1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .error_handler = ata_sff_error_handler, 56 .post_internal_cmd = ata_sff_post_internal_cmd, 57 58 .sff_dev_select = ata_sff_dev_select, 59 .sff_check_status = ata_sff_check_status, 60 .sff_tf_load = ata_sff_tf_load, 61 .sff_tf_read = ata_sff_tf_read, 62 .sff_exec_command = ata_sff_exec_command, 63 .sff_data_xfer = ata_sff_data_xfer, 64 .sff_irq_on = ata_sff_irq_on, 65 .sff_irq_clear = ata_sff_irq_clear, 66 67 .port_start = ata_sff_port_start, 68 }; 69 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 70 71 const struct ata_port_operations ata_bmdma_port_ops = { 72 .inherits = &ata_sff_port_ops, 73 74 .mode_filter = ata_bmdma_mode_filter, 75 76 .bmdma_setup = ata_bmdma_setup, 77 .bmdma_start = ata_bmdma_start, 78 .bmdma_stop = ata_bmdma_stop, 79 .bmdma_status = ata_bmdma_status, 80 }; 81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 82 83 const struct ata_port_operations ata_bmdma32_port_ops = { 84 .inherits = &ata_bmdma_port_ops, 85 86 .sff_data_xfer = ata_sff_data_xfer32, 87 }; 88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 89 90 /** 91 * ata_fill_sg - Fill PCI IDE PRD table 92 * @qc: Metadata associated with taskfile to be transferred 93 * 94 * Fill PCI IDE PRD (scatter-gather) table with segments 95 * associated with the current disk command. 96 * 97 * LOCKING: 98 * spin_lock_irqsave(host lock) 99 * 100 */ 101 static void ata_fill_sg(struct ata_queued_cmd *qc) 102 { 103 struct ata_port *ap = qc->ap; 104 struct scatterlist *sg; 105 unsigned int si, pi; 106 107 pi = 0; 108 for_each_sg(qc->sg, sg, qc->n_elem, si) { 109 u32 addr, offset; 110 u32 sg_len, len; 111 112 /* determine if physical DMA addr spans 64K boundary. 113 * Note h/w doesn't support 64-bit, so we unconditionally 114 * truncate dma_addr_t to u32. 115 */ 116 addr = (u32) sg_dma_address(sg); 117 sg_len = sg_dma_len(sg); 118 119 while (sg_len) { 120 offset = addr & 0xffff; 121 len = sg_len; 122 if ((offset + sg_len) > 0x10000) 123 len = 0x10000 - offset; 124 125 ap->prd[pi].addr = cpu_to_le32(addr); 126 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 127 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 128 129 pi++; 130 sg_len -= len; 131 addr += len; 132 } 133 } 134 135 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 136 } 137 138 /** 139 * ata_fill_sg_dumb - Fill PCI IDE PRD table 140 * @qc: Metadata associated with taskfile to be transferred 141 * 142 * Fill PCI IDE PRD (scatter-gather) table with segments 143 * associated with the current disk command. Perform the fill 144 * so that we avoid writing any length 64K records for 145 * controllers that don't follow the spec. 146 * 147 * LOCKING: 148 * spin_lock_irqsave(host lock) 149 * 150 */ 151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 152 { 153 struct ata_port *ap = qc->ap; 154 struct scatterlist *sg; 155 unsigned int si, pi; 156 157 pi = 0; 158 for_each_sg(qc->sg, sg, qc->n_elem, si) { 159 u32 addr, offset; 160 u32 sg_len, len, blen; 161 162 /* determine if physical DMA addr spans 64K boundary. 163 * Note h/w doesn't support 64-bit, so we unconditionally 164 * truncate dma_addr_t to u32. 165 */ 166 addr = (u32) sg_dma_address(sg); 167 sg_len = sg_dma_len(sg); 168 169 while (sg_len) { 170 offset = addr & 0xffff; 171 len = sg_len; 172 if ((offset + sg_len) > 0x10000) 173 len = 0x10000 - offset; 174 175 blen = len & 0xffff; 176 ap->prd[pi].addr = cpu_to_le32(addr); 177 if (blen == 0) { 178 /* Some PATA chipsets like the CS5530 can't 179 cope with 0x0000 meaning 64K as the spec 180 says */ 181 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 182 blen = 0x8000; 183 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 184 } 185 ap->prd[pi].flags_len = cpu_to_le32(blen); 186 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 187 188 pi++; 189 sg_len -= len; 190 addr += len; 191 } 192 } 193 194 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 195 } 196 197 /** 198 * ata_sff_qc_prep - Prepare taskfile for submission 199 * @qc: Metadata associated with taskfile to be prepared 200 * 201 * Prepare ATA taskfile for submission. 202 * 203 * LOCKING: 204 * spin_lock_irqsave(host lock) 205 */ 206 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 207 { 208 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 209 return; 210 211 ata_fill_sg(qc); 212 } 213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 214 215 /** 216 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 217 * @qc: Metadata associated with taskfile to be prepared 218 * 219 * Prepare ATA taskfile for submission. 220 * 221 * LOCKING: 222 * spin_lock_irqsave(host lock) 223 */ 224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 225 { 226 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 227 return; 228 229 ata_fill_sg_dumb(qc); 230 } 231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 232 233 /** 234 * ata_sff_check_status - Read device status reg & clear interrupt 235 * @ap: port where the device is 236 * 237 * Reads ATA taskfile status register for currently-selected device 238 * and return its value. This also clears pending interrupts 239 * from this device 240 * 241 * LOCKING: 242 * Inherited from caller. 243 */ 244 u8 ata_sff_check_status(struct ata_port *ap) 245 { 246 return ioread8(ap->ioaddr.status_addr); 247 } 248 EXPORT_SYMBOL_GPL(ata_sff_check_status); 249 250 /** 251 * ata_sff_altstatus - Read device alternate status reg 252 * @ap: port where the device is 253 * 254 * Reads ATA taskfile alternate status register for 255 * currently-selected device and return its value. 256 * 257 * Note: may NOT be used as the check_altstatus() entry in 258 * ata_port_operations. 259 * 260 * LOCKING: 261 * Inherited from caller. 262 */ 263 static u8 ata_sff_altstatus(struct ata_port *ap) 264 { 265 if (ap->ops->sff_check_altstatus) 266 return ap->ops->sff_check_altstatus(ap); 267 268 return ioread8(ap->ioaddr.altstatus_addr); 269 } 270 271 /** 272 * ata_sff_irq_status - Check if the device is busy 273 * @ap: port where the device is 274 * 275 * Determine if the port is currently busy. Uses altstatus 276 * if available in order to avoid clearing shared IRQ status 277 * when finding an IRQ source. Non ctl capable devices don't 278 * share interrupt lines fortunately for us. 279 * 280 * LOCKING: 281 * Inherited from caller. 282 */ 283 static u8 ata_sff_irq_status(struct ata_port *ap) 284 { 285 u8 status; 286 287 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 288 status = ata_sff_altstatus(ap); 289 /* Not us: We are busy */ 290 if (status & ATA_BUSY) 291 return status; 292 } 293 /* Clear INTRQ latch */ 294 status = ap->ops->sff_check_status(ap); 295 return status; 296 } 297 298 /** 299 * ata_sff_sync - Flush writes 300 * @ap: Port to wait for. 301 * 302 * CAUTION: 303 * If we have an mmio device with no ctl and no altstatus 304 * method this will fail. No such devices are known to exist. 305 * 306 * LOCKING: 307 * Inherited from caller. 308 */ 309 310 static void ata_sff_sync(struct ata_port *ap) 311 { 312 if (ap->ops->sff_check_altstatus) 313 ap->ops->sff_check_altstatus(ap); 314 else if (ap->ioaddr.altstatus_addr) 315 ioread8(ap->ioaddr.altstatus_addr); 316 } 317 318 /** 319 * ata_sff_pause - Flush writes and wait 400nS 320 * @ap: Port to pause for. 321 * 322 * CAUTION: 323 * If we have an mmio device with no ctl and no altstatus 324 * method this will fail. No such devices are known to exist. 325 * 326 * LOCKING: 327 * Inherited from caller. 328 */ 329 330 void ata_sff_pause(struct ata_port *ap) 331 { 332 ata_sff_sync(ap); 333 ndelay(400); 334 } 335 EXPORT_SYMBOL_GPL(ata_sff_pause); 336 337 /** 338 * ata_sff_dma_pause - Pause before commencing DMA 339 * @ap: Port to pause for. 340 * 341 * Perform I/O fencing and ensure sufficient cycle delays occur 342 * for the HDMA1:0 transition 343 */ 344 345 void ata_sff_dma_pause(struct ata_port *ap) 346 { 347 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 348 /* An altstatus read will cause the needed delay without 349 messing up the IRQ status */ 350 ata_sff_altstatus(ap); 351 return; 352 } 353 /* There are no DMA controllers without ctl. BUG here to ensure 354 we never violate the HDMA1:0 transition timing and risk 355 corruption. */ 356 BUG(); 357 } 358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 359 360 /** 361 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 362 * @ap: port containing status register to be polled 363 * @tmout_pat: impatience timeout in msecs 364 * @tmout: overall timeout in msecs 365 * 366 * Sleep until ATA Status register bit BSY clears, 367 * or a timeout occurs. 368 * 369 * LOCKING: 370 * Kernel thread context (may sleep). 371 * 372 * RETURNS: 373 * 0 on success, -errno otherwise. 374 */ 375 int ata_sff_busy_sleep(struct ata_port *ap, 376 unsigned long tmout_pat, unsigned long tmout) 377 { 378 unsigned long timer_start, timeout; 379 u8 status; 380 381 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 382 timer_start = jiffies; 383 timeout = ata_deadline(timer_start, tmout_pat); 384 while (status != 0xff && (status & ATA_BUSY) && 385 time_before(jiffies, timeout)) { 386 msleep(50); 387 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 388 } 389 390 if (status != 0xff && (status & ATA_BUSY)) 391 ata_port_printk(ap, KERN_WARNING, 392 "port is slow to respond, please be patient " 393 "(Status 0x%x)\n", status); 394 395 timeout = ata_deadline(timer_start, tmout); 396 while (status != 0xff && (status & ATA_BUSY) && 397 time_before(jiffies, timeout)) { 398 msleep(50); 399 status = ap->ops->sff_check_status(ap); 400 } 401 402 if (status == 0xff) 403 return -ENODEV; 404 405 if (status & ATA_BUSY) { 406 ata_port_printk(ap, KERN_ERR, "port failed to respond " 407 "(%lu secs, Status 0x%x)\n", 408 DIV_ROUND_UP(tmout, 1000), status); 409 return -EBUSY; 410 } 411 412 return 0; 413 } 414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 415 416 static int ata_sff_check_ready(struct ata_link *link) 417 { 418 u8 status = link->ap->ops->sff_check_status(link->ap); 419 420 return ata_check_ready(status); 421 } 422 423 /** 424 * ata_sff_wait_ready - sleep until BSY clears, or timeout 425 * @link: SFF link to wait ready status for 426 * @deadline: deadline jiffies for the operation 427 * 428 * Sleep until ATA Status register bit BSY clears, or timeout 429 * occurs. 430 * 431 * LOCKING: 432 * Kernel thread context (may sleep). 433 * 434 * RETURNS: 435 * 0 on success, -errno otherwise. 436 */ 437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 438 { 439 return ata_wait_ready(link, deadline, ata_sff_check_ready); 440 } 441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 442 443 /** 444 * ata_sff_dev_select - Select device 0/1 on ATA bus 445 * @ap: ATA channel to manipulate 446 * @device: ATA device (numbered from zero) to select 447 * 448 * Use the method defined in the ATA specification to 449 * make either device 0, or device 1, active on the 450 * ATA channel. Works with both PIO and MMIO. 451 * 452 * May be used as the dev_select() entry in ata_port_operations. 453 * 454 * LOCKING: 455 * caller. 456 */ 457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 458 { 459 u8 tmp; 460 461 if (device == 0) 462 tmp = ATA_DEVICE_OBS; 463 else 464 tmp = ATA_DEVICE_OBS | ATA_DEV1; 465 466 iowrite8(tmp, ap->ioaddr.device_addr); 467 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 468 } 469 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 470 471 /** 472 * ata_dev_select - Select device 0/1 on ATA bus 473 * @ap: ATA channel to manipulate 474 * @device: ATA device (numbered from zero) to select 475 * @wait: non-zero to wait for Status register BSY bit to clear 476 * @can_sleep: non-zero if context allows sleeping 477 * 478 * Use the method defined in the ATA specification to 479 * make either device 0, or device 1, active on the 480 * ATA channel. 481 * 482 * This is a high-level version of ata_sff_dev_select(), which 483 * additionally provides the services of inserting the proper 484 * pauses and status polling, where needed. 485 * 486 * LOCKING: 487 * caller. 488 */ 489 void ata_dev_select(struct ata_port *ap, unsigned int device, 490 unsigned int wait, unsigned int can_sleep) 491 { 492 if (ata_msg_probe(ap)) 493 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 494 "device %u, wait %u\n", device, wait); 495 496 if (wait) 497 ata_wait_idle(ap); 498 499 ap->ops->sff_dev_select(ap, device); 500 501 if (wait) { 502 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 503 msleep(150); 504 ata_wait_idle(ap); 505 } 506 } 507 508 /** 509 * ata_sff_irq_on - Enable interrupts on a port. 510 * @ap: Port on which interrupts are enabled. 511 * 512 * Enable interrupts on a legacy IDE device using MMIO or PIO, 513 * wait for idle, clear any pending interrupts. 514 * 515 * LOCKING: 516 * Inherited from caller. 517 */ 518 u8 ata_sff_irq_on(struct ata_port *ap) 519 { 520 struct ata_ioports *ioaddr = &ap->ioaddr; 521 u8 tmp; 522 523 ap->ctl &= ~ATA_NIEN; 524 ap->last_ctl = ap->ctl; 525 526 if (ioaddr->ctl_addr) 527 iowrite8(ap->ctl, ioaddr->ctl_addr); 528 tmp = ata_wait_idle(ap); 529 530 ap->ops->sff_irq_clear(ap); 531 532 return tmp; 533 } 534 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 535 536 /** 537 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 538 * @ap: Port associated with this ATA transaction. 539 * 540 * Clear interrupt and error flags in DMA status register. 541 * 542 * May be used as the irq_clear() entry in ata_port_operations. 543 * 544 * LOCKING: 545 * spin_lock_irqsave(host lock) 546 */ 547 void ata_sff_irq_clear(struct ata_port *ap) 548 { 549 void __iomem *mmio = ap->ioaddr.bmdma_addr; 550 551 if (!mmio) 552 return; 553 554 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 555 } 556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 557 558 /** 559 * ata_sff_tf_load - send taskfile registers to host controller 560 * @ap: Port to which output is sent 561 * @tf: ATA taskfile register set 562 * 563 * Outputs ATA taskfile to standard ATA host controller. 564 * 565 * LOCKING: 566 * Inherited from caller. 567 */ 568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 569 { 570 struct ata_ioports *ioaddr = &ap->ioaddr; 571 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 572 573 if (tf->ctl != ap->last_ctl) { 574 if (ioaddr->ctl_addr) 575 iowrite8(tf->ctl, ioaddr->ctl_addr); 576 ap->last_ctl = tf->ctl; 577 ata_wait_idle(ap); 578 } 579 580 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 581 WARN_ON_ONCE(!ioaddr->ctl_addr); 582 iowrite8(tf->hob_feature, ioaddr->feature_addr); 583 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 584 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 585 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 586 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 587 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 588 tf->hob_feature, 589 tf->hob_nsect, 590 tf->hob_lbal, 591 tf->hob_lbam, 592 tf->hob_lbah); 593 } 594 595 if (is_addr) { 596 iowrite8(tf->feature, ioaddr->feature_addr); 597 iowrite8(tf->nsect, ioaddr->nsect_addr); 598 iowrite8(tf->lbal, ioaddr->lbal_addr); 599 iowrite8(tf->lbam, ioaddr->lbam_addr); 600 iowrite8(tf->lbah, ioaddr->lbah_addr); 601 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 602 tf->feature, 603 tf->nsect, 604 tf->lbal, 605 tf->lbam, 606 tf->lbah); 607 } 608 609 if (tf->flags & ATA_TFLAG_DEVICE) { 610 iowrite8(tf->device, ioaddr->device_addr); 611 VPRINTK("device 0x%X\n", tf->device); 612 } 613 614 ata_wait_idle(ap); 615 } 616 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 617 618 /** 619 * ata_sff_tf_read - input device's ATA taskfile shadow registers 620 * @ap: Port from which input is read 621 * @tf: ATA taskfile register set for storing input 622 * 623 * Reads ATA taskfile registers for currently-selected device 624 * into @tf. Assumes the device has a fully SFF compliant task file 625 * layout and behaviour. If you device does not (eg has a different 626 * status method) then you will need to provide a replacement tf_read 627 * 628 * LOCKING: 629 * Inherited from caller. 630 */ 631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 632 { 633 struct ata_ioports *ioaddr = &ap->ioaddr; 634 635 tf->command = ata_sff_check_status(ap); 636 tf->feature = ioread8(ioaddr->error_addr); 637 tf->nsect = ioread8(ioaddr->nsect_addr); 638 tf->lbal = ioread8(ioaddr->lbal_addr); 639 tf->lbam = ioread8(ioaddr->lbam_addr); 640 tf->lbah = ioread8(ioaddr->lbah_addr); 641 tf->device = ioread8(ioaddr->device_addr); 642 643 if (tf->flags & ATA_TFLAG_LBA48) { 644 if (likely(ioaddr->ctl_addr)) { 645 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 646 tf->hob_feature = ioread8(ioaddr->error_addr); 647 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 648 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 649 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 650 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 651 iowrite8(tf->ctl, ioaddr->ctl_addr); 652 ap->last_ctl = tf->ctl; 653 } else 654 WARN_ON_ONCE(1); 655 } 656 } 657 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 658 659 /** 660 * ata_sff_exec_command - issue ATA command to host controller 661 * @ap: port to which command is being issued 662 * @tf: ATA taskfile register set 663 * 664 * Issues ATA command, with proper synchronization with interrupt 665 * handler / other threads. 666 * 667 * LOCKING: 668 * spin_lock_irqsave(host lock) 669 */ 670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 671 { 672 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 673 674 iowrite8(tf->command, ap->ioaddr.command_addr); 675 ata_sff_pause(ap); 676 } 677 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 678 679 /** 680 * ata_tf_to_host - issue ATA taskfile to host controller 681 * @ap: port to which command is being issued 682 * @tf: ATA taskfile register set 683 * 684 * Issues ATA taskfile register set to ATA host controller, 685 * with proper synchronization with interrupt handler and 686 * other threads. 687 * 688 * LOCKING: 689 * spin_lock_irqsave(host lock) 690 */ 691 static inline void ata_tf_to_host(struct ata_port *ap, 692 const struct ata_taskfile *tf) 693 { 694 ap->ops->sff_tf_load(ap, tf); 695 ap->ops->sff_exec_command(ap, tf); 696 } 697 698 /** 699 * ata_sff_data_xfer - Transfer data by PIO 700 * @dev: device to target 701 * @buf: data buffer 702 * @buflen: buffer length 703 * @rw: read/write 704 * 705 * Transfer data from/to the device data register by PIO. 706 * 707 * LOCKING: 708 * Inherited from caller. 709 * 710 * RETURNS: 711 * Bytes consumed. 712 */ 713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 714 unsigned int buflen, int rw) 715 { 716 struct ata_port *ap = dev->link->ap; 717 void __iomem *data_addr = ap->ioaddr.data_addr; 718 unsigned int words = buflen >> 1; 719 720 /* Transfer multiple of 2 bytes */ 721 if (rw == READ) 722 ioread16_rep(data_addr, buf, words); 723 else 724 iowrite16_rep(data_addr, buf, words); 725 726 /* Transfer trailing 1 byte, if any. */ 727 if (unlikely(buflen & 0x01)) { 728 __le16 align_buf[1] = { 0 }; 729 unsigned char *trailing_buf = buf + buflen - 1; 730 731 if (rw == READ) { 732 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 733 memcpy(trailing_buf, align_buf, 1); 734 } else { 735 memcpy(align_buf, trailing_buf, 1); 736 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 737 } 738 words++; 739 } 740 741 return words << 1; 742 } 743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 744 745 /** 746 * ata_sff_data_xfer32 - Transfer data by PIO 747 * @dev: device to target 748 * @buf: data buffer 749 * @buflen: buffer length 750 * @rw: read/write 751 * 752 * Transfer data from/to the device data register by PIO using 32bit 753 * I/O operations. 754 * 755 * LOCKING: 756 * Inherited from caller. 757 * 758 * RETURNS: 759 * Bytes consumed. 760 */ 761 762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 763 unsigned int buflen, int rw) 764 { 765 struct ata_port *ap = dev->link->ap; 766 void __iomem *data_addr = ap->ioaddr.data_addr; 767 unsigned int words = buflen >> 2; 768 int slop = buflen & 3; 769 770 /* Transfer multiple of 4 bytes */ 771 if (rw == READ) 772 ioread32_rep(data_addr, buf, words); 773 else 774 iowrite32_rep(data_addr, buf, words); 775 776 /* Transfer trailing bytes, if any */ 777 if (unlikely(slop)) { 778 unsigned char pad[4]; 779 780 /* Point buf to the tail of buffer */ 781 buf += buflen - slop; 782 783 /* 784 * Use io*_rep() accessors here as well to avoid pointlessly 785 * swapping bytes to and fro on the big endian machines... 786 */ 787 if (rw == READ) { 788 if (slop < 3) 789 ioread16_rep(data_addr, pad, 1); 790 else 791 ioread32_rep(data_addr, pad, 1); 792 memcpy(buf, pad, slop); 793 } else { 794 memcpy(pad, buf, slop); 795 if (slop < 3) 796 iowrite16_rep(data_addr, pad, 1); 797 else 798 iowrite32_rep(data_addr, pad, 1); 799 } 800 } 801 return (buflen + 1) & ~1; 802 } 803 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 804 805 /** 806 * ata_sff_data_xfer_noirq - Transfer data by PIO 807 * @dev: device to target 808 * @buf: data buffer 809 * @buflen: buffer length 810 * @rw: read/write 811 * 812 * Transfer data from/to the device data register by PIO. Do the 813 * transfer with interrupts disabled. 814 * 815 * LOCKING: 816 * Inherited from caller. 817 * 818 * RETURNS: 819 * Bytes consumed. 820 */ 821 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 822 unsigned int buflen, int rw) 823 { 824 unsigned long flags; 825 unsigned int consumed; 826 827 local_irq_save(flags); 828 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 829 local_irq_restore(flags); 830 831 return consumed; 832 } 833 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 834 835 /** 836 * ata_pio_sector - Transfer a sector of data. 837 * @qc: Command on going 838 * 839 * Transfer qc->sect_size bytes of data from/to the ATA device. 840 * 841 * LOCKING: 842 * Inherited from caller. 843 */ 844 static void ata_pio_sector(struct ata_queued_cmd *qc) 845 { 846 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 847 struct ata_port *ap = qc->ap; 848 struct page *page; 849 unsigned int offset; 850 unsigned char *buf; 851 852 if (qc->curbytes == qc->nbytes - qc->sect_size) 853 ap->hsm_task_state = HSM_ST_LAST; 854 855 page = sg_page(qc->cursg); 856 offset = qc->cursg->offset + qc->cursg_ofs; 857 858 /* get the current page and offset */ 859 page = nth_page(page, (offset >> PAGE_SHIFT)); 860 offset %= PAGE_SIZE; 861 862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 863 864 if (PageHighMem(page)) { 865 unsigned long flags; 866 867 /* FIXME: use a bounce buffer */ 868 local_irq_save(flags); 869 buf = kmap_atomic(page, KM_IRQ0); 870 871 /* do the actual data transfer */ 872 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 873 do_write); 874 875 kunmap_atomic(buf, KM_IRQ0); 876 local_irq_restore(flags); 877 } else { 878 buf = page_address(page); 879 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 880 do_write); 881 } 882 883 qc->curbytes += qc->sect_size; 884 qc->cursg_ofs += qc->sect_size; 885 886 if (qc->cursg_ofs == qc->cursg->length) { 887 qc->cursg = sg_next(qc->cursg); 888 qc->cursg_ofs = 0; 889 } 890 } 891 892 /** 893 * ata_pio_sectors - Transfer one or many sectors. 894 * @qc: Command on going 895 * 896 * Transfer one or many sectors of data from/to the 897 * ATA device for the DRQ request. 898 * 899 * LOCKING: 900 * Inherited from caller. 901 */ 902 static void ata_pio_sectors(struct ata_queued_cmd *qc) 903 { 904 if (is_multi_taskfile(&qc->tf)) { 905 /* READ/WRITE MULTIPLE */ 906 unsigned int nsect; 907 908 WARN_ON_ONCE(qc->dev->multi_count == 0); 909 910 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 911 qc->dev->multi_count); 912 while (nsect--) 913 ata_pio_sector(qc); 914 } else 915 ata_pio_sector(qc); 916 917 ata_sff_sync(qc->ap); /* flush */ 918 } 919 920 /** 921 * atapi_send_cdb - Write CDB bytes to hardware 922 * @ap: Port to which ATAPI device is attached. 923 * @qc: Taskfile currently active 924 * 925 * When device has indicated its readiness to accept 926 * a CDB, this function is called. Send the CDB. 927 * 928 * LOCKING: 929 * caller. 930 */ 931 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 932 { 933 /* send SCSI cdb */ 934 DPRINTK("send cdb\n"); 935 WARN_ON_ONCE(qc->dev->cdb_len < 12); 936 937 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 938 ata_sff_sync(ap); 939 /* FIXME: If the CDB is for DMA do we need to do the transition delay 940 or is bmdma_start guaranteed to do it ? */ 941 switch (qc->tf.protocol) { 942 case ATAPI_PROT_PIO: 943 ap->hsm_task_state = HSM_ST; 944 break; 945 case ATAPI_PROT_NODATA: 946 ap->hsm_task_state = HSM_ST_LAST; 947 break; 948 case ATAPI_PROT_DMA: 949 ap->hsm_task_state = HSM_ST_LAST; 950 /* initiate bmdma */ 951 ap->ops->bmdma_start(qc); 952 break; 953 } 954 } 955 956 /** 957 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 958 * @qc: Command on going 959 * @bytes: number of bytes 960 * 961 * Transfer Transfer data from/to the ATAPI device. 962 * 963 * LOCKING: 964 * Inherited from caller. 965 * 966 */ 967 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 968 { 969 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 970 struct ata_port *ap = qc->ap; 971 struct ata_device *dev = qc->dev; 972 struct ata_eh_info *ehi = &dev->link->eh_info; 973 struct scatterlist *sg; 974 struct page *page; 975 unsigned char *buf; 976 unsigned int offset, count, consumed; 977 978 next_sg: 979 sg = qc->cursg; 980 if (unlikely(!sg)) { 981 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 982 "buf=%u cur=%u bytes=%u", 983 qc->nbytes, qc->curbytes, bytes); 984 return -1; 985 } 986 987 page = sg_page(sg); 988 offset = sg->offset + qc->cursg_ofs; 989 990 /* get the current page and offset */ 991 page = nth_page(page, (offset >> PAGE_SHIFT)); 992 offset %= PAGE_SIZE; 993 994 /* don't overrun current sg */ 995 count = min(sg->length - qc->cursg_ofs, bytes); 996 997 /* don't cross page boundaries */ 998 count = min(count, (unsigned int)PAGE_SIZE - offset); 999 1000 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 1001 1002 if (PageHighMem(page)) { 1003 unsigned long flags; 1004 1005 /* FIXME: use bounce buffer */ 1006 local_irq_save(flags); 1007 buf = kmap_atomic(page, KM_IRQ0); 1008 1009 /* do the actual data transfer */ 1010 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1011 count, rw); 1012 1013 kunmap_atomic(buf, KM_IRQ0); 1014 local_irq_restore(flags); 1015 } else { 1016 buf = page_address(page); 1017 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1018 count, rw); 1019 } 1020 1021 bytes -= min(bytes, consumed); 1022 qc->curbytes += count; 1023 qc->cursg_ofs += count; 1024 1025 if (qc->cursg_ofs == sg->length) { 1026 qc->cursg = sg_next(qc->cursg); 1027 qc->cursg_ofs = 0; 1028 } 1029 1030 /* 1031 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 1032 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 1033 * check correctly as it doesn't know if it is the last request being 1034 * made. Somebody should implement a proper sanity check. 1035 */ 1036 if (bytes) 1037 goto next_sg; 1038 return 0; 1039 } 1040 1041 /** 1042 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 1043 * @qc: Command on going 1044 * 1045 * Transfer Transfer data from/to the ATAPI device. 1046 * 1047 * LOCKING: 1048 * Inherited from caller. 1049 */ 1050 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 1051 { 1052 struct ata_port *ap = qc->ap; 1053 struct ata_device *dev = qc->dev; 1054 struct ata_eh_info *ehi = &dev->link->eh_info; 1055 unsigned int ireason, bc_lo, bc_hi, bytes; 1056 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 1057 1058 /* Abuse qc->result_tf for temp storage of intermediate TF 1059 * here to save some kernel stack usage. 1060 * For normal completion, qc->result_tf is not relevant. For 1061 * error, qc->result_tf is later overwritten by ata_qc_complete(). 1062 * So, the correctness of qc->result_tf is not affected. 1063 */ 1064 ap->ops->sff_tf_read(ap, &qc->result_tf); 1065 ireason = qc->result_tf.nsect; 1066 bc_lo = qc->result_tf.lbam; 1067 bc_hi = qc->result_tf.lbah; 1068 bytes = (bc_hi << 8) | bc_lo; 1069 1070 /* shall be cleared to zero, indicating xfer of data */ 1071 if (unlikely(ireason & (1 << 0))) 1072 goto atapi_check; 1073 1074 /* make sure transfer direction matches expected */ 1075 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 1076 if (unlikely(do_write != i_write)) 1077 goto atapi_check; 1078 1079 if (unlikely(!bytes)) 1080 goto atapi_check; 1081 1082 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 1083 1084 if (unlikely(__atapi_pio_bytes(qc, bytes))) 1085 goto err_out; 1086 ata_sff_sync(ap); /* flush */ 1087 1088 return; 1089 1090 atapi_check: 1091 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1092 ireason, bytes); 1093 err_out: 1094 qc->err_mask |= AC_ERR_HSM; 1095 ap->hsm_task_state = HSM_ST_ERR; 1096 } 1097 1098 /** 1099 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1100 * @ap: the target ata_port 1101 * @qc: qc on going 1102 * 1103 * RETURNS: 1104 * 1 if ok in workqueue, 0 otherwise. 1105 */ 1106 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 1107 struct ata_queued_cmd *qc) 1108 { 1109 if (qc->tf.flags & ATA_TFLAG_POLLING) 1110 return 1; 1111 1112 if (ap->hsm_task_state == HSM_ST_FIRST) { 1113 if (qc->tf.protocol == ATA_PROT_PIO && 1114 (qc->tf.flags & ATA_TFLAG_WRITE)) 1115 return 1; 1116 1117 if (ata_is_atapi(qc->tf.protocol) && 1118 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1119 return 1; 1120 } 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ata_hsm_qc_complete - finish a qc running on standard HSM 1127 * @qc: Command to complete 1128 * @in_wq: 1 if called from workqueue, 0 otherwise 1129 * 1130 * Finish @qc which is running on standard HSM. 1131 * 1132 * LOCKING: 1133 * If @in_wq is zero, spin_lock_irqsave(host lock). 1134 * Otherwise, none on entry and grabs host lock. 1135 */ 1136 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1137 { 1138 struct ata_port *ap = qc->ap; 1139 unsigned long flags; 1140 1141 if (ap->ops->error_handler) { 1142 if (in_wq) { 1143 spin_lock_irqsave(ap->lock, flags); 1144 1145 /* EH might have kicked in while host lock is 1146 * released. 1147 */ 1148 qc = ata_qc_from_tag(ap, qc->tag); 1149 if (qc) { 1150 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1151 ap->ops->sff_irq_on(ap); 1152 ata_qc_complete(qc); 1153 } else 1154 ata_port_freeze(ap); 1155 } 1156 1157 spin_unlock_irqrestore(ap->lock, flags); 1158 } else { 1159 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1160 ata_qc_complete(qc); 1161 else 1162 ata_port_freeze(ap); 1163 } 1164 } else { 1165 if (in_wq) { 1166 spin_lock_irqsave(ap->lock, flags); 1167 ap->ops->sff_irq_on(ap); 1168 ata_qc_complete(qc); 1169 spin_unlock_irqrestore(ap->lock, flags); 1170 } else 1171 ata_qc_complete(qc); 1172 } 1173 } 1174 1175 /** 1176 * ata_sff_hsm_move - move the HSM to the next state. 1177 * @ap: the target ata_port 1178 * @qc: qc on going 1179 * @status: current device status 1180 * @in_wq: 1 if called from workqueue, 0 otherwise 1181 * 1182 * RETURNS: 1183 * 1 when poll next status needed, 0 otherwise. 1184 */ 1185 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1186 u8 status, int in_wq) 1187 { 1188 struct ata_eh_info *ehi = &ap->link.eh_info; 1189 unsigned long flags = 0; 1190 int poll_next; 1191 1192 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1193 1194 /* Make sure ata_sff_qc_issue() does not throw things 1195 * like DMA polling into the workqueue. Notice that 1196 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1197 */ 1198 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1199 1200 fsm_start: 1201 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1202 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1203 1204 switch (ap->hsm_task_state) { 1205 case HSM_ST_FIRST: 1206 /* Send first data block or PACKET CDB */ 1207 1208 /* If polling, we will stay in the work queue after 1209 * sending the data. Otherwise, interrupt handler 1210 * takes over after sending the data. 1211 */ 1212 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1213 1214 /* check device status */ 1215 if (unlikely((status & ATA_DRQ) == 0)) { 1216 /* handle BSY=0, DRQ=0 as error */ 1217 if (likely(status & (ATA_ERR | ATA_DF))) 1218 /* device stops HSM for abort/error */ 1219 qc->err_mask |= AC_ERR_DEV; 1220 else { 1221 /* HSM violation. Let EH handle this */ 1222 ata_ehi_push_desc(ehi, 1223 "ST_FIRST: !(DRQ|ERR|DF)"); 1224 qc->err_mask |= AC_ERR_HSM; 1225 } 1226 1227 ap->hsm_task_state = HSM_ST_ERR; 1228 goto fsm_start; 1229 } 1230 1231 /* Device should not ask for data transfer (DRQ=1) 1232 * when it finds something wrong. 1233 * We ignore DRQ here and stop the HSM by 1234 * changing hsm_task_state to HSM_ST_ERR and 1235 * let the EH abort the command or reset the device. 1236 */ 1237 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1238 /* Some ATAPI tape drives forget to clear the ERR bit 1239 * when doing the next command (mostly request sense). 1240 * We ignore ERR here to workaround and proceed sending 1241 * the CDB. 1242 */ 1243 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1244 ata_ehi_push_desc(ehi, "ST_FIRST: " 1245 "DRQ=1 with device error, " 1246 "dev_stat 0x%X", status); 1247 qc->err_mask |= AC_ERR_HSM; 1248 ap->hsm_task_state = HSM_ST_ERR; 1249 goto fsm_start; 1250 } 1251 } 1252 1253 /* Send the CDB (atapi) or the first data block (ata pio out). 1254 * During the state transition, interrupt handler shouldn't 1255 * be invoked before the data transfer is complete and 1256 * hsm_task_state is changed. Hence, the following locking. 1257 */ 1258 if (in_wq) 1259 spin_lock_irqsave(ap->lock, flags); 1260 1261 if (qc->tf.protocol == ATA_PROT_PIO) { 1262 /* PIO data out protocol. 1263 * send first data block. 1264 */ 1265 1266 /* ata_pio_sectors() might change the state 1267 * to HSM_ST_LAST. so, the state is changed here 1268 * before ata_pio_sectors(). 1269 */ 1270 ap->hsm_task_state = HSM_ST; 1271 ata_pio_sectors(qc); 1272 } else 1273 /* send CDB */ 1274 atapi_send_cdb(ap, qc); 1275 1276 if (in_wq) 1277 spin_unlock_irqrestore(ap->lock, flags); 1278 1279 /* if polling, ata_pio_task() handles the rest. 1280 * otherwise, interrupt handler takes over from here. 1281 */ 1282 break; 1283 1284 case HSM_ST: 1285 /* complete command or read/write the data register */ 1286 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1287 /* ATAPI PIO protocol */ 1288 if ((status & ATA_DRQ) == 0) { 1289 /* No more data to transfer or device error. 1290 * Device error will be tagged in HSM_ST_LAST. 1291 */ 1292 ap->hsm_task_state = HSM_ST_LAST; 1293 goto fsm_start; 1294 } 1295 1296 /* Device should not ask for data transfer (DRQ=1) 1297 * when it finds something wrong. 1298 * We ignore DRQ here and stop the HSM by 1299 * changing hsm_task_state to HSM_ST_ERR and 1300 * let the EH abort the command or reset the device. 1301 */ 1302 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1303 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1304 "DRQ=1 with device error, " 1305 "dev_stat 0x%X", status); 1306 qc->err_mask |= AC_ERR_HSM; 1307 ap->hsm_task_state = HSM_ST_ERR; 1308 goto fsm_start; 1309 } 1310 1311 atapi_pio_bytes(qc); 1312 1313 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1314 /* bad ireason reported by device */ 1315 goto fsm_start; 1316 1317 } else { 1318 /* ATA PIO protocol */ 1319 if (unlikely((status & ATA_DRQ) == 0)) { 1320 /* handle BSY=0, DRQ=0 as error */ 1321 if (likely(status & (ATA_ERR | ATA_DF))) { 1322 /* device stops HSM for abort/error */ 1323 qc->err_mask |= AC_ERR_DEV; 1324 1325 /* If diagnostic failed and this is 1326 * IDENTIFY, it's likely a phantom 1327 * device. Mark hint. 1328 */ 1329 if (qc->dev->horkage & 1330 ATA_HORKAGE_DIAGNOSTIC) 1331 qc->err_mask |= 1332 AC_ERR_NODEV_HINT; 1333 } else { 1334 /* HSM violation. Let EH handle this. 1335 * Phantom devices also trigger this 1336 * condition. Mark hint. 1337 */ 1338 ata_ehi_push_desc(ehi, "ST-ATA: " 1339 "DRQ=0 without device error, " 1340 "dev_stat 0x%X", status); 1341 qc->err_mask |= AC_ERR_HSM | 1342 AC_ERR_NODEV_HINT; 1343 } 1344 1345 ap->hsm_task_state = HSM_ST_ERR; 1346 goto fsm_start; 1347 } 1348 1349 /* For PIO reads, some devices may ask for 1350 * data transfer (DRQ=1) alone with ERR=1. 1351 * We respect DRQ here and transfer one 1352 * block of junk data before changing the 1353 * hsm_task_state to HSM_ST_ERR. 1354 * 1355 * For PIO writes, ERR=1 DRQ=1 doesn't make 1356 * sense since the data block has been 1357 * transferred to the device. 1358 */ 1359 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1360 /* data might be corrputed */ 1361 qc->err_mask |= AC_ERR_DEV; 1362 1363 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1364 ata_pio_sectors(qc); 1365 status = ata_wait_idle(ap); 1366 } 1367 1368 if (status & (ATA_BUSY | ATA_DRQ)) { 1369 ata_ehi_push_desc(ehi, "ST-ATA: " 1370 "BUSY|DRQ persists on ERR|DF, " 1371 "dev_stat 0x%X", status); 1372 qc->err_mask |= AC_ERR_HSM; 1373 } 1374 1375 /* There are oddball controllers with 1376 * status register stuck at 0x7f and 1377 * lbal/m/h at zero which makes it 1378 * pass all other presence detection 1379 * mechanisms we have. Set NODEV_HINT 1380 * for it. Kernel bz#7241. 1381 */ 1382 if (status == 0x7f) 1383 qc->err_mask |= AC_ERR_NODEV_HINT; 1384 1385 /* ata_pio_sectors() might change the 1386 * state to HSM_ST_LAST. so, the state 1387 * is changed after ata_pio_sectors(). 1388 */ 1389 ap->hsm_task_state = HSM_ST_ERR; 1390 goto fsm_start; 1391 } 1392 1393 ata_pio_sectors(qc); 1394 1395 if (ap->hsm_task_state == HSM_ST_LAST && 1396 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1397 /* all data read */ 1398 status = ata_wait_idle(ap); 1399 goto fsm_start; 1400 } 1401 } 1402 1403 poll_next = 1; 1404 break; 1405 1406 case HSM_ST_LAST: 1407 if (unlikely(!ata_ok(status))) { 1408 qc->err_mask |= __ac_err_mask(status); 1409 ap->hsm_task_state = HSM_ST_ERR; 1410 goto fsm_start; 1411 } 1412 1413 /* no more data to transfer */ 1414 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1415 ap->print_id, qc->dev->devno, status); 1416 1417 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1418 1419 ap->hsm_task_state = HSM_ST_IDLE; 1420 1421 /* complete taskfile transaction */ 1422 ata_hsm_qc_complete(qc, in_wq); 1423 1424 poll_next = 0; 1425 break; 1426 1427 case HSM_ST_ERR: 1428 ap->hsm_task_state = HSM_ST_IDLE; 1429 1430 /* complete taskfile transaction */ 1431 ata_hsm_qc_complete(qc, in_wq); 1432 1433 poll_next = 0; 1434 break; 1435 default: 1436 poll_next = 0; 1437 BUG(); 1438 } 1439 1440 return poll_next; 1441 } 1442 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1443 1444 void ata_pio_task(struct work_struct *work) 1445 { 1446 struct ata_port *ap = 1447 container_of(work, struct ata_port, port_task.work); 1448 struct ata_queued_cmd *qc = ap->port_task_data; 1449 u8 status; 1450 int poll_next; 1451 1452 fsm_start: 1453 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1454 1455 /* 1456 * This is purely heuristic. This is a fast path. 1457 * Sometimes when we enter, BSY will be cleared in 1458 * a chk-status or two. If not, the drive is probably seeking 1459 * or something. Snooze for a couple msecs, then 1460 * chk-status again. If still busy, queue delayed work. 1461 */ 1462 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1463 if (status & ATA_BUSY) { 1464 msleep(2); 1465 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1466 if (status & ATA_BUSY) { 1467 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1468 return; 1469 } 1470 } 1471 1472 /* move the HSM */ 1473 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1474 1475 /* another command or interrupt handler 1476 * may be running at this point. 1477 */ 1478 if (poll_next) 1479 goto fsm_start; 1480 } 1481 1482 /** 1483 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1484 * @qc: command to issue to device 1485 * 1486 * Using various libata functions and hooks, this function 1487 * starts an ATA command. ATA commands are grouped into 1488 * classes called "protocols", and issuing each type of protocol 1489 * is slightly different. 1490 * 1491 * May be used as the qc_issue() entry in ata_port_operations. 1492 * 1493 * LOCKING: 1494 * spin_lock_irqsave(host lock) 1495 * 1496 * RETURNS: 1497 * Zero on success, AC_ERR_* mask on failure 1498 */ 1499 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1500 { 1501 struct ata_port *ap = qc->ap; 1502 1503 /* Use polling pio if the LLD doesn't handle 1504 * interrupt driven pio and atapi CDB interrupt. 1505 */ 1506 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1507 switch (qc->tf.protocol) { 1508 case ATA_PROT_PIO: 1509 case ATA_PROT_NODATA: 1510 case ATAPI_PROT_PIO: 1511 case ATAPI_PROT_NODATA: 1512 qc->tf.flags |= ATA_TFLAG_POLLING; 1513 break; 1514 case ATAPI_PROT_DMA: 1515 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1516 /* see ata_dma_blacklisted() */ 1517 BUG(); 1518 break; 1519 default: 1520 break; 1521 } 1522 } 1523 1524 /* select the device */ 1525 ata_dev_select(ap, qc->dev->devno, 1, 0); 1526 1527 /* start the command */ 1528 switch (qc->tf.protocol) { 1529 case ATA_PROT_NODATA: 1530 if (qc->tf.flags & ATA_TFLAG_POLLING) 1531 ata_qc_set_polling(qc); 1532 1533 ata_tf_to_host(ap, &qc->tf); 1534 ap->hsm_task_state = HSM_ST_LAST; 1535 1536 if (qc->tf.flags & ATA_TFLAG_POLLING) 1537 ata_pio_queue_task(ap, qc, 0); 1538 1539 break; 1540 1541 case ATA_PROT_DMA: 1542 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1543 1544 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1545 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1546 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1547 ap->hsm_task_state = HSM_ST_LAST; 1548 break; 1549 1550 case ATA_PROT_PIO: 1551 if (qc->tf.flags & ATA_TFLAG_POLLING) 1552 ata_qc_set_polling(qc); 1553 1554 ata_tf_to_host(ap, &qc->tf); 1555 1556 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1557 /* PIO data out protocol */ 1558 ap->hsm_task_state = HSM_ST_FIRST; 1559 ata_pio_queue_task(ap, qc, 0); 1560 1561 /* always send first data block using 1562 * the ata_pio_task() codepath. 1563 */ 1564 } else { 1565 /* PIO data in protocol */ 1566 ap->hsm_task_state = HSM_ST; 1567 1568 if (qc->tf.flags & ATA_TFLAG_POLLING) 1569 ata_pio_queue_task(ap, qc, 0); 1570 1571 /* if polling, ata_pio_task() handles the rest. 1572 * otherwise, interrupt handler takes over from here. 1573 */ 1574 } 1575 1576 break; 1577 1578 case ATAPI_PROT_PIO: 1579 case ATAPI_PROT_NODATA: 1580 if (qc->tf.flags & ATA_TFLAG_POLLING) 1581 ata_qc_set_polling(qc); 1582 1583 ata_tf_to_host(ap, &qc->tf); 1584 1585 ap->hsm_task_state = HSM_ST_FIRST; 1586 1587 /* send cdb by polling if no cdb interrupt */ 1588 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1589 (qc->tf.flags & ATA_TFLAG_POLLING)) 1590 ata_pio_queue_task(ap, qc, 0); 1591 break; 1592 1593 case ATAPI_PROT_DMA: 1594 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1595 1596 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1597 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1598 ap->hsm_task_state = HSM_ST_FIRST; 1599 1600 /* send cdb by polling if no cdb interrupt */ 1601 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1602 ata_pio_queue_task(ap, qc, 0); 1603 break; 1604 1605 default: 1606 WARN_ON_ONCE(1); 1607 return AC_ERR_SYSTEM; 1608 } 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1613 1614 /** 1615 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1616 * @qc: qc to fill result TF for 1617 * 1618 * @qc is finished and result TF needs to be filled. Fill it 1619 * using ->sff_tf_read. 1620 * 1621 * LOCKING: 1622 * spin_lock_irqsave(host lock) 1623 * 1624 * RETURNS: 1625 * true indicating that result TF is successfully filled. 1626 */ 1627 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1628 { 1629 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1630 return true; 1631 } 1632 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1633 1634 /** 1635 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1636 * @ap: Port on which interrupt arrived (possibly...) 1637 * @qc: Taskfile currently active in engine 1638 * 1639 * Handle host interrupt for given queued command. Currently, 1640 * only DMA interrupts are handled. All other commands are 1641 * handled via polling with interrupts disabled (nIEN bit). 1642 * 1643 * LOCKING: 1644 * spin_lock_irqsave(host lock) 1645 * 1646 * RETURNS: 1647 * One if interrupt was handled, zero if not (shared irq). 1648 */ 1649 inline unsigned int ata_sff_host_intr(struct ata_port *ap, 1650 struct ata_queued_cmd *qc) 1651 { 1652 struct ata_eh_info *ehi = &ap->link.eh_info; 1653 u8 status, host_stat = 0; 1654 1655 VPRINTK("ata%u: protocol %d task_state %d\n", 1656 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1657 1658 /* Check whether we are expecting interrupt in this state */ 1659 switch (ap->hsm_task_state) { 1660 case HSM_ST_FIRST: 1661 /* Some pre-ATAPI-4 devices assert INTRQ 1662 * at this state when ready to receive CDB. 1663 */ 1664 1665 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1666 * The flag was turned on only for atapi devices. No 1667 * need to check ata_is_atapi(qc->tf.protocol) again. 1668 */ 1669 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1670 goto idle_irq; 1671 break; 1672 case HSM_ST_LAST: 1673 if (qc->tf.protocol == ATA_PROT_DMA || 1674 qc->tf.protocol == ATAPI_PROT_DMA) { 1675 /* check status of DMA engine */ 1676 host_stat = ap->ops->bmdma_status(ap); 1677 VPRINTK("ata%u: host_stat 0x%X\n", 1678 ap->print_id, host_stat); 1679 1680 /* if it's not our irq... */ 1681 if (!(host_stat & ATA_DMA_INTR)) 1682 goto idle_irq; 1683 1684 /* before we do anything else, clear DMA-Start bit */ 1685 ap->ops->bmdma_stop(qc); 1686 1687 if (unlikely(host_stat & ATA_DMA_ERR)) { 1688 /* error when transfering data to/from memory */ 1689 qc->err_mask |= AC_ERR_HOST_BUS; 1690 ap->hsm_task_state = HSM_ST_ERR; 1691 } 1692 } 1693 break; 1694 case HSM_ST: 1695 break; 1696 default: 1697 goto idle_irq; 1698 } 1699 1700 1701 /* check main status, clearing INTRQ if needed */ 1702 status = ata_sff_irq_status(ap); 1703 if (status & ATA_BUSY) 1704 goto idle_irq; 1705 1706 /* ack bmdma irq events */ 1707 ap->ops->sff_irq_clear(ap); 1708 1709 ata_sff_hsm_move(ap, qc, status, 0); 1710 1711 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1712 qc->tf.protocol == ATAPI_PROT_DMA)) 1713 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1714 1715 return 1; /* irq handled */ 1716 1717 idle_irq: 1718 ap->stats.idle_irq++; 1719 1720 #ifdef ATA_IRQ_TRAP 1721 if ((ap->stats.idle_irq % 1000) == 0) { 1722 ap->ops->sff_check_status(ap); 1723 ap->ops->sff_irq_clear(ap); 1724 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1725 return 1; 1726 } 1727 #endif 1728 return 0; /* irq not handled */ 1729 } 1730 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1731 1732 /** 1733 * ata_sff_interrupt - Default ATA host interrupt handler 1734 * @irq: irq line (unused) 1735 * @dev_instance: pointer to our ata_host information structure 1736 * 1737 * Default interrupt handler for PCI IDE devices. Calls 1738 * ata_sff_host_intr() for each port that is not disabled. 1739 * 1740 * LOCKING: 1741 * Obtains host lock during operation. 1742 * 1743 * RETURNS: 1744 * IRQ_NONE or IRQ_HANDLED. 1745 */ 1746 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1747 { 1748 struct ata_host *host = dev_instance; 1749 unsigned int i; 1750 unsigned int handled = 0; 1751 unsigned long flags; 1752 1753 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1754 spin_lock_irqsave(&host->lock, flags); 1755 1756 for (i = 0; i < host->n_ports; i++) { 1757 struct ata_port *ap; 1758 1759 ap = host->ports[i]; 1760 if (ap && 1761 !(ap->flags & ATA_FLAG_DISABLED)) { 1762 struct ata_queued_cmd *qc; 1763 1764 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1765 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1766 (qc->flags & ATA_QCFLAG_ACTIVE)) 1767 handled |= ata_sff_host_intr(ap, qc); 1768 } 1769 } 1770 1771 spin_unlock_irqrestore(&host->lock, flags); 1772 1773 return IRQ_RETVAL(handled); 1774 } 1775 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1776 1777 /** 1778 * ata_sff_freeze - Freeze SFF controller port 1779 * @ap: port to freeze 1780 * 1781 * Freeze BMDMA controller port. 1782 * 1783 * LOCKING: 1784 * Inherited from caller. 1785 */ 1786 void ata_sff_freeze(struct ata_port *ap) 1787 { 1788 struct ata_ioports *ioaddr = &ap->ioaddr; 1789 1790 ap->ctl |= ATA_NIEN; 1791 ap->last_ctl = ap->ctl; 1792 1793 if (ioaddr->ctl_addr) 1794 iowrite8(ap->ctl, ioaddr->ctl_addr); 1795 1796 /* Under certain circumstances, some controllers raise IRQ on 1797 * ATA_NIEN manipulation. Also, many controllers fail to mask 1798 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1799 */ 1800 ap->ops->sff_check_status(ap); 1801 1802 ap->ops->sff_irq_clear(ap); 1803 } 1804 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1805 1806 /** 1807 * ata_sff_thaw - Thaw SFF controller port 1808 * @ap: port to thaw 1809 * 1810 * Thaw SFF controller port. 1811 * 1812 * LOCKING: 1813 * Inherited from caller. 1814 */ 1815 void ata_sff_thaw(struct ata_port *ap) 1816 { 1817 /* clear & re-enable interrupts */ 1818 ap->ops->sff_check_status(ap); 1819 ap->ops->sff_irq_clear(ap); 1820 ap->ops->sff_irq_on(ap); 1821 } 1822 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1823 1824 /** 1825 * ata_sff_prereset - prepare SFF link for reset 1826 * @link: SFF link to be reset 1827 * @deadline: deadline jiffies for the operation 1828 * 1829 * SFF link @link is about to be reset. Initialize it. It first 1830 * calls ata_std_prereset() and wait for !BSY if the port is 1831 * being softreset. 1832 * 1833 * LOCKING: 1834 * Kernel thread context (may sleep) 1835 * 1836 * RETURNS: 1837 * 0 on success, -errno otherwise. 1838 */ 1839 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1840 { 1841 struct ata_eh_context *ehc = &link->eh_context; 1842 int rc; 1843 1844 rc = ata_std_prereset(link, deadline); 1845 if (rc) 1846 return rc; 1847 1848 /* if we're about to do hardreset, nothing more to do */ 1849 if (ehc->i.action & ATA_EH_HARDRESET) 1850 return 0; 1851 1852 /* wait for !BSY if we don't know that no device is attached */ 1853 if (!ata_link_offline(link)) { 1854 rc = ata_sff_wait_ready(link, deadline); 1855 if (rc && rc != -ENODEV) { 1856 ata_link_printk(link, KERN_WARNING, "device not ready " 1857 "(errno=%d), forcing hardreset\n", rc); 1858 ehc->i.action |= ATA_EH_HARDRESET; 1859 } 1860 } 1861 1862 return 0; 1863 } 1864 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1865 1866 /** 1867 * ata_devchk - PATA device presence detection 1868 * @ap: ATA channel to examine 1869 * @device: Device to examine (starting at zero) 1870 * 1871 * This technique was originally described in 1872 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1873 * later found its way into the ATA/ATAPI spec. 1874 * 1875 * Write a pattern to the ATA shadow registers, 1876 * and if a device is present, it will respond by 1877 * correctly storing and echoing back the 1878 * ATA shadow register contents. 1879 * 1880 * LOCKING: 1881 * caller. 1882 */ 1883 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1884 { 1885 struct ata_ioports *ioaddr = &ap->ioaddr; 1886 u8 nsect, lbal; 1887 1888 ap->ops->sff_dev_select(ap, device); 1889 1890 iowrite8(0x55, ioaddr->nsect_addr); 1891 iowrite8(0xaa, ioaddr->lbal_addr); 1892 1893 iowrite8(0xaa, ioaddr->nsect_addr); 1894 iowrite8(0x55, ioaddr->lbal_addr); 1895 1896 iowrite8(0x55, ioaddr->nsect_addr); 1897 iowrite8(0xaa, ioaddr->lbal_addr); 1898 1899 nsect = ioread8(ioaddr->nsect_addr); 1900 lbal = ioread8(ioaddr->lbal_addr); 1901 1902 if ((nsect == 0x55) && (lbal == 0xaa)) 1903 return 1; /* we found a device */ 1904 1905 return 0; /* nothing found */ 1906 } 1907 1908 /** 1909 * ata_sff_dev_classify - Parse returned ATA device signature 1910 * @dev: ATA device to classify (starting at zero) 1911 * @present: device seems present 1912 * @r_err: Value of error register on completion 1913 * 1914 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1915 * an ATA/ATAPI-defined set of values is placed in the ATA 1916 * shadow registers, indicating the results of device detection 1917 * and diagnostics. 1918 * 1919 * Select the ATA device, and read the values from the ATA shadow 1920 * registers. Then parse according to the Error register value, 1921 * and the spec-defined values examined by ata_dev_classify(). 1922 * 1923 * LOCKING: 1924 * caller. 1925 * 1926 * RETURNS: 1927 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1928 */ 1929 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1930 u8 *r_err) 1931 { 1932 struct ata_port *ap = dev->link->ap; 1933 struct ata_taskfile tf; 1934 unsigned int class; 1935 u8 err; 1936 1937 ap->ops->sff_dev_select(ap, dev->devno); 1938 1939 memset(&tf, 0, sizeof(tf)); 1940 1941 ap->ops->sff_tf_read(ap, &tf); 1942 err = tf.feature; 1943 if (r_err) 1944 *r_err = err; 1945 1946 /* see if device passed diags: continue and warn later */ 1947 if (err == 0) 1948 /* diagnostic fail : do nothing _YET_ */ 1949 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1950 else if (err == 1) 1951 /* do nothing */ ; 1952 else if ((dev->devno == 0) && (err == 0x81)) 1953 /* do nothing */ ; 1954 else 1955 return ATA_DEV_NONE; 1956 1957 /* determine if device is ATA or ATAPI */ 1958 class = ata_dev_classify(&tf); 1959 1960 if (class == ATA_DEV_UNKNOWN) { 1961 /* If the device failed diagnostic, it's likely to 1962 * have reported incorrect device signature too. 1963 * Assume ATA device if the device seems present but 1964 * device signature is invalid with diagnostic 1965 * failure. 1966 */ 1967 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1968 class = ATA_DEV_ATA; 1969 else 1970 class = ATA_DEV_NONE; 1971 } else if ((class == ATA_DEV_ATA) && 1972 (ap->ops->sff_check_status(ap) == 0)) 1973 class = ATA_DEV_NONE; 1974 1975 return class; 1976 } 1977 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1978 1979 /** 1980 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1981 * @link: SFF link which is just reset 1982 * @devmask: mask of present devices 1983 * @deadline: deadline jiffies for the operation 1984 * 1985 * Wait devices attached to SFF @link to become ready after 1986 * reset. It contains preceding 150ms wait to avoid accessing TF 1987 * status register too early. 1988 * 1989 * LOCKING: 1990 * Kernel thread context (may sleep). 1991 * 1992 * RETURNS: 1993 * 0 on success, -ENODEV if some or all of devices in @devmask 1994 * don't seem to exist. -errno on other errors. 1995 */ 1996 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1997 unsigned long deadline) 1998 { 1999 struct ata_port *ap = link->ap; 2000 struct ata_ioports *ioaddr = &ap->ioaddr; 2001 unsigned int dev0 = devmask & (1 << 0); 2002 unsigned int dev1 = devmask & (1 << 1); 2003 int rc, ret = 0; 2004 2005 msleep(ATA_WAIT_AFTER_RESET); 2006 2007 /* always check readiness of the master device */ 2008 rc = ata_sff_wait_ready(link, deadline); 2009 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 2010 * and TF status is 0xff, bail out on it too. 2011 */ 2012 if (rc) 2013 return rc; 2014 2015 /* if device 1 was found in ata_devchk, wait for register 2016 * access briefly, then wait for BSY to clear. 2017 */ 2018 if (dev1) { 2019 int i; 2020 2021 ap->ops->sff_dev_select(ap, 1); 2022 2023 /* Wait for register access. Some ATAPI devices fail 2024 * to set nsect/lbal after reset, so don't waste too 2025 * much time on it. We're gonna wait for !BSY anyway. 2026 */ 2027 for (i = 0; i < 2; i++) { 2028 u8 nsect, lbal; 2029 2030 nsect = ioread8(ioaddr->nsect_addr); 2031 lbal = ioread8(ioaddr->lbal_addr); 2032 if ((nsect == 1) && (lbal == 1)) 2033 break; 2034 msleep(50); /* give drive a breather */ 2035 } 2036 2037 rc = ata_sff_wait_ready(link, deadline); 2038 if (rc) { 2039 if (rc != -ENODEV) 2040 return rc; 2041 ret = rc; 2042 } 2043 } 2044 2045 /* is all this really necessary? */ 2046 ap->ops->sff_dev_select(ap, 0); 2047 if (dev1) 2048 ap->ops->sff_dev_select(ap, 1); 2049 if (dev0) 2050 ap->ops->sff_dev_select(ap, 0); 2051 2052 return ret; 2053 } 2054 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2055 2056 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2057 unsigned long deadline) 2058 { 2059 struct ata_ioports *ioaddr = &ap->ioaddr; 2060 2061 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2062 2063 /* software reset. causes dev0 to be selected */ 2064 iowrite8(ap->ctl, ioaddr->ctl_addr); 2065 udelay(20); /* FIXME: flush */ 2066 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2067 udelay(20); /* FIXME: flush */ 2068 iowrite8(ap->ctl, ioaddr->ctl_addr); 2069 ap->last_ctl = ap->ctl; 2070 2071 /* wait the port to become ready */ 2072 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2073 } 2074 2075 /** 2076 * ata_sff_softreset - reset host port via ATA SRST 2077 * @link: ATA link to reset 2078 * @classes: resulting classes of attached devices 2079 * @deadline: deadline jiffies for the operation 2080 * 2081 * Reset host port using ATA SRST. 2082 * 2083 * LOCKING: 2084 * Kernel thread context (may sleep) 2085 * 2086 * RETURNS: 2087 * 0 on success, -errno otherwise. 2088 */ 2089 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2090 unsigned long deadline) 2091 { 2092 struct ata_port *ap = link->ap; 2093 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2094 unsigned int devmask = 0; 2095 int rc; 2096 u8 err; 2097 2098 DPRINTK("ENTER\n"); 2099 2100 /* determine if device 0/1 are present */ 2101 if (ata_devchk(ap, 0)) 2102 devmask |= (1 << 0); 2103 if (slave_possible && ata_devchk(ap, 1)) 2104 devmask |= (1 << 1); 2105 2106 /* select device 0 again */ 2107 ap->ops->sff_dev_select(ap, 0); 2108 2109 /* issue bus reset */ 2110 DPRINTK("about to softreset, devmask=%x\n", devmask); 2111 rc = ata_bus_softreset(ap, devmask, deadline); 2112 /* if link is occupied, -ENODEV too is an error */ 2113 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2114 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2115 return rc; 2116 } 2117 2118 /* determine by signature whether we have ATA or ATAPI devices */ 2119 classes[0] = ata_sff_dev_classify(&link->device[0], 2120 devmask & (1 << 0), &err); 2121 if (slave_possible && err != 0x81) 2122 classes[1] = ata_sff_dev_classify(&link->device[1], 2123 devmask & (1 << 1), &err); 2124 2125 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2126 return 0; 2127 } 2128 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2129 2130 /** 2131 * sata_sff_hardreset - reset host port via SATA phy reset 2132 * @link: link to reset 2133 * @class: resulting class of attached device 2134 * @deadline: deadline jiffies for the operation 2135 * 2136 * SATA phy-reset host port using DET bits of SControl register, 2137 * wait for !BSY and classify the attached device. 2138 * 2139 * LOCKING: 2140 * Kernel thread context (may sleep) 2141 * 2142 * RETURNS: 2143 * 0 on success, -errno otherwise. 2144 */ 2145 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2146 unsigned long deadline) 2147 { 2148 struct ata_eh_context *ehc = &link->eh_context; 2149 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2150 bool online; 2151 int rc; 2152 2153 rc = sata_link_hardreset(link, timing, deadline, &online, 2154 ata_sff_check_ready); 2155 if (online) 2156 *class = ata_sff_dev_classify(link->device, 1, NULL); 2157 2158 DPRINTK("EXIT, class=%u\n", *class); 2159 return rc; 2160 } 2161 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2162 2163 /** 2164 * ata_sff_postreset - SFF postreset callback 2165 * @link: the target SFF ata_link 2166 * @classes: classes of attached devices 2167 * 2168 * This function is invoked after a successful reset. It first 2169 * calls ata_std_postreset() and performs SFF specific postreset 2170 * processing. 2171 * 2172 * LOCKING: 2173 * Kernel thread context (may sleep) 2174 */ 2175 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2176 { 2177 struct ata_port *ap = link->ap; 2178 2179 ata_std_postreset(link, classes); 2180 2181 /* is double-select really necessary? */ 2182 if (classes[0] != ATA_DEV_NONE) 2183 ap->ops->sff_dev_select(ap, 1); 2184 if (classes[1] != ATA_DEV_NONE) 2185 ap->ops->sff_dev_select(ap, 0); 2186 2187 /* bail out if no device is present */ 2188 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2189 DPRINTK("EXIT, no device\n"); 2190 return; 2191 } 2192 2193 /* set up device control */ 2194 if (ap->ioaddr.ctl_addr) { 2195 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2196 ap->last_ctl = ap->ctl; 2197 } 2198 } 2199 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2200 2201 /** 2202 * ata_sff_error_handler - Stock error handler for BMDMA controller 2203 * @ap: port to handle error for 2204 * 2205 * Stock error handler for SFF controller. It can handle both 2206 * PATA and SATA controllers. Many controllers should be able to 2207 * use this EH as-is or with some added handling before and 2208 * after. 2209 * 2210 * LOCKING: 2211 * Kernel thread context (may sleep) 2212 */ 2213 void ata_sff_error_handler(struct ata_port *ap) 2214 { 2215 ata_reset_fn_t softreset = ap->ops->softreset; 2216 ata_reset_fn_t hardreset = ap->ops->hardreset; 2217 struct ata_queued_cmd *qc; 2218 unsigned long flags; 2219 int thaw = 0; 2220 2221 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2222 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2223 qc = NULL; 2224 2225 /* reset PIO HSM and stop DMA engine */ 2226 spin_lock_irqsave(ap->lock, flags); 2227 2228 ap->hsm_task_state = HSM_ST_IDLE; 2229 2230 if (ap->ioaddr.bmdma_addr && 2231 qc && (qc->tf.protocol == ATA_PROT_DMA || 2232 qc->tf.protocol == ATAPI_PROT_DMA)) { 2233 u8 host_stat; 2234 2235 host_stat = ap->ops->bmdma_status(ap); 2236 2237 /* BMDMA controllers indicate host bus error by 2238 * setting DMA_ERR bit and timing out. As it wasn't 2239 * really a timeout event, adjust error mask and 2240 * cancel frozen state. 2241 */ 2242 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2243 qc->err_mask = AC_ERR_HOST_BUS; 2244 thaw = 1; 2245 } 2246 2247 ap->ops->bmdma_stop(qc); 2248 } 2249 2250 ata_sff_sync(ap); /* FIXME: We don't need this */ 2251 ap->ops->sff_check_status(ap); 2252 ap->ops->sff_irq_clear(ap); 2253 2254 spin_unlock_irqrestore(ap->lock, flags); 2255 2256 if (thaw) 2257 ata_eh_thaw_port(ap); 2258 2259 /* PIO and DMA engines have been stopped, perform recovery */ 2260 2261 /* Ignore ata_sff_softreset if ctl isn't accessible and 2262 * built-in hardresets if SCR access isn't available. 2263 */ 2264 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2265 softreset = NULL; 2266 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2267 hardreset = NULL; 2268 2269 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2270 ap->ops->postreset); 2271 } 2272 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2273 2274 /** 2275 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2276 * @qc: internal command to clean up 2277 * 2278 * LOCKING: 2279 * Kernel thread context (may sleep) 2280 */ 2281 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2282 { 2283 struct ata_port *ap = qc->ap; 2284 unsigned long flags; 2285 2286 spin_lock_irqsave(ap->lock, flags); 2287 2288 ap->hsm_task_state = HSM_ST_IDLE; 2289 2290 if (ap->ioaddr.bmdma_addr) 2291 ata_bmdma_stop(qc); 2292 2293 spin_unlock_irqrestore(ap->lock, flags); 2294 } 2295 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2296 2297 /** 2298 * ata_sff_port_start - Set port up for dma. 2299 * @ap: Port to initialize 2300 * 2301 * Called just after data structures for each port are 2302 * initialized. Allocates space for PRD table if the device 2303 * is DMA capable SFF. 2304 * 2305 * May be used as the port_start() entry in ata_port_operations. 2306 * 2307 * LOCKING: 2308 * Inherited from caller. 2309 */ 2310 int ata_sff_port_start(struct ata_port *ap) 2311 { 2312 if (ap->ioaddr.bmdma_addr) 2313 return ata_port_start(ap); 2314 return 0; 2315 } 2316 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2317 2318 /** 2319 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2320 * @ioaddr: IO address structure to be initialized 2321 * 2322 * Utility function which initializes data_addr, error_addr, 2323 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2324 * device_addr, status_addr, and command_addr to standard offsets 2325 * relative to cmd_addr. 2326 * 2327 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2328 */ 2329 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2330 { 2331 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2332 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2333 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2334 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2335 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2336 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2337 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2338 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2339 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2340 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2341 } 2342 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2343 2344 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2345 unsigned long xfer_mask) 2346 { 2347 /* Filter out DMA modes if the device has been configured by 2348 the BIOS as PIO only */ 2349 2350 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2351 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2352 return xfer_mask; 2353 } 2354 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2355 2356 /** 2357 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2358 * @qc: Info associated with this ATA transaction. 2359 * 2360 * LOCKING: 2361 * spin_lock_irqsave(host lock) 2362 */ 2363 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2364 { 2365 struct ata_port *ap = qc->ap; 2366 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2367 u8 dmactl; 2368 2369 /* load PRD table addr. */ 2370 mb(); /* make sure PRD table writes are visible to controller */ 2371 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2372 2373 /* specify data direction, triple-check start bit is clear */ 2374 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2375 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2376 if (!rw) 2377 dmactl |= ATA_DMA_WR; 2378 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2379 2380 /* issue r/w command */ 2381 ap->ops->sff_exec_command(ap, &qc->tf); 2382 } 2383 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2384 2385 /** 2386 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2387 * @qc: Info associated with this ATA transaction. 2388 * 2389 * LOCKING: 2390 * spin_lock_irqsave(host lock) 2391 */ 2392 void ata_bmdma_start(struct ata_queued_cmd *qc) 2393 { 2394 struct ata_port *ap = qc->ap; 2395 u8 dmactl; 2396 2397 /* start host DMA transaction */ 2398 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2399 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2400 2401 /* Strictly, one may wish to issue an ioread8() here, to 2402 * flush the mmio write. However, control also passes 2403 * to the hardware at this point, and it will interrupt 2404 * us when we are to resume control. So, in effect, 2405 * we don't care when the mmio write flushes. 2406 * Further, a read of the DMA status register _immediately_ 2407 * following the write may not be what certain flaky hardware 2408 * is expected, so I think it is best to not add a readb() 2409 * without first all the MMIO ATA cards/mobos. 2410 * Or maybe I'm just being paranoid. 2411 * 2412 * FIXME: The posting of this write means I/O starts are 2413 * unneccessarily delayed for MMIO 2414 */ 2415 } 2416 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2417 2418 /** 2419 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2420 * @qc: Command we are ending DMA for 2421 * 2422 * Clears the ATA_DMA_START flag in the dma control register 2423 * 2424 * May be used as the bmdma_stop() entry in ata_port_operations. 2425 * 2426 * LOCKING: 2427 * spin_lock_irqsave(host lock) 2428 */ 2429 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2430 { 2431 struct ata_port *ap = qc->ap; 2432 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2433 2434 /* clear start/stop bit */ 2435 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2436 mmio + ATA_DMA_CMD); 2437 2438 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2439 ata_sff_dma_pause(ap); 2440 } 2441 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2442 2443 /** 2444 * ata_bmdma_status - Read PCI IDE BMDMA status 2445 * @ap: Port associated with this ATA transaction. 2446 * 2447 * Read and return BMDMA status register. 2448 * 2449 * May be used as the bmdma_status() entry in ata_port_operations. 2450 * 2451 * LOCKING: 2452 * spin_lock_irqsave(host lock) 2453 */ 2454 u8 ata_bmdma_status(struct ata_port *ap) 2455 { 2456 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2457 } 2458 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2459 2460 /** 2461 * ata_bus_reset - reset host port and associated ATA channel 2462 * @ap: port to reset 2463 * 2464 * This is typically the first time we actually start issuing 2465 * commands to the ATA channel. We wait for BSY to clear, then 2466 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2467 * result. Determine what devices, if any, are on the channel 2468 * by looking at the device 0/1 error register. Look at the signature 2469 * stored in each device's taskfile registers, to determine if 2470 * the device is ATA or ATAPI. 2471 * 2472 * LOCKING: 2473 * PCI/etc. bus probe sem. 2474 * Obtains host lock. 2475 * 2476 * SIDE EFFECTS: 2477 * Sets ATA_FLAG_DISABLED if bus reset fails. 2478 * 2479 * DEPRECATED: 2480 * This function is only for drivers which still use old EH and 2481 * will be removed soon. 2482 */ 2483 void ata_bus_reset(struct ata_port *ap) 2484 { 2485 struct ata_device *device = ap->link.device; 2486 struct ata_ioports *ioaddr = &ap->ioaddr; 2487 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2488 u8 err; 2489 unsigned int dev0, dev1 = 0, devmask = 0; 2490 int rc; 2491 2492 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2493 2494 /* determine if device 0/1 are present */ 2495 if (ap->flags & ATA_FLAG_SATA_RESET) 2496 dev0 = 1; 2497 else { 2498 dev0 = ata_devchk(ap, 0); 2499 if (slave_possible) 2500 dev1 = ata_devchk(ap, 1); 2501 } 2502 2503 if (dev0) 2504 devmask |= (1 << 0); 2505 if (dev1) 2506 devmask |= (1 << 1); 2507 2508 /* select device 0 again */ 2509 ap->ops->sff_dev_select(ap, 0); 2510 2511 /* issue bus reset */ 2512 if (ap->flags & ATA_FLAG_SRST) { 2513 rc = ata_bus_softreset(ap, devmask, 2514 ata_deadline(jiffies, 40000)); 2515 if (rc && rc != -ENODEV) 2516 goto err_out; 2517 } 2518 2519 /* 2520 * determine by signature whether we have ATA or ATAPI devices 2521 */ 2522 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2523 if ((slave_possible) && (err != 0x81)) 2524 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2525 2526 /* is double-select really necessary? */ 2527 if (device[1].class != ATA_DEV_NONE) 2528 ap->ops->sff_dev_select(ap, 1); 2529 if (device[0].class != ATA_DEV_NONE) 2530 ap->ops->sff_dev_select(ap, 0); 2531 2532 /* if no devices were detected, disable this port */ 2533 if ((device[0].class == ATA_DEV_NONE) && 2534 (device[1].class == ATA_DEV_NONE)) 2535 goto err_out; 2536 2537 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2538 /* set up device control for ATA_FLAG_SATA_RESET */ 2539 iowrite8(ap->ctl, ioaddr->ctl_addr); 2540 ap->last_ctl = ap->ctl; 2541 } 2542 2543 DPRINTK("EXIT\n"); 2544 return; 2545 2546 err_out: 2547 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2548 ata_port_disable(ap); 2549 2550 DPRINTK("EXIT\n"); 2551 } 2552 EXPORT_SYMBOL_GPL(ata_bus_reset); 2553 2554 #ifdef CONFIG_PCI 2555 2556 /** 2557 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2558 * @pdev: PCI device 2559 * 2560 * Some PCI ATA devices report simplex mode but in fact can be told to 2561 * enter non simplex mode. This implements the necessary logic to 2562 * perform the task on such devices. Calling it on other devices will 2563 * have -undefined- behaviour. 2564 */ 2565 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2566 { 2567 unsigned long bmdma = pci_resource_start(pdev, 4); 2568 u8 simplex; 2569 2570 if (bmdma == 0) 2571 return -ENOENT; 2572 2573 simplex = inb(bmdma + 0x02); 2574 outb(simplex & 0x60, bmdma + 0x02); 2575 simplex = inb(bmdma + 0x02); 2576 if (simplex & 0x80) 2577 return -EOPNOTSUPP; 2578 return 0; 2579 } 2580 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2581 2582 /** 2583 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2584 * @host: target ATA host 2585 * 2586 * Acquire PCI BMDMA resources and initialize @host accordingly. 2587 * 2588 * LOCKING: 2589 * Inherited from calling layer (may sleep). 2590 * 2591 * RETURNS: 2592 * 0 on success, -errno otherwise. 2593 */ 2594 int ata_pci_bmdma_init(struct ata_host *host) 2595 { 2596 struct device *gdev = host->dev; 2597 struct pci_dev *pdev = to_pci_dev(gdev); 2598 int i, rc; 2599 2600 /* No BAR4 allocation: No DMA */ 2601 if (pci_resource_start(pdev, 4) == 0) 2602 return 0; 2603 2604 /* TODO: If we get no DMA mask we should fall back to PIO */ 2605 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2606 if (rc) 2607 return rc; 2608 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2609 if (rc) 2610 return rc; 2611 2612 /* request and iomap DMA region */ 2613 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2614 if (rc) { 2615 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2616 return -ENOMEM; 2617 } 2618 host->iomap = pcim_iomap_table(pdev); 2619 2620 for (i = 0; i < 2; i++) { 2621 struct ata_port *ap = host->ports[i]; 2622 void __iomem *bmdma = host->iomap[4] + 8 * i; 2623 2624 if (ata_port_is_dummy(ap)) 2625 continue; 2626 2627 ap->ioaddr.bmdma_addr = bmdma; 2628 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2629 (ioread8(bmdma + 2) & 0x80)) 2630 host->flags |= ATA_HOST_SIMPLEX; 2631 2632 ata_port_desc(ap, "bmdma 0x%llx", 2633 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2634 } 2635 2636 return 0; 2637 } 2638 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2639 2640 static int ata_resources_present(struct pci_dev *pdev, int port) 2641 { 2642 int i; 2643 2644 /* Check the PCI resources for this channel are enabled */ 2645 port = port * 2; 2646 for (i = 0; i < 2; i++) { 2647 if (pci_resource_start(pdev, port + i) == 0 || 2648 pci_resource_len(pdev, port + i) == 0) 2649 return 0; 2650 } 2651 return 1; 2652 } 2653 2654 /** 2655 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2656 * @host: target ATA host 2657 * 2658 * Acquire native PCI ATA resources for @host and initialize the 2659 * first two ports of @host accordingly. Ports marked dummy are 2660 * skipped and allocation failure makes the port dummy. 2661 * 2662 * Note that native PCI resources are valid even for legacy hosts 2663 * as we fix up pdev resources array early in boot, so this 2664 * function can be used for both native and legacy SFF hosts. 2665 * 2666 * LOCKING: 2667 * Inherited from calling layer (may sleep). 2668 * 2669 * RETURNS: 2670 * 0 if at least one port is initialized, -ENODEV if no port is 2671 * available. 2672 */ 2673 int ata_pci_sff_init_host(struct ata_host *host) 2674 { 2675 struct device *gdev = host->dev; 2676 struct pci_dev *pdev = to_pci_dev(gdev); 2677 unsigned int mask = 0; 2678 int i, rc; 2679 2680 /* request, iomap BARs and init port addresses accordingly */ 2681 for (i = 0; i < 2; i++) { 2682 struct ata_port *ap = host->ports[i]; 2683 int base = i * 2; 2684 void __iomem * const *iomap; 2685 2686 if (ata_port_is_dummy(ap)) 2687 continue; 2688 2689 /* Discard disabled ports. Some controllers show 2690 * their unused channels this way. Disabled ports are 2691 * made dummy. 2692 */ 2693 if (!ata_resources_present(pdev, i)) { 2694 ap->ops = &ata_dummy_port_ops; 2695 continue; 2696 } 2697 2698 rc = pcim_iomap_regions(pdev, 0x3 << base, 2699 dev_driver_string(gdev)); 2700 if (rc) { 2701 dev_printk(KERN_WARNING, gdev, 2702 "failed to request/iomap BARs for port %d " 2703 "(errno=%d)\n", i, rc); 2704 if (rc == -EBUSY) 2705 pcim_pin_device(pdev); 2706 ap->ops = &ata_dummy_port_ops; 2707 continue; 2708 } 2709 host->iomap = iomap = pcim_iomap_table(pdev); 2710 2711 ap->ioaddr.cmd_addr = iomap[base]; 2712 ap->ioaddr.altstatus_addr = 2713 ap->ioaddr.ctl_addr = (void __iomem *) 2714 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2715 ata_sff_std_ports(&ap->ioaddr); 2716 2717 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2718 (unsigned long long)pci_resource_start(pdev, base), 2719 (unsigned long long)pci_resource_start(pdev, base + 1)); 2720 2721 mask |= 1 << i; 2722 } 2723 2724 if (!mask) { 2725 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2726 return -ENODEV; 2727 } 2728 2729 return 0; 2730 } 2731 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2732 2733 /** 2734 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2735 * @pdev: target PCI device 2736 * @ppi: array of port_info, must be enough for two ports 2737 * @r_host: out argument for the initialized ATA host 2738 * 2739 * Helper to allocate ATA host for @pdev, acquire all native PCI 2740 * resources and initialize it accordingly in one go. 2741 * 2742 * LOCKING: 2743 * Inherited from calling layer (may sleep). 2744 * 2745 * RETURNS: 2746 * 0 on success, -errno otherwise. 2747 */ 2748 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2749 const struct ata_port_info * const *ppi, 2750 struct ata_host **r_host) 2751 { 2752 struct ata_host *host; 2753 int rc; 2754 2755 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2756 return -ENOMEM; 2757 2758 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2759 if (!host) { 2760 dev_printk(KERN_ERR, &pdev->dev, 2761 "failed to allocate ATA host\n"); 2762 rc = -ENOMEM; 2763 goto err_out; 2764 } 2765 2766 rc = ata_pci_sff_init_host(host); 2767 if (rc) 2768 goto err_out; 2769 2770 /* init DMA related stuff */ 2771 rc = ata_pci_bmdma_init(host); 2772 if (rc) 2773 goto err_bmdma; 2774 2775 devres_remove_group(&pdev->dev, NULL); 2776 *r_host = host; 2777 return 0; 2778 2779 err_bmdma: 2780 /* This is necessary because PCI and iomap resources are 2781 * merged and releasing the top group won't release the 2782 * acquired resources if some of those have been acquired 2783 * before entering this function. 2784 */ 2785 pcim_iounmap_regions(pdev, 0xf); 2786 err_out: 2787 devres_release_group(&pdev->dev, NULL); 2788 return rc; 2789 } 2790 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2791 2792 /** 2793 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2794 * @host: target SFF ATA host 2795 * @irq_handler: irq_handler used when requesting IRQ(s) 2796 * @sht: scsi_host_template to use when registering the host 2797 * 2798 * This is the counterpart of ata_host_activate() for SFF ATA 2799 * hosts. This separate helper is necessary because SFF hosts 2800 * use two separate interrupts in legacy mode. 2801 * 2802 * LOCKING: 2803 * Inherited from calling layer (may sleep). 2804 * 2805 * RETURNS: 2806 * 0 on success, -errno otherwise. 2807 */ 2808 int ata_pci_sff_activate_host(struct ata_host *host, 2809 irq_handler_t irq_handler, 2810 struct scsi_host_template *sht) 2811 { 2812 struct device *dev = host->dev; 2813 struct pci_dev *pdev = to_pci_dev(dev); 2814 const char *drv_name = dev_driver_string(host->dev); 2815 int legacy_mode = 0, rc; 2816 2817 rc = ata_host_start(host); 2818 if (rc) 2819 return rc; 2820 2821 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2822 u8 tmp8, mask; 2823 2824 /* TODO: What if one channel is in native mode ... */ 2825 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2826 mask = (1 << 2) | (1 << 0); 2827 if ((tmp8 & mask) != mask) 2828 legacy_mode = 1; 2829 #if defined(CONFIG_NO_ATA_LEGACY) 2830 /* Some platforms with PCI limits cannot address compat 2831 port space. In that case we punt if their firmware has 2832 left a device in compatibility mode */ 2833 if (legacy_mode) { 2834 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2835 return -EOPNOTSUPP; 2836 } 2837 #endif 2838 } 2839 2840 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2841 return -ENOMEM; 2842 2843 if (!legacy_mode && pdev->irq) { 2844 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2845 IRQF_SHARED, drv_name, host); 2846 if (rc) 2847 goto out; 2848 2849 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2850 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2851 } else if (legacy_mode) { 2852 if (!ata_port_is_dummy(host->ports[0])) { 2853 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2854 irq_handler, IRQF_SHARED, 2855 drv_name, host); 2856 if (rc) 2857 goto out; 2858 2859 ata_port_desc(host->ports[0], "irq %d", 2860 ATA_PRIMARY_IRQ(pdev)); 2861 } 2862 2863 if (!ata_port_is_dummy(host->ports[1])) { 2864 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2865 irq_handler, IRQF_SHARED, 2866 drv_name, host); 2867 if (rc) 2868 goto out; 2869 2870 ata_port_desc(host->ports[1], "irq %d", 2871 ATA_SECONDARY_IRQ(pdev)); 2872 } 2873 } 2874 2875 rc = ata_host_register(host, sht); 2876 out: 2877 if (rc == 0) 2878 devres_remove_group(dev, NULL); 2879 else 2880 devres_release_group(dev, NULL); 2881 2882 return rc; 2883 } 2884 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2885 2886 /** 2887 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 2888 * @pdev: Controller to be initialized 2889 * @ppi: array of port_info, must be enough for two ports 2890 * @sht: scsi_host_template to use when registering the host 2891 * @host_priv: host private_data 2892 * 2893 * This is a helper function which can be called from a driver's 2894 * xxx_init_one() probe function if the hardware uses traditional 2895 * IDE taskfile registers. 2896 * 2897 * This function calls pci_enable_device(), reserves its register 2898 * regions, sets the dma mask, enables bus master mode, and calls 2899 * ata_device_add() 2900 * 2901 * ASSUMPTION: 2902 * Nobody makes a single channel controller that appears solely as 2903 * the secondary legacy port on PCI. 2904 * 2905 * LOCKING: 2906 * Inherited from PCI layer (may sleep). 2907 * 2908 * RETURNS: 2909 * Zero on success, negative on errno-based value on error. 2910 */ 2911 int ata_pci_sff_init_one(struct pci_dev *pdev, 2912 const struct ata_port_info * const *ppi, 2913 struct scsi_host_template *sht, void *host_priv) 2914 { 2915 struct device *dev = &pdev->dev; 2916 const struct ata_port_info *pi = NULL; 2917 struct ata_host *host = NULL; 2918 int i, rc; 2919 2920 DPRINTK("ENTER\n"); 2921 2922 /* look up the first valid port_info */ 2923 for (i = 0; i < 2 && ppi[i]; i++) { 2924 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 2925 pi = ppi[i]; 2926 break; 2927 } 2928 } 2929 2930 if (!pi) { 2931 dev_printk(KERN_ERR, &pdev->dev, 2932 "no valid port_info specified\n"); 2933 return -EINVAL; 2934 } 2935 2936 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2937 return -ENOMEM; 2938 2939 rc = pcim_enable_device(pdev); 2940 if (rc) 2941 goto out; 2942 2943 /* prepare and activate SFF host */ 2944 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2945 if (rc) 2946 goto out; 2947 host->private_data = host_priv; 2948 2949 pci_set_master(pdev); 2950 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2951 out: 2952 if (rc == 0) 2953 devres_remove_group(&pdev->dev, NULL); 2954 else 2955 devres_release_group(&pdev->dev, NULL); 2956 2957 return rc; 2958 } 2959 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2960 2961 #endif /* CONFIG_PCI */ 2962 2963