xref: /linux/drivers/ata/libata-sff.c (revision 4e95bc268b915c3a19ec8b9110f61e4ea41a1ed0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-sff.c - helper library for PCI IDE BMDMA
4  *
5  *  Maintained by:  Tejun Heo <tj@kernel.org>
6  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
7  *		    on emails.
8  *
9  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
10  *  Copyright 2003-2006 Jeff Garzik
11  *
12  *  libata documentation is available via 'make {ps|pdf}docs',
13  *  as Documentation/driver-api/libata.rst
14  *
15  *  Hardware documentation available from http://www.t13.org/ and
16  *  http://www.sata-io.org/
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/gfp.h>
21 #include <linux/pci.h>
22 #include <linux/module.h>
23 #include <linux/libata.h>
24 #include <linux/highmem.h>
25 
26 #include "libata.h"
27 
28 static struct workqueue_struct *ata_sff_wq;
29 
30 const struct ata_port_operations ata_sff_port_ops = {
31 	.inherits		= &ata_base_port_ops,
32 
33 	.qc_prep		= ata_noop_qc_prep,
34 	.qc_issue		= ata_sff_qc_issue,
35 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
36 
37 	.freeze			= ata_sff_freeze,
38 	.thaw			= ata_sff_thaw,
39 	.prereset		= ata_sff_prereset,
40 	.softreset		= ata_sff_softreset,
41 	.hardreset		= sata_sff_hardreset,
42 	.postreset		= ata_sff_postreset,
43 	.error_handler		= ata_sff_error_handler,
44 
45 	.sff_dev_select		= ata_sff_dev_select,
46 	.sff_check_status	= ata_sff_check_status,
47 	.sff_tf_load		= ata_sff_tf_load,
48 	.sff_tf_read		= ata_sff_tf_read,
49 	.sff_exec_command	= ata_sff_exec_command,
50 	.sff_data_xfer		= ata_sff_data_xfer,
51 	.sff_drain_fifo		= ata_sff_drain_fifo,
52 
53 	.lost_interrupt		= ata_sff_lost_interrupt,
54 };
55 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
56 
57 /**
58  *	ata_sff_check_status - Read device status reg & clear interrupt
59  *	@ap: port where the device is
60  *
61  *	Reads ATA taskfile status register for currently-selected device
62  *	and return its value. This also clears pending interrupts
63  *      from this device
64  *
65  *	LOCKING:
66  *	Inherited from caller.
67  */
68 u8 ata_sff_check_status(struct ata_port *ap)
69 {
70 	return ioread8(ap->ioaddr.status_addr);
71 }
72 EXPORT_SYMBOL_GPL(ata_sff_check_status);
73 
74 /**
75  *	ata_sff_altstatus - Read device alternate status reg
76  *	@ap: port where the device is
77  *
78  *	Reads ATA taskfile alternate status register for
79  *	currently-selected device and return its value.
80  *
81  *	Note: may NOT be used as the check_altstatus() entry in
82  *	ata_port_operations.
83  *
84  *	LOCKING:
85  *	Inherited from caller.
86  */
87 static u8 ata_sff_altstatus(struct ata_port *ap)
88 {
89 	if (ap->ops->sff_check_altstatus)
90 		return ap->ops->sff_check_altstatus(ap);
91 
92 	return ioread8(ap->ioaddr.altstatus_addr);
93 }
94 
95 /**
96  *	ata_sff_irq_status - Check if the device is busy
97  *	@ap: port where the device is
98  *
99  *	Determine if the port is currently busy. Uses altstatus
100  *	if available in order to avoid clearing shared IRQ status
101  *	when finding an IRQ source. Non ctl capable devices don't
102  *	share interrupt lines fortunately for us.
103  *
104  *	LOCKING:
105  *	Inherited from caller.
106  */
107 static u8 ata_sff_irq_status(struct ata_port *ap)
108 {
109 	u8 status;
110 
111 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
112 		status = ata_sff_altstatus(ap);
113 		/* Not us: We are busy */
114 		if (status & ATA_BUSY)
115 			return status;
116 	}
117 	/* Clear INTRQ latch */
118 	status = ap->ops->sff_check_status(ap);
119 	return status;
120 }
121 
122 /**
123  *	ata_sff_sync - Flush writes
124  *	@ap: Port to wait for.
125  *
126  *	CAUTION:
127  *	If we have an mmio device with no ctl and no altstatus
128  *	method this will fail. No such devices are known to exist.
129  *
130  *	LOCKING:
131  *	Inherited from caller.
132  */
133 
134 static void ata_sff_sync(struct ata_port *ap)
135 {
136 	if (ap->ops->sff_check_altstatus)
137 		ap->ops->sff_check_altstatus(ap);
138 	else if (ap->ioaddr.altstatus_addr)
139 		ioread8(ap->ioaddr.altstatus_addr);
140 }
141 
142 /**
143  *	ata_sff_pause		-	Flush writes and wait 400nS
144  *	@ap: Port to pause for.
145  *
146  *	CAUTION:
147  *	If we have an mmio device with no ctl and no altstatus
148  *	method this will fail. No such devices are known to exist.
149  *
150  *	LOCKING:
151  *	Inherited from caller.
152  */
153 
154 void ata_sff_pause(struct ata_port *ap)
155 {
156 	ata_sff_sync(ap);
157 	ndelay(400);
158 }
159 EXPORT_SYMBOL_GPL(ata_sff_pause);
160 
161 /**
162  *	ata_sff_dma_pause	-	Pause before commencing DMA
163  *	@ap: Port to pause for.
164  *
165  *	Perform I/O fencing and ensure sufficient cycle delays occur
166  *	for the HDMA1:0 transition
167  */
168 
169 void ata_sff_dma_pause(struct ata_port *ap)
170 {
171 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
172 		/* An altstatus read will cause the needed delay without
173 		   messing up the IRQ status */
174 		ata_sff_altstatus(ap);
175 		return;
176 	}
177 	/* There are no DMA controllers without ctl. BUG here to ensure
178 	   we never violate the HDMA1:0 transition timing and risk
179 	   corruption. */
180 	BUG();
181 }
182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
183 
184 /**
185  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
186  *	@ap: port containing status register to be polled
187  *	@tmout_pat: impatience timeout in msecs
188  *	@tmout: overall timeout in msecs
189  *
190  *	Sleep until ATA Status register bit BSY clears,
191  *	or a timeout occurs.
192  *
193  *	LOCKING:
194  *	Kernel thread context (may sleep).
195  *
196  *	RETURNS:
197  *	0 on success, -errno otherwise.
198  */
199 int ata_sff_busy_sleep(struct ata_port *ap,
200 		       unsigned long tmout_pat, unsigned long tmout)
201 {
202 	unsigned long timer_start, timeout;
203 	u8 status;
204 
205 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
206 	timer_start = jiffies;
207 	timeout = ata_deadline(timer_start, tmout_pat);
208 	while (status != 0xff && (status & ATA_BUSY) &&
209 	       time_before(jiffies, timeout)) {
210 		ata_msleep(ap, 50);
211 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
212 	}
213 
214 	if (status != 0xff && (status & ATA_BUSY))
215 		ata_port_warn(ap,
216 			      "port is slow to respond, please be patient (Status 0x%x)\n",
217 			      status);
218 
219 	timeout = ata_deadline(timer_start, tmout);
220 	while (status != 0xff && (status & ATA_BUSY) &&
221 	       time_before(jiffies, timeout)) {
222 		ata_msleep(ap, 50);
223 		status = ap->ops->sff_check_status(ap);
224 	}
225 
226 	if (status == 0xff)
227 		return -ENODEV;
228 
229 	if (status & ATA_BUSY) {
230 		ata_port_err(ap,
231 			     "port failed to respond (%lu secs, Status 0x%x)\n",
232 			     DIV_ROUND_UP(tmout, 1000), status);
233 		return -EBUSY;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
239 
240 static int ata_sff_check_ready(struct ata_link *link)
241 {
242 	u8 status = link->ap->ops->sff_check_status(link->ap);
243 
244 	return ata_check_ready(status);
245 }
246 
247 /**
248  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
249  *	@link: SFF link to wait ready status for
250  *	@deadline: deadline jiffies for the operation
251  *
252  *	Sleep until ATA Status register bit BSY clears, or timeout
253  *	occurs.
254  *
255  *	LOCKING:
256  *	Kernel thread context (may sleep).
257  *
258  *	RETURNS:
259  *	0 on success, -errno otherwise.
260  */
261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
262 {
263 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
264 }
265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
266 
267 /**
268  *	ata_sff_set_devctl - Write device control reg
269  *	@ap: port where the device is
270  *	@ctl: value to write
271  *
272  *	Writes ATA taskfile device control register.
273  *
274  *	Note: may NOT be used as the sff_set_devctl() entry in
275  *	ata_port_operations.
276  *
277  *	LOCKING:
278  *	Inherited from caller.
279  */
280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
281 {
282 	if (ap->ops->sff_set_devctl)
283 		ap->ops->sff_set_devctl(ap, ctl);
284 	else
285 		iowrite8(ctl, ap->ioaddr.ctl_addr);
286 }
287 
288 /**
289  *	ata_sff_dev_select - Select device 0/1 on ATA bus
290  *	@ap: ATA channel to manipulate
291  *	@device: ATA device (numbered from zero) to select
292  *
293  *	Use the method defined in the ATA specification to
294  *	make either device 0, or device 1, active on the
295  *	ATA channel.  Works with both PIO and MMIO.
296  *
297  *	May be used as the dev_select() entry in ata_port_operations.
298  *
299  *	LOCKING:
300  *	caller.
301  */
302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
303 {
304 	u8 tmp;
305 
306 	if (device == 0)
307 		tmp = ATA_DEVICE_OBS;
308 	else
309 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
310 
311 	iowrite8(tmp, ap->ioaddr.device_addr);
312 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
313 }
314 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
315 
316 /**
317  *	ata_dev_select - Select device 0/1 on ATA bus
318  *	@ap: ATA channel to manipulate
319  *	@device: ATA device (numbered from zero) to select
320  *	@wait: non-zero to wait for Status register BSY bit to clear
321  *	@can_sleep: non-zero if context allows sleeping
322  *
323  *	Use the method defined in the ATA specification to
324  *	make either device 0, or device 1, active on the
325  *	ATA channel.
326  *
327  *	This is a high-level version of ata_sff_dev_select(), which
328  *	additionally provides the services of inserting the proper
329  *	pauses and status polling, where needed.
330  *
331  *	LOCKING:
332  *	caller.
333  */
334 static void ata_dev_select(struct ata_port *ap, unsigned int device,
335 			   unsigned int wait, unsigned int can_sleep)
336 {
337 	if (ata_msg_probe(ap))
338 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
339 			      device, wait);
340 
341 	if (wait)
342 		ata_wait_idle(ap);
343 
344 	ap->ops->sff_dev_select(ap, device);
345 
346 	if (wait) {
347 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
348 			ata_msleep(ap, 150);
349 		ata_wait_idle(ap);
350 	}
351 }
352 
353 /**
354  *	ata_sff_irq_on - Enable interrupts on a port.
355  *	@ap: Port on which interrupts are enabled.
356  *
357  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
358  *	wait for idle, clear any pending interrupts.
359  *
360  *	Note: may NOT be used as the sff_irq_on() entry in
361  *	ata_port_operations.
362  *
363  *	LOCKING:
364  *	Inherited from caller.
365  */
366 void ata_sff_irq_on(struct ata_port *ap)
367 {
368 	struct ata_ioports *ioaddr = &ap->ioaddr;
369 
370 	if (ap->ops->sff_irq_on) {
371 		ap->ops->sff_irq_on(ap);
372 		return;
373 	}
374 
375 	ap->ctl &= ~ATA_NIEN;
376 	ap->last_ctl = ap->ctl;
377 
378 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
379 		ata_sff_set_devctl(ap, ap->ctl);
380 	ata_wait_idle(ap);
381 
382 	if (ap->ops->sff_irq_clear)
383 		ap->ops->sff_irq_clear(ap);
384 }
385 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
386 
387 /**
388  *	ata_sff_tf_load - send taskfile registers to host controller
389  *	@ap: Port to which output is sent
390  *	@tf: ATA taskfile register set
391  *
392  *	Outputs ATA taskfile to standard ATA host controller.
393  *
394  *	LOCKING:
395  *	Inherited from caller.
396  */
397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
398 {
399 	struct ata_ioports *ioaddr = &ap->ioaddr;
400 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
401 
402 	if (tf->ctl != ap->last_ctl) {
403 		if (ioaddr->ctl_addr)
404 			iowrite8(tf->ctl, ioaddr->ctl_addr);
405 		ap->last_ctl = tf->ctl;
406 		ata_wait_idle(ap);
407 	}
408 
409 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
410 		WARN_ON_ONCE(!ioaddr->ctl_addr);
411 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
412 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
413 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
414 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
415 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
416 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
417 			tf->hob_feature,
418 			tf->hob_nsect,
419 			tf->hob_lbal,
420 			tf->hob_lbam,
421 			tf->hob_lbah);
422 	}
423 
424 	if (is_addr) {
425 		iowrite8(tf->feature, ioaddr->feature_addr);
426 		iowrite8(tf->nsect, ioaddr->nsect_addr);
427 		iowrite8(tf->lbal, ioaddr->lbal_addr);
428 		iowrite8(tf->lbam, ioaddr->lbam_addr);
429 		iowrite8(tf->lbah, ioaddr->lbah_addr);
430 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
431 			tf->feature,
432 			tf->nsect,
433 			tf->lbal,
434 			tf->lbam,
435 			tf->lbah);
436 	}
437 
438 	if (tf->flags & ATA_TFLAG_DEVICE) {
439 		iowrite8(tf->device, ioaddr->device_addr);
440 		VPRINTK("device 0x%X\n", tf->device);
441 	}
442 
443 	ata_wait_idle(ap);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
446 
447 /**
448  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
449  *	@ap: Port from which input is read
450  *	@tf: ATA taskfile register set for storing input
451  *
452  *	Reads ATA taskfile registers for currently-selected device
453  *	into @tf. Assumes the device has a fully SFF compliant task file
454  *	layout and behaviour. If you device does not (eg has a different
455  *	status method) then you will need to provide a replacement tf_read
456  *
457  *	LOCKING:
458  *	Inherited from caller.
459  */
460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
461 {
462 	struct ata_ioports *ioaddr = &ap->ioaddr;
463 
464 	tf->command = ata_sff_check_status(ap);
465 	tf->feature = ioread8(ioaddr->error_addr);
466 	tf->nsect = ioread8(ioaddr->nsect_addr);
467 	tf->lbal = ioread8(ioaddr->lbal_addr);
468 	tf->lbam = ioread8(ioaddr->lbam_addr);
469 	tf->lbah = ioread8(ioaddr->lbah_addr);
470 	tf->device = ioread8(ioaddr->device_addr);
471 
472 	if (tf->flags & ATA_TFLAG_LBA48) {
473 		if (likely(ioaddr->ctl_addr)) {
474 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
475 			tf->hob_feature = ioread8(ioaddr->error_addr);
476 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
477 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
478 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
479 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
480 			iowrite8(tf->ctl, ioaddr->ctl_addr);
481 			ap->last_ctl = tf->ctl;
482 		} else
483 			WARN_ON_ONCE(1);
484 	}
485 }
486 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
487 
488 /**
489  *	ata_sff_exec_command - issue ATA command to host controller
490  *	@ap: port to which command is being issued
491  *	@tf: ATA taskfile register set
492  *
493  *	Issues ATA command, with proper synchronization with interrupt
494  *	handler / other threads.
495  *
496  *	LOCKING:
497  *	spin_lock_irqsave(host lock)
498  */
499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
500 {
501 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
502 
503 	iowrite8(tf->command, ap->ioaddr.command_addr);
504 	ata_sff_pause(ap);
505 }
506 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
507 
508 /**
509  *	ata_tf_to_host - issue ATA taskfile to host controller
510  *	@ap: port to which command is being issued
511  *	@tf: ATA taskfile register set
512  *
513  *	Issues ATA taskfile register set to ATA host controller,
514  *	with proper synchronization with interrupt handler and
515  *	other threads.
516  *
517  *	LOCKING:
518  *	spin_lock_irqsave(host lock)
519  */
520 static inline void ata_tf_to_host(struct ata_port *ap,
521 				  const struct ata_taskfile *tf)
522 {
523 	ap->ops->sff_tf_load(ap, tf);
524 	ap->ops->sff_exec_command(ap, tf);
525 }
526 
527 /**
528  *	ata_sff_data_xfer - Transfer data by PIO
529  *	@qc: queued command
530  *	@buf: data buffer
531  *	@buflen: buffer length
532  *	@rw: read/write
533  *
534  *	Transfer data from/to the device data register by PIO.
535  *
536  *	LOCKING:
537  *	Inherited from caller.
538  *
539  *	RETURNS:
540  *	Bytes consumed.
541  */
542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
543 			       unsigned int buflen, int rw)
544 {
545 	struct ata_port *ap = qc->dev->link->ap;
546 	void __iomem *data_addr = ap->ioaddr.data_addr;
547 	unsigned int words = buflen >> 1;
548 
549 	/* Transfer multiple of 2 bytes */
550 	if (rw == READ)
551 		ioread16_rep(data_addr, buf, words);
552 	else
553 		iowrite16_rep(data_addr, buf, words);
554 
555 	/* Transfer trailing byte, if any. */
556 	if (unlikely(buflen & 0x01)) {
557 		unsigned char pad[2] = { };
558 
559 		/* Point buf to the tail of buffer */
560 		buf += buflen - 1;
561 
562 		/*
563 		 * Use io*16_rep() accessors here as well to avoid pointlessly
564 		 * swapping bytes to and from on the big endian machines...
565 		 */
566 		if (rw == READ) {
567 			ioread16_rep(data_addr, pad, 1);
568 			*buf = pad[0];
569 		} else {
570 			pad[0] = *buf;
571 			iowrite16_rep(data_addr, pad, 1);
572 		}
573 		words++;
574 	}
575 
576 	return words << 1;
577 }
578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
579 
580 /**
581  *	ata_sff_data_xfer32 - Transfer data by PIO
582  *	@qc: queued command
583  *	@buf: data buffer
584  *	@buflen: buffer length
585  *	@rw: read/write
586  *
587  *	Transfer data from/to the device data register by PIO using 32bit
588  *	I/O operations.
589  *
590  *	LOCKING:
591  *	Inherited from caller.
592  *
593  *	RETURNS:
594  *	Bytes consumed.
595  */
596 
597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
598 			       unsigned int buflen, int rw)
599 {
600 	struct ata_device *dev = qc->dev;
601 	struct ata_port *ap = dev->link->ap;
602 	void __iomem *data_addr = ap->ioaddr.data_addr;
603 	unsigned int words = buflen >> 2;
604 	int slop = buflen & 3;
605 
606 	if (!(ap->pflags & ATA_PFLAG_PIO32))
607 		return ata_sff_data_xfer(qc, buf, buflen, rw);
608 
609 	/* Transfer multiple of 4 bytes */
610 	if (rw == READ)
611 		ioread32_rep(data_addr, buf, words);
612 	else
613 		iowrite32_rep(data_addr, buf, words);
614 
615 	/* Transfer trailing bytes, if any */
616 	if (unlikely(slop)) {
617 		unsigned char pad[4] = { };
618 
619 		/* Point buf to the tail of buffer */
620 		buf += buflen - slop;
621 
622 		/*
623 		 * Use io*_rep() accessors here as well to avoid pointlessly
624 		 * swapping bytes to and from on the big endian machines...
625 		 */
626 		if (rw == READ) {
627 			if (slop < 3)
628 				ioread16_rep(data_addr, pad, 1);
629 			else
630 				ioread32_rep(data_addr, pad, 1);
631 			memcpy(buf, pad, slop);
632 		} else {
633 			memcpy(pad, buf, slop);
634 			if (slop < 3)
635 				iowrite16_rep(data_addr, pad, 1);
636 			else
637 				iowrite32_rep(data_addr, pad, 1);
638 		}
639 	}
640 	return (buflen + 1) & ~1;
641 }
642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
643 
644 /**
645  *	ata_pio_sector - Transfer a sector of data.
646  *	@qc: Command on going
647  *
648  *	Transfer qc->sect_size bytes of data from/to the ATA device.
649  *
650  *	LOCKING:
651  *	Inherited from caller.
652  */
653 static void ata_pio_sector(struct ata_queued_cmd *qc)
654 {
655 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
656 	struct ata_port *ap = qc->ap;
657 	struct page *page;
658 	unsigned int offset;
659 	unsigned char *buf;
660 
661 	if (qc->curbytes == qc->nbytes - qc->sect_size)
662 		ap->hsm_task_state = HSM_ST_LAST;
663 
664 	page = sg_page(qc->cursg);
665 	offset = qc->cursg->offset + qc->cursg_ofs;
666 
667 	/* get the current page and offset */
668 	page = nth_page(page, (offset >> PAGE_SHIFT));
669 	offset %= PAGE_SIZE;
670 
671 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
672 
673 	/* do the actual data transfer */
674 	buf = kmap_atomic(page);
675 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
676 	kunmap_atomic(buf);
677 
678 	if (!do_write && !PageSlab(page))
679 		flush_dcache_page(page);
680 
681 	qc->curbytes += qc->sect_size;
682 	qc->cursg_ofs += qc->sect_size;
683 
684 	if (qc->cursg_ofs == qc->cursg->length) {
685 		qc->cursg = sg_next(qc->cursg);
686 		qc->cursg_ofs = 0;
687 	}
688 }
689 
690 /**
691  *	ata_pio_sectors - Transfer one or many sectors.
692  *	@qc: Command on going
693  *
694  *	Transfer one or many sectors of data from/to the
695  *	ATA device for the DRQ request.
696  *
697  *	LOCKING:
698  *	Inherited from caller.
699  */
700 static void ata_pio_sectors(struct ata_queued_cmd *qc)
701 {
702 	if (is_multi_taskfile(&qc->tf)) {
703 		/* READ/WRITE MULTIPLE */
704 		unsigned int nsect;
705 
706 		WARN_ON_ONCE(qc->dev->multi_count == 0);
707 
708 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
709 			    qc->dev->multi_count);
710 		while (nsect--)
711 			ata_pio_sector(qc);
712 	} else
713 		ata_pio_sector(qc);
714 
715 	ata_sff_sync(qc->ap); /* flush */
716 }
717 
718 /**
719  *	atapi_send_cdb - Write CDB bytes to hardware
720  *	@ap: Port to which ATAPI device is attached.
721  *	@qc: Taskfile currently active
722  *
723  *	When device has indicated its readiness to accept
724  *	a CDB, this function is called.  Send the CDB.
725  *
726  *	LOCKING:
727  *	caller.
728  */
729 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
730 {
731 	/* send SCSI cdb */
732 	DPRINTK("send cdb\n");
733 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
734 
735 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
736 	ata_sff_sync(ap);
737 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
738 	   or is bmdma_start guaranteed to do it ? */
739 	switch (qc->tf.protocol) {
740 	case ATAPI_PROT_PIO:
741 		ap->hsm_task_state = HSM_ST;
742 		break;
743 	case ATAPI_PROT_NODATA:
744 		ap->hsm_task_state = HSM_ST_LAST;
745 		break;
746 #ifdef CONFIG_ATA_BMDMA
747 	case ATAPI_PROT_DMA:
748 		ap->hsm_task_state = HSM_ST_LAST;
749 		/* initiate bmdma */
750 		ap->ops->bmdma_start(qc);
751 		break;
752 #endif /* CONFIG_ATA_BMDMA */
753 	default:
754 		BUG();
755 	}
756 }
757 
758 /**
759  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
760  *	@qc: Command on going
761  *	@bytes: number of bytes
762  *
763  *	Transfer Transfer data from/to the ATAPI device.
764  *
765  *	LOCKING:
766  *	Inherited from caller.
767  *
768  */
769 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
770 {
771 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
772 	struct ata_port *ap = qc->ap;
773 	struct ata_device *dev = qc->dev;
774 	struct ata_eh_info *ehi = &dev->link->eh_info;
775 	struct scatterlist *sg;
776 	struct page *page;
777 	unsigned char *buf;
778 	unsigned int offset, count, consumed;
779 
780 next_sg:
781 	sg = qc->cursg;
782 	if (unlikely(!sg)) {
783 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
784 				  "buf=%u cur=%u bytes=%u",
785 				  qc->nbytes, qc->curbytes, bytes);
786 		return -1;
787 	}
788 
789 	page = sg_page(sg);
790 	offset = sg->offset + qc->cursg_ofs;
791 
792 	/* get the current page and offset */
793 	page = nth_page(page, (offset >> PAGE_SHIFT));
794 	offset %= PAGE_SIZE;
795 
796 	/* don't overrun current sg */
797 	count = min(sg->length - qc->cursg_ofs, bytes);
798 
799 	/* don't cross page boundaries */
800 	count = min(count, (unsigned int)PAGE_SIZE - offset);
801 
802 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
803 
804 	/* do the actual data transfer */
805 	buf = kmap_atomic(page);
806 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
807 	kunmap_atomic(buf);
808 
809 	bytes -= min(bytes, consumed);
810 	qc->curbytes += count;
811 	qc->cursg_ofs += count;
812 
813 	if (qc->cursg_ofs == sg->length) {
814 		qc->cursg = sg_next(qc->cursg);
815 		qc->cursg_ofs = 0;
816 	}
817 
818 	/*
819 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
820 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
821 	 * check correctly as it doesn't know if it is the last request being
822 	 * made. Somebody should implement a proper sanity check.
823 	 */
824 	if (bytes)
825 		goto next_sg;
826 	return 0;
827 }
828 
829 /**
830  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
831  *	@qc: Command on going
832  *
833  *	Transfer Transfer data from/to the ATAPI device.
834  *
835  *	LOCKING:
836  *	Inherited from caller.
837  */
838 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
839 {
840 	struct ata_port *ap = qc->ap;
841 	struct ata_device *dev = qc->dev;
842 	struct ata_eh_info *ehi = &dev->link->eh_info;
843 	unsigned int ireason, bc_lo, bc_hi, bytes;
844 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
845 
846 	/* Abuse qc->result_tf for temp storage of intermediate TF
847 	 * here to save some kernel stack usage.
848 	 * For normal completion, qc->result_tf is not relevant. For
849 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
850 	 * So, the correctness of qc->result_tf is not affected.
851 	 */
852 	ap->ops->sff_tf_read(ap, &qc->result_tf);
853 	ireason = qc->result_tf.nsect;
854 	bc_lo = qc->result_tf.lbam;
855 	bc_hi = qc->result_tf.lbah;
856 	bytes = (bc_hi << 8) | bc_lo;
857 
858 	/* shall be cleared to zero, indicating xfer of data */
859 	if (unlikely(ireason & ATAPI_COD))
860 		goto atapi_check;
861 
862 	/* make sure transfer direction matches expected */
863 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
864 	if (unlikely(do_write != i_write))
865 		goto atapi_check;
866 
867 	if (unlikely(!bytes))
868 		goto atapi_check;
869 
870 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
871 
872 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
873 		goto err_out;
874 	ata_sff_sync(ap); /* flush */
875 
876 	return;
877 
878  atapi_check:
879 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
880 			  ireason, bytes);
881  err_out:
882 	qc->err_mask |= AC_ERR_HSM;
883 	ap->hsm_task_state = HSM_ST_ERR;
884 }
885 
886 /**
887  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
888  *	@ap: the target ata_port
889  *	@qc: qc on going
890  *
891  *	RETURNS:
892  *	1 if ok in workqueue, 0 otherwise.
893  */
894 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
895 						struct ata_queued_cmd *qc)
896 {
897 	if (qc->tf.flags & ATA_TFLAG_POLLING)
898 		return 1;
899 
900 	if (ap->hsm_task_state == HSM_ST_FIRST) {
901 		if (qc->tf.protocol == ATA_PROT_PIO &&
902 		   (qc->tf.flags & ATA_TFLAG_WRITE))
903 		    return 1;
904 
905 		if (ata_is_atapi(qc->tf.protocol) &&
906 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
907 			return 1;
908 	}
909 
910 	return 0;
911 }
912 
913 /**
914  *	ata_hsm_qc_complete - finish a qc running on standard HSM
915  *	@qc: Command to complete
916  *	@in_wq: 1 if called from workqueue, 0 otherwise
917  *
918  *	Finish @qc which is running on standard HSM.
919  *
920  *	LOCKING:
921  *	If @in_wq is zero, spin_lock_irqsave(host lock).
922  *	Otherwise, none on entry and grabs host lock.
923  */
924 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
925 {
926 	struct ata_port *ap = qc->ap;
927 
928 	if (ap->ops->error_handler) {
929 		if (in_wq) {
930 			/* EH might have kicked in while host lock is
931 			 * released.
932 			 */
933 			qc = ata_qc_from_tag(ap, qc->tag);
934 			if (qc) {
935 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
936 					ata_sff_irq_on(ap);
937 					ata_qc_complete(qc);
938 				} else
939 					ata_port_freeze(ap);
940 			}
941 		} else {
942 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
943 				ata_qc_complete(qc);
944 			else
945 				ata_port_freeze(ap);
946 		}
947 	} else {
948 		if (in_wq) {
949 			ata_sff_irq_on(ap);
950 			ata_qc_complete(qc);
951 		} else
952 			ata_qc_complete(qc);
953 	}
954 }
955 
956 /**
957  *	ata_sff_hsm_move - move the HSM to the next state.
958  *	@ap: the target ata_port
959  *	@qc: qc on going
960  *	@status: current device status
961  *	@in_wq: 1 if called from workqueue, 0 otherwise
962  *
963  *	RETURNS:
964  *	1 when poll next status needed, 0 otherwise.
965  */
966 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
967 		     u8 status, int in_wq)
968 {
969 	struct ata_link *link = qc->dev->link;
970 	struct ata_eh_info *ehi = &link->eh_info;
971 	int poll_next;
972 
973 	lockdep_assert_held(ap->lock);
974 
975 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
976 
977 	/* Make sure ata_sff_qc_issue() does not throw things
978 	 * like DMA polling into the workqueue. Notice that
979 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
980 	 */
981 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
982 
983 fsm_start:
984 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
985 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
986 
987 	switch (ap->hsm_task_state) {
988 	case HSM_ST_FIRST:
989 		/* Send first data block or PACKET CDB */
990 
991 		/* If polling, we will stay in the work queue after
992 		 * sending the data. Otherwise, interrupt handler
993 		 * takes over after sending the data.
994 		 */
995 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
996 
997 		/* check device status */
998 		if (unlikely((status & ATA_DRQ) == 0)) {
999 			/* handle BSY=0, DRQ=0 as error */
1000 			if (likely(status & (ATA_ERR | ATA_DF)))
1001 				/* device stops HSM for abort/error */
1002 				qc->err_mask |= AC_ERR_DEV;
1003 			else {
1004 				/* HSM violation. Let EH handle this */
1005 				ata_ehi_push_desc(ehi,
1006 					"ST_FIRST: !(DRQ|ERR|DF)");
1007 				qc->err_mask |= AC_ERR_HSM;
1008 			}
1009 
1010 			ap->hsm_task_state = HSM_ST_ERR;
1011 			goto fsm_start;
1012 		}
1013 
1014 		/* Device should not ask for data transfer (DRQ=1)
1015 		 * when it finds something wrong.
1016 		 * We ignore DRQ here and stop the HSM by
1017 		 * changing hsm_task_state to HSM_ST_ERR and
1018 		 * let the EH abort the command or reset the device.
1019 		 */
1020 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1021 			/* Some ATAPI tape drives forget to clear the ERR bit
1022 			 * when doing the next command (mostly request sense).
1023 			 * We ignore ERR here to workaround and proceed sending
1024 			 * the CDB.
1025 			 */
1026 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1027 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1028 					"DRQ=1 with device error, "
1029 					"dev_stat 0x%X", status);
1030 				qc->err_mask |= AC_ERR_HSM;
1031 				ap->hsm_task_state = HSM_ST_ERR;
1032 				goto fsm_start;
1033 			}
1034 		}
1035 
1036 		if (qc->tf.protocol == ATA_PROT_PIO) {
1037 			/* PIO data out protocol.
1038 			 * send first data block.
1039 			 */
1040 
1041 			/* ata_pio_sectors() might change the state
1042 			 * to HSM_ST_LAST. so, the state is changed here
1043 			 * before ata_pio_sectors().
1044 			 */
1045 			ap->hsm_task_state = HSM_ST;
1046 			ata_pio_sectors(qc);
1047 		} else
1048 			/* send CDB */
1049 			atapi_send_cdb(ap, qc);
1050 
1051 		/* if polling, ata_sff_pio_task() handles the rest.
1052 		 * otherwise, interrupt handler takes over from here.
1053 		 */
1054 		break;
1055 
1056 	case HSM_ST:
1057 		/* complete command or read/write the data register */
1058 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1059 			/* ATAPI PIO protocol */
1060 			if ((status & ATA_DRQ) == 0) {
1061 				/* No more data to transfer or device error.
1062 				 * Device error will be tagged in HSM_ST_LAST.
1063 				 */
1064 				ap->hsm_task_state = HSM_ST_LAST;
1065 				goto fsm_start;
1066 			}
1067 
1068 			/* Device should not ask for data transfer (DRQ=1)
1069 			 * when it finds something wrong.
1070 			 * We ignore DRQ here and stop the HSM by
1071 			 * changing hsm_task_state to HSM_ST_ERR and
1072 			 * let the EH abort the command or reset the device.
1073 			 */
1074 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1075 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1076 					"DRQ=1 with device error, "
1077 					"dev_stat 0x%X", status);
1078 				qc->err_mask |= AC_ERR_HSM;
1079 				ap->hsm_task_state = HSM_ST_ERR;
1080 				goto fsm_start;
1081 			}
1082 
1083 			atapi_pio_bytes(qc);
1084 
1085 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1086 				/* bad ireason reported by device */
1087 				goto fsm_start;
1088 
1089 		} else {
1090 			/* ATA PIO protocol */
1091 			if (unlikely((status & ATA_DRQ) == 0)) {
1092 				/* handle BSY=0, DRQ=0 as error */
1093 				if (likely(status & (ATA_ERR | ATA_DF))) {
1094 					/* device stops HSM for abort/error */
1095 					qc->err_mask |= AC_ERR_DEV;
1096 
1097 					/* If diagnostic failed and this is
1098 					 * IDENTIFY, it's likely a phantom
1099 					 * device.  Mark hint.
1100 					 */
1101 					if (qc->dev->horkage &
1102 					    ATA_HORKAGE_DIAGNOSTIC)
1103 						qc->err_mask |=
1104 							AC_ERR_NODEV_HINT;
1105 				} else {
1106 					/* HSM violation. Let EH handle this.
1107 					 * Phantom devices also trigger this
1108 					 * condition.  Mark hint.
1109 					 */
1110 					ata_ehi_push_desc(ehi, "ST-ATA: "
1111 						"DRQ=0 without device error, "
1112 						"dev_stat 0x%X", status);
1113 					qc->err_mask |= AC_ERR_HSM |
1114 							AC_ERR_NODEV_HINT;
1115 				}
1116 
1117 				ap->hsm_task_state = HSM_ST_ERR;
1118 				goto fsm_start;
1119 			}
1120 
1121 			/* For PIO reads, some devices may ask for
1122 			 * data transfer (DRQ=1) alone with ERR=1.
1123 			 * We respect DRQ here and transfer one
1124 			 * block of junk data before changing the
1125 			 * hsm_task_state to HSM_ST_ERR.
1126 			 *
1127 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1128 			 * sense since the data block has been
1129 			 * transferred to the device.
1130 			 */
1131 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1132 				/* data might be corrputed */
1133 				qc->err_mask |= AC_ERR_DEV;
1134 
1135 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1136 					ata_pio_sectors(qc);
1137 					status = ata_wait_idle(ap);
1138 				}
1139 
1140 				if (status & (ATA_BUSY | ATA_DRQ)) {
1141 					ata_ehi_push_desc(ehi, "ST-ATA: "
1142 						"BUSY|DRQ persists on ERR|DF, "
1143 						"dev_stat 0x%X", status);
1144 					qc->err_mask |= AC_ERR_HSM;
1145 				}
1146 
1147 				/* There are oddball controllers with
1148 				 * status register stuck at 0x7f and
1149 				 * lbal/m/h at zero which makes it
1150 				 * pass all other presence detection
1151 				 * mechanisms we have.  Set NODEV_HINT
1152 				 * for it.  Kernel bz#7241.
1153 				 */
1154 				if (status == 0x7f)
1155 					qc->err_mask |= AC_ERR_NODEV_HINT;
1156 
1157 				/* ata_pio_sectors() might change the
1158 				 * state to HSM_ST_LAST. so, the state
1159 				 * is changed after ata_pio_sectors().
1160 				 */
1161 				ap->hsm_task_state = HSM_ST_ERR;
1162 				goto fsm_start;
1163 			}
1164 
1165 			ata_pio_sectors(qc);
1166 
1167 			if (ap->hsm_task_state == HSM_ST_LAST &&
1168 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1169 				/* all data read */
1170 				status = ata_wait_idle(ap);
1171 				goto fsm_start;
1172 			}
1173 		}
1174 
1175 		poll_next = 1;
1176 		break;
1177 
1178 	case HSM_ST_LAST:
1179 		if (unlikely(!ata_ok(status))) {
1180 			qc->err_mask |= __ac_err_mask(status);
1181 			ap->hsm_task_state = HSM_ST_ERR;
1182 			goto fsm_start;
1183 		}
1184 
1185 		/* no more data to transfer */
1186 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1187 			ap->print_id, qc->dev->devno, status);
1188 
1189 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1190 
1191 		ap->hsm_task_state = HSM_ST_IDLE;
1192 
1193 		/* complete taskfile transaction */
1194 		ata_hsm_qc_complete(qc, in_wq);
1195 
1196 		poll_next = 0;
1197 		break;
1198 
1199 	case HSM_ST_ERR:
1200 		ap->hsm_task_state = HSM_ST_IDLE;
1201 
1202 		/* complete taskfile transaction */
1203 		ata_hsm_qc_complete(qc, in_wq);
1204 
1205 		poll_next = 0;
1206 		break;
1207 	default:
1208 		poll_next = 0;
1209 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1210 		     ap->print_id, ap->hsm_task_state);
1211 	}
1212 
1213 	return poll_next;
1214 }
1215 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1216 
1217 void ata_sff_queue_work(struct work_struct *work)
1218 {
1219 	queue_work(ata_sff_wq, work);
1220 }
1221 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1222 
1223 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1224 {
1225 	queue_delayed_work(ata_sff_wq, dwork, delay);
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1228 
1229 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1230 {
1231 	struct ata_port *ap = link->ap;
1232 
1233 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1234 		(ap->sff_pio_task_link != link));
1235 	ap->sff_pio_task_link = link;
1236 
1237 	/* may fail if ata_sff_flush_pio_task() in progress */
1238 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1239 }
1240 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1241 
1242 void ata_sff_flush_pio_task(struct ata_port *ap)
1243 {
1244 	DPRINTK("ENTER\n");
1245 
1246 	cancel_delayed_work_sync(&ap->sff_pio_task);
1247 
1248 	/*
1249 	 * We wanna reset the HSM state to IDLE.  If we do so without
1250 	 * grabbing the port lock, critical sections protected by it which
1251 	 * expect the HSM state to stay stable may get surprised.  For
1252 	 * example, we may set IDLE in between the time
1253 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1254 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1255 	 */
1256 	spin_lock_irq(ap->lock);
1257 	ap->hsm_task_state = HSM_ST_IDLE;
1258 	spin_unlock_irq(ap->lock);
1259 
1260 	ap->sff_pio_task_link = NULL;
1261 
1262 	if (ata_msg_ctl(ap))
1263 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1264 }
1265 
1266 static void ata_sff_pio_task(struct work_struct *work)
1267 {
1268 	struct ata_port *ap =
1269 		container_of(work, struct ata_port, sff_pio_task.work);
1270 	struct ata_link *link = ap->sff_pio_task_link;
1271 	struct ata_queued_cmd *qc;
1272 	u8 status;
1273 	int poll_next;
1274 
1275 	spin_lock_irq(ap->lock);
1276 
1277 	BUG_ON(ap->sff_pio_task_link == NULL);
1278 	/* qc can be NULL if timeout occurred */
1279 	qc = ata_qc_from_tag(ap, link->active_tag);
1280 	if (!qc) {
1281 		ap->sff_pio_task_link = NULL;
1282 		goto out_unlock;
1283 	}
1284 
1285 fsm_start:
1286 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1287 
1288 	/*
1289 	 * This is purely heuristic.  This is a fast path.
1290 	 * Sometimes when we enter, BSY will be cleared in
1291 	 * a chk-status or two.  If not, the drive is probably seeking
1292 	 * or something.  Snooze for a couple msecs, then
1293 	 * chk-status again.  If still busy, queue delayed work.
1294 	 */
1295 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1296 	if (status & ATA_BUSY) {
1297 		spin_unlock_irq(ap->lock);
1298 		ata_msleep(ap, 2);
1299 		spin_lock_irq(ap->lock);
1300 
1301 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1302 		if (status & ATA_BUSY) {
1303 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1304 			goto out_unlock;
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * hsm_move() may trigger another command to be processed.
1310 	 * clean the link beforehand.
1311 	 */
1312 	ap->sff_pio_task_link = NULL;
1313 	/* move the HSM */
1314 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1315 
1316 	/* another command or interrupt handler
1317 	 * may be running at this point.
1318 	 */
1319 	if (poll_next)
1320 		goto fsm_start;
1321 out_unlock:
1322 	spin_unlock_irq(ap->lock);
1323 }
1324 
1325 /**
1326  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1327  *	@qc: command to issue to device
1328  *
1329  *	This function issues a PIO or NODATA command to a SFF
1330  *	controller.
1331  *
1332  *	LOCKING:
1333  *	spin_lock_irqsave(host lock)
1334  *
1335  *	RETURNS:
1336  *	Zero on success, AC_ERR_* mask on failure
1337  */
1338 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1339 {
1340 	struct ata_port *ap = qc->ap;
1341 	struct ata_link *link = qc->dev->link;
1342 
1343 	/* Use polling pio if the LLD doesn't handle
1344 	 * interrupt driven pio and atapi CDB interrupt.
1345 	 */
1346 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1347 		qc->tf.flags |= ATA_TFLAG_POLLING;
1348 
1349 	/* select the device */
1350 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1351 
1352 	/* start the command */
1353 	switch (qc->tf.protocol) {
1354 	case ATA_PROT_NODATA:
1355 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1356 			ata_qc_set_polling(qc);
1357 
1358 		ata_tf_to_host(ap, &qc->tf);
1359 		ap->hsm_task_state = HSM_ST_LAST;
1360 
1361 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1362 			ata_sff_queue_pio_task(link, 0);
1363 
1364 		break;
1365 
1366 	case ATA_PROT_PIO:
1367 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1368 			ata_qc_set_polling(qc);
1369 
1370 		ata_tf_to_host(ap, &qc->tf);
1371 
1372 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1373 			/* PIO data out protocol */
1374 			ap->hsm_task_state = HSM_ST_FIRST;
1375 			ata_sff_queue_pio_task(link, 0);
1376 
1377 			/* always send first data block using the
1378 			 * ata_sff_pio_task() codepath.
1379 			 */
1380 		} else {
1381 			/* PIO data in protocol */
1382 			ap->hsm_task_state = HSM_ST;
1383 
1384 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1385 				ata_sff_queue_pio_task(link, 0);
1386 
1387 			/* if polling, ata_sff_pio_task() handles the
1388 			 * rest.  otherwise, interrupt handler takes
1389 			 * over from here.
1390 			 */
1391 		}
1392 
1393 		break;
1394 
1395 	case ATAPI_PROT_PIO:
1396 	case ATAPI_PROT_NODATA:
1397 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1398 			ata_qc_set_polling(qc);
1399 
1400 		ata_tf_to_host(ap, &qc->tf);
1401 
1402 		ap->hsm_task_state = HSM_ST_FIRST;
1403 
1404 		/* send cdb by polling if no cdb interrupt */
1405 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1406 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1407 			ata_sff_queue_pio_task(link, 0);
1408 		break;
1409 
1410 	default:
1411 		return AC_ERR_SYSTEM;
1412 	}
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1417 
1418 /**
1419  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1420  *	@qc: qc to fill result TF for
1421  *
1422  *	@qc is finished and result TF needs to be filled.  Fill it
1423  *	using ->sff_tf_read.
1424  *
1425  *	LOCKING:
1426  *	spin_lock_irqsave(host lock)
1427  *
1428  *	RETURNS:
1429  *	true indicating that result TF is successfully filled.
1430  */
1431 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1432 {
1433 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1434 	return true;
1435 }
1436 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1437 
1438 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1439 {
1440 	ap->stats.idle_irq++;
1441 
1442 #ifdef ATA_IRQ_TRAP
1443 	if ((ap->stats.idle_irq % 1000) == 0) {
1444 		ap->ops->sff_check_status(ap);
1445 		if (ap->ops->sff_irq_clear)
1446 			ap->ops->sff_irq_clear(ap);
1447 		ata_port_warn(ap, "irq trap\n");
1448 		return 1;
1449 	}
1450 #endif
1451 	return 0;	/* irq not handled */
1452 }
1453 
1454 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1455 					struct ata_queued_cmd *qc,
1456 					bool hsmv_on_idle)
1457 {
1458 	u8 status;
1459 
1460 	VPRINTK("ata%u: protocol %d task_state %d\n",
1461 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1462 
1463 	/* Check whether we are expecting interrupt in this state */
1464 	switch (ap->hsm_task_state) {
1465 	case HSM_ST_FIRST:
1466 		/* Some pre-ATAPI-4 devices assert INTRQ
1467 		 * at this state when ready to receive CDB.
1468 		 */
1469 
1470 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1471 		 * The flag was turned on only for atapi devices.  No
1472 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1473 		 */
1474 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1475 			return ata_sff_idle_irq(ap);
1476 		break;
1477 	case HSM_ST_IDLE:
1478 		return ata_sff_idle_irq(ap);
1479 	default:
1480 		break;
1481 	}
1482 
1483 	/* check main status, clearing INTRQ if needed */
1484 	status = ata_sff_irq_status(ap);
1485 	if (status & ATA_BUSY) {
1486 		if (hsmv_on_idle) {
1487 			/* BMDMA engine is already stopped, we're screwed */
1488 			qc->err_mask |= AC_ERR_HSM;
1489 			ap->hsm_task_state = HSM_ST_ERR;
1490 		} else
1491 			return ata_sff_idle_irq(ap);
1492 	}
1493 
1494 	/* clear irq events */
1495 	if (ap->ops->sff_irq_clear)
1496 		ap->ops->sff_irq_clear(ap);
1497 
1498 	ata_sff_hsm_move(ap, qc, status, 0);
1499 
1500 	return 1;	/* irq handled */
1501 }
1502 
1503 /**
1504  *	ata_sff_port_intr - Handle SFF port interrupt
1505  *	@ap: Port on which interrupt arrived (possibly...)
1506  *	@qc: Taskfile currently active in engine
1507  *
1508  *	Handle port interrupt for given queued command.
1509  *
1510  *	LOCKING:
1511  *	spin_lock_irqsave(host lock)
1512  *
1513  *	RETURNS:
1514  *	One if interrupt was handled, zero if not (shared irq).
1515  */
1516 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1517 {
1518 	return __ata_sff_port_intr(ap, qc, false);
1519 }
1520 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1521 
1522 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1523 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1524 {
1525 	struct ata_host *host = dev_instance;
1526 	bool retried = false;
1527 	unsigned int i;
1528 	unsigned int handled, idle, polling;
1529 	unsigned long flags;
1530 
1531 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1532 	spin_lock_irqsave(&host->lock, flags);
1533 
1534 retry:
1535 	handled = idle = polling = 0;
1536 	for (i = 0; i < host->n_ports; i++) {
1537 		struct ata_port *ap = host->ports[i];
1538 		struct ata_queued_cmd *qc;
1539 
1540 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1541 		if (qc) {
1542 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1543 				handled |= port_intr(ap, qc);
1544 			else
1545 				polling |= 1 << i;
1546 		} else
1547 			idle |= 1 << i;
1548 	}
1549 
1550 	/*
1551 	 * If no port was expecting IRQ but the controller is actually
1552 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1553 	 * pending status if available and clear spurious IRQ.
1554 	 */
1555 	if (!handled && !retried) {
1556 		bool retry = false;
1557 
1558 		for (i = 0; i < host->n_ports; i++) {
1559 			struct ata_port *ap = host->ports[i];
1560 
1561 			if (polling & (1 << i))
1562 				continue;
1563 
1564 			if (!ap->ops->sff_irq_check ||
1565 			    !ap->ops->sff_irq_check(ap))
1566 				continue;
1567 
1568 			if (idle & (1 << i)) {
1569 				ap->ops->sff_check_status(ap);
1570 				if (ap->ops->sff_irq_clear)
1571 					ap->ops->sff_irq_clear(ap);
1572 			} else {
1573 				/* clear INTRQ and check if BUSY cleared */
1574 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1575 					retry |= true;
1576 				/*
1577 				 * With command in flight, we can't do
1578 				 * sff_irq_clear() w/o racing with completion.
1579 				 */
1580 			}
1581 		}
1582 
1583 		if (retry) {
1584 			retried = true;
1585 			goto retry;
1586 		}
1587 	}
1588 
1589 	spin_unlock_irqrestore(&host->lock, flags);
1590 
1591 	return IRQ_RETVAL(handled);
1592 }
1593 
1594 /**
1595  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1596  *	@irq: irq line (unused)
1597  *	@dev_instance: pointer to our ata_host information structure
1598  *
1599  *	Default interrupt handler for PCI IDE devices.  Calls
1600  *	ata_sff_port_intr() for each port that is not disabled.
1601  *
1602  *	LOCKING:
1603  *	Obtains host lock during operation.
1604  *
1605  *	RETURNS:
1606  *	IRQ_NONE or IRQ_HANDLED.
1607  */
1608 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1609 {
1610 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1611 }
1612 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1613 
1614 /**
1615  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1616  *	@ap: port that appears to have timed out
1617  *
1618  *	Called from the libata error handlers when the core code suspects
1619  *	an interrupt has been lost. If it has complete anything we can and
1620  *	then return. Interface must support altstatus for this faster
1621  *	recovery to occur.
1622  *
1623  *	Locking:
1624  *	Caller holds host lock
1625  */
1626 
1627 void ata_sff_lost_interrupt(struct ata_port *ap)
1628 {
1629 	u8 status;
1630 	struct ata_queued_cmd *qc;
1631 
1632 	/* Only one outstanding command per SFF channel */
1633 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634 	/* We cannot lose an interrupt on a non-existent or polled command */
1635 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1636 		return;
1637 	/* See if the controller thinks it is still busy - if so the command
1638 	   isn't a lost IRQ but is still in progress */
1639 	status = ata_sff_altstatus(ap);
1640 	if (status & ATA_BUSY)
1641 		return;
1642 
1643 	/* There was a command running, we are no longer busy and we have
1644 	   no interrupt. */
1645 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1646 								status);
1647 	/* Run the host interrupt logic as if the interrupt had not been
1648 	   lost */
1649 	ata_sff_port_intr(ap, qc);
1650 }
1651 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1652 
1653 /**
1654  *	ata_sff_freeze - Freeze SFF controller port
1655  *	@ap: port to freeze
1656  *
1657  *	Freeze SFF controller port.
1658  *
1659  *	LOCKING:
1660  *	Inherited from caller.
1661  */
1662 void ata_sff_freeze(struct ata_port *ap)
1663 {
1664 	ap->ctl |= ATA_NIEN;
1665 	ap->last_ctl = ap->ctl;
1666 
1667 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1668 		ata_sff_set_devctl(ap, ap->ctl);
1669 
1670 	/* Under certain circumstances, some controllers raise IRQ on
1671 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1672 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1673 	 */
1674 	ap->ops->sff_check_status(ap);
1675 
1676 	if (ap->ops->sff_irq_clear)
1677 		ap->ops->sff_irq_clear(ap);
1678 }
1679 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1680 
1681 /**
1682  *	ata_sff_thaw - Thaw SFF controller port
1683  *	@ap: port to thaw
1684  *
1685  *	Thaw SFF controller port.
1686  *
1687  *	LOCKING:
1688  *	Inherited from caller.
1689  */
1690 void ata_sff_thaw(struct ata_port *ap)
1691 {
1692 	/* clear & re-enable interrupts */
1693 	ap->ops->sff_check_status(ap);
1694 	if (ap->ops->sff_irq_clear)
1695 		ap->ops->sff_irq_clear(ap);
1696 	ata_sff_irq_on(ap);
1697 }
1698 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1699 
1700 /**
1701  *	ata_sff_prereset - prepare SFF link for reset
1702  *	@link: SFF link to be reset
1703  *	@deadline: deadline jiffies for the operation
1704  *
1705  *	SFF link @link is about to be reset.  Initialize it.  It first
1706  *	calls ata_std_prereset() and wait for !BSY if the port is
1707  *	being softreset.
1708  *
1709  *	LOCKING:
1710  *	Kernel thread context (may sleep)
1711  *
1712  *	RETURNS:
1713  *	0 on success, -errno otherwise.
1714  */
1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1716 {
1717 	struct ata_eh_context *ehc = &link->eh_context;
1718 	int rc;
1719 
1720 	rc = ata_std_prereset(link, deadline);
1721 	if (rc)
1722 		return rc;
1723 
1724 	/* if we're about to do hardreset, nothing more to do */
1725 	if (ehc->i.action & ATA_EH_HARDRESET)
1726 		return 0;
1727 
1728 	/* wait for !BSY if we don't know that no device is attached */
1729 	if (!ata_link_offline(link)) {
1730 		rc = ata_sff_wait_ready(link, deadline);
1731 		if (rc && rc != -ENODEV) {
1732 			ata_link_warn(link,
1733 				      "device not ready (errno=%d), forcing hardreset\n",
1734 				      rc);
1735 			ehc->i.action |= ATA_EH_HARDRESET;
1736 		}
1737 	}
1738 
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1742 
1743 /**
1744  *	ata_devchk - PATA device presence detection
1745  *	@ap: ATA channel to examine
1746  *	@device: Device to examine (starting at zero)
1747  *
1748  *	This technique was originally described in
1749  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1750  *	later found its way into the ATA/ATAPI spec.
1751  *
1752  *	Write a pattern to the ATA shadow registers,
1753  *	and if a device is present, it will respond by
1754  *	correctly storing and echoing back the
1755  *	ATA shadow register contents.
1756  *
1757  *	LOCKING:
1758  *	caller.
1759  */
1760 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1761 {
1762 	struct ata_ioports *ioaddr = &ap->ioaddr;
1763 	u8 nsect, lbal;
1764 
1765 	ap->ops->sff_dev_select(ap, device);
1766 
1767 	iowrite8(0x55, ioaddr->nsect_addr);
1768 	iowrite8(0xaa, ioaddr->lbal_addr);
1769 
1770 	iowrite8(0xaa, ioaddr->nsect_addr);
1771 	iowrite8(0x55, ioaddr->lbal_addr);
1772 
1773 	iowrite8(0x55, ioaddr->nsect_addr);
1774 	iowrite8(0xaa, ioaddr->lbal_addr);
1775 
1776 	nsect = ioread8(ioaddr->nsect_addr);
1777 	lbal = ioread8(ioaddr->lbal_addr);
1778 
1779 	if ((nsect == 0x55) && (lbal == 0xaa))
1780 		return 1;	/* we found a device */
1781 
1782 	return 0;		/* nothing found */
1783 }
1784 
1785 /**
1786  *	ata_sff_dev_classify - Parse returned ATA device signature
1787  *	@dev: ATA device to classify (starting at zero)
1788  *	@present: device seems present
1789  *	@r_err: Value of error register on completion
1790  *
1791  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1792  *	an ATA/ATAPI-defined set of values is placed in the ATA
1793  *	shadow registers, indicating the results of device detection
1794  *	and diagnostics.
1795  *
1796  *	Select the ATA device, and read the values from the ATA shadow
1797  *	registers.  Then parse according to the Error register value,
1798  *	and the spec-defined values examined by ata_dev_classify().
1799  *
1800  *	LOCKING:
1801  *	caller.
1802  *
1803  *	RETURNS:
1804  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1805  */
1806 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1807 				  u8 *r_err)
1808 {
1809 	struct ata_port *ap = dev->link->ap;
1810 	struct ata_taskfile tf;
1811 	unsigned int class;
1812 	u8 err;
1813 
1814 	ap->ops->sff_dev_select(ap, dev->devno);
1815 
1816 	memset(&tf, 0, sizeof(tf));
1817 
1818 	ap->ops->sff_tf_read(ap, &tf);
1819 	err = tf.feature;
1820 	if (r_err)
1821 		*r_err = err;
1822 
1823 	/* see if device passed diags: continue and warn later */
1824 	if (err == 0)
1825 		/* diagnostic fail : do nothing _YET_ */
1826 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1827 	else if (err == 1)
1828 		/* do nothing */ ;
1829 	else if ((dev->devno == 0) && (err == 0x81))
1830 		/* do nothing */ ;
1831 	else
1832 		return ATA_DEV_NONE;
1833 
1834 	/* determine if device is ATA or ATAPI */
1835 	class = ata_dev_classify(&tf);
1836 
1837 	if (class == ATA_DEV_UNKNOWN) {
1838 		/* If the device failed diagnostic, it's likely to
1839 		 * have reported incorrect device signature too.
1840 		 * Assume ATA device if the device seems present but
1841 		 * device signature is invalid with diagnostic
1842 		 * failure.
1843 		 */
1844 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1845 			class = ATA_DEV_ATA;
1846 		else
1847 			class = ATA_DEV_NONE;
1848 	} else if ((class == ATA_DEV_ATA) &&
1849 		   (ap->ops->sff_check_status(ap) == 0))
1850 		class = ATA_DEV_NONE;
1851 
1852 	return class;
1853 }
1854 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1855 
1856 /**
1857  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1858  *	@link: SFF link which is just reset
1859  *	@devmask: mask of present devices
1860  *	@deadline: deadline jiffies for the operation
1861  *
1862  *	Wait devices attached to SFF @link to become ready after
1863  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1864  *	status register too early.
1865  *
1866  *	LOCKING:
1867  *	Kernel thread context (may sleep).
1868  *
1869  *	RETURNS:
1870  *	0 on success, -ENODEV if some or all of devices in @devmask
1871  *	don't seem to exist.  -errno on other errors.
1872  */
1873 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1874 			     unsigned long deadline)
1875 {
1876 	struct ata_port *ap = link->ap;
1877 	struct ata_ioports *ioaddr = &ap->ioaddr;
1878 	unsigned int dev0 = devmask & (1 << 0);
1879 	unsigned int dev1 = devmask & (1 << 1);
1880 	int rc, ret = 0;
1881 
1882 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1883 
1884 	/* always check readiness of the master device */
1885 	rc = ata_sff_wait_ready(link, deadline);
1886 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1887 	 * and TF status is 0xff, bail out on it too.
1888 	 */
1889 	if (rc)
1890 		return rc;
1891 
1892 	/* if device 1 was found in ata_devchk, wait for register
1893 	 * access briefly, then wait for BSY to clear.
1894 	 */
1895 	if (dev1) {
1896 		int i;
1897 
1898 		ap->ops->sff_dev_select(ap, 1);
1899 
1900 		/* Wait for register access.  Some ATAPI devices fail
1901 		 * to set nsect/lbal after reset, so don't waste too
1902 		 * much time on it.  We're gonna wait for !BSY anyway.
1903 		 */
1904 		for (i = 0; i < 2; i++) {
1905 			u8 nsect, lbal;
1906 
1907 			nsect = ioread8(ioaddr->nsect_addr);
1908 			lbal = ioread8(ioaddr->lbal_addr);
1909 			if ((nsect == 1) && (lbal == 1))
1910 				break;
1911 			ata_msleep(ap, 50);	/* give drive a breather */
1912 		}
1913 
1914 		rc = ata_sff_wait_ready(link, deadline);
1915 		if (rc) {
1916 			if (rc != -ENODEV)
1917 				return rc;
1918 			ret = rc;
1919 		}
1920 	}
1921 
1922 	/* is all this really necessary? */
1923 	ap->ops->sff_dev_select(ap, 0);
1924 	if (dev1)
1925 		ap->ops->sff_dev_select(ap, 1);
1926 	if (dev0)
1927 		ap->ops->sff_dev_select(ap, 0);
1928 
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1932 
1933 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1934 			     unsigned long deadline)
1935 {
1936 	struct ata_ioports *ioaddr = &ap->ioaddr;
1937 
1938 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1939 
1940 	if (ap->ioaddr.ctl_addr) {
1941 		/* software reset.  causes dev0 to be selected */
1942 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1943 		udelay(20);	/* FIXME: flush */
1944 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1945 		udelay(20);	/* FIXME: flush */
1946 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1947 		ap->last_ctl = ap->ctl;
1948 	}
1949 
1950 	/* wait the port to become ready */
1951 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1952 }
1953 
1954 /**
1955  *	ata_sff_softreset - reset host port via ATA SRST
1956  *	@link: ATA link to reset
1957  *	@classes: resulting classes of attached devices
1958  *	@deadline: deadline jiffies for the operation
1959  *
1960  *	Reset host port using ATA SRST.
1961  *
1962  *	LOCKING:
1963  *	Kernel thread context (may sleep)
1964  *
1965  *	RETURNS:
1966  *	0 on success, -errno otherwise.
1967  */
1968 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1969 		      unsigned long deadline)
1970 {
1971 	struct ata_port *ap = link->ap;
1972 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1973 	unsigned int devmask = 0;
1974 	int rc;
1975 	u8 err;
1976 
1977 	DPRINTK("ENTER\n");
1978 
1979 	/* determine if device 0/1 are present */
1980 	if (ata_devchk(ap, 0))
1981 		devmask |= (1 << 0);
1982 	if (slave_possible && ata_devchk(ap, 1))
1983 		devmask |= (1 << 1);
1984 
1985 	/* select device 0 again */
1986 	ap->ops->sff_dev_select(ap, 0);
1987 
1988 	/* issue bus reset */
1989 	DPRINTK("about to softreset, devmask=%x\n", devmask);
1990 	rc = ata_bus_softreset(ap, devmask, deadline);
1991 	/* if link is occupied, -ENODEV too is an error */
1992 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1993 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1994 		return rc;
1995 	}
1996 
1997 	/* determine by signature whether we have ATA or ATAPI devices */
1998 	classes[0] = ata_sff_dev_classify(&link->device[0],
1999 					  devmask & (1 << 0), &err);
2000 	if (slave_possible && err != 0x81)
2001 		classes[1] = ata_sff_dev_classify(&link->device[1],
2002 						  devmask & (1 << 1), &err);
2003 
2004 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2005 	return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2008 
2009 /**
2010  *	sata_sff_hardreset - reset host port via SATA phy reset
2011  *	@link: link to reset
2012  *	@class: resulting class of attached device
2013  *	@deadline: deadline jiffies for the operation
2014  *
2015  *	SATA phy-reset host port using DET bits of SControl register,
2016  *	wait for !BSY and classify the attached device.
2017  *
2018  *	LOCKING:
2019  *	Kernel thread context (may sleep)
2020  *
2021  *	RETURNS:
2022  *	0 on success, -errno otherwise.
2023  */
2024 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2025 		       unsigned long deadline)
2026 {
2027 	struct ata_eh_context *ehc = &link->eh_context;
2028 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2029 	bool online;
2030 	int rc;
2031 
2032 	rc = sata_link_hardreset(link, timing, deadline, &online,
2033 				 ata_sff_check_ready);
2034 	if (online)
2035 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2036 
2037 	DPRINTK("EXIT, class=%u\n", *class);
2038 	return rc;
2039 }
2040 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2041 
2042 /**
2043  *	ata_sff_postreset - SFF postreset callback
2044  *	@link: the target SFF ata_link
2045  *	@classes: classes of attached devices
2046  *
2047  *	This function is invoked after a successful reset.  It first
2048  *	calls ata_std_postreset() and performs SFF specific postreset
2049  *	processing.
2050  *
2051  *	LOCKING:
2052  *	Kernel thread context (may sleep)
2053  */
2054 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2055 {
2056 	struct ata_port *ap = link->ap;
2057 
2058 	ata_std_postreset(link, classes);
2059 
2060 	/* is double-select really necessary? */
2061 	if (classes[0] != ATA_DEV_NONE)
2062 		ap->ops->sff_dev_select(ap, 1);
2063 	if (classes[1] != ATA_DEV_NONE)
2064 		ap->ops->sff_dev_select(ap, 0);
2065 
2066 	/* bail out if no device is present */
2067 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2068 		DPRINTK("EXIT, no device\n");
2069 		return;
2070 	}
2071 
2072 	/* set up device control */
2073 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2074 		ata_sff_set_devctl(ap, ap->ctl);
2075 		ap->last_ctl = ap->ctl;
2076 	}
2077 }
2078 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2079 
2080 /**
2081  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2082  *	@qc: command
2083  *
2084  *	Drain the FIFO and device of any stuck data following a command
2085  *	failing to complete. In some cases this is necessary before a
2086  *	reset will recover the device.
2087  *
2088  */
2089 
2090 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2091 {
2092 	int count;
2093 	struct ata_port *ap;
2094 
2095 	/* We only need to flush incoming data when a command was running */
2096 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2097 		return;
2098 
2099 	ap = qc->ap;
2100 	/* Drain up to 64K of data before we give up this recovery method */
2101 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2102 						&& count < 65536; count += 2)
2103 		ioread16(ap->ioaddr.data_addr);
2104 
2105 	/* Can become DEBUG later */
2106 	if (count)
2107 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108 
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111 
2112 /**
2113  *	ata_sff_error_handler - Stock error handler for SFF controller
2114  *	@ap: port to handle error for
2115  *
2116  *	Stock error handler for SFF controller.  It can handle both
2117  *	PATA and SATA controllers.  Many controllers should be able to
2118  *	use this EH as-is or with some added handling before and
2119  *	after.
2120  *
2121  *	LOCKING:
2122  *	Kernel thread context (may sleep)
2123  */
2124 void ata_sff_error_handler(struct ata_port *ap)
2125 {
2126 	ata_reset_fn_t softreset = ap->ops->softreset;
2127 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2128 	struct ata_queued_cmd *qc;
2129 	unsigned long flags;
2130 
2131 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133 		qc = NULL;
2134 
2135 	spin_lock_irqsave(ap->lock, flags);
2136 
2137 	/*
2138 	 * We *MUST* do FIFO draining before we issue a reset as
2139 	 * several devices helpfully clear their internal state and
2140 	 * will lock solid if we touch the data port post reset. Pass
2141 	 * qc in case anyone wants to do different PIO/DMA recovery or
2142 	 * has per command fixups
2143 	 */
2144 	if (ap->ops->sff_drain_fifo)
2145 		ap->ops->sff_drain_fifo(qc);
2146 
2147 	spin_unlock_irqrestore(ap->lock, flags);
2148 
2149 	/* ignore built-in hardresets if SCR access is not available */
2150 	if ((hardreset == sata_std_hardreset ||
2151 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152 		hardreset = NULL;
2153 
2154 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155 		  ap->ops->postreset);
2156 }
2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158 
2159 /**
2160  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161  *	@ioaddr: IO address structure to be initialized
2162  *
2163  *	Utility function which initializes data_addr, error_addr,
2164  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165  *	device_addr, status_addr, and command_addr to standard offsets
2166  *	relative to cmd_addr.
2167  *
2168  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169  */
2170 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171 {
2172 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184 
2185 #ifdef CONFIG_PCI
2186 
2187 static int ata_resources_present(struct pci_dev *pdev, int port)
2188 {
2189 	int i;
2190 
2191 	/* Check the PCI resources for this channel are enabled */
2192 	port = port * 2;
2193 	for (i = 0; i < 2; i++) {
2194 		if (pci_resource_start(pdev, port + i) == 0 ||
2195 		    pci_resource_len(pdev, port + i) == 0)
2196 			return 0;
2197 	}
2198 	return 1;
2199 }
2200 
2201 /**
2202  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203  *	@host: target ATA host
2204  *
2205  *	Acquire native PCI ATA resources for @host and initialize the
2206  *	first two ports of @host accordingly.  Ports marked dummy are
2207  *	skipped and allocation failure makes the port dummy.
2208  *
2209  *	Note that native PCI resources are valid even for legacy hosts
2210  *	as we fix up pdev resources array early in boot, so this
2211  *	function can be used for both native and legacy SFF hosts.
2212  *
2213  *	LOCKING:
2214  *	Inherited from calling layer (may sleep).
2215  *
2216  *	RETURNS:
2217  *	0 if at least one port is initialized, -ENODEV if no port is
2218  *	available.
2219  */
2220 int ata_pci_sff_init_host(struct ata_host *host)
2221 {
2222 	struct device *gdev = host->dev;
2223 	struct pci_dev *pdev = to_pci_dev(gdev);
2224 	unsigned int mask = 0;
2225 	int i, rc;
2226 
2227 	/* request, iomap BARs and init port addresses accordingly */
2228 	for (i = 0; i < 2; i++) {
2229 		struct ata_port *ap = host->ports[i];
2230 		int base = i * 2;
2231 		void __iomem * const *iomap;
2232 
2233 		if (ata_port_is_dummy(ap))
2234 			continue;
2235 
2236 		/* Discard disabled ports.  Some controllers show
2237 		 * their unused channels this way.  Disabled ports are
2238 		 * made dummy.
2239 		 */
2240 		if (!ata_resources_present(pdev, i)) {
2241 			ap->ops = &ata_dummy_port_ops;
2242 			continue;
2243 		}
2244 
2245 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2246 					dev_driver_string(gdev));
2247 		if (rc) {
2248 			dev_warn(gdev,
2249 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2250 				 i, rc);
2251 			if (rc == -EBUSY)
2252 				pcim_pin_device(pdev);
2253 			ap->ops = &ata_dummy_port_ops;
2254 			continue;
2255 		}
2256 		host->iomap = iomap = pcim_iomap_table(pdev);
2257 
2258 		ap->ioaddr.cmd_addr = iomap[base];
2259 		ap->ioaddr.altstatus_addr =
2260 		ap->ioaddr.ctl_addr = (void __iomem *)
2261 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262 		ata_sff_std_ports(&ap->ioaddr);
2263 
2264 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265 			(unsigned long long)pci_resource_start(pdev, base),
2266 			(unsigned long long)pci_resource_start(pdev, base + 1));
2267 
2268 		mask |= 1 << i;
2269 	}
2270 
2271 	if (!mask) {
2272 		dev_err(gdev, "no available native port\n");
2273 		return -ENODEV;
2274 	}
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279 
2280 /**
2281  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282  *	@pdev: target PCI device
2283  *	@ppi: array of port_info, must be enough for two ports
2284  *	@r_host: out argument for the initialized ATA host
2285  *
2286  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287  *	all PCI resources and initialize it accordingly in one go.
2288  *
2289  *	LOCKING:
2290  *	Inherited from calling layer (may sleep).
2291  *
2292  *	RETURNS:
2293  *	0 on success, -errno otherwise.
2294  */
2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296 			     const struct ata_port_info * const *ppi,
2297 			     struct ata_host **r_host)
2298 {
2299 	struct ata_host *host;
2300 	int rc;
2301 
2302 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303 		return -ENOMEM;
2304 
2305 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306 	if (!host) {
2307 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308 		rc = -ENOMEM;
2309 		goto err_out;
2310 	}
2311 
2312 	rc = ata_pci_sff_init_host(host);
2313 	if (rc)
2314 		goto err_out;
2315 
2316 	devres_remove_group(&pdev->dev, NULL);
2317 	*r_host = host;
2318 	return 0;
2319 
2320 err_out:
2321 	devres_release_group(&pdev->dev, NULL);
2322 	return rc;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325 
2326 /**
2327  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328  *	@host: target SFF ATA host
2329  *	@irq_handler: irq_handler used when requesting IRQ(s)
2330  *	@sht: scsi_host_template to use when registering the host
2331  *
2332  *	This is the counterpart of ata_host_activate() for SFF ATA
2333  *	hosts.  This separate helper is necessary because SFF hosts
2334  *	use two separate interrupts in legacy mode.
2335  *
2336  *	LOCKING:
2337  *	Inherited from calling layer (may sleep).
2338  *
2339  *	RETURNS:
2340  *	0 on success, -errno otherwise.
2341  */
2342 int ata_pci_sff_activate_host(struct ata_host *host,
2343 			      irq_handler_t irq_handler,
2344 			      struct scsi_host_template *sht)
2345 {
2346 	struct device *dev = host->dev;
2347 	struct pci_dev *pdev = to_pci_dev(dev);
2348 	const char *drv_name = dev_driver_string(host->dev);
2349 	int legacy_mode = 0, rc;
2350 
2351 	rc = ata_host_start(host);
2352 	if (rc)
2353 		return rc;
2354 
2355 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356 		u8 tmp8, mask = 0;
2357 
2358 		/*
2359 		 * ATA spec says we should use legacy mode when one
2360 		 * port is in legacy mode, but disabled ports on some
2361 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362 		 * on which the secondary port is not wired, so
2363 		 * ignore ports that are marked as 'dummy' during
2364 		 * this check
2365 		 */
2366 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367 		if (!ata_port_is_dummy(host->ports[0]))
2368 			mask |= (1 << 0);
2369 		if (!ata_port_is_dummy(host->ports[1]))
2370 			mask |= (1 << 2);
2371 		if ((tmp8 & mask) != mask)
2372 			legacy_mode = 1;
2373 	}
2374 
2375 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376 		return -ENOMEM;
2377 
2378 	if (!legacy_mode && pdev->irq) {
2379 		int i;
2380 
2381 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382 				      IRQF_SHARED, drv_name, host);
2383 		if (rc)
2384 			goto out;
2385 
2386 		for (i = 0; i < 2; i++) {
2387 			if (ata_port_is_dummy(host->ports[i]))
2388 				continue;
2389 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390 		}
2391 	} else if (legacy_mode) {
2392 		if (!ata_port_is_dummy(host->ports[0])) {
2393 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394 					      irq_handler, IRQF_SHARED,
2395 					      drv_name, host);
2396 			if (rc)
2397 				goto out;
2398 
2399 			ata_port_desc(host->ports[0], "irq %d",
2400 				      ATA_PRIMARY_IRQ(pdev));
2401 		}
2402 
2403 		if (!ata_port_is_dummy(host->ports[1])) {
2404 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405 					      irq_handler, IRQF_SHARED,
2406 					      drv_name, host);
2407 			if (rc)
2408 				goto out;
2409 
2410 			ata_port_desc(host->ports[1], "irq %d",
2411 				      ATA_SECONDARY_IRQ(pdev));
2412 		}
2413 	}
2414 
2415 	rc = ata_host_register(host, sht);
2416 out:
2417 	if (rc == 0)
2418 		devres_remove_group(dev, NULL);
2419 	else
2420 		devres_release_group(dev, NULL);
2421 
2422 	return rc;
2423 }
2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425 
2426 static const struct ata_port_info *ata_sff_find_valid_pi(
2427 					const struct ata_port_info * const *ppi)
2428 {
2429 	int i;
2430 
2431 	/* look up the first valid port_info */
2432 	for (i = 0; i < 2 && ppi[i]; i++)
2433 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434 			return ppi[i];
2435 
2436 	return NULL;
2437 }
2438 
2439 static int ata_pci_init_one(struct pci_dev *pdev,
2440 		const struct ata_port_info * const *ppi,
2441 		struct scsi_host_template *sht, void *host_priv,
2442 		int hflags, bool bmdma)
2443 {
2444 	struct device *dev = &pdev->dev;
2445 	const struct ata_port_info *pi;
2446 	struct ata_host *host = NULL;
2447 	int rc;
2448 
2449 	DPRINTK("ENTER\n");
2450 
2451 	pi = ata_sff_find_valid_pi(ppi);
2452 	if (!pi) {
2453 		dev_err(&pdev->dev, "no valid port_info specified\n");
2454 		return -EINVAL;
2455 	}
2456 
2457 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2458 		return -ENOMEM;
2459 
2460 	rc = pcim_enable_device(pdev);
2461 	if (rc)
2462 		goto out;
2463 
2464 #ifdef CONFIG_ATA_BMDMA
2465 	if (bmdma)
2466 		/* prepare and activate BMDMA host */
2467 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2468 	else
2469 #endif
2470 		/* prepare and activate SFF host */
2471 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2472 	if (rc)
2473 		goto out;
2474 	host->private_data = host_priv;
2475 	host->flags |= hflags;
2476 
2477 #ifdef CONFIG_ATA_BMDMA
2478 	if (bmdma) {
2479 		pci_set_master(pdev);
2480 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2481 	} else
2482 #endif
2483 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2484 out:
2485 	if (rc == 0)
2486 		devres_remove_group(&pdev->dev, NULL);
2487 	else
2488 		devres_release_group(&pdev->dev, NULL);
2489 
2490 	return rc;
2491 }
2492 
2493 /**
2494  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2495  *	@pdev: Controller to be initialized
2496  *	@ppi: array of port_info, must be enough for two ports
2497  *	@sht: scsi_host_template to use when registering the host
2498  *	@host_priv: host private_data
2499  *	@hflag: host flags
2500  *
2501  *	This is a helper function which can be called from a driver's
2502  *	xxx_init_one() probe function if the hardware uses traditional
2503  *	IDE taskfile registers and is PIO only.
2504  *
2505  *	ASSUMPTION:
2506  *	Nobody makes a single channel controller that appears solely as
2507  *	the secondary legacy port on PCI.
2508  *
2509  *	LOCKING:
2510  *	Inherited from PCI layer (may sleep).
2511  *
2512  *	RETURNS:
2513  *	Zero on success, negative on errno-based value on error.
2514  */
2515 int ata_pci_sff_init_one(struct pci_dev *pdev,
2516 		 const struct ata_port_info * const *ppi,
2517 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2518 {
2519 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2520 }
2521 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2522 
2523 #endif /* CONFIG_PCI */
2524 
2525 /*
2526  *	BMDMA support
2527  */
2528 
2529 #ifdef CONFIG_ATA_BMDMA
2530 
2531 const struct ata_port_operations ata_bmdma_port_ops = {
2532 	.inherits		= &ata_sff_port_ops,
2533 
2534 	.error_handler		= ata_bmdma_error_handler,
2535 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2536 
2537 	.qc_prep		= ata_bmdma_qc_prep,
2538 	.qc_issue		= ata_bmdma_qc_issue,
2539 
2540 	.sff_irq_clear		= ata_bmdma_irq_clear,
2541 	.bmdma_setup		= ata_bmdma_setup,
2542 	.bmdma_start		= ata_bmdma_start,
2543 	.bmdma_stop		= ata_bmdma_stop,
2544 	.bmdma_status		= ata_bmdma_status,
2545 
2546 	.port_start		= ata_bmdma_port_start,
2547 };
2548 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2549 
2550 const struct ata_port_operations ata_bmdma32_port_ops = {
2551 	.inherits		= &ata_bmdma_port_ops,
2552 
2553 	.sff_data_xfer		= ata_sff_data_xfer32,
2554 	.port_start		= ata_bmdma_port_start32,
2555 };
2556 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2557 
2558 /**
2559  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2560  *	@qc: Metadata associated with taskfile to be transferred
2561  *
2562  *	Fill PCI IDE PRD (scatter-gather) table with segments
2563  *	associated with the current disk command.
2564  *
2565  *	LOCKING:
2566  *	spin_lock_irqsave(host lock)
2567  *
2568  */
2569 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2570 {
2571 	struct ata_port *ap = qc->ap;
2572 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2573 	struct scatterlist *sg;
2574 	unsigned int si, pi;
2575 
2576 	pi = 0;
2577 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2578 		u32 addr, offset;
2579 		u32 sg_len, len;
2580 
2581 		/* determine if physical DMA addr spans 64K boundary.
2582 		 * Note h/w doesn't support 64-bit, so we unconditionally
2583 		 * truncate dma_addr_t to u32.
2584 		 */
2585 		addr = (u32) sg_dma_address(sg);
2586 		sg_len = sg_dma_len(sg);
2587 
2588 		while (sg_len) {
2589 			offset = addr & 0xffff;
2590 			len = sg_len;
2591 			if ((offset + sg_len) > 0x10000)
2592 				len = 0x10000 - offset;
2593 
2594 			prd[pi].addr = cpu_to_le32(addr);
2595 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2596 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2597 
2598 			pi++;
2599 			sg_len -= len;
2600 			addr += len;
2601 		}
2602 	}
2603 
2604 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2605 }
2606 
2607 /**
2608  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2609  *	@qc: Metadata associated with taskfile to be transferred
2610  *
2611  *	Fill PCI IDE PRD (scatter-gather) table with segments
2612  *	associated with the current disk command. Perform the fill
2613  *	so that we avoid writing any length 64K records for
2614  *	controllers that don't follow the spec.
2615  *
2616  *	LOCKING:
2617  *	spin_lock_irqsave(host lock)
2618  *
2619  */
2620 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2621 {
2622 	struct ata_port *ap = qc->ap;
2623 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2624 	struct scatterlist *sg;
2625 	unsigned int si, pi;
2626 
2627 	pi = 0;
2628 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2629 		u32 addr, offset;
2630 		u32 sg_len, len, blen;
2631 
2632 		/* determine if physical DMA addr spans 64K boundary.
2633 		 * Note h/w doesn't support 64-bit, so we unconditionally
2634 		 * truncate dma_addr_t to u32.
2635 		 */
2636 		addr = (u32) sg_dma_address(sg);
2637 		sg_len = sg_dma_len(sg);
2638 
2639 		while (sg_len) {
2640 			offset = addr & 0xffff;
2641 			len = sg_len;
2642 			if ((offset + sg_len) > 0x10000)
2643 				len = 0x10000 - offset;
2644 
2645 			blen = len & 0xffff;
2646 			prd[pi].addr = cpu_to_le32(addr);
2647 			if (blen == 0) {
2648 				/* Some PATA chipsets like the CS5530 can't
2649 				   cope with 0x0000 meaning 64K as the spec
2650 				   says */
2651 				prd[pi].flags_len = cpu_to_le32(0x8000);
2652 				blen = 0x8000;
2653 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2654 			}
2655 			prd[pi].flags_len = cpu_to_le32(blen);
2656 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2657 
2658 			pi++;
2659 			sg_len -= len;
2660 			addr += len;
2661 		}
2662 	}
2663 
2664 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2665 }
2666 
2667 /**
2668  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2669  *	@qc: Metadata associated with taskfile to be prepared
2670  *
2671  *	Prepare ATA taskfile for submission.
2672  *
2673  *	LOCKING:
2674  *	spin_lock_irqsave(host lock)
2675  */
2676 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2677 {
2678 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2679 		return;
2680 
2681 	ata_bmdma_fill_sg(qc);
2682 }
2683 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2684 
2685 /**
2686  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2687  *	@qc: Metadata associated with taskfile to be prepared
2688  *
2689  *	Prepare ATA taskfile for submission.
2690  *
2691  *	LOCKING:
2692  *	spin_lock_irqsave(host lock)
2693  */
2694 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2695 {
2696 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2697 		return;
2698 
2699 	ata_bmdma_fill_sg_dumb(qc);
2700 }
2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702 
2703 /**
2704  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705  *	@qc: command to issue to device
2706  *
2707  *	This function issues a PIO, NODATA or DMA command to a
2708  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2709  *	ata_sff_qc_issue().
2710  *
2711  *	LOCKING:
2712  *	spin_lock_irqsave(host lock)
2713  *
2714  *	RETURNS:
2715  *	Zero on success, AC_ERR_* mask on failure
2716  */
2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718 {
2719 	struct ata_port *ap = qc->ap;
2720 	struct ata_link *link = qc->dev->link;
2721 
2722 	/* defer PIO handling to sff_qc_issue */
2723 	if (!ata_is_dma(qc->tf.protocol))
2724 		return ata_sff_qc_issue(qc);
2725 
2726 	/* select the device */
2727 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2728 
2729 	/* start the command */
2730 	switch (qc->tf.protocol) {
2731 	case ATA_PROT_DMA:
2732 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733 
2734 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2735 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2736 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2737 		ap->hsm_task_state = HSM_ST_LAST;
2738 		break;
2739 
2740 	case ATAPI_PROT_DMA:
2741 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2742 
2743 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2744 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2745 		ap->hsm_task_state = HSM_ST_FIRST;
2746 
2747 		/* send cdb by polling if no cdb interrupt */
2748 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2749 			ata_sff_queue_pio_task(link, 0);
2750 		break;
2751 
2752 	default:
2753 		WARN_ON(1);
2754 		return AC_ERR_SYSTEM;
2755 	}
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2760 
2761 /**
2762  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2763  *	@ap: Port on which interrupt arrived (possibly...)
2764  *	@qc: Taskfile currently active in engine
2765  *
2766  *	Handle port interrupt for given queued command.
2767  *
2768  *	LOCKING:
2769  *	spin_lock_irqsave(host lock)
2770  *
2771  *	RETURNS:
2772  *	One if interrupt was handled, zero if not (shared irq).
2773  */
2774 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2775 {
2776 	struct ata_eh_info *ehi = &ap->link.eh_info;
2777 	u8 host_stat = 0;
2778 	bool bmdma_stopped = false;
2779 	unsigned int handled;
2780 
2781 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2782 		/* check status of DMA engine */
2783 		host_stat = ap->ops->bmdma_status(ap);
2784 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2785 
2786 		/* if it's not our irq... */
2787 		if (!(host_stat & ATA_DMA_INTR))
2788 			return ata_sff_idle_irq(ap);
2789 
2790 		/* before we do anything else, clear DMA-Start bit */
2791 		ap->ops->bmdma_stop(qc);
2792 		bmdma_stopped = true;
2793 
2794 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2795 			/* error when transferring data to/from memory */
2796 			qc->err_mask |= AC_ERR_HOST_BUS;
2797 			ap->hsm_task_state = HSM_ST_ERR;
2798 		}
2799 	}
2800 
2801 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2802 
2803 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2804 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2805 
2806 	return handled;
2807 }
2808 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2809 
2810 /**
2811  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2812  *	@irq: irq line (unused)
2813  *	@dev_instance: pointer to our ata_host information structure
2814  *
2815  *	Default interrupt handler for PCI IDE devices.  Calls
2816  *	ata_bmdma_port_intr() for each port that is not disabled.
2817  *
2818  *	LOCKING:
2819  *	Obtains host lock during operation.
2820  *
2821  *	RETURNS:
2822  *	IRQ_NONE or IRQ_HANDLED.
2823  */
2824 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2825 {
2826 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2827 }
2828 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2829 
2830 /**
2831  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2832  *	@ap: port to handle error for
2833  *
2834  *	Stock error handler for BMDMA controller.  It can handle both
2835  *	PATA and SATA controllers.  Most BMDMA controllers should be
2836  *	able to use this EH as-is or with some added handling before
2837  *	and after.
2838  *
2839  *	LOCKING:
2840  *	Kernel thread context (may sleep)
2841  */
2842 void ata_bmdma_error_handler(struct ata_port *ap)
2843 {
2844 	struct ata_queued_cmd *qc;
2845 	unsigned long flags;
2846 	bool thaw = false;
2847 
2848 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2849 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2850 		qc = NULL;
2851 
2852 	/* reset PIO HSM and stop DMA engine */
2853 	spin_lock_irqsave(ap->lock, flags);
2854 
2855 	if (qc && ata_is_dma(qc->tf.protocol)) {
2856 		u8 host_stat;
2857 
2858 		host_stat = ap->ops->bmdma_status(ap);
2859 
2860 		/* BMDMA controllers indicate host bus error by
2861 		 * setting DMA_ERR bit and timing out.  As it wasn't
2862 		 * really a timeout event, adjust error mask and
2863 		 * cancel frozen state.
2864 		 */
2865 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2866 			qc->err_mask = AC_ERR_HOST_BUS;
2867 			thaw = true;
2868 		}
2869 
2870 		ap->ops->bmdma_stop(qc);
2871 
2872 		/* if we're gonna thaw, make sure IRQ is clear */
2873 		if (thaw) {
2874 			ap->ops->sff_check_status(ap);
2875 			if (ap->ops->sff_irq_clear)
2876 				ap->ops->sff_irq_clear(ap);
2877 		}
2878 	}
2879 
2880 	spin_unlock_irqrestore(ap->lock, flags);
2881 
2882 	if (thaw)
2883 		ata_eh_thaw_port(ap);
2884 
2885 	ata_sff_error_handler(ap);
2886 }
2887 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2888 
2889 /**
2890  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2891  *	@qc: internal command to clean up
2892  *
2893  *	LOCKING:
2894  *	Kernel thread context (may sleep)
2895  */
2896 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2897 {
2898 	struct ata_port *ap = qc->ap;
2899 	unsigned long flags;
2900 
2901 	if (ata_is_dma(qc->tf.protocol)) {
2902 		spin_lock_irqsave(ap->lock, flags);
2903 		ap->ops->bmdma_stop(qc);
2904 		spin_unlock_irqrestore(ap->lock, flags);
2905 	}
2906 }
2907 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2908 
2909 /**
2910  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2911  *	@ap: Port associated with this ATA transaction.
2912  *
2913  *	Clear interrupt and error flags in DMA status register.
2914  *
2915  *	May be used as the irq_clear() entry in ata_port_operations.
2916  *
2917  *	LOCKING:
2918  *	spin_lock_irqsave(host lock)
2919  */
2920 void ata_bmdma_irq_clear(struct ata_port *ap)
2921 {
2922 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2923 
2924 	if (!mmio)
2925 		return;
2926 
2927 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2928 }
2929 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2930 
2931 /**
2932  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2933  *	@qc: Info associated with this ATA transaction.
2934  *
2935  *	LOCKING:
2936  *	spin_lock_irqsave(host lock)
2937  */
2938 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2939 {
2940 	struct ata_port *ap = qc->ap;
2941 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2942 	u8 dmactl;
2943 
2944 	/* load PRD table addr. */
2945 	mb();	/* make sure PRD table writes are visible to controller */
2946 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2947 
2948 	/* specify data direction, triple-check start bit is clear */
2949 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2950 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2951 	if (!rw)
2952 		dmactl |= ATA_DMA_WR;
2953 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2954 
2955 	/* issue r/w command */
2956 	ap->ops->sff_exec_command(ap, &qc->tf);
2957 }
2958 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2959 
2960 /**
2961  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2962  *	@qc: Info associated with this ATA transaction.
2963  *
2964  *	LOCKING:
2965  *	spin_lock_irqsave(host lock)
2966  */
2967 void ata_bmdma_start(struct ata_queued_cmd *qc)
2968 {
2969 	struct ata_port *ap = qc->ap;
2970 	u8 dmactl;
2971 
2972 	/* start host DMA transaction */
2973 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2974 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2975 
2976 	/* Strictly, one may wish to issue an ioread8() here, to
2977 	 * flush the mmio write.  However, control also passes
2978 	 * to the hardware at this point, and it will interrupt
2979 	 * us when we are to resume control.  So, in effect,
2980 	 * we don't care when the mmio write flushes.
2981 	 * Further, a read of the DMA status register _immediately_
2982 	 * following the write may not be what certain flaky hardware
2983 	 * is expected, so I think it is best to not add a readb()
2984 	 * without first all the MMIO ATA cards/mobos.
2985 	 * Or maybe I'm just being paranoid.
2986 	 *
2987 	 * FIXME: The posting of this write means I/O starts are
2988 	 * unnecessarily delayed for MMIO
2989 	 */
2990 }
2991 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2992 
2993 /**
2994  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2995  *	@qc: Command we are ending DMA for
2996  *
2997  *	Clears the ATA_DMA_START flag in the dma control register
2998  *
2999  *	May be used as the bmdma_stop() entry in ata_port_operations.
3000  *
3001  *	LOCKING:
3002  *	spin_lock_irqsave(host lock)
3003  */
3004 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3005 {
3006 	struct ata_port *ap = qc->ap;
3007 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3008 
3009 	/* clear start/stop bit */
3010 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3011 		 mmio + ATA_DMA_CMD);
3012 
3013 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3014 	ata_sff_dma_pause(ap);
3015 }
3016 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3017 
3018 /**
3019  *	ata_bmdma_status - Read PCI IDE BMDMA status
3020  *	@ap: Port associated with this ATA transaction.
3021  *
3022  *	Read and return BMDMA status register.
3023  *
3024  *	May be used as the bmdma_status() entry in ata_port_operations.
3025  *
3026  *	LOCKING:
3027  *	spin_lock_irqsave(host lock)
3028  */
3029 u8 ata_bmdma_status(struct ata_port *ap)
3030 {
3031 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3032 }
3033 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3034 
3035 
3036 /**
3037  *	ata_bmdma_port_start - Set port up for bmdma.
3038  *	@ap: Port to initialize
3039  *
3040  *	Called just after data structures for each port are
3041  *	initialized.  Allocates space for PRD table.
3042  *
3043  *	May be used as the port_start() entry in ata_port_operations.
3044  *
3045  *	LOCKING:
3046  *	Inherited from caller.
3047  */
3048 int ata_bmdma_port_start(struct ata_port *ap)
3049 {
3050 	if (ap->mwdma_mask || ap->udma_mask) {
3051 		ap->bmdma_prd =
3052 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3053 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3054 		if (!ap->bmdma_prd)
3055 			return -ENOMEM;
3056 	}
3057 
3058 	return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3061 
3062 /**
3063  *	ata_bmdma_port_start32 - Set port up for dma.
3064  *	@ap: Port to initialize
3065  *
3066  *	Called just after data structures for each port are
3067  *	initialized.  Enables 32bit PIO and allocates space for PRD
3068  *	table.
3069  *
3070  *	May be used as the port_start() entry in ata_port_operations for
3071  *	devices that are capable of 32bit PIO.
3072  *
3073  *	LOCKING:
3074  *	Inherited from caller.
3075  */
3076 int ata_bmdma_port_start32(struct ata_port *ap)
3077 {
3078 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3079 	return ata_bmdma_port_start(ap);
3080 }
3081 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3082 
3083 #ifdef CONFIG_PCI
3084 
3085 /**
3086  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3087  *	@pdev: PCI device
3088  *
3089  *	Some PCI ATA devices report simplex mode but in fact can be told to
3090  *	enter non simplex mode. This implements the necessary logic to
3091  *	perform the task on such devices. Calling it on other devices will
3092  *	have -undefined- behaviour.
3093  */
3094 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3095 {
3096 	unsigned long bmdma = pci_resource_start(pdev, 4);
3097 	u8 simplex;
3098 
3099 	if (bmdma == 0)
3100 		return -ENOENT;
3101 
3102 	simplex = inb(bmdma + 0x02);
3103 	outb(simplex & 0x60, bmdma + 0x02);
3104 	simplex = inb(bmdma + 0x02);
3105 	if (simplex & 0x80)
3106 		return -EOPNOTSUPP;
3107 	return 0;
3108 }
3109 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3110 
3111 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3112 {
3113 	int i;
3114 
3115 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3116 
3117 	for (i = 0; i < 2; i++) {
3118 		host->ports[i]->mwdma_mask = 0;
3119 		host->ports[i]->udma_mask = 0;
3120 	}
3121 }
3122 
3123 /**
3124  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3125  *	@host: target ATA host
3126  *
3127  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3128  *
3129  *	LOCKING:
3130  *	Inherited from calling layer (may sleep).
3131  */
3132 void ata_pci_bmdma_init(struct ata_host *host)
3133 {
3134 	struct device *gdev = host->dev;
3135 	struct pci_dev *pdev = to_pci_dev(gdev);
3136 	int i, rc;
3137 
3138 	/* No BAR4 allocation: No DMA */
3139 	if (pci_resource_start(pdev, 4) == 0) {
3140 		ata_bmdma_nodma(host, "BAR4 is zero");
3141 		return;
3142 	}
3143 
3144 	/*
3145 	 * Some controllers require BMDMA region to be initialized
3146 	 * even if DMA is not in use to clear IRQ status via
3147 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3148 	 * regardless of dma masks.
3149 	 */
3150 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3151 	if (rc)
3152 		ata_bmdma_nodma(host, "failed to set dma mask");
3153 	if (!rc) {
3154 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3155 		if (rc)
3156 			ata_bmdma_nodma(host,
3157 					"failed to set consistent dma mask");
3158 	}
3159 
3160 	/* request and iomap DMA region */
3161 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3162 	if (rc) {
3163 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3164 		return;
3165 	}
3166 	host->iomap = pcim_iomap_table(pdev);
3167 
3168 	for (i = 0; i < 2; i++) {
3169 		struct ata_port *ap = host->ports[i];
3170 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3171 
3172 		if (ata_port_is_dummy(ap))
3173 			continue;
3174 
3175 		ap->ioaddr.bmdma_addr = bmdma;
3176 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3177 		    (ioread8(bmdma + 2) & 0x80))
3178 			host->flags |= ATA_HOST_SIMPLEX;
3179 
3180 		ata_port_desc(ap, "bmdma 0x%llx",
3181 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3182 	}
3183 }
3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3185 
3186 /**
3187  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188  *	@pdev: target PCI device
3189  *	@ppi: array of port_info, must be enough for two ports
3190  *	@r_host: out argument for the initialized ATA host
3191  *
3192  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193  *	resources and initialize it accordingly in one go.
3194  *
3195  *	LOCKING:
3196  *	Inherited from calling layer (may sleep).
3197  *
3198  *	RETURNS:
3199  *	0 on success, -errno otherwise.
3200  */
3201 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3202 			       const struct ata_port_info * const * ppi,
3203 			       struct ata_host **r_host)
3204 {
3205 	int rc;
3206 
3207 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3208 	if (rc)
3209 		return rc;
3210 
3211 	ata_pci_bmdma_init(*r_host);
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3215 
3216 /**
3217  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218  *	@pdev: Controller to be initialized
3219  *	@ppi: array of port_info, must be enough for two ports
3220  *	@sht: scsi_host_template to use when registering the host
3221  *	@host_priv: host private_data
3222  *	@hflags: host flags
3223  *
3224  *	This function is similar to ata_pci_sff_init_one() but also
3225  *	takes care of BMDMA initialization.
3226  *
3227  *	LOCKING:
3228  *	Inherited from PCI layer (may sleep).
3229  *
3230  *	RETURNS:
3231  *	Zero on success, negative on errno-based value on error.
3232  */
3233 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3234 			   const struct ata_port_info * const * ppi,
3235 			   struct scsi_host_template *sht, void *host_priv,
3236 			   int hflags)
3237 {
3238 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3239 }
3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3241 
3242 #endif /* CONFIG_PCI */
3243 #endif /* CONFIG_ATA_BMDMA */
3244 
3245 /**
3246  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247  *	@ap: Port to initialize
3248  *
3249  *	Called on port allocation to initialize SFF/BMDMA specific
3250  *	fields.
3251  *
3252  *	LOCKING:
3253  *	None.
3254  */
3255 void ata_sff_port_init(struct ata_port *ap)
3256 {
3257 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3258 	ap->ctl = ATA_DEVCTL_OBS;
3259 	ap->last_ctl = 0xFF;
3260 }
3261 
3262 int __init ata_sff_init(void)
3263 {
3264 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3265 	if (!ata_sff_wq)
3266 		return -ENOMEM;
3267 
3268 	return 0;
3269 }
3270 
3271 void ata_sff_exit(void)
3272 {
3273 	destroy_workqueue(ata_sff_wq);
3274 }
3275