xref: /linux/drivers/ata/libata-core.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned long pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
502 static inline void ata_force_link_limits(struct ata_link *link) { }
503 static inline void ata_force_xfermask(struct ata_device *dev) { }
504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	ATA_CMD_WRITE_MULTI_FUA_EXT,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
578  *	@tf: command to examine and configure
579  *	@dev: device tf belongs to
580  *
581  *	Examine the device configuration and tf->flags to calculate
582  *	the proper read/write commands and protocol to use.
583  *
584  *	LOCKING:
585  *	caller.
586  */
587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
588 {
589 	u8 cmd;
590 
591 	int index, fua, lba48, write;
592 
593 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
594 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
596 
597 	if (dev->flags & ATA_DFLAG_PIO) {
598 		tf->protocol = ATA_PROT_PIO;
599 		index = dev->multi_count ? 0 : 8;
600 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
601 		/* Unable to use DMA due to host limitation */
602 		tf->protocol = ATA_PROT_PIO;
603 		index = dev->multi_count ? 0 : 8;
604 	} else {
605 		tf->protocol = ATA_PROT_DMA;
606 		index = 16;
607 	}
608 
609 	cmd = ata_rw_cmds[index + fua + lba48 + write];
610 	if (cmd) {
611 		tf->command = cmd;
612 		return 0;
613 	}
614 	return -1;
615 }
616 
617 /**
618  *	ata_tf_read_block - Read block address from ATA taskfile
619  *	@tf: ATA taskfile of interest
620  *	@dev: ATA device @tf belongs to
621  *
622  *	LOCKING:
623  *	None.
624  *
625  *	Read block address from @tf.  This function can handle all
626  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
627  *	flags select the address format to use.
628  *
629  *	RETURNS:
630  *	Block address read from @tf.
631  */
632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
633 {
634 	u64 block = 0;
635 
636 	if (tf->flags & ATA_TFLAG_LBA) {
637 		if (tf->flags & ATA_TFLAG_LBA48) {
638 			block |= (u64)tf->hob_lbah << 40;
639 			block |= (u64)tf->hob_lbam << 32;
640 			block |= (u64)tf->hob_lbal << 24;
641 		} else
642 			block |= (tf->device & 0xf) << 24;
643 
644 		block |= tf->lbah << 16;
645 		block |= tf->lbam << 8;
646 		block |= tf->lbal;
647 	} else {
648 		u32 cyl, head, sect;
649 
650 		cyl = tf->lbam | (tf->lbah << 8);
651 		head = tf->device & 0xf;
652 		sect = tf->lbal;
653 
654 		if (!sect) {
655 			ata_dev_warn(dev,
656 				     "device reported invalid CHS sector 0\n");
657 			return U64_MAX;
658 		}
659 
660 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
661 	}
662 
663 	return block;
664 }
665 
666 /**
667  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
668  *	@tf: Target ATA taskfile
669  *	@dev: ATA device @tf belongs to
670  *	@block: Block address
671  *	@n_block: Number of blocks
672  *	@tf_flags: RW/FUA etc...
673  *	@tag: tag
674  *	@class: IO priority class
675  *
676  *	LOCKING:
677  *	None.
678  *
679  *	Build ATA taskfile @tf for read/write request described by
680  *	@block, @n_block, @tf_flags and @tag on @dev.
681  *
682  *	RETURNS:
683  *
684  *	0 on success, -ERANGE if the request is too large for @dev,
685  *	-EINVAL if the request is invalid.
686  */
687 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
688 		    u64 block, u32 n_block, unsigned int tf_flags,
689 		    unsigned int tag, int class)
690 {
691 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
692 	tf->flags |= tf_flags;
693 
694 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
695 		/* yay, NCQ */
696 		if (!lba_48_ok(block, n_block))
697 			return -ERANGE;
698 
699 		tf->protocol = ATA_PROT_NCQ;
700 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
701 
702 		if (tf->flags & ATA_TFLAG_WRITE)
703 			tf->command = ATA_CMD_FPDMA_WRITE;
704 		else
705 			tf->command = ATA_CMD_FPDMA_READ;
706 
707 		tf->nsect = tag << 3;
708 		tf->hob_feature = (n_block >> 8) & 0xff;
709 		tf->feature = n_block & 0xff;
710 
711 		tf->hob_lbah = (block >> 40) & 0xff;
712 		tf->hob_lbam = (block >> 32) & 0xff;
713 		tf->hob_lbal = (block >> 24) & 0xff;
714 		tf->lbah = (block >> 16) & 0xff;
715 		tf->lbam = (block >> 8) & 0xff;
716 		tf->lbal = block & 0xff;
717 
718 		tf->device = ATA_LBA;
719 		if (tf->flags & ATA_TFLAG_FUA)
720 			tf->device |= 1 << 7;
721 
722 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
723 		    class == IOPRIO_CLASS_RT)
724 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
725 	} else if (dev->flags & ATA_DFLAG_LBA) {
726 		tf->flags |= ATA_TFLAG_LBA;
727 
728 		if (lba_28_ok(block, n_block)) {
729 			/* use LBA28 */
730 			tf->device |= (block >> 24) & 0xf;
731 		} else if (lba_48_ok(block, n_block)) {
732 			if (!(dev->flags & ATA_DFLAG_LBA48))
733 				return -ERANGE;
734 
735 			/* use LBA48 */
736 			tf->flags |= ATA_TFLAG_LBA48;
737 
738 			tf->hob_nsect = (n_block >> 8) & 0xff;
739 
740 			tf->hob_lbah = (block >> 40) & 0xff;
741 			tf->hob_lbam = (block >> 32) & 0xff;
742 			tf->hob_lbal = (block >> 24) & 0xff;
743 		} else
744 			/* request too large even for LBA48 */
745 			return -ERANGE;
746 
747 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
748 			return -EINVAL;
749 
750 		tf->nsect = n_block & 0xff;
751 
752 		tf->lbah = (block >> 16) & 0xff;
753 		tf->lbam = (block >> 8) & 0xff;
754 		tf->lbal = block & 0xff;
755 
756 		tf->device |= ATA_LBA;
757 	} else {
758 		/* CHS */
759 		u32 sect, head, cyl, track;
760 
761 		/* The request -may- be too large for CHS addressing. */
762 		if (!lba_28_ok(block, n_block))
763 			return -ERANGE;
764 
765 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
766 			return -EINVAL;
767 
768 		/* Convert LBA to CHS */
769 		track = (u32)block / dev->sectors;
770 		cyl   = track / dev->heads;
771 		head  = track % dev->heads;
772 		sect  = (u32)block % dev->sectors + 1;
773 
774 		/* Check whether the converted CHS can fit.
775 		   Cylinder: 0-65535
776 		   Head: 0-15
777 		   Sector: 1-255*/
778 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
779 			return -ERANGE;
780 
781 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
782 		tf->lbal = sect;
783 		tf->lbam = cyl;
784 		tf->lbah = cyl >> 8;
785 		tf->device |= head;
786 	}
787 
788 	return 0;
789 }
790 
791 /**
792  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
793  *	@pio_mask: pio_mask
794  *	@mwdma_mask: mwdma_mask
795  *	@udma_mask: udma_mask
796  *
797  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
798  *	unsigned int xfer_mask.
799  *
800  *	LOCKING:
801  *	None.
802  *
803  *	RETURNS:
804  *	Packed xfer_mask.
805  */
806 unsigned long ata_pack_xfermask(unsigned long pio_mask,
807 				unsigned long mwdma_mask,
808 				unsigned long udma_mask)
809 {
810 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
811 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
812 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
813 }
814 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
815 
816 /**
817  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
818  *	@xfer_mask: xfer_mask to unpack
819  *	@pio_mask: resulting pio_mask
820  *	@mwdma_mask: resulting mwdma_mask
821  *	@udma_mask: resulting udma_mask
822  *
823  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
824  *	Any NULL destination masks will be ignored.
825  */
826 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
827 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
828 {
829 	if (pio_mask)
830 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
831 	if (mwdma_mask)
832 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
833 	if (udma_mask)
834 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
835 }
836 
837 static const struct ata_xfer_ent {
838 	int shift, bits;
839 	u8 base;
840 } ata_xfer_tbl[] = {
841 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
842 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
843 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
844 	{ -1, },
845 };
846 
847 /**
848  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
849  *	@xfer_mask: xfer_mask of interest
850  *
851  *	Return matching XFER_* value for @xfer_mask.  Only the highest
852  *	bit of @xfer_mask is considered.
853  *
854  *	LOCKING:
855  *	None.
856  *
857  *	RETURNS:
858  *	Matching XFER_* value, 0xff if no match found.
859  */
860 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
861 {
862 	int highbit = fls(xfer_mask) - 1;
863 	const struct ata_xfer_ent *ent;
864 
865 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
866 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
867 			return ent->base + highbit - ent->shift;
868 	return 0xff;
869 }
870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
871 
872 /**
873  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
874  *	@xfer_mode: XFER_* of interest
875  *
876  *	Return matching xfer_mask for @xfer_mode.
877  *
878  *	LOCKING:
879  *	None.
880  *
881  *	RETURNS:
882  *	Matching xfer_mask, 0 if no match found.
883  */
884 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
885 {
886 	const struct ata_xfer_ent *ent;
887 
888 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
889 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
890 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
891 				& ~((1 << ent->shift) - 1);
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
895 
896 /**
897  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
898  *	@xfer_mode: XFER_* of interest
899  *
900  *	Return matching xfer_shift for @xfer_mode.
901  *
902  *	LOCKING:
903  *	None.
904  *
905  *	RETURNS:
906  *	Matching xfer_shift, -1 if no match found.
907  */
908 int ata_xfer_mode2shift(u8 xfer_mode)
909 {
910 	const struct ata_xfer_ent *ent;
911 
912 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
913 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
914 			return ent->shift;
915 	return -1;
916 }
917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
918 
919 /**
920  *	ata_mode_string - convert xfer_mask to string
921  *	@xfer_mask: mask of bits supported; only highest bit counts.
922  *
923  *	Determine string which represents the highest speed
924  *	(highest bit in @modemask).
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Constant C string representing highest speed listed in
931  *	@mode_mask, or the constant C string "<n/a>".
932  */
933 const char *ata_mode_string(unsigned long xfer_mask)
934 {
935 	static const char * const xfer_mode_str[] = {
936 		"PIO0",
937 		"PIO1",
938 		"PIO2",
939 		"PIO3",
940 		"PIO4",
941 		"PIO5",
942 		"PIO6",
943 		"MWDMA0",
944 		"MWDMA1",
945 		"MWDMA2",
946 		"MWDMA3",
947 		"MWDMA4",
948 		"UDMA/16",
949 		"UDMA/25",
950 		"UDMA/33",
951 		"UDMA/44",
952 		"UDMA/66",
953 		"UDMA/100",
954 		"UDMA/133",
955 		"UDMA7",
956 	};
957 	int highbit;
958 
959 	highbit = fls(xfer_mask) - 1;
960 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
961 		return xfer_mode_str[highbit];
962 	return "<n/a>";
963 }
964 EXPORT_SYMBOL_GPL(ata_mode_string);
965 
966 const char *sata_spd_string(unsigned int spd)
967 {
968 	static const char * const spd_str[] = {
969 		"1.5 Gbps",
970 		"3.0 Gbps",
971 		"6.0 Gbps",
972 	};
973 
974 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
975 		return "<unknown>";
976 	return spd_str[spd - 1];
977 }
978 
979 /**
980  *	ata_dev_classify - determine device type based on ATA-spec signature
981  *	@tf: ATA taskfile register set for device to be identified
982  *
983  *	Determine from taskfile register contents whether a device is
984  *	ATA or ATAPI, as per "Signature and persistence" section
985  *	of ATA/PI spec (volume 1, sect 5.14).
986  *
987  *	LOCKING:
988  *	None.
989  *
990  *	RETURNS:
991  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
992  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
993  */
994 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
995 {
996 	/* Apple's open source Darwin code hints that some devices only
997 	 * put a proper signature into the LBA mid/high registers,
998 	 * So, we only check those.  It's sufficient for uniqueness.
999 	 *
1000 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1001 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1002 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1003 	 * spec has never mentioned about using different signatures
1004 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1005 	 * Multiplier specification began to use 0x69/0x96 to identify
1006 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1007 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1008 	 * 0x69/0x96 shortly and described them as reserved for
1009 	 * SerialATA.
1010 	 *
1011 	 * We follow the current spec and consider that 0x69/0x96
1012 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1013 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1014 	 * SEMB signature.  This is worked around in
1015 	 * ata_dev_read_id().
1016 	 */
1017 	if (tf->lbam == 0 && tf->lbah == 0)
1018 		return ATA_DEV_ATA;
1019 
1020 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1021 		return ATA_DEV_ATAPI;
1022 
1023 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1024 		return ATA_DEV_PMP;
1025 
1026 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1027 		return ATA_DEV_SEMB;
1028 
1029 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1030 		return ATA_DEV_ZAC;
1031 
1032 	return ATA_DEV_UNKNOWN;
1033 }
1034 EXPORT_SYMBOL_GPL(ata_dev_classify);
1035 
1036 /**
1037  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1038  *	@id: IDENTIFY DEVICE results we will examine
1039  *	@s: string into which data is output
1040  *	@ofs: offset into identify device page
1041  *	@len: length of string to return. must be an even number.
1042  *
1043  *	The strings in the IDENTIFY DEVICE page are broken up into
1044  *	16-bit chunks.  Run through the string, and output each
1045  *	8-bit chunk linearly, regardless of platform.
1046  *
1047  *	LOCKING:
1048  *	caller.
1049  */
1050 
1051 void ata_id_string(const u16 *id, unsigned char *s,
1052 		   unsigned int ofs, unsigned int len)
1053 {
1054 	unsigned int c;
1055 
1056 	BUG_ON(len & 1);
1057 
1058 	while (len > 0) {
1059 		c = id[ofs] >> 8;
1060 		*s = c;
1061 		s++;
1062 
1063 		c = id[ofs] & 0xff;
1064 		*s = c;
1065 		s++;
1066 
1067 		ofs++;
1068 		len -= 2;
1069 	}
1070 }
1071 EXPORT_SYMBOL_GPL(ata_id_string);
1072 
1073 /**
1074  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1075  *	@id: IDENTIFY DEVICE results we will examine
1076  *	@s: string into which data is output
1077  *	@ofs: offset into identify device page
1078  *	@len: length of string to return. must be an odd number.
1079  *
1080  *	This function is identical to ata_id_string except that it
1081  *	trims trailing spaces and terminates the resulting string with
1082  *	null.  @len must be actual maximum length (even number) + 1.
1083  *
1084  *	LOCKING:
1085  *	caller.
1086  */
1087 void ata_id_c_string(const u16 *id, unsigned char *s,
1088 		     unsigned int ofs, unsigned int len)
1089 {
1090 	unsigned char *p;
1091 
1092 	ata_id_string(id, s, ofs, len - 1);
1093 
1094 	p = s + strnlen(s, len - 1);
1095 	while (p > s && p[-1] == ' ')
1096 		p--;
1097 	*p = '\0';
1098 }
1099 EXPORT_SYMBOL_GPL(ata_id_c_string);
1100 
1101 static u64 ata_id_n_sectors(const u16 *id)
1102 {
1103 	if (ata_id_has_lba(id)) {
1104 		if (ata_id_has_lba48(id))
1105 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1106 		else
1107 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1108 	} else {
1109 		if (ata_id_current_chs_valid(id))
1110 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1111 			       id[ATA_ID_CUR_SECTORS];
1112 		else
1113 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1114 			       id[ATA_ID_SECTORS];
1115 	}
1116 }
1117 
1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1119 {
1120 	u64 sectors = 0;
1121 
1122 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1123 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1124 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1125 	sectors |= (tf->lbah & 0xff) << 16;
1126 	sectors |= (tf->lbam & 0xff) << 8;
1127 	sectors |= (tf->lbal & 0xff);
1128 
1129 	return sectors;
1130 }
1131 
1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1133 {
1134 	u64 sectors = 0;
1135 
1136 	sectors |= (tf->device & 0x0f) << 24;
1137 	sectors |= (tf->lbah & 0xff) << 16;
1138 	sectors |= (tf->lbam & 0xff) << 8;
1139 	sectors |= (tf->lbal & 0xff);
1140 
1141 	return sectors;
1142 }
1143 
1144 /**
1145  *	ata_read_native_max_address - Read native max address
1146  *	@dev: target device
1147  *	@max_sectors: out parameter for the result native max address
1148  *
1149  *	Perform an LBA48 or LBA28 native size query upon the device in
1150  *	question.
1151  *
1152  *	RETURNS:
1153  *	0 on success, -EACCES if command is aborted by the drive.
1154  *	-EIO on other errors.
1155  */
1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1157 {
1158 	unsigned int err_mask;
1159 	struct ata_taskfile tf;
1160 	int lba48 = ata_id_has_lba48(dev->id);
1161 
1162 	ata_tf_init(dev, &tf);
1163 
1164 	/* always clear all address registers */
1165 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1166 
1167 	if (lba48) {
1168 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1169 		tf.flags |= ATA_TFLAG_LBA48;
1170 	} else
1171 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1172 
1173 	tf.protocol = ATA_PROT_NODATA;
1174 	tf.device |= ATA_LBA;
1175 
1176 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1177 	if (err_mask) {
1178 		ata_dev_warn(dev,
1179 			     "failed to read native max address (err_mask=0x%x)\n",
1180 			     err_mask);
1181 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1182 			return -EACCES;
1183 		return -EIO;
1184 	}
1185 
1186 	if (lba48)
1187 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1188 	else
1189 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1190 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1191 		(*max_sectors)--;
1192 	return 0;
1193 }
1194 
1195 /**
1196  *	ata_set_max_sectors - Set max sectors
1197  *	@dev: target device
1198  *	@new_sectors: new max sectors value to set for the device
1199  *
1200  *	Set max sectors of @dev to @new_sectors.
1201  *
1202  *	RETURNS:
1203  *	0 on success, -EACCES if command is aborted or denied (due to
1204  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1205  *	errors.
1206  */
1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1208 {
1209 	unsigned int err_mask;
1210 	struct ata_taskfile tf;
1211 	int lba48 = ata_id_has_lba48(dev->id);
1212 
1213 	new_sectors--;
1214 
1215 	ata_tf_init(dev, &tf);
1216 
1217 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218 
1219 	if (lba48) {
1220 		tf.command = ATA_CMD_SET_MAX_EXT;
1221 		tf.flags |= ATA_TFLAG_LBA48;
1222 
1223 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1224 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1225 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1226 	} else {
1227 		tf.command = ATA_CMD_SET_MAX;
1228 
1229 		tf.device |= (new_sectors >> 24) & 0xf;
1230 	}
1231 
1232 	tf.protocol = ATA_PROT_NODATA;
1233 	tf.device |= ATA_LBA;
1234 
1235 	tf.lbal = (new_sectors >> 0) & 0xff;
1236 	tf.lbam = (new_sectors >> 8) & 0xff;
1237 	tf.lbah = (new_sectors >> 16) & 0xff;
1238 
1239 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 	if (err_mask) {
1241 		ata_dev_warn(dev,
1242 			     "failed to set max address (err_mask=0x%x)\n",
1243 			     err_mask);
1244 		if (err_mask == AC_ERR_DEV &&
1245 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1246 			return -EACCES;
1247 		return -EIO;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  *	ata_hpa_resize		-	Resize a device with an HPA set
1255  *	@dev: Device to resize
1256  *
1257  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1258  *	it if required to the full size of the media. The caller must check
1259  *	the drive has the HPA feature set enabled.
1260  *
1261  *	RETURNS:
1262  *	0 on success, -errno on failure.
1263  */
1264 static int ata_hpa_resize(struct ata_device *dev)
1265 {
1266 	bool print_info = ata_dev_print_info(dev);
1267 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1268 	u64 sectors = ata_id_n_sectors(dev->id);
1269 	u64 native_sectors;
1270 	int rc;
1271 
1272 	/* do we need to do it? */
1273 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1274 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1275 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1276 		return 0;
1277 
1278 	/* read native max address */
1279 	rc = ata_read_native_max_address(dev, &native_sectors);
1280 	if (rc) {
1281 		/* If device aborted the command or HPA isn't going to
1282 		 * be unlocked, skip HPA resizing.
1283 		 */
1284 		if (rc == -EACCES || !unlock_hpa) {
1285 			ata_dev_warn(dev,
1286 				     "HPA support seems broken, skipping HPA handling\n");
1287 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1288 
1289 			/* we can continue if device aborted the command */
1290 			if (rc == -EACCES)
1291 				rc = 0;
1292 		}
1293 
1294 		return rc;
1295 	}
1296 	dev->n_native_sectors = native_sectors;
1297 
1298 	/* nothing to do? */
1299 	if (native_sectors <= sectors || !unlock_hpa) {
1300 		if (!print_info || native_sectors == sectors)
1301 			return 0;
1302 
1303 		if (native_sectors > sectors)
1304 			ata_dev_info(dev,
1305 				"HPA detected: current %llu, native %llu\n",
1306 				(unsigned long long)sectors,
1307 				(unsigned long long)native_sectors);
1308 		else if (native_sectors < sectors)
1309 			ata_dev_warn(dev,
1310 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1311 				(unsigned long long)native_sectors,
1312 				(unsigned long long)sectors);
1313 		return 0;
1314 	}
1315 
1316 	/* let's unlock HPA */
1317 	rc = ata_set_max_sectors(dev, native_sectors);
1318 	if (rc == -EACCES) {
1319 		/* if device aborted the command, skip HPA resizing */
1320 		ata_dev_warn(dev,
1321 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1322 			     (unsigned long long)sectors,
1323 			     (unsigned long long)native_sectors);
1324 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1325 		return 0;
1326 	} else if (rc)
1327 		return rc;
1328 
1329 	/* re-read IDENTIFY data */
1330 	rc = ata_dev_reread_id(dev, 0);
1331 	if (rc) {
1332 		ata_dev_err(dev,
1333 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1334 		return rc;
1335 	}
1336 
1337 	if (print_info) {
1338 		u64 new_sectors = ata_id_n_sectors(dev->id);
1339 		ata_dev_info(dev,
1340 			"HPA unlocked: %llu -> %llu, native %llu\n",
1341 			(unsigned long long)sectors,
1342 			(unsigned long long)new_sectors,
1343 			(unsigned long long)native_sectors);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1351  *	@dev: device from which the information is fetched
1352  *	@id: IDENTIFY DEVICE page to dump
1353  *
1354  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1355  *	page.
1356  *
1357  *	LOCKING:
1358  *	caller.
1359  */
1360 
1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1362 {
1363 	ata_dev_dbg(dev,
1364 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1365 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1366 		"88==0x%04x  93==0x%04x\n",
1367 		id[49], id[53], id[63], id[64], id[75], id[80],
1368 		id[81], id[82], id[83], id[84], id[88], id[93]);
1369 }
1370 
1371 /**
1372  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1373  *	@id: IDENTIFY data to compute xfer mask from
1374  *
1375  *	Compute the xfermask for this device. This is not as trivial
1376  *	as it seems if we must consider early devices correctly.
1377  *
1378  *	FIXME: pre IDE drive timing (do we care ?).
1379  *
1380  *	LOCKING:
1381  *	None.
1382  *
1383  *	RETURNS:
1384  *	Computed xfermask
1385  */
1386 unsigned long ata_id_xfermask(const u16 *id)
1387 {
1388 	unsigned long pio_mask, mwdma_mask, udma_mask;
1389 
1390 	/* Usual case. Word 53 indicates word 64 is valid */
1391 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1392 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1393 		pio_mask <<= 3;
1394 		pio_mask |= 0x7;
1395 	} else {
1396 		/* If word 64 isn't valid then Word 51 high byte holds
1397 		 * the PIO timing number for the maximum. Turn it into
1398 		 * a mask.
1399 		 */
1400 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1401 		if (mode < 5)	/* Valid PIO range */
1402 			pio_mask = (2 << mode) - 1;
1403 		else
1404 			pio_mask = 1;
1405 
1406 		/* But wait.. there's more. Design your standards by
1407 		 * committee and you too can get a free iordy field to
1408 		 * process. However it is the speeds not the modes that
1409 		 * are supported... Note drivers using the timing API
1410 		 * will get this right anyway
1411 		 */
1412 	}
1413 
1414 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1415 
1416 	if (ata_id_is_cfa(id)) {
1417 		/*
1418 		 *	Process compact flash extended modes
1419 		 */
1420 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1421 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1422 
1423 		if (pio)
1424 			pio_mask |= (1 << 5);
1425 		if (pio > 1)
1426 			pio_mask |= (1 << 6);
1427 		if (dma)
1428 			mwdma_mask |= (1 << 3);
1429 		if (dma > 1)
1430 			mwdma_mask |= (1 << 4);
1431 	}
1432 
1433 	udma_mask = 0;
1434 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1435 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1436 
1437 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1438 }
1439 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1440 
1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1442 {
1443 	struct completion *waiting = qc->private_data;
1444 
1445 	complete(waiting);
1446 }
1447 
1448 /**
1449  *	ata_exec_internal_sg - execute libata internal command
1450  *	@dev: Device to which the command is sent
1451  *	@tf: Taskfile registers for the command and the result
1452  *	@cdb: CDB for packet command
1453  *	@dma_dir: Data transfer direction of the command
1454  *	@sgl: sg list for the data buffer of the command
1455  *	@n_elem: Number of sg entries
1456  *	@timeout: Timeout in msecs (0 for default)
1457  *
1458  *	Executes libata internal command with timeout.  @tf contains
1459  *	command on entry and result on return.  Timeout and error
1460  *	conditions are reported via return value.  No recovery action
1461  *	is taken after a command times out.  It's caller's duty to
1462  *	clean up after timeout.
1463  *
1464  *	LOCKING:
1465  *	None.  Should be called with kernel context, might sleep.
1466  *
1467  *	RETURNS:
1468  *	Zero on success, AC_ERR_* mask on failure
1469  */
1470 unsigned ata_exec_internal_sg(struct ata_device *dev,
1471 			      struct ata_taskfile *tf, const u8 *cdb,
1472 			      int dma_dir, struct scatterlist *sgl,
1473 			      unsigned int n_elem, unsigned long timeout)
1474 {
1475 	struct ata_link *link = dev->link;
1476 	struct ata_port *ap = link->ap;
1477 	u8 command = tf->command;
1478 	int auto_timeout = 0;
1479 	struct ata_queued_cmd *qc;
1480 	unsigned int preempted_tag;
1481 	u32 preempted_sactive;
1482 	u64 preempted_qc_active;
1483 	int preempted_nr_active_links;
1484 	DECLARE_COMPLETION_ONSTACK(wait);
1485 	unsigned long flags;
1486 	unsigned int err_mask;
1487 	int rc;
1488 
1489 	spin_lock_irqsave(ap->lock, flags);
1490 
1491 	/* no internal command while frozen */
1492 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1493 		spin_unlock_irqrestore(ap->lock, flags);
1494 		return AC_ERR_SYSTEM;
1495 	}
1496 
1497 	/* initialize internal qc */
1498 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1499 
1500 	qc->tag = ATA_TAG_INTERNAL;
1501 	qc->hw_tag = 0;
1502 	qc->scsicmd = NULL;
1503 	qc->ap = ap;
1504 	qc->dev = dev;
1505 	ata_qc_reinit(qc);
1506 
1507 	preempted_tag = link->active_tag;
1508 	preempted_sactive = link->sactive;
1509 	preempted_qc_active = ap->qc_active;
1510 	preempted_nr_active_links = ap->nr_active_links;
1511 	link->active_tag = ATA_TAG_POISON;
1512 	link->sactive = 0;
1513 	ap->qc_active = 0;
1514 	ap->nr_active_links = 0;
1515 
1516 	/* prepare & issue qc */
1517 	qc->tf = *tf;
1518 	if (cdb)
1519 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1520 
1521 	/* some SATA bridges need us to indicate data xfer direction */
1522 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1523 	    dma_dir == DMA_FROM_DEVICE)
1524 		qc->tf.feature |= ATAPI_DMADIR;
1525 
1526 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1527 	qc->dma_dir = dma_dir;
1528 	if (dma_dir != DMA_NONE) {
1529 		unsigned int i, buflen = 0;
1530 		struct scatterlist *sg;
1531 
1532 		for_each_sg(sgl, sg, n_elem, i)
1533 			buflen += sg->length;
1534 
1535 		ata_sg_init(qc, sgl, n_elem);
1536 		qc->nbytes = buflen;
1537 	}
1538 
1539 	qc->private_data = &wait;
1540 	qc->complete_fn = ata_qc_complete_internal;
1541 
1542 	ata_qc_issue(qc);
1543 
1544 	spin_unlock_irqrestore(ap->lock, flags);
1545 
1546 	if (!timeout) {
1547 		if (ata_probe_timeout)
1548 			timeout = ata_probe_timeout * 1000;
1549 		else {
1550 			timeout = ata_internal_cmd_timeout(dev, command);
1551 			auto_timeout = 1;
1552 		}
1553 	}
1554 
1555 	if (ap->ops->error_handler)
1556 		ata_eh_release(ap);
1557 
1558 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1559 
1560 	if (ap->ops->error_handler)
1561 		ata_eh_acquire(ap);
1562 
1563 	ata_sff_flush_pio_task(ap);
1564 
1565 	if (!rc) {
1566 		spin_lock_irqsave(ap->lock, flags);
1567 
1568 		/* We're racing with irq here.  If we lose, the
1569 		 * following test prevents us from completing the qc
1570 		 * twice.  If we win, the port is frozen and will be
1571 		 * cleaned up by ->post_internal_cmd().
1572 		 */
1573 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1574 			qc->err_mask |= AC_ERR_TIMEOUT;
1575 
1576 			if (ap->ops->error_handler)
1577 				ata_port_freeze(ap);
1578 			else
1579 				ata_qc_complete(qc);
1580 
1581 			ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1582 				     command);
1583 		}
1584 
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 	}
1587 
1588 	/* do post_internal_cmd */
1589 	if (ap->ops->post_internal_cmd)
1590 		ap->ops->post_internal_cmd(qc);
1591 
1592 	/* perform minimal error analysis */
1593 	if (qc->flags & ATA_QCFLAG_FAILED) {
1594 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1595 			qc->err_mask |= AC_ERR_DEV;
1596 
1597 		if (!qc->err_mask)
1598 			qc->err_mask |= AC_ERR_OTHER;
1599 
1600 		if (qc->err_mask & ~AC_ERR_OTHER)
1601 			qc->err_mask &= ~AC_ERR_OTHER;
1602 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1603 		qc->result_tf.status |= ATA_SENSE;
1604 	}
1605 
1606 	/* finish up */
1607 	spin_lock_irqsave(ap->lock, flags);
1608 
1609 	*tf = qc->result_tf;
1610 	err_mask = qc->err_mask;
1611 
1612 	ata_qc_free(qc);
1613 	link->active_tag = preempted_tag;
1614 	link->sactive = preempted_sactive;
1615 	ap->qc_active = preempted_qc_active;
1616 	ap->nr_active_links = preempted_nr_active_links;
1617 
1618 	spin_unlock_irqrestore(ap->lock, flags);
1619 
1620 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1621 		ata_internal_cmd_timed_out(dev, command);
1622 
1623 	return err_mask;
1624 }
1625 
1626 /**
1627  *	ata_exec_internal - execute libata internal command
1628  *	@dev: Device to which the command is sent
1629  *	@tf: Taskfile registers for the command and the result
1630  *	@cdb: CDB for packet command
1631  *	@dma_dir: Data transfer direction of the command
1632  *	@buf: Data buffer of the command
1633  *	@buflen: Length of data buffer
1634  *	@timeout: Timeout in msecs (0 for default)
1635  *
1636  *	Wrapper around ata_exec_internal_sg() which takes simple
1637  *	buffer instead of sg list.
1638  *
1639  *	LOCKING:
1640  *	None.  Should be called with kernel context, might sleep.
1641  *
1642  *	RETURNS:
1643  *	Zero on success, AC_ERR_* mask on failure
1644  */
1645 unsigned ata_exec_internal(struct ata_device *dev,
1646 			   struct ata_taskfile *tf, const u8 *cdb,
1647 			   int dma_dir, void *buf, unsigned int buflen,
1648 			   unsigned long timeout)
1649 {
1650 	struct scatterlist *psg = NULL, sg;
1651 	unsigned int n_elem = 0;
1652 
1653 	if (dma_dir != DMA_NONE) {
1654 		WARN_ON(!buf);
1655 		sg_init_one(&sg, buf, buflen);
1656 		psg = &sg;
1657 		n_elem++;
1658 	}
1659 
1660 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1661 				    timeout);
1662 }
1663 
1664 /**
1665  *	ata_pio_need_iordy	-	check if iordy needed
1666  *	@adev: ATA device
1667  *
1668  *	Check if the current speed of the device requires IORDY. Used
1669  *	by various controllers for chip configuration.
1670  */
1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1672 {
1673 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1674 	 * lead to controller lock up on certain controllers if the
1675 	 * port is not occupied.  See bko#11703 for details.
1676 	 */
1677 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1678 		return 0;
1679 	/* Controller doesn't support IORDY.  Probably a pointless
1680 	 * check as the caller should know this.
1681 	 */
1682 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1683 		return 0;
1684 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1685 	if (ata_id_is_cfa(adev->id)
1686 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1687 		return 0;
1688 	/* PIO3 and higher it is mandatory */
1689 	if (adev->pio_mode > XFER_PIO_2)
1690 		return 1;
1691 	/* We turn it on when possible */
1692 	if (ata_id_has_iordy(adev->id))
1693 		return 1;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1697 
1698 /**
1699  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1700  *	@adev: ATA device
1701  *
1702  *	Compute the highest mode possible if we are not using iordy. Return
1703  *	-1 if no iordy mode is available.
1704  */
1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1706 {
1707 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1708 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1709 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1710 		/* Is the speed faster than the drive allows non IORDY ? */
1711 		if (pio) {
1712 			/* This is cycle times not frequency - watch the logic! */
1713 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1714 				return 3 << ATA_SHIFT_PIO;
1715 			return 7 << ATA_SHIFT_PIO;
1716 		}
1717 	}
1718 	return 3 << ATA_SHIFT_PIO;
1719 }
1720 
1721 /**
1722  *	ata_do_dev_read_id		-	default ID read method
1723  *	@dev: device
1724  *	@tf: proposed taskfile
1725  *	@id: data buffer
1726  *
1727  *	Issue the identify taskfile and hand back the buffer containing
1728  *	identify data. For some RAID controllers and for pre ATA devices
1729  *	this function is wrapped or replaced by the driver
1730  */
1731 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1732 				struct ata_taskfile *tf, __le16 *id)
1733 {
1734 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1735 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1738 
1739 /**
1740  *	ata_dev_read_id - Read ID data from the specified device
1741  *	@dev: target device
1742  *	@p_class: pointer to class of the target device (may be changed)
1743  *	@flags: ATA_READID_* flags
1744  *	@id: buffer to read IDENTIFY data into
1745  *
1746  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1747  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1748  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1749  *	for pre-ATA4 drives.
1750  *
1751  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1752  *	now we abort if we hit that case.
1753  *
1754  *	LOCKING:
1755  *	Kernel thread context (may sleep)
1756  *
1757  *	RETURNS:
1758  *	0 on success, -errno otherwise.
1759  */
1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1761 		    unsigned int flags, u16 *id)
1762 {
1763 	struct ata_port *ap = dev->link->ap;
1764 	unsigned int class = *p_class;
1765 	struct ata_taskfile tf;
1766 	unsigned int err_mask = 0;
1767 	const char *reason;
1768 	bool is_semb = class == ATA_DEV_SEMB;
1769 	int may_fallback = 1, tried_spinup = 0;
1770 	int rc;
1771 
1772 retry:
1773 	ata_tf_init(dev, &tf);
1774 
1775 	switch (class) {
1776 	case ATA_DEV_SEMB:
1777 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1778 		fallthrough;
1779 	case ATA_DEV_ATA:
1780 	case ATA_DEV_ZAC:
1781 		tf.command = ATA_CMD_ID_ATA;
1782 		break;
1783 	case ATA_DEV_ATAPI:
1784 		tf.command = ATA_CMD_ID_ATAPI;
1785 		break;
1786 	default:
1787 		rc = -ENODEV;
1788 		reason = "unsupported class";
1789 		goto err_out;
1790 	}
1791 
1792 	tf.protocol = ATA_PROT_PIO;
1793 
1794 	/* Some devices choke if TF registers contain garbage.  Make
1795 	 * sure those are properly initialized.
1796 	 */
1797 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1798 
1799 	/* Device presence detection is unreliable on some
1800 	 * controllers.  Always poll IDENTIFY if available.
1801 	 */
1802 	tf.flags |= ATA_TFLAG_POLLING;
1803 
1804 	if (ap->ops->read_id)
1805 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1806 	else
1807 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1808 
1809 	if (err_mask) {
1810 		if (err_mask & AC_ERR_NODEV_HINT) {
1811 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1812 			return -ENOENT;
1813 		}
1814 
1815 		if (is_semb) {
1816 			ata_dev_info(dev,
1817 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1818 			/* SEMB is not supported yet */
1819 			*p_class = ATA_DEV_SEMB_UNSUP;
1820 			return 0;
1821 		}
1822 
1823 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1824 			/* Device or controller might have reported
1825 			 * the wrong device class.  Give a shot at the
1826 			 * other IDENTIFY if the current one is
1827 			 * aborted by the device.
1828 			 */
1829 			if (may_fallback) {
1830 				may_fallback = 0;
1831 
1832 				if (class == ATA_DEV_ATA)
1833 					class = ATA_DEV_ATAPI;
1834 				else
1835 					class = ATA_DEV_ATA;
1836 				goto retry;
1837 			}
1838 
1839 			/* Control reaches here iff the device aborted
1840 			 * both flavors of IDENTIFYs which happens
1841 			 * sometimes with phantom devices.
1842 			 */
1843 			ata_dev_dbg(dev,
1844 				    "both IDENTIFYs aborted, assuming NODEV\n");
1845 			return -ENOENT;
1846 		}
1847 
1848 		rc = -EIO;
1849 		reason = "I/O error";
1850 		goto err_out;
1851 	}
1852 
1853 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1854 		ata_dev_info(dev, "dumping IDENTIFY data, "
1855 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1856 			    class, may_fallback, tried_spinup);
1857 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1858 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1859 	}
1860 
1861 	/* Falling back doesn't make sense if ID data was read
1862 	 * successfully at least once.
1863 	 */
1864 	may_fallback = 0;
1865 
1866 	swap_buf_le16(id, ATA_ID_WORDS);
1867 
1868 	/* sanity check */
1869 	rc = -EINVAL;
1870 	reason = "device reports invalid type";
1871 
1872 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1873 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1874 			goto err_out;
1875 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1876 							ata_id_is_ata(id)) {
1877 			ata_dev_dbg(dev,
1878 				"host indicates ignore ATA devices, ignored\n");
1879 			return -ENOENT;
1880 		}
1881 	} else {
1882 		if (ata_id_is_ata(id))
1883 			goto err_out;
1884 	}
1885 
1886 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1887 		tried_spinup = 1;
1888 		/*
1889 		 * Drive powered-up in standby mode, and requires a specific
1890 		 * SET_FEATURES spin-up subcommand before it will accept
1891 		 * anything other than the original IDENTIFY command.
1892 		 */
1893 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1894 		if (err_mask && id[2] != 0x738c) {
1895 			rc = -EIO;
1896 			reason = "SPINUP failed";
1897 			goto err_out;
1898 		}
1899 		/*
1900 		 * If the drive initially returned incomplete IDENTIFY info,
1901 		 * we now must reissue the IDENTIFY command.
1902 		 */
1903 		if (id[2] == 0x37c8)
1904 			goto retry;
1905 	}
1906 
1907 	if ((flags & ATA_READID_POSTRESET) &&
1908 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1909 		/*
1910 		 * The exact sequence expected by certain pre-ATA4 drives is:
1911 		 * SRST RESET
1912 		 * IDENTIFY (optional in early ATA)
1913 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1914 		 * anything else..
1915 		 * Some drives were very specific about that exact sequence.
1916 		 *
1917 		 * Note that ATA4 says lba is mandatory so the second check
1918 		 * should never trigger.
1919 		 */
1920 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1921 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1922 			if (err_mask) {
1923 				rc = -EIO;
1924 				reason = "INIT_DEV_PARAMS failed";
1925 				goto err_out;
1926 			}
1927 
1928 			/* current CHS translation info (id[53-58]) might be
1929 			 * changed. reread the identify device info.
1930 			 */
1931 			flags &= ~ATA_READID_POSTRESET;
1932 			goto retry;
1933 		}
1934 	}
1935 
1936 	*p_class = class;
1937 
1938 	return 0;
1939 
1940  err_out:
1941 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1942 		     reason, err_mask);
1943 	return rc;
1944 }
1945 
1946 /**
1947  *	ata_read_log_page - read a specific log page
1948  *	@dev: target device
1949  *	@log: log to read
1950  *	@page: page to read
1951  *	@buf: buffer to store read page
1952  *	@sectors: number of sectors to read
1953  *
1954  *	Read log page using READ_LOG_EXT command.
1955  *
1956  *	LOCKING:
1957  *	Kernel thread context (may sleep).
1958  *
1959  *	RETURNS:
1960  *	0 on success, AC_ERR_* mask otherwise.
1961  */
1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1963 			       u8 page, void *buf, unsigned int sectors)
1964 {
1965 	unsigned long ap_flags = dev->link->ap->flags;
1966 	struct ata_taskfile tf;
1967 	unsigned int err_mask;
1968 	bool dma = false;
1969 
1970 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1971 
1972 	/*
1973 	 * Return error without actually issuing the command on controllers
1974 	 * which e.g. lockup on a read log page.
1975 	 */
1976 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1977 		return AC_ERR_DEV;
1978 
1979 retry:
1980 	ata_tf_init(dev, &tf);
1981 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1982 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1983 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1984 		tf.protocol = ATA_PROT_DMA;
1985 		dma = true;
1986 	} else {
1987 		tf.command = ATA_CMD_READ_LOG_EXT;
1988 		tf.protocol = ATA_PROT_PIO;
1989 		dma = false;
1990 	}
1991 	tf.lbal = log;
1992 	tf.lbam = page;
1993 	tf.nsect = sectors;
1994 	tf.hob_nsect = sectors >> 8;
1995 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1996 
1997 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1998 				     buf, sectors * ATA_SECT_SIZE, 0);
1999 
2000 	if (err_mask) {
2001 		if (dma) {
2002 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2003 			goto retry;
2004 		}
2005 		ata_dev_err(dev,
2006 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2007 			    (unsigned int)log, (unsigned int)page, err_mask);
2008 	}
2009 
2010 	return err_mask;
2011 }
2012 
2013 static bool ata_log_supported(struct ata_device *dev, u8 log)
2014 {
2015 	struct ata_port *ap = dev->link->ap;
2016 
2017 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2018 		return false;
2019 
2020 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2021 		return false;
2022 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2023 }
2024 
2025 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2026 {
2027 	struct ata_port *ap = dev->link->ap;
2028 	unsigned int err, i;
2029 
2030 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2031 		return false;
2032 
2033 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2034 		/*
2035 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2036 		 * with ACS-3 (ATA version 10). Warn about the missing log
2037 		 * for drives which implement this ATA level or above.
2038 		 */
2039 		if (ata_id_major_version(dev->id) >= 10)
2040 			ata_dev_warn(dev,
2041 				"ATA Identify Device Log not supported\n");
2042 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2043 		return false;
2044 	}
2045 
2046 	/*
2047 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2048 	 * supported.
2049 	 */
2050 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2051 				1);
2052 	if (err)
2053 		return false;
2054 
2055 	for (i = 0; i < ap->sector_buf[8]; i++) {
2056 		if (ap->sector_buf[9 + i] == page)
2057 			return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 static int ata_do_link_spd_horkage(struct ata_device *dev)
2064 {
2065 	struct ata_link *plink = ata_dev_phys_link(dev);
2066 	u32 target, target_limit;
2067 
2068 	if (!sata_scr_valid(plink))
2069 		return 0;
2070 
2071 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2072 		target = 1;
2073 	else
2074 		return 0;
2075 
2076 	target_limit = (1 << target) - 1;
2077 
2078 	/* if already on stricter limit, no need to push further */
2079 	if (plink->sata_spd_limit <= target_limit)
2080 		return 0;
2081 
2082 	plink->sata_spd_limit = target_limit;
2083 
2084 	/* Request another EH round by returning -EAGAIN if link is
2085 	 * going faster than the target speed.  Forward progress is
2086 	 * guaranteed by setting sata_spd_limit to target_limit above.
2087 	 */
2088 	if (plink->sata_spd > target) {
2089 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2090 			     sata_spd_string(target));
2091 		return -EAGAIN;
2092 	}
2093 	return 0;
2094 }
2095 
2096 static inline u8 ata_dev_knobble(struct ata_device *dev)
2097 {
2098 	struct ata_port *ap = dev->link->ap;
2099 
2100 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2101 		return 0;
2102 
2103 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2104 }
2105 
2106 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2107 {
2108 	struct ata_port *ap = dev->link->ap;
2109 	unsigned int err_mask;
2110 
2111 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2112 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2113 		return;
2114 	}
2115 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2116 				     0, ap->sector_buf, 1);
2117 	if (!err_mask) {
2118 		u8 *cmds = dev->ncq_send_recv_cmds;
2119 
2120 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2121 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2122 
2123 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2124 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2125 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2126 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2127 		}
2128 	}
2129 }
2130 
2131 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2132 {
2133 	struct ata_port *ap = dev->link->ap;
2134 	unsigned int err_mask;
2135 
2136 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2137 		ata_dev_warn(dev,
2138 			     "NCQ Send/Recv Log not supported\n");
2139 		return;
2140 	}
2141 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2142 				     0, ap->sector_buf, 1);
2143 	if (!err_mask) {
2144 		u8 *cmds = dev->ncq_non_data_cmds;
2145 
2146 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2147 	}
2148 }
2149 
2150 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2151 {
2152 	struct ata_port *ap = dev->link->ap;
2153 	unsigned int err_mask;
2154 
2155 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2156 		return;
2157 
2158 	err_mask = ata_read_log_page(dev,
2159 				     ATA_LOG_IDENTIFY_DEVICE,
2160 				     ATA_LOG_SATA_SETTINGS,
2161 				     ap->sector_buf,
2162 				     1);
2163 	if (err_mask)
2164 		goto not_supported;
2165 
2166 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2167 		goto not_supported;
2168 
2169 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2170 
2171 	return;
2172 
2173 not_supported:
2174 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2175 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2176 }
2177 
2178 static bool ata_dev_check_adapter(struct ata_device *dev,
2179 				  unsigned short vendor_id)
2180 {
2181 	struct pci_dev *pcidev = NULL;
2182 	struct device *parent_dev = NULL;
2183 
2184 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2185 	     parent_dev = parent_dev->parent) {
2186 		if (dev_is_pci(parent_dev)) {
2187 			pcidev = to_pci_dev(parent_dev);
2188 			if (pcidev->vendor == vendor_id)
2189 				return true;
2190 			break;
2191 		}
2192 	}
2193 
2194 	return false;
2195 }
2196 
2197 static int ata_dev_config_ncq(struct ata_device *dev,
2198 			       char *desc, size_t desc_sz)
2199 {
2200 	struct ata_port *ap = dev->link->ap;
2201 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2202 	unsigned int err_mask;
2203 	char *aa_desc = "";
2204 
2205 	if (!ata_id_has_ncq(dev->id)) {
2206 		desc[0] = '\0';
2207 		return 0;
2208 	}
2209 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2210 		return 0;
2211 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2212 		snprintf(desc, desc_sz, "NCQ (not used)");
2213 		return 0;
2214 	}
2215 
2216 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2217 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2218 		snprintf(desc, desc_sz, "NCQ (not used)");
2219 		return 0;
2220 	}
2221 
2222 	if (ap->flags & ATA_FLAG_NCQ) {
2223 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2224 		dev->flags |= ATA_DFLAG_NCQ;
2225 	}
2226 
2227 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2228 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2229 		ata_id_has_fpdma_aa(dev->id)) {
2230 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2231 			SATA_FPDMA_AA);
2232 		if (err_mask) {
2233 			ata_dev_err(dev,
2234 				    "failed to enable AA (error_mask=0x%x)\n",
2235 				    err_mask);
2236 			if (err_mask != AC_ERR_DEV) {
2237 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2238 				return -EIO;
2239 			}
2240 		} else
2241 			aa_desc = ", AA";
2242 	}
2243 
2244 	if (hdepth >= ddepth)
2245 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2246 	else
2247 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2248 			ddepth, aa_desc);
2249 
2250 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2251 		if (ata_id_has_ncq_send_and_recv(dev->id))
2252 			ata_dev_config_ncq_send_recv(dev);
2253 		if (ata_id_has_ncq_non_data(dev->id))
2254 			ata_dev_config_ncq_non_data(dev);
2255 		if (ata_id_has_ncq_prio(dev->id))
2256 			ata_dev_config_ncq_prio(dev);
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2263 {
2264 	unsigned int err_mask;
2265 
2266 	if (!ata_id_has_sense_reporting(dev->id))
2267 		return;
2268 
2269 	if (ata_id_sense_reporting_enabled(dev->id))
2270 		return;
2271 
2272 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2273 	if (err_mask) {
2274 		ata_dev_dbg(dev,
2275 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2276 			    err_mask);
2277 	}
2278 }
2279 
2280 static void ata_dev_config_zac(struct ata_device *dev)
2281 {
2282 	struct ata_port *ap = dev->link->ap;
2283 	unsigned int err_mask;
2284 	u8 *identify_buf = ap->sector_buf;
2285 
2286 	dev->zac_zones_optimal_open = U32_MAX;
2287 	dev->zac_zones_optimal_nonseq = U32_MAX;
2288 	dev->zac_zones_max_open = U32_MAX;
2289 
2290 	/*
2291 	 * Always set the 'ZAC' flag for Host-managed devices.
2292 	 */
2293 	if (dev->class == ATA_DEV_ZAC)
2294 		dev->flags |= ATA_DFLAG_ZAC;
2295 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2296 		/*
2297 		 * Check for host-aware devices.
2298 		 */
2299 		dev->flags |= ATA_DFLAG_ZAC;
2300 
2301 	if (!(dev->flags & ATA_DFLAG_ZAC))
2302 		return;
2303 
2304 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2305 		ata_dev_warn(dev,
2306 			     "ATA Zoned Information Log not supported\n");
2307 		return;
2308 	}
2309 
2310 	/*
2311 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2312 	 */
2313 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2314 				     ATA_LOG_ZONED_INFORMATION,
2315 				     identify_buf, 1);
2316 	if (!err_mask) {
2317 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2318 
2319 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2320 		if ((zoned_cap >> 63))
2321 			dev->zac_zoned_cap = (zoned_cap & 1);
2322 		opt_open = get_unaligned_le64(&identify_buf[24]);
2323 		if ((opt_open >> 63))
2324 			dev->zac_zones_optimal_open = (u32)opt_open;
2325 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2326 		if ((opt_nonseq >> 63))
2327 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2328 		max_open = get_unaligned_le64(&identify_buf[40]);
2329 		if ((max_open >> 63))
2330 			dev->zac_zones_max_open = (u32)max_open;
2331 	}
2332 }
2333 
2334 static void ata_dev_config_trusted(struct ata_device *dev)
2335 {
2336 	struct ata_port *ap = dev->link->ap;
2337 	u64 trusted_cap;
2338 	unsigned int err;
2339 
2340 	if (!ata_id_has_trusted(dev->id))
2341 		return;
2342 
2343 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2344 		ata_dev_warn(dev,
2345 			     "Security Log not supported\n");
2346 		return;
2347 	}
2348 
2349 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2350 			ap->sector_buf, 1);
2351 	if (err)
2352 		return;
2353 
2354 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2355 	if (!(trusted_cap & (1ULL << 63))) {
2356 		ata_dev_dbg(dev,
2357 			    "Trusted Computing capability qword not valid!\n");
2358 		return;
2359 	}
2360 
2361 	if (trusted_cap & (1 << 0))
2362 		dev->flags |= ATA_DFLAG_TRUSTED;
2363 }
2364 
2365 static int ata_dev_config_lba(struct ata_device *dev)
2366 {
2367 	const u16 *id = dev->id;
2368 	const char *lba_desc;
2369 	char ncq_desc[24];
2370 	int ret;
2371 
2372 	dev->flags |= ATA_DFLAG_LBA;
2373 
2374 	if (ata_id_has_lba48(id)) {
2375 		lba_desc = "LBA48";
2376 		dev->flags |= ATA_DFLAG_LBA48;
2377 		if (dev->n_sectors >= (1UL << 28) &&
2378 		    ata_id_has_flush_ext(id))
2379 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2380 	} else {
2381 		lba_desc = "LBA";
2382 	}
2383 
2384 	/* config NCQ */
2385 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2386 
2387 	/* print device info to dmesg */
2388 	if (ata_dev_print_info(dev))
2389 		ata_dev_info(dev,
2390 			     "%llu sectors, multi %u: %s %s\n",
2391 			     (unsigned long long)dev->n_sectors,
2392 			     dev->multi_count, lba_desc, ncq_desc);
2393 
2394 	return ret;
2395 }
2396 
2397 static void ata_dev_config_chs(struct ata_device *dev)
2398 {
2399 	const u16 *id = dev->id;
2400 
2401 	if (ata_id_current_chs_valid(id)) {
2402 		/* Current CHS translation is valid. */
2403 		dev->cylinders = id[54];
2404 		dev->heads     = id[55];
2405 		dev->sectors   = id[56];
2406 	} else {
2407 		/* Default translation */
2408 		dev->cylinders	= id[1];
2409 		dev->heads	= id[3];
2410 		dev->sectors	= id[6];
2411 	}
2412 
2413 	/* print device info to dmesg */
2414 	if (ata_dev_print_info(dev))
2415 		ata_dev_info(dev,
2416 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2417 			     (unsigned long long)dev->n_sectors,
2418 			     dev->multi_count, dev->cylinders,
2419 			     dev->heads, dev->sectors);
2420 }
2421 
2422 static void ata_dev_config_devslp(struct ata_device *dev)
2423 {
2424 	u8 *sata_setting = dev->link->ap->sector_buf;
2425 	unsigned int err_mask;
2426 	int i, j;
2427 
2428 	/*
2429 	 * Check device sleep capability. Get DevSlp timing variables
2430 	 * from SATA Settings page of Identify Device Data Log.
2431 	 */
2432 	if (!ata_id_has_devslp(dev->id) ||
2433 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2434 		return;
2435 
2436 	err_mask = ata_read_log_page(dev,
2437 				     ATA_LOG_IDENTIFY_DEVICE,
2438 				     ATA_LOG_SATA_SETTINGS,
2439 				     sata_setting, 1);
2440 	if (err_mask)
2441 		return;
2442 
2443 	dev->flags |= ATA_DFLAG_DEVSLP;
2444 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2445 		j = ATA_LOG_DEVSLP_OFFSET + i;
2446 		dev->devslp_timing[i] = sata_setting[j];
2447 	}
2448 }
2449 
2450 static void ata_dev_config_cpr(struct ata_device *dev)
2451 {
2452 	unsigned int err_mask;
2453 	size_t buf_len;
2454 	int i, nr_cpr = 0;
2455 	struct ata_cpr_log *cpr_log = NULL;
2456 	u8 *desc, *buf = NULL;
2457 
2458 	if (ata_id_major_version(dev->id) < 11 ||
2459 	    !ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2460 		goto out;
2461 
2462 	/*
2463 	 * Read the concurrent positioning ranges log (0x47). We can have at
2464 	 * most 255 32B range descriptors plus a 64B header.
2465 	 */
2466 	buf_len = (64 + 255 * 32 + 511) & ~511;
2467 	buf = kzalloc(buf_len, GFP_KERNEL);
2468 	if (!buf)
2469 		goto out;
2470 
2471 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2472 				     0, buf, buf_len >> 9);
2473 	if (err_mask)
2474 		goto out;
2475 
2476 	nr_cpr = buf[0];
2477 	if (!nr_cpr)
2478 		goto out;
2479 
2480 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2481 	if (!cpr_log)
2482 		goto out;
2483 
2484 	cpr_log->nr_cpr = nr_cpr;
2485 	desc = &buf[64];
2486 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2487 		cpr_log->cpr[i].num = desc[0];
2488 		cpr_log->cpr[i].num_storage_elements = desc[1];
2489 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2490 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2491 	}
2492 
2493 out:
2494 	swap(dev->cpr_log, cpr_log);
2495 	kfree(cpr_log);
2496 	kfree(buf);
2497 }
2498 
2499 static void ata_dev_print_features(struct ata_device *dev)
2500 {
2501 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2502 		return;
2503 
2504 	ata_dev_info(dev,
2505 		     "Features:%s%s%s%s%s%s\n",
2506 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2507 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2508 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2509 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2510 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2511 		     dev->cpr_log ? " CPR" : "");
2512 }
2513 
2514 /**
2515  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2516  *	@dev: Target device to configure
2517  *
2518  *	Configure @dev according to @dev->id.  Generic and low-level
2519  *	driver specific fixups are also applied.
2520  *
2521  *	LOCKING:
2522  *	Kernel thread context (may sleep)
2523  *
2524  *	RETURNS:
2525  *	0 on success, -errno otherwise
2526  */
2527 int ata_dev_configure(struct ata_device *dev)
2528 {
2529 	struct ata_port *ap = dev->link->ap;
2530 	bool print_info = ata_dev_print_info(dev);
2531 	const u16 *id = dev->id;
2532 	unsigned long xfer_mask;
2533 	unsigned int err_mask;
2534 	char revbuf[7];		/* XYZ-99\0 */
2535 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2536 	char modelbuf[ATA_ID_PROD_LEN+1];
2537 	int rc;
2538 
2539 	if (!ata_dev_enabled(dev)) {
2540 		ata_dev_dbg(dev, "no device\n");
2541 		return 0;
2542 	}
2543 
2544 	/* set horkage */
2545 	dev->horkage |= ata_dev_blacklisted(dev);
2546 	ata_force_horkage(dev);
2547 
2548 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2549 		ata_dev_info(dev, "unsupported device, disabling\n");
2550 		ata_dev_disable(dev);
2551 		return 0;
2552 	}
2553 
2554 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2555 	    dev->class == ATA_DEV_ATAPI) {
2556 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2557 			     atapi_enabled ? "not supported with this driver"
2558 			     : "disabled");
2559 		ata_dev_disable(dev);
2560 		return 0;
2561 	}
2562 
2563 	rc = ata_do_link_spd_horkage(dev);
2564 	if (rc)
2565 		return rc;
2566 
2567 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2568 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2569 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2570 		dev->horkage |= ATA_HORKAGE_NOLPM;
2571 
2572 	if (ap->flags & ATA_FLAG_NO_LPM)
2573 		dev->horkage |= ATA_HORKAGE_NOLPM;
2574 
2575 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2576 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2577 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2578 	}
2579 
2580 	/* let ACPI work its magic */
2581 	rc = ata_acpi_on_devcfg(dev);
2582 	if (rc)
2583 		return rc;
2584 
2585 	/* massage HPA, do it early as it might change IDENTIFY data */
2586 	rc = ata_hpa_resize(dev);
2587 	if (rc)
2588 		return rc;
2589 
2590 	/* print device capabilities */
2591 	ata_dev_dbg(dev,
2592 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2593 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2594 		    __func__,
2595 		    id[49], id[82], id[83], id[84],
2596 		    id[85], id[86], id[87], id[88]);
2597 
2598 	/* initialize to-be-configured parameters */
2599 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2600 	dev->max_sectors = 0;
2601 	dev->cdb_len = 0;
2602 	dev->n_sectors = 0;
2603 	dev->cylinders = 0;
2604 	dev->heads = 0;
2605 	dev->sectors = 0;
2606 	dev->multi_count = 0;
2607 
2608 	/*
2609 	 * common ATA, ATAPI feature tests
2610 	 */
2611 
2612 	/* find max transfer mode; for printk only */
2613 	xfer_mask = ata_id_xfermask(id);
2614 
2615 	ata_dump_id(dev, id);
2616 
2617 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2618 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2619 			sizeof(fwrevbuf));
2620 
2621 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2622 			sizeof(modelbuf));
2623 
2624 	/* ATA-specific feature tests */
2625 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2626 		if (ata_id_is_cfa(id)) {
2627 			/* CPRM may make this media unusable */
2628 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2629 				ata_dev_warn(dev,
2630 	"supports DRM functions and may not be fully accessible\n");
2631 			snprintf(revbuf, 7, "CFA");
2632 		} else {
2633 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2634 			/* Warn the user if the device has TPM extensions */
2635 			if (ata_id_has_tpm(id))
2636 				ata_dev_warn(dev,
2637 	"supports DRM functions and may not be fully accessible\n");
2638 		}
2639 
2640 		dev->n_sectors = ata_id_n_sectors(id);
2641 
2642 		/* get current R/W Multiple count setting */
2643 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2644 			unsigned int max = dev->id[47] & 0xff;
2645 			unsigned int cnt = dev->id[59] & 0xff;
2646 			/* only recognize/allow powers of two here */
2647 			if (is_power_of_2(max) && is_power_of_2(cnt))
2648 				if (cnt <= max)
2649 					dev->multi_count = cnt;
2650 		}
2651 
2652 		/* print device info to dmesg */
2653 		if (print_info)
2654 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2655 				     revbuf, modelbuf, fwrevbuf,
2656 				     ata_mode_string(xfer_mask));
2657 
2658 		if (ata_id_has_lba(id)) {
2659 			rc = ata_dev_config_lba(dev);
2660 			if (rc)
2661 				return rc;
2662 		} else {
2663 			ata_dev_config_chs(dev);
2664 		}
2665 
2666 		ata_dev_config_devslp(dev);
2667 		ata_dev_config_sense_reporting(dev);
2668 		ata_dev_config_zac(dev);
2669 		ata_dev_config_trusted(dev);
2670 		ata_dev_config_cpr(dev);
2671 		dev->cdb_len = 32;
2672 
2673 		if (print_info)
2674 			ata_dev_print_features(dev);
2675 	}
2676 
2677 	/* ATAPI-specific feature tests */
2678 	else if (dev->class == ATA_DEV_ATAPI) {
2679 		const char *cdb_intr_string = "";
2680 		const char *atapi_an_string = "";
2681 		const char *dma_dir_string = "";
2682 		u32 sntf;
2683 
2684 		rc = atapi_cdb_len(id);
2685 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2686 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2687 			rc = -EINVAL;
2688 			goto err_out_nosup;
2689 		}
2690 		dev->cdb_len = (unsigned int) rc;
2691 
2692 		/* Enable ATAPI AN if both the host and device have
2693 		 * the support.  If PMP is attached, SNTF is required
2694 		 * to enable ATAPI AN to discern between PHY status
2695 		 * changed notifications and ATAPI ANs.
2696 		 */
2697 		if (atapi_an &&
2698 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2699 		    (!sata_pmp_attached(ap) ||
2700 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2701 			/* issue SET feature command to turn this on */
2702 			err_mask = ata_dev_set_feature(dev,
2703 					SETFEATURES_SATA_ENABLE, SATA_AN);
2704 			if (err_mask)
2705 				ata_dev_err(dev,
2706 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2707 					    err_mask);
2708 			else {
2709 				dev->flags |= ATA_DFLAG_AN;
2710 				atapi_an_string = ", ATAPI AN";
2711 			}
2712 		}
2713 
2714 		if (ata_id_cdb_intr(dev->id)) {
2715 			dev->flags |= ATA_DFLAG_CDB_INTR;
2716 			cdb_intr_string = ", CDB intr";
2717 		}
2718 
2719 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2720 			dev->flags |= ATA_DFLAG_DMADIR;
2721 			dma_dir_string = ", DMADIR";
2722 		}
2723 
2724 		if (ata_id_has_da(dev->id)) {
2725 			dev->flags |= ATA_DFLAG_DA;
2726 			zpodd_init(dev);
2727 		}
2728 
2729 		/* print device info to dmesg */
2730 		if (print_info)
2731 			ata_dev_info(dev,
2732 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2733 				     modelbuf, fwrevbuf,
2734 				     ata_mode_string(xfer_mask),
2735 				     cdb_intr_string, atapi_an_string,
2736 				     dma_dir_string);
2737 	}
2738 
2739 	/* determine max_sectors */
2740 	dev->max_sectors = ATA_MAX_SECTORS;
2741 	if (dev->flags & ATA_DFLAG_LBA48)
2742 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2743 
2744 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2745 	   200 sectors */
2746 	if (ata_dev_knobble(dev)) {
2747 		if (print_info)
2748 			ata_dev_info(dev, "applying bridge limits\n");
2749 		dev->udma_mask &= ATA_UDMA5;
2750 		dev->max_sectors = ATA_MAX_SECTORS;
2751 	}
2752 
2753 	if ((dev->class == ATA_DEV_ATAPI) &&
2754 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2755 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2756 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2757 	}
2758 
2759 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2760 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2761 					 dev->max_sectors);
2762 
2763 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2764 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2765 					 dev->max_sectors);
2766 
2767 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2768 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2769 
2770 	if (ap->ops->dev_config)
2771 		ap->ops->dev_config(dev);
2772 
2773 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2774 		/* Let the user know. We don't want to disallow opens for
2775 		   rescue purposes, or in case the vendor is just a blithering
2776 		   idiot. Do this after the dev_config call as some controllers
2777 		   with buggy firmware may want to avoid reporting false device
2778 		   bugs */
2779 
2780 		if (print_info) {
2781 			ata_dev_warn(dev,
2782 "Drive reports diagnostics failure. This may indicate a drive\n");
2783 			ata_dev_warn(dev,
2784 "fault or invalid emulation. Contact drive vendor for information.\n");
2785 		}
2786 	}
2787 
2788 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2789 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2790 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2791 	}
2792 
2793 	return 0;
2794 
2795 err_out_nosup:
2796 	return rc;
2797 }
2798 
2799 /**
2800  *	ata_cable_40wire	-	return 40 wire cable type
2801  *	@ap: port
2802  *
2803  *	Helper method for drivers which want to hardwire 40 wire cable
2804  *	detection.
2805  */
2806 
2807 int ata_cable_40wire(struct ata_port *ap)
2808 {
2809 	return ATA_CBL_PATA40;
2810 }
2811 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2812 
2813 /**
2814  *	ata_cable_80wire	-	return 80 wire cable type
2815  *	@ap: port
2816  *
2817  *	Helper method for drivers which want to hardwire 80 wire cable
2818  *	detection.
2819  */
2820 
2821 int ata_cable_80wire(struct ata_port *ap)
2822 {
2823 	return ATA_CBL_PATA80;
2824 }
2825 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2826 
2827 /**
2828  *	ata_cable_unknown	-	return unknown PATA cable.
2829  *	@ap: port
2830  *
2831  *	Helper method for drivers which have no PATA cable detection.
2832  */
2833 
2834 int ata_cable_unknown(struct ata_port *ap)
2835 {
2836 	return ATA_CBL_PATA_UNK;
2837 }
2838 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2839 
2840 /**
2841  *	ata_cable_ignore	-	return ignored PATA cable.
2842  *	@ap: port
2843  *
2844  *	Helper method for drivers which don't use cable type to limit
2845  *	transfer mode.
2846  */
2847 int ata_cable_ignore(struct ata_port *ap)
2848 {
2849 	return ATA_CBL_PATA_IGN;
2850 }
2851 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2852 
2853 /**
2854  *	ata_cable_sata	-	return SATA cable type
2855  *	@ap: port
2856  *
2857  *	Helper method for drivers which have SATA cables
2858  */
2859 
2860 int ata_cable_sata(struct ata_port *ap)
2861 {
2862 	return ATA_CBL_SATA;
2863 }
2864 EXPORT_SYMBOL_GPL(ata_cable_sata);
2865 
2866 /**
2867  *	ata_bus_probe - Reset and probe ATA bus
2868  *	@ap: Bus to probe
2869  *
2870  *	Master ATA bus probing function.  Initiates a hardware-dependent
2871  *	bus reset, then attempts to identify any devices found on
2872  *	the bus.
2873  *
2874  *	LOCKING:
2875  *	PCI/etc. bus probe sem.
2876  *
2877  *	RETURNS:
2878  *	Zero on success, negative errno otherwise.
2879  */
2880 
2881 int ata_bus_probe(struct ata_port *ap)
2882 {
2883 	unsigned int classes[ATA_MAX_DEVICES];
2884 	int tries[ATA_MAX_DEVICES];
2885 	int rc;
2886 	struct ata_device *dev;
2887 
2888 	ata_for_each_dev(dev, &ap->link, ALL)
2889 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2890 
2891  retry:
2892 	ata_for_each_dev(dev, &ap->link, ALL) {
2893 		/* If we issue an SRST then an ATA drive (not ATAPI)
2894 		 * may change configuration and be in PIO0 timing. If
2895 		 * we do a hard reset (or are coming from power on)
2896 		 * this is true for ATA or ATAPI. Until we've set a
2897 		 * suitable controller mode we should not touch the
2898 		 * bus as we may be talking too fast.
2899 		 */
2900 		dev->pio_mode = XFER_PIO_0;
2901 		dev->dma_mode = 0xff;
2902 
2903 		/* If the controller has a pio mode setup function
2904 		 * then use it to set the chipset to rights. Don't
2905 		 * touch the DMA setup as that will be dealt with when
2906 		 * configuring devices.
2907 		 */
2908 		if (ap->ops->set_piomode)
2909 			ap->ops->set_piomode(ap, dev);
2910 	}
2911 
2912 	/* reset and determine device classes */
2913 	ap->ops->phy_reset(ap);
2914 
2915 	ata_for_each_dev(dev, &ap->link, ALL) {
2916 		if (dev->class != ATA_DEV_UNKNOWN)
2917 			classes[dev->devno] = dev->class;
2918 		else
2919 			classes[dev->devno] = ATA_DEV_NONE;
2920 
2921 		dev->class = ATA_DEV_UNKNOWN;
2922 	}
2923 
2924 	/* read IDENTIFY page and configure devices. We have to do the identify
2925 	   specific sequence bass-ackwards so that PDIAG- is released by
2926 	   the slave device */
2927 
2928 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2929 		if (tries[dev->devno])
2930 			dev->class = classes[dev->devno];
2931 
2932 		if (!ata_dev_enabled(dev))
2933 			continue;
2934 
2935 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2936 				     dev->id);
2937 		if (rc)
2938 			goto fail;
2939 	}
2940 
2941 	/* Now ask for the cable type as PDIAG- should have been released */
2942 	if (ap->ops->cable_detect)
2943 		ap->cbl = ap->ops->cable_detect(ap);
2944 
2945 	/* We may have SATA bridge glue hiding here irrespective of
2946 	 * the reported cable types and sensed types.  When SATA
2947 	 * drives indicate we have a bridge, we don't know which end
2948 	 * of the link the bridge is which is a problem.
2949 	 */
2950 	ata_for_each_dev(dev, &ap->link, ENABLED)
2951 		if (ata_id_is_sata(dev->id))
2952 			ap->cbl = ATA_CBL_SATA;
2953 
2954 	/* After the identify sequence we can now set up the devices. We do
2955 	   this in the normal order so that the user doesn't get confused */
2956 
2957 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2958 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2959 		rc = ata_dev_configure(dev);
2960 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2961 		if (rc)
2962 			goto fail;
2963 	}
2964 
2965 	/* configure transfer mode */
2966 	rc = ata_set_mode(&ap->link, &dev);
2967 	if (rc)
2968 		goto fail;
2969 
2970 	ata_for_each_dev(dev, &ap->link, ENABLED)
2971 		return 0;
2972 
2973 	return -ENODEV;
2974 
2975  fail:
2976 	tries[dev->devno]--;
2977 
2978 	switch (rc) {
2979 	case -EINVAL:
2980 		/* eeek, something went very wrong, give up */
2981 		tries[dev->devno] = 0;
2982 		break;
2983 
2984 	case -ENODEV:
2985 		/* give it just one more chance */
2986 		tries[dev->devno] = min(tries[dev->devno], 1);
2987 		fallthrough;
2988 	case -EIO:
2989 		if (tries[dev->devno] == 1) {
2990 			/* This is the last chance, better to slow
2991 			 * down than lose it.
2992 			 */
2993 			sata_down_spd_limit(&ap->link, 0);
2994 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2995 		}
2996 	}
2997 
2998 	if (!tries[dev->devno])
2999 		ata_dev_disable(dev);
3000 
3001 	goto retry;
3002 }
3003 
3004 /**
3005  *	sata_print_link_status - Print SATA link status
3006  *	@link: SATA link to printk link status about
3007  *
3008  *	This function prints link speed and status of a SATA link.
3009  *
3010  *	LOCKING:
3011  *	None.
3012  */
3013 static void sata_print_link_status(struct ata_link *link)
3014 {
3015 	u32 sstatus, scontrol, tmp;
3016 
3017 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3018 		return;
3019 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3020 
3021 	if (ata_phys_link_online(link)) {
3022 		tmp = (sstatus >> 4) & 0xf;
3023 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3024 			      sata_spd_string(tmp), sstatus, scontrol);
3025 	} else {
3026 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3027 			      sstatus, scontrol);
3028 	}
3029 }
3030 
3031 /**
3032  *	ata_dev_pair		-	return other device on cable
3033  *	@adev: device
3034  *
3035  *	Obtain the other device on the same cable, or if none is
3036  *	present NULL is returned
3037  */
3038 
3039 struct ata_device *ata_dev_pair(struct ata_device *adev)
3040 {
3041 	struct ata_link *link = adev->link;
3042 	struct ata_device *pair = &link->device[1 - adev->devno];
3043 	if (!ata_dev_enabled(pair))
3044 		return NULL;
3045 	return pair;
3046 }
3047 EXPORT_SYMBOL_GPL(ata_dev_pair);
3048 
3049 /**
3050  *	sata_down_spd_limit - adjust SATA spd limit downward
3051  *	@link: Link to adjust SATA spd limit for
3052  *	@spd_limit: Additional limit
3053  *
3054  *	Adjust SATA spd limit of @link downward.  Note that this
3055  *	function only adjusts the limit.  The change must be applied
3056  *	using sata_set_spd().
3057  *
3058  *	If @spd_limit is non-zero, the speed is limited to equal to or
3059  *	lower than @spd_limit if such speed is supported.  If
3060  *	@spd_limit is slower than any supported speed, only the lowest
3061  *	supported speed is allowed.
3062  *
3063  *	LOCKING:
3064  *	Inherited from caller.
3065  *
3066  *	RETURNS:
3067  *	0 on success, negative errno on failure
3068  */
3069 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3070 {
3071 	u32 sstatus, spd, mask;
3072 	int rc, bit;
3073 
3074 	if (!sata_scr_valid(link))
3075 		return -EOPNOTSUPP;
3076 
3077 	/* If SCR can be read, use it to determine the current SPD.
3078 	 * If not, use cached value in link->sata_spd.
3079 	 */
3080 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3081 	if (rc == 0 && ata_sstatus_online(sstatus))
3082 		spd = (sstatus >> 4) & 0xf;
3083 	else
3084 		spd = link->sata_spd;
3085 
3086 	mask = link->sata_spd_limit;
3087 	if (mask <= 1)
3088 		return -EINVAL;
3089 
3090 	/* unconditionally mask off the highest bit */
3091 	bit = fls(mask) - 1;
3092 	mask &= ~(1 << bit);
3093 
3094 	/*
3095 	 * Mask off all speeds higher than or equal to the current one.  At
3096 	 * this point, if current SPD is not available and we previously
3097 	 * recorded the link speed from SStatus, the driver has already
3098 	 * masked off the highest bit so mask should already be 1 or 0.
3099 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3100 	 * not previously recorded speed from SStatus.  Just return in this
3101 	 * case.
3102 	 */
3103 	if (spd > 1)
3104 		mask &= (1 << (spd - 1)) - 1;
3105 	else
3106 		return -EINVAL;
3107 
3108 	/* were we already at the bottom? */
3109 	if (!mask)
3110 		return -EINVAL;
3111 
3112 	if (spd_limit) {
3113 		if (mask & ((1 << spd_limit) - 1))
3114 			mask &= (1 << spd_limit) - 1;
3115 		else {
3116 			bit = ffs(mask) - 1;
3117 			mask = 1 << bit;
3118 		}
3119 	}
3120 
3121 	link->sata_spd_limit = mask;
3122 
3123 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3124 		      sata_spd_string(fls(mask)));
3125 
3126 	return 0;
3127 }
3128 
3129 #ifdef CONFIG_ATA_ACPI
3130 /**
3131  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3132  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3133  *	@cycle: cycle duration in ns
3134  *
3135  *	Return matching xfer mode for @cycle.  The returned mode is of
3136  *	the transfer type specified by @xfer_shift.  If @cycle is too
3137  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3138  *	than the fastest known mode, the fasted mode is returned.
3139  *
3140  *	LOCKING:
3141  *	None.
3142  *
3143  *	RETURNS:
3144  *	Matching xfer_mode, 0xff if no match found.
3145  */
3146 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3147 {
3148 	u8 base_mode = 0xff, last_mode = 0xff;
3149 	const struct ata_xfer_ent *ent;
3150 	const struct ata_timing *t;
3151 
3152 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3153 		if (ent->shift == xfer_shift)
3154 			base_mode = ent->base;
3155 
3156 	for (t = ata_timing_find_mode(base_mode);
3157 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3158 		unsigned short this_cycle;
3159 
3160 		switch (xfer_shift) {
3161 		case ATA_SHIFT_PIO:
3162 		case ATA_SHIFT_MWDMA:
3163 			this_cycle = t->cycle;
3164 			break;
3165 		case ATA_SHIFT_UDMA:
3166 			this_cycle = t->udma;
3167 			break;
3168 		default:
3169 			return 0xff;
3170 		}
3171 
3172 		if (cycle > this_cycle)
3173 			break;
3174 
3175 		last_mode = t->mode;
3176 	}
3177 
3178 	return last_mode;
3179 }
3180 #endif
3181 
3182 /**
3183  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3184  *	@dev: Device to adjust xfer masks
3185  *	@sel: ATA_DNXFER_* selector
3186  *
3187  *	Adjust xfer masks of @dev downward.  Note that this function
3188  *	does not apply the change.  Invoking ata_set_mode() afterwards
3189  *	will apply the limit.
3190  *
3191  *	LOCKING:
3192  *	Inherited from caller.
3193  *
3194  *	RETURNS:
3195  *	0 on success, negative errno on failure
3196  */
3197 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3198 {
3199 	char buf[32];
3200 	unsigned long orig_mask, xfer_mask;
3201 	unsigned long pio_mask, mwdma_mask, udma_mask;
3202 	int quiet, highbit;
3203 
3204 	quiet = !!(sel & ATA_DNXFER_QUIET);
3205 	sel &= ~ATA_DNXFER_QUIET;
3206 
3207 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3208 						  dev->mwdma_mask,
3209 						  dev->udma_mask);
3210 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3211 
3212 	switch (sel) {
3213 	case ATA_DNXFER_PIO:
3214 		highbit = fls(pio_mask) - 1;
3215 		pio_mask &= ~(1 << highbit);
3216 		break;
3217 
3218 	case ATA_DNXFER_DMA:
3219 		if (udma_mask) {
3220 			highbit = fls(udma_mask) - 1;
3221 			udma_mask &= ~(1 << highbit);
3222 			if (!udma_mask)
3223 				return -ENOENT;
3224 		} else if (mwdma_mask) {
3225 			highbit = fls(mwdma_mask) - 1;
3226 			mwdma_mask &= ~(1 << highbit);
3227 			if (!mwdma_mask)
3228 				return -ENOENT;
3229 		}
3230 		break;
3231 
3232 	case ATA_DNXFER_40C:
3233 		udma_mask &= ATA_UDMA_MASK_40C;
3234 		break;
3235 
3236 	case ATA_DNXFER_FORCE_PIO0:
3237 		pio_mask &= 1;
3238 		fallthrough;
3239 	case ATA_DNXFER_FORCE_PIO:
3240 		mwdma_mask = 0;
3241 		udma_mask = 0;
3242 		break;
3243 
3244 	default:
3245 		BUG();
3246 	}
3247 
3248 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3249 
3250 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3251 		return -ENOENT;
3252 
3253 	if (!quiet) {
3254 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3255 			snprintf(buf, sizeof(buf), "%s:%s",
3256 				 ata_mode_string(xfer_mask),
3257 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3258 		else
3259 			snprintf(buf, sizeof(buf), "%s",
3260 				 ata_mode_string(xfer_mask));
3261 
3262 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3263 	}
3264 
3265 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3266 			    &dev->udma_mask);
3267 
3268 	return 0;
3269 }
3270 
3271 static int ata_dev_set_mode(struct ata_device *dev)
3272 {
3273 	struct ata_port *ap = dev->link->ap;
3274 	struct ata_eh_context *ehc = &dev->link->eh_context;
3275 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3276 	const char *dev_err_whine = "";
3277 	int ign_dev_err = 0;
3278 	unsigned int err_mask = 0;
3279 	int rc;
3280 
3281 	dev->flags &= ~ATA_DFLAG_PIO;
3282 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3283 		dev->flags |= ATA_DFLAG_PIO;
3284 
3285 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3286 		dev_err_whine = " (SET_XFERMODE skipped)";
3287 	else {
3288 		if (nosetxfer)
3289 			ata_dev_warn(dev,
3290 				     "NOSETXFER but PATA detected - can't "
3291 				     "skip SETXFER, might malfunction\n");
3292 		err_mask = ata_dev_set_xfermode(dev);
3293 	}
3294 
3295 	if (err_mask & ~AC_ERR_DEV)
3296 		goto fail;
3297 
3298 	/* revalidate */
3299 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3300 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3301 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3302 	if (rc)
3303 		return rc;
3304 
3305 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3306 		/* Old CFA may refuse this command, which is just fine */
3307 		if (ata_id_is_cfa(dev->id))
3308 			ign_dev_err = 1;
3309 		/* Catch several broken garbage emulations plus some pre
3310 		   ATA devices */
3311 		if (ata_id_major_version(dev->id) == 0 &&
3312 					dev->pio_mode <= XFER_PIO_2)
3313 			ign_dev_err = 1;
3314 		/* Some very old devices and some bad newer ones fail
3315 		   any kind of SET_XFERMODE request but support PIO0-2
3316 		   timings and no IORDY */
3317 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3318 			ign_dev_err = 1;
3319 	}
3320 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3321 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3322 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3323 	    dev->dma_mode == XFER_MW_DMA_0 &&
3324 	    (dev->id[63] >> 8) & 1)
3325 		ign_dev_err = 1;
3326 
3327 	/* if the device is actually configured correctly, ignore dev err */
3328 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3329 		ign_dev_err = 1;
3330 
3331 	if (err_mask & AC_ERR_DEV) {
3332 		if (!ign_dev_err)
3333 			goto fail;
3334 		else
3335 			dev_err_whine = " (device error ignored)";
3336 	}
3337 
3338 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3339 		    dev->xfer_shift, (int)dev->xfer_mode);
3340 
3341 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3342 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3343 		ata_dev_info(dev, "configured for %s%s\n",
3344 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3345 			     dev_err_whine);
3346 
3347 	return 0;
3348 
3349  fail:
3350 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3351 	return -EIO;
3352 }
3353 
3354 /**
3355  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3356  *	@link: link on which timings will be programmed
3357  *	@r_failed_dev: out parameter for failed device
3358  *
3359  *	Standard implementation of the function used to tune and set
3360  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3361  *	ata_dev_set_mode() fails, pointer to the failing device is
3362  *	returned in @r_failed_dev.
3363  *
3364  *	LOCKING:
3365  *	PCI/etc. bus probe sem.
3366  *
3367  *	RETURNS:
3368  *	0 on success, negative errno otherwise
3369  */
3370 
3371 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3372 {
3373 	struct ata_port *ap = link->ap;
3374 	struct ata_device *dev;
3375 	int rc = 0, used_dma = 0, found = 0;
3376 
3377 	/* step 1: calculate xfer_mask */
3378 	ata_for_each_dev(dev, link, ENABLED) {
3379 		unsigned long pio_mask, dma_mask;
3380 		unsigned int mode_mask;
3381 
3382 		mode_mask = ATA_DMA_MASK_ATA;
3383 		if (dev->class == ATA_DEV_ATAPI)
3384 			mode_mask = ATA_DMA_MASK_ATAPI;
3385 		else if (ata_id_is_cfa(dev->id))
3386 			mode_mask = ATA_DMA_MASK_CFA;
3387 
3388 		ata_dev_xfermask(dev);
3389 		ata_force_xfermask(dev);
3390 
3391 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3392 
3393 		if (libata_dma_mask & mode_mask)
3394 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3395 						     dev->udma_mask);
3396 		else
3397 			dma_mask = 0;
3398 
3399 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3400 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3401 
3402 		found = 1;
3403 		if (ata_dma_enabled(dev))
3404 			used_dma = 1;
3405 	}
3406 	if (!found)
3407 		goto out;
3408 
3409 	/* step 2: always set host PIO timings */
3410 	ata_for_each_dev(dev, link, ENABLED) {
3411 		if (dev->pio_mode == 0xff) {
3412 			ata_dev_warn(dev, "no PIO support\n");
3413 			rc = -EINVAL;
3414 			goto out;
3415 		}
3416 
3417 		dev->xfer_mode = dev->pio_mode;
3418 		dev->xfer_shift = ATA_SHIFT_PIO;
3419 		if (ap->ops->set_piomode)
3420 			ap->ops->set_piomode(ap, dev);
3421 	}
3422 
3423 	/* step 3: set host DMA timings */
3424 	ata_for_each_dev(dev, link, ENABLED) {
3425 		if (!ata_dma_enabled(dev))
3426 			continue;
3427 
3428 		dev->xfer_mode = dev->dma_mode;
3429 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3430 		if (ap->ops->set_dmamode)
3431 			ap->ops->set_dmamode(ap, dev);
3432 	}
3433 
3434 	/* step 4: update devices' xfer mode */
3435 	ata_for_each_dev(dev, link, ENABLED) {
3436 		rc = ata_dev_set_mode(dev);
3437 		if (rc)
3438 			goto out;
3439 	}
3440 
3441 	/* Record simplex status. If we selected DMA then the other
3442 	 * host channels are not permitted to do so.
3443 	 */
3444 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3445 		ap->host->simplex_claimed = ap;
3446 
3447  out:
3448 	if (rc)
3449 		*r_failed_dev = dev;
3450 	return rc;
3451 }
3452 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3453 
3454 /**
3455  *	ata_wait_ready - wait for link to become ready
3456  *	@link: link to be waited on
3457  *	@deadline: deadline jiffies for the operation
3458  *	@check_ready: callback to check link readiness
3459  *
3460  *	Wait for @link to become ready.  @check_ready should return
3461  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3462  *	link doesn't seem to be occupied, other errno for other error
3463  *	conditions.
3464  *
3465  *	Transient -ENODEV conditions are allowed for
3466  *	ATA_TMOUT_FF_WAIT.
3467  *
3468  *	LOCKING:
3469  *	EH context.
3470  *
3471  *	RETURNS:
3472  *	0 if @link is ready before @deadline; otherwise, -errno.
3473  */
3474 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3475 		   int (*check_ready)(struct ata_link *link))
3476 {
3477 	unsigned long start = jiffies;
3478 	unsigned long nodev_deadline;
3479 	int warned = 0;
3480 
3481 	/* choose which 0xff timeout to use, read comment in libata.h */
3482 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3483 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3484 	else
3485 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3486 
3487 	/* Slave readiness can't be tested separately from master.  On
3488 	 * M/S emulation configuration, this function should be called
3489 	 * only on the master and it will handle both master and slave.
3490 	 */
3491 	WARN_ON(link == link->ap->slave_link);
3492 
3493 	if (time_after(nodev_deadline, deadline))
3494 		nodev_deadline = deadline;
3495 
3496 	while (1) {
3497 		unsigned long now = jiffies;
3498 		int ready, tmp;
3499 
3500 		ready = tmp = check_ready(link);
3501 		if (ready > 0)
3502 			return 0;
3503 
3504 		/*
3505 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3506 		 * is online.  Also, some SATA devices take a long
3507 		 * time to clear 0xff after reset.  Wait for
3508 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3509 		 * offline.
3510 		 *
3511 		 * Note that some PATA controllers (pata_ali) explode
3512 		 * if status register is read more than once when
3513 		 * there's no device attached.
3514 		 */
3515 		if (ready == -ENODEV) {
3516 			if (ata_link_online(link))
3517 				ready = 0;
3518 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3519 				 !ata_link_offline(link) &&
3520 				 time_before(now, nodev_deadline))
3521 				ready = 0;
3522 		}
3523 
3524 		if (ready)
3525 			return ready;
3526 		if (time_after(now, deadline))
3527 			return -EBUSY;
3528 
3529 		if (!warned && time_after(now, start + 5 * HZ) &&
3530 		    (deadline - now > 3 * HZ)) {
3531 			ata_link_warn(link,
3532 				"link is slow to respond, please be patient "
3533 				"(ready=%d)\n", tmp);
3534 			warned = 1;
3535 		}
3536 
3537 		ata_msleep(link->ap, 50);
3538 	}
3539 }
3540 
3541 /**
3542  *	ata_wait_after_reset - wait for link to become ready after reset
3543  *	@link: link to be waited on
3544  *	@deadline: deadline jiffies for the operation
3545  *	@check_ready: callback to check link readiness
3546  *
3547  *	Wait for @link to become ready after reset.
3548  *
3549  *	LOCKING:
3550  *	EH context.
3551  *
3552  *	RETURNS:
3553  *	0 if @link is ready before @deadline; otherwise, -errno.
3554  */
3555 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3556 				int (*check_ready)(struct ata_link *link))
3557 {
3558 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3559 
3560 	return ata_wait_ready(link, deadline, check_ready);
3561 }
3562 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3563 
3564 /**
3565  *	ata_std_prereset - prepare for reset
3566  *	@link: ATA link to be reset
3567  *	@deadline: deadline jiffies for the operation
3568  *
3569  *	@link is about to be reset.  Initialize it.  Failure from
3570  *	prereset makes libata abort whole reset sequence and give up
3571  *	that port, so prereset should be best-effort.  It does its
3572  *	best to prepare for reset sequence but if things go wrong, it
3573  *	should just whine, not fail.
3574  *
3575  *	LOCKING:
3576  *	Kernel thread context (may sleep)
3577  *
3578  *	RETURNS:
3579  *	Always 0.
3580  */
3581 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3582 {
3583 	struct ata_port *ap = link->ap;
3584 	struct ata_eh_context *ehc = &link->eh_context;
3585 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3586 	int rc;
3587 
3588 	/* if we're about to do hardreset, nothing more to do */
3589 	if (ehc->i.action & ATA_EH_HARDRESET)
3590 		return 0;
3591 
3592 	/* if SATA, resume link */
3593 	if (ap->flags & ATA_FLAG_SATA) {
3594 		rc = sata_link_resume(link, timing, deadline);
3595 		/* whine about phy resume failure but proceed */
3596 		if (rc && rc != -EOPNOTSUPP)
3597 			ata_link_warn(link,
3598 				      "failed to resume link for reset (errno=%d)\n",
3599 				      rc);
3600 	}
3601 
3602 	/* no point in trying softreset on offline link */
3603 	if (ata_phys_link_offline(link))
3604 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3605 
3606 	return 0;
3607 }
3608 EXPORT_SYMBOL_GPL(ata_std_prereset);
3609 
3610 /**
3611  *	sata_std_hardreset - COMRESET w/o waiting or classification
3612  *	@link: link to reset
3613  *	@class: resulting class of attached device
3614  *	@deadline: deadline jiffies for the operation
3615  *
3616  *	Standard SATA COMRESET w/o waiting or classification.
3617  *
3618  *	LOCKING:
3619  *	Kernel thread context (may sleep)
3620  *
3621  *	RETURNS:
3622  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3623  */
3624 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3625 		       unsigned long deadline)
3626 {
3627 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3628 	bool online;
3629 	int rc;
3630 
3631 	/* do hardreset */
3632 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3633 	return online ? -EAGAIN : rc;
3634 }
3635 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3636 
3637 /**
3638  *	ata_std_postreset - standard postreset callback
3639  *	@link: the target ata_link
3640  *	@classes: classes of attached devices
3641  *
3642  *	This function is invoked after a successful reset.  Note that
3643  *	the device might have been reset more than once using
3644  *	different reset methods before postreset is invoked.
3645  *
3646  *	LOCKING:
3647  *	Kernel thread context (may sleep)
3648  */
3649 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3650 {
3651 	u32 serror;
3652 
3653 	/* reset complete, clear SError */
3654 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3655 		sata_scr_write(link, SCR_ERROR, serror);
3656 
3657 	/* print link status */
3658 	sata_print_link_status(link);
3659 }
3660 EXPORT_SYMBOL_GPL(ata_std_postreset);
3661 
3662 /**
3663  *	ata_dev_same_device - Determine whether new ID matches configured device
3664  *	@dev: device to compare against
3665  *	@new_class: class of the new device
3666  *	@new_id: IDENTIFY page of the new device
3667  *
3668  *	Compare @new_class and @new_id against @dev and determine
3669  *	whether @dev is the device indicated by @new_class and
3670  *	@new_id.
3671  *
3672  *	LOCKING:
3673  *	None.
3674  *
3675  *	RETURNS:
3676  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3677  */
3678 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3679 			       const u16 *new_id)
3680 {
3681 	const u16 *old_id = dev->id;
3682 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3683 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3684 
3685 	if (dev->class != new_class) {
3686 		ata_dev_info(dev, "class mismatch %d != %d\n",
3687 			     dev->class, new_class);
3688 		return 0;
3689 	}
3690 
3691 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3692 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3693 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3694 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3695 
3696 	if (strcmp(model[0], model[1])) {
3697 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3698 			     model[0], model[1]);
3699 		return 0;
3700 	}
3701 
3702 	if (strcmp(serial[0], serial[1])) {
3703 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3704 			     serial[0], serial[1]);
3705 		return 0;
3706 	}
3707 
3708 	return 1;
3709 }
3710 
3711 /**
3712  *	ata_dev_reread_id - Re-read IDENTIFY data
3713  *	@dev: target ATA device
3714  *	@readid_flags: read ID flags
3715  *
3716  *	Re-read IDENTIFY page and make sure @dev is still attached to
3717  *	the port.
3718  *
3719  *	LOCKING:
3720  *	Kernel thread context (may sleep)
3721  *
3722  *	RETURNS:
3723  *	0 on success, negative errno otherwise
3724  */
3725 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3726 {
3727 	unsigned int class = dev->class;
3728 	u16 *id = (void *)dev->link->ap->sector_buf;
3729 	int rc;
3730 
3731 	/* read ID data */
3732 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3733 	if (rc)
3734 		return rc;
3735 
3736 	/* is the device still there? */
3737 	if (!ata_dev_same_device(dev, class, id))
3738 		return -ENODEV;
3739 
3740 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3741 	return 0;
3742 }
3743 
3744 /**
3745  *	ata_dev_revalidate - Revalidate ATA device
3746  *	@dev: device to revalidate
3747  *	@new_class: new class code
3748  *	@readid_flags: read ID flags
3749  *
3750  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3751  *	port and reconfigure it according to the new IDENTIFY page.
3752  *
3753  *	LOCKING:
3754  *	Kernel thread context (may sleep)
3755  *
3756  *	RETURNS:
3757  *	0 on success, negative errno otherwise
3758  */
3759 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3760 		       unsigned int readid_flags)
3761 {
3762 	u64 n_sectors = dev->n_sectors;
3763 	u64 n_native_sectors = dev->n_native_sectors;
3764 	int rc;
3765 
3766 	if (!ata_dev_enabled(dev))
3767 		return -ENODEV;
3768 
3769 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3770 	if (ata_class_enabled(new_class) &&
3771 	    new_class != ATA_DEV_ATA &&
3772 	    new_class != ATA_DEV_ATAPI &&
3773 	    new_class != ATA_DEV_ZAC &&
3774 	    new_class != ATA_DEV_SEMB) {
3775 		ata_dev_info(dev, "class mismatch %u != %u\n",
3776 			     dev->class, new_class);
3777 		rc = -ENODEV;
3778 		goto fail;
3779 	}
3780 
3781 	/* re-read ID */
3782 	rc = ata_dev_reread_id(dev, readid_flags);
3783 	if (rc)
3784 		goto fail;
3785 
3786 	/* configure device according to the new ID */
3787 	rc = ata_dev_configure(dev);
3788 	if (rc)
3789 		goto fail;
3790 
3791 	/* verify n_sectors hasn't changed */
3792 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3793 	    dev->n_sectors == n_sectors)
3794 		return 0;
3795 
3796 	/* n_sectors has changed */
3797 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3798 		     (unsigned long long)n_sectors,
3799 		     (unsigned long long)dev->n_sectors);
3800 
3801 	/*
3802 	 * Something could have caused HPA to be unlocked
3803 	 * involuntarily.  If n_native_sectors hasn't changed and the
3804 	 * new size matches it, keep the device.
3805 	 */
3806 	if (dev->n_native_sectors == n_native_sectors &&
3807 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3808 		ata_dev_warn(dev,
3809 			     "new n_sectors matches native, probably "
3810 			     "late HPA unlock, n_sectors updated\n");
3811 		/* use the larger n_sectors */
3812 		return 0;
3813 	}
3814 
3815 	/*
3816 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3817 	 * unlocking HPA in those cases.
3818 	 *
3819 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3820 	 */
3821 	if (dev->n_native_sectors == n_native_sectors &&
3822 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3823 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3824 		ata_dev_warn(dev,
3825 			     "old n_sectors matches native, probably "
3826 			     "late HPA lock, will try to unlock HPA\n");
3827 		/* try unlocking HPA */
3828 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3829 		rc = -EIO;
3830 	} else
3831 		rc = -ENODEV;
3832 
3833 	/* restore original n_[native_]sectors and fail */
3834 	dev->n_native_sectors = n_native_sectors;
3835 	dev->n_sectors = n_sectors;
3836  fail:
3837 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3838 	return rc;
3839 }
3840 
3841 struct ata_blacklist_entry {
3842 	const char *model_num;
3843 	const char *model_rev;
3844 	unsigned long horkage;
3845 };
3846 
3847 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3848 	/* Devices with DMA related problems under Linux */
3849 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3850 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3851 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3852 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3853 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3854 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3855 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3856 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3857 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3858 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3859 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3860 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3861 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3862 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3863 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3864 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3865 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3866 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3867 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3868 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3869 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3870 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3871 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3872 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3873 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3874 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3875 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3876 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3877 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3878 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3879 	/* Odd clown on sil3726/4726 PMPs */
3880 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3881 	/* Similar story with ASMedia 1092 */
3882 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3883 
3884 	/* Weird ATAPI devices */
3885 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3886 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3887 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3888 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3889 
3890 	/*
3891 	 * Causes silent data corruption with higher max sects.
3892 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3893 	 */
3894 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3895 
3896 	/*
3897 	 * These devices time out with higher max sects.
3898 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3899 	 */
3900 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3901 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3902 
3903 	/* Devices we expect to fail diagnostics */
3904 
3905 	/* Devices where NCQ should be avoided */
3906 	/* NCQ is slow */
3907 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3908 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
3909 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3910 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3911 	/* NCQ is broken */
3912 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3913 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3914 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3915 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3916 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3917 
3918 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3919 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3920 						ATA_HORKAGE_FIRMWARE_WARN },
3921 
3922 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3923 						ATA_HORKAGE_FIRMWARE_WARN },
3924 
3925 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3926 						ATA_HORKAGE_FIRMWARE_WARN },
3927 
3928 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3929 						ATA_HORKAGE_FIRMWARE_WARN },
3930 
3931 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3932 	   the ST disks also have LPM issues */
3933 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3934 						ATA_HORKAGE_NOLPM },
3935 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3936 
3937 	/* Blacklist entries taken from Silicon Image 3124/3132
3938 	   Windows driver .inf file - also several Linux problem reports */
3939 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
3940 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
3941 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
3942 
3943 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3944 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
3945 
3946 	/* Sandisk SD7/8/9s lock up hard on large trims */
3947 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
3948 
3949 	/* devices which puke on READ_NATIVE_MAX */
3950 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
3951 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3952 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3953 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3954 
3955 	/* this one allows HPA unlocking but fails IOs on the area */
3956 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3957 
3958 	/* Devices which report 1 sector over size HPA */
3959 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3960 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3961 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3962 
3963 	/* Devices which get the IVB wrong */
3964 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
3965 	/* Maybe we should just blacklist TSSTcorp... */
3966 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
3967 
3968 	/* Devices that do not need bridging limits applied */
3969 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
3970 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
3971 
3972 	/* Devices which aren't very happy with higher link speeds */
3973 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
3974 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
3975 
3976 	/*
3977 	 * Devices which choke on SETXFER.  Applies only if both the
3978 	 * device and controller are SATA.
3979 	 */
3980 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3981 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3982 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3983 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3984 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3985 
3986 	/* Crucial BX100 SSD 500GB has broken LPM support */
3987 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3988 
3989 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3990 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3991 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3992 						ATA_HORKAGE_NOLPM },
3993 	/* 512GB MX100 with newer firmware has only LPM issues */
3994 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3995 						ATA_HORKAGE_NOLPM },
3996 
3997 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3998 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3999 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4000 						ATA_HORKAGE_NOLPM },
4001 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4002 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4003 						ATA_HORKAGE_NOLPM },
4004 
4005 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4006 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4007 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4008 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4009 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4010 
4011 	/* devices that don't properly handle queued TRIM commands */
4012 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4013 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4014 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4015 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4016 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4017 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4018 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4019 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4020 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4021 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4022 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4023 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4024 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4025 						ATA_HORKAGE_NO_DMA_LOG |
4026 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4027 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4028 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4029 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4030 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4031 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4032 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4033 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4034 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4035 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4036 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4037 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4038 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4039 
4040 	/* devices that don't properly handle TRIM commands */
4041 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4042 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4043 
4044 	/*
4045 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4046 	 * (Return Zero After Trim) flags in the ATA Command Set are
4047 	 * unreliable in the sense that they only define what happens if
4048 	 * the device successfully executed the DSM TRIM command. TRIM
4049 	 * is only advisory, however, and the device is free to silently
4050 	 * ignore all or parts of the request.
4051 	 *
4052 	 * Whitelist drives that are known to reliably return zeroes
4053 	 * after TRIM.
4054 	 */
4055 
4056 	/*
4057 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4058 	 * that model before whitelisting all other intel SSDs.
4059 	 */
4060 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4061 
4062 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4063 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4064 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4065 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4066 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4067 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4068 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4069 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4070 
4071 	/*
4072 	 * Some WD SATA-I drives spin up and down erratically when the link
4073 	 * is put into the slumber mode.  We don't have full list of the
4074 	 * affected devices.  Disable LPM if the device matches one of the
4075 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4076 	 * lost too.
4077 	 *
4078 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4079 	 */
4080 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4081 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4082 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4083 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4084 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4085 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4086 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4087 
4088 	/*
4089 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4090 	 * log page is accessed. Ensure we never ask for this log page with
4091 	 * these devices.
4092 	 */
4093 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4094 
4095 	/* End Marker */
4096 	{ }
4097 };
4098 
4099 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4100 {
4101 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4102 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4103 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4104 
4105 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4106 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4107 
4108 	while (ad->model_num) {
4109 		if (glob_match(ad->model_num, model_num)) {
4110 			if (ad->model_rev == NULL)
4111 				return ad->horkage;
4112 			if (glob_match(ad->model_rev, model_rev))
4113 				return ad->horkage;
4114 		}
4115 		ad++;
4116 	}
4117 	return 0;
4118 }
4119 
4120 static int ata_dma_blacklisted(const struct ata_device *dev)
4121 {
4122 	/* We don't support polling DMA.
4123 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4124 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4125 	 */
4126 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4127 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4128 		return 1;
4129 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4130 }
4131 
4132 /**
4133  *	ata_is_40wire		-	check drive side detection
4134  *	@dev: device
4135  *
4136  *	Perform drive side detection decoding, allowing for device vendors
4137  *	who can't follow the documentation.
4138  */
4139 
4140 static int ata_is_40wire(struct ata_device *dev)
4141 {
4142 	if (dev->horkage & ATA_HORKAGE_IVB)
4143 		return ata_drive_40wire_relaxed(dev->id);
4144 	return ata_drive_40wire(dev->id);
4145 }
4146 
4147 /**
4148  *	cable_is_40wire		-	40/80/SATA decider
4149  *	@ap: port to consider
4150  *
4151  *	This function encapsulates the policy for speed management
4152  *	in one place. At the moment we don't cache the result but
4153  *	there is a good case for setting ap->cbl to the result when
4154  *	we are called with unknown cables (and figuring out if it
4155  *	impacts hotplug at all).
4156  *
4157  *	Return 1 if the cable appears to be 40 wire.
4158  */
4159 
4160 static int cable_is_40wire(struct ata_port *ap)
4161 {
4162 	struct ata_link *link;
4163 	struct ata_device *dev;
4164 
4165 	/* If the controller thinks we are 40 wire, we are. */
4166 	if (ap->cbl == ATA_CBL_PATA40)
4167 		return 1;
4168 
4169 	/* If the controller thinks we are 80 wire, we are. */
4170 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4171 		return 0;
4172 
4173 	/* If the system is known to be 40 wire short cable (eg
4174 	 * laptop), then we allow 80 wire modes even if the drive
4175 	 * isn't sure.
4176 	 */
4177 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4178 		return 0;
4179 
4180 	/* If the controller doesn't know, we scan.
4181 	 *
4182 	 * Note: We look for all 40 wire detects at this point.  Any
4183 	 *       80 wire detect is taken to be 80 wire cable because
4184 	 * - in many setups only the one drive (slave if present) will
4185 	 *   give a valid detect
4186 	 * - if you have a non detect capable drive you don't want it
4187 	 *   to colour the choice
4188 	 */
4189 	ata_for_each_link(link, ap, EDGE) {
4190 		ata_for_each_dev(dev, link, ENABLED) {
4191 			if (!ata_is_40wire(dev))
4192 				return 0;
4193 		}
4194 	}
4195 	return 1;
4196 }
4197 
4198 /**
4199  *	ata_dev_xfermask - Compute supported xfermask of the given device
4200  *	@dev: Device to compute xfermask for
4201  *
4202  *	Compute supported xfermask of @dev and store it in
4203  *	dev->*_mask.  This function is responsible for applying all
4204  *	known limits including host controller limits, device
4205  *	blacklist, etc...
4206  *
4207  *	LOCKING:
4208  *	None.
4209  */
4210 static void ata_dev_xfermask(struct ata_device *dev)
4211 {
4212 	struct ata_link *link = dev->link;
4213 	struct ata_port *ap = link->ap;
4214 	struct ata_host *host = ap->host;
4215 	unsigned long xfer_mask;
4216 
4217 	/* controller modes available */
4218 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4219 				      ap->mwdma_mask, ap->udma_mask);
4220 
4221 	/* drive modes available */
4222 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4223 				       dev->mwdma_mask, dev->udma_mask);
4224 	xfer_mask &= ata_id_xfermask(dev->id);
4225 
4226 	/*
4227 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4228 	 *	cable
4229 	 */
4230 	if (ata_dev_pair(dev)) {
4231 		/* No PIO5 or PIO6 */
4232 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4233 		/* No MWDMA3 or MWDMA 4 */
4234 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4235 	}
4236 
4237 	if (ata_dma_blacklisted(dev)) {
4238 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4239 		ata_dev_warn(dev,
4240 			     "device is on DMA blacklist, disabling DMA\n");
4241 	}
4242 
4243 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4244 	    host->simplex_claimed && host->simplex_claimed != ap) {
4245 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4246 		ata_dev_warn(dev,
4247 			     "simplex DMA is claimed by other device, disabling DMA\n");
4248 	}
4249 
4250 	if (ap->flags & ATA_FLAG_NO_IORDY)
4251 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4252 
4253 	if (ap->ops->mode_filter)
4254 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4255 
4256 	/* Apply cable rule here.  Don't apply it early because when
4257 	 * we handle hot plug the cable type can itself change.
4258 	 * Check this last so that we know if the transfer rate was
4259 	 * solely limited by the cable.
4260 	 * Unknown or 80 wire cables reported host side are checked
4261 	 * drive side as well. Cases where we know a 40wire cable
4262 	 * is used safely for 80 are not checked here.
4263 	 */
4264 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4265 		/* UDMA/44 or higher would be available */
4266 		if (cable_is_40wire(ap)) {
4267 			ata_dev_warn(dev,
4268 				     "limited to UDMA/33 due to 40-wire cable\n");
4269 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4270 		}
4271 
4272 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4273 			    &dev->mwdma_mask, &dev->udma_mask);
4274 }
4275 
4276 /**
4277  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4278  *	@dev: Device to which command will be sent
4279  *
4280  *	Issue SET FEATURES - XFER MODE command to device @dev
4281  *	on port @ap.
4282  *
4283  *	LOCKING:
4284  *	PCI/etc. bus probe sem.
4285  *
4286  *	RETURNS:
4287  *	0 on success, AC_ERR_* mask otherwise.
4288  */
4289 
4290 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4291 {
4292 	struct ata_taskfile tf;
4293 	unsigned int err_mask;
4294 
4295 	/* set up set-features taskfile */
4296 	ata_dev_dbg(dev, "set features - xfer mode\n");
4297 
4298 	/* Some controllers and ATAPI devices show flaky interrupt
4299 	 * behavior after setting xfer mode.  Use polling instead.
4300 	 */
4301 	ata_tf_init(dev, &tf);
4302 	tf.command = ATA_CMD_SET_FEATURES;
4303 	tf.feature = SETFEATURES_XFER;
4304 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4305 	tf.protocol = ATA_PROT_NODATA;
4306 	/* If we are using IORDY we must send the mode setting command */
4307 	if (ata_pio_need_iordy(dev))
4308 		tf.nsect = dev->xfer_mode;
4309 	/* If the device has IORDY and the controller does not - turn it off */
4310  	else if (ata_id_has_iordy(dev->id))
4311 		tf.nsect = 0x01;
4312 	else /* In the ancient relic department - skip all of this */
4313 		return 0;
4314 
4315 	/* On some disks, this command causes spin-up, so we need longer timeout */
4316 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4317 
4318 	return err_mask;
4319 }
4320 
4321 /**
4322  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4323  *	@dev: Device to which command will be sent
4324  *	@enable: Whether to enable or disable the feature
4325  *	@feature: The sector count represents the feature to set
4326  *
4327  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4328  *	on port @ap with sector count
4329  *
4330  *	LOCKING:
4331  *	PCI/etc. bus probe sem.
4332  *
4333  *	RETURNS:
4334  *	0 on success, AC_ERR_* mask otherwise.
4335  */
4336 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4337 {
4338 	struct ata_taskfile tf;
4339 	unsigned int err_mask;
4340 	unsigned long timeout = 0;
4341 
4342 	/* set up set-features taskfile */
4343 	ata_dev_dbg(dev, "set features - SATA features\n");
4344 
4345 	ata_tf_init(dev, &tf);
4346 	tf.command = ATA_CMD_SET_FEATURES;
4347 	tf.feature = enable;
4348 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4349 	tf.protocol = ATA_PROT_NODATA;
4350 	tf.nsect = feature;
4351 
4352 	if (enable == SETFEATURES_SPINUP)
4353 		timeout = ata_probe_timeout ?
4354 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4355 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4356 
4357 	return err_mask;
4358 }
4359 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4360 
4361 /**
4362  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4363  *	@dev: Device to which command will be sent
4364  *	@heads: Number of heads (taskfile parameter)
4365  *	@sectors: Number of sectors (taskfile parameter)
4366  *
4367  *	LOCKING:
4368  *	Kernel thread context (may sleep)
4369  *
4370  *	RETURNS:
4371  *	0 on success, AC_ERR_* mask otherwise.
4372  */
4373 static unsigned int ata_dev_init_params(struct ata_device *dev,
4374 					u16 heads, u16 sectors)
4375 {
4376 	struct ata_taskfile tf;
4377 	unsigned int err_mask;
4378 
4379 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4380 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4381 		return AC_ERR_INVALID;
4382 
4383 	/* set up init dev params taskfile */
4384 	ata_dev_dbg(dev, "init dev params \n");
4385 
4386 	ata_tf_init(dev, &tf);
4387 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4388 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4389 	tf.protocol = ATA_PROT_NODATA;
4390 	tf.nsect = sectors;
4391 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4392 
4393 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4394 	/* A clean abort indicates an original or just out of spec drive
4395 	   and we should continue as we issue the setup based on the
4396 	   drive reported working geometry */
4397 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4398 		err_mask = 0;
4399 
4400 	return err_mask;
4401 }
4402 
4403 /**
4404  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4405  *	@qc: Metadata associated with taskfile to check
4406  *
4407  *	Allow low-level driver to filter ATA PACKET commands, returning
4408  *	a status indicating whether or not it is OK to use DMA for the
4409  *	supplied PACKET command.
4410  *
4411  *	LOCKING:
4412  *	spin_lock_irqsave(host lock)
4413  *
4414  *	RETURNS: 0 when ATAPI DMA can be used
4415  *               nonzero otherwise
4416  */
4417 int atapi_check_dma(struct ata_queued_cmd *qc)
4418 {
4419 	struct ata_port *ap = qc->ap;
4420 
4421 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4422 	 * few ATAPI devices choke on such DMA requests.
4423 	 */
4424 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4425 	    unlikely(qc->nbytes & 15))
4426 		return 1;
4427 
4428 	if (ap->ops->check_atapi_dma)
4429 		return ap->ops->check_atapi_dma(qc);
4430 
4431 	return 0;
4432 }
4433 
4434 /**
4435  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4436  *	@qc: ATA command in question
4437  *
4438  *	Non-NCQ commands cannot run with any other command, NCQ or
4439  *	not.  As upper layer only knows the queue depth, we are
4440  *	responsible for maintaining exclusion.  This function checks
4441  *	whether a new command @qc can be issued.
4442  *
4443  *	LOCKING:
4444  *	spin_lock_irqsave(host lock)
4445  *
4446  *	RETURNS:
4447  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4448  */
4449 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4450 {
4451 	struct ata_link *link = qc->dev->link;
4452 
4453 	if (ata_is_ncq(qc->tf.protocol)) {
4454 		if (!ata_tag_valid(link->active_tag))
4455 			return 0;
4456 	} else {
4457 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4458 			return 0;
4459 	}
4460 
4461 	return ATA_DEFER_LINK;
4462 }
4463 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4464 
4465 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4466 {
4467 	return AC_ERR_OK;
4468 }
4469 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4470 
4471 /**
4472  *	ata_sg_init - Associate command with scatter-gather table.
4473  *	@qc: Command to be associated
4474  *	@sg: Scatter-gather table.
4475  *	@n_elem: Number of elements in s/g table.
4476  *
4477  *	Initialize the data-related elements of queued_cmd @qc
4478  *	to point to a scatter-gather table @sg, containing @n_elem
4479  *	elements.
4480  *
4481  *	LOCKING:
4482  *	spin_lock_irqsave(host lock)
4483  */
4484 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4485 		 unsigned int n_elem)
4486 {
4487 	qc->sg = sg;
4488 	qc->n_elem = n_elem;
4489 	qc->cursg = qc->sg;
4490 }
4491 
4492 #ifdef CONFIG_HAS_DMA
4493 
4494 /**
4495  *	ata_sg_clean - Unmap DMA memory associated with command
4496  *	@qc: Command containing DMA memory to be released
4497  *
4498  *	Unmap all mapped DMA memory associated with this command.
4499  *
4500  *	LOCKING:
4501  *	spin_lock_irqsave(host lock)
4502  */
4503 static void ata_sg_clean(struct ata_queued_cmd *qc)
4504 {
4505 	struct ata_port *ap = qc->ap;
4506 	struct scatterlist *sg = qc->sg;
4507 	int dir = qc->dma_dir;
4508 
4509 	WARN_ON_ONCE(sg == NULL);
4510 
4511 	if (qc->n_elem)
4512 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4513 
4514 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4515 	qc->sg = NULL;
4516 }
4517 
4518 /**
4519  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4520  *	@qc: Command with scatter-gather table to be mapped.
4521  *
4522  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4523  *
4524  *	LOCKING:
4525  *	spin_lock_irqsave(host lock)
4526  *
4527  *	RETURNS:
4528  *	Zero on success, negative on error.
4529  *
4530  */
4531 static int ata_sg_setup(struct ata_queued_cmd *qc)
4532 {
4533 	struct ata_port *ap = qc->ap;
4534 	unsigned int n_elem;
4535 
4536 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4537 	if (n_elem < 1)
4538 		return -1;
4539 
4540 	qc->orig_n_elem = qc->n_elem;
4541 	qc->n_elem = n_elem;
4542 	qc->flags |= ATA_QCFLAG_DMAMAP;
4543 
4544 	return 0;
4545 }
4546 
4547 #else /* !CONFIG_HAS_DMA */
4548 
4549 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4550 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4551 
4552 #endif /* !CONFIG_HAS_DMA */
4553 
4554 /**
4555  *	swap_buf_le16 - swap halves of 16-bit words in place
4556  *	@buf:  Buffer to swap
4557  *	@buf_words:  Number of 16-bit words in buffer.
4558  *
4559  *	Swap halves of 16-bit words if needed to convert from
4560  *	little-endian byte order to native cpu byte order, or
4561  *	vice-versa.
4562  *
4563  *	LOCKING:
4564  *	Inherited from caller.
4565  */
4566 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4567 {
4568 #ifdef __BIG_ENDIAN
4569 	unsigned int i;
4570 
4571 	for (i = 0; i < buf_words; i++)
4572 		buf[i] = le16_to_cpu(buf[i]);
4573 #endif /* __BIG_ENDIAN */
4574 }
4575 
4576 /**
4577  *	ata_qc_free - free unused ata_queued_cmd
4578  *	@qc: Command to complete
4579  *
4580  *	Designed to free unused ata_queued_cmd object
4581  *	in case something prevents using it.
4582  *
4583  *	LOCKING:
4584  *	spin_lock_irqsave(host lock)
4585  */
4586 void ata_qc_free(struct ata_queued_cmd *qc)
4587 {
4588 	qc->flags = 0;
4589 	if (ata_tag_valid(qc->tag))
4590 		qc->tag = ATA_TAG_POISON;
4591 }
4592 
4593 void __ata_qc_complete(struct ata_queued_cmd *qc)
4594 {
4595 	struct ata_port *ap;
4596 	struct ata_link *link;
4597 
4598 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4599 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4600 	ap = qc->ap;
4601 	link = qc->dev->link;
4602 
4603 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4604 		ata_sg_clean(qc);
4605 
4606 	/* command should be marked inactive atomically with qc completion */
4607 	if (ata_is_ncq(qc->tf.protocol)) {
4608 		link->sactive &= ~(1 << qc->hw_tag);
4609 		if (!link->sactive)
4610 			ap->nr_active_links--;
4611 	} else {
4612 		link->active_tag = ATA_TAG_POISON;
4613 		ap->nr_active_links--;
4614 	}
4615 
4616 	/* clear exclusive status */
4617 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4618 		     ap->excl_link == link))
4619 		ap->excl_link = NULL;
4620 
4621 	/* atapi: mark qc as inactive to prevent the interrupt handler
4622 	 * from completing the command twice later, before the error handler
4623 	 * is called. (when rc != 0 and atapi request sense is needed)
4624 	 */
4625 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4626 	ap->qc_active &= ~(1ULL << qc->tag);
4627 
4628 	/* call completion callback */
4629 	qc->complete_fn(qc);
4630 }
4631 
4632 static void fill_result_tf(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_port *ap = qc->ap;
4635 
4636 	qc->result_tf.flags = qc->tf.flags;
4637 	ap->ops->qc_fill_rtf(qc);
4638 }
4639 
4640 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4641 {
4642 	struct ata_device *dev = qc->dev;
4643 
4644 	if (!ata_is_data(qc->tf.protocol))
4645 		return;
4646 
4647 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4648 		return;
4649 
4650 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4651 }
4652 
4653 /**
4654  *	ata_qc_complete - Complete an active ATA command
4655  *	@qc: Command to complete
4656  *
4657  *	Indicate to the mid and upper layers that an ATA command has
4658  *	completed, with either an ok or not-ok status.
4659  *
4660  *	Refrain from calling this function multiple times when
4661  *	successfully completing multiple NCQ commands.
4662  *	ata_qc_complete_multiple() should be used instead, which will
4663  *	properly update IRQ expect state.
4664  *
4665  *	LOCKING:
4666  *	spin_lock_irqsave(host lock)
4667  */
4668 void ata_qc_complete(struct ata_queued_cmd *qc)
4669 {
4670 	struct ata_port *ap = qc->ap;
4671 
4672 	/* Trigger the LED (if available) */
4673 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4674 
4675 	/* XXX: New EH and old EH use different mechanisms to
4676 	 * synchronize EH with regular execution path.
4677 	 *
4678 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4679 	 * Normal execution path is responsible for not accessing a
4680 	 * failed qc.  libata core enforces the rule by returning NULL
4681 	 * from ata_qc_from_tag() for failed qcs.
4682 	 *
4683 	 * Old EH depends on ata_qc_complete() nullifying completion
4684 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4685 	 * not synchronize with interrupt handler.  Only PIO task is
4686 	 * taken care of.
4687 	 */
4688 	if (ap->ops->error_handler) {
4689 		struct ata_device *dev = qc->dev;
4690 		struct ata_eh_info *ehi = &dev->link->eh_info;
4691 
4692 		if (unlikely(qc->err_mask))
4693 			qc->flags |= ATA_QCFLAG_FAILED;
4694 
4695 		/*
4696 		 * Finish internal commands without any further processing
4697 		 * and always with the result TF filled.
4698 		 */
4699 		if (unlikely(ata_tag_internal(qc->tag))) {
4700 			fill_result_tf(qc);
4701 			trace_ata_qc_complete_internal(qc);
4702 			__ata_qc_complete(qc);
4703 			return;
4704 		}
4705 
4706 		/*
4707 		 * Non-internal qc has failed.  Fill the result TF and
4708 		 * summon EH.
4709 		 */
4710 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4711 			fill_result_tf(qc);
4712 			trace_ata_qc_complete_failed(qc);
4713 			ata_qc_schedule_eh(qc);
4714 			return;
4715 		}
4716 
4717 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4718 
4719 		/* read result TF if requested */
4720 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4721 			fill_result_tf(qc);
4722 
4723 		trace_ata_qc_complete_done(qc);
4724 		/* Some commands need post-processing after successful
4725 		 * completion.
4726 		 */
4727 		switch (qc->tf.command) {
4728 		case ATA_CMD_SET_FEATURES:
4729 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4730 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4731 			    qc->tf.feature != SETFEATURES_RA_ON &&
4732 			    qc->tf.feature != SETFEATURES_RA_OFF)
4733 				break;
4734 			fallthrough;
4735 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4736 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4737 			/* revalidate device */
4738 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4739 			ata_port_schedule_eh(ap);
4740 			break;
4741 
4742 		case ATA_CMD_SLEEP:
4743 			dev->flags |= ATA_DFLAG_SLEEPING;
4744 			break;
4745 		}
4746 
4747 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4748 			ata_verify_xfer(qc);
4749 
4750 		__ata_qc_complete(qc);
4751 	} else {
4752 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4753 			return;
4754 
4755 		/* read result TF if failed or requested */
4756 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4757 			fill_result_tf(qc);
4758 
4759 		__ata_qc_complete(qc);
4760 	}
4761 }
4762 EXPORT_SYMBOL_GPL(ata_qc_complete);
4763 
4764 /**
4765  *	ata_qc_get_active - get bitmask of active qcs
4766  *	@ap: port in question
4767  *
4768  *	LOCKING:
4769  *	spin_lock_irqsave(host lock)
4770  *
4771  *	RETURNS:
4772  *	Bitmask of active qcs
4773  */
4774 u64 ata_qc_get_active(struct ata_port *ap)
4775 {
4776 	u64 qc_active = ap->qc_active;
4777 
4778 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4779 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4780 		qc_active |= (1 << 0);
4781 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4782 	}
4783 
4784 	return qc_active;
4785 }
4786 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4787 
4788 /**
4789  *	ata_qc_issue - issue taskfile to device
4790  *	@qc: command to issue to device
4791  *
4792  *	Prepare an ATA command to submission to device.
4793  *	This includes mapping the data into a DMA-able
4794  *	area, filling in the S/G table, and finally
4795  *	writing the taskfile to hardware, starting the command.
4796  *
4797  *	LOCKING:
4798  *	spin_lock_irqsave(host lock)
4799  */
4800 void ata_qc_issue(struct ata_queued_cmd *qc)
4801 {
4802 	struct ata_port *ap = qc->ap;
4803 	struct ata_link *link = qc->dev->link;
4804 	u8 prot = qc->tf.protocol;
4805 
4806 	/* Make sure only one non-NCQ command is outstanding.  The
4807 	 * check is skipped for old EH because it reuses active qc to
4808 	 * request ATAPI sense.
4809 	 */
4810 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4811 
4812 	if (ata_is_ncq(prot)) {
4813 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4814 
4815 		if (!link->sactive)
4816 			ap->nr_active_links++;
4817 		link->sactive |= 1 << qc->hw_tag;
4818 	} else {
4819 		WARN_ON_ONCE(link->sactive);
4820 
4821 		ap->nr_active_links++;
4822 		link->active_tag = qc->tag;
4823 	}
4824 
4825 	qc->flags |= ATA_QCFLAG_ACTIVE;
4826 	ap->qc_active |= 1ULL << qc->tag;
4827 
4828 	/*
4829 	 * We guarantee to LLDs that they will have at least one
4830 	 * non-zero sg if the command is a data command.
4831 	 */
4832 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4833 		goto sys_err;
4834 
4835 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4836 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4837 		if (ata_sg_setup(qc))
4838 			goto sys_err;
4839 
4840 	/* if device is sleeping, schedule reset and abort the link */
4841 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4842 		link->eh_info.action |= ATA_EH_RESET;
4843 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4844 		ata_link_abort(link);
4845 		return;
4846 	}
4847 
4848 	trace_ata_qc_prep(qc);
4849 	qc->err_mask |= ap->ops->qc_prep(qc);
4850 	if (unlikely(qc->err_mask))
4851 		goto err;
4852 	trace_ata_qc_issue(qc);
4853 	qc->err_mask |= ap->ops->qc_issue(qc);
4854 	if (unlikely(qc->err_mask))
4855 		goto err;
4856 	return;
4857 
4858 sys_err:
4859 	qc->err_mask |= AC_ERR_SYSTEM;
4860 err:
4861 	ata_qc_complete(qc);
4862 }
4863 
4864 /**
4865  *	ata_phys_link_online - test whether the given link is online
4866  *	@link: ATA link to test
4867  *
4868  *	Test whether @link is online.  Note that this function returns
4869  *	0 if online status of @link cannot be obtained, so
4870  *	ata_link_online(link) != !ata_link_offline(link).
4871  *
4872  *	LOCKING:
4873  *	None.
4874  *
4875  *	RETURNS:
4876  *	True if the port online status is available and online.
4877  */
4878 bool ata_phys_link_online(struct ata_link *link)
4879 {
4880 	u32 sstatus;
4881 
4882 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4883 	    ata_sstatus_online(sstatus))
4884 		return true;
4885 	return false;
4886 }
4887 
4888 /**
4889  *	ata_phys_link_offline - test whether the given link is offline
4890  *	@link: ATA link to test
4891  *
4892  *	Test whether @link is offline.  Note that this function
4893  *	returns 0 if offline status of @link cannot be obtained, so
4894  *	ata_link_online(link) != !ata_link_offline(link).
4895  *
4896  *	LOCKING:
4897  *	None.
4898  *
4899  *	RETURNS:
4900  *	True if the port offline status is available and offline.
4901  */
4902 bool ata_phys_link_offline(struct ata_link *link)
4903 {
4904 	u32 sstatus;
4905 
4906 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4907 	    !ata_sstatus_online(sstatus))
4908 		return true;
4909 	return false;
4910 }
4911 
4912 /**
4913  *	ata_link_online - test whether the given link is online
4914  *	@link: ATA link to test
4915  *
4916  *	Test whether @link is online.  This is identical to
4917  *	ata_phys_link_online() when there's no slave link.  When
4918  *	there's a slave link, this function should only be called on
4919  *	the master link and will return true if any of M/S links is
4920  *	online.
4921  *
4922  *	LOCKING:
4923  *	None.
4924  *
4925  *	RETURNS:
4926  *	True if the port online status is available and online.
4927  */
4928 bool ata_link_online(struct ata_link *link)
4929 {
4930 	struct ata_link *slave = link->ap->slave_link;
4931 
4932 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4933 
4934 	return ata_phys_link_online(link) ||
4935 		(slave && ata_phys_link_online(slave));
4936 }
4937 EXPORT_SYMBOL_GPL(ata_link_online);
4938 
4939 /**
4940  *	ata_link_offline - test whether the given link is offline
4941  *	@link: ATA link to test
4942  *
4943  *	Test whether @link is offline.  This is identical to
4944  *	ata_phys_link_offline() when there's no slave link.  When
4945  *	there's a slave link, this function should only be called on
4946  *	the master link and will return true if both M/S links are
4947  *	offline.
4948  *
4949  *	LOCKING:
4950  *	None.
4951  *
4952  *	RETURNS:
4953  *	True if the port offline status is available and offline.
4954  */
4955 bool ata_link_offline(struct ata_link *link)
4956 {
4957 	struct ata_link *slave = link->ap->slave_link;
4958 
4959 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4960 
4961 	return ata_phys_link_offline(link) &&
4962 		(!slave || ata_phys_link_offline(slave));
4963 }
4964 EXPORT_SYMBOL_GPL(ata_link_offline);
4965 
4966 #ifdef CONFIG_PM
4967 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4968 				unsigned int action, unsigned int ehi_flags,
4969 				bool async)
4970 {
4971 	struct ata_link *link;
4972 	unsigned long flags;
4973 
4974 	/* Previous resume operation might still be in
4975 	 * progress.  Wait for PM_PENDING to clear.
4976 	 */
4977 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4978 		ata_port_wait_eh(ap);
4979 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4980 	}
4981 
4982 	/* request PM ops to EH */
4983 	spin_lock_irqsave(ap->lock, flags);
4984 
4985 	ap->pm_mesg = mesg;
4986 	ap->pflags |= ATA_PFLAG_PM_PENDING;
4987 	ata_for_each_link(link, ap, HOST_FIRST) {
4988 		link->eh_info.action |= action;
4989 		link->eh_info.flags |= ehi_flags;
4990 	}
4991 
4992 	ata_port_schedule_eh(ap);
4993 
4994 	spin_unlock_irqrestore(ap->lock, flags);
4995 
4996 	if (!async) {
4997 		ata_port_wait_eh(ap);
4998 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4999 	}
5000 }
5001 
5002 /*
5003  * On some hardware, device fails to respond after spun down for suspend.  As
5004  * the device won't be used before being resumed, we don't need to touch the
5005  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5006  *
5007  * http://thread.gmane.org/gmane.linux.ide/46764
5008  */
5009 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5010 						 | ATA_EHI_NO_AUTOPSY
5011 						 | ATA_EHI_NO_RECOVERY;
5012 
5013 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5014 {
5015 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5016 }
5017 
5018 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5019 {
5020 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5021 }
5022 
5023 static int ata_port_pm_suspend(struct device *dev)
5024 {
5025 	struct ata_port *ap = to_ata_port(dev);
5026 
5027 	if (pm_runtime_suspended(dev))
5028 		return 0;
5029 
5030 	ata_port_suspend(ap, PMSG_SUSPEND);
5031 	return 0;
5032 }
5033 
5034 static int ata_port_pm_freeze(struct device *dev)
5035 {
5036 	struct ata_port *ap = to_ata_port(dev);
5037 
5038 	if (pm_runtime_suspended(dev))
5039 		return 0;
5040 
5041 	ata_port_suspend(ap, PMSG_FREEZE);
5042 	return 0;
5043 }
5044 
5045 static int ata_port_pm_poweroff(struct device *dev)
5046 {
5047 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5048 	return 0;
5049 }
5050 
5051 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5052 						| ATA_EHI_QUIET;
5053 
5054 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5055 {
5056 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5057 }
5058 
5059 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5060 {
5061 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5062 }
5063 
5064 static int ata_port_pm_resume(struct device *dev)
5065 {
5066 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5067 	pm_runtime_disable(dev);
5068 	pm_runtime_set_active(dev);
5069 	pm_runtime_enable(dev);
5070 	return 0;
5071 }
5072 
5073 /*
5074  * For ODDs, the upper layer will poll for media change every few seconds,
5075  * which will make it enter and leave suspend state every few seconds. And
5076  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5077  * is very little and the ODD may malfunction after constantly being reset.
5078  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5079  * ODD is attached to the port.
5080  */
5081 static int ata_port_runtime_idle(struct device *dev)
5082 {
5083 	struct ata_port *ap = to_ata_port(dev);
5084 	struct ata_link *link;
5085 	struct ata_device *adev;
5086 
5087 	ata_for_each_link(link, ap, HOST_FIRST) {
5088 		ata_for_each_dev(adev, link, ENABLED)
5089 			if (adev->class == ATA_DEV_ATAPI &&
5090 			    !zpodd_dev_enabled(adev))
5091 				return -EBUSY;
5092 	}
5093 
5094 	return 0;
5095 }
5096 
5097 static int ata_port_runtime_suspend(struct device *dev)
5098 {
5099 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5100 	return 0;
5101 }
5102 
5103 static int ata_port_runtime_resume(struct device *dev)
5104 {
5105 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5106 	return 0;
5107 }
5108 
5109 static const struct dev_pm_ops ata_port_pm_ops = {
5110 	.suspend = ata_port_pm_suspend,
5111 	.resume = ata_port_pm_resume,
5112 	.freeze = ata_port_pm_freeze,
5113 	.thaw = ata_port_pm_resume,
5114 	.poweroff = ata_port_pm_poweroff,
5115 	.restore = ata_port_pm_resume,
5116 
5117 	.runtime_suspend = ata_port_runtime_suspend,
5118 	.runtime_resume = ata_port_runtime_resume,
5119 	.runtime_idle = ata_port_runtime_idle,
5120 };
5121 
5122 /* sas ports don't participate in pm runtime management of ata_ports,
5123  * and need to resume ata devices at the domain level, not the per-port
5124  * level. sas suspend/resume is async to allow parallel port recovery
5125  * since sas has multiple ata_port instances per Scsi_Host.
5126  */
5127 void ata_sas_port_suspend(struct ata_port *ap)
5128 {
5129 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5130 }
5131 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5132 
5133 void ata_sas_port_resume(struct ata_port *ap)
5134 {
5135 	ata_port_resume_async(ap, PMSG_RESUME);
5136 }
5137 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5138 
5139 /**
5140  *	ata_host_suspend - suspend host
5141  *	@host: host to suspend
5142  *	@mesg: PM message
5143  *
5144  *	Suspend @host.  Actual operation is performed by port suspend.
5145  */
5146 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5147 {
5148 	host->dev->power.power_state = mesg;
5149 }
5150 EXPORT_SYMBOL_GPL(ata_host_suspend);
5151 
5152 /**
5153  *	ata_host_resume - resume host
5154  *	@host: host to resume
5155  *
5156  *	Resume @host.  Actual operation is performed by port resume.
5157  */
5158 void ata_host_resume(struct ata_host *host)
5159 {
5160 	host->dev->power.power_state = PMSG_ON;
5161 }
5162 EXPORT_SYMBOL_GPL(ata_host_resume);
5163 #endif
5164 
5165 const struct device_type ata_port_type = {
5166 	.name = "ata_port",
5167 #ifdef CONFIG_PM
5168 	.pm = &ata_port_pm_ops,
5169 #endif
5170 };
5171 
5172 /**
5173  *	ata_dev_init - Initialize an ata_device structure
5174  *	@dev: Device structure to initialize
5175  *
5176  *	Initialize @dev in preparation for probing.
5177  *
5178  *	LOCKING:
5179  *	Inherited from caller.
5180  */
5181 void ata_dev_init(struct ata_device *dev)
5182 {
5183 	struct ata_link *link = ata_dev_phys_link(dev);
5184 	struct ata_port *ap = link->ap;
5185 	unsigned long flags;
5186 
5187 	/* SATA spd limit is bound to the attached device, reset together */
5188 	link->sata_spd_limit = link->hw_sata_spd_limit;
5189 	link->sata_spd = 0;
5190 
5191 	/* High bits of dev->flags are used to record warm plug
5192 	 * requests which occur asynchronously.  Synchronize using
5193 	 * host lock.
5194 	 */
5195 	spin_lock_irqsave(ap->lock, flags);
5196 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5197 	dev->horkage = 0;
5198 	spin_unlock_irqrestore(ap->lock, flags);
5199 
5200 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5201 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5202 	dev->pio_mask = UINT_MAX;
5203 	dev->mwdma_mask = UINT_MAX;
5204 	dev->udma_mask = UINT_MAX;
5205 }
5206 
5207 /**
5208  *	ata_link_init - Initialize an ata_link structure
5209  *	@ap: ATA port link is attached to
5210  *	@link: Link structure to initialize
5211  *	@pmp: Port multiplier port number
5212  *
5213  *	Initialize @link.
5214  *
5215  *	LOCKING:
5216  *	Kernel thread context (may sleep)
5217  */
5218 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5219 {
5220 	int i;
5221 
5222 	/* clear everything except for devices */
5223 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5224 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5225 
5226 	link->ap = ap;
5227 	link->pmp = pmp;
5228 	link->active_tag = ATA_TAG_POISON;
5229 	link->hw_sata_spd_limit = UINT_MAX;
5230 
5231 	/* can't use iterator, ap isn't initialized yet */
5232 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5233 		struct ata_device *dev = &link->device[i];
5234 
5235 		dev->link = link;
5236 		dev->devno = dev - link->device;
5237 #ifdef CONFIG_ATA_ACPI
5238 		dev->gtf_filter = ata_acpi_gtf_filter;
5239 #endif
5240 		ata_dev_init(dev);
5241 	}
5242 }
5243 
5244 /**
5245  *	sata_link_init_spd - Initialize link->sata_spd_limit
5246  *	@link: Link to configure sata_spd_limit for
5247  *
5248  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5249  *	configured value.
5250  *
5251  *	LOCKING:
5252  *	Kernel thread context (may sleep).
5253  *
5254  *	RETURNS:
5255  *	0 on success, -errno on failure.
5256  */
5257 int sata_link_init_spd(struct ata_link *link)
5258 {
5259 	u8 spd;
5260 	int rc;
5261 
5262 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5263 	if (rc)
5264 		return rc;
5265 
5266 	spd = (link->saved_scontrol >> 4) & 0xf;
5267 	if (spd)
5268 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5269 
5270 	ata_force_link_limits(link);
5271 
5272 	link->sata_spd_limit = link->hw_sata_spd_limit;
5273 
5274 	return 0;
5275 }
5276 
5277 /**
5278  *	ata_port_alloc - allocate and initialize basic ATA port resources
5279  *	@host: ATA host this allocated port belongs to
5280  *
5281  *	Allocate and initialize basic ATA port resources.
5282  *
5283  *	RETURNS:
5284  *	Allocate ATA port on success, NULL on failure.
5285  *
5286  *	LOCKING:
5287  *	Inherited from calling layer (may sleep).
5288  */
5289 struct ata_port *ata_port_alloc(struct ata_host *host)
5290 {
5291 	struct ata_port *ap;
5292 
5293 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5294 	if (!ap)
5295 		return NULL;
5296 
5297 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5298 	ap->lock = &host->lock;
5299 	ap->print_id = -1;
5300 	ap->local_port_no = -1;
5301 	ap->host = host;
5302 	ap->dev = host->dev;
5303 
5304 	mutex_init(&ap->scsi_scan_mutex);
5305 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5306 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5307 	INIT_LIST_HEAD(&ap->eh_done_q);
5308 	init_waitqueue_head(&ap->eh_wait_q);
5309 	init_completion(&ap->park_req_pending);
5310 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5311 		    TIMER_DEFERRABLE);
5312 
5313 	ap->cbl = ATA_CBL_NONE;
5314 
5315 	ata_link_init(ap, &ap->link, 0);
5316 
5317 #ifdef ATA_IRQ_TRAP
5318 	ap->stats.unhandled_irq = 1;
5319 	ap->stats.idle_irq = 1;
5320 #endif
5321 	ata_sff_port_init(ap);
5322 
5323 	return ap;
5324 }
5325 
5326 static void ata_devres_release(struct device *gendev, void *res)
5327 {
5328 	struct ata_host *host = dev_get_drvdata(gendev);
5329 	int i;
5330 
5331 	for (i = 0; i < host->n_ports; i++) {
5332 		struct ata_port *ap = host->ports[i];
5333 
5334 		if (!ap)
5335 			continue;
5336 
5337 		if (ap->scsi_host)
5338 			scsi_host_put(ap->scsi_host);
5339 
5340 	}
5341 
5342 	dev_set_drvdata(gendev, NULL);
5343 	ata_host_put(host);
5344 }
5345 
5346 static void ata_host_release(struct kref *kref)
5347 {
5348 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5349 	int i;
5350 
5351 	for (i = 0; i < host->n_ports; i++) {
5352 		struct ata_port *ap = host->ports[i];
5353 
5354 		kfree(ap->pmp_link);
5355 		kfree(ap->slave_link);
5356 		kfree(ap);
5357 		host->ports[i] = NULL;
5358 	}
5359 	kfree(host);
5360 }
5361 
5362 void ata_host_get(struct ata_host *host)
5363 {
5364 	kref_get(&host->kref);
5365 }
5366 
5367 void ata_host_put(struct ata_host *host)
5368 {
5369 	kref_put(&host->kref, ata_host_release);
5370 }
5371 EXPORT_SYMBOL_GPL(ata_host_put);
5372 
5373 /**
5374  *	ata_host_alloc - allocate and init basic ATA host resources
5375  *	@dev: generic device this host is associated with
5376  *	@max_ports: maximum number of ATA ports associated with this host
5377  *
5378  *	Allocate and initialize basic ATA host resources.  LLD calls
5379  *	this function to allocate a host, initializes it fully and
5380  *	attaches it using ata_host_register().
5381  *
5382  *	@max_ports ports are allocated and host->n_ports is
5383  *	initialized to @max_ports.  The caller is allowed to decrease
5384  *	host->n_ports before calling ata_host_register().  The unused
5385  *	ports will be automatically freed on registration.
5386  *
5387  *	RETURNS:
5388  *	Allocate ATA host on success, NULL on failure.
5389  *
5390  *	LOCKING:
5391  *	Inherited from calling layer (may sleep).
5392  */
5393 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5394 {
5395 	struct ata_host *host;
5396 	size_t sz;
5397 	int i;
5398 	void *dr;
5399 
5400 	/* alloc a container for our list of ATA ports (buses) */
5401 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5402 	host = kzalloc(sz, GFP_KERNEL);
5403 	if (!host)
5404 		return NULL;
5405 
5406 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5407 		goto err_free;
5408 
5409 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5410 	if (!dr)
5411 		goto err_out;
5412 
5413 	devres_add(dev, dr);
5414 	dev_set_drvdata(dev, host);
5415 
5416 	spin_lock_init(&host->lock);
5417 	mutex_init(&host->eh_mutex);
5418 	host->dev = dev;
5419 	host->n_ports = max_ports;
5420 	kref_init(&host->kref);
5421 
5422 	/* allocate ports bound to this host */
5423 	for (i = 0; i < max_ports; i++) {
5424 		struct ata_port *ap;
5425 
5426 		ap = ata_port_alloc(host);
5427 		if (!ap)
5428 			goto err_out;
5429 
5430 		ap->port_no = i;
5431 		host->ports[i] = ap;
5432 	}
5433 
5434 	devres_remove_group(dev, NULL);
5435 	return host;
5436 
5437  err_out:
5438 	devres_release_group(dev, NULL);
5439  err_free:
5440 	kfree(host);
5441 	return NULL;
5442 }
5443 EXPORT_SYMBOL_GPL(ata_host_alloc);
5444 
5445 /**
5446  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5447  *	@dev: generic device this host is associated with
5448  *	@ppi: array of ATA port_info to initialize host with
5449  *	@n_ports: number of ATA ports attached to this host
5450  *
5451  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5452  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5453  *	last entry will be used for the remaining ports.
5454  *
5455  *	RETURNS:
5456  *	Allocate ATA host on success, NULL on failure.
5457  *
5458  *	LOCKING:
5459  *	Inherited from calling layer (may sleep).
5460  */
5461 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5462 				      const struct ata_port_info * const * ppi,
5463 				      int n_ports)
5464 {
5465 	const struct ata_port_info *pi;
5466 	struct ata_host *host;
5467 	int i, j;
5468 
5469 	host = ata_host_alloc(dev, n_ports);
5470 	if (!host)
5471 		return NULL;
5472 
5473 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5474 		struct ata_port *ap = host->ports[i];
5475 
5476 		if (ppi[j])
5477 			pi = ppi[j++];
5478 
5479 		ap->pio_mask = pi->pio_mask;
5480 		ap->mwdma_mask = pi->mwdma_mask;
5481 		ap->udma_mask = pi->udma_mask;
5482 		ap->flags |= pi->flags;
5483 		ap->link.flags |= pi->link_flags;
5484 		ap->ops = pi->port_ops;
5485 
5486 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5487 			host->ops = pi->port_ops;
5488 	}
5489 
5490 	return host;
5491 }
5492 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5493 
5494 static void ata_host_stop(struct device *gendev, void *res)
5495 {
5496 	struct ata_host *host = dev_get_drvdata(gendev);
5497 	int i;
5498 
5499 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5500 
5501 	for (i = 0; i < host->n_ports; i++) {
5502 		struct ata_port *ap = host->ports[i];
5503 
5504 		if (ap->ops->port_stop)
5505 			ap->ops->port_stop(ap);
5506 	}
5507 
5508 	if (host->ops->host_stop)
5509 		host->ops->host_stop(host);
5510 }
5511 
5512 /**
5513  *	ata_finalize_port_ops - finalize ata_port_operations
5514  *	@ops: ata_port_operations to finalize
5515  *
5516  *	An ata_port_operations can inherit from another ops and that
5517  *	ops can again inherit from another.  This can go on as many
5518  *	times as necessary as long as there is no loop in the
5519  *	inheritance chain.
5520  *
5521  *	Ops tables are finalized when the host is started.  NULL or
5522  *	unspecified entries are inherited from the closet ancestor
5523  *	which has the method and the entry is populated with it.
5524  *	After finalization, the ops table directly points to all the
5525  *	methods and ->inherits is no longer necessary and cleared.
5526  *
5527  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5528  *
5529  *	LOCKING:
5530  *	None.
5531  */
5532 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5533 {
5534 	static DEFINE_SPINLOCK(lock);
5535 	const struct ata_port_operations *cur;
5536 	void **begin = (void **)ops;
5537 	void **end = (void **)&ops->inherits;
5538 	void **pp;
5539 
5540 	if (!ops || !ops->inherits)
5541 		return;
5542 
5543 	spin_lock(&lock);
5544 
5545 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5546 		void **inherit = (void **)cur;
5547 
5548 		for (pp = begin; pp < end; pp++, inherit++)
5549 			if (!*pp)
5550 				*pp = *inherit;
5551 	}
5552 
5553 	for (pp = begin; pp < end; pp++)
5554 		if (IS_ERR(*pp))
5555 			*pp = NULL;
5556 
5557 	ops->inherits = NULL;
5558 
5559 	spin_unlock(&lock);
5560 }
5561 
5562 /**
5563  *	ata_host_start - start and freeze ports of an ATA host
5564  *	@host: ATA host to start ports for
5565  *
5566  *	Start and then freeze ports of @host.  Started status is
5567  *	recorded in host->flags, so this function can be called
5568  *	multiple times.  Ports are guaranteed to get started only
5569  *	once.  If host->ops is not initialized yet, it is set to the
5570  *	first non-dummy port ops.
5571  *
5572  *	LOCKING:
5573  *	Inherited from calling layer (may sleep).
5574  *
5575  *	RETURNS:
5576  *	0 if all ports are started successfully, -errno otherwise.
5577  */
5578 int ata_host_start(struct ata_host *host)
5579 {
5580 	int have_stop = 0;
5581 	void *start_dr = NULL;
5582 	int i, rc;
5583 
5584 	if (host->flags & ATA_HOST_STARTED)
5585 		return 0;
5586 
5587 	ata_finalize_port_ops(host->ops);
5588 
5589 	for (i = 0; i < host->n_ports; i++) {
5590 		struct ata_port *ap = host->ports[i];
5591 
5592 		ata_finalize_port_ops(ap->ops);
5593 
5594 		if (!host->ops && !ata_port_is_dummy(ap))
5595 			host->ops = ap->ops;
5596 
5597 		if (ap->ops->port_stop)
5598 			have_stop = 1;
5599 	}
5600 
5601 	if (host->ops && host->ops->host_stop)
5602 		have_stop = 1;
5603 
5604 	if (have_stop) {
5605 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5606 		if (!start_dr)
5607 			return -ENOMEM;
5608 	}
5609 
5610 	for (i = 0; i < host->n_ports; i++) {
5611 		struct ata_port *ap = host->ports[i];
5612 
5613 		if (ap->ops->port_start) {
5614 			rc = ap->ops->port_start(ap);
5615 			if (rc) {
5616 				if (rc != -ENODEV)
5617 					dev_err(host->dev,
5618 						"failed to start port %d (errno=%d)\n",
5619 						i, rc);
5620 				goto err_out;
5621 			}
5622 		}
5623 		ata_eh_freeze_port(ap);
5624 	}
5625 
5626 	if (start_dr)
5627 		devres_add(host->dev, start_dr);
5628 	host->flags |= ATA_HOST_STARTED;
5629 	return 0;
5630 
5631  err_out:
5632 	while (--i >= 0) {
5633 		struct ata_port *ap = host->ports[i];
5634 
5635 		if (ap->ops->port_stop)
5636 			ap->ops->port_stop(ap);
5637 	}
5638 	devres_free(start_dr);
5639 	return rc;
5640 }
5641 EXPORT_SYMBOL_GPL(ata_host_start);
5642 
5643 /**
5644  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5645  *	@host:	host to initialize
5646  *	@dev:	device host is attached to
5647  *	@ops:	port_ops
5648  *
5649  */
5650 void ata_host_init(struct ata_host *host, struct device *dev,
5651 		   struct ata_port_operations *ops)
5652 {
5653 	spin_lock_init(&host->lock);
5654 	mutex_init(&host->eh_mutex);
5655 	host->n_tags = ATA_MAX_QUEUE;
5656 	host->dev = dev;
5657 	host->ops = ops;
5658 	kref_init(&host->kref);
5659 }
5660 EXPORT_SYMBOL_GPL(ata_host_init);
5661 
5662 void __ata_port_probe(struct ata_port *ap)
5663 {
5664 	struct ata_eh_info *ehi = &ap->link.eh_info;
5665 	unsigned long flags;
5666 
5667 	/* kick EH for boot probing */
5668 	spin_lock_irqsave(ap->lock, flags);
5669 
5670 	ehi->probe_mask |= ATA_ALL_DEVICES;
5671 	ehi->action |= ATA_EH_RESET;
5672 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5673 
5674 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5675 	ap->pflags |= ATA_PFLAG_LOADING;
5676 	ata_port_schedule_eh(ap);
5677 
5678 	spin_unlock_irqrestore(ap->lock, flags);
5679 }
5680 
5681 int ata_port_probe(struct ata_port *ap)
5682 {
5683 	int rc = 0;
5684 
5685 	if (ap->ops->error_handler) {
5686 		__ata_port_probe(ap);
5687 		ata_port_wait_eh(ap);
5688 	} else {
5689 		rc = ata_bus_probe(ap);
5690 	}
5691 	return rc;
5692 }
5693 
5694 
5695 static void async_port_probe(void *data, async_cookie_t cookie)
5696 {
5697 	struct ata_port *ap = data;
5698 
5699 	/*
5700 	 * If we're not allowed to scan this host in parallel,
5701 	 * we need to wait until all previous scans have completed
5702 	 * before going further.
5703 	 * Jeff Garzik says this is only within a controller, so we
5704 	 * don't need to wait for port 0, only for later ports.
5705 	 */
5706 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5707 		async_synchronize_cookie(cookie);
5708 
5709 	(void)ata_port_probe(ap);
5710 
5711 	/* in order to keep device order, we need to synchronize at this point */
5712 	async_synchronize_cookie(cookie);
5713 
5714 	ata_scsi_scan_host(ap, 1);
5715 }
5716 
5717 /**
5718  *	ata_host_register - register initialized ATA host
5719  *	@host: ATA host to register
5720  *	@sht: template for SCSI host
5721  *
5722  *	Register initialized ATA host.  @host is allocated using
5723  *	ata_host_alloc() and fully initialized by LLD.  This function
5724  *	starts ports, registers @host with ATA and SCSI layers and
5725  *	probe registered devices.
5726  *
5727  *	LOCKING:
5728  *	Inherited from calling layer (may sleep).
5729  *
5730  *	RETURNS:
5731  *	0 on success, -errno otherwise.
5732  */
5733 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5734 {
5735 	int i, rc;
5736 
5737 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5738 
5739 	/* host must have been started */
5740 	if (!(host->flags & ATA_HOST_STARTED)) {
5741 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5742 		WARN_ON(1);
5743 		return -EINVAL;
5744 	}
5745 
5746 	/* Blow away unused ports.  This happens when LLD can't
5747 	 * determine the exact number of ports to allocate at
5748 	 * allocation time.
5749 	 */
5750 	for (i = host->n_ports; host->ports[i]; i++)
5751 		kfree(host->ports[i]);
5752 
5753 	/* give ports names and add SCSI hosts */
5754 	for (i = 0; i < host->n_ports; i++) {
5755 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5756 		host->ports[i]->local_port_no = i + 1;
5757 	}
5758 
5759 	/* Create associated sysfs transport objects  */
5760 	for (i = 0; i < host->n_ports; i++) {
5761 		rc = ata_tport_add(host->dev,host->ports[i]);
5762 		if (rc) {
5763 			goto err_tadd;
5764 		}
5765 	}
5766 
5767 	rc = ata_scsi_add_hosts(host, sht);
5768 	if (rc)
5769 		goto err_tadd;
5770 
5771 	/* set cable, sata_spd_limit and report */
5772 	for (i = 0; i < host->n_ports; i++) {
5773 		struct ata_port *ap = host->ports[i];
5774 		unsigned long xfer_mask;
5775 
5776 		/* set SATA cable type if still unset */
5777 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5778 			ap->cbl = ATA_CBL_SATA;
5779 
5780 		/* init sata_spd_limit to the current value */
5781 		sata_link_init_spd(&ap->link);
5782 		if (ap->slave_link)
5783 			sata_link_init_spd(ap->slave_link);
5784 
5785 		/* print per-port info to dmesg */
5786 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5787 					      ap->udma_mask);
5788 
5789 		if (!ata_port_is_dummy(ap)) {
5790 			ata_port_info(ap, "%cATA max %s %s\n",
5791 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5792 				      ata_mode_string(xfer_mask),
5793 				      ap->link.eh_info.desc);
5794 			ata_ehi_clear_desc(&ap->link.eh_info);
5795 		} else
5796 			ata_port_info(ap, "DUMMY\n");
5797 	}
5798 
5799 	/* perform each probe asynchronously */
5800 	for (i = 0; i < host->n_ports; i++) {
5801 		struct ata_port *ap = host->ports[i];
5802 		ap->cookie = async_schedule(async_port_probe, ap);
5803 	}
5804 
5805 	return 0;
5806 
5807  err_tadd:
5808 	while (--i >= 0) {
5809 		ata_tport_delete(host->ports[i]);
5810 	}
5811 	return rc;
5812 
5813 }
5814 EXPORT_SYMBOL_GPL(ata_host_register);
5815 
5816 /**
5817  *	ata_host_activate - start host, request IRQ and register it
5818  *	@host: target ATA host
5819  *	@irq: IRQ to request
5820  *	@irq_handler: irq_handler used when requesting IRQ
5821  *	@irq_flags: irq_flags used when requesting IRQ
5822  *	@sht: scsi_host_template to use when registering the host
5823  *
5824  *	After allocating an ATA host and initializing it, most libata
5825  *	LLDs perform three steps to activate the host - start host,
5826  *	request IRQ and register it.  This helper takes necessary
5827  *	arguments and performs the three steps in one go.
5828  *
5829  *	An invalid IRQ skips the IRQ registration and expects the host to
5830  *	have set polling mode on the port. In this case, @irq_handler
5831  *	should be NULL.
5832  *
5833  *	LOCKING:
5834  *	Inherited from calling layer (may sleep).
5835  *
5836  *	RETURNS:
5837  *	0 on success, -errno otherwise.
5838  */
5839 int ata_host_activate(struct ata_host *host, int irq,
5840 		      irq_handler_t irq_handler, unsigned long irq_flags,
5841 		      struct scsi_host_template *sht)
5842 {
5843 	int i, rc;
5844 	char *irq_desc;
5845 
5846 	rc = ata_host_start(host);
5847 	if (rc)
5848 		return rc;
5849 
5850 	/* Special case for polling mode */
5851 	if (!irq) {
5852 		WARN_ON(irq_handler);
5853 		return ata_host_register(host, sht);
5854 	}
5855 
5856 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5857 				  dev_driver_string(host->dev),
5858 				  dev_name(host->dev));
5859 	if (!irq_desc)
5860 		return -ENOMEM;
5861 
5862 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5863 			      irq_desc, host);
5864 	if (rc)
5865 		return rc;
5866 
5867 	for (i = 0; i < host->n_ports; i++)
5868 		ata_port_desc(host->ports[i], "irq %d", irq);
5869 
5870 	rc = ata_host_register(host, sht);
5871 	/* if failed, just free the IRQ and leave ports alone */
5872 	if (rc)
5873 		devm_free_irq(host->dev, irq, host);
5874 
5875 	return rc;
5876 }
5877 EXPORT_SYMBOL_GPL(ata_host_activate);
5878 
5879 /**
5880  *	ata_port_detach - Detach ATA port in preparation of device removal
5881  *	@ap: ATA port to be detached
5882  *
5883  *	Detach all ATA devices and the associated SCSI devices of @ap;
5884  *	then, remove the associated SCSI host.  @ap is guaranteed to
5885  *	be quiescent on return from this function.
5886  *
5887  *	LOCKING:
5888  *	Kernel thread context (may sleep).
5889  */
5890 static void ata_port_detach(struct ata_port *ap)
5891 {
5892 	unsigned long flags;
5893 	struct ata_link *link;
5894 	struct ata_device *dev;
5895 
5896 	if (!ap->ops->error_handler)
5897 		goto skip_eh;
5898 
5899 	/* tell EH we're leaving & flush EH */
5900 	spin_lock_irqsave(ap->lock, flags);
5901 	ap->pflags |= ATA_PFLAG_UNLOADING;
5902 	ata_port_schedule_eh(ap);
5903 	spin_unlock_irqrestore(ap->lock, flags);
5904 
5905 	/* wait till EH commits suicide */
5906 	ata_port_wait_eh(ap);
5907 
5908 	/* it better be dead now */
5909 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5910 
5911 	cancel_delayed_work_sync(&ap->hotplug_task);
5912 
5913  skip_eh:
5914 	/* clean up zpodd on port removal */
5915 	ata_for_each_link(link, ap, HOST_FIRST) {
5916 		ata_for_each_dev(dev, link, ALL) {
5917 			if (zpodd_dev_enabled(dev))
5918 				zpodd_exit(dev);
5919 		}
5920 	}
5921 	if (ap->pmp_link) {
5922 		int i;
5923 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5924 			ata_tlink_delete(&ap->pmp_link[i]);
5925 	}
5926 	/* remove the associated SCSI host */
5927 	scsi_remove_host(ap->scsi_host);
5928 	ata_tport_delete(ap);
5929 }
5930 
5931 /**
5932  *	ata_host_detach - Detach all ports of an ATA host
5933  *	@host: Host to detach
5934  *
5935  *	Detach all ports of @host.
5936  *
5937  *	LOCKING:
5938  *	Kernel thread context (may sleep).
5939  */
5940 void ata_host_detach(struct ata_host *host)
5941 {
5942 	int i;
5943 
5944 	for (i = 0; i < host->n_ports; i++) {
5945 		/* Ensure ata_port probe has completed */
5946 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5947 		ata_port_detach(host->ports[i]);
5948 	}
5949 
5950 	/* the host is dead now, dissociate ACPI */
5951 	ata_acpi_dissociate(host);
5952 }
5953 EXPORT_SYMBOL_GPL(ata_host_detach);
5954 
5955 #ifdef CONFIG_PCI
5956 
5957 /**
5958  *	ata_pci_remove_one - PCI layer callback for device removal
5959  *	@pdev: PCI device that was removed
5960  *
5961  *	PCI layer indicates to libata via this hook that hot-unplug or
5962  *	module unload event has occurred.  Detach all ports.  Resource
5963  *	release is handled via devres.
5964  *
5965  *	LOCKING:
5966  *	Inherited from PCI layer (may sleep).
5967  */
5968 void ata_pci_remove_one(struct pci_dev *pdev)
5969 {
5970 	struct ata_host *host = pci_get_drvdata(pdev);
5971 
5972 	ata_host_detach(host);
5973 }
5974 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5975 
5976 void ata_pci_shutdown_one(struct pci_dev *pdev)
5977 {
5978 	struct ata_host *host = pci_get_drvdata(pdev);
5979 	int i;
5980 
5981 	for (i = 0; i < host->n_ports; i++) {
5982 		struct ata_port *ap = host->ports[i];
5983 
5984 		ap->pflags |= ATA_PFLAG_FROZEN;
5985 
5986 		/* Disable port interrupts */
5987 		if (ap->ops->freeze)
5988 			ap->ops->freeze(ap);
5989 
5990 		/* Stop the port DMA engines */
5991 		if (ap->ops->port_stop)
5992 			ap->ops->port_stop(ap);
5993 	}
5994 }
5995 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5996 
5997 /* move to PCI subsystem */
5998 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5999 {
6000 	unsigned long tmp = 0;
6001 
6002 	switch (bits->width) {
6003 	case 1: {
6004 		u8 tmp8 = 0;
6005 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6006 		tmp = tmp8;
6007 		break;
6008 	}
6009 	case 2: {
6010 		u16 tmp16 = 0;
6011 		pci_read_config_word(pdev, bits->reg, &tmp16);
6012 		tmp = tmp16;
6013 		break;
6014 	}
6015 	case 4: {
6016 		u32 tmp32 = 0;
6017 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6018 		tmp = tmp32;
6019 		break;
6020 	}
6021 
6022 	default:
6023 		return -EINVAL;
6024 	}
6025 
6026 	tmp &= bits->mask;
6027 
6028 	return (tmp == bits->val) ? 1 : 0;
6029 }
6030 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6031 
6032 #ifdef CONFIG_PM
6033 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6034 {
6035 	pci_save_state(pdev);
6036 	pci_disable_device(pdev);
6037 
6038 	if (mesg.event & PM_EVENT_SLEEP)
6039 		pci_set_power_state(pdev, PCI_D3hot);
6040 }
6041 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6042 
6043 int ata_pci_device_do_resume(struct pci_dev *pdev)
6044 {
6045 	int rc;
6046 
6047 	pci_set_power_state(pdev, PCI_D0);
6048 	pci_restore_state(pdev);
6049 
6050 	rc = pcim_enable_device(pdev);
6051 	if (rc) {
6052 		dev_err(&pdev->dev,
6053 			"failed to enable device after resume (%d)\n", rc);
6054 		return rc;
6055 	}
6056 
6057 	pci_set_master(pdev);
6058 	return 0;
6059 }
6060 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6061 
6062 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6063 {
6064 	struct ata_host *host = pci_get_drvdata(pdev);
6065 
6066 	ata_host_suspend(host, mesg);
6067 
6068 	ata_pci_device_do_suspend(pdev, mesg);
6069 
6070 	return 0;
6071 }
6072 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6073 
6074 int ata_pci_device_resume(struct pci_dev *pdev)
6075 {
6076 	struct ata_host *host = pci_get_drvdata(pdev);
6077 	int rc;
6078 
6079 	rc = ata_pci_device_do_resume(pdev);
6080 	if (rc == 0)
6081 		ata_host_resume(host);
6082 	return rc;
6083 }
6084 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6085 #endif /* CONFIG_PM */
6086 #endif /* CONFIG_PCI */
6087 
6088 /**
6089  *	ata_platform_remove_one - Platform layer callback for device removal
6090  *	@pdev: Platform device that was removed
6091  *
6092  *	Platform layer indicates to libata via this hook that hot-unplug or
6093  *	module unload event has occurred.  Detach all ports.  Resource
6094  *	release is handled via devres.
6095  *
6096  *	LOCKING:
6097  *	Inherited from platform layer (may sleep).
6098  */
6099 int ata_platform_remove_one(struct platform_device *pdev)
6100 {
6101 	struct ata_host *host = platform_get_drvdata(pdev);
6102 
6103 	ata_host_detach(host);
6104 
6105 	return 0;
6106 }
6107 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6108 
6109 #ifdef CONFIG_ATA_FORCE
6110 
6111 #define force_cbl(name, flag)				\
6112 	{ #name,	.cbl		= (flag) }
6113 
6114 #define force_spd_limit(spd, val)			\
6115 	{ #spd,	.spd_limit		= (val) }
6116 
6117 #define force_xfer(mode, shift)				\
6118 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6119 
6120 #define force_lflag_on(name, flags)			\
6121 	{ #name,	.lflags_on	= (flags) }
6122 
6123 #define force_lflag_onoff(name, flags)			\
6124 	{ "no" #name,	.lflags_on	= (flags) },	\
6125 	{ #name,	.lflags_off	= (flags) }
6126 
6127 #define force_horkage_on(name, flag)			\
6128 	{ #name,	.horkage_on	= (flag) }
6129 
6130 #define force_horkage_onoff(name, flag)			\
6131 	{ "no" #name,	.horkage_on	= (flag) },	\
6132 	{ #name,	.horkage_off	= (flag) }
6133 
6134 static const struct ata_force_param force_tbl[] __initconst = {
6135 	force_cbl(40c,			ATA_CBL_PATA40),
6136 	force_cbl(80c,			ATA_CBL_PATA80),
6137 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6138 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6139 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6140 	force_cbl(sata,			ATA_CBL_SATA),
6141 
6142 	force_spd_limit(1.5Gbps,	1),
6143 	force_spd_limit(3.0Gbps,	2),
6144 
6145 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6146 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6147 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6148 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6149 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6150 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6151 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6152 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6153 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6154 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6155 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6156 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6157 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6158 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6159 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6160 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6161 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6162 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6163 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6164 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6165 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6166 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6167 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6168 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6169 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6170 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6171 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6172 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6173 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6174 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6175 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6176 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6177 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6178 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6179 
6180 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6181 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6182 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6183 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6184 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6185 
6186 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6187 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6188 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6189 
6190 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6191 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6192 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6193 
6194 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6195 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6196 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6197 
6198 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6199 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6200 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6201 
6202 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6203 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6204 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6205 
6206 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6207 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6208 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6209 
6210 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6211 };
6212 
6213 static int __init ata_parse_force_one(char **cur,
6214 				      struct ata_force_ent *force_ent,
6215 				      const char **reason)
6216 {
6217 	char *start = *cur, *p = *cur;
6218 	char *id, *val, *endp;
6219 	const struct ata_force_param *match_fp = NULL;
6220 	int nr_matches = 0, i;
6221 
6222 	/* find where this param ends and update *cur */
6223 	while (*p != '\0' && *p != ',')
6224 		p++;
6225 
6226 	if (*p == '\0')
6227 		*cur = p;
6228 	else
6229 		*cur = p + 1;
6230 
6231 	*p = '\0';
6232 
6233 	/* parse */
6234 	p = strchr(start, ':');
6235 	if (!p) {
6236 		val = strstrip(start);
6237 		goto parse_val;
6238 	}
6239 	*p = '\0';
6240 
6241 	id = strstrip(start);
6242 	val = strstrip(p + 1);
6243 
6244 	/* parse id */
6245 	p = strchr(id, '.');
6246 	if (p) {
6247 		*p++ = '\0';
6248 		force_ent->device = simple_strtoul(p, &endp, 10);
6249 		if (p == endp || *endp != '\0') {
6250 			*reason = "invalid device";
6251 			return -EINVAL;
6252 		}
6253 	}
6254 
6255 	force_ent->port = simple_strtoul(id, &endp, 10);
6256 	if (id == endp || *endp != '\0') {
6257 		*reason = "invalid port/link";
6258 		return -EINVAL;
6259 	}
6260 
6261  parse_val:
6262 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6263 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6264 		const struct ata_force_param *fp = &force_tbl[i];
6265 
6266 		if (strncasecmp(val, fp->name, strlen(val)))
6267 			continue;
6268 
6269 		nr_matches++;
6270 		match_fp = fp;
6271 
6272 		if (strcasecmp(val, fp->name) == 0) {
6273 			nr_matches = 1;
6274 			break;
6275 		}
6276 	}
6277 
6278 	if (!nr_matches) {
6279 		*reason = "unknown value";
6280 		return -EINVAL;
6281 	}
6282 	if (nr_matches > 1) {
6283 		*reason = "ambiguous value";
6284 		return -EINVAL;
6285 	}
6286 
6287 	force_ent->param = *match_fp;
6288 
6289 	return 0;
6290 }
6291 
6292 static void __init ata_parse_force_param(void)
6293 {
6294 	int idx = 0, size = 1;
6295 	int last_port = -1, last_device = -1;
6296 	char *p, *cur, *next;
6297 
6298 	/* Calculate maximum number of params and allocate ata_force_tbl */
6299 	for (p = ata_force_param_buf; *p; p++)
6300 		if (*p == ',')
6301 			size++;
6302 
6303 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6304 	if (!ata_force_tbl) {
6305 		printk(KERN_WARNING "ata: failed to extend force table, "
6306 		       "libata.force ignored\n");
6307 		return;
6308 	}
6309 
6310 	/* parse and populate the table */
6311 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6312 		const char *reason = "";
6313 		struct ata_force_ent te = { .port = -1, .device = -1 };
6314 
6315 		next = cur;
6316 		if (ata_parse_force_one(&next, &te, &reason)) {
6317 			printk(KERN_WARNING "ata: failed to parse force "
6318 			       "parameter \"%s\" (%s)\n",
6319 			       cur, reason);
6320 			continue;
6321 		}
6322 
6323 		if (te.port == -1) {
6324 			te.port = last_port;
6325 			te.device = last_device;
6326 		}
6327 
6328 		ata_force_tbl[idx++] = te;
6329 
6330 		last_port = te.port;
6331 		last_device = te.device;
6332 	}
6333 
6334 	ata_force_tbl_size = idx;
6335 }
6336 
6337 static void ata_free_force_param(void)
6338 {
6339 	kfree(ata_force_tbl);
6340 }
6341 #else
6342 static inline void ata_parse_force_param(void) { }
6343 static inline void ata_free_force_param(void) { }
6344 #endif
6345 
6346 static int __init ata_init(void)
6347 {
6348 	int rc;
6349 
6350 	ata_parse_force_param();
6351 
6352 	rc = ata_sff_init();
6353 	if (rc) {
6354 		ata_free_force_param();
6355 		return rc;
6356 	}
6357 
6358 	libata_transport_init();
6359 	ata_scsi_transport_template = ata_attach_transport();
6360 	if (!ata_scsi_transport_template) {
6361 		ata_sff_exit();
6362 		rc = -ENOMEM;
6363 		goto err_out;
6364 	}
6365 
6366 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6367 	return 0;
6368 
6369 err_out:
6370 	return rc;
6371 }
6372 
6373 static void __exit ata_exit(void)
6374 {
6375 	ata_release_transport(ata_scsi_transport_template);
6376 	libata_transport_exit();
6377 	ata_sff_exit();
6378 	ata_free_force_param();
6379 }
6380 
6381 subsys_initcall(ata_init);
6382 module_exit(ata_exit);
6383 
6384 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6385 
6386 int ata_ratelimit(void)
6387 {
6388 	return __ratelimit(&ratelimit);
6389 }
6390 EXPORT_SYMBOL_GPL(ata_ratelimit);
6391 
6392 /**
6393  *	ata_msleep - ATA EH owner aware msleep
6394  *	@ap: ATA port to attribute the sleep to
6395  *	@msecs: duration to sleep in milliseconds
6396  *
6397  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6398  *	ownership is released before going to sleep and reacquired
6399  *	after the sleep is complete.  IOW, other ports sharing the
6400  *	@ap->host will be allowed to own the EH while this task is
6401  *	sleeping.
6402  *
6403  *	LOCKING:
6404  *	Might sleep.
6405  */
6406 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6407 {
6408 	bool owns_eh = ap && ap->host->eh_owner == current;
6409 
6410 	if (owns_eh)
6411 		ata_eh_release(ap);
6412 
6413 	if (msecs < 20) {
6414 		unsigned long usecs = msecs * USEC_PER_MSEC;
6415 		usleep_range(usecs, usecs + 50);
6416 	} else {
6417 		msleep(msecs);
6418 	}
6419 
6420 	if (owns_eh)
6421 		ata_eh_acquire(ap);
6422 }
6423 EXPORT_SYMBOL_GPL(ata_msleep);
6424 
6425 /**
6426  *	ata_wait_register - wait until register value changes
6427  *	@ap: ATA port to wait register for, can be NULL
6428  *	@reg: IO-mapped register
6429  *	@mask: Mask to apply to read register value
6430  *	@val: Wait condition
6431  *	@interval: polling interval in milliseconds
6432  *	@timeout: timeout in milliseconds
6433  *
6434  *	Waiting for some bits of register to change is a common
6435  *	operation for ATA controllers.  This function reads 32bit LE
6436  *	IO-mapped register @reg and tests for the following condition.
6437  *
6438  *	(*@reg & mask) != val
6439  *
6440  *	If the condition is met, it returns; otherwise, the process is
6441  *	repeated after @interval_msec until timeout.
6442  *
6443  *	LOCKING:
6444  *	Kernel thread context (may sleep)
6445  *
6446  *	RETURNS:
6447  *	The final register value.
6448  */
6449 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6450 		      unsigned long interval, unsigned long timeout)
6451 {
6452 	unsigned long deadline;
6453 	u32 tmp;
6454 
6455 	tmp = ioread32(reg);
6456 
6457 	/* Calculate timeout _after_ the first read to make sure
6458 	 * preceding writes reach the controller before starting to
6459 	 * eat away the timeout.
6460 	 */
6461 	deadline = ata_deadline(jiffies, timeout);
6462 
6463 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6464 		ata_msleep(ap, interval);
6465 		tmp = ioread32(reg);
6466 	}
6467 
6468 	return tmp;
6469 }
6470 EXPORT_SYMBOL_GPL(ata_wait_register);
6471 
6472 /*
6473  * Dummy port_ops
6474  */
6475 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6476 {
6477 	return AC_ERR_SYSTEM;
6478 }
6479 
6480 static void ata_dummy_error_handler(struct ata_port *ap)
6481 {
6482 	/* truly dummy */
6483 }
6484 
6485 struct ata_port_operations ata_dummy_port_ops = {
6486 	.qc_prep		= ata_noop_qc_prep,
6487 	.qc_issue		= ata_dummy_qc_issue,
6488 	.error_handler		= ata_dummy_error_handler,
6489 	.sched_eh		= ata_std_sched_eh,
6490 	.end_eh			= ata_std_end_eh,
6491 };
6492 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6493 
6494 const struct ata_port_info ata_dummy_port_info = {
6495 	.port_ops		= &ata_dummy_port_ops,
6496 };
6497 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6498 
6499 void ata_print_version(const struct device *dev, const char *version)
6500 {
6501 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6502 }
6503 EXPORT_SYMBOL(ata_print_version);
6504 
6505 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6506 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6507 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6508 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6509 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6510