1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .error_handler = ata_sff_error_handler, 56 .post_internal_cmd = ata_sff_post_internal_cmd, 57 58 .sff_dev_select = ata_sff_dev_select, 59 .sff_check_status = ata_sff_check_status, 60 .sff_tf_load = ata_sff_tf_load, 61 .sff_tf_read = ata_sff_tf_read, 62 .sff_exec_command = ata_sff_exec_command, 63 .sff_data_xfer = ata_sff_data_xfer, 64 .sff_irq_on = ata_sff_irq_on, 65 .sff_irq_clear = ata_sff_irq_clear, 66 67 .port_start = ata_sff_port_start, 68 }; 69 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 70 71 const struct ata_port_operations ata_bmdma_port_ops = { 72 .inherits = &ata_sff_port_ops, 73 74 .mode_filter = ata_bmdma_mode_filter, 75 76 .bmdma_setup = ata_bmdma_setup, 77 .bmdma_start = ata_bmdma_start, 78 .bmdma_stop = ata_bmdma_stop, 79 .bmdma_status = ata_bmdma_status, 80 }; 81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 82 83 const struct ata_port_operations ata_bmdma32_port_ops = { 84 .inherits = &ata_bmdma_port_ops, 85 86 .sff_data_xfer = ata_sff_data_xfer32, 87 }; 88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 89 90 /** 91 * ata_fill_sg - Fill PCI IDE PRD table 92 * @qc: Metadata associated with taskfile to be transferred 93 * 94 * Fill PCI IDE PRD (scatter-gather) table with segments 95 * associated with the current disk command. 96 * 97 * LOCKING: 98 * spin_lock_irqsave(host lock) 99 * 100 */ 101 static void ata_fill_sg(struct ata_queued_cmd *qc) 102 { 103 struct ata_port *ap = qc->ap; 104 struct scatterlist *sg; 105 unsigned int si, pi; 106 107 pi = 0; 108 for_each_sg(qc->sg, sg, qc->n_elem, si) { 109 u32 addr, offset; 110 u32 sg_len, len; 111 112 /* determine if physical DMA addr spans 64K boundary. 113 * Note h/w doesn't support 64-bit, so we unconditionally 114 * truncate dma_addr_t to u32. 115 */ 116 addr = (u32) sg_dma_address(sg); 117 sg_len = sg_dma_len(sg); 118 119 while (sg_len) { 120 offset = addr & 0xffff; 121 len = sg_len; 122 if ((offset + sg_len) > 0x10000) 123 len = 0x10000 - offset; 124 125 ap->prd[pi].addr = cpu_to_le32(addr); 126 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 127 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 128 129 pi++; 130 sg_len -= len; 131 addr += len; 132 } 133 } 134 135 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 136 } 137 138 /** 139 * ata_fill_sg_dumb - Fill PCI IDE PRD table 140 * @qc: Metadata associated with taskfile to be transferred 141 * 142 * Fill PCI IDE PRD (scatter-gather) table with segments 143 * associated with the current disk command. Perform the fill 144 * so that we avoid writing any length 64K records for 145 * controllers that don't follow the spec. 146 * 147 * LOCKING: 148 * spin_lock_irqsave(host lock) 149 * 150 */ 151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 152 { 153 struct ata_port *ap = qc->ap; 154 struct scatterlist *sg; 155 unsigned int si, pi; 156 157 pi = 0; 158 for_each_sg(qc->sg, sg, qc->n_elem, si) { 159 u32 addr, offset; 160 u32 sg_len, len, blen; 161 162 /* determine if physical DMA addr spans 64K boundary. 163 * Note h/w doesn't support 64-bit, so we unconditionally 164 * truncate dma_addr_t to u32. 165 */ 166 addr = (u32) sg_dma_address(sg); 167 sg_len = sg_dma_len(sg); 168 169 while (sg_len) { 170 offset = addr & 0xffff; 171 len = sg_len; 172 if ((offset + sg_len) > 0x10000) 173 len = 0x10000 - offset; 174 175 blen = len & 0xffff; 176 ap->prd[pi].addr = cpu_to_le32(addr); 177 if (blen == 0) { 178 /* Some PATA chipsets like the CS5530 can't 179 cope with 0x0000 meaning 64K as the spec 180 says */ 181 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 182 blen = 0x8000; 183 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 184 } 185 ap->prd[pi].flags_len = cpu_to_le32(blen); 186 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 187 188 pi++; 189 sg_len -= len; 190 addr += len; 191 } 192 } 193 194 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 195 } 196 197 /** 198 * ata_sff_qc_prep - Prepare taskfile for submission 199 * @qc: Metadata associated with taskfile to be prepared 200 * 201 * Prepare ATA taskfile for submission. 202 * 203 * LOCKING: 204 * spin_lock_irqsave(host lock) 205 */ 206 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 207 { 208 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 209 return; 210 211 ata_fill_sg(qc); 212 } 213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 214 215 /** 216 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 217 * @qc: Metadata associated with taskfile to be prepared 218 * 219 * Prepare ATA taskfile for submission. 220 * 221 * LOCKING: 222 * spin_lock_irqsave(host lock) 223 */ 224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 225 { 226 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 227 return; 228 229 ata_fill_sg_dumb(qc); 230 } 231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 232 233 /** 234 * ata_sff_check_status - Read device status reg & clear interrupt 235 * @ap: port where the device is 236 * 237 * Reads ATA taskfile status register for currently-selected device 238 * and return its value. This also clears pending interrupts 239 * from this device 240 * 241 * LOCKING: 242 * Inherited from caller. 243 */ 244 u8 ata_sff_check_status(struct ata_port *ap) 245 { 246 return ioread8(ap->ioaddr.status_addr); 247 } 248 EXPORT_SYMBOL_GPL(ata_sff_check_status); 249 250 /** 251 * ata_sff_altstatus - Read device alternate status reg 252 * @ap: port where the device is 253 * 254 * Reads ATA taskfile alternate status register for 255 * currently-selected device and return its value. 256 * 257 * Note: may NOT be used as the check_altstatus() entry in 258 * ata_port_operations. 259 * 260 * LOCKING: 261 * Inherited from caller. 262 */ 263 static u8 ata_sff_altstatus(struct ata_port *ap) 264 { 265 if (ap->ops->sff_check_altstatus) 266 return ap->ops->sff_check_altstatus(ap); 267 268 return ioread8(ap->ioaddr.altstatus_addr); 269 } 270 271 /** 272 * ata_sff_irq_status - Check if the device is busy 273 * @ap: port where the device is 274 * 275 * Determine if the port is currently busy. Uses altstatus 276 * if available in order to avoid clearing shared IRQ status 277 * when finding an IRQ source. Non ctl capable devices don't 278 * share interrupt lines fortunately for us. 279 * 280 * LOCKING: 281 * Inherited from caller. 282 */ 283 static u8 ata_sff_irq_status(struct ata_port *ap) 284 { 285 u8 status; 286 287 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 288 status = ata_sff_altstatus(ap); 289 /* Not us: We are busy */ 290 if (status & ATA_BUSY) 291 return status; 292 } 293 /* Clear INTRQ latch */ 294 status = ap->ops->sff_check_status(ap); 295 return status; 296 } 297 298 /** 299 * ata_sff_sync - Flush writes 300 * @ap: Port to wait for. 301 * 302 * CAUTION: 303 * If we have an mmio device with no ctl and no altstatus 304 * method this will fail. No such devices are known to exist. 305 * 306 * LOCKING: 307 * Inherited from caller. 308 */ 309 310 static void ata_sff_sync(struct ata_port *ap) 311 { 312 if (ap->ops->sff_check_altstatus) 313 ap->ops->sff_check_altstatus(ap); 314 else if (ap->ioaddr.altstatus_addr) 315 ioread8(ap->ioaddr.altstatus_addr); 316 } 317 318 /** 319 * ata_sff_pause - Flush writes and wait 400nS 320 * @ap: Port to pause for. 321 * 322 * CAUTION: 323 * If we have an mmio device with no ctl and no altstatus 324 * method this will fail. No such devices are known to exist. 325 * 326 * LOCKING: 327 * Inherited from caller. 328 */ 329 330 void ata_sff_pause(struct ata_port *ap) 331 { 332 ata_sff_sync(ap); 333 ndelay(400); 334 } 335 EXPORT_SYMBOL_GPL(ata_sff_pause); 336 337 /** 338 * ata_sff_dma_pause - Pause before commencing DMA 339 * @ap: Port to pause for. 340 * 341 * Perform I/O fencing and ensure sufficient cycle delays occur 342 * for the HDMA1:0 transition 343 */ 344 345 void ata_sff_dma_pause(struct ata_port *ap) 346 { 347 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 348 /* An altstatus read will cause the needed delay without 349 messing up the IRQ status */ 350 ata_sff_altstatus(ap); 351 return; 352 } 353 /* There are no DMA controllers without ctl. BUG here to ensure 354 we never violate the HDMA1:0 transition timing and risk 355 corruption. */ 356 BUG(); 357 } 358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 359 360 /** 361 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 362 * @ap: port containing status register to be polled 363 * @tmout_pat: impatience timeout in msecs 364 * @tmout: overall timeout in msecs 365 * 366 * Sleep until ATA Status register bit BSY clears, 367 * or a timeout occurs. 368 * 369 * LOCKING: 370 * Kernel thread context (may sleep). 371 * 372 * RETURNS: 373 * 0 on success, -errno otherwise. 374 */ 375 int ata_sff_busy_sleep(struct ata_port *ap, 376 unsigned long tmout_pat, unsigned long tmout) 377 { 378 unsigned long timer_start, timeout; 379 u8 status; 380 381 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 382 timer_start = jiffies; 383 timeout = ata_deadline(timer_start, tmout_pat); 384 while (status != 0xff && (status & ATA_BUSY) && 385 time_before(jiffies, timeout)) { 386 msleep(50); 387 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 388 } 389 390 if (status != 0xff && (status & ATA_BUSY)) 391 ata_port_printk(ap, KERN_WARNING, 392 "port is slow to respond, please be patient " 393 "(Status 0x%x)\n", status); 394 395 timeout = ata_deadline(timer_start, tmout); 396 while (status != 0xff && (status & ATA_BUSY) && 397 time_before(jiffies, timeout)) { 398 msleep(50); 399 status = ap->ops->sff_check_status(ap); 400 } 401 402 if (status == 0xff) 403 return -ENODEV; 404 405 if (status & ATA_BUSY) { 406 ata_port_printk(ap, KERN_ERR, "port failed to respond " 407 "(%lu secs, Status 0x%x)\n", 408 DIV_ROUND_UP(tmout, 1000), status); 409 return -EBUSY; 410 } 411 412 return 0; 413 } 414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 415 416 static int ata_sff_check_ready(struct ata_link *link) 417 { 418 u8 status = link->ap->ops->sff_check_status(link->ap); 419 420 return ata_check_ready(status); 421 } 422 423 /** 424 * ata_sff_wait_ready - sleep until BSY clears, or timeout 425 * @link: SFF link to wait ready status for 426 * @deadline: deadline jiffies for the operation 427 * 428 * Sleep until ATA Status register bit BSY clears, or timeout 429 * occurs. 430 * 431 * LOCKING: 432 * Kernel thread context (may sleep). 433 * 434 * RETURNS: 435 * 0 on success, -errno otherwise. 436 */ 437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 438 { 439 return ata_wait_ready(link, deadline, ata_sff_check_ready); 440 } 441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 442 443 /** 444 * ata_sff_dev_select - Select device 0/1 on ATA bus 445 * @ap: ATA channel to manipulate 446 * @device: ATA device (numbered from zero) to select 447 * 448 * Use the method defined in the ATA specification to 449 * make either device 0, or device 1, active on the 450 * ATA channel. Works with both PIO and MMIO. 451 * 452 * May be used as the dev_select() entry in ata_port_operations. 453 * 454 * LOCKING: 455 * caller. 456 */ 457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 458 { 459 u8 tmp; 460 461 if (device == 0) 462 tmp = ATA_DEVICE_OBS; 463 else 464 tmp = ATA_DEVICE_OBS | ATA_DEV1; 465 466 iowrite8(tmp, ap->ioaddr.device_addr); 467 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 468 } 469 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 470 471 /** 472 * ata_dev_select - Select device 0/1 on ATA bus 473 * @ap: ATA channel to manipulate 474 * @device: ATA device (numbered from zero) to select 475 * @wait: non-zero to wait for Status register BSY bit to clear 476 * @can_sleep: non-zero if context allows sleeping 477 * 478 * Use the method defined in the ATA specification to 479 * make either device 0, or device 1, active on the 480 * ATA channel. 481 * 482 * This is a high-level version of ata_sff_dev_select(), which 483 * additionally provides the services of inserting the proper 484 * pauses and status polling, where needed. 485 * 486 * LOCKING: 487 * caller. 488 */ 489 void ata_dev_select(struct ata_port *ap, unsigned int device, 490 unsigned int wait, unsigned int can_sleep) 491 { 492 if (ata_msg_probe(ap)) 493 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 494 "device %u, wait %u\n", device, wait); 495 496 if (wait) 497 ata_wait_idle(ap); 498 499 ap->ops->sff_dev_select(ap, device); 500 501 if (wait) { 502 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 503 msleep(150); 504 ata_wait_idle(ap); 505 } 506 } 507 508 /** 509 * ata_sff_irq_on - Enable interrupts on a port. 510 * @ap: Port on which interrupts are enabled. 511 * 512 * Enable interrupts on a legacy IDE device using MMIO or PIO, 513 * wait for idle, clear any pending interrupts. 514 * 515 * LOCKING: 516 * Inherited from caller. 517 */ 518 u8 ata_sff_irq_on(struct ata_port *ap) 519 { 520 struct ata_ioports *ioaddr = &ap->ioaddr; 521 u8 tmp; 522 523 ap->ctl &= ~ATA_NIEN; 524 ap->last_ctl = ap->ctl; 525 526 if (ioaddr->ctl_addr) 527 iowrite8(ap->ctl, ioaddr->ctl_addr); 528 tmp = ata_wait_idle(ap); 529 530 ap->ops->sff_irq_clear(ap); 531 532 return tmp; 533 } 534 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 535 536 /** 537 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 538 * @ap: Port associated with this ATA transaction. 539 * 540 * Clear interrupt and error flags in DMA status register. 541 * 542 * May be used as the irq_clear() entry in ata_port_operations. 543 * 544 * LOCKING: 545 * spin_lock_irqsave(host lock) 546 */ 547 void ata_sff_irq_clear(struct ata_port *ap) 548 { 549 void __iomem *mmio = ap->ioaddr.bmdma_addr; 550 551 if (!mmio) 552 return; 553 554 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 555 } 556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 557 558 /** 559 * ata_sff_tf_load - send taskfile registers to host controller 560 * @ap: Port to which output is sent 561 * @tf: ATA taskfile register set 562 * 563 * Outputs ATA taskfile to standard ATA host controller. 564 * 565 * LOCKING: 566 * Inherited from caller. 567 */ 568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 569 { 570 struct ata_ioports *ioaddr = &ap->ioaddr; 571 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 572 573 if (tf->ctl != ap->last_ctl) { 574 if (ioaddr->ctl_addr) 575 iowrite8(tf->ctl, ioaddr->ctl_addr); 576 ap->last_ctl = tf->ctl; 577 ata_wait_idle(ap); 578 } 579 580 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 581 WARN_ON_ONCE(!ioaddr->ctl_addr); 582 iowrite8(tf->hob_feature, ioaddr->feature_addr); 583 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 584 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 585 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 586 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 587 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 588 tf->hob_feature, 589 tf->hob_nsect, 590 tf->hob_lbal, 591 tf->hob_lbam, 592 tf->hob_lbah); 593 } 594 595 if (is_addr) { 596 iowrite8(tf->feature, ioaddr->feature_addr); 597 iowrite8(tf->nsect, ioaddr->nsect_addr); 598 iowrite8(tf->lbal, ioaddr->lbal_addr); 599 iowrite8(tf->lbam, ioaddr->lbam_addr); 600 iowrite8(tf->lbah, ioaddr->lbah_addr); 601 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 602 tf->feature, 603 tf->nsect, 604 tf->lbal, 605 tf->lbam, 606 tf->lbah); 607 } 608 609 if (tf->flags & ATA_TFLAG_DEVICE) { 610 iowrite8(tf->device, ioaddr->device_addr); 611 VPRINTK("device 0x%X\n", tf->device); 612 } 613 614 ata_wait_idle(ap); 615 } 616 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 617 618 /** 619 * ata_sff_tf_read - input device's ATA taskfile shadow registers 620 * @ap: Port from which input is read 621 * @tf: ATA taskfile register set for storing input 622 * 623 * Reads ATA taskfile registers for currently-selected device 624 * into @tf. Assumes the device has a fully SFF compliant task file 625 * layout and behaviour. If you device does not (eg has a different 626 * status method) then you will need to provide a replacement tf_read 627 * 628 * LOCKING: 629 * Inherited from caller. 630 */ 631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 632 { 633 struct ata_ioports *ioaddr = &ap->ioaddr; 634 635 tf->command = ata_sff_check_status(ap); 636 tf->feature = ioread8(ioaddr->error_addr); 637 tf->nsect = ioread8(ioaddr->nsect_addr); 638 tf->lbal = ioread8(ioaddr->lbal_addr); 639 tf->lbam = ioread8(ioaddr->lbam_addr); 640 tf->lbah = ioread8(ioaddr->lbah_addr); 641 tf->device = ioread8(ioaddr->device_addr); 642 643 if (tf->flags & ATA_TFLAG_LBA48) { 644 if (likely(ioaddr->ctl_addr)) { 645 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 646 tf->hob_feature = ioread8(ioaddr->error_addr); 647 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 648 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 649 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 650 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 651 iowrite8(tf->ctl, ioaddr->ctl_addr); 652 ap->last_ctl = tf->ctl; 653 } else 654 WARN_ON_ONCE(1); 655 } 656 } 657 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 658 659 /** 660 * ata_sff_exec_command - issue ATA command to host controller 661 * @ap: port to which command is being issued 662 * @tf: ATA taskfile register set 663 * 664 * Issues ATA command, with proper synchronization with interrupt 665 * handler / other threads. 666 * 667 * LOCKING: 668 * spin_lock_irqsave(host lock) 669 */ 670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 671 { 672 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 673 674 iowrite8(tf->command, ap->ioaddr.command_addr); 675 ata_sff_pause(ap); 676 } 677 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 678 679 /** 680 * ata_tf_to_host - issue ATA taskfile to host controller 681 * @ap: port to which command is being issued 682 * @tf: ATA taskfile register set 683 * 684 * Issues ATA taskfile register set to ATA host controller, 685 * with proper synchronization with interrupt handler and 686 * other threads. 687 * 688 * LOCKING: 689 * spin_lock_irqsave(host lock) 690 */ 691 static inline void ata_tf_to_host(struct ata_port *ap, 692 const struct ata_taskfile *tf) 693 { 694 ap->ops->sff_tf_load(ap, tf); 695 ap->ops->sff_exec_command(ap, tf); 696 } 697 698 /** 699 * ata_sff_data_xfer - Transfer data by PIO 700 * @dev: device to target 701 * @buf: data buffer 702 * @buflen: buffer length 703 * @rw: read/write 704 * 705 * Transfer data from/to the device data register by PIO. 706 * 707 * LOCKING: 708 * Inherited from caller. 709 * 710 * RETURNS: 711 * Bytes consumed. 712 */ 713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 714 unsigned int buflen, int rw) 715 { 716 struct ata_port *ap = dev->link->ap; 717 void __iomem *data_addr = ap->ioaddr.data_addr; 718 unsigned int words = buflen >> 1; 719 720 /* Transfer multiple of 2 bytes */ 721 if (rw == READ) 722 ioread16_rep(data_addr, buf, words); 723 else 724 iowrite16_rep(data_addr, buf, words); 725 726 /* Transfer trailing 1 byte, if any. */ 727 if (unlikely(buflen & 0x01)) { 728 __le16 align_buf[1] = { 0 }; 729 unsigned char *trailing_buf = buf + buflen - 1; 730 731 if (rw == READ) { 732 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 733 memcpy(trailing_buf, align_buf, 1); 734 } else { 735 memcpy(align_buf, trailing_buf, 1); 736 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 737 } 738 words++; 739 } 740 741 return words << 1; 742 } 743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 744 745 /** 746 * ata_sff_data_xfer32 - Transfer data by PIO 747 * @dev: device to target 748 * @buf: data buffer 749 * @buflen: buffer length 750 * @rw: read/write 751 * 752 * Transfer data from/to the device data register by PIO using 32bit 753 * I/O operations. 754 * 755 * LOCKING: 756 * Inherited from caller. 757 * 758 * RETURNS: 759 * Bytes consumed. 760 */ 761 762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 763 unsigned int buflen, int rw) 764 { 765 struct ata_port *ap = dev->link->ap; 766 void __iomem *data_addr = ap->ioaddr.data_addr; 767 unsigned int words = buflen >> 2; 768 int slop = buflen & 3; 769 770 /* Transfer multiple of 4 bytes */ 771 if (rw == READ) 772 ioread32_rep(data_addr, buf, words); 773 else 774 iowrite32_rep(data_addr, buf, words); 775 776 if (unlikely(slop)) { 777 __le32 pad; 778 if (rw == READ) { 779 pad = cpu_to_le32(ioread32(ap->ioaddr.data_addr)); 780 memcpy(buf + buflen - slop, &pad, slop); 781 } else { 782 memcpy(&pad, buf + buflen - slop, slop); 783 iowrite32(le32_to_cpu(pad), ap->ioaddr.data_addr); 784 } 785 words++; 786 } 787 return words << 2; 788 } 789 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 790 791 /** 792 * ata_sff_data_xfer_noirq - Transfer data by PIO 793 * @dev: device to target 794 * @buf: data buffer 795 * @buflen: buffer length 796 * @rw: read/write 797 * 798 * Transfer data from/to the device data register by PIO. Do the 799 * transfer with interrupts disabled. 800 * 801 * LOCKING: 802 * Inherited from caller. 803 * 804 * RETURNS: 805 * Bytes consumed. 806 */ 807 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 808 unsigned int buflen, int rw) 809 { 810 unsigned long flags; 811 unsigned int consumed; 812 813 local_irq_save(flags); 814 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 815 local_irq_restore(flags); 816 817 return consumed; 818 } 819 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 820 821 /** 822 * ata_pio_sector - Transfer a sector of data. 823 * @qc: Command on going 824 * 825 * Transfer qc->sect_size bytes of data from/to the ATA device. 826 * 827 * LOCKING: 828 * Inherited from caller. 829 */ 830 static void ata_pio_sector(struct ata_queued_cmd *qc) 831 { 832 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 833 struct ata_port *ap = qc->ap; 834 struct page *page; 835 unsigned int offset; 836 unsigned char *buf; 837 838 if (qc->curbytes == qc->nbytes - qc->sect_size) 839 ap->hsm_task_state = HSM_ST_LAST; 840 841 page = sg_page(qc->cursg); 842 offset = qc->cursg->offset + qc->cursg_ofs; 843 844 /* get the current page and offset */ 845 page = nth_page(page, (offset >> PAGE_SHIFT)); 846 offset %= PAGE_SIZE; 847 848 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 849 850 if (PageHighMem(page)) { 851 unsigned long flags; 852 853 /* FIXME: use a bounce buffer */ 854 local_irq_save(flags); 855 buf = kmap_atomic(page, KM_IRQ0); 856 857 /* do the actual data transfer */ 858 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 859 do_write); 860 861 kunmap_atomic(buf, KM_IRQ0); 862 local_irq_restore(flags); 863 } else { 864 buf = page_address(page); 865 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 866 do_write); 867 } 868 869 qc->curbytes += qc->sect_size; 870 qc->cursg_ofs += qc->sect_size; 871 872 if (qc->cursg_ofs == qc->cursg->length) { 873 qc->cursg = sg_next(qc->cursg); 874 qc->cursg_ofs = 0; 875 } 876 } 877 878 /** 879 * ata_pio_sectors - Transfer one or many sectors. 880 * @qc: Command on going 881 * 882 * Transfer one or many sectors of data from/to the 883 * ATA device for the DRQ request. 884 * 885 * LOCKING: 886 * Inherited from caller. 887 */ 888 static void ata_pio_sectors(struct ata_queued_cmd *qc) 889 { 890 if (is_multi_taskfile(&qc->tf)) { 891 /* READ/WRITE MULTIPLE */ 892 unsigned int nsect; 893 894 WARN_ON_ONCE(qc->dev->multi_count == 0); 895 896 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 897 qc->dev->multi_count); 898 while (nsect--) 899 ata_pio_sector(qc); 900 } else 901 ata_pio_sector(qc); 902 903 ata_sff_sync(qc->ap); /* flush */ 904 } 905 906 /** 907 * atapi_send_cdb - Write CDB bytes to hardware 908 * @ap: Port to which ATAPI device is attached. 909 * @qc: Taskfile currently active 910 * 911 * When device has indicated its readiness to accept 912 * a CDB, this function is called. Send the CDB. 913 * 914 * LOCKING: 915 * caller. 916 */ 917 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 918 { 919 /* send SCSI cdb */ 920 DPRINTK("send cdb\n"); 921 WARN_ON_ONCE(qc->dev->cdb_len < 12); 922 923 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 924 ata_sff_sync(ap); 925 /* FIXME: If the CDB is for DMA do we need to do the transition delay 926 or is bmdma_start guaranteed to do it ? */ 927 switch (qc->tf.protocol) { 928 case ATAPI_PROT_PIO: 929 ap->hsm_task_state = HSM_ST; 930 break; 931 case ATAPI_PROT_NODATA: 932 ap->hsm_task_state = HSM_ST_LAST; 933 break; 934 case ATAPI_PROT_DMA: 935 ap->hsm_task_state = HSM_ST_LAST; 936 /* initiate bmdma */ 937 ap->ops->bmdma_start(qc); 938 break; 939 } 940 } 941 942 /** 943 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 944 * @qc: Command on going 945 * @bytes: number of bytes 946 * 947 * Transfer Transfer data from/to the ATAPI device. 948 * 949 * LOCKING: 950 * Inherited from caller. 951 * 952 */ 953 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 954 { 955 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 956 struct ata_port *ap = qc->ap; 957 struct ata_device *dev = qc->dev; 958 struct ata_eh_info *ehi = &dev->link->eh_info; 959 struct scatterlist *sg; 960 struct page *page; 961 unsigned char *buf; 962 unsigned int offset, count, consumed; 963 964 next_sg: 965 sg = qc->cursg; 966 if (unlikely(!sg)) { 967 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 968 "buf=%u cur=%u bytes=%u", 969 qc->nbytes, qc->curbytes, bytes); 970 return -1; 971 } 972 973 page = sg_page(sg); 974 offset = sg->offset + qc->cursg_ofs; 975 976 /* get the current page and offset */ 977 page = nth_page(page, (offset >> PAGE_SHIFT)); 978 offset %= PAGE_SIZE; 979 980 /* don't overrun current sg */ 981 count = min(sg->length - qc->cursg_ofs, bytes); 982 983 /* don't cross page boundaries */ 984 count = min(count, (unsigned int)PAGE_SIZE - offset); 985 986 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 987 988 if (PageHighMem(page)) { 989 unsigned long flags; 990 991 /* FIXME: use bounce buffer */ 992 local_irq_save(flags); 993 buf = kmap_atomic(page, KM_IRQ0); 994 995 /* do the actual data transfer */ 996 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 997 count, rw); 998 999 kunmap_atomic(buf, KM_IRQ0); 1000 local_irq_restore(flags); 1001 } else { 1002 buf = page_address(page); 1003 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1004 count, rw); 1005 } 1006 1007 bytes -= min(bytes, consumed); 1008 qc->curbytes += count; 1009 qc->cursg_ofs += count; 1010 1011 if (qc->cursg_ofs == sg->length) { 1012 qc->cursg = sg_next(qc->cursg); 1013 qc->cursg_ofs = 0; 1014 } 1015 1016 /* 1017 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 1018 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 1019 * check correctly as it doesn't know if it is the last request being 1020 * made. Somebody should implement a proper sanity check. 1021 */ 1022 if (bytes) 1023 goto next_sg; 1024 return 0; 1025 } 1026 1027 /** 1028 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 1029 * @qc: Command on going 1030 * 1031 * Transfer Transfer data from/to the ATAPI device. 1032 * 1033 * LOCKING: 1034 * Inherited from caller. 1035 */ 1036 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 1037 { 1038 struct ata_port *ap = qc->ap; 1039 struct ata_device *dev = qc->dev; 1040 struct ata_eh_info *ehi = &dev->link->eh_info; 1041 unsigned int ireason, bc_lo, bc_hi, bytes; 1042 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 1043 1044 /* Abuse qc->result_tf for temp storage of intermediate TF 1045 * here to save some kernel stack usage. 1046 * For normal completion, qc->result_tf is not relevant. For 1047 * error, qc->result_tf is later overwritten by ata_qc_complete(). 1048 * So, the correctness of qc->result_tf is not affected. 1049 */ 1050 ap->ops->sff_tf_read(ap, &qc->result_tf); 1051 ireason = qc->result_tf.nsect; 1052 bc_lo = qc->result_tf.lbam; 1053 bc_hi = qc->result_tf.lbah; 1054 bytes = (bc_hi << 8) | bc_lo; 1055 1056 /* shall be cleared to zero, indicating xfer of data */ 1057 if (unlikely(ireason & (1 << 0))) 1058 goto atapi_check; 1059 1060 /* make sure transfer direction matches expected */ 1061 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 1062 if (unlikely(do_write != i_write)) 1063 goto atapi_check; 1064 1065 if (unlikely(!bytes)) 1066 goto atapi_check; 1067 1068 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 1069 1070 if (unlikely(__atapi_pio_bytes(qc, bytes))) 1071 goto err_out; 1072 ata_sff_sync(ap); /* flush */ 1073 1074 return; 1075 1076 atapi_check: 1077 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1078 ireason, bytes); 1079 err_out: 1080 qc->err_mask |= AC_ERR_HSM; 1081 ap->hsm_task_state = HSM_ST_ERR; 1082 } 1083 1084 /** 1085 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1086 * @ap: the target ata_port 1087 * @qc: qc on going 1088 * 1089 * RETURNS: 1090 * 1 if ok in workqueue, 0 otherwise. 1091 */ 1092 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 1093 struct ata_queued_cmd *qc) 1094 { 1095 if (qc->tf.flags & ATA_TFLAG_POLLING) 1096 return 1; 1097 1098 if (ap->hsm_task_state == HSM_ST_FIRST) { 1099 if (qc->tf.protocol == ATA_PROT_PIO && 1100 (qc->tf.flags & ATA_TFLAG_WRITE)) 1101 return 1; 1102 1103 if (ata_is_atapi(qc->tf.protocol) && 1104 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1105 return 1; 1106 } 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ata_hsm_qc_complete - finish a qc running on standard HSM 1113 * @qc: Command to complete 1114 * @in_wq: 1 if called from workqueue, 0 otherwise 1115 * 1116 * Finish @qc which is running on standard HSM. 1117 * 1118 * LOCKING: 1119 * If @in_wq is zero, spin_lock_irqsave(host lock). 1120 * Otherwise, none on entry and grabs host lock. 1121 */ 1122 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1123 { 1124 struct ata_port *ap = qc->ap; 1125 unsigned long flags; 1126 1127 if (ap->ops->error_handler) { 1128 if (in_wq) { 1129 spin_lock_irqsave(ap->lock, flags); 1130 1131 /* EH might have kicked in while host lock is 1132 * released. 1133 */ 1134 qc = ata_qc_from_tag(ap, qc->tag); 1135 if (qc) { 1136 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1137 ap->ops->sff_irq_on(ap); 1138 ata_qc_complete(qc); 1139 } else 1140 ata_port_freeze(ap); 1141 } 1142 1143 spin_unlock_irqrestore(ap->lock, flags); 1144 } else { 1145 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1146 ata_qc_complete(qc); 1147 else 1148 ata_port_freeze(ap); 1149 } 1150 } else { 1151 if (in_wq) { 1152 spin_lock_irqsave(ap->lock, flags); 1153 ap->ops->sff_irq_on(ap); 1154 ata_qc_complete(qc); 1155 spin_unlock_irqrestore(ap->lock, flags); 1156 } else 1157 ata_qc_complete(qc); 1158 } 1159 } 1160 1161 /** 1162 * ata_sff_hsm_move - move the HSM to the next state. 1163 * @ap: the target ata_port 1164 * @qc: qc on going 1165 * @status: current device status 1166 * @in_wq: 1 if called from workqueue, 0 otherwise 1167 * 1168 * RETURNS: 1169 * 1 when poll next status needed, 0 otherwise. 1170 */ 1171 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1172 u8 status, int in_wq) 1173 { 1174 struct ata_eh_info *ehi = &ap->link.eh_info; 1175 unsigned long flags = 0; 1176 int poll_next; 1177 1178 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1179 1180 /* Make sure ata_sff_qc_issue() does not throw things 1181 * like DMA polling into the workqueue. Notice that 1182 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1183 */ 1184 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1185 1186 fsm_start: 1187 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1188 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1189 1190 switch (ap->hsm_task_state) { 1191 case HSM_ST_FIRST: 1192 /* Send first data block or PACKET CDB */ 1193 1194 /* If polling, we will stay in the work queue after 1195 * sending the data. Otherwise, interrupt handler 1196 * takes over after sending the data. 1197 */ 1198 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1199 1200 /* check device status */ 1201 if (unlikely((status & ATA_DRQ) == 0)) { 1202 /* handle BSY=0, DRQ=0 as error */ 1203 if (likely(status & (ATA_ERR | ATA_DF))) 1204 /* device stops HSM for abort/error */ 1205 qc->err_mask |= AC_ERR_DEV; 1206 else { 1207 /* HSM violation. Let EH handle this */ 1208 ata_ehi_push_desc(ehi, 1209 "ST_FIRST: !(DRQ|ERR|DF)"); 1210 qc->err_mask |= AC_ERR_HSM; 1211 } 1212 1213 ap->hsm_task_state = HSM_ST_ERR; 1214 goto fsm_start; 1215 } 1216 1217 /* Device should not ask for data transfer (DRQ=1) 1218 * when it finds something wrong. 1219 * We ignore DRQ here and stop the HSM by 1220 * changing hsm_task_state to HSM_ST_ERR and 1221 * let the EH abort the command or reset the device. 1222 */ 1223 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1224 /* Some ATAPI tape drives forget to clear the ERR bit 1225 * when doing the next command (mostly request sense). 1226 * We ignore ERR here to workaround and proceed sending 1227 * the CDB. 1228 */ 1229 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1230 ata_ehi_push_desc(ehi, "ST_FIRST: " 1231 "DRQ=1 with device error, " 1232 "dev_stat 0x%X", status); 1233 qc->err_mask |= AC_ERR_HSM; 1234 ap->hsm_task_state = HSM_ST_ERR; 1235 goto fsm_start; 1236 } 1237 } 1238 1239 /* Send the CDB (atapi) or the first data block (ata pio out). 1240 * During the state transition, interrupt handler shouldn't 1241 * be invoked before the data transfer is complete and 1242 * hsm_task_state is changed. Hence, the following locking. 1243 */ 1244 if (in_wq) 1245 spin_lock_irqsave(ap->lock, flags); 1246 1247 if (qc->tf.protocol == ATA_PROT_PIO) { 1248 /* PIO data out protocol. 1249 * send first data block. 1250 */ 1251 1252 /* ata_pio_sectors() might change the state 1253 * to HSM_ST_LAST. so, the state is changed here 1254 * before ata_pio_sectors(). 1255 */ 1256 ap->hsm_task_state = HSM_ST; 1257 ata_pio_sectors(qc); 1258 } else 1259 /* send CDB */ 1260 atapi_send_cdb(ap, qc); 1261 1262 if (in_wq) 1263 spin_unlock_irqrestore(ap->lock, flags); 1264 1265 /* if polling, ata_pio_task() handles the rest. 1266 * otherwise, interrupt handler takes over from here. 1267 */ 1268 break; 1269 1270 case HSM_ST: 1271 /* complete command or read/write the data register */ 1272 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1273 /* ATAPI PIO protocol */ 1274 if ((status & ATA_DRQ) == 0) { 1275 /* No more data to transfer or device error. 1276 * Device error will be tagged in HSM_ST_LAST. 1277 */ 1278 ap->hsm_task_state = HSM_ST_LAST; 1279 goto fsm_start; 1280 } 1281 1282 /* Device should not ask for data transfer (DRQ=1) 1283 * when it finds something wrong. 1284 * We ignore DRQ here and stop the HSM by 1285 * changing hsm_task_state to HSM_ST_ERR and 1286 * let the EH abort the command or reset the device. 1287 */ 1288 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1289 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1290 "DRQ=1 with device error, " 1291 "dev_stat 0x%X", status); 1292 qc->err_mask |= AC_ERR_HSM; 1293 ap->hsm_task_state = HSM_ST_ERR; 1294 goto fsm_start; 1295 } 1296 1297 atapi_pio_bytes(qc); 1298 1299 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1300 /* bad ireason reported by device */ 1301 goto fsm_start; 1302 1303 } else { 1304 /* ATA PIO protocol */ 1305 if (unlikely((status & ATA_DRQ) == 0)) { 1306 /* handle BSY=0, DRQ=0 as error */ 1307 if (likely(status & (ATA_ERR | ATA_DF))) { 1308 /* device stops HSM for abort/error */ 1309 qc->err_mask |= AC_ERR_DEV; 1310 1311 /* If diagnostic failed and this is 1312 * IDENTIFY, it's likely a phantom 1313 * device. Mark hint. 1314 */ 1315 if (qc->dev->horkage & 1316 ATA_HORKAGE_DIAGNOSTIC) 1317 qc->err_mask |= 1318 AC_ERR_NODEV_HINT; 1319 } else { 1320 /* HSM violation. Let EH handle this. 1321 * Phantom devices also trigger this 1322 * condition. Mark hint. 1323 */ 1324 ata_ehi_push_desc(ehi, "ST-ATA: " 1325 "DRQ=0 without device error, " 1326 "dev_stat 0x%X", status); 1327 qc->err_mask |= AC_ERR_HSM | 1328 AC_ERR_NODEV_HINT; 1329 } 1330 1331 ap->hsm_task_state = HSM_ST_ERR; 1332 goto fsm_start; 1333 } 1334 1335 /* For PIO reads, some devices may ask for 1336 * data transfer (DRQ=1) alone with ERR=1. 1337 * We respect DRQ here and transfer one 1338 * block of junk data before changing the 1339 * hsm_task_state to HSM_ST_ERR. 1340 * 1341 * For PIO writes, ERR=1 DRQ=1 doesn't make 1342 * sense since the data block has been 1343 * transferred to the device. 1344 */ 1345 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1346 /* data might be corrputed */ 1347 qc->err_mask |= AC_ERR_DEV; 1348 1349 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1350 ata_pio_sectors(qc); 1351 status = ata_wait_idle(ap); 1352 } 1353 1354 if (status & (ATA_BUSY | ATA_DRQ)) { 1355 ata_ehi_push_desc(ehi, "ST-ATA: " 1356 "BUSY|DRQ persists on ERR|DF, " 1357 "dev_stat 0x%X", status); 1358 qc->err_mask |= AC_ERR_HSM; 1359 } 1360 1361 /* There are oddball controllers with 1362 * status register stuck at 0x7f and 1363 * lbal/m/h at zero which makes it 1364 * pass all other presence detection 1365 * mechanisms we have. Set NODEV_HINT 1366 * for it. Kernel bz#7241. 1367 */ 1368 if (status == 0x7f) 1369 qc->err_mask |= AC_ERR_NODEV_HINT; 1370 1371 /* ata_pio_sectors() might change the 1372 * state to HSM_ST_LAST. so, the state 1373 * is changed after ata_pio_sectors(). 1374 */ 1375 ap->hsm_task_state = HSM_ST_ERR; 1376 goto fsm_start; 1377 } 1378 1379 ata_pio_sectors(qc); 1380 1381 if (ap->hsm_task_state == HSM_ST_LAST && 1382 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1383 /* all data read */ 1384 status = ata_wait_idle(ap); 1385 goto fsm_start; 1386 } 1387 } 1388 1389 poll_next = 1; 1390 break; 1391 1392 case HSM_ST_LAST: 1393 if (unlikely(!ata_ok(status))) { 1394 qc->err_mask |= __ac_err_mask(status); 1395 ap->hsm_task_state = HSM_ST_ERR; 1396 goto fsm_start; 1397 } 1398 1399 /* no more data to transfer */ 1400 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1401 ap->print_id, qc->dev->devno, status); 1402 1403 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1404 1405 ap->hsm_task_state = HSM_ST_IDLE; 1406 1407 /* complete taskfile transaction */ 1408 ata_hsm_qc_complete(qc, in_wq); 1409 1410 poll_next = 0; 1411 break; 1412 1413 case HSM_ST_ERR: 1414 ap->hsm_task_state = HSM_ST_IDLE; 1415 1416 /* complete taskfile transaction */ 1417 ata_hsm_qc_complete(qc, in_wq); 1418 1419 poll_next = 0; 1420 break; 1421 default: 1422 poll_next = 0; 1423 BUG(); 1424 } 1425 1426 return poll_next; 1427 } 1428 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1429 1430 void ata_pio_task(struct work_struct *work) 1431 { 1432 struct ata_port *ap = 1433 container_of(work, struct ata_port, port_task.work); 1434 struct ata_queued_cmd *qc = ap->port_task_data; 1435 u8 status; 1436 int poll_next; 1437 1438 fsm_start: 1439 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1440 1441 /* 1442 * This is purely heuristic. This is a fast path. 1443 * Sometimes when we enter, BSY will be cleared in 1444 * a chk-status or two. If not, the drive is probably seeking 1445 * or something. Snooze for a couple msecs, then 1446 * chk-status again. If still busy, queue delayed work. 1447 */ 1448 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1449 if (status & ATA_BUSY) { 1450 msleep(2); 1451 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1452 if (status & ATA_BUSY) { 1453 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1454 return; 1455 } 1456 } 1457 1458 /* move the HSM */ 1459 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1460 1461 /* another command or interrupt handler 1462 * may be running at this point. 1463 */ 1464 if (poll_next) 1465 goto fsm_start; 1466 } 1467 1468 /** 1469 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1470 * @qc: command to issue to device 1471 * 1472 * Using various libata functions and hooks, this function 1473 * starts an ATA command. ATA commands are grouped into 1474 * classes called "protocols", and issuing each type of protocol 1475 * is slightly different. 1476 * 1477 * May be used as the qc_issue() entry in ata_port_operations. 1478 * 1479 * LOCKING: 1480 * spin_lock_irqsave(host lock) 1481 * 1482 * RETURNS: 1483 * Zero on success, AC_ERR_* mask on failure 1484 */ 1485 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1486 { 1487 struct ata_port *ap = qc->ap; 1488 1489 /* Use polling pio if the LLD doesn't handle 1490 * interrupt driven pio and atapi CDB interrupt. 1491 */ 1492 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1493 switch (qc->tf.protocol) { 1494 case ATA_PROT_PIO: 1495 case ATA_PROT_NODATA: 1496 case ATAPI_PROT_PIO: 1497 case ATAPI_PROT_NODATA: 1498 qc->tf.flags |= ATA_TFLAG_POLLING; 1499 break; 1500 case ATAPI_PROT_DMA: 1501 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1502 /* see ata_dma_blacklisted() */ 1503 BUG(); 1504 break; 1505 default: 1506 break; 1507 } 1508 } 1509 1510 /* select the device */ 1511 ata_dev_select(ap, qc->dev->devno, 1, 0); 1512 1513 /* start the command */ 1514 switch (qc->tf.protocol) { 1515 case ATA_PROT_NODATA: 1516 if (qc->tf.flags & ATA_TFLAG_POLLING) 1517 ata_qc_set_polling(qc); 1518 1519 ata_tf_to_host(ap, &qc->tf); 1520 ap->hsm_task_state = HSM_ST_LAST; 1521 1522 if (qc->tf.flags & ATA_TFLAG_POLLING) 1523 ata_pio_queue_task(ap, qc, 0); 1524 1525 break; 1526 1527 case ATA_PROT_DMA: 1528 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1529 1530 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1531 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1532 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1533 ap->hsm_task_state = HSM_ST_LAST; 1534 break; 1535 1536 case ATA_PROT_PIO: 1537 if (qc->tf.flags & ATA_TFLAG_POLLING) 1538 ata_qc_set_polling(qc); 1539 1540 ata_tf_to_host(ap, &qc->tf); 1541 1542 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1543 /* PIO data out protocol */ 1544 ap->hsm_task_state = HSM_ST_FIRST; 1545 ata_pio_queue_task(ap, qc, 0); 1546 1547 /* always send first data block using 1548 * the ata_pio_task() codepath. 1549 */ 1550 } else { 1551 /* PIO data in protocol */ 1552 ap->hsm_task_state = HSM_ST; 1553 1554 if (qc->tf.flags & ATA_TFLAG_POLLING) 1555 ata_pio_queue_task(ap, qc, 0); 1556 1557 /* if polling, ata_pio_task() handles the rest. 1558 * otherwise, interrupt handler takes over from here. 1559 */ 1560 } 1561 1562 break; 1563 1564 case ATAPI_PROT_PIO: 1565 case ATAPI_PROT_NODATA: 1566 if (qc->tf.flags & ATA_TFLAG_POLLING) 1567 ata_qc_set_polling(qc); 1568 1569 ata_tf_to_host(ap, &qc->tf); 1570 1571 ap->hsm_task_state = HSM_ST_FIRST; 1572 1573 /* send cdb by polling if no cdb interrupt */ 1574 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1575 (qc->tf.flags & ATA_TFLAG_POLLING)) 1576 ata_pio_queue_task(ap, qc, 0); 1577 break; 1578 1579 case ATAPI_PROT_DMA: 1580 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1581 1582 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1583 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1584 ap->hsm_task_state = HSM_ST_FIRST; 1585 1586 /* send cdb by polling if no cdb interrupt */ 1587 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1588 ata_pio_queue_task(ap, qc, 0); 1589 break; 1590 1591 default: 1592 WARN_ON_ONCE(1); 1593 return AC_ERR_SYSTEM; 1594 } 1595 1596 return 0; 1597 } 1598 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1599 1600 /** 1601 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1602 * @qc: qc to fill result TF for 1603 * 1604 * @qc is finished and result TF needs to be filled. Fill it 1605 * using ->sff_tf_read. 1606 * 1607 * LOCKING: 1608 * spin_lock_irqsave(host lock) 1609 * 1610 * RETURNS: 1611 * true indicating that result TF is successfully filled. 1612 */ 1613 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1614 { 1615 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1616 return true; 1617 } 1618 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1619 1620 /** 1621 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1622 * @ap: Port on which interrupt arrived (possibly...) 1623 * @qc: Taskfile currently active in engine 1624 * 1625 * Handle host interrupt for given queued command. Currently, 1626 * only DMA interrupts are handled. All other commands are 1627 * handled via polling with interrupts disabled (nIEN bit). 1628 * 1629 * LOCKING: 1630 * spin_lock_irqsave(host lock) 1631 * 1632 * RETURNS: 1633 * One if interrupt was handled, zero if not (shared irq). 1634 */ 1635 inline unsigned int ata_sff_host_intr(struct ata_port *ap, 1636 struct ata_queued_cmd *qc) 1637 { 1638 struct ata_eh_info *ehi = &ap->link.eh_info; 1639 u8 status, host_stat = 0; 1640 1641 VPRINTK("ata%u: protocol %d task_state %d\n", 1642 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1643 1644 /* Check whether we are expecting interrupt in this state */ 1645 switch (ap->hsm_task_state) { 1646 case HSM_ST_FIRST: 1647 /* Some pre-ATAPI-4 devices assert INTRQ 1648 * at this state when ready to receive CDB. 1649 */ 1650 1651 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1652 * The flag was turned on only for atapi devices. No 1653 * need to check ata_is_atapi(qc->tf.protocol) again. 1654 */ 1655 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1656 goto idle_irq; 1657 break; 1658 case HSM_ST_LAST: 1659 if (qc->tf.protocol == ATA_PROT_DMA || 1660 qc->tf.protocol == ATAPI_PROT_DMA) { 1661 /* check status of DMA engine */ 1662 host_stat = ap->ops->bmdma_status(ap); 1663 VPRINTK("ata%u: host_stat 0x%X\n", 1664 ap->print_id, host_stat); 1665 1666 /* if it's not our irq... */ 1667 if (!(host_stat & ATA_DMA_INTR)) 1668 goto idle_irq; 1669 1670 /* before we do anything else, clear DMA-Start bit */ 1671 ap->ops->bmdma_stop(qc); 1672 1673 if (unlikely(host_stat & ATA_DMA_ERR)) { 1674 /* error when transfering data to/from memory */ 1675 qc->err_mask |= AC_ERR_HOST_BUS; 1676 ap->hsm_task_state = HSM_ST_ERR; 1677 } 1678 } 1679 break; 1680 case HSM_ST: 1681 break; 1682 default: 1683 goto idle_irq; 1684 } 1685 1686 1687 /* check main status, clearing INTRQ if needed */ 1688 status = ata_sff_irq_status(ap); 1689 if (status & ATA_BUSY) 1690 goto idle_irq; 1691 1692 /* ack bmdma irq events */ 1693 ap->ops->sff_irq_clear(ap); 1694 1695 ata_sff_hsm_move(ap, qc, status, 0); 1696 1697 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1698 qc->tf.protocol == ATAPI_PROT_DMA)) 1699 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1700 1701 return 1; /* irq handled */ 1702 1703 idle_irq: 1704 ap->stats.idle_irq++; 1705 1706 #ifdef ATA_IRQ_TRAP 1707 if ((ap->stats.idle_irq % 1000) == 0) { 1708 ap->ops->sff_check_status(ap); 1709 ap->ops->sff_irq_clear(ap); 1710 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1711 return 1; 1712 } 1713 #endif 1714 return 0; /* irq not handled */ 1715 } 1716 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1717 1718 /** 1719 * ata_sff_interrupt - Default ATA host interrupt handler 1720 * @irq: irq line (unused) 1721 * @dev_instance: pointer to our ata_host information structure 1722 * 1723 * Default interrupt handler for PCI IDE devices. Calls 1724 * ata_sff_host_intr() for each port that is not disabled. 1725 * 1726 * LOCKING: 1727 * Obtains host lock during operation. 1728 * 1729 * RETURNS: 1730 * IRQ_NONE or IRQ_HANDLED. 1731 */ 1732 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1733 { 1734 struct ata_host *host = dev_instance; 1735 unsigned int i; 1736 unsigned int handled = 0; 1737 unsigned long flags; 1738 1739 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1740 spin_lock_irqsave(&host->lock, flags); 1741 1742 for (i = 0; i < host->n_ports; i++) { 1743 struct ata_port *ap; 1744 1745 ap = host->ports[i]; 1746 if (ap && 1747 !(ap->flags & ATA_FLAG_DISABLED)) { 1748 struct ata_queued_cmd *qc; 1749 1750 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1751 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1752 (qc->flags & ATA_QCFLAG_ACTIVE)) 1753 handled |= ata_sff_host_intr(ap, qc); 1754 } 1755 } 1756 1757 spin_unlock_irqrestore(&host->lock, flags); 1758 1759 return IRQ_RETVAL(handled); 1760 } 1761 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1762 1763 /** 1764 * ata_sff_freeze - Freeze SFF controller port 1765 * @ap: port to freeze 1766 * 1767 * Freeze BMDMA controller port. 1768 * 1769 * LOCKING: 1770 * Inherited from caller. 1771 */ 1772 void ata_sff_freeze(struct ata_port *ap) 1773 { 1774 struct ata_ioports *ioaddr = &ap->ioaddr; 1775 1776 ap->ctl |= ATA_NIEN; 1777 ap->last_ctl = ap->ctl; 1778 1779 if (ioaddr->ctl_addr) 1780 iowrite8(ap->ctl, ioaddr->ctl_addr); 1781 1782 /* Under certain circumstances, some controllers raise IRQ on 1783 * ATA_NIEN manipulation. Also, many controllers fail to mask 1784 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1785 */ 1786 ap->ops->sff_check_status(ap); 1787 1788 ap->ops->sff_irq_clear(ap); 1789 } 1790 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1791 1792 /** 1793 * ata_sff_thaw - Thaw SFF controller port 1794 * @ap: port to thaw 1795 * 1796 * Thaw SFF controller port. 1797 * 1798 * LOCKING: 1799 * Inherited from caller. 1800 */ 1801 void ata_sff_thaw(struct ata_port *ap) 1802 { 1803 /* clear & re-enable interrupts */ 1804 ap->ops->sff_check_status(ap); 1805 ap->ops->sff_irq_clear(ap); 1806 ap->ops->sff_irq_on(ap); 1807 } 1808 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1809 1810 /** 1811 * ata_sff_prereset - prepare SFF link for reset 1812 * @link: SFF link to be reset 1813 * @deadline: deadline jiffies for the operation 1814 * 1815 * SFF link @link is about to be reset. Initialize it. It first 1816 * calls ata_std_prereset() and wait for !BSY if the port is 1817 * being softreset. 1818 * 1819 * LOCKING: 1820 * Kernel thread context (may sleep) 1821 * 1822 * RETURNS: 1823 * 0 on success, -errno otherwise. 1824 */ 1825 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1826 { 1827 struct ata_eh_context *ehc = &link->eh_context; 1828 int rc; 1829 1830 rc = ata_std_prereset(link, deadline); 1831 if (rc) 1832 return rc; 1833 1834 /* if we're about to do hardreset, nothing more to do */ 1835 if (ehc->i.action & ATA_EH_HARDRESET) 1836 return 0; 1837 1838 /* wait for !BSY if we don't know that no device is attached */ 1839 if (!ata_link_offline(link)) { 1840 rc = ata_sff_wait_ready(link, deadline); 1841 if (rc && rc != -ENODEV) { 1842 ata_link_printk(link, KERN_WARNING, "device not ready " 1843 "(errno=%d), forcing hardreset\n", rc); 1844 ehc->i.action |= ATA_EH_HARDRESET; 1845 } 1846 } 1847 1848 return 0; 1849 } 1850 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1851 1852 /** 1853 * ata_devchk - PATA device presence detection 1854 * @ap: ATA channel to examine 1855 * @device: Device to examine (starting at zero) 1856 * 1857 * This technique was originally described in 1858 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1859 * later found its way into the ATA/ATAPI spec. 1860 * 1861 * Write a pattern to the ATA shadow registers, 1862 * and if a device is present, it will respond by 1863 * correctly storing and echoing back the 1864 * ATA shadow register contents. 1865 * 1866 * LOCKING: 1867 * caller. 1868 */ 1869 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1870 { 1871 struct ata_ioports *ioaddr = &ap->ioaddr; 1872 u8 nsect, lbal; 1873 1874 ap->ops->sff_dev_select(ap, device); 1875 1876 iowrite8(0x55, ioaddr->nsect_addr); 1877 iowrite8(0xaa, ioaddr->lbal_addr); 1878 1879 iowrite8(0xaa, ioaddr->nsect_addr); 1880 iowrite8(0x55, ioaddr->lbal_addr); 1881 1882 iowrite8(0x55, ioaddr->nsect_addr); 1883 iowrite8(0xaa, ioaddr->lbal_addr); 1884 1885 nsect = ioread8(ioaddr->nsect_addr); 1886 lbal = ioread8(ioaddr->lbal_addr); 1887 1888 if ((nsect == 0x55) && (lbal == 0xaa)) 1889 return 1; /* we found a device */ 1890 1891 return 0; /* nothing found */ 1892 } 1893 1894 /** 1895 * ata_sff_dev_classify - Parse returned ATA device signature 1896 * @dev: ATA device to classify (starting at zero) 1897 * @present: device seems present 1898 * @r_err: Value of error register on completion 1899 * 1900 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1901 * an ATA/ATAPI-defined set of values is placed in the ATA 1902 * shadow registers, indicating the results of device detection 1903 * and diagnostics. 1904 * 1905 * Select the ATA device, and read the values from the ATA shadow 1906 * registers. Then parse according to the Error register value, 1907 * and the spec-defined values examined by ata_dev_classify(). 1908 * 1909 * LOCKING: 1910 * caller. 1911 * 1912 * RETURNS: 1913 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1914 */ 1915 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1916 u8 *r_err) 1917 { 1918 struct ata_port *ap = dev->link->ap; 1919 struct ata_taskfile tf; 1920 unsigned int class; 1921 u8 err; 1922 1923 ap->ops->sff_dev_select(ap, dev->devno); 1924 1925 memset(&tf, 0, sizeof(tf)); 1926 1927 ap->ops->sff_tf_read(ap, &tf); 1928 err = tf.feature; 1929 if (r_err) 1930 *r_err = err; 1931 1932 /* see if device passed diags: continue and warn later */ 1933 if (err == 0) 1934 /* diagnostic fail : do nothing _YET_ */ 1935 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1936 else if (err == 1) 1937 /* do nothing */ ; 1938 else if ((dev->devno == 0) && (err == 0x81)) 1939 /* do nothing */ ; 1940 else 1941 return ATA_DEV_NONE; 1942 1943 /* determine if device is ATA or ATAPI */ 1944 class = ata_dev_classify(&tf); 1945 1946 if (class == ATA_DEV_UNKNOWN) { 1947 /* If the device failed diagnostic, it's likely to 1948 * have reported incorrect device signature too. 1949 * Assume ATA device if the device seems present but 1950 * device signature is invalid with diagnostic 1951 * failure. 1952 */ 1953 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1954 class = ATA_DEV_ATA; 1955 else 1956 class = ATA_DEV_NONE; 1957 } else if ((class == ATA_DEV_ATA) && 1958 (ap->ops->sff_check_status(ap) == 0)) 1959 class = ATA_DEV_NONE; 1960 1961 return class; 1962 } 1963 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1964 1965 /** 1966 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1967 * @link: SFF link which is just reset 1968 * @devmask: mask of present devices 1969 * @deadline: deadline jiffies for the operation 1970 * 1971 * Wait devices attached to SFF @link to become ready after 1972 * reset. It contains preceding 150ms wait to avoid accessing TF 1973 * status register too early. 1974 * 1975 * LOCKING: 1976 * Kernel thread context (may sleep). 1977 * 1978 * RETURNS: 1979 * 0 on success, -ENODEV if some or all of devices in @devmask 1980 * don't seem to exist. -errno on other errors. 1981 */ 1982 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1983 unsigned long deadline) 1984 { 1985 struct ata_port *ap = link->ap; 1986 struct ata_ioports *ioaddr = &ap->ioaddr; 1987 unsigned int dev0 = devmask & (1 << 0); 1988 unsigned int dev1 = devmask & (1 << 1); 1989 int rc, ret = 0; 1990 1991 msleep(ATA_WAIT_AFTER_RESET); 1992 1993 /* always check readiness of the master device */ 1994 rc = ata_sff_wait_ready(link, deadline); 1995 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1996 * and TF status is 0xff, bail out on it too. 1997 */ 1998 if (rc) 1999 return rc; 2000 2001 /* if device 1 was found in ata_devchk, wait for register 2002 * access briefly, then wait for BSY to clear. 2003 */ 2004 if (dev1) { 2005 int i; 2006 2007 ap->ops->sff_dev_select(ap, 1); 2008 2009 /* Wait for register access. Some ATAPI devices fail 2010 * to set nsect/lbal after reset, so don't waste too 2011 * much time on it. We're gonna wait for !BSY anyway. 2012 */ 2013 for (i = 0; i < 2; i++) { 2014 u8 nsect, lbal; 2015 2016 nsect = ioread8(ioaddr->nsect_addr); 2017 lbal = ioread8(ioaddr->lbal_addr); 2018 if ((nsect == 1) && (lbal == 1)) 2019 break; 2020 msleep(50); /* give drive a breather */ 2021 } 2022 2023 rc = ata_sff_wait_ready(link, deadline); 2024 if (rc) { 2025 if (rc != -ENODEV) 2026 return rc; 2027 ret = rc; 2028 } 2029 } 2030 2031 /* is all this really necessary? */ 2032 ap->ops->sff_dev_select(ap, 0); 2033 if (dev1) 2034 ap->ops->sff_dev_select(ap, 1); 2035 if (dev0) 2036 ap->ops->sff_dev_select(ap, 0); 2037 2038 return ret; 2039 } 2040 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2041 2042 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2043 unsigned long deadline) 2044 { 2045 struct ata_ioports *ioaddr = &ap->ioaddr; 2046 2047 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2048 2049 /* software reset. causes dev0 to be selected */ 2050 iowrite8(ap->ctl, ioaddr->ctl_addr); 2051 udelay(20); /* FIXME: flush */ 2052 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2053 udelay(20); /* FIXME: flush */ 2054 iowrite8(ap->ctl, ioaddr->ctl_addr); 2055 2056 /* wait the port to become ready */ 2057 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2058 } 2059 2060 /** 2061 * ata_sff_softreset - reset host port via ATA SRST 2062 * @link: ATA link to reset 2063 * @classes: resulting classes of attached devices 2064 * @deadline: deadline jiffies for the operation 2065 * 2066 * Reset host port using ATA SRST. 2067 * 2068 * LOCKING: 2069 * Kernel thread context (may sleep) 2070 * 2071 * RETURNS: 2072 * 0 on success, -errno otherwise. 2073 */ 2074 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2075 unsigned long deadline) 2076 { 2077 struct ata_port *ap = link->ap; 2078 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2079 unsigned int devmask = 0; 2080 int rc; 2081 u8 err; 2082 2083 DPRINTK("ENTER\n"); 2084 2085 /* determine if device 0/1 are present */ 2086 if (ata_devchk(ap, 0)) 2087 devmask |= (1 << 0); 2088 if (slave_possible && ata_devchk(ap, 1)) 2089 devmask |= (1 << 1); 2090 2091 /* select device 0 again */ 2092 ap->ops->sff_dev_select(ap, 0); 2093 2094 /* issue bus reset */ 2095 DPRINTK("about to softreset, devmask=%x\n", devmask); 2096 rc = ata_bus_softreset(ap, devmask, deadline); 2097 /* if link is occupied, -ENODEV too is an error */ 2098 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2099 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2100 return rc; 2101 } 2102 2103 /* determine by signature whether we have ATA or ATAPI devices */ 2104 classes[0] = ata_sff_dev_classify(&link->device[0], 2105 devmask & (1 << 0), &err); 2106 if (slave_possible && err != 0x81) 2107 classes[1] = ata_sff_dev_classify(&link->device[1], 2108 devmask & (1 << 1), &err); 2109 2110 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2111 return 0; 2112 } 2113 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2114 2115 /** 2116 * sata_sff_hardreset - reset host port via SATA phy reset 2117 * @link: link to reset 2118 * @class: resulting class of attached device 2119 * @deadline: deadline jiffies for the operation 2120 * 2121 * SATA phy-reset host port using DET bits of SControl register, 2122 * wait for !BSY and classify the attached device. 2123 * 2124 * LOCKING: 2125 * Kernel thread context (may sleep) 2126 * 2127 * RETURNS: 2128 * 0 on success, -errno otherwise. 2129 */ 2130 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2131 unsigned long deadline) 2132 { 2133 struct ata_eh_context *ehc = &link->eh_context; 2134 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2135 bool online; 2136 int rc; 2137 2138 rc = sata_link_hardreset(link, timing, deadline, &online, 2139 ata_sff_check_ready); 2140 if (online) 2141 *class = ata_sff_dev_classify(link->device, 1, NULL); 2142 2143 DPRINTK("EXIT, class=%u\n", *class); 2144 return rc; 2145 } 2146 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2147 2148 /** 2149 * ata_sff_postreset - SFF postreset callback 2150 * @link: the target SFF ata_link 2151 * @classes: classes of attached devices 2152 * 2153 * This function is invoked after a successful reset. It first 2154 * calls ata_std_postreset() and performs SFF specific postreset 2155 * processing. 2156 * 2157 * LOCKING: 2158 * Kernel thread context (may sleep) 2159 */ 2160 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2161 { 2162 struct ata_port *ap = link->ap; 2163 2164 ata_std_postreset(link, classes); 2165 2166 /* is double-select really necessary? */ 2167 if (classes[0] != ATA_DEV_NONE) 2168 ap->ops->sff_dev_select(ap, 1); 2169 if (classes[1] != ATA_DEV_NONE) 2170 ap->ops->sff_dev_select(ap, 0); 2171 2172 /* bail out if no device is present */ 2173 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2174 DPRINTK("EXIT, no device\n"); 2175 return; 2176 } 2177 2178 /* set up device control */ 2179 if (ap->ioaddr.ctl_addr) 2180 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2181 } 2182 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2183 2184 /** 2185 * ata_sff_error_handler - Stock error handler for BMDMA controller 2186 * @ap: port to handle error for 2187 * 2188 * Stock error handler for SFF controller. It can handle both 2189 * PATA and SATA controllers. Many controllers should be able to 2190 * use this EH as-is or with some added handling before and 2191 * after. 2192 * 2193 * LOCKING: 2194 * Kernel thread context (may sleep) 2195 */ 2196 void ata_sff_error_handler(struct ata_port *ap) 2197 { 2198 ata_reset_fn_t softreset = ap->ops->softreset; 2199 ata_reset_fn_t hardreset = ap->ops->hardreset; 2200 struct ata_queued_cmd *qc; 2201 unsigned long flags; 2202 int thaw = 0; 2203 2204 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2205 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2206 qc = NULL; 2207 2208 /* reset PIO HSM and stop DMA engine */ 2209 spin_lock_irqsave(ap->lock, flags); 2210 2211 ap->hsm_task_state = HSM_ST_IDLE; 2212 2213 if (ap->ioaddr.bmdma_addr && 2214 qc && (qc->tf.protocol == ATA_PROT_DMA || 2215 qc->tf.protocol == ATAPI_PROT_DMA)) { 2216 u8 host_stat; 2217 2218 host_stat = ap->ops->bmdma_status(ap); 2219 2220 /* BMDMA controllers indicate host bus error by 2221 * setting DMA_ERR bit and timing out. As it wasn't 2222 * really a timeout event, adjust error mask and 2223 * cancel frozen state. 2224 */ 2225 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2226 qc->err_mask = AC_ERR_HOST_BUS; 2227 thaw = 1; 2228 } 2229 2230 ap->ops->bmdma_stop(qc); 2231 } 2232 2233 ata_sff_sync(ap); /* FIXME: We don't need this */ 2234 ap->ops->sff_check_status(ap); 2235 ap->ops->sff_irq_clear(ap); 2236 2237 spin_unlock_irqrestore(ap->lock, flags); 2238 2239 if (thaw) 2240 ata_eh_thaw_port(ap); 2241 2242 /* PIO and DMA engines have been stopped, perform recovery */ 2243 2244 /* Ignore ata_sff_softreset if ctl isn't accessible and 2245 * built-in hardresets if SCR access isn't available. 2246 */ 2247 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2248 softreset = NULL; 2249 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2250 hardreset = NULL; 2251 2252 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2253 ap->ops->postreset); 2254 } 2255 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2256 2257 /** 2258 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2259 * @qc: internal command to clean up 2260 * 2261 * LOCKING: 2262 * Kernel thread context (may sleep) 2263 */ 2264 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2265 { 2266 struct ata_port *ap = qc->ap; 2267 unsigned long flags; 2268 2269 spin_lock_irqsave(ap->lock, flags); 2270 2271 ap->hsm_task_state = HSM_ST_IDLE; 2272 2273 if (ap->ioaddr.bmdma_addr) 2274 ata_bmdma_stop(qc); 2275 2276 spin_unlock_irqrestore(ap->lock, flags); 2277 } 2278 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2279 2280 /** 2281 * ata_sff_port_start - Set port up for dma. 2282 * @ap: Port to initialize 2283 * 2284 * Called just after data structures for each port are 2285 * initialized. Allocates space for PRD table if the device 2286 * is DMA capable SFF. 2287 * 2288 * May be used as the port_start() entry in ata_port_operations. 2289 * 2290 * LOCKING: 2291 * Inherited from caller. 2292 */ 2293 int ata_sff_port_start(struct ata_port *ap) 2294 { 2295 if (ap->ioaddr.bmdma_addr) 2296 return ata_port_start(ap); 2297 return 0; 2298 } 2299 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2300 2301 /** 2302 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2303 * @ioaddr: IO address structure to be initialized 2304 * 2305 * Utility function which initializes data_addr, error_addr, 2306 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2307 * device_addr, status_addr, and command_addr to standard offsets 2308 * relative to cmd_addr. 2309 * 2310 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2311 */ 2312 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2313 { 2314 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2315 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2316 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2317 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2318 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2319 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2320 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2321 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2322 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2323 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2324 } 2325 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2326 2327 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2328 unsigned long xfer_mask) 2329 { 2330 /* Filter out DMA modes if the device has been configured by 2331 the BIOS as PIO only */ 2332 2333 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2334 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2335 return xfer_mask; 2336 } 2337 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2338 2339 /** 2340 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2341 * @qc: Info associated with this ATA transaction. 2342 * 2343 * LOCKING: 2344 * spin_lock_irqsave(host lock) 2345 */ 2346 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2347 { 2348 struct ata_port *ap = qc->ap; 2349 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2350 u8 dmactl; 2351 2352 /* load PRD table addr. */ 2353 mb(); /* make sure PRD table writes are visible to controller */ 2354 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2355 2356 /* specify data direction, triple-check start bit is clear */ 2357 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2358 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2359 if (!rw) 2360 dmactl |= ATA_DMA_WR; 2361 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2362 2363 /* issue r/w command */ 2364 ap->ops->sff_exec_command(ap, &qc->tf); 2365 } 2366 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2367 2368 /** 2369 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2370 * @qc: Info associated with this ATA transaction. 2371 * 2372 * LOCKING: 2373 * spin_lock_irqsave(host lock) 2374 */ 2375 void ata_bmdma_start(struct ata_queued_cmd *qc) 2376 { 2377 struct ata_port *ap = qc->ap; 2378 u8 dmactl; 2379 2380 /* start host DMA transaction */ 2381 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2382 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2383 2384 /* Strictly, one may wish to issue an ioread8() here, to 2385 * flush the mmio write. However, control also passes 2386 * to the hardware at this point, and it will interrupt 2387 * us when we are to resume control. So, in effect, 2388 * we don't care when the mmio write flushes. 2389 * Further, a read of the DMA status register _immediately_ 2390 * following the write may not be what certain flaky hardware 2391 * is expected, so I think it is best to not add a readb() 2392 * without first all the MMIO ATA cards/mobos. 2393 * Or maybe I'm just being paranoid. 2394 * 2395 * FIXME: The posting of this write means I/O starts are 2396 * unneccessarily delayed for MMIO 2397 */ 2398 } 2399 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2400 2401 /** 2402 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2403 * @qc: Command we are ending DMA for 2404 * 2405 * Clears the ATA_DMA_START flag in the dma control register 2406 * 2407 * May be used as the bmdma_stop() entry in ata_port_operations. 2408 * 2409 * LOCKING: 2410 * spin_lock_irqsave(host lock) 2411 */ 2412 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2413 { 2414 struct ata_port *ap = qc->ap; 2415 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2416 2417 /* clear start/stop bit */ 2418 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2419 mmio + ATA_DMA_CMD); 2420 2421 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2422 ata_sff_dma_pause(ap); 2423 } 2424 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2425 2426 /** 2427 * ata_bmdma_status - Read PCI IDE BMDMA status 2428 * @ap: Port associated with this ATA transaction. 2429 * 2430 * Read and return BMDMA status register. 2431 * 2432 * May be used as the bmdma_status() entry in ata_port_operations. 2433 * 2434 * LOCKING: 2435 * spin_lock_irqsave(host lock) 2436 */ 2437 u8 ata_bmdma_status(struct ata_port *ap) 2438 { 2439 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2440 } 2441 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2442 2443 /** 2444 * ata_bus_reset - reset host port and associated ATA channel 2445 * @ap: port to reset 2446 * 2447 * This is typically the first time we actually start issuing 2448 * commands to the ATA channel. We wait for BSY to clear, then 2449 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2450 * result. Determine what devices, if any, are on the channel 2451 * by looking at the device 0/1 error register. Look at the signature 2452 * stored in each device's taskfile registers, to determine if 2453 * the device is ATA or ATAPI. 2454 * 2455 * LOCKING: 2456 * PCI/etc. bus probe sem. 2457 * Obtains host lock. 2458 * 2459 * SIDE EFFECTS: 2460 * Sets ATA_FLAG_DISABLED if bus reset fails. 2461 * 2462 * DEPRECATED: 2463 * This function is only for drivers which still use old EH and 2464 * will be removed soon. 2465 */ 2466 void ata_bus_reset(struct ata_port *ap) 2467 { 2468 struct ata_device *device = ap->link.device; 2469 struct ata_ioports *ioaddr = &ap->ioaddr; 2470 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2471 u8 err; 2472 unsigned int dev0, dev1 = 0, devmask = 0; 2473 int rc; 2474 2475 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2476 2477 /* determine if device 0/1 are present */ 2478 if (ap->flags & ATA_FLAG_SATA_RESET) 2479 dev0 = 1; 2480 else { 2481 dev0 = ata_devchk(ap, 0); 2482 if (slave_possible) 2483 dev1 = ata_devchk(ap, 1); 2484 } 2485 2486 if (dev0) 2487 devmask |= (1 << 0); 2488 if (dev1) 2489 devmask |= (1 << 1); 2490 2491 /* select device 0 again */ 2492 ap->ops->sff_dev_select(ap, 0); 2493 2494 /* issue bus reset */ 2495 if (ap->flags & ATA_FLAG_SRST) { 2496 rc = ata_bus_softreset(ap, devmask, 2497 ata_deadline(jiffies, 40000)); 2498 if (rc && rc != -ENODEV) 2499 goto err_out; 2500 } 2501 2502 /* 2503 * determine by signature whether we have ATA or ATAPI devices 2504 */ 2505 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2506 if ((slave_possible) && (err != 0x81)) 2507 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2508 2509 /* is double-select really necessary? */ 2510 if (device[1].class != ATA_DEV_NONE) 2511 ap->ops->sff_dev_select(ap, 1); 2512 if (device[0].class != ATA_DEV_NONE) 2513 ap->ops->sff_dev_select(ap, 0); 2514 2515 /* if no devices were detected, disable this port */ 2516 if ((device[0].class == ATA_DEV_NONE) && 2517 (device[1].class == ATA_DEV_NONE)) 2518 goto err_out; 2519 2520 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2521 /* set up device control for ATA_FLAG_SATA_RESET */ 2522 iowrite8(ap->ctl, ioaddr->ctl_addr); 2523 } 2524 2525 DPRINTK("EXIT\n"); 2526 return; 2527 2528 err_out: 2529 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2530 ata_port_disable(ap); 2531 2532 DPRINTK("EXIT\n"); 2533 } 2534 EXPORT_SYMBOL_GPL(ata_bus_reset); 2535 2536 #ifdef CONFIG_PCI 2537 2538 /** 2539 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2540 * @pdev: PCI device 2541 * 2542 * Some PCI ATA devices report simplex mode but in fact can be told to 2543 * enter non simplex mode. This implements the necessary logic to 2544 * perform the task on such devices. Calling it on other devices will 2545 * have -undefined- behaviour. 2546 */ 2547 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2548 { 2549 unsigned long bmdma = pci_resource_start(pdev, 4); 2550 u8 simplex; 2551 2552 if (bmdma == 0) 2553 return -ENOENT; 2554 2555 simplex = inb(bmdma + 0x02); 2556 outb(simplex & 0x60, bmdma + 0x02); 2557 simplex = inb(bmdma + 0x02); 2558 if (simplex & 0x80) 2559 return -EOPNOTSUPP; 2560 return 0; 2561 } 2562 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2563 2564 /** 2565 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2566 * @host: target ATA host 2567 * 2568 * Acquire PCI BMDMA resources and initialize @host accordingly. 2569 * 2570 * LOCKING: 2571 * Inherited from calling layer (may sleep). 2572 * 2573 * RETURNS: 2574 * 0 on success, -errno otherwise. 2575 */ 2576 int ata_pci_bmdma_init(struct ata_host *host) 2577 { 2578 struct device *gdev = host->dev; 2579 struct pci_dev *pdev = to_pci_dev(gdev); 2580 int i, rc; 2581 2582 /* No BAR4 allocation: No DMA */ 2583 if (pci_resource_start(pdev, 4) == 0) 2584 return 0; 2585 2586 /* TODO: If we get no DMA mask we should fall back to PIO */ 2587 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2588 if (rc) 2589 return rc; 2590 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2591 if (rc) 2592 return rc; 2593 2594 /* request and iomap DMA region */ 2595 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2596 if (rc) { 2597 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2598 return -ENOMEM; 2599 } 2600 host->iomap = pcim_iomap_table(pdev); 2601 2602 for (i = 0; i < 2; i++) { 2603 struct ata_port *ap = host->ports[i]; 2604 void __iomem *bmdma = host->iomap[4] + 8 * i; 2605 2606 if (ata_port_is_dummy(ap)) 2607 continue; 2608 2609 ap->ioaddr.bmdma_addr = bmdma; 2610 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2611 (ioread8(bmdma + 2) & 0x80)) 2612 host->flags |= ATA_HOST_SIMPLEX; 2613 2614 ata_port_desc(ap, "bmdma 0x%llx", 2615 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2616 } 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2621 2622 static int ata_resources_present(struct pci_dev *pdev, int port) 2623 { 2624 int i; 2625 2626 /* Check the PCI resources for this channel are enabled */ 2627 port = port * 2; 2628 for (i = 0; i < 2; i++) { 2629 if (pci_resource_start(pdev, port + i) == 0 || 2630 pci_resource_len(pdev, port + i) == 0) 2631 return 0; 2632 } 2633 return 1; 2634 } 2635 2636 /** 2637 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2638 * @host: target ATA host 2639 * 2640 * Acquire native PCI ATA resources for @host and initialize the 2641 * first two ports of @host accordingly. Ports marked dummy are 2642 * skipped and allocation failure makes the port dummy. 2643 * 2644 * Note that native PCI resources are valid even for legacy hosts 2645 * as we fix up pdev resources array early in boot, so this 2646 * function can be used for both native and legacy SFF hosts. 2647 * 2648 * LOCKING: 2649 * Inherited from calling layer (may sleep). 2650 * 2651 * RETURNS: 2652 * 0 if at least one port is initialized, -ENODEV if no port is 2653 * available. 2654 */ 2655 int ata_pci_sff_init_host(struct ata_host *host) 2656 { 2657 struct device *gdev = host->dev; 2658 struct pci_dev *pdev = to_pci_dev(gdev); 2659 unsigned int mask = 0; 2660 int i, rc; 2661 2662 /* request, iomap BARs and init port addresses accordingly */ 2663 for (i = 0; i < 2; i++) { 2664 struct ata_port *ap = host->ports[i]; 2665 int base = i * 2; 2666 void __iomem * const *iomap; 2667 2668 if (ata_port_is_dummy(ap)) 2669 continue; 2670 2671 /* Discard disabled ports. Some controllers show 2672 * their unused channels this way. Disabled ports are 2673 * made dummy. 2674 */ 2675 if (!ata_resources_present(pdev, i)) { 2676 ap->ops = &ata_dummy_port_ops; 2677 continue; 2678 } 2679 2680 rc = pcim_iomap_regions(pdev, 0x3 << base, 2681 dev_driver_string(gdev)); 2682 if (rc) { 2683 dev_printk(KERN_WARNING, gdev, 2684 "failed to request/iomap BARs for port %d " 2685 "(errno=%d)\n", i, rc); 2686 if (rc == -EBUSY) 2687 pcim_pin_device(pdev); 2688 ap->ops = &ata_dummy_port_ops; 2689 continue; 2690 } 2691 host->iomap = iomap = pcim_iomap_table(pdev); 2692 2693 ap->ioaddr.cmd_addr = iomap[base]; 2694 ap->ioaddr.altstatus_addr = 2695 ap->ioaddr.ctl_addr = (void __iomem *) 2696 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2697 ata_sff_std_ports(&ap->ioaddr); 2698 2699 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2700 (unsigned long long)pci_resource_start(pdev, base), 2701 (unsigned long long)pci_resource_start(pdev, base + 1)); 2702 2703 mask |= 1 << i; 2704 } 2705 2706 if (!mask) { 2707 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2708 return -ENODEV; 2709 } 2710 2711 return 0; 2712 } 2713 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2714 2715 /** 2716 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2717 * @pdev: target PCI device 2718 * @ppi: array of port_info, must be enough for two ports 2719 * @r_host: out argument for the initialized ATA host 2720 * 2721 * Helper to allocate ATA host for @pdev, acquire all native PCI 2722 * resources and initialize it accordingly in one go. 2723 * 2724 * LOCKING: 2725 * Inherited from calling layer (may sleep). 2726 * 2727 * RETURNS: 2728 * 0 on success, -errno otherwise. 2729 */ 2730 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2731 const struct ata_port_info * const *ppi, 2732 struct ata_host **r_host) 2733 { 2734 struct ata_host *host; 2735 int rc; 2736 2737 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2738 return -ENOMEM; 2739 2740 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2741 if (!host) { 2742 dev_printk(KERN_ERR, &pdev->dev, 2743 "failed to allocate ATA host\n"); 2744 rc = -ENOMEM; 2745 goto err_out; 2746 } 2747 2748 rc = ata_pci_sff_init_host(host); 2749 if (rc) 2750 goto err_out; 2751 2752 /* init DMA related stuff */ 2753 rc = ata_pci_bmdma_init(host); 2754 if (rc) 2755 goto err_bmdma; 2756 2757 devres_remove_group(&pdev->dev, NULL); 2758 *r_host = host; 2759 return 0; 2760 2761 err_bmdma: 2762 /* This is necessary because PCI and iomap resources are 2763 * merged and releasing the top group won't release the 2764 * acquired resources if some of those have been acquired 2765 * before entering this function. 2766 */ 2767 pcim_iounmap_regions(pdev, 0xf); 2768 err_out: 2769 devres_release_group(&pdev->dev, NULL); 2770 return rc; 2771 } 2772 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2773 2774 /** 2775 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2776 * @host: target SFF ATA host 2777 * @irq_handler: irq_handler used when requesting IRQ(s) 2778 * @sht: scsi_host_template to use when registering the host 2779 * 2780 * This is the counterpart of ata_host_activate() for SFF ATA 2781 * hosts. This separate helper is necessary because SFF hosts 2782 * use two separate interrupts in legacy mode. 2783 * 2784 * LOCKING: 2785 * Inherited from calling layer (may sleep). 2786 * 2787 * RETURNS: 2788 * 0 on success, -errno otherwise. 2789 */ 2790 int ata_pci_sff_activate_host(struct ata_host *host, 2791 irq_handler_t irq_handler, 2792 struct scsi_host_template *sht) 2793 { 2794 struct device *dev = host->dev; 2795 struct pci_dev *pdev = to_pci_dev(dev); 2796 const char *drv_name = dev_driver_string(host->dev); 2797 int legacy_mode = 0, rc; 2798 2799 rc = ata_host_start(host); 2800 if (rc) 2801 return rc; 2802 2803 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2804 u8 tmp8, mask; 2805 2806 /* TODO: What if one channel is in native mode ... */ 2807 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2808 mask = (1 << 2) | (1 << 0); 2809 if ((tmp8 & mask) != mask) 2810 legacy_mode = 1; 2811 #if defined(CONFIG_NO_ATA_LEGACY) 2812 /* Some platforms with PCI limits cannot address compat 2813 port space. In that case we punt if their firmware has 2814 left a device in compatibility mode */ 2815 if (legacy_mode) { 2816 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2817 return -EOPNOTSUPP; 2818 } 2819 #endif 2820 } 2821 2822 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2823 return -ENOMEM; 2824 2825 if (!legacy_mode && pdev->irq) { 2826 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2827 IRQF_SHARED, drv_name, host); 2828 if (rc) 2829 goto out; 2830 2831 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2832 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2833 } else if (legacy_mode) { 2834 if (!ata_port_is_dummy(host->ports[0])) { 2835 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2836 irq_handler, IRQF_SHARED, 2837 drv_name, host); 2838 if (rc) 2839 goto out; 2840 2841 ata_port_desc(host->ports[0], "irq %d", 2842 ATA_PRIMARY_IRQ(pdev)); 2843 } 2844 2845 if (!ata_port_is_dummy(host->ports[1])) { 2846 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2847 irq_handler, IRQF_SHARED, 2848 drv_name, host); 2849 if (rc) 2850 goto out; 2851 2852 ata_port_desc(host->ports[1], "irq %d", 2853 ATA_SECONDARY_IRQ(pdev)); 2854 } 2855 } 2856 2857 rc = ata_host_register(host, sht); 2858 out: 2859 if (rc == 0) 2860 devres_remove_group(dev, NULL); 2861 else 2862 devres_release_group(dev, NULL); 2863 2864 return rc; 2865 } 2866 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2867 2868 /** 2869 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 2870 * @pdev: Controller to be initialized 2871 * @ppi: array of port_info, must be enough for two ports 2872 * @sht: scsi_host_template to use when registering the host 2873 * @host_priv: host private_data 2874 * 2875 * This is a helper function which can be called from a driver's 2876 * xxx_init_one() probe function if the hardware uses traditional 2877 * IDE taskfile registers. 2878 * 2879 * This function calls pci_enable_device(), reserves its register 2880 * regions, sets the dma mask, enables bus master mode, and calls 2881 * ata_device_add() 2882 * 2883 * ASSUMPTION: 2884 * Nobody makes a single channel controller that appears solely as 2885 * the secondary legacy port on PCI. 2886 * 2887 * LOCKING: 2888 * Inherited from PCI layer (may sleep). 2889 * 2890 * RETURNS: 2891 * Zero on success, negative on errno-based value on error. 2892 */ 2893 int ata_pci_sff_init_one(struct pci_dev *pdev, 2894 const struct ata_port_info * const *ppi, 2895 struct scsi_host_template *sht, void *host_priv) 2896 { 2897 struct device *dev = &pdev->dev; 2898 const struct ata_port_info *pi = NULL; 2899 struct ata_host *host = NULL; 2900 int i, rc; 2901 2902 DPRINTK("ENTER\n"); 2903 2904 /* look up the first valid port_info */ 2905 for (i = 0; i < 2 && ppi[i]; i++) { 2906 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 2907 pi = ppi[i]; 2908 break; 2909 } 2910 } 2911 2912 if (!pi) { 2913 dev_printk(KERN_ERR, &pdev->dev, 2914 "no valid port_info specified\n"); 2915 return -EINVAL; 2916 } 2917 2918 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2919 return -ENOMEM; 2920 2921 rc = pcim_enable_device(pdev); 2922 if (rc) 2923 goto out; 2924 2925 /* prepare and activate SFF host */ 2926 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2927 if (rc) 2928 goto out; 2929 host->private_data = host_priv; 2930 2931 pci_set_master(pdev); 2932 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2933 out: 2934 if (rc == 0) 2935 devres_remove_group(&pdev->dev, NULL); 2936 else 2937 devres_release_group(&pdev->dev, NULL); 2938 2939 return rc; 2940 } 2941 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2942 2943 #endif /* CONFIG_PCI */ 2944 2945