1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/time.h> 54 #include <linux/interrupt.h> 55 #include <linux/completion.h> 56 #include <linux/suspend.h> 57 #include <linux/workqueue.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <linux/async.h> 61 #include <linux/log2.h> 62 #include <linux/slab.h> 63 #include <linux/glob.h> 64 #include <scsi/scsi.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_host.h> 67 #include <linux/libata.h> 68 #include <asm/byteorder.h> 69 #include <asm/unaligned.h> 70 #include <linux/cdrom.h> 71 #include <linux/ratelimit.h> 72 #include <linux/leds.h> 73 #include <linux/pm_runtime.h> 74 #include <linux/platform_device.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/libata.h> 78 79 #include "libata.h" 80 #include "libata-transport.h" 81 82 /* debounce timing parameters in msecs { interval, duration, timeout } */ 83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 86 87 const struct ata_port_operations ata_base_port_ops = { 88 .prereset = ata_std_prereset, 89 .postreset = ata_std_postreset, 90 .error_handler = ata_std_error_handler, 91 .sched_eh = ata_std_sched_eh, 92 .end_eh = ata_std_end_eh, 93 }; 94 95 const struct ata_port_operations sata_port_ops = { 96 .inherits = &ata_base_port_ops, 97 98 .qc_defer = ata_std_qc_defer, 99 .hardreset = sata_std_hardreset, 100 }; 101 102 static unsigned int ata_dev_init_params(struct ata_device *dev, 103 u16 heads, u16 sectors); 104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 105 static void ata_dev_xfermask(struct ata_device *dev); 106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 107 108 atomic_t ata_print_id = ATOMIC_INIT(0); 109 110 struct ata_force_param { 111 const char *name; 112 unsigned int cbl; 113 int spd_limit; 114 unsigned long xfer_mask; 115 unsigned int horkage_on; 116 unsigned int horkage_off; 117 unsigned int lflags; 118 }; 119 120 struct ata_force_ent { 121 int port; 122 int device; 123 struct ata_force_param param; 124 }; 125 126 static struct ata_force_ent *ata_force_tbl; 127 static int ata_force_tbl_size; 128 129 static char ata_force_param_buf[PAGE_SIZE] __initdata; 130 /* param_buf is thrown away after initialization, disallow read */ 131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 133 134 static int atapi_enabled = 1; 135 module_param(atapi_enabled, int, 0444); 136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 137 138 static int atapi_dmadir = 0; 139 module_param(atapi_dmadir, int, 0444); 140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 141 142 int atapi_passthru16 = 1; 143 module_param(atapi_passthru16, int, 0444); 144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 145 146 int libata_fua = 0; 147 module_param_named(fua, libata_fua, int, 0444); 148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 149 150 static int ata_ignore_hpa; 151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 153 154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 155 module_param_named(dma, libata_dma_mask, int, 0444); 156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 157 158 static int ata_probe_timeout; 159 module_param(ata_probe_timeout, int, 0444); 160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 161 162 int libata_noacpi = 0; 163 module_param_named(noacpi, libata_noacpi, int, 0444); 164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 165 166 int libata_allow_tpm = 0; 167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 169 170 static int atapi_an; 171 module_param(atapi_an, int, 0444); 172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 173 174 MODULE_AUTHOR("Jeff Garzik"); 175 MODULE_DESCRIPTION("Library module for ATA devices"); 176 MODULE_LICENSE("GPL"); 177 MODULE_VERSION(DRV_VERSION); 178 179 180 static bool ata_sstatus_online(u32 sstatus) 181 { 182 return (sstatus & 0xf) == 0x3; 183 } 184 185 /** 186 * ata_link_next - link iteration helper 187 * @link: the previous link, NULL to start 188 * @ap: ATA port containing links to iterate 189 * @mode: iteration mode, one of ATA_LITER_* 190 * 191 * LOCKING: 192 * Host lock or EH context. 193 * 194 * RETURNS: 195 * Pointer to the next link. 196 */ 197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 198 enum ata_link_iter_mode mode) 199 { 200 BUG_ON(mode != ATA_LITER_EDGE && 201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 202 203 /* NULL link indicates start of iteration */ 204 if (!link) 205 switch (mode) { 206 case ATA_LITER_EDGE: 207 case ATA_LITER_PMP_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_HOST_FIRST: 212 return &ap->link; 213 } 214 215 /* we just iterated over the host link, what's next? */ 216 if (link == &ap->link) 217 switch (mode) { 218 case ATA_LITER_HOST_FIRST: 219 if (sata_pmp_attached(ap)) 220 return ap->pmp_link; 221 /* fall through */ 222 case ATA_LITER_PMP_FIRST: 223 if (unlikely(ap->slave_link)) 224 return ap->slave_link; 225 /* fall through */ 226 case ATA_LITER_EDGE: 227 return NULL; 228 } 229 230 /* slave_link excludes PMP */ 231 if (unlikely(link == ap->slave_link)) 232 return NULL; 233 234 /* we were over a PMP link */ 235 if (++link < ap->pmp_link + ap->nr_pmp_links) 236 return link; 237 238 if (mode == ATA_LITER_PMP_FIRST) 239 return &ap->link; 240 241 return NULL; 242 } 243 244 /** 245 * ata_dev_next - device iteration helper 246 * @dev: the previous device, NULL to start 247 * @link: ATA link containing devices to iterate 248 * @mode: iteration mode, one of ATA_DITER_* 249 * 250 * LOCKING: 251 * Host lock or EH context. 252 * 253 * RETURNS: 254 * Pointer to the next device. 255 */ 256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 257 enum ata_dev_iter_mode mode) 258 { 259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 261 262 /* NULL dev indicates start of iteration */ 263 if (!dev) 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 dev = link->device; 268 goto check; 269 case ATA_DITER_ENABLED_REVERSE: 270 case ATA_DITER_ALL_REVERSE: 271 dev = link->device + ata_link_max_devices(link) - 1; 272 goto check; 273 } 274 275 next: 276 /* move to the next one */ 277 switch (mode) { 278 case ATA_DITER_ENABLED: 279 case ATA_DITER_ALL: 280 if (++dev < link->device + ata_link_max_devices(link)) 281 goto check; 282 return NULL; 283 case ATA_DITER_ENABLED_REVERSE: 284 case ATA_DITER_ALL_REVERSE: 285 if (--dev >= link->device) 286 goto check; 287 return NULL; 288 } 289 290 check: 291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 292 !ata_dev_enabled(dev)) 293 goto next; 294 return dev; 295 } 296 297 /** 298 * ata_dev_phys_link - find physical link for a device 299 * @dev: ATA device to look up physical link for 300 * 301 * Look up physical link which @dev is attached to. Note that 302 * this is different from @dev->link only when @dev is on slave 303 * link. For all other cases, it's the same as @dev->link. 304 * 305 * LOCKING: 306 * Don't care. 307 * 308 * RETURNS: 309 * Pointer to the found physical link. 310 */ 311 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 312 { 313 struct ata_port *ap = dev->link->ap; 314 315 if (!ap->slave_link) 316 return dev->link; 317 if (!dev->devno) 318 return &ap->link; 319 return ap->slave_link; 320 } 321 322 /** 323 * ata_force_cbl - force cable type according to libata.force 324 * @ap: ATA port of interest 325 * 326 * Force cable type according to libata.force and whine about it. 327 * The last entry which has matching port number is used, so it 328 * can be specified as part of device force parameters. For 329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 330 * same effect. 331 * 332 * LOCKING: 333 * EH context. 334 */ 335 void ata_force_cbl(struct ata_port *ap) 336 { 337 int i; 338 339 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 340 const struct ata_force_ent *fe = &ata_force_tbl[i]; 341 342 if (fe->port != -1 && fe->port != ap->print_id) 343 continue; 344 345 if (fe->param.cbl == ATA_CBL_NONE) 346 continue; 347 348 ap->cbl = fe->param.cbl; 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 350 return; 351 } 352 } 353 354 /** 355 * ata_force_link_limits - force link limits according to libata.force 356 * @link: ATA link of interest 357 * 358 * Force link flags and SATA spd limit according to libata.force 359 * and whine about it. When only the port part is specified 360 * (e.g. 1:), the limit applies to all links connected to both 361 * the host link and all fan-out ports connected via PMP. If the 362 * device part is specified as 0 (e.g. 1.00:), it specifies the 363 * first fan-out link not the host link. Device number 15 always 364 * points to the host link whether PMP is attached or not. If the 365 * controller has slave link, device number 16 points to it. 366 * 367 * LOCKING: 368 * EH context. 369 */ 370 static void ata_force_link_limits(struct ata_link *link) 371 { 372 bool did_spd = false; 373 int linkno = link->pmp; 374 int i; 375 376 if (ata_is_host_link(link)) 377 linkno += 15; 378 379 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 380 const struct ata_force_ent *fe = &ata_force_tbl[i]; 381 382 if (fe->port != -1 && fe->port != link->ap->print_id) 383 continue; 384 385 if (fe->device != -1 && fe->device != linkno) 386 continue; 387 388 /* only honor the first spd limit */ 389 if (!did_spd && fe->param.spd_limit) { 390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 392 fe->param.name); 393 did_spd = true; 394 } 395 396 /* let lflags stack */ 397 if (fe->param.lflags) { 398 link->flags |= fe->param.lflags; 399 ata_link_notice(link, 400 "FORCE: link flag 0x%x forced -> 0x%x\n", 401 fe->param.lflags, link->flags); 402 } 403 } 404 } 405 406 /** 407 * ata_force_xfermask - force xfermask according to libata.force 408 * @dev: ATA device of interest 409 * 410 * Force xfer_mask according to libata.force and whine about it. 411 * For consistency with link selection, device number 15 selects 412 * the first device connected to the host link. 413 * 414 * LOCKING: 415 * EH context. 416 */ 417 static void ata_force_xfermask(struct ata_device *dev) 418 { 419 int devno = dev->link->pmp + dev->devno; 420 int alt_devno = devno; 421 int i; 422 423 /* allow n.15/16 for devices attached to host port */ 424 if (ata_is_host_link(dev->link)) 425 alt_devno += 15; 426 427 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 428 const struct ata_force_ent *fe = &ata_force_tbl[i]; 429 unsigned long pio_mask, mwdma_mask, udma_mask; 430 431 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 432 continue; 433 434 if (fe->device != -1 && fe->device != devno && 435 fe->device != alt_devno) 436 continue; 437 438 if (!fe->param.xfer_mask) 439 continue; 440 441 ata_unpack_xfermask(fe->param.xfer_mask, 442 &pio_mask, &mwdma_mask, &udma_mask); 443 if (udma_mask) 444 dev->udma_mask = udma_mask; 445 else if (mwdma_mask) { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = mwdma_mask; 448 } else { 449 dev->udma_mask = 0; 450 dev->mwdma_mask = 0; 451 dev->pio_mask = pio_mask; 452 } 453 454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 455 fe->param.name); 456 return; 457 } 458 } 459 460 /** 461 * ata_force_horkage - force horkage according to libata.force 462 * @dev: ATA device of interest 463 * 464 * Force horkage according to libata.force and whine about it. 465 * For consistency with link selection, device number 15 selects 466 * the first device connected to the host link. 467 * 468 * LOCKING: 469 * EH context. 470 */ 471 static void ata_force_horkage(struct ata_device *dev) 472 { 473 int devno = dev->link->pmp + dev->devno; 474 int alt_devno = devno; 475 int i; 476 477 /* allow n.15/16 for devices attached to host port */ 478 if (ata_is_host_link(dev->link)) 479 alt_devno += 15; 480 481 for (i = 0; i < ata_force_tbl_size; i++) { 482 const struct ata_force_ent *fe = &ata_force_tbl[i]; 483 484 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 485 continue; 486 487 if (fe->device != -1 && fe->device != devno && 488 fe->device != alt_devno) 489 continue; 490 491 if (!(~dev->horkage & fe->param.horkage_on) && 492 !(dev->horkage & fe->param.horkage_off)) 493 continue; 494 495 dev->horkage |= fe->param.horkage_on; 496 dev->horkage &= ~fe->param.horkage_off; 497 498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 499 fe->param.name); 500 } 501 } 502 503 /** 504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 505 * @opcode: SCSI opcode 506 * 507 * Determine ATAPI command type from @opcode. 508 * 509 * LOCKING: 510 * None. 511 * 512 * RETURNS: 513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 514 */ 515 int atapi_cmd_type(u8 opcode) 516 { 517 switch (opcode) { 518 case GPCMD_READ_10: 519 case GPCMD_READ_12: 520 return ATAPI_READ; 521 522 case GPCMD_WRITE_10: 523 case GPCMD_WRITE_12: 524 case GPCMD_WRITE_AND_VERIFY_10: 525 return ATAPI_WRITE; 526 527 case GPCMD_READ_CD: 528 case GPCMD_READ_CD_MSF: 529 return ATAPI_READ_CD; 530 531 case ATA_16: 532 case ATA_12: 533 if (atapi_passthru16) 534 return ATAPI_PASS_THRU; 535 /* fall thru */ 536 default: 537 return ATAPI_MISC; 538 } 539 } 540 541 /** 542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 543 * @tf: Taskfile to convert 544 * @pmp: Port multiplier port 545 * @is_cmd: This FIS is for command 546 * @fis: Buffer into which data will output 547 * 548 * Converts a standard ATA taskfile to a Serial ATA 549 * FIS structure (Register - Host to Device). 550 * 551 * LOCKING: 552 * Inherited from caller. 553 */ 554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 555 { 556 fis[0] = 0x27; /* Register - Host to Device FIS */ 557 fis[1] = pmp & 0xf; /* Port multiplier number*/ 558 if (is_cmd) 559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 560 561 fis[2] = tf->command; 562 fis[3] = tf->feature; 563 564 fis[4] = tf->lbal; 565 fis[5] = tf->lbam; 566 fis[6] = tf->lbah; 567 fis[7] = tf->device; 568 569 fis[8] = tf->hob_lbal; 570 fis[9] = tf->hob_lbam; 571 fis[10] = tf->hob_lbah; 572 fis[11] = tf->hob_feature; 573 574 fis[12] = tf->nsect; 575 fis[13] = tf->hob_nsect; 576 fis[14] = 0; 577 fis[15] = tf->ctl; 578 579 fis[16] = tf->auxiliary & 0xff; 580 fis[17] = (tf->auxiliary >> 8) & 0xff; 581 fis[18] = (tf->auxiliary >> 16) & 0xff; 582 fis[19] = (tf->auxiliary >> 24) & 0xff; 583 } 584 585 /** 586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 587 * @fis: Buffer from which data will be input 588 * @tf: Taskfile to output 589 * 590 * Converts a serial ATA FIS structure to a standard ATA taskfile. 591 * 592 * LOCKING: 593 * Inherited from caller. 594 */ 595 596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 597 { 598 tf->command = fis[2]; /* status */ 599 tf->feature = fis[3]; /* error */ 600 601 tf->lbal = fis[4]; 602 tf->lbam = fis[5]; 603 tf->lbah = fis[6]; 604 tf->device = fis[7]; 605 606 tf->hob_lbal = fis[8]; 607 tf->hob_lbam = fis[9]; 608 tf->hob_lbah = fis[10]; 609 610 tf->nsect = fis[12]; 611 tf->hob_nsect = fis[13]; 612 } 613 614 static const u8 ata_rw_cmds[] = { 615 /* pio multi */ 616 ATA_CMD_READ_MULTI, 617 ATA_CMD_WRITE_MULTI, 618 ATA_CMD_READ_MULTI_EXT, 619 ATA_CMD_WRITE_MULTI_EXT, 620 0, 621 0, 622 0, 623 ATA_CMD_WRITE_MULTI_FUA_EXT, 624 /* pio */ 625 ATA_CMD_PIO_READ, 626 ATA_CMD_PIO_WRITE, 627 ATA_CMD_PIO_READ_EXT, 628 ATA_CMD_PIO_WRITE_EXT, 629 0, 630 0, 631 0, 632 0, 633 /* dma */ 634 ATA_CMD_READ, 635 ATA_CMD_WRITE, 636 ATA_CMD_READ_EXT, 637 ATA_CMD_WRITE_EXT, 638 0, 639 0, 640 0, 641 ATA_CMD_WRITE_FUA_EXT 642 }; 643 644 /** 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 646 * @tf: command to examine and configure 647 * @dev: device tf belongs to 648 * 649 * Examine the device configuration and tf->flags to calculate 650 * the proper read/write commands and protocol to use. 651 * 652 * LOCKING: 653 * caller. 654 */ 655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 656 { 657 u8 cmd; 658 659 int index, fua, lba48, write; 660 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 664 665 if (dev->flags & ATA_DFLAG_PIO) { 666 tf->protocol = ATA_PROT_PIO; 667 index = dev->multi_count ? 0 : 8; 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 669 /* Unable to use DMA due to host limitation */ 670 tf->protocol = ATA_PROT_PIO; 671 index = dev->multi_count ? 0 : 8; 672 } else { 673 tf->protocol = ATA_PROT_DMA; 674 index = 16; 675 } 676 677 cmd = ata_rw_cmds[index + fua + lba48 + write]; 678 if (cmd) { 679 tf->command = cmd; 680 return 0; 681 } 682 return -1; 683 } 684 685 /** 686 * ata_tf_read_block - Read block address from ATA taskfile 687 * @tf: ATA taskfile of interest 688 * @dev: ATA device @tf belongs to 689 * 690 * LOCKING: 691 * None. 692 * 693 * Read block address from @tf. This function can handle all 694 * three address formats - LBA, LBA48 and CHS. tf->protocol and 695 * flags select the address format to use. 696 * 697 * RETURNS: 698 * Block address read from @tf. 699 */ 700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 701 { 702 u64 block = 0; 703 704 if (tf->flags & ATA_TFLAG_LBA) { 705 if (tf->flags & ATA_TFLAG_LBA48) { 706 block |= (u64)tf->hob_lbah << 40; 707 block |= (u64)tf->hob_lbam << 32; 708 block |= (u64)tf->hob_lbal << 24; 709 } else 710 block |= (tf->device & 0xf) << 24; 711 712 block |= tf->lbah << 16; 713 block |= tf->lbam << 8; 714 block |= tf->lbal; 715 } else { 716 u32 cyl, head, sect; 717 718 cyl = tf->lbam | (tf->lbah << 8); 719 head = tf->device & 0xf; 720 sect = tf->lbal; 721 722 if (!sect) { 723 ata_dev_warn(dev, 724 "device reported invalid CHS sector 0\n"); 725 return U64_MAX; 726 } 727 728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 729 } 730 731 return block; 732 } 733 734 /** 735 * ata_build_rw_tf - Build ATA taskfile for given read/write request 736 * @tf: Target ATA taskfile 737 * @dev: ATA device @tf belongs to 738 * @block: Block address 739 * @n_block: Number of blocks 740 * @tf_flags: RW/FUA etc... 741 * @tag: tag 742 * @class: IO priority class 743 * 744 * LOCKING: 745 * None. 746 * 747 * Build ATA taskfile @tf for read/write request described by 748 * @block, @n_block, @tf_flags and @tag on @dev. 749 * 750 * RETURNS: 751 * 752 * 0 on success, -ERANGE if the request is too large for @dev, 753 * -EINVAL if the request is invalid. 754 */ 755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 756 u64 block, u32 n_block, unsigned int tf_flags, 757 unsigned int tag, int class) 758 { 759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 760 tf->flags |= tf_flags; 761 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 763 /* yay, NCQ */ 764 if (!lba_48_ok(block, n_block)) 765 return -ERANGE; 766 767 tf->protocol = ATA_PROT_NCQ; 768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 769 770 if (tf->flags & ATA_TFLAG_WRITE) 771 tf->command = ATA_CMD_FPDMA_WRITE; 772 else 773 tf->command = ATA_CMD_FPDMA_READ; 774 775 tf->nsect = tag << 3; 776 tf->hob_feature = (n_block >> 8) & 0xff; 777 tf->feature = n_block & 0xff; 778 779 tf->hob_lbah = (block >> 40) & 0xff; 780 tf->hob_lbam = (block >> 32) & 0xff; 781 tf->hob_lbal = (block >> 24) & 0xff; 782 tf->lbah = (block >> 16) & 0xff; 783 tf->lbam = (block >> 8) & 0xff; 784 tf->lbal = block & 0xff; 785 786 tf->device = ATA_LBA; 787 if (tf->flags & ATA_TFLAG_FUA) 788 tf->device |= 1 << 7; 789 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 791 if (class == IOPRIO_CLASS_RT) 792 tf->hob_nsect |= ATA_PRIO_HIGH << 793 ATA_SHIFT_PRIO; 794 } 795 } else if (dev->flags & ATA_DFLAG_LBA) { 796 tf->flags |= ATA_TFLAG_LBA; 797 798 if (lba_28_ok(block, n_block)) { 799 /* use LBA28 */ 800 tf->device |= (block >> 24) & 0xf; 801 } else if (lba_48_ok(block, n_block)) { 802 if (!(dev->flags & ATA_DFLAG_LBA48)) 803 return -ERANGE; 804 805 /* use LBA48 */ 806 tf->flags |= ATA_TFLAG_LBA48; 807 808 tf->hob_nsect = (n_block >> 8) & 0xff; 809 810 tf->hob_lbah = (block >> 40) & 0xff; 811 tf->hob_lbam = (block >> 32) & 0xff; 812 tf->hob_lbal = (block >> 24) & 0xff; 813 } else 814 /* request too large even for LBA48 */ 815 return -ERANGE; 816 817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 818 return -EINVAL; 819 820 tf->nsect = n_block & 0xff; 821 822 tf->lbah = (block >> 16) & 0xff; 823 tf->lbam = (block >> 8) & 0xff; 824 tf->lbal = block & 0xff; 825 826 tf->device |= ATA_LBA; 827 } else { 828 /* CHS */ 829 u32 sect, head, cyl, track; 830 831 /* The request -may- be too large for CHS addressing. */ 832 if (!lba_28_ok(block, n_block)) 833 return -ERANGE; 834 835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 836 return -EINVAL; 837 838 /* Convert LBA to CHS */ 839 track = (u32)block / dev->sectors; 840 cyl = track / dev->heads; 841 head = track % dev->heads; 842 sect = (u32)block % dev->sectors + 1; 843 844 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 845 (u32)block, track, cyl, head, sect); 846 847 /* Check whether the converted CHS can fit. 848 Cylinder: 0-65535 849 Head: 0-15 850 Sector: 1-255*/ 851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 852 return -ERANGE; 853 854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 855 tf->lbal = sect; 856 tf->lbam = cyl; 857 tf->lbah = cyl >> 8; 858 tf->device |= head; 859 } 860 861 return 0; 862 } 863 864 /** 865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 866 * @pio_mask: pio_mask 867 * @mwdma_mask: mwdma_mask 868 * @udma_mask: udma_mask 869 * 870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 871 * unsigned int xfer_mask. 872 * 873 * LOCKING: 874 * None. 875 * 876 * RETURNS: 877 * Packed xfer_mask. 878 */ 879 unsigned long ata_pack_xfermask(unsigned long pio_mask, 880 unsigned long mwdma_mask, 881 unsigned long udma_mask) 882 { 883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 886 } 887 888 /** 889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 890 * @xfer_mask: xfer_mask to unpack 891 * @pio_mask: resulting pio_mask 892 * @mwdma_mask: resulting mwdma_mask 893 * @udma_mask: resulting udma_mask 894 * 895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 896 * Any NULL destination masks will be ignored. 897 */ 898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 899 unsigned long *mwdma_mask, unsigned long *udma_mask) 900 { 901 if (pio_mask) 902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 903 if (mwdma_mask) 904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 905 if (udma_mask) 906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 907 } 908 909 static const struct ata_xfer_ent { 910 int shift, bits; 911 u8 base; 912 } ata_xfer_tbl[] = { 913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 916 { -1, }, 917 }; 918 919 /** 920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 921 * @xfer_mask: xfer_mask of interest 922 * 923 * Return matching XFER_* value for @xfer_mask. Only the highest 924 * bit of @xfer_mask is considered. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching XFER_* value, 0xff if no match found. 931 */ 932 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 933 { 934 int highbit = fls(xfer_mask) - 1; 935 const struct ata_xfer_ent *ent; 936 937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 939 return ent->base + highbit - ent->shift; 940 return 0xff; 941 } 942 943 /** 944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_mask for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_mask, 0 if no match found. 954 */ 955 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 962 & ~((1 << ent->shift) - 1); 963 return 0; 964 } 965 966 /** 967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 968 * @xfer_mode: XFER_* of interest 969 * 970 * Return matching xfer_shift for @xfer_mode. 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Matching xfer_shift, -1 if no match found. 977 */ 978 int ata_xfer_mode2shift(unsigned long xfer_mode) 979 { 980 const struct ata_xfer_ent *ent; 981 982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 984 return ent->shift; 985 return -1; 986 } 987 988 /** 989 * ata_mode_string - convert xfer_mask to string 990 * @xfer_mask: mask of bits supported; only highest bit counts. 991 * 992 * Determine string which represents the highest speed 993 * (highest bit in @modemask). 994 * 995 * LOCKING: 996 * None. 997 * 998 * RETURNS: 999 * Constant C string representing highest speed listed in 1000 * @mode_mask, or the constant C string "<n/a>". 1001 */ 1002 const char *ata_mode_string(unsigned long xfer_mask) 1003 { 1004 static const char * const xfer_mode_str[] = { 1005 "PIO0", 1006 "PIO1", 1007 "PIO2", 1008 "PIO3", 1009 "PIO4", 1010 "PIO5", 1011 "PIO6", 1012 "MWDMA0", 1013 "MWDMA1", 1014 "MWDMA2", 1015 "MWDMA3", 1016 "MWDMA4", 1017 "UDMA/16", 1018 "UDMA/25", 1019 "UDMA/33", 1020 "UDMA/44", 1021 "UDMA/66", 1022 "UDMA/100", 1023 "UDMA/133", 1024 "UDMA7", 1025 }; 1026 int highbit; 1027 1028 highbit = fls(xfer_mask) - 1; 1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1030 return xfer_mode_str[highbit]; 1031 return "<n/a>"; 1032 } 1033 1034 const char *sata_spd_string(unsigned int spd) 1035 { 1036 static const char * const spd_str[] = { 1037 "1.5 Gbps", 1038 "3.0 Gbps", 1039 "6.0 Gbps", 1040 }; 1041 1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1043 return "<unknown>"; 1044 return spd_str[spd - 1]; 1045 } 1046 1047 /** 1048 * ata_dev_classify - determine device type based on ATA-spec signature 1049 * @tf: ATA taskfile register set for device to be identified 1050 * 1051 * Determine from taskfile register contents whether a device is 1052 * ATA or ATAPI, as per "Signature and persistence" section 1053 * of ATA/PI spec (volume 1, sect 5.14). 1054 * 1055 * LOCKING: 1056 * None. 1057 * 1058 * RETURNS: 1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1061 */ 1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1063 { 1064 /* Apple's open source Darwin code hints that some devices only 1065 * put a proper signature into the LBA mid/high registers, 1066 * So, we only check those. It's sufficient for uniqueness. 1067 * 1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1069 * signatures for ATA and ATAPI devices attached on SerialATA, 1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1071 * spec has never mentioned about using different signatures 1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1073 * Multiplier specification began to use 0x69/0x96 to identify 1074 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1076 * 0x69/0x96 shortly and described them as reserved for 1077 * SerialATA. 1078 * 1079 * We follow the current spec and consider that 0x69/0x96 1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1082 * SEMB signature. This is worked around in 1083 * ata_dev_read_id(). 1084 */ 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1086 DPRINTK("found ATA device by sig\n"); 1087 return ATA_DEV_ATA; 1088 } 1089 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1091 DPRINTK("found ATAPI device by sig\n"); 1092 return ATA_DEV_ATAPI; 1093 } 1094 1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1096 DPRINTK("found PMP device by sig\n"); 1097 return ATA_DEV_PMP; 1098 } 1099 1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1101 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1102 return ATA_DEV_SEMB; 1103 } 1104 1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1106 DPRINTK("found ZAC device by sig\n"); 1107 return ATA_DEV_ZAC; 1108 } 1109 1110 DPRINTK("unknown device\n"); 1111 return ATA_DEV_UNKNOWN; 1112 } 1113 1114 /** 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string 1116 * @id: IDENTIFY DEVICE results we will examine 1117 * @s: string into which data is output 1118 * @ofs: offset into identify device page 1119 * @len: length of string to return. must be an even number. 1120 * 1121 * The strings in the IDENTIFY DEVICE page are broken up into 1122 * 16-bit chunks. Run through the string, and output each 1123 * 8-bit chunk linearly, regardless of platform. 1124 * 1125 * LOCKING: 1126 * caller. 1127 */ 1128 1129 void ata_id_string(const u16 *id, unsigned char *s, 1130 unsigned int ofs, unsigned int len) 1131 { 1132 unsigned int c; 1133 1134 BUG_ON(len & 1); 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 ata_id_string(id, s, ofs, len - 1); 1170 1171 p = s + strnlen(s, len - 1); 1172 while (p > s && p[-1] == ' ') 1173 p--; 1174 *p = '\0'; 1175 } 1176 1177 static u64 ata_id_n_sectors(const u16 *id) 1178 { 1179 if (ata_id_has_lba(id)) { 1180 if (ata_id_has_lba48(id)) 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1182 else 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1184 } else { 1185 if (ata_id_current_chs_valid(id)) 1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1187 id[ATA_ID_CUR_SECTORS]; 1188 else 1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1190 id[ATA_ID_SECTORS]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol = ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_warn(dev, 1255 "failed to read native max address (err_mask=0x%x)\n", 1256 err_mask); 1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1258 return -EACCES; 1259 return -EIO; 1260 } 1261 1262 if (lba48) 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1264 else 1265 *max_sectors = ata_tf_to_lba(&tf) + 1; 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1267 (*max_sectors)--; 1268 return 0; 1269 } 1270 1271 /** 1272 * ata_set_max_sectors - Set max sectors 1273 * @dev: target device 1274 * @new_sectors: new max sectors value to set for the device 1275 * 1276 * Set max sectors of @dev to @new_sectors. 1277 * 1278 * RETURNS: 1279 * 0 on success, -EACCES if command is aborted or denied (due to 1280 * previous non-volatile SET_MAX) by the drive. -EIO on other 1281 * errors. 1282 */ 1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1284 { 1285 unsigned int err_mask; 1286 struct ata_taskfile tf; 1287 int lba48 = ata_id_has_lba48(dev->id); 1288 1289 new_sectors--; 1290 1291 ata_tf_init(dev, &tf); 1292 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1294 1295 if (lba48) { 1296 tf.command = ATA_CMD_SET_MAX_EXT; 1297 tf.flags |= ATA_TFLAG_LBA48; 1298 1299 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1300 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1301 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1302 } else { 1303 tf.command = ATA_CMD_SET_MAX; 1304 1305 tf.device |= (new_sectors >> 24) & 0xf; 1306 } 1307 1308 tf.protocol = ATA_PROT_NODATA; 1309 tf.device |= ATA_LBA; 1310 1311 tf.lbal = (new_sectors >> 0) & 0xff; 1312 tf.lbam = (new_sectors >> 8) & 0xff; 1313 tf.lbah = (new_sectors >> 16) & 0xff; 1314 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1316 if (err_mask) { 1317 ata_dev_warn(dev, 1318 "failed to set max address (err_mask=0x%x)\n", 1319 err_mask); 1320 if (err_mask == AC_ERR_DEV && 1321 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1322 return -EACCES; 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ata_hpa_resize - Resize a device with an HPA set 1331 * @dev: Device to resize 1332 * 1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1334 * it if required to the full size of the media. The caller must check 1335 * the drive has the HPA feature set enabled. 1336 * 1337 * RETURNS: 1338 * 0 on success, -errno on failure. 1339 */ 1340 static int ata_hpa_resize(struct ata_device *dev) 1341 { 1342 struct ata_eh_context *ehc = &dev->link->eh_context; 1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1345 u64 sectors = ata_id_n_sectors(dev->id); 1346 u64 native_sectors; 1347 int rc; 1348 1349 /* do we need to do it? */ 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1353 return 0; 1354 1355 /* read native max address */ 1356 rc = ata_read_native_max_address(dev, &native_sectors); 1357 if (rc) { 1358 /* If device aborted the command or HPA isn't going to 1359 * be unlocked, skip HPA resizing. 1360 */ 1361 if (rc == -EACCES || !unlock_hpa) { 1362 ata_dev_warn(dev, 1363 "HPA support seems broken, skipping HPA handling\n"); 1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1365 1366 /* we can continue if device aborted the command */ 1367 if (rc == -EACCES) 1368 rc = 0; 1369 } 1370 1371 return rc; 1372 } 1373 dev->n_native_sectors = native_sectors; 1374 1375 /* nothing to do? */ 1376 if (native_sectors <= sectors || !unlock_hpa) { 1377 if (!print_info || native_sectors == sectors) 1378 return 0; 1379 1380 if (native_sectors > sectors) 1381 ata_dev_info(dev, 1382 "HPA detected: current %llu, native %llu\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 else if (native_sectors < sectors) 1386 ata_dev_warn(dev, 1387 "native sectors (%llu) is smaller than sectors (%llu)\n", 1388 (unsigned long long)native_sectors, 1389 (unsigned long long)sectors); 1390 return 0; 1391 } 1392 1393 /* let's unlock HPA */ 1394 rc = ata_set_max_sectors(dev, native_sectors); 1395 if (rc == -EACCES) { 1396 /* if device aborted the command, skip HPA resizing */ 1397 ata_dev_warn(dev, 1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)native_sectors); 1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1402 return 0; 1403 } else if (rc) 1404 return rc; 1405 1406 /* re-read IDENTIFY data */ 1407 rc = ata_dev_reread_id(dev, 0); 1408 if (rc) { 1409 ata_dev_err(dev, 1410 "failed to re-read IDENTIFY data after HPA resizing\n"); 1411 return rc; 1412 } 1413 1414 if (print_info) { 1415 u64 new_sectors = ata_id_n_sectors(dev->id); 1416 ata_dev_info(dev, 1417 "HPA unlocked: %llu -> %llu, native %llu\n", 1418 (unsigned long long)sectors, 1419 (unsigned long long)new_sectors, 1420 (unsigned long long)native_sectors); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * ata_dump_id - IDENTIFY DEVICE info debugging output 1428 * @id: IDENTIFY DEVICE page to dump 1429 * 1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1431 * page. 1432 * 1433 * LOCKING: 1434 * caller. 1435 */ 1436 1437 static inline void ata_dump_id(const u16 *id) 1438 { 1439 DPRINTK("49==0x%04x " 1440 "53==0x%04x " 1441 "63==0x%04x " 1442 "64==0x%04x " 1443 "75==0x%04x \n", 1444 id[49], 1445 id[53], 1446 id[63], 1447 id[64], 1448 id[75]); 1449 DPRINTK("80==0x%04x " 1450 "81==0x%04x " 1451 "82==0x%04x " 1452 "83==0x%04x " 1453 "84==0x%04x \n", 1454 id[80], 1455 id[81], 1456 id[82], 1457 id[83], 1458 id[84]); 1459 DPRINTK("88==0x%04x " 1460 "93==0x%04x\n", 1461 id[88], 1462 id[93]); 1463 } 1464 1465 /** 1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1467 * @id: IDENTIFY data to compute xfer mask from 1468 * 1469 * Compute the xfermask for this device. This is not as trivial 1470 * as it seems if we must consider early devices correctly. 1471 * 1472 * FIXME: pre IDE drive timing (do we care ?). 1473 * 1474 * LOCKING: 1475 * None. 1476 * 1477 * RETURNS: 1478 * Computed xfermask 1479 */ 1480 unsigned long ata_id_xfermask(const u16 *id) 1481 { 1482 unsigned long pio_mask, mwdma_mask, udma_mask; 1483 1484 /* Usual case. Word 53 indicates word 64 is valid */ 1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1487 pio_mask <<= 3; 1488 pio_mask |= 0x7; 1489 } else { 1490 /* If word 64 isn't valid then Word 51 high byte holds 1491 * the PIO timing number for the maximum. Turn it into 1492 * a mask. 1493 */ 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1495 if (mode < 5) /* Valid PIO range */ 1496 pio_mask = (2 << mode) - 1; 1497 else 1498 pio_mask = 1; 1499 1500 /* But wait.. there's more. Design your standards by 1501 * committee and you too can get a free iordy field to 1502 * process. However its the speeds not the modes that 1503 * are supported... Note drivers using the timing API 1504 * will get this right anyway 1505 */ 1506 } 1507 1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1509 1510 if (ata_id_is_cfa(id)) { 1511 /* 1512 * Process compact flash extended modes 1513 */ 1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1516 1517 if (pio) 1518 pio_mask |= (1 << 5); 1519 if (pio > 1) 1520 pio_mask |= (1 << 6); 1521 if (dma) 1522 mwdma_mask |= (1 << 3); 1523 if (dma > 1) 1524 mwdma_mask |= (1 << 4); 1525 } 1526 1527 udma_mask = 0; 1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1530 1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1532 } 1533 1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1535 { 1536 struct completion *waiting = qc->private_data; 1537 1538 complete(waiting); 1539 } 1540 1541 /** 1542 * ata_exec_internal_sg - execute libata internal command 1543 * @dev: Device to which the command is sent 1544 * @tf: Taskfile registers for the command and the result 1545 * @cdb: CDB for packet command 1546 * @dma_dir: Data transfer direction of the command 1547 * @sgl: sg list for the data buffer of the command 1548 * @n_elem: Number of sg entries 1549 * @timeout: Timeout in msecs (0 for default) 1550 * 1551 * Executes libata internal command with timeout. @tf contains 1552 * command on entry and result on return. Timeout and error 1553 * conditions are reported via return value. No recovery action 1554 * is taken after a command times out. It's caller's duty to 1555 * clean up after timeout. 1556 * 1557 * LOCKING: 1558 * None. Should be called with kernel context, might sleep. 1559 * 1560 * RETURNS: 1561 * Zero on success, AC_ERR_* mask on failure 1562 */ 1563 unsigned ata_exec_internal_sg(struct ata_device *dev, 1564 struct ata_taskfile *tf, const u8 *cdb, 1565 int dma_dir, struct scatterlist *sgl, 1566 unsigned int n_elem, unsigned long timeout) 1567 { 1568 struct ata_link *link = dev->link; 1569 struct ata_port *ap = link->ap; 1570 u8 command = tf->command; 1571 int auto_timeout = 0; 1572 struct ata_queued_cmd *qc; 1573 unsigned int tag, preempted_tag; 1574 u32 preempted_sactive, preempted_qc_active; 1575 int preempted_nr_active_links; 1576 DECLARE_COMPLETION_ONSTACK(wait); 1577 unsigned long flags; 1578 unsigned int err_mask; 1579 int rc; 1580 1581 spin_lock_irqsave(ap->lock, flags); 1582 1583 /* no internal command while frozen */ 1584 if (ap->pflags & ATA_PFLAG_FROZEN) { 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 return AC_ERR_SYSTEM; 1587 } 1588 1589 /* initialize internal qc */ 1590 1591 /* XXX: Tag 0 is used for drivers with legacy EH as some 1592 * drivers choke if any other tag is given. This breaks 1593 * ata_tag_internal() test for those drivers. Don't use new 1594 * EH stuff without converting to it. 1595 */ 1596 if (ap->ops->error_handler) 1597 tag = ATA_TAG_INTERNAL; 1598 else 1599 tag = 0; 1600 1601 qc = __ata_qc_from_tag(ap, tag); 1602 1603 qc->tag = tag; 1604 qc->scsicmd = NULL; 1605 qc->ap = ap; 1606 qc->dev = dev; 1607 ata_qc_reinit(qc); 1608 1609 preempted_tag = link->active_tag; 1610 preempted_sactive = link->sactive; 1611 preempted_qc_active = ap->qc_active; 1612 preempted_nr_active_links = ap->nr_active_links; 1613 link->active_tag = ATA_TAG_POISON; 1614 link->sactive = 0; 1615 ap->qc_active = 0; 1616 ap->nr_active_links = 0; 1617 1618 /* prepare & issue qc */ 1619 qc->tf = *tf; 1620 if (cdb) 1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1622 1623 /* some SATA bridges need us to indicate data xfer direction */ 1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1625 dma_dir == DMA_FROM_DEVICE) 1626 qc->tf.feature |= ATAPI_DMADIR; 1627 1628 qc->flags |= ATA_QCFLAG_RESULT_TF; 1629 qc->dma_dir = dma_dir; 1630 if (dma_dir != DMA_NONE) { 1631 unsigned int i, buflen = 0; 1632 struct scatterlist *sg; 1633 1634 for_each_sg(sgl, sg, n_elem, i) 1635 buflen += sg->length; 1636 1637 ata_sg_init(qc, sgl, n_elem); 1638 qc->nbytes = buflen; 1639 } 1640 1641 qc->private_data = &wait; 1642 qc->complete_fn = ata_qc_complete_internal; 1643 1644 ata_qc_issue(qc); 1645 1646 spin_unlock_irqrestore(ap->lock, flags); 1647 1648 if (!timeout) { 1649 if (ata_probe_timeout) 1650 timeout = ata_probe_timeout * 1000; 1651 else { 1652 timeout = ata_internal_cmd_timeout(dev, command); 1653 auto_timeout = 1; 1654 } 1655 } 1656 1657 if (ap->ops->error_handler) 1658 ata_eh_release(ap); 1659 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1661 1662 if (ap->ops->error_handler) 1663 ata_eh_acquire(ap); 1664 1665 ata_sff_flush_pio_task(ap); 1666 1667 if (!rc) { 1668 spin_lock_irqsave(ap->lock, flags); 1669 1670 /* We're racing with irq here. If we lose, the 1671 * following test prevents us from completing the qc 1672 * twice. If we win, the port is frozen and will be 1673 * cleaned up by ->post_internal_cmd(). 1674 */ 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1676 qc->err_mask |= AC_ERR_TIMEOUT; 1677 1678 if (ap->ops->error_handler) 1679 ata_port_freeze(ap); 1680 else 1681 ata_qc_complete(qc); 1682 1683 if (ata_msg_warn(ap)) 1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1685 command); 1686 } 1687 1688 spin_unlock_irqrestore(ap->lock, flags); 1689 } 1690 1691 /* do post_internal_cmd */ 1692 if (ap->ops->post_internal_cmd) 1693 ap->ops->post_internal_cmd(qc); 1694 1695 /* perform minimal error analysis */ 1696 if (qc->flags & ATA_QCFLAG_FAILED) { 1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1698 qc->err_mask |= AC_ERR_DEV; 1699 1700 if (!qc->err_mask) 1701 qc->err_mask |= AC_ERR_OTHER; 1702 1703 if (qc->err_mask & ~AC_ERR_OTHER) 1704 qc->err_mask &= ~AC_ERR_OTHER; 1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1706 qc->result_tf.command |= ATA_SENSE; 1707 } 1708 1709 /* finish up */ 1710 spin_lock_irqsave(ap->lock, flags); 1711 1712 *tf = qc->result_tf; 1713 err_mask = qc->err_mask; 1714 1715 ata_qc_free(qc); 1716 link->active_tag = preempted_tag; 1717 link->sactive = preempted_sactive; 1718 ap->qc_active = preempted_qc_active; 1719 ap->nr_active_links = preempted_nr_active_links; 1720 1721 spin_unlock_irqrestore(ap->lock, flags); 1722 1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1724 ata_internal_cmd_timed_out(dev, command); 1725 1726 return err_mask; 1727 } 1728 1729 /** 1730 * ata_exec_internal - execute libata internal command 1731 * @dev: Device to which the command is sent 1732 * @tf: Taskfile registers for the command and the result 1733 * @cdb: CDB for packet command 1734 * @dma_dir: Data transfer direction of the command 1735 * @buf: Data buffer of the command 1736 * @buflen: Length of data buffer 1737 * @timeout: Timeout in msecs (0 for default) 1738 * 1739 * Wrapper around ata_exec_internal_sg() which takes simple 1740 * buffer instead of sg list. 1741 * 1742 * LOCKING: 1743 * None. Should be called with kernel context, might sleep. 1744 * 1745 * RETURNS: 1746 * Zero on success, AC_ERR_* mask on failure 1747 */ 1748 unsigned ata_exec_internal(struct ata_device *dev, 1749 struct ata_taskfile *tf, const u8 *cdb, 1750 int dma_dir, void *buf, unsigned int buflen, 1751 unsigned long timeout) 1752 { 1753 struct scatterlist *psg = NULL, sg; 1754 unsigned int n_elem = 0; 1755 1756 if (dma_dir != DMA_NONE) { 1757 WARN_ON(!buf); 1758 sg_init_one(&sg, buf, buflen); 1759 psg = &sg; 1760 n_elem++; 1761 } 1762 1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1764 timeout); 1765 } 1766 1767 /** 1768 * ata_pio_need_iordy - check if iordy needed 1769 * @adev: ATA device 1770 * 1771 * Check if the current speed of the device requires IORDY. Used 1772 * by various controllers for chip configuration. 1773 */ 1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1775 { 1776 /* Don't set IORDY if we're preparing for reset. IORDY may 1777 * lead to controller lock up on certain controllers if the 1778 * port is not occupied. See bko#11703 for details. 1779 */ 1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1781 return 0; 1782 /* Controller doesn't support IORDY. Probably a pointless 1783 * check as the caller should know this. 1784 */ 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1786 return 0; 1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1788 if (ata_id_is_cfa(adev->id) 1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1790 return 0; 1791 /* PIO3 and higher it is mandatory */ 1792 if (adev->pio_mode > XFER_PIO_2) 1793 return 1; 1794 /* We turn it on when possible */ 1795 if (ata_id_has_iordy(adev->id)) 1796 return 1; 1797 return 0; 1798 } 1799 1800 /** 1801 * ata_pio_mask_no_iordy - Return the non IORDY mask 1802 * @adev: ATA device 1803 * 1804 * Compute the highest mode possible if we are not using iordy. Return 1805 * -1 if no iordy mode is available. 1806 */ 1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1808 { 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1812 /* Is the speed faster than the drive allows non IORDY ? */ 1813 if (pio) { 1814 /* This is cycle times not frequency - watch the logic! */ 1815 if (pio > 240) /* PIO2 is 240nS per cycle */ 1816 return 3 << ATA_SHIFT_PIO; 1817 return 7 << ATA_SHIFT_PIO; 1818 } 1819 } 1820 return 3 << ATA_SHIFT_PIO; 1821 } 1822 1823 /** 1824 * ata_do_dev_read_id - default ID read method 1825 * @dev: device 1826 * @tf: proposed taskfile 1827 * @id: data buffer 1828 * 1829 * Issue the identify taskfile and hand back the buffer containing 1830 * identify data. For some RAID controllers and for pre ATA devices 1831 * this function is wrapped or replaced by the driver 1832 */ 1833 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1834 struct ata_taskfile *tf, u16 *id) 1835 { 1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1838 } 1839 1840 /** 1841 * ata_dev_read_id - Read ID data from the specified device 1842 * @dev: target device 1843 * @p_class: pointer to class of the target device (may be changed) 1844 * @flags: ATA_READID_* flags 1845 * @id: buffer to read IDENTIFY data into 1846 * 1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1850 * for pre-ATA4 drives. 1851 * 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1853 * now we abort if we hit that case. 1854 * 1855 * LOCKING: 1856 * Kernel thread context (may sleep) 1857 * 1858 * RETURNS: 1859 * 0 on success, -errno otherwise. 1860 */ 1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1862 unsigned int flags, u16 *id) 1863 { 1864 struct ata_port *ap = dev->link->ap; 1865 unsigned int class = *p_class; 1866 struct ata_taskfile tf; 1867 unsigned int err_mask = 0; 1868 const char *reason; 1869 bool is_semb = class == ATA_DEV_SEMB; 1870 int may_fallback = 1, tried_spinup = 0; 1871 int rc; 1872 1873 if (ata_msg_ctl(ap)) 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1875 1876 retry: 1877 ata_tf_init(dev, &tf); 1878 1879 switch (class) { 1880 case ATA_DEV_SEMB: 1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1882 case ATA_DEV_ATA: 1883 case ATA_DEV_ZAC: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && 2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 static int ata_do_link_spd_horkage(struct ata_device *dev) 2051 { 2052 struct ata_link *plink = ata_dev_phys_link(dev); 2053 u32 target, target_limit; 2054 2055 if (!sata_scr_valid(plink)) 2056 return 0; 2057 2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2059 target = 1; 2060 else 2061 return 0; 2062 2063 target_limit = (1 << target) - 1; 2064 2065 /* if already on stricter limit, no need to push further */ 2066 if (plink->sata_spd_limit <= target_limit) 2067 return 0; 2068 2069 plink->sata_spd_limit = target_limit; 2070 2071 /* Request another EH round by returning -EAGAIN if link is 2072 * going faster than the target speed. Forward progress is 2073 * guaranteed by setting sata_spd_limit to target_limit above. 2074 */ 2075 if (plink->sata_spd > target) { 2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2077 sata_spd_string(target)); 2078 return -EAGAIN; 2079 } 2080 return 0; 2081 } 2082 2083 static inline u8 ata_dev_knobble(struct ata_device *dev) 2084 { 2085 struct ata_port *ap = dev->link->ap; 2086 2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2088 return 0; 2089 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2091 } 2092 2093 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 unsigned int err_mask; 2097 int log_index = ATA_LOG_NCQ_SEND_RECV * 2; 2098 u16 log_pages; 2099 2100 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2101 0, ap->sector_buf, 1); 2102 if (err_mask) { 2103 ata_dev_dbg(dev, 2104 "failed to get Log Directory Emask 0x%x\n", 2105 err_mask); 2106 return; 2107 } 2108 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2109 if (!log_pages) { 2110 ata_dev_warn(dev, 2111 "NCQ Send/Recv Log not supported\n"); 2112 return; 2113 } 2114 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2115 0, ap->sector_buf, 1); 2116 if (err_mask) { 2117 ata_dev_dbg(dev, 2118 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2119 err_mask); 2120 } else { 2121 u8 *cmds = dev->ncq_send_recv_cmds; 2122 2123 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2124 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2125 2126 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2127 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2128 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2129 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2130 } 2131 } 2132 } 2133 2134 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2135 { 2136 struct ata_port *ap = dev->link->ap; 2137 unsigned int err_mask; 2138 int log_index = ATA_LOG_NCQ_NON_DATA * 2; 2139 u16 log_pages; 2140 2141 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2142 0, ap->sector_buf, 1); 2143 if (err_mask) { 2144 ata_dev_dbg(dev, 2145 "failed to get Log Directory Emask 0x%x\n", 2146 err_mask); 2147 return; 2148 } 2149 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2150 if (!log_pages) { 2151 ata_dev_warn(dev, 2152 "NCQ Send/Recv Log not supported\n"); 2153 return; 2154 } 2155 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2156 0, ap->sector_buf, 1); 2157 if (err_mask) { 2158 ata_dev_dbg(dev, 2159 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2160 err_mask); 2161 } else { 2162 u8 *cmds = dev->ncq_non_data_cmds; 2163 2164 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2165 } 2166 } 2167 2168 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2169 { 2170 struct ata_port *ap = dev->link->ap; 2171 unsigned int err_mask; 2172 2173 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2174 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2175 return; 2176 } 2177 2178 err_mask = ata_read_log_page(dev, 2179 ATA_LOG_SATA_ID_DEV_DATA, 2180 ATA_LOG_SATA_SETTINGS, 2181 ap->sector_buf, 2182 1); 2183 if (err_mask) { 2184 ata_dev_dbg(dev, 2185 "failed to get Identify Device data, Emask 0x%x\n", 2186 err_mask); 2187 return; 2188 } 2189 2190 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2191 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2192 } else { 2193 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2194 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2195 } 2196 2197 } 2198 2199 static int ata_dev_config_ncq(struct ata_device *dev, 2200 char *desc, size_t desc_sz) 2201 { 2202 struct ata_port *ap = dev->link->ap; 2203 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2204 unsigned int err_mask; 2205 char *aa_desc = ""; 2206 2207 if (!ata_id_has_ncq(dev->id)) { 2208 desc[0] = '\0'; 2209 return 0; 2210 } 2211 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2212 snprintf(desc, desc_sz, "NCQ (not used)"); 2213 return 0; 2214 } 2215 if (ap->flags & ATA_FLAG_NCQ) { 2216 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2217 dev->flags |= ATA_DFLAG_NCQ; 2218 } 2219 2220 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2221 (ap->flags & ATA_FLAG_FPDMA_AA) && 2222 ata_id_has_fpdma_aa(dev->id)) { 2223 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2224 SATA_FPDMA_AA); 2225 if (err_mask) { 2226 ata_dev_err(dev, 2227 "failed to enable AA (error_mask=0x%x)\n", 2228 err_mask); 2229 if (err_mask != AC_ERR_DEV) { 2230 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2231 return -EIO; 2232 } 2233 } else 2234 aa_desc = ", AA"; 2235 } 2236 2237 if (hdepth >= ddepth) 2238 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2239 else 2240 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2241 ddepth, aa_desc); 2242 2243 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2244 if (ata_id_has_ncq_send_and_recv(dev->id)) 2245 ata_dev_config_ncq_send_recv(dev); 2246 if (ata_id_has_ncq_non_data(dev->id)) 2247 ata_dev_config_ncq_non_data(dev); 2248 if (ata_id_has_ncq_prio(dev->id)) 2249 ata_dev_config_ncq_prio(dev); 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2256 { 2257 unsigned int err_mask; 2258 2259 if (!ata_id_has_sense_reporting(dev->id)) 2260 return; 2261 2262 if (ata_id_sense_reporting_enabled(dev->id)) 2263 return; 2264 2265 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2266 if (err_mask) { 2267 ata_dev_dbg(dev, 2268 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2269 err_mask); 2270 } 2271 } 2272 2273 static void ata_dev_config_zac(struct ata_device *dev) 2274 { 2275 struct ata_port *ap = dev->link->ap; 2276 unsigned int err_mask; 2277 u8 *identify_buf = ap->sector_buf; 2278 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0; 2279 u16 log_pages; 2280 2281 dev->zac_zones_optimal_open = U32_MAX; 2282 dev->zac_zones_optimal_nonseq = U32_MAX; 2283 dev->zac_zones_max_open = U32_MAX; 2284 2285 /* 2286 * Always set the 'ZAC' flag for Host-managed devices. 2287 */ 2288 if (dev->class == ATA_DEV_ZAC) 2289 dev->flags |= ATA_DFLAG_ZAC; 2290 else if (ata_id_zoned_cap(dev->id) == 0x01) 2291 /* 2292 * Check for host-aware devices. 2293 */ 2294 dev->flags |= ATA_DFLAG_ZAC; 2295 2296 if (!(dev->flags & ATA_DFLAG_ZAC)) 2297 return; 2298 2299 /* 2300 * Read Log Directory to figure out if IDENTIFY DEVICE log 2301 * is supported. 2302 */ 2303 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2304 0, ap->sector_buf, 1); 2305 if (err_mask) { 2306 ata_dev_info(dev, 2307 "failed to get Log Directory Emask 0x%x\n", 2308 err_mask); 2309 return; 2310 } 2311 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2312 if (log_pages == 0) { 2313 ata_dev_warn(dev, 2314 "ATA Identify Device Log not supported\n"); 2315 return; 2316 } 2317 /* 2318 * Read IDENTIFY DEVICE data log, page 0, to figure out 2319 * if page 9 is supported. 2320 */ 2321 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0, 2322 identify_buf, 1); 2323 if (err_mask) { 2324 ata_dev_info(dev, 2325 "failed to get Device Identify Log Emask 0x%x\n", 2326 err_mask); 2327 return; 2328 } 2329 log_pages = identify_buf[8]; 2330 for (i = 0; i < log_pages; i++) { 2331 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) { 2332 found++; 2333 break; 2334 } 2335 } 2336 if (!found) { 2337 ata_dev_warn(dev, 2338 "ATA Zoned Information Log not supported\n"); 2339 return; 2340 } 2341 2342 /* 2343 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2344 */ 2345 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 2346 ATA_LOG_ZONED_INFORMATION, 2347 identify_buf, 1); 2348 if (!err_mask) { 2349 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2350 2351 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2352 if ((zoned_cap >> 63)) 2353 dev->zac_zoned_cap = (zoned_cap & 1); 2354 opt_open = get_unaligned_le64(&identify_buf[24]); 2355 if ((opt_open >> 63)) 2356 dev->zac_zones_optimal_open = (u32)opt_open; 2357 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2358 if ((opt_nonseq >> 63)) 2359 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2360 max_open = get_unaligned_le64(&identify_buf[40]); 2361 if ((max_open >> 63)) 2362 dev->zac_zones_max_open = (u32)max_open; 2363 } 2364 } 2365 2366 /** 2367 * ata_dev_configure - Configure the specified ATA/ATAPI device 2368 * @dev: Target device to configure 2369 * 2370 * Configure @dev according to @dev->id. Generic and low-level 2371 * driver specific fixups are also applied. 2372 * 2373 * LOCKING: 2374 * Kernel thread context (may sleep) 2375 * 2376 * RETURNS: 2377 * 0 on success, -errno otherwise 2378 */ 2379 int ata_dev_configure(struct ata_device *dev) 2380 { 2381 struct ata_port *ap = dev->link->ap; 2382 struct ata_eh_context *ehc = &dev->link->eh_context; 2383 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2384 const u16 *id = dev->id; 2385 unsigned long xfer_mask; 2386 unsigned int err_mask; 2387 char revbuf[7]; /* XYZ-99\0 */ 2388 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2389 char modelbuf[ATA_ID_PROD_LEN+1]; 2390 int rc; 2391 2392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2393 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2394 return 0; 2395 } 2396 2397 if (ata_msg_probe(ap)) 2398 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2399 2400 /* set horkage */ 2401 dev->horkage |= ata_dev_blacklisted(dev); 2402 ata_force_horkage(dev); 2403 2404 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2405 ata_dev_info(dev, "unsupported device, disabling\n"); 2406 ata_dev_disable(dev); 2407 return 0; 2408 } 2409 2410 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2411 dev->class == ATA_DEV_ATAPI) { 2412 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2413 atapi_enabled ? "not supported with this driver" 2414 : "disabled"); 2415 ata_dev_disable(dev); 2416 return 0; 2417 } 2418 2419 rc = ata_do_link_spd_horkage(dev); 2420 if (rc) 2421 return rc; 2422 2423 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2424 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2425 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2426 dev->horkage |= ATA_HORKAGE_NOLPM; 2427 2428 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2429 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2430 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2431 } 2432 2433 /* let ACPI work its magic */ 2434 rc = ata_acpi_on_devcfg(dev); 2435 if (rc) 2436 return rc; 2437 2438 /* massage HPA, do it early as it might change IDENTIFY data */ 2439 rc = ata_hpa_resize(dev); 2440 if (rc) 2441 return rc; 2442 2443 /* print device capabilities */ 2444 if (ata_msg_probe(ap)) 2445 ata_dev_dbg(dev, 2446 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2447 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2448 __func__, 2449 id[49], id[82], id[83], id[84], 2450 id[85], id[86], id[87], id[88]); 2451 2452 /* initialize to-be-configured parameters */ 2453 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2454 dev->max_sectors = 0; 2455 dev->cdb_len = 0; 2456 dev->n_sectors = 0; 2457 dev->cylinders = 0; 2458 dev->heads = 0; 2459 dev->sectors = 0; 2460 dev->multi_count = 0; 2461 2462 /* 2463 * common ATA, ATAPI feature tests 2464 */ 2465 2466 /* find max transfer mode; for printk only */ 2467 xfer_mask = ata_id_xfermask(id); 2468 2469 if (ata_msg_probe(ap)) 2470 ata_dump_id(id); 2471 2472 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2473 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2474 sizeof(fwrevbuf)); 2475 2476 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2477 sizeof(modelbuf)); 2478 2479 /* ATA-specific feature tests */ 2480 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2481 if (ata_id_is_cfa(id)) { 2482 /* CPRM may make this media unusable */ 2483 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2484 ata_dev_warn(dev, 2485 "supports DRM functions and may not be fully accessible\n"); 2486 snprintf(revbuf, 7, "CFA"); 2487 } else { 2488 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2489 /* Warn the user if the device has TPM extensions */ 2490 if (ata_id_has_tpm(id)) 2491 ata_dev_warn(dev, 2492 "supports DRM functions and may not be fully accessible\n"); 2493 } 2494 2495 dev->n_sectors = ata_id_n_sectors(id); 2496 2497 /* get current R/W Multiple count setting */ 2498 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2499 unsigned int max = dev->id[47] & 0xff; 2500 unsigned int cnt = dev->id[59] & 0xff; 2501 /* only recognize/allow powers of two here */ 2502 if (is_power_of_2(max) && is_power_of_2(cnt)) 2503 if (cnt <= max) 2504 dev->multi_count = cnt; 2505 } 2506 2507 if (ata_id_has_lba(id)) { 2508 const char *lba_desc; 2509 char ncq_desc[24]; 2510 2511 lba_desc = "LBA"; 2512 dev->flags |= ATA_DFLAG_LBA; 2513 if (ata_id_has_lba48(id)) { 2514 dev->flags |= ATA_DFLAG_LBA48; 2515 lba_desc = "LBA48"; 2516 2517 if (dev->n_sectors >= (1UL << 28) && 2518 ata_id_has_flush_ext(id)) 2519 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2520 } 2521 2522 /* config NCQ */ 2523 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2524 if (rc) 2525 return rc; 2526 2527 /* print device info to dmesg */ 2528 if (ata_msg_drv(ap) && print_info) { 2529 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2530 revbuf, modelbuf, fwrevbuf, 2531 ata_mode_string(xfer_mask)); 2532 ata_dev_info(dev, 2533 "%llu sectors, multi %u: %s %s\n", 2534 (unsigned long long)dev->n_sectors, 2535 dev->multi_count, lba_desc, ncq_desc); 2536 } 2537 } else { 2538 /* CHS */ 2539 2540 /* Default translation */ 2541 dev->cylinders = id[1]; 2542 dev->heads = id[3]; 2543 dev->sectors = id[6]; 2544 2545 if (ata_id_current_chs_valid(id)) { 2546 /* Current CHS translation is valid. */ 2547 dev->cylinders = id[54]; 2548 dev->heads = id[55]; 2549 dev->sectors = id[56]; 2550 } 2551 2552 /* print device info to dmesg */ 2553 if (ata_msg_drv(ap) && print_info) { 2554 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2555 revbuf, modelbuf, fwrevbuf, 2556 ata_mode_string(xfer_mask)); 2557 ata_dev_info(dev, 2558 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2559 (unsigned long long)dev->n_sectors, 2560 dev->multi_count, dev->cylinders, 2561 dev->heads, dev->sectors); 2562 } 2563 } 2564 2565 /* Check and mark DevSlp capability. Get DevSlp timing variables 2566 * from SATA Settings page of Identify Device Data Log. 2567 */ 2568 if (ata_id_has_devslp(dev->id)) { 2569 u8 *sata_setting = ap->sector_buf; 2570 int i, j; 2571 2572 dev->flags |= ATA_DFLAG_DEVSLP; 2573 err_mask = ata_read_log_page(dev, 2574 ATA_LOG_SATA_ID_DEV_DATA, 2575 ATA_LOG_SATA_SETTINGS, 2576 sata_setting, 2577 1); 2578 if (err_mask) 2579 ata_dev_dbg(dev, 2580 "failed to get Identify Device Data, Emask 0x%x\n", 2581 err_mask); 2582 else 2583 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2584 j = ATA_LOG_DEVSLP_OFFSET + i; 2585 dev->devslp_timing[i] = sata_setting[j]; 2586 } 2587 } 2588 ata_dev_config_sense_reporting(dev); 2589 ata_dev_config_zac(dev); 2590 dev->cdb_len = 16; 2591 } 2592 2593 /* ATAPI-specific feature tests */ 2594 else if (dev->class == ATA_DEV_ATAPI) { 2595 const char *cdb_intr_string = ""; 2596 const char *atapi_an_string = ""; 2597 const char *dma_dir_string = ""; 2598 u32 sntf; 2599 2600 rc = atapi_cdb_len(id); 2601 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2602 if (ata_msg_warn(ap)) 2603 ata_dev_warn(dev, "unsupported CDB len\n"); 2604 rc = -EINVAL; 2605 goto err_out_nosup; 2606 } 2607 dev->cdb_len = (unsigned int) rc; 2608 2609 /* Enable ATAPI AN if both the host and device have 2610 * the support. If PMP is attached, SNTF is required 2611 * to enable ATAPI AN to discern between PHY status 2612 * changed notifications and ATAPI ANs. 2613 */ 2614 if (atapi_an && 2615 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2616 (!sata_pmp_attached(ap) || 2617 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2618 /* issue SET feature command to turn this on */ 2619 err_mask = ata_dev_set_feature(dev, 2620 SETFEATURES_SATA_ENABLE, SATA_AN); 2621 if (err_mask) 2622 ata_dev_err(dev, 2623 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2624 err_mask); 2625 else { 2626 dev->flags |= ATA_DFLAG_AN; 2627 atapi_an_string = ", ATAPI AN"; 2628 } 2629 } 2630 2631 if (ata_id_cdb_intr(dev->id)) { 2632 dev->flags |= ATA_DFLAG_CDB_INTR; 2633 cdb_intr_string = ", CDB intr"; 2634 } 2635 2636 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2637 dev->flags |= ATA_DFLAG_DMADIR; 2638 dma_dir_string = ", DMADIR"; 2639 } 2640 2641 if (ata_id_has_da(dev->id)) { 2642 dev->flags |= ATA_DFLAG_DA; 2643 zpodd_init(dev); 2644 } 2645 2646 /* print device info to dmesg */ 2647 if (ata_msg_drv(ap) && print_info) 2648 ata_dev_info(dev, 2649 "ATAPI: %s, %s, max %s%s%s%s\n", 2650 modelbuf, fwrevbuf, 2651 ata_mode_string(xfer_mask), 2652 cdb_intr_string, atapi_an_string, 2653 dma_dir_string); 2654 } 2655 2656 /* determine max_sectors */ 2657 dev->max_sectors = ATA_MAX_SECTORS; 2658 if (dev->flags & ATA_DFLAG_LBA48) 2659 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2660 2661 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2662 200 sectors */ 2663 if (ata_dev_knobble(dev)) { 2664 if (ata_msg_drv(ap) && print_info) 2665 ata_dev_info(dev, "applying bridge limits\n"); 2666 dev->udma_mask &= ATA_UDMA5; 2667 dev->max_sectors = ATA_MAX_SECTORS; 2668 } 2669 2670 if ((dev->class == ATA_DEV_ATAPI) && 2671 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2672 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2673 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2674 } 2675 2676 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2677 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2678 dev->max_sectors); 2679 2680 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2681 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2682 dev->max_sectors); 2683 2684 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2685 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2686 2687 if (ap->ops->dev_config) 2688 ap->ops->dev_config(dev); 2689 2690 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2691 /* Let the user know. We don't want to disallow opens for 2692 rescue purposes, or in case the vendor is just a blithering 2693 idiot. Do this after the dev_config call as some controllers 2694 with buggy firmware may want to avoid reporting false device 2695 bugs */ 2696 2697 if (print_info) { 2698 ata_dev_warn(dev, 2699 "Drive reports diagnostics failure. This may indicate a drive\n"); 2700 ata_dev_warn(dev, 2701 "fault or invalid emulation. Contact drive vendor for information.\n"); 2702 } 2703 } 2704 2705 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2706 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2707 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2708 } 2709 2710 return 0; 2711 2712 err_out_nosup: 2713 if (ata_msg_probe(ap)) 2714 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2715 return rc; 2716 } 2717 2718 /** 2719 * ata_cable_40wire - return 40 wire cable type 2720 * @ap: port 2721 * 2722 * Helper method for drivers which want to hardwire 40 wire cable 2723 * detection. 2724 */ 2725 2726 int ata_cable_40wire(struct ata_port *ap) 2727 { 2728 return ATA_CBL_PATA40; 2729 } 2730 2731 /** 2732 * ata_cable_80wire - return 80 wire cable type 2733 * @ap: port 2734 * 2735 * Helper method for drivers which want to hardwire 80 wire cable 2736 * detection. 2737 */ 2738 2739 int ata_cable_80wire(struct ata_port *ap) 2740 { 2741 return ATA_CBL_PATA80; 2742 } 2743 2744 /** 2745 * ata_cable_unknown - return unknown PATA cable. 2746 * @ap: port 2747 * 2748 * Helper method for drivers which have no PATA cable detection. 2749 */ 2750 2751 int ata_cable_unknown(struct ata_port *ap) 2752 { 2753 return ATA_CBL_PATA_UNK; 2754 } 2755 2756 /** 2757 * ata_cable_ignore - return ignored PATA cable. 2758 * @ap: port 2759 * 2760 * Helper method for drivers which don't use cable type to limit 2761 * transfer mode. 2762 */ 2763 int ata_cable_ignore(struct ata_port *ap) 2764 { 2765 return ATA_CBL_PATA_IGN; 2766 } 2767 2768 /** 2769 * ata_cable_sata - return SATA cable type 2770 * @ap: port 2771 * 2772 * Helper method for drivers which have SATA cables 2773 */ 2774 2775 int ata_cable_sata(struct ata_port *ap) 2776 { 2777 return ATA_CBL_SATA; 2778 } 2779 2780 /** 2781 * ata_bus_probe - Reset and probe ATA bus 2782 * @ap: Bus to probe 2783 * 2784 * Master ATA bus probing function. Initiates a hardware-dependent 2785 * bus reset, then attempts to identify any devices found on 2786 * the bus. 2787 * 2788 * LOCKING: 2789 * PCI/etc. bus probe sem. 2790 * 2791 * RETURNS: 2792 * Zero on success, negative errno otherwise. 2793 */ 2794 2795 int ata_bus_probe(struct ata_port *ap) 2796 { 2797 unsigned int classes[ATA_MAX_DEVICES]; 2798 int tries[ATA_MAX_DEVICES]; 2799 int rc; 2800 struct ata_device *dev; 2801 2802 ata_for_each_dev(dev, &ap->link, ALL) 2803 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2804 2805 retry: 2806 ata_for_each_dev(dev, &ap->link, ALL) { 2807 /* If we issue an SRST then an ATA drive (not ATAPI) 2808 * may change configuration and be in PIO0 timing. If 2809 * we do a hard reset (or are coming from power on) 2810 * this is true for ATA or ATAPI. Until we've set a 2811 * suitable controller mode we should not touch the 2812 * bus as we may be talking too fast. 2813 */ 2814 dev->pio_mode = XFER_PIO_0; 2815 dev->dma_mode = 0xff; 2816 2817 /* If the controller has a pio mode setup function 2818 * then use it to set the chipset to rights. Don't 2819 * touch the DMA setup as that will be dealt with when 2820 * configuring devices. 2821 */ 2822 if (ap->ops->set_piomode) 2823 ap->ops->set_piomode(ap, dev); 2824 } 2825 2826 /* reset and determine device classes */ 2827 ap->ops->phy_reset(ap); 2828 2829 ata_for_each_dev(dev, &ap->link, ALL) { 2830 if (dev->class != ATA_DEV_UNKNOWN) 2831 classes[dev->devno] = dev->class; 2832 else 2833 classes[dev->devno] = ATA_DEV_NONE; 2834 2835 dev->class = ATA_DEV_UNKNOWN; 2836 } 2837 2838 /* read IDENTIFY page and configure devices. We have to do the identify 2839 specific sequence bass-ackwards so that PDIAG- is released by 2840 the slave device */ 2841 2842 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2843 if (tries[dev->devno]) 2844 dev->class = classes[dev->devno]; 2845 2846 if (!ata_dev_enabled(dev)) 2847 continue; 2848 2849 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2850 dev->id); 2851 if (rc) 2852 goto fail; 2853 } 2854 2855 /* Now ask for the cable type as PDIAG- should have been released */ 2856 if (ap->ops->cable_detect) 2857 ap->cbl = ap->ops->cable_detect(ap); 2858 2859 /* We may have SATA bridge glue hiding here irrespective of 2860 * the reported cable types and sensed types. When SATA 2861 * drives indicate we have a bridge, we don't know which end 2862 * of the link the bridge is which is a problem. 2863 */ 2864 ata_for_each_dev(dev, &ap->link, ENABLED) 2865 if (ata_id_is_sata(dev->id)) 2866 ap->cbl = ATA_CBL_SATA; 2867 2868 /* After the identify sequence we can now set up the devices. We do 2869 this in the normal order so that the user doesn't get confused */ 2870 2871 ata_for_each_dev(dev, &ap->link, ENABLED) { 2872 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2873 rc = ata_dev_configure(dev); 2874 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2875 if (rc) 2876 goto fail; 2877 } 2878 2879 /* configure transfer mode */ 2880 rc = ata_set_mode(&ap->link, &dev); 2881 if (rc) 2882 goto fail; 2883 2884 ata_for_each_dev(dev, &ap->link, ENABLED) 2885 return 0; 2886 2887 return -ENODEV; 2888 2889 fail: 2890 tries[dev->devno]--; 2891 2892 switch (rc) { 2893 case -EINVAL: 2894 /* eeek, something went very wrong, give up */ 2895 tries[dev->devno] = 0; 2896 break; 2897 2898 case -ENODEV: 2899 /* give it just one more chance */ 2900 tries[dev->devno] = min(tries[dev->devno], 1); 2901 case -EIO: 2902 if (tries[dev->devno] == 1) { 2903 /* This is the last chance, better to slow 2904 * down than lose it. 2905 */ 2906 sata_down_spd_limit(&ap->link, 0); 2907 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2908 } 2909 } 2910 2911 if (!tries[dev->devno]) 2912 ata_dev_disable(dev); 2913 2914 goto retry; 2915 } 2916 2917 /** 2918 * sata_print_link_status - Print SATA link status 2919 * @link: SATA link to printk link status about 2920 * 2921 * This function prints link speed and status of a SATA link. 2922 * 2923 * LOCKING: 2924 * None. 2925 */ 2926 static void sata_print_link_status(struct ata_link *link) 2927 { 2928 u32 sstatus, scontrol, tmp; 2929 2930 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2931 return; 2932 sata_scr_read(link, SCR_CONTROL, &scontrol); 2933 2934 if (ata_phys_link_online(link)) { 2935 tmp = (sstatus >> 4) & 0xf; 2936 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2937 sata_spd_string(tmp), sstatus, scontrol); 2938 } else { 2939 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2940 sstatus, scontrol); 2941 } 2942 } 2943 2944 /** 2945 * ata_dev_pair - return other device on cable 2946 * @adev: device 2947 * 2948 * Obtain the other device on the same cable, or if none is 2949 * present NULL is returned 2950 */ 2951 2952 struct ata_device *ata_dev_pair(struct ata_device *adev) 2953 { 2954 struct ata_link *link = adev->link; 2955 struct ata_device *pair = &link->device[1 - adev->devno]; 2956 if (!ata_dev_enabled(pair)) 2957 return NULL; 2958 return pair; 2959 } 2960 2961 /** 2962 * sata_down_spd_limit - adjust SATA spd limit downward 2963 * @link: Link to adjust SATA spd limit for 2964 * @spd_limit: Additional limit 2965 * 2966 * Adjust SATA spd limit of @link downward. Note that this 2967 * function only adjusts the limit. The change must be applied 2968 * using sata_set_spd(). 2969 * 2970 * If @spd_limit is non-zero, the speed is limited to equal to or 2971 * lower than @spd_limit if such speed is supported. If 2972 * @spd_limit is slower than any supported speed, only the lowest 2973 * supported speed is allowed. 2974 * 2975 * LOCKING: 2976 * Inherited from caller. 2977 * 2978 * RETURNS: 2979 * 0 on success, negative errno on failure 2980 */ 2981 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2982 { 2983 u32 sstatus, spd, mask; 2984 int rc, bit; 2985 2986 if (!sata_scr_valid(link)) 2987 return -EOPNOTSUPP; 2988 2989 /* If SCR can be read, use it to determine the current SPD. 2990 * If not, use cached value in link->sata_spd. 2991 */ 2992 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2993 if (rc == 0 && ata_sstatus_online(sstatus)) 2994 spd = (sstatus >> 4) & 0xf; 2995 else 2996 spd = link->sata_spd; 2997 2998 mask = link->sata_spd_limit; 2999 if (mask <= 1) 3000 return -EINVAL; 3001 3002 /* unconditionally mask off the highest bit */ 3003 bit = fls(mask) - 1; 3004 mask &= ~(1 << bit); 3005 3006 /* Mask off all speeds higher than or equal to the current 3007 * one. Force 1.5Gbps if current SPD is not available. 3008 */ 3009 if (spd > 1) 3010 mask &= (1 << (spd - 1)) - 1; 3011 else 3012 mask &= 1; 3013 3014 /* were we already at the bottom? */ 3015 if (!mask) 3016 return -EINVAL; 3017 3018 if (spd_limit) { 3019 if (mask & ((1 << spd_limit) - 1)) 3020 mask &= (1 << spd_limit) - 1; 3021 else { 3022 bit = ffs(mask) - 1; 3023 mask = 1 << bit; 3024 } 3025 } 3026 3027 link->sata_spd_limit = mask; 3028 3029 ata_link_warn(link, "limiting SATA link speed to %s\n", 3030 sata_spd_string(fls(mask))); 3031 3032 return 0; 3033 } 3034 3035 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3036 { 3037 struct ata_link *host_link = &link->ap->link; 3038 u32 limit, target, spd; 3039 3040 limit = link->sata_spd_limit; 3041 3042 /* Don't configure downstream link faster than upstream link. 3043 * It doesn't speed up anything and some PMPs choke on such 3044 * configuration. 3045 */ 3046 if (!ata_is_host_link(link) && host_link->sata_spd) 3047 limit &= (1 << host_link->sata_spd) - 1; 3048 3049 if (limit == UINT_MAX) 3050 target = 0; 3051 else 3052 target = fls(limit); 3053 3054 spd = (*scontrol >> 4) & 0xf; 3055 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3056 3057 return spd != target; 3058 } 3059 3060 /** 3061 * sata_set_spd_needed - is SATA spd configuration needed 3062 * @link: Link in question 3063 * 3064 * Test whether the spd limit in SControl matches 3065 * @link->sata_spd_limit. This function is used to determine 3066 * whether hardreset is necessary to apply SATA spd 3067 * configuration. 3068 * 3069 * LOCKING: 3070 * Inherited from caller. 3071 * 3072 * RETURNS: 3073 * 1 if SATA spd configuration is needed, 0 otherwise. 3074 */ 3075 static int sata_set_spd_needed(struct ata_link *link) 3076 { 3077 u32 scontrol; 3078 3079 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3080 return 1; 3081 3082 return __sata_set_spd_needed(link, &scontrol); 3083 } 3084 3085 /** 3086 * sata_set_spd - set SATA spd according to spd limit 3087 * @link: Link to set SATA spd for 3088 * 3089 * Set SATA spd of @link according to sata_spd_limit. 3090 * 3091 * LOCKING: 3092 * Inherited from caller. 3093 * 3094 * RETURNS: 3095 * 0 if spd doesn't need to be changed, 1 if spd has been 3096 * changed. Negative errno if SCR registers are inaccessible. 3097 */ 3098 int sata_set_spd(struct ata_link *link) 3099 { 3100 u32 scontrol; 3101 int rc; 3102 3103 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3104 return rc; 3105 3106 if (!__sata_set_spd_needed(link, &scontrol)) 3107 return 0; 3108 3109 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3110 return rc; 3111 3112 return 1; 3113 } 3114 3115 /* 3116 * This mode timing computation functionality is ported over from 3117 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3118 */ 3119 /* 3120 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3121 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3122 * for UDMA6, which is currently supported only by Maxtor drives. 3123 * 3124 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3125 */ 3126 3127 static const struct ata_timing ata_timing[] = { 3128 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3129 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3130 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3131 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3132 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3133 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3134 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3135 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3136 3137 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3138 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3139 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3140 3141 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3142 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3143 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3144 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3145 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3146 3147 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3148 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3149 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3150 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3151 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3152 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3153 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3154 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3155 3156 { 0xFF } 3157 }; 3158 3159 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3160 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3161 3162 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3163 { 3164 q->setup = EZ(t->setup * 1000, T); 3165 q->act8b = EZ(t->act8b * 1000, T); 3166 q->rec8b = EZ(t->rec8b * 1000, T); 3167 q->cyc8b = EZ(t->cyc8b * 1000, T); 3168 q->active = EZ(t->active * 1000, T); 3169 q->recover = EZ(t->recover * 1000, T); 3170 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3171 q->cycle = EZ(t->cycle * 1000, T); 3172 q->udma = EZ(t->udma * 1000, UT); 3173 } 3174 3175 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3176 struct ata_timing *m, unsigned int what) 3177 { 3178 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3179 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3180 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3181 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3182 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3183 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3184 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3185 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3186 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3187 } 3188 3189 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3190 { 3191 const struct ata_timing *t = ata_timing; 3192 3193 while (xfer_mode > t->mode) 3194 t++; 3195 3196 if (xfer_mode == t->mode) 3197 return t; 3198 3199 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3200 __func__, xfer_mode); 3201 3202 return NULL; 3203 } 3204 3205 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3206 struct ata_timing *t, int T, int UT) 3207 { 3208 const u16 *id = adev->id; 3209 const struct ata_timing *s; 3210 struct ata_timing p; 3211 3212 /* 3213 * Find the mode. 3214 */ 3215 3216 if (!(s = ata_timing_find_mode(speed))) 3217 return -EINVAL; 3218 3219 memcpy(t, s, sizeof(*s)); 3220 3221 /* 3222 * If the drive is an EIDE drive, it can tell us it needs extended 3223 * PIO/MW_DMA cycle timing. 3224 */ 3225 3226 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3227 memset(&p, 0, sizeof(p)); 3228 3229 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3230 if (speed <= XFER_PIO_2) 3231 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3232 else if ((speed <= XFER_PIO_4) || 3233 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3234 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3235 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3236 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3237 3238 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3239 } 3240 3241 /* 3242 * Convert the timing to bus clock counts. 3243 */ 3244 3245 ata_timing_quantize(t, t, T, UT); 3246 3247 /* 3248 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3249 * S.M.A.R.T * and some other commands. We have to ensure that the 3250 * DMA cycle timing is slower/equal than the fastest PIO timing. 3251 */ 3252 3253 if (speed > XFER_PIO_6) { 3254 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3255 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3256 } 3257 3258 /* 3259 * Lengthen active & recovery time so that cycle time is correct. 3260 */ 3261 3262 if (t->act8b + t->rec8b < t->cyc8b) { 3263 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3264 t->rec8b = t->cyc8b - t->act8b; 3265 } 3266 3267 if (t->active + t->recover < t->cycle) { 3268 t->active += (t->cycle - (t->active + t->recover)) / 2; 3269 t->recover = t->cycle - t->active; 3270 } 3271 3272 /* In a few cases quantisation may produce enough errors to 3273 leave t->cycle too low for the sum of active and recovery 3274 if so we must correct this */ 3275 if (t->active + t->recover > t->cycle) 3276 t->cycle = t->active + t->recover; 3277 3278 return 0; 3279 } 3280 3281 /** 3282 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3283 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3284 * @cycle: cycle duration in ns 3285 * 3286 * Return matching xfer mode for @cycle. The returned mode is of 3287 * the transfer type specified by @xfer_shift. If @cycle is too 3288 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3289 * than the fastest known mode, the fasted mode is returned. 3290 * 3291 * LOCKING: 3292 * None. 3293 * 3294 * RETURNS: 3295 * Matching xfer_mode, 0xff if no match found. 3296 */ 3297 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3298 { 3299 u8 base_mode = 0xff, last_mode = 0xff; 3300 const struct ata_xfer_ent *ent; 3301 const struct ata_timing *t; 3302 3303 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3304 if (ent->shift == xfer_shift) 3305 base_mode = ent->base; 3306 3307 for (t = ata_timing_find_mode(base_mode); 3308 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3309 unsigned short this_cycle; 3310 3311 switch (xfer_shift) { 3312 case ATA_SHIFT_PIO: 3313 case ATA_SHIFT_MWDMA: 3314 this_cycle = t->cycle; 3315 break; 3316 case ATA_SHIFT_UDMA: 3317 this_cycle = t->udma; 3318 break; 3319 default: 3320 return 0xff; 3321 } 3322 3323 if (cycle > this_cycle) 3324 break; 3325 3326 last_mode = t->mode; 3327 } 3328 3329 return last_mode; 3330 } 3331 3332 /** 3333 * ata_down_xfermask_limit - adjust dev xfer masks downward 3334 * @dev: Device to adjust xfer masks 3335 * @sel: ATA_DNXFER_* selector 3336 * 3337 * Adjust xfer masks of @dev downward. Note that this function 3338 * does not apply the change. Invoking ata_set_mode() afterwards 3339 * will apply the limit. 3340 * 3341 * LOCKING: 3342 * Inherited from caller. 3343 * 3344 * RETURNS: 3345 * 0 on success, negative errno on failure 3346 */ 3347 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3348 { 3349 char buf[32]; 3350 unsigned long orig_mask, xfer_mask; 3351 unsigned long pio_mask, mwdma_mask, udma_mask; 3352 int quiet, highbit; 3353 3354 quiet = !!(sel & ATA_DNXFER_QUIET); 3355 sel &= ~ATA_DNXFER_QUIET; 3356 3357 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3358 dev->mwdma_mask, 3359 dev->udma_mask); 3360 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3361 3362 switch (sel) { 3363 case ATA_DNXFER_PIO: 3364 highbit = fls(pio_mask) - 1; 3365 pio_mask &= ~(1 << highbit); 3366 break; 3367 3368 case ATA_DNXFER_DMA: 3369 if (udma_mask) { 3370 highbit = fls(udma_mask) - 1; 3371 udma_mask &= ~(1 << highbit); 3372 if (!udma_mask) 3373 return -ENOENT; 3374 } else if (mwdma_mask) { 3375 highbit = fls(mwdma_mask) - 1; 3376 mwdma_mask &= ~(1 << highbit); 3377 if (!mwdma_mask) 3378 return -ENOENT; 3379 } 3380 break; 3381 3382 case ATA_DNXFER_40C: 3383 udma_mask &= ATA_UDMA_MASK_40C; 3384 break; 3385 3386 case ATA_DNXFER_FORCE_PIO0: 3387 pio_mask &= 1; 3388 case ATA_DNXFER_FORCE_PIO: 3389 mwdma_mask = 0; 3390 udma_mask = 0; 3391 break; 3392 3393 default: 3394 BUG(); 3395 } 3396 3397 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3398 3399 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3400 return -ENOENT; 3401 3402 if (!quiet) { 3403 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3404 snprintf(buf, sizeof(buf), "%s:%s", 3405 ata_mode_string(xfer_mask), 3406 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3407 else 3408 snprintf(buf, sizeof(buf), "%s", 3409 ata_mode_string(xfer_mask)); 3410 3411 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3412 } 3413 3414 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3415 &dev->udma_mask); 3416 3417 return 0; 3418 } 3419 3420 static int ata_dev_set_mode(struct ata_device *dev) 3421 { 3422 struct ata_port *ap = dev->link->ap; 3423 struct ata_eh_context *ehc = &dev->link->eh_context; 3424 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3425 const char *dev_err_whine = ""; 3426 int ign_dev_err = 0; 3427 unsigned int err_mask = 0; 3428 int rc; 3429 3430 dev->flags &= ~ATA_DFLAG_PIO; 3431 if (dev->xfer_shift == ATA_SHIFT_PIO) 3432 dev->flags |= ATA_DFLAG_PIO; 3433 3434 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3435 dev_err_whine = " (SET_XFERMODE skipped)"; 3436 else { 3437 if (nosetxfer) 3438 ata_dev_warn(dev, 3439 "NOSETXFER but PATA detected - can't " 3440 "skip SETXFER, might malfunction\n"); 3441 err_mask = ata_dev_set_xfermode(dev); 3442 } 3443 3444 if (err_mask & ~AC_ERR_DEV) 3445 goto fail; 3446 3447 /* revalidate */ 3448 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3449 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3450 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3451 if (rc) 3452 return rc; 3453 3454 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3455 /* Old CFA may refuse this command, which is just fine */ 3456 if (ata_id_is_cfa(dev->id)) 3457 ign_dev_err = 1; 3458 /* Catch several broken garbage emulations plus some pre 3459 ATA devices */ 3460 if (ata_id_major_version(dev->id) == 0 && 3461 dev->pio_mode <= XFER_PIO_2) 3462 ign_dev_err = 1; 3463 /* Some very old devices and some bad newer ones fail 3464 any kind of SET_XFERMODE request but support PIO0-2 3465 timings and no IORDY */ 3466 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3467 ign_dev_err = 1; 3468 } 3469 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3470 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3471 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3472 dev->dma_mode == XFER_MW_DMA_0 && 3473 (dev->id[63] >> 8) & 1) 3474 ign_dev_err = 1; 3475 3476 /* if the device is actually configured correctly, ignore dev err */ 3477 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3478 ign_dev_err = 1; 3479 3480 if (err_mask & AC_ERR_DEV) { 3481 if (!ign_dev_err) 3482 goto fail; 3483 else 3484 dev_err_whine = " (device error ignored)"; 3485 } 3486 3487 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3488 dev->xfer_shift, (int)dev->xfer_mode); 3489 3490 ata_dev_info(dev, "configured for %s%s\n", 3491 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3492 dev_err_whine); 3493 3494 return 0; 3495 3496 fail: 3497 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3498 return -EIO; 3499 } 3500 3501 /** 3502 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3503 * @link: link on which timings will be programmed 3504 * @r_failed_dev: out parameter for failed device 3505 * 3506 * Standard implementation of the function used to tune and set 3507 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3508 * ata_dev_set_mode() fails, pointer to the failing device is 3509 * returned in @r_failed_dev. 3510 * 3511 * LOCKING: 3512 * PCI/etc. bus probe sem. 3513 * 3514 * RETURNS: 3515 * 0 on success, negative errno otherwise 3516 */ 3517 3518 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3519 { 3520 struct ata_port *ap = link->ap; 3521 struct ata_device *dev; 3522 int rc = 0, used_dma = 0, found = 0; 3523 3524 /* step 1: calculate xfer_mask */ 3525 ata_for_each_dev(dev, link, ENABLED) { 3526 unsigned long pio_mask, dma_mask; 3527 unsigned int mode_mask; 3528 3529 mode_mask = ATA_DMA_MASK_ATA; 3530 if (dev->class == ATA_DEV_ATAPI) 3531 mode_mask = ATA_DMA_MASK_ATAPI; 3532 else if (ata_id_is_cfa(dev->id)) 3533 mode_mask = ATA_DMA_MASK_CFA; 3534 3535 ata_dev_xfermask(dev); 3536 ata_force_xfermask(dev); 3537 3538 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3539 3540 if (libata_dma_mask & mode_mask) 3541 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3542 dev->udma_mask); 3543 else 3544 dma_mask = 0; 3545 3546 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3547 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3548 3549 found = 1; 3550 if (ata_dma_enabled(dev)) 3551 used_dma = 1; 3552 } 3553 if (!found) 3554 goto out; 3555 3556 /* step 2: always set host PIO timings */ 3557 ata_for_each_dev(dev, link, ENABLED) { 3558 if (dev->pio_mode == 0xff) { 3559 ata_dev_warn(dev, "no PIO support\n"); 3560 rc = -EINVAL; 3561 goto out; 3562 } 3563 3564 dev->xfer_mode = dev->pio_mode; 3565 dev->xfer_shift = ATA_SHIFT_PIO; 3566 if (ap->ops->set_piomode) 3567 ap->ops->set_piomode(ap, dev); 3568 } 3569 3570 /* step 3: set host DMA timings */ 3571 ata_for_each_dev(dev, link, ENABLED) { 3572 if (!ata_dma_enabled(dev)) 3573 continue; 3574 3575 dev->xfer_mode = dev->dma_mode; 3576 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3577 if (ap->ops->set_dmamode) 3578 ap->ops->set_dmamode(ap, dev); 3579 } 3580 3581 /* step 4: update devices' xfer mode */ 3582 ata_for_each_dev(dev, link, ENABLED) { 3583 rc = ata_dev_set_mode(dev); 3584 if (rc) 3585 goto out; 3586 } 3587 3588 /* Record simplex status. If we selected DMA then the other 3589 * host channels are not permitted to do so. 3590 */ 3591 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3592 ap->host->simplex_claimed = ap; 3593 3594 out: 3595 if (rc) 3596 *r_failed_dev = dev; 3597 return rc; 3598 } 3599 3600 /** 3601 * ata_wait_ready - wait for link to become ready 3602 * @link: link to be waited on 3603 * @deadline: deadline jiffies for the operation 3604 * @check_ready: callback to check link readiness 3605 * 3606 * Wait for @link to become ready. @check_ready should return 3607 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3608 * link doesn't seem to be occupied, other errno for other error 3609 * conditions. 3610 * 3611 * Transient -ENODEV conditions are allowed for 3612 * ATA_TMOUT_FF_WAIT. 3613 * 3614 * LOCKING: 3615 * EH context. 3616 * 3617 * RETURNS: 3618 * 0 if @link is ready before @deadline; otherwise, -errno. 3619 */ 3620 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3621 int (*check_ready)(struct ata_link *link)) 3622 { 3623 unsigned long start = jiffies; 3624 unsigned long nodev_deadline; 3625 int warned = 0; 3626 3627 /* choose which 0xff timeout to use, read comment in libata.h */ 3628 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3629 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3630 else 3631 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3632 3633 /* Slave readiness can't be tested separately from master. On 3634 * M/S emulation configuration, this function should be called 3635 * only on the master and it will handle both master and slave. 3636 */ 3637 WARN_ON(link == link->ap->slave_link); 3638 3639 if (time_after(nodev_deadline, deadline)) 3640 nodev_deadline = deadline; 3641 3642 while (1) { 3643 unsigned long now = jiffies; 3644 int ready, tmp; 3645 3646 ready = tmp = check_ready(link); 3647 if (ready > 0) 3648 return 0; 3649 3650 /* 3651 * -ENODEV could be transient. Ignore -ENODEV if link 3652 * is online. Also, some SATA devices take a long 3653 * time to clear 0xff after reset. Wait for 3654 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3655 * offline. 3656 * 3657 * Note that some PATA controllers (pata_ali) explode 3658 * if status register is read more than once when 3659 * there's no device attached. 3660 */ 3661 if (ready == -ENODEV) { 3662 if (ata_link_online(link)) 3663 ready = 0; 3664 else if ((link->ap->flags & ATA_FLAG_SATA) && 3665 !ata_link_offline(link) && 3666 time_before(now, nodev_deadline)) 3667 ready = 0; 3668 } 3669 3670 if (ready) 3671 return ready; 3672 if (time_after(now, deadline)) 3673 return -EBUSY; 3674 3675 if (!warned && time_after(now, start + 5 * HZ) && 3676 (deadline - now > 3 * HZ)) { 3677 ata_link_warn(link, 3678 "link is slow to respond, please be patient " 3679 "(ready=%d)\n", tmp); 3680 warned = 1; 3681 } 3682 3683 ata_msleep(link->ap, 50); 3684 } 3685 } 3686 3687 /** 3688 * ata_wait_after_reset - wait for link to become ready after reset 3689 * @link: link to be waited on 3690 * @deadline: deadline jiffies for the operation 3691 * @check_ready: callback to check link readiness 3692 * 3693 * Wait for @link to become ready after reset. 3694 * 3695 * LOCKING: 3696 * EH context. 3697 * 3698 * RETURNS: 3699 * 0 if @link is ready before @deadline; otherwise, -errno. 3700 */ 3701 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3702 int (*check_ready)(struct ata_link *link)) 3703 { 3704 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3705 3706 return ata_wait_ready(link, deadline, check_ready); 3707 } 3708 3709 /** 3710 * sata_link_debounce - debounce SATA phy status 3711 * @link: ATA link to debounce SATA phy status for 3712 * @params: timing parameters { interval, duration, timeout } in msec 3713 * @deadline: deadline jiffies for the operation 3714 * 3715 * Make sure SStatus of @link reaches stable state, determined by 3716 * holding the same value where DET is not 1 for @duration polled 3717 * every @interval, before @timeout. Timeout constraints the 3718 * beginning of the stable state. Because DET gets stuck at 1 on 3719 * some controllers after hot unplugging, this functions waits 3720 * until timeout then returns 0 if DET is stable at 1. 3721 * 3722 * @timeout is further limited by @deadline. The sooner of the 3723 * two is used. 3724 * 3725 * LOCKING: 3726 * Kernel thread context (may sleep) 3727 * 3728 * RETURNS: 3729 * 0 on success, -errno on failure. 3730 */ 3731 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3732 unsigned long deadline) 3733 { 3734 unsigned long interval = params[0]; 3735 unsigned long duration = params[1]; 3736 unsigned long last_jiffies, t; 3737 u32 last, cur; 3738 int rc; 3739 3740 t = ata_deadline(jiffies, params[2]); 3741 if (time_before(t, deadline)) 3742 deadline = t; 3743 3744 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3745 return rc; 3746 cur &= 0xf; 3747 3748 last = cur; 3749 last_jiffies = jiffies; 3750 3751 while (1) { 3752 ata_msleep(link->ap, interval); 3753 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3754 return rc; 3755 cur &= 0xf; 3756 3757 /* DET stable? */ 3758 if (cur == last) { 3759 if (cur == 1 && time_before(jiffies, deadline)) 3760 continue; 3761 if (time_after(jiffies, 3762 ata_deadline(last_jiffies, duration))) 3763 return 0; 3764 continue; 3765 } 3766 3767 /* unstable, start over */ 3768 last = cur; 3769 last_jiffies = jiffies; 3770 3771 /* Check deadline. If debouncing failed, return 3772 * -EPIPE to tell upper layer to lower link speed. 3773 */ 3774 if (time_after(jiffies, deadline)) 3775 return -EPIPE; 3776 } 3777 } 3778 3779 /** 3780 * sata_link_resume - resume SATA link 3781 * @link: ATA link to resume SATA 3782 * @params: timing parameters { interval, duration, timeout } in msec 3783 * @deadline: deadline jiffies for the operation 3784 * 3785 * Resume SATA phy @link and debounce it. 3786 * 3787 * LOCKING: 3788 * Kernel thread context (may sleep) 3789 * 3790 * RETURNS: 3791 * 0 on success, -errno on failure. 3792 */ 3793 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3794 unsigned long deadline) 3795 { 3796 int tries = ATA_LINK_RESUME_TRIES; 3797 u32 scontrol, serror; 3798 int rc; 3799 3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3801 return rc; 3802 3803 /* 3804 * Writes to SControl sometimes get ignored under certain 3805 * controllers (ata_piix SIDPR). Make sure DET actually is 3806 * cleared. 3807 */ 3808 do { 3809 scontrol = (scontrol & 0x0f0) | 0x300; 3810 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3811 return rc; 3812 /* 3813 * Some PHYs react badly if SStatus is pounded 3814 * immediately after resuming. Delay 200ms before 3815 * debouncing. 3816 */ 3817 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3818 ata_msleep(link->ap, 200); 3819 3820 /* is SControl restored correctly? */ 3821 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3822 return rc; 3823 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3824 3825 if ((scontrol & 0xf0f) != 0x300) { 3826 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3827 scontrol); 3828 return 0; 3829 } 3830 3831 if (tries < ATA_LINK_RESUME_TRIES) 3832 ata_link_warn(link, "link resume succeeded after %d retries\n", 3833 ATA_LINK_RESUME_TRIES - tries); 3834 3835 if ((rc = sata_link_debounce(link, params, deadline))) 3836 return rc; 3837 3838 /* clear SError, some PHYs require this even for SRST to work */ 3839 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3840 rc = sata_scr_write(link, SCR_ERROR, serror); 3841 3842 return rc != -EINVAL ? rc : 0; 3843 } 3844 3845 /** 3846 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3847 * @link: ATA link to manipulate SControl for 3848 * @policy: LPM policy to configure 3849 * @spm_wakeup: initiate LPM transition to active state 3850 * 3851 * Manipulate the IPM field of the SControl register of @link 3852 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3853 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3854 * the link. This function also clears PHYRDY_CHG before 3855 * returning. 3856 * 3857 * LOCKING: 3858 * EH context. 3859 * 3860 * RETURNS: 3861 * 0 on success, -errno otherwise. 3862 */ 3863 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3864 bool spm_wakeup) 3865 { 3866 struct ata_eh_context *ehc = &link->eh_context; 3867 bool woken_up = false; 3868 u32 scontrol; 3869 int rc; 3870 3871 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3872 if (rc) 3873 return rc; 3874 3875 switch (policy) { 3876 case ATA_LPM_MAX_POWER: 3877 /* disable all LPM transitions */ 3878 scontrol |= (0x7 << 8); 3879 /* initiate transition to active state */ 3880 if (spm_wakeup) { 3881 scontrol |= (0x4 << 12); 3882 woken_up = true; 3883 } 3884 break; 3885 case ATA_LPM_MED_POWER: 3886 /* allow LPM to PARTIAL */ 3887 scontrol &= ~(0x1 << 8); 3888 scontrol |= (0x6 << 8); 3889 break; 3890 case ATA_LPM_MIN_POWER: 3891 if (ata_link_nr_enabled(link) > 0) 3892 /* no restrictions on LPM transitions */ 3893 scontrol &= ~(0x7 << 8); 3894 else { 3895 /* empty port, power off */ 3896 scontrol &= ~0xf; 3897 scontrol |= (0x1 << 2); 3898 } 3899 break; 3900 default: 3901 WARN_ON(1); 3902 } 3903 3904 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3905 if (rc) 3906 return rc; 3907 3908 /* give the link time to transit out of LPM state */ 3909 if (woken_up) 3910 msleep(10); 3911 3912 /* clear PHYRDY_CHG from SError */ 3913 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3914 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3915 } 3916 3917 /** 3918 * ata_std_prereset - prepare for reset 3919 * @link: ATA link to be reset 3920 * @deadline: deadline jiffies for the operation 3921 * 3922 * @link is about to be reset. Initialize it. Failure from 3923 * prereset makes libata abort whole reset sequence and give up 3924 * that port, so prereset should be best-effort. It does its 3925 * best to prepare for reset sequence but if things go wrong, it 3926 * should just whine, not fail. 3927 * 3928 * LOCKING: 3929 * Kernel thread context (may sleep) 3930 * 3931 * RETURNS: 3932 * 0 on success, -errno otherwise. 3933 */ 3934 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3935 { 3936 struct ata_port *ap = link->ap; 3937 struct ata_eh_context *ehc = &link->eh_context; 3938 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3939 int rc; 3940 3941 /* if we're about to do hardreset, nothing more to do */ 3942 if (ehc->i.action & ATA_EH_HARDRESET) 3943 return 0; 3944 3945 /* if SATA, resume link */ 3946 if (ap->flags & ATA_FLAG_SATA) { 3947 rc = sata_link_resume(link, timing, deadline); 3948 /* whine about phy resume failure but proceed */ 3949 if (rc && rc != -EOPNOTSUPP) 3950 ata_link_warn(link, 3951 "failed to resume link for reset (errno=%d)\n", 3952 rc); 3953 } 3954 3955 /* no point in trying softreset on offline link */ 3956 if (ata_phys_link_offline(link)) 3957 ehc->i.action &= ~ATA_EH_SOFTRESET; 3958 3959 return 0; 3960 } 3961 3962 /** 3963 * sata_link_hardreset - reset link via SATA phy reset 3964 * @link: link to reset 3965 * @timing: timing parameters { interval, duration, timeout } in msec 3966 * @deadline: deadline jiffies for the operation 3967 * @online: optional out parameter indicating link onlineness 3968 * @check_ready: optional callback to check link readiness 3969 * 3970 * SATA phy-reset @link using DET bits of SControl register. 3971 * After hardreset, link readiness is waited upon using 3972 * ata_wait_ready() if @check_ready is specified. LLDs are 3973 * allowed to not specify @check_ready and wait itself after this 3974 * function returns. Device classification is LLD's 3975 * responsibility. 3976 * 3977 * *@online is set to one iff reset succeeded and @link is online 3978 * after reset. 3979 * 3980 * LOCKING: 3981 * Kernel thread context (may sleep) 3982 * 3983 * RETURNS: 3984 * 0 on success, -errno otherwise. 3985 */ 3986 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3987 unsigned long deadline, 3988 bool *online, int (*check_ready)(struct ata_link *)) 3989 { 3990 u32 scontrol; 3991 int rc; 3992 3993 DPRINTK("ENTER\n"); 3994 3995 if (online) 3996 *online = false; 3997 3998 if (sata_set_spd_needed(link)) { 3999 /* SATA spec says nothing about how to reconfigure 4000 * spd. To be on the safe side, turn off phy during 4001 * reconfiguration. This works for at least ICH7 AHCI 4002 * and Sil3124. 4003 */ 4004 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4005 goto out; 4006 4007 scontrol = (scontrol & 0x0f0) | 0x304; 4008 4009 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4010 goto out; 4011 4012 sata_set_spd(link); 4013 } 4014 4015 /* issue phy wake/reset */ 4016 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4017 goto out; 4018 4019 scontrol = (scontrol & 0x0f0) | 0x301; 4020 4021 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4022 goto out; 4023 4024 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4025 * 10.4.2 says at least 1 ms. 4026 */ 4027 ata_msleep(link->ap, 1); 4028 4029 /* bring link back */ 4030 rc = sata_link_resume(link, timing, deadline); 4031 if (rc) 4032 goto out; 4033 /* if link is offline nothing more to do */ 4034 if (ata_phys_link_offline(link)) 4035 goto out; 4036 4037 /* Link is online. From this point, -ENODEV too is an error. */ 4038 if (online) 4039 *online = true; 4040 4041 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4042 /* If PMP is supported, we have to do follow-up SRST. 4043 * Some PMPs don't send D2H Reg FIS after hardreset if 4044 * the first port is empty. Wait only for 4045 * ATA_TMOUT_PMP_SRST_WAIT. 4046 */ 4047 if (check_ready) { 4048 unsigned long pmp_deadline; 4049 4050 pmp_deadline = ata_deadline(jiffies, 4051 ATA_TMOUT_PMP_SRST_WAIT); 4052 if (time_after(pmp_deadline, deadline)) 4053 pmp_deadline = deadline; 4054 ata_wait_ready(link, pmp_deadline, check_ready); 4055 } 4056 rc = -EAGAIN; 4057 goto out; 4058 } 4059 4060 rc = 0; 4061 if (check_ready) 4062 rc = ata_wait_ready(link, deadline, check_ready); 4063 out: 4064 if (rc && rc != -EAGAIN) { 4065 /* online is set iff link is online && reset succeeded */ 4066 if (online) 4067 *online = false; 4068 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4069 } 4070 DPRINTK("EXIT, rc=%d\n", rc); 4071 return rc; 4072 } 4073 4074 /** 4075 * sata_std_hardreset - COMRESET w/o waiting or classification 4076 * @link: link to reset 4077 * @class: resulting class of attached device 4078 * @deadline: deadline jiffies for the operation 4079 * 4080 * Standard SATA COMRESET w/o waiting or classification. 4081 * 4082 * LOCKING: 4083 * Kernel thread context (may sleep) 4084 * 4085 * RETURNS: 4086 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4087 */ 4088 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4089 unsigned long deadline) 4090 { 4091 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4092 bool online; 4093 int rc; 4094 4095 /* do hardreset */ 4096 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4097 return online ? -EAGAIN : rc; 4098 } 4099 4100 /** 4101 * ata_std_postreset - standard postreset callback 4102 * @link: the target ata_link 4103 * @classes: classes of attached devices 4104 * 4105 * This function is invoked after a successful reset. Note that 4106 * the device might have been reset more than once using 4107 * different reset methods before postreset is invoked. 4108 * 4109 * LOCKING: 4110 * Kernel thread context (may sleep) 4111 */ 4112 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4113 { 4114 u32 serror; 4115 4116 DPRINTK("ENTER\n"); 4117 4118 /* reset complete, clear SError */ 4119 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4120 sata_scr_write(link, SCR_ERROR, serror); 4121 4122 /* print link status */ 4123 sata_print_link_status(link); 4124 4125 DPRINTK("EXIT\n"); 4126 } 4127 4128 /** 4129 * ata_dev_same_device - Determine whether new ID matches configured device 4130 * @dev: device to compare against 4131 * @new_class: class of the new device 4132 * @new_id: IDENTIFY page of the new device 4133 * 4134 * Compare @new_class and @new_id against @dev and determine 4135 * whether @dev is the device indicated by @new_class and 4136 * @new_id. 4137 * 4138 * LOCKING: 4139 * None. 4140 * 4141 * RETURNS: 4142 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4143 */ 4144 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4145 const u16 *new_id) 4146 { 4147 const u16 *old_id = dev->id; 4148 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4149 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4150 4151 if (dev->class != new_class) { 4152 ata_dev_info(dev, "class mismatch %d != %d\n", 4153 dev->class, new_class); 4154 return 0; 4155 } 4156 4157 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4158 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4159 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4160 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4161 4162 if (strcmp(model[0], model[1])) { 4163 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4164 model[0], model[1]); 4165 return 0; 4166 } 4167 4168 if (strcmp(serial[0], serial[1])) { 4169 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4170 serial[0], serial[1]); 4171 return 0; 4172 } 4173 4174 return 1; 4175 } 4176 4177 /** 4178 * ata_dev_reread_id - Re-read IDENTIFY data 4179 * @dev: target ATA device 4180 * @readid_flags: read ID flags 4181 * 4182 * Re-read IDENTIFY page and make sure @dev is still attached to 4183 * the port. 4184 * 4185 * LOCKING: 4186 * Kernel thread context (may sleep) 4187 * 4188 * RETURNS: 4189 * 0 on success, negative errno otherwise 4190 */ 4191 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4192 { 4193 unsigned int class = dev->class; 4194 u16 *id = (void *)dev->link->ap->sector_buf; 4195 int rc; 4196 4197 /* read ID data */ 4198 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4199 if (rc) 4200 return rc; 4201 4202 /* is the device still there? */ 4203 if (!ata_dev_same_device(dev, class, id)) 4204 return -ENODEV; 4205 4206 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4207 return 0; 4208 } 4209 4210 /** 4211 * ata_dev_revalidate - Revalidate ATA device 4212 * @dev: device to revalidate 4213 * @new_class: new class code 4214 * @readid_flags: read ID flags 4215 * 4216 * Re-read IDENTIFY page, make sure @dev is still attached to the 4217 * port and reconfigure it according to the new IDENTIFY page. 4218 * 4219 * LOCKING: 4220 * Kernel thread context (may sleep) 4221 * 4222 * RETURNS: 4223 * 0 on success, negative errno otherwise 4224 */ 4225 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4226 unsigned int readid_flags) 4227 { 4228 u64 n_sectors = dev->n_sectors; 4229 u64 n_native_sectors = dev->n_native_sectors; 4230 int rc; 4231 4232 if (!ata_dev_enabled(dev)) 4233 return -ENODEV; 4234 4235 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4236 if (ata_class_enabled(new_class) && 4237 new_class != ATA_DEV_ATA && 4238 new_class != ATA_DEV_ATAPI && 4239 new_class != ATA_DEV_ZAC && 4240 new_class != ATA_DEV_SEMB) { 4241 ata_dev_info(dev, "class mismatch %u != %u\n", 4242 dev->class, new_class); 4243 rc = -ENODEV; 4244 goto fail; 4245 } 4246 4247 /* re-read ID */ 4248 rc = ata_dev_reread_id(dev, readid_flags); 4249 if (rc) 4250 goto fail; 4251 4252 /* configure device according to the new ID */ 4253 rc = ata_dev_configure(dev); 4254 if (rc) 4255 goto fail; 4256 4257 /* verify n_sectors hasn't changed */ 4258 if (dev->class != ATA_DEV_ATA || !n_sectors || 4259 dev->n_sectors == n_sectors) 4260 return 0; 4261 4262 /* n_sectors has changed */ 4263 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4264 (unsigned long long)n_sectors, 4265 (unsigned long long)dev->n_sectors); 4266 4267 /* 4268 * Something could have caused HPA to be unlocked 4269 * involuntarily. If n_native_sectors hasn't changed and the 4270 * new size matches it, keep the device. 4271 */ 4272 if (dev->n_native_sectors == n_native_sectors && 4273 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4274 ata_dev_warn(dev, 4275 "new n_sectors matches native, probably " 4276 "late HPA unlock, n_sectors updated\n"); 4277 /* use the larger n_sectors */ 4278 return 0; 4279 } 4280 4281 /* 4282 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4283 * unlocking HPA in those cases. 4284 * 4285 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4286 */ 4287 if (dev->n_native_sectors == n_native_sectors && 4288 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4289 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4290 ata_dev_warn(dev, 4291 "old n_sectors matches native, probably " 4292 "late HPA lock, will try to unlock HPA\n"); 4293 /* try unlocking HPA */ 4294 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4295 rc = -EIO; 4296 } else 4297 rc = -ENODEV; 4298 4299 /* restore original n_[native_]sectors and fail */ 4300 dev->n_native_sectors = n_native_sectors; 4301 dev->n_sectors = n_sectors; 4302 fail: 4303 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4304 return rc; 4305 } 4306 4307 struct ata_blacklist_entry { 4308 const char *model_num; 4309 const char *model_rev; 4310 unsigned long horkage; 4311 }; 4312 4313 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4314 /* Devices with DMA related problems under Linux */ 4315 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4316 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4317 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4318 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4319 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4320 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4321 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4322 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4323 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4324 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4325 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4326 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4327 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4328 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4329 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4330 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4331 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4332 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4333 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4334 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4335 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4336 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4337 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4338 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4339 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4340 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4341 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4342 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4343 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4344 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4345 /* Odd clown on sil3726/4726 PMPs */ 4346 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4347 4348 /* Weird ATAPI devices */ 4349 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4350 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4351 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4352 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4353 4354 /* 4355 * Causes silent data corruption with higher max sects. 4356 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4357 */ 4358 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4359 4360 /* 4361 * These devices time out with higher max sects. 4362 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4363 */ 4364 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4365 4366 /* Devices we expect to fail diagnostics */ 4367 4368 /* Devices where NCQ should be avoided */ 4369 /* NCQ is slow */ 4370 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4371 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4372 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4373 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4374 /* NCQ is broken */ 4375 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4376 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4377 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4378 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4379 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4380 4381 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4382 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4383 ATA_HORKAGE_FIRMWARE_WARN }, 4384 4385 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4386 ATA_HORKAGE_FIRMWARE_WARN }, 4387 4388 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4389 ATA_HORKAGE_FIRMWARE_WARN }, 4390 4391 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4392 ATA_HORKAGE_FIRMWARE_WARN }, 4393 4394 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4395 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4396 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4397 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4398 4399 /* Blacklist entries taken from Silicon Image 3124/3132 4400 Windows driver .inf file - also several Linux problem reports */ 4401 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4402 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4403 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4404 4405 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4406 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4407 4408 /* devices which puke on READ_NATIVE_MAX */ 4409 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4410 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4411 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4412 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4413 4414 /* this one allows HPA unlocking but fails IOs on the area */ 4415 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4416 4417 /* Devices which report 1 sector over size HPA */ 4418 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4419 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4420 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4421 4422 /* Devices which get the IVB wrong */ 4423 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4424 /* Maybe we should just blacklist TSSTcorp... */ 4425 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4426 4427 /* Devices that do not need bridging limits applied */ 4428 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4429 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4430 4431 /* Devices which aren't very happy with higher link speeds */ 4432 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4433 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4434 4435 /* 4436 * Devices which choke on SETXFER. Applies only if both the 4437 * device and controller are SATA. 4438 */ 4439 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4440 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4441 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4442 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4443 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4444 4445 /* devices that don't properly handle queued TRIM commands */ 4446 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4447 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4448 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4449 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4450 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4451 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4452 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4453 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4454 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4455 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4456 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4457 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4458 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4459 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4460 4461 /* devices that don't properly handle TRIM commands */ 4462 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4463 4464 /* 4465 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4466 * (Return Zero After Trim) flags in the ATA Command Set are 4467 * unreliable in the sense that they only define what happens if 4468 * the device successfully executed the DSM TRIM command. TRIM 4469 * is only advisory, however, and the device is free to silently 4470 * ignore all or parts of the request. 4471 * 4472 * Whitelist drives that are known to reliably return zeroes 4473 * after TRIM. 4474 */ 4475 4476 /* 4477 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4478 * that model before whitelisting all other intel SSDs. 4479 */ 4480 { "INTEL*SSDSC2MH*", NULL, 0, }, 4481 4482 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4483 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4484 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4485 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4486 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4487 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4488 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4489 4490 /* 4491 * Some WD SATA-I drives spin up and down erratically when the link 4492 * is put into the slumber mode. We don't have full list of the 4493 * affected devices. Disable LPM if the device matches one of the 4494 * known prefixes and is SATA-1. As a side effect LPM partial is 4495 * lost too. 4496 * 4497 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4498 */ 4499 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4500 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4501 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4502 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4503 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4504 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4505 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4506 4507 /* End Marker */ 4508 { } 4509 }; 4510 4511 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4512 { 4513 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4514 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4515 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4516 4517 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4518 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4519 4520 while (ad->model_num) { 4521 if (glob_match(ad->model_num, model_num)) { 4522 if (ad->model_rev == NULL) 4523 return ad->horkage; 4524 if (glob_match(ad->model_rev, model_rev)) 4525 return ad->horkage; 4526 } 4527 ad++; 4528 } 4529 return 0; 4530 } 4531 4532 static int ata_dma_blacklisted(const struct ata_device *dev) 4533 { 4534 /* We don't support polling DMA. 4535 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4536 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4537 */ 4538 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4539 (dev->flags & ATA_DFLAG_CDB_INTR)) 4540 return 1; 4541 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4542 } 4543 4544 /** 4545 * ata_is_40wire - check drive side detection 4546 * @dev: device 4547 * 4548 * Perform drive side detection decoding, allowing for device vendors 4549 * who can't follow the documentation. 4550 */ 4551 4552 static int ata_is_40wire(struct ata_device *dev) 4553 { 4554 if (dev->horkage & ATA_HORKAGE_IVB) 4555 return ata_drive_40wire_relaxed(dev->id); 4556 return ata_drive_40wire(dev->id); 4557 } 4558 4559 /** 4560 * cable_is_40wire - 40/80/SATA decider 4561 * @ap: port to consider 4562 * 4563 * This function encapsulates the policy for speed management 4564 * in one place. At the moment we don't cache the result but 4565 * there is a good case for setting ap->cbl to the result when 4566 * we are called with unknown cables (and figuring out if it 4567 * impacts hotplug at all). 4568 * 4569 * Return 1 if the cable appears to be 40 wire. 4570 */ 4571 4572 static int cable_is_40wire(struct ata_port *ap) 4573 { 4574 struct ata_link *link; 4575 struct ata_device *dev; 4576 4577 /* If the controller thinks we are 40 wire, we are. */ 4578 if (ap->cbl == ATA_CBL_PATA40) 4579 return 1; 4580 4581 /* If the controller thinks we are 80 wire, we are. */ 4582 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4583 return 0; 4584 4585 /* If the system is known to be 40 wire short cable (eg 4586 * laptop), then we allow 80 wire modes even if the drive 4587 * isn't sure. 4588 */ 4589 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4590 return 0; 4591 4592 /* If the controller doesn't know, we scan. 4593 * 4594 * Note: We look for all 40 wire detects at this point. Any 4595 * 80 wire detect is taken to be 80 wire cable because 4596 * - in many setups only the one drive (slave if present) will 4597 * give a valid detect 4598 * - if you have a non detect capable drive you don't want it 4599 * to colour the choice 4600 */ 4601 ata_for_each_link(link, ap, EDGE) { 4602 ata_for_each_dev(dev, link, ENABLED) { 4603 if (!ata_is_40wire(dev)) 4604 return 0; 4605 } 4606 } 4607 return 1; 4608 } 4609 4610 /** 4611 * ata_dev_xfermask - Compute supported xfermask of the given device 4612 * @dev: Device to compute xfermask for 4613 * 4614 * Compute supported xfermask of @dev and store it in 4615 * dev->*_mask. This function is responsible for applying all 4616 * known limits including host controller limits, device 4617 * blacklist, etc... 4618 * 4619 * LOCKING: 4620 * None. 4621 */ 4622 static void ata_dev_xfermask(struct ata_device *dev) 4623 { 4624 struct ata_link *link = dev->link; 4625 struct ata_port *ap = link->ap; 4626 struct ata_host *host = ap->host; 4627 unsigned long xfer_mask; 4628 4629 /* controller modes available */ 4630 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4631 ap->mwdma_mask, ap->udma_mask); 4632 4633 /* drive modes available */ 4634 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4635 dev->mwdma_mask, dev->udma_mask); 4636 xfer_mask &= ata_id_xfermask(dev->id); 4637 4638 /* 4639 * CFA Advanced TrueIDE timings are not allowed on a shared 4640 * cable 4641 */ 4642 if (ata_dev_pair(dev)) { 4643 /* No PIO5 or PIO6 */ 4644 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4645 /* No MWDMA3 or MWDMA 4 */ 4646 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4647 } 4648 4649 if (ata_dma_blacklisted(dev)) { 4650 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4651 ata_dev_warn(dev, 4652 "device is on DMA blacklist, disabling DMA\n"); 4653 } 4654 4655 if ((host->flags & ATA_HOST_SIMPLEX) && 4656 host->simplex_claimed && host->simplex_claimed != ap) { 4657 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4658 ata_dev_warn(dev, 4659 "simplex DMA is claimed by other device, disabling DMA\n"); 4660 } 4661 4662 if (ap->flags & ATA_FLAG_NO_IORDY) 4663 xfer_mask &= ata_pio_mask_no_iordy(dev); 4664 4665 if (ap->ops->mode_filter) 4666 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4667 4668 /* Apply cable rule here. Don't apply it early because when 4669 * we handle hot plug the cable type can itself change. 4670 * Check this last so that we know if the transfer rate was 4671 * solely limited by the cable. 4672 * Unknown or 80 wire cables reported host side are checked 4673 * drive side as well. Cases where we know a 40wire cable 4674 * is used safely for 80 are not checked here. 4675 */ 4676 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4677 /* UDMA/44 or higher would be available */ 4678 if (cable_is_40wire(ap)) { 4679 ata_dev_warn(dev, 4680 "limited to UDMA/33 due to 40-wire cable\n"); 4681 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4682 } 4683 4684 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4685 &dev->mwdma_mask, &dev->udma_mask); 4686 } 4687 4688 /** 4689 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4690 * @dev: Device to which command will be sent 4691 * 4692 * Issue SET FEATURES - XFER MODE command to device @dev 4693 * on port @ap. 4694 * 4695 * LOCKING: 4696 * PCI/etc. bus probe sem. 4697 * 4698 * RETURNS: 4699 * 0 on success, AC_ERR_* mask otherwise. 4700 */ 4701 4702 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4703 { 4704 struct ata_taskfile tf; 4705 unsigned int err_mask; 4706 4707 /* set up set-features taskfile */ 4708 DPRINTK("set features - xfer mode\n"); 4709 4710 /* Some controllers and ATAPI devices show flaky interrupt 4711 * behavior after setting xfer mode. Use polling instead. 4712 */ 4713 ata_tf_init(dev, &tf); 4714 tf.command = ATA_CMD_SET_FEATURES; 4715 tf.feature = SETFEATURES_XFER; 4716 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4717 tf.protocol = ATA_PROT_NODATA; 4718 /* If we are using IORDY we must send the mode setting command */ 4719 if (ata_pio_need_iordy(dev)) 4720 tf.nsect = dev->xfer_mode; 4721 /* If the device has IORDY and the controller does not - turn it off */ 4722 else if (ata_id_has_iordy(dev->id)) 4723 tf.nsect = 0x01; 4724 else /* In the ancient relic department - skip all of this */ 4725 return 0; 4726 4727 /* On some disks, this command causes spin-up, so we need longer timeout */ 4728 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4729 4730 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4731 return err_mask; 4732 } 4733 4734 /** 4735 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4736 * @dev: Device to which command will be sent 4737 * @enable: Whether to enable or disable the feature 4738 * @feature: The sector count represents the feature to set 4739 * 4740 * Issue SET FEATURES - SATA FEATURES command to device @dev 4741 * on port @ap with sector count 4742 * 4743 * LOCKING: 4744 * PCI/etc. bus probe sem. 4745 * 4746 * RETURNS: 4747 * 0 on success, AC_ERR_* mask otherwise. 4748 */ 4749 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4750 { 4751 struct ata_taskfile tf; 4752 unsigned int err_mask; 4753 unsigned long timeout = 0; 4754 4755 /* set up set-features taskfile */ 4756 DPRINTK("set features - SATA features\n"); 4757 4758 ata_tf_init(dev, &tf); 4759 tf.command = ATA_CMD_SET_FEATURES; 4760 tf.feature = enable; 4761 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4762 tf.protocol = ATA_PROT_NODATA; 4763 tf.nsect = feature; 4764 4765 if (enable == SETFEATURES_SPINUP) 4766 timeout = ata_probe_timeout ? 4767 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4768 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4769 4770 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4771 return err_mask; 4772 } 4773 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4774 4775 /** 4776 * ata_dev_init_params - Issue INIT DEV PARAMS command 4777 * @dev: Device to which command will be sent 4778 * @heads: Number of heads (taskfile parameter) 4779 * @sectors: Number of sectors (taskfile parameter) 4780 * 4781 * LOCKING: 4782 * Kernel thread context (may sleep) 4783 * 4784 * RETURNS: 4785 * 0 on success, AC_ERR_* mask otherwise. 4786 */ 4787 static unsigned int ata_dev_init_params(struct ata_device *dev, 4788 u16 heads, u16 sectors) 4789 { 4790 struct ata_taskfile tf; 4791 unsigned int err_mask; 4792 4793 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4794 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4795 return AC_ERR_INVALID; 4796 4797 /* set up init dev params taskfile */ 4798 DPRINTK("init dev params \n"); 4799 4800 ata_tf_init(dev, &tf); 4801 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4802 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4803 tf.protocol = ATA_PROT_NODATA; 4804 tf.nsect = sectors; 4805 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4806 4807 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4808 /* A clean abort indicates an original or just out of spec drive 4809 and we should continue as we issue the setup based on the 4810 drive reported working geometry */ 4811 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4812 err_mask = 0; 4813 4814 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4815 return err_mask; 4816 } 4817 4818 /** 4819 * atapi_check_dma - Check whether ATAPI DMA can be supported 4820 * @qc: Metadata associated with taskfile to check 4821 * 4822 * Allow low-level driver to filter ATA PACKET commands, returning 4823 * a status indicating whether or not it is OK to use DMA for the 4824 * supplied PACKET command. 4825 * 4826 * LOCKING: 4827 * spin_lock_irqsave(host lock) 4828 * 4829 * RETURNS: 0 when ATAPI DMA can be used 4830 * nonzero otherwise 4831 */ 4832 int atapi_check_dma(struct ata_queued_cmd *qc) 4833 { 4834 struct ata_port *ap = qc->ap; 4835 4836 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4837 * few ATAPI devices choke on such DMA requests. 4838 */ 4839 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4840 unlikely(qc->nbytes & 15)) 4841 return 1; 4842 4843 if (ap->ops->check_atapi_dma) 4844 return ap->ops->check_atapi_dma(qc); 4845 4846 return 0; 4847 } 4848 4849 /** 4850 * ata_std_qc_defer - Check whether a qc needs to be deferred 4851 * @qc: ATA command in question 4852 * 4853 * Non-NCQ commands cannot run with any other command, NCQ or 4854 * not. As upper layer only knows the queue depth, we are 4855 * responsible for maintaining exclusion. This function checks 4856 * whether a new command @qc can be issued. 4857 * 4858 * LOCKING: 4859 * spin_lock_irqsave(host lock) 4860 * 4861 * RETURNS: 4862 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4863 */ 4864 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4865 { 4866 struct ata_link *link = qc->dev->link; 4867 4868 if (ata_is_ncq(qc->tf.protocol)) { 4869 if (!ata_tag_valid(link->active_tag)) 4870 return 0; 4871 } else { 4872 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4873 return 0; 4874 } 4875 4876 return ATA_DEFER_LINK; 4877 } 4878 4879 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4880 4881 /** 4882 * ata_sg_init - Associate command with scatter-gather table. 4883 * @qc: Command to be associated 4884 * @sg: Scatter-gather table. 4885 * @n_elem: Number of elements in s/g table. 4886 * 4887 * Initialize the data-related elements of queued_cmd @qc 4888 * to point to a scatter-gather table @sg, containing @n_elem 4889 * elements. 4890 * 4891 * LOCKING: 4892 * spin_lock_irqsave(host lock) 4893 */ 4894 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4895 unsigned int n_elem) 4896 { 4897 qc->sg = sg; 4898 qc->n_elem = n_elem; 4899 qc->cursg = qc->sg; 4900 } 4901 4902 #ifdef CONFIG_HAS_DMA 4903 4904 /** 4905 * ata_sg_clean - Unmap DMA memory associated with command 4906 * @qc: Command containing DMA memory to be released 4907 * 4908 * Unmap all mapped DMA memory associated with this command. 4909 * 4910 * LOCKING: 4911 * spin_lock_irqsave(host lock) 4912 */ 4913 static void ata_sg_clean(struct ata_queued_cmd *qc) 4914 { 4915 struct ata_port *ap = qc->ap; 4916 struct scatterlist *sg = qc->sg; 4917 int dir = qc->dma_dir; 4918 4919 WARN_ON_ONCE(sg == NULL); 4920 4921 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4922 4923 if (qc->n_elem) 4924 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4925 4926 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4927 qc->sg = NULL; 4928 } 4929 4930 /** 4931 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4932 * @qc: Command with scatter-gather table to be mapped. 4933 * 4934 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4935 * 4936 * LOCKING: 4937 * spin_lock_irqsave(host lock) 4938 * 4939 * RETURNS: 4940 * Zero on success, negative on error. 4941 * 4942 */ 4943 static int ata_sg_setup(struct ata_queued_cmd *qc) 4944 { 4945 struct ata_port *ap = qc->ap; 4946 unsigned int n_elem; 4947 4948 VPRINTK("ENTER, ata%u\n", ap->print_id); 4949 4950 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4951 if (n_elem < 1) 4952 return -1; 4953 4954 DPRINTK("%d sg elements mapped\n", n_elem); 4955 qc->orig_n_elem = qc->n_elem; 4956 qc->n_elem = n_elem; 4957 qc->flags |= ATA_QCFLAG_DMAMAP; 4958 4959 return 0; 4960 } 4961 4962 #else /* !CONFIG_HAS_DMA */ 4963 4964 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4965 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4966 4967 #endif /* !CONFIG_HAS_DMA */ 4968 4969 /** 4970 * swap_buf_le16 - swap halves of 16-bit words in place 4971 * @buf: Buffer to swap 4972 * @buf_words: Number of 16-bit words in buffer. 4973 * 4974 * Swap halves of 16-bit words if needed to convert from 4975 * little-endian byte order to native cpu byte order, or 4976 * vice-versa. 4977 * 4978 * LOCKING: 4979 * Inherited from caller. 4980 */ 4981 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4982 { 4983 #ifdef __BIG_ENDIAN 4984 unsigned int i; 4985 4986 for (i = 0; i < buf_words; i++) 4987 buf[i] = le16_to_cpu(buf[i]); 4988 #endif /* __BIG_ENDIAN */ 4989 } 4990 4991 /** 4992 * ata_qc_new_init - Request an available ATA command, and initialize it 4993 * @dev: Device from whom we request an available command structure 4994 * @tag: tag 4995 * 4996 * LOCKING: 4997 * None. 4998 */ 4999 5000 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 5001 { 5002 struct ata_port *ap = dev->link->ap; 5003 struct ata_queued_cmd *qc; 5004 5005 /* no command while frozen */ 5006 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5007 return NULL; 5008 5009 /* libsas case */ 5010 if (ap->flags & ATA_FLAG_SAS_HOST) { 5011 tag = ata_sas_allocate_tag(ap); 5012 if (tag < 0) 5013 return NULL; 5014 } 5015 5016 qc = __ata_qc_from_tag(ap, tag); 5017 qc->tag = tag; 5018 qc->scsicmd = NULL; 5019 qc->ap = ap; 5020 qc->dev = dev; 5021 5022 ata_qc_reinit(qc); 5023 5024 return qc; 5025 } 5026 5027 /** 5028 * ata_qc_free - free unused ata_queued_cmd 5029 * @qc: Command to complete 5030 * 5031 * Designed to free unused ata_queued_cmd object 5032 * in case something prevents using it. 5033 * 5034 * LOCKING: 5035 * spin_lock_irqsave(host lock) 5036 */ 5037 void ata_qc_free(struct ata_queued_cmd *qc) 5038 { 5039 struct ata_port *ap; 5040 unsigned int tag; 5041 5042 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5043 ap = qc->ap; 5044 5045 qc->flags = 0; 5046 tag = qc->tag; 5047 if (likely(ata_tag_valid(tag))) { 5048 qc->tag = ATA_TAG_POISON; 5049 if (ap->flags & ATA_FLAG_SAS_HOST) 5050 ata_sas_free_tag(tag, ap); 5051 } 5052 } 5053 5054 void __ata_qc_complete(struct ata_queued_cmd *qc) 5055 { 5056 struct ata_port *ap; 5057 struct ata_link *link; 5058 5059 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5060 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5061 ap = qc->ap; 5062 link = qc->dev->link; 5063 5064 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5065 ata_sg_clean(qc); 5066 5067 /* command should be marked inactive atomically with qc completion */ 5068 if (ata_is_ncq(qc->tf.protocol)) { 5069 link->sactive &= ~(1 << qc->tag); 5070 if (!link->sactive) 5071 ap->nr_active_links--; 5072 } else { 5073 link->active_tag = ATA_TAG_POISON; 5074 ap->nr_active_links--; 5075 } 5076 5077 /* clear exclusive status */ 5078 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5079 ap->excl_link == link)) 5080 ap->excl_link = NULL; 5081 5082 /* atapi: mark qc as inactive to prevent the interrupt handler 5083 * from completing the command twice later, before the error handler 5084 * is called. (when rc != 0 and atapi request sense is needed) 5085 */ 5086 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5087 ap->qc_active &= ~(1 << qc->tag); 5088 5089 /* call completion callback */ 5090 qc->complete_fn(qc); 5091 } 5092 5093 static void fill_result_tf(struct ata_queued_cmd *qc) 5094 { 5095 struct ata_port *ap = qc->ap; 5096 5097 qc->result_tf.flags = qc->tf.flags; 5098 ap->ops->qc_fill_rtf(qc); 5099 } 5100 5101 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5102 { 5103 struct ata_device *dev = qc->dev; 5104 5105 if (!ata_is_data(qc->tf.protocol)) 5106 return; 5107 5108 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5109 return; 5110 5111 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5112 } 5113 5114 /** 5115 * ata_qc_complete - Complete an active ATA command 5116 * @qc: Command to complete 5117 * 5118 * Indicate to the mid and upper layers that an ATA command has 5119 * completed, with either an ok or not-ok status. 5120 * 5121 * Refrain from calling this function multiple times when 5122 * successfully completing multiple NCQ commands. 5123 * ata_qc_complete_multiple() should be used instead, which will 5124 * properly update IRQ expect state. 5125 * 5126 * LOCKING: 5127 * spin_lock_irqsave(host lock) 5128 */ 5129 void ata_qc_complete(struct ata_queued_cmd *qc) 5130 { 5131 struct ata_port *ap = qc->ap; 5132 5133 /* Trigger the LED (if available) */ 5134 ledtrig_disk_activity(); 5135 5136 /* XXX: New EH and old EH use different mechanisms to 5137 * synchronize EH with regular execution path. 5138 * 5139 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5140 * Normal execution path is responsible for not accessing a 5141 * failed qc. libata core enforces the rule by returning NULL 5142 * from ata_qc_from_tag() for failed qcs. 5143 * 5144 * Old EH depends on ata_qc_complete() nullifying completion 5145 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5146 * not synchronize with interrupt handler. Only PIO task is 5147 * taken care of. 5148 */ 5149 if (ap->ops->error_handler) { 5150 struct ata_device *dev = qc->dev; 5151 struct ata_eh_info *ehi = &dev->link->eh_info; 5152 5153 if (unlikely(qc->err_mask)) 5154 qc->flags |= ATA_QCFLAG_FAILED; 5155 5156 /* 5157 * Finish internal commands without any further processing 5158 * and always with the result TF filled. 5159 */ 5160 if (unlikely(ata_tag_internal(qc->tag))) { 5161 fill_result_tf(qc); 5162 trace_ata_qc_complete_internal(qc); 5163 __ata_qc_complete(qc); 5164 return; 5165 } 5166 5167 /* 5168 * Non-internal qc has failed. Fill the result TF and 5169 * summon EH. 5170 */ 5171 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5172 fill_result_tf(qc); 5173 trace_ata_qc_complete_failed(qc); 5174 ata_qc_schedule_eh(qc); 5175 return; 5176 } 5177 5178 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5179 5180 /* read result TF if requested */ 5181 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5182 fill_result_tf(qc); 5183 5184 trace_ata_qc_complete_done(qc); 5185 /* Some commands need post-processing after successful 5186 * completion. 5187 */ 5188 switch (qc->tf.command) { 5189 case ATA_CMD_SET_FEATURES: 5190 if (qc->tf.feature != SETFEATURES_WC_ON && 5191 qc->tf.feature != SETFEATURES_WC_OFF && 5192 qc->tf.feature != SETFEATURES_RA_ON && 5193 qc->tf.feature != SETFEATURES_RA_OFF) 5194 break; 5195 /* fall through */ 5196 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5197 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5198 /* revalidate device */ 5199 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5200 ata_port_schedule_eh(ap); 5201 break; 5202 5203 case ATA_CMD_SLEEP: 5204 dev->flags |= ATA_DFLAG_SLEEPING; 5205 break; 5206 } 5207 5208 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5209 ata_verify_xfer(qc); 5210 5211 __ata_qc_complete(qc); 5212 } else { 5213 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5214 return; 5215 5216 /* read result TF if failed or requested */ 5217 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5218 fill_result_tf(qc); 5219 5220 __ata_qc_complete(qc); 5221 } 5222 } 5223 5224 /** 5225 * ata_qc_complete_multiple - Complete multiple qcs successfully 5226 * @ap: port in question 5227 * @qc_active: new qc_active mask 5228 * 5229 * Complete in-flight commands. This functions is meant to be 5230 * called from low-level driver's interrupt routine to complete 5231 * requests normally. ap->qc_active and @qc_active is compared 5232 * and commands are completed accordingly. 5233 * 5234 * Always use this function when completing multiple NCQ commands 5235 * from IRQ handlers instead of calling ata_qc_complete() 5236 * multiple times to keep IRQ expect status properly in sync. 5237 * 5238 * LOCKING: 5239 * spin_lock_irqsave(host lock) 5240 * 5241 * RETURNS: 5242 * Number of completed commands on success, -errno otherwise. 5243 */ 5244 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5245 { 5246 int nr_done = 0; 5247 u32 done_mask; 5248 5249 done_mask = ap->qc_active ^ qc_active; 5250 5251 if (unlikely(done_mask & qc_active)) { 5252 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5253 ap->qc_active, qc_active); 5254 return -EINVAL; 5255 } 5256 5257 while (done_mask) { 5258 struct ata_queued_cmd *qc; 5259 unsigned int tag = __ffs(done_mask); 5260 5261 qc = ata_qc_from_tag(ap, tag); 5262 if (qc) { 5263 ata_qc_complete(qc); 5264 nr_done++; 5265 } 5266 done_mask &= ~(1 << tag); 5267 } 5268 5269 return nr_done; 5270 } 5271 5272 /** 5273 * ata_qc_issue - issue taskfile to device 5274 * @qc: command to issue to device 5275 * 5276 * Prepare an ATA command to submission to device. 5277 * This includes mapping the data into a DMA-able 5278 * area, filling in the S/G table, and finally 5279 * writing the taskfile to hardware, starting the command. 5280 * 5281 * LOCKING: 5282 * spin_lock_irqsave(host lock) 5283 */ 5284 void ata_qc_issue(struct ata_queued_cmd *qc) 5285 { 5286 struct ata_port *ap = qc->ap; 5287 struct ata_link *link = qc->dev->link; 5288 u8 prot = qc->tf.protocol; 5289 5290 /* Make sure only one non-NCQ command is outstanding. The 5291 * check is skipped for old EH because it reuses active qc to 5292 * request ATAPI sense. 5293 */ 5294 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5295 5296 if (ata_is_ncq(prot)) { 5297 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5298 5299 if (!link->sactive) 5300 ap->nr_active_links++; 5301 link->sactive |= 1 << qc->tag; 5302 } else { 5303 WARN_ON_ONCE(link->sactive); 5304 5305 ap->nr_active_links++; 5306 link->active_tag = qc->tag; 5307 } 5308 5309 qc->flags |= ATA_QCFLAG_ACTIVE; 5310 ap->qc_active |= 1 << qc->tag; 5311 5312 /* 5313 * We guarantee to LLDs that they will have at least one 5314 * non-zero sg if the command is a data command. 5315 */ 5316 if (WARN_ON_ONCE(ata_is_data(prot) && 5317 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5318 goto sys_err; 5319 5320 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5321 (ap->flags & ATA_FLAG_PIO_DMA))) 5322 if (ata_sg_setup(qc)) 5323 goto sys_err; 5324 5325 /* if device is sleeping, schedule reset and abort the link */ 5326 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5327 link->eh_info.action |= ATA_EH_RESET; 5328 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5329 ata_link_abort(link); 5330 return; 5331 } 5332 5333 ap->ops->qc_prep(qc); 5334 trace_ata_qc_issue(qc); 5335 qc->err_mask |= ap->ops->qc_issue(qc); 5336 if (unlikely(qc->err_mask)) 5337 goto err; 5338 return; 5339 5340 sys_err: 5341 qc->err_mask |= AC_ERR_SYSTEM; 5342 err: 5343 ata_qc_complete(qc); 5344 } 5345 5346 /** 5347 * sata_scr_valid - test whether SCRs are accessible 5348 * @link: ATA link to test SCR accessibility for 5349 * 5350 * Test whether SCRs are accessible for @link. 5351 * 5352 * LOCKING: 5353 * None. 5354 * 5355 * RETURNS: 5356 * 1 if SCRs are accessible, 0 otherwise. 5357 */ 5358 int sata_scr_valid(struct ata_link *link) 5359 { 5360 struct ata_port *ap = link->ap; 5361 5362 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5363 } 5364 5365 /** 5366 * sata_scr_read - read SCR register of the specified port 5367 * @link: ATA link to read SCR for 5368 * @reg: SCR to read 5369 * @val: Place to store read value 5370 * 5371 * Read SCR register @reg of @link into *@val. This function is 5372 * guaranteed to succeed if @link is ap->link, the cable type of 5373 * the port is SATA and the port implements ->scr_read. 5374 * 5375 * LOCKING: 5376 * None if @link is ap->link. Kernel thread context otherwise. 5377 * 5378 * RETURNS: 5379 * 0 on success, negative errno on failure. 5380 */ 5381 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5382 { 5383 if (ata_is_host_link(link)) { 5384 if (sata_scr_valid(link)) 5385 return link->ap->ops->scr_read(link, reg, val); 5386 return -EOPNOTSUPP; 5387 } 5388 5389 return sata_pmp_scr_read(link, reg, val); 5390 } 5391 5392 /** 5393 * sata_scr_write - write SCR register of the specified port 5394 * @link: ATA link to write SCR for 5395 * @reg: SCR to write 5396 * @val: value to write 5397 * 5398 * Write @val to SCR register @reg of @link. This function is 5399 * guaranteed to succeed if @link is ap->link, the cable type of 5400 * the port is SATA and the port implements ->scr_read. 5401 * 5402 * LOCKING: 5403 * None if @link is ap->link. Kernel thread context otherwise. 5404 * 5405 * RETURNS: 5406 * 0 on success, negative errno on failure. 5407 */ 5408 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5409 { 5410 if (ata_is_host_link(link)) { 5411 if (sata_scr_valid(link)) 5412 return link->ap->ops->scr_write(link, reg, val); 5413 return -EOPNOTSUPP; 5414 } 5415 5416 return sata_pmp_scr_write(link, reg, val); 5417 } 5418 5419 /** 5420 * sata_scr_write_flush - write SCR register of the specified port and flush 5421 * @link: ATA link to write SCR for 5422 * @reg: SCR to write 5423 * @val: value to write 5424 * 5425 * This function is identical to sata_scr_write() except that this 5426 * function performs flush after writing to the register. 5427 * 5428 * LOCKING: 5429 * None if @link is ap->link. Kernel thread context otherwise. 5430 * 5431 * RETURNS: 5432 * 0 on success, negative errno on failure. 5433 */ 5434 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5435 { 5436 if (ata_is_host_link(link)) { 5437 int rc; 5438 5439 if (sata_scr_valid(link)) { 5440 rc = link->ap->ops->scr_write(link, reg, val); 5441 if (rc == 0) 5442 rc = link->ap->ops->scr_read(link, reg, &val); 5443 return rc; 5444 } 5445 return -EOPNOTSUPP; 5446 } 5447 5448 return sata_pmp_scr_write(link, reg, val); 5449 } 5450 5451 /** 5452 * ata_phys_link_online - test whether the given link is online 5453 * @link: ATA link to test 5454 * 5455 * Test whether @link is online. Note that this function returns 5456 * 0 if online status of @link cannot be obtained, so 5457 * ata_link_online(link) != !ata_link_offline(link). 5458 * 5459 * LOCKING: 5460 * None. 5461 * 5462 * RETURNS: 5463 * True if the port online status is available and online. 5464 */ 5465 bool ata_phys_link_online(struct ata_link *link) 5466 { 5467 u32 sstatus; 5468 5469 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5470 ata_sstatus_online(sstatus)) 5471 return true; 5472 return false; 5473 } 5474 5475 /** 5476 * ata_phys_link_offline - test whether the given link is offline 5477 * @link: ATA link to test 5478 * 5479 * Test whether @link is offline. Note that this function 5480 * returns 0 if offline status of @link cannot be obtained, so 5481 * ata_link_online(link) != !ata_link_offline(link). 5482 * 5483 * LOCKING: 5484 * None. 5485 * 5486 * RETURNS: 5487 * True if the port offline status is available and offline. 5488 */ 5489 bool ata_phys_link_offline(struct ata_link *link) 5490 { 5491 u32 sstatus; 5492 5493 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5494 !ata_sstatus_online(sstatus)) 5495 return true; 5496 return false; 5497 } 5498 5499 /** 5500 * ata_link_online - test whether the given link is online 5501 * @link: ATA link to test 5502 * 5503 * Test whether @link is online. This is identical to 5504 * ata_phys_link_online() when there's no slave link. When 5505 * there's a slave link, this function should only be called on 5506 * the master link and will return true if any of M/S links is 5507 * online. 5508 * 5509 * LOCKING: 5510 * None. 5511 * 5512 * RETURNS: 5513 * True if the port online status is available and online. 5514 */ 5515 bool ata_link_online(struct ata_link *link) 5516 { 5517 struct ata_link *slave = link->ap->slave_link; 5518 5519 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5520 5521 return ata_phys_link_online(link) || 5522 (slave && ata_phys_link_online(slave)); 5523 } 5524 5525 /** 5526 * ata_link_offline - test whether the given link is offline 5527 * @link: ATA link to test 5528 * 5529 * Test whether @link is offline. This is identical to 5530 * ata_phys_link_offline() when there's no slave link. When 5531 * there's a slave link, this function should only be called on 5532 * the master link and will return true if both M/S links are 5533 * offline. 5534 * 5535 * LOCKING: 5536 * None. 5537 * 5538 * RETURNS: 5539 * True if the port offline status is available and offline. 5540 */ 5541 bool ata_link_offline(struct ata_link *link) 5542 { 5543 struct ata_link *slave = link->ap->slave_link; 5544 5545 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5546 5547 return ata_phys_link_offline(link) && 5548 (!slave || ata_phys_link_offline(slave)); 5549 } 5550 5551 #ifdef CONFIG_PM 5552 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5553 unsigned int action, unsigned int ehi_flags, 5554 bool async) 5555 { 5556 struct ata_link *link; 5557 unsigned long flags; 5558 5559 /* Previous resume operation might still be in 5560 * progress. Wait for PM_PENDING to clear. 5561 */ 5562 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5563 ata_port_wait_eh(ap); 5564 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5565 } 5566 5567 /* request PM ops to EH */ 5568 spin_lock_irqsave(ap->lock, flags); 5569 5570 ap->pm_mesg = mesg; 5571 ap->pflags |= ATA_PFLAG_PM_PENDING; 5572 ata_for_each_link(link, ap, HOST_FIRST) { 5573 link->eh_info.action |= action; 5574 link->eh_info.flags |= ehi_flags; 5575 } 5576 5577 ata_port_schedule_eh(ap); 5578 5579 spin_unlock_irqrestore(ap->lock, flags); 5580 5581 if (!async) { 5582 ata_port_wait_eh(ap); 5583 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5584 } 5585 } 5586 5587 /* 5588 * On some hardware, device fails to respond after spun down for suspend. As 5589 * the device won't be used before being resumed, we don't need to touch the 5590 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5591 * 5592 * http://thread.gmane.org/gmane.linux.ide/46764 5593 */ 5594 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5595 | ATA_EHI_NO_AUTOPSY 5596 | ATA_EHI_NO_RECOVERY; 5597 5598 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5599 { 5600 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5601 } 5602 5603 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5604 { 5605 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5606 } 5607 5608 static int ata_port_pm_suspend(struct device *dev) 5609 { 5610 struct ata_port *ap = to_ata_port(dev); 5611 5612 if (pm_runtime_suspended(dev)) 5613 return 0; 5614 5615 ata_port_suspend(ap, PMSG_SUSPEND); 5616 return 0; 5617 } 5618 5619 static int ata_port_pm_freeze(struct device *dev) 5620 { 5621 struct ata_port *ap = to_ata_port(dev); 5622 5623 if (pm_runtime_suspended(dev)) 5624 return 0; 5625 5626 ata_port_suspend(ap, PMSG_FREEZE); 5627 return 0; 5628 } 5629 5630 static int ata_port_pm_poweroff(struct device *dev) 5631 { 5632 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5633 return 0; 5634 } 5635 5636 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5637 | ATA_EHI_QUIET; 5638 5639 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5640 { 5641 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5642 } 5643 5644 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5645 { 5646 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5647 } 5648 5649 static int ata_port_pm_resume(struct device *dev) 5650 { 5651 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5652 pm_runtime_disable(dev); 5653 pm_runtime_set_active(dev); 5654 pm_runtime_enable(dev); 5655 return 0; 5656 } 5657 5658 /* 5659 * For ODDs, the upper layer will poll for media change every few seconds, 5660 * which will make it enter and leave suspend state every few seconds. And 5661 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5662 * is very little and the ODD may malfunction after constantly being reset. 5663 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5664 * ODD is attached to the port. 5665 */ 5666 static int ata_port_runtime_idle(struct device *dev) 5667 { 5668 struct ata_port *ap = to_ata_port(dev); 5669 struct ata_link *link; 5670 struct ata_device *adev; 5671 5672 ata_for_each_link(link, ap, HOST_FIRST) { 5673 ata_for_each_dev(adev, link, ENABLED) 5674 if (adev->class == ATA_DEV_ATAPI && 5675 !zpodd_dev_enabled(adev)) 5676 return -EBUSY; 5677 } 5678 5679 return 0; 5680 } 5681 5682 static int ata_port_runtime_suspend(struct device *dev) 5683 { 5684 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5685 return 0; 5686 } 5687 5688 static int ata_port_runtime_resume(struct device *dev) 5689 { 5690 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5691 return 0; 5692 } 5693 5694 static const struct dev_pm_ops ata_port_pm_ops = { 5695 .suspend = ata_port_pm_suspend, 5696 .resume = ata_port_pm_resume, 5697 .freeze = ata_port_pm_freeze, 5698 .thaw = ata_port_pm_resume, 5699 .poweroff = ata_port_pm_poweroff, 5700 .restore = ata_port_pm_resume, 5701 5702 .runtime_suspend = ata_port_runtime_suspend, 5703 .runtime_resume = ata_port_runtime_resume, 5704 .runtime_idle = ata_port_runtime_idle, 5705 }; 5706 5707 /* sas ports don't participate in pm runtime management of ata_ports, 5708 * and need to resume ata devices at the domain level, not the per-port 5709 * level. sas suspend/resume is async to allow parallel port recovery 5710 * since sas has multiple ata_port instances per Scsi_Host. 5711 */ 5712 void ata_sas_port_suspend(struct ata_port *ap) 5713 { 5714 ata_port_suspend_async(ap, PMSG_SUSPEND); 5715 } 5716 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5717 5718 void ata_sas_port_resume(struct ata_port *ap) 5719 { 5720 ata_port_resume_async(ap, PMSG_RESUME); 5721 } 5722 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5723 5724 /** 5725 * ata_host_suspend - suspend host 5726 * @host: host to suspend 5727 * @mesg: PM message 5728 * 5729 * Suspend @host. Actual operation is performed by port suspend. 5730 */ 5731 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5732 { 5733 host->dev->power.power_state = mesg; 5734 return 0; 5735 } 5736 5737 /** 5738 * ata_host_resume - resume host 5739 * @host: host to resume 5740 * 5741 * Resume @host. Actual operation is performed by port resume. 5742 */ 5743 void ata_host_resume(struct ata_host *host) 5744 { 5745 host->dev->power.power_state = PMSG_ON; 5746 } 5747 #endif 5748 5749 struct device_type ata_port_type = { 5750 .name = "ata_port", 5751 #ifdef CONFIG_PM 5752 .pm = &ata_port_pm_ops, 5753 #endif 5754 }; 5755 5756 /** 5757 * ata_dev_init - Initialize an ata_device structure 5758 * @dev: Device structure to initialize 5759 * 5760 * Initialize @dev in preparation for probing. 5761 * 5762 * LOCKING: 5763 * Inherited from caller. 5764 */ 5765 void ata_dev_init(struct ata_device *dev) 5766 { 5767 struct ata_link *link = ata_dev_phys_link(dev); 5768 struct ata_port *ap = link->ap; 5769 unsigned long flags; 5770 5771 /* SATA spd limit is bound to the attached device, reset together */ 5772 link->sata_spd_limit = link->hw_sata_spd_limit; 5773 link->sata_spd = 0; 5774 5775 /* High bits of dev->flags are used to record warm plug 5776 * requests which occur asynchronously. Synchronize using 5777 * host lock. 5778 */ 5779 spin_lock_irqsave(ap->lock, flags); 5780 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5781 dev->horkage = 0; 5782 spin_unlock_irqrestore(ap->lock, flags); 5783 5784 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5785 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5786 dev->pio_mask = UINT_MAX; 5787 dev->mwdma_mask = UINT_MAX; 5788 dev->udma_mask = UINT_MAX; 5789 } 5790 5791 /** 5792 * ata_link_init - Initialize an ata_link structure 5793 * @ap: ATA port link is attached to 5794 * @link: Link structure to initialize 5795 * @pmp: Port multiplier port number 5796 * 5797 * Initialize @link. 5798 * 5799 * LOCKING: 5800 * Kernel thread context (may sleep) 5801 */ 5802 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5803 { 5804 int i; 5805 5806 /* clear everything except for devices */ 5807 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5808 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5809 5810 link->ap = ap; 5811 link->pmp = pmp; 5812 link->active_tag = ATA_TAG_POISON; 5813 link->hw_sata_spd_limit = UINT_MAX; 5814 5815 /* can't use iterator, ap isn't initialized yet */ 5816 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5817 struct ata_device *dev = &link->device[i]; 5818 5819 dev->link = link; 5820 dev->devno = dev - link->device; 5821 #ifdef CONFIG_ATA_ACPI 5822 dev->gtf_filter = ata_acpi_gtf_filter; 5823 #endif 5824 ata_dev_init(dev); 5825 } 5826 } 5827 5828 /** 5829 * sata_link_init_spd - Initialize link->sata_spd_limit 5830 * @link: Link to configure sata_spd_limit for 5831 * 5832 * Initialize @link->[hw_]sata_spd_limit to the currently 5833 * configured value. 5834 * 5835 * LOCKING: 5836 * Kernel thread context (may sleep). 5837 * 5838 * RETURNS: 5839 * 0 on success, -errno on failure. 5840 */ 5841 int sata_link_init_spd(struct ata_link *link) 5842 { 5843 u8 spd; 5844 int rc; 5845 5846 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5847 if (rc) 5848 return rc; 5849 5850 spd = (link->saved_scontrol >> 4) & 0xf; 5851 if (spd) 5852 link->hw_sata_spd_limit &= (1 << spd) - 1; 5853 5854 ata_force_link_limits(link); 5855 5856 link->sata_spd_limit = link->hw_sata_spd_limit; 5857 5858 return 0; 5859 } 5860 5861 /** 5862 * ata_port_alloc - allocate and initialize basic ATA port resources 5863 * @host: ATA host this allocated port belongs to 5864 * 5865 * Allocate and initialize basic ATA port resources. 5866 * 5867 * RETURNS: 5868 * Allocate ATA port on success, NULL on failure. 5869 * 5870 * LOCKING: 5871 * Inherited from calling layer (may sleep). 5872 */ 5873 struct ata_port *ata_port_alloc(struct ata_host *host) 5874 { 5875 struct ata_port *ap; 5876 5877 DPRINTK("ENTER\n"); 5878 5879 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5880 if (!ap) 5881 return NULL; 5882 5883 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5884 ap->lock = &host->lock; 5885 ap->print_id = -1; 5886 ap->local_port_no = -1; 5887 ap->host = host; 5888 ap->dev = host->dev; 5889 5890 #if defined(ATA_VERBOSE_DEBUG) 5891 /* turn on all debugging levels */ 5892 ap->msg_enable = 0x00FF; 5893 #elif defined(ATA_DEBUG) 5894 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5895 #else 5896 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5897 #endif 5898 5899 mutex_init(&ap->scsi_scan_mutex); 5900 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5901 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5902 INIT_LIST_HEAD(&ap->eh_done_q); 5903 init_waitqueue_head(&ap->eh_wait_q); 5904 init_completion(&ap->park_req_pending); 5905 setup_deferrable_timer(&ap->fastdrain_timer, 5906 ata_eh_fastdrain_timerfn, 5907 (unsigned long)ap); 5908 5909 ap->cbl = ATA_CBL_NONE; 5910 5911 ata_link_init(ap, &ap->link, 0); 5912 5913 #ifdef ATA_IRQ_TRAP 5914 ap->stats.unhandled_irq = 1; 5915 ap->stats.idle_irq = 1; 5916 #endif 5917 ata_sff_port_init(ap); 5918 5919 return ap; 5920 } 5921 5922 static void ata_host_release(struct device *gendev, void *res) 5923 { 5924 struct ata_host *host = dev_get_drvdata(gendev); 5925 int i; 5926 5927 for (i = 0; i < host->n_ports; i++) { 5928 struct ata_port *ap = host->ports[i]; 5929 5930 if (!ap) 5931 continue; 5932 5933 if (ap->scsi_host) 5934 scsi_host_put(ap->scsi_host); 5935 5936 kfree(ap->pmp_link); 5937 kfree(ap->slave_link); 5938 kfree(ap); 5939 host->ports[i] = NULL; 5940 } 5941 5942 dev_set_drvdata(gendev, NULL); 5943 } 5944 5945 /** 5946 * ata_host_alloc - allocate and init basic ATA host resources 5947 * @dev: generic device this host is associated with 5948 * @max_ports: maximum number of ATA ports associated with this host 5949 * 5950 * Allocate and initialize basic ATA host resources. LLD calls 5951 * this function to allocate a host, initializes it fully and 5952 * attaches it using ata_host_register(). 5953 * 5954 * @max_ports ports are allocated and host->n_ports is 5955 * initialized to @max_ports. The caller is allowed to decrease 5956 * host->n_ports before calling ata_host_register(). The unused 5957 * ports will be automatically freed on registration. 5958 * 5959 * RETURNS: 5960 * Allocate ATA host on success, NULL on failure. 5961 * 5962 * LOCKING: 5963 * Inherited from calling layer (may sleep). 5964 */ 5965 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5966 { 5967 struct ata_host *host; 5968 size_t sz; 5969 int i; 5970 5971 DPRINTK("ENTER\n"); 5972 5973 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5974 return NULL; 5975 5976 /* alloc a container for our list of ATA ports (buses) */ 5977 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5978 /* alloc a container for our list of ATA ports (buses) */ 5979 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5980 if (!host) 5981 goto err_out; 5982 5983 devres_add(dev, host); 5984 dev_set_drvdata(dev, host); 5985 5986 spin_lock_init(&host->lock); 5987 mutex_init(&host->eh_mutex); 5988 host->dev = dev; 5989 host->n_ports = max_ports; 5990 5991 /* allocate ports bound to this host */ 5992 for (i = 0; i < max_ports; i++) { 5993 struct ata_port *ap; 5994 5995 ap = ata_port_alloc(host); 5996 if (!ap) 5997 goto err_out; 5998 5999 ap->port_no = i; 6000 host->ports[i] = ap; 6001 } 6002 6003 devres_remove_group(dev, NULL); 6004 return host; 6005 6006 err_out: 6007 devres_release_group(dev, NULL); 6008 return NULL; 6009 } 6010 6011 /** 6012 * ata_host_alloc_pinfo - alloc host and init with port_info array 6013 * @dev: generic device this host is associated with 6014 * @ppi: array of ATA port_info to initialize host with 6015 * @n_ports: number of ATA ports attached to this host 6016 * 6017 * Allocate ATA host and initialize with info from @ppi. If NULL 6018 * terminated, @ppi may contain fewer entries than @n_ports. The 6019 * last entry will be used for the remaining ports. 6020 * 6021 * RETURNS: 6022 * Allocate ATA host on success, NULL on failure. 6023 * 6024 * LOCKING: 6025 * Inherited from calling layer (may sleep). 6026 */ 6027 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6028 const struct ata_port_info * const * ppi, 6029 int n_ports) 6030 { 6031 const struct ata_port_info *pi; 6032 struct ata_host *host; 6033 int i, j; 6034 6035 host = ata_host_alloc(dev, n_ports); 6036 if (!host) 6037 return NULL; 6038 6039 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6040 struct ata_port *ap = host->ports[i]; 6041 6042 if (ppi[j]) 6043 pi = ppi[j++]; 6044 6045 ap->pio_mask = pi->pio_mask; 6046 ap->mwdma_mask = pi->mwdma_mask; 6047 ap->udma_mask = pi->udma_mask; 6048 ap->flags |= pi->flags; 6049 ap->link.flags |= pi->link_flags; 6050 ap->ops = pi->port_ops; 6051 6052 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6053 host->ops = pi->port_ops; 6054 } 6055 6056 return host; 6057 } 6058 6059 /** 6060 * ata_slave_link_init - initialize slave link 6061 * @ap: port to initialize slave link for 6062 * 6063 * Create and initialize slave link for @ap. This enables slave 6064 * link handling on the port. 6065 * 6066 * In libata, a port contains links and a link contains devices. 6067 * There is single host link but if a PMP is attached to it, 6068 * there can be multiple fan-out links. On SATA, there's usually 6069 * a single device connected to a link but PATA and SATA 6070 * controllers emulating TF based interface can have two - master 6071 * and slave. 6072 * 6073 * However, there are a few controllers which don't fit into this 6074 * abstraction too well - SATA controllers which emulate TF 6075 * interface with both master and slave devices but also have 6076 * separate SCR register sets for each device. These controllers 6077 * need separate links for physical link handling 6078 * (e.g. onlineness, link speed) but should be treated like a 6079 * traditional M/S controller for everything else (e.g. command 6080 * issue, softreset). 6081 * 6082 * slave_link is libata's way of handling this class of 6083 * controllers without impacting core layer too much. For 6084 * anything other than physical link handling, the default host 6085 * link is used for both master and slave. For physical link 6086 * handling, separate @ap->slave_link is used. All dirty details 6087 * are implemented inside libata core layer. From LLD's POV, the 6088 * only difference is that prereset, hardreset and postreset are 6089 * called once more for the slave link, so the reset sequence 6090 * looks like the following. 6091 * 6092 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6093 * softreset(M) -> postreset(M) -> postreset(S) 6094 * 6095 * Note that softreset is called only for the master. Softreset 6096 * resets both M/S by definition, so SRST on master should handle 6097 * both (the standard method will work just fine). 6098 * 6099 * LOCKING: 6100 * Should be called before host is registered. 6101 * 6102 * RETURNS: 6103 * 0 on success, -errno on failure. 6104 */ 6105 int ata_slave_link_init(struct ata_port *ap) 6106 { 6107 struct ata_link *link; 6108 6109 WARN_ON(ap->slave_link); 6110 WARN_ON(ap->flags & ATA_FLAG_PMP); 6111 6112 link = kzalloc(sizeof(*link), GFP_KERNEL); 6113 if (!link) 6114 return -ENOMEM; 6115 6116 ata_link_init(ap, link, 1); 6117 ap->slave_link = link; 6118 return 0; 6119 } 6120 6121 static void ata_host_stop(struct device *gendev, void *res) 6122 { 6123 struct ata_host *host = dev_get_drvdata(gendev); 6124 int i; 6125 6126 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6127 6128 for (i = 0; i < host->n_ports; i++) { 6129 struct ata_port *ap = host->ports[i]; 6130 6131 if (ap->ops->port_stop) 6132 ap->ops->port_stop(ap); 6133 } 6134 6135 if (host->ops->host_stop) 6136 host->ops->host_stop(host); 6137 } 6138 6139 /** 6140 * ata_finalize_port_ops - finalize ata_port_operations 6141 * @ops: ata_port_operations to finalize 6142 * 6143 * An ata_port_operations can inherit from another ops and that 6144 * ops can again inherit from another. This can go on as many 6145 * times as necessary as long as there is no loop in the 6146 * inheritance chain. 6147 * 6148 * Ops tables are finalized when the host is started. NULL or 6149 * unspecified entries are inherited from the closet ancestor 6150 * which has the method and the entry is populated with it. 6151 * After finalization, the ops table directly points to all the 6152 * methods and ->inherits is no longer necessary and cleared. 6153 * 6154 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6155 * 6156 * LOCKING: 6157 * None. 6158 */ 6159 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6160 { 6161 static DEFINE_SPINLOCK(lock); 6162 const struct ata_port_operations *cur; 6163 void **begin = (void **)ops; 6164 void **end = (void **)&ops->inherits; 6165 void **pp; 6166 6167 if (!ops || !ops->inherits) 6168 return; 6169 6170 spin_lock(&lock); 6171 6172 for (cur = ops->inherits; cur; cur = cur->inherits) { 6173 void **inherit = (void **)cur; 6174 6175 for (pp = begin; pp < end; pp++, inherit++) 6176 if (!*pp) 6177 *pp = *inherit; 6178 } 6179 6180 for (pp = begin; pp < end; pp++) 6181 if (IS_ERR(*pp)) 6182 *pp = NULL; 6183 6184 ops->inherits = NULL; 6185 6186 spin_unlock(&lock); 6187 } 6188 6189 /** 6190 * ata_host_start - start and freeze ports of an ATA host 6191 * @host: ATA host to start ports for 6192 * 6193 * Start and then freeze ports of @host. Started status is 6194 * recorded in host->flags, so this function can be called 6195 * multiple times. Ports are guaranteed to get started only 6196 * once. If host->ops isn't initialized yet, its set to the 6197 * first non-dummy port ops. 6198 * 6199 * LOCKING: 6200 * Inherited from calling layer (may sleep). 6201 * 6202 * RETURNS: 6203 * 0 if all ports are started successfully, -errno otherwise. 6204 */ 6205 int ata_host_start(struct ata_host *host) 6206 { 6207 int have_stop = 0; 6208 void *start_dr = NULL; 6209 int i, rc; 6210 6211 if (host->flags & ATA_HOST_STARTED) 6212 return 0; 6213 6214 ata_finalize_port_ops(host->ops); 6215 6216 for (i = 0; i < host->n_ports; i++) { 6217 struct ata_port *ap = host->ports[i]; 6218 6219 ata_finalize_port_ops(ap->ops); 6220 6221 if (!host->ops && !ata_port_is_dummy(ap)) 6222 host->ops = ap->ops; 6223 6224 if (ap->ops->port_stop) 6225 have_stop = 1; 6226 } 6227 6228 if (host->ops->host_stop) 6229 have_stop = 1; 6230 6231 if (have_stop) { 6232 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6233 if (!start_dr) 6234 return -ENOMEM; 6235 } 6236 6237 for (i = 0; i < host->n_ports; i++) { 6238 struct ata_port *ap = host->ports[i]; 6239 6240 if (ap->ops->port_start) { 6241 rc = ap->ops->port_start(ap); 6242 if (rc) { 6243 if (rc != -ENODEV) 6244 dev_err(host->dev, 6245 "failed to start port %d (errno=%d)\n", 6246 i, rc); 6247 goto err_out; 6248 } 6249 } 6250 ata_eh_freeze_port(ap); 6251 } 6252 6253 if (start_dr) 6254 devres_add(host->dev, start_dr); 6255 host->flags |= ATA_HOST_STARTED; 6256 return 0; 6257 6258 err_out: 6259 while (--i >= 0) { 6260 struct ata_port *ap = host->ports[i]; 6261 6262 if (ap->ops->port_stop) 6263 ap->ops->port_stop(ap); 6264 } 6265 devres_free(start_dr); 6266 return rc; 6267 } 6268 6269 /** 6270 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6271 * @host: host to initialize 6272 * @dev: device host is attached to 6273 * @ops: port_ops 6274 * 6275 */ 6276 void ata_host_init(struct ata_host *host, struct device *dev, 6277 struct ata_port_operations *ops) 6278 { 6279 spin_lock_init(&host->lock); 6280 mutex_init(&host->eh_mutex); 6281 host->n_tags = ATA_MAX_QUEUE - 1; 6282 host->dev = dev; 6283 host->ops = ops; 6284 } 6285 6286 void __ata_port_probe(struct ata_port *ap) 6287 { 6288 struct ata_eh_info *ehi = &ap->link.eh_info; 6289 unsigned long flags; 6290 6291 /* kick EH for boot probing */ 6292 spin_lock_irqsave(ap->lock, flags); 6293 6294 ehi->probe_mask |= ATA_ALL_DEVICES; 6295 ehi->action |= ATA_EH_RESET; 6296 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6297 6298 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6299 ap->pflags |= ATA_PFLAG_LOADING; 6300 ata_port_schedule_eh(ap); 6301 6302 spin_unlock_irqrestore(ap->lock, flags); 6303 } 6304 6305 int ata_port_probe(struct ata_port *ap) 6306 { 6307 int rc = 0; 6308 6309 if (ap->ops->error_handler) { 6310 __ata_port_probe(ap); 6311 ata_port_wait_eh(ap); 6312 } else { 6313 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6314 rc = ata_bus_probe(ap); 6315 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6316 } 6317 return rc; 6318 } 6319 6320 6321 static void async_port_probe(void *data, async_cookie_t cookie) 6322 { 6323 struct ata_port *ap = data; 6324 6325 /* 6326 * If we're not allowed to scan this host in parallel, 6327 * we need to wait until all previous scans have completed 6328 * before going further. 6329 * Jeff Garzik says this is only within a controller, so we 6330 * don't need to wait for port 0, only for later ports. 6331 */ 6332 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6333 async_synchronize_cookie(cookie); 6334 6335 (void)ata_port_probe(ap); 6336 6337 /* in order to keep device order, we need to synchronize at this point */ 6338 async_synchronize_cookie(cookie); 6339 6340 ata_scsi_scan_host(ap, 1); 6341 } 6342 6343 /** 6344 * ata_host_register - register initialized ATA host 6345 * @host: ATA host to register 6346 * @sht: template for SCSI host 6347 * 6348 * Register initialized ATA host. @host is allocated using 6349 * ata_host_alloc() and fully initialized by LLD. This function 6350 * starts ports, registers @host with ATA and SCSI layers and 6351 * probe registered devices. 6352 * 6353 * LOCKING: 6354 * Inherited from calling layer (may sleep). 6355 * 6356 * RETURNS: 6357 * 0 on success, -errno otherwise. 6358 */ 6359 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6360 { 6361 int i, rc; 6362 6363 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6364 6365 /* host must have been started */ 6366 if (!(host->flags & ATA_HOST_STARTED)) { 6367 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6368 WARN_ON(1); 6369 return -EINVAL; 6370 } 6371 6372 /* Blow away unused ports. This happens when LLD can't 6373 * determine the exact number of ports to allocate at 6374 * allocation time. 6375 */ 6376 for (i = host->n_ports; host->ports[i]; i++) 6377 kfree(host->ports[i]); 6378 6379 /* give ports names and add SCSI hosts */ 6380 for (i = 0; i < host->n_ports; i++) { 6381 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6382 host->ports[i]->local_port_no = i + 1; 6383 } 6384 6385 /* Create associated sysfs transport objects */ 6386 for (i = 0; i < host->n_ports; i++) { 6387 rc = ata_tport_add(host->dev,host->ports[i]); 6388 if (rc) { 6389 goto err_tadd; 6390 } 6391 } 6392 6393 rc = ata_scsi_add_hosts(host, sht); 6394 if (rc) 6395 goto err_tadd; 6396 6397 /* set cable, sata_spd_limit and report */ 6398 for (i = 0; i < host->n_ports; i++) { 6399 struct ata_port *ap = host->ports[i]; 6400 unsigned long xfer_mask; 6401 6402 /* set SATA cable type if still unset */ 6403 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6404 ap->cbl = ATA_CBL_SATA; 6405 6406 /* init sata_spd_limit to the current value */ 6407 sata_link_init_spd(&ap->link); 6408 if (ap->slave_link) 6409 sata_link_init_spd(ap->slave_link); 6410 6411 /* print per-port info to dmesg */ 6412 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6413 ap->udma_mask); 6414 6415 if (!ata_port_is_dummy(ap)) { 6416 ata_port_info(ap, "%cATA max %s %s\n", 6417 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6418 ata_mode_string(xfer_mask), 6419 ap->link.eh_info.desc); 6420 ata_ehi_clear_desc(&ap->link.eh_info); 6421 } else 6422 ata_port_info(ap, "DUMMY\n"); 6423 } 6424 6425 /* perform each probe asynchronously */ 6426 for (i = 0; i < host->n_ports; i++) { 6427 struct ata_port *ap = host->ports[i]; 6428 async_schedule(async_port_probe, ap); 6429 } 6430 6431 return 0; 6432 6433 err_tadd: 6434 while (--i >= 0) { 6435 ata_tport_delete(host->ports[i]); 6436 } 6437 return rc; 6438 6439 } 6440 6441 /** 6442 * ata_host_activate - start host, request IRQ and register it 6443 * @host: target ATA host 6444 * @irq: IRQ to request 6445 * @irq_handler: irq_handler used when requesting IRQ 6446 * @irq_flags: irq_flags used when requesting IRQ 6447 * @sht: scsi_host_template to use when registering the host 6448 * 6449 * After allocating an ATA host and initializing it, most libata 6450 * LLDs perform three steps to activate the host - start host, 6451 * request IRQ and register it. This helper takes necessary 6452 * arguments and performs the three steps in one go. 6453 * 6454 * An invalid IRQ skips the IRQ registration and expects the host to 6455 * have set polling mode on the port. In this case, @irq_handler 6456 * should be NULL. 6457 * 6458 * LOCKING: 6459 * Inherited from calling layer (may sleep). 6460 * 6461 * RETURNS: 6462 * 0 on success, -errno otherwise. 6463 */ 6464 int ata_host_activate(struct ata_host *host, int irq, 6465 irq_handler_t irq_handler, unsigned long irq_flags, 6466 struct scsi_host_template *sht) 6467 { 6468 int i, rc; 6469 char *irq_desc; 6470 6471 rc = ata_host_start(host); 6472 if (rc) 6473 return rc; 6474 6475 /* Special case for polling mode */ 6476 if (!irq) { 6477 WARN_ON(irq_handler); 6478 return ata_host_register(host, sht); 6479 } 6480 6481 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6482 dev_driver_string(host->dev), 6483 dev_name(host->dev)); 6484 if (!irq_desc) 6485 return -ENOMEM; 6486 6487 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6488 irq_desc, host); 6489 if (rc) 6490 return rc; 6491 6492 for (i = 0; i < host->n_ports; i++) 6493 ata_port_desc(host->ports[i], "irq %d", irq); 6494 6495 rc = ata_host_register(host, sht); 6496 /* if failed, just free the IRQ and leave ports alone */ 6497 if (rc) 6498 devm_free_irq(host->dev, irq, host); 6499 6500 return rc; 6501 } 6502 6503 /** 6504 * ata_port_detach - Detach ATA port in preparation of device removal 6505 * @ap: ATA port to be detached 6506 * 6507 * Detach all ATA devices and the associated SCSI devices of @ap; 6508 * then, remove the associated SCSI host. @ap is guaranteed to 6509 * be quiescent on return from this function. 6510 * 6511 * LOCKING: 6512 * Kernel thread context (may sleep). 6513 */ 6514 static void ata_port_detach(struct ata_port *ap) 6515 { 6516 unsigned long flags; 6517 struct ata_link *link; 6518 struct ata_device *dev; 6519 6520 if (!ap->ops->error_handler) 6521 goto skip_eh; 6522 6523 /* tell EH we're leaving & flush EH */ 6524 spin_lock_irqsave(ap->lock, flags); 6525 ap->pflags |= ATA_PFLAG_UNLOADING; 6526 ata_port_schedule_eh(ap); 6527 spin_unlock_irqrestore(ap->lock, flags); 6528 6529 /* wait till EH commits suicide */ 6530 ata_port_wait_eh(ap); 6531 6532 /* it better be dead now */ 6533 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6534 6535 cancel_delayed_work_sync(&ap->hotplug_task); 6536 6537 skip_eh: 6538 /* clean up zpodd on port removal */ 6539 ata_for_each_link(link, ap, HOST_FIRST) { 6540 ata_for_each_dev(dev, link, ALL) { 6541 if (zpodd_dev_enabled(dev)) 6542 zpodd_exit(dev); 6543 } 6544 } 6545 if (ap->pmp_link) { 6546 int i; 6547 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6548 ata_tlink_delete(&ap->pmp_link[i]); 6549 } 6550 /* remove the associated SCSI host */ 6551 scsi_remove_host(ap->scsi_host); 6552 ata_tport_delete(ap); 6553 } 6554 6555 /** 6556 * ata_host_detach - Detach all ports of an ATA host 6557 * @host: Host to detach 6558 * 6559 * Detach all ports of @host. 6560 * 6561 * LOCKING: 6562 * Kernel thread context (may sleep). 6563 */ 6564 void ata_host_detach(struct ata_host *host) 6565 { 6566 int i; 6567 6568 for (i = 0; i < host->n_ports; i++) 6569 ata_port_detach(host->ports[i]); 6570 6571 /* the host is dead now, dissociate ACPI */ 6572 ata_acpi_dissociate(host); 6573 } 6574 6575 #ifdef CONFIG_PCI 6576 6577 /** 6578 * ata_pci_remove_one - PCI layer callback for device removal 6579 * @pdev: PCI device that was removed 6580 * 6581 * PCI layer indicates to libata via this hook that hot-unplug or 6582 * module unload event has occurred. Detach all ports. Resource 6583 * release is handled via devres. 6584 * 6585 * LOCKING: 6586 * Inherited from PCI layer (may sleep). 6587 */ 6588 void ata_pci_remove_one(struct pci_dev *pdev) 6589 { 6590 struct ata_host *host = pci_get_drvdata(pdev); 6591 6592 ata_host_detach(host); 6593 } 6594 6595 /* move to PCI subsystem */ 6596 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6597 { 6598 unsigned long tmp = 0; 6599 6600 switch (bits->width) { 6601 case 1: { 6602 u8 tmp8 = 0; 6603 pci_read_config_byte(pdev, bits->reg, &tmp8); 6604 tmp = tmp8; 6605 break; 6606 } 6607 case 2: { 6608 u16 tmp16 = 0; 6609 pci_read_config_word(pdev, bits->reg, &tmp16); 6610 tmp = tmp16; 6611 break; 6612 } 6613 case 4: { 6614 u32 tmp32 = 0; 6615 pci_read_config_dword(pdev, bits->reg, &tmp32); 6616 tmp = tmp32; 6617 break; 6618 } 6619 6620 default: 6621 return -EINVAL; 6622 } 6623 6624 tmp &= bits->mask; 6625 6626 return (tmp == bits->val) ? 1 : 0; 6627 } 6628 6629 #ifdef CONFIG_PM 6630 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6631 { 6632 pci_save_state(pdev); 6633 pci_disable_device(pdev); 6634 6635 if (mesg.event & PM_EVENT_SLEEP) 6636 pci_set_power_state(pdev, PCI_D3hot); 6637 } 6638 6639 int ata_pci_device_do_resume(struct pci_dev *pdev) 6640 { 6641 int rc; 6642 6643 pci_set_power_state(pdev, PCI_D0); 6644 pci_restore_state(pdev); 6645 6646 rc = pcim_enable_device(pdev); 6647 if (rc) { 6648 dev_err(&pdev->dev, 6649 "failed to enable device after resume (%d)\n", rc); 6650 return rc; 6651 } 6652 6653 pci_set_master(pdev); 6654 return 0; 6655 } 6656 6657 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6658 { 6659 struct ata_host *host = pci_get_drvdata(pdev); 6660 int rc = 0; 6661 6662 rc = ata_host_suspend(host, mesg); 6663 if (rc) 6664 return rc; 6665 6666 ata_pci_device_do_suspend(pdev, mesg); 6667 6668 return 0; 6669 } 6670 6671 int ata_pci_device_resume(struct pci_dev *pdev) 6672 { 6673 struct ata_host *host = pci_get_drvdata(pdev); 6674 int rc; 6675 6676 rc = ata_pci_device_do_resume(pdev); 6677 if (rc == 0) 6678 ata_host_resume(host); 6679 return rc; 6680 } 6681 #endif /* CONFIG_PM */ 6682 6683 #endif /* CONFIG_PCI */ 6684 6685 /** 6686 * ata_platform_remove_one - Platform layer callback for device removal 6687 * @pdev: Platform device that was removed 6688 * 6689 * Platform layer indicates to libata via this hook that hot-unplug or 6690 * module unload event has occurred. Detach all ports. Resource 6691 * release is handled via devres. 6692 * 6693 * LOCKING: 6694 * Inherited from platform layer (may sleep). 6695 */ 6696 int ata_platform_remove_one(struct platform_device *pdev) 6697 { 6698 struct ata_host *host = platform_get_drvdata(pdev); 6699 6700 ata_host_detach(host); 6701 6702 return 0; 6703 } 6704 6705 static int __init ata_parse_force_one(char **cur, 6706 struct ata_force_ent *force_ent, 6707 const char **reason) 6708 { 6709 static const struct ata_force_param force_tbl[] __initconst = { 6710 { "40c", .cbl = ATA_CBL_PATA40 }, 6711 { "80c", .cbl = ATA_CBL_PATA80 }, 6712 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6713 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6714 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6715 { "sata", .cbl = ATA_CBL_SATA }, 6716 { "1.5Gbps", .spd_limit = 1 }, 6717 { "3.0Gbps", .spd_limit = 2 }, 6718 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6719 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6720 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6721 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6722 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6723 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6724 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6725 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6726 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6727 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6728 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6729 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6730 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6731 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6732 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6733 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6734 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6735 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6736 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6737 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6738 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6739 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6740 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6741 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6742 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6743 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6744 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6745 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6746 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6747 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6748 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6749 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6750 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6751 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6752 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6753 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6754 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6755 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6756 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6757 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6758 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6759 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6760 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6761 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6762 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6763 }; 6764 char *start = *cur, *p = *cur; 6765 char *id, *val, *endp; 6766 const struct ata_force_param *match_fp = NULL; 6767 int nr_matches = 0, i; 6768 6769 /* find where this param ends and update *cur */ 6770 while (*p != '\0' && *p != ',') 6771 p++; 6772 6773 if (*p == '\0') 6774 *cur = p; 6775 else 6776 *cur = p + 1; 6777 6778 *p = '\0'; 6779 6780 /* parse */ 6781 p = strchr(start, ':'); 6782 if (!p) { 6783 val = strstrip(start); 6784 goto parse_val; 6785 } 6786 *p = '\0'; 6787 6788 id = strstrip(start); 6789 val = strstrip(p + 1); 6790 6791 /* parse id */ 6792 p = strchr(id, '.'); 6793 if (p) { 6794 *p++ = '\0'; 6795 force_ent->device = simple_strtoul(p, &endp, 10); 6796 if (p == endp || *endp != '\0') { 6797 *reason = "invalid device"; 6798 return -EINVAL; 6799 } 6800 } 6801 6802 force_ent->port = simple_strtoul(id, &endp, 10); 6803 if (p == endp || *endp != '\0') { 6804 *reason = "invalid port/link"; 6805 return -EINVAL; 6806 } 6807 6808 parse_val: 6809 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6810 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6811 const struct ata_force_param *fp = &force_tbl[i]; 6812 6813 if (strncasecmp(val, fp->name, strlen(val))) 6814 continue; 6815 6816 nr_matches++; 6817 match_fp = fp; 6818 6819 if (strcasecmp(val, fp->name) == 0) { 6820 nr_matches = 1; 6821 break; 6822 } 6823 } 6824 6825 if (!nr_matches) { 6826 *reason = "unknown value"; 6827 return -EINVAL; 6828 } 6829 if (nr_matches > 1) { 6830 *reason = "ambigious value"; 6831 return -EINVAL; 6832 } 6833 6834 force_ent->param = *match_fp; 6835 6836 return 0; 6837 } 6838 6839 static void __init ata_parse_force_param(void) 6840 { 6841 int idx = 0, size = 1; 6842 int last_port = -1, last_device = -1; 6843 char *p, *cur, *next; 6844 6845 /* calculate maximum number of params and allocate force_tbl */ 6846 for (p = ata_force_param_buf; *p; p++) 6847 if (*p == ',') 6848 size++; 6849 6850 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6851 if (!ata_force_tbl) { 6852 printk(KERN_WARNING "ata: failed to extend force table, " 6853 "libata.force ignored\n"); 6854 return; 6855 } 6856 6857 /* parse and populate the table */ 6858 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6859 const char *reason = ""; 6860 struct ata_force_ent te = { .port = -1, .device = -1 }; 6861 6862 next = cur; 6863 if (ata_parse_force_one(&next, &te, &reason)) { 6864 printk(KERN_WARNING "ata: failed to parse force " 6865 "parameter \"%s\" (%s)\n", 6866 cur, reason); 6867 continue; 6868 } 6869 6870 if (te.port == -1) { 6871 te.port = last_port; 6872 te.device = last_device; 6873 } 6874 6875 ata_force_tbl[idx++] = te; 6876 6877 last_port = te.port; 6878 last_device = te.device; 6879 } 6880 6881 ata_force_tbl_size = idx; 6882 } 6883 6884 static int __init ata_init(void) 6885 { 6886 int rc; 6887 6888 ata_parse_force_param(); 6889 6890 rc = ata_sff_init(); 6891 if (rc) { 6892 kfree(ata_force_tbl); 6893 return rc; 6894 } 6895 6896 libata_transport_init(); 6897 ata_scsi_transport_template = ata_attach_transport(); 6898 if (!ata_scsi_transport_template) { 6899 ata_sff_exit(); 6900 rc = -ENOMEM; 6901 goto err_out; 6902 } 6903 6904 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6905 return 0; 6906 6907 err_out: 6908 return rc; 6909 } 6910 6911 static void __exit ata_exit(void) 6912 { 6913 ata_release_transport(ata_scsi_transport_template); 6914 libata_transport_exit(); 6915 ata_sff_exit(); 6916 kfree(ata_force_tbl); 6917 } 6918 6919 subsys_initcall(ata_init); 6920 module_exit(ata_exit); 6921 6922 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6923 6924 int ata_ratelimit(void) 6925 { 6926 return __ratelimit(&ratelimit); 6927 } 6928 6929 /** 6930 * ata_msleep - ATA EH owner aware msleep 6931 * @ap: ATA port to attribute the sleep to 6932 * @msecs: duration to sleep in milliseconds 6933 * 6934 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6935 * ownership is released before going to sleep and reacquired 6936 * after the sleep is complete. IOW, other ports sharing the 6937 * @ap->host will be allowed to own the EH while this task is 6938 * sleeping. 6939 * 6940 * LOCKING: 6941 * Might sleep. 6942 */ 6943 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6944 { 6945 bool owns_eh = ap && ap->host->eh_owner == current; 6946 6947 if (owns_eh) 6948 ata_eh_release(ap); 6949 6950 if (msecs < 20) { 6951 unsigned long usecs = msecs * USEC_PER_MSEC; 6952 usleep_range(usecs, usecs + 50); 6953 } else { 6954 msleep(msecs); 6955 } 6956 6957 if (owns_eh) 6958 ata_eh_acquire(ap); 6959 } 6960 6961 /** 6962 * ata_wait_register - wait until register value changes 6963 * @ap: ATA port to wait register for, can be NULL 6964 * @reg: IO-mapped register 6965 * @mask: Mask to apply to read register value 6966 * @val: Wait condition 6967 * @interval: polling interval in milliseconds 6968 * @timeout: timeout in milliseconds 6969 * 6970 * Waiting for some bits of register to change is a common 6971 * operation for ATA controllers. This function reads 32bit LE 6972 * IO-mapped register @reg and tests for the following condition. 6973 * 6974 * (*@reg & mask) != val 6975 * 6976 * If the condition is met, it returns; otherwise, the process is 6977 * repeated after @interval_msec until timeout. 6978 * 6979 * LOCKING: 6980 * Kernel thread context (may sleep) 6981 * 6982 * RETURNS: 6983 * The final register value. 6984 */ 6985 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6986 unsigned long interval, unsigned long timeout) 6987 { 6988 unsigned long deadline; 6989 u32 tmp; 6990 6991 tmp = ioread32(reg); 6992 6993 /* Calculate timeout _after_ the first read to make sure 6994 * preceding writes reach the controller before starting to 6995 * eat away the timeout. 6996 */ 6997 deadline = ata_deadline(jiffies, timeout); 6998 6999 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 7000 ata_msleep(ap, interval); 7001 tmp = ioread32(reg); 7002 } 7003 7004 return tmp; 7005 } 7006 7007 /** 7008 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 7009 * @link: Link receiving the event 7010 * 7011 * Test whether the received PHY event has to be ignored or not. 7012 * 7013 * LOCKING: 7014 * None: 7015 * 7016 * RETURNS: 7017 * True if the event has to be ignored. 7018 */ 7019 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7020 { 7021 unsigned long lpm_timeout = link->last_lpm_change + 7022 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7023 7024 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7025 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7026 return true; 7027 7028 /* ignore the first PHY event after the LPM policy changed 7029 * as it is might be spurious 7030 */ 7031 if ((link->flags & ATA_LFLAG_CHANGED) && 7032 time_before(jiffies, lpm_timeout)) 7033 return true; 7034 7035 return false; 7036 } 7037 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7038 7039 /* 7040 * Dummy port_ops 7041 */ 7042 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7043 { 7044 return AC_ERR_SYSTEM; 7045 } 7046 7047 static void ata_dummy_error_handler(struct ata_port *ap) 7048 { 7049 /* truly dummy */ 7050 } 7051 7052 struct ata_port_operations ata_dummy_port_ops = { 7053 .qc_prep = ata_noop_qc_prep, 7054 .qc_issue = ata_dummy_qc_issue, 7055 .error_handler = ata_dummy_error_handler, 7056 .sched_eh = ata_std_sched_eh, 7057 .end_eh = ata_std_end_eh, 7058 }; 7059 7060 const struct ata_port_info ata_dummy_port_info = { 7061 .port_ops = &ata_dummy_port_ops, 7062 }; 7063 7064 /* 7065 * Utility print functions 7066 */ 7067 void ata_port_printk(const struct ata_port *ap, const char *level, 7068 const char *fmt, ...) 7069 { 7070 struct va_format vaf; 7071 va_list args; 7072 7073 va_start(args, fmt); 7074 7075 vaf.fmt = fmt; 7076 vaf.va = &args; 7077 7078 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7079 7080 va_end(args); 7081 } 7082 EXPORT_SYMBOL(ata_port_printk); 7083 7084 void ata_link_printk(const struct ata_link *link, const char *level, 7085 const char *fmt, ...) 7086 { 7087 struct va_format vaf; 7088 va_list args; 7089 7090 va_start(args, fmt); 7091 7092 vaf.fmt = fmt; 7093 vaf.va = &args; 7094 7095 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7096 printk("%sata%u.%02u: %pV", 7097 level, link->ap->print_id, link->pmp, &vaf); 7098 else 7099 printk("%sata%u: %pV", 7100 level, link->ap->print_id, &vaf); 7101 7102 va_end(args); 7103 } 7104 EXPORT_SYMBOL(ata_link_printk); 7105 7106 void ata_dev_printk(const struct ata_device *dev, const char *level, 7107 const char *fmt, ...) 7108 { 7109 struct va_format vaf; 7110 va_list args; 7111 7112 va_start(args, fmt); 7113 7114 vaf.fmt = fmt; 7115 vaf.va = &args; 7116 7117 printk("%sata%u.%02u: %pV", 7118 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7119 &vaf); 7120 7121 va_end(args); 7122 } 7123 EXPORT_SYMBOL(ata_dev_printk); 7124 7125 void ata_print_version(const struct device *dev, const char *version) 7126 { 7127 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7128 } 7129 EXPORT_SYMBOL(ata_print_version); 7130 7131 /* 7132 * libata is essentially a library of internal helper functions for 7133 * low-level ATA host controller drivers. As such, the API/ABI is 7134 * likely to change as new drivers are added and updated. 7135 * Do not depend on ABI/API stability. 7136 */ 7137 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7138 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7139 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7140 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7141 EXPORT_SYMBOL_GPL(sata_port_ops); 7142 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7143 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7144 EXPORT_SYMBOL_GPL(ata_link_next); 7145 EXPORT_SYMBOL_GPL(ata_dev_next); 7146 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7147 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7148 EXPORT_SYMBOL_GPL(ata_host_init); 7149 EXPORT_SYMBOL_GPL(ata_host_alloc); 7150 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7151 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7152 EXPORT_SYMBOL_GPL(ata_host_start); 7153 EXPORT_SYMBOL_GPL(ata_host_register); 7154 EXPORT_SYMBOL_GPL(ata_host_activate); 7155 EXPORT_SYMBOL_GPL(ata_host_detach); 7156 EXPORT_SYMBOL_GPL(ata_sg_init); 7157 EXPORT_SYMBOL_GPL(ata_qc_complete); 7158 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7159 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7160 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7161 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7162 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7163 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7164 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7165 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7166 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7167 EXPORT_SYMBOL_GPL(ata_mode_string); 7168 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7169 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7170 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7171 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7172 EXPORT_SYMBOL_GPL(ata_dev_disable); 7173 EXPORT_SYMBOL_GPL(sata_set_spd); 7174 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7175 EXPORT_SYMBOL_GPL(sata_link_debounce); 7176 EXPORT_SYMBOL_GPL(sata_link_resume); 7177 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7178 EXPORT_SYMBOL_GPL(ata_std_prereset); 7179 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7180 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7181 EXPORT_SYMBOL_GPL(ata_std_postreset); 7182 EXPORT_SYMBOL_GPL(ata_dev_classify); 7183 EXPORT_SYMBOL_GPL(ata_dev_pair); 7184 EXPORT_SYMBOL_GPL(ata_ratelimit); 7185 EXPORT_SYMBOL_GPL(ata_msleep); 7186 EXPORT_SYMBOL_GPL(ata_wait_register); 7187 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7188 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7189 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7190 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7191 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7192 EXPORT_SYMBOL_GPL(sata_scr_valid); 7193 EXPORT_SYMBOL_GPL(sata_scr_read); 7194 EXPORT_SYMBOL_GPL(sata_scr_write); 7195 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7196 EXPORT_SYMBOL_GPL(ata_link_online); 7197 EXPORT_SYMBOL_GPL(ata_link_offline); 7198 #ifdef CONFIG_PM 7199 EXPORT_SYMBOL_GPL(ata_host_suspend); 7200 EXPORT_SYMBOL_GPL(ata_host_resume); 7201 #endif /* CONFIG_PM */ 7202 EXPORT_SYMBOL_GPL(ata_id_string); 7203 EXPORT_SYMBOL_GPL(ata_id_c_string); 7204 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7205 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7206 7207 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7208 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7209 EXPORT_SYMBOL_GPL(ata_timing_compute); 7210 EXPORT_SYMBOL_GPL(ata_timing_merge); 7211 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7212 7213 #ifdef CONFIG_PCI 7214 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7215 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7216 #ifdef CONFIG_PM 7217 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7218 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7219 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7220 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7221 #endif /* CONFIG_PM */ 7222 #endif /* CONFIG_PCI */ 7223 7224 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7225 7226 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7227 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7228 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7229 EXPORT_SYMBOL_GPL(ata_port_desc); 7230 #ifdef CONFIG_PCI 7231 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7232 #endif /* CONFIG_PCI */ 7233 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7234 EXPORT_SYMBOL_GPL(ata_link_abort); 7235 EXPORT_SYMBOL_GPL(ata_port_abort); 7236 EXPORT_SYMBOL_GPL(ata_port_freeze); 7237 EXPORT_SYMBOL_GPL(sata_async_notification); 7238 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7239 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7240 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7241 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7242 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7243 EXPORT_SYMBOL_GPL(ata_do_eh); 7244 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7245 7246 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7247 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7248 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7249 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7250 EXPORT_SYMBOL_GPL(ata_cable_sata); 7251