1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @buf: Data buffer of the command 1489 * @buflen: Length of data buffer 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * the command on entry and the result on return. Timeout and error 1494 * conditions are reported via the return value. No recovery action 1495 * is taken after a command times out. It is the caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1505 const u8 *cdb, enum dma_data_direction dma_dir, 1506 void *buf, unsigned int buflen, 1507 unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 struct ata_queued_cmd *qc; 1513 struct scatterlist sgl; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 bool auto_timeout = false; 1519 DECLARE_COMPLETION_ONSTACK(wait); 1520 unsigned long flags; 1521 unsigned int err_mask; 1522 int rc; 1523 1524 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1525 return AC_ERR_INVALID; 1526 1527 spin_lock_irqsave(ap->lock, flags); 1528 1529 /* No internal command while frozen */ 1530 if (ata_port_is_frozen(ap)) { 1531 spin_unlock_irqrestore(ap->lock, flags); 1532 return AC_ERR_SYSTEM; 1533 } 1534 1535 /* Initialize internal qc */ 1536 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1537 1538 qc->tag = ATA_TAG_INTERNAL; 1539 qc->hw_tag = 0; 1540 qc->scsicmd = NULL; 1541 qc->ap = ap; 1542 qc->dev = dev; 1543 ata_qc_reinit(qc); 1544 1545 preempted_tag = link->active_tag; 1546 preempted_sactive = link->sactive; 1547 preempted_qc_active = ap->qc_active; 1548 preempted_nr_active_links = ap->nr_active_links; 1549 link->active_tag = ATA_TAG_POISON; 1550 link->sactive = 0; 1551 ap->qc_active = 0; 1552 ap->nr_active_links = 0; 1553 1554 /* Prepare and issue qc */ 1555 qc->tf = *tf; 1556 if (cdb) 1557 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1558 1559 /* Some SATA bridges need us to indicate data xfer direction */ 1560 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1561 dma_dir == DMA_FROM_DEVICE) 1562 qc->tf.feature |= ATAPI_DMADIR; 1563 1564 qc->flags |= ATA_QCFLAG_RESULT_TF; 1565 qc->dma_dir = dma_dir; 1566 if (dma_dir != DMA_NONE) { 1567 sg_init_one(&sgl, buf, buflen); 1568 ata_sg_init(qc, &sgl, 1); 1569 qc->nbytes = buflen; 1570 } 1571 1572 qc->private_data = &wait; 1573 qc->complete_fn = ata_qc_complete_internal; 1574 1575 ata_qc_issue(qc); 1576 1577 spin_unlock_irqrestore(ap->lock, flags); 1578 1579 if (!timeout) { 1580 if (ata_probe_timeout) { 1581 timeout = ata_probe_timeout * 1000; 1582 } else { 1583 timeout = ata_internal_cmd_timeout(dev, command); 1584 auto_timeout = true; 1585 } 1586 } 1587 1588 ata_eh_release(ap); 1589 1590 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1591 1592 ata_eh_acquire(ap); 1593 1594 ata_sff_flush_pio_task(ap); 1595 1596 if (!rc) { 1597 /* 1598 * We are racing with irq here. If we lose, the following test 1599 * prevents us from completing the qc twice. If we win, the port 1600 * is frozen and will be cleaned up by ->post_internal_cmd(). 1601 */ 1602 spin_lock_irqsave(ap->lock, flags); 1603 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1604 qc->err_mask |= AC_ERR_TIMEOUT; 1605 ata_port_freeze(ap); 1606 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1607 timeout, command); 1608 } 1609 spin_unlock_irqrestore(ap->lock, flags); 1610 } 1611 1612 if (ap->ops->post_internal_cmd) 1613 ap->ops->post_internal_cmd(qc); 1614 1615 /* Perform minimal error analysis */ 1616 if (qc->flags & ATA_QCFLAG_EH) { 1617 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1618 qc->err_mask |= AC_ERR_DEV; 1619 1620 if (!qc->err_mask) 1621 qc->err_mask |= AC_ERR_OTHER; 1622 1623 if (qc->err_mask & ~AC_ERR_OTHER) 1624 qc->err_mask &= ~AC_ERR_OTHER; 1625 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1626 qc->result_tf.status |= ATA_SENSE; 1627 } 1628 1629 /* Finish up */ 1630 spin_lock_irqsave(ap->lock, flags); 1631 1632 *tf = qc->result_tf; 1633 err_mask = qc->err_mask; 1634 1635 ata_qc_free(qc); 1636 link->active_tag = preempted_tag; 1637 link->sactive = preempted_sactive; 1638 ap->qc_active = preempted_qc_active; 1639 ap->nr_active_links = preempted_nr_active_links; 1640 1641 spin_unlock_irqrestore(ap->lock, flags); 1642 1643 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1644 ata_internal_cmd_timed_out(dev, command); 1645 1646 return err_mask; 1647 } 1648 1649 /** 1650 * ata_pio_need_iordy - check if iordy needed 1651 * @adev: ATA device 1652 * 1653 * Check if the current speed of the device requires IORDY. Used 1654 * by various controllers for chip configuration. 1655 */ 1656 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1657 { 1658 /* Don't set IORDY if we're preparing for reset. IORDY may 1659 * lead to controller lock up on certain controllers if the 1660 * port is not occupied. See bko#11703 for details. 1661 */ 1662 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1663 return 0; 1664 /* Controller doesn't support IORDY. Probably a pointless 1665 * check as the caller should know this. 1666 */ 1667 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1668 return 0; 1669 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1670 if (ata_id_is_cfa(adev->id) 1671 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1672 return 0; 1673 /* PIO3 and higher it is mandatory */ 1674 if (adev->pio_mode > XFER_PIO_2) 1675 return 1; 1676 /* We turn it on when possible */ 1677 if (ata_id_has_iordy(adev->id)) 1678 return 1; 1679 return 0; 1680 } 1681 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1682 1683 /** 1684 * ata_pio_mask_no_iordy - Return the non IORDY mask 1685 * @adev: ATA device 1686 * 1687 * Compute the highest mode possible if we are not using iordy. Return 1688 * -1 if no iordy mode is available. 1689 */ 1690 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1691 { 1692 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1693 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1694 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1695 /* Is the speed faster than the drive allows non IORDY ? */ 1696 if (pio) { 1697 /* This is cycle times not frequency - watch the logic! */ 1698 if (pio > 240) /* PIO2 is 240nS per cycle */ 1699 return 3 << ATA_SHIFT_PIO; 1700 return 7 << ATA_SHIFT_PIO; 1701 } 1702 } 1703 return 3 << ATA_SHIFT_PIO; 1704 } 1705 1706 /** 1707 * ata_do_dev_read_id - default ID read method 1708 * @dev: device 1709 * @tf: proposed taskfile 1710 * @id: data buffer 1711 * 1712 * Issue the identify taskfile and hand back the buffer containing 1713 * identify data. For some RAID controllers and for pre ATA devices 1714 * this function is wrapped or replaced by the driver 1715 */ 1716 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1717 struct ata_taskfile *tf, __le16 *id) 1718 { 1719 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1720 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1721 } 1722 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1723 1724 /** 1725 * ata_dev_read_id - Read ID data from the specified device 1726 * @dev: target device 1727 * @p_class: pointer to class of the target device (may be changed) 1728 * @flags: ATA_READID_* flags 1729 * @id: buffer to read IDENTIFY data into 1730 * 1731 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1732 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1733 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1734 * for pre-ATA4 drives. 1735 * 1736 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1737 * now we abort if we hit that case. 1738 * 1739 * LOCKING: 1740 * Kernel thread context (may sleep) 1741 * 1742 * RETURNS: 1743 * 0 on success, -errno otherwise. 1744 */ 1745 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1746 unsigned int flags, u16 *id) 1747 { 1748 struct ata_port *ap = dev->link->ap; 1749 unsigned int class = *p_class; 1750 struct ata_taskfile tf; 1751 unsigned int err_mask = 0; 1752 const char *reason; 1753 bool is_semb = class == ATA_DEV_SEMB; 1754 int may_fallback = 1, tried_spinup = 0; 1755 int rc; 1756 1757 retry: 1758 ata_tf_init(dev, &tf); 1759 1760 switch (class) { 1761 case ATA_DEV_SEMB: 1762 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1763 fallthrough; 1764 case ATA_DEV_ATA: 1765 case ATA_DEV_ZAC: 1766 tf.command = ATA_CMD_ID_ATA; 1767 break; 1768 case ATA_DEV_ATAPI: 1769 tf.command = ATA_CMD_ID_ATAPI; 1770 break; 1771 default: 1772 rc = -ENODEV; 1773 reason = "unsupported class"; 1774 goto err_out; 1775 } 1776 1777 tf.protocol = ATA_PROT_PIO; 1778 1779 /* Some devices choke if TF registers contain garbage. Make 1780 * sure those are properly initialized. 1781 */ 1782 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1783 1784 /* Device presence detection is unreliable on some 1785 * controllers. Always poll IDENTIFY if available. 1786 */ 1787 tf.flags |= ATA_TFLAG_POLLING; 1788 1789 if (ap->ops->read_id) 1790 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1791 else 1792 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1793 1794 if (err_mask) { 1795 if (err_mask & AC_ERR_NODEV_HINT) { 1796 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1797 return -ENOENT; 1798 } 1799 1800 if (is_semb) { 1801 ata_dev_info(dev, 1802 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1803 /* SEMB is not supported yet */ 1804 *p_class = ATA_DEV_SEMB_UNSUP; 1805 return 0; 1806 } 1807 1808 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1809 /* Device or controller might have reported 1810 * the wrong device class. Give a shot at the 1811 * other IDENTIFY if the current one is 1812 * aborted by the device. 1813 */ 1814 if (may_fallback) { 1815 may_fallback = 0; 1816 1817 if (class == ATA_DEV_ATA) 1818 class = ATA_DEV_ATAPI; 1819 else 1820 class = ATA_DEV_ATA; 1821 goto retry; 1822 } 1823 1824 /* Control reaches here iff the device aborted 1825 * both flavors of IDENTIFYs which happens 1826 * sometimes with phantom devices. 1827 */ 1828 ata_dev_dbg(dev, 1829 "both IDENTIFYs aborted, assuming NODEV\n"); 1830 return -ENOENT; 1831 } 1832 1833 rc = -EIO; 1834 reason = "I/O error"; 1835 goto err_out; 1836 } 1837 1838 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1839 ata_dev_info(dev, "dumping IDENTIFY data, " 1840 "class=%d may_fallback=%d tried_spinup=%d\n", 1841 class, may_fallback, tried_spinup); 1842 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1843 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1844 } 1845 1846 /* Falling back doesn't make sense if ID data was read 1847 * successfully at least once. 1848 */ 1849 may_fallback = 0; 1850 1851 swap_buf_le16(id, ATA_ID_WORDS); 1852 1853 /* sanity check */ 1854 rc = -EINVAL; 1855 reason = "device reports invalid type"; 1856 1857 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1858 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1859 goto err_out; 1860 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1861 ata_id_is_ata(id)) { 1862 ata_dev_dbg(dev, 1863 "host indicates ignore ATA devices, ignored\n"); 1864 return -ENOENT; 1865 } 1866 } else { 1867 if (ata_id_is_ata(id)) 1868 goto err_out; 1869 } 1870 1871 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1872 tried_spinup = 1; 1873 /* 1874 * Drive powered-up in standby mode, and requires a specific 1875 * SET_FEATURES spin-up subcommand before it will accept 1876 * anything other than the original IDENTIFY command. 1877 */ 1878 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1879 if (err_mask && id[2] != 0x738c) { 1880 rc = -EIO; 1881 reason = "SPINUP failed"; 1882 goto err_out; 1883 } 1884 /* 1885 * If the drive initially returned incomplete IDENTIFY info, 1886 * we now must reissue the IDENTIFY command. 1887 */ 1888 if (id[2] == 0x37c8) 1889 goto retry; 1890 } 1891 1892 if ((flags & ATA_READID_POSTRESET) && 1893 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1894 /* 1895 * The exact sequence expected by certain pre-ATA4 drives is: 1896 * SRST RESET 1897 * IDENTIFY (optional in early ATA) 1898 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1899 * anything else.. 1900 * Some drives were very specific about that exact sequence. 1901 * 1902 * Note that ATA4 says lba is mandatory so the second check 1903 * should never trigger. 1904 */ 1905 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1906 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1907 if (err_mask) { 1908 rc = -EIO; 1909 reason = "INIT_DEV_PARAMS failed"; 1910 goto err_out; 1911 } 1912 1913 /* current CHS translation info (id[53-58]) might be 1914 * changed. reread the identify device info. 1915 */ 1916 flags &= ~ATA_READID_POSTRESET; 1917 goto retry; 1918 } 1919 } 1920 1921 *p_class = class; 1922 1923 return 0; 1924 1925 err_out: 1926 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1927 reason, err_mask); 1928 return rc; 1929 } 1930 1931 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1932 bool set_active) 1933 { 1934 /* Only applies to ATA and ZAC devices */ 1935 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1936 return false; 1937 1938 ata_tf_init(dev, tf); 1939 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1940 tf->protocol = ATA_PROT_NODATA; 1941 1942 if (set_active) { 1943 /* VERIFY for 1 sector at lba=0 */ 1944 tf->command = ATA_CMD_VERIFY; 1945 tf->nsect = 1; 1946 if (dev->flags & ATA_DFLAG_LBA) { 1947 tf->flags |= ATA_TFLAG_LBA; 1948 tf->device |= ATA_LBA; 1949 } else { 1950 /* CHS */ 1951 tf->lbal = 0x1; /* sect */ 1952 } 1953 } else { 1954 tf->command = ATA_CMD_STANDBYNOW1; 1955 } 1956 1957 return true; 1958 } 1959 1960 static bool ata_dev_power_is_active(struct ata_device *dev) 1961 { 1962 struct ata_taskfile tf; 1963 unsigned int err_mask; 1964 1965 ata_tf_init(dev, &tf); 1966 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1967 tf.protocol = ATA_PROT_NODATA; 1968 tf.command = ATA_CMD_CHK_POWER; 1969 1970 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1971 if (err_mask) { 1972 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 1973 err_mask); 1974 /* 1975 * Assume we are in standby mode so that we always force a 1976 * spinup in ata_dev_power_set_active(). 1977 */ 1978 return false; 1979 } 1980 1981 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 1982 1983 /* Active or idle */ 1984 return tf.nsect == 0xff; 1985 } 1986 1987 /** 1988 * ata_dev_power_set_standby - Set a device power mode to standby 1989 * @dev: target device 1990 * 1991 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 1992 * For an HDD device, this spins down the disks. 1993 * 1994 * LOCKING: 1995 * Kernel thread context (may sleep). 1996 */ 1997 void ata_dev_power_set_standby(struct ata_device *dev) 1998 { 1999 unsigned long ap_flags = dev->link->ap->flags; 2000 struct ata_taskfile tf; 2001 unsigned int err_mask; 2002 2003 /* If the device is already sleeping or in standby, do nothing. */ 2004 if ((dev->flags & ATA_DFLAG_SLEEPING) || 2005 !ata_dev_power_is_active(dev)) 2006 return; 2007 2008 /* 2009 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2010 * causing some drives to spin up and down again. For these, do nothing 2011 * if we are being called on shutdown. 2012 */ 2013 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2014 system_state == SYSTEM_POWER_OFF) 2015 return; 2016 2017 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2018 system_entering_hibernation()) 2019 return; 2020 2021 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2022 if (!ata_dev_power_init_tf(dev, &tf, false)) 2023 return; 2024 2025 ata_dev_notice(dev, "Entering standby power mode\n"); 2026 2027 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2028 if (err_mask) 2029 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2030 err_mask); 2031 } 2032 2033 /** 2034 * ata_dev_power_set_active - Set a device power mode to active 2035 * @dev: target device 2036 * 2037 * Issue a VERIFY command to enter to ensure that the device is in the 2038 * active power mode. For a spun-down HDD (standby or idle power mode), 2039 * the VERIFY command will complete after the disk spins up. 2040 * 2041 * LOCKING: 2042 * Kernel thread context (may sleep). 2043 */ 2044 void ata_dev_power_set_active(struct ata_device *dev) 2045 { 2046 struct ata_taskfile tf; 2047 unsigned int err_mask; 2048 2049 /* 2050 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2051 * if supported by the device. 2052 */ 2053 if (!ata_dev_power_init_tf(dev, &tf, true)) 2054 return; 2055 2056 /* 2057 * Check the device power state & condition and force a spinup with 2058 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2059 */ 2060 if (ata_dev_power_is_active(dev)) 2061 return; 2062 2063 ata_dev_notice(dev, "Entering active power mode\n"); 2064 2065 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2066 if (err_mask) 2067 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2068 err_mask); 2069 } 2070 2071 /** 2072 * ata_read_log_page - read a specific log page 2073 * @dev: target device 2074 * @log: log to read 2075 * @page: page to read 2076 * @buf: buffer to store read page 2077 * @sectors: number of sectors to read 2078 * 2079 * Read log page using READ_LOG_EXT command. 2080 * 2081 * LOCKING: 2082 * Kernel thread context (may sleep). 2083 * 2084 * RETURNS: 2085 * 0 on success, AC_ERR_* mask otherwise. 2086 */ 2087 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2088 u8 page, void *buf, unsigned int sectors) 2089 { 2090 unsigned long ap_flags = dev->link->ap->flags; 2091 struct ata_taskfile tf; 2092 unsigned int err_mask; 2093 bool dma = false; 2094 2095 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2096 2097 /* 2098 * Return error without actually issuing the command on controllers 2099 * which e.g. lockup on a read log page. 2100 */ 2101 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2102 return AC_ERR_DEV; 2103 2104 retry: 2105 ata_tf_init(dev, &tf); 2106 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2107 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2108 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2109 tf.protocol = ATA_PROT_DMA; 2110 dma = true; 2111 } else { 2112 tf.command = ATA_CMD_READ_LOG_EXT; 2113 tf.protocol = ATA_PROT_PIO; 2114 dma = false; 2115 } 2116 tf.lbal = log; 2117 tf.lbam = page; 2118 tf.nsect = sectors; 2119 tf.hob_nsect = sectors >> 8; 2120 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2121 2122 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2123 buf, sectors * ATA_SECT_SIZE, 0); 2124 2125 if (err_mask) { 2126 if (dma) { 2127 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2128 if (!ata_port_is_frozen(dev->link->ap)) 2129 goto retry; 2130 } 2131 ata_dev_err(dev, 2132 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2133 (unsigned int)log, (unsigned int)page, err_mask); 2134 } 2135 2136 return err_mask; 2137 } 2138 2139 static int ata_log_supported(struct ata_device *dev, u8 log) 2140 { 2141 struct ata_port *ap = dev->link->ap; 2142 2143 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2144 return 0; 2145 2146 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2147 return 0; 2148 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2149 } 2150 2151 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 unsigned int err, i; 2155 2156 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2157 return false; 2158 2159 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2160 /* 2161 * IDENTIFY DEVICE data log is defined as mandatory starting 2162 * with ACS-3 (ATA version 10). Warn about the missing log 2163 * for drives which implement this ATA level or above. 2164 */ 2165 if (ata_id_major_version(dev->id) >= 10) 2166 ata_dev_warn(dev, 2167 "ATA Identify Device Log not supported\n"); 2168 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2169 return false; 2170 } 2171 2172 /* 2173 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2174 * supported. 2175 */ 2176 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2177 1); 2178 if (err) 2179 return false; 2180 2181 for (i = 0; i < ap->sector_buf[8]; i++) { 2182 if (ap->sector_buf[9 + i] == page) 2183 return true; 2184 } 2185 2186 return false; 2187 } 2188 2189 static int ata_do_link_spd_horkage(struct ata_device *dev) 2190 { 2191 struct ata_link *plink = ata_dev_phys_link(dev); 2192 u32 target, target_limit; 2193 2194 if (!sata_scr_valid(plink)) 2195 return 0; 2196 2197 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2198 target = 1; 2199 else 2200 return 0; 2201 2202 target_limit = (1 << target) - 1; 2203 2204 /* if already on stricter limit, no need to push further */ 2205 if (plink->sata_spd_limit <= target_limit) 2206 return 0; 2207 2208 plink->sata_spd_limit = target_limit; 2209 2210 /* Request another EH round by returning -EAGAIN if link is 2211 * going faster than the target speed. Forward progress is 2212 * guaranteed by setting sata_spd_limit to target_limit above. 2213 */ 2214 if (plink->sata_spd > target) { 2215 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2216 sata_spd_string(target)); 2217 return -EAGAIN; 2218 } 2219 return 0; 2220 } 2221 2222 static inline u8 ata_dev_knobble(struct ata_device *dev) 2223 { 2224 struct ata_port *ap = dev->link->ap; 2225 2226 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2227 return 0; 2228 2229 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2230 } 2231 2232 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2233 { 2234 struct ata_port *ap = dev->link->ap; 2235 unsigned int err_mask; 2236 2237 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2238 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2239 return; 2240 } 2241 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2242 0, ap->sector_buf, 1); 2243 if (!err_mask) { 2244 u8 *cmds = dev->ncq_send_recv_cmds; 2245 2246 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2247 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2248 2249 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2250 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2251 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2252 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2253 } 2254 } 2255 } 2256 2257 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2258 { 2259 struct ata_port *ap = dev->link->ap; 2260 unsigned int err_mask; 2261 2262 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2263 ata_dev_warn(dev, 2264 "NCQ Send/Recv Log not supported\n"); 2265 return; 2266 } 2267 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2268 0, ap->sector_buf, 1); 2269 if (!err_mask) { 2270 u8 *cmds = dev->ncq_non_data_cmds; 2271 2272 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2273 } 2274 } 2275 2276 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2277 { 2278 struct ata_port *ap = dev->link->ap; 2279 unsigned int err_mask; 2280 2281 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2282 return; 2283 2284 err_mask = ata_read_log_page(dev, 2285 ATA_LOG_IDENTIFY_DEVICE, 2286 ATA_LOG_SATA_SETTINGS, 2287 ap->sector_buf, 2288 1); 2289 if (err_mask) 2290 goto not_supported; 2291 2292 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2293 goto not_supported; 2294 2295 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2296 2297 return; 2298 2299 not_supported: 2300 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2301 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2302 } 2303 2304 static bool ata_dev_check_adapter(struct ata_device *dev, 2305 unsigned short vendor_id) 2306 { 2307 struct pci_dev *pcidev = NULL; 2308 struct device *parent_dev = NULL; 2309 2310 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2311 parent_dev = parent_dev->parent) { 2312 if (dev_is_pci(parent_dev)) { 2313 pcidev = to_pci_dev(parent_dev); 2314 if (pcidev->vendor == vendor_id) 2315 return true; 2316 break; 2317 } 2318 } 2319 2320 return false; 2321 } 2322 2323 static int ata_dev_config_ncq(struct ata_device *dev, 2324 char *desc, size_t desc_sz) 2325 { 2326 struct ata_port *ap = dev->link->ap; 2327 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2328 unsigned int err_mask; 2329 char *aa_desc = ""; 2330 2331 if (!ata_id_has_ncq(dev->id)) { 2332 desc[0] = '\0'; 2333 return 0; 2334 } 2335 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2336 return 0; 2337 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2338 snprintf(desc, desc_sz, "NCQ (not used)"); 2339 return 0; 2340 } 2341 2342 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2343 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2344 snprintf(desc, desc_sz, "NCQ (not used)"); 2345 return 0; 2346 } 2347 2348 if (ap->flags & ATA_FLAG_NCQ) { 2349 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2350 dev->flags |= ATA_DFLAG_NCQ; 2351 } 2352 2353 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2354 (ap->flags & ATA_FLAG_FPDMA_AA) && 2355 ata_id_has_fpdma_aa(dev->id)) { 2356 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2357 SATA_FPDMA_AA); 2358 if (err_mask) { 2359 ata_dev_err(dev, 2360 "failed to enable AA (error_mask=0x%x)\n", 2361 err_mask); 2362 if (err_mask != AC_ERR_DEV) { 2363 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2364 return -EIO; 2365 } 2366 } else 2367 aa_desc = ", AA"; 2368 } 2369 2370 if (hdepth >= ddepth) 2371 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2372 else 2373 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2374 ddepth, aa_desc); 2375 2376 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2377 if (ata_id_has_ncq_send_and_recv(dev->id)) 2378 ata_dev_config_ncq_send_recv(dev); 2379 if (ata_id_has_ncq_non_data(dev->id)) 2380 ata_dev_config_ncq_non_data(dev); 2381 if (ata_id_has_ncq_prio(dev->id)) 2382 ata_dev_config_ncq_prio(dev); 2383 } 2384 2385 return 0; 2386 } 2387 2388 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2389 { 2390 unsigned int err_mask; 2391 2392 if (!ata_id_has_sense_reporting(dev->id)) 2393 return; 2394 2395 if (ata_id_sense_reporting_enabled(dev->id)) 2396 return; 2397 2398 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2399 if (err_mask) { 2400 ata_dev_dbg(dev, 2401 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2402 err_mask); 2403 } 2404 } 2405 2406 static void ata_dev_config_zac(struct ata_device *dev) 2407 { 2408 struct ata_port *ap = dev->link->ap; 2409 unsigned int err_mask; 2410 u8 *identify_buf = ap->sector_buf; 2411 2412 dev->zac_zones_optimal_open = U32_MAX; 2413 dev->zac_zones_optimal_nonseq = U32_MAX; 2414 dev->zac_zones_max_open = U32_MAX; 2415 2416 /* 2417 * Always set the 'ZAC' flag for Host-managed devices. 2418 */ 2419 if (dev->class == ATA_DEV_ZAC) 2420 dev->flags |= ATA_DFLAG_ZAC; 2421 else if (ata_id_zoned_cap(dev->id) == 0x01) 2422 /* 2423 * Check for host-aware devices. 2424 */ 2425 dev->flags |= ATA_DFLAG_ZAC; 2426 2427 if (!(dev->flags & ATA_DFLAG_ZAC)) 2428 return; 2429 2430 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2431 ata_dev_warn(dev, 2432 "ATA Zoned Information Log not supported\n"); 2433 return; 2434 } 2435 2436 /* 2437 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2438 */ 2439 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2440 ATA_LOG_ZONED_INFORMATION, 2441 identify_buf, 1); 2442 if (!err_mask) { 2443 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2444 2445 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2446 if ((zoned_cap >> 63)) 2447 dev->zac_zoned_cap = (zoned_cap & 1); 2448 opt_open = get_unaligned_le64(&identify_buf[24]); 2449 if ((opt_open >> 63)) 2450 dev->zac_zones_optimal_open = (u32)opt_open; 2451 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2452 if ((opt_nonseq >> 63)) 2453 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2454 max_open = get_unaligned_le64(&identify_buf[40]); 2455 if ((max_open >> 63)) 2456 dev->zac_zones_max_open = (u32)max_open; 2457 } 2458 } 2459 2460 static void ata_dev_config_trusted(struct ata_device *dev) 2461 { 2462 struct ata_port *ap = dev->link->ap; 2463 u64 trusted_cap; 2464 unsigned int err; 2465 2466 if (!ata_id_has_trusted(dev->id)) 2467 return; 2468 2469 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2470 ata_dev_warn(dev, 2471 "Security Log not supported\n"); 2472 return; 2473 } 2474 2475 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2476 ap->sector_buf, 1); 2477 if (err) 2478 return; 2479 2480 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2481 if (!(trusted_cap & (1ULL << 63))) { 2482 ata_dev_dbg(dev, 2483 "Trusted Computing capability qword not valid!\n"); 2484 return; 2485 } 2486 2487 if (trusted_cap & (1 << 0)) 2488 dev->flags |= ATA_DFLAG_TRUSTED; 2489 } 2490 2491 static void ata_dev_config_cdl(struct ata_device *dev) 2492 { 2493 struct ata_port *ap = dev->link->ap; 2494 unsigned int err_mask; 2495 bool cdl_enabled; 2496 u64 val; 2497 2498 if (ata_id_major_version(dev->id) < 11) 2499 goto not_supported; 2500 2501 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2502 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2503 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2504 goto not_supported; 2505 2506 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2507 ATA_LOG_SUPPORTED_CAPABILITIES, 2508 ap->sector_buf, 1); 2509 if (err_mask) 2510 goto not_supported; 2511 2512 /* Check Command Duration Limit Supported bits */ 2513 val = get_unaligned_le64(&ap->sector_buf[168]); 2514 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2515 goto not_supported; 2516 2517 /* Warn the user if command duration guideline is not supported */ 2518 if (!(val & BIT_ULL(1))) 2519 ata_dev_warn(dev, 2520 "Command duration guideline is not supported\n"); 2521 2522 /* 2523 * We must have support for the sense data for successful NCQ commands 2524 * log indicated by the successful NCQ command sense data supported bit. 2525 */ 2526 val = get_unaligned_le64(&ap->sector_buf[8]); 2527 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2528 ata_dev_warn(dev, 2529 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2530 goto not_supported; 2531 } 2532 2533 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2534 if (!ata_id_has_ncq_autosense(dev->id)) { 2535 ata_dev_warn(dev, 2536 "CDL supported but NCQ autosense is not supported\n"); 2537 goto not_supported; 2538 } 2539 2540 /* 2541 * If CDL is marked as enabled, make sure the feature is enabled too. 2542 * Conversely, if CDL is disabled, make sure the feature is turned off. 2543 */ 2544 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2545 ATA_LOG_CURRENT_SETTINGS, 2546 ap->sector_buf, 1); 2547 if (err_mask) 2548 goto not_supported; 2549 2550 val = get_unaligned_le64(&ap->sector_buf[8]); 2551 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2552 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2553 if (!cdl_enabled) { 2554 /* Enable CDL on the device */ 2555 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2556 if (err_mask) { 2557 ata_dev_err(dev, 2558 "Enable CDL feature failed\n"); 2559 goto not_supported; 2560 } 2561 } 2562 } else { 2563 if (cdl_enabled) { 2564 /* Disable CDL on the device */ 2565 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2566 if (err_mask) { 2567 ata_dev_err(dev, 2568 "Disable CDL feature failed\n"); 2569 goto not_supported; 2570 } 2571 } 2572 } 2573 2574 /* 2575 * While CDL itself has to be enabled using sysfs, CDL requires that 2576 * sense data for successful NCQ commands is enabled to work properly. 2577 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2578 * if supported. 2579 */ 2580 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2581 err_mask = ata_dev_set_feature(dev, 2582 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2583 if (err_mask) { 2584 ata_dev_warn(dev, 2585 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2586 err_mask); 2587 goto not_supported; 2588 } 2589 } 2590 2591 /* 2592 * Allocate a buffer to handle reading the sense data for successful 2593 * NCQ Commands log page for commands using a CDL with one of the limit 2594 * policy set to 0xD (successful completion with sense data available 2595 * bit set). 2596 */ 2597 if (!ap->ncq_sense_buf) { 2598 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2599 if (!ap->ncq_sense_buf) 2600 goto not_supported; 2601 } 2602 2603 /* 2604 * Command duration limits is supported: cache the CDL log page 18h 2605 * (command duration descriptors). 2606 */ 2607 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2608 if (err_mask) { 2609 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2610 goto not_supported; 2611 } 2612 2613 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2614 dev->flags |= ATA_DFLAG_CDL; 2615 2616 return; 2617 2618 not_supported: 2619 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2620 kfree(ap->ncq_sense_buf); 2621 ap->ncq_sense_buf = NULL; 2622 } 2623 2624 static int ata_dev_config_lba(struct ata_device *dev) 2625 { 2626 const u16 *id = dev->id; 2627 const char *lba_desc; 2628 char ncq_desc[32]; 2629 int ret; 2630 2631 dev->flags |= ATA_DFLAG_LBA; 2632 2633 if (ata_id_has_lba48(id)) { 2634 lba_desc = "LBA48"; 2635 dev->flags |= ATA_DFLAG_LBA48; 2636 if (dev->n_sectors >= (1UL << 28) && 2637 ata_id_has_flush_ext(id)) 2638 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2639 } else { 2640 lba_desc = "LBA"; 2641 } 2642 2643 /* config NCQ */ 2644 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2645 2646 /* print device info to dmesg */ 2647 if (ata_dev_print_info(dev)) 2648 ata_dev_info(dev, 2649 "%llu sectors, multi %u: %s %s\n", 2650 (unsigned long long)dev->n_sectors, 2651 dev->multi_count, lba_desc, ncq_desc); 2652 2653 return ret; 2654 } 2655 2656 static void ata_dev_config_chs(struct ata_device *dev) 2657 { 2658 const u16 *id = dev->id; 2659 2660 if (ata_id_current_chs_valid(id)) { 2661 /* Current CHS translation is valid. */ 2662 dev->cylinders = id[54]; 2663 dev->heads = id[55]; 2664 dev->sectors = id[56]; 2665 } else { 2666 /* Default translation */ 2667 dev->cylinders = id[1]; 2668 dev->heads = id[3]; 2669 dev->sectors = id[6]; 2670 } 2671 2672 /* print device info to dmesg */ 2673 if (ata_dev_print_info(dev)) 2674 ata_dev_info(dev, 2675 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2676 (unsigned long long)dev->n_sectors, 2677 dev->multi_count, dev->cylinders, 2678 dev->heads, dev->sectors); 2679 } 2680 2681 static void ata_dev_config_fua(struct ata_device *dev) 2682 { 2683 /* Ignore FUA support if its use is disabled globally */ 2684 if (!libata_fua) 2685 goto nofua; 2686 2687 /* Ignore devices without support for WRITE DMA FUA EXT */ 2688 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2689 goto nofua; 2690 2691 /* Ignore known bad devices and devices that lack NCQ support */ 2692 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2693 goto nofua; 2694 2695 dev->flags |= ATA_DFLAG_FUA; 2696 2697 return; 2698 2699 nofua: 2700 dev->flags &= ~ATA_DFLAG_FUA; 2701 } 2702 2703 static void ata_dev_config_devslp(struct ata_device *dev) 2704 { 2705 u8 *sata_setting = dev->link->ap->sector_buf; 2706 unsigned int err_mask; 2707 int i, j; 2708 2709 /* 2710 * Check device sleep capability. Get DevSlp timing variables 2711 * from SATA Settings page of Identify Device Data Log. 2712 */ 2713 if (!ata_id_has_devslp(dev->id) || 2714 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2715 return; 2716 2717 err_mask = ata_read_log_page(dev, 2718 ATA_LOG_IDENTIFY_DEVICE, 2719 ATA_LOG_SATA_SETTINGS, 2720 sata_setting, 1); 2721 if (err_mask) 2722 return; 2723 2724 dev->flags |= ATA_DFLAG_DEVSLP; 2725 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2726 j = ATA_LOG_DEVSLP_OFFSET + i; 2727 dev->devslp_timing[i] = sata_setting[j]; 2728 } 2729 } 2730 2731 static void ata_dev_config_cpr(struct ata_device *dev) 2732 { 2733 unsigned int err_mask; 2734 size_t buf_len; 2735 int i, nr_cpr = 0; 2736 struct ata_cpr_log *cpr_log = NULL; 2737 u8 *desc, *buf = NULL; 2738 2739 if (ata_id_major_version(dev->id) < 11) 2740 goto out; 2741 2742 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2743 if (buf_len == 0) 2744 goto out; 2745 2746 /* 2747 * Read the concurrent positioning ranges log (0x47). We can have at 2748 * most 255 32B range descriptors plus a 64B header. This log varies in 2749 * size, so use the size reported in the GPL directory. Reading beyond 2750 * the supported length will result in an error. 2751 */ 2752 buf_len <<= 9; 2753 buf = kzalloc(buf_len, GFP_KERNEL); 2754 if (!buf) 2755 goto out; 2756 2757 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2758 0, buf, buf_len >> 9); 2759 if (err_mask) 2760 goto out; 2761 2762 nr_cpr = buf[0]; 2763 if (!nr_cpr) 2764 goto out; 2765 2766 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2767 if (!cpr_log) 2768 goto out; 2769 2770 cpr_log->nr_cpr = nr_cpr; 2771 desc = &buf[64]; 2772 for (i = 0; i < nr_cpr; i++, desc += 32) { 2773 cpr_log->cpr[i].num = desc[0]; 2774 cpr_log->cpr[i].num_storage_elements = desc[1]; 2775 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2776 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2777 } 2778 2779 out: 2780 swap(dev->cpr_log, cpr_log); 2781 kfree(cpr_log); 2782 kfree(buf); 2783 } 2784 2785 static void ata_dev_print_features(struct ata_device *dev) 2786 { 2787 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2788 return; 2789 2790 ata_dev_info(dev, 2791 "Features:%s%s%s%s%s%s%s%s\n", 2792 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2793 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2794 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2795 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2796 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2797 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2798 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2799 dev->cpr_log ? " CPR" : ""); 2800 } 2801 2802 /** 2803 * ata_dev_configure - Configure the specified ATA/ATAPI device 2804 * @dev: Target device to configure 2805 * 2806 * Configure @dev according to @dev->id. Generic and low-level 2807 * driver specific fixups are also applied. 2808 * 2809 * LOCKING: 2810 * Kernel thread context (may sleep) 2811 * 2812 * RETURNS: 2813 * 0 on success, -errno otherwise 2814 */ 2815 int ata_dev_configure(struct ata_device *dev) 2816 { 2817 struct ata_port *ap = dev->link->ap; 2818 bool print_info = ata_dev_print_info(dev); 2819 const u16 *id = dev->id; 2820 unsigned int xfer_mask; 2821 unsigned int err_mask; 2822 char revbuf[7]; /* XYZ-99\0 */ 2823 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2824 char modelbuf[ATA_ID_PROD_LEN+1]; 2825 int rc; 2826 2827 if (!ata_dev_enabled(dev)) { 2828 ata_dev_dbg(dev, "no device\n"); 2829 return 0; 2830 } 2831 2832 /* set horkage */ 2833 dev->horkage |= ata_dev_blacklisted(dev); 2834 ata_force_horkage(dev); 2835 2836 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2837 ata_dev_info(dev, "unsupported device, disabling\n"); 2838 ata_dev_disable(dev); 2839 return 0; 2840 } 2841 2842 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2843 dev->class == ATA_DEV_ATAPI) { 2844 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2845 atapi_enabled ? "not supported with this driver" 2846 : "disabled"); 2847 ata_dev_disable(dev); 2848 return 0; 2849 } 2850 2851 rc = ata_do_link_spd_horkage(dev); 2852 if (rc) 2853 return rc; 2854 2855 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2856 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2857 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2858 dev->horkage |= ATA_HORKAGE_NOLPM; 2859 2860 if (ap->flags & ATA_FLAG_NO_LPM) 2861 dev->horkage |= ATA_HORKAGE_NOLPM; 2862 2863 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2864 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2865 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2866 } 2867 2868 /* let ACPI work its magic */ 2869 rc = ata_acpi_on_devcfg(dev); 2870 if (rc) 2871 return rc; 2872 2873 /* massage HPA, do it early as it might change IDENTIFY data */ 2874 rc = ata_hpa_resize(dev); 2875 if (rc) 2876 return rc; 2877 2878 /* print device capabilities */ 2879 ata_dev_dbg(dev, 2880 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2881 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2882 __func__, 2883 id[49], id[82], id[83], id[84], 2884 id[85], id[86], id[87], id[88]); 2885 2886 /* initialize to-be-configured parameters */ 2887 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2888 dev->max_sectors = 0; 2889 dev->cdb_len = 0; 2890 dev->n_sectors = 0; 2891 dev->cylinders = 0; 2892 dev->heads = 0; 2893 dev->sectors = 0; 2894 dev->multi_count = 0; 2895 2896 /* 2897 * common ATA, ATAPI feature tests 2898 */ 2899 2900 /* find max transfer mode; for printk only */ 2901 xfer_mask = ata_id_xfermask(id); 2902 2903 ata_dump_id(dev, id); 2904 2905 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2906 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2907 sizeof(fwrevbuf)); 2908 2909 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2910 sizeof(modelbuf)); 2911 2912 /* ATA-specific feature tests */ 2913 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2914 if (ata_id_is_cfa(id)) { 2915 /* CPRM may make this media unusable */ 2916 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2917 ata_dev_warn(dev, 2918 "supports DRM functions and may not be fully accessible\n"); 2919 snprintf(revbuf, 7, "CFA"); 2920 } else { 2921 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2922 /* Warn the user if the device has TPM extensions */ 2923 if (ata_id_has_tpm(id)) 2924 ata_dev_warn(dev, 2925 "supports DRM functions and may not be fully accessible\n"); 2926 } 2927 2928 dev->n_sectors = ata_id_n_sectors(id); 2929 2930 /* get current R/W Multiple count setting */ 2931 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2932 unsigned int max = dev->id[47] & 0xff; 2933 unsigned int cnt = dev->id[59] & 0xff; 2934 /* only recognize/allow powers of two here */ 2935 if (is_power_of_2(max) && is_power_of_2(cnt)) 2936 if (cnt <= max) 2937 dev->multi_count = cnt; 2938 } 2939 2940 /* print device info to dmesg */ 2941 if (print_info) 2942 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2943 revbuf, modelbuf, fwrevbuf, 2944 ata_mode_string(xfer_mask)); 2945 2946 if (ata_id_has_lba(id)) { 2947 rc = ata_dev_config_lba(dev); 2948 if (rc) 2949 return rc; 2950 } else { 2951 ata_dev_config_chs(dev); 2952 } 2953 2954 ata_dev_config_fua(dev); 2955 ata_dev_config_devslp(dev); 2956 ata_dev_config_sense_reporting(dev); 2957 ata_dev_config_zac(dev); 2958 ata_dev_config_trusted(dev); 2959 ata_dev_config_cpr(dev); 2960 ata_dev_config_cdl(dev); 2961 dev->cdb_len = 32; 2962 2963 if (print_info) 2964 ata_dev_print_features(dev); 2965 } 2966 2967 /* ATAPI-specific feature tests */ 2968 else if (dev->class == ATA_DEV_ATAPI) { 2969 const char *cdb_intr_string = ""; 2970 const char *atapi_an_string = ""; 2971 const char *dma_dir_string = ""; 2972 u32 sntf; 2973 2974 rc = atapi_cdb_len(id); 2975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2976 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2977 rc = -EINVAL; 2978 goto err_out_nosup; 2979 } 2980 dev->cdb_len = (unsigned int) rc; 2981 2982 /* Enable ATAPI AN if both the host and device have 2983 * the support. If PMP is attached, SNTF is required 2984 * to enable ATAPI AN to discern between PHY status 2985 * changed notifications and ATAPI ANs. 2986 */ 2987 if (atapi_an && 2988 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2989 (!sata_pmp_attached(ap) || 2990 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2991 /* issue SET feature command to turn this on */ 2992 err_mask = ata_dev_set_feature(dev, 2993 SETFEATURES_SATA_ENABLE, SATA_AN); 2994 if (err_mask) 2995 ata_dev_err(dev, 2996 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2997 err_mask); 2998 else { 2999 dev->flags |= ATA_DFLAG_AN; 3000 atapi_an_string = ", ATAPI AN"; 3001 } 3002 } 3003 3004 if (ata_id_cdb_intr(dev->id)) { 3005 dev->flags |= ATA_DFLAG_CDB_INTR; 3006 cdb_intr_string = ", CDB intr"; 3007 } 3008 3009 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 3010 dev->flags |= ATA_DFLAG_DMADIR; 3011 dma_dir_string = ", DMADIR"; 3012 } 3013 3014 if (ata_id_has_da(dev->id)) { 3015 dev->flags |= ATA_DFLAG_DA; 3016 zpodd_init(dev); 3017 } 3018 3019 /* print device info to dmesg */ 3020 if (print_info) 3021 ata_dev_info(dev, 3022 "ATAPI: %s, %s, max %s%s%s%s\n", 3023 modelbuf, fwrevbuf, 3024 ata_mode_string(xfer_mask), 3025 cdb_intr_string, atapi_an_string, 3026 dma_dir_string); 3027 } 3028 3029 /* determine max_sectors */ 3030 dev->max_sectors = ATA_MAX_SECTORS; 3031 if (dev->flags & ATA_DFLAG_LBA48) 3032 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3033 3034 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3035 200 sectors */ 3036 if (ata_dev_knobble(dev)) { 3037 if (print_info) 3038 ata_dev_info(dev, "applying bridge limits\n"); 3039 dev->udma_mask &= ATA_UDMA5; 3040 dev->max_sectors = ATA_MAX_SECTORS; 3041 } 3042 3043 if ((dev->class == ATA_DEV_ATAPI) && 3044 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3045 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3046 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 3047 } 3048 3049 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 3050 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3051 dev->max_sectors); 3052 3053 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 3054 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3055 dev->max_sectors); 3056 3057 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 3058 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3059 3060 if (ap->ops->dev_config) 3061 ap->ops->dev_config(dev); 3062 3063 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 3064 /* Let the user know. We don't want to disallow opens for 3065 rescue purposes, or in case the vendor is just a blithering 3066 idiot. Do this after the dev_config call as some controllers 3067 with buggy firmware may want to avoid reporting false device 3068 bugs */ 3069 3070 if (print_info) { 3071 ata_dev_warn(dev, 3072 "Drive reports diagnostics failure. This may indicate a drive\n"); 3073 ata_dev_warn(dev, 3074 "fault or invalid emulation. Contact drive vendor for information.\n"); 3075 } 3076 } 3077 3078 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 3079 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3080 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3081 } 3082 3083 return 0; 3084 3085 err_out_nosup: 3086 return rc; 3087 } 3088 3089 /** 3090 * ata_cable_40wire - return 40 wire cable type 3091 * @ap: port 3092 * 3093 * Helper method for drivers which want to hardwire 40 wire cable 3094 * detection. 3095 */ 3096 3097 int ata_cable_40wire(struct ata_port *ap) 3098 { 3099 return ATA_CBL_PATA40; 3100 } 3101 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3102 3103 /** 3104 * ata_cable_80wire - return 80 wire cable type 3105 * @ap: port 3106 * 3107 * Helper method for drivers which want to hardwire 80 wire cable 3108 * detection. 3109 */ 3110 3111 int ata_cable_80wire(struct ata_port *ap) 3112 { 3113 return ATA_CBL_PATA80; 3114 } 3115 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3116 3117 /** 3118 * ata_cable_unknown - return unknown PATA cable. 3119 * @ap: port 3120 * 3121 * Helper method for drivers which have no PATA cable detection. 3122 */ 3123 3124 int ata_cable_unknown(struct ata_port *ap) 3125 { 3126 return ATA_CBL_PATA_UNK; 3127 } 3128 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3129 3130 /** 3131 * ata_cable_ignore - return ignored PATA cable. 3132 * @ap: port 3133 * 3134 * Helper method for drivers which don't use cable type to limit 3135 * transfer mode. 3136 */ 3137 int ata_cable_ignore(struct ata_port *ap) 3138 { 3139 return ATA_CBL_PATA_IGN; 3140 } 3141 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3142 3143 /** 3144 * ata_cable_sata - return SATA cable type 3145 * @ap: port 3146 * 3147 * Helper method for drivers which have SATA cables 3148 */ 3149 3150 int ata_cable_sata(struct ata_port *ap) 3151 { 3152 return ATA_CBL_SATA; 3153 } 3154 EXPORT_SYMBOL_GPL(ata_cable_sata); 3155 3156 /** 3157 * sata_print_link_status - Print SATA link status 3158 * @link: SATA link to printk link status about 3159 * 3160 * This function prints link speed and status of a SATA link. 3161 * 3162 * LOCKING: 3163 * None. 3164 */ 3165 static void sata_print_link_status(struct ata_link *link) 3166 { 3167 u32 sstatus, scontrol, tmp; 3168 3169 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3170 return; 3171 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3172 return; 3173 3174 if (ata_phys_link_online(link)) { 3175 tmp = (sstatus >> 4) & 0xf; 3176 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3177 sata_spd_string(tmp), sstatus, scontrol); 3178 } else { 3179 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3180 sstatus, scontrol); 3181 } 3182 } 3183 3184 /** 3185 * ata_dev_pair - return other device on cable 3186 * @adev: device 3187 * 3188 * Obtain the other device on the same cable, or if none is 3189 * present NULL is returned 3190 */ 3191 3192 struct ata_device *ata_dev_pair(struct ata_device *adev) 3193 { 3194 struct ata_link *link = adev->link; 3195 struct ata_device *pair = &link->device[1 - adev->devno]; 3196 if (!ata_dev_enabled(pair)) 3197 return NULL; 3198 return pair; 3199 } 3200 EXPORT_SYMBOL_GPL(ata_dev_pair); 3201 3202 /** 3203 * sata_down_spd_limit - adjust SATA spd limit downward 3204 * @link: Link to adjust SATA spd limit for 3205 * @spd_limit: Additional limit 3206 * 3207 * Adjust SATA spd limit of @link downward. Note that this 3208 * function only adjusts the limit. The change must be applied 3209 * using sata_set_spd(). 3210 * 3211 * If @spd_limit is non-zero, the speed is limited to equal to or 3212 * lower than @spd_limit if such speed is supported. If 3213 * @spd_limit is slower than any supported speed, only the lowest 3214 * supported speed is allowed. 3215 * 3216 * LOCKING: 3217 * Inherited from caller. 3218 * 3219 * RETURNS: 3220 * 0 on success, negative errno on failure 3221 */ 3222 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3223 { 3224 u32 sstatus, spd, mask; 3225 int rc, bit; 3226 3227 if (!sata_scr_valid(link)) 3228 return -EOPNOTSUPP; 3229 3230 /* If SCR can be read, use it to determine the current SPD. 3231 * If not, use cached value in link->sata_spd. 3232 */ 3233 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3234 if (rc == 0 && ata_sstatus_online(sstatus)) 3235 spd = (sstatus >> 4) & 0xf; 3236 else 3237 spd = link->sata_spd; 3238 3239 mask = link->sata_spd_limit; 3240 if (mask <= 1) 3241 return -EINVAL; 3242 3243 /* unconditionally mask off the highest bit */ 3244 bit = fls(mask) - 1; 3245 mask &= ~(1 << bit); 3246 3247 /* 3248 * Mask off all speeds higher than or equal to the current one. At 3249 * this point, if current SPD is not available and we previously 3250 * recorded the link speed from SStatus, the driver has already 3251 * masked off the highest bit so mask should already be 1 or 0. 3252 * Otherwise, we should not force 1.5Gbps on a link where we have 3253 * not previously recorded speed from SStatus. Just return in this 3254 * case. 3255 */ 3256 if (spd > 1) 3257 mask &= (1 << (spd - 1)) - 1; 3258 else if (link->sata_spd) 3259 return -EINVAL; 3260 3261 /* were we already at the bottom? */ 3262 if (!mask) 3263 return -EINVAL; 3264 3265 if (spd_limit) { 3266 if (mask & ((1 << spd_limit) - 1)) 3267 mask &= (1 << spd_limit) - 1; 3268 else { 3269 bit = ffs(mask) - 1; 3270 mask = 1 << bit; 3271 } 3272 } 3273 3274 link->sata_spd_limit = mask; 3275 3276 ata_link_warn(link, "limiting SATA link speed to %s\n", 3277 sata_spd_string(fls(mask))); 3278 3279 return 0; 3280 } 3281 3282 #ifdef CONFIG_ATA_ACPI 3283 /** 3284 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3285 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3286 * @cycle: cycle duration in ns 3287 * 3288 * Return matching xfer mode for @cycle. The returned mode is of 3289 * the transfer type specified by @xfer_shift. If @cycle is too 3290 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3291 * than the fastest known mode, the fasted mode is returned. 3292 * 3293 * LOCKING: 3294 * None. 3295 * 3296 * RETURNS: 3297 * Matching xfer_mode, 0xff if no match found. 3298 */ 3299 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3300 { 3301 u8 base_mode = 0xff, last_mode = 0xff; 3302 const struct ata_xfer_ent *ent; 3303 const struct ata_timing *t; 3304 3305 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3306 if (ent->shift == xfer_shift) 3307 base_mode = ent->base; 3308 3309 for (t = ata_timing_find_mode(base_mode); 3310 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3311 unsigned short this_cycle; 3312 3313 switch (xfer_shift) { 3314 case ATA_SHIFT_PIO: 3315 case ATA_SHIFT_MWDMA: 3316 this_cycle = t->cycle; 3317 break; 3318 case ATA_SHIFT_UDMA: 3319 this_cycle = t->udma; 3320 break; 3321 default: 3322 return 0xff; 3323 } 3324 3325 if (cycle > this_cycle) 3326 break; 3327 3328 last_mode = t->mode; 3329 } 3330 3331 return last_mode; 3332 } 3333 #endif 3334 3335 /** 3336 * ata_down_xfermask_limit - adjust dev xfer masks downward 3337 * @dev: Device to adjust xfer masks 3338 * @sel: ATA_DNXFER_* selector 3339 * 3340 * Adjust xfer masks of @dev downward. Note that this function 3341 * does not apply the change. Invoking ata_set_mode() afterwards 3342 * will apply the limit. 3343 * 3344 * LOCKING: 3345 * Inherited from caller. 3346 * 3347 * RETURNS: 3348 * 0 on success, negative errno on failure 3349 */ 3350 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3351 { 3352 char buf[32]; 3353 unsigned int orig_mask, xfer_mask; 3354 unsigned int pio_mask, mwdma_mask, udma_mask; 3355 int quiet, highbit; 3356 3357 quiet = !!(sel & ATA_DNXFER_QUIET); 3358 sel &= ~ATA_DNXFER_QUIET; 3359 3360 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3361 dev->mwdma_mask, 3362 dev->udma_mask); 3363 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3364 3365 switch (sel) { 3366 case ATA_DNXFER_PIO: 3367 highbit = fls(pio_mask) - 1; 3368 pio_mask &= ~(1 << highbit); 3369 break; 3370 3371 case ATA_DNXFER_DMA: 3372 if (udma_mask) { 3373 highbit = fls(udma_mask) - 1; 3374 udma_mask &= ~(1 << highbit); 3375 if (!udma_mask) 3376 return -ENOENT; 3377 } else if (mwdma_mask) { 3378 highbit = fls(mwdma_mask) - 1; 3379 mwdma_mask &= ~(1 << highbit); 3380 if (!mwdma_mask) 3381 return -ENOENT; 3382 } 3383 break; 3384 3385 case ATA_DNXFER_40C: 3386 udma_mask &= ATA_UDMA_MASK_40C; 3387 break; 3388 3389 case ATA_DNXFER_FORCE_PIO0: 3390 pio_mask &= 1; 3391 fallthrough; 3392 case ATA_DNXFER_FORCE_PIO: 3393 mwdma_mask = 0; 3394 udma_mask = 0; 3395 break; 3396 3397 default: 3398 BUG(); 3399 } 3400 3401 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3402 3403 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3404 return -ENOENT; 3405 3406 if (!quiet) { 3407 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3408 snprintf(buf, sizeof(buf), "%s:%s", 3409 ata_mode_string(xfer_mask), 3410 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3411 else 3412 snprintf(buf, sizeof(buf), "%s", 3413 ata_mode_string(xfer_mask)); 3414 3415 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3416 } 3417 3418 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3419 &dev->udma_mask); 3420 3421 return 0; 3422 } 3423 3424 static int ata_dev_set_mode(struct ata_device *dev) 3425 { 3426 struct ata_port *ap = dev->link->ap; 3427 struct ata_eh_context *ehc = &dev->link->eh_context; 3428 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3429 const char *dev_err_whine = ""; 3430 int ign_dev_err = 0; 3431 unsigned int err_mask = 0; 3432 int rc; 3433 3434 dev->flags &= ~ATA_DFLAG_PIO; 3435 if (dev->xfer_shift == ATA_SHIFT_PIO) 3436 dev->flags |= ATA_DFLAG_PIO; 3437 3438 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3439 dev_err_whine = " (SET_XFERMODE skipped)"; 3440 else { 3441 if (nosetxfer) 3442 ata_dev_warn(dev, 3443 "NOSETXFER but PATA detected - can't " 3444 "skip SETXFER, might malfunction\n"); 3445 err_mask = ata_dev_set_xfermode(dev); 3446 } 3447 3448 if (err_mask & ~AC_ERR_DEV) 3449 goto fail; 3450 3451 /* revalidate */ 3452 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3453 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3454 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3455 if (rc) 3456 return rc; 3457 3458 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3459 /* Old CFA may refuse this command, which is just fine */ 3460 if (ata_id_is_cfa(dev->id)) 3461 ign_dev_err = 1; 3462 /* Catch several broken garbage emulations plus some pre 3463 ATA devices */ 3464 if (ata_id_major_version(dev->id) == 0 && 3465 dev->pio_mode <= XFER_PIO_2) 3466 ign_dev_err = 1; 3467 /* Some very old devices and some bad newer ones fail 3468 any kind of SET_XFERMODE request but support PIO0-2 3469 timings and no IORDY */ 3470 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3471 ign_dev_err = 1; 3472 } 3473 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3474 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3475 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3476 dev->dma_mode == XFER_MW_DMA_0 && 3477 (dev->id[63] >> 8) & 1) 3478 ign_dev_err = 1; 3479 3480 /* if the device is actually configured correctly, ignore dev err */ 3481 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3482 ign_dev_err = 1; 3483 3484 if (err_mask & AC_ERR_DEV) { 3485 if (!ign_dev_err) 3486 goto fail; 3487 else 3488 dev_err_whine = " (device error ignored)"; 3489 } 3490 3491 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3492 dev->xfer_shift, (int)dev->xfer_mode); 3493 3494 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3495 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3496 ata_dev_info(dev, "configured for %s%s\n", 3497 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3498 dev_err_whine); 3499 3500 return 0; 3501 3502 fail: 3503 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3504 return -EIO; 3505 } 3506 3507 /** 3508 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3509 * @link: link on which timings will be programmed 3510 * @r_failed_dev: out parameter for failed device 3511 * 3512 * Standard implementation of the function used to tune and set 3513 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3514 * ata_dev_set_mode() fails, pointer to the failing device is 3515 * returned in @r_failed_dev. 3516 * 3517 * LOCKING: 3518 * PCI/etc. bus probe sem. 3519 * 3520 * RETURNS: 3521 * 0 on success, negative errno otherwise 3522 */ 3523 3524 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3525 { 3526 struct ata_port *ap = link->ap; 3527 struct ata_device *dev; 3528 int rc = 0, used_dma = 0, found = 0; 3529 3530 /* step 1: calculate xfer_mask */ 3531 ata_for_each_dev(dev, link, ENABLED) { 3532 unsigned int pio_mask, dma_mask; 3533 unsigned int mode_mask; 3534 3535 mode_mask = ATA_DMA_MASK_ATA; 3536 if (dev->class == ATA_DEV_ATAPI) 3537 mode_mask = ATA_DMA_MASK_ATAPI; 3538 else if (ata_id_is_cfa(dev->id)) 3539 mode_mask = ATA_DMA_MASK_CFA; 3540 3541 ata_dev_xfermask(dev); 3542 ata_force_xfermask(dev); 3543 3544 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3545 3546 if (libata_dma_mask & mode_mask) 3547 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3548 dev->udma_mask); 3549 else 3550 dma_mask = 0; 3551 3552 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3553 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3554 3555 found = 1; 3556 if (ata_dma_enabled(dev)) 3557 used_dma = 1; 3558 } 3559 if (!found) 3560 goto out; 3561 3562 /* step 2: always set host PIO timings */ 3563 ata_for_each_dev(dev, link, ENABLED) { 3564 if (dev->pio_mode == 0xff) { 3565 ata_dev_warn(dev, "no PIO support\n"); 3566 rc = -EINVAL; 3567 goto out; 3568 } 3569 3570 dev->xfer_mode = dev->pio_mode; 3571 dev->xfer_shift = ATA_SHIFT_PIO; 3572 if (ap->ops->set_piomode) 3573 ap->ops->set_piomode(ap, dev); 3574 } 3575 3576 /* step 3: set host DMA timings */ 3577 ata_for_each_dev(dev, link, ENABLED) { 3578 if (!ata_dma_enabled(dev)) 3579 continue; 3580 3581 dev->xfer_mode = dev->dma_mode; 3582 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3583 if (ap->ops->set_dmamode) 3584 ap->ops->set_dmamode(ap, dev); 3585 } 3586 3587 /* step 4: update devices' xfer mode */ 3588 ata_for_each_dev(dev, link, ENABLED) { 3589 rc = ata_dev_set_mode(dev); 3590 if (rc) 3591 goto out; 3592 } 3593 3594 /* Record simplex status. If we selected DMA then the other 3595 * host channels are not permitted to do so. 3596 */ 3597 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3598 ap->host->simplex_claimed = ap; 3599 3600 out: 3601 if (rc) 3602 *r_failed_dev = dev; 3603 return rc; 3604 } 3605 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3606 3607 /** 3608 * ata_wait_ready - wait for link to become ready 3609 * @link: link to be waited on 3610 * @deadline: deadline jiffies for the operation 3611 * @check_ready: callback to check link readiness 3612 * 3613 * Wait for @link to become ready. @check_ready should return 3614 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3615 * link doesn't seem to be occupied, other errno for other error 3616 * conditions. 3617 * 3618 * Transient -ENODEV conditions are allowed for 3619 * ATA_TMOUT_FF_WAIT. 3620 * 3621 * LOCKING: 3622 * EH context. 3623 * 3624 * RETURNS: 3625 * 0 if @link is ready before @deadline; otherwise, -errno. 3626 */ 3627 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3628 int (*check_ready)(struct ata_link *link)) 3629 { 3630 unsigned long start = jiffies; 3631 unsigned long nodev_deadline; 3632 int warned = 0; 3633 3634 /* choose which 0xff timeout to use, read comment in libata.h */ 3635 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3636 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3637 else 3638 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3639 3640 /* Slave readiness can't be tested separately from master. On 3641 * M/S emulation configuration, this function should be called 3642 * only on the master and it will handle both master and slave. 3643 */ 3644 WARN_ON(link == link->ap->slave_link); 3645 3646 if (time_after(nodev_deadline, deadline)) 3647 nodev_deadline = deadline; 3648 3649 while (1) { 3650 unsigned long now = jiffies; 3651 int ready, tmp; 3652 3653 ready = tmp = check_ready(link); 3654 if (ready > 0) 3655 return 0; 3656 3657 /* 3658 * -ENODEV could be transient. Ignore -ENODEV if link 3659 * is online. Also, some SATA devices take a long 3660 * time to clear 0xff after reset. Wait for 3661 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3662 * offline. 3663 * 3664 * Note that some PATA controllers (pata_ali) explode 3665 * if status register is read more than once when 3666 * there's no device attached. 3667 */ 3668 if (ready == -ENODEV) { 3669 if (ata_link_online(link)) 3670 ready = 0; 3671 else if ((link->ap->flags & ATA_FLAG_SATA) && 3672 !ata_link_offline(link) && 3673 time_before(now, nodev_deadline)) 3674 ready = 0; 3675 } 3676 3677 if (ready) 3678 return ready; 3679 if (time_after(now, deadline)) 3680 return -EBUSY; 3681 3682 if (!warned && time_after(now, start + 5 * HZ) && 3683 (deadline - now > 3 * HZ)) { 3684 ata_link_warn(link, 3685 "link is slow to respond, please be patient " 3686 "(ready=%d)\n", tmp); 3687 warned = 1; 3688 } 3689 3690 ata_msleep(link->ap, 50); 3691 } 3692 } 3693 3694 /** 3695 * ata_wait_after_reset - wait for link to become ready after reset 3696 * @link: link to be waited on 3697 * @deadline: deadline jiffies for the operation 3698 * @check_ready: callback to check link readiness 3699 * 3700 * Wait for @link to become ready after reset. 3701 * 3702 * LOCKING: 3703 * EH context. 3704 * 3705 * RETURNS: 3706 * 0 if @link is ready before @deadline; otherwise, -errno. 3707 */ 3708 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3709 int (*check_ready)(struct ata_link *link)) 3710 { 3711 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3712 3713 return ata_wait_ready(link, deadline, check_ready); 3714 } 3715 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3716 3717 /** 3718 * ata_std_prereset - prepare for reset 3719 * @link: ATA link to be reset 3720 * @deadline: deadline jiffies for the operation 3721 * 3722 * @link is about to be reset. Initialize it. Failure from 3723 * prereset makes libata abort whole reset sequence and give up 3724 * that port, so prereset should be best-effort. It does its 3725 * best to prepare for reset sequence but if things go wrong, it 3726 * should just whine, not fail. 3727 * 3728 * LOCKING: 3729 * Kernel thread context (may sleep) 3730 * 3731 * RETURNS: 3732 * Always 0. 3733 */ 3734 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3735 { 3736 struct ata_port *ap = link->ap; 3737 struct ata_eh_context *ehc = &link->eh_context; 3738 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3739 int rc; 3740 3741 /* if we're about to do hardreset, nothing more to do */ 3742 if (ehc->i.action & ATA_EH_HARDRESET) 3743 return 0; 3744 3745 /* if SATA, resume link */ 3746 if (ap->flags & ATA_FLAG_SATA) { 3747 rc = sata_link_resume(link, timing, deadline); 3748 /* whine about phy resume failure but proceed */ 3749 if (rc && rc != -EOPNOTSUPP) 3750 ata_link_warn(link, 3751 "failed to resume link for reset (errno=%d)\n", 3752 rc); 3753 } 3754 3755 /* no point in trying softreset on offline link */ 3756 if (ata_phys_link_offline(link)) 3757 ehc->i.action &= ~ATA_EH_SOFTRESET; 3758 3759 return 0; 3760 } 3761 EXPORT_SYMBOL_GPL(ata_std_prereset); 3762 3763 /** 3764 * sata_std_hardreset - COMRESET w/o waiting or classification 3765 * @link: link to reset 3766 * @class: resulting class of attached device 3767 * @deadline: deadline jiffies for the operation 3768 * 3769 * Standard SATA COMRESET w/o waiting or classification. 3770 * 3771 * LOCKING: 3772 * Kernel thread context (may sleep) 3773 * 3774 * RETURNS: 3775 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3776 */ 3777 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3778 unsigned long deadline) 3779 { 3780 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context); 3781 bool online; 3782 int rc; 3783 3784 /* do hardreset */ 3785 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3786 return online ? -EAGAIN : rc; 3787 } 3788 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3789 3790 /** 3791 * ata_std_postreset - standard postreset callback 3792 * @link: the target ata_link 3793 * @classes: classes of attached devices 3794 * 3795 * This function is invoked after a successful reset. Note that 3796 * the device might have been reset more than once using 3797 * different reset methods before postreset is invoked. 3798 * 3799 * LOCKING: 3800 * Kernel thread context (may sleep) 3801 */ 3802 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3803 { 3804 u32 serror; 3805 3806 /* reset complete, clear SError */ 3807 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3808 sata_scr_write(link, SCR_ERROR, serror); 3809 3810 /* print link status */ 3811 sata_print_link_status(link); 3812 } 3813 EXPORT_SYMBOL_GPL(ata_std_postreset); 3814 3815 /** 3816 * ata_dev_same_device - Determine whether new ID matches configured device 3817 * @dev: device to compare against 3818 * @new_class: class of the new device 3819 * @new_id: IDENTIFY page of the new device 3820 * 3821 * Compare @new_class and @new_id against @dev and determine 3822 * whether @dev is the device indicated by @new_class and 3823 * @new_id. 3824 * 3825 * LOCKING: 3826 * None. 3827 * 3828 * RETURNS: 3829 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3830 */ 3831 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3832 const u16 *new_id) 3833 { 3834 const u16 *old_id = dev->id; 3835 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3836 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3837 3838 if (dev->class != new_class) { 3839 ata_dev_info(dev, "class mismatch %d != %d\n", 3840 dev->class, new_class); 3841 return 0; 3842 } 3843 3844 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3845 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3846 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3847 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3848 3849 if (strcmp(model[0], model[1])) { 3850 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3851 model[0], model[1]); 3852 return 0; 3853 } 3854 3855 if (strcmp(serial[0], serial[1])) { 3856 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3857 serial[0], serial[1]); 3858 return 0; 3859 } 3860 3861 return 1; 3862 } 3863 3864 /** 3865 * ata_dev_reread_id - Re-read IDENTIFY data 3866 * @dev: target ATA device 3867 * @readid_flags: read ID flags 3868 * 3869 * Re-read IDENTIFY page and make sure @dev is still attached to 3870 * the port. 3871 * 3872 * LOCKING: 3873 * Kernel thread context (may sleep) 3874 * 3875 * RETURNS: 3876 * 0 on success, negative errno otherwise 3877 */ 3878 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3879 { 3880 unsigned int class = dev->class; 3881 u16 *id = (void *)dev->link->ap->sector_buf; 3882 int rc; 3883 3884 /* read ID data */ 3885 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3886 if (rc) 3887 return rc; 3888 3889 /* is the device still there? */ 3890 if (!ata_dev_same_device(dev, class, id)) 3891 return -ENODEV; 3892 3893 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3894 return 0; 3895 } 3896 3897 /** 3898 * ata_dev_revalidate - Revalidate ATA device 3899 * @dev: device to revalidate 3900 * @new_class: new class code 3901 * @readid_flags: read ID flags 3902 * 3903 * Re-read IDENTIFY page, make sure @dev is still attached to the 3904 * port and reconfigure it according to the new IDENTIFY page. 3905 * 3906 * LOCKING: 3907 * Kernel thread context (may sleep) 3908 * 3909 * RETURNS: 3910 * 0 on success, negative errno otherwise 3911 */ 3912 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3913 unsigned int readid_flags) 3914 { 3915 u64 n_sectors = dev->n_sectors; 3916 u64 n_native_sectors = dev->n_native_sectors; 3917 int rc; 3918 3919 if (!ata_dev_enabled(dev)) 3920 return -ENODEV; 3921 3922 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3923 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3924 ata_dev_info(dev, "class mismatch %u != %u\n", 3925 dev->class, new_class); 3926 rc = -ENODEV; 3927 goto fail; 3928 } 3929 3930 /* re-read ID */ 3931 rc = ata_dev_reread_id(dev, readid_flags); 3932 if (rc) 3933 goto fail; 3934 3935 /* configure device according to the new ID */ 3936 rc = ata_dev_configure(dev); 3937 if (rc) 3938 goto fail; 3939 3940 /* verify n_sectors hasn't changed */ 3941 if (dev->class != ATA_DEV_ATA || !n_sectors || 3942 dev->n_sectors == n_sectors) 3943 return 0; 3944 3945 /* n_sectors has changed */ 3946 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3947 (unsigned long long)n_sectors, 3948 (unsigned long long)dev->n_sectors); 3949 3950 /* 3951 * Something could have caused HPA to be unlocked 3952 * involuntarily. If n_native_sectors hasn't changed and the 3953 * new size matches it, keep the device. 3954 */ 3955 if (dev->n_native_sectors == n_native_sectors && 3956 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3957 ata_dev_warn(dev, 3958 "new n_sectors matches native, probably " 3959 "late HPA unlock, n_sectors updated\n"); 3960 /* use the larger n_sectors */ 3961 return 0; 3962 } 3963 3964 /* 3965 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3966 * unlocking HPA in those cases. 3967 * 3968 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3969 */ 3970 if (dev->n_native_sectors == n_native_sectors && 3971 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3972 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3973 ata_dev_warn(dev, 3974 "old n_sectors matches native, probably " 3975 "late HPA lock, will try to unlock HPA\n"); 3976 /* try unlocking HPA */ 3977 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3978 rc = -EIO; 3979 } else 3980 rc = -ENODEV; 3981 3982 /* restore original n_[native_]sectors and fail */ 3983 dev->n_native_sectors = n_native_sectors; 3984 dev->n_sectors = n_sectors; 3985 fail: 3986 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3987 return rc; 3988 } 3989 3990 struct ata_blacklist_entry { 3991 const char *model_num; 3992 const char *model_rev; 3993 unsigned long horkage; 3994 }; 3995 3996 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3997 /* Devices with DMA related problems under Linux */ 3998 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3999 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4000 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4001 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4002 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4003 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4004 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4005 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4006 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4007 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4008 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4009 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4010 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4011 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4012 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4013 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4014 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4015 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4016 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4017 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4018 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4019 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4020 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4021 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4022 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4023 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4024 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4025 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4026 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4027 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4028 /* Odd clown on sil3726/4726 PMPs */ 4029 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4030 /* Similar story with ASMedia 1092 */ 4031 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 4032 4033 /* Weird ATAPI devices */ 4034 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4035 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4036 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4037 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4038 4039 /* 4040 * Causes silent data corruption with higher max sects. 4041 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4042 */ 4043 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4044 4045 /* 4046 * These devices time out with higher max sects. 4047 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4048 */ 4049 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4050 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4051 4052 /* Devices we expect to fail diagnostics */ 4053 4054 /* Devices where NCQ should be avoided */ 4055 /* NCQ is slow */ 4056 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4057 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 4058 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4059 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4060 /* NCQ is broken */ 4061 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4062 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4063 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4064 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4065 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4066 4067 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4068 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4069 ATA_HORKAGE_FIRMWARE_WARN }, 4070 4071 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4072 ATA_HORKAGE_FIRMWARE_WARN }, 4073 4074 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4075 ATA_HORKAGE_FIRMWARE_WARN }, 4076 4077 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4078 ATA_HORKAGE_FIRMWARE_WARN }, 4079 4080 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4081 the ST disks also have LPM issues */ 4082 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 4083 ATA_HORKAGE_NOLPM }, 4084 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4085 4086 /* Blacklist entries taken from Silicon Image 3124/3132 4087 Windows driver .inf file - also several Linux problem reports */ 4088 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 4089 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 4090 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 4091 4092 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4093 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 4094 4095 /* Sandisk SD7/8/9s lock up hard on large trims */ 4096 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4097 4098 /* devices which puke on READ_NATIVE_MAX */ 4099 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4100 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4101 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4102 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4103 4104 /* this one allows HPA unlocking but fails IOs on the area */ 4105 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4106 4107 /* Devices which report 1 sector over size HPA */ 4108 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4109 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4110 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4111 4112 /* Devices which get the IVB wrong */ 4113 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4114 /* Maybe we should just blacklist TSSTcorp... */ 4115 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4116 4117 /* Devices that do not need bridging limits applied */ 4118 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4119 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4120 4121 /* Devices which aren't very happy with higher link speeds */ 4122 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4123 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4124 4125 /* 4126 * Devices which choke on SETXFER. Applies only if both the 4127 * device and controller are SATA. 4128 */ 4129 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4130 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4131 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4132 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4133 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4134 4135 /* These specific Pioneer models have LPM issues */ 4136 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4137 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4138 4139 /* Crucial devices with broken LPM support */ 4140 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4141 { "CT240BX500SSD1", NULL, ATA_HORKAGE_NOLPM }, 4142 4143 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4144 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4145 ATA_HORKAGE_ZERO_AFTER_TRIM | 4146 ATA_HORKAGE_NOLPM }, 4147 /* 512GB MX100 with newer firmware has only LPM issues */ 4148 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4149 ATA_HORKAGE_NOLPM }, 4150 4151 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4152 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4153 ATA_HORKAGE_ZERO_AFTER_TRIM | 4154 ATA_HORKAGE_NOLPM }, 4155 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4156 ATA_HORKAGE_ZERO_AFTER_TRIM | 4157 ATA_HORKAGE_NOLPM }, 4158 4159 /* AMD Radeon devices with broken LPM support */ 4160 { "R3SL240G", NULL, ATA_HORKAGE_NOLPM }, 4161 4162 /* Apacer models with LPM issues */ 4163 { "Apacer AS340*", NULL, ATA_HORKAGE_NOLPM }, 4164 4165 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4166 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4167 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4168 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4169 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4170 4171 /* devices that don't properly handle queued TRIM commands */ 4172 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4173 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4174 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4175 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4176 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4177 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4178 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4179 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4180 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4181 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4182 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4183 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4184 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4185 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4186 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4187 ATA_HORKAGE_NO_DMA_LOG | 4188 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4189 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4190 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4191 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4192 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4193 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4194 ATA_HORKAGE_ZERO_AFTER_TRIM | 4195 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4196 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4197 ATA_HORKAGE_ZERO_AFTER_TRIM | 4198 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4199 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4200 ATA_HORKAGE_ZERO_AFTER_TRIM | 4201 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4202 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4203 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4204 4205 /* devices that don't properly handle TRIM commands */ 4206 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4207 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4208 4209 /* 4210 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4211 * (Return Zero After Trim) flags in the ATA Command Set are 4212 * unreliable in the sense that they only define what happens if 4213 * the device successfully executed the DSM TRIM command. TRIM 4214 * is only advisory, however, and the device is free to silently 4215 * ignore all or parts of the request. 4216 * 4217 * Whitelist drives that are known to reliably return zeroes 4218 * after TRIM. 4219 */ 4220 4221 /* 4222 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4223 * that model before whitelisting all other intel SSDs. 4224 */ 4225 { "INTEL*SSDSC2MH*", NULL, 0 }, 4226 4227 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4228 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4229 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4230 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4231 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4232 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4233 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4234 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4235 4236 /* 4237 * Some WD SATA-I drives spin up and down erratically when the link 4238 * is put into the slumber mode. We don't have full list of the 4239 * affected devices. Disable LPM if the device matches one of the 4240 * known prefixes and is SATA-1. As a side effect LPM partial is 4241 * lost too. 4242 * 4243 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4244 */ 4245 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4246 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4247 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4248 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4249 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4250 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4251 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4252 4253 /* 4254 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4255 * log page is accessed. Ensure we never ask for this log page with 4256 * these devices. 4257 */ 4258 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4259 4260 /* Buggy FUA */ 4261 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4262 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4263 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4264 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4265 4266 /* End Marker */ 4267 { } 4268 }; 4269 4270 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4271 { 4272 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4273 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4274 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4275 4276 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4277 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4278 4279 while (ad->model_num) { 4280 if (glob_match(ad->model_num, model_num)) { 4281 if (ad->model_rev == NULL) 4282 return ad->horkage; 4283 if (glob_match(ad->model_rev, model_rev)) 4284 return ad->horkage; 4285 } 4286 ad++; 4287 } 4288 return 0; 4289 } 4290 4291 static int ata_dma_blacklisted(const struct ata_device *dev) 4292 { 4293 /* We don't support polling DMA. 4294 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4295 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4296 */ 4297 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4298 (dev->flags & ATA_DFLAG_CDB_INTR)) 4299 return 1; 4300 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4301 } 4302 4303 /** 4304 * ata_is_40wire - check drive side detection 4305 * @dev: device 4306 * 4307 * Perform drive side detection decoding, allowing for device vendors 4308 * who can't follow the documentation. 4309 */ 4310 4311 static int ata_is_40wire(struct ata_device *dev) 4312 { 4313 if (dev->horkage & ATA_HORKAGE_IVB) 4314 return ata_drive_40wire_relaxed(dev->id); 4315 return ata_drive_40wire(dev->id); 4316 } 4317 4318 /** 4319 * cable_is_40wire - 40/80/SATA decider 4320 * @ap: port to consider 4321 * 4322 * This function encapsulates the policy for speed management 4323 * in one place. At the moment we don't cache the result but 4324 * there is a good case for setting ap->cbl to the result when 4325 * we are called with unknown cables (and figuring out if it 4326 * impacts hotplug at all). 4327 * 4328 * Return 1 if the cable appears to be 40 wire. 4329 */ 4330 4331 static int cable_is_40wire(struct ata_port *ap) 4332 { 4333 struct ata_link *link; 4334 struct ata_device *dev; 4335 4336 /* If the controller thinks we are 40 wire, we are. */ 4337 if (ap->cbl == ATA_CBL_PATA40) 4338 return 1; 4339 4340 /* If the controller thinks we are 80 wire, we are. */ 4341 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4342 return 0; 4343 4344 /* If the system is known to be 40 wire short cable (eg 4345 * laptop), then we allow 80 wire modes even if the drive 4346 * isn't sure. 4347 */ 4348 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4349 return 0; 4350 4351 /* If the controller doesn't know, we scan. 4352 * 4353 * Note: We look for all 40 wire detects at this point. Any 4354 * 80 wire detect is taken to be 80 wire cable because 4355 * - in many setups only the one drive (slave if present) will 4356 * give a valid detect 4357 * - if you have a non detect capable drive you don't want it 4358 * to colour the choice 4359 */ 4360 ata_for_each_link(link, ap, EDGE) { 4361 ata_for_each_dev(dev, link, ENABLED) { 4362 if (!ata_is_40wire(dev)) 4363 return 0; 4364 } 4365 } 4366 return 1; 4367 } 4368 4369 /** 4370 * ata_dev_xfermask - Compute supported xfermask of the given device 4371 * @dev: Device to compute xfermask for 4372 * 4373 * Compute supported xfermask of @dev and store it in 4374 * dev->*_mask. This function is responsible for applying all 4375 * known limits including host controller limits, device 4376 * blacklist, etc... 4377 * 4378 * LOCKING: 4379 * None. 4380 */ 4381 static void ata_dev_xfermask(struct ata_device *dev) 4382 { 4383 struct ata_link *link = dev->link; 4384 struct ata_port *ap = link->ap; 4385 struct ata_host *host = ap->host; 4386 unsigned int xfer_mask; 4387 4388 /* controller modes available */ 4389 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4390 ap->mwdma_mask, ap->udma_mask); 4391 4392 /* drive modes available */ 4393 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4394 dev->mwdma_mask, dev->udma_mask); 4395 xfer_mask &= ata_id_xfermask(dev->id); 4396 4397 /* 4398 * CFA Advanced TrueIDE timings are not allowed on a shared 4399 * cable 4400 */ 4401 if (ata_dev_pair(dev)) { 4402 /* No PIO5 or PIO6 */ 4403 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4404 /* No MWDMA3 or MWDMA 4 */ 4405 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4406 } 4407 4408 if (ata_dma_blacklisted(dev)) { 4409 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4410 ata_dev_warn(dev, 4411 "device is on DMA blacklist, disabling DMA\n"); 4412 } 4413 4414 if ((host->flags & ATA_HOST_SIMPLEX) && 4415 host->simplex_claimed && host->simplex_claimed != ap) { 4416 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4417 ata_dev_warn(dev, 4418 "simplex DMA is claimed by other device, disabling DMA\n"); 4419 } 4420 4421 if (ap->flags & ATA_FLAG_NO_IORDY) 4422 xfer_mask &= ata_pio_mask_no_iordy(dev); 4423 4424 if (ap->ops->mode_filter) 4425 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4426 4427 /* Apply cable rule here. Don't apply it early because when 4428 * we handle hot plug the cable type can itself change. 4429 * Check this last so that we know if the transfer rate was 4430 * solely limited by the cable. 4431 * Unknown or 80 wire cables reported host side are checked 4432 * drive side as well. Cases where we know a 40wire cable 4433 * is used safely for 80 are not checked here. 4434 */ 4435 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4436 /* UDMA/44 or higher would be available */ 4437 if (cable_is_40wire(ap)) { 4438 ata_dev_warn(dev, 4439 "limited to UDMA/33 due to 40-wire cable\n"); 4440 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4441 } 4442 4443 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4444 &dev->mwdma_mask, &dev->udma_mask); 4445 } 4446 4447 /** 4448 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4449 * @dev: Device to which command will be sent 4450 * 4451 * Issue SET FEATURES - XFER MODE command to device @dev 4452 * on port @ap. 4453 * 4454 * LOCKING: 4455 * PCI/etc. bus probe sem. 4456 * 4457 * RETURNS: 4458 * 0 on success, AC_ERR_* mask otherwise. 4459 */ 4460 4461 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4462 { 4463 struct ata_taskfile tf; 4464 4465 /* set up set-features taskfile */ 4466 ata_dev_dbg(dev, "set features - xfer mode\n"); 4467 4468 /* Some controllers and ATAPI devices show flaky interrupt 4469 * behavior after setting xfer mode. Use polling instead. 4470 */ 4471 ata_tf_init(dev, &tf); 4472 tf.command = ATA_CMD_SET_FEATURES; 4473 tf.feature = SETFEATURES_XFER; 4474 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4475 tf.protocol = ATA_PROT_NODATA; 4476 /* If we are using IORDY we must send the mode setting command */ 4477 if (ata_pio_need_iordy(dev)) 4478 tf.nsect = dev->xfer_mode; 4479 /* If the device has IORDY and the controller does not - turn it off */ 4480 else if (ata_id_has_iordy(dev->id)) 4481 tf.nsect = 0x01; 4482 else /* In the ancient relic department - skip all of this */ 4483 return 0; 4484 4485 /* 4486 * On some disks, this command causes spin-up, so we need longer 4487 * timeout. 4488 */ 4489 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4490 } 4491 4492 /** 4493 * ata_dev_set_feature - Issue SET FEATURES 4494 * @dev: Device to which command will be sent 4495 * @subcmd: The SET FEATURES subcommand to be sent 4496 * @action: The sector count represents a subcommand specific action 4497 * 4498 * Issue SET FEATURES command to device @dev on port @ap with sector count 4499 * 4500 * LOCKING: 4501 * PCI/etc. bus probe sem. 4502 * 4503 * RETURNS: 4504 * 0 on success, AC_ERR_* mask otherwise. 4505 */ 4506 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4507 { 4508 struct ata_taskfile tf; 4509 unsigned int timeout = 0; 4510 4511 /* set up set-features taskfile */ 4512 ata_dev_dbg(dev, "set features\n"); 4513 4514 ata_tf_init(dev, &tf); 4515 tf.command = ATA_CMD_SET_FEATURES; 4516 tf.feature = subcmd; 4517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4518 tf.protocol = ATA_PROT_NODATA; 4519 tf.nsect = action; 4520 4521 if (subcmd == SETFEATURES_SPINUP) 4522 timeout = ata_probe_timeout ? 4523 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4524 4525 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4526 } 4527 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4528 4529 /** 4530 * ata_dev_init_params - Issue INIT DEV PARAMS command 4531 * @dev: Device to which command will be sent 4532 * @heads: Number of heads (taskfile parameter) 4533 * @sectors: Number of sectors (taskfile parameter) 4534 * 4535 * LOCKING: 4536 * Kernel thread context (may sleep) 4537 * 4538 * RETURNS: 4539 * 0 on success, AC_ERR_* mask otherwise. 4540 */ 4541 static unsigned int ata_dev_init_params(struct ata_device *dev, 4542 u16 heads, u16 sectors) 4543 { 4544 struct ata_taskfile tf; 4545 unsigned int err_mask; 4546 4547 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4548 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4549 return AC_ERR_INVALID; 4550 4551 /* set up init dev params taskfile */ 4552 ata_dev_dbg(dev, "init dev params \n"); 4553 4554 ata_tf_init(dev, &tf); 4555 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4556 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4557 tf.protocol = ATA_PROT_NODATA; 4558 tf.nsect = sectors; 4559 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4560 4561 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4562 /* A clean abort indicates an original or just out of spec drive 4563 and we should continue as we issue the setup based on the 4564 drive reported working geometry */ 4565 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4566 err_mask = 0; 4567 4568 return err_mask; 4569 } 4570 4571 /** 4572 * atapi_check_dma - Check whether ATAPI DMA can be supported 4573 * @qc: Metadata associated with taskfile to check 4574 * 4575 * Allow low-level driver to filter ATA PACKET commands, returning 4576 * a status indicating whether or not it is OK to use DMA for the 4577 * supplied PACKET command. 4578 * 4579 * LOCKING: 4580 * spin_lock_irqsave(host lock) 4581 * 4582 * RETURNS: 0 when ATAPI DMA can be used 4583 * nonzero otherwise 4584 */ 4585 int atapi_check_dma(struct ata_queued_cmd *qc) 4586 { 4587 struct ata_port *ap = qc->ap; 4588 4589 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4590 * few ATAPI devices choke on such DMA requests. 4591 */ 4592 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4593 unlikely(qc->nbytes & 15)) 4594 return 1; 4595 4596 if (ap->ops->check_atapi_dma) 4597 return ap->ops->check_atapi_dma(qc); 4598 4599 return 0; 4600 } 4601 4602 /** 4603 * ata_std_qc_defer - Check whether a qc needs to be deferred 4604 * @qc: ATA command in question 4605 * 4606 * Non-NCQ commands cannot run with any other command, NCQ or 4607 * not. As upper layer only knows the queue depth, we are 4608 * responsible for maintaining exclusion. This function checks 4609 * whether a new command @qc can be issued. 4610 * 4611 * LOCKING: 4612 * spin_lock_irqsave(host lock) 4613 * 4614 * RETURNS: 4615 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4616 */ 4617 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4618 { 4619 struct ata_link *link = qc->dev->link; 4620 4621 if (ata_is_ncq(qc->tf.protocol)) { 4622 if (!ata_tag_valid(link->active_tag)) 4623 return 0; 4624 } else { 4625 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4626 return 0; 4627 } 4628 4629 return ATA_DEFER_LINK; 4630 } 4631 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4632 4633 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4634 { 4635 return AC_ERR_OK; 4636 } 4637 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4638 4639 /** 4640 * ata_sg_init - Associate command with scatter-gather table. 4641 * @qc: Command to be associated 4642 * @sg: Scatter-gather table. 4643 * @n_elem: Number of elements in s/g table. 4644 * 4645 * Initialize the data-related elements of queued_cmd @qc 4646 * to point to a scatter-gather table @sg, containing @n_elem 4647 * elements. 4648 * 4649 * LOCKING: 4650 * spin_lock_irqsave(host lock) 4651 */ 4652 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4653 unsigned int n_elem) 4654 { 4655 qc->sg = sg; 4656 qc->n_elem = n_elem; 4657 qc->cursg = qc->sg; 4658 } 4659 4660 #ifdef CONFIG_HAS_DMA 4661 4662 /** 4663 * ata_sg_clean - Unmap DMA memory associated with command 4664 * @qc: Command containing DMA memory to be released 4665 * 4666 * Unmap all mapped DMA memory associated with this command. 4667 * 4668 * LOCKING: 4669 * spin_lock_irqsave(host lock) 4670 */ 4671 static void ata_sg_clean(struct ata_queued_cmd *qc) 4672 { 4673 struct ata_port *ap = qc->ap; 4674 struct scatterlist *sg = qc->sg; 4675 int dir = qc->dma_dir; 4676 4677 WARN_ON_ONCE(sg == NULL); 4678 4679 if (qc->n_elem) 4680 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4681 4682 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4683 qc->sg = NULL; 4684 } 4685 4686 /** 4687 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4688 * @qc: Command with scatter-gather table to be mapped. 4689 * 4690 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4691 * 4692 * LOCKING: 4693 * spin_lock_irqsave(host lock) 4694 * 4695 * RETURNS: 4696 * Zero on success, negative on error. 4697 * 4698 */ 4699 static int ata_sg_setup(struct ata_queued_cmd *qc) 4700 { 4701 struct ata_port *ap = qc->ap; 4702 unsigned int n_elem; 4703 4704 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4705 if (n_elem < 1) 4706 return -1; 4707 4708 qc->orig_n_elem = qc->n_elem; 4709 qc->n_elem = n_elem; 4710 qc->flags |= ATA_QCFLAG_DMAMAP; 4711 4712 return 0; 4713 } 4714 4715 #else /* !CONFIG_HAS_DMA */ 4716 4717 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4718 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4719 4720 #endif /* !CONFIG_HAS_DMA */ 4721 4722 /** 4723 * swap_buf_le16 - swap halves of 16-bit words in place 4724 * @buf: Buffer to swap 4725 * @buf_words: Number of 16-bit words in buffer. 4726 * 4727 * Swap halves of 16-bit words if needed to convert from 4728 * little-endian byte order to native cpu byte order, or 4729 * vice-versa. 4730 * 4731 * LOCKING: 4732 * Inherited from caller. 4733 */ 4734 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4735 { 4736 #ifdef __BIG_ENDIAN 4737 unsigned int i; 4738 4739 for (i = 0; i < buf_words; i++) 4740 buf[i] = le16_to_cpu(buf[i]); 4741 #endif /* __BIG_ENDIAN */ 4742 } 4743 4744 /** 4745 * ata_qc_free - free unused ata_queued_cmd 4746 * @qc: Command to complete 4747 * 4748 * Designed to free unused ata_queued_cmd object 4749 * in case something prevents using it. 4750 * 4751 * LOCKING: 4752 * spin_lock_irqsave(host lock) 4753 */ 4754 void ata_qc_free(struct ata_queued_cmd *qc) 4755 { 4756 qc->flags = 0; 4757 if (ata_tag_valid(qc->tag)) 4758 qc->tag = ATA_TAG_POISON; 4759 } 4760 4761 void __ata_qc_complete(struct ata_queued_cmd *qc) 4762 { 4763 struct ata_port *ap; 4764 struct ata_link *link; 4765 4766 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4767 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4768 ap = qc->ap; 4769 link = qc->dev->link; 4770 4771 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4772 ata_sg_clean(qc); 4773 4774 /* command should be marked inactive atomically with qc completion */ 4775 if (ata_is_ncq(qc->tf.protocol)) { 4776 link->sactive &= ~(1 << qc->hw_tag); 4777 if (!link->sactive) 4778 ap->nr_active_links--; 4779 } else { 4780 link->active_tag = ATA_TAG_POISON; 4781 ap->nr_active_links--; 4782 } 4783 4784 /* clear exclusive status */ 4785 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4786 ap->excl_link == link)) 4787 ap->excl_link = NULL; 4788 4789 /* atapi: mark qc as inactive to prevent the interrupt handler 4790 * from completing the command twice later, before the error handler 4791 * is called. (when rc != 0 and atapi request sense is needed) 4792 */ 4793 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4794 ap->qc_active &= ~(1ULL << qc->tag); 4795 4796 /* call completion callback */ 4797 qc->complete_fn(qc); 4798 } 4799 4800 static void fill_result_tf(struct ata_queued_cmd *qc) 4801 { 4802 struct ata_port *ap = qc->ap; 4803 4804 qc->result_tf.flags = qc->tf.flags; 4805 ap->ops->qc_fill_rtf(qc); 4806 } 4807 4808 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4809 { 4810 struct ata_device *dev = qc->dev; 4811 4812 if (!ata_is_data(qc->tf.protocol)) 4813 return; 4814 4815 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4816 return; 4817 4818 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4819 } 4820 4821 /** 4822 * ata_qc_complete - Complete an active ATA command 4823 * @qc: Command to complete 4824 * 4825 * Indicate to the mid and upper layers that an ATA command has 4826 * completed, with either an ok or not-ok status. 4827 * 4828 * Refrain from calling this function multiple times when 4829 * successfully completing multiple NCQ commands. 4830 * ata_qc_complete_multiple() should be used instead, which will 4831 * properly update IRQ expect state. 4832 * 4833 * LOCKING: 4834 * spin_lock_irqsave(host lock) 4835 */ 4836 void ata_qc_complete(struct ata_queued_cmd *qc) 4837 { 4838 struct ata_port *ap = qc->ap; 4839 struct ata_device *dev = qc->dev; 4840 struct ata_eh_info *ehi = &dev->link->eh_info; 4841 4842 /* Trigger the LED (if available) */ 4843 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4844 4845 /* 4846 * In order to synchronize EH with the regular execution path, a qc that 4847 * is owned by EH is marked with ATA_QCFLAG_EH. 4848 * 4849 * The normal execution path is responsible for not accessing a qc owned 4850 * by EH. libata core enforces the rule by returning NULL from 4851 * ata_qc_from_tag() for qcs owned by EH. 4852 */ 4853 if (unlikely(qc->err_mask)) 4854 qc->flags |= ATA_QCFLAG_EH; 4855 4856 /* 4857 * Finish internal commands without any further processing and always 4858 * with the result TF filled. 4859 */ 4860 if (unlikely(ata_tag_internal(qc->tag))) { 4861 fill_result_tf(qc); 4862 trace_ata_qc_complete_internal(qc); 4863 __ata_qc_complete(qc); 4864 return; 4865 } 4866 4867 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4868 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4869 fill_result_tf(qc); 4870 trace_ata_qc_complete_failed(qc); 4871 ata_qc_schedule_eh(qc); 4872 return; 4873 } 4874 4875 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4876 4877 /* read result TF if requested */ 4878 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4879 fill_result_tf(qc); 4880 4881 trace_ata_qc_complete_done(qc); 4882 4883 /* 4884 * For CDL commands that completed without an error, check if we have 4885 * sense data (ATA_SENSE is set). If we do, then the command may have 4886 * been aborted by the device due to a limit timeout using the policy 4887 * 0xD. For these commands, invoke EH to get the command sense data. 4888 */ 4889 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4890 qc->result_tf.status & ATA_SENSE) { 4891 /* 4892 * Tell SCSI EH to not overwrite scmd->result even if this 4893 * command is finished with result SAM_STAT_GOOD. 4894 */ 4895 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4896 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4897 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4898 4899 /* 4900 * set pending so that ata_qc_schedule_eh() does not trigger 4901 * fast drain, and freeze the port. 4902 */ 4903 ap->pflags |= ATA_PFLAG_EH_PENDING; 4904 ata_qc_schedule_eh(qc); 4905 return; 4906 } 4907 4908 /* Some commands need post-processing after successful completion. */ 4909 switch (qc->tf.command) { 4910 case ATA_CMD_SET_FEATURES: 4911 if (qc->tf.feature != SETFEATURES_WC_ON && 4912 qc->tf.feature != SETFEATURES_WC_OFF && 4913 qc->tf.feature != SETFEATURES_RA_ON && 4914 qc->tf.feature != SETFEATURES_RA_OFF) 4915 break; 4916 fallthrough; 4917 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4918 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4919 /* revalidate device */ 4920 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4921 ata_port_schedule_eh(ap); 4922 break; 4923 4924 case ATA_CMD_SLEEP: 4925 dev->flags |= ATA_DFLAG_SLEEPING; 4926 break; 4927 } 4928 4929 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4930 ata_verify_xfer(qc); 4931 4932 __ata_qc_complete(qc); 4933 } 4934 EXPORT_SYMBOL_GPL(ata_qc_complete); 4935 4936 /** 4937 * ata_qc_get_active - get bitmask of active qcs 4938 * @ap: port in question 4939 * 4940 * LOCKING: 4941 * spin_lock_irqsave(host lock) 4942 * 4943 * RETURNS: 4944 * Bitmask of active qcs 4945 */ 4946 u64 ata_qc_get_active(struct ata_port *ap) 4947 { 4948 u64 qc_active = ap->qc_active; 4949 4950 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4951 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4952 qc_active |= (1 << 0); 4953 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4954 } 4955 4956 return qc_active; 4957 } 4958 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4959 4960 /** 4961 * ata_qc_issue - issue taskfile to device 4962 * @qc: command to issue to device 4963 * 4964 * Prepare an ATA command to submission to device. 4965 * This includes mapping the data into a DMA-able 4966 * area, filling in the S/G table, and finally 4967 * writing the taskfile to hardware, starting the command. 4968 * 4969 * LOCKING: 4970 * spin_lock_irqsave(host lock) 4971 */ 4972 void ata_qc_issue(struct ata_queued_cmd *qc) 4973 { 4974 struct ata_port *ap = qc->ap; 4975 struct ata_link *link = qc->dev->link; 4976 u8 prot = qc->tf.protocol; 4977 4978 /* Make sure only one non-NCQ command is outstanding. */ 4979 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4980 4981 if (ata_is_ncq(prot)) { 4982 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4983 4984 if (!link->sactive) 4985 ap->nr_active_links++; 4986 link->sactive |= 1 << qc->hw_tag; 4987 } else { 4988 WARN_ON_ONCE(link->sactive); 4989 4990 ap->nr_active_links++; 4991 link->active_tag = qc->tag; 4992 } 4993 4994 qc->flags |= ATA_QCFLAG_ACTIVE; 4995 ap->qc_active |= 1ULL << qc->tag; 4996 4997 /* 4998 * We guarantee to LLDs that they will have at least one 4999 * non-zero sg if the command is a data command. 5000 */ 5001 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5002 goto sys_err; 5003 5004 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5005 (ap->flags & ATA_FLAG_PIO_DMA))) 5006 if (ata_sg_setup(qc)) 5007 goto sys_err; 5008 5009 /* if device is sleeping, schedule reset and abort the link */ 5010 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5011 link->eh_info.action |= ATA_EH_RESET; 5012 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5013 ata_link_abort(link); 5014 return; 5015 } 5016 5017 trace_ata_qc_prep(qc); 5018 qc->err_mask |= ap->ops->qc_prep(qc); 5019 if (unlikely(qc->err_mask)) 5020 goto err; 5021 trace_ata_qc_issue(qc); 5022 qc->err_mask |= ap->ops->qc_issue(qc); 5023 if (unlikely(qc->err_mask)) 5024 goto err; 5025 return; 5026 5027 sys_err: 5028 qc->err_mask |= AC_ERR_SYSTEM; 5029 err: 5030 ata_qc_complete(qc); 5031 } 5032 5033 /** 5034 * ata_phys_link_online - test whether the given link is online 5035 * @link: ATA link to test 5036 * 5037 * Test whether @link is online. Note that this function returns 5038 * 0 if online status of @link cannot be obtained, so 5039 * ata_link_online(link) != !ata_link_offline(link). 5040 * 5041 * LOCKING: 5042 * None. 5043 * 5044 * RETURNS: 5045 * True if the port online status is available and online. 5046 */ 5047 bool ata_phys_link_online(struct ata_link *link) 5048 { 5049 u32 sstatus; 5050 5051 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5052 ata_sstatus_online(sstatus)) 5053 return true; 5054 return false; 5055 } 5056 5057 /** 5058 * ata_phys_link_offline - test whether the given link is offline 5059 * @link: ATA link to test 5060 * 5061 * Test whether @link is offline. Note that this function 5062 * returns 0 if offline status of @link cannot be obtained, so 5063 * ata_link_online(link) != !ata_link_offline(link). 5064 * 5065 * LOCKING: 5066 * None. 5067 * 5068 * RETURNS: 5069 * True if the port offline status is available and offline. 5070 */ 5071 bool ata_phys_link_offline(struct ata_link *link) 5072 { 5073 u32 sstatus; 5074 5075 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5076 !ata_sstatus_online(sstatus)) 5077 return true; 5078 return false; 5079 } 5080 5081 /** 5082 * ata_link_online - test whether the given link is online 5083 * @link: ATA link to test 5084 * 5085 * Test whether @link is online. This is identical to 5086 * ata_phys_link_online() when there's no slave link. When 5087 * there's a slave link, this function should only be called on 5088 * the master link and will return true if any of M/S links is 5089 * online. 5090 * 5091 * LOCKING: 5092 * None. 5093 * 5094 * RETURNS: 5095 * True if the port online status is available and online. 5096 */ 5097 bool ata_link_online(struct ata_link *link) 5098 { 5099 struct ata_link *slave = link->ap->slave_link; 5100 5101 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5102 5103 return ata_phys_link_online(link) || 5104 (slave && ata_phys_link_online(slave)); 5105 } 5106 EXPORT_SYMBOL_GPL(ata_link_online); 5107 5108 /** 5109 * ata_link_offline - test whether the given link is offline 5110 * @link: ATA link to test 5111 * 5112 * Test whether @link is offline. This is identical to 5113 * ata_phys_link_offline() when there's no slave link. When 5114 * there's a slave link, this function should only be called on 5115 * the master link and will return true if both M/S links are 5116 * offline. 5117 * 5118 * LOCKING: 5119 * None. 5120 * 5121 * RETURNS: 5122 * True if the port offline status is available and offline. 5123 */ 5124 bool ata_link_offline(struct ata_link *link) 5125 { 5126 struct ata_link *slave = link->ap->slave_link; 5127 5128 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5129 5130 return ata_phys_link_offline(link) && 5131 (!slave || ata_phys_link_offline(slave)); 5132 } 5133 EXPORT_SYMBOL_GPL(ata_link_offline); 5134 5135 #ifdef CONFIG_PM 5136 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5137 unsigned int action, unsigned int ehi_flags, 5138 bool async) 5139 { 5140 struct ata_link *link; 5141 unsigned long flags; 5142 5143 spin_lock_irqsave(ap->lock, flags); 5144 5145 /* 5146 * A previous PM operation might still be in progress. Wait for 5147 * ATA_PFLAG_PM_PENDING to clear. 5148 */ 5149 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5150 spin_unlock_irqrestore(ap->lock, flags); 5151 ata_port_wait_eh(ap); 5152 spin_lock_irqsave(ap->lock, flags); 5153 } 5154 5155 /* Request PM operation to EH */ 5156 ap->pm_mesg = mesg; 5157 ap->pflags |= ATA_PFLAG_PM_PENDING; 5158 ata_for_each_link(link, ap, HOST_FIRST) { 5159 link->eh_info.action |= action; 5160 link->eh_info.flags |= ehi_flags; 5161 } 5162 5163 ata_port_schedule_eh(ap); 5164 5165 spin_unlock_irqrestore(ap->lock, flags); 5166 5167 if (!async) 5168 ata_port_wait_eh(ap); 5169 } 5170 5171 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5172 bool async) 5173 { 5174 /* 5175 * We are about to suspend the port, so we do not care about 5176 * scsi_rescan_device() calls scheduled by previous resume operations. 5177 * The next resume will schedule the rescan again. So cancel any rescan 5178 * that is not done yet. 5179 */ 5180 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5181 5182 /* 5183 * On some hardware, device fails to respond after spun down for 5184 * suspend. As the device will not be used until being resumed, we 5185 * do not need to touch the device. Ask EH to skip the usual stuff 5186 * and proceed directly to suspend. 5187 * 5188 * http://thread.gmane.org/gmane.linux.ide/46764 5189 */ 5190 ata_port_request_pm(ap, mesg, 0, 5191 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5192 ATA_EHI_NO_RECOVERY, 5193 async); 5194 } 5195 5196 static int ata_port_pm_suspend(struct device *dev) 5197 { 5198 struct ata_port *ap = to_ata_port(dev); 5199 5200 if (pm_runtime_suspended(dev)) 5201 return 0; 5202 5203 ata_port_suspend(ap, PMSG_SUSPEND, false); 5204 return 0; 5205 } 5206 5207 static int ata_port_pm_freeze(struct device *dev) 5208 { 5209 struct ata_port *ap = to_ata_port(dev); 5210 5211 if (pm_runtime_suspended(dev)) 5212 return 0; 5213 5214 ata_port_suspend(ap, PMSG_FREEZE, false); 5215 return 0; 5216 } 5217 5218 static int ata_port_pm_poweroff(struct device *dev) 5219 { 5220 if (!pm_runtime_suspended(dev)) 5221 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5222 return 0; 5223 } 5224 5225 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5226 bool async) 5227 { 5228 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5229 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5230 async); 5231 } 5232 5233 static int ata_port_pm_resume(struct device *dev) 5234 { 5235 if (!pm_runtime_suspended(dev)) 5236 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5237 return 0; 5238 } 5239 5240 /* 5241 * For ODDs, the upper layer will poll for media change every few seconds, 5242 * which will make it enter and leave suspend state every few seconds. And 5243 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5244 * is very little and the ODD may malfunction after constantly being reset. 5245 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5246 * ODD is attached to the port. 5247 */ 5248 static int ata_port_runtime_idle(struct device *dev) 5249 { 5250 struct ata_port *ap = to_ata_port(dev); 5251 struct ata_link *link; 5252 struct ata_device *adev; 5253 5254 ata_for_each_link(link, ap, HOST_FIRST) { 5255 ata_for_each_dev(adev, link, ENABLED) 5256 if (adev->class == ATA_DEV_ATAPI && 5257 !zpodd_dev_enabled(adev)) 5258 return -EBUSY; 5259 } 5260 5261 return 0; 5262 } 5263 5264 static int ata_port_runtime_suspend(struct device *dev) 5265 { 5266 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5267 return 0; 5268 } 5269 5270 static int ata_port_runtime_resume(struct device *dev) 5271 { 5272 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5273 return 0; 5274 } 5275 5276 static const struct dev_pm_ops ata_port_pm_ops = { 5277 .suspend = ata_port_pm_suspend, 5278 .resume = ata_port_pm_resume, 5279 .freeze = ata_port_pm_freeze, 5280 .thaw = ata_port_pm_resume, 5281 .poweroff = ata_port_pm_poweroff, 5282 .restore = ata_port_pm_resume, 5283 5284 .runtime_suspend = ata_port_runtime_suspend, 5285 .runtime_resume = ata_port_runtime_resume, 5286 .runtime_idle = ata_port_runtime_idle, 5287 }; 5288 5289 /* sas ports don't participate in pm runtime management of ata_ports, 5290 * and need to resume ata devices at the domain level, not the per-port 5291 * level. sas suspend/resume is async to allow parallel port recovery 5292 * since sas has multiple ata_port instances per Scsi_Host. 5293 */ 5294 void ata_sas_port_suspend(struct ata_port *ap) 5295 { 5296 ata_port_suspend(ap, PMSG_SUSPEND, true); 5297 } 5298 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5299 5300 void ata_sas_port_resume(struct ata_port *ap) 5301 { 5302 ata_port_resume(ap, PMSG_RESUME, true); 5303 } 5304 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5305 5306 /** 5307 * ata_host_suspend - suspend host 5308 * @host: host to suspend 5309 * @mesg: PM message 5310 * 5311 * Suspend @host. Actual operation is performed by port suspend. 5312 */ 5313 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5314 { 5315 host->dev->power.power_state = mesg; 5316 } 5317 EXPORT_SYMBOL_GPL(ata_host_suspend); 5318 5319 /** 5320 * ata_host_resume - resume host 5321 * @host: host to resume 5322 * 5323 * Resume @host. Actual operation is performed by port resume. 5324 */ 5325 void ata_host_resume(struct ata_host *host) 5326 { 5327 host->dev->power.power_state = PMSG_ON; 5328 } 5329 EXPORT_SYMBOL_GPL(ata_host_resume); 5330 #endif 5331 5332 const struct device_type ata_port_type = { 5333 .name = ATA_PORT_TYPE_NAME, 5334 #ifdef CONFIG_PM 5335 .pm = &ata_port_pm_ops, 5336 #endif 5337 }; 5338 5339 /** 5340 * ata_dev_init - Initialize an ata_device structure 5341 * @dev: Device structure to initialize 5342 * 5343 * Initialize @dev in preparation for probing. 5344 * 5345 * LOCKING: 5346 * Inherited from caller. 5347 */ 5348 void ata_dev_init(struct ata_device *dev) 5349 { 5350 struct ata_link *link = ata_dev_phys_link(dev); 5351 struct ata_port *ap = link->ap; 5352 unsigned long flags; 5353 5354 /* SATA spd limit is bound to the attached device, reset together */ 5355 link->sata_spd_limit = link->hw_sata_spd_limit; 5356 link->sata_spd = 0; 5357 5358 /* High bits of dev->flags are used to record warm plug 5359 * requests which occur asynchronously. Synchronize using 5360 * host lock. 5361 */ 5362 spin_lock_irqsave(ap->lock, flags); 5363 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5364 dev->horkage = 0; 5365 spin_unlock_irqrestore(ap->lock, flags); 5366 5367 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5368 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5369 dev->pio_mask = UINT_MAX; 5370 dev->mwdma_mask = UINT_MAX; 5371 dev->udma_mask = UINT_MAX; 5372 } 5373 5374 /** 5375 * ata_link_init - Initialize an ata_link structure 5376 * @ap: ATA port link is attached to 5377 * @link: Link structure to initialize 5378 * @pmp: Port multiplier port number 5379 * 5380 * Initialize @link. 5381 * 5382 * LOCKING: 5383 * Kernel thread context (may sleep) 5384 */ 5385 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5386 { 5387 int i; 5388 5389 /* clear everything except for devices */ 5390 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5391 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5392 5393 link->ap = ap; 5394 link->pmp = pmp; 5395 link->active_tag = ATA_TAG_POISON; 5396 link->hw_sata_spd_limit = UINT_MAX; 5397 5398 /* can't use iterator, ap isn't initialized yet */ 5399 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5400 struct ata_device *dev = &link->device[i]; 5401 5402 dev->link = link; 5403 dev->devno = dev - link->device; 5404 #ifdef CONFIG_ATA_ACPI 5405 dev->gtf_filter = ata_acpi_gtf_filter; 5406 #endif 5407 ata_dev_init(dev); 5408 } 5409 } 5410 5411 /** 5412 * sata_link_init_spd - Initialize link->sata_spd_limit 5413 * @link: Link to configure sata_spd_limit for 5414 * 5415 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5416 * configured value. 5417 * 5418 * LOCKING: 5419 * Kernel thread context (may sleep). 5420 * 5421 * RETURNS: 5422 * 0 on success, -errno on failure. 5423 */ 5424 int sata_link_init_spd(struct ata_link *link) 5425 { 5426 u8 spd; 5427 int rc; 5428 5429 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5430 if (rc) 5431 return rc; 5432 5433 spd = (link->saved_scontrol >> 4) & 0xf; 5434 if (spd) 5435 link->hw_sata_spd_limit &= (1 << spd) - 1; 5436 5437 ata_force_link_limits(link); 5438 5439 link->sata_spd_limit = link->hw_sata_spd_limit; 5440 5441 return 0; 5442 } 5443 5444 /** 5445 * ata_port_alloc - allocate and initialize basic ATA port resources 5446 * @host: ATA host this allocated port belongs to 5447 * 5448 * Allocate and initialize basic ATA port resources. 5449 * 5450 * RETURNS: 5451 * Allocate ATA port on success, NULL on failure. 5452 * 5453 * LOCKING: 5454 * Inherited from calling layer (may sleep). 5455 */ 5456 struct ata_port *ata_port_alloc(struct ata_host *host) 5457 { 5458 struct ata_port *ap; 5459 5460 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5461 if (!ap) 5462 return NULL; 5463 5464 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5465 ap->lock = &host->lock; 5466 ap->print_id = -1; 5467 ap->local_port_no = -1; 5468 ap->host = host; 5469 ap->dev = host->dev; 5470 5471 mutex_init(&ap->scsi_scan_mutex); 5472 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5473 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5474 INIT_LIST_HEAD(&ap->eh_done_q); 5475 init_waitqueue_head(&ap->eh_wait_q); 5476 init_completion(&ap->park_req_pending); 5477 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5478 TIMER_DEFERRABLE); 5479 5480 ap->cbl = ATA_CBL_NONE; 5481 5482 ata_link_init(ap, &ap->link, 0); 5483 5484 #ifdef ATA_IRQ_TRAP 5485 ap->stats.unhandled_irq = 1; 5486 ap->stats.idle_irq = 1; 5487 #endif 5488 ata_sff_port_init(ap); 5489 5490 return ap; 5491 } 5492 5493 static void ata_devres_release(struct device *gendev, void *res) 5494 { 5495 struct ata_host *host = dev_get_drvdata(gendev); 5496 int i; 5497 5498 for (i = 0; i < host->n_ports; i++) { 5499 struct ata_port *ap = host->ports[i]; 5500 5501 if (!ap) 5502 continue; 5503 5504 if (ap->scsi_host) 5505 scsi_host_put(ap->scsi_host); 5506 5507 } 5508 5509 dev_set_drvdata(gendev, NULL); 5510 ata_host_put(host); 5511 } 5512 5513 static void ata_host_release(struct kref *kref) 5514 { 5515 struct ata_host *host = container_of(kref, struct ata_host, kref); 5516 int i; 5517 5518 for (i = 0; i < host->n_ports; i++) { 5519 struct ata_port *ap = host->ports[i]; 5520 5521 kfree(ap->pmp_link); 5522 kfree(ap->slave_link); 5523 kfree(ap->ncq_sense_buf); 5524 kfree(ap); 5525 host->ports[i] = NULL; 5526 } 5527 kfree(host); 5528 } 5529 5530 void ata_host_get(struct ata_host *host) 5531 { 5532 kref_get(&host->kref); 5533 } 5534 5535 void ata_host_put(struct ata_host *host) 5536 { 5537 kref_put(&host->kref, ata_host_release); 5538 } 5539 EXPORT_SYMBOL_GPL(ata_host_put); 5540 5541 /** 5542 * ata_host_alloc - allocate and init basic ATA host resources 5543 * @dev: generic device this host is associated with 5544 * @max_ports: maximum number of ATA ports associated with this host 5545 * 5546 * Allocate and initialize basic ATA host resources. LLD calls 5547 * this function to allocate a host, initializes it fully and 5548 * attaches it using ata_host_register(). 5549 * 5550 * @max_ports ports are allocated and host->n_ports is 5551 * initialized to @max_ports. The caller is allowed to decrease 5552 * host->n_ports before calling ata_host_register(). The unused 5553 * ports will be automatically freed on registration. 5554 * 5555 * RETURNS: 5556 * Allocate ATA host on success, NULL on failure. 5557 * 5558 * LOCKING: 5559 * Inherited from calling layer (may sleep). 5560 */ 5561 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5562 { 5563 struct ata_host *host; 5564 size_t sz; 5565 int i; 5566 void *dr; 5567 5568 /* alloc a container for our list of ATA ports (buses) */ 5569 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5570 host = kzalloc(sz, GFP_KERNEL); 5571 if (!host) 5572 return NULL; 5573 5574 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5575 goto err_free; 5576 5577 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5578 if (!dr) 5579 goto err_out; 5580 5581 devres_add(dev, dr); 5582 dev_set_drvdata(dev, host); 5583 5584 spin_lock_init(&host->lock); 5585 mutex_init(&host->eh_mutex); 5586 host->dev = dev; 5587 host->n_ports = max_ports; 5588 kref_init(&host->kref); 5589 5590 /* allocate ports bound to this host */ 5591 for (i = 0; i < max_ports; i++) { 5592 struct ata_port *ap; 5593 5594 ap = ata_port_alloc(host); 5595 if (!ap) 5596 goto err_out; 5597 5598 ap->port_no = i; 5599 host->ports[i] = ap; 5600 } 5601 5602 devres_remove_group(dev, NULL); 5603 return host; 5604 5605 err_out: 5606 devres_release_group(dev, NULL); 5607 err_free: 5608 kfree(host); 5609 return NULL; 5610 } 5611 EXPORT_SYMBOL_GPL(ata_host_alloc); 5612 5613 /** 5614 * ata_host_alloc_pinfo - alloc host and init with port_info array 5615 * @dev: generic device this host is associated with 5616 * @ppi: array of ATA port_info to initialize host with 5617 * @n_ports: number of ATA ports attached to this host 5618 * 5619 * Allocate ATA host and initialize with info from @ppi. If NULL 5620 * terminated, @ppi may contain fewer entries than @n_ports. The 5621 * last entry will be used for the remaining ports. 5622 * 5623 * RETURNS: 5624 * Allocate ATA host on success, NULL on failure. 5625 * 5626 * LOCKING: 5627 * Inherited from calling layer (may sleep). 5628 */ 5629 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5630 const struct ata_port_info * const * ppi, 5631 int n_ports) 5632 { 5633 const struct ata_port_info *pi = &ata_dummy_port_info; 5634 struct ata_host *host; 5635 int i, j; 5636 5637 host = ata_host_alloc(dev, n_ports); 5638 if (!host) 5639 return NULL; 5640 5641 for (i = 0, j = 0; i < host->n_ports; i++) { 5642 struct ata_port *ap = host->ports[i]; 5643 5644 if (ppi[j]) 5645 pi = ppi[j++]; 5646 5647 ap->pio_mask = pi->pio_mask; 5648 ap->mwdma_mask = pi->mwdma_mask; 5649 ap->udma_mask = pi->udma_mask; 5650 ap->flags |= pi->flags; 5651 ap->link.flags |= pi->link_flags; 5652 ap->ops = pi->port_ops; 5653 5654 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5655 host->ops = pi->port_ops; 5656 } 5657 5658 return host; 5659 } 5660 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5661 5662 static void ata_host_stop(struct device *gendev, void *res) 5663 { 5664 struct ata_host *host = dev_get_drvdata(gendev); 5665 int i; 5666 5667 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5668 5669 for (i = 0; i < host->n_ports; i++) { 5670 struct ata_port *ap = host->ports[i]; 5671 5672 if (ap->ops->port_stop) 5673 ap->ops->port_stop(ap); 5674 } 5675 5676 if (host->ops->host_stop) 5677 host->ops->host_stop(host); 5678 } 5679 5680 /** 5681 * ata_finalize_port_ops - finalize ata_port_operations 5682 * @ops: ata_port_operations to finalize 5683 * 5684 * An ata_port_operations can inherit from another ops and that 5685 * ops can again inherit from another. This can go on as many 5686 * times as necessary as long as there is no loop in the 5687 * inheritance chain. 5688 * 5689 * Ops tables are finalized when the host is started. NULL or 5690 * unspecified entries are inherited from the closet ancestor 5691 * which has the method and the entry is populated with it. 5692 * After finalization, the ops table directly points to all the 5693 * methods and ->inherits is no longer necessary and cleared. 5694 * 5695 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5696 * 5697 * LOCKING: 5698 * None. 5699 */ 5700 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5701 { 5702 static DEFINE_SPINLOCK(lock); 5703 const struct ata_port_operations *cur; 5704 void **begin = (void **)ops; 5705 void **end = (void **)&ops->inherits; 5706 void **pp; 5707 5708 if (!ops || !ops->inherits) 5709 return; 5710 5711 spin_lock(&lock); 5712 5713 for (cur = ops->inherits; cur; cur = cur->inherits) { 5714 void **inherit = (void **)cur; 5715 5716 for (pp = begin; pp < end; pp++, inherit++) 5717 if (!*pp) 5718 *pp = *inherit; 5719 } 5720 5721 for (pp = begin; pp < end; pp++) 5722 if (IS_ERR(*pp)) 5723 *pp = NULL; 5724 5725 ops->inherits = NULL; 5726 5727 spin_unlock(&lock); 5728 } 5729 5730 /** 5731 * ata_host_start - start and freeze ports of an ATA host 5732 * @host: ATA host to start ports for 5733 * 5734 * Start and then freeze ports of @host. Started status is 5735 * recorded in host->flags, so this function can be called 5736 * multiple times. Ports are guaranteed to get started only 5737 * once. If host->ops is not initialized yet, it is set to the 5738 * first non-dummy port ops. 5739 * 5740 * LOCKING: 5741 * Inherited from calling layer (may sleep). 5742 * 5743 * RETURNS: 5744 * 0 if all ports are started successfully, -errno otherwise. 5745 */ 5746 int ata_host_start(struct ata_host *host) 5747 { 5748 int have_stop = 0; 5749 void *start_dr = NULL; 5750 int i, rc; 5751 5752 if (host->flags & ATA_HOST_STARTED) 5753 return 0; 5754 5755 ata_finalize_port_ops(host->ops); 5756 5757 for (i = 0; i < host->n_ports; i++) { 5758 struct ata_port *ap = host->ports[i]; 5759 5760 ata_finalize_port_ops(ap->ops); 5761 5762 if (!host->ops && !ata_port_is_dummy(ap)) 5763 host->ops = ap->ops; 5764 5765 if (ap->ops->port_stop) 5766 have_stop = 1; 5767 } 5768 5769 if (host->ops && host->ops->host_stop) 5770 have_stop = 1; 5771 5772 if (have_stop) { 5773 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5774 if (!start_dr) 5775 return -ENOMEM; 5776 } 5777 5778 for (i = 0; i < host->n_ports; i++) { 5779 struct ata_port *ap = host->ports[i]; 5780 5781 if (ap->ops->port_start) { 5782 rc = ap->ops->port_start(ap); 5783 if (rc) { 5784 if (rc != -ENODEV) 5785 dev_err(host->dev, 5786 "failed to start port %d (errno=%d)\n", 5787 i, rc); 5788 goto err_out; 5789 } 5790 } 5791 ata_eh_freeze_port(ap); 5792 } 5793 5794 if (start_dr) 5795 devres_add(host->dev, start_dr); 5796 host->flags |= ATA_HOST_STARTED; 5797 return 0; 5798 5799 err_out: 5800 while (--i >= 0) { 5801 struct ata_port *ap = host->ports[i]; 5802 5803 if (ap->ops->port_stop) 5804 ap->ops->port_stop(ap); 5805 } 5806 devres_free(start_dr); 5807 return rc; 5808 } 5809 EXPORT_SYMBOL_GPL(ata_host_start); 5810 5811 /** 5812 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5813 * @host: host to initialize 5814 * @dev: device host is attached to 5815 * @ops: port_ops 5816 * 5817 */ 5818 void ata_host_init(struct ata_host *host, struct device *dev, 5819 struct ata_port_operations *ops) 5820 { 5821 spin_lock_init(&host->lock); 5822 mutex_init(&host->eh_mutex); 5823 host->n_tags = ATA_MAX_QUEUE; 5824 host->dev = dev; 5825 host->ops = ops; 5826 kref_init(&host->kref); 5827 } 5828 EXPORT_SYMBOL_GPL(ata_host_init); 5829 5830 void ata_port_probe(struct ata_port *ap) 5831 { 5832 struct ata_eh_info *ehi = &ap->link.eh_info; 5833 unsigned long flags; 5834 5835 /* kick EH for boot probing */ 5836 spin_lock_irqsave(ap->lock, flags); 5837 5838 ehi->probe_mask |= ATA_ALL_DEVICES; 5839 ehi->action |= ATA_EH_RESET; 5840 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5841 5842 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5843 ap->pflags |= ATA_PFLAG_LOADING; 5844 ata_port_schedule_eh(ap); 5845 5846 spin_unlock_irqrestore(ap->lock, flags); 5847 } 5848 EXPORT_SYMBOL_GPL(ata_port_probe); 5849 5850 static void async_port_probe(void *data, async_cookie_t cookie) 5851 { 5852 struct ata_port *ap = data; 5853 5854 /* 5855 * If we're not allowed to scan this host in parallel, 5856 * we need to wait until all previous scans have completed 5857 * before going further. 5858 * Jeff Garzik says this is only within a controller, so we 5859 * don't need to wait for port 0, only for later ports. 5860 */ 5861 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5862 async_synchronize_cookie(cookie); 5863 5864 ata_port_probe(ap); 5865 ata_port_wait_eh(ap); 5866 5867 /* in order to keep device order, we need to synchronize at this point */ 5868 async_synchronize_cookie(cookie); 5869 5870 ata_scsi_scan_host(ap, 1); 5871 } 5872 5873 /** 5874 * ata_host_register - register initialized ATA host 5875 * @host: ATA host to register 5876 * @sht: template for SCSI host 5877 * 5878 * Register initialized ATA host. @host is allocated using 5879 * ata_host_alloc() and fully initialized by LLD. This function 5880 * starts ports, registers @host with ATA and SCSI layers and 5881 * probe registered devices. 5882 * 5883 * LOCKING: 5884 * Inherited from calling layer (may sleep). 5885 * 5886 * RETURNS: 5887 * 0 on success, -errno otherwise. 5888 */ 5889 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5890 { 5891 int i, rc; 5892 5893 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5894 5895 /* host must have been started */ 5896 if (!(host->flags & ATA_HOST_STARTED)) { 5897 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5898 WARN_ON(1); 5899 return -EINVAL; 5900 } 5901 5902 /* Blow away unused ports. This happens when LLD can't 5903 * determine the exact number of ports to allocate at 5904 * allocation time. 5905 */ 5906 for (i = host->n_ports; host->ports[i]; i++) 5907 kfree(host->ports[i]); 5908 5909 /* give ports names and add SCSI hosts */ 5910 for (i = 0; i < host->n_ports; i++) { 5911 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5912 host->ports[i]->local_port_no = i + 1; 5913 } 5914 5915 /* Create associated sysfs transport objects */ 5916 for (i = 0; i < host->n_ports; i++) { 5917 rc = ata_tport_add(host->dev,host->ports[i]); 5918 if (rc) { 5919 goto err_tadd; 5920 } 5921 } 5922 5923 rc = ata_scsi_add_hosts(host, sht); 5924 if (rc) 5925 goto err_tadd; 5926 5927 /* set cable, sata_spd_limit and report */ 5928 for (i = 0; i < host->n_ports; i++) { 5929 struct ata_port *ap = host->ports[i]; 5930 unsigned int xfer_mask; 5931 5932 /* set SATA cable type if still unset */ 5933 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5934 ap->cbl = ATA_CBL_SATA; 5935 5936 /* init sata_spd_limit to the current value */ 5937 sata_link_init_spd(&ap->link); 5938 if (ap->slave_link) 5939 sata_link_init_spd(ap->slave_link); 5940 5941 /* print per-port info to dmesg */ 5942 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5943 ap->udma_mask); 5944 5945 if (!ata_port_is_dummy(ap)) { 5946 ata_port_info(ap, "%cATA max %s %s\n", 5947 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5948 ata_mode_string(xfer_mask), 5949 ap->link.eh_info.desc); 5950 ata_ehi_clear_desc(&ap->link.eh_info); 5951 } else 5952 ata_port_info(ap, "DUMMY\n"); 5953 } 5954 5955 /* perform each probe asynchronously */ 5956 for (i = 0; i < host->n_ports; i++) { 5957 struct ata_port *ap = host->ports[i]; 5958 ap->cookie = async_schedule(async_port_probe, ap); 5959 } 5960 5961 return 0; 5962 5963 err_tadd: 5964 while (--i >= 0) { 5965 ata_tport_delete(host->ports[i]); 5966 } 5967 return rc; 5968 5969 } 5970 EXPORT_SYMBOL_GPL(ata_host_register); 5971 5972 /** 5973 * ata_host_activate - start host, request IRQ and register it 5974 * @host: target ATA host 5975 * @irq: IRQ to request 5976 * @irq_handler: irq_handler used when requesting IRQ 5977 * @irq_flags: irq_flags used when requesting IRQ 5978 * @sht: scsi_host_template to use when registering the host 5979 * 5980 * After allocating an ATA host and initializing it, most libata 5981 * LLDs perform three steps to activate the host - start host, 5982 * request IRQ and register it. This helper takes necessary 5983 * arguments and performs the three steps in one go. 5984 * 5985 * An invalid IRQ skips the IRQ registration and expects the host to 5986 * have set polling mode on the port. In this case, @irq_handler 5987 * should be NULL. 5988 * 5989 * LOCKING: 5990 * Inherited from calling layer (may sleep). 5991 * 5992 * RETURNS: 5993 * 0 on success, -errno otherwise. 5994 */ 5995 int ata_host_activate(struct ata_host *host, int irq, 5996 irq_handler_t irq_handler, unsigned long irq_flags, 5997 const struct scsi_host_template *sht) 5998 { 5999 int i, rc; 6000 char *irq_desc; 6001 6002 rc = ata_host_start(host); 6003 if (rc) 6004 return rc; 6005 6006 /* Special case for polling mode */ 6007 if (!irq) { 6008 WARN_ON(irq_handler); 6009 return ata_host_register(host, sht); 6010 } 6011 6012 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6013 dev_driver_string(host->dev), 6014 dev_name(host->dev)); 6015 if (!irq_desc) 6016 return -ENOMEM; 6017 6018 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6019 irq_desc, host); 6020 if (rc) 6021 return rc; 6022 6023 for (i = 0; i < host->n_ports; i++) 6024 ata_port_desc_misc(host->ports[i], irq); 6025 6026 rc = ata_host_register(host, sht); 6027 /* if failed, just free the IRQ and leave ports alone */ 6028 if (rc) 6029 devm_free_irq(host->dev, irq, host); 6030 6031 return rc; 6032 } 6033 EXPORT_SYMBOL_GPL(ata_host_activate); 6034 6035 /** 6036 * ata_port_detach - Detach ATA port in preparation of device removal 6037 * @ap: ATA port to be detached 6038 * 6039 * Detach all ATA devices and the associated SCSI devices of @ap; 6040 * then, remove the associated SCSI host. @ap is guaranteed to 6041 * be quiescent on return from this function. 6042 * 6043 * LOCKING: 6044 * Kernel thread context (may sleep). 6045 */ 6046 static void ata_port_detach(struct ata_port *ap) 6047 { 6048 unsigned long flags; 6049 struct ata_link *link; 6050 struct ata_device *dev; 6051 6052 /* Ensure ata_port probe has completed */ 6053 async_synchronize_cookie(ap->cookie + 1); 6054 6055 /* Wait for any ongoing EH */ 6056 ata_port_wait_eh(ap); 6057 6058 mutex_lock(&ap->scsi_scan_mutex); 6059 spin_lock_irqsave(ap->lock, flags); 6060 6061 /* Remove scsi devices */ 6062 ata_for_each_link(link, ap, HOST_FIRST) { 6063 ata_for_each_dev(dev, link, ALL) { 6064 if (dev->sdev) { 6065 spin_unlock_irqrestore(ap->lock, flags); 6066 scsi_remove_device(dev->sdev); 6067 spin_lock_irqsave(ap->lock, flags); 6068 dev->sdev = NULL; 6069 } 6070 } 6071 } 6072 6073 /* Tell EH to disable all devices */ 6074 ap->pflags |= ATA_PFLAG_UNLOADING; 6075 ata_port_schedule_eh(ap); 6076 6077 spin_unlock_irqrestore(ap->lock, flags); 6078 mutex_unlock(&ap->scsi_scan_mutex); 6079 6080 /* wait till EH commits suicide */ 6081 ata_port_wait_eh(ap); 6082 6083 /* it better be dead now */ 6084 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6085 6086 cancel_delayed_work_sync(&ap->hotplug_task); 6087 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6088 6089 /* clean up zpodd on port removal */ 6090 ata_for_each_link(link, ap, HOST_FIRST) { 6091 ata_for_each_dev(dev, link, ALL) { 6092 if (zpodd_dev_enabled(dev)) 6093 zpodd_exit(dev); 6094 } 6095 } 6096 if (ap->pmp_link) { 6097 int i; 6098 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6099 ata_tlink_delete(&ap->pmp_link[i]); 6100 } 6101 /* remove the associated SCSI host */ 6102 scsi_remove_host(ap->scsi_host); 6103 ata_tport_delete(ap); 6104 } 6105 6106 /** 6107 * ata_host_detach - Detach all ports of an ATA host 6108 * @host: Host to detach 6109 * 6110 * Detach all ports of @host. 6111 * 6112 * LOCKING: 6113 * Kernel thread context (may sleep). 6114 */ 6115 void ata_host_detach(struct ata_host *host) 6116 { 6117 int i; 6118 6119 for (i = 0; i < host->n_ports; i++) 6120 ata_port_detach(host->ports[i]); 6121 6122 /* the host is dead now, dissociate ACPI */ 6123 ata_acpi_dissociate(host); 6124 } 6125 EXPORT_SYMBOL_GPL(ata_host_detach); 6126 6127 #ifdef CONFIG_PCI 6128 6129 /** 6130 * ata_pci_remove_one - PCI layer callback for device removal 6131 * @pdev: PCI device that was removed 6132 * 6133 * PCI layer indicates to libata via this hook that hot-unplug or 6134 * module unload event has occurred. Detach all ports. Resource 6135 * release is handled via devres. 6136 * 6137 * LOCKING: 6138 * Inherited from PCI layer (may sleep). 6139 */ 6140 void ata_pci_remove_one(struct pci_dev *pdev) 6141 { 6142 struct ata_host *host = pci_get_drvdata(pdev); 6143 6144 ata_host_detach(host); 6145 } 6146 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6147 6148 void ata_pci_shutdown_one(struct pci_dev *pdev) 6149 { 6150 struct ata_host *host = pci_get_drvdata(pdev); 6151 int i; 6152 6153 for (i = 0; i < host->n_ports; i++) { 6154 struct ata_port *ap = host->ports[i]; 6155 6156 ap->pflags |= ATA_PFLAG_FROZEN; 6157 6158 /* Disable port interrupts */ 6159 if (ap->ops->freeze) 6160 ap->ops->freeze(ap); 6161 6162 /* Stop the port DMA engines */ 6163 if (ap->ops->port_stop) 6164 ap->ops->port_stop(ap); 6165 } 6166 } 6167 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6168 6169 /* move to PCI subsystem */ 6170 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6171 { 6172 unsigned long tmp = 0; 6173 6174 switch (bits->width) { 6175 case 1: { 6176 u8 tmp8 = 0; 6177 pci_read_config_byte(pdev, bits->reg, &tmp8); 6178 tmp = tmp8; 6179 break; 6180 } 6181 case 2: { 6182 u16 tmp16 = 0; 6183 pci_read_config_word(pdev, bits->reg, &tmp16); 6184 tmp = tmp16; 6185 break; 6186 } 6187 case 4: { 6188 u32 tmp32 = 0; 6189 pci_read_config_dword(pdev, bits->reg, &tmp32); 6190 tmp = tmp32; 6191 break; 6192 } 6193 6194 default: 6195 return -EINVAL; 6196 } 6197 6198 tmp &= bits->mask; 6199 6200 return (tmp == bits->val) ? 1 : 0; 6201 } 6202 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6203 6204 #ifdef CONFIG_PM 6205 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6206 { 6207 pci_save_state(pdev); 6208 pci_disable_device(pdev); 6209 6210 if (mesg.event & PM_EVENT_SLEEP) 6211 pci_set_power_state(pdev, PCI_D3hot); 6212 } 6213 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6214 6215 int ata_pci_device_do_resume(struct pci_dev *pdev) 6216 { 6217 int rc; 6218 6219 pci_set_power_state(pdev, PCI_D0); 6220 pci_restore_state(pdev); 6221 6222 rc = pcim_enable_device(pdev); 6223 if (rc) { 6224 dev_err(&pdev->dev, 6225 "failed to enable device after resume (%d)\n", rc); 6226 return rc; 6227 } 6228 6229 pci_set_master(pdev); 6230 return 0; 6231 } 6232 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6233 6234 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6235 { 6236 struct ata_host *host = pci_get_drvdata(pdev); 6237 6238 ata_host_suspend(host, mesg); 6239 6240 ata_pci_device_do_suspend(pdev, mesg); 6241 6242 return 0; 6243 } 6244 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6245 6246 int ata_pci_device_resume(struct pci_dev *pdev) 6247 { 6248 struct ata_host *host = pci_get_drvdata(pdev); 6249 int rc; 6250 6251 rc = ata_pci_device_do_resume(pdev); 6252 if (rc == 0) 6253 ata_host_resume(host); 6254 return rc; 6255 } 6256 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6257 #endif /* CONFIG_PM */ 6258 #endif /* CONFIG_PCI */ 6259 6260 /** 6261 * ata_platform_remove_one - Platform layer callback for device removal 6262 * @pdev: Platform device that was removed 6263 * 6264 * Platform layer indicates to libata via this hook that hot-unplug or 6265 * module unload event has occurred. Detach all ports. Resource 6266 * release is handled via devres. 6267 * 6268 * LOCKING: 6269 * Inherited from platform layer (may sleep). 6270 */ 6271 void ata_platform_remove_one(struct platform_device *pdev) 6272 { 6273 struct ata_host *host = platform_get_drvdata(pdev); 6274 6275 ata_host_detach(host); 6276 } 6277 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6278 6279 #ifdef CONFIG_ATA_FORCE 6280 6281 #define force_cbl(name, flag) \ 6282 { #name, .cbl = (flag) } 6283 6284 #define force_spd_limit(spd, val) \ 6285 { #spd, .spd_limit = (val) } 6286 6287 #define force_xfer(mode, shift) \ 6288 { #mode, .xfer_mask = (1UL << (shift)) } 6289 6290 #define force_lflag_on(name, flags) \ 6291 { #name, .lflags_on = (flags) } 6292 6293 #define force_lflag_onoff(name, flags) \ 6294 { "no" #name, .lflags_on = (flags) }, \ 6295 { #name, .lflags_off = (flags) } 6296 6297 #define force_horkage_on(name, flag) \ 6298 { #name, .horkage_on = (flag) } 6299 6300 #define force_horkage_onoff(name, flag) \ 6301 { "no" #name, .horkage_on = (flag) }, \ 6302 { #name, .horkage_off = (flag) } 6303 6304 static const struct ata_force_param force_tbl[] __initconst = { 6305 force_cbl(40c, ATA_CBL_PATA40), 6306 force_cbl(80c, ATA_CBL_PATA80), 6307 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6308 force_cbl(unk, ATA_CBL_PATA_UNK), 6309 force_cbl(ign, ATA_CBL_PATA_IGN), 6310 force_cbl(sata, ATA_CBL_SATA), 6311 6312 force_spd_limit(1.5Gbps, 1), 6313 force_spd_limit(3.0Gbps, 2), 6314 6315 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6316 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6317 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6318 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6319 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6320 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6321 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6322 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6323 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6324 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6325 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6326 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6327 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6328 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6329 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6330 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6331 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6332 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6333 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6334 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6335 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6336 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6337 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6338 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6339 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6340 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6341 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6342 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6343 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6344 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6345 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6346 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6347 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6348 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6349 6350 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6351 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6352 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6353 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6354 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6355 6356 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6357 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6358 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6359 6360 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6361 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6362 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6363 6364 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6365 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6366 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6367 6368 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6369 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6370 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6371 6372 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6373 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6374 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6375 6376 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6377 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6378 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6379 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6380 6381 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6382 }; 6383 6384 static int __init ata_parse_force_one(char **cur, 6385 struct ata_force_ent *force_ent, 6386 const char **reason) 6387 { 6388 char *start = *cur, *p = *cur; 6389 char *id, *val, *endp; 6390 const struct ata_force_param *match_fp = NULL; 6391 int nr_matches = 0, i; 6392 6393 /* find where this param ends and update *cur */ 6394 while (*p != '\0' && *p != ',') 6395 p++; 6396 6397 if (*p == '\0') 6398 *cur = p; 6399 else 6400 *cur = p + 1; 6401 6402 *p = '\0'; 6403 6404 /* parse */ 6405 p = strchr(start, ':'); 6406 if (!p) { 6407 val = strstrip(start); 6408 goto parse_val; 6409 } 6410 *p = '\0'; 6411 6412 id = strstrip(start); 6413 val = strstrip(p + 1); 6414 6415 /* parse id */ 6416 p = strchr(id, '.'); 6417 if (p) { 6418 *p++ = '\0'; 6419 force_ent->device = simple_strtoul(p, &endp, 10); 6420 if (p == endp || *endp != '\0') { 6421 *reason = "invalid device"; 6422 return -EINVAL; 6423 } 6424 } 6425 6426 force_ent->port = simple_strtoul(id, &endp, 10); 6427 if (id == endp || *endp != '\0') { 6428 *reason = "invalid port/link"; 6429 return -EINVAL; 6430 } 6431 6432 parse_val: 6433 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6434 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6435 const struct ata_force_param *fp = &force_tbl[i]; 6436 6437 if (strncasecmp(val, fp->name, strlen(val))) 6438 continue; 6439 6440 nr_matches++; 6441 match_fp = fp; 6442 6443 if (strcasecmp(val, fp->name) == 0) { 6444 nr_matches = 1; 6445 break; 6446 } 6447 } 6448 6449 if (!nr_matches) { 6450 *reason = "unknown value"; 6451 return -EINVAL; 6452 } 6453 if (nr_matches > 1) { 6454 *reason = "ambiguous value"; 6455 return -EINVAL; 6456 } 6457 6458 force_ent->param = *match_fp; 6459 6460 return 0; 6461 } 6462 6463 static void __init ata_parse_force_param(void) 6464 { 6465 int idx = 0, size = 1; 6466 int last_port = -1, last_device = -1; 6467 char *p, *cur, *next; 6468 6469 /* Calculate maximum number of params and allocate ata_force_tbl */ 6470 for (p = ata_force_param_buf; *p; p++) 6471 if (*p == ',') 6472 size++; 6473 6474 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6475 if (!ata_force_tbl) { 6476 printk(KERN_WARNING "ata: failed to extend force table, " 6477 "libata.force ignored\n"); 6478 return; 6479 } 6480 6481 /* parse and populate the table */ 6482 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6483 const char *reason = ""; 6484 struct ata_force_ent te = { .port = -1, .device = -1 }; 6485 6486 next = cur; 6487 if (ata_parse_force_one(&next, &te, &reason)) { 6488 printk(KERN_WARNING "ata: failed to parse force " 6489 "parameter \"%s\" (%s)\n", 6490 cur, reason); 6491 continue; 6492 } 6493 6494 if (te.port == -1) { 6495 te.port = last_port; 6496 te.device = last_device; 6497 } 6498 6499 ata_force_tbl[idx++] = te; 6500 6501 last_port = te.port; 6502 last_device = te.device; 6503 } 6504 6505 ata_force_tbl_size = idx; 6506 } 6507 6508 static void ata_free_force_param(void) 6509 { 6510 kfree(ata_force_tbl); 6511 } 6512 #else 6513 static inline void ata_parse_force_param(void) { } 6514 static inline void ata_free_force_param(void) { } 6515 #endif 6516 6517 static int __init ata_init(void) 6518 { 6519 int rc; 6520 6521 ata_parse_force_param(); 6522 6523 rc = ata_sff_init(); 6524 if (rc) { 6525 ata_free_force_param(); 6526 return rc; 6527 } 6528 6529 libata_transport_init(); 6530 ata_scsi_transport_template = ata_attach_transport(); 6531 if (!ata_scsi_transport_template) { 6532 ata_sff_exit(); 6533 rc = -ENOMEM; 6534 goto err_out; 6535 } 6536 6537 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6538 return 0; 6539 6540 err_out: 6541 return rc; 6542 } 6543 6544 static void __exit ata_exit(void) 6545 { 6546 ata_release_transport(ata_scsi_transport_template); 6547 libata_transport_exit(); 6548 ata_sff_exit(); 6549 ata_free_force_param(); 6550 } 6551 6552 subsys_initcall(ata_init); 6553 module_exit(ata_exit); 6554 6555 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6556 6557 int ata_ratelimit(void) 6558 { 6559 return __ratelimit(&ratelimit); 6560 } 6561 EXPORT_SYMBOL_GPL(ata_ratelimit); 6562 6563 /** 6564 * ata_msleep - ATA EH owner aware msleep 6565 * @ap: ATA port to attribute the sleep to 6566 * @msecs: duration to sleep in milliseconds 6567 * 6568 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6569 * ownership is released before going to sleep and reacquired 6570 * after the sleep is complete. IOW, other ports sharing the 6571 * @ap->host will be allowed to own the EH while this task is 6572 * sleeping. 6573 * 6574 * LOCKING: 6575 * Might sleep. 6576 */ 6577 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6578 { 6579 bool owns_eh = ap && ap->host->eh_owner == current; 6580 6581 if (owns_eh) 6582 ata_eh_release(ap); 6583 6584 if (msecs < 20) { 6585 unsigned long usecs = msecs * USEC_PER_MSEC; 6586 usleep_range(usecs, usecs + 50); 6587 } else { 6588 msleep(msecs); 6589 } 6590 6591 if (owns_eh) 6592 ata_eh_acquire(ap); 6593 } 6594 EXPORT_SYMBOL_GPL(ata_msleep); 6595 6596 /** 6597 * ata_wait_register - wait until register value changes 6598 * @ap: ATA port to wait register for, can be NULL 6599 * @reg: IO-mapped register 6600 * @mask: Mask to apply to read register value 6601 * @val: Wait condition 6602 * @interval: polling interval in milliseconds 6603 * @timeout: timeout in milliseconds 6604 * 6605 * Waiting for some bits of register to change is a common 6606 * operation for ATA controllers. This function reads 32bit LE 6607 * IO-mapped register @reg and tests for the following condition. 6608 * 6609 * (*@reg & mask) != val 6610 * 6611 * If the condition is met, it returns; otherwise, the process is 6612 * repeated after @interval_msec until timeout. 6613 * 6614 * LOCKING: 6615 * Kernel thread context (may sleep) 6616 * 6617 * RETURNS: 6618 * The final register value. 6619 */ 6620 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6621 unsigned int interval, unsigned int timeout) 6622 { 6623 unsigned long deadline; 6624 u32 tmp; 6625 6626 tmp = ioread32(reg); 6627 6628 /* Calculate timeout _after_ the first read to make sure 6629 * preceding writes reach the controller before starting to 6630 * eat away the timeout. 6631 */ 6632 deadline = ata_deadline(jiffies, timeout); 6633 6634 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6635 ata_msleep(ap, interval); 6636 tmp = ioread32(reg); 6637 } 6638 6639 return tmp; 6640 } 6641 EXPORT_SYMBOL_GPL(ata_wait_register); 6642 6643 /* 6644 * Dummy port_ops 6645 */ 6646 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6647 { 6648 return AC_ERR_SYSTEM; 6649 } 6650 6651 static void ata_dummy_error_handler(struct ata_port *ap) 6652 { 6653 /* truly dummy */ 6654 } 6655 6656 struct ata_port_operations ata_dummy_port_ops = { 6657 .qc_prep = ata_noop_qc_prep, 6658 .qc_issue = ata_dummy_qc_issue, 6659 .error_handler = ata_dummy_error_handler, 6660 .sched_eh = ata_std_sched_eh, 6661 .end_eh = ata_std_end_eh, 6662 }; 6663 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6664 6665 const struct ata_port_info ata_dummy_port_info = { 6666 .port_ops = &ata_dummy_port_ops, 6667 }; 6668 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6669 6670 void ata_print_version(const struct device *dev, const char *version) 6671 { 6672 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6673 } 6674 EXPORT_SYMBOL(ata_print_version); 6675 6676 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6677 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6678 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6679 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6680 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6681