xref: /linux/drivers/ata/libata-core.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 			(u32)block, track, cyl, head, sect);
769 
770 		/* Check whether the converted CHS can fit.
771 		   Cylinder: 0-65535
772 		   Head: 0-15
773 		   Sector: 1-255*/
774 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 			return -ERANGE;
776 
777 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 		tf->lbal = sect;
779 		tf->lbam = cyl;
780 		tf->lbah = cyl >> 8;
781 		tf->device |= head;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789  *	@pio_mask: pio_mask
790  *	@mwdma_mask: mwdma_mask
791  *	@udma_mask: udma_mask
792  *
793  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794  *	unsigned int xfer_mask.
795  *
796  *	LOCKING:
797  *	None.
798  *
799  *	RETURNS:
800  *	Packed xfer_mask.
801  */
802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 				unsigned long mwdma_mask,
804 				unsigned long udma_mask)
805 {
806 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811 
812 /**
813  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814  *	@xfer_mask: xfer_mask to unpack
815  *	@pio_mask: resulting pio_mask
816  *	@mwdma_mask: resulting mwdma_mask
817  *	@udma_mask: resulting udma_mask
818  *
819  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820  *	Any NULL destination masks will be ignored.
821  */
822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 	if (pio_mask)
826 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 	if (mwdma_mask)
828 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 	if (udma_mask)
830 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832 
833 static const struct ata_xfer_ent {
834 	int shift, bits;
835 	u8 base;
836 } ata_xfer_tbl[] = {
837 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 	{ -1, },
841 };
842 
843 /**
844  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845  *	@xfer_mask: xfer_mask of interest
846  *
847  *	Return matching XFER_* value for @xfer_mask.  Only the highest
848  *	bit of @xfer_mask is considered.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Matching XFER_* value, 0xff if no match found.
855  */
856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 	int highbit = fls(xfer_mask) - 1;
859 	const struct ata_xfer_ent *ent;
860 
861 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 			return ent->base + highbit - ent->shift;
864 	return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867 
868 /**
869  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870  *	@xfer_mode: XFER_* of interest
871  *
872  *	Return matching xfer_mask for @xfer_mode.
873  *
874  *	LOCKING:
875  *	None.
876  *
877  *	RETURNS:
878  *	Matching xfer_mask, 0 if no match found.
879  */
880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 	const struct ata_xfer_ent *ent;
883 
884 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 				& ~((1 << ent->shift) - 1);
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891 
892 /**
893  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894  *	@xfer_mode: XFER_* of interest
895  *
896  *	Return matching xfer_shift for @xfer_mode.
897  *
898  *	LOCKING:
899  *	None.
900  *
901  *	RETURNS:
902  *	Matching xfer_shift, -1 if no match found.
903  */
904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 	const struct ata_xfer_ent *ent;
907 
908 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 			return ent->shift;
911 	return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914 
915 /**
916  *	ata_mode_string - convert xfer_mask to string
917  *	@xfer_mask: mask of bits supported; only highest bit counts.
918  *
919  *	Determine string which represents the highest speed
920  *	(highest bit in @modemask).
921  *
922  *	LOCKING:
923  *	None.
924  *
925  *	RETURNS:
926  *	Constant C string representing highest speed listed in
927  *	@mode_mask, or the constant C string "<n/a>".
928  */
929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 	static const char * const xfer_mode_str[] = {
932 		"PIO0",
933 		"PIO1",
934 		"PIO2",
935 		"PIO3",
936 		"PIO4",
937 		"PIO5",
938 		"PIO6",
939 		"MWDMA0",
940 		"MWDMA1",
941 		"MWDMA2",
942 		"MWDMA3",
943 		"MWDMA4",
944 		"UDMA/16",
945 		"UDMA/25",
946 		"UDMA/33",
947 		"UDMA/44",
948 		"UDMA/66",
949 		"UDMA/100",
950 		"UDMA/133",
951 		"UDMA7",
952 	};
953 	int highbit;
954 
955 	highbit = fls(xfer_mask) - 1;
956 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 		return xfer_mode_str[highbit];
958 	return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961 
962 const char *sata_spd_string(unsigned int spd)
963 {
964 	static const char * const spd_str[] = {
965 		"1.5 Gbps",
966 		"3.0 Gbps",
967 		"6.0 Gbps",
968 	};
969 
970 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 		return "<unknown>";
972 	return spd_str[spd - 1];
973 }
974 
975 /**
976  *	ata_dev_classify - determine device type based on ATA-spec signature
977  *	@tf: ATA taskfile register set for device to be identified
978  *
979  *	Determine from taskfile register contents whether a device is
980  *	ATA or ATAPI, as per "Signature and persistence" section
981  *	of ATA/PI spec (volume 1, sect 5.14).
982  *
983  *	LOCKING:
984  *	None.
985  *
986  *	RETURNS:
987  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989  */
990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 	/* Apple's open source Darwin code hints that some devices only
993 	 * put a proper signature into the LBA mid/high registers,
994 	 * So, we only check those.  It's sufficient for uniqueness.
995 	 *
996 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 	 * signatures for ATA and ATAPI devices attached on SerialATA,
998 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
999 	 * spec has never mentioned about using different signatures
1000 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001 	 * Multiplier specification began to use 0x69/0x96 to identify
1002 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 	 * 0x69/0x96 shortly and described them as reserved for
1005 	 * SerialATA.
1006 	 *
1007 	 * We follow the current spec and consider that 0x69/0x96
1008 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 	 * SEMB signature.  This is worked around in
1011 	 * ata_dev_read_id().
1012 	 */
1013 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 		DPRINTK("found ATA device by sig\n");
1015 		return ATA_DEV_ATA;
1016 	}
1017 
1018 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 		DPRINTK("found ATAPI device by sig\n");
1020 		return ATA_DEV_ATAPI;
1021 	}
1022 
1023 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 		DPRINTK("found PMP device by sig\n");
1025 		return ATA_DEV_PMP;
1026 	}
1027 
1028 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 		return ATA_DEV_SEMB;
1031 	}
1032 
1033 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 		DPRINTK("found ZAC device by sig\n");
1035 		return ATA_DEV_ZAC;
1036 	}
1037 
1038 	DPRINTK("unknown device\n");
1039 	return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042 
1043 /**
1044  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1045  *	@id: IDENTIFY DEVICE results we will examine
1046  *	@s: string into which data is output
1047  *	@ofs: offset into identify device page
1048  *	@len: length of string to return. must be an even number.
1049  *
1050  *	The strings in the IDENTIFY DEVICE page are broken up into
1051  *	16-bit chunks.  Run through the string, and output each
1052  *	8-bit chunk linearly, regardless of platform.
1053  *
1054  *	LOCKING:
1055  *	caller.
1056  */
1057 
1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 		   unsigned int ofs, unsigned int len)
1060 {
1061 	unsigned int c;
1062 
1063 	BUG_ON(len & 1);
1064 
1065 	while (len > 0) {
1066 		c = id[ofs] >> 8;
1067 		*s = c;
1068 		s++;
1069 
1070 		c = id[ofs] & 0xff;
1071 		*s = c;
1072 		s++;
1073 
1074 		ofs++;
1075 		len -= 2;
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079 
1080 /**
1081  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082  *	@id: IDENTIFY DEVICE results we will examine
1083  *	@s: string into which data is output
1084  *	@ofs: offset into identify device page
1085  *	@len: length of string to return. must be an odd number.
1086  *
1087  *	This function is identical to ata_id_string except that it
1088  *	trims trailing spaces and terminates the resulting string with
1089  *	null.  @len must be actual maximum length (even number) + 1.
1090  *
1091  *	LOCKING:
1092  *	caller.
1093  */
1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 		     unsigned int ofs, unsigned int len)
1096 {
1097 	unsigned char *p;
1098 
1099 	ata_id_string(id, s, ofs, len - 1);
1100 
1101 	p = s + strnlen(s, len - 1);
1102 	while (p > s && p[-1] == ' ')
1103 		p--;
1104 	*p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107 
1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 	if (ata_id_has_lba(id)) {
1111 		if (ata_id_has_lba48(id))
1112 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 		else
1114 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 	} else {
1116 		if (ata_id_current_chs_valid(id))
1117 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 			       id[ATA_ID_CUR_SECTORS];
1119 		else
1120 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 			       id[ATA_ID_SECTORS];
1122 	}
1123 }
1124 
1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 	sectors |= (tf->lbah & 0xff) << 16;
1133 	sectors |= (tf->lbam & 0xff) << 8;
1134 	sectors |= (tf->lbal & 0xff);
1135 
1136 	return sectors;
1137 }
1138 
1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 	u64 sectors = 0;
1142 
1143 	sectors |= (tf->device & 0x0f) << 24;
1144 	sectors |= (tf->lbah & 0xff) << 16;
1145 	sectors |= (tf->lbam & 0xff) << 8;
1146 	sectors |= (tf->lbal & 0xff);
1147 
1148 	return sectors;
1149 }
1150 
1151 /**
1152  *	ata_read_native_max_address - Read native max address
1153  *	@dev: target device
1154  *	@max_sectors: out parameter for the result native max address
1155  *
1156  *	Perform an LBA48 or LBA28 native size query upon the device in
1157  *	question.
1158  *
1159  *	RETURNS:
1160  *	0 on success, -EACCES if command is aborted by the drive.
1161  *	-EIO on other errors.
1162  */
1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 	unsigned int err_mask;
1166 	struct ata_taskfile tf;
1167 	int lba48 = ata_id_has_lba48(dev->id);
1168 
1169 	ata_tf_init(dev, &tf);
1170 
1171 	/* always clear all address registers */
1172 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173 
1174 	if (lba48) {
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 		tf.flags |= ATA_TFLAG_LBA48;
1177 	} else
1178 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1179 
1180 	tf.protocol = ATA_PROT_NODATA;
1181 	tf.device |= ATA_LBA;
1182 
1183 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 	if (err_mask) {
1185 		ata_dev_warn(dev,
1186 			     "failed to read native max address (err_mask=0x%x)\n",
1187 			     err_mask);
1188 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189 			return -EACCES;
1190 		return -EIO;
1191 	}
1192 
1193 	if (lba48)
1194 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 	else
1196 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1197 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 		(*max_sectors)--;
1199 	return 0;
1200 }
1201 
1202 /**
1203  *	ata_set_max_sectors - Set max sectors
1204  *	@dev: target device
1205  *	@new_sectors: new max sectors value to set for the device
1206  *
1207  *	Set max sectors of @dev to @new_sectors.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted or denied (due to
1211  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1212  *	errors.
1213  */
1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 	unsigned int err_mask;
1217 	struct ata_taskfile tf;
1218 	int lba48 = ata_id_has_lba48(dev->id);
1219 
1220 	new_sectors--;
1221 
1222 	ata_tf_init(dev, &tf);
1223 
1224 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225 
1226 	if (lba48) {
1227 		tf.command = ATA_CMD_SET_MAX_EXT;
1228 		tf.flags |= ATA_TFLAG_LBA48;
1229 
1230 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 	} else {
1234 		tf.command = ATA_CMD_SET_MAX;
1235 
1236 		tf.device |= (new_sectors >> 24) & 0xf;
1237 	}
1238 
1239 	tf.protocol = ATA_PROT_NODATA;
1240 	tf.device |= ATA_LBA;
1241 
1242 	tf.lbal = (new_sectors >> 0) & 0xff;
1243 	tf.lbam = (new_sectors >> 8) & 0xff;
1244 	tf.lbah = (new_sectors >> 16) & 0xff;
1245 
1246 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 	if (err_mask) {
1248 		ata_dev_warn(dev,
1249 			     "failed to set max address (err_mask=0x%x)\n",
1250 			     err_mask);
1251 		if (err_mask == AC_ERR_DEV &&
1252 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253 			return -EACCES;
1254 		return -EIO;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  *	ata_hpa_resize		-	Resize a device with an HPA set
1262  *	@dev: Device to resize
1263  *
1264  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265  *	it if required to the full size of the media. The caller must check
1266  *	the drive has the HPA feature set enabled.
1267  *
1268  *	RETURNS:
1269  *	0 on success, -errno on failure.
1270  */
1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 	bool print_info = ata_dev_print_info(dev);
1274 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 	u64 sectors = ata_id_n_sectors(dev->id);
1276 	u64 native_sectors;
1277 	int rc;
1278 
1279 	/* do we need to do it? */
1280 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 		return 0;
1284 
1285 	/* read native max address */
1286 	rc = ata_read_native_max_address(dev, &native_sectors);
1287 	if (rc) {
1288 		/* If device aborted the command or HPA isn't going to
1289 		 * be unlocked, skip HPA resizing.
1290 		 */
1291 		if (rc == -EACCES || !unlock_hpa) {
1292 			ata_dev_warn(dev,
1293 				     "HPA support seems broken, skipping HPA handling\n");
1294 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295 
1296 			/* we can continue if device aborted the command */
1297 			if (rc == -EACCES)
1298 				rc = 0;
1299 		}
1300 
1301 		return rc;
1302 	}
1303 	dev->n_native_sectors = native_sectors;
1304 
1305 	/* nothing to do? */
1306 	if (native_sectors <= sectors || !unlock_hpa) {
1307 		if (!print_info || native_sectors == sectors)
1308 			return 0;
1309 
1310 		if (native_sectors > sectors)
1311 			ata_dev_info(dev,
1312 				"HPA detected: current %llu, native %llu\n",
1313 				(unsigned long long)sectors,
1314 				(unsigned long long)native_sectors);
1315 		else if (native_sectors < sectors)
1316 			ata_dev_warn(dev,
1317 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1318 				(unsigned long long)native_sectors,
1319 				(unsigned long long)sectors);
1320 		return 0;
1321 	}
1322 
1323 	/* let's unlock HPA */
1324 	rc = ata_set_max_sectors(dev, native_sectors);
1325 	if (rc == -EACCES) {
1326 		/* if device aborted the command, skip HPA resizing */
1327 		ata_dev_warn(dev,
1328 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 			     (unsigned long long)sectors,
1330 			     (unsigned long long)native_sectors);
1331 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 		return 0;
1333 	} else if (rc)
1334 		return rc;
1335 
1336 	/* re-read IDENTIFY data */
1337 	rc = ata_dev_reread_id(dev, 0);
1338 	if (rc) {
1339 		ata_dev_err(dev,
1340 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1341 		return rc;
1342 	}
1343 
1344 	if (print_info) {
1345 		u64 new_sectors = ata_id_n_sectors(dev->id);
1346 		ata_dev_info(dev,
1347 			"HPA unlocked: %llu -> %llu, native %llu\n",
1348 			(unsigned long long)sectors,
1349 			(unsigned long long)new_sectors,
1350 			(unsigned long long)native_sectors);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1358  *	@id: IDENTIFY DEVICE page to dump
1359  *
1360  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1361  *	page.
1362  *
1363  *	LOCKING:
1364  *	caller.
1365  */
1366 
1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 	DPRINTK("49==0x%04x  "
1370 		"53==0x%04x  "
1371 		"63==0x%04x  "
1372 		"64==0x%04x  "
1373 		"75==0x%04x  \n",
1374 		id[49],
1375 		id[53],
1376 		id[63],
1377 		id[64],
1378 		id[75]);
1379 	DPRINTK("80==0x%04x  "
1380 		"81==0x%04x  "
1381 		"82==0x%04x  "
1382 		"83==0x%04x  "
1383 		"84==0x%04x  \n",
1384 		id[80],
1385 		id[81],
1386 		id[82],
1387 		id[83],
1388 		id[84]);
1389 	DPRINTK("88==0x%04x  "
1390 		"93==0x%04x\n",
1391 		id[88],
1392 		id[93]);
1393 }
1394 
1395 /**
1396  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397  *	@id: IDENTIFY data to compute xfer mask from
1398  *
1399  *	Compute the xfermask for this device. This is not as trivial
1400  *	as it seems if we must consider early devices correctly.
1401  *
1402  *	FIXME: pre IDE drive timing (do we care ?).
1403  *
1404  *	LOCKING:
1405  *	None.
1406  *
1407  *	RETURNS:
1408  *	Computed xfermask
1409  */
1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 	unsigned long pio_mask, mwdma_mask, udma_mask;
1413 
1414 	/* Usual case. Word 53 indicates word 64 is valid */
1415 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 		pio_mask <<= 3;
1418 		pio_mask |= 0x7;
1419 	} else {
1420 		/* If word 64 isn't valid then Word 51 high byte holds
1421 		 * the PIO timing number for the maximum. Turn it into
1422 		 * a mask.
1423 		 */
1424 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 		if (mode < 5)	/* Valid PIO range */
1426 			pio_mask = (2 << mode) - 1;
1427 		else
1428 			pio_mask = 1;
1429 
1430 		/* But wait.. there's more. Design your standards by
1431 		 * committee and you too can get a free iordy field to
1432 		 * process. However its the speeds not the modes that
1433 		 * are supported... Note drivers using the timing API
1434 		 * will get this right anyway
1435 		 */
1436 	}
1437 
1438 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439 
1440 	if (ata_id_is_cfa(id)) {
1441 		/*
1442 		 *	Process compact flash extended modes
1443 		 */
1444 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446 
1447 		if (pio)
1448 			pio_mask |= (1 << 5);
1449 		if (pio > 1)
1450 			pio_mask |= (1 << 6);
1451 		if (dma)
1452 			mwdma_mask |= (1 << 3);
1453 		if (dma > 1)
1454 			mwdma_mask |= (1 << 4);
1455 	}
1456 
1457 	udma_mask = 0;
1458 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460 
1461 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464 
1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 	struct completion *waiting = qc->private_data;
1468 
1469 	complete(waiting);
1470 }
1471 
1472 /**
1473  *	ata_exec_internal_sg - execute libata internal command
1474  *	@dev: Device to which the command is sent
1475  *	@tf: Taskfile registers for the command and the result
1476  *	@cdb: CDB for packet command
1477  *	@dma_dir: Data transfer direction of the command
1478  *	@sgl: sg list for the data buffer of the command
1479  *	@n_elem: Number of sg entries
1480  *	@timeout: Timeout in msecs (0 for default)
1481  *
1482  *	Executes libata internal command with timeout.  @tf contains
1483  *	command on entry and result on return.  Timeout and error
1484  *	conditions are reported via return value.  No recovery action
1485  *	is taken after a command times out.  It's caller's duty to
1486  *	clean up after timeout.
1487  *
1488  *	LOCKING:
1489  *	None.  Should be called with kernel context, might sleep.
1490  *
1491  *	RETURNS:
1492  *	Zero on success, AC_ERR_* mask on failure
1493  */
1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 			      struct ata_taskfile *tf, const u8 *cdb,
1496 			      int dma_dir, struct scatterlist *sgl,
1497 			      unsigned int n_elem, unsigned long timeout)
1498 {
1499 	struct ata_link *link = dev->link;
1500 	struct ata_port *ap = link->ap;
1501 	u8 command = tf->command;
1502 	int auto_timeout = 0;
1503 	struct ata_queued_cmd *qc;
1504 	unsigned int preempted_tag;
1505 	u32 preempted_sactive;
1506 	u64 preempted_qc_active;
1507 	int preempted_nr_active_links;
1508 	DECLARE_COMPLETION_ONSTACK(wait);
1509 	unsigned long flags;
1510 	unsigned int err_mask;
1511 	int rc;
1512 
1513 	spin_lock_irqsave(ap->lock, flags);
1514 
1515 	/* no internal command while frozen */
1516 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 		spin_unlock_irqrestore(ap->lock, flags);
1518 		return AC_ERR_SYSTEM;
1519 	}
1520 
1521 	/* initialize internal qc */
1522 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523 
1524 	qc->tag = ATA_TAG_INTERNAL;
1525 	qc->hw_tag = 0;
1526 	qc->scsicmd = NULL;
1527 	qc->ap = ap;
1528 	qc->dev = dev;
1529 	ata_qc_reinit(qc);
1530 
1531 	preempted_tag = link->active_tag;
1532 	preempted_sactive = link->sactive;
1533 	preempted_qc_active = ap->qc_active;
1534 	preempted_nr_active_links = ap->nr_active_links;
1535 	link->active_tag = ATA_TAG_POISON;
1536 	link->sactive = 0;
1537 	ap->qc_active = 0;
1538 	ap->nr_active_links = 0;
1539 
1540 	/* prepare & issue qc */
1541 	qc->tf = *tf;
1542 	if (cdb)
1543 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544 
1545 	/* some SATA bridges need us to indicate data xfer direction */
1546 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 	    dma_dir == DMA_FROM_DEVICE)
1548 		qc->tf.feature |= ATAPI_DMADIR;
1549 
1550 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 	qc->dma_dir = dma_dir;
1552 	if (dma_dir != DMA_NONE) {
1553 		unsigned int i, buflen = 0;
1554 		struct scatterlist *sg;
1555 
1556 		for_each_sg(sgl, sg, n_elem, i)
1557 			buflen += sg->length;
1558 
1559 		ata_sg_init(qc, sgl, n_elem);
1560 		qc->nbytes = buflen;
1561 	}
1562 
1563 	qc->private_data = &wait;
1564 	qc->complete_fn = ata_qc_complete_internal;
1565 
1566 	ata_qc_issue(qc);
1567 
1568 	spin_unlock_irqrestore(ap->lock, flags);
1569 
1570 	if (!timeout) {
1571 		if (ata_probe_timeout)
1572 			timeout = ata_probe_timeout * 1000;
1573 		else {
1574 			timeout = ata_internal_cmd_timeout(dev, command);
1575 			auto_timeout = 1;
1576 		}
1577 	}
1578 
1579 	if (ap->ops->error_handler)
1580 		ata_eh_release(ap);
1581 
1582 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583 
1584 	if (ap->ops->error_handler)
1585 		ata_eh_acquire(ap);
1586 
1587 	ata_sff_flush_pio_task(ap);
1588 
1589 	if (!rc) {
1590 		spin_lock_irqsave(ap->lock, flags);
1591 
1592 		/* We're racing with irq here.  If we lose, the
1593 		 * following test prevents us from completing the qc
1594 		 * twice.  If we win, the port is frozen and will be
1595 		 * cleaned up by ->post_internal_cmd().
1596 		 */
1597 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 			qc->err_mask |= AC_ERR_TIMEOUT;
1599 
1600 			if (ap->ops->error_handler)
1601 				ata_port_freeze(ap);
1602 			else
1603 				ata_qc_complete(qc);
1604 
1605 			if (ata_msg_warn(ap))
1606 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 					     command);
1608 		}
1609 
1610 		spin_unlock_irqrestore(ap->lock, flags);
1611 	}
1612 
1613 	/* do post_internal_cmd */
1614 	if (ap->ops->post_internal_cmd)
1615 		ap->ops->post_internal_cmd(qc);
1616 
1617 	/* perform minimal error analysis */
1618 	if (qc->flags & ATA_QCFLAG_FAILED) {
1619 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620 			qc->err_mask |= AC_ERR_DEV;
1621 
1622 		if (!qc->err_mask)
1623 			qc->err_mask |= AC_ERR_OTHER;
1624 
1625 		if (qc->err_mask & ~AC_ERR_OTHER)
1626 			qc->err_mask &= ~AC_ERR_OTHER;
1627 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 		qc->result_tf.command |= ATA_SENSE;
1629 	}
1630 
1631 	/* finish up */
1632 	spin_lock_irqsave(ap->lock, flags);
1633 
1634 	*tf = qc->result_tf;
1635 	err_mask = qc->err_mask;
1636 
1637 	ata_qc_free(qc);
1638 	link->active_tag = preempted_tag;
1639 	link->sactive = preempted_sactive;
1640 	ap->qc_active = preempted_qc_active;
1641 	ap->nr_active_links = preempted_nr_active_links;
1642 
1643 	spin_unlock_irqrestore(ap->lock, flags);
1644 
1645 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 		ata_internal_cmd_timed_out(dev, command);
1647 
1648 	return err_mask;
1649 }
1650 
1651 /**
1652  *	ata_exec_internal - execute libata internal command
1653  *	@dev: Device to which the command is sent
1654  *	@tf: Taskfile registers for the command and the result
1655  *	@cdb: CDB for packet command
1656  *	@dma_dir: Data transfer direction of the command
1657  *	@buf: Data buffer of the command
1658  *	@buflen: Length of data buffer
1659  *	@timeout: Timeout in msecs (0 for default)
1660  *
1661  *	Wrapper around ata_exec_internal_sg() which takes simple
1662  *	buffer instead of sg list.
1663  *
1664  *	LOCKING:
1665  *	None.  Should be called with kernel context, might sleep.
1666  *
1667  *	RETURNS:
1668  *	Zero on success, AC_ERR_* mask on failure
1669  */
1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 			   struct ata_taskfile *tf, const u8 *cdb,
1672 			   int dma_dir, void *buf, unsigned int buflen,
1673 			   unsigned long timeout)
1674 {
1675 	struct scatterlist *psg = NULL, sg;
1676 	unsigned int n_elem = 0;
1677 
1678 	if (dma_dir != DMA_NONE) {
1679 		WARN_ON(!buf);
1680 		sg_init_one(&sg, buf, buflen);
1681 		psg = &sg;
1682 		n_elem++;
1683 	}
1684 
1685 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 				    timeout);
1687 }
1688 
1689 /**
1690  *	ata_pio_need_iordy	-	check if iordy needed
1691  *	@adev: ATA device
1692  *
1693  *	Check if the current speed of the device requires IORDY. Used
1694  *	by various controllers for chip configuration.
1695  */
1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1699 	 * lead to controller lock up on certain controllers if the
1700 	 * port is not occupied.  See bko#11703 for details.
1701 	 */
1702 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 		return 0;
1704 	/* Controller doesn't support IORDY.  Probably a pointless
1705 	 * check as the caller should know this.
1706 	 */
1707 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 		return 0;
1709 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710 	if (ata_id_is_cfa(adev->id)
1711 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 		return 0;
1713 	/* PIO3 and higher it is mandatory */
1714 	if (adev->pio_mode > XFER_PIO_2)
1715 		return 1;
1716 	/* We turn it on when possible */
1717 	if (ata_id_has_iordy(adev->id))
1718 		return 1;
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722 
1723 /**
1724  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1725  *	@adev: ATA device
1726  *
1727  *	Compute the highest mode possible if we are not using iordy. Return
1728  *	-1 if no iordy mode is available.
1729  */
1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1734 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 		/* Is the speed faster than the drive allows non IORDY ? */
1736 		if (pio) {
1737 			/* This is cycle times not frequency - watch the logic! */
1738 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1739 				return 3 << ATA_SHIFT_PIO;
1740 			return 7 << ATA_SHIFT_PIO;
1741 		}
1742 	}
1743 	return 3 << ATA_SHIFT_PIO;
1744 }
1745 
1746 /**
1747  *	ata_do_dev_read_id		-	default ID read method
1748  *	@dev: device
1749  *	@tf: proposed taskfile
1750  *	@id: data buffer
1751  *
1752  *	Issue the identify taskfile and hand back the buffer containing
1753  *	identify data. For some RAID controllers and for pre ATA devices
1754  *	this function is wrapped or replaced by the driver
1755  */
1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 					struct ata_taskfile *tf, u16 *id)
1758 {
1759 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763 
1764 /**
1765  *	ata_dev_read_id - Read ID data from the specified device
1766  *	@dev: target device
1767  *	@p_class: pointer to class of the target device (may be changed)
1768  *	@flags: ATA_READID_* flags
1769  *	@id: buffer to read IDENTIFY data into
1770  *
1771  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774  *	for pre-ATA4 drives.
1775  *
1776  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777  *	now we abort if we hit that case.
1778  *
1779  *	LOCKING:
1780  *	Kernel thread context (may sleep)
1781  *
1782  *	RETURNS:
1783  *	0 on success, -errno otherwise.
1784  */
1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 		    unsigned int flags, u16 *id)
1787 {
1788 	struct ata_port *ap = dev->link->ap;
1789 	unsigned int class = *p_class;
1790 	struct ata_taskfile tf;
1791 	unsigned int err_mask = 0;
1792 	const char *reason;
1793 	bool is_semb = class == ATA_DEV_SEMB;
1794 	int may_fallback = 1, tried_spinup = 0;
1795 	int rc;
1796 
1797 	if (ata_msg_ctl(ap))
1798 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799 
1800 retry:
1801 	ata_tf_init(dev, &tf);
1802 
1803 	switch (class) {
1804 	case ATA_DEV_SEMB:
1805 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1806 		fallthrough;
1807 	case ATA_DEV_ATA:
1808 	case ATA_DEV_ZAC:
1809 		tf.command = ATA_CMD_ID_ATA;
1810 		break;
1811 	case ATA_DEV_ATAPI:
1812 		tf.command = ATA_CMD_ID_ATAPI;
1813 		break;
1814 	default:
1815 		rc = -ENODEV;
1816 		reason = "unsupported class";
1817 		goto err_out;
1818 	}
1819 
1820 	tf.protocol = ATA_PROT_PIO;
1821 
1822 	/* Some devices choke if TF registers contain garbage.  Make
1823 	 * sure those are properly initialized.
1824 	 */
1825 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826 
1827 	/* Device presence detection is unreliable on some
1828 	 * controllers.  Always poll IDENTIFY if available.
1829 	 */
1830 	tf.flags |= ATA_TFLAG_POLLING;
1831 
1832 	if (ap->ops->read_id)
1833 		err_mask = ap->ops->read_id(dev, &tf, id);
1834 	else
1835 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1836 
1837 	if (err_mask) {
1838 		if (err_mask & AC_ERR_NODEV_HINT) {
1839 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 			return -ENOENT;
1841 		}
1842 
1843 		if (is_semb) {
1844 			ata_dev_info(dev,
1845 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 			/* SEMB is not supported yet */
1847 			*p_class = ATA_DEV_SEMB_UNSUP;
1848 			return 0;
1849 		}
1850 
1851 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852 			/* Device or controller might have reported
1853 			 * the wrong device class.  Give a shot at the
1854 			 * other IDENTIFY if the current one is
1855 			 * aborted by the device.
1856 			 */
1857 			if (may_fallback) {
1858 				may_fallback = 0;
1859 
1860 				if (class == ATA_DEV_ATA)
1861 					class = ATA_DEV_ATAPI;
1862 				else
1863 					class = ATA_DEV_ATA;
1864 				goto retry;
1865 			}
1866 
1867 			/* Control reaches here iff the device aborted
1868 			 * both flavors of IDENTIFYs which happens
1869 			 * sometimes with phantom devices.
1870 			 */
1871 			ata_dev_dbg(dev,
1872 				    "both IDENTIFYs aborted, assuming NODEV\n");
1873 			return -ENOENT;
1874 		}
1875 
1876 		rc = -EIO;
1877 		reason = "I/O error";
1878 		goto err_out;
1879 	}
1880 
1881 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1884 			    class, may_fallback, tried_spinup);
1885 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 	}
1888 
1889 	/* Falling back doesn't make sense if ID data was read
1890 	 * successfully at least once.
1891 	 */
1892 	may_fallback = 0;
1893 
1894 	swap_buf_le16(id, ATA_ID_WORDS);
1895 
1896 	/* sanity check */
1897 	rc = -EINVAL;
1898 	reason = "device reports invalid type";
1899 
1900 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 			goto err_out;
1903 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 							ata_id_is_ata(id)) {
1905 			ata_dev_dbg(dev,
1906 				"host indicates ignore ATA devices, ignored\n");
1907 			return -ENOENT;
1908 		}
1909 	} else {
1910 		if (ata_id_is_ata(id))
1911 			goto err_out;
1912 	}
1913 
1914 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 		tried_spinup = 1;
1916 		/*
1917 		 * Drive powered-up in standby mode, and requires a specific
1918 		 * SET_FEATURES spin-up subcommand before it will accept
1919 		 * anything other than the original IDENTIFY command.
1920 		 */
1921 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 		if (err_mask && id[2] != 0x738c) {
1923 			rc = -EIO;
1924 			reason = "SPINUP failed";
1925 			goto err_out;
1926 		}
1927 		/*
1928 		 * If the drive initially returned incomplete IDENTIFY info,
1929 		 * we now must reissue the IDENTIFY command.
1930 		 */
1931 		if (id[2] == 0x37c8)
1932 			goto retry;
1933 	}
1934 
1935 	if ((flags & ATA_READID_POSTRESET) &&
1936 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 		/*
1938 		 * The exact sequence expected by certain pre-ATA4 drives is:
1939 		 * SRST RESET
1940 		 * IDENTIFY (optional in early ATA)
1941 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 		 * anything else..
1943 		 * Some drives were very specific about that exact sequence.
1944 		 *
1945 		 * Note that ATA4 says lba is mandatory so the second check
1946 		 * should never trigger.
1947 		 */
1948 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 			if (err_mask) {
1951 				rc = -EIO;
1952 				reason = "INIT_DEV_PARAMS failed";
1953 				goto err_out;
1954 			}
1955 
1956 			/* current CHS translation info (id[53-58]) might be
1957 			 * changed. reread the identify device info.
1958 			 */
1959 			flags &= ~ATA_READID_POSTRESET;
1960 			goto retry;
1961 		}
1962 	}
1963 
1964 	*p_class = class;
1965 
1966 	return 0;
1967 
1968  err_out:
1969 	if (ata_msg_warn(ap))
1970 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 			     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_read_log_page - read a specific log page
1977  *	@dev: target device
1978  *	@log: log to read
1979  *	@page: page to read
1980  *	@buf: buffer to store read page
1981  *	@sectors: number of sectors to read
1982  *
1983  *	Read log page using READ_LOG_EXT command.
1984  *
1985  *	LOCKING:
1986  *	Kernel thread context (may sleep).
1987  *
1988  *	RETURNS:
1989  *	0 on success, AC_ERR_* mask otherwise.
1990  */
1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 			       u8 page, void *buf, unsigned int sectors)
1993 {
1994 	unsigned long ap_flags = dev->link->ap->flags;
1995 	struct ata_taskfile tf;
1996 	unsigned int err_mask;
1997 	bool dma = false;
1998 
1999 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000 
2001 	/*
2002 	 * Return error without actually issuing the command on controllers
2003 	 * which e.g. lockup on a read log page.
2004 	 */
2005 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 		return AC_ERR_DEV;
2007 
2008 retry:
2009 	ata_tf_init(dev, &tf);
2010 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2011 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 		tf.protocol = ATA_PROT_DMA;
2014 		dma = true;
2015 	} else {
2016 		tf.command = ATA_CMD_READ_LOG_EXT;
2017 		tf.protocol = ATA_PROT_PIO;
2018 		dma = false;
2019 	}
2020 	tf.lbal = log;
2021 	tf.lbam = page;
2022 	tf.nsect = sectors;
2023 	tf.hob_nsect = sectors >> 8;
2024 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025 
2026 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 				     buf, sectors * ATA_SECT_SIZE, 0);
2028 
2029 	if (err_mask) {
2030 		if (dma) {
2031 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 			goto retry;
2033 		}
2034 		ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035 			    (unsigned int)page, err_mask);
2036 	}
2037 
2038 	return err_mask;
2039 }
2040 
2041 static bool ata_log_supported(struct ata_device *dev, u8 log)
2042 {
2043 	struct ata_port *ap = dev->link->ap;
2044 
2045 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046 		return false;
2047 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048 }
2049 
2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051 {
2052 	struct ata_port *ap = dev->link->ap;
2053 	unsigned int err, i;
2054 
2055 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2056 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2057 		return false;
2058 	}
2059 
2060 	/*
2061 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2062 	 * supported.
2063 	 */
2064 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2065 				1);
2066 	if (err)
2067 		return false;
2068 
2069 	for (i = 0; i < ap->sector_buf[8]; i++) {
2070 		if (ap->sector_buf[9 + i] == page)
2071 			return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static int ata_do_link_spd_horkage(struct ata_device *dev)
2078 {
2079 	struct ata_link *plink = ata_dev_phys_link(dev);
2080 	u32 target, target_limit;
2081 
2082 	if (!sata_scr_valid(plink))
2083 		return 0;
2084 
2085 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086 		target = 1;
2087 	else
2088 		return 0;
2089 
2090 	target_limit = (1 << target) - 1;
2091 
2092 	/* if already on stricter limit, no need to push further */
2093 	if (plink->sata_spd_limit <= target_limit)
2094 		return 0;
2095 
2096 	plink->sata_spd_limit = target_limit;
2097 
2098 	/* Request another EH round by returning -EAGAIN if link is
2099 	 * going faster than the target speed.  Forward progress is
2100 	 * guaranteed by setting sata_spd_limit to target_limit above.
2101 	 */
2102 	if (plink->sata_spd > target) {
2103 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104 			     sata_spd_string(target));
2105 		return -EAGAIN;
2106 	}
2107 	return 0;
2108 }
2109 
2110 static inline u8 ata_dev_knobble(struct ata_device *dev)
2111 {
2112 	struct ata_port *ap = dev->link->ap;
2113 
2114 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115 		return 0;
2116 
2117 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 }
2119 
2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121 {
2122 	struct ata_port *ap = dev->link->ap;
2123 	unsigned int err_mask;
2124 
2125 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127 		return;
2128 	}
2129 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130 				     0, ap->sector_buf, 1);
2131 	if (!err_mask) {
2132 		u8 *cmds = dev->ncq_send_recv_cmds;
2133 
2134 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2135 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2136 
2137 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2138 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2139 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2140 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2141 		}
2142 	}
2143 }
2144 
2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2146 {
2147 	struct ata_port *ap = dev->link->ap;
2148 	unsigned int err_mask;
2149 
2150 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2151 		ata_dev_warn(dev,
2152 			     "NCQ Send/Recv Log not supported\n");
2153 		return;
2154 	}
2155 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156 				     0, ap->sector_buf, 1);
2157 	if (!err_mask) {
2158 		u8 *cmds = dev->ncq_non_data_cmds;
2159 
2160 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2161 	}
2162 }
2163 
2164 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2165 {
2166 	struct ata_port *ap = dev->link->ap;
2167 	unsigned int err_mask;
2168 
2169 	err_mask = ata_read_log_page(dev,
2170 				     ATA_LOG_IDENTIFY_DEVICE,
2171 				     ATA_LOG_SATA_SETTINGS,
2172 				     ap->sector_buf,
2173 				     1);
2174 	if (err_mask)
2175 		goto not_supported;
2176 
2177 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2178 		goto not_supported;
2179 
2180 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2181 
2182 	return;
2183 
2184 not_supported:
2185 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2186 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2187 }
2188 
2189 static bool ata_dev_check_adapter(struct ata_device *dev,
2190 				  unsigned short vendor_id)
2191 {
2192 	struct pci_dev *pcidev = NULL;
2193 	struct device *parent_dev = NULL;
2194 
2195 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2196 	     parent_dev = parent_dev->parent) {
2197 		if (dev_is_pci(parent_dev)) {
2198 			pcidev = to_pci_dev(parent_dev);
2199 			if (pcidev->vendor == vendor_id)
2200 				return true;
2201 			break;
2202 		}
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 static int ata_dev_config_ncq(struct ata_device *dev,
2209 			       char *desc, size_t desc_sz)
2210 {
2211 	struct ata_port *ap = dev->link->ap;
2212 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2213 	unsigned int err_mask;
2214 	char *aa_desc = "";
2215 
2216 	if (!ata_id_has_ncq(dev->id)) {
2217 		desc[0] = '\0';
2218 		return 0;
2219 	}
2220 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2221 		return 0;
2222 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2223 		snprintf(desc, desc_sz, "NCQ (not used)");
2224 		return 0;
2225 	}
2226 
2227 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2228 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2229 		snprintf(desc, desc_sz, "NCQ (not used)");
2230 		return 0;
2231 	}
2232 
2233 	if (ap->flags & ATA_FLAG_NCQ) {
2234 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2235 		dev->flags |= ATA_DFLAG_NCQ;
2236 	}
2237 
2238 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2239 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2240 		ata_id_has_fpdma_aa(dev->id)) {
2241 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2242 			SATA_FPDMA_AA);
2243 		if (err_mask) {
2244 			ata_dev_err(dev,
2245 				    "failed to enable AA (error_mask=0x%x)\n",
2246 				    err_mask);
2247 			if (err_mask != AC_ERR_DEV) {
2248 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2249 				return -EIO;
2250 			}
2251 		} else
2252 			aa_desc = ", AA";
2253 	}
2254 
2255 	if (hdepth >= ddepth)
2256 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2257 	else
2258 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2259 			ddepth, aa_desc);
2260 
2261 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2262 		if (ata_id_has_ncq_send_and_recv(dev->id))
2263 			ata_dev_config_ncq_send_recv(dev);
2264 		if (ata_id_has_ncq_non_data(dev->id))
2265 			ata_dev_config_ncq_non_data(dev);
2266 		if (ata_id_has_ncq_prio(dev->id))
2267 			ata_dev_config_ncq_prio(dev);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2274 {
2275 	unsigned int err_mask;
2276 
2277 	if (!ata_id_has_sense_reporting(dev->id))
2278 		return;
2279 
2280 	if (ata_id_sense_reporting_enabled(dev->id))
2281 		return;
2282 
2283 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2284 	if (err_mask) {
2285 		ata_dev_dbg(dev,
2286 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2287 			    err_mask);
2288 	}
2289 }
2290 
2291 static void ata_dev_config_zac(struct ata_device *dev)
2292 {
2293 	struct ata_port *ap = dev->link->ap;
2294 	unsigned int err_mask;
2295 	u8 *identify_buf = ap->sector_buf;
2296 
2297 	dev->zac_zones_optimal_open = U32_MAX;
2298 	dev->zac_zones_optimal_nonseq = U32_MAX;
2299 	dev->zac_zones_max_open = U32_MAX;
2300 
2301 	/*
2302 	 * Always set the 'ZAC' flag for Host-managed devices.
2303 	 */
2304 	if (dev->class == ATA_DEV_ZAC)
2305 		dev->flags |= ATA_DFLAG_ZAC;
2306 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2307 		/*
2308 		 * Check for host-aware devices.
2309 		 */
2310 		dev->flags |= ATA_DFLAG_ZAC;
2311 
2312 	if (!(dev->flags & ATA_DFLAG_ZAC))
2313 		return;
2314 
2315 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2316 		ata_dev_warn(dev,
2317 			     "ATA Zoned Information Log not supported\n");
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2323 	 */
2324 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2325 				     ATA_LOG_ZONED_INFORMATION,
2326 				     identify_buf, 1);
2327 	if (!err_mask) {
2328 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2329 
2330 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2331 		if ((zoned_cap >> 63))
2332 			dev->zac_zoned_cap = (zoned_cap & 1);
2333 		opt_open = get_unaligned_le64(&identify_buf[24]);
2334 		if ((opt_open >> 63))
2335 			dev->zac_zones_optimal_open = (u32)opt_open;
2336 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2337 		if ((opt_nonseq >> 63))
2338 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2339 		max_open = get_unaligned_le64(&identify_buf[40]);
2340 		if ((max_open >> 63))
2341 			dev->zac_zones_max_open = (u32)max_open;
2342 	}
2343 }
2344 
2345 static void ata_dev_config_trusted(struct ata_device *dev)
2346 {
2347 	struct ata_port *ap = dev->link->ap;
2348 	u64 trusted_cap;
2349 	unsigned int err;
2350 
2351 	if (!ata_id_has_trusted(dev->id))
2352 		return;
2353 
2354 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2355 		ata_dev_warn(dev,
2356 			     "Security Log not supported\n");
2357 		return;
2358 	}
2359 
2360 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2361 			ap->sector_buf, 1);
2362 	if (err)
2363 		return;
2364 
2365 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2366 	if (!(trusted_cap & (1ULL << 63))) {
2367 		ata_dev_dbg(dev,
2368 			    "Trusted Computing capability qword not valid!\n");
2369 		return;
2370 	}
2371 
2372 	if (trusted_cap & (1 << 0))
2373 		dev->flags |= ATA_DFLAG_TRUSTED;
2374 }
2375 
2376 static int ata_dev_config_lba(struct ata_device *dev)
2377 {
2378 	struct ata_port *ap = dev->link->ap;
2379 	const u16 *id = dev->id;
2380 	const char *lba_desc;
2381 	char ncq_desc[24];
2382 	int ret;
2383 
2384 	dev->flags |= ATA_DFLAG_LBA;
2385 
2386 	if (ata_id_has_lba48(id)) {
2387 		lba_desc = "LBA48";
2388 		dev->flags |= ATA_DFLAG_LBA48;
2389 		if (dev->n_sectors >= (1UL << 28) &&
2390 		    ata_id_has_flush_ext(id))
2391 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2392 	} else {
2393 		lba_desc = "LBA";
2394 	}
2395 
2396 	/* config NCQ */
2397 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2398 
2399 	/* print device info to dmesg */
2400 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2401 		ata_dev_info(dev,
2402 			     "%llu sectors, multi %u: %s %s\n",
2403 			     (unsigned long long)dev->n_sectors,
2404 			     dev->multi_count, lba_desc, ncq_desc);
2405 
2406 	return ret;
2407 }
2408 
2409 static void ata_dev_config_chs(struct ata_device *dev)
2410 {
2411 	struct ata_port *ap = dev->link->ap;
2412 	const u16 *id = dev->id;
2413 
2414 	if (ata_id_current_chs_valid(id)) {
2415 		/* Current CHS translation is valid. */
2416 		dev->cylinders = id[54];
2417 		dev->heads     = id[55];
2418 		dev->sectors   = id[56];
2419 	} else {
2420 		/* Default translation */
2421 		dev->cylinders	= id[1];
2422 		dev->heads	= id[3];
2423 		dev->sectors	= id[6];
2424 	}
2425 
2426 	/* print device info to dmesg */
2427 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2428 		ata_dev_info(dev,
2429 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2430 			     (unsigned long long)dev->n_sectors,
2431 			     dev->multi_count, dev->cylinders,
2432 			     dev->heads, dev->sectors);
2433 }
2434 
2435 static void ata_dev_config_devslp(struct ata_device *dev)
2436 {
2437 	u8 *sata_setting = dev->link->ap->sector_buf;
2438 	unsigned int err_mask;
2439 	int i, j;
2440 
2441 	/*
2442 	 * Check device sleep capability. Get DevSlp timing variables
2443 	 * from SATA Settings page of Identify Device Data Log.
2444 	 */
2445 	if (!ata_id_has_devslp(dev->id))
2446 		return;
2447 
2448 	err_mask = ata_read_log_page(dev,
2449 				     ATA_LOG_IDENTIFY_DEVICE,
2450 				     ATA_LOG_SATA_SETTINGS,
2451 				     sata_setting, 1);
2452 	if (err_mask)
2453 		return;
2454 
2455 	dev->flags |= ATA_DFLAG_DEVSLP;
2456 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2457 		j = ATA_LOG_DEVSLP_OFFSET + i;
2458 		dev->devslp_timing[i] = sata_setting[j];
2459 	}
2460 }
2461 
2462 static void ata_dev_config_cpr(struct ata_device *dev)
2463 {
2464 	unsigned int err_mask;
2465 	size_t buf_len;
2466 	int i, nr_cpr = 0;
2467 	struct ata_cpr_log *cpr_log = NULL;
2468 	u8 *desc, *buf = NULL;
2469 
2470 	if (!ata_identify_page_supported(dev,
2471 				 ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2472 		goto out;
2473 
2474 	/*
2475 	 * Read IDENTIFY DEVICE data log, page 0x47
2476 	 * (concurrent positioning ranges). We can have at most 255 32B range
2477 	 * descriptors plus a 64B header.
2478 	 */
2479 	buf_len = (64 + 255 * 32 + 511) & ~511;
2480 	buf = kzalloc(buf_len, GFP_KERNEL);
2481 	if (!buf)
2482 		goto out;
2483 
2484 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2485 				     ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2486 				     buf, buf_len >> 9);
2487 	if (err_mask)
2488 		goto out;
2489 
2490 	nr_cpr = buf[0];
2491 	if (!nr_cpr)
2492 		goto out;
2493 
2494 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2495 	if (!cpr_log)
2496 		goto out;
2497 
2498 	cpr_log->nr_cpr = nr_cpr;
2499 	desc = &buf[64];
2500 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2501 		cpr_log->cpr[i].num = desc[0];
2502 		cpr_log->cpr[i].num_storage_elements = desc[1];
2503 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2504 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2505 	}
2506 
2507 out:
2508 	swap(dev->cpr_log, cpr_log);
2509 	kfree(cpr_log);
2510 	kfree(buf);
2511 }
2512 
2513 static void ata_dev_print_features(struct ata_device *dev)
2514 {
2515 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2516 		return;
2517 
2518 	ata_dev_info(dev,
2519 		     "Features:%s%s%s%s%s%s\n",
2520 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2521 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2522 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2523 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2524 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2525 		     dev->cpr_log ? " CPR" : "");
2526 }
2527 
2528 /**
2529  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2530  *	@dev: Target device to configure
2531  *
2532  *	Configure @dev according to @dev->id.  Generic and low-level
2533  *	driver specific fixups are also applied.
2534  *
2535  *	LOCKING:
2536  *	Kernel thread context (may sleep)
2537  *
2538  *	RETURNS:
2539  *	0 on success, -errno otherwise
2540  */
2541 int ata_dev_configure(struct ata_device *dev)
2542 {
2543 	struct ata_port *ap = dev->link->ap;
2544 	bool print_info = ata_dev_print_info(dev);
2545 	const u16 *id = dev->id;
2546 	unsigned long xfer_mask;
2547 	unsigned int err_mask;
2548 	char revbuf[7];		/* XYZ-99\0 */
2549 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2550 	char modelbuf[ATA_ID_PROD_LEN+1];
2551 	int rc;
2552 
2553 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2554 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2555 		return 0;
2556 	}
2557 
2558 	if (ata_msg_probe(ap))
2559 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2560 
2561 	/* set horkage */
2562 	dev->horkage |= ata_dev_blacklisted(dev);
2563 	ata_force_horkage(dev);
2564 
2565 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2566 		ata_dev_info(dev, "unsupported device, disabling\n");
2567 		ata_dev_disable(dev);
2568 		return 0;
2569 	}
2570 
2571 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2572 	    dev->class == ATA_DEV_ATAPI) {
2573 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2574 			     atapi_enabled ? "not supported with this driver"
2575 			     : "disabled");
2576 		ata_dev_disable(dev);
2577 		return 0;
2578 	}
2579 
2580 	rc = ata_do_link_spd_horkage(dev);
2581 	if (rc)
2582 		return rc;
2583 
2584 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2585 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2586 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2587 		dev->horkage |= ATA_HORKAGE_NOLPM;
2588 
2589 	if (ap->flags & ATA_FLAG_NO_LPM)
2590 		dev->horkage |= ATA_HORKAGE_NOLPM;
2591 
2592 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2593 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2594 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2595 	}
2596 
2597 	/* let ACPI work its magic */
2598 	rc = ata_acpi_on_devcfg(dev);
2599 	if (rc)
2600 		return rc;
2601 
2602 	/* massage HPA, do it early as it might change IDENTIFY data */
2603 	rc = ata_hpa_resize(dev);
2604 	if (rc)
2605 		return rc;
2606 
2607 	/* print device capabilities */
2608 	if (ata_msg_probe(ap))
2609 		ata_dev_dbg(dev,
2610 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2611 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2612 			    __func__,
2613 			    id[49], id[82], id[83], id[84],
2614 			    id[85], id[86], id[87], id[88]);
2615 
2616 	/* initialize to-be-configured parameters */
2617 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2618 	dev->max_sectors = 0;
2619 	dev->cdb_len = 0;
2620 	dev->n_sectors = 0;
2621 	dev->cylinders = 0;
2622 	dev->heads = 0;
2623 	dev->sectors = 0;
2624 	dev->multi_count = 0;
2625 
2626 	/*
2627 	 * common ATA, ATAPI feature tests
2628 	 */
2629 
2630 	/* find max transfer mode; for printk only */
2631 	xfer_mask = ata_id_xfermask(id);
2632 
2633 	if (ata_msg_probe(ap))
2634 		ata_dump_id(id);
2635 
2636 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2637 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2638 			sizeof(fwrevbuf));
2639 
2640 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2641 			sizeof(modelbuf));
2642 
2643 	/* ATA-specific feature tests */
2644 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2645 		if (ata_id_is_cfa(id)) {
2646 			/* CPRM may make this media unusable */
2647 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2648 				ata_dev_warn(dev,
2649 	"supports DRM functions and may not be fully accessible\n");
2650 			snprintf(revbuf, 7, "CFA");
2651 		} else {
2652 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2653 			/* Warn the user if the device has TPM extensions */
2654 			if (ata_id_has_tpm(id))
2655 				ata_dev_warn(dev,
2656 	"supports DRM functions and may not be fully accessible\n");
2657 		}
2658 
2659 		dev->n_sectors = ata_id_n_sectors(id);
2660 
2661 		/* get current R/W Multiple count setting */
2662 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2663 			unsigned int max = dev->id[47] & 0xff;
2664 			unsigned int cnt = dev->id[59] & 0xff;
2665 			/* only recognize/allow powers of two here */
2666 			if (is_power_of_2(max) && is_power_of_2(cnt))
2667 				if (cnt <= max)
2668 					dev->multi_count = cnt;
2669 		}
2670 
2671 		/* print device info to dmesg */
2672 		if (ata_msg_drv(ap) && print_info)
2673 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2674 				     revbuf, modelbuf, fwrevbuf,
2675 				     ata_mode_string(xfer_mask));
2676 
2677 		if (ata_id_has_lba(id)) {
2678 			rc = ata_dev_config_lba(dev);
2679 			if (rc)
2680 				return rc;
2681 		} else {
2682 			ata_dev_config_chs(dev);
2683 		}
2684 
2685 		ata_dev_config_devslp(dev);
2686 		ata_dev_config_sense_reporting(dev);
2687 		ata_dev_config_zac(dev);
2688 		ata_dev_config_trusted(dev);
2689 		ata_dev_config_cpr(dev);
2690 		dev->cdb_len = 32;
2691 
2692 		if (ata_msg_drv(ap) && print_info)
2693 			ata_dev_print_features(dev);
2694 	}
2695 
2696 	/* ATAPI-specific feature tests */
2697 	else if (dev->class == ATA_DEV_ATAPI) {
2698 		const char *cdb_intr_string = "";
2699 		const char *atapi_an_string = "";
2700 		const char *dma_dir_string = "";
2701 		u32 sntf;
2702 
2703 		rc = atapi_cdb_len(id);
2704 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2705 			if (ata_msg_warn(ap))
2706 				ata_dev_warn(dev, "unsupported CDB len\n");
2707 			rc = -EINVAL;
2708 			goto err_out_nosup;
2709 		}
2710 		dev->cdb_len = (unsigned int) rc;
2711 
2712 		/* Enable ATAPI AN if both the host and device have
2713 		 * the support.  If PMP is attached, SNTF is required
2714 		 * to enable ATAPI AN to discern between PHY status
2715 		 * changed notifications and ATAPI ANs.
2716 		 */
2717 		if (atapi_an &&
2718 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2719 		    (!sata_pmp_attached(ap) ||
2720 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2721 			/* issue SET feature command to turn this on */
2722 			err_mask = ata_dev_set_feature(dev,
2723 					SETFEATURES_SATA_ENABLE, SATA_AN);
2724 			if (err_mask)
2725 				ata_dev_err(dev,
2726 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2727 					    err_mask);
2728 			else {
2729 				dev->flags |= ATA_DFLAG_AN;
2730 				atapi_an_string = ", ATAPI AN";
2731 			}
2732 		}
2733 
2734 		if (ata_id_cdb_intr(dev->id)) {
2735 			dev->flags |= ATA_DFLAG_CDB_INTR;
2736 			cdb_intr_string = ", CDB intr";
2737 		}
2738 
2739 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2740 			dev->flags |= ATA_DFLAG_DMADIR;
2741 			dma_dir_string = ", DMADIR";
2742 		}
2743 
2744 		if (ata_id_has_da(dev->id)) {
2745 			dev->flags |= ATA_DFLAG_DA;
2746 			zpodd_init(dev);
2747 		}
2748 
2749 		/* print device info to dmesg */
2750 		if (ata_msg_drv(ap) && print_info)
2751 			ata_dev_info(dev,
2752 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2753 				     modelbuf, fwrevbuf,
2754 				     ata_mode_string(xfer_mask),
2755 				     cdb_intr_string, atapi_an_string,
2756 				     dma_dir_string);
2757 	}
2758 
2759 	/* determine max_sectors */
2760 	dev->max_sectors = ATA_MAX_SECTORS;
2761 	if (dev->flags & ATA_DFLAG_LBA48)
2762 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2763 
2764 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2765 	   200 sectors */
2766 	if (ata_dev_knobble(dev)) {
2767 		if (ata_msg_drv(ap) && print_info)
2768 			ata_dev_info(dev, "applying bridge limits\n");
2769 		dev->udma_mask &= ATA_UDMA5;
2770 		dev->max_sectors = ATA_MAX_SECTORS;
2771 	}
2772 
2773 	if ((dev->class == ATA_DEV_ATAPI) &&
2774 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2775 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2776 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2777 	}
2778 
2779 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2780 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2781 					 dev->max_sectors);
2782 
2783 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2784 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2785 					 dev->max_sectors);
2786 
2787 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2788 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2789 
2790 	if (ap->ops->dev_config)
2791 		ap->ops->dev_config(dev);
2792 
2793 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2794 		/* Let the user know. We don't want to disallow opens for
2795 		   rescue purposes, or in case the vendor is just a blithering
2796 		   idiot. Do this after the dev_config call as some controllers
2797 		   with buggy firmware may want to avoid reporting false device
2798 		   bugs */
2799 
2800 		if (print_info) {
2801 			ata_dev_warn(dev,
2802 "Drive reports diagnostics failure. This may indicate a drive\n");
2803 			ata_dev_warn(dev,
2804 "fault or invalid emulation. Contact drive vendor for information.\n");
2805 		}
2806 	}
2807 
2808 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2809 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2810 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2811 	}
2812 
2813 	return 0;
2814 
2815 err_out_nosup:
2816 	if (ata_msg_probe(ap))
2817 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2818 	return rc;
2819 }
2820 
2821 /**
2822  *	ata_cable_40wire	-	return 40 wire cable type
2823  *	@ap: port
2824  *
2825  *	Helper method for drivers which want to hardwire 40 wire cable
2826  *	detection.
2827  */
2828 
2829 int ata_cable_40wire(struct ata_port *ap)
2830 {
2831 	return ATA_CBL_PATA40;
2832 }
2833 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2834 
2835 /**
2836  *	ata_cable_80wire	-	return 80 wire cable type
2837  *	@ap: port
2838  *
2839  *	Helper method for drivers which want to hardwire 80 wire cable
2840  *	detection.
2841  */
2842 
2843 int ata_cable_80wire(struct ata_port *ap)
2844 {
2845 	return ATA_CBL_PATA80;
2846 }
2847 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2848 
2849 /**
2850  *	ata_cable_unknown	-	return unknown PATA cable.
2851  *	@ap: port
2852  *
2853  *	Helper method for drivers which have no PATA cable detection.
2854  */
2855 
2856 int ata_cable_unknown(struct ata_port *ap)
2857 {
2858 	return ATA_CBL_PATA_UNK;
2859 }
2860 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2861 
2862 /**
2863  *	ata_cable_ignore	-	return ignored PATA cable.
2864  *	@ap: port
2865  *
2866  *	Helper method for drivers which don't use cable type to limit
2867  *	transfer mode.
2868  */
2869 int ata_cable_ignore(struct ata_port *ap)
2870 {
2871 	return ATA_CBL_PATA_IGN;
2872 }
2873 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2874 
2875 /**
2876  *	ata_cable_sata	-	return SATA cable type
2877  *	@ap: port
2878  *
2879  *	Helper method for drivers which have SATA cables
2880  */
2881 
2882 int ata_cable_sata(struct ata_port *ap)
2883 {
2884 	return ATA_CBL_SATA;
2885 }
2886 EXPORT_SYMBOL_GPL(ata_cable_sata);
2887 
2888 /**
2889  *	ata_bus_probe - Reset and probe ATA bus
2890  *	@ap: Bus to probe
2891  *
2892  *	Master ATA bus probing function.  Initiates a hardware-dependent
2893  *	bus reset, then attempts to identify any devices found on
2894  *	the bus.
2895  *
2896  *	LOCKING:
2897  *	PCI/etc. bus probe sem.
2898  *
2899  *	RETURNS:
2900  *	Zero on success, negative errno otherwise.
2901  */
2902 
2903 int ata_bus_probe(struct ata_port *ap)
2904 {
2905 	unsigned int classes[ATA_MAX_DEVICES];
2906 	int tries[ATA_MAX_DEVICES];
2907 	int rc;
2908 	struct ata_device *dev;
2909 
2910 	ata_for_each_dev(dev, &ap->link, ALL)
2911 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2912 
2913  retry:
2914 	ata_for_each_dev(dev, &ap->link, ALL) {
2915 		/* If we issue an SRST then an ATA drive (not ATAPI)
2916 		 * may change configuration and be in PIO0 timing. If
2917 		 * we do a hard reset (or are coming from power on)
2918 		 * this is true for ATA or ATAPI. Until we've set a
2919 		 * suitable controller mode we should not touch the
2920 		 * bus as we may be talking too fast.
2921 		 */
2922 		dev->pio_mode = XFER_PIO_0;
2923 		dev->dma_mode = 0xff;
2924 
2925 		/* If the controller has a pio mode setup function
2926 		 * then use it to set the chipset to rights. Don't
2927 		 * touch the DMA setup as that will be dealt with when
2928 		 * configuring devices.
2929 		 */
2930 		if (ap->ops->set_piomode)
2931 			ap->ops->set_piomode(ap, dev);
2932 	}
2933 
2934 	/* reset and determine device classes */
2935 	ap->ops->phy_reset(ap);
2936 
2937 	ata_for_each_dev(dev, &ap->link, ALL) {
2938 		if (dev->class != ATA_DEV_UNKNOWN)
2939 			classes[dev->devno] = dev->class;
2940 		else
2941 			classes[dev->devno] = ATA_DEV_NONE;
2942 
2943 		dev->class = ATA_DEV_UNKNOWN;
2944 	}
2945 
2946 	/* read IDENTIFY page and configure devices. We have to do the identify
2947 	   specific sequence bass-ackwards so that PDIAG- is released by
2948 	   the slave device */
2949 
2950 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2951 		if (tries[dev->devno])
2952 			dev->class = classes[dev->devno];
2953 
2954 		if (!ata_dev_enabled(dev))
2955 			continue;
2956 
2957 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2958 				     dev->id);
2959 		if (rc)
2960 			goto fail;
2961 	}
2962 
2963 	/* Now ask for the cable type as PDIAG- should have been released */
2964 	if (ap->ops->cable_detect)
2965 		ap->cbl = ap->ops->cable_detect(ap);
2966 
2967 	/* We may have SATA bridge glue hiding here irrespective of
2968 	 * the reported cable types and sensed types.  When SATA
2969 	 * drives indicate we have a bridge, we don't know which end
2970 	 * of the link the bridge is which is a problem.
2971 	 */
2972 	ata_for_each_dev(dev, &ap->link, ENABLED)
2973 		if (ata_id_is_sata(dev->id))
2974 			ap->cbl = ATA_CBL_SATA;
2975 
2976 	/* After the identify sequence we can now set up the devices. We do
2977 	   this in the normal order so that the user doesn't get confused */
2978 
2979 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2980 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2981 		rc = ata_dev_configure(dev);
2982 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2983 		if (rc)
2984 			goto fail;
2985 	}
2986 
2987 	/* configure transfer mode */
2988 	rc = ata_set_mode(&ap->link, &dev);
2989 	if (rc)
2990 		goto fail;
2991 
2992 	ata_for_each_dev(dev, &ap->link, ENABLED)
2993 		return 0;
2994 
2995 	return -ENODEV;
2996 
2997  fail:
2998 	tries[dev->devno]--;
2999 
3000 	switch (rc) {
3001 	case -EINVAL:
3002 		/* eeek, something went very wrong, give up */
3003 		tries[dev->devno] = 0;
3004 		break;
3005 
3006 	case -ENODEV:
3007 		/* give it just one more chance */
3008 		tries[dev->devno] = min(tries[dev->devno], 1);
3009 		fallthrough;
3010 	case -EIO:
3011 		if (tries[dev->devno] == 1) {
3012 			/* This is the last chance, better to slow
3013 			 * down than lose it.
3014 			 */
3015 			sata_down_spd_limit(&ap->link, 0);
3016 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3017 		}
3018 	}
3019 
3020 	if (!tries[dev->devno])
3021 		ata_dev_disable(dev);
3022 
3023 	goto retry;
3024 }
3025 
3026 /**
3027  *	sata_print_link_status - Print SATA link status
3028  *	@link: SATA link to printk link status about
3029  *
3030  *	This function prints link speed and status of a SATA link.
3031  *
3032  *	LOCKING:
3033  *	None.
3034  */
3035 static void sata_print_link_status(struct ata_link *link)
3036 {
3037 	u32 sstatus, scontrol, tmp;
3038 
3039 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3040 		return;
3041 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3042 
3043 	if (ata_phys_link_online(link)) {
3044 		tmp = (sstatus >> 4) & 0xf;
3045 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3046 			      sata_spd_string(tmp), sstatus, scontrol);
3047 	} else {
3048 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3049 			      sstatus, scontrol);
3050 	}
3051 }
3052 
3053 /**
3054  *	ata_dev_pair		-	return other device on cable
3055  *	@adev: device
3056  *
3057  *	Obtain the other device on the same cable, or if none is
3058  *	present NULL is returned
3059  */
3060 
3061 struct ata_device *ata_dev_pair(struct ata_device *adev)
3062 {
3063 	struct ata_link *link = adev->link;
3064 	struct ata_device *pair = &link->device[1 - adev->devno];
3065 	if (!ata_dev_enabled(pair))
3066 		return NULL;
3067 	return pair;
3068 }
3069 EXPORT_SYMBOL_GPL(ata_dev_pair);
3070 
3071 /**
3072  *	sata_down_spd_limit - adjust SATA spd limit downward
3073  *	@link: Link to adjust SATA spd limit for
3074  *	@spd_limit: Additional limit
3075  *
3076  *	Adjust SATA spd limit of @link downward.  Note that this
3077  *	function only adjusts the limit.  The change must be applied
3078  *	using sata_set_spd().
3079  *
3080  *	If @spd_limit is non-zero, the speed is limited to equal to or
3081  *	lower than @spd_limit if such speed is supported.  If
3082  *	@spd_limit is slower than any supported speed, only the lowest
3083  *	supported speed is allowed.
3084  *
3085  *	LOCKING:
3086  *	Inherited from caller.
3087  *
3088  *	RETURNS:
3089  *	0 on success, negative errno on failure
3090  */
3091 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3092 {
3093 	u32 sstatus, spd, mask;
3094 	int rc, bit;
3095 
3096 	if (!sata_scr_valid(link))
3097 		return -EOPNOTSUPP;
3098 
3099 	/* If SCR can be read, use it to determine the current SPD.
3100 	 * If not, use cached value in link->sata_spd.
3101 	 */
3102 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3103 	if (rc == 0 && ata_sstatus_online(sstatus))
3104 		spd = (sstatus >> 4) & 0xf;
3105 	else
3106 		spd = link->sata_spd;
3107 
3108 	mask = link->sata_spd_limit;
3109 	if (mask <= 1)
3110 		return -EINVAL;
3111 
3112 	/* unconditionally mask off the highest bit */
3113 	bit = fls(mask) - 1;
3114 	mask &= ~(1 << bit);
3115 
3116 	/*
3117 	 * Mask off all speeds higher than or equal to the current one.  At
3118 	 * this point, if current SPD is not available and we previously
3119 	 * recorded the link speed from SStatus, the driver has already
3120 	 * masked off the highest bit so mask should already be 1 or 0.
3121 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3122 	 * not previously recorded speed from SStatus.  Just return in this
3123 	 * case.
3124 	 */
3125 	if (spd > 1)
3126 		mask &= (1 << (spd - 1)) - 1;
3127 	else
3128 		return -EINVAL;
3129 
3130 	/* were we already at the bottom? */
3131 	if (!mask)
3132 		return -EINVAL;
3133 
3134 	if (spd_limit) {
3135 		if (mask & ((1 << spd_limit) - 1))
3136 			mask &= (1 << spd_limit) - 1;
3137 		else {
3138 			bit = ffs(mask) - 1;
3139 			mask = 1 << bit;
3140 		}
3141 	}
3142 
3143 	link->sata_spd_limit = mask;
3144 
3145 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3146 		      sata_spd_string(fls(mask)));
3147 
3148 	return 0;
3149 }
3150 
3151 #ifdef CONFIG_ATA_ACPI
3152 /**
3153  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3154  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3155  *	@cycle: cycle duration in ns
3156  *
3157  *	Return matching xfer mode for @cycle.  The returned mode is of
3158  *	the transfer type specified by @xfer_shift.  If @cycle is too
3159  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3160  *	than the fastest known mode, the fasted mode is returned.
3161  *
3162  *	LOCKING:
3163  *	None.
3164  *
3165  *	RETURNS:
3166  *	Matching xfer_mode, 0xff if no match found.
3167  */
3168 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3169 {
3170 	u8 base_mode = 0xff, last_mode = 0xff;
3171 	const struct ata_xfer_ent *ent;
3172 	const struct ata_timing *t;
3173 
3174 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3175 		if (ent->shift == xfer_shift)
3176 			base_mode = ent->base;
3177 
3178 	for (t = ata_timing_find_mode(base_mode);
3179 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3180 		unsigned short this_cycle;
3181 
3182 		switch (xfer_shift) {
3183 		case ATA_SHIFT_PIO:
3184 		case ATA_SHIFT_MWDMA:
3185 			this_cycle = t->cycle;
3186 			break;
3187 		case ATA_SHIFT_UDMA:
3188 			this_cycle = t->udma;
3189 			break;
3190 		default:
3191 			return 0xff;
3192 		}
3193 
3194 		if (cycle > this_cycle)
3195 			break;
3196 
3197 		last_mode = t->mode;
3198 	}
3199 
3200 	return last_mode;
3201 }
3202 #endif
3203 
3204 /**
3205  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3206  *	@dev: Device to adjust xfer masks
3207  *	@sel: ATA_DNXFER_* selector
3208  *
3209  *	Adjust xfer masks of @dev downward.  Note that this function
3210  *	does not apply the change.  Invoking ata_set_mode() afterwards
3211  *	will apply the limit.
3212  *
3213  *	LOCKING:
3214  *	Inherited from caller.
3215  *
3216  *	RETURNS:
3217  *	0 on success, negative errno on failure
3218  */
3219 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3220 {
3221 	char buf[32];
3222 	unsigned long orig_mask, xfer_mask;
3223 	unsigned long pio_mask, mwdma_mask, udma_mask;
3224 	int quiet, highbit;
3225 
3226 	quiet = !!(sel & ATA_DNXFER_QUIET);
3227 	sel &= ~ATA_DNXFER_QUIET;
3228 
3229 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3230 						  dev->mwdma_mask,
3231 						  dev->udma_mask);
3232 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3233 
3234 	switch (sel) {
3235 	case ATA_DNXFER_PIO:
3236 		highbit = fls(pio_mask) - 1;
3237 		pio_mask &= ~(1 << highbit);
3238 		break;
3239 
3240 	case ATA_DNXFER_DMA:
3241 		if (udma_mask) {
3242 			highbit = fls(udma_mask) - 1;
3243 			udma_mask &= ~(1 << highbit);
3244 			if (!udma_mask)
3245 				return -ENOENT;
3246 		} else if (mwdma_mask) {
3247 			highbit = fls(mwdma_mask) - 1;
3248 			mwdma_mask &= ~(1 << highbit);
3249 			if (!mwdma_mask)
3250 				return -ENOENT;
3251 		}
3252 		break;
3253 
3254 	case ATA_DNXFER_40C:
3255 		udma_mask &= ATA_UDMA_MASK_40C;
3256 		break;
3257 
3258 	case ATA_DNXFER_FORCE_PIO0:
3259 		pio_mask &= 1;
3260 		fallthrough;
3261 	case ATA_DNXFER_FORCE_PIO:
3262 		mwdma_mask = 0;
3263 		udma_mask = 0;
3264 		break;
3265 
3266 	default:
3267 		BUG();
3268 	}
3269 
3270 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3271 
3272 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3273 		return -ENOENT;
3274 
3275 	if (!quiet) {
3276 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3277 			snprintf(buf, sizeof(buf), "%s:%s",
3278 				 ata_mode_string(xfer_mask),
3279 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3280 		else
3281 			snprintf(buf, sizeof(buf), "%s",
3282 				 ata_mode_string(xfer_mask));
3283 
3284 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3285 	}
3286 
3287 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3288 			    &dev->udma_mask);
3289 
3290 	return 0;
3291 }
3292 
3293 static int ata_dev_set_mode(struct ata_device *dev)
3294 {
3295 	struct ata_port *ap = dev->link->ap;
3296 	struct ata_eh_context *ehc = &dev->link->eh_context;
3297 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3298 	const char *dev_err_whine = "";
3299 	int ign_dev_err = 0;
3300 	unsigned int err_mask = 0;
3301 	int rc;
3302 
3303 	dev->flags &= ~ATA_DFLAG_PIO;
3304 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3305 		dev->flags |= ATA_DFLAG_PIO;
3306 
3307 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3308 		dev_err_whine = " (SET_XFERMODE skipped)";
3309 	else {
3310 		if (nosetxfer)
3311 			ata_dev_warn(dev,
3312 				     "NOSETXFER but PATA detected - can't "
3313 				     "skip SETXFER, might malfunction\n");
3314 		err_mask = ata_dev_set_xfermode(dev);
3315 	}
3316 
3317 	if (err_mask & ~AC_ERR_DEV)
3318 		goto fail;
3319 
3320 	/* revalidate */
3321 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3322 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3323 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3324 	if (rc)
3325 		return rc;
3326 
3327 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3328 		/* Old CFA may refuse this command, which is just fine */
3329 		if (ata_id_is_cfa(dev->id))
3330 			ign_dev_err = 1;
3331 		/* Catch several broken garbage emulations plus some pre
3332 		   ATA devices */
3333 		if (ata_id_major_version(dev->id) == 0 &&
3334 					dev->pio_mode <= XFER_PIO_2)
3335 			ign_dev_err = 1;
3336 		/* Some very old devices and some bad newer ones fail
3337 		   any kind of SET_XFERMODE request but support PIO0-2
3338 		   timings and no IORDY */
3339 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3340 			ign_dev_err = 1;
3341 	}
3342 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3343 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3344 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3345 	    dev->dma_mode == XFER_MW_DMA_0 &&
3346 	    (dev->id[63] >> 8) & 1)
3347 		ign_dev_err = 1;
3348 
3349 	/* if the device is actually configured correctly, ignore dev err */
3350 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3351 		ign_dev_err = 1;
3352 
3353 	if (err_mask & AC_ERR_DEV) {
3354 		if (!ign_dev_err)
3355 			goto fail;
3356 		else
3357 			dev_err_whine = " (device error ignored)";
3358 	}
3359 
3360 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3361 		dev->xfer_shift, (int)dev->xfer_mode);
3362 
3363 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3364 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3365 		ata_dev_info(dev, "configured for %s%s\n",
3366 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3367 			     dev_err_whine);
3368 
3369 	return 0;
3370 
3371  fail:
3372 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3373 	return -EIO;
3374 }
3375 
3376 /**
3377  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3378  *	@link: link on which timings will be programmed
3379  *	@r_failed_dev: out parameter for failed device
3380  *
3381  *	Standard implementation of the function used to tune and set
3382  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3383  *	ata_dev_set_mode() fails, pointer to the failing device is
3384  *	returned in @r_failed_dev.
3385  *
3386  *	LOCKING:
3387  *	PCI/etc. bus probe sem.
3388  *
3389  *	RETURNS:
3390  *	0 on success, negative errno otherwise
3391  */
3392 
3393 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3394 {
3395 	struct ata_port *ap = link->ap;
3396 	struct ata_device *dev;
3397 	int rc = 0, used_dma = 0, found = 0;
3398 
3399 	/* step 1: calculate xfer_mask */
3400 	ata_for_each_dev(dev, link, ENABLED) {
3401 		unsigned long pio_mask, dma_mask;
3402 		unsigned int mode_mask;
3403 
3404 		mode_mask = ATA_DMA_MASK_ATA;
3405 		if (dev->class == ATA_DEV_ATAPI)
3406 			mode_mask = ATA_DMA_MASK_ATAPI;
3407 		else if (ata_id_is_cfa(dev->id))
3408 			mode_mask = ATA_DMA_MASK_CFA;
3409 
3410 		ata_dev_xfermask(dev);
3411 		ata_force_xfermask(dev);
3412 
3413 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3414 
3415 		if (libata_dma_mask & mode_mask)
3416 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3417 						     dev->udma_mask);
3418 		else
3419 			dma_mask = 0;
3420 
3421 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3422 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3423 
3424 		found = 1;
3425 		if (ata_dma_enabled(dev))
3426 			used_dma = 1;
3427 	}
3428 	if (!found)
3429 		goto out;
3430 
3431 	/* step 2: always set host PIO timings */
3432 	ata_for_each_dev(dev, link, ENABLED) {
3433 		if (dev->pio_mode == 0xff) {
3434 			ata_dev_warn(dev, "no PIO support\n");
3435 			rc = -EINVAL;
3436 			goto out;
3437 		}
3438 
3439 		dev->xfer_mode = dev->pio_mode;
3440 		dev->xfer_shift = ATA_SHIFT_PIO;
3441 		if (ap->ops->set_piomode)
3442 			ap->ops->set_piomode(ap, dev);
3443 	}
3444 
3445 	/* step 3: set host DMA timings */
3446 	ata_for_each_dev(dev, link, ENABLED) {
3447 		if (!ata_dma_enabled(dev))
3448 			continue;
3449 
3450 		dev->xfer_mode = dev->dma_mode;
3451 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3452 		if (ap->ops->set_dmamode)
3453 			ap->ops->set_dmamode(ap, dev);
3454 	}
3455 
3456 	/* step 4: update devices' xfer mode */
3457 	ata_for_each_dev(dev, link, ENABLED) {
3458 		rc = ata_dev_set_mode(dev);
3459 		if (rc)
3460 			goto out;
3461 	}
3462 
3463 	/* Record simplex status. If we selected DMA then the other
3464 	 * host channels are not permitted to do so.
3465 	 */
3466 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3467 		ap->host->simplex_claimed = ap;
3468 
3469  out:
3470 	if (rc)
3471 		*r_failed_dev = dev;
3472 	return rc;
3473 }
3474 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3475 
3476 /**
3477  *	ata_wait_ready - wait for link to become ready
3478  *	@link: link to be waited on
3479  *	@deadline: deadline jiffies for the operation
3480  *	@check_ready: callback to check link readiness
3481  *
3482  *	Wait for @link to become ready.  @check_ready should return
3483  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3484  *	link doesn't seem to be occupied, other errno for other error
3485  *	conditions.
3486  *
3487  *	Transient -ENODEV conditions are allowed for
3488  *	ATA_TMOUT_FF_WAIT.
3489  *
3490  *	LOCKING:
3491  *	EH context.
3492  *
3493  *	RETURNS:
3494  *	0 if @link is ready before @deadline; otherwise, -errno.
3495  */
3496 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3497 		   int (*check_ready)(struct ata_link *link))
3498 {
3499 	unsigned long start = jiffies;
3500 	unsigned long nodev_deadline;
3501 	int warned = 0;
3502 
3503 	/* choose which 0xff timeout to use, read comment in libata.h */
3504 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3505 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3506 	else
3507 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3508 
3509 	/* Slave readiness can't be tested separately from master.  On
3510 	 * M/S emulation configuration, this function should be called
3511 	 * only on the master and it will handle both master and slave.
3512 	 */
3513 	WARN_ON(link == link->ap->slave_link);
3514 
3515 	if (time_after(nodev_deadline, deadline))
3516 		nodev_deadline = deadline;
3517 
3518 	while (1) {
3519 		unsigned long now = jiffies;
3520 		int ready, tmp;
3521 
3522 		ready = tmp = check_ready(link);
3523 		if (ready > 0)
3524 			return 0;
3525 
3526 		/*
3527 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3528 		 * is online.  Also, some SATA devices take a long
3529 		 * time to clear 0xff after reset.  Wait for
3530 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3531 		 * offline.
3532 		 *
3533 		 * Note that some PATA controllers (pata_ali) explode
3534 		 * if status register is read more than once when
3535 		 * there's no device attached.
3536 		 */
3537 		if (ready == -ENODEV) {
3538 			if (ata_link_online(link))
3539 				ready = 0;
3540 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3541 				 !ata_link_offline(link) &&
3542 				 time_before(now, nodev_deadline))
3543 				ready = 0;
3544 		}
3545 
3546 		if (ready)
3547 			return ready;
3548 		if (time_after(now, deadline))
3549 			return -EBUSY;
3550 
3551 		if (!warned && time_after(now, start + 5 * HZ) &&
3552 		    (deadline - now > 3 * HZ)) {
3553 			ata_link_warn(link,
3554 				"link is slow to respond, please be patient "
3555 				"(ready=%d)\n", tmp);
3556 			warned = 1;
3557 		}
3558 
3559 		ata_msleep(link->ap, 50);
3560 	}
3561 }
3562 
3563 /**
3564  *	ata_wait_after_reset - wait for link to become ready after reset
3565  *	@link: link to be waited on
3566  *	@deadline: deadline jiffies for the operation
3567  *	@check_ready: callback to check link readiness
3568  *
3569  *	Wait for @link to become ready after reset.
3570  *
3571  *	LOCKING:
3572  *	EH context.
3573  *
3574  *	RETURNS:
3575  *	0 if @link is ready before @deadline; otherwise, -errno.
3576  */
3577 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3578 				int (*check_ready)(struct ata_link *link))
3579 {
3580 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3581 
3582 	return ata_wait_ready(link, deadline, check_ready);
3583 }
3584 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3585 
3586 /**
3587  *	ata_std_prereset - prepare for reset
3588  *	@link: ATA link to be reset
3589  *	@deadline: deadline jiffies for the operation
3590  *
3591  *	@link is about to be reset.  Initialize it.  Failure from
3592  *	prereset makes libata abort whole reset sequence and give up
3593  *	that port, so prereset should be best-effort.  It does its
3594  *	best to prepare for reset sequence but if things go wrong, it
3595  *	should just whine, not fail.
3596  *
3597  *	LOCKING:
3598  *	Kernel thread context (may sleep)
3599  *
3600  *	RETURNS:
3601  *	0 on success, -errno otherwise.
3602  */
3603 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3604 {
3605 	struct ata_port *ap = link->ap;
3606 	struct ata_eh_context *ehc = &link->eh_context;
3607 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3608 	int rc;
3609 
3610 	/* if we're about to do hardreset, nothing more to do */
3611 	if (ehc->i.action & ATA_EH_HARDRESET)
3612 		return 0;
3613 
3614 	/* if SATA, resume link */
3615 	if (ap->flags & ATA_FLAG_SATA) {
3616 		rc = sata_link_resume(link, timing, deadline);
3617 		/* whine about phy resume failure but proceed */
3618 		if (rc && rc != -EOPNOTSUPP)
3619 			ata_link_warn(link,
3620 				      "failed to resume link for reset (errno=%d)\n",
3621 				      rc);
3622 	}
3623 
3624 	/* no point in trying softreset on offline link */
3625 	if (ata_phys_link_offline(link))
3626 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3627 
3628 	return 0;
3629 }
3630 EXPORT_SYMBOL_GPL(ata_std_prereset);
3631 
3632 /**
3633  *	sata_std_hardreset - COMRESET w/o waiting or classification
3634  *	@link: link to reset
3635  *	@class: resulting class of attached device
3636  *	@deadline: deadline jiffies for the operation
3637  *
3638  *	Standard SATA COMRESET w/o waiting or classification.
3639  *
3640  *	LOCKING:
3641  *	Kernel thread context (may sleep)
3642  *
3643  *	RETURNS:
3644  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3645  */
3646 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3647 		       unsigned long deadline)
3648 {
3649 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3650 	bool online;
3651 	int rc;
3652 
3653 	/* do hardreset */
3654 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3655 	return online ? -EAGAIN : rc;
3656 }
3657 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3658 
3659 /**
3660  *	ata_std_postreset - standard postreset callback
3661  *	@link: the target ata_link
3662  *	@classes: classes of attached devices
3663  *
3664  *	This function is invoked after a successful reset.  Note that
3665  *	the device might have been reset more than once using
3666  *	different reset methods before postreset is invoked.
3667  *
3668  *	LOCKING:
3669  *	Kernel thread context (may sleep)
3670  */
3671 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3672 {
3673 	u32 serror;
3674 
3675 	DPRINTK("ENTER\n");
3676 
3677 	/* reset complete, clear SError */
3678 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3679 		sata_scr_write(link, SCR_ERROR, serror);
3680 
3681 	/* print link status */
3682 	sata_print_link_status(link);
3683 
3684 	DPRINTK("EXIT\n");
3685 }
3686 EXPORT_SYMBOL_GPL(ata_std_postreset);
3687 
3688 /**
3689  *	ata_dev_same_device - Determine whether new ID matches configured device
3690  *	@dev: device to compare against
3691  *	@new_class: class of the new device
3692  *	@new_id: IDENTIFY page of the new device
3693  *
3694  *	Compare @new_class and @new_id against @dev and determine
3695  *	whether @dev is the device indicated by @new_class and
3696  *	@new_id.
3697  *
3698  *	LOCKING:
3699  *	None.
3700  *
3701  *	RETURNS:
3702  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3703  */
3704 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3705 			       const u16 *new_id)
3706 {
3707 	const u16 *old_id = dev->id;
3708 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3709 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3710 
3711 	if (dev->class != new_class) {
3712 		ata_dev_info(dev, "class mismatch %d != %d\n",
3713 			     dev->class, new_class);
3714 		return 0;
3715 	}
3716 
3717 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3718 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3719 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3720 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3721 
3722 	if (strcmp(model[0], model[1])) {
3723 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3724 			     model[0], model[1]);
3725 		return 0;
3726 	}
3727 
3728 	if (strcmp(serial[0], serial[1])) {
3729 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3730 			     serial[0], serial[1]);
3731 		return 0;
3732 	}
3733 
3734 	return 1;
3735 }
3736 
3737 /**
3738  *	ata_dev_reread_id - Re-read IDENTIFY data
3739  *	@dev: target ATA device
3740  *	@readid_flags: read ID flags
3741  *
3742  *	Re-read IDENTIFY page and make sure @dev is still attached to
3743  *	the port.
3744  *
3745  *	LOCKING:
3746  *	Kernel thread context (may sleep)
3747  *
3748  *	RETURNS:
3749  *	0 on success, negative errno otherwise
3750  */
3751 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3752 {
3753 	unsigned int class = dev->class;
3754 	u16 *id = (void *)dev->link->ap->sector_buf;
3755 	int rc;
3756 
3757 	/* read ID data */
3758 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3759 	if (rc)
3760 		return rc;
3761 
3762 	/* is the device still there? */
3763 	if (!ata_dev_same_device(dev, class, id))
3764 		return -ENODEV;
3765 
3766 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3767 	return 0;
3768 }
3769 
3770 /**
3771  *	ata_dev_revalidate - Revalidate ATA device
3772  *	@dev: device to revalidate
3773  *	@new_class: new class code
3774  *	@readid_flags: read ID flags
3775  *
3776  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3777  *	port and reconfigure it according to the new IDENTIFY page.
3778  *
3779  *	LOCKING:
3780  *	Kernel thread context (may sleep)
3781  *
3782  *	RETURNS:
3783  *	0 on success, negative errno otherwise
3784  */
3785 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3786 		       unsigned int readid_flags)
3787 {
3788 	u64 n_sectors = dev->n_sectors;
3789 	u64 n_native_sectors = dev->n_native_sectors;
3790 	int rc;
3791 
3792 	if (!ata_dev_enabled(dev))
3793 		return -ENODEV;
3794 
3795 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3796 	if (ata_class_enabled(new_class) &&
3797 	    new_class != ATA_DEV_ATA &&
3798 	    new_class != ATA_DEV_ATAPI &&
3799 	    new_class != ATA_DEV_ZAC &&
3800 	    new_class != ATA_DEV_SEMB) {
3801 		ata_dev_info(dev, "class mismatch %u != %u\n",
3802 			     dev->class, new_class);
3803 		rc = -ENODEV;
3804 		goto fail;
3805 	}
3806 
3807 	/* re-read ID */
3808 	rc = ata_dev_reread_id(dev, readid_flags);
3809 	if (rc)
3810 		goto fail;
3811 
3812 	/* configure device according to the new ID */
3813 	rc = ata_dev_configure(dev);
3814 	if (rc)
3815 		goto fail;
3816 
3817 	/* verify n_sectors hasn't changed */
3818 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3819 	    dev->n_sectors == n_sectors)
3820 		return 0;
3821 
3822 	/* n_sectors has changed */
3823 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3824 		     (unsigned long long)n_sectors,
3825 		     (unsigned long long)dev->n_sectors);
3826 
3827 	/*
3828 	 * Something could have caused HPA to be unlocked
3829 	 * involuntarily.  If n_native_sectors hasn't changed and the
3830 	 * new size matches it, keep the device.
3831 	 */
3832 	if (dev->n_native_sectors == n_native_sectors &&
3833 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3834 		ata_dev_warn(dev,
3835 			     "new n_sectors matches native, probably "
3836 			     "late HPA unlock, n_sectors updated\n");
3837 		/* use the larger n_sectors */
3838 		return 0;
3839 	}
3840 
3841 	/*
3842 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3843 	 * unlocking HPA in those cases.
3844 	 *
3845 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3846 	 */
3847 	if (dev->n_native_sectors == n_native_sectors &&
3848 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3849 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3850 		ata_dev_warn(dev,
3851 			     "old n_sectors matches native, probably "
3852 			     "late HPA lock, will try to unlock HPA\n");
3853 		/* try unlocking HPA */
3854 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3855 		rc = -EIO;
3856 	} else
3857 		rc = -ENODEV;
3858 
3859 	/* restore original n_[native_]sectors and fail */
3860 	dev->n_native_sectors = n_native_sectors;
3861 	dev->n_sectors = n_sectors;
3862  fail:
3863 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3864 	return rc;
3865 }
3866 
3867 struct ata_blacklist_entry {
3868 	const char *model_num;
3869 	const char *model_rev;
3870 	unsigned long horkage;
3871 };
3872 
3873 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3874 	/* Devices with DMA related problems under Linux */
3875 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3876 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3877 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3878 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3879 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3880 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3881 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3882 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3883 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3884 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3885 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3886 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3887 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3888 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3889 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3890 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3891 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3892 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3893 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3894 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3895 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3896 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3897 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3898 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3899 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3900 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3901 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3902 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3903 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3904 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3905 	/* Odd clown on sil3726/4726 PMPs */
3906 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3907 
3908 	/* Weird ATAPI devices */
3909 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3910 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3911 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3912 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3913 
3914 	/*
3915 	 * Causes silent data corruption with higher max sects.
3916 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3917 	 */
3918 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3919 
3920 	/*
3921 	 * These devices time out with higher max sects.
3922 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3923 	 */
3924 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3925 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3926 
3927 	/* Devices we expect to fail diagnostics */
3928 
3929 	/* Devices where NCQ should be avoided */
3930 	/* NCQ is slow */
3931 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3932 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3933 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3934 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3935 	/* NCQ is broken */
3936 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3937 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3938 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3939 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3940 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3941 
3942 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3943 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3944 						ATA_HORKAGE_FIRMWARE_WARN },
3945 
3946 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3947 						ATA_HORKAGE_FIRMWARE_WARN },
3948 
3949 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3950 						ATA_HORKAGE_FIRMWARE_WARN },
3951 
3952 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3953 						ATA_HORKAGE_FIRMWARE_WARN },
3954 
3955 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3956 	   the ST disks also have LPM issues */
3957 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3958 						ATA_HORKAGE_NOLPM, },
3959 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3960 
3961 	/* Blacklist entries taken from Silicon Image 3124/3132
3962 	   Windows driver .inf file - also several Linux problem reports */
3963 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3964 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3965 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3966 
3967 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3968 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3969 
3970 	/* Sandisk SD7/8/9s lock up hard on large trims */
3971 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3972 
3973 	/* devices which puke on READ_NATIVE_MAX */
3974 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3975 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3976 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3977 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3978 
3979 	/* this one allows HPA unlocking but fails IOs on the area */
3980 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3981 
3982 	/* Devices which report 1 sector over size HPA */
3983 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3984 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3985 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3986 
3987 	/* Devices which get the IVB wrong */
3988 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3989 	/* Maybe we should just blacklist TSSTcorp... */
3990 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3991 
3992 	/* Devices that do not need bridging limits applied */
3993 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3994 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3995 
3996 	/* Devices which aren't very happy with higher link speeds */
3997 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3998 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3999 
4000 	/*
4001 	 * Devices which choke on SETXFER.  Applies only if both the
4002 	 * device and controller are SATA.
4003 	 */
4004 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4005 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4006 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4007 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4008 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4009 
4010 	/* Crucial BX100 SSD 500GB has broken LPM support */
4011 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4012 
4013 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4014 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4015 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4016 						ATA_HORKAGE_NOLPM, },
4017 	/* 512GB MX100 with newer firmware has only LPM issues */
4018 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4019 						ATA_HORKAGE_NOLPM, },
4020 
4021 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4022 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4023 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4024 						ATA_HORKAGE_NOLPM, },
4025 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4026 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4027 						ATA_HORKAGE_NOLPM, },
4028 
4029 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4030 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4031 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4032 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4033 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4034 
4035 	/* devices that don't properly handle queued TRIM commands */
4036 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4037 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4038 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4039 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4040 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4041 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4042 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4043 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4044 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4045 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4046 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4047 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4048 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4049 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4050 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4051 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4052 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4053 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4054 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4055 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4056 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4057 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4058 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4059 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4060 
4061 	/* devices that don't properly handle TRIM commands */
4062 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4063 
4064 	/*
4065 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4066 	 * (Return Zero After Trim) flags in the ATA Command Set are
4067 	 * unreliable in the sense that they only define what happens if
4068 	 * the device successfully executed the DSM TRIM command. TRIM
4069 	 * is only advisory, however, and the device is free to silently
4070 	 * ignore all or parts of the request.
4071 	 *
4072 	 * Whitelist drives that are known to reliably return zeroes
4073 	 * after TRIM.
4074 	 */
4075 
4076 	/*
4077 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4078 	 * that model before whitelisting all other intel SSDs.
4079 	 */
4080 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4081 
4082 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4083 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4084 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4085 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4086 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4087 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4088 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4089 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4090 
4091 	/*
4092 	 * Some WD SATA-I drives spin up and down erratically when the link
4093 	 * is put into the slumber mode.  We don't have full list of the
4094 	 * affected devices.  Disable LPM if the device matches one of the
4095 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4096 	 * lost too.
4097 	 *
4098 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4099 	 */
4100 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4101 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4102 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4103 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4104 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4105 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4106 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4107 
4108 	/* End Marker */
4109 	{ }
4110 };
4111 
4112 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4113 {
4114 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4115 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4116 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4117 
4118 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4119 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4120 
4121 	while (ad->model_num) {
4122 		if (glob_match(ad->model_num, model_num)) {
4123 			if (ad->model_rev == NULL)
4124 				return ad->horkage;
4125 			if (glob_match(ad->model_rev, model_rev))
4126 				return ad->horkage;
4127 		}
4128 		ad++;
4129 	}
4130 	return 0;
4131 }
4132 
4133 static int ata_dma_blacklisted(const struct ata_device *dev)
4134 {
4135 	/* We don't support polling DMA.
4136 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4137 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4138 	 */
4139 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4140 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4141 		return 1;
4142 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4143 }
4144 
4145 /**
4146  *	ata_is_40wire		-	check drive side detection
4147  *	@dev: device
4148  *
4149  *	Perform drive side detection decoding, allowing for device vendors
4150  *	who can't follow the documentation.
4151  */
4152 
4153 static int ata_is_40wire(struct ata_device *dev)
4154 {
4155 	if (dev->horkage & ATA_HORKAGE_IVB)
4156 		return ata_drive_40wire_relaxed(dev->id);
4157 	return ata_drive_40wire(dev->id);
4158 }
4159 
4160 /**
4161  *	cable_is_40wire		-	40/80/SATA decider
4162  *	@ap: port to consider
4163  *
4164  *	This function encapsulates the policy for speed management
4165  *	in one place. At the moment we don't cache the result but
4166  *	there is a good case for setting ap->cbl to the result when
4167  *	we are called with unknown cables (and figuring out if it
4168  *	impacts hotplug at all).
4169  *
4170  *	Return 1 if the cable appears to be 40 wire.
4171  */
4172 
4173 static int cable_is_40wire(struct ata_port *ap)
4174 {
4175 	struct ata_link *link;
4176 	struct ata_device *dev;
4177 
4178 	/* If the controller thinks we are 40 wire, we are. */
4179 	if (ap->cbl == ATA_CBL_PATA40)
4180 		return 1;
4181 
4182 	/* If the controller thinks we are 80 wire, we are. */
4183 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4184 		return 0;
4185 
4186 	/* If the system is known to be 40 wire short cable (eg
4187 	 * laptop), then we allow 80 wire modes even if the drive
4188 	 * isn't sure.
4189 	 */
4190 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4191 		return 0;
4192 
4193 	/* If the controller doesn't know, we scan.
4194 	 *
4195 	 * Note: We look for all 40 wire detects at this point.  Any
4196 	 *       80 wire detect is taken to be 80 wire cable because
4197 	 * - in many setups only the one drive (slave if present) will
4198 	 *   give a valid detect
4199 	 * - if you have a non detect capable drive you don't want it
4200 	 *   to colour the choice
4201 	 */
4202 	ata_for_each_link(link, ap, EDGE) {
4203 		ata_for_each_dev(dev, link, ENABLED) {
4204 			if (!ata_is_40wire(dev))
4205 				return 0;
4206 		}
4207 	}
4208 	return 1;
4209 }
4210 
4211 /**
4212  *	ata_dev_xfermask - Compute supported xfermask of the given device
4213  *	@dev: Device to compute xfermask for
4214  *
4215  *	Compute supported xfermask of @dev and store it in
4216  *	dev->*_mask.  This function is responsible for applying all
4217  *	known limits including host controller limits, device
4218  *	blacklist, etc...
4219  *
4220  *	LOCKING:
4221  *	None.
4222  */
4223 static void ata_dev_xfermask(struct ata_device *dev)
4224 {
4225 	struct ata_link *link = dev->link;
4226 	struct ata_port *ap = link->ap;
4227 	struct ata_host *host = ap->host;
4228 	unsigned long xfer_mask;
4229 
4230 	/* controller modes available */
4231 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4232 				      ap->mwdma_mask, ap->udma_mask);
4233 
4234 	/* drive modes available */
4235 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4236 				       dev->mwdma_mask, dev->udma_mask);
4237 	xfer_mask &= ata_id_xfermask(dev->id);
4238 
4239 	/*
4240 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4241 	 *	cable
4242 	 */
4243 	if (ata_dev_pair(dev)) {
4244 		/* No PIO5 or PIO6 */
4245 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4246 		/* No MWDMA3 or MWDMA 4 */
4247 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4248 	}
4249 
4250 	if (ata_dma_blacklisted(dev)) {
4251 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4252 		ata_dev_warn(dev,
4253 			     "device is on DMA blacklist, disabling DMA\n");
4254 	}
4255 
4256 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4257 	    host->simplex_claimed && host->simplex_claimed != ap) {
4258 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4259 		ata_dev_warn(dev,
4260 			     "simplex DMA is claimed by other device, disabling DMA\n");
4261 	}
4262 
4263 	if (ap->flags & ATA_FLAG_NO_IORDY)
4264 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4265 
4266 	if (ap->ops->mode_filter)
4267 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4268 
4269 	/* Apply cable rule here.  Don't apply it early because when
4270 	 * we handle hot plug the cable type can itself change.
4271 	 * Check this last so that we know if the transfer rate was
4272 	 * solely limited by the cable.
4273 	 * Unknown or 80 wire cables reported host side are checked
4274 	 * drive side as well. Cases where we know a 40wire cable
4275 	 * is used safely for 80 are not checked here.
4276 	 */
4277 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4278 		/* UDMA/44 or higher would be available */
4279 		if (cable_is_40wire(ap)) {
4280 			ata_dev_warn(dev,
4281 				     "limited to UDMA/33 due to 40-wire cable\n");
4282 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4283 		}
4284 
4285 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4286 			    &dev->mwdma_mask, &dev->udma_mask);
4287 }
4288 
4289 /**
4290  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4291  *	@dev: Device to which command will be sent
4292  *
4293  *	Issue SET FEATURES - XFER MODE command to device @dev
4294  *	on port @ap.
4295  *
4296  *	LOCKING:
4297  *	PCI/etc. bus probe sem.
4298  *
4299  *	RETURNS:
4300  *	0 on success, AC_ERR_* mask otherwise.
4301  */
4302 
4303 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4304 {
4305 	struct ata_taskfile tf;
4306 	unsigned int err_mask;
4307 
4308 	/* set up set-features taskfile */
4309 	DPRINTK("set features - xfer mode\n");
4310 
4311 	/* Some controllers and ATAPI devices show flaky interrupt
4312 	 * behavior after setting xfer mode.  Use polling instead.
4313 	 */
4314 	ata_tf_init(dev, &tf);
4315 	tf.command = ATA_CMD_SET_FEATURES;
4316 	tf.feature = SETFEATURES_XFER;
4317 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4318 	tf.protocol = ATA_PROT_NODATA;
4319 	/* If we are using IORDY we must send the mode setting command */
4320 	if (ata_pio_need_iordy(dev))
4321 		tf.nsect = dev->xfer_mode;
4322 	/* If the device has IORDY and the controller does not - turn it off */
4323  	else if (ata_id_has_iordy(dev->id))
4324 		tf.nsect = 0x01;
4325 	else /* In the ancient relic department - skip all of this */
4326 		return 0;
4327 
4328 	/* On some disks, this command causes spin-up, so we need longer timeout */
4329 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4330 
4331 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4332 	return err_mask;
4333 }
4334 
4335 /**
4336  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4337  *	@dev: Device to which command will be sent
4338  *	@enable: Whether to enable or disable the feature
4339  *	@feature: The sector count represents the feature to set
4340  *
4341  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4342  *	on port @ap with sector count
4343  *
4344  *	LOCKING:
4345  *	PCI/etc. bus probe sem.
4346  *
4347  *	RETURNS:
4348  *	0 on success, AC_ERR_* mask otherwise.
4349  */
4350 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4351 {
4352 	struct ata_taskfile tf;
4353 	unsigned int err_mask;
4354 	unsigned long timeout = 0;
4355 
4356 	/* set up set-features taskfile */
4357 	DPRINTK("set features - SATA features\n");
4358 
4359 	ata_tf_init(dev, &tf);
4360 	tf.command = ATA_CMD_SET_FEATURES;
4361 	tf.feature = enable;
4362 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4363 	tf.protocol = ATA_PROT_NODATA;
4364 	tf.nsect = feature;
4365 
4366 	if (enable == SETFEATURES_SPINUP)
4367 		timeout = ata_probe_timeout ?
4368 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4369 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4370 
4371 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4372 	return err_mask;
4373 }
4374 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4375 
4376 /**
4377  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4378  *	@dev: Device to which command will be sent
4379  *	@heads: Number of heads (taskfile parameter)
4380  *	@sectors: Number of sectors (taskfile parameter)
4381  *
4382  *	LOCKING:
4383  *	Kernel thread context (may sleep)
4384  *
4385  *	RETURNS:
4386  *	0 on success, AC_ERR_* mask otherwise.
4387  */
4388 static unsigned int ata_dev_init_params(struct ata_device *dev,
4389 					u16 heads, u16 sectors)
4390 {
4391 	struct ata_taskfile tf;
4392 	unsigned int err_mask;
4393 
4394 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4395 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4396 		return AC_ERR_INVALID;
4397 
4398 	/* set up init dev params taskfile */
4399 	DPRINTK("init dev params \n");
4400 
4401 	ata_tf_init(dev, &tf);
4402 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4403 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4404 	tf.protocol = ATA_PROT_NODATA;
4405 	tf.nsect = sectors;
4406 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4407 
4408 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4409 	/* A clean abort indicates an original or just out of spec drive
4410 	   and we should continue as we issue the setup based on the
4411 	   drive reported working geometry */
4412 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4413 		err_mask = 0;
4414 
4415 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4416 	return err_mask;
4417 }
4418 
4419 /**
4420  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4421  *	@qc: Metadata associated with taskfile to check
4422  *
4423  *	Allow low-level driver to filter ATA PACKET commands, returning
4424  *	a status indicating whether or not it is OK to use DMA for the
4425  *	supplied PACKET command.
4426  *
4427  *	LOCKING:
4428  *	spin_lock_irqsave(host lock)
4429  *
4430  *	RETURNS: 0 when ATAPI DMA can be used
4431  *               nonzero otherwise
4432  */
4433 int atapi_check_dma(struct ata_queued_cmd *qc)
4434 {
4435 	struct ata_port *ap = qc->ap;
4436 
4437 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4438 	 * few ATAPI devices choke on such DMA requests.
4439 	 */
4440 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4441 	    unlikely(qc->nbytes & 15))
4442 		return 1;
4443 
4444 	if (ap->ops->check_atapi_dma)
4445 		return ap->ops->check_atapi_dma(qc);
4446 
4447 	return 0;
4448 }
4449 
4450 /**
4451  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4452  *	@qc: ATA command in question
4453  *
4454  *	Non-NCQ commands cannot run with any other command, NCQ or
4455  *	not.  As upper layer only knows the queue depth, we are
4456  *	responsible for maintaining exclusion.  This function checks
4457  *	whether a new command @qc can be issued.
4458  *
4459  *	LOCKING:
4460  *	spin_lock_irqsave(host lock)
4461  *
4462  *	RETURNS:
4463  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4464  */
4465 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4466 {
4467 	struct ata_link *link = qc->dev->link;
4468 
4469 	if (ata_is_ncq(qc->tf.protocol)) {
4470 		if (!ata_tag_valid(link->active_tag))
4471 			return 0;
4472 	} else {
4473 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4474 			return 0;
4475 	}
4476 
4477 	return ATA_DEFER_LINK;
4478 }
4479 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4480 
4481 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4482 {
4483 	return AC_ERR_OK;
4484 }
4485 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4486 
4487 /**
4488  *	ata_sg_init - Associate command with scatter-gather table.
4489  *	@qc: Command to be associated
4490  *	@sg: Scatter-gather table.
4491  *	@n_elem: Number of elements in s/g table.
4492  *
4493  *	Initialize the data-related elements of queued_cmd @qc
4494  *	to point to a scatter-gather table @sg, containing @n_elem
4495  *	elements.
4496  *
4497  *	LOCKING:
4498  *	spin_lock_irqsave(host lock)
4499  */
4500 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4501 		 unsigned int n_elem)
4502 {
4503 	qc->sg = sg;
4504 	qc->n_elem = n_elem;
4505 	qc->cursg = qc->sg;
4506 }
4507 
4508 #ifdef CONFIG_HAS_DMA
4509 
4510 /**
4511  *	ata_sg_clean - Unmap DMA memory associated with command
4512  *	@qc: Command containing DMA memory to be released
4513  *
4514  *	Unmap all mapped DMA memory associated with this command.
4515  *
4516  *	LOCKING:
4517  *	spin_lock_irqsave(host lock)
4518  */
4519 static void ata_sg_clean(struct ata_queued_cmd *qc)
4520 {
4521 	struct ata_port *ap = qc->ap;
4522 	struct scatterlist *sg = qc->sg;
4523 	int dir = qc->dma_dir;
4524 
4525 	WARN_ON_ONCE(sg == NULL);
4526 
4527 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4528 
4529 	if (qc->n_elem)
4530 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4531 
4532 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4533 	qc->sg = NULL;
4534 }
4535 
4536 /**
4537  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4538  *	@qc: Command with scatter-gather table to be mapped.
4539  *
4540  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4541  *
4542  *	LOCKING:
4543  *	spin_lock_irqsave(host lock)
4544  *
4545  *	RETURNS:
4546  *	Zero on success, negative on error.
4547  *
4548  */
4549 static int ata_sg_setup(struct ata_queued_cmd *qc)
4550 {
4551 	struct ata_port *ap = qc->ap;
4552 	unsigned int n_elem;
4553 
4554 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4555 
4556 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4557 	if (n_elem < 1)
4558 		return -1;
4559 
4560 	VPRINTK("%d sg elements mapped\n", n_elem);
4561 	qc->orig_n_elem = qc->n_elem;
4562 	qc->n_elem = n_elem;
4563 	qc->flags |= ATA_QCFLAG_DMAMAP;
4564 
4565 	return 0;
4566 }
4567 
4568 #else /* !CONFIG_HAS_DMA */
4569 
4570 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4571 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4572 
4573 #endif /* !CONFIG_HAS_DMA */
4574 
4575 /**
4576  *	swap_buf_le16 - swap halves of 16-bit words in place
4577  *	@buf:  Buffer to swap
4578  *	@buf_words:  Number of 16-bit words in buffer.
4579  *
4580  *	Swap halves of 16-bit words if needed to convert from
4581  *	little-endian byte order to native cpu byte order, or
4582  *	vice-versa.
4583  *
4584  *	LOCKING:
4585  *	Inherited from caller.
4586  */
4587 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4588 {
4589 #ifdef __BIG_ENDIAN
4590 	unsigned int i;
4591 
4592 	for (i = 0; i < buf_words; i++)
4593 		buf[i] = le16_to_cpu(buf[i]);
4594 #endif /* __BIG_ENDIAN */
4595 }
4596 
4597 /**
4598  *	ata_qc_new_init - Request an available ATA command, and initialize it
4599  *	@dev: Device from whom we request an available command structure
4600  *	@tag: tag
4601  *
4602  *	LOCKING:
4603  *	None.
4604  */
4605 
4606 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4607 {
4608 	struct ata_port *ap = dev->link->ap;
4609 	struct ata_queued_cmd *qc;
4610 
4611 	/* no command while frozen */
4612 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4613 		return NULL;
4614 
4615 	/* libsas case */
4616 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4617 		tag = ata_sas_allocate_tag(ap);
4618 		if (tag < 0)
4619 			return NULL;
4620 	}
4621 
4622 	qc = __ata_qc_from_tag(ap, tag);
4623 	qc->tag = qc->hw_tag = tag;
4624 	qc->scsicmd = NULL;
4625 	qc->ap = ap;
4626 	qc->dev = dev;
4627 
4628 	ata_qc_reinit(qc);
4629 
4630 	return qc;
4631 }
4632 
4633 /**
4634  *	ata_qc_free - free unused ata_queued_cmd
4635  *	@qc: Command to complete
4636  *
4637  *	Designed to free unused ata_queued_cmd object
4638  *	in case something prevents using it.
4639  *
4640  *	LOCKING:
4641  *	spin_lock_irqsave(host lock)
4642  */
4643 void ata_qc_free(struct ata_queued_cmd *qc)
4644 {
4645 	struct ata_port *ap;
4646 	unsigned int tag;
4647 
4648 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4649 	ap = qc->ap;
4650 
4651 	qc->flags = 0;
4652 	tag = qc->tag;
4653 	if (ata_tag_valid(tag)) {
4654 		qc->tag = ATA_TAG_POISON;
4655 		if (ap->flags & ATA_FLAG_SAS_HOST)
4656 			ata_sas_free_tag(tag, ap);
4657 	}
4658 }
4659 
4660 void __ata_qc_complete(struct ata_queued_cmd *qc)
4661 {
4662 	struct ata_port *ap;
4663 	struct ata_link *link;
4664 
4665 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4666 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4667 	ap = qc->ap;
4668 	link = qc->dev->link;
4669 
4670 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4671 		ata_sg_clean(qc);
4672 
4673 	/* command should be marked inactive atomically with qc completion */
4674 	if (ata_is_ncq(qc->tf.protocol)) {
4675 		link->sactive &= ~(1 << qc->hw_tag);
4676 		if (!link->sactive)
4677 			ap->nr_active_links--;
4678 	} else {
4679 		link->active_tag = ATA_TAG_POISON;
4680 		ap->nr_active_links--;
4681 	}
4682 
4683 	/* clear exclusive status */
4684 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4685 		     ap->excl_link == link))
4686 		ap->excl_link = NULL;
4687 
4688 	/* atapi: mark qc as inactive to prevent the interrupt handler
4689 	 * from completing the command twice later, before the error handler
4690 	 * is called. (when rc != 0 and atapi request sense is needed)
4691 	 */
4692 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4693 	ap->qc_active &= ~(1ULL << qc->tag);
4694 
4695 	/* call completion callback */
4696 	qc->complete_fn(qc);
4697 }
4698 
4699 static void fill_result_tf(struct ata_queued_cmd *qc)
4700 {
4701 	struct ata_port *ap = qc->ap;
4702 
4703 	qc->result_tf.flags = qc->tf.flags;
4704 	ap->ops->qc_fill_rtf(qc);
4705 }
4706 
4707 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4708 {
4709 	struct ata_device *dev = qc->dev;
4710 
4711 	if (!ata_is_data(qc->tf.protocol))
4712 		return;
4713 
4714 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4715 		return;
4716 
4717 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4718 }
4719 
4720 /**
4721  *	ata_qc_complete - Complete an active ATA command
4722  *	@qc: Command to complete
4723  *
4724  *	Indicate to the mid and upper layers that an ATA command has
4725  *	completed, with either an ok or not-ok status.
4726  *
4727  *	Refrain from calling this function multiple times when
4728  *	successfully completing multiple NCQ commands.
4729  *	ata_qc_complete_multiple() should be used instead, which will
4730  *	properly update IRQ expect state.
4731  *
4732  *	LOCKING:
4733  *	spin_lock_irqsave(host lock)
4734  */
4735 void ata_qc_complete(struct ata_queued_cmd *qc)
4736 {
4737 	struct ata_port *ap = qc->ap;
4738 
4739 	/* Trigger the LED (if available) */
4740 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4741 
4742 	/* XXX: New EH and old EH use different mechanisms to
4743 	 * synchronize EH with regular execution path.
4744 	 *
4745 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4746 	 * Normal execution path is responsible for not accessing a
4747 	 * failed qc.  libata core enforces the rule by returning NULL
4748 	 * from ata_qc_from_tag() for failed qcs.
4749 	 *
4750 	 * Old EH depends on ata_qc_complete() nullifying completion
4751 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4752 	 * not synchronize with interrupt handler.  Only PIO task is
4753 	 * taken care of.
4754 	 */
4755 	if (ap->ops->error_handler) {
4756 		struct ata_device *dev = qc->dev;
4757 		struct ata_eh_info *ehi = &dev->link->eh_info;
4758 
4759 		if (unlikely(qc->err_mask))
4760 			qc->flags |= ATA_QCFLAG_FAILED;
4761 
4762 		/*
4763 		 * Finish internal commands without any further processing
4764 		 * and always with the result TF filled.
4765 		 */
4766 		if (unlikely(ata_tag_internal(qc->tag))) {
4767 			fill_result_tf(qc);
4768 			trace_ata_qc_complete_internal(qc);
4769 			__ata_qc_complete(qc);
4770 			return;
4771 		}
4772 
4773 		/*
4774 		 * Non-internal qc has failed.  Fill the result TF and
4775 		 * summon EH.
4776 		 */
4777 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4778 			fill_result_tf(qc);
4779 			trace_ata_qc_complete_failed(qc);
4780 			ata_qc_schedule_eh(qc);
4781 			return;
4782 		}
4783 
4784 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4785 
4786 		/* read result TF if requested */
4787 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4788 			fill_result_tf(qc);
4789 
4790 		trace_ata_qc_complete_done(qc);
4791 		/* Some commands need post-processing after successful
4792 		 * completion.
4793 		 */
4794 		switch (qc->tf.command) {
4795 		case ATA_CMD_SET_FEATURES:
4796 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4797 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4798 			    qc->tf.feature != SETFEATURES_RA_ON &&
4799 			    qc->tf.feature != SETFEATURES_RA_OFF)
4800 				break;
4801 			fallthrough;
4802 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4803 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4804 			/* revalidate device */
4805 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4806 			ata_port_schedule_eh(ap);
4807 			break;
4808 
4809 		case ATA_CMD_SLEEP:
4810 			dev->flags |= ATA_DFLAG_SLEEPING;
4811 			break;
4812 		}
4813 
4814 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4815 			ata_verify_xfer(qc);
4816 
4817 		__ata_qc_complete(qc);
4818 	} else {
4819 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4820 			return;
4821 
4822 		/* read result TF if failed or requested */
4823 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4824 			fill_result_tf(qc);
4825 
4826 		__ata_qc_complete(qc);
4827 	}
4828 }
4829 EXPORT_SYMBOL_GPL(ata_qc_complete);
4830 
4831 /**
4832  *	ata_qc_get_active - get bitmask of active qcs
4833  *	@ap: port in question
4834  *
4835  *	LOCKING:
4836  *	spin_lock_irqsave(host lock)
4837  *
4838  *	RETURNS:
4839  *	Bitmask of active qcs
4840  */
4841 u64 ata_qc_get_active(struct ata_port *ap)
4842 {
4843 	u64 qc_active = ap->qc_active;
4844 
4845 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4846 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4847 		qc_active |= (1 << 0);
4848 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4849 	}
4850 
4851 	return qc_active;
4852 }
4853 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4854 
4855 /**
4856  *	ata_qc_issue - issue taskfile to device
4857  *	@qc: command to issue to device
4858  *
4859  *	Prepare an ATA command to submission to device.
4860  *	This includes mapping the data into a DMA-able
4861  *	area, filling in the S/G table, and finally
4862  *	writing the taskfile to hardware, starting the command.
4863  *
4864  *	LOCKING:
4865  *	spin_lock_irqsave(host lock)
4866  */
4867 void ata_qc_issue(struct ata_queued_cmd *qc)
4868 {
4869 	struct ata_port *ap = qc->ap;
4870 	struct ata_link *link = qc->dev->link;
4871 	u8 prot = qc->tf.protocol;
4872 
4873 	/* Make sure only one non-NCQ command is outstanding.  The
4874 	 * check is skipped for old EH because it reuses active qc to
4875 	 * request ATAPI sense.
4876 	 */
4877 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4878 
4879 	if (ata_is_ncq(prot)) {
4880 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4881 
4882 		if (!link->sactive)
4883 			ap->nr_active_links++;
4884 		link->sactive |= 1 << qc->hw_tag;
4885 	} else {
4886 		WARN_ON_ONCE(link->sactive);
4887 
4888 		ap->nr_active_links++;
4889 		link->active_tag = qc->tag;
4890 	}
4891 
4892 	qc->flags |= ATA_QCFLAG_ACTIVE;
4893 	ap->qc_active |= 1ULL << qc->tag;
4894 
4895 	/*
4896 	 * We guarantee to LLDs that they will have at least one
4897 	 * non-zero sg if the command is a data command.
4898 	 */
4899 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4900 		goto sys_err;
4901 
4902 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4903 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4904 		if (ata_sg_setup(qc))
4905 			goto sys_err;
4906 
4907 	/* if device is sleeping, schedule reset and abort the link */
4908 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4909 		link->eh_info.action |= ATA_EH_RESET;
4910 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4911 		ata_link_abort(link);
4912 		return;
4913 	}
4914 
4915 	qc->err_mask |= ap->ops->qc_prep(qc);
4916 	if (unlikely(qc->err_mask))
4917 		goto err;
4918 	trace_ata_qc_issue(qc);
4919 	qc->err_mask |= ap->ops->qc_issue(qc);
4920 	if (unlikely(qc->err_mask))
4921 		goto err;
4922 	return;
4923 
4924 sys_err:
4925 	qc->err_mask |= AC_ERR_SYSTEM;
4926 err:
4927 	ata_qc_complete(qc);
4928 }
4929 
4930 /**
4931  *	ata_phys_link_online - test whether the given link is online
4932  *	@link: ATA link to test
4933  *
4934  *	Test whether @link is online.  Note that this function returns
4935  *	0 if online status of @link cannot be obtained, so
4936  *	ata_link_online(link) != !ata_link_offline(link).
4937  *
4938  *	LOCKING:
4939  *	None.
4940  *
4941  *	RETURNS:
4942  *	True if the port online status is available and online.
4943  */
4944 bool ata_phys_link_online(struct ata_link *link)
4945 {
4946 	u32 sstatus;
4947 
4948 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4949 	    ata_sstatus_online(sstatus))
4950 		return true;
4951 	return false;
4952 }
4953 
4954 /**
4955  *	ata_phys_link_offline - test whether the given link is offline
4956  *	@link: ATA link to test
4957  *
4958  *	Test whether @link is offline.  Note that this function
4959  *	returns 0 if offline status of @link cannot be obtained, so
4960  *	ata_link_online(link) != !ata_link_offline(link).
4961  *
4962  *	LOCKING:
4963  *	None.
4964  *
4965  *	RETURNS:
4966  *	True if the port offline status is available and offline.
4967  */
4968 bool ata_phys_link_offline(struct ata_link *link)
4969 {
4970 	u32 sstatus;
4971 
4972 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4973 	    !ata_sstatus_online(sstatus))
4974 		return true;
4975 	return false;
4976 }
4977 
4978 /**
4979  *	ata_link_online - test whether the given link is online
4980  *	@link: ATA link to test
4981  *
4982  *	Test whether @link is online.  This is identical to
4983  *	ata_phys_link_online() when there's no slave link.  When
4984  *	there's a slave link, this function should only be called on
4985  *	the master link and will return true if any of M/S links is
4986  *	online.
4987  *
4988  *	LOCKING:
4989  *	None.
4990  *
4991  *	RETURNS:
4992  *	True if the port online status is available and online.
4993  */
4994 bool ata_link_online(struct ata_link *link)
4995 {
4996 	struct ata_link *slave = link->ap->slave_link;
4997 
4998 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4999 
5000 	return ata_phys_link_online(link) ||
5001 		(slave && ata_phys_link_online(slave));
5002 }
5003 EXPORT_SYMBOL_GPL(ata_link_online);
5004 
5005 /**
5006  *	ata_link_offline - test whether the given link is offline
5007  *	@link: ATA link to test
5008  *
5009  *	Test whether @link is offline.  This is identical to
5010  *	ata_phys_link_offline() when there's no slave link.  When
5011  *	there's a slave link, this function should only be called on
5012  *	the master link and will return true if both M/S links are
5013  *	offline.
5014  *
5015  *	LOCKING:
5016  *	None.
5017  *
5018  *	RETURNS:
5019  *	True if the port offline status is available and offline.
5020  */
5021 bool ata_link_offline(struct ata_link *link)
5022 {
5023 	struct ata_link *slave = link->ap->slave_link;
5024 
5025 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5026 
5027 	return ata_phys_link_offline(link) &&
5028 		(!slave || ata_phys_link_offline(slave));
5029 }
5030 EXPORT_SYMBOL_GPL(ata_link_offline);
5031 
5032 #ifdef CONFIG_PM
5033 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5034 				unsigned int action, unsigned int ehi_flags,
5035 				bool async)
5036 {
5037 	struct ata_link *link;
5038 	unsigned long flags;
5039 
5040 	/* Previous resume operation might still be in
5041 	 * progress.  Wait for PM_PENDING to clear.
5042 	 */
5043 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5044 		ata_port_wait_eh(ap);
5045 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5046 	}
5047 
5048 	/* request PM ops to EH */
5049 	spin_lock_irqsave(ap->lock, flags);
5050 
5051 	ap->pm_mesg = mesg;
5052 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5053 	ata_for_each_link(link, ap, HOST_FIRST) {
5054 		link->eh_info.action |= action;
5055 		link->eh_info.flags |= ehi_flags;
5056 	}
5057 
5058 	ata_port_schedule_eh(ap);
5059 
5060 	spin_unlock_irqrestore(ap->lock, flags);
5061 
5062 	if (!async) {
5063 		ata_port_wait_eh(ap);
5064 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5065 	}
5066 }
5067 
5068 /*
5069  * On some hardware, device fails to respond after spun down for suspend.  As
5070  * the device won't be used before being resumed, we don't need to touch the
5071  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5072  *
5073  * http://thread.gmane.org/gmane.linux.ide/46764
5074  */
5075 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5076 						 | ATA_EHI_NO_AUTOPSY
5077 						 | ATA_EHI_NO_RECOVERY;
5078 
5079 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5080 {
5081 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5082 }
5083 
5084 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5085 {
5086 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5087 }
5088 
5089 static int ata_port_pm_suspend(struct device *dev)
5090 {
5091 	struct ata_port *ap = to_ata_port(dev);
5092 
5093 	if (pm_runtime_suspended(dev))
5094 		return 0;
5095 
5096 	ata_port_suspend(ap, PMSG_SUSPEND);
5097 	return 0;
5098 }
5099 
5100 static int ata_port_pm_freeze(struct device *dev)
5101 {
5102 	struct ata_port *ap = to_ata_port(dev);
5103 
5104 	if (pm_runtime_suspended(dev))
5105 		return 0;
5106 
5107 	ata_port_suspend(ap, PMSG_FREEZE);
5108 	return 0;
5109 }
5110 
5111 static int ata_port_pm_poweroff(struct device *dev)
5112 {
5113 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5114 	return 0;
5115 }
5116 
5117 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5118 						| ATA_EHI_QUIET;
5119 
5120 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5121 {
5122 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5123 }
5124 
5125 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5126 {
5127 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5128 }
5129 
5130 static int ata_port_pm_resume(struct device *dev)
5131 {
5132 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5133 	pm_runtime_disable(dev);
5134 	pm_runtime_set_active(dev);
5135 	pm_runtime_enable(dev);
5136 	return 0;
5137 }
5138 
5139 /*
5140  * For ODDs, the upper layer will poll for media change every few seconds,
5141  * which will make it enter and leave suspend state every few seconds. And
5142  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5143  * is very little and the ODD may malfunction after constantly being reset.
5144  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5145  * ODD is attached to the port.
5146  */
5147 static int ata_port_runtime_idle(struct device *dev)
5148 {
5149 	struct ata_port *ap = to_ata_port(dev);
5150 	struct ata_link *link;
5151 	struct ata_device *adev;
5152 
5153 	ata_for_each_link(link, ap, HOST_FIRST) {
5154 		ata_for_each_dev(adev, link, ENABLED)
5155 			if (adev->class == ATA_DEV_ATAPI &&
5156 			    !zpodd_dev_enabled(adev))
5157 				return -EBUSY;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static int ata_port_runtime_suspend(struct device *dev)
5164 {
5165 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5166 	return 0;
5167 }
5168 
5169 static int ata_port_runtime_resume(struct device *dev)
5170 {
5171 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5172 	return 0;
5173 }
5174 
5175 static const struct dev_pm_ops ata_port_pm_ops = {
5176 	.suspend = ata_port_pm_suspend,
5177 	.resume = ata_port_pm_resume,
5178 	.freeze = ata_port_pm_freeze,
5179 	.thaw = ata_port_pm_resume,
5180 	.poweroff = ata_port_pm_poweroff,
5181 	.restore = ata_port_pm_resume,
5182 
5183 	.runtime_suspend = ata_port_runtime_suspend,
5184 	.runtime_resume = ata_port_runtime_resume,
5185 	.runtime_idle = ata_port_runtime_idle,
5186 };
5187 
5188 /* sas ports don't participate in pm runtime management of ata_ports,
5189  * and need to resume ata devices at the domain level, not the per-port
5190  * level. sas suspend/resume is async to allow parallel port recovery
5191  * since sas has multiple ata_port instances per Scsi_Host.
5192  */
5193 void ata_sas_port_suspend(struct ata_port *ap)
5194 {
5195 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5196 }
5197 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5198 
5199 void ata_sas_port_resume(struct ata_port *ap)
5200 {
5201 	ata_port_resume_async(ap, PMSG_RESUME);
5202 }
5203 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5204 
5205 /**
5206  *	ata_host_suspend - suspend host
5207  *	@host: host to suspend
5208  *	@mesg: PM message
5209  *
5210  *	Suspend @host.  Actual operation is performed by port suspend.
5211  */
5212 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5213 {
5214 	host->dev->power.power_state = mesg;
5215 	return 0;
5216 }
5217 EXPORT_SYMBOL_GPL(ata_host_suspend);
5218 
5219 /**
5220  *	ata_host_resume - resume host
5221  *	@host: host to resume
5222  *
5223  *	Resume @host.  Actual operation is performed by port resume.
5224  */
5225 void ata_host_resume(struct ata_host *host)
5226 {
5227 	host->dev->power.power_state = PMSG_ON;
5228 }
5229 EXPORT_SYMBOL_GPL(ata_host_resume);
5230 #endif
5231 
5232 const struct device_type ata_port_type = {
5233 	.name = "ata_port",
5234 #ifdef CONFIG_PM
5235 	.pm = &ata_port_pm_ops,
5236 #endif
5237 };
5238 
5239 /**
5240  *	ata_dev_init - Initialize an ata_device structure
5241  *	@dev: Device structure to initialize
5242  *
5243  *	Initialize @dev in preparation for probing.
5244  *
5245  *	LOCKING:
5246  *	Inherited from caller.
5247  */
5248 void ata_dev_init(struct ata_device *dev)
5249 {
5250 	struct ata_link *link = ata_dev_phys_link(dev);
5251 	struct ata_port *ap = link->ap;
5252 	unsigned long flags;
5253 
5254 	/* SATA spd limit is bound to the attached device, reset together */
5255 	link->sata_spd_limit = link->hw_sata_spd_limit;
5256 	link->sata_spd = 0;
5257 
5258 	/* High bits of dev->flags are used to record warm plug
5259 	 * requests which occur asynchronously.  Synchronize using
5260 	 * host lock.
5261 	 */
5262 	spin_lock_irqsave(ap->lock, flags);
5263 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5264 	dev->horkage = 0;
5265 	spin_unlock_irqrestore(ap->lock, flags);
5266 
5267 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5268 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5269 	dev->pio_mask = UINT_MAX;
5270 	dev->mwdma_mask = UINT_MAX;
5271 	dev->udma_mask = UINT_MAX;
5272 }
5273 
5274 /**
5275  *	ata_link_init - Initialize an ata_link structure
5276  *	@ap: ATA port link is attached to
5277  *	@link: Link structure to initialize
5278  *	@pmp: Port multiplier port number
5279  *
5280  *	Initialize @link.
5281  *
5282  *	LOCKING:
5283  *	Kernel thread context (may sleep)
5284  */
5285 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5286 {
5287 	int i;
5288 
5289 	/* clear everything except for devices */
5290 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5291 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5292 
5293 	link->ap = ap;
5294 	link->pmp = pmp;
5295 	link->active_tag = ATA_TAG_POISON;
5296 	link->hw_sata_spd_limit = UINT_MAX;
5297 
5298 	/* can't use iterator, ap isn't initialized yet */
5299 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5300 		struct ata_device *dev = &link->device[i];
5301 
5302 		dev->link = link;
5303 		dev->devno = dev - link->device;
5304 #ifdef CONFIG_ATA_ACPI
5305 		dev->gtf_filter = ata_acpi_gtf_filter;
5306 #endif
5307 		ata_dev_init(dev);
5308 	}
5309 }
5310 
5311 /**
5312  *	sata_link_init_spd - Initialize link->sata_spd_limit
5313  *	@link: Link to configure sata_spd_limit for
5314  *
5315  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5316  *	configured value.
5317  *
5318  *	LOCKING:
5319  *	Kernel thread context (may sleep).
5320  *
5321  *	RETURNS:
5322  *	0 on success, -errno on failure.
5323  */
5324 int sata_link_init_spd(struct ata_link *link)
5325 {
5326 	u8 spd;
5327 	int rc;
5328 
5329 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5330 	if (rc)
5331 		return rc;
5332 
5333 	spd = (link->saved_scontrol >> 4) & 0xf;
5334 	if (spd)
5335 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5336 
5337 	ata_force_link_limits(link);
5338 
5339 	link->sata_spd_limit = link->hw_sata_spd_limit;
5340 
5341 	return 0;
5342 }
5343 
5344 /**
5345  *	ata_port_alloc - allocate and initialize basic ATA port resources
5346  *	@host: ATA host this allocated port belongs to
5347  *
5348  *	Allocate and initialize basic ATA port resources.
5349  *
5350  *	RETURNS:
5351  *	Allocate ATA port on success, NULL on failure.
5352  *
5353  *	LOCKING:
5354  *	Inherited from calling layer (may sleep).
5355  */
5356 struct ata_port *ata_port_alloc(struct ata_host *host)
5357 {
5358 	struct ata_port *ap;
5359 
5360 	DPRINTK("ENTER\n");
5361 
5362 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5363 	if (!ap)
5364 		return NULL;
5365 
5366 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5367 	ap->lock = &host->lock;
5368 	ap->print_id = -1;
5369 	ap->local_port_no = -1;
5370 	ap->host = host;
5371 	ap->dev = host->dev;
5372 
5373 #if defined(ATA_VERBOSE_DEBUG)
5374 	/* turn on all debugging levels */
5375 	ap->msg_enable = 0x00FF;
5376 #elif defined(ATA_DEBUG)
5377 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5378 #else
5379 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5380 #endif
5381 
5382 	mutex_init(&ap->scsi_scan_mutex);
5383 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5384 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5385 	INIT_LIST_HEAD(&ap->eh_done_q);
5386 	init_waitqueue_head(&ap->eh_wait_q);
5387 	init_completion(&ap->park_req_pending);
5388 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5389 		    TIMER_DEFERRABLE);
5390 
5391 	ap->cbl = ATA_CBL_NONE;
5392 
5393 	ata_link_init(ap, &ap->link, 0);
5394 
5395 #ifdef ATA_IRQ_TRAP
5396 	ap->stats.unhandled_irq = 1;
5397 	ap->stats.idle_irq = 1;
5398 #endif
5399 	ata_sff_port_init(ap);
5400 
5401 	return ap;
5402 }
5403 
5404 static void ata_devres_release(struct device *gendev, void *res)
5405 {
5406 	struct ata_host *host = dev_get_drvdata(gendev);
5407 	int i;
5408 
5409 	for (i = 0; i < host->n_ports; i++) {
5410 		struct ata_port *ap = host->ports[i];
5411 
5412 		if (!ap)
5413 			continue;
5414 
5415 		if (ap->scsi_host)
5416 			scsi_host_put(ap->scsi_host);
5417 
5418 	}
5419 
5420 	dev_set_drvdata(gendev, NULL);
5421 	ata_host_put(host);
5422 }
5423 
5424 static void ata_host_release(struct kref *kref)
5425 {
5426 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5427 	int i;
5428 
5429 	for (i = 0; i < host->n_ports; i++) {
5430 		struct ata_port *ap = host->ports[i];
5431 
5432 		kfree(ap->pmp_link);
5433 		kfree(ap->slave_link);
5434 		kfree(ap);
5435 		host->ports[i] = NULL;
5436 	}
5437 	kfree(host);
5438 }
5439 
5440 void ata_host_get(struct ata_host *host)
5441 {
5442 	kref_get(&host->kref);
5443 }
5444 
5445 void ata_host_put(struct ata_host *host)
5446 {
5447 	kref_put(&host->kref, ata_host_release);
5448 }
5449 EXPORT_SYMBOL_GPL(ata_host_put);
5450 
5451 /**
5452  *	ata_host_alloc - allocate and init basic ATA host resources
5453  *	@dev: generic device this host is associated with
5454  *	@max_ports: maximum number of ATA ports associated with this host
5455  *
5456  *	Allocate and initialize basic ATA host resources.  LLD calls
5457  *	this function to allocate a host, initializes it fully and
5458  *	attaches it using ata_host_register().
5459  *
5460  *	@max_ports ports are allocated and host->n_ports is
5461  *	initialized to @max_ports.  The caller is allowed to decrease
5462  *	host->n_ports before calling ata_host_register().  The unused
5463  *	ports will be automatically freed on registration.
5464  *
5465  *	RETURNS:
5466  *	Allocate ATA host on success, NULL on failure.
5467  *
5468  *	LOCKING:
5469  *	Inherited from calling layer (may sleep).
5470  */
5471 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5472 {
5473 	struct ata_host *host;
5474 	size_t sz;
5475 	int i;
5476 	void *dr;
5477 
5478 	DPRINTK("ENTER\n");
5479 
5480 	/* alloc a container for our list of ATA ports (buses) */
5481 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5482 	host = kzalloc(sz, GFP_KERNEL);
5483 	if (!host)
5484 		return NULL;
5485 
5486 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5487 		goto err_free;
5488 
5489 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5490 	if (!dr)
5491 		goto err_out;
5492 
5493 	devres_add(dev, dr);
5494 	dev_set_drvdata(dev, host);
5495 
5496 	spin_lock_init(&host->lock);
5497 	mutex_init(&host->eh_mutex);
5498 	host->dev = dev;
5499 	host->n_ports = max_ports;
5500 	kref_init(&host->kref);
5501 
5502 	/* allocate ports bound to this host */
5503 	for (i = 0; i < max_ports; i++) {
5504 		struct ata_port *ap;
5505 
5506 		ap = ata_port_alloc(host);
5507 		if (!ap)
5508 			goto err_out;
5509 
5510 		ap->port_no = i;
5511 		host->ports[i] = ap;
5512 	}
5513 
5514 	devres_remove_group(dev, NULL);
5515 	return host;
5516 
5517  err_out:
5518 	devres_release_group(dev, NULL);
5519  err_free:
5520 	kfree(host);
5521 	return NULL;
5522 }
5523 EXPORT_SYMBOL_GPL(ata_host_alloc);
5524 
5525 /**
5526  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5527  *	@dev: generic device this host is associated with
5528  *	@ppi: array of ATA port_info to initialize host with
5529  *	@n_ports: number of ATA ports attached to this host
5530  *
5531  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5532  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5533  *	last entry will be used for the remaining ports.
5534  *
5535  *	RETURNS:
5536  *	Allocate ATA host on success, NULL on failure.
5537  *
5538  *	LOCKING:
5539  *	Inherited from calling layer (may sleep).
5540  */
5541 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5542 				      const struct ata_port_info * const * ppi,
5543 				      int n_ports)
5544 {
5545 	const struct ata_port_info *pi;
5546 	struct ata_host *host;
5547 	int i, j;
5548 
5549 	host = ata_host_alloc(dev, n_ports);
5550 	if (!host)
5551 		return NULL;
5552 
5553 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5554 		struct ata_port *ap = host->ports[i];
5555 
5556 		if (ppi[j])
5557 			pi = ppi[j++];
5558 
5559 		ap->pio_mask = pi->pio_mask;
5560 		ap->mwdma_mask = pi->mwdma_mask;
5561 		ap->udma_mask = pi->udma_mask;
5562 		ap->flags |= pi->flags;
5563 		ap->link.flags |= pi->link_flags;
5564 		ap->ops = pi->port_ops;
5565 
5566 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5567 			host->ops = pi->port_ops;
5568 	}
5569 
5570 	return host;
5571 }
5572 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5573 
5574 static void ata_host_stop(struct device *gendev, void *res)
5575 {
5576 	struct ata_host *host = dev_get_drvdata(gendev);
5577 	int i;
5578 
5579 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5580 
5581 	for (i = 0; i < host->n_ports; i++) {
5582 		struct ata_port *ap = host->ports[i];
5583 
5584 		if (ap->ops->port_stop)
5585 			ap->ops->port_stop(ap);
5586 	}
5587 
5588 	if (host->ops->host_stop)
5589 		host->ops->host_stop(host);
5590 }
5591 
5592 /**
5593  *	ata_finalize_port_ops - finalize ata_port_operations
5594  *	@ops: ata_port_operations to finalize
5595  *
5596  *	An ata_port_operations can inherit from another ops and that
5597  *	ops can again inherit from another.  This can go on as many
5598  *	times as necessary as long as there is no loop in the
5599  *	inheritance chain.
5600  *
5601  *	Ops tables are finalized when the host is started.  NULL or
5602  *	unspecified entries are inherited from the closet ancestor
5603  *	which has the method and the entry is populated with it.
5604  *	After finalization, the ops table directly points to all the
5605  *	methods and ->inherits is no longer necessary and cleared.
5606  *
5607  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5608  *
5609  *	LOCKING:
5610  *	None.
5611  */
5612 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5613 {
5614 	static DEFINE_SPINLOCK(lock);
5615 	const struct ata_port_operations *cur;
5616 	void **begin = (void **)ops;
5617 	void **end = (void **)&ops->inherits;
5618 	void **pp;
5619 
5620 	if (!ops || !ops->inherits)
5621 		return;
5622 
5623 	spin_lock(&lock);
5624 
5625 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5626 		void **inherit = (void **)cur;
5627 
5628 		for (pp = begin; pp < end; pp++, inherit++)
5629 			if (!*pp)
5630 				*pp = *inherit;
5631 	}
5632 
5633 	for (pp = begin; pp < end; pp++)
5634 		if (IS_ERR(*pp))
5635 			*pp = NULL;
5636 
5637 	ops->inherits = NULL;
5638 
5639 	spin_unlock(&lock);
5640 }
5641 
5642 /**
5643  *	ata_host_start - start and freeze ports of an ATA host
5644  *	@host: ATA host to start ports for
5645  *
5646  *	Start and then freeze ports of @host.  Started status is
5647  *	recorded in host->flags, so this function can be called
5648  *	multiple times.  Ports are guaranteed to get started only
5649  *	once.  If host->ops isn't initialized yet, its set to the
5650  *	first non-dummy port ops.
5651  *
5652  *	LOCKING:
5653  *	Inherited from calling layer (may sleep).
5654  *
5655  *	RETURNS:
5656  *	0 if all ports are started successfully, -errno otherwise.
5657  */
5658 int ata_host_start(struct ata_host *host)
5659 {
5660 	int have_stop = 0;
5661 	void *start_dr = NULL;
5662 	int i, rc;
5663 
5664 	if (host->flags & ATA_HOST_STARTED)
5665 		return 0;
5666 
5667 	ata_finalize_port_ops(host->ops);
5668 
5669 	for (i = 0; i < host->n_ports; i++) {
5670 		struct ata_port *ap = host->ports[i];
5671 
5672 		ata_finalize_port_ops(ap->ops);
5673 
5674 		if (!host->ops && !ata_port_is_dummy(ap))
5675 			host->ops = ap->ops;
5676 
5677 		if (ap->ops->port_stop)
5678 			have_stop = 1;
5679 	}
5680 
5681 	if (host->ops && host->ops->host_stop)
5682 		have_stop = 1;
5683 
5684 	if (have_stop) {
5685 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5686 		if (!start_dr)
5687 			return -ENOMEM;
5688 	}
5689 
5690 	for (i = 0; i < host->n_ports; i++) {
5691 		struct ata_port *ap = host->ports[i];
5692 
5693 		if (ap->ops->port_start) {
5694 			rc = ap->ops->port_start(ap);
5695 			if (rc) {
5696 				if (rc != -ENODEV)
5697 					dev_err(host->dev,
5698 						"failed to start port %d (errno=%d)\n",
5699 						i, rc);
5700 				goto err_out;
5701 			}
5702 		}
5703 		ata_eh_freeze_port(ap);
5704 	}
5705 
5706 	if (start_dr)
5707 		devres_add(host->dev, start_dr);
5708 	host->flags |= ATA_HOST_STARTED;
5709 	return 0;
5710 
5711  err_out:
5712 	while (--i >= 0) {
5713 		struct ata_port *ap = host->ports[i];
5714 
5715 		if (ap->ops->port_stop)
5716 			ap->ops->port_stop(ap);
5717 	}
5718 	devres_free(start_dr);
5719 	return rc;
5720 }
5721 EXPORT_SYMBOL_GPL(ata_host_start);
5722 
5723 /**
5724  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5725  *	@host:	host to initialize
5726  *	@dev:	device host is attached to
5727  *	@ops:	port_ops
5728  *
5729  */
5730 void ata_host_init(struct ata_host *host, struct device *dev,
5731 		   struct ata_port_operations *ops)
5732 {
5733 	spin_lock_init(&host->lock);
5734 	mutex_init(&host->eh_mutex);
5735 	host->n_tags = ATA_MAX_QUEUE;
5736 	host->dev = dev;
5737 	host->ops = ops;
5738 	kref_init(&host->kref);
5739 }
5740 EXPORT_SYMBOL_GPL(ata_host_init);
5741 
5742 void __ata_port_probe(struct ata_port *ap)
5743 {
5744 	struct ata_eh_info *ehi = &ap->link.eh_info;
5745 	unsigned long flags;
5746 
5747 	/* kick EH for boot probing */
5748 	spin_lock_irqsave(ap->lock, flags);
5749 
5750 	ehi->probe_mask |= ATA_ALL_DEVICES;
5751 	ehi->action |= ATA_EH_RESET;
5752 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5753 
5754 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5755 	ap->pflags |= ATA_PFLAG_LOADING;
5756 	ata_port_schedule_eh(ap);
5757 
5758 	spin_unlock_irqrestore(ap->lock, flags);
5759 }
5760 
5761 int ata_port_probe(struct ata_port *ap)
5762 {
5763 	int rc = 0;
5764 
5765 	if (ap->ops->error_handler) {
5766 		__ata_port_probe(ap);
5767 		ata_port_wait_eh(ap);
5768 	} else {
5769 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5770 		rc = ata_bus_probe(ap);
5771 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5772 	}
5773 	return rc;
5774 }
5775 
5776 
5777 static void async_port_probe(void *data, async_cookie_t cookie)
5778 {
5779 	struct ata_port *ap = data;
5780 
5781 	/*
5782 	 * If we're not allowed to scan this host in parallel,
5783 	 * we need to wait until all previous scans have completed
5784 	 * before going further.
5785 	 * Jeff Garzik says this is only within a controller, so we
5786 	 * don't need to wait for port 0, only for later ports.
5787 	 */
5788 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5789 		async_synchronize_cookie(cookie);
5790 
5791 	(void)ata_port_probe(ap);
5792 
5793 	/* in order to keep device order, we need to synchronize at this point */
5794 	async_synchronize_cookie(cookie);
5795 
5796 	ata_scsi_scan_host(ap, 1);
5797 }
5798 
5799 /**
5800  *	ata_host_register - register initialized ATA host
5801  *	@host: ATA host to register
5802  *	@sht: template for SCSI host
5803  *
5804  *	Register initialized ATA host.  @host is allocated using
5805  *	ata_host_alloc() and fully initialized by LLD.  This function
5806  *	starts ports, registers @host with ATA and SCSI layers and
5807  *	probe registered devices.
5808  *
5809  *	LOCKING:
5810  *	Inherited from calling layer (may sleep).
5811  *
5812  *	RETURNS:
5813  *	0 on success, -errno otherwise.
5814  */
5815 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5816 {
5817 	int i, rc;
5818 
5819 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5820 
5821 	/* host must have been started */
5822 	if (!(host->flags & ATA_HOST_STARTED)) {
5823 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5824 		WARN_ON(1);
5825 		return -EINVAL;
5826 	}
5827 
5828 	/* Blow away unused ports.  This happens when LLD can't
5829 	 * determine the exact number of ports to allocate at
5830 	 * allocation time.
5831 	 */
5832 	for (i = host->n_ports; host->ports[i]; i++)
5833 		kfree(host->ports[i]);
5834 
5835 	/* give ports names and add SCSI hosts */
5836 	for (i = 0; i < host->n_ports; i++) {
5837 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5838 		host->ports[i]->local_port_no = i + 1;
5839 	}
5840 
5841 	/* Create associated sysfs transport objects  */
5842 	for (i = 0; i < host->n_ports; i++) {
5843 		rc = ata_tport_add(host->dev,host->ports[i]);
5844 		if (rc) {
5845 			goto err_tadd;
5846 		}
5847 	}
5848 
5849 	rc = ata_scsi_add_hosts(host, sht);
5850 	if (rc)
5851 		goto err_tadd;
5852 
5853 	/* set cable, sata_spd_limit and report */
5854 	for (i = 0; i < host->n_ports; i++) {
5855 		struct ata_port *ap = host->ports[i];
5856 		unsigned long xfer_mask;
5857 
5858 		/* set SATA cable type if still unset */
5859 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5860 			ap->cbl = ATA_CBL_SATA;
5861 
5862 		/* init sata_spd_limit to the current value */
5863 		sata_link_init_spd(&ap->link);
5864 		if (ap->slave_link)
5865 			sata_link_init_spd(ap->slave_link);
5866 
5867 		/* print per-port info to dmesg */
5868 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5869 					      ap->udma_mask);
5870 
5871 		if (!ata_port_is_dummy(ap)) {
5872 			ata_port_info(ap, "%cATA max %s %s\n",
5873 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5874 				      ata_mode_string(xfer_mask),
5875 				      ap->link.eh_info.desc);
5876 			ata_ehi_clear_desc(&ap->link.eh_info);
5877 		} else
5878 			ata_port_info(ap, "DUMMY\n");
5879 	}
5880 
5881 	/* perform each probe asynchronously */
5882 	for (i = 0; i < host->n_ports; i++) {
5883 		struct ata_port *ap = host->ports[i];
5884 		ap->cookie = async_schedule(async_port_probe, ap);
5885 	}
5886 
5887 	return 0;
5888 
5889  err_tadd:
5890 	while (--i >= 0) {
5891 		ata_tport_delete(host->ports[i]);
5892 	}
5893 	return rc;
5894 
5895 }
5896 EXPORT_SYMBOL_GPL(ata_host_register);
5897 
5898 /**
5899  *	ata_host_activate - start host, request IRQ and register it
5900  *	@host: target ATA host
5901  *	@irq: IRQ to request
5902  *	@irq_handler: irq_handler used when requesting IRQ
5903  *	@irq_flags: irq_flags used when requesting IRQ
5904  *	@sht: scsi_host_template to use when registering the host
5905  *
5906  *	After allocating an ATA host and initializing it, most libata
5907  *	LLDs perform three steps to activate the host - start host,
5908  *	request IRQ and register it.  This helper takes necessary
5909  *	arguments and performs the three steps in one go.
5910  *
5911  *	An invalid IRQ skips the IRQ registration and expects the host to
5912  *	have set polling mode on the port. In this case, @irq_handler
5913  *	should be NULL.
5914  *
5915  *	LOCKING:
5916  *	Inherited from calling layer (may sleep).
5917  *
5918  *	RETURNS:
5919  *	0 on success, -errno otherwise.
5920  */
5921 int ata_host_activate(struct ata_host *host, int irq,
5922 		      irq_handler_t irq_handler, unsigned long irq_flags,
5923 		      struct scsi_host_template *sht)
5924 {
5925 	int i, rc;
5926 	char *irq_desc;
5927 
5928 	rc = ata_host_start(host);
5929 	if (rc)
5930 		return rc;
5931 
5932 	/* Special case for polling mode */
5933 	if (!irq) {
5934 		WARN_ON(irq_handler);
5935 		return ata_host_register(host, sht);
5936 	}
5937 
5938 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5939 				  dev_driver_string(host->dev),
5940 				  dev_name(host->dev));
5941 	if (!irq_desc)
5942 		return -ENOMEM;
5943 
5944 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5945 			      irq_desc, host);
5946 	if (rc)
5947 		return rc;
5948 
5949 	for (i = 0; i < host->n_ports; i++)
5950 		ata_port_desc(host->ports[i], "irq %d", irq);
5951 
5952 	rc = ata_host_register(host, sht);
5953 	/* if failed, just free the IRQ and leave ports alone */
5954 	if (rc)
5955 		devm_free_irq(host->dev, irq, host);
5956 
5957 	return rc;
5958 }
5959 EXPORT_SYMBOL_GPL(ata_host_activate);
5960 
5961 /**
5962  *	ata_port_detach - Detach ATA port in preparation of device removal
5963  *	@ap: ATA port to be detached
5964  *
5965  *	Detach all ATA devices and the associated SCSI devices of @ap;
5966  *	then, remove the associated SCSI host.  @ap is guaranteed to
5967  *	be quiescent on return from this function.
5968  *
5969  *	LOCKING:
5970  *	Kernel thread context (may sleep).
5971  */
5972 static void ata_port_detach(struct ata_port *ap)
5973 {
5974 	unsigned long flags;
5975 	struct ata_link *link;
5976 	struct ata_device *dev;
5977 
5978 	if (!ap->ops->error_handler)
5979 		goto skip_eh;
5980 
5981 	/* tell EH we're leaving & flush EH */
5982 	spin_lock_irqsave(ap->lock, flags);
5983 	ap->pflags |= ATA_PFLAG_UNLOADING;
5984 	ata_port_schedule_eh(ap);
5985 	spin_unlock_irqrestore(ap->lock, flags);
5986 
5987 	/* wait till EH commits suicide */
5988 	ata_port_wait_eh(ap);
5989 
5990 	/* it better be dead now */
5991 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5992 
5993 	cancel_delayed_work_sync(&ap->hotplug_task);
5994 
5995  skip_eh:
5996 	/* clean up zpodd on port removal */
5997 	ata_for_each_link(link, ap, HOST_FIRST) {
5998 		ata_for_each_dev(dev, link, ALL) {
5999 			if (zpodd_dev_enabled(dev))
6000 				zpodd_exit(dev);
6001 		}
6002 	}
6003 	if (ap->pmp_link) {
6004 		int i;
6005 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6006 			ata_tlink_delete(&ap->pmp_link[i]);
6007 	}
6008 	/* remove the associated SCSI host */
6009 	scsi_remove_host(ap->scsi_host);
6010 	ata_tport_delete(ap);
6011 }
6012 
6013 /**
6014  *	ata_host_detach - Detach all ports of an ATA host
6015  *	@host: Host to detach
6016  *
6017  *	Detach all ports of @host.
6018  *
6019  *	LOCKING:
6020  *	Kernel thread context (may sleep).
6021  */
6022 void ata_host_detach(struct ata_host *host)
6023 {
6024 	int i;
6025 
6026 	for (i = 0; i < host->n_ports; i++) {
6027 		/* Ensure ata_port probe has completed */
6028 		async_synchronize_cookie(host->ports[i]->cookie + 1);
6029 		ata_port_detach(host->ports[i]);
6030 	}
6031 
6032 	/* the host is dead now, dissociate ACPI */
6033 	ata_acpi_dissociate(host);
6034 }
6035 EXPORT_SYMBOL_GPL(ata_host_detach);
6036 
6037 #ifdef CONFIG_PCI
6038 
6039 /**
6040  *	ata_pci_remove_one - PCI layer callback for device removal
6041  *	@pdev: PCI device that was removed
6042  *
6043  *	PCI layer indicates to libata via this hook that hot-unplug or
6044  *	module unload event has occurred.  Detach all ports.  Resource
6045  *	release is handled via devres.
6046  *
6047  *	LOCKING:
6048  *	Inherited from PCI layer (may sleep).
6049  */
6050 void ata_pci_remove_one(struct pci_dev *pdev)
6051 {
6052 	struct ata_host *host = pci_get_drvdata(pdev);
6053 
6054 	ata_host_detach(host);
6055 }
6056 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6057 
6058 void ata_pci_shutdown_one(struct pci_dev *pdev)
6059 {
6060 	struct ata_host *host = pci_get_drvdata(pdev);
6061 	int i;
6062 
6063 	for (i = 0; i < host->n_ports; i++) {
6064 		struct ata_port *ap = host->ports[i];
6065 
6066 		ap->pflags |= ATA_PFLAG_FROZEN;
6067 
6068 		/* Disable port interrupts */
6069 		if (ap->ops->freeze)
6070 			ap->ops->freeze(ap);
6071 
6072 		/* Stop the port DMA engines */
6073 		if (ap->ops->port_stop)
6074 			ap->ops->port_stop(ap);
6075 	}
6076 }
6077 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6078 
6079 /* move to PCI subsystem */
6080 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6081 {
6082 	unsigned long tmp = 0;
6083 
6084 	switch (bits->width) {
6085 	case 1: {
6086 		u8 tmp8 = 0;
6087 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6088 		tmp = tmp8;
6089 		break;
6090 	}
6091 	case 2: {
6092 		u16 tmp16 = 0;
6093 		pci_read_config_word(pdev, bits->reg, &tmp16);
6094 		tmp = tmp16;
6095 		break;
6096 	}
6097 	case 4: {
6098 		u32 tmp32 = 0;
6099 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6100 		tmp = tmp32;
6101 		break;
6102 	}
6103 
6104 	default:
6105 		return -EINVAL;
6106 	}
6107 
6108 	tmp &= bits->mask;
6109 
6110 	return (tmp == bits->val) ? 1 : 0;
6111 }
6112 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6113 
6114 #ifdef CONFIG_PM
6115 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6116 {
6117 	pci_save_state(pdev);
6118 	pci_disable_device(pdev);
6119 
6120 	if (mesg.event & PM_EVENT_SLEEP)
6121 		pci_set_power_state(pdev, PCI_D3hot);
6122 }
6123 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6124 
6125 int ata_pci_device_do_resume(struct pci_dev *pdev)
6126 {
6127 	int rc;
6128 
6129 	pci_set_power_state(pdev, PCI_D0);
6130 	pci_restore_state(pdev);
6131 
6132 	rc = pcim_enable_device(pdev);
6133 	if (rc) {
6134 		dev_err(&pdev->dev,
6135 			"failed to enable device after resume (%d)\n", rc);
6136 		return rc;
6137 	}
6138 
6139 	pci_set_master(pdev);
6140 	return 0;
6141 }
6142 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6143 
6144 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6145 {
6146 	struct ata_host *host = pci_get_drvdata(pdev);
6147 	int rc = 0;
6148 
6149 	rc = ata_host_suspend(host, mesg);
6150 	if (rc)
6151 		return rc;
6152 
6153 	ata_pci_device_do_suspend(pdev, mesg);
6154 
6155 	return 0;
6156 }
6157 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6158 
6159 int ata_pci_device_resume(struct pci_dev *pdev)
6160 {
6161 	struct ata_host *host = pci_get_drvdata(pdev);
6162 	int rc;
6163 
6164 	rc = ata_pci_device_do_resume(pdev);
6165 	if (rc == 0)
6166 		ata_host_resume(host);
6167 	return rc;
6168 }
6169 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6170 #endif /* CONFIG_PM */
6171 #endif /* CONFIG_PCI */
6172 
6173 /**
6174  *	ata_platform_remove_one - Platform layer callback for device removal
6175  *	@pdev: Platform device that was removed
6176  *
6177  *	Platform layer indicates to libata via this hook that hot-unplug or
6178  *	module unload event has occurred.  Detach all ports.  Resource
6179  *	release is handled via devres.
6180  *
6181  *	LOCKING:
6182  *	Inherited from platform layer (may sleep).
6183  */
6184 int ata_platform_remove_one(struct platform_device *pdev)
6185 {
6186 	struct ata_host *host = platform_get_drvdata(pdev);
6187 
6188 	ata_host_detach(host);
6189 
6190 	return 0;
6191 }
6192 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6193 
6194 #ifdef CONFIG_ATA_FORCE
6195 static int __init ata_parse_force_one(char **cur,
6196 				      struct ata_force_ent *force_ent,
6197 				      const char **reason)
6198 {
6199 	static const struct ata_force_param force_tbl[] __initconst = {
6200 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6201 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6202 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6203 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6204 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6205 		{ "sata",	.cbl		= ATA_CBL_SATA },
6206 		{ "1.5Gbps",	.spd_limit	= 1 },
6207 		{ "3.0Gbps",	.spd_limit	= 2 },
6208 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6209 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6210 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6211 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6212 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6213 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6214 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6215 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6216 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6217 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6218 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6219 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6220 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6221 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6222 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6223 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6224 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6225 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6226 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6227 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6228 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6229 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6230 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6231 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6232 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6233 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6234 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6235 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6236 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6237 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6238 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6239 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6240 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6241 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6242 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6243 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6244 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6245 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6246 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6247 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6248 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6249 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6250 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6251 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6252 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6253 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6254 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6255 	};
6256 	char *start = *cur, *p = *cur;
6257 	char *id, *val, *endp;
6258 	const struct ata_force_param *match_fp = NULL;
6259 	int nr_matches = 0, i;
6260 
6261 	/* find where this param ends and update *cur */
6262 	while (*p != '\0' && *p != ',')
6263 		p++;
6264 
6265 	if (*p == '\0')
6266 		*cur = p;
6267 	else
6268 		*cur = p + 1;
6269 
6270 	*p = '\0';
6271 
6272 	/* parse */
6273 	p = strchr(start, ':');
6274 	if (!p) {
6275 		val = strstrip(start);
6276 		goto parse_val;
6277 	}
6278 	*p = '\0';
6279 
6280 	id = strstrip(start);
6281 	val = strstrip(p + 1);
6282 
6283 	/* parse id */
6284 	p = strchr(id, '.');
6285 	if (p) {
6286 		*p++ = '\0';
6287 		force_ent->device = simple_strtoul(p, &endp, 10);
6288 		if (p == endp || *endp != '\0') {
6289 			*reason = "invalid device";
6290 			return -EINVAL;
6291 		}
6292 	}
6293 
6294 	force_ent->port = simple_strtoul(id, &endp, 10);
6295 	if (id == endp || *endp != '\0') {
6296 		*reason = "invalid port/link";
6297 		return -EINVAL;
6298 	}
6299 
6300  parse_val:
6301 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6302 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6303 		const struct ata_force_param *fp = &force_tbl[i];
6304 
6305 		if (strncasecmp(val, fp->name, strlen(val)))
6306 			continue;
6307 
6308 		nr_matches++;
6309 		match_fp = fp;
6310 
6311 		if (strcasecmp(val, fp->name) == 0) {
6312 			nr_matches = 1;
6313 			break;
6314 		}
6315 	}
6316 
6317 	if (!nr_matches) {
6318 		*reason = "unknown value";
6319 		return -EINVAL;
6320 	}
6321 	if (nr_matches > 1) {
6322 		*reason = "ambiguous value";
6323 		return -EINVAL;
6324 	}
6325 
6326 	force_ent->param = *match_fp;
6327 
6328 	return 0;
6329 }
6330 
6331 static void __init ata_parse_force_param(void)
6332 {
6333 	int idx = 0, size = 1;
6334 	int last_port = -1, last_device = -1;
6335 	char *p, *cur, *next;
6336 
6337 	/* calculate maximum number of params and allocate force_tbl */
6338 	for (p = ata_force_param_buf; *p; p++)
6339 		if (*p == ',')
6340 			size++;
6341 
6342 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6343 	if (!ata_force_tbl) {
6344 		printk(KERN_WARNING "ata: failed to extend force table, "
6345 		       "libata.force ignored\n");
6346 		return;
6347 	}
6348 
6349 	/* parse and populate the table */
6350 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6351 		const char *reason = "";
6352 		struct ata_force_ent te = { .port = -1, .device = -1 };
6353 
6354 		next = cur;
6355 		if (ata_parse_force_one(&next, &te, &reason)) {
6356 			printk(KERN_WARNING "ata: failed to parse force "
6357 			       "parameter \"%s\" (%s)\n",
6358 			       cur, reason);
6359 			continue;
6360 		}
6361 
6362 		if (te.port == -1) {
6363 			te.port = last_port;
6364 			te.device = last_device;
6365 		}
6366 
6367 		ata_force_tbl[idx++] = te;
6368 
6369 		last_port = te.port;
6370 		last_device = te.device;
6371 	}
6372 
6373 	ata_force_tbl_size = idx;
6374 }
6375 
6376 static void ata_free_force_param(void)
6377 {
6378 	kfree(ata_force_tbl);
6379 }
6380 #else
6381 static inline void ata_parse_force_param(void) { }
6382 static inline void ata_free_force_param(void) { }
6383 #endif
6384 
6385 static int __init ata_init(void)
6386 {
6387 	int rc;
6388 
6389 	ata_parse_force_param();
6390 
6391 	rc = ata_sff_init();
6392 	if (rc) {
6393 		ata_free_force_param();
6394 		return rc;
6395 	}
6396 
6397 	libata_transport_init();
6398 	ata_scsi_transport_template = ata_attach_transport();
6399 	if (!ata_scsi_transport_template) {
6400 		ata_sff_exit();
6401 		rc = -ENOMEM;
6402 		goto err_out;
6403 	}
6404 
6405 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6406 	return 0;
6407 
6408 err_out:
6409 	return rc;
6410 }
6411 
6412 static void __exit ata_exit(void)
6413 {
6414 	ata_release_transport(ata_scsi_transport_template);
6415 	libata_transport_exit();
6416 	ata_sff_exit();
6417 	ata_free_force_param();
6418 }
6419 
6420 subsys_initcall(ata_init);
6421 module_exit(ata_exit);
6422 
6423 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6424 
6425 int ata_ratelimit(void)
6426 {
6427 	return __ratelimit(&ratelimit);
6428 }
6429 EXPORT_SYMBOL_GPL(ata_ratelimit);
6430 
6431 /**
6432  *	ata_msleep - ATA EH owner aware msleep
6433  *	@ap: ATA port to attribute the sleep to
6434  *	@msecs: duration to sleep in milliseconds
6435  *
6436  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6437  *	ownership is released before going to sleep and reacquired
6438  *	after the sleep is complete.  IOW, other ports sharing the
6439  *	@ap->host will be allowed to own the EH while this task is
6440  *	sleeping.
6441  *
6442  *	LOCKING:
6443  *	Might sleep.
6444  */
6445 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6446 {
6447 	bool owns_eh = ap && ap->host->eh_owner == current;
6448 
6449 	if (owns_eh)
6450 		ata_eh_release(ap);
6451 
6452 	if (msecs < 20) {
6453 		unsigned long usecs = msecs * USEC_PER_MSEC;
6454 		usleep_range(usecs, usecs + 50);
6455 	} else {
6456 		msleep(msecs);
6457 	}
6458 
6459 	if (owns_eh)
6460 		ata_eh_acquire(ap);
6461 }
6462 EXPORT_SYMBOL_GPL(ata_msleep);
6463 
6464 /**
6465  *	ata_wait_register - wait until register value changes
6466  *	@ap: ATA port to wait register for, can be NULL
6467  *	@reg: IO-mapped register
6468  *	@mask: Mask to apply to read register value
6469  *	@val: Wait condition
6470  *	@interval: polling interval in milliseconds
6471  *	@timeout: timeout in milliseconds
6472  *
6473  *	Waiting for some bits of register to change is a common
6474  *	operation for ATA controllers.  This function reads 32bit LE
6475  *	IO-mapped register @reg and tests for the following condition.
6476  *
6477  *	(*@reg & mask) != val
6478  *
6479  *	If the condition is met, it returns; otherwise, the process is
6480  *	repeated after @interval_msec until timeout.
6481  *
6482  *	LOCKING:
6483  *	Kernel thread context (may sleep)
6484  *
6485  *	RETURNS:
6486  *	The final register value.
6487  */
6488 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6489 		      unsigned long interval, unsigned long timeout)
6490 {
6491 	unsigned long deadline;
6492 	u32 tmp;
6493 
6494 	tmp = ioread32(reg);
6495 
6496 	/* Calculate timeout _after_ the first read to make sure
6497 	 * preceding writes reach the controller before starting to
6498 	 * eat away the timeout.
6499 	 */
6500 	deadline = ata_deadline(jiffies, timeout);
6501 
6502 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6503 		ata_msleep(ap, interval);
6504 		tmp = ioread32(reg);
6505 	}
6506 
6507 	return tmp;
6508 }
6509 EXPORT_SYMBOL_GPL(ata_wait_register);
6510 
6511 /*
6512  * Dummy port_ops
6513  */
6514 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6515 {
6516 	return AC_ERR_SYSTEM;
6517 }
6518 
6519 static void ata_dummy_error_handler(struct ata_port *ap)
6520 {
6521 	/* truly dummy */
6522 }
6523 
6524 struct ata_port_operations ata_dummy_port_ops = {
6525 	.qc_prep		= ata_noop_qc_prep,
6526 	.qc_issue		= ata_dummy_qc_issue,
6527 	.error_handler		= ata_dummy_error_handler,
6528 	.sched_eh		= ata_std_sched_eh,
6529 	.end_eh			= ata_std_end_eh,
6530 };
6531 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6532 
6533 const struct ata_port_info ata_dummy_port_info = {
6534 	.port_ops		= &ata_dummy_port_ops,
6535 };
6536 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6537 
6538 /*
6539  * Utility print functions
6540  */
6541 void ata_port_printk(const struct ata_port *ap, const char *level,
6542 		     const char *fmt, ...)
6543 {
6544 	struct va_format vaf;
6545 	va_list args;
6546 
6547 	va_start(args, fmt);
6548 
6549 	vaf.fmt = fmt;
6550 	vaf.va = &args;
6551 
6552 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6553 
6554 	va_end(args);
6555 }
6556 EXPORT_SYMBOL(ata_port_printk);
6557 
6558 void ata_link_printk(const struct ata_link *link, const char *level,
6559 		     const char *fmt, ...)
6560 {
6561 	struct va_format vaf;
6562 	va_list args;
6563 
6564 	va_start(args, fmt);
6565 
6566 	vaf.fmt = fmt;
6567 	vaf.va = &args;
6568 
6569 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6570 		printk("%sata%u.%02u: %pV",
6571 		       level, link->ap->print_id, link->pmp, &vaf);
6572 	else
6573 		printk("%sata%u: %pV",
6574 		       level, link->ap->print_id, &vaf);
6575 
6576 	va_end(args);
6577 }
6578 EXPORT_SYMBOL(ata_link_printk);
6579 
6580 void ata_dev_printk(const struct ata_device *dev, const char *level,
6581 		    const char *fmt, ...)
6582 {
6583 	struct va_format vaf;
6584 	va_list args;
6585 
6586 	va_start(args, fmt);
6587 
6588 	vaf.fmt = fmt;
6589 	vaf.va = &args;
6590 
6591 	printk("%sata%u.%02u: %pV",
6592 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6593 	       &vaf);
6594 
6595 	va_end(args);
6596 }
6597 EXPORT_SYMBOL(ata_dev_printk);
6598 
6599 void ata_print_version(const struct device *dev, const char *version)
6600 {
6601 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6602 }
6603 EXPORT_SYMBOL(ata_print_version);
6604