1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_host.h> 64 #include <linux/libata.h> 65 #include <asm/byteorder.h> 66 #include <linux/cdrom.h> 67 68 #include "libata.h" 69 70 71 /* debounce timing parameters in msecs { interval, duration, timeout } */ 72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 75 76 const struct ata_port_operations ata_base_port_ops = { 77 .prereset = ata_std_prereset, 78 .postreset = ata_std_postreset, 79 .error_handler = ata_std_error_handler, 80 }; 81 82 const struct ata_port_operations sata_port_ops = { 83 .inherits = &ata_base_port_ops, 84 85 .qc_defer = ata_std_qc_defer, 86 .hardreset = sata_std_hardreset, 87 }; 88 89 static unsigned int ata_dev_init_params(struct ata_device *dev, 90 u16 heads, u16 sectors); 91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 92 static unsigned int ata_dev_set_feature(struct ata_device *dev, 93 u8 enable, u8 feature); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 static struct workqueue_struct *ata_wq; 99 100 struct workqueue_struct *ata_aux_wq; 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 MODULE_AUTHOR("Jeff Garzik"); 163 MODULE_DESCRIPTION("Library module for ATA devices"); 164 MODULE_LICENSE("GPL"); 165 MODULE_VERSION(DRV_VERSION); 166 167 168 static bool ata_sstatus_online(u32 sstatus) 169 { 170 return (sstatus & 0xf) == 0x3; 171 } 172 173 /** 174 * ata_link_next - link iteration helper 175 * @link: the previous link, NULL to start 176 * @ap: ATA port containing links to iterate 177 * @mode: iteration mode, one of ATA_LITER_* 178 * 179 * LOCKING: 180 * Host lock or EH context. 181 * 182 * RETURNS: 183 * Pointer to the next link. 184 */ 185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 186 enum ata_link_iter_mode mode) 187 { 188 BUG_ON(mode != ATA_LITER_EDGE && 189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 190 191 /* NULL link indicates start of iteration */ 192 if (!link) 193 switch (mode) { 194 case ATA_LITER_EDGE: 195 case ATA_LITER_PMP_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 /* fall through */ 199 case ATA_LITER_HOST_FIRST: 200 return &ap->link; 201 } 202 203 /* we just iterated over the host link, what's next? */ 204 if (link == &ap->link) 205 switch (mode) { 206 case ATA_LITER_HOST_FIRST: 207 if (sata_pmp_attached(ap)) 208 return ap->pmp_link; 209 /* fall through */ 210 case ATA_LITER_PMP_FIRST: 211 if (unlikely(ap->slave_link)) 212 return ap->slave_link; 213 /* fall through */ 214 case ATA_LITER_EDGE: 215 return NULL; 216 } 217 218 /* slave_link excludes PMP */ 219 if (unlikely(link == ap->slave_link)) 220 return NULL; 221 222 /* we were over a PMP link */ 223 if (++link < ap->pmp_link + ap->nr_pmp_links) 224 return link; 225 226 if (mode == ATA_LITER_PMP_FIRST) 227 return &ap->link; 228 229 return NULL; 230 } 231 232 /** 233 * ata_dev_next - device iteration helper 234 * @dev: the previous device, NULL to start 235 * @link: ATA link containing devices to iterate 236 * @mode: iteration mode, one of ATA_DITER_* 237 * 238 * LOCKING: 239 * Host lock or EH context. 240 * 241 * RETURNS: 242 * Pointer to the next device. 243 */ 244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 245 enum ata_dev_iter_mode mode) 246 { 247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 249 250 /* NULL dev indicates start of iteration */ 251 if (!dev) 252 switch (mode) { 253 case ATA_DITER_ENABLED: 254 case ATA_DITER_ALL: 255 dev = link->device; 256 goto check; 257 case ATA_DITER_ENABLED_REVERSE: 258 case ATA_DITER_ALL_REVERSE: 259 dev = link->device + ata_link_max_devices(link) - 1; 260 goto check; 261 } 262 263 next: 264 /* move to the next one */ 265 switch (mode) { 266 case ATA_DITER_ENABLED: 267 case ATA_DITER_ALL: 268 if (++dev < link->device + ata_link_max_devices(link)) 269 goto check; 270 return NULL; 271 case ATA_DITER_ENABLED_REVERSE: 272 case ATA_DITER_ALL_REVERSE: 273 if (--dev >= link->device) 274 goto check; 275 return NULL; 276 } 277 278 check: 279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 280 !ata_dev_enabled(dev)) 281 goto next; 282 return dev; 283 } 284 285 /** 286 * ata_dev_phys_link - find physical link for a device 287 * @dev: ATA device to look up physical link for 288 * 289 * Look up physical link which @dev is attached to. Note that 290 * this is different from @dev->link only when @dev is on slave 291 * link. For all other cases, it's the same as @dev->link. 292 * 293 * LOCKING: 294 * Don't care. 295 * 296 * RETURNS: 297 * Pointer to the found physical link. 298 */ 299 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 300 { 301 struct ata_port *ap = dev->link->ap; 302 303 if (!ap->slave_link) 304 return dev->link; 305 if (!dev->devno) 306 return &ap->link; 307 return ap->slave_link; 308 } 309 310 /** 311 * ata_force_cbl - force cable type according to libata.force 312 * @ap: ATA port of interest 313 * 314 * Force cable type according to libata.force and whine about it. 315 * The last entry which has matching port number is used, so it 316 * can be specified as part of device force parameters. For 317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 318 * same effect. 319 * 320 * LOCKING: 321 * EH context. 322 */ 323 void ata_force_cbl(struct ata_port *ap) 324 { 325 int i; 326 327 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 328 const struct ata_force_ent *fe = &ata_force_tbl[i]; 329 330 if (fe->port != -1 && fe->port != ap->print_id) 331 continue; 332 333 if (fe->param.cbl == ATA_CBL_NONE) 334 continue; 335 336 ap->cbl = fe->param.cbl; 337 ata_port_printk(ap, KERN_NOTICE, 338 "FORCE: cable set to %s\n", fe->param.name); 339 return; 340 } 341 } 342 343 /** 344 * ata_force_link_limits - force link limits according to libata.force 345 * @link: ATA link of interest 346 * 347 * Force link flags and SATA spd limit according to libata.force 348 * and whine about it. When only the port part is specified 349 * (e.g. 1:), the limit applies to all links connected to both 350 * the host link and all fan-out ports connected via PMP. If the 351 * device part is specified as 0 (e.g. 1.00:), it specifies the 352 * first fan-out link not the host link. Device number 15 always 353 * points to the host link whether PMP is attached or not. If the 354 * controller has slave link, device number 16 points to it. 355 * 356 * LOCKING: 357 * EH context. 358 */ 359 static void ata_force_link_limits(struct ata_link *link) 360 { 361 bool did_spd = false; 362 int linkno = link->pmp; 363 int i; 364 365 if (ata_is_host_link(link)) 366 linkno += 15; 367 368 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 369 const struct ata_force_ent *fe = &ata_force_tbl[i]; 370 371 if (fe->port != -1 && fe->port != link->ap->print_id) 372 continue; 373 374 if (fe->device != -1 && fe->device != linkno) 375 continue; 376 377 /* only honor the first spd limit */ 378 if (!did_spd && fe->param.spd_limit) { 379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 380 ata_link_printk(link, KERN_NOTICE, 381 "FORCE: PHY spd limit set to %s\n", 382 fe->param.name); 383 did_spd = true; 384 } 385 386 /* let lflags stack */ 387 if (fe->param.lflags) { 388 link->flags |= fe->param.lflags; 389 ata_link_printk(link, KERN_NOTICE, 390 "FORCE: link flag 0x%x forced -> 0x%x\n", 391 fe->param.lflags, link->flags); 392 } 393 } 394 } 395 396 /** 397 * ata_force_xfermask - force xfermask according to libata.force 398 * @dev: ATA device of interest 399 * 400 * Force xfer_mask according to libata.force and whine about it. 401 * For consistency with link selection, device number 15 selects 402 * the first device connected to the host link. 403 * 404 * LOCKING: 405 * EH context. 406 */ 407 static void ata_force_xfermask(struct ata_device *dev) 408 { 409 int devno = dev->link->pmp + dev->devno; 410 int alt_devno = devno; 411 int i; 412 413 /* allow n.15/16 for devices attached to host port */ 414 if (ata_is_host_link(dev->link)) 415 alt_devno += 15; 416 417 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 418 const struct ata_force_ent *fe = &ata_force_tbl[i]; 419 unsigned long pio_mask, mwdma_mask, udma_mask; 420 421 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 422 continue; 423 424 if (fe->device != -1 && fe->device != devno && 425 fe->device != alt_devno) 426 continue; 427 428 if (!fe->param.xfer_mask) 429 continue; 430 431 ata_unpack_xfermask(fe->param.xfer_mask, 432 &pio_mask, &mwdma_mask, &udma_mask); 433 if (udma_mask) 434 dev->udma_mask = udma_mask; 435 else if (mwdma_mask) { 436 dev->udma_mask = 0; 437 dev->mwdma_mask = mwdma_mask; 438 } else { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = 0; 441 dev->pio_mask = pio_mask; 442 } 443 444 ata_dev_printk(dev, KERN_NOTICE, 445 "FORCE: xfer_mask set to %s\n", fe->param.name); 446 return; 447 } 448 } 449 450 /** 451 * ata_force_horkage - force horkage according to libata.force 452 * @dev: ATA device of interest 453 * 454 * Force horkage according to libata.force and whine about it. 455 * For consistency with link selection, device number 15 selects 456 * the first device connected to the host link. 457 * 458 * LOCKING: 459 * EH context. 460 */ 461 static void ata_force_horkage(struct ata_device *dev) 462 { 463 int devno = dev->link->pmp + dev->devno; 464 int alt_devno = devno; 465 int i; 466 467 /* allow n.15/16 for devices attached to host port */ 468 if (ata_is_host_link(dev->link)) 469 alt_devno += 15; 470 471 for (i = 0; i < ata_force_tbl_size; i++) { 472 const struct ata_force_ent *fe = &ata_force_tbl[i]; 473 474 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 475 continue; 476 477 if (fe->device != -1 && fe->device != devno && 478 fe->device != alt_devno) 479 continue; 480 481 if (!(~dev->horkage & fe->param.horkage_on) && 482 !(dev->horkage & fe->param.horkage_off)) 483 continue; 484 485 dev->horkage |= fe->param.horkage_on; 486 dev->horkage &= ~fe->param.horkage_off; 487 488 ata_dev_printk(dev, KERN_NOTICE, 489 "FORCE: horkage modified (%s)\n", fe->param.name); 490 } 491 } 492 493 /** 494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 495 * @opcode: SCSI opcode 496 * 497 * Determine ATAPI command type from @opcode. 498 * 499 * LOCKING: 500 * None. 501 * 502 * RETURNS: 503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 504 */ 505 int atapi_cmd_type(u8 opcode) 506 { 507 switch (opcode) { 508 case GPCMD_READ_10: 509 case GPCMD_READ_12: 510 return ATAPI_READ; 511 512 case GPCMD_WRITE_10: 513 case GPCMD_WRITE_12: 514 case GPCMD_WRITE_AND_VERIFY_10: 515 return ATAPI_WRITE; 516 517 case GPCMD_READ_CD: 518 case GPCMD_READ_CD_MSF: 519 return ATAPI_READ_CD; 520 521 case ATA_16: 522 case ATA_12: 523 if (atapi_passthru16) 524 return ATAPI_PASS_THRU; 525 /* fall thru */ 526 default: 527 return ATAPI_MISC; 528 } 529 } 530 531 /** 532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 533 * @tf: Taskfile to convert 534 * @pmp: Port multiplier port 535 * @is_cmd: This FIS is for command 536 * @fis: Buffer into which data will output 537 * 538 * Converts a standard ATA taskfile to a Serial ATA 539 * FIS structure (Register - Host to Device). 540 * 541 * LOCKING: 542 * Inherited from caller. 543 */ 544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 545 { 546 fis[0] = 0x27; /* Register - Host to Device FIS */ 547 fis[1] = pmp & 0xf; /* Port multiplier number*/ 548 if (is_cmd) 549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 550 551 fis[2] = tf->command; 552 fis[3] = tf->feature; 553 554 fis[4] = tf->lbal; 555 fis[5] = tf->lbam; 556 fis[6] = tf->lbah; 557 fis[7] = tf->device; 558 559 fis[8] = tf->hob_lbal; 560 fis[9] = tf->hob_lbam; 561 fis[10] = tf->hob_lbah; 562 fis[11] = tf->hob_feature; 563 564 fis[12] = tf->nsect; 565 fis[13] = tf->hob_nsect; 566 fis[14] = 0; 567 fis[15] = tf->ctl; 568 569 fis[16] = 0; 570 fis[17] = 0; 571 fis[18] = 0; 572 fis[19] = 0; 573 } 574 575 /** 576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 577 * @fis: Buffer from which data will be input 578 * @tf: Taskfile to output 579 * 580 * Converts a serial ATA FIS structure to a standard ATA taskfile. 581 * 582 * LOCKING: 583 * Inherited from caller. 584 */ 585 586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 587 { 588 tf->command = fis[2]; /* status */ 589 tf->feature = fis[3]; /* error */ 590 591 tf->lbal = fis[4]; 592 tf->lbam = fis[5]; 593 tf->lbah = fis[6]; 594 tf->device = fis[7]; 595 596 tf->hob_lbal = fis[8]; 597 tf->hob_lbam = fis[9]; 598 tf->hob_lbah = fis[10]; 599 600 tf->nsect = fis[12]; 601 tf->hob_nsect = fis[13]; 602 } 603 604 static const u8 ata_rw_cmds[] = { 605 /* pio multi */ 606 ATA_CMD_READ_MULTI, 607 ATA_CMD_WRITE_MULTI, 608 ATA_CMD_READ_MULTI_EXT, 609 ATA_CMD_WRITE_MULTI_EXT, 610 0, 611 0, 612 0, 613 ATA_CMD_WRITE_MULTI_FUA_EXT, 614 /* pio */ 615 ATA_CMD_PIO_READ, 616 ATA_CMD_PIO_WRITE, 617 ATA_CMD_PIO_READ_EXT, 618 ATA_CMD_PIO_WRITE_EXT, 619 0, 620 0, 621 0, 622 0, 623 /* dma */ 624 ATA_CMD_READ, 625 ATA_CMD_WRITE, 626 ATA_CMD_READ_EXT, 627 ATA_CMD_WRITE_EXT, 628 0, 629 0, 630 0, 631 ATA_CMD_WRITE_FUA_EXT 632 }; 633 634 /** 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 636 * @tf: command to examine and configure 637 * @dev: device tf belongs to 638 * 639 * Examine the device configuration and tf->flags to calculate 640 * the proper read/write commands and protocol to use. 641 * 642 * LOCKING: 643 * caller. 644 */ 645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 646 { 647 u8 cmd; 648 649 int index, fua, lba48, write; 650 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 654 655 if (dev->flags & ATA_DFLAG_PIO) { 656 tf->protocol = ATA_PROT_PIO; 657 index = dev->multi_count ? 0 : 8; 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 659 /* Unable to use DMA due to host limitation */ 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else { 663 tf->protocol = ATA_PROT_DMA; 664 index = 16; 665 } 666 667 cmd = ata_rw_cmds[index + fua + lba48 + write]; 668 if (cmd) { 669 tf->command = cmd; 670 return 0; 671 } 672 return -1; 673 } 674 675 /** 676 * ata_tf_read_block - Read block address from ATA taskfile 677 * @tf: ATA taskfile of interest 678 * @dev: ATA device @tf belongs to 679 * 680 * LOCKING: 681 * None. 682 * 683 * Read block address from @tf. This function can handle all 684 * three address formats - LBA, LBA48 and CHS. tf->protocol and 685 * flags select the address format to use. 686 * 687 * RETURNS: 688 * Block address read from @tf. 689 */ 690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 691 { 692 u64 block = 0; 693 694 if (tf->flags & ATA_TFLAG_LBA) { 695 if (tf->flags & ATA_TFLAG_LBA48) { 696 block |= (u64)tf->hob_lbah << 40; 697 block |= (u64)tf->hob_lbam << 32; 698 block |= (u64)tf->hob_lbal << 24; 699 } else 700 block |= (tf->device & 0xf) << 24; 701 702 block |= tf->lbah << 16; 703 block |= tf->lbam << 8; 704 block |= tf->lbal; 705 } else { 706 u32 cyl, head, sect; 707 708 cyl = tf->lbam | (tf->lbah << 8); 709 head = tf->device & 0xf; 710 sect = tf->lbal; 711 712 block = (cyl * dev->heads + head) * dev->sectors + sect; 713 } 714 715 return block; 716 } 717 718 /** 719 * ata_build_rw_tf - Build ATA taskfile for given read/write request 720 * @tf: Target ATA taskfile 721 * @dev: ATA device @tf belongs to 722 * @block: Block address 723 * @n_block: Number of blocks 724 * @tf_flags: RW/FUA etc... 725 * @tag: tag 726 * 727 * LOCKING: 728 * None. 729 * 730 * Build ATA taskfile @tf for read/write request described by 731 * @block, @n_block, @tf_flags and @tag on @dev. 732 * 733 * RETURNS: 734 * 735 * 0 on success, -ERANGE if the request is too large for @dev, 736 * -EINVAL if the request is invalid. 737 */ 738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 739 u64 block, u32 n_block, unsigned int tf_flags, 740 unsigned int tag) 741 { 742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 743 tf->flags |= tf_flags; 744 745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 746 /* yay, NCQ */ 747 if (!lba_48_ok(block, n_block)) 748 return -ERANGE; 749 750 tf->protocol = ATA_PROT_NCQ; 751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 752 753 if (tf->flags & ATA_TFLAG_WRITE) 754 tf->command = ATA_CMD_FPDMA_WRITE; 755 else 756 tf->command = ATA_CMD_FPDMA_READ; 757 758 tf->nsect = tag << 3; 759 tf->hob_feature = (n_block >> 8) & 0xff; 760 tf->feature = n_block & 0xff; 761 762 tf->hob_lbah = (block >> 40) & 0xff; 763 tf->hob_lbam = (block >> 32) & 0xff; 764 tf->hob_lbal = (block >> 24) & 0xff; 765 tf->lbah = (block >> 16) & 0xff; 766 tf->lbam = (block >> 8) & 0xff; 767 tf->lbal = block & 0xff; 768 769 tf->device = 1 << 6; 770 if (tf->flags & ATA_TFLAG_FUA) 771 tf->device |= 1 << 7; 772 } else if (dev->flags & ATA_DFLAG_LBA) { 773 tf->flags |= ATA_TFLAG_LBA; 774 775 if (lba_28_ok(block, n_block)) { 776 /* use LBA28 */ 777 tf->device |= (block >> 24) & 0xf; 778 } else if (lba_48_ok(block, n_block)) { 779 if (!(dev->flags & ATA_DFLAG_LBA48)) 780 return -ERANGE; 781 782 /* use LBA48 */ 783 tf->flags |= ATA_TFLAG_LBA48; 784 785 tf->hob_nsect = (n_block >> 8) & 0xff; 786 787 tf->hob_lbah = (block >> 40) & 0xff; 788 tf->hob_lbam = (block >> 32) & 0xff; 789 tf->hob_lbal = (block >> 24) & 0xff; 790 } else 791 /* request too large even for LBA48 */ 792 return -ERANGE; 793 794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 795 return -EINVAL; 796 797 tf->nsect = n_block & 0xff; 798 799 tf->lbah = (block >> 16) & 0xff; 800 tf->lbam = (block >> 8) & 0xff; 801 tf->lbal = block & 0xff; 802 803 tf->device |= ATA_LBA; 804 } else { 805 /* CHS */ 806 u32 sect, head, cyl, track; 807 808 /* The request -may- be too large for CHS addressing. */ 809 if (!lba_28_ok(block, n_block)) 810 return -ERANGE; 811 812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 813 return -EINVAL; 814 815 /* Convert LBA to CHS */ 816 track = (u32)block / dev->sectors; 817 cyl = track / dev->heads; 818 head = track % dev->heads; 819 sect = (u32)block % dev->sectors + 1; 820 821 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 822 (u32)block, track, cyl, head, sect); 823 824 /* Check whether the converted CHS can fit. 825 Cylinder: 0-65535 826 Head: 0-15 827 Sector: 1-255*/ 828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 829 return -ERANGE; 830 831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 832 tf->lbal = sect; 833 tf->lbam = cyl; 834 tf->lbah = cyl >> 8; 835 tf->device |= head; 836 } 837 838 return 0; 839 } 840 841 /** 842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 843 * @pio_mask: pio_mask 844 * @mwdma_mask: mwdma_mask 845 * @udma_mask: udma_mask 846 * 847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 848 * unsigned int xfer_mask. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Packed xfer_mask. 855 */ 856 unsigned long ata_pack_xfermask(unsigned long pio_mask, 857 unsigned long mwdma_mask, 858 unsigned long udma_mask) 859 { 860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 863 } 864 865 /** 866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 867 * @xfer_mask: xfer_mask to unpack 868 * @pio_mask: resulting pio_mask 869 * @mwdma_mask: resulting mwdma_mask 870 * @udma_mask: resulting udma_mask 871 * 872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 873 * Any NULL distination masks will be ignored. 874 */ 875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 876 unsigned long *mwdma_mask, unsigned long *udma_mask) 877 { 878 if (pio_mask) 879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 880 if (mwdma_mask) 881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 882 if (udma_mask) 883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 884 } 885 886 static const struct ata_xfer_ent { 887 int shift, bits; 888 u8 base; 889 } ata_xfer_tbl[] = { 890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 893 { -1, }, 894 }; 895 896 /** 897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 898 * @xfer_mask: xfer_mask of interest 899 * 900 * Return matching XFER_* value for @xfer_mask. Only the highest 901 * bit of @xfer_mask is considered. 902 * 903 * LOCKING: 904 * None. 905 * 906 * RETURNS: 907 * Matching XFER_* value, 0xff if no match found. 908 */ 909 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 910 { 911 int highbit = fls(xfer_mask) - 1; 912 const struct ata_xfer_ent *ent; 913 914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 916 return ent->base + highbit - ent->shift; 917 return 0xff; 918 } 919 920 /** 921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 922 * @xfer_mode: XFER_* of interest 923 * 924 * Return matching xfer_mask for @xfer_mode. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching xfer_mask, 0 if no match found. 931 */ 932 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 933 { 934 const struct ata_xfer_ent *ent; 935 936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 939 & ~((1 << ent->shift) - 1); 940 return 0; 941 } 942 943 /** 944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_shift for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_shift, -1 if no match found. 954 */ 955 int ata_xfer_mode2shift(unsigned long xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ent->shift; 962 return -1; 963 } 964 965 /** 966 * ata_mode_string - convert xfer_mask to string 967 * @xfer_mask: mask of bits supported; only highest bit counts. 968 * 969 * Determine string which represents the highest speed 970 * (highest bit in @modemask). 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Constant C string representing highest speed listed in 977 * @mode_mask, or the constant C string "<n/a>". 978 */ 979 const char *ata_mode_string(unsigned long xfer_mask) 980 { 981 static const char * const xfer_mode_str[] = { 982 "PIO0", 983 "PIO1", 984 "PIO2", 985 "PIO3", 986 "PIO4", 987 "PIO5", 988 "PIO6", 989 "MWDMA0", 990 "MWDMA1", 991 "MWDMA2", 992 "MWDMA3", 993 "MWDMA4", 994 "UDMA/16", 995 "UDMA/25", 996 "UDMA/33", 997 "UDMA/44", 998 "UDMA/66", 999 "UDMA/100", 1000 "UDMA/133", 1001 "UDMA7", 1002 }; 1003 int highbit; 1004 1005 highbit = fls(xfer_mask) - 1; 1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1007 return xfer_mode_str[highbit]; 1008 return "<n/a>"; 1009 } 1010 1011 static const char *sata_spd_string(unsigned int spd) 1012 { 1013 static const char * const spd_str[] = { 1014 "1.5 Gbps", 1015 "3.0 Gbps", 1016 "6.0 Gbps", 1017 }; 1018 1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1020 return "<unknown>"; 1021 return spd_str[spd - 1]; 1022 } 1023 1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1025 { 1026 struct ata_link *link = dev->link; 1027 struct ata_port *ap = link->ap; 1028 u32 scontrol; 1029 unsigned int err_mask; 1030 int rc; 1031 1032 /* 1033 * disallow DIPM for drivers which haven't set 1034 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1035 * phy ready will be set in the interrupt status on 1036 * state changes, which will cause some drivers to 1037 * think there are errors - additionally drivers will 1038 * need to disable hot plug. 1039 */ 1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1041 ap->pm_policy = NOT_AVAILABLE; 1042 return -EINVAL; 1043 } 1044 1045 /* 1046 * For DIPM, we will only enable it for the 1047 * min_power setting. 1048 * 1049 * Why? Because Disks are too stupid to know that 1050 * If the host rejects a request to go to SLUMBER 1051 * they should retry at PARTIAL, and instead it 1052 * just would give up. So, for medium_power to 1053 * work at all, we need to only allow HIPM. 1054 */ 1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1056 if (rc) 1057 return rc; 1058 1059 switch (policy) { 1060 case MIN_POWER: 1061 /* no restrictions on IPM transitions */ 1062 scontrol &= ~(0x3 << 8); 1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1064 if (rc) 1065 return rc; 1066 1067 /* enable DIPM */ 1068 if (dev->flags & ATA_DFLAG_DIPM) 1069 err_mask = ata_dev_set_feature(dev, 1070 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1071 break; 1072 case MEDIUM_POWER: 1073 /* allow IPM to PARTIAL */ 1074 scontrol &= ~(0x1 << 8); 1075 scontrol |= (0x2 << 8); 1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1077 if (rc) 1078 return rc; 1079 1080 /* 1081 * we don't have to disable DIPM since IPM flags 1082 * disallow transitions to SLUMBER, which effectively 1083 * disable DIPM if it does not support PARTIAL 1084 */ 1085 break; 1086 case NOT_AVAILABLE: 1087 case MAX_PERFORMANCE: 1088 /* disable all IPM transitions */ 1089 scontrol |= (0x3 << 8); 1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1091 if (rc) 1092 return rc; 1093 1094 /* 1095 * we don't have to disable DIPM since IPM flags 1096 * disallow all transitions which effectively 1097 * disable DIPM anyway. 1098 */ 1099 break; 1100 } 1101 1102 /* FIXME: handle SET FEATURES failure */ 1103 (void) err_mask; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ata_dev_enable_pm - enable SATA interface power management 1110 * @dev: device to enable power management 1111 * @policy: the link power management policy 1112 * 1113 * Enable SATA Interface power management. This will enable 1114 * Device Interface Power Management (DIPM) for min_power 1115 * policy, and then call driver specific callbacks for 1116 * enabling Host Initiated Power management. 1117 * 1118 * Locking: Caller. 1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1120 */ 1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1122 { 1123 int rc = 0; 1124 struct ata_port *ap = dev->link->ap; 1125 1126 /* set HIPM first, then DIPM */ 1127 if (ap->ops->enable_pm) 1128 rc = ap->ops->enable_pm(ap, policy); 1129 if (rc) 1130 goto enable_pm_out; 1131 rc = ata_dev_set_dipm(dev, policy); 1132 1133 enable_pm_out: 1134 if (rc) 1135 ap->pm_policy = MAX_PERFORMANCE; 1136 else 1137 ap->pm_policy = policy; 1138 return /* rc */; /* hopefully we can use 'rc' eventually */ 1139 } 1140 1141 #ifdef CONFIG_PM 1142 /** 1143 * ata_dev_disable_pm - disable SATA interface power management 1144 * @dev: device to disable power management 1145 * 1146 * Disable SATA Interface power management. This will disable 1147 * Device Interface Power Management (DIPM) without changing 1148 * policy, call driver specific callbacks for disabling Host 1149 * Initiated Power management. 1150 * 1151 * Locking: Caller. 1152 * Returns: void 1153 */ 1154 static void ata_dev_disable_pm(struct ata_device *dev) 1155 { 1156 struct ata_port *ap = dev->link->ap; 1157 1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1159 if (ap->ops->disable_pm) 1160 ap->ops->disable_pm(ap); 1161 } 1162 #endif /* CONFIG_PM */ 1163 1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1165 { 1166 ap->pm_policy = policy; 1167 ap->link.eh_info.action |= ATA_EH_LPM; 1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1169 ata_port_schedule_eh(ap); 1170 } 1171 1172 #ifdef CONFIG_PM 1173 static void ata_lpm_enable(struct ata_host *host) 1174 { 1175 struct ata_link *link; 1176 struct ata_port *ap; 1177 struct ata_device *dev; 1178 int i; 1179 1180 for (i = 0; i < host->n_ports; i++) { 1181 ap = host->ports[i]; 1182 ata_for_each_link(link, ap, EDGE) { 1183 ata_for_each_dev(dev, link, ALL) 1184 ata_dev_disable_pm(dev); 1185 } 1186 } 1187 } 1188 1189 static void ata_lpm_disable(struct ata_host *host) 1190 { 1191 int i; 1192 1193 for (i = 0; i < host->n_ports; i++) { 1194 struct ata_port *ap = host->ports[i]; 1195 ata_lpm_schedule(ap, ap->pm_policy); 1196 } 1197 } 1198 #endif /* CONFIG_PM */ 1199 1200 /** 1201 * ata_dev_classify - determine device type based on ATA-spec signature 1202 * @tf: ATA taskfile register set for device to be identified 1203 * 1204 * Determine from taskfile register contents whether a device is 1205 * ATA or ATAPI, as per "Signature and persistence" section 1206 * of ATA/PI spec (volume 1, sect 5.14). 1207 * 1208 * LOCKING: 1209 * None. 1210 * 1211 * RETURNS: 1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1213 * %ATA_DEV_UNKNOWN the event of failure. 1214 */ 1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1216 { 1217 /* Apple's open source Darwin code hints that some devices only 1218 * put a proper signature into the LBA mid/high registers, 1219 * So, we only check those. It's sufficient for uniqueness. 1220 * 1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1222 * signatures for ATA and ATAPI devices attached on SerialATA, 1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1224 * spec has never mentioned about using different signatures 1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1226 * Multiplier specification began to use 0x69/0x96 to identify 1227 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1229 * 0x69/0x96 shortly and described them as reserved for 1230 * SerialATA. 1231 * 1232 * We follow the current spec and consider that 0x69/0x96 1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1235 * SEMB signature. This is worked around in 1236 * ata_dev_read_id(). 1237 */ 1238 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1239 DPRINTK("found ATA device by sig\n"); 1240 return ATA_DEV_ATA; 1241 } 1242 1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1244 DPRINTK("found ATAPI device by sig\n"); 1245 return ATA_DEV_ATAPI; 1246 } 1247 1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1249 DPRINTK("found PMP device by sig\n"); 1250 return ATA_DEV_PMP; 1251 } 1252 1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1254 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1255 return ATA_DEV_SEMB; 1256 } 1257 1258 DPRINTK("unknown device\n"); 1259 return ATA_DEV_UNKNOWN; 1260 } 1261 1262 /** 1263 * ata_id_string - Convert IDENTIFY DEVICE page into string 1264 * @id: IDENTIFY DEVICE results we will examine 1265 * @s: string into which data is output 1266 * @ofs: offset into identify device page 1267 * @len: length of string to return. must be an even number. 1268 * 1269 * The strings in the IDENTIFY DEVICE page are broken up into 1270 * 16-bit chunks. Run through the string, and output each 1271 * 8-bit chunk linearly, regardless of platform. 1272 * 1273 * LOCKING: 1274 * caller. 1275 */ 1276 1277 void ata_id_string(const u16 *id, unsigned char *s, 1278 unsigned int ofs, unsigned int len) 1279 { 1280 unsigned int c; 1281 1282 BUG_ON(len & 1); 1283 1284 while (len > 0) { 1285 c = id[ofs] >> 8; 1286 *s = c; 1287 s++; 1288 1289 c = id[ofs] & 0xff; 1290 *s = c; 1291 s++; 1292 1293 ofs++; 1294 len -= 2; 1295 } 1296 } 1297 1298 /** 1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1300 * @id: IDENTIFY DEVICE results we will examine 1301 * @s: string into which data is output 1302 * @ofs: offset into identify device page 1303 * @len: length of string to return. must be an odd number. 1304 * 1305 * This function is identical to ata_id_string except that it 1306 * trims trailing spaces and terminates the resulting string with 1307 * null. @len must be actual maximum length (even number) + 1. 1308 * 1309 * LOCKING: 1310 * caller. 1311 */ 1312 void ata_id_c_string(const u16 *id, unsigned char *s, 1313 unsigned int ofs, unsigned int len) 1314 { 1315 unsigned char *p; 1316 1317 ata_id_string(id, s, ofs, len - 1); 1318 1319 p = s + strnlen(s, len - 1); 1320 while (p > s && p[-1] == ' ') 1321 p--; 1322 *p = '\0'; 1323 } 1324 1325 static u64 ata_id_n_sectors(const u16 *id) 1326 { 1327 if (ata_id_has_lba(id)) { 1328 if (ata_id_has_lba48(id)) 1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1330 else 1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1332 } else { 1333 if (ata_id_current_chs_valid(id)) 1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1335 id[ATA_ID_CUR_SECTORS]; 1336 else 1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1338 id[ATA_ID_SECTORS]; 1339 } 1340 } 1341 1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1343 { 1344 u64 sectors = 0; 1345 1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1349 sectors |= (tf->lbah & 0xff) << 16; 1350 sectors |= (tf->lbam & 0xff) << 8; 1351 sectors |= (tf->lbal & 0xff); 1352 1353 return sectors; 1354 } 1355 1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1357 { 1358 u64 sectors = 0; 1359 1360 sectors |= (tf->device & 0x0f) << 24; 1361 sectors |= (tf->lbah & 0xff) << 16; 1362 sectors |= (tf->lbam & 0xff) << 8; 1363 sectors |= (tf->lbal & 0xff); 1364 1365 return sectors; 1366 } 1367 1368 /** 1369 * ata_read_native_max_address - Read native max address 1370 * @dev: target device 1371 * @max_sectors: out parameter for the result native max address 1372 * 1373 * Perform an LBA48 or LBA28 native size query upon the device in 1374 * question. 1375 * 1376 * RETURNS: 1377 * 0 on success, -EACCES if command is aborted by the drive. 1378 * -EIO on other errors. 1379 */ 1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1381 { 1382 unsigned int err_mask; 1383 struct ata_taskfile tf; 1384 int lba48 = ata_id_has_lba48(dev->id); 1385 1386 ata_tf_init(dev, &tf); 1387 1388 /* always clear all address registers */ 1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1390 1391 if (lba48) { 1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1393 tf.flags |= ATA_TFLAG_LBA48; 1394 } else 1395 tf.command = ATA_CMD_READ_NATIVE_MAX; 1396 1397 tf.protocol |= ATA_PROT_NODATA; 1398 tf.device |= ATA_LBA; 1399 1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1401 if (err_mask) { 1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1403 "max address (err_mask=0x%x)\n", err_mask); 1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1405 return -EACCES; 1406 return -EIO; 1407 } 1408 1409 if (lba48) 1410 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1411 else 1412 *max_sectors = ata_tf_to_lba(&tf) + 1; 1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1414 (*max_sectors)--; 1415 return 0; 1416 } 1417 1418 /** 1419 * ata_set_max_sectors - Set max sectors 1420 * @dev: target device 1421 * @new_sectors: new max sectors value to set for the device 1422 * 1423 * Set max sectors of @dev to @new_sectors. 1424 * 1425 * RETURNS: 1426 * 0 on success, -EACCES if command is aborted or denied (due to 1427 * previous non-volatile SET_MAX) by the drive. -EIO on other 1428 * errors. 1429 */ 1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1431 { 1432 unsigned int err_mask; 1433 struct ata_taskfile tf; 1434 int lba48 = ata_id_has_lba48(dev->id); 1435 1436 new_sectors--; 1437 1438 ata_tf_init(dev, &tf); 1439 1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1441 1442 if (lba48) { 1443 tf.command = ATA_CMD_SET_MAX_EXT; 1444 tf.flags |= ATA_TFLAG_LBA48; 1445 1446 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1447 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1448 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1449 } else { 1450 tf.command = ATA_CMD_SET_MAX; 1451 1452 tf.device |= (new_sectors >> 24) & 0xf; 1453 } 1454 1455 tf.protocol |= ATA_PROT_NODATA; 1456 tf.device |= ATA_LBA; 1457 1458 tf.lbal = (new_sectors >> 0) & 0xff; 1459 tf.lbam = (new_sectors >> 8) & 0xff; 1460 tf.lbah = (new_sectors >> 16) & 0xff; 1461 1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1463 if (err_mask) { 1464 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1465 "max address (err_mask=0x%x)\n", err_mask); 1466 if (err_mask == AC_ERR_DEV && 1467 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1468 return -EACCES; 1469 return -EIO; 1470 } 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * ata_hpa_resize - Resize a device with an HPA set 1477 * @dev: Device to resize 1478 * 1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1480 * it if required to the full size of the media. The caller must check 1481 * the drive has the HPA feature set enabled. 1482 * 1483 * RETURNS: 1484 * 0 on success, -errno on failure. 1485 */ 1486 static int ata_hpa_resize(struct ata_device *dev) 1487 { 1488 struct ata_eh_context *ehc = &dev->link->eh_context; 1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1490 u64 sectors = ata_id_n_sectors(dev->id); 1491 u64 native_sectors; 1492 int rc; 1493 1494 /* do we need to do it? */ 1495 if (dev->class != ATA_DEV_ATA || 1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1498 return 0; 1499 1500 /* read native max address */ 1501 rc = ata_read_native_max_address(dev, &native_sectors); 1502 if (rc) { 1503 /* If device aborted the command or HPA isn't going to 1504 * be unlocked, skip HPA resizing. 1505 */ 1506 if (rc == -EACCES || !ata_ignore_hpa) { 1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1508 "broken, skipping HPA handling\n"); 1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1510 1511 /* we can continue if device aborted the command */ 1512 if (rc == -EACCES) 1513 rc = 0; 1514 } 1515 1516 return rc; 1517 } 1518 1519 /* nothing to do? */ 1520 if (native_sectors <= sectors || !ata_ignore_hpa) { 1521 if (!print_info || native_sectors == sectors) 1522 return 0; 1523 1524 if (native_sectors > sectors) 1525 ata_dev_printk(dev, KERN_INFO, 1526 "HPA detected: current %llu, native %llu\n", 1527 (unsigned long long)sectors, 1528 (unsigned long long)native_sectors); 1529 else if (native_sectors < sectors) 1530 ata_dev_printk(dev, KERN_WARNING, 1531 "native sectors (%llu) is smaller than " 1532 "sectors (%llu)\n", 1533 (unsigned long long)native_sectors, 1534 (unsigned long long)sectors); 1535 return 0; 1536 } 1537 1538 /* let's unlock HPA */ 1539 rc = ata_set_max_sectors(dev, native_sectors); 1540 if (rc == -EACCES) { 1541 /* if device aborted the command, skip HPA resizing */ 1542 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1543 "(%llu -> %llu), skipping HPA handling\n", 1544 (unsigned long long)sectors, 1545 (unsigned long long)native_sectors); 1546 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1547 return 0; 1548 } else if (rc) 1549 return rc; 1550 1551 /* re-read IDENTIFY data */ 1552 rc = ata_dev_reread_id(dev, 0); 1553 if (rc) { 1554 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1555 "data after HPA resizing\n"); 1556 return rc; 1557 } 1558 1559 if (print_info) { 1560 u64 new_sectors = ata_id_n_sectors(dev->id); 1561 ata_dev_printk(dev, KERN_INFO, 1562 "HPA unlocked: %llu -> %llu, native %llu\n", 1563 (unsigned long long)sectors, 1564 (unsigned long long)new_sectors, 1565 (unsigned long long)native_sectors); 1566 } 1567 1568 return 0; 1569 } 1570 1571 /** 1572 * ata_dump_id - IDENTIFY DEVICE info debugging output 1573 * @id: IDENTIFY DEVICE page to dump 1574 * 1575 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1576 * page. 1577 * 1578 * LOCKING: 1579 * caller. 1580 */ 1581 1582 static inline void ata_dump_id(const u16 *id) 1583 { 1584 DPRINTK("49==0x%04x " 1585 "53==0x%04x " 1586 "63==0x%04x " 1587 "64==0x%04x " 1588 "75==0x%04x \n", 1589 id[49], 1590 id[53], 1591 id[63], 1592 id[64], 1593 id[75]); 1594 DPRINTK("80==0x%04x " 1595 "81==0x%04x " 1596 "82==0x%04x " 1597 "83==0x%04x " 1598 "84==0x%04x \n", 1599 id[80], 1600 id[81], 1601 id[82], 1602 id[83], 1603 id[84]); 1604 DPRINTK("88==0x%04x " 1605 "93==0x%04x\n", 1606 id[88], 1607 id[93]); 1608 } 1609 1610 /** 1611 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1612 * @id: IDENTIFY data to compute xfer mask from 1613 * 1614 * Compute the xfermask for this device. This is not as trivial 1615 * as it seems if we must consider early devices correctly. 1616 * 1617 * FIXME: pre IDE drive timing (do we care ?). 1618 * 1619 * LOCKING: 1620 * None. 1621 * 1622 * RETURNS: 1623 * Computed xfermask 1624 */ 1625 unsigned long ata_id_xfermask(const u16 *id) 1626 { 1627 unsigned long pio_mask, mwdma_mask, udma_mask; 1628 1629 /* Usual case. Word 53 indicates word 64 is valid */ 1630 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1631 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1632 pio_mask <<= 3; 1633 pio_mask |= 0x7; 1634 } else { 1635 /* If word 64 isn't valid then Word 51 high byte holds 1636 * the PIO timing number for the maximum. Turn it into 1637 * a mask. 1638 */ 1639 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1640 if (mode < 5) /* Valid PIO range */ 1641 pio_mask = (2 << mode) - 1; 1642 else 1643 pio_mask = 1; 1644 1645 /* But wait.. there's more. Design your standards by 1646 * committee and you too can get a free iordy field to 1647 * process. However its the speeds not the modes that 1648 * are supported... Note drivers using the timing API 1649 * will get this right anyway 1650 */ 1651 } 1652 1653 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1654 1655 if (ata_id_is_cfa(id)) { 1656 /* 1657 * Process compact flash extended modes 1658 */ 1659 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1660 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1661 1662 if (pio) 1663 pio_mask |= (1 << 5); 1664 if (pio > 1) 1665 pio_mask |= (1 << 6); 1666 if (dma) 1667 mwdma_mask |= (1 << 3); 1668 if (dma > 1) 1669 mwdma_mask |= (1 << 4); 1670 } 1671 1672 udma_mask = 0; 1673 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1674 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1675 1676 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1677 } 1678 1679 /** 1680 * ata_pio_queue_task - Queue port_task 1681 * @ap: The ata_port to queue port_task for 1682 * @data: data for @fn to use 1683 * @delay: delay time in msecs for workqueue function 1684 * 1685 * Schedule @fn(@data) for execution after @delay jiffies using 1686 * port_task. There is one port_task per port and it's the 1687 * user(low level driver)'s responsibility to make sure that only 1688 * one task is active at any given time. 1689 * 1690 * libata core layer takes care of synchronization between 1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1692 * synchronization. 1693 * 1694 * LOCKING: 1695 * Inherited from caller. 1696 */ 1697 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1698 { 1699 ap->port_task_data = data; 1700 1701 /* may fail if ata_port_flush_task() in progress */ 1702 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1703 } 1704 1705 /** 1706 * ata_port_flush_task - Flush port_task 1707 * @ap: The ata_port to flush port_task for 1708 * 1709 * After this function completes, port_task is guranteed not to 1710 * be running or scheduled. 1711 * 1712 * LOCKING: 1713 * Kernel thread context (may sleep) 1714 */ 1715 void ata_port_flush_task(struct ata_port *ap) 1716 { 1717 DPRINTK("ENTER\n"); 1718 1719 cancel_rearming_delayed_work(&ap->port_task); 1720 1721 if (ata_msg_ctl(ap)) 1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1723 } 1724 1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1726 { 1727 struct completion *waiting = qc->private_data; 1728 1729 complete(waiting); 1730 } 1731 1732 /** 1733 * ata_exec_internal_sg - execute libata internal command 1734 * @dev: Device to which the command is sent 1735 * @tf: Taskfile registers for the command and the result 1736 * @cdb: CDB for packet command 1737 * @dma_dir: Data tranfer direction of the command 1738 * @sgl: sg list for the data buffer of the command 1739 * @n_elem: Number of sg entries 1740 * @timeout: Timeout in msecs (0 for default) 1741 * 1742 * Executes libata internal command with timeout. @tf contains 1743 * command on entry and result on return. Timeout and error 1744 * conditions are reported via return value. No recovery action 1745 * is taken after a command times out. It's caller's duty to 1746 * clean up after timeout. 1747 * 1748 * LOCKING: 1749 * None. Should be called with kernel context, might sleep. 1750 * 1751 * RETURNS: 1752 * Zero on success, AC_ERR_* mask on failure 1753 */ 1754 unsigned ata_exec_internal_sg(struct ata_device *dev, 1755 struct ata_taskfile *tf, const u8 *cdb, 1756 int dma_dir, struct scatterlist *sgl, 1757 unsigned int n_elem, unsigned long timeout) 1758 { 1759 struct ata_link *link = dev->link; 1760 struct ata_port *ap = link->ap; 1761 u8 command = tf->command; 1762 int auto_timeout = 0; 1763 struct ata_queued_cmd *qc; 1764 unsigned int tag, preempted_tag; 1765 u32 preempted_sactive, preempted_qc_active; 1766 int preempted_nr_active_links; 1767 DECLARE_COMPLETION_ONSTACK(wait); 1768 unsigned long flags; 1769 unsigned int err_mask; 1770 int rc; 1771 1772 spin_lock_irqsave(ap->lock, flags); 1773 1774 /* no internal command while frozen */ 1775 if (ap->pflags & ATA_PFLAG_FROZEN) { 1776 spin_unlock_irqrestore(ap->lock, flags); 1777 return AC_ERR_SYSTEM; 1778 } 1779 1780 /* initialize internal qc */ 1781 1782 /* XXX: Tag 0 is used for drivers with legacy EH as some 1783 * drivers choke if any other tag is given. This breaks 1784 * ata_tag_internal() test for those drivers. Don't use new 1785 * EH stuff without converting to it. 1786 */ 1787 if (ap->ops->error_handler) 1788 tag = ATA_TAG_INTERNAL; 1789 else 1790 tag = 0; 1791 1792 if (test_and_set_bit(tag, &ap->qc_allocated)) 1793 BUG(); 1794 qc = __ata_qc_from_tag(ap, tag); 1795 1796 qc->tag = tag; 1797 qc->scsicmd = NULL; 1798 qc->ap = ap; 1799 qc->dev = dev; 1800 ata_qc_reinit(qc); 1801 1802 preempted_tag = link->active_tag; 1803 preempted_sactive = link->sactive; 1804 preempted_qc_active = ap->qc_active; 1805 preempted_nr_active_links = ap->nr_active_links; 1806 link->active_tag = ATA_TAG_POISON; 1807 link->sactive = 0; 1808 ap->qc_active = 0; 1809 ap->nr_active_links = 0; 1810 1811 /* prepare & issue qc */ 1812 qc->tf = *tf; 1813 if (cdb) 1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1815 qc->flags |= ATA_QCFLAG_RESULT_TF; 1816 qc->dma_dir = dma_dir; 1817 if (dma_dir != DMA_NONE) { 1818 unsigned int i, buflen = 0; 1819 struct scatterlist *sg; 1820 1821 for_each_sg(sgl, sg, n_elem, i) 1822 buflen += sg->length; 1823 1824 ata_sg_init(qc, sgl, n_elem); 1825 qc->nbytes = buflen; 1826 } 1827 1828 qc->private_data = &wait; 1829 qc->complete_fn = ata_qc_complete_internal; 1830 1831 ata_qc_issue(qc); 1832 1833 spin_unlock_irqrestore(ap->lock, flags); 1834 1835 if (!timeout) { 1836 if (ata_probe_timeout) 1837 timeout = ata_probe_timeout * 1000; 1838 else { 1839 timeout = ata_internal_cmd_timeout(dev, command); 1840 auto_timeout = 1; 1841 } 1842 } 1843 1844 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1845 1846 ata_port_flush_task(ap); 1847 1848 if (!rc) { 1849 spin_lock_irqsave(ap->lock, flags); 1850 1851 /* We're racing with irq here. If we lose, the 1852 * following test prevents us from completing the qc 1853 * twice. If we win, the port is frozen and will be 1854 * cleaned up by ->post_internal_cmd(). 1855 */ 1856 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1857 qc->err_mask |= AC_ERR_TIMEOUT; 1858 1859 if (ap->ops->error_handler) 1860 ata_port_freeze(ap); 1861 else 1862 ata_qc_complete(qc); 1863 1864 if (ata_msg_warn(ap)) 1865 ata_dev_printk(dev, KERN_WARNING, 1866 "qc timeout (cmd 0x%x)\n", command); 1867 } 1868 1869 spin_unlock_irqrestore(ap->lock, flags); 1870 } 1871 1872 /* do post_internal_cmd */ 1873 if (ap->ops->post_internal_cmd) 1874 ap->ops->post_internal_cmd(qc); 1875 1876 /* perform minimal error analysis */ 1877 if (qc->flags & ATA_QCFLAG_FAILED) { 1878 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1879 qc->err_mask |= AC_ERR_DEV; 1880 1881 if (!qc->err_mask) 1882 qc->err_mask |= AC_ERR_OTHER; 1883 1884 if (qc->err_mask & ~AC_ERR_OTHER) 1885 qc->err_mask &= ~AC_ERR_OTHER; 1886 } 1887 1888 /* finish up */ 1889 spin_lock_irqsave(ap->lock, flags); 1890 1891 *tf = qc->result_tf; 1892 err_mask = qc->err_mask; 1893 1894 ata_qc_free(qc); 1895 link->active_tag = preempted_tag; 1896 link->sactive = preempted_sactive; 1897 ap->qc_active = preempted_qc_active; 1898 ap->nr_active_links = preempted_nr_active_links; 1899 1900 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1901 * Until those drivers are fixed, we detect the condition 1902 * here, fail the command with AC_ERR_SYSTEM and reenable the 1903 * port. 1904 * 1905 * Note that this doesn't change any behavior as internal 1906 * command failure results in disabling the device in the 1907 * higher layer for LLDDs without new reset/EH callbacks. 1908 * 1909 * Kill the following code as soon as those drivers are fixed. 1910 */ 1911 if (ap->flags & ATA_FLAG_DISABLED) { 1912 err_mask |= AC_ERR_SYSTEM; 1913 ata_port_probe(ap); 1914 } 1915 1916 spin_unlock_irqrestore(ap->lock, flags); 1917 1918 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1919 ata_internal_cmd_timed_out(dev, command); 1920 1921 return err_mask; 1922 } 1923 1924 /** 1925 * ata_exec_internal - execute libata internal command 1926 * @dev: Device to which the command is sent 1927 * @tf: Taskfile registers for the command and the result 1928 * @cdb: CDB for packet command 1929 * @dma_dir: Data tranfer direction of the command 1930 * @buf: Data buffer of the command 1931 * @buflen: Length of data buffer 1932 * @timeout: Timeout in msecs (0 for default) 1933 * 1934 * Wrapper around ata_exec_internal_sg() which takes simple 1935 * buffer instead of sg list. 1936 * 1937 * LOCKING: 1938 * None. Should be called with kernel context, might sleep. 1939 * 1940 * RETURNS: 1941 * Zero on success, AC_ERR_* mask on failure 1942 */ 1943 unsigned ata_exec_internal(struct ata_device *dev, 1944 struct ata_taskfile *tf, const u8 *cdb, 1945 int dma_dir, void *buf, unsigned int buflen, 1946 unsigned long timeout) 1947 { 1948 struct scatterlist *psg = NULL, sg; 1949 unsigned int n_elem = 0; 1950 1951 if (dma_dir != DMA_NONE) { 1952 WARN_ON(!buf); 1953 sg_init_one(&sg, buf, buflen); 1954 psg = &sg; 1955 n_elem++; 1956 } 1957 1958 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1959 timeout); 1960 } 1961 1962 /** 1963 * ata_do_simple_cmd - execute simple internal command 1964 * @dev: Device to which the command is sent 1965 * @cmd: Opcode to execute 1966 * 1967 * Execute a 'simple' command, that only consists of the opcode 1968 * 'cmd' itself, without filling any other registers 1969 * 1970 * LOCKING: 1971 * Kernel thread context (may sleep). 1972 * 1973 * RETURNS: 1974 * Zero on success, AC_ERR_* mask on failure 1975 */ 1976 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1977 { 1978 struct ata_taskfile tf; 1979 1980 ata_tf_init(dev, &tf); 1981 1982 tf.command = cmd; 1983 tf.flags |= ATA_TFLAG_DEVICE; 1984 tf.protocol = ATA_PROT_NODATA; 1985 1986 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1987 } 1988 1989 /** 1990 * ata_pio_need_iordy - check if iordy needed 1991 * @adev: ATA device 1992 * 1993 * Check if the current speed of the device requires IORDY. Used 1994 * by various controllers for chip configuration. 1995 */ 1996 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1997 { 1998 /* Don't set IORDY if we're preparing for reset. IORDY may 1999 * lead to controller lock up on certain controllers if the 2000 * port is not occupied. See bko#11703 for details. 2001 */ 2002 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 2003 return 0; 2004 /* Controller doesn't support IORDY. Probably a pointless 2005 * check as the caller should know this. 2006 */ 2007 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 2008 return 0; 2009 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 2010 if (ata_id_is_cfa(adev->id) 2011 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2012 return 0; 2013 /* PIO3 and higher it is mandatory */ 2014 if (adev->pio_mode > XFER_PIO_2) 2015 return 1; 2016 /* We turn it on when possible */ 2017 if (ata_id_has_iordy(adev->id)) 2018 return 1; 2019 return 0; 2020 } 2021 2022 /** 2023 * ata_pio_mask_no_iordy - Return the non IORDY mask 2024 * @adev: ATA device 2025 * 2026 * Compute the highest mode possible if we are not using iordy. Return 2027 * -1 if no iordy mode is available. 2028 */ 2029 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2030 { 2031 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2032 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2033 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2034 /* Is the speed faster than the drive allows non IORDY ? */ 2035 if (pio) { 2036 /* This is cycle times not frequency - watch the logic! */ 2037 if (pio > 240) /* PIO2 is 240nS per cycle */ 2038 return 3 << ATA_SHIFT_PIO; 2039 return 7 << ATA_SHIFT_PIO; 2040 } 2041 } 2042 return 3 << ATA_SHIFT_PIO; 2043 } 2044 2045 /** 2046 * ata_do_dev_read_id - default ID read method 2047 * @dev: device 2048 * @tf: proposed taskfile 2049 * @id: data buffer 2050 * 2051 * Issue the identify taskfile and hand back the buffer containing 2052 * identify data. For some RAID controllers and for pre ATA devices 2053 * this function is wrapped or replaced by the driver 2054 */ 2055 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2056 struct ata_taskfile *tf, u16 *id) 2057 { 2058 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2059 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2060 } 2061 2062 /** 2063 * ata_dev_read_id - Read ID data from the specified device 2064 * @dev: target device 2065 * @p_class: pointer to class of the target device (may be changed) 2066 * @flags: ATA_READID_* flags 2067 * @id: buffer to read IDENTIFY data into 2068 * 2069 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2070 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2071 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2072 * for pre-ATA4 drives. 2073 * 2074 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2075 * now we abort if we hit that case. 2076 * 2077 * LOCKING: 2078 * Kernel thread context (may sleep) 2079 * 2080 * RETURNS: 2081 * 0 on success, -errno otherwise. 2082 */ 2083 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2084 unsigned int flags, u16 *id) 2085 { 2086 struct ata_port *ap = dev->link->ap; 2087 unsigned int class = *p_class; 2088 struct ata_taskfile tf; 2089 unsigned int err_mask = 0; 2090 const char *reason; 2091 bool is_semb = class == ATA_DEV_SEMB; 2092 int may_fallback = 1, tried_spinup = 0; 2093 int rc; 2094 2095 if (ata_msg_ctl(ap)) 2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2097 2098 retry: 2099 ata_tf_init(dev, &tf); 2100 2101 switch (class) { 2102 case ATA_DEV_SEMB: 2103 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2104 case ATA_DEV_ATA: 2105 tf.command = ATA_CMD_ID_ATA; 2106 break; 2107 case ATA_DEV_ATAPI: 2108 tf.command = ATA_CMD_ID_ATAPI; 2109 break; 2110 default: 2111 rc = -ENODEV; 2112 reason = "unsupported class"; 2113 goto err_out; 2114 } 2115 2116 tf.protocol = ATA_PROT_PIO; 2117 2118 /* Some devices choke if TF registers contain garbage. Make 2119 * sure those are properly initialized. 2120 */ 2121 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2122 2123 /* Device presence detection is unreliable on some 2124 * controllers. Always poll IDENTIFY if available. 2125 */ 2126 tf.flags |= ATA_TFLAG_POLLING; 2127 2128 if (ap->ops->read_id) 2129 err_mask = ap->ops->read_id(dev, &tf, id); 2130 else 2131 err_mask = ata_do_dev_read_id(dev, &tf, id); 2132 2133 if (err_mask) { 2134 if (err_mask & AC_ERR_NODEV_HINT) { 2135 ata_dev_printk(dev, KERN_DEBUG, 2136 "NODEV after polling detection\n"); 2137 return -ENOENT; 2138 } 2139 2140 if (is_semb) { 2141 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2142 "device w/ SEMB sig, disabled\n"); 2143 /* SEMB is not supported yet */ 2144 *p_class = ATA_DEV_SEMB_UNSUP; 2145 return 0; 2146 } 2147 2148 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2149 /* Device or controller might have reported 2150 * the wrong device class. Give a shot at the 2151 * other IDENTIFY if the current one is 2152 * aborted by the device. 2153 */ 2154 if (may_fallback) { 2155 may_fallback = 0; 2156 2157 if (class == ATA_DEV_ATA) 2158 class = ATA_DEV_ATAPI; 2159 else 2160 class = ATA_DEV_ATA; 2161 goto retry; 2162 } 2163 2164 /* Control reaches here iff the device aborted 2165 * both flavors of IDENTIFYs which happens 2166 * sometimes with phantom devices. 2167 */ 2168 ata_dev_printk(dev, KERN_DEBUG, 2169 "both IDENTIFYs aborted, assuming NODEV\n"); 2170 return -ENOENT; 2171 } 2172 2173 rc = -EIO; 2174 reason = "I/O error"; 2175 goto err_out; 2176 } 2177 2178 /* Falling back doesn't make sense if ID data was read 2179 * successfully at least once. 2180 */ 2181 may_fallback = 0; 2182 2183 swap_buf_le16(id, ATA_ID_WORDS); 2184 2185 /* sanity check */ 2186 rc = -EINVAL; 2187 reason = "device reports invalid type"; 2188 2189 if (class == ATA_DEV_ATA) { 2190 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2191 goto err_out; 2192 } else { 2193 if (ata_id_is_ata(id)) 2194 goto err_out; 2195 } 2196 2197 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2198 tried_spinup = 1; 2199 /* 2200 * Drive powered-up in standby mode, and requires a specific 2201 * SET_FEATURES spin-up subcommand before it will accept 2202 * anything other than the original IDENTIFY command. 2203 */ 2204 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2205 if (err_mask && id[2] != 0x738c) { 2206 rc = -EIO; 2207 reason = "SPINUP failed"; 2208 goto err_out; 2209 } 2210 /* 2211 * If the drive initially returned incomplete IDENTIFY info, 2212 * we now must reissue the IDENTIFY command. 2213 */ 2214 if (id[2] == 0x37c8) 2215 goto retry; 2216 } 2217 2218 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2219 /* 2220 * The exact sequence expected by certain pre-ATA4 drives is: 2221 * SRST RESET 2222 * IDENTIFY (optional in early ATA) 2223 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2224 * anything else.. 2225 * Some drives were very specific about that exact sequence. 2226 * 2227 * Note that ATA4 says lba is mandatory so the second check 2228 * shoud never trigger. 2229 */ 2230 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2231 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2232 if (err_mask) { 2233 rc = -EIO; 2234 reason = "INIT_DEV_PARAMS failed"; 2235 goto err_out; 2236 } 2237 2238 /* current CHS translation info (id[53-58]) might be 2239 * changed. reread the identify device info. 2240 */ 2241 flags &= ~ATA_READID_POSTRESET; 2242 goto retry; 2243 } 2244 } 2245 2246 *p_class = class; 2247 2248 return 0; 2249 2250 err_out: 2251 if (ata_msg_warn(ap)) 2252 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2253 "(%s, err_mask=0x%x)\n", reason, err_mask); 2254 return rc; 2255 } 2256 2257 static int ata_do_link_spd_horkage(struct ata_device *dev) 2258 { 2259 struct ata_link *plink = ata_dev_phys_link(dev); 2260 u32 target, target_limit; 2261 2262 if (!sata_scr_valid(plink)) 2263 return 0; 2264 2265 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2266 target = 1; 2267 else 2268 return 0; 2269 2270 target_limit = (1 << target) - 1; 2271 2272 /* if already on stricter limit, no need to push further */ 2273 if (plink->sata_spd_limit <= target_limit) 2274 return 0; 2275 2276 plink->sata_spd_limit = target_limit; 2277 2278 /* Request another EH round by returning -EAGAIN if link is 2279 * going faster than the target speed. Forward progress is 2280 * guaranteed by setting sata_spd_limit to target_limit above. 2281 */ 2282 if (plink->sata_spd > target) { 2283 ata_dev_printk(dev, KERN_INFO, 2284 "applying link speed limit horkage to %s\n", 2285 sata_spd_string(target)); 2286 return -EAGAIN; 2287 } 2288 return 0; 2289 } 2290 2291 static inline u8 ata_dev_knobble(struct ata_device *dev) 2292 { 2293 struct ata_port *ap = dev->link->ap; 2294 2295 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2296 return 0; 2297 2298 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2299 } 2300 2301 static void ata_dev_config_ncq(struct ata_device *dev, 2302 char *desc, size_t desc_sz) 2303 { 2304 struct ata_port *ap = dev->link->ap; 2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2306 2307 if (!ata_id_has_ncq(dev->id)) { 2308 desc[0] = '\0'; 2309 return; 2310 } 2311 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2312 snprintf(desc, desc_sz, "NCQ (not used)"); 2313 return; 2314 } 2315 if (ap->flags & ATA_FLAG_NCQ) { 2316 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2317 dev->flags |= ATA_DFLAG_NCQ; 2318 } 2319 2320 if (hdepth >= ddepth) 2321 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2322 else 2323 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2324 } 2325 2326 /** 2327 * ata_dev_configure - Configure the specified ATA/ATAPI device 2328 * @dev: Target device to configure 2329 * 2330 * Configure @dev according to @dev->id. Generic and low-level 2331 * driver specific fixups are also applied. 2332 * 2333 * LOCKING: 2334 * Kernel thread context (may sleep) 2335 * 2336 * RETURNS: 2337 * 0 on success, -errno otherwise 2338 */ 2339 int ata_dev_configure(struct ata_device *dev) 2340 { 2341 struct ata_port *ap = dev->link->ap; 2342 struct ata_eh_context *ehc = &dev->link->eh_context; 2343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2344 const u16 *id = dev->id; 2345 unsigned long xfer_mask; 2346 char revbuf[7]; /* XYZ-99\0 */ 2347 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2348 char modelbuf[ATA_ID_PROD_LEN+1]; 2349 int rc; 2350 2351 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2352 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2353 __func__); 2354 return 0; 2355 } 2356 2357 if (ata_msg_probe(ap)) 2358 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2359 2360 /* set horkage */ 2361 dev->horkage |= ata_dev_blacklisted(dev); 2362 ata_force_horkage(dev); 2363 2364 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2365 ata_dev_printk(dev, KERN_INFO, 2366 "unsupported device, disabling\n"); 2367 ata_dev_disable(dev); 2368 return 0; 2369 } 2370 2371 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2372 dev->class == ATA_DEV_ATAPI) { 2373 ata_dev_printk(dev, KERN_WARNING, 2374 "WARNING: ATAPI is %s, device ignored.\n", 2375 atapi_enabled ? "not supported with this driver" 2376 : "disabled"); 2377 ata_dev_disable(dev); 2378 return 0; 2379 } 2380 2381 rc = ata_do_link_spd_horkage(dev); 2382 if (rc) 2383 return rc; 2384 2385 /* let ACPI work its magic */ 2386 rc = ata_acpi_on_devcfg(dev); 2387 if (rc) 2388 return rc; 2389 2390 /* massage HPA, do it early as it might change IDENTIFY data */ 2391 rc = ata_hpa_resize(dev); 2392 if (rc) 2393 return rc; 2394 2395 /* print device capabilities */ 2396 if (ata_msg_probe(ap)) 2397 ata_dev_printk(dev, KERN_DEBUG, 2398 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2399 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2400 __func__, 2401 id[49], id[82], id[83], id[84], 2402 id[85], id[86], id[87], id[88]); 2403 2404 /* initialize to-be-configured parameters */ 2405 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2406 dev->max_sectors = 0; 2407 dev->cdb_len = 0; 2408 dev->n_sectors = 0; 2409 dev->cylinders = 0; 2410 dev->heads = 0; 2411 dev->sectors = 0; 2412 dev->multi_count = 0; 2413 2414 /* 2415 * common ATA, ATAPI feature tests 2416 */ 2417 2418 /* find max transfer mode; for printk only */ 2419 xfer_mask = ata_id_xfermask(id); 2420 2421 if (ata_msg_probe(ap)) 2422 ata_dump_id(id); 2423 2424 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2425 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2426 sizeof(fwrevbuf)); 2427 2428 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2429 sizeof(modelbuf)); 2430 2431 /* ATA-specific feature tests */ 2432 if (dev->class == ATA_DEV_ATA) { 2433 if (ata_id_is_cfa(id)) { 2434 /* CPRM may make this media unusable */ 2435 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2436 ata_dev_printk(dev, KERN_WARNING, 2437 "supports DRM functions and may " 2438 "not be fully accessable.\n"); 2439 snprintf(revbuf, 7, "CFA"); 2440 } else { 2441 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2442 /* Warn the user if the device has TPM extensions */ 2443 if (ata_id_has_tpm(id)) 2444 ata_dev_printk(dev, KERN_WARNING, 2445 "supports DRM functions and may " 2446 "not be fully accessable.\n"); 2447 } 2448 2449 dev->n_sectors = ata_id_n_sectors(id); 2450 2451 /* get current R/W Multiple count setting */ 2452 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2453 unsigned int max = dev->id[47] & 0xff; 2454 unsigned int cnt = dev->id[59] & 0xff; 2455 /* only recognize/allow powers of two here */ 2456 if (is_power_of_2(max) && is_power_of_2(cnt)) 2457 if (cnt <= max) 2458 dev->multi_count = cnt; 2459 } 2460 2461 if (ata_id_has_lba(id)) { 2462 const char *lba_desc; 2463 char ncq_desc[20]; 2464 2465 lba_desc = "LBA"; 2466 dev->flags |= ATA_DFLAG_LBA; 2467 if (ata_id_has_lba48(id)) { 2468 dev->flags |= ATA_DFLAG_LBA48; 2469 lba_desc = "LBA48"; 2470 2471 if (dev->n_sectors >= (1UL << 28) && 2472 ata_id_has_flush_ext(id)) 2473 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2474 } 2475 2476 /* config NCQ */ 2477 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2478 2479 /* print device info to dmesg */ 2480 if (ata_msg_drv(ap) && print_info) { 2481 ata_dev_printk(dev, KERN_INFO, 2482 "%s: %s, %s, max %s\n", 2483 revbuf, modelbuf, fwrevbuf, 2484 ata_mode_string(xfer_mask)); 2485 ata_dev_printk(dev, KERN_INFO, 2486 "%Lu sectors, multi %u: %s %s\n", 2487 (unsigned long long)dev->n_sectors, 2488 dev->multi_count, lba_desc, ncq_desc); 2489 } 2490 } else { 2491 /* CHS */ 2492 2493 /* Default translation */ 2494 dev->cylinders = id[1]; 2495 dev->heads = id[3]; 2496 dev->sectors = id[6]; 2497 2498 if (ata_id_current_chs_valid(id)) { 2499 /* Current CHS translation is valid. */ 2500 dev->cylinders = id[54]; 2501 dev->heads = id[55]; 2502 dev->sectors = id[56]; 2503 } 2504 2505 /* print device info to dmesg */ 2506 if (ata_msg_drv(ap) && print_info) { 2507 ata_dev_printk(dev, KERN_INFO, 2508 "%s: %s, %s, max %s\n", 2509 revbuf, modelbuf, fwrevbuf, 2510 ata_mode_string(xfer_mask)); 2511 ata_dev_printk(dev, KERN_INFO, 2512 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2513 (unsigned long long)dev->n_sectors, 2514 dev->multi_count, dev->cylinders, 2515 dev->heads, dev->sectors); 2516 } 2517 } 2518 2519 dev->cdb_len = 16; 2520 } 2521 2522 /* ATAPI-specific feature tests */ 2523 else if (dev->class == ATA_DEV_ATAPI) { 2524 const char *cdb_intr_string = ""; 2525 const char *atapi_an_string = ""; 2526 const char *dma_dir_string = ""; 2527 u32 sntf; 2528 2529 rc = atapi_cdb_len(id); 2530 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2531 if (ata_msg_warn(ap)) 2532 ata_dev_printk(dev, KERN_WARNING, 2533 "unsupported CDB len\n"); 2534 rc = -EINVAL; 2535 goto err_out_nosup; 2536 } 2537 dev->cdb_len = (unsigned int) rc; 2538 2539 /* Enable ATAPI AN if both the host and device have 2540 * the support. If PMP is attached, SNTF is required 2541 * to enable ATAPI AN to discern between PHY status 2542 * changed notifications and ATAPI ANs. 2543 */ 2544 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2545 (!sata_pmp_attached(ap) || 2546 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2547 unsigned int err_mask; 2548 2549 /* issue SET feature command to turn this on */ 2550 err_mask = ata_dev_set_feature(dev, 2551 SETFEATURES_SATA_ENABLE, SATA_AN); 2552 if (err_mask) 2553 ata_dev_printk(dev, KERN_ERR, 2554 "failed to enable ATAPI AN " 2555 "(err_mask=0x%x)\n", err_mask); 2556 else { 2557 dev->flags |= ATA_DFLAG_AN; 2558 atapi_an_string = ", ATAPI AN"; 2559 } 2560 } 2561 2562 if (ata_id_cdb_intr(dev->id)) { 2563 dev->flags |= ATA_DFLAG_CDB_INTR; 2564 cdb_intr_string = ", CDB intr"; 2565 } 2566 2567 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2568 dev->flags |= ATA_DFLAG_DMADIR; 2569 dma_dir_string = ", DMADIR"; 2570 } 2571 2572 /* print device info to dmesg */ 2573 if (ata_msg_drv(ap) && print_info) 2574 ata_dev_printk(dev, KERN_INFO, 2575 "ATAPI: %s, %s, max %s%s%s%s\n", 2576 modelbuf, fwrevbuf, 2577 ata_mode_string(xfer_mask), 2578 cdb_intr_string, atapi_an_string, 2579 dma_dir_string); 2580 } 2581 2582 /* determine max_sectors */ 2583 dev->max_sectors = ATA_MAX_SECTORS; 2584 if (dev->flags & ATA_DFLAG_LBA48) 2585 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2586 2587 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2588 if (ata_id_has_hipm(dev->id)) 2589 dev->flags |= ATA_DFLAG_HIPM; 2590 if (ata_id_has_dipm(dev->id)) 2591 dev->flags |= ATA_DFLAG_DIPM; 2592 } 2593 2594 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2595 200 sectors */ 2596 if (ata_dev_knobble(dev)) { 2597 if (ata_msg_drv(ap) && print_info) 2598 ata_dev_printk(dev, KERN_INFO, 2599 "applying bridge limits\n"); 2600 dev->udma_mask &= ATA_UDMA5; 2601 dev->max_sectors = ATA_MAX_SECTORS; 2602 } 2603 2604 if ((dev->class == ATA_DEV_ATAPI) && 2605 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2606 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2607 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2608 } 2609 2610 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2611 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2612 dev->max_sectors); 2613 2614 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2615 dev->horkage |= ATA_HORKAGE_IPM; 2616 2617 /* reset link pm_policy for this port to no pm */ 2618 ap->pm_policy = MAX_PERFORMANCE; 2619 } 2620 2621 if (ap->ops->dev_config) 2622 ap->ops->dev_config(dev); 2623 2624 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2625 /* Let the user know. We don't want to disallow opens for 2626 rescue purposes, or in case the vendor is just a blithering 2627 idiot. Do this after the dev_config call as some controllers 2628 with buggy firmware may want to avoid reporting false device 2629 bugs */ 2630 2631 if (print_info) { 2632 ata_dev_printk(dev, KERN_WARNING, 2633 "Drive reports diagnostics failure. This may indicate a drive\n"); 2634 ata_dev_printk(dev, KERN_WARNING, 2635 "fault or invalid emulation. Contact drive vendor for information.\n"); 2636 } 2637 } 2638 2639 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2640 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2641 "firmware update to be fully functional.\n"); 2642 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2643 "or visit http://ata.wiki.kernel.org.\n"); 2644 } 2645 2646 return 0; 2647 2648 err_out_nosup: 2649 if (ata_msg_probe(ap)) 2650 ata_dev_printk(dev, KERN_DEBUG, 2651 "%s: EXIT, err\n", __func__); 2652 return rc; 2653 } 2654 2655 /** 2656 * ata_cable_40wire - return 40 wire cable type 2657 * @ap: port 2658 * 2659 * Helper method for drivers which want to hardwire 40 wire cable 2660 * detection. 2661 */ 2662 2663 int ata_cable_40wire(struct ata_port *ap) 2664 { 2665 return ATA_CBL_PATA40; 2666 } 2667 2668 /** 2669 * ata_cable_80wire - return 80 wire cable type 2670 * @ap: port 2671 * 2672 * Helper method for drivers which want to hardwire 80 wire cable 2673 * detection. 2674 */ 2675 2676 int ata_cable_80wire(struct ata_port *ap) 2677 { 2678 return ATA_CBL_PATA80; 2679 } 2680 2681 /** 2682 * ata_cable_unknown - return unknown PATA cable. 2683 * @ap: port 2684 * 2685 * Helper method for drivers which have no PATA cable detection. 2686 */ 2687 2688 int ata_cable_unknown(struct ata_port *ap) 2689 { 2690 return ATA_CBL_PATA_UNK; 2691 } 2692 2693 /** 2694 * ata_cable_ignore - return ignored PATA cable. 2695 * @ap: port 2696 * 2697 * Helper method for drivers which don't use cable type to limit 2698 * transfer mode. 2699 */ 2700 int ata_cable_ignore(struct ata_port *ap) 2701 { 2702 return ATA_CBL_PATA_IGN; 2703 } 2704 2705 /** 2706 * ata_cable_sata - return SATA cable type 2707 * @ap: port 2708 * 2709 * Helper method for drivers which have SATA cables 2710 */ 2711 2712 int ata_cable_sata(struct ata_port *ap) 2713 { 2714 return ATA_CBL_SATA; 2715 } 2716 2717 /** 2718 * ata_bus_probe - Reset and probe ATA bus 2719 * @ap: Bus to probe 2720 * 2721 * Master ATA bus probing function. Initiates a hardware-dependent 2722 * bus reset, then attempts to identify any devices found on 2723 * the bus. 2724 * 2725 * LOCKING: 2726 * PCI/etc. bus probe sem. 2727 * 2728 * RETURNS: 2729 * Zero on success, negative errno otherwise. 2730 */ 2731 2732 int ata_bus_probe(struct ata_port *ap) 2733 { 2734 unsigned int classes[ATA_MAX_DEVICES]; 2735 int tries[ATA_MAX_DEVICES]; 2736 int rc; 2737 struct ata_device *dev; 2738 2739 ata_port_probe(ap); 2740 2741 ata_for_each_dev(dev, &ap->link, ALL) 2742 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2743 2744 retry: 2745 ata_for_each_dev(dev, &ap->link, ALL) { 2746 /* If we issue an SRST then an ATA drive (not ATAPI) 2747 * may change configuration and be in PIO0 timing. If 2748 * we do a hard reset (or are coming from power on) 2749 * this is true for ATA or ATAPI. Until we've set a 2750 * suitable controller mode we should not touch the 2751 * bus as we may be talking too fast. 2752 */ 2753 dev->pio_mode = XFER_PIO_0; 2754 2755 /* If the controller has a pio mode setup function 2756 * then use it to set the chipset to rights. Don't 2757 * touch the DMA setup as that will be dealt with when 2758 * configuring devices. 2759 */ 2760 if (ap->ops->set_piomode) 2761 ap->ops->set_piomode(ap, dev); 2762 } 2763 2764 /* reset and determine device classes */ 2765 ap->ops->phy_reset(ap); 2766 2767 ata_for_each_dev(dev, &ap->link, ALL) { 2768 if (!(ap->flags & ATA_FLAG_DISABLED) && 2769 dev->class != ATA_DEV_UNKNOWN) 2770 classes[dev->devno] = dev->class; 2771 else 2772 classes[dev->devno] = ATA_DEV_NONE; 2773 2774 dev->class = ATA_DEV_UNKNOWN; 2775 } 2776 2777 ata_port_probe(ap); 2778 2779 /* read IDENTIFY page and configure devices. We have to do the identify 2780 specific sequence bass-ackwards so that PDIAG- is released by 2781 the slave device */ 2782 2783 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2784 if (tries[dev->devno]) 2785 dev->class = classes[dev->devno]; 2786 2787 if (!ata_dev_enabled(dev)) 2788 continue; 2789 2790 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2791 dev->id); 2792 if (rc) 2793 goto fail; 2794 } 2795 2796 /* Now ask for the cable type as PDIAG- should have been released */ 2797 if (ap->ops->cable_detect) 2798 ap->cbl = ap->ops->cable_detect(ap); 2799 2800 /* We may have SATA bridge glue hiding here irrespective of 2801 * the reported cable types and sensed types. When SATA 2802 * drives indicate we have a bridge, we don't know which end 2803 * of the link the bridge is which is a problem. 2804 */ 2805 ata_for_each_dev(dev, &ap->link, ENABLED) 2806 if (ata_id_is_sata(dev->id)) 2807 ap->cbl = ATA_CBL_SATA; 2808 2809 /* After the identify sequence we can now set up the devices. We do 2810 this in the normal order so that the user doesn't get confused */ 2811 2812 ata_for_each_dev(dev, &ap->link, ENABLED) { 2813 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2814 rc = ata_dev_configure(dev); 2815 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2816 if (rc) 2817 goto fail; 2818 } 2819 2820 /* configure transfer mode */ 2821 rc = ata_set_mode(&ap->link, &dev); 2822 if (rc) 2823 goto fail; 2824 2825 ata_for_each_dev(dev, &ap->link, ENABLED) 2826 return 0; 2827 2828 /* no device present, disable port */ 2829 ata_port_disable(ap); 2830 return -ENODEV; 2831 2832 fail: 2833 tries[dev->devno]--; 2834 2835 switch (rc) { 2836 case -EINVAL: 2837 /* eeek, something went very wrong, give up */ 2838 tries[dev->devno] = 0; 2839 break; 2840 2841 case -ENODEV: 2842 /* give it just one more chance */ 2843 tries[dev->devno] = min(tries[dev->devno], 1); 2844 case -EIO: 2845 if (tries[dev->devno] == 1) { 2846 /* This is the last chance, better to slow 2847 * down than lose it. 2848 */ 2849 sata_down_spd_limit(&ap->link, 0); 2850 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2851 } 2852 } 2853 2854 if (!tries[dev->devno]) 2855 ata_dev_disable(dev); 2856 2857 goto retry; 2858 } 2859 2860 /** 2861 * ata_port_probe - Mark port as enabled 2862 * @ap: Port for which we indicate enablement 2863 * 2864 * Modify @ap data structure such that the system 2865 * thinks that the entire port is enabled. 2866 * 2867 * LOCKING: host lock, or some other form of 2868 * serialization. 2869 */ 2870 2871 void ata_port_probe(struct ata_port *ap) 2872 { 2873 ap->flags &= ~ATA_FLAG_DISABLED; 2874 } 2875 2876 /** 2877 * sata_print_link_status - Print SATA link status 2878 * @link: SATA link to printk link status about 2879 * 2880 * This function prints link speed and status of a SATA link. 2881 * 2882 * LOCKING: 2883 * None. 2884 */ 2885 static void sata_print_link_status(struct ata_link *link) 2886 { 2887 u32 sstatus, scontrol, tmp; 2888 2889 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2890 return; 2891 sata_scr_read(link, SCR_CONTROL, &scontrol); 2892 2893 if (ata_phys_link_online(link)) { 2894 tmp = (sstatus >> 4) & 0xf; 2895 ata_link_printk(link, KERN_INFO, 2896 "SATA link up %s (SStatus %X SControl %X)\n", 2897 sata_spd_string(tmp), sstatus, scontrol); 2898 } else { 2899 ata_link_printk(link, KERN_INFO, 2900 "SATA link down (SStatus %X SControl %X)\n", 2901 sstatus, scontrol); 2902 } 2903 } 2904 2905 /** 2906 * ata_dev_pair - return other device on cable 2907 * @adev: device 2908 * 2909 * Obtain the other device on the same cable, or if none is 2910 * present NULL is returned 2911 */ 2912 2913 struct ata_device *ata_dev_pair(struct ata_device *adev) 2914 { 2915 struct ata_link *link = adev->link; 2916 struct ata_device *pair = &link->device[1 - adev->devno]; 2917 if (!ata_dev_enabled(pair)) 2918 return NULL; 2919 return pair; 2920 } 2921 2922 /** 2923 * ata_port_disable - Disable port. 2924 * @ap: Port to be disabled. 2925 * 2926 * Modify @ap data structure such that the system 2927 * thinks that the entire port is disabled, and should 2928 * never attempt to probe or communicate with devices 2929 * on this port. 2930 * 2931 * LOCKING: host lock, or some other form of 2932 * serialization. 2933 */ 2934 2935 void ata_port_disable(struct ata_port *ap) 2936 { 2937 ap->link.device[0].class = ATA_DEV_NONE; 2938 ap->link.device[1].class = ATA_DEV_NONE; 2939 ap->flags |= ATA_FLAG_DISABLED; 2940 } 2941 2942 /** 2943 * sata_down_spd_limit - adjust SATA spd limit downward 2944 * @link: Link to adjust SATA spd limit for 2945 * @spd_limit: Additional limit 2946 * 2947 * Adjust SATA spd limit of @link downward. Note that this 2948 * function only adjusts the limit. The change must be applied 2949 * using sata_set_spd(). 2950 * 2951 * If @spd_limit is non-zero, the speed is limited to equal to or 2952 * lower than @spd_limit if such speed is supported. If 2953 * @spd_limit is slower than any supported speed, only the lowest 2954 * supported speed is allowed. 2955 * 2956 * LOCKING: 2957 * Inherited from caller. 2958 * 2959 * RETURNS: 2960 * 0 on success, negative errno on failure 2961 */ 2962 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2963 { 2964 u32 sstatus, spd, mask; 2965 int rc, bit; 2966 2967 if (!sata_scr_valid(link)) 2968 return -EOPNOTSUPP; 2969 2970 /* If SCR can be read, use it to determine the current SPD. 2971 * If not, use cached value in link->sata_spd. 2972 */ 2973 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2974 if (rc == 0 && ata_sstatus_online(sstatus)) 2975 spd = (sstatus >> 4) & 0xf; 2976 else 2977 spd = link->sata_spd; 2978 2979 mask = link->sata_spd_limit; 2980 if (mask <= 1) 2981 return -EINVAL; 2982 2983 /* unconditionally mask off the highest bit */ 2984 bit = fls(mask) - 1; 2985 mask &= ~(1 << bit); 2986 2987 /* Mask off all speeds higher than or equal to the current 2988 * one. Force 1.5Gbps if current SPD is not available. 2989 */ 2990 if (spd > 1) 2991 mask &= (1 << (spd - 1)) - 1; 2992 else 2993 mask &= 1; 2994 2995 /* were we already at the bottom? */ 2996 if (!mask) 2997 return -EINVAL; 2998 2999 if (spd_limit) { 3000 if (mask & ((1 << spd_limit) - 1)) 3001 mask &= (1 << spd_limit) - 1; 3002 else { 3003 bit = ffs(mask) - 1; 3004 mask = 1 << bit; 3005 } 3006 } 3007 3008 link->sata_spd_limit = mask; 3009 3010 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 3011 sata_spd_string(fls(mask))); 3012 3013 return 0; 3014 } 3015 3016 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3017 { 3018 struct ata_link *host_link = &link->ap->link; 3019 u32 limit, target, spd; 3020 3021 limit = link->sata_spd_limit; 3022 3023 /* Don't configure downstream link faster than upstream link. 3024 * It doesn't speed up anything and some PMPs choke on such 3025 * configuration. 3026 */ 3027 if (!ata_is_host_link(link) && host_link->sata_spd) 3028 limit &= (1 << host_link->sata_spd) - 1; 3029 3030 if (limit == UINT_MAX) 3031 target = 0; 3032 else 3033 target = fls(limit); 3034 3035 spd = (*scontrol >> 4) & 0xf; 3036 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3037 3038 return spd != target; 3039 } 3040 3041 /** 3042 * sata_set_spd_needed - is SATA spd configuration needed 3043 * @link: Link in question 3044 * 3045 * Test whether the spd limit in SControl matches 3046 * @link->sata_spd_limit. This function is used to determine 3047 * whether hardreset is necessary to apply SATA spd 3048 * configuration. 3049 * 3050 * LOCKING: 3051 * Inherited from caller. 3052 * 3053 * RETURNS: 3054 * 1 if SATA spd configuration is needed, 0 otherwise. 3055 */ 3056 static int sata_set_spd_needed(struct ata_link *link) 3057 { 3058 u32 scontrol; 3059 3060 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3061 return 1; 3062 3063 return __sata_set_spd_needed(link, &scontrol); 3064 } 3065 3066 /** 3067 * sata_set_spd - set SATA spd according to spd limit 3068 * @link: Link to set SATA spd for 3069 * 3070 * Set SATA spd of @link according to sata_spd_limit. 3071 * 3072 * LOCKING: 3073 * Inherited from caller. 3074 * 3075 * RETURNS: 3076 * 0 if spd doesn't need to be changed, 1 if spd has been 3077 * changed. Negative errno if SCR registers are inaccessible. 3078 */ 3079 int sata_set_spd(struct ata_link *link) 3080 { 3081 u32 scontrol; 3082 int rc; 3083 3084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3085 return rc; 3086 3087 if (!__sata_set_spd_needed(link, &scontrol)) 3088 return 0; 3089 3090 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3091 return rc; 3092 3093 return 1; 3094 } 3095 3096 /* 3097 * This mode timing computation functionality is ported over from 3098 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3099 */ 3100 /* 3101 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3102 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3103 * for UDMA6, which is currently supported only by Maxtor drives. 3104 * 3105 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3106 */ 3107 3108 static const struct ata_timing ata_timing[] = { 3109 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3110 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3111 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3112 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3113 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3114 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3115 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3116 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3117 3118 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3119 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3120 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3121 3122 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3123 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3124 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3125 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3126 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3127 3128 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3129 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3130 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3131 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3132 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3133 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3134 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3135 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3136 3137 { 0xFF } 3138 }; 3139 3140 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3141 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3142 3143 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3144 { 3145 q->setup = EZ(t->setup * 1000, T); 3146 q->act8b = EZ(t->act8b * 1000, T); 3147 q->rec8b = EZ(t->rec8b * 1000, T); 3148 q->cyc8b = EZ(t->cyc8b * 1000, T); 3149 q->active = EZ(t->active * 1000, T); 3150 q->recover = EZ(t->recover * 1000, T); 3151 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3152 q->cycle = EZ(t->cycle * 1000, T); 3153 q->udma = EZ(t->udma * 1000, UT); 3154 } 3155 3156 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3157 struct ata_timing *m, unsigned int what) 3158 { 3159 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3160 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3161 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3162 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3163 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3164 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3165 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3166 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3167 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3168 } 3169 3170 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3171 { 3172 const struct ata_timing *t = ata_timing; 3173 3174 while (xfer_mode > t->mode) 3175 t++; 3176 3177 if (xfer_mode == t->mode) 3178 return t; 3179 return NULL; 3180 } 3181 3182 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3183 struct ata_timing *t, int T, int UT) 3184 { 3185 const struct ata_timing *s; 3186 struct ata_timing p; 3187 3188 /* 3189 * Find the mode. 3190 */ 3191 3192 if (!(s = ata_timing_find_mode(speed))) 3193 return -EINVAL; 3194 3195 memcpy(t, s, sizeof(*s)); 3196 3197 /* 3198 * If the drive is an EIDE drive, it can tell us it needs extended 3199 * PIO/MW_DMA cycle timing. 3200 */ 3201 3202 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3203 memset(&p, 0, sizeof(p)); 3204 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3205 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3206 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3207 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3208 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3209 } 3210 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3211 } 3212 3213 /* 3214 * Convert the timing to bus clock counts. 3215 */ 3216 3217 ata_timing_quantize(t, t, T, UT); 3218 3219 /* 3220 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3221 * S.M.A.R.T * and some other commands. We have to ensure that the 3222 * DMA cycle timing is slower/equal than the fastest PIO timing. 3223 */ 3224 3225 if (speed > XFER_PIO_6) { 3226 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3227 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3228 } 3229 3230 /* 3231 * Lengthen active & recovery time so that cycle time is correct. 3232 */ 3233 3234 if (t->act8b + t->rec8b < t->cyc8b) { 3235 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3236 t->rec8b = t->cyc8b - t->act8b; 3237 } 3238 3239 if (t->active + t->recover < t->cycle) { 3240 t->active += (t->cycle - (t->active + t->recover)) / 2; 3241 t->recover = t->cycle - t->active; 3242 } 3243 3244 /* In a few cases quantisation may produce enough errors to 3245 leave t->cycle too low for the sum of active and recovery 3246 if so we must correct this */ 3247 if (t->active + t->recover > t->cycle) 3248 t->cycle = t->active + t->recover; 3249 3250 return 0; 3251 } 3252 3253 /** 3254 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3255 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3256 * @cycle: cycle duration in ns 3257 * 3258 * Return matching xfer mode for @cycle. The returned mode is of 3259 * the transfer type specified by @xfer_shift. If @cycle is too 3260 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3261 * than the fastest known mode, the fasted mode is returned. 3262 * 3263 * LOCKING: 3264 * None. 3265 * 3266 * RETURNS: 3267 * Matching xfer_mode, 0xff if no match found. 3268 */ 3269 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3270 { 3271 u8 base_mode = 0xff, last_mode = 0xff; 3272 const struct ata_xfer_ent *ent; 3273 const struct ata_timing *t; 3274 3275 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3276 if (ent->shift == xfer_shift) 3277 base_mode = ent->base; 3278 3279 for (t = ata_timing_find_mode(base_mode); 3280 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3281 unsigned short this_cycle; 3282 3283 switch (xfer_shift) { 3284 case ATA_SHIFT_PIO: 3285 case ATA_SHIFT_MWDMA: 3286 this_cycle = t->cycle; 3287 break; 3288 case ATA_SHIFT_UDMA: 3289 this_cycle = t->udma; 3290 break; 3291 default: 3292 return 0xff; 3293 } 3294 3295 if (cycle > this_cycle) 3296 break; 3297 3298 last_mode = t->mode; 3299 } 3300 3301 return last_mode; 3302 } 3303 3304 /** 3305 * ata_down_xfermask_limit - adjust dev xfer masks downward 3306 * @dev: Device to adjust xfer masks 3307 * @sel: ATA_DNXFER_* selector 3308 * 3309 * Adjust xfer masks of @dev downward. Note that this function 3310 * does not apply the change. Invoking ata_set_mode() afterwards 3311 * will apply the limit. 3312 * 3313 * LOCKING: 3314 * Inherited from caller. 3315 * 3316 * RETURNS: 3317 * 0 on success, negative errno on failure 3318 */ 3319 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3320 { 3321 char buf[32]; 3322 unsigned long orig_mask, xfer_mask; 3323 unsigned long pio_mask, mwdma_mask, udma_mask; 3324 int quiet, highbit; 3325 3326 quiet = !!(sel & ATA_DNXFER_QUIET); 3327 sel &= ~ATA_DNXFER_QUIET; 3328 3329 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3330 dev->mwdma_mask, 3331 dev->udma_mask); 3332 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3333 3334 switch (sel) { 3335 case ATA_DNXFER_PIO: 3336 highbit = fls(pio_mask) - 1; 3337 pio_mask &= ~(1 << highbit); 3338 break; 3339 3340 case ATA_DNXFER_DMA: 3341 if (udma_mask) { 3342 highbit = fls(udma_mask) - 1; 3343 udma_mask &= ~(1 << highbit); 3344 if (!udma_mask) 3345 return -ENOENT; 3346 } else if (mwdma_mask) { 3347 highbit = fls(mwdma_mask) - 1; 3348 mwdma_mask &= ~(1 << highbit); 3349 if (!mwdma_mask) 3350 return -ENOENT; 3351 } 3352 break; 3353 3354 case ATA_DNXFER_40C: 3355 udma_mask &= ATA_UDMA_MASK_40C; 3356 break; 3357 3358 case ATA_DNXFER_FORCE_PIO0: 3359 pio_mask &= 1; 3360 case ATA_DNXFER_FORCE_PIO: 3361 mwdma_mask = 0; 3362 udma_mask = 0; 3363 break; 3364 3365 default: 3366 BUG(); 3367 } 3368 3369 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3370 3371 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3372 return -ENOENT; 3373 3374 if (!quiet) { 3375 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3376 snprintf(buf, sizeof(buf), "%s:%s", 3377 ata_mode_string(xfer_mask), 3378 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3379 else 3380 snprintf(buf, sizeof(buf), "%s", 3381 ata_mode_string(xfer_mask)); 3382 3383 ata_dev_printk(dev, KERN_WARNING, 3384 "limiting speed to %s\n", buf); 3385 } 3386 3387 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3388 &dev->udma_mask); 3389 3390 return 0; 3391 } 3392 3393 static int ata_dev_set_mode(struct ata_device *dev) 3394 { 3395 struct ata_port *ap = dev->link->ap; 3396 struct ata_eh_context *ehc = &dev->link->eh_context; 3397 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3398 const char *dev_err_whine = ""; 3399 int ign_dev_err = 0; 3400 unsigned int err_mask = 0; 3401 int rc; 3402 3403 dev->flags &= ~ATA_DFLAG_PIO; 3404 if (dev->xfer_shift == ATA_SHIFT_PIO) 3405 dev->flags |= ATA_DFLAG_PIO; 3406 3407 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3408 dev_err_whine = " (SET_XFERMODE skipped)"; 3409 else { 3410 if (nosetxfer) 3411 ata_dev_printk(dev, KERN_WARNING, 3412 "NOSETXFER but PATA detected - can't " 3413 "skip SETXFER, might malfunction\n"); 3414 err_mask = ata_dev_set_xfermode(dev); 3415 } 3416 3417 if (err_mask & ~AC_ERR_DEV) 3418 goto fail; 3419 3420 /* revalidate */ 3421 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3422 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3423 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3424 if (rc) 3425 return rc; 3426 3427 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3428 /* Old CFA may refuse this command, which is just fine */ 3429 if (ata_id_is_cfa(dev->id)) 3430 ign_dev_err = 1; 3431 /* Catch several broken garbage emulations plus some pre 3432 ATA devices */ 3433 if (ata_id_major_version(dev->id) == 0 && 3434 dev->pio_mode <= XFER_PIO_2) 3435 ign_dev_err = 1; 3436 /* Some very old devices and some bad newer ones fail 3437 any kind of SET_XFERMODE request but support PIO0-2 3438 timings and no IORDY */ 3439 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3440 ign_dev_err = 1; 3441 } 3442 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3443 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3444 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3445 dev->dma_mode == XFER_MW_DMA_0 && 3446 (dev->id[63] >> 8) & 1) 3447 ign_dev_err = 1; 3448 3449 /* if the device is actually configured correctly, ignore dev err */ 3450 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3451 ign_dev_err = 1; 3452 3453 if (err_mask & AC_ERR_DEV) { 3454 if (!ign_dev_err) 3455 goto fail; 3456 else 3457 dev_err_whine = " (device error ignored)"; 3458 } 3459 3460 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3461 dev->xfer_shift, (int)dev->xfer_mode); 3462 3463 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3464 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3465 dev_err_whine); 3466 3467 return 0; 3468 3469 fail: 3470 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3471 "(err_mask=0x%x)\n", err_mask); 3472 return -EIO; 3473 } 3474 3475 /** 3476 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3477 * @link: link on which timings will be programmed 3478 * @r_failed_dev: out parameter for failed device 3479 * 3480 * Standard implementation of the function used to tune and set 3481 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3482 * ata_dev_set_mode() fails, pointer to the failing device is 3483 * returned in @r_failed_dev. 3484 * 3485 * LOCKING: 3486 * PCI/etc. bus probe sem. 3487 * 3488 * RETURNS: 3489 * 0 on success, negative errno otherwise 3490 */ 3491 3492 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3493 { 3494 struct ata_port *ap = link->ap; 3495 struct ata_device *dev; 3496 int rc = 0, used_dma = 0, found = 0; 3497 3498 /* step 1: calculate xfer_mask */ 3499 ata_for_each_dev(dev, link, ENABLED) { 3500 unsigned long pio_mask, dma_mask; 3501 unsigned int mode_mask; 3502 3503 mode_mask = ATA_DMA_MASK_ATA; 3504 if (dev->class == ATA_DEV_ATAPI) 3505 mode_mask = ATA_DMA_MASK_ATAPI; 3506 else if (ata_id_is_cfa(dev->id)) 3507 mode_mask = ATA_DMA_MASK_CFA; 3508 3509 ata_dev_xfermask(dev); 3510 ata_force_xfermask(dev); 3511 3512 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3513 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3514 3515 if (libata_dma_mask & mode_mask) 3516 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3517 else 3518 dma_mask = 0; 3519 3520 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3521 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3522 3523 found = 1; 3524 if (ata_dma_enabled(dev)) 3525 used_dma = 1; 3526 } 3527 if (!found) 3528 goto out; 3529 3530 /* step 2: always set host PIO timings */ 3531 ata_for_each_dev(dev, link, ENABLED) { 3532 if (dev->pio_mode == 0xff) { 3533 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3534 rc = -EINVAL; 3535 goto out; 3536 } 3537 3538 dev->xfer_mode = dev->pio_mode; 3539 dev->xfer_shift = ATA_SHIFT_PIO; 3540 if (ap->ops->set_piomode) 3541 ap->ops->set_piomode(ap, dev); 3542 } 3543 3544 /* step 3: set host DMA timings */ 3545 ata_for_each_dev(dev, link, ENABLED) { 3546 if (!ata_dma_enabled(dev)) 3547 continue; 3548 3549 dev->xfer_mode = dev->dma_mode; 3550 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3551 if (ap->ops->set_dmamode) 3552 ap->ops->set_dmamode(ap, dev); 3553 } 3554 3555 /* step 4: update devices' xfer mode */ 3556 ata_for_each_dev(dev, link, ENABLED) { 3557 rc = ata_dev_set_mode(dev); 3558 if (rc) 3559 goto out; 3560 } 3561 3562 /* Record simplex status. If we selected DMA then the other 3563 * host channels are not permitted to do so. 3564 */ 3565 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3566 ap->host->simplex_claimed = ap; 3567 3568 out: 3569 if (rc) 3570 *r_failed_dev = dev; 3571 return rc; 3572 } 3573 3574 /** 3575 * ata_wait_ready - wait for link to become ready 3576 * @link: link to be waited on 3577 * @deadline: deadline jiffies for the operation 3578 * @check_ready: callback to check link readiness 3579 * 3580 * Wait for @link to become ready. @check_ready should return 3581 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3582 * link doesn't seem to be occupied, other errno for other error 3583 * conditions. 3584 * 3585 * Transient -ENODEV conditions are allowed for 3586 * ATA_TMOUT_FF_WAIT. 3587 * 3588 * LOCKING: 3589 * EH context. 3590 * 3591 * RETURNS: 3592 * 0 if @linke is ready before @deadline; otherwise, -errno. 3593 */ 3594 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3595 int (*check_ready)(struct ata_link *link)) 3596 { 3597 unsigned long start = jiffies; 3598 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3599 int warned = 0; 3600 3601 /* Slave readiness can't be tested separately from master. On 3602 * M/S emulation configuration, this function should be called 3603 * only on the master and it will handle both master and slave. 3604 */ 3605 WARN_ON(link == link->ap->slave_link); 3606 3607 if (time_after(nodev_deadline, deadline)) 3608 nodev_deadline = deadline; 3609 3610 while (1) { 3611 unsigned long now = jiffies; 3612 int ready, tmp; 3613 3614 ready = tmp = check_ready(link); 3615 if (ready > 0) 3616 return 0; 3617 3618 /* -ENODEV could be transient. Ignore -ENODEV if link 3619 * is online. Also, some SATA devices take a long 3620 * time to clear 0xff after reset. For example, 3621 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3622 * GoVault needs even more than that. Wait for 3623 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3624 * 3625 * Note that some PATA controllers (pata_ali) explode 3626 * if status register is read more than once when 3627 * there's no device attached. 3628 */ 3629 if (ready == -ENODEV) { 3630 if (ata_link_online(link)) 3631 ready = 0; 3632 else if ((link->ap->flags & ATA_FLAG_SATA) && 3633 !ata_link_offline(link) && 3634 time_before(now, nodev_deadline)) 3635 ready = 0; 3636 } 3637 3638 if (ready) 3639 return ready; 3640 if (time_after(now, deadline)) 3641 return -EBUSY; 3642 3643 if (!warned && time_after(now, start + 5 * HZ) && 3644 (deadline - now > 3 * HZ)) { 3645 ata_link_printk(link, KERN_WARNING, 3646 "link is slow to respond, please be patient " 3647 "(ready=%d)\n", tmp); 3648 warned = 1; 3649 } 3650 3651 msleep(50); 3652 } 3653 } 3654 3655 /** 3656 * ata_wait_after_reset - wait for link to become ready after reset 3657 * @link: link to be waited on 3658 * @deadline: deadline jiffies for the operation 3659 * @check_ready: callback to check link readiness 3660 * 3661 * Wait for @link to become ready after reset. 3662 * 3663 * LOCKING: 3664 * EH context. 3665 * 3666 * RETURNS: 3667 * 0 if @linke is ready before @deadline; otherwise, -errno. 3668 */ 3669 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3670 int (*check_ready)(struct ata_link *link)) 3671 { 3672 msleep(ATA_WAIT_AFTER_RESET); 3673 3674 return ata_wait_ready(link, deadline, check_ready); 3675 } 3676 3677 /** 3678 * sata_link_debounce - debounce SATA phy status 3679 * @link: ATA link to debounce SATA phy status for 3680 * @params: timing parameters { interval, duratinon, timeout } in msec 3681 * @deadline: deadline jiffies for the operation 3682 * 3683 * Make sure SStatus of @link reaches stable state, determined by 3684 * holding the same value where DET is not 1 for @duration polled 3685 * every @interval, before @timeout. Timeout constraints the 3686 * beginning of the stable state. Because DET gets stuck at 1 on 3687 * some controllers after hot unplugging, this functions waits 3688 * until timeout then returns 0 if DET is stable at 1. 3689 * 3690 * @timeout is further limited by @deadline. The sooner of the 3691 * two is used. 3692 * 3693 * LOCKING: 3694 * Kernel thread context (may sleep) 3695 * 3696 * RETURNS: 3697 * 0 on success, -errno on failure. 3698 */ 3699 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3700 unsigned long deadline) 3701 { 3702 unsigned long interval = params[0]; 3703 unsigned long duration = params[1]; 3704 unsigned long last_jiffies, t; 3705 u32 last, cur; 3706 int rc; 3707 3708 t = ata_deadline(jiffies, params[2]); 3709 if (time_before(t, deadline)) 3710 deadline = t; 3711 3712 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3713 return rc; 3714 cur &= 0xf; 3715 3716 last = cur; 3717 last_jiffies = jiffies; 3718 3719 while (1) { 3720 msleep(interval); 3721 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3722 return rc; 3723 cur &= 0xf; 3724 3725 /* DET stable? */ 3726 if (cur == last) { 3727 if (cur == 1 && time_before(jiffies, deadline)) 3728 continue; 3729 if (time_after(jiffies, 3730 ata_deadline(last_jiffies, duration))) 3731 return 0; 3732 continue; 3733 } 3734 3735 /* unstable, start over */ 3736 last = cur; 3737 last_jiffies = jiffies; 3738 3739 /* Check deadline. If debouncing failed, return 3740 * -EPIPE to tell upper layer to lower link speed. 3741 */ 3742 if (time_after(jiffies, deadline)) 3743 return -EPIPE; 3744 } 3745 } 3746 3747 /** 3748 * sata_link_resume - resume SATA link 3749 * @link: ATA link to resume SATA 3750 * @params: timing parameters { interval, duratinon, timeout } in msec 3751 * @deadline: deadline jiffies for the operation 3752 * 3753 * Resume SATA phy @link and debounce it. 3754 * 3755 * LOCKING: 3756 * Kernel thread context (may sleep) 3757 * 3758 * RETURNS: 3759 * 0 on success, -errno on failure. 3760 */ 3761 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3762 unsigned long deadline) 3763 { 3764 u32 scontrol, serror; 3765 int rc; 3766 3767 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3768 return rc; 3769 3770 scontrol = (scontrol & 0x0f0) | 0x300; 3771 3772 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3773 return rc; 3774 3775 /* Some PHYs react badly if SStatus is pounded immediately 3776 * after resuming. Delay 200ms before debouncing. 3777 */ 3778 msleep(200); 3779 3780 if ((rc = sata_link_debounce(link, params, deadline))) 3781 return rc; 3782 3783 /* clear SError, some PHYs require this even for SRST to work */ 3784 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3785 rc = sata_scr_write(link, SCR_ERROR, serror); 3786 3787 return rc != -EINVAL ? rc : 0; 3788 } 3789 3790 /** 3791 * ata_std_prereset - prepare for reset 3792 * @link: ATA link to be reset 3793 * @deadline: deadline jiffies for the operation 3794 * 3795 * @link is about to be reset. Initialize it. Failure from 3796 * prereset makes libata abort whole reset sequence and give up 3797 * that port, so prereset should be best-effort. It does its 3798 * best to prepare for reset sequence but if things go wrong, it 3799 * should just whine, not fail. 3800 * 3801 * LOCKING: 3802 * Kernel thread context (may sleep) 3803 * 3804 * RETURNS: 3805 * 0 on success, -errno otherwise. 3806 */ 3807 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3808 { 3809 struct ata_port *ap = link->ap; 3810 struct ata_eh_context *ehc = &link->eh_context; 3811 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3812 int rc; 3813 3814 /* if we're about to do hardreset, nothing more to do */ 3815 if (ehc->i.action & ATA_EH_HARDRESET) 3816 return 0; 3817 3818 /* if SATA, resume link */ 3819 if (ap->flags & ATA_FLAG_SATA) { 3820 rc = sata_link_resume(link, timing, deadline); 3821 /* whine about phy resume failure but proceed */ 3822 if (rc && rc != -EOPNOTSUPP) 3823 ata_link_printk(link, KERN_WARNING, "failed to resume " 3824 "link for reset (errno=%d)\n", rc); 3825 } 3826 3827 /* no point in trying softreset on offline link */ 3828 if (ata_phys_link_offline(link)) 3829 ehc->i.action &= ~ATA_EH_SOFTRESET; 3830 3831 return 0; 3832 } 3833 3834 /** 3835 * sata_link_hardreset - reset link via SATA phy reset 3836 * @link: link to reset 3837 * @timing: timing parameters { interval, duratinon, timeout } in msec 3838 * @deadline: deadline jiffies for the operation 3839 * @online: optional out parameter indicating link onlineness 3840 * @check_ready: optional callback to check link readiness 3841 * 3842 * SATA phy-reset @link using DET bits of SControl register. 3843 * After hardreset, link readiness is waited upon using 3844 * ata_wait_ready() if @check_ready is specified. LLDs are 3845 * allowed to not specify @check_ready and wait itself after this 3846 * function returns. Device classification is LLD's 3847 * responsibility. 3848 * 3849 * *@online is set to one iff reset succeeded and @link is online 3850 * after reset. 3851 * 3852 * LOCKING: 3853 * Kernel thread context (may sleep) 3854 * 3855 * RETURNS: 3856 * 0 on success, -errno otherwise. 3857 */ 3858 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3859 unsigned long deadline, 3860 bool *online, int (*check_ready)(struct ata_link *)) 3861 { 3862 u32 scontrol; 3863 int rc; 3864 3865 DPRINTK("ENTER\n"); 3866 3867 if (online) 3868 *online = false; 3869 3870 if (sata_set_spd_needed(link)) { 3871 /* SATA spec says nothing about how to reconfigure 3872 * spd. To be on the safe side, turn off phy during 3873 * reconfiguration. This works for at least ICH7 AHCI 3874 * and Sil3124. 3875 */ 3876 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3877 goto out; 3878 3879 scontrol = (scontrol & 0x0f0) | 0x304; 3880 3881 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3882 goto out; 3883 3884 sata_set_spd(link); 3885 } 3886 3887 /* issue phy wake/reset */ 3888 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3889 goto out; 3890 3891 scontrol = (scontrol & 0x0f0) | 0x301; 3892 3893 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3894 goto out; 3895 3896 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3897 * 10.4.2 says at least 1 ms. 3898 */ 3899 msleep(1); 3900 3901 /* bring link back */ 3902 rc = sata_link_resume(link, timing, deadline); 3903 if (rc) 3904 goto out; 3905 /* if link is offline nothing more to do */ 3906 if (ata_phys_link_offline(link)) 3907 goto out; 3908 3909 /* Link is online. From this point, -ENODEV too is an error. */ 3910 if (online) 3911 *online = true; 3912 3913 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3914 /* If PMP is supported, we have to do follow-up SRST. 3915 * Some PMPs don't send D2H Reg FIS after hardreset if 3916 * the first port is empty. Wait only for 3917 * ATA_TMOUT_PMP_SRST_WAIT. 3918 */ 3919 if (check_ready) { 3920 unsigned long pmp_deadline; 3921 3922 pmp_deadline = ata_deadline(jiffies, 3923 ATA_TMOUT_PMP_SRST_WAIT); 3924 if (time_after(pmp_deadline, deadline)) 3925 pmp_deadline = deadline; 3926 ata_wait_ready(link, pmp_deadline, check_ready); 3927 } 3928 rc = -EAGAIN; 3929 goto out; 3930 } 3931 3932 rc = 0; 3933 if (check_ready) 3934 rc = ata_wait_ready(link, deadline, check_ready); 3935 out: 3936 if (rc && rc != -EAGAIN) { 3937 /* online is set iff link is online && reset succeeded */ 3938 if (online) 3939 *online = false; 3940 ata_link_printk(link, KERN_ERR, 3941 "COMRESET failed (errno=%d)\n", rc); 3942 } 3943 DPRINTK("EXIT, rc=%d\n", rc); 3944 return rc; 3945 } 3946 3947 /** 3948 * sata_std_hardreset - COMRESET w/o waiting or classification 3949 * @link: link to reset 3950 * @class: resulting class of attached device 3951 * @deadline: deadline jiffies for the operation 3952 * 3953 * Standard SATA COMRESET w/o waiting or classification. 3954 * 3955 * LOCKING: 3956 * Kernel thread context (may sleep) 3957 * 3958 * RETURNS: 3959 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3960 */ 3961 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3962 unsigned long deadline) 3963 { 3964 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3965 bool online; 3966 int rc; 3967 3968 /* do hardreset */ 3969 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3970 return online ? -EAGAIN : rc; 3971 } 3972 3973 /** 3974 * ata_std_postreset - standard postreset callback 3975 * @link: the target ata_link 3976 * @classes: classes of attached devices 3977 * 3978 * This function is invoked after a successful reset. Note that 3979 * the device might have been reset more than once using 3980 * different reset methods before postreset is invoked. 3981 * 3982 * LOCKING: 3983 * Kernel thread context (may sleep) 3984 */ 3985 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3986 { 3987 u32 serror; 3988 3989 DPRINTK("ENTER\n"); 3990 3991 /* reset complete, clear SError */ 3992 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3993 sata_scr_write(link, SCR_ERROR, serror); 3994 3995 /* print link status */ 3996 sata_print_link_status(link); 3997 3998 DPRINTK("EXIT\n"); 3999 } 4000 4001 /** 4002 * ata_dev_same_device - Determine whether new ID matches configured device 4003 * @dev: device to compare against 4004 * @new_class: class of the new device 4005 * @new_id: IDENTIFY page of the new device 4006 * 4007 * Compare @new_class and @new_id against @dev and determine 4008 * whether @dev is the device indicated by @new_class and 4009 * @new_id. 4010 * 4011 * LOCKING: 4012 * None. 4013 * 4014 * RETURNS: 4015 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4016 */ 4017 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4018 const u16 *new_id) 4019 { 4020 const u16 *old_id = dev->id; 4021 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4022 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4023 4024 if (dev->class != new_class) { 4025 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 4026 dev->class, new_class); 4027 return 0; 4028 } 4029 4030 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4031 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4032 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4033 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4034 4035 if (strcmp(model[0], model[1])) { 4036 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4037 "'%s' != '%s'\n", model[0], model[1]); 4038 return 0; 4039 } 4040 4041 if (strcmp(serial[0], serial[1])) { 4042 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4043 "'%s' != '%s'\n", serial[0], serial[1]); 4044 return 0; 4045 } 4046 4047 return 1; 4048 } 4049 4050 /** 4051 * ata_dev_reread_id - Re-read IDENTIFY data 4052 * @dev: target ATA device 4053 * @readid_flags: read ID flags 4054 * 4055 * Re-read IDENTIFY page and make sure @dev is still attached to 4056 * the port. 4057 * 4058 * LOCKING: 4059 * Kernel thread context (may sleep) 4060 * 4061 * RETURNS: 4062 * 0 on success, negative errno otherwise 4063 */ 4064 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4065 { 4066 unsigned int class = dev->class; 4067 u16 *id = (void *)dev->link->ap->sector_buf; 4068 int rc; 4069 4070 /* read ID data */ 4071 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4072 if (rc) 4073 return rc; 4074 4075 /* is the device still there? */ 4076 if (!ata_dev_same_device(dev, class, id)) 4077 return -ENODEV; 4078 4079 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4080 return 0; 4081 } 4082 4083 /** 4084 * ata_dev_revalidate - Revalidate ATA device 4085 * @dev: device to revalidate 4086 * @new_class: new class code 4087 * @readid_flags: read ID flags 4088 * 4089 * Re-read IDENTIFY page, make sure @dev is still attached to the 4090 * port and reconfigure it according to the new IDENTIFY page. 4091 * 4092 * LOCKING: 4093 * Kernel thread context (may sleep) 4094 * 4095 * RETURNS: 4096 * 0 on success, negative errno otherwise 4097 */ 4098 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4099 unsigned int readid_flags) 4100 { 4101 u64 n_sectors = dev->n_sectors; 4102 int rc; 4103 4104 if (!ata_dev_enabled(dev)) 4105 return -ENODEV; 4106 4107 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4108 if (ata_class_enabled(new_class) && 4109 new_class != ATA_DEV_ATA && 4110 new_class != ATA_DEV_ATAPI && 4111 new_class != ATA_DEV_SEMB) { 4112 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4113 dev->class, new_class); 4114 rc = -ENODEV; 4115 goto fail; 4116 } 4117 4118 /* re-read ID */ 4119 rc = ata_dev_reread_id(dev, readid_flags); 4120 if (rc) 4121 goto fail; 4122 4123 /* configure device according to the new ID */ 4124 rc = ata_dev_configure(dev); 4125 if (rc) 4126 goto fail; 4127 4128 /* verify n_sectors hasn't changed */ 4129 if (dev->class == ATA_DEV_ATA && n_sectors && 4130 dev->n_sectors != n_sectors) { 4131 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 4132 "%llu != %llu\n", 4133 (unsigned long long)n_sectors, 4134 (unsigned long long)dev->n_sectors); 4135 4136 /* restore original n_sectors */ 4137 dev->n_sectors = n_sectors; 4138 4139 rc = -ENODEV; 4140 goto fail; 4141 } 4142 4143 return 0; 4144 4145 fail: 4146 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4147 return rc; 4148 } 4149 4150 struct ata_blacklist_entry { 4151 const char *model_num; 4152 const char *model_rev; 4153 unsigned long horkage; 4154 }; 4155 4156 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4157 /* Devices with DMA related problems under Linux */ 4158 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4159 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4160 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4161 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4162 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4163 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4164 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4165 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4166 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4167 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4168 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4169 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4170 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4171 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4172 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4173 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4174 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4175 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4176 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4177 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4178 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4179 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4180 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4181 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4182 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4183 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4184 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4185 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4186 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4187 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4188 /* Odd clown on sil3726/4726 PMPs */ 4189 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4190 4191 /* Weird ATAPI devices */ 4192 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4193 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4194 4195 /* Devices we expect to fail diagnostics */ 4196 4197 /* Devices where NCQ should be avoided */ 4198 /* NCQ is slow */ 4199 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4200 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4201 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4202 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4203 /* NCQ is broken */ 4204 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4205 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4206 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4207 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4208 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4209 4210 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4211 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4212 ATA_HORKAGE_FIRMWARE_WARN }, 4213 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4214 ATA_HORKAGE_FIRMWARE_WARN }, 4215 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4216 ATA_HORKAGE_FIRMWARE_WARN }, 4217 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4218 ATA_HORKAGE_FIRMWARE_WARN }, 4219 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4220 ATA_HORKAGE_FIRMWARE_WARN }, 4221 4222 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4223 ATA_HORKAGE_FIRMWARE_WARN }, 4224 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4225 ATA_HORKAGE_FIRMWARE_WARN }, 4226 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4227 ATA_HORKAGE_FIRMWARE_WARN }, 4228 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4229 ATA_HORKAGE_FIRMWARE_WARN }, 4230 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4231 ATA_HORKAGE_FIRMWARE_WARN }, 4232 4233 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4234 ATA_HORKAGE_FIRMWARE_WARN }, 4235 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4236 ATA_HORKAGE_FIRMWARE_WARN }, 4237 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4238 ATA_HORKAGE_FIRMWARE_WARN }, 4239 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4240 ATA_HORKAGE_FIRMWARE_WARN }, 4241 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4242 ATA_HORKAGE_FIRMWARE_WARN }, 4243 4244 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4245 ATA_HORKAGE_FIRMWARE_WARN }, 4246 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4247 ATA_HORKAGE_FIRMWARE_WARN }, 4248 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4249 ATA_HORKAGE_FIRMWARE_WARN }, 4250 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4251 ATA_HORKAGE_FIRMWARE_WARN }, 4252 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4253 ATA_HORKAGE_FIRMWARE_WARN }, 4254 4255 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4256 ATA_HORKAGE_FIRMWARE_WARN }, 4257 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4258 ATA_HORKAGE_FIRMWARE_WARN }, 4259 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4260 ATA_HORKAGE_FIRMWARE_WARN }, 4261 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4262 ATA_HORKAGE_FIRMWARE_WARN }, 4263 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4264 ATA_HORKAGE_FIRMWARE_WARN }, 4265 4266 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4267 ATA_HORKAGE_FIRMWARE_WARN }, 4268 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4269 ATA_HORKAGE_FIRMWARE_WARN }, 4270 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4271 ATA_HORKAGE_FIRMWARE_WARN }, 4272 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4273 ATA_HORKAGE_FIRMWARE_WARN }, 4274 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4275 ATA_HORKAGE_FIRMWARE_WARN }, 4276 4277 /* Blacklist entries taken from Silicon Image 3124/3132 4278 Windows driver .inf file - also several Linux problem reports */ 4279 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4280 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4281 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4282 4283 /* devices which puke on READ_NATIVE_MAX */ 4284 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4285 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4286 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4287 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4288 4289 /* Devices which report 1 sector over size HPA */ 4290 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4291 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4292 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4293 4294 /* Devices which get the IVB wrong */ 4295 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4296 /* Maybe we should just blacklist TSSTcorp... */ 4297 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4298 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4299 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4300 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4301 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4302 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4303 4304 /* Devices that do not need bridging limits applied */ 4305 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4306 4307 /* Devices which aren't very happy with higher link speeds */ 4308 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4309 4310 /* 4311 * Devices which choke on SETXFER. Applies only if both the 4312 * device and controller are SATA. 4313 */ 4314 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4315 4316 /* End Marker */ 4317 { } 4318 }; 4319 4320 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4321 { 4322 const char *p; 4323 int len; 4324 4325 /* 4326 * check for trailing wildcard: *\0 4327 */ 4328 p = strchr(patt, wildchar); 4329 if (p && ((*(p + 1)) == 0)) 4330 len = p - patt; 4331 else { 4332 len = strlen(name); 4333 if (!len) { 4334 if (!*patt) 4335 return 0; 4336 return -1; 4337 } 4338 } 4339 4340 return strncmp(patt, name, len); 4341 } 4342 4343 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4344 { 4345 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4346 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4347 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4348 4349 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4350 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4351 4352 while (ad->model_num) { 4353 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4354 if (ad->model_rev == NULL) 4355 return ad->horkage; 4356 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4357 return ad->horkage; 4358 } 4359 ad++; 4360 } 4361 return 0; 4362 } 4363 4364 static int ata_dma_blacklisted(const struct ata_device *dev) 4365 { 4366 /* We don't support polling DMA. 4367 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4368 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4369 */ 4370 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4371 (dev->flags & ATA_DFLAG_CDB_INTR)) 4372 return 1; 4373 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4374 } 4375 4376 /** 4377 * ata_is_40wire - check drive side detection 4378 * @dev: device 4379 * 4380 * Perform drive side detection decoding, allowing for device vendors 4381 * who can't follow the documentation. 4382 */ 4383 4384 static int ata_is_40wire(struct ata_device *dev) 4385 { 4386 if (dev->horkage & ATA_HORKAGE_IVB) 4387 return ata_drive_40wire_relaxed(dev->id); 4388 return ata_drive_40wire(dev->id); 4389 } 4390 4391 /** 4392 * cable_is_40wire - 40/80/SATA decider 4393 * @ap: port to consider 4394 * 4395 * This function encapsulates the policy for speed management 4396 * in one place. At the moment we don't cache the result but 4397 * there is a good case for setting ap->cbl to the result when 4398 * we are called with unknown cables (and figuring out if it 4399 * impacts hotplug at all). 4400 * 4401 * Return 1 if the cable appears to be 40 wire. 4402 */ 4403 4404 static int cable_is_40wire(struct ata_port *ap) 4405 { 4406 struct ata_link *link; 4407 struct ata_device *dev; 4408 4409 /* If the controller thinks we are 40 wire, we are. */ 4410 if (ap->cbl == ATA_CBL_PATA40) 4411 return 1; 4412 4413 /* If the controller thinks we are 80 wire, we are. */ 4414 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4415 return 0; 4416 4417 /* If the system is known to be 40 wire short cable (eg 4418 * laptop), then we allow 80 wire modes even if the drive 4419 * isn't sure. 4420 */ 4421 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4422 return 0; 4423 4424 /* If the controller doesn't know, we scan. 4425 * 4426 * Note: We look for all 40 wire detects at this point. Any 4427 * 80 wire detect is taken to be 80 wire cable because 4428 * - in many setups only the one drive (slave if present) will 4429 * give a valid detect 4430 * - if you have a non detect capable drive you don't want it 4431 * to colour the choice 4432 */ 4433 ata_for_each_link(link, ap, EDGE) { 4434 ata_for_each_dev(dev, link, ENABLED) { 4435 if (!ata_is_40wire(dev)) 4436 return 0; 4437 } 4438 } 4439 return 1; 4440 } 4441 4442 /** 4443 * ata_dev_xfermask - Compute supported xfermask of the given device 4444 * @dev: Device to compute xfermask for 4445 * 4446 * Compute supported xfermask of @dev and store it in 4447 * dev->*_mask. This function is responsible for applying all 4448 * known limits including host controller limits, device 4449 * blacklist, etc... 4450 * 4451 * LOCKING: 4452 * None. 4453 */ 4454 static void ata_dev_xfermask(struct ata_device *dev) 4455 { 4456 struct ata_link *link = dev->link; 4457 struct ata_port *ap = link->ap; 4458 struct ata_host *host = ap->host; 4459 unsigned long xfer_mask; 4460 4461 /* controller modes available */ 4462 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4463 ap->mwdma_mask, ap->udma_mask); 4464 4465 /* drive modes available */ 4466 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4467 dev->mwdma_mask, dev->udma_mask); 4468 xfer_mask &= ata_id_xfermask(dev->id); 4469 4470 /* 4471 * CFA Advanced TrueIDE timings are not allowed on a shared 4472 * cable 4473 */ 4474 if (ata_dev_pair(dev)) { 4475 /* No PIO5 or PIO6 */ 4476 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4477 /* No MWDMA3 or MWDMA 4 */ 4478 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4479 } 4480 4481 if (ata_dma_blacklisted(dev)) { 4482 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4483 ata_dev_printk(dev, KERN_WARNING, 4484 "device is on DMA blacklist, disabling DMA\n"); 4485 } 4486 4487 if ((host->flags & ATA_HOST_SIMPLEX) && 4488 host->simplex_claimed && host->simplex_claimed != ap) { 4489 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4490 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4491 "other device, disabling DMA\n"); 4492 } 4493 4494 if (ap->flags & ATA_FLAG_NO_IORDY) 4495 xfer_mask &= ata_pio_mask_no_iordy(dev); 4496 4497 if (ap->ops->mode_filter) 4498 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4499 4500 /* Apply cable rule here. Don't apply it early because when 4501 * we handle hot plug the cable type can itself change. 4502 * Check this last so that we know if the transfer rate was 4503 * solely limited by the cable. 4504 * Unknown or 80 wire cables reported host side are checked 4505 * drive side as well. Cases where we know a 40wire cable 4506 * is used safely for 80 are not checked here. 4507 */ 4508 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4509 /* UDMA/44 or higher would be available */ 4510 if (cable_is_40wire(ap)) { 4511 ata_dev_printk(dev, KERN_WARNING, 4512 "limited to UDMA/33 due to 40-wire cable\n"); 4513 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4514 } 4515 4516 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4517 &dev->mwdma_mask, &dev->udma_mask); 4518 } 4519 4520 /** 4521 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4522 * @dev: Device to which command will be sent 4523 * 4524 * Issue SET FEATURES - XFER MODE command to device @dev 4525 * on port @ap. 4526 * 4527 * LOCKING: 4528 * PCI/etc. bus probe sem. 4529 * 4530 * RETURNS: 4531 * 0 on success, AC_ERR_* mask otherwise. 4532 */ 4533 4534 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4535 { 4536 struct ata_taskfile tf; 4537 unsigned int err_mask; 4538 4539 /* set up set-features taskfile */ 4540 DPRINTK("set features - xfer mode\n"); 4541 4542 /* Some controllers and ATAPI devices show flaky interrupt 4543 * behavior after setting xfer mode. Use polling instead. 4544 */ 4545 ata_tf_init(dev, &tf); 4546 tf.command = ATA_CMD_SET_FEATURES; 4547 tf.feature = SETFEATURES_XFER; 4548 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4549 tf.protocol = ATA_PROT_NODATA; 4550 /* If we are using IORDY we must send the mode setting command */ 4551 if (ata_pio_need_iordy(dev)) 4552 tf.nsect = dev->xfer_mode; 4553 /* If the device has IORDY and the controller does not - turn it off */ 4554 else if (ata_id_has_iordy(dev->id)) 4555 tf.nsect = 0x01; 4556 else /* In the ancient relic department - skip all of this */ 4557 return 0; 4558 4559 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4560 4561 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4562 return err_mask; 4563 } 4564 /** 4565 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4566 * @dev: Device to which command will be sent 4567 * @enable: Whether to enable or disable the feature 4568 * @feature: The sector count represents the feature to set 4569 * 4570 * Issue SET FEATURES - SATA FEATURES command to device @dev 4571 * on port @ap with sector count 4572 * 4573 * LOCKING: 4574 * PCI/etc. bus probe sem. 4575 * 4576 * RETURNS: 4577 * 0 on success, AC_ERR_* mask otherwise. 4578 */ 4579 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4580 u8 feature) 4581 { 4582 struct ata_taskfile tf; 4583 unsigned int err_mask; 4584 4585 /* set up set-features taskfile */ 4586 DPRINTK("set features - SATA features\n"); 4587 4588 ata_tf_init(dev, &tf); 4589 tf.command = ATA_CMD_SET_FEATURES; 4590 tf.feature = enable; 4591 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4592 tf.protocol = ATA_PROT_NODATA; 4593 tf.nsect = feature; 4594 4595 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4596 4597 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4598 return err_mask; 4599 } 4600 4601 /** 4602 * ata_dev_init_params - Issue INIT DEV PARAMS command 4603 * @dev: Device to which command will be sent 4604 * @heads: Number of heads (taskfile parameter) 4605 * @sectors: Number of sectors (taskfile parameter) 4606 * 4607 * LOCKING: 4608 * Kernel thread context (may sleep) 4609 * 4610 * RETURNS: 4611 * 0 on success, AC_ERR_* mask otherwise. 4612 */ 4613 static unsigned int ata_dev_init_params(struct ata_device *dev, 4614 u16 heads, u16 sectors) 4615 { 4616 struct ata_taskfile tf; 4617 unsigned int err_mask; 4618 4619 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4620 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4621 return AC_ERR_INVALID; 4622 4623 /* set up init dev params taskfile */ 4624 DPRINTK("init dev params \n"); 4625 4626 ata_tf_init(dev, &tf); 4627 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4628 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4629 tf.protocol = ATA_PROT_NODATA; 4630 tf.nsect = sectors; 4631 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4632 4633 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4634 /* A clean abort indicates an original or just out of spec drive 4635 and we should continue as we issue the setup based on the 4636 drive reported working geometry */ 4637 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4638 err_mask = 0; 4639 4640 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4641 return err_mask; 4642 } 4643 4644 /** 4645 * ata_sg_clean - Unmap DMA memory associated with command 4646 * @qc: Command containing DMA memory to be released 4647 * 4648 * Unmap all mapped DMA memory associated with this command. 4649 * 4650 * LOCKING: 4651 * spin_lock_irqsave(host lock) 4652 */ 4653 void ata_sg_clean(struct ata_queued_cmd *qc) 4654 { 4655 struct ata_port *ap = qc->ap; 4656 struct scatterlist *sg = qc->sg; 4657 int dir = qc->dma_dir; 4658 4659 WARN_ON_ONCE(sg == NULL); 4660 4661 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4662 4663 if (qc->n_elem) 4664 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4665 4666 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4667 qc->sg = NULL; 4668 } 4669 4670 /** 4671 * atapi_check_dma - Check whether ATAPI DMA can be supported 4672 * @qc: Metadata associated with taskfile to check 4673 * 4674 * Allow low-level driver to filter ATA PACKET commands, returning 4675 * a status indicating whether or not it is OK to use DMA for the 4676 * supplied PACKET command. 4677 * 4678 * LOCKING: 4679 * spin_lock_irqsave(host lock) 4680 * 4681 * RETURNS: 0 when ATAPI DMA can be used 4682 * nonzero otherwise 4683 */ 4684 int atapi_check_dma(struct ata_queued_cmd *qc) 4685 { 4686 struct ata_port *ap = qc->ap; 4687 4688 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4689 * few ATAPI devices choke on such DMA requests. 4690 */ 4691 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4692 unlikely(qc->nbytes & 15)) 4693 return 1; 4694 4695 if (ap->ops->check_atapi_dma) 4696 return ap->ops->check_atapi_dma(qc); 4697 4698 return 0; 4699 } 4700 4701 /** 4702 * ata_std_qc_defer - Check whether a qc needs to be deferred 4703 * @qc: ATA command in question 4704 * 4705 * Non-NCQ commands cannot run with any other command, NCQ or 4706 * not. As upper layer only knows the queue depth, we are 4707 * responsible for maintaining exclusion. This function checks 4708 * whether a new command @qc can be issued. 4709 * 4710 * LOCKING: 4711 * spin_lock_irqsave(host lock) 4712 * 4713 * RETURNS: 4714 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4715 */ 4716 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4717 { 4718 struct ata_link *link = qc->dev->link; 4719 4720 if (qc->tf.protocol == ATA_PROT_NCQ) { 4721 if (!ata_tag_valid(link->active_tag)) 4722 return 0; 4723 } else { 4724 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4725 return 0; 4726 } 4727 4728 return ATA_DEFER_LINK; 4729 } 4730 4731 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4732 4733 /** 4734 * ata_sg_init - Associate command with scatter-gather table. 4735 * @qc: Command to be associated 4736 * @sg: Scatter-gather table. 4737 * @n_elem: Number of elements in s/g table. 4738 * 4739 * Initialize the data-related elements of queued_cmd @qc 4740 * to point to a scatter-gather table @sg, containing @n_elem 4741 * elements. 4742 * 4743 * LOCKING: 4744 * spin_lock_irqsave(host lock) 4745 */ 4746 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4747 unsigned int n_elem) 4748 { 4749 qc->sg = sg; 4750 qc->n_elem = n_elem; 4751 qc->cursg = qc->sg; 4752 } 4753 4754 /** 4755 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4756 * @qc: Command with scatter-gather table to be mapped. 4757 * 4758 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4759 * 4760 * LOCKING: 4761 * spin_lock_irqsave(host lock) 4762 * 4763 * RETURNS: 4764 * Zero on success, negative on error. 4765 * 4766 */ 4767 static int ata_sg_setup(struct ata_queued_cmd *qc) 4768 { 4769 struct ata_port *ap = qc->ap; 4770 unsigned int n_elem; 4771 4772 VPRINTK("ENTER, ata%u\n", ap->print_id); 4773 4774 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4775 if (n_elem < 1) 4776 return -1; 4777 4778 DPRINTK("%d sg elements mapped\n", n_elem); 4779 qc->orig_n_elem = qc->n_elem; 4780 qc->n_elem = n_elem; 4781 qc->flags |= ATA_QCFLAG_DMAMAP; 4782 4783 return 0; 4784 } 4785 4786 /** 4787 * swap_buf_le16 - swap halves of 16-bit words in place 4788 * @buf: Buffer to swap 4789 * @buf_words: Number of 16-bit words in buffer. 4790 * 4791 * Swap halves of 16-bit words if needed to convert from 4792 * little-endian byte order to native cpu byte order, or 4793 * vice-versa. 4794 * 4795 * LOCKING: 4796 * Inherited from caller. 4797 */ 4798 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4799 { 4800 #ifdef __BIG_ENDIAN 4801 unsigned int i; 4802 4803 for (i = 0; i < buf_words; i++) 4804 buf[i] = le16_to_cpu(buf[i]); 4805 #endif /* __BIG_ENDIAN */ 4806 } 4807 4808 /** 4809 * ata_qc_new - Request an available ATA command, for queueing 4810 * @ap: target port 4811 * 4812 * LOCKING: 4813 * None. 4814 */ 4815 4816 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4817 { 4818 struct ata_queued_cmd *qc = NULL; 4819 unsigned int i; 4820 4821 /* no command while frozen */ 4822 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4823 return NULL; 4824 4825 /* the last tag is reserved for internal command. */ 4826 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4827 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4828 qc = __ata_qc_from_tag(ap, i); 4829 break; 4830 } 4831 4832 if (qc) 4833 qc->tag = i; 4834 4835 return qc; 4836 } 4837 4838 /** 4839 * ata_qc_new_init - Request an available ATA command, and initialize it 4840 * @dev: Device from whom we request an available command structure 4841 * 4842 * LOCKING: 4843 * None. 4844 */ 4845 4846 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4847 { 4848 struct ata_port *ap = dev->link->ap; 4849 struct ata_queued_cmd *qc; 4850 4851 qc = ata_qc_new(ap); 4852 if (qc) { 4853 qc->scsicmd = NULL; 4854 qc->ap = ap; 4855 qc->dev = dev; 4856 4857 ata_qc_reinit(qc); 4858 } 4859 4860 return qc; 4861 } 4862 4863 /** 4864 * ata_qc_free - free unused ata_queued_cmd 4865 * @qc: Command to complete 4866 * 4867 * Designed to free unused ata_queued_cmd object 4868 * in case something prevents using it. 4869 * 4870 * LOCKING: 4871 * spin_lock_irqsave(host lock) 4872 */ 4873 void ata_qc_free(struct ata_queued_cmd *qc) 4874 { 4875 struct ata_port *ap = qc->ap; 4876 unsigned int tag; 4877 4878 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4879 4880 qc->flags = 0; 4881 tag = qc->tag; 4882 if (likely(ata_tag_valid(tag))) { 4883 qc->tag = ATA_TAG_POISON; 4884 clear_bit(tag, &ap->qc_allocated); 4885 } 4886 } 4887 4888 void __ata_qc_complete(struct ata_queued_cmd *qc) 4889 { 4890 struct ata_port *ap = qc->ap; 4891 struct ata_link *link = qc->dev->link; 4892 4893 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4894 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4895 4896 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4897 ata_sg_clean(qc); 4898 4899 /* command should be marked inactive atomically with qc completion */ 4900 if (qc->tf.protocol == ATA_PROT_NCQ) { 4901 link->sactive &= ~(1 << qc->tag); 4902 if (!link->sactive) 4903 ap->nr_active_links--; 4904 } else { 4905 link->active_tag = ATA_TAG_POISON; 4906 ap->nr_active_links--; 4907 } 4908 4909 /* clear exclusive status */ 4910 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4911 ap->excl_link == link)) 4912 ap->excl_link = NULL; 4913 4914 /* atapi: mark qc as inactive to prevent the interrupt handler 4915 * from completing the command twice later, before the error handler 4916 * is called. (when rc != 0 and atapi request sense is needed) 4917 */ 4918 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4919 ap->qc_active &= ~(1 << qc->tag); 4920 4921 /* call completion callback */ 4922 qc->complete_fn(qc); 4923 } 4924 4925 static void fill_result_tf(struct ata_queued_cmd *qc) 4926 { 4927 struct ata_port *ap = qc->ap; 4928 4929 qc->result_tf.flags = qc->tf.flags; 4930 ap->ops->qc_fill_rtf(qc); 4931 } 4932 4933 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4934 { 4935 struct ata_device *dev = qc->dev; 4936 4937 if (ata_tag_internal(qc->tag)) 4938 return; 4939 4940 if (ata_is_nodata(qc->tf.protocol)) 4941 return; 4942 4943 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4944 return; 4945 4946 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4947 } 4948 4949 /** 4950 * ata_qc_complete - Complete an active ATA command 4951 * @qc: Command to complete 4952 * 4953 * Indicate to the mid and upper layers that an ATA 4954 * command has completed, with either an ok or not-ok status. 4955 * 4956 * LOCKING: 4957 * spin_lock_irqsave(host lock) 4958 */ 4959 void ata_qc_complete(struct ata_queued_cmd *qc) 4960 { 4961 struct ata_port *ap = qc->ap; 4962 4963 /* XXX: New EH and old EH use different mechanisms to 4964 * synchronize EH with regular execution path. 4965 * 4966 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4967 * Normal execution path is responsible for not accessing a 4968 * failed qc. libata core enforces the rule by returning NULL 4969 * from ata_qc_from_tag() for failed qcs. 4970 * 4971 * Old EH depends on ata_qc_complete() nullifying completion 4972 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4973 * not synchronize with interrupt handler. Only PIO task is 4974 * taken care of. 4975 */ 4976 if (ap->ops->error_handler) { 4977 struct ata_device *dev = qc->dev; 4978 struct ata_eh_info *ehi = &dev->link->eh_info; 4979 4980 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4981 4982 if (unlikely(qc->err_mask)) 4983 qc->flags |= ATA_QCFLAG_FAILED; 4984 4985 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4986 if (!ata_tag_internal(qc->tag)) { 4987 /* always fill result TF for failed qc */ 4988 fill_result_tf(qc); 4989 ata_qc_schedule_eh(qc); 4990 return; 4991 } 4992 } 4993 4994 /* read result TF if requested */ 4995 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4996 fill_result_tf(qc); 4997 4998 /* Some commands need post-processing after successful 4999 * completion. 5000 */ 5001 switch (qc->tf.command) { 5002 case ATA_CMD_SET_FEATURES: 5003 if (qc->tf.feature != SETFEATURES_WC_ON && 5004 qc->tf.feature != SETFEATURES_WC_OFF) 5005 break; 5006 /* fall through */ 5007 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5008 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5009 /* revalidate device */ 5010 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5011 ata_port_schedule_eh(ap); 5012 break; 5013 5014 case ATA_CMD_SLEEP: 5015 dev->flags |= ATA_DFLAG_SLEEPING; 5016 break; 5017 } 5018 5019 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5020 ata_verify_xfer(qc); 5021 5022 __ata_qc_complete(qc); 5023 } else { 5024 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5025 return; 5026 5027 /* read result TF if failed or requested */ 5028 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5029 fill_result_tf(qc); 5030 5031 __ata_qc_complete(qc); 5032 } 5033 } 5034 5035 /** 5036 * ata_qc_complete_multiple - Complete multiple qcs successfully 5037 * @ap: port in question 5038 * @qc_active: new qc_active mask 5039 * 5040 * Complete in-flight commands. This functions is meant to be 5041 * called from low-level driver's interrupt routine to complete 5042 * requests normally. ap->qc_active and @qc_active is compared 5043 * and commands are completed accordingly. 5044 * 5045 * LOCKING: 5046 * spin_lock_irqsave(host lock) 5047 * 5048 * RETURNS: 5049 * Number of completed commands on success, -errno otherwise. 5050 */ 5051 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5052 { 5053 int nr_done = 0; 5054 u32 done_mask; 5055 5056 done_mask = ap->qc_active ^ qc_active; 5057 5058 if (unlikely(done_mask & qc_active)) { 5059 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5060 "(%08x->%08x)\n", ap->qc_active, qc_active); 5061 return -EINVAL; 5062 } 5063 5064 while (done_mask) { 5065 struct ata_queued_cmd *qc; 5066 unsigned int tag = __ffs(done_mask); 5067 5068 qc = ata_qc_from_tag(ap, tag); 5069 if (qc) { 5070 ata_qc_complete(qc); 5071 nr_done++; 5072 } 5073 done_mask &= ~(1 << tag); 5074 } 5075 5076 return nr_done; 5077 } 5078 5079 /** 5080 * ata_qc_issue - issue taskfile to device 5081 * @qc: command to issue to device 5082 * 5083 * Prepare an ATA command to submission to device. 5084 * This includes mapping the data into a DMA-able 5085 * area, filling in the S/G table, and finally 5086 * writing the taskfile to hardware, starting the command. 5087 * 5088 * LOCKING: 5089 * spin_lock_irqsave(host lock) 5090 */ 5091 void ata_qc_issue(struct ata_queued_cmd *qc) 5092 { 5093 struct ata_port *ap = qc->ap; 5094 struct ata_link *link = qc->dev->link; 5095 u8 prot = qc->tf.protocol; 5096 5097 /* Make sure only one non-NCQ command is outstanding. The 5098 * check is skipped for old EH because it reuses active qc to 5099 * request ATAPI sense. 5100 */ 5101 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5102 5103 if (ata_is_ncq(prot)) { 5104 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5105 5106 if (!link->sactive) 5107 ap->nr_active_links++; 5108 link->sactive |= 1 << qc->tag; 5109 } else { 5110 WARN_ON_ONCE(link->sactive); 5111 5112 ap->nr_active_links++; 5113 link->active_tag = qc->tag; 5114 } 5115 5116 qc->flags |= ATA_QCFLAG_ACTIVE; 5117 ap->qc_active |= 1 << qc->tag; 5118 5119 /* We guarantee to LLDs that they will have at least one 5120 * non-zero sg if the command is a data command. 5121 */ 5122 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5123 5124 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5125 (ap->flags & ATA_FLAG_PIO_DMA))) 5126 if (ata_sg_setup(qc)) 5127 goto sg_err; 5128 5129 /* if device is sleeping, schedule reset and abort the link */ 5130 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5131 link->eh_info.action |= ATA_EH_RESET; 5132 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5133 ata_link_abort(link); 5134 return; 5135 } 5136 5137 ap->ops->qc_prep(qc); 5138 5139 qc->err_mask |= ap->ops->qc_issue(qc); 5140 if (unlikely(qc->err_mask)) 5141 goto err; 5142 return; 5143 5144 sg_err: 5145 qc->err_mask |= AC_ERR_SYSTEM; 5146 err: 5147 ata_qc_complete(qc); 5148 } 5149 5150 /** 5151 * sata_scr_valid - test whether SCRs are accessible 5152 * @link: ATA link to test SCR accessibility for 5153 * 5154 * Test whether SCRs are accessible for @link. 5155 * 5156 * LOCKING: 5157 * None. 5158 * 5159 * RETURNS: 5160 * 1 if SCRs are accessible, 0 otherwise. 5161 */ 5162 int sata_scr_valid(struct ata_link *link) 5163 { 5164 struct ata_port *ap = link->ap; 5165 5166 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5167 } 5168 5169 /** 5170 * sata_scr_read - read SCR register of the specified port 5171 * @link: ATA link to read SCR for 5172 * @reg: SCR to read 5173 * @val: Place to store read value 5174 * 5175 * Read SCR register @reg of @link into *@val. This function is 5176 * guaranteed to succeed if @link is ap->link, the cable type of 5177 * the port is SATA and the port implements ->scr_read. 5178 * 5179 * LOCKING: 5180 * None if @link is ap->link. Kernel thread context otherwise. 5181 * 5182 * RETURNS: 5183 * 0 on success, negative errno on failure. 5184 */ 5185 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5186 { 5187 if (ata_is_host_link(link)) { 5188 if (sata_scr_valid(link)) 5189 return link->ap->ops->scr_read(link, reg, val); 5190 return -EOPNOTSUPP; 5191 } 5192 5193 return sata_pmp_scr_read(link, reg, val); 5194 } 5195 5196 /** 5197 * sata_scr_write - write SCR register of the specified port 5198 * @link: ATA link to write SCR for 5199 * @reg: SCR to write 5200 * @val: value to write 5201 * 5202 * Write @val to SCR register @reg of @link. This function is 5203 * guaranteed to succeed if @link is ap->link, the cable type of 5204 * the port is SATA and the port implements ->scr_read. 5205 * 5206 * LOCKING: 5207 * None if @link is ap->link. Kernel thread context otherwise. 5208 * 5209 * RETURNS: 5210 * 0 on success, negative errno on failure. 5211 */ 5212 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5213 { 5214 if (ata_is_host_link(link)) { 5215 if (sata_scr_valid(link)) 5216 return link->ap->ops->scr_write(link, reg, val); 5217 return -EOPNOTSUPP; 5218 } 5219 5220 return sata_pmp_scr_write(link, reg, val); 5221 } 5222 5223 /** 5224 * sata_scr_write_flush - write SCR register of the specified port and flush 5225 * @link: ATA link to write SCR for 5226 * @reg: SCR to write 5227 * @val: value to write 5228 * 5229 * This function is identical to sata_scr_write() except that this 5230 * function performs flush after writing to the register. 5231 * 5232 * LOCKING: 5233 * None if @link is ap->link. Kernel thread context otherwise. 5234 * 5235 * RETURNS: 5236 * 0 on success, negative errno on failure. 5237 */ 5238 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5239 { 5240 if (ata_is_host_link(link)) { 5241 int rc; 5242 5243 if (sata_scr_valid(link)) { 5244 rc = link->ap->ops->scr_write(link, reg, val); 5245 if (rc == 0) 5246 rc = link->ap->ops->scr_read(link, reg, &val); 5247 return rc; 5248 } 5249 return -EOPNOTSUPP; 5250 } 5251 5252 return sata_pmp_scr_write(link, reg, val); 5253 } 5254 5255 /** 5256 * ata_phys_link_online - test whether the given link is online 5257 * @link: ATA link to test 5258 * 5259 * Test whether @link is online. Note that this function returns 5260 * 0 if online status of @link cannot be obtained, so 5261 * ata_link_online(link) != !ata_link_offline(link). 5262 * 5263 * LOCKING: 5264 * None. 5265 * 5266 * RETURNS: 5267 * True if the port online status is available and online. 5268 */ 5269 bool ata_phys_link_online(struct ata_link *link) 5270 { 5271 u32 sstatus; 5272 5273 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5274 ata_sstatus_online(sstatus)) 5275 return true; 5276 return false; 5277 } 5278 5279 /** 5280 * ata_phys_link_offline - test whether the given link is offline 5281 * @link: ATA link to test 5282 * 5283 * Test whether @link is offline. Note that this function 5284 * returns 0 if offline status of @link cannot be obtained, so 5285 * ata_link_online(link) != !ata_link_offline(link). 5286 * 5287 * LOCKING: 5288 * None. 5289 * 5290 * RETURNS: 5291 * True if the port offline status is available and offline. 5292 */ 5293 bool ata_phys_link_offline(struct ata_link *link) 5294 { 5295 u32 sstatus; 5296 5297 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5298 !ata_sstatus_online(sstatus)) 5299 return true; 5300 return false; 5301 } 5302 5303 /** 5304 * ata_link_online - test whether the given link is online 5305 * @link: ATA link to test 5306 * 5307 * Test whether @link is online. This is identical to 5308 * ata_phys_link_online() when there's no slave link. When 5309 * there's a slave link, this function should only be called on 5310 * the master link and will return true if any of M/S links is 5311 * online. 5312 * 5313 * LOCKING: 5314 * None. 5315 * 5316 * RETURNS: 5317 * True if the port online status is available and online. 5318 */ 5319 bool ata_link_online(struct ata_link *link) 5320 { 5321 struct ata_link *slave = link->ap->slave_link; 5322 5323 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5324 5325 return ata_phys_link_online(link) || 5326 (slave && ata_phys_link_online(slave)); 5327 } 5328 5329 /** 5330 * ata_link_offline - test whether the given link is offline 5331 * @link: ATA link to test 5332 * 5333 * Test whether @link is offline. This is identical to 5334 * ata_phys_link_offline() when there's no slave link. When 5335 * there's a slave link, this function should only be called on 5336 * the master link and will return true if both M/S links are 5337 * offline. 5338 * 5339 * LOCKING: 5340 * None. 5341 * 5342 * RETURNS: 5343 * True if the port offline status is available and offline. 5344 */ 5345 bool ata_link_offline(struct ata_link *link) 5346 { 5347 struct ata_link *slave = link->ap->slave_link; 5348 5349 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5350 5351 return ata_phys_link_offline(link) && 5352 (!slave || ata_phys_link_offline(slave)); 5353 } 5354 5355 #ifdef CONFIG_PM 5356 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5357 unsigned int action, unsigned int ehi_flags, 5358 int wait) 5359 { 5360 unsigned long flags; 5361 int i, rc; 5362 5363 for (i = 0; i < host->n_ports; i++) { 5364 struct ata_port *ap = host->ports[i]; 5365 struct ata_link *link; 5366 5367 /* Previous resume operation might still be in 5368 * progress. Wait for PM_PENDING to clear. 5369 */ 5370 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5371 ata_port_wait_eh(ap); 5372 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5373 } 5374 5375 /* request PM ops to EH */ 5376 spin_lock_irqsave(ap->lock, flags); 5377 5378 ap->pm_mesg = mesg; 5379 if (wait) { 5380 rc = 0; 5381 ap->pm_result = &rc; 5382 } 5383 5384 ap->pflags |= ATA_PFLAG_PM_PENDING; 5385 ata_for_each_link(link, ap, HOST_FIRST) { 5386 link->eh_info.action |= action; 5387 link->eh_info.flags |= ehi_flags; 5388 } 5389 5390 ata_port_schedule_eh(ap); 5391 5392 spin_unlock_irqrestore(ap->lock, flags); 5393 5394 /* wait and check result */ 5395 if (wait) { 5396 ata_port_wait_eh(ap); 5397 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5398 if (rc) 5399 return rc; 5400 } 5401 } 5402 5403 return 0; 5404 } 5405 5406 /** 5407 * ata_host_suspend - suspend host 5408 * @host: host to suspend 5409 * @mesg: PM message 5410 * 5411 * Suspend @host. Actual operation is performed by EH. This 5412 * function requests EH to perform PM operations and waits for EH 5413 * to finish. 5414 * 5415 * LOCKING: 5416 * Kernel thread context (may sleep). 5417 * 5418 * RETURNS: 5419 * 0 on success, -errno on failure. 5420 */ 5421 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5422 { 5423 int rc; 5424 5425 /* 5426 * disable link pm on all ports before requesting 5427 * any pm activity 5428 */ 5429 ata_lpm_enable(host); 5430 5431 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5432 if (rc == 0) 5433 host->dev->power.power_state = mesg; 5434 return rc; 5435 } 5436 5437 /** 5438 * ata_host_resume - resume host 5439 * @host: host to resume 5440 * 5441 * Resume @host. Actual operation is performed by EH. This 5442 * function requests EH to perform PM operations and returns. 5443 * Note that all resume operations are performed parallely. 5444 * 5445 * LOCKING: 5446 * Kernel thread context (may sleep). 5447 */ 5448 void ata_host_resume(struct ata_host *host) 5449 { 5450 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5451 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5452 host->dev->power.power_state = PMSG_ON; 5453 5454 /* reenable link pm */ 5455 ata_lpm_disable(host); 5456 } 5457 #endif 5458 5459 /** 5460 * ata_port_start - Set port up for dma. 5461 * @ap: Port to initialize 5462 * 5463 * Called just after data structures for each port are 5464 * initialized. Allocates space for PRD table. 5465 * 5466 * May be used as the port_start() entry in ata_port_operations. 5467 * 5468 * LOCKING: 5469 * Inherited from caller. 5470 */ 5471 int ata_port_start(struct ata_port *ap) 5472 { 5473 struct device *dev = ap->dev; 5474 5475 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5476 GFP_KERNEL); 5477 if (!ap->prd) 5478 return -ENOMEM; 5479 5480 return 0; 5481 } 5482 5483 /** 5484 * ata_dev_init - Initialize an ata_device structure 5485 * @dev: Device structure to initialize 5486 * 5487 * Initialize @dev in preparation for probing. 5488 * 5489 * LOCKING: 5490 * Inherited from caller. 5491 */ 5492 void ata_dev_init(struct ata_device *dev) 5493 { 5494 struct ata_link *link = ata_dev_phys_link(dev); 5495 struct ata_port *ap = link->ap; 5496 unsigned long flags; 5497 5498 /* SATA spd limit is bound to the attached device, reset together */ 5499 link->sata_spd_limit = link->hw_sata_spd_limit; 5500 link->sata_spd = 0; 5501 5502 /* High bits of dev->flags are used to record warm plug 5503 * requests which occur asynchronously. Synchronize using 5504 * host lock. 5505 */ 5506 spin_lock_irqsave(ap->lock, flags); 5507 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5508 dev->horkage = 0; 5509 spin_unlock_irqrestore(ap->lock, flags); 5510 5511 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5512 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5513 dev->pio_mask = UINT_MAX; 5514 dev->mwdma_mask = UINT_MAX; 5515 dev->udma_mask = UINT_MAX; 5516 } 5517 5518 /** 5519 * ata_link_init - Initialize an ata_link structure 5520 * @ap: ATA port link is attached to 5521 * @link: Link structure to initialize 5522 * @pmp: Port multiplier port number 5523 * 5524 * Initialize @link. 5525 * 5526 * LOCKING: 5527 * Kernel thread context (may sleep) 5528 */ 5529 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5530 { 5531 int i; 5532 5533 /* clear everything except for devices */ 5534 memset(link, 0, offsetof(struct ata_link, device[0])); 5535 5536 link->ap = ap; 5537 link->pmp = pmp; 5538 link->active_tag = ATA_TAG_POISON; 5539 link->hw_sata_spd_limit = UINT_MAX; 5540 5541 /* can't use iterator, ap isn't initialized yet */ 5542 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5543 struct ata_device *dev = &link->device[i]; 5544 5545 dev->link = link; 5546 dev->devno = dev - link->device; 5547 ata_dev_init(dev); 5548 } 5549 } 5550 5551 /** 5552 * sata_link_init_spd - Initialize link->sata_spd_limit 5553 * @link: Link to configure sata_spd_limit for 5554 * 5555 * Initialize @link->[hw_]sata_spd_limit to the currently 5556 * configured value. 5557 * 5558 * LOCKING: 5559 * Kernel thread context (may sleep). 5560 * 5561 * RETURNS: 5562 * 0 on success, -errno on failure. 5563 */ 5564 int sata_link_init_spd(struct ata_link *link) 5565 { 5566 u8 spd; 5567 int rc; 5568 5569 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5570 if (rc) 5571 return rc; 5572 5573 spd = (link->saved_scontrol >> 4) & 0xf; 5574 if (spd) 5575 link->hw_sata_spd_limit &= (1 << spd) - 1; 5576 5577 ata_force_link_limits(link); 5578 5579 link->sata_spd_limit = link->hw_sata_spd_limit; 5580 5581 return 0; 5582 } 5583 5584 /** 5585 * ata_port_alloc - allocate and initialize basic ATA port resources 5586 * @host: ATA host this allocated port belongs to 5587 * 5588 * Allocate and initialize basic ATA port resources. 5589 * 5590 * RETURNS: 5591 * Allocate ATA port on success, NULL on failure. 5592 * 5593 * LOCKING: 5594 * Inherited from calling layer (may sleep). 5595 */ 5596 struct ata_port *ata_port_alloc(struct ata_host *host) 5597 { 5598 struct ata_port *ap; 5599 5600 DPRINTK("ENTER\n"); 5601 5602 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5603 if (!ap) 5604 return NULL; 5605 5606 ap->pflags |= ATA_PFLAG_INITIALIZING; 5607 ap->lock = &host->lock; 5608 ap->flags = ATA_FLAG_DISABLED; 5609 ap->print_id = -1; 5610 ap->ctl = ATA_DEVCTL_OBS; 5611 ap->host = host; 5612 ap->dev = host->dev; 5613 ap->last_ctl = 0xFF; 5614 5615 #if defined(ATA_VERBOSE_DEBUG) 5616 /* turn on all debugging levels */ 5617 ap->msg_enable = 0x00FF; 5618 #elif defined(ATA_DEBUG) 5619 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5620 #else 5621 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5622 #endif 5623 5624 #ifdef CONFIG_ATA_SFF 5625 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5626 #else 5627 INIT_DELAYED_WORK(&ap->port_task, NULL); 5628 #endif 5629 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5630 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5631 INIT_LIST_HEAD(&ap->eh_done_q); 5632 init_waitqueue_head(&ap->eh_wait_q); 5633 init_completion(&ap->park_req_pending); 5634 init_timer_deferrable(&ap->fastdrain_timer); 5635 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5636 ap->fastdrain_timer.data = (unsigned long)ap; 5637 5638 ap->cbl = ATA_CBL_NONE; 5639 5640 ata_link_init(ap, &ap->link, 0); 5641 5642 #ifdef ATA_IRQ_TRAP 5643 ap->stats.unhandled_irq = 1; 5644 ap->stats.idle_irq = 1; 5645 #endif 5646 return ap; 5647 } 5648 5649 static void ata_host_release(struct device *gendev, void *res) 5650 { 5651 struct ata_host *host = dev_get_drvdata(gendev); 5652 int i; 5653 5654 for (i = 0; i < host->n_ports; i++) { 5655 struct ata_port *ap = host->ports[i]; 5656 5657 if (!ap) 5658 continue; 5659 5660 if (ap->scsi_host) 5661 scsi_host_put(ap->scsi_host); 5662 5663 kfree(ap->pmp_link); 5664 kfree(ap->slave_link); 5665 kfree(ap); 5666 host->ports[i] = NULL; 5667 } 5668 5669 dev_set_drvdata(gendev, NULL); 5670 } 5671 5672 /** 5673 * ata_host_alloc - allocate and init basic ATA host resources 5674 * @dev: generic device this host is associated with 5675 * @max_ports: maximum number of ATA ports associated with this host 5676 * 5677 * Allocate and initialize basic ATA host resources. LLD calls 5678 * this function to allocate a host, initializes it fully and 5679 * attaches it using ata_host_register(). 5680 * 5681 * @max_ports ports are allocated and host->n_ports is 5682 * initialized to @max_ports. The caller is allowed to decrease 5683 * host->n_ports before calling ata_host_register(). The unused 5684 * ports will be automatically freed on registration. 5685 * 5686 * RETURNS: 5687 * Allocate ATA host on success, NULL on failure. 5688 * 5689 * LOCKING: 5690 * Inherited from calling layer (may sleep). 5691 */ 5692 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5693 { 5694 struct ata_host *host; 5695 size_t sz; 5696 int i; 5697 5698 DPRINTK("ENTER\n"); 5699 5700 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5701 return NULL; 5702 5703 /* alloc a container for our list of ATA ports (buses) */ 5704 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5705 /* alloc a container for our list of ATA ports (buses) */ 5706 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5707 if (!host) 5708 goto err_out; 5709 5710 devres_add(dev, host); 5711 dev_set_drvdata(dev, host); 5712 5713 spin_lock_init(&host->lock); 5714 host->dev = dev; 5715 host->n_ports = max_ports; 5716 5717 /* allocate ports bound to this host */ 5718 for (i = 0; i < max_ports; i++) { 5719 struct ata_port *ap; 5720 5721 ap = ata_port_alloc(host); 5722 if (!ap) 5723 goto err_out; 5724 5725 ap->port_no = i; 5726 host->ports[i] = ap; 5727 } 5728 5729 devres_remove_group(dev, NULL); 5730 return host; 5731 5732 err_out: 5733 devres_release_group(dev, NULL); 5734 return NULL; 5735 } 5736 5737 /** 5738 * ata_host_alloc_pinfo - alloc host and init with port_info array 5739 * @dev: generic device this host is associated with 5740 * @ppi: array of ATA port_info to initialize host with 5741 * @n_ports: number of ATA ports attached to this host 5742 * 5743 * Allocate ATA host and initialize with info from @ppi. If NULL 5744 * terminated, @ppi may contain fewer entries than @n_ports. The 5745 * last entry will be used for the remaining ports. 5746 * 5747 * RETURNS: 5748 * Allocate ATA host on success, NULL on failure. 5749 * 5750 * LOCKING: 5751 * Inherited from calling layer (may sleep). 5752 */ 5753 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5754 const struct ata_port_info * const * ppi, 5755 int n_ports) 5756 { 5757 const struct ata_port_info *pi; 5758 struct ata_host *host; 5759 int i, j; 5760 5761 host = ata_host_alloc(dev, n_ports); 5762 if (!host) 5763 return NULL; 5764 5765 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5766 struct ata_port *ap = host->ports[i]; 5767 5768 if (ppi[j]) 5769 pi = ppi[j++]; 5770 5771 ap->pio_mask = pi->pio_mask; 5772 ap->mwdma_mask = pi->mwdma_mask; 5773 ap->udma_mask = pi->udma_mask; 5774 ap->flags |= pi->flags; 5775 ap->link.flags |= pi->link_flags; 5776 ap->ops = pi->port_ops; 5777 5778 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5779 host->ops = pi->port_ops; 5780 } 5781 5782 return host; 5783 } 5784 5785 /** 5786 * ata_slave_link_init - initialize slave link 5787 * @ap: port to initialize slave link for 5788 * 5789 * Create and initialize slave link for @ap. This enables slave 5790 * link handling on the port. 5791 * 5792 * In libata, a port contains links and a link contains devices. 5793 * There is single host link but if a PMP is attached to it, 5794 * there can be multiple fan-out links. On SATA, there's usually 5795 * a single device connected to a link but PATA and SATA 5796 * controllers emulating TF based interface can have two - master 5797 * and slave. 5798 * 5799 * However, there are a few controllers which don't fit into this 5800 * abstraction too well - SATA controllers which emulate TF 5801 * interface with both master and slave devices but also have 5802 * separate SCR register sets for each device. These controllers 5803 * need separate links for physical link handling 5804 * (e.g. onlineness, link speed) but should be treated like a 5805 * traditional M/S controller for everything else (e.g. command 5806 * issue, softreset). 5807 * 5808 * slave_link is libata's way of handling this class of 5809 * controllers without impacting core layer too much. For 5810 * anything other than physical link handling, the default host 5811 * link is used for both master and slave. For physical link 5812 * handling, separate @ap->slave_link is used. All dirty details 5813 * are implemented inside libata core layer. From LLD's POV, the 5814 * only difference is that prereset, hardreset and postreset are 5815 * called once more for the slave link, so the reset sequence 5816 * looks like the following. 5817 * 5818 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5819 * softreset(M) -> postreset(M) -> postreset(S) 5820 * 5821 * Note that softreset is called only for the master. Softreset 5822 * resets both M/S by definition, so SRST on master should handle 5823 * both (the standard method will work just fine). 5824 * 5825 * LOCKING: 5826 * Should be called before host is registered. 5827 * 5828 * RETURNS: 5829 * 0 on success, -errno on failure. 5830 */ 5831 int ata_slave_link_init(struct ata_port *ap) 5832 { 5833 struct ata_link *link; 5834 5835 WARN_ON(ap->slave_link); 5836 WARN_ON(ap->flags & ATA_FLAG_PMP); 5837 5838 link = kzalloc(sizeof(*link), GFP_KERNEL); 5839 if (!link) 5840 return -ENOMEM; 5841 5842 ata_link_init(ap, link, 1); 5843 ap->slave_link = link; 5844 return 0; 5845 } 5846 5847 static void ata_host_stop(struct device *gendev, void *res) 5848 { 5849 struct ata_host *host = dev_get_drvdata(gendev); 5850 int i; 5851 5852 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5853 5854 for (i = 0; i < host->n_ports; i++) { 5855 struct ata_port *ap = host->ports[i]; 5856 5857 if (ap->ops->port_stop) 5858 ap->ops->port_stop(ap); 5859 } 5860 5861 if (host->ops->host_stop) 5862 host->ops->host_stop(host); 5863 } 5864 5865 /** 5866 * ata_finalize_port_ops - finalize ata_port_operations 5867 * @ops: ata_port_operations to finalize 5868 * 5869 * An ata_port_operations can inherit from another ops and that 5870 * ops can again inherit from another. This can go on as many 5871 * times as necessary as long as there is no loop in the 5872 * inheritance chain. 5873 * 5874 * Ops tables are finalized when the host is started. NULL or 5875 * unspecified entries are inherited from the closet ancestor 5876 * which has the method and the entry is populated with it. 5877 * After finalization, the ops table directly points to all the 5878 * methods and ->inherits is no longer necessary and cleared. 5879 * 5880 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5881 * 5882 * LOCKING: 5883 * None. 5884 */ 5885 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5886 { 5887 static DEFINE_SPINLOCK(lock); 5888 const struct ata_port_operations *cur; 5889 void **begin = (void **)ops; 5890 void **end = (void **)&ops->inherits; 5891 void **pp; 5892 5893 if (!ops || !ops->inherits) 5894 return; 5895 5896 spin_lock(&lock); 5897 5898 for (cur = ops->inherits; cur; cur = cur->inherits) { 5899 void **inherit = (void **)cur; 5900 5901 for (pp = begin; pp < end; pp++, inherit++) 5902 if (!*pp) 5903 *pp = *inherit; 5904 } 5905 5906 for (pp = begin; pp < end; pp++) 5907 if (IS_ERR(*pp)) 5908 *pp = NULL; 5909 5910 ops->inherits = NULL; 5911 5912 spin_unlock(&lock); 5913 } 5914 5915 /** 5916 * ata_host_start - start and freeze ports of an ATA host 5917 * @host: ATA host to start ports for 5918 * 5919 * Start and then freeze ports of @host. Started status is 5920 * recorded in host->flags, so this function can be called 5921 * multiple times. Ports are guaranteed to get started only 5922 * once. If host->ops isn't initialized yet, its set to the 5923 * first non-dummy port ops. 5924 * 5925 * LOCKING: 5926 * Inherited from calling layer (may sleep). 5927 * 5928 * RETURNS: 5929 * 0 if all ports are started successfully, -errno otherwise. 5930 */ 5931 int ata_host_start(struct ata_host *host) 5932 { 5933 int have_stop = 0; 5934 void *start_dr = NULL; 5935 int i, rc; 5936 5937 if (host->flags & ATA_HOST_STARTED) 5938 return 0; 5939 5940 ata_finalize_port_ops(host->ops); 5941 5942 for (i = 0; i < host->n_ports; i++) { 5943 struct ata_port *ap = host->ports[i]; 5944 5945 ata_finalize_port_ops(ap->ops); 5946 5947 if (!host->ops && !ata_port_is_dummy(ap)) 5948 host->ops = ap->ops; 5949 5950 if (ap->ops->port_stop) 5951 have_stop = 1; 5952 } 5953 5954 if (host->ops->host_stop) 5955 have_stop = 1; 5956 5957 if (have_stop) { 5958 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5959 if (!start_dr) 5960 return -ENOMEM; 5961 } 5962 5963 for (i = 0; i < host->n_ports; i++) { 5964 struct ata_port *ap = host->ports[i]; 5965 5966 if (ap->ops->port_start) { 5967 rc = ap->ops->port_start(ap); 5968 if (rc) { 5969 if (rc != -ENODEV) 5970 dev_printk(KERN_ERR, host->dev, 5971 "failed to start port %d " 5972 "(errno=%d)\n", i, rc); 5973 goto err_out; 5974 } 5975 } 5976 ata_eh_freeze_port(ap); 5977 } 5978 5979 if (start_dr) 5980 devres_add(host->dev, start_dr); 5981 host->flags |= ATA_HOST_STARTED; 5982 return 0; 5983 5984 err_out: 5985 while (--i >= 0) { 5986 struct ata_port *ap = host->ports[i]; 5987 5988 if (ap->ops->port_stop) 5989 ap->ops->port_stop(ap); 5990 } 5991 devres_free(start_dr); 5992 return rc; 5993 } 5994 5995 /** 5996 * ata_sas_host_init - Initialize a host struct 5997 * @host: host to initialize 5998 * @dev: device host is attached to 5999 * @flags: host flags 6000 * @ops: port_ops 6001 * 6002 * LOCKING: 6003 * PCI/etc. bus probe sem. 6004 * 6005 */ 6006 /* KILLME - the only user left is ipr */ 6007 void ata_host_init(struct ata_host *host, struct device *dev, 6008 unsigned long flags, struct ata_port_operations *ops) 6009 { 6010 spin_lock_init(&host->lock); 6011 host->dev = dev; 6012 host->flags = flags; 6013 host->ops = ops; 6014 } 6015 6016 6017 static void async_port_probe(void *data, async_cookie_t cookie) 6018 { 6019 int rc; 6020 struct ata_port *ap = data; 6021 6022 /* 6023 * If we're not allowed to scan this host in parallel, 6024 * we need to wait until all previous scans have completed 6025 * before going further. 6026 * Jeff Garzik says this is only within a controller, so we 6027 * don't need to wait for port 0, only for later ports. 6028 */ 6029 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6030 async_synchronize_cookie(cookie); 6031 6032 /* probe */ 6033 if (ap->ops->error_handler) { 6034 struct ata_eh_info *ehi = &ap->link.eh_info; 6035 unsigned long flags; 6036 6037 ata_port_probe(ap); 6038 6039 /* kick EH for boot probing */ 6040 spin_lock_irqsave(ap->lock, flags); 6041 6042 ehi->probe_mask |= ATA_ALL_DEVICES; 6043 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6044 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6045 6046 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6047 ap->pflags |= ATA_PFLAG_LOADING; 6048 ata_port_schedule_eh(ap); 6049 6050 spin_unlock_irqrestore(ap->lock, flags); 6051 6052 /* wait for EH to finish */ 6053 ata_port_wait_eh(ap); 6054 } else { 6055 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6056 rc = ata_bus_probe(ap); 6057 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6058 6059 if (rc) { 6060 /* FIXME: do something useful here? 6061 * Current libata behavior will 6062 * tear down everything when 6063 * the module is removed 6064 * or the h/w is unplugged. 6065 */ 6066 } 6067 } 6068 6069 /* in order to keep device order, we need to synchronize at this point */ 6070 async_synchronize_cookie(cookie); 6071 6072 ata_scsi_scan_host(ap, 1); 6073 6074 } 6075 /** 6076 * ata_host_register - register initialized ATA host 6077 * @host: ATA host to register 6078 * @sht: template for SCSI host 6079 * 6080 * Register initialized ATA host. @host is allocated using 6081 * ata_host_alloc() and fully initialized by LLD. This function 6082 * starts ports, registers @host with ATA and SCSI layers and 6083 * probe registered devices. 6084 * 6085 * LOCKING: 6086 * Inherited from calling layer (may sleep). 6087 * 6088 * RETURNS: 6089 * 0 on success, -errno otherwise. 6090 */ 6091 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6092 { 6093 int i, rc; 6094 6095 /* host must have been started */ 6096 if (!(host->flags & ATA_HOST_STARTED)) { 6097 dev_printk(KERN_ERR, host->dev, 6098 "BUG: trying to register unstarted host\n"); 6099 WARN_ON(1); 6100 return -EINVAL; 6101 } 6102 6103 /* Blow away unused ports. This happens when LLD can't 6104 * determine the exact number of ports to allocate at 6105 * allocation time. 6106 */ 6107 for (i = host->n_ports; host->ports[i]; i++) 6108 kfree(host->ports[i]); 6109 6110 /* give ports names and add SCSI hosts */ 6111 for (i = 0; i < host->n_ports; i++) 6112 host->ports[i]->print_id = ata_print_id++; 6113 6114 rc = ata_scsi_add_hosts(host, sht); 6115 if (rc) 6116 return rc; 6117 6118 /* associate with ACPI nodes */ 6119 ata_acpi_associate(host); 6120 6121 /* set cable, sata_spd_limit and report */ 6122 for (i = 0; i < host->n_ports; i++) { 6123 struct ata_port *ap = host->ports[i]; 6124 unsigned long xfer_mask; 6125 6126 /* set SATA cable type if still unset */ 6127 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6128 ap->cbl = ATA_CBL_SATA; 6129 6130 /* init sata_spd_limit to the current value */ 6131 sata_link_init_spd(&ap->link); 6132 if (ap->slave_link) 6133 sata_link_init_spd(ap->slave_link); 6134 6135 /* print per-port info to dmesg */ 6136 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6137 ap->udma_mask); 6138 6139 if (!ata_port_is_dummy(ap)) { 6140 ata_port_printk(ap, KERN_INFO, 6141 "%cATA max %s %s\n", 6142 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6143 ata_mode_string(xfer_mask), 6144 ap->link.eh_info.desc); 6145 ata_ehi_clear_desc(&ap->link.eh_info); 6146 } else 6147 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6148 } 6149 6150 /* perform each probe asynchronously */ 6151 for (i = 0; i < host->n_ports; i++) { 6152 struct ata_port *ap = host->ports[i]; 6153 async_schedule(async_port_probe, ap); 6154 } 6155 6156 return 0; 6157 } 6158 6159 /** 6160 * ata_host_activate - start host, request IRQ and register it 6161 * @host: target ATA host 6162 * @irq: IRQ to request 6163 * @irq_handler: irq_handler used when requesting IRQ 6164 * @irq_flags: irq_flags used when requesting IRQ 6165 * @sht: scsi_host_template to use when registering the host 6166 * 6167 * After allocating an ATA host and initializing it, most libata 6168 * LLDs perform three steps to activate the host - start host, 6169 * request IRQ and register it. This helper takes necessasry 6170 * arguments and performs the three steps in one go. 6171 * 6172 * An invalid IRQ skips the IRQ registration and expects the host to 6173 * have set polling mode on the port. In this case, @irq_handler 6174 * should be NULL. 6175 * 6176 * LOCKING: 6177 * Inherited from calling layer (may sleep). 6178 * 6179 * RETURNS: 6180 * 0 on success, -errno otherwise. 6181 */ 6182 int ata_host_activate(struct ata_host *host, int irq, 6183 irq_handler_t irq_handler, unsigned long irq_flags, 6184 struct scsi_host_template *sht) 6185 { 6186 int i, rc; 6187 6188 rc = ata_host_start(host); 6189 if (rc) 6190 return rc; 6191 6192 /* Special case for polling mode */ 6193 if (!irq) { 6194 WARN_ON(irq_handler); 6195 return ata_host_register(host, sht); 6196 } 6197 6198 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6199 dev_driver_string(host->dev), host); 6200 if (rc) 6201 return rc; 6202 6203 for (i = 0; i < host->n_ports; i++) 6204 ata_port_desc(host->ports[i], "irq %d", irq); 6205 6206 rc = ata_host_register(host, sht); 6207 /* if failed, just free the IRQ and leave ports alone */ 6208 if (rc) 6209 devm_free_irq(host->dev, irq, host); 6210 6211 return rc; 6212 } 6213 6214 /** 6215 * ata_port_detach - Detach ATA port in prepration of device removal 6216 * @ap: ATA port to be detached 6217 * 6218 * Detach all ATA devices and the associated SCSI devices of @ap; 6219 * then, remove the associated SCSI host. @ap is guaranteed to 6220 * be quiescent on return from this function. 6221 * 6222 * LOCKING: 6223 * Kernel thread context (may sleep). 6224 */ 6225 static void ata_port_detach(struct ata_port *ap) 6226 { 6227 unsigned long flags; 6228 6229 if (!ap->ops->error_handler) 6230 goto skip_eh; 6231 6232 /* tell EH we're leaving & flush EH */ 6233 spin_lock_irqsave(ap->lock, flags); 6234 ap->pflags |= ATA_PFLAG_UNLOADING; 6235 ata_port_schedule_eh(ap); 6236 spin_unlock_irqrestore(ap->lock, flags); 6237 6238 /* wait till EH commits suicide */ 6239 ata_port_wait_eh(ap); 6240 6241 /* it better be dead now */ 6242 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6243 6244 cancel_rearming_delayed_work(&ap->hotplug_task); 6245 6246 skip_eh: 6247 /* remove the associated SCSI host */ 6248 scsi_remove_host(ap->scsi_host); 6249 } 6250 6251 /** 6252 * ata_host_detach - Detach all ports of an ATA host 6253 * @host: Host to detach 6254 * 6255 * Detach all ports of @host. 6256 * 6257 * LOCKING: 6258 * Kernel thread context (may sleep). 6259 */ 6260 void ata_host_detach(struct ata_host *host) 6261 { 6262 int i; 6263 6264 for (i = 0; i < host->n_ports; i++) 6265 ata_port_detach(host->ports[i]); 6266 6267 /* the host is dead now, dissociate ACPI */ 6268 ata_acpi_dissociate(host); 6269 } 6270 6271 #ifdef CONFIG_PCI 6272 6273 /** 6274 * ata_pci_remove_one - PCI layer callback for device removal 6275 * @pdev: PCI device that was removed 6276 * 6277 * PCI layer indicates to libata via this hook that hot-unplug or 6278 * module unload event has occurred. Detach all ports. Resource 6279 * release is handled via devres. 6280 * 6281 * LOCKING: 6282 * Inherited from PCI layer (may sleep). 6283 */ 6284 void ata_pci_remove_one(struct pci_dev *pdev) 6285 { 6286 struct device *dev = &pdev->dev; 6287 struct ata_host *host = dev_get_drvdata(dev); 6288 6289 ata_host_detach(host); 6290 } 6291 6292 /* move to PCI subsystem */ 6293 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6294 { 6295 unsigned long tmp = 0; 6296 6297 switch (bits->width) { 6298 case 1: { 6299 u8 tmp8 = 0; 6300 pci_read_config_byte(pdev, bits->reg, &tmp8); 6301 tmp = tmp8; 6302 break; 6303 } 6304 case 2: { 6305 u16 tmp16 = 0; 6306 pci_read_config_word(pdev, bits->reg, &tmp16); 6307 tmp = tmp16; 6308 break; 6309 } 6310 case 4: { 6311 u32 tmp32 = 0; 6312 pci_read_config_dword(pdev, bits->reg, &tmp32); 6313 tmp = tmp32; 6314 break; 6315 } 6316 6317 default: 6318 return -EINVAL; 6319 } 6320 6321 tmp &= bits->mask; 6322 6323 return (tmp == bits->val) ? 1 : 0; 6324 } 6325 6326 #ifdef CONFIG_PM 6327 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6328 { 6329 pci_save_state(pdev); 6330 pci_disable_device(pdev); 6331 6332 if (mesg.event & PM_EVENT_SLEEP) 6333 pci_set_power_state(pdev, PCI_D3hot); 6334 } 6335 6336 int ata_pci_device_do_resume(struct pci_dev *pdev) 6337 { 6338 int rc; 6339 6340 pci_set_power_state(pdev, PCI_D0); 6341 pci_restore_state(pdev); 6342 6343 rc = pcim_enable_device(pdev); 6344 if (rc) { 6345 dev_printk(KERN_ERR, &pdev->dev, 6346 "failed to enable device after resume (%d)\n", rc); 6347 return rc; 6348 } 6349 6350 pci_set_master(pdev); 6351 return 0; 6352 } 6353 6354 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6355 { 6356 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6357 int rc = 0; 6358 6359 rc = ata_host_suspend(host, mesg); 6360 if (rc) 6361 return rc; 6362 6363 ata_pci_device_do_suspend(pdev, mesg); 6364 6365 return 0; 6366 } 6367 6368 int ata_pci_device_resume(struct pci_dev *pdev) 6369 { 6370 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6371 int rc; 6372 6373 rc = ata_pci_device_do_resume(pdev); 6374 if (rc == 0) 6375 ata_host_resume(host); 6376 return rc; 6377 } 6378 #endif /* CONFIG_PM */ 6379 6380 #endif /* CONFIG_PCI */ 6381 6382 static int __init ata_parse_force_one(char **cur, 6383 struct ata_force_ent *force_ent, 6384 const char **reason) 6385 { 6386 /* FIXME: Currently, there's no way to tag init const data and 6387 * using __initdata causes build failure on some versions of 6388 * gcc. Once __initdataconst is implemented, add const to the 6389 * following structure. 6390 */ 6391 static struct ata_force_param force_tbl[] __initdata = { 6392 { "40c", .cbl = ATA_CBL_PATA40 }, 6393 { "80c", .cbl = ATA_CBL_PATA80 }, 6394 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6395 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6396 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6397 { "sata", .cbl = ATA_CBL_SATA }, 6398 { "1.5Gbps", .spd_limit = 1 }, 6399 { "3.0Gbps", .spd_limit = 2 }, 6400 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6401 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6402 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6403 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6404 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6405 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6406 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6407 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6408 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6409 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6410 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6411 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6412 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6413 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6414 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6415 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6416 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6417 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6418 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6419 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6420 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6421 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6422 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6423 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6424 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6425 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6426 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6427 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6428 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6429 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6430 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6431 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6432 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6433 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6434 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6435 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6436 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6437 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6438 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6439 }; 6440 char *start = *cur, *p = *cur; 6441 char *id, *val, *endp; 6442 const struct ata_force_param *match_fp = NULL; 6443 int nr_matches = 0, i; 6444 6445 /* find where this param ends and update *cur */ 6446 while (*p != '\0' && *p != ',') 6447 p++; 6448 6449 if (*p == '\0') 6450 *cur = p; 6451 else 6452 *cur = p + 1; 6453 6454 *p = '\0'; 6455 6456 /* parse */ 6457 p = strchr(start, ':'); 6458 if (!p) { 6459 val = strstrip(start); 6460 goto parse_val; 6461 } 6462 *p = '\0'; 6463 6464 id = strstrip(start); 6465 val = strstrip(p + 1); 6466 6467 /* parse id */ 6468 p = strchr(id, '.'); 6469 if (p) { 6470 *p++ = '\0'; 6471 force_ent->device = simple_strtoul(p, &endp, 10); 6472 if (p == endp || *endp != '\0') { 6473 *reason = "invalid device"; 6474 return -EINVAL; 6475 } 6476 } 6477 6478 force_ent->port = simple_strtoul(id, &endp, 10); 6479 if (p == endp || *endp != '\0') { 6480 *reason = "invalid port/link"; 6481 return -EINVAL; 6482 } 6483 6484 parse_val: 6485 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6486 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6487 const struct ata_force_param *fp = &force_tbl[i]; 6488 6489 if (strncasecmp(val, fp->name, strlen(val))) 6490 continue; 6491 6492 nr_matches++; 6493 match_fp = fp; 6494 6495 if (strcasecmp(val, fp->name) == 0) { 6496 nr_matches = 1; 6497 break; 6498 } 6499 } 6500 6501 if (!nr_matches) { 6502 *reason = "unknown value"; 6503 return -EINVAL; 6504 } 6505 if (nr_matches > 1) { 6506 *reason = "ambigious value"; 6507 return -EINVAL; 6508 } 6509 6510 force_ent->param = *match_fp; 6511 6512 return 0; 6513 } 6514 6515 static void __init ata_parse_force_param(void) 6516 { 6517 int idx = 0, size = 1; 6518 int last_port = -1, last_device = -1; 6519 char *p, *cur, *next; 6520 6521 /* calculate maximum number of params and allocate force_tbl */ 6522 for (p = ata_force_param_buf; *p; p++) 6523 if (*p == ',') 6524 size++; 6525 6526 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6527 if (!ata_force_tbl) { 6528 printk(KERN_WARNING "ata: failed to extend force table, " 6529 "libata.force ignored\n"); 6530 return; 6531 } 6532 6533 /* parse and populate the table */ 6534 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6535 const char *reason = ""; 6536 struct ata_force_ent te = { .port = -1, .device = -1 }; 6537 6538 next = cur; 6539 if (ata_parse_force_one(&next, &te, &reason)) { 6540 printk(KERN_WARNING "ata: failed to parse force " 6541 "parameter \"%s\" (%s)\n", 6542 cur, reason); 6543 continue; 6544 } 6545 6546 if (te.port == -1) { 6547 te.port = last_port; 6548 te.device = last_device; 6549 } 6550 6551 ata_force_tbl[idx++] = te; 6552 6553 last_port = te.port; 6554 last_device = te.device; 6555 } 6556 6557 ata_force_tbl_size = idx; 6558 } 6559 6560 static int __init ata_init(void) 6561 { 6562 ata_parse_force_param(); 6563 6564 ata_wq = create_workqueue("ata"); 6565 if (!ata_wq) 6566 goto free_force_tbl; 6567 6568 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6569 if (!ata_aux_wq) 6570 goto free_wq; 6571 6572 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6573 return 0; 6574 6575 free_wq: 6576 destroy_workqueue(ata_wq); 6577 free_force_tbl: 6578 kfree(ata_force_tbl); 6579 return -ENOMEM; 6580 } 6581 6582 static void __exit ata_exit(void) 6583 { 6584 kfree(ata_force_tbl); 6585 destroy_workqueue(ata_wq); 6586 destroy_workqueue(ata_aux_wq); 6587 } 6588 6589 subsys_initcall(ata_init); 6590 module_exit(ata_exit); 6591 6592 static unsigned long ratelimit_time; 6593 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6594 6595 int ata_ratelimit(void) 6596 { 6597 int rc; 6598 unsigned long flags; 6599 6600 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6601 6602 if (time_after(jiffies, ratelimit_time)) { 6603 rc = 1; 6604 ratelimit_time = jiffies + (HZ/5); 6605 } else 6606 rc = 0; 6607 6608 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6609 6610 return rc; 6611 } 6612 6613 /** 6614 * ata_wait_register - wait until register value changes 6615 * @reg: IO-mapped register 6616 * @mask: Mask to apply to read register value 6617 * @val: Wait condition 6618 * @interval: polling interval in milliseconds 6619 * @timeout: timeout in milliseconds 6620 * 6621 * Waiting for some bits of register to change is a common 6622 * operation for ATA controllers. This function reads 32bit LE 6623 * IO-mapped register @reg and tests for the following condition. 6624 * 6625 * (*@reg & mask) != val 6626 * 6627 * If the condition is met, it returns; otherwise, the process is 6628 * repeated after @interval_msec until timeout. 6629 * 6630 * LOCKING: 6631 * Kernel thread context (may sleep) 6632 * 6633 * RETURNS: 6634 * The final register value. 6635 */ 6636 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6637 unsigned long interval, unsigned long timeout) 6638 { 6639 unsigned long deadline; 6640 u32 tmp; 6641 6642 tmp = ioread32(reg); 6643 6644 /* Calculate timeout _after_ the first read to make sure 6645 * preceding writes reach the controller before starting to 6646 * eat away the timeout. 6647 */ 6648 deadline = ata_deadline(jiffies, timeout); 6649 6650 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6651 msleep(interval); 6652 tmp = ioread32(reg); 6653 } 6654 6655 return tmp; 6656 } 6657 6658 /* 6659 * Dummy port_ops 6660 */ 6661 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6662 { 6663 return AC_ERR_SYSTEM; 6664 } 6665 6666 static void ata_dummy_error_handler(struct ata_port *ap) 6667 { 6668 /* truly dummy */ 6669 } 6670 6671 struct ata_port_operations ata_dummy_port_ops = { 6672 .qc_prep = ata_noop_qc_prep, 6673 .qc_issue = ata_dummy_qc_issue, 6674 .error_handler = ata_dummy_error_handler, 6675 }; 6676 6677 const struct ata_port_info ata_dummy_port_info = { 6678 .port_ops = &ata_dummy_port_ops, 6679 }; 6680 6681 /* 6682 * libata is essentially a library of internal helper functions for 6683 * low-level ATA host controller drivers. As such, the API/ABI is 6684 * likely to change as new drivers are added and updated. 6685 * Do not depend on ABI/API stability. 6686 */ 6687 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6688 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6689 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6690 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6691 EXPORT_SYMBOL_GPL(sata_port_ops); 6692 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6693 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6694 EXPORT_SYMBOL_GPL(ata_link_next); 6695 EXPORT_SYMBOL_GPL(ata_dev_next); 6696 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6697 EXPORT_SYMBOL_GPL(ata_host_init); 6698 EXPORT_SYMBOL_GPL(ata_host_alloc); 6699 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6700 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6701 EXPORT_SYMBOL_GPL(ata_host_start); 6702 EXPORT_SYMBOL_GPL(ata_host_register); 6703 EXPORT_SYMBOL_GPL(ata_host_activate); 6704 EXPORT_SYMBOL_GPL(ata_host_detach); 6705 EXPORT_SYMBOL_GPL(ata_sg_init); 6706 EXPORT_SYMBOL_GPL(ata_qc_complete); 6707 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6708 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6709 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6710 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6711 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6712 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6713 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6714 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6715 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6716 EXPORT_SYMBOL_GPL(ata_mode_string); 6717 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6718 EXPORT_SYMBOL_GPL(ata_port_start); 6719 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6720 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6721 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6722 EXPORT_SYMBOL_GPL(ata_port_probe); 6723 EXPORT_SYMBOL_GPL(ata_dev_disable); 6724 EXPORT_SYMBOL_GPL(sata_set_spd); 6725 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6726 EXPORT_SYMBOL_GPL(sata_link_debounce); 6727 EXPORT_SYMBOL_GPL(sata_link_resume); 6728 EXPORT_SYMBOL_GPL(ata_std_prereset); 6729 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6730 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6731 EXPORT_SYMBOL_GPL(ata_std_postreset); 6732 EXPORT_SYMBOL_GPL(ata_dev_classify); 6733 EXPORT_SYMBOL_GPL(ata_dev_pair); 6734 EXPORT_SYMBOL_GPL(ata_port_disable); 6735 EXPORT_SYMBOL_GPL(ata_ratelimit); 6736 EXPORT_SYMBOL_GPL(ata_wait_register); 6737 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6738 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6739 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6740 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6741 EXPORT_SYMBOL_GPL(sata_scr_valid); 6742 EXPORT_SYMBOL_GPL(sata_scr_read); 6743 EXPORT_SYMBOL_GPL(sata_scr_write); 6744 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6745 EXPORT_SYMBOL_GPL(ata_link_online); 6746 EXPORT_SYMBOL_GPL(ata_link_offline); 6747 #ifdef CONFIG_PM 6748 EXPORT_SYMBOL_GPL(ata_host_suspend); 6749 EXPORT_SYMBOL_GPL(ata_host_resume); 6750 #endif /* CONFIG_PM */ 6751 EXPORT_SYMBOL_GPL(ata_id_string); 6752 EXPORT_SYMBOL_GPL(ata_id_c_string); 6753 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6754 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6755 6756 EXPORT_SYMBOL_GPL(ata_pio_queue_task); 6757 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6758 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6759 EXPORT_SYMBOL_GPL(ata_timing_compute); 6760 EXPORT_SYMBOL_GPL(ata_timing_merge); 6761 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6762 6763 #ifdef CONFIG_PCI 6764 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6765 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6766 #ifdef CONFIG_PM 6767 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6768 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6769 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6770 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6771 #endif /* CONFIG_PM */ 6772 #endif /* CONFIG_PCI */ 6773 6774 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6775 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6776 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6777 EXPORT_SYMBOL_GPL(ata_port_desc); 6778 #ifdef CONFIG_PCI 6779 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6780 #endif /* CONFIG_PCI */ 6781 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6782 EXPORT_SYMBOL_GPL(ata_link_abort); 6783 EXPORT_SYMBOL_GPL(ata_port_abort); 6784 EXPORT_SYMBOL_GPL(ata_port_freeze); 6785 EXPORT_SYMBOL_GPL(sata_async_notification); 6786 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6787 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6788 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6789 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6790 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6791 EXPORT_SYMBOL_GPL(ata_do_eh); 6792 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6793 6794 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6795 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6796 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6797 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6798 EXPORT_SYMBOL_GPL(ata_cable_sata); 6799