1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal_sg - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @sgl: sg list for the data buffer of the command 1489 * @n_elem: Number of sg entries 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * command on entry and result on return. Timeout and error 1494 * conditions are reported via return value. No recovery action 1495 * is taken after a command times out. It's caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1505 struct ata_taskfile *tf, const u8 *cdb, 1506 int dma_dir, struct scatterlist *sgl, 1507 unsigned int n_elem, unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 int auto_timeout = 0; 1513 struct ata_queued_cmd *qc; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 DECLARE_COMPLETION_ONSTACK(wait); 1519 unsigned long flags; 1520 unsigned int err_mask; 1521 int rc; 1522 1523 spin_lock_irqsave(ap->lock, flags); 1524 1525 /* no internal command while frozen */ 1526 if (ata_port_is_frozen(ap)) { 1527 spin_unlock_irqrestore(ap->lock, flags); 1528 return AC_ERR_SYSTEM; 1529 } 1530 1531 /* initialize internal qc */ 1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1533 1534 qc->tag = ATA_TAG_INTERNAL; 1535 qc->hw_tag = 0; 1536 qc->scsicmd = NULL; 1537 qc->ap = ap; 1538 qc->dev = dev; 1539 ata_qc_reinit(qc); 1540 1541 preempted_tag = link->active_tag; 1542 preempted_sactive = link->sactive; 1543 preempted_qc_active = ap->qc_active; 1544 preempted_nr_active_links = ap->nr_active_links; 1545 link->active_tag = ATA_TAG_POISON; 1546 link->sactive = 0; 1547 ap->qc_active = 0; 1548 ap->nr_active_links = 0; 1549 1550 /* prepare & issue qc */ 1551 qc->tf = *tf; 1552 if (cdb) 1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1554 1555 /* some SATA bridges need us to indicate data xfer direction */ 1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1557 dma_dir == DMA_FROM_DEVICE) 1558 qc->tf.feature |= ATAPI_DMADIR; 1559 1560 qc->flags |= ATA_QCFLAG_RESULT_TF; 1561 qc->dma_dir = dma_dir; 1562 if (dma_dir != DMA_NONE) { 1563 unsigned int i, buflen = 0; 1564 struct scatterlist *sg; 1565 1566 for_each_sg(sgl, sg, n_elem, i) 1567 buflen += sg->length; 1568 1569 ata_sg_init(qc, sgl, n_elem); 1570 qc->nbytes = buflen; 1571 } 1572 1573 qc->private_data = &wait; 1574 qc->complete_fn = ata_qc_complete_internal; 1575 1576 ata_qc_issue(qc); 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 1580 if (!timeout) { 1581 if (ata_probe_timeout) 1582 timeout = ata_probe_timeout * 1000; 1583 else { 1584 timeout = ata_internal_cmd_timeout(dev, command); 1585 auto_timeout = 1; 1586 } 1587 } 1588 1589 ata_eh_release(ap); 1590 1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1592 1593 ata_eh_acquire(ap); 1594 1595 ata_sff_flush_pio_task(ap); 1596 1597 if (!rc) { 1598 spin_lock_irqsave(ap->lock, flags); 1599 1600 /* We're racing with irq here. If we lose, the 1601 * following test prevents us from completing the qc 1602 * twice. If we win, the port is frozen and will be 1603 * cleaned up by ->post_internal_cmd(). 1604 */ 1605 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1606 qc->err_mask |= AC_ERR_TIMEOUT; 1607 1608 ata_port_freeze(ap); 1609 1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1611 timeout, command); 1612 } 1613 1614 spin_unlock_irqrestore(ap->lock, flags); 1615 } 1616 1617 /* do post_internal_cmd */ 1618 if (ap->ops->post_internal_cmd) 1619 ap->ops->post_internal_cmd(qc); 1620 1621 /* perform minimal error analysis */ 1622 if (qc->flags & ATA_QCFLAG_EH) { 1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1624 qc->err_mask |= AC_ERR_DEV; 1625 1626 if (!qc->err_mask) 1627 qc->err_mask |= AC_ERR_OTHER; 1628 1629 if (qc->err_mask & ~AC_ERR_OTHER) 1630 qc->err_mask &= ~AC_ERR_OTHER; 1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1632 qc->result_tf.status |= ATA_SENSE; 1633 } 1634 1635 /* finish up */ 1636 spin_lock_irqsave(ap->lock, flags); 1637 1638 *tf = qc->result_tf; 1639 err_mask = qc->err_mask; 1640 1641 ata_qc_free(qc); 1642 link->active_tag = preempted_tag; 1643 link->sactive = preempted_sactive; 1644 ap->qc_active = preempted_qc_active; 1645 ap->nr_active_links = preempted_nr_active_links; 1646 1647 spin_unlock_irqrestore(ap->lock, flags); 1648 1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1650 ata_internal_cmd_timed_out(dev, command); 1651 1652 return err_mask; 1653 } 1654 1655 /** 1656 * ata_exec_internal - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data transfer direction of the command 1661 * @buf: Data buffer of the command 1662 * @buflen: Length of data buffer 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Wrapper around ata_exec_internal_sg() which takes simple 1666 * buffer instead of sg list. 1667 * 1668 * LOCKING: 1669 * None. Should be called with kernel context, might sleep. 1670 * 1671 * RETURNS: 1672 * Zero on success, AC_ERR_* mask on failure 1673 */ 1674 unsigned ata_exec_internal(struct ata_device *dev, 1675 struct ata_taskfile *tf, const u8 *cdb, 1676 int dma_dir, void *buf, unsigned int buflen, 1677 unsigned int timeout) 1678 { 1679 struct scatterlist *psg = NULL, sg; 1680 unsigned int n_elem = 0; 1681 1682 if (dma_dir != DMA_NONE) { 1683 WARN_ON(!buf); 1684 sg_init_one(&sg, buf, buflen); 1685 psg = &sg; 1686 n_elem++; 1687 } 1688 1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1690 timeout); 1691 } 1692 1693 /** 1694 * ata_pio_need_iordy - check if iordy needed 1695 * @adev: ATA device 1696 * 1697 * Check if the current speed of the device requires IORDY. Used 1698 * by various controllers for chip configuration. 1699 */ 1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1701 { 1702 /* Don't set IORDY if we're preparing for reset. IORDY may 1703 * lead to controller lock up on certain controllers if the 1704 * port is not occupied. See bko#11703 for details. 1705 */ 1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1707 return 0; 1708 /* Controller doesn't support IORDY. Probably a pointless 1709 * check as the caller should know this. 1710 */ 1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1712 return 0; 1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1714 if (ata_id_is_cfa(adev->id) 1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1716 return 0; 1717 /* PIO3 and higher it is mandatory */ 1718 if (adev->pio_mode > XFER_PIO_2) 1719 return 1; 1720 /* We turn it on when possible */ 1721 if (ata_id_has_iordy(adev->id)) 1722 return 1; 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1726 1727 /** 1728 * ata_pio_mask_no_iordy - Return the non IORDY mask 1729 * @adev: ATA device 1730 * 1731 * Compute the highest mode possible if we are not using iordy. Return 1732 * -1 if no iordy mode is available. 1733 */ 1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1735 { 1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1738 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1739 /* Is the speed faster than the drive allows non IORDY ? */ 1740 if (pio) { 1741 /* This is cycle times not frequency - watch the logic! */ 1742 if (pio > 240) /* PIO2 is 240nS per cycle */ 1743 return 3 << ATA_SHIFT_PIO; 1744 return 7 << ATA_SHIFT_PIO; 1745 } 1746 } 1747 return 3 << ATA_SHIFT_PIO; 1748 } 1749 1750 /** 1751 * ata_do_dev_read_id - default ID read method 1752 * @dev: device 1753 * @tf: proposed taskfile 1754 * @id: data buffer 1755 * 1756 * Issue the identify taskfile and hand back the buffer containing 1757 * identify data. For some RAID controllers and for pre ATA devices 1758 * this function is wrapped or replaced by the driver 1759 */ 1760 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1761 struct ata_taskfile *tf, __le16 *id) 1762 { 1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1765 } 1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1767 1768 /** 1769 * ata_dev_read_id - Read ID data from the specified device 1770 * @dev: target device 1771 * @p_class: pointer to class of the target device (may be changed) 1772 * @flags: ATA_READID_* flags 1773 * @id: buffer to read IDENTIFY data into 1774 * 1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1778 * for pre-ATA4 drives. 1779 * 1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1781 * now we abort if we hit that case. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1790 unsigned int flags, u16 *id) 1791 { 1792 struct ata_port *ap = dev->link->ap; 1793 unsigned int class = *p_class; 1794 struct ata_taskfile tf; 1795 unsigned int err_mask = 0; 1796 const char *reason; 1797 bool is_semb = class == ATA_DEV_SEMB; 1798 int may_fallback = 1, tried_spinup = 0; 1799 int rc; 1800 1801 retry: 1802 ata_tf_init(dev, &tf); 1803 1804 switch (class) { 1805 case ATA_DEV_SEMB: 1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1807 fallthrough; 1808 case ATA_DEV_ATA: 1809 case ATA_DEV_ZAC: 1810 tf.command = ATA_CMD_ID_ATA; 1811 break; 1812 case ATA_DEV_ATAPI: 1813 tf.command = ATA_CMD_ID_ATAPI; 1814 break; 1815 default: 1816 rc = -ENODEV; 1817 reason = "unsupported class"; 1818 goto err_out; 1819 } 1820 1821 tf.protocol = ATA_PROT_PIO; 1822 1823 /* Some devices choke if TF registers contain garbage. Make 1824 * sure those are properly initialized. 1825 */ 1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1827 1828 /* Device presence detection is unreliable on some 1829 * controllers. Always poll IDENTIFY if available. 1830 */ 1831 tf.flags |= ATA_TFLAG_POLLING; 1832 1833 if (ap->ops->read_id) 1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1835 else 1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1837 1838 if (err_mask) { 1839 if (err_mask & AC_ERR_NODEV_HINT) { 1840 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1841 return -ENOENT; 1842 } 1843 1844 if (is_semb) { 1845 ata_dev_info(dev, 1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1847 /* SEMB is not supported yet */ 1848 *p_class = ATA_DEV_SEMB_UNSUP; 1849 return 0; 1850 } 1851 1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1853 /* Device or controller might have reported 1854 * the wrong device class. Give a shot at the 1855 * other IDENTIFY if the current one is 1856 * aborted by the device. 1857 */ 1858 if (may_fallback) { 1859 may_fallback = 0; 1860 1861 if (class == ATA_DEV_ATA) 1862 class = ATA_DEV_ATAPI; 1863 else 1864 class = ATA_DEV_ATA; 1865 goto retry; 1866 } 1867 1868 /* Control reaches here iff the device aborted 1869 * both flavors of IDENTIFYs which happens 1870 * sometimes with phantom devices. 1871 */ 1872 ata_dev_dbg(dev, 1873 "both IDENTIFYs aborted, assuming NODEV\n"); 1874 return -ENOENT; 1875 } 1876 1877 rc = -EIO; 1878 reason = "I/O error"; 1879 goto err_out; 1880 } 1881 1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1883 ata_dev_info(dev, "dumping IDENTIFY data, " 1884 "class=%d may_fallback=%d tried_spinup=%d\n", 1885 class, may_fallback, tried_spinup); 1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1888 } 1889 1890 /* Falling back doesn't make sense if ID data was read 1891 * successfully at least once. 1892 */ 1893 may_fallback = 0; 1894 1895 swap_buf_le16(id, ATA_ID_WORDS); 1896 1897 /* sanity check */ 1898 rc = -EINVAL; 1899 reason = "device reports invalid type"; 1900 1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1903 goto err_out; 1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1905 ata_id_is_ata(id)) { 1906 ata_dev_dbg(dev, 1907 "host indicates ignore ATA devices, ignored\n"); 1908 return -ENOENT; 1909 } 1910 } else { 1911 if (ata_id_is_ata(id)) 1912 goto err_out; 1913 } 1914 1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1916 tried_spinup = 1; 1917 /* 1918 * Drive powered-up in standby mode, and requires a specific 1919 * SET_FEATURES spin-up subcommand before it will accept 1920 * anything other than the original IDENTIFY command. 1921 */ 1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1923 if (err_mask && id[2] != 0x738c) { 1924 rc = -EIO; 1925 reason = "SPINUP failed"; 1926 goto err_out; 1927 } 1928 /* 1929 * If the drive initially returned incomplete IDENTIFY info, 1930 * we now must reissue the IDENTIFY command. 1931 */ 1932 if (id[2] == 0x37c8) 1933 goto retry; 1934 } 1935 1936 if ((flags & ATA_READID_POSTRESET) && 1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1938 /* 1939 * The exact sequence expected by certain pre-ATA4 drives is: 1940 * SRST RESET 1941 * IDENTIFY (optional in early ATA) 1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1943 * anything else.. 1944 * Some drives were very specific about that exact sequence. 1945 * 1946 * Note that ATA4 says lba is mandatory so the second check 1947 * should never trigger. 1948 */ 1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1950 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1951 if (err_mask) { 1952 rc = -EIO; 1953 reason = "INIT_DEV_PARAMS failed"; 1954 goto err_out; 1955 } 1956 1957 /* current CHS translation info (id[53-58]) might be 1958 * changed. reread the identify device info. 1959 */ 1960 flags &= ~ATA_READID_POSTRESET; 1961 goto retry; 1962 } 1963 } 1964 1965 *p_class = class; 1966 1967 return 0; 1968 1969 err_out: 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1976 bool set_active) 1977 { 1978 /* Only applies to ATA and ZAC devices */ 1979 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1980 return false; 1981 1982 ata_tf_init(dev, tf); 1983 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1984 tf->protocol = ATA_PROT_NODATA; 1985 1986 if (set_active) { 1987 /* VERIFY for 1 sector at lba=0 */ 1988 tf->command = ATA_CMD_VERIFY; 1989 tf->nsect = 1; 1990 if (dev->flags & ATA_DFLAG_LBA) { 1991 tf->flags |= ATA_TFLAG_LBA; 1992 tf->device |= ATA_LBA; 1993 } else { 1994 /* CHS */ 1995 tf->lbal = 0x1; /* sect */ 1996 } 1997 } else { 1998 tf->command = ATA_CMD_STANDBYNOW1; 1999 } 2000 2001 return true; 2002 } 2003 2004 static bool ata_dev_power_is_active(struct ata_device *dev) 2005 { 2006 struct ata_taskfile tf; 2007 unsigned int err_mask; 2008 2009 ata_tf_init(dev, &tf); 2010 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 2011 tf.protocol = ATA_PROT_NODATA; 2012 tf.command = ATA_CMD_CHK_POWER; 2013 2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2015 if (err_mask) { 2016 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 2017 err_mask); 2018 /* 2019 * Assume we are in standby mode so that we always force a 2020 * spinup in ata_dev_power_set_active(). 2021 */ 2022 return false; 2023 } 2024 2025 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 2026 2027 /* Active or idle */ 2028 return tf.nsect == 0xff; 2029 } 2030 2031 /** 2032 * ata_dev_power_set_standby - Set a device power mode to standby 2033 * @dev: target device 2034 * 2035 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 2036 * For an HDD device, this spins down the disks. 2037 * 2038 * LOCKING: 2039 * Kernel thread context (may sleep). 2040 */ 2041 void ata_dev_power_set_standby(struct ata_device *dev) 2042 { 2043 unsigned long ap_flags = dev->link->ap->flags; 2044 struct ata_taskfile tf; 2045 unsigned int err_mask; 2046 2047 /* If the device is already sleeping or in standby, do nothing. */ 2048 if ((dev->flags & ATA_DFLAG_SLEEPING) || 2049 !ata_dev_power_is_active(dev)) 2050 return; 2051 2052 /* 2053 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2054 * causing some drives to spin up and down again. For these, do nothing 2055 * if we are being called on shutdown. 2056 */ 2057 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2058 system_state == SYSTEM_POWER_OFF) 2059 return; 2060 2061 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2062 system_entering_hibernation()) 2063 return; 2064 2065 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2066 if (!ata_dev_power_init_tf(dev, &tf, false)) 2067 return; 2068 2069 ata_dev_notice(dev, "Entering standby power mode\n"); 2070 2071 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2072 if (err_mask) 2073 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2074 err_mask); 2075 } 2076 2077 /** 2078 * ata_dev_power_set_active - Set a device power mode to active 2079 * @dev: target device 2080 * 2081 * Issue a VERIFY command to enter to ensure that the device is in the 2082 * active power mode. For a spun-down HDD (standby or idle power mode), 2083 * the VERIFY command will complete after the disk spins up. 2084 * 2085 * LOCKING: 2086 * Kernel thread context (may sleep). 2087 */ 2088 void ata_dev_power_set_active(struct ata_device *dev) 2089 { 2090 struct ata_taskfile tf; 2091 unsigned int err_mask; 2092 2093 /* 2094 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2095 * if supported by the device. 2096 */ 2097 if (!ata_dev_power_init_tf(dev, &tf, true)) 2098 return; 2099 2100 /* 2101 * Check the device power state & condition and force a spinup with 2102 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2103 */ 2104 if (ata_dev_power_is_active(dev)) 2105 return; 2106 2107 ata_dev_notice(dev, "Entering active power mode\n"); 2108 2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2110 if (err_mask) 2111 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2112 err_mask); 2113 } 2114 2115 /** 2116 * ata_read_log_page - read a specific log page 2117 * @dev: target device 2118 * @log: log to read 2119 * @page: page to read 2120 * @buf: buffer to store read page 2121 * @sectors: number of sectors to read 2122 * 2123 * Read log page using READ_LOG_EXT command. 2124 * 2125 * LOCKING: 2126 * Kernel thread context (may sleep). 2127 * 2128 * RETURNS: 2129 * 0 on success, AC_ERR_* mask otherwise. 2130 */ 2131 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2132 u8 page, void *buf, unsigned int sectors) 2133 { 2134 unsigned long ap_flags = dev->link->ap->flags; 2135 struct ata_taskfile tf; 2136 unsigned int err_mask; 2137 bool dma = false; 2138 2139 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2140 2141 /* 2142 * Return error without actually issuing the command on controllers 2143 * which e.g. lockup on a read log page. 2144 */ 2145 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2146 return AC_ERR_DEV; 2147 2148 retry: 2149 ata_tf_init(dev, &tf); 2150 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2151 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2152 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2153 tf.protocol = ATA_PROT_DMA; 2154 dma = true; 2155 } else { 2156 tf.command = ATA_CMD_READ_LOG_EXT; 2157 tf.protocol = ATA_PROT_PIO; 2158 dma = false; 2159 } 2160 tf.lbal = log; 2161 tf.lbam = page; 2162 tf.nsect = sectors; 2163 tf.hob_nsect = sectors >> 8; 2164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2165 2166 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2167 buf, sectors * ATA_SECT_SIZE, 0); 2168 2169 if (err_mask) { 2170 if (dma) { 2171 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2172 if (!ata_port_is_frozen(dev->link->ap)) 2173 goto retry; 2174 } 2175 ata_dev_err(dev, 2176 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2177 (unsigned int)log, (unsigned int)page, err_mask); 2178 } 2179 2180 return err_mask; 2181 } 2182 2183 static int ata_log_supported(struct ata_device *dev, u8 log) 2184 { 2185 struct ata_port *ap = dev->link->ap; 2186 2187 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2188 return 0; 2189 2190 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2191 return 0; 2192 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2193 } 2194 2195 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2196 { 2197 struct ata_port *ap = dev->link->ap; 2198 unsigned int err, i; 2199 2200 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2201 return false; 2202 2203 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2204 /* 2205 * IDENTIFY DEVICE data log is defined as mandatory starting 2206 * with ACS-3 (ATA version 10). Warn about the missing log 2207 * for drives which implement this ATA level or above. 2208 */ 2209 if (ata_id_major_version(dev->id) >= 10) 2210 ata_dev_warn(dev, 2211 "ATA Identify Device Log not supported\n"); 2212 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2213 return false; 2214 } 2215 2216 /* 2217 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2218 * supported. 2219 */ 2220 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2221 1); 2222 if (err) 2223 return false; 2224 2225 for (i = 0; i < ap->sector_buf[8]; i++) { 2226 if (ap->sector_buf[9 + i] == page) 2227 return true; 2228 } 2229 2230 return false; 2231 } 2232 2233 static int ata_do_link_spd_horkage(struct ata_device *dev) 2234 { 2235 struct ata_link *plink = ata_dev_phys_link(dev); 2236 u32 target, target_limit; 2237 2238 if (!sata_scr_valid(plink)) 2239 return 0; 2240 2241 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2242 target = 1; 2243 else 2244 return 0; 2245 2246 target_limit = (1 << target) - 1; 2247 2248 /* if already on stricter limit, no need to push further */ 2249 if (plink->sata_spd_limit <= target_limit) 2250 return 0; 2251 2252 plink->sata_spd_limit = target_limit; 2253 2254 /* Request another EH round by returning -EAGAIN if link is 2255 * going faster than the target speed. Forward progress is 2256 * guaranteed by setting sata_spd_limit to target_limit above. 2257 */ 2258 if (plink->sata_spd > target) { 2259 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2260 sata_spd_string(target)); 2261 return -EAGAIN; 2262 } 2263 return 0; 2264 } 2265 2266 static inline u8 ata_dev_knobble(struct ata_device *dev) 2267 { 2268 struct ata_port *ap = dev->link->ap; 2269 2270 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2271 return 0; 2272 2273 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2274 } 2275 2276 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2277 { 2278 struct ata_port *ap = dev->link->ap; 2279 unsigned int err_mask; 2280 2281 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2282 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2283 return; 2284 } 2285 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2286 0, ap->sector_buf, 1); 2287 if (!err_mask) { 2288 u8 *cmds = dev->ncq_send_recv_cmds; 2289 2290 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2291 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2292 2293 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2294 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2295 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2296 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2297 } 2298 } 2299 } 2300 2301 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2302 { 2303 struct ata_port *ap = dev->link->ap; 2304 unsigned int err_mask; 2305 2306 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2307 ata_dev_warn(dev, 2308 "NCQ Send/Recv Log not supported\n"); 2309 return; 2310 } 2311 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2312 0, ap->sector_buf, 1); 2313 if (!err_mask) { 2314 u8 *cmds = dev->ncq_non_data_cmds; 2315 2316 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2317 } 2318 } 2319 2320 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2321 { 2322 struct ata_port *ap = dev->link->ap; 2323 unsigned int err_mask; 2324 2325 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2326 return; 2327 2328 err_mask = ata_read_log_page(dev, 2329 ATA_LOG_IDENTIFY_DEVICE, 2330 ATA_LOG_SATA_SETTINGS, 2331 ap->sector_buf, 2332 1); 2333 if (err_mask) 2334 goto not_supported; 2335 2336 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2337 goto not_supported; 2338 2339 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2340 2341 return; 2342 2343 not_supported: 2344 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2345 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2346 } 2347 2348 static bool ata_dev_check_adapter(struct ata_device *dev, 2349 unsigned short vendor_id) 2350 { 2351 struct pci_dev *pcidev = NULL; 2352 struct device *parent_dev = NULL; 2353 2354 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2355 parent_dev = parent_dev->parent) { 2356 if (dev_is_pci(parent_dev)) { 2357 pcidev = to_pci_dev(parent_dev); 2358 if (pcidev->vendor == vendor_id) 2359 return true; 2360 break; 2361 } 2362 } 2363 2364 return false; 2365 } 2366 2367 static int ata_dev_config_ncq(struct ata_device *dev, 2368 char *desc, size_t desc_sz) 2369 { 2370 struct ata_port *ap = dev->link->ap; 2371 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2372 unsigned int err_mask; 2373 char *aa_desc = ""; 2374 2375 if (!ata_id_has_ncq(dev->id)) { 2376 desc[0] = '\0'; 2377 return 0; 2378 } 2379 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2380 return 0; 2381 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2382 snprintf(desc, desc_sz, "NCQ (not used)"); 2383 return 0; 2384 } 2385 2386 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2387 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2388 snprintf(desc, desc_sz, "NCQ (not used)"); 2389 return 0; 2390 } 2391 2392 if (ap->flags & ATA_FLAG_NCQ) { 2393 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2394 dev->flags |= ATA_DFLAG_NCQ; 2395 } 2396 2397 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2398 (ap->flags & ATA_FLAG_FPDMA_AA) && 2399 ata_id_has_fpdma_aa(dev->id)) { 2400 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2401 SATA_FPDMA_AA); 2402 if (err_mask) { 2403 ata_dev_err(dev, 2404 "failed to enable AA (error_mask=0x%x)\n", 2405 err_mask); 2406 if (err_mask != AC_ERR_DEV) { 2407 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2408 return -EIO; 2409 } 2410 } else 2411 aa_desc = ", AA"; 2412 } 2413 2414 if (hdepth >= ddepth) 2415 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2416 else 2417 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2418 ddepth, aa_desc); 2419 2420 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2421 if (ata_id_has_ncq_send_and_recv(dev->id)) 2422 ata_dev_config_ncq_send_recv(dev); 2423 if (ata_id_has_ncq_non_data(dev->id)) 2424 ata_dev_config_ncq_non_data(dev); 2425 if (ata_id_has_ncq_prio(dev->id)) 2426 ata_dev_config_ncq_prio(dev); 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2433 { 2434 unsigned int err_mask; 2435 2436 if (!ata_id_has_sense_reporting(dev->id)) 2437 return; 2438 2439 if (ata_id_sense_reporting_enabled(dev->id)) 2440 return; 2441 2442 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2443 if (err_mask) { 2444 ata_dev_dbg(dev, 2445 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2446 err_mask); 2447 } 2448 } 2449 2450 static void ata_dev_config_zac(struct ata_device *dev) 2451 { 2452 struct ata_port *ap = dev->link->ap; 2453 unsigned int err_mask; 2454 u8 *identify_buf = ap->sector_buf; 2455 2456 dev->zac_zones_optimal_open = U32_MAX; 2457 dev->zac_zones_optimal_nonseq = U32_MAX; 2458 dev->zac_zones_max_open = U32_MAX; 2459 2460 /* 2461 * Always set the 'ZAC' flag for Host-managed devices. 2462 */ 2463 if (dev->class == ATA_DEV_ZAC) 2464 dev->flags |= ATA_DFLAG_ZAC; 2465 else if (ata_id_zoned_cap(dev->id) == 0x01) 2466 /* 2467 * Check for host-aware devices. 2468 */ 2469 dev->flags |= ATA_DFLAG_ZAC; 2470 2471 if (!(dev->flags & ATA_DFLAG_ZAC)) 2472 return; 2473 2474 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2475 ata_dev_warn(dev, 2476 "ATA Zoned Information Log not supported\n"); 2477 return; 2478 } 2479 2480 /* 2481 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2482 */ 2483 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2484 ATA_LOG_ZONED_INFORMATION, 2485 identify_buf, 1); 2486 if (!err_mask) { 2487 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2488 2489 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2490 if ((zoned_cap >> 63)) 2491 dev->zac_zoned_cap = (zoned_cap & 1); 2492 opt_open = get_unaligned_le64(&identify_buf[24]); 2493 if ((opt_open >> 63)) 2494 dev->zac_zones_optimal_open = (u32)opt_open; 2495 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2496 if ((opt_nonseq >> 63)) 2497 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2498 max_open = get_unaligned_le64(&identify_buf[40]); 2499 if ((max_open >> 63)) 2500 dev->zac_zones_max_open = (u32)max_open; 2501 } 2502 } 2503 2504 static void ata_dev_config_trusted(struct ata_device *dev) 2505 { 2506 struct ata_port *ap = dev->link->ap; 2507 u64 trusted_cap; 2508 unsigned int err; 2509 2510 if (!ata_id_has_trusted(dev->id)) 2511 return; 2512 2513 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2514 ata_dev_warn(dev, 2515 "Security Log not supported\n"); 2516 return; 2517 } 2518 2519 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2520 ap->sector_buf, 1); 2521 if (err) 2522 return; 2523 2524 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2525 if (!(trusted_cap & (1ULL << 63))) { 2526 ata_dev_dbg(dev, 2527 "Trusted Computing capability qword not valid!\n"); 2528 return; 2529 } 2530 2531 if (trusted_cap & (1 << 0)) 2532 dev->flags |= ATA_DFLAG_TRUSTED; 2533 } 2534 2535 static void ata_dev_config_cdl(struct ata_device *dev) 2536 { 2537 struct ata_port *ap = dev->link->ap; 2538 unsigned int err_mask; 2539 bool cdl_enabled; 2540 u64 val; 2541 2542 if (ata_id_major_version(dev->id) < 12) 2543 goto not_supported; 2544 2545 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2546 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2547 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2548 goto not_supported; 2549 2550 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2551 ATA_LOG_SUPPORTED_CAPABILITIES, 2552 ap->sector_buf, 1); 2553 if (err_mask) 2554 goto not_supported; 2555 2556 /* Check Command Duration Limit Supported bits */ 2557 val = get_unaligned_le64(&ap->sector_buf[168]); 2558 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2559 goto not_supported; 2560 2561 /* Warn the user if command duration guideline is not supported */ 2562 if (!(val & BIT_ULL(1))) 2563 ata_dev_warn(dev, 2564 "Command duration guideline is not supported\n"); 2565 2566 /* 2567 * We must have support for the sense data for successful NCQ commands 2568 * log indicated by the successful NCQ command sense data supported bit. 2569 */ 2570 val = get_unaligned_le64(&ap->sector_buf[8]); 2571 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2572 ata_dev_warn(dev, 2573 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2574 goto not_supported; 2575 } 2576 2577 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2578 if (!ata_id_has_ncq_autosense(dev->id)) { 2579 ata_dev_warn(dev, 2580 "CDL supported but NCQ autosense is not supported\n"); 2581 goto not_supported; 2582 } 2583 2584 /* 2585 * If CDL is marked as enabled, make sure the feature is enabled too. 2586 * Conversely, if CDL is disabled, make sure the feature is turned off. 2587 */ 2588 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2589 ATA_LOG_CURRENT_SETTINGS, 2590 ap->sector_buf, 1); 2591 if (err_mask) 2592 goto not_supported; 2593 2594 val = get_unaligned_le64(&ap->sector_buf[8]); 2595 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2596 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2597 if (!cdl_enabled) { 2598 /* Enable CDL on the device */ 2599 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2600 if (err_mask) { 2601 ata_dev_err(dev, 2602 "Enable CDL feature failed\n"); 2603 goto not_supported; 2604 } 2605 } 2606 } else { 2607 if (cdl_enabled) { 2608 /* Disable CDL on the device */ 2609 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2610 if (err_mask) { 2611 ata_dev_err(dev, 2612 "Disable CDL feature failed\n"); 2613 goto not_supported; 2614 } 2615 } 2616 } 2617 2618 /* 2619 * While CDL itself has to be enabled using sysfs, CDL requires that 2620 * sense data for successful NCQ commands is enabled to work properly. 2621 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2622 * if supported. 2623 */ 2624 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2625 err_mask = ata_dev_set_feature(dev, 2626 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2627 if (err_mask) { 2628 ata_dev_warn(dev, 2629 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2630 err_mask); 2631 goto not_supported; 2632 } 2633 } 2634 2635 /* 2636 * Allocate a buffer to handle reading the sense data for successful 2637 * NCQ Commands log page for commands using a CDL with one of the limit 2638 * policy set to 0xD (successful completion with sense data available 2639 * bit set). 2640 */ 2641 if (!ap->ncq_sense_buf) { 2642 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2643 if (!ap->ncq_sense_buf) 2644 goto not_supported; 2645 } 2646 2647 /* 2648 * Command duration limits is supported: cache the CDL log page 18h 2649 * (command duration descriptors). 2650 */ 2651 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2652 if (err_mask) { 2653 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2654 goto not_supported; 2655 } 2656 2657 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2658 dev->flags |= ATA_DFLAG_CDL; 2659 2660 return; 2661 2662 not_supported: 2663 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2664 kfree(ap->ncq_sense_buf); 2665 ap->ncq_sense_buf = NULL; 2666 } 2667 2668 static int ata_dev_config_lba(struct ata_device *dev) 2669 { 2670 const u16 *id = dev->id; 2671 const char *lba_desc; 2672 char ncq_desc[32]; 2673 int ret; 2674 2675 dev->flags |= ATA_DFLAG_LBA; 2676 2677 if (ata_id_has_lba48(id)) { 2678 lba_desc = "LBA48"; 2679 dev->flags |= ATA_DFLAG_LBA48; 2680 if (dev->n_sectors >= (1UL << 28) && 2681 ata_id_has_flush_ext(id)) 2682 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2683 } else { 2684 lba_desc = "LBA"; 2685 } 2686 2687 /* config NCQ */ 2688 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2689 2690 /* print device info to dmesg */ 2691 if (ata_dev_print_info(dev)) 2692 ata_dev_info(dev, 2693 "%llu sectors, multi %u: %s %s\n", 2694 (unsigned long long)dev->n_sectors, 2695 dev->multi_count, lba_desc, ncq_desc); 2696 2697 return ret; 2698 } 2699 2700 static void ata_dev_config_chs(struct ata_device *dev) 2701 { 2702 const u16 *id = dev->id; 2703 2704 if (ata_id_current_chs_valid(id)) { 2705 /* Current CHS translation is valid. */ 2706 dev->cylinders = id[54]; 2707 dev->heads = id[55]; 2708 dev->sectors = id[56]; 2709 } else { 2710 /* Default translation */ 2711 dev->cylinders = id[1]; 2712 dev->heads = id[3]; 2713 dev->sectors = id[6]; 2714 } 2715 2716 /* print device info to dmesg */ 2717 if (ata_dev_print_info(dev)) 2718 ata_dev_info(dev, 2719 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2720 (unsigned long long)dev->n_sectors, 2721 dev->multi_count, dev->cylinders, 2722 dev->heads, dev->sectors); 2723 } 2724 2725 static void ata_dev_config_fua(struct ata_device *dev) 2726 { 2727 /* Ignore FUA support if its use is disabled globally */ 2728 if (!libata_fua) 2729 goto nofua; 2730 2731 /* Ignore devices without support for WRITE DMA FUA EXT */ 2732 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2733 goto nofua; 2734 2735 /* Ignore known bad devices and devices that lack NCQ support */ 2736 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2737 goto nofua; 2738 2739 dev->flags |= ATA_DFLAG_FUA; 2740 2741 return; 2742 2743 nofua: 2744 dev->flags &= ~ATA_DFLAG_FUA; 2745 } 2746 2747 static void ata_dev_config_devslp(struct ata_device *dev) 2748 { 2749 u8 *sata_setting = dev->link->ap->sector_buf; 2750 unsigned int err_mask; 2751 int i, j; 2752 2753 /* 2754 * Check device sleep capability. Get DevSlp timing variables 2755 * from SATA Settings page of Identify Device Data Log. 2756 */ 2757 if (!ata_id_has_devslp(dev->id) || 2758 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2759 return; 2760 2761 err_mask = ata_read_log_page(dev, 2762 ATA_LOG_IDENTIFY_DEVICE, 2763 ATA_LOG_SATA_SETTINGS, 2764 sata_setting, 1); 2765 if (err_mask) 2766 return; 2767 2768 dev->flags |= ATA_DFLAG_DEVSLP; 2769 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2770 j = ATA_LOG_DEVSLP_OFFSET + i; 2771 dev->devslp_timing[i] = sata_setting[j]; 2772 } 2773 } 2774 2775 static void ata_dev_config_cpr(struct ata_device *dev) 2776 { 2777 unsigned int err_mask; 2778 size_t buf_len; 2779 int i, nr_cpr = 0; 2780 struct ata_cpr_log *cpr_log = NULL; 2781 u8 *desc, *buf = NULL; 2782 2783 if (ata_id_major_version(dev->id) < 11) 2784 goto out; 2785 2786 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2787 if (buf_len == 0) 2788 goto out; 2789 2790 /* 2791 * Read the concurrent positioning ranges log (0x47). We can have at 2792 * most 255 32B range descriptors plus a 64B header. This log varies in 2793 * size, so use the size reported in the GPL directory. Reading beyond 2794 * the supported length will result in an error. 2795 */ 2796 buf_len <<= 9; 2797 buf = kzalloc(buf_len, GFP_KERNEL); 2798 if (!buf) 2799 goto out; 2800 2801 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2802 0, buf, buf_len >> 9); 2803 if (err_mask) 2804 goto out; 2805 2806 nr_cpr = buf[0]; 2807 if (!nr_cpr) 2808 goto out; 2809 2810 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2811 if (!cpr_log) 2812 goto out; 2813 2814 cpr_log->nr_cpr = nr_cpr; 2815 desc = &buf[64]; 2816 for (i = 0; i < nr_cpr; i++, desc += 32) { 2817 cpr_log->cpr[i].num = desc[0]; 2818 cpr_log->cpr[i].num_storage_elements = desc[1]; 2819 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2820 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2821 } 2822 2823 out: 2824 swap(dev->cpr_log, cpr_log); 2825 kfree(cpr_log); 2826 kfree(buf); 2827 } 2828 2829 static void ata_dev_print_features(struct ata_device *dev) 2830 { 2831 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2832 return; 2833 2834 ata_dev_info(dev, 2835 "Features:%s%s%s%s%s%s%s%s\n", 2836 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2837 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2838 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2839 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2840 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2841 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2842 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2843 dev->cpr_log ? " CPR" : ""); 2844 } 2845 2846 /** 2847 * ata_dev_configure - Configure the specified ATA/ATAPI device 2848 * @dev: Target device to configure 2849 * 2850 * Configure @dev according to @dev->id. Generic and low-level 2851 * driver specific fixups are also applied. 2852 * 2853 * LOCKING: 2854 * Kernel thread context (may sleep) 2855 * 2856 * RETURNS: 2857 * 0 on success, -errno otherwise 2858 */ 2859 int ata_dev_configure(struct ata_device *dev) 2860 { 2861 struct ata_port *ap = dev->link->ap; 2862 bool print_info = ata_dev_print_info(dev); 2863 const u16 *id = dev->id; 2864 unsigned int xfer_mask; 2865 unsigned int err_mask; 2866 char revbuf[7]; /* XYZ-99\0 */ 2867 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2868 char modelbuf[ATA_ID_PROD_LEN+1]; 2869 int rc; 2870 2871 if (!ata_dev_enabled(dev)) { 2872 ata_dev_dbg(dev, "no device\n"); 2873 return 0; 2874 } 2875 2876 /* set horkage */ 2877 dev->horkage |= ata_dev_blacklisted(dev); 2878 ata_force_horkage(dev); 2879 2880 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2881 ata_dev_info(dev, "unsupported device, disabling\n"); 2882 ata_dev_disable(dev); 2883 return 0; 2884 } 2885 2886 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2887 dev->class == ATA_DEV_ATAPI) { 2888 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2889 atapi_enabled ? "not supported with this driver" 2890 : "disabled"); 2891 ata_dev_disable(dev); 2892 return 0; 2893 } 2894 2895 rc = ata_do_link_spd_horkage(dev); 2896 if (rc) 2897 return rc; 2898 2899 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2900 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2901 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2902 dev->horkage |= ATA_HORKAGE_NOLPM; 2903 2904 if (ap->flags & ATA_FLAG_NO_LPM) 2905 dev->horkage |= ATA_HORKAGE_NOLPM; 2906 2907 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2908 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2909 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2910 } 2911 2912 /* let ACPI work its magic */ 2913 rc = ata_acpi_on_devcfg(dev); 2914 if (rc) 2915 return rc; 2916 2917 /* massage HPA, do it early as it might change IDENTIFY data */ 2918 rc = ata_hpa_resize(dev); 2919 if (rc) 2920 return rc; 2921 2922 /* print device capabilities */ 2923 ata_dev_dbg(dev, 2924 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2925 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2926 __func__, 2927 id[49], id[82], id[83], id[84], 2928 id[85], id[86], id[87], id[88]); 2929 2930 /* initialize to-be-configured parameters */ 2931 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2932 dev->max_sectors = 0; 2933 dev->cdb_len = 0; 2934 dev->n_sectors = 0; 2935 dev->cylinders = 0; 2936 dev->heads = 0; 2937 dev->sectors = 0; 2938 dev->multi_count = 0; 2939 2940 /* 2941 * common ATA, ATAPI feature tests 2942 */ 2943 2944 /* find max transfer mode; for printk only */ 2945 xfer_mask = ata_id_xfermask(id); 2946 2947 ata_dump_id(dev, id); 2948 2949 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2950 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2951 sizeof(fwrevbuf)); 2952 2953 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2954 sizeof(modelbuf)); 2955 2956 /* ATA-specific feature tests */ 2957 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2958 if (ata_id_is_cfa(id)) { 2959 /* CPRM may make this media unusable */ 2960 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2961 ata_dev_warn(dev, 2962 "supports DRM functions and may not be fully accessible\n"); 2963 snprintf(revbuf, 7, "CFA"); 2964 } else { 2965 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2966 /* Warn the user if the device has TPM extensions */ 2967 if (ata_id_has_tpm(id)) 2968 ata_dev_warn(dev, 2969 "supports DRM functions and may not be fully accessible\n"); 2970 } 2971 2972 dev->n_sectors = ata_id_n_sectors(id); 2973 2974 /* get current R/W Multiple count setting */ 2975 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2976 unsigned int max = dev->id[47] & 0xff; 2977 unsigned int cnt = dev->id[59] & 0xff; 2978 /* only recognize/allow powers of two here */ 2979 if (is_power_of_2(max) && is_power_of_2(cnt)) 2980 if (cnt <= max) 2981 dev->multi_count = cnt; 2982 } 2983 2984 /* print device info to dmesg */ 2985 if (print_info) 2986 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2987 revbuf, modelbuf, fwrevbuf, 2988 ata_mode_string(xfer_mask)); 2989 2990 if (ata_id_has_lba(id)) { 2991 rc = ata_dev_config_lba(dev); 2992 if (rc) 2993 return rc; 2994 } else { 2995 ata_dev_config_chs(dev); 2996 } 2997 2998 ata_dev_config_fua(dev); 2999 ata_dev_config_devslp(dev); 3000 ata_dev_config_sense_reporting(dev); 3001 ata_dev_config_zac(dev); 3002 ata_dev_config_trusted(dev); 3003 ata_dev_config_cpr(dev); 3004 ata_dev_config_cdl(dev); 3005 dev->cdb_len = 32; 3006 3007 if (print_info) 3008 ata_dev_print_features(dev); 3009 } 3010 3011 /* ATAPI-specific feature tests */ 3012 else if (dev->class == ATA_DEV_ATAPI) { 3013 const char *cdb_intr_string = ""; 3014 const char *atapi_an_string = ""; 3015 const char *dma_dir_string = ""; 3016 u32 sntf; 3017 3018 rc = atapi_cdb_len(id); 3019 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 3020 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 3021 rc = -EINVAL; 3022 goto err_out_nosup; 3023 } 3024 dev->cdb_len = (unsigned int) rc; 3025 3026 /* Enable ATAPI AN if both the host and device have 3027 * the support. If PMP is attached, SNTF is required 3028 * to enable ATAPI AN to discern between PHY status 3029 * changed notifications and ATAPI ANs. 3030 */ 3031 if (atapi_an && 3032 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 3033 (!sata_pmp_attached(ap) || 3034 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 3035 /* issue SET feature command to turn this on */ 3036 err_mask = ata_dev_set_feature(dev, 3037 SETFEATURES_SATA_ENABLE, SATA_AN); 3038 if (err_mask) 3039 ata_dev_err(dev, 3040 "failed to enable ATAPI AN (err_mask=0x%x)\n", 3041 err_mask); 3042 else { 3043 dev->flags |= ATA_DFLAG_AN; 3044 atapi_an_string = ", ATAPI AN"; 3045 } 3046 } 3047 3048 if (ata_id_cdb_intr(dev->id)) { 3049 dev->flags |= ATA_DFLAG_CDB_INTR; 3050 cdb_intr_string = ", CDB intr"; 3051 } 3052 3053 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 3054 dev->flags |= ATA_DFLAG_DMADIR; 3055 dma_dir_string = ", DMADIR"; 3056 } 3057 3058 if (ata_id_has_da(dev->id)) { 3059 dev->flags |= ATA_DFLAG_DA; 3060 zpodd_init(dev); 3061 } 3062 3063 /* print device info to dmesg */ 3064 if (print_info) 3065 ata_dev_info(dev, 3066 "ATAPI: %s, %s, max %s%s%s%s\n", 3067 modelbuf, fwrevbuf, 3068 ata_mode_string(xfer_mask), 3069 cdb_intr_string, atapi_an_string, 3070 dma_dir_string); 3071 } 3072 3073 /* determine max_sectors */ 3074 dev->max_sectors = ATA_MAX_SECTORS; 3075 if (dev->flags & ATA_DFLAG_LBA48) 3076 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3077 3078 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3079 200 sectors */ 3080 if (ata_dev_knobble(dev)) { 3081 if (print_info) 3082 ata_dev_info(dev, "applying bridge limits\n"); 3083 dev->udma_mask &= ATA_UDMA5; 3084 dev->max_sectors = ATA_MAX_SECTORS; 3085 } 3086 3087 if ((dev->class == ATA_DEV_ATAPI) && 3088 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3089 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3090 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 3091 } 3092 3093 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 3094 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3095 dev->max_sectors); 3096 3097 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 3098 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3099 dev->max_sectors); 3100 3101 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 3102 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3103 3104 if (ap->ops->dev_config) 3105 ap->ops->dev_config(dev); 3106 3107 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 3108 /* Let the user know. We don't want to disallow opens for 3109 rescue purposes, or in case the vendor is just a blithering 3110 idiot. Do this after the dev_config call as some controllers 3111 with buggy firmware may want to avoid reporting false device 3112 bugs */ 3113 3114 if (print_info) { 3115 ata_dev_warn(dev, 3116 "Drive reports diagnostics failure. This may indicate a drive\n"); 3117 ata_dev_warn(dev, 3118 "fault or invalid emulation. Contact drive vendor for information.\n"); 3119 } 3120 } 3121 3122 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 3123 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3124 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3125 } 3126 3127 return 0; 3128 3129 err_out_nosup: 3130 return rc; 3131 } 3132 3133 /** 3134 * ata_cable_40wire - return 40 wire cable type 3135 * @ap: port 3136 * 3137 * Helper method for drivers which want to hardwire 40 wire cable 3138 * detection. 3139 */ 3140 3141 int ata_cable_40wire(struct ata_port *ap) 3142 { 3143 return ATA_CBL_PATA40; 3144 } 3145 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3146 3147 /** 3148 * ata_cable_80wire - return 80 wire cable type 3149 * @ap: port 3150 * 3151 * Helper method for drivers which want to hardwire 80 wire cable 3152 * detection. 3153 */ 3154 3155 int ata_cable_80wire(struct ata_port *ap) 3156 { 3157 return ATA_CBL_PATA80; 3158 } 3159 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3160 3161 /** 3162 * ata_cable_unknown - return unknown PATA cable. 3163 * @ap: port 3164 * 3165 * Helper method for drivers which have no PATA cable detection. 3166 */ 3167 3168 int ata_cable_unknown(struct ata_port *ap) 3169 { 3170 return ATA_CBL_PATA_UNK; 3171 } 3172 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3173 3174 /** 3175 * ata_cable_ignore - return ignored PATA cable. 3176 * @ap: port 3177 * 3178 * Helper method for drivers which don't use cable type to limit 3179 * transfer mode. 3180 */ 3181 int ata_cable_ignore(struct ata_port *ap) 3182 { 3183 return ATA_CBL_PATA_IGN; 3184 } 3185 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3186 3187 /** 3188 * ata_cable_sata - return SATA cable type 3189 * @ap: port 3190 * 3191 * Helper method for drivers which have SATA cables 3192 */ 3193 3194 int ata_cable_sata(struct ata_port *ap) 3195 { 3196 return ATA_CBL_SATA; 3197 } 3198 EXPORT_SYMBOL_GPL(ata_cable_sata); 3199 3200 /** 3201 * sata_print_link_status - Print SATA link status 3202 * @link: SATA link to printk link status about 3203 * 3204 * This function prints link speed and status of a SATA link. 3205 * 3206 * LOCKING: 3207 * None. 3208 */ 3209 static void sata_print_link_status(struct ata_link *link) 3210 { 3211 u32 sstatus, scontrol, tmp; 3212 3213 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3214 return; 3215 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3216 return; 3217 3218 if (ata_phys_link_online(link)) { 3219 tmp = (sstatus >> 4) & 0xf; 3220 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3221 sata_spd_string(tmp), sstatus, scontrol); 3222 } else { 3223 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3224 sstatus, scontrol); 3225 } 3226 } 3227 3228 /** 3229 * ata_dev_pair - return other device on cable 3230 * @adev: device 3231 * 3232 * Obtain the other device on the same cable, or if none is 3233 * present NULL is returned 3234 */ 3235 3236 struct ata_device *ata_dev_pair(struct ata_device *adev) 3237 { 3238 struct ata_link *link = adev->link; 3239 struct ata_device *pair = &link->device[1 - adev->devno]; 3240 if (!ata_dev_enabled(pair)) 3241 return NULL; 3242 return pair; 3243 } 3244 EXPORT_SYMBOL_GPL(ata_dev_pair); 3245 3246 /** 3247 * sata_down_spd_limit - adjust SATA spd limit downward 3248 * @link: Link to adjust SATA spd limit for 3249 * @spd_limit: Additional limit 3250 * 3251 * Adjust SATA spd limit of @link downward. Note that this 3252 * function only adjusts the limit. The change must be applied 3253 * using sata_set_spd(). 3254 * 3255 * If @spd_limit is non-zero, the speed is limited to equal to or 3256 * lower than @spd_limit if such speed is supported. If 3257 * @spd_limit is slower than any supported speed, only the lowest 3258 * supported speed is allowed. 3259 * 3260 * LOCKING: 3261 * Inherited from caller. 3262 * 3263 * RETURNS: 3264 * 0 on success, negative errno on failure 3265 */ 3266 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3267 { 3268 u32 sstatus, spd, mask; 3269 int rc, bit; 3270 3271 if (!sata_scr_valid(link)) 3272 return -EOPNOTSUPP; 3273 3274 /* If SCR can be read, use it to determine the current SPD. 3275 * If not, use cached value in link->sata_spd. 3276 */ 3277 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3278 if (rc == 0 && ata_sstatus_online(sstatus)) 3279 spd = (sstatus >> 4) & 0xf; 3280 else 3281 spd = link->sata_spd; 3282 3283 mask = link->sata_spd_limit; 3284 if (mask <= 1) 3285 return -EINVAL; 3286 3287 /* unconditionally mask off the highest bit */ 3288 bit = fls(mask) - 1; 3289 mask &= ~(1 << bit); 3290 3291 /* 3292 * Mask off all speeds higher than or equal to the current one. At 3293 * this point, if current SPD is not available and we previously 3294 * recorded the link speed from SStatus, the driver has already 3295 * masked off the highest bit so mask should already be 1 or 0. 3296 * Otherwise, we should not force 1.5Gbps on a link where we have 3297 * not previously recorded speed from SStatus. Just return in this 3298 * case. 3299 */ 3300 if (spd > 1) 3301 mask &= (1 << (spd - 1)) - 1; 3302 else if (link->sata_spd) 3303 return -EINVAL; 3304 3305 /* were we already at the bottom? */ 3306 if (!mask) 3307 return -EINVAL; 3308 3309 if (spd_limit) { 3310 if (mask & ((1 << spd_limit) - 1)) 3311 mask &= (1 << spd_limit) - 1; 3312 else { 3313 bit = ffs(mask) - 1; 3314 mask = 1 << bit; 3315 } 3316 } 3317 3318 link->sata_spd_limit = mask; 3319 3320 ata_link_warn(link, "limiting SATA link speed to %s\n", 3321 sata_spd_string(fls(mask))); 3322 3323 return 0; 3324 } 3325 3326 #ifdef CONFIG_ATA_ACPI 3327 /** 3328 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3329 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3330 * @cycle: cycle duration in ns 3331 * 3332 * Return matching xfer mode for @cycle. The returned mode is of 3333 * the transfer type specified by @xfer_shift. If @cycle is too 3334 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3335 * than the fastest known mode, the fasted mode is returned. 3336 * 3337 * LOCKING: 3338 * None. 3339 * 3340 * RETURNS: 3341 * Matching xfer_mode, 0xff if no match found. 3342 */ 3343 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3344 { 3345 u8 base_mode = 0xff, last_mode = 0xff; 3346 const struct ata_xfer_ent *ent; 3347 const struct ata_timing *t; 3348 3349 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3350 if (ent->shift == xfer_shift) 3351 base_mode = ent->base; 3352 3353 for (t = ata_timing_find_mode(base_mode); 3354 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3355 unsigned short this_cycle; 3356 3357 switch (xfer_shift) { 3358 case ATA_SHIFT_PIO: 3359 case ATA_SHIFT_MWDMA: 3360 this_cycle = t->cycle; 3361 break; 3362 case ATA_SHIFT_UDMA: 3363 this_cycle = t->udma; 3364 break; 3365 default: 3366 return 0xff; 3367 } 3368 3369 if (cycle > this_cycle) 3370 break; 3371 3372 last_mode = t->mode; 3373 } 3374 3375 return last_mode; 3376 } 3377 #endif 3378 3379 /** 3380 * ata_down_xfermask_limit - adjust dev xfer masks downward 3381 * @dev: Device to adjust xfer masks 3382 * @sel: ATA_DNXFER_* selector 3383 * 3384 * Adjust xfer masks of @dev downward. Note that this function 3385 * does not apply the change. Invoking ata_set_mode() afterwards 3386 * will apply the limit. 3387 * 3388 * LOCKING: 3389 * Inherited from caller. 3390 * 3391 * RETURNS: 3392 * 0 on success, negative errno on failure 3393 */ 3394 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3395 { 3396 char buf[32]; 3397 unsigned int orig_mask, xfer_mask; 3398 unsigned int pio_mask, mwdma_mask, udma_mask; 3399 int quiet, highbit; 3400 3401 quiet = !!(sel & ATA_DNXFER_QUIET); 3402 sel &= ~ATA_DNXFER_QUIET; 3403 3404 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3405 dev->mwdma_mask, 3406 dev->udma_mask); 3407 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3408 3409 switch (sel) { 3410 case ATA_DNXFER_PIO: 3411 highbit = fls(pio_mask) - 1; 3412 pio_mask &= ~(1 << highbit); 3413 break; 3414 3415 case ATA_DNXFER_DMA: 3416 if (udma_mask) { 3417 highbit = fls(udma_mask) - 1; 3418 udma_mask &= ~(1 << highbit); 3419 if (!udma_mask) 3420 return -ENOENT; 3421 } else if (mwdma_mask) { 3422 highbit = fls(mwdma_mask) - 1; 3423 mwdma_mask &= ~(1 << highbit); 3424 if (!mwdma_mask) 3425 return -ENOENT; 3426 } 3427 break; 3428 3429 case ATA_DNXFER_40C: 3430 udma_mask &= ATA_UDMA_MASK_40C; 3431 break; 3432 3433 case ATA_DNXFER_FORCE_PIO0: 3434 pio_mask &= 1; 3435 fallthrough; 3436 case ATA_DNXFER_FORCE_PIO: 3437 mwdma_mask = 0; 3438 udma_mask = 0; 3439 break; 3440 3441 default: 3442 BUG(); 3443 } 3444 3445 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3446 3447 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3448 return -ENOENT; 3449 3450 if (!quiet) { 3451 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3452 snprintf(buf, sizeof(buf), "%s:%s", 3453 ata_mode_string(xfer_mask), 3454 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3455 else 3456 snprintf(buf, sizeof(buf), "%s", 3457 ata_mode_string(xfer_mask)); 3458 3459 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3460 } 3461 3462 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3463 &dev->udma_mask); 3464 3465 return 0; 3466 } 3467 3468 static int ata_dev_set_mode(struct ata_device *dev) 3469 { 3470 struct ata_port *ap = dev->link->ap; 3471 struct ata_eh_context *ehc = &dev->link->eh_context; 3472 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3473 const char *dev_err_whine = ""; 3474 int ign_dev_err = 0; 3475 unsigned int err_mask = 0; 3476 int rc; 3477 3478 dev->flags &= ~ATA_DFLAG_PIO; 3479 if (dev->xfer_shift == ATA_SHIFT_PIO) 3480 dev->flags |= ATA_DFLAG_PIO; 3481 3482 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3483 dev_err_whine = " (SET_XFERMODE skipped)"; 3484 else { 3485 if (nosetxfer) 3486 ata_dev_warn(dev, 3487 "NOSETXFER but PATA detected - can't " 3488 "skip SETXFER, might malfunction\n"); 3489 err_mask = ata_dev_set_xfermode(dev); 3490 } 3491 3492 if (err_mask & ~AC_ERR_DEV) 3493 goto fail; 3494 3495 /* revalidate */ 3496 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3497 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3498 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3499 if (rc) 3500 return rc; 3501 3502 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3503 /* Old CFA may refuse this command, which is just fine */ 3504 if (ata_id_is_cfa(dev->id)) 3505 ign_dev_err = 1; 3506 /* Catch several broken garbage emulations plus some pre 3507 ATA devices */ 3508 if (ata_id_major_version(dev->id) == 0 && 3509 dev->pio_mode <= XFER_PIO_2) 3510 ign_dev_err = 1; 3511 /* Some very old devices and some bad newer ones fail 3512 any kind of SET_XFERMODE request but support PIO0-2 3513 timings and no IORDY */ 3514 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3515 ign_dev_err = 1; 3516 } 3517 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3518 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3519 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3520 dev->dma_mode == XFER_MW_DMA_0 && 3521 (dev->id[63] >> 8) & 1) 3522 ign_dev_err = 1; 3523 3524 /* if the device is actually configured correctly, ignore dev err */ 3525 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3526 ign_dev_err = 1; 3527 3528 if (err_mask & AC_ERR_DEV) { 3529 if (!ign_dev_err) 3530 goto fail; 3531 else 3532 dev_err_whine = " (device error ignored)"; 3533 } 3534 3535 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3536 dev->xfer_shift, (int)dev->xfer_mode); 3537 3538 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3539 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3540 ata_dev_info(dev, "configured for %s%s\n", 3541 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3542 dev_err_whine); 3543 3544 return 0; 3545 3546 fail: 3547 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3548 return -EIO; 3549 } 3550 3551 /** 3552 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3553 * @link: link on which timings will be programmed 3554 * @r_failed_dev: out parameter for failed device 3555 * 3556 * Standard implementation of the function used to tune and set 3557 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3558 * ata_dev_set_mode() fails, pointer to the failing device is 3559 * returned in @r_failed_dev. 3560 * 3561 * LOCKING: 3562 * PCI/etc. bus probe sem. 3563 * 3564 * RETURNS: 3565 * 0 on success, negative errno otherwise 3566 */ 3567 3568 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3569 { 3570 struct ata_port *ap = link->ap; 3571 struct ata_device *dev; 3572 int rc = 0, used_dma = 0, found = 0; 3573 3574 /* step 1: calculate xfer_mask */ 3575 ata_for_each_dev(dev, link, ENABLED) { 3576 unsigned int pio_mask, dma_mask; 3577 unsigned int mode_mask; 3578 3579 mode_mask = ATA_DMA_MASK_ATA; 3580 if (dev->class == ATA_DEV_ATAPI) 3581 mode_mask = ATA_DMA_MASK_ATAPI; 3582 else if (ata_id_is_cfa(dev->id)) 3583 mode_mask = ATA_DMA_MASK_CFA; 3584 3585 ata_dev_xfermask(dev); 3586 ata_force_xfermask(dev); 3587 3588 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3589 3590 if (libata_dma_mask & mode_mask) 3591 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3592 dev->udma_mask); 3593 else 3594 dma_mask = 0; 3595 3596 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3597 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3598 3599 found = 1; 3600 if (ata_dma_enabled(dev)) 3601 used_dma = 1; 3602 } 3603 if (!found) 3604 goto out; 3605 3606 /* step 2: always set host PIO timings */ 3607 ata_for_each_dev(dev, link, ENABLED) { 3608 if (dev->pio_mode == 0xff) { 3609 ata_dev_warn(dev, "no PIO support\n"); 3610 rc = -EINVAL; 3611 goto out; 3612 } 3613 3614 dev->xfer_mode = dev->pio_mode; 3615 dev->xfer_shift = ATA_SHIFT_PIO; 3616 if (ap->ops->set_piomode) 3617 ap->ops->set_piomode(ap, dev); 3618 } 3619 3620 /* step 3: set host DMA timings */ 3621 ata_for_each_dev(dev, link, ENABLED) { 3622 if (!ata_dma_enabled(dev)) 3623 continue; 3624 3625 dev->xfer_mode = dev->dma_mode; 3626 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3627 if (ap->ops->set_dmamode) 3628 ap->ops->set_dmamode(ap, dev); 3629 } 3630 3631 /* step 4: update devices' xfer mode */ 3632 ata_for_each_dev(dev, link, ENABLED) { 3633 rc = ata_dev_set_mode(dev); 3634 if (rc) 3635 goto out; 3636 } 3637 3638 /* Record simplex status. If we selected DMA then the other 3639 * host channels are not permitted to do so. 3640 */ 3641 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3642 ap->host->simplex_claimed = ap; 3643 3644 out: 3645 if (rc) 3646 *r_failed_dev = dev; 3647 return rc; 3648 } 3649 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3650 3651 /** 3652 * ata_wait_ready - wait for link to become ready 3653 * @link: link to be waited on 3654 * @deadline: deadline jiffies for the operation 3655 * @check_ready: callback to check link readiness 3656 * 3657 * Wait for @link to become ready. @check_ready should return 3658 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3659 * link doesn't seem to be occupied, other errno for other error 3660 * conditions. 3661 * 3662 * Transient -ENODEV conditions are allowed for 3663 * ATA_TMOUT_FF_WAIT. 3664 * 3665 * LOCKING: 3666 * EH context. 3667 * 3668 * RETURNS: 3669 * 0 if @link is ready before @deadline; otherwise, -errno. 3670 */ 3671 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3672 int (*check_ready)(struct ata_link *link)) 3673 { 3674 unsigned long start = jiffies; 3675 unsigned long nodev_deadline; 3676 int warned = 0; 3677 3678 /* choose which 0xff timeout to use, read comment in libata.h */ 3679 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3680 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3681 else 3682 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3683 3684 /* Slave readiness can't be tested separately from master. On 3685 * M/S emulation configuration, this function should be called 3686 * only on the master and it will handle both master and slave. 3687 */ 3688 WARN_ON(link == link->ap->slave_link); 3689 3690 if (time_after(nodev_deadline, deadline)) 3691 nodev_deadline = deadline; 3692 3693 while (1) { 3694 unsigned long now = jiffies; 3695 int ready, tmp; 3696 3697 ready = tmp = check_ready(link); 3698 if (ready > 0) 3699 return 0; 3700 3701 /* 3702 * -ENODEV could be transient. Ignore -ENODEV if link 3703 * is online. Also, some SATA devices take a long 3704 * time to clear 0xff after reset. Wait for 3705 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3706 * offline. 3707 * 3708 * Note that some PATA controllers (pata_ali) explode 3709 * if status register is read more than once when 3710 * there's no device attached. 3711 */ 3712 if (ready == -ENODEV) { 3713 if (ata_link_online(link)) 3714 ready = 0; 3715 else if ((link->ap->flags & ATA_FLAG_SATA) && 3716 !ata_link_offline(link) && 3717 time_before(now, nodev_deadline)) 3718 ready = 0; 3719 } 3720 3721 if (ready) 3722 return ready; 3723 if (time_after(now, deadline)) 3724 return -EBUSY; 3725 3726 if (!warned && time_after(now, start + 5 * HZ) && 3727 (deadline - now > 3 * HZ)) { 3728 ata_link_warn(link, 3729 "link is slow to respond, please be patient " 3730 "(ready=%d)\n", tmp); 3731 warned = 1; 3732 } 3733 3734 ata_msleep(link->ap, 50); 3735 } 3736 } 3737 3738 /** 3739 * ata_wait_after_reset - wait for link to become ready after reset 3740 * @link: link to be waited on 3741 * @deadline: deadline jiffies for the operation 3742 * @check_ready: callback to check link readiness 3743 * 3744 * Wait for @link to become ready after reset. 3745 * 3746 * LOCKING: 3747 * EH context. 3748 * 3749 * RETURNS: 3750 * 0 if @link is ready before @deadline; otherwise, -errno. 3751 */ 3752 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3753 int (*check_ready)(struct ata_link *link)) 3754 { 3755 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3756 3757 return ata_wait_ready(link, deadline, check_ready); 3758 } 3759 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3760 3761 /** 3762 * ata_std_prereset - prepare for reset 3763 * @link: ATA link to be reset 3764 * @deadline: deadline jiffies for the operation 3765 * 3766 * @link is about to be reset. Initialize it. Failure from 3767 * prereset makes libata abort whole reset sequence and give up 3768 * that port, so prereset should be best-effort. It does its 3769 * best to prepare for reset sequence but if things go wrong, it 3770 * should just whine, not fail. 3771 * 3772 * LOCKING: 3773 * Kernel thread context (may sleep) 3774 * 3775 * RETURNS: 3776 * Always 0. 3777 */ 3778 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3779 { 3780 struct ata_port *ap = link->ap; 3781 struct ata_eh_context *ehc = &link->eh_context; 3782 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3783 int rc; 3784 3785 /* if we're about to do hardreset, nothing more to do */ 3786 if (ehc->i.action & ATA_EH_HARDRESET) 3787 return 0; 3788 3789 /* if SATA, resume link */ 3790 if (ap->flags & ATA_FLAG_SATA) { 3791 rc = sata_link_resume(link, timing, deadline); 3792 /* whine about phy resume failure but proceed */ 3793 if (rc && rc != -EOPNOTSUPP) 3794 ata_link_warn(link, 3795 "failed to resume link for reset (errno=%d)\n", 3796 rc); 3797 } 3798 3799 /* no point in trying softreset on offline link */ 3800 if (ata_phys_link_offline(link)) 3801 ehc->i.action &= ~ATA_EH_SOFTRESET; 3802 3803 return 0; 3804 } 3805 EXPORT_SYMBOL_GPL(ata_std_prereset); 3806 3807 /** 3808 * sata_std_hardreset - COMRESET w/o waiting or classification 3809 * @link: link to reset 3810 * @class: resulting class of attached device 3811 * @deadline: deadline jiffies for the operation 3812 * 3813 * Standard SATA COMRESET w/o waiting or classification. 3814 * 3815 * LOCKING: 3816 * Kernel thread context (may sleep) 3817 * 3818 * RETURNS: 3819 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3820 */ 3821 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3822 unsigned long deadline) 3823 { 3824 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context); 3825 bool online; 3826 int rc; 3827 3828 /* do hardreset */ 3829 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3830 return online ? -EAGAIN : rc; 3831 } 3832 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3833 3834 /** 3835 * ata_std_postreset - standard postreset callback 3836 * @link: the target ata_link 3837 * @classes: classes of attached devices 3838 * 3839 * This function is invoked after a successful reset. Note that 3840 * the device might have been reset more than once using 3841 * different reset methods before postreset is invoked. 3842 * 3843 * LOCKING: 3844 * Kernel thread context (may sleep) 3845 */ 3846 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3847 { 3848 u32 serror; 3849 3850 /* reset complete, clear SError */ 3851 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3852 sata_scr_write(link, SCR_ERROR, serror); 3853 3854 /* print link status */ 3855 sata_print_link_status(link); 3856 } 3857 EXPORT_SYMBOL_GPL(ata_std_postreset); 3858 3859 /** 3860 * ata_dev_same_device - Determine whether new ID matches configured device 3861 * @dev: device to compare against 3862 * @new_class: class of the new device 3863 * @new_id: IDENTIFY page of the new device 3864 * 3865 * Compare @new_class and @new_id against @dev and determine 3866 * whether @dev is the device indicated by @new_class and 3867 * @new_id. 3868 * 3869 * LOCKING: 3870 * None. 3871 * 3872 * RETURNS: 3873 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3874 */ 3875 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3876 const u16 *new_id) 3877 { 3878 const u16 *old_id = dev->id; 3879 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3880 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3881 3882 if (dev->class != new_class) { 3883 ata_dev_info(dev, "class mismatch %d != %d\n", 3884 dev->class, new_class); 3885 return 0; 3886 } 3887 3888 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3889 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3890 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3891 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3892 3893 if (strcmp(model[0], model[1])) { 3894 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3895 model[0], model[1]); 3896 return 0; 3897 } 3898 3899 if (strcmp(serial[0], serial[1])) { 3900 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3901 serial[0], serial[1]); 3902 return 0; 3903 } 3904 3905 return 1; 3906 } 3907 3908 /** 3909 * ata_dev_reread_id - Re-read IDENTIFY data 3910 * @dev: target ATA device 3911 * @readid_flags: read ID flags 3912 * 3913 * Re-read IDENTIFY page and make sure @dev is still attached to 3914 * the port. 3915 * 3916 * LOCKING: 3917 * Kernel thread context (may sleep) 3918 * 3919 * RETURNS: 3920 * 0 on success, negative errno otherwise 3921 */ 3922 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3923 { 3924 unsigned int class = dev->class; 3925 u16 *id = (void *)dev->link->ap->sector_buf; 3926 int rc; 3927 3928 /* read ID data */ 3929 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3930 if (rc) 3931 return rc; 3932 3933 /* is the device still there? */ 3934 if (!ata_dev_same_device(dev, class, id)) 3935 return -ENODEV; 3936 3937 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3938 return 0; 3939 } 3940 3941 /** 3942 * ata_dev_revalidate - Revalidate ATA device 3943 * @dev: device to revalidate 3944 * @new_class: new class code 3945 * @readid_flags: read ID flags 3946 * 3947 * Re-read IDENTIFY page, make sure @dev is still attached to the 3948 * port and reconfigure it according to the new IDENTIFY page. 3949 * 3950 * LOCKING: 3951 * Kernel thread context (may sleep) 3952 * 3953 * RETURNS: 3954 * 0 on success, negative errno otherwise 3955 */ 3956 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3957 unsigned int readid_flags) 3958 { 3959 u64 n_sectors = dev->n_sectors; 3960 u64 n_native_sectors = dev->n_native_sectors; 3961 int rc; 3962 3963 if (!ata_dev_enabled(dev)) 3964 return -ENODEV; 3965 3966 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3967 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3968 ata_dev_info(dev, "class mismatch %u != %u\n", 3969 dev->class, new_class); 3970 rc = -ENODEV; 3971 goto fail; 3972 } 3973 3974 /* re-read ID */ 3975 rc = ata_dev_reread_id(dev, readid_flags); 3976 if (rc) 3977 goto fail; 3978 3979 /* configure device according to the new ID */ 3980 rc = ata_dev_configure(dev); 3981 if (rc) 3982 goto fail; 3983 3984 /* verify n_sectors hasn't changed */ 3985 if (dev->class != ATA_DEV_ATA || !n_sectors || 3986 dev->n_sectors == n_sectors) 3987 return 0; 3988 3989 /* n_sectors has changed */ 3990 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3991 (unsigned long long)n_sectors, 3992 (unsigned long long)dev->n_sectors); 3993 3994 /* 3995 * Something could have caused HPA to be unlocked 3996 * involuntarily. If n_native_sectors hasn't changed and the 3997 * new size matches it, keep the device. 3998 */ 3999 if (dev->n_native_sectors == n_native_sectors && 4000 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4001 ata_dev_warn(dev, 4002 "new n_sectors matches native, probably " 4003 "late HPA unlock, n_sectors updated\n"); 4004 /* use the larger n_sectors */ 4005 return 0; 4006 } 4007 4008 /* 4009 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4010 * unlocking HPA in those cases. 4011 * 4012 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4013 */ 4014 if (dev->n_native_sectors == n_native_sectors && 4015 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4016 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4017 ata_dev_warn(dev, 4018 "old n_sectors matches native, probably " 4019 "late HPA lock, will try to unlock HPA\n"); 4020 /* try unlocking HPA */ 4021 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4022 rc = -EIO; 4023 } else 4024 rc = -ENODEV; 4025 4026 /* restore original n_[native_]sectors and fail */ 4027 dev->n_native_sectors = n_native_sectors; 4028 dev->n_sectors = n_sectors; 4029 fail: 4030 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4031 return rc; 4032 } 4033 4034 struct ata_blacklist_entry { 4035 const char *model_num; 4036 const char *model_rev; 4037 unsigned long horkage; 4038 }; 4039 4040 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4041 /* Devices with DMA related problems under Linux */ 4042 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4043 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4044 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4045 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4046 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4047 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4048 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4049 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4050 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4051 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4052 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4053 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4054 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4055 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4056 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4057 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4058 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4059 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4060 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4061 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4062 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4063 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4064 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4065 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4066 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4067 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4068 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4069 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4070 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4071 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4072 /* Odd clown on sil3726/4726 PMPs */ 4073 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4074 /* Similar story with ASMedia 1092 */ 4075 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 4076 4077 /* Weird ATAPI devices */ 4078 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4079 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4080 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4081 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4082 4083 /* 4084 * Causes silent data corruption with higher max sects. 4085 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4086 */ 4087 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4088 4089 /* 4090 * These devices time out with higher max sects. 4091 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4092 */ 4093 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4094 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4095 4096 /* Devices we expect to fail diagnostics */ 4097 4098 /* Devices where NCQ should be avoided */ 4099 /* NCQ is slow */ 4100 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4101 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 4102 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4103 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4104 /* NCQ is broken */ 4105 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4106 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4107 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4108 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4109 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4110 4111 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4112 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4113 ATA_HORKAGE_FIRMWARE_WARN }, 4114 4115 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4116 ATA_HORKAGE_FIRMWARE_WARN }, 4117 4118 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4119 ATA_HORKAGE_FIRMWARE_WARN }, 4120 4121 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4122 ATA_HORKAGE_FIRMWARE_WARN }, 4123 4124 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4125 the ST disks also have LPM issues */ 4126 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 4127 ATA_HORKAGE_NOLPM }, 4128 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4129 4130 /* Blacklist entries taken from Silicon Image 3124/3132 4131 Windows driver .inf file - also several Linux problem reports */ 4132 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 4133 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 4134 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 4135 4136 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4137 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 4138 4139 /* Sandisk SD7/8/9s lock up hard on large trims */ 4140 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4141 4142 /* devices which puke on READ_NATIVE_MAX */ 4143 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4144 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4145 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4146 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4147 4148 /* this one allows HPA unlocking but fails IOs on the area */ 4149 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4150 4151 /* Devices which report 1 sector over size HPA */ 4152 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4153 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4154 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4155 4156 /* Devices which get the IVB wrong */ 4157 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4158 /* Maybe we should just blacklist TSSTcorp... */ 4159 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4160 4161 /* Devices that do not need bridging limits applied */ 4162 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4163 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4164 4165 /* Devices which aren't very happy with higher link speeds */ 4166 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4167 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4168 4169 /* 4170 * Devices which choke on SETXFER. Applies only if both the 4171 * device and controller are SATA. 4172 */ 4173 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4174 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4175 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4176 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4177 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4178 4179 /* These specific Pioneer models have LPM issues */ 4180 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4181 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4182 4183 /* Crucial BX100 SSD 500GB has broken LPM support */ 4184 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4185 4186 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4187 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4188 ATA_HORKAGE_ZERO_AFTER_TRIM | 4189 ATA_HORKAGE_NOLPM }, 4190 /* 512GB MX100 with newer firmware has only LPM issues */ 4191 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4192 ATA_HORKAGE_NOLPM }, 4193 4194 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4195 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4196 ATA_HORKAGE_ZERO_AFTER_TRIM | 4197 ATA_HORKAGE_NOLPM }, 4198 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4199 ATA_HORKAGE_ZERO_AFTER_TRIM | 4200 ATA_HORKAGE_NOLPM }, 4201 4202 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4203 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4204 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4205 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4206 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4207 4208 /* devices that don't properly handle queued TRIM commands */ 4209 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4210 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4211 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4212 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4213 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4214 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4215 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4216 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4217 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4218 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4219 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4220 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4221 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4222 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4223 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4224 ATA_HORKAGE_NO_DMA_LOG | 4225 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4226 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4227 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4228 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4229 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4230 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4231 ATA_HORKAGE_ZERO_AFTER_TRIM | 4232 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4233 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4234 ATA_HORKAGE_ZERO_AFTER_TRIM | 4235 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4236 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4237 ATA_HORKAGE_ZERO_AFTER_TRIM | 4238 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4239 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4240 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4241 4242 /* devices that don't properly handle TRIM commands */ 4243 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4244 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4245 4246 /* 4247 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4248 * (Return Zero After Trim) flags in the ATA Command Set are 4249 * unreliable in the sense that they only define what happens if 4250 * the device successfully executed the DSM TRIM command. TRIM 4251 * is only advisory, however, and the device is free to silently 4252 * ignore all or parts of the request. 4253 * 4254 * Whitelist drives that are known to reliably return zeroes 4255 * after TRIM. 4256 */ 4257 4258 /* 4259 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4260 * that model before whitelisting all other intel SSDs. 4261 */ 4262 { "INTEL*SSDSC2MH*", NULL, 0 }, 4263 4264 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4265 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4266 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4267 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4268 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4269 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4270 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4271 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4272 4273 /* 4274 * Some WD SATA-I drives spin up and down erratically when the link 4275 * is put into the slumber mode. We don't have full list of the 4276 * affected devices. Disable LPM if the device matches one of the 4277 * known prefixes and is SATA-1. As a side effect LPM partial is 4278 * lost too. 4279 * 4280 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4281 */ 4282 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4283 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4284 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4285 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4286 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4287 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4288 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4289 4290 /* 4291 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4292 * log page is accessed. Ensure we never ask for this log page with 4293 * these devices. 4294 */ 4295 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4296 4297 /* Buggy FUA */ 4298 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4299 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4300 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4301 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4302 4303 /* End Marker */ 4304 { } 4305 }; 4306 4307 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4308 { 4309 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4310 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4311 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4312 4313 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4314 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4315 4316 while (ad->model_num) { 4317 if (glob_match(ad->model_num, model_num)) { 4318 if (ad->model_rev == NULL) 4319 return ad->horkage; 4320 if (glob_match(ad->model_rev, model_rev)) 4321 return ad->horkage; 4322 } 4323 ad++; 4324 } 4325 return 0; 4326 } 4327 4328 static int ata_dma_blacklisted(const struct ata_device *dev) 4329 { 4330 /* We don't support polling DMA. 4331 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4332 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4333 */ 4334 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4335 (dev->flags & ATA_DFLAG_CDB_INTR)) 4336 return 1; 4337 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4338 } 4339 4340 /** 4341 * ata_is_40wire - check drive side detection 4342 * @dev: device 4343 * 4344 * Perform drive side detection decoding, allowing for device vendors 4345 * who can't follow the documentation. 4346 */ 4347 4348 static int ata_is_40wire(struct ata_device *dev) 4349 { 4350 if (dev->horkage & ATA_HORKAGE_IVB) 4351 return ata_drive_40wire_relaxed(dev->id); 4352 return ata_drive_40wire(dev->id); 4353 } 4354 4355 /** 4356 * cable_is_40wire - 40/80/SATA decider 4357 * @ap: port to consider 4358 * 4359 * This function encapsulates the policy for speed management 4360 * in one place. At the moment we don't cache the result but 4361 * there is a good case for setting ap->cbl to the result when 4362 * we are called with unknown cables (and figuring out if it 4363 * impacts hotplug at all). 4364 * 4365 * Return 1 if the cable appears to be 40 wire. 4366 */ 4367 4368 static int cable_is_40wire(struct ata_port *ap) 4369 { 4370 struct ata_link *link; 4371 struct ata_device *dev; 4372 4373 /* If the controller thinks we are 40 wire, we are. */ 4374 if (ap->cbl == ATA_CBL_PATA40) 4375 return 1; 4376 4377 /* If the controller thinks we are 80 wire, we are. */ 4378 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4379 return 0; 4380 4381 /* If the system is known to be 40 wire short cable (eg 4382 * laptop), then we allow 80 wire modes even if the drive 4383 * isn't sure. 4384 */ 4385 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4386 return 0; 4387 4388 /* If the controller doesn't know, we scan. 4389 * 4390 * Note: We look for all 40 wire detects at this point. Any 4391 * 80 wire detect is taken to be 80 wire cable because 4392 * - in many setups only the one drive (slave if present) will 4393 * give a valid detect 4394 * - if you have a non detect capable drive you don't want it 4395 * to colour the choice 4396 */ 4397 ata_for_each_link(link, ap, EDGE) { 4398 ata_for_each_dev(dev, link, ENABLED) { 4399 if (!ata_is_40wire(dev)) 4400 return 0; 4401 } 4402 } 4403 return 1; 4404 } 4405 4406 /** 4407 * ata_dev_xfermask - Compute supported xfermask of the given device 4408 * @dev: Device to compute xfermask for 4409 * 4410 * Compute supported xfermask of @dev and store it in 4411 * dev->*_mask. This function is responsible for applying all 4412 * known limits including host controller limits, device 4413 * blacklist, etc... 4414 * 4415 * LOCKING: 4416 * None. 4417 */ 4418 static void ata_dev_xfermask(struct ata_device *dev) 4419 { 4420 struct ata_link *link = dev->link; 4421 struct ata_port *ap = link->ap; 4422 struct ata_host *host = ap->host; 4423 unsigned int xfer_mask; 4424 4425 /* controller modes available */ 4426 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4427 ap->mwdma_mask, ap->udma_mask); 4428 4429 /* drive modes available */ 4430 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4431 dev->mwdma_mask, dev->udma_mask); 4432 xfer_mask &= ata_id_xfermask(dev->id); 4433 4434 /* 4435 * CFA Advanced TrueIDE timings are not allowed on a shared 4436 * cable 4437 */ 4438 if (ata_dev_pair(dev)) { 4439 /* No PIO5 or PIO6 */ 4440 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4441 /* No MWDMA3 or MWDMA 4 */ 4442 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4443 } 4444 4445 if (ata_dma_blacklisted(dev)) { 4446 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4447 ata_dev_warn(dev, 4448 "device is on DMA blacklist, disabling DMA\n"); 4449 } 4450 4451 if ((host->flags & ATA_HOST_SIMPLEX) && 4452 host->simplex_claimed && host->simplex_claimed != ap) { 4453 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4454 ata_dev_warn(dev, 4455 "simplex DMA is claimed by other device, disabling DMA\n"); 4456 } 4457 4458 if (ap->flags & ATA_FLAG_NO_IORDY) 4459 xfer_mask &= ata_pio_mask_no_iordy(dev); 4460 4461 if (ap->ops->mode_filter) 4462 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4463 4464 /* Apply cable rule here. Don't apply it early because when 4465 * we handle hot plug the cable type can itself change. 4466 * Check this last so that we know if the transfer rate was 4467 * solely limited by the cable. 4468 * Unknown or 80 wire cables reported host side are checked 4469 * drive side as well. Cases where we know a 40wire cable 4470 * is used safely for 80 are not checked here. 4471 */ 4472 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4473 /* UDMA/44 or higher would be available */ 4474 if (cable_is_40wire(ap)) { 4475 ata_dev_warn(dev, 4476 "limited to UDMA/33 due to 40-wire cable\n"); 4477 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4478 } 4479 4480 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4481 &dev->mwdma_mask, &dev->udma_mask); 4482 } 4483 4484 /** 4485 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4486 * @dev: Device to which command will be sent 4487 * 4488 * Issue SET FEATURES - XFER MODE command to device @dev 4489 * on port @ap. 4490 * 4491 * LOCKING: 4492 * PCI/etc. bus probe sem. 4493 * 4494 * RETURNS: 4495 * 0 on success, AC_ERR_* mask otherwise. 4496 */ 4497 4498 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4499 { 4500 struct ata_taskfile tf; 4501 4502 /* set up set-features taskfile */ 4503 ata_dev_dbg(dev, "set features - xfer mode\n"); 4504 4505 /* Some controllers and ATAPI devices show flaky interrupt 4506 * behavior after setting xfer mode. Use polling instead. 4507 */ 4508 ata_tf_init(dev, &tf); 4509 tf.command = ATA_CMD_SET_FEATURES; 4510 tf.feature = SETFEATURES_XFER; 4511 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4512 tf.protocol = ATA_PROT_NODATA; 4513 /* If we are using IORDY we must send the mode setting command */ 4514 if (ata_pio_need_iordy(dev)) 4515 tf.nsect = dev->xfer_mode; 4516 /* If the device has IORDY and the controller does not - turn it off */ 4517 else if (ata_id_has_iordy(dev->id)) 4518 tf.nsect = 0x01; 4519 else /* In the ancient relic department - skip all of this */ 4520 return 0; 4521 4522 /* 4523 * On some disks, this command causes spin-up, so we need longer 4524 * timeout. 4525 */ 4526 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4527 } 4528 4529 /** 4530 * ata_dev_set_feature - Issue SET FEATURES 4531 * @dev: Device to which command will be sent 4532 * @subcmd: The SET FEATURES subcommand to be sent 4533 * @action: The sector count represents a subcommand specific action 4534 * 4535 * Issue SET FEATURES command to device @dev on port @ap with sector count 4536 * 4537 * LOCKING: 4538 * PCI/etc. bus probe sem. 4539 * 4540 * RETURNS: 4541 * 0 on success, AC_ERR_* mask otherwise. 4542 */ 4543 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4544 { 4545 struct ata_taskfile tf; 4546 unsigned int timeout = 0; 4547 4548 /* set up set-features taskfile */ 4549 ata_dev_dbg(dev, "set features\n"); 4550 4551 ata_tf_init(dev, &tf); 4552 tf.command = ATA_CMD_SET_FEATURES; 4553 tf.feature = subcmd; 4554 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4555 tf.protocol = ATA_PROT_NODATA; 4556 tf.nsect = action; 4557 4558 if (subcmd == SETFEATURES_SPINUP) 4559 timeout = ata_probe_timeout ? 4560 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4561 4562 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4563 } 4564 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4565 4566 /** 4567 * ata_dev_init_params - Issue INIT DEV PARAMS command 4568 * @dev: Device to which command will be sent 4569 * @heads: Number of heads (taskfile parameter) 4570 * @sectors: Number of sectors (taskfile parameter) 4571 * 4572 * LOCKING: 4573 * Kernel thread context (may sleep) 4574 * 4575 * RETURNS: 4576 * 0 on success, AC_ERR_* mask otherwise. 4577 */ 4578 static unsigned int ata_dev_init_params(struct ata_device *dev, 4579 u16 heads, u16 sectors) 4580 { 4581 struct ata_taskfile tf; 4582 unsigned int err_mask; 4583 4584 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4585 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4586 return AC_ERR_INVALID; 4587 4588 /* set up init dev params taskfile */ 4589 ata_dev_dbg(dev, "init dev params \n"); 4590 4591 ata_tf_init(dev, &tf); 4592 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4593 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4594 tf.protocol = ATA_PROT_NODATA; 4595 tf.nsect = sectors; 4596 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4597 4598 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4599 /* A clean abort indicates an original or just out of spec drive 4600 and we should continue as we issue the setup based on the 4601 drive reported working geometry */ 4602 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4603 err_mask = 0; 4604 4605 return err_mask; 4606 } 4607 4608 /** 4609 * atapi_check_dma - Check whether ATAPI DMA can be supported 4610 * @qc: Metadata associated with taskfile to check 4611 * 4612 * Allow low-level driver to filter ATA PACKET commands, returning 4613 * a status indicating whether or not it is OK to use DMA for the 4614 * supplied PACKET command. 4615 * 4616 * LOCKING: 4617 * spin_lock_irqsave(host lock) 4618 * 4619 * RETURNS: 0 when ATAPI DMA can be used 4620 * nonzero otherwise 4621 */ 4622 int atapi_check_dma(struct ata_queued_cmd *qc) 4623 { 4624 struct ata_port *ap = qc->ap; 4625 4626 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4627 * few ATAPI devices choke on such DMA requests. 4628 */ 4629 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4630 unlikely(qc->nbytes & 15)) 4631 return 1; 4632 4633 if (ap->ops->check_atapi_dma) 4634 return ap->ops->check_atapi_dma(qc); 4635 4636 return 0; 4637 } 4638 4639 /** 4640 * ata_std_qc_defer - Check whether a qc needs to be deferred 4641 * @qc: ATA command in question 4642 * 4643 * Non-NCQ commands cannot run with any other command, NCQ or 4644 * not. As upper layer only knows the queue depth, we are 4645 * responsible for maintaining exclusion. This function checks 4646 * whether a new command @qc can be issued. 4647 * 4648 * LOCKING: 4649 * spin_lock_irqsave(host lock) 4650 * 4651 * RETURNS: 4652 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4653 */ 4654 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4655 { 4656 struct ata_link *link = qc->dev->link; 4657 4658 if (ata_is_ncq(qc->tf.protocol)) { 4659 if (!ata_tag_valid(link->active_tag)) 4660 return 0; 4661 } else { 4662 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4663 return 0; 4664 } 4665 4666 return ATA_DEFER_LINK; 4667 } 4668 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4669 4670 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4671 { 4672 return AC_ERR_OK; 4673 } 4674 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4675 4676 /** 4677 * ata_sg_init - Associate command with scatter-gather table. 4678 * @qc: Command to be associated 4679 * @sg: Scatter-gather table. 4680 * @n_elem: Number of elements in s/g table. 4681 * 4682 * Initialize the data-related elements of queued_cmd @qc 4683 * to point to a scatter-gather table @sg, containing @n_elem 4684 * elements. 4685 * 4686 * LOCKING: 4687 * spin_lock_irqsave(host lock) 4688 */ 4689 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4690 unsigned int n_elem) 4691 { 4692 qc->sg = sg; 4693 qc->n_elem = n_elem; 4694 qc->cursg = qc->sg; 4695 } 4696 4697 #ifdef CONFIG_HAS_DMA 4698 4699 /** 4700 * ata_sg_clean - Unmap DMA memory associated with command 4701 * @qc: Command containing DMA memory to be released 4702 * 4703 * Unmap all mapped DMA memory associated with this command. 4704 * 4705 * LOCKING: 4706 * spin_lock_irqsave(host lock) 4707 */ 4708 static void ata_sg_clean(struct ata_queued_cmd *qc) 4709 { 4710 struct ata_port *ap = qc->ap; 4711 struct scatterlist *sg = qc->sg; 4712 int dir = qc->dma_dir; 4713 4714 WARN_ON_ONCE(sg == NULL); 4715 4716 if (qc->n_elem) 4717 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4718 4719 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4720 qc->sg = NULL; 4721 } 4722 4723 /** 4724 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4725 * @qc: Command with scatter-gather table to be mapped. 4726 * 4727 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4728 * 4729 * LOCKING: 4730 * spin_lock_irqsave(host lock) 4731 * 4732 * RETURNS: 4733 * Zero on success, negative on error. 4734 * 4735 */ 4736 static int ata_sg_setup(struct ata_queued_cmd *qc) 4737 { 4738 struct ata_port *ap = qc->ap; 4739 unsigned int n_elem; 4740 4741 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4742 if (n_elem < 1) 4743 return -1; 4744 4745 qc->orig_n_elem = qc->n_elem; 4746 qc->n_elem = n_elem; 4747 qc->flags |= ATA_QCFLAG_DMAMAP; 4748 4749 return 0; 4750 } 4751 4752 #else /* !CONFIG_HAS_DMA */ 4753 4754 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4755 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4756 4757 #endif /* !CONFIG_HAS_DMA */ 4758 4759 /** 4760 * swap_buf_le16 - swap halves of 16-bit words in place 4761 * @buf: Buffer to swap 4762 * @buf_words: Number of 16-bit words in buffer. 4763 * 4764 * Swap halves of 16-bit words if needed to convert from 4765 * little-endian byte order to native cpu byte order, or 4766 * vice-versa. 4767 * 4768 * LOCKING: 4769 * Inherited from caller. 4770 */ 4771 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4772 { 4773 #ifdef __BIG_ENDIAN 4774 unsigned int i; 4775 4776 for (i = 0; i < buf_words; i++) 4777 buf[i] = le16_to_cpu(buf[i]); 4778 #endif /* __BIG_ENDIAN */ 4779 } 4780 4781 /** 4782 * ata_qc_free - free unused ata_queued_cmd 4783 * @qc: Command to complete 4784 * 4785 * Designed to free unused ata_queued_cmd object 4786 * in case something prevents using it. 4787 * 4788 * LOCKING: 4789 * spin_lock_irqsave(host lock) 4790 */ 4791 void ata_qc_free(struct ata_queued_cmd *qc) 4792 { 4793 qc->flags = 0; 4794 if (ata_tag_valid(qc->tag)) 4795 qc->tag = ATA_TAG_POISON; 4796 } 4797 4798 void __ata_qc_complete(struct ata_queued_cmd *qc) 4799 { 4800 struct ata_port *ap; 4801 struct ata_link *link; 4802 4803 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4804 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4805 ap = qc->ap; 4806 link = qc->dev->link; 4807 4808 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4809 ata_sg_clean(qc); 4810 4811 /* command should be marked inactive atomically with qc completion */ 4812 if (ata_is_ncq(qc->tf.protocol)) { 4813 link->sactive &= ~(1 << qc->hw_tag); 4814 if (!link->sactive) 4815 ap->nr_active_links--; 4816 } else { 4817 link->active_tag = ATA_TAG_POISON; 4818 ap->nr_active_links--; 4819 } 4820 4821 /* clear exclusive status */ 4822 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4823 ap->excl_link == link)) 4824 ap->excl_link = NULL; 4825 4826 /* atapi: mark qc as inactive to prevent the interrupt handler 4827 * from completing the command twice later, before the error handler 4828 * is called. (when rc != 0 and atapi request sense is needed) 4829 */ 4830 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4831 ap->qc_active &= ~(1ULL << qc->tag); 4832 4833 /* call completion callback */ 4834 qc->complete_fn(qc); 4835 } 4836 4837 static void fill_result_tf(struct ata_queued_cmd *qc) 4838 { 4839 struct ata_port *ap = qc->ap; 4840 4841 qc->result_tf.flags = qc->tf.flags; 4842 ap->ops->qc_fill_rtf(qc); 4843 } 4844 4845 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4846 { 4847 struct ata_device *dev = qc->dev; 4848 4849 if (!ata_is_data(qc->tf.protocol)) 4850 return; 4851 4852 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4853 return; 4854 4855 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4856 } 4857 4858 /** 4859 * ata_qc_complete - Complete an active ATA command 4860 * @qc: Command to complete 4861 * 4862 * Indicate to the mid and upper layers that an ATA command has 4863 * completed, with either an ok or not-ok status. 4864 * 4865 * Refrain from calling this function multiple times when 4866 * successfully completing multiple NCQ commands. 4867 * ata_qc_complete_multiple() should be used instead, which will 4868 * properly update IRQ expect state. 4869 * 4870 * LOCKING: 4871 * spin_lock_irqsave(host lock) 4872 */ 4873 void ata_qc_complete(struct ata_queued_cmd *qc) 4874 { 4875 struct ata_port *ap = qc->ap; 4876 struct ata_device *dev = qc->dev; 4877 struct ata_eh_info *ehi = &dev->link->eh_info; 4878 4879 /* Trigger the LED (if available) */ 4880 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4881 4882 /* 4883 * In order to synchronize EH with the regular execution path, a qc that 4884 * is owned by EH is marked with ATA_QCFLAG_EH. 4885 * 4886 * The normal execution path is responsible for not accessing a qc owned 4887 * by EH. libata core enforces the rule by returning NULL from 4888 * ata_qc_from_tag() for qcs owned by EH. 4889 */ 4890 if (unlikely(qc->err_mask)) 4891 qc->flags |= ATA_QCFLAG_EH; 4892 4893 /* 4894 * Finish internal commands without any further processing and always 4895 * with the result TF filled. 4896 */ 4897 if (unlikely(ata_tag_internal(qc->tag))) { 4898 fill_result_tf(qc); 4899 trace_ata_qc_complete_internal(qc); 4900 __ata_qc_complete(qc); 4901 return; 4902 } 4903 4904 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4905 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4906 fill_result_tf(qc); 4907 trace_ata_qc_complete_failed(qc); 4908 ata_qc_schedule_eh(qc); 4909 return; 4910 } 4911 4912 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4913 4914 /* read result TF if requested */ 4915 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4916 fill_result_tf(qc); 4917 4918 trace_ata_qc_complete_done(qc); 4919 4920 /* 4921 * For CDL commands that completed without an error, check if we have 4922 * sense data (ATA_SENSE is set). If we do, then the command may have 4923 * been aborted by the device due to a limit timeout using the policy 4924 * 0xD. For these commands, invoke EH to get the command sense data. 4925 */ 4926 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4927 qc->result_tf.status & ATA_SENSE) { 4928 /* 4929 * Tell SCSI EH to not overwrite scmd->result even if this 4930 * command is finished with result SAM_STAT_GOOD. 4931 */ 4932 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4933 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4934 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4935 4936 /* 4937 * set pending so that ata_qc_schedule_eh() does not trigger 4938 * fast drain, and freeze the port. 4939 */ 4940 ap->pflags |= ATA_PFLAG_EH_PENDING; 4941 ata_qc_schedule_eh(qc); 4942 return; 4943 } 4944 4945 /* Some commands need post-processing after successful completion. */ 4946 switch (qc->tf.command) { 4947 case ATA_CMD_SET_FEATURES: 4948 if (qc->tf.feature != SETFEATURES_WC_ON && 4949 qc->tf.feature != SETFEATURES_WC_OFF && 4950 qc->tf.feature != SETFEATURES_RA_ON && 4951 qc->tf.feature != SETFEATURES_RA_OFF) 4952 break; 4953 fallthrough; 4954 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4955 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4956 /* revalidate device */ 4957 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4958 ata_port_schedule_eh(ap); 4959 break; 4960 4961 case ATA_CMD_SLEEP: 4962 dev->flags |= ATA_DFLAG_SLEEPING; 4963 break; 4964 } 4965 4966 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4967 ata_verify_xfer(qc); 4968 4969 __ata_qc_complete(qc); 4970 } 4971 EXPORT_SYMBOL_GPL(ata_qc_complete); 4972 4973 /** 4974 * ata_qc_get_active - get bitmask of active qcs 4975 * @ap: port in question 4976 * 4977 * LOCKING: 4978 * spin_lock_irqsave(host lock) 4979 * 4980 * RETURNS: 4981 * Bitmask of active qcs 4982 */ 4983 u64 ata_qc_get_active(struct ata_port *ap) 4984 { 4985 u64 qc_active = ap->qc_active; 4986 4987 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4988 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4989 qc_active |= (1 << 0); 4990 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4991 } 4992 4993 return qc_active; 4994 } 4995 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4996 4997 /** 4998 * ata_qc_issue - issue taskfile to device 4999 * @qc: command to issue to device 5000 * 5001 * Prepare an ATA command to submission to device. 5002 * This includes mapping the data into a DMA-able 5003 * area, filling in the S/G table, and finally 5004 * writing the taskfile to hardware, starting the command. 5005 * 5006 * LOCKING: 5007 * spin_lock_irqsave(host lock) 5008 */ 5009 void ata_qc_issue(struct ata_queued_cmd *qc) 5010 { 5011 struct ata_port *ap = qc->ap; 5012 struct ata_link *link = qc->dev->link; 5013 u8 prot = qc->tf.protocol; 5014 5015 /* Make sure only one non-NCQ command is outstanding. */ 5016 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 5017 5018 if (ata_is_ncq(prot)) { 5019 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5020 5021 if (!link->sactive) 5022 ap->nr_active_links++; 5023 link->sactive |= 1 << qc->hw_tag; 5024 } else { 5025 WARN_ON_ONCE(link->sactive); 5026 5027 ap->nr_active_links++; 5028 link->active_tag = qc->tag; 5029 } 5030 5031 qc->flags |= ATA_QCFLAG_ACTIVE; 5032 ap->qc_active |= 1ULL << qc->tag; 5033 5034 /* 5035 * We guarantee to LLDs that they will have at least one 5036 * non-zero sg if the command is a data command. 5037 */ 5038 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5039 goto sys_err; 5040 5041 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5042 (ap->flags & ATA_FLAG_PIO_DMA))) 5043 if (ata_sg_setup(qc)) 5044 goto sys_err; 5045 5046 /* if device is sleeping, schedule reset and abort the link */ 5047 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5048 link->eh_info.action |= ATA_EH_RESET; 5049 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5050 ata_link_abort(link); 5051 return; 5052 } 5053 5054 trace_ata_qc_prep(qc); 5055 qc->err_mask |= ap->ops->qc_prep(qc); 5056 if (unlikely(qc->err_mask)) 5057 goto err; 5058 trace_ata_qc_issue(qc); 5059 qc->err_mask |= ap->ops->qc_issue(qc); 5060 if (unlikely(qc->err_mask)) 5061 goto err; 5062 return; 5063 5064 sys_err: 5065 qc->err_mask |= AC_ERR_SYSTEM; 5066 err: 5067 ata_qc_complete(qc); 5068 } 5069 5070 /** 5071 * ata_phys_link_online - test whether the given link is online 5072 * @link: ATA link to test 5073 * 5074 * Test whether @link is online. Note that this function returns 5075 * 0 if online status of @link cannot be obtained, so 5076 * ata_link_online(link) != !ata_link_offline(link). 5077 * 5078 * LOCKING: 5079 * None. 5080 * 5081 * RETURNS: 5082 * True if the port online status is available and online. 5083 */ 5084 bool ata_phys_link_online(struct ata_link *link) 5085 { 5086 u32 sstatus; 5087 5088 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5089 ata_sstatus_online(sstatus)) 5090 return true; 5091 return false; 5092 } 5093 5094 /** 5095 * ata_phys_link_offline - test whether the given link is offline 5096 * @link: ATA link to test 5097 * 5098 * Test whether @link is offline. Note that this function 5099 * returns 0 if offline status of @link cannot be obtained, so 5100 * ata_link_online(link) != !ata_link_offline(link). 5101 * 5102 * LOCKING: 5103 * None. 5104 * 5105 * RETURNS: 5106 * True if the port offline status is available and offline. 5107 */ 5108 bool ata_phys_link_offline(struct ata_link *link) 5109 { 5110 u32 sstatus; 5111 5112 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5113 !ata_sstatus_online(sstatus)) 5114 return true; 5115 return false; 5116 } 5117 5118 /** 5119 * ata_link_online - test whether the given link is online 5120 * @link: ATA link to test 5121 * 5122 * Test whether @link is online. This is identical to 5123 * ata_phys_link_online() when there's no slave link. When 5124 * there's a slave link, this function should only be called on 5125 * the master link and will return true if any of M/S links is 5126 * online. 5127 * 5128 * LOCKING: 5129 * None. 5130 * 5131 * RETURNS: 5132 * True if the port online status is available and online. 5133 */ 5134 bool ata_link_online(struct ata_link *link) 5135 { 5136 struct ata_link *slave = link->ap->slave_link; 5137 5138 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5139 5140 return ata_phys_link_online(link) || 5141 (slave && ata_phys_link_online(slave)); 5142 } 5143 EXPORT_SYMBOL_GPL(ata_link_online); 5144 5145 /** 5146 * ata_link_offline - test whether the given link is offline 5147 * @link: ATA link to test 5148 * 5149 * Test whether @link is offline. This is identical to 5150 * ata_phys_link_offline() when there's no slave link. When 5151 * there's a slave link, this function should only be called on 5152 * the master link and will return true if both M/S links are 5153 * offline. 5154 * 5155 * LOCKING: 5156 * None. 5157 * 5158 * RETURNS: 5159 * True if the port offline status is available and offline. 5160 */ 5161 bool ata_link_offline(struct ata_link *link) 5162 { 5163 struct ata_link *slave = link->ap->slave_link; 5164 5165 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5166 5167 return ata_phys_link_offline(link) && 5168 (!slave || ata_phys_link_offline(slave)); 5169 } 5170 EXPORT_SYMBOL_GPL(ata_link_offline); 5171 5172 #ifdef CONFIG_PM 5173 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5174 unsigned int action, unsigned int ehi_flags, 5175 bool async) 5176 { 5177 struct ata_link *link; 5178 unsigned long flags; 5179 5180 spin_lock_irqsave(ap->lock, flags); 5181 5182 /* 5183 * A previous PM operation might still be in progress. Wait for 5184 * ATA_PFLAG_PM_PENDING to clear. 5185 */ 5186 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5187 spin_unlock_irqrestore(ap->lock, flags); 5188 ata_port_wait_eh(ap); 5189 spin_lock_irqsave(ap->lock, flags); 5190 } 5191 5192 /* Request PM operation to EH */ 5193 ap->pm_mesg = mesg; 5194 ap->pflags |= ATA_PFLAG_PM_PENDING; 5195 ata_for_each_link(link, ap, HOST_FIRST) { 5196 link->eh_info.action |= action; 5197 link->eh_info.flags |= ehi_flags; 5198 } 5199 5200 ata_port_schedule_eh(ap); 5201 5202 spin_unlock_irqrestore(ap->lock, flags); 5203 5204 if (!async) 5205 ata_port_wait_eh(ap); 5206 } 5207 5208 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5209 bool async) 5210 { 5211 /* 5212 * We are about to suspend the port, so we do not care about 5213 * scsi_rescan_device() calls scheduled by previous resume operations. 5214 * The next resume will schedule the rescan again. So cancel any rescan 5215 * that is not done yet. 5216 */ 5217 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5218 5219 /* 5220 * On some hardware, device fails to respond after spun down for 5221 * suspend. As the device will not be used until being resumed, we 5222 * do not need to touch the device. Ask EH to skip the usual stuff 5223 * and proceed directly to suspend. 5224 * 5225 * http://thread.gmane.org/gmane.linux.ide/46764 5226 */ 5227 ata_port_request_pm(ap, mesg, 0, 5228 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5229 ATA_EHI_NO_RECOVERY, 5230 async); 5231 } 5232 5233 static int ata_port_pm_suspend(struct device *dev) 5234 { 5235 struct ata_port *ap = to_ata_port(dev); 5236 5237 if (pm_runtime_suspended(dev)) 5238 return 0; 5239 5240 ata_port_suspend(ap, PMSG_SUSPEND, false); 5241 return 0; 5242 } 5243 5244 static int ata_port_pm_freeze(struct device *dev) 5245 { 5246 struct ata_port *ap = to_ata_port(dev); 5247 5248 if (pm_runtime_suspended(dev)) 5249 return 0; 5250 5251 ata_port_suspend(ap, PMSG_FREEZE, false); 5252 return 0; 5253 } 5254 5255 static int ata_port_pm_poweroff(struct device *dev) 5256 { 5257 if (!pm_runtime_suspended(dev)) 5258 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5259 return 0; 5260 } 5261 5262 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5263 bool async) 5264 { 5265 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5266 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5267 async); 5268 } 5269 5270 static int ata_port_pm_resume(struct device *dev) 5271 { 5272 if (!pm_runtime_suspended(dev)) 5273 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5274 return 0; 5275 } 5276 5277 /* 5278 * For ODDs, the upper layer will poll for media change every few seconds, 5279 * which will make it enter and leave suspend state every few seconds. And 5280 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5281 * is very little and the ODD may malfunction after constantly being reset. 5282 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5283 * ODD is attached to the port. 5284 */ 5285 static int ata_port_runtime_idle(struct device *dev) 5286 { 5287 struct ata_port *ap = to_ata_port(dev); 5288 struct ata_link *link; 5289 struct ata_device *adev; 5290 5291 ata_for_each_link(link, ap, HOST_FIRST) { 5292 ata_for_each_dev(adev, link, ENABLED) 5293 if (adev->class == ATA_DEV_ATAPI && 5294 !zpodd_dev_enabled(adev)) 5295 return -EBUSY; 5296 } 5297 5298 return 0; 5299 } 5300 5301 static int ata_port_runtime_suspend(struct device *dev) 5302 { 5303 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5304 return 0; 5305 } 5306 5307 static int ata_port_runtime_resume(struct device *dev) 5308 { 5309 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5310 return 0; 5311 } 5312 5313 static const struct dev_pm_ops ata_port_pm_ops = { 5314 .suspend = ata_port_pm_suspend, 5315 .resume = ata_port_pm_resume, 5316 .freeze = ata_port_pm_freeze, 5317 .thaw = ata_port_pm_resume, 5318 .poweroff = ata_port_pm_poweroff, 5319 .restore = ata_port_pm_resume, 5320 5321 .runtime_suspend = ata_port_runtime_suspend, 5322 .runtime_resume = ata_port_runtime_resume, 5323 .runtime_idle = ata_port_runtime_idle, 5324 }; 5325 5326 /* sas ports don't participate in pm runtime management of ata_ports, 5327 * and need to resume ata devices at the domain level, not the per-port 5328 * level. sas suspend/resume is async to allow parallel port recovery 5329 * since sas has multiple ata_port instances per Scsi_Host. 5330 */ 5331 void ata_sas_port_suspend(struct ata_port *ap) 5332 { 5333 ata_port_suspend(ap, PMSG_SUSPEND, true); 5334 } 5335 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5336 5337 void ata_sas_port_resume(struct ata_port *ap) 5338 { 5339 ata_port_resume(ap, PMSG_RESUME, true); 5340 } 5341 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5342 5343 /** 5344 * ata_host_suspend - suspend host 5345 * @host: host to suspend 5346 * @mesg: PM message 5347 * 5348 * Suspend @host. Actual operation is performed by port suspend. 5349 */ 5350 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5351 { 5352 host->dev->power.power_state = mesg; 5353 } 5354 EXPORT_SYMBOL_GPL(ata_host_suspend); 5355 5356 /** 5357 * ata_host_resume - resume host 5358 * @host: host to resume 5359 * 5360 * Resume @host. Actual operation is performed by port resume. 5361 */ 5362 void ata_host_resume(struct ata_host *host) 5363 { 5364 host->dev->power.power_state = PMSG_ON; 5365 } 5366 EXPORT_SYMBOL_GPL(ata_host_resume); 5367 #endif 5368 5369 const struct device_type ata_port_type = { 5370 .name = ATA_PORT_TYPE_NAME, 5371 #ifdef CONFIG_PM 5372 .pm = &ata_port_pm_ops, 5373 #endif 5374 }; 5375 5376 /** 5377 * ata_dev_init - Initialize an ata_device structure 5378 * @dev: Device structure to initialize 5379 * 5380 * Initialize @dev in preparation for probing. 5381 * 5382 * LOCKING: 5383 * Inherited from caller. 5384 */ 5385 void ata_dev_init(struct ata_device *dev) 5386 { 5387 struct ata_link *link = ata_dev_phys_link(dev); 5388 struct ata_port *ap = link->ap; 5389 unsigned long flags; 5390 5391 /* SATA spd limit is bound to the attached device, reset together */ 5392 link->sata_spd_limit = link->hw_sata_spd_limit; 5393 link->sata_spd = 0; 5394 5395 /* High bits of dev->flags are used to record warm plug 5396 * requests which occur asynchronously. Synchronize using 5397 * host lock. 5398 */ 5399 spin_lock_irqsave(ap->lock, flags); 5400 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5401 dev->horkage = 0; 5402 spin_unlock_irqrestore(ap->lock, flags); 5403 5404 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5405 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5406 dev->pio_mask = UINT_MAX; 5407 dev->mwdma_mask = UINT_MAX; 5408 dev->udma_mask = UINT_MAX; 5409 } 5410 5411 /** 5412 * ata_link_init - Initialize an ata_link structure 5413 * @ap: ATA port link is attached to 5414 * @link: Link structure to initialize 5415 * @pmp: Port multiplier port number 5416 * 5417 * Initialize @link. 5418 * 5419 * LOCKING: 5420 * Kernel thread context (may sleep) 5421 */ 5422 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5423 { 5424 int i; 5425 5426 /* clear everything except for devices */ 5427 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5428 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5429 5430 link->ap = ap; 5431 link->pmp = pmp; 5432 link->active_tag = ATA_TAG_POISON; 5433 link->hw_sata_spd_limit = UINT_MAX; 5434 5435 /* can't use iterator, ap isn't initialized yet */ 5436 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5437 struct ata_device *dev = &link->device[i]; 5438 5439 dev->link = link; 5440 dev->devno = dev - link->device; 5441 #ifdef CONFIG_ATA_ACPI 5442 dev->gtf_filter = ata_acpi_gtf_filter; 5443 #endif 5444 ata_dev_init(dev); 5445 } 5446 } 5447 5448 /** 5449 * sata_link_init_spd - Initialize link->sata_spd_limit 5450 * @link: Link to configure sata_spd_limit for 5451 * 5452 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5453 * configured value. 5454 * 5455 * LOCKING: 5456 * Kernel thread context (may sleep). 5457 * 5458 * RETURNS: 5459 * 0 on success, -errno on failure. 5460 */ 5461 int sata_link_init_spd(struct ata_link *link) 5462 { 5463 u8 spd; 5464 int rc; 5465 5466 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5467 if (rc) 5468 return rc; 5469 5470 spd = (link->saved_scontrol >> 4) & 0xf; 5471 if (spd) 5472 link->hw_sata_spd_limit &= (1 << spd) - 1; 5473 5474 ata_force_link_limits(link); 5475 5476 link->sata_spd_limit = link->hw_sata_spd_limit; 5477 5478 return 0; 5479 } 5480 5481 /** 5482 * ata_port_alloc - allocate and initialize basic ATA port resources 5483 * @host: ATA host this allocated port belongs to 5484 * 5485 * Allocate and initialize basic ATA port resources. 5486 * 5487 * RETURNS: 5488 * Allocate ATA port on success, NULL on failure. 5489 * 5490 * LOCKING: 5491 * Inherited from calling layer (may sleep). 5492 */ 5493 struct ata_port *ata_port_alloc(struct ata_host *host) 5494 { 5495 struct ata_port *ap; 5496 5497 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5498 if (!ap) 5499 return NULL; 5500 5501 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5502 ap->lock = &host->lock; 5503 ap->print_id = -1; 5504 ap->local_port_no = -1; 5505 ap->host = host; 5506 ap->dev = host->dev; 5507 5508 mutex_init(&ap->scsi_scan_mutex); 5509 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5510 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5511 INIT_LIST_HEAD(&ap->eh_done_q); 5512 init_waitqueue_head(&ap->eh_wait_q); 5513 init_completion(&ap->park_req_pending); 5514 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5515 TIMER_DEFERRABLE); 5516 5517 ap->cbl = ATA_CBL_NONE; 5518 5519 ata_link_init(ap, &ap->link, 0); 5520 5521 #ifdef ATA_IRQ_TRAP 5522 ap->stats.unhandled_irq = 1; 5523 ap->stats.idle_irq = 1; 5524 #endif 5525 ata_sff_port_init(ap); 5526 5527 return ap; 5528 } 5529 5530 static void ata_devres_release(struct device *gendev, void *res) 5531 { 5532 struct ata_host *host = dev_get_drvdata(gendev); 5533 int i; 5534 5535 for (i = 0; i < host->n_ports; i++) { 5536 struct ata_port *ap = host->ports[i]; 5537 5538 if (!ap) 5539 continue; 5540 5541 if (ap->scsi_host) 5542 scsi_host_put(ap->scsi_host); 5543 5544 } 5545 5546 dev_set_drvdata(gendev, NULL); 5547 ata_host_put(host); 5548 } 5549 5550 static void ata_host_release(struct kref *kref) 5551 { 5552 struct ata_host *host = container_of(kref, struct ata_host, kref); 5553 int i; 5554 5555 for (i = 0; i < host->n_ports; i++) { 5556 struct ata_port *ap = host->ports[i]; 5557 5558 kfree(ap->pmp_link); 5559 kfree(ap->slave_link); 5560 kfree(ap->ncq_sense_buf); 5561 kfree(ap); 5562 host->ports[i] = NULL; 5563 } 5564 kfree(host); 5565 } 5566 5567 void ata_host_get(struct ata_host *host) 5568 { 5569 kref_get(&host->kref); 5570 } 5571 5572 void ata_host_put(struct ata_host *host) 5573 { 5574 kref_put(&host->kref, ata_host_release); 5575 } 5576 EXPORT_SYMBOL_GPL(ata_host_put); 5577 5578 /** 5579 * ata_host_alloc - allocate and init basic ATA host resources 5580 * @dev: generic device this host is associated with 5581 * @max_ports: maximum number of ATA ports associated with this host 5582 * 5583 * Allocate and initialize basic ATA host resources. LLD calls 5584 * this function to allocate a host, initializes it fully and 5585 * attaches it using ata_host_register(). 5586 * 5587 * @max_ports ports are allocated and host->n_ports is 5588 * initialized to @max_ports. The caller is allowed to decrease 5589 * host->n_ports before calling ata_host_register(). The unused 5590 * ports will be automatically freed on registration. 5591 * 5592 * RETURNS: 5593 * Allocate ATA host on success, NULL on failure. 5594 * 5595 * LOCKING: 5596 * Inherited from calling layer (may sleep). 5597 */ 5598 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5599 { 5600 struct ata_host *host; 5601 size_t sz; 5602 int i; 5603 void *dr; 5604 5605 /* alloc a container for our list of ATA ports (buses) */ 5606 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5607 host = kzalloc(sz, GFP_KERNEL); 5608 if (!host) 5609 return NULL; 5610 5611 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5612 goto err_free; 5613 5614 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5615 if (!dr) 5616 goto err_out; 5617 5618 devres_add(dev, dr); 5619 dev_set_drvdata(dev, host); 5620 5621 spin_lock_init(&host->lock); 5622 mutex_init(&host->eh_mutex); 5623 host->dev = dev; 5624 host->n_ports = max_ports; 5625 kref_init(&host->kref); 5626 5627 /* allocate ports bound to this host */ 5628 for (i = 0; i < max_ports; i++) { 5629 struct ata_port *ap; 5630 5631 ap = ata_port_alloc(host); 5632 if (!ap) 5633 goto err_out; 5634 5635 ap->port_no = i; 5636 host->ports[i] = ap; 5637 } 5638 5639 devres_remove_group(dev, NULL); 5640 return host; 5641 5642 err_out: 5643 devres_release_group(dev, NULL); 5644 err_free: 5645 kfree(host); 5646 return NULL; 5647 } 5648 EXPORT_SYMBOL_GPL(ata_host_alloc); 5649 5650 /** 5651 * ata_host_alloc_pinfo - alloc host and init with port_info array 5652 * @dev: generic device this host is associated with 5653 * @ppi: array of ATA port_info to initialize host with 5654 * @n_ports: number of ATA ports attached to this host 5655 * 5656 * Allocate ATA host and initialize with info from @ppi. If NULL 5657 * terminated, @ppi may contain fewer entries than @n_ports. The 5658 * last entry will be used for the remaining ports. 5659 * 5660 * RETURNS: 5661 * Allocate ATA host on success, NULL on failure. 5662 * 5663 * LOCKING: 5664 * Inherited from calling layer (may sleep). 5665 */ 5666 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5667 const struct ata_port_info * const * ppi, 5668 int n_ports) 5669 { 5670 const struct ata_port_info *pi = &ata_dummy_port_info; 5671 struct ata_host *host; 5672 int i, j; 5673 5674 host = ata_host_alloc(dev, n_ports); 5675 if (!host) 5676 return NULL; 5677 5678 for (i = 0, j = 0; i < host->n_ports; i++) { 5679 struct ata_port *ap = host->ports[i]; 5680 5681 if (ppi[j]) 5682 pi = ppi[j++]; 5683 5684 ap->pio_mask = pi->pio_mask; 5685 ap->mwdma_mask = pi->mwdma_mask; 5686 ap->udma_mask = pi->udma_mask; 5687 ap->flags |= pi->flags; 5688 ap->link.flags |= pi->link_flags; 5689 ap->ops = pi->port_ops; 5690 5691 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5692 host->ops = pi->port_ops; 5693 } 5694 5695 return host; 5696 } 5697 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5698 5699 static void ata_host_stop(struct device *gendev, void *res) 5700 { 5701 struct ata_host *host = dev_get_drvdata(gendev); 5702 int i; 5703 5704 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5705 5706 for (i = 0; i < host->n_ports; i++) { 5707 struct ata_port *ap = host->ports[i]; 5708 5709 if (ap->ops->port_stop) 5710 ap->ops->port_stop(ap); 5711 } 5712 5713 if (host->ops->host_stop) 5714 host->ops->host_stop(host); 5715 } 5716 5717 /** 5718 * ata_finalize_port_ops - finalize ata_port_operations 5719 * @ops: ata_port_operations to finalize 5720 * 5721 * An ata_port_operations can inherit from another ops and that 5722 * ops can again inherit from another. This can go on as many 5723 * times as necessary as long as there is no loop in the 5724 * inheritance chain. 5725 * 5726 * Ops tables are finalized when the host is started. NULL or 5727 * unspecified entries are inherited from the closet ancestor 5728 * which has the method and the entry is populated with it. 5729 * After finalization, the ops table directly points to all the 5730 * methods and ->inherits is no longer necessary and cleared. 5731 * 5732 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5733 * 5734 * LOCKING: 5735 * None. 5736 */ 5737 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5738 { 5739 static DEFINE_SPINLOCK(lock); 5740 const struct ata_port_operations *cur; 5741 void **begin = (void **)ops; 5742 void **end = (void **)&ops->inherits; 5743 void **pp; 5744 5745 if (!ops || !ops->inherits) 5746 return; 5747 5748 spin_lock(&lock); 5749 5750 for (cur = ops->inherits; cur; cur = cur->inherits) { 5751 void **inherit = (void **)cur; 5752 5753 for (pp = begin; pp < end; pp++, inherit++) 5754 if (!*pp) 5755 *pp = *inherit; 5756 } 5757 5758 for (pp = begin; pp < end; pp++) 5759 if (IS_ERR(*pp)) 5760 *pp = NULL; 5761 5762 ops->inherits = NULL; 5763 5764 spin_unlock(&lock); 5765 } 5766 5767 /** 5768 * ata_host_start - start and freeze ports of an ATA host 5769 * @host: ATA host to start ports for 5770 * 5771 * Start and then freeze ports of @host. Started status is 5772 * recorded in host->flags, so this function can be called 5773 * multiple times. Ports are guaranteed to get started only 5774 * once. If host->ops is not initialized yet, it is set to the 5775 * first non-dummy port ops. 5776 * 5777 * LOCKING: 5778 * Inherited from calling layer (may sleep). 5779 * 5780 * RETURNS: 5781 * 0 if all ports are started successfully, -errno otherwise. 5782 */ 5783 int ata_host_start(struct ata_host *host) 5784 { 5785 int have_stop = 0; 5786 void *start_dr = NULL; 5787 int i, rc; 5788 5789 if (host->flags & ATA_HOST_STARTED) 5790 return 0; 5791 5792 ata_finalize_port_ops(host->ops); 5793 5794 for (i = 0; i < host->n_ports; i++) { 5795 struct ata_port *ap = host->ports[i]; 5796 5797 ata_finalize_port_ops(ap->ops); 5798 5799 if (!host->ops && !ata_port_is_dummy(ap)) 5800 host->ops = ap->ops; 5801 5802 if (ap->ops->port_stop) 5803 have_stop = 1; 5804 } 5805 5806 if (host->ops && host->ops->host_stop) 5807 have_stop = 1; 5808 5809 if (have_stop) { 5810 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5811 if (!start_dr) 5812 return -ENOMEM; 5813 } 5814 5815 for (i = 0; i < host->n_ports; i++) { 5816 struct ata_port *ap = host->ports[i]; 5817 5818 if (ap->ops->port_start) { 5819 rc = ap->ops->port_start(ap); 5820 if (rc) { 5821 if (rc != -ENODEV) 5822 dev_err(host->dev, 5823 "failed to start port %d (errno=%d)\n", 5824 i, rc); 5825 goto err_out; 5826 } 5827 } 5828 ata_eh_freeze_port(ap); 5829 } 5830 5831 if (start_dr) 5832 devres_add(host->dev, start_dr); 5833 host->flags |= ATA_HOST_STARTED; 5834 return 0; 5835 5836 err_out: 5837 while (--i >= 0) { 5838 struct ata_port *ap = host->ports[i]; 5839 5840 if (ap->ops->port_stop) 5841 ap->ops->port_stop(ap); 5842 } 5843 devres_free(start_dr); 5844 return rc; 5845 } 5846 EXPORT_SYMBOL_GPL(ata_host_start); 5847 5848 /** 5849 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5850 * @host: host to initialize 5851 * @dev: device host is attached to 5852 * @ops: port_ops 5853 * 5854 */ 5855 void ata_host_init(struct ata_host *host, struct device *dev, 5856 struct ata_port_operations *ops) 5857 { 5858 spin_lock_init(&host->lock); 5859 mutex_init(&host->eh_mutex); 5860 host->n_tags = ATA_MAX_QUEUE; 5861 host->dev = dev; 5862 host->ops = ops; 5863 kref_init(&host->kref); 5864 } 5865 EXPORT_SYMBOL_GPL(ata_host_init); 5866 5867 void ata_port_probe(struct ata_port *ap) 5868 { 5869 struct ata_eh_info *ehi = &ap->link.eh_info; 5870 unsigned long flags; 5871 5872 /* kick EH for boot probing */ 5873 spin_lock_irqsave(ap->lock, flags); 5874 5875 ehi->probe_mask |= ATA_ALL_DEVICES; 5876 ehi->action |= ATA_EH_RESET; 5877 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5878 5879 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5880 ap->pflags |= ATA_PFLAG_LOADING; 5881 ata_port_schedule_eh(ap); 5882 5883 spin_unlock_irqrestore(ap->lock, flags); 5884 } 5885 EXPORT_SYMBOL_GPL(ata_port_probe); 5886 5887 static void async_port_probe(void *data, async_cookie_t cookie) 5888 { 5889 struct ata_port *ap = data; 5890 5891 /* 5892 * If we're not allowed to scan this host in parallel, 5893 * we need to wait until all previous scans have completed 5894 * before going further. 5895 * Jeff Garzik says this is only within a controller, so we 5896 * don't need to wait for port 0, only for later ports. 5897 */ 5898 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5899 async_synchronize_cookie(cookie); 5900 5901 ata_port_probe(ap); 5902 ata_port_wait_eh(ap); 5903 5904 /* in order to keep device order, we need to synchronize at this point */ 5905 async_synchronize_cookie(cookie); 5906 5907 ata_scsi_scan_host(ap, 1); 5908 } 5909 5910 /** 5911 * ata_host_register - register initialized ATA host 5912 * @host: ATA host to register 5913 * @sht: template for SCSI host 5914 * 5915 * Register initialized ATA host. @host is allocated using 5916 * ata_host_alloc() and fully initialized by LLD. This function 5917 * starts ports, registers @host with ATA and SCSI layers and 5918 * probe registered devices. 5919 * 5920 * LOCKING: 5921 * Inherited from calling layer (may sleep). 5922 * 5923 * RETURNS: 5924 * 0 on success, -errno otherwise. 5925 */ 5926 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5927 { 5928 int i, rc; 5929 5930 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5931 5932 /* host must have been started */ 5933 if (!(host->flags & ATA_HOST_STARTED)) { 5934 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5935 WARN_ON(1); 5936 return -EINVAL; 5937 } 5938 5939 /* Blow away unused ports. This happens when LLD can't 5940 * determine the exact number of ports to allocate at 5941 * allocation time. 5942 */ 5943 for (i = host->n_ports; host->ports[i]; i++) 5944 kfree(host->ports[i]); 5945 5946 /* give ports names and add SCSI hosts */ 5947 for (i = 0; i < host->n_ports; i++) { 5948 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5949 host->ports[i]->local_port_no = i + 1; 5950 } 5951 5952 /* Create associated sysfs transport objects */ 5953 for (i = 0; i < host->n_ports; i++) { 5954 rc = ata_tport_add(host->dev,host->ports[i]); 5955 if (rc) { 5956 goto err_tadd; 5957 } 5958 } 5959 5960 rc = ata_scsi_add_hosts(host, sht); 5961 if (rc) 5962 goto err_tadd; 5963 5964 /* set cable, sata_spd_limit and report */ 5965 for (i = 0; i < host->n_ports; i++) { 5966 struct ata_port *ap = host->ports[i]; 5967 unsigned int xfer_mask; 5968 5969 /* set SATA cable type if still unset */ 5970 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5971 ap->cbl = ATA_CBL_SATA; 5972 5973 /* init sata_spd_limit to the current value */ 5974 sata_link_init_spd(&ap->link); 5975 if (ap->slave_link) 5976 sata_link_init_spd(ap->slave_link); 5977 5978 /* print per-port info to dmesg */ 5979 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5980 ap->udma_mask); 5981 5982 if (!ata_port_is_dummy(ap)) { 5983 ata_port_info(ap, "%cATA max %s %s\n", 5984 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5985 ata_mode_string(xfer_mask), 5986 ap->link.eh_info.desc); 5987 ata_ehi_clear_desc(&ap->link.eh_info); 5988 } else 5989 ata_port_info(ap, "DUMMY\n"); 5990 } 5991 5992 /* perform each probe asynchronously */ 5993 for (i = 0; i < host->n_ports; i++) { 5994 struct ata_port *ap = host->ports[i]; 5995 ap->cookie = async_schedule(async_port_probe, ap); 5996 } 5997 5998 return 0; 5999 6000 err_tadd: 6001 while (--i >= 0) { 6002 ata_tport_delete(host->ports[i]); 6003 } 6004 return rc; 6005 6006 } 6007 EXPORT_SYMBOL_GPL(ata_host_register); 6008 6009 /** 6010 * ata_host_activate - start host, request IRQ and register it 6011 * @host: target ATA host 6012 * @irq: IRQ to request 6013 * @irq_handler: irq_handler used when requesting IRQ 6014 * @irq_flags: irq_flags used when requesting IRQ 6015 * @sht: scsi_host_template to use when registering the host 6016 * 6017 * After allocating an ATA host and initializing it, most libata 6018 * LLDs perform three steps to activate the host - start host, 6019 * request IRQ and register it. This helper takes necessary 6020 * arguments and performs the three steps in one go. 6021 * 6022 * An invalid IRQ skips the IRQ registration and expects the host to 6023 * have set polling mode on the port. In this case, @irq_handler 6024 * should be NULL. 6025 * 6026 * LOCKING: 6027 * Inherited from calling layer (may sleep). 6028 * 6029 * RETURNS: 6030 * 0 on success, -errno otherwise. 6031 */ 6032 int ata_host_activate(struct ata_host *host, int irq, 6033 irq_handler_t irq_handler, unsigned long irq_flags, 6034 const struct scsi_host_template *sht) 6035 { 6036 int i, rc; 6037 char *irq_desc; 6038 6039 rc = ata_host_start(host); 6040 if (rc) 6041 return rc; 6042 6043 /* Special case for polling mode */ 6044 if (!irq) { 6045 WARN_ON(irq_handler); 6046 return ata_host_register(host, sht); 6047 } 6048 6049 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6050 dev_driver_string(host->dev), 6051 dev_name(host->dev)); 6052 if (!irq_desc) 6053 return -ENOMEM; 6054 6055 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6056 irq_desc, host); 6057 if (rc) 6058 return rc; 6059 6060 for (i = 0; i < host->n_ports; i++) 6061 ata_port_desc_misc(host->ports[i], irq); 6062 6063 rc = ata_host_register(host, sht); 6064 /* if failed, just free the IRQ and leave ports alone */ 6065 if (rc) 6066 devm_free_irq(host->dev, irq, host); 6067 6068 return rc; 6069 } 6070 EXPORT_SYMBOL_GPL(ata_host_activate); 6071 6072 /** 6073 * ata_port_detach - Detach ATA port in preparation of device removal 6074 * @ap: ATA port to be detached 6075 * 6076 * Detach all ATA devices and the associated SCSI devices of @ap; 6077 * then, remove the associated SCSI host. @ap is guaranteed to 6078 * be quiescent on return from this function. 6079 * 6080 * LOCKING: 6081 * Kernel thread context (may sleep). 6082 */ 6083 static void ata_port_detach(struct ata_port *ap) 6084 { 6085 unsigned long flags; 6086 struct ata_link *link; 6087 struct ata_device *dev; 6088 6089 /* Ensure ata_port probe has completed */ 6090 async_synchronize_cookie(ap->cookie + 1); 6091 6092 /* Wait for any ongoing EH */ 6093 ata_port_wait_eh(ap); 6094 6095 mutex_lock(&ap->scsi_scan_mutex); 6096 spin_lock_irqsave(ap->lock, flags); 6097 6098 /* Remove scsi devices */ 6099 ata_for_each_link(link, ap, HOST_FIRST) { 6100 ata_for_each_dev(dev, link, ALL) { 6101 if (dev->sdev) { 6102 spin_unlock_irqrestore(ap->lock, flags); 6103 scsi_remove_device(dev->sdev); 6104 spin_lock_irqsave(ap->lock, flags); 6105 dev->sdev = NULL; 6106 } 6107 } 6108 } 6109 6110 /* Tell EH to disable all devices */ 6111 ap->pflags |= ATA_PFLAG_UNLOADING; 6112 ata_port_schedule_eh(ap); 6113 6114 spin_unlock_irqrestore(ap->lock, flags); 6115 mutex_unlock(&ap->scsi_scan_mutex); 6116 6117 /* wait till EH commits suicide */ 6118 ata_port_wait_eh(ap); 6119 6120 /* it better be dead now */ 6121 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6122 6123 cancel_delayed_work_sync(&ap->hotplug_task); 6124 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6125 6126 /* clean up zpodd on port removal */ 6127 ata_for_each_link(link, ap, HOST_FIRST) { 6128 ata_for_each_dev(dev, link, ALL) { 6129 if (zpodd_dev_enabled(dev)) 6130 zpodd_exit(dev); 6131 } 6132 } 6133 if (ap->pmp_link) { 6134 int i; 6135 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6136 ata_tlink_delete(&ap->pmp_link[i]); 6137 } 6138 /* remove the associated SCSI host */ 6139 scsi_remove_host(ap->scsi_host); 6140 ata_tport_delete(ap); 6141 } 6142 6143 /** 6144 * ata_host_detach - Detach all ports of an ATA host 6145 * @host: Host to detach 6146 * 6147 * Detach all ports of @host. 6148 * 6149 * LOCKING: 6150 * Kernel thread context (may sleep). 6151 */ 6152 void ata_host_detach(struct ata_host *host) 6153 { 6154 int i; 6155 6156 for (i = 0; i < host->n_ports; i++) 6157 ata_port_detach(host->ports[i]); 6158 6159 /* the host is dead now, dissociate ACPI */ 6160 ata_acpi_dissociate(host); 6161 } 6162 EXPORT_SYMBOL_GPL(ata_host_detach); 6163 6164 #ifdef CONFIG_PCI 6165 6166 /** 6167 * ata_pci_remove_one - PCI layer callback for device removal 6168 * @pdev: PCI device that was removed 6169 * 6170 * PCI layer indicates to libata via this hook that hot-unplug or 6171 * module unload event has occurred. Detach all ports. Resource 6172 * release is handled via devres. 6173 * 6174 * LOCKING: 6175 * Inherited from PCI layer (may sleep). 6176 */ 6177 void ata_pci_remove_one(struct pci_dev *pdev) 6178 { 6179 struct ata_host *host = pci_get_drvdata(pdev); 6180 6181 ata_host_detach(host); 6182 } 6183 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6184 6185 void ata_pci_shutdown_one(struct pci_dev *pdev) 6186 { 6187 struct ata_host *host = pci_get_drvdata(pdev); 6188 int i; 6189 6190 for (i = 0; i < host->n_ports; i++) { 6191 struct ata_port *ap = host->ports[i]; 6192 6193 ap->pflags |= ATA_PFLAG_FROZEN; 6194 6195 /* Disable port interrupts */ 6196 if (ap->ops->freeze) 6197 ap->ops->freeze(ap); 6198 6199 /* Stop the port DMA engines */ 6200 if (ap->ops->port_stop) 6201 ap->ops->port_stop(ap); 6202 } 6203 } 6204 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6205 6206 /* move to PCI subsystem */ 6207 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6208 { 6209 unsigned long tmp = 0; 6210 6211 switch (bits->width) { 6212 case 1: { 6213 u8 tmp8 = 0; 6214 pci_read_config_byte(pdev, bits->reg, &tmp8); 6215 tmp = tmp8; 6216 break; 6217 } 6218 case 2: { 6219 u16 tmp16 = 0; 6220 pci_read_config_word(pdev, bits->reg, &tmp16); 6221 tmp = tmp16; 6222 break; 6223 } 6224 case 4: { 6225 u32 tmp32 = 0; 6226 pci_read_config_dword(pdev, bits->reg, &tmp32); 6227 tmp = tmp32; 6228 break; 6229 } 6230 6231 default: 6232 return -EINVAL; 6233 } 6234 6235 tmp &= bits->mask; 6236 6237 return (tmp == bits->val) ? 1 : 0; 6238 } 6239 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6240 6241 #ifdef CONFIG_PM 6242 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6243 { 6244 pci_save_state(pdev); 6245 pci_disable_device(pdev); 6246 6247 if (mesg.event & PM_EVENT_SLEEP) 6248 pci_set_power_state(pdev, PCI_D3hot); 6249 } 6250 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6251 6252 int ata_pci_device_do_resume(struct pci_dev *pdev) 6253 { 6254 int rc; 6255 6256 pci_set_power_state(pdev, PCI_D0); 6257 pci_restore_state(pdev); 6258 6259 rc = pcim_enable_device(pdev); 6260 if (rc) { 6261 dev_err(&pdev->dev, 6262 "failed to enable device after resume (%d)\n", rc); 6263 return rc; 6264 } 6265 6266 pci_set_master(pdev); 6267 return 0; 6268 } 6269 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6270 6271 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6272 { 6273 struct ata_host *host = pci_get_drvdata(pdev); 6274 6275 ata_host_suspend(host, mesg); 6276 6277 ata_pci_device_do_suspend(pdev, mesg); 6278 6279 return 0; 6280 } 6281 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6282 6283 int ata_pci_device_resume(struct pci_dev *pdev) 6284 { 6285 struct ata_host *host = pci_get_drvdata(pdev); 6286 int rc; 6287 6288 rc = ata_pci_device_do_resume(pdev); 6289 if (rc == 0) 6290 ata_host_resume(host); 6291 return rc; 6292 } 6293 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6294 #endif /* CONFIG_PM */ 6295 #endif /* CONFIG_PCI */ 6296 6297 /** 6298 * ata_platform_remove_one - Platform layer callback for device removal 6299 * @pdev: Platform device that was removed 6300 * 6301 * Platform layer indicates to libata via this hook that hot-unplug or 6302 * module unload event has occurred. Detach all ports. Resource 6303 * release is handled via devres. 6304 * 6305 * LOCKING: 6306 * Inherited from platform layer (may sleep). 6307 */ 6308 void ata_platform_remove_one(struct platform_device *pdev) 6309 { 6310 struct ata_host *host = platform_get_drvdata(pdev); 6311 6312 ata_host_detach(host); 6313 } 6314 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6315 6316 #ifdef CONFIG_ATA_FORCE 6317 6318 #define force_cbl(name, flag) \ 6319 { #name, .cbl = (flag) } 6320 6321 #define force_spd_limit(spd, val) \ 6322 { #spd, .spd_limit = (val) } 6323 6324 #define force_xfer(mode, shift) \ 6325 { #mode, .xfer_mask = (1UL << (shift)) } 6326 6327 #define force_lflag_on(name, flags) \ 6328 { #name, .lflags_on = (flags) } 6329 6330 #define force_lflag_onoff(name, flags) \ 6331 { "no" #name, .lflags_on = (flags) }, \ 6332 { #name, .lflags_off = (flags) } 6333 6334 #define force_horkage_on(name, flag) \ 6335 { #name, .horkage_on = (flag) } 6336 6337 #define force_horkage_onoff(name, flag) \ 6338 { "no" #name, .horkage_on = (flag) }, \ 6339 { #name, .horkage_off = (flag) } 6340 6341 static const struct ata_force_param force_tbl[] __initconst = { 6342 force_cbl(40c, ATA_CBL_PATA40), 6343 force_cbl(80c, ATA_CBL_PATA80), 6344 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6345 force_cbl(unk, ATA_CBL_PATA_UNK), 6346 force_cbl(ign, ATA_CBL_PATA_IGN), 6347 force_cbl(sata, ATA_CBL_SATA), 6348 6349 force_spd_limit(1.5Gbps, 1), 6350 force_spd_limit(3.0Gbps, 2), 6351 6352 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6353 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6354 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6355 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6356 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6357 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6358 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6359 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6360 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6361 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6362 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6363 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6364 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6365 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6366 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6367 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6368 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6369 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6370 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6371 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6372 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6373 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6374 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6375 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6376 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6377 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6378 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6379 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6380 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6381 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6382 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6383 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6384 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6385 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6386 6387 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6388 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6389 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6390 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6391 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6392 6393 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6394 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6395 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6396 6397 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6398 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6399 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6400 6401 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6402 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6403 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6404 6405 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6406 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6407 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6408 6409 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6410 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6411 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6412 6413 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6414 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6415 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6416 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6417 6418 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6419 }; 6420 6421 static int __init ata_parse_force_one(char **cur, 6422 struct ata_force_ent *force_ent, 6423 const char **reason) 6424 { 6425 char *start = *cur, *p = *cur; 6426 char *id, *val, *endp; 6427 const struct ata_force_param *match_fp = NULL; 6428 int nr_matches = 0, i; 6429 6430 /* find where this param ends and update *cur */ 6431 while (*p != '\0' && *p != ',') 6432 p++; 6433 6434 if (*p == '\0') 6435 *cur = p; 6436 else 6437 *cur = p + 1; 6438 6439 *p = '\0'; 6440 6441 /* parse */ 6442 p = strchr(start, ':'); 6443 if (!p) { 6444 val = strstrip(start); 6445 goto parse_val; 6446 } 6447 *p = '\0'; 6448 6449 id = strstrip(start); 6450 val = strstrip(p + 1); 6451 6452 /* parse id */ 6453 p = strchr(id, '.'); 6454 if (p) { 6455 *p++ = '\0'; 6456 force_ent->device = simple_strtoul(p, &endp, 10); 6457 if (p == endp || *endp != '\0') { 6458 *reason = "invalid device"; 6459 return -EINVAL; 6460 } 6461 } 6462 6463 force_ent->port = simple_strtoul(id, &endp, 10); 6464 if (id == endp || *endp != '\0') { 6465 *reason = "invalid port/link"; 6466 return -EINVAL; 6467 } 6468 6469 parse_val: 6470 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6471 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6472 const struct ata_force_param *fp = &force_tbl[i]; 6473 6474 if (strncasecmp(val, fp->name, strlen(val))) 6475 continue; 6476 6477 nr_matches++; 6478 match_fp = fp; 6479 6480 if (strcasecmp(val, fp->name) == 0) { 6481 nr_matches = 1; 6482 break; 6483 } 6484 } 6485 6486 if (!nr_matches) { 6487 *reason = "unknown value"; 6488 return -EINVAL; 6489 } 6490 if (nr_matches > 1) { 6491 *reason = "ambiguous value"; 6492 return -EINVAL; 6493 } 6494 6495 force_ent->param = *match_fp; 6496 6497 return 0; 6498 } 6499 6500 static void __init ata_parse_force_param(void) 6501 { 6502 int idx = 0, size = 1; 6503 int last_port = -1, last_device = -1; 6504 char *p, *cur, *next; 6505 6506 /* Calculate maximum number of params and allocate ata_force_tbl */ 6507 for (p = ata_force_param_buf; *p; p++) 6508 if (*p == ',') 6509 size++; 6510 6511 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6512 if (!ata_force_tbl) { 6513 printk(KERN_WARNING "ata: failed to extend force table, " 6514 "libata.force ignored\n"); 6515 return; 6516 } 6517 6518 /* parse and populate the table */ 6519 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6520 const char *reason = ""; 6521 struct ata_force_ent te = { .port = -1, .device = -1 }; 6522 6523 next = cur; 6524 if (ata_parse_force_one(&next, &te, &reason)) { 6525 printk(KERN_WARNING "ata: failed to parse force " 6526 "parameter \"%s\" (%s)\n", 6527 cur, reason); 6528 continue; 6529 } 6530 6531 if (te.port == -1) { 6532 te.port = last_port; 6533 te.device = last_device; 6534 } 6535 6536 ata_force_tbl[idx++] = te; 6537 6538 last_port = te.port; 6539 last_device = te.device; 6540 } 6541 6542 ata_force_tbl_size = idx; 6543 } 6544 6545 static void ata_free_force_param(void) 6546 { 6547 kfree(ata_force_tbl); 6548 } 6549 #else 6550 static inline void ata_parse_force_param(void) { } 6551 static inline void ata_free_force_param(void) { } 6552 #endif 6553 6554 static int __init ata_init(void) 6555 { 6556 int rc; 6557 6558 ata_parse_force_param(); 6559 6560 rc = ata_sff_init(); 6561 if (rc) { 6562 ata_free_force_param(); 6563 return rc; 6564 } 6565 6566 libata_transport_init(); 6567 ata_scsi_transport_template = ata_attach_transport(); 6568 if (!ata_scsi_transport_template) { 6569 ata_sff_exit(); 6570 rc = -ENOMEM; 6571 goto err_out; 6572 } 6573 6574 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6575 return 0; 6576 6577 err_out: 6578 return rc; 6579 } 6580 6581 static void __exit ata_exit(void) 6582 { 6583 ata_release_transport(ata_scsi_transport_template); 6584 libata_transport_exit(); 6585 ata_sff_exit(); 6586 ata_free_force_param(); 6587 } 6588 6589 subsys_initcall(ata_init); 6590 module_exit(ata_exit); 6591 6592 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6593 6594 int ata_ratelimit(void) 6595 { 6596 return __ratelimit(&ratelimit); 6597 } 6598 EXPORT_SYMBOL_GPL(ata_ratelimit); 6599 6600 /** 6601 * ata_msleep - ATA EH owner aware msleep 6602 * @ap: ATA port to attribute the sleep to 6603 * @msecs: duration to sleep in milliseconds 6604 * 6605 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6606 * ownership is released before going to sleep and reacquired 6607 * after the sleep is complete. IOW, other ports sharing the 6608 * @ap->host will be allowed to own the EH while this task is 6609 * sleeping. 6610 * 6611 * LOCKING: 6612 * Might sleep. 6613 */ 6614 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6615 { 6616 bool owns_eh = ap && ap->host->eh_owner == current; 6617 6618 if (owns_eh) 6619 ata_eh_release(ap); 6620 6621 if (msecs < 20) { 6622 unsigned long usecs = msecs * USEC_PER_MSEC; 6623 usleep_range(usecs, usecs + 50); 6624 } else { 6625 msleep(msecs); 6626 } 6627 6628 if (owns_eh) 6629 ata_eh_acquire(ap); 6630 } 6631 EXPORT_SYMBOL_GPL(ata_msleep); 6632 6633 /** 6634 * ata_wait_register - wait until register value changes 6635 * @ap: ATA port to wait register for, can be NULL 6636 * @reg: IO-mapped register 6637 * @mask: Mask to apply to read register value 6638 * @val: Wait condition 6639 * @interval: polling interval in milliseconds 6640 * @timeout: timeout in milliseconds 6641 * 6642 * Waiting for some bits of register to change is a common 6643 * operation for ATA controllers. This function reads 32bit LE 6644 * IO-mapped register @reg and tests for the following condition. 6645 * 6646 * (*@reg & mask) != val 6647 * 6648 * If the condition is met, it returns; otherwise, the process is 6649 * repeated after @interval_msec until timeout. 6650 * 6651 * LOCKING: 6652 * Kernel thread context (may sleep) 6653 * 6654 * RETURNS: 6655 * The final register value. 6656 */ 6657 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6658 unsigned int interval, unsigned int timeout) 6659 { 6660 unsigned long deadline; 6661 u32 tmp; 6662 6663 tmp = ioread32(reg); 6664 6665 /* Calculate timeout _after_ the first read to make sure 6666 * preceding writes reach the controller before starting to 6667 * eat away the timeout. 6668 */ 6669 deadline = ata_deadline(jiffies, timeout); 6670 6671 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6672 ata_msleep(ap, interval); 6673 tmp = ioread32(reg); 6674 } 6675 6676 return tmp; 6677 } 6678 EXPORT_SYMBOL_GPL(ata_wait_register); 6679 6680 /* 6681 * Dummy port_ops 6682 */ 6683 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6684 { 6685 return AC_ERR_SYSTEM; 6686 } 6687 6688 static void ata_dummy_error_handler(struct ata_port *ap) 6689 { 6690 /* truly dummy */ 6691 } 6692 6693 struct ata_port_operations ata_dummy_port_ops = { 6694 .qc_prep = ata_noop_qc_prep, 6695 .qc_issue = ata_dummy_qc_issue, 6696 .error_handler = ata_dummy_error_handler, 6697 .sched_eh = ata_std_sched_eh, 6698 .end_eh = ata_std_end_eh, 6699 }; 6700 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6701 6702 const struct ata_port_info ata_dummy_port_info = { 6703 .port_ops = &ata_dummy_port_ops, 6704 }; 6705 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6706 6707 void ata_print_version(const struct device *dev, const char *version) 6708 { 6709 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6710 } 6711 EXPORT_SYMBOL(ata_print_version); 6712 6713 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6714 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6715 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6716 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6717 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6718