1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_prep = ata_noop_qc_prep, 30 .qc_issue = ata_sff_qc_issue, 31 .qc_fill_rtf = ata_sff_qc_fill_rtf, 32 33 .freeze = ata_sff_freeze, 34 .thaw = ata_sff_thaw, 35 .prereset = ata_sff_prereset, 36 .softreset = ata_sff_softreset, 37 .hardreset = sata_sff_hardreset, 38 .postreset = ata_sff_postreset, 39 .error_handler = ata_sff_error_handler, 40 41 .sff_dev_select = ata_sff_dev_select, 42 .sff_check_status = ata_sff_check_status, 43 .sff_tf_load = ata_sff_tf_load, 44 .sff_tf_read = ata_sff_tf_read, 45 .sff_exec_command = ata_sff_exec_command, 46 .sff_data_xfer = ata_sff_data_xfer, 47 .sff_drain_fifo = ata_sff_drain_fifo, 48 49 .lost_interrupt = ata_sff_lost_interrupt, 50 }; 51 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 52 53 /** 54 * ata_sff_check_status - Read device status reg & clear interrupt 55 * @ap: port where the device is 56 * 57 * Reads ATA taskfile status register for currently-selected device 58 * and return its value. This also clears pending interrupts 59 * from this device 60 * 61 * LOCKING: 62 * Inherited from caller. 63 */ 64 u8 ata_sff_check_status(struct ata_port *ap) 65 { 66 return ioread8(ap->ioaddr.status_addr); 67 } 68 EXPORT_SYMBOL_GPL(ata_sff_check_status); 69 70 /** 71 * ata_sff_altstatus - Read device alternate status reg 72 * @ap: port where the device is 73 * @status: pointer to a status value 74 * 75 * Reads ATA alternate status register for currently-selected device 76 * and return its value. 77 * 78 * RETURN: 79 * true if the register exists, false if not. 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) 85 { 86 u8 tmp; 87 88 if (ap->ops->sff_check_altstatus) { 89 tmp = ap->ops->sff_check_altstatus(ap); 90 goto read; 91 } 92 if (ap->ioaddr.altstatus_addr) { 93 tmp = ioread8(ap->ioaddr.altstatus_addr); 94 goto read; 95 } 96 return false; 97 98 read: 99 if (status) 100 *status = tmp; 101 return true; 102 } 103 104 /** 105 * ata_sff_irq_status - Check if the device is busy 106 * @ap: port where the device is 107 * 108 * Determine if the port is currently busy. Uses altstatus 109 * if available in order to avoid clearing shared IRQ status 110 * when finding an IRQ source. Non ctl capable devices don't 111 * share interrupt lines fortunately for us. 112 * 113 * LOCKING: 114 * Inherited from caller. 115 */ 116 static u8 ata_sff_irq_status(struct ata_port *ap) 117 { 118 u8 status; 119 120 /* Not us: We are busy */ 121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) 122 return status; 123 /* Clear INTRQ latch */ 124 status = ap->ops->sff_check_status(ap); 125 return status; 126 } 127 128 /** 129 * ata_sff_sync - Flush writes 130 * @ap: Port to wait for. 131 * 132 * CAUTION: 133 * If we have an mmio device with no ctl and no altstatus 134 * method this will fail. No such devices are known to exist. 135 * 136 * LOCKING: 137 * Inherited from caller. 138 */ 139 140 static void ata_sff_sync(struct ata_port *ap) 141 { 142 ata_sff_altstatus(ap, NULL); 143 } 144 145 /** 146 * ata_sff_pause - Flush writes and wait 400nS 147 * @ap: Port to pause for. 148 * 149 * CAUTION: 150 * If we have an mmio device with no ctl and no altstatus 151 * method this will fail. No such devices are known to exist. 152 * 153 * LOCKING: 154 * Inherited from caller. 155 */ 156 157 void ata_sff_pause(struct ata_port *ap) 158 { 159 ata_sff_sync(ap); 160 ndelay(400); 161 } 162 EXPORT_SYMBOL_GPL(ata_sff_pause); 163 164 /** 165 * ata_sff_dma_pause - Pause before commencing DMA 166 * @ap: Port to pause for. 167 * 168 * Perform I/O fencing and ensure sufficient cycle delays occur 169 * for the HDMA1:0 transition 170 */ 171 172 void ata_sff_dma_pause(struct ata_port *ap) 173 { 174 /* 175 * An altstatus read will cause the needed delay without 176 * messing up the IRQ status 177 */ 178 if (ata_sff_altstatus(ap, NULL)) 179 return; 180 /* There are no DMA controllers without ctl. BUG here to ensure 181 we never violate the HDMA1:0 transition timing and risk 182 corruption. */ 183 BUG(); 184 } 185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 186 187 static int ata_sff_check_ready(struct ata_link *link) 188 { 189 u8 status = link->ap->ops->sff_check_status(link->ap); 190 191 return ata_check_ready(status); 192 } 193 194 /** 195 * ata_sff_wait_ready - sleep until BSY clears, or timeout 196 * @link: SFF link to wait ready status for 197 * @deadline: deadline jiffies for the operation 198 * 199 * Sleep until ATA Status register bit BSY clears, or timeout 200 * occurs. 201 * 202 * LOCKING: 203 * Kernel thread context (may sleep). 204 * 205 * RETURNS: 206 * 0 on success, -errno otherwise. 207 */ 208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 209 { 210 return ata_wait_ready(link, deadline, ata_sff_check_ready); 211 } 212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 213 214 /** 215 * ata_sff_set_devctl - Write device control reg 216 * @ap: port where the device is 217 * @ctl: value to write 218 * 219 * Writes ATA device control register. 220 * 221 * RETURN: 222 * true if the register exists, false if not. 223 * 224 * LOCKING: 225 * Inherited from caller. 226 */ 227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 228 { 229 if (ap->ops->sff_set_devctl) { 230 ap->ops->sff_set_devctl(ap, ctl); 231 return true; 232 } 233 if (ap->ioaddr.ctl_addr) { 234 iowrite8(ctl, ap->ioaddr.ctl_addr); 235 return true; 236 } 237 238 return false; 239 } 240 241 /** 242 * ata_sff_dev_select - Select device 0/1 on ATA bus 243 * @ap: ATA channel to manipulate 244 * @device: ATA device (numbered from zero) to select 245 * 246 * Use the method defined in the ATA specification to 247 * make either device 0, or device 1, active on the 248 * ATA channel. Works with both PIO and MMIO. 249 * 250 * May be used as the dev_select() entry in ata_port_operations. 251 * 252 * LOCKING: 253 * caller. 254 */ 255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 256 { 257 u8 tmp; 258 259 if (device == 0) 260 tmp = ATA_DEVICE_OBS; 261 else 262 tmp = ATA_DEVICE_OBS | ATA_DEV1; 263 264 iowrite8(tmp, ap->ioaddr.device_addr); 265 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 266 } 267 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 268 269 /** 270 * ata_dev_select - Select device 0/1 on ATA bus 271 * @ap: ATA channel to manipulate 272 * @device: ATA device (numbered from zero) to select 273 * @wait: non-zero to wait for Status register BSY bit to clear 274 * @can_sleep: non-zero if context allows sleeping 275 * 276 * Use the method defined in the ATA specification to 277 * make either device 0, or device 1, active on the 278 * ATA channel. 279 * 280 * This is a high-level version of ata_sff_dev_select(), which 281 * additionally provides the services of inserting the proper 282 * pauses and status polling, where needed. 283 * 284 * LOCKING: 285 * caller. 286 */ 287 static void ata_dev_select(struct ata_port *ap, unsigned int device, 288 unsigned int wait, unsigned int can_sleep) 289 { 290 if (wait) 291 ata_wait_idle(ap); 292 293 ap->ops->sff_dev_select(ap, device); 294 295 if (wait) { 296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 297 ata_msleep(ap, 150); 298 ata_wait_idle(ap); 299 } 300 } 301 302 /** 303 * ata_sff_irq_on - Enable interrupts on a port. 304 * @ap: Port on which interrupts are enabled. 305 * 306 * Enable interrupts on a legacy IDE device using MMIO or PIO, 307 * wait for idle, clear any pending interrupts. 308 * 309 * Note: may NOT be used as the sff_irq_on() entry in 310 * ata_port_operations. 311 * 312 * LOCKING: 313 * Inherited from caller. 314 */ 315 void ata_sff_irq_on(struct ata_port *ap) 316 { 317 if (ap->ops->sff_irq_on) { 318 ap->ops->sff_irq_on(ap); 319 return; 320 } 321 322 ap->ctl &= ~ATA_NIEN; 323 ap->last_ctl = ap->ctl; 324 325 ata_sff_set_devctl(ap, ap->ctl); 326 ata_wait_idle(ap); 327 328 if (ap->ops->sff_irq_clear) 329 ap->ops->sff_irq_clear(ap); 330 } 331 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 332 333 /** 334 * ata_sff_tf_load - send taskfile registers to host controller 335 * @ap: Port to which output is sent 336 * @tf: ATA taskfile register set 337 * 338 * Outputs ATA taskfile to standard ATA host controller. 339 * 340 * LOCKING: 341 * Inherited from caller. 342 */ 343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 344 { 345 struct ata_ioports *ioaddr = &ap->ioaddr; 346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 347 348 if (tf->ctl != ap->last_ctl) { 349 if (ioaddr->ctl_addr) 350 iowrite8(tf->ctl, ioaddr->ctl_addr); 351 ap->last_ctl = tf->ctl; 352 ata_wait_idle(ap); 353 } 354 355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 356 WARN_ON_ONCE(!ioaddr->ctl_addr); 357 iowrite8(tf->hob_feature, ioaddr->feature_addr); 358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 362 } 363 364 if (is_addr) { 365 iowrite8(tf->feature, ioaddr->feature_addr); 366 iowrite8(tf->nsect, ioaddr->nsect_addr); 367 iowrite8(tf->lbal, ioaddr->lbal_addr); 368 iowrite8(tf->lbam, ioaddr->lbam_addr); 369 iowrite8(tf->lbah, ioaddr->lbah_addr); 370 } 371 372 if (tf->flags & ATA_TFLAG_DEVICE) 373 iowrite8(tf->device, ioaddr->device_addr); 374 375 ata_wait_idle(ap); 376 } 377 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 378 379 /** 380 * ata_sff_tf_read - input device's ATA taskfile shadow registers 381 * @ap: Port from which input is read 382 * @tf: ATA taskfile register set for storing input 383 * 384 * Reads ATA taskfile registers for currently-selected device 385 * into @tf. Assumes the device has a fully SFF compliant task file 386 * layout and behaviour. If you device does not (eg has a different 387 * status method) then you will need to provide a replacement tf_read 388 * 389 * LOCKING: 390 * Inherited from caller. 391 */ 392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 393 { 394 struct ata_ioports *ioaddr = &ap->ioaddr; 395 396 tf->status = ata_sff_check_status(ap); 397 tf->error = ioread8(ioaddr->error_addr); 398 tf->nsect = ioread8(ioaddr->nsect_addr); 399 tf->lbal = ioread8(ioaddr->lbal_addr); 400 tf->lbam = ioread8(ioaddr->lbam_addr); 401 tf->lbah = ioread8(ioaddr->lbah_addr); 402 tf->device = ioread8(ioaddr->device_addr); 403 404 if (tf->flags & ATA_TFLAG_LBA48) { 405 if (likely(ioaddr->ctl_addr)) { 406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 407 tf->hob_feature = ioread8(ioaddr->error_addr); 408 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 409 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 410 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 411 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 412 iowrite8(tf->ctl, ioaddr->ctl_addr); 413 ap->last_ctl = tf->ctl; 414 } else 415 WARN_ON_ONCE(1); 416 } 417 } 418 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 419 420 /** 421 * ata_sff_exec_command - issue ATA command to host controller 422 * @ap: port to which command is being issued 423 * @tf: ATA taskfile register set 424 * 425 * Issues ATA command, with proper synchronization with interrupt 426 * handler / other threads. 427 * 428 * LOCKING: 429 * spin_lock_irqsave(host lock) 430 */ 431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 432 { 433 iowrite8(tf->command, ap->ioaddr.command_addr); 434 ata_sff_pause(ap); 435 } 436 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 437 438 /** 439 * ata_tf_to_host - issue ATA taskfile to host controller 440 * @ap: port to which command is being issued 441 * @tf: ATA taskfile register set 442 * @tag: tag of the associated command 443 * 444 * Issues ATA taskfile register set to ATA host controller, 445 * with proper synchronization with interrupt handler and 446 * other threads. 447 * 448 * LOCKING: 449 * spin_lock_irqsave(host lock) 450 */ 451 static inline void ata_tf_to_host(struct ata_port *ap, 452 const struct ata_taskfile *tf, 453 unsigned int tag) 454 { 455 trace_ata_tf_load(ap, tf); 456 ap->ops->sff_tf_load(ap, tf); 457 trace_ata_exec_command(ap, tf, tag); 458 ap->ops->sff_exec_command(ap, tf); 459 } 460 461 /** 462 * ata_sff_data_xfer - Transfer data by PIO 463 * @qc: queued command 464 * @buf: data buffer 465 * @buflen: buffer length 466 * @rw: read/write 467 * 468 * Transfer data from/to the device data register by PIO. 469 * 470 * LOCKING: 471 * Inherited from caller. 472 * 473 * RETURNS: 474 * Bytes consumed. 475 */ 476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 477 unsigned int buflen, int rw) 478 { 479 struct ata_port *ap = qc->dev->link->ap; 480 void __iomem *data_addr = ap->ioaddr.data_addr; 481 unsigned int words = buflen >> 1; 482 483 /* Transfer multiple of 2 bytes */ 484 if (rw == READ) 485 ioread16_rep(data_addr, buf, words); 486 else 487 iowrite16_rep(data_addr, buf, words); 488 489 /* Transfer trailing byte, if any. */ 490 if (unlikely(buflen & 0x01)) { 491 unsigned char pad[2] = { }; 492 493 /* Point buf to the tail of buffer */ 494 buf += buflen - 1; 495 496 /* 497 * Use io*16_rep() accessors here as well to avoid pointlessly 498 * swapping bytes to and from on the big endian machines... 499 */ 500 if (rw == READ) { 501 ioread16_rep(data_addr, pad, 1); 502 *buf = pad[0]; 503 } else { 504 pad[0] = *buf; 505 iowrite16_rep(data_addr, pad, 1); 506 } 507 words++; 508 } 509 510 return words << 1; 511 } 512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 513 514 /** 515 * ata_sff_data_xfer32 - Transfer data by PIO 516 * @qc: queued command 517 * @buf: data buffer 518 * @buflen: buffer length 519 * @rw: read/write 520 * 521 * Transfer data from/to the device data register by PIO using 32bit 522 * I/O operations. 523 * 524 * LOCKING: 525 * Inherited from caller. 526 * 527 * RETURNS: 528 * Bytes consumed. 529 */ 530 531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 532 unsigned int buflen, int rw) 533 { 534 struct ata_device *dev = qc->dev; 535 struct ata_port *ap = dev->link->ap; 536 void __iomem *data_addr = ap->ioaddr.data_addr; 537 unsigned int words = buflen >> 2; 538 int slop = buflen & 3; 539 540 if (!(ap->pflags & ATA_PFLAG_PIO32)) 541 return ata_sff_data_xfer(qc, buf, buflen, rw); 542 543 /* Transfer multiple of 4 bytes */ 544 if (rw == READ) 545 ioread32_rep(data_addr, buf, words); 546 else 547 iowrite32_rep(data_addr, buf, words); 548 549 /* Transfer trailing bytes, if any */ 550 if (unlikely(slop)) { 551 unsigned char pad[4] = { }; 552 553 /* Point buf to the tail of buffer */ 554 buf += buflen - slop; 555 556 /* 557 * Use io*_rep() accessors here as well to avoid pointlessly 558 * swapping bytes to and from on the big endian machines... 559 */ 560 if (rw == READ) { 561 if (slop < 3) 562 ioread16_rep(data_addr, pad, 1); 563 else 564 ioread32_rep(data_addr, pad, 1); 565 memcpy(buf, pad, slop); 566 } else { 567 memcpy(pad, buf, slop); 568 if (slop < 3) 569 iowrite16_rep(data_addr, pad, 1); 570 else 571 iowrite32_rep(data_addr, pad, 1); 572 } 573 } 574 return (buflen + 1) & ~1; 575 } 576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 577 578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 579 unsigned int offset, size_t xfer_size) 580 { 581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 582 unsigned char *buf; 583 584 buf = kmap_atomic(page); 585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 586 kunmap_atomic(buf); 587 588 if (!do_write && !PageSlab(page)) 589 flush_dcache_page(page); 590 } 591 592 /** 593 * ata_pio_sector - Transfer a sector of data. 594 * @qc: Command on going 595 * 596 * Transfer qc->sect_size bytes of data from/to the ATA device. 597 * 598 * LOCKING: 599 * Inherited from caller. 600 */ 601 static void ata_pio_sector(struct ata_queued_cmd *qc) 602 { 603 struct ata_port *ap = qc->ap; 604 struct page *page; 605 unsigned int offset; 606 607 if (!qc->cursg) { 608 qc->curbytes = qc->nbytes; 609 return; 610 } 611 if (qc->curbytes == qc->nbytes - qc->sect_size) 612 ap->hsm_task_state = HSM_ST_LAST; 613 614 page = sg_page(qc->cursg); 615 offset = qc->cursg->offset + qc->cursg_ofs; 616 617 /* get the current page and offset */ 618 page = nth_page(page, (offset >> PAGE_SHIFT)); 619 offset %= PAGE_SIZE; 620 621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); 622 623 /* 624 * Split the transfer when it splits a page boundary. Note that the 625 * split still has to be dword aligned like all ATA data transfers. 626 */ 627 WARN_ON_ONCE(offset % 4); 628 if (offset + qc->sect_size > PAGE_SIZE) { 629 unsigned int split_len = PAGE_SIZE - offset; 630 631 ata_pio_xfer(qc, page, offset, split_len); 632 ata_pio_xfer(qc, nth_page(page, 1), 0, 633 qc->sect_size - split_len); 634 } else { 635 ata_pio_xfer(qc, page, offset, qc->sect_size); 636 } 637 638 qc->curbytes += qc->sect_size; 639 qc->cursg_ofs += qc->sect_size; 640 641 if (qc->cursg_ofs == qc->cursg->length) { 642 qc->cursg = sg_next(qc->cursg); 643 if (!qc->cursg) 644 ap->hsm_task_state = HSM_ST_LAST; 645 qc->cursg_ofs = 0; 646 } 647 } 648 649 /** 650 * ata_pio_sectors - Transfer one or many sectors. 651 * @qc: Command on going 652 * 653 * Transfer one or many sectors of data from/to the 654 * ATA device for the DRQ request. 655 * 656 * LOCKING: 657 * Inherited from caller. 658 */ 659 static void ata_pio_sectors(struct ata_queued_cmd *qc) 660 { 661 if (is_multi_taskfile(&qc->tf)) { 662 /* READ/WRITE MULTIPLE */ 663 unsigned int nsect; 664 665 WARN_ON_ONCE(qc->dev->multi_count == 0); 666 667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 668 qc->dev->multi_count); 669 while (nsect--) 670 ata_pio_sector(qc); 671 } else 672 ata_pio_sector(qc); 673 674 ata_sff_sync(qc->ap); /* flush */ 675 } 676 677 /** 678 * atapi_send_cdb - Write CDB bytes to hardware 679 * @ap: Port to which ATAPI device is attached. 680 * @qc: Taskfile currently active 681 * 682 * When device has indicated its readiness to accept 683 * a CDB, this function is called. Send the CDB. 684 * 685 * LOCKING: 686 * caller. 687 */ 688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 689 { 690 /* send SCSI cdb */ 691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 692 WARN_ON_ONCE(qc->dev->cdb_len < 12); 693 694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 695 ata_sff_sync(ap); 696 /* FIXME: If the CDB is for DMA do we need to do the transition delay 697 or is bmdma_start guaranteed to do it ? */ 698 switch (qc->tf.protocol) { 699 case ATAPI_PROT_PIO: 700 ap->hsm_task_state = HSM_ST; 701 break; 702 case ATAPI_PROT_NODATA: 703 ap->hsm_task_state = HSM_ST_LAST; 704 break; 705 #ifdef CONFIG_ATA_BMDMA 706 case ATAPI_PROT_DMA: 707 ap->hsm_task_state = HSM_ST_LAST; 708 /* initiate bmdma */ 709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 710 ap->ops->bmdma_start(qc); 711 break; 712 #endif /* CONFIG_ATA_BMDMA */ 713 default: 714 BUG(); 715 } 716 } 717 718 /** 719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 720 * @qc: Command on going 721 * @bytes: number of bytes 722 * 723 * Transfer data from/to the ATAPI device. 724 * 725 * LOCKING: 726 * Inherited from caller. 727 * 728 */ 729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 730 { 731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 732 struct ata_port *ap = qc->ap; 733 struct ata_device *dev = qc->dev; 734 struct ata_eh_info *ehi = &dev->link->eh_info; 735 struct scatterlist *sg; 736 struct page *page; 737 unsigned char *buf; 738 unsigned int offset, count, consumed; 739 740 next_sg: 741 sg = qc->cursg; 742 if (unlikely(!sg)) { 743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 744 "buf=%u cur=%u bytes=%u", 745 qc->nbytes, qc->curbytes, bytes); 746 return -1; 747 } 748 749 page = sg_page(sg); 750 offset = sg->offset + qc->cursg_ofs; 751 752 /* get the current page and offset */ 753 page = nth_page(page, (offset >> PAGE_SHIFT)); 754 offset %= PAGE_SIZE; 755 756 /* don't overrun current sg */ 757 count = min(sg->length - qc->cursg_ofs, bytes); 758 759 /* don't cross page boundaries */ 760 count = min(count, (unsigned int)PAGE_SIZE - offset); 761 762 trace_atapi_pio_transfer_data(qc, offset, count); 763 764 /* do the actual data transfer */ 765 buf = kmap_atomic(page); 766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 767 kunmap_atomic(buf); 768 769 bytes -= min(bytes, consumed); 770 qc->curbytes += count; 771 qc->cursg_ofs += count; 772 773 if (qc->cursg_ofs == sg->length) { 774 qc->cursg = sg_next(qc->cursg); 775 qc->cursg_ofs = 0; 776 } 777 778 /* 779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 781 * check correctly as it doesn't know if it is the last request being 782 * made. Somebody should implement a proper sanity check. 783 */ 784 if (bytes) 785 goto next_sg; 786 return 0; 787 } 788 789 /** 790 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 791 * @qc: Command on going 792 * 793 * Transfer Transfer data from/to the ATAPI device. 794 * 795 * LOCKING: 796 * Inherited from caller. 797 */ 798 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 799 { 800 struct ata_port *ap = qc->ap; 801 struct ata_device *dev = qc->dev; 802 struct ata_eh_info *ehi = &dev->link->eh_info; 803 unsigned int ireason, bc_lo, bc_hi, bytes; 804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 805 806 /* Abuse qc->result_tf for temp storage of intermediate TF 807 * here to save some kernel stack usage. 808 * For normal completion, qc->result_tf is not relevant. For 809 * error, qc->result_tf is later overwritten by ata_qc_complete(). 810 * So, the correctness of qc->result_tf is not affected. 811 */ 812 ap->ops->sff_tf_read(ap, &qc->result_tf); 813 ireason = qc->result_tf.nsect; 814 bc_lo = qc->result_tf.lbam; 815 bc_hi = qc->result_tf.lbah; 816 bytes = (bc_hi << 8) | bc_lo; 817 818 /* shall be cleared to zero, indicating xfer of data */ 819 if (unlikely(ireason & ATAPI_COD)) 820 goto atapi_check; 821 822 /* make sure transfer direction matches expected */ 823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 824 if (unlikely(do_write != i_write)) 825 goto atapi_check; 826 827 if (unlikely(!bytes)) 828 goto atapi_check; 829 830 if (unlikely(__atapi_pio_bytes(qc, bytes))) 831 goto err_out; 832 ata_sff_sync(ap); /* flush */ 833 834 return; 835 836 atapi_check: 837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 838 ireason, bytes); 839 err_out: 840 qc->err_mask |= AC_ERR_HSM; 841 ap->hsm_task_state = HSM_ST_ERR; 842 } 843 844 /** 845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 846 * @ap: the target ata_port 847 * @qc: qc on going 848 * 849 * RETURNS: 850 * 1 if ok in workqueue, 0 otherwise. 851 */ 852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 853 struct ata_queued_cmd *qc) 854 { 855 if (qc->tf.flags & ATA_TFLAG_POLLING) 856 return 1; 857 858 if (ap->hsm_task_state == HSM_ST_FIRST) { 859 if (qc->tf.protocol == ATA_PROT_PIO && 860 (qc->tf.flags & ATA_TFLAG_WRITE)) 861 return 1; 862 863 if (ata_is_atapi(qc->tf.protocol) && 864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 865 return 1; 866 } 867 868 return 0; 869 } 870 871 /** 872 * ata_hsm_qc_complete - finish a qc running on standard HSM 873 * @qc: Command to complete 874 * @in_wq: 1 if called from workqueue, 0 otherwise 875 * 876 * Finish @qc which is running on standard HSM. 877 * 878 * LOCKING: 879 * If @in_wq is zero, spin_lock_irqsave(host lock). 880 * Otherwise, none on entry and grabs host lock. 881 */ 882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 883 { 884 struct ata_port *ap = qc->ap; 885 886 if (in_wq) { 887 /* EH might have kicked in while host lock is released. */ 888 qc = ata_qc_from_tag(ap, qc->tag); 889 if (qc) { 890 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 891 ata_sff_irq_on(ap); 892 ata_qc_complete(qc); 893 } else 894 ata_port_freeze(ap); 895 } 896 } else { 897 if (likely(!(qc->err_mask & AC_ERR_HSM))) 898 ata_qc_complete(qc); 899 else 900 ata_port_freeze(ap); 901 } 902 } 903 904 /** 905 * ata_sff_hsm_move - move the HSM to the next state. 906 * @ap: the target ata_port 907 * @qc: qc on going 908 * @status: current device status 909 * @in_wq: 1 if called from workqueue, 0 otherwise 910 * 911 * RETURNS: 912 * 1 when poll next status needed, 0 otherwise. 913 */ 914 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 915 u8 status, int in_wq) 916 { 917 struct ata_link *link = qc->dev->link; 918 struct ata_eh_info *ehi = &link->eh_info; 919 int poll_next; 920 921 lockdep_assert_held(ap->lock); 922 923 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 924 925 /* Make sure ata_sff_qc_issue() does not throw things 926 * like DMA polling into the workqueue. Notice that 927 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 928 */ 929 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 930 931 fsm_start: 932 trace_ata_sff_hsm_state(qc, status); 933 934 switch (ap->hsm_task_state) { 935 case HSM_ST_FIRST: 936 /* Send first data block or PACKET CDB */ 937 938 /* If polling, we will stay in the work queue after 939 * sending the data. Otherwise, interrupt handler 940 * takes over after sending the data. 941 */ 942 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 943 944 /* check device status */ 945 if (unlikely((status & ATA_DRQ) == 0)) { 946 /* handle BSY=0, DRQ=0 as error */ 947 if (likely(status & (ATA_ERR | ATA_DF))) 948 /* device stops HSM for abort/error */ 949 qc->err_mask |= AC_ERR_DEV; 950 else { 951 /* HSM violation. Let EH handle this */ 952 ata_ehi_push_desc(ehi, 953 "ST_FIRST: !(DRQ|ERR|DF)"); 954 qc->err_mask |= AC_ERR_HSM; 955 } 956 957 ap->hsm_task_state = HSM_ST_ERR; 958 goto fsm_start; 959 } 960 961 /* Device should not ask for data transfer (DRQ=1) 962 * when it finds something wrong. 963 * We ignore DRQ here and stop the HSM by 964 * changing hsm_task_state to HSM_ST_ERR and 965 * let the EH abort the command or reset the device. 966 */ 967 if (unlikely(status & (ATA_ERR | ATA_DF))) { 968 /* Some ATAPI tape drives forget to clear the ERR bit 969 * when doing the next command (mostly request sense). 970 * We ignore ERR here to workaround and proceed sending 971 * the CDB. 972 */ 973 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 974 ata_ehi_push_desc(ehi, "ST_FIRST: " 975 "DRQ=1 with device error, " 976 "dev_stat 0x%X", status); 977 qc->err_mask |= AC_ERR_HSM; 978 ap->hsm_task_state = HSM_ST_ERR; 979 goto fsm_start; 980 } 981 } 982 983 if (qc->tf.protocol == ATA_PROT_PIO) { 984 /* PIO data out protocol. 985 * send first data block. 986 */ 987 988 /* ata_pio_sectors() might change the state 989 * to HSM_ST_LAST. so, the state is changed here 990 * before ata_pio_sectors(). 991 */ 992 ap->hsm_task_state = HSM_ST; 993 ata_pio_sectors(qc); 994 } else 995 /* send CDB */ 996 atapi_send_cdb(ap, qc); 997 998 /* if polling, ata_sff_pio_task() handles the rest. 999 * otherwise, interrupt handler takes over from here. 1000 */ 1001 break; 1002 1003 case HSM_ST: 1004 /* complete command or read/write the data register */ 1005 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1006 /* ATAPI PIO protocol */ 1007 if ((status & ATA_DRQ) == 0) { 1008 /* No more data to transfer or device error. 1009 * Device error will be tagged in HSM_ST_LAST. 1010 */ 1011 ap->hsm_task_state = HSM_ST_LAST; 1012 goto fsm_start; 1013 } 1014 1015 /* Device should not ask for data transfer (DRQ=1) 1016 * when it finds something wrong. 1017 * We ignore DRQ here and stop the HSM by 1018 * changing hsm_task_state to HSM_ST_ERR and 1019 * let the EH abort the command or reset the device. 1020 */ 1021 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1022 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1023 "DRQ=1 with device error, " 1024 "dev_stat 0x%X", status); 1025 qc->err_mask |= AC_ERR_HSM; 1026 ap->hsm_task_state = HSM_ST_ERR; 1027 goto fsm_start; 1028 } 1029 1030 atapi_pio_bytes(qc); 1031 1032 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1033 /* bad ireason reported by device */ 1034 goto fsm_start; 1035 1036 } else { 1037 /* ATA PIO protocol */ 1038 if (unlikely((status & ATA_DRQ) == 0)) { 1039 /* handle BSY=0, DRQ=0 as error */ 1040 if (likely(status & (ATA_ERR | ATA_DF))) { 1041 /* device stops HSM for abort/error */ 1042 qc->err_mask |= AC_ERR_DEV; 1043 1044 /* If diagnostic failed and this is 1045 * IDENTIFY, it's likely a phantom 1046 * device. Mark hint. 1047 */ 1048 if (qc->dev->horkage & 1049 ATA_HORKAGE_DIAGNOSTIC) 1050 qc->err_mask |= 1051 AC_ERR_NODEV_HINT; 1052 } else { 1053 /* HSM violation. Let EH handle this. 1054 * Phantom devices also trigger this 1055 * condition. Mark hint. 1056 */ 1057 ata_ehi_push_desc(ehi, "ST-ATA: " 1058 "DRQ=0 without device error, " 1059 "dev_stat 0x%X", status); 1060 qc->err_mask |= AC_ERR_HSM | 1061 AC_ERR_NODEV_HINT; 1062 } 1063 1064 ap->hsm_task_state = HSM_ST_ERR; 1065 goto fsm_start; 1066 } 1067 1068 /* For PIO reads, some devices may ask for 1069 * data transfer (DRQ=1) alone with ERR=1. 1070 * We respect DRQ here and transfer one 1071 * block of junk data before changing the 1072 * hsm_task_state to HSM_ST_ERR. 1073 * 1074 * For PIO writes, ERR=1 DRQ=1 doesn't make 1075 * sense since the data block has been 1076 * transferred to the device. 1077 */ 1078 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1079 /* data might be corrputed */ 1080 qc->err_mask |= AC_ERR_DEV; 1081 1082 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1083 ata_pio_sectors(qc); 1084 status = ata_wait_idle(ap); 1085 } 1086 1087 if (status & (ATA_BUSY | ATA_DRQ)) { 1088 ata_ehi_push_desc(ehi, "ST-ATA: " 1089 "BUSY|DRQ persists on ERR|DF, " 1090 "dev_stat 0x%X", status); 1091 qc->err_mask |= AC_ERR_HSM; 1092 } 1093 1094 /* There are oddball controllers with 1095 * status register stuck at 0x7f and 1096 * lbal/m/h at zero which makes it 1097 * pass all other presence detection 1098 * mechanisms we have. Set NODEV_HINT 1099 * for it. Kernel bz#7241. 1100 */ 1101 if (status == 0x7f) 1102 qc->err_mask |= AC_ERR_NODEV_HINT; 1103 1104 /* ata_pio_sectors() might change the 1105 * state to HSM_ST_LAST. so, the state 1106 * is changed after ata_pio_sectors(). 1107 */ 1108 ap->hsm_task_state = HSM_ST_ERR; 1109 goto fsm_start; 1110 } 1111 1112 ata_pio_sectors(qc); 1113 1114 if (ap->hsm_task_state == HSM_ST_LAST && 1115 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1116 /* all data read */ 1117 status = ata_wait_idle(ap); 1118 goto fsm_start; 1119 } 1120 } 1121 1122 poll_next = 1; 1123 break; 1124 1125 case HSM_ST_LAST: 1126 if (unlikely(!ata_ok(status))) { 1127 qc->err_mask |= __ac_err_mask(status); 1128 ap->hsm_task_state = HSM_ST_ERR; 1129 goto fsm_start; 1130 } 1131 1132 /* no more data to transfer */ 1133 trace_ata_sff_hsm_command_complete(qc, status); 1134 1135 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1136 1137 ap->hsm_task_state = HSM_ST_IDLE; 1138 1139 /* complete taskfile transaction */ 1140 ata_hsm_qc_complete(qc, in_wq); 1141 1142 poll_next = 0; 1143 break; 1144 1145 case HSM_ST_ERR: 1146 ap->hsm_task_state = HSM_ST_IDLE; 1147 1148 /* complete taskfile transaction */ 1149 ata_hsm_qc_complete(qc, in_wq); 1150 1151 poll_next = 0; 1152 break; 1153 default: 1154 poll_next = 0; 1155 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1156 ap->print_id, ap->hsm_task_state); 1157 } 1158 1159 return poll_next; 1160 } 1161 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1162 1163 void ata_sff_queue_work(struct work_struct *work) 1164 { 1165 queue_work(ata_sff_wq, work); 1166 } 1167 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1168 1169 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1170 { 1171 queue_delayed_work(ata_sff_wq, dwork, delay); 1172 } 1173 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1174 1175 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1176 { 1177 struct ata_port *ap = link->ap; 1178 1179 WARN_ON((ap->sff_pio_task_link != NULL) && 1180 (ap->sff_pio_task_link != link)); 1181 ap->sff_pio_task_link = link; 1182 1183 /* may fail if ata_sff_flush_pio_task() in progress */ 1184 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1185 } 1186 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1187 1188 void ata_sff_flush_pio_task(struct ata_port *ap) 1189 { 1190 trace_ata_sff_flush_pio_task(ap); 1191 1192 cancel_delayed_work_sync(&ap->sff_pio_task); 1193 1194 /* 1195 * We wanna reset the HSM state to IDLE. If we do so without 1196 * grabbing the port lock, critical sections protected by it which 1197 * expect the HSM state to stay stable may get surprised. For 1198 * example, we may set IDLE in between the time 1199 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1200 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1201 */ 1202 spin_lock_irq(ap->lock); 1203 ap->hsm_task_state = HSM_ST_IDLE; 1204 spin_unlock_irq(ap->lock); 1205 1206 ap->sff_pio_task_link = NULL; 1207 } 1208 1209 static void ata_sff_pio_task(struct work_struct *work) 1210 { 1211 struct ata_port *ap = 1212 container_of(work, struct ata_port, sff_pio_task.work); 1213 struct ata_link *link = ap->sff_pio_task_link; 1214 struct ata_queued_cmd *qc; 1215 u8 status; 1216 int poll_next; 1217 1218 spin_lock_irq(ap->lock); 1219 1220 BUG_ON(ap->sff_pio_task_link == NULL); 1221 /* qc can be NULL if timeout occurred */ 1222 qc = ata_qc_from_tag(ap, link->active_tag); 1223 if (!qc) { 1224 ap->sff_pio_task_link = NULL; 1225 goto out_unlock; 1226 } 1227 1228 fsm_start: 1229 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1230 1231 /* 1232 * This is purely heuristic. This is a fast path. 1233 * Sometimes when we enter, BSY will be cleared in 1234 * a chk-status or two. If not, the drive is probably seeking 1235 * or something. Snooze for a couple msecs, then 1236 * chk-status again. If still busy, queue delayed work. 1237 */ 1238 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1239 if (status & ATA_BUSY) { 1240 spin_unlock_irq(ap->lock); 1241 ata_msleep(ap, 2); 1242 spin_lock_irq(ap->lock); 1243 1244 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1245 if (status & ATA_BUSY) { 1246 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1247 goto out_unlock; 1248 } 1249 } 1250 1251 /* 1252 * hsm_move() may trigger another command to be processed. 1253 * clean the link beforehand. 1254 */ 1255 ap->sff_pio_task_link = NULL; 1256 /* move the HSM */ 1257 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1258 1259 /* another command or interrupt handler 1260 * may be running at this point. 1261 */ 1262 if (poll_next) 1263 goto fsm_start; 1264 out_unlock: 1265 spin_unlock_irq(ap->lock); 1266 } 1267 1268 /** 1269 * ata_sff_qc_issue - issue taskfile to a SFF controller 1270 * @qc: command to issue to device 1271 * 1272 * This function issues a PIO or NODATA command to a SFF 1273 * controller. 1274 * 1275 * LOCKING: 1276 * spin_lock_irqsave(host lock) 1277 * 1278 * RETURNS: 1279 * Zero on success, AC_ERR_* mask on failure 1280 */ 1281 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1282 { 1283 struct ata_port *ap = qc->ap; 1284 struct ata_link *link = qc->dev->link; 1285 1286 /* Use polling pio if the LLD doesn't handle 1287 * interrupt driven pio and atapi CDB interrupt. 1288 */ 1289 if (ap->flags & ATA_FLAG_PIO_POLLING) 1290 qc->tf.flags |= ATA_TFLAG_POLLING; 1291 1292 /* select the device */ 1293 ata_dev_select(ap, qc->dev->devno, 1, 0); 1294 1295 /* start the command */ 1296 switch (qc->tf.protocol) { 1297 case ATA_PROT_NODATA: 1298 if (qc->tf.flags & ATA_TFLAG_POLLING) 1299 ata_qc_set_polling(qc); 1300 1301 ata_tf_to_host(ap, &qc->tf, qc->tag); 1302 ap->hsm_task_state = HSM_ST_LAST; 1303 1304 if (qc->tf.flags & ATA_TFLAG_POLLING) 1305 ata_sff_queue_pio_task(link, 0); 1306 1307 break; 1308 1309 case ATA_PROT_PIO: 1310 if (qc->tf.flags & ATA_TFLAG_POLLING) 1311 ata_qc_set_polling(qc); 1312 1313 ata_tf_to_host(ap, &qc->tf, qc->tag); 1314 1315 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1316 /* PIO data out protocol */ 1317 ap->hsm_task_state = HSM_ST_FIRST; 1318 ata_sff_queue_pio_task(link, 0); 1319 1320 /* always send first data block using the 1321 * ata_sff_pio_task() codepath. 1322 */ 1323 } else { 1324 /* PIO data in protocol */ 1325 ap->hsm_task_state = HSM_ST; 1326 1327 if (qc->tf.flags & ATA_TFLAG_POLLING) 1328 ata_sff_queue_pio_task(link, 0); 1329 1330 /* if polling, ata_sff_pio_task() handles the 1331 * rest. otherwise, interrupt handler takes 1332 * over from here. 1333 */ 1334 } 1335 1336 break; 1337 1338 case ATAPI_PROT_PIO: 1339 case ATAPI_PROT_NODATA: 1340 if (qc->tf.flags & ATA_TFLAG_POLLING) 1341 ata_qc_set_polling(qc); 1342 1343 ata_tf_to_host(ap, &qc->tf, qc->tag); 1344 1345 ap->hsm_task_state = HSM_ST_FIRST; 1346 1347 /* send cdb by polling if no cdb interrupt */ 1348 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1349 (qc->tf.flags & ATA_TFLAG_POLLING)) 1350 ata_sff_queue_pio_task(link, 0); 1351 break; 1352 1353 default: 1354 return AC_ERR_SYSTEM; 1355 } 1356 1357 return 0; 1358 } 1359 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1360 1361 /** 1362 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1363 * @qc: qc to fill result TF for 1364 * 1365 * @qc is finished and result TF needs to be filled. Fill it 1366 * using ->sff_tf_read. 1367 * 1368 * LOCKING: 1369 * spin_lock_irqsave(host lock) 1370 */ 1371 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1372 { 1373 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1374 } 1375 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1376 1377 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1378 { 1379 ap->stats.idle_irq++; 1380 1381 #ifdef ATA_IRQ_TRAP 1382 if ((ap->stats.idle_irq % 1000) == 0) { 1383 ap->ops->sff_check_status(ap); 1384 if (ap->ops->sff_irq_clear) 1385 ap->ops->sff_irq_clear(ap); 1386 ata_port_warn(ap, "irq trap\n"); 1387 return 1; 1388 } 1389 #endif 1390 return 0; /* irq not handled */ 1391 } 1392 1393 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1394 struct ata_queued_cmd *qc, 1395 bool hsmv_on_idle) 1396 { 1397 u8 status; 1398 1399 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1400 1401 /* Check whether we are expecting interrupt in this state */ 1402 switch (ap->hsm_task_state) { 1403 case HSM_ST_FIRST: 1404 /* Some pre-ATAPI-4 devices assert INTRQ 1405 * at this state when ready to receive CDB. 1406 */ 1407 1408 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1409 * The flag was turned on only for atapi devices. No 1410 * need to check ata_is_atapi(qc->tf.protocol) again. 1411 */ 1412 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1413 return ata_sff_idle_irq(ap); 1414 break; 1415 case HSM_ST_IDLE: 1416 return ata_sff_idle_irq(ap); 1417 default: 1418 break; 1419 } 1420 1421 /* check main status, clearing INTRQ if needed */ 1422 status = ata_sff_irq_status(ap); 1423 if (status & ATA_BUSY) { 1424 if (hsmv_on_idle) { 1425 /* BMDMA engine is already stopped, we're screwed */ 1426 qc->err_mask |= AC_ERR_HSM; 1427 ap->hsm_task_state = HSM_ST_ERR; 1428 } else 1429 return ata_sff_idle_irq(ap); 1430 } 1431 1432 /* clear irq events */ 1433 if (ap->ops->sff_irq_clear) 1434 ap->ops->sff_irq_clear(ap); 1435 1436 ata_sff_hsm_move(ap, qc, status, 0); 1437 1438 return 1; /* irq handled */ 1439 } 1440 1441 /** 1442 * ata_sff_port_intr - Handle SFF port interrupt 1443 * @ap: Port on which interrupt arrived (possibly...) 1444 * @qc: Taskfile currently active in engine 1445 * 1446 * Handle port interrupt for given queued command. 1447 * 1448 * LOCKING: 1449 * spin_lock_irqsave(host lock) 1450 * 1451 * RETURNS: 1452 * One if interrupt was handled, zero if not (shared irq). 1453 */ 1454 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1455 { 1456 return __ata_sff_port_intr(ap, qc, false); 1457 } 1458 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1459 1460 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1461 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1462 { 1463 struct ata_host *host = dev_instance; 1464 bool retried = false; 1465 unsigned int i; 1466 unsigned int handled, idle, polling; 1467 unsigned long flags; 1468 1469 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1470 spin_lock_irqsave(&host->lock, flags); 1471 1472 retry: 1473 handled = idle = polling = 0; 1474 for (i = 0; i < host->n_ports; i++) { 1475 struct ata_port *ap = host->ports[i]; 1476 struct ata_queued_cmd *qc; 1477 1478 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1479 if (qc) { 1480 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1481 handled |= port_intr(ap, qc); 1482 else 1483 polling |= 1 << i; 1484 } else 1485 idle |= 1 << i; 1486 } 1487 1488 /* 1489 * If no port was expecting IRQ but the controller is actually 1490 * asserting IRQ line, nobody cared will ensue. Check IRQ 1491 * pending status if available and clear spurious IRQ. 1492 */ 1493 if (!handled && !retried) { 1494 bool retry = false; 1495 1496 for (i = 0; i < host->n_ports; i++) { 1497 struct ata_port *ap = host->ports[i]; 1498 1499 if (polling & (1 << i)) 1500 continue; 1501 1502 if (!ap->ops->sff_irq_check || 1503 !ap->ops->sff_irq_check(ap)) 1504 continue; 1505 1506 if (idle & (1 << i)) { 1507 ap->ops->sff_check_status(ap); 1508 if (ap->ops->sff_irq_clear) 1509 ap->ops->sff_irq_clear(ap); 1510 } else { 1511 /* clear INTRQ and check if BUSY cleared */ 1512 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1513 retry |= true; 1514 /* 1515 * With command in flight, we can't do 1516 * sff_irq_clear() w/o racing with completion. 1517 */ 1518 } 1519 } 1520 1521 if (retry) { 1522 retried = true; 1523 goto retry; 1524 } 1525 } 1526 1527 spin_unlock_irqrestore(&host->lock, flags); 1528 1529 return IRQ_RETVAL(handled); 1530 } 1531 1532 /** 1533 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1534 * @irq: irq line (unused) 1535 * @dev_instance: pointer to our ata_host information structure 1536 * 1537 * Default interrupt handler for PCI IDE devices. Calls 1538 * ata_sff_port_intr() for each port that is not disabled. 1539 * 1540 * LOCKING: 1541 * Obtains host lock during operation. 1542 * 1543 * RETURNS: 1544 * IRQ_NONE or IRQ_HANDLED. 1545 */ 1546 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1547 { 1548 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1549 } 1550 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1551 1552 /** 1553 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1554 * @ap: port that appears to have timed out 1555 * 1556 * Called from the libata error handlers when the core code suspects 1557 * an interrupt has been lost. If it has complete anything we can and 1558 * then return. Interface must support altstatus for this faster 1559 * recovery to occur. 1560 * 1561 * Locking: 1562 * Caller holds host lock 1563 */ 1564 1565 void ata_sff_lost_interrupt(struct ata_port *ap) 1566 { 1567 u8 status = 0; 1568 struct ata_queued_cmd *qc; 1569 1570 /* Only one outstanding command per SFF channel */ 1571 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1572 /* We cannot lose an interrupt on a non-existent or polled command */ 1573 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1574 return; 1575 /* See if the controller thinks it is still busy - if so the command 1576 isn't a lost IRQ but is still in progress */ 1577 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) 1578 return; 1579 if (status & ATA_BUSY) 1580 return; 1581 1582 /* There was a command running, we are no longer busy and we have 1583 no interrupt. */ 1584 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); 1585 /* Run the host interrupt logic as if the interrupt had not been 1586 lost */ 1587 ata_sff_port_intr(ap, qc); 1588 } 1589 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1590 1591 /** 1592 * ata_sff_freeze - Freeze SFF controller port 1593 * @ap: port to freeze 1594 * 1595 * Freeze SFF controller port. 1596 * 1597 * LOCKING: 1598 * Inherited from caller. 1599 */ 1600 void ata_sff_freeze(struct ata_port *ap) 1601 { 1602 ap->ctl |= ATA_NIEN; 1603 ap->last_ctl = ap->ctl; 1604 1605 ata_sff_set_devctl(ap, ap->ctl); 1606 1607 /* Under certain circumstances, some controllers raise IRQ on 1608 * ATA_NIEN manipulation. Also, many controllers fail to mask 1609 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1610 */ 1611 ap->ops->sff_check_status(ap); 1612 1613 if (ap->ops->sff_irq_clear) 1614 ap->ops->sff_irq_clear(ap); 1615 } 1616 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1617 1618 /** 1619 * ata_sff_thaw - Thaw SFF controller port 1620 * @ap: port to thaw 1621 * 1622 * Thaw SFF controller port. 1623 * 1624 * LOCKING: 1625 * Inherited from caller. 1626 */ 1627 void ata_sff_thaw(struct ata_port *ap) 1628 { 1629 /* clear & re-enable interrupts */ 1630 ap->ops->sff_check_status(ap); 1631 if (ap->ops->sff_irq_clear) 1632 ap->ops->sff_irq_clear(ap); 1633 ata_sff_irq_on(ap); 1634 } 1635 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1636 1637 /** 1638 * ata_sff_prereset - prepare SFF link for reset 1639 * @link: SFF link to be reset 1640 * @deadline: deadline jiffies for the operation 1641 * 1642 * SFF link @link is about to be reset. Initialize it. It first 1643 * calls ata_std_prereset() and wait for !BSY if the port is 1644 * being softreset. 1645 * 1646 * LOCKING: 1647 * Kernel thread context (may sleep) 1648 * 1649 * RETURNS: 1650 * Always 0. 1651 */ 1652 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1653 { 1654 struct ata_eh_context *ehc = &link->eh_context; 1655 int rc; 1656 1657 /* The standard prereset is best-effort and always returns 0 */ 1658 ata_std_prereset(link, deadline); 1659 1660 /* if we're about to do hardreset, nothing more to do */ 1661 if (ehc->i.action & ATA_EH_HARDRESET) 1662 return 0; 1663 1664 /* wait for !BSY if we don't know that no device is attached */ 1665 if (!ata_link_offline(link)) { 1666 rc = ata_sff_wait_ready(link, deadline); 1667 if (rc && rc != -ENODEV) { 1668 ata_link_warn(link, 1669 "device not ready (errno=%d), forcing hardreset\n", 1670 rc); 1671 ehc->i.action |= ATA_EH_HARDRESET; 1672 } 1673 } 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1678 1679 /** 1680 * ata_devchk - PATA device presence detection 1681 * @ap: ATA channel to examine 1682 * @device: Device to examine (starting at zero) 1683 * 1684 * This technique was originally described in 1685 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1686 * later found its way into the ATA/ATAPI spec. 1687 * 1688 * Write a pattern to the ATA shadow registers, 1689 * and if a device is present, it will respond by 1690 * correctly storing and echoing back the 1691 * ATA shadow register contents. 1692 * 1693 * RETURN: 1694 * true if device is present, false if not. 1695 * 1696 * LOCKING: 1697 * caller. 1698 */ 1699 static bool ata_devchk(struct ata_port *ap, unsigned int device) 1700 { 1701 struct ata_ioports *ioaddr = &ap->ioaddr; 1702 u8 nsect, lbal; 1703 1704 ap->ops->sff_dev_select(ap, device); 1705 1706 iowrite8(0x55, ioaddr->nsect_addr); 1707 iowrite8(0xaa, ioaddr->lbal_addr); 1708 1709 iowrite8(0xaa, ioaddr->nsect_addr); 1710 iowrite8(0x55, ioaddr->lbal_addr); 1711 1712 iowrite8(0x55, ioaddr->nsect_addr); 1713 iowrite8(0xaa, ioaddr->lbal_addr); 1714 1715 nsect = ioread8(ioaddr->nsect_addr); 1716 lbal = ioread8(ioaddr->lbal_addr); 1717 1718 if ((nsect == 0x55) && (lbal == 0xaa)) 1719 return true; /* we found a device */ 1720 1721 return false; /* nothing found */ 1722 } 1723 1724 /** 1725 * ata_sff_dev_classify - Parse returned ATA device signature 1726 * @dev: ATA device to classify (starting at zero) 1727 * @present: device seems present 1728 * @r_err: Value of error register on completion 1729 * 1730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1731 * an ATA/ATAPI-defined set of values is placed in the ATA 1732 * shadow registers, indicating the results of device detection 1733 * and diagnostics. 1734 * 1735 * Select the ATA device, and read the values from the ATA shadow 1736 * registers. Then parse according to the Error register value, 1737 * and the spec-defined values examined by ata_dev_classify(). 1738 * 1739 * LOCKING: 1740 * caller. 1741 * 1742 * RETURNS: 1743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1744 */ 1745 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1746 u8 *r_err) 1747 { 1748 struct ata_port *ap = dev->link->ap; 1749 struct ata_taskfile tf; 1750 unsigned int class; 1751 u8 err; 1752 1753 ap->ops->sff_dev_select(ap, dev->devno); 1754 1755 memset(&tf, 0, sizeof(tf)); 1756 1757 ap->ops->sff_tf_read(ap, &tf); 1758 err = tf.error; 1759 if (r_err) 1760 *r_err = err; 1761 1762 /* see if device passed diags: continue and warn later */ 1763 if (err == 0) 1764 /* diagnostic fail : do nothing _YET_ */ 1765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1766 else if (err == 1) 1767 /* do nothing */ ; 1768 else if ((dev->devno == 0) && (err == 0x81)) 1769 /* do nothing */ ; 1770 else 1771 return ATA_DEV_NONE; 1772 1773 /* determine if device is ATA or ATAPI */ 1774 class = ata_port_classify(ap, &tf); 1775 switch (class) { 1776 case ATA_DEV_UNKNOWN: 1777 /* 1778 * If the device failed diagnostic, it's likely to 1779 * have reported incorrect device signature too. 1780 * Assume ATA device if the device seems present but 1781 * device signature is invalid with diagnostic 1782 * failure. 1783 */ 1784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1785 class = ATA_DEV_ATA; 1786 else 1787 class = ATA_DEV_NONE; 1788 break; 1789 case ATA_DEV_ATA: 1790 if (ap->ops->sff_check_status(ap) == 0) 1791 class = ATA_DEV_NONE; 1792 break; 1793 } 1794 return class; 1795 } 1796 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1797 1798 /** 1799 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1800 * @link: SFF link which is just reset 1801 * @devmask: mask of present devices 1802 * @deadline: deadline jiffies for the operation 1803 * 1804 * Wait devices attached to SFF @link to become ready after 1805 * reset. It contains preceding 150ms wait to avoid accessing TF 1806 * status register too early. 1807 * 1808 * LOCKING: 1809 * Kernel thread context (may sleep). 1810 * 1811 * RETURNS: 1812 * 0 on success, -ENODEV if some or all of devices in @devmask 1813 * don't seem to exist. -errno on other errors. 1814 */ 1815 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1816 unsigned long deadline) 1817 { 1818 struct ata_port *ap = link->ap; 1819 struct ata_ioports *ioaddr = &ap->ioaddr; 1820 unsigned int dev0 = devmask & (1 << 0); 1821 unsigned int dev1 = devmask & (1 << 1); 1822 int rc, ret = 0; 1823 1824 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1825 1826 /* always check readiness of the master device */ 1827 rc = ata_sff_wait_ready(link, deadline); 1828 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1829 * and TF status is 0xff, bail out on it too. 1830 */ 1831 if (rc) 1832 return rc; 1833 1834 /* if device 1 was found in ata_devchk, wait for register 1835 * access briefly, then wait for BSY to clear. 1836 */ 1837 if (dev1) { 1838 int i; 1839 1840 ap->ops->sff_dev_select(ap, 1); 1841 1842 /* Wait for register access. Some ATAPI devices fail 1843 * to set nsect/lbal after reset, so don't waste too 1844 * much time on it. We're gonna wait for !BSY anyway. 1845 */ 1846 for (i = 0; i < 2; i++) { 1847 u8 nsect, lbal; 1848 1849 nsect = ioread8(ioaddr->nsect_addr); 1850 lbal = ioread8(ioaddr->lbal_addr); 1851 if ((nsect == 1) && (lbal == 1)) 1852 break; 1853 ata_msleep(ap, 50); /* give drive a breather */ 1854 } 1855 1856 rc = ata_sff_wait_ready(link, deadline); 1857 if (rc) { 1858 if (rc != -ENODEV) 1859 return rc; 1860 ret = rc; 1861 } 1862 } 1863 1864 /* is all this really necessary? */ 1865 ap->ops->sff_dev_select(ap, 0); 1866 if (dev1) 1867 ap->ops->sff_dev_select(ap, 1); 1868 if (dev0) 1869 ap->ops->sff_dev_select(ap, 0); 1870 1871 return ret; 1872 } 1873 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1874 1875 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1876 unsigned long deadline) 1877 { 1878 struct ata_ioports *ioaddr = &ap->ioaddr; 1879 1880 if (ap->ioaddr.ctl_addr) { 1881 /* software reset. causes dev0 to be selected */ 1882 iowrite8(ap->ctl, ioaddr->ctl_addr); 1883 udelay(20); /* FIXME: flush */ 1884 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1885 udelay(20); /* FIXME: flush */ 1886 iowrite8(ap->ctl, ioaddr->ctl_addr); 1887 ap->last_ctl = ap->ctl; 1888 } 1889 1890 /* wait the port to become ready */ 1891 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1892 } 1893 1894 /** 1895 * ata_sff_softreset - reset host port via ATA SRST 1896 * @link: ATA link to reset 1897 * @classes: resulting classes of attached devices 1898 * @deadline: deadline jiffies for the operation 1899 * 1900 * Reset host port using ATA SRST. 1901 * 1902 * LOCKING: 1903 * Kernel thread context (may sleep) 1904 * 1905 * RETURNS: 1906 * 0 on success, -errno otherwise. 1907 */ 1908 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1909 unsigned long deadline) 1910 { 1911 struct ata_port *ap = link->ap; 1912 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1913 unsigned int devmask = 0; 1914 int rc; 1915 u8 err; 1916 1917 /* determine if device 0/1 are present */ 1918 if (ata_devchk(ap, 0)) 1919 devmask |= (1 << 0); 1920 if (slave_possible && ata_devchk(ap, 1)) 1921 devmask |= (1 << 1); 1922 1923 /* select device 0 again */ 1924 ap->ops->sff_dev_select(ap, 0); 1925 1926 /* issue bus reset */ 1927 rc = ata_bus_softreset(ap, devmask, deadline); 1928 /* if link is occupied, -ENODEV too is an error */ 1929 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1930 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1931 return rc; 1932 } 1933 1934 /* determine by signature whether we have ATA or ATAPI devices */ 1935 classes[0] = ata_sff_dev_classify(&link->device[0], 1936 devmask & (1 << 0), &err); 1937 if (slave_possible && err != 0x81) 1938 classes[1] = ata_sff_dev_classify(&link->device[1], 1939 devmask & (1 << 1), &err); 1940 1941 return 0; 1942 } 1943 EXPORT_SYMBOL_GPL(ata_sff_softreset); 1944 1945 /** 1946 * sata_sff_hardreset - reset host port via SATA phy reset 1947 * @link: link to reset 1948 * @class: resulting class of attached device 1949 * @deadline: deadline jiffies for the operation 1950 * 1951 * SATA phy-reset host port using DET bits of SControl register, 1952 * wait for !BSY and classify the attached device. 1953 * 1954 * LOCKING: 1955 * Kernel thread context (may sleep) 1956 * 1957 * RETURNS: 1958 * 0 on success, -errno otherwise. 1959 */ 1960 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1961 unsigned long deadline) 1962 { 1963 struct ata_eh_context *ehc = &link->eh_context; 1964 const unsigned int *timing = sata_ehc_deb_timing(ehc); 1965 bool online; 1966 int rc; 1967 1968 rc = sata_link_hardreset(link, timing, deadline, &online, 1969 ata_sff_check_ready); 1970 if (online) 1971 *class = ata_sff_dev_classify(link->device, 1, NULL); 1972 1973 return rc; 1974 } 1975 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 1976 1977 /** 1978 * ata_sff_postreset - SFF postreset callback 1979 * @link: the target SFF ata_link 1980 * @classes: classes of attached devices 1981 * 1982 * This function is invoked after a successful reset. It first 1983 * calls ata_std_postreset() and performs SFF specific postreset 1984 * processing. 1985 * 1986 * LOCKING: 1987 * Kernel thread context (may sleep) 1988 */ 1989 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 1990 { 1991 struct ata_port *ap = link->ap; 1992 1993 ata_std_postreset(link, classes); 1994 1995 /* is double-select really necessary? */ 1996 if (classes[0] != ATA_DEV_NONE) 1997 ap->ops->sff_dev_select(ap, 1); 1998 if (classes[1] != ATA_DEV_NONE) 1999 ap->ops->sff_dev_select(ap, 0); 2000 2001 /* bail out if no device is present */ 2002 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2003 return; 2004 2005 /* set up device control */ 2006 if (ata_sff_set_devctl(ap, ap->ctl)) 2007 ap->last_ctl = ap->ctl; 2008 } 2009 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2010 2011 /** 2012 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2013 * @qc: command 2014 * 2015 * Drain the FIFO and device of any stuck data following a command 2016 * failing to complete. In some cases this is necessary before a 2017 * reset will recover the device. 2018 * 2019 */ 2020 2021 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2022 { 2023 int count; 2024 struct ata_port *ap; 2025 2026 /* We only need to flush incoming data when a command was running */ 2027 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2028 return; 2029 2030 ap = qc->ap; 2031 /* Drain up to 64K of data before we give up this recovery method */ 2032 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2033 && count < 65536; count += 2) 2034 ioread16(ap->ioaddr.data_addr); 2035 2036 if (count) 2037 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2038 2039 } 2040 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2041 2042 /** 2043 * ata_sff_error_handler - Stock error handler for SFF controller 2044 * @ap: port to handle error for 2045 * 2046 * Stock error handler for SFF controller. It can handle both 2047 * PATA and SATA controllers. Many controllers should be able to 2048 * use this EH as-is or with some added handling before and 2049 * after. 2050 * 2051 * LOCKING: 2052 * Kernel thread context (may sleep) 2053 */ 2054 void ata_sff_error_handler(struct ata_port *ap) 2055 { 2056 ata_reset_fn_t softreset = ap->ops->softreset; 2057 ata_reset_fn_t hardreset = ap->ops->hardreset; 2058 struct ata_queued_cmd *qc; 2059 unsigned long flags; 2060 2061 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2062 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2063 qc = NULL; 2064 2065 spin_lock_irqsave(ap->lock, flags); 2066 2067 /* 2068 * We *MUST* do FIFO draining before we issue a reset as 2069 * several devices helpfully clear their internal state and 2070 * will lock solid if we touch the data port post reset. Pass 2071 * qc in case anyone wants to do different PIO/DMA recovery or 2072 * has per command fixups 2073 */ 2074 if (ap->ops->sff_drain_fifo) 2075 ap->ops->sff_drain_fifo(qc); 2076 2077 spin_unlock_irqrestore(ap->lock, flags); 2078 2079 /* ignore built-in hardresets if SCR access is not available */ 2080 if ((hardreset == sata_std_hardreset || 2081 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2082 hardreset = NULL; 2083 2084 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2085 ap->ops->postreset); 2086 } 2087 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2088 2089 /** 2090 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2091 * @ioaddr: IO address structure to be initialized 2092 * 2093 * Utility function which initializes data_addr, error_addr, 2094 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2095 * device_addr, status_addr, and command_addr to standard offsets 2096 * relative to cmd_addr. 2097 * 2098 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2099 */ 2100 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2101 { 2102 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2103 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2104 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2105 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2106 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2107 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2108 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2109 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2110 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2111 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2112 } 2113 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2114 2115 #ifdef CONFIG_PCI 2116 2117 static bool ata_resources_present(struct pci_dev *pdev, int port) 2118 { 2119 int i; 2120 2121 /* Check the PCI resources for this channel are enabled */ 2122 port *= 2; 2123 for (i = 0; i < 2; i++) { 2124 if (pci_resource_start(pdev, port + i) == 0 || 2125 pci_resource_len(pdev, port + i) == 0) 2126 return false; 2127 } 2128 return true; 2129 } 2130 2131 /** 2132 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2133 * @host: target ATA host 2134 * 2135 * Acquire native PCI ATA resources for @host and initialize the 2136 * first two ports of @host accordingly. Ports marked dummy are 2137 * skipped and allocation failure makes the port dummy. 2138 * 2139 * Note that native PCI resources are valid even for legacy hosts 2140 * as we fix up pdev resources array early in boot, so this 2141 * function can be used for both native and legacy SFF hosts. 2142 * 2143 * LOCKING: 2144 * Inherited from calling layer (may sleep). 2145 * 2146 * RETURNS: 2147 * 0 if at least one port is initialized, -ENODEV if no port is 2148 * available. 2149 */ 2150 int ata_pci_sff_init_host(struct ata_host *host) 2151 { 2152 struct device *gdev = host->dev; 2153 struct pci_dev *pdev = to_pci_dev(gdev); 2154 unsigned int mask = 0; 2155 int i, rc; 2156 2157 /* request, iomap BARs and init port addresses accordingly */ 2158 for (i = 0; i < 2; i++) { 2159 struct ata_port *ap = host->ports[i]; 2160 int base = i * 2; 2161 void __iomem * const *iomap; 2162 2163 if (ata_port_is_dummy(ap)) 2164 continue; 2165 2166 /* Discard disabled ports. Some controllers show 2167 * their unused channels this way. Disabled ports are 2168 * made dummy. 2169 */ 2170 if (!ata_resources_present(pdev, i)) { 2171 ap->ops = &ata_dummy_port_ops; 2172 continue; 2173 } 2174 2175 rc = pcim_iomap_regions(pdev, 0x3 << base, 2176 dev_driver_string(gdev)); 2177 if (rc) { 2178 dev_warn(gdev, 2179 "failed to request/iomap BARs for port %d (errno=%d)\n", 2180 i, rc); 2181 if (rc == -EBUSY) 2182 pcim_pin_device(pdev); 2183 ap->ops = &ata_dummy_port_ops; 2184 continue; 2185 } 2186 host->iomap = iomap = pcim_iomap_table(pdev); 2187 2188 ap->ioaddr.cmd_addr = iomap[base]; 2189 ap->ioaddr.altstatus_addr = 2190 ap->ioaddr.ctl_addr = (void __iomem *) 2191 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2192 ata_sff_std_ports(&ap->ioaddr); 2193 2194 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2195 (unsigned long long)pci_resource_start(pdev, base), 2196 (unsigned long long)pci_resource_start(pdev, base + 1)); 2197 2198 mask |= 1 << i; 2199 } 2200 2201 if (!mask) { 2202 dev_err(gdev, "no available native port\n"); 2203 return -ENODEV; 2204 } 2205 2206 return 0; 2207 } 2208 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2209 2210 /** 2211 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2212 * @pdev: target PCI device 2213 * @ppi: array of port_info, must be enough for two ports 2214 * @r_host: out argument for the initialized ATA host 2215 * 2216 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2217 * all PCI resources and initialize it accordingly in one go. 2218 * 2219 * LOCKING: 2220 * Inherited from calling layer (may sleep). 2221 * 2222 * RETURNS: 2223 * 0 on success, -errno otherwise. 2224 */ 2225 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2226 const struct ata_port_info * const *ppi, 2227 struct ata_host **r_host) 2228 { 2229 struct ata_host *host; 2230 int rc; 2231 2232 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2233 return -ENOMEM; 2234 2235 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2236 if (!host) { 2237 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2238 rc = -ENOMEM; 2239 goto err_out; 2240 } 2241 2242 rc = ata_pci_sff_init_host(host); 2243 if (rc) 2244 goto err_out; 2245 2246 devres_remove_group(&pdev->dev, NULL); 2247 *r_host = host; 2248 return 0; 2249 2250 err_out: 2251 devres_release_group(&pdev->dev, NULL); 2252 return rc; 2253 } 2254 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2255 2256 /** 2257 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2258 * @host: target SFF ATA host 2259 * @irq_handler: irq_handler used when requesting IRQ(s) 2260 * @sht: scsi_host_template to use when registering the host 2261 * 2262 * This is the counterpart of ata_host_activate() for SFF ATA 2263 * hosts. This separate helper is necessary because SFF hosts 2264 * use two separate interrupts in legacy mode. 2265 * 2266 * LOCKING: 2267 * Inherited from calling layer (may sleep). 2268 * 2269 * RETURNS: 2270 * 0 on success, -errno otherwise. 2271 */ 2272 int ata_pci_sff_activate_host(struct ata_host *host, 2273 irq_handler_t irq_handler, 2274 const struct scsi_host_template *sht) 2275 { 2276 struct device *dev = host->dev; 2277 struct pci_dev *pdev = to_pci_dev(dev); 2278 const char *drv_name = dev_driver_string(host->dev); 2279 int legacy_mode = 0, rc; 2280 2281 rc = ata_host_start(host); 2282 if (rc) 2283 return rc; 2284 2285 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2286 u8 tmp8, mask = 0; 2287 2288 /* 2289 * ATA spec says we should use legacy mode when one 2290 * port is in legacy mode, but disabled ports on some 2291 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2292 * on which the secondary port is not wired, so 2293 * ignore ports that are marked as 'dummy' during 2294 * this check 2295 */ 2296 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2297 if (!ata_port_is_dummy(host->ports[0])) 2298 mask |= (1 << 0); 2299 if (!ata_port_is_dummy(host->ports[1])) 2300 mask |= (1 << 2); 2301 if ((tmp8 & mask) != mask) 2302 legacy_mode = 1; 2303 } 2304 2305 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2306 return -ENOMEM; 2307 2308 if (!legacy_mode && pdev->irq) { 2309 int i; 2310 2311 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2312 IRQF_SHARED, drv_name, host); 2313 if (rc) 2314 goto out; 2315 2316 for (i = 0; i < 2; i++) { 2317 if (ata_port_is_dummy(host->ports[i])) 2318 continue; 2319 ata_port_desc_misc(host->ports[i], pdev->irq); 2320 } 2321 } else if (legacy_mode) { 2322 if (!ata_port_is_dummy(host->ports[0])) { 2323 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2324 irq_handler, IRQF_SHARED, 2325 drv_name, host); 2326 if (rc) 2327 goto out; 2328 2329 ata_port_desc_misc(host->ports[0], 2330 ATA_PRIMARY_IRQ(pdev)); 2331 } 2332 2333 if (!ata_port_is_dummy(host->ports[1])) { 2334 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2335 irq_handler, IRQF_SHARED, 2336 drv_name, host); 2337 if (rc) 2338 goto out; 2339 2340 ata_port_desc_misc(host->ports[1], 2341 ATA_SECONDARY_IRQ(pdev)); 2342 } 2343 } 2344 2345 rc = ata_host_register(host, sht); 2346 out: 2347 if (rc == 0) 2348 devres_remove_group(dev, NULL); 2349 else 2350 devres_release_group(dev, NULL); 2351 2352 return rc; 2353 } 2354 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2355 2356 static const struct ata_port_info *ata_sff_find_valid_pi( 2357 const struct ata_port_info * const *ppi) 2358 { 2359 int i; 2360 2361 /* look up the first valid port_info */ 2362 for (i = 0; i < 2 && ppi[i]; i++) 2363 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2364 return ppi[i]; 2365 2366 return NULL; 2367 } 2368 2369 static int ata_pci_init_one(struct pci_dev *pdev, 2370 const struct ata_port_info * const *ppi, 2371 const struct scsi_host_template *sht, void *host_priv, 2372 int hflags, bool bmdma) 2373 { 2374 struct device *dev = &pdev->dev; 2375 const struct ata_port_info *pi; 2376 struct ata_host *host = NULL; 2377 int rc; 2378 2379 pi = ata_sff_find_valid_pi(ppi); 2380 if (!pi) { 2381 dev_err(&pdev->dev, "no valid port_info specified\n"); 2382 return -EINVAL; 2383 } 2384 2385 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2386 return -ENOMEM; 2387 2388 rc = pcim_enable_device(pdev); 2389 if (rc) 2390 goto out; 2391 2392 #ifdef CONFIG_ATA_BMDMA 2393 if (bmdma) 2394 /* prepare and activate BMDMA host */ 2395 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2396 else 2397 #endif 2398 /* prepare and activate SFF host */ 2399 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2400 if (rc) 2401 goto out; 2402 host->private_data = host_priv; 2403 host->flags |= hflags; 2404 2405 #ifdef CONFIG_ATA_BMDMA 2406 if (bmdma) { 2407 pci_set_master(pdev); 2408 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2409 } else 2410 #endif 2411 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2412 out: 2413 if (rc == 0) 2414 devres_remove_group(&pdev->dev, NULL); 2415 else 2416 devres_release_group(&pdev->dev, NULL); 2417 2418 return rc; 2419 } 2420 2421 /** 2422 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2423 * @pdev: Controller to be initialized 2424 * @ppi: array of port_info, must be enough for two ports 2425 * @sht: scsi_host_template to use when registering the host 2426 * @host_priv: host private_data 2427 * @hflag: host flags 2428 * 2429 * This is a helper function which can be called from a driver's 2430 * xxx_init_one() probe function if the hardware uses traditional 2431 * IDE taskfile registers and is PIO only. 2432 * 2433 * ASSUMPTION: 2434 * Nobody makes a single channel controller that appears solely as 2435 * the secondary legacy port on PCI. 2436 * 2437 * LOCKING: 2438 * Inherited from PCI layer (may sleep). 2439 * 2440 * RETURNS: 2441 * Zero on success, negative on errno-based value on error. 2442 */ 2443 int ata_pci_sff_init_one(struct pci_dev *pdev, 2444 const struct ata_port_info * const *ppi, 2445 const struct scsi_host_template *sht, void *host_priv, int hflag) 2446 { 2447 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2448 } 2449 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2450 2451 #endif /* CONFIG_PCI */ 2452 2453 /* 2454 * BMDMA support 2455 */ 2456 2457 #ifdef CONFIG_ATA_BMDMA 2458 2459 const struct ata_port_operations ata_bmdma_port_ops = { 2460 .inherits = &ata_sff_port_ops, 2461 2462 .error_handler = ata_bmdma_error_handler, 2463 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2464 2465 .qc_prep = ata_bmdma_qc_prep, 2466 .qc_issue = ata_bmdma_qc_issue, 2467 2468 .sff_irq_clear = ata_bmdma_irq_clear, 2469 .bmdma_setup = ata_bmdma_setup, 2470 .bmdma_start = ata_bmdma_start, 2471 .bmdma_stop = ata_bmdma_stop, 2472 .bmdma_status = ata_bmdma_status, 2473 2474 .port_start = ata_bmdma_port_start, 2475 }; 2476 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2477 2478 const struct ata_port_operations ata_bmdma32_port_ops = { 2479 .inherits = &ata_bmdma_port_ops, 2480 2481 .sff_data_xfer = ata_sff_data_xfer32, 2482 .port_start = ata_bmdma_port_start32, 2483 }; 2484 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2485 2486 /** 2487 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2488 * @qc: Metadata associated with taskfile to be transferred 2489 * 2490 * Fill PCI IDE PRD (scatter-gather) table with segments 2491 * associated with the current disk command. 2492 * 2493 * LOCKING: 2494 * spin_lock_irqsave(host lock) 2495 * 2496 */ 2497 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2498 { 2499 struct ata_port *ap = qc->ap; 2500 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2501 struct scatterlist *sg; 2502 unsigned int si, pi; 2503 2504 pi = 0; 2505 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2506 u32 addr, offset; 2507 u32 sg_len, len; 2508 2509 /* determine if physical DMA addr spans 64K boundary. 2510 * Note h/w doesn't support 64-bit, so we unconditionally 2511 * truncate dma_addr_t to u32. 2512 */ 2513 addr = (u32) sg_dma_address(sg); 2514 sg_len = sg_dma_len(sg); 2515 2516 while (sg_len) { 2517 offset = addr & 0xffff; 2518 len = sg_len; 2519 if ((offset + sg_len) > 0x10000) 2520 len = 0x10000 - offset; 2521 2522 prd[pi].addr = cpu_to_le32(addr); 2523 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2524 2525 pi++; 2526 sg_len -= len; 2527 addr += len; 2528 } 2529 } 2530 2531 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2532 } 2533 2534 /** 2535 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2536 * @qc: Metadata associated with taskfile to be transferred 2537 * 2538 * Fill PCI IDE PRD (scatter-gather) table with segments 2539 * associated with the current disk command. Perform the fill 2540 * so that we avoid writing any length 64K records for 2541 * controllers that don't follow the spec. 2542 * 2543 * LOCKING: 2544 * spin_lock_irqsave(host lock) 2545 * 2546 */ 2547 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2548 { 2549 struct ata_port *ap = qc->ap; 2550 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2551 struct scatterlist *sg; 2552 unsigned int si, pi; 2553 2554 pi = 0; 2555 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2556 u32 addr, offset; 2557 u32 sg_len, len, blen; 2558 2559 /* determine if physical DMA addr spans 64K boundary. 2560 * Note h/w doesn't support 64-bit, so we unconditionally 2561 * truncate dma_addr_t to u32. 2562 */ 2563 addr = (u32) sg_dma_address(sg); 2564 sg_len = sg_dma_len(sg); 2565 2566 while (sg_len) { 2567 offset = addr & 0xffff; 2568 len = sg_len; 2569 if ((offset + sg_len) > 0x10000) 2570 len = 0x10000 - offset; 2571 2572 blen = len & 0xffff; 2573 prd[pi].addr = cpu_to_le32(addr); 2574 if (blen == 0) { 2575 /* Some PATA chipsets like the CS5530 can't 2576 cope with 0x0000 meaning 64K as the spec 2577 says */ 2578 prd[pi].flags_len = cpu_to_le32(0x8000); 2579 blen = 0x8000; 2580 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2581 } 2582 prd[pi].flags_len = cpu_to_le32(blen); 2583 2584 pi++; 2585 sg_len -= len; 2586 addr += len; 2587 } 2588 } 2589 2590 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2591 } 2592 2593 /** 2594 * ata_bmdma_qc_prep - Prepare taskfile for submission 2595 * @qc: Metadata associated with taskfile to be prepared 2596 * 2597 * Prepare ATA taskfile for submission. 2598 * 2599 * LOCKING: 2600 * spin_lock_irqsave(host lock) 2601 */ 2602 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2603 { 2604 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2605 return AC_ERR_OK; 2606 2607 ata_bmdma_fill_sg(qc); 2608 2609 return AC_ERR_OK; 2610 } 2611 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2612 2613 /** 2614 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2615 * @qc: Metadata associated with taskfile to be prepared 2616 * 2617 * Prepare ATA taskfile for submission. 2618 * 2619 * LOCKING: 2620 * spin_lock_irqsave(host lock) 2621 */ 2622 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2623 { 2624 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2625 return AC_ERR_OK; 2626 2627 ata_bmdma_fill_sg_dumb(qc); 2628 2629 return AC_ERR_OK; 2630 } 2631 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2632 2633 /** 2634 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2635 * @qc: command to issue to device 2636 * 2637 * This function issues a PIO, NODATA or DMA command to a 2638 * SFF/BMDMA controller. PIO and NODATA are handled by 2639 * ata_sff_qc_issue(). 2640 * 2641 * LOCKING: 2642 * spin_lock_irqsave(host lock) 2643 * 2644 * RETURNS: 2645 * Zero on success, AC_ERR_* mask on failure 2646 */ 2647 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2648 { 2649 struct ata_port *ap = qc->ap; 2650 struct ata_link *link = qc->dev->link; 2651 2652 /* defer PIO handling to sff_qc_issue */ 2653 if (!ata_is_dma(qc->tf.protocol)) 2654 return ata_sff_qc_issue(qc); 2655 2656 /* select the device */ 2657 ata_dev_select(ap, qc->dev->devno, 1, 0); 2658 2659 /* start the command */ 2660 switch (qc->tf.protocol) { 2661 case ATA_PROT_DMA: 2662 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2663 2664 trace_ata_tf_load(ap, &qc->tf); 2665 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2666 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2667 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2668 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2669 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2670 ap->hsm_task_state = HSM_ST_LAST; 2671 break; 2672 2673 case ATAPI_PROT_DMA: 2674 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2675 2676 trace_ata_tf_load(ap, &qc->tf); 2677 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2678 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2679 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2680 ap->hsm_task_state = HSM_ST_FIRST; 2681 2682 /* send cdb by polling if no cdb interrupt */ 2683 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2684 ata_sff_queue_pio_task(link, 0); 2685 break; 2686 2687 default: 2688 WARN_ON(1); 2689 return AC_ERR_SYSTEM; 2690 } 2691 2692 return 0; 2693 } 2694 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2695 2696 /** 2697 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2698 * @ap: Port on which interrupt arrived (possibly...) 2699 * @qc: Taskfile currently active in engine 2700 * 2701 * Handle port interrupt for given queued command. 2702 * 2703 * LOCKING: 2704 * spin_lock_irqsave(host lock) 2705 * 2706 * RETURNS: 2707 * One if interrupt was handled, zero if not (shared irq). 2708 */ 2709 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2710 { 2711 struct ata_eh_info *ehi = &ap->link.eh_info; 2712 u8 host_stat = 0; 2713 bool bmdma_stopped = false; 2714 unsigned int handled; 2715 2716 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2717 /* check status of DMA engine */ 2718 host_stat = ap->ops->bmdma_status(ap); 2719 trace_ata_bmdma_status(ap, host_stat); 2720 2721 /* if it's not our irq... */ 2722 if (!(host_stat & ATA_DMA_INTR)) 2723 return ata_sff_idle_irq(ap); 2724 2725 /* before we do anything else, clear DMA-Start bit */ 2726 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2727 ap->ops->bmdma_stop(qc); 2728 bmdma_stopped = true; 2729 2730 if (unlikely(host_stat & ATA_DMA_ERR)) { 2731 /* error when transferring data to/from memory */ 2732 qc->err_mask |= AC_ERR_HOST_BUS; 2733 ap->hsm_task_state = HSM_ST_ERR; 2734 } 2735 } 2736 2737 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2738 2739 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2740 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2741 2742 return handled; 2743 } 2744 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2745 2746 /** 2747 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2748 * @irq: irq line (unused) 2749 * @dev_instance: pointer to our ata_host information structure 2750 * 2751 * Default interrupt handler for PCI IDE devices. Calls 2752 * ata_bmdma_port_intr() for each port that is not disabled. 2753 * 2754 * LOCKING: 2755 * Obtains host lock during operation. 2756 * 2757 * RETURNS: 2758 * IRQ_NONE or IRQ_HANDLED. 2759 */ 2760 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2761 { 2762 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2763 } 2764 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2765 2766 /** 2767 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2768 * @ap: port to handle error for 2769 * 2770 * Stock error handler for BMDMA controller. It can handle both 2771 * PATA and SATA controllers. Most BMDMA controllers should be 2772 * able to use this EH as-is or with some added handling before 2773 * and after. 2774 * 2775 * LOCKING: 2776 * Kernel thread context (may sleep) 2777 */ 2778 void ata_bmdma_error_handler(struct ata_port *ap) 2779 { 2780 struct ata_queued_cmd *qc; 2781 unsigned long flags; 2782 bool thaw = false; 2783 2784 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2785 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2786 qc = NULL; 2787 2788 /* reset PIO HSM and stop DMA engine */ 2789 spin_lock_irqsave(ap->lock, flags); 2790 2791 if (qc && ata_is_dma(qc->tf.protocol)) { 2792 u8 host_stat; 2793 2794 host_stat = ap->ops->bmdma_status(ap); 2795 trace_ata_bmdma_status(ap, host_stat); 2796 2797 /* BMDMA controllers indicate host bus error by 2798 * setting DMA_ERR bit and timing out. As it wasn't 2799 * really a timeout event, adjust error mask and 2800 * cancel frozen state. 2801 */ 2802 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2803 qc->err_mask = AC_ERR_HOST_BUS; 2804 thaw = true; 2805 } 2806 2807 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2808 ap->ops->bmdma_stop(qc); 2809 2810 /* if we're gonna thaw, make sure IRQ is clear */ 2811 if (thaw) { 2812 ap->ops->sff_check_status(ap); 2813 if (ap->ops->sff_irq_clear) 2814 ap->ops->sff_irq_clear(ap); 2815 } 2816 } 2817 2818 spin_unlock_irqrestore(ap->lock, flags); 2819 2820 if (thaw) 2821 ata_eh_thaw_port(ap); 2822 2823 ata_sff_error_handler(ap); 2824 } 2825 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2826 2827 /** 2828 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2829 * @qc: internal command to clean up 2830 * 2831 * LOCKING: 2832 * Kernel thread context (may sleep) 2833 */ 2834 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2835 { 2836 struct ata_port *ap = qc->ap; 2837 unsigned long flags; 2838 2839 if (ata_is_dma(qc->tf.protocol)) { 2840 spin_lock_irqsave(ap->lock, flags); 2841 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2842 ap->ops->bmdma_stop(qc); 2843 spin_unlock_irqrestore(ap->lock, flags); 2844 } 2845 } 2846 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2847 2848 /** 2849 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2850 * @ap: Port associated with this ATA transaction. 2851 * 2852 * Clear interrupt and error flags in DMA status register. 2853 * 2854 * May be used as the irq_clear() entry in ata_port_operations. 2855 * 2856 * LOCKING: 2857 * spin_lock_irqsave(host lock) 2858 */ 2859 void ata_bmdma_irq_clear(struct ata_port *ap) 2860 { 2861 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2862 2863 if (!mmio) 2864 return; 2865 2866 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2867 } 2868 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2869 2870 /** 2871 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2872 * @qc: Info associated with this ATA transaction. 2873 * 2874 * LOCKING: 2875 * spin_lock_irqsave(host lock) 2876 */ 2877 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2878 { 2879 struct ata_port *ap = qc->ap; 2880 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2881 u8 dmactl; 2882 2883 /* load PRD table addr. */ 2884 mb(); /* make sure PRD table writes are visible to controller */ 2885 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2886 2887 /* specify data direction, triple-check start bit is clear */ 2888 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2889 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2890 if (!rw) 2891 dmactl |= ATA_DMA_WR; 2892 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2893 2894 /* issue r/w command */ 2895 ap->ops->sff_exec_command(ap, &qc->tf); 2896 } 2897 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2898 2899 /** 2900 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2901 * @qc: Info associated with this ATA transaction. 2902 * 2903 * LOCKING: 2904 * spin_lock_irqsave(host lock) 2905 */ 2906 void ata_bmdma_start(struct ata_queued_cmd *qc) 2907 { 2908 struct ata_port *ap = qc->ap; 2909 u8 dmactl; 2910 2911 /* start host DMA transaction */ 2912 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2913 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2914 2915 /* Strictly, one may wish to issue an ioread8() here, to 2916 * flush the mmio write. However, control also passes 2917 * to the hardware at this point, and it will interrupt 2918 * us when we are to resume control. So, in effect, 2919 * we don't care when the mmio write flushes. 2920 * Further, a read of the DMA status register _immediately_ 2921 * following the write may not be what certain flaky hardware 2922 * is expected, so I think it is best to not add a readb() 2923 * without first all the MMIO ATA cards/mobos. 2924 * Or maybe I'm just being paranoid. 2925 * 2926 * FIXME: The posting of this write means I/O starts are 2927 * unnecessarily delayed for MMIO 2928 */ 2929 } 2930 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2931 2932 /** 2933 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2934 * @qc: Command we are ending DMA for 2935 * 2936 * Clears the ATA_DMA_START flag in the dma control register 2937 * 2938 * May be used as the bmdma_stop() entry in ata_port_operations. 2939 * 2940 * LOCKING: 2941 * spin_lock_irqsave(host lock) 2942 */ 2943 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2944 { 2945 struct ata_port *ap = qc->ap; 2946 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2947 2948 /* clear start/stop bit */ 2949 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2950 mmio + ATA_DMA_CMD); 2951 2952 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2953 ata_sff_dma_pause(ap); 2954 } 2955 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2956 2957 /** 2958 * ata_bmdma_status - Read PCI IDE BMDMA status 2959 * @ap: Port associated with this ATA transaction. 2960 * 2961 * Read and return BMDMA status register. 2962 * 2963 * May be used as the bmdma_status() entry in ata_port_operations. 2964 * 2965 * LOCKING: 2966 * spin_lock_irqsave(host lock) 2967 */ 2968 u8 ata_bmdma_status(struct ata_port *ap) 2969 { 2970 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2971 } 2972 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2973 2974 2975 /** 2976 * ata_bmdma_port_start - Set port up for bmdma. 2977 * @ap: Port to initialize 2978 * 2979 * Called just after data structures for each port are 2980 * initialized. Allocates space for PRD table. 2981 * 2982 * May be used as the port_start() entry in ata_port_operations. 2983 * 2984 * LOCKING: 2985 * Inherited from caller. 2986 */ 2987 int ata_bmdma_port_start(struct ata_port *ap) 2988 { 2989 if (ap->mwdma_mask || ap->udma_mask) { 2990 ap->bmdma_prd = 2991 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 2992 &ap->bmdma_prd_dma, GFP_KERNEL); 2993 if (!ap->bmdma_prd) 2994 return -ENOMEM; 2995 } 2996 2997 return 0; 2998 } 2999 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3000 3001 /** 3002 * ata_bmdma_port_start32 - Set port up for dma. 3003 * @ap: Port to initialize 3004 * 3005 * Called just after data structures for each port are 3006 * initialized. Enables 32bit PIO and allocates space for PRD 3007 * table. 3008 * 3009 * May be used as the port_start() entry in ata_port_operations for 3010 * devices that are capable of 32bit PIO. 3011 * 3012 * LOCKING: 3013 * Inherited from caller. 3014 */ 3015 int ata_bmdma_port_start32(struct ata_port *ap) 3016 { 3017 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3018 return ata_bmdma_port_start(ap); 3019 } 3020 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3021 3022 #ifdef CONFIG_PCI 3023 3024 /** 3025 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3026 * @pdev: PCI device 3027 * 3028 * Some PCI ATA devices report simplex mode but in fact can be told to 3029 * enter non simplex mode. This implements the necessary logic to 3030 * perform the task on such devices. Calling it on other devices will 3031 * have -undefined- behaviour. 3032 */ 3033 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3034 { 3035 #ifdef CONFIG_HAS_IOPORT 3036 unsigned long bmdma = pci_resource_start(pdev, 4); 3037 u8 simplex; 3038 3039 if (bmdma == 0) 3040 return -ENOENT; 3041 3042 simplex = inb(bmdma + 0x02); 3043 outb(simplex & 0x60, bmdma + 0x02); 3044 simplex = inb(bmdma + 0x02); 3045 if (simplex & 0x80) 3046 return -EOPNOTSUPP; 3047 return 0; 3048 #else 3049 return -ENOENT; 3050 #endif /* CONFIG_HAS_IOPORT */ 3051 } 3052 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3053 3054 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3055 { 3056 int i; 3057 3058 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3059 3060 for (i = 0; i < 2; i++) { 3061 host->ports[i]->mwdma_mask = 0; 3062 host->ports[i]->udma_mask = 0; 3063 } 3064 } 3065 3066 /** 3067 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3068 * @host: target ATA host 3069 * 3070 * Acquire PCI BMDMA resources and initialize @host accordingly. 3071 * 3072 * LOCKING: 3073 * Inherited from calling layer (may sleep). 3074 */ 3075 void ata_pci_bmdma_init(struct ata_host *host) 3076 { 3077 struct device *gdev = host->dev; 3078 struct pci_dev *pdev = to_pci_dev(gdev); 3079 int i, rc; 3080 3081 /* No BAR4 allocation: No DMA */ 3082 if (pci_resource_start(pdev, 4) == 0) { 3083 ata_bmdma_nodma(host, "BAR4 is zero"); 3084 return; 3085 } 3086 3087 /* 3088 * Some controllers require BMDMA region to be initialized 3089 * even if DMA is not in use to clear IRQ status via 3090 * ->sff_irq_clear method. Try to initialize bmdma_addr 3091 * regardless of dma masks. 3092 */ 3093 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3094 if (rc) 3095 ata_bmdma_nodma(host, "failed to set dma mask"); 3096 3097 /* request and iomap DMA region */ 3098 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3099 if (rc) { 3100 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3101 return; 3102 } 3103 host->iomap = pcim_iomap_table(pdev); 3104 3105 for (i = 0; i < 2; i++) { 3106 struct ata_port *ap = host->ports[i]; 3107 void __iomem *bmdma = host->iomap[4] + 8 * i; 3108 3109 if (ata_port_is_dummy(ap)) 3110 continue; 3111 3112 ap->ioaddr.bmdma_addr = bmdma; 3113 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3114 (ioread8(bmdma + 2) & 0x80)) 3115 host->flags |= ATA_HOST_SIMPLEX; 3116 3117 ata_port_desc(ap, "bmdma 0x%llx", 3118 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3119 } 3120 } 3121 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3122 3123 /** 3124 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3125 * @pdev: target PCI device 3126 * @ppi: array of port_info, must be enough for two ports 3127 * @r_host: out argument for the initialized ATA host 3128 * 3129 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3130 * resources and initialize it accordingly in one go. 3131 * 3132 * LOCKING: 3133 * Inherited from calling layer (may sleep). 3134 * 3135 * RETURNS: 3136 * 0 on success, -errno otherwise. 3137 */ 3138 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3139 const struct ata_port_info * const * ppi, 3140 struct ata_host **r_host) 3141 { 3142 int rc; 3143 3144 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3145 if (rc) 3146 return rc; 3147 3148 ata_pci_bmdma_init(*r_host); 3149 return 0; 3150 } 3151 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3152 3153 /** 3154 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3155 * @pdev: Controller to be initialized 3156 * @ppi: array of port_info, must be enough for two ports 3157 * @sht: scsi_host_template to use when registering the host 3158 * @host_priv: host private_data 3159 * @hflags: host flags 3160 * 3161 * This function is similar to ata_pci_sff_init_one() but also 3162 * takes care of BMDMA initialization. 3163 * 3164 * LOCKING: 3165 * Inherited from PCI layer (may sleep). 3166 * 3167 * RETURNS: 3168 * Zero on success, negative on errno-based value on error. 3169 */ 3170 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3171 const struct ata_port_info * const * ppi, 3172 const struct scsi_host_template *sht, void *host_priv, 3173 int hflags) 3174 { 3175 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3176 } 3177 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3178 3179 #endif /* CONFIG_PCI */ 3180 #endif /* CONFIG_ATA_BMDMA */ 3181 3182 /** 3183 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3184 * @ap: Port to initialize 3185 * 3186 * Called on port allocation to initialize SFF/BMDMA specific 3187 * fields. 3188 * 3189 * LOCKING: 3190 * None. 3191 */ 3192 void ata_sff_port_init(struct ata_port *ap) 3193 { 3194 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3195 ap->ctl = ATA_DEVCTL_OBS; 3196 ap->last_ctl = 0xFF; 3197 } 3198 3199 int __init ata_sff_init(void) 3200 { 3201 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3202 if (!ata_sff_wq) 3203 return -ENOMEM; 3204 3205 return 0; 3206 } 3207 3208 void ata_sff_exit(void) 3209 { 3210 destroy_workqueue(ata_sff_wq); 3211 } 3212