xref: /linux/drivers/ata/libata-core.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.20"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77 
78 struct workqueue_struct *ata_aux_wq;
79 
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95 
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99 
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103 
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108 
109 
110 /**
111  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112  *	@tf: Taskfile to convert
113  *	@fis: Buffer into which data will output
114  *	@pmp: Port multiplier port
115  *
116  *	Converts a standard ATA taskfile to a Serial ATA
117  *	FIS structure (Register - Host to Device).
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
122 
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 	fis[0] = 0x27;	/* Register - Host to Device FIS */
126 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 					    bit 7 indicates Command FIS */
128 	fis[2] = tf->command;
129 	fis[3] = tf->feature;
130 
131 	fis[4] = tf->lbal;
132 	fis[5] = tf->lbam;
133 	fis[6] = tf->lbah;
134 	fis[7] = tf->device;
135 
136 	fis[8] = tf->hob_lbal;
137 	fis[9] = tf->hob_lbam;
138 	fis[10] = tf->hob_lbah;
139 	fis[11] = tf->hob_feature;
140 
141 	fis[12] = tf->nsect;
142 	fis[13] = tf->hob_nsect;
143 	fis[14] = 0;
144 	fis[15] = tf->ctl;
145 
146 	fis[16] = 0;
147 	fis[17] = 0;
148 	fis[18] = 0;
149 	fis[19] = 0;
150 }
151 
152 /**
153  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154  *	@fis: Buffer from which data will be input
155  *	@tf: Taskfile to output
156  *
157  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
158  *
159  *	LOCKING:
160  *	Inherited from caller.
161  */
162 
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 	tf->command	= fis[2];	/* status */
166 	tf->feature	= fis[3];	/* error */
167 
168 	tf->lbal	= fis[4];
169 	tf->lbam	= fis[5];
170 	tf->lbah	= fis[6];
171 	tf->device	= fis[7];
172 
173 	tf->hob_lbal	= fis[8];
174 	tf->hob_lbam	= fis[9];
175 	tf->hob_lbah	= fis[10];
176 
177 	tf->nsect	= fis[12];
178 	tf->hob_nsect	= fis[13];
179 }
180 
181 static const u8 ata_rw_cmds[] = {
182 	/* pio multi */
183 	ATA_CMD_READ_MULTI,
184 	ATA_CMD_WRITE_MULTI,
185 	ATA_CMD_READ_MULTI_EXT,
186 	ATA_CMD_WRITE_MULTI_EXT,
187 	0,
188 	0,
189 	0,
190 	ATA_CMD_WRITE_MULTI_FUA_EXT,
191 	/* pio */
192 	ATA_CMD_PIO_READ,
193 	ATA_CMD_PIO_WRITE,
194 	ATA_CMD_PIO_READ_EXT,
195 	ATA_CMD_PIO_WRITE_EXT,
196 	0,
197 	0,
198 	0,
199 	0,
200 	/* dma */
201 	ATA_CMD_READ,
202 	ATA_CMD_WRITE,
203 	ATA_CMD_READ_EXT,
204 	ATA_CMD_WRITE_EXT,
205 	0,
206 	0,
207 	0,
208 	ATA_CMD_WRITE_FUA_EXT
209 };
210 
211 /**
212  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
213  *	@tf: command to examine and configure
214  *	@dev: device tf belongs to
215  *
216  *	Examine the device configuration and tf->flags to calculate
217  *	the proper read/write commands and protocol to use.
218  *
219  *	LOCKING:
220  *	caller.
221  */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 	u8 cmd;
225 
226 	int index, fua, lba48, write;
227 
228 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231 
232 	if (dev->flags & ATA_DFLAG_PIO) {
233 		tf->protocol = ATA_PROT_PIO;
234 		index = dev->multi_count ? 0 : 8;
235 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 		/* Unable to use DMA due to host limitation */
237 		tf->protocol = ATA_PROT_PIO;
238 		index = dev->multi_count ? 0 : 8;
239 	} else {
240 		tf->protocol = ATA_PROT_DMA;
241 		index = 16;
242 	}
243 
244 	cmd = ata_rw_cmds[index + fua + lba48 + write];
245 	if (cmd) {
246 		tf->command = cmd;
247 		return 0;
248 	}
249 	return -1;
250 }
251 
252 /**
253  *	ata_tf_read_block - Read block address from ATA taskfile
254  *	@tf: ATA taskfile of interest
255  *	@dev: ATA device @tf belongs to
256  *
257  *	LOCKING:
258  *	None.
259  *
260  *	Read block address from @tf.  This function can handle all
261  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
262  *	flags select the address format to use.
263  *
264  *	RETURNS:
265  *	Block address read from @tf.
266  */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 	u64 block = 0;
270 
271 	if (tf->flags & ATA_TFLAG_LBA) {
272 		if (tf->flags & ATA_TFLAG_LBA48) {
273 			block |= (u64)tf->hob_lbah << 40;
274 			block |= (u64)tf->hob_lbam << 32;
275 			block |= tf->hob_lbal << 24;
276 		} else
277 			block |= (tf->device & 0xf) << 24;
278 
279 		block |= tf->lbah << 16;
280 		block |= tf->lbam << 8;
281 		block |= tf->lbal;
282 	} else {
283 		u32 cyl, head, sect;
284 
285 		cyl = tf->lbam | (tf->lbah << 8);
286 		head = tf->device & 0xf;
287 		sect = tf->lbal;
288 
289 		block = (cyl * dev->heads + head) * dev->sectors + sect;
290 	}
291 
292 	return block;
293 }
294 
295 /**
296  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
297  *	@tf: Target ATA taskfile
298  *	@dev: ATA device @tf belongs to
299  *	@block: Block address
300  *	@n_block: Number of blocks
301  *	@tf_flags: RW/FUA etc...
302  *	@tag: tag
303  *
304  *	LOCKING:
305  *	None.
306  *
307  *	Build ATA taskfile @tf for read/write request described by
308  *	@block, @n_block, @tf_flags and @tag on @dev.
309  *
310  *	RETURNS:
311  *
312  *	0 on success, -ERANGE if the request is too large for @dev,
313  *	-EINVAL if the request is invalid.
314  */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 		    u64 block, u32 n_block, unsigned int tf_flags,
317 		    unsigned int tag)
318 {
319 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 	tf->flags |= tf_flags;
321 
322 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 		/* yay, NCQ */
324 		if (!lba_48_ok(block, n_block))
325 			return -ERANGE;
326 
327 		tf->protocol = ATA_PROT_NCQ;
328 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329 
330 		if (tf->flags & ATA_TFLAG_WRITE)
331 			tf->command = ATA_CMD_FPDMA_WRITE;
332 		else
333 			tf->command = ATA_CMD_FPDMA_READ;
334 
335 		tf->nsect = tag << 3;
336 		tf->hob_feature = (n_block >> 8) & 0xff;
337 		tf->feature = n_block & 0xff;
338 
339 		tf->hob_lbah = (block >> 40) & 0xff;
340 		tf->hob_lbam = (block >> 32) & 0xff;
341 		tf->hob_lbal = (block >> 24) & 0xff;
342 		tf->lbah = (block >> 16) & 0xff;
343 		tf->lbam = (block >> 8) & 0xff;
344 		tf->lbal = block & 0xff;
345 
346 		tf->device = 1 << 6;
347 		if (tf->flags & ATA_TFLAG_FUA)
348 			tf->device |= 1 << 7;
349 	} else if (dev->flags & ATA_DFLAG_LBA) {
350 		tf->flags |= ATA_TFLAG_LBA;
351 
352 		if (lba_28_ok(block, n_block)) {
353 			/* use LBA28 */
354 			tf->device |= (block >> 24) & 0xf;
355 		} else if (lba_48_ok(block, n_block)) {
356 			if (!(dev->flags & ATA_DFLAG_LBA48))
357 				return -ERANGE;
358 
359 			/* use LBA48 */
360 			tf->flags |= ATA_TFLAG_LBA48;
361 
362 			tf->hob_nsect = (n_block >> 8) & 0xff;
363 
364 			tf->hob_lbah = (block >> 40) & 0xff;
365 			tf->hob_lbam = (block >> 32) & 0xff;
366 			tf->hob_lbal = (block >> 24) & 0xff;
367 		} else
368 			/* request too large even for LBA48 */
369 			return -ERANGE;
370 
371 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 			return -EINVAL;
373 
374 		tf->nsect = n_block & 0xff;
375 
376 		tf->lbah = (block >> 16) & 0xff;
377 		tf->lbam = (block >> 8) & 0xff;
378 		tf->lbal = block & 0xff;
379 
380 		tf->device |= ATA_LBA;
381 	} else {
382 		/* CHS */
383 		u32 sect, head, cyl, track;
384 
385 		/* The request -may- be too large for CHS addressing. */
386 		if (!lba_28_ok(block, n_block))
387 			return -ERANGE;
388 
389 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 			return -EINVAL;
391 
392 		/* Convert LBA to CHS */
393 		track = (u32)block / dev->sectors;
394 		cyl   = track / dev->heads;
395 		head  = track % dev->heads;
396 		sect  = (u32)block % dev->sectors + 1;
397 
398 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 			(u32)block, track, cyl, head, sect);
400 
401 		/* Check whether the converted CHS can fit.
402 		   Cylinder: 0-65535
403 		   Head: 0-15
404 		   Sector: 1-255*/
405 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 			return -ERANGE;
407 
408 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 		tf->lbal = sect;
410 		tf->lbam = cyl;
411 		tf->lbah = cyl >> 8;
412 		tf->device |= head;
413 	}
414 
415 	return 0;
416 }
417 
418 /**
419  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420  *	@pio_mask: pio_mask
421  *	@mwdma_mask: mwdma_mask
422  *	@udma_mask: udma_mask
423  *
424  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425  *	unsigned int xfer_mask.
426  *
427  *	LOCKING:
428  *	None.
429  *
430  *	RETURNS:
431  *	Packed xfer_mask.
432  */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 				      unsigned int mwdma_mask,
435 				      unsigned int udma_mask)
436 {
437 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441 
442 /**
443  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444  *	@xfer_mask: xfer_mask to unpack
445  *	@pio_mask: resulting pio_mask
446  *	@mwdma_mask: resulting mwdma_mask
447  *	@udma_mask: resulting udma_mask
448  *
449  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450  *	Any NULL distination masks will be ignored.
451  */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 				unsigned int *pio_mask,
454 				unsigned int *mwdma_mask,
455 				unsigned int *udma_mask)
456 {
457 	if (pio_mask)
458 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 	if (mwdma_mask)
460 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 	if (udma_mask)
462 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464 
465 static const struct ata_xfer_ent {
466 	int shift, bits;
467 	u8 base;
468 } ata_xfer_tbl[] = {
469 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 	{ -1, },
473 };
474 
475 /**
476  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477  *	@xfer_mask: xfer_mask of interest
478  *
479  *	Return matching XFER_* value for @xfer_mask.  Only the highest
480  *	bit of @xfer_mask is considered.
481  *
482  *	LOCKING:
483  *	None.
484  *
485  *	RETURNS:
486  *	Matching XFER_* value, 0 if no match found.
487  */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 	int highbit = fls(xfer_mask) - 1;
491 	const struct ata_xfer_ent *ent;
492 
493 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 			return ent->base + highbit - ent->shift;
496 	return 0;
497 }
498 
499 /**
500  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501  *	@xfer_mode: XFER_* of interest
502  *
503  *	Return matching xfer_mask for @xfer_mode.
504  *
505  *	LOCKING:
506  *	None.
507  *
508  *	RETURNS:
509  *	Matching xfer_mask, 0 if no match found.
510  */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 	const struct ata_xfer_ent *ent;
514 
515 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 			return 1 << (ent->shift + xfer_mode - ent->base);
518 	return 0;
519 }
520 
521 /**
522  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523  *	@xfer_mode: XFER_* of interest
524  *
525  *	Return matching xfer_shift for @xfer_mode.
526  *
527  *	LOCKING:
528  *	None.
529  *
530  *	RETURNS:
531  *	Matching xfer_shift, -1 if no match found.
532  */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 	const struct ata_xfer_ent *ent;
536 
537 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 			return ent->shift;
540 	return -1;
541 }
542 
543 /**
544  *	ata_mode_string - convert xfer_mask to string
545  *	@xfer_mask: mask of bits supported; only highest bit counts.
546  *
547  *	Determine string which represents the highest speed
548  *	(highest bit in @modemask).
549  *
550  *	LOCKING:
551  *	None.
552  *
553  *	RETURNS:
554  *	Constant C string representing highest speed listed in
555  *	@mode_mask, or the constant C string "<n/a>".
556  */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 	static const char * const xfer_mode_str[] = {
560 		"PIO0",
561 		"PIO1",
562 		"PIO2",
563 		"PIO3",
564 		"PIO4",
565 		"PIO5",
566 		"PIO6",
567 		"MWDMA0",
568 		"MWDMA1",
569 		"MWDMA2",
570 		"MWDMA3",
571 		"MWDMA4",
572 		"UDMA/16",
573 		"UDMA/25",
574 		"UDMA/33",
575 		"UDMA/44",
576 		"UDMA/66",
577 		"UDMA/100",
578 		"UDMA/133",
579 		"UDMA7",
580 	};
581 	int highbit;
582 
583 	highbit = fls(xfer_mask) - 1;
584 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 		return xfer_mode_str[highbit];
586 	return "<n/a>";
587 }
588 
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 	static const char * const spd_str[] = {
592 		"1.5 Gbps",
593 		"3.0 Gbps",
594 	};
595 
596 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 		return "<unknown>";
598 	return spd_str[spd - 1];
599 }
600 
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 	if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 		ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 					     ATA_DNXFER_QUIET);
607 		dev->class++;
608 	}
609 }
610 
611 /**
612  *	ata_devchk - PATA device presence detection
613  *	@ap: ATA channel to examine
614  *	@device: Device to examine (starting at zero)
615  *
616  *	This technique was originally described in
617  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
618  *	later found its way into the ATA/ATAPI spec.
619  *
620  *	Write a pattern to the ATA shadow registers,
621  *	and if a device is present, it will respond by
622  *	correctly storing and echoing back the
623  *	ATA shadow register contents.
624  *
625  *	LOCKING:
626  *	caller.
627  */
628 
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 	struct ata_ioports *ioaddr = &ap->ioaddr;
632 	u8 nsect, lbal;
633 
634 	ap->ops->dev_select(ap, device);
635 
636 	iowrite8(0x55, ioaddr->nsect_addr);
637 	iowrite8(0xaa, ioaddr->lbal_addr);
638 
639 	iowrite8(0xaa, ioaddr->nsect_addr);
640 	iowrite8(0x55, ioaddr->lbal_addr);
641 
642 	iowrite8(0x55, ioaddr->nsect_addr);
643 	iowrite8(0xaa, ioaddr->lbal_addr);
644 
645 	nsect = ioread8(ioaddr->nsect_addr);
646 	lbal = ioread8(ioaddr->lbal_addr);
647 
648 	if ((nsect == 0x55) && (lbal == 0xaa))
649 		return 1;	/* we found a device */
650 
651 	return 0;		/* nothing found */
652 }
653 
654 /**
655  *	ata_dev_classify - determine device type based on ATA-spec signature
656  *	@tf: ATA taskfile register set for device to be identified
657  *
658  *	Determine from taskfile register contents whether a device is
659  *	ATA or ATAPI, as per "Signature and persistence" section
660  *	of ATA/PI spec (volume 1, sect 5.14).
661  *
662  *	LOCKING:
663  *	None.
664  *
665  *	RETURNS:
666  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667  *	the event of failure.
668  */
669 
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 	/* Apple's open source Darwin code hints that some devices only
673 	 * put a proper signature into the LBA mid/high registers,
674 	 * So, we only check those.  It's sufficient for uniqueness.
675 	 */
676 
677 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 		DPRINTK("found ATA device by sig\n");
680 		return ATA_DEV_ATA;
681 	}
682 
683 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 		DPRINTK("found ATAPI device by sig\n");
686 		return ATA_DEV_ATAPI;
687 	}
688 
689 	DPRINTK("unknown device\n");
690 	return ATA_DEV_UNKNOWN;
691 }
692 
693 /**
694  *	ata_dev_try_classify - Parse returned ATA device signature
695  *	@ap: ATA channel to examine
696  *	@device: Device to examine (starting at zero)
697  *	@r_err: Value of error register on completion
698  *
699  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700  *	an ATA/ATAPI-defined set of values is placed in the ATA
701  *	shadow registers, indicating the results of device detection
702  *	and diagnostics.
703  *
704  *	Select the ATA device, and read the values from the ATA shadow
705  *	registers.  Then parse according to the Error register value,
706  *	and the spec-defined values examined by ata_dev_classify().
707  *
708  *	LOCKING:
709  *	caller.
710  *
711  *	RETURNS:
712  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713  */
714 
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 	struct ata_taskfile tf;
719 	unsigned int class;
720 	u8 err;
721 
722 	ap->ops->dev_select(ap, device);
723 
724 	memset(&tf, 0, sizeof(tf));
725 
726 	ap->ops->tf_read(ap, &tf);
727 	err = tf.feature;
728 	if (r_err)
729 		*r_err = err;
730 
731 	/* see if device passed diags: if master then continue and warn later */
732 	if (err == 0 && device == 0)
733 		/* diagnostic fail : do nothing _YET_ */
734 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 	else if (err == 1)
736 		/* do nothing */ ;
737 	else if ((device == 0) && (err == 0x81))
738 		/* do nothing */ ;
739 	else
740 		return ATA_DEV_NONE;
741 
742 	/* determine if device is ATA or ATAPI */
743 	class = ata_dev_classify(&tf);
744 
745 	if (class == ATA_DEV_UNKNOWN)
746 		return ATA_DEV_NONE;
747 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 		return ATA_DEV_NONE;
749 	return class;
750 }
751 
752 /**
753  *	ata_id_string - Convert IDENTIFY DEVICE page into string
754  *	@id: IDENTIFY DEVICE results we will examine
755  *	@s: string into which data is output
756  *	@ofs: offset into identify device page
757  *	@len: length of string to return. must be an even number.
758  *
759  *	The strings in the IDENTIFY DEVICE page are broken up into
760  *	16-bit chunks.  Run through the string, and output each
761  *	8-bit chunk linearly, regardless of platform.
762  *
763  *	LOCKING:
764  *	caller.
765  */
766 
767 void ata_id_string(const u16 *id, unsigned char *s,
768 		   unsigned int ofs, unsigned int len)
769 {
770 	unsigned int c;
771 
772 	while (len > 0) {
773 		c = id[ofs] >> 8;
774 		*s = c;
775 		s++;
776 
777 		c = id[ofs] & 0xff;
778 		*s = c;
779 		s++;
780 
781 		ofs++;
782 		len -= 2;
783 	}
784 }
785 
786 /**
787  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788  *	@id: IDENTIFY DEVICE results we will examine
789  *	@s: string into which data is output
790  *	@ofs: offset into identify device page
791  *	@len: length of string to return. must be an odd number.
792  *
793  *	This function is identical to ata_id_string except that it
794  *	trims trailing spaces and terminates the resulting string with
795  *	null.  @len must be actual maximum length (even number) + 1.
796  *
797  *	LOCKING:
798  *	caller.
799  */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 		     unsigned int ofs, unsigned int len)
802 {
803 	unsigned char *p;
804 
805 	WARN_ON(!(len & 1));
806 
807 	ata_id_string(id, s, ofs, len - 1);
808 
809 	p = s + strnlen(s, len - 1);
810 	while (p > s && p[-1] == ' ')
811 		p--;
812 	*p = '\0';
813 }
814 
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 	u64 sectors = 0;
818 
819 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 	sectors |= (tf->hob_lbal & 0xff) << 24;
822 	sectors |= (tf->lbah & 0xff) << 16;
823 	sectors |= (tf->lbam & 0xff) << 8;
824 	sectors |= (tf->lbal & 0xff);
825 
826 	return ++sectors;
827 }
828 
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 	u64 sectors = 0;
832 
833 	sectors |= (tf->device & 0x0f) << 24;
834 	sectors |= (tf->lbah & 0xff) << 16;
835 	sectors |= (tf->lbam & 0xff) << 8;
836 	sectors |= (tf->lbal & 0xff);
837 
838 	return ++sectors;
839 }
840 
841 /**
842  *	ata_read_native_max_address_ext	-	LBA48 native max query
843  *	@dev: Device to query
844  *
845  *	Perform an LBA48 size query upon the device in question. Return the
846  *	actual LBA48 size or zero if the command fails.
847  */
848 
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 	unsigned int err;
852 	struct ata_taskfile tf;
853 
854 	ata_tf_init(dev, &tf);
855 
856 	tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 	tf.protocol |= ATA_PROT_NODATA;
859 	tf.device |= 0x40;
860 
861 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 	if (err)
863 		return 0;
864 
865 	return ata_tf_to_lba48(&tf);
866 }
867 
868 /**
869  *	ata_read_native_max_address	-	LBA28 native max query
870  *	@dev: Device to query
871  *
872  *	Performa an LBA28 size query upon the device in question. Return the
873  *	actual LBA28 size or zero if the command fails.
874  */
875 
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 	unsigned int err;
879 	struct ata_taskfile tf;
880 
881 	ata_tf_init(dev, &tf);
882 
883 	tf.command = ATA_CMD_READ_NATIVE_MAX;
884 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 	tf.protocol |= ATA_PROT_NODATA;
886 	tf.device |= 0x40;
887 
888 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 	if (err)
890 		return 0;
891 
892 	return ata_tf_to_lba(&tf);
893 }
894 
895 /**
896  *	ata_set_native_max_address_ext	-	LBA48 native max set
897  *	@dev: Device to query
898  *
899  *	Perform an LBA48 size set max upon the device in question. Return the
900  *	actual LBA48 size or zero if the command fails.
901  */
902 
903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904 {
905 	unsigned int err;
906 	struct ata_taskfile tf;
907 
908 	new_sectors--;
909 
910 	ata_tf_init(dev, &tf);
911 
912 	tf.command = ATA_CMD_SET_MAX_EXT;
913 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 	tf.protocol |= ATA_PROT_NODATA;
915 	tf.device |= 0x40;
916 
917 	tf.lbal = (new_sectors >> 0) & 0xff;
918 	tf.lbam = (new_sectors >> 8) & 0xff;
919 	tf.lbah = (new_sectors >> 16) & 0xff;
920 
921 	tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 	tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 	tf.hob_lbah = (new_sectors >> 40) & 0xff;
924 
925 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 	if (err)
927 		return 0;
928 
929 	return ata_tf_to_lba48(&tf);
930 }
931 
932 /**
933  *	ata_set_native_max_address	-	LBA28 native max set
934  *	@dev: Device to query
935  *
936  *	Perform an LBA28 size set max upon the device in question. Return the
937  *	actual LBA28 size or zero if the command fails.
938  */
939 
940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941 {
942 	unsigned int err;
943 	struct ata_taskfile tf;
944 
945 	new_sectors--;
946 
947 	ata_tf_init(dev, &tf);
948 
949 	tf.command = ATA_CMD_SET_MAX;
950 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 	tf.protocol |= ATA_PROT_NODATA;
952 
953 	tf.lbal = (new_sectors >> 0) & 0xff;
954 	tf.lbam = (new_sectors >> 8) & 0xff;
955 	tf.lbah = (new_sectors >> 16) & 0xff;
956 	tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957 
958 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 	if (err)
960 		return 0;
961 
962 	return ata_tf_to_lba(&tf);
963 }
964 
965 /**
966  *	ata_hpa_resize		-	Resize a device with an HPA set
967  *	@dev: Device to resize
968  *
969  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
970  *	it if required to the full size of the media. The caller must check
971  *	the drive has the HPA feature set enabled.
972  */
973 
974 static u64 ata_hpa_resize(struct ata_device *dev)
975 {
976 	u64 sectors = dev->n_sectors;
977 	u64 hpa_sectors;
978 
979 	if (ata_id_has_lba48(dev->id))
980 		hpa_sectors = ata_read_native_max_address_ext(dev);
981 	else
982 		hpa_sectors = ata_read_native_max_address(dev);
983 
984 	/* if no hpa, both should be equal */
985 	ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
986 				"hpa_sectors = %lld\n",
987 		__FUNCTION__, (long long)sectors, (long long)hpa_sectors);
988 
989 	if (hpa_sectors > sectors) {
990 		ata_dev_printk(dev, KERN_INFO,
991 			"Host Protected Area detected:\n"
992 			"\tcurrent size: %lld sectors\n"
993 			"\tnative size: %lld sectors\n",
994 			(long long)sectors, (long long)hpa_sectors);
995 
996 		if (ata_ignore_hpa) {
997 			if (ata_id_has_lba48(dev->id))
998 				hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 			else
1000 				hpa_sectors = ata_set_native_max_address(dev,
1001 								hpa_sectors);
1002 
1003 			if (hpa_sectors) {
1004 				ata_dev_printk(dev, KERN_INFO, "native size "
1005 					"increased to %lld sectors\n",
1006 					(long long)hpa_sectors);
1007 				return hpa_sectors;
1008 			}
1009 		}
1010 	}
1011 	return sectors;
1012 }
1013 
1014 static u64 ata_id_n_sectors(const u16 *id)
1015 {
1016 	if (ata_id_has_lba(id)) {
1017 		if (ata_id_has_lba48(id))
1018 			return ata_id_u64(id, 100);
1019 		else
1020 			return ata_id_u32(id, 60);
1021 	} else {
1022 		if (ata_id_current_chs_valid(id))
1023 			return ata_id_u32(id, 57);
1024 		else
1025 			return id[1] * id[3] * id[6];
1026 	}
1027 }
1028 
1029 /**
1030  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
1031  *	@dev: device to identify
1032  *	@unknown: mode to assume if we cannot tell
1033  *
1034  *	Set up the timing values for the device based upon the identify
1035  *	reported values for the DMA mode. This function is used by drivers
1036  *	which rely upon firmware configured modes, but wish to report the
1037  *	mode correctly when possible.
1038  *
1039  *	In addition we emit similarly formatted messages to the default
1040  *	ata_dev_set_mode handler, in order to provide consistency of
1041  *	presentation.
1042  */
1043 
1044 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1045 {
1046 	unsigned int mask;
1047 	u8 mode;
1048 
1049 	/* Pack the DMA modes */
1050 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1051 	if (dev->id[53] & 0x04)
1052 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1053 
1054 	/* Select the mode in use */
1055 	mode = ata_xfer_mask2mode(mask);
1056 
1057 	if (mode != 0) {
1058 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1059 		       ata_mode_string(mask));
1060 	} else {
1061 		/* SWDMA perhaps ? */
1062 		mode = unknown;
1063 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1064 	}
1065 
1066 	/* Configure the device reporting */
1067 	dev->xfer_mode = mode;
1068 	dev->xfer_shift = ata_xfer_mode2shift(mode);
1069 }
1070 
1071 /**
1072  *	ata_noop_dev_select - Select device 0/1 on ATA bus
1073  *	@ap: ATA channel to manipulate
1074  *	@device: ATA device (numbered from zero) to select
1075  *
1076  *	This function performs no actual function.
1077  *
1078  *	May be used as the dev_select() entry in ata_port_operations.
1079  *
1080  *	LOCKING:
1081  *	caller.
1082  */
1083 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1084 {
1085 }
1086 
1087 
1088 /**
1089  *	ata_std_dev_select - Select device 0/1 on ATA bus
1090  *	@ap: ATA channel to manipulate
1091  *	@device: ATA device (numbered from zero) to select
1092  *
1093  *	Use the method defined in the ATA specification to
1094  *	make either device 0, or device 1, active on the
1095  *	ATA channel.  Works with both PIO and MMIO.
1096  *
1097  *	May be used as the dev_select() entry in ata_port_operations.
1098  *
1099  *	LOCKING:
1100  *	caller.
1101  */
1102 
1103 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1104 {
1105 	u8 tmp;
1106 
1107 	if (device == 0)
1108 		tmp = ATA_DEVICE_OBS;
1109 	else
1110 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
1111 
1112 	iowrite8(tmp, ap->ioaddr.device_addr);
1113 	ata_pause(ap);		/* needed; also flushes, for mmio */
1114 }
1115 
1116 /**
1117  *	ata_dev_select - Select device 0/1 on ATA bus
1118  *	@ap: ATA channel to manipulate
1119  *	@device: ATA device (numbered from zero) to select
1120  *	@wait: non-zero to wait for Status register BSY bit to clear
1121  *	@can_sleep: non-zero if context allows sleeping
1122  *
1123  *	Use the method defined in the ATA specification to
1124  *	make either device 0, or device 1, active on the
1125  *	ATA channel.
1126  *
1127  *	This is a high-level version of ata_std_dev_select(),
1128  *	which additionally provides the services of inserting
1129  *	the proper pauses and status polling, where needed.
1130  *
1131  *	LOCKING:
1132  *	caller.
1133  */
1134 
1135 void ata_dev_select(struct ata_port *ap, unsigned int device,
1136 			   unsigned int wait, unsigned int can_sleep)
1137 {
1138 	if (ata_msg_probe(ap))
1139 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1140 				"device %u, wait %u\n", device, wait);
1141 
1142 	if (wait)
1143 		ata_wait_idle(ap);
1144 
1145 	ap->ops->dev_select(ap, device);
1146 
1147 	if (wait) {
1148 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1149 			msleep(150);
1150 		ata_wait_idle(ap);
1151 	}
1152 }
1153 
1154 /**
1155  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1156  *	@id: IDENTIFY DEVICE page to dump
1157  *
1158  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1159  *	page.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 
1165 static inline void ata_dump_id(const u16 *id)
1166 {
1167 	DPRINTK("49==0x%04x  "
1168 		"53==0x%04x  "
1169 		"63==0x%04x  "
1170 		"64==0x%04x  "
1171 		"75==0x%04x  \n",
1172 		id[49],
1173 		id[53],
1174 		id[63],
1175 		id[64],
1176 		id[75]);
1177 	DPRINTK("80==0x%04x  "
1178 		"81==0x%04x  "
1179 		"82==0x%04x  "
1180 		"83==0x%04x  "
1181 		"84==0x%04x  \n",
1182 		id[80],
1183 		id[81],
1184 		id[82],
1185 		id[83],
1186 		id[84]);
1187 	DPRINTK("88==0x%04x  "
1188 		"93==0x%04x\n",
1189 		id[88],
1190 		id[93]);
1191 }
1192 
1193 /**
1194  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195  *	@id: IDENTIFY data to compute xfer mask from
1196  *
1197  *	Compute the xfermask for this device. This is not as trivial
1198  *	as it seems if we must consider early devices correctly.
1199  *
1200  *	FIXME: pre IDE drive timing (do we care ?).
1201  *
1202  *	LOCKING:
1203  *	None.
1204  *
1205  *	RETURNS:
1206  *	Computed xfermask
1207  */
1208 static unsigned int ata_id_xfermask(const u16 *id)
1209 {
1210 	unsigned int pio_mask, mwdma_mask, udma_mask;
1211 
1212 	/* Usual case. Word 53 indicates word 64 is valid */
1213 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1214 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1215 		pio_mask <<= 3;
1216 		pio_mask |= 0x7;
1217 	} else {
1218 		/* If word 64 isn't valid then Word 51 high byte holds
1219 		 * the PIO timing number for the maximum. Turn it into
1220 		 * a mask.
1221 		 */
1222 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1223 		if (mode < 5)	/* Valid PIO range */
1224                 	pio_mask = (2 << mode) - 1;
1225 		else
1226 			pio_mask = 1;
1227 
1228 		/* But wait.. there's more. Design your standards by
1229 		 * committee and you too can get a free iordy field to
1230 		 * process. However its the speeds not the modes that
1231 		 * are supported... Note drivers using the timing API
1232 		 * will get this right anyway
1233 		 */
1234 	}
1235 
1236 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1237 
1238 	if (ata_id_is_cfa(id)) {
1239 		/*
1240 		 *	Process compact flash extended modes
1241 		 */
1242 		int pio = id[163] & 0x7;
1243 		int dma = (id[163] >> 3) & 7;
1244 
1245 		if (pio)
1246 			pio_mask |= (1 << 5);
1247 		if (pio > 1)
1248 			pio_mask |= (1 << 6);
1249 		if (dma)
1250 			mwdma_mask |= (1 << 3);
1251 		if (dma > 1)
1252 			mwdma_mask |= (1 << 4);
1253 	}
1254 
1255 	udma_mask = 0;
1256 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1257 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1258 
1259 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260 }
1261 
1262 /**
1263  *	ata_port_queue_task - Queue port_task
1264  *	@ap: The ata_port to queue port_task for
1265  *	@fn: workqueue function to be scheduled
1266  *	@data: data for @fn to use
1267  *	@delay: delay time for workqueue function
1268  *
1269  *	Schedule @fn(@data) for execution after @delay jiffies using
1270  *	port_task.  There is one port_task per port and it's the
1271  *	user(low level driver)'s responsibility to make sure that only
1272  *	one task is active at any given time.
1273  *
1274  *	libata core layer takes care of synchronization between
1275  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1276  *	synchronization.
1277  *
1278  *	LOCKING:
1279  *	Inherited from caller.
1280  */
1281 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1282 			 unsigned long delay)
1283 {
1284 	int rc;
1285 
1286 	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1287 		return;
1288 
1289 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 	ap->port_task_data = data;
1291 
1292 	rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1293 
1294 	/* rc == 0 means that another user is using port task */
1295 	WARN_ON(rc == 0);
1296 }
1297 
1298 /**
1299  *	ata_port_flush_task - Flush port_task
1300  *	@ap: The ata_port to flush port_task for
1301  *
1302  *	After this function completes, port_task is guranteed not to
1303  *	be running or scheduled.
1304  *
1305  *	LOCKING:
1306  *	Kernel thread context (may sleep)
1307  */
1308 void ata_port_flush_task(struct ata_port *ap)
1309 {
1310 	unsigned long flags;
1311 
1312 	DPRINTK("ENTER\n");
1313 
1314 	spin_lock_irqsave(ap->lock, flags);
1315 	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1316 	spin_unlock_irqrestore(ap->lock, flags);
1317 
1318 	DPRINTK("flush #1\n");
1319 	flush_workqueue(ata_wq);
1320 
1321 	/*
1322 	 * At this point, if a task is running, it's guaranteed to see
1323 	 * the FLUSH flag; thus, it will never queue pio tasks again.
1324 	 * Cancel and flush.
1325 	 */
1326 	if (!cancel_delayed_work(&ap->port_task)) {
1327 		if (ata_msg_ctl(ap))
1328 			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1329 					__FUNCTION__);
1330 		flush_workqueue(ata_wq);
1331 	}
1332 
1333 	spin_lock_irqsave(ap->lock, flags);
1334 	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1335 	spin_unlock_irqrestore(ap->lock, flags);
1336 
1337 	if (ata_msg_ctl(ap))
1338 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1339 }
1340 
1341 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1342 {
1343 	struct completion *waiting = qc->private_data;
1344 
1345 	complete(waiting);
1346 }
1347 
1348 /**
1349  *	ata_exec_internal_sg - execute libata internal command
1350  *	@dev: Device to which the command is sent
1351  *	@tf: Taskfile registers for the command and the result
1352  *	@cdb: CDB for packet command
1353  *	@dma_dir: Data tranfer direction of the command
1354  *	@sg: sg list for the data buffer of the command
1355  *	@n_elem: Number of sg entries
1356  *
1357  *	Executes libata internal command with timeout.  @tf contains
1358  *	command on entry and result on return.  Timeout and error
1359  *	conditions are reported via return value.  No recovery action
1360  *	is taken after a command times out.  It's caller's duty to
1361  *	clean up after timeout.
1362  *
1363  *	LOCKING:
1364  *	None.  Should be called with kernel context, might sleep.
1365  *
1366  *	RETURNS:
1367  *	Zero on success, AC_ERR_* mask on failure
1368  */
1369 unsigned ata_exec_internal_sg(struct ata_device *dev,
1370 			      struct ata_taskfile *tf, const u8 *cdb,
1371 			      int dma_dir, struct scatterlist *sg,
1372 			      unsigned int n_elem)
1373 {
1374 	struct ata_port *ap = dev->ap;
1375 	u8 command = tf->command;
1376 	struct ata_queued_cmd *qc;
1377 	unsigned int tag, preempted_tag;
1378 	u32 preempted_sactive, preempted_qc_active;
1379 	DECLARE_COMPLETION_ONSTACK(wait);
1380 	unsigned long flags;
1381 	unsigned int err_mask;
1382 	int rc;
1383 
1384 	spin_lock_irqsave(ap->lock, flags);
1385 
1386 	/* no internal command while frozen */
1387 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1388 		spin_unlock_irqrestore(ap->lock, flags);
1389 		return AC_ERR_SYSTEM;
1390 	}
1391 
1392 	/* initialize internal qc */
1393 
1394 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1395 	 * drivers choke if any other tag is given.  This breaks
1396 	 * ata_tag_internal() test for those drivers.  Don't use new
1397 	 * EH stuff without converting to it.
1398 	 */
1399 	if (ap->ops->error_handler)
1400 		tag = ATA_TAG_INTERNAL;
1401 	else
1402 		tag = 0;
1403 
1404 	if (test_and_set_bit(tag, &ap->qc_allocated))
1405 		BUG();
1406 	qc = __ata_qc_from_tag(ap, tag);
1407 
1408 	qc->tag = tag;
1409 	qc->scsicmd = NULL;
1410 	qc->ap = ap;
1411 	qc->dev = dev;
1412 	ata_qc_reinit(qc);
1413 
1414 	preempted_tag = ap->active_tag;
1415 	preempted_sactive = ap->sactive;
1416 	preempted_qc_active = ap->qc_active;
1417 	ap->active_tag = ATA_TAG_POISON;
1418 	ap->sactive = 0;
1419 	ap->qc_active = 0;
1420 
1421 	/* prepare & issue qc */
1422 	qc->tf = *tf;
1423 	if (cdb)
1424 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1425 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1426 	qc->dma_dir = dma_dir;
1427 	if (dma_dir != DMA_NONE) {
1428 		unsigned int i, buflen = 0;
1429 
1430 		for (i = 0; i < n_elem; i++)
1431 			buflen += sg[i].length;
1432 
1433 		ata_sg_init(qc, sg, n_elem);
1434 		qc->nbytes = buflen;
1435 	}
1436 
1437 	qc->private_data = &wait;
1438 	qc->complete_fn = ata_qc_complete_internal;
1439 
1440 	ata_qc_issue(qc);
1441 
1442 	spin_unlock_irqrestore(ap->lock, flags);
1443 
1444 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1445 
1446 	ata_port_flush_task(ap);
1447 
1448 	if (!rc) {
1449 		spin_lock_irqsave(ap->lock, flags);
1450 
1451 		/* We're racing with irq here.  If we lose, the
1452 		 * following test prevents us from completing the qc
1453 		 * twice.  If we win, the port is frozen and will be
1454 		 * cleaned up by ->post_internal_cmd().
1455 		 */
1456 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1457 			qc->err_mask |= AC_ERR_TIMEOUT;
1458 
1459 			if (ap->ops->error_handler)
1460 				ata_port_freeze(ap);
1461 			else
1462 				ata_qc_complete(qc);
1463 
1464 			if (ata_msg_warn(ap))
1465 				ata_dev_printk(dev, KERN_WARNING,
1466 					"qc timeout (cmd 0x%x)\n", command);
1467 		}
1468 
1469 		spin_unlock_irqrestore(ap->lock, flags);
1470 	}
1471 
1472 	/* do post_internal_cmd */
1473 	if (ap->ops->post_internal_cmd)
1474 		ap->ops->post_internal_cmd(qc);
1475 
1476 	/* perform minimal error analysis */
1477 	if (qc->flags & ATA_QCFLAG_FAILED) {
1478 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1479 			qc->err_mask |= AC_ERR_DEV;
1480 
1481 		if (!qc->err_mask)
1482 			qc->err_mask |= AC_ERR_OTHER;
1483 
1484 		if (qc->err_mask & ~AC_ERR_OTHER)
1485 			qc->err_mask &= ~AC_ERR_OTHER;
1486 	}
1487 
1488 	/* finish up */
1489 	spin_lock_irqsave(ap->lock, flags);
1490 
1491 	*tf = qc->result_tf;
1492 	err_mask = qc->err_mask;
1493 
1494 	ata_qc_free(qc);
1495 	ap->active_tag = preempted_tag;
1496 	ap->sactive = preempted_sactive;
1497 	ap->qc_active = preempted_qc_active;
1498 
1499 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 	 * Until those drivers are fixed, we detect the condition
1501 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1502 	 * port.
1503 	 *
1504 	 * Note that this doesn't change any behavior as internal
1505 	 * command failure results in disabling the device in the
1506 	 * higher layer for LLDDs without new reset/EH callbacks.
1507 	 *
1508 	 * Kill the following code as soon as those drivers are fixed.
1509 	 */
1510 	if (ap->flags & ATA_FLAG_DISABLED) {
1511 		err_mask |= AC_ERR_SYSTEM;
1512 		ata_port_probe(ap);
1513 	}
1514 
1515 	spin_unlock_irqrestore(ap->lock, flags);
1516 
1517 	return err_mask;
1518 }
1519 
1520 /**
1521  *	ata_exec_internal - execute libata internal command
1522  *	@dev: Device to which the command is sent
1523  *	@tf: Taskfile registers for the command and the result
1524  *	@cdb: CDB for packet command
1525  *	@dma_dir: Data tranfer direction of the command
1526  *	@buf: Data buffer of the command
1527  *	@buflen: Length of data buffer
1528  *
1529  *	Wrapper around ata_exec_internal_sg() which takes simple
1530  *	buffer instead of sg list.
1531  *
1532  *	LOCKING:
1533  *	None.  Should be called with kernel context, might sleep.
1534  *
1535  *	RETURNS:
1536  *	Zero on success, AC_ERR_* mask on failure
1537  */
1538 unsigned ata_exec_internal(struct ata_device *dev,
1539 			   struct ata_taskfile *tf, const u8 *cdb,
1540 			   int dma_dir, void *buf, unsigned int buflen)
1541 {
1542 	struct scatterlist *psg = NULL, sg;
1543 	unsigned int n_elem = 0;
1544 
1545 	if (dma_dir != DMA_NONE) {
1546 		WARN_ON(!buf);
1547 		sg_init_one(&sg, buf, buflen);
1548 		psg = &sg;
1549 		n_elem++;
1550 	}
1551 
1552 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1553 }
1554 
1555 /**
1556  *	ata_do_simple_cmd - execute simple internal command
1557  *	@dev: Device to which the command is sent
1558  *	@cmd: Opcode to execute
1559  *
1560  *	Execute a 'simple' command, that only consists of the opcode
1561  *	'cmd' itself, without filling any other registers
1562  *
1563  *	LOCKING:
1564  *	Kernel thread context (may sleep).
1565  *
1566  *	RETURNS:
1567  *	Zero on success, AC_ERR_* mask on failure
1568  */
1569 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1570 {
1571 	struct ata_taskfile tf;
1572 
1573 	ata_tf_init(dev, &tf);
1574 
1575 	tf.command = cmd;
1576 	tf.flags |= ATA_TFLAG_DEVICE;
1577 	tf.protocol = ATA_PROT_NODATA;
1578 
1579 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1580 }
1581 
1582 /**
1583  *	ata_pio_need_iordy	-	check if iordy needed
1584  *	@adev: ATA device
1585  *
1586  *	Check if the current speed of the device requires IORDY. Used
1587  *	by various controllers for chip configuration.
1588  */
1589 
1590 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1591 {
1592 	/* Controller doesn't support  IORDY. Probably a pointless check
1593 	   as the caller should know this */
1594 	if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1595 		return 0;
1596 	/* PIO3 and higher it is mandatory */
1597 	if (adev->pio_mode > XFER_PIO_2)
1598 		return 1;
1599 	/* We turn it on when possible */
1600 	if (ata_id_has_iordy(adev->id))
1601 		return 1;
1602 	return 0;
1603 }
1604 
1605 /**
1606  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1607  *	@adev: ATA device
1608  *
1609  *	Compute the highest mode possible if we are not using iordy. Return
1610  *	-1 if no iordy mode is available.
1611  */
1612 
1613 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1614 {
1615 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1616 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1617 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1618 		/* Is the speed faster than the drive allows non IORDY ? */
1619 		if (pio) {
1620 			/* This is cycle times not frequency - watch the logic! */
1621 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1622 				return 3 << ATA_SHIFT_PIO;
1623 			return 7 << ATA_SHIFT_PIO;
1624 		}
1625 	}
1626 	return 3 << ATA_SHIFT_PIO;
1627 }
1628 
1629 /**
1630  *	ata_dev_read_id - Read ID data from the specified device
1631  *	@dev: target device
1632  *	@p_class: pointer to class of the target device (may be changed)
1633  *	@flags: ATA_READID_* flags
1634  *	@id: buffer to read IDENTIFY data into
1635  *
1636  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1637  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1638  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1639  *	for pre-ATA4 drives.
1640  *
1641  *	LOCKING:
1642  *	Kernel thread context (may sleep)
1643  *
1644  *	RETURNS:
1645  *	0 on success, -errno otherwise.
1646  */
1647 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1648 		    unsigned int flags, u16 *id)
1649 {
1650 	struct ata_port *ap = dev->ap;
1651 	unsigned int class = *p_class;
1652 	struct ata_taskfile tf;
1653 	unsigned int err_mask = 0;
1654 	const char *reason;
1655 	int tried_spinup = 0;
1656 	int rc;
1657 
1658 	if (ata_msg_ctl(ap))
1659 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1660 
1661 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1662  retry:
1663 	ata_tf_init(dev, &tf);
1664 
1665 	switch (class) {
1666 	case ATA_DEV_ATA:
1667 		tf.command = ATA_CMD_ID_ATA;
1668 		break;
1669 	case ATA_DEV_ATAPI:
1670 		tf.command = ATA_CMD_ID_ATAPI;
1671 		break;
1672 	default:
1673 		rc = -ENODEV;
1674 		reason = "unsupported class";
1675 		goto err_out;
1676 	}
1677 
1678 	tf.protocol = ATA_PROT_PIO;
1679 
1680 	/* Some devices choke if TF registers contain garbage.  Make
1681 	 * sure those are properly initialized.
1682 	 */
1683 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1684 
1685 	/* Device presence detection is unreliable on some
1686 	 * controllers.  Always poll IDENTIFY if available.
1687 	 */
1688 	tf.flags |= ATA_TFLAG_POLLING;
1689 
1690 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1691 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1692 	if (err_mask) {
1693 		if (err_mask & AC_ERR_NODEV_HINT) {
1694 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1695 				ap->print_id, dev->devno);
1696 			return -ENOENT;
1697 		}
1698 
1699 		rc = -EIO;
1700 		reason = "I/O error";
1701 		goto err_out;
1702 	}
1703 
1704 	swap_buf_le16(id, ATA_ID_WORDS);
1705 
1706 	/* sanity check */
1707 	rc = -EINVAL;
1708 	reason = "device reports illegal type";
1709 
1710 	if (class == ATA_DEV_ATA) {
1711 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1712 			goto err_out;
1713 	} else {
1714 		if (ata_id_is_ata(id))
1715 			goto err_out;
1716 	}
1717 
1718 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1719 		tried_spinup = 1;
1720 		/*
1721 		 * Drive powered-up in standby mode, and requires a specific
1722 		 * SET_FEATURES spin-up subcommand before it will accept
1723 		 * anything other than the original IDENTIFY command.
1724 		 */
1725 		ata_tf_init(dev, &tf);
1726 		tf.command = ATA_CMD_SET_FEATURES;
1727 		tf.feature = SETFEATURES_SPINUP;
1728 		tf.protocol = ATA_PROT_NODATA;
1729 		tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1730 		err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1731 		if (err_mask) {
1732 			rc = -EIO;
1733 			reason = "SPINUP failed";
1734 			goto err_out;
1735 		}
1736 		/*
1737 		 * If the drive initially returned incomplete IDENTIFY info,
1738 		 * we now must reissue the IDENTIFY command.
1739 		 */
1740 		if (id[2] == 0x37c8)
1741 			goto retry;
1742 	}
1743 
1744 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1745 		/*
1746 		 * The exact sequence expected by certain pre-ATA4 drives is:
1747 		 * SRST RESET
1748 		 * IDENTIFY
1749 		 * INITIALIZE DEVICE PARAMETERS
1750 		 * anything else..
1751 		 * Some drives were very specific about that exact sequence.
1752 		 */
1753 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1754 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1755 			if (err_mask) {
1756 				rc = -EIO;
1757 				reason = "INIT_DEV_PARAMS failed";
1758 				goto err_out;
1759 			}
1760 
1761 			/* current CHS translation info (id[53-58]) might be
1762 			 * changed. reread the identify device info.
1763 			 */
1764 			flags &= ~ATA_READID_POSTRESET;
1765 			goto retry;
1766 		}
1767 	}
1768 
1769 	*p_class = class;
1770 
1771 	return 0;
1772 
1773  err_out:
1774 	if (ata_msg_warn(ap))
1775 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1776 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1777 	return rc;
1778 }
1779 
1780 static inline u8 ata_dev_knobble(struct ata_device *dev)
1781 {
1782 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1783 }
1784 
1785 static void ata_dev_config_ncq(struct ata_device *dev,
1786 			       char *desc, size_t desc_sz)
1787 {
1788 	struct ata_port *ap = dev->ap;
1789 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1790 
1791 	if (!ata_id_has_ncq(dev->id)) {
1792 		desc[0] = '\0';
1793 		return;
1794 	}
1795 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1796 		snprintf(desc, desc_sz, "NCQ (not used)");
1797 		return;
1798 	}
1799 	if (ap->flags & ATA_FLAG_NCQ) {
1800 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1801 		dev->flags |= ATA_DFLAG_NCQ;
1802 	}
1803 
1804 	if (hdepth >= ddepth)
1805 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1806 	else
1807 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808 }
1809 
1810 /**
1811  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1812  *	@dev: Target device to configure
1813  *
1814  *	Configure @dev according to @dev->id.  Generic and low-level
1815  *	driver specific fixups are also applied.
1816  *
1817  *	LOCKING:
1818  *	Kernel thread context (may sleep)
1819  *
1820  *	RETURNS:
1821  *	0 on success, -errno otherwise
1822  */
1823 int ata_dev_configure(struct ata_device *dev)
1824 {
1825 	struct ata_port *ap = dev->ap;
1826 	int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1827 	const u16 *id = dev->id;
1828 	unsigned int xfer_mask;
1829 	char revbuf[7];		/* XYZ-99\0 */
1830 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1831 	char modelbuf[ATA_ID_PROD_LEN+1];
1832 	int rc;
1833 
1834 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1835 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 			       __FUNCTION__);
1837 		return 0;
1838 	}
1839 
1840 	if (ata_msg_probe(ap))
1841 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1842 
1843 	/* set _SDD */
1844 	rc = ata_acpi_push_id(ap, dev->devno);
1845 	if (rc) {
1846 		ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1847 			rc);
1848 	}
1849 
1850 	/* retrieve and execute the ATA task file of _GTF */
1851 	ata_acpi_exec_tfs(ap);
1852 
1853 	/* print device capabilities */
1854 	if (ata_msg_probe(ap))
1855 		ata_dev_printk(dev, KERN_DEBUG,
1856 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1858 			       __FUNCTION__,
1859 			       id[49], id[82], id[83], id[84],
1860 			       id[85], id[86], id[87], id[88]);
1861 
1862 	/* initialize to-be-configured parameters */
1863 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1864 	dev->max_sectors = 0;
1865 	dev->cdb_len = 0;
1866 	dev->n_sectors = 0;
1867 	dev->cylinders = 0;
1868 	dev->heads = 0;
1869 	dev->sectors = 0;
1870 
1871 	/*
1872 	 * common ATA, ATAPI feature tests
1873 	 */
1874 
1875 	/* find max transfer mode; for printk only */
1876 	xfer_mask = ata_id_xfermask(id);
1877 
1878 	if (ata_msg_probe(ap))
1879 		ata_dump_id(id);
1880 
1881 	/* ATA-specific feature tests */
1882 	if (dev->class == ATA_DEV_ATA) {
1883 		if (ata_id_is_cfa(id)) {
1884 			if (id[162] & 1) /* CPRM may make this media unusable */
1885 				ata_dev_printk(dev, KERN_WARNING,
1886 					       "supports DRM functions and may "
1887 					       "not be fully accessable.\n");
1888 			snprintf(revbuf, 7, "CFA");
1889 		}
1890 		else
1891 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1892 
1893 		dev->n_sectors = ata_id_n_sectors(id);
1894 		dev->n_sectors_boot = dev->n_sectors;
1895 
1896 		/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1897 		ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1898 				sizeof(fwrevbuf));
1899 
1900 		ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1901 				sizeof(modelbuf));
1902 
1903 		if (dev->id[59] & 0x100)
1904 			dev->multi_count = dev->id[59] & 0xff;
1905 
1906 		if (ata_id_has_lba(id)) {
1907 			const char *lba_desc;
1908 			char ncq_desc[20];
1909 
1910 			lba_desc = "LBA";
1911 			dev->flags |= ATA_DFLAG_LBA;
1912 			if (ata_id_has_lba48(id)) {
1913 				dev->flags |= ATA_DFLAG_LBA48;
1914 				lba_desc = "LBA48";
1915 
1916 				if (dev->n_sectors >= (1UL << 28) &&
1917 				    ata_id_has_flush_ext(id))
1918 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1919 			}
1920 
1921 			if (ata_id_hpa_enabled(dev->id))
1922 				dev->n_sectors = ata_hpa_resize(dev);
1923 
1924 			/* config NCQ */
1925 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1926 
1927 			/* print device info to dmesg */
1928 			if (ata_msg_drv(ap) && print_info) {
1929 				ata_dev_printk(dev, KERN_INFO,
1930 					"%s: %s, %s, max %s\n",
1931 					revbuf, modelbuf, fwrevbuf,
1932 					ata_mode_string(xfer_mask));
1933 				ata_dev_printk(dev, KERN_INFO,
1934 					"%Lu sectors, multi %u: %s %s\n",
1935 					(unsigned long long)dev->n_sectors,
1936 					dev->multi_count, lba_desc, ncq_desc);
1937 			}
1938 		} else {
1939 			/* CHS */
1940 
1941 			/* Default translation */
1942 			dev->cylinders	= id[1];
1943 			dev->heads	= id[3];
1944 			dev->sectors	= id[6];
1945 
1946 			if (ata_id_current_chs_valid(id)) {
1947 				/* Current CHS translation is valid. */
1948 				dev->cylinders = id[54];
1949 				dev->heads     = id[55];
1950 				dev->sectors   = id[56];
1951 			}
1952 
1953 			/* print device info to dmesg */
1954 			if (ata_msg_drv(ap) && print_info) {
1955 				ata_dev_printk(dev, KERN_INFO,
1956 					"%s: %s, %s, max %s\n",
1957 					revbuf,	modelbuf, fwrevbuf,
1958 					ata_mode_string(xfer_mask));
1959 				ata_dev_printk(dev, KERN_INFO,
1960 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 					(unsigned long long)dev->n_sectors,
1962 					dev->multi_count, dev->cylinders,
1963 					dev->heads, dev->sectors);
1964 			}
1965 		}
1966 
1967 		dev->cdb_len = 16;
1968 	}
1969 
1970 	/* ATAPI-specific feature tests */
1971 	else if (dev->class == ATA_DEV_ATAPI) {
1972 		char *cdb_intr_string = "";
1973 
1974 		rc = atapi_cdb_len(id);
1975 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1976 			if (ata_msg_warn(ap))
1977 				ata_dev_printk(dev, KERN_WARNING,
1978 					       "unsupported CDB len\n");
1979 			rc = -EINVAL;
1980 			goto err_out_nosup;
1981 		}
1982 		dev->cdb_len = (unsigned int) rc;
1983 
1984 		if (ata_id_cdb_intr(dev->id)) {
1985 			dev->flags |= ATA_DFLAG_CDB_INTR;
1986 			cdb_intr_string = ", CDB intr";
1987 		}
1988 
1989 		/* print device info to dmesg */
1990 		if (ata_msg_drv(ap) && print_info)
1991 			ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1992 				       ata_mode_string(xfer_mask),
1993 				       cdb_intr_string);
1994 	}
1995 
1996 	/* determine max_sectors */
1997 	dev->max_sectors = ATA_MAX_SECTORS;
1998 	if (dev->flags & ATA_DFLAG_LBA48)
1999 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2000 
2001 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2002 		/* Let the user know. We don't want to disallow opens for
2003 		   rescue purposes, or in case the vendor is just a blithering
2004 		   idiot */
2005                 if (print_info) {
2006 			ata_dev_printk(dev, KERN_WARNING,
2007 "Drive reports diagnostics failure. This may indicate a drive\n");
2008 			ata_dev_printk(dev, KERN_WARNING,
2009 "fault or invalid emulation. Contact drive vendor for information.\n");
2010 		}
2011 	}
2012 
2013 	/* limit bridge transfers to udma5, 200 sectors */
2014 	if (ata_dev_knobble(dev)) {
2015 		if (ata_msg_drv(ap) && print_info)
2016 			ata_dev_printk(dev, KERN_INFO,
2017 				       "applying bridge limits\n");
2018 		dev->udma_mask &= ATA_UDMA5;
2019 		dev->max_sectors = ATA_MAX_SECTORS;
2020 	}
2021 
2022 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2023 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 					 dev->max_sectors);
2025 
2026 	/* limit ATAPI DMA to R/W commands only */
2027 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2028 		dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2029 
2030 	if (ap->ops->dev_config)
2031 		ap->ops->dev_config(dev);
2032 
2033 	if (ata_msg_probe(ap))
2034 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2035 			__FUNCTION__, ata_chk_status(ap));
2036 	return 0;
2037 
2038 err_out_nosup:
2039 	if (ata_msg_probe(ap))
2040 		ata_dev_printk(dev, KERN_DEBUG,
2041 			       "%s: EXIT, err\n", __FUNCTION__);
2042 	return rc;
2043 }
2044 
2045 /**
2046  *	ata_cable_40wire	-	return 40 wire cable type
2047  *	@ap: port
2048  *
2049  *	Helper method for drivers which want to hardwire 40 wire cable
2050  *	detection.
2051  */
2052 
2053 int ata_cable_40wire(struct ata_port *ap)
2054 {
2055 	return ATA_CBL_PATA40;
2056 }
2057 
2058 /**
2059  *	ata_cable_80wire	-	return 80 wire cable type
2060  *	@ap: port
2061  *
2062  *	Helper method for drivers which want to hardwire 80 wire cable
2063  *	detection.
2064  */
2065 
2066 int ata_cable_80wire(struct ata_port *ap)
2067 {
2068 	return ATA_CBL_PATA80;
2069 }
2070 
2071 /**
2072  *	ata_cable_unknown	-	return unknown PATA cable.
2073  *	@ap: port
2074  *
2075  *	Helper method for drivers which have no PATA cable detection.
2076  */
2077 
2078 int ata_cable_unknown(struct ata_port *ap)
2079 {
2080 	return ATA_CBL_PATA_UNK;
2081 }
2082 
2083 /**
2084  *	ata_cable_sata	-	return SATA cable type
2085  *	@ap: port
2086  *
2087  *	Helper method for drivers which have SATA cables
2088  */
2089 
2090 int ata_cable_sata(struct ata_port *ap)
2091 {
2092 	return ATA_CBL_SATA;
2093 }
2094 
2095 /**
2096  *	ata_bus_probe - Reset and probe ATA bus
2097  *	@ap: Bus to probe
2098  *
2099  *	Master ATA bus probing function.  Initiates a hardware-dependent
2100  *	bus reset, then attempts to identify any devices found on
2101  *	the bus.
2102  *
2103  *	LOCKING:
2104  *	PCI/etc. bus probe sem.
2105  *
2106  *	RETURNS:
2107  *	Zero on success, negative errno otherwise.
2108  */
2109 
2110 int ata_bus_probe(struct ata_port *ap)
2111 {
2112 	unsigned int classes[ATA_MAX_DEVICES];
2113 	int tries[ATA_MAX_DEVICES];
2114 	int i, rc;
2115 	struct ata_device *dev;
2116 
2117 	ata_port_probe(ap);
2118 
2119 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2120 		tries[i] = ATA_PROBE_MAX_TRIES;
2121 
2122  retry:
2123 	/* reset and determine device classes */
2124 	ap->ops->phy_reset(ap);
2125 
2126 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 		dev = &ap->device[i];
2128 
2129 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2130 		    dev->class != ATA_DEV_UNKNOWN)
2131 			classes[dev->devno] = dev->class;
2132 		else
2133 			classes[dev->devno] = ATA_DEV_NONE;
2134 
2135 		dev->class = ATA_DEV_UNKNOWN;
2136 	}
2137 
2138 	ata_port_probe(ap);
2139 
2140 	/* after the reset the device state is PIO 0 and the controller
2141 	   state is undefined. Record the mode */
2142 
2143 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2144 		ap->device[i].pio_mode = XFER_PIO_0;
2145 
2146 	/* read IDENTIFY page and configure devices. We have to do the identify
2147 	   specific sequence bass-ackwards so that PDIAG- is released by
2148 	   the slave device */
2149 
2150 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
2151 		dev = &ap->device[i];
2152 
2153 		if (tries[i])
2154 			dev->class = classes[i];
2155 
2156 		if (!ata_dev_enabled(dev))
2157 			continue;
2158 
2159 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 				     dev->id);
2161 		if (rc)
2162 			goto fail;
2163 	}
2164 
2165 	/* Now ask for the cable type as PDIAG- should have been released */
2166 	if (ap->ops->cable_detect)
2167 		ap->cbl = ap->ops->cable_detect(ap);
2168 
2169 	/* After the identify sequence we can now set up the devices. We do
2170 	   this in the normal order so that the user doesn't get confused */
2171 
2172 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
2173 		dev = &ap->device[i];
2174 		if (!ata_dev_enabled(dev))
2175 			continue;
2176 
2177 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2178 		rc = ata_dev_configure(dev);
2179 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2180 		if (rc)
2181 			goto fail;
2182 	}
2183 
2184 	/* configure transfer mode */
2185 	rc = ata_set_mode(ap, &dev);
2186 	if (rc)
2187 		goto fail;
2188 
2189 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2190 		if (ata_dev_enabled(&ap->device[i]))
2191 			return 0;
2192 
2193 	/* no device present, disable port */
2194 	ata_port_disable(ap);
2195 	ap->ops->port_disable(ap);
2196 	return -ENODEV;
2197 
2198  fail:
2199 	tries[dev->devno]--;
2200 
2201 	switch (rc) {
2202 	case -EINVAL:
2203 		/* eeek, something went very wrong, give up */
2204 		tries[dev->devno] = 0;
2205 		break;
2206 
2207 	case -ENODEV:
2208 		/* give it just one more chance */
2209 		tries[dev->devno] = min(tries[dev->devno], 1);
2210 	case -EIO:
2211 		if (tries[dev->devno] == 1) {
2212 			/* This is the last chance, better to slow
2213 			 * down than lose it.
2214 			 */
2215 			sata_down_spd_limit(ap);
2216 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2217 		}
2218 	}
2219 
2220 	if (!tries[dev->devno])
2221 		ata_dev_disable(dev);
2222 
2223 	goto retry;
2224 }
2225 
2226 /**
2227  *	ata_port_probe - Mark port as enabled
2228  *	@ap: Port for which we indicate enablement
2229  *
2230  *	Modify @ap data structure such that the system
2231  *	thinks that the entire port is enabled.
2232  *
2233  *	LOCKING: host lock, or some other form of
2234  *	serialization.
2235  */
2236 
2237 void ata_port_probe(struct ata_port *ap)
2238 {
2239 	ap->flags &= ~ATA_FLAG_DISABLED;
2240 }
2241 
2242 /**
2243  *	sata_print_link_status - Print SATA link status
2244  *	@ap: SATA port to printk link status about
2245  *
2246  *	This function prints link speed and status of a SATA link.
2247  *
2248  *	LOCKING:
2249  *	None.
2250  */
2251 void sata_print_link_status(struct ata_port *ap)
2252 {
2253 	u32 sstatus, scontrol, tmp;
2254 
2255 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2256 		return;
2257 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
2258 
2259 	if (ata_port_online(ap)) {
2260 		tmp = (sstatus >> 4) & 0xf;
2261 		ata_port_printk(ap, KERN_INFO,
2262 				"SATA link up %s (SStatus %X SControl %X)\n",
2263 				sata_spd_string(tmp), sstatus, scontrol);
2264 	} else {
2265 		ata_port_printk(ap, KERN_INFO,
2266 				"SATA link down (SStatus %X SControl %X)\n",
2267 				sstatus, scontrol);
2268 	}
2269 }
2270 
2271 /**
2272  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
2273  *	@ap: SATA port associated with target SATA PHY.
2274  *
2275  *	This function issues commands to standard SATA Sxxx
2276  *	PHY registers, to wake up the phy (and device), and
2277  *	clear any reset condition.
2278  *
2279  *	LOCKING:
2280  *	PCI/etc. bus probe sem.
2281  *
2282  */
2283 void __sata_phy_reset(struct ata_port *ap)
2284 {
2285 	u32 sstatus;
2286 	unsigned long timeout = jiffies + (HZ * 5);
2287 
2288 	if (ap->flags & ATA_FLAG_SATA_RESET) {
2289 		/* issue phy wake/reset */
2290 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2291 		/* Couldn't find anything in SATA I/II specs, but
2292 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 		mdelay(1);
2294 	}
2295 	/* phy wake/clear reset */
2296 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2297 
2298 	/* wait for phy to become ready, if necessary */
2299 	do {
2300 		msleep(200);
2301 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2302 		if ((sstatus & 0xf) != 1)
2303 			break;
2304 	} while (time_before(jiffies, timeout));
2305 
2306 	/* print link status */
2307 	sata_print_link_status(ap);
2308 
2309 	/* TODO: phy layer with polling, timeouts, etc. */
2310 	if (!ata_port_offline(ap))
2311 		ata_port_probe(ap);
2312 	else
2313 		ata_port_disable(ap);
2314 
2315 	if (ap->flags & ATA_FLAG_DISABLED)
2316 		return;
2317 
2318 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 		ata_port_disable(ap);
2320 		return;
2321 	}
2322 
2323 	ap->cbl = ATA_CBL_SATA;
2324 }
2325 
2326 /**
2327  *	sata_phy_reset - Reset SATA bus.
2328  *	@ap: SATA port associated with target SATA PHY.
2329  *
2330  *	This function resets the SATA bus, and then probes
2331  *	the bus for devices.
2332  *
2333  *	LOCKING:
2334  *	PCI/etc. bus probe sem.
2335  *
2336  */
2337 void sata_phy_reset(struct ata_port *ap)
2338 {
2339 	__sata_phy_reset(ap);
2340 	if (ap->flags & ATA_FLAG_DISABLED)
2341 		return;
2342 	ata_bus_reset(ap);
2343 }
2344 
2345 /**
2346  *	ata_dev_pair		-	return other device on cable
2347  *	@adev: device
2348  *
2349  *	Obtain the other device on the same cable, or if none is
2350  *	present NULL is returned
2351  */
2352 
2353 struct ata_device *ata_dev_pair(struct ata_device *adev)
2354 {
2355 	struct ata_port *ap = adev->ap;
2356 	struct ata_device *pair = &ap->device[1 - adev->devno];
2357 	if (!ata_dev_enabled(pair))
2358 		return NULL;
2359 	return pair;
2360 }
2361 
2362 /**
2363  *	ata_port_disable - Disable port.
2364  *	@ap: Port to be disabled.
2365  *
2366  *	Modify @ap data structure such that the system
2367  *	thinks that the entire port is disabled, and should
2368  *	never attempt to probe or communicate with devices
2369  *	on this port.
2370  *
2371  *	LOCKING: host lock, or some other form of
2372  *	serialization.
2373  */
2374 
2375 void ata_port_disable(struct ata_port *ap)
2376 {
2377 	ap->device[0].class = ATA_DEV_NONE;
2378 	ap->device[1].class = ATA_DEV_NONE;
2379 	ap->flags |= ATA_FLAG_DISABLED;
2380 }
2381 
2382 /**
2383  *	sata_down_spd_limit - adjust SATA spd limit downward
2384  *	@ap: Port to adjust SATA spd limit for
2385  *
2386  *	Adjust SATA spd limit of @ap downward.  Note that this
2387  *	function only adjusts the limit.  The change must be applied
2388  *	using sata_set_spd().
2389  *
2390  *	LOCKING:
2391  *	Inherited from caller.
2392  *
2393  *	RETURNS:
2394  *	0 on success, negative errno on failure
2395  */
2396 int sata_down_spd_limit(struct ata_port *ap)
2397 {
2398 	u32 sstatus, spd, mask;
2399 	int rc, highbit;
2400 
2401 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2402 	if (rc)
2403 		return rc;
2404 
2405 	mask = ap->sata_spd_limit;
2406 	if (mask <= 1)
2407 		return -EINVAL;
2408 	highbit = fls(mask) - 1;
2409 	mask &= ~(1 << highbit);
2410 
2411 	spd = (sstatus >> 4) & 0xf;
2412 	if (spd <= 1)
2413 		return -EINVAL;
2414 	spd--;
2415 	mask &= (1 << spd) - 1;
2416 	if (!mask)
2417 		return -EINVAL;
2418 
2419 	ap->sata_spd_limit = mask;
2420 
2421 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2422 			sata_spd_string(fls(mask)));
2423 
2424 	return 0;
2425 }
2426 
2427 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2428 {
2429 	u32 spd, limit;
2430 
2431 	if (ap->sata_spd_limit == UINT_MAX)
2432 		limit = 0;
2433 	else
2434 		limit = fls(ap->sata_spd_limit);
2435 
2436 	spd = (*scontrol >> 4) & 0xf;
2437 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2438 
2439 	return spd != limit;
2440 }
2441 
2442 /**
2443  *	sata_set_spd_needed - is SATA spd configuration needed
2444  *	@ap: Port in question
2445  *
2446  *	Test whether the spd limit in SControl matches
2447  *	@ap->sata_spd_limit.  This function is used to determine
2448  *	whether hardreset is necessary to apply SATA spd
2449  *	configuration.
2450  *
2451  *	LOCKING:
2452  *	Inherited from caller.
2453  *
2454  *	RETURNS:
2455  *	1 if SATA spd configuration is needed, 0 otherwise.
2456  */
2457 int sata_set_spd_needed(struct ata_port *ap)
2458 {
2459 	u32 scontrol;
2460 
2461 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2462 		return 0;
2463 
2464 	return __sata_set_spd_needed(ap, &scontrol);
2465 }
2466 
2467 /**
2468  *	sata_set_spd - set SATA spd according to spd limit
2469  *	@ap: Port to set SATA spd for
2470  *
2471  *	Set SATA spd of @ap according to sata_spd_limit.
2472  *
2473  *	LOCKING:
2474  *	Inherited from caller.
2475  *
2476  *	RETURNS:
2477  *	0 if spd doesn't need to be changed, 1 if spd has been
2478  *	changed.  Negative errno if SCR registers are inaccessible.
2479  */
2480 int sata_set_spd(struct ata_port *ap)
2481 {
2482 	u32 scontrol;
2483 	int rc;
2484 
2485 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2486 		return rc;
2487 
2488 	if (!__sata_set_spd_needed(ap, &scontrol))
2489 		return 0;
2490 
2491 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2492 		return rc;
2493 
2494 	return 1;
2495 }
2496 
2497 /*
2498  * This mode timing computation functionality is ported over from
2499  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2500  */
2501 /*
2502  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2503  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2504  * for UDMA6, which is currently supported only by Maxtor drives.
2505  *
2506  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2507  */
2508 
2509 static const struct ata_timing ata_timing[] = {
2510 
2511 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2512 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2513 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2514 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2515 
2516 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2517 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2518 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2519 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2520 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2521 
2522 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2523 
2524 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2525 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2526 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2527 
2528 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2529 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2530 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2531 
2532 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2533 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2534 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2535 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2536 
2537 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2538 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2539 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2540 
2541 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2542 
2543 	{ 0xFF }
2544 };
2545 
2546 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2547 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2548 
2549 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2550 {
2551 	q->setup   = EZ(t->setup   * 1000,  T);
2552 	q->act8b   = EZ(t->act8b   * 1000,  T);
2553 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2554 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2555 	q->active  = EZ(t->active  * 1000,  T);
2556 	q->recover = EZ(t->recover * 1000,  T);
2557 	q->cycle   = EZ(t->cycle   * 1000,  T);
2558 	q->udma    = EZ(t->udma    * 1000, UT);
2559 }
2560 
2561 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2562 		      struct ata_timing *m, unsigned int what)
2563 {
2564 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2565 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2566 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2567 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2568 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2569 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2570 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2571 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2572 }
2573 
2574 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2575 {
2576 	const struct ata_timing *t;
2577 
2578 	for (t = ata_timing; t->mode != speed; t++)
2579 		if (t->mode == 0xFF)
2580 			return NULL;
2581 	return t;
2582 }
2583 
2584 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2585 		       struct ata_timing *t, int T, int UT)
2586 {
2587 	const struct ata_timing *s;
2588 	struct ata_timing p;
2589 
2590 	/*
2591 	 * Find the mode.
2592 	 */
2593 
2594 	if (!(s = ata_timing_find_mode(speed)))
2595 		return -EINVAL;
2596 
2597 	memcpy(t, s, sizeof(*s));
2598 
2599 	/*
2600 	 * If the drive is an EIDE drive, it can tell us it needs extended
2601 	 * PIO/MW_DMA cycle timing.
2602 	 */
2603 
2604 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2605 		memset(&p, 0, sizeof(p));
2606 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2607 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2608 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2609 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2610 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2611 		}
2612 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2613 	}
2614 
2615 	/*
2616 	 * Convert the timing to bus clock counts.
2617 	 */
2618 
2619 	ata_timing_quantize(t, t, T, UT);
2620 
2621 	/*
2622 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2625 	 */
2626 
2627 	if (speed > XFER_PIO_6) {
2628 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2629 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2630 	}
2631 
2632 	/*
2633 	 * Lengthen active & recovery time so that cycle time is correct.
2634 	 */
2635 
2636 	if (t->act8b + t->rec8b < t->cyc8b) {
2637 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2638 		t->rec8b = t->cyc8b - t->act8b;
2639 	}
2640 
2641 	if (t->active + t->recover < t->cycle) {
2642 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2643 		t->recover = t->cycle - t->active;
2644 	}
2645 
2646 	/* In a few cases quantisation may produce enough errors to
2647 	   leave t->cycle too low for the sum of active and recovery
2648 	   if so we must correct this */
2649 	if (t->active + t->recover > t->cycle)
2650 		t->cycle = t->active + t->recover;
2651 
2652 	return 0;
2653 }
2654 
2655 /**
2656  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2657  *	@dev: Device to adjust xfer masks
2658  *	@sel: ATA_DNXFER_* selector
2659  *
2660  *	Adjust xfer masks of @dev downward.  Note that this function
2661  *	does not apply the change.  Invoking ata_set_mode() afterwards
2662  *	will apply the limit.
2663  *
2664  *	LOCKING:
2665  *	Inherited from caller.
2666  *
2667  *	RETURNS:
2668  *	0 on success, negative errno on failure
2669  */
2670 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2671 {
2672 	char buf[32];
2673 	unsigned int orig_mask, xfer_mask;
2674 	unsigned int pio_mask, mwdma_mask, udma_mask;
2675 	int quiet, highbit;
2676 
2677 	quiet = !!(sel & ATA_DNXFER_QUIET);
2678 	sel &= ~ATA_DNXFER_QUIET;
2679 
2680 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2681 						  dev->mwdma_mask,
2682 						  dev->udma_mask);
2683 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2684 
2685 	switch (sel) {
2686 	case ATA_DNXFER_PIO:
2687 		highbit = fls(pio_mask) - 1;
2688 		pio_mask &= ~(1 << highbit);
2689 		break;
2690 
2691 	case ATA_DNXFER_DMA:
2692 		if (udma_mask) {
2693 			highbit = fls(udma_mask) - 1;
2694 			udma_mask &= ~(1 << highbit);
2695 			if (!udma_mask)
2696 				return -ENOENT;
2697 		} else if (mwdma_mask) {
2698 			highbit = fls(mwdma_mask) - 1;
2699 			mwdma_mask &= ~(1 << highbit);
2700 			if (!mwdma_mask)
2701 				return -ENOENT;
2702 		}
2703 		break;
2704 
2705 	case ATA_DNXFER_40C:
2706 		udma_mask &= ATA_UDMA_MASK_40C;
2707 		break;
2708 
2709 	case ATA_DNXFER_FORCE_PIO0:
2710 		pio_mask &= 1;
2711 	case ATA_DNXFER_FORCE_PIO:
2712 		mwdma_mask = 0;
2713 		udma_mask = 0;
2714 		break;
2715 
2716 	default:
2717 		BUG();
2718 	}
2719 
2720 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2721 
2722 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2723 		return -ENOENT;
2724 
2725 	if (!quiet) {
2726 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2727 			snprintf(buf, sizeof(buf), "%s:%s",
2728 				 ata_mode_string(xfer_mask),
2729 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2730 		else
2731 			snprintf(buf, sizeof(buf), "%s",
2732 				 ata_mode_string(xfer_mask));
2733 
2734 		ata_dev_printk(dev, KERN_WARNING,
2735 			       "limiting speed to %s\n", buf);
2736 	}
2737 
2738 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2739 			    &dev->udma_mask);
2740 
2741 	return 0;
2742 }
2743 
2744 static int ata_dev_set_mode(struct ata_device *dev)
2745 {
2746 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2747 	unsigned int err_mask;
2748 	int rc;
2749 
2750 	dev->flags &= ~ATA_DFLAG_PIO;
2751 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2752 		dev->flags |= ATA_DFLAG_PIO;
2753 
2754 	err_mask = ata_dev_set_xfermode(dev);
2755 	/* Old CFA may refuse this command, which is just fine */
2756 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2757         	err_mask &= ~AC_ERR_DEV;
2758 
2759 	if (err_mask) {
2760 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2761 			       "(err_mask=0x%x)\n", err_mask);
2762 		return -EIO;
2763 	}
2764 
2765 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2766 	rc = ata_dev_revalidate(dev, 0);
2767 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2768 	if (rc)
2769 		return rc;
2770 
2771 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 		dev->xfer_shift, (int)dev->xfer_mode);
2773 
2774 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2775 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2776 	return 0;
2777 }
2778 
2779 /**
2780  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2781  *	@ap: port on which timings will be programmed
2782  *	@r_failed_dev: out paramter for failed device
2783  *
2784  *	Standard implementation of the function used to tune and set
2785  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2786  *	ata_dev_set_mode() fails, pointer to the failing device is
2787  *	returned in @r_failed_dev.
2788  *
2789  *	LOCKING:
2790  *	PCI/etc. bus probe sem.
2791  *
2792  *	RETURNS:
2793  *	0 on success, negative errno otherwise
2794  */
2795 
2796 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2797 {
2798 	struct ata_device *dev;
2799 	int i, rc = 0, used_dma = 0, found = 0;
2800 
2801 
2802 	/* step 1: calculate xfer_mask */
2803 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2804 		unsigned int pio_mask, dma_mask;
2805 
2806 		dev = &ap->device[i];
2807 
2808 		if (!ata_dev_enabled(dev))
2809 			continue;
2810 
2811 		ata_dev_xfermask(dev);
2812 
2813 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2814 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2815 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2816 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2817 
2818 		found = 1;
2819 		if (dev->dma_mode)
2820 			used_dma = 1;
2821 	}
2822 	if (!found)
2823 		goto out;
2824 
2825 	/* step 2: always set host PIO timings */
2826 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 		dev = &ap->device[i];
2828 		if (!ata_dev_enabled(dev))
2829 			continue;
2830 
2831 		if (!dev->pio_mode) {
2832 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2833 			rc = -EINVAL;
2834 			goto out;
2835 		}
2836 
2837 		dev->xfer_mode = dev->pio_mode;
2838 		dev->xfer_shift = ATA_SHIFT_PIO;
2839 		if (ap->ops->set_piomode)
2840 			ap->ops->set_piomode(ap, dev);
2841 	}
2842 
2843 	/* step 3: set host DMA timings */
2844 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2845 		dev = &ap->device[i];
2846 
2847 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2848 			continue;
2849 
2850 		dev->xfer_mode = dev->dma_mode;
2851 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2852 		if (ap->ops->set_dmamode)
2853 			ap->ops->set_dmamode(ap, dev);
2854 	}
2855 
2856 	/* step 4: update devices' xfer mode */
2857 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2858 		dev = &ap->device[i];
2859 
2860 		/* don't update suspended devices' xfer mode */
2861 		if (!ata_dev_ready(dev))
2862 			continue;
2863 
2864 		rc = ata_dev_set_mode(dev);
2865 		if (rc)
2866 			goto out;
2867 	}
2868 
2869 	/* Record simplex status. If we selected DMA then the other
2870 	 * host channels are not permitted to do so.
2871 	 */
2872 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2873 		ap->host->simplex_claimed = ap;
2874 
2875 	/* step5: chip specific finalisation */
2876 	if (ap->ops->post_set_mode)
2877 		ap->ops->post_set_mode(ap);
2878  out:
2879 	if (rc)
2880 		*r_failed_dev = dev;
2881 	return rc;
2882 }
2883 
2884 /**
2885  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2886  *	@ap: port on which timings will be programmed
2887  *	@r_failed_dev: out paramter for failed device
2888  *
2889  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2890  *	ata_set_mode() fails, pointer to the failing device is
2891  *	returned in @r_failed_dev.
2892  *
2893  *	LOCKING:
2894  *	PCI/etc. bus probe sem.
2895  *
2896  *	RETURNS:
2897  *	0 on success, negative errno otherwise
2898  */
2899 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2900 {
2901 	/* has private set_mode? */
2902 	if (ap->ops->set_mode)
2903 		return ap->ops->set_mode(ap, r_failed_dev);
2904 	return ata_do_set_mode(ap, r_failed_dev);
2905 }
2906 
2907 /**
2908  *	ata_tf_to_host - issue ATA taskfile to host controller
2909  *	@ap: port to which command is being issued
2910  *	@tf: ATA taskfile register set
2911  *
2912  *	Issues ATA taskfile register set to ATA host controller,
2913  *	with proper synchronization with interrupt handler and
2914  *	other threads.
2915  *
2916  *	LOCKING:
2917  *	spin_lock_irqsave(host lock)
2918  */
2919 
2920 static inline void ata_tf_to_host(struct ata_port *ap,
2921 				  const struct ata_taskfile *tf)
2922 {
2923 	ap->ops->tf_load(ap, tf);
2924 	ap->ops->exec_command(ap, tf);
2925 }
2926 
2927 /**
2928  *	ata_busy_sleep - sleep until BSY clears, or timeout
2929  *	@ap: port containing status register to be polled
2930  *	@tmout_pat: impatience timeout
2931  *	@tmout: overall timeout
2932  *
2933  *	Sleep until ATA Status register bit BSY clears,
2934  *	or a timeout occurs.
2935  *
2936  *	LOCKING:
2937  *	Kernel thread context (may sleep).
2938  *
2939  *	RETURNS:
2940  *	0 on success, -errno otherwise.
2941  */
2942 int ata_busy_sleep(struct ata_port *ap,
2943 		   unsigned long tmout_pat, unsigned long tmout)
2944 {
2945 	unsigned long timer_start, timeout;
2946 	u8 status;
2947 
2948 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 	timer_start = jiffies;
2950 	timeout = timer_start + tmout_pat;
2951 	while (status != 0xff && (status & ATA_BUSY) &&
2952 	       time_before(jiffies, timeout)) {
2953 		msleep(50);
2954 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 	}
2956 
2957 	if (status != 0xff && (status & ATA_BUSY))
2958 		ata_port_printk(ap, KERN_WARNING,
2959 				"port is slow to respond, please be patient "
2960 				"(Status 0x%x)\n", status);
2961 
2962 	timeout = timer_start + tmout;
2963 	while (status != 0xff && (status & ATA_BUSY) &&
2964 	       time_before(jiffies, timeout)) {
2965 		msleep(50);
2966 		status = ata_chk_status(ap);
2967 	}
2968 
2969 	if (status == 0xff)
2970 		return -ENODEV;
2971 
2972 	if (status & ATA_BUSY) {
2973 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2974 				"(%lu secs, Status 0x%x)\n",
2975 				tmout / HZ, status);
2976 		return -EBUSY;
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2983 {
2984 	struct ata_ioports *ioaddr = &ap->ioaddr;
2985 	unsigned int dev0 = devmask & (1 << 0);
2986 	unsigned int dev1 = devmask & (1 << 1);
2987 	unsigned long timeout;
2988 
2989 	/* if device 0 was found in ata_devchk, wait for its
2990 	 * BSY bit to clear
2991 	 */
2992 	if (dev0)
2993 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2994 
2995 	/* if device 1 was found in ata_devchk, wait for
2996 	 * register access, then wait for BSY to clear
2997 	 */
2998 	timeout = jiffies + ATA_TMOUT_BOOT;
2999 	while (dev1) {
3000 		u8 nsect, lbal;
3001 
3002 		ap->ops->dev_select(ap, 1);
3003 		nsect = ioread8(ioaddr->nsect_addr);
3004 		lbal = ioread8(ioaddr->lbal_addr);
3005 		if ((nsect == 1) && (lbal == 1))
3006 			break;
3007 		if (time_after(jiffies, timeout)) {
3008 			dev1 = 0;
3009 			break;
3010 		}
3011 		msleep(50);	/* give drive a breather */
3012 	}
3013 	if (dev1)
3014 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3015 
3016 	/* is all this really necessary? */
3017 	ap->ops->dev_select(ap, 0);
3018 	if (dev1)
3019 		ap->ops->dev_select(ap, 1);
3020 	if (dev0)
3021 		ap->ops->dev_select(ap, 0);
3022 }
3023 
3024 static unsigned int ata_bus_softreset(struct ata_port *ap,
3025 				      unsigned int devmask)
3026 {
3027 	struct ata_ioports *ioaddr = &ap->ioaddr;
3028 
3029 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3030 
3031 	/* software reset.  causes dev0 to be selected */
3032 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3033 	udelay(20);	/* FIXME: flush */
3034 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3035 	udelay(20);	/* FIXME: flush */
3036 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3037 
3038 	/* spec mandates ">= 2ms" before checking status.
3039 	 * We wait 150ms, because that was the magic delay used for
3040 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3041 	 * between when the ATA command register is written, and then
3042 	 * status is checked.  Because waiting for "a while" before
3043 	 * checking status is fine, post SRST, we perform this magic
3044 	 * delay here as well.
3045 	 *
3046 	 * Old drivers/ide uses the 2mS rule and then waits for ready
3047 	 */
3048 	msleep(150);
3049 
3050 	/* Before we perform post reset processing we want to see if
3051 	 * the bus shows 0xFF because the odd clown forgets the D7
3052 	 * pulldown resistor.
3053 	 */
3054 	if (ata_check_status(ap) == 0xFF)
3055 		return 0;
3056 
3057 	ata_bus_post_reset(ap, devmask);
3058 
3059 	return 0;
3060 }
3061 
3062 /**
3063  *	ata_bus_reset - reset host port and associated ATA channel
3064  *	@ap: port to reset
3065  *
3066  *	This is typically the first time we actually start issuing
3067  *	commands to the ATA channel.  We wait for BSY to clear, then
3068  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3069  *	result.  Determine what devices, if any, are on the channel
3070  *	by looking at the device 0/1 error register.  Look at the signature
3071  *	stored in each device's taskfile registers, to determine if
3072  *	the device is ATA or ATAPI.
3073  *
3074  *	LOCKING:
3075  *	PCI/etc. bus probe sem.
3076  *	Obtains host lock.
3077  *
3078  *	SIDE EFFECTS:
3079  *	Sets ATA_FLAG_DISABLED if bus reset fails.
3080  */
3081 
3082 void ata_bus_reset(struct ata_port *ap)
3083 {
3084 	struct ata_ioports *ioaddr = &ap->ioaddr;
3085 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3086 	u8 err;
3087 	unsigned int dev0, dev1 = 0, devmask = 0;
3088 
3089 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3090 
3091 	/* determine if device 0/1 are present */
3092 	if (ap->flags & ATA_FLAG_SATA_RESET)
3093 		dev0 = 1;
3094 	else {
3095 		dev0 = ata_devchk(ap, 0);
3096 		if (slave_possible)
3097 			dev1 = ata_devchk(ap, 1);
3098 	}
3099 
3100 	if (dev0)
3101 		devmask |= (1 << 0);
3102 	if (dev1)
3103 		devmask |= (1 << 1);
3104 
3105 	/* select device 0 again */
3106 	ap->ops->dev_select(ap, 0);
3107 
3108 	/* issue bus reset */
3109 	if (ap->flags & ATA_FLAG_SRST)
3110 		if (ata_bus_softreset(ap, devmask))
3111 			goto err_out;
3112 
3113 	/*
3114 	 * determine by signature whether we have ATA or ATAPI devices
3115 	 */
3116 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3117 	if ((slave_possible) && (err != 0x81))
3118 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3119 
3120 	/* re-enable interrupts */
3121 	ap->ops->irq_on(ap);
3122 
3123 	/* is double-select really necessary? */
3124 	if (ap->device[1].class != ATA_DEV_NONE)
3125 		ap->ops->dev_select(ap, 1);
3126 	if (ap->device[0].class != ATA_DEV_NONE)
3127 		ap->ops->dev_select(ap, 0);
3128 
3129 	/* if no devices were detected, disable this port */
3130 	if ((ap->device[0].class == ATA_DEV_NONE) &&
3131 	    (ap->device[1].class == ATA_DEV_NONE))
3132 		goto err_out;
3133 
3134 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3135 		/* set up device control for ATA_FLAG_SATA_RESET */
3136 		iowrite8(ap->ctl, ioaddr->ctl_addr);
3137 	}
3138 
3139 	DPRINTK("EXIT\n");
3140 	return;
3141 
3142 err_out:
3143 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
3144 	ap->ops->port_disable(ap);
3145 
3146 	DPRINTK("EXIT\n");
3147 }
3148 
3149 /**
3150  *	sata_phy_debounce - debounce SATA phy status
3151  *	@ap: ATA port to debounce SATA phy status for
3152  *	@params: timing parameters { interval, duratinon, timeout } in msec
3153  *
3154  *	Make sure SStatus of @ap reaches stable state, determined by
3155  *	holding the same value where DET is not 1 for @duration polled
3156  *	every @interval, before @timeout.  Timeout constraints the
3157  *	beginning of the stable state.  Because, after hot unplugging,
3158  *	DET gets stuck at 1 on some controllers, this functions waits
3159  *	until timeout then returns 0 if DET is stable at 1.
3160  *
3161  *	LOCKING:
3162  *	Kernel thread context (may sleep)
3163  *
3164  *	RETURNS:
3165  *	0 on success, -errno on failure.
3166  */
3167 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
3168 {
3169 	unsigned long interval_msec = params[0];
3170 	unsigned long duration = params[1] * HZ / 1000;
3171 	unsigned long timeout = jiffies + params[2] * HZ / 1000;
3172 	unsigned long last_jiffies;
3173 	u32 last, cur;
3174 	int rc;
3175 
3176 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3177 		return rc;
3178 	cur &= 0xf;
3179 
3180 	last = cur;
3181 	last_jiffies = jiffies;
3182 
3183 	while (1) {
3184 		msleep(interval_msec);
3185 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3186 			return rc;
3187 		cur &= 0xf;
3188 
3189 		/* DET stable? */
3190 		if (cur == last) {
3191 			if (cur == 1 && time_before(jiffies, timeout))
3192 				continue;
3193 			if (time_after(jiffies, last_jiffies + duration))
3194 				return 0;
3195 			continue;
3196 		}
3197 
3198 		/* unstable, start over */
3199 		last = cur;
3200 		last_jiffies = jiffies;
3201 
3202 		/* check timeout */
3203 		if (time_after(jiffies, timeout))
3204 			return -EBUSY;
3205 	}
3206 }
3207 
3208 /**
3209  *	sata_phy_resume - resume SATA phy
3210  *	@ap: ATA port to resume SATA phy for
3211  *	@params: timing parameters { interval, duratinon, timeout } in msec
3212  *
3213  *	Resume SATA phy of @ap and debounce it.
3214  *
3215  *	LOCKING:
3216  *	Kernel thread context (may sleep)
3217  *
3218  *	RETURNS:
3219  *	0 on success, -errno on failure.
3220  */
3221 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
3222 {
3223 	u32 scontrol;
3224 	int rc;
3225 
3226 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3227 		return rc;
3228 
3229 	scontrol = (scontrol & 0x0f0) | 0x300;
3230 
3231 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3232 		return rc;
3233 
3234 	/* Some PHYs react badly if SStatus is pounded immediately
3235 	 * after resuming.  Delay 200ms before debouncing.
3236 	 */
3237 	msleep(200);
3238 
3239 	return sata_phy_debounce(ap, params);
3240 }
3241 
3242 static void ata_wait_spinup(struct ata_port *ap)
3243 {
3244 	struct ata_eh_context *ehc = &ap->eh_context;
3245 	unsigned long end, secs;
3246 	int rc;
3247 
3248 	/* first, debounce phy if SATA */
3249 	if (ap->cbl == ATA_CBL_SATA) {
3250 		rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
3251 
3252 		/* if debounced successfully and offline, no need to wait */
3253 		if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3254 			return;
3255 	}
3256 
3257 	/* okay, let's give the drive time to spin up */
3258 	end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3259 	secs = ((end - jiffies) + HZ - 1) / HZ;
3260 
3261 	if (time_after(jiffies, end))
3262 		return;
3263 
3264 	if (secs > 5)
3265 		ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3266 				"(%lu secs)\n", secs);
3267 
3268 	schedule_timeout_uninterruptible(end - jiffies);
3269 }
3270 
3271 /**
3272  *	ata_std_prereset - prepare for reset
3273  *	@ap: ATA port to be reset
3274  *
3275  *	@ap is about to be reset.  Initialize it.
3276  *
3277  *	LOCKING:
3278  *	Kernel thread context (may sleep)
3279  *
3280  *	RETURNS:
3281  *	0 on success, -errno otherwise.
3282  */
3283 int ata_std_prereset(struct ata_port *ap)
3284 {
3285 	struct ata_eh_context *ehc = &ap->eh_context;
3286 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3287 	int rc;
3288 
3289 	/* handle link resume & hotplug spinup */
3290 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3291 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3292 		ehc->i.action |= ATA_EH_HARDRESET;
3293 
3294 	if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3295 	    (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3296 		ata_wait_spinup(ap);
3297 
3298 	/* if we're about to do hardreset, nothing more to do */
3299 	if (ehc->i.action & ATA_EH_HARDRESET)
3300 		return 0;
3301 
3302 	/* if SATA, resume phy */
3303 	if (ap->cbl == ATA_CBL_SATA) {
3304 		rc = sata_phy_resume(ap, timing);
3305 		if (rc && rc != -EOPNOTSUPP) {
3306 			/* phy resume failed */
3307 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
3308 					"link for reset (errno=%d)\n", rc);
3309 			return rc;
3310 		}
3311 	}
3312 
3313 	/* Wait for !BSY if the controller can wait for the first D2H
3314 	 * Reg FIS and we don't know that no device is attached.
3315 	 */
3316 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3317 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3318 
3319 	return 0;
3320 }
3321 
3322 /**
3323  *	ata_std_softreset - reset host port via ATA SRST
3324  *	@ap: port to reset
3325  *	@classes: resulting classes of attached devices
3326  *
3327  *	Reset host port using ATA SRST.
3328  *
3329  *	LOCKING:
3330  *	Kernel thread context (may sleep)
3331  *
3332  *	RETURNS:
3333  *	0 on success, -errno otherwise.
3334  */
3335 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3336 {
3337 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3338 	unsigned int devmask = 0, err_mask;
3339 	u8 err;
3340 
3341 	DPRINTK("ENTER\n");
3342 
3343 	if (ata_port_offline(ap)) {
3344 		classes[0] = ATA_DEV_NONE;
3345 		goto out;
3346 	}
3347 
3348 	/* determine if device 0/1 are present */
3349 	if (ata_devchk(ap, 0))
3350 		devmask |= (1 << 0);
3351 	if (slave_possible && ata_devchk(ap, 1))
3352 		devmask |= (1 << 1);
3353 
3354 	/* select device 0 again */
3355 	ap->ops->dev_select(ap, 0);
3356 
3357 	/* issue bus reset */
3358 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3359 	err_mask = ata_bus_softreset(ap, devmask);
3360 	if (err_mask) {
3361 		ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3362 				err_mask);
3363 		return -EIO;
3364 	}
3365 
3366 	/* determine by signature whether we have ATA or ATAPI devices */
3367 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3368 	if (slave_possible && err != 0x81)
3369 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3370 
3371  out:
3372 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3373 	return 0;
3374 }
3375 
3376 /**
3377  *	sata_port_hardreset - reset port via SATA phy reset
3378  *	@ap: port to reset
3379  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3380  *
3381  *	SATA phy-reset host port using DET bits of SControl register.
3382  *
3383  *	LOCKING:
3384  *	Kernel thread context (may sleep)
3385  *
3386  *	RETURNS:
3387  *	0 on success, -errno otherwise.
3388  */
3389 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3390 {
3391 	u32 scontrol;
3392 	int rc;
3393 
3394 	DPRINTK("ENTER\n");
3395 
3396 	if (sata_set_spd_needed(ap)) {
3397 		/* SATA spec says nothing about how to reconfigure
3398 		 * spd.  To be on the safe side, turn off phy during
3399 		 * reconfiguration.  This works for at least ICH7 AHCI
3400 		 * and Sil3124.
3401 		 */
3402 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3403 			goto out;
3404 
3405 		scontrol = (scontrol & 0x0f0) | 0x304;
3406 
3407 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3408 			goto out;
3409 
3410 		sata_set_spd(ap);
3411 	}
3412 
3413 	/* issue phy wake/reset */
3414 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3415 		goto out;
3416 
3417 	scontrol = (scontrol & 0x0f0) | 0x301;
3418 
3419 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3420 		goto out;
3421 
3422 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3423 	 * 10.4.2 says at least 1 ms.
3424 	 */
3425 	msleep(1);
3426 
3427 	/* bring phy back */
3428 	rc = sata_phy_resume(ap, timing);
3429  out:
3430 	DPRINTK("EXIT, rc=%d\n", rc);
3431 	return rc;
3432 }
3433 
3434 /**
3435  *	sata_std_hardreset - reset host port via SATA phy reset
3436  *	@ap: port to reset
3437  *	@class: resulting class of attached device
3438  *
3439  *	SATA phy-reset host port using DET bits of SControl register,
3440  *	wait for !BSY and classify the attached device.
3441  *
3442  *	LOCKING:
3443  *	Kernel thread context (may sleep)
3444  *
3445  *	RETURNS:
3446  *	0 on success, -errno otherwise.
3447  */
3448 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3449 {
3450 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3451 	int rc;
3452 
3453 	DPRINTK("ENTER\n");
3454 
3455 	/* do hardreset */
3456 	rc = sata_port_hardreset(ap, timing);
3457 	if (rc) {
3458 		ata_port_printk(ap, KERN_ERR,
3459 				"COMRESET failed (errno=%d)\n", rc);
3460 		return rc;
3461 	}
3462 
3463 	/* TODO: phy layer with polling, timeouts, etc. */
3464 	if (ata_port_offline(ap)) {
3465 		*class = ATA_DEV_NONE;
3466 		DPRINTK("EXIT, link offline\n");
3467 		return 0;
3468 	}
3469 
3470 	/* wait a while before checking status, see SRST for more info */
3471 	msleep(150);
3472 
3473 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3474 		ata_port_printk(ap, KERN_ERR,
3475 				"COMRESET failed (device not ready)\n");
3476 		return -EIO;
3477 	}
3478 
3479 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3480 
3481 	*class = ata_dev_try_classify(ap, 0, NULL);
3482 
3483 	DPRINTK("EXIT, class=%u\n", *class);
3484 	return 0;
3485 }
3486 
3487 /**
3488  *	ata_std_postreset - standard postreset callback
3489  *	@ap: the target ata_port
3490  *	@classes: classes of attached devices
3491  *
3492  *	This function is invoked after a successful reset.  Note that
3493  *	the device might have been reset more than once using
3494  *	different reset methods before postreset is invoked.
3495  *
3496  *	LOCKING:
3497  *	Kernel thread context (may sleep)
3498  */
3499 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3500 {
3501 	u32 serror;
3502 
3503 	DPRINTK("ENTER\n");
3504 
3505 	/* print link status */
3506 	sata_print_link_status(ap);
3507 
3508 	/* clear SError */
3509 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3510 		sata_scr_write(ap, SCR_ERROR, serror);
3511 
3512 	/* re-enable interrupts */
3513 	if (!ap->ops->error_handler)
3514 		ap->ops->irq_on(ap);
3515 
3516 	/* is double-select really necessary? */
3517 	if (classes[0] != ATA_DEV_NONE)
3518 		ap->ops->dev_select(ap, 1);
3519 	if (classes[1] != ATA_DEV_NONE)
3520 		ap->ops->dev_select(ap, 0);
3521 
3522 	/* bail out if no device is present */
3523 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3524 		DPRINTK("EXIT, no device\n");
3525 		return;
3526 	}
3527 
3528 	/* set up device control */
3529 	if (ap->ioaddr.ctl_addr)
3530 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3531 
3532 	DPRINTK("EXIT\n");
3533 }
3534 
3535 /**
3536  *	ata_dev_same_device - Determine whether new ID matches configured device
3537  *	@dev: device to compare against
3538  *	@new_class: class of the new device
3539  *	@new_id: IDENTIFY page of the new device
3540  *
3541  *	Compare @new_class and @new_id against @dev and determine
3542  *	whether @dev is the device indicated by @new_class and
3543  *	@new_id.
3544  *
3545  *	LOCKING:
3546  *	None.
3547  *
3548  *	RETURNS:
3549  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3550  */
3551 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3552 			       const u16 *new_id)
3553 {
3554 	const u16 *old_id = dev->id;
3555 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3556 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3557 	u64 new_n_sectors;
3558 
3559 	if (dev->class != new_class) {
3560 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3561 			       dev->class, new_class);
3562 		return 0;
3563 	}
3564 
3565 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3566 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3567 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3568 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3569 	new_n_sectors = ata_id_n_sectors(new_id);
3570 
3571 	if (strcmp(model[0], model[1])) {
3572 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3573 			       "'%s' != '%s'\n", model[0], model[1]);
3574 		return 0;
3575 	}
3576 
3577 	if (strcmp(serial[0], serial[1])) {
3578 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3579 			       "'%s' != '%s'\n", serial[0], serial[1]);
3580 		return 0;
3581 	}
3582 
3583 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3584 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3585 			       "%llu != %llu\n",
3586 			       (unsigned long long)dev->n_sectors,
3587 			       (unsigned long long)new_n_sectors);
3588 		/* Are we the boot time size - if so we appear to be the
3589 		   same disk at this point and our HPA got reapplied */
3590 		if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3591 		    && ata_id_hpa_enabled(new_id))
3592 			return 1;
3593 		return 0;
3594 	}
3595 
3596 	return 1;
3597 }
3598 
3599 /**
3600  *	ata_dev_revalidate - Revalidate ATA device
3601  *	@dev: device to revalidate
3602  *	@readid_flags: read ID flags
3603  *
3604  *	Re-read IDENTIFY page and make sure @dev is still attached to
3605  *	the port.
3606  *
3607  *	LOCKING:
3608  *	Kernel thread context (may sleep)
3609  *
3610  *	RETURNS:
3611  *	0 on success, negative errno otherwise
3612  */
3613 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3614 {
3615 	unsigned int class = dev->class;
3616 	u16 *id = (void *)dev->ap->sector_buf;
3617 	int rc;
3618 
3619 	if (!ata_dev_enabled(dev)) {
3620 		rc = -ENODEV;
3621 		goto fail;
3622 	}
3623 
3624 	/* read ID data */
3625 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3626 	if (rc)
3627 		goto fail;
3628 
3629 	/* is the device still there? */
3630 	if (!ata_dev_same_device(dev, class, id)) {
3631 		rc = -ENODEV;
3632 		goto fail;
3633 	}
3634 
3635 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3636 
3637 	/* configure device according to the new ID */
3638 	rc = ata_dev_configure(dev);
3639 	if (rc == 0)
3640 		return 0;
3641 
3642  fail:
3643 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3644 	return rc;
3645 }
3646 
3647 struct ata_blacklist_entry {
3648 	const char *model_num;
3649 	const char *model_rev;
3650 	unsigned long horkage;
3651 };
3652 
3653 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3654 	/* Devices with DMA related problems under Linux */
3655 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3656 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3657 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3658 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3659 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3660 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3661 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3662 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3663 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3664 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3665 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3666 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3667 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3668 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3669 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3670 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3671 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3672 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3673 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3674 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3675 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3676 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3677 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3678 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3679 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3680 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3681 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3682 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3683 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3684 
3685 	/* Weird ATAPI devices */
3686 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 |
3687 						ATA_HORKAGE_DMA_RW_ONLY },
3688 
3689 	/* Devices we expect to fail diagnostics */
3690 
3691 	/* Devices where NCQ should be avoided */
3692 	/* NCQ is slow */
3693         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3694 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3695 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3696 	/* NCQ is broken */
3697 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3698 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3699 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3700 	/* Blacklist entries taken from Silicon Image 3124/3132
3701 	   Windows driver .inf file - also several Linux problem reports */
3702 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3703 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3704 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3705 
3706 	/* Devices with NCQ limits */
3707 
3708 	/* End Marker */
3709 	{ }
3710 };
3711 
3712 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3713 {
3714 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3715 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3716 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3717 
3718 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3719 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3720 
3721 	while (ad->model_num) {
3722 		if (!strcmp(ad->model_num, model_num)) {
3723 			if (ad->model_rev == NULL)
3724 				return ad->horkage;
3725 			if (!strcmp(ad->model_rev, model_rev))
3726 				return ad->horkage;
3727 		}
3728 		ad++;
3729 	}
3730 	return 0;
3731 }
3732 
3733 static int ata_dma_blacklisted(const struct ata_device *dev)
3734 {
3735 	/* We don't support polling DMA.
3736 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3737 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3738 	 */
3739 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3740 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3741 		return 1;
3742 	return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3743 }
3744 
3745 /**
3746  *	ata_dev_xfermask - Compute supported xfermask of the given device
3747  *	@dev: Device to compute xfermask for
3748  *
3749  *	Compute supported xfermask of @dev and store it in
3750  *	dev->*_mask.  This function is responsible for applying all
3751  *	known limits including host controller limits, device
3752  *	blacklist, etc...
3753  *
3754  *	LOCKING:
3755  *	None.
3756  */
3757 static void ata_dev_xfermask(struct ata_device *dev)
3758 {
3759 	struct ata_port *ap = dev->ap;
3760 	struct ata_host *host = ap->host;
3761 	unsigned long xfer_mask;
3762 
3763 	/* controller modes available */
3764 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3765 				      ap->mwdma_mask, ap->udma_mask);
3766 
3767 	/* drive modes available */
3768 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3769 				       dev->mwdma_mask, dev->udma_mask);
3770 	xfer_mask &= ata_id_xfermask(dev->id);
3771 
3772 	/*
3773 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3774 	 *	cable
3775 	 */
3776 	if (ata_dev_pair(dev)) {
3777 		/* No PIO5 or PIO6 */
3778 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3779 		/* No MWDMA3 or MWDMA 4 */
3780 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3781 	}
3782 
3783 	if (ata_dma_blacklisted(dev)) {
3784 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3785 		ata_dev_printk(dev, KERN_WARNING,
3786 			       "device is on DMA blacklist, disabling DMA\n");
3787 	}
3788 
3789 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3790             host->simplex_claimed && host->simplex_claimed != ap) {
3791 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3792 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3793 			       "other device, disabling DMA\n");
3794 	}
3795 
3796 	if (ap->flags & ATA_FLAG_NO_IORDY)
3797 		xfer_mask &= ata_pio_mask_no_iordy(dev);
3798 
3799 	if (ap->ops->mode_filter)
3800 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3801 
3802 	/* Apply cable rule here.  Don't apply it early because when
3803 	 * we handle hot plug the cable type can itself change.
3804 	 * Check this last so that we know if the transfer rate was
3805 	 * solely limited by the cable.
3806 	 * Unknown or 80 wire cables reported host side are checked
3807 	 * drive side as well. Cases where we know a 40wire cable
3808 	 * is used safely for 80 are not checked here.
3809 	 */
3810 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3811 		/* UDMA/44 or higher would be available */
3812 		if((ap->cbl == ATA_CBL_PATA40) ||
3813    		    (ata_drive_40wire(dev->id) &&
3814 		     (ap->cbl == ATA_CBL_PATA_UNK ||
3815                      ap->cbl == ATA_CBL_PATA80))) {
3816 		      	ata_dev_printk(dev, KERN_WARNING,
3817 				 "limited to UDMA/33 due to 40-wire cable\n");
3818 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3819 		}
3820 
3821 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3822 			    &dev->mwdma_mask, &dev->udma_mask);
3823 }
3824 
3825 /**
3826  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3827  *	@dev: Device to which command will be sent
3828  *
3829  *	Issue SET FEATURES - XFER MODE command to device @dev
3830  *	on port @ap.
3831  *
3832  *	LOCKING:
3833  *	PCI/etc. bus probe sem.
3834  *
3835  *	RETURNS:
3836  *	0 on success, AC_ERR_* mask otherwise.
3837  */
3838 
3839 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3840 {
3841 	struct ata_taskfile tf;
3842 	unsigned int err_mask;
3843 
3844 	/* set up set-features taskfile */
3845 	DPRINTK("set features - xfer mode\n");
3846 
3847 	ata_tf_init(dev, &tf);
3848 	tf.command = ATA_CMD_SET_FEATURES;
3849 	tf.feature = SETFEATURES_XFER;
3850 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3851 	tf.protocol = ATA_PROT_NODATA;
3852 	tf.nsect = dev->xfer_mode;
3853 
3854 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3855 
3856 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3857 	return err_mask;
3858 }
3859 
3860 /**
3861  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3862  *	@dev: Device to which command will be sent
3863  *	@heads: Number of heads (taskfile parameter)
3864  *	@sectors: Number of sectors (taskfile parameter)
3865  *
3866  *	LOCKING:
3867  *	Kernel thread context (may sleep)
3868  *
3869  *	RETURNS:
3870  *	0 on success, AC_ERR_* mask otherwise.
3871  */
3872 static unsigned int ata_dev_init_params(struct ata_device *dev,
3873 					u16 heads, u16 sectors)
3874 {
3875 	struct ata_taskfile tf;
3876 	unsigned int err_mask;
3877 
3878 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3879 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3880 		return AC_ERR_INVALID;
3881 
3882 	/* set up init dev params taskfile */
3883 	DPRINTK("init dev params \n");
3884 
3885 	ata_tf_init(dev, &tf);
3886 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3887 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3888 	tf.protocol = ATA_PROT_NODATA;
3889 	tf.nsect = sectors;
3890 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3891 
3892 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3893 
3894 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3895 	return err_mask;
3896 }
3897 
3898 /**
3899  *	ata_sg_clean - Unmap DMA memory associated with command
3900  *	@qc: Command containing DMA memory to be released
3901  *
3902  *	Unmap all mapped DMA memory associated with this command.
3903  *
3904  *	LOCKING:
3905  *	spin_lock_irqsave(host lock)
3906  */
3907 void ata_sg_clean(struct ata_queued_cmd *qc)
3908 {
3909 	struct ata_port *ap = qc->ap;
3910 	struct scatterlist *sg = qc->__sg;
3911 	int dir = qc->dma_dir;
3912 	void *pad_buf = NULL;
3913 
3914 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3915 	WARN_ON(sg == NULL);
3916 
3917 	if (qc->flags & ATA_QCFLAG_SINGLE)
3918 		WARN_ON(qc->n_elem > 1);
3919 
3920 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3921 
3922 	/* if we padded the buffer out to 32-bit bound, and data
3923 	 * xfer direction is from-device, we must copy from the
3924 	 * pad buffer back into the supplied buffer
3925 	 */
3926 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3927 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3928 
3929 	if (qc->flags & ATA_QCFLAG_SG) {
3930 		if (qc->n_elem)
3931 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3932 		/* restore last sg */
3933 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
3934 		if (pad_buf) {
3935 			struct scatterlist *psg = &qc->pad_sgent;
3936 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
3937 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3938 			kunmap_atomic(addr, KM_IRQ0);
3939 		}
3940 	} else {
3941 		if (qc->n_elem)
3942 			dma_unmap_single(ap->dev,
3943 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3944 				dir);
3945 		/* restore sg */
3946 		sg->length += qc->pad_len;
3947 		if (pad_buf)
3948 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
3949 			       pad_buf, qc->pad_len);
3950 	}
3951 
3952 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
3953 	qc->__sg = NULL;
3954 }
3955 
3956 /**
3957  *	ata_fill_sg - Fill PCI IDE PRD table
3958  *	@qc: Metadata associated with taskfile to be transferred
3959  *
3960  *	Fill PCI IDE PRD (scatter-gather) table with segments
3961  *	associated with the current disk command.
3962  *
3963  *	LOCKING:
3964  *	spin_lock_irqsave(host lock)
3965  *
3966  */
3967 static void ata_fill_sg(struct ata_queued_cmd *qc)
3968 {
3969 	struct ata_port *ap = qc->ap;
3970 	struct scatterlist *sg;
3971 	unsigned int idx;
3972 
3973 	WARN_ON(qc->__sg == NULL);
3974 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3975 
3976 	idx = 0;
3977 	ata_for_each_sg(sg, qc) {
3978 		u32 addr, offset;
3979 		u32 sg_len, len;
3980 
3981 		/* determine if physical DMA addr spans 64K boundary.
3982 		 * Note h/w doesn't support 64-bit, so we unconditionally
3983 		 * truncate dma_addr_t to u32.
3984 		 */
3985 		addr = (u32) sg_dma_address(sg);
3986 		sg_len = sg_dma_len(sg);
3987 
3988 		while (sg_len) {
3989 			offset = addr & 0xffff;
3990 			len = sg_len;
3991 			if ((offset + sg_len) > 0x10000)
3992 				len = 0x10000 - offset;
3993 
3994 			ap->prd[idx].addr = cpu_to_le32(addr);
3995 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3996 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3997 
3998 			idx++;
3999 			sg_len -= len;
4000 			addr += len;
4001 		}
4002 	}
4003 
4004 	if (idx)
4005 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4006 }
4007 /**
4008  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4009  *	@qc: Metadata associated with taskfile to check
4010  *
4011  *	Allow low-level driver to filter ATA PACKET commands, returning
4012  *	a status indicating whether or not it is OK to use DMA for the
4013  *	supplied PACKET command.
4014  *
4015  *	LOCKING:
4016  *	spin_lock_irqsave(host lock)
4017  *
4018  *	RETURNS: 0 when ATAPI DMA can be used
4019  *               nonzero otherwise
4020  */
4021 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4022 {
4023 	struct ata_port *ap = qc->ap;
4024 	int rc = 0; /* Assume ATAPI DMA is OK by default */
4025 
4026 	/* some drives can only do ATAPI DMA on read/write */
4027 	if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4028 		struct scsi_cmnd *cmd = qc->scsicmd;
4029 		u8 *scsicmd = cmd->cmnd;
4030 
4031 		switch (scsicmd[0]) {
4032 		case READ_10:
4033 		case WRITE_10:
4034 		case READ_12:
4035 		case WRITE_12:
4036 		case READ_6:
4037 		case WRITE_6:
4038 			/* atapi dma maybe ok */
4039 			break;
4040 		default:
4041 			/* turn off atapi dma */
4042 			return 1;
4043 		}
4044 	}
4045 
4046 	if (ap->ops->check_atapi_dma)
4047 		rc = ap->ops->check_atapi_dma(qc);
4048 
4049 	return rc;
4050 }
4051 /**
4052  *	ata_qc_prep - Prepare taskfile for submission
4053  *	@qc: Metadata associated with taskfile to be prepared
4054  *
4055  *	Prepare ATA taskfile for submission.
4056  *
4057  *	LOCKING:
4058  *	spin_lock_irqsave(host lock)
4059  */
4060 void ata_qc_prep(struct ata_queued_cmd *qc)
4061 {
4062 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4063 		return;
4064 
4065 	ata_fill_sg(qc);
4066 }
4067 
4068 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4069 
4070 /**
4071  *	ata_sg_init_one - Associate command with memory buffer
4072  *	@qc: Command to be associated
4073  *	@buf: Memory buffer
4074  *	@buflen: Length of memory buffer, in bytes.
4075  *
4076  *	Initialize the data-related elements of queued_cmd @qc
4077  *	to point to a single memory buffer, @buf of byte length @buflen.
4078  *
4079  *	LOCKING:
4080  *	spin_lock_irqsave(host lock)
4081  */
4082 
4083 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4084 {
4085 	qc->flags |= ATA_QCFLAG_SINGLE;
4086 
4087 	qc->__sg = &qc->sgent;
4088 	qc->n_elem = 1;
4089 	qc->orig_n_elem = 1;
4090 	qc->buf_virt = buf;
4091 	qc->nbytes = buflen;
4092 
4093 	sg_init_one(&qc->sgent, buf, buflen);
4094 }
4095 
4096 /**
4097  *	ata_sg_init - Associate command with scatter-gather table.
4098  *	@qc: Command to be associated
4099  *	@sg: Scatter-gather table.
4100  *	@n_elem: Number of elements in s/g table.
4101  *
4102  *	Initialize the data-related elements of queued_cmd @qc
4103  *	to point to a scatter-gather table @sg, containing @n_elem
4104  *	elements.
4105  *
4106  *	LOCKING:
4107  *	spin_lock_irqsave(host lock)
4108  */
4109 
4110 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4111 		 unsigned int n_elem)
4112 {
4113 	qc->flags |= ATA_QCFLAG_SG;
4114 	qc->__sg = sg;
4115 	qc->n_elem = n_elem;
4116 	qc->orig_n_elem = n_elem;
4117 }
4118 
4119 /**
4120  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4121  *	@qc: Command with memory buffer to be mapped.
4122  *
4123  *	DMA-map the memory buffer associated with queued_cmd @qc.
4124  *
4125  *	LOCKING:
4126  *	spin_lock_irqsave(host lock)
4127  *
4128  *	RETURNS:
4129  *	Zero on success, negative on error.
4130  */
4131 
4132 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4133 {
4134 	struct ata_port *ap = qc->ap;
4135 	int dir = qc->dma_dir;
4136 	struct scatterlist *sg = qc->__sg;
4137 	dma_addr_t dma_address;
4138 	int trim_sg = 0;
4139 
4140 	/* we must lengthen transfers to end on a 32-bit boundary */
4141 	qc->pad_len = sg->length & 3;
4142 	if (qc->pad_len) {
4143 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4144 		struct scatterlist *psg = &qc->pad_sgent;
4145 
4146 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4147 
4148 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4149 
4150 		if (qc->tf.flags & ATA_TFLAG_WRITE)
4151 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4152 			       qc->pad_len);
4153 
4154 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4155 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4156 		/* trim sg */
4157 		sg->length -= qc->pad_len;
4158 		if (sg->length == 0)
4159 			trim_sg = 1;
4160 
4161 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4162 			sg->length, qc->pad_len);
4163 	}
4164 
4165 	if (trim_sg) {
4166 		qc->n_elem--;
4167 		goto skip_map;
4168 	}
4169 
4170 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
4171 				     sg->length, dir);
4172 	if (dma_mapping_error(dma_address)) {
4173 		/* restore sg */
4174 		sg->length += qc->pad_len;
4175 		return -1;
4176 	}
4177 
4178 	sg_dma_address(sg) = dma_address;
4179 	sg_dma_len(sg) = sg->length;
4180 
4181 skip_map:
4182 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4183 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4184 
4185 	return 0;
4186 }
4187 
4188 /**
4189  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4190  *	@qc: Command with scatter-gather table to be mapped.
4191  *
4192  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4193  *
4194  *	LOCKING:
4195  *	spin_lock_irqsave(host lock)
4196  *
4197  *	RETURNS:
4198  *	Zero on success, negative on error.
4199  *
4200  */
4201 
4202 static int ata_sg_setup(struct ata_queued_cmd *qc)
4203 {
4204 	struct ata_port *ap = qc->ap;
4205 	struct scatterlist *sg = qc->__sg;
4206 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
4207 	int n_elem, pre_n_elem, dir, trim_sg = 0;
4208 
4209 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4210 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4211 
4212 	/* we must lengthen transfers to end on a 32-bit boundary */
4213 	qc->pad_len = lsg->length & 3;
4214 	if (qc->pad_len) {
4215 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4216 		struct scatterlist *psg = &qc->pad_sgent;
4217 		unsigned int offset;
4218 
4219 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4220 
4221 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4222 
4223 		/*
4224 		 * psg->page/offset are used to copy to-be-written
4225 		 * data in this function or read data in ata_sg_clean.
4226 		 */
4227 		offset = lsg->offset + lsg->length - qc->pad_len;
4228 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4229 		psg->offset = offset_in_page(offset);
4230 
4231 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4232 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4233 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4234 			kunmap_atomic(addr, KM_IRQ0);
4235 		}
4236 
4237 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4238 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4239 		/* trim last sg */
4240 		lsg->length -= qc->pad_len;
4241 		if (lsg->length == 0)
4242 			trim_sg = 1;
4243 
4244 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4245 			qc->n_elem - 1, lsg->length, qc->pad_len);
4246 	}
4247 
4248 	pre_n_elem = qc->n_elem;
4249 	if (trim_sg && pre_n_elem)
4250 		pre_n_elem--;
4251 
4252 	if (!pre_n_elem) {
4253 		n_elem = 0;
4254 		goto skip_map;
4255 	}
4256 
4257 	dir = qc->dma_dir;
4258 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4259 	if (n_elem < 1) {
4260 		/* restore last sg */
4261 		lsg->length += qc->pad_len;
4262 		return -1;
4263 	}
4264 
4265 	DPRINTK("%d sg elements mapped\n", n_elem);
4266 
4267 skip_map:
4268 	qc->n_elem = n_elem;
4269 
4270 	return 0;
4271 }
4272 
4273 /**
4274  *	swap_buf_le16 - swap halves of 16-bit words in place
4275  *	@buf:  Buffer to swap
4276  *	@buf_words:  Number of 16-bit words in buffer.
4277  *
4278  *	Swap halves of 16-bit words if needed to convert from
4279  *	little-endian byte order to native cpu byte order, or
4280  *	vice-versa.
4281  *
4282  *	LOCKING:
4283  *	Inherited from caller.
4284  */
4285 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4286 {
4287 #ifdef __BIG_ENDIAN
4288 	unsigned int i;
4289 
4290 	for (i = 0; i < buf_words; i++)
4291 		buf[i] = le16_to_cpu(buf[i]);
4292 #endif /* __BIG_ENDIAN */
4293 }
4294 
4295 /**
4296  *	ata_data_xfer - Transfer data by PIO
4297  *	@adev: device to target
4298  *	@buf: data buffer
4299  *	@buflen: buffer length
4300  *	@write_data: read/write
4301  *
4302  *	Transfer data from/to the device data register by PIO.
4303  *
4304  *	LOCKING:
4305  *	Inherited from caller.
4306  */
4307 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4308 		   unsigned int buflen, int write_data)
4309 {
4310 	struct ata_port *ap = adev->ap;
4311 	unsigned int words = buflen >> 1;
4312 
4313 	/* Transfer multiple of 2 bytes */
4314 	if (write_data)
4315 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4316 	else
4317 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
4318 
4319 	/* Transfer trailing 1 byte, if any. */
4320 	if (unlikely(buflen & 0x01)) {
4321 		u16 align_buf[1] = { 0 };
4322 		unsigned char *trailing_buf = buf + buflen - 1;
4323 
4324 		if (write_data) {
4325 			memcpy(align_buf, trailing_buf, 1);
4326 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4327 		} else {
4328 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4329 			memcpy(trailing_buf, align_buf, 1);
4330 		}
4331 	}
4332 }
4333 
4334 /**
4335  *	ata_data_xfer_noirq - Transfer data by PIO
4336  *	@adev: device to target
4337  *	@buf: data buffer
4338  *	@buflen: buffer length
4339  *	@write_data: read/write
4340  *
4341  *	Transfer data from/to the device data register by PIO. Do the
4342  *	transfer with interrupts disabled.
4343  *
4344  *	LOCKING:
4345  *	Inherited from caller.
4346  */
4347 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4348 			 unsigned int buflen, int write_data)
4349 {
4350 	unsigned long flags;
4351 	local_irq_save(flags);
4352 	ata_data_xfer(adev, buf, buflen, write_data);
4353 	local_irq_restore(flags);
4354 }
4355 
4356 
4357 /**
4358  *	ata_pio_sector - Transfer a sector of data.
4359  *	@qc: Command on going
4360  *
4361  *	Transfer qc->sect_size bytes of data from/to the ATA device.
4362  *
4363  *	LOCKING:
4364  *	Inherited from caller.
4365  */
4366 
4367 static void ata_pio_sector(struct ata_queued_cmd *qc)
4368 {
4369 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4370 	struct scatterlist *sg = qc->__sg;
4371 	struct ata_port *ap = qc->ap;
4372 	struct page *page;
4373 	unsigned int offset;
4374 	unsigned char *buf;
4375 
4376 	if (qc->curbytes == qc->nbytes - qc->sect_size)
4377 		ap->hsm_task_state = HSM_ST_LAST;
4378 
4379 	page = sg[qc->cursg].page;
4380 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4381 
4382 	/* get the current page and offset */
4383 	page = nth_page(page, (offset >> PAGE_SHIFT));
4384 	offset %= PAGE_SIZE;
4385 
4386 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4387 
4388 	if (PageHighMem(page)) {
4389 		unsigned long flags;
4390 
4391 		/* FIXME: use a bounce buffer */
4392 		local_irq_save(flags);
4393 		buf = kmap_atomic(page, KM_IRQ0);
4394 
4395 		/* do the actual data transfer */
4396 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4397 
4398 		kunmap_atomic(buf, KM_IRQ0);
4399 		local_irq_restore(flags);
4400 	} else {
4401 		buf = page_address(page);
4402 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4403 	}
4404 
4405 	qc->curbytes += qc->sect_size;
4406 	qc->cursg_ofs += qc->sect_size;
4407 
4408 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4409 		qc->cursg++;
4410 		qc->cursg_ofs = 0;
4411 	}
4412 }
4413 
4414 /**
4415  *	ata_pio_sectors - Transfer one or many sectors.
4416  *	@qc: Command on going
4417  *
4418  *	Transfer one or many sectors of data from/to the
4419  *	ATA device for the DRQ request.
4420  *
4421  *	LOCKING:
4422  *	Inherited from caller.
4423  */
4424 
4425 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4426 {
4427 	if (is_multi_taskfile(&qc->tf)) {
4428 		/* READ/WRITE MULTIPLE */
4429 		unsigned int nsect;
4430 
4431 		WARN_ON(qc->dev->multi_count == 0);
4432 
4433 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4434 			    qc->dev->multi_count);
4435 		while (nsect--)
4436 			ata_pio_sector(qc);
4437 	} else
4438 		ata_pio_sector(qc);
4439 }
4440 
4441 /**
4442  *	atapi_send_cdb - Write CDB bytes to hardware
4443  *	@ap: Port to which ATAPI device is attached.
4444  *	@qc: Taskfile currently active
4445  *
4446  *	When device has indicated its readiness to accept
4447  *	a CDB, this function is called.  Send the CDB.
4448  *
4449  *	LOCKING:
4450  *	caller.
4451  */
4452 
4453 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4454 {
4455 	/* send SCSI cdb */
4456 	DPRINTK("send cdb\n");
4457 	WARN_ON(qc->dev->cdb_len < 12);
4458 
4459 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4460 	ata_altstatus(ap); /* flush */
4461 
4462 	switch (qc->tf.protocol) {
4463 	case ATA_PROT_ATAPI:
4464 		ap->hsm_task_state = HSM_ST;
4465 		break;
4466 	case ATA_PROT_ATAPI_NODATA:
4467 		ap->hsm_task_state = HSM_ST_LAST;
4468 		break;
4469 	case ATA_PROT_ATAPI_DMA:
4470 		ap->hsm_task_state = HSM_ST_LAST;
4471 		/* initiate bmdma */
4472 		ap->ops->bmdma_start(qc);
4473 		break;
4474 	}
4475 }
4476 
4477 /**
4478  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4479  *	@qc: Command on going
4480  *	@bytes: number of bytes
4481  *
4482  *	Transfer Transfer data from/to the ATAPI device.
4483  *
4484  *	LOCKING:
4485  *	Inherited from caller.
4486  *
4487  */
4488 
4489 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4490 {
4491 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4492 	struct scatterlist *sg = qc->__sg;
4493 	struct ata_port *ap = qc->ap;
4494 	struct page *page;
4495 	unsigned char *buf;
4496 	unsigned int offset, count;
4497 
4498 	if (qc->curbytes + bytes >= qc->nbytes)
4499 		ap->hsm_task_state = HSM_ST_LAST;
4500 
4501 next_sg:
4502 	if (unlikely(qc->cursg >= qc->n_elem)) {
4503 		/*
4504 		 * The end of qc->sg is reached and the device expects
4505 		 * more data to transfer. In order not to overrun qc->sg
4506 		 * and fulfill length specified in the byte count register,
4507 		 *    - for read case, discard trailing data from the device
4508 		 *    - for write case, padding zero data to the device
4509 		 */
4510 		u16 pad_buf[1] = { 0 };
4511 		unsigned int words = bytes >> 1;
4512 		unsigned int i;
4513 
4514 		if (words) /* warning if bytes > 1 */
4515 			ata_dev_printk(qc->dev, KERN_WARNING,
4516 				       "%u bytes trailing data\n", bytes);
4517 
4518 		for (i = 0; i < words; i++)
4519 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4520 
4521 		ap->hsm_task_state = HSM_ST_LAST;
4522 		return;
4523 	}
4524 
4525 	sg = &qc->__sg[qc->cursg];
4526 
4527 	page = sg->page;
4528 	offset = sg->offset + qc->cursg_ofs;
4529 
4530 	/* get the current page and offset */
4531 	page = nth_page(page, (offset >> PAGE_SHIFT));
4532 	offset %= PAGE_SIZE;
4533 
4534 	/* don't overrun current sg */
4535 	count = min(sg->length - qc->cursg_ofs, bytes);
4536 
4537 	/* don't cross page boundaries */
4538 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4539 
4540 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4541 
4542 	if (PageHighMem(page)) {
4543 		unsigned long flags;
4544 
4545 		/* FIXME: use bounce buffer */
4546 		local_irq_save(flags);
4547 		buf = kmap_atomic(page, KM_IRQ0);
4548 
4549 		/* do the actual data transfer */
4550 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4551 
4552 		kunmap_atomic(buf, KM_IRQ0);
4553 		local_irq_restore(flags);
4554 	} else {
4555 		buf = page_address(page);
4556 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4557 	}
4558 
4559 	bytes -= count;
4560 	qc->curbytes += count;
4561 	qc->cursg_ofs += count;
4562 
4563 	if (qc->cursg_ofs == sg->length) {
4564 		qc->cursg++;
4565 		qc->cursg_ofs = 0;
4566 	}
4567 
4568 	if (bytes)
4569 		goto next_sg;
4570 }
4571 
4572 /**
4573  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4574  *	@qc: Command on going
4575  *
4576  *	Transfer Transfer data from/to the ATAPI device.
4577  *
4578  *	LOCKING:
4579  *	Inherited from caller.
4580  */
4581 
4582 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4583 {
4584 	struct ata_port *ap = qc->ap;
4585 	struct ata_device *dev = qc->dev;
4586 	unsigned int ireason, bc_lo, bc_hi, bytes;
4587 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4588 
4589 	/* Abuse qc->result_tf for temp storage of intermediate TF
4590 	 * here to save some kernel stack usage.
4591 	 * For normal completion, qc->result_tf is not relevant. For
4592 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4593 	 * So, the correctness of qc->result_tf is not affected.
4594 	 */
4595 	ap->ops->tf_read(ap, &qc->result_tf);
4596 	ireason = qc->result_tf.nsect;
4597 	bc_lo = qc->result_tf.lbam;
4598 	bc_hi = qc->result_tf.lbah;
4599 	bytes = (bc_hi << 8) | bc_lo;
4600 
4601 	/* shall be cleared to zero, indicating xfer of data */
4602 	if (ireason & (1 << 0))
4603 		goto err_out;
4604 
4605 	/* make sure transfer direction matches expected */
4606 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4607 	if (do_write != i_write)
4608 		goto err_out;
4609 
4610 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4611 
4612 	__atapi_pio_bytes(qc, bytes);
4613 
4614 	return;
4615 
4616 err_out:
4617 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4618 	qc->err_mask |= AC_ERR_HSM;
4619 	ap->hsm_task_state = HSM_ST_ERR;
4620 }
4621 
4622 /**
4623  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4624  *	@ap: the target ata_port
4625  *	@qc: qc on going
4626  *
4627  *	RETURNS:
4628  *	1 if ok in workqueue, 0 otherwise.
4629  */
4630 
4631 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4632 {
4633 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4634 		return 1;
4635 
4636 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4637 		if (qc->tf.protocol == ATA_PROT_PIO &&
4638 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4639 		    return 1;
4640 
4641 		if (is_atapi_taskfile(&qc->tf) &&
4642 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4643 			return 1;
4644 	}
4645 
4646 	return 0;
4647 }
4648 
4649 /**
4650  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4651  *	@qc: Command to complete
4652  *	@in_wq: 1 if called from workqueue, 0 otherwise
4653  *
4654  *	Finish @qc which is running on standard HSM.
4655  *
4656  *	LOCKING:
4657  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4658  *	Otherwise, none on entry and grabs host lock.
4659  */
4660 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4661 {
4662 	struct ata_port *ap = qc->ap;
4663 	unsigned long flags;
4664 
4665 	if (ap->ops->error_handler) {
4666 		if (in_wq) {
4667 			spin_lock_irqsave(ap->lock, flags);
4668 
4669 			/* EH might have kicked in while host lock is
4670 			 * released.
4671 			 */
4672 			qc = ata_qc_from_tag(ap, qc->tag);
4673 			if (qc) {
4674 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4675 					ap->ops->irq_on(ap);
4676 					ata_qc_complete(qc);
4677 				} else
4678 					ata_port_freeze(ap);
4679 			}
4680 
4681 			spin_unlock_irqrestore(ap->lock, flags);
4682 		} else {
4683 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4684 				ata_qc_complete(qc);
4685 			else
4686 				ata_port_freeze(ap);
4687 		}
4688 	} else {
4689 		if (in_wq) {
4690 			spin_lock_irqsave(ap->lock, flags);
4691 			ap->ops->irq_on(ap);
4692 			ata_qc_complete(qc);
4693 			spin_unlock_irqrestore(ap->lock, flags);
4694 		} else
4695 			ata_qc_complete(qc);
4696 	}
4697 
4698 	ata_altstatus(ap); /* flush */
4699 }
4700 
4701 /**
4702  *	ata_hsm_move - move the HSM to the next state.
4703  *	@ap: the target ata_port
4704  *	@qc: qc on going
4705  *	@status: current device status
4706  *	@in_wq: 1 if called from workqueue, 0 otherwise
4707  *
4708  *	RETURNS:
4709  *	1 when poll next status needed, 0 otherwise.
4710  */
4711 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4712 		 u8 status, int in_wq)
4713 {
4714 	unsigned long flags = 0;
4715 	int poll_next;
4716 
4717 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4718 
4719 	/* Make sure ata_qc_issue_prot() does not throw things
4720 	 * like DMA polling into the workqueue. Notice that
4721 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4722 	 */
4723 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4724 
4725 fsm_start:
4726 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4727 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4728 
4729 	switch (ap->hsm_task_state) {
4730 	case HSM_ST_FIRST:
4731 		/* Send first data block or PACKET CDB */
4732 
4733 		/* If polling, we will stay in the work queue after
4734 		 * sending the data. Otherwise, interrupt handler
4735 		 * takes over after sending the data.
4736 		 */
4737 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4738 
4739 		/* check device status */
4740 		if (unlikely((status & ATA_DRQ) == 0)) {
4741 			/* handle BSY=0, DRQ=0 as error */
4742 			if (likely(status & (ATA_ERR | ATA_DF)))
4743 				/* device stops HSM for abort/error */
4744 				qc->err_mask |= AC_ERR_DEV;
4745 			else
4746 				/* HSM violation. Let EH handle this */
4747 				qc->err_mask |= AC_ERR_HSM;
4748 
4749 			ap->hsm_task_state = HSM_ST_ERR;
4750 			goto fsm_start;
4751 		}
4752 
4753 		/* Device should not ask for data transfer (DRQ=1)
4754 		 * when it finds something wrong.
4755 		 * We ignore DRQ here and stop the HSM by
4756 		 * changing hsm_task_state to HSM_ST_ERR and
4757 		 * let the EH abort the command or reset the device.
4758 		 */
4759 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4760 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4761 					"error, dev_stat 0x%X\n", status);
4762 			qc->err_mask |= AC_ERR_HSM;
4763 			ap->hsm_task_state = HSM_ST_ERR;
4764 			goto fsm_start;
4765 		}
4766 
4767 		/* Send the CDB (atapi) or the first data block (ata pio out).
4768 		 * During the state transition, interrupt handler shouldn't
4769 		 * be invoked before the data transfer is complete and
4770 		 * hsm_task_state is changed. Hence, the following locking.
4771 		 */
4772 		if (in_wq)
4773 			spin_lock_irqsave(ap->lock, flags);
4774 
4775 		if (qc->tf.protocol == ATA_PROT_PIO) {
4776 			/* PIO data out protocol.
4777 			 * send first data block.
4778 			 */
4779 
4780 			/* ata_pio_sectors() might change the state
4781 			 * to HSM_ST_LAST. so, the state is changed here
4782 			 * before ata_pio_sectors().
4783 			 */
4784 			ap->hsm_task_state = HSM_ST;
4785 			ata_pio_sectors(qc);
4786 			ata_altstatus(ap); /* flush */
4787 		} else
4788 			/* send CDB */
4789 			atapi_send_cdb(ap, qc);
4790 
4791 		if (in_wq)
4792 			spin_unlock_irqrestore(ap->lock, flags);
4793 
4794 		/* if polling, ata_pio_task() handles the rest.
4795 		 * otherwise, interrupt handler takes over from here.
4796 		 */
4797 		break;
4798 
4799 	case HSM_ST:
4800 		/* complete command or read/write the data register */
4801 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4802 			/* ATAPI PIO protocol */
4803 			if ((status & ATA_DRQ) == 0) {
4804 				/* No more data to transfer or device error.
4805 				 * Device error will be tagged in HSM_ST_LAST.
4806 				 */
4807 				ap->hsm_task_state = HSM_ST_LAST;
4808 				goto fsm_start;
4809 			}
4810 
4811 			/* Device should not ask for data transfer (DRQ=1)
4812 			 * when it finds something wrong.
4813 			 * We ignore DRQ here and stop the HSM by
4814 			 * changing hsm_task_state to HSM_ST_ERR and
4815 			 * let the EH abort the command or reset the device.
4816 			 */
4817 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4818 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4819 						"device error, dev_stat 0x%X\n",
4820 						status);
4821 				qc->err_mask |= AC_ERR_HSM;
4822 				ap->hsm_task_state = HSM_ST_ERR;
4823 				goto fsm_start;
4824 			}
4825 
4826 			atapi_pio_bytes(qc);
4827 
4828 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4829 				/* bad ireason reported by device */
4830 				goto fsm_start;
4831 
4832 		} else {
4833 			/* ATA PIO protocol */
4834 			if (unlikely((status & ATA_DRQ) == 0)) {
4835 				/* handle BSY=0, DRQ=0 as error */
4836 				if (likely(status & (ATA_ERR | ATA_DF)))
4837 					/* device stops HSM for abort/error */
4838 					qc->err_mask |= AC_ERR_DEV;
4839 				else
4840 					/* HSM violation. Let EH handle this.
4841 					 * Phantom devices also trigger this
4842 					 * condition.  Mark hint.
4843 					 */
4844 					qc->err_mask |= AC_ERR_HSM |
4845 							AC_ERR_NODEV_HINT;
4846 
4847 				ap->hsm_task_state = HSM_ST_ERR;
4848 				goto fsm_start;
4849 			}
4850 
4851 			/* For PIO reads, some devices may ask for
4852 			 * data transfer (DRQ=1) alone with ERR=1.
4853 			 * We respect DRQ here and transfer one
4854 			 * block of junk data before changing the
4855 			 * hsm_task_state to HSM_ST_ERR.
4856 			 *
4857 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4858 			 * sense since the data block has been
4859 			 * transferred to the device.
4860 			 */
4861 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4862 				/* data might be corrputed */
4863 				qc->err_mask |= AC_ERR_DEV;
4864 
4865 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4866 					ata_pio_sectors(qc);
4867 					ata_altstatus(ap);
4868 					status = ata_wait_idle(ap);
4869 				}
4870 
4871 				if (status & (ATA_BUSY | ATA_DRQ))
4872 					qc->err_mask |= AC_ERR_HSM;
4873 
4874 				/* ata_pio_sectors() might change the
4875 				 * state to HSM_ST_LAST. so, the state
4876 				 * is changed after ata_pio_sectors().
4877 				 */
4878 				ap->hsm_task_state = HSM_ST_ERR;
4879 				goto fsm_start;
4880 			}
4881 
4882 			ata_pio_sectors(qc);
4883 
4884 			if (ap->hsm_task_state == HSM_ST_LAST &&
4885 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4886 				/* all data read */
4887 				ata_altstatus(ap);
4888 				status = ata_wait_idle(ap);
4889 				goto fsm_start;
4890 			}
4891 		}
4892 
4893 		ata_altstatus(ap); /* flush */
4894 		poll_next = 1;
4895 		break;
4896 
4897 	case HSM_ST_LAST:
4898 		if (unlikely(!ata_ok(status))) {
4899 			qc->err_mask |= __ac_err_mask(status);
4900 			ap->hsm_task_state = HSM_ST_ERR;
4901 			goto fsm_start;
4902 		}
4903 
4904 		/* no more data to transfer */
4905 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4906 			ap->print_id, qc->dev->devno, status);
4907 
4908 		WARN_ON(qc->err_mask);
4909 
4910 		ap->hsm_task_state = HSM_ST_IDLE;
4911 
4912 		/* complete taskfile transaction */
4913 		ata_hsm_qc_complete(qc, in_wq);
4914 
4915 		poll_next = 0;
4916 		break;
4917 
4918 	case HSM_ST_ERR:
4919 		/* make sure qc->err_mask is available to
4920 		 * know what's wrong and recover
4921 		 */
4922 		WARN_ON(qc->err_mask == 0);
4923 
4924 		ap->hsm_task_state = HSM_ST_IDLE;
4925 
4926 		/* complete taskfile transaction */
4927 		ata_hsm_qc_complete(qc, in_wq);
4928 
4929 		poll_next = 0;
4930 		break;
4931 	default:
4932 		poll_next = 0;
4933 		BUG();
4934 	}
4935 
4936 	return poll_next;
4937 }
4938 
4939 static void ata_pio_task(struct work_struct *work)
4940 {
4941 	struct ata_port *ap =
4942 		container_of(work, struct ata_port, port_task.work);
4943 	struct ata_queued_cmd *qc = ap->port_task_data;
4944 	u8 status;
4945 	int poll_next;
4946 
4947 fsm_start:
4948 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4949 
4950 	/*
4951 	 * This is purely heuristic.  This is a fast path.
4952 	 * Sometimes when we enter, BSY will be cleared in
4953 	 * a chk-status or two.  If not, the drive is probably seeking
4954 	 * or something.  Snooze for a couple msecs, then
4955 	 * chk-status again.  If still busy, queue delayed work.
4956 	 */
4957 	status = ata_busy_wait(ap, ATA_BUSY, 5);
4958 	if (status & ATA_BUSY) {
4959 		msleep(2);
4960 		status = ata_busy_wait(ap, ATA_BUSY, 10);
4961 		if (status & ATA_BUSY) {
4962 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4963 			return;
4964 		}
4965 	}
4966 
4967 	/* move the HSM */
4968 	poll_next = ata_hsm_move(ap, qc, status, 1);
4969 
4970 	/* another command or interrupt handler
4971 	 * may be running at this point.
4972 	 */
4973 	if (poll_next)
4974 		goto fsm_start;
4975 }
4976 
4977 /**
4978  *	ata_qc_new - Request an available ATA command, for queueing
4979  *	@ap: Port associated with device @dev
4980  *	@dev: Device from whom we request an available command structure
4981  *
4982  *	LOCKING:
4983  *	None.
4984  */
4985 
4986 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4987 {
4988 	struct ata_queued_cmd *qc = NULL;
4989 	unsigned int i;
4990 
4991 	/* no command while frozen */
4992 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4993 		return NULL;
4994 
4995 	/* the last tag is reserved for internal command. */
4996 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4997 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4998 			qc = __ata_qc_from_tag(ap, i);
4999 			break;
5000 		}
5001 
5002 	if (qc)
5003 		qc->tag = i;
5004 
5005 	return qc;
5006 }
5007 
5008 /**
5009  *	ata_qc_new_init - Request an available ATA command, and initialize it
5010  *	@dev: Device from whom we request an available command structure
5011  *
5012  *	LOCKING:
5013  *	None.
5014  */
5015 
5016 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5017 {
5018 	struct ata_port *ap = dev->ap;
5019 	struct ata_queued_cmd *qc;
5020 
5021 	qc = ata_qc_new(ap);
5022 	if (qc) {
5023 		qc->scsicmd = NULL;
5024 		qc->ap = ap;
5025 		qc->dev = dev;
5026 
5027 		ata_qc_reinit(qc);
5028 	}
5029 
5030 	return qc;
5031 }
5032 
5033 /**
5034  *	ata_qc_free - free unused ata_queued_cmd
5035  *	@qc: Command to complete
5036  *
5037  *	Designed to free unused ata_queued_cmd object
5038  *	in case something prevents using it.
5039  *
5040  *	LOCKING:
5041  *	spin_lock_irqsave(host lock)
5042  */
5043 void ata_qc_free(struct ata_queued_cmd *qc)
5044 {
5045 	struct ata_port *ap = qc->ap;
5046 	unsigned int tag;
5047 
5048 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5049 
5050 	qc->flags = 0;
5051 	tag = qc->tag;
5052 	if (likely(ata_tag_valid(tag))) {
5053 		qc->tag = ATA_TAG_POISON;
5054 		clear_bit(tag, &ap->qc_allocated);
5055 	}
5056 }
5057 
5058 void __ata_qc_complete(struct ata_queued_cmd *qc)
5059 {
5060 	struct ata_port *ap = qc->ap;
5061 
5062 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5063 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5064 
5065 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5066 		ata_sg_clean(qc);
5067 
5068 	/* command should be marked inactive atomically with qc completion */
5069 	if (qc->tf.protocol == ATA_PROT_NCQ)
5070 		ap->sactive &= ~(1 << qc->tag);
5071 	else
5072 		ap->active_tag = ATA_TAG_POISON;
5073 
5074 	/* atapi: mark qc as inactive to prevent the interrupt handler
5075 	 * from completing the command twice later, before the error handler
5076 	 * is called. (when rc != 0 and atapi request sense is needed)
5077 	 */
5078 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5079 	ap->qc_active &= ~(1 << qc->tag);
5080 
5081 	/* call completion callback */
5082 	qc->complete_fn(qc);
5083 }
5084 
5085 static void fill_result_tf(struct ata_queued_cmd *qc)
5086 {
5087 	struct ata_port *ap = qc->ap;
5088 
5089 	qc->result_tf.flags = qc->tf.flags;
5090 	ap->ops->tf_read(ap, &qc->result_tf);
5091 }
5092 
5093 /**
5094  *	ata_qc_complete - Complete an active ATA command
5095  *	@qc: Command to complete
5096  *	@err_mask: ATA Status register contents
5097  *
5098  *	Indicate to the mid and upper layers that an ATA
5099  *	command has completed, with either an ok or not-ok status.
5100  *
5101  *	LOCKING:
5102  *	spin_lock_irqsave(host lock)
5103  */
5104 void ata_qc_complete(struct ata_queued_cmd *qc)
5105 {
5106 	struct ata_port *ap = qc->ap;
5107 
5108 	/* XXX: New EH and old EH use different mechanisms to
5109 	 * synchronize EH with regular execution path.
5110 	 *
5111 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5112 	 * Normal execution path is responsible for not accessing a
5113 	 * failed qc.  libata core enforces the rule by returning NULL
5114 	 * from ata_qc_from_tag() for failed qcs.
5115 	 *
5116 	 * Old EH depends on ata_qc_complete() nullifying completion
5117 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5118 	 * not synchronize with interrupt handler.  Only PIO task is
5119 	 * taken care of.
5120 	 */
5121 	if (ap->ops->error_handler) {
5122 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5123 
5124 		if (unlikely(qc->err_mask))
5125 			qc->flags |= ATA_QCFLAG_FAILED;
5126 
5127 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5128 			if (!ata_tag_internal(qc->tag)) {
5129 				/* always fill result TF for failed qc */
5130 				fill_result_tf(qc);
5131 				ata_qc_schedule_eh(qc);
5132 				return;
5133 			}
5134 		}
5135 
5136 		/* read result TF if requested */
5137 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5138 			fill_result_tf(qc);
5139 
5140 		__ata_qc_complete(qc);
5141 	} else {
5142 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5143 			return;
5144 
5145 		/* read result TF if failed or requested */
5146 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5147 			fill_result_tf(qc);
5148 
5149 		__ata_qc_complete(qc);
5150 	}
5151 }
5152 
5153 /**
5154  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5155  *	@ap: port in question
5156  *	@qc_active: new qc_active mask
5157  *	@finish_qc: LLDD callback invoked before completing a qc
5158  *
5159  *	Complete in-flight commands.  This functions is meant to be
5160  *	called from low-level driver's interrupt routine to complete
5161  *	requests normally.  ap->qc_active and @qc_active is compared
5162  *	and commands are completed accordingly.
5163  *
5164  *	LOCKING:
5165  *	spin_lock_irqsave(host lock)
5166  *
5167  *	RETURNS:
5168  *	Number of completed commands on success, -errno otherwise.
5169  */
5170 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5171 			     void (*finish_qc)(struct ata_queued_cmd *))
5172 {
5173 	int nr_done = 0;
5174 	u32 done_mask;
5175 	int i;
5176 
5177 	done_mask = ap->qc_active ^ qc_active;
5178 
5179 	if (unlikely(done_mask & qc_active)) {
5180 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5181 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5182 		return -EINVAL;
5183 	}
5184 
5185 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5186 		struct ata_queued_cmd *qc;
5187 
5188 		if (!(done_mask & (1 << i)))
5189 			continue;
5190 
5191 		if ((qc = ata_qc_from_tag(ap, i))) {
5192 			if (finish_qc)
5193 				finish_qc(qc);
5194 			ata_qc_complete(qc);
5195 			nr_done++;
5196 		}
5197 	}
5198 
5199 	return nr_done;
5200 }
5201 
5202 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5203 {
5204 	struct ata_port *ap = qc->ap;
5205 
5206 	switch (qc->tf.protocol) {
5207 	case ATA_PROT_NCQ:
5208 	case ATA_PROT_DMA:
5209 	case ATA_PROT_ATAPI_DMA:
5210 		return 1;
5211 
5212 	case ATA_PROT_ATAPI:
5213 	case ATA_PROT_PIO:
5214 		if (ap->flags & ATA_FLAG_PIO_DMA)
5215 			return 1;
5216 
5217 		/* fall through */
5218 
5219 	default:
5220 		return 0;
5221 	}
5222 
5223 	/* never reached */
5224 }
5225 
5226 /**
5227  *	ata_qc_issue - issue taskfile to device
5228  *	@qc: command to issue to device
5229  *
5230  *	Prepare an ATA command to submission to device.
5231  *	This includes mapping the data into a DMA-able
5232  *	area, filling in the S/G table, and finally
5233  *	writing the taskfile to hardware, starting the command.
5234  *
5235  *	LOCKING:
5236  *	spin_lock_irqsave(host lock)
5237  */
5238 void ata_qc_issue(struct ata_queued_cmd *qc)
5239 {
5240 	struct ata_port *ap = qc->ap;
5241 
5242 	/* Make sure only one non-NCQ command is outstanding.  The
5243 	 * check is skipped for old EH because it reuses active qc to
5244 	 * request ATAPI sense.
5245 	 */
5246 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5247 
5248 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5249 		WARN_ON(ap->sactive & (1 << qc->tag));
5250 		ap->sactive |= 1 << qc->tag;
5251 	} else {
5252 		WARN_ON(ap->sactive);
5253 		ap->active_tag = qc->tag;
5254 	}
5255 
5256 	qc->flags |= ATA_QCFLAG_ACTIVE;
5257 	ap->qc_active |= 1 << qc->tag;
5258 
5259 	if (ata_should_dma_map(qc)) {
5260 		if (qc->flags & ATA_QCFLAG_SG) {
5261 			if (ata_sg_setup(qc))
5262 				goto sg_err;
5263 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
5264 			if (ata_sg_setup_one(qc))
5265 				goto sg_err;
5266 		}
5267 	} else {
5268 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
5269 	}
5270 
5271 	ap->ops->qc_prep(qc);
5272 
5273 	qc->err_mask |= ap->ops->qc_issue(qc);
5274 	if (unlikely(qc->err_mask))
5275 		goto err;
5276 	return;
5277 
5278 sg_err:
5279 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5280 	qc->err_mask |= AC_ERR_SYSTEM;
5281 err:
5282 	ata_qc_complete(qc);
5283 }
5284 
5285 /**
5286  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5287  *	@qc: command to issue to device
5288  *
5289  *	Using various libata functions and hooks, this function
5290  *	starts an ATA command.  ATA commands are grouped into
5291  *	classes called "protocols", and issuing each type of protocol
5292  *	is slightly different.
5293  *
5294  *	May be used as the qc_issue() entry in ata_port_operations.
5295  *
5296  *	LOCKING:
5297  *	spin_lock_irqsave(host lock)
5298  *
5299  *	RETURNS:
5300  *	Zero on success, AC_ERR_* mask on failure
5301  */
5302 
5303 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5304 {
5305 	struct ata_port *ap = qc->ap;
5306 
5307 	/* Use polling pio if the LLD doesn't handle
5308 	 * interrupt driven pio and atapi CDB interrupt.
5309 	 */
5310 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
5311 		switch (qc->tf.protocol) {
5312 		case ATA_PROT_PIO:
5313 		case ATA_PROT_NODATA:
5314 		case ATA_PROT_ATAPI:
5315 		case ATA_PROT_ATAPI_NODATA:
5316 			qc->tf.flags |= ATA_TFLAG_POLLING;
5317 			break;
5318 		case ATA_PROT_ATAPI_DMA:
5319 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5320 				/* see ata_dma_blacklisted() */
5321 				BUG();
5322 			break;
5323 		default:
5324 			break;
5325 		}
5326 	}
5327 
5328 	/* Some controllers show flaky interrupt behavior after
5329 	 * setting xfer mode.  Use polling instead.
5330 	 */
5331 	if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5332 		     qc->tf.feature == SETFEATURES_XFER) &&
5333 	    (ap->flags & ATA_FLAG_SETXFER_POLLING))
5334 		qc->tf.flags |= ATA_TFLAG_POLLING;
5335 
5336 	/* select the device */
5337 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5338 
5339 	/* start the command */
5340 	switch (qc->tf.protocol) {
5341 	case ATA_PROT_NODATA:
5342 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5343 			ata_qc_set_polling(qc);
5344 
5345 		ata_tf_to_host(ap, &qc->tf);
5346 		ap->hsm_task_state = HSM_ST_LAST;
5347 
5348 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5349 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5350 
5351 		break;
5352 
5353 	case ATA_PROT_DMA:
5354 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5355 
5356 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5357 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5358 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5359 		ap->hsm_task_state = HSM_ST_LAST;
5360 		break;
5361 
5362 	case ATA_PROT_PIO:
5363 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5364 			ata_qc_set_polling(qc);
5365 
5366 		ata_tf_to_host(ap, &qc->tf);
5367 
5368 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5369 			/* PIO data out protocol */
5370 			ap->hsm_task_state = HSM_ST_FIRST;
5371 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5372 
5373 			/* always send first data block using
5374 			 * the ata_pio_task() codepath.
5375 			 */
5376 		} else {
5377 			/* PIO data in protocol */
5378 			ap->hsm_task_state = HSM_ST;
5379 
5380 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5381 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5382 
5383 			/* if polling, ata_pio_task() handles the rest.
5384 			 * otherwise, interrupt handler takes over from here.
5385 			 */
5386 		}
5387 
5388 		break;
5389 
5390 	case ATA_PROT_ATAPI:
5391 	case ATA_PROT_ATAPI_NODATA:
5392 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5393 			ata_qc_set_polling(qc);
5394 
5395 		ata_tf_to_host(ap, &qc->tf);
5396 
5397 		ap->hsm_task_state = HSM_ST_FIRST;
5398 
5399 		/* send cdb by polling if no cdb interrupt */
5400 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5401 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5402 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5403 		break;
5404 
5405 	case ATA_PROT_ATAPI_DMA:
5406 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5407 
5408 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5409 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5410 		ap->hsm_task_state = HSM_ST_FIRST;
5411 
5412 		/* send cdb by polling if no cdb interrupt */
5413 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5414 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5415 		break;
5416 
5417 	default:
5418 		WARN_ON(1);
5419 		return AC_ERR_SYSTEM;
5420 	}
5421 
5422 	return 0;
5423 }
5424 
5425 /**
5426  *	ata_host_intr - Handle host interrupt for given (port, task)
5427  *	@ap: Port on which interrupt arrived (possibly...)
5428  *	@qc: Taskfile currently active in engine
5429  *
5430  *	Handle host interrupt for given queued command.  Currently,
5431  *	only DMA interrupts are handled.  All other commands are
5432  *	handled via polling with interrupts disabled (nIEN bit).
5433  *
5434  *	LOCKING:
5435  *	spin_lock_irqsave(host lock)
5436  *
5437  *	RETURNS:
5438  *	One if interrupt was handled, zero if not (shared irq).
5439  */
5440 
5441 inline unsigned int ata_host_intr (struct ata_port *ap,
5442 				   struct ata_queued_cmd *qc)
5443 {
5444 	struct ata_eh_info *ehi = &ap->eh_info;
5445 	u8 status, host_stat = 0;
5446 
5447 	VPRINTK("ata%u: protocol %d task_state %d\n",
5448 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5449 
5450 	/* Check whether we are expecting interrupt in this state */
5451 	switch (ap->hsm_task_state) {
5452 	case HSM_ST_FIRST:
5453 		/* Some pre-ATAPI-4 devices assert INTRQ
5454 		 * at this state when ready to receive CDB.
5455 		 */
5456 
5457 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5458 		 * The flag was turned on only for atapi devices.
5459 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5460 		 */
5461 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5462 			goto idle_irq;
5463 		break;
5464 	case HSM_ST_LAST:
5465 		if (qc->tf.protocol == ATA_PROT_DMA ||
5466 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5467 			/* check status of DMA engine */
5468 			host_stat = ap->ops->bmdma_status(ap);
5469 			VPRINTK("ata%u: host_stat 0x%X\n",
5470 				ap->print_id, host_stat);
5471 
5472 			/* if it's not our irq... */
5473 			if (!(host_stat & ATA_DMA_INTR))
5474 				goto idle_irq;
5475 
5476 			/* before we do anything else, clear DMA-Start bit */
5477 			ap->ops->bmdma_stop(qc);
5478 
5479 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5480 				/* error when transfering data to/from memory */
5481 				qc->err_mask |= AC_ERR_HOST_BUS;
5482 				ap->hsm_task_state = HSM_ST_ERR;
5483 			}
5484 		}
5485 		break;
5486 	case HSM_ST:
5487 		break;
5488 	default:
5489 		goto idle_irq;
5490 	}
5491 
5492 	/* check altstatus */
5493 	status = ata_altstatus(ap);
5494 	if (status & ATA_BUSY)
5495 		goto idle_irq;
5496 
5497 	/* check main status, clearing INTRQ */
5498 	status = ata_chk_status(ap);
5499 	if (unlikely(status & ATA_BUSY))
5500 		goto idle_irq;
5501 
5502 	/* ack bmdma irq events */
5503 	ap->ops->irq_clear(ap);
5504 
5505 	ata_hsm_move(ap, qc, status, 0);
5506 
5507 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5508 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5509 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5510 
5511 	return 1;	/* irq handled */
5512 
5513 idle_irq:
5514 	ap->stats.idle_irq++;
5515 
5516 #ifdef ATA_IRQ_TRAP
5517 	if ((ap->stats.idle_irq % 1000) == 0) {
5518 		ap->ops->irq_ack(ap, 0); /* debug trap */
5519 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5520 		return 1;
5521 	}
5522 #endif
5523 	return 0;	/* irq not handled */
5524 }
5525 
5526 /**
5527  *	ata_interrupt - Default ATA host interrupt handler
5528  *	@irq: irq line (unused)
5529  *	@dev_instance: pointer to our ata_host information structure
5530  *
5531  *	Default interrupt handler for PCI IDE devices.  Calls
5532  *	ata_host_intr() for each port that is not disabled.
5533  *
5534  *	LOCKING:
5535  *	Obtains host lock during operation.
5536  *
5537  *	RETURNS:
5538  *	IRQ_NONE or IRQ_HANDLED.
5539  */
5540 
5541 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5542 {
5543 	struct ata_host *host = dev_instance;
5544 	unsigned int i;
5545 	unsigned int handled = 0;
5546 	unsigned long flags;
5547 
5548 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5549 	spin_lock_irqsave(&host->lock, flags);
5550 
5551 	for (i = 0; i < host->n_ports; i++) {
5552 		struct ata_port *ap;
5553 
5554 		ap = host->ports[i];
5555 		if (ap &&
5556 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5557 			struct ata_queued_cmd *qc;
5558 
5559 			qc = ata_qc_from_tag(ap, ap->active_tag);
5560 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5561 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5562 				handled |= ata_host_intr(ap, qc);
5563 		}
5564 	}
5565 
5566 	spin_unlock_irqrestore(&host->lock, flags);
5567 
5568 	return IRQ_RETVAL(handled);
5569 }
5570 
5571 /**
5572  *	sata_scr_valid - test whether SCRs are accessible
5573  *	@ap: ATA port to test SCR accessibility for
5574  *
5575  *	Test whether SCRs are accessible for @ap.
5576  *
5577  *	LOCKING:
5578  *	None.
5579  *
5580  *	RETURNS:
5581  *	1 if SCRs are accessible, 0 otherwise.
5582  */
5583 int sata_scr_valid(struct ata_port *ap)
5584 {
5585 	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5586 }
5587 
5588 /**
5589  *	sata_scr_read - read SCR register of the specified port
5590  *	@ap: ATA port to read SCR for
5591  *	@reg: SCR to read
5592  *	@val: Place to store read value
5593  *
5594  *	Read SCR register @reg of @ap into *@val.  This function is
5595  *	guaranteed to succeed if the cable type of the port is SATA
5596  *	and the port implements ->scr_read.
5597  *
5598  *	LOCKING:
5599  *	None.
5600  *
5601  *	RETURNS:
5602  *	0 on success, negative errno on failure.
5603  */
5604 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5605 {
5606 	if (sata_scr_valid(ap)) {
5607 		*val = ap->ops->scr_read(ap, reg);
5608 		return 0;
5609 	}
5610 	return -EOPNOTSUPP;
5611 }
5612 
5613 /**
5614  *	sata_scr_write - write SCR register of the specified port
5615  *	@ap: ATA port to write SCR for
5616  *	@reg: SCR to write
5617  *	@val: value to write
5618  *
5619  *	Write @val to SCR register @reg of @ap.  This function is
5620  *	guaranteed to succeed if the cable type of the port is SATA
5621  *	and the port implements ->scr_read.
5622  *
5623  *	LOCKING:
5624  *	None.
5625  *
5626  *	RETURNS:
5627  *	0 on success, negative errno on failure.
5628  */
5629 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5630 {
5631 	if (sata_scr_valid(ap)) {
5632 		ap->ops->scr_write(ap, reg, val);
5633 		return 0;
5634 	}
5635 	return -EOPNOTSUPP;
5636 }
5637 
5638 /**
5639  *	sata_scr_write_flush - write SCR register of the specified port and flush
5640  *	@ap: ATA port to write SCR for
5641  *	@reg: SCR to write
5642  *	@val: value to write
5643  *
5644  *	This function is identical to sata_scr_write() except that this
5645  *	function performs flush after writing to the register.
5646  *
5647  *	LOCKING:
5648  *	None.
5649  *
5650  *	RETURNS:
5651  *	0 on success, negative errno on failure.
5652  */
5653 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5654 {
5655 	if (sata_scr_valid(ap)) {
5656 		ap->ops->scr_write(ap, reg, val);
5657 		ap->ops->scr_read(ap, reg);
5658 		return 0;
5659 	}
5660 	return -EOPNOTSUPP;
5661 }
5662 
5663 /**
5664  *	ata_port_online - test whether the given port is online
5665  *	@ap: ATA port to test
5666  *
5667  *	Test whether @ap is online.  Note that this function returns 0
5668  *	if online status of @ap cannot be obtained, so
5669  *	ata_port_online(ap) != !ata_port_offline(ap).
5670  *
5671  *	LOCKING:
5672  *	None.
5673  *
5674  *	RETURNS:
5675  *	1 if the port online status is available and online.
5676  */
5677 int ata_port_online(struct ata_port *ap)
5678 {
5679 	u32 sstatus;
5680 
5681 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5682 		return 1;
5683 	return 0;
5684 }
5685 
5686 /**
5687  *	ata_port_offline - test whether the given port is offline
5688  *	@ap: ATA port to test
5689  *
5690  *	Test whether @ap is offline.  Note that this function returns
5691  *	0 if offline status of @ap cannot be obtained, so
5692  *	ata_port_online(ap) != !ata_port_offline(ap).
5693  *
5694  *	LOCKING:
5695  *	None.
5696  *
5697  *	RETURNS:
5698  *	1 if the port offline status is available and offline.
5699  */
5700 int ata_port_offline(struct ata_port *ap)
5701 {
5702 	u32 sstatus;
5703 
5704 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5705 		return 1;
5706 	return 0;
5707 }
5708 
5709 int ata_flush_cache(struct ata_device *dev)
5710 {
5711 	unsigned int err_mask;
5712 	u8 cmd;
5713 
5714 	if (!ata_try_flush_cache(dev))
5715 		return 0;
5716 
5717 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5718 		cmd = ATA_CMD_FLUSH_EXT;
5719 	else
5720 		cmd = ATA_CMD_FLUSH;
5721 
5722 	err_mask = ata_do_simple_cmd(dev, cmd);
5723 	if (err_mask) {
5724 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5725 		return -EIO;
5726 	}
5727 
5728 	return 0;
5729 }
5730 
5731 #ifdef CONFIG_PM
5732 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5733 			       unsigned int action, unsigned int ehi_flags,
5734 			       int wait)
5735 {
5736 	unsigned long flags;
5737 	int i, rc;
5738 
5739 	for (i = 0; i < host->n_ports; i++) {
5740 		struct ata_port *ap = host->ports[i];
5741 
5742 		/* Previous resume operation might still be in
5743 		 * progress.  Wait for PM_PENDING to clear.
5744 		 */
5745 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5746 			ata_port_wait_eh(ap);
5747 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5748 		}
5749 
5750 		/* request PM ops to EH */
5751 		spin_lock_irqsave(ap->lock, flags);
5752 
5753 		ap->pm_mesg = mesg;
5754 		if (wait) {
5755 			rc = 0;
5756 			ap->pm_result = &rc;
5757 		}
5758 
5759 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5760 		ap->eh_info.action |= action;
5761 		ap->eh_info.flags |= ehi_flags;
5762 
5763 		ata_port_schedule_eh(ap);
5764 
5765 		spin_unlock_irqrestore(ap->lock, flags);
5766 
5767 		/* wait and check result */
5768 		if (wait) {
5769 			ata_port_wait_eh(ap);
5770 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5771 			if (rc)
5772 				return rc;
5773 		}
5774 	}
5775 
5776 	return 0;
5777 }
5778 
5779 /**
5780  *	ata_host_suspend - suspend host
5781  *	@host: host to suspend
5782  *	@mesg: PM message
5783  *
5784  *	Suspend @host.  Actual operation is performed by EH.  This
5785  *	function requests EH to perform PM operations and waits for EH
5786  *	to finish.
5787  *
5788  *	LOCKING:
5789  *	Kernel thread context (may sleep).
5790  *
5791  *	RETURNS:
5792  *	0 on success, -errno on failure.
5793  */
5794 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5795 {
5796 	int i, j, rc;
5797 
5798 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5799 	if (rc)
5800 		goto fail;
5801 
5802 	/* EH is quiescent now.  Fail if we have any ready device.
5803 	 * This happens if hotplug occurs between completion of device
5804 	 * suspension and here.
5805 	 */
5806 	for (i = 0; i < host->n_ports; i++) {
5807 		struct ata_port *ap = host->ports[i];
5808 
5809 		for (j = 0; j < ATA_MAX_DEVICES; j++) {
5810 			struct ata_device *dev = &ap->device[j];
5811 
5812 			if (ata_dev_ready(dev)) {
5813 				ata_port_printk(ap, KERN_WARNING,
5814 						"suspend failed, device %d "
5815 						"still active\n", dev->devno);
5816 				rc = -EBUSY;
5817 				goto fail;
5818 			}
5819 		}
5820 	}
5821 
5822 	host->dev->power.power_state = mesg;
5823 	return 0;
5824 
5825  fail:
5826 	ata_host_resume(host);
5827 	return rc;
5828 }
5829 
5830 /**
5831  *	ata_host_resume - resume host
5832  *	@host: host to resume
5833  *
5834  *	Resume @host.  Actual operation is performed by EH.  This
5835  *	function requests EH to perform PM operations and returns.
5836  *	Note that all resume operations are performed parallely.
5837  *
5838  *	LOCKING:
5839  *	Kernel thread context (may sleep).
5840  */
5841 void ata_host_resume(struct ata_host *host)
5842 {
5843 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5844 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5845 	host->dev->power.power_state = PMSG_ON;
5846 }
5847 #endif
5848 
5849 /**
5850  *	ata_port_start - Set port up for dma.
5851  *	@ap: Port to initialize
5852  *
5853  *	Called just after data structures for each port are
5854  *	initialized.  Allocates space for PRD table.
5855  *
5856  *	May be used as the port_start() entry in ata_port_operations.
5857  *
5858  *	LOCKING:
5859  *	Inherited from caller.
5860  */
5861 int ata_port_start(struct ata_port *ap)
5862 {
5863 	struct device *dev = ap->dev;
5864 	int rc;
5865 
5866 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5867 				      GFP_KERNEL);
5868 	if (!ap->prd)
5869 		return -ENOMEM;
5870 
5871 	rc = ata_pad_alloc(ap, dev);
5872 	if (rc)
5873 		return rc;
5874 
5875 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5876 		(unsigned long long)ap->prd_dma);
5877 	return 0;
5878 }
5879 
5880 /**
5881  *	ata_dev_init - Initialize an ata_device structure
5882  *	@dev: Device structure to initialize
5883  *
5884  *	Initialize @dev in preparation for probing.
5885  *
5886  *	LOCKING:
5887  *	Inherited from caller.
5888  */
5889 void ata_dev_init(struct ata_device *dev)
5890 {
5891 	struct ata_port *ap = dev->ap;
5892 	unsigned long flags;
5893 
5894 	/* SATA spd limit is bound to the first device */
5895 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5896 
5897 	/* High bits of dev->flags are used to record warm plug
5898 	 * requests which occur asynchronously.  Synchronize using
5899 	 * host lock.
5900 	 */
5901 	spin_lock_irqsave(ap->lock, flags);
5902 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5903 	spin_unlock_irqrestore(ap->lock, flags);
5904 
5905 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5906 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5907 	dev->pio_mask = UINT_MAX;
5908 	dev->mwdma_mask = UINT_MAX;
5909 	dev->udma_mask = UINT_MAX;
5910 }
5911 
5912 /**
5913  *	ata_port_alloc - allocate and initialize basic ATA port resources
5914  *	@host: ATA host this allocated port belongs to
5915  *
5916  *	Allocate and initialize basic ATA port resources.
5917  *
5918  *	RETURNS:
5919  *	Allocate ATA port on success, NULL on failure.
5920  *
5921  *	LOCKING:
5922  *	Inherited from calling layer (may sleep).
5923  */
5924 struct ata_port *ata_port_alloc(struct ata_host *host)
5925 {
5926 	struct ata_port *ap;
5927 	unsigned int i;
5928 
5929 	DPRINTK("ENTER\n");
5930 
5931 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5932 	if (!ap)
5933 		return NULL;
5934 
5935 	ap->lock = &host->lock;
5936 	ap->flags = ATA_FLAG_DISABLED;
5937 	ap->print_id = -1;
5938 	ap->ctl = ATA_DEVCTL_OBS;
5939 	ap->host = host;
5940 	ap->dev = host->dev;
5941 
5942 	ap->hw_sata_spd_limit = UINT_MAX;
5943 	ap->active_tag = ATA_TAG_POISON;
5944 	ap->last_ctl = 0xFF;
5945 
5946 #if defined(ATA_VERBOSE_DEBUG)
5947 	/* turn on all debugging levels */
5948 	ap->msg_enable = 0x00FF;
5949 #elif defined(ATA_DEBUG)
5950 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5951 #else
5952 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5953 #endif
5954 
5955 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5956 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5957 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5958 	INIT_LIST_HEAD(&ap->eh_done_q);
5959 	init_waitqueue_head(&ap->eh_wait_q);
5960 
5961 	ap->cbl = ATA_CBL_NONE;
5962 
5963 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5964 		struct ata_device *dev = &ap->device[i];
5965 		dev->ap = ap;
5966 		dev->devno = i;
5967 		ata_dev_init(dev);
5968 	}
5969 
5970 #ifdef ATA_IRQ_TRAP
5971 	ap->stats.unhandled_irq = 1;
5972 	ap->stats.idle_irq = 1;
5973 #endif
5974 	return ap;
5975 }
5976 
5977 static void ata_host_release(struct device *gendev, void *res)
5978 {
5979 	struct ata_host *host = dev_get_drvdata(gendev);
5980 	int i;
5981 
5982 	for (i = 0; i < host->n_ports; i++) {
5983 		struct ata_port *ap = host->ports[i];
5984 
5985 		if (!ap)
5986 			continue;
5987 
5988 		if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
5989 			ap->ops->port_stop(ap);
5990 	}
5991 
5992 	if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
5993 		host->ops->host_stop(host);
5994 
5995 	for (i = 0; i < host->n_ports; i++) {
5996 		struct ata_port *ap = host->ports[i];
5997 
5998 		if (!ap)
5999 			continue;
6000 
6001 		if (ap->scsi_host)
6002 			scsi_host_put(ap->scsi_host);
6003 
6004 		kfree(ap);
6005 		host->ports[i] = NULL;
6006 	}
6007 
6008 	dev_set_drvdata(gendev, NULL);
6009 }
6010 
6011 /**
6012  *	ata_host_alloc - allocate and init basic ATA host resources
6013  *	@dev: generic device this host is associated with
6014  *	@max_ports: maximum number of ATA ports associated with this host
6015  *
6016  *	Allocate and initialize basic ATA host resources.  LLD calls
6017  *	this function to allocate a host, initializes it fully and
6018  *	attaches it using ata_host_register().
6019  *
6020  *	@max_ports ports are allocated and host->n_ports is
6021  *	initialized to @max_ports.  The caller is allowed to decrease
6022  *	host->n_ports before calling ata_host_register().  The unused
6023  *	ports will be automatically freed on registration.
6024  *
6025  *	RETURNS:
6026  *	Allocate ATA host on success, NULL on failure.
6027  *
6028  *	LOCKING:
6029  *	Inherited from calling layer (may sleep).
6030  */
6031 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6032 {
6033 	struct ata_host *host;
6034 	size_t sz;
6035 	int i;
6036 
6037 	DPRINTK("ENTER\n");
6038 
6039 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6040 		return NULL;
6041 
6042 	/* alloc a container for our list of ATA ports (buses) */
6043 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6044 	/* alloc a container for our list of ATA ports (buses) */
6045 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6046 	if (!host)
6047 		goto err_out;
6048 
6049 	devres_add(dev, host);
6050 	dev_set_drvdata(dev, host);
6051 
6052 	spin_lock_init(&host->lock);
6053 	host->dev = dev;
6054 	host->n_ports = max_ports;
6055 
6056 	/* allocate ports bound to this host */
6057 	for (i = 0; i < max_ports; i++) {
6058 		struct ata_port *ap;
6059 
6060 		ap = ata_port_alloc(host);
6061 		if (!ap)
6062 			goto err_out;
6063 
6064 		ap->port_no = i;
6065 		host->ports[i] = ap;
6066 	}
6067 
6068 	devres_remove_group(dev, NULL);
6069 	return host;
6070 
6071  err_out:
6072 	devres_release_group(dev, NULL);
6073 	return NULL;
6074 }
6075 
6076 /**
6077  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6078  *	@dev: generic device this host is associated with
6079  *	@ppi: array of ATA port_info to initialize host with
6080  *	@n_ports: number of ATA ports attached to this host
6081  *
6082  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6083  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6084  *	last entry will be used for the remaining ports.
6085  *
6086  *	RETURNS:
6087  *	Allocate ATA host on success, NULL on failure.
6088  *
6089  *	LOCKING:
6090  *	Inherited from calling layer (may sleep).
6091  */
6092 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6093 				      const struct ata_port_info * const * ppi,
6094 				      int n_ports)
6095 {
6096 	const struct ata_port_info *pi;
6097 	struct ata_host *host;
6098 	int i, j;
6099 
6100 	host = ata_host_alloc(dev, n_ports);
6101 	if (!host)
6102 		return NULL;
6103 
6104 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6105 		struct ata_port *ap = host->ports[i];
6106 
6107 		if (ppi[j])
6108 			pi = ppi[j++];
6109 
6110 		ap->pio_mask = pi->pio_mask;
6111 		ap->mwdma_mask = pi->mwdma_mask;
6112 		ap->udma_mask = pi->udma_mask;
6113 		ap->flags |= pi->flags;
6114 		ap->ops = pi->port_ops;
6115 
6116 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6117 			host->ops = pi->port_ops;
6118 		if (!host->private_data && pi->private_data)
6119 			host->private_data = pi->private_data;
6120 	}
6121 
6122 	return host;
6123 }
6124 
6125 /**
6126  *	ata_host_start - start and freeze ports of an ATA host
6127  *	@host: ATA host to start ports for
6128  *
6129  *	Start and then freeze ports of @host.  Started status is
6130  *	recorded in host->flags, so this function can be called
6131  *	multiple times.  Ports are guaranteed to get started only
6132  *	once.  If host->ops isn't initialized yet, its set to the
6133  *	first non-dummy port ops.
6134  *
6135  *	LOCKING:
6136  *	Inherited from calling layer (may sleep).
6137  *
6138  *	RETURNS:
6139  *	0 if all ports are started successfully, -errno otherwise.
6140  */
6141 int ata_host_start(struct ata_host *host)
6142 {
6143 	int i, rc;
6144 
6145 	if (host->flags & ATA_HOST_STARTED)
6146 		return 0;
6147 
6148 	for (i = 0; i < host->n_ports; i++) {
6149 		struct ata_port *ap = host->ports[i];
6150 
6151 		if (!host->ops && !ata_port_is_dummy(ap))
6152 			host->ops = ap->ops;
6153 
6154 		if (ap->ops->port_start) {
6155 			rc = ap->ops->port_start(ap);
6156 			if (rc) {
6157 				ata_port_printk(ap, KERN_ERR, "failed to "
6158 						"start port (errno=%d)\n", rc);
6159 				goto err_out;
6160 			}
6161 		}
6162 
6163 		ata_eh_freeze_port(ap);
6164 	}
6165 
6166 	host->flags |= ATA_HOST_STARTED;
6167 	return 0;
6168 
6169  err_out:
6170 	while (--i >= 0) {
6171 		struct ata_port *ap = host->ports[i];
6172 
6173 		if (ap->ops->port_stop)
6174 			ap->ops->port_stop(ap);
6175 	}
6176 	return rc;
6177 }
6178 
6179 /**
6180  *	ata_sas_host_init - Initialize a host struct
6181  *	@host:	host to initialize
6182  *	@dev:	device host is attached to
6183  *	@flags:	host flags
6184  *	@ops:	port_ops
6185  *
6186  *	LOCKING:
6187  *	PCI/etc. bus probe sem.
6188  *
6189  */
6190 /* KILLME - the only user left is ipr */
6191 void ata_host_init(struct ata_host *host, struct device *dev,
6192 		   unsigned long flags, const struct ata_port_operations *ops)
6193 {
6194 	spin_lock_init(&host->lock);
6195 	host->dev = dev;
6196 	host->flags = flags;
6197 	host->ops = ops;
6198 }
6199 
6200 /**
6201  *	ata_host_register - register initialized ATA host
6202  *	@host: ATA host to register
6203  *	@sht: template for SCSI host
6204  *
6205  *	Register initialized ATA host.  @host is allocated using
6206  *	ata_host_alloc() and fully initialized by LLD.  This function
6207  *	starts ports, registers @host with ATA and SCSI layers and
6208  *	probe registered devices.
6209  *
6210  *	LOCKING:
6211  *	Inherited from calling layer (may sleep).
6212  *
6213  *	RETURNS:
6214  *	0 on success, -errno otherwise.
6215  */
6216 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6217 {
6218 	int i, rc;
6219 
6220 	/* host must have been started */
6221 	if (!(host->flags & ATA_HOST_STARTED)) {
6222 		dev_printk(KERN_ERR, host->dev,
6223 			   "BUG: trying to register unstarted host\n");
6224 		WARN_ON(1);
6225 		return -EINVAL;
6226 	}
6227 
6228 	/* Blow away unused ports.  This happens when LLD can't
6229 	 * determine the exact number of ports to allocate at
6230 	 * allocation time.
6231 	 */
6232 	for (i = host->n_ports; host->ports[i]; i++)
6233 		kfree(host->ports[i]);
6234 
6235 	/* give ports names and add SCSI hosts */
6236 	for (i = 0; i < host->n_ports; i++)
6237 		host->ports[i]->print_id = ata_print_id++;
6238 
6239 	rc = ata_scsi_add_hosts(host, sht);
6240 	if (rc)
6241 		return rc;
6242 
6243 	/* set cable, sata_spd_limit and report */
6244 	for (i = 0; i < host->n_ports; i++) {
6245 		struct ata_port *ap = host->ports[i];
6246 		int irq_line;
6247 		u32 scontrol;
6248 		unsigned long xfer_mask;
6249 
6250 		/* set SATA cable type if still unset */
6251 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6252 			ap->cbl = ATA_CBL_SATA;
6253 
6254 		/* init sata_spd_limit to the current value */
6255 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6256 			int spd = (scontrol >> 4) & 0xf;
6257 			ap->hw_sata_spd_limit &= (1 << spd) - 1;
6258 		}
6259 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
6260 
6261 		/* report the secondary IRQ for second channel legacy */
6262 		irq_line = host->irq;
6263 		if (i == 1 && host->irq2)
6264 			irq_line = host->irq2;
6265 
6266 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6267 					      ap->udma_mask);
6268 
6269 		/* print per-port info to dmesg */
6270 		if (!ata_port_is_dummy(ap))
6271 			ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6272 					"ctl 0x%p bmdma 0x%p irq %d\n",
6273 					ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6274 					ata_mode_string(xfer_mask),
6275 					ap->ioaddr.cmd_addr,
6276 					ap->ioaddr.ctl_addr,
6277 					ap->ioaddr.bmdma_addr,
6278 					irq_line);
6279 		else
6280 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6281 	}
6282 
6283 	/* perform each probe synchronously */
6284 	DPRINTK("probe begin\n");
6285 	for (i = 0; i < host->n_ports; i++) {
6286 		struct ata_port *ap = host->ports[i];
6287 		int rc;
6288 
6289 		/* probe */
6290 		if (ap->ops->error_handler) {
6291 			struct ata_eh_info *ehi = &ap->eh_info;
6292 			unsigned long flags;
6293 
6294 			ata_port_probe(ap);
6295 
6296 			/* kick EH for boot probing */
6297 			spin_lock_irqsave(ap->lock, flags);
6298 
6299 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6300 			ehi->action |= ATA_EH_SOFTRESET;
6301 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6302 
6303 			ap->pflags |= ATA_PFLAG_LOADING;
6304 			ata_port_schedule_eh(ap);
6305 
6306 			spin_unlock_irqrestore(ap->lock, flags);
6307 
6308 			/* wait for EH to finish */
6309 			ata_port_wait_eh(ap);
6310 		} else {
6311 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6312 			rc = ata_bus_probe(ap);
6313 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
6314 
6315 			if (rc) {
6316 				/* FIXME: do something useful here?
6317 				 * Current libata behavior will
6318 				 * tear down everything when
6319 				 * the module is removed
6320 				 * or the h/w is unplugged.
6321 				 */
6322 			}
6323 		}
6324 	}
6325 
6326 	/* probes are done, now scan each port's disk(s) */
6327 	DPRINTK("host probe begin\n");
6328 	for (i = 0; i < host->n_ports; i++) {
6329 		struct ata_port *ap = host->ports[i];
6330 
6331 		ata_scsi_scan_host(ap);
6332 	}
6333 
6334 	return 0;
6335 }
6336 
6337 /**
6338  *	ata_host_activate - start host, request IRQ and register it
6339  *	@host: target ATA host
6340  *	@irq: IRQ to request
6341  *	@irq_handler: irq_handler used when requesting IRQ
6342  *	@irq_flags: irq_flags used when requesting IRQ
6343  *	@sht: scsi_host_template to use when registering the host
6344  *
6345  *	After allocating an ATA host and initializing it, most libata
6346  *	LLDs perform three steps to activate the host - start host,
6347  *	request IRQ and register it.  This helper takes necessasry
6348  *	arguments and performs the three steps in one go.
6349  *
6350  *	LOCKING:
6351  *	Inherited from calling layer (may sleep).
6352  *
6353  *	RETURNS:
6354  *	0 on success, -errno otherwise.
6355  */
6356 int ata_host_activate(struct ata_host *host, int irq,
6357 		      irq_handler_t irq_handler, unsigned long irq_flags,
6358 		      struct scsi_host_template *sht)
6359 {
6360 	int rc;
6361 
6362 	rc = ata_host_start(host);
6363 	if (rc)
6364 		return rc;
6365 
6366 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6367 			      dev_driver_string(host->dev), host);
6368 	if (rc)
6369 		return rc;
6370 
6371 	rc = ata_host_register(host, sht);
6372 	/* if failed, just free the IRQ and leave ports alone */
6373 	if (rc)
6374 		devm_free_irq(host->dev, irq, host);
6375 
6376 	return rc;
6377 }
6378 
6379 /**
6380  *	ata_port_detach - Detach ATA port in prepration of device removal
6381  *	@ap: ATA port to be detached
6382  *
6383  *	Detach all ATA devices and the associated SCSI devices of @ap;
6384  *	then, remove the associated SCSI host.  @ap is guaranteed to
6385  *	be quiescent on return from this function.
6386  *
6387  *	LOCKING:
6388  *	Kernel thread context (may sleep).
6389  */
6390 void ata_port_detach(struct ata_port *ap)
6391 {
6392 	unsigned long flags;
6393 	int i;
6394 
6395 	if (!ap->ops->error_handler)
6396 		goto skip_eh;
6397 
6398 	/* tell EH we're leaving & flush EH */
6399 	spin_lock_irqsave(ap->lock, flags);
6400 	ap->pflags |= ATA_PFLAG_UNLOADING;
6401 	spin_unlock_irqrestore(ap->lock, flags);
6402 
6403 	ata_port_wait_eh(ap);
6404 
6405 	/* EH is now guaranteed to see UNLOADING, so no new device
6406 	 * will be attached.  Disable all existing devices.
6407 	 */
6408 	spin_lock_irqsave(ap->lock, flags);
6409 
6410 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6411 		ata_dev_disable(&ap->device[i]);
6412 
6413 	spin_unlock_irqrestore(ap->lock, flags);
6414 
6415 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6416 	 * will be skipped and retrials will be terminated with bad
6417 	 * target.
6418 	 */
6419 	spin_lock_irqsave(ap->lock, flags);
6420 	ata_port_freeze(ap);	/* won't be thawed */
6421 	spin_unlock_irqrestore(ap->lock, flags);
6422 
6423 	ata_port_wait_eh(ap);
6424 
6425 	/* Flush hotplug task.  The sequence is similar to
6426 	 * ata_port_flush_task().
6427 	 */
6428 	flush_workqueue(ata_aux_wq);
6429 	cancel_delayed_work(&ap->hotplug_task);
6430 	flush_workqueue(ata_aux_wq);
6431 
6432  skip_eh:
6433 	/* remove the associated SCSI host */
6434 	scsi_remove_host(ap->scsi_host);
6435 }
6436 
6437 /**
6438  *	ata_host_detach - Detach all ports of an ATA host
6439  *	@host: Host to detach
6440  *
6441  *	Detach all ports of @host.
6442  *
6443  *	LOCKING:
6444  *	Kernel thread context (may sleep).
6445  */
6446 void ata_host_detach(struct ata_host *host)
6447 {
6448 	int i;
6449 
6450 	for (i = 0; i < host->n_ports; i++)
6451 		ata_port_detach(host->ports[i]);
6452 }
6453 
6454 /**
6455  *	ata_std_ports - initialize ioaddr with standard port offsets.
6456  *	@ioaddr: IO address structure to be initialized
6457  *
6458  *	Utility function which initializes data_addr, error_addr,
6459  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6460  *	device_addr, status_addr, and command_addr to standard offsets
6461  *	relative to cmd_addr.
6462  *
6463  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6464  */
6465 
6466 void ata_std_ports(struct ata_ioports *ioaddr)
6467 {
6468 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6469 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6470 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6471 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6472 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6473 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6474 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6475 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6476 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6477 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6478 }
6479 
6480 
6481 #ifdef CONFIG_PCI
6482 
6483 /**
6484  *	ata_pci_remove_one - PCI layer callback for device removal
6485  *	@pdev: PCI device that was removed
6486  *
6487  *	PCI layer indicates to libata via this hook that hot-unplug or
6488  *	module unload event has occurred.  Detach all ports.  Resource
6489  *	release is handled via devres.
6490  *
6491  *	LOCKING:
6492  *	Inherited from PCI layer (may sleep).
6493  */
6494 void ata_pci_remove_one(struct pci_dev *pdev)
6495 {
6496 	struct device *dev = pci_dev_to_dev(pdev);
6497 	struct ata_host *host = dev_get_drvdata(dev);
6498 
6499 	ata_host_detach(host);
6500 }
6501 
6502 /* move to PCI subsystem */
6503 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6504 {
6505 	unsigned long tmp = 0;
6506 
6507 	switch (bits->width) {
6508 	case 1: {
6509 		u8 tmp8 = 0;
6510 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6511 		tmp = tmp8;
6512 		break;
6513 	}
6514 	case 2: {
6515 		u16 tmp16 = 0;
6516 		pci_read_config_word(pdev, bits->reg, &tmp16);
6517 		tmp = tmp16;
6518 		break;
6519 	}
6520 	case 4: {
6521 		u32 tmp32 = 0;
6522 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6523 		tmp = tmp32;
6524 		break;
6525 	}
6526 
6527 	default:
6528 		return -EINVAL;
6529 	}
6530 
6531 	tmp &= bits->mask;
6532 
6533 	return (tmp == bits->val) ? 1 : 0;
6534 }
6535 
6536 #ifdef CONFIG_PM
6537 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6538 {
6539 	pci_save_state(pdev);
6540 	pci_disable_device(pdev);
6541 
6542 	if (mesg.event == PM_EVENT_SUSPEND)
6543 		pci_set_power_state(pdev, PCI_D3hot);
6544 }
6545 
6546 int ata_pci_device_do_resume(struct pci_dev *pdev)
6547 {
6548 	int rc;
6549 
6550 	pci_set_power_state(pdev, PCI_D0);
6551 	pci_restore_state(pdev);
6552 
6553 	rc = pcim_enable_device(pdev);
6554 	if (rc) {
6555 		dev_printk(KERN_ERR, &pdev->dev,
6556 			   "failed to enable device after resume (%d)\n", rc);
6557 		return rc;
6558 	}
6559 
6560 	pci_set_master(pdev);
6561 	return 0;
6562 }
6563 
6564 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6565 {
6566 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6567 	int rc = 0;
6568 
6569 	rc = ata_host_suspend(host, mesg);
6570 	if (rc)
6571 		return rc;
6572 
6573 	ata_pci_device_do_suspend(pdev, mesg);
6574 
6575 	return 0;
6576 }
6577 
6578 int ata_pci_device_resume(struct pci_dev *pdev)
6579 {
6580 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6581 	int rc;
6582 
6583 	rc = ata_pci_device_do_resume(pdev);
6584 	if (rc == 0)
6585 		ata_host_resume(host);
6586 	return rc;
6587 }
6588 #endif /* CONFIG_PM */
6589 
6590 #endif /* CONFIG_PCI */
6591 
6592 
6593 static int __init ata_init(void)
6594 {
6595 	ata_probe_timeout *= HZ;
6596 	ata_wq = create_workqueue("ata");
6597 	if (!ata_wq)
6598 		return -ENOMEM;
6599 
6600 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6601 	if (!ata_aux_wq) {
6602 		destroy_workqueue(ata_wq);
6603 		return -ENOMEM;
6604 	}
6605 
6606 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6607 	return 0;
6608 }
6609 
6610 static void __exit ata_exit(void)
6611 {
6612 	destroy_workqueue(ata_wq);
6613 	destroy_workqueue(ata_aux_wq);
6614 }
6615 
6616 subsys_initcall(ata_init);
6617 module_exit(ata_exit);
6618 
6619 static unsigned long ratelimit_time;
6620 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6621 
6622 int ata_ratelimit(void)
6623 {
6624 	int rc;
6625 	unsigned long flags;
6626 
6627 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6628 
6629 	if (time_after(jiffies, ratelimit_time)) {
6630 		rc = 1;
6631 		ratelimit_time = jiffies + (HZ/5);
6632 	} else
6633 		rc = 0;
6634 
6635 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6636 
6637 	return rc;
6638 }
6639 
6640 /**
6641  *	ata_wait_register - wait until register value changes
6642  *	@reg: IO-mapped register
6643  *	@mask: Mask to apply to read register value
6644  *	@val: Wait condition
6645  *	@interval_msec: polling interval in milliseconds
6646  *	@timeout_msec: timeout in milliseconds
6647  *
6648  *	Waiting for some bits of register to change is a common
6649  *	operation for ATA controllers.  This function reads 32bit LE
6650  *	IO-mapped register @reg and tests for the following condition.
6651  *
6652  *	(*@reg & mask) != val
6653  *
6654  *	If the condition is met, it returns; otherwise, the process is
6655  *	repeated after @interval_msec until timeout.
6656  *
6657  *	LOCKING:
6658  *	Kernel thread context (may sleep)
6659  *
6660  *	RETURNS:
6661  *	The final register value.
6662  */
6663 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6664 		      unsigned long interval_msec,
6665 		      unsigned long timeout_msec)
6666 {
6667 	unsigned long timeout;
6668 	u32 tmp;
6669 
6670 	tmp = ioread32(reg);
6671 
6672 	/* Calculate timeout _after_ the first read to make sure
6673 	 * preceding writes reach the controller before starting to
6674 	 * eat away the timeout.
6675 	 */
6676 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6677 
6678 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6679 		msleep(interval_msec);
6680 		tmp = ioread32(reg);
6681 	}
6682 
6683 	return tmp;
6684 }
6685 
6686 /*
6687  * Dummy port_ops
6688  */
6689 static void ata_dummy_noret(struct ata_port *ap)	{ }
6690 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6691 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6692 
6693 static u8 ata_dummy_check_status(struct ata_port *ap)
6694 {
6695 	return ATA_DRDY;
6696 }
6697 
6698 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6699 {
6700 	return AC_ERR_SYSTEM;
6701 }
6702 
6703 const struct ata_port_operations ata_dummy_port_ops = {
6704 	.port_disable		= ata_port_disable,
6705 	.check_status		= ata_dummy_check_status,
6706 	.check_altstatus	= ata_dummy_check_status,
6707 	.dev_select		= ata_noop_dev_select,
6708 	.qc_prep		= ata_noop_qc_prep,
6709 	.qc_issue		= ata_dummy_qc_issue,
6710 	.freeze			= ata_dummy_noret,
6711 	.thaw			= ata_dummy_noret,
6712 	.error_handler		= ata_dummy_noret,
6713 	.post_internal_cmd	= ata_dummy_qc_noret,
6714 	.irq_clear		= ata_dummy_noret,
6715 	.port_start		= ata_dummy_ret0,
6716 	.port_stop		= ata_dummy_noret,
6717 };
6718 
6719 const struct ata_port_info ata_dummy_port_info = {
6720 	.port_ops		= &ata_dummy_port_ops,
6721 };
6722 
6723 /*
6724  * libata is essentially a library of internal helper functions for
6725  * low-level ATA host controller drivers.  As such, the API/ABI is
6726  * likely to change as new drivers are added and updated.
6727  * Do not depend on ABI/API stability.
6728  */
6729 
6730 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6731 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6732 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6733 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6734 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6735 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6736 EXPORT_SYMBOL_GPL(ata_std_ports);
6737 EXPORT_SYMBOL_GPL(ata_host_init);
6738 EXPORT_SYMBOL_GPL(ata_host_alloc);
6739 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6740 EXPORT_SYMBOL_GPL(ata_host_start);
6741 EXPORT_SYMBOL_GPL(ata_host_register);
6742 EXPORT_SYMBOL_GPL(ata_host_activate);
6743 EXPORT_SYMBOL_GPL(ata_host_detach);
6744 EXPORT_SYMBOL_GPL(ata_sg_init);
6745 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6746 EXPORT_SYMBOL_GPL(ata_hsm_move);
6747 EXPORT_SYMBOL_GPL(ata_qc_complete);
6748 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6749 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6750 EXPORT_SYMBOL_GPL(ata_tf_load);
6751 EXPORT_SYMBOL_GPL(ata_tf_read);
6752 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6753 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6754 EXPORT_SYMBOL_GPL(sata_print_link_status);
6755 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6756 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6757 EXPORT_SYMBOL_GPL(ata_check_status);
6758 EXPORT_SYMBOL_GPL(ata_altstatus);
6759 EXPORT_SYMBOL_GPL(ata_exec_command);
6760 EXPORT_SYMBOL_GPL(ata_port_start);
6761 EXPORT_SYMBOL_GPL(ata_interrupt);
6762 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6763 EXPORT_SYMBOL_GPL(ata_data_xfer);
6764 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6765 EXPORT_SYMBOL_GPL(ata_qc_prep);
6766 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6767 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6768 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6769 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6770 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6771 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6772 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6773 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6774 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6775 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6776 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6777 EXPORT_SYMBOL_GPL(ata_port_probe);
6778 EXPORT_SYMBOL_GPL(ata_dev_disable);
6779 EXPORT_SYMBOL_GPL(sata_set_spd);
6780 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6781 EXPORT_SYMBOL_GPL(sata_phy_resume);
6782 EXPORT_SYMBOL_GPL(sata_phy_reset);
6783 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6784 EXPORT_SYMBOL_GPL(ata_bus_reset);
6785 EXPORT_SYMBOL_GPL(ata_std_prereset);
6786 EXPORT_SYMBOL_GPL(ata_std_softreset);
6787 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6788 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6789 EXPORT_SYMBOL_GPL(ata_std_postreset);
6790 EXPORT_SYMBOL_GPL(ata_dev_classify);
6791 EXPORT_SYMBOL_GPL(ata_dev_pair);
6792 EXPORT_SYMBOL_GPL(ata_port_disable);
6793 EXPORT_SYMBOL_GPL(ata_ratelimit);
6794 EXPORT_SYMBOL_GPL(ata_wait_register);
6795 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6796 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6797 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6798 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6799 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6800 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6801 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6802 EXPORT_SYMBOL_GPL(ata_host_intr);
6803 EXPORT_SYMBOL_GPL(sata_scr_valid);
6804 EXPORT_SYMBOL_GPL(sata_scr_read);
6805 EXPORT_SYMBOL_GPL(sata_scr_write);
6806 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6807 EXPORT_SYMBOL_GPL(ata_port_online);
6808 EXPORT_SYMBOL_GPL(ata_port_offline);
6809 #ifdef CONFIG_PM
6810 EXPORT_SYMBOL_GPL(ata_host_suspend);
6811 EXPORT_SYMBOL_GPL(ata_host_resume);
6812 #endif /* CONFIG_PM */
6813 EXPORT_SYMBOL_GPL(ata_id_string);
6814 EXPORT_SYMBOL_GPL(ata_id_c_string);
6815 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6816 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6817 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6818 
6819 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6820 EXPORT_SYMBOL_GPL(ata_timing_compute);
6821 EXPORT_SYMBOL_GPL(ata_timing_merge);
6822 
6823 #ifdef CONFIG_PCI
6824 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6825 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6826 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6827 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6828 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6829 #ifdef CONFIG_PM
6830 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6831 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6832 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6833 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6834 #endif /* CONFIG_PM */
6835 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6836 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6837 #endif /* CONFIG_PCI */
6838 
6839 #ifdef CONFIG_PM
6840 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6841 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6842 #endif /* CONFIG_PM */
6843 
6844 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6845 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6846 EXPORT_SYMBOL_GPL(ata_port_abort);
6847 EXPORT_SYMBOL_GPL(ata_port_freeze);
6848 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6849 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6850 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6851 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6852 EXPORT_SYMBOL_GPL(ata_do_eh);
6853 EXPORT_SYMBOL_GPL(ata_irq_on);
6854 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6855 EXPORT_SYMBOL_GPL(ata_irq_ack);
6856 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6857 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6858 
6859 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6860 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6861 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6862 EXPORT_SYMBOL_GPL(ata_cable_sata);
6863