1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 71 #include "libata.h" 72 #include "libata-transport.h" 73 74 /* debounce timing parameters in msecs { interval, duration, timeout } */ 75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 78 79 const struct ata_port_operations ata_base_port_ops = { 80 .prereset = ata_std_prereset, 81 .postreset = ata_std_postreset, 82 .error_handler = ata_std_error_handler, 83 .sched_eh = ata_std_sched_eh, 84 .end_eh = ata_std_end_eh, 85 }; 86 87 const struct ata_port_operations sata_port_ops = { 88 .inherits = &ata_base_port_ops, 89 90 .qc_defer = ata_std_qc_defer, 91 .hardreset = sata_std_hardreset, 92 }; 93 94 static unsigned int ata_dev_init_params(struct ata_device *dev, 95 u16 heads, u16 sectors); 96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 97 static void ata_dev_xfermask(struct ata_device *dev); 98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 99 100 atomic_t ata_print_id = ATOMIC_INIT(0); 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 static int atapi_an; 163 module_param(atapi_an, int, 0444); 164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 165 166 MODULE_AUTHOR("Jeff Garzik"); 167 MODULE_DESCRIPTION("Library module for ATA devices"); 168 MODULE_LICENSE("GPL"); 169 MODULE_VERSION(DRV_VERSION); 170 171 172 static bool ata_sstatus_online(u32 sstatus) 173 { 174 return (sstatus & 0xf) == 0x3; 175 } 176 177 /** 178 * ata_link_next - link iteration helper 179 * @link: the previous link, NULL to start 180 * @ap: ATA port containing links to iterate 181 * @mode: iteration mode, one of ATA_LITER_* 182 * 183 * LOCKING: 184 * Host lock or EH context. 185 * 186 * RETURNS: 187 * Pointer to the next link. 188 */ 189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 190 enum ata_link_iter_mode mode) 191 { 192 BUG_ON(mode != ATA_LITER_EDGE && 193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 194 195 /* NULL link indicates start of iteration */ 196 if (!link) 197 switch (mode) { 198 case ATA_LITER_EDGE: 199 case ATA_LITER_PMP_FIRST: 200 if (sata_pmp_attached(ap)) 201 return ap->pmp_link; 202 /* fall through */ 203 case ATA_LITER_HOST_FIRST: 204 return &ap->link; 205 } 206 207 /* we just iterated over the host link, what's next? */ 208 if (link == &ap->link) 209 switch (mode) { 210 case ATA_LITER_HOST_FIRST: 211 if (sata_pmp_attached(ap)) 212 return ap->pmp_link; 213 /* fall through */ 214 case ATA_LITER_PMP_FIRST: 215 if (unlikely(ap->slave_link)) 216 return ap->slave_link; 217 /* fall through */ 218 case ATA_LITER_EDGE: 219 return NULL; 220 } 221 222 /* slave_link excludes PMP */ 223 if (unlikely(link == ap->slave_link)) 224 return NULL; 225 226 /* we were over a PMP link */ 227 if (++link < ap->pmp_link + ap->nr_pmp_links) 228 return link; 229 230 if (mode == ATA_LITER_PMP_FIRST) 231 return &ap->link; 232 233 return NULL; 234 } 235 236 /** 237 * ata_dev_next - device iteration helper 238 * @dev: the previous device, NULL to start 239 * @link: ATA link containing devices to iterate 240 * @mode: iteration mode, one of ATA_DITER_* 241 * 242 * LOCKING: 243 * Host lock or EH context. 244 * 245 * RETURNS: 246 * Pointer to the next device. 247 */ 248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 249 enum ata_dev_iter_mode mode) 250 { 251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 253 254 /* NULL dev indicates start of iteration */ 255 if (!dev) 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 dev = link->device; 260 goto check; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 dev = link->device + ata_link_max_devices(link) - 1; 264 goto check; 265 } 266 267 next: 268 /* move to the next one */ 269 switch (mode) { 270 case ATA_DITER_ENABLED: 271 case ATA_DITER_ALL: 272 if (++dev < link->device + ata_link_max_devices(link)) 273 goto check; 274 return NULL; 275 case ATA_DITER_ENABLED_REVERSE: 276 case ATA_DITER_ALL_REVERSE: 277 if (--dev >= link->device) 278 goto check; 279 return NULL; 280 } 281 282 check: 283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 284 !ata_dev_enabled(dev)) 285 goto next; 286 return dev; 287 } 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 495 /** 496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 497 * @opcode: SCSI opcode 498 * 499 * Determine ATAPI command type from @opcode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 506 */ 507 int atapi_cmd_type(u8 opcode) 508 { 509 switch (opcode) { 510 case GPCMD_READ_10: 511 case GPCMD_READ_12: 512 return ATAPI_READ; 513 514 case GPCMD_WRITE_10: 515 case GPCMD_WRITE_12: 516 case GPCMD_WRITE_AND_VERIFY_10: 517 return ATAPI_WRITE; 518 519 case GPCMD_READ_CD: 520 case GPCMD_READ_CD_MSF: 521 return ATAPI_READ_CD; 522 523 case ATA_16: 524 case ATA_12: 525 if (atapi_passthru16) 526 return ATAPI_PASS_THRU; 527 /* fall thru */ 528 default: 529 return ATAPI_MISC; 530 } 531 } 532 533 /** 534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 535 * @tf: Taskfile to convert 536 * @pmp: Port multiplier port 537 * @is_cmd: This FIS is for command 538 * @fis: Buffer into which data will output 539 * 540 * Converts a standard ATA taskfile to a Serial ATA 541 * FIS structure (Register - Host to Device). 542 * 543 * LOCKING: 544 * Inherited from caller. 545 */ 546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 547 { 548 fis[0] = 0x27; /* Register - Host to Device FIS */ 549 fis[1] = pmp & 0xf; /* Port multiplier number*/ 550 if (is_cmd) 551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 552 553 fis[2] = tf->command; 554 fis[3] = tf->feature; 555 556 fis[4] = tf->lbal; 557 fis[5] = tf->lbam; 558 fis[6] = tf->lbah; 559 fis[7] = tf->device; 560 561 fis[8] = tf->hob_lbal; 562 fis[9] = tf->hob_lbam; 563 fis[10] = tf->hob_lbah; 564 fis[11] = tf->hob_feature; 565 566 fis[12] = tf->nsect; 567 fis[13] = tf->hob_nsect; 568 fis[14] = 0; 569 fis[15] = tf->ctl; 570 571 fis[16] = 0; 572 fis[17] = 0; 573 fis[18] = 0; 574 fis[19] = 0; 575 } 576 577 /** 578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 579 * @fis: Buffer from which data will be input 580 * @tf: Taskfile to output 581 * 582 * Converts a serial ATA FIS structure to a standard ATA taskfile. 583 * 584 * LOCKING: 585 * Inherited from caller. 586 */ 587 588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 589 { 590 tf->command = fis[2]; /* status */ 591 tf->feature = fis[3]; /* error */ 592 593 tf->lbal = fis[4]; 594 tf->lbam = fis[5]; 595 tf->lbah = fis[6]; 596 tf->device = fis[7]; 597 598 tf->hob_lbal = fis[8]; 599 tf->hob_lbam = fis[9]; 600 tf->hob_lbah = fis[10]; 601 602 tf->nsect = fis[12]; 603 tf->hob_nsect = fis[13]; 604 } 605 606 static const u8 ata_rw_cmds[] = { 607 /* pio multi */ 608 ATA_CMD_READ_MULTI, 609 ATA_CMD_WRITE_MULTI, 610 ATA_CMD_READ_MULTI_EXT, 611 ATA_CMD_WRITE_MULTI_EXT, 612 0, 613 0, 614 0, 615 ATA_CMD_WRITE_MULTI_FUA_EXT, 616 /* pio */ 617 ATA_CMD_PIO_READ, 618 ATA_CMD_PIO_WRITE, 619 ATA_CMD_PIO_READ_EXT, 620 ATA_CMD_PIO_WRITE_EXT, 621 0, 622 0, 623 0, 624 0, 625 /* dma */ 626 ATA_CMD_READ, 627 ATA_CMD_WRITE, 628 ATA_CMD_READ_EXT, 629 ATA_CMD_WRITE_EXT, 630 0, 631 0, 632 0, 633 ATA_CMD_WRITE_FUA_EXT 634 }; 635 636 /** 637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 638 * @tf: command to examine and configure 639 * @dev: device tf belongs to 640 * 641 * Examine the device configuration and tf->flags to calculate 642 * the proper read/write commands and protocol to use. 643 * 644 * LOCKING: 645 * caller. 646 */ 647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 648 { 649 u8 cmd; 650 651 int index, fua, lba48, write; 652 653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 656 657 if (dev->flags & ATA_DFLAG_PIO) { 658 tf->protocol = ATA_PROT_PIO; 659 index = dev->multi_count ? 0 : 8; 660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 661 /* Unable to use DMA due to host limitation */ 662 tf->protocol = ATA_PROT_PIO; 663 index = dev->multi_count ? 0 : 8; 664 } else { 665 tf->protocol = ATA_PROT_DMA; 666 index = 16; 667 } 668 669 cmd = ata_rw_cmds[index + fua + lba48 + write]; 670 if (cmd) { 671 tf->command = cmd; 672 return 0; 673 } 674 return -1; 675 } 676 677 /** 678 * ata_tf_read_block - Read block address from ATA taskfile 679 * @tf: ATA taskfile of interest 680 * @dev: ATA device @tf belongs to 681 * 682 * LOCKING: 683 * None. 684 * 685 * Read block address from @tf. This function can handle all 686 * three address formats - LBA, LBA48 and CHS. tf->protocol and 687 * flags select the address format to use. 688 * 689 * RETURNS: 690 * Block address read from @tf. 691 */ 692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 693 { 694 u64 block = 0; 695 696 if (tf->flags & ATA_TFLAG_LBA) { 697 if (tf->flags & ATA_TFLAG_LBA48) { 698 block |= (u64)tf->hob_lbah << 40; 699 block |= (u64)tf->hob_lbam << 32; 700 block |= (u64)tf->hob_lbal << 24; 701 } else 702 block |= (tf->device & 0xf) << 24; 703 704 block |= tf->lbah << 16; 705 block |= tf->lbam << 8; 706 block |= tf->lbal; 707 } else { 708 u32 cyl, head, sect; 709 710 cyl = tf->lbam | (tf->lbah << 8); 711 head = tf->device & 0xf; 712 sect = tf->lbal; 713 714 if (!sect) { 715 ata_dev_warn(dev, 716 "device reported invalid CHS sector 0\n"); 717 sect = 1; /* oh well */ 718 } 719 720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 721 } 722 723 return block; 724 } 725 726 /** 727 * ata_build_rw_tf - Build ATA taskfile for given read/write request 728 * @tf: Target ATA taskfile 729 * @dev: ATA device @tf belongs to 730 * @block: Block address 731 * @n_block: Number of blocks 732 * @tf_flags: RW/FUA etc... 733 * @tag: tag 734 * 735 * LOCKING: 736 * None. 737 * 738 * Build ATA taskfile @tf for read/write request described by 739 * @block, @n_block, @tf_flags and @tag on @dev. 740 * 741 * RETURNS: 742 * 743 * 0 on success, -ERANGE if the request is too large for @dev, 744 * -EINVAL if the request is invalid. 745 */ 746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 747 u64 block, u32 n_block, unsigned int tf_flags, 748 unsigned int tag) 749 { 750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 751 tf->flags |= tf_flags; 752 753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 754 /* yay, NCQ */ 755 if (!lba_48_ok(block, n_block)) 756 return -ERANGE; 757 758 tf->protocol = ATA_PROT_NCQ; 759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 760 761 if (tf->flags & ATA_TFLAG_WRITE) 762 tf->command = ATA_CMD_FPDMA_WRITE; 763 else 764 tf->command = ATA_CMD_FPDMA_READ; 765 766 tf->nsect = tag << 3; 767 tf->hob_feature = (n_block >> 8) & 0xff; 768 tf->feature = n_block & 0xff; 769 770 tf->hob_lbah = (block >> 40) & 0xff; 771 tf->hob_lbam = (block >> 32) & 0xff; 772 tf->hob_lbal = (block >> 24) & 0xff; 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device = ATA_LBA; 778 if (tf->flags & ATA_TFLAG_FUA) 779 tf->device |= 1 << 7; 780 } else if (dev->flags & ATA_DFLAG_LBA) { 781 tf->flags |= ATA_TFLAG_LBA; 782 783 if (lba_28_ok(block, n_block)) { 784 /* use LBA28 */ 785 tf->device |= (block >> 24) & 0xf; 786 } else if (lba_48_ok(block, n_block)) { 787 if (!(dev->flags & ATA_DFLAG_LBA48)) 788 return -ERANGE; 789 790 /* use LBA48 */ 791 tf->flags |= ATA_TFLAG_LBA48; 792 793 tf->hob_nsect = (n_block >> 8) & 0xff; 794 795 tf->hob_lbah = (block >> 40) & 0xff; 796 tf->hob_lbam = (block >> 32) & 0xff; 797 tf->hob_lbal = (block >> 24) & 0xff; 798 } else 799 /* request too large even for LBA48 */ 800 return -ERANGE; 801 802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 803 return -EINVAL; 804 805 tf->nsect = n_block & 0xff; 806 807 tf->lbah = (block >> 16) & 0xff; 808 tf->lbam = (block >> 8) & 0xff; 809 tf->lbal = block & 0xff; 810 811 tf->device |= ATA_LBA; 812 } else { 813 /* CHS */ 814 u32 sect, head, cyl, track; 815 816 /* The request -may- be too large for CHS addressing. */ 817 if (!lba_28_ok(block, n_block)) 818 return -ERANGE; 819 820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 821 return -EINVAL; 822 823 /* Convert LBA to CHS */ 824 track = (u32)block / dev->sectors; 825 cyl = track / dev->heads; 826 head = track % dev->heads; 827 sect = (u32)block % dev->sectors + 1; 828 829 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 830 (u32)block, track, cyl, head, sect); 831 832 /* Check whether the converted CHS can fit. 833 Cylinder: 0-65535 834 Head: 0-15 835 Sector: 1-255*/ 836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 837 return -ERANGE; 838 839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 840 tf->lbal = sect; 841 tf->lbam = cyl; 842 tf->lbah = cyl >> 8; 843 tf->device |= head; 844 } 845 846 return 0; 847 } 848 849 /** 850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 851 * @pio_mask: pio_mask 852 * @mwdma_mask: mwdma_mask 853 * @udma_mask: udma_mask 854 * 855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 856 * unsigned int xfer_mask. 857 * 858 * LOCKING: 859 * None. 860 * 861 * RETURNS: 862 * Packed xfer_mask. 863 */ 864 unsigned long ata_pack_xfermask(unsigned long pio_mask, 865 unsigned long mwdma_mask, 866 unsigned long udma_mask) 867 { 868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 871 } 872 873 /** 874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 875 * @xfer_mask: xfer_mask to unpack 876 * @pio_mask: resulting pio_mask 877 * @mwdma_mask: resulting mwdma_mask 878 * @udma_mask: resulting udma_mask 879 * 880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 881 * Any NULL distination masks will be ignored. 882 */ 883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 884 unsigned long *mwdma_mask, unsigned long *udma_mask) 885 { 886 if (pio_mask) 887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 888 if (mwdma_mask) 889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 890 if (udma_mask) 891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 892 } 893 894 static const struct ata_xfer_ent { 895 int shift, bits; 896 u8 base; 897 } ata_xfer_tbl[] = { 898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 901 { -1, }, 902 }; 903 904 /** 905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 906 * @xfer_mask: xfer_mask of interest 907 * 908 * Return matching XFER_* value for @xfer_mask. Only the highest 909 * bit of @xfer_mask is considered. 910 * 911 * LOCKING: 912 * None. 913 * 914 * RETURNS: 915 * Matching XFER_* value, 0xff if no match found. 916 */ 917 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 918 { 919 int highbit = fls(xfer_mask) - 1; 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 924 return ent->base + highbit - ent->shift; 925 return 0xff; 926 } 927 928 /** 929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 930 * @xfer_mode: XFER_* of interest 931 * 932 * Return matching xfer_mask for @xfer_mode. 933 * 934 * LOCKING: 935 * None. 936 * 937 * RETURNS: 938 * Matching xfer_mask, 0 if no match found. 939 */ 940 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 941 { 942 const struct ata_xfer_ent *ent; 943 944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 947 & ~((1 << ent->shift) - 1); 948 return 0; 949 } 950 951 /** 952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 953 * @xfer_mode: XFER_* of interest 954 * 955 * Return matching xfer_shift for @xfer_mode. 956 * 957 * LOCKING: 958 * None. 959 * 960 * RETURNS: 961 * Matching xfer_shift, -1 if no match found. 962 */ 963 int ata_xfer_mode2shift(unsigned long xfer_mode) 964 { 965 const struct ata_xfer_ent *ent; 966 967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 969 return ent->shift; 970 return -1; 971 } 972 973 /** 974 * ata_mode_string - convert xfer_mask to string 975 * @xfer_mask: mask of bits supported; only highest bit counts. 976 * 977 * Determine string which represents the highest speed 978 * (highest bit in @modemask). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Constant C string representing highest speed listed in 985 * @mode_mask, or the constant C string "<n/a>". 986 */ 987 const char *ata_mode_string(unsigned long xfer_mask) 988 { 989 static const char * const xfer_mode_str[] = { 990 "PIO0", 991 "PIO1", 992 "PIO2", 993 "PIO3", 994 "PIO4", 995 "PIO5", 996 "PIO6", 997 "MWDMA0", 998 "MWDMA1", 999 "MWDMA2", 1000 "MWDMA3", 1001 "MWDMA4", 1002 "UDMA/16", 1003 "UDMA/25", 1004 "UDMA/33", 1005 "UDMA/44", 1006 "UDMA/66", 1007 "UDMA/100", 1008 "UDMA/133", 1009 "UDMA7", 1010 }; 1011 int highbit; 1012 1013 highbit = fls(xfer_mask) - 1; 1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1015 return xfer_mode_str[highbit]; 1016 return "<n/a>"; 1017 } 1018 1019 const char *sata_spd_string(unsigned int spd) 1020 { 1021 static const char * const spd_str[] = { 1022 "1.5 Gbps", 1023 "3.0 Gbps", 1024 "6.0 Gbps", 1025 }; 1026 1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1028 return "<unknown>"; 1029 return spd_str[spd - 1]; 1030 } 1031 1032 /** 1033 * ata_dev_classify - determine device type based on ATA-spec signature 1034 * @tf: ATA taskfile register set for device to be identified 1035 * 1036 * Determine from taskfile register contents whether a device is 1037 * ATA or ATAPI, as per "Signature and persistence" section 1038 * of ATA/PI spec (volume 1, sect 5.14). 1039 * 1040 * LOCKING: 1041 * None. 1042 * 1043 * RETURNS: 1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1045 * %ATA_DEV_UNKNOWN the event of failure. 1046 */ 1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1048 { 1049 /* Apple's open source Darwin code hints that some devices only 1050 * put a proper signature into the LBA mid/high registers, 1051 * So, we only check those. It's sufficient for uniqueness. 1052 * 1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1054 * signatures for ATA and ATAPI devices attached on SerialATA, 1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1056 * spec has never mentioned about using different signatures 1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1058 * Multiplier specification began to use 0x69/0x96 to identify 1059 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1061 * 0x69/0x96 shortly and described them as reserved for 1062 * SerialATA. 1063 * 1064 * We follow the current spec and consider that 0x69/0x96 1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1067 * SEMB signature. This is worked around in 1068 * ata_dev_read_id(). 1069 */ 1070 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1071 DPRINTK("found ATA device by sig\n"); 1072 return ATA_DEV_ATA; 1073 } 1074 1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1076 DPRINTK("found ATAPI device by sig\n"); 1077 return ATA_DEV_ATAPI; 1078 } 1079 1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1081 DPRINTK("found PMP device by sig\n"); 1082 return ATA_DEV_PMP; 1083 } 1084 1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1086 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1087 return ATA_DEV_SEMB; 1088 } 1089 1090 DPRINTK("unknown device\n"); 1091 return ATA_DEV_UNKNOWN; 1092 } 1093 1094 /** 1095 * ata_id_string - Convert IDENTIFY DEVICE page into string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an even number. 1100 * 1101 * The strings in the IDENTIFY DEVICE page are broken up into 1102 * 16-bit chunks. Run through the string, and output each 1103 * 8-bit chunk linearly, regardless of platform. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 1109 void ata_id_string(const u16 *id, unsigned char *s, 1110 unsigned int ofs, unsigned int len) 1111 { 1112 unsigned int c; 1113 1114 BUG_ON(len & 1); 1115 1116 while (len > 0) { 1117 c = id[ofs] >> 8; 1118 *s = c; 1119 s++; 1120 1121 c = id[ofs] & 0xff; 1122 *s = c; 1123 s++; 1124 1125 ofs++; 1126 len -= 2; 1127 } 1128 } 1129 1130 /** 1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1132 * @id: IDENTIFY DEVICE results we will examine 1133 * @s: string into which data is output 1134 * @ofs: offset into identify device page 1135 * @len: length of string to return. must be an odd number. 1136 * 1137 * This function is identical to ata_id_string except that it 1138 * trims trailing spaces and terminates the resulting string with 1139 * null. @len must be actual maximum length (even number) + 1. 1140 * 1141 * LOCKING: 1142 * caller. 1143 */ 1144 void ata_id_c_string(const u16 *id, unsigned char *s, 1145 unsigned int ofs, unsigned int len) 1146 { 1147 unsigned char *p; 1148 1149 ata_id_string(id, s, ofs, len - 1); 1150 1151 p = s + strnlen(s, len - 1); 1152 while (p > s && p[-1] == ' ') 1153 p--; 1154 *p = '\0'; 1155 } 1156 1157 static u64 ata_id_n_sectors(const u16 *id) 1158 { 1159 if (ata_id_has_lba(id)) { 1160 if (ata_id_has_lba48(id)) 1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1162 else 1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1164 } else { 1165 if (ata_id_current_chs_valid(id)) 1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1167 id[ATA_ID_CUR_SECTORS]; 1168 else 1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1170 id[ATA_ID_SECTORS]; 1171 } 1172 } 1173 1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1175 { 1176 u64 sectors = 0; 1177 1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1181 sectors |= (tf->lbah & 0xff) << 16; 1182 sectors |= (tf->lbam & 0xff) << 8; 1183 sectors |= (tf->lbal & 0xff); 1184 1185 return sectors; 1186 } 1187 1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1189 { 1190 u64 sectors = 0; 1191 1192 sectors |= (tf->device & 0x0f) << 24; 1193 sectors |= (tf->lbah & 0xff) << 16; 1194 sectors |= (tf->lbam & 0xff) << 8; 1195 sectors |= (tf->lbal & 0xff); 1196 1197 return sectors; 1198 } 1199 1200 /** 1201 * ata_read_native_max_address - Read native max address 1202 * @dev: target device 1203 * @max_sectors: out parameter for the result native max address 1204 * 1205 * Perform an LBA48 or LBA28 native size query upon the device in 1206 * question. 1207 * 1208 * RETURNS: 1209 * 0 on success, -EACCES if command is aborted by the drive. 1210 * -EIO on other errors. 1211 */ 1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1213 { 1214 unsigned int err_mask; 1215 struct ata_taskfile tf; 1216 int lba48 = ata_id_has_lba48(dev->id); 1217 1218 ata_tf_init(dev, &tf); 1219 1220 /* always clear all address registers */ 1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1222 1223 if (lba48) { 1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1225 tf.flags |= ATA_TFLAG_LBA48; 1226 } else 1227 tf.command = ATA_CMD_READ_NATIVE_MAX; 1228 1229 tf.protocol |= ATA_PROT_NODATA; 1230 tf.device |= ATA_LBA; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to read native max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1238 return -EACCES; 1239 return -EIO; 1240 } 1241 1242 if (lba48) 1243 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1244 else 1245 *max_sectors = ata_tf_to_lba(&tf) + 1; 1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1247 (*max_sectors)--; 1248 return 0; 1249 } 1250 1251 /** 1252 * ata_set_max_sectors - Set max sectors 1253 * @dev: target device 1254 * @new_sectors: new max sectors value to set for the device 1255 * 1256 * Set max sectors of @dev to @new_sectors. 1257 * 1258 * RETURNS: 1259 * 0 on success, -EACCES if command is aborted or denied (due to 1260 * previous non-volatile SET_MAX) by the drive. -EIO on other 1261 * errors. 1262 */ 1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1264 { 1265 unsigned int err_mask; 1266 struct ata_taskfile tf; 1267 int lba48 = ata_id_has_lba48(dev->id); 1268 1269 new_sectors--; 1270 1271 ata_tf_init(dev, &tf); 1272 1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1274 1275 if (lba48) { 1276 tf.command = ATA_CMD_SET_MAX_EXT; 1277 tf.flags |= ATA_TFLAG_LBA48; 1278 1279 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1280 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1281 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1282 } else { 1283 tf.command = ATA_CMD_SET_MAX; 1284 1285 tf.device |= (new_sectors >> 24) & 0xf; 1286 } 1287 1288 tf.protocol |= ATA_PROT_NODATA; 1289 tf.device |= ATA_LBA; 1290 1291 tf.lbal = (new_sectors >> 0) & 0xff; 1292 tf.lbam = (new_sectors >> 8) & 0xff; 1293 tf.lbah = (new_sectors >> 16) & 0xff; 1294 1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1296 if (err_mask) { 1297 ata_dev_warn(dev, 1298 "failed to set max address (err_mask=0x%x)\n", 1299 err_mask); 1300 if (err_mask == AC_ERR_DEV && 1301 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1302 return -EACCES; 1303 return -EIO; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * ata_hpa_resize - Resize a device with an HPA set 1311 * @dev: Device to resize 1312 * 1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1314 * it if required to the full size of the media. The caller must check 1315 * the drive has the HPA feature set enabled. 1316 * 1317 * RETURNS: 1318 * 0 on success, -errno on failure. 1319 */ 1320 static int ata_hpa_resize(struct ata_device *dev) 1321 { 1322 struct ata_eh_context *ehc = &dev->link->eh_context; 1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1325 u64 sectors = ata_id_n_sectors(dev->id); 1326 u64 native_sectors; 1327 int rc; 1328 1329 /* do we need to do it? */ 1330 if (dev->class != ATA_DEV_ATA || 1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1333 return 0; 1334 1335 /* read native max address */ 1336 rc = ata_read_native_max_address(dev, &native_sectors); 1337 if (rc) { 1338 /* If device aborted the command or HPA isn't going to 1339 * be unlocked, skip HPA resizing. 1340 */ 1341 if (rc == -EACCES || !unlock_hpa) { 1342 ata_dev_warn(dev, 1343 "HPA support seems broken, skipping HPA handling\n"); 1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1345 1346 /* we can continue if device aborted the command */ 1347 if (rc == -EACCES) 1348 rc = 0; 1349 } 1350 1351 return rc; 1352 } 1353 dev->n_native_sectors = native_sectors; 1354 1355 /* nothing to do? */ 1356 if (native_sectors <= sectors || !unlock_hpa) { 1357 if (!print_info || native_sectors == sectors) 1358 return 0; 1359 1360 if (native_sectors > sectors) 1361 ata_dev_info(dev, 1362 "HPA detected: current %llu, native %llu\n", 1363 (unsigned long long)sectors, 1364 (unsigned long long)native_sectors); 1365 else if (native_sectors < sectors) 1366 ata_dev_warn(dev, 1367 "native sectors (%llu) is smaller than sectors (%llu)\n", 1368 (unsigned long long)native_sectors, 1369 (unsigned long long)sectors); 1370 return 0; 1371 } 1372 1373 /* let's unlock HPA */ 1374 rc = ata_set_max_sectors(dev, native_sectors); 1375 if (rc == -EACCES) { 1376 /* if device aborted the command, skip HPA resizing */ 1377 ata_dev_warn(dev, 1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1379 (unsigned long long)sectors, 1380 (unsigned long long)native_sectors); 1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1382 return 0; 1383 } else if (rc) 1384 return rc; 1385 1386 /* re-read IDENTIFY data */ 1387 rc = ata_dev_reread_id(dev, 0); 1388 if (rc) { 1389 ata_dev_err(dev, 1390 "failed to re-read IDENTIFY data after HPA resizing\n"); 1391 return rc; 1392 } 1393 1394 if (print_info) { 1395 u64 new_sectors = ata_id_n_sectors(dev->id); 1396 ata_dev_info(dev, 1397 "HPA unlocked: %llu -> %llu, native %llu\n", 1398 (unsigned long long)sectors, 1399 (unsigned long long)new_sectors, 1400 (unsigned long long)native_sectors); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * ata_dump_id - IDENTIFY DEVICE info debugging output 1408 * @id: IDENTIFY DEVICE page to dump 1409 * 1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1411 * page. 1412 * 1413 * LOCKING: 1414 * caller. 1415 */ 1416 1417 static inline void ata_dump_id(const u16 *id) 1418 { 1419 DPRINTK("49==0x%04x " 1420 "53==0x%04x " 1421 "63==0x%04x " 1422 "64==0x%04x " 1423 "75==0x%04x \n", 1424 id[49], 1425 id[53], 1426 id[63], 1427 id[64], 1428 id[75]); 1429 DPRINTK("80==0x%04x " 1430 "81==0x%04x " 1431 "82==0x%04x " 1432 "83==0x%04x " 1433 "84==0x%04x \n", 1434 id[80], 1435 id[81], 1436 id[82], 1437 id[83], 1438 id[84]); 1439 DPRINTK("88==0x%04x " 1440 "93==0x%04x\n", 1441 id[88], 1442 id[93]); 1443 } 1444 1445 /** 1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1447 * @id: IDENTIFY data to compute xfer mask from 1448 * 1449 * Compute the xfermask for this device. This is not as trivial 1450 * as it seems if we must consider early devices correctly. 1451 * 1452 * FIXME: pre IDE drive timing (do we care ?). 1453 * 1454 * LOCKING: 1455 * None. 1456 * 1457 * RETURNS: 1458 * Computed xfermask 1459 */ 1460 unsigned long ata_id_xfermask(const u16 *id) 1461 { 1462 unsigned long pio_mask, mwdma_mask, udma_mask; 1463 1464 /* Usual case. Word 53 indicates word 64 is valid */ 1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1467 pio_mask <<= 3; 1468 pio_mask |= 0x7; 1469 } else { 1470 /* If word 64 isn't valid then Word 51 high byte holds 1471 * the PIO timing number for the maximum. Turn it into 1472 * a mask. 1473 */ 1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1475 if (mode < 5) /* Valid PIO range */ 1476 pio_mask = (2 << mode) - 1; 1477 else 1478 pio_mask = 1; 1479 1480 /* But wait.. there's more. Design your standards by 1481 * committee and you too can get a free iordy field to 1482 * process. However its the speeds not the modes that 1483 * are supported... Note drivers using the timing API 1484 * will get this right anyway 1485 */ 1486 } 1487 1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1489 1490 if (ata_id_is_cfa(id)) { 1491 /* 1492 * Process compact flash extended modes 1493 */ 1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1496 1497 if (pio) 1498 pio_mask |= (1 << 5); 1499 if (pio > 1) 1500 pio_mask |= (1 << 6); 1501 if (dma) 1502 mwdma_mask |= (1 << 3); 1503 if (dma > 1) 1504 mwdma_mask |= (1 << 4); 1505 } 1506 1507 udma_mask = 0; 1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1510 1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1512 } 1513 1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1515 { 1516 struct completion *waiting = qc->private_data; 1517 1518 complete(waiting); 1519 } 1520 1521 /** 1522 * ata_exec_internal_sg - execute libata internal command 1523 * @dev: Device to which the command is sent 1524 * @tf: Taskfile registers for the command and the result 1525 * @cdb: CDB for packet command 1526 * @dma_dir: Data tranfer direction of the command 1527 * @sgl: sg list for the data buffer of the command 1528 * @n_elem: Number of sg entries 1529 * @timeout: Timeout in msecs (0 for default) 1530 * 1531 * Executes libata internal command with timeout. @tf contains 1532 * command on entry and result on return. Timeout and error 1533 * conditions are reported via return value. No recovery action 1534 * is taken after a command times out. It's caller's duty to 1535 * clean up after timeout. 1536 * 1537 * LOCKING: 1538 * None. Should be called with kernel context, might sleep. 1539 * 1540 * RETURNS: 1541 * Zero on success, AC_ERR_* mask on failure 1542 */ 1543 unsigned ata_exec_internal_sg(struct ata_device *dev, 1544 struct ata_taskfile *tf, const u8 *cdb, 1545 int dma_dir, struct scatterlist *sgl, 1546 unsigned int n_elem, unsigned long timeout) 1547 { 1548 struct ata_link *link = dev->link; 1549 struct ata_port *ap = link->ap; 1550 u8 command = tf->command; 1551 int auto_timeout = 0; 1552 struct ata_queued_cmd *qc; 1553 unsigned int tag, preempted_tag; 1554 u32 preempted_sactive, preempted_qc_active; 1555 int preempted_nr_active_links; 1556 DECLARE_COMPLETION_ONSTACK(wait); 1557 unsigned long flags; 1558 unsigned int err_mask; 1559 int rc; 1560 1561 spin_lock_irqsave(ap->lock, flags); 1562 1563 /* no internal command while frozen */ 1564 if (ap->pflags & ATA_PFLAG_FROZEN) { 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 return AC_ERR_SYSTEM; 1567 } 1568 1569 /* initialize internal qc */ 1570 1571 /* XXX: Tag 0 is used for drivers with legacy EH as some 1572 * drivers choke if any other tag is given. This breaks 1573 * ata_tag_internal() test for those drivers. Don't use new 1574 * EH stuff without converting to it. 1575 */ 1576 if (ap->ops->error_handler) 1577 tag = ATA_TAG_INTERNAL; 1578 else 1579 tag = 0; 1580 1581 if (test_and_set_bit(tag, &ap->qc_allocated)) 1582 BUG(); 1583 qc = __ata_qc_from_tag(ap, tag); 1584 1585 qc->tag = tag; 1586 qc->scsicmd = NULL; 1587 qc->ap = ap; 1588 qc->dev = dev; 1589 ata_qc_reinit(qc); 1590 1591 preempted_tag = link->active_tag; 1592 preempted_sactive = link->sactive; 1593 preempted_qc_active = ap->qc_active; 1594 preempted_nr_active_links = ap->nr_active_links; 1595 link->active_tag = ATA_TAG_POISON; 1596 link->sactive = 0; 1597 ap->qc_active = 0; 1598 ap->nr_active_links = 0; 1599 1600 /* prepare & issue qc */ 1601 qc->tf = *tf; 1602 if (cdb) 1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1604 qc->flags |= ATA_QCFLAG_RESULT_TF; 1605 qc->dma_dir = dma_dir; 1606 if (dma_dir != DMA_NONE) { 1607 unsigned int i, buflen = 0; 1608 struct scatterlist *sg; 1609 1610 for_each_sg(sgl, sg, n_elem, i) 1611 buflen += sg->length; 1612 1613 ata_sg_init(qc, sgl, n_elem); 1614 qc->nbytes = buflen; 1615 } 1616 1617 qc->private_data = &wait; 1618 qc->complete_fn = ata_qc_complete_internal; 1619 1620 ata_qc_issue(qc); 1621 1622 spin_unlock_irqrestore(ap->lock, flags); 1623 1624 if (!timeout) { 1625 if (ata_probe_timeout) 1626 timeout = ata_probe_timeout * 1000; 1627 else { 1628 timeout = ata_internal_cmd_timeout(dev, command); 1629 auto_timeout = 1; 1630 } 1631 } 1632 1633 if (ap->ops->error_handler) 1634 ata_eh_release(ap); 1635 1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1637 1638 if (ap->ops->error_handler) 1639 ata_eh_acquire(ap); 1640 1641 ata_sff_flush_pio_task(ap); 1642 1643 if (!rc) { 1644 spin_lock_irqsave(ap->lock, flags); 1645 1646 /* We're racing with irq here. If we lose, the 1647 * following test prevents us from completing the qc 1648 * twice. If we win, the port is frozen and will be 1649 * cleaned up by ->post_internal_cmd(). 1650 */ 1651 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1652 qc->err_mask |= AC_ERR_TIMEOUT; 1653 1654 if (ap->ops->error_handler) 1655 ata_port_freeze(ap); 1656 else 1657 ata_qc_complete(qc); 1658 1659 if (ata_msg_warn(ap)) 1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1661 command); 1662 } 1663 1664 spin_unlock_irqrestore(ap->lock, flags); 1665 } 1666 1667 /* do post_internal_cmd */ 1668 if (ap->ops->post_internal_cmd) 1669 ap->ops->post_internal_cmd(qc); 1670 1671 /* perform minimal error analysis */ 1672 if (qc->flags & ATA_QCFLAG_FAILED) { 1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1674 qc->err_mask |= AC_ERR_DEV; 1675 1676 if (!qc->err_mask) 1677 qc->err_mask |= AC_ERR_OTHER; 1678 1679 if (qc->err_mask & ~AC_ERR_OTHER) 1680 qc->err_mask &= ~AC_ERR_OTHER; 1681 } 1682 1683 /* finish up */ 1684 spin_lock_irqsave(ap->lock, flags); 1685 1686 *tf = qc->result_tf; 1687 err_mask = qc->err_mask; 1688 1689 ata_qc_free(qc); 1690 link->active_tag = preempted_tag; 1691 link->sactive = preempted_sactive; 1692 ap->qc_active = preempted_qc_active; 1693 ap->nr_active_links = preempted_nr_active_links; 1694 1695 spin_unlock_irqrestore(ap->lock, flags); 1696 1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1698 ata_internal_cmd_timed_out(dev, command); 1699 1700 return err_mask; 1701 } 1702 1703 /** 1704 * ata_exec_internal - execute libata internal command 1705 * @dev: Device to which the command is sent 1706 * @tf: Taskfile registers for the command and the result 1707 * @cdb: CDB for packet command 1708 * @dma_dir: Data tranfer direction of the command 1709 * @buf: Data buffer of the command 1710 * @buflen: Length of data buffer 1711 * @timeout: Timeout in msecs (0 for default) 1712 * 1713 * Wrapper around ata_exec_internal_sg() which takes simple 1714 * buffer instead of sg list. 1715 * 1716 * LOCKING: 1717 * None. Should be called with kernel context, might sleep. 1718 * 1719 * RETURNS: 1720 * Zero on success, AC_ERR_* mask on failure 1721 */ 1722 unsigned ata_exec_internal(struct ata_device *dev, 1723 struct ata_taskfile *tf, const u8 *cdb, 1724 int dma_dir, void *buf, unsigned int buflen, 1725 unsigned long timeout) 1726 { 1727 struct scatterlist *psg = NULL, sg; 1728 unsigned int n_elem = 0; 1729 1730 if (dma_dir != DMA_NONE) { 1731 WARN_ON(!buf); 1732 sg_init_one(&sg, buf, buflen); 1733 psg = &sg; 1734 n_elem++; 1735 } 1736 1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1738 timeout); 1739 } 1740 1741 /** 1742 * ata_do_simple_cmd - execute simple internal command 1743 * @dev: Device to which the command is sent 1744 * @cmd: Opcode to execute 1745 * 1746 * Execute a 'simple' command, that only consists of the opcode 1747 * 'cmd' itself, without filling any other registers 1748 * 1749 * LOCKING: 1750 * Kernel thread context (may sleep). 1751 * 1752 * RETURNS: 1753 * Zero on success, AC_ERR_* mask on failure 1754 */ 1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1756 { 1757 struct ata_taskfile tf; 1758 1759 ata_tf_init(dev, &tf); 1760 1761 tf.command = cmd; 1762 tf.flags |= ATA_TFLAG_DEVICE; 1763 tf.protocol = ATA_PROT_NODATA; 1764 1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1766 } 1767 1768 /** 1769 * ata_pio_need_iordy - check if iordy needed 1770 * @adev: ATA device 1771 * 1772 * Check if the current speed of the device requires IORDY. Used 1773 * by various controllers for chip configuration. 1774 */ 1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1776 { 1777 /* Don't set IORDY if we're preparing for reset. IORDY may 1778 * lead to controller lock up on certain controllers if the 1779 * port is not occupied. See bko#11703 for details. 1780 */ 1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1782 return 0; 1783 /* Controller doesn't support IORDY. Probably a pointless 1784 * check as the caller should know this. 1785 */ 1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1787 return 0; 1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1789 if (ata_id_is_cfa(adev->id) 1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1791 return 0; 1792 /* PIO3 and higher it is mandatory */ 1793 if (adev->pio_mode > XFER_PIO_2) 1794 return 1; 1795 /* We turn it on when possible */ 1796 if (ata_id_has_iordy(adev->id)) 1797 return 1; 1798 return 0; 1799 } 1800 1801 /** 1802 * ata_pio_mask_no_iordy - Return the non IORDY mask 1803 * @adev: ATA device 1804 * 1805 * Compute the highest mode possible if we are not using iordy. Return 1806 * -1 if no iordy mode is available. 1807 */ 1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1809 { 1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1812 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1813 /* Is the speed faster than the drive allows non IORDY ? */ 1814 if (pio) { 1815 /* This is cycle times not frequency - watch the logic! */ 1816 if (pio > 240) /* PIO2 is 240nS per cycle */ 1817 return 3 << ATA_SHIFT_PIO; 1818 return 7 << ATA_SHIFT_PIO; 1819 } 1820 } 1821 return 3 << ATA_SHIFT_PIO; 1822 } 1823 1824 /** 1825 * ata_do_dev_read_id - default ID read method 1826 * @dev: device 1827 * @tf: proposed taskfile 1828 * @id: data buffer 1829 * 1830 * Issue the identify taskfile and hand back the buffer containing 1831 * identify data. For some RAID controllers and for pre ATA devices 1832 * this function is wrapped or replaced by the driver 1833 */ 1834 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1835 struct ata_taskfile *tf, u16 *id) 1836 { 1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1839 } 1840 1841 /** 1842 * ata_dev_read_id - Read ID data from the specified device 1843 * @dev: target device 1844 * @p_class: pointer to class of the target device (may be changed) 1845 * @flags: ATA_READID_* flags 1846 * @id: buffer to read IDENTIFY data into 1847 * 1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1851 * for pre-ATA4 drives. 1852 * 1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1854 * now we abort if we hit that case. 1855 * 1856 * LOCKING: 1857 * Kernel thread context (may sleep) 1858 * 1859 * RETURNS: 1860 * 0 on success, -errno otherwise. 1861 */ 1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1863 unsigned int flags, u16 *id) 1864 { 1865 struct ata_port *ap = dev->link->ap; 1866 unsigned int class = *p_class; 1867 struct ata_taskfile tf; 1868 unsigned int err_mask = 0; 1869 const char *reason; 1870 bool is_semb = class == ATA_DEV_SEMB; 1871 int may_fallback = 1, tried_spinup = 0; 1872 int rc; 1873 1874 if (ata_msg_ctl(ap)) 1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1876 1877 retry: 1878 ata_tf_init(dev, &tf); 1879 1880 switch (class) { 1881 case ATA_DEV_SEMB: 1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1883 case ATA_DEV_ATA: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2011 /* 2012 * The exact sequence expected by certain pre-ATA4 drives is: 2013 * SRST RESET 2014 * IDENTIFY (optional in early ATA) 2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2016 * anything else.. 2017 * Some drives were very specific about that exact sequence. 2018 * 2019 * Note that ATA4 says lba is mandatory so the second check 2020 * should never trigger. 2021 */ 2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2023 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2024 if (err_mask) { 2025 rc = -EIO; 2026 reason = "INIT_DEV_PARAMS failed"; 2027 goto err_out; 2028 } 2029 2030 /* current CHS translation info (id[53-58]) might be 2031 * changed. reread the identify device info. 2032 */ 2033 flags &= ~ATA_READID_POSTRESET; 2034 goto retry; 2035 } 2036 } 2037 2038 *p_class = class; 2039 2040 return 0; 2041 2042 err_out: 2043 if (ata_msg_warn(ap)) 2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2045 reason, err_mask); 2046 return rc; 2047 } 2048 2049 static int ata_do_link_spd_horkage(struct ata_device *dev) 2050 { 2051 struct ata_link *plink = ata_dev_phys_link(dev); 2052 u32 target, target_limit; 2053 2054 if (!sata_scr_valid(plink)) 2055 return 0; 2056 2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2058 target = 1; 2059 else 2060 return 0; 2061 2062 target_limit = (1 << target) - 1; 2063 2064 /* if already on stricter limit, no need to push further */ 2065 if (plink->sata_spd_limit <= target_limit) 2066 return 0; 2067 2068 plink->sata_spd_limit = target_limit; 2069 2070 /* Request another EH round by returning -EAGAIN if link is 2071 * going faster than the target speed. Forward progress is 2072 * guaranteed by setting sata_spd_limit to target_limit above. 2073 */ 2074 if (plink->sata_spd > target) { 2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2076 sata_spd_string(target)); 2077 return -EAGAIN; 2078 } 2079 return 0; 2080 } 2081 2082 static inline u8 ata_dev_knobble(struct ata_device *dev) 2083 { 2084 struct ata_port *ap = dev->link->ap; 2085 2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2087 return 0; 2088 2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2090 } 2091 2092 static int ata_dev_config_ncq(struct ata_device *dev, 2093 char *desc, size_t desc_sz) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2097 unsigned int err_mask; 2098 char *aa_desc = ""; 2099 2100 if (!ata_id_has_ncq(dev->id)) { 2101 desc[0] = '\0'; 2102 return 0; 2103 } 2104 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2105 snprintf(desc, desc_sz, "NCQ (not used)"); 2106 return 0; 2107 } 2108 if (ap->flags & ATA_FLAG_NCQ) { 2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2110 dev->flags |= ATA_DFLAG_NCQ; 2111 } 2112 2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2114 (ap->flags & ATA_FLAG_FPDMA_AA) && 2115 ata_id_has_fpdma_aa(dev->id)) { 2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2117 SATA_FPDMA_AA); 2118 if (err_mask) { 2119 ata_dev_err(dev, 2120 "failed to enable AA (error_mask=0x%x)\n", 2121 err_mask); 2122 if (err_mask != AC_ERR_DEV) { 2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2124 return -EIO; 2125 } 2126 } else 2127 aa_desc = ", AA"; 2128 } 2129 2130 if (hdepth >= ddepth) 2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2132 else 2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2134 ddepth, aa_desc); 2135 return 0; 2136 } 2137 2138 /** 2139 * ata_dev_configure - Configure the specified ATA/ATAPI device 2140 * @dev: Target device to configure 2141 * 2142 * Configure @dev according to @dev->id. Generic and low-level 2143 * driver specific fixups are also applied. 2144 * 2145 * LOCKING: 2146 * Kernel thread context (may sleep) 2147 * 2148 * RETURNS: 2149 * 0 on success, -errno otherwise 2150 */ 2151 int ata_dev_configure(struct ata_device *dev) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 struct ata_eh_context *ehc = &dev->link->eh_context; 2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2156 const u16 *id = dev->id; 2157 unsigned long xfer_mask; 2158 unsigned int err_mask; 2159 char revbuf[7]; /* XYZ-99\0 */ 2160 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2161 char modelbuf[ATA_ID_PROD_LEN+1]; 2162 int rc; 2163 2164 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2165 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2166 return 0; 2167 } 2168 2169 if (ata_msg_probe(ap)) 2170 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2171 2172 /* set horkage */ 2173 dev->horkage |= ata_dev_blacklisted(dev); 2174 ata_force_horkage(dev); 2175 2176 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2177 ata_dev_info(dev, "unsupported device, disabling\n"); 2178 ata_dev_disable(dev); 2179 return 0; 2180 } 2181 2182 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2183 dev->class == ATA_DEV_ATAPI) { 2184 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2185 atapi_enabled ? "not supported with this driver" 2186 : "disabled"); 2187 ata_dev_disable(dev); 2188 return 0; 2189 } 2190 2191 rc = ata_do_link_spd_horkage(dev); 2192 if (rc) 2193 return rc; 2194 2195 /* let ACPI work its magic */ 2196 rc = ata_acpi_on_devcfg(dev); 2197 if (rc) 2198 return rc; 2199 2200 /* massage HPA, do it early as it might change IDENTIFY data */ 2201 rc = ata_hpa_resize(dev); 2202 if (rc) 2203 return rc; 2204 2205 /* print device capabilities */ 2206 if (ata_msg_probe(ap)) 2207 ata_dev_dbg(dev, 2208 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2209 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2210 __func__, 2211 id[49], id[82], id[83], id[84], 2212 id[85], id[86], id[87], id[88]); 2213 2214 /* initialize to-be-configured parameters */ 2215 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2216 dev->max_sectors = 0; 2217 dev->cdb_len = 0; 2218 dev->n_sectors = 0; 2219 dev->cylinders = 0; 2220 dev->heads = 0; 2221 dev->sectors = 0; 2222 dev->multi_count = 0; 2223 2224 /* 2225 * common ATA, ATAPI feature tests 2226 */ 2227 2228 /* find max transfer mode; for printk only */ 2229 xfer_mask = ata_id_xfermask(id); 2230 2231 if (ata_msg_probe(ap)) 2232 ata_dump_id(id); 2233 2234 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2235 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2236 sizeof(fwrevbuf)); 2237 2238 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2239 sizeof(modelbuf)); 2240 2241 /* ATA-specific feature tests */ 2242 if (dev->class == ATA_DEV_ATA) { 2243 if (ata_id_is_cfa(id)) { 2244 /* CPRM may make this media unusable */ 2245 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2246 ata_dev_warn(dev, 2247 "supports DRM functions and may not be fully accessible\n"); 2248 snprintf(revbuf, 7, "CFA"); 2249 } else { 2250 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2251 /* Warn the user if the device has TPM extensions */ 2252 if (ata_id_has_tpm(id)) 2253 ata_dev_warn(dev, 2254 "supports DRM functions and may not be fully accessible\n"); 2255 } 2256 2257 dev->n_sectors = ata_id_n_sectors(id); 2258 2259 /* get current R/W Multiple count setting */ 2260 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2261 unsigned int max = dev->id[47] & 0xff; 2262 unsigned int cnt = dev->id[59] & 0xff; 2263 /* only recognize/allow powers of two here */ 2264 if (is_power_of_2(max) && is_power_of_2(cnt)) 2265 if (cnt <= max) 2266 dev->multi_count = cnt; 2267 } 2268 2269 if (ata_id_has_lba(id)) { 2270 const char *lba_desc; 2271 char ncq_desc[24]; 2272 2273 lba_desc = "LBA"; 2274 dev->flags |= ATA_DFLAG_LBA; 2275 if (ata_id_has_lba48(id)) { 2276 dev->flags |= ATA_DFLAG_LBA48; 2277 lba_desc = "LBA48"; 2278 2279 if (dev->n_sectors >= (1UL << 28) && 2280 ata_id_has_flush_ext(id)) 2281 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2282 } 2283 2284 /* config NCQ */ 2285 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2286 if (rc) 2287 return rc; 2288 2289 /* print device info to dmesg */ 2290 if (ata_msg_drv(ap) && print_info) { 2291 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2292 revbuf, modelbuf, fwrevbuf, 2293 ata_mode_string(xfer_mask)); 2294 ata_dev_info(dev, 2295 "%llu sectors, multi %u: %s %s\n", 2296 (unsigned long long)dev->n_sectors, 2297 dev->multi_count, lba_desc, ncq_desc); 2298 } 2299 } else { 2300 /* CHS */ 2301 2302 /* Default translation */ 2303 dev->cylinders = id[1]; 2304 dev->heads = id[3]; 2305 dev->sectors = id[6]; 2306 2307 if (ata_id_current_chs_valid(id)) { 2308 /* Current CHS translation is valid. */ 2309 dev->cylinders = id[54]; 2310 dev->heads = id[55]; 2311 dev->sectors = id[56]; 2312 } 2313 2314 /* print device info to dmesg */ 2315 if (ata_msg_drv(ap) && print_info) { 2316 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2317 revbuf, modelbuf, fwrevbuf, 2318 ata_mode_string(xfer_mask)); 2319 ata_dev_info(dev, 2320 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2321 (unsigned long long)dev->n_sectors, 2322 dev->multi_count, dev->cylinders, 2323 dev->heads, dev->sectors); 2324 } 2325 } 2326 2327 /* check and mark DevSlp capability */ 2328 if (ata_id_has_devslp(dev->id)) 2329 dev->flags |= ATA_DFLAG_DEVSLP; 2330 2331 /* Obtain SATA Settings page from Identify Device Data Log, 2332 * which contains DevSlp timing variables etc. 2333 * Exclude old devices with ata_id_has_ncq() 2334 */ 2335 if (ata_id_has_ncq(dev->id)) { 2336 err_mask = ata_read_log_page(dev, 2337 ATA_LOG_SATA_ID_DEV_DATA, 2338 ATA_LOG_SATA_SETTINGS, 2339 dev->sata_settings, 2340 1); 2341 if (err_mask) 2342 ata_dev_dbg(dev, 2343 "failed to get Identify Device Data, Emask 0x%x\n", 2344 err_mask); 2345 } 2346 2347 dev->cdb_len = 16; 2348 } 2349 2350 /* ATAPI-specific feature tests */ 2351 else if (dev->class == ATA_DEV_ATAPI) { 2352 const char *cdb_intr_string = ""; 2353 const char *atapi_an_string = ""; 2354 const char *dma_dir_string = ""; 2355 u32 sntf; 2356 2357 rc = atapi_cdb_len(id); 2358 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2359 if (ata_msg_warn(ap)) 2360 ata_dev_warn(dev, "unsupported CDB len\n"); 2361 rc = -EINVAL; 2362 goto err_out_nosup; 2363 } 2364 dev->cdb_len = (unsigned int) rc; 2365 2366 /* Enable ATAPI AN if both the host and device have 2367 * the support. If PMP is attached, SNTF is required 2368 * to enable ATAPI AN to discern between PHY status 2369 * changed notifications and ATAPI ANs. 2370 */ 2371 if (atapi_an && 2372 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2373 (!sata_pmp_attached(ap) || 2374 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2375 /* issue SET feature command to turn this on */ 2376 err_mask = ata_dev_set_feature(dev, 2377 SETFEATURES_SATA_ENABLE, SATA_AN); 2378 if (err_mask) 2379 ata_dev_err(dev, 2380 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2381 err_mask); 2382 else { 2383 dev->flags |= ATA_DFLAG_AN; 2384 atapi_an_string = ", ATAPI AN"; 2385 } 2386 } 2387 2388 if (ata_id_cdb_intr(dev->id)) { 2389 dev->flags |= ATA_DFLAG_CDB_INTR; 2390 cdb_intr_string = ", CDB intr"; 2391 } 2392 2393 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2394 dev->flags |= ATA_DFLAG_DMADIR; 2395 dma_dir_string = ", DMADIR"; 2396 } 2397 2398 if (ata_id_has_da(dev->id)) 2399 dev->flags |= ATA_DFLAG_DA; 2400 2401 /* print device info to dmesg */ 2402 if (ata_msg_drv(ap) && print_info) 2403 ata_dev_info(dev, 2404 "ATAPI: %s, %s, max %s%s%s%s\n", 2405 modelbuf, fwrevbuf, 2406 ata_mode_string(xfer_mask), 2407 cdb_intr_string, atapi_an_string, 2408 dma_dir_string); 2409 } 2410 2411 /* determine max_sectors */ 2412 dev->max_sectors = ATA_MAX_SECTORS; 2413 if (dev->flags & ATA_DFLAG_LBA48) 2414 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2415 2416 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2417 200 sectors */ 2418 if (ata_dev_knobble(dev)) { 2419 if (ata_msg_drv(ap) && print_info) 2420 ata_dev_info(dev, "applying bridge limits\n"); 2421 dev->udma_mask &= ATA_UDMA5; 2422 dev->max_sectors = ATA_MAX_SECTORS; 2423 } 2424 2425 if ((dev->class == ATA_DEV_ATAPI) && 2426 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2427 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2428 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2429 } 2430 2431 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2432 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2433 dev->max_sectors); 2434 2435 if (ap->ops->dev_config) 2436 ap->ops->dev_config(dev); 2437 2438 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2439 /* Let the user know. We don't want to disallow opens for 2440 rescue purposes, or in case the vendor is just a blithering 2441 idiot. Do this after the dev_config call as some controllers 2442 with buggy firmware may want to avoid reporting false device 2443 bugs */ 2444 2445 if (print_info) { 2446 ata_dev_warn(dev, 2447 "Drive reports diagnostics failure. This may indicate a drive\n"); 2448 ata_dev_warn(dev, 2449 "fault or invalid emulation. Contact drive vendor for information.\n"); 2450 } 2451 } 2452 2453 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2454 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2455 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2456 } 2457 2458 return 0; 2459 2460 err_out_nosup: 2461 if (ata_msg_probe(ap)) 2462 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2463 return rc; 2464 } 2465 2466 /** 2467 * ata_cable_40wire - return 40 wire cable type 2468 * @ap: port 2469 * 2470 * Helper method for drivers which want to hardwire 40 wire cable 2471 * detection. 2472 */ 2473 2474 int ata_cable_40wire(struct ata_port *ap) 2475 { 2476 return ATA_CBL_PATA40; 2477 } 2478 2479 /** 2480 * ata_cable_80wire - return 80 wire cable type 2481 * @ap: port 2482 * 2483 * Helper method for drivers which want to hardwire 80 wire cable 2484 * detection. 2485 */ 2486 2487 int ata_cable_80wire(struct ata_port *ap) 2488 { 2489 return ATA_CBL_PATA80; 2490 } 2491 2492 /** 2493 * ata_cable_unknown - return unknown PATA cable. 2494 * @ap: port 2495 * 2496 * Helper method for drivers which have no PATA cable detection. 2497 */ 2498 2499 int ata_cable_unknown(struct ata_port *ap) 2500 { 2501 return ATA_CBL_PATA_UNK; 2502 } 2503 2504 /** 2505 * ata_cable_ignore - return ignored PATA cable. 2506 * @ap: port 2507 * 2508 * Helper method for drivers which don't use cable type to limit 2509 * transfer mode. 2510 */ 2511 int ata_cable_ignore(struct ata_port *ap) 2512 { 2513 return ATA_CBL_PATA_IGN; 2514 } 2515 2516 /** 2517 * ata_cable_sata - return SATA cable type 2518 * @ap: port 2519 * 2520 * Helper method for drivers which have SATA cables 2521 */ 2522 2523 int ata_cable_sata(struct ata_port *ap) 2524 { 2525 return ATA_CBL_SATA; 2526 } 2527 2528 /** 2529 * ata_bus_probe - Reset and probe ATA bus 2530 * @ap: Bus to probe 2531 * 2532 * Master ATA bus probing function. Initiates a hardware-dependent 2533 * bus reset, then attempts to identify any devices found on 2534 * the bus. 2535 * 2536 * LOCKING: 2537 * PCI/etc. bus probe sem. 2538 * 2539 * RETURNS: 2540 * Zero on success, negative errno otherwise. 2541 */ 2542 2543 int ata_bus_probe(struct ata_port *ap) 2544 { 2545 unsigned int classes[ATA_MAX_DEVICES]; 2546 int tries[ATA_MAX_DEVICES]; 2547 int rc; 2548 struct ata_device *dev; 2549 2550 ata_for_each_dev(dev, &ap->link, ALL) 2551 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2552 2553 retry: 2554 ata_for_each_dev(dev, &ap->link, ALL) { 2555 /* If we issue an SRST then an ATA drive (not ATAPI) 2556 * may change configuration and be in PIO0 timing. If 2557 * we do a hard reset (or are coming from power on) 2558 * this is true for ATA or ATAPI. Until we've set a 2559 * suitable controller mode we should not touch the 2560 * bus as we may be talking too fast. 2561 */ 2562 dev->pio_mode = XFER_PIO_0; 2563 2564 /* If the controller has a pio mode setup function 2565 * then use it to set the chipset to rights. Don't 2566 * touch the DMA setup as that will be dealt with when 2567 * configuring devices. 2568 */ 2569 if (ap->ops->set_piomode) 2570 ap->ops->set_piomode(ap, dev); 2571 } 2572 2573 /* reset and determine device classes */ 2574 ap->ops->phy_reset(ap); 2575 2576 ata_for_each_dev(dev, &ap->link, ALL) { 2577 if (dev->class != ATA_DEV_UNKNOWN) 2578 classes[dev->devno] = dev->class; 2579 else 2580 classes[dev->devno] = ATA_DEV_NONE; 2581 2582 dev->class = ATA_DEV_UNKNOWN; 2583 } 2584 2585 /* read IDENTIFY page and configure devices. We have to do the identify 2586 specific sequence bass-ackwards so that PDIAG- is released by 2587 the slave device */ 2588 2589 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2590 if (tries[dev->devno]) 2591 dev->class = classes[dev->devno]; 2592 2593 if (!ata_dev_enabled(dev)) 2594 continue; 2595 2596 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2597 dev->id); 2598 if (rc) 2599 goto fail; 2600 } 2601 2602 /* Now ask for the cable type as PDIAG- should have been released */ 2603 if (ap->ops->cable_detect) 2604 ap->cbl = ap->ops->cable_detect(ap); 2605 2606 /* We may have SATA bridge glue hiding here irrespective of 2607 * the reported cable types and sensed types. When SATA 2608 * drives indicate we have a bridge, we don't know which end 2609 * of the link the bridge is which is a problem. 2610 */ 2611 ata_for_each_dev(dev, &ap->link, ENABLED) 2612 if (ata_id_is_sata(dev->id)) 2613 ap->cbl = ATA_CBL_SATA; 2614 2615 /* After the identify sequence we can now set up the devices. We do 2616 this in the normal order so that the user doesn't get confused */ 2617 2618 ata_for_each_dev(dev, &ap->link, ENABLED) { 2619 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2620 rc = ata_dev_configure(dev); 2621 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2622 if (rc) 2623 goto fail; 2624 } 2625 2626 /* configure transfer mode */ 2627 rc = ata_set_mode(&ap->link, &dev); 2628 if (rc) 2629 goto fail; 2630 2631 ata_for_each_dev(dev, &ap->link, ENABLED) 2632 return 0; 2633 2634 return -ENODEV; 2635 2636 fail: 2637 tries[dev->devno]--; 2638 2639 switch (rc) { 2640 case -EINVAL: 2641 /* eeek, something went very wrong, give up */ 2642 tries[dev->devno] = 0; 2643 break; 2644 2645 case -ENODEV: 2646 /* give it just one more chance */ 2647 tries[dev->devno] = min(tries[dev->devno], 1); 2648 case -EIO: 2649 if (tries[dev->devno] == 1) { 2650 /* This is the last chance, better to slow 2651 * down than lose it. 2652 */ 2653 sata_down_spd_limit(&ap->link, 0); 2654 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2655 } 2656 } 2657 2658 if (!tries[dev->devno]) 2659 ata_dev_disable(dev); 2660 2661 goto retry; 2662 } 2663 2664 /** 2665 * sata_print_link_status - Print SATA link status 2666 * @link: SATA link to printk link status about 2667 * 2668 * This function prints link speed and status of a SATA link. 2669 * 2670 * LOCKING: 2671 * None. 2672 */ 2673 static void sata_print_link_status(struct ata_link *link) 2674 { 2675 u32 sstatus, scontrol, tmp; 2676 2677 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2678 return; 2679 sata_scr_read(link, SCR_CONTROL, &scontrol); 2680 2681 if (ata_phys_link_online(link)) { 2682 tmp = (sstatus >> 4) & 0xf; 2683 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2684 sata_spd_string(tmp), sstatus, scontrol); 2685 } else { 2686 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2687 sstatus, scontrol); 2688 } 2689 } 2690 2691 /** 2692 * ata_dev_pair - return other device on cable 2693 * @adev: device 2694 * 2695 * Obtain the other device on the same cable, or if none is 2696 * present NULL is returned 2697 */ 2698 2699 struct ata_device *ata_dev_pair(struct ata_device *adev) 2700 { 2701 struct ata_link *link = adev->link; 2702 struct ata_device *pair = &link->device[1 - adev->devno]; 2703 if (!ata_dev_enabled(pair)) 2704 return NULL; 2705 return pair; 2706 } 2707 2708 /** 2709 * sata_down_spd_limit - adjust SATA spd limit downward 2710 * @link: Link to adjust SATA spd limit for 2711 * @spd_limit: Additional limit 2712 * 2713 * Adjust SATA spd limit of @link downward. Note that this 2714 * function only adjusts the limit. The change must be applied 2715 * using sata_set_spd(). 2716 * 2717 * If @spd_limit is non-zero, the speed is limited to equal to or 2718 * lower than @spd_limit if such speed is supported. If 2719 * @spd_limit is slower than any supported speed, only the lowest 2720 * supported speed is allowed. 2721 * 2722 * LOCKING: 2723 * Inherited from caller. 2724 * 2725 * RETURNS: 2726 * 0 on success, negative errno on failure 2727 */ 2728 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2729 { 2730 u32 sstatus, spd, mask; 2731 int rc, bit; 2732 2733 if (!sata_scr_valid(link)) 2734 return -EOPNOTSUPP; 2735 2736 /* If SCR can be read, use it to determine the current SPD. 2737 * If not, use cached value in link->sata_spd. 2738 */ 2739 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2740 if (rc == 0 && ata_sstatus_online(sstatus)) 2741 spd = (sstatus >> 4) & 0xf; 2742 else 2743 spd = link->sata_spd; 2744 2745 mask = link->sata_spd_limit; 2746 if (mask <= 1) 2747 return -EINVAL; 2748 2749 /* unconditionally mask off the highest bit */ 2750 bit = fls(mask) - 1; 2751 mask &= ~(1 << bit); 2752 2753 /* Mask off all speeds higher than or equal to the current 2754 * one. Force 1.5Gbps if current SPD is not available. 2755 */ 2756 if (spd > 1) 2757 mask &= (1 << (spd - 1)) - 1; 2758 else 2759 mask &= 1; 2760 2761 /* were we already at the bottom? */ 2762 if (!mask) 2763 return -EINVAL; 2764 2765 if (spd_limit) { 2766 if (mask & ((1 << spd_limit) - 1)) 2767 mask &= (1 << spd_limit) - 1; 2768 else { 2769 bit = ffs(mask) - 1; 2770 mask = 1 << bit; 2771 } 2772 } 2773 2774 link->sata_spd_limit = mask; 2775 2776 ata_link_warn(link, "limiting SATA link speed to %s\n", 2777 sata_spd_string(fls(mask))); 2778 2779 return 0; 2780 } 2781 2782 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2783 { 2784 struct ata_link *host_link = &link->ap->link; 2785 u32 limit, target, spd; 2786 2787 limit = link->sata_spd_limit; 2788 2789 /* Don't configure downstream link faster than upstream link. 2790 * It doesn't speed up anything and some PMPs choke on such 2791 * configuration. 2792 */ 2793 if (!ata_is_host_link(link) && host_link->sata_spd) 2794 limit &= (1 << host_link->sata_spd) - 1; 2795 2796 if (limit == UINT_MAX) 2797 target = 0; 2798 else 2799 target = fls(limit); 2800 2801 spd = (*scontrol >> 4) & 0xf; 2802 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2803 2804 return spd != target; 2805 } 2806 2807 /** 2808 * sata_set_spd_needed - is SATA spd configuration needed 2809 * @link: Link in question 2810 * 2811 * Test whether the spd limit in SControl matches 2812 * @link->sata_spd_limit. This function is used to determine 2813 * whether hardreset is necessary to apply SATA spd 2814 * configuration. 2815 * 2816 * LOCKING: 2817 * Inherited from caller. 2818 * 2819 * RETURNS: 2820 * 1 if SATA spd configuration is needed, 0 otherwise. 2821 */ 2822 static int sata_set_spd_needed(struct ata_link *link) 2823 { 2824 u32 scontrol; 2825 2826 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2827 return 1; 2828 2829 return __sata_set_spd_needed(link, &scontrol); 2830 } 2831 2832 /** 2833 * sata_set_spd - set SATA spd according to spd limit 2834 * @link: Link to set SATA spd for 2835 * 2836 * Set SATA spd of @link according to sata_spd_limit. 2837 * 2838 * LOCKING: 2839 * Inherited from caller. 2840 * 2841 * RETURNS: 2842 * 0 if spd doesn't need to be changed, 1 if spd has been 2843 * changed. Negative errno if SCR registers are inaccessible. 2844 */ 2845 int sata_set_spd(struct ata_link *link) 2846 { 2847 u32 scontrol; 2848 int rc; 2849 2850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2851 return rc; 2852 2853 if (!__sata_set_spd_needed(link, &scontrol)) 2854 return 0; 2855 2856 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2857 return rc; 2858 2859 return 1; 2860 } 2861 2862 /* 2863 * This mode timing computation functionality is ported over from 2864 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2865 */ 2866 /* 2867 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2868 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2869 * for UDMA6, which is currently supported only by Maxtor drives. 2870 * 2871 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2872 */ 2873 2874 static const struct ata_timing ata_timing[] = { 2875 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2877 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2878 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2879 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2880 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2881 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2882 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2883 2884 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2885 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2886 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2887 2888 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2889 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2890 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2891 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2892 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2893 2894 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2895 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2896 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2897 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2898 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2899 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2900 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2901 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2902 2903 { 0xFF } 2904 }; 2905 2906 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2907 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2908 2909 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2910 { 2911 q->setup = EZ(t->setup * 1000, T); 2912 q->act8b = EZ(t->act8b * 1000, T); 2913 q->rec8b = EZ(t->rec8b * 1000, T); 2914 q->cyc8b = EZ(t->cyc8b * 1000, T); 2915 q->active = EZ(t->active * 1000, T); 2916 q->recover = EZ(t->recover * 1000, T); 2917 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2918 q->cycle = EZ(t->cycle * 1000, T); 2919 q->udma = EZ(t->udma * 1000, UT); 2920 } 2921 2922 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2923 struct ata_timing *m, unsigned int what) 2924 { 2925 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2926 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2927 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2928 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2929 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2930 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2931 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2932 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2933 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2934 } 2935 2936 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2937 { 2938 const struct ata_timing *t = ata_timing; 2939 2940 while (xfer_mode > t->mode) 2941 t++; 2942 2943 if (xfer_mode == t->mode) 2944 return t; 2945 return NULL; 2946 } 2947 2948 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2949 struct ata_timing *t, int T, int UT) 2950 { 2951 const u16 *id = adev->id; 2952 const struct ata_timing *s; 2953 struct ata_timing p; 2954 2955 /* 2956 * Find the mode. 2957 */ 2958 2959 if (!(s = ata_timing_find_mode(speed))) 2960 return -EINVAL; 2961 2962 memcpy(t, s, sizeof(*s)); 2963 2964 /* 2965 * If the drive is an EIDE drive, it can tell us it needs extended 2966 * PIO/MW_DMA cycle timing. 2967 */ 2968 2969 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2970 memset(&p, 0, sizeof(p)); 2971 2972 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2973 if (speed <= XFER_PIO_2) 2974 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2975 else if ((speed <= XFER_PIO_4) || 2976 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2977 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2978 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2979 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2980 2981 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2982 } 2983 2984 /* 2985 * Convert the timing to bus clock counts. 2986 */ 2987 2988 ata_timing_quantize(t, t, T, UT); 2989 2990 /* 2991 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2992 * S.M.A.R.T * and some other commands. We have to ensure that the 2993 * DMA cycle timing is slower/equal than the fastest PIO timing. 2994 */ 2995 2996 if (speed > XFER_PIO_6) { 2997 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2998 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2999 } 3000 3001 /* 3002 * Lengthen active & recovery time so that cycle time is correct. 3003 */ 3004 3005 if (t->act8b + t->rec8b < t->cyc8b) { 3006 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3007 t->rec8b = t->cyc8b - t->act8b; 3008 } 3009 3010 if (t->active + t->recover < t->cycle) { 3011 t->active += (t->cycle - (t->active + t->recover)) / 2; 3012 t->recover = t->cycle - t->active; 3013 } 3014 3015 /* In a few cases quantisation may produce enough errors to 3016 leave t->cycle too low for the sum of active and recovery 3017 if so we must correct this */ 3018 if (t->active + t->recover > t->cycle) 3019 t->cycle = t->active + t->recover; 3020 3021 return 0; 3022 } 3023 3024 /** 3025 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3026 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3027 * @cycle: cycle duration in ns 3028 * 3029 * Return matching xfer mode for @cycle. The returned mode is of 3030 * the transfer type specified by @xfer_shift. If @cycle is too 3031 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3032 * than the fastest known mode, the fasted mode is returned. 3033 * 3034 * LOCKING: 3035 * None. 3036 * 3037 * RETURNS: 3038 * Matching xfer_mode, 0xff if no match found. 3039 */ 3040 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3041 { 3042 u8 base_mode = 0xff, last_mode = 0xff; 3043 const struct ata_xfer_ent *ent; 3044 const struct ata_timing *t; 3045 3046 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3047 if (ent->shift == xfer_shift) 3048 base_mode = ent->base; 3049 3050 for (t = ata_timing_find_mode(base_mode); 3051 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3052 unsigned short this_cycle; 3053 3054 switch (xfer_shift) { 3055 case ATA_SHIFT_PIO: 3056 case ATA_SHIFT_MWDMA: 3057 this_cycle = t->cycle; 3058 break; 3059 case ATA_SHIFT_UDMA: 3060 this_cycle = t->udma; 3061 break; 3062 default: 3063 return 0xff; 3064 } 3065 3066 if (cycle > this_cycle) 3067 break; 3068 3069 last_mode = t->mode; 3070 } 3071 3072 return last_mode; 3073 } 3074 3075 /** 3076 * ata_down_xfermask_limit - adjust dev xfer masks downward 3077 * @dev: Device to adjust xfer masks 3078 * @sel: ATA_DNXFER_* selector 3079 * 3080 * Adjust xfer masks of @dev downward. Note that this function 3081 * does not apply the change. Invoking ata_set_mode() afterwards 3082 * will apply the limit. 3083 * 3084 * LOCKING: 3085 * Inherited from caller. 3086 * 3087 * RETURNS: 3088 * 0 on success, negative errno on failure 3089 */ 3090 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3091 { 3092 char buf[32]; 3093 unsigned long orig_mask, xfer_mask; 3094 unsigned long pio_mask, mwdma_mask, udma_mask; 3095 int quiet, highbit; 3096 3097 quiet = !!(sel & ATA_DNXFER_QUIET); 3098 sel &= ~ATA_DNXFER_QUIET; 3099 3100 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3101 dev->mwdma_mask, 3102 dev->udma_mask); 3103 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3104 3105 switch (sel) { 3106 case ATA_DNXFER_PIO: 3107 highbit = fls(pio_mask) - 1; 3108 pio_mask &= ~(1 << highbit); 3109 break; 3110 3111 case ATA_DNXFER_DMA: 3112 if (udma_mask) { 3113 highbit = fls(udma_mask) - 1; 3114 udma_mask &= ~(1 << highbit); 3115 if (!udma_mask) 3116 return -ENOENT; 3117 } else if (mwdma_mask) { 3118 highbit = fls(mwdma_mask) - 1; 3119 mwdma_mask &= ~(1 << highbit); 3120 if (!mwdma_mask) 3121 return -ENOENT; 3122 } 3123 break; 3124 3125 case ATA_DNXFER_40C: 3126 udma_mask &= ATA_UDMA_MASK_40C; 3127 break; 3128 3129 case ATA_DNXFER_FORCE_PIO0: 3130 pio_mask &= 1; 3131 case ATA_DNXFER_FORCE_PIO: 3132 mwdma_mask = 0; 3133 udma_mask = 0; 3134 break; 3135 3136 default: 3137 BUG(); 3138 } 3139 3140 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3141 3142 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3143 return -ENOENT; 3144 3145 if (!quiet) { 3146 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3147 snprintf(buf, sizeof(buf), "%s:%s", 3148 ata_mode_string(xfer_mask), 3149 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3150 else 3151 snprintf(buf, sizeof(buf), "%s", 3152 ata_mode_string(xfer_mask)); 3153 3154 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3155 } 3156 3157 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3158 &dev->udma_mask); 3159 3160 return 0; 3161 } 3162 3163 static int ata_dev_set_mode(struct ata_device *dev) 3164 { 3165 struct ata_port *ap = dev->link->ap; 3166 struct ata_eh_context *ehc = &dev->link->eh_context; 3167 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3168 const char *dev_err_whine = ""; 3169 int ign_dev_err = 0; 3170 unsigned int err_mask = 0; 3171 int rc; 3172 3173 dev->flags &= ~ATA_DFLAG_PIO; 3174 if (dev->xfer_shift == ATA_SHIFT_PIO) 3175 dev->flags |= ATA_DFLAG_PIO; 3176 3177 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3178 dev_err_whine = " (SET_XFERMODE skipped)"; 3179 else { 3180 if (nosetxfer) 3181 ata_dev_warn(dev, 3182 "NOSETXFER but PATA detected - can't " 3183 "skip SETXFER, might malfunction\n"); 3184 err_mask = ata_dev_set_xfermode(dev); 3185 } 3186 3187 if (err_mask & ~AC_ERR_DEV) 3188 goto fail; 3189 3190 /* revalidate */ 3191 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3192 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3193 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3194 if (rc) 3195 return rc; 3196 3197 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3198 /* Old CFA may refuse this command, which is just fine */ 3199 if (ata_id_is_cfa(dev->id)) 3200 ign_dev_err = 1; 3201 /* Catch several broken garbage emulations plus some pre 3202 ATA devices */ 3203 if (ata_id_major_version(dev->id) == 0 && 3204 dev->pio_mode <= XFER_PIO_2) 3205 ign_dev_err = 1; 3206 /* Some very old devices and some bad newer ones fail 3207 any kind of SET_XFERMODE request but support PIO0-2 3208 timings and no IORDY */ 3209 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3210 ign_dev_err = 1; 3211 } 3212 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3213 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3214 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3215 dev->dma_mode == XFER_MW_DMA_0 && 3216 (dev->id[63] >> 8) & 1) 3217 ign_dev_err = 1; 3218 3219 /* if the device is actually configured correctly, ignore dev err */ 3220 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3221 ign_dev_err = 1; 3222 3223 if (err_mask & AC_ERR_DEV) { 3224 if (!ign_dev_err) 3225 goto fail; 3226 else 3227 dev_err_whine = " (device error ignored)"; 3228 } 3229 3230 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3231 dev->xfer_shift, (int)dev->xfer_mode); 3232 3233 ata_dev_info(dev, "configured for %s%s\n", 3234 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3235 dev_err_whine); 3236 3237 return 0; 3238 3239 fail: 3240 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3241 return -EIO; 3242 } 3243 3244 /** 3245 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3246 * @link: link on which timings will be programmed 3247 * @r_failed_dev: out parameter for failed device 3248 * 3249 * Standard implementation of the function used to tune and set 3250 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3251 * ata_dev_set_mode() fails, pointer to the failing device is 3252 * returned in @r_failed_dev. 3253 * 3254 * LOCKING: 3255 * PCI/etc. bus probe sem. 3256 * 3257 * RETURNS: 3258 * 0 on success, negative errno otherwise 3259 */ 3260 3261 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3262 { 3263 struct ata_port *ap = link->ap; 3264 struct ata_device *dev; 3265 int rc = 0, used_dma = 0, found = 0; 3266 3267 /* step 1: calculate xfer_mask */ 3268 ata_for_each_dev(dev, link, ENABLED) { 3269 unsigned long pio_mask, dma_mask; 3270 unsigned int mode_mask; 3271 3272 mode_mask = ATA_DMA_MASK_ATA; 3273 if (dev->class == ATA_DEV_ATAPI) 3274 mode_mask = ATA_DMA_MASK_ATAPI; 3275 else if (ata_id_is_cfa(dev->id)) 3276 mode_mask = ATA_DMA_MASK_CFA; 3277 3278 ata_dev_xfermask(dev); 3279 ata_force_xfermask(dev); 3280 3281 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3282 3283 if (libata_dma_mask & mode_mask) 3284 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3285 dev->udma_mask); 3286 else 3287 dma_mask = 0; 3288 3289 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3290 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3291 3292 found = 1; 3293 if (ata_dma_enabled(dev)) 3294 used_dma = 1; 3295 } 3296 if (!found) 3297 goto out; 3298 3299 /* step 2: always set host PIO timings */ 3300 ata_for_each_dev(dev, link, ENABLED) { 3301 if (dev->pio_mode == 0xff) { 3302 ata_dev_warn(dev, "no PIO support\n"); 3303 rc = -EINVAL; 3304 goto out; 3305 } 3306 3307 dev->xfer_mode = dev->pio_mode; 3308 dev->xfer_shift = ATA_SHIFT_PIO; 3309 if (ap->ops->set_piomode) 3310 ap->ops->set_piomode(ap, dev); 3311 } 3312 3313 /* step 3: set host DMA timings */ 3314 ata_for_each_dev(dev, link, ENABLED) { 3315 if (!ata_dma_enabled(dev)) 3316 continue; 3317 3318 dev->xfer_mode = dev->dma_mode; 3319 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3320 if (ap->ops->set_dmamode) 3321 ap->ops->set_dmamode(ap, dev); 3322 } 3323 3324 /* step 4: update devices' xfer mode */ 3325 ata_for_each_dev(dev, link, ENABLED) { 3326 rc = ata_dev_set_mode(dev); 3327 if (rc) 3328 goto out; 3329 } 3330 3331 /* Record simplex status. If we selected DMA then the other 3332 * host channels are not permitted to do so. 3333 */ 3334 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3335 ap->host->simplex_claimed = ap; 3336 3337 out: 3338 if (rc) 3339 *r_failed_dev = dev; 3340 return rc; 3341 } 3342 3343 /** 3344 * ata_wait_ready - wait for link to become ready 3345 * @link: link to be waited on 3346 * @deadline: deadline jiffies for the operation 3347 * @check_ready: callback to check link readiness 3348 * 3349 * Wait for @link to become ready. @check_ready should return 3350 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3351 * link doesn't seem to be occupied, other errno for other error 3352 * conditions. 3353 * 3354 * Transient -ENODEV conditions are allowed for 3355 * ATA_TMOUT_FF_WAIT. 3356 * 3357 * LOCKING: 3358 * EH context. 3359 * 3360 * RETURNS: 3361 * 0 if @linke is ready before @deadline; otherwise, -errno. 3362 */ 3363 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3364 int (*check_ready)(struct ata_link *link)) 3365 { 3366 unsigned long start = jiffies; 3367 unsigned long nodev_deadline; 3368 int warned = 0; 3369 3370 /* choose which 0xff timeout to use, read comment in libata.h */ 3371 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3372 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3373 else 3374 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3375 3376 /* Slave readiness can't be tested separately from master. On 3377 * M/S emulation configuration, this function should be called 3378 * only on the master and it will handle both master and slave. 3379 */ 3380 WARN_ON(link == link->ap->slave_link); 3381 3382 if (time_after(nodev_deadline, deadline)) 3383 nodev_deadline = deadline; 3384 3385 while (1) { 3386 unsigned long now = jiffies; 3387 int ready, tmp; 3388 3389 ready = tmp = check_ready(link); 3390 if (ready > 0) 3391 return 0; 3392 3393 /* 3394 * -ENODEV could be transient. Ignore -ENODEV if link 3395 * is online. Also, some SATA devices take a long 3396 * time to clear 0xff after reset. Wait for 3397 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3398 * offline. 3399 * 3400 * Note that some PATA controllers (pata_ali) explode 3401 * if status register is read more than once when 3402 * there's no device attached. 3403 */ 3404 if (ready == -ENODEV) { 3405 if (ata_link_online(link)) 3406 ready = 0; 3407 else if ((link->ap->flags & ATA_FLAG_SATA) && 3408 !ata_link_offline(link) && 3409 time_before(now, nodev_deadline)) 3410 ready = 0; 3411 } 3412 3413 if (ready) 3414 return ready; 3415 if (time_after(now, deadline)) 3416 return -EBUSY; 3417 3418 if (!warned && time_after(now, start + 5 * HZ) && 3419 (deadline - now > 3 * HZ)) { 3420 ata_link_warn(link, 3421 "link is slow to respond, please be patient " 3422 "(ready=%d)\n", tmp); 3423 warned = 1; 3424 } 3425 3426 ata_msleep(link->ap, 50); 3427 } 3428 } 3429 3430 /** 3431 * ata_wait_after_reset - wait for link to become ready after reset 3432 * @link: link to be waited on 3433 * @deadline: deadline jiffies for the operation 3434 * @check_ready: callback to check link readiness 3435 * 3436 * Wait for @link to become ready after reset. 3437 * 3438 * LOCKING: 3439 * EH context. 3440 * 3441 * RETURNS: 3442 * 0 if @linke is ready before @deadline; otherwise, -errno. 3443 */ 3444 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3445 int (*check_ready)(struct ata_link *link)) 3446 { 3447 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3448 3449 return ata_wait_ready(link, deadline, check_ready); 3450 } 3451 3452 /** 3453 * sata_link_debounce - debounce SATA phy status 3454 * @link: ATA link to debounce SATA phy status for 3455 * @params: timing parameters { interval, duratinon, timeout } in msec 3456 * @deadline: deadline jiffies for the operation 3457 * 3458 * Make sure SStatus of @link reaches stable state, determined by 3459 * holding the same value where DET is not 1 for @duration polled 3460 * every @interval, before @timeout. Timeout constraints the 3461 * beginning of the stable state. Because DET gets stuck at 1 on 3462 * some controllers after hot unplugging, this functions waits 3463 * until timeout then returns 0 if DET is stable at 1. 3464 * 3465 * @timeout is further limited by @deadline. The sooner of the 3466 * two is used. 3467 * 3468 * LOCKING: 3469 * Kernel thread context (may sleep) 3470 * 3471 * RETURNS: 3472 * 0 on success, -errno on failure. 3473 */ 3474 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3475 unsigned long deadline) 3476 { 3477 unsigned long interval = params[0]; 3478 unsigned long duration = params[1]; 3479 unsigned long last_jiffies, t; 3480 u32 last, cur; 3481 int rc; 3482 3483 t = ata_deadline(jiffies, params[2]); 3484 if (time_before(t, deadline)) 3485 deadline = t; 3486 3487 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3488 return rc; 3489 cur &= 0xf; 3490 3491 last = cur; 3492 last_jiffies = jiffies; 3493 3494 while (1) { 3495 ata_msleep(link->ap, interval); 3496 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3497 return rc; 3498 cur &= 0xf; 3499 3500 /* DET stable? */ 3501 if (cur == last) { 3502 if (cur == 1 && time_before(jiffies, deadline)) 3503 continue; 3504 if (time_after(jiffies, 3505 ata_deadline(last_jiffies, duration))) 3506 return 0; 3507 continue; 3508 } 3509 3510 /* unstable, start over */ 3511 last = cur; 3512 last_jiffies = jiffies; 3513 3514 /* Check deadline. If debouncing failed, return 3515 * -EPIPE to tell upper layer to lower link speed. 3516 */ 3517 if (time_after(jiffies, deadline)) 3518 return -EPIPE; 3519 } 3520 } 3521 3522 /** 3523 * sata_link_resume - resume SATA link 3524 * @link: ATA link to resume SATA 3525 * @params: timing parameters { interval, duratinon, timeout } in msec 3526 * @deadline: deadline jiffies for the operation 3527 * 3528 * Resume SATA phy @link and debounce it. 3529 * 3530 * LOCKING: 3531 * Kernel thread context (may sleep) 3532 * 3533 * RETURNS: 3534 * 0 on success, -errno on failure. 3535 */ 3536 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3537 unsigned long deadline) 3538 { 3539 int tries = ATA_LINK_RESUME_TRIES; 3540 u32 scontrol, serror; 3541 int rc; 3542 3543 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3544 return rc; 3545 3546 /* 3547 * Writes to SControl sometimes get ignored under certain 3548 * controllers (ata_piix SIDPR). Make sure DET actually is 3549 * cleared. 3550 */ 3551 do { 3552 scontrol = (scontrol & 0x0f0) | 0x300; 3553 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3554 return rc; 3555 /* 3556 * Some PHYs react badly if SStatus is pounded 3557 * immediately after resuming. Delay 200ms before 3558 * debouncing. 3559 */ 3560 ata_msleep(link->ap, 200); 3561 3562 /* is SControl restored correctly? */ 3563 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3564 return rc; 3565 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3566 3567 if ((scontrol & 0xf0f) != 0x300) { 3568 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3569 scontrol); 3570 return 0; 3571 } 3572 3573 if (tries < ATA_LINK_RESUME_TRIES) 3574 ata_link_warn(link, "link resume succeeded after %d retries\n", 3575 ATA_LINK_RESUME_TRIES - tries); 3576 3577 if ((rc = sata_link_debounce(link, params, deadline))) 3578 return rc; 3579 3580 /* clear SError, some PHYs require this even for SRST to work */ 3581 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3582 rc = sata_scr_write(link, SCR_ERROR, serror); 3583 3584 return rc != -EINVAL ? rc : 0; 3585 } 3586 3587 /** 3588 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3589 * @link: ATA link to manipulate SControl for 3590 * @policy: LPM policy to configure 3591 * @spm_wakeup: initiate LPM transition to active state 3592 * 3593 * Manipulate the IPM field of the SControl register of @link 3594 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3595 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3596 * the link. This function also clears PHYRDY_CHG before 3597 * returning. 3598 * 3599 * LOCKING: 3600 * EH context. 3601 * 3602 * RETURNS: 3603 * 0 on succes, -errno otherwise. 3604 */ 3605 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3606 bool spm_wakeup) 3607 { 3608 struct ata_eh_context *ehc = &link->eh_context; 3609 bool woken_up = false; 3610 u32 scontrol; 3611 int rc; 3612 3613 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3614 if (rc) 3615 return rc; 3616 3617 switch (policy) { 3618 case ATA_LPM_MAX_POWER: 3619 /* disable all LPM transitions */ 3620 scontrol |= (0x7 << 8); 3621 /* initiate transition to active state */ 3622 if (spm_wakeup) { 3623 scontrol |= (0x4 << 12); 3624 woken_up = true; 3625 } 3626 break; 3627 case ATA_LPM_MED_POWER: 3628 /* allow LPM to PARTIAL */ 3629 scontrol &= ~(0x1 << 8); 3630 scontrol |= (0x6 << 8); 3631 break; 3632 case ATA_LPM_MIN_POWER: 3633 if (ata_link_nr_enabled(link) > 0) 3634 /* no restrictions on LPM transitions */ 3635 scontrol &= ~(0x7 << 8); 3636 else { 3637 /* empty port, power off */ 3638 scontrol &= ~0xf; 3639 scontrol |= (0x1 << 2); 3640 } 3641 break; 3642 default: 3643 WARN_ON(1); 3644 } 3645 3646 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3647 if (rc) 3648 return rc; 3649 3650 /* give the link time to transit out of LPM state */ 3651 if (woken_up) 3652 msleep(10); 3653 3654 /* clear PHYRDY_CHG from SError */ 3655 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3656 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3657 } 3658 3659 /** 3660 * ata_std_prereset - prepare for reset 3661 * @link: ATA link to be reset 3662 * @deadline: deadline jiffies for the operation 3663 * 3664 * @link is about to be reset. Initialize it. Failure from 3665 * prereset makes libata abort whole reset sequence and give up 3666 * that port, so prereset should be best-effort. It does its 3667 * best to prepare for reset sequence but if things go wrong, it 3668 * should just whine, not fail. 3669 * 3670 * LOCKING: 3671 * Kernel thread context (may sleep) 3672 * 3673 * RETURNS: 3674 * 0 on success, -errno otherwise. 3675 */ 3676 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3677 { 3678 struct ata_port *ap = link->ap; 3679 struct ata_eh_context *ehc = &link->eh_context; 3680 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3681 int rc; 3682 3683 /* if we're about to do hardreset, nothing more to do */ 3684 if (ehc->i.action & ATA_EH_HARDRESET) 3685 return 0; 3686 3687 /* if SATA, resume link */ 3688 if (ap->flags & ATA_FLAG_SATA) { 3689 rc = sata_link_resume(link, timing, deadline); 3690 /* whine about phy resume failure but proceed */ 3691 if (rc && rc != -EOPNOTSUPP) 3692 ata_link_warn(link, 3693 "failed to resume link for reset (errno=%d)\n", 3694 rc); 3695 } 3696 3697 /* no point in trying softreset on offline link */ 3698 if (ata_phys_link_offline(link)) 3699 ehc->i.action &= ~ATA_EH_SOFTRESET; 3700 3701 return 0; 3702 } 3703 3704 /** 3705 * sata_link_hardreset - reset link via SATA phy reset 3706 * @link: link to reset 3707 * @timing: timing parameters { interval, duratinon, timeout } in msec 3708 * @deadline: deadline jiffies for the operation 3709 * @online: optional out parameter indicating link onlineness 3710 * @check_ready: optional callback to check link readiness 3711 * 3712 * SATA phy-reset @link using DET bits of SControl register. 3713 * After hardreset, link readiness is waited upon using 3714 * ata_wait_ready() if @check_ready is specified. LLDs are 3715 * allowed to not specify @check_ready and wait itself after this 3716 * function returns. Device classification is LLD's 3717 * responsibility. 3718 * 3719 * *@online is set to one iff reset succeeded and @link is online 3720 * after reset. 3721 * 3722 * LOCKING: 3723 * Kernel thread context (may sleep) 3724 * 3725 * RETURNS: 3726 * 0 on success, -errno otherwise. 3727 */ 3728 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3729 unsigned long deadline, 3730 bool *online, int (*check_ready)(struct ata_link *)) 3731 { 3732 u32 scontrol; 3733 int rc; 3734 3735 DPRINTK("ENTER\n"); 3736 3737 if (online) 3738 *online = false; 3739 3740 if (sata_set_spd_needed(link)) { 3741 /* SATA spec says nothing about how to reconfigure 3742 * spd. To be on the safe side, turn off phy during 3743 * reconfiguration. This works for at least ICH7 AHCI 3744 * and Sil3124. 3745 */ 3746 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3747 goto out; 3748 3749 scontrol = (scontrol & 0x0f0) | 0x304; 3750 3751 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3752 goto out; 3753 3754 sata_set_spd(link); 3755 } 3756 3757 /* issue phy wake/reset */ 3758 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3759 goto out; 3760 3761 scontrol = (scontrol & 0x0f0) | 0x301; 3762 3763 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3764 goto out; 3765 3766 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3767 * 10.4.2 says at least 1 ms. 3768 */ 3769 ata_msleep(link->ap, 1); 3770 3771 /* bring link back */ 3772 rc = sata_link_resume(link, timing, deadline); 3773 if (rc) 3774 goto out; 3775 /* if link is offline nothing more to do */ 3776 if (ata_phys_link_offline(link)) 3777 goto out; 3778 3779 /* Link is online. From this point, -ENODEV too is an error. */ 3780 if (online) 3781 *online = true; 3782 3783 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3784 /* If PMP is supported, we have to do follow-up SRST. 3785 * Some PMPs don't send D2H Reg FIS after hardreset if 3786 * the first port is empty. Wait only for 3787 * ATA_TMOUT_PMP_SRST_WAIT. 3788 */ 3789 if (check_ready) { 3790 unsigned long pmp_deadline; 3791 3792 pmp_deadline = ata_deadline(jiffies, 3793 ATA_TMOUT_PMP_SRST_WAIT); 3794 if (time_after(pmp_deadline, deadline)) 3795 pmp_deadline = deadline; 3796 ata_wait_ready(link, pmp_deadline, check_ready); 3797 } 3798 rc = -EAGAIN; 3799 goto out; 3800 } 3801 3802 rc = 0; 3803 if (check_ready) 3804 rc = ata_wait_ready(link, deadline, check_ready); 3805 out: 3806 if (rc && rc != -EAGAIN) { 3807 /* online is set iff link is online && reset succeeded */ 3808 if (online) 3809 *online = false; 3810 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3811 } 3812 DPRINTK("EXIT, rc=%d\n", rc); 3813 return rc; 3814 } 3815 3816 /** 3817 * sata_std_hardreset - COMRESET w/o waiting or classification 3818 * @link: link to reset 3819 * @class: resulting class of attached device 3820 * @deadline: deadline jiffies for the operation 3821 * 3822 * Standard SATA COMRESET w/o waiting or classification. 3823 * 3824 * LOCKING: 3825 * Kernel thread context (may sleep) 3826 * 3827 * RETURNS: 3828 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3829 */ 3830 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3831 unsigned long deadline) 3832 { 3833 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3834 bool online; 3835 int rc; 3836 3837 /* do hardreset */ 3838 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3839 return online ? -EAGAIN : rc; 3840 } 3841 3842 /** 3843 * ata_std_postreset - standard postreset callback 3844 * @link: the target ata_link 3845 * @classes: classes of attached devices 3846 * 3847 * This function is invoked after a successful reset. Note that 3848 * the device might have been reset more than once using 3849 * different reset methods before postreset is invoked. 3850 * 3851 * LOCKING: 3852 * Kernel thread context (may sleep) 3853 */ 3854 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3855 { 3856 u32 serror; 3857 3858 DPRINTK("ENTER\n"); 3859 3860 /* reset complete, clear SError */ 3861 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3862 sata_scr_write(link, SCR_ERROR, serror); 3863 3864 /* print link status */ 3865 sata_print_link_status(link); 3866 3867 DPRINTK("EXIT\n"); 3868 } 3869 3870 /** 3871 * ata_dev_same_device - Determine whether new ID matches configured device 3872 * @dev: device to compare against 3873 * @new_class: class of the new device 3874 * @new_id: IDENTIFY page of the new device 3875 * 3876 * Compare @new_class and @new_id against @dev and determine 3877 * whether @dev is the device indicated by @new_class and 3878 * @new_id. 3879 * 3880 * LOCKING: 3881 * None. 3882 * 3883 * RETURNS: 3884 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3885 */ 3886 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3887 const u16 *new_id) 3888 { 3889 const u16 *old_id = dev->id; 3890 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3891 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3892 3893 if (dev->class != new_class) { 3894 ata_dev_info(dev, "class mismatch %d != %d\n", 3895 dev->class, new_class); 3896 return 0; 3897 } 3898 3899 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3900 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3901 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3902 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3903 3904 if (strcmp(model[0], model[1])) { 3905 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3906 model[0], model[1]); 3907 return 0; 3908 } 3909 3910 if (strcmp(serial[0], serial[1])) { 3911 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3912 serial[0], serial[1]); 3913 return 0; 3914 } 3915 3916 return 1; 3917 } 3918 3919 /** 3920 * ata_dev_reread_id - Re-read IDENTIFY data 3921 * @dev: target ATA device 3922 * @readid_flags: read ID flags 3923 * 3924 * Re-read IDENTIFY page and make sure @dev is still attached to 3925 * the port. 3926 * 3927 * LOCKING: 3928 * Kernel thread context (may sleep) 3929 * 3930 * RETURNS: 3931 * 0 on success, negative errno otherwise 3932 */ 3933 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3934 { 3935 unsigned int class = dev->class; 3936 u16 *id = (void *)dev->link->ap->sector_buf; 3937 int rc; 3938 3939 /* read ID data */ 3940 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3941 if (rc) 3942 return rc; 3943 3944 /* is the device still there? */ 3945 if (!ata_dev_same_device(dev, class, id)) 3946 return -ENODEV; 3947 3948 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3949 return 0; 3950 } 3951 3952 /** 3953 * ata_dev_revalidate - Revalidate ATA device 3954 * @dev: device to revalidate 3955 * @new_class: new class code 3956 * @readid_flags: read ID flags 3957 * 3958 * Re-read IDENTIFY page, make sure @dev is still attached to the 3959 * port and reconfigure it according to the new IDENTIFY page. 3960 * 3961 * LOCKING: 3962 * Kernel thread context (may sleep) 3963 * 3964 * RETURNS: 3965 * 0 on success, negative errno otherwise 3966 */ 3967 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3968 unsigned int readid_flags) 3969 { 3970 u64 n_sectors = dev->n_sectors; 3971 u64 n_native_sectors = dev->n_native_sectors; 3972 int rc; 3973 3974 if (!ata_dev_enabled(dev)) 3975 return -ENODEV; 3976 3977 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3978 if (ata_class_enabled(new_class) && 3979 new_class != ATA_DEV_ATA && 3980 new_class != ATA_DEV_ATAPI && 3981 new_class != ATA_DEV_SEMB) { 3982 ata_dev_info(dev, "class mismatch %u != %u\n", 3983 dev->class, new_class); 3984 rc = -ENODEV; 3985 goto fail; 3986 } 3987 3988 /* re-read ID */ 3989 rc = ata_dev_reread_id(dev, readid_flags); 3990 if (rc) 3991 goto fail; 3992 3993 /* configure device according to the new ID */ 3994 rc = ata_dev_configure(dev); 3995 if (rc) 3996 goto fail; 3997 3998 /* verify n_sectors hasn't changed */ 3999 if (dev->class != ATA_DEV_ATA || !n_sectors || 4000 dev->n_sectors == n_sectors) 4001 return 0; 4002 4003 /* n_sectors has changed */ 4004 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4005 (unsigned long long)n_sectors, 4006 (unsigned long long)dev->n_sectors); 4007 4008 /* 4009 * Something could have caused HPA to be unlocked 4010 * involuntarily. If n_native_sectors hasn't changed and the 4011 * new size matches it, keep the device. 4012 */ 4013 if (dev->n_native_sectors == n_native_sectors && 4014 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4015 ata_dev_warn(dev, 4016 "new n_sectors matches native, probably " 4017 "late HPA unlock, n_sectors updated\n"); 4018 /* use the larger n_sectors */ 4019 return 0; 4020 } 4021 4022 /* 4023 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4024 * unlocking HPA in those cases. 4025 * 4026 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4027 */ 4028 if (dev->n_native_sectors == n_native_sectors && 4029 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4030 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4031 ata_dev_warn(dev, 4032 "old n_sectors matches native, probably " 4033 "late HPA lock, will try to unlock HPA\n"); 4034 /* try unlocking HPA */ 4035 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4036 rc = -EIO; 4037 } else 4038 rc = -ENODEV; 4039 4040 /* restore original n_[native_]sectors and fail */ 4041 dev->n_native_sectors = n_native_sectors; 4042 dev->n_sectors = n_sectors; 4043 fail: 4044 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4045 return rc; 4046 } 4047 4048 struct ata_blacklist_entry { 4049 const char *model_num; 4050 const char *model_rev; 4051 unsigned long horkage; 4052 }; 4053 4054 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4055 /* Devices with DMA related problems under Linux */ 4056 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4057 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4058 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4059 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4060 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4061 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4062 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4063 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4064 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4065 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4066 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4067 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4068 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4069 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4070 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4071 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4072 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4073 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4074 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4075 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4076 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4077 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4078 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4079 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4080 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4081 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4082 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4083 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4084 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4085 /* Odd clown on sil3726/4726 PMPs */ 4086 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4087 4088 /* Weird ATAPI devices */ 4089 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4090 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4091 4092 /* Devices we expect to fail diagnostics */ 4093 4094 /* Devices where NCQ should be avoided */ 4095 /* NCQ is slow */ 4096 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4097 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4098 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4099 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4100 /* NCQ is broken */ 4101 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4102 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4103 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4104 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4105 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4106 4107 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4108 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4109 ATA_HORKAGE_FIRMWARE_WARN }, 4110 4111 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4112 ATA_HORKAGE_FIRMWARE_WARN }, 4113 4114 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4115 ATA_HORKAGE_FIRMWARE_WARN }, 4116 4117 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4118 ATA_HORKAGE_FIRMWARE_WARN }, 4119 4120 /* Blacklist entries taken from Silicon Image 3124/3132 4121 Windows driver .inf file - also several Linux problem reports */ 4122 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4123 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4124 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4125 4126 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4127 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4128 4129 /* devices which puke on READ_NATIVE_MAX */ 4130 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4131 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4132 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4133 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4134 4135 /* this one allows HPA unlocking but fails IOs on the area */ 4136 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4137 4138 /* Devices which report 1 sector over size HPA */ 4139 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4140 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4141 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4142 4143 /* Devices which get the IVB wrong */ 4144 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4145 /* Maybe we should just blacklist TSSTcorp... */ 4146 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4147 4148 /* Devices that do not need bridging limits applied */ 4149 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4150 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4151 4152 /* Devices which aren't very happy with higher link speeds */ 4153 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4154 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4155 4156 /* 4157 * Devices which choke on SETXFER. Applies only if both the 4158 * device and controller are SATA. 4159 */ 4160 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4161 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4162 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4163 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4164 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4165 4166 /* End Marker */ 4167 { } 4168 }; 4169 4170 /** 4171 * glob_match - match a text string against a glob-style pattern 4172 * @text: the string to be examined 4173 * @pattern: the glob-style pattern to be matched against 4174 * 4175 * Either/both of text and pattern can be empty strings. 4176 * 4177 * Match text against a glob-style pattern, with wildcards and simple sets: 4178 * 4179 * ? matches any single character. 4180 * * matches any run of characters. 4181 * [xyz] matches a single character from the set: x, y, or z. 4182 * [a-d] matches a single character from the range: a, b, c, or d. 4183 * [a-d0-9] matches a single character from either range. 4184 * 4185 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4186 * Behaviour with malformed patterns is undefined, though generally reasonable. 4187 * 4188 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4189 * 4190 * This function uses one level of recursion per '*' in pattern. 4191 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4192 * this will not cause stack problems for any reasonable use here. 4193 * 4194 * RETURNS: 4195 * 0 on match, 1 otherwise. 4196 */ 4197 static int glob_match (const char *text, const char *pattern) 4198 { 4199 do { 4200 /* Match single character or a '?' wildcard */ 4201 if (*text == *pattern || *pattern == '?') { 4202 if (!*pattern++) 4203 return 0; /* End of both strings: match */ 4204 } else { 4205 /* Match single char against a '[' bracketed ']' pattern set */ 4206 if (!*text || *pattern != '[') 4207 break; /* Not a pattern set */ 4208 while (*++pattern && *pattern != ']' && *text != *pattern) { 4209 if (*pattern == '-' && *(pattern - 1) != '[') 4210 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4211 ++pattern; 4212 break; 4213 } 4214 } 4215 if (!*pattern || *pattern == ']') 4216 return 1; /* No match */ 4217 while (*pattern && *pattern++ != ']'); 4218 } 4219 } while (*++text && *pattern); 4220 4221 /* Match any run of chars against a '*' wildcard */ 4222 if (*pattern == '*') { 4223 if (!*++pattern) 4224 return 0; /* Match: avoid recursion at end of pattern */ 4225 /* Loop to handle additional pattern chars after the wildcard */ 4226 while (*text) { 4227 if (glob_match(text, pattern) == 0) 4228 return 0; /* Remainder matched */ 4229 ++text; /* Absorb (match) this char and try again */ 4230 } 4231 } 4232 if (!*text && !*pattern) 4233 return 0; /* End of both strings: match */ 4234 return 1; /* No match */ 4235 } 4236 4237 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4238 { 4239 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4240 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4241 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4242 4243 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4244 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4245 4246 while (ad->model_num) { 4247 if (!glob_match(model_num, ad->model_num)) { 4248 if (ad->model_rev == NULL) 4249 return ad->horkage; 4250 if (!glob_match(model_rev, ad->model_rev)) 4251 return ad->horkage; 4252 } 4253 ad++; 4254 } 4255 return 0; 4256 } 4257 4258 static int ata_dma_blacklisted(const struct ata_device *dev) 4259 { 4260 /* We don't support polling DMA. 4261 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4262 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4263 */ 4264 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4265 (dev->flags & ATA_DFLAG_CDB_INTR)) 4266 return 1; 4267 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4268 } 4269 4270 /** 4271 * ata_is_40wire - check drive side detection 4272 * @dev: device 4273 * 4274 * Perform drive side detection decoding, allowing for device vendors 4275 * who can't follow the documentation. 4276 */ 4277 4278 static int ata_is_40wire(struct ata_device *dev) 4279 { 4280 if (dev->horkage & ATA_HORKAGE_IVB) 4281 return ata_drive_40wire_relaxed(dev->id); 4282 return ata_drive_40wire(dev->id); 4283 } 4284 4285 /** 4286 * cable_is_40wire - 40/80/SATA decider 4287 * @ap: port to consider 4288 * 4289 * This function encapsulates the policy for speed management 4290 * in one place. At the moment we don't cache the result but 4291 * there is a good case for setting ap->cbl to the result when 4292 * we are called with unknown cables (and figuring out if it 4293 * impacts hotplug at all). 4294 * 4295 * Return 1 if the cable appears to be 40 wire. 4296 */ 4297 4298 static int cable_is_40wire(struct ata_port *ap) 4299 { 4300 struct ata_link *link; 4301 struct ata_device *dev; 4302 4303 /* If the controller thinks we are 40 wire, we are. */ 4304 if (ap->cbl == ATA_CBL_PATA40) 4305 return 1; 4306 4307 /* If the controller thinks we are 80 wire, we are. */ 4308 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4309 return 0; 4310 4311 /* If the system is known to be 40 wire short cable (eg 4312 * laptop), then we allow 80 wire modes even if the drive 4313 * isn't sure. 4314 */ 4315 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4316 return 0; 4317 4318 /* If the controller doesn't know, we scan. 4319 * 4320 * Note: We look for all 40 wire detects at this point. Any 4321 * 80 wire detect is taken to be 80 wire cable because 4322 * - in many setups only the one drive (slave if present) will 4323 * give a valid detect 4324 * - if you have a non detect capable drive you don't want it 4325 * to colour the choice 4326 */ 4327 ata_for_each_link(link, ap, EDGE) { 4328 ata_for_each_dev(dev, link, ENABLED) { 4329 if (!ata_is_40wire(dev)) 4330 return 0; 4331 } 4332 } 4333 return 1; 4334 } 4335 4336 /** 4337 * ata_dev_xfermask - Compute supported xfermask of the given device 4338 * @dev: Device to compute xfermask for 4339 * 4340 * Compute supported xfermask of @dev and store it in 4341 * dev->*_mask. This function is responsible for applying all 4342 * known limits including host controller limits, device 4343 * blacklist, etc... 4344 * 4345 * LOCKING: 4346 * None. 4347 */ 4348 static void ata_dev_xfermask(struct ata_device *dev) 4349 { 4350 struct ata_link *link = dev->link; 4351 struct ata_port *ap = link->ap; 4352 struct ata_host *host = ap->host; 4353 unsigned long xfer_mask; 4354 4355 /* controller modes available */ 4356 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4357 ap->mwdma_mask, ap->udma_mask); 4358 4359 /* drive modes available */ 4360 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4361 dev->mwdma_mask, dev->udma_mask); 4362 xfer_mask &= ata_id_xfermask(dev->id); 4363 4364 /* 4365 * CFA Advanced TrueIDE timings are not allowed on a shared 4366 * cable 4367 */ 4368 if (ata_dev_pair(dev)) { 4369 /* No PIO5 or PIO6 */ 4370 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4371 /* No MWDMA3 or MWDMA 4 */ 4372 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4373 } 4374 4375 if (ata_dma_blacklisted(dev)) { 4376 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4377 ata_dev_warn(dev, 4378 "device is on DMA blacklist, disabling DMA\n"); 4379 } 4380 4381 if ((host->flags & ATA_HOST_SIMPLEX) && 4382 host->simplex_claimed && host->simplex_claimed != ap) { 4383 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4384 ata_dev_warn(dev, 4385 "simplex DMA is claimed by other device, disabling DMA\n"); 4386 } 4387 4388 if (ap->flags & ATA_FLAG_NO_IORDY) 4389 xfer_mask &= ata_pio_mask_no_iordy(dev); 4390 4391 if (ap->ops->mode_filter) 4392 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4393 4394 /* Apply cable rule here. Don't apply it early because when 4395 * we handle hot plug the cable type can itself change. 4396 * Check this last so that we know if the transfer rate was 4397 * solely limited by the cable. 4398 * Unknown or 80 wire cables reported host side are checked 4399 * drive side as well. Cases where we know a 40wire cable 4400 * is used safely for 80 are not checked here. 4401 */ 4402 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4403 /* UDMA/44 or higher would be available */ 4404 if (cable_is_40wire(ap)) { 4405 ata_dev_warn(dev, 4406 "limited to UDMA/33 due to 40-wire cable\n"); 4407 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4408 } 4409 4410 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4411 &dev->mwdma_mask, &dev->udma_mask); 4412 } 4413 4414 /** 4415 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4416 * @dev: Device to which command will be sent 4417 * 4418 * Issue SET FEATURES - XFER MODE command to device @dev 4419 * on port @ap. 4420 * 4421 * LOCKING: 4422 * PCI/etc. bus probe sem. 4423 * 4424 * RETURNS: 4425 * 0 on success, AC_ERR_* mask otherwise. 4426 */ 4427 4428 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4429 { 4430 struct ata_taskfile tf; 4431 unsigned int err_mask; 4432 4433 /* set up set-features taskfile */ 4434 DPRINTK("set features - xfer mode\n"); 4435 4436 /* Some controllers and ATAPI devices show flaky interrupt 4437 * behavior after setting xfer mode. Use polling instead. 4438 */ 4439 ata_tf_init(dev, &tf); 4440 tf.command = ATA_CMD_SET_FEATURES; 4441 tf.feature = SETFEATURES_XFER; 4442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4443 tf.protocol = ATA_PROT_NODATA; 4444 /* If we are using IORDY we must send the mode setting command */ 4445 if (ata_pio_need_iordy(dev)) 4446 tf.nsect = dev->xfer_mode; 4447 /* If the device has IORDY and the controller does not - turn it off */ 4448 else if (ata_id_has_iordy(dev->id)) 4449 tf.nsect = 0x01; 4450 else /* In the ancient relic department - skip all of this */ 4451 return 0; 4452 4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4454 4455 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4456 return err_mask; 4457 } 4458 4459 /** 4460 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4461 * @dev: Device to which command will be sent 4462 * @enable: Whether to enable or disable the feature 4463 * @feature: The sector count represents the feature to set 4464 * 4465 * Issue SET FEATURES - SATA FEATURES command to device @dev 4466 * on port @ap with sector count 4467 * 4468 * LOCKING: 4469 * PCI/etc. bus probe sem. 4470 * 4471 * RETURNS: 4472 * 0 on success, AC_ERR_* mask otherwise. 4473 */ 4474 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4475 { 4476 struct ata_taskfile tf; 4477 unsigned int err_mask; 4478 4479 /* set up set-features taskfile */ 4480 DPRINTK("set features - SATA features\n"); 4481 4482 ata_tf_init(dev, &tf); 4483 tf.command = ATA_CMD_SET_FEATURES; 4484 tf.feature = enable; 4485 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4486 tf.protocol = ATA_PROT_NODATA; 4487 tf.nsect = feature; 4488 4489 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4490 4491 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4492 return err_mask; 4493 } 4494 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4495 4496 /** 4497 * ata_dev_init_params - Issue INIT DEV PARAMS command 4498 * @dev: Device to which command will be sent 4499 * @heads: Number of heads (taskfile parameter) 4500 * @sectors: Number of sectors (taskfile parameter) 4501 * 4502 * LOCKING: 4503 * Kernel thread context (may sleep) 4504 * 4505 * RETURNS: 4506 * 0 on success, AC_ERR_* mask otherwise. 4507 */ 4508 static unsigned int ata_dev_init_params(struct ata_device *dev, 4509 u16 heads, u16 sectors) 4510 { 4511 struct ata_taskfile tf; 4512 unsigned int err_mask; 4513 4514 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4515 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4516 return AC_ERR_INVALID; 4517 4518 /* set up init dev params taskfile */ 4519 DPRINTK("init dev params \n"); 4520 4521 ata_tf_init(dev, &tf); 4522 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4523 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4524 tf.protocol = ATA_PROT_NODATA; 4525 tf.nsect = sectors; 4526 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4527 4528 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4529 /* A clean abort indicates an original or just out of spec drive 4530 and we should continue as we issue the setup based on the 4531 drive reported working geometry */ 4532 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4533 err_mask = 0; 4534 4535 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4536 return err_mask; 4537 } 4538 4539 /** 4540 * ata_sg_clean - Unmap DMA memory associated with command 4541 * @qc: Command containing DMA memory to be released 4542 * 4543 * Unmap all mapped DMA memory associated with this command. 4544 * 4545 * LOCKING: 4546 * spin_lock_irqsave(host lock) 4547 */ 4548 void ata_sg_clean(struct ata_queued_cmd *qc) 4549 { 4550 struct ata_port *ap = qc->ap; 4551 struct scatterlist *sg = qc->sg; 4552 int dir = qc->dma_dir; 4553 4554 WARN_ON_ONCE(sg == NULL); 4555 4556 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4557 4558 if (qc->n_elem) 4559 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4560 4561 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4562 qc->sg = NULL; 4563 } 4564 4565 /** 4566 * atapi_check_dma - Check whether ATAPI DMA can be supported 4567 * @qc: Metadata associated with taskfile to check 4568 * 4569 * Allow low-level driver to filter ATA PACKET commands, returning 4570 * a status indicating whether or not it is OK to use DMA for the 4571 * supplied PACKET command. 4572 * 4573 * LOCKING: 4574 * spin_lock_irqsave(host lock) 4575 * 4576 * RETURNS: 0 when ATAPI DMA can be used 4577 * nonzero otherwise 4578 */ 4579 int atapi_check_dma(struct ata_queued_cmd *qc) 4580 { 4581 struct ata_port *ap = qc->ap; 4582 4583 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4584 * few ATAPI devices choke on such DMA requests. 4585 */ 4586 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4587 unlikely(qc->nbytes & 15)) 4588 return 1; 4589 4590 if (ap->ops->check_atapi_dma) 4591 return ap->ops->check_atapi_dma(qc); 4592 4593 return 0; 4594 } 4595 4596 /** 4597 * ata_std_qc_defer - Check whether a qc needs to be deferred 4598 * @qc: ATA command in question 4599 * 4600 * Non-NCQ commands cannot run with any other command, NCQ or 4601 * not. As upper layer only knows the queue depth, we are 4602 * responsible for maintaining exclusion. This function checks 4603 * whether a new command @qc can be issued. 4604 * 4605 * LOCKING: 4606 * spin_lock_irqsave(host lock) 4607 * 4608 * RETURNS: 4609 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4610 */ 4611 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4612 { 4613 struct ata_link *link = qc->dev->link; 4614 4615 if (qc->tf.protocol == ATA_PROT_NCQ) { 4616 if (!ata_tag_valid(link->active_tag)) 4617 return 0; 4618 } else { 4619 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4620 return 0; 4621 } 4622 4623 return ATA_DEFER_LINK; 4624 } 4625 4626 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4627 4628 /** 4629 * ata_sg_init - Associate command with scatter-gather table. 4630 * @qc: Command to be associated 4631 * @sg: Scatter-gather table. 4632 * @n_elem: Number of elements in s/g table. 4633 * 4634 * Initialize the data-related elements of queued_cmd @qc 4635 * to point to a scatter-gather table @sg, containing @n_elem 4636 * elements. 4637 * 4638 * LOCKING: 4639 * spin_lock_irqsave(host lock) 4640 */ 4641 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4642 unsigned int n_elem) 4643 { 4644 qc->sg = sg; 4645 qc->n_elem = n_elem; 4646 qc->cursg = qc->sg; 4647 } 4648 4649 /** 4650 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4651 * @qc: Command with scatter-gather table to be mapped. 4652 * 4653 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4654 * 4655 * LOCKING: 4656 * spin_lock_irqsave(host lock) 4657 * 4658 * RETURNS: 4659 * Zero on success, negative on error. 4660 * 4661 */ 4662 static int ata_sg_setup(struct ata_queued_cmd *qc) 4663 { 4664 struct ata_port *ap = qc->ap; 4665 unsigned int n_elem; 4666 4667 VPRINTK("ENTER, ata%u\n", ap->print_id); 4668 4669 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4670 if (n_elem < 1) 4671 return -1; 4672 4673 DPRINTK("%d sg elements mapped\n", n_elem); 4674 qc->orig_n_elem = qc->n_elem; 4675 qc->n_elem = n_elem; 4676 qc->flags |= ATA_QCFLAG_DMAMAP; 4677 4678 return 0; 4679 } 4680 4681 /** 4682 * swap_buf_le16 - swap halves of 16-bit words in place 4683 * @buf: Buffer to swap 4684 * @buf_words: Number of 16-bit words in buffer. 4685 * 4686 * Swap halves of 16-bit words if needed to convert from 4687 * little-endian byte order to native cpu byte order, or 4688 * vice-versa. 4689 * 4690 * LOCKING: 4691 * Inherited from caller. 4692 */ 4693 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4694 { 4695 #ifdef __BIG_ENDIAN 4696 unsigned int i; 4697 4698 for (i = 0; i < buf_words; i++) 4699 buf[i] = le16_to_cpu(buf[i]); 4700 #endif /* __BIG_ENDIAN */ 4701 } 4702 4703 /** 4704 * ata_qc_new - Request an available ATA command, for queueing 4705 * @ap: target port 4706 * 4707 * LOCKING: 4708 * None. 4709 */ 4710 4711 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4712 { 4713 struct ata_queued_cmd *qc = NULL; 4714 unsigned int i; 4715 4716 /* no command while frozen */ 4717 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4718 return NULL; 4719 4720 /* the last tag is reserved for internal command. */ 4721 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4722 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4723 qc = __ata_qc_from_tag(ap, i); 4724 break; 4725 } 4726 4727 if (qc) 4728 qc->tag = i; 4729 4730 return qc; 4731 } 4732 4733 /** 4734 * ata_qc_new_init - Request an available ATA command, and initialize it 4735 * @dev: Device from whom we request an available command structure 4736 * 4737 * LOCKING: 4738 * None. 4739 */ 4740 4741 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4742 { 4743 struct ata_port *ap = dev->link->ap; 4744 struct ata_queued_cmd *qc; 4745 4746 qc = ata_qc_new(ap); 4747 if (qc) { 4748 qc->scsicmd = NULL; 4749 qc->ap = ap; 4750 qc->dev = dev; 4751 4752 ata_qc_reinit(qc); 4753 } 4754 4755 return qc; 4756 } 4757 4758 /** 4759 * ata_qc_free - free unused ata_queued_cmd 4760 * @qc: Command to complete 4761 * 4762 * Designed to free unused ata_queued_cmd object 4763 * in case something prevents using it. 4764 * 4765 * LOCKING: 4766 * spin_lock_irqsave(host lock) 4767 */ 4768 void ata_qc_free(struct ata_queued_cmd *qc) 4769 { 4770 struct ata_port *ap; 4771 unsigned int tag; 4772 4773 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4774 ap = qc->ap; 4775 4776 qc->flags = 0; 4777 tag = qc->tag; 4778 if (likely(ata_tag_valid(tag))) { 4779 qc->tag = ATA_TAG_POISON; 4780 clear_bit(tag, &ap->qc_allocated); 4781 } 4782 } 4783 4784 void __ata_qc_complete(struct ata_queued_cmd *qc) 4785 { 4786 struct ata_port *ap; 4787 struct ata_link *link; 4788 4789 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4790 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4791 ap = qc->ap; 4792 link = qc->dev->link; 4793 4794 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4795 ata_sg_clean(qc); 4796 4797 /* command should be marked inactive atomically with qc completion */ 4798 if (qc->tf.protocol == ATA_PROT_NCQ) { 4799 link->sactive &= ~(1 << qc->tag); 4800 if (!link->sactive) 4801 ap->nr_active_links--; 4802 } else { 4803 link->active_tag = ATA_TAG_POISON; 4804 ap->nr_active_links--; 4805 } 4806 4807 /* clear exclusive status */ 4808 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4809 ap->excl_link == link)) 4810 ap->excl_link = NULL; 4811 4812 /* atapi: mark qc as inactive to prevent the interrupt handler 4813 * from completing the command twice later, before the error handler 4814 * is called. (when rc != 0 and atapi request sense is needed) 4815 */ 4816 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4817 ap->qc_active &= ~(1 << qc->tag); 4818 4819 /* call completion callback */ 4820 qc->complete_fn(qc); 4821 } 4822 4823 static void fill_result_tf(struct ata_queued_cmd *qc) 4824 { 4825 struct ata_port *ap = qc->ap; 4826 4827 qc->result_tf.flags = qc->tf.flags; 4828 ap->ops->qc_fill_rtf(qc); 4829 } 4830 4831 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4832 { 4833 struct ata_device *dev = qc->dev; 4834 4835 if (ata_is_nodata(qc->tf.protocol)) 4836 return; 4837 4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4839 return; 4840 4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4842 } 4843 4844 /** 4845 * ata_qc_complete - Complete an active ATA command 4846 * @qc: Command to complete 4847 * 4848 * Indicate to the mid and upper layers that an ATA command has 4849 * completed, with either an ok or not-ok status. 4850 * 4851 * Refrain from calling this function multiple times when 4852 * successfully completing multiple NCQ commands. 4853 * ata_qc_complete_multiple() should be used instead, which will 4854 * properly update IRQ expect state. 4855 * 4856 * LOCKING: 4857 * spin_lock_irqsave(host lock) 4858 */ 4859 void ata_qc_complete(struct ata_queued_cmd *qc) 4860 { 4861 struct ata_port *ap = qc->ap; 4862 4863 /* XXX: New EH and old EH use different mechanisms to 4864 * synchronize EH with regular execution path. 4865 * 4866 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4867 * Normal execution path is responsible for not accessing a 4868 * failed qc. libata core enforces the rule by returning NULL 4869 * from ata_qc_from_tag() for failed qcs. 4870 * 4871 * Old EH depends on ata_qc_complete() nullifying completion 4872 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4873 * not synchronize with interrupt handler. Only PIO task is 4874 * taken care of. 4875 */ 4876 if (ap->ops->error_handler) { 4877 struct ata_device *dev = qc->dev; 4878 struct ata_eh_info *ehi = &dev->link->eh_info; 4879 4880 if (unlikely(qc->err_mask)) 4881 qc->flags |= ATA_QCFLAG_FAILED; 4882 4883 /* 4884 * Finish internal commands without any further processing 4885 * and always with the result TF filled. 4886 */ 4887 if (unlikely(ata_tag_internal(qc->tag))) { 4888 fill_result_tf(qc); 4889 __ata_qc_complete(qc); 4890 return; 4891 } 4892 4893 /* 4894 * Non-internal qc has failed. Fill the result TF and 4895 * summon EH. 4896 */ 4897 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4898 fill_result_tf(qc); 4899 ata_qc_schedule_eh(qc); 4900 return; 4901 } 4902 4903 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4904 4905 /* read result TF if requested */ 4906 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4907 fill_result_tf(qc); 4908 4909 /* Some commands need post-processing after successful 4910 * completion. 4911 */ 4912 switch (qc->tf.command) { 4913 case ATA_CMD_SET_FEATURES: 4914 if (qc->tf.feature != SETFEATURES_WC_ON && 4915 qc->tf.feature != SETFEATURES_WC_OFF) 4916 break; 4917 /* fall through */ 4918 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4919 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4920 /* revalidate device */ 4921 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4922 ata_port_schedule_eh(ap); 4923 break; 4924 4925 case ATA_CMD_SLEEP: 4926 dev->flags |= ATA_DFLAG_SLEEPING; 4927 break; 4928 } 4929 4930 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4931 ata_verify_xfer(qc); 4932 4933 __ata_qc_complete(qc); 4934 } else { 4935 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4936 return; 4937 4938 /* read result TF if failed or requested */ 4939 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4940 fill_result_tf(qc); 4941 4942 __ata_qc_complete(qc); 4943 } 4944 } 4945 4946 /** 4947 * ata_qc_complete_multiple - Complete multiple qcs successfully 4948 * @ap: port in question 4949 * @qc_active: new qc_active mask 4950 * 4951 * Complete in-flight commands. This functions is meant to be 4952 * called from low-level driver's interrupt routine to complete 4953 * requests normally. ap->qc_active and @qc_active is compared 4954 * and commands are completed accordingly. 4955 * 4956 * Always use this function when completing multiple NCQ commands 4957 * from IRQ handlers instead of calling ata_qc_complete() 4958 * multiple times to keep IRQ expect status properly in sync. 4959 * 4960 * LOCKING: 4961 * spin_lock_irqsave(host lock) 4962 * 4963 * RETURNS: 4964 * Number of completed commands on success, -errno otherwise. 4965 */ 4966 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4967 { 4968 int nr_done = 0; 4969 u32 done_mask; 4970 4971 done_mask = ap->qc_active ^ qc_active; 4972 4973 if (unlikely(done_mask & qc_active)) { 4974 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4975 ap->qc_active, qc_active); 4976 return -EINVAL; 4977 } 4978 4979 while (done_mask) { 4980 struct ata_queued_cmd *qc; 4981 unsigned int tag = __ffs(done_mask); 4982 4983 qc = ata_qc_from_tag(ap, tag); 4984 if (qc) { 4985 ata_qc_complete(qc); 4986 nr_done++; 4987 } 4988 done_mask &= ~(1 << tag); 4989 } 4990 4991 return nr_done; 4992 } 4993 4994 /** 4995 * ata_qc_issue - issue taskfile to device 4996 * @qc: command to issue to device 4997 * 4998 * Prepare an ATA command to submission to device. 4999 * This includes mapping the data into a DMA-able 5000 * area, filling in the S/G table, and finally 5001 * writing the taskfile to hardware, starting the command. 5002 * 5003 * LOCKING: 5004 * spin_lock_irqsave(host lock) 5005 */ 5006 void ata_qc_issue(struct ata_queued_cmd *qc) 5007 { 5008 struct ata_port *ap = qc->ap; 5009 struct ata_link *link = qc->dev->link; 5010 u8 prot = qc->tf.protocol; 5011 5012 /* Make sure only one non-NCQ command is outstanding. The 5013 * check is skipped for old EH because it reuses active qc to 5014 * request ATAPI sense. 5015 */ 5016 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5017 5018 if (ata_is_ncq(prot)) { 5019 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5020 5021 if (!link->sactive) 5022 ap->nr_active_links++; 5023 link->sactive |= 1 << qc->tag; 5024 } else { 5025 WARN_ON_ONCE(link->sactive); 5026 5027 ap->nr_active_links++; 5028 link->active_tag = qc->tag; 5029 } 5030 5031 qc->flags |= ATA_QCFLAG_ACTIVE; 5032 ap->qc_active |= 1 << qc->tag; 5033 5034 /* 5035 * We guarantee to LLDs that they will have at least one 5036 * non-zero sg if the command is a data command. 5037 */ 5038 if (WARN_ON_ONCE(ata_is_data(prot) && 5039 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5040 goto sys_err; 5041 5042 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5043 (ap->flags & ATA_FLAG_PIO_DMA))) 5044 if (ata_sg_setup(qc)) 5045 goto sys_err; 5046 5047 /* if device is sleeping, schedule reset and abort the link */ 5048 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5049 link->eh_info.action |= ATA_EH_RESET; 5050 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5051 ata_link_abort(link); 5052 return; 5053 } 5054 5055 ap->ops->qc_prep(qc); 5056 5057 qc->err_mask |= ap->ops->qc_issue(qc); 5058 if (unlikely(qc->err_mask)) 5059 goto err; 5060 return; 5061 5062 sys_err: 5063 qc->err_mask |= AC_ERR_SYSTEM; 5064 err: 5065 ata_qc_complete(qc); 5066 } 5067 5068 /** 5069 * sata_scr_valid - test whether SCRs are accessible 5070 * @link: ATA link to test SCR accessibility for 5071 * 5072 * Test whether SCRs are accessible for @link. 5073 * 5074 * LOCKING: 5075 * None. 5076 * 5077 * RETURNS: 5078 * 1 if SCRs are accessible, 0 otherwise. 5079 */ 5080 int sata_scr_valid(struct ata_link *link) 5081 { 5082 struct ata_port *ap = link->ap; 5083 5084 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5085 } 5086 5087 /** 5088 * sata_scr_read - read SCR register of the specified port 5089 * @link: ATA link to read SCR for 5090 * @reg: SCR to read 5091 * @val: Place to store read value 5092 * 5093 * Read SCR register @reg of @link into *@val. This function is 5094 * guaranteed to succeed if @link is ap->link, the cable type of 5095 * the port is SATA and the port implements ->scr_read. 5096 * 5097 * LOCKING: 5098 * None if @link is ap->link. Kernel thread context otherwise. 5099 * 5100 * RETURNS: 5101 * 0 on success, negative errno on failure. 5102 */ 5103 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5104 { 5105 if (ata_is_host_link(link)) { 5106 if (sata_scr_valid(link)) 5107 return link->ap->ops->scr_read(link, reg, val); 5108 return -EOPNOTSUPP; 5109 } 5110 5111 return sata_pmp_scr_read(link, reg, val); 5112 } 5113 5114 /** 5115 * sata_scr_write - write SCR register of the specified port 5116 * @link: ATA link to write SCR for 5117 * @reg: SCR to write 5118 * @val: value to write 5119 * 5120 * Write @val to SCR register @reg of @link. This function is 5121 * guaranteed to succeed if @link is ap->link, the cable type of 5122 * the port is SATA and the port implements ->scr_read. 5123 * 5124 * LOCKING: 5125 * None if @link is ap->link. Kernel thread context otherwise. 5126 * 5127 * RETURNS: 5128 * 0 on success, negative errno on failure. 5129 */ 5130 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5131 { 5132 if (ata_is_host_link(link)) { 5133 if (sata_scr_valid(link)) 5134 return link->ap->ops->scr_write(link, reg, val); 5135 return -EOPNOTSUPP; 5136 } 5137 5138 return sata_pmp_scr_write(link, reg, val); 5139 } 5140 5141 /** 5142 * sata_scr_write_flush - write SCR register of the specified port and flush 5143 * @link: ATA link to write SCR for 5144 * @reg: SCR to write 5145 * @val: value to write 5146 * 5147 * This function is identical to sata_scr_write() except that this 5148 * function performs flush after writing to the register. 5149 * 5150 * LOCKING: 5151 * None if @link is ap->link. Kernel thread context otherwise. 5152 * 5153 * RETURNS: 5154 * 0 on success, negative errno on failure. 5155 */ 5156 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5157 { 5158 if (ata_is_host_link(link)) { 5159 int rc; 5160 5161 if (sata_scr_valid(link)) { 5162 rc = link->ap->ops->scr_write(link, reg, val); 5163 if (rc == 0) 5164 rc = link->ap->ops->scr_read(link, reg, &val); 5165 return rc; 5166 } 5167 return -EOPNOTSUPP; 5168 } 5169 5170 return sata_pmp_scr_write(link, reg, val); 5171 } 5172 5173 /** 5174 * ata_phys_link_online - test whether the given link is online 5175 * @link: ATA link to test 5176 * 5177 * Test whether @link is online. Note that this function returns 5178 * 0 if online status of @link cannot be obtained, so 5179 * ata_link_online(link) != !ata_link_offline(link). 5180 * 5181 * LOCKING: 5182 * None. 5183 * 5184 * RETURNS: 5185 * True if the port online status is available and online. 5186 */ 5187 bool ata_phys_link_online(struct ata_link *link) 5188 { 5189 u32 sstatus; 5190 5191 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5192 ata_sstatus_online(sstatus)) 5193 return true; 5194 return false; 5195 } 5196 5197 /** 5198 * ata_phys_link_offline - test whether the given link is offline 5199 * @link: ATA link to test 5200 * 5201 * Test whether @link is offline. Note that this function 5202 * returns 0 if offline status of @link cannot be obtained, so 5203 * ata_link_online(link) != !ata_link_offline(link). 5204 * 5205 * LOCKING: 5206 * None. 5207 * 5208 * RETURNS: 5209 * True if the port offline status is available and offline. 5210 */ 5211 bool ata_phys_link_offline(struct ata_link *link) 5212 { 5213 u32 sstatus; 5214 5215 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5216 !ata_sstatus_online(sstatus)) 5217 return true; 5218 return false; 5219 } 5220 5221 /** 5222 * ata_link_online - test whether the given link is online 5223 * @link: ATA link to test 5224 * 5225 * Test whether @link is online. This is identical to 5226 * ata_phys_link_online() when there's no slave link. When 5227 * there's a slave link, this function should only be called on 5228 * the master link and will return true if any of M/S links is 5229 * online. 5230 * 5231 * LOCKING: 5232 * None. 5233 * 5234 * RETURNS: 5235 * True if the port online status is available and online. 5236 */ 5237 bool ata_link_online(struct ata_link *link) 5238 { 5239 struct ata_link *slave = link->ap->slave_link; 5240 5241 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5242 5243 return ata_phys_link_online(link) || 5244 (slave && ata_phys_link_online(slave)); 5245 } 5246 5247 /** 5248 * ata_link_offline - test whether the given link is offline 5249 * @link: ATA link to test 5250 * 5251 * Test whether @link is offline. This is identical to 5252 * ata_phys_link_offline() when there's no slave link. When 5253 * there's a slave link, this function should only be called on 5254 * the master link and will return true if both M/S links are 5255 * offline. 5256 * 5257 * LOCKING: 5258 * None. 5259 * 5260 * RETURNS: 5261 * True if the port offline status is available and offline. 5262 */ 5263 bool ata_link_offline(struct ata_link *link) 5264 { 5265 struct ata_link *slave = link->ap->slave_link; 5266 5267 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5268 5269 return ata_phys_link_offline(link) && 5270 (!slave || ata_phys_link_offline(slave)); 5271 } 5272 5273 #ifdef CONFIG_PM 5274 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5275 unsigned int action, unsigned int ehi_flags, 5276 int *async) 5277 { 5278 struct ata_link *link; 5279 unsigned long flags; 5280 int rc = 0; 5281 5282 /* Previous resume operation might still be in 5283 * progress. Wait for PM_PENDING to clear. 5284 */ 5285 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5286 if (async) { 5287 *async = -EAGAIN; 5288 return 0; 5289 } 5290 ata_port_wait_eh(ap); 5291 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5292 } 5293 5294 /* request PM ops to EH */ 5295 spin_lock_irqsave(ap->lock, flags); 5296 5297 ap->pm_mesg = mesg; 5298 if (async) 5299 ap->pm_result = async; 5300 else 5301 ap->pm_result = &rc; 5302 5303 ap->pflags |= ATA_PFLAG_PM_PENDING; 5304 ata_for_each_link(link, ap, HOST_FIRST) { 5305 link->eh_info.action |= action; 5306 link->eh_info.flags |= ehi_flags; 5307 } 5308 5309 ata_port_schedule_eh(ap); 5310 5311 spin_unlock_irqrestore(ap->lock, flags); 5312 5313 /* wait and check result */ 5314 if (!async) { 5315 ata_port_wait_eh(ap); 5316 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5317 } 5318 5319 return rc; 5320 } 5321 5322 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5323 { 5324 unsigned int ehi_flags = ATA_EHI_QUIET; 5325 int rc; 5326 5327 /* 5328 * On some hardware, device fails to respond after spun down 5329 * for suspend. As the device won't be used before being 5330 * resumed, we don't need to touch the device. Ask EH to skip 5331 * the usual stuff and proceed directly to suspend. 5332 * 5333 * http://thread.gmane.org/gmane.linux.ide/46764 5334 */ 5335 if (mesg.event == PM_EVENT_SUSPEND) 5336 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5337 5338 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5339 return rc; 5340 } 5341 5342 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5343 { 5344 struct ata_port *ap = to_ata_port(dev); 5345 5346 return __ata_port_suspend_common(ap, mesg, NULL); 5347 } 5348 5349 static int ata_port_suspend(struct device *dev) 5350 { 5351 if (pm_runtime_suspended(dev)) 5352 return 0; 5353 5354 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5355 } 5356 5357 static int ata_port_do_freeze(struct device *dev) 5358 { 5359 if (pm_runtime_suspended(dev)) 5360 pm_runtime_resume(dev); 5361 5362 return ata_port_suspend_common(dev, PMSG_FREEZE); 5363 } 5364 5365 static int ata_port_poweroff(struct device *dev) 5366 { 5367 if (pm_runtime_suspended(dev)) 5368 return 0; 5369 5370 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5371 } 5372 5373 static int __ata_port_resume_common(struct ata_port *ap, int *async) 5374 { 5375 int rc; 5376 5377 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5378 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5379 return rc; 5380 } 5381 5382 static int ata_port_resume_common(struct device *dev) 5383 { 5384 struct ata_port *ap = to_ata_port(dev); 5385 5386 return __ata_port_resume_common(ap, NULL); 5387 } 5388 5389 static int ata_port_resume(struct device *dev) 5390 { 5391 int rc; 5392 5393 rc = ata_port_resume_common(dev); 5394 if (!rc) { 5395 pm_runtime_disable(dev); 5396 pm_runtime_set_active(dev); 5397 pm_runtime_enable(dev); 5398 } 5399 5400 return rc; 5401 } 5402 5403 static int ata_port_runtime_idle(struct device *dev) 5404 { 5405 return pm_runtime_suspend(dev); 5406 } 5407 5408 static const struct dev_pm_ops ata_port_pm_ops = { 5409 .suspend = ata_port_suspend, 5410 .resume = ata_port_resume, 5411 .freeze = ata_port_do_freeze, 5412 .thaw = ata_port_resume, 5413 .poweroff = ata_port_poweroff, 5414 .restore = ata_port_resume, 5415 5416 .runtime_suspend = ata_port_suspend, 5417 .runtime_resume = ata_port_resume_common, 5418 .runtime_idle = ata_port_runtime_idle, 5419 }; 5420 5421 /* sas ports don't participate in pm runtime management of ata_ports, 5422 * and need to resume ata devices at the domain level, not the per-port 5423 * level. sas suspend/resume is async to allow parallel port recovery 5424 * since sas has multiple ata_port instances per Scsi_Host. 5425 */ 5426 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5427 { 5428 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5429 } 5430 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5431 5432 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5433 { 5434 return __ata_port_resume_common(ap, async); 5435 } 5436 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5437 5438 5439 /** 5440 * ata_host_suspend - suspend host 5441 * @host: host to suspend 5442 * @mesg: PM message 5443 * 5444 * Suspend @host. Actual operation is performed by port suspend. 5445 */ 5446 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5447 { 5448 host->dev->power.power_state = mesg; 5449 return 0; 5450 } 5451 5452 /** 5453 * ata_host_resume - resume host 5454 * @host: host to resume 5455 * 5456 * Resume @host. Actual operation is performed by port resume. 5457 */ 5458 void ata_host_resume(struct ata_host *host) 5459 { 5460 host->dev->power.power_state = PMSG_ON; 5461 } 5462 #endif 5463 5464 struct device_type ata_port_type = { 5465 .name = "ata_port", 5466 #ifdef CONFIG_PM 5467 .pm = &ata_port_pm_ops, 5468 #endif 5469 }; 5470 5471 /** 5472 * ata_dev_init - Initialize an ata_device structure 5473 * @dev: Device structure to initialize 5474 * 5475 * Initialize @dev in preparation for probing. 5476 * 5477 * LOCKING: 5478 * Inherited from caller. 5479 */ 5480 void ata_dev_init(struct ata_device *dev) 5481 { 5482 struct ata_link *link = ata_dev_phys_link(dev); 5483 struct ata_port *ap = link->ap; 5484 unsigned long flags; 5485 5486 /* SATA spd limit is bound to the attached device, reset together */ 5487 link->sata_spd_limit = link->hw_sata_spd_limit; 5488 link->sata_spd = 0; 5489 5490 /* High bits of dev->flags are used to record warm plug 5491 * requests which occur asynchronously. Synchronize using 5492 * host lock. 5493 */ 5494 spin_lock_irqsave(ap->lock, flags); 5495 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5496 dev->horkage = 0; 5497 spin_unlock_irqrestore(ap->lock, flags); 5498 5499 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5500 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5501 dev->pio_mask = UINT_MAX; 5502 dev->mwdma_mask = UINT_MAX; 5503 dev->udma_mask = UINT_MAX; 5504 } 5505 5506 /** 5507 * ata_link_init - Initialize an ata_link structure 5508 * @ap: ATA port link is attached to 5509 * @link: Link structure to initialize 5510 * @pmp: Port multiplier port number 5511 * 5512 * Initialize @link. 5513 * 5514 * LOCKING: 5515 * Kernel thread context (may sleep) 5516 */ 5517 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5518 { 5519 int i; 5520 5521 /* clear everything except for devices */ 5522 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5523 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5524 5525 link->ap = ap; 5526 link->pmp = pmp; 5527 link->active_tag = ATA_TAG_POISON; 5528 link->hw_sata_spd_limit = UINT_MAX; 5529 5530 /* can't use iterator, ap isn't initialized yet */ 5531 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5532 struct ata_device *dev = &link->device[i]; 5533 5534 dev->link = link; 5535 dev->devno = dev - link->device; 5536 #ifdef CONFIG_ATA_ACPI 5537 dev->gtf_filter = ata_acpi_gtf_filter; 5538 #endif 5539 ata_dev_init(dev); 5540 } 5541 } 5542 5543 /** 5544 * sata_link_init_spd - Initialize link->sata_spd_limit 5545 * @link: Link to configure sata_spd_limit for 5546 * 5547 * Initialize @link->[hw_]sata_spd_limit to the currently 5548 * configured value. 5549 * 5550 * LOCKING: 5551 * Kernel thread context (may sleep). 5552 * 5553 * RETURNS: 5554 * 0 on success, -errno on failure. 5555 */ 5556 int sata_link_init_spd(struct ata_link *link) 5557 { 5558 u8 spd; 5559 int rc; 5560 5561 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5562 if (rc) 5563 return rc; 5564 5565 spd = (link->saved_scontrol >> 4) & 0xf; 5566 if (spd) 5567 link->hw_sata_spd_limit &= (1 << spd) - 1; 5568 5569 ata_force_link_limits(link); 5570 5571 link->sata_spd_limit = link->hw_sata_spd_limit; 5572 5573 return 0; 5574 } 5575 5576 /** 5577 * ata_port_alloc - allocate and initialize basic ATA port resources 5578 * @host: ATA host this allocated port belongs to 5579 * 5580 * Allocate and initialize basic ATA port resources. 5581 * 5582 * RETURNS: 5583 * Allocate ATA port on success, NULL on failure. 5584 * 5585 * LOCKING: 5586 * Inherited from calling layer (may sleep). 5587 */ 5588 struct ata_port *ata_port_alloc(struct ata_host *host) 5589 { 5590 struct ata_port *ap; 5591 5592 DPRINTK("ENTER\n"); 5593 5594 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5595 if (!ap) 5596 return NULL; 5597 5598 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5599 ap->lock = &host->lock; 5600 ap->print_id = -1; 5601 ap->host = host; 5602 ap->dev = host->dev; 5603 5604 #if defined(ATA_VERBOSE_DEBUG) 5605 /* turn on all debugging levels */ 5606 ap->msg_enable = 0x00FF; 5607 #elif defined(ATA_DEBUG) 5608 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5609 #else 5610 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5611 #endif 5612 5613 mutex_init(&ap->scsi_scan_mutex); 5614 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5615 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5616 INIT_LIST_HEAD(&ap->eh_done_q); 5617 init_waitqueue_head(&ap->eh_wait_q); 5618 init_completion(&ap->park_req_pending); 5619 init_timer_deferrable(&ap->fastdrain_timer); 5620 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5621 ap->fastdrain_timer.data = (unsigned long)ap; 5622 5623 ap->cbl = ATA_CBL_NONE; 5624 5625 ata_link_init(ap, &ap->link, 0); 5626 5627 #ifdef ATA_IRQ_TRAP 5628 ap->stats.unhandled_irq = 1; 5629 ap->stats.idle_irq = 1; 5630 #endif 5631 ata_sff_port_init(ap); 5632 5633 return ap; 5634 } 5635 5636 static void ata_host_release(struct device *gendev, void *res) 5637 { 5638 struct ata_host *host = dev_get_drvdata(gendev); 5639 int i; 5640 5641 for (i = 0; i < host->n_ports; i++) { 5642 struct ata_port *ap = host->ports[i]; 5643 5644 if (!ap) 5645 continue; 5646 5647 if (ap->scsi_host) 5648 scsi_host_put(ap->scsi_host); 5649 5650 kfree(ap->pmp_link); 5651 kfree(ap->slave_link); 5652 kfree(ap); 5653 host->ports[i] = NULL; 5654 } 5655 5656 dev_set_drvdata(gendev, NULL); 5657 } 5658 5659 /** 5660 * ata_host_alloc - allocate and init basic ATA host resources 5661 * @dev: generic device this host is associated with 5662 * @max_ports: maximum number of ATA ports associated with this host 5663 * 5664 * Allocate and initialize basic ATA host resources. LLD calls 5665 * this function to allocate a host, initializes it fully and 5666 * attaches it using ata_host_register(). 5667 * 5668 * @max_ports ports are allocated and host->n_ports is 5669 * initialized to @max_ports. The caller is allowed to decrease 5670 * host->n_ports before calling ata_host_register(). The unused 5671 * ports will be automatically freed on registration. 5672 * 5673 * RETURNS: 5674 * Allocate ATA host on success, NULL on failure. 5675 * 5676 * LOCKING: 5677 * Inherited from calling layer (may sleep). 5678 */ 5679 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5680 { 5681 struct ata_host *host; 5682 size_t sz; 5683 int i; 5684 5685 DPRINTK("ENTER\n"); 5686 5687 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5688 return NULL; 5689 5690 /* alloc a container for our list of ATA ports (buses) */ 5691 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5692 /* alloc a container for our list of ATA ports (buses) */ 5693 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5694 if (!host) 5695 goto err_out; 5696 5697 devres_add(dev, host); 5698 dev_set_drvdata(dev, host); 5699 5700 spin_lock_init(&host->lock); 5701 mutex_init(&host->eh_mutex); 5702 host->dev = dev; 5703 host->n_ports = max_ports; 5704 5705 /* allocate ports bound to this host */ 5706 for (i = 0; i < max_ports; i++) { 5707 struct ata_port *ap; 5708 5709 ap = ata_port_alloc(host); 5710 if (!ap) 5711 goto err_out; 5712 5713 ap->port_no = i; 5714 host->ports[i] = ap; 5715 } 5716 5717 devres_remove_group(dev, NULL); 5718 return host; 5719 5720 err_out: 5721 devres_release_group(dev, NULL); 5722 return NULL; 5723 } 5724 5725 /** 5726 * ata_host_alloc_pinfo - alloc host and init with port_info array 5727 * @dev: generic device this host is associated with 5728 * @ppi: array of ATA port_info to initialize host with 5729 * @n_ports: number of ATA ports attached to this host 5730 * 5731 * Allocate ATA host and initialize with info from @ppi. If NULL 5732 * terminated, @ppi may contain fewer entries than @n_ports. The 5733 * last entry will be used for the remaining ports. 5734 * 5735 * RETURNS: 5736 * Allocate ATA host on success, NULL on failure. 5737 * 5738 * LOCKING: 5739 * Inherited from calling layer (may sleep). 5740 */ 5741 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5742 const struct ata_port_info * const * ppi, 5743 int n_ports) 5744 { 5745 const struct ata_port_info *pi; 5746 struct ata_host *host; 5747 int i, j; 5748 5749 host = ata_host_alloc(dev, n_ports); 5750 if (!host) 5751 return NULL; 5752 5753 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5754 struct ata_port *ap = host->ports[i]; 5755 5756 if (ppi[j]) 5757 pi = ppi[j++]; 5758 5759 ap->pio_mask = pi->pio_mask; 5760 ap->mwdma_mask = pi->mwdma_mask; 5761 ap->udma_mask = pi->udma_mask; 5762 ap->flags |= pi->flags; 5763 ap->link.flags |= pi->link_flags; 5764 ap->ops = pi->port_ops; 5765 5766 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5767 host->ops = pi->port_ops; 5768 } 5769 5770 return host; 5771 } 5772 5773 /** 5774 * ata_slave_link_init - initialize slave link 5775 * @ap: port to initialize slave link for 5776 * 5777 * Create and initialize slave link for @ap. This enables slave 5778 * link handling on the port. 5779 * 5780 * In libata, a port contains links and a link contains devices. 5781 * There is single host link but if a PMP is attached to it, 5782 * there can be multiple fan-out links. On SATA, there's usually 5783 * a single device connected to a link but PATA and SATA 5784 * controllers emulating TF based interface can have two - master 5785 * and slave. 5786 * 5787 * However, there are a few controllers which don't fit into this 5788 * abstraction too well - SATA controllers which emulate TF 5789 * interface with both master and slave devices but also have 5790 * separate SCR register sets for each device. These controllers 5791 * need separate links for physical link handling 5792 * (e.g. onlineness, link speed) but should be treated like a 5793 * traditional M/S controller for everything else (e.g. command 5794 * issue, softreset). 5795 * 5796 * slave_link is libata's way of handling this class of 5797 * controllers without impacting core layer too much. For 5798 * anything other than physical link handling, the default host 5799 * link is used for both master and slave. For physical link 5800 * handling, separate @ap->slave_link is used. All dirty details 5801 * are implemented inside libata core layer. From LLD's POV, the 5802 * only difference is that prereset, hardreset and postreset are 5803 * called once more for the slave link, so the reset sequence 5804 * looks like the following. 5805 * 5806 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5807 * softreset(M) -> postreset(M) -> postreset(S) 5808 * 5809 * Note that softreset is called only for the master. Softreset 5810 * resets both M/S by definition, so SRST on master should handle 5811 * both (the standard method will work just fine). 5812 * 5813 * LOCKING: 5814 * Should be called before host is registered. 5815 * 5816 * RETURNS: 5817 * 0 on success, -errno on failure. 5818 */ 5819 int ata_slave_link_init(struct ata_port *ap) 5820 { 5821 struct ata_link *link; 5822 5823 WARN_ON(ap->slave_link); 5824 WARN_ON(ap->flags & ATA_FLAG_PMP); 5825 5826 link = kzalloc(sizeof(*link), GFP_KERNEL); 5827 if (!link) 5828 return -ENOMEM; 5829 5830 ata_link_init(ap, link, 1); 5831 ap->slave_link = link; 5832 return 0; 5833 } 5834 5835 static void ata_host_stop(struct device *gendev, void *res) 5836 { 5837 struct ata_host *host = dev_get_drvdata(gendev); 5838 int i; 5839 5840 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5841 5842 for (i = 0; i < host->n_ports; i++) { 5843 struct ata_port *ap = host->ports[i]; 5844 5845 if (ap->ops->port_stop) 5846 ap->ops->port_stop(ap); 5847 } 5848 5849 if (host->ops->host_stop) 5850 host->ops->host_stop(host); 5851 } 5852 5853 /** 5854 * ata_finalize_port_ops - finalize ata_port_operations 5855 * @ops: ata_port_operations to finalize 5856 * 5857 * An ata_port_operations can inherit from another ops and that 5858 * ops can again inherit from another. This can go on as many 5859 * times as necessary as long as there is no loop in the 5860 * inheritance chain. 5861 * 5862 * Ops tables are finalized when the host is started. NULL or 5863 * unspecified entries are inherited from the closet ancestor 5864 * which has the method and the entry is populated with it. 5865 * After finalization, the ops table directly points to all the 5866 * methods and ->inherits is no longer necessary and cleared. 5867 * 5868 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5869 * 5870 * LOCKING: 5871 * None. 5872 */ 5873 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5874 { 5875 static DEFINE_SPINLOCK(lock); 5876 const struct ata_port_operations *cur; 5877 void **begin = (void **)ops; 5878 void **end = (void **)&ops->inherits; 5879 void **pp; 5880 5881 if (!ops || !ops->inherits) 5882 return; 5883 5884 spin_lock(&lock); 5885 5886 for (cur = ops->inherits; cur; cur = cur->inherits) { 5887 void **inherit = (void **)cur; 5888 5889 for (pp = begin; pp < end; pp++, inherit++) 5890 if (!*pp) 5891 *pp = *inherit; 5892 } 5893 5894 for (pp = begin; pp < end; pp++) 5895 if (IS_ERR(*pp)) 5896 *pp = NULL; 5897 5898 ops->inherits = NULL; 5899 5900 spin_unlock(&lock); 5901 } 5902 5903 /** 5904 * ata_host_start - start and freeze ports of an ATA host 5905 * @host: ATA host to start ports for 5906 * 5907 * Start and then freeze ports of @host. Started status is 5908 * recorded in host->flags, so this function can be called 5909 * multiple times. Ports are guaranteed to get started only 5910 * once. If host->ops isn't initialized yet, its set to the 5911 * first non-dummy port ops. 5912 * 5913 * LOCKING: 5914 * Inherited from calling layer (may sleep). 5915 * 5916 * RETURNS: 5917 * 0 if all ports are started successfully, -errno otherwise. 5918 */ 5919 int ata_host_start(struct ata_host *host) 5920 { 5921 int have_stop = 0; 5922 void *start_dr = NULL; 5923 int i, rc; 5924 5925 if (host->flags & ATA_HOST_STARTED) 5926 return 0; 5927 5928 ata_finalize_port_ops(host->ops); 5929 5930 for (i = 0; i < host->n_ports; i++) { 5931 struct ata_port *ap = host->ports[i]; 5932 5933 ata_finalize_port_ops(ap->ops); 5934 5935 if (!host->ops && !ata_port_is_dummy(ap)) 5936 host->ops = ap->ops; 5937 5938 if (ap->ops->port_stop) 5939 have_stop = 1; 5940 } 5941 5942 if (host->ops->host_stop) 5943 have_stop = 1; 5944 5945 if (have_stop) { 5946 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5947 if (!start_dr) 5948 return -ENOMEM; 5949 } 5950 5951 for (i = 0; i < host->n_ports; i++) { 5952 struct ata_port *ap = host->ports[i]; 5953 5954 if (ap->ops->port_start) { 5955 rc = ap->ops->port_start(ap); 5956 if (rc) { 5957 if (rc != -ENODEV) 5958 dev_err(host->dev, 5959 "failed to start port %d (errno=%d)\n", 5960 i, rc); 5961 goto err_out; 5962 } 5963 } 5964 ata_eh_freeze_port(ap); 5965 } 5966 5967 if (start_dr) 5968 devres_add(host->dev, start_dr); 5969 host->flags |= ATA_HOST_STARTED; 5970 return 0; 5971 5972 err_out: 5973 while (--i >= 0) { 5974 struct ata_port *ap = host->ports[i]; 5975 5976 if (ap->ops->port_stop) 5977 ap->ops->port_stop(ap); 5978 } 5979 devres_free(start_dr); 5980 return rc; 5981 } 5982 5983 /** 5984 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5985 * @host: host to initialize 5986 * @dev: device host is attached to 5987 * @ops: port_ops 5988 * 5989 */ 5990 void ata_host_init(struct ata_host *host, struct device *dev, 5991 struct ata_port_operations *ops) 5992 { 5993 spin_lock_init(&host->lock); 5994 mutex_init(&host->eh_mutex); 5995 host->dev = dev; 5996 host->ops = ops; 5997 } 5998 5999 void __ata_port_probe(struct ata_port *ap) 6000 { 6001 struct ata_eh_info *ehi = &ap->link.eh_info; 6002 unsigned long flags; 6003 6004 /* kick EH for boot probing */ 6005 spin_lock_irqsave(ap->lock, flags); 6006 6007 ehi->probe_mask |= ATA_ALL_DEVICES; 6008 ehi->action |= ATA_EH_RESET; 6009 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6010 6011 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6012 ap->pflags |= ATA_PFLAG_LOADING; 6013 ata_port_schedule_eh(ap); 6014 6015 spin_unlock_irqrestore(ap->lock, flags); 6016 } 6017 6018 int ata_port_probe(struct ata_port *ap) 6019 { 6020 int rc = 0; 6021 6022 if (ap->ops->error_handler) { 6023 __ata_port_probe(ap); 6024 ata_port_wait_eh(ap); 6025 } else { 6026 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6027 rc = ata_bus_probe(ap); 6028 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6029 } 6030 return rc; 6031 } 6032 6033 6034 static void async_port_probe(void *data, async_cookie_t cookie) 6035 { 6036 struct ata_port *ap = data; 6037 6038 /* 6039 * If we're not allowed to scan this host in parallel, 6040 * we need to wait until all previous scans have completed 6041 * before going further. 6042 * Jeff Garzik says this is only within a controller, so we 6043 * don't need to wait for port 0, only for later ports. 6044 */ 6045 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6046 async_synchronize_cookie(cookie); 6047 6048 (void)ata_port_probe(ap); 6049 6050 /* in order to keep device order, we need to synchronize at this point */ 6051 async_synchronize_cookie(cookie); 6052 6053 ata_scsi_scan_host(ap, 1); 6054 } 6055 6056 /** 6057 * ata_host_register - register initialized ATA host 6058 * @host: ATA host to register 6059 * @sht: template for SCSI host 6060 * 6061 * Register initialized ATA host. @host is allocated using 6062 * ata_host_alloc() and fully initialized by LLD. This function 6063 * starts ports, registers @host with ATA and SCSI layers and 6064 * probe registered devices. 6065 * 6066 * LOCKING: 6067 * Inherited from calling layer (may sleep). 6068 * 6069 * RETURNS: 6070 * 0 on success, -errno otherwise. 6071 */ 6072 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6073 { 6074 int i, rc; 6075 6076 /* host must have been started */ 6077 if (!(host->flags & ATA_HOST_STARTED)) { 6078 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6079 WARN_ON(1); 6080 return -EINVAL; 6081 } 6082 6083 /* Blow away unused ports. This happens when LLD can't 6084 * determine the exact number of ports to allocate at 6085 * allocation time. 6086 */ 6087 for (i = host->n_ports; host->ports[i]; i++) 6088 kfree(host->ports[i]); 6089 6090 /* give ports names and add SCSI hosts */ 6091 for (i = 0; i < host->n_ports; i++) 6092 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6093 6094 6095 /* Create associated sysfs transport objects */ 6096 for (i = 0; i < host->n_ports; i++) { 6097 rc = ata_tport_add(host->dev,host->ports[i]); 6098 if (rc) { 6099 goto err_tadd; 6100 } 6101 } 6102 6103 rc = ata_scsi_add_hosts(host, sht); 6104 if (rc) 6105 goto err_tadd; 6106 6107 /* set cable, sata_spd_limit and report */ 6108 for (i = 0; i < host->n_ports; i++) { 6109 struct ata_port *ap = host->ports[i]; 6110 unsigned long xfer_mask; 6111 6112 /* set SATA cable type if still unset */ 6113 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6114 ap->cbl = ATA_CBL_SATA; 6115 6116 /* init sata_spd_limit to the current value */ 6117 sata_link_init_spd(&ap->link); 6118 if (ap->slave_link) 6119 sata_link_init_spd(ap->slave_link); 6120 6121 /* print per-port info to dmesg */ 6122 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6123 ap->udma_mask); 6124 6125 if (!ata_port_is_dummy(ap)) { 6126 ata_port_info(ap, "%cATA max %s %s\n", 6127 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6128 ata_mode_string(xfer_mask), 6129 ap->link.eh_info.desc); 6130 ata_ehi_clear_desc(&ap->link.eh_info); 6131 } else 6132 ata_port_info(ap, "DUMMY\n"); 6133 } 6134 6135 /* perform each probe asynchronously */ 6136 for (i = 0; i < host->n_ports; i++) { 6137 struct ata_port *ap = host->ports[i]; 6138 async_schedule(async_port_probe, ap); 6139 } 6140 6141 return 0; 6142 6143 err_tadd: 6144 while (--i >= 0) { 6145 ata_tport_delete(host->ports[i]); 6146 } 6147 return rc; 6148 6149 } 6150 6151 /** 6152 * ata_host_activate - start host, request IRQ and register it 6153 * @host: target ATA host 6154 * @irq: IRQ to request 6155 * @irq_handler: irq_handler used when requesting IRQ 6156 * @irq_flags: irq_flags used when requesting IRQ 6157 * @sht: scsi_host_template to use when registering the host 6158 * 6159 * After allocating an ATA host and initializing it, most libata 6160 * LLDs perform three steps to activate the host - start host, 6161 * request IRQ and register it. This helper takes necessasry 6162 * arguments and performs the three steps in one go. 6163 * 6164 * An invalid IRQ skips the IRQ registration and expects the host to 6165 * have set polling mode on the port. In this case, @irq_handler 6166 * should be NULL. 6167 * 6168 * LOCKING: 6169 * Inherited from calling layer (may sleep). 6170 * 6171 * RETURNS: 6172 * 0 on success, -errno otherwise. 6173 */ 6174 int ata_host_activate(struct ata_host *host, int irq, 6175 irq_handler_t irq_handler, unsigned long irq_flags, 6176 struct scsi_host_template *sht) 6177 { 6178 int i, rc; 6179 6180 rc = ata_host_start(host); 6181 if (rc) 6182 return rc; 6183 6184 /* Special case for polling mode */ 6185 if (!irq) { 6186 WARN_ON(irq_handler); 6187 return ata_host_register(host, sht); 6188 } 6189 6190 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6191 dev_driver_string(host->dev), host); 6192 if (rc) 6193 return rc; 6194 6195 for (i = 0; i < host->n_ports; i++) 6196 ata_port_desc(host->ports[i], "irq %d", irq); 6197 6198 rc = ata_host_register(host, sht); 6199 /* if failed, just free the IRQ and leave ports alone */ 6200 if (rc) 6201 devm_free_irq(host->dev, irq, host); 6202 6203 return rc; 6204 } 6205 6206 /** 6207 * ata_port_detach - Detach ATA port in prepration of device removal 6208 * @ap: ATA port to be detached 6209 * 6210 * Detach all ATA devices and the associated SCSI devices of @ap; 6211 * then, remove the associated SCSI host. @ap is guaranteed to 6212 * be quiescent on return from this function. 6213 * 6214 * LOCKING: 6215 * Kernel thread context (may sleep). 6216 */ 6217 static void ata_port_detach(struct ata_port *ap) 6218 { 6219 unsigned long flags; 6220 6221 if (!ap->ops->error_handler) 6222 goto skip_eh; 6223 6224 /* tell EH we're leaving & flush EH */ 6225 spin_lock_irqsave(ap->lock, flags); 6226 ap->pflags |= ATA_PFLAG_UNLOADING; 6227 ata_port_schedule_eh(ap); 6228 spin_unlock_irqrestore(ap->lock, flags); 6229 6230 /* wait till EH commits suicide */ 6231 ata_port_wait_eh(ap); 6232 6233 /* it better be dead now */ 6234 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6235 6236 cancel_delayed_work_sync(&ap->hotplug_task); 6237 6238 skip_eh: 6239 if (ap->pmp_link) { 6240 int i; 6241 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6242 ata_tlink_delete(&ap->pmp_link[i]); 6243 } 6244 ata_tport_delete(ap); 6245 6246 /* remove the associated SCSI host */ 6247 scsi_remove_host(ap->scsi_host); 6248 } 6249 6250 /** 6251 * ata_host_detach - Detach all ports of an ATA host 6252 * @host: Host to detach 6253 * 6254 * Detach all ports of @host. 6255 * 6256 * LOCKING: 6257 * Kernel thread context (may sleep). 6258 */ 6259 void ata_host_detach(struct ata_host *host) 6260 { 6261 int i; 6262 6263 for (i = 0; i < host->n_ports; i++) 6264 ata_port_detach(host->ports[i]); 6265 6266 /* the host is dead now, dissociate ACPI */ 6267 ata_acpi_dissociate(host); 6268 } 6269 6270 #ifdef CONFIG_PCI 6271 6272 /** 6273 * ata_pci_remove_one - PCI layer callback for device removal 6274 * @pdev: PCI device that was removed 6275 * 6276 * PCI layer indicates to libata via this hook that hot-unplug or 6277 * module unload event has occurred. Detach all ports. Resource 6278 * release is handled via devres. 6279 * 6280 * LOCKING: 6281 * Inherited from PCI layer (may sleep). 6282 */ 6283 void ata_pci_remove_one(struct pci_dev *pdev) 6284 { 6285 struct device *dev = &pdev->dev; 6286 struct ata_host *host = dev_get_drvdata(dev); 6287 6288 ata_host_detach(host); 6289 } 6290 6291 /* move to PCI subsystem */ 6292 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6293 { 6294 unsigned long tmp = 0; 6295 6296 switch (bits->width) { 6297 case 1: { 6298 u8 tmp8 = 0; 6299 pci_read_config_byte(pdev, bits->reg, &tmp8); 6300 tmp = tmp8; 6301 break; 6302 } 6303 case 2: { 6304 u16 tmp16 = 0; 6305 pci_read_config_word(pdev, bits->reg, &tmp16); 6306 tmp = tmp16; 6307 break; 6308 } 6309 case 4: { 6310 u32 tmp32 = 0; 6311 pci_read_config_dword(pdev, bits->reg, &tmp32); 6312 tmp = tmp32; 6313 break; 6314 } 6315 6316 default: 6317 return -EINVAL; 6318 } 6319 6320 tmp &= bits->mask; 6321 6322 return (tmp == bits->val) ? 1 : 0; 6323 } 6324 6325 #ifdef CONFIG_PM 6326 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6327 { 6328 pci_save_state(pdev); 6329 pci_disable_device(pdev); 6330 6331 if (mesg.event & PM_EVENT_SLEEP) 6332 pci_set_power_state(pdev, PCI_D3hot); 6333 } 6334 6335 int ata_pci_device_do_resume(struct pci_dev *pdev) 6336 { 6337 int rc; 6338 6339 pci_set_power_state(pdev, PCI_D0); 6340 pci_restore_state(pdev); 6341 6342 rc = pcim_enable_device(pdev); 6343 if (rc) { 6344 dev_err(&pdev->dev, 6345 "failed to enable device after resume (%d)\n", rc); 6346 return rc; 6347 } 6348 6349 pci_set_master(pdev); 6350 return 0; 6351 } 6352 6353 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6354 { 6355 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6356 int rc = 0; 6357 6358 rc = ata_host_suspend(host, mesg); 6359 if (rc) 6360 return rc; 6361 6362 ata_pci_device_do_suspend(pdev, mesg); 6363 6364 return 0; 6365 } 6366 6367 int ata_pci_device_resume(struct pci_dev *pdev) 6368 { 6369 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6370 int rc; 6371 6372 rc = ata_pci_device_do_resume(pdev); 6373 if (rc == 0) 6374 ata_host_resume(host); 6375 return rc; 6376 } 6377 #endif /* CONFIG_PM */ 6378 6379 #endif /* CONFIG_PCI */ 6380 6381 static int __init ata_parse_force_one(char **cur, 6382 struct ata_force_ent *force_ent, 6383 const char **reason) 6384 { 6385 /* FIXME: Currently, there's no way to tag init const data and 6386 * using __initdata causes build failure on some versions of 6387 * gcc. Once __initdataconst is implemented, add const to the 6388 * following structure. 6389 */ 6390 static struct ata_force_param force_tbl[] __initdata = { 6391 { "40c", .cbl = ATA_CBL_PATA40 }, 6392 { "80c", .cbl = ATA_CBL_PATA80 }, 6393 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6394 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6395 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6396 { "sata", .cbl = ATA_CBL_SATA }, 6397 { "1.5Gbps", .spd_limit = 1 }, 6398 { "3.0Gbps", .spd_limit = 2 }, 6399 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6400 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6401 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6402 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6403 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6404 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6405 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6406 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6407 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6408 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6409 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6410 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6411 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6412 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6413 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6414 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6415 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6416 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6417 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6418 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6419 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6420 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6421 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6422 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6423 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6424 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6425 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6426 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6427 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6428 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6429 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6430 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6431 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6432 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6433 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6434 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6435 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6436 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6437 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6438 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6439 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6440 }; 6441 char *start = *cur, *p = *cur; 6442 char *id, *val, *endp; 6443 const struct ata_force_param *match_fp = NULL; 6444 int nr_matches = 0, i; 6445 6446 /* find where this param ends and update *cur */ 6447 while (*p != '\0' && *p != ',') 6448 p++; 6449 6450 if (*p == '\0') 6451 *cur = p; 6452 else 6453 *cur = p + 1; 6454 6455 *p = '\0'; 6456 6457 /* parse */ 6458 p = strchr(start, ':'); 6459 if (!p) { 6460 val = strstrip(start); 6461 goto parse_val; 6462 } 6463 *p = '\0'; 6464 6465 id = strstrip(start); 6466 val = strstrip(p + 1); 6467 6468 /* parse id */ 6469 p = strchr(id, '.'); 6470 if (p) { 6471 *p++ = '\0'; 6472 force_ent->device = simple_strtoul(p, &endp, 10); 6473 if (p == endp || *endp != '\0') { 6474 *reason = "invalid device"; 6475 return -EINVAL; 6476 } 6477 } 6478 6479 force_ent->port = simple_strtoul(id, &endp, 10); 6480 if (p == endp || *endp != '\0') { 6481 *reason = "invalid port/link"; 6482 return -EINVAL; 6483 } 6484 6485 parse_val: 6486 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6487 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6488 const struct ata_force_param *fp = &force_tbl[i]; 6489 6490 if (strncasecmp(val, fp->name, strlen(val))) 6491 continue; 6492 6493 nr_matches++; 6494 match_fp = fp; 6495 6496 if (strcasecmp(val, fp->name) == 0) { 6497 nr_matches = 1; 6498 break; 6499 } 6500 } 6501 6502 if (!nr_matches) { 6503 *reason = "unknown value"; 6504 return -EINVAL; 6505 } 6506 if (nr_matches > 1) { 6507 *reason = "ambigious value"; 6508 return -EINVAL; 6509 } 6510 6511 force_ent->param = *match_fp; 6512 6513 return 0; 6514 } 6515 6516 static void __init ata_parse_force_param(void) 6517 { 6518 int idx = 0, size = 1; 6519 int last_port = -1, last_device = -1; 6520 char *p, *cur, *next; 6521 6522 /* calculate maximum number of params and allocate force_tbl */ 6523 for (p = ata_force_param_buf; *p; p++) 6524 if (*p == ',') 6525 size++; 6526 6527 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6528 if (!ata_force_tbl) { 6529 printk(KERN_WARNING "ata: failed to extend force table, " 6530 "libata.force ignored\n"); 6531 return; 6532 } 6533 6534 /* parse and populate the table */ 6535 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6536 const char *reason = ""; 6537 struct ata_force_ent te = { .port = -1, .device = -1 }; 6538 6539 next = cur; 6540 if (ata_parse_force_one(&next, &te, &reason)) { 6541 printk(KERN_WARNING "ata: failed to parse force " 6542 "parameter \"%s\" (%s)\n", 6543 cur, reason); 6544 continue; 6545 } 6546 6547 if (te.port == -1) { 6548 te.port = last_port; 6549 te.device = last_device; 6550 } 6551 6552 ata_force_tbl[idx++] = te; 6553 6554 last_port = te.port; 6555 last_device = te.device; 6556 } 6557 6558 ata_force_tbl_size = idx; 6559 } 6560 6561 static int __init ata_init(void) 6562 { 6563 int rc; 6564 6565 ata_parse_force_param(); 6566 6567 ata_acpi_register(); 6568 6569 rc = ata_sff_init(); 6570 if (rc) { 6571 kfree(ata_force_tbl); 6572 return rc; 6573 } 6574 6575 libata_transport_init(); 6576 ata_scsi_transport_template = ata_attach_transport(); 6577 if (!ata_scsi_transport_template) { 6578 ata_sff_exit(); 6579 rc = -ENOMEM; 6580 goto err_out; 6581 } 6582 6583 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6584 return 0; 6585 6586 err_out: 6587 return rc; 6588 } 6589 6590 static void __exit ata_exit(void) 6591 { 6592 ata_release_transport(ata_scsi_transport_template); 6593 libata_transport_exit(); 6594 ata_sff_exit(); 6595 ata_acpi_unregister(); 6596 kfree(ata_force_tbl); 6597 } 6598 6599 subsys_initcall(ata_init); 6600 module_exit(ata_exit); 6601 6602 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6603 6604 int ata_ratelimit(void) 6605 { 6606 return __ratelimit(&ratelimit); 6607 } 6608 6609 /** 6610 * ata_msleep - ATA EH owner aware msleep 6611 * @ap: ATA port to attribute the sleep to 6612 * @msecs: duration to sleep in milliseconds 6613 * 6614 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6615 * ownership is released before going to sleep and reacquired 6616 * after the sleep is complete. IOW, other ports sharing the 6617 * @ap->host will be allowed to own the EH while this task is 6618 * sleeping. 6619 * 6620 * LOCKING: 6621 * Might sleep. 6622 */ 6623 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6624 { 6625 bool owns_eh = ap && ap->host->eh_owner == current; 6626 6627 if (owns_eh) 6628 ata_eh_release(ap); 6629 6630 msleep(msecs); 6631 6632 if (owns_eh) 6633 ata_eh_acquire(ap); 6634 } 6635 6636 /** 6637 * ata_wait_register - wait until register value changes 6638 * @ap: ATA port to wait register for, can be NULL 6639 * @reg: IO-mapped register 6640 * @mask: Mask to apply to read register value 6641 * @val: Wait condition 6642 * @interval: polling interval in milliseconds 6643 * @timeout: timeout in milliseconds 6644 * 6645 * Waiting for some bits of register to change is a common 6646 * operation for ATA controllers. This function reads 32bit LE 6647 * IO-mapped register @reg and tests for the following condition. 6648 * 6649 * (*@reg & mask) != val 6650 * 6651 * If the condition is met, it returns; otherwise, the process is 6652 * repeated after @interval_msec until timeout. 6653 * 6654 * LOCKING: 6655 * Kernel thread context (may sleep) 6656 * 6657 * RETURNS: 6658 * The final register value. 6659 */ 6660 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6661 unsigned long interval, unsigned long timeout) 6662 { 6663 unsigned long deadline; 6664 u32 tmp; 6665 6666 tmp = ioread32(reg); 6667 6668 /* Calculate timeout _after_ the first read to make sure 6669 * preceding writes reach the controller before starting to 6670 * eat away the timeout. 6671 */ 6672 deadline = ata_deadline(jiffies, timeout); 6673 6674 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6675 ata_msleep(ap, interval); 6676 tmp = ioread32(reg); 6677 } 6678 6679 return tmp; 6680 } 6681 6682 /* 6683 * Dummy port_ops 6684 */ 6685 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6686 { 6687 return AC_ERR_SYSTEM; 6688 } 6689 6690 static void ata_dummy_error_handler(struct ata_port *ap) 6691 { 6692 /* truly dummy */ 6693 } 6694 6695 struct ata_port_operations ata_dummy_port_ops = { 6696 .qc_prep = ata_noop_qc_prep, 6697 .qc_issue = ata_dummy_qc_issue, 6698 .error_handler = ata_dummy_error_handler, 6699 .sched_eh = ata_std_sched_eh, 6700 .end_eh = ata_std_end_eh, 6701 }; 6702 6703 const struct ata_port_info ata_dummy_port_info = { 6704 .port_ops = &ata_dummy_port_ops, 6705 }; 6706 6707 /* 6708 * Utility print functions 6709 */ 6710 int ata_port_printk(const struct ata_port *ap, const char *level, 6711 const char *fmt, ...) 6712 { 6713 struct va_format vaf; 6714 va_list args; 6715 int r; 6716 6717 va_start(args, fmt); 6718 6719 vaf.fmt = fmt; 6720 vaf.va = &args; 6721 6722 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6723 6724 va_end(args); 6725 6726 return r; 6727 } 6728 EXPORT_SYMBOL(ata_port_printk); 6729 6730 int ata_link_printk(const struct ata_link *link, const char *level, 6731 const char *fmt, ...) 6732 { 6733 struct va_format vaf; 6734 va_list args; 6735 int r; 6736 6737 va_start(args, fmt); 6738 6739 vaf.fmt = fmt; 6740 vaf.va = &args; 6741 6742 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6743 r = printk("%sata%u.%02u: %pV", 6744 level, link->ap->print_id, link->pmp, &vaf); 6745 else 6746 r = printk("%sata%u: %pV", 6747 level, link->ap->print_id, &vaf); 6748 6749 va_end(args); 6750 6751 return r; 6752 } 6753 EXPORT_SYMBOL(ata_link_printk); 6754 6755 int ata_dev_printk(const struct ata_device *dev, const char *level, 6756 const char *fmt, ...) 6757 { 6758 struct va_format vaf; 6759 va_list args; 6760 int r; 6761 6762 va_start(args, fmt); 6763 6764 vaf.fmt = fmt; 6765 vaf.va = &args; 6766 6767 r = printk("%sata%u.%02u: %pV", 6768 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6769 &vaf); 6770 6771 va_end(args); 6772 6773 return r; 6774 } 6775 EXPORT_SYMBOL(ata_dev_printk); 6776 6777 void ata_print_version(const struct device *dev, const char *version) 6778 { 6779 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6780 } 6781 EXPORT_SYMBOL(ata_print_version); 6782 6783 /* 6784 * libata is essentially a library of internal helper functions for 6785 * low-level ATA host controller drivers. As such, the API/ABI is 6786 * likely to change as new drivers are added and updated. 6787 * Do not depend on ABI/API stability. 6788 */ 6789 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6790 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6791 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6792 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6793 EXPORT_SYMBOL_GPL(sata_port_ops); 6794 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6795 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6796 EXPORT_SYMBOL_GPL(ata_link_next); 6797 EXPORT_SYMBOL_GPL(ata_dev_next); 6798 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6799 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6800 EXPORT_SYMBOL_GPL(ata_host_init); 6801 EXPORT_SYMBOL_GPL(ata_host_alloc); 6802 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6803 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6804 EXPORT_SYMBOL_GPL(ata_host_start); 6805 EXPORT_SYMBOL_GPL(ata_host_register); 6806 EXPORT_SYMBOL_GPL(ata_host_activate); 6807 EXPORT_SYMBOL_GPL(ata_host_detach); 6808 EXPORT_SYMBOL_GPL(ata_sg_init); 6809 EXPORT_SYMBOL_GPL(ata_qc_complete); 6810 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6811 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6812 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6813 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6814 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6815 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6816 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6817 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6818 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6819 EXPORT_SYMBOL_GPL(ata_mode_string); 6820 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6821 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6822 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6823 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6824 EXPORT_SYMBOL_GPL(ata_dev_disable); 6825 EXPORT_SYMBOL_GPL(sata_set_spd); 6826 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6827 EXPORT_SYMBOL_GPL(sata_link_debounce); 6828 EXPORT_SYMBOL_GPL(sata_link_resume); 6829 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6830 EXPORT_SYMBOL_GPL(ata_std_prereset); 6831 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6832 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6833 EXPORT_SYMBOL_GPL(ata_std_postreset); 6834 EXPORT_SYMBOL_GPL(ata_dev_classify); 6835 EXPORT_SYMBOL_GPL(ata_dev_pair); 6836 EXPORT_SYMBOL_GPL(ata_ratelimit); 6837 EXPORT_SYMBOL_GPL(ata_msleep); 6838 EXPORT_SYMBOL_GPL(ata_wait_register); 6839 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6840 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6841 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6842 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6843 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6844 EXPORT_SYMBOL_GPL(sata_scr_valid); 6845 EXPORT_SYMBOL_GPL(sata_scr_read); 6846 EXPORT_SYMBOL_GPL(sata_scr_write); 6847 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6848 EXPORT_SYMBOL_GPL(ata_link_online); 6849 EXPORT_SYMBOL_GPL(ata_link_offline); 6850 #ifdef CONFIG_PM 6851 EXPORT_SYMBOL_GPL(ata_host_suspend); 6852 EXPORT_SYMBOL_GPL(ata_host_resume); 6853 #endif /* CONFIG_PM */ 6854 EXPORT_SYMBOL_GPL(ata_id_string); 6855 EXPORT_SYMBOL_GPL(ata_id_c_string); 6856 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6857 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6858 6859 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6860 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6861 EXPORT_SYMBOL_GPL(ata_timing_compute); 6862 EXPORT_SYMBOL_GPL(ata_timing_merge); 6863 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6864 6865 #ifdef CONFIG_PCI 6866 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6867 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6868 #ifdef CONFIG_PM 6869 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6870 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6871 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6872 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6873 #endif /* CONFIG_PM */ 6874 #endif /* CONFIG_PCI */ 6875 6876 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6877 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6878 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6879 EXPORT_SYMBOL_GPL(ata_port_desc); 6880 #ifdef CONFIG_PCI 6881 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6882 #endif /* CONFIG_PCI */ 6883 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6884 EXPORT_SYMBOL_GPL(ata_link_abort); 6885 EXPORT_SYMBOL_GPL(ata_port_abort); 6886 EXPORT_SYMBOL_GPL(ata_port_freeze); 6887 EXPORT_SYMBOL_GPL(sata_async_notification); 6888 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6889 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6890 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6891 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6892 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6893 EXPORT_SYMBOL_GPL(ata_do_eh); 6894 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6895 6896 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6897 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6898 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6899 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6900 EXPORT_SYMBOL_GPL(ata_cable_sata); 6901