdev));
3009 		}
3010 
3011 		if (!ata_port_is_dummy(host->ports[1])) {
3012 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
3013 					      irq_handler, IRQF_SHARED,
3014 					      drv_name, host);
3015 			if (rc)
3016 				goto out;
3017 
3018 			ata_port_desc(host->ports[1], "irq %d",
3019 				      ATA_SECONDARY_IRQ(pdev));
3020 		}
3021 	}
3022 
3023 	rc = ata_host_register(host, sht);
3024 out:
3025 	if (rc == 0)
3026 		devres_remove_group(dev, NULL);
3027 	else
3028 		devres_release_group(dev, NULL);
3029 
3030 	return rc;
3031 }
3032 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
3033 
3034 /**
3035  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
3036  *	@pdev: Controller to be initialized
3037  *	@ppi: array of port_info, must be enough for two ports
3038  *	@sht: scsi_host_template to use when registering the host
3039  *	@host_priv: host private_data
3040  *	@hflag: host flags
3041  *
3042  *	This is a helper function which can be called from a driver's
3043  *	xxx_init_one() probe function if the hardware uses traditional
3044  *	IDE taskfile registers.
3045  *
3046  *	This function calls pci_enable_device(), reserves its register
3047  *	regions, sets the dma mask, enables bus master mode, and calls
3048  *	ata_device_add()
3049  *
3050  *	ASSUMPTION:
3051  *	Nobody makes a single channel controller that appears solely as
3052  *	the secondary legacy port on PCI.
3053  *
3054  *	LOCKING:
3055  *	Inherited from PCI layer (may sleep).
3056  *
3057  *	RETURNS:
3058  *	Zero on success, negative on errno-based value on error.
3059  */
3060 int ata_pci_sff_init_one(struct pci_dev *pdev,
3061 		 const struct ata_port_info * const *ppi,
3062 		 struct scsi_host_template *sht, void *host_priv, int hflag)
3063 {
3064 	struct device *dev = &pdev->dev;
3065 	const struct ata_port_info *pi = NULL;
3066 	struct ata_host *host = NULL;
3067 	int i, rc;
3068 
3069 	DPRINTK("ENTER\n");
3070 
3071 	/* look up the first valid port_info */
3072 	for (i = 0; i < 2 && ppi[i]; i++) {
3073 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3074 			pi = ppi[i];
3075 			break;
3076 		}
3077 	}
3078 
3079 	if (!pi) {
3080 		dev_printk(KERN_ERR, &pdev->dev,
3081 			   "no valid port_info specified\n");
3082 		return -EINVAL;
3083 	}
3084 
3085 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3086 		return -ENOMEM;
3087 
3088 	rc = pcim_enable_device(pdev);
3089 	if (rc)
3090 		goto out;
3091 
3092 	/* prepare and activate SFF host */
3093 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3094 	if (rc)
3095 		goto out;
3096 	host->private_data = host_priv;
3097 	host->flags |= hflag;
3098 
3099 	pci_set_master(pdev);
3100 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3101 out:
3102 	if (rc == 0)
3103 		devres_remove_group(&pdev->dev, NULL);
3104 	else
3105 		devres_release_group(&pdev->dev, NULL);
3106 
3107 	return rc;
3108 }
3109 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3110 
3111 #endif /* CONFIG_PCI */
3112