xref: /linux/drivers/ata/libata-sff.c (revision 5ac072e110ff358a9ebc318a1b54f0182b799f72)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.error_handler		= ata_sff_error_handler,
56 	.post_internal_cmd	= ata_sff_post_internal_cmd,
57 
58 	.sff_dev_select		= ata_sff_dev_select,
59 	.sff_check_status	= ata_sff_check_status,
60 	.sff_tf_load		= ata_sff_tf_load,
61 	.sff_tf_read		= ata_sff_tf_read,
62 	.sff_exec_command	= ata_sff_exec_command,
63 	.sff_data_xfer		= ata_sff_data_xfer,
64 	.sff_irq_on		= ata_sff_irq_on,
65 	.sff_irq_clear		= ata_sff_irq_clear,
66 
67 	.port_start		= ata_sff_port_start,
68 };
69 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
70 
71 const struct ata_port_operations ata_bmdma_port_ops = {
72 	.inherits		= &ata_sff_port_ops,
73 
74 	.mode_filter		= ata_bmdma_mode_filter,
75 
76 	.bmdma_setup		= ata_bmdma_setup,
77 	.bmdma_start		= ata_bmdma_start,
78 	.bmdma_stop		= ata_bmdma_stop,
79 	.bmdma_status		= ata_bmdma_status,
80 };
81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
82 
83 const struct ata_port_operations ata_bmdma32_port_ops = {
84 	.inherits		= &ata_bmdma_port_ops,
85 
86 	.sff_data_xfer		= ata_sff_data_xfer32,
87 };
88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
89 
90 /**
91  *	ata_fill_sg - Fill PCI IDE PRD table
92  *	@qc: Metadata associated with taskfile to be transferred
93  *
94  *	Fill PCI IDE PRD (scatter-gather) table with segments
95  *	associated with the current disk command.
96  *
97  *	LOCKING:
98  *	spin_lock_irqsave(host lock)
99  *
100  */
101 static void ata_fill_sg(struct ata_queued_cmd *qc)
102 {
103 	struct ata_port *ap = qc->ap;
104 	struct scatterlist *sg;
105 	unsigned int si, pi;
106 
107 	pi = 0;
108 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
109 		u32 addr, offset;
110 		u32 sg_len, len;
111 
112 		/* determine if physical DMA addr spans 64K boundary.
113 		 * Note h/w doesn't support 64-bit, so we unconditionally
114 		 * truncate dma_addr_t to u32.
115 		 */
116 		addr = (u32) sg_dma_address(sg);
117 		sg_len = sg_dma_len(sg);
118 
119 		while (sg_len) {
120 			offset = addr & 0xffff;
121 			len = sg_len;
122 			if ((offset + sg_len) > 0x10000)
123 				len = 0x10000 - offset;
124 
125 			ap->prd[pi].addr = cpu_to_le32(addr);
126 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
127 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
128 
129 			pi++;
130 			sg_len -= len;
131 			addr += len;
132 		}
133 	}
134 
135 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
136 }
137 
138 /**
139  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
140  *	@qc: Metadata associated with taskfile to be transferred
141  *
142  *	Fill PCI IDE PRD (scatter-gather) table with segments
143  *	associated with the current disk command. Perform the fill
144  *	so that we avoid writing any length 64K records for
145  *	controllers that don't follow the spec.
146  *
147  *	LOCKING:
148  *	spin_lock_irqsave(host lock)
149  *
150  */
151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
152 {
153 	struct ata_port *ap = qc->ap;
154 	struct scatterlist *sg;
155 	unsigned int si, pi;
156 
157 	pi = 0;
158 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
159 		u32 addr, offset;
160 		u32 sg_len, len, blen;
161 
162 		/* determine if physical DMA addr spans 64K boundary.
163 		 * Note h/w doesn't support 64-bit, so we unconditionally
164 		 * truncate dma_addr_t to u32.
165 		 */
166 		addr = (u32) sg_dma_address(sg);
167 		sg_len = sg_dma_len(sg);
168 
169 		while (sg_len) {
170 			offset = addr & 0xffff;
171 			len = sg_len;
172 			if ((offset + sg_len) > 0x10000)
173 				len = 0x10000 - offset;
174 
175 			blen = len & 0xffff;
176 			ap->prd[pi].addr = cpu_to_le32(addr);
177 			if (blen == 0) {
178 				/* Some PATA chipsets like the CS5530 can't
179 				   cope with 0x0000 meaning 64K as the spec
180 				   says */
181 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
182 				blen = 0x8000;
183 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
184 			}
185 			ap->prd[pi].flags_len = cpu_to_le32(blen);
186 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
187 
188 			pi++;
189 			sg_len -= len;
190 			addr += len;
191 		}
192 	}
193 
194 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
195 }
196 
197 /**
198  *	ata_sff_qc_prep - Prepare taskfile for submission
199  *	@qc: Metadata associated with taskfile to be prepared
200  *
201  *	Prepare ATA taskfile for submission.
202  *
203  *	LOCKING:
204  *	spin_lock_irqsave(host lock)
205  */
206 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
207 {
208 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
209 		return;
210 
211 	ata_fill_sg(qc);
212 }
213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
214 
215 /**
216  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
217  *	@qc: Metadata associated with taskfile to be prepared
218  *
219  *	Prepare ATA taskfile for submission.
220  *
221  *	LOCKING:
222  *	spin_lock_irqsave(host lock)
223  */
224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
225 {
226 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
227 		return;
228 
229 	ata_fill_sg_dumb(qc);
230 }
231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
232 
233 /**
234  *	ata_sff_check_status - Read device status reg & clear interrupt
235  *	@ap: port where the device is
236  *
237  *	Reads ATA taskfile status register for currently-selected device
238  *	and return its value. This also clears pending interrupts
239  *      from this device
240  *
241  *	LOCKING:
242  *	Inherited from caller.
243  */
244 u8 ata_sff_check_status(struct ata_port *ap)
245 {
246 	return ioread8(ap->ioaddr.status_addr);
247 }
248 EXPORT_SYMBOL_GPL(ata_sff_check_status);
249 
250 /**
251  *	ata_sff_altstatus - Read device alternate status reg
252  *	@ap: port where the device is
253  *
254  *	Reads ATA taskfile alternate status register for
255  *	currently-selected device and return its value.
256  *
257  *	Note: may NOT be used as the check_altstatus() entry in
258  *	ata_port_operations.
259  *
260  *	LOCKING:
261  *	Inherited from caller.
262  */
263 static u8 ata_sff_altstatus(struct ata_port *ap)
264 {
265 	if (ap->ops->sff_check_altstatus)
266 		return ap->ops->sff_check_altstatus(ap);
267 
268 	return ioread8(ap->ioaddr.altstatus_addr);
269 }
270 
271 /**
272  *	ata_sff_irq_status - Check if the device is busy
273  *	@ap: port where the device is
274  *
275  *	Determine if the port is currently busy. Uses altstatus
276  *	if available in order to avoid clearing shared IRQ status
277  *	when finding an IRQ source. Non ctl capable devices don't
278  *	share interrupt lines fortunately for us.
279  *
280  *	LOCKING:
281  *	Inherited from caller.
282  */
283 static u8 ata_sff_irq_status(struct ata_port *ap)
284 {
285 	u8 status;
286 
287 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
288 		status = ata_sff_altstatus(ap);
289 		/* Not us: We are busy */
290 		if (status & ATA_BUSY)
291 			return status;
292 	}
293 	/* Clear INTRQ latch */
294 	status = ap->ops->sff_check_status(ap);
295 	return status;
296 }
297 
298 /**
299  *	ata_sff_sync - Flush writes
300  *	@ap: Port to wait for.
301  *
302  *	CAUTION:
303  *	If we have an mmio device with no ctl and no altstatus
304  *	method this will fail. No such devices are known to exist.
305  *
306  *	LOCKING:
307  *	Inherited from caller.
308  */
309 
310 static void ata_sff_sync(struct ata_port *ap)
311 {
312 	if (ap->ops->sff_check_altstatus)
313 		ap->ops->sff_check_altstatus(ap);
314 	else if (ap->ioaddr.altstatus_addr)
315 		ioread8(ap->ioaddr.altstatus_addr);
316 }
317 
318 /**
319  *	ata_sff_pause		-	Flush writes and wait 400nS
320  *	@ap: Port to pause for.
321  *
322  *	CAUTION:
323  *	If we have an mmio device with no ctl and no altstatus
324  *	method this will fail. No such devices are known to exist.
325  *
326  *	LOCKING:
327  *	Inherited from caller.
328  */
329 
330 void ata_sff_pause(struct ata_port *ap)
331 {
332 	ata_sff_sync(ap);
333 	ndelay(400);
334 }
335 EXPORT_SYMBOL_GPL(ata_sff_pause);
336 
337 /**
338  *	ata_sff_dma_pause	-	Pause before commencing DMA
339  *	@ap: Port to pause for.
340  *
341  *	Perform I/O fencing and ensure sufficient cycle delays occur
342  *	for the HDMA1:0 transition
343  */
344 
345 void ata_sff_dma_pause(struct ata_port *ap)
346 {
347 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
348 		/* An altstatus read will cause the needed delay without
349 		   messing up the IRQ status */
350 		ata_sff_altstatus(ap);
351 		return;
352 	}
353 	/* There are no DMA controllers without ctl. BUG here to ensure
354 	   we never violate the HDMA1:0 transition timing and risk
355 	   corruption. */
356 	BUG();
357 }
358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
359 
360 /**
361  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
362  *	@ap: port containing status register to be polled
363  *	@tmout_pat: impatience timeout in msecs
364  *	@tmout: overall timeout in msecs
365  *
366  *	Sleep until ATA Status register bit BSY clears,
367  *	or a timeout occurs.
368  *
369  *	LOCKING:
370  *	Kernel thread context (may sleep).
371  *
372  *	RETURNS:
373  *	0 on success, -errno otherwise.
374  */
375 int ata_sff_busy_sleep(struct ata_port *ap,
376 		       unsigned long tmout_pat, unsigned long tmout)
377 {
378 	unsigned long timer_start, timeout;
379 	u8 status;
380 
381 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
382 	timer_start = jiffies;
383 	timeout = ata_deadline(timer_start, tmout_pat);
384 	while (status != 0xff && (status & ATA_BUSY) &&
385 	       time_before(jiffies, timeout)) {
386 		msleep(50);
387 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
388 	}
389 
390 	if (status != 0xff && (status & ATA_BUSY))
391 		ata_port_printk(ap, KERN_WARNING,
392 				"port is slow to respond, please be patient "
393 				"(Status 0x%x)\n", status);
394 
395 	timeout = ata_deadline(timer_start, tmout);
396 	while (status != 0xff && (status & ATA_BUSY) &&
397 	       time_before(jiffies, timeout)) {
398 		msleep(50);
399 		status = ap->ops->sff_check_status(ap);
400 	}
401 
402 	if (status == 0xff)
403 		return -ENODEV;
404 
405 	if (status & ATA_BUSY) {
406 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
407 				"(%lu secs, Status 0x%x)\n",
408 				DIV_ROUND_UP(tmout, 1000), status);
409 		return -EBUSY;
410 	}
411 
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
415 
416 static int ata_sff_check_ready(struct ata_link *link)
417 {
418 	u8 status = link->ap->ops->sff_check_status(link->ap);
419 
420 	return ata_check_ready(status);
421 }
422 
423 /**
424  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
425  *	@link: SFF link to wait ready status for
426  *	@deadline: deadline jiffies for the operation
427  *
428  *	Sleep until ATA Status register bit BSY clears, or timeout
429  *	occurs.
430  *
431  *	LOCKING:
432  *	Kernel thread context (may sleep).
433  *
434  *	RETURNS:
435  *	0 on success, -errno otherwise.
436  */
437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
438 {
439 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
440 }
441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
442 
443 /**
444  *	ata_sff_dev_select - Select device 0/1 on ATA bus
445  *	@ap: ATA channel to manipulate
446  *	@device: ATA device (numbered from zero) to select
447  *
448  *	Use the method defined in the ATA specification to
449  *	make either device 0, or device 1, active on the
450  *	ATA channel.  Works with both PIO and MMIO.
451  *
452  *	May be used as the dev_select() entry in ata_port_operations.
453  *
454  *	LOCKING:
455  *	caller.
456  */
457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
458 {
459 	u8 tmp;
460 
461 	if (device == 0)
462 		tmp = ATA_DEVICE_OBS;
463 	else
464 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
465 
466 	iowrite8(tmp, ap->ioaddr.device_addr);
467 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
468 }
469 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
470 
471 /**
472  *	ata_dev_select - Select device 0/1 on ATA bus
473  *	@ap: ATA channel to manipulate
474  *	@device: ATA device (numbered from zero) to select
475  *	@wait: non-zero to wait for Status register BSY bit to clear
476  *	@can_sleep: non-zero if context allows sleeping
477  *
478  *	Use the method defined in the ATA specification to
479  *	make either device 0, or device 1, active on the
480  *	ATA channel.
481  *
482  *	This is a high-level version of ata_sff_dev_select(), which
483  *	additionally provides the services of inserting the proper
484  *	pauses and status polling, where needed.
485  *
486  *	LOCKING:
487  *	caller.
488  */
489 void ata_dev_select(struct ata_port *ap, unsigned int device,
490 			   unsigned int wait, unsigned int can_sleep)
491 {
492 	if (ata_msg_probe(ap))
493 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
494 				"device %u, wait %u\n", device, wait);
495 
496 	if (wait)
497 		ata_wait_idle(ap);
498 
499 	ap->ops->sff_dev_select(ap, device);
500 
501 	if (wait) {
502 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
503 			msleep(150);
504 		ata_wait_idle(ap);
505 	}
506 }
507 
508 /**
509  *	ata_sff_irq_on - Enable interrupts on a port.
510  *	@ap: Port on which interrupts are enabled.
511  *
512  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
513  *	wait for idle, clear any pending interrupts.
514  *
515  *	LOCKING:
516  *	Inherited from caller.
517  */
518 u8 ata_sff_irq_on(struct ata_port *ap)
519 {
520 	struct ata_ioports *ioaddr = &ap->ioaddr;
521 	u8 tmp;
522 
523 	ap->ctl &= ~ATA_NIEN;
524 	ap->last_ctl = ap->ctl;
525 
526 	if (ioaddr->ctl_addr)
527 		iowrite8(ap->ctl, ioaddr->ctl_addr);
528 	tmp = ata_wait_idle(ap);
529 
530 	ap->ops->sff_irq_clear(ap);
531 
532 	return tmp;
533 }
534 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
535 
536 /**
537  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
538  *	@ap: Port associated with this ATA transaction.
539  *
540  *	Clear interrupt and error flags in DMA status register.
541  *
542  *	May be used as the irq_clear() entry in ata_port_operations.
543  *
544  *	LOCKING:
545  *	spin_lock_irqsave(host lock)
546  */
547 void ata_sff_irq_clear(struct ata_port *ap)
548 {
549 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
550 
551 	if (!mmio)
552 		return;
553 
554 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
555 }
556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
557 
558 /**
559  *	ata_sff_tf_load - send taskfile registers to host controller
560  *	@ap: Port to which output is sent
561  *	@tf: ATA taskfile register set
562  *
563  *	Outputs ATA taskfile to standard ATA host controller.
564  *
565  *	LOCKING:
566  *	Inherited from caller.
567  */
568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
569 {
570 	struct ata_ioports *ioaddr = &ap->ioaddr;
571 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
572 
573 	if (tf->ctl != ap->last_ctl) {
574 		if (ioaddr->ctl_addr)
575 			iowrite8(tf->ctl, ioaddr->ctl_addr);
576 		ap->last_ctl = tf->ctl;
577 		ata_wait_idle(ap);
578 	}
579 
580 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
581 		WARN_ON_ONCE(!ioaddr->ctl_addr);
582 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
583 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
584 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
585 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
586 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
587 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
588 			tf->hob_feature,
589 			tf->hob_nsect,
590 			tf->hob_lbal,
591 			tf->hob_lbam,
592 			tf->hob_lbah);
593 	}
594 
595 	if (is_addr) {
596 		iowrite8(tf->feature, ioaddr->feature_addr);
597 		iowrite8(tf->nsect, ioaddr->nsect_addr);
598 		iowrite8(tf->lbal, ioaddr->lbal_addr);
599 		iowrite8(tf->lbam, ioaddr->lbam_addr);
600 		iowrite8(tf->lbah, ioaddr->lbah_addr);
601 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
602 			tf->feature,
603 			tf->nsect,
604 			tf->lbal,
605 			tf->lbam,
606 			tf->lbah);
607 	}
608 
609 	if (tf->flags & ATA_TFLAG_DEVICE) {
610 		iowrite8(tf->device, ioaddr->device_addr);
611 		VPRINTK("device 0x%X\n", tf->device);
612 	}
613 
614 	ata_wait_idle(ap);
615 }
616 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
617 
618 /**
619  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
620  *	@ap: Port from which input is read
621  *	@tf: ATA taskfile register set for storing input
622  *
623  *	Reads ATA taskfile registers for currently-selected device
624  *	into @tf. Assumes the device has a fully SFF compliant task file
625  *	layout and behaviour. If you device does not (eg has a different
626  *	status method) then you will need to provide a replacement tf_read
627  *
628  *	LOCKING:
629  *	Inherited from caller.
630  */
631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
632 {
633 	struct ata_ioports *ioaddr = &ap->ioaddr;
634 
635 	tf->command = ata_sff_check_status(ap);
636 	tf->feature = ioread8(ioaddr->error_addr);
637 	tf->nsect = ioread8(ioaddr->nsect_addr);
638 	tf->lbal = ioread8(ioaddr->lbal_addr);
639 	tf->lbam = ioread8(ioaddr->lbam_addr);
640 	tf->lbah = ioread8(ioaddr->lbah_addr);
641 	tf->device = ioread8(ioaddr->device_addr);
642 
643 	if (tf->flags & ATA_TFLAG_LBA48) {
644 		if (likely(ioaddr->ctl_addr)) {
645 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
646 			tf->hob_feature = ioread8(ioaddr->error_addr);
647 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
648 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
649 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
650 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
651 			iowrite8(tf->ctl, ioaddr->ctl_addr);
652 			ap->last_ctl = tf->ctl;
653 		} else
654 			WARN_ON_ONCE(1);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
658 
659 /**
660  *	ata_sff_exec_command - issue ATA command to host controller
661  *	@ap: port to which command is being issued
662  *	@tf: ATA taskfile register set
663  *
664  *	Issues ATA command, with proper synchronization with interrupt
665  *	handler / other threads.
666  *
667  *	LOCKING:
668  *	spin_lock_irqsave(host lock)
669  */
670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
671 {
672 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
673 
674 	iowrite8(tf->command, ap->ioaddr.command_addr);
675 	ata_sff_pause(ap);
676 }
677 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
678 
679 /**
680  *	ata_tf_to_host - issue ATA taskfile to host controller
681  *	@ap: port to which command is being issued
682  *	@tf: ATA taskfile register set
683  *
684  *	Issues ATA taskfile register set to ATA host controller,
685  *	with proper synchronization with interrupt handler and
686  *	other threads.
687  *
688  *	LOCKING:
689  *	spin_lock_irqsave(host lock)
690  */
691 static inline void ata_tf_to_host(struct ata_port *ap,
692 				  const struct ata_taskfile *tf)
693 {
694 	ap->ops->sff_tf_load(ap, tf);
695 	ap->ops->sff_exec_command(ap, tf);
696 }
697 
698 /**
699  *	ata_sff_data_xfer - Transfer data by PIO
700  *	@dev: device to target
701  *	@buf: data buffer
702  *	@buflen: buffer length
703  *	@rw: read/write
704  *
705  *	Transfer data from/to the device data register by PIO.
706  *
707  *	LOCKING:
708  *	Inherited from caller.
709  *
710  *	RETURNS:
711  *	Bytes consumed.
712  */
713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
714 			       unsigned int buflen, int rw)
715 {
716 	struct ata_port *ap = dev->link->ap;
717 	void __iomem *data_addr = ap->ioaddr.data_addr;
718 	unsigned int words = buflen >> 1;
719 
720 	/* Transfer multiple of 2 bytes */
721 	if (rw == READ)
722 		ioread16_rep(data_addr, buf, words);
723 	else
724 		iowrite16_rep(data_addr, buf, words);
725 
726 	/* Transfer trailing 1 byte, if any. */
727 	if (unlikely(buflen & 0x01)) {
728 		__le16 align_buf[1] = { 0 };
729 		unsigned char *trailing_buf = buf + buflen - 1;
730 
731 		if (rw == READ) {
732 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
733 			memcpy(trailing_buf, align_buf, 1);
734 		} else {
735 			memcpy(align_buf, trailing_buf, 1);
736 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
737 		}
738 		words++;
739 	}
740 
741 	return words << 1;
742 }
743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
744 
745 /**
746  *	ata_sff_data_xfer32 - Transfer data by PIO
747  *	@dev: device to target
748  *	@buf: data buffer
749  *	@buflen: buffer length
750  *	@rw: read/write
751  *
752  *	Transfer data from/to the device data register by PIO using 32bit
753  *	I/O operations.
754  *
755  *	LOCKING:
756  *	Inherited from caller.
757  *
758  *	RETURNS:
759  *	Bytes consumed.
760  */
761 
762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
763 			       unsigned int buflen, int rw)
764 {
765 	struct ata_port *ap = dev->link->ap;
766 	void __iomem *data_addr = ap->ioaddr.data_addr;
767 	unsigned int words = buflen >> 2;
768 	int slop = buflen & 3;
769 
770 	/* Transfer multiple of 4 bytes */
771 	if (rw == READ)
772 		ioread32_rep(data_addr, buf, words);
773 	else
774 		iowrite32_rep(data_addr, buf, words);
775 
776 	if (unlikely(slop)) {
777 		__le32 pad;
778 		if (rw == READ) {
779 			pad = cpu_to_le32(ioread32(ap->ioaddr.data_addr));
780 			memcpy(buf + buflen - slop, &pad, slop);
781 		} else {
782 			memcpy(&pad, buf + buflen - slop, slop);
783 			iowrite32(le32_to_cpu(pad), ap->ioaddr.data_addr);
784 		}
785 		words++;
786 	}
787 	return words << 2;
788 }
789 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
790 
791 /**
792  *	ata_sff_data_xfer_noirq - Transfer data by PIO
793  *	@dev: device to target
794  *	@buf: data buffer
795  *	@buflen: buffer length
796  *	@rw: read/write
797  *
798  *	Transfer data from/to the device data register by PIO. Do the
799  *	transfer with interrupts disabled.
800  *
801  *	LOCKING:
802  *	Inherited from caller.
803  *
804  *	RETURNS:
805  *	Bytes consumed.
806  */
807 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
808 				     unsigned int buflen, int rw)
809 {
810 	unsigned long flags;
811 	unsigned int consumed;
812 
813 	local_irq_save(flags);
814 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
815 	local_irq_restore(flags);
816 
817 	return consumed;
818 }
819 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
820 
821 /**
822  *	ata_pio_sector - Transfer a sector of data.
823  *	@qc: Command on going
824  *
825  *	Transfer qc->sect_size bytes of data from/to the ATA device.
826  *
827  *	LOCKING:
828  *	Inherited from caller.
829  */
830 static void ata_pio_sector(struct ata_queued_cmd *qc)
831 {
832 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
833 	struct ata_port *ap = qc->ap;
834 	struct page *page;
835 	unsigned int offset;
836 	unsigned char *buf;
837 
838 	if (qc->curbytes == qc->nbytes - qc->sect_size)
839 		ap->hsm_task_state = HSM_ST_LAST;
840 
841 	page = sg_page(qc->cursg);
842 	offset = qc->cursg->offset + qc->cursg_ofs;
843 
844 	/* get the current page and offset */
845 	page = nth_page(page, (offset >> PAGE_SHIFT));
846 	offset %= PAGE_SIZE;
847 
848 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
849 
850 	if (PageHighMem(page)) {
851 		unsigned long flags;
852 
853 		/* FIXME: use a bounce buffer */
854 		local_irq_save(flags);
855 		buf = kmap_atomic(page, KM_IRQ0);
856 
857 		/* do the actual data transfer */
858 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
859 				       do_write);
860 
861 		kunmap_atomic(buf, KM_IRQ0);
862 		local_irq_restore(flags);
863 	} else {
864 		buf = page_address(page);
865 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
866 				       do_write);
867 	}
868 
869 	qc->curbytes += qc->sect_size;
870 	qc->cursg_ofs += qc->sect_size;
871 
872 	if (qc->cursg_ofs == qc->cursg->length) {
873 		qc->cursg = sg_next(qc->cursg);
874 		qc->cursg_ofs = 0;
875 	}
876 }
877 
878 /**
879  *	ata_pio_sectors - Transfer one or many sectors.
880  *	@qc: Command on going
881  *
882  *	Transfer one or many sectors of data from/to the
883  *	ATA device for the DRQ request.
884  *
885  *	LOCKING:
886  *	Inherited from caller.
887  */
888 static void ata_pio_sectors(struct ata_queued_cmd *qc)
889 {
890 	if (is_multi_taskfile(&qc->tf)) {
891 		/* READ/WRITE MULTIPLE */
892 		unsigned int nsect;
893 
894 		WARN_ON_ONCE(qc->dev->multi_count == 0);
895 
896 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
897 			    qc->dev->multi_count);
898 		while (nsect--)
899 			ata_pio_sector(qc);
900 	} else
901 		ata_pio_sector(qc);
902 
903 	ata_sff_sync(qc->ap); /* flush */
904 }
905 
906 /**
907  *	atapi_send_cdb - Write CDB bytes to hardware
908  *	@ap: Port to which ATAPI device is attached.
909  *	@qc: Taskfile currently active
910  *
911  *	When device has indicated its readiness to accept
912  *	a CDB, this function is called.  Send the CDB.
913  *
914  *	LOCKING:
915  *	caller.
916  */
917 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
918 {
919 	/* send SCSI cdb */
920 	DPRINTK("send cdb\n");
921 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
922 
923 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
924 	ata_sff_sync(ap);
925 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
926 	   or is bmdma_start guaranteed to do it ? */
927 	switch (qc->tf.protocol) {
928 	case ATAPI_PROT_PIO:
929 		ap->hsm_task_state = HSM_ST;
930 		break;
931 	case ATAPI_PROT_NODATA:
932 		ap->hsm_task_state = HSM_ST_LAST;
933 		break;
934 	case ATAPI_PROT_DMA:
935 		ap->hsm_task_state = HSM_ST_LAST;
936 		/* initiate bmdma */
937 		ap->ops->bmdma_start(qc);
938 		break;
939 	}
940 }
941 
942 /**
943  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
944  *	@qc: Command on going
945  *	@bytes: number of bytes
946  *
947  *	Transfer Transfer data from/to the ATAPI device.
948  *
949  *	LOCKING:
950  *	Inherited from caller.
951  *
952  */
953 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
954 {
955 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
956 	struct ata_port *ap = qc->ap;
957 	struct ata_device *dev = qc->dev;
958 	struct ata_eh_info *ehi = &dev->link->eh_info;
959 	struct scatterlist *sg;
960 	struct page *page;
961 	unsigned char *buf;
962 	unsigned int offset, count, consumed;
963 
964 next_sg:
965 	sg = qc->cursg;
966 	if (unlikely(!sg)) {
967 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
968 				  "buf=%u cur=%u bytes=%u",
969 				  qc->nbytes, qc->curbytes, bytes);
970 		return -1;
971 	}
972 
973 	page = sg_page(sg);
974 	offset = sg->offset + qc->cursg_ofs;
975 
976 	/* get the current page and offset */
977 	page = nth_page(page, (offset >> PAGE_SHIFT));
978 	offset %= PAGE_SIZE;
979 
980 	/* don't overrun current sg */
981 	count = min(sg->length - qc->cursg_ofs, bytes);
982 
983 	/* don't cross page boundaries */
984 	count = min(count, (unsigned int)PAGE_SIZE - offset);
985 
986 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
987 
988 	if (PageHighMem(page)) {
989 		unsigned long flags;
990 
991 		/* FIXME: use bounce buffer */
992 		local_irq_save(flags);
993 		buf = kmap_atomic(page, KM_IRQ0);
994 
995 		/* do the actual data transfer */
996 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
997 								count, rw);
998 
999 		kunmap_atomic(buf, KM_IRQ0);
1000 		local_irq_restore(flags);
1001 	} else {
1002 		buf = page_address(page);
1003 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1004 								count, rw);
1005 	}
1006 
1007 	bytes -= min(bytes, consumed);
1008 	qc->curbytes += count;
1009 	qc->cursg_ofs += count;
1010 
1011 	if (qc->cursg_ofs == sg->length) {
1012 		qc->cursg = sg_next(qc->cursg);
1013 		qc->cursg_ofs = 0;
1014 	}
1015 
1016 	/*
1017 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1018 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1019 	 * check correctly as it doesn't know if it is the last request being
1020 	 * made. Somebody should implement a proper sanity check.
1021 	 */
1022 	if (bytes)
1023 		goto next_sg;
1024 	return 0;
1025 }
1026 
1027 /**
1028  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1029  *	@qc: Command on going
1030  *
1031  *	Transfer Transfer data from/to the ATAPI device.
1032  *
1033  *	LOCKING:
1034  *	Inherited from caller.
1035  */
1036 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1037 {
1038 	struct ata_port *ap = qc->ap;
1039 	struct ata_device *dev = qc->dev;
1040 	struct ata_eh_info *ehi = &dev->link->eh_info;
1041 	unsigned int ireason, bc_lo, bc_hi, bytes;
1042 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1043 
1044 	/* Abuse qc->result_tf for temp storage of intermediate TF
1045 	 * here to save some kernel stack usage.
1046 	 * For normal completion, qc->result_tf is not relevant. For
1047 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1048 	 * So, the correctness of qc->result_tf is not affected.
1049 	 */
1050 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1051 	ireason = qc->result_tf.nsect;
1052 	bc_lo = qc->result_tf.lbam;
1053 	bc_hi = qc->result_tf.lbah;
1054 	bytes = (bc_hi << 8) | bc_lo;
1055 
1056 	/* shall be cleared to zero, indicating xfer of data */
1057 	if (unlikely(ireason & (1 << 0)))
1058 		goto atapi_check;
1059 
1060 	/* make sure transfer direction matches expected */
1061 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1062 	if (unlikely(do_write != i_write))
1063 		goto atapi_check;
1064 
1065 	if (unlikely(!bytes))
1066 		goto atapi_check;
1067 
1068 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1069 
1070 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1071 		goto err_out;
1072 	ata_sff_sync(ap); /* flush */
1073 
1074 	return;
1075 
1076  atapi_check:
1077 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1078 			  ireason, bytes);
1079  err_out:
1080 	qc->err_mask |= AC_ERR_HSM;
1081 	ap->hsm_task_state = HSM_ST_ERR;
1082 }
1083 
1084 /**
1085  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1086  *	@ap: the target ata_port
1087  *	@qc: qc on going
1088  *
1089  *	RETURNS:
1090  *	1 if ok in workqueue, 0 otherwise.
1091  */
1092 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1093 						struct ata_queued_cmd *qc)
1094 {
1095 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1096 		return 1;
1097 
1098 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1099 		if (qc->tf.protocol == ATA_PROT_PIO &&
1100 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1101 		    return 1;
1102 
1103 		if (ata_is_atapi(qc->tf.protocol) &&
1104 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1105 			return 1;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1113  *	@qc: Command to complete
1114  *	@in_wq: 1 if called from workqueue, 0 otherwise
1115  *
1116  *	Finish @qc which is running on standard HSM.
1117  *
1118  *	LOCKING:
1119  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1120  *	Otherwise, none on entry and grabs host lock.
1121  */
1122 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1123 {
1124 	struct ata_port *ap = qc->ap;
1125 	unsigned long flags;
1126 
1127 	if (ap->ops->error_handler) {
1128 		if (in_wq) {
1129 			spin_lock_irqsave(ap->lock, flags);
1130 
1131 			/* EH might have kicked in while host lock is
1132 			 * released.
1133 			 */
1134 			qc = ata_qc_from_tag(ap, qc->tag);
1135 			if (qc) {
1136 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1137 					ap->ops->sff_irq_on(ap);
1138 					ata_qc_complete(qc);
1139 				} else
1140 					ata_port_freeze(ap);
1141 			}
1142 
1143 			spin_unlock_irqrestore(ap->lock, flags);
1144 		} else {
1145 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1146 				ata_qc_complete(qc);
1147 			else
1148 				ata_port_freeze(ap);
1149 		}
1150 	} else {
1151 		if (in_wq) {
1152 			spin_lock_irqsave(ap->lock, flags);
1153 			ap->ops->sff_irq_on(ap);
1154 			ata_qc_complete(qc);
1155 			spin_unlock_irqrestore(ap->lock, flags);
1156 		} else
1157 			ata_qc_complete(qc);
1158 	}
1159 }
1160 
1161 /**
1162  *	ata_sff_hsm_move - move the HSM to the next state.
1163  *	@ap: the target ata_port
1164  *	@qc: qc on going
1165  *	@status: current device status
1166  *	@in_wq: 1 if called from workqueue, 0 otherwise
1167  *
1168  *	RETURNS:
1169  *	1 when poll next status needed, 0 otherwise.
1170  */
1171 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1172 		     u8 status, int in_wq)
1173 {
1174 	struct ata_eh_info *ehi = &ap->link.eh_info;
1175 	unsigned long flags = 0;
1176 	int poll_next;
1177 
1178 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1179 
1180 	/* Make sure ata_sff_qc_issue() does not throw things
1181 	 * like DMA polling into the workqueue. Notice that
1182 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1183 	 */
1184 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1185 
1186 fsm_start:
1187 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1188 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1189 
1190 	switch (ap->hsm_task_state) {
1191 	case HSM_ST_FIRST:
1192 		/* Send first data block or PACKET CDB */
1193 
1194 		/* If polling, we will stay in the work queue after
1195 		 * sending the data. Otherwise, interrupt handler
1196 		 * takes over after sending the data.
1197 		 */
1198 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1199 
1200 		/* check device status */
1201 		if (unlikely((status & ATA_DRQ) == 0)) {
1202 			/* handle BSY=0, DRQ=0 as error */
1203 			if (likely(status & (ATA_ERR | ATA_DF)))
1204 				/* device stops HSM for abort/error */
1205 				qc->err_mask |= AC_ERR_DEV;
1206 			else {
1207 				/* HSM violation. Let EH handle this */
1208 				ata_ehi_push_desc(ehi,
1209 					"ST_FIRST: !(DRQ|ERR|DF)");
1210 				qc->err_mask |= AC_ERR_HSM;
1211 			}
1212 
1213 			ap->hsm_task_state = HSM_ST_ERR;
1214 			goto fsm_start;
1215 		}
1216 
1217 		/* Device should not ask for data transfer (DRQ=1)
1218 		 * when it finds something wrong.
1219 		 * We ignore DRQ here and stop the HSM by
1220 		 * changing hsm_task_state to HSM_ST_ERR and
1221 		 * let the EH abort the command or reset the device.
1222 		 */
1223 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1224 			/* Some ATAPI tape drives forget to clear the ERR bit
1225 			 * when doing the next command (mostly request sense).
1226 			 * We ignore ERR here to workaround and proceed sending
1227 			 * the CDB.
1228 			 */
1229 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1230 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1231 					"DRQ=1 with device error, "
1232 					"dev_stat 0x%X", status);
1233 				qc->err_mask |= AC_ERR_HSM;
1234 				ap->hsm_task_state = HSM_ST_ERR;
1235 				goto fsm_start;
1236 			}
1237 		}
1238 
1239 		/* Send the CDB (atapi) or the first data block (ata pio out).
1240 		 * During the state transition, interrupt handler shouldn't
1241 		 * be invoked before the data transfer is complete and
1242 		 * hsm_task_state is changed. Hence, the following locking.
1243 		 */
1244 		if (in_wq)
1245 			spin_lock_irqsave(ap->lock, flags);
1246 
1247 		if (qc->tf.protocol == ATA_PROT_PIO) {
1248 			/* PIO data out protocol.
1249 			 * send first data block.
1250 			 */
1251 
1252 			/* ata_pio_sectors() might change the state
1253 			 * to HSM_ST_LAST. so, the state is changed here
1254 			 * before ata_pio_sectors().
1255 			 */
1256 			ap->hsm_task_state = HSM_ST;
1257 			ata_pio_sectors(qc);
1258 		} else
1259 			/* send CDB */
1260 			atapi_send_cdb(ap, qc);
1261 
1262 		if (in_wq)
1263 			spin_unlock_irqrestore(ap->lock, flags);
1264 
1265 		/* if polling, ata_pio_task() handles the rest.
1266 		 * otherwise, interrupt handler takes over from here.
1267 		 */
1268 		break;
1269 
1270 	case HSM_ST:
1271 		/* complete command or read/write the data register */
1272 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1273 			/* ATAPI PIO protocol */
1274 			if ((status & ATA_DRQ) == 0) {
1275 				/* No more data to transfer or device error.
1276 				 * Device error will be tagged in HSM_ST_LAST.
1277 				 */
1278 				ap->hsm_task_state = HSM_ST_LAST;
1279 				goto fsm_start;
1280 			}
1281 
1282 			/* Device should not ask for data transfer (DRQ=1)
1283 			 * when it finds something wrong.
1284 			 * We ignore DRQ here and stop the HSM by
1285 			 * changing hsm_task_state to HSM_ST_ERR and
1286 			 * let the EH abort the command or reset the device.
1287 			 */
1288 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1289 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1290 					"DRQ=1 with device error, "
1291 					"dev_stat 0x%X", status);
1292 				qc->err_mask |= AC_ERR_HSM;
1293 				ap->hsm_task_state = HSM_ST_ERR;
1294 				goto fsm_start;
1295 			}
1296 
1297 			atapi_pio_bytes(qc);
1298 
1299 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1300 				/* bad ireason reported by device */
1301 				goto fsm_start;
1302 
1303 		} else {
1304 			/* ATA PIO protocol */
1305 			if (unlikely((status & ATA_DRQ) == 0)) {
1306 				/* handle BSY=0, DRQ=0 as error */
1307 				if (likely(status & (ATA_ERR | ATA_DF))) {
1308 					/* device stops HSM for abort/error */
1309 					qc->err_mask |= AC_ERR_DEV;
1310 
1311 					/* If diagnostic failed and this is
1312 					 * IDENTIFY, it's likely a phantom
1313 					 * device.  Mark hint.
1314 					 */
1315 					if (qc->dev->horkage &
1316 					    ATA_HORKAGE_DIAGNOSTIC)
1317 						qc->err_mask |=
1318 							AC_ERR_NODEV_HINT;
1319 				} else {
1320 					/* HSM violation. Let EH handle this.
1321 					 * Phantom devices also trigger this
1322 					 * condition.  Mark hint.
1323 					 */
1324 					ata_ehi_push_desc(ehi, "ST-ATA: "
1325 						"DRQ=0 without device error, "
1326 						"dev_stat 0x%X", status);
1327 					qc->err_mask |= AC_ERR_HSM |
1328 							AC_ERR_NODEV_HINT;
1329 				}
1330 
1331 				ap->hsm_task_state = HSM_ST_ERR;
1332 				goto fsm_start;
1333 			}
1334 
1335 			/* For PIO reads, some devices may ask for
1336 			 * data transfer (DRQ=1) alone with ERR=1.
1337 			 * We respect DRQ here and transfer one
1338 			 * block of junk data before changing the
1339 			 * hsm_task_state to HSM_ST_ERR.
1340 			 *
1341 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1342 			 * sense since the data block has been
1343 			 * transferred to the device.
1344 			 */
1345 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1346 				/* data might be corrputed */
1347 				qc->err_mask |= AC_ERR_DEV;
1348 
1349 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1350 					ata_pio_sectors(qc);
1351 					status = ata_wait_idle(ap);
1352 				}
1353 
1354 				if (status & (ATA_BUSY | ATA_DRQ)) {
1355 					ata_ehi_push_desc(ehi, "ST-ATA: "
1356 						"BUSY|DRQ persists on ERR|DF, "
1357 						"dev_stat 0x%X", status);
1358 					qc->err_mask |= AC_ERR_HSM;
1359 				}
1360 
1361 				/* There are oddball controllers with
1362 				 * status register stuck at 0x7f and
1363 				 * lbal/m/h at zero which makes it
1364 				 * pass all other presence detection
1365 				 * mechanisms we have.  Set NODEV_HINT
1366 				 * for it.  Kernel bz#7241.
1367 				 */
1368 				if (status == 0x7f)
1369 					qc->err_mask |= AC_ERR_NODEV_HINT;
1370 
1371 				/* ata_pio_sectors() might change the
1372 				 * state to HSM_ST_LAST. so, the state
1373 				 * is changed after ata_pio_sectors().
1374 				 */
1375 				ap->hsm_task_state = HSM_ST_ERR;
1376 				goto fsm_start;
1377 			}
1378 
1379 			ata_pio_sectors(qc);
1380 
1381 			if (ap->hsm_task_state == HSM_ST_LAST &&
1382 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1383 				/* all data read */
1384 				status = ata_wait_idle(ap);
1385 				goto fsm_start;
1386 			}
1387 		}
1388 
1389 		poll_next = 1;
1390 		break;
1391 
1392 	case HSM_ST_LAST:
1393 		if (unlikely(!ata_ok(status))) {
1394 			qc->err_mask |= __ac_err_mask(status);
1395 			ap->hsm_task_state = HSM_ST_ERR;
1396 			goto fsm_start;
1397 		}
1398 
1399 		/* no more data to transfer */
1400 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1401 			ap->print_id, qc->dev->devno, status);
1402 
1403 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1404 
1405 		ap->hsm_task_state = HSM_ST_IDLE;
1406 
1407 		/* complete taskfile transaction */
1408 		ata_hsm_qc_complete(qc, in_wq);
1409 
1410 		poll_next = 0;
1411 		break;
1412 
1413 	case HSM_ST_ERR:
1414 		ap->hsm_task_state = HSM_ST_IDLE;
1415 
1416 		/* complete taskfile transaction */
1417 		ata_hsm_qc_complete(qc, in_wq);
1418 
1419 		poll_next = 0;
1420 		break;
1421 	default:
1422 		poll_next = 0;
1423 		BUG();
1424 	}
1425 
1426 	return poll_next;
1427 }
1428 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1429 
1430 void ata_pio_task(struct work_struct *work)
1431 {
1432 	struct ata_port *ap =
1433 		container_of(work, struct ata_port, port_task.work);
1434 	struct ata_queued_cmd *qc = ap->port_task_data;
1435 	u8 status;
1436 	int poll_next;
1437 
1438 fsm_start:
1439 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1440 
1441 	/*
1442 	 * This is purely heuristic.  This is a fast path.
1443 	 * Sometimes when we enter, BSY will be cleared in
1444 	 * a chk-status or two.  If not, the drive is probably seeking
1445 	 * or something.  Snooze for a couple msecs, then
1446 	 * chk-status again.  If still busy, queue delayed work.
1447 	 */
1448 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1449 	if (status & ATA_BUSY) {
1450 		msleep(2);
1451 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1452 		if (status & ATA_BUSY) {
1453 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1454 			return;
1455 		}
1456 	}
1457 
1458 	/* move the HSM */
1459 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1460 
1461 	/* another command or interrupt handler
1462 	 * may be running at this point.
1463 	 */
1464 	if (poll_next)
1465 		goto fsm_start;
1466 }
1467 
1468 /**
1469  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1470  *	@qc: command to issue to device
1471  *
1472  *	Using various libata functions and hooks, this function
1473  *	starts an ATA command.  ATA commands are grouped into
1474  *	classes called "protocols", and issuing each type of protocol
1475  *	is slightly different.
1476  *
1477  *	May be used as the qc_issue() entry in ata_port_operations.
1478  *
1479  *	LOCKING:
1480  *	spin_lock_irqsave(host lock)
1481  *
1482  *	RETURNS:
1483  *	Zero on success, AC_ERR_* mask on failure
1484  */
1485 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1486 {
1487 	struct ata_port *ap = qc->ap;
1488 
1489 	/* Use polling pio if the LLD doesn't handle
1490 	 * interrupt driven pio and atapi CDB interrupt.
1491 	 */
1492 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1493 		switch (qc->tf.protocol) {
1494 		case ATA_PROT_PIO:
1495 		case ATA_PROT_NODATA:
1496 		case ATAPI_PROT_PIO:
1497 		case ATAPI_PROT_NODATA:
1498 			qc->tf.flags |= ATA_TFLAG_POLLING;
1499 			break;
1500 		case ATAPI_PROT_DMA:
1501 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1502 				/* see ata_dma_blacklisted() */
1503 				BUG();
1504 			break;
1505 		default:
1506 			break;
1507 		}
1508 	}
1509 
1510 	/* select the device */
1511 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1512 
1513 	/* start the command */
1514 	switch (qc->tf.protocol) {
1515 	case ATA_PROT_NODATA:
1516 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1517 			ata_qc_set_polling(qc);
1518 
1519 		ata_tf_to_host(ap, &qc->tf);
1520 		ap->hsm_task_state = HSM_ST_LAST;
1521 
1522 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1523 			ata_pio_queue_task(ap, qc, 0);
1524 
1525 		break;
1526 
1527 	case ATA_PROT_DMA:
1528 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1529 
1530 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1531 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1532 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1533 		ap->hsm_task_state = HSM_ST_LAST;
1534 		break;
1535 
1536 	case ATA_PROT_PIO:
1537 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1538 			ata_qc_set_polling(qc);
1539 
1540 		ata_tf_to_host(ap, &qc->tf);
1541 
1542 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1543 			/* PIO data out protocol */
1544 			ap->hsm_task_state = HSM_ST_FIRST;
1545 			ata_pio_queue_task(ap, qc, 0);
1546 
1547 			/* always send first data block using
1548 			 * the ata_pio_task() codepath.
1549 			 */
1550 		} else {
1551 			/* PIO data in protocol */
1552 			ap->hsm_task_state = HSM_ST;
1553 
1554 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1555 				ata_pio_queue_task(ap, qc, 0);
1556 
1557 			/* if polling, ata_pio_task() handles the rest.
1558 			 * otherwise, interrupt handler takes over from here.
1559 			 */
1560 		}
1561 
1562 		break;
1563 
1564 	case ATAPI_PROT_PIO:
1565 	case ATAPI_PROT_NODATA:
1566 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1567 			ata_qc_set_polling(qc);
1568 
1569 		ata_tf_to_host(ap, &qc->tf);
1570 
1571 		ap->hsm_task_state = HSM_ST_FIRST;
1572 
1573 		/* send cdb by polling if no cdb interrupt */
1574 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1575 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1576 			ata_pio_queue_task(ap, qc, 0);
1577 		break;
1578 
1579 	case ATAPI_PROT_DMA:
1580 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1581 
1582 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1583 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1584 		ap->hsm_task_state = HSM_ST_FIRST;
1585 
1586 		/* send cdb by polling if no cdb interrupt */
1587 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1588 			ata_pio_queue_task(ap, qc, 0);
1589 		break;
1590 
1591 	default:
1592 		WARN_ON_ONCE(1);
1593 		return AC_ERR_SYSTEM;
1594 	}
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1599 
1600 /**
1601  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1602  *	@qc: qc to fill result TF for
1603  *
1604  *	@qc is finished and result TF needs to be filled.  Fill it
1605  *	using ->sff_tf_read.
1606  *
1607  *	LOCKING:
1608  *	spin_lock_irqsave(host lock)
1609  *
1610  *	RETURNS:
1611  *	true indicating that result TF is successfully filled.
1612  */
1613 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1614 {
1615 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1616 	return true;
1617 }
1618 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1619 
1620 /**
1621  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1622  *	@ap: Port on which interrupt arrived (possibly...)
1623  *	@qc: Taskfile currently active in engine
1624  *
1625  *	Handle host interrupt for given queued command.  Currently,
1626  *	only DMA interrupts are handled.  All other commands are
1627  *	handled via polling with interrupts disabled (nIEN bit).
1628  *
1629  *	LOCKING:
1630  *	spin_lock_irqsave(host lock)
1631  *
1632  *	RETURNS:
1633  *	One if interrupt was handled, zero if not (shared irq).
1634  */
1635 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1636 				      struct ata_queued_cmd *qc)
1637 {
1638 	struct ata_eh_info *ehi = &ap->link.eh_info;
1639 	u8 status, host_stat = 0;
1640 
1641 	VPRINTK("ata%u: protocol %d task_state %d\n",
1642 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1643 
1644 	/* Check whether we are expecting interrupt in this state */
1645 	switch (ap->hsm_task_state) {
1646 	case HSM_ST_FIRST:
1647 		/* Some pre-ATAPI-4 devices assert INTRQ
1648 		 * at this state when ready to receive CDB.
1649 		 */
1650 
1651 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1652 		 * The flag was turned on only for atapi devices.  No
1653 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1654 		 */
1655 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1656 			goto idle_irq;
1657 		break;
1658 	case HSM_ST_LAST:
1659 		if (qc->tf.protocol == ATA_PROT_DMA ||
1660 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1661 			/* check status of DMA engine */
1662 			host_stat = ap->ops->bmdma_status(ap);
1663 			VPRINTK("ata%u: host_stat 0x%X\n",
1664 				ap->print_id, host_stat);
1665 
1666 			/* if it's not our irq... */
1667 			if (!(host_stat & ATA_DMA_INTR))
1668 				goto idle_irq;
1669 
1670 			/* before we do anything else, clear DMA-Start bit */
1671 			ap->ops->bmdma_stop(qc);
1672 
1673 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1674 				/* error when transfering data to/from memory */
1675 				qc->err_mask |= AC_ERR_HOST_BUS;
1676 				ap->hsm_task_state = HSM_ST_ERR;
1677 			}
1678 		}
1679 		break;
1680 	case HSM_ST:
1681 		break;
1682 	default:
1683 		goto idle_irq;
1684 	}
1685 
1686 
1687 	/* check main status, clearing INTRQ if needed */
1688 	status = ata_sff_irq_status(ap);
1689 	if (status & ATA_BUSY)
1690 		goto idle_irq;
1691 
1692 	/* ack bmdma irq events */
1693 	ap->ops->sff_irq_clear(ap);
1694 
1695 	ata_sff_hsm_move(ap, qc, status, 0);
1696 
1697 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1698 				       qc->tf.protocol == ATAPI_PROT_DMA))
1699 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1700 
1701 	return 1;	/* irq handled */
1702 
1703 idle_irq:
1704 	ap->stats.idle_irq++;
1705 
1706 #ifdef ATA_IRQ_TRAP
1707 	if ((ap->stats.idle_irq % 1000) == 0) {
1708 		ap->ops->sff_check_status(ap);
1709 		ap->ops->sff_irq_clear(ap);
1710 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1711 		return 1;
1712 	}
1713 #endif
1714 	return 0;	/* irq not handled */
1715 }
1716 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1717 
1718 /**
1719  *	ata_sff_interrupt - Default ATA host interrupt handler
1720  *	@irq: irq line (unused)
1721  *	@dev_instance: pointer to our ata_host information structure
1722  *
1723  *	Default interrupt handler for PCI IDE devices.  Calls
1724  *	ata_sff_host_intr() for each port that is not disabled.
1725  *
1726  *	LOCKING:
1727  *	Obtains host lock during operation.
1728  *
1729  *	RETURNS:
1730  *	IRQ_NONE or IRQ_HANDLED.
1731  */
1732 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1733 {
1734 	struct ata_host *host = dev_instance;
1735 	unsigned int i;
1736 	unsigned int handled = 0;
1737 	unsigned long flags;
1738 
1739 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1740 	spin_lock_irqsave(&host->lock, flags);
1741 
1742 	for (i = 0; i < host->n_ports; i++) {
1743 		struct ata_port *ap;
1744 
1745 		ap = host->ports[i];
1746 		if (ap &&
1747 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1748 			struct ata_queued_cmd *qc;
1749 
1750 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1751 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1752 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1753 				handled |= ata_sff_host_intr(ap, qc);
1754 		}
1755 	}
1756 
1757 	spin_unlock_irqrestore(&host->lock, flags);
1758 
1759 	return IRQ_RETVAL(handled);
1760 }
1761 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1762 
1763 /**
1764  *	ata_sff_freeze - Freeze SFF controller port
1765  *	@ap: port to freeze
1766  *
1767  *	Freeze BMDMA controller port.
1768  *
1769  *	LOCKING:
1770  *	Inherited from caller.
1771  */
1772 void ata_sff_freeze(struct ata_port *ap)
1773 {
1774 	struct ata_ioports *ioaddr = &ap->ioaddr;
1775 
1776 	ap->ctl |= ATA_NIEN;
1777 	ap->last_ctl = ap->ctl;
1778 
1779 	if (ioaddr->ctl_addr)
1780 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1781 
1782 	/* Under certain circumstances, some controllers raise IRQ on
1783 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1784 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1785 	 */
1786 	ap->ops->sff_check_status(ap);
1787 
1788 	ap->ops->sff_irq_clear(ap);
1789 }
1790 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1791 
1792 /**
1793  *	ata_sff_thaw - Thaw SFF controller port
1794  *	@ap: port to thaw
1795  *
1796  *	Thaw SFF controller port.
1797  *
1798  *	LOCKING:
1799  *	Inherited from caller.
1800  */
1801 void ata_sff_thaw(struct ata_port *ap)
1802 {
1803 	/* clear & re-enable interrupts */
1804 	ap->ops->sff_check_status(ap);
1805 	ap->ops->sff_irq_clear(ap);
1806 	ap->ops->sff_irq_on(ap);
1807 }
1808 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1809 
1810 /**
1811  *	ata_sff_prereset - prepare SFF link for reset
1812  *	@link: SFF link to be reset
1813  *	@deadline: deadline jiffies for the operation
1814  *
1815  *	SFF link @link is about to be reset.  Initialize it.  It first
1816  *	calls ata_std_prereset() and wait for !BSY if the port is
1817  *	being softreset.
1818  *
1819  *	LOCKING:
1820  *	Kernel thread context (may sleep)
1821  *
1822  *	RETURNS:
1823  *	0 on success, -errno otherwise.
1824  */
1825 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1826 {
1827 	struct ata_eh_context *ehc = &link->eh_context;
1828 	int rc;
1829 
1830 	rc = ata_std_prereset(link, deadline);
1831 	if (rc)
1832 		return rc;
1833 
1834 	/* if we're about to do hardreset, nothing more to do */
1835 	if (ehc->i.action & ATA_EH_HARDRESET)
1836 		return 0;
1837 
1838 	/* wait for !BSY if we don't know that no device is attached */
1839 	if (!ata_link_offline(link)) {
1840 		rc = ata_sff_wait_ready(link, deadline);
1841 		if (rc && rc != -ENODEV) {
1842 			ata_link_printk(link, KERN_WARNING, "device not ready "
1843 					"(errno=%d), forcing hardreset\n", rc);
1844 			ehc->i.action |= ATA_EH_HARDRESET;
1845 		}
1846 	}
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1851 
1852 /**
1853  *	ata_devchk - PATA device presence detection
1854  *	@ap: ATA channel to examine
1855  *	@device: Device to examine (starting at zero)
1856  *
1857  *	This technique was originally described in
1858  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1859  *	later found its way into the ATA/ATAPI spec.
1860  *
1861  *	Write a pattern to the ATA shadow registers,
1862  *	and if a device is present, it will respond by
1863  *	correctly storing and echoing back the
1864  *	ATA shadow register contents.
1865  *
1866  *	LOCKING:
1867  *	caller.
1868  */
1869 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1870 {
1871 	struct ata_ioports *ioaddr = &ap->ioaddr;
1872 	u8 nsect, lbal;
1873 
1874 	ap->ops->sff_dev_select(ap, device);
1875 
1876 	iowrite8(0x55, ioaddr->nsect_addr);
1877 	iowrite8(0xaa, ioaddr->lbal_addr);
1878 
1879 	iowrite8(0xaa, ioaddr->nsect_addr);
1880 	iowrite8(0x55, ioaddr->lbal_addr);
1881 
1882 	iowrite8(0x55, ioaddr->nsect_addr);
1883 	iowrite8(0xaa, ioaddr->lbal_addr);
1884 
1885 	nsect = ioread8(ioaddr->nsect_addr);
1886 	lbal = ioread8(ioaddr->lbal_addr);
1887 
1888 	if ((nsect == 0x55) && (lbal == 0xaa))
1889 		return 1;	/* we found a device */
1890 
1891 	return 0;		/* nothing found */
1892 }
1893 
1894 /**
1895  *	ata_sff_dev_classify - Parse returned ATA device signature
1896  *	@dev: ATA device to classify (starting at zero)
1897  *	@present: device seems present
1898  *	@r_err: Value of error register on completion
1899  *
1900  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1901  *	an ATA/ATAPI-defined set of values is placed in the ATA
1902  *	shadow registers, indicating the results of device detection
1903  *	and diagnostics.
1904  *
1905  *	Select the ATA device, and read the values from the ATA shadow
1906  *	registers.  Then parse according to the Error register value,
1907  *	and the spec-defined values examined by ata_dev_classify().
1908  *
1909  *	LOCKING:
1910  *	caller.
1911  *
1912  *	RETURNS:
1913  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1914  */
1915 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1916 				  u8 *r_err)
1917 {
1918 	struct ata_port *ap = dev->link->ap;
1919 	struct ata_taskfile tf;
1920 	unsigned int class;
1921 	u8 err;
1922 
1923 	ap->ops->sff_dev_select(ap, dev->devno);
1924 
1925 	memset(&tf, 0, sizeof(tf));
1926 
1927 	ap->ops->sff_tf_read(ap, &tf);
1928 	err = tf.feature;
1929 	if (r_err)
1930 		*r_err = err;
1931 
1932 	/* see if device passed diags: continue and warn later */
1933 	if (err == 0)
1934 		/* diagnostic fail : do nothing _YET_ */
1935 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1936 	else if (err == 1)
1937 		/* do nothing */ ;
1938 	else if ((dev->devno == 0) && (err == 0x81))
1939 		/* do nothing */ ;
1940 	else
1941 		return ATA_DEV_NONE;
1942 
1943 	/* determine if device is ATA or ATAPI */
1944 	class = ata_dev_classify(&tf);
1945 
1946 	if (class == ATA_DEV_UNKNOWN) {
1947 		/* If the device failed diagnostic, it's likely to
1948 		 * have reported incorrect device signature too.
1949 		 * Assume ATA device if the device seems present but
1950 		 * device signature is invalid with diagnostic
1951 		 * failure.
1952 		 */
1953 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1954 			class = ATA_DEV_ATA;
1955 		else
1956 			class = ATA_DEV_NONE;
1957 	} else if ((class == ATA_DEV_ATA) &&
1958 		   (ap->ops->sff_check_status(ap) == 0))
1959 		class = ATA_DEV_NONE;
1960 
1961 	return class;
1962 }
1963 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1964 
1965 /**
1966  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1967  *	@link: SFF link which is just reset
1968  *	@devmask: mask of present devices
1969  *	@deadline: deadline jiffies for the operation
1970  *
1971  *	Wait devices attached to SFF @link to become ready after
1972  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1973  *	status register too early.
1974  *
1975  *	LOCKING:
1976  *	Kernel thread context (may sleep).
1977  *
1978  *	RETURNS:
1979  *	0 on success, -ENODEV if some or all of devices in @devmask
1980  *	don't seem to exist.  -errno on other errors.
1981  */
1982 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1983 			     unsigned long deadline)
1984 {
1985 	struct ata_port *ap = link->ap;
1986 	struct ata_ioports *ioaddr = &ap->ioaddr;
1987 	unsigned int dev0 = devmask & (1 << 0);
1988 	unsigned int dev1 = devmask & (1 << 1);
1989 	int rc, ret = 0;
1990 
1991 	msleep(ATA_WAIT_AFTER_RESET);
1992 
1993 	/* always check readiness of the master device */
1994 	rc = ata_sff_wait_ready(link, deadline);
1995 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1996 	 * and TF status is 0xff, bail out on it too.
1997 	 */
1998 	if (rc)
1999 		return rc;
2000 
2001 	/* if device 1 was found in ata_devchk, wait for register
2002 	 * access briefly, then wait for BSY to clear.
2003 	 */
2004 	if (dev1) {
2005 		int i;
2006 
2007 		ap->ops->sff_dev_select(ap, 1);
2008 
2009 		/* Wait for register access.  Some ATAPI devices fail
2010 		 * to set nsect/lbal after reset, so don't waste too
2011 		 * much time on it.  We're gonna wait for !BSY anyway.
2012 		 */
2013 		for (i = 0; i < 2; i++) {
2014 			u8 nsect, lbal;
2015 
2016 			nsect = ioread8(ioaddr->nsect_addr);
2017 			lbal = ioread8(ioaddr->lbal_addr);
2018 			if ((nsect == 1) && (lbal == 1))
2019 				break;
2020 			msleep(50);	/* give drive a breather */
2021 		}
2022 
2023 		rc = ata_sff_wait_ready(link, deadline);
2024 		if (rc) {
2025 			if (rc != -ENODEV)
2026 				return rc;
2027 			ret = rc;
2028 		}
2029 	}
2030 
2031 	/* is all this really necessary? */
2032 	ap->ops->sff_dev_select(ap, 0);
2033 	if (dev1)
2034 		ap->ops->sff_dev_select(ap, 1);
2035 	if (dev0)
2036 		ap->ops->sff_dev_select(ap, 0);
2037 
2038 	return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2041 
2042 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2043 			     unsigned long deadline)
2044 {
2045 	struct ata_ioports *ioaddr = &ap->ioaddr;
2046 
2047 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2048 
2049 	/* software reset.  causes dev0 to be selected */
2050 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2051 	udelay(20);	/* FIXME: flush */
2052 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2053 	udelay(20);	/* FIXME: flush */
2054 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2055 
2056 	/* wait the port to become ready */
2057 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2058 }
2059 
2060 /**
2061  *	ata_sff_softreset - reset host port via ATA SRST
2062  *	@link: ATA link to reset
2063  *	@classes: resulting classes of attached devices
2064  *	@deadline: deadline jiffies for the operation
2065  *
2066  *	Reset host port using ATA SRST.
2067  *
2068  *	LOCKING:
2069  *	Kernel thread context (may sleep)
2070  *
2071  *	RETURNS:
2072  *	0 on success, -errno otherwise.
2073  */
2074 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2075 		      unsigned long deadline)
2076 {
2077 	struct ata_port *ap = link->ap;
2078 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2079 	unsigned int devmask = 0;
2080 	int rc;
2081 	u8 err;
2082 
2083 	DPRINTK("ENTER\n");
2084 
2085 	/* determine if device 0/1 are present */
2086 	if (ata_devchk(ap, 0))
2087 		devmask |= (1 << 0);
2088 	if (slave_possible && ata_devchk(ap, 1))
2089 		devmask |= (1 << 1);
2090 
2091 	/* select device 0 again */
2092 	ap->ops->sff_dev_select(ap, 0);
2093 
2094 	/* issue bus reset */
2095 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2096 	rc = ata_bus_softreset(ap, devmask, deadline);
2097 	/* if link is occupied, -ENODEV too is an error */
2098 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2099 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2100 		return rc;
2101 	}
2102 
2103 	/* determine by signature whether we have ATA or ATAPI devices */
2104 	classes[0] = ata_sff_dev_classify(&link->device[0],
2105 					  devmask & (1 << 0), &err);
2106 	if (slave_possible && err != 0x81)
2107 		classes[1] = ata_sff_dev_classify(&link->device[1],
2108 						  devmask & (1 << 1), &err);
2109 
2110 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2114 
2115 /**
2116  *	sata_sff_hardreset - reset host port via SATA phy reset
2117  *	@link: link to reset
2118  *	@class: resulting class of attached device
2119  *	@deadline: deadline jiffies for the operation
2120  *
2121  *	SATA phy-reset host port using DET bits of SControl register,
2122  *	wait for !BSY and classify the attached device.
2123  *
2124  *	LOCKING:
2125  *	Kernel thread context (may sleep)
2126  *
2127  *	RETURNS:
2128  *	0 on success, -errno otherwise.
2129  */
2130 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2131 		       unsigned long deadline)
2132 {
2133 	struct ata_eh_context *ehc = &link->eh_context;
2134 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2135 	bool online;
2136 	int rc;
2137 
2138 	rc = sata_link_hardreset(link, timing, deadline, &online,
2139 				 ata_sff_check_ready);
2140 	if (online)
2141 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2142 
2143 	DPRINTK("EXIT, class=%u\n", *class);
2144 	return rc;
2145 }
2146 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2147 
2148 /**
2149  *	ata_sff_postreset - SFF postreset callback
2150  *	@link: the target SFF ata_link
2151  *	@classes: classes of attached devices
2152  *
2153  *	This function is invoked after a successful reset.  It first
2154  *	calls ata_std_postreset() and performs SFF specific postreset
2155  *	processing.
2156  *
2157  *	LOCKING:
2158  *	Kernel thread context (may sleep)
2159  */
2160 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2161 {
2162 	struct ata_port *ap = link->ap;
2163 
2164 	ata_std_postreset(link, classes);
2165 
2166 	/* is double-select really necessary? */
2167 	if (classes[0] != ATA_DEV_NONE)
2168 		ap->ops->sff_dev_select(ap, 1);
2169 	if (classes[1] != ATA_DEV_NONE)
2170 		ap->ops->sff_dev_select(ap, 0);
2171 
2172 	/* bail out if no device is present */
2173 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2174 		DPRINTK("EXIT, no device\n");
2175 		return;
2176 	}
2177 
2178 	/* set up device control */
2179 	if (ap->ioaddr.ctl_addr)
2180 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2181 }
2182 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2183 
2184 /**
2185  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2186  *	@ap: port to handle error for
2187  *
2188  *	Stock error handler for SFF controller.  It can handle both
2189  *	PATA and SATA controllers.  Many controllers should be able to
2190  *	use this EH as-is or with some added handling before and
2191  *	after.
2192  *
2193  *	LOCKING:
2194  *	Kernel thread context (may sleep)
2195  */
2196 void ata_sff_error_handler(struct ata_port *ap)
2197 {
2198 	ata_reset_fn_t softreset = ap->ops->softreset;
2199 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2200 	struct ata_queued_cmd *qc;
2201 	unsigned long flags;
2202 	int thaw = 0;
2203 
2204 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2205 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2206 		qc = NULL;
2207 
2208 	/* reset PIO HSM and stop DMA engine */
2209 	spin_lock_irqsave(ap->lock, flags);
2210 
2211 	ap->hsm_task_state = HSM_ST_IDLE;
2212 
2213 	if (ap->ioaddr.bmdma_addr &&
2214 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2215 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2216 		u8 host_stat;
2217 
2218 		host_stat = ap->ops->bmdma_status(ap);
2219 
2220 		/* BMDMA controllers indicate host bus error by
2221 		 * setting DMA_ERR bit and timing out.  As it wasn't
2222 		 * really a timeout event, adjust error mask and
2223 		 * cancel frozen state.
2224 		 */
2225 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2226 			qc->err_mask = AC_ERR_HOST_BUS;
2227 			thaw = 1;
2228 		}
2229 
2230 		ap->ops->bmdma_stop(qc);
2231 	}
2232 
2233 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2234 	ap->ops->sff_check_status(ap);
2235 	ap->ops->sff_irq_clear(ap);
2236 
2237 	spin_unlock_irqrestore(ap->lock, flags);
2238 
2239 	if (thaw)
2240 		ata_eh_thaw_port(ap);
2241 
2242 	/* PIO and DMA engines have been stopped, perform recovery */
2243 
2244 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2245 	 * built-in hardresets if SCR access isn't available.
2246 	 */
2247 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2248 		softreset = NULL;
2249 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2250 		hardreset = NULL;
2251 
2252 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2253 		  ap->ops->postreset);
2254 }
2255 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2256 
2257 /**
2258  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2259  *	@qc: internal command to clean up
2260  *
2261  *	LOCKING:
2262  *	Kernel thread context (may sleep)
2263  */
2264 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2265 {
2266 	struct ata_port *ap = qc->ap;
2267 	unsigned long flags;
2268 
2269 	spin_lock_irqsave(ap->lock, flags);
2270 
2271 	ap->hsm_task_state = HSM_ST_IDLE;
2272 
2273 	if (ap->ioaddr.bmdma_addr)
2274 		ata_bmdma_stop(qc);
2275 
2276 	spin_unlock_irqrestore(ap->lock, flags);
2277 }
2278 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2279 
2280 /**
2281  *	ata_sff_port_start - Set port up for dma.
2282  *	@ap: Port to initialize
2283  *
2284  *	Called just after data structures for each port are
2285  *	initialized.  Allocates space for PRD table if the device
2286  *	is DMA capable SFF.
2287  *
2288  *	May be used as the port_start() entry in ata_port_operations.
2289  *
2290  *	LOCKING:
2291  *	Inherited from caller.
2292  */
2293 int ata_sff_port_start(struct ata_port *ap)
2294 {
2295 	if (ap->ioaddr.bmdma_addr)
2296 		return ata_port_start(ap);
2297 	return 0;
2298 }
2299 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2300 
2301 /**
2302  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2303  *	@ioaddr: IO address structure to be initialized
2304  *
2305  *	Utility function which initializes data_addr, error_addr,
2306  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2307  *	device_addr, status_addr, and command_addr to standard offsets
2308  *	relative to cmd_addr.
2309  *
2310  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2311  */
2312 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2313 {
2314 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2315 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2316 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2317 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2318 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2319 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2320 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2321 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2322 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2323 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2324 }
2325 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2326 
2327 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2328 				    unsigned long xfer_mask)
2329 {
2330 	/* Filter out DMA modes if the device has been configured by
2331 	   the BIOS as PIO only */
2332 
2333 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2334 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2335 	return xfer_mask;
2336 }
2337 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2338 
2339 /**
2340  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2341  *	@qc: Info associated with this ATA transaction.
2342  *
2343  *	LOCKING:
2344  *	spin_lock_irqsave(host lock)
2345  */
2346 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2347 {
2348 	struct ata_port *ap = qc->ap;
2349 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2350 	u8 dmactl;
2351 
2352 	/* load PRD table addr. */
2353 	mb();	/* make sure PRD table writes are visible to controller */
2354 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2355 
2356 	/* specify data direction, triple-check start bit is clear */
2357 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2358 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2359 	if (!rw)
2360 		dmactl |= ATA_DMA_WR;
2361 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2362 
2363 	/* issue r/w command */
2364 	ap->ops->sff_exec_command(ap, &qc->tf);
2365 }
2366 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2367 
2368 /**
2369  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2370  *	@qc: Info associated with this ATA transaction.
2371  *
2372  *	LOCKING:
2373  *	spin_lock_irqsave(host lock)
2374  */
2375 void ata_bmdma_start(struct ata_queued_cmd *qc)
2376 {
2377 	struct ata_port *ap = qc->ap;
2378 	u8 dmactl;
2379 
2380 	/* start host DMA transaction */
2381 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2382 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2383 
2384 	/* Strictly, one may wish to issue an ioread8() here, to
2385 	 * flush the mmio write.  However, control also passes
2386 	 * to the hardware at this point, and it will interrupt
2387 	 * us when we are to resume control.  So, in effect,
2388 	 * we don't care when the mmio write flushes.
2389 	 * Further, a read of the DMA status register _immediately_
2390 	 * following the write may not be what certain flaky hardware
2391 	 * is expected, so I think it is best to not add a readb()
2392 	 * without first all the MMIO ATA cards/mobos.
2393 	 * Or maybe I'm just being paranoid.
2394 	 *
2395 	 * FIXME: The posting of this write means I/O starts are
2396 	 * unneccessarily delayed for MMIO
2397 	 */
2398 }
2399 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2400 
2401 /**
2402  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2403  *	@qc: Command we are ending DMA for
2404  *
2405  *	Clears the ATA_DMA_START flag in the dma control register
2406  *
2407  *	May be used as the bmdma_stop() entry in ata_port_operations.
2408  *
2409  *	LOCKING:
2410  *	spin_lock_irqsave(host lock)
2411  */
2412 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2413 {
2414 	struct ata_port *ap = qc->ap;
2415 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2416 
2417 	/* clear start/stop bit */
2418 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2419 		 mmio + ATA_DMA_CMD);
2420 
2421 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2422 	ata_sff_dma_pause(ap);
2423 }
2424 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2425 
2426 /**
2427  *	ata_bmdma_status - Read PCI IDE BMDMA status
2428  *	@ap: Port associated with this ATA transaction.
2429  *
2430  *	Read and return BMDMA status register.
2431  *
2432  *	May be used as the bmdma_status() entry in ata_port_operations.
2433  *
2434  *	LOCKING:
2435  *	spin_lock_irqsave(host lock)
2436  */
2437 u8 ata_bmdma_status(struct ata_port *ap)
2438 {
2439 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2440 }
2441 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2442 
2443 /**
2444  *	ata_bus_reset - reset host port and associated ATA channel
2445  *	@ap: port to reset
2446  *
2447  *	This is typically the first time we actually start issuing
2448  *	commands to the ATA channel.  We wait for BSY to clear, then
2449  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2450  *	result.  Determine what devices, if any, are on the channel
2451  *	by looking at the device 0/1 error register.  Look at the signature
2452  *	stored in each device's taskfile registers, to determine if
2453  *	the device is ATA or ATAPI.
2454  *
2455  *	LOCKING:
2456  *	PCI/etc. bus probe sem.
2457  *	Obtains host lock.
2458  *
2459  *	SIDE EFFECTS:
2460  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2461  *
2462  *	DEPRECATED:
2463  *	This function is only for drivers which still use old EH and
2464  *	will be removed soon.
2465  */
2466 void ata_bus_reset(struct ata_port *ap)
2467 {
2468 	struct ata_device *device = ap->link.device;
2469 	struct ata_ioports *ioaddr = &ap->ioaddr;
2470 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2471 	u8 err;
2472 	unsigned int dev0, dev1 = 0, devmask = 0;
2473 	int rc;
2474 
2475 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2476 
2477 	/* determine if device 0/1 are present */
2478 	if (ap->flags & ATA_FLAG_SATA_RESET)
2479 		dev0 = 1;
2480 	else {
2481 		dev0 = ata_devchk(ap, 0);
2482 		if (slave_possible)
2483 			dev1 = ata_devchk(ap, 1);
2484 	}
2485 
2486 	if (dev0)
2487 		devmask |= (1 << 0);
2488 	if (dev1)
2489 		devmask |= (1 << 1);
2490 
2491 	/* select device 0 again */
2492 	ap->ops->sff_dev_select(ap, 0);
2493 
2494 	/* issue bus reset */
2495 	if (ap->flags & ATA_FLAG_SRST) {
2496 		rc = ata_bus_softreset(ap, devmask,
2497 				       ata_deadline(jiffies, 40000));
2498 		if (rc && rc != -ENODEV)
2499 			goto err_out;
2500 	}
2501 
2502 	/*
2503 	 * determine by signature whether we have ATA or ATAPI devices
2504 	 */
2505 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2506 	if ((slave_possible) && (err != 0x81))
2507 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2508 
2509 	/* is double-select really necessary? */
2510 	if (device[1].class != ATA_DEV_NONE)
2511 		ap->ops->sff_dev_select(ap, 1);
2512 	if (device[0].class != ATA_DEV_NONE)
2513 		ap->ops->sff_dev_select(ap, 0);
2514 
2515 	/* if no devices were detected, disable this port */
2516 	if ((device[0].class == ATA_DEV_NONE) &&
2517 	    (device[1].class == ATA_DEV_NONE))
2518 		goto err_out;
2519 
2520 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2521 		/* set up device control for ATA_FLAG_SATA_RESET */
2522 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2523 	}
2524 
2525 	DPRINTK("EXIT\n");
2526 	return;
2527 
2528 err_out:
2529 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2530 	ata_port_disable(ap);
2531 
2532 	DPRINTK("EXIT\n");
2533 }
2534 EXPORT_SYMBOL_GPL(ata_bus_reset);
2535 
2536 #ifdef CONFIG_PCI
2537 
2538 /**
2539  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2540  *	@pdev: PCI device
2541  *
2542  *	Some PCI ATA devices report simplex mode but in fact can be told to
2543  *	enter non simplex mode. This implements the necessary logic to
2544  *	perform the task on such devices. Calling it on other devices will
2545  *	have -undefined- behaviour.
2546  */
2547 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2548 {
2549 	unsigned long bmdma = pci_resource_start(pdev, 4);
2550 	u8 simplex;
2551 
2552 	if (bmdma == 0)
2553 		return -ENOENT;
2554 
2555 	simplex = inb(bmdma + 0x02);
2556 	outb(simplex & 0x60, bmdma + 0x02);
2557 	simplex = inb(bmdma + 0x02);
2558 	if (simplex & 0x80)
2559 		return -EOPNOTSUPP;
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2563 
2564 /**
2565  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2566  *	@host: target ATA host
2567  *
2568  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2569  *
2570  *	LOCKING:
2571  *	Inherited from calling layer (may sleep).
2572  *
2573  *	RETURNS:
2574  *	0 on success, -errno otherwise.
2575  */
2576 int ata_pci_bmdma_init(struct ata_host *host)
2577 {
2578 	struct device *gdev = host->dev;
2579 	struct pci_dev *pdev = to_pci_dev(gdev);
2580 	int i, rc;
2581 
2582 	/* No BAR4 allocation: No DMA */
2583 	if (pci_resource_start(pdev, 4) == 0)
2584 		return 0;
2585 
2586 	/* TODO: If we get no DMA mask we should fall back to PIO */
2587 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2588 	if (rc)
2589 		return rc;
2590 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2591 	if (rc)
2592 		return rc;
2593 
2594 	/* request and iomap DMA region */
2595 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2596 	if (rc) {
2597 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2598 		return -ENOMEM;
2599 	}
2600 	host->iomap = pcim_iomap_table(pdev);
2601 
2602 	for (i = 0; i < 2; i++) {
2603 		struct ata_port *ap = host->ports[i];
2604 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2605 
2606 		if (ata_port_is_dummy(ap))
2607 			continue;
2608 
2609 		ap->ioaddr.bmdma_addr = bmdma;
2610 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2611 		    (ioread8(bmdma + 2) & 0x80))
2612 			host->flags |= ATA_HOST_SIMPLEX;
2613 
2614 		ata_port_desc(ap, "bmdma 0x%llx",
2615 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2616 	}
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2621 
2622 static int ata_resources_present(struct pci_dev *pdev, int port)
2623 {
2624 	int i;
2625 
2626 	/* Check the PCI resources for this channel are enabled */
2627 	port = port * 2;
2628 	for (i = 0; i < 2; i++) {
2629 		if (pci_resource_start(pdev, port + i) == 0 ||
2630 		    pci_resource_len(pdev, port + i) == 0)
2631 			return 0;
2632 	}
2633 	return 1;
2634 }
2635 
2636 /**
2637  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2638  *	@host: target ATA host
2639  *
2640  *	Acquire native PCI ATA resources for @host and initialize the
2641  *	first two ports of @host accordingly.  Ports marked dummy are
2642  *	skipped and allocation failure makes the port dummy.
2643  *
2644  *	Note that native PCI resources are valid even for legacy hosts
2645  *	as we fix up pdev resources array early in boot, so this
2646  *	function can be used for both native and legacy SFF hosts.
2647  *
2648  *	LOCKING:
2649  *	Inherited from calling layer (may sleep).
2650  *
2651  *	RETURNS:
2652  *	0 if at least one port is initialized, -ENODEV if no port is
2653  *	available.
2654  */
2655 int ata_pci_sff_init_host(struct ata_host *host)
2656 {
2657 	struct device *gdev = host->dev;
2658 	struct pci_dev *pdev = to_pci_dev(gdev);
2659 	unsigned int mask = 0;
2660 	int i, rc;
2661 
2662 	/* request, iomap BARs and init port addresses accordingly */
2663 	for (i = 0; i < 2; i++) {
2664 		struct ata_port *ap = host->ports[i];
2665 		int base = i * 2;
2666 		void __iomem * const *iomap;
2667 
2668 		if (ata_port_is_dummy(ap))
2669 			continue;
2670 
2671 		/* Discard disabled ports.  Some controllers show
2672 		 * their unused channels this way.  Disabled ports are
2673 		 * made dummy.
2674 		 */
2675 		if (!ata_resources_present(pdev, i)) {
2676 			ap->ops = &ata_dummy_port_ops;
2677 			continue;
2678 		}
2679 
2680 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2681 					dev_driver_string(gdev));
2682 		if (rc) {
2683 			dev_printk(KERN_WARNING, gdev,
2684 				   "failed to request/iomap BARs for port %d "
2685 				   "(errno=%d)\n", i, rc);
2686 			if (rc == -EBUSY)
2687 				pcim_pin_device(pdev);
2688 			ap->ops = &ata_dummy_port_ops;
2689 			continue;
2690 		}
2691 		host->iomap = iomap = pcim_iomap_table(pdev);
2692 
2693 		ap->ioaddr.cmd_addr = iomap[base];
2694 		ap->ioaddr.altstatus_addr =
2695 		ap->ioaddr.ctl_addr = (void __iomem *)
2696 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2697 		ata_sff_std_ports(&ap->ioaddr);
2698 
2699 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2700 			(unsigned long long)pci_resource_start(pdev, base),
2701 			(unsigned long long)pci_resource_start(pdev, base + 1));
2702 
2703 		mask |= 1 << i;
2704 	}
2705 
2706 	if (!mask) {
2707 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2708 		return -ENODEV;
2709 	}
2710 
2711 	return 0;
2712 }
2713 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2714 
2715 /**
2716  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2717  *	@pdev: target PCI device
2718  *	@ppi: array of port_info, must be enough for two ports
2719  *	@r_host: out argument for the initialized ATA host
2720  *
2721  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2722  *	resources and initialize it accordingly in one go.
2723  *
2724  *	LOCKING:
2725  *	Inherited from calling layer (may sleep).
2726  *
2727  *	RETURNS:
2728  *	0 on success, -errno otherwise.
2729  */
2730 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2731 			     const struct ata_port_info * const *ppi,
2732 			     struct ata_host **r_host)
2733 {
2734 	struct ata_host *host;
2735 	int rc;
2736 
2737 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2738 		return -ENOMEM;
2739 
2740 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2741 	if (!host) {
2742 		dev_printk(KERN_ERR, &pdev->dev,
2743 			   "failed to allocate ATA host\n");
2744 		rc = -ENOMEM;
2745 		goto err_out;
2746 	}
2747 
2748 	rc = ata_pci_sff_init_host(host);
2749 	if (rc)
2750 		goto err_out;
2751 
2752 	/* init DMA related stuff */
2753 	rc = ata_pci_bmdma_init(host);
2754 	if (rc)
2755 		goto err_bmdma;
2756 
2757 	devres_remove_group(&pdev->dev, NULL);
2758 	*r_host = host;
2759 	return 0;
2760 
2761 err_bmdma:
2762 	/* This is necessary because PCI and iomap resources are
2763 	 * merged and releasing the top group won't release the
2764 	 * acquired resources if some of those have been acquired
2765 	 * before entering this function.
2766 	 */
2767 	pcim_iounmap_regions(pdev, 0xf);
2768 err_out:
2769 	devres_release_group(&pdev->dev, NULL);
2770 	return rc;
2771 }
2772 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2773 
2774 /**
2775  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2776  *	@host: target SFF ATA host
2777  *	@irq_handler: irq_handler used when requesting IRQ(s)
2778  *	@sht: scsi_host_template to use when registering the host
2779  *
2780  *	This is the counterpart of ata_host_activate() for SFF ATA
2781  *	hosts.  This separate helper is necessary because SFF hosts
2782  *	use two separate interrupts in legacy mode.
2783  *
2784  *	LOCKING:
2785  *	Inherited from calling layer (may sleep).
2786  *
2787  *	RETURNS:
2788  *	0 on success, -errno otherwise.
2789  */
2790 int ata_pci_sff_activate_host(struct ata_host *host,
2791 			      irq_handler_t irq_handler,
2792 			      struct scsi_host_template *sht)
2793 {
2794 	struct device *dev = host->dev;
2795 	struct pci_dev *pdev = to_pci_dev(dev);
2796 	const char *drv_name = dev_driver_string(host->dev);
2797 	int legacy_mode = 0, rc;
2798 
2799 	rc = ata_host_start(host);
2800 	if (rc)
2801 		return rc;
2802 
2803 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2804 		u8 tmp8, mask;
2805 
2806 		/* TODO: What if one channel is in native mode ... */
2807 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2808 		mask = (1 << 2) | (1 << 0);
2809 		if ((tmp8 & mask) != mask)
2810 			legacy_mode = 1;
2811 #if defined(CONFIG_NO_ATA_LEGACY)
2812 		/* Some platforms with PCI limits cannot address compat
2813 		   port space. In that case we punt if their firmware has
2814 		   left a device in compatibility mode */
2815 		if (legacy_mode) {
2816 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2817 			return -EOPNOTSUPP;
2818 		}
2819 #endif
2820 	}
2821 
2822 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2823 		return -ENOMEM;
2824 
2825 	if (!legacy_mode && pdev->irq) {
2826 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2827 				      IRQF_SHARED, drv_name, host);
2828 		if (rc)
2829 			goto out;
2830 
2831 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2832 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2833 	} else if (legacy_mode) {
2834 		if (!ata_port_is_dummy(host->ports[0])) {
2835 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2836 					      irq_handler, IRQF_SHARED,
2837 					      drv_name, host);
2838 			if (rc)
2839 				goto out;
2840 
2841 			ata_port_desc(host->ports[0], "irq %d",
2842 				      ATA_PRIMARY_IRQ(pdev));
2843 		}
2844 
2845 		if (!ata_port_is_dummy(host->ports[1])) {
2846 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2847 					      irq_handler, IRQF_SHARED,
2848 					      drv_name, host);
2849 			if (rc)
2850 				goto out;
2851 
2852 			ata_port_desc(host->ports[1], "irq %d",
2853 				      ATA_SECONDARY_IRQ(pdev));
2854 		}
2855 	}
2856 
2857 	rc = ata_host_register(host, sht);
2858 out:
2859 	if (rc == 0)
2860 		devres_remove_group(dev, NULL);
2861 	else
2862 		devres_release_group(dev, NULL);
2863 
2864 	return rc;
2865 }
2866 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2867 
2868 /**
2869  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2870  *	@pdev: Controller to be initialized
2871  *	@ppi: array of port_info, must be enough for two ports
2872  *	@sht: scsi_host_template to use when registering the host
2873  *	@host_priv: host private_data
2874  *
2875  *	This is a helper function which can be called from a driver's
2876  *	xxx_init_one() probe function if the hardware uses traditional
2877  *	IDE taskfile registers.
2878  *
2879  *	This function calls pci_enable_device(), reserves its register
2880  *	regions, sets the dma mask, enables bus master mode, and calls
2881  *	ata_device_add()
2882  *
2883  *	ASSUMPTION:
2884  *	Nobody makes a single channel controller that appears solely as
2885  *	the secondary legacy port on PCI.
2886  *
2887  *	LOCKING:
2888  *	Inherited from PCI layer (may sleep).
2889  *
2890  *	RETURNS:
2891  *	Zero on success, negative on errno-based value on error.
2892  */
2893 int ata_pci_sff_init_one(struct pci_dev *pdev,
2894 			 const struct ata_port_info * const *ppi,
2895 			 struct scsi_host_template *sht, void *host_priv)
2896 {
2897 	struct device *dev = &pdev->dev;
2898 	const struct ata_port_info *pi = NULL;
2899 	struct ata_host *host = NULL;
2900 	int i, rc;
2901 
2902 	DPRINTK("ENTER\n");
2903 
2904 	/* look up the first valid port_info */
2905 	for (i = 0; i < 2 && ppi[i]; i++) {
2906 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2907 			pi = ppi[i];
2908 			break;
2909 		}
2910 	}
2911 
2912 	if (!pi) {
2913 		dev_printk(KERN_ERR, &pdev->dev,
2914 			   "no valid port_info specified\n");
2915 		return -EINVAL;
2916 	}
2917 
2918 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2919 		return -ENOMEM;
2920 
2921 	rc = pcim_enable_device(pdev);
2922 	if (rc)
2923 		goto out;
2924 
2925 	/* prepare and activate SFF host */
2926 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2927 	if (rc)
2928 		goto out;
2929 	host->private_data = host_priv;
2930 
2931 	pci_set_master(pdev);
2932 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2933 out:
2934 	if (rc == 0)
2935 		devres_remove_group(&pdev->dev, NULL);
2936 	else
2937 		devres_release_group(&pdev->dev, NULL);
2938 
2939 	return rc;
2940 }
2941 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2942 
2943 #endif /* CONFIG_PCI */
2944 
2945