xref: /linux/drivers/ata/libata-core.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 
71 #include "libata.h"
72 #include "libata-transport.h"
73 
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
77 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
78 
79 const struct ata_port_operations ata_base_port_ops = {
80 	.prereset		= ata_std_prereset,
81 	.postreset		= ata_std_postreset,
82 	.error_handler		= ata_std_error_handler,
83 	.sched_eh		= ata_std_sched_eh,
84 	.end_eh			= ata_std_end_eh,
85 };
86 
87 const struct ata_port_operations sata_port_ops = {
88 	.inherits		= &ata_base_port_ops,
89 
90 	.qc_defer		= ata_std_qc_defer,
91 	.hardreset		= sata_std_hardreset,
92 };
93 
94 static unsigned int ata_dev_init_params(struct ata_device *dev,
95 					u16 heads, u16 sectors);
96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
97 static void ata_dev_xfermask(struct ata_device *dev);
98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99 
100 atomic_t ata_print_id = ATOMIC_INIT(0);
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161 
162 static int atapi_an;
163 module_param(atapi_an, int, 0444);
164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
165 
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION);
170 
171 
172 static bool ata_sstatus_online(u32 sstatus)
173 {
174 	return (sstatus & 0xf) == 0x3;
175 }
176 
177 /**
178  *	ata_link_next - link iteration helper
179  *	@link: the previous link, NULL to start
180  *	@ap: ATA port containing links to iterate
181  *	@mode: iteration mode, one of ATA_LITER_*
182  *
183  *	LOCKING:
184  *	Host lock or EH context.
185  *
186  *	RETURNS:
187  *	Pointer to the next link.
188  */
189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
190 			       enum ata_link_iter_mode mode)
191 {
192 	BUG_ON(mode != ATA_LITER_EDGE &&
193 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
194 
195 	/* NULL link indicates start of iteration */
196 	if (!link)
197 		switch (mode) {
198 		case ATA_LITER_EDGE:
199 		case ATA_LITER_PMP_FIRST:
200 			if (sata_pmp_attached(ap))
201 				return ap->pmp_link;
202 			/* fall through */
203 		case ATA_LITER_HOST_FIRST:
204 			return &ap->link;
205 		}
206 
207 	/* we just iterated over the host link, what's next? */
208 	if (link == &ap->link)
209 		switch (mode) {
210 		case ATA_LITER_HOST_FIRST:
211 			if (sata_pmp_attached(ap))
212 				return ap->pmp_link;
213 			/* fall through */
214 		case ATA_LITER_PMP_FIRST:
215 			if (unlikely(ap->slave_link))
216 				return ap->slave_link;
217 			/* fall through */
218 		case ATA_LITER_EDGE:
219 			return NULL;
220 		}
221 
222 	/* slave_link excludes PMP */
223 	if (unlikely(link == ap->slave_link))
224 		return NULL;
225 
226 	/* we were over a PMP link */
227 	if (++link < ap->pmp_link + ap->nr_pmp_links)
228 		return link;
229 
230 	if (mode == ATA_LITER_PMP_FIRST)
231 		return &ap->link;
232 
233 	return NULL;
234 }
235 
236 /**
237  *	ata_dev_next - device iteration helper
238  *	@dev: the previous device, NULL to start
239  *	@link: ATA link containing devices to iterate
240  *	@mode: iteration mode, one of ATA_DITER_*
241  *
242  *	LOCKING:
243  *	Host lock or EH context.
244  *
245  *	RETURNS:
246  *	Pointer to the next device.
247  */
248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
249 				enum ata_dev_iter_mode mode)
250 {
251 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
252 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
253 
254 	/* NULL dev indicates start of iteration */
255 	if (!dev)
256 		switch (mode) {
257 		case ATA_DITER_ENABLED:
258 		case ATA_DITER_ALL:
259 			dev = link->device;
260 			goto check;
261 		case ATA_DITER_ENABLED_REVERSE:
262 		case ATA_DITER_ALL_REVERSE:
263 			dev = link->device + ata_link_max_devices(link) - 1;
264 			goto check;
265 		}
266 
267  next:
268 	/* move to the next one */
269 	switch (mode) {
270 	case ATA_DITER_ENABLED:
271 	case ATA_DITER_ALL:
272 		if (++dev < link->device + ata_link_max_devices(link))
273 			goto check;
274 		return NULL;
275 	case ATA_DITER_ENABLED_REVERSE:
276 	case ATA_DITER_ALL_REVERSE:
277 		if (--dev >= link->device)
278 			goto check;
279 		return NULL;
280 	}
281 
282  check:
283 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
284 	    !ata_dev_enabled(dev))
285 		goto next;
286 	return dev;
287 }
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 
495 /**
496  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497  *	@opcode: SCSI opcode
498  *
499  *	Determine ATAPI command type from @opcode.
500  *
501  *	LOCKING:
502  *	None.
503  *
504  *	RETURNS:
505  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506  */
507 int atapi_cmd_type(u8 opcode)
508 {
509 	switch (opcode) {
510 	case GPCMD_READ_10:
511 	case GPCMD_READ_12:
512 		return ATAPI_READ;
513 
514 	case GPCMD_WRITE_10:
515 	case GPCMD_WRITE_12:
516 	case GPCMD_WRITE_AND_VERIFY_10:
517 		return ATAPI_WRITE;
518 
519 	case GPCMD_READ_CD:
520 	case GPCMD_READ_CD_MSF:
521 		return ATAPI_READ_CD;
522 
523 	case ATA_16:
524 	case ATA_12:
525 		if (atapi_passthru16)
526 			return ATAPI_PASS_THRU;
527 		/* fall thru */
528 	default:
529 		return ATAPI_MISC;
530 	}
531 }
532 
533 /**
534  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
535  *	@tf: Taskfile to convert
536  *	@pmp: Port multiplier port
537  *	@is_cmd: This FIS is for command
538  *	@fis: Buffer into which data will output
539  *
540  *	Converts a standard ATA taskfile to a Serial ATA
541  *	FIS structure (Register - Host to Device).
542  *
543  *	LOCKING:
544  *	Inherited from caller.
545  */
546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 {
548 	fis[0] = 0x27;			/* Register - Host to Device FIS */
549 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
550 	if (is_cmd)
551 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
552 
553 	fis[2] = tf->command;
554 	fis[3] = tf->feature;
555 
556 	fis[4] = tf->lbal;
557 	fis[5] = tf->lbam;
558 	fis[6] = tf->lbah;
559 	fis[7] = tf->device;
560 
561 	fis[8] = tf->hob_lbal;
562 	fis[9] = tf->hob_lbam;
563 	fis[10] = tf->hob_lbah;
564 	fis[11] = tf->hob_feature;
565 
566 	fis[12] = tf->nsect;
567 	fis[13] = tf->hob_nsect;
568 	fis[14] = 0;
569 	fis[15] = tf->ctl;
570 
571 	fis[16] = 0;
572 	fis[17] = 0;
573 	fis[18] = 0;
574 	fis[19] = 0;
575 }
576 
577 /**
578  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
579  *	@fis: Buffer from which data will be input
580  *	@tf: Taskfile to output
581  *
582  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
583  *
584  *	LOCKING:
585  *	Inherited from caller.
586  */
587 
588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 {
590 	tf->command	= fis[2];	/* status */
591 	tf->feature	= fis[3];	/* error */
592 
593 	tf->lbal	= fis[4];
594 	tf->lbam	= fis[5];
595 	tf->lbah	= fis[6];
596 	tf->device	= fis[7];
597 
598 	tf->hob_lbal	= fis[8];
599 	tf->hob_lbam	= fis[9];
600 	tf->hob_lbah	= fis[10];
601 
602 	tf->nsect	= fis[12];
603 	tf->hob_nsect	= fis[13];
604 }
605 
606 static const u8 ata_rw_cmds[] = {
607 	/* pio multi */
608 	ATA_CMD_READ_MULTI,
609 	ATA_CMD_WRITE_MULTI,
610 	ATA_CMD_READ_MULTI_EXT,
611 	ATA_CMD_WRITE_MULTI_EXT,
612 	0,
613 	0,
614 	0,
615 	ATA_CMD_WRITE_MULTI_FUA_EXT,
616 	/* pio */
617 	ATA_CMD_PIO_READ,
618 	ATA_CMD_PIO_WRITE,
619 	ATA_CMD_PIO_READ_EXT,
620 	ATA_CMD_PIO_WRITE_EXT,
621 	0,
622 	0,
623 	0,
624 	0,
625 	/* dma */
626 	ATA_CMD_READ,
627 	ATA_CMD_WRITE,
628 	ATA_CMD_READ_EXT,
629 	ATA_CMD_WRITE_EXT,
630 	0,
631 	0,
632 	0,
633 	ATA_CMD_WRITE_FUA_EXT
634 };
635 
636 /**
637  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
638  *	@tf: command to examine and configure
639  *	@dev: device tf belongs to
640  *
641  *	Examine the device configuration and tf->flags to calculate
642  *	the proper read/write commands and protocol to use.
643  *
644  *	LOCKING:
645  *	caller.
646  */
647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 {
649 	u8 cmd;
650 
651 	int index, fua, lba48, write;
652 
653 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
654 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
655 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656 
657 	if (dev->flags & ATA_DFLAG_PIO) {
658 		tf->protocol = ATA_PROT_PIO;
659 		index = dev->multi_count ? 0 : 8;
660 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
661 		/* Unable to use DMA due to host limitation */
662 		tf->protocol = ATA_PROT_PIO;
663 		index = dev->multi_count ? 0 : 8;
664 	} else {
665 		tf->protocol = ATA_PROT_DMA;
666 		index = 16;
667 	}
668 
669 	cmd = ata_rw_cmds[index + fua + lba48 + write];
670 	if (cmd) {
671 		tf->command = cmd;
672 		return 0;
673 	}
674 	return -1;
675 }
676 
677 /**
678  *	ata_tf_read_block - Read block address from ATA taskfile
679  *	@tf: ATA taskfile of interest
680  *	@dev: ATA device @tf belongs to
681  *
682  *	LOCKING:
683  *	None.
684  *
685  *	Read block address from @tf.  This function can handle all
686  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
687  *	flags select the address format to use.
688  *
689  *	RETURNS:
690  *	Block address read from @tf.
691  */
692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 {
694 	u64 block = 0;
695 
696 	if (tf->flags & ATA_TFLAG_LBA) {
697 		if (tf->flags & ATA_TFLAG_LBA48) {
698 			block |= (u64)tf->hob_lbah << 40;
699 			block |= (u64)tf->hob_lbam << 32;
700 			block |= (u64)tf->hob_lbal << 24;
701 		} else
702 			block |= (tf->device & 0xf) << 24;
703 
704 		block |= tf->lbah << 16;
705 		block |= tf->lbam << 8;
706 		block |= tf->lbal;
707 	} else {
708 		u32 cyl, head, sect;
709 
710 		cyl = tf->lbam | (tf->lbah << 8);
711 		head = tf->device & 0xf;
712 		sect = tf->lbal;
713 
714 		if (!sect) {
715 			ata_dev_warn(dev,
716 				     "device reported invalid CHS sector 0\n");
717 			sect = 1; /* oh well */
718 		}
719 
720 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 	}
722 
723 	return block;
724 }
725 
726 /**
727  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
728  *	@tf: Target ATA taskfile
729  *	@dev: ATA device @tf belongs to
730  *	@block: Block address
731  *	@n_block: Number of blocks
732  *	@tf_flags: RW/FUA etc...
733  *	@tag: tag
734  *
735  *	LOCKING:
736  *	None.
737  *
738  *	Build ATA taskfile @tf for read/write request described by
739  *	@block, @n_block, @tf_flags and @tag on @dev.
740  *
741  *	RETURNS:
742  *
743  *	0 on success, -ERANGE if the request is too large for @dev,
744  *	-EINVAL if the request is invalid.
745  */
746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
747 		    u64 block, u32 n_block, unsigned int tf_flags,
748 		    unsigned int tag)
749 {
750 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
751 	tf->flags |= tf_flags;
752 
753 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
754 		/* yay, NCQ */
755 		if (!lba_48_ok(block, n_block))
756 			return -ERANGE;
757 
758 		tf->protocol = ATA_PROT_NCQ;
759 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760 
761 		if (tf->flags & ATA_TFLAG_WRITE)
762 			tf->command = ATA_CMD_FPDMA_WRITE;
763 		else
764 			tf->command = ATA_CMD_FPDMA_READ;
765 
766 		tf->nsect = tag << 3;
767 		tf->hob_feature = (n_block >> 8) & 0xff;
768 		tf->feature = n_block & 0xff;
769 
770 		tf->hob_lbah = (block >> 40) & 0xff;
771 		tf->hob_lbam = (block >> 32) & 0xff;
772 		tf->hob_lbal = (block >> 24) & 0xff;
773 		tf->lbah = (block >> 16) & 0xff;
774 		tf->lbam = (block >> 8) & 0xff;
775 		tf->lbal = block & 0xff;
776 
777 		tf->device = ATA_LBA;
778 		if (tf->flags & ATA_TFLAG_FUA)
779 			tf->device |= 1 << 7;
780 	} else if (dev->flags & ATA_DFLAG_LBA) {
781 		tf->flags |= ATA_TFLAG_LBA;
782 
783 		if (lba_28_ok(block, n_block)) {
784 			/* use LBA28 */
785 			tf->device |= (block >> 24) & 0xf;
786 		} else if (lba_48_ok(block, n_block)) {
787 			if (!(dev->flags & ATA_DFLAG_LBA48))
788 				return -ERANGE;
789 
790 			/* use LBA48 */
791 			tf->flags |= ATA_TFLAG_LBA48;
792 
793 			tf->hob_nsect = (n_block >> 8) & 0xff;
794 
795 			tf->hob_lbah = (block >> 40) & 0xff;
796 			tf->hob_lbam = (block >> 32) & 0xff;
797 			tf->hob_lbal = (block >> 24) & 0xff;
798 		} else
799 			/* request too large even for LBA48 */
800 			return -ERANGE;
801 
802 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
803 			return -EINVAL;
804 
805 		tf->nsect = n_block & 0xff;
806 
807 		tf->lbah = (block >> 16) & 0xff;
808 		tf->lbam = (block >> 8) & 0xff;
809 		tf->lbal = block & 0xff;
810 
811 		tf->device |= ATA_LBA;
812 	} else {
813 		/* CHS */
814 		u32 sect, head, cyl, track;
815 
816 		/* The request -may- be too large for CHS addressing. */
817 		if (!lba_28_ok(block, n_block))
818 			return -ERANGE;
819 
820 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
821 			return -EINVAL;
822 
823 		/* Convert LBA to CHS */
824 		track = (u32)block / dev->sectors;
825 		cyl   = track / dev->heads;
826 		head  = track % dev->heads;
827 		sect  = (u32)block % dev->sectors + 1;
828 
829 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
830 			(u32)block, track, cyl, head, sect);
831 
832 		/* Check whether the converted CHS can fit.
833 		   Cylinder: 0-65535
834 		   Head: 0-15
835 		   Sector: 1-255*/
836 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
837 			return -ERANGE;
838 
839 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
840 		tf->lbal = sect;
841 		tf->lbam = cyl;
842 		tf->lbah = cyl >> 8;
843 		tf->device |= head;
844 	}
845 
846 	return 0;
847 }
848 
849 /**
850  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
851  *	@pio_mask: pio_mask
852  *	@mwdma_mask: mwdma_mask
853  *	@udma_mask: udma_mask
854  *
855  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
856  *	unsigned int xfer_mask.
857  *
858  *	LOCKING:
859  *	None.
860  *
861  *	RETURNS:
862  *	Packed xfer_mask.
863  */
864 unsigned long ata_pack_xfermask(unsigned long pio_mask,
865 				unsigned long mwdma_mask,
866 				unsigned long udma_mask)
867 {
868 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
869 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
870 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871 }
872 
873 /**
874  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
875  *	@xfer_mask: xfer_mask to unpack
876  *	@pio_mask: resulting pio_mask
877  *	@mwdma_mask: resulting mwdma_mask
878  *	@udma_mask: resulting udma_mask
879  *
880  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
881  *	Any NULL distination masks will be ignored.
882  */
883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
884 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 {
886 	if (pio_mask)
887 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
888 	if (mwdma_mask)
889 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
890 	if (udma_mask)
891 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 }
893 
894 static const struct ata_xfer_ent {
895 	int shift, bits;
896 	u8 base;
897 } ata_xfer_tbl[] = {
898 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
899 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
900 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
901 	{ -1, },
902 };
903 
904 /**
905  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
906  *	@xfer_mask: xfer_mask of interest
907  *
908  *	Return matching XFER_* value for @xfer_mask.  Only the highest
909  *	bit of @xfer_mask is considered.
910  *
911  *	LOCKING:
912  *	None.
913  *
914  *	RETURNS:
915  *	Matching XFER_* value, 0xff if no match found.
916  */
917 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 {
919 	int highbit = fls(xfer_mask) - 1;
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
924 			return ent->base + highbit - ent->shift;
925 	return 0xff;
926 }
927 
928 /**
929  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
930  *	@xfer_mode: XFER_* of interest
931  *
932  *	Return matching xfer_mask for @xfer_mode.
933  *
934  *	LOCKING:
935  *	None.
936  *
937  *	RETURNS:
938  *	Matching xfer_mask, 0 if no match found.
939  */
940 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 {
942 	const struct ata_xfer_ent *ent;
943 
944 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
945 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
946 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
947 				& ~((1 << ent->shift) - 1);
948 	return 0;
949 }
950 
951 /**
952  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
953  *	@xfer_mode: XFER_* of interest
954  *
955  *	Return matching xfer_shift for @xfer_mode.
956  *
957  *	LOCKING:
958  *	None.
959  *
960  *	RETURNS:
961  *	Matching xfer_shift, -1 if no match found.
962  */
963 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 {
965 	const struct ata_xfer_ent *ent;
966 
967 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
968 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
969 			return ent->shift;
970 	return -1;
971 }
972 
973 /**
974  *	ata_mode_string - convert xfer_mask to string
975  *	@xfer_mask: mask of bits supported; only highest bit counts.
976  *
977  *	Determine string which represents the highest speed
978  *	(highest bit in @modemask).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Constant C string representing highest speed listed in
985  *	@mode_mask, or the constant C string "<n/a>".
986  */
987 const char *ata_mode_string(unsigned long xfer_mask)
988 {
989 	static const char * const xfer_mode_str[] = {
990 		"PIO0",
991 		"PIO1",
992 		"PIO2",
993 		"PIO3",
994 		"PIO4",
995 		"PIO5",
996 		"PIO6",
997 		"MWDMA0",
998 		"MWDMA1",
999 		"MWDMA2",
1000 		"MWDMA3",
1001 		"MWDMA4",
1002 		"UDMA/16",
1003 		"UDMA/25",
1004 		"UDMA/33",
1005 		"UDMA/44",
1006 		"UDMA/66",
1007 		"UDMA/100",
1008 		"UDMA/133",
1009 		"UDMA7",
1010 	};
1011 	int highbit;
1012 
1013 	highbit = fls(xfer_mask) - 1;
1014 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015 		return xfer_mode_str[highbit];
1016 	return "<n/a>";
1017 }
1018 
1019 const char *sata_spd_string(unsigned int spd)
1020 {
1021 	static const char * const spd_str[] = {
1022 		"1.5 Gbps",
1023 		"3.0 Gbps",
1024 		"6.0 Gbps",
1025 	};
1026 
1027 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028 		return "<unknown>";
1029 	return spd_str[spd - 1];
1030 }
1031 
1032 /**
1033  *	ata_dev_classify - determine device type based on ATA-spec signature
1034  *	@tf: ATA taskfile register set for device to be identified
1035  *
1036  *	Determine from taskfile register contents whether a device is
1037  *	ATA or ATAPI, as per "Signature and persistence" section
1038  *	of ATA/PI spec (volume 1, sect 5.14).
1039  *
1040  *	LOCKING:
1041  *	None.
1042  *
1043  *	RETURNS:
1044  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045  *	%ATA_DEV_UNKNOWN the event of failure.
1046  */
1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048 {
1049 	/* Apple's open source Darwin code hints that some devices only
1050 	 * put a proper signature into the LBA mid/high registers,
1051 	 * So, we only check those.  It's sufficient for uniqueness.
1052 	 *
1053 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1055 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1056 	 * spec has never mentioned about using different signatures
1057 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1058 	 * Multiplier specification began to use 0x69/0x96 to identify
1059 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061 	 * 0x69/0x96 shortly and described them as reserved for
1062 	 * SerialATA.
1063 	 *
1064 	 * We follow the current spec and consider that 0x69/0x96
1065 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067 	 * SEMB signature.  This is worked around in
1068 	 * ata_dev_read_id().
1069 	 */
1070 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071 		DPRINTK("found ATA device by sig\n");
1072 		return ATA_DEV_ATA;
1073 	}
1074 
1075 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076 		DPRINTK("found ATAPI device by sig\n");
1077 		return ATA_DEV_ATAPI;
1078 	}
1079 
1080 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081 		DPRINTK("found PMP device by sig\n");
1082 		return ATA_DEV_PMP;
1083 	}
1084 
1085 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087 		return ATA_DEV_SEMB;
1088 	}
1089 
1090 	DPRINTK("unknown device\n");
1091 	return ATA_DEV_UNKNOWN;
1092 }
1093 
1094 /**
1095  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1096  *	@id: IDENTIFY DEVICE results we will examine
1097  *	@s: string into which data is output
1098  *	@ofs: offset into identify device page
1099  *	@len: length of string to return. must be an even number.
1100  *
1101  *	The strings in the IDENTIFY DEVICE page are broken up into
1102  *	16-bit chunks.  Run through the string, and output each
1103  *	8-bit chunk linearly, regardless of platform.
1104  *
1105  *	LOCKING:
1106  *	caller.
1107  */
1108 
1109 void ata_id_string(const u16 *id, unsigned char *s,
1110 		   unsigned int ofs, unsigned int len)
1111 {
1112 	unsigned int c;
1113 
1114 	BUG_ON(len & 1);
1115 
1116 	while (len > 0) {
1117 		c = id[ofs] >> 8;
1118 		*s = c;
1119 		s++;
1120 
1121 		c = id[ofs] & 0xff;
1122 		*s = c;
1123 		s++;
1124 
1125 		ofs++;
1126 		len -= 2;
1127 	}
1128 }
1129 
1130 /**
1131  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132  *	@id: IDENTIFY DEVICE results we will examine
1133  *	@s: string into which data is output
1134  *	@ofs: offset into identify device page
1135  *	@len: length of string to return. must be an odd number.
1136  *
1137  *	This function is identical to ata_id_string except that it
1138  *	trims trailing spaces and terminates the resulting string with
1139  *	null.  @len must be actual maximum length (even number) + 1.
1140  *
1141  *	LOCKING:
1142  *	caller.
1143  */
1144 void ata_id_c_string(const u16 *id, unsigned char *s,
1145 		     unsigned int ofs, unsigned int len)
1146 {
1147 	unsigned char *p;
1148 
1149 	ata_id_string(id, s, ofs, len - 1);
1150 
1151 	p = s + strnlen(s, len - 1);
1152 	while (p > s && p[-1] == ' ')
1153 		p--;
1154 	*p = '\0';
1155 }
1156 
1157 static u64 ata_id_n_sectors(const u16 *id)
1158 {
1159 	if (ata_id_has_lba(id)) {
1160 		if (ata_id_has_lba48(id))
1161 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162 		else
1163 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164 	} else {
1165 		if (ata_id_current_chs_valid(id))
1166 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167 			       id[ATA_ID_CUR_SECTORS];
1168 		else
1169 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170 			       id[ATA_ID_SECTORS];
1171 	}
1172 }
1173 
1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175 {
1176 	u64 sectors = 0;
1177 
1178 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181 	sectors |= (tf->lbah & 0xff) << 16;
1182 	sectors |= (tf->lbam & 0xff) << 8;
1183 	sectors |= (tf->lbal & 0xff);
1184 
1185 	return sectors;
1186 }
1187 
1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189 {
1190 	u64 sectors = 0;
1191 
1192 	sectors |= (tf->device & 0x0f) << 24;
1193 	sectors |= (tf->lbah & 0xff) << 16;
1194 	sectors |= (tf->lbam & 0xff) << 8;
1195 	sectors |= (tf->lbal & 0xff);
1196 
1197 	return sectors;
1198 }
1199 
1200 /**
1201  *	ata_read_native_max_address - Read native max address
1202  *	@dev: target device
1203  *	@max_sectors: out parameter for the result native max address
1204  *
1205  *	Perform an LBA48 or LBA28 native size query upon the device in
1206  *	question.
1207  *
1208  *	RETURNS:
1209  *	0 on success, -EACCES if command is aborted by the drive.
1210  *	-EIO on other errors.
1211  */
1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213 {
1214 	unsigned int err_mask;
1215 	struct ata_taskfile tf;
1216 	int lba48 = ata_id_has_lba48(dev->id);
1217 
1218 	ata_tf_init(dev, &tf);
1219 
1220 	/* always clear all address registers */
1221 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222 
1223 	if (lba48) {
1224 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225 		tf.flags |= ATA_TFLAG_LBA48;
1226 	} else
1227 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1228 
1229 	tf.protocol |= ATA_PROT_NODATA;
1230 	tf.device |= ATA_LBA;
1231 
1232 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 	if (err_mask) {
1234 		ata_dev_warn(dev,
1235 			     "failed to read native max address (err_mask=0x%x)\n",
1236 			     err_mask);
1237 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238 			return -EACCES;
1239 		return -EIO;
1240 	}
1241 
1242 	if (lba48)
1243 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1244 	else
1245 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1246 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247 		(*max_sectors)--;
1248 	return 0;
1249 }
1250 
1251 /**
1252  *	ata_set_max_sectors - Set max sectors
1253  *	@dev: target device
1254  *	@new_sectors: new max sectors value to set for the device
1255  *
1256  *	Set max sectors of @dev to @new_sectors.
1257  *
1258  *	RETURNS:
1259  *	0 on success, -EACCES if command is aborted or denied (due to
1260  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1261  *	errors.
1262  */
1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264 {
1265 	unsigned int err_mask;
1266 	struct ata_taskfile tf;
1267 	int lba48 = ata_id_has_lba48(dev->id);
1268 
1269 	new_sectors--;
1270 
1271 	ata_tf_init(dev, &tf);
1272 
1273 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274 
1275 	if (lba48) {
1276 		tf.command = ATA_CMD_SET_MAX_EXT;
1277 		tf.flags |= ATA_TFLAG_LBA48;
1278 
1279 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282 	} else {
1283 		tf.command = ATA_CMD_SET_MAX;
1284 
1285 		tf.device |= (new_sectors >> 24) & 0xf;
1286 	}
1287 
1288 	tf.protocol |= ATA_PROT_NODATA;
1289 	tf.device |= ATA_LBA;
1290 
1291 	tf.lbal = (new_sectors >> 0) & 0xff;
1292 	tf.lbam = (new_sectors >> 8) & 0xff;
1293 	tf.lbah = (new_sectors >> 16) & 0xff;
1294 
1295 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296 	if (err_mask) {
1297 		ata_dev_warn(dev,
1298 			     "failed to set max address (err_mask=0x%x)\n",
1299 			     err_mask);
1300 		if (err_mask == AC_ERR_DEV &&
1301 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302 			return -EACCES;
1303 		return -EIO;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  *	ata_hpa_resize		-	Resize a device with an HPA set
1311  *	@dev: Device to resize
1312  *
1313  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314  *	it if required to the full size of the media. The caller must check
1315  *	the drive has the HPA feature set enabled.
1316  *
1317  *	RETURNS:
1318  *	0 on success, -errno on failure.
1319  */
1320 static int ata_hpa_resize(struct ata_device *dev)
1321 {
1322 	struct ata_eh_context *ehc = &dev->link->eh_context;
1323 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325 	u64 sectors = ata_id_n_sectors(dev->id);
1326 	u64 native_sectors;
1327 	int rc;
1328 
1329 	/* do we need to do it? */
1330 	if (dev->class != ATA_DEV_ATA ||
1331 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333 		return 0;
1334 
1335 	/* read native max address */
1336 	rc = ata_read_native_max_address(dev, &native_sectors);
1337 	if (rc) {
1338 		/* If device aborted the command or HPA isn't going to
1339 		 * be unlocked, skip HPA resizing.
1340 		 */
1341 		if (rc == -EACCES || !unlock_hpa) {
1342 			ata_dev_warn(dev,
1343 				     "HPA support seems broken, skipping HPA handling\n");
1344 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345 
1346 			/* we can continue if device aborted the command */
1347 			if (rc == -EACCES)
1348 				rc = 0;
1349 		}
1350 
1351 		return rc;
1352 	}
1353 	dev->n_native_sectors = native_sectors;
1354 
1355 	/* nothing to do? */
1356 	if (native_sectors <= sectors || !unlock_hpa) {
1357 		if (!print_info || native_sectors == sectors)
1358 			return 0;
1359 
1360 		if (native_sectors > sectors)
1361 			ata_dev_info(dev,
1362 				"HPA detected: current %llu, native %llu\n",
1363 				(unsigned long long)sectors,
1364 				(unsigned long long)native_sectors);
1365 		else if (native_sectors < sectors)
1366 			ata_dev_warn(dev,
1367 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1368 				(unsigned long long)native_sectors,
1369 				(unsigned long long)sectors);
1370 		return 0;
1371 	}
1372 
1373 	/* let's unlock HPA */
1374 	rc = ata_set_max_sectors(dev, native_sectors);
1375 	if (rc == -EACCES) {
1376 		/* if device aborted the command, skip HPA resizing */
1377 		ata_dev_warn(dev,
1378 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379 			     (unsigned long long)sectors,
1380 			     (unsigned long long)native_sectors);
1381 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382 		return 0;
1383 	} else if (rc)
1384 		return rc;
1385 
1386 	/* re-read IDENTIFY data */
1387 	rc = ata_dev_reread_id(dev, 0);
1388 	if (rc) {
1389 		ata_dev_err(dev,
1390 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1391 		return rc;
1392 	}
1393 
1394 	if (print_info) {
1395 		u64 new_sectors = ata_id_n_sectors(dev->id);
1396 		ata_dev_info(dev,
1397 			"HPA unlocked: %llu -> %llu, native %llu\n",
1398 			(unsigned long long)sectors,
1399 			(unsigned long long)new_sectors,
1400 			(unsigned long long)native_sectors);
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 /**
1407  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1408  *	@id: IDENTIFY DEVICE page to dump
1409  *
1410  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1411  *	page.
1412  *
1413  *	LOCKING:
1414  *	caller.
1415  */
1416 
1417 static inline void ata_dump_id(const u16 *id)
1418 {
1419 	DPRINTK("49==0x%04x  "
1420 		"53==0x%04x  "
1421 		"63==0x%04x  "
1422 		"64==0x%04x  "
1423 		"75==0x%04x  \n",
1424 		id[49],
1425 		id[53],
1426 		id[63],
1427 		id[64],
1428 		id[75]);
1429 	DPRINTK("80==0x%04x  "
1430 		"81==0x%04x  "
1431 		"82==0x%04x  "
1432 		"83==0x%04x  "
1433 		"84==0x%04x  \n",
1434 		id[80],
1435 		id[81],
1436 		id[82],
1437 		id[83],
1438 		id[84]);
1439 	DPRINTK("88==0x%04x  "
1440 		"93==0x%04x\n",
1441 		id[88],
1442 		id[93]);
1443 }
1444 
1445 /**
1446  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447  *	@id: IDENTIFY data to compute xfer mask from
1448  *
1449  *	Compute the xfermask for this device. This is not as trivial
1450  *	as it seems if we must consider early devices correctly.
1451  *
1452  *	FIXME: pre IDE drive timing (do we care ?).
1453  *
1454  *	LOCKING:
1455  *	None.
1456  *
1457  *	RETURNS:
1458  *	Computed xfermask
1459  */
1460 unsigned long ata_id_xfermask(const u16 *id)
1461 {
1462 	unsigned long pio_mask, mwdma_mask, udma_mask;
1463 
1464 	/* Usual case. Word 53 indicates word 64 is valid */
1465 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467 		pio_mask <<= 3;
1468 		pio_mask |= 0x7;
1469 	} else {
1470 		/* If word 64 isn't valid then Word 51 high byte holds
1471 		 * the PIO timing number for the maximum. Turn it into
1472 		 * a mask.
1473 		 */
1474 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475 		if (mode < 5)	/* Valid PIO range */
1476 			pio_mask = (2 << mode) - 1;
1477 		else
1478 			pio_mask = 1;
1479 
1480 		/* But wait.. there's more. Design your standards by
1481 		 * committee and you too can get a free iordy field to
1482 		 * process. However its the speeds not the modes that
1483 		 * are supported... Note drivers using the timing API
1484 		 * will get this right anyway
1485 		 */
1486 	}
1487 
1488 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489 
1490 	if (ata_id_is_cfa(id)) {
1491 		/*
1492 		 *	Process compact flash extended modes
1493 		 */
1494 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496 
1497 		if (pio)
1498 			pio_mask |= (1 << 5);
1499 		if (pio > 1)
1500 			pio_mask |= (1 << 6);
1501 		if (dma)
1502 			mwdma_mask |= (1 << 3);
1503 		if (dma > 1)
1504 			mwdma_mask |= (1 << 4);
1505 	}
1506 
1507 	udma_mask = 0;
1508 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510 
1511 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 }
1513 
1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515 {
1516 	struct completion *waiting = qc->private_data;
1517 
1518 	complete(waiting);
1519 }
1520 
1521 /**
1522  *	ata_exec_internal_sg - execute libata internal command
1523  *	@dev: Device to which the command is sent
1524  *	@tf: Taskfile registers for the command and the result
1525  *	@cdb: CDB for packet command
1526  *	@dma_dir: Data tranfer direction of the command
1527  *	@sgl: sg list for the data buffer of the command
1528  *	@n_elem: Number of sg entries
1529  *	@timeout: Timeout in msecs (0 for default)
1530  *
1531  *	Executes libata internal command with timeout.  @tf contains
1532  *	command on entry and result on return.  Timeout and error
1533  *	conditions are reported via return value.  No recovery action
1534  *	is taken after a command times out.  It's caller's duty to
1535  *	clean up after timeout.
1536  *
1537  *	LOCKING:
1538  *	None.  Should be called with kernel context, might sleep.
1539  *
1540  *	RETURNS:
1541  *	Zero on success, AC_ERR_* mask on failure
1542  */
1543 unsigned ata_exec_internal_sg(struct ata_device *dev,
1544 			      struct ata_taskfile *tf, const u8 *cdb,
1545 			      int dma_dir, struct scatterlist *sgl,
1546 			      unsigned int n_elem, unsigned long timeout)
1547 {
1548 	struct ata_link *link = dev->link;
1549 	struct ata_port *ap = link->ap;
1550 	u8 command = tf->command;
1551 	int auto_timeout = 0;
1552 	struct ata_queued_cmd *qc;
1553 	unsigned int tag, preempted_tag;
1554 	u32 preempted_sactive, preempted_qc_active;
1555 	int preempted_nr_active_links;
1556 	DECLARE_COMPLETION_ONSTACK(wait);
1557 	unsigned long flags;
1558 	unsigned int err_mask;
1559 	int rc;
1560 
1561 	spin_lock_irqsave(ap->lock, flags);
1562 
1563 	/* no internal command while frozen */
1564 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1565 		spin_unlock_irqrestore(ap->lock, flags);
1566 		return AC_ERR_SYSTEM;
1567 	}
1568 
1569 	/* initialize internal qc */
1570 
1571 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1572 	 * drivers choke if any other tag is given.  This breaks
1573 	 * ata_tag_internal() test for those drivers.  Don't use new
1574 	 * EH stuff without converting to it.
1575 	 */
1576 	if (ap->ops->error_handler)
1577 		tag = ATA_TAG_INTERNAL;
1578 	else
1579 		tag = 0;
1580 
1581 	if (test_and_set_bit(tag, &ap->qc_allocated))
1582 		BUG();
1583 	qc = __ata_qc_from_tag(ap, tag);
1584 
1585 	qc->tag = tag;
1586 	qc->scsicmd = NULL;
1587 	qc->ap = ap;
1588 	qc->dev = dev;
1589 	ata_qc_reinit(qc);
1590 
1591 	preempted_tag = link->active_tag;
1592 	preempted_sactive = link->sactive;
1593 	preempted_qc_active = ap->qc_active;
1594 	preempted_nr_active_links = ap->nr_active_links;
1595 	link->active_tag = ATA_TAG_POISON;
1596 	link->sactive = 0;
1597 	ap->qc_active = 0;
1598 	ap->nr_active_links = 0;
1599 
1600 	/* prepare & issue qc */
1601 	qc->tf = *tf;
1602 	if (cdb)
1603 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1605 	qc->dma_dir = dma_dir;
1606 	if (dma_dir != DMA_NONE) {
1607 		unsigned int i, buflen = 0;
1608 		struct scatterlist *sg;
1609 
1610 		for_each_sg(sgl, sg, n_elem, i)
1611 			buflen += sg->length;
1612 
1613 		ata_sg_init(qc, sgl, n_elem);
1614 		qc->nbytes = buflen;
1615 	}
1616 
1617 	qc->private_data = &wait;
1618 	qc->complete_fn = ata_qc_complete_internal;
1619 
1620 	ata_qc_issue(qc);
1621 
1622 	spin_unlock_irqrestore(ap->lock, flags);
1623 
1624 	if (!timeout) {
1625 		if (ata_probe_timeout)
1626 			timeout = ata_probe_timeout * 1000;
1627 		else {
1628 			timeout = ata_internal_cmd_timeout(dev, command);
1629 			auto_timeout = 1;
1630 		}
1631 	}
1632 
1633 	if (ap->ops->error_handler)
1634 		ata_eh_release(ap);
1635 
1636 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637 
1638 	if (ap->ops->error_handler)
1639 		ata_eh_acquire(ap);
1640 
1641 	ata_sff_flush_pio_task(ap);
1642 
1643 	if (!rc) {
1644 		spin_lock_irqsave(ap->lock, flags);
1645 
1646 		/* We're racing with irq here.  If we lose, the
1647 		 * following test prevents us from completing the qc
1648 		 * twice.  If we win, the port is frozen and will be
1649 		 * cleaned up by ->post_internal_cmd().
1650 		 */
1651 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652 			qc->err_mask |= AC_ERR_TIMEOUT;
1653 
1654 			if (ap->ops->error_handler)
1655 				ata_port_freeze(ap);
1656 			else
1657 				ata_qc_complete(qc);
1658 
1659 			if (ata_msg_warn(ap))
1660 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661 					     command);
1662 		}
1663 
1664 		spin_unlock_irqrestore(ap->lock, flags);
1665 	}
1666 
1667 	/* do post_internal_cmd */
1668 	if (ap->ops->post_internal_cmd)
1669 		ap->ops->post_internal_cmd(qc);
1670 
1671 	/* perform minimal error analysis */
1672 	if (qc->flags & ATA_QCFLAG_FAILED) {
1673 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674 			qc->err_mask |= AC_ERR_DEV;
1675 
1676 		if (!qc->err_mask)
1677 			qc->err_mask |= AC_ERR_OTHER;
1678 
1679 		if (qc->err_mask & ~AC_ERR_OTHER)
1680 			qc->err_mask &= ~AC_ERR_OTHER;
1681 	}
1682 
1683 	/* finish up */
1684 	spin_lock_irqsave(ap->lock, flags);
1685 
1686 	*tf = qc->result_tf;
1687 	err_mask = qc->err_mask;
1688 
1689 	ata_qc_free(qc);
1690 	link->active_tag = preempted_tag;
1691 	link->sactive = preempted_sactive;
1692 	ap->qc_active = preempted_qc_active;
1693 	ap->nr_active_links = preempted_nr_active_links;
1694 
1695 	spin_unlock_irqrestore(ap->lock, flags);
1696 
1697 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698 		ata_internal_cmd_timed_out(dev, command);
1699 
1700 	return err_mask;
1701 }
1702 
1703 /**
1704  *	ata_exec_internal - execute libata internal command
1705  *	@dev: Device to which the command is sent
1706  *	@tf: Taskfile registers for the command and the result
1707  *	@cdb: CDB for packet command
1708  *	@dma_dir: Data tranfer direction of the command
1709  *	@buf: Data buffer of the command
1710  *	@buflen: Length of data buffer
1711  *	@timeout: Timeout in msecs (0 for default)
1712  *
1713  *	Wrapper around ata_exec_internal_sg() which takes simple
1714  *	buffer instead of sg list.
1715  *
1716  *	LOCKING:
1717  *	None.  Should be called with kernel context, might sleep.
1718  *
1719  *	RETURNS:
1720  *	Zero on success, AC_ERR_* mask on failure
1721  */
1722 unsigned ata_exec_internal(struct ata_device *dev,
1723 			   struct ata_taskfile *tf, const u8 *cdb,
1724 			   int dma_dir, void *buf, unsigned int buflen,
1725 			   unsigned long timeout)
1726 {
1727 	struct scatterlist *psg = NULL, sg;
1728 	unsigned int n_elem = 0;
1729 
1730 	if (dma_dir != DMA_NONE) {
1731 		WARN_ON(!buf);
1732 		sg_init_one(&sg, buf, buflen);
1733 		psg = &sg;
1734 		n_elem++;
1735 	}
1736 
1737 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738 				    timeout);
1739 }
1740 
1741 /**
1742  *	ata_do_simple_cmd - execute simple internal command
1743  *	@dev: Device to which the command is sent
1744  *	@cmd: Opcode to execute
1745  *
1746  *	Execute a 'simple' command, that only consists of the opcode
1747  *	'cmd' itself, without filling any other registers
1748  *
1749  *	LOCKING:
1750  *	Kernel thread context (may sleep).
1751  *
1752  *	RETURNS:
1753  *	Zero on success, AC_ERR_* mask on failure
1754  */
1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756 {
1757 	struct ata_taskfile tf;
1758 
1759 	ata_tf_init(dev, &tf);
1760 
1761 	tf.command = cmd;
1762 	tf.flags |= ATA_TFLAG_DEVICE;
1763 	tf.protocol = ATA_PROT_NODATA;
1764 
1765 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766 }
1767 
1768 /**
1769  *	ata_pio_need_iordy	-	check if iordy needed
1770  *	@adev: ATA device
1771  *
1772  *	Check if the current speed of the device requires IORDY. Used
1773  *	by various controllers for chip configuration.
1774  */
1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776 {
1777 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1778 	 * lead to controller lock up on certain controllers if the
1779 	 * port is not occupied.  See bko#11703 for details.
1780 	 */
1781 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782 		return 0;
1783 	/* Controller doesn't support IORDY.  Probably a pointless
1784 	 * check as the caller should know this.
1785 	 */
1786 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787 		return 0;
1788 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1789 	if (ata_id_is_cfa(adev->id)
1790 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791 		return 0;
1792 	/* PIO3 and higher it is mandatory */
1793 	if (adev->pio_mode > XFER_PIO_2)
1794 		return 1;
1795 	/* We turn it on when possible */
1796 	if (ata_id_has_iordy(adev->id))
1797 		return 1;
1798 	return 0;
1799 }
1800 
1801 /**
1802  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1803  *	@adev: ATA device
1804  *
1805  *	Compute the highest mode possible if we are not using iordy. Return
1806  *	-1 if no iordy mode is available.
1807  */
1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809 {
1810 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1811 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1812 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813 		/* Is the speed faster than the drive allows non IORDY ? */
1814 		if (pio) {
1815 			/* This is cycle times not frequency - watch the logic! */
1816 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1817 				return 3 << ATA_SHIFT_PIO;
1818 			return 7 << ATA_SHIFT_PIO;
1819 		}
1820 	}
1821 	return 3 << ATA_SHIFT_PIO;
1822 }
1823 
1824 /**
1825  *	ata_do_dev_read_id		-	default ID read method
1826  *	@dev: device
1827  *	@tf: proposed taskfile
1828  *	@id: data buffer
1829  *
1830  *	Issue the identify taskfile and hand back the buffer containing
1831  *	identify data. For some RAID controllers and for pre ATA devices
1832  *	this function is wrapped or replaced by the driver
1833  */
1834 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835 					struct ata_taskfile *tf, u16 *id)
1836 {
1837 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839 }
1840 
1841 /**
1842  *	ata_dev_read_id - Read ID data from the specified device
1843  *	@dev: target device
1844  *	@p_class: pointer to class of the target device (may be changed)
1845  *	@flags: ATA_READID_* flags
1846  *	@id: buffer to read IDENTIFY data into
1847  *
1848  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1849  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1851  *	for pre-ATA4 drives.
1852  *
1853  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854  *	now we abort if we hit that case.
1855  *
1856  *	LOCKING:
1857  *	Kernel thread context (may sleep)
1858  *
1859  *	RETURNS:
1860  *	0 on success, -errno otherwise.
1861  */
1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863 		    unsigned int flags, u16 *id)
1864 {
1865 	struct ata_port *ap = dev->link->ap;
1866 	unsigned int class = *p_class;
1867 	struct ata_taskfile tf;
1868 	unsigned int err_mask = 0;
1869 	const char *reason;
1870 	bool is_semb = class == ATA_DEV_SEMB;
1871 	int may_fallback = 1, tried_spinup = 0;
1872 	int rc;
1873 
1874 	if (ata_msg_ctl(ap))
1875 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876 
1877 retry:
1878 	ata_tf_init(dev, &tf);
1879 
1880 	switch (class) {
1881 	case ATA_DEV_SEMB:
1882 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1883 	case ATA_DEV_ATA:
1884 		tf.command = ATA_CMD_ID_ATA;
1885 		break;
1886 	case ATA_DEV_ATAPI:
1887 		tf.command = ATA_CMD_ID_ATAPI;
1888 		break;
1889 	default:
1890 		rc = -ENODEV;
1891 		reason = "unsupported class";
1892 		goto err_out;
1893 	}
1894 
1895 	tf.protocol = ATA_PROT_PIO;
1896 
1897 	/* Some devices choke if TF registers contain garbage.  Make
1898 	 * sure those are properly initialized.
1899 	 */
1900 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901 
1902 	/* Device presence detection is unreliable on some
1903 	 * controllers.  Always poll IDENTIFY if available.
1904 	 */
1905 	tf.flags |= ATA_TFLAG_POLLING;
1906 
1907 	if (ap->ops->read_id)
1908 		err_mask = ap->ops->read_id(dev, &tf, id);
1909 	else
1910 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1911 
1912 	if (err_mask) {
1913 		if (err_mask & AC_ERR_NODEV_HINT) {
1914 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 			return -ENOENT;
1916 		}
1917 
1918 		if (is_semb) {
1919 			ata_dev_info(dev,
1920 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 			/* SEMB is not supported yet */
1922 			*p_class = ATA_DEV_SEMB_UNSUP;
1923 			return 0;
1924 		}
1925 
1926 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 			/* Device or controller might have reported
1928 			 * the wrong device class.  Give a shot at the
1929 			 * other IDENTIFY if the current one is
1930 			 * aborted by the device.
1931 			 */
1932 			if (may_fallback) {
1933 				may_fallback = 0;
1934 
1935 				if (class == ATA_DEV_ATA)
1936 					class = ATA_DEV_ATAPI;
1937 				else
1938 					class = ATA_DEV_ATA;
1939 				goto retry;
1940 			}
1941 
1942 			/* Control reaches here iff the device aborted
1943 			 * both flavors of IDENTIFYs which happens
1944 			 * sometimes with phantom devices.
1945 			 */
1946 			ata_dev_dbg(dev,
1947 				    "both IDENTIFYs aborted, assuming NODEV\n");
1948 			return -ENOENT;
1949 		}
1950 
1951 		rc = -EIO;
1952 		reason = "I/O error";
1953 		goto err_out;
1954 	}
1955 
1956 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1959 			    class, may_fallback, tried_spinup);
1960 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 	}
1963 
1964 	/* Falling back doesn't make sense if ID data was read
1965 	 * successfully at least once.
1966 	 */
1967 	may_fallback = 0;
1968 
1969 	swap_buf_le16(id, ATA_ID_WORDS);
1970 
1971 	/* sanity check */
1972 	rc = -EINVAL;
1973 	reason = "device reports invalid type";
1974 
1975 	if (class == ATA_DEV_ATA) {
1976 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 			goto err_out;
1978 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 							ata_id_is_ata(id)) {
1980 			ata_dev_dbg(dev,
1981 				"host indicates ignore ATA devices, ignored\n");
1982 			return -ENOENT;
1983 		}
1984 	} else {
1985 		if (ata_id_is_ata(id))
1986 			goto err_out;
1987 	}
1988 
1989 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 		tried_spinup = 1;
1991 		/*
1992 		 * Drive powered-up in standby mode, and requires a specific
1993 		 * SET_FEATURES spin-up subcommand before it will accept
1994 		 * anything other than the original IDENTIFY command.
1995 		 */
1996 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 		if (err_mask && id[2] != 0x738c) {
1998 			rc = -EIO;
1999 			reason = "SPINUP failed";
2000 			goto err_out;
2001 		}
2002 		/*
2003 		 * If the drive initially returned incomplete IDENTIFY info,
2004 		 * we now must reissue the IDENTIFY command.
2005 		 */
2006 		if (id[2] == 0x37c8)
2007 			goto retry;
2008 	}
2009 
2010 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011 		/*
2012 		 * The exact sequence expected by certain pre-ATA4 drives is:
2013 		 * SRST RESET
2014 		 * IDENTIFY (optional in early ATA)
2015 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016 		 * anything else..
2017 		 * Some drives were very specific about that exact sequence.
2018 		 *
2019 		 * Note that ATA4 says lba is mandatory so the second check
2020 		 * should never trigger.
2021 		 */
2022 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024 			if (err_mask) {
2025 				rc = -EIO;
2026 				reason = "INIT_DEV_PARAMS failed";
2027 				goto err_out;
2028 			}
2029 
2030 			/* current CHS translation info (id[53-58]) might be
2031 			 * changed. reread the identify device info.
2032 			 */
2033 			flags &= ~ATA_READID_POSTRESET;
2034 			goto retry;
2035 		}
2036 	}
2037 
2038 	*p_class = class;
2039 
2040 	return 0;
2041 
2042  err_out:
2043 	if (ata_msg_warn(ap))
2044 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045 			     reason, err_mask);
2046 	return rc;
2047 }
2048 
2049 static int ata_do_link_spd_horkage(struct ata_device *dev)
2050 {
2051 	struct ata_link *plink = ata_dev_phys_link(dev);
2052 	u32 target, target_limit;
2053 
2054 	if (!sata_scr_valid(plink))
2055 		return 0;
2056 
2057 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058 		target = 1;
2059 	else
2060 		return 0;
2061 
2062 	target_limit = (1 << target) - 1;
2063 
2064 	/* if already on stricter limit, no need to push further */
2065 	if (plink->sata_spd_limit <= target_limit)
2066 		return 0;
2067 
2068 	plink->sata_spd_limit = target_limit;
2069 
2070 	/* Request another EH round by returning -EAGAIN if link is
2071 	 * going faster than the target speed.  Forward progress is
2072 	 * guaranteed by setting sata_spd_limit to target_limit above.
2073 	 */
2074 	if (plink->sata_spd > target) {
2075 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076 			     sata_spd_string(target));
2077 		return -EAGAIN;
2078 	}
2079 	return 0;
2080 }
2081 
2082 static inline u8 ata_dev_knobble(struct ata_device *dev)
2083 {
2084 	struct ata_port *ap = dev->link->ap;
2085 
2086 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087 		return 0;
2088 
2089 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090 }
2091 
2092 static int ata_dev_config_ncq(struct ata_device *dev,
2093 			       char *desc, size_t desc_sz)
2094 {
2095 	struct ata_port *ap = dev->link->ap;
2096 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097 	unsigned int err_mask;
2098 	char *aa_desc = "";
2099 
2100 	if (!ata_id_has_ncq(dev->id)) {
2101 		desc[0] = '\0';
2102 		return 0;
2103 	}
2104 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105 		snprintf(desc, desc_sz, "NCQ (not used)");
2106 		return 0;
2107 	}
2108 	if (ap->flags & ATA_FLAG_NCQ) {
2109 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110 		dev->flags |= ATA_DFLAG_NCQ;
2111 	}
2112 
2113 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2115 		ata_id_has_fpdma_aa(dev->id)) {
2116 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117 			SATA_FPDMA_AA);
2118 		if (err_mask) {
2119 			ata_dev_err(dev,
2120 				    "failed to enable AA (error_mask=0x%x)\n",
2121 				    err_mask);
2122 			if (err_mask != AC_ERR_DEV) {
2123 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124 				return -EIO;
2125 			}
2126 		} else
2127 			aa_desc = ", AA";
2128 	}
2129 
2130 	if (hdepth >= ddepth)
2131 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132 	else
2133 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134 			ddepth, aa_desc);
2135 	return 0;
2136 }
2137 
2138 /**
2139  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2140  *	@dev: Target device to configure
2141  *
2142  *	Configure @dev according to @dev->id.  Generic and low-level
2143  *	driver specific fixups are also applied.
2144  *
2145  *	LOCKING:
2146  *	Kernel thread context (may sleep)
2147  *
2148  *	RETURNS:
2149  *	0 on success, -errno otherwise
2150  */
2151 int ata_dev_configure(struct ata_device *dev)
2152 {
2153 	struct ata_port *ap = dev->link->ap;
2154 	struct ata_eh_context *ehc = &dev->link->eh_context;
2155 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156 	const u16 *id = dev->id;
2157 	unsigned long xfer_mask;
2158 	unsigned int err_mask;
2159 	char revbuf[7];		/* XYZ-99\0 */
2160 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2161 	char modelbuf[ATA_ID_PROD_LEN+1];
2162 	int rc;
2163 
2164 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2165 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2166 		return 0;
2167 	}
2168 
2169 	if (ata_msg_probe(ap))
2170 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2171 
2172 	/* set horkage */
2173 	dev->horkage |= ata_dev_blacklisted(dev);
2174 	ata_force_horkage(dev);
2175 
2176 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2177 		ata_dev_info(dev, "unsupported device, disabling\n");
2178 		ata_dev_disable(dev);
2179 		return 0;
2180 	}
2181 
2182 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2183 	    dev->class == ATA_DEV_ATAPI) {
2184 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2185 			     atapi_enabled ? "not supported with this driver"
2186 			     : "disabled");
2187 		ata_dev_disable(dev);
2188 		return 0;
2189 	}
2190 
2191 	rc = ata_do_link_spd_horkage(dev);
2192 	if (rc)
2193 		return rc;
2194 
2195 	/* let ACPI work its magic */
2196 	rc = ata_acpi_on_devcfg(dev);
2197 	if (rc)
2198 		return rc;
2199 
2200 	/* massage HPA, do it early as it might change IDENTIFY data */
2201 	rc = ata_hpa_resize(dev);
2202 	if (rc)
2203 		return rc;
2204 
2205 	/* print device capabilities */
2206 	if (ata_msg_probe(ap))
2207 		ata_dev_dbg(dev,
2208 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2209 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2210 			    __func__,
2211 			    id[49], id[82], id[83], id[84],
2212 			    id[85], id[86], id[87], id[88]);
2213 
2214 	/* initialize to-be-configured parameters */
2215 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2216 	dev->max_sectors = 0;
2217 	dev->cdb_len = 0;
2218 	dev->n_sectors = 0;
2219 	dev->cylinders = 0;
2220 	dev->heads = 0;
2221 	dev->sectors = 0;
2222 	dev->multi_count = 0;
2223 
2224 	/*
2225 	 * common ATA, ATAPI feature tests
2226 	 */
2227 
2228 	/* find max transfer mode; for printk only */
2229 	xfer_mask = ata_id_xfermask(id);
2230 
2231 	if (ata_msg_probe(ap))
2232 		ata_dump_id(id);
2233 
2234 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2235 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2236 			sizeof(fwrevbuf));
2237 
2238 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2239 			sizeof(modelbuf));
2240 
2241 	/* ATA-specific feature tests */
2242 	if (dev->class == ATA_DEV_ATA) {
2243 		if (ata_id_is_cfa(id)) {
2244 			/* CPRM may make this media unusable */
2245 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2246 				ata_dev_warn(dev,
2247 	"supports DRM functions and may not be fully accessible\n");
2248 			snprintf(revbuf, 7, "CFA");
2249 		} else {
2250 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2251 			/* Warn the user if the device has TPM extensions */
2252 			if (ata_id_has_tpm(id))
2253 				ata_dev_warn(dev,
2254 	"supports DRM functions and may not be fully accessible\n");
2255 		}
2256 
2257 		dev->n_sectors = ata_id_n_sectors(id);
2258 
2259 		/* get current R/W Multiple count setting */
2260 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2261 			unsigned int max = dev->id[47] & 0xff;
2262 			unsigned int cnt = dev->id[59] & 0xff;
2263 			/* only recognize/allow powers of two here */
2264 			if (is_power_of_2(max) && is_power_of_2(cnt))
2265 				if (cnt <= max)
2266 					dev->multi_count = cnt;
2267 		}
2268 
2269 		if (ata_id_has_lba(id)) {
2270 			const char *lba_desc;
2271 			char ncq_desc[24];
2272 
2273 			lba_desc = "LBA";
2274 			dev->flags |= ATA_DFLAG_LBA;
2275 			if (ata_id_has_lba48(id)) {
2276 				dev->flags |= ATA_DFLAG_LBA48;
2277 				lba_desc = "LBA48";
2278 
2279 				if (dev->n_sectors >= (1UL << 28) &&
2280 				    ata_id_has_flush_ext(id))
2281 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2282 			}
2283 
2284 			/* config NCQ */
2285 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2286 			if (rc)
2287 				return rc;
2288 
2289 			/* print device info to dmesg */
2290 			if (ata_msg_drv(ap) && print_info) {
2291 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2292 					     revbuf, modelbuf, fwrevbuf,
2293 					     ata_mode_string(xfer_mask));
2294 				ata_dev_info(dev,
2295 					     "%llu sectors, multi %u: %s %s\n",
2296 					(unsigned long long)dev->n_sectors,
2297 					dev->multi_count, lba_desc, ncq_desc);
2298 			}
2299 		} else {
2300 			/* CHS */
2301 
2302 			/* Default translation */
2303 			dev->cylinders	= id[1];
2304 			dev->heads	= id[3];
2305 			dev->sectors	= id[6];
2306 
2307 			if (ata_id_current_chs_valid(id)) {
2308 				/* Current CHS translation is valid. */
2309 				dev->cylinders = id[54];
2310 				dev->heads     = id[55];
2311 				dev->sectors   = id[56];
2312 			}
2313 
2314 			/* print device info to dmesg */
2315 			if (ata_msg_drv(ap) && print_info) {
2316 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2317 					     revbuf,	modelbuf, fwrevbuf,
2318 					     ata_mode_string(xfer_mask));
2319 				ata_dev_info(dev,
2320 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2321 					     (unsigned long long)dev->n_sectors,
2322 					     dev->multi_count, dev->cylinders,
2323 					     dev->heads, dev->sectors);
2324 			}
2325 		}
2326 
2327 		/* check and mark DevSlp capability */
2328 		if (ata_id_has_devslp(dev->id))
2329 			dev->flags |= ATA_DFLAG_DEVSLP;
2330 
2331 		/* Obtain SATA Settings page from Identify Device Data Log,
2332 		 * which contains DevSlp timing variables etc.
2333 		 * Exclude old devices with ata_id_has_ncq()
2334 		 */
2335 		if (ata_id_has_ncq(dev->id)) {
2336 			err_mask = ata_read_log_page(dev,
2337 						     ATA_LOG_SATA_ID_DEV_DATA,
2338 						     ATA_LOG_SATA_SETTINGS,
2339 						     dev->sata_settings,
2340 						     1);
2341 			if (err_mask)
2342 				ata_dev_dbg(dev,
2343 					    "failed to get Identify Device Data, Emask 0x%x\n",
2344 					    err_mask);
2345 		}
2346 
2347 		dev->cdb_len = 16;
2348 	}
2349 
2350 	/* ATAPI-specific feature tests */
2351 	else if (dev->class == ATA_DEV_ATAPI) {
2352 		const char *cdb_intr_string = "";
2353 		const char *atapi_an_string = "";
2354 		const char *dma_dir_string = "";
2355 		u32 sntf;
2356 
2357 		rc = atapi_cdb_len(id);
2358 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2359 			if (ata_msg_warn(ap))
2360 				ata_dev_warn(dev, "unsupported CDB len\n");
2361 			rc = -EINVAL;
2362 			goto err_out_nosup;
2363 		}
2364 		dev->cdb_len = (unsigned int) rc;
2365 
2366 		/* Enable ATAPI AN if both the host and device have
2367 		 * the support.  If PMP is attached, SNTF is required
2368 		 * to enable ATAPI AN to discern between PHY status
2369 		 * changed notifications and ATAPI ANs.
2370 		 */
2371 		if (atapi_an &&
2372 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2373 		    (!sata_pmp_attached(ap) ||
2374 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2375 			/* issue SET feature command to turn this on */
2376 			err_mask = ata_dev_set_feature(dev,
2377 					SETFEATURES_SATA_ENABLE, SATA_AN);
2378 			if (err_mask)
2379 				ata_dev_err(dev,
2380 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2381 					    err_mask);
2382 			else {
2383 				dev->flags |= ATA_DFLAG_AN;
2384 				atapi_an_string = ", ATAPI AN";
2385 			}
2386 		}
2387 
2388 		if (ata_id_cdb_intr(dev->id)) {
2389 			dev->flags |= ATA_DFLAG_CDB_INTR;
2390 			cdb_intr_string = ", CDB intr";
2391 		}
2392 
2393 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2394 			dev->flags |= ATA_DFLAG_DMADIR;
2395 			dma_dir_string = ", DMADIR";
2396 		}
2397 
2398 		if (ata_id_has_da(dev->id))
2399 			dev->flags |= ATA_DFLAG_DA;
2400 
2401 		/* print device info to dmesg */
2402 		if (ata_msg_drv(ap) && print_info)
2403 			ata_dev_info(dev,
2404 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2405 				     modelbuf, fwrevbuf,
2406 				     ata_mode_string(xfer_mask),
2407 				     cdb_intr_string, atapi_an_string,
2408 				     dma_dir_string);
2409 	}
2410 
2411 	/* determine max_sectors */
2412 	dev->max_sectors = ATA_MAX_SECTORS;
2413 	if (dev->flags & ATA_DFLAG_LBA48)
2414 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2415 
2416 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2417 	   200 sectors */
2418 	if (ata_dev_knobble(dev)) {
2419 		if (ata_msg_drv(ap) && print_info)
2420 			ata_dev_info(dev, "applying bridge limits\n");
2421 		dev->udma_mask &= ATA_UDMA5;
2422 		dev->max_sectors = ATA_MAX_SECTORS;
2423 	}
2424 
2425 	if ((dev->class == ATA_DEV_ATAPI) &&
2426 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2427 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2428 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2429 	}
2430 
2431 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2432 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2433 					 dev->max_sectors);
2434 
2435 	if (ap->ops->dev_config)
2436 		ap->ops->dev_config(dev);
2437 
2438 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2439 		/* Let the user know. We don't want to disallow opens for
2440 		   rescue purposes, or in case the vendor is just a blithering
2441 		   idiot. Do this after the dev_config call as some controllers
2442 		   with buggy firmware may want to avoid reporting false device
2443 		   bugs */
2444 
2445 		if (print_info) {
2446 			ata_dev_warn(dev,
2447 "Drive reports diagnostics failure. This may indicate a drive\n");
2448 			ata_dev_warn(dev,
2449 "fault or invalid emulation. Contact drive vendor for information.\n");
2450 		}
2451 	}
2452 
2453 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2454 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2455 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2456 	}
2457 
2458 	return 0;
2459 
2460 err_out_nosup:
2461 	if (ata_msg_probe(ap))
2462 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2463 	return rc;
2464 }
2465 
2466 /**
2467  *	ata_cable_40wire	-	return 40 wire cable type
2468  *	@ap: port
2469  *
2470  *	Helper method for drivers which want to hardwire 40 wire cable
2471  *	detection.
2472  */
2473 
2474 int ata_cable_40wire(struct ata_port *ap)
2475 {
2476 	return ATA_CBL_PATA40;
2477 }
2478 
2479 /**
2480  *	ata_cable_80wire	-	return 80 wire cable type
2481  *	@ap: port
2482  *
2483  *	Helper method for drivers which want to hardwire 80 wire cable
2484  *	detection.
2485  */
2486 
2487 int ata_cable_80wire(struct ata_port *ap)
2488 {
2489 	return ATA_CBL_PATA80;
2490 }
2491 
2492 /**
2493  *	ata_cable_unknown	-	return unknown PATA cable.
2494  *	@ap: port
2495  *
2496  *	Helper method for drivers which have no PATA cable detection.
2497  */
2498 
2499 int ata_cable_unknown(struct ata_port *ap)
2500 {
2501 	return ATA_CBL_PATA_UNK;
2502 }
2503 
2504 /**
2505  *	ata_cable_ignore	-	return ignored PATA cable.
2506  *	@ap: port
2507  *
2508  *	Helper method for drivers which don't use cable type to limit
2509  *	transfer mode.
2510  */
2511 int ata_cable_ignore(struct ata_port *ap)
2512 {
2513 	return ATA_CBL_PATA_IGN;
2514 }
2515 
2516 /**
2517  *	ata_cable_sata	-	return SATA cable type
2518  *	@ap: port
2519  *
2520  *	Helper method for drivers which have SATA cables
2521  */
2522 
2523 int ata_cable_sata(struct ata_port *ap)
2524 {
2525 	return ATA_CBL_SATA;
2526 }
2527 
2528 /**
2529  *	ata_bus_probe - Reset and probe ATA bus
2530  *	@ap: Bus to probe
2531  *
2532  *	Master ATA bus probing function.  Initiates a hardware-dependent
2533  *	bus reset, then attempts to identify any devices found on
2534  *	the bus.
2535  *
2536  *	LOCKING:
2537  *	PCI/etc. bus probe sem.
2538  *
2539  *	RETURNS:
2540  *	Zero on success, negative errno otherwise.
2541  */
2542 
2543 int ata_bus_probe(struct ata_port *ap)
2544 {
2545 	unsigned int classes[ATA_MAX_DEVICES];
2546 	int tries[ATA_MAX_DEVICES];
2547 	int rc;
2548 	struct ata_device *dev;
2549 
2550 	ata_for_each_dev(dev, &ap->link, ALL)
2551 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2552 
2553  retry:
2554 	ata_for_each_dev(dev, &ap->link, ALL) {
2555 		/* If we issue an SRST then an ATA drive (not ATAPI)
2556 		 * may change configuration and be in PIO0 timing. If
2557 		 * we do a hard reset (or are coming from power on)
2558 		 * this is true for ATA or ATAPI. Until we've set a
2559 		 * suitable controller mode we should not touch the
2560 		 * bus as we may be talking too fast.
2561 		 */
2562 		dev->pio_mode = XFER_PIO_0;
2563 
2564 		/* If the controller has a pio mode setup function
2565 		 * then use it to set the chipset to rights. Don't
2566 		 * touch the DMA setup as that will be dealt with when
2567 		 * configuring devices.
2568 		 */
2569 		if (ap->ops->set_piomode)
2570 			ap->ops->set_piomode(ap, dev);
2571 	}
2572 
2573 	/* reset and determine device classes */
2574 	ap->ops->phy_reset(ap);
2575 
2576 	ata_for_each_dev(dev, &ap->link, ALL) {
2577 		if (dev->class != ATA_DEV_UNKNOWN)
2578 			classes[dev->devno] = dev->class;
2579 		else
2580 			classes[dev->devno] = ATA_DEV_NONE;
2581 
2582 		dev->class = ATA_DEV_UNKNOWN;
2583 	}
2584 
2585 	/* read IDENTIFY page and configure devices. We have to do the identify
2586 	   specific sequence bass-ackwards so that PDIAG- is released by
2587 	   the slave device */
2588 
2589 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2590 		if (tries[dev->devno])
2591 			dev->class = classes[dev->devno];
2592 
2593 		if (!ata_dev_enabled(dev))
2594 			continue;
2595 
2596 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2597 				     dev->id);
2598 		if (rc)
2599 			goto fail;
2600 	}
2601 
2602 	/* Now ask for the cable type as PDIAG- should have been released */
2603 	if (ap->ops->cable_detect)
2604 		ap->cbl = ap->ops->cable_detect(ap);
2605 
2606 	/* We may have SATA bridge glue hiding here irrespective of
2607 	 * the reported cable types and sensed types.  When SATA
2608 	 * drives indicate we have a bridge, we don't know which end
2609 	 * of the link the bridge is which is a problem.
2610 	 */
2611 	ata_for_each_dev(dev, &ap->link, ENABLED)
2612 		if (ata_id_is_sata(dev->id))
2613 			ap->cbl = ATA_CBL_SATA;
2614 
2615 	/* After the identify sequence we can now set up the devices. We do
2616 	   this in the normal order so that the user doesn't get confused */
2617 
2618 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2619 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2620 		rc = ata_dev_configure(dev);
2621 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2622 		if (rc)
2623 			goto fail;
2624 	}
2625 
2626 	/* configure transfer mode */
2627 	rc = ata_set_mode(&ap->link, &dev);
2628 	if (rc)
2629 		goto fail;
2630 
2631 	ata_for_each_dev(dev, &ap->link, ENABLED)
2632 		return 0;
2633 
2634 	return -ENODEV;
2635 
2636  fail:
2637 	tries[dev->devno]--;
2638 
2639 	switch (rc) {
2640 	case -EINVAL:
2641 		/* eeek, something went very wrong, give up */
2642 		tries[dev->devno] = 0;
2643 		break;
2644 
2645 	case -ENODEV:
2646 		/* give it just one more chance */
2647 		tries[dev->devno] = min(tries[dev->devno], 1);
2648 	case -EIO:
2649 		if (tries[dev->devno] == 1) {
2650 			/* This is the last chance, better to slow
2651 			 * down than lose it.
2652 			 */
2653 			sata_down_spd_limit(&ap->link, 0);
2654 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2655 		}
2656 	}
2657 
2658 	if (!tries[dev->devno])
2659 		ata_dev_disable(dev);
2660 
2661 	goto retry;
2662 }
2663 
2664 /**
2665  *	sata_print_link_status - Print SATA link status
2666  *	@link: SATA link to printk link status about
2667  *
2668  *	This function prints link speed and status of a SATA link.
2669  *
2670  *	LOCKING:
2671  *	None.
2672  */
2673 static void sata_print_link_status(struct ata_link *link)
2674 {
2675 	u32 sstatus, scontrol, tmp;
2676 
2677 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2678 		return;
2679 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2680 
2681 	if (ata_phys_link_online(link)) {
2682 		tmp = (sstatus >> 4) & 0xf;
2683 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2684 			      sata_spd_string(tmp), sstatus, scontrol);
2685 	} else {
2686 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2687 			      sstatus, scontrol);
2688 	}
2689 }
2690 
2691 /**
2692  *	ata_dev_pair		-	return other device on cable
2693  *	@adev: device
2694  *
2695  *	Obtain the other device on the same cable, or if none is
2696  *	present NULL is returned
2697  */
2698 
2699 struct ata_device *ata_dev_pair(struct ata_device *adev)
2700 {
2701 	struct ata_link *link = adev->link;
2702 	struct ata_device *pair = &link->device[1 - adev->devno];
2703 	if (!ata_dev_enabled(pair))
2704 		return NULL;
2705 	return pair;
2706 }
2707 
2708 /**
2709  *	sata_down_spd_limit - adjust SATA spd limit downward
2710  *	@link: Link to adjust SATA spd limit for
2711  *	@spd_limit: Additional limit
2712  *
2713  *	Adjust SATA spd limit of @link downward.  Note that this
2714  *	function only adjusts the limit.  The change must be applied
2715  *	using sata_set_spd().
2716  *
2717  *	If @spd_limit is non-zero, the speed is limited to equal to or
2718  *	lower than @spd_limit if such speed is supported.  If
2719  *	@spd_limit is slower than any supported speed, only the lowest
2720  *	supported speed is allowed.
2721  *
2722  *	LOCKING:
2723  *	Inherited from caller.
2724  *
2725  *	RETURNS:
2726  *	0 on success, negative errno on failure
2727  */
2728 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2729 {
2730 	u32 sstatus, spd, mask;
2731 	int rc, bit;
2732 
2733 	if (!sata_scr_valid(link))
2734 		return -EOPNOTSUPP;
2735 
2736 	/* If SCR can be read, use it to determine the current SPD.
2737 	 * If not, use cached value in link->sata_spd.
2738 	 */
2739 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2740 	if (rc == 0 && ata_sstatus_online(sstatus))
2741 		spd = (sstatus >> 4) & 0xf;
2742 	else
2743 		spd = link->sata_spd;
2744 
2745 	mask = link->sata_spd_limit;
2746 	if (mask <= 1)
2747 		return -EINVAL;
2748 
2749 	/* unconditionally mask off the highest bit */
2750 	bit = fls(mask) - 1;
2751 	mask &= ~(1 << bit);
2752 
2753 	/* Mask off all speeds higher than or equal to the current
2754 	 * one.  Force 1.5Gbps if current SPD is not available.
2755 	 */
2756 	if (spd > 1)
2757 		mask &= (1 << (spd - 1)) - 1;
2758 	else
2759 		mask &= 1;
2760 
2761 	/* were we already at the bottom? */
2762 	if (!mask)
2763 		return -EINVAL;
2764 
2765 	if (spd_limit) {
2766 		if (mask & ((1 << spd_limit) - 1))
2767 			mask &= (1 << spd_limit) - 1;
2768 		else {
2769 			bit = ffs(mask) - 1;
2770 			mask = 1 << bit;
2771 		}
2772 	}
2773 
2774 	link->sata_spd_limit = mask;
2775 
2776 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2777 		      sata_spd_string(fls(mask)));
2778 
2779 	return 0;
2780 }
2781 
2782 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2783 {
2784 	struct ata_link *host_link = &link->ap->link;
2785 	u32 limit, target, spd;
2786 
2787 	limit = link->sata_spd_limit;
2788 
2789 	/* Don't configure downstream link faster than upstream link.
2790 	 * It doesn't speed up anything and some PMPs choke on such
2791 	 * configuration.
2792 	 */
2793 	if (!ata_is_host_link(link) && host_link->sata_spd)
2794 		limit &= (1 << host_link->sata_spd) - 1;
2795 
2796 	if (limit == UINT_MAX)
2797 		target = 0;
2798 	else
2799 		target = fls(limit);
2800 
2801 	spd = (*scontrol >> 4) & 0xf;
2802 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2803 
2804 	return spd != target;
2805 }
2806 
2807 /**
2808  *	sata_set_spd_needed - is SATA spd configuration needed
2809  *	@link: Link in question
2810  *
2811  *	Test whether the spd limit in SControl matches
2812  *	@link->sata_spd_limit.  This function is used to determine
2813  *	whether hardreset is necessary to apply SATA spd
2814  *	configuration.
2815  *
2816  *	LOCKING:
2817  *	Inherited from caller.
2818  *
2819  *	RETURNS:
2820  *	1 if SATA spd configuration is needed, 0 otherwise.
2821  */
2822 static int sata_set_spd_needed(struct ata_link *link)
2823 {
2824 	u32 scontrol;
2825 
2826 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2827 		return 1;
2828 
2829 	return __sata_set_spd_needed(link, &scontrol);
2830 }
2831 
2832 /**
2833  *	sata_set_spd - set SATA spd according to spd limit
2834  *	@link: Link to set SATA spd for
2835  *
2836  *	Set SATA spd of @link according to sata_spd_limit.
2837  *
2838  *	LOCKING:
2839  *	Inherited from caller.
2840  *
2841  *	RETURNS:
2842  *	0 if spd doesn't need to be changed, 1 if spd has been
2843  *	changed.  Negative errno if SCR registers are inaccessible.
2844  */
2845 int sata_set_spd(struct ata_link *link)
2846 {
2847 	u32 scontrol;
2848 	int rc;
2849 
2850 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2851 		return rc;
2852 
2853 	if (!__sata_set_spd_needed(link, &scontrol))
2854 		return 0;
2855 
2856 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2857 		return rc;
2858 
2859 	return 1;
2860 }
2861 
2862 /*
2863  * This mode timing computation functionality is ported over from
2864  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2865  */
2866 /*
2867  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2868  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2869  * for UDMA6, which is currently supported only by Maxtor drives.
2870  *
2871  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2872  */
2873 
2874 static const struct ata_timing ata_timing[] = {
2875 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2876 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2877 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2878 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2879 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2880 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2881 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2882 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2883 
2884 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2885 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2886 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2887 
2888 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2889 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2890 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2891 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2892 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2893 
2894 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2895 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2896 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2897 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2898 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2899 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2900 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2901 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2902 
2903 	{ 0xFF }
2904 };
2905 
2906 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2907 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2908 
2909 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2910 {
2911 	q->setup	= EZ(t->setup      * 1000,  T);
2912 	q->act8b	= EZ(t->act8b      * 1000,  T);
2913 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2914 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2915 	q->active	= EZ(t->active     * 1000,  T);
2916 	q->recover	= EZ(t->recover    * 1000,  T);
2917 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2918 	q->cycle	= EZ(t->cycle      * 1000,  T);
2919 	q->udma		= EZ(t->udma       * 1000, UT);
2920 }
2921 
2922 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2923 		      struct ata_timing *m, unsigned int what)
2924 {
2925 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2926 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2927 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2928 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2929 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2930 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2931 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2932 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2933 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2934 }
2935 
2936 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2937 {
2938 	const struct ata_timing *t = ata_timing;
2939 
2940 	while (xfer_mode > t->mode)
2941 		t++;
2942 
2943 	if (xfer_mode == t->mode)
2944 		return t;
2945 	return NULL;
2946 }
2947 
2948 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2949 		       struct ata_timing *t, int T, int UT)
2950 {
2951 	const u16 *id = adev->id;
2952 	const struct ata_timing *s;
2953 	struct ata_timing p;
2954 
2955 	/*
2956 	 * Find the mode.
2957 	 */
2958 
2959 	if (!(s = ata_timing_find_mode(speed)))
2960 		return -EINVAL;
2961 
2962 	memcpy(t, s, sizeof(*s));
2963 
2964 	/*
2965 	 * If the drive is an EIDE drive, it can tell us it needs extended
2966 	 * PIO/MW_DMA cycle timing.
2967 	 */
2968 
2969 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2970 		memset(&p, 0, sizeof(p));
2971 
2972 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2973 			if (speed <= XFER_PIO_2)
2974 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2975 			else if ((speed <= XFER_PIO_4) ||
2976 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2977 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2978 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2979 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2980 
2981 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2982 	}
2983 
2984 	/*
2985 	 * Convert the timing to bus clock counts.
2986 	 */
2987 
2988 	ata_timing_quantize(t, t, T, UT);
2989 
2990 	/*
2991 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2992 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2993 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2994 	 */
2995 
2996 	if (speed > XFER_PIO_6) {
2997 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2998 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2999 	}
3000 
3001 	/*
3002 	 * Lengthen active & recovery time so that cycle time is correct.
3003 	 */
3004 
3005 	if (t->act8b + t->rec8b < t->cyc8b) {
3006 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3007 		t->rec8b = t->cyc8b - t->act8b;
3008 	}
3009 
3010 	if (t->active + t->recover < t->cycle) {
3011 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3012 		t->recover = t->cycle - t->active;
3013 	}
3014 
3015 	/* In a few cases quantisation may produce enough errors to
3016 	   leave t->cycle too low for the sum of active and recovery
3017 	   if so we must correct this */
3018 	if (t->active + t->recover > t->cycle)
3019 		t->cycle = t->active + t->recover;
3020 
3021 	return 0;
3022 }
3023 
3024 /**
3025  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3026  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3027  *	@cycle: cycle duration in ns
3028  *
3029  *	Return matching xfer mode for @cycle.  The returned mode is of
3030  *	the transfer type specified by @xfer_shift.  If @cycle is too
3031  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3032  *	than the fastest known mode, the fasted mode is returned.
3033  *
3034  *	LOCKING:
3035  *	None.
3036  *
3037  *	RETURNS:
3038  *	Matching xfer_mode, 0xff if no match found.
3039  */
3040 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3041 {
3042 	u8 base_mode = 0xff, last_mode = 0xff;
3043 	const struct ata_xfer_ent *ent;
3044 	const struct ata_timing *t;
3045 
3046 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3047 		if (ent->shift == xfer_shift)
3048 			base_mode = ent->base;
3049 
3050 	for (t = ata_timing_find_mode(base_mode);
3051 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3052 		unsigned short this_cycle;
3053 
3054 		switch (xfer_shift) {
3055 		case ATA_SHIFT_PIO:
3056 		case ATA_SHIFT_MWDMA:
3057 			this_cycle = t->cycle;
3058 			break;
3059 		case ATA_SHIFT_UDMA:
3060 			this_cycle = t->udma;
3061 			break;
3062 		default:
3063 			return 0xff;
3064 		}
3065 
3066 		if (cycle > this_cycle)
3067 			break;
3068 
3069 		last_mode = t->mode;
3070 	}
3071 
3072 	return last_mode;
3073 }
3074 
3075 /**
3076  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3077  *	@dev: Device to adjust xfer masks
3078  *	@sel: ATA_DNXFER_* selector
3079  *
3080  *	Adjust xfer masks of @dev downward.  Note that this function
3081  *	does not apply the change.  Invoking ata_set_mode() afterwards
3082  *	will apply the limit.
3083  *
3084  *	LOCKING:
3085  *	Inherited from caller.
3086  *
3087  *	RETURNS:
3088  *	0 on success, negative errno on failure
3089  */
3090 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3091 {
3092 	char buf[32];
3093 	unsigned long orig_mask, xfer_mask;
3094 	unsigned long pio_mask, mwdma_mask, udma_mask;
3095 	int quiet, highbit;
3096 
3097 	quiet = !!(sel & ATA_DNXFER_QUIET);
3098 	sel &= ~ATA_DNXFER_QUIET;
3099 
3100 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3101 						  dev->mwdma_mask,
3102 						  dev->udma_mask);
3103 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3104 
3105 	switch (sel) {
3106 	case ATA_DNXFER_PIO:
3107 		highbit = fls(pio_mask) - 1;
3108 		pio_mask &= ~(1 << highbit);
3109 		break;
3110 
3111 	case ATA_DNXFER_DMA:
3112 		if (udma_mask) {
3113 			highbit = fls(udma_mask) - 1;
3114 			udma_mask &= ~(1 << highbit);
3115 			if (!udma_mask)
3116 				return -ENOENT;
3117 		} else if (mwdma_mask) {
3118 			highbit = fls(mwdma_mask) - 1;
3119 			mwdma_mask &= ~(1 << highbit);
3120 			if (!mwdma_mask)
3121 				return -ENOENT;
3122 		}
3123 		break;
3124 
3125 	case ATA_DNXFER_40C:
3126 		udma_mask &= ATA_UDMA_MASK_40C;
3127 		break;
3128 
3129 	case ATA_DNXFER_FORCE_PIO0:
3130 		pio_mask &= 1;
3131 	case ATA_DNXFER_FORCE_PIO:
3132 		mwdma_mask = 0;
3133 		udma_mask = 0;
3134 		break;
3135 
3136 	default:
3137 		BUG();
3138 	}
3139 
3140 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3141 
3142 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3143 		return -ENOENT;
3144 
3145 	if (!quiet) {
3146 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3147 			snprintf(buf, sizeof(buf), "%s:%s",
3148 				 ata_mode_string(xfer_mask),
3149 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3150 		else
3151 			snprintf(buf, sizeof(buf), "%s",
3152 				 ata_mode_string(xfer_mask));
3153 
3154 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3155 	}
3156 
3157 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3158 			    &dev->udma_mask);
3159 
3160 	return 0;
3161 }
3162 
3163 static int ata_dev_set_mode(struct ata_device *dev)
3164 {
3165 	struct ata_port *ap = dev->link->ap;
3166 	struct ata_eh_context *ehc = &dev->link->eh_context;
3167 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3168 	const char *dev_err_whine = "";
3169 	int ign_dev_err = 0;
3170 	unsigned int err_mask = 0;
3171 	int rc;
3172 
3173 	dev->flags &= ~ATA_DFLAG_PIO;
3174 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3175 		dev->flags |= ATA_DFLAG_PIO;
3176 
3177 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3178 		dev_err_whine = " (SET_XFERMODE skipped)";
3179 	else {
3180 		if (nosetxfer)
3181 			ata_dev_warn(dev,
3182 				     "NOSETXFER but PATA detected - can't "
3183 				     "skip SETXFER, might malfunction\n");
3184 		err_mask = ata_dev_set_xfermode(dev);
3185 	}
3186 
3187 	if (err_mask & ~AC_ERR_DEV)
3188 		goto fail;
3189 
3190 	/* revalidate */
3191 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3192 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3193 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3194 	if (rc)
3195 		return rc;
3196 
3197 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3198 		/* Old CFA may refuse this command, which is just fine */
3199 		if (ata_id_is_cfa(dev->id))
3200 			ign_dev_err = 1;
3201 		/* Catch several broken garbage emulations plus some pre
3202 		   ATA devices */
3203 		if (ata_id_major_version(dev->id) == 0 &&
3204 					dev->pio_mode <= XFER_PIO_2)
3205 			ign_dev_err = 1;
3206 		/* Some very old devices and some bad newer ones fail
3207 		   any kind of SET_XFERMODE request but support PIO0-2
3208 		   timings and no IORDY */
3209 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3210 			ign_dev_err = 1;
3211 	}
3212 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3213 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3214 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3215 	    dev->dma_mode == XFER_MW_DMA_0 &&
3216 	    (dev->id[63] >> 8) & 1)
3217 		ign_dev_err = 1;
3218 
3219 	/* if the device is actually configured correctly, ignore dev err */
3220 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3221 		ign_dev_err = 1;
3222 
3223 	if (err_mask & AC_ERR_DEV) {
3224 		if (!ign_dev_err)
3225 			goto fail;
3226 		else
3227 			dev_err_whine = " (device error ignored)";
3228 	}
3229 
3230 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3231 		dev->xfer_shift, (int)dev->xfer_mode);
3232 
3233 	ata_dev_info(dev, "configured for %s%s\n",
3234 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3235 		     dev_err_whine);
3236 
3237 	return 0;
3238 
3239  fail:
3240 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3241 	return -EIO;
3242 }
3243 
3244 /**
3245  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3246  *	@link: link on which timings will be programmed
3247  *	@r_failed_dev: out parameter for failed device
3248  *
3249  *	Standard implementation of the function used to tune and set
3250  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3251  *	ata_dev_set_mode() fails, pointer to the failing device is
3252  *	returned in @r_failed_dev.
3253  *
3254  *	LOCKING:
3255  *	PCI/etc. bus probe sem.
3256  *
3257  *	RETURNS:
3258  *	0 on success, negative errno otherwise
3259  */
3260 
3261 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3262 {
3263 	struct ata_port *ap = link->ap;
3264 	struct ata_device *dev;
3265 	int rc = 0, used_dma = 0, found = 0;
3266 
3267 	/* step 1: calculate xfer_mask */
3268 	ata_for_each_dev(dev, link, ENABLED) {
3269 		unsigned long pio_mask, dma_mask;
3270 		unsigned int mode_mask;
3271 
3272 		mode_mask = ATA_DMA_MASK_ATA;
3273 		if (dev->class == ATA_DEV_ATAPI)
3274 			mode_mask = ATA_DMA_MASK_ATAPI;
3275 		else if (ata_id_is_cfa(dev->id))
3276 			mode_mask = ATA_DMA_MASK_CFA;
3277 
3278 		ata_dev_xfermask(dev);
3279 		ata_force_xfermask(dev);
3280 
3281 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3282 
3283 		if (libata_dma_mask & mode_mask)
3284 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3285 						     dev->udma_mask);
3286 		else
3287 			dma_mask = 0;
3288 
3289 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3290 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3291 
3292 		found = 1;
3293 		if (ata_dma_enabled(dev))
3294 			used_dma = 1;
3295 	}
3296 	if (!found)
3297 		goto out;
3298 
3299 	/* step 2: always set host PIO timings */
3300 	ata_for_each_dev(dev, link, ENABLED) {
3301 		if (dev->pio_mode == 0xff) {
3302 			ata_dev_warn(dev, "no PIO support\n");
3303 			rc = -EINVAL;
3304 			goto out;
3305 		}
3306 
3307 		dev->xfer_mode = dev->pio_mode;
3308 		dev->xfer_shift = ATA_SHIFT_PIO;
3309 		if (ap->ops->set_piomode)
3310 			ap->ops->set_piomode(ap, dev);
3311 	}
3312 
3313 	/* step 3: set host DMA timings */
3314 	ata_for_each_dev(dev, link, ENABLED) {
3315 		if (!ata_dma_enabled(dev))
3316 			continue;
3317 
3318 		dev->xfer_mode = dev->dma_mode;
3319 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3320 		if (ap->ops->set_dmamode)
3321 			ap->ops->set_dmamode(ap, dev);
3322 	}
3323 
3324 	/* step 4: update devices' xfer mode */
3325 	ata_for_each_dev(dev, link, ENABLED) {
3326 		rc = ata_dev_set_mode(dev);
3327 		if (rc)
3328 			goto out;
3329 	}
3330 
3331 	/* Record simplex status. If we selected DMA then the other
3332 	 * host channels are not permitted to do so.
3333 	 */
3334 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3335 		ap->host->simplex_claimed = ap;
3336 
3337  out:
3338 	if (rc)
3339 		*r_failed_dev = dev;
3340 	return rc;
3341 }
3342 
3343 /**
3344  *	ata_wait_ready - wait for link to become ready
3345  *	@link: link to be waited on
3346  *	@deadline: deadline jiffies for the operation
3347  *	@check_ready: callback to check link readiness
3348  *
3349  *	Wait for @link to become ready.  @check_ready should return
3350  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3351  *	link doesn't seem to be occupied, other errno for other error
3352  *	conditions.
3353  *
3354  *	Transient -ENODEV conditions are allowed for
3355  *	ATA_TMOUT_FF_WAIT.
3356  *
3357  *	LOCKING:
3358  *	EH context.
3359  *
3360  *	RETURNS:
3361  *	0 if @linke is ready before @deadline; otherwise, -errno.
3362  */
3363 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3364 		   int (*check_ready)(struct ata_link *link))
3365 {
3366 	unsigned long start = jiffies;
3367 	unsigned long nodev_deadline;
3368 	int warned = 0;
3369 
3370 	/* choose which 0xff timeout to use, read comment in libata.h */
3371 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3372 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3373 	else
3374 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3375 
3376 	/* Slave readiness can't be tested separately from master.  On
3377 	 * M/S emulation configuration, this function should be called
3378 	 * only on the master and it will handle both master and slave.
3379 	 */
3380 	WARN_ON(link == link->ap->slave_link);
3381 
3382 	if (time_after(nodev_deadline, deadline))
3383 		nodev_deadline = deadline;
3384 
3385 	while (1) {
3386 		unsigned long now = jiffies;
3387 		int ready, tmp;
3388 
3389 		ready = tmp = check_ready(link);
3390 		if (ready > 0)
3391 			return 0;
3392 
3393 		/*
3394 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3395 		 * is online.  Also, some SATA devices take a long
3396 		 * time to clear 0xff after reset.  Wait for
3397 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3398 		 * offline.
3399 		 *
3400 		 * Note that some PATA controllers (pata_ali) explode
3401 		 * if status register is read more than once when
3402 		 * there's no device attached.
3403 		 */
3404 		if (ready == -ENODEV) {
3405 			if (ata_link_online(link))
3406 				ready = 0;
3407 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3408 				 !ata_link_offline(link) &&
3409 				 time_before(now, nodev_deadline))
3410 				ready = 0;
3411 		}
3412 
3413 		if (ready)
3414 			return ready;
3415 		if (time_after(now, deadline))
3416 			return -EBUSY;
3417 
3418 		if (!warned && time_after(now, start + 5 * HZ) &&
3419 		    (deadline - now > 3 * HZ)) {
3420 			ata_link_warn(link,
3421 				"link is slow to respond, please be patient "
3422 				"(ready=%d)\n", tmp);
3423 			warned = 1;
3424 		}
3425 
3426 		ata_msleep(link->ap, 50);
3427 	}
3428 }
3429 
3430 /**
3431  *	ata_wait_after_reset - wait for link to become ready after reset
3432  *	@link: link to be waited on
3433  *	@deadline: deadline jiffies for the operation
3434  *	@check_ready: callback to check link readiness
3435  *
3436  *	Wait for @link to become ready after reset.
3437  *
3438  *	LOCKING:
3439  *	EH context.
3440  *
3441  *	RETURNS:
3442  *	0 if @linke is ready before @deadline; otherwise, -errno.
3443  */
3444 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3445 				int (*check_ready)(struct ata_link *link))
3446 {
3447 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3448 
3449 	return ata_wait_ready(link, deadline, check_ready);
3450 }
3451 
3452 /**
3453  *	sata_link_debounce - debounce SATA phy status
3454  *	@link: ATA link to debounce SATA phy status for
3455  *	@params: timing parameters { interval, duratinon, timeout } in msec
3456  *	@deadline: deadline jiffies for the operation
3457  *
3458  *	Make sure SStatus of @link reaches stable state, determined by
3459  *	holding the same value where DET is not 1 for @duration polled
3460  *	every @interval, before @timeout.  Timeout constraints the
3461  *	beginning of the stable state.  Because DET gets stuck at 1 on
3462  *	some controllers after hot unplugging, this functions waits
3463  *	until timeout then returns 0 if DET is stable at 1.
3464  *
3465  *	@timeout is further limited by @deadline.  The sooner of the
3466  *	two is used.
3467  *
3468  *	LOCKING:
3469  *	Kernel thread context (may sleep)
3470  *
3471  *	RETURNS:
3472  *	0 on success, -errno on failure.
3473  */
3474 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3475 		       unsigned long deadline)
3476 {
3477 	unsigned long interval = params[0];
3478 	unsigned long duration = params[1];
3479 	unsigned long last_jiffies, t;
3480 	u32 last, cur;
3481 	int rc;
3482 
3483 	t = ata_deadline(jiffies, params[2]);
3484 	if (time_before(t, deadline))
3485 		deadline = t;
3486 
3487 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3488 		return rc;
3489 	cur &= 0xf;
3490 
3491 	last = cur;
3492 	last_jiffies = jiffies;
3493 
3494 	while (1) {
3495 		ata_msleep(link->ap, interval);
3496 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3497 			return rc;
3498 		cur &= 0xf;
3499 
3500 		/* DET stable? */
3501 		if (cur == last) {
3502 			if (cur == 1 && time_before(jiffies, deadline))
3503 				continue;
3504 			if (time_after(jiffies,
3505 				       ata_deadline(last_jiffies, duration)))
3506 				return 0;
3507 			continue;
3508 		}
3509 
3510 		/* unstable, start over */
3511 		last = cur;
3512 		last_jiffies = jiffies;
3513 
3514 		/* Check deadline.  If debouncing failed, return
3515 		 * -EPIPE to tell upper layer to lower link speed.
3516 		 */
3517 		if (time_after(jiffies, deadline))
3518 			return -EPIPE;
3519 	}
3520 }
3521 
3522 /**
3523  *	sata_link_resume - resume SATA link
3524  *	@link: ATA link to resume SATA
3525  *	@params: timing parameters { interval, duratinon, timeout } in msec
3526  *	@deadline: deadline jiffies for the operation
3527  *
3528  *	Resume SATA phy @link and debounce it.
3529  *
3530  *	LOCKING:
3531  *	Kernel thread context (may sleep)
3532  *
3533  *	RETURNS:
3534  *	0 on success, -errno on failure.
3535  */
3536 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3537 		     unsigned long deadline)
3538 {
3539 	int tries = ATA_LINK_RESUME_TRIES;
3540 	u32 scontrol, serror;
3541 	int rc;
3542 
3543 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3544 		return rc;
3545 
3546 	/*
3547 	 * Writes to SControl sometimes get ignored under certain
3548 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3549 	 * cleared.
3550 	 */
3551 	do {
3552 		scontrol = (scontrol & 0x0f0) | 0x300;
3553 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3554 			return rc;
3555 		/*
3556 		 * Some PHYs react badly if SStatus is pounded
3557 		 * immediately after resuming.  Delay 200ms before
3558 		 * debouncing.
3559 		 */
3560 		ata_msleep(link->ap, 200);
3561 
3562 		/* is SControl restored correctly? */
3563 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3564 			return rc;
3565 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3566 
3567 	if ((scontrol & 0xf0f) != 0x300) {
3568 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3569 			     scontrol);
3570 		return 0;
3571 	}
3572 
3573 	if (tries < ATA_LINK_RESUME_TRIES)
3574 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3575 			      ATA_LINK_RESUME_TRIES - tries);
3576 
3577 	if ((rc = sata_link_debounce(link, params, deadline)))
3578 		return rc;
3579 
3580 	/* clear SError, some PHYs require this even for SRST to work */
3581 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3582 		rc = sata_scr_write(link, SCR_ERROR, serror);
3583 
3584 	return rc != -EINVAL ? rc : 0;
3585 }
3586 
3587 /**
3588  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3589  *	@link: ATA link to manipulate SControl for
3590  *	@policy: LPM policy to configure
3591  *	@spm_wakeup: initiate LPM transition to active state
3592  *
3593  *	Manipulate the IPM field of the SControl register of @link
3594  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3595  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3596  *	the link.  This function also clears PHYRDY_CHG before
3597  *	returning.
3598  *
3599  *	LOCKING:
3600  *	EH context.
3601  *
3602  *	RETURNS:
3603  *	0 on succes, -errno otherwise.
3604  */
3605 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3606 		      bool spm_wakeup)
3607 {
3608 	struct ata_eh_context *ehc = &link->eh_context;
3609 	bool woken_up = false;
3610 	u32 scontrol;
3611 	int rc;
3612 
3613 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3614 	if (rc)
3615 		return rc;
3616 
3617 	switch (policy) {
3618 	case ATA_LPM_MAX_POWER:
3619 		/* disable all LPM transitions */
3620 		scontrol |= (0x7 << 8);
3621 		/* initiate transition to active state */
3622 		if (spm_wakeup) {
3623 			scontrol |= (0x4 << 12);
3624 			woken_up = true;
3625 		}
3626 		break;
3627 	case ATA_LPM_MED_POWER:
3628 		/* allow LPM to PARTIAL */
3629 		scontrol &= ~(0x1 << 8);
3630 		scontrol |= (0x6 << 8);
3631 		break;
3632 	case ATA_LPM_MIN_POWER:
3633 		if (ata_link_nr_enabled(link) > 0)
3634 			/* no restrictions on LPM transitions */
3635 			scontrol &= ~(0x7 << 8);
3636 		else {
3637 			/* empty port, power off */
3638 			scontrol &= ~0xf;
3639 			scontrol |= (0x1 << 2);
3640 		}
3641 		break;
3642 	default:
3643 		WARN_ON(1);
3644 	}
3645 
3646 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3647 	if (rc)
3648 		return rc;
3649 
3650 	/* give the link time to transit out of LPM state */
3651 	if (woken_up)
3652 		msleep(10);
3653 
3654 	/* clear PHYRDY_CHG from SError */
3655 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3656 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3657 }
3658 
3659 /**
3660  *	ata_std_prereset - prepare for reset
3661  *	@link: ATA link to be reset
3662  *	@deadline: deadline jiffies for the operation
3663  *
3664  *	@link is about to be reset.  Initialize it.  Failure from
3665  *	prereset makes libata abort whole reset sequence and give up
3666  *	that port, so prereset should be best-effort.  It does its
3667  *	best to prepare for reset sequence but if things go wrong, it
3668  *	should just whine, not fail.
3669  *
3670  *	LOCKING:
3671  *	Kernel thread context (may sleep)
3672  *
3673  *	RETURNS:
3674  *	0 on success, -errno otherwise.
3675  */
3676 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3677 {
3678 	struct ata_port *ap = link->ap;
3679 	struct ata_eh_context *ehc = &link->eh_context;
3680 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3681 	int rc;
3682 
3683 	/* if we're about to do hardreset, nothing more to do */
3684 	if (ehc->i.action & ATA_EH_HARDRESET)
3685 		return 0;
3686 
3687 	/* if SATA, resume link */
3688 	if (ap->flags & ATA_FLAG_SATA) {
3689 		rc = sata_link_resume(link, timing, deadline);
3690 		/* whine about phy resume failure but proceed */
3691 		if (rc && rc != -EOPNOTSUPP)
3692 			ata_link_warn(link,
3693 				      "failed to resume link for reset (errno=%d)\n",
3694 				      rc);
3695 	}
3696 
3697 	/* no point in trying softreset on offline link */
3698 	if (ata_phys_link_offline(link))
3699 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3700 
3701 	return 0;
3702 }
3703 
3704 /**
3705  *	sata_link_hardreset - reset link via SATA phy reset
3706  *	@link: link to reset
3707  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3708  *	@deadline: deadline jiffies for the operation
3709  *	@online: optional out parameter indicating link onlineness
3710  *	@check_ready: optional callback to check link readiness
3711  *
3712  *	SATA phy-reset @link using DET bits of SControl register.
3713  *	After hardreset, link readiness is waited upon using
3714  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3715  *	allowed to not specify @check_ready and wait itself after this
3716  *	function returns.  Device classification is LLD's
3717  *	responsibility.
3718  *
3719  *	*@online is set to one iff reset succeeded and @link is online
3720  *	after reset.
3721  *
3722  *	LOCKING:
3723  *	Kernel thread context (may sleep)
3724  *
3725  *	RETURNS:
3726  *	0 on success, -errno otherwise.
3727  */
3728 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3729 			unsigned long deadline,
3730 			bool *online, int (*check_ready)(struct ata_link *))
3731 {
3732 	u32 scontrol;
3733 	int rc;
3734 
3735 	DPRINTK("ENTER\n");
3736 
3737 	if (online)
3738 		*online = false;
3739 
3740 	if (sata_set_spd_needed(link)) {
3741 		/* SATA spec says nothing about how to reconfigure
3742 		 * spd.  To be on the safe side, turn off phy during
3743 		 * reconfiguration.  This works for at least ICH7 AHCI
3744 		 * and Sil3124.
3745 		 */
3746 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3747 			goto out;
3748 
3749 		scontrol = (scontrol & 0x0f0) | 0x304;
3750 
3751 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3752 			goto out;
3753 
3754 		sata_set_spd(link);
3755 	}
3756 
3757 	/* issue phy wake/reset */
3758 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3759 		goto out;
3760 
3761 	scontrol = (scontrol & 0x0f0) | 0x301;
3762 
3763 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3764 		goto out;
3765 
3766 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3767 	 * 10.4.2 says at least 1 ms.
3768 	 */
3769 	ata_msleep(link->ap, 1);
3770 
3771 	/* bring link back */
3772 	rc = sata_link_resume(link, timing, deadline);
3773 	if (rc)
3774 		goto out;
3775 	/* if link is offline nothing more to do */
3776 	if (ata_phys_link_offline(link))
3777 		goto out;
3778 
3779 	/* Link is online.  From this point, -ENODEV too is an error. */
3780 	if (online)
3781 		*online = true;
3782 
3783 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3784 		/* If PMP is supported, we have to do follow-up SRST.
3785 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3786 		 * the first port is empty.  Wait only for
3787 		 * ATA_TMOUT_PMP_SRST_WAIT.
3788 		 */
3789 		if (check_ready) {
3790 			unsigned long pmp_deadline;
3791 
3792 			pmp_deadline = ata_deadline(jiffies,
3793 						    ATA_TMOUT_PMP_SRST_WAIT);
3794 			if (time_after(pmp_deadline, deadline))
3795 				pmp_deadline = deadline;
3796 			ata_wait_ready(link, pmp_deadline, check_ready);
3797 		}
3798 		rc = -EAGAIN;
3799 		goto out;
3800 	}
3801 
3802 	rc = 0;
3803 	if (check_ready)
3804 		rc = ata_wait_ready(link, deadline, check_ready);
3805  out:
3806 	if (rc && rc != -EAGAIN) {
3807 		/* online is set iff link is online && reset succeeded */
3808 		if (online)
3809 			*online = false;
3810 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3811 	}
3812 	DPRINTK("EXIT, rc=%d\n", rc);
3813 	return rc;
3814 }
3815 
3816 /**
3817  *	sata_std_hardreset - COMRESET w/o waiting or classification
3818  *	@link: link to reset
3819  *	@class: resulting class of attached device
3820  *	@deadline: deadline jiffies for the operation
3821  *
3822  *	Standard SATA COMRESET w/o waiting or classification.
3823  *
3824  *	LOCKING:
3825  *	Kernel thread context (may sleep)
3826  *
3827  *	RETURNS:
3828  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3829  */
3830 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3831 		       unsigned long deadline)
3832 {
3833 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3834 	bool online;
3835 	int rc;
3836 
3837 	/* do hardreset */
3838 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3839 	return online ? -EAGAIN : rc;
3840 }
3841 
3842 /**
3843  *	ata_std_postreset - standard postreset callback
3844  *	@link: the target ata_link
3845  *	@classes: classes of attached devices
3846  *
3847  *	This function is invoked after a successful reset.  Note that
3848  *	the device might have been reset more than once using
3849  *	different reset methods before postreset is invoked.
3850  *
3851  *	LOCKING:
3852  *	Kernel thread context (may sleep)
3853  */
3854 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3855 {
3856 	u32 serror;
3857 
3858 	DPRINTK("ENTER\n");
3859 
3860 	/* reset complete, clear SError */
3861 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3862 		sata_scr_write(link, SCR_ERROR, serror);
3863 
3864 	/* print link status */
3865 	sata_print_link_status(link);
3866 
3867 	DPRINTK("EXIT\n");
3868 }
3869 
3870 /**
3871  *	ata_dev_same_device - Determine whether new ID matches configured device
3872  *	@dev: device to compare against
3873  *	@new_class: class of the new device
3874  *	@new_id: IDENTIFY page of the new device
3875  *
3876  *	Compare @new_class and @new_id against @dev and determine
3877  *	whether @dev is the device indicated by @new_class and
3878  *	@new_id.
3879  *
3880  *	LOCKING:
3881  *	None.
3882  *
3883  *	RETURNS:
3884  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3885  */
3886 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3887 			       const u16 *new_id)
3888 {
3889 	const u16 *old_id = dev->id;
3890 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3891 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3892 
3893 	if (dev->class != new_class) {
3894 		ata_dev_info(dev, "class mismatch %d != %d\n",
3895 			     dev->class, new_class);
3896 		return 0;
3897 	}
3898 
3899 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3900 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3901 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3902 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3903 
3904 	if (strcmp(model[0], model[1])) {
3905 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3906 			     model[0], model[1]);
3907 		return 0;
3908 	}
3909 
3910 	if (strcmp(serial[0], serial[1])) {
3911 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3912 			     serial[0], serial[1]);
3913 		return 0;
3914 	}
3915 
3916 	return 1;
3917 }
3918 
3919 /**
3920  *	ata_dev_reread_id - Re-read IDENTIFY data
3921  *	@dev: target ATA device
3922  *	@readid_flags: read ID flags
3923  *
3924  *	Re-read IDENTIFY page and make sure @dev is still attached to
3925  *	the port.
3926  *
3927  *	LOCKING:
3928  *	Kernel thread context (may sleep)
3929  *
3930  *	RETURNS:
3931  *	0 on success, negative errno otherwise
3932  */
3933 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3934 {
3935 	unsigned int class = dev->class;
3936 	u16 *id = (void *)dev->link->ap->sector_buf;
3937 	int rc;
3938 
3939 	/* read ID data */
3940 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3941 	if (rc)
3942 		return rc;
3943 
3944 	/* is the device still there? */
3945 	if (!ata_dev_same_device(dev, class, id))
3946 		return -ENODEV;
3947 
3948 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3949 	return 0;
3950 }
3951 
3952 /**
3953  *	ata_dev_revalidate - Revalidate ATA device
3954  *	@dev: device to revalidate
3955  *	@new_class: new class code
3956  *	@readid_flags: read ID flags
3957  *
3958  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3959  *	port and reconfigure it according to the new IDENTIFY page.
3960  *
3961  *	LOCKING:
3962  *	Kernel thread context (may sleep)
3963  *
3964  *	RETURNS:
3965  *	0 on success, negative errno otherwise
3966  */
3967 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3968 		       unsigned int readid_flags)
3969 {
3970 	u64 n_sectors = dev->n_sectors;
3971 	u64 n_native_sectors = dev->n_native_sectors;
3972 	int rc;
3973 
3974 	if (!ata_dev_enabled(dev))
3975 		return -ENODEV;
3976 
3977 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3978 	if (ata_class_enabled(new_class) &&
3979 	    new_class != ATA_DEV_ATA &&
3980 	    new_class != ATA_DEV_ATAPI &&
3981 	    new_class != ATA_DEV_SEMB) {
3982 		ata_dev_info(dev, "class mismatch %u != %u\n",
3983 			     dev->class, new_class);
3984 		rc = -ENODEV;
3985 		goto fail;
3986 	}
3987 
3988 	/* re-read ID */
3989 	rc = ata_dev_reread_id(dev, readid_flags);
3990 	if (rc)
3991 		goto fail;
3992 
3993 	/* configure device according to the new ID */
3994 	rc = ata_dev_configure(dev);
3995 	if (rc)
3996 		goto fail;
3997 
3998 	/* verify n_sectors hasn't changed */
3999 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4000 	    dev->n_sectors == n_sectors)
4001 		return 0;
4002 
4003 	/* n_sectors has changed */
4004 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4005 		     (unsigned long long)n_sectors,
4006 		     (unsigned long long)dev->n_sectors);
4007 
4008 	/*
4009 	 * Something could have caused HPA to be unlocked
4010 	 * involuntarily.  If n_native_sectors hasn't changed and the
4011 	 * new size matches it, keep the device.
4012 	 */
4013 	if (dev->n_native_sectors == n_native_sectors &&
4014 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4015 		ata_dev_warn(dev,
4016 			     "new n_sectors matches native, probably "
4017 			     "late HPA unlock, n_sectors updated\n");
4018 		/* use the larger n_sectors */
4019 		return 0;
4020 	}
4021 
4022 	/*
4023 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4024 	 * unlocking HPA in those cases.
4025 	 *
4026 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4027 	 */
4028 	if (dev->n_native_sectors == n_native_sectors &&
4029 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4030 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4031 		ata_dev_warn(dev,
4032 			     "old n_sectors matches native, probably "
4033 			     "late HPA lock, will try to unlock HPA\n");
4034 		/* try unlocking HPA */
4035 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4036 		rc = -EIO;
4037 	} else
4038 		rc = -ENODEV;
4039 
4040 	/* restore original n_[native_]sectors and fail */
4041 	dev->n_native_sectors = n_native_sectors;
4042 	dev->n_sectors = n_sectors;
4043  fail:
4044 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4045 	return rc;
4046 }
4047 
4048 struct ata_blacklist_entry {
4049 	const char *model_num;
4050 	const char *model_rev;
4051 	unsigned long horkage;
4052 };
4053 
4054 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4055 	/* Devices with DMA related problems under Linux */
4056 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4057 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4058 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4059 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4060 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4061 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4062 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4063 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4064 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4065 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4066 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4067 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4068 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4069 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4070 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4071 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4072 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4073 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4074 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4075 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4076 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4077 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4078 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4079 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4080 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4081 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4082 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4083 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4084 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4085 	/* Odd clown on sil3726/4726 PMPs */
4086 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4087 
4088 	/* Weird ATAPI devices */
4089 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4090 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4091 
4092 	/* Devices we expect to fail diagnostics */
4093 
4094 	/* Devices where NCQ should be avoided */
4095 	/* NCQ is slow */
4096 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4097 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4098 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4099 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4100 	/* NCQ is broken */
4101 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4102 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4103 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4104 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4105 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4106 
4107 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4108 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4109 						ATA_HORKAGE_FIRMWARE_WARN },
4110 
4111 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4112 						ATA_HORKAGE_FIRMWARE_WARN },
4113 
4114 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4115 						ATA_HORKAGE_FIRMWARE_WARN },
4116 
4117 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4118 						ATA_HORKAGE_FIRMWARE_WARN },
4119 
4120 	/* Blacklist entries taken from Silicon Image 3124/3132
4121 	   Windows driver .inf file - also several Linux problem reports */
4122 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4123 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4124 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4125 
4126 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4127 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4128 
4129 	/* devices which puke on READ_NATIVE_MAX */
4130 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4131 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4132 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4133 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4134 
4135 	/* this one allows HPA unlocking but fails IOs on the area */
4136 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4137 
4138 	/* Devices which report 1 sector over size HPA */
4139 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4140 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4141 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4142 
4143 	/* Devices which get the IVB wrong */
4144 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4145 	/* Maybe we should just blacklist TSSTcorp... */
4146 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4147 
4148 	/* Devices that do not need bridging limits applied */
4149 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4150 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4151 
4152 	/* Devices which aren't very happy with higher link speeds */
4153 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4154 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4155 
4156 	/*
4157 	 * Devices which choke on SETXFER.  Applies only if both the
4158 	 * device and controller are SATA.
4159 	 */
4160 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4161 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4162 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4163 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4164 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4165 
4166 	/* End Marker */
4167 	{ }
4168 };
4169 
4170 /**
4171  *	glob_match - match a text string against a glob-style pattern
4172  *	@text: the string to be examined
4173  *	@pattern: the glob-style pattern to be matched against
4174  *
4175  *	Either/both of text and pattern can be empty strings.
4176  *
4177  *	Match text against a glob-style pattern, with wildcards and simple sets:
4178  *
4179  *		?	matches any single character.
4180  *		*	matches any run of characters.
4181  *		[xyz]	matches a single character from the set: x, y, or z.
4182  *		[a-d]	matches a single character from the range: a, b, c, or d.
4183  *		[a-d0-9] matches a single character from either range.
4184  *
4185  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4186  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4187  *
4188  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4189  *
4190  *	This function uses one level of recursion per '*' in pattern.
4191  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4192  *	this will not cause stack problems for any reasonable use here.
4193  *
4194  *	RETURNS:
4195  *	0 on match, 1 otherwise.
4196  */
4197 static int glob_match (const char *text, const char *pattern)
4198 {
4199 	do {
4200 		/* Match single character or a '?' wildcard */
4201 		if (*text == *pattern || *pattern == '?') {
4202 			if (!*pattern++)
4203 				return 0;  /* End of both strings: match */
4204 		} else {
4205 			/* Match single char against a '[' bracketed ']' pattern set */
4206 			if (!*text || *pattern != '[')
4207 				break;  /* Not a pattern set */
4208 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4209 				if (*pattern == '-' && *(pattern - 1) != '[')
4210 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4211 						++pattern;
4212 						break;
4213 					}
4214 			}
4215 			if (!*pattern || *pattern == ']')
4216 				return 1;  /* No match */
4217 			while (*pattern && *pattern++ != ']');
4218 		}
4219 	} while (*++text && *pattern);
4220 
4221 	/* Match any run of chars against a '*' wildcard */
4222 	if (*pattern == '*') {
4223 		if (!*++pattern)
4224 			return 0;  /* Match: avoid recursion at end of pattern */
4225 		/* Loop to handle additional pattern chars after the wildcard */
4226 		while (*text) {
4227 			if (glob_match(text, pattern) == 0)
4228 				return 0;  /* Remainder matched */
4229 			++text;  /* Absorb (match) this char and try again */
4230 		}
4231 	}
4232 	if (!*text && !*pattern)
4233 		return 0;  /* End of both strings: match */
4234 	return 1;  /* No match */
4235 }
4236 
4237 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4238 {
4239 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4240 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4241 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4242 
4243 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4244 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4245 
4246 	while (ad->model_num) {
4247 		if (!glob_match(model_num, ad->model_num)) {
4248 			if (ad->model_rev == NULL)
4249 				return ad->horkage;
4250 			if (!glob_match(model_rev, ad->model_rev))
4251 				return ad->horkage;
4252 		}
4253 		ad++;
4254 	}
4255 	return 0;
4256 }
4257 
4258 static int ata_dma_blacklisted(const struct ata_device *dev)
4259 {
4260 	/* We don't support polling DMA.
4261 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4262 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4263 	 */
4264 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4265 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4266 		return 1;
4267 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4268 }
4269 
4270 /**
4271  *	ata_is_40wire		-	check drive side detection
4272  *	@dev: device
4273  *
4274  *	Perform drive side detection decoding, allowing for device vendors
4275  *	who can't follow the documentation.
4276  */
4277 
4278 static int ata_is_40wire(struct ata_device *dev)
4279 {
4280 	if (dev->horkage & ATA_HORKAGE_IVB)
4281 		return ata_drive_40wire_relaxed(dev->id);
4282 	return ata_drive_40wire(dev->id);
4283 }
4284 
4285 /**
4286  *	cable_is_40wire		-	40/80/SATA decider
4287  *	@ap: port to consider
4288  *
4289  *	This function encapsulates the policy for speed management
4290  *	in one place. At the moment we don't cache the result but
4291  *	there is a good case for setting ap->cbl to the result when
4292  *	we are called with unknown cables (and figuring out if it
4293  *	impacts hotplug at all).
4294  *
4295  *	Return 1 if the cable appears to be 40 wire.
4296  */
4297 
4298 static int cable_is_40wire(struct ata_port *ap)
4299 {
4300 	struct ata_link *link;
4301 	struct ata_device *dev;
4302 
4303 	/* If the controller thinks we are 40 wire, we are. */
4304 	if (ap->cbl == ATA_CBL_PATA40)
4305 		return 1;
4306 
4307 	/* If the controller thinks we are 80 wire, we are. */
4308 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4309 		return 0;
4310 
4311 	/* If the system is known to be 40 wire short cable (eg
4312 	 * laptop), then we allow 80 wire modes even if the drive
4313 	 * isn't sure.
4314 	 */
4315 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4316 		return 0;
4317 
4318 	/* If the controller doesn't know, we scan.
4319 	 *
4320 	 * Note: We look for all 40 wire detects at this point.  Any
4321 	 *       80 wire detect is taken to be 80 wire cable because
4322 	 * - in many setups only the one drive (slave if present) will
4323 	 *   give a valid detect
4324 	 * - if you have a non detect capable drive you don't want it
4325 	 *   to colour the choice
4326 	 */
4327 	ata_for_each_link(link, ap, EDGE) {
4328 		ata_for_each_dev(dev, link, ENABLED) {
4329 			if (!ata_is_40wire(dev))
4330 				return 0;
4331 		}
4332 	}
4333 	return 1;
4334 }
4335 
4336 /**
4337  *	ata_dev_xfermask - Compute supported xfermask of the given device
4338  *	@dev: Device to compute xfermask for
4339  *
4340  *	Compute supported xfermask of @dev and store it in
4341  *	dev->*_mask.  This function is responsible for applying all
4342  *	known limits including host controller limits, device
4343  *	blacklist, etc...
4344  *
4345  *	LOCKING:
4346  *	None.
4347  */
4348 static void ata_dev_xfermask(struct ata_device *dev)
4349 {
4350 	struct ata_link *link = dev->link;
4351 	struct ata_port *ap = link->ap;
4352 	struct ata_host *host = ap->host;
4353 	unsigned long xfer_mask;
4354 
4355 	/* controller modes available */
4356 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4357 				      ap->mwdma_mask, ap->udma_mask);
4358 
4359 	/* drive modes available */
4360 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4361 				       dev->mwdma_mask, dev->udma_mask);
4362 	xfer_mask &= ata_id_xfermask(dev->id);
4363 
4364 	/*
4365 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4366 	 *	cable
4367 	 */
4368 	if (ata_dev_pair(dev)) {
4369 		/* No PIO5 or PIO6 */
4370 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4371 		/* No MWDMA3 or MWDMA 4 */
4372 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4373 	}
4374 
4375 	if (ata_dma_blacklisted(dev)) {
4376 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4377 		ata_dev_warn(dev,
4378 			     "device is on DMA blacklist, disabling DMA\n");
4379 	}
4380 
4381 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4382 	    host->simplex_claimed && host->simplex_claimed != ap) {
4383 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4384 		ata_dev_warn(dev,
4385 			     "simplex DMA is claimed by other device, disabling DMA\n");
4386 	}
4387 
4388 	if (ap->flags & ATA_FLAG_NO_IORDY)
4389 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4390 
4391 	if (ap->ops->mode_filter)
4392 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4393 
4394 	/* Apply cable rule here.  Don't apply it early because when
4395 	 * we handle hot plug the cable type can itself change.
4396 	 * Check this last so that we know if the transfer rate was
4397 	 * solely limited by the cable.
4398 	 * Unknown or 80 wire cables reported host side are checked
4399 	 * drive side as well. Cases where we know a 40wire cable
4400 	 * is used safely for 80 are not checked here.
4401 	 */
4402 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4403 		/* UDMA/44 or higher would be available */
4404 		if (cable_is_40wire(ap)) {
4405 			ata_dev_warn(dev,
4406 				     "limited to UDMA/33 due to 40-wire cable\n");
4407 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4408 		}
4409 
4410 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4411 			    &dev->mwdma_mask, &dev->udma_mask);
4412 }
4413 
4414 /**
4415  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4416  *	@dev: Device to which command will be sent
4417  *
4418  *	Issue SET FEATURES - XFER MODE command to device @dev
4419  *	on port @ap.
4420  *
4421  *	LOCKING:
4422  *	PCI/etc. bus probe sem.
4423  *
4424  *	RETURNS:
4425  *	0 on success, AC_ERR_* mask otherwise.
4426  */
4427 
4428 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4429 {
4430 	struct ata_taskfile tf;
4431 	unsigned int err_mask;
4432 
4433 	/* set up set-features taskfile */
4434 	DPRINTK("set features - xfer mode\n");
4435 
4436 	/* Some controllers and ATAPI devices show flaky interrupt
4437 	 * behavior after setting xfer mode.  Use polling instead.
4438 	 */
4439 	ata_tf_init(dev, &tf);
4440 	tf.command = ATA_CMD_SET_FEATURES;
4441 	tf.feature = SETFEATURES_XFER;
4442 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4443 	tf.protocol = ATA_PROT_NODATA;
4444 	/* If we are using IORDY we must send the mode setting command */
4445 	if (ata_pio_need_iordy(dev))
4446 		tf.nsect = dev->xfer_mode;
4447 	/* If the device has IORDY and the controller does not - turn it off */
4448  	else if (ata_id_has_iordy(dev->id))
4449 		tf.nsect = 0x01;
4450 	else /* In the ancient relic department - skip all of this */
4451 		return 0;
4452 
4453 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4454 
4455 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 	return err_mask;
4457 }
4458 
4459 /**
4460  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4461  *	@dev: Device to which command will be sent
4462  *	@enable: Whether to enable or disable the feature
4463  *	@feature: The sector count represents the feature to set
4464  *
4465  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4466  *	on port @ap with sector count
4467  *
4468  *	LOCKING:
4469  *	PCI/etc. bus probe sem.
4470  *
4471  *	RETURNS:
4472  *	0 on success, AC_ERR_* mask otherwise.
4473  */
4474 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4475 {
4476 	struct ata_taskfile tf;
4477 	unsigned int err_mask;
4478 
4479 	/* set up set-features taskfile */
4480 	DPRINTK("set features - SATA features\n");
4481 
4482 	ata_tf_init(dev, &tf);
4483 	tf.command = ATA_CMD_SET_FEATURES;
4484 	tf.feature = enable;
4485 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4486 	tf.protocol = ATA_PROT_NODATA;
4487 	tf.nsect = feature;
4488 
4489 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4490 
4491 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4492 	return err_mask;
4493 }
4494 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4495 
4496 /**
4497  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4498  *	@dev: Device to which command will be sent
4499  *	@heads: Number of heads (taskfile parameter)
4500  *	@sectors: Number of sectors (taskfile parameter)
4501  *
4502  *	LOCKING:
4503  *	Kernel thread context (may sleep)
4504  *
4505  *	RETURNS:
4506  *	0 on success, AC_ERR_* mask otherwise.
4507  */
4508 static unsigned int ata_dev_init_params(struct ata_device *dev,
4509 					u16 heads, u16 sectors)
4510 {
4511 	struct ata_taskfile tf;
4512 	unsigned int err_mask;
4513 
4514 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4515 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4516 		return AC_ERR_INVALID;
4517 
4518 	/* set up init dev params taskfile */
4519 	DPRINTK("init dev params \n");
4520 
4521 	ata_tf_init(dev, &tf);
4522 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4523 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4524 	tf.protocol = ATA_PROT_NODATA;
4525 	tf.nsect = sectors;
4526 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4527 
4528 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4529 	/* A clean abort indicates an original or just out of spec drive
4530 	   and we should continue as we issue the setup based on the
4531 	   drive reported working geometry */
4532 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4533 		err_mask = 0;
4534 
4535 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4536 	return err_mask;
4537 }
4538 
4539 /**
4540  *	ata_sg_clean - Unmap DMA memory associated with command
4541  *	@qc: Command containing DMA memory to be released
4542  *
4543  *	Unmap all mapped DMA memory associated with this command.
4544  *
4545  *	LOCKING:
4546  *	spin_lock_irqsave(host lock)
4547  */
4548 void ata_sg_clean(struct ata_queued_cmd *qc)
4549 {
4550 	struct ata_port *ap = qc->ap;
4551 	struct scatterlist *sg = qc->sg;
4552 	int dir = qc->dma_dir;
4553 
4554 	WARN_ON_ONCE(sg == NULL);
4555 
4556 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4557 
4558 	if (qc->n_elem)
4559 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4560 
4561 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4562 	qc->sg = NULL;
4563 }
4564 
4565 /**
4566  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4567  *	@qc: Metadata associated with taskfile to check
4568  *
4569  *	Allow low-level driver to filter ATA PACKET commands, returning
4570  *	a status indicating whether or not it is OK to use DMA for the
4571  *	supplied PACKET command.
4572  *
4573  *	LOCKING:
4574  *	spin_lock_irqsave(host lock)
4575  *
4576  *	RETURNS: 0 when ATAPI DMA can be used
4577  *               nonzero otherwise
4578  */
4579 int atapi_check_dma(struct ata_queued_cmd *qc)
4580 {
4581 	struct ata_port *ap = qc->ap;
4582 
4583 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4584 	 * few ATAPI devices choke on such DMA requests.
4585 	 */
4586 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4587 	    unlikely(qc->nbytes & 15))
4588 		return 1;
4589 
4590 	if (ap->ops->check_atapi_dma)
4591 		return ap->ops->check_atapi_dma(qc);
4592 
4593 	return 0;
4594 }
4595 
4596 /**
4597  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4598  *	@qc: ATA command in question
4599  *
4600  *	Non-NCQ commands cannot run with any other command, NCQ or
4601  *	not.  As upper layer only knows the queue depth, we are
4602  *	responsible for maintaining exclusion.  This function checks
4603  *	whether a new command @qc can be issued.
4604  *
4605  *	LOCKING:
4606  *	spin_lock_irqsave(host lock)
4607  *
4608  *	RETURNS:
4609  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4610  */
4611 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4612 {
4613 	struct ata_link *link = qc->dev->link;
4614 
4615 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4616 		if (!ata_tag_valid(link->active_tag))
4617 			return 0;
4618 	} else {
4619 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4620 			return 0;
4621 	}
4622 
4623 	return ATA_DEFER_LINK;
4624 }
4625 
4626 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4627 
4628 /**
4629  *	ata_sg_init - Associate command with scatter-gather table.
4630  *	@qc: Command to be associated
4631  *	@sg: Scatter-gather table.
4632  *	@n_elem: Number of elements in s/g table.
4633  *
4634  *	Initialize the data-related elements of queued_cmd @qc
4635  *	to point to a scatter-gather table @sg, containing @n_elem
4636  *	elements.
4637  *
4638  *	LOCKING:
4639  *	spin_lock_irqsave(host lock)
4640  */
4641 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4642 		 unsigned int n_elem)
4643 {
4644 	qc->sg = sg;
4645 	qc->n_elem = n_elem;
4646 	qc->cursg = qc->sg;
4647 }
4648 
4649 /**
4650  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4651  *	@qc: Command with scatter-gather table to be mapped.
4652  *
4653  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4654  *
4655  *	LOCKING:
4656  *	spin_lock_irqsave(host lock)
4657  *
4658  *	RETURNS:
4659  *	Zero on success, negative on error.
4660  *
4661  */
4662 static int ata_sg_setup(struct ata_queued_cmd *qc)
4663 {
4664 	struct ata_port *ap = qc->ap;
4665 	unsigned int n_elem;
4666 
4667 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4668 
4669 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4670 	if (n_elem < 1)
4671 		return -1;
4672 
4673 	DPRINTK("%d sg elements mapped\n", n_elem);
4674 	qc->orig_n_elem = qc->n_elem;
4675 	qc->n_elem = n_elem;
4676 	qc->flags |= ATA_QCFLAG_DMAMAP;
4677 
4678 	return 0;
4679 }
4680 
4681 /**
4682  *	swap_buf_le16 - swap halves of 16-bit words in place
4683  *	@buf:  Buffer to swap
4684  *	@buf_words:  Number of 16-bit words in buffer.
4685  *
4686  *	Swap halves of 16-bit words if needed to convert from
4687  *	little-endian byte order to native cpu byte order, or
4688  *	vice-versa.
4689  *
4690  *	LOCKING:
4691  *	Inherited from caller.
4692  */
4693 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4694 {
4695 #ifdef __BIG_ENDIAN
4696 	unsigned int i;
4697 
4698 	for (i = 0; i < buf_words; i++)
4699 		buf[i] = le16_to_cpu(buf[i]);
4700 #endif /* __BIG_ENDIAN */
4701 }
4702 
4703 /**
4704  *	ata_qc_new - Request an available ATA command, for queueing
4705  *	@ap: target port
4706  *
4707  *	LOCKING:
4708  *	None.
4709  */
4710 
4711 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4712 {
4713 	struct ata_queued_cmd *qc = NULL;
4714 	unsigned int i;
4715 
4716 	/* no command while frozen */
4717 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4718 		return NULL;
4719 
4720 	/* the last tag is reserved for internal command. */
4721 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4722 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4723 			qc = __ata_qc_from_tag(ap, i);
4724 			break;
4725 		}
4726 
4727 	if (qc)
4728 		qc->tag = i;
4729 
4730 	return qc;
4731 }
4732 
4733 /**
4734  *	ata_qc_new_init - Request an available ATA command, and initialize it
4735  *	@dev: Device from whom we request an available command structure
4736  *
4737  *	LOCKING:
4738  *	None.
4739  */
4740 
4741 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4742 {
4743 	struct ata_port *ap = dev->link->ap;
4744 	struct ata_queued_cmd *qc;
4745 
4746 	qc = ata_qc_new(ap);
4747 	if (qc) {
4748 		qc->scsicmd = NULL;
4749 		qc->ap = ap;
4750 		qc->dev = dev;
4751 
4752 		ata_qc_reinit(qc);
4753 	}
4754 
4755 	return qc;
4756 }
4757 
4758 /**
4759  *	ata_qc_free - free unused ata_queued_cmd
4760  *	@qc: Command to complete
4761  *
4762  *	Designed to free unused ata_queued_cmd object
4763  *	in case something prevents using it.
4764  *
4765  *	LOCKING:
4766  *	spin_lock_irqsave(host lock)
4767  */
4768 void ata_qc_free(struct ata_queued_cmd *qc)
4769 {
4770 	struct ata_port *ap;
4771 	unsigned int tag;
4772 
4773 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4774 	ap = qc->ap;
4775 
4776 	qc->flags = 0;
4777 	tag = qc->tag;
4778 	if (likely(ata_tag_valid(tag))) {
4779 		qc->tag = ATA_TAG_POISON;
4780 		clear_bit(tag, &ap->qc_allocated);
4781 	}
4782 }
4783 
4784 void __ata_qc_complete(struct ata_queued_cmd *qc)
4785 {
4786 	struct ata_port *ap;
4787 	struct ata_link *link;
4788 
4789 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4790 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4791 	ap = qc->ap;
4792 	link = qc->dev->link;
4793 
4794 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4795 		ata_sg_clean(qc);
4796 
4797 	/* command should be marked inactive atomically with qc completion */
4798 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4799 		link->sactive &= ~(1 << qc->tag);
4800 		if (!link->sactive)
4801 			ap->nr_active_links--;
4802 	} else {
4803 		link->active_tag = ATA_TAG_POISON;
4804 		ap->nr_active_links--;
4805 	}
4806 
4807 	/* clear exclusive status */
4808 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4809 		     ap->excl_link == link))
4810 		ap->excl_link = NULL;
4811 
4812 	/* atapi: mark qc as inactive to prevent the interrupt handler
4813 	 * from completing the command twice later, before the error handler
4814 	 * is called. (when rc != 0 and atapi request sense is needed)
4815 	 */
4816 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4817 	ap->qc_active &= ~(1 << qc->tag);
4818 
4819 	/* call completion callback */
4820 	qc->complete_fn(qc);
4821 }
4822 
4823 static void fill_result_tf(struct ata_queued_cmd *qc)
4824 {
4825 	struct ata_port *ap = qc->ap;
4826 
4827 	qc->result_tf.flags = qc->tf.flags;
4828 	ap->ops->qc_fill_rtf(qc);
4829 }
4830 
4831 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4832 {
4833 	struct ata_device *dev = qc->dev;
4834 
4835 	if (ata_is_nodata(qc->tf.protocol))
4836 		return;
4837 
4838 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 		return;
4840 
4841 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4842 }
4843 
4844 /**
4845  *	ata_qc_complete - Complete an active ATA command
4846  *	@qc: Command to complete
4847  *
4848  *	Indicate to the mid and upper layers that an ATA command has
4849  *	completed, with either an ok or not-ok status.
4850  *
4851  *	Refrain from calling this function multiple times when
4852  *	successfully completing multiple NCQ commands.
4853  *	ata_qc_complete_multiple() should be used instead, which will
4854  *	properly update IRQ expect state.
4855  *
4856  *	LOCKING:
4857  *	spin_lock_irqsave(host lock)
4858  */
4859 void ata_qc_complete(struct ata_queued_cmd *qc)
4860 {
4861 	struct ata_port *ap = qc->ap;
4862 
4863 	/* XXX: New EH and old EH use different mechanisms to
4864 	 * synchronize EH with regular execution path.
4865 	 *
4866 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4867 	 * Normal execution path is responsible for not accessing a
4868 	 * failed qc.  libata core enforces the rule by returning NULL
4869 	 * from ata_qc_from_tag() for failed qcs.
4870 	 *
4871 	 * Old EH depends on ata_qc_complete() nullifying completion
4872 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4873 	 * not synchronize with interrupt handler.  Only PIO task is
4874 	 * taken care of.
4875 	 */
4876 	if (ap->ops->error_handler) {
4877 		struct ata_device *dev = qc->dev;
4878 		struct ata_eh_info *ehi = &dev->link->eh_info;
4879 
4880 		if (unlikely(qc->err_mask))
4881 			qc->flags |= ATA_QCFLAG_FAILED;
4882 
4883 		/*
4884 		 * Finish internal commands without any further processing
4885 		 * and always with the result TF filled.
4886 		 */
4887 		if (unlikely(ata_tag_internal(qc->tag))) {
4888 			fill_result_tf(qc);
4889 			__ata_qc_complete(qc);
4890 			return;
4891 		}
4892 
4893 		/*
4894 		 * Non-internal qc has failed.  Fill the result TF and
4895 		 * summon EH.
4896 		 */
4897 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4898 			fill_result_tf(qc);
4899 			ata_qc_schedule_eh(qc);
4900 			return;
4901 		}
4902 
4903 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4904 
4905 		/* read result TF if requested */
4906 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4907 			fill_result_tf(qc);
4908 
4909 		/* Some commands need post-processing after successful
4910 		 * completion.
4911 		 */
4912 		switch (qc->tf.command) {
4913 		case ATA_CMD_SET_FEATURES:
4914 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4915 			    qc->tf.feature != SETFEATURES_WC_OFF)
4916 				break;
4917 			/* fall through */
4918 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4919 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4920 			/* revalidate device */
4921 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4922 			ata_port_schedule_eh(ap);
4923 			break;
4924 
4925 		case ATA_CMD_SLEEP:
4926 			dev->flags |= ATA_DFLAG_SLEEPING;
4927 			break;
4928 		}
4929 
4930 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4931 			ata_verify_xfer(qc);
4932 
4933 		__ata_qc_complete(qc);
4934 	} else {
4935 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4936 			return;
4937 
4938 		/* read result TF if failed or requested */
4939 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4940 			fill_result_tf(qc);
4941 
4942 		__ata_qc_complete(qc);
4943 	}
4944 }
4945 
4946 /**
4947  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4948  *	@ap: port in question
4949  *	@qc_active: new qc_active mask
4950  *
4951  *	Complete in-flight commands.  This functions is meant to be
4952  *	called from low-level driver's interrupt routine to complete
4953  *	requests normally.  ap->qc_active and @qc_active is compared
4954  *	and commands are completed accordingly.
4955  *
4956  *	Always use this function when completing multiple NCQ commands
4957  *	from IRQ handlers instead of calling ata_qc_complete()
4958  *	multiple times to keep IRQ expect status properly in sync.
4959  *
4960  *	LOCKING:
4961  *	spin_lock_irqsave(host lock)
4962  *
4963  *	RETURNS:
4964  *	Number of completed commands on success, -errno otherwise.
4965  */
4966 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4967 {
4968 	int nr_done = 0;
4969 	u32 done_mask;
4970 
4971 	done_mask = ap->qc_active ^ qc_active;
4972 
4973 	if (unlikely(done_mask & qc_active)) {
4974 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4975 			     ap->qc_active, qc_active);
4976 		return -EINVAL;
4977 	}
4978 
4979 	while (done_mask) {
4980 		struct ata_queued_cmd *qc;
4981 		unsigned int tag = __ffs(done_mask);
4982 
4983 		qc = ata_qc_from_tag(ap, tag);
4984 		if (qc) {
4985 			ata_qc_complete(qc);
4986 			nr_done++;
4987 		}
4988 		done_mask &= ~(1 << tag);
4989 	}
4990 
4991 	return nr_done;
4992 }
4993 
4994 /**
4995  *	ata_qc_issue - issue taskfile to device
4996  *	@qc: command to issue to device
4997  *
4998  *	Prepare an ATA command to submission to device.
4999  *	This includes mapping the data into a DMA-able
5000  *	area, filling in the S/G table, and finally
5001  *	writing the taskfile to hardware, starting the command.
5002  *
5003  *	LOCKING:
5004  *	spin_lock_irqsave(host lock)
5005  */
5006 void ata_qc_issue(struct ata_queued_cmd *qc)
5007 {
5008 	struct ata_port *ap = qc->ap;
5009 	struct ata_link *link = qc->dev->link;
5010 	u8 prot = qc->tf.protocol;
5011 
5012 	/* Make sure only one non-NCQ command is outstanding.  The
5013 	 * check is skipped for old EH because it reuses active qc to
5014 	 * request ATAPI sense.
5015 	 */
5016 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5017 
5018 	if (ata_is_ncq(prot)) {
5019 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5020 
5021 		if (!link->sactive)
5022 			ap->nr_active_links++;
5023 		link->sactive |= 1 << qc->tag;
5024 	} else {
5025 		WARN_ON_ONCE(link->sactive);
5026 
5027 		ap->nr_active_links++;
5028 		link->active_tag = qc->tag;
5029 	}
5030 
5031 	qc->flags |= ATA_QCFLAG_ACTIVE;
5032 	ap->qc_active |= 1 << qc->tag;
5033 
5034 	/*
5035 	 * We guarantee to LLDs that they will have at least one
5036 	 * non-zero sg if the command is a data command.
5037 	 */
5038 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5039 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5040 		goto sys_err;
5041 
5042 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5043 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5044 		if (ata_sg_setup(qc))
5045 			goto sys_err;
5046 
5047 	/* if device is sleeping, schedule reset and abort the link */
5048 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5049 		link->eh_info.action |= ATA_EH_RESET;
5050 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5051 		ata_link_abort(link);
5052 		return;
5053 	}
5054 
5055 	ap->ops->qc_prep(qc);
5056 
5057 	qc->err_mask |= ap->ops->qc_issue(qc);
5058 	if (unlikely(qc->err_mask))
5059 		goto err;
5060 	return;
5061 
5062 sys_err:
5063 	qc->err_mask |= AC_ERR_SYSTEM;
5064 err:
5065 	ata_qc_complete(qc);
5066 }
5067 
5068 /**
5069  *	sata_scr_valid - test whether SCRs are accessible
5070  *	@link: ATA link to test SCR accessibility for
5071  *
5072  *	Test whether SCRs are accessible for @link.
5073  *
5074  *	LOCKING:
5075  *	None.
5076  *
5077  *	RETURNS:
5078  *	1 if SCRs are accessible, 0 otherwise.
5079  */
5080 int sata_scr_valid(struct ata_link *link)
5081 {
5082 	struct ata_port *ap = link->ap;
5083 
5084 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5085 }
5086 
5087 /**
5088  *	sata_scr_read - read SCR register of the specified port
5089  *	@link: ATA link to read SCR for
5090  *	@reg: SCR to read
5091  *	@val: Place to store read value
5092  *
5093  *	Read SCR register @reg of @link into *@val.  This function is
5094  *	guaranteed to succeed if @link is ap->link, the cable type of
5095  *	the port is SATA and the port implements ->scr_read.
5096  *
5097  *	LOCKING:
5098  *	None if @link is ap->link.  Kernel thread context otherwise.
5099  *
5100  *	RETURNS:
5101  *	0 on success, negative errno on failure.
5102  */
5103 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5104 {
5105 	if (ata_is_host_link(link)) {
5106 		if (sata_scr_valid(link))
5107 			return link->ap->ops->scr_read(link, reg, val);
5108 		return -EOPNOTSUPP;
5109 	}
5110 
5111 	return sata_pmp_scr_read(link, reg, val);
5112 }
5113 
5114 /**
5115  *	sata_scr_write - write SCR register of the specified port
5116  *	@link: ATA link to write SCR for
5117  *	@reg: SCR to write
5118  *	@val: value to write
5119  *
5120  *	Write @val to SCR register @reg of @link.  This function is
5121  *	guaranteed to succeed if @link is ap->link, the cable type of
5122  *	the port is SATA and the port implements ->scr_read.
5123  *
5124  *	LOCKING:
5125  *	None if @link is ap->link.  Kernel thread context otherwise.
5126  *
5127  *	RETURNS:
5128  *	0 on success, negative errno on failure.
5129  */
5130 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5131 {
5132 	if (ata_is_host_link(link)) {
5133 		if (sata_scr_valid(link))
5134 			return link->ap->ops->scr_write(link, reg, val);
5135 		return -EOPNOTSUPP;
5136 	}
5137 
5138 	return sata_pmp_scr_write(link, reg, val);
5139 }
5140 
5141 /**
5142  *	sata_scr_write_flush - write SCR register of the specified port and flush
5143  *	@link: ATA link to write SCR for
5144  *	@reg: SCR to write
5145  *	@val: value to write
5146  *
5147  *	This function is identical to sata_scr_write() except that this
5148  *	function performs flush after writing to the register.
5149  *
5150  *	LOCKING:
5151  *	None if @link is ap->link.  Kernel thread context otherwise.
5152  *
5153  *	RETURNS:
5154  *	0 on success, negative errno on failure.
5155  */
5156 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5157 {
5158 	if (ata_is_host_link(link)) {
5159 		int rc;
5160 
5161 		if (sata_scr_valid(link)) {
5162 			rc = link->ap->ops->scr_write(link, reg, val);
5163 			if (rc == 0)
5164 				rc = link->ap->ops->scr_read(link, reg, &val);
5165 			return rc;
5166 		}
5167 		return -EOPNOTSUPP;
5168 	}
5169 
5170 	return sata_pmp_scr_write(link, reg, val);
5171 }
5172 
5173 /**
5174  *	ata_phys_link_online - test whether the given link is online
5175  *	@link: ATA link to test
5176  *
5177  *	Test whether @link is online.  Note that this function returns
5178  *	0 if online status of @link cannot be obtained, so
5179  *	ata_link_online(link) != !ata_link_offline(link).
5180  *
5181  *	LOCKING:
5182  *	None.
5183  *
5184  *	RETURNS:
5185  *	True if the port online status is available and online.
5186  */
5187 bool ata_phys_link_online(struct ata_link *link)
5188 {
5189 	u32 sstatus;
5190 
5191 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5192 	    ata_sstatus_online(sstatus))
5193 		return true;
5194 	return false;
5195 }
5196 
5197 /**
5198  *	ata_phys_link_offline - test whether the given link is offline
5199  *	@link: ATA link to test
5200  *
5201  *	Test whether @link is offline.  Note that this function
5202  *	returns 0 if offline status of @link cannot be obtained, so
5203  *	ata_link_online(link) != !ata_link_offline(link).
5204  *
5205  *	LOCKING:
5206  *	None.
5207  *
5208  *	RETURNS:
5209  *	True if the port offline status is available and offline.
5210  */
5211 bool ata_phys_link_offline(struct ata_link *link)
5212 {
5213 	u32 sstatus;
5214 
5215 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5216 	    !ata_sstatus_online(sstatus))
5217 		return true;
5218 	return false;
5219 }
5220 
5221 /**
5222  *	ata_link_online - test whether the given link is online
5223  *	@link: ATA link to test
5224  *
5225  *	Test whether @link is online.  This is identical to
5226  *	ata_phys_link_online() when there's no slave link.  When
5227  *	there's a slave link, this function should only be called on
5228  *	the master link and will return true if any of M/S links is
5229  *	online.
5230  *
5231  *	LOCKING:
5232  *	None.
5233  *
5234  *	RETURNS:
5235  *	True if the port online status is available and online.
5236  */
5237 bool ata_link_online(struct ata_link *link)
5238 {
5239 	struct ata_link *slave = link->ap->slave_link;
5240 
5241 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5242 
5243 	return ata_phys_link_online(link) ||
5244 		(slave && ata_phys_link_online(slave));
5245 }
5246 
5247 /**
5248  *	ata_link_offline - test whether the given link is offline
5249  *	@link: ATA link to test
5250  *
5251  *	Test whether @link is offline.  This is identical to
5252  *	ata_phys_link_offline() when there's no slave link.  When
5253  *	there's a slave link, this function should only be called on
5254  *	the master link and will return true if both M/S links are
5255  *	offline.
5256  *
5257  *	LOCKING:
5258  *	None.
5259  *
5260  *	RETURNS:
5261  *	True if the port offline status is available and offline.
5262  */
5263 bool ata_link_offline(struct ata_link *link)
5264 {
5265 	struct ata_link *slave = link->ap->slave_link;
5266 
5267 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5268 
5269 	return ata_phys_link_offline(link) &&
5270 		(!slave || ata_phys_link_offline(slave));
5271 }
5272 
5273 #ifdef CONFIG_PM
5274 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5275 			       unsigned int action, unsigned int ehi_flags,
5276 			       int *async)
5277 {
5278 	struct ata_link *link;
5279 	unsigned long flags;
5280 	int rc = 0;
5281 
5282 	/* Previous resume operation might still be in
5283 	 * progress.  Wait for PM_PENDING to clear.
5284 	 */
5285 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5286 		if (async) {
5287 			*async = -EAGAIN;
5288 			return 0;
5289 		}
5290 		ata_port_wait_eh(ap);
5291 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5292 	}
5293 
5294 	/* request PM ops to EH */
5295 	spin_lock_irqsave(ap->lock, flags);
5296 
5297 	ap->pm_mesg = mesg;
5298 	if (async)
5299 		ap->pm_result = async;
5300 	else
5301 		ap->pm_result = &rc;
5302 
5303 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5304 	ata_for_each_link(link, ap, HOST_FIRST) {
5305 		link->eh_info.action |= action;
5306 		link->eh_info.flags |= ehi_flags;
5307 	}
5308 
5309 	ata_port_schedule_eh(ap);
5310 
5311 	spin_unlock_irqrestore(ap->lock, flags);
5312 
5313 	/* wait and check result */
5314 	if (!async) {
5315 		ata_port_wait_eh(ap);
5316 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5317 	}
5318 
5319 	return rc;
5320 }
5321 
5322 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5323 {
5324 	unsigned int ehi_flags = ATA_EHI_QUIET;
5325 	int rc;
5326 
5327 	/*
5328 	 * On some hardware, device fails to respond after spun down
5329 	 * for suspend.  As the device won't be used before being
5330 	 * resumed, we don't need to touch the device.  Ask EH to skip
5331 	 * the usual stuff and proceed directly to suspend.
5332 	 *
5333 	 * http://thread.gmane.org/gmane.linux.ide/46764
5334 	 */
5335 	if (mesg.event == PM_EVENT_SUSPEND)
5336 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5337 
5338 	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5339 	return rc;
5340 }
5341 
5342 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5343 {
5344 	struct ata_port *ap = to_ata_port(dev);
5345 
5346 	return __ata_port_suspend_common(ap, mesg, NULL);
5347 }
5348 
5349 static int ata_port_suspend(struct device *dev)
5350 {
5351 	if (pm_runtime_suspended(dev))
5352 		return 0;
5353 
5354 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5355 }
5356 
5357 static int ata_port_do_freeze(struct device *dev)
5358 {
5359 	if (pm_runtime_suspended(dev))
5360 		pm_runtime_resume(dev);
5361 
5362 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5363 }
5364 
5365 static int ata_port_poweroff(struct device *dev)
5366 {
5367 	if (pm_runtime_suspended(dev))
5368 		return 0;
5369 
5370 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5371 }
5372 
5373 static int __ata_port_resume_common(struct ata_port *ap, int *async)
5374 {
5375 	int rc;
5376 
5377 	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5378 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5379 	return rc;
5380 }
5381 
5382 static int ata_port_resume_common(struct device *dev)
5383 {
5384 	struct ata_port *ap = to_ata_port(dev);
5385 
5386 	return __ata_port_resume_common(ap, NULL);
5387 }
5388 
5389 static int ata_port_resume(struct device *dev)
5390 {
5391 	int rc;
5392 
5393 	rc = ata_port_resume_common(dev);
5394 	if (!rc) {
5395 		pm_runtime_disable(dev);
5396 		pm_runtime_set_active(dev);
5397 		pm_runtime_enable(dev);
5398 	}
5399 
5400 	return rc;
5401 }
5402 
5403 static int ata_port_runtime_idle(struct device *dev)
5404 {
5405 	return pm_runtime_suspend(dev);
5406 }
5407 
5408 static const struct dev_pm_ops ata_port_pm_ops = {
5409 	.suspend = ata_port_suspend,
5410 	.resume = ata_port_resume,
5411 	.freeze = ata_port_do_freeze,
5412 	.thaw = ata_port_resume,
5413 	.poweroff = ata_port_poweroff,
5414 	.restore = ata_port_resume,
5415 
5416 	.runtime_suspend = ata_port_suspend,
5417 	.runtime_resume = ata_port_resume_common,
5418 	.runtime_idle = ata_port_runtime_idle,
5419 };
5420 
5421 /* sas ports don't participate in pm runtime management of ata_ports,
5422  * and need to resume ata devices at the domain level, not the per-port
5423  * level. sas suspend/resume is async to allow parallel port recovery
5424  * since sas has multiple ata_port instances per Scsi_Host.
5425  */
5426 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5427 {
5428 	return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5429 }
5430 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5431 
5432 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5433 {
5434 	return __ata_port_resume_common(ap, async);
5435 }
5436 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5437 
5438 
5439 /**
5440  *	ata_host_suspend - suspend host
5441  *	@host: host to suspend
5442  *	@mesg: PM message
5443  *
5444  *	Suspend @host.  Actual operation is performed by port suspend.
5445  */
5446 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5447 {
5448 	host->dev->power.power_state = mesg;
5449 	return 0;
5450 }
5451 
5452 /**
5453  *	ata_host_resume - resume host
5454  *	@host: host to resume
5455  *
5456  *	Resume @host.  Actual operation is performed by port resume.
5457  */
5458 void ata_host_resume(struct ata_host *host)
5459 {
5460 	host->dev->power.power_state = PMSG_ON;
5461 }
5462 #endif
5463 
5464 struct device_type ata_port_type = {
5465 	.name = "ata_port",
5466 #ifdef CONFIG_PM
5467 	.pm = &ata_port_pm_ops,
5468 #endif
5469 };
5470 
5471 /**
5472  *	ata_dev_init - Initialize an ata_device structure
5473  *	@dev: Device structure to initialize
5474  *
5475  *	Initialize @dev in preparation for probing.
5476  *
5477  *	LOCKING:
5478  *	Inherited from caller.
5479  */
5480 void ata_dev_init(struct ata_device *dev)
5481 {
5482 	struct ata_link *link = ata_dev_phys_link(dev);
5483 	struct ata_port *ap = link->ap;
5484 	unsigned long flags;
5485 
5486 	/* SATA spd limit is bound to the attached device, reset together */
5487 	link->sata_spd_limit = link->hw_sata_spd_limit;
5488 	link->sata_spd = 0;
5489 
5490 	/* High bits of dev->flags are used to record warm plug
5491 	 * requests which occur asynchronously.  Synchronize using
5492 	 * host lock.
5493 	 */
5494 	spin_lock_irqsave(ap->lock, flags);
5495 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5496 	dev->horkage = 0;
5497 	spin_unlock_irqrestore(ap->lock, flags);
5498 
5499 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5500 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5501 	dev->pio_mask = UINT_MAX;
5502 	dev->mwdma_mask = UINT_MAX;
5503 	dev->udma_mask = UINT_MAX;
5504 }
5505 
5506 /**
5507  *	ata_link_init - Initialize an ata_link structure
5508  *	@ap: ATA port link is attached to
5509  *	@link: Link structure to initialize
5510  *	@pmp: Port multiplier port number
5511  *
5512  *	Initialize @link.
5513  *
5514  *	LOCKING:
5515  *	Kernel thread context (may sleep)
5516  */
5517 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5518 {
5519 	int i;
5520 
5521 	/* clear everything except for devices */
5522 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5523 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5524 
5525 	link->ap = ap;
5526 	link->pmp = pmp;
5527 	link->active_tag = ATA_TAG_POISON;
5528 	link->hw_sata_spd_limit = UINT_MAX;
5529 
5530 	/* can't use iterator, ap isn't initialized yet */
5531 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5532 		struct ata_device *dev = &link->device[i];
5533 
5534 		dev->link = link;
5535 		dev->devno = dev - link->device;
5536 #ifdef CONFIG_ATA_ACPI
5537 		dev->gtf_filter = ata_acpi_gtf_filter;
5538 #endif
5539 		ata_dev_init(dev);
5540 	}
5541 }
5542 
5543 /**
5544  *	sata_link_init_spd - Initialize link->sata_spd_limit
5545  *	@link: Link to configure sata_spd_limit for
5546  *
5547  *	Initialize @link->[hw_]sata_spd_limit to the currently
5548  *	configured value.
5549  *
5550  *	LOCKING:
5551  *	Kernel thread context (may sleep).
5552  *
5553  *	RETURNS:
5554  *	0 on success, -errno on failure.
5555  */
5556 int sata_link_init_spd(struct ata_link *link)
5557 {
5558 	u8 spd;
5559 	int rc;
5560 
5561 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5562 	if (rc)
5563 		return rc;
5564 
5565 	spd = (link->saved_scontrol >> 4) & 0xf;
5566 	if (spd)
5567 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5568 
5569 	ata_force_link_limits(link);
5570 
5571 	link->sata_spd_limit = link->hw_sata_spd_limit;
5572 
5573 	return 0;
5574 }
5575 
5576 /**
5577  *	ata_port_alloc - allocate and initialize basic ATA port resources
5578  *	@host: ATA host this allocated port belongs to
5579  *
5580  *	Allocate and initialize basic ATA port resources.
5581  *
5582  *	RETURNS:
5583  *	Allocate ATA port on success, NULL on failure.
5584  *
5585  *	LOCKING:
5586  *	Inherited from calling layer (may sleep).
5587  */
5588 struct ata_port *ata_port_alloc(struct ata_host *host)
5589 {
5590 	struct ata_port *ap;
5591 
5592 	DPRINTK("ENTER\n");
5593 
5594 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5595 	if (!ap)
5596 		return NULL;
5597 
5598 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5599 	ap->lock = &host->lock;
5600 	ap->print_id = -1;
5601 	ap->host = host;
5602 	ap->dev = host->dev;
5603 
5604 #if defined(ATA_VERBOSE_DEBUG)
5605 	/* turn on all debugging levels */
5606 	ap->msg_enable = 0x00FF;
5607 #elif defined(ATA_DEBUG)
5608 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5609 #else
5610 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5611 #endif
5612 
5613 	mutex_init(&ap->scsi_scan_mutex);
5614 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5615 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5616 	INIT_LIST_HEAD(&ap->eh_done_q);
5617 	init_waitqueue_head(&ap->eh_wait_q);
5618 	init_completion(&ap->park_req_pending);
5619 	init_timer_deferrable(&ap->fastdrain_timer);
5620 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5621 	ap->fastdrain_timer.data = (unsigned long)ap;
5622 
5623 	ap->cbl = ATA_CBL_NONE;
5624 
5625 	ata_link_init(ap, &ap->link, 0);
5626 
5627 #ifdef ATA_IRQ_TRAP
5628 	ap->stats.unhandled_irq = 1;
5629 	ap->stats.idle_irq = 1;
5630 #endif
5631 	ata_sff_port_init(ap);
5632 
5633 	return ap;
5634 }
5635 
5636 static void ata_host_release(struct device *gendev, void *res)
5637 {
5638 	struct ata_host *host = dev_get_drvdata(gendev);
5639 	int i;
5640 
5641 	for (i = 0; i < host->n_ports; i++) {
5642 		struct ata_port *ap = host->ports[i];
5643 
5644 		if (!ap)
5645 			continue;
5646 
5647 		if (ap->scsi_host)
5648 			scsi_host_put(ap->scsi_host);
5649 
5650 		kfree(ap->pmp_link);
5651 		kfree(ap->slave_link);
5652 		kfree(ap);
5653 		host->ports[i] = NULL;
5654 	}
5655 
5656 	dev_set_drvdata(gendev, NULL);
5657 }
5658 
5659 /**
5660  *	ata_host_alloc - allocate and init basic ATA host resources
5661  *	@dev: generic device this host is associated with
5662  *	@max_ports: maximum number of ATA ports associated with this host
5663  *
5664  *	Allocate and initialize basic ATA host resources.  LLD calls
5665  *	this function to allocate a host, initializes it fully and
5666  *	attaches it using ata_host_register().
5667  *
5668  *	@max_ports ports are allocated and host->n_ports is
5669  *	initialized to @max_ports.  The caller is allowed to decrease
5670  *	host->n_ports before calling ata_host_register().  The unused
5671  *	ports will be automatically freed on registration.
5672  *
5673  *	RETURNS:
5674  *	Allocate ATA host on success, NULL on failure.
5675  *
5676  *	LOCKING:
5677  *	Inherited from calling layer (may sleep).
5678  */
5679 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5680 {
5681 	struct ata_host *host;
5682 	size_t sz;
5683 	int i;
5684 
5685 	DPRINTK("ENTER\n");
5686 
5687 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5688 		return NULL;
5689 
5690 	/* alloc a container for our list of ATA ports (buses) */
5691 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5692 	/* alloc a container for our list of ATA ports (buses) */
5693 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5694 	if (!host)
5695 		goto err_out;
5696 
5697 	devres_add(dev, host);
5698 	dev_set_drvdata(dev, host);
5699 
5700 	spin_lock_init(&host->lock);
5701 	mutex_init(&host->eh_mutex);
5702 	host->dev = dev;
5703 	host->n_ports = max_ports;
5704 
5705 	/* allocate ports bound to this host */
5706 	for (i = 0; i < max_ports; i++) {
5707 		struct ata_port *ap;
5708 
5709 		ap = ata_port_alloc(host);
5710 		if (!ap)
5711 			goto err_out;
5712 
5713 		ap->port_no = i;
5714 		host->ports[i] = ap;
5715 	}
5716 
5717 	devres_remove_group(dev, NULL);
5718 	return host;
5719 
5720  err_out:
5721 	devres_release_group(dev, NULL);
5722 	return NULL;
5723 }
5724 
5725 /**
5726  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5727  *	@dev: generic device this host is associated with
5728  *	@ppi: array of ATA port_info to initialize host with
5729  *	@n_ports: number of ATA ports attached to this host
5730  *
5731  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5732  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5733  *	last entry will be used for the remaining ports.
5734  *
5735  *	RETURNS:
5736  *	Allocate ATA host on success, NULL on failure.
5737  *
5738  *	LOCKING:
5739  *	Inherited from calling layer (may sleep).
5740  */
5741 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5742 				      const struct ata_port_info * const * ppi,
5743 				      int n_ports)
5744 {
5745 	const struct ata_port_info *pi;
5746 	struct ata_host *host;
5747 	int i, j;
5748 
5749 	host = ata_host_alloc(dev, n_ports);
5750 	if (!host)
5751 		return NULL;
5752 
5753 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5754 		struct ata_port *ap = host->ports[i];
5755 
5756 		if (ppi[j])
5757 			pi = ppi[j++];
5758 
5759 		ap->pio_mask = pi->pio_mask;
5760 		ap->mwdma_mask = pi->mwdma_mask;
5761 		ap->udma_mask = pi->udma_mask;
5762 		ap->flags |= pi->flags;
5763 		ap->link.flags |= pi->link_flags;
5764 		ap->ops = pi->port_ops;
5765 
5766 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5767 			host->ops = pi->port_ops;
5768 	}
5769 
5770 	return host;
5771 }
5772 
5773 /**
5774  *	ata_slave_link_init - initialize slave link
5775  *	@ap: port to initialize slave link for
5776  *
5777  *	Create and initialize slave link for @ap.  This enables slave
5778  *	link handling on the port.
5779  *
5780  *	In libata, a port contains links and a link contains devices.
5781  *	There is single host link but if a PMP is attached to it,
5782  *	there can be multiple fan-out links.  On SATA, there's usually
5783  *	a single device connected to a link but PATA and SATA
5784  *	controllers emulating TF based interface can have two - master
5785  *	and slave.
5786  *
5787  *	However, there are a few controllers which don't fit into this
5788  *	abstraction too well - SATA controllers which emulate TF
5789  *	interface with both master and slave devices but also have
5790  *	separate SCR register sets for each device.  These controllers
5791  *	need separate links for physical link handling
5792  *	(e.g. onlineness, link speed) but should be treated like a
5793  *	traditional M/S controller for everything else (e.g. command
5794  *	issue, softreset).
5795  *
5796  *	slave_link is libata's way of handling this class of
5797  *	controllers without impacting core layer too much.  For
5798  *	anything other than physical link handling, the default host
5799  *	link is used for both master and slave.  For physical link
5800  *	handling, separate @ap->slave_link is used.  All dirty details
5801  *	are implemented inside libata core layer.  From LLD's POV, the
5802  *	only difference is that prereset, hardreset and postreset are
5803  *	called once more for the slave link, so the reset sequence
5804  *	looks like the following.
5805  *
5806  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5807  *	softreset(M) -> postreset(M) -> postreset(S)
5808  *
5809  *	Note that softreset is called only for the master.  Softreset
5810  *	resets both M/S by definition, so SRST on master should handle
5811  *	both (the standard method will work just fine).
5812  *
5813  *	LOCKING:
5814  *	Should be called before host is registered.
5815  *
5816  *	RETURNS:
5817  *	0 on success, -errno on failure.
5818  */
5819 int ata_slave_link_init(struct ata_port *ap)
5820 {
5821 	struct ata_link *link;
5822 
5823 	WARN_ON(ap->slave_link);
5824 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5825 
5826 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5827 	if (!link)
5828 		return -ENOMEM;
5829 
5830 	ata_link_init(ap, link, 1);
5831 	ap->slave_link = link;
5832 	return 0;
5833 }
5834 
5835 static void ata_host_stop(struct device *gendev, void *res)
5836 {
5837 	struct ata_host *host = dev_get_drvdata(gendev);
5838 	int i;
5839 
5840 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5841 
5842 	for (i = 0; i < host->n_ports; i++) {
5843 		struct ata_port *ap = host->ports[i];
5844 
5845 		if (ap->ops->port_stop)
5846 			ap->ops->port_stop(ap);
5847 	}
5848 
5849 	if (host->ops->host_stop)
5850 		host->ops->host_stop(host);
5851 }
5852 
5853 /**
5854  *	ata_finalize_port_ops - finalize ata_port_operations
5855  *	@ops: ata_port_operations to finalize
5856  *
5857  *	An ata_port_operations can inherit from another ops and that
5858  *	ops can again inherit from another.  This can go on as many
5859  *	times as necessary as long as there is no loop in the
5860  *	inheritance chain.
5861  *
5862  *	Ops tables are finalized when the host is started.  NULL or
5863  *	unspecified entries are inherited from the closet ancestor
5864  *	which has the method and the entry is populated with it.
5865  *	After finalization, the ops table directly points to all the
5866  *	methods and ->inherits is no longer necessary and cleared.
5867  *
5868  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5869  *
5870  *	LOCKING:
5871  *	None.
5872  */
5873 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5874 {
5875 	static DEFINE_SPINLOCK(lock);
5876 	const struct ata_port_operations *cur;
5877 	void **begin = (void **)ops;
5878 	void **end = (void **)&ops->inherits;
5879 	void **pp;
5880 
5881 	if (!ops || !ops->inherits)
5882 		return;
5883 
5884 	spin_lock(&lock);
5885 
5886 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5887 		void **inherit = (void **)cur;
5888 
5889 		for (pp = begin; pp < end; pp++, inherit++)
5890 			if (!*pp)
5891 				*pp = *inherit;
5892 	}
5893 
5894 	for (pp = begin; pp < end; pp++)
5895 		if (IS_ERR(*pp))
5896 			*pp = NULL;
5897 
5898 	ops->inherits = NULL;
5899 
5900 	spin_unlock(&lock);
5901 }
5902 
5903 /**
5904  *	ata_host_start - start and freeze ports of an ATA host
5905  *	@host: ATA host to start ports for
5906  *
5907  *	Start and then freeze ports of @host.  Started status is
5908  *	recorded in host->flags, so this function can be called
5909  *	multiple times.  Ports are guaranteed to get started only
5910  *	once.  If host->ops isn't initialized yet, its set to the
5911  *	first non-dummy port ops.
5912  *
5913  *	LOCKING:
5914  *	Inherited from calling layer (may sleep).
5915  *
5916  *	RETURNS:
5917  *	0 if all ports are started successfully, -errno otherwise.
5918  */
5919 int ata_host_start(struct ata_host *host)
5920 {
5921 	int have_stop = 0;
5922 	void *start_dr = NULL;
5923 	int i, rc;
5924 
5925 	if (host->flags & ATA_HOST_STARTED)
5926 		return 0;
5927 
5928 	ata_finalize_port_ops(host->ops);
5929 
5930 	for (i = 0; i < host->n_ports; i++) {
5931 		struct ata_port *ap = host->ports[i];
5932 
5933 		ata_finalize_port_ops(ap->ops);
5934 
5935 		if (!host->ops && !ata_port_is_dummy(ap))
5936 			host->ops = ap->ops;
5937 
5938 		if (ap->ops->port_stop)
5939 			have_stop = 1;
5940 	}
5941 
5942 	if (host->ops->host_stop)
5943 		have_stop = 1;
5944 
5945 	if (have_stop) {
5946 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5947 		if (!start_dr)
5948 			return -ENOMEM;
5949 	}
5950 
5951 	for (i = 0; i < host->n_ports; i++) {
5952 		struct ata_port *ap = host->ports[i];
5953 
5954 		if (ap->ops->port_start) {
5955 			rc = ap->ops->port_start(ap);
5956 			if (rc) {
5957 				if (rc != -ENODEV)
5958 					dev_err(host->dev,
5959 						"failed to start port %d (errno=%d)\n",
5960 						i, rc);
5961 				goto err_out;
5962 			}
5963 		}
5964 		ata_eh_freeze_port(ap);
5965 	}
5966 
5967 	if (start_dr)
5968 		devres_add(host->dev, start_dr);
5969 	host->flags |= ATA_HOST_STARTED;
5970 	return 0;
5971 
5972  err_out:
5973 	while (--i >= 0) {
5974 		struct ata_port *ap = host->ports[i];
5975 
5976 		if (ap->ops->port_stop)
5977 			ap->ops->port_stop(ap);
5978 	}
5979 	devres_free(start_dr);
5980 	return rc;
5981 }
5982 
5983 /**
5984  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5985  *	@host:	host to initialize
5986  *	@dev:	device host is attached to
5987  *	@ops:	port_ops
5988  *
5989  */
5990 void ata_host_init(struct ata_host *host, struct device *dev,
5991 		   struct ata_port_operations *ops)
5992 {
5993 	spin_lock_init(&host->lock);
5994 	mutex_init(&host->eh_mutex);
5995 	host->dev = dev;
5996 	host->ops = ops;
5997 }
5998 
5999 void __ata_port_probe(struct ata_port *ap)
6000 {
6001 	struct ata_eh_info *ehi = &ap->link.eh_info;
6002 	unsigned long flags;
6003 
6004 	/* kick EH for boot probing */
6005 	spin_lock_irqsave(ap->lock, flags);
6006 
6007 	ehi->probe_mask |= ATA_ALL_DEVICES;
6008 	ehi->action |= ATA_EH_RESET;
6009 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6010 
6011 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6012 	ap->pflags |= ATA_PFLAG_LOADING;
6013 	ata_port_schedule_eh(ap);
6014 
6015 	spin_unlock_irqrestore(ap->lock, flags);
6016 }
6017 
6018 int ata_port_probe(struct ata_port *ap)
6019 {
6020 	int rc = 0;
6021 
6022 	if (ap->ops->error_handler) {
6023 		__ata_port_probe(ap);
6024 		ata_port_wait_eh(ap);
6025 	} else {
6026 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6027 		rc = ata_bus_probe(ap);
6028 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6029 	}
6030 	return rc;
6031 }
6032 
6033 
6034 static void async_port_probe(void *data, async_cookie_t cookie)
6035 {
6036 	struct ata_port *ap = data;
6037 
6038 	/*
6039 	 * If we're not allowed to scan this host in parallel,
6040 	 * we need to wait until all previous scans have completed
6041 	 * before going further.
6042 	 * Jeff Garzik says this is only within a controller, so we
6043 	 * don't need to wait for port 0, only for later ports.
6044 	 */
6045 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6046 		async_synchronize_cookie(cookie);
6047 
6048 	(void)ata_port_probe(ap);
6049 
6050 	/* in order to keep device order, we need to synchronize at this point */
6051 	async_synchronize_cookie(cookie);
6052 
6053 	ata_scsi_scan_host(ap, 1);
6054 }
6055 
6056 /**
6057  *	ata_host_register - register initialized ATA host
6058  *	@host: ATA host to register
6059  *	@sht: template for SCSI host
6060  *
6061  *	Register initialized ATA host.  @host is allocated using
6062  *	ata_host_alloc() and fully initialized by LLD.  This function
6063  *	starts ports, registers @host with ATA and SCSI layers and
6064  *	probe registered devices.
6065  *
6066  *	LOCKING:
6067  *	Inherited from calling layer (may sleep).
6068  *
6069  *	RETURNS:
6070  *	0 on success, -errno otherwise.
6071  */
6072 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6073 {
6074 	int i, rc;
6075 
6076 	/* host must have been started */
6077 	if (!(host->flags & ATA_HOST_STARTED)) {
6078 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6079 		WARN_ON(1);
6080 		return -EINVAL;
6081 	}
6082 
6083 	/* Blow away unused ports.  This happens when LLD can't
6084 	 * determine the exact number of ports to allocate at
6085 	 * allocation time.
6086 	 */
6087 	for (i = host->n_ports; host->ports[i]; i++)
6088 		kfree(host->ports[i]);
6089 
6090 	/* give ports names and add SCSI hosts */
6091 	for (i = 0; i < host->n_ports; i++)
6092 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6093 
6094 
6095 	/* Create associated sysfs transport objects  */
6096 	for (i = 0; i < host->n_ports; i++) {
6097 		rc = ata_tport_add(host->dev,host->ports[i]);
6098 		if (rc) {
6099 			goto err_tadd;
6100 		}
6101 	}
6102 
6103 	rc = ata_scsi_add_hosts(host, sht);
6104 	if (rc)
6105 		goto err_tadd;
6106 
6107 	/* set cable, sata_spd_limit and report */
6108 	for (i = 0; i < host->n_ports; i++) {
6109 		struct ata_port *ap = host->ports[i];
6110 		unsigned long xfer_mask;
6111 
6112 		/* set SATA cable type if still unset */
6113 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6114 			ap->cbl = ATA_CBL_SATA;
6115 
6116 		/* init sata_spd_limit to the current value */
6117 		sata_link_init_spd(&ap->link);
6118 		if (ap->slave_link)
6119 			sata_link_init_spd(ap->slave_link);
6120 
6121 		/* print per-port info to dmesg */
6122 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6123 					      ap->udma_mask);
6124 
6125 		if (!ata_port_is_dummy(ap)) {
6126 			ata_port_info(ap, "%cATA max %s %s\n",
6127 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6128 				      ata_mode_string(xfer_mask),
6129 				      ap->link.eh_info.desc);
6130 			ata_ehi_clear_desc(&ap->link.eh_info);
6131 		} else
6132 			ata_port_info(ap, "DUMMY\n");
6133 	}
6134 
6135 	/* perform each probe asynchronously */
6136 	for (i = 0; i < host->n_ports; i++) {
6137 		struct ata_port *ap = host->ports[i];
6138 		async_schedule(async_port_probe, ap);
6139 	}
6140 
6141 	return 0;
6142 
6143  err_tadd:
6144 	while (--i >= 0) {
6145 		ata_tport_delete(host->ports[i]);
6146 	}
6147 	return rc;
6148 
6149 }
6150 
6151 /**
6152  *	ata_host_activate - start host, request IRQ and register it
6153  *	@host: target ATA host
6154  *	@irq: IRQ to request
6155  *	@irq_handler: irq_handler used when requesting IRQ
6156  *	@irq_flags: irq_flags used when requesting IRQ
6157  *	@sht: scsi_host_template to use when registering the host
6158  *
6159  *	After allocating an ATA host and initializing it, most libata
6160  *	LLDs perform three steps to activate the host - start host,
6161  *	request IRQ and register it.  This helper takes necessasry
6162  *	arguments and performs the three steps in one go.
6163  *
6164  *	An invalid IRQ skips the IRQ registration and expects the host to
6165  *	have set polling mode on the port. In this case, @irq_handler
6166  *	should be NULL.
6167  *
6168  *	LOCKING:
6169  *	Inherited from calling layer (may sleep).
6170  *
6171  *	RETURNS:
6172  *	0 on success, -errno otherwise.
6173  */
6174 int ata_host_activate(struct ata_host *host, int irq,
6175 		      irq_handler_t irq_handler, unsigned long irq_flags,
6176 		      struct scsi_host_template *sht)
6177 {
6178 	int i, rc;
6179 
6180 	rc = ata_host_start(host);
6181 	if (rc)
6182 		return rc;
6183 
6184 	/* Special case for polling mode */
6185 	if (!irq) {
6186 		WARN_ON(irq_handler);
6187 		return ata_host_register(host, sht);
6188 	}
6189 
6190 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6191 			      dev_driver_string(host->dev), host);
6192 	if (rc)
6193 		return rc;
6194 
6195 	for (i = 0; i < host->n_ports; i++)
6196 		ata_port_desc(host->ports[i], "irq %d", irq);
6197 
6198 	rc = ata_host_register(host, sht);
6199 	/* if failed, just free the IRQ and leave ports alone */
6200 	if (rc)
6201 		devm_free_irq(host->dev, irq, host);
6202 
6203 	return rc;
6204 }
6205 
6206 /**
6207  *	ata_port_detach - Detach ATA port in prepration of device removal
6208  *	@ap: ATA port to be detached
6209  *
6210  *	Detach all ATA devices and the associated SCSI devices of @ap;
6211  *	then, remove the associated SCSI host.  @ap is guaranteed to
6212  *	be quiescent on return from this function.
6213  *
6214  *	LOCKING:
6215  *	Kernel thread context (may sleep).
6216  */
6217 static void ata_port_detach(struct ata_port *ap)
6218 {
6219 	unsigned long flags;
6220 
6221 	if (!ap->ops->error_handler)
6222 		goto skip_eh;
6223 
6224 	/* tell EH we're leaving & flush EH */
6225 	spin_lock_irqsave(ap->lock, flags);
6226 	ap->pflags |= ATA_PFLAG_UNLOADING;
6227 	ata_port_schedule_eh(ap);
6228 	spin_unlock_irqrestore(ap->lock, flags);
6229 
6230 	/* wait till EH commits suicide */
6231 	ata_port_wait_eh(ap);
6232 
6233 	/* it better be dead now */
6234 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6235 
6236 	cancel_delayed_work_sync(&ap->hotplug_task);
6237 
6238  skip_eh:
6239 	if (ap->pmp_link) {
6240 		int i;
6241 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6242 			ata_tlink_delete(&ap->pmp_link[i]);
6243 	}
6244 	ata_tport_delete(ap);
6245 
6246 	/* remove the associated SCSI host */
6247 	scsi_remove_host(ap->scsi_host);
6248 }
6249 
6250 /**
6251  *	ata_host_detach - Detach all ports of an ATA host
6252  *	@host: Host to detach
6253  *
6254  *	Detach all ports of @host.
6255  *
6256  *	LOCKING:
6257  *	Kernel thread context (may sleep).
6258  */
6259 void ata_host_detach(struct ata_host *host)
6260 {
6261 	int i;
6262 
6263 	for (i = 0; i < host->n_ports; i++)
6264 		ata_port_detach(host->ports[i]);
6265 
6266 	/* the host is dead now, dissociate ACPI */
6267 	ata_acpi_dissociate(host);
6268 }
6269 
6270 #ifdef CONFIG_PCI
6271 
6272 /**
6273  *	ata_pci_remove_one - PCI layer callback for device removal
6274  *	@pdev: PCI device that was removed
6275  *
6276  *	PCI layer indicates to libata via this hook that hot-unplug or
6277  *	module unload event has occurred.  Detach all ports.  Resource
6278  *	release is handled via devres.
6279  *
6280  *	LOCKING:
6281  *	Inherited from PCI layer (may sleep).
6282  */
6283 void ata_pci_remove_one(struct pci_dev *pdev)
6284 {
6285 	struct device *dev = &pdev->dev;
6286 	struct ata_host *host = dev_get_drvdata(dev);
6287 
6288 	ata_host_detach(host);
6289 }
6290 
6291 /* move to PCI subsystem */
6292 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6293 {
6294 	unsigned long tmp = 0;
6295 
6296 	switch (bits->width) {
6297 	case 1: {
6298 		u8 tmp8 = 0;
6299 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6300 		tmp = tmp8;
6301 		break;
6302 	}
6303 	case 2: {
6304 		u16 tmp16 = 0;
6305 		pci_read_config_word(pdev, bits->reg, &tmp16);
6306 		tmp = tmp16;
6307 		break;
6308 	}
6309 	case 4: {
6310 		u32 tmp32 = 0;
6311 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6312 		tmp = tmp32;
6313 		break;
6314 	}
6315 
6316 	default:
6317 		return -EINVAL;
6318 	}
6319 
6320 	tmp &= bits->mask;
6321 
6322 	return (tmp == bits->val) ? 1 : 0;
6323 }
6324 
6325 #ifdef CONFIG_PM
6326 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6327 {
6328 	pci_save_state(pdev);
6329 	pci_disable_device(pdev);
6330 
6331 	if (mesg.event & PM_EVENT_SLEEP)
6332 		pci_set_power_state(pdev, PCI_D3hot);
6333 }
6334 
6335 int ata_pci_device_do_resume(struct pci_dev *pdev)
6336 {
6337 	int rc;
6338 
6339 	pci_set_power_state(pdev, PCI_D0);
6340 	pci_restore_state(pdev);
6341 
6342 	rc = pcim_enable_device(pdev);
6343 	if (rc) {
6344 		dev_err(&pdev->dev,
6345 			"failed to enable device after resume (%d)\n", rc);
6346 		return rc;
6347 	}
6348 
6349 	pci_set_master(pdev);
6350 	return 0;
6351 }
6352 
6353 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6354 {
6355 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6356 	int rc = 0;
6357 
6358 	rc = ata_host_suspend(host, mesg);
6359 	if (rc)
6360 		return rc;
6361 
6362 	ata_pci_device_do_suspend(pdev, mesg);
6363 
6364 	return 0;
6365 }
6366 
6367 int ata_pci_device_resume(struct pci_dev *pdev)
6368 {
6369 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6370 	int rc;
6371 
6372 	rc = ata_pci_device_do_resume(pdev);
6373 	if (rc == 0)
6374 		ata_host_resume(host);
6375 	return rc;
6376 }
6377 #endif /* CONFIG_PM */
6378 
6379 #endif /* CONFIG_PCI */
6380 
6381 static int __init ata_parse_force_one(char **cur,
6382 				      struct ata_force_ent *force_ent,
6383 				      const char **reason)
6384 {
6385 	/* FIXME: Currently, there's no way to tag init const data and
6386 	 * using __initdata causes build failure on some versions of
6387 	 * gcc.  Once __initdataconst is implemented, add const to the
6388 	 * following structure.
6389 	 */
6390 	static struct ata_force_param force_tbl[] __initdata = {
6391 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6392 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6393 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6394 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6395 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6396 		{ "sata",	.cbl		= ATA_CBL_SATA },
6397 		{ "1.5Gbps",	.spd_limit	= 1 },
6398 		{ "3.0Gbps",	.spd_limit	= 2 },
6399 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6400 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6401 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6402 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6403 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6404 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6405 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6406 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6407 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6408 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6409 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6410 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6411 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6412 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6413 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6414 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6415 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6416 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6417 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6418 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6419 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6420 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6421 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6422 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6423 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6424 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6425 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6426 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6427 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6428 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6429 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6430 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6431 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6432 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6433 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6434 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6435 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6436 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6437 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6438 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6439 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6440 	};
6441 	char *start = *cur, *p = *cur;
6442 	char *id, *val, *endp;
6443 	const struct ata_force_param *match_fp = NULL;
6444 	int nr_matches = 0, i;
6445 
6446 	/* find where this param ends and update *cur */
6447 	while (*p != '\0' && *p != ',')
6448 		p++;
6449 
6450 	if (*p == '\0')
6451 		*cur = p;
6452 	else
6453 		*cur = p + 1;
6454 
6455 	*p = '\0';
6456 
6457 	/* parse */
6458 	p = strchr(start, ':');
6459 	if (!p) {
6460 		val = strstrip(start);
6461 		goto parse_val;
6462 	}
6463 	*p = '\0';
6464 
6465 	id = strstrip(start);
6466 	val = strstrip(p + 1);
6467 
6468 	/* parse id */
6469 	p = strchr(id, '.');
6470 	if (p) {
6471 		*p++ = '\0';
6472 		force_ent->device = simple_strtoul(p, &endp, 10);
6473 		if (p == endp || *endp != '\0') {
6474 			*reason = "invalid device";
6475 			return -EINVAL;
6476 		}
6477 	}
6478 
6479 	force_ent->port = simple_strtoul(id, &endp, 10);
6480 	if (p == endp || *endp != '\0') {
6481 		*reason = "invalid port/link";
6482 		return -EINVAL;
6483 	}
6484 
6485  parse_val:
6486 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6487 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6488 		const struct ata_force_param *fp = &force_tbl[i];
6489 
6490 		if (strncasecmp(val, fp->name, strlen(val)))
6491 			continue;
6492 
6493 		nr_matches++;
6494 		match_fp = fp;
6495 
6496 		if (strcasecmp(val, fp->name) == 0) {
6497 			nr_matches = 1;
6498 			break;
6499 		}
6500 	}
6501 
6502 	if (!nr_matches) {
6503 		*reason = "unknown value";
6504 		return -EINVAL;
6505 	}
6506 	if (nr_matches > 1) {
6507 		*reason = "ambigious value";
6508 		return -EINVAL;
6509 	}
6510 
6511 	force_ent->param = *match_fp;
6512 
6513 	return 0;
6514 }
6515 
6516 static void __init ata_parse_force_param(void)
6517 {
6518 	int idx = 0, size = 1;
6519 	int last_port = -1, last_device = -1;
6520 	char *p, *cur, *next;
6521 
6522 	/* calculate maximum number of params and allocate force_tbl */
6523 	for (p = ata_force_param_buf; *p; p++)
6524 		if (*p == ',')
6525 			size++;
6526 
6527 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6528 	if (!ata_force_tbl) {
6529 		printk(KERN_WARNING "ata: failed to extend force table, "
6530 		       "libata.force ignored\n");
6531 		return;
6532 	}
6533 
6534 	/* parse and populate the table */
6535 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6536 		const char *reason = "";
6537 		struct ata_force_ent te = { .port = -1, .device = -1 };
6538 
6539 		next = cur;
6540 		if (ata_parse_force_one(&next, &te, &reason)) {
6541 			printk(KERN_WARNING "ata: failed to parse force "
6542 			       "parameter \"%s\" (%s)\n",
6543 			       cur, reason);
6544 			continue;
6545 		}
6546 
6547 		if (te.port == -1) {
6548 			te.port = last_port;
6549 			te.device = last_device;
6550 		}
6551 
6552 		ata_force_tbl[idx++] = te;
6553 
6554 		last_port = te.port;
6555 		last_device = te.device;
6556 	}
6557 
6558 	ata_force_tbl_size = idx;
6559 }
6560 
6561 static int __init ata_init(void)
6562 {
6563 	int rc;
6564 
6565 	ata_parse_force_param();
6566 
6567 	ata_acpi_register();
6568 
6569 	rc = ata_sff_init();
6570 	if (rc) {
6571 		kfree(ata_force_tbl);
6572 		return rc;
6573 	}
6574 
6575 	libata_transport_init();
6576 	ata_scsi_transport_template = ata_attach_transport();
6577 	if (!ata_scsi_transport_template) {
6578 		ata_sff_exit();
6579 		rc = -ENOMEM;
6580 		goto err_out;
6581 	}
6582 
6583 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6584 	return 0;
6585 
6586 err_out:
6587 	return rc;
6588 }
6589 
6590 static void __exit ata_exit(void)
6591 {
6592 	ata_release_transport(ata_scsi_transport_template);
6593 	libata_transport_exit();
6594 	ata_sff_exit();
6595 	ata_acpi_unregister();
6596 	kfree(ata_force_tbl);
6597 }
6598 
6599 subsys_initcall(ata_init);
6600 module_exit(ata_exit);
6601 
6602 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6603 
6604 int ata_ratelimit(void)
6605 {
6606 	return __ratelimit(&ratelimit);
6607 }
6608 
6609 /**
6610  *	ata_msleep - ATA EH owner aware msleep
6611  *	@ap: ATA port to attribute the sleep to
6612  *	@msecs: duration to sleep in milliseconds
6613  *
6614  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6615  *	ownership is released before going to sleep and reacquired
6616  *	after the sleep is complete.  IOW, other ports sharing the
6617  *	@ap->host will be allowed to own the EH while this task is
6618  *	sleeping.
6619  *
6620  *	LOCKING:
6621  *	Might sleep.
6622  */
6623 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6624 {
6625 	bool owns_eh = ap && ap->host->eh_owner == current;
6626 
6627 	if (owns_eh)
6628 		ata_eh_release(ap);
6629 
6630 	msleep(msecs);
6631 
6632 	if (owns_eh)
6633 		ata_eh_acquire(ap);
6634 }
6635 
6636 /**
6637  *	ata_wait_register - wait until register value changes
6638  *	@ap: ATA port to wait register for, can be NULL
6639  *	@reg: IO-mapped register
6640  *	@mask: Mask to apply to read register value
6641  *	@val: Wait condition
6642  *	@interval: polling interval in milliseconds
6643  *	@timeout: timeout in milliseconds
6644  *
6645  *	Waiting for some bits of register to change is a common
6646  *	operation for ATA controllers.  This function reads 32bit LE
6647  *	IO-mapped register @reg and tests for the following condition.
6648  *
6649  *	(*@reg & mask) != val
6650  *
6651  *	If the condition is met, it returns; otherwise, the process is
6652  *	repeated after @interval_msec until timeout.
6653  *
6654  *	LOCKING:
6655  *	Kernel thread context (may sleep)
6656  *
6657  *	RETURNS:
6658  *	The final register value.
6659  */
6660 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6661 		      unsigned long interval, unsigned long timeout)
6662 {
6663 	unsigned long deadline;
6664 	u32 tmp;
6665 
6666 	tmp = ioread32(reg);
6667 
6668 	/* Calculate timeout _after_ the first read to make sure
6669 	 * preceding writes reach the controller before starting to
6670 	 * eat away the timeout.
6671 	 */
6672 	deadline = ata_deadline(jiffies, timeout);
6673 
6674 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6675 		ata_msleep(ap, interval);
6676 		tmp = ioread32(reg);
6677 	}
6678 
6679 	return tmp;
6680 }
6681 
6682 /*
6683  * Dummy port_ops
6684  */
6685 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6686 {
6687 	return AC_ERR_SYSTEM;
6688 }
6689 
6690 static void ata_dummy_error_handler(struct ata_port *ap)
6691 {
6692 	/* truly dummy */
6693 }
6694 
6695 struct ata_port_operations ata_dummy_port_ops = {
6696 	.qc_prep		= ata_noop_qc_prep,
6697 	.qc_issue		= ata_dummy_qc_issue,
6698 	.error_handler		= ata_dummy_error_handler,
6699 	.sched_eh		= ata_std_sched_eh,
6700 	.end_eh			= ata_std_end_eh,
6701 };
6702 
6703 const struct ata_port_info ata_dummy_port_info = {
6704 	.port_ops		= &ata_dummy_port_ops,
6705 };
6706 
6707 /*
6708  * Utility print functions
6709  */
6710 int ata_port_printk(const struct ata_port *ap, const char *level,
6711 		    const char *fmt, ...)
6712 {
6713 	struct va_format vaf;
6714 	va_list args;
6715 	int r;
6716 
6717 	va_start(args, fmt);
6718 
6719 	vaf.fmt = fmt;
6720 	vaf.va = &args;
6721 
6722 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6723 
6724 	va_end(args);
6725 
6726 	return r;
6727 }
6728 EXPORT_SYMBOL(ata_port_printk);
6729 
6730 int ata_link_printk(const struct ata_link *link, const char *level,
6731 		    const char *fmt, ...)
6732 {
6733 	struct va_format vaf;
6734 	va_list args;
6735 	int r;
6736 
6737 	va_start(args, fmt);
6738 
6739 	vaf.fmt = fmt;
6740 	vaf.va = &args;
6741 
6742 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6743 		r = printk("%sata%u.%02u: %pV",
6744 			   level, link->ap->print_id, link->pmp, &vaf);
6745 	else
6746 		r = printk("%sata%u: %pV",
6747 			   level, link->ap->print_id, &vaf);
6748 
6749 	va_end(args);
6750 
6751 	return r;
6752 }
6753 EXPORT_SYMBOL(ata_link_printk);
6754 
6755 int ata_dev_printk(const struct ata_device *dev, const char *level,
6756 		    const char *fmt, ...)
6757 {
6758 	struct va_format vaf;
6759 	va_list args;
6760 	int r;
6761 
6762 	va_start(args, fmt);
6763 
6764 	vaf.fmt = fmt;
6765 	vaf.va = &args;
6766 
6767 	r = printk("%sata%u.%02u: %pV",
6768 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6769 		   &vaf);
6770 
6771 	va_end(args);
6772 
6773 	return r;
6774 }
6775 EXPORT_SYMBOL(ata_dev_printk);
6776 
6777 void ata_print_version(const struct device *dev, const char *version)
6778 {
6779 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6780 }
6781 EXPORT_SYMBOL(ata_print_version);
6782 
6783 /*
6784  * libata is essentially a library of internal helper functions for
6785  * low-level ATA host controller drivers.  As such, the API/ABI is
6786  * likely to change as new drivers are added and updated.
6787  * Do not depend on ABI/API stability.
6788  */
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6790 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6791 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6792 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6793 EXPORT_SYMBOL_GPL(sata_port_ops);
6794 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6795 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6796 EXPORT_SYMBOL_GPL(ata_link_next);
6797 EXPORT_SYMBOL_GPL(ata_dev_next);
6798 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6799 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6800 EXPORT_SYMBOL_GPL(ata_host_init);
6801 EXPORT_SYMBOL_GPL(ata_host_alloc);
6802 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6803 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6804 EXPORT_SYMBOL_GPL(ata_host_start);
6805 EXPORT_SYMBOL_GPL(ata_host_register);
6806 EXPORT_SYMBOL_GPL(ata_host_activate);
6807 EXPORT_SYMBOL_GPL(ata_host_detach);
6808 EXPORT_SYMBOL_GPL(ata_sg_init);
6809 EXPORT_SYMBOL_GPL(ata_qc_complete);
6810 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6811 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6812 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6813 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6814 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6815 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6816 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6817 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6818 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6819 EXPORT_SYMBOL_GPL(ata_mode_string);
6820 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6821 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6822 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6823 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6824 EXPORT_SYMBOL_GPL(ata_dev_disable);
6825 EXPORT_SYMBOL_GPL(sata_set_spd);
6826 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6827 EXPORT_SYMBOL_GPL(sata_link_debounce);
6828 EXPORT_SYMBOL_GPL(sata_link_resume);
6829 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6830 EXPORT_SYMBOL_GPL(ata_std_prereset);
6831 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6832 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6833 EXPORT_SYMBOL_GPL(ata_std_postreset);
6834 EXPORT_SYMBOL_GPL(ata_dev_classify);
6835 EXPORT_SYMBOL_GPL(ata_dev_pair);
6836 EXPORT_SYMBOL_GPL(ata_ratelimit);
6837 EXPORT_SYMBOL_GPL(ata_msleep);
6838 EXPORT_SYMBOL_GPL(ata_wait_register);
6839 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6840 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6841 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6842 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6843 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6844 EXPORT_SYMBOL_GPL(sata_scr_valid);
6845 EXPORT_SYMBOL_GPL(sata_scr_read);
6846 EXPORT_SYMBOL_GPL(sata_scr_write);
6847 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6848 EXPORT_SYMBOL_GPL(ata_link_online);
6849 EXPORT_SYMBOL_GPL(ata_link_offline);
6850 #ifdef CONFIG_PM
6851 EXPORT_SYMBOL_GPL(ata_host_suspend);
6852 EXPORT_SYMBOL_GPL(ata_host_resume);
6853 #endif /* CONFIG_PM */
6854 EXPORT_SYMBOL_GPL(ata_id_string);
6855 EXPORT_SYMBOL_GPL(ata_id_c_string);
6856 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6857 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6858 
6859 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6860 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6861 EXPORT_SYMBOL_GPL(ata_timing_compute);
6862 EXPORT_SYMBOL_GPL(ata_timing_merge);
6863 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6864 
6865 #ifdef CONFIG_PCI
6866 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6867 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6868 #ifdef CONFIG_PM
6869 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6870 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6871 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6872 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6873 #endif /* CONFIG_PM */
6874 #endif /* CONFIG_PCI */
6875 
6876 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6877 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6878 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6879 EXPORT_SYMBOL_GPL(ata_port_desc);
6880 #ifdef CONFIG_PCI
6881 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6882 #endif /* CONFIG_PCI */
6883 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6884 EXPORT_SYMBOL_GPL(ata_link_abort);
6885 EXPORT_SYMBOL_GPL(ata_port_abort);
6886 EXPORT_SYMBOL_GPL(ata_port_freeze);
6887 EXPORT_SYMBOL_GPL(sata_async_notification);
6888 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6889 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6890 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6891 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6892 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6893 EXPORT_SYMBOL_GPL(ata_do_eh);
6894 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6895 
6896 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6897 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6898 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6899 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6900 EXPORT_SYMBOL_GPL(ata_cable_sata);
6901