xref: /linux/drivers/ata/libata-core.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67 
68 #include "libata.h"
69 
70 
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
74 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
75 
76 const struct ata_port_operations ata_base_port_ops = {
77 	.prereset		= ata_std_prereset,
78 	.postreset		= ata_std_postreset,
79 	.error_handler		= ata_std_error_handler,
80 };
81 
82 const struct ata_port_operations sata_port_ops = {
83 	.inherits		= &ata_base_port_ops,
84 
85 	.qc_defer		= ata_std_qc_defer,
86 	.hardreset		= sata_std_hardreset,
87 };
88 
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 					u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 					u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99 
100 struct workqueue_struct *ata_aux_wq;
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161 
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166 
167 
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 	return (sstatus & 0xf) == 0x3;
171 }
172 
173 /**
174  *	ata_link_next - link iteration helper
175  *	@link: the previous link, NULL to start
176  *	@ap: ATA port containing links to iterate
177  *	@mode: iteration mode, one of ATA_LITER_*
178  *
179  *	LOCKING:
180  *	Host lock or EH context.
181  *
182  *	RETURNS:
183  *	Pointer to the next link.
184  */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 			       enum ata_link_iter_mode mode)
187 {
188 	BUG_ON(mode != ATA_LITER_EDGE &&
189 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 
191 	/* NULL link indicates start of iteration */
192 	if (!link)
193 		switch (mode) {
194 		case ATA_LITER_EDGE:
195 		case ATA_LITER_PMP_FIRST:
196 			if (sata_pmp_attached(ap))
197 				return ap->pmp_link;
198 			/* fall through */
199 		case ATA_LITER_HOST_FIRST:
200 			return &ap->link;
201 		}
202 
203 	/* we just iterated over the host link, what's next? */
204 	if (link == &ap->link)
205 		switch (mode) {
206 		case ATA_LITER_HOST_FIRST:
207 			if (sata_pmp_attached(ap))
208 				return ap->pmp_link;
209 			/* fall through */
210 		case ATA_LITER_PMP_FIRST:
211 			if (unlikely(ap->slave_link))
212 				return ap->slave_link;
213 			/* fall through */
214 		case ATA_LITER_EDGE:
215 			return NULL;
216 		}
217 
218 	/* slave_link excludes PMP */
219 	if (unlikely(link == ap->slave_link))
220 		return NULL;
221 
222 	/* we were over a PMP link */
223 	if (++link < ap->pmp_link + ap->nr_pmp_links)
224 		return link;
225 
226 	if (mode == ATA_LITER_PMP_FIRST)
227 		return &ap->link;
228 
229 	return NULL;
230 }
231 
232 /**
233  *	ata_dev_next - device iteration helper
234  *	@dev: the previous device, NULL to start
235  *	@link: ATA link containing devices to iterate
236  *	@mode: iteration mode, one of ATA_DITER_*
237  *
238  *	LOCKING:
239  *	Host lock or EH context.
240  *
241  *	RETURNS:
242  *	Pointer to the next device.
243  */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 				enum ata_dev_iter_mode mode)
246 {
247 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 
250 	/* NULL dev indicates start of iteration */
251 	if (!dev)
252 		switch (mode) {
253 		case ATA_DITER_ENABLED:
254 		case ATA_DITER_ALL:
255 			dev = link->device;
256 			goto check;
257 		case ATA_DITER_ENABLED_REVERSE:
258 		case ATA_DITER_ALL_REVERSE:
259 			dev = link->device + ata_link_max_devices(link) - 1;
260 			goto check;
261 		}
262 
263  next:
264 	/* move to the next one */
265 	switch (mode) {
266 	case ATA_DITER_ENABLED:
267 	case ATA_DITER_ALL:
268 		if (++dev < link->device + ata_link_max_devices(link))
269 			goto check;
270 		return NULL;
271 	case ATA_DITER_ENABLED_REVERSE:
272 	case ATA_DITER_ALL_REVERSE:
273 		if (--dev >= link->device)
274 			goto check;
275 		return NULL;
276 	}
277 
278  check:
279 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 	    !ata_dev_enabled(dev))
281 		goto next;
282 	return dev;
283 }
284 
285 /**
286  *	ata_dev_phys_link - find physical link for a device
287  *	@dev: ATA device to look up physical link for
288  *
289  *	Look up physical link which @dev is attached to.  Note that
290  *	this is different from @dev->link only when @dev is on slave
291  *	link.  For all other cases, it's the same as @dev->link.
292  *
293  *	LOCKING:
294  *	Don't care.
295  *
296  *	RETURNS:
297  *	Pointer to the found physical link.
298  */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 	struct ata_port *ap = dev->link->ap;
302 
303 	if (!ap->slave_link)
304 		return dev->link;
305 	if (!dev->devno)
306 		return &ap->link;
307 	return ap->slave_link;
308 }
309 
310 /**
311  *	ata_force_cbl - force cable type according to libata.force
312  *	@ap: ATA port of interest
313  *
314  *	Force cable type according to libata.force and whine about it.
315  *	The last entry which has matching port number is used, so it
316  *	can be specified as part of device force parameters.  For
317  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318  *	same effect.
319  *
320  *	LOCKING:
321  *	EH context.
322  */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 	int i;
326 
327 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 		const struct ata_force_ent *fe = &ata_force_tbl[i];
329 
330 		if (fe->port != -1 && fe->port != ap->print_id)
331 			continue;
332 
333 		if (fe->param.cbl == ATA_CBL_NONE)
334 			continue;
335 
336 		ap->cbl = fe->param.cbl;
337 		ata_port_printk(ap, KERN_NOTICE,
338 				"FORCE: cable set to %s\n", fe->param.name);
339 		return;
340 	}
341 }
342 
343 /**
344  *	ata_force_link_limits - force link limits according to libata.force
345  *	@link: ATA link of interest
346  *
347  *	Force link flags and SATA spd limit according to libata.force
348  *	and whine about it.  When only the port part is specified
349  *	(e.g. 1:), the limit applies to all links connected to both
350  *	the host link and all fan-out ports connected via PMP.  If the
351  *	device part is specified as 0 (e.g. 1.00:), it specifies the
352  *	first fan-out link not the host link.  Device number 15 always
353  *	points to the host link whether PMP is attached or not.  If the
354  *	controller has slave link, device number 16 points to it.
355  *
356  *	LOCKING:
357  *	EH context.
358  */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 	bool did_spd = false;
362 	int linkno = link->pmp;
363 	int i;
364 
365 	if (ata_is_host_link(link))
366 		linkno += 15;
367 
368 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 		const struct ata_force_ent *fe = &ata_force_tbl[i];
370 
371 		if (fe->port != -1 && fe->port != link->ap->print_id)
372 			continue;
373 
374 		if (fe->device != -1 && fe->device != linkno)
375 			continue;
376 
377 		/* only honor the first spd limit */
378 		if (!did_spd && fe->param.spd_limit) {
379 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 			ata_link_printk(link, KERN_NOTICE,
381 					"FORCE: PHY spd limit set to %s\n",
382 					fe->param.name);
383 			did_spd = true;
384 		}
385 
386 		/* let lflags stack */
387 		if (fe->param.lflags) {
388 			link->flags |= fe->param.lflags;
389 			ata_link_printk(link, KERN_NOTICE,
390 					"FORCE: link flag 0x%x forced -> 0x%x\n",
391 					fe->param.lflags, link->flags);
392 		}
393 	}
394 }
395 
396 /**
397  *	ata_force_xfermask - force xfermask according to libata.force
398  *	@dev: ATA device of interest
399  *
400  *	Force xfer_mask according to libata.force and whine about it.
401  *	For consistency with link selection, device number 15 selects
402  *	the first device connected to the host link.
403  *
404  *	LOCKING:
405  *	EH context.
406  */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 	int devno = dev->link->pmp + dev->devno;
410 	int alt_devno = devno;
411 	int i;
412 
413 	/* allow n.15/16 for devices attached to host port */
414 	if (ata_is_host_link(dev->link))
415 		alt_devno += 15;
416 
417 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 		const struct ata_force_ent *fe = &ata_force_tbl[i];
419 		unsigned long pio_mask, mwdma_mask, udma_mask;
420 
421 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 			continue;
423 
424 		if (fe->device != -1 && fe->device != devno &&
425 		    fe->device != alt_devno)
426 			continue;
427 
428 		if (!fe->param.xfer_mask)
429 			continue;
430 
431 		ata_unpack_xfermask(fe->param.xfer_mask,
432 				    &pio_mask, &mwdma_mask, &udma_mask);
433 		if (udma_mask)
434 			dev->udma_mask = udma_mask;
435 		else if (mwdma_mask) {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = mwdma_mask;
438 		} else {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = 0;
441 			dev->pio_mask = pio_mask;
442 		}
443 
444 		ata_dev_printk(dev, KERN_NOTICE,
445 			"FORCE: xfer_mask set to %s\n", fe->param.name);
446 		return;
447 	}
448 }
449 
450 /**
451  *	ata_force_horkage - force horkage according to libata.force
452  *	@dev: ATA device of interest
453  *
454  *	Force horkage according to libata.force and whine about it.
455  *	For consistency with link selection, device number 15 selects
456  *	the first device connected to the host link.
457  *
458  *	LOCKING:
459  *	EH context.
460  */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 	int devno = dev->link->pmp + dev->devno;
464 	int alt_devno = devno;
465 	int i;
466 
467 	/* allow n.15/16 for devices attached to host port */
468 	if (ata_is_host_link(dev->link))
469 		alt_devno += 15;
470 
471 	for (i = 0; i < ata_force_tbl_size; i++) {
472 		const struct ata_force_ent *fe = &ata_force_tbl[i];
473 
474 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 			continue;
476 
477 		if (fe->device != -1 && fe->device != devno &&
478 		    fe->device != alt_devno)
479 			continue;
480 
481 		if (!(~dev->horkage & fe->param.horkage_on) &&
482 		    !(dev->horkage & fe->param.horkage_off))
483 			continue;
484 
485 		dev->horkage |= fe->param.horkage_on;
486 		dev->horkage &= ~fe->param.horkage_off;
487 
488 		ata_dev_printk(dev, KERN_NOTICE,
489 			"FORCE: horkage modified (%s)\n", fe->param.name);
490 	}
491 }
492 
493 /**
494  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495  *	@opcode: SCSI opcode
496  *
497  *	Determine ATAPI command type from @opcode.
498  *
499  *	LOCKING:
500  *	None.
501  *
502  *	RETURNS:
503  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504  */
505 int atapi_cmd_type(u8 opcode)
506 {
507 	switch (opcode) {
508 	case GPCMD_READ_10:
509 	case GPCMD_READ_12:
510 		return ATAPI_READ;
511 
512 	case GPCMD_WRITE_10:
513 	case GPCMD_WRITE_12:
514 	case GPCMD_WRITE_AND_VERIFY_10:
515 		return ATAPI_WRITE;
516 
517 	case GPCMD_READ_CD:
518 	case GPCMD_READ_CD_MSF:
519 		return ATAPI_READ_CD;
520 
521 	case ATA_16:
522 	case ATA_12:
523 		if (atapi_passthru16)
524 			return ATAPI_PASS_THRU;
525 		/* fall thru */
526 	default:
527 		return ATAPI_MISC;
528 	}
529 }
530 
531 /**
532  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533  *	@tf: Taskfile to convert
534  *	@pmp: Port multiplier port
535  *	@is_cmd: This FIS is for command
536  *	@fis: Buffer into which data will output
537  *
538  *	Converts a standard ATA taskfile to a Serial ATA
539  *	FIS structure (Register - Host to Device).
540  *
541  *	LOCKING:
542  *	Inherited from caller.
543  */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 	fis[0] = 0x27;			/* Register - Host to Device FIS */
547 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
548 	if (is_cmd)
549 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
550 
551 	fis[2] = tf->command;
552 	fis[3] = tf->feature;
553 
554 	fis[4] = tf->lbal;
555 	fis[5] = tf->lbam;
556 	fis[6] = tf->lbah;
557 	fis[7] = tf->device;
558 
559 	fis[8] = tf->hob_lbal;
560 	fis[9] = tf->hob_lbam;
561 	fis[10] = tf->hob_lbah;
562 	fis[11] = tf->hob_feature;
563 
564 	fis[12] = tf->nsect;
565 	fis[13] = tf->hob_nsect;
566 	fis[14] = 0;
567 	fis[15] = tf->ctl;
568 
569 	fis[16] = 0;
570 	fis[17] = 0;
571 	fis[18] = 0;
572 	fis[19] = 0;
573 }
574 
575 /**
576  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577  *	@fis: Buffer from which data will be input
578  *	@tf: Taskfile to output
579  *
580  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
581  *
582  *	LOCKING:
583  *	Inherited from caller.
584  */
585 
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 	tf->command	= fis[2];	/* status */
589 	tf->feature	= fis[3];	/* error */
590 
591 	tf->lbal	= fis[4];
592 	tf->lbam	= fis[5];
593 	tf->lbah	= fis[6];
594 	tf->device	= fis[7];
595 
596 	tf->hob_lbal	= fis[8];
597 	tf->hob_lbam	= fis[9];
598 	tf->hob_lbah	= fis[10];
599 
600 	tf->nsect	= fis[12];
601 	tf->hob_nsect	= fis[13];
602 }
603 
604 static const u8 ata_rw_cmds[] = {
605 	/* pio multi */
606 	ATA_CMD_READ_MULTI,
607 	ATA_CMD_WRITE_MULTI,
608 	ATA_CMD_READ_MULTI_EXT,
609 	ATA_CMD_WRITE_MULTI_EXT,
610 	0,
611 	0,
612 	0,
613 	ATA_CMD_WRITE_MULTI_FUA_EXT,
614 	/* pio */
615 	ATA_CMD_PIO_READ,
616 	ATA_CMD_PIO_WRITE,
617 	ATA_CMD_PIO_READ_EXT,
618 	ATA_CMD_PIO_WRITE_EXT,
619 	0,
620 	0,
621 	0,
622 	0,
623 	/* dma */
624 	ATA_CMD_READ,
625 	ATA_CMD_WRITE,
626 	ATA_CMD_READ_EXT,
627 	ATA_CMD_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	ATA_CMD_WRITE_FUA_EXT
632 };
633 
634 /**
635  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
636  *	@tf: command to examine and configure
637  *	@dev: device tf belongs to
638  *
639  *	Examine the device configuration and tf->flags to calculate
640  *	the proper read/write commands and protocol to use.
641  *
642  *	LOCKING:
643  *	caller.
644  */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 	u8 cmd;
648 
649 	int index, fua, lba48, write;
650 
651 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 
655 	if (dev->flags & ATA_DFLAG_PIO) {
656 		tf->protocol = ATA_PROT_PIO;
657 		index = dev->multi_count ? 0 : 8;
658 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 		/* Unable to use DMA due to host limitation */
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else {
663 		tf->protocol = ATA_PROT_DMA;
664 		index = 16;
665 	}
666 
667 	cmd = ata_rw_cmds[index + fua + lba48 + write];
668 	if (cmd) {
669 		tf->command = cmd;
670 		return 0;
671 	}
672 	return -1;
673 }
674 
675 /**
676  *	ata_tf_read_block - Read block address from ATA taskfile
677  *	@tf: ATA taskfile of interest
678  *	@dev: ATA device @tf belongs to
679  *
680  *	LOCKING:
681  *	None.
682  *
683  *	Read block address from @tf.  This function can handle all
684  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
685  *	flags select the address format to use.
686  *
687  *	RETURNS:
688  *	Block address read from @tf.
689  */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 	u64 block = 0;
693 
694 	if (tf->flags & ATA_TFLAG_LBA) {
695 		if (tf->flags & ATA_TFLAG_LBA48) {
696 			block |= (u64)tf->hob_lbah << 40;
697 			block |= (u64)tf->hob_lbam << 32;
698 			block |= (u64)tf->hob_lbal << 24;
699 		} else
700 			block |= (tf->device & 0xf) << 24;
701 
702 		block |= tf->lbah << 16;
703 		block |= tf->lbam << 8;
704 		block |= tf->lbal;
705 	} else {
706 		u32 cyl, head, sect;
707 
708 		cyl = tf->lbam | (tf->lbah << 8);
709 		head = tf->device & 0xf;
710 		sect = tf->lbal;
711 
712 		block = (cyl * dev->heads + head) * dev->sectors + sect;
713 	}
714 
715 	return block;
716 }
717 
718 /**
719  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
720  *	@tf: Target ATA taskfile
721  *	@dev: ATA device @tf belongs to
722  *	@block: Block address
723  *	@n_block: Number of blocks
724  *	@tf_flags: RW/FUA etc...
725  *	@tag: tag
726  *
727  *	LOCKING:
728  *	None.
729  *
730  *	Build ATA taskfile @tf for read/write request described by
731  *	@block, @n_block, @tf_flags and @tag on @dev.
732  *
733  *	RETURNS:
734  *
735  *	0 on success, -ERANGE if the request is too large for @dev,
736  *	-EINVAL if the request is invalid.
737  */
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 		    u64 block, u32 n_block, unsigned int tf_flags,
740 		    unsigned int tag)
741 {
742 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 	tf->flags |= tf_flags;
744 
745 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 		/* yay, NCQ */
747 		if (!lba_48_ok(block, n_block))
748 			return -ERANGE;
749 
750 		tf->protocol = ATA_PROT_NCQ;
751 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 
753 		if (tf->flags & ATA_TFLAG_WRITE)
754 			tf->command = ATA_CMD_FPDMA_WRITE;
755 		else
756 			tf->command = ATA_CMD_FPDMA_READ;
757 
758 		tf->nsect = tag << 3;
759 		tf->hob_feature = (n_block >> 8) & 0xff;
760 		tf->feature = n_block & 0xff;
761 
762 		tf->hob_lbah = (block >> 40) & 0xff;
763 		tf->hob_lbam = (block >> 32) & 0xff;
764 		tf->hob_lbal = (block >> 24) & 0xff;
765 		tf->lbah = (block >> 16) & 0xff;
766 		tf->lbam = (block >> 8) & 0xff;
767 		tf->lbal = block & 0xff;
768 
769 		tf->device = 1 << 6;
770 		if (tf->flags & ATA_TFLAG_FUA)
771 			tf->device |= 1 << 7;
772 	} else if (dev->flags & ATA_DFLAG_LBA) {
773 		tf->flags |= ATA_TFLAG_LBA;
774 
775 		if (lba_28_ok(block, n_block)) {
776 			/* use LBA28 */
777 			tf->device |= (block >> 24) & 0xf;
778 		} else if (lba_48_ok(block, n_block)) {
779 			if (!(dev->flags & ATA_DFLAG_LBA48))
780 				return -ERANGE;
781 
782 			/* use LBA48 */
783 			tf->flags |= ATA_TFLAG_LBA48;
784 
785 			tf->hob_nsect = (n_block >> 8) & 0xff;
786 
787 			tf->hob_lbah = (block >> 40) & 0xff;
788 			tf->hob_lbam = (block >> 32) & 0xff;
789 			tf->hob_lbal = (block >> 24) & 0xff;
790 		} else
791 			/* request too large even for LBA48 */
792 			return -ERANGE;
793 
794 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 			return -EINVAL;
796 
797 		tf->nsect = n_block & 0xff;
798 
799 		tf->lbah = (block >> 16) & 0xff;
800 		tf->lbam = (block >> 8) & 0xff;
801 		tf->lbal = block & 0xff;
802 
803 		tf->device |= ATA_LBA;
804 	} else {
805 		/* CHS */
806 		u32 sect, head, cyl, track;
807 
808 		/* The request -may- be too large for CHS addressing. */
809 		if (!lba_28_ok(block, n_block))
810 			return -ERANGE;
811 
812 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 			return -EINVAL;
814 
815 		/* Convert LBA to CHS */
816 		track = (u32)block / dev->sectors;
817 		cyl   = track / dev->heads;
818 		head  = track % dev->heads;
819 		sect  = (u32)block % dev->sectors + 1;
820 
821 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 			(u32)block, track, cyl, head, sect);
823 
824 		/* Check whether the converted CHS can fit.
825 		   Cylinder: 0-65535
826 		   Head: 0-15
827 		   Sector: 1-255*/
828 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 			return -ERANGE;
830 
831 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 		tf->lbal = sect;
833 		tf->lbam = cyl;
834 		tf->lbah = cyl >> 8;
835 		tf->device |= head;
836 	}
837 
838 	return 0;
839 }
840 
841 /**
842  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843  *	@pio_mask: pio_mask
844  *	@mwdma_mask: mwdma_mask
845  *	@udma_mask: udma_mask
846  *
847  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848  *	unsigned int xfer_mask.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Packed xfer_mask.
855  */
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 				unsigned long mwdma_mask,
858 				unsigned long udma_mask)
859 {
860 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863 }
864 
865 /**
866  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867  *	@xfer_mask: xfer_mask to unpack
868  *	@pio_mask: resulting pio_mask
869  *	@mwdma_mask: resulting mwdma_mask
870  *	@udma_mask: resulting udma_mask
871  *
872  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873  *	Any NULL distination masks will be ignored.
874  */
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 {
878 	if (pio_mask)
879 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 	if (mwdma_mask)
881 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 	if (udma_mask)
883 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884 }
885 
886 static const struct ata_xfer_ent {
887 	int shift, bits;
888 	u8 base;
889 } ata_xfer_tbl[] = {
890 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 	{ -1, },
894 };
895 
896 /**
897  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898  *	@xfer_mask: xfer_mask of interest
899  *
900  *	Return matching XFER_* value for @xfer_mask.  Only the highest
901  *	bit of @xfer_mask is considered.
902  *
903  *	LOCKING:
904  *	None.
905  *
906  *	RETURNS:
907  *	Matching XFER_* value, 0xff if no match found.
908  */
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 {
911 	int highbit = fls(xfer_mask) - 1;
912 	const struct ata_xfer_ent *ent;
913 
914 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 			return ent->base + highbit - ent->shift;
917 	return 0xff;
918 }
919 
920 /**
921  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922  *	@xfer_mode: XFER_* of interest
923  *
924  *	Return matching xfer_mask for @xfer_mode.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching xfer_mask, 0 if no match found.
931  */
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 {
934 	const struct ata_xfer_ent *ent;
935 
936 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 				& ~((1 << ent->shift) - 1);
940 	return 0;
941 }
942 
943 /**
944  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_shift for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_shift, -1 if no match found.
954  */
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ent->shift;
962 	return -1;
963 }
964 
965 /**
966  *	ata_mode_string - convert xfer_mask to string
967  *	@xfer_mask: mask of bits supported; only highest bit counts.
968  *
969  *	Determine string which represents the highest speed
970  *	(highest bit in @modemask).
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Constant C string representing highest speed listed in
977  *	@mode_mask, or the constant C string "<n/a>".
978  */
979 const char *ata_mode_string(unsigned long xfer_mask)
980 {
981 	static const char * const xfer_mode_str[] = {
982 		"PIO0",
983 		"PIO1",
984 		"PIO2",
985 		"PIO3",
986 		"PIO4",
987 		"PIO5",
988 		"PIO6",
989 		"MWDMA0",
990 		"MWDMA1",
991 		"MWDMA2",
992 		"MWDMA3",
993 		"MWDMA4",
994 		"UDMA/16",
995 		"UDMA/25",
996 		"UDMA/33",
997 		"UDMA/44",
998 		"UDMA/66",
999 		"UDMA/100",
1000 		"UDMA/133",
1001 		"UDMA7",
1002 	};
1003 	int highbit;
1004 
1005 	highbit = fls(xfer_mask) - 1;
1006 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 		return xfer_mode_str[highbit];
1008 	return "<n/a>";
1009 }
1010 
1011 static const char *sata_spd_string(unsigned int spd)
1012 {
1013 	static const char * const spd_str[] = {
1014 		"1.5 Gbps",
1015 		"3.0 Gbps",
1016 		"6.0 Gbps",
1017 	};
1018 
1019 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 		return "<unknown>";
1021 	return spd_str[spd - 1];
1022 }
1023 
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 {
1026 	struct ata_link *link = dev->link;
1027 	struct ata_port *ap = link->ap;
1028 	u32 scontrol;
1029 	unsigned int err_mask;
1030 	int rc;
1031 
1032 	/*
1033 	 * disallow DIPM for drivers which haven't set
1034 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1035 	 * phy ready will be set in the interrupt status on
1036 	 * state changes, which will cause some drivers to
1037 	 * think there are errors - additionally drivers will
1038 	 * need to disable hot plug.
1039 	 */
1040 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 		ap->pm_policy = NOT_AVAILABLE;
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	 * For DIPM, we will only enable it for the
1047 	 * min_power setting.
1048 	 *
1049 	 * Why?  Because Disks are too stupid to know that
1050 	 * If the host rejects a request to go to SLUMBER
1051 	 * they should retry at PARTIAL, and instead it
1052 	 * just would give up.  So, for medium_power to
1053 	 * work at all, we need to only allow HIPM.
1054 	 */
1055 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 	if (rc)
1057 		return rc;
1058 
1059 	switch (policy) {
1060 	case MIN_POWER:
1061 		/* no restrictions on IPM transitions */
1062 		scontrol &= ~(0x3 << 8);
1063 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 		if (rc)
1065 			return rc;
1066 
1067 		/* enable DIPM */
1068 		if (dev->flags & ATA_DFLAG_DIPM)
1069 			err_mask = ata_dev_set_feature(dev,
1070 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 		break;
1072 	case MEDIUM_POWER:
1073 		/* allow IPM to PARTIAL */
1074 		scontrol &= ~(0x1 << 8);
1075 		scontrol |= (0x2 << 8);
1076 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 		if (rc)
1078 			return rc;
1079 
1080 		/*
1081 		 * we don't have to disable DIPM since IPM flags
1082 		 * disallow transitions to SLUMBER, which effectively
1083 		 * disable DIPM if it does not support PARTIAL
1084 		 */
1085 		break;
1086 	case NOT_AVAILABLE:
1087 	case MAX_PERFORMANCE:
1088 		/* disable all IPM transitions */
1089 		scontrol |= (0x3 << 8);
1090 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 		if (rc)
1092 			return rc;
1093 
1094 		/*
1095 		 * we don't have to disable DIPM since IPM flags
1096 		 * disallow all transitions which effectively
1097 		 * disable DIPM anyway.
1098 		 */
1099 		break;
1100 	}
1101 
1102 	/* FIXME: handle SET FEATURES failure */
1103 	(void) err_mask;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  *	ata_dev_enable_pm - enable SATA interface power management
1110  *	@dev:  device to enable power management
1111  *	@policy: the link power management policy
1112  *
1113  *	Enable SATA Interface power management.  This will enable
1114  *	Device Interface Power Management (DIPM) for min_power
1115  * 	policy, and then call driver specific callbacks for
1116  *	enabling Host Initiated Power management.
1117  *
1118  *	Locking: Caller.
1119  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120  */
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 {
1123 	int rc = 0;
1124 	struct ata_port *ap = dev->link->ap;
1125 
1126 	/* set HIPM first, then DIPM */
1127 	if (ap->ops->enable_pm)
1128 		rc = ap->ops->enable_pm(ap, policy);
1129 	if (rc)
1130 		goto enable_pm_out;
1131 	rc = ata_dev_set_dipm(dev, policy);
1132 
1133 enable_pm_out:
1134 	if (rc)
1135 		ap->pm_policy = MAX_PERFORMANCE;
1136 	else
1137 		ap->pm_policy = policy;
1138 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1139 }
1140 
1141 #ifdef CONFIG_PM
1142 /**
1143  *	ata_dev_disable_pm - disable SATA interface power management
1144  *	@dev: device to disable power management
1145  *
1146  *	Disable SATA Interface power management.  This will disable
1147  *	Device Interface Power Management (DIPM) without changing
1148  * 	policy,  call driver specific callbacks for disabling Host
1149  * 	Initiated Power management.
1150  *
1151  *	Locking: Caller.
1152  *	Returns: void
1153  */
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1155 {
1156 	struct ata_port *ap = dev->link->ap;
1157 
1158 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 	if (ap->ops->disable_pm)
1160 		ap->ops->disable_pm(ap);
1161 }
1162 #endif	/* CONFIG_PM */
1163 
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 {
1166 	ap->pm_policy = policy;
1167 	ap->link.eh_info.action |= ATA_EH_LPM;
1168 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 	ata_port_schedule_eh(ap);
1170 }
1171 
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1174 {
1175 	struct ata_link *link;
1176 	struct ata_port *ap;
1177 	struct ata_device *dev;
1178 	int i;
1179 
1180 	for (i = 0; i < host->n_ports; i++) {
1181 		ap = host->ports[i];
1182 		ata_for_each_link(link, ap, EDGE) {
1183 			ata_for_each_dev(dev, link, ALL)
1184 				ata_dev_disable_pm(dev);
1185 		}
1186 	}
1187 }
1188 
1189 static void ata_lpm_disable(struct ata_host *host)
1190 {
1191 	int i;
1192 
1193 	for (i = 0; i < host->n_ports; i++) {
1194 		struct ata_port *ap = host->ports[i];
1195 		ata_lpm_schedule(ap, ap->pm_policy);
1196 	}
1197 }
1198 #endif	/* CONFIG_PM */
1199 
1200 /**
1201  *	ata_dev_classify - determine device type based on ATA-spec signature
1202  *	@tf: ATA taskfile register set for device to be identified
1203  *
1204  *	Determine from taskfile register contents whether a device is
1205  *	ATA or ATAPI, as per "Signature and persistence" section
1206  *	of ATA/PI spec (volume 1, sect 5.14).
1207  *
1208  *	LOCKING:
1209  *	None.
1210  *
1211  *	RETURNS:
1212  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213  *	%ATA_DEV_UNKNOWN the event of failure.
1214  */
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 {
1217 	/* Apple's open source Darwin code hints that some devices only
1218 	 * put a proper signature into the LBA mid/high registers,
1219 	 * So, we only check those.  It's sufficient for uniqueness.
1220 	 *
1221 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1224 	 * spec has never mentioned about using different signatures
1225 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1226 	 * Multiplier specification began to use 0x69/0x96 to identify
1227 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 	 * 0x69/0x96 shortly and described them as reserved for
1230 	 * SerialATA.
1231 	 *
1232 	 * We follow the current spec and consider that 0x69/0x96
1233 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 	 * SEMB signature.  This is worked around in
1236 	 * ata_dev_read_id().
1237 	 */
1238 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239 		DPRINTK("found ATA device by sig\n");
1240 		return ATA_DEV_ATA;
1241 	}
1242 
1243 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244 		DPRINTK("found ATAPI device by sig\n");
1245 		return ATA_DEV_ATAPI;
1246 	}
1247 
1248 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 		DPRINTK("found PMP device by sig\n");
1250 		return ATA_DEV_PMP;
1251 	}
1252 
1253 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 		return ATA_DEV_SEMB;
1256 	}
1257 
1258 	DPRINTK("unknown device\n");
1259 	return ATA_DEV_UNKNOWN;
1260 }
1261 
1262 /**
1263  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1264  *	@id: IDENTIFY DEVICE results we will examine
1265  *	@s: string into which data is output
1266  *	@ofs: offset into identify device page
1267  *	@len: length of string to return. must be an even number.
1268  *
1269  *	The strings in the IDENTIFY DEVICE page are broken up into
1270  *	16-bit chunks.  Run through the string, and output each
1271  *	8-bit chunk linearly, regardless of platform.
1272  *
1273  *	LOCKING:
1274  *	caller.
1275  */
1276 
1277 void ata_id_string(const u16 *id, unsigned char *s,
1278 		   unsigned int ofs, unsigned int len)
1279 {
1280 	unsigned int c;
1281 
1282 	BUG_ON(len & 1);
1283 
1284 	while (len > 0) {
1285 		c = id[ofs] >> 8;
1286 		*s = c;
1287 		s++;
1288 
1289 		c = id[ofs] & 0xff;
1290 		*s = c;
1291 		s++;
1292 
1293 		ofs++;
1294 		len -= 2;
1295 	}
1296 }
1297 
1298 /**
1299  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300  *	@id: IDENTIFY DEVICE results we will examine
1301  *	@s: string into which data is output
1302  *	@ofs: offset into identify device page
1303  *	@len: length of string to return. must be an odd number.
1304  *
1305  *	This function is identical to ata_id_string except that it
1306  *	trims trailing spaces and terminates the resulting string with
1307  *	null.  @len must be actual maximum length (even number) + 1.
1308  *
1309  *	LOCKING:
1310  *	caller.
1311  */
1312 void ata_id_c_string(const u16 *id, unsigned char *s,
1313 		     unsigned int ofs, unsigned int len)
1314 {
1315 	unsigned char *p;
1316 
1317 	ata_id_string(id, s, ofs, len - 1);
1318 
1319 	p = s + strnlen(s, len - 1);
1320 	while (p > s && p[-1] == ' ')
1321 		p--;
1322 	*p = '\0';
1323 }
1324 
1325 static u64 ata_id_n_sectors(const u16 *id)
1326 {
1327 	if (ata_id_has_lba(id)) {
1328 		if (ata_id_has_lba48(id))
1329 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330 		else
1331 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332 	} else {
1333 		if (ata_id_current_chs_valid(id))
1334 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 			       id[ATA_ID_CUR_SECTORS];
1336 		else
1337 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 			       id[ATA_ID_SECTORS];
1339 	}
1340 }
1341 
1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1343 {
1344 	u64 sectors = 0;
1345 
1346 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349 	sectors |= (tf->lbah & 0xff) << 16;
1350 	sectors |= (tf->lbam & 0xff) << 8;
1351 	sectors |= (tf->lbal & 0xff);
1352 
1353 	return sectors;
1354 }
1355 
1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1357 {
1358 	u64 sectors = 0;
1359 
1360 	sectors |= (tf->device & 0x0f) << 24;
1361 	sectors |= (tf->lbah & 0xff) << 16;
1362 	sectors |= (tf->lbam & 0xff) << 8;
1363 	sectors |= (tf->lbal & 0xff);
1364 
1365 	return sectors;
1366 }
1367 
1368 /**
1369  *	ata_read_native_max_address - Read native max address
1370  *	@dev: target device
1371  *	@max_sectors: out parameter for the result native max address
1372  *
1373  *	Perform an LBA48 or LBA28 native size query upon the device in
1374  *	question.
1375  *
1376  *	RETURNS:
1377  *	0 on success, -EACCES if command is aborted by the drive.
1378  *	-EIO on other errors.
1379  */
1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1381 {
1382 	unsigned int err_mask;
1383 	struct ata_taskfile tf;
1384 	int lba48 = ata_id_has_lba48(dev->id);
1385 
1386 	ata_tf_init(dev, &tf);
1387 
1388 	/* always clear all address registers */
1389 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1390 
1391 	if (lba48) {
1392 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 		tf.flags |= ATA_TFLAG_LBA48;
1394 	} else
1395 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1396 
1397 	tf.protocol |= ATA_PROT_NODATA;
1398 	tf.device |= ATA_LBA;
1399 
1400 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401 	if (err_mask) {
1402 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 			       "max address (err_mask=0x%x)\n", err_mask);
1404 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 			return -EACCES;
1406 		return -EIO;
1407 	}
1408 
1409 	if (lba48)
1410 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1411 	else
1412 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1413 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414 		(*max_sectors)--;
1415 	return 0;
1416 }
1417 
1418 /**
1419  *	ata_set_max_sectors - Set max sectors
1420  *	@dev: target device
1421  *	@new_sectors: new max sectors value to set for the device
1422  *
1423  *	Set max sectors of @dev to @new_sectors.
1424  *
1425  *	RETURNS:
1426  *	0 on success, -EACCES if command is aborted or denied (due to
1427  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1428  *	errors.
1429  */
1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1431 {
1432 	unsigned int err_mask;
1433 	struct ata_taskfile tf;
1434 	int lba48 = ata_id_has_lba48(dev->id);
1435 
1436 	new_sectors--;
1437 
1438 	ata_tf_init(dev, &tf);
1439 
1440 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1441 
1442 	if (lba48) {
1443 		tf.command = ATA_CMD_SET_MAX_EXT;
1444 		tf.flags |= ATA_TFLAG_LBA48;
1445 
1446 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449 	} else {
1450 		tf.command = ATA_CMD_SET_MAX;
1451 
1452 		tf.device |= (new_sectors >> 24) & 0xf;
1453 	}
1454 
1455 	tf.protocol |= ATA_PROT_NODATA;
1456 	tf.device |= ATA_LBA;
1457 
1458 	tf.lbal = (new_sectors >> 0) & 0xff;
1459 	tf.lbam = (new_sectors >> 8) & 0xff;
1460 	tf.lbah = (new_sectors >> 16) & 0xff;
1461 
1462 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463 	if (err_mask) {
1464 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 			       "max address (err_mask=0x%x)\n", err_mask);
1466 		if (err_mask == AC_ERR_DEV &&
1467 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 			return -EACCES;
1469 		return -EIO;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  *	ata_hpa_resize		-	Resize a device with an HPA set
1477  *	@dev: Device to resize
1478  *
1479  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480  *	it if required to the full size of the media. The caller must check
1481  *	the drive has the HPA feature set enabled.
1482  *
1483  *	RETURNS:
1484  *	0 on success, -errno on failure.
1485  */
1486 static int ata_hpa_resize(struct ata_device *dev)
1487 {
1488 	struct ata_eh_context *ehc = &dev->link->eh_context;
1489 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 	u64 sectors = ata_id_n_sectors(dev->id);
1491 	u64 native_sectors;
1492 	int rc;
1493 
1494 	/* do we need to do it? */
1495 	if (dev->class != ATA_DEV_ATA ||
1496 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498 		return 0;
1499 
1500 	/* read native max address */
1501 	rc = ata_read_native_max_address(dev, &native_sectors);
1502 	if (rc) {
1503 		/* If device aborted the command or HPA isn't going to
1504 		 * be unlocked, skip HPA resizing.
1505 		 */
1506 		if (rc == -EACCES || !ata_ignore_hpa) {
1507 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508 				       "broken, skipping HPA handling\n");
1509 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510 
1511 			/* we can continue if device aborted the command */
1512 			if (rc == -EACCES)
1513 				rc = 0;
1514 		}
1515 
1516 		return rc;
1517 	}
1518 
1519 	/* nothing to do? */
1520 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1521 		if (!print_info || native_sectors == sectors)
1522 			return 0;
1523 
1524 		if (native_sectors > sectors)
1525 			ata_dev_printk(dev, KERN_INFO,
1526 				"HPA detected: current %llu, native %llu\n",
1527 				(unsigned long long)sectors,
1528 				(unsigned long long)native_sectors);
1529 		else if (native_sectors < sectors)
1530 			ata_dev_printk(dev, KERN_WARNING,
1531 				"native sectors (%llu) is smaller than "
1532 				"sectors (%llu)\n",
1533 				(unsigned long long)native_sectors,
1534 				(unsigned long long)sectors);
1535 		return 0;
1536 	}
1537 
1538 	/* let's unlock HPA */
1539 	rc = ata_set_max_sectors(dev, native_sectors);
1540 	if (rc == -EACCES) {
1541 		/* if device aborted the command, skip HPA resizing */
1542 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543 			       "(%llu -> %llu), skipping HPA handling\n",
1544 			       (unsigned long long)sectors,
1545 			       (unsigned long long)native_sectors);
1546 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547 		return 0;
1548 	} else if (rc)
1549 		return rc;
1550 
1551 	/* re-read IDENTIFY data */
1552 	rc = ata_dev_reread_id(dev, 0);
1553 	if (rc) {
1554 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555 			       "data after HPA resizing\n");
1556 		return rc;
1557 	}
1558 
1559 	if (print_info) {
1560 		u64 new_sectors = ata_id_n_sectors(dev->id);
1561 		ata_dev_printk(dev, KERN_INFO,
1562 			"HPA unlocked: %llu -> %llu, native %llu\n",
1563 			(unsigned long long)sectors,
1564 			(unsigned long long)new_sectors,
1565 			(unsigned long long)native_sectors);
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /**
1572  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1573  *	@id: IDENTIFY DEVICE page to dump
1574  *
1575  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1576  *	page.
1577  *
1578  *	LOCKING:
1579  *	caller.
1580  */
1581 
1582 static inline void ata_dump_id(const u16 *id)
1583 {
1584 	DPRINTK("49==0x%04x  "
1585 		"53==0x%04x  "
1586 		"63==0x%04x  "
1587 		"64==0x%04x  "
1588 		"75==0x%04x  \n",
1589 		id[49],
1590 		id[53],
1591 		id[63],
1592 		id[64],
1593 		id[75]);
1594 	DPRINTK("80==0x%04x  "
1595 		"81==0x%04x  "
1596 		"82==0x%04x  "
1597 		"83==0x%04x  "
1598 		"84==0x%04x  \n",
1599 		id[80],
1600 		id[81],
1601 		id[82],
1602 		id[83],
1603 		id[84]);
1604 	DPRINTK("88==0x%04x  "
1605 		"93==0x%04x\n",
1606 		id[88],
1607 		id[93]);
1608 }
1609 
1610 /**
1611  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612  *	@id: IDENTIFY data to compute xfer mask from
1613  *
1614  *	Compute the xfermask for this device. This is not as trivial
1615  *	as it seems if we must consider early devices correctly.
1616  *
1617  *	FIXME: pre IDE drive timing (do we care ?).
1618  *
1619  *	LOCKING:
1620  *	None.
1621  *
1622  *	RETURNS:
1623  *	Computed xfermask
1624  */
1625 unsigned long ata_id_xfermask(const u16 *id)
1626 {
1627 	unsigned long pio_mask, mwdma_mask, udma_mask;
1628 
1629 	/* Usual case. Word 53 indicates word 64 is valid */
1630 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632 		pio_mask <<= 3;
1633 		pio_mask |= 0x7;
1634 	} else {
1635 		/* If word 64 isn't valid then Word 51 high byte holds
1636 		 * the PIO timing number for the maximum. Turn it into
1637 		 * a mask.
1638 		 */
1639 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1640 		if (mode < 5)	/* Valid PIO range */
1641 			pio_mask = (2 << mode) - 1;
1642 		else
1643 			pio_mask = 1;
1644 
1645 		/* But wait.. there's more. Design your standards by
1646 		 * committee and you too can get a free iordy field to
1647 		 * process. However its the speeds not the modes that
1648 		 * are supported... Note drivers using the timing API
1649 		 * will get this right anyway
1650 		 */
1651 	}
1652 
1653 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654 
1655 	if (ata_id_is_cfa(id)) {
1656 		/*
1657 		 *	Process compact flash extended modes
1658 		 */
1659 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1661 
1662 		if (pio)
1663 			pio_mask |= (1 << 5);
1664 		if (pio > 1)
1665 			pio_mask |= (1 << 6);
1666 		if (dma)
1667 			mwdma_mask |= (1 << 3);
1668 		if (dma > 1)
1669 			mwdma_mask |= (1 << 4);
1670 	}
1671 
1672 	udma_mask = 0;
1673 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675 
1676 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1677 }
1678 
1679 /**
1680  *	ata_pio_queue_task - Queue port_task
1681  *	@ap: The ata_port to queue port_task for
1682  *	@data: data for @fn to use
1683  *	@delay: delay time in msecs for workqueue function
1684  *
1685  *	Schedule @fn(@data) for execution after @delay jiffies using
1686  *	port_task.  There is one port_task per port and it's the
1687  *	user(low level driver)'s responsibility to make sure that only
1688  *	one task is active at any given time.
1689  *
1690  *	libata core layer takes care of synchronization between
1691  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1692  *	synchronization.
1693  *
1694  *	LOCKING:
1695  *	Inherited from caller.
1696  */
1697 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1698 {
1699 	ap->port_task_data = data;
1700 
1701 	/* may fail if ata_port_flush_task() in progress */
1702 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1703 }
1704 
1705 /**
1706  *	ata_port_flush_task - Flush port_task
1707  *	@ap: The ata_port to flush port_task for
1708  *
1709  *	After this function completes, port_task is guranteed not to
1710  *	be running or scheduled.
1711  *
1712  *	LOCKING:
1713  *	Kernel thread context (may sleep)
1714  */
1715 void ata_port_flush_task(struct ata_port *ap)
1716 {
1717 	DPRINTK("ENTER\n");
1718 
1719 	cancel_rearming_delayed_work(&ap->port_task);
1720 
1721 	if (ata_msg_ctl(ap))
1722 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1723 }
1724 
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1726 {
1727 	struct completion *waiting = qc->private_data;
1728 
1729 	complete(waiting);
1730 }
1731 
1732 /**
1733  *	ata_exec_internal_sg - execute libata internal command
1734  *	@dev: Device to which the command is sent
1735  *	@tf: Taskfile registers for the command and the result
1736  *	@cdb: CDB for packet command
1737  *	@dma_dir: Data tranfer direction of the command
1738  *	@sgl: sg list for the data buffer of the command
1739  *	@n_elem: Number of sg entries
1740  *	@timeout: Timeout in msecs (0 for default)
1741  *
1742  *	Executes libata internal command with timeout.  @tf contains
1743  *	command on entry and result on return.  Timeout and error
1744  *	conditions are reported via return value.  No recovery action
1745  *	is taken after a command times out.  It's caller's duty to
1746  *	clean up after timeout.
1747  *
1748  *	LOCKING:
1749  *	None.  Should be called with kernel context, might sleep.
1750  *
1751  *	RETURNS:
1752  *	Zero on success, AC_ERR_* mask on failure
1753  */
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 			      struct ata_taskfile *tf, const u8 *cdb,
1756 			      int dma_dir, struct scatterlist *sgl,
1757 			      unsigned int n_elem, unsigned long timeout)
1758 {
1759 	struct ata_link *link = dev->link;
1760 	struct ata_port *ap = link->ap;
1761 	u8 command = tf->command;
1762 	int auto_timeout = 0;
1763 	struct ata_queued_cmd *qc;
1764 	unsigned int tag, preempted_tag;
1765 	u32 preempted_sactive, preempted_qc_active;
1766 	int preempted_nr_active_links;
1767 	DECLARE_COMPLETION_ONSTACK(wait);
1768 	unsigned long flags;
1769 	unsigned int err_mask;
1770 	int rc;
1771 
1772 	spin_lock_irqsave(ap->lock, flags);
1773 
1774 	/* no internal command while frozen */
1775 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 		spin_unlock_irqrestore(ap->lock, flags);
1777 		return AC_ERR_SYSTEM;
1778 	}
1779 
1780 	/* initialize internal qc */
1781 
1782 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1783 	 * drivers choke if any other tag is given.  This breaks
1784 	 * ata_tag_internal() test for those drivers.  Don't use new
1785 	 * EH stuff without converting to it.
1786 	 */
1787 	if (ap->ops->error_handler)
1788 		tag = ATA_TAG_INTERNAL;
1789 	else
1790 		tag = 0;
1791 
1792 	if (test_and_set_bit(tag, &ap->qc_allocated))
1793 		BUG();
1794 	qc = __ata_qc_from_tag(ap, tag);
1795 
1796 	qc->tag = tag;
1797 	qc->scsicmd = NULL;
1798 	qc->ap = ap;
1799 	qc->dev = dev;
1800 	ata_qc_reinit(qc);
1801 
1802 	preempted_tag = link->active_tag;
1803 	preempted_sactive = link->sactive;
1804 	preempted_qc_active = ap->qc_active;
1805 	preempted_nr_active_links = ap->nr_active_links;
1806 	link->active_tag = ATA_TAG_POISON;
1807 	link->sactive = 0;
1808 	ap->qc_active = 0;
1809 	ap->nr_active_links = 0;
1810 
1811 	/* prepare & issue qc */
1812 	qc->tf = *tf;
1813 	if (cdb)
1814 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 	qc->dma_dir = dma_dir;
1817 	if (dma_dir != DMA_NONE) {
1818 		unsigned int i, buflen = 0;
1819 		struct scatterlist *sg;
1820 
1821 		for_each_sg(sgl, sg, n_elem, i)
1822 			buflen += sg->length;
1823 
1824 		ata_sg_init(qc, sgl, n_elem);
1825 		qc->nbytes = buflen;
1826 	}
1827 
1828 	qc->private_data = &wait;
1829 	qc->complete_fn = ata_qc_complete_internal;
1830 
1831 	ata_qc_issue(qc);
1832 
1833 	spin_unlock_irqrestore(ap->lock, flags);
1834 
1835 	if (!timeout) {
1836 		if (ata_probe_timeout)
1837 			timeout = ata_probe_timeout * 1000;
1838 		else {
1839 			timeout = ata_internal_cmd_timeout(dev, command);
1840 			auto_timeout = 1;
1841 		}
1842 	}
1843 
1844 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1845 
1846 	ata_port_flush_task(ap);
1847 
1848 	if (!rc) {
1849 		spin_lock_irqsave(ap->lock, flags);
1850 
1851 		/* We're racing with irq here.  If we lose, the
1852 		 * following test prevents us from completing the qc
1853 		 * twice.  If we win, the port is frozen and will be
1854 		 * cleaned up by ->post_internal_cmd().
1855 		 */
1856 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1857 			qc->err_mask |= AC_ERR_TIMEOUT;
1858 
1859 			if (ap->ops->error_handler)
1860 				ata_port_freeze(ap);
1861 			else
1862 				ata_qc_complete(qc);
1863 
1864 			if (ata_msg_warn(ap))
1865 				ata_dev_printk(dev, KERN_WARNING,
1866 					"qc timeout (cmd 0x%x)\n", command);
1867 		}
1868 
1869 		spin_unlock_irqrestore(ap->lock, flags);
1870 	}
1871 
1872 	/* do post_internal_cmd */
1873 	if (ap->ops->post_internal_cmd)
1874 		ap->ops->post_internal_cmd(qc);
1875 
1876 	/* perform minimal error analysis */
1877 	if (qc->flags & ATA_QCFLAG_FAILED) {
1878 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879 			qc->err_mask |= AC_ERR_DEV;
1880 
1881 		if (!qc->err_mask)
1882 			qc->err_mask |= AC_ERR_OTHER;
1883 
1884 		if (qc->err_mask & ~AC_ERR_OTHER)
1885 			qc->err_mask &= ~AC_ERR_OTHER;
1886 	}
1887 
1888 	/* finish up */
1889 	spin_lock_irqsave(ap->lock, flags);
1890 
1891 	*tf = qc->result_tf;
1892 	err_mask = qc->err_mask;
1893 
1894 	ata_qc_free(qc);
1895 	link->active_tag = preempted_tag;
1896 	link->sactive = preempted_sactive;
1897 	ap->qc_active = preempted_qc_active;
1898 	ap->nr_active_links = preempted_nr_active_links;
1899 
1900 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901 	 * Until those drivers are fixed, we detect the condition
1902 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1903 	 * port.
1904 	 *
1905 	 * Note that this doesn't change any behavior as internal
1906 	 * command failure results in disabling the device in the
1907 	 * higher layer for LLDDs without new reset/EH callbacks.
1908 	 *
1909 	 * Kill the following code as soon as those drivers are fixed.
1910 	 */
1911 	if (ap->flags & ATA_FLAG_DISABLED) {
1912 		err_mask |= AC_ERR_SYSTEM;
1913 		ata_port_probe(ap);
1914 	}
1915 
1916 	spin_unlock_irqrestore(ap->lock, flags);
1917 
1918 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919 		ata_internal_cmd_timed_out(dev, command);
1920 
1921 	return err_mask;
1922 }
1923 
1924 /**
1925  *	ata_exec_internal - execute libata internal command
1926  *	@dev: Device to which the command is sent
1927  *	@tf: Taskfile registers for the command and the result
1928  *	@cdb: CDB for packet command
1929  *	@dma_dir: Data tranfer direction of the command
1930  *	@buf: Data buffer of the command
1931  *	@buflen: Length of data buffer
1932  *	@timeout: Timeout in msecs (0 for default)
1933  *
1934  *	Wrapper around ata_exec_internal_sg() which takes simple
1935  *	buffer instead of sg list.
1936  *
1937  *	LOCKING:
1938  *	None.  Should be called with kernel context, might sleep.
1939  *
1940  *	RETURNS:
1941  *	Zero on success, AC_ERR_* mask on failure
1942  */
1943 unsigned ata_exec_internal(struct ata_device *dev,
1944 			   struct ata_taskfile *tf, const u8 *cdb,
1945 			   int dma_dir, void *buf, unsigned int buflen,
1946 			   unsigned long timeout)
1947 {
1948 	struct scatterlist *psg = NULL, sg;
1949 	unsigned int n_elem = 0;
1950 
1951 	if (dma_dir != DMA_NONE) {
1952 		WARN_ON(!buf);
1953 		sg_init_one(&sg, buf, buflen);
1954 		psg = &sg;
1955 		n_elem++;
1956 	}
1957 
1958 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959 				    timeout);
1960 }
1961 
1962 /**
1963  *	ata_do_simple_cmd - execute simple internal command
1964  *	@dev: Device to which the command is sent
1965  *	@cmd: Opcode to execute
1966  *
1967  *	Execute a 'simple' command, that only consists of the opcode
1968  *	'cmd' itself, without filling any other registers
1969  *
1970  *	LOCKING:
1971  *	Kernel thread context (may sleep).
1972  *
1973  *	RETURNS:
1974  *	Zero on success, AC_ERR_* mask on failure
1975  */
1976 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1977 {
1978 	struct ata_taskfile tf;
1979 
1980 	ata_tf_init(dev, &tf);
1981 
1982 	tf.command = cmd;
1983 	tf.flags |= ATA_TFLAG_DEVICE;
1984 	tf.protocol = ATA_PROT_NODATA;
1985 
1986 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1987 }
1988 
1989 /**
1990  *	ata_pio_need_iordy	-	check if iordy needed
1991  *	@adev: ATA device
1992  *
1993  *	Check if the current speed of the device requires IORDY. Used
1994  *	by various controllers for chip configuration.
1995  */
1996 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1997 {
1998 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1999 	 * lead to controller lock up on certain controllers if the
2000 	 * port is not occupied.  See bko#11703 for details.
2001 	 */
2002 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2003 		return 0;
2004 	/* Controller doesn't support IORDY.  Probably a pointless
2005 	 * check as the caller should know this.
2006 	 */
2007 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2008 		return 0;
2009 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2010 	if (ata_id_is_cfa(adev->id)
2011 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2012 		return 0;
2013 	/* PIO3 and higher it is mandatory */
2014 	if (adev->pio_mode > XFER_PIO_2)
2015 		return 1;
2016 	/* We turn it on when possible */
2017 	if (ata_id_has_iordy(adev->id))
2018 		return 1;
2019 	return 0;
2020 }
2021 
2022 /**
2023  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2024  *	@adev: ATA device
2025  *
2026  *	Compute the highest mode possible if we are not using iordy. Return
2027  *	-1 if no iordy mode is available.
2028  */
2029 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2030 {
2031 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2032 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2033 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2034 		/* Is the speed faster than the drive allows non IORDY ? */
2035 		if (pio) {
2036 			/* This is cycle times not frequency - watch the logic! */
2037 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2038 				return 3 << ATA_SHIFT_PIO;
2039 			return 7 << ATA_SHIFT_PIO;
2040 		}
2041 	}
2042 	return 3 << ATA_SHIFT_PIO;
2043 }
2044 
2045 /**
2046  *	ata_do_dev_read_id		-	default ID read method
2047  *	@dev: device
2048  *	@tf: proposed taskfile
2049  *	@id: data buffer
2050  *
2051  *	Issue the identify taskfile and hand back the buffer containing
2052  *	identify data. For some RAID controllers and for pre ATA devices
2053  *	this function is wrapped or replaced by the driver
2054  */
2055 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2056 					struct ata_taskfile *tf, u16 *id)
2057 {
2058 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2059 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2060 }
2061 
2062 /**
2063  *	ata_dev_read_id - Read ID data from the specified device
2064  *	@dev: target device
2065  *	@p_class: pointer to class of the target device (may be changed)
2066  *	@flags: ATA_READID_* flags
2067  *	@id: buffer to read IDENTIFY data into
2068  *
2069  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2070  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2071  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2072  *	for pre-ATA4 drives.
2073  *
2074  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2075  *	now we abort if we hit that case.
2076  *
2077  *	LOCKING:
2078  *	Kernel thread context (may sleep)
2079  *
2080  *	RETURNS:
2081  *	0 on success, -errno otherwise.
2082  */
2083 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2084 		    unsigned int flags, u16 *id)
2085 {
2086 	struct ata_port *ap = dev->link->ap;
2087 	unsigned int class = *p_class;
2088 	struct ata_taskfile tf;
2089 	unsigned int err_mask = 0;
2090 	const char *reason;
2091 	bool is_semb = class == ATA_DEV_SEMB;
2092 	int may_fallback = 1, tried_spinup = 0;
2093 	int rc;
2094 
2095 	if (ata_msg_ctl(ap))
2096 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2097 
2098 retry:
2099 	ata_tf_init(dev, &tf);
2100 
2101 	switch (class) {
2102 	case ATA_DEV_SEMB:
2103 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
2104 	case ATA_DEV_ATA:
2105 		tf.command = ATA_CMD_ID_ATA;
2106 		break;
2107 	case ATA_DEV_ATAPI:
2108 		tf.command = ATA_CMD_ID_ATAPI;
2109 		break;
2110 	default:
2111 		rc = -ENODEV;
2112 		reason = "unsupported class";
2113 		goto err_out;
2114 	}
2115 
2116 	tf.protocol = ATA_PROT_PIO;
2117 
2118 	/* Some devices choke if TF registers contain garbage.  Make
2119 	 * sure those are properly initialized.
2120 	 */
2121 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2122 
2123 	/* Device presence detection is unreliable on some
2124 	 * controllers.  Always poll IDENTIFY if available.
2125 	 */
2126 	tf.flags |= ATA_TFLAG_POLLING;
2127 
2128 	if (ap->ops->read_id)
2129 		err_mask = ap->ops->read_id(dev, &tf, id);
2130 	else
2131 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2132 
2133 	if (err_mask) {
2134 		if (err_mask & AC_ERR_NODEV_HINT) {
2135 			ata_dev_printk(dev, KERN_DEBUG,
2136 				       "NODEV after polling detection\n");
2137 			return -ENOENT;
2138 		}
2139 
2140 		if (is_semb) {
2141 			ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2142 				       "device w/ SEMB sig, disabled\n");
2143 			/* SEMB is not supported yet */
2144 			*p_class = ATA_DEV_SEMB_UNSUP;
2145 			return 0;
2146 		}
2147 
2148 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2149 			/* Device or controller might have reported
2150 			 * the wrong device class.  Give a shot at the
2151 			 * other IDENTIFY if the current one is
2152 			 * aborted by the device.
2153 			 */
2154 			if (may_fallback) {
2155 				may_fallback = 0;
2156 
2157 				if (class == ATA_DEV_ATA)
2158 					class = ATA_DEV_ATAPI;
2159 				else
2160 					class = ATA_DEV_ATA;
2161 				goto retry;
2162 			}
2163 
2164 			/* Control reaches here iff the device aborted
2165 			 * both flavors of IDENTIFYs which happens
2166 			 * sometimes with phantom devices.
2167 			 */
2168 			ata_dev_printk(dev, KERN_DEBUG,
2169 				       "both IDENTIFYs aborted, assuming NODEV\n");
2170 			return -ENOENT;
2171 		}
2172 
2173 		rc = -EIO;
2174 		reason = "I/O error";
2175 		goto err_out;
2176 	}
2177 
2178 	/* Falling back doesn't make sense if ID data was read
2179 	 * successfully at least once.
2180 	 */
2181 	may_fallback = 0;
2182 
2183 	swap_buf_le16(id, ATA_ID_WORDS);
2184 
2185 	/* sanity check */
2186 	rc = -EINVAL;
2187 	reason = "device reports invalid type";
2188 
2189 	if (class == ATA_DEV_ATA) {
2190 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2191 			goto err_out;
2192 	} else {
2193 		if (ata_id_is_ata(id))
2194 			goto err_out;
2195 	}
2196 
2197 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2198 		tried_spinup = 1;
2199 		/*
2200 		 * Drive powered-up in standby mode, and requires a specific
2201 		 * SET_FEATURES spin-up subcommand before it will accept
2202 		 * anything other than the original IDENTIFY command.
2203 		 */
2204 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2205 		if (err_mask && id[2] != 0x738c) {
2206 			rc = -EIO;
2207 			reason = "SPINUP failed";
2208 			goto err_out;
2209 		}
2210 		/*
2211 		 * If the drive initially returned incomplete IDENTIFY info,
2212 		 * we now must reissue the IDENTIFY command.
2213 		 */
2214 		if (id[2] == 0x37c8)
2215 			goto retry;
2216 	}
2217 
2218 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2219 		/*
2220 		 * The exact sequence expected by certain pre-ATA4 drives is:
2221 		 * SRST RESET
2222 		 * IDENTIFY (optional in early ATA)
2223 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2224 		 * anything else..
2225 		 * Some drives were very specific about that exact sequence.
2226 		 *
2227 		 * Note that ATA4 says lba is mandatory so the second check
2228 		 * shoud never trigger.
2229 		 */
2230 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2231 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2232 			if (err_mask) {
2233 				rc = -EIO;
2234 				reason = "INIT_DEV_PARAMS failed";
2235 				goto err_out;
2236 			}
2237 
2238 			/* current CHS translation info (id[53-58]) might be
2239 			 * changed. reread the identify device info.
2240 			 */
2241 			flags &= ~ATA_READID_POSTRESET;
2242 			goto retry;
2243 		}
2244 	}
2245 
2246 	*p_class = class;
2247 
2248 	return 0;
2249 
2250  err_out:
2251 	if (ata_msg_warn(ap))
2252 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2253 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2254 	return rc;
2255 }
2256 
2257 static int ata_do_link_spd_horkage(struct ata_device *dev)
2258 {
2259 	struct ata_link *plink = ata_dev_phys_link(dev);
2260 	u32 target, target_limit;
2261 
2262 	if (!sata_scr_valid(plink))
2263 		return 0;
2264 
2265 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2266 		target = 1;
2267 	else
2268 		return 0;
2269 
2270 	target_limit = (1 << target) - 1;
2271 
2272 	/* if already on stricter limit, no need to push further */
2273 	if (plink->sata_spd_limit <= target_limit)
2274 		return 0;
2275 
2276 	plink->sata_spd_limit = target_limit;
2277 
2278 	/* Request another EH round by returning -EAGAIN if link is
2279 	 * going faster than the target speed.  Forward progress is
2280 	 * guaranteed by setting sata_spd_limit to target_limit above.
2281 	 */
2282 	if (plink->sata_spd > target) {
2283 		ata_dev_printk(dev, KERN_INFO,
2284 			       "applying link speed limit horkage to %s\n",
2285 			       sata_spd_string(target));
2286 		return -EAGAIN;
2287 	}
2288 	return 0;
2289 }
2290 
2291 static inline u8 ata_dev_knobble(struct ata_device *dev)
2292 {
2293 	struct ata_port *ap = dev->link->ap;
2294 
2295 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2296 		return 0;
2297 
2298 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2299 }
2300 
2301 static void ata_dev_config_ncq(struct ata_device *dev,
2302 			       char *desc, size_t desc_sz)
2303 {
2304 	struct ata_port *ap = dev->link->ap;
2305 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306 
2307 	if (!ata_id_has_ncq(dev->id)) {
2308 		desc[0] = '\0';
2309 		return;
2310 	}
2311 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2312 		snprintf(desc, desc_sz, "NCQ (not used)");
2313 		return;
2314 	}
2315 	if (ap->flags & ATA_FLAG_NCQ) {
2316 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2317 		dev->flags |= ATA_DFLAG_NCQ;
2318 	}
2319 
2320 	if (hdepth >= ddepth)
2321 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2322 	else
2323 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2324 }
2325 
2326 /**
2327  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2328  *	@dev: Target device to configure
2329  *
2330  *	Configure @dev according to @dev->id.  Generic and low-level
2331  *	driver specific fixups are also applied.
2332  *
2333  *	LOCKING:
2334  *	Kernel thread context (may sleep)
2335  *
2336  *	RETURNS:
2337  *	0 on success, -errno otherwise
2338  */
2339 int ata_dev_configure(struct ata_device *dev)
2340 {
2341 	struct ata_port *ap = dev->link->ap;
2342 	struct ata_eh_context *ehc = &dev->link->eh_context;
2343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2344 	const u16 *id = dev->id;
2345 	unsigned long xfer_mask;
2346 	char revbuf[7];		/* XYZ-99\0 */
2347 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2348 	char modelbuf[ATA_ID_PROD_LEN+1];
2349 	int rc;
2350 
2351 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2352 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2353 			       __func__);
2354 		return 0;
2355 	}
2356 
2357 	if (ata_msg_probe(ap))
2358 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2359 
2360 	/* set horkage */
2361 	dev->horkage |= ata_dev_blacklisted(dev);
2362 	ata_force_horkage(dev);
2363 
2364 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2365 		ata_dev_printk(dev, KERN_INFO,
2366 			       "unsupported device, disabling\n");
2367 		ata_dev_disable(dev);
2368 		return 0;
2369 	}
2370 
2371 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2372 	    dev->class == ATA_DEV_ATAPI) {
2373 		ata_dev_printk(dev, KERN_WARNING,
2374 			"WARNING: ATAPI is %s, device ignored.\n",
2375 			atapi_enabled ? "not supported with this driver"
2376 				      : "disabled");
2377 		ata_dev_disable(dev);
2378 		return 0;
2379 	}
2380 
2381 	rc = ata_do_link_spd_horkage(dev);
2382 	if (rc)
2383 		return rc;
2384 
2385 	/* let ACPI work its magic */
2386 	rc = ata_acpi_on_devcfg(dev);
2387 	if (rc)
2388 		return rc;
2389 
2390 	/* massage HPA, do it early as it might change IDENTIFY data */
2391 	rc = ata_hpa_resize(dev);
2392 	if (rc)
2393 		return rc;
2394 
2395 	/* print device capabilities */
2396 	if (ata_msg_probe(ap))
2397 		ata_dev_printk(dev, KERN_DEBUG,
2398 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2399 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2400 			       __func__,
2401 			       id[49], id[82], id[83], id[84],
2402 			       id[85], id[86], id[87], id[88]);
2403 
2404 	/* initialize to-be-configured parameters */
2405 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2406 	dev->max_sectors = 0;
2407 	dev->cdb_len = 0;
2408 	dev->n_sectors = 0;
2409 	dev->cylinders = 0;
2410 	dev->heads = 0;
2411 	dev->sectors = 0;
2412 	dev->multi_count = 0;
2413 
2414 	/*
2415 	 * common ATA, ATAPI feature tests
2416 	 */
2417 
2418 	/* find max transfer mode; for printk only */
2419 	xfer_mask = ata_id_xfermask(id);
2420 
2421 	if (ata_msg_probe(ap))
2422 		ata_dump_id(id);
2423 
2424 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2425 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2426 			sizeof(fwrevbuf));
2427 
2428 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2429 			sizeof(modelbuf));
2430 
2431 	/* ATA-specific feature tests */
2432 	if (dev->class == ATA_DEV_ATA) {
2433 		if (ata_id_is_cfa(id)) {
2434 			/* CPRM may make this media unusable */
2435 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2436 				ata_dev_printk(dev, KERN_WARNING,
2437 					       "supports DRM functions and may "
2438 					       "not be fully accessable.\n");
2439 			snprintf(revbuf, 7, "CFA");
2440 		} else {
2441 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2442 			/* Warn the user if the device has TPM extensions */
2443 			if (ata_id_has_tpm(id))
2444 				ata_dev_printk(dev, KERN_WARNING,
2445 					       "supports DRM functions and may "
2446 					       "not be fully accessable.\n");
2447 		}
2448 
2449 		dev->n_sectors = ata_id_n_sectors(id);
2450 
2451 		/* get current R/W Multiple count setting */
2452 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2453 			unsigned int max = dev->id[47] & 0xff;
2454 			unsigned int cnt = dev->id[59] & 0xff;
2455 			/* only recognize/allow powers of two here */
2456 			if (is_power_of_2(max) && is_power_of_2(cnt))
2457 				if (cnt <= max)
2458 					dev->multi_count = cnt;
2459 		}
2460 
2461 		if (ata_id_has_lba(id)) {
2462 			const char *lba_desc;
2463 			char ncq_desc[20];
2464 
2465 			lba_desc = "LBA";
2466 			dev->flags |= ATA_DFLAG_LBA;
2467 			if (ata_id_has_lba48(id)) {
2468 				dev->flags |= ATA_DFLAG_LBA48;
2469 				lba_desc = "LBA48";
2470 
2471 				if (dev->n_sectors >= (1UL << 28) &&
2472 				    ata_id_has_flush_ext(id))
2473 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2474 			}
2475 
2476 			/* config NCQ */
2477 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2478 
2479 			/* print device info to dmesg */
2480 			if (ata_msg_drv(ap) && print_info) {
2481 				ata_dev_printk(dev, KERN_INFO,
2482 					"%s: %s, %s, max %s\n",
2483 					revbuf, modelbuf, fwrevbuf,
2484 					ata_mode_string(xfer_mask));
2485 				ata_dev_printk(dev, KERN_INFO,
2486 					"%Lu sectors, multi %u: %s %s\n",
2487 					(unsigned long long)dev->n_sectors,
2488 					dev->multi_count, lba_desc, ncq_desc);
2489 			}
2490 		} else {
2491 			/* CHS */
2492 
2493 			/* Default translation */
2494 			dev->cylinders	= id[1];
2495 			dev->heads	= id[3];
2496 			dev->sectors	= id[6];
2497 
2498 			if (ata_id_current_chs_valid(id)) {
2499 				/* Current CHS translation is valid. */
2500 				dev->cylinders = id[54];
2501 				dev->heads     = id[55];
2502 				dev->sectors   = id[56];
2503 			}
2504 
2505 			/* print device info to dmesg */
2506 			if (ata_msg_drv(ap) && print_info) {
2507 				ata_dev_printk(dev, KERN_INFO,
2508 					"%s: %s, %s, max %s\n",
2509 					revbuf,	modelbuf, fwrevbuf,
2510 					ata_mode_string(xfer_mask));
2511 				ata_dev_printk(dev, KERN_INFO,
2512 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2513 					(unsigned long long)dev->n_sectors,
2514 					dev->multi_count, dev->cylinders,
2515 					dev->heads, dev->sectors);
2516 			}
2517 		}
2518 
2519 		dev->cdb_len = 16;
2520 	}
2521 
2522 	/* ATAPI-specific feature tests */
2523 	else if (dev->class == ATA_DEV_ATAPI) {
2524 		const char *cdb_intr_string = "";
2525 		const char *atapi_an_string = "";
2526 		const char *dma_dir_string = "";
2527 		u32 sntf;
2528 
2529 		rc = atapi_cdb_len(id);
2530 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2531 			if (ata_msg_warn(ap))
2532 				ata_dev_printk(dev, KERN_WARNING,
2533 					       "unsupported CDB len\n");
2534 			rc = -EINVAL;
2535 			goto err_out_nosup;
2536 		}
2537 		dev->cdb_len = (unsigned int) rc;
2538 
2539 		/* Enable ATAPI AN if both the host and device have
2540 		 * the support.  If PMP is attached, SNTF is required
2541 		 * to enable ATAPI AN to discern between PHY status
2542 		 * changed notifications and ATAPI ANs.
2543 		 */
2544 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2545 		    (!sata_pmp_attached(ap) ||
2546 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2547 			unsigned int err_mask;
2548 
2549 			/* issue SET feature command to turn this on */
2550 			err_mask = ata_dev_set_feature(dev,
2551 					SETFEATURES_SATA_ENABLE, SATA_AN);
2552 			if (err_mask)
2553 				ata_dev_printk(dev, KERN_ERR,
2554 					"failed to enable ATAPI AN "
2555 					"(err_mask=0x%x)\n", err_mask);
2556 			else {
2557 				dev->flags |= ATA_DFLAG_AN;
2558 				atapi_an_string = ", ATAPI AN";
2559 			}
2560 		}
2561 
2562 		if (ata_id_cdb_intr(dev->id)) {
2563 			dev->flags |= ATA_DFLAG_CDB_INTR;
2564 			cdb_intr_string = ", CDB intr";
2565 		}
2566 
2567 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2568 			dev->flags |= ATA_DFLAG_DMADIR;
2569 			dma_dir_string = ", DMADIR";
2570 		}
2571 
2572 		/* print device info to dmesg */
2573 		if (ata_msg_drv(ap) && print_info)
2574 			ata_dev_printk(dev, KERN_INFO,
2575 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2576 				       modelbuf, fwrevbuf,
2577 				       ata_mode_string(xfer_mask),
2578 				       cdb_intr_string, atapi_an_string,
2579 				       dma_dir_string);
2580 	}
2581 
2582 	/* determine max_sectors */
2583 	dev->max_sectors = ATA_MAX_SECTORS;
2584 	if (dev->flags & ATA_DFLAG_LBA48)
2585 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2586 
2587 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2588 		if (ata_id_has_hipm(dev->id))
2589 			dev->flags |= ATA_DFLAG_HIPM;
2590 		if (ata_id_has_dipm(dev->id))
2591 			dev->flags |= ATA_DFLAG_DIPM;
2592 	}
2593 
2594 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2595 	   200 sectors */
2596 	if (ata_dev_knobble(dev)) {
2597 		if (ata_msg_drv(ap) && print_info)
2598 			ata_dev_printk(dev, KERN_INFO,
2599 				       "applying bridge limits\n");
2600 		dev->udma_mask &= ATA_UDMA5;
2601 		dev->max_sectors = ATA_MAX_SECTORS;
2602 	}
2603 
2604 	if ((dev->class == ATA_DEV_ATAPI) &&
2605 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2606 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2607 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2608 	}
2609 
2610 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2611 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2612 					 dev->max_sectors);
2613 
2614 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2615 		dev->horkage |= ATA_HORKAGE_IPM;
2616 
2617 		/* reset link pm_policy for this port to no pm */
2618 		ap->pm_policy = MAX_PERFORMANCE;
2619 	}
2620 
2621 	if (ap->ops->dev_config)
2622 		ap->ops->dev_config(dev);
2623 
2624 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2625 		/* Let the user know. We don't want to disallow opens for
2626 		   rescue purposes, or in case the vendor is just a blithering
2627 		   idiot. Do this after the dev_config call as some controllers
2628 		   with buggy firmware may want to avoid reporting false device
2629 		   bugs */
2630 
2631 		if (print_info) {
2632 			ata_dev_printk(dev, KERN_WARNING,
2633 "Drive reports diagnostics failure. This may indicate a drive\n");
2634 			ata_dev_printk(dev, KERN_WARNING,
2635 "fault or invalid emulation. Contact drive vendor for information.\n");
2636 		}
2637 	}
2638 
2639 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2640 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2641 			       "firmware update to be fully functional.\n");
2642 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2643 			       "or visit http://ata.wiki.kernel.org.\n");
2644 	}
2645 
2646 	return 0;
2647 
2648 err_out_nosup:
2649 	if (ata_msg_probe(ap))
2650 		ata_dev_printk(dev, KERN_DEBUG,
2651 			       "%s: EXIT, err\n", __func__);
2652 	return rc;
2653 }
2654 
2655 /**
2656  *	ata_cable_40wire	-	return 40 wire cable type
2657  *	@ap: port
2658  *
2659  *	Helper method for drivers which want to hardwire 40 wire cable
2660  *	detection.
2661  */
2662 
2663 int ata_cable_40wire(struct ata_port *ap)
2664 {
2665 	return ATA_CBL_PATA40;
2666 }
2667 
2668 /**
2669  *	ata_cable_80wire	-	return 80 wire cable type
2670  *	@ap: port
2671  *
2672  *	Helper method for drivers which want to hardwire 80 wire cable
2673  *	detection.
2674  */
2675 
2676 int ata_cable_80wire(struct ata_port *ap)
2677 {
2678 	return ATA_CBL_PATA80;
2679 }
2680 
2681 /**
2682  *	ata_cable_unknown	-	return unknown PATA cable.
2683  *	@ap: port
2684  *
2685  *	Helper method for drivers which have no PATA cable detection.
2686  */
2687 
2688 int ata_cable_unknown(struct ata_port *ap)
2689 {
2690 	return ATA_CBL_PATA_UNK;
2691 }
2692 
2693 /**
2694  *	ata_cable_ignore	-	return ignored PATA cable.
2695  *	@ap: port
2696  *
2697  *	Helper method for drivers which don't use cable type to limit
2698  *	transfer mode.
2699  */
2700 int ata_cable_ignore(struct ata_port *ap)
2701 {
2702 	return ATA_CBL_PATA_IGN;
2703 }
2704 
2705 /**
2706  *	ata_cable_sata	-	return SATA cable type
2707  *	@ap: port
2708  *
2709  *	Helper method for drivers which have SATA cables
2710  */
2711 
2712 int ata_cable_sata(struct ata_port *ap)
2713 {
2714 	return ATA_CBL_SATA;
2715 }
2716 
2717 /**
2718  *	ata_bus_probe - Reset and probe ATA bus
2719  *	@ap: Bus to probe
2720  *
2721  *	Master ATA bus probing function.  Initiates a hardware-dependent
2722  *	bus reset, then attempts to identify any devices found on
2723  *	the bus.
2724  *
2725  *	LOCKING:
2726  *	PCI/etc. bus probe sem.
2727  *
2728  *	RETURNS:
2729  *	Zero on success, negative errno otherwise.
2730  */
2731 
2732 int ata_bus_probe(struct ata_port *ap)
2733 {
2734 	unsigned int classes[ATA_MAX_DEVICES];
2735 	int tries[ATA_MAX_DEVICES];
2736 	int rc;
2737 	struct ata_device *dev;
2738 
2739 	ata_port_probe(ap);
2740 
2741 	ata_for_each_dev(dev, &ap->link, ALL)
2742 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2743 
2744  retry:
2745 	ata_for_each_dev(dev, &ap->link, ALL) {
2746 		/* If we issue an SRST then an ATA drive (not ATAPI)
2747 		 * may change configuration and be in PIO0 timing. If
2748 		 * we do a hard reset (or are coming from power on)
2749 		 * this is true for ATA or ATAPI. Until we've set a
2750 		 * suitable controller mode we should not touch the
2751 		 * bus as we may be talking too fast.
2752 		 */
2753 		dev->pio_mode = XFER_PIO_0;
2754 
2755 		/* If the controller has a pio mode setup function
2756 		 * then use it to set the chipset to rights. Don't
2757 		 * touch the DMA setup as that will be dealt with when
2758 		 * configuring devices.
2759 		 */
2760 		if (ap->ops->set_piomode)
2761 			ap->ops->set_piomode(ap, dev);
2762 	}
2763 
2764 	/* reset and determine device classes */
2765 	ap->ops->phy_reset(ap);
2766 
2767 	ata_for_each_dev(dev, &ap->link, ALL) {
2768 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2769 		    dev->class != ATA_DEV_UNKNOWN)
2770 			classes[dev->devno] = dev->class;
2771 		else
2772 			classes[dev->devno] = ATA_DEV_NONE;
2773 
2774 		dev->class = ATA_DEV_UNKNOWN;
2775 	}
2776 
2777 	ata_port_probe(ap);
2778 
2779 	/* read IDENTIFY page and configure devices. We have to do the identify
2780 	   specific sequence bass-ackwards so that PDIAG- is released by
2781 	   the slave device */
2782 
2783 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2784 		if (tries[dev->devno])
2785 			dev->class = classes[dev->devno];
2786 
2787 		if (!ata_dev_enabled(dev))
2788 			continue;
2789 
2790 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2791 				     dev->id);
2792 		if (rc)
2793 			goto fail;
2794 	}
2795 
2796 	/* Now ask for the cable type as PDIAG- should have been released */
2797 	if (ap->ops->cable_detect)
2798 		ap->cbl = ap->ops->cable_detect(ap);
2799 
2800 	/* We may have SATA bridge glue hiding here irrespective of
2801 	 * the reported cable types and sensed types.  When SATA
2802 	 * drives indicate we have a bridge, we don't know which end
2803 	 * of the link the bridge is which is a problem.
2804 	 */
2805 	ata_for_each_dev(dev, &ap->link, ENABLED)
2806 		if (ata_id_is_sata(dev->id))
2807 			ap->cbl = ATA_CBL_SATA;
2808 
2809 	/* After the identify sequence we can now set up the devices. We do
2810 	   this in the normal order so that the user doesn't get confused */
2811 
2812 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2813 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2814 		rc = ata_dev_configure(dev);
2815 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2816 		if (rc)
2817 			goto fail;
2818 	}
2819 
2820 	/* configure transfer mode */
2821 	rc = ata_set_mode(&ap->link, &dev);
2822 	if (rc)
2823 		goto fail;
2824 
2825 	ata_for_each_dev(dev, &ap->link, ENABLED)
2826 		return 0;
2827 
2828 	/* no device present, disable port */
2829 	ata_port_disable(ap);
2830 	return -ENODEV;
2831 
2832  fail:
2833 	tries[dev->devno]--;
2834 
2835 	switch (rc) {
2836 	case -EINVAL:
2837 		/* eeek, something went very wrong, give up */
2838 		tries[dev->devno] = 0;
2839 		break;
2840 
2841 	case -ENODEV:
2842 		/* give it just one more chance */
2843 		tries[dev->devno] = min(tries[dev->devno], 1);
2844 	case -EIO:
2845 		if (tries[dev->devno] == 1) {
2846 			/* This is the last chance, better to slow
2847 			 * down than lose it.
2848 			 */
2849 			sata_down_spd_limit(&ap->link, 0);
2850 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2851 		}
2852 	}
2853 
2854 	if (!tries[dev->devno])
2855 		ata_dev_disable(dev);
2856 
2857 	goto retry;
2858 }
2859 
2860 /**
2861  *	ata_port_probe - Mark port as enabled
2862  *	@ap: Port for which we indicate enablement
2863  *
2864  *	Modify @ap data structure such that the system
2865  *	thinks that the entire port is enabled.
2866  *
2867  *	LOCKING: host lock, or some other form of
2868  *	serialization.
2869  */
2870 
2871 void ata_port_probe(struct ata_port *ap)
2872 {
2873 	ap->flags &= ~ATA_FLAG_DISABLED;
2874 }
2875 
2876 /**
2877  *	sata_print_link_status - Print SATA link status
2878  *	@link: SATA link to printk link status about
2879  *
2880  *	This function prints link speed and status of a SATA link.
2881  *
2882  *	LOCKING:
2883  *	None.
2884  */
2885 static void sata_print_link_status(struct ata_link *link)
2886 {
2887 	u32 sstatus, scontrol, tmp;
2888 
2889 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2890 		return;
2891 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2892 
2893 	if (ata_phys_link_online(link)) {
2894 		tmp = (sstatus >> 4) & 0xf;
2895 		ata_link_printk(link, KERN_INFO,
2896 				"SATA link up %s (SStatus %X SControl %X)\n",
2897 				sata_spd_string(tmp), sstatus, scontrol);
2898 	} else {
2899 		ata_link_printk(link, KERN_INFO,
2900 				"SATA link down (SStatus %X SControl %X)\n",
2901 				sstatus, scontrol);
2902 	}
2903 }
2904 
2905 /**
2906  *	ata_dev_pair		-	return other device on cable
2907  *	@adev: device
2908  *
2909  *	Obtain the other device on the same cable, or if none is
2910  *	present NULL is returned
2911  */
2912 
2913 struct ata_device *ata_dev_pair(struct ata_device *adev)
2914 {
2915 	struct ata_link *link = adev->link;
2916 	struct ata_device *pair = &link->device[1 - adev->devno];
2917 	if (!ata_dev_enabled(pair))
2918 		return NULL;
2919 	return pair;
2920 }
2921 
2922 /**
2923  *	ata_port_disable - Disable port.
2924  *	@ap: Port to be disabled.
2925  *
2926  *	Modify @ap data structure such that the system
2927  *	thinks that the entire port is disabled, and should
2928  *	never attempt to probe or communicate with devices
2929  *	on this port.
2930  *
2931  *	LOCKING: host lock, or some other form of
2932  *	serialization.
2933  */
2934 
2935 void ata_port_disable(struct ata_port *ap)
2936 {
2937 	ap->link.device[0].class = ATA_DEV_NONE;
2938 	ap->link.device[1].class = ATA_DEV_NONE;
2939 	ap->flags |= ATA_FLAG_DISABLED;
2940 }
2941 
2942 /**
2943  *	sata_down_spd_limit - adjust SATA spd limit downward
2944  *	@link: Link to adjust SATA spd limit for
2945  *	@spd_limit: Additional limit
2946  *
2947  *	Adjust SATA spd limit of @link downward.  Note that this
2948  *	function only adjusts the limit.  The change must be applied
2949  *	using sata_set_spd().
2950  *
2951  *	If @spd_limit is non-zero, the speed is limited to equal to or
2952  *	lower than @spd_limit if such speed is supported.  If
2953  *	@spd_limit is slower than any supported speed, only the lowest
2954  *	supported speed is allowed.
2955  *
2956  *	LOCKING:
2957  *	Inherited from caller.
2958  *
2959  *	RETURNS:
2960  *	0 on success, negative errno on failure
2961  */
2962 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2963 {
2964 	u32 sstatus, spd, mask;
2965 	int rc, bit;
2966 
2967 	if (!sata_scr_valid(link))
2968 		return -EOPNOTSUPP;
2969 
2970 	/* If SCR can be read, use it to determine the current SPD.
2971 	 * If not, use cached value in link->sata_spd.
2972 	 */
2973 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2974 	if (rc == 0 && ata_sstatus_online(sstatus))
2975 		spd = (sstatus >> 4) & 0xf;
2976 	else
2977 		spd = link->sata_spd;
2978 
2979 	mask = link->sata_spd_limit;
2980 	if (mask <= 1)
2981 		return -EINVAL;
2982 
2983 	/* unconditionally mask off the highest bit */
2984 	bit = fls(mask) - 1;
2985 	mask &= ~(1 << bit);
2986 
2987 	/* Mask off all speeds higher than or equal to the current
2988 	 * one.  Force 1.5Gbps if current SPD is not available.
2989 	 */
2990 	if (spd > 1)
2991 		mask &= (1 << (spd - 1)) - 1;
2992 	else
2993 		mask &= 1;
2994 
2995 	/* were we already at the bottom? */
2996 	if (!mask)
2997 		return -EINVAL;
2998 
2999 	if (spd_limit) {
3000 		if (mask & ((1 << spd_limit) - 1))
3001 			mask &= (1 << spd_limit) - 1;
3002 		else {
3003 			bit = ffs(mask) - 1;
3004 			mask = 1 << bit;
3005 		}
3006 	}
3007 
3008 	link->sata_spd_limit = mask;
3009 
3010 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3011 			sata_spd_string(fls(mask)));
3012 
3013 	return 0;
3014 }
3015 
3016 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3017 {
3018 	struct ata_link *host_link = &link->ap->link;
3019 	u32 limit, target, spd;
3020 
3021 	limit = link->sata_spd_limit;
3022 
3023 	/* Don't configure downstream link faster than upstream link.
3024 	 * It doesn't speed up anything and some PMPs choke on such
3025 	 * configuration.
3026 	 */
3027 	if (!ata_is_host_link(link) && host_link->sata_spd)
3028 		limit &= (1 << host_link->sata_spd) - 1;
3029 
3030 	if (limit == UINT_MAX)
3031 		target = 0;
3032 	else
3033 		target = fls(limit);
3034 
3035 	spd = (*scontrol >> 4) & 0xf;
3036 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3037 
3038 	return spd != target;
3039 }
3040 
3041 /**
3042  *	sata_set_spd_needed - is SATA spd configuration needed
3043  *	@link: Link in question
3044  *
3045  *	Test whether the spd limit in SControl matches
3046  *	@link->sata_spd_limit.  This function is used to determine
3047  *	whether hardreset is necessary to apply SATA spd
3048  *	configuration.
3049  *
3050  *	LOCKING:
3051  *	Inherited from caller.
3052  *
3053  *	RETURNS:
3054  *	1 if SATA spd configuration is needed, 0 otherwise.
3055  */
3056 static int sata_set_spd_needed(struct ata_link *link)
3057 {
3058 	u32 scontrol;
3059 
3060 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3061 		return 1;
3062 
3063 	return __sata_set_spd_needed(link, &scontrol);
3064 }
3065 
3066 /**
3067  *	sata_set_spd - set SATA spd according to spd limit
3068  *	@link: Link to set SATA spd for
3069  *
3070  *	Set SATA spd of @link according to sata_spd_limit.
3071  *
3072  *	LOCKING:
3073  *	Inherited from caller.
3074  *
3075  *	RETURNS:
3076  *	0 if spd doesn't need to be changed, 1 if spd has been
3077  *	changed.  Negative errno if SCR registers are inaccessible.
3078  */
3079 int sata_set_spd(struct ata_link *link)
3080 {
3081 	u32 scontrol;
3082 	int rc;
3083 
3084 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3085 		return rc;
3086 
3087 	if (!__sata_set_spd_needed(link, &scontrol))
3088 		return 0;
3089 
3090 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3091 		return rc;
3092 
3093 	return 1;
3094 }
3095 
3096 /*
3097  * This mode timing computation functionality is ported over from
3098  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3099  */
3100 /*
3101  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3102  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3103  * for UDMA6, which is currently supported only by Maxtor drives.
3104  *
3105  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3106  */
3107 
3108 static const struct ata_timing ata_timing[] = {
3109 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3110 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3111 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3112 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3113 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3114 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3115 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3116 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3117 
3118 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3119 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3120 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3121 
3122 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3123 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3124 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3125 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3126 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3127 
3128 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3129 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3130 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3131 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3132 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3133 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3134 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3135 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3136 
3137 	{ 0xFF }
3138 };
3139 
3140 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3141 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3142 
3143 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3144 {
3145 	q->setup	= EZ(t->setup      * 1000,  T);
3146 	q->act8b	= EZ(t->act8b      * 1000,  T);
3147 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3148 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3149 	q->active	= EZ(t->active     * 1000,  T);
3150 	q->recover	= EZ(t->recover    * 1000,  T);
3151 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3152 	q->cycle	= EZ(t->cycle      * 1000,  T);
3153 	q->udma		= EZ(t->udma       * 1000, UT);
3154 }
3155 
3156 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3157 		      struct ata_timing *m, unsigned int what)
3158 {
3159 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3160 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3161 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3162 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3163 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3164 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3165 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3166 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3167 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3168 }
3169 
3170 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3171 {
3172 	const struct ata_timing *t = ata_timing;
3173 
3174 	while (xfer_mode > t->mode)
3175 		t++;
3176 
3177 	if (xfer_mode == t->mode)
3178 		return t;
3179 	return NULL;
3180 }
3181 
3182 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3183 		       struct ata_timing *t, int T, int UT)
3184 {
3185 	const struct ata_timing *s;
3186 	struct ata_timing p;
3187 
3188 	/*
3189 	 * Find the mode.
3190 	 */
3191 
3192 	if (!(s = ata_timing_find_mode(speed)))
3193 		return -EINVAL;
3194 
3195 	memcpy(t, s, sizeof(*s));
3196 
3197 	/*
3198 	 * If the drive is an EIDE drive, it can tell us it needs extended
3199 	 * PIO/MW_DMA cycle timing.
3200 	 */
3201 
3202 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3203 		memset(&p, 0, sizeof(p));
3204 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3205 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3206 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3207 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3208 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3209 		}
3210 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3211 	}
3212 
3213 	/*
3214 	 * Convert the timing to bus clock counts.
3215 	 */
3216 
3217 	ata_timing_quantize(t, t, T, UT);
3218 
3219 	/*
3220 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3221 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3222 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3223 	 */
3224 
3225 	if (speed > XFER_PIO_6) {
3226 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3227 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3228 	}
3229 
3230 	/*
3231 	 * Lengthen active & recovery time so that cycle time is correct.
3232 	 */
3233 
3234 	if (t->act8b + t->rec8b < t->cyc8b) {
3235 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3236 		t->rec8b = t->cyc8b - t->act8b;
3237 	}
3238 
3239 	if (t->active + t->recover < t->cycle) {
3240 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3241 		t->recover = t->cycle - t->active;
3242 	}
3243 
3244 	/* In a few cases quantisation may produce enough errors to
3245 	   leave t->cycle too low for the sum of active and recovery
3246 	   if so we must correct this */
3247 	if (t->active + t->recover > t->cycle)
3248 		t->cycle = t->active + t->recover;
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3255  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3256  *	@cycle: cycle duration in ns
3257  *
3258  *	Return matching xfer mode for @cycle.  The returned mode is of
3259  *	the transfer type specified by @xfer_shift.  If @cycle is too
3260  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3261  *	than the fastest known mode, the fasted mode is returned.
3262  *
3263  *	LOCKING:
3264  *	None.
3265  *
3266  *	RETURNS:
3267  *	Matching xfer_mode, 0xff if no match found.
3268  */
3269 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3270 {
3271 	u8 base_mode = 0xff, last_mode = 0xff;
3272 	const struct ata_xfer_ent *ent;
3273 	const struct ata_timing *t;
3274 
3275 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3276 		if (ent->shift == xfer_shift)
3277 			base_mode = ent->base;
3278 
3279 	for (t = ata_timing_find_mode(base_mode);
3280 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3281 		unsigned short this_cycle;
3282 
3283 		switch (xfer_shift) {
3284 		case ATA_SHIFT_PIO:
3285 		case ATA_SHIFT_MWDMA:
3286 			this_cycle = t->cycle;
3287 			break;
3288 		case ATA_SHIFT_UDMA:
3289 			this_cycle = t->udma;
3290 			break;
3291 		default:
3292 			return 0xff;
3293 		}
3294 
3295 		if (cycle > this_cycle)
3296 			break;
3297 
3298 		last_mode = t->mode;
3299 	}
3300 
3301 	return last_mode;
3302 }
3303 
3304 /**
3305  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3306  *	@dev: Device to adjust xfer masks
3307  *	@sel: ATA_DNXFER_* selector
3308  *
3309  *	Adjust xfer masks of @dev downward.  Note that this function
3310  *	does not apply the change.  Invoking ata_set_mode() afterwards
3311  *	will apply the limit.
3312  *
3313  *	LOCKING:
3314  *	Inherited from caller.
3315  *
3316  *	RETURNS:
3317  *	0 on success, negative errno on failure
3318  */
3319 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3320 {
3321 	char buf[32];
3322 	unsigned long orig_mask, xfer_mask;
3323 	unsigned long pio_mask, mwdma_mask, udma_mask;
3324 	int quiet, highbit;
3325 
3326 	quiet = !!(sel & ATA_DNXFER_QUIET);
3327 	sel &= ~ATA_DNXFER_QUIET;
3328 
3329 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3330 						  dev->mwdma_mask,
3331 						  dev->udma_mask);
3332 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3333 
3334 	switch (sel) {
3335 	case ATA_DNXFER_PIO:
3336 		highbit = fls(pio_mask) - 1;
3337 		pio_mask &= ~(1 << highbit);
3338 		break;
3339 
3340 	case ATA_DNXFER_DMA:
3341 		if (udma_mask) {
3342 			highbit = fls(udma_mask) - 1;
3343 			udma_mask &= ~(1 << highbit);
3344 			if (!udma_mask)
3345 				return -ENOENT;
3346 		} else if (mwdma_mask) {
3347 			highbit = fls(mwdma_mask) - 1;
3348 			mwdma_mask &= ~(1 << highbit);
3349 			if (!mwdma_mask)
3350 				return -ENOENT;
3351 		}
3352 		break;
3353 
3354 	case ATA_DNXFER_40C:
3355 		udma_mask &= ATA_UDMA_MASK_40C;
3356 		break;
3357 
3358 	case ATA_DNXFER_FORCE_PIO0:
3359 		pio_mask &= 1;
3360 	case ATA_DNXFER_FORCE_PIO:
3361 		mwdma_mask = 0;
3362 		udma_mask = 0;
3363 		break;
3364 
3365 	default:
3366 		BUG();
3367 	}
3368 
3369 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3370 
3371 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3372 		return -ENOENT;
3373 
3374 	if (!quiet) {
3375 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3376 			snprintf(buf, sizeof(buf), "%s:%s",
3377 				 ata_mode_string(xfer_mask),
3378 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3379 		else
3380 			snprintf(buf, sizeof(buf), "%s",
3381 				 ata_mode_string(xfer_mask));
3382 
3383 		ata_dev_printk(dev, KERN_WARNING,
3384 			       "limiting speed to %s\n", buf);
3385 	}
3386 
3387 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3388 			    &dev->udma_mask);
3389 
3390 	return 0;
3391 }
3392 
3393 static int ata_dev_set_mode(struct ata_device *dev)
3394 {
3395 	struct ata_port *ap = dev->link->ap;
3396 	struct ata_eh_context *ehc = &dev->link->eh_context;
3397 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3398 	const char *dev_err_whine = "";
3399 	int ign_dev_err = 0;
3400 	unsigned int err_mask = 0;
3401 	int rc;
3402 
3403 	dev->flags &= ~ATA_DFLAG_PIO;
3404 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3405 		dev->flags |= ATA_DFLAG_PIO;
3406 
3407 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3408 		dev_err_whine = " (SET_XFERMODE skipped)";
3409 	else {
3410 		if (nosetxfer)
3411 			ata_dev_printk(dev, KERN_WARNING,
3412 				       "NOSETXFER but PATA detected - can't "
3413 				       "skip SETXFER, might malfunction\n");
3414 		err_mask = ata_dev_set_xfermode(dev);
3415 	}
3416 
3417 	if (err_mask & ~AC_ERR_DEV)
3418 		goto fail;
3419 
3420 	/* revalidate */
3421 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3422 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3423 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3424 	if (rc)
3425 		return rc;
3426 
3427 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3428 		/* Old CFA may refuse this command, which is just fine */
3429 		if (ata_id_is_cfa(dev->id))
3430 			ign_dev_err = 1;
3431 		/* Catch several broken garbage emulations plus some pre
3432 		   ATA devices */
3433 		if (ata_id_major_version(dev->id) == 0 &&
3434 					dev->pio_mode <= XFER_PIO_2)
3435 			ign_dev_err = 1;
3436 		/* Some very old devices and some bad newer ones fail
3437 		   any kind of SET_XFERMODE request but support PIO0-2
3438 		   timings and no IORDY */
3439 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3440 			ign_dev_err = 1;
3441 	}
3442 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3443 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3444 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3445 	    dev->dma_mode == XFER_MW_DMA_0 &&
3446 	    (dev->id[63] >> 8) & 1)
3447 		ign_dev_err = 1;
3448 
3449 	/* if the device is actually configured correctly, ignore dev err */
3450 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3451 		ign_dev_err = 1;
3452 
3453 	if (err_mask & AC_ERR_DEV) {
3454 		if (!ign_dev_err)
3455 			goto fail;
3456 		else
3457 			dev_err_whine = " (device error ignored)";
3458 	}
3459 
3460 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3461 		dev->xfer_shift, (int)dev->xfer_mode);
3462 
3463 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3464 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3465 		       dev_err_whine);
3466 
3467 	return 0;
3468 
3469  fail:
3470 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3471 		       "(err_mask=0x%x)\n", err_mask);
3472 	return -EIO;
3473 }
3474 
3475 /**
3476  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3477  *	@link: link on which timings will be programmed
3478  *	@r_failed_dev: out parameter for failed device
3479  *
3480  *	Standard implementation of the function used to tune and set
3481  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3482  *	ata_dev_set_mode() fails, pointer to the failing device is
3483  *	returned in @r_failed_dev.
3484  *
3485  *	LOCKING:
3486  *	PCI/etc. bus probe sem.
3487  *
3488  *	RETURNS:
3489  *	0 on success, negative errno otherwise
3490  */
3491 
3492 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3493 {
3494 	struct ata_port *ap = link->ap;
3495 	struct ata_device *dev;
3496 	int rc = 0, used_dma = 0, found = 0;
3497 
3498 	/* step 1: calculate xfer_mask */
3499 	ata_for_each_dev(dev, link, ENABLED) {
3500 		unsigned long pio_mask, dma_mask;
3501 		unsigned int mode_mask;
3502 
3503 		mode_mask = ATA_DMA_MASK_ATA;
3504 		if (dev->class == ATA_DEV_ATAPI)
3505 			mode_mask = ATA_DMA_MASK_ATAPI;
3506 		else if (ata_id_is_cfa(dev->id))
3507 			mode_mask = ATA_DMA_MASK_CFA;
3508 
3509 		ata_dev_xfermask(dev);
3510 		ata_force_xfermask(dev);
3511 
3512 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3513 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3514 
3515 		if (libata_dma_mask & mode_mask)
3516 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3517 		else
3518 			dma_mask = 0;
3519 
3520 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3521 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3522 
3523 		found = 1;
3524 		if (ata_dma_enabled(dev))
3525 			used_dma = 1;
3526 	}
3527 	if (!found)
3528 		goto out;
3529 
3530 	/* step 2: always set host PIO timings */
3531 	ata_for_each_dev(dev, link, ENABLED) {
3532 		if (dev->pio_mode == 0xff) {
3533 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3534 			rc = -EINVAL;
3535 			goto out;
3536 		}
3537 
3538 		dev->xfer_mode = dev->pio_mode;
3539 		dev->xfer_shift = ATA_SHIFT_PIO;
3540 		if (ap->ops->set_piomode)
3541 			ap->ops->set_piomode(ap, dev);
3542 	}
3543 
3544 	/* step 3: set host DMA timings */
3545 	ata_for_each_dev(dev, link, ENABLED) {
3546 		if (!ata_dma_enabled(dev))
3547 			continue;
3548 
3549 		dev->xfer_mode = dev->dma_mode;
3550 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3551 		if (ap->ops->set_dmamode)
3552 			ap->ops->set_dmamode(ap, dev);
3553 	}
3554 
3555 	/* step 4: update devices' xfer mode */
3556 	ata_for_each_dev(dev, link, ENABLED) {
3557 		rc = ata_dev_set_mode(dev);
3558 		if (rc)
3559 			goto out;
3560 	}
3561 
3562 	/* Record simplex status. If we selected DMA then the other
3563 	 * host channels are not permitted to do so.
3564 	 */
3565 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3566 		ap->host->simplex_claimed = ap;
3567 
3568  out:
3569 	if (rc)
3570 		*r_failed_dev = dev;
3571 	return rc;
3572 }
3573 
3574 /**
3575  *	ata_wait_ready - wait for link to become ready
3576  *	@link: link to be waited on
3577  *	@deadline: deadline jiffies for the operation
3578  *	@check_ready: callback to check link readiness
3579  *
3580  *	Wait for @link to become ready.  @check_ready should return
3581  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3582  *	link doesn't seem to be occupied, other errno for other error
3583  *	conditions.
3584  *
3585  *	Transient -ENODEV conditions are allowed for
3586  *	ATA_TMOUT_FF_WAIT.
3587  *
3588  *	LOCKING:
3589  *	EH context.
3590  *
3591  *	RETURNS:
3592  *	0 if @linke is ready before @deadline; otherwise, -errno.
3593  */
3594 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3595 		   int (*check_ready)(struct ata_link *link))
3596 {
3597 	unsigned long start = jiffies;
3598 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3599 	int warned = 0;
3600 
3601 	/* Slave readiness can't be tested separately from master.  On
3602 	 * M/S emulation configuration, this function should be called
3603 	 * only on the master and it will handle both master and slave.
3604 	 */
3605 	WARN_ON(link == link->ap->slave_link);
3606 
3607 	if (time_after(nodev_deadline, deadline))
3608 		nodev_deadline = deadline;
3609 
3610 	while (1) {
3611 		unsigned long now = jiffies;
3612 		int ready, tmp;
3613 
3614 		ready = tmp = check_ready(link);
3615 		if (ready > 0)
3616 			return 0;
3617 
3618 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3619 		 * is online.  Also, some SATA devices take a long
3620 		 * time to clear 0xff after reset.  For example,
3621 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3622 		 * GoVault needs even more than that.  Wait for
3623 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3624 		 *
3625 		 * Note that some PATA controllers (pata_ali) explode
3626 		 * if status register is read more than once when
3627 		 * there's no device attached.
3628 		 */
3629 		if (ready == -ENODEV) {
3630 			if (ata_link_online(link))
3631 				ready = 0;
3632 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3633 				 !ata_link_offline(link) &&
3634 				 time_before(now, nodev_deadline))
3635 				ready = 0;
3636 		}
3637 
3638 		if (ready)
3639 			return ready;
3640 		if (time_after(now, deadline))
3641 			return -EBUSY;
3642 
3643 		if (!warned && time_after(now, start + 5 * HZ) &&
3644 		    (deadline - now > 3 * HZ)) {
3645 			ata_link_printk(link, KERN_WARNING,
3646 				"link is slow to respond, please be patient "
3647 				"(ready=%d)\n", tmp);
3648 			warned = 1;
3649 		}
3650 
3651 		msleep(50);
3652 	}
3653 }
3654 
3655 /**
3656  *	ata_wait_after_reset - wait for link to become ready after reset
3657  *	@link: link to be waited on
3658  *	@deadline: deadline jiffies for the operation
3659  *	@check_ready: callback to check link readiness
3660  *
3661  *	Wait for @link to become ready after reset.
3662  *
3663  *	LOCKING:
3664  *	EH context.
3665  *
3666  *	RETURNS:
3667  *	0 if @linke is ready before @deadline; otherwise, -errno.
3668  */
3669 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3670 				int (*check_ready)(struct ata_link *link))
3671 {
3672 	msleep(ATA_WAIT_AFTER_RESET);
3673 
3674 	return ata_wait_ready(link, deadline, check_ready);
3675 }
3676 
3677 /**
3678  *	sata_link_debounce - debounce SATA phy status
3679  *	@link: ATA link to debounce SATA phy status for
3680  *	@params: timing parameters { interval, duratinon, timeout } in msec
3681  *	@deadline: deadline jiffies for the operation
3682  *
3683 *	Make sure SStatus of @link reaches stable state, determined by
3684  *	holding the same value where DET is not 1 for @duration polled
3685  *	every @interval, before @timeout.  Timeout constraints the
3686  *	beginning of the stable state.  Because DET gets stuck at 1 on
3687  *	some controllers after hot unplugging, this functions waits
3688  *	until timeout then returns 0 if DET is stable at 1.
3689  *
3690  *	@timeout is further limited by @deadline.  The sooner of the
3691  *	two is used.
3692  *
3693  *	LOCKING:
3694  *	Kernel thread context (may sleep)
3695  *
3696  *	RETURNS:
3697  *	0 on success, -errno on failure.
3698  */
3699 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3700 		       unsigned long deadline)
3701 {
3702 	unsigned long interval = params[0];
3703 	unsigned long duration = params[1];
3704 	unsigned long last_jiffies, t;
3705 	u32 last, cur;
3706 	int rc;
3707 
3708 	t = ata_deadline(jiffies, params[2]);
3709 	if (time_before(t, deadline))
3710 		deadline = t;
3711 
3712 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3713 		return rc;
3714 	cur &= 0xf;
3715 
3716 	last = cur;
3717 	last_jiffies = jiffies;
3718 
3719 	while (1) {
3720 		msleep(interval);
3721 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3722 			return rc;
3723 		cur &= 0xf;
3724 
3725 		/* DET stable? */
3726 		if (cur == last) {
3727 			if (cur == 1 && time_before(jiffies, deadline))
3728 				continue;
3729 			if (time_after(jiffies,
3730 				       ata_deadline(last_jiffies, duration)))
3731 				return 0;
3732 			continue;
3733 		}
3734 
3735 		/* unstable, start over */
3736 		last = cur;
3737 		last_jiffies = jiffies;
3738 
3739 		/* Check deadline.  If debouncing failed, return
3740 		 * -EPIPE to tell upper layer to lower link speed.
3741 		 */
3742 		if (time_after(jiffies, deadline))
3743 			return -EPIPE;
3744 	}
3745 }
3746 
3747 /**
3748  *	sata_link_resume - resume SATA link
3749  *	@link: ATA link to resume SATA
3750  *	@params: timing parameters { interval, duratinon, timeout } in msec
3751  *	@deadline: deadline jiffies for the operation
3752  *
3753  *	Resume SATA phy @link and debounce it.
3754  *
3755  *	LOCKING:
3756  *	Kernel thread context (may sleep)
3757  *
3758  *	RETURNS:
3759  *	0 on success, -errno on failure.
3760  */
3761 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3762 		     unsigned long deadline)
3763 {
3764 	u32 scontrol, serror;
3765 	int rc;
3766 
3767 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768 		return rc;
3769 
3770 	scontrol = (scontrol & 0x0f0) | 0x300;
3771 
3772 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3773 		return rc;
3774 
3775 	/* Some PHYs react badly if SStatus is pounded immediately
3776 	 * after resuming.  Delay 200ms before debouncing.
3777 	 */
3778 	msleep(200);
3779 
3780 	if ((rc = sata_link_debounce(link, params, deadline)))
3781 		return rc;
3782 
3783 	/* clear SError, some PHYs require this even for SRST to work */
3784 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3785 		rc = sata_scr_write(link, SCR_ERROR, serror);
3786 
3787 	return rc != -EINVAL ? rc : 0;
3788 }
3789 
3790 /**
3791  *	ata_std_prereset - prepare for reset
3792  *	@link: ATA link to be reset
3793  *	@deadline: deadline jiffies for the operation
3794  *
3795  *	@link is about to be reset.  Initialize it.  Failure from
3796  *	prereset makes libata abort whole reset sequence and give up
3797  *	that port, so prereset should be best-effort.  It does its
3798  *	best to prepare for reset sequence but if things go wrong, it
3799  *	should just whine, not fail.
3800  *
3801  *	LOCKING:
3802  *	Kernel thread context (may sleep)
3803  *
3804  *	RETURNS:
3805  *	0 on success, -errno otherwise.
3806  */
3807 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3808 {
3809 	struct ata_port *ap = link->ap;
3810 	struct ata_eh_context *ehc = &link->eh_context;
3811 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3812 	int rc;
3813 
3814 	/* if we're about to do hardreset, nothing more to do */
3815 	if (ehc->i.action & ATA_EH_HARDRESET)
3816 		return 0;
3817 
3818 	/* if SATA, resume link */
3819 	if (ap->flags & ATA_FLAG_SATA) {
3820 		rc = sata_link_resume(link, timing, deadline);
3821 		/* whine about phy resume failure but proceed */
3822 		if (rc && rc != -EOPNOTSUPP)
3823 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3824 					"link for reset (errno=%d)\n", rc);
3825 	}
3826 
3827 	/* no point in trying softreset on offline link */
3828 	if (ata_phys_link_offline(link))
3829 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3830 
3831 	return 0;
3832 }
3833 
3834 /**
3835  *	sata_link_hardreset - reset link via SATA phy reset
3836  *	@link: link to reset
3837  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3838  *	@deadline: deadline jiffies for the operation
3839  *	@online: optional out parameter indicating link onlineness
3840  *	@check_ready: optional callback to check link readiness
3841  *
3842  *	SATA phy-reset @link using DET bits of SControl register.
3843  *	After hardreset, link readiness is waited upon using
3844  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3845  *	allowed to not specify @check_ready and wait itself after this
3846  *	function returns.  Device classification is LLD's
3847  *	responsibility.
3848  *
3849  *	*@online is set to one iff reset succeeded and @link is online
3850  *	after reset.
3851  *
3852  *	LOCKING:
3853  *	Kernel thread context (may sleep)
3854  *
3855  *	RETURNS:
3856  *	0 on success, -errno otherwise.
3857  */
3858 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3859 			unsigned long deadline,
3860 			bool *online, int (*check_ready)(struct ata_link *))
3861 {
3862 	u32 scontrol;
3863 	int rc;
3864 
3865 	DPRINTK("ENTER\n");
3866 
3867 	if (online)
3868 		*online = false;
3869 
3870 	if (sata_set_spd_needed(link)) {
3871 		/* SATA spec says nothing about how to reconfigure
3872 		 * spd.  To be on the safe side, turn off phy during
3873 		 * reconfiguration.  This works for at least ICH7 AHCI
3874 		 * and Sil3124.
3875 		 */
3876 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3877 			goto out;
3878 
3879 		scontrol = (scontrol & 0x0f0) | 0x304;
3880 
3881 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3882 			goto out;
3883 
3884 		sata_set_spd(link);
3885 	}
3886 
3887 	/* issue phy wake/reset */
3888 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3889 		goto out;
3890 
3891 	scontrol = (scontrol & 0x0f0) | 0x301;
3892 
3893 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3894 		goto out;
3895 
3896 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3897 	 * 10.4.2 says at least 1 ms.
3898 	 */
3899 	msleep(1);
3900 
3901 	/* bring link back */
3902 	rc = sata_link_resume(link, timing, deadline);
3903 	if (rc)
3904 		goto out;
3905 	/* if link is offline nothing more to do */
3906 	if (ata_phys_link_offline(link))
3907 		goto out;
3908 
3909 	/* Link is online.  From this point, -ENODEV too is an error. */
3910 	if (online)
3911 		*online = true;
3912 
3913 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3914 		/* If PMP is supported, we have to do follow-up SRST.
3915 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3916 		 * the first port is empty.  Wait only for
3917 		 * ATA_TMOUT_PMP_SRST_WAIT.
3918 		 */
3919 		if (check_ready) {
3920 			unsigned long pmp_deadline;
3921 
3922 			pmp_deadline = ata_deadline(jiffies,
3923 						    ATA_TMOUT_PMP_SRST_WAIT);
3924 			if (time_after(pmp_deadline, deadline))
3925 				pmp_deadline = deadline;
3926 			ata_wait_ready(link, pmp_deadline, check_ready);
3927 		}
3928 		rc = -EAGAIN;
3929 		goto out;
3930 	}
3931 
3932 	rc = 0;
3933 	if (check_ready)
3934 		rc = ata_wait_ready(link, deadline, check_ready);
3935  out:
3936 	if (rc && rc != -EAGAIN) {
3937 		/* online is set iff link is online && reset succeeded */
3938 		if (online)
3939 			*online = false;
3940 		ata_link_printk(link, KERN_ERR,
3941 				"COMRESET failed (errno=%d)\n", rc);
3942 	}
3943 	DPRINTK("EXIT, rc=%d\n", rc);
3944 	return rc;
3945 }
3946 
3947 /**
3948  *	sata_std_hardreset - COMRESET w/o waiting or classification
3949  *	@link: link to reset
3950  *	@class: resulting class of attached device
3951  *	@deadline: deadline jiffies for the operation
3952  *
3953  *	Standard SATA COMRESET w/o waiting or classification.
3954  *
3955  *	LOCKING:
3956  *	Kernel thread context (may sleep)
3957  *
3958  *	RETURNS:
3959  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3960  */
3961 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3962 		       unsigned long deadline)
3963 {
3964 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3965 	bool online;
3966 	int rc;
3967 
3968 	/* do hardreset */
3969 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3970 	return online ? -EAGAIN : rc;
3971 }
3972 
3973 /**
3974  *	ata_std_postreset - standard postreset callback
3975  *	@link: the target ata_link
3976  *	@classes: classes of attached devices
3977  *
3978  *	This function is invoked after a successful reset.  Note that
3979  *	the device might have been reset more than once using
3980  *	different reset methods before postreset is invoked.
3981  *
3982  *	LOCKING:
3983  *	Kernel thread context (may sleep)
3984  */
3985 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3986 {
3987 	u32 serror;
3988 
3989 	DPRINTK("ENTER\n");
3990 
3991 	/* reset complete, clear SError */
3992 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3993 		sata_scr_write(link, SCR_ERROR, serror);
3994 
3995 	/* print link status */
3996 	sata_print_link_status(link);
3997 
3998 	DPRINTK("EXIT\n");
3999 }
4000 
4001 /**
4002  *	ata_dev_same_device - Determine whether new ID matches configured device
4003  *	@dev: device to compare against
4004  *	@new_class: class of the new device
4005  *	@new_id: IDENTIFY page of the new device
4006  *
4007  *	Compare @new_class and @new_id against @dev and determine
4008  *	whether @dev is the device indicated by @new_class and
4009  *	@new_id.
4010  *
4011  *	LOCKING:
4012  *	None.
4013  *
4014  *	RETURNS:
4015  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4016  */
4017 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4018 			       const u16 *new_id)
4019 {
4020 	const u16 *old_id = dev->id;
4021 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4022 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4023 
4024 	if (dev->class != new_class) {
4025 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4026 			       dev->class, new_class);
4027 		return 0;
4028 	}
4029 
4030 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4031 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4032 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4033 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4034 
4035 	if (strcmp(model[0], model[1])) {
4036 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4037 			       "'%s' != '%s'\n", model[0], model[1]);
4038 		return 0;
4039 	}
4040 
4041 	if (strcmp(serial[0], serial[1])) {
4042 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4043 			       "'%s' != '%s'\n", serial[0], serial[1]);
4044 		return 0;
4045 	}
4046 
4047 	return 1;
4048 }
4049 
4050 /**
4051  *	ata_dev_reread_id - Re-read IDENTIFY data
4052  *	@dev: target ATA device
4053  *	@readid_flags: read ID flags
4054  *
4055  *	Re-read IDENTIFY page and make sure @dev is still attached to
4056  *	the port.
4057  *
4058  *	LOCKING:
4059  *	Kernel thread context (may sleep)
4060  *
4061  *	RETURNS:
4062  *	0 on success, negative errno otherwise
4063  */
4064 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4065 {
4066 	unsigned int class = dev->class;
4067 	u16 *id = (void *)dev->link->ap->sector_buf;
4068 	int rc;
4069 
4070 	/* read ID data */
4071 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4072 	if (rc)
4073 		return rc;
4074 
4075 	/* is the device still there? */
4076 	if (!ata_dev_same_device(dev, class, id))
4077 		return -ENODEV;
4078 
4079 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4080 	return 0;
4081 }
4082 
4083 /**
4084  *	ata_dev_revalidate - Revalidate ATA device
4085  *	@dev: device to revalidate
4086  *	@new_class: new class code
4087  *	@readid_flags: read ID flags
4088  *
4089  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4090  *	port and reconfigure it according to the new IDENTIFY page.
4091  *
4092  *	LOCKING:
4093  *	Kernel thread context (may sleep)
4094  *
4095  *	RETURNS:
4096  *	0 on success, negative errno otherwise
4097  */
4098 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4099 		       unsigned int readid_flags)
4100 {
4101 	u64 n_sectors = dev->n_sectors;
4102 	int rc;
4103 
4104 	if (!ata_dev_enabled(dev))
4105 		return -ENODEV;
4106 
4107 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4108 	if (ata_class_enabled(new_class) &&
4109 	    new_class != ATA_DEV_ATA &&
4110 	    new_class != ATA_DEV_ATAPI &&
4111 	    new_class != ATA_DEV_SEMB) {
4112 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4113 			       dev->class, new_class);
4114 		rc = -ENODEV;
4115 		goto fail;
4116 	}
4117 
4118 	/* re-read ID */
4119 	rc = ata_dev_reread_id(dev, readid_flags);
4120 	if (rc)
4121 		goto fail;
4122 
4123 	/* configure device according to the new ID */
4124 	rc = ata_dev_configure(dev);
4125 	if (rc)
4126 		goto fail;
4127 
4128 	/* verify n_sectors hasn't changed */
4129 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4130 	    dev->n_sectors != n_sectors) {
4131 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4132 			       "%llu != %llu\n",
4133 			       (unsigned long long)n_sectors,
4134 			       (unsigned long long)dev->n_sectors);
4135 
4136 		/* restore original n_sectors */
4137 		dev->n_sectors = n_sectors;
4138 
4139 		rc = -ENODEV;
4140 		goto fail;
4141 	}
4142 
4143 	return 0;
4144 
4145  fail:
4146 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4147 	return rc;
4148 }
4149 
4150 struct ata_blacklist_entry {
4151 	const char *model_num;
4152 	const char *model_rev;
4153 	unsigned long horkage;
4154 };
4155 
4156 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4157 	/* Devices with DMA related problems under Linux */
4158 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4159 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4160 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4161 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4162 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4163 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4164 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4165 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4166 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4167 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4168 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4169 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4170 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4171 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4172 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4173 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4174 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4175 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4176 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4177 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4178 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4179 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4180 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4181 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4182 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4183 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4184 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4185 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4186 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4187 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4188 	/* Odd clown on sil3726/4726 PMPs */
4189 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4190 
4191 	/* Weird ATAPI devices */
4192 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4193 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4194 
4195 	/* Devices we expect to fail diagnostics */
4196 
4197 	/* Devices where NCQ should be avoided */
4198 	/* NCQ is slow */
4199 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4200 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4201 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4202 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4203 	/* NCQ is broken */
4204 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4205 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4206 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4207 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4208 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4209 
4210 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4211 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4212 						ATA_HORKAGE_FIRMWARE_WARN },
4213 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4214 						ATA_HORKAGE_FIRMWARE_WARN },
4215 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4216 						ATA_HORKAGE_FIRMWARE_WARN },
4217 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4218 						ATA_HORKAGE_FIRMWARE_WARN },
4219 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4220 						ATA_HORKAGE_FIRMWARE_WARN },
4221 
4222 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4223 						ATA_HORKAGE_FIRMWARE_WARN },
4224 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4225 						ATA_HORKAGE_FIRMWARE_WARN },
4226 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4227 						ATA_HORKAGE_FIRMWARE_WARN },
4228 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4229 						ATA_HORKAGE_FIRMWARE_WARN },
4230 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4231 						ATA_HORKAGE_FIRMWARE_WARN },
4232 
4233 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4234 						ATA_HORKAGE_FIRMWARE_WARN },
4235 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4236 						ATA_HORKAGE_FIRMWARE_WARN },
4237 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4238 						ATA_HORKAGE_FIRMWARE_WARN },
4239 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4240 						ATA_HORKAGE_FIRMWARE_WARN },
4241 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4242 						ATA_HORKAGE_FIRMWARE_WARN },
4243 
4244 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4245 						ATA_HORKAGE_FIRMWARE_WARN },
4246 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4247 						ATA_HORKAGE_FIRMWARE_WARN },
4248 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4249 						ATA_HORKAGE_FIRMWARE_WARN },
4250 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4251 						ATA_HORKAGE_FIRMWARE_WARN },
4252 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4253 						ATA_HORKAGE_FIRMWARE_WARN },
4254 
4255 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4256 						ATA_HORKAGE_FIRMWARE_WARN },
4257 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4258 						ATA_HORKAGE_FIRMWARE_WARN },
4259 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4260 						ATA_HORKAGE_FIRMWARE_WARN },
4261 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4262 						ATA_HORKAGE_FIRMWARE_WARN },
4263 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4264 						ATA_HORKAGE_FIRMWARE_WARN },
4265 
4266 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4267 						ATA_HORKAGE_FIRMWARE_WARN },
4268 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4269 						ATA_HORKAGE_FIRMWARE_WARN },
4270 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4271 						ATA_HORKAGE_FIRMWARE_WARN },
4272 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4273 						ATA_HORKAGE_FIRMWARE_WARN },
4274 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4275 						ATA_HORKAGE_FIRMWARE_WARN },
4276 
4277 	/* Blacklist entries taken from Silicon Image 3124/3132
4278 	   Windows driver .inf file - also several Linux problem reports */
4279 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4280 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4281 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4282 
4283 	/* devices which puke on READ_NATIVE_MAX */
4284 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4285 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4286 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4287 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4288 
4289 	/* Devices which report 1 sector over size HPA */
4290 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4291 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4292 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4293 
4294 	/* Devices which get the IVB wrong */
4295 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4296 	/* Maybe we should just blacklist TSSTcorp... */
4297 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4298 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4299 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4300 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4301 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4302 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4303 
4304 	/* Devices that do not need bridging limits applied */
4305 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4306 
4307 	/* Devices which aren't very happy with higher link speeds */
4308 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4309 
4310 	/*
4311 	 * Devices which choke on SETXFER.  Applies only if both the
4312 	 * device and controller are SATA.
4313 	 */
4314 	{ "PIONEER DVD-RW  DVRTD08",	"1.00",	ATA_HORKAGE_NOSETXFER },
4315 
4316 	/* End Marker */
4317 	{ }
4318 };
4319 
4320 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4321 {
4322 	const char *p;
4323 	int len;
4324 
4325 	/*
4326 	 * check for trailing wildcard: *\0
4327 	 */
4328 	p = strchr(patt, wildchar);
4329 	if (p && ((*(p + 1)) == 0))
4330 		len = p - patt;
4331 	else {
4332 		len = strlen(name);
4333 		if (!len) {
4334 			if (!*patt)
4335 				return 0;
4336 			return -1;
4337 		}
4338 	}
4339 
4340 	return strncmp(patt, name, len);
4341 }
4342 
4343 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4344 {
4345 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4346 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4347 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4348 
4349 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4350 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4351 
4352 	while (ad->model_num) {
4353 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4354 			if (ad->model_rev == NULL)
4355 				return ad->horkage;
4356 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4357 				return ad->horkage;
4358 		}
4359 		ad++;
4360 	}
4361 	return 0;
4362 }
4363 
4364 static int ata_dma_blacklisted(const struct ata_device *dev)
4365 {
4366 	/* We don't support polling DMA.
4367 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4368 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4369 	 */
4370 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4371 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4372 		return 1;
4373 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4374 }
4375 
4376 /**
4377  *	ata_is_40wire		-	check drive side detection
4378  *	@dev: device
4379  *
4380  *	Perform drive side detection decoding, allowing for device vendors
4381  *	who can't follow the documentation.
4382  */
4383 
4384 static int ata_is_40wire(struct ata_device *dev)
4385 {
4386 	if (dev->horkage & ATA_HORKAGE_IVB)
4387 		return ata_drive_40wire_relaxed(dev->id);
4388 	return ata_drive_40wire(dev->id);
4389 }
4390 
4391 /**
4392  *	cable_is_40wire		-	40/80/SATA decider
4393  *	@ap: port to consider
4394  *
4395  *	This function encapsulates the policy for speed management
4396  *	in one place. At the moment we don't cache the result but
4397  *	there is a good case for setting ap->cbl to the result when
4398  *	we are called with unknown cables (and figuring out if it
4399  *	impacts hotplug at all).
4400  *
4401  *	Return 1 if the cable appears to be 40 wire.
4402  */
4403 
4404 static int cable_is_40wire(struct ata_port *ap)
4405 {
4406 	struct ata_link *link;
4407 	struct ata_device *dev;
4408 
4409 	/* If the controller thinks we are 40 wire, we are. */
4410 	if (ap->cbl == ATA_CBL_PATA40)
4411 		return 1;
4412 
4413 	/* If the controller thinks we are 80 wire, we are. */
4414 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4415 		return 0;
4416 
4417 	/* If the system is known to be 40 wire short cable (eg
4418 	 * laptop), then we allow 80 wire modes even if the drive
4419 	 * isn't sure.
4420 	 */
4421 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4422 		return 0;
4423 
4424 	/* If the controller doesn't know, we scan.
4425 	 *
4426 	 * Note: We look for all 40 wire detects at this point.  Any
4427 	 *       80 wire detect is taken to be 80 wire cable because
4428 	 * - in many setups only the one drive (slave if present) will
4429 	 *   give a valid detect
4430 	 * - if you have a non detect capable drive you don't want it
4431 	 *   to colour the choice
4432 	 */
4433 	ata_for_each_link(link, ap, EDGE) {
4434 		ata_for_each_dev(dev, link, ENABLED) {
4435 			if (!ata_is_40wire(dev))
4436 				return 0;
4437 		}
4438 	}
4439 	return 1;
4440 }
4441 
4442 /**
4443  *	ata_dev_xfermask - Compute supported xfermask of the given device
4444  *	@dev: Device to compute xfermask for
4445  *
4446  *	Compute supported xfermask of @dev and store it in
4447  *	dev->*_mask.  This function is responsible for applying all
4448  *	known limits including host controller limits, device
4449  *	blacklist, etc...
4450  *
4451  *	LOCKING:
4452  *	None.
4453  */
4454 static void ata_dev_xfermask(struct ata_device *dev)
4455 {
4456 	struct ata_link *link = dev->link;
4457 	struct ata_port *ap = link->ap;
4458 	struct ata_host *host = ap->host;
4459 	unsigned long xfer_mask;
4460 
4461 	/* controller modes available */
4462 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4463 				      ap->mwdma_mask, ap->udma_mask);
4464 
4465 	/* drive modes available */
4466 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4467 				       dev->mwdma_mask, dev->udma_mask);
4468 	xfer_mask &= ata_id_xfermask(dev->id);
4469 
4470 	/*
4471 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4472 	 *	cable
4473 	 */
4474 	if (ata_dev_pair(dev)) {
4475 		/* No PIO5 or PIO6 */
4476 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4477 		/* No MWDMA3 or MWDMA 4 */
4478 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4479 	}
4480 
4481 	if (ata_dma_blacklisted(dev)) {
4482 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4483 		ata_dev_printk(dev, KERN_WARNING,
4484 			       "device is on DMA blacklist, disabling DMA\n");
4485 	}
4486 
4487 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4488 	    host->simplex_claimed && host->simplex_claimed != ap) {
4489 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4490 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4491 			       "other device, disabling DMA\n");
4492 	}
4493 
4494 	if (ap->flags & ATA_FLAG_NO_IORDY)
4495 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4496 
4497 	if (ap->ops->mode_filter)
4498 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4499 
4500 	/* Apply cable rule here.  Don't apply it early because when
4501 	 * we handle hot plug the cable type can itself change.
4502 	 * Check this last so that we know if the transfer rate was
4503 	 * solely limited by the cable.
4504 	 * Unknown or 80 wire cables reported host side are checked
4505 	 * drive side as well. Cases where we know a 40wire cable
4506 	 * is used safely for 80 are not checked here.
4507 	 */
4508 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4509 		/* UDMA/44 or higher would be available */
4510 		if (cable_is_40wire(ap)) {
4511 			ata_dev_printk(dev, KERN_WARNING,
4512 				 "limited to UDMA/33 due to 40-wire cable\n");
4513 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4514 		}
4515 
4516 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4517 			    &dev->mwdma_mask, &dev->udma_mask);
4518 }
4519 
4520 /**
4521  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4522  *	@dev: Device to which command will be sent
4523  *
4524  *	Issue SET FEATURES - XFER MODE command to device @dev
4525  *	on port @ap.
4526  *
4527  *	LOCKING:
4528  *	PCI/etc. bus probe sem.
4529  *
4530  *	RETURNS:
4531  *	0 on success, AC_ERR_* mask otherwise.
4532  */
4533 
4534 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4535 {
4536 	struct ata_taskfile tf;
4537 	unsigned int err_mask;
4538 
4539 	/* set up set-features taskfile */
4540 	DPRINTK("set features - xfer mode\n");
4541 
4542 	/* Some controllers and ATAPI devices show flaky interrupt
4543 	 * behavior after setting xfer mode.  Use polling instead.
4544 	 */
4545 	ata_tf_init(dev, &tf);
4546 	tf.command = ATA_CMD_SET_FEATURES;
4547 	tf.feature = SETFEATURES_XFER;
4548 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4549 	tf.protocol = ATA_PROT_NODATA;
4550 	/* If we are using IORDY we must send the mode setting command */
4551 	if (ata_pio_need_iordy(dev))
4552 		tf.nsect = dev->xfer_mode;
4553 	/* If the device has IORDY and the controller does not - turn it off */
4554  	else if (ata_id_has_iordy(dev->id))
4555 		tf.nsect = 0x01;
4556 	else /* In the ancient relic department - skip all of this */
4557 		return 0;
4558 
4559 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4560 
4561 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4562 	return err_mask;
4563 }
4564 /**
4565  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4566  *	@dev: Device to which command will be sent
4567  *	@enable: Whether to enable or disable the feature
4568  *	@feature: The sector count represents the feature to set
4569  *
4570  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4571  *	on port @ap with sector count
4572  *
4573  *	LOCKING:
4574  *	PCI/etc. bus probe sem.
4575  *
4576  *	RETURNS:
4577  *	0 on success, AC_ERR_* mask otherwise.
4578  */
4579 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4580 					u8 feature)
4581 {
4582 	struct ata_taskfile tf;
4583 	unsigned int err_mask;
4584 
4585 	/* set up set-features taskfile */
4586 	DPRINTK("set features - SATA features\n");
4587 
4588 	ata_tf_init(dev, &tf);
4589 	tf.command = ATA_CMD_SET_FEATURES;
4590 	tf.feature = enable;
4591 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4592 	tf.protocol = ATA_PROT_NODATA;
4593 	tf.nsect = feature;
4594 
4595 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4596 
4597 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4598 	return err_mask;
4599 }
4600 
4601 /**
4602  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4603  *	@dev: Device to which command will be sent
4604  *	@heads: Number of heads (taskfile parameter)
4605  *	@sectors: Number of sectors (taskfile parameter)
4606  *
4607  *	LOCKING:
4608  *	Kernel thread context (may sleep)
4609  *
4610  *	RETURNS:
4611  *	0 on success, AC_ERR_* mask otherwise.
4612  */
4613 static unsigned int ata_dev_init_params(struct ata_device *dev,
4614 					u16 heads, u16 sectors)
4615 {
4616 	struct ata_taskfile tf;
4617 	unsigned int err_mask;
4618 
4619 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4620 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4621 		return AC_ERR_INVALID;
4622 
4623 	/* set up init dev params taskfile */
4624 	DPRINTK("init dev params \n");
4625 
4626 	ata_tf_init(dev, &tf);
4627 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4628 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4629 	tf.protocol = ATA_PROT_NODATA;
4630 	tf.nsect = sectors;
4631 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4632 
4633 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4634 	/* A clean abort indicates an original or just out of spec drive
4635 	   and we should continue as we issue the setup based on the
4636 	   drive reported working geometry */
4637 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4638 		err_mask = 0;
4639 
4640 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4641 	return err_mask;
4642 }
4643 
4644 /**
4645  *	ata_sg_clean - Unmap DMA memory associated with command
4646  *	@qc: Command containing DMA memory to be released
4647  *
4648  *	Unmap all mapped DMA memory associated with this command.
4649  *
4650  *	LOCKING:
4651  *	spin_lock_irqsave(host lock)
4652  */
4653 void ata_sg_clean(struct ata_queued_cmd *qc)
4654 {
4655 	struct ata_port *ap = qc->ap;
4656 	struct scatterlist *sg = qc->sg;
4657 	int dir = qc->dma_dir;
4658 
4659 	WARN_ON_ONCE(sg == NULL);
4660 
4661 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4662 
4663 	if (qc->n_elem)
4664 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4665 
4666 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4667 	qc->sg = NULL;
4668 }
4669 
4670 /**
4671  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4672  *	@qc: Metadata associated with taskfile to check
4673  *
4674  *	Allow low-level driver to filter ATA PACKET commands, returning
4675  *	a status indicating whether or not it is OK to use DMA for the
4676  *	supplied PACKET command.
4677  *
4678  *	LOCKING:
4679  *	spin_lock_irqsave(host lock)
4680  *
4681  *	RETURNS: 0 when ATAPI DMA can be used
4682  *               nonzero otherwise
4683  */
4684 int atapi_check_dma(struct ata_queued_cmd *qc)
4685 {
4686 	struct ata_port *ap = qc->ap;
4687 
4688 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4689 	 * few ATAPI devices choke on such DMA requests.
4690 	 */
4691 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4692 	    unlikely(qc->nbytes & 15))
4693 		return 1;
4694 
4695 	if (ap->ops->check_atapi_dma)
4696 		return ap->ops->check_atapi_dma(qc);
4697 
4698 	return 0;
4699 }
4700 
4701 /**
4702  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4703  *	@qc: ATA command in question
4704  *
4705  *	Non-NCQ commands cannot run with any other command, NCQ or
4706  *	not.  As upper layer only knows the queue depth, we are
4707  *	responsible for maintaining exclusion.  This function checks
4708  *	whether a new command @qc can be issued.
4709  *
4710  *	LOCKING:
4711  *	spin_lock_irqsave(host lock)
4712  *
4713  *	RETURNS:
4714  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4715  */
4716 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4717 {
4718 	struct ata_link *link = qc->dev->link;
4719 
4720 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4721 		if (!ata_tag_valid(link->active_tag))
4722 			return 0;
4723 	} else {
4724 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4725 			return 0;
4726 	}
4727 
4728 	return ATA_DEFER_LINK;
4729 }
4730 
4731 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4732 
4733 /**
4734  *	ata_sg_init - Associate command with scatter-gather table.
4735  *	@qc: Command to be associated
4736  *	@sg: Scatter-gather table.
4737  *	@n_elem: Number of elements in s/g table.
4738  *
4739  *	Initialize the data-related elements of queued_cmd @qc
4740  *	to point to a scatter-gather table @sg, containing @n_elem
4741  *	elements.
4742  *
4743  *	LOCKING:
4744  *	spin_lock_irqsave(host lock)
4745  */
4746 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4747 		 unsigned int n_elem)
4748 {
4749 	qc->sg = sg;
4750 	qc->n_elem = n_elem;
4751 	qc->cursg = qc->sg;
4752 }
4753 
4754 /**
4755  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4756  *	@qc: Command with scatter-gather table to be mapped.
4757  *
4758  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4759  *
4760  *	LOCKING:
4761  *	spin_lock_irqsave(host lock)
4762  *
4763  *	RETURNS:
4764  *	Zero on success, negative on error.
4765  *
4766  */
4767 static int ata_sg_setup(struct ata_queued_cmd *qc)
4768 {
4769 	struct ata_port *ap = qc->ap;
4770 	unsigned int n_elem;
4771 
4772 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4773 
4774 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4775 	if (n_elem < 1)
4776 		return -1;
4777 
4778 	DPRINTK("%d sg elements mapped\n", n_elem);
4779 	qc->orig_n_elem = qc->n_elem;
4780 	qc->n_elem = n_elem;
4781 	qc->flags |= ATA_QCFLAG_DMAMAP;
4782 
4783 	return 0;
4784 }
4785 
4786 /**
4787  *	swap_buf_le16 - swap halves of 16-bit words in place
4788  *	@buf:  Buffer to swap
4789  *	@buf_words:  Number of 16-bit words in buffer.
4790  *
4791  *	Swap halves of 16-bit words if needed to convert from
4792  *	little-endian byte order to native cpu byte order, or
4793  *	vice-versa.
4794  *
4795  *	LOCKING:
4796  *	Inherited from caller.
4797  */
4798 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4799 {
4800 #ifdef __BIG_ENDIAN
4801 	unsigned int i;
4802 
4803 	for (i = 0; i < buf_words; i++)
4804 		buf[i] = le16_to_cpu(buf[i]);
4805 #endif /* __BIG_ENDIAN */
4806 }
4807 
4808 /**
4809  *	ata_qc_new - Request an available ATA command, for queueing
4810  *	@ap: target port
4811  *
4812  *	LOCKING:
4813  *	None.
4814  */
4815 
4816 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4817 {
4818 	struct ata_queued_cmd *qc = NULL;
4819 	unsigned int i;
4820 
4821 	/* no command while frozen */
4822 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4823 		return NULL;
4824 
4825 	/* the last tag is reserved for internal command. */
4826 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4827 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4828 			qc = __ata_qc_from_tag(ap, i);
4829 			break;
4830 		}
4831 
4832 	if (qc)
4833 		qc->tag = i;
4834 
4835 	return qc;
4836 }
4837 
4838 /**
4839  *	ata_qc_new_init - Request an available ATA command, and initialize it
4840  *	@dev: Device from whom we request an available command structure
4841  *
4842  *	LOCKING:
4843  *	None.
4844  */
4845 
4846 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4847 {
4848 	struct ata_port *ap = dev->link->ap;
4849 	struct ata_queued_cmd *qc;
4850 
4851 	qc = ata_qc_new(ap);
4852 	if (qc) {
4853 		qc->scsicmd = NULL;
4854 		qc->ap = ap;
4855 		qc->dev = dev;
4856 
4857 		ata_qc_reinit(qc);
4858 	}
4859 
4860 	return qc;
4861 }
4862 
4863 /**
4864  *	ata_qc_free - free unused ata_queued_cmd
4865  *	@qc: Command to complete
4866  *
4867  *	Designed to free unused ata_queued_cmd object
4868  *	in case something prevents using it.
4869  *
4870  *	LOCKING:
4871  *	spin_lock_irqsave(host lock)
4872  */
4873 void ata_qc_free(struct ata_queued_cmd *qc)
4874 {
4875 	struct ata_port *ap = qc->ap;
4876 	unsigned int tag;
4877 
4878 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4879 
4880 	qc->flags = 0;
4881 	tag = qc->tag;
4882 	if (likely(ata_tag_valid(tag))) {
4883 		qc->tag = ATA_TAG_POISON;
4884 		clear_bit(tag, &ap->qc_allocated);
4885 	}
4886 }
4887 
4888 void __ata_qc_complete(struct ata_queued_cmd *qc)
4889 {
4890 	struct ata_port *ap = qc->ap;
4891 	struct ata_link *link = qc->dev->link;
4892 
4893 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4894 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4895 
4896 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 		ata_sg_clean(qc);
4898 
4899 	/* command should be marked inactive atomically with qc completion */
4900 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4901 		link->sactive &= ~(1 << qc->tag);
4902 		if (!link->sactive)
4903 			ap->nr_active_links--;
4904 	} else {
4905 		link->active_tag = ATA_TAG_POISON;
4906 		ap->nr_active_links--;
4907 	}
4908 
4909 	/* clear exclusive status */
4910 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 		     ap->excl_link == link))
4912 		ap->excl_link = NULL;
4913 
4914 	/* atapi: mark qc as inactive to prevent the interrupt handler
4915 	 * from completing the command twice later, before the error handler
4916 	 * is called. (when rc != 0 and atapi request sense is needed)
4917 	 */
4918 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4919 	ap->qc_active &= ~(1 << qc->tag);
4920 
4921 	/* call completion callback */
4922 	qc->complete_fn(qc);
4923 }
4924 
4925 static void fill_result_tf(struct ata_queued_cmd *qc)
4926 {
4927 	struct ata_port *ap = qc->ap;
4928 
4929 	qc->result_tf.flags = qc->tf.flags;
4930 	ap->ops->qc_fill_rtf(qc);
4931 }
4932 
4933 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4934 {
4935 	struct ata_device *dev = qc->dev;
4936 
4937 	if (ata_tag_internal(qc->tag))
4938 		return;
4939 
4940 	if (ata_is_nodata(qc->tf.protocol))
4941 		return;
4942 
4943 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 		return;
4945 
4946 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4947 }
4948 
4949 /**
4950  *	ata_qc_complete - Complete an active ATA command
4951  *	@qc: Command to complete
4952  *
4953  *	Indicate to the mid and upper layers that an ATA
4954  *	command has completed, with either an ok or not-ok status.
4955  *
4956  *	LOCKING:
4957  *	spin_lock_irqsave(host lock)
4958  */
4959 void ata_qc_complete(struct ata_queued_cmd *qc)
4960 {
4961 	struct ata_port *ap = qc->ap;
4962 
4963 	/* XXX: New EH and old EH use different mechanisms to
4964 	 * synchronize EH with regular execution path.
4965 	 *
4966 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 	 * Normal execution path is responsible for not accessing a
4968 	 * failed qc.  libata core enforces the rule by returning NULL
4969 	 * from ata_qc_from_tag() for failed qcs.
4970 	 *
4971 	 * Old EH depends on ata_qc_complete() nullifying completion
4972 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4973 	 * not synchronize with interrupt handler.  Only PIO task is
4974 	 * taken care of.
4975 	 */
4976 	if (ap->ops->error_handler) {
4977 		struct ata_device *dev = qc->dev;
4978 		struct ata_eh_info *ehi = &dev->link->eh_info;
4979 
4980 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4981 
4982 		if (unlikely(qc->err_mask))
4983 			qc->flags |= ATA_QCFLAG_FAILED;
4984 
4985 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986 			if (!ata_tag_internal(qc->tag)) {
4987 				/* always fill result TF for failed qc */
4988 				fill_result_tf(qc);
4989 				ata_qc_schedule_eh(qc);
4990 				return;
4991 			}
4992 		}
4993 
4994 		/* read result TF if requested */
4995 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4996 			fill_result_tf(qc);
4997 
4998 		/* Some commands need post-processing after successful
4999 		 * completion.
5000 		 */
5001 		switch (qc->tf.command) {
5002 		case ATA_CMD_SET_FEATURES:
5003 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5004 			    qc->tf.feature != SETFEATURES_WC_OFF)
5005 				break;
5006 			/* fall through */
5007 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5008 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5009 			/* revalidate device */
5010 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5011 			ata_port_schedule_eh(ap);
5012 			break;
5013 
5014 		case ATA_CMD_SLEEP:
5015 			dev->flags |= ATA_DFLAG_SLEEPING;
5016 			break;
5017 		}
5018 
5019 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5020 			ata_verify_xfer(qc);
5021 
5022 		__ata_qc_complete(qc);
5023 	} else {
5024 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5025 			return;
5026 
5027 		/* read result TF if failed or requested */
5028 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5029 			fill_result_tf(qc);
5030 
5031 		__ata_qc_complete(qc);
5032 	}
5033 }
5034 
5035 /**
5036  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5037  *	@ap: port in question
5038  *	@qc_active: new qc_active mask
5039  *
5040  *	Complete in-flight commands.  This functions is meant to be
5041  *	called from low-level driver's interrupt routine to complete
5042  *	requests normally.  ap->qc_active and @qc_active is compared
5043  *	and commands are completed accordingly.
5044  *
5045  *	LOCKING:
5046  *	spin_lock_irqsave(host lock)
5047  *
5048  *	RETURNS:
5049  *	Number of completed commands on success, -errno otherwise.
5050  */
5051 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5052 {
5053 	int nr_done = 0;
5054 	u32 done_mask;
5055 
5056 	done_mask = ap->qc_active ^ qc_active;
5057 
5058 	if (unlikely(done_mask & qc_active)) {
5059 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5060 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5061 		return -EINVAL;
5062 	}
5063 
5064 	while (done_mask) {
5065 		struct ata_queued_cmd *qc;
5066 		unsigned int tag = __ffs(done_mask);
5067 
5068 		qc = ata_qc_from_tag(ap, tag);
5069 		if (qc) {
5070 			ata_qc_complete(qc);
5071 			nr_done++;
5072 		}
5073 		done_mask &= ~(1 << tag);
5074 	}
5075 
5076 	return nr_done;
5077 }
5078 
5079 /**
5080  *	ata_qc_issue - issue taskfile to device
5081  *	@qc: command to issue to device
5082  *
5083  *	Prepare an ATA command to submission to device.
5084  *	This includes mapping the data into a DMA-able
5085  *	area, filling in the S/G table, and finally
5086  *	writing the taskfile to hardware, starting the command.
5087  *
5088  *	LOCKING:
5089  *	spin_lock_irqsave(host lock)
5090  */
5091 void ata_qc_issue(struct ata_queued_cmd *qc)
5092 {
5093 	struct ata_port *ap = qc->ap;
5094 	struct ata_link *link = qc->dev->link;
5095 	u8 prot = qc->tf.protocol;
5096 
5097 	/* Make sure only one non-NCQ command is outstanding.  The
5098 	 * check is skipped for old EH because it reuses active qc to
5099 	 * request ATAPI sense.
5100 	 */
5101 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5102 
5103 	if (ata_is_ncq(prot)) {
5104 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5105 
5106 		if (!link->sactive)
5107 			ap->nr_active_links++;
5108 		link->sactive |= 1 << qc->tag;
5109 	} else {
5110 		WARN_ON_ONCE(link->sactive);
5111 
5112 		ap->nr_active_links++;
5113 		link->active_tag = qc->tag;
5114 	}
5115 
5116 	qc->flags |= ATA_QCFLAG_ACTIVE;
5117 	ap->qc_active |= 1 << qc->tag;
5118 
5119 	/* We guarantee to LLDs that they will have at least one
5120 	 * non-zero sg if the command is a data command.
5121 	 */
5122 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5123 
5124 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5125 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5126 		if (ata_sg_setup(qc))
5127 			goto sg_err;
5128 
5129 	/* if device is sleeping, schedule reset and abort the link */
5130 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5131 		link->eh_info.action |= ATA_EH_RESET;
5132 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5133 		ata_link_abort(link);
5134 		return;
5135 	}
5136 
5137 	ap->ops->qc_prep(qc);
5138 
5139 	qc->err_mask |= ap->ops->qc_issue(qc);
5140 	if (unlikely(qc->err_mask))
5141 		goto err;
5142 	return;
5143 
5144 sg_err:
5145 	qc->err_mask |= AC_ERR_SYSTEM;
5146 err:
5147 	ata_qc_complete(qc);
5148 }
5149 
5150 /**
5151  *	sata_scr_valid - test whether SCRs are accessible
5152  *	@link: ATA link to test SCR accessibility for
5153  *
5154  *	Test whether SCRs are accessible for @link.
5155  *
5156  *	LOCKING:
5157  *	None.
5158  *
5159  *	RETURNS:
5160  *	1 if SCRs are accessible, 0 otherwise.
5161  */
5162 int sata_scr_valid(struct ata_link *link)
5163 {
5164 	struct ata_port *ap = link->ap;
5165 
5166 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5167 }
5168 
5169 /**
5170  *	sata_scr_read - read SCR register of the specified port
5171  *	@link: ATA link to read SCR for
5172  *	@reg: SCR to read
5173  *	@val: Place to store read value
5174  *
5175  *	Read SCR register @reg of @link into *@val.  This function is
5176  *	guaranteed to succeed if @link is ap->link, the cable type of
5177  *	the port is SATA and the port implements ->scr_read.
5178  *
5179  *	LOCKING:
5180  *	None if @link is ap->link.  Kernel thread context otherwise.
5181  *
5182  *	RETURNS:
5183  *	0 on success, negative errno on failure.
5184  */
5185 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5186 {
5187 	if (ata_is_host_link(link)) {
5188 		if (sata_scr_valid(link))
5189 			return link->ap->ops->scr_read(link, reg, val);
5190 		return -EOPNOTSUPP;
5191 	}
5192 
5193 	return sata_pmp_scr_read(link, reg, val);
5194 }
5195 
5196 /**
5197  *	sata_scr_write - write SCR register of the specified port
5198  *	@link: ATA link to write SCR for
5199  *	@reg: SCR to write
5200  *	@val: value to write
5201  *
5202  *	Write @val to SCR register @reg of @link.  This function is
5203  *	guaranteed to succeed if @link is ap->link, the cable type of
5204  *	the port is SATA and the port implements ->scr_read.
5205  *
5206  *	LOCKING:
5207  *	None if @link is ap->link.  Kernel thread context otherwise.
5208  *
5209  *	RETURNS:
5210  *	0 on success, negative errno on failure.
5211  */
5212 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5213 {
5214 	if (ata_is_host_link(link)) {
5215 		if (sata_scr_valid(link))
5216 			return link->ap->ops->scr_write(link, reg, val);
5217 		return -EOPNOTSUPP;
5218 	}
5219 
5220 	return sata_pmp_scr_write(link, reg, val);
5221 }
5222 
5223 /**
5224  *	sata_scr_write_flush - write SCR register of the specified port and flush
5225  *	@link: ATA link to write SCR for
5226  *	@reg: SCR to write
5227  *	@val: value to write
5228  *
5229  *	This function is identical to sata_scr_write() except that this
5230  *	function performs flush after writing to the register.
5231  *
5232  *	LOCKING:
5233  *	None if @link is ap->link.  Kernel thread context otherwise.
5234  *
5235  *	RETURNS:
5236  *	0 on success, negative errno on failure.
5237  */
5238 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5239 {
5240 	if (ata_is_host_link(link)) {
5241 		int rc;
5242 
5243 		if (sata_scr_valid(link)) {
5244 			rc = link->ap->ops->scr_write(link, reg, val);
5245 			if (rc == 0)
5246 				rc = link->ap->ops->scr_read(link, reg, &val);
5247 			return rc;
5248 		}
5249 		return -EOPNOTSUPP;
5250 	}
5251 
5252 	return sata_pmp_scr_write(link, reg, val);
5253 }
5254 
5255 /**
5256  *	ata_phys_link_online - test whether the given link is online
5257  *	@link: ATA link to test
5258  *
5259  *	Test whether @link is online.  Note that this function returns
5260  *	0 if online status of @link cannot be obtained, so
5261  *	ata_link_online(link) != !ata_link_offline(link).
5262  *
5263  *	LOCKING:
5264  *	None.
5265  *
5266  *	RETURNS:
5267  *	True if the port online status is available and online.
5268  */
5269 bool ata_phys_link_online(struct ata_link *link)
5270 {
5271 	u32 sstatus;
5272 
5273 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5274 	    ata_sstatus_online(sstatus))
5275 		return true;
5276 	return false;
5277 }
5278 
5279 /**
5280  *	ata_phys_link_offline - test whether the given link is offline
5281  *	@link: ATA link to test
5282  *
5283  *	Test whether @link is offline.  Note that this function
5284  *	returns 0 if offline status of @link cannot be obtained, so
5285  *	ata_link_online(link) != !ata_link_offline(link).
5286  *
5287  *	LOCKING:
5288  *	None.
5289  *
5290  *	RETURNS:
5291  *	True if the port offline status is available and offline.
5292  */
5293 bool ata_phys_link_offline(struct ata_link *link)
5294 {
5295 	u32 sstatus;
5296 
5297 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5298 	    !ata_sstatus_online(sstatus))
5299 		return true;
5300 	return false;
5301 }
5302 
5303 /**
5304  *	ata_link_online - test whether the given link is online
5305  *	@link: ATA link to test
5306  *
5307  *	Test whether @link is online.  This is identical to
5308  *	ata_phys_link_online() when there's no slave link.  When
5309  *	there's a slave link, this function should only be called on
5310  *	the master link and will return true if any of M/S links is
5311  *	online.
5312  *
5313  *	LOCKING:
5314  *	None.
5315  *
5316  *	RETURNS:
5317  *	True if the port online status is available and online.
5318  */
5319 bool ata_link_online(struct ata_link *link)
5320 {
5321 	struct ata_link *slave = link->ap->slave_link;
5322 
5323 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5324 
5325 	return ata_phys_link_online(link) ||
5326 		(slave && ata_phys_link_online(slave));
5327 }
5328 
5329 /**
5330  *	ata_link_offline - test whether the given link is offline
5331  *	@link: ATA link to test
5332  *
5333  *	Test whether @link is offline.  This is identical to
5334  *	ata_phys_link_offline() when there's no slave link.  When
5335  *	there's a slave link, this function should only be called on
5336  *	the master link and will return true if both M/S links are
5337  *	offline.
5338  *
5339  *	LOCKING:
5340  *	None.
5341  *
5342  *	RETURNS:
5343  *	True if the port offline status is available and offline.
5344  */
5345 bool ata_link_offline(struct ata_link *link)
5346 {
5347 	struct ata_link *slave = link->ap->slave_link;
5348 
5349 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5350 
5351 	return ata_phys_link_offline(link) &&
5352 		(!slave || ata_phys_link_offline(slave));
5353 }
5354 
5355 #ifdef CONFIG_PM
5356 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5357 			       unsigned int action, unsigned int ehi_flags,
5358 			       int wait)
5359 {
5360 	unsigned long flags;
5361 	int i, rc;
5362 
5363 	for (i = 0; i < host->n_ports; i++) {
5364 		struct ata_port *ap = host->ports[i];
5365 		struct ata_link *link;
5366 
5367 		/* Previous resume operation might still be in
5368 		 * progress.  Wait for PM_PENDING to clear.
5369 		 */
5370 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5371 			ata_port_wait_eh(ap);
5372 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5373 		}
5374 
5375 		/* request PM ops to EH */
5376 		spin_lock_irqsave(ap->lock, flags);
5377 
5378 		ap->pm_mesg = mesg;
5379 		if (wait) {
5380 			rc = 0;
5381 			ap->pm_result = &rc;
5382 		}
5383 
5384 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5385 		ata_for_each_link(link, ap, HOST_FIRST) {
5386 			link->eh_info.action |= action;
5387 			link->eh_info.flags |= ehi_flags;
5388 		}
5389 
5390 		ata_port_schedule_eh(ap);
5391 
5392 		spin_unlock_irqrestore(ap->lock, flags);
5393 
5394 		/* wait and check result */
5395 		if (wait) {
5396 			ata_port_wait_eh(ap);
5397 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5398 			if (rc)
5399 				return rc;
5400 		}
5401 	}
5402 
5403 	return 0;
5404 }
5405 
5406 /**
5407  *	ata_host_suspend - suspend host
5408  *	@host: host to suspend
5409  *	@mesg: PM message
5410  *
5411  *	Suspend @host.  Actual operation is performed by EH.  This
5412  *	function requests EH to perform PM operations and waits for EH
5413  *	to finish.
5414  *
5415  *	LOCKING:
5416  *	Kernel thread context (may sleep).
5417  *
5418  *	RETURNS:
5419  *	0 on success, -errno on failure.
5420  */
5421 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5422 {
5423 	int rc;
5424 
5425 	/*
5426 	 * disable link pm on all ports before requesting
5427 	 * any pm activity
5428 	 */
5429 	ata_lpm_enable(host);
5430 
5431 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5432 	if (rc == 0)
5433 		host->dev->power.power_state = mesg;
5434 	return rc;
5435 }
5436 
5437 /**
5438  *	ata_host_resume - resume host
5439  *	@host: host to resume
5440  *
5441  *	Resume @host.  Actual operation is performed by EH.  This
5442  *	function requests EH to perform PM operations and returns.
5443  *	Note that all resume operations are performed parallely.
5444  *
5445  *	LOCKING:
5446  *	Kernel thread context (may sleep).
5447  */
5448 void ata_host_resume(struct ata_host *host)
5449 {
5450 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5451 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5452 	host->dev->power.power_state = PMSG_ON;
5453 
5454 	/* reenable link pm */
5455 	ata_lpm_disable(host);
5456 }
5457 #endif
5458 
5459 /**
5460  *	ata_port_start - Set port up for dma.
5461  *	@ap: Port to initialize
5462  *
5463  *	Called just after data structures for each port are
5464  *	initialized.  Allocates space for PRD table.
5465  *
5466  *	May be used as the port_start() entry in ata_port_operations.
5467  *
5468  *	LOCKING:
5469  *	Inherited from caller.
5470  */
5471 int ata_port_start(struct ata_port *ap)
5472 {
5473 	struct device *dev = ap->dev;
5474 
5475 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5476 				      GFP_KERNEL);
5477 	if (!ap->prd)
5478 		return -ENOMEM;
5479 
5480 	return 0;
5481 }
5482 
5483 /**
5484  *	ata_dev_init - Initialize an ata_device structure
5485  *	@dev: Device structure to initialize
5486  *
5487  *	Initialize @dev in preparation for probing.
5488  *
5489  *	LOCKING:
5490  *	Inherited from caller.
5491  */
5492 void ata_dev_init(struct ata_device *dev)
5493 {
5494 	struct ata_link *link = ata_dev_phys_link(dev);
5495 	struct ata_port *ap = link->ap;
5496 	unsigned long flags;
5497 
5498 	/* SATA spd limit is bound to the attached device, reset together */
5499 	link->sata_spd_limit = link->hw_sata_spd_limit;
5500 	link->sata_spd = 0;
5501 
5502 	/* High bits of dev->flags are used to record warm plug
5503 	 * requests which occur asynchronously.  Synchronize using
5504 	 * host lock.
5505 	 */
5506 	spin_lock_irqsave(ap->lock, flags);
5507 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5508 	dev->horkage = 0;
5509 	spin_unlock_irqrestore(ap->lock, flags);
5510 
5511 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5512 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5513 	dev->pio_mask = UINT_MAX;
5514 	dev->mwdma_mask = UINT_MAX;
5515 	dev->udma_mask = UINT_MAX;
5516 }
5517 
5518 /**
5519  *	ata_link_init - Initialize an ata_link structure
5520  *	@ap: ATA port link is attached to
5521  *	@link: Link structure to initialize
5522  *	@pmp: Port multiplier port number
5523  *
5524  *	Initialize @link.
5525  *
5526  *	LOCKING:
5527  *	Kernel thread context (may sleep)
5528  */
5529 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5530 {
5531 	int i;
5532 
5533 	/* clear everything except for devices */
5534 	memset(link, 0, offsetof(struct ata_link, device[0]));
5535 
5536 	link->ap = ap;
5537 	link->pmp = pmp;
5538 	link->active_tag = ATA_TAG_POISON;
5539 	link->hw_sata_spd_limit = UINT_MAX;
5540 
5541 	/* can't use iterator, ap isn't initialized yet */
5542 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5543 		struct ata_device *dev = &link->device[i];
5544 
5545 		dev->link = link;
5546 		dev->devno = dev - link->device;
5547 		ata_dev_init(dev);
5548 	}
5549 }
5550 
5551 /**
5552  *	sata_link_init_spd - Initialize link->sata_spd_limit
5553  *	@link: Link to configure sata_spd_limit for
5554  *
5555  *	Initialize @link->[hw_]sata_spd_limit to the currently
5556  *	configured value.
5557  *
5558  *	LOCKING:
5559  *	Kernel thread context (may sleep).
5560  *
5561  *	RETURNS:
5562  *	0 on success, -errno on failure.
5563  */
5564 int sata_link_init_spd(struct ata_link *link)
5565 {
5566 	u8 spd;
5567 	int rc;
5568 
5569 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5570 	if (rc)
5571 		return rc;
5572 
5573 	spd = (link->saved_scontrol >> 4) & 0xf;
5574 	if (spd)
5575 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5576 
5577 	ata_force_link_limits(link);
5578 
5579 	link->sata_spd_limit = link->hw_sata_spd_limit;
5580 
5581 	return 0;
5582 }
5583 
5584 /**
5585  *	ata_port_alloc - allocate and initialize basic ATA port resources
5586  *	@host: ATA host this allocated port belongs to
5587  *
5588  *	Allocate and initialize basic ATA port resources.
5589  *
5590  *	RETURNS:
5591  *	Allocate ATA port on success, NULL on failure.
5592  *
5593  *	LOCKING:
5594  *	Inherited from calling layer (may sleep).
5595  */
5596 struct ata_port *ata_port_alloc(struct ata_host *host)
5597 {
5598 	struct ata_port *ap;
5599 
5600 	DPRINTK("ENTER\n");
5601 
5602 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5603 	if (!ap)
5604 		return NULL;
5605 
5606 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5607 	ap->lock = &host->lock;
5608 	ap->flags = ATA_FLAG_DISABLED;
5609 	ap->print_id = -1;
5610 	ap->ctl = ATA_DEVCTL_OBS;
5611 	ap->host = host;
5612 	ap->dev = host->dev;
5613 	ap->last_ctl = 0xFF;
5614 
5615 #if defined(ATA_VERBOSE_DEBUG)
5616 	/* turn on all debugging levels */
5617 	ap->msg_enable = 0x00FF;
5618 #elif defined(ATA_DEBUG)
5619 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5620 #else
5621 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5622 #endif
5623 
5624 #ifdef CONFIG_ATA_SFF
5625 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5626 #else
5627 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5628 #endif
5629 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5630 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5631 	INIT_LIST_HEAD(&ap->eh_done_q);
5632 	init_waitqueue_head(&ap->eh_wait_q);
5633 	init_completion(&ap->park_req_pending);
5634 	init_timer_deferrable(&ap->fastdrain_timer);
5635 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5636 	ap->fastdrain_timer.data = (unsigned long)ap;
5637 
5638 	ap->cbl = ATA_CBL_NONE;
5639 
5640 	ata_link_init(ap, &ap->link, 0);
5641 
5642 #ifdef ATA_IRQ_TRAP
5643 	ap->stats.unhandled_irq = 1;
5644 	ap->stats.idle_irq = 1;
5645 #endif
5646 	return ap;
5647 }
5648 
5649 static void ata_host_release(struct device *gendev, void *res)
5650 {
5651 	struct ata_host *host = dev_get_drvdata(gendev);
5652 	int i;
5653 
5654 	for (i = 0; i < host->n_ports; i++) {
5655 		struct ata_port *ap = host->ports[i];
5656 
5657 		if (!ap)
5658 			continue;
5659 
5660 		if (ap->scsi_host)
5661 			scsi_host_put(ap->scsi_host);
5662 
5663 		kfree(ap->pmp_link);
5664 		kfree(ap->slave_link);
5665 		kfree(ap);
5666 		host->ports[i] = NULL;
5667 	}
5668 
5669 	dev_set_drvdata(gendev, NULL);
5670 }
5671 
5672 /**
5673  *	ata_host_alloc - allocate and init basic ATA host resources
5674  *	@dev: generic device this host is associated with
5675  *	@max_ports: maximum number of ATA ports associated with this host
5676  *
5677  *	Allocate and initialize basic ATA host resources.  LLD calls
5678  *	this function to allocate a host, initializes it fully and
5679  *	attaches it using ata_host_register().
5680  *
5681  *	@max_ports ports are allocated and host->n_ports is
5682  *	initialized to @max_ports.  The caller is allowed to decrease
5683  *	host->n_ports before calling ata_host_register().  The unused
5684  *	ports will be automatically freed on registration.
5685  *
5686  *	RETURNS:
5687  *	Allocate ATA host on success, NULL on failure.
5688  *
5689  *	LOCKING:
5690  *	Inherited from calling layer (may sleep).
5691  */
5692 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5693 {
5694 	struct ata_host *host;
5695 	size_t sz;
5696 	int i;
5697 
5698 	DPRINTK("ENTER\n");
5699 
5700 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5701 		return NULL;
5702 
5703 	/* alloc a container for our list of ATA ports (buses) */
5704 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5705 	/* alloc a container for our list of ATA ports (buses) */
5706 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5707 	if (!host)
5708 		goto err_out;
5709 
5710 	devres_add(dev, host);
5711 	dev_set_drvdata(dev, host);
5712 
5713 	spin_lock_init(&host->lock);
5714 	host->dev = dev;
5715 	host->n_ports = max_ports;
5716 
5717 	/* allocate ports bound to this host */
5718 	for (i = 0; i < max_ports; i++) {
5719 		struct ata_port *ap;
5720 
5721 		ap = ata_port_alloc(host);
5722 		if (!ap)
5723 			goto err_out;
5724 
5725 		ap->port_no = i;
5726 		host->ports[i] = ap;
5727 	}
5728 
5729 	devres_remove_group(dev, NULL);
5730 	return host;
5731 
5732  err_out:
5733 	devres_release_group(dev, NULL);
5734 	return NULL;
5735 }
5736 
5737 /**
5738  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5739  *	@dev: generic device this host is associated with
5740  *	@ppi: array of ATA port_info to initialize host with
5741  *	@n_ports: number of ATA ports attached to this host
5742  *
5743  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5744  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5745  *	last entry will be used for the remaining ports.
5746  *
5747  *	RETURNS:
5748  *	Allocate ATA host on success, NULL on failure.
5749  *
5750  *	LOCKING:
5751  *	Inherited from calling layer (may sleep).
5752  */
5753 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5754 				      const struct ata_port_info * const * ppi,
5755 				      int n_ports)
5756 {
5757 	const struct ata_port_info *pi;
5758 	struct ata_host *host;
5759 	int i, j;
5760 
5761 	host = ata_host_alloc(dev, n_ports);
5762 	if (!host)
5763 		return NULL;
5764 
5765 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5766 		struct ata_port *ap = host->ports[i];
5767 
5768 		if (ppi[j])
5769 			pi = ppi[j++];
5770 
5771 		ap->pio_mask = pi->pio_mask;
5772 		ap->mwdma_mask = pi->mwdma_mask;
5773 		ap->udma_mask = pi->udma_mask;
5774 		ap->flags |= pi->flags;
5775 		ap->link.flags |= pi->link_flags;
5776 		ap->ops = pi->port_ops;
5777 
5778 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5779 			host->ops = pi->port_ops;
5780 	}
5781 
5782 	return host;
5783 }
5784 
5785 /**
5786  *	ata_slave_link_init - initialize slave link
5787  *	@ap: port to initialize slave link for
5788  *
5789  *	Create and initialize slave link for @ap.  This enables slave
5790  *	link handling on the port.
5791  *
5792  *	In libata, a port contains links and a link contains devices.
5793  *	There is single host link but if a PMP is attached to it,
5794  *	there can be multiple fan-out links.  On SATA, there's usually
5795  *	a single device connected to a link but PATA and SATA
5796  *	controllers emulating TF based interface can have two - master
5797  *	and slave.
5798  *
5799  *	However, there are a few controllers which don't fit into this
5800  *	abstraction too well - SATA controllers which emulate TF
5801  *	interface with both master and slave devices but also have
5802  *	separate SCR register sets for each device.  These controllers
5803  *	need separate links for physical link handling
5804  *	(e.g. onlineness, link speed) but should be treated like a
5805  *	traditional M/S controller for everything else (e.g. command
5806  *	issue, softreset).
5807  *
5808  *	slave_link is libata's way of handling this class of
5809  *	controllers without impacting core layer too much.  For
5810  *	anything other than physical link handling, the default host
5811  *	link is used for both master and slave.  For physical link
5812  *	handling, separate @ap->slave_link is used.  All dirty details
5813  *	are implemented inside libata core layer.  From LLD's POV, the
5814  *	only difference is that prereset, hardreset and postreset are
5815  *	called once more for the slave link, so the reset sequence
5816  *	looks like the following.
5817  *
5818  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5819  *	softreset(M) -> postreset(M) -> postreset(S)
5820  *
5821  *	Note that softreset is called only for the master.  Softreset
5822  *	resets both M/S by definition, so SRST on master should handle
5823  *	both (the standard method will work just fine).
5824  *
5825  *	LOCKING:
5826  *	Should be called before host is registered.
5827  *
5828  *	RETURNS:
5829  *	0 on success, -errno on failure.
5830  */
5831 int ata_slave_link_init(struct ata_port *ap)
5832 {
5833 	struct ata_link *link;
5834 
5835 	WARN_ON(ap->slave_link);
5836 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5837 
5838 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5839 	if (!link)
5840 		return -ENOMEM;
5841 
5842 	ata_link_init(ap, link, 1);
5843 	ap->slave_link = link;
5844 	return 0;
5845 }
5846 
5847 static void ata_host_stop(struct device *gendev, void *res)
5848 {
5849 	struct ata_host *host = dev_get_drvdata(gendev);
5850 	int i;
5851 
5852 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5853 
5854 	for (i = 0; i < host->n_ports; i++) {
5855 		struct ata_port *ap = host->ports[i];
5856 
5857 		if (ap->ops->port_stop)
5858 			ap->ops->port_stop(ap);
5859 	}
5860 
5861 	if (host->ops->host_stop)
5862 		host->ops->host_stop(host);
5863 }
5864 
5865 /**
5866  *	ata_finalize_port_ops - finalize ata_port_operations
5867  *	@ops: ata_port_operations to finalize
5868  *
5869  *	An ata_port_operations can inherit from another ops and that
5870  *	ops can again inherit from another.  This can go on as many
5871  *	times as necessary as long as there is no loop in the
5872  *	inheritance chain.
5873  *
5874  *	Ops tables are finalized when the host is started.  NULL or
5875  *	unspecified entries are inherited from the closet ancestor
5876  *	which has the method and the entry is populated with it.
5877  *	After finalization, the ops table directly points to all the
5878  *	methods and ->inherits is no longer necessary and cleared.
5879  *
5880  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5881  *
5882  *	LOCKING:
5883  *	None.
5884  */
5885 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5886 {
5887 	static DEFINE_SPINLOCK(lock);
5888 	const struct ata_port_operations *cur;
5889 	void **begin = (void **)ops;
5890 	void **end = (void **)&ops->inherits;
5891 	void **pp;
5892 
5893 	if (!ops || !ops->inherits)
5894 		return;
5895 
5896 	spin_lock(&lock);
5897 
5898 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5899 		void **inherit = (void **)cur;
5900 
5901 		for (pp = begin; pp < end; pp++, inherit++)
5902 			if (!*pp)
5903 				*pp = *inherit;
5904 	}
5905 
5906 	for (pp = begin; pp < end; pp++)
5907 		if (IS_ERR(*pp))
5908 			*pp = NULL;
5909 
5910 	ops->inherits = NULL;
5911 
5912 	spin_unlock(&lock);
5913 }
5914 
5915 /**
5916  *	ata_host_start - start and freeze ports of an ATA host
5917  *	@host: ATA host to start ports for
5918  *
5919  *	Start and then freeze ports of @host.  Started status is
5920  *	recorded in host->flags, so this function can be called
5921  *	multiple times.  Ports are guaranteed to get started only
5922  *	once.  If host->ops isn't initialized yet, its set to the
5923  *	first non-dummy port ops.
5924  *
5925  *	LOCKING:
5926  *	Inherited from calling layer (may sleep).
5927  *
5928  *	RETURNS:
5929  *	0 if all ports are started successfully, -errno otherwise.
5930  */
5931 int ata_host_start(struct ata_host *host)
5932 {
5933 	int have_stop = 0;
5934 	void *start_dr = NULL;
5935 	int i, rc;
5936 
5937 	if (host->flags & ATA_HOST_STARTED)
5938 		return 0;
5939 
5940 	ata_finalize_port_ops(host->ops);
5941 
5942 	for (i = 0; i < host->n_ports; i++) {
5943 		struct ata_port *ap = host->ports[i];
5944 
5945 		ata_finalize_port_ops(ap->ops);
5946 
5947 		if (!host->ops && !ata_port_is_dummy(ap))
5948 			host->ops = ap->ops;
5949 
5950 		if (ap->ops->port_stop)
5951 			have_stop = 1;
5952 	}
5953 
5954 	if (host->ops->host_stop)
5955 		have_stop = 1;
5956 
5957 	if (have_stop) {
5958 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5959 		if (!start_dr)
5960 			return -ENOMEM;
5961 	}
5962 
5963 	for (i = 0; i < host->n_ports; i++) {
5964 		struct ata_port *ap = host->ports[i];
5965 
5966 		if (ap->ops->port_start) {
5967 			rc = ap->ops->port_start(ap);
5968 			if (rc) {
5969 				if (rc != -ENODEV)
5970 					dev_printk(KERN_ERR, host->dev,
5971 						"failed to start port %d "
5972 						"(errno=%d)\n", i, rc);
5973 				goto err_out;
5974 			}
5975 		}
5976 		ata_eh_freeze_port(ap);
5977 	}
5978 
5979 	if (start_dr)
5980 		devres_add(host->dev, start_dr);
5981 	host->flags |= ATA_HOST_STARTED;
5982 	return 0;
5983 
5984  err_out:
5985 	while (--i >= 0) {
5986 		struct ata_port *ap = host->ports[i];
5987 
5988 		if (ap->ops->port_stop)
5989 			ap->ops->port_stop(ap);
5990 	}
5991 	devres_free(start_dr);
5992 	return rc;
5993 }
5994 
5995 /**
5996  *	ata_sas_host_init - Initialize a host struct
5997  *	@host:	host to initialize
5998  *	@dev:	device host is attached to
5999  *	@flags:	host flags
6000  *	@ops:	port_ops
6001  *
6002  *	LOCKING:
6003  *	PCI/etc. bus probe sem.
6004  *
6005  */
6006 /* KILLME - the only user left is ipr */
6007 void ata_host_init(struct ata_host *host, struct device *dev,
6008 		   unsigned long flags, struct ata_port_operations *ops)
6009 {
6010 	spin_lock_init(&host->lock);
6011 	host->dev = dev;
6012 	host->flags = flags;
6013 	host->ops = ops;
6014 }
6015 
6016 
6017 static void async_port_probe(void *data, async_cookie_t cookie)
6018 {
6019 	int rc;
6020 	struct ata_port *ap = data;
6021 
6022 	/*
6023 	 * If we're not allowed to scan this host in parallel,
6024 	 * we need to wait until all previous scans have completed
6025 	 * before going further.
6026 	 * Jeff Garzik says this is only within a controller, so we
6027 	 * don't need to wait for port 0, only for later ports.
6028 	 */
6029 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6030 		async_synchronize_cookie(cookie);
6031 
6032 	/* probe */
6033 	if (ap->ops->error_handler) {
6034 		struct ata_eh_info *ehi = &ap->link.eh_info;
6035 		unsigned long flags;
6036 
6037 		ata_port_probe(ap);
6038 
6039 		/* kick EH for boot probing */
6040 		spin_lock_irqsave(ap->lock, flags);
6041 
6042 		ehi->probe_mask |= ATA_ALL_DEVICES;
6043 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6044 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6045 
6046 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6047 		ap->pflags |= ATA_PFLAG_LOADING;
6048 		ata_port_schedule_eh(ap);
6049 
6050 		spin_unlock_irqrestore(ap->lock, flags);
6051 
6052 		/* wait for EH to finish */
6053 		ata_port_wait_eh(ap);
6054 	} else {
6055 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6056 		rc = ata_bus_probe(ap);
6057 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6058 
6059 		if (rc) {
6060 			/* FIXME: do something useful here?
6061 			 * Current libata behavior will
6062 			 * tear down everything when
6063 			 * the module is removed
6064 			 * or the h/w is unplugged.
6065 			 */
6066 		}
6067 	}
6068 
6069 	/* in order to keep device order, we need to synchronize at this point */
6070 	async_synchronize_cookie(cookie);
6071 
6072 	ata_scsi_scan_host(ap, 1);
6073 
6074 }
6075 /**
6076  *	ata_host_register - register initialized ATA host
6077  *	@host: ATA host to register
6078  *	@sht: template for SCSI host
6079  *
6080  *	Register initialized ATA host.  @host is allocated using
6081  *	ata_host_alloc() and fully initialized by LLD.  This function
6082  *	starts ports, registers @host with ATA and SCSI layers and
6083  *	probe registered devices.
6084  *
6085  *	LOCKING:
6086  *	Inherited from calling layer (may sleep).
6087  *
6088  *	RETURNS:
6089  *	0 on success, -errno otherwise.
6090  */
6091 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6092 {
6093 	int i, rc;
6094 
6095 	/* host must have been started */
6096 	if (!(host->flags & ATA_HOST_STARTED)) {
6097 		dev_printk(KERN_ERR, host->dev,
6098 			   "BUG: trying to register unstarted host\n");
6099 		WARN_ON(1);
6100 		return -EINVAL;
6101 	}
6102 
6103 	/* Blow away unused ports.  This happens when LLD can't
6104 	 * determine the exact number of ports to allocate at
6105 	 * allocation time.
6106 	 */
6107 	for (i = host->n_ports; host->ports[i]; i++)
6108 		kfree(host->ports[i]);
6109 
6110 	/* give ports names and add SCSI hosts */
6111 	for (i = 0; i < host->n_ports; i++)
6112 		host->ports[i]->print_id = ata_print_id++;
6113 
6114 	rc = ata_scsi_add_hosts(host, sht);
6115 	if (rc)
6116 		return rc;
6117 
6118 	/* associate with ACPI nodes */
6119 	ata_acpi_associate(host);
6120 
6121 	/* set cable, sata_spd_limit and report */
6122 	for (i = 0; i < host->n_ports; i++) {
6123 		struct ata_port *ap = host->ports[i];
6124 		unsigned long xfer_mask;
6125 
6126 		/* set SATA cable type if still unset */
6127 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6128 			ap->cbl = ATA_CBL_SATA;
6129 
6130 		/* init sata_spd_limit to the current value */
6131 		sata_link_init_spd(&ap->link);
6132 		if (ap->slave_link)
6133 			sata_link_init_spd(ap->slave_link);
6134 
6135 		/* print per-port info to dmesg */
6136 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6137 					      ap->udma_mask);
6138 
6139 		if (!ata_port_is_dummy(ap)) {
6140 			ata_port_printk(ap, KERN_INFO,
6141 					"%cATA max %s %s\n",
6142 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6143 					ata_mode_string(xfer_mask),
6144 					ap->link.eh_info.desc);
6145 			ata_ehi_clear_desc(&ap->link.eh_info);
6146 		} else
6147 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6148 	}
6149 
6150 	/* perform each probe asynchronously */
6151 	for (i = 0; i < host->n_ports; i++) {
6152 		struct ata_port *ap = host->ports[i];
6153 		async_schedule(async_port_probe, ap);
6154 	}
6155 
6156 	return 0;
6157 }
6158 
6159 /**
6160  *	ata_host_activate - start host, request IRQ and register it
6161  *	@host: target ATA host
6162  *	@irq: IRQ to request
6163  *	@irq_handler: irq_handler used when requesting IRQ
6164  *	@irq_flags: irq_flags used when requesting IRQ
6165  *	@sht: scsi_host_template to use when registering the host
6166  *
6167  *	After allocating an ATA host and initializing it, most libata
6168  *	LLDs perform three steps to activate the host - start host,
6169  *	request IRQ and register it.  This helper takes necessasry
6170  *	arguments and performs the three steps in one go.
6171  *
6172  *	An invalid IRQ skips the IRQ registration and expects the host to
6173  *	have set polling mode on the port. In this case, @irq_handler
6174  *	should be NULL.
6175  *
6176  *	LOCKING:
6177  *	Inherited from calling layer (may sleep).
6178  *
6179  *	RETURNS:
6180  *	0 on success, -errno otherwise.
6181  */
6182 int ata_host_activate(struct ata_host *host, int irq,
6183 		      irq_handler_t irq_handler, unsigned long irq_flags,
6184 		      struct scsi_host_template *sht)
6185 {
6186 	int i, rc;
6187 
6188 	rc = ata_host_start(host);
6189 	if (rc)
6190 		return rc;
6191 
6192 	/* Special case for polling mode */
6193 	if (!irq) {
6194 		WARN_ON(irq_handler);
6195 		return ata_host_register(host, sht);
6196 	}
6197 
6198 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6199 			      dev_driver_string(host->dev), host);
6200 	if (rc)
6201 		return rc;
6202 
6203 	for (i = 0; i < host->n_ports; i++)
6204 		ata_port_desc(host->ports[i], "irq %d", irq);
6205 
6206 	rc = ata_host_register(host, sht);
6207 	/* if failed, just free the IRQ and leave ports alone */
6208 	if (rc)
6209 		devm_free_irq(host->dev, irq, host);
6210 
6211 	return rc;
6212 }
6213 
6214 /**
6215  *	ata_port_detach - Detach ATA port in prepration of device removal
6216  *	@ap: ATA port to be detached
6217  *
6218  *	Detach all ATA devices and the associated SCSI devices of @ap;
6219  *	then, remove the associated SCSI host.  @ap is guaranteed to
6220  *	be quiescent on return from this function.
6221  *
6222  *	LOCKING:
6223  *	Kernel thread context (may sleep).
6224  */
6225 static void ata_port_detach(struct ata_port *ap)
6226 {
6227 	unsigned long flags;
6228 
6229 	if (!ap->ops->error_handler)
6230 		goto skip_eh;
6231 
6232 	/* tell EH we're leaving & flush EH */
6233 	spin_lock_irqsave(ap->lock, flags);
6234 	ap->pflags |= ATA_PFLAG_UNLOADING;
6235 	ata_port_schedule_eh(ap);
6236 	spin_unlock_irqrestore(ap->lock, flags);
6237 
6238 	/* wait till EH commits suicide */
6239 	ata_port_wait_eh(ap);
6240 
6241 	/* it better be dead now */
6242 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6243 
6244 	cancel_rearming_delayed_work(&ap->hotplug_task);
6245 
6246  skip_eh:
6247 	/* remove the associated SCSI host */
6248 	scsi_remove_host(ap->scsi_host);
6249 }
6250 
6251 /**
6252  *	ata_host_detach - Detach all ports of an ATA host
6253  *	@host: Host to detach
6254  *
6255  *	Detach all ports of @host.
6256  *
6257  *	LOCKING:
6258  *	Kernel thread context (may sleep).
6259  */
6260 void ata_host_detach(struct ata_host *host)
6261 {
6262 	int i;
6263 
6264 	for (i = 0; i < host->n_ports; i++)
6265 		ata_port_detach(host->ports[i]);
6266 
6267 	/* the host is dead now, dissociate ACPI */
6268 	ata_acpi_dissociate(host);
6269 }
6270 
6271 #ifdef CONFIG_PCI
6272 
6273 /**
6274  *	ata_pci_remove_one - PCI layer callback for device removal
6275  *	@pdev: PCI device that was removed
6276  *
6277  *	PCI layer indicates to libata via this hook that hot-unplug or
6278  *	module unload event has occurred.  Detach all ports.  Resource
6279  *	release is handled via devres.
6280  *
6281  *	LOCKING:
6282  *	Inherited from PCI layer (may sleep).
6283  */
6284 void ata_pci_remove_one(struct pci_dev *pdev)
6285 {
6286 	struct device *dev = &pdev->dev;
6287 	struct ata_host *host = dev_get_drvdata(dev);
6288 
6289 	ata_host_detach(host);
6290 }
6291 
6292 /* move to PCI subsystem */
6293 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6294 {
6295 	unsigned long tmp = 0;
6296 
6297 	switch (bits->width) {
6298 	case 1: {
6299 		u8 tmp8 = 0;
6300 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6301 		tmp = tmp8;
6302 		break;
6303 	}
6304 	case 2: {
6305 		u16 tmp16 = 0;
6306 		pci_read_config_word(pdev, bits->reg, &tmp16);
6307 		tmp = tmp16;
6308 		break;
6309 	}
6310 	case 4: {
6311 		u32 tmp32 = 0;
6312 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6313 		tmp = tmp32;
6314 		break;
6315 	}
6316 
6317 	default:
6318 		return -EINVAL;
6319 	}
6320 
6321 	tmp &= bits->mask;
6322 
6323 	return (tmp == bits->val) ? 1 : 0;
6324 }
6325 
6326 #ifdef CONFIG_PM
6327 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6328 {
6329 	pci_save_state(pdev);
6330 	pci_disable_device(pdev);
6331 
6332 	if (mesg.event & PM_EVENT_SLEEP)
6333 		pci_set_power_state(pdev, PCI_D3hot);
6334 }
6335 
6336 int ata_pci_device_do_resume(struct pci_dev *pdev)
6337 {
6338 	int rc;
6339 
6340 	pci_set_power_state(pdev, PCI_D0);
6341 	pci_restore_state(pdev);
6342 
6343 	rc = pcim_enable_device(pdev);
6344 	if (rc) {
6345 		dev_printk(KERN_ERR, &pdev->dev,
6346 			   "failed to enable device after resume (%d)\n", rc);
6347 		return rc;
6348 	}
6349 
6350 	pci_set_master(pdev);
6351 	return 0;
6352 }
6353 
6354 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6355 {
6356 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6357 	int rc = 0;
6358 
6359 	rc = ata_host_suspend(host, mesg);
6360 	if (rc)
6361 		return rc;
6362 
6363 	ata_pci_device_do_suspend(pdev, mesg);
6364 
6365 	return 0;
6366 }
6367 
6368 int ata_pci_device_resume(struct pci_dev *pdev)
6369 {
6370 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6371 	int rc;
6372 
6373 	rc = ata_pci_device_do_resume(pdev);
6374 	if (rc == 0)
6375 		ata_host_resume(host);
6376 	return rc;
6377 }
6378 #endif /* CONFIG_PM */
6379 
6380 #endif /* CONFIG_PCI */
6381 
6382 static int __init ata_parse_force_one(char **cur,
6383 				      struct ata_force_ent *force_ent,
6384 				      const char **reason)
6385 {
6386 	/* FIXME: Currently, there's no way to tag init const data and
6387 	 * using __initdata causes build failure on some versions of
6388 	 * gcc.  Once __initdataconst is implemented, add const to the
6389 	 * following structure.
6390 	 */
6391 	static struct ata_force_param force_tbl[] __initdata = {
6392 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6393 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6394 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6395 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6396 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6397 		{ "sata",	.cbl		= ATA_CBL_SATA },
6398 		{ "1.5Gbps",	.spd_limit	= 1 },
6399 		{ "3.0Gbps",	.spd_limit	= 2 },
6400 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6401 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6402 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6403 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6404 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6405 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6406 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6407 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6408 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6409 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6410 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6411 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6412 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6413 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6414 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6415 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6416 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6417 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6418 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6419 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6420 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6421 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6422 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6423 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6424 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6425 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6426 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6427 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6428 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6429 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6430 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6431 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6432 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6433 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6434 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6435 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6436 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6437 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6438 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6439 	};
6440 	char *start = *cur, *p = *cur;
6441 	char *id, *val, *endp;
6442 	const struct ata_force_param *match_fp = NULL;
6443 	int nr_matches = 0, i;
6444 
6445 	/* find where this param ends and update *cur */
6446 	while (*p != '\0' && *p != ',')
6447 		p++;
6448 
6449 	if (*p == '\0')
6450 		*cur = p;
6451 	else
6452 		*cur = p + 1;
6453 
6454 	*p = '\0';
6455 
6456 	/* parse */
6457 	p = strchr(start, ':');
6458 	if (!p) {
6459 		val = strstrip(start);
6460 		goto parse_val;
6461 	}
6462 	*p = '\0';
6463 
6464 	id = strstrip(start);
6465 	val = strstrip(p + 1);
6466 
6467 	/* parse id */
6468 	p = strchr(id, '.');
6469 	if (p) {
6470 		*p++ = '\0';
6471 		force_ent->device = simple_strtoul(p, &endp, 10);
6472 		if (p == endp || *endp != '\0') {
6473 			*reason = "invalid device";
6474 			return -EINVAL;
6475 		}
6476 	}
6477 
6478 	force_ent->port = simple_strtoul(id, &endp, 10);
6479 	if (p == endp || *endp != '\0') {
6480 		*reason = "invalid port/link";
6481 		return -EINVAL;
6482 	}
6483 
6484  parse_val:
6485 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6486 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6487 		const struct ata_force_param *fp = &force_tbl[i];
6488 
6489 		if (strncasecmp(val, fp->name, strlen(val)))
6490 			continue;
6491 
6492 		nr_matches++;
6493 		match_fp = fp;
6494 
6495 		if (strcasecmp(val, fp->name) == 0) {
6496 			nr_matches = 1;
6497 			break;
6498 		}
6499 	}
6500 
6501 	if (!nr_matches) {
6502 		*reason = "unknown value";
6503 		return -EINVAL;
6504 	}
6505 	if (nr_matches > 1) {
6506 		*reason = "ambigious value";
6507 		return -EINVAL;
6508 	}
6509 
6510 	force_ent->param = *match_fp;
6511 
6512 	return 0;
6513 }
6514 
6515 static void __init ata_parse_force_param(void)
6516 {
6517 	int idx = 0, size = 1;
6518 	int last_port = -1, last_device = -1;
6519 	char *p, *cur, *next;
6520 
6521 	/* calculate maximum number of params and allocate force_tbl */
6522 	for (p = ata_force_param_buf; *p; p++)
6523 		if (*p == ',')
6524 			size++;
6525 
6526 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6527 	if (!ata_force_tbl) {
6528 		printk(KERN_WARNING "ata: failed to extend force table, "
6529 		       "libata.force ignored\n");
6530 		return;
6531 	}
6532 
6533 	/* parse and populate the table */
6534 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6535 		const char *reason = "";
6536 		struct ata_force_ent te = { .port = -1, .device = -1 };
6537 
6538 		next = cur;
6539 		if (ata_parse_force_one(&next, &te, &reason)) {
6540 			printk(KERN_WARNING "ata: failed to parse force "
6541 			       "parameter \"%s\" (%s)\n",
6542 			       cur, reason);
6543 			continue;
6544 		}
6545 
6546 		if (te.port == -1) {
6547 			te.port = last_port;
6548 			te.device = last_device;
6549 		}
6550 
6551 		ata_force_tbl[idx++] = te;
6552 
6553 		last_port = te.port;
6554 		last_device = te.device;
6555 	}
6556 
6557 	ata_force_tbl_size = idx;
6558 }
6559 
6560 static int __init ata_init(void)
6561 {
6562 	ata_parse_force_param();
6563 
6564 	ata_wq = create_workqueue("ata");
6565 	if (!ata_wq)
6566 		goto free_force_tbl;
6567 
6568 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6569 	if (!ata_aux_wq)
6570 		goto free_wq;
6571 
6572 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6573 	return 0;
6574 
6575 free_wq:
6576 	destroy_workqueue(ata_wq);
6577 free_force_tbl:
6578 	kfree(ata_force_tbl);
6579 	return -ENOMEM;
6580 }
6581 
6582 static void __exit ata_exit(void)
6583 {
6584 	kfree(ata_force_tbl);
6585 	destroy_workqueue(ata_wq);
6586 	destroy_workqueue(ata_aux_wq);
6587 }
6588 
6589 subsys_initcall(ata_init);
6590 module_exit(ata_exit);
6591 
6592 static unsigned long ratelimit_time;
6593 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6594 
6595 int ata_ratelimit(void)
6596 {
6597 	int rc;
6598 	unsigned long flags;
6599 
6600 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6601 
6602 	if (time_after(jiffies, ratelimit_time)) {
6603 		rc = 1;
6604 		ratelimit_time = jiffies + (HZ/5);
6605 	} else
6606 		rc = 0;
6607 
6608 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6609 
6610 	return rc;
6611 }
6612 
6613 /**
6614  *	ata_wait_register - wait until register value changes
6615  *	@reg: IO-mapped register
6616  *	@mask: Mask to apply to read register value
6617  *	@val: Wait condition
6618  *	@interval: polling interval in milliseconds
6619  *	@timeout: timeout in milliseconds
6620  *
6621  *	Waiting for some bits of register to change is a common
6622  *	operation for ATA controllers.  This function reads 32bit LE
6623  *	IO-mapped register @reg and tests for the following condition.
6624  *
6625  *	(*@reg & mask) != val
6626  *
6627  *	If the condition is met, it returns; otherwise, the process is
6628  *	repeated after @interval_msec until timeout.
6629  *
6630  *	LOCKING:
6631  *	Kernel thread context (may sleep)
6632  *
6633  *	RETURNS:
6634  *	The final register value.
6635  */
6636 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6637 		      unsigned long interval, unsigned long timeout)
6638 {
6639 	unsigned long deadline;
6640 	u32 tmp;
6641 
6642 	tmp = ioread32(reg);
6643 
6644 	/* Calculate timeout _after_ the first read to make sure
6645 	 * preceding writes reach the controller before starting to
6646 	 * eat away the timeout.
6647 	 */
6648 	deadline = ata_deadline(jiffies, timeout);
6649 
6650 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6651 		msleep(interval);
6652 		tmp = ioread32(reg);
6653 	}
6654 
6655 	return tmp;
6656 }
6657 
6658 /*
6659  * Dummy port_ops
6660  */
6661 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6662 {
6663 	return AC_ERR_SYSTEM;
6664 }
6665 
6666 static void ata_dummy_error_handler(struct ata_port *ap)
6667 {
6668 	/* truly dummy */
6669 }
6670 
6671 struct ata_port_operations ata_dummy_port_ops = {
6672 	.qc_prep		= ata_noop_qc_prep,
6673 	.qc_issue		= ata_dummy_qc_issue,
6674 	.error_handler		= ata_dummy_error_handler,
6675 };
6676 
6677 const struct ata_port_info ata_dummy_port_info = {
6678 	.port_ops		= &ata_dummy_port_ops,
6679 };
6680 
6681 /*
6682  * libata is essentially a library of internal helper functions for
6683  * low-level ATA host controller drivers.  As such, the API/ABI is
6684  * likely to change as new drivers are added and updated.
6685  * Do not depend on ABI/API stability.
6686  */
6687 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6688 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6689 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6690 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6691 EXPORT_SYMBOL_GPL(sata_port_ops);
6692 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6693 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6694 EXPORT_SYMBOL_GPL(ata_link_next);
6695 EXPORT_SYMBOL_GPL(ata_dev_next);
6696 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6697 EXPORT_SYMBOL_GPL(ata_host_init);
6698 EXPORT_SYMBOL_GPL(ata_host_alloc);
6699 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6700 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6701 EXPORT_SYMBOL_GPL(ata_host_start);
6702 EXPORT_SYMBOL_GPL(ata_host_register);
6703 EXPORT_SYMBOL_GPL(ata_host_activate);
6704 EXPORT_SYMBOL_GPL(ata_host_detach);
6705 EXPORT_SYMBOL_GPL(ata_sg_init);
6706 EXPORT_SYMBOL_GPL(ata_qc_complete);
6707 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6708 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6709 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6710 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6711 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6712 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6713 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6714 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6715 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6716 EXPORT_SYMBOL_GPL(ata_mode_string);
6717 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6718 EXPORT_SYMBOL_GPL(ata_port_start);
6719 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6720 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6721 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6722 EXPORT_SYMBOL_GPL(ata_port_probe);
6723 EXPORT_SYMBOL_GPL(ata_dev_disable);
6724 EXPORT_SYMBOL_GPL(sata_set_spd);
6725 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6726 EXPORT_SYMBOL_GPL(sata_link_debounce);
6727 EXPORT_SYMBOL_GPL(sata_link_resume);
6728 EXPORT_SYMBOL_GPL(ata_std_prereset);
6729 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6730 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6731 EXPORT_SYMBOL_GPL(ata_std_postreset);
6732 EXPORT_SYMBOL_GPL(ata_dev_classify);
6733 EXPORT_SYMBOL_GPL(ata_dev_pair);
6734 EXPORT_SYMBOL_GPL(ata_port_disable);
6735 EXPORT_SYMBOL_GPL(ata_ratelimit);
6736 EXPORT_SYMBOL_GPL(ata_wait_register);
6737 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6738 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6739 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6740 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6741 EXPORT_SYMBOL_GPL(sata_scr_valid);
6742 EXPORT_SYMBOL_GPL(sata_scr_read);
6743 EXPORT_SYMBOL_GPL(sata_scr_write);
6744 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6745 EXPORT_SYMBOL_GPL(ata_link_online);
6746 EXPORT_SYMBOL_GPL(ata_link_offline);
6747 #ifdef CONFIG_PM
6748 EXPORT_SYMBOL_GPL(ata_host_suspend);
6749 EXPORT_SYMBOL_GPL(ata_host_resume);
6750 #endif /* CONFIG_PM */
6751 EXPORT_SYMBOL_GPL(ata_id_string);
6752 EXPORT_SYMBOL_GPL(ata_id_c_string);
6753 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6754 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6755 
6756 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6757 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6758 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6759 EXPORT_SYMBOL_GPL(ata_timing_compute);
6760 EXPORT_SYMBOL_GPL(ata_timing_merge);
6761 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6762 
6763 #ifdef CONFIG_PCI
6764 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6765 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6766 #ifdef CONFIG_PM
6767 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6768 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6769 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6770 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6771 #endif /* CONFIG_PM */
6772 #endif /* CONFIG_PCI */
6773 
6774 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6775 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6776 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6777 EXPORT_SYMBOL_GPL(ata_port_desc);
6778 #ifdef CONFIG_PCI
6779 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6780 #endif /* CONFIG_PCI */
6781 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6782 EXPORT_SYMBOL_GPL(ata_link_abort);
6783 EXPORT_SYMBOL_GPL(ata_port_abort);
6784 EXPORT_SYMBOL_GPL(ata_port_freeze);
6785 EXPORT_SYMBOL_GPL(sata_async_notification);
6786 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6787 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6788 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6789 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6790 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6791 EXPORT_SYMBOL_GPL(ata_do_eh);
6792 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6793 
6794 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6795 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6796 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6797 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6798 EXPORT_SYMBOL_GPL(ata_cable_sata);
6799