1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.20" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 75 unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int libata_fua = 0; 89 module_param_named(fua, libata_fua, int, 0444); 90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 91 92 static int ata_ignore_hpa = 0; 93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 95 96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 97 module_param(ata_probe_timeout, int, 0444); 98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 99 100 int libata_noacpi = 1; 101 module_param_named(noacpi, libata_noacpi, int, 0444); 102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 103 104 MODULE_AUTHOR("Jeff Garzik"); 105 MODULE_DESCRIPTION("Library module for ATA devices"); 106 MODULE_LICENSE("GPL"); 107 MODULE_VERSION(DRV_VERSION); 108 109 110 /** 111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 112 * @tf: Taskfile to convert 113 * @fis: Buffer into which data will output 114 * @pmp: Port multiplier port 115 * 116 * Converts a standard ATA taskfile to a Serial ATA 117 * FIS structure (Register - Host to Device). 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 124 { 125 fis[0] = 0x27; /* Register - Host to Device FIS */ 126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 127 bit 7 indicates Command FIS */ 128 fis[2] = tf->command; 129 fis[3] = tf->feature; 130 131 fis[4] = tf->lbal; 132 fis[5] = tf->lbam; 133 fis[6] = tf->lbah; 134 fis[7] = tf->device; 135 136 fis[8] = tf->hob_lbal; 137 fis[9] = tf->hob_lbam; 138 fis[10] = tf->hob_lbah; 139 fis[11] = tf->hob_feature; 140 141 fis[12] = tf->nsect; 142 fis[13] = tf->hob_nsect; 143 fis[14] = 0; 144 fis[15] = tf->ctl; 145 146 fis[16] = 0; 147 fis[17] = 0; 148 fis[18] = 0; 149 fis[19] = 0; 150 } 151 152 /** 153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 154 * @fis: Buffer from which data will be input 155 * @tf: Taskfile to output 156 * 157 * Converts a serial ATA FIS structure to a standard ATA taskfile. 158 * 159 * LOCKING: 160 * Inherited from caller. 161 */ 162 163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 164 { 165 tf->command = fis[2]; /* status */ 166 tf->feature = fis[3]; /* error */ 167 168 tf->lbal = fis[4]; 169 tf->lbam = fis[5]; 170 tf->lbah = fis[6]; 171 tf->device = fis[7]; 172 173 tf->hob_lbal = fis[8]; 174 tf->hob_lbam = fis[9]; 175 tf->hob_lbah = fis[10]; 176 177 tf->nsect = fis[12]; 178 tf->hob_nsect = fis[13]; 179 } 180 181 static const u8 ata_rw_cmds[] = { 182 /* pio multi */ 183 ATA_CMD_READ_MULTI, 184 ATA_CMD_WRITE_MULTI, 185 ATA_CMD_READ_MULTI_EXT, 186 ATA_CMD_WRITE_MULTI_EXT, 187 0, 188 0, 189 0, 190 ATA_CMD_WRITE_MULTI_FUA_EXT, 191 /* pio */ 192 ATA_CMD_PIO_READ, 193 ATA_CMD_PIO_WRITE, 194 ATA_CMD_PIO_READ_EXT, 195 ATA_CMD_PIO_WRITE_EXT, 196 0, 197 0, 198 0, 199 0, 200 /* dma */ 201 ATA_CMD_READ, 202 ATA_CMD_WRITE, 203 ATA_CMD_READ_EXT, 204 ATA_CMD_WRITE_EXT, 205 0, 206 0, 207 0, 208 ATA_CMD_WRITE_FUA_EXT 209 }; 210 211 /** 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 213 * @tf: command to examine and configure 214 * @dev: device tf belongs to 215 * 216 * Examine the device configuration and tf->flags to calculate 217 * the proper read/write commands and protocol to use. 218 * 219 * LOCKING: 220 * caller. 221 */ 222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 223 { 224 u8 cmd; 225 226 int index, fua, lba48, write; 227 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 231 232 if (dev->flags & ATA_DFLAG_PIO) { 233 tf->protocol = ATA_PROT_PIO; 234 index = dev->multi_count ? 0 : 8; 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 236 /* Unable to use DMA due to host limitation */ 237 tf->protocol = ATA_PROT_PIO; 238 index = dev->multi_count ? 0 : 8; 239 } else { 240 tf->protocol = ATA_PROT_DMA; 241 index = 16; 242 } 243 244 cmd = ata_rw_cmds[index + fua + lba48 + write]; 245 if (cmd) { 246 tf->command = cmd; 247 return 0; 248 } 249 return -1; 250 } 251 252 /** 253 * ata_tf_read_block - Read block address from ATA taskfile 254 * @tf: ATA taskfile of interest 255 * @dev: ATA device @tf belongs to 256 * 257 * LOCKING: 258 * None. 259 * 260 * Read block address from @tf. This function can handle all 261 * three address formats - LBA, LBA48 and CHS. tf->protocol and 262 * flags select the address format to use. 263 * 264 * RETURNS: 265 * Block address read from @tf. 266 */ 267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 268 { 269 u64 block = 0; 270 271 if (tf->flags & ATA_TFLAG_LBA) { 272 if (tf->flags & ATA_TFLAG_LBA48) { 273 block |= (u64)tf->hob_lbah << 40; 274 block |= (u64)tf->hob_lbam << 32; 275 block |= tf->hob_lbal << 24; 276 } else 277 block |= (tf->device & 0xf) << 24; 278 279 block |= tf->lbah << 16; 280 block |= tf->lbam << 8; 281 block |= tf->lbal; 282 } else { 283 u32 cyl, head, sect; 284 285 cyl = tf->lbam | (tf->lbah << 8); 286 head = tf->device & 0xf; 287 sect = tf->lbal; 288 289 block = (cyl * dev->heads + head) * dev->sectors + sect; 290 } 291 292 return block; 293 } 294 295 /** 296 * ata_build_rw_tf - Build ATA taskfile for given read/write request 297 * @tf: Target ATA taskfile 298 * @dev: ATA device @tf belongs to 299 * @block: Block address 300 * @n_block: Number of blocks 301 * @tf_flags: RW/FUA etc... 302 * @tag: tag 303 * 304 * LOCKING: 305 * None. 306 * 307 * Build ATA taskfile @tf for read/write request described by 308 * @block, @n_block, @tf_flags and @tag on @dev. 309 * 310 * RETURNS: 311 * 312 * 0 on success, -ERANGE if the request is too large for @dev, 313 * -EINVAL if the request is invalid. 314 */ 315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 316 u64 block, u32 n_block, unsigned int tf_flags, 317 unsigned int tag) 318 { 319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 320 tf->flags |= tf_flags; 321 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 323 /* yay, NCQ */ 324 if (!lba_48_ok(block, n_block)) 325 return -ERANGE; 326 327 tf->protocol = ATA_PROT_NCQ; 328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 329 330 if (tf->flags & ATA_TFLAG_WRITE) 331 tf->command = ATA_CMD_FPDMA_WRITE; 332 else 333 tf->command = ATA_CMD_FPDMA_READ; 334 335 tf->nsect = tag << 3; 336 tf->hob_feature = (n_block >> 8) & 0xff; 337 tf->feature = n_block & 0xff; 338 339 tf->hob_lbah = (block >> 40) & 0xff; 340 tf->hob_lbam = (block >> 32) & 0xff; 341 tf->hob_lbal = (block >> 24) & 0xff; 342 tf->lbah = (block >> 16) & 0xff; 343 tf->lbam = (block >> 8) & 0xff; 344 tf->lbal = block & 0xff; 345 346 tf->device = 1 << 6; 347 if (tf->flags & ATA_TFLAG_FUA) 348 tf->device |= 1 << 7; 349 } else if (dev->flags & ATA_DFLAG_LBA) { 350 tf->flags |= ATA_TFLAG_LBA; 351 352 if (lba_28_ok(block, n_block)) { 353 /* use LBA28 */ 354 tf->device |= (block >> 24) & 0xf; 355 } else if (lba_48_ok(block, n_block)) { 356 if (!(dev->flags & ATA_DFLAG_LBA48)) 357 return -ERANGE; 358 359 /* use LBA48 */ 360 tf->flags |= ATA_TFLAG_LBA48; 361 362 tf->hob_nsect = (n_block >> 8) & 0xff; 363 364 tf->hob_lbah = (block >> 40) & 0xff; 365 tf->hob_lbam = (block >> 32) & 0xff; 366 tf->hob_lbal = (block >> 24) & 0xff; 367 } else 368 /* request too large even for LBA48 */ 369 return -ERANGE; 370 371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 372 return -EINVAL; 373 374 tf->nsect = n_block & 0xff; 375 376 tf->lbah = (block >> 16) & 0xff; 377 tf->lbam = (block >> 8) & 0xff; 378 tf->lbal = block & 0xff; 379 380 tf->device |= ATA_LBA; 381 } else { 382 /* CHS */ 383 u32 sect, head, cyl, track; 384 385 /* The request -may- be too large for CHS addressing. */ 386 if (!lba_28_ok(block, n_block)) 387 return -ERANGE; 388 389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 390 return -EINVAL; 391 392 /* Convert LBA to CHS */ 393 track = (u32)block / dev->sectors; 394 cyl = track / dev->heads; 395 head = track % dev->heads; 396 sect = (u32)block % dev->sectors + 1; 397 398 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 399 (u32)block, track, cyl, head, sect); 400 401 /* Check whether the converted CHS can fit. 402 Cylinder: 0-65535 403 Head: 0-15 404 Sector: 1-255*/ 405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 406 return -ERANGE; 407 408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 409 tf->lbal = sect; 410 tf->lbam = cyl; 411 tf->lbah = cyl >> 8; 412 tf->device |= head; 413 } 414 415 return 0; 416 } 417 418 /** 419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 420 * @pio_mask: pio_mask 421 * @mwdma_mask: mwdma_mask 422 * @udma_mask: udma_mask 423 * 424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 425 * unsigned int xfer_mask. 426 * 427 * LOCKING: 428 * None. 429 * 430 * RETURNS: 431 * Packed xfer_mask. 432 */ 433 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 434 unsigned int mwdma_mask, 435 unsigned int udma_mask) 436 { 437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 440 } 441 442 /** 443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 444 * @xfer_mask: xfer_mask to unpack 445 * @pio_mask: resulting pio_mask 446 * @mwdma_mask: resulting mwdma_mask 447 * @udma_mask: resulting udma_mask 448 * 449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 450 * Any NULL distination masks will be ignored. 451 */ 452 static void ata_unpack_xfermask(unsigned int xfer_mask, 453 unsigned int *pio_mask, 454 unsigned int *mwdma_mask, 455 unsigned int *udma_mask) 456 { 457 if (pio_mask) 458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 459 if (mwdma_mask) 460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 461 if (udma_mask) 462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 463 } 464 465 static const struct ata_xfer_ent { 466 int shift, bits; 467 u8 base; 468 } ata_xfer_tbl[] = { 469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 472 { -1, }, 473 }; 474 475 /** 476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 477 * @xfer_mask: xfer_mask of interest 478 * 479 * Return matching XFER_* value for @xfer_mask. Only the highest 480 * bit of @xfer_mask is considered. 481 * 482 * LOCKING: 483 * None. 484 * 485 * RETURNS: 486 * Matching XFER_* value, 0 if no match found. 487 */ 488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 489 { 490 int highbit = fls(xfer_mask) - 1; 491 const struct ata_xfer_ent *ent; 492 493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 495 return ent->base + highbit - ent->shift; 496 return 0; 497 } 498 499 /** 500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 501 * @xfer_mode: XFER_* of interest 502 * 503 * Return matching xfer_mask for @xfer_mode. 504 * 505 * LOCKING: 506 * None. 507 * 508 * RETURNS: 509 * Matching xfer_mask, 0 if no match found. 510 */ 511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 512 { 513 const struct ata_xfer_ent *ent; 514 515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 517 return 1 << (ent->shift + xfer_mode - ent->base); 518 return 0; 519 } 520 521 /** 522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 523 * @xfer_mode: XFER_* of interest 524 * 525 * Return matching xfer_shift for @xfer_mode. 526 * 527 * LOCKING: 528 * None. 529 * 530 * RETURNS: 531 * Matching xfer_shift, -1 if no match found. 532 */ 533 static int ata_xfer_mode2shift(unsigned int xfer_mode) 534 { 535 const struct ata_xfer_ent *ent; 536 537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 539 return ent->shift; 540 return -1; 541 } 542 543 /** 544 * ata_mode_string - convert xfer_mask to string 545 * @xfer_mask: mask of bits supported; only highest bit counts. 546 * 547 * Determine string which represents the highest speed 548 * (highest bit in @modemask). 549 * 550 * LOCKING: 551 * None. 552 * 553 * RETURNS: 554 * Constant C string representing highest speed listed in 555 * @mode_mask, or the constant C string "<n/a>". 556 */ 557 static const char *ata_mode_string(unsigned int xfer_mask) 558 { 559 static const char * const xfer_mode_str[] = { 560 "PIO0", 561 "PIO1", 562 "PIO2", 563 "PIO3", 564 "PIO4", 565 "PIO5", 566 "PIO6", 567 "MWDMA0", 568 "MWDMA1", 569 "MWDMA2", 570 "MWDMA3", 571 "MWDMA4", 572 "UDMA/16", 573 "UDMA/25", 574 "UDMA/33", 575 "UDMA/44", 576 "UDMA/66", 577 "UDMA/100", 578 "UDMA/133", 579 "UDMA7", 580 }; 581 int highbit; 582 583 highbit = fls(xfer_mask) - 1; 584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 585 return xfer_mode_str[highbit]; 586 return "<n/a>"; 587 } 588 589 static const char *sata_spd_string(unsigned int spd) 590 { 591 static const char * const spd_str[] = { 592 "1.5 Gbps", 593 "3.0 Gbps", 594 }; 595 596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 597 return "<unknown>"; 598 return spd_str[spd - 1]; 599 } 600 601 void ata_dev_disable(struct ata_device *dev) 602 { 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 606 ATA_DNXFER_QUIET); 607 dev->class++; 608 } 609 } 610 611 /** 612 * ata_devchk - PATA device presence detection 613 * @ap: ATA channel to examine 614 * @device: Device to examine (starting at zero) 615 * 616 * This technique was originally described in 617 * Hale Landis's ATADRVR (www.ata-atapi.com), and 618 * later found its way into the ATA/ATAPI spec. 619 * 620 * Write a pattern to the ATA shadow registers, 621 * and if a device is present, it will respond by 622 * correctly storing and echoing back the 623 * ATA shadow register contents. 624 * 625 * LOCKING: 626 * caller. 627 */ 628 629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 630 { 631 struct ata_ioports *ioaddr = &ap->ioaddr; 632 u8 nsect, lbal; 633 634 ap->ops->dev_select(ap, device); 635 636 iowrite8(0x55, ioaddr->nsect_addr); 637 iowrite8(0xaa, ioaddr->lbal_addr); 638 639 iowrite8(0xaa, ioaddr->nsect_addr); 640 iowrite8(0x55, ioaddr->lbal_addr); 641 642 iowrite8(0x55, ioaddr->nsect_addr); 643 iowrite8(0xaa, ioaddr->lbal_addr); 644 645 nsect = ioread8(ioaddr->nsect_addr); 646 lbal = ioread8(ioaddr->lbal_addr); 647 648 if ((nsect == 0x55) && (lbal == 0xaa)) 649 return 1; /* we found a device */ 650 651 return 0; /* nothing found */ 652 } 653 654 /** 655 * ata_dev_classify - determine device type based on ATA-spec signature 656 * @tf: ATA taskfile register set for device to be identified 657 * 658 * Determine from taskfile register contents whether a device is 659 * ATA or ATAPI, as per "Signature and persistence" section 660 * of ATA/PI spec (volume 1, sect 5.14). 661 * 662 * LOCKING: 663 * None. 664 * 665 * RETURNS: 666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 667 * the event of failure. 668 */ 669 670 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 671 { 672 /* Apple's open source Darwin code hints that some devices only 673 * put a proper signature into the LBA mid/high registers, 674 * So, we only check those. It's sufficient for uniqueness. 675 */ 676 677 if (((tf->lbam == 0) && (tf->lbah == 0)) || 678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 679 DPRINTK("found ATA device by sig\n"); 680 return ATA_DEV_ATA; 681 } 682 683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 685 DPRINTK("found ATAPI device by sig\n"); 686 return ATA_DEV_ATAPI; 687 } 688 689 DPRINTK("unknown device\n"); 690 return ATA_DEV_UNKNOWN; 691 } 692 693 /** 694 * ata_dev_try_classify - Parse returned ATA device signature 695 * @ap: ATA channel to examine 696 * @device: Device to examine (starting at zero) 697 * @r_err: Value of error register on completion 698 * 699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 700 * an ATA/ATAPI-defined set of values is placed in the ATA 701 * shadow registers, indicating the results of device detection 702 * and diagnostics. 703 * 704 * Select the ATA device, and read the values from the ATA shadow 705 * registers. Then parse according to the Error register value, 706 * and the spec-defined values examined by ata_dev_classify(). 707 * 708 * LOCKING: 709 * caller. 710 * 711 * RETURNS: 712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 713 */ 714 715 unsigned int 716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 717 { 718 struct ata_taskfile tf; 719 unsigned int class; 720 u8 err; 721 722 ap->ops->dev_select(ap, device); 723 724 memset(&tf, 0, sizeof(tf)); 725 726 ap->ops->tf_read(ap, &tf); 727 err = tf.feature; 728 if (r_err) 729 *r_err = err; 730 731 /* see if device passed diags: if master then continue and warn later */ 732 if (err == 0 && device == 0) 733 /* diagnostic fail : do nothing _YET_ */ 734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 735 else if (err == 1) 736 /* do nothing */ ; 737 else if ((device == 0) && (err == 0x81)) 738 /* do nothing */ ; 739 else 740 return ATA_DEV_NONE; 741 742 /* determine if device is ATA or ATAPI */ 743 class = ata_dev_classify(&tf); 744 745 if (class == ATA_DEV_UNKNOWN) 746 return ATA_DEV_NONE; 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 748 return ATA_DEV_NONE; 749 return class; 750 } 751 752 /** 753 * ata_id_string - Convert IDENTIFY DEVICE page into string 754 * @id: IDENTIFY DEVICE results we will examine 755 * @s: string into which data is output 756 * @ofs: offset into identify device page 757 * @len: length of string to return. must be an even number. 758 * 759 * The strings in the IDENTIFY DEVICE page are broken up into 760 * 16-bit chunks. Run through the string, and output each 761 * 8-bit chunk linearly, regardless of platform. 762 * 763 * LOCKING: 764 * caller. 765 */ 766 767 void ata_id_string(const u16 *id, unsigned char *s, 768 unsigned int ofs, unsigned int len) 769 { 770 unsigned int c; 771 772 while (len > 0) { 773 c = id[ofs] >> 8; 774 *s = c; 775 s++; 776 777 c = id[ofs] & 0xff; 778 *s = c; 779 s++; 780 781 ofs++; 782 len -= 2; 783 } 784 } 785 786 /** 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 788 * @id: IDENTIFY DEVICE results we will examine 789 * @s: string into which data is output 790 * @ofs: offset into identify device page 791 * @len: length of string to return. must be an odd number. 792 * 793 * This function is identical to ata_id_string except that it 794 * trims trailing spaces and terminates the resulting string with 795 * null. @len must be actual maximum length (even number) + 1. 796 * 797 * LOCKING: 798 * caller. 799 */ 800 void ata_id_c_string(const u16 *id, unsigned char *s, 801 unsigned int ofs, unsigned int len) 802 { 803 unsigned char *p; 804 805 WARN_ON(!(len & 1)); 806 807 ata_id_string(id, s, ofs, len - 1); 808 809 p = s + strnlen(s, len - 1); 810 while (p > s && p[-1] == ' ') 811 p--; 812 *p = '\0'; 813 } 814 815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 816 { 817 u64 sectors = 0; 818 819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 821 sectors |= (tf->hob_lbal & 0xff) << 24; 822 sectors |= (tf->lbah & 0xff) << 16; 823 sectors |= (tf->lbam & 0xff) << 8; 824 sectors |= (tf->lbal & 0xff); 825 826 return ++sectors; 827 } 828 829 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 830 { 831 u64 sectors = 0; 832 833 sectors |= (tf->device & 0x0f) << 24; 834 sectors |= (tf->lbah & 0xff) << 16; 835 sectors |= (tf->lbam & 0xff) << 8; 836 sectors |= (tf->lbal & 0xff); 837 838 return ++sectors; 839 } 840 841 /** 842 * ata_read_native_max_address_ext - LBA48 native max query 843 * @dev: Device to query 844 * 845 * Perform an LBA48 size query upon the device in question. Return the 846 * actual LBA48 size or zero if the command fails. 847 */ 848 849 static u64 ata_read_native_max_address_ext(struct ata_device *dev) 850 { 851 unsigned int err; 852 struct ata_taskfile tf; 853 854 ata_tf_init(dev, &tf); 855 856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 858 tf.protocol |= ATA_PROT_NODATA; 859 tf.device |= 0x40; 860 861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 862 if (err) 863 return 0; 864 865 return ata_tf_to_lba48(&tf); 866 } 867 868 /** 869 * ata_read_native_max_address - LBA28 native max query 870 * @dev: Device to query 871 * 872 * Performa an LBA28 size query upon the device in question. Return the 873 * actual LBA28 size or zero if the command fails. 874 */ 875 876 static u64 ata_read_native_max_address(struct ata_device *dev) 877 { 878 unsigned int err; 879 struct ata_taskfile tf; 880 881 ata_tf_init(dev, &tf); 882 883 tf.command = ATA_CMD_READ_NATIVE_MAX; 884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 885 tf.protocol |= ATA_PROT_NODATA; 886 tf.device |= 0x40; 887 888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 889 if (err) 890 return 0; 891 892 return ata_tf_to_lba(&tf); 893 } 894 895 /** 896 * ata_set_native_max_address_ext - LBA48 native max set 897 * @dev: Device to query 898 * 899 * Perform an LBA48 size set max upon the device in question. Return the 900 * actual LBA48 size or zero if the command fails. 901 */ 902 903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) 904 { 905 unsigned int err; 906 struct ata_taskfile tf; 907 908 new_sectors--; 909 910 ata_tf_init(dev, &tf); 911 912 tf.command = ATA_CMD_SET_MAX_EXT; 913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 914 tf.protocol |= ATA_PROT_NODATA; 915 tf.device |= 0x40; 916 917 tf.lbal = (new_sectors >> 0) & 0xff; 918 tf.lbam = (new_sectors >> 8) & 0xff; 919 tf.lbah = (new_sectors >> 16) & 0xff; 920 921 tf.hob_lbal = (new_sectors >> 24) & 0xff; 922 tf.hob_lbam = (new_sectors >> 32) & 0xff; 923 tf.hob_lbah = (new_sectors >> 40) & 0xff; 924 925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 926 if (err) 927 return 0; 928 929 return ata_tf_to_lba48(&tf); 930 } 931 932 /** 933 * ata_set_native_max_address - LBA28 native max set 934 * @dev: Device to query 935 * 936 * Perform an LBA28 size set max upon the device in question. Return the 937 * actual LBA28 size or zero if the command fails. 938 */ 939 940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) 941 { 942 unsigned int err; 943 struct ata_taskfile tf; 944 945 new_sectors--; 946 947 ata_tf_init(dev, &tf); 948 949 tf.command = ATA_CMD_SET_MAX; 950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 951 tf.protocol |= ATA_PROT_NODATA; 952 953 tf.lbal = (new_sectors >> 0) & 0xff; 954 tf.lbam = (new_sectors >> 8) & 0xff; 955 tf.lbah = (new_sectors >> 16) & 0xff; 956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; 957 958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 959 if (err) 960 return 0; 961 962 return ata_tf_to_lba(&tf); 963 } 964 965 /** 966 * ata_hpa_resize - Resize a device with an HPA set 967 * @dev: Device to resize 968 * 969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 970 * it if required to the full size of the media. The caller must check 971 * the drive has the HPA feature set enabled. 972 */ 973 974 static u64 ata_hpa_resize(struct ata_device *dev) 975 { 976 u64 sectors = dev->n_sectors; 977 u64 hpa_sectors; 978 979 if (ata_id_has_lba48(dev->id)) 980 hpa_sectors = ata_read_native_max_address_ext(dev); 981 else 982 hpa_sectors = ata_read_native_max_address(dev); 983 984 /* if no hpa, both should be equal */ 985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, " 986 "hpa_sectors = %lld\n", 987 __FUNCTION__, (long long)sectors, (long long)hpa_sectors); 988 989 if (hpa_sectors > sectors) { 990 ata_dev_printk(dev, KERN_INFO, 991 "Host Protected Area detected:\n" 992 "\tcurrent size: %lld sectors\n" 993 "\tnative size: %lld sectors\n", 994 (long long)sectors, (long long)hpa_sectors); 995 996 if (ata_ignore_hpa) { 997 if (ata_id_has_lba48(dev->id)) 998 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); 999 else 1000 hpa_sectors = ata_set_native_max_address(dev, 1001 hpa_sectors); 1002 1003 if (hpa_sectors) { 1004 ata_dev_printk(dev, KERN_INFO, "native size " 1005 "increased to %lld sectors\n", 1006 (long long)hpa_sectors); 1007 return hpa_sectors; 1008 } 1009 } 1010 } 1011 return sectors; 1012 } 1013 1014 static u64 ata_id_n_sectors(const u16 *id) 1015 { 1016 if (ata_id_has_lba(id)) { 1017 if (ata_id_has_lba48(id)) 1018 return ata_id_u64(id, 100); 1019 else 1020 return ata_id_u32(id, 60); 1021 } else { 1022 if (ata_id_current_chs_valid(id)) 1023 return ata_id_u32(id, 57); 1024 else 1025 return id[1] * id[3] * id[6]; 1026 } 1027 } 1028 1029 /** 1030 * ata_id_to_dma_mode - Identify DMA mode from id block 1031 * @dev: device to identify 1032 * @unknown: mode to assume if we cannot tell 1033 * 1034 * Set up the timing values for the device based upon the identify 1035 * reported values for the DMA mode. This function is used by drivers 1036 * which rely upon firmware configured modes, but wish to report the 1037 * mode correctly when possible. 1038 * 1039 * In addition we emit similarly formatted messages to the default 1040 * ata_dev_set_mode handler, in order to provide consistency of 1041 * presentation. 1042 */ 1043 1044 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1045 { 1046 unsigned int mask; 1047 u8 mode; 1048 1049 /* Pack the DMA modes */ 1050 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1051 if (dev->id[53] & 0x04) 1052 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1053 1054 /* Select the mode in use */ 1055 mode = ata_xfer_mask2mode(mask); 1056 1057 if (mode != 0) { 1058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1059 ata_mode_string(mask)); 1060 } else { 1061 /* SWDMA perhaps ? */ 1062 mode = unknown; 1063 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1064 } 1065 1066 /* Configure the device reporting */ 1067 dev->xfer_mode = mode; 1068 dev->xfer_shift = ata_xfer_mode2shift(mode); 1069 } 1070 1071 /** 1072 * ata_noop_dev_select - Select device 0/1 on ATA bus 1073 * @ap: ATA channel to manipulate 1074 * @device: ATA device (numbered from zero) to select 1075 * 1076 * This function performs no actual function. 1077 * 1078 * May be used as the dev_select() entry in ata_port_operations. 1079 * 1080 * LOCKING: 1081 * caller. 1082 */ 1083 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1084 { 1085 } 1086 1087 1088 /** 1089 * ata_std_dev_select - Select device 0/1 on ATA bus 1090 * @ap: ATA channel to manipulate 1091 * @device: ATA device (numbered from zero) to select 1092 * 1093 * Use the method defined in the ATA specification to 1094 * make either device 0, or device 1, active on the 1095 * ATA channel. Works with both PIO and MMIO. 1096 * 1097 * May be used as the dev_select() entry in ata_port_operations. 1098 * 1099 * LOCKING: 1100 * caller. 1101 */ 1102 1103 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1104 { 1105 u8 tmp; 1106 1107 if (device == 0) 1108 tmp = ATA_DEVICE_OBS; 1109 else 1110 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1111 1112 iowrite8(tmp, ap->ioaddr.device_addr); 1113 ata_pause(ap); /* needed; also flushes, for mmio */ 1114 } 1115 1116 /** 1117 * ata_dev_select - Select device 0/1 on ATA bus 1118 * @ap: ATA channel to manipulate 1119 * @device: ATA device (numbered from zero) to select 1120 * @wait: non-zero to wait for Status register BSY bit to clear 1121 * @can_sleep: non-zero if context allows sleeping 1122 * 1123 * Use the method defined in the ATA specification to 1124 * make either device 0, or device 1, active on the 1125 * ATA channel. 1126 * 1127 * This is a high-level version of ata_std_dev_select(), 1128 * which additionally provides the services of inserting 1129 * the proper pauses and status polling, where needed. 1130 * 1131 * LOCKING: 1132 * caller. 1133 */ 1134 1135 void ata_dev_select(struct ata_port *ap, unsigned int device, 1136 unsigned int wait, unsigned int can_sleep) 1137 { 1138 if (ata_msg_probe(ap)) 1139 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1140 "device %u, wait %u\n", device, wait); 1141 1142 if (wait) 1143 ata_wait_idle(ap); 1144 1145 ap->ops->dev_select(ap, device); 1146 1147 if (wait) { 1148 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 1149 msleep(150); 1150 ata_wait_idle(ap); 1151 } 1152 } 1153 1154 /** 1155 * ata_dump_id - IDENTIFY DEVICE info debugging output 1156 * @id: IDENTIFY DEVICE page to dump 1157 * 1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1159 * page. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 1165 static inline void ata_dump_id(const u16 *id) 1166 { 1167 DPRINTK("49==0x%04x " 1168 "53==0x%04x " 1169 "63==0x%04x " 1170 "64==0x%04x " 1171 "75==0x%04x \n", 1172 id[49], 1173 id[53], 1174 id[63], 1175 id[64], 1176 id[75]); 1177 DPRINTK("80==0x%04x " 1178 "81==0x%04x " 1179 "82==0x%04x " 1180 "83==0x%04x " 1181 "84==0x%04x \n", 1182 id[80], 1183 id[81], 1184 id[82], 1185 id[83], 1186 id[84]); 1187 DPRINTK("88==0x%04x " 1188 "93==0x%04x\n", 1189 id[88], 1190 id[93]); 1191 } 1192 1193 /** 1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1195 * @id: IDENTIFY data to compute xfer mask from 1196 * 1197 * Compute the xfermask for this device. This is not as trivial 1198 * as it seems if we must consider early devices correctly. 1199 * 1200 * FIXME: pre IDE drive timing (do we care ?). 1201 * 1202 * LOCKING: 1203 * None. 1204 * 1205 * RETURNS: 1206 * Computed xfermask 1207 */ 1208 static unsigned int ata_id_xfermask(const u16 *id) 1209 { 1210 unsigned int pio_mask, mwdma_mask, udma_mask; 1211 1212 /* Usual case. Word 53 indicates word 64 is valid */ 1213 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1214 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1215 pio_mask <<= 3; 1216 pio_mask |= 0x7; 1217 } else { 1218 /* If word 64 isn't valid then Word 51 high byte holds 1219 * the PIO timing number for the maximum. Turn it into 1220 * a mask. 1221 */ 1222 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1223 if (mode < 5) /* Valid PIO range */ 1224 pio_mask = (2 << mode) - 1; 1225 else 1226 pio_mask = 1; 1227 1228 /* But wait.. there's more. Design your standards by 1229 * committee and you too can get a free iordy field to 1230 * process. However its the speeds not the modes that 1231 * are supported... Note drivers using the timing API 1232 * will get this right anyway 1233 */ 1234 } 1235 1236 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1237 1238 if (ata_id_is_cfa(id)) { 1239 /* 1240 * Process compact flash extended modes 1241 */ 1242 int pio = id[163] & 0x7; 1243 int dma = (id[163] >> 3) & 7; 1244 1245 if (pio) 1246 pio_mask |= (1 << 5); 1247 if (pio > 1) 1248 pio_mask |= (1 << 6); 1249 if (dma) 1250 mwdma_mask |= (1 << 3); 1251 if (dma > 1) 1252 mwdma_mask |= (1 << 4); 1253 } 1254 1255 udma_mask = 0; 1256 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1257 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1258 1259 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1260 } 1261 1262 /** 1263 * ata_port_queue_task - Queue port_task 1264 * @ap: The ata_port to queue port_task for 1265 * @fn: workqueue function to be scheduled 1266 * @data: data for @fn to use 1267 * @delay: delay time for workqueue function 1268 * 1269 * Schedule @fn(@data) for execution after @delay jiffies using 1270 * port_task. There is one port_task per port and it's the 1271 * user(low level driver)'s responsibility to make sure that only 1272 * one task is active at any given time. 1273 * 1274 * libata core layer takes care of synchronization between 1275 * port_task and EH. ata_port_queue_task() may be ignored for EH 1276 * synchronization. 1277 * 1278 * LOCKING: 1279 * Inherited from caller. 1280 */ 1281 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1282 unsigned long delay) 1283 { 1284 int rc; 1285 1286 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) 1287 return; 1288 1289 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1290 ap->port_task_data = data; 1291 1292 rc = queue_delayed_work(ata_wq, &ap->port_task, delay); 1293 1294 /* rc == 0 means that another user is using port task */ 1295 WARN_ON(rc == 0); 1296 } 1297 1298 /** 1299 * ata_port_flush_task - Flush port_task 1300 * @ap: The ata_port to flush port_task for 1301 * 1302 * After this function completes, port_task is guranteed not to 1303 * be running or scheduled. 1304 * 1305 * LOCKING: 1306 * Kernel thread context (may sleep) 1307 */ 1308 void ata_port_flush_task(struct ata_port *ap) 1309 { 1310 unsigned long flags; 1311 1312 DPRINTK("ENTER\n"); 1313 1314 spin_lock_irqsave(ap->lock, flags); 1315 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; 1316 spin_unlock_irqrestore(ap->lock, flags); 1317 1318 DPRINTK("flush #1\n"); 1319 flush_workqueue(ata_wq); 1320 1321 /* 1322 * At this point, if a task is running, it's guaranteed to see 1323 * the FLUSH flag; thus, it will never queue pio tasks again. 1324 * Cancel and flush. 1325 */ 1326 if (!cancel_delayed_work(&ap->port_task)) { 1327 if (ata_msg_ctl(ap)) 1328 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", 1329 __FUNCTION__); 1330 flush_workqueue(ata_wq); 1331 } 1332 1333 spin_lock_irqsave(ap->lock, flags); 1334 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; 1335 spin_unlock_irqrestore(ap->lock, flags); 1336 1337 if (ata_msg_ctl(ap)) 1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1339 } 1340 1341 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1342 { 1343 struct completion *waiting = qc->private_data; 1344 1345 complete(waiting); 1346 } 1347 1348 /** 1349 * ata_exec_internal_sg - execute libata internal command 1350 * @dev: Device to which the command is sent 1351 * @tf: Taskfile registers for the command and the result 1352 * @cdb: CDB for packet command 1353 * @dma_dir: Data tranfer direction of the command 1354 * @sg: sg list for the data buffer of the command 1355 * @n_elem: Number of sg entries 1356 * 1357 * Executes libata internal command with timeout. @tf contains 1358 * command on entry and result on return. Timeout and error 1359 * conditions are reported via return value. No recovery action 1360 * is taken after a command times out. It's caller's duty to 1361 * clean up after timeout. 1362 * 1363 * LOCKING: 1364 * None. Should be called with kernel context, might sleep. 1365 * 1366 * RETURNS: 1367 * Zero on success, AC_ERR_* mask on failure 1368 */ 1369 unsigned ata_exec_internal_sg(struct ata_device *dev, 1370 struct ata_taskfile *tf, const u8 *cdb, 1371 int dma_dir, struct scatterlist *sg, 1372 unsigned int n_elem) 1373 { 1374 struct ata_port *ap = dev->ap; 1375 u8 command = tf->command; 1376 struct ata_queued_cmd *qc; 1377 unsigned int tag, preempted_tag; 1378 u32 preempted_sactive, preempted_qc_active; 1379 DECLARE_COMPLETION_ONSTACK(wait); 1380 unsigned long flags; 1381 unsigned int err_mask; 1382 int rc; 1383 1384 spin_lock_irqsave(ap->lock, flags); 1385 1386 /* no internal command while frozen */ 1387 if (ap->pflags & ATA_PFLAG_FROZEN) { 1388 spin_unlock_irqrestore(ap->lock, flags); 1389 return AC_ERR_SYSTEM; 1390 } 1391 1392 /* initialize internal qc */ 1393 1394 /* XXX: Tag 0 is used for drivers with legacy EH as some 1395 * drivers choke if any other tag is given. This breaks 1396 * ata_tag_internal() test for those drivers. Don't use new 1397 * EH stuff without converting to it. 1398 */ 1399 if (ap->ops->error_handler) 1400 tag = ATA_TAG_INTERNAL; 1401 else 1402 tag = 0; 1403 1404 if (test_and_set_bit(tag, &ap->qc_allocated)) 1405 BUG(); 1406 qc = __ata_qc_from_tag(ap, tag); 1407 1408 qc->tag = tag; 1409 qc->scsicmd = NULL; 1410 qc->ap = ap; 1411 qc->dev = dev; 1412 ata_qc_reinit(qc); 1413 1414 preempted_tag = ap->active_tag; 1415 preempted_sactive = ap->sactive; 1416 preempted_qc_active = ap->qc_active; 1417 ap->active_tag = ATA_TAG_POISON; 1418 ap->sactive = 0; 1419 ap->qc_active = 0; 1420 1421 /* prepare & issue qc */ 1422 qc->tf = *tf; 1423 if (cdb) 1424 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1425 qc->flags |= ATA_QCFLAG_RESULT_TF; 1426 qc->dma_dir = dma_dir; 1427 if (dma_dir != DMA_NONE) { 1428 unsigned int i, buflen = 0; 1429 1430 for (i = 0; i < n_elem; i++) 1431 buflen += sg[i].length; 1432 1433 ata_sg_init(qc, sg, n_elem); 1434 qc->nbytes = buflen; 1435 } 1436 1437 qc->private_data = &wait; 1438 qc->complete_fn = ata_qc_complete_internal; 1439 1440 ata_qc_issue(qc); 1441 1442 spin_unlock_irqrestore(ap->lock, flags); 1443 1444 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1445 1446 ata_port_flush_task(ap); 1447 1448 if (!rc) { 1449 spin_lock_irqsave(ap->lock, flags); 1450 1451 /* We're racing with irq here. If we lose, the 1452 * following test prevents us from completing the qc 1453 * twice. If we win, the port is frozen and will be 1454 * cleaned up by ->post_internal_cmd(). 1455 */ 1456 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1457 qc->err_mask |= AC_ERR_TIMEOUT; 1458 1459 if (ap->ops->error_handler) 1460 ata_port_freeze(ap); 1461 else 1462 ata_qc_complete(qc); 1463 1464 if (ata_msg_warn(ap)) 1465 ata_dev_printk(dev, KERN_WARNING, 1466 "qc timeout (cmd 0x%x)\n", command); 1467 } 1468 1469 spin_unlock_irqrestore(ap->lock, flags); 1470 } 1471 1472 /* do post_internal_cmd */ 1473 if (ap->ops->post_internal_cmd) 1474 ap->ops->post_internal_cmd(qc); 1475 1476 /* perform minimal error analysis */ 1477 if (qc->flags & ATA_QCFLAG_FAILED) { 1478 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1479 qc->err_mask |= AC_ERR_DEV; 1480 1481 if (!qc->err_mask) 1482 qc->err_mask |= AC_ERR_OTHER; 1483 1484 if (qc->err_mask & ~AC_ERR_OTHER) 1485 qc->err_mask &= ~AC_ERR_OTHER; 1486 } 1487 1488 /* finish up */ 1489 spin_lock_irqsave(ap->lock, flags); 1490 1491 *tf = qc->result_tf; 1492 err_mask = qc->err_mask; 1493 1494 ata_qc_free(qc); 1495 ap->active_tag = preempted_tag; 1496 ap->sactive = preempted_sactive; 1497 ap->qc_active = preempted_qc_active; 1498 1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1500 * Until those drivers are fixed, we detect the condition 1501 * here, fail the command with AC_ERR_SYSTEM and reenable the 1502 * port. 1503 * 1504 * Note that this doesn't change any behavior as internal 1505 * command failure results in disabling the device in the 1506 * higher layer for LLDDs without new reset/EH callbacks. 1507 * 1508 * Kill the following code as soon as those drivers are fixed. 1509 */ 1510 if (ap->flags & ATA_FLAG_DISABLED) { 1511 err_mask |= AC_ERR_SYSTEM; 1512 ata_port_probe(ap); 1513 } 1514 1515 spin_unlock_irqrestore(ap->lock, flags); 1516 1517 return err_mask; 1518 } 1519 1520 /** 1521 * ata_exec_internal - execute libata internal command 1522 * @dev: Device to which the command is sent 1523 * @tf: Taskfile registers for the command and the result 1524 * @cdb: CDB for packet command 1525 * @dma_dir: Data tranfer direction of the command 1526 * @buf: Data buffer of the command 1527 * @buflen: Length of data buffer 1528 * 1529 * Wrapper around ata_exec_internal_sg() which takes simple 1530 * buffer instead of sg list. 1531 * 1532 * LOCKING: 1533 * None. Should be called with kernel context, might sleep. 1534 * 1535 * RETURNS: 1536 * Zero on success, AC_ERR_* mask on failure 1537 */ 1538 unsigned ata_exec_internal(struct ata_device *dev, 1539 struct ata_taskfile *tf, const u8 *cdb, 1540 int dma_dir, void *buf, unsigned int buflen) 1541 { 1542 struct scatterlist *psg = NULL, sg; 1543 unsigned int n_elem = 0; 1544 1545 if (dma_dir != DMA_NONE) { 1546 WARN_ON(!buf); 1547 sg_init_one(&sg, buf, buflen); 1548 psg = &sg; 1549 n_elem++; 1550 } 1551 1552 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1553 } 1554 1555 /** 1556 * ata_do_simple_cmd - execute simple internal command 1557 * @dev: Device to which the command is sent 1558 * @cmd: Opcode to execute 1559 * 1560 * Execute a 'simple' command, that only consists of the opcode 1561 * 'cmd' itself, without filling any other registers 1562 * 1563 * LOCKING: 1564 * Kernel thread context (may sleep). 1565 * 1566 * RETURNS: 1567 * Zero on success, AC_ERR_* mask on failure 1568 */ 1569 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1570 { 1571 struct ata_taskfile tf; 1572 1573 ata_tf_init(dev, &tf); 1574 1575 tf.command = cmd; 1576 tf.flags |= ATA_TFLAG_DEVICE; 1577 tf.protocol = ATA_PROT_NODATA; 1578 1579 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1580 } 1581 1582 /** 1583 * ata_pio_need_iordy - check if iordy needed 1584 * @adev: ATA device 1585 * 1586 * Check if the current speed of the device requires IORDY. Used 1587 * by various controllers for chip configuration. 1588 */ 1589 1590 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1591 { 1592 /* Controller doesn't support IORDY. Probably a pointless check 1593 as the caller should know this */ 1594 if (adev->ap->flags & ATA_FLAG_NO_IORDY) 1595 return 0; 1596 /* PIO3 and higher it is mandatory */ 1597 if (adev->pio_mode > XFER_PIO_2) 1598 return 1; 1599 /* We turn it on when possible */ 1600 if (ata_id_has_iordy(adev->id)) 1601 return 1; 1602 return 0; 1603 } 1604 1605 /** 1606 * ata_pio_mask_no_iordy - Return the non IORDY mask 1607 * @adev: ATA device 1608 * 1609 * Compute the highest mode possible if we are not using iordy. Return 1610 * -1 if no iordy mode is available. 1611 */ 1612 1613 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1614 { 1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1616 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1617 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1618 /* Is the speed faster than the drive allows non IORDY ? */ 1619 if (pio) { 1620 /* This is cycle times not frequency - watch the logic! */ 1621 if (pio > 240) /* PIO2 is 240nS per cycle */ 1622 return 3 << ATA_SHIFT_PIO; 1623 return 7 << ATA_SHIFT_PIO; 1624 } 1625 } 1626 return 3 << ATA_SHIFT_PIO; 1627 } 1628 1629 /** 1630 * ata_dev_read_id - Read ID data from the specified device 1631 * @dev: target device 1632 * @p_class: pointer to class of the target device (may be changed) 1633 * @flags: ATA_READID_* flags 1634 * @id: buffer to read IDENTIFY data into 1635 * 1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1639 * for pre-ATA4 drives. 1640 * 1641 * LOCKING: 1642 * Kernel thread context (may sleep) 1643 * 1644 * RETURNS: 1645 * 0 on success, -errno otherwise. 1646 */ 1647 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1648 unsigned int flags, u16 *id) 1649 { 1650 struct ata_port *ap = dev->ap; 1651 unsigned int class = *p_class; 1652 struct ata_taskfile tf; 1653 unsigned int err_mask = 0; 1654 const char *reason; 1655 int tried_spinup = 0; 1656 int rc; 1657 1658 if (ata_msg_ctl(ap)) 1659 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1660 1661 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1662 retry: 1663 ata_tf_init(dev, &tf); 1664 1665 switch (class) { 1666 case ATA_DEV_ATA: 1667 tf.command = ATA_CMD_ID_ATA; 1668 break; 1669 case ATA_DEV_ATAPI: 1670 tf.command = ATA_CMD_ID_ATAPI; 1671 break; 1672 default: 1673 rc = -ENODEV; 1674 reason = "unsupported class"; 1675 goto err_out; 1676 } 1677 1678 tf.protocol = ATA_PROT_PIO; 1679 1680 /* Some devices choke if TF registers contain garbage. Make 1681 * sure those are properly initialized. 1682 */ 1683 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1684 1685 /* Device presence detection is unreliable on some 1686 * controllers. Always poll IDENTIFY if available. 1687 */ 1688 tf.flags |= ATA_TFLAG_POLLING; 1689 1690 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1691 id, sizeof(id[0]) * ATA_ID_WORDS); 1692 if (err_mask) { 1693 if (err_mask & AC_ERR_NODEV_HINT) { 1694 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1695 ap->print_id, dev->devno); 1696 return -ENOENT; 1697 } 1698 1699 rc = -EIO; 1700 reason = "I/O error"; 1701 goto err_out; 1702 } 1703 1704 swap_buf_le16(id, ATA_ID_WORDS); 1705 1706 /* sanity check */ 1707 rc = -EINVAL; 1708 reason = "device reports illegal type"; 1709 1710 if (class == ATA_DEV_ATA) { 1711 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1712 goto err_out; 1713 } else { 1714 if (ata_id_is_ata(id)) 1715 goto err_out; 1716 } 1717 1718 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1719 tried_spinup = 1; 1720 /* 1721 * Drive powered-up in standby mode, and requires a specific 1722 * SET_FEATURES spin-up subcommand before it will accept 1723 * anything other than the original IDENTIFY command. 1724 */ 1725 ata_tf_init(dev, &tf); 1726 tf.command = ATA_CMD_SET_FEATURES; 1727 tf.feature = SETFEATURES_SPINUP; 1728 tf.protocol = ATA_PROT_NODATA; 1729 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1730 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1731 if (err_mask) { 1732 rc = -EIO; 1733 reason = "SPINUP failed"; 1734 goto err_out; 1735 } 1736 /* 1737 * If the drive initially returned incomplete IDENTIFY info, 1738 * we now must reissue the IDENTIFY command. 1739 */ 1740 if (id[2] == 0x37c8) 1741 goto retry; 1742 } 1743 1744 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1745 /* 1746 * The exact sequence expected by certain pre-ATA4 drives is: 1747 * SRST RESET 1748 * IDENTIFY 1749 * INITIALIZE DEVICE PARAMETERS 1750 * anything else.. 1751 * Some drives were very specific about that exact sequence. 1752 */ 1753 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1754 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1755 if (err_mask) { 1756 rc = -EIO; 1757 reason = "INIT_DEV_PARAMS failed"; 1758 goto err_out; 1759 } 1760 1761 /* current CHS translation info (id[53-58]) might be 1762 * changed. reread the identify device info. 1763 */ 1764 flags &= ~ATA_READID_POSTRESET; 1765 goto retry; 1766 } 1767 } 1768 1769 *p_class = class; 1770 1771 return 0; 1772 1773 err_out: 1774 if (ata_msg_warn(ap)) 1775 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1776 "(%s, err_mask=0x%x)\n", reason, err_mask); 1777 return rc; 1778 } 1779 1780 static inline u8 ata_dev_knobble(struct ata_device *dev) 1781 { 1782 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1783 } 1784 1785 static void ata_dev_config_ncq(struct ata_device *dev, 1786 char *desc, size_t desc_sz) 1787 { 1788 struct ata_port *ap = dev->ap; 1789 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1790 1791 if (!ata_id_has_ncq(dev->id)) { 1792 desc[0] = '\0'; 1793 return; 1794 } 1795 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { 1796 snprintf(desc, desc_sz, "NCQ (not used)"); 1797 return; 1798 } 1799 if (ap->flags & ATA_FLAG_NCQ) { 1800 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1801 dev->flags |= ATA_DFLAG_NCQ; 1802 } 1803 1804 if (hdepth >= ddepth) 1805 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1806 else 1807 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1808 } 1809 1810 /** 1811 * ata_dev_configure - Configure the specified ATA/ATAPI device 1812 * @dev: Target device to configure 1813 * 1814 * Configure @dev according to @dev->id. Generic and low-level 1815 * driver specific fixups are also applied. 1816 * 1817 * LOCKING: 1818 * Kernel thread context (may sleep) 1819 * 1820 * RETURNS: 1821 * 0 on success, -errno otherwise 1822 */ 1823 int ata_dev_configure(struct ata_device *dev) 1824 { 1825 struct ata_port *ap = dev->ap; 1826 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; 1827 const u16 *id = dev->id; 1828 unsigned int xfer_mask; 1829 char revbuf[7]; /* XYZ-99\0 */ 1830 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1831 char modelbuf[ATA_ID_PROD_LEN+1]; 1832 int rc; 1833 1834 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1835 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1836 __FUNCTION__); 1837 return 0; 1838 } 1839 1840 if (ata_msg_probe(ap)) 1841 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1842 1843 /* set _SDD */ 1844 rc = ata_acpi_push_id(ap, dev->devno); 1845 if (rc) { 1846 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", 1847 rc); 1848 } 1849 1850 /* retrieve and execute the ATA task file of _GTF */ 1851 ata_acpi_exec_tfs(ap); 1852 1853 /* print device capabilities */ 1854 if (ata_msg_probe(ap)) 1855 ata_dev_printk(dev, KERN_DEBUG, 1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1857 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1858 __FUNCTION__, 1859 id[49], id[82], id[83], id[84], 1860 id[85], id[86], id[87], id[88]); 1861 1862 /* initialize to-be-configured parameters */ 1863 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1864 dev->max_sectors = 0; 1865 dev->cdb_len = 0; 1866 dev->n_sectors = 0; 1867 dev->cylinders = 0; 1868 dev->heads = 0; 1869 dev->sectors = 0; 1870 1871 /* 1872 * common ATA, ATAPI feature tests 1873 */ 1874 1875 /* find max transfer mode; for printk only */ 1876 xfer_mask = ata_id_xfermask(id); 1877 1878 if (ata_msg_probe(ap)) 1879 ata_dump_id(id); 1880 1881 /* ATA-specific feature tests */ 1882 if (dev->class == ATA_DEV_ATA) { 1883 if (ata_id_is_cfa(id)) { 1884 if (id[162] & 1) /* CPRM may make this media unusable */ 1885 ata_dev_printk(dev, KERN_WARNING, 1886 "supports DRM functions and may " 1887 "not be fully accessable.\n"); 1888 snprintf(revbuf, 7, "CFA"); 1889 } 1890 else 1891 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1892 1893 dev->n_sectors = ata_id_n_sectors(id); 1894 dev->n_sectors_boot = dev->n_sectors; 1895 1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1897 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1898 sizeof(fwrevbuf)); 1899 1900 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1901 sizeof(modelbuf)); 1902 1903 if (dev->id[59] & 0x100) 1904 dev->multi_count = dev->id[59] & 0xff; 1905 1906 if (ata_id_has_lba(id)) { 1907 const char *lba_desc; 1908 char ncq_desc[20]; 1909 1910 lba_desc = "LBA"; 1911 dev->flags |= ATA_DFLAG_LBA; 1912 if (ata_id_has_lba48(id)) { 1913 dev->flags |= ATA_DFLAG_LBA48; 1914 lba_desc = "LBA48"; 1915 1916 if (dev->n_sectors >= (1UL << 28) && 1917 ata_id_has_flush_ext(id)) 1918 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1919 } 1920 1921 if (ata_id_hpa_enabled(dev->id)) 1922 dev->n_sectors = ata_hpa_resize(dev); 1923 1924 /* config NCQ */ 1925 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1926 1927 /* print device info to dmesg */ 1928 if (ata_msg_drv(ap) && print_info) { 1929 ata_dev_printk(dev, KERN_INFO, 1930 "%s: %s, %s, max %s\n", 1931 revbuf, modelbuf, fwrevbuf, 1932 ata_mode_string(xfer_mask)); 1933 ata_dev_printk(dev, KERN_INFO, 1934 "%Lu sectors, multi %u: %s %s\n", 1935 (unsigned long long)dev->n_sectors, 1936 dev->multi_count, lba_desc, ncq_desc); 1937 } 1938 } else { 1939 /* CHS */ 1940 1941 /* Default translation */ 1942 dev->cylinders = id[1]; 1943 dev->heads = id[3]; 1944 dev->sectors = id[6]; 1945 1946 if (ata_id_current_chs_valid(id)) { 1947 /* Current CHS translation is valid. */ 1948 dev->cylinders = id[54]; 1949 dev->heads = id[55]; 1950 dev->sectors = id[56]; 1951 } 1952 1953 /* print device info to dmesg */ 1954 if (ata_msg_drv(ap) && print_info) { 1955 ata_dev_printk(dev, KERN_INFO, 1956 "%s: %s, %s, max %s\n", 1957 revbuf, modelbuf, fwrevbuf, 1958 ata_mode_string(xfer_mask)); 1959 ata_dev_printk(dev, KERN_INFO, 1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1961 (unsigned long long)dev->n_sectors, 1962 dev->multi_count, dev->cylinders, 1963 dev->heads, dev->sectors); 1964 } 1965 } 1966 1967 dev->cdb_len = 16; 1968 } 1969 1970 /* ATAPI-specific feature tests */ 1971 else if (dev->class == ATA_DEV_ATAPI) { 1972 char *cdb_intr_string = ""; 1973 1974 rc = atapi_cdb_len(id); 1975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1976 if (ata_msg_warn(ap)) 1977 ata_dev_printk(dev, KERN_WARNING, 1978 "unsupported CDB len\n"); 1979 rc = -EINVAL; 1980 goto err_out_nosup; 1981 } 1982 dev->cdb_len = (unsigned int) rc; 1983 1984 if (ata_id_cdb_intr(dev->id)) { 1985 dev->flags |= ATA_DFLAG_CDB_INTR; 1986 cdb_intr_string = ", CDB intr"; 1987 } 1988 1989 /* print device info to dmesg */ 1990 if (ata_msg_drv(ap) && print_info) 1991 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", 1992 ata_mode_string(xfer_mask), 1993 cdb_intr_string); 1994 } 1995 1996 /* determine max_sectors */ 1997 dev->max_sectors = ATA_MAX_SECTORS; 1998 if (dev->flags & ATA_DFLAG_LBA48) 1999 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2000 2001 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2002 /* Let the user know. We don't want to disallow opens for 2003 rescue purposes, or in case the vendor is just a blithering 2004 idiot */ 2005 if (print_info) { 2006 ata_dev_printk(dev, KERN_WARNING, 2007 "Drive reports diagnostics failure. This may indicate a drive\n"); 2008 ata_dev_printk(dev, KERN_WARNING, 2009 "fault or invalid emulation. Contact drive vendor for information.\n"); 2010 } 2011 } 2012 2013 /* limit bridge transfers to udma5, 200 sectors */ 2014 if (ata_dev_knobble(dev)) { 2015 if (ata_msg_drv(ap) && print_info) 2016 ata_dev_printk(dev, KERN_INFO, 2017 "applying bridge limits\n"); 2018 dev->udma_mask &= ATA_UDMA5; 2019 dev->max_sectors = ATA_MAX_SECTORS; 2020 } 2021 2022 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128) 2023 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2024 dev->max_sectors); 2025 2026 /* limit ATAPI DMA to R/W commands only */ 2027 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY) 2028 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY; 2029 2030 if (ap->ops->dev_config) 2031 ap->ops->dev_config(dev); 2032 2033 if (ata_msg_probe(ap)) 2034 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2035 __FUNCTION__, ata_chk_status(ap)); 2036 return 0; 2037 2038 err_out_nosup: 2039 if (ata_msg_probe(ap)) 2040 ata_dev_printk(dev, KERN_DEBUG, 2041 "%s: EXIT, err\n", __FUNCTION__); 2042 return rc; 2043 } 2044 2045 /** 2046 * ata_cable_40wire - return 40 wire cable type 2047 * @ap: port 2048 * 2049 * Helper method for drivers which want to hardwire 40 wire cable 2050 * detection. 2051 */ 2052 2053 int ata_cable_40wire(struct ata_port *ap) 2054 { 2055 return ATA_CBL_PATA40; 2056 } 2057 2058 /** 2059 * ata_cable_80wire - return 80 wire cable type 2060 * @ap: port 2061 * 2062 * Helper method for drivers which want to hardwire 80 wire cable 2063 * detection. 2064 */ 2065 2066 int ata_cable_80wire(struct ata_port *ap) 2067 { 2068 return ATA_CBL_PATA80; 2069 } 2070 2071 /** 2072 * ata_cable_unknown - return unknown PATA cable. 2073 * @ap: port 2074 * 2075 * Helper method for drivers which have no PATA cable detection. 2076 */ 2077 2078 int ata_cable_unknown(struct ata_port *ap) 2079 { 2080 return ATA_CBL_PATA_UNK; 2081 } 2082 2083 /** 2084 * ata_cable_sata - return SATA cable type 2085 * @ap: port 2086 * 2087 * Helper method for drivers which have SATA cables 2088 */ 2089 2090 int ata_cable_sata(struct ata_port *ap) 2091 { 2092 return ATA_CBL_SATA; 2093 } 2094 2095 /** 2096 * ata_bus_probe - Reset and probe ATA bus 2097 * @ap: Bus to probe 2098 * 2099 * Master ATA bus probing function. Initiates a hardware-dependent 2100 * bus reset, then attempts to identify any devices found on 2101 * the bus. 2102 * 2103 * LOCKING: 2104 * PCI/etc. bus probe sem. 2105 * 2106 * RETURNS: 2107 * Zero on success, negative errno otherwise. 2108 */ 2109 2110 int ata_bus_probe(struct ata_port *ap) 2111 { 2112 unsigned int classes[ATA_MAX_DEVICES]; 2113 int tries[ATA_MAX_DEVICES]; 2114 int i, rc; 2115 struct ata_device *dev; 2116 2117 ata_port_probe(ap); 2118 2119 for (i = 0; i < ATA_MAX_DEVICES; i++) 2120 tries[i] = ATA_PROBE_MAX_TRIES; 2121 2122 retry: 2123 /* reset and determine device classes */ 2124 ap->ops->phy_reset(ap); 2125 2126 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2127 dev = &ap->device[i]; 2128 2129 if (!(ap->flags & ATA_FLAG_DISABLED) && 2130 dev->class != ATA_DEV_UNKNOWN) 2131 classes[dev->devno] = dev->class; 2132 else 2133 classes[dev->devno] = ATA_DEV_NONE; 2134 2135 dev->class = ATA_DEV_UNKNOWN; 2136 } 2137 2138 ata_port_probe(ap); 2139 2140 /* after the reset the device state is PIO 0 and the controller 2141 state is undefined. Record the mode */ 2142 2143 for (i = 0; i < ATA_MAX_DEVICES; i++) 2144 ap->device[i].pio_mode = XFER_PIO_0; 2145 2146 /* read IDENTIFY page and configure devices. We have to do the identify 2147 specific sequence bass-ackwards so that PDIAG- is released by 2148 the slave device */ 2149 2150 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 2151 dev = &ap->device[i]; 2152 2153 if (tries[i]) 2154 dev->class = classes[i]; 2155 2156 if (!ata_dev_enabled(dev)) 2157 continue; 2158 2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2160 dev->id); 2161 if (rc) 2162 goto fail; 2163 } 2164 2165 /* Now ask for the cable type as PDIAG- should have been released */ 2166 if (ap->ops->cable_detect) 2167 ap->cbl = ap->ops->cable_detect(ap); 2168 2169 /* After the identify sequence we can now set up the devices. We do 2170 this in the normal order so that the user doesn't get confused */ 2171 2172 for(i = 0; i < ATA_MAX_DEVICES; i++) { 2173 dev = &ap->device[i]; 2174 if (!ata_dev_enabled(dev)) 2175 continue; 2176 2177 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 2178 rc = ata_dev_configure(dev); 2179 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2180 if (rc) 2181 goto fail; 2182 } 2183 2184 /* configure transfer mode */ 2185 rc = ata_set_mode(ap, &dev); 2186 if (rc) 2187 goto fail; 2188 2189 for (i = 0; i < ATA_MAX_DEVICES; i++) 2190 if (ata_dev_enabled(&ap->device[i])) 2191 return 0; 2192 2193 /* no device present, disable port */ 2194 ata_port_disable(ap); 2195 ap->ops->port_disable(ap); 2196 return -ENODEV; 2197 2198 fail: 2199 tries[dev->devno]--; 2200 2201 switch (rc) { 2202 case -EINVAL: 2203 /* eeek, something went very wrong, give up */ 2204 tries[dev->devno] = 0; 2205 break; 2206 2207 case -ENODEV: 2208 /* give it just one more chance */ 2209 tries[dev->devno] = min(tries[dev->devno], 1); 2210 case -EIO: 2211 if (tries[dev->devno] == 1) { 2212 /* This is the last chance, better to slow 2213 * down than lose it. 2214 */ 2215 sata_down_spd_limit(ap); 2216 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2217 } 2218 } 2219 2220 if (!tries[dev->devno]) 2221 ata_dev_disable(dev); 2222 2223 goto retry; 2224 } 2225 2226 /** 2227 * ata_port_probe - Mark port as enabled 2228 * @ap: Port for which we indicate enablement 2229 * 2230 * Modify @ap data structure such that the system 2231 * thinks that the entire port is enabled. 2232 * 2233 * LOCKING: host lock, or some other form of 2234 * serialization. 2235 */ 2236 2237 void ata_port_probe(struct ata_port *ap) 2238 { 2239 ap->flags &= ~ATA_FLAG_DISABLED; 2240 } 2241 2242 /** 2243 * sata_print_link_status - Print SATA link status 2244 * @ap: SATA port to printk link status about 2245 * 2246 * This function prints link speed and status of a SATA link. 2247 * 2248 * LOCKING: 2249 * None. 2250 */ 2251 void sata_print_link_status(struct ata_port *ap) 2252 { 2253 u32 sstatus, scontrol, tmp; 2254 2255 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 2256 return; 2257 sata_scr_read(ap, SCR_CONTROL, &scontrol); 2258 2259 if (ata_port_online(ap)) { 2260 tmp = (sstatus >> 4) & 0xf; 2261 ata_port_printk(ap, KERN_INFO, 2262 "SATA link up %s (SStatus %X SControl %X)\n", 2263 sata_spd_string(tmp), sstatus, scontrol); 2264 } else { 2265 ata_port_printk(ap, KERN_INFO, 2266 "SATA link down (SStatus %X SControl %X)\n", 2267 sstatus, scontrol); 2268 } 2269 } 2270 2271 /** 2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2273 * @ap: SATA port associated with target SATA PHY. 2274 * 2275 * This function issues commands to standard SATA Sxxx 2276 * PHY registers, to wake up the phy (and device), and 2277 * clear any reset condition. 2278 * 2279 * LOCKING: 2280 * PCI/etc. bus probe sem. 2281 * 2282 */ 2283 void __sata_phy_reset(struct ata_port *ap) 2284 { 2285 u32 sstatus; 2286 unsigned long timeout = jiffies + (HZ * 5); 2287 2288 if (ap->flags & ATA_FLAG_SATA_RESET) { 2289 /* issue phy wake/reset */ 2290 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2291 /* Couldn't find anything in SATA I/II specs, but 2292 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2293 mdelay(1); 2294 } 2295 /* phy wake/clear reset */ 2296 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2297 2298 /* wait for phy to become ready, if necessary */ 2299 do { 2300 msleep(200); 2301 sata_scr_read(ap, SCR_STATUS, &sstatus); 2302 if ((sstatus & 0xf) != 1) 2303 break; 2304 } while (time_before(jiffies, timeout)); 2305 2306 /* print link status */ 2307 sata_print_link_status(ap); 2308 2309 /* TODO: phy layer with polling, timeouts, etc. */ 2310 if (!ata_port_offline(ap)) 2311 ata_port_probe(ap); 2312 else 2313 ata_port_disable(ap); 2314 2315 if (ap->flags & ATA_FLAG_DISABLED) 2316 return; 2317 2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2319 ata_port_disable(ap); 2320 return; 2321 } 2322 2323 ap->cbl = ATA_CBL_SATA; 2324 } 2325 2326 /** 2327 * sata_phy_reset - Reset SATA bus. 2328 * @ap: SATA port associated with target SATA PHY. 2329 * 2330 * This function resets the SATA bus, and then probes 2331 * the bus for devices. 2332 * 2333 * LOCKING: 2334 * PCI/etc. bus probe sem. 2335 * 2336 */ 2337 void sata_phy_reset(struct ata_port *ap) 2338 { 2339 __sata_phy_reset(ap); 2340 if (ap->flags & ATA_FLAG_DISABLED) 2341 return; 2342 ata_bus_reset(ap); 2343 } 2344 2345 /** 2346 * ata_dev_pair - return other device on cable 2347 * @adev: device 2348 * 2349 * Obtain the other device on the same cable, or if none is 2350 * present NULL is returned 2351 */ 2352 2353 struct ata_device *ata_dev_pair(struct ata_device *adev) 2354 { 2355 struct ata_port *ap = adev->ap; 2356 struct ata_device *pair = &ap->device[1 - adev->devno]; 2357 if (!ata_dev_enabled(pair)) 2358 return NULL; 2359 return pair; 2360 } 2361 2362 /** 2363 * ata_port_disable - Disable port. 2364 * @ap: Port to be disabled. 2365 * 2366 * Modify @ap data structure such that the system 2367 * thinks that the entire port is disabled, and should 2368 * never attempt to probe or communicate with devices 2369 * on this port. 2370 * 2371 * LOCKING: host lock, or some other form of 2372 * serialization. 2373 */ 2374 2375 void ata_port_disable(struct ata_port *ap) 2376 { 2377 ap->device[0].class = ATA_DEV_NONE; 2378 ap->device[1].class = ATA_DEV_NONE; 2379 ap->flags |= ATA_FLAG_DISABLED; 2380 } 2381 2382 /** 2383 * sata_down_spd_limit - adjust SATA spd limit downward 2384 * @ap: Port to adjust SATA spd limit for 2385 * 2386 * Adjust SATA spd limit of @ap downward. Note that this 2387 * function only adjusts the limit. The change must be applied 2388 * using sata_set_spd(). 2389 * 2390 * LOCKING: 2391 * Inherited from caller. 2392 * 2393 * RETURNS: 2394 * 0 on success, negative errno on failure 2395 */ 2396 int sata_down_spd_limit(struct ata_port *ap) 2397 { 2398 u32 sstatus, spd, mask; 2399 int rc, highbit; 2400 2401 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2402 if (rc) 2403 return rc; 2404 2405 mask = ap->sata_spd_limit; 2406 if (mask <= 1) 2407 return -EINVAL; 2408 highbit = fls(mask) - 1; 2409 mask &= ~(1 << highbit); 2410 2411 spd = (sstatus >> 4) & 0xf; 2412 if (spd <= 1) 2413 return -EINVAL; 2414 spd--; 2415 mask &= (1 << spd) - 1; 2416 if (!mask) 2417 return -EINVAL; 2418 2419 ap->sata_spd_limit = mask; 2420 2421 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2422 sata_spd_string(fls(mask))); 2423 2424 return 0; 2425 } 2426 2427 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2428 { 2429 u32 spd, limit; 2430 2431 if (ap->sata_spd_limit == UINT_MAX) 2432 limit = 0; 2433 else 2434 limit = fls(ap->sata_spd_limit); 2435 2436 spd = (*scontrol >> 4) & 0xf; 2437 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2438 2439 return spd != limit; 2440 } 2441 2442 /** 2443 * sata_set_spd_needed - is SATA spd configuration needed 2444 * @ap: Port in question 2445 * 2446 * Test whether the spd limit in SControl matches 2447 * @ap->sata_spd_limit. This function is used to determine 2448 * whether hardreset is necessary to apply SATA spd 2449 * configuration. 2450 * 2451 * LOCKING: 2452 * Inherited from caller. 2453 * 2454 * RETURNS: 2455 * 1 if SATA spd configuration is needed, 0 otherwise. 2456 */ 2457 int sata_set_spd_needed(struct ata_port *ap) 2458 { 2459 u32 scontrol; 2460 2461 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2462 return 0; 2463 2464 return __sata_set_spd_needed(ap, &scontrol); 2465 } 2466 2467 /** 2468 * sata_set_spd - set SATA spd according to spd limit 2469 * @ap: Port to set SATA spd for 2470 * 2471 * Set SATA spd of @ap according to sata_spd_limit. 2472 * 2473 * LOCKING: 2474 * Inherited from caller. 2475 * 2476 * RETURNS: 2477 * 0 if spd doesn't need to be changed, 1 if spd has been 2478 * changed. Negative errno if SCR registers are inaccessible. 2479 */ 2480 int sata_set_spd(struct ata_port *ap) 2481 { 2482 u32 scontrol; 2483 int rc; 2484 2485 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2486 return rc; 2487 2488 if (!__sata_set_spd_needed(ap, &scontrol)) 2489 return 0; 2490 2491 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2492 return rc; 2493 2494 return 1; 2495 } 2496 2497 /* 2498 * This mode timing computation functionality is ported over from 2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2500 */ 2501 /* 2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2504 * for UDMA6, which is currently supported only by Maxtor drives. 2505 * 2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2507 */ 2508 2509 static const struct ata_timing ata_timing[] = { 2510 2511 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2512 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2513 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2514 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2515 2516 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2517 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2518 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2519 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2520 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2521 2522 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2523 2524 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2525 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2526 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2527 2528 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2529 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2530 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2531 2532 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2533 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2534 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2535 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2536 2537 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2538 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2539 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2540 2541 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2542 2543 { 0xFF } 2544 }; 2545 2546 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2547 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2548 2549 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2550 { 2551 q->setup = EZ(t->setup * 1000, T); 2552 q->act8b = EZ(t->act8b * 1000, T); 2553 q->rec8b = EZ(t->rec8b * 1000, T); 2554 q->cyc8b = EZ(t->cyc8b * 1000, T); 2555 q->active = EZ(t->active * 1000, T); 2556 q->recover = EZ(t->recover * 1000, T); 2557 q->cycle = EZ(t->cycle * 1000, T); 2558 q->udma = EZ(t->udma * 1000, UT); 2559 } 2560 2561 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2562 struct ata_timing *m, unsigned int what) 2563 { 2564 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2565 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2566 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2567 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2568 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2569 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2570 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2571 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2572 } 2573 2574 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2575 { 2576 const struct ata_timing *t; 2577 2578 for (t = ata_timing; t->mode != speed; t++) 2579 if (t->mode == 0xFF) 2580 return NULL; 2581 return t; 2582 } 2583 2584 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2585 struct ata_timing *t, int T, int UT) 2586 { 2587 const struct ata_timing *s; 2588 struct ata_timing p; 2589 2590 /* 2591 * Find the mode. 2592 */ 2593 2594 if (!(s = ata_timing_find_mode(speed))) 2595 return -EINVAL; 2596 2597 memcpy(t, s, sizeof(*s)); 2598 2599 /* 2600 * If the drive is an EIDE drive, it can tell us it needs extended 2601 * PIO/MW_DMA cycle timing. 2602 */ 2603 2604 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2605 memset(&p, 0, sizeof(p)); 2606 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2607 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2608 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2609 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2610 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2611 } 2612 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2613 } 2614 2615 /* 2616 * Convert the timing to bus clock counts. 2617 */ 2618 2619 ata_timing_quantize(t, t, T, UT); 2620 2621 /* 2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2623 * S.M.A.R.T * and some other commands. We have to ensure that the 2624 * DMA cycle timing is slower/equal than the fastest PIO timing. 2625 */ 2626 2627 if (speed > XFER_PIO_6) { 2628 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2629 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2630 } 2631 2632 /* 2633 * Lengthen active & recovery time so that cycle time is correct. 2634 */ 2635 2636 if (t->act8b + t->rec8b < t->cyc8b) { 2637 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2638 t->rec8b = t->cyc8b - t->act8b; 2639 } 2640 2641 if (t->active + t->recover < t->cycle) { 2642 t->active += (t->cycle - (t->active + t->recover)) / 2; 2643 t->recover = t->cycle - t->active; 2644 } 2645 2646 /* In a few cases quantisation may produce enough errors to 2647 leave t->cycle too low for the sum of active and recovery 2648 if so we must correct this */ 2649 if (t->active + t->recover > t->cycle) 2650 t->cycle = t->active + t->recover; 2651 2652 return 0; 2653 } 2654 2655 /** 2656 * ata_down_xfermask_limit - adjust dev xfer masks downward 2657 * @dev: Device to adjust xfer masks 2658 * @sel: ATA_DNXFER_* selector 2659 * 2660 * Adjust xfer masks of @dev downward. Note that this function 2661 * does not apply the change. Invoking ata_set_mode() afterwards 2662 * will apply the limit. 2663 * 2664 * LOCKING: 2665 * Inherited from caller. 2666 * 2667 * RETURNS: 2668 * 0 on success, negative errno on failure 2669 */ 2670 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2671 { 2672 char buf[32]; 2673 unsigned int orig_mask, xfer_mask; 2674 unsigned int pio_mask, mwdma_mask, udma_mask; 2675 int quiet, highbit; 2676 2677 quiet = !!(sel & ATA_DNXFER_QUIET); 2678 sel &= ~ATA_DNXFER_QUIET; 2679 2680 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2681 dev->mwdma_mask, 2682 dev->udma_mask); 2683 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2684 2685 switch (sel) { 2686 case ATA_DNXFER_PIO: 2687 highbit = fls(pio_mask) - 1; 2688 pio_mask &= ~(1 << highbit); 2689 break; 2690 2691 case ATA_DNXFER_DMA: 2692 if (udma_mask) { 2693 highbit = fls(udma_mask) - 1; 2694 udma_mask &= ~(1 << highbit); 2695 if (!udma_mask) 2696 return -ENOENT; 2697 } else if (mwdma_mask) { 2698 highbit = fls(mwdma_mask) - 1; 2699 mwdma_mask &= ~(1 << highbit); 2700 if (!mwdma_mask) 2701 return -ENOENT; 2702 } 2703 break; 2704 2705 case ATA_DNXFER_40C: 2706 udma_mask &= ATA_UDMA_MASK_40C; 2707 break; 2708 2709 case ATA_DNXFER_FORCE_PIO0: 2710 pio_mask &= 1; 2711 case ATA_DNXFER_FORCE_PIO: 2712 mwdma_mask = 0; 2713 udma_mask = 0; 2714 break; 2715 2716 default: 2717 BUG(); 2718 } 2719 2720 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2721 2722 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2723 return -ENOENT; 2724 2725 if (!quiet) { 2726 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2727 snprintf(buf, sizeof(buf), "%s:%s", 2728 ata_mode_string(xfer_mask), 2729 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2730 else 2731 snprintf(buf, sizeof(buf), "%s", 2732 ata_mode_string(xfer_mask)); 2733 2734 ata_dev_printk(dev, KERN_WARNING, 2735 "limiting speed to %s\n", buf); 2736 } 2737 2738 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2739 &dev->udma_mask); 2740 2741 return 0; 2742 } 2743 2744 static int ata_dev_set_mode(struct ata_device *dev) 2745 { 2746 struct ata_eh_context *ehc = &dev->ap->eh_context; 2747 unsigned int err_mask; 2748 int rc; 2749 2750 dev->flags &= ~ATA_DFLAG_PIO; 2751 if (dev->xfer_shift == ATA_SHIFT_PIO) 2752 dev->flags |= ATA_DFLAG_PIO; 2753 2754 err_mask = ata_dev_set_xfermode(dev); 2755 /* Old CFA may refuse this command, which is just fine */ 2756 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2757 err_mask &= ~AC_ERR_DEV; 2758 2759 if (err_mask) { 2760 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2761 "(err_mask=0x%x)\n", err_mask); 2762 return -EIO; 2763 } 2764 2765 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2766 rc = ata_dev_revalidate(dev, 0); 2767 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2768 if (rc) 2769 return rc; 2770 2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2772 dev->xfer_shift, (int)dev->xfer_mode); 2773 2774 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2775 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2776 return 0; 2777 } 2778 2779 /** 2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2781 * @ap: port on which timings will be programmed 2782 * @r_failed_dev: out paramter for failed device 2783 * 2784 * Standard implementation of the function used to tune and set 2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2786 * ata_dev_set_mode() fails, pointer to the failing device is 2787 * returned in @r_failed_dev. 2788 * 2789 * LOCKING: 2790 * PCI/etc. bus probe sem. 2791 * 2792 * RETURNS: 2793 * 0 on success, negative errno otherwise 2794 */ 2795 2796 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2797 { 2798 struct ata_device *dev; 2799 int i, rc = 0, used_dma = 0, found = 0; 2800 2801 2802 /* step 1: calculate xfer_mask */ 2803 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2804 unsigned int pio_mask, dma_mask; 2805 2806 dev = &ap->device[i]; 2807 2808 if (!ata_dev_enabled(dev)) 2809 continue; 2810 2811 ata_dev_xfermask(dev); 2812 2813 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2814 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2815 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2816 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2817 2818 found = 1; 2819 if (dev->dma_mode) 2820 used_dma = 1; 2821 } 2822 if (!found) 2823 goto out; 2824 2825 /* step 2: always set host PIO timings */ 2826 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2827 dev = &ap->device[i]; 2828 if (!ata_dev_enabled(dev)) 2829 continue; 2830 2831 if (!dev->pio_mode) { 2832 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2833 rc = -EINVAL; 2834 goto out; 2835 } 2836 2837 dev->xfer_mode = dev->pio_mode; 2838 dev->xfer_shift = ATA_SHIFT_PIO; 2839 if (ap->ops->set_piomode) 2840 ap->ops->set_piomode(ap, dev); 2841 } 2842 2843 /* step 3: set host DMA timings */ 2844 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2845 dev = &ap->device[i]; 2846 2847 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2848 continue; 2849 2850 dev->xfer_mode = dev->dma_mode; 2851 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2852 if (ap->ops->set_dmamode) 2853 ap->ops->set_dmamode(ap, dev); 2854 } 2855 2856 /* step 4: update devices' xfer mode */ 2857 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2858 dev = &ap->device[i]; 2859 2860 /* don't update suspended devices' xfer mode */ 2861 if (!ata_dev_ready(dev)) 2862 continue; 2863 2864 rc = ata_dev_set_mode(dev); 2865 if (rc) 2866 goto out; 2867 } 2868 2869 /* Record simplex status. If we selected DMA then the other 2870 * host channels are not permitted to do so. 2871 */ 2872 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2873 ap->host->simplex_claimed = ap; 2874 2875 /* step5: chip specific finalisation */ 2876 if (ap->ops->post_set_mode) 2877 ap->ops->post_set_mode(ap); 2878 out: 2879 if (rc) 2880 *r_failed_dev = dev; 2881 return rc; 2882 } 2883 2884 /** 2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2886 * @ap: port on which timings will be programmed 2887 * @r_failed_dev: out paramter for failed device 2888 * 2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2890 * ata_set_mode() fails, pointer to the failing device is 2891 * returned in @r_failed_dev. 2892 * 2893 * LOCKING: 2894 * PCI/etc. bus probe sem. 2895 * 2896 * RETURNS: 2897 * 0 on success, negative errno otherwise 2898 */ 2899 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2900 { 2901 /* has private set_mode? */ 2902 if (ap->ops->set_mode) 2903 return ap->ops->set_mode(ap, r_failed_dev); 2904 return ata_do_set_mode(ap, r_failed_dev); 2905 } 2906 2907 /** 2908 * ata_tf_to_host - issue ATA taskfile to host controller 2909 * @ap: port to which command is being issued 2910 * @tf: ATA taskfile register set 2911 * 2912 * Issues ATA taskfile register set to ATA host controller, 2913 * with proper synchronization with interrupt handler and 2914 * other threads. 2915 * 2916 * LOCKING: 2917 * spin_lock_irqsave(host lock) 2918 */ 2919 2920 static inline void ata_tf_to_host(struct ata_port *ap, 2921 const struct ata_taskfile *tf) 2922 { 2923 ap->ops->tf_load(ap, tf); 2924 ap->ops->exec_command(ap, tf); 2925 } 2926 2927 /** 2928 * ata_busy_sleep - sleep until BSY clears, or timeout 2929 * @ap: port containing status register to be polled 2930 * @tmout_pat: impatience timeout 2931 * @tmout: overall timeout 2932 * 2933 * Sleep until ATA Status register bit BSY clears, 2934 * or a timeout occurs. 2935 * 2936 * LOCKING: 2937 * Kernel thread context (may sleep). 2938 * 2939 * RETURNS: 2940 * 0 on success, -errno otherwise. 2941 */ 2942 int ata_busy_sleep(struct ata_port *ap, 2943 unsigned long tmout_pat, unsigned long tmout) 2944 { 2945 unsigned long timer_start, timeout; 2946 u8 status; 2947 2948 status = ata_busy_wait(ap, ATA_BUSY, 300); 2949 timer_start = jiffies; 2950 timeout = timer_start + tmout_pat; 2951 while (status != 0xff && (status & ATA_BUSY) && 2952 time_before(jiffies, timeout)) { 2953 msleep(50); 2954 status = ata_busy_wait(ap, ATA_BUSY, 3); 2955 } 2956 2957 if (status != 0xff && (status & ATA_BUSY)) 2958 ata_port_printk(ap, KERN_WARNING, 2959 "port is slow to respond, please be patient " 2960 "(Status 0x%x)\n", status); 2961 2962 timeout = timer_start + tmout; 2963 while (status != 0xff && (status & ATA_BUSY) && 2964 time_before(jiffies, timeout)) { 2965 msleep(50); 2966 status = ata_chk_status(ap); 2967 } 2968 2969 if (status == 0xff) 2970 return -ENODEV; 2971 2972 if (status & ATA_BUSY) { 2973 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2974 "(%lu secs, Status 0x%x)\n", 2975 tmout / HZ, status); 2976 return -EBUSY; 2977 } 2978 2979 return 0; 2980 } 2981 2982 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) 2983 { 2984 struct ata_ioports *ioaddr = &ap->ioaddr; 2985 unsigned int dev0 = devmask & (1 << 0); 2986 unsigned int dev1 = devmask & (1 << 1); 2987 unsigned long timeout; 2988 2989 /* if device 0 was found in ata_devchk, wait for its 2990 * BSY bit to clear 2991 */ 2992 if (dev0) 2993 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2994 2995 /* if device 1 was found in ata_devchk, wait for 2996 * register access, then wait for BSY to clear 2997 */ 2998 timeout = jiffies + ATA_TMOUT_BOOT; 2999 while (dev1) { 3000 u8 nsect, lbal; 3001 3002 ap->ops->dev_select(ap, 1); 3003 nsect = ioread8(ioaddr->nsect_addr); 3004 lbal = ioread8(ioaddr->lbal_addr); 3005 if ((nsect == 1) && (lbal == 1)) 3006 break; 3007 if (time_after(jiffies, timeout)) { 3008 dev1 = 0; 3009 break; 3010 } 3011 msleep(50); /* give drive a breather */ 3012 } 3013 if (dev1) 3014 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 3015 3016 /* is all this really necessary? */ 3017 ap->ops->dev_select(ap, 0); 3018 if (dev1) 3019 ap->ops->dev_select(ap, 1); 3020 if (dev0) 3021 ap->ops->dev_select(ap, 0); 3022 } 3023 3024 static unsigned int ata_bus_softreset(struct ata_port *ap, 3025 unsigned int devmask) 3026 { 3027 struct ata_ioports *ioaddr = &ap->ioaddr; 3028 3029 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3030 3031 /* software reset. causes dev0 to be selected */ 3032 iowrite8(ap->ctl, ioaddr->ctl_addr); 3033 udelay(20); /* FIXME: flush */ 3034 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3035 udelay(20); /* FIXME: flush */ 3036 iowrite8(ap->ctl, ioaddr->ctl_addr); 3037 3038 /* spec mandates ">= 2ms" before checking status. 3039 * We wait 150ms, because that was the magic delay used for 3040 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3041 * between when the ATA command register is written, and then 3042 * status is checked. Because waiting for "a while" before 3043 * checking status is fine, post SRST, we perform this magic 3044 * delay here as well. 3045 * 3046 * Old drivers/ide uses the 2mS rule and then waits for ready 3047 */ 3048 msleep(150); 3049 3050 /* Before we perform post reset processing we want to see if 3051 * the bus shows 0xFF because the odd clown forgets the D7 3052 * pulldown resistor. 3053 */ 3054 if (ata_check_status(ap) == 0xFF) 3055 return 0; 3056 3057 ata_bus_post_reset(ap, devmask); 3058 3059 return 0; 3060 } 3061 3062 /** 3063 * ata_bus_reset - reset host port and associated ATA channel 3064 * @ap: port to reset 3065 * 3066 * This is typically the first time we actually start issuing 3067 * commands to the ATA channel. We wait for BSY to clear, then 3068 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3069 * result. Determine what devices, if any, are on the channel 3070 * by looking at the device 0/1 error register. Look at the signature 3071 * stored in each device's taskfile registers, to determine if 3072 * the device is ATA or ATAPI. 3073 * 3074 * LOCKING: 3075 * PCI/etc. bus probe sem. 3076 * Obtains host lock. 3077 * 3078 * SIDE EFFECTS: 3079 * Sets ATA_FLAG_DISABLED if bus reset fails. 3080 */ 3081 3082 void ata_bus_reset(struct ata_port *ap) 3083 { 3084 struct ata_ioports *ioaddr = &ap->ioaddr; 3085 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3086 u8 err; 3087 unsigned int dev0, dev1 = 0, devmask = 0; 3088 3089 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3090 3091 /* determine if device 0/1 are present */ 3092 if (ap->flags & ATA_FLAG_SATA_RESET) 3093 dev0 = 1; 3094 else { 3095 dev0 = ata_devchk(ap, 0); 3096 if (slave_possible) 3097 dev1 = ata_devchk(ap, 1); 3098 } 3099 3100 if (dev0) 3101 devmask |= (1 << 0); 3102 if (dev1) 3103 devmask |= (1 << 1); 3104 3105 /* select device 0 again */ 3106 ap->ops->dev_select(ap, 0); 3107 3108 /* issue bus reset */ 3109 if (ap->flags & ATA_FLAG_SRST) 3110 if (ata_bus_softreset(ap, devmask)) 3111 goto err_out; 3112 3113 /* 3114 * determine by signature whether we have ATA or ATAPI devices 3115 */ 3116 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 3117 if ((slave_possible) && (err != 0x81)) 3118 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 3119 3120 /* re-enable interrupts */ 3121 ap->ops->irq_on(ap); 3122 3123 /* is double-select really necessary? */ 3124 if (ap->device[1].class != ATA_DEV_NONE) 3125 ap->ops->dev_select(ap, 1); 3126 if (ap->device[0].class != ATA_DEV_NONE) 3127 ap->ops->dev_select(ap, 0); 3128 3129 /* if no devices were detected, disable this port */ 3130 if ((ap->device[0].class == ATA_DEV_NONE) && 3131 (ap->device[1].class == ATA_DEV_NONE)) 3132 goto err_out; 3133 3134 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3135 /* set up device control for ATA_FLAG_SATA_RESET */ 3136 iowrite8(ap->ctl, ioaddr->ctl_addr); 3137 } 3138 3139 DPRINTK("EXIT\n"); 3140 return; 3141 3142 err_out: 3143 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3144 ap->ops->port_disable(ap); 3145 3146 DPRINTK("EXIT\n"); 3147 } 3148 3149 /** 3150 * sata_phy_debounce - debounce SATA phy status 3151 * @ap: ATA port to debounce SATA phy status for 3152 * @params: timing parameters { interval, duratinon, timeout } in msec 3153 * 3154 * Make sure SStatus of @ap reaches stable state, determined by 3155 * holding the same value where DET is not 1 for @duration polled 3156 * every @interval, before @timeout. Timeout constraints the 3157 * beginning of the stable state. Because, after hot unplugging, 3158 * DET gets stuck at 1 on some controllers, this functions waits 3159 * until timeout then returns 0 if DET is stable at 1. 3160 * 3161 * LOCKING: 3162 * Kernel thread context (may sleep) 3163 * 3164 * RETURNS: 3165 * 0 on success, -errno on failure. 3166 */ 3167 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params) 3168 { 3169 unsigned long interval_msec = params[0]; 3170 unsigned long duration = params[1] * HZ / 1000; 3171 unsigned long timeout = jiffies + params[2] * HZ / 1000; 3172 unsigned long last_jiffies; 3173 u32 last, cur; 3174 int rc; 3175 3176 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3177 return rc; 3178 cur &= 0xf; 3179 3180 last = cur; 3181 last_jiffies = jiffies; 3182 3183 while (1) { 3184 msleep(interval_msec); 3185 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3186 return rc; 3187 cur &= 0xf; 3188 3189 /* DET stable? */ 3190 if (cur == last) { 3191 if (cur == 1 && time_before(jiffies, timeout)) 3192 continue; 3193 if (time_after(jiffies, last_jiffies + duration)) 3194 return 0; 3195 continue; 3196 } 3197 3198 /* unstable, start over */ 3199 last = cur; 3200 last_jiffies = jiffies; 3201 3202 /* check timeout */ 3203 if (time_after(jiffies, timeout)) 3204 return -EBUSY; 3205 } 3206 } 3207 3208 /** 3209 * sata_phy_resume - resume SATA phy 3210 * @ap: ATA port to resume SATA phy for 3211 * @params: timing parameters { interval, duratinon, timeout } in msec 3212 * 3213 * Resume SATA phy of @ap and debounce it. 3214 * 3215 * LOCKING: 3216 * Kernel thread context (may sleep) 3217 * 3218 * RETURNS: 3219 * 0 on success, -errno on failure. 3220 */ 3221 int sata_phy_resume(struct ata_port *ap, const unsigned long *params) 3222 { 3223 u32 scontrol; 3224 int rc; 3225 3226 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3227 return rc; 3228 3229 scontrol = (scontrol & 0x0f0) | 0x300; 3230 3231 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3232 return rc; 3233 3234 /* Some PHYs react badly if SStatus is pounded immediately 3235 * after resuming. Delay 200ms before debouncing. 3236 */ 3237 msleep(200); 3238 3239 return sata_phy_debounce(ap, params); 3240 } 3241 3242 static void ata_wait_spinup(struct ata_port *ap) 3243 { 3244 struct ata_eh_context *ehc = &ap->eh_context; 3245 unsigned long end, secs; 3246 int rc; 3247 3248 /* first, debounce phy if SATA */ 3249 if (ap->cbl == ATA_CBL_SATA) { 3250 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug); 3251 3252 /* if debounced successfully and offline, no need to wait */ 3253 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap)) 3254 return; 3255 } 3256 3257 /* okay, let's give the drive time to spin up */ 3258 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000; 3259 secs = ((end - jiffies) + HZ - 1) / HZ; 3260 3261 if (time_after(jiffies, end)) 3262 return; 3263 3264 if (secs > 5) 3265 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up " 3266 "(%lu secs)\n", secs); 3267 3268 schedule_timeout_uninterruptible(end - jiffies); 3269 } 3270 3271 /** 3272 * ata_std_prereset - prepare for reset 3273 * @ap: ATA port to be reset 3274 * 3275 * @ap is about to be reset. Initialize it. 3276 * 3277 * LOCKING: 3278 * Kernel thread context (may sleep) 3279 * 3280 * RETURNS: 3281 * 0 on success, -errno otherwise. 3282 */ 3283 int ata_std_prereset(struct ata_port *ap) 3284 { 3285 struct ata_eh_context *ehc = &ap->eh_context; 3286 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3287 int rc; 3288 3289 /* handle link resume & hotplug spinup */ 3290 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3291 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 3292 ehc->i.action |= ATA_EH_HARDRESET; 3293 3294 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) && 3295 (ap->flags & ATA_FLAG_SKIP_D2H_BSY)) 3296 ata_wait_spinup(ap); 3297 3298 /* if we're about to do hardreset, nothing more to do */ 3299 if (ehc->i.action & ATA_EH_HARDRESET) 3300 return 0; 3301 3302 /* if SATA, resume phy */ 3303 if (ap->cbl == ATA_CBL_SATA) { 3304 rc = sata_phy_resume(ap, timing); 3305 if (rc && rc != -EOPNOTSUPP) { 3306 /* phy resume failed */ 3307 ata_port_printk(ap, KERN_WARNING, "failed to resume " 3308 "link for reset (errno=%d)\n", rc); 3309 return rc; 3310 } 3311 } 3312 3313 /* Wait for !BSY if the controller can wait for the first D2H 3314 * Reg FIS and we don't know that no device is attached. 3315 */ 3316 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) 3317 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 3318 3319 return 0; 3320 } 3321 3322 /** 3323 * ata_std_softreset - reset host port via ATA SRST 3324 * @ap: port to reset 3325 * @classes: resulting classes of attached devices 3326 * 3327 * Reset host port using ATA SRST. 3328 * 3329 * LOCKING: 3330 * Kernel thread context (may sleep) 3331 * 3332 * RETURNS: 3333 * 0 on success, -errno otherwise. 3334 */ 3335 int ata_std_softreset(struct ata_port *ap, unsigned int *classes) 3336 { 3337 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3338 unsigned int devmask = 0, err_mask; 3339 u8 err; 3340 3341 DPRINTK("ENTER\n"); 3342 3343 if (ata_port_offline(ap)) { 3344 classes[0] = ATA_DEV_NONE; 3345 goto out; 3346 } 3347 3348 /* determine if device 0/1 are present */ 3349 if (ata_devchk(ap, 0)) 3350 devmask |= (1 << 0); 3351 if (slave_possible && ata_devchk(ap, 1)) 3352 devmask |= (1 << 1); 3353 3354 /* select device 0 again */ 3355 ap->ops->dev_select(ap, 0); 3356 3357 /* issue bus reset */ 3358 DPRINTK("about to softreset, devmask=%x\n", devmask); 3359 err_mask = ata_bus_softreset(ap, devmask); 3360 if (err_mask) { 3361 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", 3362 err_mask); 3363 return -EIO; 3364 } 3365 3366 /* determine by signature whether we have ATA or ATAPI devices */ 3367 classes[0] = ata_dev_try_classify(ap, 0, &err); 3368 if (slave_possible && err != 0x81) 3369 classes[1] = ata_dev_try_classify(ap, 1, &err); 3370 3371 out: 3372 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3373 return 0; 3374 } 3375 3376 /** 3377 * sata_port_hardreset - reset port via SATA phy reset 3378 * @ap: port to reset 3379 * @timing: timing parameters { interval, duratinon, timeout } in msec 3380 * 3381 * SATA phy-reset host port using DET bits of SControl register. 3382 * 3383 * LOCKING: 3384 * Kernel thread context (may sleep) 3385 * 3386 * RETURNS: 3387 * 0 on success, -errno otherwise. 3388 */ 3389 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing) 3390 { 3391 u32 scontrol; 3392 int rc; 3393 3394 DPRINTK("ENTER\n"); 3395 3396 if (sata_set_spd_needed(ap)) { 3397 /* SATA spec says nothing about how to reconfigure 3398 * spd. To be on the safe side, turn off phy during 3399 * reconfiguration. This works for at least ICH7 AHCI 3400 * and Sil3124. 3401 */ 3402 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3403 goto out; 3404 3405 scontrol = (scontrol & 0x0f0) | 0x304; 3406 3407 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3408 goto out; 3409 3410 sata_set_spd(ap); 3411 } 3412 3413 /* issue phy wake/reset */ 3414 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3415 goto out; 3416 3417 scontrol = (scontrol & 0x0f0) | 0x301; 3418 3419 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3420 goto out; 3421 3422 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3423 * 10.4.2 says at least 1 ms. 3424 */ 3425 msleep(1); 3426 3427 /* bring phy back */ 3428 rc = sata_phy_resume(ap, timing); 3429 out: 3430 DPRINTK("EXIT, rc=%d\n", rc); 3431 return rc; 3432 } 3433 3434 /** 3435 * sata_std_hardreset - reset host port via SATA phy reset 3436 * @ap: port to reset 3437 * @class: resulting class of attached device 3438 * 3439 * SATA phy-reset host port using DET bits of SControl register, 3440 * wait for !BSY and classify the attached device. 3441 * 3442 * LOCKING: 3443 * Kernel thread context (may sleep) 3444 * 3445 * RETURNS: 3446 * 0 on success, -errno otherwise. 3447 */ 3448 int sata_std_hardreset(struct ata_port *ap, unsigned int *class) 3449 { 3450 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3451 int rc; 3452 3453 DPRINTK("ENTER\n"); 3454 3455 /* do hardreset */ 3456 rc = sata_port_hardreset(ap, timing); 3457 if (rc) { 3458 ata_port_printk(ap, KERN_ERR, 3459 "COMRESET failed (errno=%d)\n", rc); 3460 return rc; 3461 } 3462 3463 /* TODO: phy layer with polling, timeouts, etc. */ 3464 if (ata_port_offline(ap)) { 3465 *class = ATA_DEV_NONE; 3466 DPRINTK("EXIT, link offline\n"); 3467 return 0; 3468 } 3469 3470 /* wait a while before checking status, see SRST for more info */ 3471 msleep(150); 3472 3473 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 3474 ata_port_printk(ap, KERN_ERR, 3475 "COMRESET failed (device not ready)\n"); 3476 return -EIO; 3477 } 3478 3479 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3480 3481 *class = ata_dev_try_classify(ap, 0, NULL); 3482 3483 DPRINTK("EXIT, class=%u\n", *class); 3484 return 0; 3485 } 3486 3487 /** 3488 * ata_std_postreset - standard postreset callback 3489 * @ap: the target ata_port 3490 * @classes: classes of attached devices 3491 * 3492 * This function is invoked after a successful reset. Note that 3493 * the device might have been reset more than once using 3494 * different reset methods before postreset is invoked. 3495 * 3496 * LOCKING: 3497 * Kernel thread context (may sleep) 3498 */ 3499 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3500 { 3501 u32 serror; 3502 3503 DPRINTK("ENTER\n"); 3504 3505 /* print link status */ 3506 sata_print_link_status(ap); 3507 3508 /* clear SError */ 3509 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3510 sata_scr_write(ap, SCR_ERROR, serror); 3511 3512 /* re-enable interrupts */ 3513 if (!ap->ops->error_handler) 3514 ap->ops->irq_on(ap); 3515 3516 /* is double-select really necessary? */ 3517 if (classes[0] != ATA_DEV_NONE) 3518 ap->ops->dev_select(ap, 1); 3519 if (classes[1] != ATA_DEV_NONE) 3520 ap->ops->dev_select(ap, 0); 3521 3522 /* bail out if no device is present */ 3523 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3524 DPRINTK("EXIT, no device\n"); 3525 return; 3526 } 3527 3528 /* set up device control */ 3529 if (ap->ioaddr.ctl_addr) 3530 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3531 3532 DPRINTK("EXIT\n"); 3533 } 3534 3535 /** 3536 * ata_dev_same_device - Determine whether new ID matches configured device 3537 * @dev: device to compare against 3538 * @new_class: class of the new device 3539 * @new_id: IDENTIFY page of the new device 3540 * 3541 * Compare @new_class and @new_id against @dev and determine 3542 * whether @dev is the device indicated by @new_class and 3543 * @new_id. 3544 * 3545 * LOCKING: 3546 * None. 3547 * 3548 * RETURNS: 3549 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3550 */ 3551 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3552 const u16 *new_id) 3553 { 3554 const u16 *old_id = dev->id; 3555 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3556 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3557 u64 new_n_sectors; 3558 3559 if (dev->class != new_class) { 3560 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3561 dev->class, new_class); 3562 return 0; 3563 } 3564 3565 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3566 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3567 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3568 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3569 new_n_sectors = ata_id_n_sectors(new_id); 3570 3571 if (strcmp(model[0], model[1])) { 3572 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3573 "'%s' != '%s'\n", model[0], model[1]); 3574 return 0; 3575 } 3576 3577 if (strcmp(serial[0], serial[1])) { 3578 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3579 "'%s' != '%s'\n", serial[0], serial[1]); 3580 return 0; 3581 } 3582 3583 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { 3584 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3585 "%llu != %llu\n", 3586 (unsigned long long)dev->n_sectors, 3587 (unsigned long long)new_n_sectors); 3588 /* Are we the boot time size - if so we appear to be the 3589 same disk at this point and our HPA got reapplied */ 3590 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors 3591 && ata_id_hpa_enabled(new_id)) 3592 return 1; 3593 return 0; 3594 } 3595 3596 return 1; 3597 } 3598 3599 /** 3600 * ata_dev_revalidate - Revalidate ATA device 3601 * @dev: device to revalidate 3602 * @readid_flags: read ID flags 3603 * 3604 * Re-read IDENTIFY page and make sure @dev is still attached to 3605 * the port. 3606 * 3607 * LOCKING: 3608 * Kernel thread context (may sleep) 3609 * 3610 * RETURNS: 3611 * 0 on success, negative errno otherwise 3612 */ 3613 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3614 { 3615 unsigned int class = dev->class; 3616 u16 *id = (void *)dev->ap->sector_buf; 3617 int rc; 3618 3619 if (!ata_dev_enabled(dev)) { 3620 rc = -ENODEV; 3621 goto fail; 3622 } 3623 3624 /* read ID data */ 3625 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3626 if (rc) 3627 goto fail; 3628 3629 /* is the device still there? */ 3630 if (!ata_dev_same_device(dev, class, id)) { 3631 rc = -ENODEV; 3632 goto fail; 3633 } 3634 3635 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3636 3637 /* configure device according to the new ID */ 3638 rc = ata_dev_configure(dev); 3639 if (rc == 0) 3640 return 0; 3641 3642 fail: 3643 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3644 return rc; 3645 } 3646 3647 struct ata_blacklist_entry { 3648 const char *model_num; 3649 const char *model_rev; 3650 unsigned long horkage; 3651 }; 3652 3653 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3654 /* Devices with DMA related problems under Linux */ 3655 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3656 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3657 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3658 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3659 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3660 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3661 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3662 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3663 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3664 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3665 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3666 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3667 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3668 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3669 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3670 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3671 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3672 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3673 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3674 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3675 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3676 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3677 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3678 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3679 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3680 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3681 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3682 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3683 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3684 3685 /* Weird ATAPI devices */ 3686 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 | 3687 ATA_HORKAGE_DMA_RW_ONLY }, 3688 3689 /* Devices we expect to fail diagnostics */ 3690 3691 /* Devices where NCQ should be avoided */ 3692 /* NCQ is slow */ 3693 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3694 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3695 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3696 /* NCQ is broken */ 3697 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3698 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3699 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3700 /* Blacklist entries taken from Silicon Image 3124/3132 3701 Windows driver .inf file - also several Linux problem reports */ 3702 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3703 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3704 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3705 3706 /* Devices with NCQ limits */ 3707 3708 /* End Marker */ 3709 { } 3710 }; 3711 3712 unsigned long ata_device_blacklisted(const struct ata_device *dev) 3713 { 3714 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3715 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3716 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3717 3718 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3719 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3720 3721 while (ad->model_num) { 3722 if (!strcmp(ad->model_num, model_num)) { 3723 if (ad->model_rev == NULL) 3724 return ad->horkage; 3725 if (!strcmp(ad->model_rev, model_rev)) 3726 return ad->horkage; 3727 } 3728 ad++; 3729 } 3730 return 0; 3731 } 3732 3733 static int ata_dma_blacklisted(const struct ata_device *dev) 3734 { 3735 /* We don't support polling DMA. 3736 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3737 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3738 */ 3739 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3740 (dev->flags & ATA_DFLAG_CDB_INTR)) 3741 return 1; 3742 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; 3743 } 3744 3745 /** 3746 * ata_dev_xfermask - Compute supported xfermask of the given device 3747 * @dev: Device to compute xfermask for 3748 * 3749 * Compute supported xfermask of @dev and store it in 3750 * dev->*_mask. This function is responsible for applying all 3751 * known limits including host controller limits, device 3752 * blacklist, etc... 3753 * 3754 * LOCKING: 3755 * None. 3756 */ 3757 static void ata_dev_xfermask(struct ata_device *dev) 3758 { 3759 struct ata_port *ap = dev->ap; 3760 struct ata_host *host = ap->host; 3761 unsigned long xfer_mask; 3762 3763 /* controller modes available */ 3764 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3765 ap->mwdma_mask, ap->udma_mask); 3766 3767 /* drive modes available */ 3768 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3769 dev->mwdma_mask, dev->udma_mask); 3770 xfer_mask &= ata_id_xfermask(dev->id); 3771 3772 /* 3773 * CFA Advanced TrueIDE timings are not allowed on a shared 3774 * cable 3775 */ 3776 if (ata_dev_pair(dev)) { 3777 /* No PIO5 or PIO6 */ 3778 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3779 /* No MWDMA3 or MWDMA 4 */ 3780 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3781 } 3782 3783 if (ata_dma_blacklisted(dev)) { 3784 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3785 ata_dev_printk(dev, KERN_WARNING, 3786 "device is on DMA blacklist, disabling DMA\n"); 3787 } 3788 3789 if ((host->flags & ATA_HOST_SIMPLEX) && 3790 host->simplex_claimed && host->simplex_claimed != ap) { 3791 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3792 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3793 "other device, disabling DMA\n"); 3794 } 3795 3796 if (ap->flags & ATA_FLAG_NO_IORDY) 3797 xfer_mask &= ata_pio_mask_no_iordy(dev); 3798 3799 if (ap->ops->mode_filter) 3800 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 3801 3802 /* Apply cable rule here. Don't apply it early because when 3803 * we handle hot plug the cable type can itself change. 3804 * Check this last so that we know if the transfer rate was 3805 * solely limited by the cable. 3806 * Unknown or 80 wire cables reported host side are checked 3807 * drive side as well. Cases where we know a 40wire cable 3808 * is used safely for 80 are not checked here. 3809 */ 3810 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 3811 /* UDMA/44 or higher would be available */ 3812 if((ap->cbl == ATA_CBL_PATA40) || 3813 (ata_drive_40wire(dev->id) && 3814 (ap->cbl == ATA_CBL_PATA_UNK || 3815 ap->cbl == ATA_CBL_PATA80))) { 3816 ata_dev_printk(dev, KERN_WARNING, 3817 "limited to UDMA/33 due to 40-wire cable\n"); 3818 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3819 } 3820 3821 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3822 &dev->mwdma_mask, &dev->udma_mask); 3823 } 3824 3825 /** 3826 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3827 * @dev: Device to which command will be sent 3828 * 3829 * Issue SET FEATURES - XFER MODE command to device @dev 3830 * on port @ap. 3831 * 3832 * LOCKING: 3833 * PCI/etc. bus probe sem. 3834 * 3835 * RETURNS: 3836 * 0 on success, AC_ERR_* mask otherwise. 3837 */ 3838 3839 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3840 { 3841 struct ata_taskfile tf; 3842 unsigned int err_mask; 3843 3844 /* set up set-features taskfile */ 3845 DPRINTK("set features - xfer mode\n"); 3846 3847 ata_tf_init(dev, &tf); 3848 tf.command = ATA_CMD_SET_FEATURES; 3849 tf.feature = SETFEATURES_XFER; 3850 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3851 tf.protocol = ATA_PROT_NODATA; 3852 tf.nsect = dev->xfer_mode; 3853 3854 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3855 3856 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3857 return err_mask; 3858 } 3859 3860 /** 3861 * ata_dev_init_params - Issue INIT DEV PARAMS command 3862 * @dev: Device to which command will be sent 3863 * @heads: Number of heads (taskfile parameter) 3864 * @sectors: Number of sectors (taskfile parameter) 3865 * 3866 * LOCKING: 3867 * Kernel thread context (may sleep) 3868 * 3869 * RETURNS: 3870 * 0 on success, AC_ERR_* mask otherwise. 3871 */ 3872 static unsigned int ata_dev_init_params(struct ata_device *dev, 3873 u16 heads, u16 sectors) 3874 { 3875 struct ata_taskfile tf; 3876 unsigned int err_mask; 3877 3878 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3879 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3880 return AC_ERR_INVALID; 3881 3882 /* set up init dev params taskfile */ 3883 DPRINTK("init dev params \n"); 3884 3885 ata_tf_init(dev, &tf); 3886 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3887 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3888 tf.protocol = ATA_PROT_NODATA; 3889 tf.nsect = sectors; 3890 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3891 3892 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3893 3894 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3895 return err_mask; 3896 } 3897 3898 /** 3899 * ata_sg_clean - Unmap DMA memory associated with command 3900 * @qc: Command containing DMA memory to be released 3901 * 3902 * Unmap all mapped DMA memory associated with this command. 3903 * 3904 * LOCKING: 3905 * spin_lock_irqsave(host lock) 3906 */ 3907 void ata_sg_clean(struct ata_queued_cmd *qc) 3908 { 3909 struct ata_port *ap = qc->ap; 3910 struct scatterlist *sg = qc->__sg; 3911 int dir = qc->dma_dir; 3912 void *pad_buf = NULL; 3913 3914 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 3915 WARN_ON(sg == NULL); 3916 3917 if (qc->flags & ATA_QCFLAG_SINGLE) 3918 WARN_ON(qc->n_elem > 1); 3919 3920 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 3921 3922 /* if we padded the buffer out to 32-bit bound, and data 3923 * xfer direction is from-device, we must copy from the 3924 * pad buffer back into the supplied buffer 3925 */ 3926 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 3927 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3928 3929 if (qc->flags & ATA_QCFLAG_SG) { 3930 if (qc->n_elem) 3931 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 3932 /* restore last sg */ 3933 sg[qc->orig_n_elem - 1].length += qc->pad_len; 3934 if (pad_buf) { 3935 struct scatterlist *psg = &qc->pad_sgent; 3936 void *addr = kmap_atomic(psg->page, KM_IRQ0); 3937 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 3938 kunmap_atomic(addr, KM_IRQ0); 3939 } 3940 } else { 3941 if (qc->n_elem) 3942 dma_unmap_single(ap->dev, 3943 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 3944 dir); 3945 /* restore sg */ 3946 sg->length += qc->pad_len; 3947 if (pad_buf) 3948 memcpy(qc->buf_virt + sg->length - qc->pad_len, 3949 pad_buf, qc->pad_len); 3950 } 3951 3952 qc->flags &= ~ATA_QCFLAG_DMAMAP; 3953 qc->__sg = NULL; 3954 } 3955 3956 /** 3957 * ata_fill_sg - Fill PCI IDE PRD table 3958 * @qc: Metadata associated with taskfile to be transferred 3959 * 3960 * Fill PCI IDE PRD (scatter-gather) table with segments 3961 * associated with the current disk command. 3962 * 3963 * LOCKING: 3964 * spin_lock_irqsave(host lock) 3965 * 3966 */ 3967 static void ata_fill_sg(struct ata_queued_cmd *qc) 3968 { 3969 struct ata_port *ap = qc->ap; 3970 struct scatterlist *sg; 3971 unsigned int idx; 3972 3973 WARN_ON(qc->__sg == NULL); 3974 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 3975 3976 idx = 0; 3977 ata_for_each_sg(sg, qc) { 3978 u32 addr, offset; 3979 u32 sg_len, len; 3980 3981 /* determine if physical DMA addr spans 64K boundary. 3982 * Note h/w doesn't support 64-bit, so we unconditionally 3983 * truncate dma_addr_t to u32. 3984 */ 3985 addr = (u32) sg_dma_address(sg); 3986 sg_len = sg_dma_len(sg); 3987 3988 while (sg_len) { 3989 offset = addr & 0xffff; 3990 len = sg_len; 3991 if ((offset + sg_len) > 0x10000) 3992 len = 0x10000 - offset; 3993 3994 ap->prd[idx].addr = cpu_to_le32(addr); 3995 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 3996 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 3997 3998 idx++; 3999 sg_len -= len; 4000 addr += len; 4001 } 4002 } 4003 4004 if (idx) 4005 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4006 } 4007 /** 4008 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4009 * @qc: Metadata associated with taskfile to check 4010 * 4011 * Allow low-level driver to filter ATA PACKET commands, returning 4012 * a status indicating whether or not it is OK to use DMA for the 4013 * supplied PACKET command. 4014 * 4015 * LOCKING: 4016 * spin_lock_irqsave(host lock) 4017 * 4018 * RETURNS: 0 when ATAPI DMA can be used 4019 * nonzero otherwise 4020 */ 4021 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4022 { 4023 struct ata_port *ap = qc->ap; 4024 int rc = 0; /* Assume ATAPI DMA is OK by default */ 4025 4026 /* some drives can only do ATAPI DMA on read/write */ 4027 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) { 4028 struct scsi_cmnd *cmd = qc->scsicmd; 4029 u8 *scsicmd = cmd->cmnd; 4030 4031 switch (scsicmd[0]) { 4032 case READ_10: 4033 case WRITE_10: 4034 case READ_12: 4035 case WRITE_12: 4036 case READ_6: 4037 case WRITE_6: 4038 /* atapi dma maybe ok */ 4039 break; 4040 default: 4041 /* turn off atapi dma */ 4042 return 1; 4043 } 4044 } 4045 4046 if (ap->ops->check_atapi_dma) 4047 rc = ap->ops->check_atapi_dma(qc); 4048 4049 return rc; 4050 } 4051 /** 4052 * ata_qc_prep - Prepare taskfile for submission 4053 * @qc: Metadata associated with taskfile to be prepared 4054 * 4055 * Prepare ATA taskfile for submission. 4056 * 4057 * LOCKING: 4058 * spin_lock_irqsave(host lock) 4059 */ 4060 void ata_qc_prep(struct ata_queued_cmd *qc) 4061 { 4062 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4063 return; 4064 4065 ata_fill_sg(qc); 4066 } 4067 4068 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4069 4070 /** 4071 * ata_sg_init_one - Associate command with memory buffer 4072 * @qc: Command to be associated 4073 * @buf: Memory buffer 4074 * @buflen: Length of memory buffer, in bytes. 4075 * 4076 * Initialize the data-related elements of queued_cmd @qc 4077 * to point to a single memory buffer, @buf of byte length @buflen. 4078 * 4079 * LOCKING: 4080 * spin_lock_irqsave(host lock) 4081 */ 4082 4083 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4084 { 4085 qc->flags |= ATA_QCFLAG_SINGLE; 4086 4087 qc->__sg = &qc->sgent; 4088 qc->n_elem = 1; 4089 qc->orig_n_elem = 1; 4090 qc->buf_virt = buf; 4091 qc->nbytes = buflen; 4092 4093 sg_init_one(&qc->sgent, buf, buflen); 4094 } 4095 4096 /** 4097 * ata_sg_init - Associate command with scatter-gather table. 4098 * @qc: Command to be associated 4099 * @sg: Scatter-gather table. 4100 * @n_elem: Number of elements in s/g table. 4101 * 4102 * Initialize the data-related elements of queued_cmd @qc 4103 * to point to a scatter-gather table @sg, containing @n_elem 4104 * elements. 4105 * 4106 * LOCKING: 4107 * spin_lock_irqsave(host lock) 4108 */ 4109 4110 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4111 unsigned int n_elem) 4112 { 4113 qc->flags |= ATA_QCFLAG_SG; 4114 qc->__sg = sg; 4115 qc->n_elem = n_elem; 4116 qc->orig_n_elem = n_elem; 4117 } 4118 4119 /** 4120 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4121 * @qc: Command with memory buffer to be mapped. 4122 * 4123 * DMA-map the memory buffer associated with queued_cmd @qc. 4124 * 4125 * LOCKING: 4126 * spin_lock_irqsave(host lock) 4127 * 4128 * RETURNS: 4129 * Zero on success, negative on error. 4130 */ 4131 4132 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4133 { 4134 struct ata_port *ap = qc->ap; 4135 int dir = qc->dma_dir; 4136 struct scatterlist *sg = qc->__sg; 4137 dma_addr_t dma_address; 4138 int trim_sg = 0; 4139 4140 /* we must lengthen transfers to end on a 32-bit boundary */ 4141 qc->pad_len = sg->length & 3; 4142 if (qc->pad_len) { 4143 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4144 struct scatterlist *psg = &qc->pad_sgent; 4145 4146 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4147 4148 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4149 4150 if (qc->tf.flags & ATA_TFLAG_WRITE) 4151 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4152 qc->pad_len); 4153 4154 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4155 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4156 /* trim sg */ 4157 sg->length -= qc->pad_len; 4158 if (sg->length == 0) 4159 trim_sg = 1; 4160 4161 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4162 sg->length, qc->pad_len); 4163 } 4164 4165 if (trim_sg) { 4166 qc->n_elem--; 4167 goto skip_map; 4168 } 4169 4170 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4171 sg->length, dir); 4172 if (dma_mapping_error(dma_address)) { 4173 /* restore sg */ 4174 sg->length += qc->pad_len; 4175 return -1; 4176 } 4177 4178 sg_dma_address(sg) = dma_address; 4179 sg_dma_len(sg) = sg->length; 4180 4181 skip_map: 4182 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4183 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4184 4185 return 0; 4186 } 4187 4188 /** 4189 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4190 * @qc: Command with scatter-gather table to be mapped. 4191 * 4192 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4193 * 4194 * LOCKING: 4195 * spin_lock_irqsave(host lock) 4196 * 4197 * RETURNS: 4198 * Zero on success, negative on error. 4199 * 4200 */ 4201 4202 static int ata_sg_setup(struct ata_queued_cmd *qc) 4203 { 4204 struct ata_port *ap = qc->ap; 4205 struct scatterlist *sg = qc->__sg; 4206 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4207 int n_elem, pre_n_elem, dir, trim_sg = 0; 4208 4209 VPRINTK("ENTER, ata%u\n", ap->print_id); 4210 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4211 4212 /* we must lengthen transfers to end on a 32-bit boundary */ 4213 qc->pad_len = lsg->length & 3; 4214 if (qc->pad_len) { 4215 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4216 struct scatterlist *psg = &qc->pad_sgent; 4217 unsigned int offset; 4218 4219 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4220 4221 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4222 4223 /* 4224 * psg->page/offset are used to copy to-be-written 4225 * data in this function or read data in ata_sg_clean. 4226 */ 4227 offset = lsg->offset + lsg->length - qc->pad_len; 4228 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4229 psg->offset = offset_in_page(offset); 4230 4231 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4232 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4233 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4234 kunmap_atomic(addr, KM_IRQ0); 4235 } 4236 4237 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4238 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4239 /* trim last sg */ 4240 lsg->length -= qc->pad_len; 4241 if (lsg->length == 0) 4242 trim_sg = 1; 4243 4244 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4245 qc->n_elem - 1, lsg->length, qc->pad_len); 4246 } 4247 4248 pre_n_elem = qc->n_elem; 4249 if (trim_sg && pre_n_elem) 4250 pre_n_elem--; 4251 4252 if (!pre_n_elem) { 4253 n_elem = 0; 4254 goto skip_map; 4255 } 4256 4257 dir = qc->dma_dir; 4258 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4259 if (n_elem < 1) { 4260 /* restore last sg */ 4261 lsg->length += qc->pad_len; 4262 return -1; 4263 } 4264 4265 DPRINTK("%d sg elements mapped\n", n_elem); 4266 4267 skip_map: 4268 qc->n_elem = n_elem; 4269 4270 return 0; 4271 } 4272 4273 /** 4274 * swap_buf_le16 - swap halves of 16-bit words in place 4275 * @buf: Buffer to swap 4276 * @buf_words: Number of 16-bit words in buffer. 4277 * 4278 * Swap halves of 16-bit words if needed to convert from 4279 * little-endian byte order to native cpu byte order, or 4280 * vice-versa. 4281 * 4282 * LOCKING: 4283 * Inherited from caller. 4284 */ 4285 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4286 { 4287 #ifdef __BIG_ENDIAN 4288 unsigned int i; 4289 4290 for (i = 0; i < buf_words; i++) 4291 buf[i] = le16_to_cpu(buf[i]); 4292 #endif /* __BIG_ENDIAN */ 4293 } 4294 4295 /** 4296 * ata_data_xfer - Transfer data by PIO 4297 * @adev: device to target 4298 * @buf: data buffer 4299 * @buflen: buffer length 4300 * @write_data: read/write 4301 * 4302 * Transfer data from/to the device data register by PIO. 4303 * 4304 * LOCKING: 4305 * Inherited from caller. 4306 */ 4307 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4308 unsigned int buflen, int write_data) 4309 { 4310 struct ata_port *ap = adev->ap; 4311 unsigned int words = buflen >> 1; 4312 4313 /* Transfer multiple of 2 bytes */ 4314 if (write_data) 4315 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4316 else 4317 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4318 4319 /* Transfer trailing 1 byte, if any. */ 4320 if (unlikely(buflen & 0x01)) { 4321 u16 align_buf[1] = { 0 }; 4322 unsigned char *trailing_buf = buf + buflen - 1; 4323 4324 if (write_data) { 4325 memcpy(align_buf, trailing_buf, 1); 4326 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4327 } else { 4328 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4329 memcpy(trailing_buf, align_buf, 1); 4330 } 4331 } 4332 } 4333 4334 /** 4335 * ata_data_xfer_noirq - Transfer data by PIO 4336 * @adev: device to target 4337 * @buf: data buffer 4338 * @buflen: buffer length 4339 * @write_data: read/write 4340 * 4341 * Transfer data from/to the device data register by PIO. Do the 4342 * transfer with interrupts disabled. 4343 * 4344 * LOCKING: 4345 * Inherited from caller. 4346 */ 4347 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4348 unsigned int buflen, int write_data) 4349 { 4350 unsigned long flags; 4351 local_irq_save(flags); 4352 ata_data_xfer(adev, buf, buflen, write_data); 4353 local_irq_restore(flags); 4354 } 4355 4356 4357 /** 4358 * ata_pio_sector - Transfer a sector of data. 4359 * @qc: Command on going 4360 * 4361 * Transfer qc->sect_size bytes of data from/to the ATA device. 4362 * 4363 * LOCKING: 4364 * Inherited from caller. 4365 */ 4366 4367 static void ata_pio_sector(struct ata_queued_cmd *qc) 4368 { 4369 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4370 struct scatterlist *sg = qc->__sg; 4371 struct ata_port *ap = qc->ap; 4372 struct page *page; 4373 unsigned int offset; 4374 unsigned char *buf; 4375 4376 if (qc->curbytes == qc->nbytes - qc->sect_size) 4377 ap->hsm_task_state = HSM_ST_LAST; 4378 4379 page = sg[qc->cursg].page; 4380 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4381 4382 /* get the current page and offset */ 4383 page = nth_page(page, (offset >> PAGE_SHIFT)); 4384 offset %= PAGE_SIZE; 4385 4386 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4387 4388 if (PageHighMem(page)) { 4389 unsigned long flags; 4390 4391 /* FIXME: use a bounce buffer */ 4392 local_irq_save(flags); 4393 buf = kmap_atomic(page, KM_IRQ0); 4394 4395 /* do the actual data transfer */ 4396 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4397 4398 kunmap_atomic(buf, KM_IRQ0); 4399 local_irq_restore(flags); 4400 } else { 4401 buf = page_address(page); 4402 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4403 } 4404 4405 qc->curbytes += qc->sect_size; 4406 qc->cursg_ofs += qc->sect_size; 4407 4408 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4409 qc->cursg++; 4410 qc->cursg_ofs = 0; 4411 } 4412 } 4413 4414 /** 4415 * ata_pio_sectors - Transfer one or many sectors. 4416 * @qc: Command on going 4417 * 4418 * Transfer one or many sectors of data from/to the 4419 * ATA device for the DRQ request. 4420 * 4421 * LOCKING: 4422 * Inherited from caller. 4423 */ 4424 4425 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4426 { 4427 if (is_multi_taskfile(&qc->tf)) { 4428 /* READ/WRITE MULTIPLE */ 4429 unsigned int nsect; 4430 4431 WARN_ON(qc->dev->multi_count == 0); 4432 4433 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4434 qc->dev->multi_count); 4435 while (nsect--) 4436 ata_pio_sector(qc); 4437 } else 4438 ata_pio_sector(qc); 4439 } 4440 4441 /** 4442 * atapi_send_cdb - Write CDB bytes to hardware 4443 * @ap: Port to which ATAPI device is attached. 4444 * @qc: Taskfile currently active 4445 * 4446 * When device has indicated its readiness to accept 4447 * a CDB, this function is called. Send the CDB. 4448 * 4449 * LOCKING: 4450 * caller. 4451 */ 4452 4453 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4454 { 4455 /* send SCSI cdb */ 4456 DPRINTK("send cdb\n"); 4457 WARN_ON(qc->dev->cdb_len < 12); 4458 4459 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4460 ata_altstatus(ap); /* flush */ 4461 4462 switch (qc->tf.protocol) { 4463 case ATA_PROT_ATAPI: 4464 ap->hsm_task_state = HSM_ST; 4465 break; 4466 case ATA_PROT_ATAPI_NODATA: 4467 ap->hsm_task_state = HSM_ST_LAST; 4468 break; 4469 case ATA_PROT_ATAPI_DMA: 4470 ap->hsm_task_state = HSM_ST_LAST; 4471 /* initiate bmdma */ 4472 ap->ops->bmdma_start(qc); 4473 break; 4474 } 4475 } 4476 4477 /** 4478 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4479 * @qc: Command on going 4480 * @bytes: number of bytes 4481 * 4482 * Transfer Transfer data from/to the ATAPI device. 4483 * 4484 * LOCKING: 4485 * Inherited from caller. 4486 * 4487 */ 4488 4489 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4490 { 4491 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4492 struct scatterlist *sg = qc->__sg; 4493 struct ata_port *ap = qc->ap; 4494 struct page *page; 4495 unsigned char *buf; 4496 unsigned int offset, count; 4497 4498 if (qc->curbytes + bytes >= qc->nbytes) 4499 ap->hsm_task_state = HSM_ST_LAST; 4500 4501 next_sg: 4502 if (unlikely(qc->cursg >= qc->n_elem)) { 4503 /* 4504 * The end of qc->sg is reached and the device expects 4505 * more data to transfer. In order not to overrun qc->sg 4506 * and fulfill length specified in the byte count register, 4507 * - for read case, discard trailing data from the device 4508 * - for write case, padding zero data to the device 4509 */ 4510 u16 pad_buf[1] = { 0 }; 4511 unsigned int words = bytes >> 1; 4512 unsigned int i; 4513 4514 if (words) /* warning if bytes > 1 */ 4515 ata_dev_printk(qc->dev, KERN_WARNING, 4516 "%u bytes trailing data\n", bytes); 4517 4518 for (i = 0; i < words; i++) 4519 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4520 4521 ap->hsm_task_state = HSM_ST_LAST; 4522 return; 4523 } 4524 4525 sg = &qc->__sg[qc->cursg]; 4526 4527 page = sg->page; 4528 offset = sg->offset + qc->cursg_ofs; 4529 4530 /* get the current page and offset */ 4531 page = nth_page(page, (offset >> PAGE_SHIFT)); 4532 offset %= PAGE_SIZE; 4533 4534 /* don't overrun current sg */ 4535 count = min(sg->length - qc->cursg_ofs, bytes); 4536 4537 /* don't cross page boundaries */ 4538 count = min(count, (unsigned int)PAGE_SIZE - offset); 4539 4540 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4541 4542 if (PageHighMem(page)) { 4543 unsigned long flags; 4544 4545 /* FIXME: use bounce buffer */ 4546 local_irq_save(flags); 4547 buf = kmap_atomic(page, KM_IRQ0); 4548 4549 /* do the actual data transfer */ 4550 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4551 4552 kunmap_atomic(buf, KM_IRQ0); 4553 local_irq_restore(flags); 4554 } else { 4555 buf = page_address(page); 4556 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4557 } 4558 4559 bytes -= count; 4560 qc->curbytes += count; 4561 qc->cursg_ofs += count; 4562 4563 if (qc->cursg_ofs == sg->length) { 4564 qc->cursg++; 4565 qc->cursg_ofs = 0; 4566 } 4567 4568 if (bytes) 4569 goto next_sg; 4570 } 4571 4572 /** 4573 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4574 * @qc: Command on going 4575 * 4576 * Transfer Transfer data from/to the ATAPI device. 4577 * 4578 * LOCKING: 4579 * Inherited from caller. 4580 */ 4581 4582 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4583 { 4584 struct ata_port *ap = qc->ap; 4585 struct ata_device *dev = qc->dev; 4586 unsigned int ireason, bc_lo, bc_hi, bytes; 4587 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4588 4589 /* Abuse qc->result_tf for temp storage of intermediate TF 4590 * here to save some kernel stack usage. 4591 * For normal completion, qc->result_tf is not relevant. For 4592 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4593 * So, the correctness of qc->result_tf is not affected. 4594 */ 4595 ap->ops->tf_read(ap, &qc->result_tf); 4596 ireason = qc->result_tf.nsect; 4597 bc_lo = qc->result_tf.lbam; 4598 bc_hi = qc->result_tf.lbah; 4599 bytes = (bc_hi << 8) | bc_lo; 4600 4601 /* shall be cleared to zero, indicating xfer of data */ 4602 if (ireason & (1 << 0)) 4603 goto err_out; 4604 4605 /* make sure transfer direction matches expected */ 4606 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4607 if (do_write != i_write) 4608 goto err_out; 4609 4610 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4611 4612 __atapi_pio_bytes(qc, bytes); 4613 4614 return; 4615 4616 err_out: 4617 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4618 qc->err_mask |= AC_ERR_HSM; 4619 ap->hsm_task_state = HSM_ST_ERR; 4620 } 4621 4622 /** 4623 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4624 * @ap: the target ata_port 4625 * @qc: qc on going 4626 * 4627 * RETURNS: 4628 * 1 if ok in workqueue, 0 otherwise. 4629 */ 4630 4631 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4632 { 4633 if (qc->tf.flags & ATA_TFLAG_POLLING) 4634 return 1; 4635 4636 if (ap->hsm_task_state == HSM_ST_FIRST) { 4637 if (qc->tf.protocol == ATA_PROT_PIO && 4638 (qc->tf.flags & ATA_TFLAG_WRITE)) 4639 return 1; 4640 4641 if (is_atapi_taskfile(&qc->tf) && 4642 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4643 return 1; 4644 } 4645 4646 return 0; 4647 } 4648 4649 /** 4650 * ata_hsm_qc_complete - finish a qc running on standard HSM 4651 * @qc: Command to complete 4652 * @in_wq: 1 if called from workqueue, 0 otherwise 4653 * 4654 * Finish @qc which is running on standard HSM. 4655 * 4656 * LOCKING: 4657 * If @in_wq is zero, spin_lock_irqsave(host lock). 4658 * Otherwise, none on entry and grabs host lock. 4659 */ 4660 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4661 { 4662 struct ata_port *ap = qc->ap; 4663 unsigned long flags; 4664 4665 if (ap->ops->error_handler) { 4666 if (in_wq) { 4667 spin_lock_irqsave(ap->lock, flags); 4668 4669 /* EH might have kicked in while host lock is 4670 * released. 4671 */ 4672 qc = ata_qc_from_tag(ap, qc->tag); 4673 if (qc) { 4674 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4675 ap->ops->irq_on(ap); 4676 ata_qc_complete(qc); 4677 } else 4678 ata_port_freeze(ap); 4679 } 4680 4681 spin_unlock_irqrestore(ap->lock, flags); 4682 } else { 4683 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4684 ata_qc_complete(qc); 4685 else 4686 ata_port_freeze(ap); 4687 } 4688 } else { 4689 if (in_wq) { 4690 spin_lock_irqsave(ap->lock, flags); 4691 ap->ops->irq_on(ap); 4692 ata_qc_complete(qc); 4693 spin_unlock_irqrestore(ap->lock, flags); 4694 } else 4695 ata_qc_complete(qc); 4696 } 4697 4698 ata_altstatus(ap); /* flush */ 4699 } 4700 4701 /** 4702 * ata_hsm_move - move the HSM to the next state. 4703 * @ap: the target ata_port 4704 * @qc: qc on going 4705 * @status: current device status 4706 * @in_wq: 1 if called from workqueue, 0 otherwise 4707 * 4708 * RETURNS: 4709 * 1 when poll next status needed, 0 otherwise. 4710 */ 4711 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4712 u8 status, int in_wq) 4713 { 4714 unsigned long flags = 0; 4715 int poll_next; 4716 4717 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4718 4719 /* Make sure ata_qc_issue_prot() does not throw things 4720 * like DMA polling into the workqueue. Notice that 4721 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4722 */ 4723 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4724 4725 fsm_start: 4726 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4727 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4728 4729 switch (ap->hsm_task_state) { 4730 case HSM_ST_FIRST: 4731 /* Send first data block or PACKET CDB */ 4732 4733 /* If polling, we will stay in the work queue after 4734 * sending the data. Otherwise, interrupt handler 4735 * takes over after sending the data. 4736 */ 4737 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4738 4739 /* check device status */ 4740 if (unlikely((status & ATA_DRQ) == 0)) { 4741 /* handle BSY=0, DRQ=0 as error */ 4742 if (likely(status & (ATA_ERR | ATA_DF))) 4743 /* device stops HSM for abort/error */ 4744 qc->err_mask |= AC_ERR_DEV; 4745 else 4746 /* HSM violation. Let EH handle this */ 4747 qc->err_mask |= AC_ERR_HSM; 4748 4749 ap->hsm_task_state = HSM_ST_ERR; 4750 goto fsm_start; 4751 } 4752 4753 /* Device should not ask for data transfer (DRQ=1) 4754 * when it finds something wrong. 4755 * We ignore DRQ here and stop the HSM by 4756 * changing hsm_task_state to HSM_ST_ERR and 4757 * let the EH abort the command or reset the device. 4758 */ 4759 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4760 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4761 "error, dev_stat 0x%X\n", status); 4762 qc->err_mask |= AC_ERR_HSM; 4763 ap->hsm_task_state = HSM_ST_ERR; 4764 goto fsm_start; 4765 } 4766 4767 /* Send the CDB (atapi) or the first data block (ata pio out). 4768 * During the state transition, interrupt handler shouldn't 4769 * be invoked before the data transfer is complete and 4770 * hsm_task_state is changed. Hence, the following locking. 4771 */ 4772 if (in_wq) 4773 spin_lock_irqsave(ap->lock, flags); 4774 4775 if (qc->tf.protocol == ATA_PROT_PIO) { 4776 /* PIO data out protocol. 4777 * send first data block. 4778 */ 4779 4780 /* ata_pio_sectors() might change the state 4781 * to HSM_ST_LAST. so, the state is changed here 4782 * before ata_pio_sectors(). 4783 */ 4784 ap->hsm_task_state = HSM_ST; 4785 ata_pio_sectors(qc); 4786 ata_altstatus(ap); /* flush */ 4787 } else 4788 /* send CDB */ 4789 atapi_send_cdb(ap, qc); 4790 4791 if (in_wq) 4792 spin_unlock_irqrestore(ap->lock, flags); 4793 4794 /* if polling, ata_pio_task() handles the rest. 4795 * otherwise, interrupt handler takes over from here. 4796 */ 4797 break; 4798 4799 case HSM_ST: 4800 /* complete command or read/write the data register */ 4801 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4802 /* ATAPI PIO protocol */ 4803 if ((status & ATA_DRQ) == 0) { 4804 /* No more data to transfer or device error. 4805 * Device error will be tagged in HSM_ST_LAST. 4806 */ 4807 ap->hsm_task_state = HSM_ST_LAST; 4808 goto fsm_start; 4809 } 4810 4811 /* Device should not ask for data transfer (DRQ=1) 4812 * when it finds something wrong. 4813 * We ignore DRQ here and stop the HSM by 4814 * changing hsm_task_state to HSM_ST_ERR and 4815 * let the EH abort the command or reset the device. 4816 */ 4817 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4818 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4819 "device error, dev_stat 0x%X\n", 4820 status); 4821 qc->err_mask |= AC_ERR_HSM; 4822 ap->hsm_task_state = HSM_ST_ERR; 4823 goto fsm_start; 4824 } 4825 4826 atapi_pio_bytes(qc); 4827 4828 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4829 /* bad ireason reported by device */ 4830 goto fsm_start; 4831 4832 } else { 4833 /* ATA PIO protocol */ 4834 if (unlikely((status & ATA_DRQ) == 0)) { 4835 /* handle BSY=0, DRQ=0 as error */ 4836 if (likely(status & (ATA_ERR | ATA_DF))) 4837 /* device stops HSM for abort/error */ 4838 qc->err_mask |= AC_ERR_DEV; 4839 else 4840 /* HSM violation. Let EH handle this. 4841 * Phantom devices also trigger this 4842 * condition. Mark hint. 4843 */ 4844 qc->err_mask |= AC_ERR_HSM | 4845 AC_ERR_NODEV_HINT; 4846 4847 ap->hsm_task_state = HSM_ST_ERR; 4848 goto fsm_start; 4849 } 4850 4851 /* For PIO reads, some devices may ask for 4852 * data transfer (DRQ=1) alone with ERR=1. 4853 * We respect DRQ here and transfer one 4854 * block of junk data before changing the 4855 * hsm_task_state to HSM_ST_ERR. 4856 * 4857 * For PIO writes, ERR=1 DRQ=1 doesn't make 4858 * sense since the data block has been 4859 * transferred to the device. 4860 */ 4861 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4862 /* data might be corrputed */ 4863 qc->err_mask |= AC_ERR_DEV; 4864 4865 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 4866 ata_pio_sectors(qc); 4867 ata_altstatus(ap); 4868 status = ata_wait_idle(ap); 4869 } 4870 4871 if (status & (ATA_BUSY | ATA_DRQ)) 4872 qc->err_mask |= AC_ERR_HSM; 4873 4874 /* ata_pio_sectors() might change the 4875 * state to HSM_ST_LAST. so, the state 4876 * is changed after ata_pio_sectors(). 4877 */ 4878 ap->hsm_task_state = HSM_ST_ERR; 4879 goto fsm_start; 4880 } 4881 4882 ata_pio_sectors(qc); 4883 4884 if (ap->hsm_task_state == HSM_ST_LAST && 4885 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 4886 /* all data read */ 4887 ata_altstatus(ap); 4888 status = ata_wait_idle(ap); 4889 goto fsm_start; 4890 } 4891 } 4892 4893 ata_altstatus(ap); /* flush */ 4894 poll_next = 1; 4895 break; 4896 4897 case HSM_ST_LAST: 4898 if (unlikely(!ata_ok(status))) { 4899 qc->err_mask |= __ac_err_mask(status); 4900 ap->hsm_task_state = HSM_ST_ERR; 4901 goto fsm_start; 4902 } 4903 4904 /* no more data to transfer */ 4905 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 4906 ap->print_id, qc->dev->devno, status); 4907 4908 WARN_ON(qc->err_mask); 4909 4910 ap->hsm_task_state = HSM_ST_IDLE; 4911 4912 /* complete taskfile transaction */ 4913 ata_hsm_qc_complete(qc, in_wq); 4914 4915 poll_next = 0; 4916 break; 4917 4918 case HSM_ST_ERR: 4919 /* make sure qc->err_mask is available to 4920 * know what's wrong and recover 4921 */ 4922 WARN_ON(qc->err_mask == 0); 4923 4924 ap->hsm_task_state = HSM_ST_IDLE; 4925 4926 /* complete taskfile transaction */ 4927 ata_hsm_qc_complete(qc, in_wq); 4928 4929 poll_next = 0; 4930 break; 4931 default: 4932 poll_next = 0; 4933 BUG(); 4934 } 4935 4936 return poll_next; 4937 } 4938 4939 static void ata_pio_task(struct work_struct *work) 4940 { 4941 struct ata_port *ap = 4942 container_of(work, struct ata_port, port_task.work); 4943 struct ata_queued_cmd *qc = ap->port_task_data; 4944 u8 status; 4945 int poll_next; 4946 4947 fsm_start: 4948 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 4949 4950 /* 4951 * This is purely heuristic. This is a fast path. 4952 * Sometimes when we enter, BSY will be cleared in 4953 * a chk-status or two. If not, the drive is probably seeking 4954 * or something. Snooze for a couple msecs, then 4955 * chk-status again. If still busy, queue delayed work. 4956 */ 4957 status = ata_busy_wait(ap, ATA_BUSY, 5); 4958 if (status & ATA_BUSY) { 4959 msleep(2); 4960 status = ata_busy_wait(ap, ATA_BUSY, 10); 4961 if (status & ATA_BUSY) { 4962 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 4963 return; 4964 } 4965 } 4966 4967 /* move the HSM */ 4968 poll_next = ata_hsm_move(ap, qc, status, 1); 4969 4970 /* another command or interrupt handler 4971 * may be running at this point. 4972 */ 4973 if (poll_next) 4974 goto fsm_start; 4975 } 4976 4977 /** 4978 * ata_qc_new - Request an available ATA command, for queueing 4979 * @ap: Port associated with device @dev 4980 * @dev: Device from whom we request an available command structure 4981 * 4982 * LOCKING: 4983 * None. 4984 */ 4985 4986 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4987 { 4988 struct ata_queued_cmd *qc = NULL; 4989 unsigned int i; 4990 4991 /* no command while frozen */ 4992 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4993 return NULL; 4994 4995 /* the last tag is reserved for internal command. */ 4996 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4997 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4998 qc = __ata_qc_from_tag(ap, i); 4999 break; 5000 } 5001 5002 if (qc) 5003 qc->tag = i; 5004 5005 return qc; 5006 } 5007 5008 /** 5009 * ata_qc_new_init - Request an available ATA command, and initialize it 5010 * @dev: Device from whom we request an available command structure 5011 * 5012 * LOCKING: 5013 * None. 5014 */ 5015 5016 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5017 { 5018 struct ata_port *ap = dev->ap; 5019 struct ata_queued_cmd *qc; 5020 5021 qc = ata_qc_new(ap); 5022 if (qc) { 5023 qc->scsicmd = NULL; 5024 qc->ap = ap; 5025 qc->dev = dev; 5026 5027 ata_qc_reinit(qc); 5028 } 5029 5030 return qc; 5031 } 5032 5033 /** 5034 * ata_qc_free - free unused ata_queued_cmd 5035 * @qc: Command to complete 5036 * 5037 * Designed to free unused ata_queued_cmd object 5038 * in case something prevents using it. 5039 * 5040 * LOCKING: 5041 * spin_lock_irqsave(host lock) 5042 */ 5043 void ata_qc_free(struct ata_queued_cmd *qc) 5044 { 5045 struct ata_port *ap = qc->ap; 5046 unsigned int tag; 5047 5048 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5049 5050 qc->flags = 0; 5051 tag = qc->tag; 5052 if (likely(ata_tag_valid(tag))) { 5053 qc->tag = ATA_TAG_POISON; 5054 clear_bit(tag, &ap->qc_allocated); 5055 } 5056 } 5057 5058 void __ata_qc_complete(struct ata_queued_cmd *qc) 5059 { 5060 struct ata_port *ap = qc->ap; 5061 5062 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5063 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5064 5065 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5066 ata_sg_clean(qc); 5067 5068 /* command should be marked inactive atomically with qc completion */ 5069 if (qc->tf.protocol == ATA_PROT_NCQ) 5070 ap->sactive &= ~(1 << qc->tag); 5071 else 5072 ap->active_tag = ATA_TAG_POISON; 5073 5074 /* atapi: mark qc as inactive to prevent the interrupt handler 5075 * from completing the command twice later, before the error handler 5076 * is called. (when rc != 0 and atapi request sense is needed) 5077 */ 5078 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5079 ap->qc_active &= ~(1 << qc->tag); 5080 5081 /* call completion callback */ 5082 qc->complete_fn(qc); 5083 } 5084 5085 static void fill_result_tf(struct ata_queued_cmd *qc) 5086 { 5087 struct ata_port *ap = qc->ap; 5088 5089 qc->result_tf.flags = qc->tf.flags; 5090 ap->ops->tf_read(ap, &qc->result_tf); 5091 } 5092 5093 /** 5094 * ata_qc_complete - Complete an active ATA command 5095 * @qc: Command to complete 5096 * @err_mask: ATA Status register contents 5097 * 5098 * Indicate to the mid and upper layers that an ATA 5099 * command has completed, with either an ok or not-ok status. 5100 * 5101 * LOCKING: 5102 * spin_lock_irqsave(host lock) 5103 */ 5104 void ata_qc_complete(struct ata_queued_cmd *qc) 5105 { 5106 struct ata_port *ap = qc->ap; 5107 5108 /* XXX: New EH and old EH use different mechanisms to 5109 * synchronize EH with regular execution path. 5110 * 5111 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5112 * Normal execution path is responsible for not accessing a 5113 * failed qc. libata core enforces the rule by returning NULL 5114 * from ata_qc_from_tag() for failed qcs. 5115 * 5116 * Old EH depends on ata_qc_complete() nullifying completion 5117 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5118 * not synchronize with interrupt handler. Only PIO task is 5119 * taken care of. 5120 */ 5121 if (ap->ops->error_handler) { 5122 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5123 5124 if (unlikely(qc->err_mask)) 5125 qc->flags |= ATA_QCFLAG_FAILED; 5126 5127 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5128 if (!ata_tag_internal(qc->tag)) { 5129 /* always fill result TF for failed qc */ 5130 fill_result_tf(qc); 5131 ata_qc_schedule_eh(qc); 5132 return; 5133 } 5134 } 5135 5136 /* read result TF if requested */ 5137 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5138 fill_result_tf(qc); 5139 5140 __ata_qc_complete(qc); 5141 } else { 5142 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5143 return; 5144 5145 /* read result TF if failed or requested */ 5146 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5147 fill_result_tf(qc); 5148 5149 __ata_qc_complete(qc); 5150 } 5151 } 5152 5153 /** 5154 * ata_qc_complete_multiple - Complete multiple qcs successfully 5155 * @ap: port in question 5156 * @qc_active: new qc_active mask 5157 * @finish_qc: LLDD callback invoked before completing a qc 5158 * 5159 * Complete in-flight commands. This functions is meant to be 5160 * called from low-level driver's interrupt routine to complete 5161 * requests normally. ap->qc_active and @qc_active is compared 5162 * and commands are completed accordingly. 5163 * 5164 * LOCKING: 5165 * spin_lock_irqsave(host lock) 5166 * 5167 * RETURNS: 5168 * Number of completed commands on success, -errno otherwise. 5169 */ 5170 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5171 void (*finish_qc)(struct ata_queued_cmd *)) 5172 { 5173 int nr_done = 0; 5174 u32 done_mask; 5175 int i; 5176 5177 done_mask = ap->qc_active ^ qc_active; 5178 5179 if (unlikely(done_mask & qc_active)) { 5180 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5181 "(%08x->%08x)\n", ap->qc_active, qc_active); 5182 return -EINVAL; 5183 } 5184 5185 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5186 struct ata_queued_cmd *qc; 5187 5188 if (!(done_mask & (1 << i))) 5189 continue; 5190 5191 if ((qc = ata_qc_from_tag(ap, i))) { 5192 if (finish_qc) 5193 finish_qc(qc); 5194 ata_qc_complete(qc); 5195 nr_done++; 5196 } 5197 } 5198 5199 return nr_done; 5200 } 5201 5202 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5203 { 5204 struct ata_port *ap = qc->ap; 5205 5206 switch (qc->tf.protocol) { 5207 case ATA_PROT_NCQ: 5208 case ATA_PROT_DMA: 5209 case ATA_PROT_ATAPI_DMA: 5210 return 1; 5211 5212 case ATA_PROT_ATAPI: 5213 case ATA_PROT_PIO: 5214 if (ap->flags & ATA_FLAG_PIO_DMA) 5215 return 1; 5216 5217 /* fall through */ 5218 5219 default: 5220 return 0; 5221 } 5222 5223 /* never reached */ 5224 } 5225 5226 /** 5227 * ata_qc_issue - issue taskfile to device 5228 * @qc: command to issue to device 5229 * 5230 * Prepare an ATA command to submission to device. 5231 * This includes mapping the data into a DMA-able 5232 * area, filling in the S/G table, and finally 5233 * writing the taskfile to hardware, starting the command. 5234 * 5235 * LOCKING: 5236 * spin_lock_irqsave(host lock) 5237 */ 5238 void ata_qc_issue(struct ata_queued_cmd *qc) 5239 { 5240 struct ata_port *ap = qc->ap; 5241 5242 /* Make sure only one non-NCQ command is outstanding. The 5243 * check is skipped for old EH because it reuses active qc to 5244 * request ATAPI sense. 5245 */ 5246 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 5247 5248 if (qc->tf.protocol == ATA_PROT_NCQ) { 5249 WARN_ON(ap->sactive & (1 << qc->tag)); 5250 ap->sactive |= 1 << qc->tag; 5251 } else { 5252 WARN_ON(ap->sactive); 5253 ap->active_tag = qc->tag; 5254 } 5255 5256 qc->flags |= ATA_QCFLAG_ACTIVE; 5257 ap->qc_active |= 1 << qc->tag; 5258 5259 if (ata_should_dma_map(qc)) { 5260 if (qc->flags & ATA_QCFLAG_SG) { 5261 if (ata_sg_setup(qc)) 5262 goto sg_err; 5263 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5264 if (ata_sg_setup_one(qc)) 5265 goto sg_err; 5266 } 5267 } else { 5268 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5269 } 5270 5271 ap->ops->qc_prep(qc); 5272 5273 qc->err_mask |= ap->ops->qc_issue(qc); 5274 if (unlikely(qc->err_mask)) 5275 goto err; 5276 return; 5277 5278 sg_err: 5279 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5280 qc->err_mask |= AC_ERR_SYSTEM; 5281 err: 5282 ata_qc_complete(qc); 5283 } 5284 5285 /** 5286 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5287 * @qc: command to issue to device 5288 * 5289 * Using various libata functions and hooks, this function 5290 * starts an ATA command. ATA commands are grouped into 5291 * classes called "protocols", and issuing each type of protocol 5292 * is slightly different. 5293 * 5294 * May be used as the qc_issue() entry in ata_port_operations. 5295 * 5296 * LOCKING: 5297 * spin_lock_irqsave(host lock) 5298 * 5299 * RETURNS: 5300 * Zero on success, AC_ERR_* mask on failure 5301 */ 5302 5303 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5304 { 5305 struct ata_port *ap = qc->ap; 5306 5307 /* Use polling pio if the LLD doesn't handle 5308 * interrupt driven pio and atapi CDB interrupt. 5309 */ 5310 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5311 switch (qc->tf.protocol) { 5312 case ATA_PROT_PIO: 5313 case ATA_PROT_NODATA: 5314 case ATA_PROT_ATAPI: 5315 case ATA_PROT_ATAPI_NODATA: 5316 qc->tf.flags |= ATA_TFLAG_POLLING; 5317 break; 5318 case ATA_PROT_ATAPI_DMA: 5319 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5320 /* see ata_dma_blacklisted() */ 5321 BUG(); 5322 break; 5323 default: 5324 break; 5325 } 5326 } 5327 5328 /* Some controllers show flaky interrupt behavior after 5329 * setting xfer mode. Use polling instead. 5330 */ 5331 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && 5332 qc->tf.feature == SETFEATURES_XFER) && 5333 (ap->flags & ATA_FLAG_SETXFER_POLLING)) 5334 qc->tf.flags |= ATA_TFLAG_POLLING; 5335 5336 /* select the device */ 5337 ata_dev_select(ap, qc->dev->devno, 1, 0); 5338 5339 /* start the command */ 5340 switch (qc->tf.protocol) { 5341 case ATA_PROT_NODATA: 5342 if (qc->tf.flags & ATA_TFLAG_POLLING) 5343 ata_qc_set_polling(qc); 5344 5345 ata_tf_to_host(ap, &qc->tf); 5346 ap->hsm_task_state = HSM_ST_LAST; 5347 5348 if (qc->tf.flags & ATA_TFLAG_POLLING) 5349 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5350 5351 break; 5352 5353 case ATA_PROT_DMA: 5354 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5355 5356 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5357 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5358 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5359 ap->hsm_task_state = HSM_ST_LAST; 5360 break; 5361 5362 case ATA_PROT_PIO: 5363 if (qc->tf.flags & ATA_TFLAG_POLLING) 5364 ata_qc_set_polling(qc); 5365 5366 ata_tf_to_host(ap, &qc->tf); 5367 5368 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5369 /* PIO data out protocol */ 5370 ap->hsm_task_state = HSM_ST_FIRST; 5371 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5372 5373 /* always send first data block using 5374 * the ata_pio_task() codepath. 5375 */ 5376 } else { 5377 /* PIO data in protocol */ 5378 ap->hsm_task_state = HSM_ST; 5379 5380 if (qc->tf.flags & ATA_TFLAG_POLLING) 5381 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5382 5383 /* if polling, ata_pio_task() handles the rest. 5384 * otherwise, interrupt handler takes over from here. 5385 */ 5386 } 5387 5388 break; 5389 5390 case ATA_PROT_ATAPI: 5391 case ATA_PROT_ATAPI_NODATA: 5392 if (qc->tf.flags & ATA_TFLAG_POLLING) 5393 ata_qc_set_polling(qc); 5394 5395 ata_tf_to_host(ap, &qc->tf); 5396 5397 ap->hsm_task_state = HSM_ST_FIRST; 5398 5399 /* send cdb by polling if no cdb interrupt */ 5400 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5401 (qc->tf.flags & ATA_TFLAG_POLLING)) 5402 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5403 break; 5404 5405 case ATA_PROT_ATAPI_DMA: 5406 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5407 5408 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5409 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5410 ap->hsm_task_state = HSM_ST_FIRST; 5411 5412 /* send cdb by polling if no cdb interrupt */ 5413 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5414 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5415 break; 5416 5417 default: 5418 WARN_ON(1); 5419 return AC_ERR_SYSTEM; 5420 } 5421 5422 return 0; 5423 } 5424 5425 /** 5426 * ata_host_intr - Handle host interrupt for given (port, task) 5427 * @ap: Port on which interrupt arrived (possibly...) 5428 * @qc: Taskfile currently active in engine 5429 * 5430 * Handle host interrupt for given queued command. Currently, 5431 * only DMA interrupts are handled. All other commands are 5432 * handled via polling with interrupts disabled (nIEN bit). 5433 * 5434 * LOCKING: 5435 * spin_lock_irqsave(host lock) 5436 * 5437 * RETURNS: 5438 * One if interrupt was handled, zero if not (shared irq). 5439 */ 5440 5441 inline unsigned int ata_host_intr (struct ata_port *ap, 5442 struct ata_queued_cmd *qc) 5443 { 5444 struct ata_eh_info *ehi = &ap->eh_info; 5445 u8 status, host_stat = 0; 5446 5447 VPRINTK("ata%u: protocol %d task_state %d\n", 5448 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5449 5450 /* Check whether we are expecting interrupt in this state */ 5451 switch (ap->hsm_task_state) { 5452 case HSM_ST_FIRST: 5453 /* Some pre-ATAPI-4 devices assert INTRQ 5454 * at this state when ready to receive CDB. 5455 */ 5456 5457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5458 * The flag was turned on only for atapi devices. 5459 * No need to check is_atapi_taskfile(&qc->tf) again. 5460 */ 5461 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5462 goto idle_irq; 5463 break; 5464 case HSM_ST_LAST: 5465 if (qc->tf.protocol == ATA_PROT_DMA || 5466 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5467 /* check status of DMA engine */ 5468 host_stat = ap->ops->bmdma_status(ap); 5469 VPRINTK("ata%u: host_stat 0x%X\n", 5470 ap->print_id, host_stat); 5471 5472 /* if it's not our irq... */ 5473 if (!(host_stat & ATA_DMA_INTR)) 5474 goto idle_irq; 5475 5476 /* before we do anything else, clear DMA-Start bit */ 5477 ap->ops->bmdma_stop(qc); 5478 5479 if (unlikely(host_stat & ATA_DMA_ERR)) { 5480 /* error when transfering data to/from memory */ 5481 qc->err_mask |= AC_ERR_HOST_BUS; 5482 ap->hsm_task_state = HSM_ST_ERR; 5483 } 5484 } 5485 break; 5486 case HSM_ST: 5487 break; 5488 default: 5489 goto idle_irq; 5490 } 5491 5492 /* check altstatus */ 5493 status = ata_altstatus(ap); 5494 if (status & ATA_BUSY) 5495 goto idle_irq; 5496 5497 /* check main status, clearing INTRQ */ 5498 status = ata_chk_status(ap); 5499 if (unlikely(status & ATA_BUSY)) 5500 goto idle_irq; 5501 5502 /* ack bmdma irq events */ 5503 ap->ops->irq_clear(ap); 5504 5505 ata_hsm_move(ap, qc, status, 0); 5506 5507 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5508 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5509 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5510 5511 return 1; /* irq handled */ 5512 5513 idle_irq: 5514 ap->stats.idle_irq++; 5515 5516 #ifdef ATA_IRQ_TRAP 5517 if ((ap->stats.idle_irq % 1000) == 0) { 5518 ap->ops->irq_ack(ap, 0); /* debug trap */ 5519 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5520 return 1; 5521 } 5522 #endif 5523 return 0; /* irq not handled */ 5524 } 5525 5526 /** 5527 * ata_interrupt - Default ATA host interrupt handler 5528 * @irq: irq line (unused) 5529 * @dev_instance: pointer to our ata_host information structure 5530 * 5531 * Default interrupt handler for PCI IDE devices. Calls 5532 * ata_host_intr() for each port that is not disabled. 5533 * 5534 * LOCKING: 5535 * Obtains host lock during operation. 5536 * 5537 * RETURNS: 5538 * IRQ_NONE or IRQ_HANDLED. 5539 */ 5540 5541 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5542 { 5543 struct ata_host *host = dev_instance; 5544 unsigned int i; 5545 unsigned int handled = 0; 5546 unsigned long flags; 5547 5548 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5549 spin_lock_irqsave(&host->lock, flags); 5550 5551 for (i = 0; i < host->n_ports; i++) { 5552 struct ata_port *ap; 5553 5554 ap = host->ports[i]; 5555 if (ap && 5556 !(ap->flags & ATA_FLAG_DISABLED)) { 5557 struct ata_queued_cmd *qc; 5558 5559 qc = ata_qc_from_tag(ap, ap->active_tag); 5560 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5561 (qc->flags & ATA_QCFLAG_ACTIVE)) 5562 handled |= ata_host_intr(ap, qc); 5563 } 5564 } 5565 5566 spin_unlock_irqrestore(&host->lock, flags); 5567 5568 return IRQ_RETVAL(handled); 5569 } 5570 5571 /** 5572 * sata_scr_valid - test whether SCRs are accessible 5573 * @ap: ATA port to test SCR accessibility for 5574 * 5575 * Test whether SCRs are accessible for @ap. 5576 * 5577 * LOCKING: 5578 * None. 5579 * 5580 * RETURNS: 5581 * 1 if SCRs are accessible, 0 otherwise. 5582 */ 5583 int sata_scr_valid(struct ata_port *ap) 5584 { 5585 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; 5586 } 5587 5588 /** 5589 * sata_scr_read - read SCR register of the specified port 5590 * @ap: ATA port to read SCR for 5591 * @reg: SCR to read 5592 * @val: Place to store read value 5593 * 5594 * Read SCR register @reg of @ap into *@val. This function is 5595 * guaranteed to succeed if the cable type of the port is SATA 5596 * and the port implements ->scr_read. 5597 * 5598 * LOCKING: 5599 * None. 5600 * 5601 * RETURNS: 5602 * 0 on success, negative errno on failure. 5603 */ 5604 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5605 { 5606 if (sata_scr_valid(ap)) { 5607 *val = ap->ops->scr_read(ap, reg); 5608 return 0; 5609 } 5610 return -EOPNOTSUPP; 5611 } 5612 5613 /** 5614 * sata_scr_write - write SCR register of the specified port 5615 * @ap: ATA port to write SCR for 5616 * @reg: SCR to write 5617 * @val: value to write 5618 * 5619 * Write @val to SCR register @reg of @ap. This function is 5620 * guaranteed to succeed if the cable type of the port is SATA 5621 * and the port implements ->scr_read. 5622 * 5623 * LOCKING: 5624 * None. 5625 * 5626 * RETURNS: 5627 * 0 on success, negative errno on failure. 5628 */ 5629 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5630 { 5631 if (sata_scr_valid(ap)) { 5632 ap->ops->scr_write(ap, reg, val); 5633 return 0; 5634 } 5635 return -EOPNOTSUPP; 5636 } 5637 5638 /** 5639 * sata_scr_write_flush - write SCR register of the specified port and flush 5640 * @ap: ATA port to write SCR for 5641 * @reg: SCR to write 5642 * @val: value to write 5643 * 5644 * This function is identical to sata_scr_write() except that this 5645 * function performs flush after writing to the register. 5646 * 5647 * LOCKING: 5648 * None. 5649 * 5650 * RETURNS: 5651 * 0 on success, negative errno on failure. 5652 */ 5653 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5654 { 5655 if (sata_scr_valid(ap)) { 5656 ap->ops->scr_write(ap, reg, val); 5657 ap->ops->scr_read(ap, reg); 5658 return 0; 5659 } 5660 return -EOPNOTSUPP; 5661 } 5662 5663 /** 5664 * ata_port_online - test whether the given port is online 5665 * @ap: ATA port to test 5666 * 5667 * Test whether @ap is online. Note that this function returns 0 5668 * if online status of @ap cannot be obtained, so 5669 * ata_port_online(ap) != !ata_port_offline(ap). 5670 * 5671 * LOCKING: 5672 * None. 5673 * 5674 * RETURNS: 5675 * 1 if the port online status is available and online. 5676 */ 5677 int ata_port_online(struct ata_port *ap) 5678 { 5679 u32 sstatus; 5680 5681 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5682 return 1; 5683 return 0; 5684 } 5685 5686 /** 5687 * ata_port_offline - test whether the given port is offline 5688 * @ap: ATA port to test 5689 * 5690 * Test whether @ap is offline. Note that this function returns 5691 * 0 if offline status of @ap cannot be obtained, so 5692 * ata_port_online(ap) != !ata_port_offline(ap). 5693 * 5694 * LOCKING: 5695 * None. 5696 * 5697 * RETURNS: 5698 * 1 if the port offline status is available and offline. 5699 */ 5700 int ata_port_offline(struct ata_port *ap) 5701 { 5702 u32 sstatus; 5703 5704 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5705 return 1; 5706 return 0; 5707 } 5708 5709 int ata_flush_cache(struct ata_device *dev) 5710 { 5711 unsigned int err_mask; 5712 u8 cmd; 5713 5714 if (!ata_try_flush_cache(dev)) 5715 return 0; 5716 5717 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5718 cmd = ATA_CMD_FLUSH_EXT; 5719 else 5720 cmd = ATA_CMD_FLUSH; 5721 5722 err_mask = ata_do_simple_cmd(dev, cmd); 5723 if (err_mask) { 5724 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5725 return -EIO; 5726 } 5727 5728 return 0; 5729 } 5730 5731 #ifdef CONFIG_PM 5732 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5733 unsigned int action, unsigned int ehi_flags, 5734 int wait) 5735 { 5736 unsigned long flags; 5737 int i, rc; 5738 5739 for (i = 0; i < host->n_ports; i++) { 5740 struct ata_port *ap = host->ports[i]; 5741 5742 /* Previous resume operation might still be in 5743 * progress. Wait for PM_PENDING to clear. 5744 */ 5745 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5746 ata_port_wait_eh(ap); 5747 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5748 } 5749 5750 /* request PM ops to EH */ 5751 spin_lock_irqsave(ap->lock, flags); 5752 5753 ap->pm_mesg = mesg; 5754 if (wait) { 5755 rc = 0; 5756 ap->pm_result = &rc; 5757 } 5758 5759 ap->pflags |= ATA_PFLAG_PM_PENDING; 5760 ap->eh_info.action |= action; 5761 ap->eh_info.flags |= ehi_flags; 5762 5763 ata_port_schedule_eh(ap); 5764 5765 spin_unlock_irqrestore(ap->lock, flags); 5766 5767 /* wait and check result */ 5768 if (wait) { 5769 ata_port_wait_eh(ap); 5770 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5771 if (rc) 5772 return rc; 5773 } 5774 } 5775 5776 return 0; 5777 } 5778 5779 /** 5780 * ata_host_suspend - suspend host 5781 * @host: host to suspend 5782 * @mesg: PM message 5783 * 5784 * Suspend @host. Actual operation is performed by EH. This 5785 * function requests EH to perform PM operations and waits for EH 5786 * to finish. 5787 * 5788 * LOCKING: 5789 * Kernel thread context (may sleep). 5790 * 5791 * RETURNS: 5792 * 0 on success, -errno on failure. 5793 */ 5794 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5795 { 5796 int i, j, rc; 5797 5798 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5799 if (rc) 5800 goto fail; 5801 5802 /* EH is quiescent now. Fail if we have any ready device. 5803 * This happens if hotplug occurs between completion of device 5804 * suspension and here. 5805 */ 5806 for (i = 0; i < host->n_ports; i++) { 5807 struct ata_port *ap = host->ports[i]; 5808 5809 for (j = 0; j < ATA_MAX_DEVICES; j++) { 5810 struct ata_device *dev = &ap->device[j]; 5811 5812 if (ata_dev_ready(dev)) { 5813 ata_port_printk(ap, KERN_WARNING, 5814 "suspend failed, device %d " 5815 "still active\n", dev->devno); 5816 rc = -EBUSY; 5817 goto fail; 5818 } 5819 } 5820 } 5821 5822 host->dev->power.power_state = mesg; 5823 return 0; 5824 5825 fail: 5826 ata_host_resume(host); 5827 return rc; 5828 } 5829 5830 /** 5831 * ata_host_resume - resume host 5832 * @host: host to resume 5833 * 5834 * Resume @host. Actual operation is performed by EH. This 5835 * function requests EH to perform PM operations and returns. 5836 * Note that all resume operations are performed parallely. 5837 * 5838 * LOCKING: 5839 * Kernel thread context (may sleep). 5840 */ 5841 void ata_host_resume(struct ata_host *host) 5842 { 5843 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5844 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5845 host->dev->power.power_state = PMSG_ON; 5846 } 5847 #endif 5848 5849 /** 5850 * ata_port_start - Set port up for dma. 5851 * @ap: Port to initialize 5852 * 5853 * Called just after data structures for each port are 5854 * initialized. Allocates space for PRD table. 5855 * 5856 * May be used as the port_start() entry in ata_port_operations. 5857 * 5858 * LOCKING: 5859 * Inherited from caller. 5860 */ 5861 int ata_port_start(struct ata_port *ap) 5862 { 5863 struct device *dev = ap->dev; 5864 int rc; 5865 5866 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5867 GFP_KERNEL); 5868 if (!ap->prd) 5869 return -ENOMEM; 5870 5871 rc = ata_pad_alloc(ap, dev); 5872 if (rc) 5873 return rc; 5874 5875 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5876 (unsigned long long)ap->prd_dma); 5877 return 0; 5878 } 5879 5880 /** 5881 * ata_dev_init - Initialize an ata_device structure 5882 * @dev: Device structure to initialize 5883 * 5884 * Initialize @dev in preparation for probing. 5885 * 5886 * LOCKING: 5887 * Inherited from caller. 5888 */ 5889 void ata_dev_init(struct ata_device *dev) 5890 { 5891 struct ata_port *ap = dev->ap; 5892 unsigned long flags; 5893 5894 /* SATA spd limit is bound to the first device */ 5895 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5896 5897 /* High bits of dev->flags are used to record warm plug 5898 * requests which occur asynchronously. Synchronize using 5899 * host lock. 5900 */ 5901 spin_lock_irqsave(ap->lock, flags); 5902 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5903 spin_unlock_irqrestore(ap->lock, flags); 5904 5905 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5906 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5907 dev->pio_mask = UINT_MAX; 5908 dev->mwdma_mask = UINT_MAX; 5909 dev->udma_mask = UINT_MAX; 5910 } 5911 5912 /** 5913 * ata_port_alloc - allocate and initialize basic ATA port resources 5914 * @host: ATA host this allocated port belongs to 5915 * 5916 * Allocate and initialize basic ATA port resources. 5917 * 5918 * RETURNS: 5919 * Allocate ATA port on success, NULL on failure. 5920 * 5921 * LOCKING: 5922 * Inherited from calling layer (may sleep). 5923 */ 5924 struct ata_port *ata_port_alloc(struct ata_host *host) 5925 { 5926 struct ata_port *ap; 5927 unsigned int i; 5928 5929 DPRINTK("ENTER\n"); 5930 5931 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5932 if (!ap) 5933 return NULL; 5934 5935 ap->lock = &host->lock; 5936 ap->flags = ATA_FLAG_DISABLED; 5937 ap->print_id = -1; 5938 ap->ctl = ATA_DEVCTL_OBS; 5939 ap->host = host; 5940 ap->dev = host->dev; 5941 5942 ap->hw_sata_spd_limit = UINT_MAX; 5943 ap->active_tag = ATA_TAG_POISON; 5944 ap->last_ctl = 0xFF; 5945 5946 #if defined(ATA_VERBOSE_DEBUG) 5947 /* turn on all debugging levels */ 5948 ap->msg_enable = 0x00FF; 5949 #elif defined(ATA_DEBUG) 5950 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5951 #else 5952 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5953 #endif 5954 5955 INIT_DELAYED_WORK(&ap->port_task, NULL); 5956 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5957 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5958 INIT_LIST_HEAD(&ap->eh_done_q); 5959 init_waitqueue_head(&ap->eh_wait_q); 5960 5961 ap->cbl = ATA_CBL_NONE; 5962 5963 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5964 struct ata_device *dev = &ap->device[i]; 5965 dev->ap = ap; 5966 dev->devno = i; 5967 ata_dev_init(dev); 5968 } 5969 5970 #ifdef ATA_IRQ_TRAP 5971 ap->stats.unhandled_irq = 1; 5972 ap->stats.idle_irq = 1; 5973 #endif 5974 return ap; 5975 } 5976 5977 static void ata_host_release(struct device *gendev, void *res) 5978 { 5979 struct ata_host *host = dev_get_drvdata(gendev); 5980 int i; 5981 5982 for (i = 0; i < host->n_ports; i++) { 5983 struct ata_port *ap = host->ports[i]; 5984 5985 if (!ap) 5986 continue; 5987 5988 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 5989 ap->ops->port_stop(ap); 5990 } 5991 5992 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 5993 host->ops->host_stop(host); 5994 5995 for (i = 0; i < host->n_ports; i++) { 5996 struct ata_port *ap = host->ports[i]; 5997 5998 if (!ap) 5999 continue; 6000 6001 if (ap->scsi_host) 6002 scsi_host_put(ap->scsi_host); 6003 6004 kfree(ap); 6005 host->ports[i] = NULL; 6006 } 6007 6008 dev_set_drvdata(gendev, NULL); 6009 } 6010 6011 /** 6012 * ata_host_alloc - allocate and init basic ATA host resources 6013 * @dev: generic device this host is associated with 6014 * @max_ports: maximum number of ATA ports associated with this host 6015 * 6016 * Allocate and initialize basic ATA host resources. LLD calls 6017 * this function to allocate a host, initializes it fully and 6018 * attaches it using ata_host_register(). 6019 * 6020 * @max_ports ports are allocated and host->n_ports is 6021 * initialized to @max_ports. The caller is allowed to decrease 6022 * host->n_ports before calling ata_host_register(). The unused 6023 * ports will be automatically freed on registration. 6024 * 6025 * RETURNS: 6026 * Allocate ATA host on success, NULL on failure. 6027 * 6028 * LOCKING: 6029 * Inherited from calling layer (may sleep). 6030 */ 6031 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6032 { 6033 struct ata_host *host; 6034 size_t sz; 6035 int i; 6036 6037 DPRINTK("ENTER\n"); 6038 6039 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6040 return NULL; 6041 6042 /* alloc a container for our list of ATA ports (buses) */ 6043 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6044 /* alloc a container for our list of ATA ports (buses) */ 6045 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6046 if (!host) 6047 goto err_out; 6048 6049 devres_add(dev, host); 6050 dev_set_drvdata(dev, host); 6051 6052 spin_lock_init(&host->lock); 6053 host->dev = dev; 6054 host->n_ports = max_ports; 6055 6056 /* allocate ports bound to this host */ 6057 for (i = 0; i < max_ports; i++) { 6058 struct ata_port *ap; 6059 6060 ap = ata_port_alloc(host); 6061 if (!ap) 6062 goto err_out; 6063 6064 ap->port_no = i; 6065 host->ports[i] = ap; 6066 } 6067 6068 devres_remove_group(dev, NULL); 6069 return host; 6070 6071 err_out: 6072 devres_release_group(dev, NULL); 6073 return NULL; 6074 } 6075 6076 /** 6077 * ata_host_alloc_pinfo - alloc host and init with port_info array 6078 * @dev: generic device this host is associated with 6079 * @ppi: array of ATA port_info to initialize host with 6080 * @n_ports: number of ATA ports attached to this host 6081 * 6082 * Allocate ATA host and initialize with info from @ppi. If NULL 6083 * terminated, @ppi may contain fewer entries than @n_ports. The 6084 * last entry will be used for the remaining ports. 6085 * 6086 * RETURNS: 6087 * Allocate ATA host on success, NULL on failure. 6088 * 6089 * LOCKING: 6090 * Inherited from calling layer (may sleep). 6091 */ 6092 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6093 const struct ata_port_info * const * ppi, 6094 int n_ports) 6095 { 6096 const struct ata_port_info *pi; 6097 struct ata_host *host; 6098 int i, j; 6099 6100 host = ata_host_alloc(dev, n_ports); 6101 if (!host) 6102 return NULL; 6103 6104 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6105 struct ata_port *ap = host->ports[i]; 6106 6107 if (ppi[j]) 6108 pi = ppi[j++]; 6109 6110 ap->pio_mask = pi->pio_mask; 6111 ap->mwdma_mask = pi->mwdma_mask; 6112 ap->udma_mask = pi->udma_mask; 6113 ap->flags |= pi->flags; 6114 ap->ops = pi->port_ops; 6115 6116 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6117 host->ops = pi->port_ops; 6118 if (!host->private_data && pi->private_data) 6119 host->private_data = pi->private_data; 6120 } 6121 6122 return host; 6123 } 6124 6125 /** 6126 * ata_host_start - start and freeze ports of an ATA host 6127 * @host: ATA host to start ports for 6128 * 6129 * Start and then freeze ports of @host. Started status is 6130 * recorded in host->flags, so this function can be called 6131 * multiple times. Ports are guaranteed to get started only 6132 * once. If host->ops isn't initialized yet, its set to the 6133 * first non-dummy port ops. 6134 * 6135 * LOCKING: 6136 * Inherited from calling layer (may sleep). 6137 * 6138 * RETURNS: 6139 * 0 if all ports are started successfully, -errno otherwise. 6140 */ 6141 int ata_host_start(struct ata_host *host) 6142 { 6143 int i, rc; 6144 6145 if (host->flags & ATA_HOST_STARTED) 6146 return 0; 6147 6148 for (i = 0; i < host->n_ports; i++) { 6149 struct ata_port *ap = host->ports[i]; 6150 6151 if (!host->ops && !ata_port_is_dummy(ap)) 6152 host->ops = ap->ops; 6153 6154 if (ap->ops->port_start) { 6155 rc = ap->ops->port_start(ap); 6156 if (rc) { 6157 ata_port_printk(ap, KERN_ERR, "failed to " 6158 "start port (errno=%d)\n", rc); 6159 goto err_out; 6160 } 6161 } 6162 6163 ata_eh_freeze_port(ap); 6164 } 6165 6166 host->flags |= ATA_HOST_STARTED; 6167 return 0; 6168 6169 err_out: 6170 while (--i >= 0) { 6171 struct ata_port *ap = host->ports[i]; 6172 6173 if (ap->ops->port_stop) 6174 ap->ops->port_stop(ap); 6175 } 6176 return rc; 6177 } 6178 6179 /** 6180 * ata_sas_host_init - Initialize a host struct 6181 * @host: host to initialize 6182 * @dev: device host is attached to 6183 * @flags: host flags 6184 * @ops: port_ops 6185 * 6186 * LOCKING: 6187 * PCI/etc. bus probe sem. 6188 * 6189 */ 6190 /* KILLME - the only user left is ipr */ 6191 void ata_host_init(struct ata_host *host, struct device *dev, 6192 unsigned long flags, const struct ata_port_operations *ops) 6193 { 6194 spin_lock_init(&host->lock); 6195 host->dev = dev; 6196 host->flags = flags; 6197 host->ops = ops; 6198 } 6199 6200 /** 6201 * ata_host_register - register initialized ATA host 6202 * @host: ATA host to register 6203 * @sht: template for SCSI host 6204 * 6205 * Register initialized ATA host. @host is allocated using 6206 * ata_host_alloc() and fully initialized by LLD. This function 6207 * starts ports, registers @host with ATA and SCSI layers and 6208 * probe registered devices. 6209 * 6210 * LOCKING: 6211 * Inherited from calling layer (may sleep). 6212 * 6213 * RETURNS: 6214 * 0 on success, -errno otherwise. 6215 */ 6216 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6217 { 6218 int i, rc; 6219 6220 /* host must have been started */ 6221 if (!(host->flags & ATA_HOST_STARTED)) { 6222 dev_printk(KERN_ERR, host->dev, 6223 "BUG: trying to register unstarted host\n"); 6224 WARN_ON(1); 6225 return -EINVAL; 6226 } 6227 6228 /* Blow away unused ports. This happens when LLD can't 6229 * determine the exact number of ports to allocate at 6230 * allocation time. 6231 */ 6232 for (i = host->n_ports; host->ports[i]; i++) 6233 kfree(host->ports[i]); 6234 6235 /* give ports names and add SCSI hosts */ 6236 for (i = 0; i < host->n_ports; i++) 6237 host->ports[i]->print_id = ata_print_id++; 6238 6239 rc = ata_scsi_add_hosts(host, sht); 6240 if (rc) 6241 return rc; 6242 6243 /* set cable, sata_spd_limit and report */ 6244 for (i = 0; i < host->n_ports; i++) { 6245 struct ata_port *ap = host->ports[i]; 6246 int irq_line; 6247 u32 scontrol; 6248 unsigned long xfer_mask; 6249 6250 /* set SATA cable type if still unset */ 6251 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6252 ap->cbl = ATA_CBL_SATA; 6253 6254 /* init sata_spd_limit to the current value */ 6255 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 6256 int spd = (scontrol >> 4) & 0xf; 6257 ap->hw_sata_spd_limit &= (1 << spd) - 1; 6258 } 6259 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6260 6261 /* report the secondary IRQ for second channel legacy */ 6262 irq_line = host->irq; 6263 if (i == 1 && host->irq2) 6264 irq_line = host->irq2; 6265 6266 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6267 ap->udma_mask); 6268 6269 /* print per-port info to dmesg */ 6270 if (!ata_port_is_dummy(ap)) 6271 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 6272 "ctl 0x%p bmdma 0x%p irq %d\n", 6273 ap->cbl == ATA_CBL_SATA ? 'S' : 'P', 6274 ata_mode_string(xfer_mask), 6275 ap->ioaddr.cmd_addr, 6276 ap->ioaddr.ctl_addr, 6277 ap->ioaddr.bmdma_addr, 6278 irq_line); 6279 else 6280 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6281 } 6282 6283 /* perform each probe synchronously */ 6284 DPRINTK("probe begin\n"); 6285 for (i = 0; i < host->n_ports; i++) { 6286 struct ata_port *ap = host->ports[i]; 6287 int rc; 6288 6289 /* probe */ 6290 if (ap->ops->error_handler) { 6291 struct ata_eh_info *ehi = &ap->eh_info; 6292 unsigned long flags; 6293 6294 ata_port_probe(ap); 6295 6296 /* kick EH for boot probing */ 6297 spin_lock_irqsave(ap->lock, flags); 6298 6299 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 6300 ehi->action |= ATA_EH_SOFTRESET; 6301 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6302 6303 ap->pflags |= ATA_PFLAG_LOADING; 6304 ata_port_schedule_eh(ap); 6305 6306 spin_unlock_irqrestore(ap->lock, flags); 6307 6308 /* wait for EH to finish */ 6309 ata_port_wait_eh(ap); 6310 } else { 6311 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6312 rc = ata_bus_probe(ap); 6313 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6314 6315 if (rc) { 6316 /* FIXME: do something useful here? 6317 * Current libata behavior will 6318 * tear down everything when 6319 * the module is removed 6320 * or the h/w is unplugged. 6321 */ 6322 } 6323 } 6324 } 6325 6326 /* probes are done, now scan each port's disk(s) */ 6327 DPRINTK("host probe begin\n"); 6328 for (i = 0; i < host->n_ports; i++) { 6329 struct ata_port *ap = host->ports[i]; 6330 6331 ata_scsi_scan_host(ap); 6332 } 6333 6334 return 0; 6335 } 6336 6337 /** 6338 * ata_host_activate - start host, request IRQ and register it 6339 * @host: target ATA host 6340 * @irq: IRQ to request 6341 * @irq_handler: irq_handler used when requesting IRQ 6342 * @irq_flags: irq_flags used when requesting IRQ 6343 * @sht: scsi_host_template to use when registering the host 6344 * 6345 * After allocating an ATA host and initializing it, most libata 6346 * LLDs perform three steps to activate the host - start host, 6347 * request IRQ and register it. This helper takes necessasry 6348 * arguments and performs the three steps in one go. 6349 * 6350 * LOCKING: 6351 * Inherited from calling layer (may sleep). 6352 * 6353 * RETURNS: 6354 * 0 on success, -errno otherwise. 6355 */ 6356 int ata_host_activate(struct ata_host *host, int irq, 6357 irq_handler_t irq_handler, unsigned long irq_flags, 6358 struct scsi_host_template *sht) 6359 { 6360 int rc; 6361 6362 rc = ata_host_start(host); 6363 if (rc) 6364 return rc; 6365 6366 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6367 dev_driver_string(host->dev), host); 6368 if (rc) 6369 return rc; 6370 6371 rc = ata_host_register(host, sht); 6372 /* if failed, just free the IRQ and leave ports alone */ 6373 if (rc) 6374 devm_free_irq(host->dev, irq, host); 6375 6376 return rc; 6377 } 6378 6379 /** 6380 * ata_port_detach - Detach ATA port in prepration of device removal 6381 * @ap: ATA port to be detached 6382 * 6383 * Detach all ATA devices and the associated SCSI devices of @ap; 6384 * then, remove the associated SCSI host. @ap is guaranteed to 6385 * be quiescent on return from this function. 6386 * 6387 * LOCKING: 6388 * Kernel thread context (may sleep). 6389 */ 6390 void ata_port_detach(struct ata_port *ap) 6391 { 6392 unsigned long flags; 6393 int i; 6394 6395 if (!ap->ops->error_handler) 6396 goto skip_eh; 6397 6398 /* tell EH we're leaving & flush EH */ 6399 spin_lock_irqsave(ap->lock, flags); 6400 ap->pflags |= ATA_PFLAG_UNLOADING; 6401 spin_unlock_irqrestore(ap->lock, flags); 6402 6403 ata_port_wait_eh(ap); 6404 6405 /* EH is now guaranteed to see UNLOADING, so no new device 6406 * will be attached. Disable all existing devices. 6407 */ 6408 spin_lock_irqsave(ap->lock, flags); 6409 6410 for (i = 0; i < ATA_MAX_DEVICES; i++) 6411 ata_dev_disable(&ap->device[i]); 6412 6413 spin_unlock_irqrestore(ap->lock, flags); 6414 6415 /* Final freeze & EH. All in-flight commands are aborted. EH 6416 * will be skipped and retrials will be terminated with bad 6417 * target. 6418 */ 6419 spin_lock_irqsave(ap->lock, flags); 6420 ata_port_freeze(ap); /* won't be thawed */ 6421 spin_unlock_irqrestore(ap->lock, flags); 6422 6423 ata_port_wait_eh(ap); 6424 6425 /* Flush hotplug task. The sequence is similar to 6426 * ata_port_flush_task(). 6427 */ 6428 flush_workqueue(ata_aux_wq); 6429 cancel_delayed_work(&ap->hotplug_task); 6430 flush_workqueue(ata_aux_wq); 6431 6432 skip_eh: 6433 /* remove the associated SCSI host */ 6434 scsi_remove_host(ap->scsi_host); 6435 } 6436 6437 /** 6438 * ata_host_detach - Detach all ports of an ATA host 6439 * @host: Host to detach 6440 * 6441 * Detach all ports of @host. 6442 * 6443 * LOCKING: 6444 * Kernel thread context (may sleep). 6445 */ 6446 void ata_host_detach(struct ata_host *host) 6447 { 6448 int i; 6449 6450 for (i = 0; i < host->n_ports; i++) 6451 ata_port_detach(host->ports[i]); 6452 } 6453 6454 /** 6455 * ata_std_ports - initialize ioaddr with standard port offsets. 6456 * @ioaddr: IO address structure to be initialized 6457 * 6458 * Utility function which initializes data_addr, error_addr, 6459 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6460 * device_addr, status_addr, and command_addr to standard offsets 6461 * relative to cmd_addr. 6462 * 6463 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6464 */ 6465 6466 void ata_std_ports(struct ata_ioports *ioaddr) 6467 { 6468 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6469 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6470 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6471 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6472 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6473 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6474 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6475 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6476 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6477 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6478 } 6479 6480 6481 #ifdef CONFIG_PCI 6482 6483 /** 6484 * ata_pci_remove_one - PCI layer callback for device removal 6485 * @pdev: PCI device that was removed 6486 * 6487 * PCI layer indicates to libata via this hook that hot-unplug or 6488 * module unload event has occurred. Detach all ports. Resource 6489 * release is handled via devres. 6490 * 6491 * LOCKING: 6492 * Inherited from PCI layer (may sleep). 6493 */ 6494 void ata_pci_remove_one(struct pci_dev *pdev) 6495 { 6496 struct device *dev = pci_dev_to_dev(pdev); 6497 struct ata_host *host = dev_get_drvdata(dev); 6498 6499 ata_host_detach(host); 6500 } 6501 6502 /* move to PCI subsystem */ 6503 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6504 { 6505 unsigned long tmp = 0; 6506 6507 switch (bits->width) { 6508 case 1: { 6509 u8 tmp8 = 0; 6510 pci_read_config_byte(pdev, bits->reg, &tmp8); 6511 tmp = tmp8; 6512 break; 6513 } 6514 case 2: { 6515 u16 tmp16 = 0; 6516 pci_read_config_word(pdev, bits->reg, &tmp16); 6517 tmp = tmp16; 6518 break; 6519 } 6520 case 4: { 6521 u32 tmp32 = 0; 6522 pci_read_config_dword(pdev, bits->reg, &tmp32); 6523 tmp = tmp32; 6524 break; 6525 } 6526 6527 default: 6528 return -EINVAL; 6529 } 6530 6531 tmp &= bits->mask; 6532 6533 return (tmp == bits->val) ? 1 : 0; 6534 } 6535 6536 #ifdef CONFIG_PM 6537 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6538 { 6539 pci_save_state(pdev); 6540 pci_disable_device(pdev); 6541 6542 if (mesg.event == PM_EVENT_SUSPEND) 6543 pci_set_power_state(pdev, PCI_D3hot); 6544 } 6545 6546 int ata_pci_device_do_resume(struct pci_dev *pdev) 6547 { 6548 int rc; 6549 6550 pci_set_power_state(pdev, PCI_D0); 6551 pci_restore_state(pdev); 6552 6553 rc = pcim_enable_device(pdev); 6554 if (rc) { 6555 dev_printk(KERN_ERR, &pdev->dev, 6556 "failed to enable device after resume (%d)\n", rc); 6557 return rc; 6558 } 6559 6560 pci_set_master(pdev); 6561 return 0; 6562 } 6563 6564 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6565 { 6566 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6567 int rc = 0; 6568 6569 rc = ata_host_suspend(host, mesg); 6570 if (rc) 6571 return rc; 6572 6573 ata_pci_device_do_suspend(pdev, mesg); 6574 6575 return 0; 6576 } 6577 6578 int ata_pci_device_resume(struct pci_dev *pdev) 6579 { 6580 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6581 int rc; 6582 6583 rc = ata_pci_device_do_resume(pdev); 6584 if (rc == 0) 6585 ata_host_resume(host); 6586 return rc; 6587 } 6588 #endif /* CONFIG_PM */ 6589 6590 #endif /* CONFIG_PCI */ 6591 6592 6593 static int __init ata_init(void) 6594 { 6595 ata_probe_timeout *= HZ; 6596 ata_wq = create_workqueue("ata"); 6597 if (!ata_wq) 6598 return -ENOMEM; 6599 6600 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6601 if (!ata_aux_wq) { 6602 destroy_workqueue(ata_wq); 6603 return -ENOMEM; 6604 } 6605 6606 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6607 return 0; 6608 } 6609 6610 static void __exit ata_exit(void) 6611 { 6612 destroy_workqueue(ata_wq); 6613 destroy_workqueue(ata_aux_wq); 6614 } 6615 6616 subsys_initcall(ata_init); 6617 module_exit(ata_exit); 6618 6619 static unsigned long ratelimit_time; 6620 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6621 6622 int ata_ratelimit(void) 6623 { 6624 int rc; 6625 unsigned long flags; 6626 6627 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6628 6629 if (time_after(jiffies, ratelimit_time)) { 6630 rc = 1; 6631 ratelimit_time = jiffies + (HZ/5); 6632 } else 6633 rc = 0; 6634 6635 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6636 6637 return rc; 6638 } 6639 6640 /** 6641 * ata_wait_register - wait until register value changes 6642 * @reg: IO-mapped register 6643 * @mask: Mask to apply to read register value 6644 * @val: Wait condition 6645 * @interval_msec: polling interval in milliseconds 6646 * @timeout_msec: timeout in milliseconds 6647 * 6648 * Waiting for some bits of register to change is a common 6649 * operation for ATA controllers. This function reads 32bit LE 6650 * IO-mapped register @reg and tests for the following condition. 6651 * 6652 * (*@reg & mask) != val 6653 * 6654 * If the condition is met, it returns; otherwise, the process is 6655 * repeated after @interval_msec until timeout. 6656 * 6657 * LOCKING: 6658 * Kernel thread context (may sleep) 6659 * 6660 * RETURNS: 6661 * The final register value. 6662 */ 6663 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6664 unsigned long interval_msec, 6665 unsigned long timeout_msec) 6666 { 6667 unsigned long timeout; 6668 u32 tmp; 6669 6670 tmp = ioread32(reg); 6671 6672 /* Calculate timeout _after_ the first read to make sure 6673 * preceding writes reach the controller before starting to 6674 * eat away the timeout. 6675 */ 6676 timeout = jiffies + (timeout_msec * HZ) / 1000; 6677 6678 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6679 msleep(interval_msec); 6680 tmp = ioread32(reg); 6681 } 6682 6683 return tmp; 6684 } 6685 6686 /* 6687 * Dummy port_ops 6688 */ 6689 static void ata_dummy_noret(struct ata_port *ap) { } 6690 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6691 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6692 6693 static u8 ata_dummy_check_status(struct ata_port *ap) 6694 { 6695 return ATA_DRDY; 6696 } 6697 6698 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6699 { 6700 return AC_ERR_SYSTEM; 6701 } 6702 6703 const struct ata_port_operations ata_dummy_port_ops = { 6704 .port_disable = ata_port_disable, 6705 .check_status = ata_dummy_check_status, 6706 .check_altstatus = ata_dummy_check_status, 6707 .dev_select = ata_noop_dev_select, 6708 .qc_prep = ata_noop_qc_prep, 6709 .qc_issue = ata_dummy_qc_issue, 6710 .freeze = ata_dummy_noret, 6711 .thaw = ata_dummy_noret, 6712 .error_handler = ata_dummy_noret, 6713 .post_internal_cmd = ata_dummy_qc_noret, 6714 .irq_clear = ata_dummy_noret, 6715 .port_start = ata_dummy_ret0, 6716 .port_stop = ata_dummy_noret, 6717 }; 6718 6719 const struct ata_port_info ata_dummy_port_info = { 6720 .port_ops = &ata_dummy_port_ops, 6721 }; 6722 6723 /* 6724 * libata is essentially a library of internal helper functions for 6725 * low-level ATA host controller drivers. As such, the API/ABI is 6726 * likely to change as new drivers are added and updated. 6727 * Do not depend on ABI/API stability. 6728 */ 6729 6730 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6731 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6732 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6733 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6734 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6735 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6736 EXPORT_SYMBOL_GPL(ata_std_ports); 6737 EXPORT_SYMBOL_GPL(ata_host_init); 6738 EXPORT_SYMBOL_GPL(ata_host_alloc); 6739 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6740 EXPORT_SYMBOL_GPL(ata_host_start); 6741 EXPORT_SYMBOL_GPL(ata_host_register); 6742 EXPORT_SYMBOL_GPL(ata_host_activate); 6743 EXPORT_SYMBOL_GPL(ata_host_detach); 6744 EXPORT_SYMBOL_GPL(ata_sg_init); 6745 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6746 EXPORT_SYMBOL_GPL(ata_hsm_move); 6747 EXPORT_SYMBOL_GPL(ata_qc_complete); 6748 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6749 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6750 EXPORT_SYMBOL_GPL(ata_tf_load); 6751 EXPORT_SYMBOL_GPL(ata_tf_read); 6752 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6753 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6754 EXPORT_SYMBOL_GPL(sata_print_link_status); 6755 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6756 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6757 EXPORT_SYMBOL_GPL(ata_check_status); 6758 EXPORT_SYMBOL_GPL(ata_altstatus); 6759 EXPORT_SYMBOL_GPL(ata_exec_command); 6760 EXPORT_SYMBOL_GPL(ata_port_start); 6761 EXPORT_SYMBOL_GPL(ata_interrupt); 6762 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6763 EXPORT_SYMBOL_GPL(ata_data_xfer); 6764 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6765 EXPORT_SYMBOL_GPL(ata_qc_prep); 6766 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6767 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6768 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6769 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6770 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6771 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6772 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6773 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6774 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6775 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6776 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6777 EXPORT_SYMBOL_GPL(ata_port_probe); 6778 EXPORT_SYMBOL_GPL(ata_dev_disable); 6779 EXPORT_SYMBOL_GPL(sata_set_spd); 6780 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6781 EXPORT_SYMBOL_GPL(sata_phy_resume); 6782 EXPORT_SYMBOL_GPL(sata_phy_reset); 6783 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6784 EXPORT_SYMBOL_GPL(ata_bus_reset); 6785 EXPORT_SYMBOL_GPL(ata_std_prereset); 6786 EXPORT_SYMBOL_GPL(ata_std_softreset); 6787 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6788 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6789 EXPORT_SYMBOL_GPL(ata_std_postreset); 6790 EXPORT_SYMBOL_GPL(ata_dev_classify); 6791 EXPORT_SYMBOL_GPL(ata_dev_pair); 6792 EXPORT_SYMBOL_GPL(ata_port_disable); 6793 EXPORT_SYMBOL_GPL(ata_ratelimit); 6794 EXPORT_SYMBOL_GPL(ata_wait_register); 6795 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6796 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6797 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6798 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6799 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6800 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6801 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6802 EXPORT_SYMBOL_GPL(ata_host_intr); 6803 EXPORT_SYMBOL_GPL(sata_scr_valid); 6804 EXPORT_SYMBOL_GPL(sata_scr_read); 6805 EXPORT_SYMBOL_GPL(sata_scr_write); 6806 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6807 EXPORT_SYMBOL_GPL(ata_port_online); 6808 EXPORT_SYMBOL_GPL(ata_port_offline); 6809 #ifdef CONFIG_PM 6810 EXPORT_SYMBOL_GPL(ata_host_suspend); 6811 EXPORT_SYMBOL_GPL(ata_host_resume); 6812 #endif /* CONFIG_PM */ 6813 EXPORT_SYMBOL_GPL(ata_id_string); 6814 EXPORT_SYMBOL_GPL(ata_id_c_string); 6815 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6816 EXPORT_SYMBOL_GPL(ata_device_blacklisted); 6817 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6818 6819 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6820 EXPORT_SYMBOL_GPL(ata_timing_compute); 6821 EXPORT_SYMBOL_GPL(ata_timing_merge); 6822 6823 #ifdef CONFIG_PCI 6824 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6825 EXPORT_SYMBOL_GPL(ata_pci_init_native_host); 6826 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host); 6827 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6828 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6829 #ifdef CONFIG_PM 6830 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6831 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6832 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6833 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6834 #endif /* CONFIG_PM */ 6835 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6836 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6837 #endif /* CONFIG_PCI */ 6838 6839 #ifdef CONFIG_PM 6840 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); 6841 EXPORT_SYMBOL_GPL(ata_scsi_device_resume); 6842 #endif /* CONFIG_PM */ 6843 6844 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6845 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6846 EXPORT_SYMBOL_GPL(ata_port_abort); 6847 EXPORT_SYMBOL_GPL(ata_port_freeze); 6848 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6849 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6850 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6851 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6852 EXPORT_SYMBOL_GPL(ata_do_eh); 6853 EXPORT_SYMBOL_GPL(ata_irq_on); 6854 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6855 EXPORT_SYMBOL_GPL(ata_irq_ack); 6856 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6857 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6858 6859 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6860 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6861 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6862 EXPORT_SYMBOL_GPL(ata_cable_sata); 6863