1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.21" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 75 unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int libata_fua = 0; 89 module_param_named(fua, libata_fua, int, 0444); 90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 91 92 static int ata_ignore_hpa = 0; 93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 95 96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 97 module_param(ata_probe_timeout, int, 0444); 98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 99 100 int libata_noacpi = 1; 101 module_param_named(noacpi, libata_noacpi, int, 0444); 102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 103 104 MODULE_AUTHOR("Jeff Garzik"); 105 MODULE_DESCRIPTION("Library module for ATA devices"); 106 MODULE_LICENSE("GPL"); 107 MODULE_VERSION(DRV_VERSION); 108 109 110 /** 111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 112 * @tf: Taskfile to convert 113 * @fis: Buffer into which data will output 114 * @pmp: Port multiplier port 115 * 116 * Converts a standard ATA taskfile to a Serial ATA 117 * FIS structure (Register - Host to Device). 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 124 { 125 fis[0] = 0x27; /* Register - Host to Device FIS */ 126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 127 bit 7 indicates Command FIS */ 128 fis[2] = tf->command; 129 fis[3] = tf->feature; 130 131 fis[4] = tf->lbal; 132 fis[5] = tf->lbam; 133 fis[6] = tf->lbah; 134 fis[7] = tf->device; 135 136 fis[8] = tf->hob_lbal; 137 fis[9] = tf->hob_lbam; 138 fis[10] = tf->hob_lbah; 139 fis[11] = tf->hob_feature; 140 141 fis[12] = tf->nsect; 142 fis[13] = tf->hob_nsect; 143 fis[14] = 0; 144 fis[15] = tf->ctl; 145 146 fis[16] = 0; 147 fis[17] = 0; 148 fis[18] = 0; 149 fis[19] = 0; 150 } 151 152 /** 153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 154 * @fis: Buffer from which data will be input 155 * @tf: Taskfile to output 156 * 157 * Converts a serial ATA FIS structure to a standard ATA taskfile. 158 * 159 * LOCKING: 160 * Inherited from caller. 161 */ 162 163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 164 { 165 tf->command = fis[2]; /* status */ 166 tf->feature = fis[3]; /* error */ 167 168 tf->lbal = fis[4]; 169 tf->lbam = fis[5]; 170 tf->lbah = fis[6]; 171 tf->device = fis[7]; 172 173 tf->hob_lbal = fis[8]; 174 tf->hob_lbam = fis[9]; 175 tf->hob_lbah = fis[10]; 176 177 tf->nsect = fis[12]; 178 tf->hob_nsect = fis[13]; 179 } 180 181 static const u8 ata_rw_cmds[] = { 182 /* pio multi */ 183 ATA_CMD_READ_MULTI, 184 ATA_CMD_WRITE_MULTI, 185 ATA_CMD_READ_MULTI_EXT, 186 ATA_CMD_WRITE_MULTI_EXT, 187 0, 188 0, 189 0, 190 ATA_CMD_WRITE_MULTI_FUA_EXT, 191 /* pio */ 192 ATA_CMD_PIO_READ, 193 ATA_CMD_PIO_WRITE, 194 ATA_CMD_PIO_READ_EXT, 195 ATA_CMD_PIO_WRITE_EXT, 196 0, 197 0, 198 0, 199 0, 200 /* dma */ 201 ATA_CMD_READ, 202 ATA_CMD_WRITE, 203 ATA_CMD_READ_EXT, 204 ATA_CMD_WRITE_EXT, 205 0, 206 0, 207 0, 208 ATA_CMD_WRITE_FUA_EXT 209 }; 210 211 /** 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 213 * @tf: command to examine and configure 214 * @dev: device tf belongs to 215 * 216 * Examine the device configuration and tf->flags to calculate 217 * the proper read/write commands and protocol to use. 218 * 219 * LOCKING: 220 * caller. 221 */ 222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 223 { 224 u8 cmd; 225 226 int index, fua, lba48, write; 227 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 231 232 if (dev->flags & ATA_DFLAG_PIO) { 233 tf->protocol = ATA_PROT_PIO; 234 index = dev->multi_count ? 0 : 8; 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 236 /* Unable to use DMA due to host limitation */ 237 tf->protocol = ATA_PROT_PIO; 238 index = dev->multi_count ? 0 : 8; 239 } else { 240 tf->protocol = ATA_PROT_DMA; 241 index = 16; 242 } 243 244 cmd = ata_rw_cmds[index + fua + lba48 + write]; 245 if (cmd) { 246 tf->command = cmd; 247 return 0; 248 } 249 return -1; 250 } 251 252 /** 253 * ata_tf_read_block - Read block address from ATA taskfile 254 * @tf: ATA taskfile of interest 255 * @dev: ATA device @tf belongs to 256 * 257 * LOCKING: 258 * None. 259 * 260 * Read block address from @tf. This function can handle all 261 * three address formats - LBA, LBA48 and CHS. tf->protocol and 262 * flags select the address format to use. 263 * 264 * RETURNS: 265 * Block address read from @tf. 266 */ 267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 268 { 269 u64 block = 0; 270 271 if (tf->flags & ATA_TFLAG_LBA) { 272 if (tf->flags & ATA_TFLAG_LBA48) { 273 block |= (u64)tf->hob_lbah << 40; 274 block |= (u64)tf->hob_lbam << 32; 275 block |= tf->hob_lbal << 24; 276 } else 277 block |= (tf->device & 0xf) << 24; 278 279 block |= tf->lbah << 16; 280 block |= tf->lbam << 8; 281 block |= tf->lbal; 282 } else { 283 u32 cyl, head, sect; 284 285 cyl = tf->lbam | (tf->lbah << 8); 286 head = tf->device & 0xf; 287 sect = tf->lbal; 288 289 block = (cyl * dev->heads + head) * dev->sectors + sect; 290 } 291 292 return block; 293 } 294 295 /** 296 * ata_build_rw_tf - Build ATA taskfile for given read/write request 297 * @tf: Target ATA taskfile 298 * @dev: ATA device @tf belongs to 299 * @block: Block address 300 * @n_block: Number of blocks 301 * @tf_flags: RW/FUA etc... 302 * @tag: tag 303 * 304 * LOCKING: 305 * None. 306 * 307 * Build ATA taskfile @tf for read/write request described by 308 * @block, @n_block, @tf_flags and @tag on @dev. 309 * 310 * RETURNS: 311 * 312 * 0 on success, -ERANGE if the request is too large for @dev, 313 * -EINVAL if the request is invalid. 314 */ 315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 316 u64 block, u32 n_block, unsigned int tf_flags, 317 unsigned int tag) 318 { 319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 320 tf->flags |= tf_flags; 321 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 323 /* yay, NCQ */ 324 if (!lba_48_ok(block, n_block)) 325 return -ERANGE; 326 327 tf->protocol = ATA_PROT_NCQ; 328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 329 330 if (tf->flags & ATA_TFLAG_WRITE) 331 tf->command = ATA_CMD_FPDMA_WRITE; 332 else 333 tf->command = ATA_CMD_FPDMA_READ; 334 335 tf->nsect = tag << 3; 336 tf->hob_feature = (n_block >> 8) & 0xff; 337 tf->feature = n_block & 0xff; 338 339 tf->hob_lbah = (block >> 40) & 0xff; 340 tf->hob_lbam = (block >> 32) & 0xff; 341 tf->hob_lbal = (block >> 24) & 0xff; 342 tf->lbah = (block >> 16) & 0xff; 343 tf->lbam = (block >> 8) & 0xff; 344 tf->lbal = block & 0xff; 345 346 tf->device = 1 << 6; 347 if (tf->flags & ATA_TFLAG_FUA) 348 tf->device |= 1 << 7; 349 } else if (dev->flags & ATA_DFLAG_LBA) { 350 tf->flags |= ATA_TFLAG_LBA; 351 352 if (lba_28_ok(block, n_block)) { 353 /* use LBA28 */ 354 tf->device |= (block >> 24) & 0xf; 355 } else if (lba_48_ok(block, n_block)) { 356 if (!(dev->flags & ATA_DFLAG_LBA48)) 357 return -ERANGE; 358 359 /* use LBA48 */ 360 tf->flags |= ATA_TFLAG_LBA48; 361 362 tf->hob_nsect = (n_block >> 8) & 0xff; 363 364 tf->hob_lbah = (block >> 40) & 0xff; 365 tf->hob_lbam = (block >> 32) & 0xff; 366 tf->hob_lbal = (block >> 24) & 0xff; 367 } else 368 /* request too large even for LBA48 */ 369 return -ERANGE; 370 371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 372 return -EINVAL; 373 374 tf->nsect = n_block & 0xff; 375 376 tf->lbah = (block >> 16) & 0xff; 377 tf->lbam = (block >> 8) & 0xff; 378 tf->lbal = block & 0xff; 379 380 tf->device |= ATA_LBA; 381 } else { 382 /* CHS */ 383 u32 sect, head, cyl, track; 384 385 /* The request -may- be too large for CHS addressing. */ 386 if (!lba_28_ok(block, n_block)) 387 return -ERANGE; 388 389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 390 return -EINVAL; 391 392 /* Convert LBA to CHS */ 393 track = (u32)block / dev->sectors; 394 cyl = track / dev->heads; 395 head = track % dev->heads; 396 sect = (u32)block % dev->sectors + 1; 397 398 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 399 (u32)block, track, cyl, head, sect); 400 401 /* Check whether the converted CHS can fit. 402 Cylinder: 0-65535 403 Head: 0-15 404 Sector: 1-255*/ 405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 406 return -ERANGE; 407 408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 409 tf->lbal = sect; 410 tf->lbam = cyl; 411 tf->lbah = cyl >> 8; 412 tf->device |= head; 413 } 414 415 return 0; 416 } 417 418 /** 419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 420 * @pio_mask: pio_mask 421 * @mwdma_mask: mwdma_mask 422 * @udma_mask: udma_mask 423 * 424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 425 * unsigned int xfer_mask. 426 * 427 * LOCKING: 428 * None. 429 * 430 * RETURNS: 431 * Packed xfer_mask. 432 */ 433 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 434 unsigned int mwdma_mask, 435 unsigned int udma_mask) 436 { 437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 440 } 441 442 /** 443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 444 * @xfer_mask: xfer_mask to unpack 445 * @pio_mask: resulting pio_mask 446 * @mwdma_mask: resulting mwdma_mask 447 * @udma_mask: resulting udma_mask 448 * 449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 450 * Any NULL distination masks will be ignored. 451 */ 452 static void ata_unpack_xfermask(unsigned int xfer_mask, 453 unsigned int *pio_mask, 454 unsigned int *mwdma_mask, 455 unsigned int *udma_mask) 456 { 457 if (pio_mask) 458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 459 if (mwdma_mask) 460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 461 if (udma_mask) 462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 463 } 464 465 static const struct ata_xfer_ent { 466 int shift, bits; 467 u8 base; 468 } ata_xfer_tbl[] = { 469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 472 { -1, }, 473 }; 474 475 /** 476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 477 * @xfer_mask: xfer_mask of interest 478 * 479 * Return matching XFER_* value for @xfer_mask. Only the highest 480 * bit of @xfer_mask is considered. 481 * 482 * LOCKING: 483 * None. 484 * 485 * RETURNS: 486 * Matching XFER_* value, 0 if no match found. 487 */ 488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 489 { 490 int highbit = fls(xfer_mask) - 1; 491 const struct ata_xfer_ent *ent; 492 493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 495 return ent->base + highbit - ent->shift; 496 return 0; 497 } 498 499 /** 500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 501 * @xfer_mode: XFER_* of interest 502 * 503 * Return matching xfer_mask for @xfer_mode. 504 * 505 * LOCKING: 506 * None. 507 * 508 * RETURNS: 509 * Matching xfer_mask, 0 if no match found. 510 */ 511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 512 { 513 const struct ata_xfer_ent *ent; 514 515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 517 return 1 << (ent->shift + xfer_mode - ent->base); 518 return 0; 519 } 520 521 /** 522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 523 * @xfer_mode: XFER_* of interest 524 * 525 * Return matching xfer_shift for @xfer_mode. 526 * 527 * LOCKING: 528 * None. 529 * 530 * RETURNS: 531 * Matching xfer_shift, -1 if no match found. 532 */ 533 static int ata_xfer_mode2shift(unsigned int xfer_mode) 534 { 535 const struct ata_xfer_ent *ent; 536 537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 539 return ent->shift; 540 return -1; 541 } 542 543 /** 544 * ata_mode_string - convert xfer_mask to string 545 * @xfer_mask: mask of bits supported; only highest bit counts. 546 * 547 * Determine string which represents the highest speed 548 * (highest bit in @modemask). 549 * 550 * LOCKING: 551 * None. 552 * 553 * RETURNS: 554 * Constant C string representing highest speed listed in 555 * @mode_mask, or the constant C string "<n/a>". 556 */ 557 static const char *ata_mode_string(unsigned int xfer_mask) 558 { 559 static const char * const xfer_mode_str[] = { 560 "PIO0", 561 "PIO1", 562 "PIO2", 563 "PIO3", 564 "PIO4", 565 "PIO5", 566 "PIO6", 567 "MWDMA0", 568 "MWDMA1", 569 "MWDMA2", 570 "MWDMA3", 571 "MWDMA4", 572 "UDMA/16", 573 "UDMA/25", 574 "UDMA/33", 575 "UDMA/44", 576 "UDMA/66", 577 "UDMA/100", 578 "UDMA/133", 579 "UDMA7", 580 }; 581 int highbit; 582 583 highbit = fls(xfer_mask) - 1; 584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 585 return xfer_mode_str[highbit]; 586 return "<n/a>"; 587 } 588 589 static const char *sata_spd_string(unsigned int spd) 590 { 591 static const char * const spd_str[] = { 592 "1.5 Gbps", 593 "3.0 Gbps", 594 }; 595 596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 597 return "<unknown>"; 598 return spd_str[spd - 1]; 599 } 600 601 void ata_dev_disable(struct ata_device *dev) 602 { 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 606 ATA_DNXFER_QUIET); 607 dev->class++; 608 } 609 } 610 611 /** 612 * ata_devchk - PATA device presence detection 613 * @ap: ATA channel to examine 614 * @device: Device to examine (starting at zero) 615 * 616 * This technique was originally described in 617 * Hale Landis's ATADRVR (www.ata-atapi.com), and 618 * later found its way into the ATA/ATAPI spec. 619 * 620 * Write a pattern to the ATA shadow registers, 621 * and if a device is present, it will respond by 622 * correctly storing and echoing back the 623 * ATA shadow register contents. 624 * 625 * LOCKING: 626 * caller. 627 */ 628 629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 630 { 631 struct ata_ioports *ioaddr = &ap->ioaddr; 632 u8 nsect, lbal; 633 634 ap->ops->dev_select(ap, device); 635 636 iowrite8(0x55, ioaddr->nsect_addr); 637 iowrite8(0xaa, ioaddr->lbal_addr); 638 639 iowrite8(0xaa, ioaddr->nsect_addr); 640 iowrite8(0x55, ioaddr->lbal_addr); 641 642 iowrite8(0x55, ioaddr->nsect_addr); 643 iowrite8(0xaa, ioaddr->lbal_addr); 644 645 nsect = ioread8(ioaddr->nsect_addr); 646 lbal = ioread8(ioaddr->lbal_addr); 647 648 if ((nsect == 0x55) && (lbal == 0xaa)) 649 return 1; /* we found a device */ 650 651 return 0; /* nothing found */ 652 } 653 654 /** 655 * ata_dev_classify - determine device type based on ATA-spec signature 656 * @tf: ATA taskfile register set for device to be identified 657 * 658 * Determine from taskfile register contents whether a device is 659 * ATA or ATAPI, as per "Signature and persistence" section 660 * of ATA/PI spec (volume 1, sect 5.14). 661 * 662 * LOCKING: 663 * None. 664 * 665 * RETURNS: 666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 667 * the event of failure. 668 */ 669 670 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 671 { 672 /* Apple's open source Darwin code hints that some devices only 673 * put a proper signature into the LBA mid/high registers, 674 * So, we only check those. It's sufficient for uniqueness. 675 */ 676 677 if (((tf->lbam == 0) && (tf->lbah == 0)) || 678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 679 DPRINTK("found ATA device by sig\n"); 680 return ATA_DEV_ATA; 681 } 682 683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 685 DPRINTK("found ATAPI device by sig\n"); 686 return ATA_DEV_ATAPI; 687 } 688 689 DPRINTK("unknown device\n"); 690 return ATA_DEV_UNKNOWN; 691 } 692 693 /** 694 * ata_dev_try_classify - Parse returned ATA device signature 695 * @ap: ATA channel to examine 696 * @device: Device to examine (starting at zero) 697 * @r_err: Value of error register on completion 698 * 699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 700 * an ATA/ATAPI-defined set of values is placed in the ATA 701 * shadow registers, indicating the results of device detection 702 * and diagnostics. 703 * 704 * Select the ATA device, and read the values from the ATA shadow 705 * registers. Then parse according to the Error register value, 706 * and the spec-defined values examined by ata_dev_classify(). 707 * 708 * LOCKING: 709 * caller. 710 * 711 * RETURNS: 712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 713 */ 714 715 unsigned int 716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 717 { 718 struct ata_taskfile tf; 719 unsigned int class; 720 u8 err; 721 722 ap->ops->dev_select(ap, device); 723 724 memset(&tf, 0, sizeof(tf)); 725 726 ap->ops->tf_read(ap, &tf); 727 err = tf.feature; 728 if (r_err) 729 *r_err = err; 730 731 /* see if device passed diags: if master then continue and warn later */ 732 if (err == 0 && device == 0) 733 /* diagnostic fail : do nothing _YET_ */ 734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 735 else if (err == 1) 736 /* do nothing */ ; 737 else if ((device == 0) && (err == 0x81)) 738 /* do nothing */ ; 739 else 740 return ATA_DEV_NONE; 741 742 /* determine if device is ATA or ATAPI */ 743 class = ata_dev_classify(&tf); 744 745 if (class == ATA_DEV_UNKNOWN) 746 return ATA_DEV_NONE; 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 748 return ATA_DEV_NONE; 749 return class; 750 } 751 752 /** 753 * ata_id_string - Convert IDENTIFY DEVICE page into string 754 * @id: IDENTIFY DEVICE results we will examine 755 * @s: string into which data is output 756 * @ofs: offset into identify device page 757 * @len: length of string to return. must be an even number. 758 * 759 * The strings in the IDENTIFY DEVICE page are broken up into 760 * 16-bit chunks. Run through the string, and output each 761 * 8-bit chunk linearly, regardless of platform. 762 * 763 * LOCKING: 764 * caller. 765 */ 766 767 void ata_id_string(const u16 *id, unsigned char *s, 768 unsigned int ofs, unsigned int len) 769 { 770 unsigned int c; 771 772 while (len > 0) { 773 c = id[ofs] >> 8; 774 *s = c; 775 s++; 776 777 c = id[ofs] & 0xff; 778 *s = c; 779 s++; 780 781 ofs++; 782 len -= 2; 783 } 784 } 785 786 /** 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 788 * @id: IDENTIFY DEVICE results we will examine 789 * @s: string into which data is output 790 * @ofs: offset into identify device page 791 * @len: length of string to return. must be an odd number. 792 * 793 * This function is identical to ata_id_string except that it 794 * trims trailing spaces and terminates the resulting string with 795 * null. @len must be actual maximum length (even number) + 1. 796 * 797 * LOCKING: 798 * caller. 799 */ 800 void ata_id_c_string(const u16 *id, unsigned char *s, 801 unsigned int ofs, unsigned int len) 802 { 803 unsigned char *p; 804 805 WARN_ON(!(len & 1)); 806 807 ata_id_string(id, s, ofs, len - 1); 808 809 p = s + strnlen(s, len - 1); 810 while (p > s && p[-1] == ' ') 811 p--; 812 *p = '\0'; 813 } 814 815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 816 { 817 u64 sectors = 0; 818 819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 821 sectors |= (tf->hob_lbal & 0xff) << 24; 822 sectors |= (tf->lbah & 0xff) << 16; 823 sectors |= (tf->lbam & 0xff) << 8; 824 sectors |= (tf->lbal & 0xff); 825 826 return ++sectors; 827 } 828 829 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 830 { 831 u64 sectors = 0; 832 833 sectors |= (tf->device & 0x0f) << 24; 834 sectors |= (tf->lbah & 0xff) << 16; 835 sectors |= (tf->lbam & 0xff) << 8; 836 sectors |= (tf->lbal & 0xff); 837 838 return ++sectors; 839 } 840 841 /** 842 * ata_read_native_max_address_ext - LBA48 native max query 843 * @dev: Device to query 844 * 845 * Perform an LBA48 size query upon the device in question. Return the 846 * actual LBA48 size or zero if the command fails. 847 */ 848 849 static u64 ata_read_native_max_address_ext(struct ata_device *dev) 850 { 851 unsigned int err; 852 struct ata_taskfile tf; 853 854 ata_tf_init(dev, &tf); 855 856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 858 tf.protocol |= ATA_PROT_NODATA; 859 tf.device |= 0x40; 860 861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 862 if (err) 863 return 0; 864 865 return ata_tf_to_lba48(&tf); 866 } 867 868 /** 869 * ata_read_native_max_address - LBA28 native max query 870 * @dev: Device to query 871 * 872 * Performa an LBA28 size query upon the device in question. Return the 873 * actual LBA28 size or zero if the command fails. 874 */ 875 876 static u64 ata_read_native_max_address(struct ata_device *dev) 877 { 878 unsigned int err; 879 struct ata_taskfile tf; 880 881 ata_tf_init(dev, &tf); 882 883 tf.command = ATA_CMD_READ_NATIVE_MAX; 884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 885 tf.protocol |= ATA_PROT_NODATA; 886 tf.device |= 0x40; 887 888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 889 if (err) 890 return 0; 891 892 return ata_tf_to_lba(&tf); 893 } 894 895 /** 896 * ata_set_native_max_address_ext - LBA48 native max set 897 * @dev: Device to query 898 * @new_sectors: new max sectors value to set for the device 899 * 900 * Perform an LBA48 size set max upon the device in question. Return the 901 * actual LBA48 size or zero if the command fails. 902 */ 903 904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) 905 { 906 unsigned int err; 907 struct ata_taskfile tf; 908 909 new_sectors--; 910 911 ata_tf_init(dev, &tf); 912 913 tf.command = ATA_CMD_SET_MAX_EXT; 914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 915 tf.protocol |= ATA_PROT_NODATA; 916 tf.device |= 0x40; 917 918 tf.lbal = (new_sectors >> 0) & 0xff; 919 tf.lbam = (new_sectors >> 8) & 0xff; 920 tf.lbah = (new_sectors >> 16) & 0xff; 921 922 tf.hob_lbal = (new_sectors >> 24) & 0xff; 923 tf.hob_lbam = (new_sectors >> 32) & 0xff; 924 tf.hob_lbah = (new_sectors >> 40) & 0xff; 925 926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 927 if (err) 928 return 0; 929 930 return ata_tf_to_lba48(&tf); 931 } 932 933 /** 934 * ata_set_native_max_address - LBA28 native max set 935 * @dev: Device to query 936 * @new_sectors: new max sectors value to set for the device 937 * 938 * Perform an LBA28 size set max upon the device in question. Return the 939 * actual LBA28 size or zero if the command fails. 940 */ 941 942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) 943 { 944 unsigned int err; 945 struct ata_taskfile tf; 946 947 new_sectors--; 948 949 ata_tf_init(dev, &tf); 950 951 tf.command = ATA_CMD_SET_MAX; 952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 953 tf.protocol |= ATA_PROT_NODATA; 954 955 tf.lbal = (new_sectors >> 0) & 0xff; 956 tf.lbam = (new_sectors >> 8) & 0xff; 957 tf.lbah = (new_sectors >> 16) & 0xff; 958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; 959 960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 961 if (err) 962 return 0; 963 964 return ata_tf_to_lba(&tf); 965 } 966 967 /** 968 * ata_hpa_resize - Resize a device with an HPA set 969 * @dev: Device to resize 970 * 971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 972 * it if required to the full size of the media. The caller must check 973 * the drive has the HPA feature set enabled. 974 */ 975 976 static u64 ata_hpa_resize(struct ata_device *dev) 977 { 978 u64 sectors = dev->n_sectors; 979 u64 hpa_sectors; 980 981 if (ata_id_has_lba48(dev->id)) 982 hpa_sectors = ata_read_native_max_address_ext(dev); 983 else 984 hpa_sectors = ata_read_native_max_address(dev); 985 986 /* if no hpa, both should be equal */ 987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, " 988 "hpa_sectors = %lld\n", 989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors); 990 991 if (hpa_sectors > sectors) { 992 ata_dev_printk(dev, KERN_INFO, 993 "Host Protected Area detected:\n" 994 "\tcurrent size: %lld sectors\n" 995 "\tnative size: %lld sectors\n", 996 (long long)sectors, (long long)hpa_sectors); 997 998 if (ata_ignore_hpa) { 999 if (ata_id_has_lba48(dev->id)) 1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); 1001 else 1002 hpa_sectors = ata_set_native_max_address(dev, 1003 hpa_sectors); 1004 1005 if (hpa_sectors) { 1006 ata_dev_printk(dev, KERN_INFO, "native size " 1007 "increased to %lld sectors\n", 1008 (long long)hpa_sectors); 1009 return hpa_sectors; 1010 } 1011 } 1012 } 1013 return sectors; 1014 } 1015 1016 static u64 ata_id_n_sectors(const u16 *id) 1017 { 1018 if (ata_id_has_lba(id)) { 1019 if (ata_id_has_lba48(id)) 1020 return ata_id_u64(id, 100); 1021 else 1022 return ata_id_u32(id, 60); 1023 } else { 1024 if (ata_id_current_chs_valid(id)) 1025 return ata_id_u32(id, 57); 1026 else 1027 return id[1] * id[3] * id[6]; 1028 } 1029 } 1030 1031 /** 1032 * ata_id_to_dma_mode - Identify DMA mode from id block 1033 * @dev: device to identify 1034 * @unknown: mode to assume if we cannot tell 1035 * 1036 * Set up the timing values for the device based upon the identify 1037 * reported values for the DMA mode. This function is used by drivers 1038 * which rely upon firmware configured modes, but wish to report the 1039 * mode correctly when possible. 1040 * 1041 * In addition we emit similarly formatted messages to the default 1042 * ata_dev_set_mode handler, in order to provide consistency of 1043 * presentation. 1044 */ 1045 1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1047 { 1048 unsigned int mask; 1049 u8 mode; 1050 1051 /* Pack the DMA modes */ 1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1053 if (dev->id[53] & 0x04) 1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1055 1056 /* Select the mode in use */ 1057 mode = ata_xfer_mask2mode(mask); 1058 1059 if (mode != 0) { 1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1061 ata_mode_string(mask)); 1062 } else { 1063 /* SWDMA perhaps ? */ 1064 mode = unknown; 1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1066 } 1067 1068 /* Configure the device reporting */ 1069 dev->xfer_mode = mode; 1070 dev->xfer_shift = ata_xfer_mode2shift(mode); 1071 } 1072 1073 /** 1074 * ata_noop_dev_select - Select device 0/1 on ATA bus 1075 * @ap: ATA channel to manipulate 1076 * @device: ATA device (numbered from zero) to select 1077 * 1078 * This function performs no actual function. 1079 * 1080 * May be used as the dev_select() entry in ata_port_operations. 1081 * 1082 * LOCKING: 1083 * caller. 1084 */ 1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1086 { 1087 } 1088 1089 1090 /** 1091 * ata_std_dev_select - Select device 0/1 on ATA bus 1092 * @ap: ATA channel to manipulate 1093 * @device: ATA device (numbered from zero) to select 1094 * 1095 * Use the method defined in the ATA specification to 1096 * make either device 0, or device 1, active on the 1097 * ATA channel. Works with both PIO and MMIO. 1098 * 1099 * May be used as the dev_select() entry in ata_port_operations. 1100 * 1101 * LOCKING: 1102 * caller. 1103 */ 1104 1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1106 { 1107 u8 tmp; 1108 1109 if (device == 0) 1110 tmp = ATA_DEVICE_OBS; 1111 else 1112 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1113 1114 iowrite8(tmp, ap->ioaddr.device_addr); 1115 ata_pause(ap); /* needed; also flushes, for mmio */ 1116 } 1117 1118 /** 1119 * ata_dev_select - Select device 0/1 on ATA bus 1120 * @ap: ATA channel to manipulate 1121 * @device: ATA device (numbered from zero) to select 1122 * @wait: non-zero to wait for Status register BSY bit to clear 1123 * @can_sleep: non-zero if context allows sleeping 1124 * 1125 * Use the method defined in the ATA specification to 1126 * make either device 0, or device 1, active on the 1127 * ATA channel. 1128 * 1129 * This is a high-level version of ata_std_dev_select(), 1130 * which additionally provides the services of inserting 1131 * the proper pauses and status polling, where needed. 1132 * 1133 * LOCKING: 1134 * caller. 1135 */ 1136 1137 void ata_dev_select(struct ata_port *ap, unsigned int device, 1138 unsigned int wait, unsigned int can_sleep) 1139 { 1140 if (ata_msg_probe(ap)) 1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1142 "device %u, wait %u\n", device, wait); 1143 1144 if (wait) 1145 ata_wait_idle(ap); 1146 1147 ap->ops->dev_select(ap, device); 1148 1149 if (wait) { 1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 1151 msleep(150); 1152 ata_wait_idle(ap); 1153 } 1154 } 1155 1156 /** 1157 * ata_dump_id - IDENTIFY DEVICE info debugging output 1158 * @id: IDENTIFY DEVICE page to dump 1159 * 1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1161 * page. 1162 * 1163 * LOCKING: 1164 * caller. 1165 */ 1166 1167 static inline void ata_dump_id(const u16 *id) 1168 { 1169 DPRINTK("49==0x%04x " 1170 "53==0x%04x " 1171 "63==0x%04x " 1172 "64==0x%04x " 1173 "75==0x%04x \n", 1174 id[49], 1175 id[53], 1176 id[63], 1177 id[64], 1178 id[75]); 1179 DPRINTK("80==0x%04x " 1180 "81==0x%04x " 1181 "82==0x%04x " 1182 "83==0x%04x " 1183 "84==0x%04x \n", 1184 id[80], 1185 id[81], 1186 id[82], 1187 id[83], 1188 id[84]); 1189 DPRINTK("88==0x%04x " 1190 "93==0x%04x\n", 1191 id[88], 1192 id[93]); 1193 } 1194 1195 /** 1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1197 * @id: IDENTIFY data to compute xfer mask from 1198 * 1199 * Compute the xfermask for this device. This is not as trivial 1200 * as it seems if we must consider early devices correctly. 1201 * 1202 * FIXME: pre IDE drive timing (do we care ?). 1203 * 1204 * LOCKING: 1205 * None. 1206 * 1207 * RETURNS: 1208 * Computed xfermask 1209 */ 1210 static unsigned int ata_id_xfermask(const u16 *id) 1211 { 1212 unsigned int pio_mask, mwdma_mask, udma_mask; 1213 1214 /* Usual case. Word 53 indicates word 64 is valid */ 1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1217 pio_mask <<= 3; 1218 pio_mask |= 0x7; 1219 } else { 1220 /* If word 64 isn't valid then Word 51 high byte holds 1221 * the PIO timing number for the maximum. Turn it into 1222 * a mask. 1223 */ 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1225 if (mode < 5) /* Valid PIO range */ 1226 pio_mask = (2 << mode) - 1; 1227 else 1228 pio_mask = 1; 1229 1230 /* But wait.. there's more. Design your standards by 1231 * committee and you too can get a free iordy field to 1232 * process. However its the speeds not the modes that 1233 * are supported... Note drivers using the timing API 1234 * will get this right anyway 1235 */ 1236 } 1237 1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1239 1240 if (ata_id_is_cfa(id)) { 1241 /* 1242 * Process compact flash extended modes 1243 */ 1244 int pio = id[163] & 0x7; 1245 int dma = (id[163] >> 3) & 7; 1246 1247 if (pio) 1248 pio_mask |= (1 << 5); 1249 if (pio > 1) 1250 pio_mask |= (1 << 6); 1251 if (dma) 1252 mwdma_mask |= (1 << 3); 1253 if (dma > 1) 1254 mwdma_mask |= (1 << 4); 1255 } 1256 1257 udma_mask = 0; 1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1260 1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1262 } 1263 1264 /** 1265 * ata_port_queue_task - Queue port_task 1266 * @ap: The ata_port to queue port_task for 1267 * @fn: workqueue function to be scheduled 1268 * @data: data for @fn to use 1269 * @delay: delay time for workqueue function 1270 * 1271 * Schedule @fn(@data) for execution after @delay jiffies using 1272 * port_task. There is one port_task per port and it's the 1273 * user(low level driver)'s responsibility to make sure that only 1274 * one task is active at any given time. 1275 * 1276 * libata core layer takes care of synchronization between 1277 * port_task and EH. ata_port_queue_task() may be ignored for EH 1278 * synchronization. 1279 * 1280 * LOCKING: 1281 * Inherited from caller. 1282 */ 1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1284 unsigned long delay) 1285 { 1286 int rc; 1287 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) 1289 return; 1290 1291 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1292 ap->port_task_data = data; 1293 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay); 1295 1296 /* rc == 0 means that another user is using port task */ 1297 WARN_ON(rc == 0); 1298 } 1299 1300 /** 1301 * ata_port_flush_task - Flush port_task 1302 * @ap: The ata_port to flush port_task for 1303 * 1304 * After this function completes, port_task is guranteed not to 1305 * be running or scheduled. 1306 * 1307 * LOCKING: 1308 * Kernel thread context (may sleep) 1309 */ 1310 void ata_port_flush_task(struct ata_port *ap) 1311 { 1312 unsigned long flags; 1313 1314 DPRINTK("ENTER\n"); 1315 1316 spin_lock_irqsave(ap->lock, flags); 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; 1318 spin_unlock_irqrestore(ap->lock, flags); 1319 1320 DPRINTK("flush #1\n"); 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */ 1322 1323 /* 1324 * At this point, if a task is running, it's guaranteed to see 1325 * the FLUSH flag; thus, it will never queue pio tasks again. 1326 * Cancel and flush. 1327 */ 1328 if (!cancel_delayed_work(&ap->port_task)) { 1329 if (ata_msg_ctl(ap)) 1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", 1331 __FUNCTION__); 1332 cancel_work_sync(&ap->port_task.work); 1333 } 1334 1335 spin_lock_irqsave(ap->lock, flags); 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; 1337 spin_unlock_irqrestore(ap->lock, flags); 1338 1339 if (ata_msg_ctl(ap)) 1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1341 } 1342 1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1344 { 1345 struct completion *waiting = qc->private_data; 1346 1347 complete(waiting); 1348 } 1349 1350 /** 1351 * ata_exec_internal_sg - execute libata internal command 1352 * @dev: Device to which the command is sent 1353 * @tf: Taskfile registers for the command and the result 1354 * @cdb: CDB for packet command 1355 * @dma_dir: Data tranfer direction of the command 1356 * @sg: sg list for the data buffer of the command 1357 * @n_elem: Number of sg entries 1358 * 1359 * Executes libata internal command with timeout. @tf contains 1360 * command on entry and result on return. Timeout and error 1361 * conditions are reported via return value. No recovery action 1362 * is taken after a command times out. It's caller's duty to 1363 * clean up after timeout. 1364 * 1365 * LOCKING: 1366 * None. Should be called with kernel context, might sleep. 1367 * 1368 * RETURNS: 1369 * Zero on success, AC_ERR_* mask on failure 1370 */ 1371 unsigned ata_exec_internal_sg(struct ata_device *dev, 1372 struct ata_taskfile *tf, const u8 *cdb, 1373 int dma_dir, struct scatterlist *sg, 1374 unsigned int n_elem) 1375 { 1376 struct ata_port *ap = dev->ap; 1377 u8 command = tf->command; 1378 struct ata_queued_cmd *qc; 1379 unsigned int tag, preempted_tag; 1380 u32 preempted_sactive, preempted_qc_active; 1381 DECLARE_COMPLETION_ONSTACK(wait); 1382 unsigned long flags; 1383 unsigned int err_mask; 1384 int rc; 1385 1386 spin_lock_irqsave(ap->lock, flags); 1387 1388 /* no internal command while frozen */ 1389 if (ap->pflags & ATA_PFLAG_FROZEN) { 1390 spin_unlock_irqrestore(ap->lock, flags); 1391 return AC_ERR_SYSTEM; 1392 } 1393 1394 /* initialize internal qc */ 1395 1396 /* XXX: Tag 0 is used for drivers with legacy EH as some 1397 * drivers choke if any other tag is given. This breaks 1398 * ata_tag_internal() test for those drivers. Don't use new 1399 * EH stuff without converting to it. 1400 */ 1401 if (ap->ops->error_handler) 1402 tag = ATA_TAG_INTERNAL; 1403 else 1404 tag = 0; 1405 1406 if (test_and_set_bit(tag, &ap->qc_allocated)) 1407 BUG(); 1408 qc = __ata_qc_from_tag(ap, tag); 1409 1410 qc->tag = tag; 1411 qc->scsicmd = NULL; 1412 qc->ap = ap; 1413 qc->dev = dev; 1414 ata_qc_reinit(qc); 1415 1416 preempted_tag = ap->active_tag; 1417 preempted_sactive = ap->sactive; 1418 preempted_qc_active = ap->qc_active; 1419 ap->active_tag = ATA_TAG_POISON; 1420 ap->sactive = 0; 1421 ap->qc_active = 0; 1422 1423 /* prepare & issue qc */ 1424 qc->tf = *tf; 1425 if (cdb) 1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1427 qc->flags |= ATA_QCFLAG_RESULT_TF; 1428 qc->dma_dir = dma_dir; 1429 if (dma_dir != DMA_NONE) { 1430 unsigned int i, buflen = 0; 1431 1432 for (i = 0; i < n_elem; i++) 1433 buflen += sg[i].length; 1434 1435 ata_sg_init(qc, sg, n_elem); 1436 qc->nbytes = buflen; 1437 } 1438 1439 qc->private_data = &wait; 1440 qc->complete_fn = ata_qc_complete_internal; 1441 1442 ata_qc_issue(qc); 1443 1444 spin_unlock_irqrestore(ap->lock, flags); 1445 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1447 1448 ata_port_flush_task(ap); 1449 1450 if (!rc) { 1451 spin_lock_irqsave(ap->lock, flags); 1452 1453 /* We're racing with irq here. If we lose, the 1454 * following test prevents us from completing the qc 1455 * twice. If we win, the port is frozen and will be 1456 * cleaned up by ->post_internal_cmd(). 1457 */ 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1459 qc->err_mask |= AC_ERR_TIMEOUT; 1460 1461 if (ap->ops->error_handler) 1462 ata_port_freeze(ap); 1463 else 1464 ata_qc_complete(qc); 1465 1466 if (ata_msg_warn(ap)) 1467 ata_dev_printk(dev, KERN_WARNING, 1468 "qc timeout (cmd 0x%x)\n", command); 1469 } 1470 1471 spin_unlock_irqrestore(ap->lock, flags); 1472 } 1473 1474 /* do post_internal_cmd */ 1475 if (ap->ops->post_internal_cmd) 1476 ap->ops->post_internal_cmd(qc); 1477 1478 /* perform minimal error analysis */ 1479 if (qc->flags & ATA_QCFLAG_FAILED) { 1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1481 qc->err_mask |= AC_ERR_DEV; 1482 1483 if (!qc->err_mask) 1484 qc->err_mask |= AC_ERR_OTHER; 1485 1486 if (qc->err_mask & ~AC_ERR_OTHER) 1487 qc->err_mask &= ~AC_ERR_OTHER; 1488 } 1489 1490 /* finish up */ 1491 spin_lock_irqsave(ap->lock, flags); 1492 1493 *tf = qc->result_tf; 1494 err_mask = qc->err_mask; 1495 1496 ata_qc_free(qc); 1497 ap->active_tag = preempted_tag; 1498 ap->sactive = preempted_sactive; 1499 ap->qc_active = preempted_qc_active; 1500 1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1502 * Until those drivers are fixed, we detect the condition 1503 * here, fail the command with AC_ERR_SYSTEM and reenable the 1504 * port. 1505 * 1506 * Note that this doesn't change any behavior as internal 1507 * command failure results in disabling the device in the 1508 * higher layer for LLDDs without new reset/EH callbacks. 1509 * 1510 * Kill the following code as soon as those drivers are fixed. 1511 */ 1512 if (ap->flags & ATA_FLAG_DISABLED) { 1513 err_mask |= AC_ERR_SYSTEM; 1514 ata_port_probe(ap); 1515 } 1516 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 1519 return err_mask; 1520 } 1521 1522 /** 1523 * ata_exec_internal - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @buf: Data buffer of the command 1529 * @buflen: Length of data buffer 1530 * 1531 * Wrapper around ata_exec_internal_sg() which takes simple 1532 * buffer instead of sg list. 1533 * 1534 * LOCKING: 1535 * None. Should be called with kernel context, might sleep. 1536 * 1537 * RETURNS: 1538 * Zero on success, AC_ERR_* mask on failure 1539 */ 1540 unsigned ata_exec_internal(struct ata_device *dev, 1541 struct ata_taskfile *tf, const u8 *cdb, 1542 int dma_dir, void *buf, unsigned int buflen) 1543 { 1544 struct scatterlist *psg = NULL, sg; 1545 unsigned int n_elem = 0; 1546 1547 if (dma_dir != DMA_NONE) { 1548 WARN_ON(!buf); 1549 sg_init_one(&sg, buf, buflen); 1550 psg = &sg; 1551 n_elem++; 1552 } 1553 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1555 } 1556 1557 /** 1558 * ata_do_simple_cmd - execute simple internal command 1559 * @dev: Device to which the command is sent 1560 * @cmd: Opcode to execute 1561 * 1562 * Execute a 'simple' command, that only consists of the opcode 1563 * 'cmd' itself, without filling any other registers 1564 * 1565 * LOCKING: 1566 * Kernel thread context (may sleep). 1567 * 1568 * RETURNS: 1569 * Zero on success, AC_ERR_* mask on failure 1570 */ 1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1572 { 1573 struct ata_taskfile tf; 1574 1575 ata_tf_init(dev, &tf); 1576 1577 tf.command = cmd; 1578 tf.flags |= ATA_TFLAG_DEVICE; 1579 tf.protocol = ATA_PROT_NODATA; 1580 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1582 } 1583 1584 /** 1585 * ata_pio_need_iordy - check if iordy needed 1586 * @adev: ATA device 1587 * 1588 * Check if the current speed of the device requires IORDY. Used 1589 * by various controllers for chip configuration. 1590 */ 1591 1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1593 { 1594 /* Controller doesn't support IORDY. Probably a pointless check 1595 as the caller should know this */ 1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY) 1597 return 0; 1598 /* PIO3 and higher it is mandatory */ 1599 if (adev->pio_mode > XFER_PIO_2) 1600 return 1; 1601 /* We turn it on when possible */ 1602 if (ata_id_has_iordy(adev->id)) 1603 return 1; 1604 return 0; 1605 } 1606 1607 /** 1608 * ata_pio_mask_no_iordy - Return the non IORDY mask 1609 * @adev: ATA device 1610 * 1611 * Compute the highest mode possible if we are not using iordy. Return 1612 * -1 if no iordy mode is available. 1613 */ 1614 1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1616 { 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1620 /* Is the speed faster than the drive allows non IORDY ? */ 1621 if (pio) { 1622 /* This is cycle times not frequency - watch the logic! */ 1623 if (pio > 240) /* PIO2 is 240nS per cycle */ 1624 return 3 << ATA_SHIFT_PIO; 1625 return 7 << ATA_SHIFT_PIO; 1626 } 1627 } 1628 return 3 << ATA_SHIFT_PIO; 1629 } 1630 1631 /** 1632 * ata_dev_read_id - Read ID data from the specified device 1633 * @dev: target device 1634 * @p_class: pointer to class of the target device (may be changed) 1635 * @flags: ATA_READID_* flags 1636 * @id: buffer to read IDENTIFY data into 1637 * 1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1641 * for pre-ATA4 drives. 1642 * 1643 * LOCKING: 1644 * Kernel thread context (may sleep) 1645 * 1646 * RETURNS: 1647 * 0 on success, -errno otherwise. 1648 */ 1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1650 unsigned int flags, u16 *id) 1651 { 1652 struct ata_port *ap = dev->ap; 1653 unsigned int class = *p_class; 1654 struct ata_taskfile tf; 1655 unsigned int err_mask = 0; 1656 const char *reason; 1657 int may_fallback = 1, tried_spinup = 0; 1658 int rc; 1659 1660 if (ata_msg_ctl(ap)) 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1662 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1664 retry: 1665 ata_tf_init(dev, &tf); 1666 1667 switch (class) { 1668 case ATA_DEV_ATA: 1669 tf.command = ATA_CMD_ID_ATA; 1670 break; 1671 case ATA_DEV_ATAPI: 1672 tf.command = ATA_CMD_ID_ATAPI; 1673 break; 1674 default: 1675 rc = -ENODEV; 1676 reason = "unsupported class"; 1677 goto err_out; 1678 } 1679 1680 tf.protocol = ATA_PROT_PIO; 1681 1682 /* Some devices choke if TF registers contain garbage. Make 1683 * sure those are properly initialized. 1684 */ 1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1686 1687 /* Device presence detection is unreliable on some 1688 * controllers. Always poll IDENTIFY if available. 1689 */ 1690 tf.flags |= ATA_TFLAG_POLLING; 1691 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1693 id, sizeof(id[0]) * ATA_ID_WORDS); 1694 if (err_mask) { 1695 if (err_mask & AC_ERR_NODEV_HINT) { 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1697 ap->print_id, dev->devno); 1698 return -ENOENT; 1699 } 1700 1701 /* Device or controller might have reported the wrong 1702 * device class. Give a shot at the other IDENTIFY if 1703 * the current one is aborted by the device. 1704 */ 1705 if (may_fallback && 1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1707 may_fallback = 0; 1708 1709 if (class == ATA_DEV_ATA) 1710 class = ATA_DEV_ATAPI; 1711 else 1712 class = ATA_DEV_ATA; 1713 goto retry; 1714 } 1715 1716 rc = -EIO; 1717 reason = "I/O error"; 1718 goto err_out; 1719 } 1720 1721 /* Falling back doesn't make sense if ID data was read 1722 * successfully at least once. 1723 */ 1724 may_fallback = 0; 1725 1726 swap_buf_le16(id, ATA_ID_WORDS); 1727 1728 /* sanity check */ 1729 rc = -EINVAL; 1730 reason = "device reports illegal type"; 1731 1732 if (class == ATA_DEV_ATA) { 1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1734 goto err_out; 1735 } else { 1736 if (ata_id_is_ata(id)) 1737 goto err_out; 1738 } 1739 1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1741 tried_spinup = 1; 1742 /* 1743 * Drive powered-up in standby mode, and requires a specific 1744 * SET_FEATURES spin-up subcommand before it will accept 1745 * anything other than the original IDENTIFY command. 1746 */ 1747 ata_tf_init(dev, &tf); 1748 tf.command = ATA_CMD_SET_FEATURES; 1749 tf.feature = SETFEATURES_SPINUP; 1750 tf.protocol = ATA_PROT_NODATA; 1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1753 if (err_mask) { 1754 rc = -EIO; 1755 reason = "SPINUP failed"; 1756 goto err_out; 1757 } 1758 /* 1759 * If the drive initially returned incomplete IDENTIFY info, 1760 * we now must reissue the IDENTIFY command. 1761 */ 1762 if (id[2] == 0x37c8) 1763 goto retry; 1764 } 1765 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1767 /* 1768 * The exact sequence expected by certain pre-ATA4 drives is: 1769 * SRST RESET 1770 * IDENTIFY 1771 * INITIALIZE DEVICE PARAMETERS 1772 * anything else.. 1773 * Some drives were very specific about that exact sequence. 1774 */ 1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1777 if (err_mask) { 1778 rc = -EIO; 1779 reason = "INIT_DEV_PARAMS failed"; 1780 goto err_out; 1781 } 1782 1783 /* current CHS translation info (id[53-58]) might be 1784 * changed. reread the identify device info. 1785 */ 1786 flags &= ~ATA_READID_POSTRESET; 1787 goto retry; 1788 } 1789 } 1790 1791 *p_class = class; 1792 1793 return 0; 1794 1795 err_out: 1796 if (ata_msg_warn(ap)) 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1798 "(%s, err_mask=0x%x)\n", reason, err_mask); 1799 return rc; 1800 } 1801 1802 static inline u8 ata_dev_knobble(struct ata_device *dev) 1803 { 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1805 } 1806 1807 static void ata_dev_config_ncq(struct ata_device *dev, 1808 char *desc, size_t desc_sz) 1809 { 1810 struct ata_port *ap = dev->ap; 1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1812 1813 if (!ata_id_has_ncq(dev->id)) { 1814 desc[0] = '\0'; 1815 return; 1816 } 1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { 1818 snprintf(desc, desc_sz, "NCQ (not used)"); 1819 return; 1820 } 1821 if (ap->flags & ATA_FLAG_NCQ) { 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1823 dev->flags |= ATA_DFLAG_NCQ; 1824 } 1825 1826 if (hdepth >= ddepth) 1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1828 else 1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1830 } 1831 1832 /** 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device 1834 * @dev: Target device to configure 1835 * 1836 * Configure @dev according to @dev->id. Generic and low-level 1837 * driver specific fixups are also applied. 1838 * 1839 * LOCKING: 1840 * Kernel thread context (may sleep) 1841 * 1842 * RETURNS: 1843 * 0 on success, -errno otherwise 1844 */ 1845 int ata_dev_configure(struct ata_device *dev) 1846 { 1847 struct ata_port *ap = dev->ap; 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; 1849 const u16 *id = dev->id; 1850 unsigned int xfer_mask; 1851 char revbuf[7]; /* XYZ-99\0 */ 1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1853 char modelbuf[ATA_ID_PROD_LEN+1]; 1854 int rc; 1855 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1858 __FUNCTION__); 1859 return 0; 1860 } 1861 1862 if (ata_msg_probe(ap)) 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1864 1865 /* set _SDD */ 1866 rc = ata_acpi_push_id(dev); 1867 if (rc) { 1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", 1869 rc); 1870 } 1871 1872 /* retrieve and execute the ATA task file of _GTF */ 1873 ata_acpi_exec_tfs(ap); 1874 1875 /* print device capabilities */ 1876 if (ata_msg_probe(ap)) 1877 ata_dev_printk(dev, KERN_DEBUG, 1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1879 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1880 __FUNCTION__, 1881 id[49], id[82], id[83], id[84], 1882 id[85], id[86], id[87], id[88]); 1883 1884 /* initialize to-be-configured parameters */ 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1886 dev->max_sectors = 0; 1887 dev->cdb_len = 0; 1888 dev->n_sectors = 0; 1889 dev->cylinders = 0; 1890 dev->heads = 0; 1891 dev->sectors = 0; 1892 1893 /* 1894 * common ATA, ATAPI feature tests 1895 */ 1896 1897 /* find max transfer mode; for printk only */ 1898 xfer_mask = ata_id_xfermask(id); 1899 1900 if (ata_msg_probe(ap)) 1901 ata_dump_id(id); 1902 1903 /* ATA-specific feature tests */ 1904 if (dev->class == ATA_DEV_ATA) { 1905 if (ata_id_is_cfa(id)) { 1906 if (id[162] & 1) /* CPRM may make this media unusable */ 1907 ata_dev_printk(dev, KERN_WARNING, 1908 "supports DRM functions and may " 1909 "not be fully accessable.\n"); 1910 snprintf(revbuf, 7, "CFA"); 1911 } 1912 else 1913 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1914 1915 dev->n_sectors = ata_id_n_sectors(id); 1916 1917 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1918 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1919 sizeof(fwrevbuf)); 1920 1921 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1922 sizeof(modelbuf)); 1923 1924 if (dev->id[59] & 0x100) 1925 dev->multi_count = dev->id[59] & 0xff; 1926 1927 if (ata_id_has_lba(id)) { 1928 const char *lba_desc; 1929 char ncq_desc[20]; 1930 1931 lba_desc = "LBA"; 1932 dev->flags |= ATA_DFLAG_LBA; 1933 if (ata_id_has_lba48(id)) { 1934 dev->flags |= ATA_DFLAG_LBA48; 1935 lba_desc = "LBA48"; 1936 1937 if (dev->n_sectors >= (1UL << 28) && 1938 ata_id_has_flush_ext(id)) 1939 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1940 } 1941 1942 if (ata_id_hpa_enabled(dev->id)) 1943 dev->n_sectors = ata_hpa_resize(dev); 1944 1945 /* config NCQ */ 1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1947 1948 /* print device info to dmesg */ 1949 if (ata_msg_drv(ap) && print_info) { 1950 ata_dev_printk(dev, KERN_INFO, 1951 "%s: %s, %s, max %s\n", 1952 revbuf, modelbuf, fwrevbuf, 1953 ata_mode_string(xfer_mask)); 1954 ata_dev_printk(dev, KERN_INFO, 1955 "%Lu sectors, multi %u: %s %s\n", 1956 (unsigned long long)dev->n_sectors, 1957 dev->multi_count, lba_desc, ncq_desc); 1958 } 1959 } else { 1960 /* CHS */ 1961 1962 /* Default translation */ 1963 dev->cylinders = id[1]; 1964 dev->heads = id[3]; 1965 dev->sectors = id[6]; 1966 1967 if (ata_id_current_chs_valid(id)) { 1968 /* Current CHS translation is valid. */ 1969 dev->cylinders = id[54]; 1970 dev->heads = id[55]; 1971 dev->sectors = id[56]; 1972 } 1973 1974 /* print device info to dmesg */ 1975 if (ata_msg_drv(ap) && print_info) { 1976 ata_dev_printk(dev, KERN_INFO, 1977 "%s: %s, %s, max %s\n", 1978 revbuf, modelbuf, fwrevbuf, 1979 ata_mode_string(xfer_mask)); 1980 ata_dev_printk(dev, KERN_INFO, 1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1982 (unsigned long long)dev->n_sectors, 1983 dev->multi_count, dev->cylinders, 1984 dev->heads, dev->sectors); 1985 } 1986 } 1987 1988 dev->cdb_len = 16; 1989 } 1990 1991 /* ATAPI-specific feature tests */ 1992 else if (dev->class == ATA_DEV_ATAPI) { 1993 char *cdb_intr_string = ""; 1994 1995 rc = atapi_cdb_len(id); 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1997 if (ata_msg_warn(ap)) 1998 ata_dev_printk(dev, KERN_WARNING, 1999 "unsupported CDB len\n"); 2000 rc = -EINVAL; 2001 goto err_out_nosup; 2002 } 2003 dev->cdb_len = (unsigned int) rc; 2004 2005 if (ata_id_cdb_intr(dev->id)) { 2006 dev->flags |= ATA_DFLAG_CDB_INTR; 2007 cdb_intr_string = ", CDB intr"; 2008 } 2009 2010 /* print device info to dmesg */ 2011 if (ata_msg_drv(ap) && print_info) 2012 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", 2013 ata_mode_string(xfer_mask), 2014 cdb_intr_string); 2015 } 2016 2017 /* determine max_sectors */ 2018 dev->max_sectors = ATA_MAX_SECTORS; 2019 if (dev->flags & ATA_DFLAG_LBA48) 2020 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2021 2022 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2023 /* Let the user know. We don't want to disallow opens for 2024 rescue purposes, or in case the vendor is just a blithering 2025 idiot */ 2026 if (print_info) { 2027 ata_dev_printk(dev, KERN_WARNING, 2028 "Drive reports diagnostics failure. This may indicate a drive\n"); 2029 ata_dev_printk(dev, KERN_WARNING, 2030 "fault or invalid emulation. Contact drive vendor for information.\n"); 2031 } 2032 } 2033 2034 /* limit bridge transfers to udma5, 200 sectors */ 2035 if (ata_dev_knobble(dev)) { 2036 if (ata_msg_drv(ap) && print_info) 2037 ata_dev_printk(dev, KERN_INFO, 2038 "applying bridge limits\n"); 2039 dev->udma_mask &= ATA_UDMA5; 2040 dev->max_sectors = ATA_MAX_SECTORS; 2041 } 2042 2043 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128) 2044 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2045 dev->max_sectors); 2046 2047 /* limit ATAPI DMA to R/W commands only */ 2048 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY) 2049 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY; 2050 2051 if (ap->ops->dev_config) 2052 ap->ops->dev_config(dev); 2053 2054 if (ata_msg_probe(ap)) 2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2056 __FUNCTION__, ata_chk_status(ap)); 2057 return 0; 2058 2059 err_out_nosup: 2060 if (ata_msg_probe(ap)) 2061 ata_dev_printk(dev, KERN_DEBUG, 2062 "%s: EXIT, err\n", __FUNCTION__); 2063 return rc; 2064 } 2065 2066 /** 2067 * ata_cable_40wire - return 40 wire cable type 2068 * @ap: port 2069 * 2070 * Helper method for drivers which want to hardwire 40 wire cable 2071 * detection. 2072 */ 2073 2074 int ata_cable_40wire(struct ata_port *ap) 2075 { 2076 return ATA_CBL_PATA40; 2077 } 2078 2079 /** 2080 * ata_cable_80wire - return 80 wire cable type 2081 * @ap: port 2082 * 2083 * Helper method for drivers which want to hardwire 80 wire cable 2084 * detection. 2085 */ 2086 2087 int ata_cable_80wire(struct ata_port *ap) 2088 { 2089 return ATA_CBL_PATA80; 2090 } 2091 2092 /** 2093 * ata_cable_unknown - return unknown PATA cable. 2094 * @ap: port 2095 * 2096 * Helper method for drivers which have no PATA cable detection. 2097 */ 2098 2099 int ata_cable_unknown(struct ata_port *ap) 2100 { 2101 return ATA_CBL_PATA_UNK; 2102 } 2103 2104 /** 2105 * ata_cable_sata - return SATA cable type 2106 * @ap: port 2107 * 2108 * Helper method for drivers which have SATA cables 2109 */ 2110 2111 int ata_cable_sata(struct ata_port *ap) 2112 { 2113 return ATA_CBL_SATA; 2114 } 2115 2116 /** 2117 * ata_bus_probe - Reset and probe ATA bus 2118 * @ap: Bus to probe 2119 * 2120 * Master ATA bus probing function. Initiates a hardware-dependent 2121 * bus reset, then attempts to identify any devices found on 2122 * the bus. 2123 * 2124 * LOCKING: 2125 * PCI/etc. bus probe sem. 2126 * 2127 * RETURNS: 2128 * Zero on success, negative errno otherwise. 2129 */ 2130 2131 int ata_bus_probe(struct ata_port *ap) 2132 { 2133 unsigned int classes[ATA_MAX_DEVICES]; 2134 int tries[ATA_MAX_DEVICES]; 2135 int i, rc; 2136 struct ata_device *dev; 2137 2138 ata_port_probe(ap); 2139 2140 for (i = 0; i < ATA_MAX_DEVICES; i++) 2141 tries[i] = ATA_PROBE_MAX_TRIES; 2142 2143 retry: 2144 /* reset and determine device classes */ 2145 ap->ops->phy_reset(ap); 2146 2147 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2148 dev = &ap->device[i]; 2149 2150 if (!(ap->flags & ATA_FLAG_DISABLED) && 2151 dev->class != ATA_DEV_UNKNOWN) 2152 classes[dev->devno] = dev->class; 2153 else 2154 classes[dev->devno] = ATA_DEV_NONE; 2155 2156 dev->class = ATA_DEV_UNKNOWN; 2157 } 2158 2159 ata_port_probe(ap); 2160 2161 /* after the reset the device state is PIO 0 and the controller 2162 state is undefined. Record the mode */ 2163 2164 for (i = 0; i < ATA_MAX_DEVICES; i++) 2165 ap->device[i].pio_mode = XFER_PIO_0; 2166 2167 /* read IDENTIFY page and configure devices. We have to do the identify 2168 specific sequence bass-ackwards so that PDIAG- is released by 2169 the slave device */ 2170 2171 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 2172 dev = &ap->device[i]; 2173 2174 if (tries[i]) 2175 dev->class = classes[i]; 2176 2177 if (!ata_dev_enabled(dev)) 2178 continue; 2179 2180 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2181 dev->id); 2182 if (rc) 2183 goto fail; 2184 } 2185 2186 /* Now ask for the cable type as PDIAG- should have been released */ 2187 if (ap->ops->cable_detect) 2188 ap->cbl = ap->ops->cable_detect(ap); 2189 2190 /* After the identify sequence we can now set up the devices. We do 2191 this in the normal order so that the user doesn't get confused */ 2192 2193 for(i = 0; i < ATA_MAX_DEVICES; i++) { 2194 dev = &ap->device[i]; 2195 if (!ata_dev_enabled(dev)) 2196 continue; 2197 2198 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 2199 rc = ata_dev_configure(dev); 2200 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2201 if (rc) 2202 goto fail; 2203 } 2204 2205 /* configure transfer mode */ 2206 rc = ata_set_mode(ap, &dev); 2207 if (rc) 2208 goto fail; 2209 2210 for (i = 0; i < ATA_MAX_DEVICES; i++) 2211 if (ata_dev_enabled(&ap->device[i])) 2212 return 0; 2213 2214 /* no device present, disable port */ 2215 ata_port_disable(ap); 2216 ap->ops->port_disable(ap); 2217 return -ENODEV; 2218 2219 fail: 2220 tries[dev->devno]--; 2221 2222 switch (rc) { 2223 case -EINVAL: 2224 /* eeek, something went very wrong, give up */ 2225 tries[dev->devno] = 0; 2226 break; 2227 2228 case -ENODEV: 2229 /* give it just one more chance */ 2230 tries[dev->devno] = min(tries[dev->devno], 1); 2231 case -EIO: 2232 if (tries[dev->devno] == 1) { 2233 /* This is the last chance, better to slow 2234 * down than lose it. 2235 */ 2236 sata_down_spd_limit(ap); 2237 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2238 } 2239 } 2240 2241 if (!tries[dev->devno]) 2242 ata_dev_disable(dev); 2243 2244 goto retry; 2245 } 2246 2247 /** 2248 * ata_port_probe - Mark port as enabled 2249 * @ap: Port for which we indicate enablement 2250 * 2251 * Modify @ap data structure such that the system 2252 * thinks that the entire port is enabled. 2253 * 2254 * LOCKING: host lock, or some other form of 2255 * serialization. 2256 */ 2257 2258 void ata_port_probe(struct ata_port *ap) 2259 { 2260 ap->flags &= ~ATA_FLAG_DISABLED; 2261 } 2262 2263 /** 2264 * sata_print_link_status - Print SATA link status 2265 * @ap: SATA port to printk link status about 2266 * 2267 * This function prints link speed and status of a SATA link. 2268 * 2269 * LOCKING: 2270 * None. 2271 */ 2272 void sata_print_link_status(struct ata_port *ap) 2273 { 2274 u32 sstatus, scontrol, tmp; 2275 2276 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 2277 return; 2278 sata_scr_read(ap, SCR_CONTROL, &scontrol); 2279 2280 if (ata_port_online(ap)) { 2281 tmp = (sstatus >> 4) & 0xf; 2282 ata_port_printk(ap, KERN_INFO, 2283 "SATA link up %s (SStatus %X SControl %X)\n", 2284 sata_spd_string(tmp), sstatus, scontrol); 2285 } else { 2286 ata_port_printk(ap, KERN_INFO, 2287 "SATA link down (SStatus %X SControl %X)\n", 2288 sstatus, scontrol); 2289 } 2290 } 2291 2292 /** 2293 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2294 * @ap: SATA port associated with target SATA PHY. 2295 * 2296 * This function issues commands to standard SATA Sxxx 2297 * PHY registers, to wake up the phy (and device), and 2298 * clear any reset condition. 2299 * 2300 * LOCKING: 2301 * PCI/etc. bus probe sem. 2302 * 2303 */ 2304 void __sata_phy_reset(struct ata_port *ap) 2305 { 2306 u32 sstatus; 2307 unsigned long timeout = jiffies + (HZ * 5); 2308 2309 if (ap->flags & ATA_FLAG_SATA_RESET) { 2310 /* issue phy wake/reset */ 2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2312 /* Couldn't find anything in SATA I/II specs, but 2313 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2314 mdelay(1); 2315 } 2316 /* phy wake/clear reset */ 2317 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2318 2319 /* wait for phy to become ready, if necessary */ 2320 do { 2321 msleep(200); 2322 sata_scr_read(ap, SCR_STATUS, &sstatus); 2323 if ((sstatus & 0xf) != 1) 2324 break; 2325 } while (time_before(jiffies, timeout)); 2326 2327 /* print link status */ 2328 sata_print_link_status(ap); 2329 2330 /* TODO: phy layer with polling, timeouts, etc. */ 2331 if (!ata_port_offline(ap)) 2332 ata_port_probe(ap); 2333 else 2334 ata_port_disable(ap); 2335 2336 if (ap->flags & ATA_FLAG_DISABLED) 2337 return; 2338 2339 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2340 ata_port_disable(ap); 2341 return; 2342 } 2343 2344 ap->cbl = ATA_CBL_SATA; 2345 } 2346 2347 /** 2348 * sata_phy_reset - Reset SATA bus. 2349 * @ap: SATA port associated with target SATA PHY. 2350 * 2351 * This function resets the SATA bus, and then probes 2352 * the bus for devices. 2353 * 2354 * LOCKING: 2355 * PCI/etc. bus probe sem. 2356 * 2357 */ 2358 void sata_phy_reset(struct ata_port *ap) 2359 { 2360 __sata_phy_reset(ap); 2361 if (ap->flags & ATA_FLAG_DISABLED) 2362 return; 2363 ata_bus_reset(ap); 2364 } 2365 2366 /** 2367 * ata_dev_pair - return other device on cable 2368 * @adev: device 2369 * 2370 * Obtain the other device on the same cable, or if none is 2371 * present NULL is returned 2372 */ 2373 2374 struct ata_device *ata_dev_pair(struct ata_device *adev) 2375 { 2376 struct ata_port *ap = adev->ap; 2377 struct ata_device *pair = &ap->device[1 - adev->devno]; 2378 if (!ata_dev_enabled(pair)) 2379 return NULL; 2380 return pair; 2381 } 2382 2383 /** 2384 * ata_port_disable - Disable port. 2385 * @ap: Port to be disabled. 2386 * 2387 * Modify @ap data structure such that the system 2388 * thinks that the entire port is disabled, and should 2389 * never attempt to probe or communicate with devices 2390 * on this port. 2391 * 2392 * LOCKING: host lock, or some other form of 2393 * serialization. 2394 */ 2395 2396 void ata_port_disable(struct ata_port *ap) 2397 { 2398 ap->device[0].class = ATA_DEV_NONE; 2399 ap->device[1].class = ATA_DEV_NONE; 2400 ap->flags |= ATA_FLAG_DISABLED; 2401 } 2402 2403 /** 2404 * sata_down_spd_limit - adjust SATA spd limit downward 2405 * @ap: Port to adjust SATA spd limit for 2406 * 2407 * Adjust SATA spd limit of @ap downward. Note that this 2408 * function only adjusts the limit. The change must be applied 2409 * using sata_set_spd(). 2410 * 2411 * LOCKING: 2412 * Inherited from caller. 2413 * 2414 * RETURNS: 2415 * 0 on success, negative errno on failure 2416 */ 2417 int sata_down_spd_limit(struct ata_port *ap) 2418 { 2419 u32 sstatus, spd, mask; 2420 int rc, highbit; 2421 2422 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2423 if (rc) 2424 return rc; 2425 2426 mask = ap->sata_spd_limit; 2427 if (mask <= 1) 2428 return -EINVAL; 2429 highbit = fls(mask) - 1; 2430 mask &= ~(1 << highbit); 2431 2432 spd = (sstatus >> 4) & 0xf; 2433 if (spd <= 1) 2434 return -EINVAL; 2435 spd--; 2436 mask &= (1 << spd) - 1; 2437 if (!mask) 2438 return -EINVAL; 2439 2440 ap->sata_spd_limit = mask; 2441 2442 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2443 sata_spd_string(fls(mask))); 2444 2445 return 0; 2446 } 2447 2448 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2449 { 2450 u32 spd, limit; 2451 2452 if (ap->sata_spd_limit == UINT_MAX) 2453 limit = 0; 2454 else 2455 limit = fls(ap->sata_spd_limit); 2456 2457 spd = (*scontrol >> 4) & 0xf; 2458 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2459 2460 return spd != limit; 2461 } 2462 2463 /** 2464 * sata_set_spd_needed - is SATA spd configuration needed 2465 * @ap: Port in question 2466 * 2467 * Test whether the spd limit in SControl matches 2468 * @ap->sata_spd_limit. This function is used to determine 2469 * whether hardreset is necessary to apply SATA spd 2470 * configuration. 2471 * 2472 * LOCKING: 2473 * Inherited from caller. 2474 * 2475 * RETURNS: 2476 * 1 if SATA spd configuration is needed, 0 otherwise. 2477 */ 2478 int sata_set_spd_needed(struct ata_port *ap) 2479 { 2480 u32 scontrol; 2481 2482 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2483 return 0; 2484 2485 return __sata_set_spd_needed(ap, &scontrol); 2486 } 2487 2488 /** 2489 * sata_set_spd - set SATA spd according to spd limit 2490 * @ap: Port to set SATA spd for 2491 * 2492 * Set SATA spd of @ap according to sata_spd_limit. 2493 * 2494 * LOCKING: 2495 * Inherited from caller. 2496 * 2497 * RETURNS: 2498 * 0 if spd doesn't need to be changed, 1 if spd has been 2499 * changed. Negative errno if SCR registers are inaccessible. 2500 */ 2501 int sata_set_spd(struct ata_port *ap) 2502 { 2503 u32 scontrol; 2504 int rc; 2505 2506 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2507 return rc; 2508 2509 if (!__sata_set_spd_needed(ap, &scontrol)) 2510 return 0; 2511 2512 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2513 return rc; 2514 2515 return 1; 2516 } 2517 2518 /* 2519 * This mode timing computation functionality is ported over from 2520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2521 */ 2522 /* 2523 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2525 * for UDMA6, which is currently supported only by Maxtor drives. 2526 * 2527 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2528 */ 2529 2530 static const struct ata_timing ata_timing[] = { 2531 2532 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2533 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2534 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2535 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2536 2537 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2538 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2539 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2540 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2541 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2542 2543 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2544 2545 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2546 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2547 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2548 2549 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2550 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2551 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2552 2553 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2554 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2555 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2556 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2557 2558 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2559 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2560 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2561 2562 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2563 2564 { 0xFF } 2565 }; 2566 2567 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2568 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2569 2570 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2571 { 2572 q->setup = EZ(t->setup * 1000, T); 2573 q->act8b = EZ(t->act8b * 1000, T); 2574 q->rec8b = EZ(t->rec8b * 1000, T); 2575 q->cyc8b = EZ(t->cyc8b * 1000, T); 2576 q->active = EZ(t->active * 1000, T); 2577 q->recover = EZ(t->recover * 1000, T); 2578 q->cycle = EZ(t->cycle * 1000, T); 2579 q->udma = EZ(t->udma * 1000, UT); 2580 } 2581 2582 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2583 struct ata_timing *m, unsigned int what) 2584 { 2585 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2586 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2587 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2588 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2589 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2590 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2591 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2592 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2593 } 2594 2595 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2596 { 2597 const struct ata_timing *t; 2598 2599 for (t = ata_timing; t->mode != speed; t++) 2600 if (t->mode == 0xFF) 2601 return NULL; 2602 return t; 2603 } 2604 2605 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2606 struct ata_timing *t, int T, int UT) 2607 { 2608 const struct ata_timing *s; 2609 struct ata_timing p; 2610 2611 /* 2612 * Find the mode. 2613 */ 2614 2615 if (!(s = ata_timing_find_mode(speed))) 2616 return -EINVAL; 2617 2618 memcpy(t, s, sizeof(*s)); 2619 2620 /* 2621 * If the drive is an EIDE drive, it can tell us it needs extended 2622 * PIO/MW_DMA cycle timing. 2623 */ 2624 2625 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2626 memset(&p, 0, sizeof(p)); 2627 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2628 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2629 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2630 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2631 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2632 } 2633 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2634 } 2635 2636 /* 2637 * Convert the timing to bus clock counts. 2638 */ 2639 2640 ata_timing_quantize(t, t, T, UT); 2641 2642 /* 2643 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2644 * S.M.A.R.T * and some other commands. We have to ensure that the 2645 * DMA cycle timing is slower/equal than the fastest PIO timing. 2646 */ 2647 2648 if (speed > XFER_PIO_6) { 2649 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2650 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2651 } 2652 2653 /* 2654 * Lengthen active & recovery time so that cycle time is correct. 2655 */ 2656 2657 if (t->act8b + t->rec8b < t->cyc8b) { 2658 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2659 t->rec8b = t->cyc8b - t->act8b; 2660 } 2661 2662 if (t->active + t->recover < t->cycle) { 2663 t->active += (t->cycle - (t->active + t->recover)) / 2; 2664 t->recover = t->cycle - t->active; 2665 } 2666 2667 /* In a few cases quantisation may produce enough errors to 2668 leave t->cycle too low for the sum of active and recovery 2669 if so we must correct this */ 2670 if (t->active + t->recover > t->cycle) 2671 t->cycle = t->active + t->recover; 2672 2673 return 0; 2674 } 2675 2676 /** 2677 * ata_down_xfermask_limit - adjust dev xfer masks downward 2678 * @dev: Device to adjust xfer masks 2679 * @sel: ATA_DNXFER_* selector 2680 * 2681 * Adjust xfer masks of @dev downward. Note that this function 2682 * does not apply the change. Invoking ata_set_mode() afterwards 2683 * will apply the limit. 2684 * 2685 * LOCKING: 2686 * Inherited from caller. 2687 * 2688 * RETURNS: 2689 * 0 on success, negative errno on failure 2690 */ 2691 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2692 { 2693 char buf[32]; 2694 unsigned int orig_mask, xfer_mask; 2695 unsigned int pio_mask, mwdma_mask, udma_mask; 2696 int quiet, highbit; 2697 2698 quiet = !!(sel & ATA_DNXFER_QUIET); 2699 sel &= ~ATA_DNXFER_QUIET; 2700 2701 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2702 dev->mwdma_mask, 2703 dev->udma_mask); 2704 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2705 2706 switch (sel) { 2707 case ATA_DNXFER_PIO: 2708 highbit = fls(pio_mask) - 1; 2709 pio_mask &= ~(1 << highbit); 2710 break; 2711 2712 case ATA_DNXFER_DMA: 2713 if (udma_mask) { 2714 highbit = fls(udma_mask) - 1; 2715 udma_mask &= ~(1 << highbit); 2716 if (!udma_mask) 2717 return -ENOENT; 2718 } else if (mwdma_mask) { 2719 highbit = fls(mwdma_mask) - 1; 2720 mwdma_mask &= ~(1 << highbit); 2721 if (!mwdma_mask) 2722 return -ENOENT; 2723 } 2724 break; 2725 2726 case ATA_DNXFER_40C: 2727 udma_mask &= ATA_UDMA_MASK_40C; 2728 break; 2729 2730 case ATA_DNXFER_FORCE_PIO0: 2731 pio_mask &= 1; 2732 case ATA_DNXFER_FORCE_PIO: 2733 mwdma_mask = 0; 2734 udma_mask = 0; 2735 break; 2736 2737 default: 2738 BUG(); 2739 } 2740 2741 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2742 2743 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2744 return -ENOENT; 2745 2746 if (!quiet) { 2747 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2748 snprintf(buf, sizeof(buf), "%s:%s", 2749 ata_mode_string(xfer_mask), 2750 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2751 else 2752 snprintf(buf, sizeof(buf), "%s", 2753 ata_mode_string(xfer_mask)); 2754 2755 ata_dev_printk(dev, KERN_WARNING, 2756 "limiting speed to %s\n", buf); 2757 } 2758 2759 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2760 &dev->udma_mask); 2761 2762 return 0; 2763 } 2764 2765 static int ata_dev_set_mode(struct ata_device *dev) 2766 { 2767 struct ata_eh_context *ehc = &dev->ap->eh_context; 2768 unsigned int err_mask; 2769 int rc; 2770 2771 dev->flags &= ~ATA_DFLAG_PIO; 2772 if (dev->xfer_shift == ATA_SHIFT_PIO) 2773 dev->flags |= ATA_DFLAG_PIO; 2774 2775 err_mask = ata_dev_set_xfermode(dev); 2776 /* Old CFA may refuse this command, which is just fine */ 2777 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2778 err_mask &= ~AC_ERR_DEV; 2779 2780 if (err_mask) { 2781 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2782 "(err_mask=0x%x)\n", err_mask); 2783 return -EIO; 2784 } 2785 2786 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2787 rc = ata_dev_revalidate(dev, 0); 2788 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2789 if (rc) 2790 return rc; 2791 2792 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2793 dev->xfer_shift, (int)dev->xfer_mode); 2794 2795 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2796 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2797 return 0; 2798 } 2799 2800 /** 2801 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2802 * @ap: port on which timings will be programmed 2803 * @r_failed_dev: out paramter for failed device 2804 * 2805 * Standard implementation of the function used to tune and set 2806 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2807 * ata_dev_set_mode() fails, pointer to the failing device is 2808 * returned in @r_failed_dev. 2809 * 2810 * LOCKING: 2811 * PCI/etc. bus probe sem. 2812 * 2813 * RETURNS: 2814 * 0 on success, negative errno otherwise 2815 */ 2816 2817 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2818 { 2819 struct ata_device *dev; 2820 int i, rc = 0, used_dma = 0, found = 0; 2821 2822 2823 /* step 1: calculate xfer_mask */ 2824 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2825 unsigned int pio_mask, dma_mask; 2826 2827 dev = &ap->device[i]; 2828 2829 if (!ata_dev_enabled(dev)) 2830 continue; 2831 2832 ata_dev_xfermask(dev); 2833 2834 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2835 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2836 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2837 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2838 2839 found = 1; 2840 if (dev->dma_mode) 2841 used_dma = 1; 2842 } 2843 if (!found) 2844 goto out; 2845 2846 /* step 2: always set host PIO timings */ 2847 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2848 dev = &ap->device[i]; 2849 if (!ata_dev_enabled(dev)) 2850 continue; 2851 2852 if (!dev->pio_mode) { 2853 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2854 rc = -EINVAL; 2855 goto out; 2856 } 2857 2858 dev->xfer_mode = dev->pio_mode; 2859 dev->xfer_shift = ATA_SHIFT_PIO; 2860 if (ap->ops->set_piomode) 2861 ap->ops->set_piomode(ap, dev); 2862 } 2863 2864 /* step 3: set host DMA timings */ 2865 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2866 dev = &ap->device[i]; 2867 2868 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2869 continue; 2870 2871 dev->xfer_mode = dev->dma_mode; 2872 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2873 if (ap->ops->set_dmamode) 2874 ap->ops->set_dmamode(ap, dev); 2875 } 2876 2877 /* step 4: update devices' xfer mode */ 2878 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2879 dev = &ap->device[i]; 2880 2881 /* don't update suspended devices' xfer mode */ 2882 if (!ata_dev_enabled(dev)) 2883 continue; 2884 2885 rc = ata_dev_set_mode(dev); 2886 if (rc) 2887 goto out; 2888 } 2889 2890 /* Record simplex status. If we selected DMA then the other 2891 * host channels are not permitted to do so. 2892 */ 2893 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2894 ap->host->simplex_claimed = ap; 2895 2896 out: 2897 if (rc) 2898 *r_failed_dev = dev; 2899 return rc; 2900 } 2901 2902 /** 2903 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2904 * @ap: port on which timings will be programmed 2905 * @r_failed_dev: out paramter for failed device 2906 * 2907 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2908 * ata_set_mode() fails, pointer to the failing device is 2909 * returned in @r_failed_dev. 2910 * 2911 * LOCKING: 2912 * PCI/etc. bus probe sem. 2913 * 2914 * RETURNS: 2915 * 0 on success, negative errno otherwise 2916 */ 2917 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2918 { 2919 /* has private set_mode? */ 2920 if (ap->ops->set_mode) 2921 return ap->ops->set_mode(ap, r_failed_dev); 2922 return ata_do_set_mode(ap, r_failed_dev); 2923 } 2924 2925 /** 2926 * ata_tf_to_host - issue ATA taskfile to host controller 2927 * @ap: port to which command is being issued 2928 * @tf: ATA taskfile register set 2929 * 2930 * Issues ATA taskfile register set to ATA host controller, 2931 * with proper synchronization with interrupt handler and 2932 * other threads. 2933 * 2934 * LOCKING: 2935 * spin_lock_irqsave(host lock) 2936 */ 2937 2938 static inline void ata_tf_to_host(struct ata_port *ap, 2939 const struct ata_taskfile *tf) 2940 { 2941 ap->ops->tf_load(ap, tf); 2942 ap->ops->exec_command(ap, tf); 2943 } 2944 2945 /** 2946 * ata_busy_sleep - sleep until BSY clears, or timeout 2947 * @ap: port containing status register to be polled 2948 * @tmout_pat: impatience timeout 2949 * @tmout: overall timeout 2950 * 2951 * Sleep until ATA Status register bit BSY clears, 2952 * or a timeout occurs. 2953 * 2954 * LOCKING: 2955 * Kernel thread context (may sleep). 2956 * 2957 * RETURNS: 2958 * 0 on success, -errno otherwise. 2959 */ 2960 int ata_busy_sleep(struct ata_port *ap, 2961 unsigned long tmout_pat, unsigned long tmout) 2962 { 2963 unsigned long timer_start, timeout; 2964 u8 status; 2965 2966 status = ata_busy_wait(ap, ATA_BUSY, 300); 2967 timer_start = jiffies; 2968 timeout = timer_start + tmout_pat; 2969 while (status != 0xff && (status & ATA_BUSY) && 2970 time_before(jiffies, timeout)) { 2971 msleep(50); 2972 status = ata_busy_wait(ap, ATA_BUSY, 3); 2973 } 2974 2975 if (status != 0xff && (status & ATA_BUSY)) 2976 ata_port_printk(ap, KERN_WARNING, 2977 "port is slow to respond, please be patient " 2978 "(Status 0x%x)\n", status); 2979 2980 timeout = timer_start + tmout; 2981 while (status != 0xff && (status & ATA_BUSY) && 2982 time_before(jiffies, timeout)) { 2983 msleep(50); 2984 status = ata_chk_status(ap); 2985 } 2986 2987 if (status == 0xff) 2988 return -ENODEV; 2989 2990 if (status & ATA_BUSY) { 2991 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2992 "(%lu secs, Status 0x%x)\n", 2993 tmout / HZ, status); 2994 return -EBUSY; 2995 } 2996 2997 return 0; 2998 } 2999 3000 /** 3001 * ata_wait_ready - sleep until BSY clears, or timeout 3002 * @ap: port containing status register to be polled 3003 * @deadline: deadline jiffies for the operation 3004 * 3005 * Sleep until ATA Status register bit BSY clears, or timeout 3006 * occurs. 3007 * 3008 * LOCKING: 3009 * Kernel thread context (may sleep). 3010 * 3011 * RETURNS: 3012 * 0 on success, -errno otherwise. 3013 */ 3014 int ata_wait_ready(struct ata_port *ap, unsigned long deadline) 3015 { 3016 unsigned long start = jiffies; 3017 int warned = 0; 3018 3019 while (1) { 3020 u8 status = ata_chk_status(ap); 3021 unsigned long now = jiffies; 3022 3023 if (!(status & ATA_BUSY)) 3024 return 0; 3025 if (!ata_port_online(ap) && status == 0xff) 3026 return -ENODEV; 3027 if (time_after(now, deadline)) 3028 return -EBUSY; 3029 3030 if (!warned && time_after(now, start + 5 * HZ) && 3031 (deadline - now > 3 * HZ)) { 3032 ata_port_printk(ap, KERN_WARNING, 3033 "port is slow to respond, please be patient " 3034 "(Status 0x%x)\n", status); 3035 warned = 1; 3036 } 3037 3038 msleep(50); 3039 } 3040 } 3041 3042 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, 3043 unsigned long deadline) 3044 { 3045 struct ata_ioports *ioaddr = &ap->ioaddr; 3046 unsigned int dev0 = devmask & (1 << 0); 3047 unsigned int dev1 = devmask & (1 << 1); 3048 int rc, ret = 0; 3049 3050 /* if device 0 was found in ata_devchk, wait for its 3051 * BSY bit to clear 3052 */ 3053 if (dev0) { 3054 rc = ata_wait_ready(ap, deadline); 3055 if (rc) { 3056 if (rc != -ENODEV) 3057 return rc; 3058 ret = rc; 3059 } 3060 } 3061 3062 /* if device 1 was found in ata_devchk, wait for 3063 * register access, then wait for BSY to clear 3064 */ 3065 while (dev1) { 3066 u8 nsect, lbal; 3067 3068 ap->ops->dev_select(ap, 1); 3069 nsect = ioread8(ioaddr->nsect_addr); 3070 lbal = ioread8(ioaddr->lbal_addr); 3071 if ((nsect == 1) && (lbal == 1)) 3072 break; 3073 if (time_after(jiffies, deadline)) 3074 return -EBUSY; 3075 msleep(50); /* give drive a breather */ 3076 } 3077 if (dev1) { 3078 rc = ata_wait_ready(ap, deadline); 3079 if (rc) { 3080 if (rc != -ENODEV) 3081 return rc; 3082 ret = rc; 3083 } 3084 } 3085 3086 /* is all this really necessary? */ 3087 ap->ops->dev_select(ap, 0); 3088 if (dev1) 3089 ap->ops->dev_select(ap, 1); 3090 if (dev0) 3091 ap->ops->dev_select(ap, 0); 3092 3093 return ret; 3094 } 3095 3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 3097 unsigned long deadline) 3098 { 3099 struct ata_ioports *ioaddr = &ap->ioaddr; 3100 3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3102 3103 /* software reset. causes dev0 to be selected */ 3104 iowrite8(ap->ctl, ioaddr->ctl_addr); 3105 udelay(20); /* FIXME: flush */ 3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3107 udelay(20); /* FIXME: flush */ 3108 iowrite8(ap->ctl, ioaddr->ctl_addr); 3109 3110 /* spec mandates ">= 2ms" before checking status. 3111 * We wait 150ms, because that was the magic delay used for 3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3113 * between when the ATA command register is written, and then 3114 * status is checked. Because waiting for "a while" before 3115 * checking status is fine, post SRST, we perform this magic 3116 * delay here as well. 3117 * 3118 * Old drivers/ide uses the 2mS rule and then waits for ready 3119 */ 3120 msleep(150); 3121 3122 /* Before we perform post reset processing we want to see if 3123 * the bus shows 0xFF because the odd clown forgets the D7 3124 * pulldown resistor. 3125 */ 3126 if (ata_check_status(ap) == 0xFF) 3127 return -ENODEV; 3128 3129 return ata_bus_post_reset(ap, devmask, deadline); 3130 } 3131 3132 /** 3133 * ata_bus_reset - reset host port and associated ATA channel 3134 * @ap: port to reset 3135 * 3136 * This is typically the first time we actually start issuing 3137 * commands to the ATA channel. We wait for BSY to clear, then 3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3139 * result. Determine what devices, if any, are on the channel 3140 * by looking at the device 0/1 error register. Look at the signature 3141 * stored in each device's taskfile registers, to determine if 3142 * the device is ATA or ATAPI. 3143 * 3144 * LOCKING: 3145 * PCI/etc. bus probe sem. 3146 * Obtains host lock. 3147 * 3148 * SIDE EFFECTS: 3149 * Sets ATA_FLAG_DISABLED if bus reset fails. 3150 */ 3151 3152 void ata_bus_reset(struct ata_port *ap) 3153 { 3154 struct ata_ioports *ioaddr = &ap->ioaddr; 3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3156 u8 err; 3157 unsigned int dev0, dev1 = 0, devmask = 0; 3158 int rc; 3159 3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3161 3162 /* determine if device 0/1 are present */ 3163 if (ap->flags & ATA_FLAG_SATA_RESET) 3164 dev0 = 1; 3165 else { 3166 dev0 = ata_devchk(ap, 0); 3167 if (slave_possible) 3168 dev1 = ata_devchk(ap, 1); 3169 } 3170 3171 if (dev0) 3172 devmask |= (1 << 0); 3173 if (dev1) 3174 devmask |= (1 << 1); 3175 3176 /* select device 0 again */ 3177 ap->ops->dev_select(ap, 0); 3178 3179 /* issue bus reset */ 3180 if (ap->flags & ATA_FLAG_SRST) { 3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 3182 if (rc && rc != -ENODEV) 3183 goto err_out; 3184 } 3185 3186 /* 3187 * determine by signature whether we have ATA or ATAPI devices 3188 */ 3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 3190 if ((slave_possible) && (err != 0x81)) 3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 3192 3193 /* re-enable interrupts */ 3194 ap->ops->irq_on(ap); 3195 3196 /* is double-select really necessary? */ 3197 if (ap->device[1].class != ATA_DEV_NONE) 3198 ap->ops->dev_select(ap, 1); 3199 if (ap->device[0].class != ATA_DEV_NONE) 3200 ap->ops->dev_select(ap, 0); 3201 3202 /* if no devices were detected, disable this port */ 3203 if ((ap->device[0].class == ATA_DEV_NONE) && 3204 (ap->device[1].class == ATA_DEV_NONE)) 3205 goto err_out; 3206 3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3208 /* set up device control for ATA_FLAG_SATA_RESET */ 3209 iowrite8(ap->ctl, ioaddr->ctl_addr); 3210 } 3211 3212 DPRINTK("EXIT\n"); 3213 return; 3214 3215 err_out: 3216 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3217 ap->ops->port_disable(ap); 3218 3219 DPRINTK("EXIT\n"); 3220 } 3221 3222 /** 3223 * sata_phy_debounce - debounce SATA phy status 3224 * @ap: ATA port to debounce SATA phy status for 3225 * @params: timing parameters { interval, duratinon, timeout } in msec 3226 * @deadline: deadline jiffies for the operation 3227 * 3228 * Make sure SStatus of @ap reaches stable state, determined by 3229 * holding the same value where DET is not 1 for @duration polled 3230 * every @interval, before @timeout. Timeout constraints the 3231 * beginning of the stable state. Because DET gets stuck at 1 on 3232 * some controllers after hot unplugging, this functions waits 3233 * until timeout then returns 0 if DET is stable at 1. 3234 * 3235 * @timeout is further limited by @deadline. The sooner of the 3236 * two is used. 3237 * 3238 * LOCKING: 3239 * Kernel thread context (may sleep) 3240 * 3241 * RETURNS: 3242 * 0 on success, -errno on failure. 3243 */ 3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params, 3245 unsigned long deadline) 3246 { 3247 unsigned long interval_msec = params[0]; 3248 unsigned long duration = msecs_to_jiffies(params[1]); 3249 unsigned long last_jiffies, t; 3250 u32 last, cur; 3251 int rc; 3252 3253 t = jiffies + msecs_to_jiffies(params[2]); 3254 if (time_before(t, deadline)) 3255 deadline = t; 3256 3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3258 return rc; 3259 cur &= 0xf; 3260 3261 last = cur; 3262 last_jiffies = jiffies; 3263 3264 while (1) { 3265 msleep(interval_msec); 3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3267 return rc; 3268 cur &= 0xf; 3269 3270 /* DET stable? */ 3271 if (cur == last) { 3272 if (cur == 1 && time_before(jiffies, deadline)) 3273 continue; 3274 if (time_after(jiffies, last_jiffies + duration)) 3275 return 0; 3276 continue; 3277 } 3278 3279 /* unstable, start over */ 3280 last = cur; 3281 last_jiffies = jiffies; 3282 3283 /* check deadline */ 3284 if (time_after(jiffies, deadline)) 3285 return -EBUSY; 3286 } 3287 } 3288 3289 /** 3290 * sata_phy_resume - resume SATA phy 3291 * @ap: ATA port to resume SATA phy for 3292 * @params: timing parameters { interval, duratinon, timeout } in msec 3293 * @deadline: deadline jiffies for the operation 3294 * 3295 * Resume SATA phy of @ap and debounce it. 3296 * 3297 * LOCKING: 3298 * Kernel thread context (may sleep) 3299 * 3300 * RETURNS: 3301 * 0 on success, -errno on failure. 3302 */ 3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params, 3304 unsigned long deadline) 3305 { 3306 u32 scontrol; 3307 int rc; 3308 3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3310 return rc; 3311 3312 scontrol = (scontrol & 0x0f0) | 0x300; 3313 3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3315 return rc; 3316 3317 /* Some PHYs react badly if SStatus is pounded immediately 3318 * after resuming. Delay 200ms before debouncing. 3319 */ 3320 msleep(200); 3321 3322 return sata_phy_debounce(ap, params, deadline); 3323 } 3324 3325 /** 3326 * ata_std_prereset - prepare for reset 3327 * @ap: ATA port to be reset 3328 * @deadline: deadline jiffies for the operation 3329 * 3330 * @ap is about to be reset. Initialize it. Failure from 3331 * prereset makes libata abort whole reset sequence and give up 3332 * that port, so prereset should be best-effort. It does its 3333 * best to prepare for reset sequence but if things go wrong, it 3334 * should just whine, not fail. 3335 * 3336 * LOCKING: 3337 * Kernel thread context (may sleep) 3338 * 3339 * RETURNS: 3340 * 0 on success, -errno otherwise. 3341 */ 3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline) 3343 { 3344 struct ata_eh_context *ehc = &ap->eh_context; 3345 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3346 int rc; 3347 3348 /* handle link resume */ 3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 3351 ehc->i.action |= ATA_EH_HARDRESET; 3352 3353 /* if we're about to do hardreset, nothing more to do */ 3354 if (ehc->i.action & ATA_EH_HARDRESET) 3355 return 0; 3356 3357 /* if SATA, resume phy */ 3358 if (ap->cbl == ATA_CBL_SATA) { 3359 rc = sata_phy_resume(ap, timing, deadline); 3360 /* whine about phy resume failure but proceed */ 3361 if (rc && rc != -EOPNOTSUPP) 3362 ata_port_printk(ap, KERN_WARNING, "failed to resume " 3363 "link for reset (errno=%d)\n", rc); 3364 } 3365 3366 /* Wait for !BSY if the controller can wait for the first D2H 3367 * Reg FIS and we don't know that no device is attached. 3368 */ 3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) { 3370 rc = ata_wait_ready(ap, deadline); 3371 if (rc && rc != -ENODEV) { 3372 ata_port_printk(ap, KERN_WARNING, "device not ready " 3373 "(errno=%d), forcing hardreset\n", rc); 3374 ehc->i.action |= ATA_EH_HARDRESET; 3375 } 3376 } 3377 3378 return 0; 3379 } 3380 3381 /** 3382 * ata_std_softreset - reset host port via ATA SRST 3383 * @ap: port to reset 3384 * @classes: resulting classes of attached devices 3385 * @deadline: deadline jiffies for the operation 3386 * 3387 * Reset host port using ATA SRST. 3388 * 3389 * LOCKING: 3390 * Kernel thread context (may sleep) 3391 * 3392 * RETURNS: 3393 * 0 on success, -errno otherwise. 3394 */ 3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes, 3396 unsigned long deadline) 3397 { 3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3399 unsigned int devmask = 0; 3400 int rc; 3401 u8 err; 3402 3403 DPRINTK("ENTER\n"); 3404 3405 if (ata_port_offline(ap)) { 3406 classes[0] = ATA_DEV_NONE; 3407 goto out; 3408 } 3409 3410 /* determine if device 0/1 are present */ 3411 if (ata_devchk(ap, 0)) 3412 devmask |= (1 << 0); 3413 if (slave_possible && ata_devchk(ap, 1)) 3414 devmask |= (1 << 1); 3415 3416 /* select device 0 again */ 3417 ap->ops->dev_select(ap, 0); 3418 3419 /* issue bus reset */ 3420 DPRINTK("about to softreset, devmask=%x\n", devmask); 3421 rc = ata_bus_softreset(ap, devmask, deadline); 3422 /* if link is occupied, -ENODEV too is an error */ 3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) { 3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc); 3425 return rc; 3426 } 3427 3428 /* determine by signature whether we have ATA or ATAPI devices */ 3429 classes[0] = ata_dev_try_classify(ap, 0, &err); 3430 if (slave_possible && err != 0x81) 3431 classes[1] = ata_dev_try_classify(ap, 1, &err); 3432 3433 out: 3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3435 return 0; 3436 } 3437 3438 /** 3439 * sata_port_hardreset - reset port via SATA phy reset 3440 * @ap: port to reset 3441 * @timing: timing parameters { interval, duratinon, timeout } in msec 3442 * @deadline: deadline jiffies for the operation 3443 * 3444 * SATA phy-reset host port using DET bits of SControl register. 3445 * 3446 * LOCKING: 3447 * Kernel thread context (may sleep) 3448 * 3449 * RETURNS: 3450 * 0 on success, -errno otherwise. 3451 */ 3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing, 3453 unsigned long deadline) 3454 { 3455 u32 scontrol; 3456 int rc; 3457 3458 DPRINTK("ENTER\n"); 3459 3460 if (sata_set_spd_needed(ap)) { 3461 /* SATA spec says nothing about how to reconfigure 3462 * spd. To be on the safe side, turn off phy during 3463 * reconfiguration. This works for at least ICH7 AHCI 3464 * and Sil3124. 3465 */ 3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3467 goto out; 3468 3469 scontrol = (scontrol & 0x0f0) | 0x304; 3470 3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3472 goto out; 3473 3474 sata_set_spd(ap); 3475 } 3476 3477 /* issue phy wake/reset */ 3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3479 goto out; 3480 3481 scontrol = (scontrol & 0x0f0) | 0x301; 3482 3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3484 goto out; 3485 3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3487 * 10.4.2 says at least 1 ms. 3488 */ 3489 msleep(1); 3490 3491 /* bring phy back */ 3492 rc = sata_phy_resume(ap, timing, deadline); 3493 out: 3494 DPRINTK("EXIT, rc=%d\n", rc); 3495 return rc; 3496 } 3497 3498 /** 3499 * sata_std_hardreset - reset host port via SATA phy reset 3500 * @ap: port to reset 3501 * @class: resulting class of attached device 3502 * @deadline: deadline jiffies for the operation 3503 * 3504 * SATA phy-reset host port using DET bits of SControl register, 3505 * wait for !BSY and classify the attached device. 3506 * 3507 * LOCKING: 3508 * Kernel thread context (may sleep) 3509 * 3510 * RETURNS: 3511 * 0 on success, -errno otherwise. 3512 */ 3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class, 3514 unsigned long deadline) 3515 { 3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3517 int rc; 3518 3519 DPRINTK("ENTER\n"); 3520 3521 /* do hardreset */ 3522 rc = sata_port_hardreset(ap, timing, deadline); 3523 if (rc) { 3524 ata_port_printk(ap, KERN_ERR, 3525 "COMRESET failed (errno=%d)\n", rc); 3526 return rc; 3527 } 3528 3529 /* TODO: phy layer with polling, timeouts, etc. */ 3530 if (ata_port_offline(ap)) { 3531 *class = ATA_DEV_NONE; 3532 DPRINTK("EXIT, link offline\n"); 3533 return 0; 3534 } 3535 3536 /* wait a while before checking status, see SRST for more info */ 3537 msleep(150); 3538 3539 rc = ata_wait_ready(ap, deadline); 3540 /* link occupied, -ENODEV too is an error */ 3541 if (rc) { 3542 ata_port_printk(ap, KERN_ERR, 3543 "COMRESET failed (errno=%d)\n", rc); 3544 return rc; 3545 } 3546 3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3548 3549 *class = ata_dev_try_classify(ap, 0, NULL); 3550 3551 DPRINTK("EXIT, class=%u\n", *class); 3552 return 0; 3553 } 3554 3555 /** 3556 * ata_std_postreset - standard postreset callback 3557 * @ap: the target ata_port 3558 * @classes: classes of attached devices 3559 * 3560 * This function is invoked after a successful reset. Note that 3561 * the device might have been reset more than once using 3562 * different reset methods before postreset is invoked. 3563 * 3564 * LOCKING: 3565 * Kernel thread context (may sleep) 3566 */ 3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3568 { 3569 u32 serror; 3570 3571 DPRINTK("ENTER\n"); 3572 3573 /* print link status */ 3574 sata_print_link_status(ap); 3575 3576 /* clear SError */ 3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3578 sata_scr_write(ap, SCR_ERROR, serror); 3579 3580 /* re-enable interrupts */ 3581 if (!ap->ops->error_handler) 3582 ap->ops->irq_on(ap); 3583 3584 /* is double-select really necessary? */ 3585 if (classes[0] != ATA_DEV_NONE) 3586 ap->ops->dev_select(ap, 1); 3587 if (classes[1] != ATA_DEV_NONE) 3588 ap->ops->dev_select(ap, 0); 3589 3590 /* bail out if no device is present */ 3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3592 DPRINTK("EXIT, no device\n"); 3593 return; 3594 } 3595 3596 /* set up device control */ 3597 if (ap->ioaddr.ctl_addr) 3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3599 3600 DPRINTK("EXIT\n"); 3601 } 3602 3603 /** 3604 * ata_dev_same_device - Determine whether new ID matches configured device 3605 * @dev: device to compare against 3606 * @new_class: class of the new device 3607 * @new_id: IDENTIFY page of the new device 3608 * 3609 * Compare @new_class and @new_id against @dev and determine 3610 * whether @dev is the device indicated by @new_class and 3611 * @new_id. 3612 * 3613 * LOCKING: 3614 * None. 3615 * 3616 * RETURNS: 3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3618 */ 3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3620 const u16 *new_id) 3621 { 3622 const u16 *old_id = dev->id; 3623 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3625 3626 if (dev->class != new_class) { 3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3628 dev->class, new_class); 3629 return 0; 3630 } 3631 3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3636 3637 if (strcmp(model[0], model[1])) { 3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3639 "'%s' != '%s'\n", model[0], model[1]); 3640 return 0; 3641 } 3642 3643 if (strcmp(serial[0], serial[1])) { 3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3645 "'%s' != '%s'\n", serial[0], serial[1]); 3646 return 0; 3647 } 3648 3649 return 1; 3650 } 3651 3652 /** 3653 * ata_dev_reread_id - Re-read IDENTIFY data 3654 * @adev: target ATA device 3655 * @readid_flags: read ID flags 3656 * 3657 * Re-read IDENTIFY page and make sure @dev is still attached to 3658 * the port. 3659 * 3660 * LOCKING: 3661 * Kernel thread context (may sleep) 3662 * 3663 * RETURNS: 3664 * 0 on success, negative errno otherwise 3665 */ 3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3667 { 3668 unsigned int class = dev->class; 3669 u16 *id = (void *)dev->ap->sector_buf; 3670 int rc; 3671 3672 /* read ID data */ 3673 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3674 if (rc) 3675 return rc; 3676 3677 /* is the device still there? */ 3678 if (!ata_dev_same_device(dev, class, id)) 3679 return -ENODEV; 3680 3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3682 return 0; 3683 } 3684 3685 /** 3686 * ata_dev_revalidate - Revalidate ATA device 3687 * @dev: device to revalidate 3688 * @readid_flags: read ID flags 3689 * 3690 * Re-read IDENTIFY page, make sure @dev is still attached to the 3691 * port and reconfigure it according to the new IDENTIFY page. 3692 * 3693 * LOCKING: 3694 * Kernel thread context (may sleep) 3695 * 3696 * RETURNS: 3697 * 0 on success, negative errno otherwise 3698 */ 3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3700 { 3701 u64 n_sectors = dev->n_sectors; 3702 int rc; 3703 3704 if (!ata_dev_enabled(dev)) 3705 return -ENODEV; 3706 3707 /* re-read ID */ 3708 rc = ata_dev_reread_id(dev, readid_flags); 3709 if (rc) 3710 goto fail; 3711 3712 /* configure device according to the new ID */ 3713 rc = ata_dev_configure(dev); 3714 if (rc) 3715 goto fail; 3716 3717 /* verify n_sectors hasn't changed */ 3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) { 3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3720 "%llu != %llu\n", 3721 (unsigned long long)n_sectors, 3722 (unsigned long long)dev->n_sectors); 3723 rc = -ENODEV; 3724 goto fail; 3725 } 3726 3727 return 0; 3728 3729 fail: 3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3731 return rc; 3732 } 3733 3734 struct ata_blacklist_entry { 3735 const char *model_num; 3736 const char *model_rev; 3737 unsigned long horkage; 3738 }; 3739 3740 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3741 /* Devices with DMA related problems under Linux */ 3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3772 3773 /* Weird ATAPI devices */ 3774 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 | 3775 ATA_HORKAGE_DMA_RW_ONLY }, 3776 3777 /* Devices we expect to fail diagnostics */ 3778 3779 /* Devices where NCQ should be avoided */ 3780 /* NCQ is slow */ 3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3784 /* NCQ is broken */ 3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3786 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ }, 3787 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3788 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3789 /* Blacklist entries taken from Silicon Image 3124/3132 3790 Windows driver .inf file - also several Linux problem reports */ 3791 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3792 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3793 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3794 3795 /* Devices with NCQ limits */ 3796 3797 /* End Marker */ 3798 { } 3799 }; 3800 3801 unsigned long ata_device_blacklisted(const struct ata_device *dev) 3802 { 3803 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3804 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3805 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3806 3807 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3808 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3809 3810 while (ad->model_num) { 3811 if (!strcmp(ad->model_num, model_num)) { 3812 if (ad->model_rev == NULL) 3813 return ad->horkage; 3814 if (!strcmp(ad->model_rev, model_rev)) 3815 return ad->horkage; 3816 } 3817 ad++; 3818 } 3819 return 0; 3820 } 3821 3822 static int ata_dma_blacklisted(const struct ata_device *dev) 3823 { 3824 /* We don't support polling DMA. 3825 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3826 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3827 */ 3828 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3829 (dev->flags & ATA_DFLAG_CDB_INTR)) 3830 return 1; 3831 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; 3832 } 3833 3834 /** 3835 * ata_dev_xfermask - Compute supported xfermask of the given device 3836 * @dev: Device to compute xfermask for 3837 * 3838 * Compute supported xfermask of @dev and store it in 3839 * dev->*_mask. This function is responsible for applying all 3840 * known limits including host controller limits, device 3841 * blacklist, etc... 3842 * 3843 * LOCKING: 3844 * None. 3845 */ 3846 static void ata_dev_xfermask(struct ata_device *dev) 3847 { 3848 struct ata_port *ap = dev->ap; 3849 struct ata_host *host = ap->host; 3850 unsigned long xfer_mask; 3851 3852 /* controller modes available */ 3853 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3854 ap->mwdma_mask, ap->udma_mask); 3855 3856 /* drive modes available */ 3857 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3858 dev->mwdma_mask, dev->udma_mask); 3859 xfer_mask &= ata_id_xfermask(dev->id); 3860 3861 /* 3862 * CFA Advanced TrueIDE timings are not allowed on a shared 3863 * cable 3864 */ 3865 if (ata_dev_pair(dev)) { 3866 /* No PIO5 or PIO6 */ 3867 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3868 /* No MWDMA3 or MWDMA 4 */ 3869 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3870 } 3871 3872 if (ata_dma_blacklisted(dev)) { 3873 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3874 ata_dev_printk(dev, KERN_WARNING, 3875 "device is on DMA blacklist, disabling DMA\n"); 3876 } 3877 3878 if ((host->flags & ATA_HOST_SIMPLEX) && 3879 host->simplex_claimed && host->simplex_claimed != ap) { 3880 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3881 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3882 "other device, disabling DMA\n"); 3883 } 3884 3885 if (ap->flags & ATA_FLAG_NO_IORDY) 3886 xfer_mask &= ata_pio_mask_no_iordy(dev); 3887 3888 if (ap->ops->mode_filter) 3889 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 3890 3891 /* Apply cable rule here. Don't apply it early because when 3892 * we handle hot plug the cable type can itself change. 3893 * Check this last so that we know if the transfer rate was 3894 * solely limited by the cable. 3895 * Unknown or 80 wire cables reported host side are checked 3896 * drive side as well. Cases where we know a 40wire cable 3897 * is used safely for 80 are not checked here. 3898 */ 3899 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 3900 /* UDMA/44 or higher would be available */ 3901 if((ap->cbl == ATA_CBL_PATA40) || 3902 (ata_drive_40wire(dev->id) && 3903 (ap->cbl == ATA_CBL_PATA_UNK || 3904 ap->cbl == ATA_CBL_PATA80))) { 3905 ata_dev_printk(dev, KERN_WARNING, 3906 "limited to UDMA/33 due to 40-wire cable\n"); 3907 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3908 } 3909 3910 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3911 &dev->mwdma_mask, &dev->udma_mask); 3912 } 3913 3914 /** 3915 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3916 * @dev: Device to which command will be sent 3917 * 3918 * Issue SET FEATURES - XFER MODE command to device @dev 3919 * on port @ap. 3920 * 3921 * LOCKING: 3922 * PCI/etc. bus probe sem. 3923 * 3924 * RETURNS: 3925 * 0 on success, AC_ERR_* mask otherwise. 3926 */ 3927 3928 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3929 { 3930 struct ata_taskfile tf; 3931 unsigned int err_mask; 3932 3933 /* set up set-features taskfile */ 3934 DPRINTK("set features - xfer mode\n"); 3935 3936 ata_tf_init(dev, &tf); 3937 tf.command = ATA_CMD_SET_FEATURES; 3938 tf.feature = SETFEATURES_XFER; 3939 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3940 tf.protocol = ATA_PROT_NODATA; 3941 tf.nsect = dev->xfer_mode; 3942 3943 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3944 3945 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3946 return err_mask; 3947 } 3948 3949 /** 3950 * ata_dev_init_params - Issue INIT DEV PARAMS command 3951 * @dev: Device to which command will be sent 3952 * @heads: Number of heads (taskfile parameter) 3953 * @sectors: Number of sectors (taskfile parameter) 3954 * 3955 * LOCKING: 3956 * Kernel thread context (may sleep) 3957 * 3958 * RETURNS: 3959 * 0 on success, AC_ERR_* mask otherwise. 3960 */ 3961 static unsigned int ata_dev_init_params(struct ata_device *dev, 3962 u16 heads, u16 sectors) 3963 { 3964 struct ata_taskfile tf; 3965 unsigned int err_mask; 3966 3967 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3968 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3969 return AC_ERR_INVALID; 3970 3971 /* set up init dev params taskfile */ 3972 DPRINTK("init dev params \n"); 3973 3974 ata_tf_init(dev, &tf); 3975 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3976 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3977 tf.protocol = ATA_PROT_NODATA; 3978 tf.nsect = sectors; 3979 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3980 3981 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3982 3983 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3984 return err_mask; 3985 } 3986 3987 /** 3988 * ata_sg_clean - Unmap DMA memory associated with command 3989 * @qc: Command containing DMA memory to be released 3990 * 3991 * Unmap all mapped DMA memory associated with this command. 3992 * 3993 * LOCKING: 3994 * spin_lock_irqsave(host lock) 3995 */ 3996 void ata_sg_clean(struct ata_queued_cmd *qc) 3997 { 3998 struct ata_port *ap = qc->ap; 3999 struct scatterlist *sg = qc->__sg; 4000 int dir = qc->dma_dir; 4001 void *pad_buf = NULL; 4002 4003 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 4004 WARN_ON(sg == NULL); 4005 4006 if (qc->flags & ATA_QCFLAG_SINGLE) 4007 WARN_ON(qc->n_elem > 1); 4008 4009 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4010 4011 /* if we padded the buffer out to 32-bit bound, and data 4012 * xfer direction is from-device, we must copy from the 4013 * pad buffer back into the supplied buffer 4014 */ 4015 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 4016 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4017 4018 if (qc->flags & ATA_QCFLAG_SG) { 4019 if (qc->n_elem) 4020 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4021 /* restore last sg */ 4022 sg[qc->orig_n_elem - 1].length += qc->pad_len; 4023 if (pad_buf) { 4024 struct scatterlist *psg = &qc->pad_sgent; 4025 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4026 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 4027 kunmap_atomic(addr, KM_IRQ0); 4028 } 4029 } else { 4030 if (qc->n_elem) 4031 dma_unmap_single(ap->dev, 4032 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 4033 dir); 4034 /* restore sg */ 4035 sg->length += qc->pad_len; 4036 if (pad_buf) 4037 memcpy(qc->buf_virt + sg->length - qc->pad_len, 4038 pad_buf, qc->pad_len); 4039 } 4040 4041 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4042 qc->__sg = NULL; 4043 } 4044 4045 /** 4046 * ata_fill_sg - Fill PCI IDE PRD table 4047 * @qc: Metadata associated with taskfile to be transferred 4048 * 4049 * Fill PCI IDE PRD (scatter-gather) table with segments 4050 * associated with the current disk command. 4051 * 4052 * LOCKING: 4053 * spin_lock_irqsave(host lock) 4054 * 4055 */ 4056 static void ata_fill_sg(struct ata_queued_cmd *qc) 4057 { 4058 struct ata_port *ap = qc->ap; 4059 struct scatterlist *sg; 4060 unsigned int idx; 4061 4062 WARN_ON(qc->__sg == NULL); 4063 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4064 4065 idx = 0; 4066 ata_for_each_sg(sg, qc) { 4067 u32 addr, offset; 4068 u32 sg_len, len; 4069 4070 /* determine if physical DMA addr spans 64K boundary. 4071 * Note h/w doesn't support 64-bit, so we unconditionally 4072 * truncate dma_addr_t to u32. 4073 */ 4074 addr = (u32) sg_dma_address(sg); 4075 sg_len = sg_dma_len(sg); 4076 4077 while (sg_len) { 4078 offset = addr & 0xffff; 4079 len = sg_len; 4080 if ((offset + sg_len) > 0x10000) 4081 len = 0x10000 - offset; 4082 4083 ap->prd[idx].addr = cpu_to_le32(addr); 4084 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 4085 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4086 4087 idx++; 4088 sg_len -= len; 4089 addr += len; 4090 } 4091 } 4092 4093 if (idx) 4094 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4095 } 4096 /** 4097 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4098 * @qc: Metadata associated with taskfile to check 4099 * 4100 * Allow low-level driver to filter ATA PACKET commands, returning 4101 * a status indicating whether or not it is OK to use DMA for the 4102 * supplied PACKET command. 4103 * 4104 * LOCKING: 4105 * spin_lock_irqsave(host lock) 4106 * 4107 * RETURNS: 0 when ATAPI DMA can be used 4108 * nonzero otherwise 4109 */ 4110 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4111 { 4112 struct ata_port *ap = qc->ap; 4113 int rc = 0; /* Assume ATAPI DMA is OK by default */ 4114 4115 /* some drives can only do ATAPI DMA on read/write */ 4116 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) { 4117 struct scsi_cmnd *cmd = qc->scsicmd; 4118 u8 *scsicmd = cmd->cmnd; 4119 4120 switch (scsicmd[0]) { 4121 case READ_10: 4122 case WRITE_10: 4123 case READ_12: 4124 case WRITE_12: 4125 case READ_6: 4126 case WRITE_6: 4127 /* atapi dma maybe ok */ 4128 break; 4129 default: 4130 /* turn off atapi dma */ 4131 return 1; 4132 } 4133 } 4134 4135 if (ap->ops->check_atapi_dma) 4136 rc = ap->ops->check_atapi_dma(qc); 4137 4138 return rc; 4139 } 4140 /** 4141 * ata_qc_prep - Prepare taskfile for submission 4142 * @qc: Metadata associated with taskfile to be prepared 4143 * 4144 * Prepare ATA taskfile for submission. 4145 * 4146 * LOCKING: 4147 * spin_lock_irqsave(host lock) 4148 */ 4149 void ata_qc_prep(struct ata_queued_cmd *qc) 4150 { 4151 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4152 return; 4153 4154 ata_fill_sg(qc); 4155 } 4156 4157 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4158 4159 /** 4160 * ata_sg_init_one - Associate command with memory buffer 4161 * @qc: Command to be associated 4162 * @buf: Memory buffer 4163 * @buflen: Length of memory buffer, in bytes. 4164 * 4165 * Initialize the data-related elements of queued_cmd @qc 4166 * to point to a single memory buffer, @buf of byte length @buflen. 4167 * 4168 * LOCKING: 4169 * spin_lock_irqsave(host lock) 4170 */ 4171 4172 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4173 { 4174 qc->flags |= ATA_QCFLAG_SINGLE; 4175 4176 qc->__sg = &qc->sgent; 4177 qc->n_elem = 1; 4178 qc->orig_n_elem = 1; 4179 qc->buf_virt = buf; 4180 qc->nbytes = buflen; 4181 4182 sg_init_one(&qc->sgent, buf, buflen); 4183 } 4184 4185 /** 4186 * ata_sg_init - Associate command with scatter-gather table. 4187 * @qc: Command to be associated 4188 * @sg: Scatter-gather table. 4189 * @n_elem: Number of elements in s/g table. 4190 * 4191 * Initialize the data-related elements of queued_cmd @qc 4192 * to point to a scatter-gather table @sg, containing @n_elem 4193 * elements. 4194 * 4195 * LOCKING: 4196 * spin_lock_irqsave(host lock) 4197 */ 4198 4199 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4200 unsigned int n_elem) 4201 { 4202 qc->flags |= ATA_QCFLAG_SG; 4203 qc->__sg = sg; 4204 qc->n_elem = n_elem; 4205 qc->orig_n_elem = n_elem; 4206 } 4207 4208 /** 4209 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4210 * @qc: Command with memory buffer to be mapped. 4211 * 4212 * DMA-map the memory buffer associated with queued_cmd @qc. 4213 * 4214 * LOCKING: 4215 * spin_lock_irqsave(host lock) 4216 * 4217 * RETURNS: 4218 * Zero on success, negative on error. 4219 */ 4220 4221 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4222 { 4223 struct ata_port *ap = qc->ap; 4224 int dir = qc->dma_dir; 4225 struct scatterlist *sg = qc->__sg; 4226 dma_addr_t dma_address; 4227 int trim_sg = 0; 4228 4229 /* we must lengthen transfers to end on a 32-bit boundary */ 4230 qc->pad_len = sg->length & 3; 4231 if (qc->pad_len) { 4232 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4233 struct scatterlist *psg = &qc->pad_sgent; 4234 4235 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4236 4237 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4238 4239 if (qc->tf.flags & ATA_TFLAG_WRITE) 4240 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4241 qc->pad_len); 4242 4243 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4244 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4245 /* trim sg */ 4246 sg->length -= qc->pad_len; 4247 if (sg->length == 0) 4248 trim_sg = 1; 4249 4250 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4251 sg->length, qc->pad_len); 4252 } 4253 4254 if (trim_sg) { 4255 qc->n_elem--; 4256 goto skip_map; 4257 } 4258 4259 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4260 sg->length, dir); 4261 if (dma_mapping_error(dma_address)) { 4262 /* restore sg */ 4263 sg->length += qc->pad_len; 4264 return -1; 4265 } 4266 4267 sg_dma_address(sg) = dma_address; 4268 sg_dma_len(sg) = sg->length; 4269 4270 skip_map: 4271 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4272 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4273 4274 return 0; 4275 } 4276 4277 /** 4278 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4279 * @qc: Command with scatter-gather table to be mapped. 4280 * 4281 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4282 * 4283 * LOCKING: 4284 * spin_lock_irqsave(host lock) 4285 * 4286 * RETURNS: 4287 * Zero on success, negative on error. 4288 * 4289 */ 4290 4291 static int ata_sg_setup(struct ata_queued_cmd *qc) 4292 { 4293 struct ata_port *ap = qc->ap; 4294 struct scatterlist *sg = qc->__sg; 4295 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4296 int n_elem, pre_n_elem, dir, trim_sg = 0; 4297 4298 VPRINTK("ENTER, ata%u\n", ap->print_id); 4299 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4300 4301 /* we must lengthen transfers to end on a 32-bit boundary */ 4302 qc->pad_len = lsg->length & 3; 4303 if (qc->pad_len) { 4304 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4305 struct scatterlist *psg = &qc->pad_sgent; 4306 unsigned int offset; 4307 4308 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4309 4310 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4311 4312 /* 4313 * psg->page/offset are used to copy to-be-written 4314 * data in this function or read data in ata_sg_clean. 4315 */ 4316 offset = lsg->offset + lsg->length - qc->pad_len; 4317 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4318 psg->offset = offset_in_page(offset); 4319 4320 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4321 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4322 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4323 kunmap_atomic(addr, KM_IRQ0); 4324 } 4325 4326 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4327 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4328 /* trim last sg */ 4329 lsg->length -= qc->pad_len; 4330 if (lsg->length == 0) 4331 trim_sg = 1; 4332 4333 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4334 qc->n_elem - 1, lsg->length, qc->pad_len); 4335 } 4336 4337 pre_n_elem = qc->n_elem; 4338 if (trim_sg && pre_n_elem) 4339 pre_n_elem--; 4340 4341 if (!pre_n_elem) { 4342 n_elem = 0; 4343 goto skip_map; 4344 } 4345 4346 dir = qc->dma_dir; 4347 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4348 if (n_elem < 1) { 4349 /* restore last sg */ 4350 lsg->length += qc->pad_len; 4351 return -1; 4352 } 4353 4354 DPRINTK("%d sg elements mapped\n", n_elem); 4355 4356 skip_map: 4357 qc->n_elem = n_elem; 4358 4359 return 0; 4360 } 4361 4362 /** 4363 * swap_buf_le16 - swap halves of 16-bit words in place 4364 * @buf: Buffer to swap 4365 * @buf_words: Number of 16-bit words in buffer. 4366 * 4367 * Swap halves of 16-bit words if needed to convert from 4368 * little-endian byte order to native cpu byte order, or 4369 * vice-versa. 4370 * 4371 * LOCKING: 4372 * Inherited from caller. 4373 */ 4374 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4375 { 4376 #ifdef __BIG_ENDIAN 4377 unsigned int i; 4378 4379 for (i = 0; i < buf_words; i++) 4380 buf[i] = le16_to_cpu(buf[i]); 4381 #endif /* __BIG_ENDIAN */ 4382 } 4383 4384 /** 4385 * ata_data_xfer - Transfer data by PIO 4386 * @adev: device to target 4387 * @buf: data buffer 4388 * @buflen: buffer length 4389 * @write_data: read/write 4390 * 4391 * Transfer data from/to the device data register by PIO. 4392 * 4393 * LOCKING: 4394 * Inherited from caller. 4395 */ 4396 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4397 unsigned int buflen, int write_data) 4398 { 4399 struct ata_port *ap = adev->ap; 4400 unsigned int words = buflen >> 1; 4401 4402 /* Transfer multiple of 2 bytes */ 4403 if (write_data) 4404 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4405 else 4406 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4407 4408 /* Transfer trailing 1 byte, if any. */ 4409 if (unlikely(buflen & 0x01)) { 4410 u16 align_buf[1] = { 0 }; 4411 unsigned char *trailing_buf = buf + buflen - 1; 4412 4413 if (write_data) { 4414 memcpy(align_buf, trailing_buf, 1); 4415 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4416 } else { 4417 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4418 memcpy(trailing_buf, align_buf, 1); 4419 } 4420 } 4421 } 4422 4423 /** 4424 * ata_data_xfer_noirq - Transfer data by PIO 4425 * @adev: device to target 4426 * @buf: data buffer 4427 * @buflen: buffer length 4428 * @write_data: read/write 4429 * 4430 * Transfer data from/to the device data register by PIO. Do the 4431 * transfer with interrupts disabled. 4432 * 4433 * LOCKING: 4434 * Inherited from caller. 4435 */ 4436 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4437 unsigned int buflen, int write_data) 4438 { 4439 unsigned long flags; 4440 local_irq_save(flags); 4441 ata_data_xfer(adev, buf, buflen, write_data); 4442 local_irq_restore(flags); 4443 } 4444 4445 4446 /** 4447 * ata_pio_sector - Transfer a sector of data. 4448 * @qc: Command on going 4449 * 4450 * Transfer qc->sect_size bytes of data from/to the ATA device. 4451 * 4452 * LOCKING: 4453 * Inherited from caller. 4454 */ 4455 4456 static void ata_pio_sector(struct ata_queued_cmd *qc) 4457 { 4458 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4459 struct scatterlist *sg = qc->__sg; 4460 struct ata_port *ap = qc->ap; 4461 struct page *page; 4462 unsigned int offset; 4463 unsigned char *buf; 4464 4465 if (qc->curbytes == qc->nbytes - qc->sect_size) 4466 ap->hsm_task_state = HSM_ST_LAST; 4467 4468 page = sg[qc->cursg].page; 4469 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4470 4471 /* get the current page and offset */ 4472 page = nth_page(page, (offset >> PAGE_SHIFT)); 4473 offset %= PAGE_SIZE; 4474 4475 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4476 4477 if (PageHighMem(page)) { 4478 unsigned long flags; 4479 4480 /* FIXME: use a bounce buffer */ 4481 local_irq_save(flags); 4482 buf = kmap_atomic(page, KM_IRQ0); 4483 4484 /* do the actual data transfer */ 4485 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4486 4487 kunmap_atomic(buf, KM_IRQ0); 4488 local_irq_restore(flags); 4489 } else { 4490 buf = page_address(page); 4491 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4492 } 4493 4494 qc->curbytes += qc->sect_size; 4495 qc->cursg_ofs += qc->sect_size; 4496 4497 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4498 qc->cursg++; 4499 qc->cursg_ofs = 0; 4500 } 4501 } 4502 4503 /** 4504 * ata_pio_sectors - Transfer one or many sectors. 4505 * @qc: Command on going 4506 * 4507 * Transfer one or many sectors of data from/to the 4508 * ATA device for the DRQ request. 4509 * 4510 * LOCKING: 4511 * Inherited from caller. 4512 */ 4513 4514 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4515 { 4516 if (is_multi_taskfile(&qc->tf)) { 4517 /* READ/WRITE MULTIPLE */ 4518 unsigned int nsect; 4519 4520 WARN_ON(qc->dev->multi_count == 0); 4521 4522 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4523 qc->dev->multi_count); 4524 while (nsect--) 4525 ata_pio_sector(qc); 4526 } else 4527 ata_pio_sector(qc); 4528 } 4529 4530 /** 4531 * atapi_send_cdb - Write CDB bytes to hardware 4532 * @ap: Port to which ATAPI device is attached. 4533 * @qc: Taskfile currently active 4534 * 4535 * When device has indicated its readiness to accept 4536 * a CDB, this function is called. Send the CDB. 4537 * 4538 * LOCKING: 4539 * caller. 4540 */ 4541 4542 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4543 { 4544 /* send SCSI cdb */ 4545 DPRINTK("send cdb\n"); 4546 WARN_ON(qc->dev->cdb_len < 12); 4547 4548 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4549 ata_altstatus(ap); /* flush */ 4550 4551 switch (qc->tf.protocol) { 4552 case ATA_PROT_ATAPI: 4553 ap->hsm_task_state = HSM_ST; 4554 break; 4555 case ATA_PROT_ATAPI_NODATA: 4556 ap->hsm_task_state = HSM_ST_LAST; 4557 break; 4558 case ATA_PROT_ATAPI_DMA: 4559 ap->hsm_task_state = HSM_ST_LAST; 4560 /* initiate bmdma */ 4561 ap->ops->bmdma_start(qc); 4562 break; 4563 } 4564 } 4565 4566 /** 4567 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4568 * @qc: Command on going 4569 * @bytes: number of bytes 4570 * 4571 * Transfer Transfer data from/to the ATAPI device. 4572 * 4573 * LOCKING: 4574 * Inherited from caller. 4575 * 4576 */ 4577 4578 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4579 { 4580 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4581 struct scatterlist *sg = qc->__sg; 4582 struct ata_port *ap = qc->ap; 4583 struct page *page; 4584 unsigned char *buf; 4585 unsigned int offset, count; 4586 4587 if (qc->curbytes + bytes >= qc->nbytes) 4588 ap->hsm_task_state = HSM_ST_LAST; 4589 4590 next_sg: 4591 if (unlikely(qc->cursg >= qc->n_elem)) { 4592 /* 4593 * The end of qc->sg is reached and the device expects 4594 * more data to transfer. In order not to overrun qc->sg 4595 * and fulfill length specified in the byte count register, 4596 * - for read case, discard trailing data from the device 4597 * - for write case, padding zero data to the device 4598 */ 4599 u16 pad_buf[1] = { 0 }; 4600 unsigned int words = bytes >> 1; 4601 unsigned int i; 4602 4603 if (words) /* warning if bytes > 1 */ 4604 ata_dev_printk(qc->dev, KERN_WARNING, 4605 "%u bytes trailing data\n", bytes); 4606 4607 for (i = 0; i < words; i++) 4608 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4609 4610 ap->hsm_task_state = HSM_ST_LAST; 4611 return; 4612 } 4613 4614 sg = &qc->__sg[qc->cursg]; 4615 4616 page = sg->page; 4617 offset = sg->offset + qc->cursg_ofs; 4618 4619 /* get the current page and offset */ 4620 page = nth_page(page, (offset >> PAGE_SHIFT)); 4621 offset %= PAGE_SIZE; 4622 4623 /* don't overrun current sg */ 4624 count = min(sg->length - qc->cursg_ofs, bytes); 4625 4626 /* don't cross page boundaries */ 4627 count = min(count, (unsigned int)PAGE_SIZE - offset); 4628 4629 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4630 4631 if (PageHighMem(page)) { 4632 unsigned long flags; 4633 4634 /* FIXME: use bounce buffer */ 4635 local_irq_save(flags); 4636 buf = kmap_atomic(page, KM_IRQ0); 4637 4638 /* do the actual data transfer */ 4639 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4640 4641 kunmap_atomic(buf, KM_IRQ0); 4642 local_irq_restore(flags); 4643 } else { 4644 buf = page_address(page); 4645 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4646 } 4647 4648 bytes -= count; 4649 qc->curbytes += count; 4650 qc->cursg_ofs += count; 4651 4652 if (qc->cursg_ofs == sg->length) { 4653 qc->cursg++; 4654 qc->cursg_ofs = 0; 4655 } 4656 4657 if (bytes) 4658 goto next_sg; 4659 } 4660 4661 /** 4662 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4663 * @qc: Command on going 4664 * 4665 * Transfer Transfer data from/to the ATAPI device. 4666 * 4667 * LOCKING: 4668 * Inherited from caller. 4669 */ 4670 4671 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4672 { 4673 struct ata_port *ap = qc->ap; 4674 struct ata_device *dev = qc->dev; 4675 unsigned int ireason, bc_lo, bc_hi, bytes; 4676 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4677 4678 /* Abuse qc->result_tf for temp storage of intermediate TF 4679 * here to save some kernel stack usage. 4680 * For normal completion, qc->result_tf is not relevant. For 4681 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4682 * So, the correctness of qc->result_tf is not affected. 4683 */ 4684 ap->ops->tf_read(ap, &qc->result_tf); 4685 ireason = qc->result_tf.nsect; 4686 bc_lo = qc->result_tf.lbam; 4687 bc_hi = qc->result_tf.lbah; 4688 bytes = (bc_hi << 8) | bc_lo; 4689 4690 /* shall be cleared to zero, indicating xfer of data */ 4691 if (ireason & (1 << 0)) 4692 goto err_out; 4693 4694 /* make sure transfer direction matches expected */ 4695 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4696 if (do_write != i_write) 4697 goto err_out; 4698 4699 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4700 4701 __atapi_pio_bytes(qc, bytes); 4702 4703 return; 4704 4705 err_out: 4706 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4707 qc->err_mask |= AC_ERR_HSM; 4708 ap->hsm_task_state = HSM_ST_ERR; 4709 } 4710 4711 /** 4712 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4713 * @ap: the target ata_port 4714 * @qc: qc on going 4715 * 4716 * RETURNS: 4717 * 1 if ok in workqueue, 0 otherwise. 4718 */ 4719 4720 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4721 { 4722 if (qc->tf.flags & ATA_TFLAG_POLLING) 4723 return 1; 4724 4725 if (ap->hsm_task_state == HSM_ST_FIRST) { 4726 if (qc->tf.protocol == ATA_PROT_PIO && 4727 (qc->tf.flags & ATA_TFLAG_WRITE)) 4728 return 1; 4729 4730 if (is_atapi_taskfile(&qc->tf) && 4731 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4732 return 1; 4733 } 4734 4735 return 0; 4736 } 4737 4738 /** 4739 * ata_hsm_qc_complete - finish a qc running on standard HSM 4740 * @qc: Command to complete 4741 * @in_wq: 1 if called from workqueue, 0 otherwise 4742 * 4743 * Finish @qc which is running on standard HSM. 4744 * 4745 * LOCKING: 4746 * If @in_wq is zero, spin_lock_irqsave(host lock). 4747 * Otherwise, none on entry and grabs host lock. 4748 */ 4749 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4750 { 4751 struct ata_port *ap = qc->ap; 4752 unsigned long flags; 4753 4754 if (ap->ops->error_handler) { 4755 if (in_wq) { 4756 spin_lock_irqsave(ap->lock, flags); 4757 4758 /* EH might have kicked in while host lock is 4759 * released. 4760 */ 4761 qc = ata_qc_from_tag(ap, qc->tag); 4762 if (qc) { 4763 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4764 ap->ops->irq_on(ap); 4765 ata_qc_complete(qc); 4766 } else 4767 ata_port_freeze(ap); 4768 } 4769 4770 spin_unlock_irqrestore(ap->lock, flags); 4771 } else { 4772 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4773 ata_qc_complete(qc); 4774 else 4775 ata_port_freeze(ap); 4776 } 4777 } else { 4778 if (in_wq) { 4779 spin_lock_irqsave(ap->lock, flags); 4780 ap->ops->irq_on(ap); 4781 ata_qc_complete(qc); 4782 spin_unlock_irqrestore(ap->lock, flags); 4783 } else 4784 ata_qc_complete(qc); 4785 } 4786 4787 ata_altstatus(ap); /* flush */ 4788 } 4789 4790 /** 4791 * ata_hsm_move - move the HSM to the next state. 4792 * @ap: the target ata_port 4793 * @qc: qc on going 4794 * @status: current device status 4795 * @in_wq: 1 if called from workqueue, 0 otherwise 4796 * 4797 * RETURNS: 4798 * 1 when poll next status needed, 0 otherwise. 4799 */ 4800 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4801 u8 status, int in_wq) 4802 { 4803 unsigned long flags = 0; 4804 int poll_next; 4805 4806 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4807 4808 /* Make sure ata_qc_issue_prot() does not throw things 4809 * like DMA polling into the workqueue. Notice that 4810 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4811 */ 4812 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4813 4814 fsm_start: 4815 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4816 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4817 4818 switch (ap->hsm_task_state) { 4819 case HSM_ST_FIRST: 4820 /* Send first data block or PACKET CDB */ 4821 4822 /* If polling, we will stay in the work queue after 4823 * sending the data. Otherwise, interrupt handler 4824 * takes over after sending the data. 4825 */ 4826 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4827 4828 /* check device status */ 4829 if (unlikely((status & ATA_DRQ) == 0)) { 4830 /* handle BSY=0, DRQ=0 as error */ 4831 if (likely(status & (ATA_ERR | ATA_DF))) 4832 /* device stops HSM for abort/error */ 4833 qc->err_mask |= AC_ERR_DEV; 4834 else 4835 /* HSM violation. Let EH handle this */ 4836 qc->err_mask |= AC_ERR_HSM; 4837 4838 ap->hsm_task_state = HSM_ST_ERR; 4839 goto fsm_start; 4840 } 4841 4842 /* Device should not ask for data transfer (DRQ=1) 4843 * when it finds something wrong. 4844 * We ignore DRQ here and stop the HSM by 4845 * changing hsm_task_state to HSM_ST_ERR and 4846 * let the EH abort the command or reset the device. 4847 */ 4848 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4849 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4850 "error, dev_stat 0x%X\n", status); 4851 qc->err_mask |= AC_ERR_HSM; 4852 ap->hsm_task_state = HSM_ST_ERR; 4853 goto fsm_start; 4854 } 4855 4856 /* Send the CDB (atapi) or the first data block (ata pio out). 4857 * During the state transition, interrupt handler shouldn't 4858 * be invoked before the data transfer is complete and 4859 * hsm_task_state is changed. Hence, the following locking. 4860 */ 4861 if (in_wq) 4862 spin_lock_irqsave(ap->lock, flags); 4863 4864 if (qc->tf.protocol == ATA_PROT_PIO) { 4865 /* PIO data out protocol. 4866 * send first data block. 4867 */ 4868 4869 /* ata_pio_sectors() might change the state 4870 * to HSM_ST_LAST. so, the state is changed here 4871 * before ata_pio_sectors(). 4872 */ 4873 ap->hsm_task_state = HSM_ST; 4874 ata_pio_sectors(qc); 4875 ata_altstatus(ap); /* flush */ 4876 } else 4877 /* send CDB */ 4878 atapi_send_cdb(ap, qc); 4879 4880 if (in_wq) 4881 spin_unlock_irqrestore(ap->lock, flags); 4882 4883 /* if polling, ata_pio_task() handles the rest. 4884 * otherwise, interrupt handler takes over from here. 4885 */ 4886 break; 4887 4888 case HSM_ST: 4889 /* complete command or read/write the data register */ 4890 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4891 /* ATAPI PIO protocol */ 4892 if ((status & ATA_DRQ) == 0) { 4893 /* No more data to transfer or device error. 4894 * Device error will be tagged in HSM_ST_LAST. 4895 */ 4896 ap->hsm_task_state = HSM_ST_LAST; 4897 goto fsm_start; 4898 } 4899 4900 /* Device should not ask for data transfer (DRQ=1) 4901 * when it finds something wrong. 4902 * We ignore DRQ here and stop the HSM by 4903 * changing hsm_task_state to HSM_ST_ERR and 4904 * let the EH abort the command or reset the device. 4905 */ 4906 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4907 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4908 "device error, dev_stat 0x%X\n", 4909 status); 4910 qc->err_mask |= AC_ERR_HSM; 4911 ap->hsm_task_state = HSM_ST_ERR; 4912 goto fsm_start; 4913 } 4914 4915 atapi_pio_bytes(qc); 4916 4917 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4918 /* bad ireason reported by device */ 4919 goto fsm_start; 4920 4921 } else { 4922 /* ATA PIO protocol */ 4923 if (unlikely((status & ATA_DRQ) == 0)) { 4924 /* handle BSY=0, DRQ=0 as error */ 4925 if (likely(status & (ATA_ERR | ATA_DF))) 4926 /* device stops HSM for abort/error */ 4927 qc->err_mask |= AC_ERR_DEV; 4928 else 4929 /* HSM violation. Let EH handle this. 4930 * Phantom devices also trigger this 4931 * condition. Mark hint. 4932 */ 4933 qc->err_mask |= AC_ERR_HSM | 4934 AC_ERR_NODEV_HINT; 4935 4936 ap->hsm_task_state = HSM_ST_ERR; 4937 goto fsm_start; 4938 } 4939 4940 /* For PIO reads, some devices may ask for 4941 * data transfer (DRQ=1) alone with ERR=1. 4942 * We respect DRQ here and transfer one 4943 * block of junk data before changing the 4944 * hsm_task_state to HSM_ST_ERR. 4945 * 4946 * For PIO writes, ERR=1 DRQ=1 doesn't make 4947 * sense since the data block has been 4948 * transferred to the device. 4949 */ 4950 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4951 /* data might be corrputed */ 4952 qc->err_mask |= AC_ERR_DEV; 4953 4954 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 4955 ata_pio_sectors(qc); 4956 ata_altstatus(ap); 4957 status = ata_wait_idle(ap); 4958 } 4959 4960 if (status & (ATA_BUSY | ATA_DRQ)) 4961 qc->err_mask |= AC_ERR_HSM; 4962 4963 /* ata_pio_sectors() might change the 4964 * state to HSM_ST_LAST. so, the state 4965 * is changed after ata_pio_sectors(). 4966 */ 4967 ap->hsm_task_state = HSM_ST_ERR; 4968 goto fsm_start; 4969 } 4970 4971 ata_pio_sectors(qc); 4972 4973 if (ap->hsm_task_state == HSM_ST_LAST && 4974 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 4975 /* all data read */ 4976 ata_altstatus(ap); 4977 status = ata_wait_idle(ap); 4978 goto fsm_start; 4979 } 4980 } 4981 4982 ata_altstatus(ap); /* flush */ 4983 poll_next = 1; 4984 break; 4985 4986 case HSM_ST_LAST: 4987 if (unlikely(!ata_ok(status))) { 4988 qc->err_mask |= __ac_err_mask(status); 4989 ap->hsm_task_state = HSM_ST_ERR; 4990 goto fsm_start; 4991 } 4992 4993 /* no more data to transfer */ 4994 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 4995 ap->print_id, qc->dev->devno, status); 4996 4997 WARN_ON(qc->err_mask); 4998 4999 ap->hsm_task_state = HSM_ST_IDLE; 5000 5001 /* complete taskfile transaction */ 5002 ata_hsm_qc_complete(qc, in_wq); 5003 5004 poll_next = 0; 5005 break; 5006 5007 case HSM_ST_ERR: 5008 /* make sure qc->err_mask is available to 5009 * know what's wrong and recover 5010 */ 5011 WARN_ON(qc->err_mask == 0); 5012 5013 ap->hsm_task_state = HSM_ST_IDLE; 5014 5015 /* complete taskfile transaction */ 5016 ata_hsm_qc_complete(qc, in_wq); 5017 5018 poll_next = 0; 5019 break; 5020 default: 5021 poll_next = 0; 5022 BUG(); 5023 } 5024 5025 return poll_next; 5026 } 5027 5028 static void ata_pio_task(struct work_struct *work) 5029 { 5030 struct ata_port *ap = 5031 container_of(work, struct ata_port, port_task.work); 5032 struct ata_queued_cmd *qc = ap->port_task_data; 5033 u8 status; 5034 int poll_next; 5035 5036 fsm_start: 5037 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 5038 5039 /* 5040 * This is purely heuristic. This is a fast path. 5041 * Sometimes when we enter, BSY will be cleared in 5042 * a chk-status or two. If not, the drive is probably seeking 5043 * or something. Snooze for a couple msecs, then 5044 * chk-status again. If still busy, queue delayed work. 5045 */ 5046 status = ata_busy_wait(ap, ATA_BUSY, 5); 5047 if (status & ATA_BUSY) { 5048 msleep(2); 5049 status = ata_busy_wait(ap, ATA_BUSY, 10); 5050 if (status & ATA_BUSY) { 5051 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 5052 return; 5053 } 5054 } 5055 5056 /* move the HSM */ 5057 poll_next = ata_hsm_move(ap, qc, status, 1); 5058 5059 /* another command or interrupt handler 5060 * may be running at this point. 5061 */ 5062 if (poll_next) 5063 goto fsm_start; 5064 } 5065 5066 /** 5067 * ata_qc_new - Request an available ATA command, for queueing 5068 * @ap: Port associated with device @dev 5069 * @dev: Device from whom we request an available command structure 5070 * 5071 * LOCKING: 5072 * None. 5073 */ 5074 5075 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 5076 { 5077 struct ata_queued_cmd *qc = NULL; 5078 unsigned int i; 5079 5080 /* no command while frozen */ 5081 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5082 return NULL; 5083 5084 /* the last tag is reserved for internal command. */ 5085 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 5086 if (!test_and_set_bit(i, &ap->qc_allocated)) { 5087 qc = __ata_qc_from_tag(ap, i); 5088 break; 5089 } 5090 5091 if (qc) 5092 qc->tag = i; 5093 5094 return qc; 5095 } 5096 5097 /** 5098 * ata_qc_new_init - Request an available ATA command, and initialize it 5099 * @dev: Device from whom we request an available command structure 5100 * 5101 * LOCKING: 5102 * None. 5103 */ 5104 5105 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5106 { 5107 struct ata_port *ap = dev->ap; 5108 struct ata_queued_cmd *qc; 5109 5110 qc = ata_qc_new(ap); 5111 if (qc) { 5112 qc->scsicmd = NULL; 5113 qc->ap = ap; 5114 qc->dev = dev; 5115 5116 ata_qc_reinit(qc); 5117 } 5118 5119 return qc; 5120 } 5121 5122 /** 5123 * ata_qc_free - free unused ata_queued_cmd 5124 * @qc: Command to complete 5125 * 5126 * Designed to free unused ata_queued_cmd object 5127 * in case something prevents using it. 5128 * 5129 * LOCKING: 5130 * spin_lock_irqsave(host lock) 5131 */ 5132 void ata_qc_free(struct ata_queued_cmd *qc) 5133 { 5134 struct ata_port *ap = qc->ap; 5135 unsigned int tag; 5136 5137 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5138 5139 qc->flags = 0; 5140 tag = qc->tag; 5141 if (likely(ata_tag_valid(tag))) { 5142 qc->tag = ATA_TAG_POISON; 5143 clear_bit(tag, &ap->qc_allocated); 5144 } 5145 } 5146 5147 void __ata_qc_complete(struct ata_queued_cmd *qc) 5148 { 5149 struct ata_port *ap = qc->ap; 5150 5151 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5152 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5153 5154 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5155 ata_sg_clean(qc); 5156 5157 /* command should be marked inactive atomically with qc completion */ 5158 if (qc->tf.protocol == ATA_PROT_NCQ) 5159 ap->sactive &= ~(1 << qc->tag); 5160 else 5161 ap->active_tag = ATA_TAG_POISON; 5162 5163 /* atapi: mark qc as inactive to prevent the interrupt handler 5164 * from completing the command twice later, before the error handler 5165 * is called. (when rc != 0 and atapi request sense is needed) 5166 */ 5167 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5168 ap->qc_active &= ~(1 << qc->tag); 5169 5170 /* call completion callback */ 5171 qc->complete_fn(qc); 5172 } 5173 5174 static void fill_result_tf(struct ata_queued_cmd *qc) 5175 { 5176 struct ata_port *ap = qc->ap; 5177 5178 qc->result_tf.flags = qc->tf.flags; 5179 ap->ops->tf_read(ap, &qc->result_tf); 5180 } 5181 5182 /** 5183 * ata_qc_complete - Complete an active ATA command 5184 * @qc: Command to complete 5185 * @err_mask: ATA Status register contents 5186 * 5187 * Indicate to the mid and upper layers that an ATA 5188 * command has completed, with either an ok or not-ok status. 5189 * 5190 * LOCKING: 5191 * spin_lock_irqsave(host lock) 5192 */ 5193 void ata_qc_complete(struct ata_queued_cmd *qc) 5194 { 5195 struct ata_port *ap = qc->ap; 5196 5197 /* XXX: New EH and old EH use different mechanisms to 5198 * synchronize EH with regular execution path. 5199 * 5200 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5201 * Normal execution path is responsible for not accessing a 5202 * failed qc. libata core enforces the rule by returning NULL 5203 * from ata_qc_from_tag() for failed qcs. 5204 * 5205 * Old EH depends on ata_qc_complete() nullifying completion 5206 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5207 * not synchronize with interrupt handler. Only PIO task is 5208 * taken care of. 5209 */ 5210 if (ap->ops->error_handler) { 5211 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5212 5213 if (unlikely(qc->err_mask)) 5214 qc->flags |= ATA_QCFLAG_FAILED; 5215 5216 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5217 if (!ata_tag_internal(qc->tag)) { 5218 /* always fill result TF for failed qc */ 5219 fill_result_tf(qc); 5220 ata_qc_schedule_eh(qc); 5221 return; 5222 } 5223 } 5224 5225 /* read result TF if requested */ 5226 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5227 fill_result_tf(qc); 5228 5229 __ata_qc_complete(qc); 5230 } else { 5231 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5232 return; 5233 5234 /* read result TF if failed or requested */ 5235 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5236 fill_result_tf(qc); 5237 5238 __ata_qc_complete(qc); 5239 } 5240 } 5241 5242 /** 5243 * ata_qc_complete_multiple - Complete multiple qcs successfully 5244 * @ap: port in question 5245 * @qc_active: new qc_active mask 5246 * @finish_qc: LLDD callback invoked before completing a qc 5247 * 5248 * Complete in-flight commands. This functions is meant to be 5249 * called from low-level driver's interrupt routine to complete 5250 * requests normally. ap->qc_active and @qc_active is compared 5251 * and commands are completed accordingly. 5252 * 5253 * LOCKING: 5254 * spin_lock_irqsave(host lock) 5255 * 5256 * RETURNS: 5257 * Number of completed commands on success, -errno otherwise. 5258 */ 5259 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5260 void (*finish_qc)(struct ata_queued_cmd *)) 5261 { 5262 int nr_done = 0; 5263 u32 done_mask; 5264 int i; 5265 5266 done_mask = ap->qc_active ^ qc_active; 5267 5268 if (unlikely(done_mask & qc_active)) { 5269 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5270 "(%08x->%08x)\n", ap->qc_active, qc_active); 5271 return -EINVAL; 5272 } 5273 5274 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5275 struct ata_queued_cmd *qc; 5276 5277 if (!(done_mask & (1 << i))) 5278 continue; 5279 5280 if ((qc = ata_qc_from_tag(ap, i))) { 5281 if (finish_qc) 5282 finish_qc(qc); 5283 ata_qc_complete(qc); 5284 nr_done++; 5285 } 5286 } 5287 5288 return nr_done; 5289 } 5290 5291 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5292 { 5293 struct ata_port *ap = qc->ap; 5294 5295 switch (qc->tf.protocol) { 5296 case ATA_PROT_NCQ: 5297 case ATA_PROT_DMA: 5298 case ATA_PROT_ATAPI_DMA: 5299 return 1; 5300 5301 case ATA_PROT_ATAPI: 5302 case ATA_PROT_PIO: 5303 if (ap->flags & ATA_FLAG_PIO_DMA) 5304 return 1; 5305 5306 /* fall through */ 5307 5308 default: 5309 return 0; 5310 } 5311 5312 /* never reached */ 5313 } 5314 5315 /** 5316 * ata_qc_issue - issue taskfile to device 5317 * @qc: command to issue to device 5318 * 5319 * Prepare an ATA command to submission to device. 5320 * This includes mapping the data into a DMA-able 5321 * area, filling in the S/G table, and finally 5322 * writing the taskfile to hardware, starting the command. 5323 * 5324 * LOCKING: 5325 * spin_lock_irqsave(host lock) 5326 */ 5327 void ata_qc_issue(struct ata_queued_cmd *qc) 5328 { 5329 struct ata_port *ap = qc->ap; 5330 5331 /* Make sure only one non-NCQ command is outstanding. The 5332 * check is skipped for old EH because it reuses active qc to 5333 * request ATAPI sense. 5334 */ 5335 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 5336 5337 if (qc->tf.protocol == ATA_PROT_NCQ) { 5338 WARN_ON(ap->sactive & (1 << qc->tag)); 5339 ap->sactive |= 1 << qc->tag; 5340 } else { 5341 WARN_ON(ap->sactive); 5342 ap->active_tag = qc->tag; 5343 } 5344 5345 qc->flags |= ATA_QCFLAG_ACTIVE; 5346 ap->qc_active |= 1 << qc->tag; 5347 5348 if (ata_should_dma_map(qc)) { 5349 if (qc->flags & ATA_QCFLAG_SG) { 5350 if (ata_sg_setup(qc)) 5351 goto sg_err; 5352 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5353 if (ata_sg_setup_one(qc)) 5354 goto sg_err; 5355 } 5356 } else { 5357 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5358 } 5359 5360 ap->ops->qc_prep(qc); 5361 5362 qc->err_mask |= ap->ops->qc_issue(qc); 5363 if (unlikely(qc->err_mask)) 5364 goto err; 5365 return; 5366 5367 sg_err: 5368 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5369 qc->err_mask |= AC_ERR_SYSTEM; 5370 err: 5371 ata_qc_complete(qc); 5372 } 5373 5374 /** 5375 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5376 * @qc: command to issue to device 5377 * 5378 * Using various libata functions and hooks, this function 5379 * starts an ATA command. ATA commands are grouped into 5380 * classes called "protocols", and issuing each type of protocol 5381 * is slightly different. 5382 * 5383 * May be used as the qc_issue() entry in ata_port_operations. 5384 * 5385 * LOCKING: 5386 * spin_lock_irqsave(host lock) 5387 * 5388 * RETURNS: 5389 * Zero on success, AC_ERR_* mask on failure 5390 */ 5391 5392 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5393 { 5394 struct ata_port *ap = qc->ap; 5395 5396 /* Use polling pio if the LLD doesn't handle 5397 * interrupt driven pio and atapi CDB interrupt. 5398 */ 5399 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5400 switch (qc->tf.protocol) { 5401 case ATA_PROT_PIO: 5402 case ATA_PROT_NODATA: 5403 case ATA_PROT_ATAPI: 5404 case ATA_PROT_ATAPI_NODATA: 5405 qc->tf.flags |= ATA_TFLAG_POLLING; 5406 break; 5407 case ATA_PROT_ATAPI_DMA: 5408 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5409 /* see ata_dma_blacklisted() */ 5410 BUG(); 5411 break; 5412 default: 5413 break; 5414 } 5415 } 5416 5417 /* Some controllers show flaky interrupt behavior after 5418 * setting xfer mode. Use polling instead. 5419 */ 5420 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && 5421 qc->tf.feature == SETFEATURES_XFER) && 5422 (ap->flags & ATA_FLAG_SETXFER_POLLING)) 5423 qc->tf.flags |= ATA_TFLAG_POLLING; 5424 5425 /* select the device */ 5426 ata_dev_select(ap, qc->dev->devno, 1, 0); 5427 5428 /* start the command */ 5429 switch (qc->tf.protocol) { 5430 case ATA_PROT_NODATA: 5431 if (qc->tf.flags & ATA_TFLAG_POLLING) 5432 ata_qc_set_polling(qc); 5433 5434 ata_tf_to_host(ap, &qc->tf); 5435 ap->hsm_task_state = HSM_ST_LAST; 5436 5437 if (qc->tf.flags & ATA_TFLAG_POLLING) 5438 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5439 5440 break; 5441 5442 case ATA_PROT_DMA: 5443 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5444 5445 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5446 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5447 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5448 ap->hsm_task_state = HSM_ST_LAST; 5449 break; 5450 5451 case ATA_PROT_PIO: 5452 if (qc->tf.flags & ATA_TFLAG_POLLING) 5453 ata_qc_set_polling(qc); 5454 5455 ata_tf_to_host(ap, &qc->tf); 5456 5457 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5458 /* PIO data out protocol */ 5459 ap->hsm_task_state = HSM_ST_FIRST; 5460 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5461 5462 /* always send first data block using 5463 * the ata_pio_task() codepath. 5464 */ 5465 } else { 5466 /* PIO data in protocol */ 5467 ap->hsm_task_state = HSM_ST; 5468 5469 if (qc->tf.flags & ATA_TFLAG_POLLING) 5470 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5471 5472 /* if polling, ata_pio_task() handles the rest. 5473 * otherwise, interrupt handler takes over from here. 5474 */ 5475 } 5476 5477 break; 5478 5479 case ATA_PROT_ATAPI: 5480 case ATA_PROT_ATAPI_NODATA: 5481 if (qc->tf.flags & ATA_TFLAG_POLLING) 5482 ata_qc_set_polling(qc); 5483 5484 ata_tf_to_host(ap, &qc->tf); 5485 5486 ap->hsm_task_state = HSM_ST_FIRST; 5487 5488 /* send cdb by polling if no cdb interrupt */ 5489 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5490 (qc->tf.flags & ATA_TFLAG_POLLING)) 5491 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5492 break; 5493 5494 case ATA_PROT_ATAPI_DMA: 5495 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5496 5497 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5498 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5499 ap->hsm_task_state = HSM_ST_FIRST; 5500 5501 /* send cdb by polling if no cdb interrupt */ 5502 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5503 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5504 break; 5505 5506 default: 5507 WARN_ON(1); 5508 return AC_ERR_SYSTEM; 5509 } 5510 5511 return 0; 5512 } 5513 5514 /** 5515 * ata_host_intr - Handle host interrupt for given (port, task) 5516 * @ap: Port on which interrupt arrived (possibly...) 5517 * @qc: Taskfile currently active in engine 5518 * 5519 * Handle host interrupt for given queued command. Currently, 5520 * only DMA interrupts are handled. All other commands are 5521 * handled via polling with interrupts disabled (nIEN bit). 5522 * 5523 * LOCKING: 5524 * spin_lock_irqsave(host lock) 5525 * 5526 * RETURNS: 5527 * One if interrupt was handled, zero if not (shared irq). 5528 */ 5529 5530 inline unsigned int ata_host_intr (struct ata_port *ap, 5531 struct ata_queued_cmd *qc) 5532 { 5533 struct ata_eh_info *ehi = &ap->eh_info; 5534 u8 status, host_stat = 0; 5535 5536 VPRINTK("ata%u: protocol %d task_state %d\n", 5537 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5538 5539 /* Check whether we are expecting interrupt in this state */ 5540 switch (ap->hsm_task_state) { 5541 case HSM_ST_FIRST: 5542 /* Some pre-ATAPI-4 devices assert INTRQ 5543 * at this state when ready to receive CDB. 5544 */ 5545 5546 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5547 * The flag was turned on only for atapi devices. 5548 * No need to check is_atapi_taskfile(&qc->tf) again. 5549 */ 5550 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5551 goto idle_irq; 5552 break; 5553 case HSM_ST_LAST: 5554 if (qc->tf.protocol == ATA_PROT_DMA || 5555 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5556 /* check status of DMA engine */ 5557 host_stat = ap->ops->bmdma_status(ap); 5558 VPRINTK("ata%u: host_stat 0x%X\n", 5559 ap->print_id, host_stat); 5560 5561 /* if it's not our irq... */ 5562 if (!(host_stat & ATA_DMA_INTR)) 5563 goto idle_irq; 5564 5565 /* before we do anything else, clear DMA-Start bit */ 5566 ap->ops->bmdma_stop(qc); 5567 5568 if (unlikely(host_stat & ATA_DMA_ERR)) { 5569 /* error when transfering data to/from memory */ 5570 qc->err_mask |= AC_ERR_HOST_BUS; 5571 ap->hsm_task_state = HSM_ST_ERR; 5572 } 5573 } 5574 break; 5575 case HSM_ST: 5576 break; 5577 default: 5578 goto idle_irq; 5579 } 5580 5581 /* check altstatus */ 5582 status = ata_altstatus(ap); 5583 if (status & ATA_BUSY) 5584 goto idle_irq; 5585 5586 /* check main status, clearing INTRQ */ 5587 status = ata_chk_status(ap); 5588 if (unlikely(status & ATA_BUSY)) 5589 goto idle_irq; 5590 5591 /* ack bmdma irq events */ 5592 ap->ops->irq_clear(ap); 5593 5594 ata_hsm_move(ap, qc, status, 0); 5595 5596 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5597 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5598 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5599 5600 return 1; /* irq handled */ 5601 5602 idle_irq: 5603 ap->stats.idle_irq++; 5604 5605 #ifdef ATA_IRQ_TRAP 5606 if ((ap->stats.idle_irq % 1000) == 0) { 5607 ap->ops->irq_ack(ap, 0); /* debug trap */ 5608 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5609 return 1; 5610 } 5611 #endif 5612 return 0; /* irq not handled */ 5613 } 5614 5615 /** 5616 * ata_interrupt - Default ATA host interrupt handler 5617 * @irq: irq line (unused) 5618 * @dev_instance: pointer to our ata_host information structure 5619 * 5620 * Default interrupt handler for PCI IDE devices. Calls 5621 * ata_host_intr() for each port that is not disabled. 5622 * 5623 * LOCKING: 5624 * Obtains host lock during operation. 5625 * 5626 * RETURNS: 5627 * IRQ_NONE or IRQ_HANDLED. 5628 */ 5629 5630 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5631 { 5632 struct ata_host *host = dev_instance; 5633 unsigned int i; 5634 unsigned int handled = 0; 5635 unsigned long flags; 5636 5637 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5638 spin_lock_irqsave(&host->lock, flags); 5639 5640 for (i = 0; i < host->n_ports; i++) { 5641 struct ata_port *ap; 5642 5643 ap = host->ports[i]; 5644 if (ap && 5645 !(ap->flags & ATA_FLAG_DISABLED)) { 5646 struct ata_queued_cmd *qc; 5647 5648 qc = ata_qc_from_tag(ap, ap->active_tag); 5649 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5650 (qc->flags & ATA_QCFLAG_ACTIVE)) 5651 handled |= ata_host_intr(ap, qc); 5652 } 5653 } 5654 5655 spin_unlock_irqrestore(&host->lock, flags); 5656 5657 return IRQ_RETVAL(handled); 5658 } 5659 5660 /** 5661 * sata_scr_valid - test whether SCRs are accessible 5662 * @ap: ATA port to test SCR accessibility for 5663 * 5664 * Test whether SCRs are accessible for @ap. 5665 * 5666 * LOCKING: 5667 * None. 5668 * 5669 * RETURNS: 5670 * 1 if SCRs are accessible, 0 otherwise. 5671 */ 5672 int sata_scr_valid(struct ata_port *ap) 5673 { 5674 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; 5675 } 5676 5677 /** 5678 * sata_scr_read - read SCR register of the specified port 5679 * @ap: ATA port to read SCR for 5680 * @reg: SCR to read 5681 * @val: Place to store read value 5682 * 5683 * Read SCR register @reg of @ap into *@val. This function is 5684 * guaranteed to succeed if the cable type of the port is SATA 5685 * and the port implements ->scr_read. 5686 * 5687 * LOCKING: 5688 * None. 5689 * 5690 * RETURNS: 5691 * 0 on success, negative errno on failure. 5692 */ 5693 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5694 { 5695 if (sata_scr_valid(ap)) { 5696 *val = ap->ops->scr_read(ap, reg); 5697 return 0; 5698 } 5699 return -EOPNOTSUPP; 5700 } 5701 5702 /** 5703 * sata_scr_write - write SCR register of the specified port 5704 * @ap: ATA port to write SCR for 5705 * @reg: SCR to write 5706 * @val: value to write 5707 * 5708 * Write @val to SCR register @reg of @ap. This function is 5709 * guaranteed to succeed if the cable type of the port is SATA 5710 * and the port implements ->scr_read. 5711 * 5712 * LOCKING: 5713 * None. 5714 * 5715 * RETURNS: 5716 * 0 on success, negative errno on failure. 5717 */ 5718 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5719 { 5720 if (sata_scr_valid(ap)) { 5721 ap->ops->scr_write(ap, reg, val); 5722 return 0; 5723 } 5724 return -EOPNOTSUPP; 5725 } 5726 5727 /** 5728 * sata_scr_write_flush - write SCR register of the specified port and flush 5729 * @ap: ATA port to write SCR for 5730 * @reg: SCR to write 5731 * @val: value to write 5732 * 5733 * This function is identical to sata_scr_write() except that this 5734 * function performs flush after writing to the register. 5735 * 5736 * LOCKING: 5737 * None. 5738 * 5739 * RETURNS: 5740 * 0 on success, negative errno on failure. 5741 */ 5742 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5743 { 5744 if (sata_scr_valid(ap)) { 5745 ap->ops->scr_write(ap, reg, val); 5746 ap->ops->scr_read(ap, reg); 5747 return 0; 5748 } 5749 return -EOPNOTSUPP; 5750 } 5751 5752 /** 5753 * ata_port_online - test whether the given port is online 5754 * @ap: ATA port to test 5755 * 5756 * Test whether @ap is online. Note that this function returns 0 5757 * if online status of @ap cannot be obtained, so 5758 * ata_port_online(ap) != !ata_port_offline(ap). 5759 * 5760 * LOCKING: 5761 * None. 5762 * 5763 * RETURNS: 5764 * 1 if the port online status is available and online. 5765 */ 5766 int ata_port_online(struct ata_port *ap) 5767 { 5768 u32 sstatus; 5769 5770 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5771 return 1; 5772 return 0; 5773 } 5774 5775 /** 5776 * ata_port_offline - test whether the given port is offline 5777 * @ap: ATA port to test 5778 * 5779 * Test whether @ap is offline. Note that this function returns 5780 * 0 if offline status of @ap cannot be obtained, so 5781 * ata_port_online(ap) != !ata_port_offline(ap). 5782 * 5783 * LOCKING: 5784 * None. 5785 * 5786 * RETURNS: 5787 * 1 if the port offline status is available and offline. 5788 */ 5789 int ata_port_offline(struct ata_port *ap) 5790 { 5791 u32 sstatus; 5792 5793 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5794 return 1; 5795 return 0; 5796 } 5797 5798 int ata_flush_cache(struct ata_device *dev) 5799 { 5800 unsigned int err_mask; 5801 u8 cmd; 5802 5803 if (!ata_try_flush_cache(dev)) 5804 return 0; 5805 5806 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5807 cmd = ATA_CMD_FLUSH_EXT; 5808 else 5809 cmd = ATA_CMD_FLUSH; 5810 5811 err_mask = ata_do_simple_cmd(dev, cmd); 5812 if (err_mask) { 5813 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5814 return -EIO; 5815 } 5816 5817 return 0; 5818 } 5819 5820 #ifdef CONFIG_PM 5821 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5822 unsigned int action, unsigned int ehi_flags, 5823 int wait) 5824 { 5825 unsigned long flags; 5826 int i, rc; 5827 5828 for (i = 0; i < host->n_ports; i++) { 5829 struct ata_port *ap = host->ports[i]; 5830 5831 /* Previous resume operation might still be in 5832 * progress. Wait for PM_PENDING to clear. 5833 */ 5834 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5835 ata_port_wait_eh(ap); 5836 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5837 } 5838 5839 /* request PM ops to EH */ 5840 spin_lock_irqsave(ap->lock, flags); 5841 5842 ap->pm_mesg = mesg; 5843 if (wait) { 5844 rc = 0; 5845 ap->pm_result = &rc; 5846 } 5847 5848 ap->pflags |= ATA_PFLAG_PM_PENDING; 5849 ap->eh_info.action |= action; 5850 ap->eh_info.flags |= ehi_flags; 5851 5852 ata_port_schedule_eh(ap); 5853 5854 spin_unlock_irqrestore(ap->lock, flags); 5855 5856 /* wait and check result */ 5857 if (wait) { 5858 ata_port_wait_eh(ap); 5859 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5860 if (rc) 5861 return rc; 5862 } 5863 } 5864 5865 return 0; 5866 } 5867 5868 /** 5869 * ata_host_suspend - suspend host 5870 * @host: host to suspend 5871 * @mesg: PM message 5872 * 5873 * Suspend @host. Actual operation is performed by EH. This 5874 * function requests EH to perform PM operations and waits for EH 5875 * to finish. 5876 * 5877 * LOCKING: 5878 * Kernel thread context (may sleep). 5879 * 5880 * RETURNS: 5881 * 0 on success, -errno on failure. 5882 */ 5883 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5884 { 5885 int rc; 5886 5887 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5888 if (rc == 0) 5889 host->dev->power.power_state = mesg; 5890 return rc; 5891 } 5892 5893 /** 5894 * ata_host_resume - resume host 5895 * @host: host to resume 5896 * 5897 * Resume @host. Actual operation is performed by EH. This 5898 * function requests EH to perform PM operations and returns. 5899 * Note that all resume operations are performed parallely. 5900 * 5901 * LOCKING: 5902 * Kernel thread context (may sleep). 5903 */ 5904 void ata_host_resume(struct ata_host *host) 5905 { 5906 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5907 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5908 host->dev->power.power_state = PMSG_ON; 5909 } 5910 #endif 5911 5912 /** 5913 * ata_port_start - Set port up for dma. 5914 * @ap: Port to initialize 5915 * 5916 * Called just after data structures for each port are 5917 * initialized. Allocates space for PRD table. 5918 * 5919 * May be used as the port_start() entry in ata_port_operations. 5920 * 5921 * LOCKING: 5922 * Inherited from caller. 5923 */ 5924 int ata_port_start(struct ata_port *ap) 5925 { 5926 struct device *dev = ap->dev; 5927 int rc; 5928 5929 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5930 GFP_KERNEL); 5931 if (!ap->prd) 5932 return -ENOMEM; 5933 5934 rc = ata_pad_alloc(ap, dev); 5935 if (rc) 5936 return rc; 5937 5938 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5939 (unsigned long long)ap->prd_dma); 5940 return 0; 5941 } 5942 5943 /** 5944 * ata_dev_init - Initialize an ata_device structure 5945 * @dev: Device structure to initialize 5946 * 5947 * Initialize @dev in preparation for probing. 5948 * 5949 * LOCKING: 5950 * Inherited from caller. 5951 */ 5952 void ata_dev_init(struct ata_device *dev) 5953 { 5954 struct ata_port *ap = dev->ap; 5955 unsigned long flags; 5956 5957 /* SATA spd limit is bound to the first device */ 5958 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5959 5960 /* High bits of dev->flags are used to record warm plug 5961 * requests which occur asynchronously. Synchronize using 5962 * host lock. 5963 */ 5964 spin_lock_irqsave(ap->lock, flags); 5965 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5966 spin_unlock_irqrestore(ap->lock, flags); 5967 5968 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5969 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5970 dev->pio_mask = UINT_MAX; 5971 dev->mwdma_mask = UINT_MAX; 5972 dev->udma_mask = UINT_MAX; 5973 } 5974 5975 /** 5976 * ata_port_alloc - allocate and initialize basic ATA port resources 5977 * @host: ATA host this allocated port belongs to 5978 * 5979 * Allocate and initialize basic ATA port resources. 5980 * 5981 * RETURNS: 5982 * Allocate ATA port on success, NULL on failure. 5983 * 5984 * LOCKING: 5985 * Inherited from calling layer (may sleep). 5986 */ 5987 struct ata_port *ata_port_alloc(struct ata_host *host) 5988 { 5989 struct ata_port *ap; 5990 unsigned int i; 5991 5992 DPRINTK("ENTER\n"); 5993 5994 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5995 if (!ap) 5996 return NULL; 5997 5998 ap->pflags |= ATA_PFLAG_INITIALIZING; 5999 ap->lock = &host->lock; 6000 ap->flags = ATA_FLAG_DISABLED; 6001 ap->print_id = -1; 6002 ap->ctl = ATA_DEVCTL_OBS; 6003 ap->host = host; 6004 ap->dev = host->dev; 6005 6006 ap->hw_sata_spd_limit = UINT_MAX; 6007 ap->active_tag = ATA_TAG_POISON; 6008 ap->last_ctl = 0xFF; 6009 6010 #if defined(ATA_VERBOSE_DEBUG) 6011 /* turn on all debugging levels */ 6012 ap->msg_enable = 0x00FF; 6013 #elif defined(ATA_DEBUG) 6014 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6015 #else 6016 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6017 #endif 6018 6019 INIT_DELAYED_WORK(&ap->port_task, NULL); 6020 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6021 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6022 INIT_LIST_HEAD(&ap->eh_done_q); 6023 init_waitqueue_head(&ap->eh_wait_q); 6024 6025 ap->cbl = ATA_CBL_NONE; 6026 6027 for (i = 0; i < ATA_MAX_DEVICES; i++) { 6028 struct ata_device *dev = &ap->device[i]; 6029 dev->ap = ap; 6030 dev->devno = i; 6031 ata_dev_init(dev); 6032 } 6033 6034 #ifdef ATA_IRQ_TRAP 6035 ap->stats.unhandled_irq = 1; 6036 ap->stats.idle_irq = 1; 6037 #endif 6038 return ap; 6039 } 6040 6041 static void ata_host_release(struct device *gendev, void *res) 6042 { 6043 struct ata_host *host = dev_get_drvdata(gendev); 6044 int i; 6045 6046 for (i = 0; i < host->n_ports; i++) { 6047 struct ata_port *ap = host->ports[i]; 6048 6049 if (!ap) 6050 continue; 6051 6052 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 6053 ap->ops->port_stop(ap); 6054 } 6055 6056 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 6057 host->ops->host_stop(host); 6058 6059 for (i = 0; i < host->n_ports; i++) { 6060 struct ata_port *ap = host->ports[i]; 6061 6062 if (!ap) 6063 continue; 6064 6065 if (ap->scsi_host) 6066 scsi_host_put(ap->scsi_host); 6067 6068 kfree(ap); 6069 host->ports[i] = NULL; 6070 } 6071 6072 dev_set_drvdata(gendev, NULL); 6073 } 6074 6075 /** 6076 * ata_host_alloc - allocate and init basic ATA host resources 6077 * @dev: generic device this host is associated with 6078 * @max_ports: maximum number of ATA ports associated with this host 6079 * 6080 * Allocate and initialize basic ATA host resources. LLD calls 6081 * this function to allocate a host, initializes it fully and 6082 * attaches it using ata_host_register(). 6083 * 6084 * @max_ports ports are allocated and host->n_ports is 6085 * initialized to @max_ports. The caller is allowed to decrease 6086 * host->n_ports before calling ata_host_register(). The unused 6087 * ports will be automatically freed on registration. 6088 * 6089 * RETURNS: 6090 * Allocate ATA host on success, NULL on failure. 6091 * 6092 * LOCKING: 6093 * Inherited from calling layer (may sleep). 6094 */ 6095 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6096 { 6097 struct ata_host *host; 6098 size_t sz; 6099 int i; 6100 6101 DPRINTK("ENTER\n"); 6102 6103 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6104 return NULL; 6105 6106 /* alloc a container for our list of ATA ports (buses) */ 6107 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6108 /* alloc a container for our list of ATA ports (buses) */ 6109 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6110 if (!host) 6111 goto err_out; 6112 6113 devres_add(dev, host); 6114 dev_set_drvdata(dev, host); 6115 6116 spin_lock_init(&host->lock); 6117 host->dev = dev; 6118 host->n_ports = max_ports; 6119 6120 /* allocate ports bound to this host */ 6121 for (i = 0; i < max_ports; i++) { 6122 struct ata_port *ap; 6123 6124 ap = ata_port_alloc(host); 6125 if (!ap) 6126 goto err_out; 6127 6128 ap->port_no = i; 6129 host->ports[i] = ap; 6130 } 6131 6132 devres_remove_group(dev, NULL); 6133 return host; 6134 6135 err_out: 6136 devres_release_group(dev, NULL); 6137 return NULL; 6138 } 6139 6140 /** 6141 * ata_host_alloc_pinfo - alloc host and init with port_info array 6142 * @dev: generic device this host is associated with 6143 * @ppi: array of ATA port_info to initialize host with 6144 * @n_ports: number of ATA ports attached to this host 6145 * 6146 * Allocate ATA host and initialize with info from @ppi. If NULL 6147 * terminated, @ppi may contain fewer entries than @n_ports. The 6148 * last entry will be used for the remaining ports. 6149 * 6150 * RETURNS: 6151 * Allocate ATA host on success, NULL on failure. 6152 * 6153 * LOCKING: 6154 * Inherited from calling layer (may sleep). 6155 */ 6156 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6157 const struct ata_port_info * const * ppi, 6158 int n_ports) 6159 { 6160 const struct ata_port_info *pi; 6161 struct ata_host *host; 6162 int i, j; 6163 6164 host = ata_host_alloc(dev, n_ports); 6165 if (!host) 6166 return NULL; 6167 6168 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6169 struct ata_port *ap = host->ports[i]; 6170 6171 if (ppi[j]) 6172 pi = ppi[j++]; 6173 6174 ap->pio_mask = pi->pio_mask; 6175 ap->mwdma_mask = pi->mwdma_mask; 6176 ap->udma_mask = pi->udma_mask; 6177 ap->flags |= pi->flags; 6178 ap->ops = pi->port_ops; 6179 6180 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6181 host->ops = pi->port_ops; 6182 if (!host->private_data && pi->private_data) 6183 host->private_data = pi->private_data; 6184 } 6185 6186 return host; 6187 } 6188 6189 /** 6190 * ata_host_start - start and freeze ports of an ATA host 6191 * @host: ATA host to start ports for 6192 * 6193 * Start and then freeze ports of @host. Started status is 6194 * recorded in host->flags, so this function can be called 6195 * multiple times. Ports are guaranteed to get started only 6196 * once. If host->ops isn't initialized yet, its set to the 6197 * first non-dummy port ops. 6198 * 6199 * LOCKING: 6200 * Inherited from calling layer (may sleep). 6201 * 6202 * RETURNS: 6203 * 0 if all ports are started successfully, -errno otherwise. 6204 */ 6205 int ata_host_start(struct ata_host *host) 6206 { 6207 int i, rc; 6208 6209 if (host->flags & ATA_HOST_STARTED) 6210 return 0; 6211 6212 for (i = 0; i < host->n_ports; i++) { 6213 struct ata_port *ap = host->ports[i]; 6214 6215 if (!host->ops && !ata_port_is_dummy(ap)) 6216 host->ops = ap->ops; 6217 6218 if (ap->ops->port_start) { 6219 rc = ap->ops->port_start(ap); 6220 if (rc) { 6221 ata_port_printk(ap, KERN_ERR, "failed to " 6222 "start port (errno=%d)\n", rc); 6223 goto err_out; 6224 } 6225 } 6226 6227 ata_eh_freeze_port(ap); 6228 } 6229 6230 host->flags |= ATA_HOST_STARTED; 6231 return 0; 6232 6233 err_out: 6234 while (--i >= 0) { 6235 struct ata_port *ap = host->ports[i]; 6236 6237 if (ap->ops->port_stop) 6238 ap->ops->port_stop(ap); 6239 } 6240 return rc; 6241 } 6242 6243 /** 6244 * ata_sas_host_init - Initialize a host struct 6245 * @host: host to initialize 6246 * @dev: device host is attached to 6247 * @flags: host flags 6248 * @ops: port_ops 6249 * 6250 * LOCKING: 6251 * PCI/etc. bus probe sem. 6252 * 6253 */ 6254 /* KILLME - the only user left is ipr */ 6255 void ata_host_init(struct ata_host *host, struct device *dev, 6256 unsigned long flags, const struct ata_port_operations *ops) 6257 { 6258 spin_lock_init(&host->lock); 6259 host->dev = dev; 6260 host->flags = flags; 6261 host->ops = ops; 6262 } 6263 6264 /** 6265 * ata_host_register - register initialized ATA host 6266 * @host: ATA host to register 6267 * @sht: template for SCSI host 6268 * 6269 * Register initialized ATA host. @host is allocated using 6270 * ata_host_alloc() and fully initialized by LLD. This function 6271 * starts ports, registers @host with ATA and SCSI layers and 6272 * probe registered devices. 6273 * 6274 * LOCKING: 6275 * Inherited from calling layer (may sleep). 6276 * 6277 * RETURNS: 6278 * 0 on success, -errno otherwise. 6279 */ 6280 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6281 { 6282 int i, rc; 6283 6284 /* host must have been started */ 6285 if (!(host->flags & ATA_HOST_STARTED)) { 6286 dev_printk(KERN_ERR, host->dev, 6287 "BUG: trying to register unstarted host\n"); 6288 WARN_ON(1); 6289 return -EINVAL; 6290 } 6291 6292 /* Blow away unused ports. This happens when LLD can't 6293 * determine the exact number of ports to allocate at 6294 * allocation time. 6295 */ 6296 for (i = host->n_ports; host->ports[i]; i++) 6297 kfree(host->ports[i]); 6298 6299 /* give ports names and add SCSI hosts */ 6300 for (i = 0; i < host->n_ports; i++) 6301 host->ports[i]->print_id = ata_print_id++; 6302 6303 rc = ata_scsi_add_hosts(host, sht); 6304 if (rc) 6305 return rc; 6306 6307 /* set cable, sata_spd_limit and report */ 6308 for (i = 0; i < host->n_ports; i++) { 6309 struct ata_port *ap = host->ports[i]; 6310 int irq_line; 6311 u32 scontrol; 6312 unsigned long xfer_mask; 6313 6314 /* set SATA cable type if still unset */ 6315 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6316 ap->cbl = ATA_CBL_SATA; 6317 6318 /* init sata_spd_limit to the current value */ 6319 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 6320 int spd = (scontrol >> 4) & 0xf; 6321 ap->hw_sata_spd_limit &= (1 << spd) - 1; 6322 } 6323 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6324 6325 /* report the secondary IRQ for second channel legacy */ 6326 irq_line = host->irq; 6327 if (i == 1 && host->irq2) 6328 irq_line = host->irq2; 6329 6330 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6331 ap->udma_mask); 6332 6333 /* print per-port info to dmesg */ 6334 if (!ata_port_is_dummy(ap)) 6335 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 6336 "ctl 0x%p bmdma 0x%p irq %d\n", 6337 ap->cbl == ATA_CBL_SATA ? 'S' : 'P', 6338 ata_mode_string(xfer_mask), 6339 ap->ioaddr.cmd_addr, 6340 ap->ioaddr.ctl_addr, 6341 ap->ioaddr.bmdma_addr, 6342 irq_line); 6343 else 6344 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6345 } 6346 6347 /* perform each probe synchronously */ 6348 DPRINTK("probe begin\n"); 6349 for (i = 0; i < host->n_ports; i++) { 6350 struct ata_port *ap = host->ports[i]; 6351 int rc; 6352 6353 /* probe */ 6354 if (ap->ops->error_handler) { 6355 struct ata_eh_info *ehi = &ap->eh_info; 6356 unsigned long flags; 6357 6358 ata_port_probe(ap); 6359 6360 /* kick EH for boot probing */ 6361 spin_lock_irqsave(ap->lock, flags); 6362 6363 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 6364 ehi->action |= ATA_EH_SOFTRESET; 6365 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6366 6367 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6368 ap->pflags |= ATA_PFLAG_LOADING; 6369 ata_port_schedule_eh(ap); 6370 6371 spin_unlock_irqrestore(ap->lock, flags); 6372 6373 /* wait for EH to finish */ 6374 ata_port_wait_eh(ap); 6375 } else { 6376 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6377 rc = ata_bus_probe(ap); 6378 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6379 6380 if (rc) { 6381 /* FIXME: do something useful here? 6382 * Current libata behavior will 6383 * tear down everything when 6384 * the module is removed 6385 * or the h/w is unplugged. 6386 */ 6387 } 6388 } 6389 } 6390 6391 /* probes are done, now scan each port's disk(s) */ 6392 DPRINTK("host probe begin\n"); 6393 for (i = 0; i < host->n_ports; i++) { 6394 struct ata_port *ap = host->ports[i]; 6395 6396 ata_scsi_scan_host(ap); 6397 } 6398 6399 return 0; 6400 } 6401 6402 /** 6403 * ata_host_activate - start host, request IRQ and register it 6404 * @host: target ATA host 6405 * @irq: IRQ to request 6406 * @irq_handler: irq_handler used when requesting IRQ 6407 * @irq_flags: irq_flags used when requesting IRQ 6408 * @sht: scsi_host_template to use when registering the host 6409 * 6410 * After allocating an ATA host and initializing it, most libata 6411 * LLDs perform three steps to activate the host - start host, 6412 * request IRQ and register it. This helper takes necessasry 6413 * arguments and performs the three steps in one go. 6414 * 6415 * LOCKING: 6416 * Inherited from calling layer (may sleep). 6417 * 6418 * RETURNS: 6419 * 0 on success, -errno otherwise. 6420 */ 6421 int ata_host_activate(struct ata_host *host, int irq, 6422 irq_handler_t irq_handler, unsigned long irq_flags, 6423 struct scsi_host_template *sht) 6424 { 6425 int rc; 6426 6427 rc = ata_host_start(host); 6428 if (rc) 6429 return rc; 6430 6431 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6432 dev_driver_string(host->dev), host); 6433 if (rc) 6434 return rc; 6435 6436 rc = ata_host_register(host, sht); 6437 /* if failed, just free the IRQ and leave ports alone */ 6438 if (rc) 6439 devm_free_irq(host->dev, irq, host); 6440 6441 return rc; 6442 } 6443 6444 /** 6445 * ata_port_detach - Detach ATA port in prepration of device removal 6446 * @ap: ATA port to be detached 6447 * 6448 * Detach all ATA devices and the associated SCSI devices of @ap; 6449 * then, remove the associated SCSI host. @ap is guaranteed to 6450 * be quiescent on return from this function. 6451 * 6452 * LOCKING: 6453 * Kernel thread context (may sleep). 6454 */ 6455 void ata_port_detach(struct ata_port *ap) 6456 { 6457 unsigned long flags; 6458 int i; 6459 6460 if (!ap->ops->error_handler) 6461 goto skip_eh; 6462 6463 /* tell EH we're leaving & flush EH */ 6464 spin_lock_irqsave(ap->lock, flags); 6465 ap->pflags |= ATA_PFLAG_UNLOADING; 6466 spin_unlock_irqrestore(ap->lock, flags); 6467 6468 ata_port_wait_eh(ap); 6469 6470 /* EH is now guaranteed to see UNLOADING, so no new device 6471 * will be attached. Disable all existing devices. 6472 */ 6473 spin_lock_irqsave(ap->lock, flags); 6474 6475 for (i = 0; i < ATA_MAX_DEVICES; i++) 6476 ata_dev_disable(&ap->device[i]); 6477 6478 spin_unlock_irqrestore(ap->lock, flags); 6479 6480 /* Final freeze & EH. All in-flight commands are aborted. EH 6481 * will be skipped and retrials will be terminated with bad 6482 * target. 6483 */ 6484 spin_lock_irqsave(ap->lock, flags); 6485 ata_port_freeze(ap); /* won't be thawed */ 6486 spin_unlock_irqrestore(ap->lock, flags); 6487 6488 ata_port_wait_eh(ap); 6489 6490 /* Flush hotplug task. The sequence is similar to 6491 * ata_port_flush_task(). 6492 */ 6493 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */ 6494 cancel_delayed_work(&ap->hotplug_task); 6495 cancel_work_sync(&ap->hotplug_task.work); 6496 6497 skip_eh: 6498 /* remove the associated SCSI host */ 6499 scsi_remove_host(ap->scsi_host); 6500 } 6501 6502 /** 6503 * ata_host_detach - Detach all ports of an ATA host 6504 * @host: Host to detach 6505 * 6506 * Detach all ports of @host. 6507 * 6508 * LOCKING: 6509 * Kernel thread context (may sleep). 6510 */ 6511 void ata_host_detach(struct ata_host *host) 6512 { 6513 int i; 6514 6515 for (i = 0; i < host->n_ports; i++) 6516 ata_port_detach(host->ports[i]); 6517 } 6518 6519 /** 6520 * ata_std_ports - initialize ioaddr with standard port offsets. 6521 * @ioaddr: IO address structure to be initialized 6522 * 6523 * Utility function which initializes data_addr, error_addr, 6524 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6525 * device_addr, status_addr, and command_addr to standard offsets 6526 * relative to cmd_addr. 6527 * 6528 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6529 */ 6530 6531 void ata_std_ports(struct ata_ioports *ioaddr) 6532 { 6533 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6534 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6535 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6536 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6537 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6538 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6539 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6540 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6541 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6542 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6543 } 6544 6545 6546 #ifdef CONFIG_PCI 6547 6548 /** 6549 * ata_pci_remove_one - PCI layer callback for device removal 6550 * @pdev: PCI device that was removed 6551 * 6552 * PCI layer indicates to libata via this hook that hot-unplug or 6553 * module unload event has occurred. Detach all ports. Resource 6554 * release is handled via devres. 6555 * 6556 * LOCKING: 6557 * Inherited from PCI layer (may sleep). 6558 */ 6559 void ata_pci_remove_one(struct pci_dev *pdev) 6560 { 6561 struct device *dev = pci_dev_to_dev(pdev); 6562 struct ata_host *host = dev_get_drvdata(dev); 6563 6564 ata_host_detach(host); 6565 } 6566 6567 /* move to PCI subsystem */ 6568 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6569 { 6570 unsigned long tmp = 0; 6571 6572 switch (bits->width) { 6573 case 1: { 6574 u8 tmp8 = 0; 6575 pci_read_config_byte(pdev, bits->reg, &tmp8); 6576 tmp = tmp8; 6577 break; 6578 } 6579 case 2: { 6580 u16 tmp16 = 0; 6581 pci_read_config_word(pdev, bits->reg, &tmp16); 6582 tmp = tmp16; 6583 break; 6584 } 6585 case 4: { 6586 u32 tmp32 = 0; 6587 pci_read_config_dword(pdev, bits->reg, &tmp32); 6588 tmp = tmp32; 6589 break; 6590 } 6591 6592 default: 6593 return -EINVAL; 6594 } 6595 6596 tmp &= bits->mask; 6597 6598 return (tmp == bits->val) ? 1 : 0; 6599 } 6600 6601 #ifdef CONFIG_PM 6602 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6603 { 6604 pci_save_state(pdev); 6605 pci_disable_device(pdev); 6606 6607 if (mesg.event == PM_EVENT_SUSPEND) 6608 pci_set_power_state(pdev, PCI_D3hot); 6609 } 6610 6611 int ata_pci_device_do_resume(struct pci_dev *pdev) 6612 { 6613 int rc; 6614 6615 pci_set_power_state(pdev, PCI_D0); 6616 pci_restore_state(pdev); 6617 6618 rc = pcim_enable_device(pdev); 6619 if (rc) { 6620 dev_printk(KERN_ERR, &pdev->dev, 6621 "failed to enable device after resume (%d)\n", rc); 6622 return rc; 6623 } 6624 6625 pci_set_master(pdev); 6626 return 0; 6627 } 6628 6629 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6630 { 6631 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6632 int rc = 0; 6633 6634 rc = ata_host_suspend(host, mesg); 6635 if (rc) 6636 return rc; 6637 6638 ata_pci_device_do_suspend(pdev, mesg); 6639 6640 return 0; 6641 } 6642 6643 int ata_pci_device_resume(struct pci_dev *pdev) 6644 { 6645 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6646 int rc; 6647 6648 rc = ata_pci_device_do_resume(pdev); 6649 if (rc == 0) 6650 ata_host_resume(host); 6651 return rc; 6652 } 6653 #endif /* CONFIG_PM */ 6654 6655 #endif /* CONFIG_PCI */ 6656 6657 6658 static int __init ata_init(void) 6659 { 6660 ata_probe_timeout *= HZ; 6661 ata_wq = create_workqueue("ata"); 6662 if (!ata_wq) 6663 return -ENOMEM; 6664 6665 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6666 if (!ata_aux_wq) { 6667 destroy_workqueue(ata_wq); 6668 return -ENOMEM; 6669 } 6670 6671 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6672 return 0; 6673 } 6674 6675 static void __exit ata_exit(void) 6676 { 6677 destroy_workqueue(ata_wq); 6678 destroy_workqueue(ata_aux_wq); 6679 } 6680 6681 subsys_initcall(ata_init); 6682 module_exit(ata_exit); 6683 6684 static unsigned long ratelimit_time; 6685 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6686 6687 int ata_ratelimit(void) 6688 { 6689 int rc; 6690 unsigned long flags; 6691 6692 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6693 6694 if (time_after(jiffies, ratelimit_time)) { 6695 rc = 1; 6696 ratelimit_time = jiffies + (HZ/5); 6697 } else 6698 rc = 0; 6699 6700 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6701 6702 return rc; 6703 } 6704 6705 /** 6706 * ata_wait_register - wait until register value changes 6707 * @reg: IO-mapped register 6708 * @mask: Mask to apply to read register value 6709 * @val: Wait condition 6710 * @interval_msec: polling interval in milliseconds 6711 * @timeout_msec: timeout in milliseconds 6712 * 6713 * Waiting for some bits of register to change is a common 6714 * operation for ATA controllers. This function reads 32bit LE 6715 * IO-mapped register @reg and tests for the following condition. 6716 * 6717 * (*@reg & mask) != val 6718 * 6719 * If the condition is met, it returns; otherwise, the process is 6720 * repeated after @interval_msec until timeout. 6721 * 6722 * LOCKING: 6723 * Kernel thread context (may sleep) 6724 * 6725 * RETURNS: 6726 * The final register value. 6727 */ 6728 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6729 unsigned long interval_msec, 6730 unsigned long timeout_msec) 6731 { 6732 unsigned long timeout; 6733 u32 tmp; 6734 6735 tmp = ioread32(reg); 6736 6737 /* Calculate timeout _after_ the first read to make sure 6738 * preceding writes reach the controller before starting to 6739 * eat away the timeout. 6740 */ 6741 timeout = jiffies + (timeout_msec * HZ) / 1000; 6742 6743 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6744 msleep(interval_msec); 6745 tmp = ioread32(reg); 6746 } 6747 6748 return tmp; 6749 } 6750 6751 /* 6752 * Dummy port_ops 6753 */ 6754 static void ata_dummy_noret(struct ata_port *ap) { } 6755 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6756 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6757 6758 static u8 ata_dummy_check_status(struct ata_port *ap) 6759 { 6760 return ATA_DRDY; 6761 } 6762 6763 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6764 { 6765 return AC_ERR_SYSTEM; 6766 } 6767 6768 const struct ata_port_operations ata_dummy_port_ops = { 6769 .port_disable = ata_port_disable, 6770 .check_status = ata_dummy_check_status, 6771 .check_altstatus = ata_dummy_check_status, 6772 .dev_select = ata_noop_dev_select, 6773 .qc_prep = ata_noop_qc_prep, 6774 .qc_issue = ata_dummy_qc_issue, 6775 .freeze = ata_dummy_noret, 6776 .thaw = ata_dummy_noret, 6777 .error_handler = ata_dummy_noret, 6778 .post_internal_cmd = ata_dummy_qc_noret, 6779 .irq_clear = ata_dummy_noret, 6780 .port_start = ata_dummy_ret0, 6781 .port_stop = ata_dummy_noret, 6782 }; 6783 6784 const struct ata_port_info ata_dummy_port_info = { 6785 .port_ops = &ata_dummy_port_ops, 6786 }; 6787 6788 /* 6789 * libata is essentially a library of internal helper functions for 6790 * low-level ATA host controller drivers. As such, the API/ABI is 6791 * likely to change as new drivers are added and updated. 6792 * Do not depend on ABI/API stability. 6793 */ 6794 6795 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6796 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6797 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6798 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6799 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6800 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6801 EXPORT_SYMBOL_GPL(ata_std_ports); 6802 EXPORT_SYMBOL_GPL(ata_host_init); 6803 EXPORT_SYMBOL_GPL(ata_host_alloc); 6804 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6805 EXPORT_SYMBOL_GPL(ata_host_start); 6806 EXPORT_SYMBOL_GPL(ata_host_register); 6807 EXPORT_SYMBOL_GPL(ata_host_activate); 6808 EXPORT_SYMBOL_GPL(ata_host_detach); 6809 EXPORT_SYMBOL_GPL(ata_sg_init); 6810 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6811 EXPORT_SYMBOL_GPL(ata_hsm_move); 6812 EXPORT_SYMBOL_GPL(ata_qc_complete); 6813 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6814 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6815 EXPORT_SYMBOL_GPL(ata_tf_load); 6816 EXPORT_SYMBOL_GPL(ata_tf_read); 6817 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6818 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6819 EXPORT_SYMBOL_GPL(sata_print_link_status); 6820 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6821 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6822 EXPORT_SYMBOL_GPL(ata_check_status); 6823 EXPORT_SYMBOL_GPL(ata_altstatus); 6824 EXPORT_SYMBOL_GPL(ata_exec_command); 6825 EXPORT_SYMBOL_GPL(ata_port_start); 6826 EXPORT_SYMBOL_GPL(ata_interrupt); 6827 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6828 EXPORT_SYMBOL_GPL(ata_data_xfer); 6829 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6830 EXPORT_SYMBOL_GPL(ata_qc_prep); 6831 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6832 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6833 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6834 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6835 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6836 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6837 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6838 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6839 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6840 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6841 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6842 EXPORT_SYMBOL_GPL(ata_port_probe); 6843 EXPORT_SYMBOL_GPL(ata_dev_disable); 6844 EXPORT_SYMBOL_GPL(sata_set_spd); 6845 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6846 EXPORT_SYMBOL_GPL(sata_phy_resume); 6847 EXPORT_SYMBOL_GPL(sata_phy_reset); 6848 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6849 EXPORT_SYMBOL_GPL(ata_bus_reset); 6850 EXPORT_SYMBOL_GPL(ata_std_prereset); 6851 EXPORT_SYMBOL_GPL(ata_std_softreset); 6852 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6853 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6854 EXPORT_SYMBOL_GPL(ata_std_postreset); 6855 EXPORT_SYMBOL_GPL(ata_dev_classify); 6856 EXPORT_SYMBOL_GPL(ata_dev_pair); 6857 EXPORT_SYMBOL_GPL(ata_port_disable); 6858 EXPORT_SYMBOL_GPL(ata_ratelimit); 6859 EXPORT_SYMBOL_GPL(ata_wait_register); 6860 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6861 EXPORT_SYMBOL_GPL(ata_wait_ready); 6862 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6863 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6864 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6866 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6867 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6868 EXPORT_SYMBOL_GPL(ata_host_intr); 6869 EXPORT_SYMBOL_GPL(sata_scr_valid); 6870 EXPORT_SYMBOL_GPL(sata_scr_read); 6871 EXPORT_SYMBOL_GPL(sata_scr_write); 6872 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6873 EXPORT_SYMBOL_GPL(ata_port_online); 6874 EXPORT_SYMBOL_GPL(ata_port_offline); 6875 #ifdef CONFIG_PM 6876 EXPORT_SYMBOL_GPL(ata_host_suspend); 6877 EXPORT_SYMBOL_GPL(ata_host_resume); 6878 #endif /* CONFIG_PM */ 6879 EXPORT_SYMBOL_GPL(ata_id_string); 6880 EXPORT_SYMBOL_GPL(ata_id_c_string); 6881 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6882 EXPORT_SYMBOL_GPL(ata_device_blacklisted); 6883 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6884 6885 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6886 EXPORT_SYMBOL_GPL(ata_timing_compute); 6887 EXPORT_SYMBOL_GPL(ata_timing_merge); 6888 6889 #ifdef CONFIG_PCI 6890 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6891 EXPORT_SYMBOL_GPL(ata_pci_init_native_host); 6892 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma); 6893 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host); 6894 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6895 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6896 #ifdef CONFIG_PM 6897 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6899 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6900 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6901 #endif /* CONFIG_PM */ 6902 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6903 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6904 #endif /* CONFIG_PCI */ 6905 6906 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6907 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6908 EXPORT_SYMBOL_GPL(ata_port_abort); 6909 EXPORT_SYMBOL_GPL(ata_port_freeze); 6910 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6911 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6912 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6913 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6914 EXPORT_SYMBOL_GPL(ata_do_eh); 6915 EXPORT_SYMBOL_GPL(ata_irq_on); 6916 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6917 EXPORT_SYMBOL_GPL(ata_irq_ack); 6918 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6919 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6920 6921 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6922 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6923 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6924 EXPORT_SYMBOL_GPL(ata_cable_sata); 6925