1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_issue = ata_sff_qc_issue, 30 .qc_fill_rtf = ata_sff_qc_fill_rtf, 31 32 .freeze = ata_sff_freeze, 33 .thaw = ata_sff_thaw, 34 .prereset = ata_sff_prereset, 35 .softreset = ata_sff_softreset, 36 .hardreset = sata_sff_hardreset, 37 .postreset = ata_sff_postreset, 38 .error_handler = ata_sff_error_handler, 39 40 .sff_dev_select = ata_sff_dev_select, 41 .sff_check_status = ata_sff_check_status, 42 .sff_tf_load = ata_sff_tf_load, 43 .sff_tf_read = ata_sff_tf_read, 44 .sff_exec_command = ata_sff_exec_command, 45 .sff_data_xfer = ata_sff_data_xfer, 46 .sff_drain_fifo = ata_sff_drain_fifo, 47 48 .lost_interrupt = ata_sff_lost_interrupt, 49 }; 50 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 51 52 /** 53 * ata_sff_check_status - Read device status reg & clear interrupt 54 * @ap: port where the device is 55 * 56 * Reads ATA taskfile status register for currently-selected device 57 * and return its value. This also clears pending interrupts 58 * from this device 59 * 60 * LOCKING: 61 * Inherited from caller. 62 */ 63 u8 ata_sff_check_status(struct ata_port *ap) 64 { 65 return ioread8(ap->ioaddr.status_addr); 66 } 67 EXPORT_SYMBOL_GPL(ata_sff_check_status); 68 69 /** 70 * ata_sff_altstatus - Read device alternate status reg 71 * @ap: port where the device is 72 * @status: pointer to a status value 73 * 74 * Reads ATA alternate status register for currently-selected device 75 * and return its value. 76 * 77 * RETURN: 78 * true if the register exists, false if not. 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) 84 { 85 u8 tmp; 86 87 if (ap->ops->sff_check_altstatus) { 88 tmp = ap->ops->sff_check_altstatus(ap); 89 goto read; 90 } 91 if (ap->ioaddr.altstatus_addr) { 92 tmp = ioread8(ap->ioaddr.altstatus_addr); 93 goto read; 94 } 95 return false; 96 97 read: 98 if (status) 99 *status = tmp; 100 return true; 101 } 102 103 /** 104 * ata_sff_irq_status - Check if the device is busy 105 * @ap: port where the device is 106 * 107 * Determine if the port is currently busy. Uses altstatus 108 * if available in order to avoid clearing shared IRQ status 109 * when finding an IRQ source. Non ctl capable devices don't 110 * share interrupt lines fortunately for us. 111 * 112 * LOCKING: 113 * Inherited from caller. 114 */ 115 static u8 ata_sff_irq_status(struct ata_port *ap) 116 { 117 u8 status; 118 119 /* Not us: We are busy */ 120 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) 121 return status; 122 /* Clear INTRQ latch */ 123 status = ap->ops->sff_check_status(ap); 124 return status; 125 } 126 127 /** 128 * ata_sff_sync - Flush writes 129 * @ap: Port to wait for. 130 * 131 * CAUTION: 132 * If we have an mmio device with no ctl and no altstatus 133 * method this will fail. No such devices are known to exist. 134 * 135 * LOCKING: 136 * Inherited from caller. 137 */ 138 139 static void ata_sff_sync(struct ata_port *ap) 140 { 141 ata_sff_altstatus(ap, NULL); 142 } 143 144 /** 145 * ata_sff_pause - Flush writes and wait 400nS 146 * @ap: Port to pause for. 147 * 148 * CAUTION: 149 * If we have an mmio device with no ctl and no altstatus 150 * method this will fail. No such devices are known to exist. 151 * 152 * LOCKING: 153 * Inherited from caller. 154 */ 155 156 void ata_sff_pause(struct ata_port *ap) 157 { 158 ata_sff_sync(ap); 159 ndelay(400); 160 } 161 EXPORT_SYMBOL_GPL(ata_sff_pause); 162 163 /** 164 * ata_sff_dma_pause - Pause before commencing DMA 165 * @ap: Port to pause for. 166 * 167 * Perform I/O fencing and ensure sufficient cycle delays occur 168 * for the HDMA1:0 transition 169 */ 170 171 void ata_sff_dma_pause(struct ata_port *ap) 172 { 173 /* 174 * An altstatus read will cause the needed delay without 175 * messing up the IRQ status 176 */ 177 if (ata_sff_altstatus(ap, NULL)) 178 return; 179 /* There are no DMA controllers without ctl. BUG here to ensure 180 we never violate the HDMA1:0 transition timing and risk 181 corruption. */ 182 BUG(); 183 } 184 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 185 186 static int ata_sff_check_ready(struct ata_link *link) 187 { 188 u8 status = link->ap->ops->sff_check_status(link->ap); 189 190 return ata_check_ready(status); 191 } 192 193 /** 194 * ata_sff_wait_ready - sleep until BSY clears, or timeout 195 * @link: SFF link to wait ready status for 196 * @deadline: deadline jiffies for the operation 197 * 198 * Sleep until ATA Status register bit BSY clears, or timeout 199 * occurs. 200 * 201 * LOCKING: 202 * Kernel thread context (may sleep). 203 * 204 * RETURNS: 205 * 0 on success, -errno otherwise. 206 */ 207 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 208 { 209 return ata_wait_ready(link, deadline, ata_sff_check_ready); 210 } 211 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 212 213 /** 214 * ata_sff_set_devctl - Write device control reg 215 * @ap: port where the device is 216 * @ctl: value to write 217 * 218 * Writes ATA device control register. 219 * 220 * RETURN: 221 * true if the register exists, false if not. 222 * 223 * LOCKING: 224 * Inherited from caller. 225 */ 226 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 227 { 228 if (ap->ops->sff_set_devctl) { 229 ap->ops->sff_set_devctl(ap, ctl); 230 return true; 231 } 232 if (ap->ioaddr.ctl_addr) { 233 iowrite8(ctl, ap->ioaddr.ctl_addr); 234 return true; 235 } 236 237 return false; 238 } 239 240 /** 241 * ata_sff_dev_select - Select device 0/1 on ATA bus 242 * @ap: ATA channel to manipulate 243 * @device: ATA device (numbered from zero) to select 244 * 245 * Use the method defined in the ATA specification to 246 * make either device 0, or device 1, active on the 247 * ATA channel. Works with both PIO and MMIO. 248 * 249 * May be used as the dev_select() entry in ata_port_operations. 250 * 251 * LOCKING: 252 * caller. 253 */ 254 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 255 { 256 u8 tmp; 257 258 if (device == 0) 259 tmp = ATA_DEVICE_OBS; 260 else 261 tmp = ATA_DEVICE_OBS | ATA_DEV1; 262 263 iowrite8(tmp, ap->ioaddr.device_addr); 264 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 265 } 266 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 267 268 /** 269 * ata_dev_select - Select device 0/1 on ATA bus 270 * @ap: ATA channel to manipulate 271 * @device: ATA device (numbered from zero) to select 272 * @wait: non-zero to wait for Status register BSY bit to clear 273 * @can_sleep: non-zero if context allows sleeping 274 * 275 * Use the method defined in the ATA specification to 276 * make either device 0, or device 1, active on the 277 * ATA channel. 278 * 279 * This is a high-level version of ata_sff_dev_select(), which 280 * additionally provides the services of inserting the proper 281 * pauses and status polling, where needed. 282 * 283 * LOCKING: 284 * caller. 285 */ 286 static void ata_dev_select(struct ata_port *ap, unsigned int device, 287 unsigned int wait, unsigned int can_sleep) 288 { 289 if (wait) 290 ata_wait_idle(ap); 291 292 ap->ops->sff_dev_select(ap, device); 293 294 if (wait) { 295 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 296 ata_msleep(ap, 150); 297 ata_wait_idle(ap); 298 } 299 } 300 301 /** 302 * ata_sff_irq_on - Enable interrupts on a port. 303 * @ap: Port on which interrupts are enabled. 304 * 305 * Enable interrupts on a legacy IDE device using MMIO or PIO, 306 * wait for idle, clear any pending interrupts. 307 * 308 * Note: may NOT be used as the sff_irq_on() entry in 309 * ata_port_operations. 310 * 311 * LOCKING: 312 * Inherited from caller. 313 */ 314 void ata_sff_irq_on(struct ata_port *ap) 315 { 316 if (ap->ops->sff_irq_on) { 317 ap->ops->sff_irq_on(ap); 318 return; 319 } 320 321 ap->ctl &= ~ATA_NIEN; 322 ap->last_ctl = ap->ctl; 323 324 ata_sff_set_devctl(ap, ap->ctl); 325 ata_wait_idle(ap); 326 327 if (ap->ops->sff_irq_clear) 328 ap->ops->sff_irq_clear(ap); 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 331 332 /** 333 * ata_sff_tf_load - send taskfile registers to host controller 334 * @ap: Port to which output is sent 335 * @tf: ATA taskfile register set 336 * 337 * Outputs ATA taskfile to standard ATA host controller. 338 * 339 * LOCKING: 340 * Inherited from caller. 341 */ 342 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 343 { 344 struct ata_ioports *ioaddr = &ap->ioaddr; 345 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 346 347 if (tf->ctl != ap->last_ctl) { 348 if (ioaddr->ctl_addr) 349 iowrite8(tf->ctl, ioaddr->ctl_addr); 350 ap->last_ctl = tf->ctl; 351 ata_wait_idle(ap); 352 } 353 354 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 355 WARN_ON_ONCE(!ioaddr->ctl_addr); 356 iowrite8(tf->hob_feature, ioaddr->feature_addr); 357 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 358 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 359 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 360 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 361 } 362 363 if (is_addr) { 364 iowrite8(tf->feature, ioaddr->feature_addr); 365 iowrite8(tf->nsect, ioaddr->nsect_addr); 366 iowrite8(tf->lbal, ioaddr->lbal_addr); 367 iowrite8(tf->lbam, ioaddr->lbam_addr); 368 iowrite8(tf->lbah, ioaddr->lbah_addr); 369 } 370 371 if (tf->flags & ATA_TFLAG_DEVICE) 372 iowrite8(tf->device, ioaddr->device_addr); 373 374 ata_wait_idle(ap); 375 } 376 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 377 378 /** 379 * ata_sff_tf_read - input device's ATA taskfile shadow registers 380 * @ap: Port from which input is read 381 * @tf: ATA taskfile register set for storing input 382 * 383 * Reads ATA taskfile registers for currently-selected device 384 * into @tf. Assumes the device has a fully SFF compliant task file 385 * layout and behaviour. If you device does not (eg has a different 386 * status method) then you will need to provide a replacement tf_read 387 * 388 * LOCKING: 389 * Inherited from caller. 390 */ 391 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 392 { 393 struct ata_ioports *ioaddr = &ap->ioaddr; 394 395 tf->status = ata_sff_check_status(ap); 396 tf->error = ioread8(ioaddr->error_addr); 397 tf->nsect = ioread8(ioaddr->nsect_addr); 398 tf->lbal = ioread8(ioaddr->lbal_addr); 399 tf->lbam = ioread8(ioaddr->lbam_addr); 400 tf->lbah = ioread8(ioaddr->lbah_addr); 401 tf->device = ioread8(ioaddr->device_addr); 402 403 if (tf->flags & ATA_TFLAG_LBA48) { 404 if (likely(ioaddr->ctl_addr)) { 405 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 406 tf->hob_feature = ioread8(ioaddr->error_addr); 407 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 408 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 409 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 410 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 411 iowrite8(tf->ctl, ioaddr->ctl_addr); 412 ap->last_ctl = tf->ctl; 413 } else 414 WARN_ON_ONCE(1); 415 } 416 } 417 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 418 419 /** 420 * ata_sff_exec_command - issue ATA command to host controller 421 * @ap: port to which command is being issued 422 * @tf: ATA taskfile register set 423 * 424 * Issues ATA command, with proper synchronization with interrupt 425 * handler / other threads. 426 * 427 * LOCKING: 428 * spin_lock_irqsave(host lock) 429 */ 430 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 431 { 432 iowrite8(tf->command, ap->ioaddr.command_addr); 433 ata_sff_pause(ap); 434 } 435 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 436 437 /** 438 * ata_tf_to_host - issue ATA taskfile to host controller 439 * @ap: port to which command is being issued 440 * @tf: ATA taskfile register set 441 * @tag: tag of the associated command 442 * 443 * Issues ATA taskfile register set to ATA host controller, 444 * with proper synchronization with interrupt handler and 445 * other threads. 446 * 447 * LOCKING: 448 * spin_lock_irqsave(host lock) 449 */ 450 static inline void ata_tf_to_host(struct ata_port *ap, 451 const struct ata_taskfile *tf, 452 unsigned int tag) 453 { 454 trace_ata_tf_load(ap, tf); 455 ap->ops->sff_tf_load(ap, tf); 456 trace_ata_exec_command(ap, tf, tag); 457 ap->ops->sff_exec_command(ap, tf); 458 } 459 460 /** 461 * ata_sff_data_xfer - Transfer data by PIO 462 * @qc: queued command 463 * @buf: data buffer 464 * @buflen: buffer length 465 * @rw: read/write 466 * 467 * Transfer data from/to the device data register by PIO. 468 * 469 * LOCKING: 470 * Inherited from caller. 471 * 472 * RETURNS: 473 * Bytes consumed. 474 */ 475 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 476 unsigned int buflen, int rw) 477 { 478 struct ata_port *ap = qc->dev->link->ap; 479 void __iomem *data_addr = ap->ioaddr.data_addr; 480 unsigned int words = buflen >> 1; 481 482 /* Transfer multiple of 2 bytes */ 483 if (rw == READ) 484 ioread16_rep(data_addr, buf, words); 485 else 486 iowrite16_rep(data_addr, buf, words); 487 488 /* Transfer trailing byte, if any. */ 489 if (unlikely(buflen & 0x01)) { 490 unsigned char pad[2] = { }; 491 492 /* Point buf to the tail of buffer */ 493 buf += buflen - 1; 494 495 /* 496 * Use io*16_rep() accessors here as well to avoid pointlessly 497 * swapping bytes to and from on the big endian machines... 498 */ 499 if (rw == READ) { 500 ioread16_rep(data_addr, pad, 1); 501 *buf = pad[0]; 502 } else { 503 pad[0] = *buf; 504 iowrite16_rep(data_addr, pad, 1); 505 } 506 words++; 507 } 508 509 return words << 1; 510 } 511 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 512 513 /** 514 * ata_sff_data_xfer32 - Transfer data by PIO 515 * @qc: queued command 516 * @buf: data buffer 517 * @buflen: buffer length 518 * @rw: read/write 519 * 520 * Transfer data from/to the device data register by PIO using 32bit 521 * I/O operations. 522 * 523 * LOCKING: 524 * Inherited from caller. 525 * 526 * RETURNS: 527 * Bytes consumed. 528 */ 529 530 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 531 unsigned int buflen, int rw) 532 { 533 struct ata_device *dev = qc->dev; 534 struct ata_port *ap = dev->link->ap; 535 void __iomem *data_addr = ap->ioaddr.data_addr; 536 unsigned int words = buflen >> 2; 537 int slop = buflen & 3; 538 539 if (!(ap->pflags & ATA_PFLAG_PIO32)) 540 return ata_sff_data_xfer(qc, buf, buflen, rw); 541 542 /* Transfer multiple of 4 bytes */ 543 if (rw == READ) 544 ioread32_rep(data_addr, buf, words); 545 else 546 iowrite32_rep(data_addr, buf, words); 547 548 /* Transfer trailing bytes, if any */ 549 if (unlikely(slop)) { 550 unsigned char pad[4] = { }; 551 552 /* Point buf to the tail of buffer */ 553 buf += buflen - slop; 554 555 /* 556 * Use io*_rep() accessors here as well to avoid pointlessly 557 * swapping bytes to and from on the big endian machines... 558 */ 559 if (rw == READ) { 560 if (slop < 3) 561 ioread16_rep(data_addr, pad, 1); 562 else 563 ioread32_rep(data_addr, pad, 1); 564 memcpy(buf, pad, slop); 565 } else { 566 memcpy(pad, buf, slop); 567 if (slop < 3) 568 iowrite16_rep(data_addr, pad, 1); 569 else 570 iowrite32_rep(data_addr, pad, 1); 571 } 572 } 573 return (buflen + 1) & ~1; 574 } 575 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 576 577 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 578 unsigned int offset, size_t xfer_size) 579 { 580 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 581 unsigned char *buf; 582 583 buf = kmap_atomic(page); 584 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 585 kunmap_atomic(buf); 586 587 if (!do_write && !PageSlab(page)) 588 flush_dcache_page(page); 589 } 590 591 /** 592 * ata_pio_sector - Transfer a sector of data. 593 * @qc: Command on going 594 * 595 * Transfer qc->sect_size bytes of data from/to the ATA device. 596 * 597 * LOCKING: 598 * Inherited from caller. 599 */ 600 static void ata_pio_sector(struct ata_queued_cmd *qc) 601 { 602 struct ata_port *ap = qc->ap; 603 struct page *page; 604 unsigned int offset; 605 606 if (!qc->cursg) { 607 qc->curbytes = qc->nbytes; 608 return; 609 } 610 if (qc->curbytes == qc->nbytes - qc->sect_size) 611 ap->hsm_task_state = HSM_ST_LAST; 612 613 page = sg_page(qc->cursg); 614 offset = qc->cursg->offset + qc->cursg_ofs; 615 616 /* get the current page and offset */ 617 page = nth_page(page, (offset >> PAGE_SHIFT)); 618 offset %= PAGE_SIZE; 619 620 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); 621 622 /* 623 * Split the transfer when it splits a page boundary. Note that the 624 * split still has to be dword aligned like all ATA data transfers. 625 */ 626 WARN_ON_ONCE(offset % 4); 627 if (offset + qc->sect_size > PAGE_SIZE) { 628 unsigned int split_len = PAGE_SIZE - offset; 629 630 ata_pio_xfer(qc, page, offset, split_len); 631 ata_pio_xfer(qc, nth_page(page, 1), 0, 632 qc->sect_size - split_len); 633 } else { 634 ata_pio_xfer(qc, page, offset, qc->sect_size); 635 } 636 637 qc->curbytes += qc->sect_size; 638 qc->cursg_ofs += qc->sect_size; 639 640 if (qc->cursg_ofs == qc->cursg->length) { 641 qc->cursg = sg_next(qc->cursg); 642 if (!qc->cursg) 643 ap->hsm_task_state = HSM_ST_LAST; 644 qc->cursg_ofs = 0; 645 } 646 } 647 648 /** 649 * ata_pio_sectors - Transfer one or many sectors. 650 * @qc: Command on going 651 * 652 * Transfer one or many sectors of data from/to the 653 * ATA device for the DRQ request. 654 * 655 * LOCKING: 656 * Inherited from caller. 657 */ 658 static void ata_pio_sectors(struct ata_queued_cmd *qc) 659 { 660 if (is_multi_taskfile(&qc->tf)) { 661 /* READ/WRITE MULTIPLE */ 662 unsigned int nsect; 663 664 WARN_ON_ONCE(qc->dev->multi_count == 0); 665 666 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 667 qc->dev->multi_count); 668 while (nsect--) 669 ata_pio_sector(qc); 670 } else 671 ata_pio_sector(qc); 672 673 ata_sff_sync(qc->ap); /* flush */ 674 } 675 676 /** 677 * atapi_send_cdb - Write CDB bytes to hardware 678 * @ap: Port to which ATAPI device is attached. 679 * @qc: Taskfile currently active 680 * 681 * When device has indicated its readiness to accept 682 * a CDB, this function is called. Send the CDB. 683 * 684 * LOCKING: 685 * caller. 686 */ 687 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 688 { 689 /* send SCSI cdb */ 690 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 691 WARN_ON_ONCE(qc->dev->cdb_len < 12); 692 693 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 694 ata_sff_sync(ap); 695 /* FIXME: If the CDB is for DMA do we need to do the transition delay 696 or is bmdma_start guaranteed to do it ? */ 697 switch (qc->tf.protocol) { 698 case ATAPI_PROT_PIO: 699 ap->hsm_task_state = HSM_ST; 700 break; 701 case ATAPI_PROT_NODATA: 702 ap->hsm_task_state = HSM_ST_LAST; 703 break; 704 #ifdef CONFIG_ATA_BMDMA 705 case ATAPI_PROT_DMA: 706 ap->hsm_task_state = HSM_ST_LAST; 707 /* initiate bmdma */ 708 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 709 ap->ops->bmdma_start(qc); 710 break; 711 #endif /* CONFIG_ATA_BMDMA */ 712 default: 713 BUG(); 714 } 715 } 716 717 /** 718 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 719 * @qc: Command on going 720 * @bytes: number of bytes 721 * 722 * Transfer data from/to the ATAPI device. 723 * 724 * LOCKING: 725 * Inherited from caller. 726 * 727 */ 728 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 729 { 730 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 731 struct ata_port *ap = qc->ap; 732 struct ata_device *dev = qc->dev; 733 struct ata_eh_info *ehi = &dev->link->eh_info; 734 struct scatterlist *sg; 735 struct page *page; 736 unsigned char *buf; 737 unsigned int offset, count, consumed; 738 739 next_sg: 740 sg = qc->cursg; 741 if (unlikely(!sg)) { 742 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 743 "buf=%u cur=%u bytes=%u", 744 qc->nbytes, qc->curbytes, bytes); 745 return -1; 746 } 747 748 page = sg_page(sg); 749 offset = sg->offset + qc->cursg_ofs; 750 751 /* get the current page and offset */ 752 page = nth_page(page, (offset >> PAGE_SHIFT)); 753 offset %= PAGE_SIZE; 754 755 /* don't overrun current sg */ 756 count = min(sg->length - qc->cursg_ofs, bytes); 757 758 /* don't cross page boundaries */ 759 count = min(count, (unsigned int)PAGE_SIZE - offset); 760 761 trace_atapi_pio_transfer_data(qc, offset, count); 762 763 /* do the actual data transfer */ 764 buf = kmap_atomic(page); 765 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 766 kunmap_atomic(buf); 767 768 bytes -= min(bytes, consumed); 769 qc->curbytes += count; 770 qc->cursg_ofs += count; 771 772 if (qc->cursg_ofs == sg->length) { 773 qc->cursg = sg_next(qc->cursg); 774 qc->cursg_ofs = 0; 775 } 776 777 /* 778 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 779 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 780 * check correctly as it doesn't know if it is the last request being 781 * made. Somebody should implement a proper sanity check. 782 */ 783 if (bytes) 784 goto next_sg; 785 return 0; 786 } 787 788 /** 789 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 790 * @qc: Command on going 791 * 792 * Transfer Transfer data from/to the ATAPI device. 793 * 794 * LOCKING: 795 * Inherited from caller. 796 */ 797 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 798 { 799 struct ata_port *ap = qc->ap; 800 struct ata_device *dev = qc->dev; 801 struct ata_eh_info *ehi = &dev->link->eh_info; 802 unsigned int ireason, bc_lo, bc_hi, bytes; 803 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 804 805 /* Abuse qc->result_tf for temp storage of intermediate TF 806 * here to save some kernel stack usage. 807 * For normal completion, qc->result_tf is not relevant. For 808 * error, qc->result_tf is later overwritten by ata_qc_complete(). 809 * So, the correctness of qc->result_tf is not affected. 810 */ 811 ap->ops->sff_tf_read(ap, &qc->result_tf); 812 ireason = qc->result_tf.nsect; 813 bc_lo = qc->result_tf.lbam; 814 bc_hi = qc->result_tf.lbah; 815 bytes = (bc_hi << 8) | bc_lo; 816 817 /* shall be cleared to zero, indicating xfer of data */ 818 if (unlikely(ireason & ATAPI_COD)) 819 goto atapi_check; 820 821 /* make sure transfer direction matches expected */ 822 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 823 if (unlikely(do_write != i_write)) 824 goto atapi_check; 825 826 if (unlikely(!bytes)) 827 goto atapi_check; 828 829 if (unlikely(__atapi_pio_bytes(qc, bytes))) 830 goto err_out; 831 ata_sff_sync(ap); /* flush */ 832 833 return; 834 835 atapi_check: 836 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 837 ireason, bytes); 838 err_out: 839 qc->err_mask |= AC_ERR_HSM; 840 ap->hsm_task_state = HSM_ST_ERR; 841 } 842 843 /** 844 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 845 * @ap: the target ata_port 846 * @qc: qc on going 847 * 848 * RETURNS: 849 * 1 if ok in workqueue, 0 otherwise. 850 */ 851 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 852 struct ata_queued_cmd *qc) 853 { 854 if (qc->tf.flags & ATA_TFLAG_POLLING) 855 return 1; 856 857 if (ap->hsm_task_state == HSM_ST_FIRST) { 858 if (qc->tf.protocol == ATA_PROT_PIO && 859 (qc->tf.flags & ATA_TFLAG_WRITE)) 860 return 1; 861 862 if (ata_is_atapi(qc->tf.protocol) && 863 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 864 return 1; 865 } 866 867 return 0; 868 } 869 870 /** 871 * ata_hsm_qc_complete - finish a qc running on standard HSM 872 * @qc: Command to complete 873 * @in_wq: 1 if called from workqueue, 0 otherwise 874 * 875 * Finish @qc which is running on standard HSM. 876 * 877 * LOCKING: 878 * If @in_wq is zero, spin_lock_irqsave(host lock). 879 * Otherwise, none on entry and grabs host lock. 880 */ 881 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 882 { 883 struct ata_port *ap = qc->ap; 884 885 if (in_wq) { 886 /* EH might have kicked in while host lock is released. */ 887 qc = ata_qc_from_tag(ap, qc->tag); 888 if (qc) { 889 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 890 ata_sff_irq_on(ap); 891 ata_qc_complete(qc); 892 } else 893 ata_port_freeze(ap); 894 } 895 } else { 896 if (likely(!(qc->err_mask & AC_ERR_HSM))) 897 ata_qc_complete(qc); 898 else 899 ata_port_freeze(ap); 900 } 901 } 902 903 /** 904 * ata_sff_hsm_move - move the HSM to the next state. 905 * @ap: the target ata_port 906 * @qc: qc on going 907 * @status: current device status 908 * @in_wq: 1 if called from workqueue, 0 otherwise 909 * 910 * RETURNS: 911 * 1 when poll next status needed, 0 otherwise. 912 */ 913 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 914 u8 status, int in_wq) 915 { 916 struct ata_link *link = qc->dev->link; 917 struct ata_eh_info *ehi = &link->eh_info; 918 int poll_next; 919 920 lockdep_assert_held(ap->lock); 921 922 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 923 924 /* Make sure ata_sff_qc_issue() does not throw things 925 * like DMA polling into the workqueue. Notice that 926 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 927 */ 928 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 929 930 fsm_start: 931 trace_ata_sff_hsm_state(qc, status); 932 933 switch (ap->hsm_task_state) { 934 case HSM_ST_FIRST: 935 /* Send first data block or PACKET CDB */ 936 937 /* If polling, we will stay in the work queue after 938 * sending the data. Otherwise, interrupt handler 939 * takes over after sending the data. 940 */ 941 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 942 943 /* check device status */ 944 if (unlikely((status & ATA_DRQ) == 0)) { 945 /* handle BSY=0, DRQ=0 as error */ 946 if (likely(status & (ATA_ERR | ATA_DF))) 947 /* device stops HSM for abort/error */ 948 qc->err_mask |= AC_ERR_DEV; 949 else { 950 /* HSM violation. Let EH handle this */ 951 ata_ehi_push_desc(ehi, 952 "ST_FIRST: !(DRQ|ERR|DF)"); 953 qc->err_mask |= AC_ERR_HSM; 954 } 955 956 ap->hsm_task_state = HSM_ST_ERR; 957 goto fsm_start; 958 } 959 960 /* Device should not ask for data transfer (DRQ=1) 961 * when it finds something wrong. 962 * We ignore DRQ here and stop the HSM by 963 * changing hsm_task_state to HSM_ST_ERR and 964 * let the EH abort the command or reset the device. 965 */ 966 if (unlikely(status & (ATA_ERR | ATA_DF))) { 967 /* Some ATAPI tape drives forget to clear the ERR bit 968 * when doing the next command (mostly request sense). 969 * We ignore ERR here to workaround and proceed sending 970 * the CDB. 971 */ 972 if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) { 973 ata_ehi_push_desc(ehi, "ST_FIRST: " 974 "DRQ=1 with device error, " 975 "dev_stat 0x%X", status); 976 qc->err_mask |= AC_ERR_HSM; 977 ap->hsm_task_state = HSM_ST_ERR; 978 goto fsm_start; 979 } 980 } 981 982 if (qc->tf.protocol == ATA_PROT_PIO) { 983 /* PIO data out protocol. 984 * send first data block. 985 */ 986 987 /* ata_pio_sectors() might change the state 988 * to HSM_ST_LAST. so, the state is changed here 989 * before ata_pio_sectors(). 990 */ 991 ap->hsm_task_state = HSM_ST; 992 ata_pio_sectors(qc); 993 } else 994 /* send CDB */ 995 atapi_send_cdb(ap, qc); 996 997 /* if polling, ata_sff_pio_task() handles the rest. 998 * otherwise, interrupt handler takes over from here. 999 */ 1000 break; 1001 1002 case HSM_ST: 1003 /* complete command or read/write the data register */ 1004 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1005 /* ATAPI PIO protocol */ 1006 if ((status & ATA_DRQ) == 0) { 1007 /* No more data to transfer or device error. 1008 * Device error will be tagged in HSM_ST_LAST. 1009 */ 1010 ap->hsm_task_state = HSM_ST_LAST; 1011 goto fsm_start; 1012 } 1013 1014 /* Device should not ask for data transfer (DRQ=1) 1015 * when it finds something wrong. 1016 * We ignore DRQ here and stop the HSM by 1017 * changing hsm_task_state to HSM_ST_ERR and 1018 * let the EH abort the command or reset the device. 1019 */ 1020 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1021 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1022 "DRQ=1 with device error, " 1023 "dev_stat 0x%X", status); 1024 qc->err_mask |= AC_ERR_HSM; 1025 ap->hsm_task_state = HSM_ST_ERR; 1026 goto fsm_start; 1027 } 1028 1029 atapi_pio_bytes(qc); 1030 1031 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1032 /* bad ireason reported by device */ 1033 goto fsm_start; 1034 1035 } else { 1036 /* ATA PIO protocol */ 1037 if (unlikely((status & ATA_DRQ) == 0)) { 1038 /* handle BSY=0, DRQ=0 as error */ 1039 if (likely(status & (ATA_ERR | ATA_DF))) { 1040 /* device stops HSM for abort/error */ 1041 qc->err_mask |= AC_ERR_DEV; 1042 1043 /* If diagnostic failed and this is 1044 * IDENTIFY, it's likely a phantom 1045 * device. Mark hint. 1046 */ 1047 if (qc->dev->quirks & 1048 ATA_QUIRK_DIAGNOSTIC) 1049 qc->err_mask |= 1050 AC_ERR_NODEV_HINT; 1051 } else { 1052 /* HSM violation. Let EH handle this. 1053 * Phantom devices also trigger this 1054 * condition. Mark hint. 1055 */ 1056 ata_ehi_push_desc(ehi, "ST-ATA: " 1057 "DRQ=0 without device error, " 1058 "dev_stat 0x%X", status); 1059 qc->err_mask |= AC_ERR_HSM | 1060 AC_ERR_NODEV_HINT; 1061 } 1062 1063 ap->hsm_task_state = HSM_ST_ERR; 1064 goto fsm_start; 1065 } 1066 1067 /* For PIO reads, some devices may ask for 1068 * data transfer (DRQ=1) alone with ERR=1. 1069 * We respect DRQ here and transfer one 1070 * block of junk data before changing the 1071 * hsm_task_state to HSM_ST_ERR. 1072 * 1073 * For PIO writes, ERR=1 DRQ=1 doesn't make 1074 * sense since the data block has been 1075 * transferred to the device. 1076 */ 1077 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1078 /* data might be corrputed */ 1079 qc->err_mask |= AC_ERR_DEV; 1080 1081 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1082 ata_pio_sectors(qc); 1083 status = ata_wait_idle(ap); 1084 } 1085 1086 if (status & (ATA_BUSY | ATA_DRQ)) { 1087 ata_ehi_push_desc(ehi, "ST-ATA: " 1088 "BUSY|DRQ persists on ERR|DF, " 1089 "dev_stat 0x%X", status); 1090 qc->err_mask |= AC_ERR_HSM; 1091 } 1092 1093 /* There are oddball controllers with 1094 * status register stuck at 0x7f and 1095 * lbal/m/h at zero which makes it 1096 * pass all other presence detection 1097 * mechanisms we have. Set NODEV_HINT 1098 * for it. Kernel bz#7241. 1099 */ 1100 if (status == 0x7f) 1101 qc->err_mask |= AC_ERR_NODEV_HINT; 1102 1103 /* ata_pio_sectors() might change the 1104 * state to HSM_ST_LAST. so, the state 1105 * is changed after ata_pio_sectors(). 1106 */ 1107 ap->hsm_task_state = HSM_ST_ERR; 1108 goto fsm_start; 1109 } 1110 1111 ata_pio_sectors(qc); 1112 1113 if (ap->hsm_task_state == HSM_ST_LAST && 1114 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1115 /* all data read */ 1116 status = ata_wait_idle(ap); 1117 goto fsm_start; 1118 } 1119 } 1120 1121 poll_next = 1; 1122 break; 1123 1124 case HSM_ST_LAST: 1125 if (unlikely(!ata_ok(status))) { 1126 qc->err_mask |= __ac_err_mask(status); 1127 ap->hsm_task_state = HSM_ST_ERR; 1128 goto fsm_start; 1129 } 1130 1131 /* no more data to transfer */ 1132 trace_ata_sff_hsm_command_complete(qc, status); 1133 1134 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1135 1136 ap->hsm_task_state = HSM_ST_IDLE; 1137 1138 /* complete taskfile transaction */ 1139 ata_hsm_qc_complete(qc, in_wq); 1140 1141 poll_next = 0; 1142 break; 1143 1144 case HSM_ST_ERR: 1145 ap->hsm_task_state = HSM_ST_IDLE; 1146 1147 /* complete taskfile transaction */ 1148 ata_hsm_qc_complete(qc, in_wq); 1149 1150 poll_next = 0; 1151 break; 1152 default: 1153 poll_next = 0; 1154 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1155 ap->print_id, ap->hsm_task_state); 1156 } 1157 1158 return poll_next; 1159 } 1160 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1161 1162 void ata_sff_queue_work(struct work_struct *work) 1163 { 1164 queue_work(ata_sff_wq, work); 1165 } 1166 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1167 1168 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1169 { 1170 queue_delayed_work(ata_sff_wq, dwork, delay); 1171 } 1172 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1173 1174 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1175 { 1176 struct ata_port *ap = link->ap; 1177 1178 WARN_ON((ap->sff_pio_task_link != NULL) && 1179 (ap->sff_pio_task_link != link)); 1180 ap->sff_pio_task_link = link; 1181 1182 /* may fail if ata_sff_flush_pio_task() in progress */ 1183 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1184 } 1185 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1186 1187 void ata_sff_flush_pio_task(struct ata_port *ap) 1188 { 1189 trace_ata_sff_flush_pio_task(ap); 1190 1191 cancel_delayed_work_sync(&ap->sff_pio_task); 1192 1193 /* 1194 * We wanna reset the HSM state to IDLE. If we do so without 1195 * grabbing the port lock, critical sections protected by it which 1196 * expect the HSM state to stay stable may get surprised. For 1197 * example, we may set IDLE in between the time 1198 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1199 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1200 */ 1201 spin_lock_irq(ap->lock); 1202 ap->hsm_task_state = HSM_ST_IDLE; 1203 spin_unlock_irq(ap->lock); 1204 1205 ap->sff_pio_task_link = NULL; 1206 } 1207 1208 static void ata_sff_pio_task(struct work_struct *work) 1209 { 1210 struct ata_port *ap = 1211 container_of(work, struct ata_port, sff_pio_task.work); 1212 struct ata_link *link = ap->sff_pio_task_link; 1213 struct ata_queued_cmd *qc; 1214 u8 status; 1215 int poll_next; 1216 1217 spin_lock_irq(ap->lock); 1218 1219 BUG_ON(ap->sff_pio_task_link == NULL); 1220 /* qc can be NULL if timeout occurred */ 1221 qc = ata_qc_from_tag(ap, link->active_tag); 1222 if (!qc) { 1223 ap->sff_pio_task_link = NULL; 1224 goto out_unlock; 1225 } 1226 1227 fsm_start: 1228 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1229 1230 /* 1231 * This is purely heuristic. This is a fast path. 1232 * Sometimes when we enter, BSY will be cleared in 1233 * a chk-status or two. If not, the drive is probably seeking 1234 * or something. Snooze for a couple msecs, then 1235 * chk-status again. If still busy, queue delayed work. 1236 */ 1237 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1238 if (status & ATA_BUSY) { 1239 spin_unlock_irq(ap->lock); 1240 ata_msleep(ap, 2); 1241 spin_lock_irq(ap->lock); 1242 1243 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1244 if (status & ATA_BUSY) { 1245 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1246 goto out_unlock; 1247 } 1248 } 1249 1250 /* 1251 * hsm_move() may trigger another command to be processed. 1252 * clean the link beforehand. 1253 */ 1254 ap->sff_pio_task_link = NULL; 1255 /* move the HSM */ 1256 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1257 1258 /* another command or interrupt handler 1259 * may be running at this point. 1260 */ 1261 if (poll_next) 1262 goto fsm_start; 1263 out_unlock: 1264 spin_unlock_irq(ap->lock); 1265 } 1266 1267 /** 1268 * ata_sff_qc_issue - issue taskfile to a SFF controller 1269 * @qc: command to issue to device 1270 * 1271 * This function issues a PIO or NODATA command to a SFF 1272 * controller. 1273 * 1274 * LOCKING: 1275 * spin_lock_irqsave(host lock) 1276 * 1277 * RETURNS: 1278 * Zero on success, AC_ERR_* mask on failure 1279 */ 1280 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1281 { 1282 struct ata_port *ap = qc->ap; 1283 struct ata_link *link = qc->dev->link; 1284 1285 /* Use polling pio if the LLD doesn't handle 1286 * interrupt driven pio and atapi CDB interrupt. 1287 */ 1288 if (ap->flags & ATA_FLAG_PIO_POLLING) 1289 qc->tf.flags |= ATA_TFLAG_POLLING; 1290 1291 /* select the device */ 1292 ata_dev_select(ap, qc->dev->devno, 1, 0); 1293 1294 /* start the command */ 1295 switch (qc->tf.protocol) { 1296 case ATA_PROT_NODATA: 1297 if (qc->tf.flags & ATA_TFLAG_POLLING) 1298 ata_qc_set_polling(qc); 1299 1300 ata_tf_to_host(ap, &qc->tf, qc->tag); 1301 ap->hsm_task_state = HSM_ST_LAST; 1302 1303 if (qc->tf.flags & ATA_TFLAG_POLLING) 1304 ata_sff_queue_pio_task(link, 0); 1305 1306 break; 1307 1308 case ATA_PROT_PIO: 1309 if (qc->tf.flags & ATA_TFLAG_POLLING) 1310 ata_qc_set_polling(qc); 1311 1312 ata_tf_to_host(ap, &qc->tf, qc->tag); 1313 1314 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1315 /* PIO data out protocol */ 1316 ap->hsm_task_state = HSM_ST_FIRST; 1317 ata_sff_queue_pio_task(link, 0); 1318 1319 /* always send first data block using the 1320 * ata_sff_pio_task() codepath. 1321 */ 1322 } else { 1323 /* PIO data in protocol */ 1324 ap->hsm_task_state = HSM_ST; 1325 1326 if (qc->tf.flags & ATA_TFLAG_POLLING) 1327 ata_sff_queue_pio_task(link, 0); 1328 1329 /* if polling, ata_sff_pio_task() handles the 1330 * rest. otherwise, interrupt handler takes 1331 * over from here. 1332 */ 1333 } 1334 1335 break; 1336 1337 case ATAPI_PROT_PIO: 1338 case ATAPI_PROT_NODATA: 1339 if (qc->tf.flags & ATA_TFLAG_POLLING) 1340 ata_qc_set_polling(qc); 1341 1342 ata_tf_to_host(ap, &qc->tf, qc->tag); 1343 1344 ap->hsm_task_state = HSM_ST_FIRST; 1345 1346 /* send cdb by polling if no cdb interrupt */ 1347 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1348 (qc->tf.flags & ATA_TFLAG_POLLING)) 1349 ata_sff_queue_pio_task(link, 0); 1350 break; 1351 1352 default: 1353 return AC_ERR_SYSTEM; 1354 } 1355 1356 return 0; 1357 } 1358 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1359 1360 /** 1361 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1362 * @qc: qc to fill result TF for 1363 * 1364 * @qc is finished and result TF needs to be filled. Fill it 1365 * using ->sff_tf_read. 1366 * 1367 * LOCKING: 1368 * spin_lock_irqsave(host lock) 1369 */ 1370 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1371 { 1372 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1373 } 1374 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1375 1376 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1377 { 1378 ap->stats.idle_irq++; 1379 1380 #ifdef ATA_IRQ_TRAP 1381 if ((ap->stats.idle_irq % 1000) == 0) { 1382 ap->ops->sff_check_status(ap); 1383 if (ap->ops->sff_irq_clear) 1384 ap->ops->sff_irq_clear(ap); 1385 ata_port_warn(ap, "irq trap\n"); 1386 return 1; 1387 } 1388 #endif 1389 return 0; /* irq not handled */ 1390 } 1391 1392 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1393 struct ata_queued_cmd *qc, 1394 bool hsmv_on_idle) 1395 { 1396 u8 status; 1397 1398 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1399 1400 /* Check whether we are expecting interrupt in this state */ 1401 switch (ap->hsm_task_state) { 1402 case HSM_ST_FIRST: 1403 /* Some pre-ATAPI-4 devices assert INTRQ 1404 * at this state when ready to receive CDB. 1405 */ 1406 1407 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1408 * The flag was turned on only for atapi devices. No 1409 * need to check ata_is_atapi(qc->tf.protocol) again. 1410 */ 1411 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1412 return ata_sff_idle_irq(ap); 1413 break; 1414 case HSM_ST_IDLE: 1415 return ata_sff_idle_irq(ap); 1416 default: 1417 break; 1418 } 1419 1420 /* check main status, clearing INTRQ if needed */ 1421 status = ata_sff_irq_status(ap); 1422 if (status & ATA_BUSY) { 1423 if (hsmv_on_idle) { 1424 /* BMDMA engine is already stopped, we're screwed */ 1425 qc->err_mask |= AC_ERR_HSM; 1426 ap->hsm_task_state = HSM_ST_ERR; 1427 } else 1428 return ata_sff_idle_irq(ap); 1429 } 1430 1431 /* clear irq events */ 1432 if (ap->ops->sff_irq_clear) 1433 ap->ops->sff_irq_clear(ap); 1434 1435 ata_sff_hsm_move(ap, qc, status, 0); 1436 1437 return 1; /* irq handled */ 1438 } 1439 1440 /** 1441 * ata_sff_port_intr - Handle SFF port interrupt 1442 * @ap: Port on which interrupt arrived (possibly...) 1443 * @qc: Taskfile currently active in engine 1444 * 1445 * Handle port interrupt for given queued command. 1446 * 1447 * LOCKING: 1448 * spin_lock_irqsave(host lock) 1449 * 1450 * RETURNS: 1451 * One if interrupt was handled, zero if not (shared irq). 1452 */ 1453 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1454 { 1455 return __ata_sff_port_intr(ap, qc, false); 1456 } 1457 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1458 1459 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1460 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1461 { 1462 struct ata_host *host = dev_instance; 1463 bool retried = false; 1464 unsigned int i; 1465 unsigned int handled, idle, polling; 1466 unsigned long flags; 1467 1468 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1469 spin_lock_irqsave(&host->lock, flags); 1470 1471 retry: 1472 handled = idle = polling = 0; 1473 for (i = 0; i < host->n_ports; i++) { 1474 struct ata_port *ap = host->ports[i]; 1475 struct ata_queued_cmd *qc; 1476 1477 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1478 if (qc) { 1479 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1480 handled |= port_intr(ap, qc); 1481 else 1482 polling |= 1 << i; 1483 } else 1484 idle |= 1 << i; 1485 } 1486 1487 /* 1488 * If no port was expecting IRQ but the controller is actually 1489 * asserting IRQ line, nobody cared will ensue. Check IRQ 1490 * pending status if available and clear spurious IRQ. 1491 */ 1492 if (!handled && !retried) { 1493 bool retry = false; 1494 1495 for (i = 0; i < host->n_ports; i++) { 1496 struct ata_port *ap = host->ports[i]; 1497 1498 if (polling & (1 << i)) 1499 continue; 1500 1501 if (!ap->ops->sff_irq_check || 1502 !ap->ops->sff_irq_check(ap)) 1503 continue; 1504 1505 if (idle & (1 << i)) { 1506 ap->ops->sff_check_status(ap); 1507 if (ap->ops->sff_irq_clear) 1508 ap->ops->sff_irq_clear(ap); 1509 } else { 1510 /* clear INTRQ and check if BUSY cleared */ 1511 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1512 retry |= true; 1513 /* 1514 * With command in flight, we can't do 1515 * sff_irq_clear() w/o racing with completion. 1516 */ 1517 } 1518 } 1519 1520 if (retry) { 1521 retried = true; 1522 goto retry; 1523 } 1524 } 1525 1526 spin_unlock_irqrestore(&host->lock, flags); 1527 1528 return IRQ_RETVAL(handled); 1529 } 1530 1531 /** 1532 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1533 * @irq: irq line (unused) 1534 * @dev_instance: pointer to our ata_host information structure 1535 * 1536 * Default interrupt handler for PCI IDE devices. Calls 1537 * ata_sff_port_intr() for each port that is not disabled. 1538 * 1539 * LOCKING: 1540 * Obtains host lock during operation. 1541 * 1542 * RETURNS: 1543 * IRQ_NONE or IRQ_HANDLED. 1544 */ 1545 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1546 { 1547 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1548 } 1549 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1550 1551 /** 1552 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1553 * @ap: port that appears to have timed out 1554 * 1555 * Called from the libata error handlers when the core code suspects 1556 * an interrupt has been lost. If it has complete anything we can and 1557 * then return. Interface must support altstatus for this faster 1558 * recovery to occur. 1559 * 1560 * Locking: 1561 * Caller holds host lock 1562 */ 1563 1564 void ata_sff_lost_interrupt(struct ata_port *ap) 1565 { 1566 u8 status = 0; 1567 struct ata_queued_cmd *qc; 1568 1569 /* Only one outstanding command per SFF channel */ 1570 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1571 /* We cannot lose an interrupt on a non-existent or polled command */ 1572 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1573 return; 1574 /* See if the controller thinks it is still busy - if so the command 1575 isn't a lost IRQ but is still in progress */ 1576 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) 1577 return; 1578 if (status & ATA_BUSY) 1579 return; 1580 1581 /* There was a command running, we are no longer busy and we have 1582 no interrupt. */ 1583 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); 1584 /* Run the host interrupt logic as if the interrupt had not been 1585 lost */ 1586 ata_sff_port_intr(ap, qc); 1587 } 1588 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1589 1590 /** 1591 * ata_sff_freeze - Freeze SFF controller port 1592 * @ap: port to freeze 1593 * 1594 * Freeze SFF controller port. 1595 * 1596 * LOCKING: 1597 * Inherited from caller. 1598 */ 1599 void ata_sff_freeze(struct ata_port *ap) 1600 { 1601 ap->ctl |= ATA_NIEN; 1602 ap->last_ctl = ap->ctl; 1603 1604 ata_sff_set_devctl(ap, ap->ctl); 1605 1606 /* Under certain circumstances, some controllers raise IRQ on 1607 * ATA_NIEN manipulation. Also, many controllers fail to mask 1608 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1609 */ 1610 ap->ops->sff_check_status(ap); 1611 1612 if (ap->ops->sff_irq_clear) 1613 ap->ops->sff_irq_clear(ap); 1614 } 1615 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1616 1617 /** 1618 * ata_sff_thaw - Thaw SFF controller port 1619 * @ap: port to thaw 1620 * 1621 * Thaw SFF controller port. 1622 * 1623 * LOCKING: 1624 * Inherited from caller. 1625 */ 1626 void ata_sff_thaw(struct ata_port *ap) 1627 { 1628 /* clear & re-enable interrupts */ 1629 ap->ops->sff_check_status(ap); 1630 if (ap->ops->sff_irq_clear) 1631 ap->ops->sff_irq_clear(ap); 1632 ata_sff_irq_on(ap); 1633 } 1634 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1635 1636 /** 1637 * ata_sff_prereset - prepare SFF link for reset 1638 * @link: SFF link to be reset 1639 * @deadline: deadline jiffies for the operation 1640 * 1641 * SFF link @link is about to be reset. Initialize it. It first 1642 * calls ata_std_prereset() and wait for !BSY if the port is 1643 * being softreset. 1644 * 1645 * LOCKING: 1646 * Kernel thread context (may sleep) 1647 * 1648 * RETURNS: 1649 * Always 0. 1650 */ 1651 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1652 { 1653 struct ata_eh_context *ehc = &link->eh_context; 1654 int rc; 1655 1656 /* The standard prereset is best-effort and always returns 0 */ 1657 ata_std_prereset(link, deadline); 1658 1659 /* if we're about to do hardreset, nothing more to do */ 1660 if (ehc->i.action & ATA_EH_HARDRESET) 1661 return 0; 1662 1663 /* wait for !BSY if we don't know that no device is attached */ 1664 if (!ata_link_offline(link)) { 1665 rc = ata_sff_wait_ready(link, deadline); 1666 if (rc && rc != -ENODEV) { 1667 ata_link_warn(link, 1668 "device not ready (errno=%d), forcing hardreset\n", 1669 rc); 1670 ehc->i.action |= ATA_EH_HARDRESET; 1671 } 1672 } 1673 1674 return 0; 1675 } 1676 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1677 1678 /** 1679 * ata_devchk - PATA device presence detection 1680 * @ap: ATA channel to examine 1681 * @device: Device to examine (starting at zero) 1682 * 1683 * This technique was originally described in 1684 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1685 * later found its way into the ATA/ATAPI spec. 1686 * 1687 * Write a pattern to the ATA shadow registers, 1688 * and if a device is present, it will respond by 1689 * correctly storing and echoing back the 1690 * ATA shadow register contents. 1691 * 1692 * RETURN: 1693 * true if device is present, false if not. 1694 * 1695 * LOCKING: 1696 * caller. 1697 */ 1698 static bool ata_devchk(struct ata_port *ap, unsigned int device) 1699 { 1700 struct ata_ioports *ioaddr = &ap->ioaddr; 1701 u8 nsect, lbal; 1702 1703 ap->ops->sff_dev_select(ap, device); 1704 1705 iowrite8(0x55, ioaddr->nsect_addr); 1706 iowrite8(0xaa, ioaddr->lbal_addr); 1707 1708 iowrite8(0xaa, ioaddr->nsect_addr); 1709 iowrite8(0x55, ioaddr->lbal_addr); 1710 1711 iowrite8(0x55, ioaddr->nsect_addr); 1712 iowrite8(0xaa, ioaddr->lbal_addr); 1713 1714 nsect = ioread8(ioaddr->nsect_addr); 1715 lbal = ioread8(ioaddr->lbal_addr); 1716 1717 if ((nsect == 0x55) && (lbal == 0xaa)) 1718 return true; /* we found a device */ 1719 1720 return false; /* nothing found */ 1721 } 1722 1723 /** 1724 * ata_sff_dev_classify - Parse returned ATA device signature 1725 * @dev: ATA device to classify (starting at zero) 1726 * @present: device seems present 1727 * @r_err: Value of error register on completion 1728 * 1729 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1730 * an ATA/ATAPI-defined set of values is placed in the ATA 1731 * shadow registers, indicating the results of device detection 1732 * and diagnostics. 1733 * 1734 * Select the ATA device, and read the values from the ATA shadow 1735 * registers. Then parse according to the Error register value, 1736 * and the spec-defined values examined by ata_dev_classify(). 1737 * 1738 * LOCKING: 1739 * caller. 1740 * 1741 * RETURNS: 1742 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1743 */ 1744 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1745 u8 *r_err) 1746 { 1747 struct ata_port *ap = dev->link->ap; 1748 struct ata_taskfile tf; 1749 unsigned int class; 1750 u8 err; 1751 1752 ap->ops->sff_dev_select(ap, dev->devno); 1753 1754 memset(&tf, 0, sizeof(tf)); 1755 1756 ap->ops->sff_tf_read(ap, &tf); 1757 err = tf.error; 1758 if (r_err) 1759 *r_err = err; 1760 1761 /* see if device passed diags: continue and warn later */ 1762 if (err == 0) 1763 /* diagnostic fail : do nothing _YET_ */ 1764 dev->quirks |= ATA_QUIRK_DIAGNOSTIC; 1765 else if (err == 1) 1766 /* do nothing */ ; 1767 else if ((dev->devno == 0) && (err == 0x81)) 1768 /* do nothing */ ; 1769 else 1770 return ATA_DEV_NONE; 1771 1772 /* determine if device is ATA or ATAPI */ 1773 class = ata_port_classify(ap, &tf); 1774 switch (class) { 1775 case ATA_DEV_UNKNOWN: 1776 /* 1777 * If the device failed diagnostic, it's likely to 1778 * have reported incorrect device signature too. 1779 * Assume ATA device if the device seems present but 1780 * device signature is invalid with diagnostic 1781 * failure. 1782 */ 1783 if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC)) 1784 class = ATA_DEV_ATA; 1785 else 1786 class = ATA_DEV_NONE; 1787 break; 1788 case ATA_DEV_ATA: 1789 if (ap->ops->sff_check_status(ap) == 0) 1790 class = ATA_DEV_NONE; 1791 break; 1792 } 1793 return class; 1794 } 1795 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1796 1797 /** 1798 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1799 * @link: SFF link which is just reset 1800 * @devmask: mask of present devices 1801 * @deadline: deadline jiffies for the operation 1802 * 1803 * Wait devices attached to SFF @link to become ready after 1804 * reset. It contains preceding 150ms wait to avoid accessing TF 1805 * status register too early. 1806 * 1807 * LOCKING: 1808 * Kernel thread context (may sleep). 1809 * 1810 * RETURNS: 1811 * 0 on success, -ENODEV if some or all of devices in @devmask 1812 * don't seem to exist. -errno on other errors. 1813 */ 1814 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1815 unsigned long deadline) 1816 { 1817 struct ata_port *ap = link->ap; 1818 struct ata_ioports *ioaddr = &ap->ioaddr; 1819 unsigned int dev0 = devmask & (1 << 0); 1820 unsigned int dev1 = devmask & (1 << 1); 1821 int rc, ret = 0; 1822 1823 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1824 1825 /* always check readiness of the master device */ 1826 rc = ata_sff_wait_ready(link, deadline); 1827 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1828 * and TF status is 0xff, bail out on it too. 1829 */ 1830 if (rc) 1831 return rc; 1832 1833 /* if device 1 was found in ata_devchk, wait for register 1834 * access briefly, then wait for BSY to clear. 1835 */ 1836 if (dev1) { 1837 int i; 1838 1839 ap->ops->sff_dev_select(ap, 1); 1840 1841 /* Wait for register access. Some ATAPI devices fail 1842 * to set nsect/lbal after reset, so don't waste too 1843 * much time on it. We're gonna wait for !BSY anyway. 1844 */ 1845 for (i = 0; i < 2; i++) { 1846 u8 nsect, lbal; 1847 1848 nsect = ioread8(ioaddr->nsect_addr); 1849 lbal = ioread8(ioaddr->lbal_addr); 1850 if ((nsect == 1) && (lbal == 1)) 1851 break; 1852 ata_msleep(ap, 50); /* give drive a breather */ 1853 } 1854 1855 rc = ata_sff_wait_ready(link, deadline); 1856 if (rc) { 1857 if (rc != -ENODEV) 1858 return rc; 1859 ret = rc; 1860 } 1861 } 1862 1863 /* is all this really necessary? */ 1864 ap->ops->sff_dev_select(ap, 0); 1865 if (dev1) 1866 ap->ops->sff_dev_select(ap, 1); 1867 if (dev0) 1868 ap->ops->sff_dev_select(ap, 0); 1869 1870 return ret; 1871 } 1872 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1873 1874 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1875 unsigned long deadline) 1876 { 1877 struct ata_ioports *ioaddr = &ap->ioaddr; 1878 1879 if (ap->ioaddr.ctl_addr) { 1880 /* software reset. causes dev0 to be selected */ 1881 iowrite8(ap->ctl, ioaddr->ctl_addr); 1882 udelay(20); /* FIXME: flush */ 1883 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1884 udelay(20); /* FIXME: flush */ 1885 iowrite8(ap->ctl, ioaddr->ctl_addr); 1886 ap->last_ctl = ap->ctl; 1887 } 1888 1889 /* wait the port to become ready */ 1890 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1891 } 1892 1893 /** 1894 * ata_sff_softreset - reset host port via ATA SRST 1895 * @link: ATA link to reset 1896 * @classes: resulting classes of attached devices 1897 * @deadline: deadline jiffies for the operation 1898 * 1899 * Reset host port using ATA SRST. 1900 * 1901 * LOCKING: 1902 * Kernel thread context (may sleep) 1903 * 1904 * RETURNS: 1905 * 0 on success, -errno otherwise. 1906 */ 1907 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1908 unsigned long deadline) 1909 { 1910 struct ata_port *ap = link->ap; 1911 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1912 unsigned int devmask = 0; 1913 int rc; 1914 u8 err; 1915 1916 /* determine if device 0/1 are present */ 1917 if (ata_devchk(ap, 0)) 1918 devmask |= (1 << 0); 1919 if (slave_possible && ata_devchk(ap, 1)) 1920 devmask |= (1 << 1); 1921 1922 /* select device 0 again */ 1923 ap->ops->sff_dev_select(ap, 0); 1924 1925 /* issue bus reset */ 1926 rc = ata_bus_softreset(ap, devmask, deadline); 1927 /* if link is occupied, -ENODEV too is an error */ 1928 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1929 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1930 return rc; 1931 } 1932 1933 /* determine by signature whether we have ATA or ATAPI devices */ 1934 classes[0] = ata_sff_dev_classify(&link->device[0], 1935 devmask & (1 << 0), &err); 1936 if (slave_possible && err != 0x81) 1937 classes[1] = ata_sff_dev_classify(&link->device[1], 1938 devmask & (1 << 1), &err); 1939 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(ata_sff_softreset); 1943 1944 /** 1945 * sata_sff_hardreset - reset host port via SATA phy reset 1946 * @link: link to reset 1947 * @class: resulting class of attached device 1948 * @deadline: deadline jiffies for the operation 1949 * 1950 * SATA phy-reset host port using DET bits of SControl register, 1951 * wait for !BSY and classify the attached device. 1952 * 1953 * LOCKING: 1954 * Kernel thread context (may sleep) 1955 * 1956 * RETURNS: 1957 * 0 on success, -errno otherwise. 1958 */ 1959 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1960 unsigned long deadline) 1961 { 1962 struct ata_eh_context *ehc = &link->eh_context; 1963 const unsigned int *timing = sata_ehc_deb_timing(ehc); 1964 bool online; 1965 int rc; 1966 1967 rc = sata_link_hardreset(link, timing, deadline, &online, 1968 ata_sff_check_ready); 1969 if (online) 1970 *class = ata_sff_dev_classify(link->device, 1, NULL); 1971 1972 return rc; 1973 } 1974 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 1975 1976 /** 1977 * ata_sff_postreset - SFF postreset callback 1978 * @link: the target SFF ata_link 1979 * @classes: classes of attached devices 1980 * 1981 * This function is invoked after a successful reset. It first 1982 * calls ata_std_postreset() and performs SFF specific postreset 1983 * processing. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep) 1987 */ 1988 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 1989 { 1990 struct ata_port *ap = link->ap; 1991 1992 ata_std_postreset(link, classes); 1993 1994 /* is double-select really necessary? */ 1995 if (classes[0] != ATA_DEV_NONE) 1996 ap->ops->sff_dev_select(ap, 1); 1997 if (classes[1] != ATA_DEV_NONE) 1998 ap->ops->sff_dev_select(ap, 0); 1999 2000 /* bail out if no device is present */ 2001 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2002 return; 2003 2004 /* set up device control */ 2005 if (ata_sff_set_devctl(ap, ap->ctl)) 2006 ap->last_ctl = ap->ctl; 2007 } 2008 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2009 2010 /** 2011 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2012 * @qc: command 2013 * 2014 * Drain the FIFO and device of any stuck data following a command 2015 * failing to complete. In some cases this is necessary before a 2016 * reset will recover the device. 2017 * 2018 */ 2019 2020 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2021 { 2022 int count; 2023 struct ata_port *ap; 2024 2025 /* We only need to flush incoming data when a command was running */ 2026 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2027 return; 2028 2029 ap = qc->ap; 2030 /* Drain up to 64K of data before we give up this recovery method */ 2031 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2032 && count < 65536; count += 2) 2033 ioread16(ap->ioaddr.data_addr); 2034 2035 if (count) 2036 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2037 2038 } 2039 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2040 2041 /** 2042 * ata_sff_error_handler - Stock error handler for SFF controller 2043 * @ap: port to handle error for 2044 * 2045 * Stock error handler for SFF controller. It can handle both 2046 * PATA and SATA controllers. Many controllers should be able to 2047 * use this EH as-is or with some added handling before and 2048 * after. 2049 * 2050 * LOCKING: 2051 * Kernel thread context (may sleep) 2052 */ 2053 void ata_sff_error_handler(struct ata_port *ap) 2054 { 2055 ata_reset_fn_t softreset = ap->ops->softreset; 2056 ata_reset_fn_t hardreset = ap->ops->hardreset; 2057 struct ata_queued_cmd *qc; 2058 unsigned long flags; 2059 2060 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2061 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2062 qc = NULL; 2063 2064 spin_lock_irqsave(ap->lock, flags); 2065 2066 /* 2067 * We *MUST* do FIFO draining before we issue a reset as 2068 * several devices helpfully clear their internal state and 2069 * will lock solid if we touch the data port post reset. Pass 2070 * qc in case anyone wants to do different PIO/DMA recovery or 2071 * has per command fixups 2072 */ 2073 if (ap->ops->sff_drain_fifo) 2074 ap->ops->sff_drain_fifo(qc); 2075 2076 spin_unlock_irqrestore(ap->lock, flags); 2077 2078 /* ignore built-in hardresets if SCR access is not available */ 2079 if ((hardreset == sata_std_hardreset || 2080 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2081 hardreset = NULL; 2082 2083 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2084 ap->ops->postreset); 2085 } 2086 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2087 2088 /** 2089 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2090 * @ioaddr: IO address structure to be initialized 2091 * 2092 * Utility function which initializes data_addr, error_addr, 2093 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2094 * device_addr, status_addr, and command_addr to standard offsets 2095 * relative to cmd_addr. 2096 * 2097 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2098 */ 2099 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2100 { 2101 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2102 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2103 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2104 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2105 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2106 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2107 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2108 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2109 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2110 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2111 } 2112 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2113 2114 #ifdef CONFIG_PCI 2115 2116 static bool ata_resources_present(struct pci_dev *pdev, int port) 2117 { 2118 int i; 2119 2120 /* Check the PCI resources for this channel are enabled */ 2121 port *= 2; 2122 for (i = 0; i < 2; i++) { 2123 if (pci_resource_start(pdev, port + i) == 0 || 2124 pci_resource_len(pdev, port + i) == 0) 2125 return false; 2126 } 2127 return true; 2128 } 2129 2130 /** 2131 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2132 * @host: target ATA host 2133 * 2134 * Acquire native PCI ATA resources for @host and initialize the 2135 * first two ports of @host accordingly. Ports marked dummy are 2136 * skipped and allocation failure makes the port dummy. 2137 * 2138 * Note that native PCI resources are valid even for legacy hosts 2139 * as we fix up pdev resources array early in boot, so this 2140 * function can be used for both native and legacy SFF hosts. 2141 * 2142 * LOCKING: 2143 * Inherited from calling layer (may sleep). 2144 * 2145 * RETURNS: 2146 * 0 if at least one port is initialized, -ENODEV if no port is 2147 * available. 2148 */ 2149 int ata_pci_sff_init_host(struct ata_host *host) 2150 { 2151 struct device *gdev = host->dev; 2152 struct pci_dev *pdev = to_pci_dev(gdev); 2153 unsigned int mask = 0; 2154 int i, rc; 2155 2156 /* request, iomap BARs and init port addresses accordingly */ 2157 for (i = 0; i < 2; i++) { 2158 struct ata_port *ap = host->ports[i]; 2159 int base = i * 2; 2160 void __iomem * const *iomap; 2161 2162 if (ata_port_is_dummy(ap)) 2163 continue; 2164 2165 /* Discard disabled ports. Some controllers show 2166 * their unused channels this way. Disabled ports are 2167 * made dummy. 2168 */ 2169 if (!ata_resources_present(pdev, i)) { 2170 ap->ops = &ata_dummy_port_ops; 2171 continue; 2172 } 2173 2174 rc = pcim_iomap_regions(pdev, 0x3 << base, 2175 dev_driver_string(gdev)); 2176 if (rc) { 2177 dev_warn(gdev, 2178 "failed to request/iomap BARs for port %d (errno=%d)\n", 2179 i, rc); 2180 if (rc == -EBUSY) 2181 pcim_pin_device(pdev); 2182 ap->ops = &ata_dummy_port_ops; 2183 continue; 2184 } 2185 host->iomap = iomap = pcim_iomap_table(pdev); 2186 2187 ap->ioaddr.cmd_addr = iomap[base]; 2188 ap->ioaddr.altstatus_addr = 2189 ap->ioaddr.ctl_addr = (void __iomem *) 2190 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2191 ata_sff_std_ports(&ap->ioaddr); 2192 2193 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2194 (unsigned long long)pci_resource_start(pdev, base), 2195 (unsigned long long)pci_resource_start(pdev, base + 1)); 2196 2197 mask |= 1 << i; 2198 } 2199 2200 if (!mask) { 2201 dev_err(gdev, "no available native port\n"); 2202 return -ENODEV; 2203 } 2204 2205 return 0; 2206 } 2207 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2208 2209 /** 2210 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2211 * @pdev: target PCI device 2212 * @ppi: array of port_info, must be enough for two ports 2213 * @r_host: out argument for the initialized ATA host 2214 * 2215 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2216 * all PCI resources and initialize it accordingly in one go. 2217 * 2218 * LOCKING: 2219 * Inherited from calling layer (may sleep). 2220 * 2221 * RETURNS: 2222 * 0 on success, -errno otherwise. 2223 */ 2224 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2225 const struct ata_port_info * const *ppi, 2226 struct ata_host **r_host) 2227 { 2228 struct ata_host *host; 2229 int rc; 2230 2231 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2232 return -ENOMEM; 2233 2234 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2235 if (!host) { 2236 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2237 rc = -ENOMEM; 2238 goto err_out; 2239 } 2240 2241 rc = ata_pci_sff_init_host(host); 2242 if (rc) 2243 goto err_out; 2244 2245 devres_remove_group(&pdev->dev, NULL); 2246 *r_host = host; 2247 return 0; 2248 2249 err_out: 2250 devres_release_group(&pdev->dev, NULL); 2251 return rc; 2252 } 2253 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2254 2255 /** 2256 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2257 * @host: target SFF ATA host 2258 * @irq_handler: irq_handler used when requesting IRQ(s) 2259 * @sht: scsi_host_template to use when registering the host 2260 * 2261 * This is the counterpart of ata_host_activate() for SFF ATA 2262 * hosts. This separate helper is necessary because SFF hosts 2263 * use two separate interrupts in legacy mode. 2264 * 2265 * LOCKING: 2266 * Inherited from calling layer (may sleep). 2267 * 2268 * RETURNS: 2269 * 0 on success, -errno otherwise. 2270 */ 2271 int ata_pci_sff_activate_host(struct ata_host *host, 2272 irq_handler_t irq_handler, 2273 const struct scsi_host_template *sht) 2274 { 2275 struct device *dev = host->dev; 2276 struct pci_dev *pdev = to_pci_dev(dev); 2277 const char *drv_name = dev_driver_string(host->dev); 2278 int legacy_mode = 0, rc; 2279 2280 rc = ata_host_start(host); 2281 if (rc) 2282 return rc; 2283 2284 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2285 u8 tmp8, mask = 0; 2286 2287 /* 2288 * ATA spec says we should use legacy mode when one 2289 * port is in legacy mode, but disabled ports on some 2290 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2291 * on which the secondary port is not wired, so 2292 * ignore ports that are marked as 'dummy' during 2293 * this check 2294 */ 2295 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2296 if (!ata_port_is_dummy(host->ports[0])) 2297 mask |= (1 << 0); 2298 if (!ata_port_is_dummy(host->ports[1])) 2299 mask |= (1 << 2); 2300 if ((tmp8 & mask) != mask) 2301 legacy_mode = 1; 2302 } 2303 2304 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2305 return -ENOMEM; 2306 2307 if (!legacy_mode && pdev->irq) { 2308 int i; 2309 2310 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2311 IRQF_SHARED, drv_name, host); 2312 if (rc) 2313 goto out; 2314 2315 for (i = 0; i < 2; i++) { 2316 if (ata_port_is_dummy(host->ports[i])) 2317 continue; 2318 ata_port_desc_misc(host->ports[i], pdev->irq); 2319 } 2320 } else if (legacy_mode) { 2321 if (!ata_port_is_dummy(host->ports[0])) { 2322 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2323 irq_handler, IRQF_SHARED, 2324 drv_name, host); 2325 if (rc) 2326 goto out; 2327 2328 ata_port_desc_misc(host->ports[0], 2329 ATA_PRIMARY_IRQ(pdev)); 2330 } 2331 2332 if (!ata_port_is_dummy(host->ports[1])) { 2333 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2334 irq_handler, IRQF_SHARED, 2335 drv_name, host); 2336 if (rc) 2337 goto out; 2338 2339 ata_port_desc_misc(host->ports[1], 2340 ATA_SECONDARY_IRQ(pdev)); 2341 } 2342 } 2343 2344 rc = ata_host_register(host, sht); 2345 out: 2346 if (rc == 0) 2347 devres_remove_group(dev, NULL); 2348 else 2349 devres_release_group(dev, NULL); 2350 2351 return rc; 2352 } 2353 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2354 2355 static const struct ata_port_info *ata_sff_find_valid_pi( 2356 const struct ata_port_info * const *ppi) 2357 { 2358 int i; 2359 2360 /* look up the first valid port_info */ 2361 for (i = 0; i < 2 && ppi[i]; i++) 2362 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2363 return ppi[i]; 2364 2365 return NULL; 2366 } 2367 2368 static int ata_pci_init_one(struct pci_dev *pdev, 2369 const struct ata_port_info * const *ppi, 2370 const struct scsi_host_template *sht, void *host_priv, 2371 int hflags, bool bmdma) 2372 { 2373 struct device *dev = &pdev->dev; 2374 const struct ata_port_info *pi; 2375 struct ata_host *host = NULL; 2376 int rc; 2377 2378 pi = ata_sff_find_valid_pi(ppi); 2379 if (!pi) { 2380 dev_err(&pdev->dev, "no valid port_info specified\n"); 2381 return -EINVAL; 2382 } 2383 2384 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2385 return -ENOMEM; 2386 2387 rc = pcim_enable_device(pdev); 2388 if (rc) 2389 goto out; 2390 2391 #ifdef CONFIG_ATA_BMDMA 2392 if (bmdma) 2393 /* prepare and activate BMDMA host */ 2394 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2395 else 2396 #endif 2397 /* prepare and activate SFF host */ 2398 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2399 if (rc) 2400 goto out; 2401 host->private_data = host_priv; 2402 host->flags |= hflags; 2403 2404 #ifdef CONFIG_ATA_BMDMA 2405 if (bmdma) { 2406 pci_set_master(pdev); 2407 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2408 } else 2409 #endif 2410 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2411 out: 2412 if (rc == 0) 2413 devres_remove_group(&pdev->dev, NULL); 2414 else 2415 devres_release_group(&pdev->dev, NULL); 2416 2417 return rc; 2418 } 2419 2420 /** 2421 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2422 * @pdev: Controller to be initialized 2423 * @ppi: array of port_info, must be enough for two ports 2424 * @sht: scsi_host_template to use when registering the host 2425 * @host_priv: host private_data 2426 * @hflag: host flags 2427 * 2428 * This is a helper function which can be called from a driver's 2429 * xxx_init_one() probe function if the hardware uses traditional 2430 * IDE taskfile registers and is PIO only. 2431 * 2432 * ASSUMPTION: 2433 * Nobody makes a single channel controller that appears solely as 2434 * the secondary legacy port on PCI. 2435 * 2436 * LOCKING: 2437 * Inherited from PCI layer (may sleep). 2438 * 2439 * RETURNS: 2440 * Zero on success, negative on errno-based value on error. 2441 */ 2442 int ata_pci_sff_init_one(struct pci_dev *pdev, 2443 const struct ata_port_info * const *ppi, 2444 const struct scsi_host_template *sht, void *host_priv, int hflag) 2445 { 2446 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2447 } 2448 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2449 2450 #endif /* CONFIG_PCI */ 2451 2452 /* 2453 * BMDMA support 2454 */ 2455 2456 #ifdef CONFIG_ATA_BMDMA 2457 2458 const struct ata_port_operations ata_bmdma_port_ops = { 2459 .inherits = &ata_sff_port_ops, 2460 2461 .error_handler = ata_bmdma_error_handler, 2462 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2463 2464 .qc_prep = ata_bmdma_qc_prep, 2465 .qc_issue = ata_bmdma_qc_issue, 2466 2467 .sff_irq_clear = ata_bmdma_irq_clear, 2468 .bmdma_setup = ata_bmdma_setup, 2469 .bmdma_start = ata_bmdma_start, 2470 .bmdma_stop = ata_bmdma_stop, 2471 .bmdma_status = ata_bmdma_status, 2472 2473 .port_start = ata_bmdma_port_start, 2474 }; 2475 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2476 2477 const struct ata_port_operations ata_bmdma32_port_ops = { 2478 .inherits = &ata_bmdma_port_ops, 2479 2480 .sff_data_xfer = ata_sff_data_xfer32, 2481 .port_start = ata_bmdma_port_start32, 2482 }; 2483 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2484 2485 /** 2486 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2487 * @qc: Metadata associated with taskfile to be transferred 2488 * 2489 * Fill PCI IDE PRD (scatter-gather) table with segments 2490 * associated with the current disk command. 2491 * 2492 * LOCKING: 2493 * spin_lock_irqsave(host lock) 2494 * 2495 */ 2496 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2497 { 2498 struct ata_port *ap = qc->ap; 2499 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2500 struct scatterlist *sg; 2501 unsigned int si, pi; 2502 2503 pi = 0; 2504 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2505 u32 addr, offset; 2506 u32 sg_len, len; 2507 2508 /* determine if physical DMA addr spans 64K boundary. 2509 * Note h/w doesn't support 64-bit, so we unconditionally 2510 * truncate dma_addr_t to u32. 2511 */ 2512 addr = (u32) sg_dma_address(sg); 2513 sg_len = sg_dma_len(sg); 2514 2515 while (sg_len) { 2516 offset = addr & 0xffff; 2517 len = sg_len; 2518 if ((offset + sg_len) > 0x10000) 2519 len = 0x10000 - offset; 2520 2521 prd[pi].addr = cpu_to_le32(addr); 2522 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2523 2524 pi++; 2525 sg_len -= len; 2526 addr += len; 2527 } 2528 } 2529 2530 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2531 } 2532 2533 /** 2534 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2535 * @qc: Metadata associated with taskfile to be transferred 2536 * 2537 * Fill PCI IDE PRD (scatter-gather) table with segments 2538 * associated with the current disk command. Perform the fill 2539 * so that we avoid writing any length 64K records for 2540 * controllers that don't follow the spec. 2541 * 2542 * LOCKING: 2543 * spin_lock_irqsave(host lock) 2544 * 2545 */ 2546 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2547 { 2548 struct ata_port *ap = qc->ap; 2549 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2550 struct scatterlist *sg; 2551 unsigned int si, pi; 2552 2553 pi = 0; 2554 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2555 u32 addr, offset; 2556 u32 sg_len, len, blen; 2557 2558 /* determine if physical DMA addr spans 64K boundary. 2559 * Note h/w doesn't support 64-bit, so we unconditionally 2560 * truncate dma_addr_t to u32. 2561 */ 2562 addr = (u32) sg_dma_address(sg); 2563 sg_len = sg_dma_len(sg); 2564 2565 while (sg_len) { 2566 offset = addr & 0xffff; 2567 len = sg_len; 2568 if ((offset + sg_len) > 0x10000) 2569 len = 0x10000 - offset; 2570 2571 blen = len & 0xffff; 2572 prd[pi].addr = cpu_to_le32(addr); 2573 if (blen == 0) { 2574 /* Some PATA chipsets like the CS5530 can't 2575 cope with 0x0000 meaning 64K as the spec 2576 says */ 2577 prd[pi].flags_len = cpu_to_le32(0x8000); 2578 blen = 0x8000; 2579 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2580 } 2581 prd[pi].flags_len = cpu_to_le32(blen); 2582 2583 pi++; 2584 sg_len -= len; 2585 addr += len; 2586 } 2587 } 2588 2589 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2590 } 2591 2592 /** 2593 * ata_bmdma_qc_prep - Prepare taskfile for submission 2594 * @qc: Metadata associated with taskfile to be prepared 2595 * 2596 * Prepare ATA taskfile for submission. 2597 * 2598 * LOCKING: 2599 * spin_lock_irqsave(host lock) 2600 */ 2601 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2602 { 2603 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2604 return AC_ERR_OK; 2605 2606 ata_bmdma_fill_sg(qc); 2607 2608 return AC_ERR_OK; 2609 } 2610 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2611 2612 /** 2613 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2614 * @qc: Metadata associated with taskfile to be prepared 2615 * 2616 * Prepare ATA taskfile for submission. 2617 * 2618 * LOCKING: 2619 * spin_lock_irqsave(host lock) 2620 */ 2621 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2622 { 2623 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2624 return AC_ERR_OK; 2625 2626 ata_bmdma_fill_sg_dumb(qc); 2627 2628 return AC_ERR_OK; 2629 } 2630 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2631 2632 /** 2633 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2634 * @qc: command to issue to device 2635 * 2636 * This function issues a PIO, NODATA or DMA command to a 2637 * SFF/BMDMA controller. PIO and NODATA are handled by 2638 * ata_sff_qc_issue(). 2639 * 2640 * LOCKING: 2641 * spin_lock_irqsave(host lock) 2642 * 2643 * RETURNS: 2644 * Zero on success, AC_ERR_* mask on failure 2645 */ 2646 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2647 { 2648 struct ata_port *ap = qc->ap; 2649 struct ata_link *link = qc->dev->link; 2650 2651 /* defer PIO handling to sff_qc_issue */ 2652 if (!ata_is_dma(qc->tf.protocol)) 2653 return ata_sff_qc_issue(qc); 2654 2655 /* select the device */ 2656 ata_dev_select(ap, qc->dev->devno, 1, 0); 2657 2658 /* start the command */ 2659 switch (qc->tf.protocol) { 2660 case ATA_PROT_DMA: 2661 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2662 2663 trace_ata_tf_load(ap, &qc->tf); 2664 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2665 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2666 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2667 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2668 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2669 ap->hsm_task_state = HSM_ST_LAST; 2670 break; 2671 2672 case ATAPI_PROT_DMA: 2673 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2674 2675 trace_ata_tf_load(ap, &qc->tf); 2676 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2677 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2678 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2679 ap->hsm_task_state = HSM_ST_FIRST; 2680 2681 /* send cdb by polling if no cdb interrupt */ 2682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2683 ata_sff_queue_pio_task(link, 0); 2684 break; 2685 2686 default: 2687 WARN_ON(1); 2688 return AC_ERR_SYSTEM; 2689 } 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2694 2695 /** 2696 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2697 * @ap: Port on which interrupt arrived (possibly...) 2698 * @qc: Taskfile currently active in engine 2699 * 2700 * Handle port interrupt for given queued command. 2701 * 2702 * LOCKING: 2703 * spin_lock_irqsave(host lock) 2704 * 2705 * RETURNS: 2706 * One if interrupt was handled, zero if not (shared irq). 2707 */ 2708 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2709 { 2710 struct ata_eh_info *ehi = &ap->link.eh_info; 2711 u8 host_stat = 0; 2712 bool bmdma_stopped = false; 2713 unsigned int handled; 2714 2715 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2716 /* check status of DMA engine */ 2717 host_stat = ap->ops->bmdma_status(ap); 2718 trace_ata_bmdma_status(ap, host_stat); 2719 2720 /* if it's not our irq... */ 2721 if (!(host_stat & ATA_DMA_INTR)) 2722 return ata_sff_idle_irq(ap); 2723 2724 /* before we do anything else, clear DMA-Start bit */ 2725 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2726 ap->ops->bmdma_stop(qc); 2727 bmdma_stopped = true; 2728 2729 if (unlikely(host_stat & ATA_DMA_ERR)) { 2730 /* error when transferring data to/from memory */ 2731 qc->err_mask |= AC_ERR_HOST_BUS; 2732 ap->hsm_task_state = HSM_ST_ERR; 2733 } 2734 } 2735 2736 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2737 2738 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2739 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2740 2741 return handled; 2742 } 2743 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2744 2745 /** 2746 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2747 * @irq: irq line (unused) 2748 * @dev_instance: pointer to our ata_host information structure 2749 * 2750 * Default interrupt handler for PCI IDE devices. Calls 2751 * ata_bmdma_port_intr() for each port that is not disabled. 2752 * 2753 * LOCKING: 2754 * Obtains host lock during operation. 2755 * 2756 * RETURNS: 2757 * IRQ_NONE or IRQ_HANDLED. 2758 */ 2759 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2760 { 2761 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2762 } 2763 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2764 2765 /** 2766 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2767 * @ap: port to handle error for 2768 * 2769 * Stock error handler for BMDMA controller. It can handle both 2770 * PATA and SATA controllers. Most BMDMA controllers should be 2771 * able to use this EH as-is or with some added handling before 2772 * and after. 2773 * 2774 * LOCKING: 2775 * Kernel thread context (may sleep) 2776 */ 2777 void ata_bmdma_error_handler(struct ata_port *ap) 2778 { 2779 struct ata_queued_cmd *qc; 2780 unsigned long flags; 2781 bool thaw = false; 2782 2783 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2784 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2785 qc = NULL; 2786 2787 /* reset PIO HSM and stop DMA engine */ 2788 spin_lock_irqsave(ap->lock, flags); 2789 2790 if (qc && ata_is_dma(qc->tf.protocol)) { 2791 u8 host_stat; 2792 2793 host_stat = ap->ops->bmdma_status(ap); 2794 trace_ata_bmdma_status(ap, host_stat); 2795 2796 /* BMDMA controllers indicate host bus error by 2797 * setting DMA_ERR bit and timing out. As it wasn't 2798 * really a timeout event, adjust error mask and 2799 * cancel frozen state. 2800 */ 2801 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2802 qc->err_mask = AC_ERR_HOST_BUS; 2803 thaw = true; 2804 } 2805 2806 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2807 ap->ops->bmdma_stop(qc); 2808 2809 /* if we're gonna thaw, make sure IRQ is clear */ 2810 if (thaw) { 2811 ap->ops->sff_check_status(ap); 2812 if (ap->ops->sff_irq_clear) 2813 ap->ops->sff_irq_clear(ap); 2814 } 2815 } 2816 2817 spin_unlock_irqrestore(ap->lock, flags); 2818 2819 if (thaw) 2820 ata_eh_thaw_port(ap); 2821 2822 ata_sff_error_handler(ap); 2823 } 2824 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2825 2826 /** 2827 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2828 * @qc: internal command to clean up 2829 * 2830 * LOCKING: 2831 * Kernel thread context (may sleep) 2832 */ 2833 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2834 { 2835 struct ata_port *ap = qc->ap; 2836 unsigned long flags; 2837 2838 if (ata_is_dma(qc->tf.protocol)) { 2839 spin_lock_irqsave(ap->lock, flags); 2840 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2841 ap->ops->bmdma_stop(qc); 2842 spin_unlock_irqrestore(ap->lock, flags); 2843 } 2844 } 2845 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2846 2847 /** 2848 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2849 * @ap: Port associated with this ATA transaction. 2850 * 2851 * Clear interrupt and error flags in DMA status register. 2852 * 2853 * May be used as the irq_clear() entry in ata_port_operations. 2854 * 2855 * LOCKING: 2856 * spin_lock_irqsave(host lock) 2857 */ 2858 void ata_bmdma_irq_clear(struct ata_port *ap) 2859 { 2860 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2861 2862 if (!mmio) 2863 return; 2864 2865 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2866 } 2867 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2868 2869 /** 2870 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2871 * @qc: Info associated with this ATA transaction. 2872 * 2873 * LOCKING: 2874 * spin_lock_irqsave(host lock) 2875 */ 2876 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2877 { 2878 struct ata_port *ap = qc->ap; 2879 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2880 u8 dmactl; 2881 2882 /* load PRD table addr. */ 2883 mb(); /* make sure PRD table writes are visible to controller */ 2884 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2885 2886 /* specify data direction, triple-check start bit is clear */ 2887 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2888 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2889 if (!rw) 2890 dmactl |= ATA_DMA_WR; 2891 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2892 2893 /* issue r/w command */ 2894 ap->ops->sff_exec_command(ap, &qc->tf); 2895 } 2896 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2897 2898 /** 2899 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2900 * @qc: Info associated with this ATA transaction. 2901 * 2902 * LOCKING: 2903 * spin_lock_irqsave(host lock) 2904 */ 2905 void ata_bmdma_start(struct ata_queued_cmd *qc) 2906 { 2907 struct ata_port *ap = qc->ap; 2908 u8 dmactl; 2909 2910 /* start host DMA transaction */ 2911 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2912 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2913 2914 /* Strictly, one may wish to issue an ioread8() here, to 2915 * flush the mmio write. However, control also passes 2916 * to the hardware at this point, and it will interrupt 2917 * us when we are to resume control. So, in effect, 2918 * we don't care when the mmio write flushes. 2919 * Further, a read of the DMA status register _immediately_ 2920 * following the write may not be what certain flaky hardware 2921 * is expected, so I think it is best to not add a readb() 2922 * without first all the MMIO ATA cards/mobos. 2923 * Or maybe I'm just being paranoid. 2924 * 2925 * FIXME: The posting of this write means I/O starts are 2926 * unnecessarily delayed for MMIO 2927 */ 2928 } 2929 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2930 2931 /** 2932 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2933 * @qc: Command we are ending DMA for 2934 * 2935 * Clears the ATA_DMA_START flag in the dma control register 2936 * 2937 * May be used as the bmdma_stop() entry in ata_port_operations. 2938 * 2939 * LOCKING: 2940 * spin_lock_irqsave(host lock) 2941 */ 2942 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2943 { 2944 struct ata_port *ap = qc->ap; 2945 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2946 2947 /* clear start/stop bit */ 2948 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2949 mmio + ATA_DMA_CMD); 2950 2951 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2952 ata_sff_dma_pause(ap); 2953 } 2954 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2955 2956 /** 2957 * ata_bmdma_status - Read PCI IDE BMDMA status 2958 * @ap: Port associated with this ATA transaction. 2959 * 2960 * Read and return BMDMA status register. 2961 * 2962 * May be used as the bmdma_status() entry in ata_port_operations. 2963 * 2964 * LOCKING: 2965 * spin_lock_irqsave(host lock) 2966 */ 2967 u8 ata_bmdma_status(struct ata_port *ap) 2968 { 2969 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2970 } 2971 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2972 2973 2974 /** 2975 * ata_bmdma_port_start - Set port up for bmdma. 2976 * @ap: Port to initialize 2977 * 2978 * Called just after data structures for each port are 2979 * initialized. Allocates space for PRD table. 2980 * 2981 * May be used as the port_start() entry in ata_port_operations. 2982 * 2983 * LOCKING: 2984 * Inherited from caller. 2985 */ 2986 int ata_bmdma_port_start(struct ata_port *ap) 2987 { 2988 if (ap->mwdma_mask || ap->udma_mask) { 2989 ap->bmdma_prd = 2990 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 2991 &ap->bmdma_prd_dma, GFP_KERNEL); 2992 if (!ap->bmdma_prd) 2993 return -ENOMEM; 2994 } 2995 2996 return 0; 2997 } 2998 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 2999 3000 /** 3001 * ata_bmdma_port_start32 - Set port up for dma. 3002 * @ap: Port to initialize 3003 * 3004 * Called just after data structures for each port are 3005 * initialized. Enables 32bit PIO and allocates space for PRD 3006 * table. 3007 * 3008 * May be used as the port_start() entry in ata_port_operations for 3009 * devices that are capable of 32bit PIO. 3010 * 3011 * LOCKING: 3012 * Inherited from caller. 3013 */ 3014 int ata_bmdma_port_start32(struct ata_port *ap) 3015 { 3016 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3017 return ata_bmdma_port_start(ap); 3018 } 3019 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3020 3021 #ifdef CONFIG_PCI 3022 3023 /** 3024 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3025 * @pdev: PCI device 3026 * 3027 * Some PCI ATA devices report simplex mode but in fact can be told to 3028 * enter non simplex mode. This implements the necessary logic to 3029 * perform the task on such devices. Calling it on other devices will 3030 * have -undefined- behaviour. 3031 */ 3032 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3033 { 3034 #ifdef CONFIG_HAS_IOPORT 3035 unsigned long bmdma = pci_resource_start(pdev, 4); 3036 u8 simplex; 3037 3038 if (bmdma == 0) 3039 return -ENOENT; 3040 3041 simplex = inb(bmdma + 0x02); 3042 outb(simplex & 0x60, bmdma + 0x02); 3043 simplex = inb(bmdma + 0x02); 3044 if (simplex & 0x80) 3045 return -EOPNOTSUPP; 3046 return 0; 3047 #else 3048 return -ENOENT; 3049 #endif /* CONFIG_HAS_IOPORT */ 3050 } 3051 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3052 3053 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3054 { 3055 int i; 3056 3057 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3058 3059 for (i = 0; i < 2; i++) { 3060 host->ports[i]->mwdma_mask = 0; 3061 host->ports[i]->udma_mask = 0; 3062 } 3063 } 3064 3065 /** 3066 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3067 * @host: target ATA host 3068 * 3069 * Acquire PCI BMDMA resources and initialize @host accordingly. 3070 * 3071 * LOCKING: 3072 * Inherited from calling layer (may sleep). 3073 */ 3074 void ata_pci_bmdma_init(struct ata_host *host) 3075 { 3076 struct device *gdev = host->dev; 3077 struct pci_dev *pdev = to_pci_dev(gdev); 3078 int i, rc; 3079 3080 /* No BAR4 allocation: No DMA */ 3081 if (pci_resource_start(pdev, 4) == 0) { 3082 ata_bmdma_nodma(host, "BAR4 is zero"); 3083 return; 3084 } 3085 3086 /* 3087 * Some controllers require BMDMA region to be initialized 3088 * even if DMA is not in use to clear IRQ status via 3089 * ->sff_irq_clear method. Try to initialize bmdma_addr 3090 * regardless of dma masks. 3091 */ 3092 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3093 if (rc) 3094 ata_bmdma_nodma(host, "failed to set dma mask"); 3095 3096 /* request and iomap DMA region */ 3097 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3098 if (rc) { 3099 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3100 return; 3101 } 3102 host->iomap = pcim_iomap_table(pdev); 3103 3104 for (i = 0; i < 2; i++) { 3105 struct ata_port *ap = host->ports[i]; 3106 void __iomem *bmdma = host->iomap[4] + 8 * i; 3107 3108 if (ata_port_is_dummy(ap)) 3109 continue; 3110 3111 ap->ioaddr.bmdma_addr = bmdma; 3112 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3113 (ioread8(bmdma + 2) & 0x80)) 3114 host->flags |= ATA_HOST_SIMPLEX; 3115 3116 ata_port_desc(ap, "bmdma 0x%llx", 3117 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3118 } 3119 } 3120 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3121 3122 /** 3123 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3124 * @pdev: target PCI device 3125 * @ppi: array of port_info, must be enough for two ports 3126 * @r_host: out argument for the initialized ATA host 3127 * 3128 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3129 * resources and initialize it accordingly in one go. 3130 * 3131 * LOCKING: 3132 * Inherited from calling layer (may sleep). 3133 * 3134 * RETURNS: 3135 * 0 on success, -errno otherwise. 3136 */ 3137 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3138 const struct ata_port_info * const * ppi, 3139 struct ata_host **r_host) 3140 { 3141 int rc; 3142 3143 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3144 if (rc) 3145 return rc; 3146 3147 ata_pci_bmdma_init(*r_host); 3148 return 0; 3149 } 3150 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3151 3152 /** 3153 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3154 * @pdev: Controller to be initialized 3155 * @ppi: array of port_info, must be enough for two ports 3156 * @sht: scsi_host_template to use when registering the host 3157 * @host_priv: host private_data 3158 * @hflags: host flags 3159 * 3160 * This function is similar to ata_pci_sff_init_one() but also 3161 * takes care of BMDMA initialization. 3162 * 3163 * LOCKING: 3164 * Inherited from PCI layer (may sleep). 3165 * 3166 * RETURNS: 3167 * Zero on success, negative on errno-based value on error. 3168 */ 3169 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3170 const struct ata_port_info * const * ppi, 3171 const struct scsi_host_template *sht, void *host_priv, 3172 int hflags) 3173 { 3174 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3175 } 3176 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3177 3178 #endif /* CONFIG_PCI */ 3179 #endif /* CONFIG_ATA_BMDMA */ 3180 3181 /** 3182 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3183 * @ap: Port to initialize 3184 * 3185 * Called on port allocation to initialize SFF/BMDMA specific 3186 * fields. 3187 * 3188 * LOCKING: 3189 * None. 3190 */ 3191 void ata_sff_port_init(struct ata_port *ap) 3192 { 3193 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3194 ap->ctl = ATA_DEVCTL_OBS; 3195 ap->last_ctl = 0xFF; 3196 } 3197 3198 int __init ata_sff_init(void) 3199 { 3200 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3201 if (!ata_sff_wq) 3202 return -ENOMEM; 3203 3204 return 0; 3205 } 3206 3207 void ata_sff_exit(void) 3208 { 3209 destroy_workqueue(ata_sff_wq); 3210 } 3211