1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 70 #include "libata.h" 71 #include "libata-transport.h" 72 73 /* debounce timing parameters in msecs { interval, duration, timeout } */ 74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 77 78 const struct ata_port_operations ata_base_port_ops = { 79 .prereset = ata_std_prereset, 80 .postreset = ata_std_postreset, 81 .error_handler = ata_std_error_handler, 82 }; 83 84 const struct ata_port_operations sata_port_ops = { 85 .inherits = &ata_base_port_ops, 86 87 .qc_defer = ata_std_qc_defer, 88 .hardreset = sata_std_hardreset, 89 }; 90 91 static unsigned int ata_dev_init_params(struct ata_device *dev, 92 u16 heads, u16 sectors); 93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 99 struct ata_force_param { 100 const char *name; 101 unsigned int cbl; 102 int spd_limit; 103 unsigned long xfer_mask; 104 unsigned int horkage_on; 105 unsigned int horkage_off; 106 unsigned int lflags; 107 }; 108 109 struct ata_force_ent { 110 int port; 111 int device; 112 struct ata_force_param param; 113 }; 114 115 static struct ata_force_ent *ata_force_tbl; 116 static int ata_force_tbl_size; 117 118 static char ata_force_param_buf[PAGE_SIZE] __initdata; 119 /* param_buf is thrown away after initialization, disallow read */ 120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 122 123 static int atapi_enabled = 1; 124 module_param(atapi_enabled, int, 0444); 125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 126 127 static int atapi_dmadir = 0; 128 module_param(atapi_dmadir, int, 0444); 129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 130 131 int atapi_passthru16 = 1; 132 module_param(atapi_passthru16, int, 0444); 133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 134 135 int libata_fua = 0; 136 module_param_named(fua, libata_fua, int, 0444); 137 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 138 139 static int ata_ignore_hpa; 140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 142 143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 144 module_param_named(dma, libata_dma_mask, int, 0444); 145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 146 147 static int ata_probe_timeout; 148 module_param(ata_probe_timeout, int, 0444); 149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 150 151 int libata_noacpi = 0; 152 module_param_named(noacpi, libata_noacpi, int, 0444); 153 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 154 155 int libata_allow_tpm = 0; 156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 158 159 static int atapi_an; 160 module_param(atapi_an, int, 0444); 161 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 162 163 MODULE_AUTHOR("Jeff Garzik"); 164 MODULE_DESCRIPTION("Library module for ATA devices"); 165 MODULE_LICENSE("GPL"); 166 MODULE_VERSION(DRV_VERSION); 167 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 /* fall through */ 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 /* fall through */ 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 233 /** 234 * ata_dev_next - device iteration helper 235 * @dev: the previous device, NULL to start 236 * @link: ATA link containing devices to iterate 237 * @mode: iteration mode, one of ATA_DITER_* 238 * 239 * LOCKING: 240 * Host lock or EH context. 241 * 242 * RETURNS: 243 * Pointer to the next device. 244 */ 245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 246 enum ata_dev_iter_mode mode) 247 { 248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 250 251 /* NULL dev indicates start of iteration */ 252 if (!dev) 253 switch (mode) { 254 case ATA_DITER_ENABLED: 255 case ATA_DITER_ALL: 256 dev = link->device; 257 goto check; 258 case ATA_DITER_ENABLED_REVERSE: 259 case ATA_DITER_ALL_REVERSE: 260 dev = link->device + ata_link_max_devices(link) - 1; 261 goto check; 262 } 263 264 next: 265 /* move to the next one */ 266 switch (mode) { 267 case ATA_DITER_ENABLED: 268 case ATA_DITER_ALL: 269 if (++dev < link->device + ata_link_max_devices(link)) 270 goto check; 271 return NULL; 272 case ATA_DITER_ENABLED_REVERSE: 273 case ATA_DITER_ALL_REVERSE: 274 if (--dev >= link->device) 275 goto check; 276 return NULL; 277 } 278 279 check: 280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 281 !ata_dev_enabled(dev)) 282 goto next; 283 return dev; 284 } 285 286 /** 287 * ata_dev_phys_link - find physical link for a device 288 * @dev: ATA device to look up physical link for 289 * 290 * Look up physical link which @dev is attached to. Note that 291 * this is different from @dev->link only when @dev is on slave 292 * link. For all other cases, it's the same as @dev->link. 293 * 294 * LOCKING: 295 * Don't care. 296 * 297 * RETURNS: 298 * Pointer to the found physical link. 299 */ 300 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 301 { 302 struct ata_port *ap = dev->link->ap; 303 304 if (!ap->slave_link) 305 return dev->link; 306 if (!dev->devno) 307 return &ap->link; 308 return ap->slave_link; 309 } 310 311 /** 312 * ata_force_cbl - force cable type according to libata.force 313 * @ap: ATA port of interest 314 * 315 * Force cable type according to libata.force and whine about it. 316 * The last entry which has matching port number is used, so it 317 * can be specified as part of device force parameters. For 318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 319 * same effect. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 void ata_force_cbl(struct ata_port *ap) 325 { 326 int i; 327 328 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 329 const struct ata_force_ent *fe = &ata_force_tbl[i]; 330 331 if (fe->port != -1 && fe->port != ap->print_id) 332 continue; 333 334 if (fe->param.cbl == ATA_CBL_NONE) 335 continue; 336 337 ap->cbl = fe->param.cbl; 338 ata_port_printk(ap, KERN_NOTICE, 339 "FORCE: cable set to %s\n", fe->param.name); 340 return; 341 } 342 } 343 344 /** 345 * ata_force_link_limits - force link limits according to libata.force 346 * @link: ATA link of interest 347 * 348 * Force link flags and SATA spd limit according to libata.force 349 * and whine about it. When only the port part is specified 350 * (e.g. 1:), the limit applies to all links connected to both 351 * the host link and all fan-out ports connected via PMP. If the 352 * device part is specified as 0 (e.g. 1.00:), it specifies the 353 * first fan-out link not the host link. Device number 15 always 354 * points to the host link whether PMP is attached or not. If the 355 * controller has slave link, device number 16 points to it. 356 * 357 * LOCKING: 358 * EH context. 359 */ 360 static void ata_force_link_limits(struct ata_link *link) 361 { 362 bool did_spd = false; 363 int linkno = link->pmp; 364 int i; 365 366 if (ata_is_host_link(link)) 367 linkno += 15; 368 369 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 370 const struct ata_force_ent *fe = &ata_force_tbl[i]; 371 372 if (fe->port != -1 && fe->port != link->ap->print_id) 373 continue; 374 375 if (fe->device != -1 && fe->device != linkno) 376 continue; 377 378 /* only honor the first spd limit */ 379 if (!did_spd && fe->param.spd_limit) { 380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 381 ata_link_printk(link, KERN_NOTICE, 382 "FORCE: PHY spd limit set to %s\n", 383 fe->param.name); 384 did_spd = true; 385 } 386 387 /* let lflags stack */ 388 if (fe->param.lflags) { 389 link->flags |= fe->param.lflags; 390 ata_link_printk(link, KERN_NOTICE, 391 "FORCE: link flag 0x%x forced -> 0x%x\n", 392 fe->param.lflags, link->flags); 393 } 394 } 395 } 396 397 /** 398 * ata_force_xfermask - force xfermask according to libata.force 399 * @dev: ATA device of interest 400 * 401 * Force xfer_mask according to libata.force and whine about it. 402 * For consistency with link selection, device number 15 selects 403 * the first device connected to the host link. 404 * 405 * LOCKING: 406 * EH context. 407 */ 408 static void ata_force_xfermask(struct ata_device *dev) 409 { 410 int devno = dev->link->pmp + dev->devno; 411 int alt_devno = devno; 412 int i; 413 414 /* allow n.15/16 for devices attached to host port */ 415 if (ata_is_host_link(dev->link)) 416 alt_devno += 15; 417 418 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 419 const struct ata_force_ent *fe = &ata_force_tbl[i]; 420 unsigned long pio_mask, mwdma_mask, udma_mask; 421 422 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 423 continue; 424 425 if (fe->device != -1 && fe->device != devno && 426 fe->device != alt_devno) 427 continue; 428 429 if (!fe->param.xfer_mask) 430 continue; 431 432 ata_unpack_xfermask(fe->param.xfer_mask, 433 &pio_mask, &mwdma_mask, &udma_mask); 434 if (udma_mask) 435 dev->udma_mask = udma_mask; 436 else if (mwdma_mask) { 437 dev->udma_mask = 0; 438 dev->mwdma_mask = mwdma_mask; 439 } else { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = 0; 442 dev->pio_mask = pio_mask; 443 } 444 445 ata_dev_printk(dev, KERN_NOTICE, 446 "FORCE: xfer_mask set to %s\n", fe->param.name); 447 return; 448 } 449 } 450 451 /** 452 * ata_force_horkage - force horkage according to libata.force 453 * @dev: ATA device of interest 454 * 455 * Force horkage according to libata.force and whine about it. 456 * For consistency with link selection, device number 15 selects 457 * the first device connected to the host link. 458 * 459 * LOCKING: 460 * EH context. 461 */ 462 static void ata_force_horkage(struct ata_device *dev) 463 { 464 int devno = dev->link->pmp + dev->devno; 465 int alt_devno = devno; 466 int i; 467 468 /* allow n.15/16 for devices attached to host port */ 469 if (ata_is_host_link(dev->link)) 470 alt_devno += 15; 471 472 for (i = 0; i < ata_force_tbl_size; i++) { 473 const struct ata_force_ent *fe = &ata_force_tbl[i]; 474 475 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 476 continue; 477 478 if (fe->device != -1 && fe->device != devno && 479 fe->device != alt_devno) 480 continue; 481 482 if (!(~dev->horkage & fe->param.horkage_on) && 483 !(dev->horkage & fe->param.horkage_off)) 484 continue; 485 486 dev->horkage |= fe->param.horkage_on; 487 dev->horkage &= ~fe->param.horkage_off; 488 489 ata_dev_printk(dev, KERN_NOTICE, 490 "FORCE: horkage modified (%s)\n", fe->param.name); 491 } 492 } 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 /* fall thru */ 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 532 /** 533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 534 * @tf: Taskfile to convert 535 * @pmp: Port multiplier port 536 * @is_cmd: This FIS is for command 537 * @fis: Buffer into which data will output 538 * 539 * Converts a standard ATA taskfile to a Serial ATA 540 * FIS structure (Register - Host to Device). 541 * 542 * LOCKING: 543 * Inherited from caller. 544 */ 545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 546 { 547 fis[0] = 0x27; /* Register - Host to Device FIS */ 548 fis[1] = pmp & 0xf; /* Port multiplier number*/ 549 if (is_cmd) 550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 551 552 fis[2] = tf->command; 553 fis[3] = tf->feature; 554 555 fis[4] = tf->lbal; 556 fis[5] = tf->lbam; 557 fis[6] = tf->lbah; 558 fis[7] = tf->device; 559 560 fis[8] = tf->hob_lbal; 561 fis[9] = tf->hob_lbam; 562 fis[10] = tf->hob_lbah; 563 fis[11] = tf->hob_feature; 564 565 fis[12] = tf->nsect; 566 fis[13] = tf->hob_nsect; 567 fis[14] = 0; 568 fis[15] = tf->ctl; 569 570 fis[16] = 0; 571 fis[17] = 0; 572 fis[18] = 0; 573 fis[19] = 0; 574 } 575 576 /** 577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 578 * @fis: Buffer from which data will be input 579 * @tf: Taskfile to output 580 * 581 * Converts a serial ATA FIS structure to a standard ATA taskfile. 582 * 583 * LOCKING: 584 * Inherited from caller. 585 */ 586 587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 588 { 589 tf->command = fis[2]; /* status */ 590 tf->feature = fis[3]; /* error */ 591 592 tf->lbal = fis[4]; 593 tf->lbam = fis[5]; 594 tf->lbah = fis[6]; 595 tf->device = fis[7]; 596 597 tf->hob_lbal = fis[8]; 598 tf->hob_lbam = fis[9]; 599 tf->hob_lbah = fis[10]; 600 601 tf->nsect = fis[12]; 602 tf->hob_nsect = fis[13]; 603 } 604 605 static const u8 ata_rw_cmds[] = { 606 /* pio multi */ 607 ATA_CMD_READ_MULTI, 608 ATA_CMD_WRITE_MULTI, 609 ATA_CMD_READ_MULTI_EXT, 610 ATA_CMD_WRITE_MULTI_EXT, 611 0, 612 0, 613 0, 614 ATA_CMD_WRITE_MULTI_FUA_EXT, 615 /* pio */ 616 ATA_CMD_PIO_READ, 617 ATA_CMD_PIO_WRITE, 618 ATA_CMD_PIO_READ_EXT, 619 ATA_CMD_PIO_WRITE_EXT, 620 0, 621 0, 622 0, 623 0, 624 /* dma */ 625 ATA_CMD_READ, 626 ATA_CMD_WRITE, 627 ATA_CMD_READ_EXT, 628 ATA_CMD_WRITE_EXT, 629 0, 630 0, 631 0, 632 ATA_CMD_WRITE_FUA_EXT 633 }; 634 635 /** 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 637 * @tf: command to examine and configure 638 * @dev: device tf belongs to 639 * 640 * Examine the device configuration and tf->flags to calculate 641 * the proper read/write commands and protocol to use. 642 * 643 * LOCKING: 644 * caller. 645 */ 646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 647 { 648 u8 cmd; 649 650 int index, fua, lba48, write; 651 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 655 656 if (dev->flags & ATA_DFLAG_PIO) { 657 tf->protocol = ATA_PROT_PIO; 658 index = dev->multi_count ? 0 : 8; 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 660 /* Unable to use DMA due to host limitation */ 661 tf->protocol = ATA_PROT_PIO; 662 index = dev->multi_count ? 0 : 8; 663 } else { 664 tf->protocol = ATA_PROT_DMA; 665 index = 16; 666 } 667 668 cmd = ata_rw_cmds[index + fua + lba48 + write]; 669 if (cmd) { 670 tf->command = cmd; 671 return 0; 672 } 673 return -1; 674 } 675 676 /** 677 * ata_tf_read_block - Read block address from ATA taskfile 678 * @tf: ATA taskfile of interest 679 * @dev: ATA device @tf belongs to 680 * 681 * LOCKING: 682 * None. 683 * 684 * Read block address from @tf. This function can handle all 685 * three address formats - LBA, LBA48 and CHS. tf->protocol and 686 * flags select the address format to use. 687 * 688 * RETURNS: 689 * Block address read from @tf. 690 */ 691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 692 { 693 u64 block = 0; 694 695 if (tf->flags & ATA_TFLAG_LBA) { 696 if (tf->flags & ATA_TFLAG_LBA48) { 697 block |= (u64)tf->hob_lbah << 40; 698 block |= (u64)tf->hob_lbam << 32; 699 block |= (u64)tf->hob_lbal << 24; 700 } else 701 block |= (tf->device & 0xf) << 24; 702 703 block |= tf->lbah << 16; 704 block |= tf->lbam << 8; 705 block |= tf->lbal; 706 } else { 707 u32 cyl, head, sect; 708 709 cyl = tf->lbam | (tf->lbah << 8); 710 head = tf->device & 0xf; 711 sect = tf->lbal; 712 713 if (!sect) { 714 ata_dev_printk(dev, KERN_WARNING, "device reported " 715 "invalid CHS sector 0\n"); 716 sect = 1; /* oh well */ 717 } 718 719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 720 } 721 722 return block; 723 } 724 725 /** 726 * ata_build_rw_tf - Build ATA taskfile for given read/write request 727 * @tf: Target ATA taskfile 728 * @dev: ATA device @tf belongs to 729 * @block: Block address 730 * @n_block: Number of blocks 731 * @tf_flags: RW/FUA etc... 732 * @tag: tag 733 * 734 * LOCKING: 735 * None. 736 * 737 * Build ATA taskfile @tf for read/write request described by 738 * @block, @n_block, @tf_flags and @tag on @dev. 739 * 740 * RETURNS: 741 * 742 * 0 on success, -ERANGE if the request is too large for @dev, 743 * -EINVAL if the request is invalid. 744 */ 745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 746 u64 block, u32 n_block, unsigned int tf_flags, 747 unsigned int tag) 748 { 749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 750 tf->flags |= tf_flags; 751 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 753 /* yay, NCQ */ 754 if (!lba_48_ok(block, n_block)) 755 return -ERANGE; 756 757 tf->protocol = ATA_PROT_NCQ; 758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 759 760 if (tf->flags & ATA_TFLAG_WRITE) 761 tf->command = ATA_CMD_FPDMA_WRITE; 762 else 763 tf->command = ATA_CMD_FPDMA_READ; 764 765 tf->nsect = tag << 3; 766 tf->hob_feature = (n_block >> 8) & 0xff; 767 tf->feature = n_block & 0xff; 768 769 tf->hob_lbah = (block >> 40) & 0xff; 770 tf->hob_lbam = (block >> 32) & 0xff; 771 tf->hob_lbal = (block >> 24) & 0xff; 772 tf->lbah = (block >> 16) & 0xff; 773 tf->lbam = (block >> 8) & 0xff; 774 tf->lbal = block & 0xff; 775 776 tf->device = 1 << 6; 777 if (tf->flags & ATA_TFLAG_FUA) 778 tf->device |= 1 << 7; 779 } else if (dev->flags & ATA_DFLAG_LBA) { 780 tf->flags |= ATA_TFLAG_LBA; 781 782 if (lba_28_ok(block, n_block)) { 783 /* use LBA28 */ 784 tf->device |= (block >> 24) & 0xf; 785 } else if (lba_48_ok(block, n_block)) { 786 if (!(dev->flags & ATA_DFLAG_LBA48)) 787 return -ERANGE; 788 789 /* use LBA48 */ 790 tf->flags |= ATA_TFLAG_LBA48; 791 792 tf->hob_nsect = (n_block >> 8) & 0xff; 793 794 tf->hob_lbah = (block >> 40) & 0xff; 795 tf->hob_lbam = (block >> 32) & 0xff; 796 tf->hob_lbal = (block >> 24) & 0xff; 797 } else 798 /* request too large even for LBA48 */ 799 return -ERANGE; 800 801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 802 return -EINVAL; 803 804 tf->nsect = n_block & 0xff; 805 806 tf->lbah = (block >> 16) & 0xff; 807 tf->lbam = (block >> 8) & 0xff; 808 tf->lbal = block & 0xff; 809 810 tf->device |= ATA_LBA; 811 } else { 812 /* CHS */ 813 u32 sect, head, cyl, track; 814 815 /* The request -may- be too large for CHS addressing. */ 816 if (!lba_28_ok(block, n_block)) 817 return -ERANGE; 818 819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 820 return -EINVAL; 821 822 /* Convert LBA to CHS */ 823 track = (u32)block / dev->sectors; 824 cyl = track / dev->heads; 825 head = track % dev->heads; 826 sect = (u32)block % dev->sectors + 1; 827 828 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 829 (u32)block, track, cyl, head, sect); 830 831 /* Check whether the converted CHS can fit. 832 Cylinder: 0-65535 833 Head: 0-15 834 Sector: 1-255*/ 835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 836 return -ERANGE; 837 838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 839 tf->lbal = sect; 840 tf->lbam = cyl; 841 tf->lbah = cyl >> 8; 842 tf->device |= head; 843 } 844 845 return 0; 846 } 847 848 /** 849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 850 * @pio_mask: pio_mask 851 * @mwdma_mask: mwdma_mask 852 * @udma_mask: udma_mask 853 * 854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 855 * unsigned int xfer_mask. 856 * 857 * LOCKING: 858 * None. 859 * 860 * RETURNS: 861 * Packed xfer_mask. 862 */ 863 unsigned long ata_pack_xfermask(unsigned long pio_mask, 864 unsigned long mwdma_mask, 865 unsigned long udma_mask) 866 { 867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 870 } 871 872 /** 873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 874 * @xfer_mask: xfer_mask to unpack 875 * @pio_mask: resulting pio_mask 876 * @mwdma_mask: resulting mwdma_mask 877 * @udma_mask: resulting udma_mask 878 * 879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 880 * Any NULL distination masks will be ignored. 881 */ 882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 883 unsigned long *mwdma_mask, unsigned long *udma_mask) 884 { 885 if (pio_mask) 886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 887 if (mwdma_mask) 888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 889 if (udma_mask) 890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 891 } 892 893 static const struct ata_xfer_ent { 894 int shift, bits; 895 u8 base; 896 } ata_xfer_tbl[] = { 897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 900 { -1, }, 901 }; 902 903 /** 904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 905 * @xfer_mask: xfer_mask of interest 906 * 907 * Return matching XFER_* value for @xfer_mask. Only the highest 908 * bit of @xfer_mask is considered. 909 * 910 * LOCKING: 911 * None. 912 * 913 * RETURNS: 914 * Matching XFER_* value, 0xff if no match found. 915 */ 916 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 917 { 918 int highbit = fls(xfer_mask) - 1; 919 const struct ata_xfer_ent *ent; 920 921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 923 return ent->base + highbit - ent->shift; 924 return 0xff; 925 } 926 927 /** 928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 929 * @xfer_mode: XFER_* of interest 930 * 931 * Return matching xfer_mask for @xfer_mode. 932 * 933 * LOCKING: 934 * None. 935 * 936 * RETURNS: 937 * Matching xfer_mask, 0 if no match found. 938 */ 939 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 940 { 941 const struct ata_xfer_ent *ent; 942 943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 946 & ~((1 << ent->shift) - 1); 947 return 0; 948 } 949 950 /** 951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 952 * @xfer_mode: XFER_* of interest 953 * 954 * Return matching xfer_shift for @xfer_mode. 955 * 956 * LOCKING: 957 * None. 958 * 959 * RETURNS: 960 * Matching xfer_shift, -1 if no match found. 961 */ 962 int ata_xfer_mode2shift(unsigned long xfer_mode) 963 { 964 const struct ata_xfer_ent *ent; 965 966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 968 return ent->shift; 969 return -1; 970 } 971 972 /** 973 * ata_mode_string - convert xfer_mask to string 974 * @xfer_mask: mask of bits supported; only highest bit counts. 975 * 976 * Determine string which represents the highest speed 977 * (highest bit in @modemask). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Constant C string representing highest speed listed in 984 * @mode_mask, or the constant C string "<n/a>". 985 */ 986 const char *ata_mode_string(unsigned long xfer_mask) 987 { 988 static const char * const xfer_mode_str[] = { 989 "PIO0", 990 "PIO1", 991 "PIO2", 992 "PIO3", 993 "PIO4", 994 "PIO5", 995 "PIO6", 996 "MWDMA0", 997 "MWDMA1", 998 "MWDMA2", 999 "MWDMA3", 1000 "MWDMA4", 1001 "UDMA/16", 1002 "UDMA/25", 1003 "UDMA/33", 1004 "UDMA/44", 1005 "UDMA/66", 1006 "UDMA/100", 1007 "UDMA/133", 1008 "UDMA7", 1009 }; 1010 int highbit; 1011 1012 highbit = fls(xfer_mask) - 1; 1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1014 return xfer_mode_str[highbit]; 1015 return "<n/a>"; 1016 } 1017 1018 const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 /** 1032 * ata_dev_classify - determine device type based on ATA-spec signature 1033 * @tf: ATA taskfile register set for device to be identified 1034 * 1035 * Determine from taskfile register contents whether a device is 1036 * ATA or ATAPI, as per "Signature and persistence" section 1037 * of ATA/PI spec (volume 1, sect 5.14). 1038 * 1039 * LOCKING: 1040 * None. 1041 * 1042 * RETURNS: 1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1044 * %ATA_DEV_UNKNOWN the event of failure. 1045 */ 1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1047 { 1048 /* Apple's open source Darwin code hints that some devices only 1049 * put a proper signature into the LBA mid/high registers, 1050 * So, we only check those. It's sufficient for uniqueness. 1051 * 1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1053 * signatures for ATA and ATAPI devices attached on SerialATA, 1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1055 * spec has never mentioned about using different signatures 1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1057 * Multiplier specification began to use 0x69/0x96 to identify 1058 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1060 * 0x69/0x96 shortly and described them as reserved for 1061 * SerialATA. 1062 * 1063 * We follow the current spec and consider that 0x69/0x96 1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1066 * SEMB signature. This is worked around in 1067 * ata_dev_read_id(). 1068 */ 1069 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1070 DPRINTK("found ATA device by sig\n"); 1071 return ATA_DEV_ATA; 1072 } 1073 1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1075 DPRINTK("found ATAPI device by sig\n"); 1076 return ATA_DEV_ATAPI; 1077 } 1078 1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1080 DPRINTK("found PMP device by sig\n"); 1081 return ATA_DEV_PMP; 1082 } 1083 1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1085 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1086 return ATA_DEV_SEMB; 1087 } 1088 1089 DPRINTK("unknown device\n"); 1090 return ATA_DEV_UNKNOWN; 1091 } 1092 1093 /** 1094 * ata_id_string - Convert IDENTIFY DEVICE page into string 1095 * @id: IDENTIFY DEVICE results we will examine 1096 * @s: string into which data is output 1097 * @ofs: offset into identify device page 1098 * @len: length of string to return. must be an even number. 1099 * 1100 * The strings in the IDENTIFY DEVICE page are broken up into 1101 * 16-bit chunks. Run through the string, and output each 1102 * 8-bit chunk linearly, regardless of platform. 1103 * 1104 * LOCKING: 1105 * caller. 1106 */ 1107 1108 void ata_id_string(const u16 *id, unsigned char *s, 1109 unsigned int ofs, unsigned int len) 1110 { 1111 unsigned int c; 1112 1113 BUG_ON(len & 1); 1114 1115 while (len > 0) { 1116 c = id[ofs] >> 8; 1117 *s = c; 1118 s++; 1119 1120 c = id[ofs] & 0xff; 1121 *s = c; 1122 s++; 1123 1124 ofs++; 1125 len -= 2; 1126 } 1127 } 1128 1129 /** 1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1131 * @id: IDENTIFY DEVICE results we will examine 1132 * @s: string into which data is output 1133 * @ofs: offset into identify device page 1134 * @len: length of string to return. must be an odd number. 1135 * 1136 * This function is identical to ata_id_string except that it 1137 * trims trailing spaces and terminates the resulting string with 1138 * null. @len must be actual maximum length (even number) + 1. 1139 * 1140 * LOCKING: 1141 * caller. 1142 */ 1143 void ata_id_c_string(const u16 *id, unsigned char *s, 1144 unsigned int ofs, unsigned int len) 1145 { 1146 unsigned char *p; 1147 1148 ata_id_string(id, s, ofs, len - 1); 1149 1150 p = s + strnlen(s, len - 1); 1151 while (p > s && p[-1] == ' ') 1152 p--; 1153 *p = '\0'; 1154 } 1155 1156 static u64 ata_id_n_sectors(const u16 *id) 1157 { 1158 if (ata_id_has_lba(id)) { 1159 if (ata_id_has_lba48(id)) 1160 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1161 else 1162 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1163 } else { 1164 if (ata_id_current_chs_valid(id)) 1165 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1166 id[ATA_ID_CUR_SECTORS]; 1167 else 1168 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1169 id[ATA_ID_SECTORS]; 1170 } 1171 } 1172 1173 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1174 { 1175 u64 sectors = 0; 1176 1177 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1178 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1179 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1180 sectors |= (tf->lbah & 0xff) << 16; 1181 sectors |= (tf->lbam & 0xff) << 8; 1182 sectors |= (tf->lbal & 0xff); 1183 1184 return sectors; 1185 } 1186 1187 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1188 { 1189 u64 sectors = 0; 1190 1191 sectors |= (tf->device & 0x0f) << 24; 1192 sectors |= (tf->lbah & 0xff) << 16; 1193 sectors |= (tf->lbam & 0xff) << 8; 1194 sectors |= (tf->lbal & 0xff); 1195 1196 return sectors; 1197 } 1198 1199 /** 1200 * ata_read_native_max_address - Read native max address 1201 * @dev: target device 1202 * @max_sectors: out parameter for the result native max address 1203 * 1204 * Perform an LBA48 or LBA28 native size query upon the device in 1205 * question. 1206 * 1207 * RETURNS: 1208 * 0 on success, -EACCES if command is aborted by the drive. 1209 * -EIO on other errors. 1210 */ 1211 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1212 { 1213 unsigned int err_mask; 1214 struct ata_taskfile tf; 1215 int lba48 = ata_id_has_lba48(dev->id); 1216 1217 ata_tf_init(dev, &tf); 1218 1219 /* always clear all address registers */ 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1221 1222 if (lba48) { 1223 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1224 tf.flags |= ATA_TFLAG_LBA48; 1225 } else 1226 tf.command = ATA_CMD_READ_NATIVE_MAX; 1227 1228 tf.protocol |= ATA_PROT_NODATA; 1229 tf.device |= ATA_LBA; 1230 1231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1232 if (err_mask) { 1233 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1234 "max address (err_mask=0x%x)\n", err_mask); 1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1236 return -EACCES; 1237 return -EIO; 1238 } 1239 1240 if (lba48) 1241 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1242 else 1243 *max_sectors = ata_tf_to_lba(&tf) + 1; 1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1245 (*max_sectors)--; 1246 return 0; 1247 } 1248 1249 /** 1250 * ata_set_max_sectors - Set max sectors 1251 * @dev: target device 1252 * @new_sectors: new max sectors value to set for the device 1253 * 1254 * Set max sectors of @dev to @new_sectors. 1255 * 1256 * RETURNS: 1257 * 0 on success, -EACCES if command is aborted or denied (due to 1258 * previous non-volatile SET_MAX) by the drive. -EIO on other 1259 * errors. 1260 */ 1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1262 { 1263 unsigned int err_mask; 1264 struct ata_taskfile tf; 1265 int lba48 = ata_id_has_lba48(dev->id); 1266 1267 new_sectors--; 1268 1269 ata_tf_init(dev, &tf); 1270 1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1272 1273 if (lba48) { 1274 tf.command = ATA_CMD_SET_MAX_EXT; 1275 tf.flags |= ATA_TFLAG_LBA48; 1276 1277 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1278 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1279 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1280 } else { 1281 tf.command = ATA_CMD_SET_MAX; 1282 1283 tf.device |= (new_sectors >> 24) & 0xf; 1284 } 1285 1286 tf.protocol |= ATA_PROT_NODATA; 1287 tf.device |= ATA_LBA; 1288 1289 tf.lbal = (new_sectors >> 0) & 0xff; 1290 tf.lbam = (new_sectors >> 8) & 0xff; 1291 tf.lbah = (new_sectors >> 16) & 0xff; 1292 1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1294 if (err_mask) { 1295 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1296 "max address (err_mask=0x%x)\n", err_mask); 1297 if (err_mask == AC_ERR_DEV && 1298 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1299 return -EACCES; 1300 return -EIO; 1301 } 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * ata_hpa_resize - Resize a device with an HPA set 1308 * @dev: Device to resize 1309 * 1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1311 * it if required to the full size of the media. The caller must check 1312 * the drive has the HPA feature set enabled. 1313 * 1314 * RETURNS: 1315 * 0 on success, -errno on failure. 1316 */ 1317 static int ata_hpa_resize(struct ata_device *dev) 1318 { 1319 struct ata_eh_context *ehc = &dev->link->eh_context; 1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1322 u64 sectors = ata_id_n_sectors(dev->id); 1323 u64 native_sectors; 1324 int rc; 1325 1326 /* do we need to do it? */ 1327 if (dev->class != ATA_DEV_ATA || 1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1330 return 0; 1331 1332 /* read native max address */ 1333 rc = ata_read_native_max_address(dev, &native_sectors); 1334 if (rc) { 1335 /* If device aborted the command or HPA isn't going to 1336 * be unlocked, skip HPA resizing. 1337 */ 1338 if (rc == -EACCES || !unlock_hpa) { 1339 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1340 "broken, skipping HPA handling\n"); 1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1342 1343 /* we can continue if device aborted the command */ 1344 if (rc == -EACCES) 1345 rc = 0; 1346 } 1347 1348 return rc; 1349 } 1350 dev->n_native_sectors = native_sectors; 1351 1352 /* nothing to do? */ 1353 if (native_sectors <= sectors || !unlock_hpa) { 1354 if (!print_info || native_sectors == sectors) 1355 return 0; 1356 1357 if (native_sectors > sectors) 1358 ata_dev_printk(dev, KERN_INFO, 1359 "HPA detected: current %llu, native %llu\n", 1360 (unsigned long long)sectors, 1361 (unsigned long long)native_sectors); 1362 else if (native_sectors < sectors) 1363 ata_dev_printk(dev, KERN_WARNING, 1364 "native sectors (%llu) is smaller than " 1365 "sectors (%llu)\n", 1366 (unsigned long long)native_sectors, 1367 (unsigned long long)sectors); 1368 return 0; 1369 } 1370 1371 /* let's unlock HPA */ 1372 rc = ata_set_max_sectors(dev, native_sectors); 1373 if (rc == -EACCES) { 1374 /* if device aborted the command, skip HPA resizing */ 1375 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1376 "(%llu -> %llu), skipping HPA handling\n", 1377 (unsigned long long)sectors, 1378 (unsigned long long)native_sectors); 1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1380 return 0; 1381 } else if (rc) 1382 return rc; 1383 1384 /* re-read IDENTIFY data */ 1385 rc = ata_dev_reread_id(dev, 0); 1386 if (rc) { 1387 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1388 "data after HPA resizing\n"); 1389 return rc; 1390 } 1391 1392 if (print_info) { 1393 u64 new_sectors = ata_id_n_sectors(dev->id); 1394 ata_dev_printk(dev, KERN_INFO, 1395 "HPA unlocked: %llu -> %llu, native %llu\n", 1396 (unsigned long long)sectors, 1397 (unsigned long long)new_sectors, 1398 (unsigned long long)native_sectors); 1399 } 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * ata_dump_id - IDENTIFY DEVICE info debugging output 1406 * @id: IDENTIFY DEVICE page to dump 1407 * 1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1409 * page. 1410 * 1411 * LOCKING: 1412 * caller. 1413 */ 1414 1415 static inline void ata_dump_id(const u16 *id) 1416 { 1417 DPRINTK("49==0x%04x " 1418 "53==0x%04x " 1419 "63==0x%04x " 1420 "64==0x%04x " 1421 "75==0x%04x \n", 1422 id[49], 1423 id[53], 1424 id[63], 1425 id[64], 1426 id[75]); 1427 DPRINTK("80==0x%04x " 1428 "81==0x%04x " 1429 "82==0x%04x " 1430 "83==0x%04x " 1431 "84==0x%04x \n", 1432 id[80], 1433 id[81], 1434 id[82], 1435 id[83], 1436 id[84]); 1437 DPRINTK("88==0x%04x " 1438 "93==0x%04x\n", 1439 id[88], 1440 id[93]); 1441 } 1442 1443 /** 1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1445 * @id: IDENTIFY data to compute xfer mask from 1446 * 1447 * Compute the xfermask for this device. This is not as trivial 1448 * as it seems if we must consider early devices correctly. 1449 * 1450 * FIXME: pre IDE drive timing (do we care ?). 1451 * 1452 * LOCKING: 1453 * None. 1454 * 1455 * RETURNS: 1456 * Computed xfermask 1457 */ 1458 unsigned long ata_id_xfermask(const u16 *id) 1459 { 1460 unsigned long pio_mask, mwdma_mask, udma_mask; 1461 1462 /* Usual case. Word 53 indicates word 64 is valid */ 1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1465 pio_mask <<= 3; 1466 pio_mask |= 0x7; 1467 } else { 1468 /* If word 64 isn't valid then Word 51 high byte holds 1469 * the PIO timing number for the maximum. Turn it into 1470 * a mask. 1471 */ 1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1473 if (mode < 5) /* Valid PIO range */ 1474 pio_mask = (2 << mode) - 1; 1475 else 1476 pio_mask = 1; 1477 1478 /* But wait.. there's more. Design your standards by 1479 * committee and you too can get a free iordy field to 1480 * process. However its the speeds not the modes that 1481 * are supported... Note drivers using the timing API 1482 * will get this right anyway 1483 */ 1484 } 1485 1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1487 1488 if (ata_id_is_cfa(id)) { 1489 /* 1490 * Process compact flash extended modes 1491 */ 1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1494 1495 if (pio) 1496 pio_mask |= (1 << 5); 1497 if (pio > 1) 1498 pio_mask |= (1 << 6); 1499 if (dma) 1500 mwdma_mask |= (1 << 3); 1501 if (dma > 1) 1502 mwdma_mask |= (1 << 4); 1503 } 1504 1505 udma_mask = 0; 1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1508 1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1510 } 1511 1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1513 { 1514 struct completion *waiting = qc->private_data; 1515 1516 complete(waiting); 1517 } 1518 1519 /** 1520 * ata_exec_internal_sg - execute libata internal command 1521 * @dev: Device to which the command is sent 1522 * @tf: Taskfile registers for the command and the result 1523 * @cdb: CDB for packet command 1524 * @dma_dir: Data tranfer direction of the command 1525 * @sgl: sg list for the data buffer of the command 1526 * @n_elem: Number of sg entries 1527 * @timeout: Timeout in msecs (0 for default) 1528 * 1529 * Executes libata internal command with timeout. @tf contains 1530 * command on entry and result on return. Timeout and error 1531 * conditions are reported via return value. No recovery action 1532 * is taken after a command times out. It's caller's duty to 1533 * clean up after timeout. 1534 * 1535 * LOCKING: 1536 * None. Should be called with kernel context, might sleep. 1537 * 1538 * RETURNS: 1539 * Zero on success, AC_ERR_* mask on failure 1540 */ 1541 unsigned ata_exec_internal_sg(struct ata_device *dev, 1542 struct ata_taskfile *tf, const u8 *cdb, 1543 int dma_dir, struct scatterlist *sgl, 1544 unsigned int n_elem, unsigned long timeout) 1545 { 1546 struct ata_link *link = dev->link; 1547 struct ata_port *ap = link->ap; 1548 u8 command = tf->command; 1549 int auto_timeout = 0; 1550 struct ata_queued_cmd *qc; 1551 unsigned int tag, preempted_tag; 1552 u32 preempted_sactive, preempted_qc_active; 1553 int preempted_nr_active_links; 1554 DECLARE_COMPLETION_ONSTACK(wait); 1555 unsigned long flags; 1556 unsigned int err_mask; 1557 int rc; 1558 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* no internal command while frozen */ 1562 if (ap->pflags & ATA_PFLAG_FROZEN) { 1563 spin_unlock_irqrestore(ap->lock, flags); 1564 return AC_ERR_SYSTEM; 1565 } 1566 1567 /* initialize internal qc */ 1568 1569 /* XXX: Tag 0 is used for drivers with legacy EH as some 1570 * drivers choke if any other tag is given. This breaks 1571 * ata_tag_internal() test for those drivers. Don't use new 1572 * EH stuff without converting to it. 1573 */ 1574 if (ap->ops->error_handler) 1575 tag = ATA_TAG_INTERNAL; 1576 else 1577 tag = 0; 1578 1579 if (test_and_set_bit(tag, &ap->qc_allocated)) 1580 BUG(); 1581 qc = __ata_qc_from_tag(ap, tag); 1582 1583 qc->tag = tag; 1584 qc->scsicmd = NULL; 1585 qc->ap = ap; 1586 qc->dev = dev; 1587 ata_qc_reinit(qc); 1588 1589 preempted_tag = link->active_tag; 1590 preempted_sactive = link->sactive; 1591 preempted_qc_active = ap->qc_active; 1592 preempted_nr_active_links = ap->nr_active_links; 1593 link->active_tag = ATA_TAG_POISON; 1594 link->sactive = 0; 1595 ap->qc_active = 0; 1596 ap->nr_active_links = 0; 1597 1598 /* prepare & issue qc */ 1599 qc->tf = *tf; 1600 if (cdb) 1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1602 qc->flags |= ATA_QCFLAG_RESULT_TF; 1603 qc->dma_dir = dma_dir; 1604 if (dma_dir != DMA_NONE) { 1605 unsigned int i, buflen = 0; 1606 struct scatterlist *sg; 1607 1608 for_each_sg(sgl, sg, n_elem, i) 1609 buflen += sg->length; 1610 1611 ata_sg_init(qc, sgl, n_elem); 1612 qc->nbytes = buflen; 1613 } 1614 1615 qc->private_data = &wait; 1616 qc->complete_fn = ata_qc_complete_internal; 1617 1618 ata_qc_issue(qc); 1619 1620 spin_unlock_irqrestore(ap->lock, flags); 1621 1622 if (!timeout) { 1623 if (ata_probe_timeout) 1624 timeout = ata_probe_timeout * 1000; 1625 else { 1626 timeout = ata_internal_cmd_timeout(dev, command); 1627 auto_timeout = 1; 1628 } 1629 } 1630 1631 if (ap->ops->error_handler) 1632 ata_eh_release(ap); 1633 1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1635 1636 if (ap->ops->error_handler) 1637 ata_eh_acquire(ap); 1638 1639 ata_sff_flush_pio_task(ap); 1640 1641 if (!rc) { 1642 spin_lock_irqsave(ap->lock, flags); 1643 1644 /* We're racing with irq here. If we lose, the 1645 * following test prevents us from completing the qc 1646 * twice. If we win, the port is frozen and will be 1647 * cleaned up by ->post_internal_cmd(). 1648 */ 1649 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1650 qc->err_mask |= AC_ERR_TIMEOUT; 1651 1652 if (ap->ops->error_handler) 1653 ata_port_freeze(ap); 1654 else 1655 ata_qc_complete(qc); 1656 1657 if (ata_msg_warn(ap)) 1658 ata_dev_printk(dev, KERN_WARNING, 1659 "qc timeout (cmd 0x%x)\n", command); 1660 } 1661 1662 spin_unlock_irqrestore(ap->lock, flags); 1663 } 1664 1665 /* do post_internal_cmd */ 1666 if (ap->ops->post_internal_cmd) 1667 ap->ops->post_internal_cmd(qc); 1668 1669 /* perform minimal error analysis */ 1670 if (qc->flags & ATA_QCFLAG_FAILED) { 1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1672 qc->err_mask |= AC_ERR_DEV; 1673 1674 if (!qc->err_mask) 1675 qc->err_mask |= AC_ERR_OTHER; 1676 1677 if (qc->err_mask & ~AC_ERR_OTHER) 1678 qc->err_mask &= ~AC_ERR_OTHER; 1679 } 1680 1681 /* finish up */ 1682 spin_lock_irqsave(ap->lock, flags); 1683 1684 *tf = qc->result_tf; 1685 err_mask = qc->err_mask; 1686 1687 ata_qc_free(qc); 1688 link->active_tag = preempted_tag; 1689 link->sactive = preempted_sactive; 1690 ap->qc_active = preempted_qc_active; 1691 ap->nr_active_links = preempted_nr_active_links; 1692 1693 spin_unlock_irqrestore(ap->lock, flags); 1694 1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1696 ata_internal_cmd_timed_out(dev, command); 1697 1698 return err_mask; 1699 } 1700 1701 /** 1702 * ata_exec_internal - execute libata internal command 1703 * @dev: Device to which the command is sent 1704 * @tf: Taskfile registers for the command and the result 1705 * @cdb: CDB for packet command 1706 * @dma_dir: Data tranfer direction of the command 1707 * @buf: Data buffer of the command 1708 * @buflen: Length of data buffer 1709 * @timeout: Timeout in msecs (0 for default) 1710 * 1711 * Wrapper around ata_exec_internal_sg() which takes simple 1712 * buffer instead of sg list. 1713 * 1714 * LOCKING: 1715 * None. Should be called with kernel context, might sleep. 1716 * 1717 * RETURNS: 1718 * Zero on success, AC_ERR_* mask on failure 1719 */ 1720 unsigned ata_exec_internal(struct ata_device *dev, 1721 struct ata_taskfile *tf, const u8 *cdb, 1722 int dma_dir, void *buf, unsigned int buflen, 1723 unsigned long timeout) 1724 { 1725 struct scatterlist *psg = NULL, sg; 1726 unsigned int n_elem = 0; 1727 1728 if (dma_dir != DMA_NONE) { 1729 WARN_ON(!buf); 1730 sg_init_one(&sg, buf, buflen); 1731 psg = &sg; 1732 n_elem++; 1733 } 1734 1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1736 timeout); 1737 } 1738 1739 /** 1740 * ata_do_simple_cmd - execute simple internal command 1741 * @dev: Device to which the command is sent 1742 * @cmd: Opcode to execute 1743 * 1744 * Execute a 'simple' command, that only consists of the opcode 1745 * 'cmd' itself, without filling any other registers 1746 * 1747 * LOCKING: 1748 * Kernel thread context (may sleep). 1749 * 1750 * RETURNS: 1751 * Zero on success, AC_ERR_* mask on failure 1752 */ 1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1754 { 1755 struct ata_taskfile tf; 1756 1757 ata_tf_init(dev, &tf); 1758 1759 tf.command = cmd; 1760 tf.flags |= ATA_TFLAG_DEVICE; 1761 tf.protocol = ATA_PROT_NODATA; 1762 1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1764 } 1765 1766 /** 1767 * ata_pio_need_iordy - check if iordy needed 1768 * @adev: ATA device 1769 * 1770 * Check if the current speed of the device requires IORDY. Used 1771 * by various controllers for chip configuration. 1772 */ 1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1774 { 1775 /* Don't set IORDY if we're preparing for reset. IORDY may 1776 * lead to controller lock up on certain controllers if the 1777 * port is not occupied. See bko#11703 for details. 1778 */ 1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1780 return 0; 1781 /* Controller doesn't support IORDY. Probably a pointless 1782 * check as the caller should know this. 1783 */ 1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1785 return 0; 1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1787 if (ata_id_is_cfa(adev->id) 1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1789 return 0; 1790 /* PIO3 and higher it is mandatory */ 1791 if (adev->pio_mode > XFER_PIO_2) 1792 return 1; 1793 /* We turn it on when possible */ 1794 if (ata_id_has_iordy(adev->id)) 1795 return 1; 1796 return 0; 1797 } 1798 1799 /** 1800 * ata_pio_mask_no_iordy - Return the non IORDY mask 1801 * @adev: ATA device 1802 * 1803 * Compute the highest mode possible if we are not using iordy. Return 1804 * -1 if no iordy mode is available. 1805 */ 1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1807 { 1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1810 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1811 /* Is the speed faster than the drive allows non IORDY ? */ 1812 if (pio) { 1813 /* This is cycle times not frequency - watch the logic! */ 1814 if (pio > 240) /* PIO2 is 240nS per cycle */ 1815 return 3 << ATA_SHIFT_PIO; 1816 return 7 << ATA_SHIFT_PIO; 1817 } 1818 } 1819 return 3 << ATA_SHIFT_PIO; 1820 } 1821 1822 /** 1823 * ata_do_dev_read_id - default ID read method 1824 * @dev: device 1825 * @tf: proposed taskfile 1826 * @id: data buffer 1827 * 1828 * Issue the identify taskfile and hand back the buffer containing 1829 * identify data. For some RAID controllers and for pre ATA devices 1830 * this function is wrapped or replaced by the driver 1831 */ 1832 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1833 struct ata_taskfile *tf, u16 *id) 1834 { 1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1837 } 1838 1839 /** 1840 * ata_dev_read_id - Read ID data from the specified device 1841 * @dev: target device 1842 * @p_class: pointer to class of the target device (may be changed) 1843 * @flags: ATA_READID_* flags 1844 * @id: buffer to read IDENTIFY data into 1845 * 1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1849 * for pre-ATA4 drives. 1850 * 1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1852 * now we abort if we hit that case. 1853 * 1854 * LOCKING: 1855 * Kernel thread context (may sleep) 1856 * 1857 * RETURNS: 1858 * 0 on success, -errno otherwise. 1859 */ 1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1861 unsigned int flags, u16 *id) 1862 { 1863 struct ata_port *ap = dev->link->ap; 1864 unsigned int class = *p_class; 1865 struct ata_taskfile tf; 1866 unsigned int err_mask = 0; 1867 const char *reason; 1868 bool is_semb = class == ATA_DEV_SEMB; 1869 int may_fallback = 1, tried_spinup = 0; 1870 int rc; 1871 1872 if (ata_msg_ctl(ap)) 1873 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1874 1875 retry: 1876 ata_tf_init(dev, &tf); 1877 1878 switch (class) { 1879 case ATA_DEV_SEMB: 1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1881 case ATA_DEV_ATA: 1882 tf.command = ATA_CMD_ID_ATA; 1883 break; 1884 case ATA_DEV_ATAPI: 1885 tf.command = ATA_CMD_ID_ATAPI; 1886 break; 1887 default: 1888 rc = -ENODEV; 1889 reason = "unsupported class"; 1890 goto err_out; 1891 } 1892 1893 tf.protocol = ATA_PROT_PIO; 1894 1895 /* Some devices choke if TF registers contain garbage. Make 1896 * sure those are properly initialized. 1897 */ 1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1899 1900 /* Device presence detection is unreliable on some 1901 * controllers. Always poll IDENTIFY if available. 1902 */ 1903 tf.flags |= ATA_TFLAG_POLLING; 1904 1905 if (ap->ops->read_id) 1906 err_mask = ap->ops->read_id(dev, &tf, id); 1907 else 1908 err_mask = ata_do_dev_read_id(dev, &tf, id); 1909 1910 if (err_mask) { 1911 if (err_mask & AC_ERR_NODEV_HINT) { 1912 ata_dev_printk(dev, KERN_DEBUG, 1913 "NODEV after polling detection\n"); 1914 return -ENOENT; 1915 } 1916 1917 if (is_semb) { 1918 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 1919 "device w/ SEMB sig, disabled\n"); 1920 /* SEMB is not supported yet */ 1921 *p_class = ATA_DEV_SEMB_UNSUP; 1922 return 0; 1923 } 1924 1925 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1926 /* Device or controller might have reported 1927 * the wrong device class. Give a shot at the 1928 * other IDENTIFY if the current one is 1929 * aborted by the device. 1930 */ 1931 if (may_fallback) { 1932 may_fallback = 0; 1933 1934 if (class == ATA_DEV_ATA) 1935 class = ATA_DEV_ATAPI; 1936 else 1937 class = ATA_DEV_ATA; 1938 goto retry; 1939 } 1940 1941 /* Control reaches here iff the device aborted 1942 * both flavors of IDENTIFYs which happens 1943 * sometimes with phantom devices. 1944 */ 1945 ata_dev_printk(dev, KERN_DEBUG, 1946 "both IDENTIFYs aborted, assuming NODEV\n"); 1947 return -ENOENT; 1948 } 1949 1950 rc = -EIO; 1951 reason = "I/O error"; 1952 goto err_out; 1953 } 1954 1955 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1956 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, " 1957 "class=%d may_fallback=%d tried_spinup=%d\n", 1958 class, may_fallback, tried_spinup); 1959 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1960 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1961 } 1962 1963 /* Falling back doesn't make sense if ID data was read 1964 * successfully at least once. 1965 */ 1966 may_fallback = 0; 1967 1968 swap_buf_le16(id, ATA_ID_WORDS); 1969 1970 /* sanity check */ 1971 rc = -EINVAL; 1972 reason = "device reports invalid type"; 1973 1974 if (class == ATA_DEV_ATA) { 1975 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1976 goto err_out; 1977 } else { 1978 if (ata_id_is_ata(id)) 1979 goto err_out; 1980 } 1981 1982 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1983 tried_spinup = 1; 1984 /* 1985 * Drive powered-up in standby mode, and requires a specific 1986 * SET_FEATURES spin-up subcommand before it will accept 1987 * anything other than the original IDENTIFY command. 1988 */ 1989 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1990 if (err_mask && id[2] != 0x738c) { 1991 rc = -EIO; 1992 reason = "SPINUP failed"; 1993 goto err_out; 1994 } 1995 /* 1996 * If the drive initially returned incomplete IDENTIFY info, 1997 * we now must reissue the IDENTIFY command. 1998 */ 1999 if (id[2] == 0x37c8) 2000 goto retry; 2001 } 2002 2003 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2004 /* 2005 * The exact sequence expected by certain pre-ATA4 drives is: 2006 * SRST RESET 2007 * IDENTIFY (optional in early ATA) 2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2009 * anything else.. 2010 * Some drives were very specific about that exact sequence. 2011 * 2012 * Note that ATA4 says lba is mandatory so the second check 2013 * should never trigger. 2014 */ 2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2017 if (err_mask) { 2018 rc = -EIO; 2019 reason = "INIT_DEV_PARAMS failed"; 2020 goto err_out; 2021 } 2022 2023 /* current CHS translation info (id[53-58]) might be 2024 * changed. reread the identify device info. 2025 */ 2026 flags &= ~ATA_READID_POSTRESET; 2027 goto retry; 2028 } 2029 } 2030 2031 *p_class = class; 2032 2033 return 0; 2034 2035 err_out: 2036 if (ata_msg_warn(ap)) 2037 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2038 "(%s, err_mask=0x%x)\n", reason, err_mask); 2039 return rc; 2040 } 2041 2042 static int ata_do_link_spd_horkage(struct ata_device *dev) 2043 { 2044 struct ata_link *plink = ata_dev_phys_link(dev); 2045 u32 target, target_limit; 2046 2047 if (!sata_scr_valid(plink)) 2048 return 0; 2049 2050 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2051 target = 1; 2052 else 2053 return 0; 2054 2055 target_limit = (1 << target) - 1; 2056 2057 /* if already on stricter limit, no need to push further */ 2058 if (plink->sata_spd_limit <= target_limit) 2059 return 0; 2060 2061 plink->sata_spd_limit = target_limit; 2062 2063 /* Request another EH round by returning -EAGAIN if link is 2064 * going faster than the target speed. Forward progress is 2065 * guaranteed by setting sata_spd_limit to target_limit above. 2066 */ 2067 if (plink->sata_spd > target) { 2068 ata_dev_printk(dev, KERN_INFO, 2069 "applying link speed limit horkage to %s\n", 2070 sata_spd_string(target)); 2071 return -EAGAIN; 2072 } 2073 return 0; 2074 } 2075 2076 static inline u8 ata_dev_knobble(struct ata_device *dev) 2077 { 2078 struct ata_port *ap = dev->link->ap; 2079 2080 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2081 return 0; 2082 2083 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2084 } 2085 2086 static int ata_dev_config_ncq(struct ata_device *dev, 2087 char *desc, size_t desc_sz) 2088 { 2089 struct ata_port *ap = dev->link->ap; 2090 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2091 unsigned int err_mask; 2092 char *aa_desc = ""; 2093 2094 if (!ata_id_has_ncq(dev->id)) { 2095 desc[0] = '\0'; 2096 return 0; 2097 } 2098 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2099 snprintf(desc, desc_sz, "NCQ (not used)"); 2100 return 0; 2101 } 2102 if (ap->flags & ATA_FLAG_NCQ) { 2103 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2104 dev->flags |= ATA_DFLAG_NCQ; 2105 } 2106 2107 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2108 (ap->flags & ATA_FLAG_FPDMA_AA) && 2109 ata_id_has_fpdma_aa(dev->id)) { 2110 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2111 SATA_FPDMA_AA); 2112 if (err_mask) { 2113 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2114 "(error_mask=0x%x)\n", err_mask); 2115 if (err_mask != AC_ERR_DEV) { 2116 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2117 return -EIO; 2118 } 2119 } else 2120 aa_desc = ", AA"; 2121 } 2122 2123 if (hdepth >= ddepth) 2124 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2125 else 2126 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2127 ddepth, aa_desc); 2128 return 0; 2129 } 2130 2131 /** 2132 * ata_dev_configure - Configure the specified ATA/ATAPI device 2133 * @dev: Target device to configure 2134 * 2135 * Configure @dev according to @dev->id. Generic and low-level 2136 * driver specific fixups are also applied. 2137 * 2138 * LOCKING: 2139 * Kernel thread context (may sleep) 2140 * 2141 * RETURNS: 2142 * 0 on success, -errno otherwise 2143 */ 2144 int ata_dev_configure(struct ata_device *dev) 2145 { 2146 struct ata_port *ap = dev->link->ap; 2147 struct ata_eh_context *ehc = &dev->link->eh_context; 2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2149 const u16 *id = dev->id; 2150 unsigned long xfer_mask; 2151 char revbuf[7]; /* XYZ-99\0 */ 2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2153 char modelbuf[ATA_ID_PROD_LEN+1]; 2154 int rc; 2155 2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2158 __func__); 2159 return 0; 2160 } 2161 2162 if (ata_msg_probe(ap)) 2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2164 2165 /* set horkage */ 2166 dev->horkage |= ata_dev_blacklisted(dev); 2167 ata_force_horkage(dev); 2168 2169 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2170 ata_dev_printk(dev, KERN_INFO, 2171 "unsupported device, disabling\n"); 2172 ata_dev_disable(dev); 2173 return 0; 2174 } 2175 2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2177 dev->class == ATA_DEV_ATAPI) { 2178 ata_dev_printk(dev, KERN_WARNING, 2179 "WARNING: ATAPI is %s, device ignored.\n", 2180 atapi_enabled ? "not supported with this driver" 2181 : "disabled"); 2182 ata_dev_disable(dev); 2183 return 0; 2184 } 2185 2186 rc = ata_do_link_spd_horkage(dev); 2187 if (rc) 2188 return rc; 2189 2190 /* let ACPI work its magic */ 2191 rc = ata_acpi_on_devcfg(dev); 2192 if (rc) 2193 return rc; 2194 2195 /* massage HPA, do it early as it might change IDENTIFY data */ 2196 rc = ata_hpa_resize(dev); 2197 if (rc) 2198 return rc; 2199 2200 /* print device capabilities */ 2201 if (ata_msg_probe(ap)) 2202 ata_dev_printk(dev, KERN_DEBUG, 2203 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2204 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2205 __func__, 2206 id[49], id[82], id[83], id[84], 2207 id[85], id[86], id[87], id[88]); 2208 2209 /* initialize to-be-configured parameters */ 2210 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2211 dev->max_sectors = 0; 2212 dev->cdb_len = 0; 2213 dev->n_sectors = 0; 2214 dev->cylinders = 0; 2215 dev->heads = 0; 2216 dev->sectors = 0; 2217 dev->multi_count = 0; 2218 2219 /* 2220 * common ATA, ATAPI feature tests 2221 */ 2222 2223 /* find max transfer mode; for printk only */ 2224 xfer_mask = ata_id_xfermask(id); 2225 2226 if (ata_msg_probe(ap)) 2227 ata_dump_id(id); 2228 2229 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2230 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2231 sizeof(fwrevbuf)); 2232 2233 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2234 sizeof(modelbuf)); 2235 2236 /* ATA-specific feature tests */ 2237 if (dev->class == ATA_DEV_ATA) { 2238 if (ata_id_is_cfa(id)) { 2239 /* CPRM may make this media unusable */ 2240 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2241 ata_dev_printk(dev, KERN_WARNING, 2242 "supports DRM functions and may " 2243 "not be fully accessible.\n"); 2244 snprintf(revbuf, 7, "CFA"); 2245 } else { 2246 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2247 /* Warn the user if the device has TPM extensions */ 2248 if (ata_id_has_tpm(id)) 2249 ata_dev_printk(dev, KERN_WARNING, 2250 "supports DRM functions and may " 2251 "not be fully accessible.\n"); 2252 } 2253 2254 dev->n_sectors = ata_id_n_sectors(id); 2255 2256 /* get current R/W Multiple count setting */ 2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2258 unsigned int max = dev->id[47] & 0xff; 2259 unsigned int cnt = dev->id[59] & 0xff; 2260 /* only recognize/allow powers of two here */ 2261 if (is_power_of_2(max) && is_power_of_2(cnt)) 2262 if (cnt <= max) 2263 dev->multi_count = cnt; 2264 } 2265 2266 if (ata_id_has_lba(id)) { 2267 const char *lba_desc; 2268 char ncq_desc[24]; 2269 2270 lba_desc = "LBA"; 2271 dev->flags |= ATA_DFLAG_LBA; 2272 if (ata_id_has_lba48(id)) { 2273 dev->flags |= ATA_DFLAG_LBA48; 2274 lba_desc = "LBA48"; 2275 2276 if (dev->n_sectors >= (1UL << 28) && 2277 ata_id_has_flush_ext(id)) 2278 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2279 } 2280 2281 /* config NCQ */ 2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2283 if (rc) 2284 return rc; 2285 2286 /* print device info to dmesg */ 2287 if (ata_msg_drv(ap) && print_info) { 2288 ata_dev_printk(dev, KERN_INFO, 2289 "%s: %s, %s, max %s\n", 2290 revbuf, modelbuf, fwrevbuf, 2291 ata_mode_string(xfer_mask)); 2292 ata_dev_printk(dev, KERN_INFO, 2293 "%Lu sectors, multi %u: %s %s\n", 2294 (unsigned long long)dev->n_sectors, 2295 dev->multi_count, lba_desc, ncq_desc); 2296 } 2297 } else { 2298 /* CHS */ 2299 2300 /* Default translation */ 2301 dev->cylinders = id[1]; 2302 dev->heads = id[3]; 2303 dev->sectors = id[6]; 2304 2305 if (ata_id_current_chs_valid(id)) { 2306 /* Current CHS translation is valid. */ 2307 dev->cylinders = id[54]; 2308 dev->heads = id[55]; 2309 dev->sectors = id[56]; 2310 } 2311 2312 /* print device info to dmesg */ 2313 if (ata_msg_drv(ap) && print_info) { 2314 ata_dev_printk(dev, KERN_INFO, 2315 "%s: %s, %s, max %s\n", 2316 revbuf, modelbuf, fwrevbuf, 2317 ata_mode_string(xfer_mask)); 2318 ata_dev_printk(dev, KERN_INFO, 2319 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2320 (unsigned long long)dev->n_sectors, 2321 dev->multi_count, dev->cylinders, 2322 dev->heads, dev->sectors); 2323 } 2324 } 2325 2326 dev->cdb_len = 16; 2327 } 2328 2329 /* ATAPI-specific feature tests */ 2330 else if (dev->class == ATA_DEV_ATAPI) { 2331 const char *cdb_intr_string = ""; 2332 const char *atapi_an_string = ""; 2333 const char *dma_dir_string = ""; 2334 u32 sntf; 2335 2336 rc = atapi_cdb_len(id); 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2338 if (ata_msg_warn(ap)) 2339 ata_dev_printk(dev, KERN_WARNING, 2340 "unsupported CDB len\n"); 2341 rc = -EINVAL; 2342 goto err_out_nosup; 2343 } 2344 dev->cdb_len = (unsigned int) rc; 2345 2346 /* Enable ATAPI AN if both the host and device have 2347 * the support. If PMP is attached, SNTF is required 2348 * to enable ATAPI AN to discern between PHY status 2349 * changed notifications and ATAPI ANs. 2350 */ 2351 if (atapi_an && 2352 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2353 (!sata_pmp_attached(ap) || 2354 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2355 unsigned int err_mask; 2356 2357 /* issue SET feature command to turn this on */ 2358 err_mask = ata_dev_set_feature(dev, 2359 SETFEATURES_SATA_ENABLE, SATA_AN); 2360 if (err_mask) 2361 ata_dev_printk(dev, KERN_ERR, 2362 "failed to enable ATAPI AN " 2363 "(err_mask=0x%x)\n", err_mask); 2364 else { 2365 dev->flags |= ATA_DFLAG_AN; 2366 atapi_an_string = ", ATAPI AN"; 2367 } 2368 } 2369 2370 if (ata_id_cdb_intr(dev->id)) { 2371 dev->flags |= ATA_DFLAG_CDB_INTR; 2372 cdb_intr_string = ", CDB intr"; 2373 } 2374 2375 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2376 dev->flags |= ATA_DFLAG_DMADIR; 2377 dma_dir_string = ", DMADIR"; 2378 } 2379 2380 /* print device info to dmesg */ 2381 if (ata_msg_drv(ap) && print_info) 2382 ata_dev_printk(dev, KERN_INFO, 2383 "ATAPI: %s, %s, max %s%s%s%s\n", 2384 modelbuf, fwrevbuf, 2385 ata_mode_string(xfer_mask), 2386 cdb_intr_string, atapi_an_string, 2387 dma_dir_string); 2388 } 2389 2390 /* determine max_sectors */ 2391 dev->max_sectors = ATA_MAX_SECTORS; 2392 if (dev->flags & ATA_DFLAG_LBA48) 2393 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2394 2395 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2396 200 sectors */ 2397 if (ata_dev_knobble(dev)) { 2398 if (ata_msg_drv(ap) && print_info) 2399 ata_dev_printk(dev, KERN_INFO, 2400 "applying bridge limits\n"); 2401 dev->udma_mask &= ATA_UDMA5; 2402 dev->max_sectors = ATA_MAX_SECTORS; 2403 } 2404 2405 if ((dev->class == ATA_DEV_ATAPI) && 2406 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2407 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2408 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2409 } 2410 2411 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2412 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2413 dev->max_sectors); 2414 2415 if (ap->ops->dev_config) 2416 ap->ops->dev_config(dev); 2417 2418 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2419 /* Let the user know. We don't want to disallow opens for 2420 rescue purposes, or in case the vendor is just a blithering 2421 idiot. Do this after the dev_config call as some controllers 2422 with buggy firmware may want to avoid reporting false device 2423 bugs */ 2424 2425 if (print_info) { 2426 ata_dev_printk(dev, KERN_WARNING, 2427 "Drive reports diagnostics failure. This may indicate a drive\n"); 2428 ata_dev_printk(dev, KERN_WARNING, 2429 "fault or invalid emulation. Contact drive vendor for information.\n"); 2430 } 2431 } 2432 2433 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2434 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2435 "firmware update to be fully functional.\n"); 2436 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2437 "or visit http://ata.wiki.kernel.org.\n"); 2438 } 2439 2440 return 0; 2441 2442 err_out_nosup: 2443 if (ata_msg_probe(ap)) 2444 ata_dev_printk(dev, KERN_DEBUG, 2445 "%s: EXIT, err\n", __func__); 2446 return rc; 2447 } 2448 2449 /** 2450 * ata_cable_40wire - return 40 wire cable type 2451 * @ap: port 2452 * 2453 * Helper method for drivers which want to hardwire 40 wire cable 2454 * detection. 2455 */ 2456 2457 int ata_cable_40wire(struct ata_port *ap) 2458 { 2459 return ATA_CBL_PATA40; 2460 } 2461 2462 /** 2463 * ata_cable_80wire - return 80 wire cable type 2464 * @ap: port 2465 * 2466 * Helper method for drivers which want to hardwire 80 wire cable 2467 * detection. 2468 */ 2469 2470 int ata_cable_80wire(struct ata_port *ap) 2471 { 2472 return ATA_CBL_PATA80; 2473 } 2474 2475 /** 2476 * ata_cable_unknown - return unknown PATA cable. 2477 * @ap: port 2478 * 2479 * Helper method for drivers which have no PATA cable detection. 2480 */ 2481 2482 int ata_cable_unknown(struct ata_port *ap) 2483 { 2484 return ATA_CBL_PATA_UNK; 2485 } 2486 2487 /** 2488 * ata_cable_ignore - return ignored PATA cable. 2489 * @ap: port 2490 * 2491 * Helper method for drivers which don't use cable type to limit 2492 * transfer mode. 2493 */ 2494 int ata_cable_ignore(struct ata_port *ap) 2495 { 2496 return ATA_CBL_PATA_IGN; 2497 } 2498 2499 /** 2500 * ata_cable_sata - return SATA cable type 2501 * @ap: port 2502 * 2503 * Helper method for drivers which have SATA cables 2504 */ 2505 2506 int ata_cable_sata(struct ata_port *ap) 2507 { 2508 return ATA_CBL_SATA; 2509 } 2510 2511 /** 2512 * ata_bus_probe - Reset and probe ATA bus 2513 * @ap: Bus to probe 2514 * 2515 * Master ATA bus probing function. Initiates a hardware-dependent 2516 * bus reset, then attempts to identify any devices found on 2517 * the bus. 2518 * 2519 * LOCKING: 2520 * PCI/etc. bus probe sem. 2521 * 2522 * RETURNS: 2523 * Zero on success, negative errno otherwise. 2524 */ 2525 2526 int ata_bus_probe(struct ata_port *ap) 2527 { 2528 unsigned int classes[ATA_MAX_DEVICES]; 2529 int tries[ATA_MAX_DEVICES]; 2530 int rc; 2531 struct ata_device *dev; 2532 2533 ata_for_each_dev(dev, &ap->link, ALL) 2534 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2535 2536 retry: 2537 ata_for_each_dev(dev, &ap->link, ALL) { 2538 /* If we issue an SRST then an ATA drive (not ATAPI) 2539 * may change configuration and be in PIO0 timing. If 2540 * we do a hard reset (or are coming from power on) 2541 * this is true for ATA or ATAPI. Until we've set a 2542 * suitable controller mode we should not touch the 2543 * bus as we may be talking too fast. 2544 */ 2545 dev->pio_mode = XFER_PIO_0; 2546 2547 /* If the controller has a pio mode setup function 2548 * then use it to set the chipset to rights. Don't 2549 * touch the DMA setup as that will be dealt with when 2550 * configuring devices. 2551 */ 2552 if (ap->ops->set_piomode) 2553 ap->ops->set_piomode(ap, dev); 2554 } 2555 2556 /* reset and determine device classes */ 2557 ap->ops->phy_reset(ap); 2558 2559 ata_for_each_dev(dev, &ap->link, ALL) { 2560 if (dev->class != ATA_DEV_UNKNOWN) 2561 classes[dev->devno] = dev->class; 2562 else 2563 classes[dev->devno] = ATA_DEV_NONE; 2564 2565 dev->class = ATA_DEV_UNKNOWN; 2566 } 2567 2568 /* read IDENTIFY page and configure devices. We have to do the identify 2569 specific sequence bass-ackwards so that PDIAG- is released by 2570 the slave device */ 2571 2572 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2573 if (tries[dev->devno]) 2574 dev->class = classes[dev->devno]; 2575 2576 if (!ata_dev_enabled(dev)) 2577 continue; 2578 2579 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2580 dev->id); 2581 if (rc) 2582 goto fail; 2583 } 2584 2585 /* Now ask for the cable type as PDIAG- should have been released */ 2586 if (ap->ops->cable_detect) 2587 ap->cbl = ap->ops->cable_detect(ap); 2588 2589 /* We may have SATA bridge glue hiding here irrespective of 2590 * the reported cable types and sensed types. When SATA 2591 * drives indicate we have a bridge, we don't know which end 2592 * of the link the bridge is which is a problem. 2593 */ 2594 ata_for_each_dev(dev, &ap->link, ENABLED) 2595 if (ata_id_is_sata(dev->id)) 2596 ap->cbl = ATA_CBL_SATA; 2597 2598 /* After the identify sequence we can now set up the devices. We do 2599 this in the normal order so that the user doesn't get confused */ 2600 2601 ata_for_each_dev(dev, &ap->link, ENABLED) { 2602 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2603 rc = ata_dev_configure(dev); 2604 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2605 if (rc) 2606 goto fail; 2607 } 2608 2609 /* configure transfer mode */ 2610 rc = ata_set_mode(&ap->link, &dev); 2611 if (rc) 2612 goto fail; 2613 2614 ata_for_each_dev(dev, &ap->link, ENABLED) 2615 return 0; 2616 2617 return -ENODEV; 2618 2619 fail: 2620 tries[dev->devno]--; 2621 2622 switch (rc) { 2623 case -EINVAL: 2624 /* eeek, something went very wrong, give up */ 2625 tries[dev->devno] = 0; 2626 break; 2627 2628 case -ENODEV: 2629 /* give it just one more chance */ 2630 tries[dev->devno] = min(tries[dev->devno], 1); 2631 case -EIO: 2632 if (tries[dev->devno] == 1) { 2633 /* This is the last chance, better to slow 2634 * down than lose it. 2635 */ 2636 sata_down_spd_limit(&ap->link, 0); 2637 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2638 } 2639 } 2640 2641 if (!tries[dev->devno]) 2642 ata_dev_disable(dev); 2643 2644 goto retry; 2645 } 2646 2647 /** 2648 * sata_print_link_status - Print SATA link status 2649 * @link: SATA link to printk link status about 2650 * 2651 * This function prints link speed and status of a SATA link. 2652 * 2653 * LOCKING: 2654 * None. 2655 */ 2656 static void sata_print_link_status(struct ata_link *link) 2657 { 2658 u32 sstatus, scontrol, tmp; 2659 2660 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2661 return; 2662 sata_scr_read(link, SCR_CONTROL, &scontrol); 2663 2664 if (ata_phys_link_online(link)) { 2665 tmp = (sstatus >> 4) & 0xf; 2666 ata_link_printk(link, KERN_INFO, 2667 "SATA link up %s (SStatus %X SControl %X)\n", 2668 sata_spd_string(tmp), sstatus, scontrol); 2669 } else { 2670 ata_link_printk(link, KERN_INFO, 2671 "SATA link down (SStatus %X SControl %X)\n", 2672 sstatus, scontrol); 2673 } 2674 } 2675 2676 /** 2677 * ata_dev_pair - return other device on cable 2678 * @adev: device 2679 * 2680 * Obtain the other device on the same cable, or if none is 2681 * present NULL is returned 2682 */ 2683 2684 struct ata_device *ata_dev_pair(struct ata_device *adev) 2685 { 2686 struct ata_link *link = adev->link; 2687 struct ata_device *pair = &link->device[1 - adev->devno]; 2688 if (!ata_dev_enabled(pair)) 2689 return NULL; 2690 return pair; 2691 } 2692 2693 /** 2694 * sata_down_spd_limit - adjust SATA spd limit downward 2695 * @link: Link to adjust SATA spd limit for 2696 * @spd_limit: Additional limit 2697 * 2698 * Adjust SATA spd limit of @link downward. Note that this 2699 * function only adjusts the limit. The change must be applied 2700 * using sata_set_spd(). 2701 * 2702 * If @spd_limit is non-zero, the speed is limited to equal to or 2703 * lower than @spd_limit if such speed is supported. If 2704 * @spd_limit is slower than any supported speed, only the lowest 2705 * supported speed is allowed. 2706 * 2707 * LOCKING: 2708 * Inherited from caller. 2709 * 2710 * RETURNS: 2711 * 0 on success, negative errno on failure 2712 */ 2713 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2714 { 2715 u32 sstatus, spd, mask; 2716 int rc, bit; 2717 2718 if (!sata_scr_valid(link)) 2719 return -EOPNOTSUPP; 2720 2721 /* If SCR can be read, use it to determine the current SPD. 2722 * If not, use cached value in link->sata_spd. 2723 */ 2724 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2725 if (rc == 0 && ata_sstatus_online(sstatus)) 2726 spd = (sstatus >> 4) & 0xf; 2727 else 2728 spd = link->sata_spd; 2729 2730 mask = link->sata_spd_limit; 2731 if (mask <= 1) 2732 return -EINVAL; 2733 2734 /* unconditionally mask off the highest bit */ 2735 bit = fls(mask) - 1; 2736 mask &= ~(1 << bit); 2737 2738 /* Mask off all speeds higher than or equal to the current 2739 * one. Force 1.5Gbps if current SPD is not available. 2740 */ 2741 if (spd > 1) 2742 mask &= (1 << (spd - 1)) - 1; 2743 else 2744 mask &= 1; 2745 2746 /* were we already at the bottom? */ 2747 if (!mask) 2748 return -EINVAL; 2749 2750 if (spd_limit) { 2751 if (mask & ((1 << spd_limit) - 1)) 2752 mask &= (1 << spd_limit) - 1; 2753 else { 2754 bit = ffs(mask) - 1; 2755 mask = 1 << bit; 2756 } 2757 } 2758 2759 link->sata_spd_limit = mask; 2760 2761 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2762 sata_spd_string(fls(mask))); 2763 2764 return 0; 2765 } 2766 2767 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2768 { 2769 struct ata_link *host_link = &link->ap->link; 2770 u32 limit, target, spd; 2771 2772 limit = link->sata_spd_limit; 2773 2774 /* Don't configure downstream link faster than upstream link. 2775 * It doesn't speed up anything and some PMPs choke on such 2776 * configuration. 2777 */ 2778 if (!ata_is_host_link(link) && host_link->sata_spd) 2779 limit &= (1 << host_link->sata_spd) - 1; 2780 2781 if (limit == UINT_MAX) 2782 target = 0; 2783 else 2784 target = fls(limit); 2785 2786 spd = (*scontrol >> 4) & 0xf; 2787 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2788 2789 return spd != target; 2790 } 2791 2792 /** 2793 * sata_set_spd_needed - is SATA spd configuration needed 2794 * @link: Link in question 2795 * 2796 * Test whether the spd limit in SControl matches 2797 * @link->sata_spd_limit. This function is used to determine 2798 * whether hardreset is necessary to apply SATA spd 2799 * configuration. 2800 * 2801 * LOCKING: 2802 * Inherited from caller. 2803 * 2804 * RETURNS: 2805 * 1 if SATA spd configuration is needed, 0 otherwise. 2806 */ 2807 static int sata_set_spd_needed(struct ata_link *link) 2808 { 2809 u32 scontrol; 2810 2811 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2812 return 1; 2813 2814 return __sata_set_spd_needed(link, &scontrol); 2815 } 2816 2817 /** 2818 * sata_set_spd - set SATA spd according to spd limit 2819 * @link: Link to set SATA spd for 2820 * 2821 * Set SATA spd of @link according to sata_spd_limit. 2822 * 2823 * LOCKING: 2824 * Inherited from caller. 2825 * 2826 * RETURNS: 2827 * 0 if spd doesn't need to be changed, 1 if spd has been 2828 * changed. Negative errno if SCR registers are inaccessible. 2829 */ 2830 int sata_set_spd(struct ata_link *link) 2831 { 2832 u32 scontrol; 2833 int rc; 2834 2835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2836 return rc; 2837 2838 if (!__sata_set_spd_needed(link, &scontrol)) 2839 return 0; 2840 2841 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2842 return rc; 2843 2844 return 1; 2845 } 2846 2847 /* 2848 * This mode timing computation functionality is ported over from 2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2850 */ 2851 /* 2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2854 * for UDMA6, which is currently supported only by Maxtor drives. 2855 * 2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2857 */ 2858 2859 static const struct ata_timing ata_timing[] = { 2860 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2861 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2862 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2863 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2864 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2865 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2866 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2867 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2868 2869 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2870 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2871 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2872 2873 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2874 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2875 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2876 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2877 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2878 2879 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2880 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2881 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2882 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2883 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2884 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2885 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2886 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2887 2888 { 0xFF } 2889 }; 2890 2891 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2892 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2893 2894 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2895 { 2896 q->setup = EZ(t->setup * 1000, T); 2897 q->act8b = EZ(t->act8b * 1000, T); 2898 q->rec8b = EZ(t->rec8b * 1000, T); 2899 q->cyc8b = EZ(t->cyc8b * 1000, T); 2900 q->active = EZ(t->active * 1000, T); 2901 q->recover = EZ(t->recover * 1000, T); 2902 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2903 q->cycle = EZ(t->cycle * 1000, T); 2904 q->udma = EZ(t->udma * 1000, UT); 2905 } 2906 2907 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2908 struct ata_timing *m, unsigned int what) 2909 { 2910 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2911 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2912 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2913 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2914 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2915 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2916 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2917 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2918 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2919 } 2920 2921 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2922 { 2923 const struct ata_timing *t = ata_timing; 2924 2925 while (xfer_mode > t->mode) 2926 t++; 2927 2928 if (xfer_mode == t->mode) 2929 return t; 2930 return NULL; 2931 } 2932 2933 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2934 struct ata_timing *t, int T, int UT) 2935 { 2936 const u16 *id = adev->id; 2937 const struct ata_timing *s; 2938 struct ata_timing p; 2939 2940 /* 2941 * Find the mode. 2942 */ 2943 2944 if (!(s = ata_timing_find_mode(speed))) 2945 return -EINVAL; 2946 2947 memcpy(t, s, sizeof(*s)); 2948 2949 /* 2950 * If the drive is an EIDE drive, it can tell us it needs extended 2951 * PIO/MW_DMA cycle timing. 2952 */ 2953 2954 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2955 memset(&p, 0, sizeof(p)); 2956 2957 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2958 if (speed <= XFER_PIO_2) 2959 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2960 else if ((speed <= XFER_PIO_4) || 2961 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2962 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2963 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2964 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2965 2966 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2967 } 2968 2969 /* 2970 * Convert the timing to bus clock counts. 2971 */ 2972 2973 ata_timing_quantize(t, t, T, UT); 2974 2975 /* 2976 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2977 * S.M.A.R.T * and some other commands. We have to ensure that the 2978 * DMA cycle timing is slower/equal than the fastest PIO timing. 2979 */ 2980 2981 if (speed > XFER_PIO_6) { 2982 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2983 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2984 } 2985 2986 /* 2987 * Lengthen active & recovery time so that cycle time is correct. 2988 */ 2989 2990 if (t->act8b + t->rec8b < t->cyc8b) { 2991 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2992 t->rec8b = t->cyc8b - t->act8b; 2993 } 2994 2995 if (t->active + t->recover < t->cycle) { 2996 t->active += (t->cycle - (t->active + t->recover)) / 2; 2997 t->recover = t->cycle - t->active; 2998 } 2999 3000 /* In a few cases quantisation may produce enough errors to 3001 leave t->cycle too low for the sum of active and recovery 3002 if so we must correct this */ 3003 if (t->active + t->recover > t->cycle) 3004 t->cycle = t->active + t->recover; 3005 3006 return 0; 3007 } 3008 3009 /** 3010 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3011 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3012 * @cycle: cycle duration in ns 3013 * 3014 * Return matching xfer mode for @cycle. The returned mode is of 3015 * the transfer type specified by @xfer_shift. If @cycle is too 3016 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3017 * than the fastest known mode, the fasted mode is returned. 3018 * 3019 * LOCKING: 3020 * None. 3021 * 3022 * RETURNS: 3023 * Matching xfer_mode, 0xff if no match found. 3024 */ 3025 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3026 { 3027 u8 base_mode = 0xff, last_mode = 0xff; 3028 const struct ata_xfer_ent *ent; 3029 const struct ata_timing *t; 3030 3031 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3032 if (ent->shift == xfer_shift) 3033 base_mode = ent->base; 3034 3035 for (t = ata_timing_find_mode(base_mode); 3036 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3037 unsigned short this_cycle; 3038 3039 switch (xfer_shift) { 3040 case ATA_SHIFT_PIO: 3041 case ATA_SHIFT_MWDMA: 3042 this_cycle = t->cycle; 3043 break; 3044 case ATA_SHIFT_UDMA: 3045 this_cycle = t->udma; 3046 break; 3047 default: 3048 return 0xff; 3049 } 3050 3051 if (cycle > this_cycle) 3052 break; 3053 3054 last_mode = t->mode; 3055 } 3056 3057 return last_mode; 3058 } 3059 3060 /** 3061 * ata_down_xfermask_limit - adjust dev xfer masks downward 3062 * @dev: Device to adjust xfer masks 3063 * @sel: ATA_DNXFER_* selector 3064 * 3065 * Adjust xfer masks of @dev downward. Note that this function 3066 * does not apply the change. Invoking ata_set_mode() afterwards 3067 * will apply the limit. 3068 * 3069 * LOCKING: 3070 * Inherited from caller. 3071 * 3072 * RETURNS: 3073 * 0 on success, negative errno on failure 3074 */ 3075 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3076 { 3077 char buf[32]; 3078 unsigned long orig_mask, xfer_mask; 3079 unsigned long pio_mask, mwdma_mask, udma_mask; 3080 int quiet, highbit; 3081 3082 quiet = !!(sel & ATA_DNXFER_QUIET); 3083 sel &= ~ATA_DNXFER_QUIET; 3084 3085 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3086 dev->mwdma_mask, 3087 dev->udma_mask); 3088 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3089 3090 switch (sel) { 3091 case ATA_DNXFER_PIO: 3092 highbit = fls(pio_mask) - 1; 3093 pio_mask &= ~(1 << highbit); 3094 break; 3095 3096 case ATA_DNXFER_DMA: 3097 if (udma_mask) { 3098 highbit = fls(udma_mask) - 1; 3099 udma_mask &= ~(1 << highbit); 3100 if (!udma_mask) 3101 return -ENOENT; 3102 } else if (mwdma_mask) { 3103 highbit = fls(mwdma_mask) - 1; 3104 mwdma_mask &= ~(1 << highbit); 3105 if (!mwdma_mask) 3106 return -ENOENT; 3107 } 3108 break; 3109 3110 case ATA_DNXFER_40C: 3111 udma_mask &= ATA_UDMA_MASK_40C; 3112 break; 3113 3114 case ATA_DNXFER_FORCE_PIO0: 3115 pio_mask &= 1; 3116 case ATA_DNXFER_FORCE_PIO: 3117 mwdma_mask = 0; 3118 udma_mask = 0; 3119 break; 3120 3121 default: 3122 BUG(); 3123 } 3124 3125 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3126 3127 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3128 return -ENOENT; 3129 3130 if (!quiet) { 3131 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3132 snprintf(buf, sizeof(buf), "%s:%s", 3133 ata_mode_string(xfer_mask), 3134 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3135 else 3136 snprintf(buf, sizeof(buf), "%s", 3137 ata_mode_string(xfer_mask)); 3138 3139 ata_dev_printk(dev, KERN_WARNING, 3140 "limiting speed to %s\n", buf); 3141 } 3142 3143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3144 &dev->udma_mask); 3145 3146 return 0; 3147 } 3148 3149 static int ata_dev_set_mode(struct ata_device *dev) 3150 { 3151 struct ata_port *ap = dev->link->ap; 3152 struct ata_eh_context *ehc = &dev->link->eh_context; 3153 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3154 const char *dev_err_whine = ""; 3155 int ign_dev_err = 0; 3156 unsigned int err_mask = 0; 3157 int rc; 3158 3159 dev->flags &= ~ATA_DFLAG_PIO; 3160 if (dev->xfer_shift == ATA_SHIFT_PIO) 3161 dev->flags |= ATA_DFLAG_PIO; 3162 3163 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3164 dev_err_whine = " (SET_XFERMODE skipped)"; 3165 else { 3166 if (nosetxfer) 3167 ata_dev_printk(dev, KERN_WARNING, 3168 "NOSETXFER but PATA detected - can't " 3169 "skip SETXFER, might malfunction\n"); 3170 err_mask = ata_dev_set_xfermode(dev); 3171 } 3172 3173 if (err_mask & ~AC_ERR_DEV) 3174 goto fail; 3175 3176 /* revalidate */ 3177 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3178 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3179 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3180 if (rc) 3181 return rc; 3182 3183 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3184 /* Old CFA may refuse this command, which is just fine */ 3185 if (ata_id_is_cfa(dev->id)) 3186 ign_dev_err = 1; 3187 /* Catch several broken garbage emulations plus some pre 3188 ATA devices */ 3189 if (ata_id_major_version(dev->id) == 0 && 3190 dev->pio_mode <= XFER_PIO_2) 3191 ign_dev_err = 1; 3192 /* Some very old devices and some bad newer ones fail 3193 any kind of SET_XFERMODE request but support PIO0-2 3194 timings and no IORDY */ 3195 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3196 ign_dev_err = 1; 3197 } 3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3200 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3201 dev->dma_mode == XFER_MW_DMA_0 && 3202 (dev->id[63] >> 8) & 1) 3203 ign_dev_err = 1; 3204 3205 /* if the device is actually configured correctly, ignore dev err */ 3206 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3207 ign_dev_err = 1; 3208 3209 if (err_mask & AC_ERR_DEV) { 3210 if (!ign_dev_err) 3211 goto fail; 3212 else 3213 dev_err_whine = " (device error ignored)"; 3214 } 3215 3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3217 dev->xfer_shift, (int)dev->xfer_mode); 3218 3219 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3220 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3221 dev_err_whine); 3222 3223 return 0; 3224 3225 fail: 3226 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3227 "(err_mask=0x%x)\n", err_mask); 3228 return -EIO; 3229 } 3230 3231 /** 3232 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3233 * @link: link on which timings will be programmed 3234 * @r_failed_dev: out parameter for failed device 3235 * 3236 * Standard implementation of the function used to tune and set 3237 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3238 * ata_dev_set_mode() fails, pointer to the failing device is 3239 * returned in @r_failed_dev. 3240 * 3241 * LOCKING: 3242 * PCI/etc. bus probe sem. 3243 * 3244 * RETURNS: 3245 * 0 on success, negative errno otherwise 3246 */ 3247 3248 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3249 { 3250 struct ata_port *ap = link->ap; 3251 struct ata_device *dev; 3252 int rc = 0, used_dma = 0, found = 0; 3253 3254 /* step 1: calculate xfer_mask */ 3255 ata_for_each_dev(dev, link, ENABLED) { 3256 unsigned long pio_mask, dma_mask; 3257 unsigned int mode_mask; 3258 3259 mode_mask = ATA_DMA_MASK_ATA; 3260 if (dev->class == ATA_DEV_ATAPI) 3261 mode_mask = ATA_DMA_MASK_ATAPI; 3262 else if (ata_id_is_cfa(dev->id)) 3263 mode_mask = ATA_DMA_MASK_CFA; 3264 3265 ata_dev_xfermask(dev); 3266 ata_force_xfermask(dev); 3267 3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3270 3271 if (libata_dma_mask & mode_mask) 3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3273 else 3274 dma_mask = 0; 3275 3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3278 3279 found = 1; 3280 if (ata_dma_enabled(dev)) 3281 used_dma = 1; 3282 } 3283 if (!found) 3284 goto out; 3285 3286 /* step 2: always set host PIO timings */ 3287 ata_for_each_dev(dev, link, ENABLED) { 3288 if (dev->pio_mode == 0xff) { 3289 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3290 rc = -EINVAL; 3291 goto out; 3292 } 3293 3294 dev->xfer_mode = dev->pio_mode; 3295 dev->xfer_shift = ATA_SHIFT_PIO; 3296 if (ap->ops->set_piomode) 3297 ap->ops->set_piomode(ap, dev); 3298 } 3299 3300 /* step 3: set host DMA timings */ 3301 ata_for_each_dev(dev, link, ENABLED) { 3302 if (!ata_dma_enabled(dev)) 3303 continue; 3304 3305 dev->xfer_mode = dev->dma_mode; 3306 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3307 if (ap->ops->set_dmamode) 3308 ap->ops->set_dmamode(ap, dev); 3309 } 3310 3311 /* step 4: update devices' xfer mode */ 3312 ata_for_each_dev(dev, link, ENABLED) { 3313 rc = ata_dev_set_mode(dev); 3314 if (rc) 3315 goto out; 3316 } 3317 3318 /* Record simplex status. If we selected DMA then the other 3319 * host channels are not permitted to do so. 3320 */ 3321 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3322 ap->host->simplex_claimed = ap; 3323 3324 out: 3325 if (rc) 3326 *r_failed_dev = dev; 3327 return rc; 3328 } 3329 3330 /** 3331 * ata_wait_ready - wait for link to become ready 3332 * @link: link to be waited on 3333 * @deadline: deadline jiffies for the operation 3334 * @check_ready: callback to check link readiness 3335 * 3336 * Wait for @link to become ready. @check_ready should return 3337 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3338 * link doesn't seem to be occupied, other errno for other error 3339 * conditions. 3340 * 3341 * Transient -ENODEV conditions are allowed for 3342 * ATA_TMOUT_FF_WAIT. 3343 * 3344 * LOCKING: 3345 * EH context. 3346 * 3347 * RETURNS: 3348 * 0 if @linke is ready before @deadline; otherwise, -errno. 3349 */ 3350 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3351 int (*check_ready)(struct ata_link *link)) 3352 { 3353 unsigned long start = jiffies; 3354 unsigned long nodev_deadline; 3355 int warned = 0; 3356 3357 /* choose which 0xff timeout to use, read comment in libata.h */ 3358 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3359 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3360 else 3361 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3362 3363 /* Slave readiness can't be tested separately from master. On 3364 * M/S emulation configuration, this function should be called 3365 * only on the master and it will handle both master and slave. 3366 */ 3367 WARN_ON(link == link->ap->slave_link); 3368 3369 if (time_after(nodev_deadline, deadline)) 3370 nodev_deadline = deadline; 3371 3372 while (1) { 3373 unsigned long now = jiffies; 3374 int ready, tmp; 3375 3376 ready = tmp = check_ready(link); 3377 if (ready > 0) 3378 return 0; 3379 3380 /* 3381 * -ENODEV could be transient. Ignore -ENODEV if link 3382 * is online. Also, some SATA devices take a long 3383 * time to clear 0xff after reset. Wait for 3384 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3385 * offline. 3386 * 3387 * Note that some PATA controllers (pata_ali) explode 3388 * if status register is read more than once when 3389 * there's no device attached. 3390 */ 3391 if (ready == -ENODEV) { 3392 if (ata_link_online(link)) 3393 ready = 0; 3394 else if ((link->ap->flags & ATA_FLAG_SATA) && 3395 !ata_link_offline(link) && 3396 time_before(now, nodev_deadline)) 3397 ready = 0; 3398 } 3399 3400 if (ready) 3401 return ready; 3402 if (time_after(now, deadline)) 3403 return -EBUSY; 3404 3405 if (!warned && time_after(now, start + 5 * HZ) && 3406 (deadline - now > 3 * HZ)) { 3407 ata_link_printk(link, KERN_WARNING, 3408 "link is slow to respond, please be patient " 3409 "(ready=%d)\n", tmp); 3410 warned = 1; 3411 } 3412 3413 ata_msleep(link->ap, 50); 3414 } 3415 } 3416 3417 /** 3418 * ata_wait_after_reset - wait for link to become ready after reset 3419 * @link: link to be waited on 3420 * @deadline: deadline jiffies for the operation 3421 * @check_ready: callback to check link readiness 3422 * 3423 * Wait for @link to become ready after reset. 3424 * 3425 * LOCKING: 3426 * EH context. 3427 * 3428 * RETURNS: 3429 * 0 if @linke is ready before @deadline; otherwise, -errno. 3430 */ 3431 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3432 int (*check_ready)(struct ata_link *link)) 3433 { 3434 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3435 3436 return ata_wait_ready(link, deadline, check_ready); 3437 } 3438 3439 /** 3440 * sata_link_debounce - debounce SATA phy status 3441 * @link: ATA link to debounce SATA phy status for 3442 * @params: timing parameters { interval, duratinon, timeout } in msec 3443 * @deadline: deadline jiffies for the operation 3444 * 3445 * Make sure SStatus of @link reaches stable state, determined by 3446 * holding the same value where DET is not 1 for @duration polled 3447 * every @interval, before @timeout. Timeout constraints the 3448 * beginning of the stable state. Because DET gets stuck at 1 on 3449 * some controllers after hot unplugging, this functions waits 3450 * until timeout then returns 0 if DET is stable at 1. 3451 * 3452 * @timeout is further limited by @deadline. The sooner of the 3453 * two is used. 3454 * 3455 * LOCKING: 3456 * Kernel thread context (may sleep) 3457 * 3458 * RETURNS: 3459 * 0 on success, -errno on failure. 3460 */ 3461 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3462 unsigned long deadline) 3463 { 3464 unsigned long interval = params[0]; 3465 unsigned long duration = params[1]; 3466 unsigned long last_jiffies, t; 3467 u32 last, cur; 3468 int rc; 3469 3470 t = ata_deadline(jiffies, params[2]); 3471 if (time_before(t, deadline)) 3472 deadline = t; 3473 3474 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3475 return rc; 3476 cur &= 0xf; 3477 3478 last = cur; 3479 last_jiffies = jiffies; 3480 3481 while (1) { 3482 ata_msleep(link->ap, interval); 3483 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3484 return rc; 3485 cur &= 0xf; 3486 3487 /* DET stable? */ 3488 if (cur == last) { 3489 if (cur == 1 && time_before(jiffies, deadline)) 3490 continue; 3491 if (time_after(jiffies, 3492 ata_deadline(last_jiffies, duration))) 3493 return 0; 3494 continue; 3495 } 3496 3497 /* unstable, start over */ 3498 last = cur; 3499 last_jiffies = jiffies; 3500 3501 /* Check deadline. If debouncing failed, return 3502 * -EPIPE to tell upper layer to lower link speed. 3503 */ 3504 if (time_after(jiffies, deadline)) 3505 return -EPIPE; 3506 } 3507 } 3508 3509 /** 3510 * sata_link_resume - resume SATA link 3511 * @link: ATA link to resume SATA 3512 * @params: timing parameters { interval, duratinon, timeout } in msec 3513 * @deadline: deadline jiffies for the operation 3514 * 3515 * Resume SATA phy @link and debounce it. 3516 * 3517 * LOCKING: 3518 * Kernel thread context (may sleep) 3519 * 3520 * RETURNS: 3521 * 0 on success, -errno on failure. 3522 */ 3523 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3524 unsigned long deadline) 3525 { 3526 int tries = ATA_LINK_RESUME_TRIES; 3527 u32 scontrol, serror; 3528 int rc; 3529 3530 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3531 return rc; 3532 3533 /* 3534 * Writes to SControl sometimes get ignored under certain 3535 * controllers (ata_piix SIDPR). Make sure DET actually is 3536 * cleared. 3537 */ 3538 do { 3539 scontrol = (scontrol & 0x0f0) | 0x300; 3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3541 return rc; 3542 /* 3543 * Some PHYs react badly if SStatus is pounded 3544 * immediately after resuming. Delay 200ms before 3545 * debouncing. 3546 */ 3547 ata_msleep(link->ap, 200); 3548 3549 /* is SControl restored correctly? */ 3550 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3551 return rc; 3552 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3553 3554 if ((scontrol & 0xf0f) != 0x300) { 3555 ata_link_printk(link, KERN_ERR, 3556 "failed to resume link (SControl %X)\n", 3557 scontrol); 3558 return 0; 3559 } 3560 3561 if (tries < ATA_LINK_RESUME_TRIES) 3562 ata_link_printk(link, KERN_WARNING, 3563 "link resume succeeded after %d retries\n", 3564 ATA_LINK_RESUME_TRIES - tries); 3565 3566 if ((rc = sata_link_debounce(link, params, deadline))) 3567 return rc; 3568 3569 /* clear SError, some PHYs require this even for SRST to work */ 3570 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3571 rc = sata_scr_write(link, SCR_ERROR, serror); 3572 3573 return rc != -EINVAL ? rc : 0; 3574 } 3575 3576 /** 3577 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3578 * @link: ATA link to manipulate SControl for 3579 * @policy: LPM policy to configure 3580 * @spm_wakeup: initiate LPM transition to active state 3581 * 3582 * Manipulate the IPM field of the SControl register of @link 3583 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3584 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3585 * the link. This function also clears PHYRDY_CHG before 3586 * returning. 3587 * 3588 * LOCKING: 3589 * EH context. 3590 * 3591 * RETURNS: 3592 * 0 on succes, -errno otherwise. 3593 */ 3594 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3595 bool spm_wakeup) 3596 { 3597 struct ata_eh_context *ehc = &link->eh_context; 3598 bool woken_up = false; 3599 u32 scontrol; 3600 int rc; 3601 3602 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3603 if (rc) 3604 return rc; 3605 3606 switch (policy) { 3607 case ATA_LPM_MAX_POWER: 3608 /* disable all LPM transitions */ 3609 scontrol |= (0x3 << 8); 3610 /* initiate transition to active state */ 3611 if (spm_wakeup) { 3612 scontrol |= (0x4 << 12); 3613 woken_up = true; 3614 } 3615 break; 3616 case ATA_LPM_MED_POWER: 3617 /* allow LPM to PARTIAL */ 3618 scontrol &= ~(0x1 << 8); 3619 scontrol |= (0x2 << 8); 3620 break; 3621 case ATA_LPM_MIN_POWER: 3622 /* no restrictions on LPM transitions */ 3623 scontrol &= ~(0x3 << 8); 3624 break; 3625 default: 3626 WARN_ON(1); 3627 } 3628 3629 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3630 if (rc) 3631 return rc; 3632 3633 /* give the link time to transit out of LPM state */ 3634 if (woken_up) 3635 msleep(10); 3636 3637 /* clear PHYRDY_CHG from SError */ 3638 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3639 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3640 } 3641 3642 /** 3643 * ata_std_prereset - prepare for reset 3644 * @link: ATA link to be reset 3645 * @deadline: deadline jiffies for the operation 3646 * 3647 * @link is about to be reset. Initialize it. Failure from 3648 * prereset makes libata abort whole reset sequence and give up 3649 * that port, so prereset should be best-effort. It does its 3650 * best to prepare for reset sequence but if things go wrong, it 3651 * should just whine, not fail. 3652 * 3653 * LOCKING: 3654 * Kernel thread context (may sleep) 3655 * 3656 * RETURNS: 3657 * 0 on success, -errno otherwise. 3658 */ 3659 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3660 { 3661 struct ata_port *ap = link->ap; 3662 struct ata_eh_context *ehc = &link->eh_context; 3663 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3664 int rc; 3665 3666 /* if we're about to do hardreset, nothing more to do */ 3667 if (ehc->i.action & ATA_EH_HARDRESET) 3668 return 0; 3669 3670 /* if SATA, resume link */ 3671 if (ap->flags & ATA_FLAG_SATA) { 3672 rc = sata_link_resume(link, timing, deadline); 3673 /* whine about phy resume failure but proceed */ 3674 if (rc && rc != -EOPNOTSUPP) 3675 ata_link_printk(link, KERN_WARNING, "failed to resume " 3676 "link for reset (errno=%d)\n", rc); 3677 } 3678 3679 /* no point in trying softreset on offline link */ 3680 if (ata_phys_link_offline(link)) 3681 ehc->i.action &= ~ATA_EH_SOFTRESET; 3682 3683 return 0; 3684 } 3685 3686 /** 3687 * sata_link_hardreset - reset link via SATA phy reset 3688 * @link: link to reset 3689 * @timing: timing parameters { interval, duratinon, timeout } in msec 3690 * @deadline: deadline jiffies for the operation 3691 * @online: optional out parameter indicating link onlineness 3692 * @check_ready: optional callback to check link readiness 3693 * 3694 * SATA phy-reset @link using DET bits of SControl register. 3695 * After hardreset, link readiness is waited upon using 3696 * ata_wait_ready() if @check_ready is specified. LLDs are 3697 * allowed to not specify @check_ready and wait itself after this 3698 * function returns. Device classification is LLD's 3699 * responsibility. 3700 * 3701 * *@online is set to one iff reset succeeded and @link is online 3702 * after reset. 3703 * 3704 * LOCKING: 3705 * Kernel thread context (may sleep) 3706 * 3707 * RETURNS: 3708 * 0 on success, -errno otherwise. 3709 */ 3710 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3711 unsigned long deadline, 3712 bool *online, int (*check_ready)(struct ata_link *)) 3713 { 3714 u32 scontrol; 3715 int rc; 3716 3717 DPRINTK("ENTER\n"); 3718 3719 if (online) 3720 *online = false; 3721 3722 if (sata_set_spd_needed(link)) { 3723 /* SATA spec says nothing about how to reconfigure 3724 * spd. To be on the safe side, turn off phy during 3725 * reconfiguration. This works for at least ICH7 AHCI 3726 * and Sil3124. 3727 */ 3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3729 goto out; 3730 3731 scontrol = (scontrol & 0x0f0) | 0x304; 3732 3733 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3734 goto out; 3735 3736 sata_set_spd(link); 3737 } 3738 3739 /* issue phy wake/reset */ 3740 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3741 goto out; 3742 3743 scontrol = (scontrol & 0x0f0) | 0x301; 3744 3745 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3746 goto out; 3747 3748 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3749 * 10.4.2 says at least 1 ms. 3750 */ 3751 ata_msleep(link->ap, 1); 3752 3753 /* bring link back */ 3754 rc = sata_link_resume(link, timing, deadline); 3755 if (rc) 3756 goto out; 3757 /* if link is offline nothing more to do */ 3758 if (ata_phys_link_offline(link)) 3759 goto out; 3760 3761 /* Link is online. From this point, -ENODEV too is an error. */ 3762 if (online) 3763 *online = true; 3764 3765 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3766 /* If PMP is supported, we have to do follow-up SRST. 3767 * Some PMPs don't send D2H Reg FIS after hardreset if 3768 * the first port is empty. Wait only for 3769 * ATA_TMOUT_PMP_SRST_WAIT. 3770 */ 3771 if (check_ready) { 3772 unsigned long pmp_deadline; 3773 3774 pmp_deadline = ata_deadline(jiffies, 3775 ATA_TMOUT_PMP_SRST_WAIT); 3776 if (time_after(pmp_deadline, deadline)) 3777 pmp_deadline = deadline; 3778 ata_wait_ready(link, pmp_deadline, check_ready); 3779 } 3780 rc = -EAGAIN; 3781 goto out; 3782 } 3783 3784 rc = 0; 3785 if (check_ready) 3786 rc = ata_wait_ready(link, deadline, check_ready); 3787 out: 3788 if (rc && rc != -EAGAIN) { 3789 /* online is set iff link is online && reset succeeded */ 3790 if (online) 3791 *online = false; 3792 ata_link_printk(link, KERN_ERR, 3793 "COMRESET failed (errno=%d)\n", rc); 3794 } 3795 DPRINTK("EXIT, rc=%d\n", rc); 3796 return rc; 3797 } 3798 3799 /** 3800 * sata_std_hardreset - COMRESET w/o waiting or classification 3801 * @link: link to reset 3802 * @class: resulting class of attached device 3803 * @deadline: deadline jiffies for the operation 3804 * 3805 * Standard SATA COMRESET w/o waiting or classification. 3806 * 3807 * LOCKING: 3808 * Kernel thread context (may sleep) 3809 * 3810 * RETURNS: 3811 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3812 */ 3813 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3814 unsigned long deadline) 3815 { 3816 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3817 bool online; 3818 int rc; 3819 3820 /* do hardreset */ 3821 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3822 return online ? -EAGAIN : rc; 3823 } 3824 3825 /** 3826 * ata_std_postreset - standard postreset callback 3827 * @link: the target ata_link 3828 * @classes: classes of attached devices 3829 * 3830 * This function is invoked after a successful reset. Note that 3831 * the device might have been reset more than once using 3832 * different reset methods before postreset is invoked. 3833 * 3834 * LOCKING: 3835 * Kernel thread context (may sleep) 3836 */ 3837 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3838 { 3839 u32 serror; 3840 3841 DPRINTK("ENTER\n"); 3842 3843 /* reset complete, clear SError */ 3844 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3845 sata_scr_write(link, SCR_ERROR, serror); 3846 3847 /* print link status */ 3848 sata_print_link_status(link); 3849 3850 DPRINTK("EXIT\n"); 3851 } 3852 3853 /** 3854 * ata_dev_same_device - Determine whether new ID matches configured device 3855 * @dev: device to compare against 3856 * @new_class: class of the new device 3857 * @new_id: IDENTIFY page of the new device 3858 * 3859 * Compare @new_class and @new_id against @dev and determine 3860 * whether @dev is the device indicated by @new_class and 3861 * @new_id. 3862 * 3863 * LOCKING: 3864 * None. 3865 * 3866 * RETURNS: 3867 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3868 */ 3869 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3870 const u16 *new_id) 3871 { 3872 const u16 *old_id = dev->id; 3873 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3874 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3875 3876 if (dev->class != new_class) { 3877 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3878 dev->class, new_class); 3879 return 0; 3880 } 3881 3882 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3883 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3884 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3885 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3886 3887 if (strcmp(model[0], model[1])) { 3888 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3889 "'%s' != '%s'\n", model[0], model[1]); 3890 return 0; 3891 } 3892 3893 if (strcmp(serial[0], serial[1])) { 3894 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3895 "'%s' != '%s'\n", serial[0], serial[1]); 3896 return 0; 3897 } 3898 3899 return 1; 3900 } 3901 3902 /** 3903 * ata_dev_reread_id - Re-read IDENTIFY data 3904 * @dev: target ATA device 3905 * @readid_flags: read ID flags 3906 * 3907 * Re-read IDENTIFY page and make sure @dev is still attached to 3908 * the port. 3909 * 3910 * LOCKING: 3911 * Kernel thread context (may sleep) 3912 * 3913 * RETURNS: 3914 * 0 on success, negative errno otherwise 3915 */ 3916 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3917 { 3918 unsigned int class = dev->class; 3919 u16 *id = (void *)dev->link->ap->sector_buf; 3920 int rc; 3921 3922 /* read ID data */ 3923 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3924 if (rc) 3925 return rc; 3926 3927 /* is the device still there? */ 3928 if (!ata_dev_same_device(dev, class, id)) 3929 return -ENODEV; 3930 3931 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3932 return 0; 3933 } 3934 3935 /** 3936 * ata_dev_revalidate - Revalidate ATA device 3937 * @dev: device to revalidate 3938 * @new_class: new class code 3939 * @readid_flags: read ID flags 3940 * 3941 * Re-read IDENTIFY page, make sure @dev is still attached to the 3942 * port and reconfigure it according to the new IDENTIFY page. 3943 * 3944 * LOCKING: 3945 * Kernel thread context (may sleep) 3946 * 3947 * RETURNS: 3948 * 0 on success, negative errno otherwise 3949 */ 3950 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3951 unsigned int readid_flags) 3952 { 3953 u64 n_sectors = dev->n_sectors; 3954 u64 n_native_sectors = dev->n_native_sectors; 3955 int rc; 3956 3957 if (!ata_dev_enabled(dev)) 3958 return -ENODEV; 3959 3960 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3961 if (ata_class_enabled(new_class) && 3962 new_class != ATA_DEV_ATA && 3963 new_class != ATA_DEV_ATAPI && 3964 new_class != ATA_DEV_SEMB) { 3965 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3966 dev->class, new_class); 3967 rc = -ENODEV; 3968 goto fail; 3969 } 3970 3971 /* re-read ID */ 3972 rc = ata_dev_reread_id(dev, readid_flags); 3973 if (rc) 3974 goto fail; 3975 3976 /* configure device according to the new ID */ 3977 rc = ata_dev_configure(dev); 3978 if (rc) 3979 goto fail; 3980 3981 /* verify n_sectors hasn't changed */ 3982 if (dev->class != ATA_DEV_ATA || !n_sectors || 3983 dev->n_sectors == n_sectors) 3984 return 0; 3985 3986 /* n_sectors has changed */ 3987 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n", 3988 (unsigned long long)n_sectors, 3989 (unsigned long long)dev->n_sectors); 3990 3991 /* 3992 * Something could have caused HPA to be unlocked 3993 * involuntarily. If n_native_sectors hasn't changed and the 3994 * new size matches it, keep the device. 3995 */ 3996 if (dev->n_native_sectors == n_native_sectors && 3997 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3998 ata_dev_printk(dev, KERN_WARNING, 3999 "new n_sectors matches native, probably " 4000 "late HPA unlock, n_sectors updated\n"); 4001 /* use the larger n_sectors */ 4002 return 0; 4003 } 4004 4005 /* 4006 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4007 * unlocking HPA in those cases. 4008 * 4009 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4010 */ 4011 if (dev->n_native_sectors == n_native_sectors && 4012 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4013 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4014 ata_dev_printk(dev, KERN_WARNING, 4015 "old n_sectors matches native, probably " 4016 "late HPA lock, will try to unlock HPA\n"); 4017 /* try unlocking HPA */ 4018 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4019 rc = -EIO; 4020 } else 4021 rc = -ENODEV; 4022 4023 /* restore original n_[native_]sectors and fail */ 4024 dev->n_native_sectors = n_native_sectors; 4025 dev->n_sectors = n_sectors; 4026 fail: 4027 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4028 return rc; 4029 } 4030 4031 struct ata_blacklist_entry { 4032 const char *model_num; 4033 const char *model_rev; 4034 unsigned long horkage; 4035 }; 4036 4037 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4038 /* Devices with DMA related problems under Linux */ 4039 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4040 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4041 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4042 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4043 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4044 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4045 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4046 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4047 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4048 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4049 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4050 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4051 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4052 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4053 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4054 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4055 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4056 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4057 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4058 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4059 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4060 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4061 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4062 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4063 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4064 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4065 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4066 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4067 /* Odd clown on sil3726/4726 PMPs */ 4068 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4069 4070 /* Weird ATAPI devices */ 4071 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4072 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4073 4074 /* Devices we expect to fail diagnostics */ 4075 4076 /* Devices where NCQ should be avoided */ 4077 /* NCQ is slow */ 4078 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4079 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4080 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4081 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4082 /* NCQ is broken */ 4083 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4084 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4085 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4086 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4087 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4088 4089 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4090 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4091 ATA_HORKAGE_FIRMWARE_WARN }, 4092 4093 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4094 ATA_HORKAGE_FIRMWARE_WARN }, 4095 4096 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4097 ATA_HORKAGE_FIRMWARE_WARN }, 4098 4099 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4100 ATA_HORKAGE_FIRMWARE_WARN }, 4101 4102 /* Blacklist entries taken from Silicon Image 3124/3132 4103 Windows driver .inf file - also several Linux problem reports */ 4104 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4105 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4106 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4107 4108 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4109 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4110 4111 /* devices which puke on READ_NATIVE_MAX */ 4112 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4113 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4114 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4115 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4116 4117 /* this one allows HPA unlocking but fails IOs on the area */ 4118 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4119 4120 /* Devices which report 1 sector over size HPA */ 4121 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4122 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4123 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4124 4125 /* Devices which get the IVB wrong */ 4126 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4127 /* Maybe we should just blacklist TSSTcorp... */ 4128 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4129 4130 /* Devices that do not need bridging limits applied */ 4131 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4132 4133 /* Devices which aren't very happy with higher link speeds */ 4134 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4135 4136 /* 4137 * Devices which choke on SETXFER. Applies only if both the 4138 * device and controller are SATA. 4139 */ 4140 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4141 4142 /* End Marker */ 4143 { } 4144 }; 4145 4146 /** 4147 * glob_match - match a text string against a glob-style pattern 4148 * @text: the string to be examined 4149 * @pattern: the glob-style pattern to be matched against 4150 * 4151 * Either/both of text and pattern can be empty strings. 4152 * 4153 * Match text against a glob-style pattern, with wildcards and simple sets: 4154 * 4155 * ? matches any single character. 4156 * * matches any run of characters. 4157 * [xyz] matches a single character from the set: x, y, or z. 4158 * [a-d] matches a single character from the range: a, b, c, or d. 4159 * [a-d0-9] matches a single character from either range. 4160 * 4161 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4162 * Behaviour with malformed patterns is undefined, though generally reasonable. 4163 * 4164 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4165 * 4166 * This function uses one level of recursion per '*' in pattern. 4167 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4168 * this will not cause stack problems for any reasonable use here. 4169 * 4170 * RETURNS: 4171 * 0 on match, 1 otherwise. 4172 */ 4173 static int glob_match (const char *text, const char *pattern) 4174 { 4175 do { 4176 /* Match single character or a '?' wildcard */ 4177 if (*text == *pattern || *pattern == '?') { 4178 if (!*pattern++) 4179 return 0; /* End of both strings: match */ 4180 } else { 4181 /* Match single char against a '[' bracketed ']' pattern set */ 4182 if (!*text || *pattern != '[') 4183 break; /* Not a pattern set */ 4184 while (*++pattern && *pattern != ']' && *text != *pattern) { 4185 if (*pattern == '-' && *(pattern - 1) != '[') 4186 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4187 ++pattern; 4188 break; 4189 } 4190 } 4191 if (!*pattern || *pattern == ']') 4192 return 1; /* No match */ 4193 while (*pattern && *pattern++ != ']'); 4194 } 4195 } while (*++text && *pattern); 4196 4197 /* Match any run of chars against a '*' wildcard */ 4198 if (*pattern == '*') { 4199 if (!*++pattern) 4200 return 0; /* Match: avoid recursion at end of pattern */ 4201 /* Loop to handle additional pattern chars after the wildcard */ 4202 while (*text) { 4203 if (glob_match(text, pattern) == 0) 4204 return 0; /* Remainder matched */ 4205 ++text; /* Absorb (match) this char and try again */ 4206 } 4207 } 4208 if (!*text && !*pattern) 4209 return 0; /* End of both strings: match */ 4210 return 1; /* No match */ 4211 } 4212 4213 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4214 { 4215 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4216 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4217 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4218 4219 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4220 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4221 4222 while (ad->model_num) { 4223 if (!glob_match(model_num, ad->model_num)) { 4224 if (ad->model_rev == NULL) 4225 return ad->horkage; 4226 if (!glob_match(model_rev, ad->model_rev)) 4227 return ad->horkage; 4228 } 4229 ad++; 4230 } 4231 return 0; 4232 } 4233 4234 static int ata_dma_blacklisted(const struct ata_device *dev) 4235 { 4236 /* We don't support polling DMA. 4237 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4238 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4239 */ 4240 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4241 (dev->flags & ATA_DFLAG_CDB_INTR)) 4242 return 1; 4243 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4244 } 4245 4246 /** 4247 * ata_is_40wire - check drive side detection 4248 * @dev: device 4249 * 4250 * Perform drive side detection decoding, allowing for device vendors 4251 * who can't follow the documentation. 4252 */ 4253 4254 static int ata_is_40wire(struct ata_device *dev) 4255 { 4256 if (dev->horkage & ATA_HORKAGE_IVB) 4257 return ata_drive_40wire_relaxed(dev->id); 4258 return ata_drive_40wire(dev->id); 4259 } 4260 4261 /** 4262 * cable_is_40wire - 40/80/SATA decider 4263 * @ap: port to consider 4264 * 4265 * This function encapsulates the policy for speed management 4266 * in one place. At the moment we don't cache the result but 4267 * there is a good case for setting ap->cbl to the result when 4268 * we are called with unknown cables (and figuring out if it 4269 * impacts hotplug at all). 4270 * 4271 * Return 1 if the cable appears to be 40 wire. 4272 */ 4273 4274 static int cable_is_40wire(struct ata_port *ap) 4275 { 4276 struct ata_link *link; 4277 struct ata_device *dev; 4278 4279 /* If the controller thinks we are 40 wire, we are. */ 4280 if (ap->cbl == ATA_CBL_PATA40) 4281 return 1; 4282 4283 /* If the controller thinks we are 80 wire, we are. */ 4284 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4285 return 0; 4286 4287 /* If the system is known to be 40 wire short cable (eg 4288 * laptop), then we allow 80 wire modes even if the drive 4289 * isn't sure. 4290 */ 4291 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4292 return 0; 4293 4294 /* If the controller doesn't know, we scan. 4295 * 4296 * Note: We look for all 40 wire detects at this point. Any 4297 * 80 wire detect is taken to be 80 wire cable because 4298 * - in many setups only the one drive (slave if present) will 4299 * give a valid detect 4300 * - if you have a non detect capable drive you don't want it 4301 * to colour the choice 4302 */ 4303 ata_for_each_link(link, ap, EDGE) { 4304 ata_for_each_dev(dev, link, ENABLED) { 4305 if (!ata_is_40wire(dev)) 4306 return 0; 4307 } 4308 } 4309 return 1; 4310 } 4311 4312 /** 4313 * ata_dev_xfermask - Compute supported xfermask of the given device 4314 * @dev: Device to compute xfermask for 4315 * 4316 * Compute supported xfermask of @dev and store it in 4317 * dev->*_mask. This function is responsible for applying all 4318 * known limits including host controller limits, device 4319 * blacklist, etc... 4320 * 4321 * LOCKING: 4322 * None. 4323 */ 4324 static void ata_dev_xfermask(struct ata_device *dev) 4325 { 4326 struct ata_link *link = dev->link; 4327 struct ata_port *ap = link->ap; 4328 struct ata_host *host = ap->host; 4329 unsigned long xfer_mask; 4330 4331 /* controller modes available */ 4332 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4333 ap->mwdma_mask, ap->udma_mask); 4334 4335 /* drive modes available */ 4336 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4337 dev->mwdma_mask, dev->udma_mask); 4338 xfer_mask &= ata_id_xfermask(dev->id); 4339 4340 /* 4341 * CFA Advanced TrueIDE timings are not allowed on a shared 4342 * cable 4343 */ 4344 if (ata_dev_pair(dev)) { 4345 /* No PIO5 or PIO6 */ 4346 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4347 /* No MWDMA3 or MWDMA 4 */ 4348 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4349 } 4350 4351 if (ata_dma_blacklisted(dev)) { 4352 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4353 ata_dev_printk(dev, KERN_WARNING, 4354 "device is on DMA blacklist, disabling DMA\n"); 4355 } 4356 4357 if ((host->flags & ATA_HOST_SIMPLEX) && 4358 host->simplex_claimed && host->simplex_claimed != ap) { 4359 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4360 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4361 "other device, disabling DMA\n"); 4362 } 4363 4364 if (ap->flags & ATA_FLAG_NO_IORDY) 4365 xfer_mask &= ata_pio_mask_no_iordy(dev); 4366 4367 if (ap->ops->mode_filter) 4368 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4369 4370 /* Apply cable rule here. Don't apply it early because when 4371 * we handle hot plug the cable type can itself change. 4372 * Check this last so that we know if the transfer rate was 4373 * solely limited by the cable. 4374 * Unknown or 80 wire cables reported host side are checked 4375 * drive side as well. Cases where we know a 40wire cable 4376 * is used safely for 80 are not checked here. 4377 */ 4378 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4379 /* UDMA/44 or higher would be available */ 4380 if (cable_is_40wire(ap)) { 4381 ata_dev_printk(dev, KERN_WARNING, 4382 "limited to UDMA/33 due to 40-wire cable\n"); 4383 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4384 } 4385 4386 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4387 &dev->mwdma_mask, &dev->udma_mask); 4388 } 4389 4390 /** 4391 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4392 * @dev: Device to which command will be sent 4393 * 4394 * Issue SET FEATURES - XFER MODE command to device @dev 4395 * on port @ap. 4396 * 4397 * LOCKING: 4398 * PCI/etc. bus probe sem. 4399 * 4400 * RETURNS: 4401 * 0 on success, AC_ERR_* mask otherwise. 4402 */ 4403 4404 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4405 { 4406 struct ata_taskfile tf; 4407 unsigned int err_mask; 4408 4409 /* set up set-features taskfile */ 4410 DPRINTK("set features - xfer mode\n"); 4411 4412 /* Some controllers and ATAPI devices show flaky interrupt 4413 * behavior after setting xfer mode. Use polling instead. 4414 */ 4415 ata_tf_init(dev, &tf); 4416 tf.command = ATA_CMD_SET_FEATURES; 4417 tf.feature = SETFEATURES_XFER; 4418 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4419 tf.protocol = ATA_PROT_NODATA; 4420 /* If we are using IORDY we must send the mode setting command */ 4421 if (ata_pio_need_iordy(dev)) 4422 tf.nsect = dev->xfer_mode; 4423 /* If the device has IORDY and the controller does not - turn it off */ 4424 else if (ata_id_has_iordy(dev->id)) 4425 tf.nsect = 0x01; 4426 else /* In the ancient relic department - skip all of this */ 4427 return 0; 4428 4429 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4430 4431 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4432 return err_mask; 4433 } 4434 4435 /** 4436 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4437 * @dev: Device to which command will be sent 4438 * @enable: Whether to enable or disable the feature 4439 * @feature: The sector count represents the feature to set 4440 * 4441 * Issue SET FEATURES - SATA FEATURES command to device @dev 4442 * on port @ap with sector count 4443 * 4444 * LOCKING: 4445 * PCI/etc. bus probe sem. 4446 * 4447 * RETURNS: 4448 * 0 on success, AC_ERR_* mask otherwise. 4449 */ 4450 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4451 { 4452 struct ata_taskfile tf; 4453 unsigned int err_mask; 4454 4455 /* set up set-features taskfile */ 4456 DPRINTK("set features - SATA features\n"); 4457 4458 ata_tf_init(dev, &tf); 4459 tf.command = ATA_CMD_SET_FEATURES; 4460 tf.feature = enable; 4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4462 tf.protocol = ATA_PROT_NODATA; 4463 tf.nsect = feature; 4464 4465 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4466 4467 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4468 return err_mask; 4469 } 4470 4471 /** 4472 * ata_dev_init_params - Issue INIT DEV PARAMS command 4473 * @dev: Device to which command will be sent 4474 * @heads: Number of heads (taskfile parameter) 4475 * @sectors: Number of sectors (taskfile parameter) 4476 * 4477 * LOCKING: 4478 * Kernel thread context (may sleep) 4479 * 4480 * RETURNS: 4481 * 0 on success, AC_ERR_* mask otherwise. 4482 */ 4483 static unsigned int ata_dev_init_params(struct ata_device *dev, 4484 u16 heads, u16 sectors) 4485 { 4486 struct ata_taskfile tf; 4487 unsigned int err_mask; 4488 4489 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4490 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4491 return AC_ERR_INVALID; 4492 4493 /* set up init dev params taskfile */ 4494 DPRINTK("init dev params \n"); 4495 4496 ata_tf_init(dev, &tf); 4497 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4498 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4499 tf.protocol = ATA_PROT_NODATA; 4500 tf.nsect = sectors; 4501 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4502 4503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4504 /* A clean abort indicates an original or just out of spec drive 4505 and we should continue as we issue the setup based on the 4506 drive reported working geometry */ 4507 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4508 err_mask = 0; 4509 4510 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4511 return err_mask; 4512 } 4513 4514 /** 4515 * ata_sg_clean - Unmap DMA memory associated with command 4516 * @qc: Command containing DMA memory to be released 4517 * 4518 * Unmap all mapped DMA memory associated with this command. 4519 * 4520 * LOCKING: 4521 * spin_lock_irqsave(host lock) 4522 */ 4523 void ata_sg_clean(struct ata_queued_cmd *qc) 4524 { 4525 struct ata_port *ap = qc->ap; 4526 struct scatterlist *sg = qc->sg; 4527 int dir = qc->dma_dir; 4528 4529 WARN_ON_ONCE(sg == NULL); 4530 4531 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4532 4533 if (qc->n_elem) 4534 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4535 4536 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4537 qc->sg = NULL; 4538 } 4539 4540 /** 4541 * atapi_check_dma - Check whether ATAPI DMA can be supported 4542 * @qc: Metadata associated with taskfile to check 4543 * 4544 * Allow low-level driver to filter ATA PACKET commands, returning 4545 * a status indicating whether or not it is OK to use DMA for the 4546 * supplied PACKET command. 4547 * 4548 * LOCKING: 4549 * spin_lock_irqsave(host lock) 4550 * 4551 * RETURNS: 0 when ATAPI DMA can be used 4552 * nonzero otherwise 4553 */ 4554 int atapi_check_dma(struct ata_queued_cmd *qc) 4555 { 4556 struct ata_port *ap = qc->ap; 4557 4558 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4559 * few ATAPI devices choke on such DMA requests. 4560 */ 4561 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4562 unlikely(qc->nbytes & 15)) 4563 return 1; 4564 4565 if (ap->ops->check_atapi_dma) 4566 return ap->ops->check_atapi_dma(qc); 4567 4568 return 0; 4569 } 4570 4571 /** 4572 * ata_std_qc_defer - Check whether a qc needs to be deferred 4573 * @qc: ATA command in question 4574 * 4575 * Non-NCQ commands cannot run with any other command, NCQ or 4576 * not. As upper layer only knows the queue depth, we are 4577 * responsible for maintaining exclusion. This function checks 4578 * whether a new command @qc can be issued. 4579 * 4580 * LOCKING: 4581 * spin_lock_irqsave(host lock) 4582 * 4583 * RETURNS: 4584 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4585 */ 4586 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4587 { 4588 struct ata_link *link = qc->dev->link; 4589 4590 if (qc->tf.protocol == ATA_PROT_NCQ) { 4591 if (!ata_tag_valid(link->active_tag)) 4592 return 0; 4593 } else { 4594 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4595 return 0; 4596 } 4597 4598 return ATA_DEFER_LINK; 4599 } 4600 4601 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4602 4603 /** 4604 * ata_sg_init - Associate command with scatter-gather table. 4605 * @qc: Command to be associated 4606 * @sg: Scatter-gather table. 4607 * @n_elem: Number of elements in s/g table. 4608 * 4609 * Initialize the data-related elements of queued_cmd @qc 4610 * to point to a scatter-gather table @sg, containing @n_elem 4611 * elements. 4612 * 4613 * LOCKING: 4614 * spin_lock_irqsave(host lock) 4615 */ 4616 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4617 unsigned int n_elem) 4618 { 4619 qc->sg = sg; 4620 qc->n_elem = n_elem; 4621 qc->cursg = qc->sg; 4622 } 4623 4624 /** 4625 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4626 * @qc: Command with scatter-gather table to be mapped. 4627 * 4628 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4629 * 4630 * LOCKING: 4631 * spin_lock_irqsave(host lock) 4632 * 4633 * RETURNS: 4634 * Zero on success, negative on error. 4635 * 4636 */ 4637 static int ata_sg_setup(struct ata_queued_cmd *qc) 4638 { 4639 struct ata_port *ap = qc->ap; 4640 unsigned int n_elem; 4641 4642 VPRINTK("ENTER, ata%u\n", ap->print_id); 4643 4644 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4645 if (n_elem < 1) 4646 return -1; 4647 4648 DPRINTK("%d sg elements mapped\n", n_elem); 4649 qc->orig_n_elem = qc->n_elem; 4650 qc->n_elem = n_elem; 4651 qc->flags |= ATA_QCFLAG_DMAMAP; 4652 4653 return 0; 4654 } 4655 4656 /** 4657 * swap_buf_le16 - swap halves of 16-bit words in place 4658 * @buf: Buffer to swap 4659 * @buf_words: Number of 16-bit words in buffer. 4660 * 4661 * Swap halves of 16-bit words if needed to convert from 4662 * little-endian byte order to native cpu byte order, or 4663 * vice-versa. 4664 * 4665 * LOCKING: 4666 * Inherited from caller. 4667 */ 4668 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4669 { 4670 #ifdef __BIG_ENDIAN 4671 unsigned int i; 4672 4673 for (i = 0; i < buf_words; i++) 4674 buf[i] = le16_to_cpu(buf[i]); 4675 #endif /* __BIG_ENDIAN */ 4676 } 4677 4678 /** 4679 * ata_qc_new - Request an available ATA command, for queueing 4680 * @ap: target port 4681 * 4682 * LOCKING: 4683 * None. 4684 */ 4685 4686 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4687 { 4688 struct ata_queued_cmd *qc = NULL; 4689 unsigned int i; 4690 4691 /* no command while frozen */ 4692 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4693 return NULL; 4694 4695 /* the last tag is reserved for internal command. */ 4696 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4697 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4698 qc = __ata_qc_from_tag(ap, i); 4699 break; 4700 } 4701 4702 if (qc) 4703 qc->tag = i; 4704 4705 return qc; 4706 } 4707 4708 /** 4709 * ata_qc_new_init - Request an available ATA command, and initialize it 4710 * @dev: Device from whom we request an available command structure 4711 * 4712 * LOCKING: 4713 * None. 4714 */ 4715 4716 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4717 { 4718 struct ata_port *ap = dev->link->ap; 4719 struct ata_queued_cmd *qc; 4720 4721 qc = ata_qc_new(ap); 4722 if (qc) { 4723 qc->scsicmd = NULL; 4724 qc->ap = ap; 4725 qc->dev = dev; 4726 4727 ata_qc_reinit(qc); 4728 } 4729 4730 return qc; 4731 } 4732 4733 /** 4734 * ata_qc_free - free unused ata_queued_cmd 4735 * @qc: Command to complete 4736 * 4737 * Designed to free unused ata_queued_cmd object 4738 * in case something prevents using it. 4739 * 4740 * LOCKING: 4741 * spin_lock_irqsave(host lock) 4742 */ 4743 void ata_qc_free(struct ata_queued_cmd *qc) 4744 { 4745 struct ata_port *ap; 4746 unsigned int tag; 4747 4748 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4749 ap = qc->ap; 4750 4751 qc->flags = 0; 4752 tag = qc->tag; 4753 if (likely(ata_tag_valid(tag))) { 4754 qc->tag = ATA_TAG_POISON; 4755 clear_bit(tag, &ap->qc_allocated); 4756 } 4757 } 4758 4759 void __ata_qc_complete(struct ata_queued_cmd *qc) 4760 { 4761 struct ata_port *ap; 4762 struct ata_link *link; 4763 4764 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4765 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4766 ap = qc->ap; 4767 link = qc->dev->link; 4768 4769 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4770 ata_sg_clean(qc); 4771 4772 /* command should be marked inactive atomically with qc completion */ 4773 if (qc->tf.protocol == ATA_PROT_NCQ) { 4774 link->sactive &= ~(1 << qc->tag); 4775 if (!link->sactive) 4776 ap->nr_active_links--; 4777 } else { 4778 link->active_tag = ATA_TAG_POISON; 4779 ap->nr_active_links--; 4780 } 4781 4782 /* clear exclusive status */ 4783 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4784 ap->excl_link == link)) 4785 ap->excl_link = NULL; 4786 4787 /* atapi: mark qc as inactive to prevent the interrupt handler 4788 * from completing the command twice later, before the error handler 4789 * is called. (when rc != 0 and atapi request sense is needed) 4790 */ 4791 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4792 ap->qc_active &= ~(1 << qc->tag); 4793 4794 /* call completion callback */ 4795 qc->complete_fn(qc); 4796 } 4797 4798 static void fill_result_tf(struct ata_queued_cmd *qc) 4799 { 4800 struct ata_port *ap = qc->ap; 4801 4802 qc->result_tf.flags = qc->tf.flags; 4803 ap->ops->qc_fill_rtf(qc); 4804 } 4805 4806 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4807 { 4808 struct ata_device *dev = qc->dev; 4809 4810 if (ata_tag_internal(qc->tag)) 4811 return; 4812 4813 if (ata_is_nodata(qc->tf.protocol)) 4814 return; 4815 4816 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4817 return; 4818 4819 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4820 } 4821 4822 /** 4823 * ata_qc_complete - Complete an active ATA command 4824 * @qc: Command to complete 4825 * 4826 * Indicate to the mid and upper layers that an ATA command has 4827 * completed, with either an ok or not-ok status. 4828 * 4829 * Refrain from calling this function multiple times when 4830 * successfully completing multiple NCQ commands. 4831 * ata_qc_complete_multiple() should be used instead, which will 4832 * properly update IRQ expect state. 4833 * 4834 * LOCKING: 4835 * spin_lock_irqsave(host lock) 4836 */ 4837 void ata_qc_complete(struct ata_queued_cmd *qc) 4838 { 4839 struct ata_port *ap = qc->ap; 4840 4841 /* XXX: New EH and old EH use different mechanisms to 4842 * synchronize EH with regular execution path. 4843 * 4844 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4845 * Normal execution path is responsible for not accessing a 4846 * failed qc. libata core enforces the rule by returning NULL 4847 * from ata_qc_from_tag() for failed qcs. 4848 * 4849 * Old EH depends on ata_qc_complete() nullifying completion 4850 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4851 * not synchronize with interrupt handler. Only PIO task is 4852 * taken care of. 4853 */ 4854 if (ap->ops->error_handler) { 4855 struct ata_device *dev = qc->dev; 4856 struct ata_eh_info *ehi = &dev->link->eh_info; 4857 4858 if (unlikely(qc->err_mask)) 4859 qc->flags |= ATA_QCFLAG_FAILED; 4860 4861 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4862 /* always fill result TF for failed qc */ 4863 fill_result_tf(qc); 4864 4865 if (!ata_tag_internal(qc->tag)) 4866 ata_qc_schedule_eh(qc); 4867 else 4868 __ata_qc_complete(qc); 4869 return; 4870 } 4871 4872 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4873 4874 /* read result TF if requested */ 4875 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4876 fill_result_tf(qc); 4877 4878 /* Some commands need post-processing after successful 4879 * completion. 4880 */ 4881 switch (qc->tf.command) { 4882 case ATA_CMD_SET_FEATURES: 4883 if (qc->tf.feature != SETFEATURES_WC_ON && 4884 qc->tf.feature != SETFEATURES_WC_OFF) 4885 break; 4886 /* fall through */ 4887 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4888 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4889 /* revalidate device */ 4890 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4891 ata_port_schedule_eh(ap); 4892 break; 4893 4894 case ATA_CMD_SLEEP: 4895 dev->flags |= ATA_DFLAG_SLEEPING; 4896 break; 4897 } 4898 4899 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4900 ata_verify_xfer(qc); 4901 4902 __ata_qc_complete(qc); 4903 } else { 4904 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4905 return; 4906 4907 /* read result TF if failed or requested */ 4908 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4909 fill_result_tf(qc); 4910 4911 __ata_qc_complete(qc); 4912 } 4913 } 4914 4915 /** 4916 * ata_qc_complete_multiple - Complete multiple qcs successfully 4917 * @ap: port in question 4918 * @qc_active: new qc_active mask 4919 * 4920 * Complete in-flight commands. This functions is meant to be 4921 * called from low-level driver's interrupt routine to complete 4922 * requests normally. ap->qc_active and @qc_active is compared 4923 * and commands are completed accordingly. 4924 * 4925 * Always use this function when completing multiple NCQ commands 4926 * from IRQ handlers instead of calling ata_qc_complete() 4927 * multiple times to keep IRQ expect status properly in sync. 4928 * 4929 * LOCKING: 4930 * spin_lock_irqsave(host lock) 4931 * 4932 * RETURNS: 4933 * Number of completed commands on success, -errno otherwise. 4934 */ 4935 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4936 { 4937 int nr_done = 0; 4938 u32 done_mask; 4939 4940 done_mask = ap->qc_active ^ qc_active; 4941 4942 if (unlikely(done_mask & qc_active)) { 4943 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4944 "(%08x->%08x)\n", ap->qc_active, qc_active); 4945 return -EINVAL; 4946 } 4947 4948 while (done_mask) { 4949 struct ata_queued_cmd *qc; 4950 unsigned int tag = __ffs(done_mask); 4951 4952 qc = ata_qc_from_tag(ap, tag); 4953 if (qc) { 4954 ata_qc_complete(qc); 4955 nr_done++; 4956 } 4957 done_mask &= ~(1 << tag); 4958 } 4959 4960 return nr_done; 4961 } 4962 4963 /** 4964 * ata_qc_issue - issue taskfile to device 4965 * @qc: command to issue to device 4966 * 4967 * Prepare an ATA command to submission to device. 4968 * This includes mapping the data into a DMA-able 4969 * area, filling in the S/G table, and finally 4970 * writing the taskfile to hardware, starting the command. 4971 * 4972 * LOCKING: 4973 * spin_lock_irqsave(host lock) 4974 */ 4975 void ata_qc_issue(struct ata_queued_cmd *qc) 4976 { 4977 struct ata_port *ap = qc->ap; 4978 struct ata_link *link = qc->dev->link; 4979 u8 prot = qc->tf.protocol; 4980 4981 /* Make sure only one non-NCQ command is outstanding. The 4982 * check is skipped for old EH because it reuses active qc to 4983 * request ATAPI sense. 4984 */ 4985 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4986 4987 if (ata_is_ncq(prot)) { 4988 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 4989 4990 if (!link->sactive) 4991 ap->nr_active_links++; 4992 link->sactive |= 1 << qc->tag; 4993 } else { 4994 WARN_ON_ONCE(link->sactive); 4995 4996 ap->nr_active_links++; 4997 link->active_tag = qc->tag; 4998 } 4999 5000 qc->flags |= ATA_QCFLAG_ACTIVE; 5001 ap->qc_active |= 1 << qc->tag; 5002 5003 /* 5004 * We guarantee to LLDs that they will have at least one 5005 * non-zero sg if the command is a data command. 5006 */ 5007 if (WARN_ON_ONCE(ata_is_data(prot) && 5008 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5009 goto sys_err; 5010 5011 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5012 (ap->flags & ATA_FLAG_PIO_DMA))) 5013 if (ata_sg_setup(qc)) 5014 goto sys_err; 5015 5016 /* if device is sleeping, schedule reset and abort the link */ 5017 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5018 link->eh_info.action |= ATA_EH_RESET; 5019 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5020 ata_link_abort(link); 5021 return; 5022 } 5023 5024 ap->ops->qc_prep(qc); 5025 5026 qc->err_mask |= ap->ops->qc_issue(qc); 5027 if (unlikely(qc->err_mask)) 5028 goto err; 5029 return; 5030 5031 sys_err: 5032 qc->err_mask |= AC_ERR_SYSTEM; 5033 err: 5034 ata_qc_complete(qc); 5035 } 5036 5037 /** 5038 * sata_scr_valid - test whether SCRs are accessible 5039 * @link: ATA link to test SCR accessibility for 5040 * 5041 * Test whether SCRs are accessible for @link. 5042 * 5043 * LOCKING: 5044 * None. 5045 * 5046 * RETURNS: 5047 * 1 if SCRs are accessible, 0 otherwise. 5048 */ 5049 int sata_scr_valid(struct ata_link *link) 5050 { 5051 struct ata_port *ap = link->ap; 5052 5053 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5054 } 5055 5056 /** 5057 * sata_scr_read - read SCR register of the specified port 5058 * @link: ATA link to read SCR for 5059 * @reg: SCR to read 5060 * @val: Place to store read value 5061 * 5062 * Read SCR register @reg of @link into *@val. This function is 5063 * guaranteed to succeed if @link is ap->link, the cable type of 5064 * the port is SATA and the port implements ->scr_read. 5065 * 5066 * LOCKING: 5067 * None if @link is ap->link. Kernel thread context otherwise. 5068 * 5069 * RETURNS: 5070 * 0 on success, negative errno on failure. 5071 */ 5072 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5073 { 5074 if (ata_is_host_link(link)) { 5075 if (sata_scr_valid(link)) 5076 return link->ap->ops->scr_read(link, reg, val); 5077 return -EOPNOTSUPP; 5078 } 5079 5080 return sata_pmp_scr_read(link, reg, val); 5081 } 5082 5083 /** 5084 * sata_scr_write - write SCR register of the specified port 5085 * @link: ATA link to write SCR for 5086 * @reg: SCR to write 5087 * @val: value to write 5088 * 5089 * Write @val to SCR register @reg of @link. This function is 5090 * guaranteed to succeed if @link is ap->link, the cable type of 5091 * the port is SATA and the port implements ->scr_read. 5092 * 5093 * LOCKING: 5094 * None if @link is ap->link. Kernel thread context otherwise. 5095 * 5096 * RETURNS: 5097 * 0 on success, negative errno on failure. 5098 */ 5099 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5100 { 5101 if (ata_is_host_link(link)) { 5102 if (sata_scr_valid(link)) 5103 return link->ap->ops->scr_write(link, reg, val); 5104 return -EOPNOTSUPP; 5105 } 5106 5107 return sata_pmp_scr_write(link, reg, val); 5108 } 5109 5110 /** 5111 * sata_scr_write_flush - write SCR register of the specified port and flush 5112 * @link: ATA link to write SCR for 5113 * @reg: SCR to write 5114 * @val: value to write 5115 * 5116 * This function is identical to sata_scr_write() except that this 5117 * function performs flush after writing to the register. 5118 * 5119 * LOCKING: 5120 * None if @link is ap->link. Kernel thread context otherwise. 5121 * 5122 * RETURNS: 5123 * 0 on success, negative errno on failure. 5124 */ 5125 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5126 { 5127 if (ata_is_host_link(link)) { 5128 int rc; 5129 5130 if (sata_scr_valid(link)) { 5131 rc = link->ap->ops->scr_write(link, reg, val); 5132 if (rc == 0) 5133 rc = link->ap->ops->scr_read(link, reg, &val); 5134 return rc; 5135 } 5136 return -EOPNOTSUPP; 5137 } 5138 5139 return sata_pmp_scr_write(link, reg, val); 5140 } 5141 5142 /** 5143 * ata_phys_link_online - test whether the given link is online 5144 * @link: ATA link to test 5145 * 5146 * Test whether @link is online. Note that this function returns 5147 * 0 if online status of @link cannot be obtained, so 5148 * ata_link_online(link) != !ata_link_offline(link). 5149 * 5150 * LOCKING: 5151 * None. 5152 * 5153 * RETURNS: 5154 * True if the port online status is available and online. 5155 */ 5156 bool ata_phys_link_online(struct ata_link *link) 5157 { 5158 u32 sstatus; 5159 5160 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5161 ata_sstatus_online(sstatus)) 5162 return true; 5163 return false; 5164 } 5165 5166 /** 5167 * ata_phys_link_offline - test whether the given link is offline 5168 * @link: ATA link to test 5169 * 5170 * Test whether @link is offline. Note that this function 5171 * returns 0 if offline status of @link cannot be obtained, so 5172 * ata_link_online(link) != !ata_link_offline(link). 5173 * 5174 * LOCKING: 5175 * None. 5176 * 5177 * RETURNS: 5178 * True if the port offline status is available and offline. 5179 */ 5180 bool ata_phys_link_offline(struct ata_link *link) 5181 { 5182 u32 sstatus; 5183 5184 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5185 !ata_sstatus_online(sstatus)) 5186 return true; 5187 return false; 5188 } 5189 5190 /** 5191 * ata_link_online - test whether the given link is online 5192 * @link: ATA link to test 5193 * 5194 * Test whether @link is online. This is identical to 5195 * ata_phys_link_online() when there's no slave link. When 5196 * there's a slave link, this function should only be called on 5197 * the master link and will return true if any of M/S links is 5198 * online. 5199 * 5200 * LOCKING: 5201 * None. 5202 * 5203 * RETURNS: 5204 * True if the port online status is available and online. 5205 */ 5206 bool ata_link_online(struct ata_link *link) 5207 { 5208 struct ata_link *slave = link->ap->slave_link; 5209 5210 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5211 5212 return ata_phys_link_online(link) || 5213 (slave && ata_phys_link_online(slave)); 5214 } 5215 5216 /** 5217 * ata_link_offline - test whether the given link is offline 5218 * @link: ATA link to test 5219 * 5220 * Test whether @link is offline. This is identical to 5221 * ata_phys_link_offline() when there's no slave link. When 5222 * there's a slave link, this function should only be called on 5223 * the master link and will return true if both M/S links are 5224 * offline. 5225 * 5226 * LOCKING: 5227 * None. 5228 * 5229 * RETURNS: 5230 * True if the port offline status is available and offline. 5231 */ 5232 bool ata_link_offline(struct ata_link *link) 5233 { 5234 struct ata_link *slave = link->ap->slave_link; 5235 5236 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5237 5238 return ata_phys_link_offline(link) && 5239 (!slave || ata_phys_link_offline(slave)); 5240 } 5241 5242 #ifdef CONFIG_PM 5243 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5244 unsigned int action, unsigned int ehi_flags, 5245 int wait) 5246 { 5247 unsigned long flags; 5248 int i, rc; 5249 5250 for (i = 0; i < host->n_ports; i++) { 5251 struct ata_port *ap = host->ports[i]; 5252 struct ata_link *link; 5253 5254 /* Previous resume operation might still be in 5255 * progress. Wait for PM_PENDING to clear. 5256 */ 5257 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5258 ata_port_wait_eh(ap); 5259 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5260 } 5261 5262 /* request PM ops to EH */ 5263 spin_lock_irqsave(ap->lock, flags); 5264 5265 ap->pm_mesg = mesg; 5266 if (wait) { 5267 rc = 0; 5268 ap->pm_result = &rc; 5269 } 5270 5271 ap->pflags |= ATA_PFLAG_PM_PENDING; 5272 ata_for_each_link(link, ap, HOST_FIRST) { 5273 link->eh_info.action |= action; 5274 link->eh_info.flags |= ehi_flags; 5275 } 5276 5277 ata_port_schedule_eh(ap); 5278 5279 spin_unlock_irqrestore(ap->lock, flags); 5280 5281 /* wait and check result */ 5282 if (wait) { 5283 ata_port_wait_eh(ap); 5284 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5285 if (rc) 5286 return rc; 5287 } 5288 } 5289 5290 return 0; 5291 } 5292 5293 /** 5294 * ata_host_suspend - suspend host 5295 * @host: host to suspend 5296 * @mesg: PM message 5297 * 5298 * Suspend @host. Actual operation is performed by EH. This 5299 * function requests EH to perform PM operations and waits for EH 5300 * to finish. 5301 * 5302 * LOCKING: 5303 * Kernel thread context (may sleep). 5304 * 5305 * RETURNS: 5306 * 0 on success, -errno on failure. 5307 */ 5308 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5309 { 5310 unsigned int ehi_flags = ATA_EHI_QUIET; 5311 int rc; 5312 5313 /* 5314 * On some hardware, device fails to respond after spun down 5315 * for suspend. As the device won't be used before being 5316 * resumed, we don't need to touch the device. Ask EH to skip 5317 * the usual stuff and proceed directly to suspend. 5318 * 5319 * http://thread.gmane.org/gmane.linux.ide/46764 5320 */ 5321 if (mesg.event == PM_EVENT_SUSPEND) 5322 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5323 5324 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1); 5325 if (rc == 0) 5326 host->dev->power.power_state = mesg; 5327 return rc; 5328 } 5329 5330 /** 5331 * ata_host_resume - resume host 5332 * @host: host to resume 5333 * 5334 * Resume @host. Actual operation is performed by EH. This 5335 * function requests EH to perform PM operations and returns. 5336 * Note that all resume operations are performed parallely. 5337 * 5338 * LOCKING: 5339 * Kernel thread context (may sleep). 5340 */ 5341 void ata_host_resume(struct ata_host *host) 5342 { 5343 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5344 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5345 host->dev->power.power_state = PMSG_ON; 5346 } 5347 #endif 5348 5349 /** 5350 * ata_dev_init - Initialize an ata_device structure 5351 * @dev: Device structure to initialize 5352 * 5353 * Initialize @dev in preparation for probing. 5354 * 5355 * LOCKING: 5356 * Inherited from caller. 5357 */ 5358 void ata_dev_init(struct ata_device *dev) 5359 { 5360 struct ata_link *link = ata_dev_phys_link(dev); 5361 struct ata_port *ap = link->ap; 5362 unsigned long flags; 5363 5364 /* SATA spd limit is bound to the attached device, reset together */ 5365 link->sata_spd_limit = link->hw_sata_spd_limit; 5366 link->sata_spd = 0; 5367 5368 /* High bits of dev->flags are used to record warm plug 5369 * requests which occur asynchronously. Synchronize using 5370 * host lock. 5371 */ 5372 spin_lock_irqsave(ap->lock, flags); 5373 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5374 dev->horkage = 0; 5375 spin_unlock_irqrestore(ap->lock, flags); 5376 5377 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5378 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5379 dev->pio_mask = UINT_MAX; 5380 dev->mwdma_mask = UINT_MAX; 5381 dev->udma_mask = UINT_MAX; 5382 } 5383 5384 /** 5385 * ata_link_init - Initialize an ata_link structure 5386 * @ap: ATA port link is attached to 5387 * @link: Link structure to initialize 5388 * @pmp: Port multiplier port number 5389 * 5390 * Initialize @link. 5391 * 5392 * LOCKING: 5393 * Kernel thread context (may sleep) 5394 */ 5395 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5396 { 5397 int i; 5398 5399 /* clear everything except for devices */ 5400 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5401 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5402 5403 link->ap = ap; 5404 link->pmp = pmp; 5405 link->active_tag = ATA_TAG_POISON; 5406 link->hw_sata_spd_limit = UINT_MAX; 5407 5408 /* can't use iterator, ap isn't initialized yet */ 5409 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5410 struct ata_device *dev = &link->device[i]; 5411 5412 dev->link = link; 5413 dev->devno = dev - link->device; 5414 #ifdef CONFIG_ATA_ACPI 5415 dev->gtf_filter = ata_acpi_gtf_filter; 5416 #endif 5417 ata_dev_init(dev); 5418 } 5419 } 5420 5421 /** 5422 * sata_link_init_spd - Initialize link->sata_spd_limit 5423 * @link: Link to configure sata_spd_limit for 5424 * 5425 * Initialize @link->[hw_]sata_spd_limit to the currently 5426 * configured value. 5427 * 5428 * LOCKING: 5429 * Kernel thread context (may sleep). 5430 * 5431 * RETURNS: 5432 * 0 on success, -errno on failure. 5433 */ 5434 int sata_link_init_spd(struct ata_link *link) 5435 { 5436 u8 spd; 5437 int rc; 5438 5439 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5440 if (rc) 5441 return rc; 5442 5443 spd = (link->saved_scontrol >> 4) & 0xf; 5444 if (spd) 5445 link->hw_sata_spd_limit &= (1 << spd) - 1; 5446 5447 ata_force_link_limits(link); 5448 5449 link->sata_spd_limit = link->hw_sata_spd_limit; 5450 5451 return 0; 5452 } 5453 5454 /** 5455 * ata_port_alloc - allocate and initialize basic ATA port resources 5456 * @host: ATA host this allocated port belongs to 5457 * 5458 * Allocate and initialize basic ATA port resources. 5459 * 5460 * RETURNS: 5461 * Allocate ATA port on success, NULL on failure. 5462 * 5463 * LOCKING: 5464 * Inherited from calling layer (may sleep). 5465 */ 5466 struct ata_port *ata_port_alloc(struct ata_host *host) 5467 { 5468 struct ata_port *ap; 5469 5470 DPRINTK("ENTER\n"); 5471 5472 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5473 if (!ap) 5474 return NULL; 5475 5476 ap->pflags |= ATA_PFLAG_INITIALIZING; 5477 ap->lock = &host->lock; 5478 ap->print_id = -1; 5479 ap->host = host; 5480 ap->dev = host->dev; 5481 5482 #if defined(ATA_VERBOSE_DEBUG) 5483 /* turn on all debugging levels */ 5484 ap->msg_enable = 0x00FF; 5485 #elif defined(ATA_DEBUG) 5486 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5487 #else 5488 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5489 #endif 5490 5491 mutex_init(&ap->scsi_scan_mutex); 5492 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5493 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5494 INIT_LIST_HEAD(&ap->eh_done_q); 5495 init_waitqueue_head(&ap->eh_wait_q); 5496 init_completion(&ap->park_req_pending); 5497 init_timer_deferrable(&ap->fastdrain_timer); 5498 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5499 ap->fastdrain_timer.data = (unsigned long)ap; 5500 5501 ap->cbl = ATA_CBL_NONE; 5502 5503 ata_link_init(ap, &ap->link, 0); 5504 5505 #ifdef ATA_IRQ_TRAP 5506 ap->stats.unhandled_irq = 1; 5507 ap->stats.idle_irq = 1; 5508 #endif 5509 ata_sff_port_init(ap); 5510 5511 return ap; 5512 } 5513 5514 static void ata_host_release(struct device *gendev, void *res) 5515 { 5516 struct ata_host *host = dev_get_drvdata(gendev); 5517 int i; 5518 5519 for (i = 0; i < host->n_ports; i++) { 5520 struct ata_port *ap = host->ports[i]; 5521 5522 if (!ap) 5523 continue; 5524 5525 if (ap->scsi_host) 5526 scsi_host_put(ap->scsi_host); 5527 5528 kfree(ap->pmp_link); 5529 kfree(ap->slave_link); 5530 kfree(ap); 5531 host->ports[i] = NULL; 5532 } 5533 5534 dev_set_drvdata(gendev, NULL); 5535 } 5536 5537 /** 5538 * ata_host_alloc - allocate and init basic ATA host resources 5539 * @dev: generic device this host is associated with 5540 * @max_ports: maximum number of ATA ports associated with this host 5541 * 5542 * Allocate and initialize basic ATA host resources. LLD calls 5543 * this function to allocate a host, initializes it fully and 5544 * attaches it using ata_host_register(). 5545 * 5546 * @max_ports ports are allocated and host->n_ports is 5547 * initialized to @max_ports. The caller is allowed to decrease 5548 * host->n_ports before calling ata_host_register(). The unused 5549 * ports will be automatically freed on registration. 5550 * 5551 * RETURNS: 5552 * Allocate ATA host on success, NULL on failure. 5553 * 5554 * LOCKING: 5555 * Inherited from calling layer (may sleep). 5556 */ 5557 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5558 { 5559 struct ata_host *host; 5560 size_t sz; 5561 int i; 5562 5563 DPRINTK("ENTER\n"); 5564 5565 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5566 return NULL; 5567 5568 /* alloc a container for our list of ATA ports (buses) */ 5569 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5570 /* alloc a container for our list of ATA ports (buses) */ 5571 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5572 if (!host) 5573 goto err_out; 5574 5575 devres_add(dev, host); 5576 dev_set_drvdata(dev, host); 5577 5578 spin_lock_init(&host->lock); 5579 mutex_init(&host->eh_mutex); 5580 host->dev = dev; 5581 host->n_ports = max_ports; 5582 5583 /* allocate ports bound to this host */ 5584 for (i = 0; i < max_ports; i++) { 5585 struct ata_port *ap; 5586 5587 ap = ata_port_alloc(host); 5588 if (!ap) 5589 goto err_out; 5590 5591 ap->port_no = i; 5592 host->ports[i] = ap; 5593 } 5594 5595 devres_remove_group(dev, NULL); 5596 return host; 5597 5598 err_out: 5599 devres_release_group(dev, NULL); 5600 return NULL; 5601 } 5602 5603 /** 5604 * ata_host_alloc_pinfo - alloc host and init with port_info array 5605 * @dev: generic device this host is associated with 5606 * @ppi: array of ATA port_info to initialize host with 5607 * @n_ports: number of ATA ports attached to this host 5608 * 5609 * Allocate ATA host and initialize with info from @ppi. If NULL 5610 * terminated, @ppi may contain fewer entries than @n_ports. The 5611 * last entry will be used for the remaining ports. 5612 * 5613 * RETURNS: 5614 * Allocate ATA host on success, NULL on failure. 5615 * 5616 * LOCKING: 5617 * Inherited from calling layer (may sleep). 5618 */ 5619 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5620 const struct ata_port_info * const * ppi, 5621 int n_ports) 5622 { 5623 const struct ata_port_info *pi; 5624 struct ata_host *host; 5625 int i, j; 5626 5627 host = ata_host_alloc(dev, n_ports); 5628 if (!host) 5629 return NULL; 5630 5631 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5632 struct ata_port *ap = host->ports[i]; 5633 5634 if (ppi[j]) 5635 pi = ppi[j++]; 5636 5637 ap->pio_mask = pi->pio_mask; 5638 ap->mwdma_mask = pi->mwdma_mask; 5639 ap->udma_mask = pi->udma_mask; 5640 ap->flags |= pi->flags; 5641 ap->link.flags |= pi->link_flags; 5642 ap->ops = pi->port_ops; 5643 5644 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5645 host->ops = pi->port_ops; 5646 } 5647 5648 return host; 5649 } 5650 5651 /** 5652 * ata_slave_link_init - initialize slave link 5653 * @ap: port to initialize slave link for 5654 * 5655 * Create and initialize slave link for @ap. This enables slave 5656 * link handling on the port. 5657 * 5658 * In libata, a port contains links and a link contains devices. 5659 * There is single host link but if a PMP is attached to it, 5660 * there can be multiple fan-out links. On SATA, there's usually 5661 * a single device connected to a link but PATA and SATA 5662 * controllers emulating TF based interface can have two - master 5663 * and slave. 5664 * 5665 * However, there are a few controllers which don't fit into this 5666 * abstraction too well - SATA controllers which emulate TF 5667 * interface with both master and slave devices but also have 5668 * separate SCR register sets for each device. These controllers 5669 * need separate links for physical link handling 5670 * (e.g. onlineness, link speed) but should be treated like a 5671 * traditional M/S controller for everything else (e.g. command 5672 * issue, softreset). 5673 * 5674 * slave_link is libata's way of handling this class of 5675 * controllers without impacting core layer too much. For 5676 * anything other than physical link handling, the default host 5677 * link is used for both master and slave. For physical link 5678 * handling, separate @ap->slave_link is used. All dirty details 5679 * are implemented inside libata core layer. From LLD's POV, the 5680 * only difference is that prereset, hardreset and postreset are 5681 * called once more for the slave link, so the reset sequence 5682 * looks like the following. 5683 * 5684 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5685 * softreset(M) -> postreset(M) -> postreset(S) 5686 * 5687 * Note that softreset is called only for the master. Softreset 5688 * resets both M/S by definition, so SRST on master should handle 5689 * both (the standard method will work just fine). 5690 * 5691 * LOCKING: 5692 * Should be called before host is registered. 5693 * 5694 * RETURNS: 5695 * 0 on success, -errno on failure. 5696 */ 5697 int ata_slave_link_init(struct ata_port *ap) 5698 { 5699 struct ata_link *link; 5700 5701 WARN_ON(ap->slave_link); 5702 WARN_ON(ap->flags & ATA_FLAG_PMP); 5703 5704 link = kzalloc(sizeof(*link), GFP_KERNEL); 5705 if (!link) 5706 return -ENOMEM; 5707 5708 ata_link_init(ap, link, 1); 5709 ap->slave_link = link; 5710 return 0; 5711 } 5712 5713 static void ata_host_stop(struct device *gendev, void *res) 5714 { 5715 struct ata_host *host = dev_get_drvdata(gendev); 5716 int i; 5717 5718 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5719 5720 for (i = 0; i < host->n_ports; i++) { 5721 struct ata_port *ap = host->ports[i]; 5722 5723 if (ap->ops->port_stop) 5724 ap->ops->port_stop(ap); 5725 } 5726 5727 if (host->ops->host_stop) 5728 host->ops->host_stop(host); 5729 } 5730 5731 /** 5732 * ata_finalize_port_ops - finalize ata_port_operations 5733 * @ops: ata_port_operations to finalize 5734 * 5735 * An ata_port_operations can inherit from another ops and that 5736 * ops can again inherit from another. This can go on as many 5737 * times as necessary as long as there is no loop in the 5738 * inheritance chain. 5739 * 5740 * Ops tables are finalized when the host is started. NULL or 5741 * unspecified entries are inherited from the closet ancestor 5742 * which has the method and the entry is populated with it. 5743 * After finalization, the ops table directly points to all the 5744 * methods and ->inherits is no longer necessary and cleared. 5745 * 5746 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5747 * 5748 * LOCKING: 5749 * None. 5750 */ 5751 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5752 { 5753 static DEFINE_SPINLOCK(lock); 5754 const struct ata_port_operations *cur; 5755 void **begin = (void **)ops; 5756 void **end = (void **)&ops->inherits; 5757 void **pp; 5758 5759 if (!ops || !ops->inherits) 5760 return; 5761 5762 spin_lock(&lock); 5763 5764 for (cur = ops->inherits; cur; cur = cur->inherits) { 5765 void **inherit = (void **)cur; 5766 5767 for (pp = begin; pp < end; pp++, inherit++) 5768 if (!*pp) 5769 *pp = *inherit; 5770 } 5771 5772 for (pp = begin; pp < end; pp++) 5773 if (IS_ERR(*pp)) 5774 *pp = NULL; 5775 5776 ops->inherits = NULL; 5777 5778 spin_unlock(&lock); 5779 } 5780 5781 /** 5782 * ata_host_start - start and freeze ports of an ATA host 5783 * @host: ATA host to start ports for 5784 * 5785 * Start and then freeze ports of @host. Started status is 5786 * recorded in host->flags, so this function can be called 5787 * multiple times. Ports are guaranteed to get started only 5788 * once. If host->ops isn't initialized yet, its set to the 5789 * first non-dummy port ops. 5790 * 5791 * LOCKING: 5792 * Inherited from calling layer (may sleep). 5793 * 5794 * RETURNS: 5795 * 0 if all ports are started successfully, -errno otherwise. 5796 */ 5797 int ata_host_start(struct ata_host *host) 5798 { 5799 int have_stop = 0; 5800 void *start_dr = NULL; 5801 int i, rc; 5802 5803 if (host->flags & ATA_HOST_STARTED) 5804 return 0; 5805 5806 ata_finalize_port_ops(host->ops); 5807 5808 for (i = 0; i < host->n_ports; i++) { 5809 struct ata_port *ap = host->ports[i]; 5810 5811 ata_finalize_port_ops(ap->ops); 5812 5813 if (!host->ops && !ata_port_is_dummy(ap)) 5814 host->ops = ap->ops; 5815 5816 if (ap->ops->port_stop) 5817 have_stop = 1; 5818 } 5819 5820 if (host->ops->host_stop) 5821 have_stop = 1; 5822 5823 if (have_stop) { 5824 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5825 if (!start_dr) 5826 return -ENOMEM; 5827 } 5828 5829 for (i = 0; i < host->n_ports; i++) { 5830 struct ata_port *ap = host->ports[i]; 5831 5832 if (ap->ops->port_start) { 5833 rc = ap->ops->port_start(ap); 5834 if (rc) { 5835 if (rc != -ENODEV) 5836 dev_printk(KERN_ERR, host->dev, 5837 "failed to start port %d " 5838 "(errno=%d)\n", i, rc); 5839 goto err_out; 5840 } 5841 } 5842 ata_eh_freeze_port(ap); 5843 } 5844 5845 if (start_dr) 5846 devres_add(host->dev, start_dr); 5847 host->flags |= ATA_HOST_STARTED; 5848 return 0; 5849 5850 err_out: 5851 while (--i >= 0) { 5852 struct ata_port *ap = host->ports[i]; 5853 5854 if (ap->ops->port_stop) 5855 ap->ops->port_stop(ap); 5856 } 5857 devres_free(start_dr); 5858 return rc; 5859 } 5860 5861 /** 5862 * ata_sas_host_init - Initialize a host struct 5863 * @host: host to initialize 5864 * @dev: device host is attached to 5865 * @flags: host flags 5866 * @ops: port_ops 5867 * 5868 * LOCKING: 5869 * PCI/etc. bus probe sem. 5870 * 5871 */ 5872 /* KILLME - the only user left is ipr */ 5873 void ata_host_init(struct ata_host *host, struct device *dev, 5874 unsigned long flags, struct ata_port_operations *ops) 5875 { 5876 spin_lock_init(&host->lock); 5877 mutex_init(&host->eh_mutex); 5878 host->dev = dev; 5879 host->flags = flags; 5880 host->ops = ops; 5881 } 5882 5883 5884 static void async_port_probe(void *data, async_cookie_t cookie) 5885 { 5886 int rc; 5887 struct ata_port *ap = data; 5888 5889 /* 5890 * If we're not allowed to scan this host in parallel, 5891 * we need to wait until all previous scans have completed 5892 * before going further. 5893 * Jeff Garzik says this is only within a controller, so we 5894 * don't need to wait for port 0, only for later ports. 5895 */ 5896 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5897 async_synchronize_cookie(cookie); 5898 5899 /* probe */ 5900 if (ap->ops->error_handler) { 5901 struct ata_eh_info *ehi = &ap->link.eh_info; 5902 unsigned long flags; 5903 5904 /* kick EH for boot probing */ 5905 spin_lock_irqsave(ap->lock, flags); 5906 5907 ehi->probe_mask |= ATA_ALL_DEVICES; 5908 ehi->action |= ATA_EH_RESET; 5909 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5910 5911 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5912 ap->pflags |= ATA_PFLAG_LOADING; 5913 ata_port_schedule_eh(ap); 5914 5915 spin_unlock_irqrestore(ap->lock, flags); 5916 5917 /* wait for EH to finish */ 5918 ata_port_wait_eh(ap); 5919 } else { 5920 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5921 rc = ata_bus_probe(ap); 5922 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5923 5924 if (rc) { 5925 /* FIXME: do something useful here? 5926 * Current libata behavior will 5927 * tear down everything when 5928 * the module is removed 5929 * or the h/w is unplugged. 5930 */ 5931 } 5932 } 5933 5934 /* in order to keep device order, we need to synchronize at this point */ 5935 async_synchronize_cookie(cookie); 5936 5937 ata_scsi_scan_host(ap, 1); 5938 5939 } 5940 /** 5941 * ata_host_register - register initialized ATA host 5942 * @host: ATA host to register 5943 * @sht: template for SCSI host 5944 * 5945 * Register initialized ATA host. @host is allocated using 5946 * ata_host_alloc() and fully initialized by LLD. This function 5947 * starts ports, registers @host with ATA and SCSI layers and 5948 * probe registered devices. 5949 * 5950 * LOCKING: 5951 * Inherited from calling layer (may sleep). 5952 * 5953 * RETURNS: 5954 * 0 on success, -errno otherwise. 5955 */ 5956 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5957 { 5958 int i, rc; 5959 5960 /* host must have been started */ 5961 if (!(host->flags & ATA_HOST_STARTED)) { 5962 dev_printk(KERN_ERR, host->dev, 5963 "BUG: trying to register unstarted host\n"); 5964 WARN_ON(1); 5965 return -EINVAL; 5966 } 5967 5968 /* Blow away unused ports. This happens when LLD can't 5969 * determine the exact number of ports to allocate at 5970 * allocation time. 5971 */ 5972 for (i = host->n_ports; host->ports[i]; i++) 5973 kfree(host->ports[i]); 5974 5975 /* give ports names and add SCSI hosts */ 5976 for (i = 0; i < host->n_ports; i++) 5977 host->ports[i]->print_id = ata_print_id++; 5978 5979 5980 /* Create associated sysfs transport objects */ 5981 for (i = 0; i < host->n_ports; i++) { 5982 rc = ata_tport_add(host->dev,host->ports[i]); 5983 if (rc) { 5984 goto err_tadd; 5985 } 5986 } 5987 5988 rc = ata_scsi_add_hosts(host, sht); 5989 if (rc) 5990 goto err_tadd; 5991 5992 /* associate with ACPI nodes */ 5993 ata_acpi_associate(host); 5994 5995 /* set cable, sata_spd_limit and report */ 5996 for (i = 0; i < host->n_ports; i++) { 5997 struct ata_port *ap = host->ports[i]; 5998 unsigned long xfer_mask; 5999 6000 /* set SATA cable type if still unset */ 6001 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6002 ap->cbl = ATA_CBL_SATA; 6003 6004 /* init sata_spd_limit to the current value */ 6005 sata_link_init_spd(&ap->link); 6006 if (ap->slave_link) 6007 sata_link_init_spd(ap->slave_link); 6008 6009 /* print per-port info to dmesg */ 6010 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6011 ap->udma_mask); 6012 6013 if (!ata_port_is_dummy(ap)) { 6014 ata_port_printk(ap, KERN_INFO, 6015 "%cATA max %s %s\n", 6016 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6017 ata_mode_string(xfer_mask), 6018 ap->link.eh_info.desc); 6019 ata_ehi_clear_desc(&ap->link.eh_info); 6020 } else 6021 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6022 } 6023 6024 /* perform each probe asynchronously */ 6025 for (i = 0; i < host->n_ports; i++) { 6026 struct ata_port *ap = host->ports[i]; 6027 async_schedule(async_port_probe, ap); 6028 } 6029 6030 return 0; 6031 6032 err_tadd: 6033 while (--i >= 0) { 6034 ata_tport_delete(host->ports[i]); 6035 } 6036 return rc; 6037 6038 } 6039 6040 /** 6041 * ata_host_activate - start host, request IRQ and register it 6042 * @host: target ATA host 6043 * @irq: IRQ to request 6044 * @irq_handler: irq_handler used when requesting IRQ 6045 * @irq_flags: irq_flags used when requesting IRQ 6046 * @sht: scsi_host_template to use when registering the host 6047 * 6048 * After allocating an ATA host and initializing it, most libata 6049 * LLDs perform three steps to activate the host - start host, 6050 * request IRQ and register it. This helper takes necessasry 6051 * arguments and performs the three steps in one go. 6052 * 6053 * An invalid IRQ skips the IRQ registration and expects the host to 6054 * have set polling mode on the port. In this case, @irq_handler 6055 * should be NULL. 6056 * 6057 * LOCKING: 6058 * Inherited from calling layer (may sleep). 6059 * 6060 * RETURNS: 6061 * 0 on success, -errno otherwise. 6062 */ 6063 int ata_host_activate(struct ata_host *host, int irq, 6064 irq_handler_t irq_handler, unsigned long irq_flags, 6065 struct scsi_host_template *sht) 6066 { 6067 int i, rc; 6068 6069 rc = ata_host_start(host); 6070 if (rc) 6071 return rc; 6072 6073 /* Special case for polling mode */ 6074 if (!irq) { 6075 WARN_ON(irq_handler); 6076 return ata_host_register(host, sht); 6077 } 6078 6079 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6080 dev_driver_string(host->dev), host); 6081 if (rc) 6082 return rc; 6083 6084 for (i = 0; i < host->n_ports; i++) 6085 ata_port_desc(host->ports[i], "irq %d", irq); 6086 6087 rc = ata_host_register(host, sht); 6088 /* if failed, just free the IRQ and leave ports alone */ 6089 if (rc) 6090 devm_free_irq(host->dev, irq, host); 6091 6092 return rc; 6093 } 6094 6095 /** 6096 * ata_port_detach - Detach ATA port in prepration of device removal 6097 * @ap: ATA port to be detached 6098 * 6099 * Detach all ATA devices and the associated SCSI devices of @ap; 6100 * then, remove the associated SCSI host. @ap is guaranteed to 6101 * be quiescent on return from this function. 6102 * 6103 * LOCKING: 6104 * Kernel thread context (may sleep). 6105 */ 6106 static void ata_port_detach(struct ata_port *ap) 6107 { 6108 unsigned long flags; 6109 6110 if (!ap->ops->error_handler) 6111 goto skip_eh; 6112 6113 /* tell EH we're leaving & flush EH */ 6114 spin_lock_irqsave(ap->lock, flags); 6115 ap->pflags |= ATA_PFLAG_UNLOADING; 6116 ata_port_schedule_eh(ap); 6117 spin_unlock_irqrestore(ap->lock, flags); 6118 6119 /* wait till EH commits suicide */ 6120 ata_port_wait_eh(ap); 6121 6122 /* it better be dead now */ 6123 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6124 6125 cancel_rearming_delayed_work(&ap->hotplug_task); 6126 6127 skip_eh: 6128 if (ap->pmp_link) { 6129 int i; 6130 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6131 ata_tlink_delete(&ap->pmp_link[i]); 6132 } 6133 ata_tport_delete(ap); 6134 6135 /* remove the associated SCSI host */ 6136 scsi_remove_host(ap->scsi_host); 6137 } 6138 6139 /** 6140 * ata_host_detach - Detach all ports of an ATA host 6141 * @host: Host to detach 6142 * 6143 * Detach all ports of @host. 6144 * 6145 * LOCKING: 6146 * Kernel thread context (may sleep). 6147 */ 6148 void ata_host_detach(struct ata_host *host) 6149 { 6150 int i; 6151 6152 for (i = 0; i < host->n_ports; i++) 6153 ata_port_detach(host->ports[i]); 6154 6155 /* the host is dead now, dissociate ACPI */ 6156 ata_acpi_dissociate(host); 6157 } 6158 6159 #ifdef CONFIG_PCI 6160 6161 /** 6162 * ata_pci_remove_one - PCI layer callback for device removal 6163 * @pdev: PCI device that was removed 6164 * 6165 * PCI layer indicates to libata via this hook that hot-unplug or 6166 * module unload event has occurred. Detach all ports. Resource 6167 * release is handled via devres. 6168 * 6169 * LOCKING: 6170 * Inherited from PCI layer (may sleep). 6171 */ 6172 void ata_pci_remove_one(struct pci_dev *pdev) 6173 { 6174 struct device *dev = &pdev->dev; 6175 struct ata_host *host = dev_get_drvdata(dev); 6176 6177 ata_host_detach(host); 6178 } 6179 6180 /* move to PCI subsystem */ 6181 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6182 { 6183 unsigned long tmp = 0; 6184 6185 switch (bits->width) { 6186 case 1: { 6187 u8 tmp8 = 0; 6188 pci_read_config_byte(pdev, bits->reg, &tmp8); 6189 tmp = tmp8; 6190 break; 6191 } 6192 case 2: { 6193 u16 tmp16 = 0; 6194 pci_read_config_word(pdev, bits->reg, &tmp16); 6195 tmp = tmp16; 6196 break; 6197 } 6198 case 4: { 6199 u32 tmp32 = 0; 6200 pci_read_config_dword(pdev, bits->reg, &tmp32); 6201 tmp = tmp32; 6202 break; 6203 } 6204 6205 default: 6206 return -EINVAL; 6207 } 6208 6209 tmp &= bits->mask; 6210 6211 return (tmp == bits->val) ? 1 : 0; 6212 } 6213 6214 #ifdef CONFIG_PM 6215 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6216 { 6217 pci_save_state(pdev); 6218 pci_disable_device(pdev); 6219 6220 if (mesg.event & PM_EVENT_SLEEP) 6221 pci_set_power_state(pdev, PCI_D3hot); 6222 } 6223 6224 int ata_pci_device_do_resume(struct pci_dev *pdev) 6225 { 6226 int rc; 6227 6228 pci_set_power_state(pdev, PCI_D0); 6229 pci_restore_state(pdev); 6230 6231 rc = pcim_enable_device(pdev); 6232 if (rc) { 6233 dev_printk(KERN_ERR, &pdev->dev, 6234 "failed to enable device after resume (%d)\n", rc); 6235 return rc; 6236 } 6237 6238 pci_set_master(pdev); 6239 return 0; 6240 } 6241 6242 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6243 { 6244 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6245 int rc = 0; 6246 6247 rc = ata_host_suspend(host, mesg); 6248 if (rc) 6249 return rc; 6250 6251 ata_pci_device_do_suspend(pdev, mesg); 6252 6253 return 0; 6254 } 6255 6256 int ata_pci_device_resume(struct pci_dev *pdev) 6257 { 6258 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6259 int rc; 6260 6261 rc = ata_pci_device_do_resume(pdev); 6262 if (rc == 0) 6263 ata_host_resume(host); 6264 return rc; 6265 } 6266 #endif /* CONFIG_PM */ 6267 6268 #endif /* CONFIG_PCI */ 6269 6270 static int __init ata_parse_force_one(char **cur, 6271 struct ata_force_ent *force_ent, 6272 const char **reason) 6273 { 6274 /* FIXME: Currently, there's no way to tag init const data and 6275 * using __initdata causes build failure on some versions of 6276 * gcc. Once __initdataconst is implemented, add const to the 6277 * following structure. 6278 */ 6279 static struct ata_force_param force_tbl[] __initdata = { 6280 { "40c", .cbl = ATA_CBL_PATA40 }, 6281 { "80c", .cbl = ATA_CBL_PATA80 }, 6282 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6283 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6284 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6285 { "sata", .cbl = ATA_CBL_SATA }, 6286 { "1.5Gbps", .spd_limit = 1 }, 6287 { "3.0Gbps", .spd_limit = 2 }, 6288 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6289 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6290 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6291 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6292 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6293 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6294 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6295 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6296 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6297 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6298 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6299 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6300 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6301 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6302 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6303 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6304 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6305 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6306 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6307 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6308 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6309 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6310 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6311 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6312 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6313 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6314 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6315 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6316 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6317 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6318 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6319 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6320 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6321 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6322 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6323 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6324 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6325 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6326 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6327 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6328 }; 6329 char *start = *cur, *p = *cur; 6330 char *id, *val, *endp; 6331 const struct ata_force_param *match_fp = NULL; 6332 int nr_matches = 0, i; 6333 6334 /* find where this param ends and update *cur */ 6335 while (*p != '\0' && *p != ',') 6336 p++; 6337 6338 if (*p == '\0') 6339 *cur = p; 6340 else 6341 *cur = p + 1; 6342 6343 *p = '\0'; 6344 6345 /* parse */ 6346 p = strchr(start, ':'); 6347 if (!p) { 6348 val = strstrip(start); 6349 goto parse_val; 6350 } 6351 *p = '\0'; 6352 6353 id = strstrip(start); 6354 val = strstrip(p + 1); 6355 6356 /* parse id */ 6357 p = strchr(id, '.'); 6358 if (p) { 6359 *p++ = '\0'; 6360 force_ent->device = simple_strtoul(p, &endp, 10); 6361 if (p == endp || *endp != '\0') { 6362 *reason = "invalid device"; 6363 return -EINVAL; 6364 } 6365 } 6366 6367 force_ent->port = simple_strtoul(id, &endp, 10); 6368 if (p == endp || *endp != '\0') { 6369 *reason = "invalid port/link"; 6370 return -EINVAL; 6371 } 6372 6373 parse_val: 6374 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6375 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6376 const struct ata_force_param *fp = &force_tbl[i]; 6377 6378 if (strncasecmp(val, fp->name, strlen(val))) 6379 continue; 6380 6381 nr_matches++; 6382 match_fp = fp; 6383 6384 if (strcasecmp(val, fp->name) == 0) { 6385 nr_matches = 1; 6386 break; 6387 } 6388 } 6389 6390 if (!nr_matches) { 6391 *reason = "unknown value"; 6392 return -EINVAL; 6393 } 6394 if (nr_matches > 1) { 6395 *reason = "ambigious value"; 6396 return -EINVAL; 6397 } 6398 6399 force_ent->param = *match_fp; 6400 6401 return 0; 6402 } 6403 6404 static void __init ata_parse_force_param(void) 6405 { 6406 int idx = 0, size = 1; 6407 int last_port = -1, last_device = -1; 6408 char *p, *cur, *next; 6409 6410 /* calculate maximum number of params and allocate force_tbl */ 6411 for (p = ata_force_param_buf; *p; p++) 6412 if (*p == ',') 6413 size++; 6414 6415 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6416 if (!ata_force_tbl) { 6417 printk(KERN_WARNING "ata: failed to extend force table, " 6418 "libata.force ignored\n"); 6419 return; 6420 } 6421 6422 /* parse and populate the table */ 6423 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6424 const char *reason = ""; 6425 struct ata_force_ent te = { .port = -1, .device = -1 }; 6426 6427 next = cur; 6428 if (ata_parse_force_one(&next, &te, &reason)) { 6429 printk(KERN_WARNING "ata: failed to parse force " 6430 "parameter \"%s\" (%s)\n", 6431 cur, reason); 6432 continue; 6433 } 6434 6435 if (te.port == -1) { 6436 te.port = last_port; 6437 te.device = last_device; 6438 } 6439 6440 ata_force_tbl[idx++] = te; 6441 6442 last_port = te.port; 6443 last_device = te.device; 6444 } 6445 6446 ata_force_tbl_size = idx; 6447 } 6448 6449 static int __init ata_init(void) 6450 { 6451 int rc; 6452 6453 ata_parse_force_param(); 6454 6455 rc = ata_sff_init(); 6456 if (rc) { 6457 kfree(ata_force_tbl); 6458 return rc; 6459 } 6460 6461 libata_transport_init(); 6462 ata_scsi_transport_template = ata_attach_transport(); 6463 if (!ata_scsi_transport_template) { 6464 ata_sff_exit(); 6465 rc = -ENOMEM; 6466 goto err_out; 6467 } 6468 6469 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6470 return 0; 6471 6472 err_out: 6473 return rc; 6474 } 6475 6476 static void __exit ata_exit(void) 6477 { 6478 ata_release_transport(ata_scsi_transport_template); 6479 libata_transport_exit(); 6480 ata_sff_exit(); 6481 kfree(ata_force_tbl); 6482 } 6483 6484 subsys_initcall(ata_init); 6485 module_exit(ata_exit); 6486 6487 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6488 6489 int ata_ratelimit(void) 6490 { 6491 return __ratelimit(&ratelimit); 6492 } 6493 6494 /** 6495 * ata_msleep - ATA EH owner aware msleep 6496 * @ap: ATA port to attribute the sleep to 6497 * @msecs: duration to sleep in milliseconds 6498 * 6499 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6500 * ownership is released before going to sleep and reacquired 6501 * after the sleep is complete. IOW, other ports sharing the 6502 * @ap->host will be allowed to own the EH while this task is 6503 * sleeping. 6504 * 6505 * LOCKING: 6506 * Might sleep. 6507 */ 6508 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6509 { 6510 bool owns_eh = ap && ap->host->eh_owner == current; 6511 6512 if (owns_eh) 6513 ata_eh_release(ap); 6514 6515 msleep(msecs); 6516 6517 if (owns_eh) 6518 ata_eh_acquire(ap); 6519 } 6520 6521 /** 6522 * ata_wait_register - wait until register value changes 6523 * @ap: ATA port to wait register for, can be NULL 6524 * @reg: IO-mapped register 6525 * @mask: Mask to apply to read register value 6526 * @val: Wait condition 6527 * @interval: polling interval in milliseconds 6528 * @timeout: timeout in milliseconds 6529 * 6530 * Waiting for some bits of register to change is a common 6531 * operation for ATA controllers. This function reads 32bit LE 6532 * IO-mapped register @reg and tests for the following condition. 6533 * 6534 * (*@reg & mask) != val 6535 * 6536 * If the condition is met, it returns; otherwise, the process is 6537 * repeated after @interval_msec until timeout. 6538 * 6539 * LOCKING: 6540 * Kernel thread context (may sleep) 6541 * 6542 * RETURNS: 6543 * The final register value. 6544 */ 6545 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6546 unsigned long interval, unsigned long timeout) 6547 { 6548 unsigned long deadline; 6549 u32 tmp; 6550 6551 tmp = ioread32(reg); 6552 6553 /* Calculate timeout _after_ the first read to make sure 6554 * preceding writes reach the controller before starting to 6555 * eat away the timeout. 6556 */ 6557 deadline = ata_deadline(jiffies, timeout); 6558 6559 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6560 ata_msleep(ap, interval); 6561 tmp = ioread32(reg); 6562 } 6563 6564 return tmp; 6565 } 6566 6567 /* 6568 * Dummy port_ops 6569 */ 6570 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6571 { 6572 return AC_ERR_SYSTEM; 6573 } 6574 6575 static void ata_dummy_error_handler(struct ata_port *ap) 6576 { 6577 /* truly dummy */ 6578 } 6579 6580 struct ata_port_operations ata_dummy_port_ops = { 6581 .qc_prep = ata_noop_qc_prep, 6582 .qc_issue = ata_dummy_qc_issue, 6583 .error_handler = ata_dummy_error_handler, 6584 }; 6585 6586 const struct ata_port_info ata_dummy_port_info = { 6587 .port_ops = &ata_dummy_port_ops, 6588 }; 6589 6590 /* 6591 * libata is essentially a library of internal helper functions for 6592 * low-level ATA host controller drivers. As such, the API/ABI is 6593 * likely to change as new drivers are added and updated. 6594 * Do not depend on ABI/API stability. 6595 */ 6596 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6597 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6598 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6599 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6600 EXPORT_SYMBOL_GPL(sata_port_ops); 6601 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6602 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6603 EXPORT_SYMBOL_GPL(ata_link_next); 6604 EXPORT_SYMBOL_GPL(ata_dev_next); 6605 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6606 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6607 EXPORT_SYMBOL_GPL(ata_host_init); 6608 EXPORT_SYMBOL_GPL(ata_host_alloc); 6609 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6610 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6611 EXPORT_SYMBOL_GPL(ata_host_start); 6612 EXPORT_SYMBOL_GPL(ata_host_register); 6613 EXPORT_SYMBOL_GPL(ata_host_activate); 6614 EXPORT_SYMBOL_GPL(ata_host_detach); 6615 EXPORT_SYMBOL_GPL(ata_sg_init); 6616 EXPORT_SYMBOL_GPL(ata_qc_complete); 6617 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6618 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6619 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6620 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6621 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6622 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6623 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6624 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6625 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6626 EXPORT_SYMBOL_GPL(ata_mode_string); 6627 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6628 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6629 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6630 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6631 EXPORT_SYMBOL_GPL(ata_dev_disable); 6632 EXPORT_SYMBOL_GPL(sata_set_spd); 6633 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6634 EXPORT_SYMBOL_GPL(sata_link_debounce); 6635 EXPORT_SYMBOL_GPL(sata_link_resume); 6636 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6637 EXPORT_SYMBOL_GPL(ata_std_prereset); 6638 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6639 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6640 EXPORT_SYMBOL_GPL(ata_std_postreset); 6641 EXPORT_SYMBOL_GPL(ata_dev_classify); 6642 EXPORT_SYMBOL_GPL(ata_dev_pair); 6643 EXPORT_SYMBOL_GPL(ata_ratelimit); 6644 EXPORT_SYMBOL_GPL(ata_msleep); 6645 EXPORT_SYMBOL_GPL(ata_wait_register); 6646 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6647 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6648 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6649 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6650 EXPORT_SYMBOL_GPL(sata_scr_valid); 6651 EXPORT_SYMBOL_GPL(sata_scr_read); 6652 EXPORT_SYMBOL_GPL(sata_scr_write); 6653 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6654 EXPORT_SYMBOL_GPL(ata_link_online); 6655 EXPORT_SYMBOL_GPL(ata_link_offline); 6656 #ifdef CONFIG_PM 6657 EXPORT_SYMBOL_GPL(ata_host_suspend); 6658 EXPORT_SYMBOL_GPL(ata_host_resume); 6659 #endif /* CONFIG_PM */ 6660 EXPORT_SYMBOL_GPL(ata_id_string); 6661 EXPORT_SYMBOL_GPL(ata_id_c_string); 6662 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6663 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6664 6665 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6666 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6667 EXPORT_SYMBOL_GPL(ata_timing_compute); 6668 EXPORT_SYMBOL_GPL(ata_timing_merge); 6669 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6670 6671 #ifdef CONFIG_PCI 6672 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6673 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6674 #ifdef CONFIG_PM 6675 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6676 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6677 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6678 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6679 #endif /* CONFIG_PM */ 6680 #endif /* CONFIG_PCI */ 6681 6682 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6683 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6684 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6685 EXPORT_SYMBOL_GPL(ata_port_desc); 6686 #ifdef CONFIG_PCI 6687 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6688 #endif /* CONFIG_PCI */ 6689 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6690 EXPORT_SYMBOL_GPL(ata_link_abort); 6691 EXPORT_SYMBOL_GPL(ata_port_abort); 6692 EXPORT_SYMBOL_GPL(ata_port_freeze); 6693 EXPORT_SYMBOL_GPL(sata_async_notification); 6694 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6695 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6696 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6697 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6698 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6699 EXPORT_SYMBOL_GPL(ata_do_eh); 6700 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6701 6702 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6703 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6704 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6705 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6706 EXPORT_SYMBOL_GPL(ata_cable_sata); 6707