1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 70 #include "libata.h" 71 72 73 /* debounce timing parameters in msecs { interval, duration, timeout } */ 74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 77 78 const struct ata_port_operations ata_base_port_ops = { 79 .prereset = ata_std_prereset, 80 .postreset = ata_std_postreset, 81 .error_handler = ata_std_error_handler, 82 }; 83 84 const struct ata_port_operations sata_port_ops = { 85 .inherits = &ata_base_port_ops, 86 87 .qc_defer = ata_std_qc_defer, 88 .hardreset = sata_std_hardreset, 89 }; 90 91 static unsigned int ata_dev_init_params(struct ata_device *dev, 92 u16 heads, u16 sectors); 93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 94 static unsigned int ata_dev_set_feature(struct ata_device *dev, 95 u8 enable, u8 feature); 96 static void ata_dev_xfermask(struct ata_device *dev); 97 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 98 99 unsigned int ata_print_id = 1; 100 101 struct ata_force_param { 102 const char *name; 103 unsigned int cbl; 104 int spd_limit; 105 unsigned long xfer_mask; 106 unsigned int horkage_on; 107 unsigned int horkage_off; 108 unsigned int lflags; 109 }; 110 111 struct ata_force_ent { 112 int port; 113 int device; 114 struct ata_force_param param; 115 }; 116 117 static struct ata_force_ent *ata_force_tbl; 118 static int ata_force_tbl_size; 119 120 static char ata_force_param_buf[PAGE_SIZE] __initdata; 121 /* param_buf is thrown away after initialization, disallow read */ 122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 124 125 static int atapi_enabled = 1; 126 module_param(atapi_enabled, int, 0444); 127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 128 129 static int atapi_dmadir = 0; 130 module_param(atapi_dmadir, int, 0444); 131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 132 133 int atapi_passthru16 = 1; 134 module_param(atapi_passthru16, int, 0444); 135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 136 137 int libata_fua = 0; 138 module_param_named(fua, libata_fua, int, 0444); 139 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 140 141 static int ata_ignore_hpa; 142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 144 145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 146 module_param_named(dma, libata_dma_mask, int, 0444); 147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 148 149 static int ata_probe_timeout; 150 module_param(ata_probe_timeout, int, 0444); 151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 152 153 int libata_noacpi = 0; 154 module_param_named(noacpi, libata_noacpi, int, 0444); 155 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 156 157 int libata_allow_tpm = 0; 158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 160 161 static int atapi_an; 162 module_param(atapi_an, int, 0444); 163 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 164 165 MODULE_AUTHOR("Jeff Garzik"); 166 MODULE_DESCRIPTION("Library module for ATA devices"); 167 MODULE_LICENSE("GPL"); 168 MODULE_VERSION(DRV_VERSION); 169 170 171 static bool ata_sstatus_online(u32 sstatus) 172 { 173 return (sstatus & 0xf) == 0x3; 174 } 175 176 /** 177 * ata_link_next - link iteration helper 178 * @link: the previous link, NULL to start 179 * @ap: ATA port containing links to iterate 180 * @mode: iteration mode, one of ATA_LITER_* 181 * 182 * LOCKING: 183 * Host lock or EH context. 184 * 185 * RETURNS: 186 * Pointer to the next link. 187 */ 188 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 189 enum ata_link_iter_mode mode) 190 { 191 BUG_ON(mode != ATA_LITER_EDGE && 192 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 193 194 /* NULL link indicates start of iteration */ 195 if (!link) 196 switch (mode) { 197 case ATA_LITER_EDGE: 198 case ATA_LITER_PMP_FIRST: 199 if (sata_pmp_attached(ap)) 200 return ap->pmp_link; 201 /* fall through */ 202 case ATA_LITER_HOST_FIRST: 203 return &ap->link; 204 } 205 206 /* we just iterated over the host link, what's next? */ 207 if (link == &ap->link) 208 switch (mode) { 209 case ATA_LITER_HOST_FIRST: 210 if (sata_pmp_attached(ap)) 211 return ap->pmp_link; 212 /* fall through */ 213 case ATA_LITER_PMP_FIRST: 214 if (unlikely(ap->slave_link)) 215 return ap->slave_link; 216 /* fall through */ 217 case ATA_LITER_EDGE: 218 return NULL; 219 } 220 221 /* slave_link excludes PMP */ 222 if (unlikely(link == ap->slave_link)) 223 return NULL; 224 225 /* we were over a PMP link */ 226 if (++link < ap->pmp_link + ap->nr_pmp_links) 227 return link; 228 229 if (mode == ATA_LITER_PMP_FIRST) 230 return &ap->link; 231 232 return NULL; 233 } 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 /** 314 * ata_force_cbl - force cable type according to libata.force 315 * @ap: ATA port of interest 316 * 317 * Force cable type according to libata.force and whine about it. 318 * The last entry which has matching port number is used, so it 319 * can be specified as part of device force parameters. For 320 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 321 * same effect. 322 * 323 * LOCKING: 324 * EH context. 325 */ 326 void ata_force_cbl(struct ata_port *ap) 327 { 328 int i; 329 330 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 331 const struct ata_force_ent *fe = &ata_force_tbl[i]; 332 333 if (fe->port != -1 && fe->port != ap->print_id) 334 continue; 335 336 if (fe->param.cbl == ATA_CBL_NONE) 337 continue; 338 339 ap->cbl = fe->param.cbl; 340 ata_port_printk(ap, KERN_NOTICE, 341 "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_printk(link, KERN_NOTICE, 384 "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_printk(link, KERN_NOTICE, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_printk(dev, KERN_NOTICE, 448 "FORCE: xfer_mask set to %s\n", fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_printk(dev, KERN_NOTICE, 492 "FORCE: horkage modified (%s)\n", fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = 0; 573 fis[17] = 0; 574 fis[18] = 0; 575 fis[19] = 0; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_printk(dev, KERN_WARNING, "device reported " 717 "invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = 1 << 6; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 static const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1034 { 1035 struct ata_link *link = dev->link; 1036 struct ata_port *ap = link->ap; 1037 u32 scontrol; 1038 unsigned int err_mask; 1039 int rc; 1040 1041 /* 1042 * disallow DIPM for drivers which haven't set 1043 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1044 * phy ready will be set in the interrupt status on 1045 * state changes, which will cause some drivers to 1046 * think there are errors - additionally drivers will 1047 * need to disable hot plug. 1048 */ 1049 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1050 ap->pm_policy = NOT_AVAILABLE; 1051 return -EINVAL; 1052 } 1053 1054 /* 1055 * For DIPM, we will only enable it for the 1056 * min_power setting. 1057 * 1058 * Why? Because Disks are too stupid to know that 1059 * If the host rejects a request to go to SLUMBER 1060 * they should retry at PARTIAL, and instead it 1061 * just would give up. So, for medium_power to 1062 * work at all, we need to only allow HIPM. 1063 */ 1064 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1065 if (rc) 1066 return rc; 1067 1068 switch (policy) { 1069 case MIN_POWER: 1070 /* no restrictions on IPM transitions */ 1071 scontrol &= ~(0x3 << 8); 1072 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1073 if (rc) 1074 return rc; 1075 1076 /* enable DIPM */ 1077 if (dev->flags & ATA_DFLAG_DIPM) 1078 err_mask = ata_dev_set_feature(dev, 1079 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1080 break; 1081 case MEDIUM_POWER: 1082 /* allow IPM to PARTIAL */ 1083 scontrol &= ~(0x1 << 8); 1084 scontrol |= (0x2 << 8); 1085 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1086 if (rc) 1087 return rc; 1088 1089 /* 1090 * we don't have to disable DIPM since IPM flags 1091 * disallow transitions to SLUMBER, which effectively 1092 * disable DIPM if it does not support PARTIAL 1093 */ 1094 break; 1095 case NOT_AVAILABLE: 1096 case MAX_PERFORMANCE: 1097 /* disable all IPM transitions */ 1098 scontrol |= (0x3 << 8); 1099 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1100 if (rc) 1101 return rc; 1102 1103 /* 1104 * we don't have to disable DIPM since IPM flags 1105 * disallow all transitions which effectively 1106 * disable DIPM anyway. 1107 */ 1108 break; 1109 } 1110 1111 /* FIXME: handle SET FEATURES failure */ 1112 (void) err_mask; 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * ata_dev_enable_pm - enable SATA interface power management 1119 * @dev: device to enable power management 1120 * @policy: the link power management policy 1121 * 1122 * Enable SATA Interface power management. This will enable 1123 * Device Interface Power Management (DIPM) for min_power 1124 * policy, and then call driver specific callbacks for 1125 * enabling Host Initiated Power management. 1126 * 1127 * Locking: Caller. 1128 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1129 */ 1130 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1131 { 1132 int rc = 0; 1133 struct ata_port *ap = dev->link->ap; 1134 1135 /* set HIPM first, then DIPM */ 1136 if (ap->ops->enable_pm) 1137 rc = ap->ops->enable_pm(ap, policy); 1138 if (rc) 1139 goto enable_pm_out; 1140 rc = ata_dev_set_dipm(dev, policy); 1141 1142 enable_pm_out: 1143 if (rc) 1144 ap->pm_policy = MAX_PERFORMANCE; 1145 else 1146 ap->pm_policy = policy; 1147 return /* rc */; /* hopefully we can use 'rc' eventually */ 1148 } 1149 1150 #ifdef CONFIG_PM 1151 /** 1152 * ata_dev_disable_pm - disable SATA interface power management 1153 * @dev: device to disable power management 1154 * 1155 * Disable SATA Interface power management. This will disable 1156 * Device Interface Power Management (DIPM) without changing 1157 * policy, call driver specific callbacks for disabling Host 1158 * Initiated Power management. 1159 * 1160 * Locking: Caller. 1161 * Returns: void 1162 */ 1163 static void ata_dev_disable_pm(struct ata_device *dev) 1164 { 1165 struct ata_port *ap = dev->link->ap; 1166 1167 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1168 if (ap->ops->disable_pm) 1169 ap->ops->disable_pm(ap); 1170 } 1171 #endif /* CONFIG_PM */ 1172 1173 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1174 { 1175 ap->pm_policy = policy; 1176 ap->link.eh_info.action |= ATA_EH_LPM; 1177 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1178 ata_port_schedule_eh(ap); 1179 } 1180 1181 #ifdef CONFIG_PM 1182 static void ata_lpm_enable(struct ata_host *host) 1183 { 1184 struct ata_link *link; 1185 struct ata_port *ap; 1186 struct ata_device *dev; 1187 int i; 1188 1189 for (i = 0; i < host->n_ports; i++) { 1190 ap = host->ports[i]; 1191 ata_for_each_link(link, ap, EDGE) { 1192 ata_for_each_dev(dev, link, ALL) 1193 ata_dev_disable_pm(dev); 1194 } 1195 } 1196 } 1197 1198 static void ata_lpm_disable(struct ata_host *host) 1199 { 1200 int i; 1201 1202 for (i = 0; i < host->n_ports; i++) { 1203 struct ata_port *ap = host->ports[i]; 1204 ata_lpm_schedule(ap, ap->pm_policy); 1205 } 1206 } 1207 #endif /* CONFIG_PM */ 1208 1209 /** 1210 * ata_dev_classify - determine device type based on ATA-spec signature 1211 * @tf: ATA taskfile register set for device to be identified 1212 * 1213 * Determine from taskfile register contents whether a device is 1214 * ATA or ATAPI, as per "Signature and persistence" section 1215 * of ATA/PI spec (volume 1, sect 5.14). 1216 * 1217 * LOCKING: 1218 * None. 1219 * 1220 * RETURNS: 1221 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1222 * %ATA_DEV_UNKNOWN the event of failure. 1223 */ 1224 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1225 { 1226 /* Apple's open source Darwin code hints that some devices only 1227 * put a proper signature into the LBA mid/high registers, 1228 * So, we only check those. It's sufficient for uniqueness. 1229 * 1230 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1231 * signatures for ATA and ATAPI devices attached on SerialATA, 1232 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1233 * spec has never mentioned about using different signatures 1234 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1235 * Multiplier specification began to use 0x69/0x96 to identify 1236 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1237 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1238 * 0x69/0x96 shortly and described them as reserved for 1239 * SerialATA. 1240 * 1241 * We follow the current spec and consider that 0x69/0x96 1242 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1243 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1244 * SEMB signature. This is worked around in 1245 * ata_dev_read_id(). 1246 */ 1247 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1248 DPRINTK("found ATA device by sig\n"); 1249 return ATA_DEV_ATA; 1250 } 1251 1252 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1253 DPRINTK("found ATAPI device by sig\n"); 1254 return ATA_DEV_ATAPI; 1255 } 1256 1257 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1258 DPRINTK("found PMP device by sig\n"); 1259 return ATA_DEV_PMP; 1260 } 1261 1262 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1263 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1264 return ATA_DEV_SEMB; 1265 } 1266 1267 DPRINTK("unknown device\n"); 1268 return ATA_DEV_UNKNOWN; 1269 } 1270 1271 /** 1272 * ata_id_string - Convert IDENTIFY DEVICE page into string 1273 * @id: IDENTIFY DEVICE results we will examine 1274 * @s: string into which data is output 1275 * @ofs: offset into identify device page 1276 * @len: length of string to return. must be an even number. 1277 * 1278 * The strings in the IDENTIFY DEVICE page are broken up into 1279 * 16-bit chunks. Run through the string, and output each 1280 * 8-bit chunk linearly, regardless of platform. 1281 * 1282 * LOCKING: 1283 * caller. 1284 */ 1285 1286 void ata_id_string(const u16 *id, unsigned char *s, 1287 unsigned int ofs, unsigned int len) 1288 { 1289 unsigned int c; 1290 1291 BUG_ON(len & 1); 1292 1293 while (len > 0) { 1294 c = id[ofs] >> 8; 1295 *s = c; 1296 s++; 1297 1298 c = id[ofs] & 0xff; 1299 *s = c; 1300 s++; 1301 1302 ofs++; 1303 len -= 2; 1304 } 1305 } 1306 1307 /** 1308 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1309 * @id: IDENTIFY DEVICE results we will examine 1310 * @s: string into which data is output 1311 * @ofs: offset into identify device page 1312 * @len: length of string to return. must be an odd number. 1313 * 1314 * This function is identical to ata_id_string except that it 1315 * trims trailing spaces and terminates the resulting string with 1316 * null. @len must be actual maximum length (even number) + 1. 1317 * 1318 * LOCKING: 1319 * caller. 1320 */ 1321 void ata_id_c_string(const u16 *id, unsigned char *s, 1322 unsigned int ofs, unsigned int len) 1323 { 1324 unsigned char *p; 1325 1326 ata_id_string(id, s, ofs, len - 1); 1327 1328 p = s + strnlen(s, len - 1); 1329 while (p > s && p[-1] == ' ') 1330 p--; 1331 *p = '\0'; 1332 } 1333 1334 static u64 ata_id_n_sectors(const u16 *id) 1335 { 1336 if (ata_id_has_lba(id)) { 1337 if (ata_id_has_lba48(id)) 1338 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1339 else 1340 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1341 } else { 1342 if (ata_id_current_chs_valid(id)) 1343 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1344 id[ATA_ID_CUR_SECTORS]; 1345 else 1346 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1347 id[ATA_ID_SECTORS]; 1348 } 1349 } 1350 1351 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1352 { 1353 u64 sectors = 0; 1354 1355 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1356 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1357 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1358 sectors |= (tf->lbah & 0xff) << 16; 1359 sectors |= (tf->lbam & 0xff) << 8; 1360 sectors |= (tf->lbal & 0xff); 1361 1362 return sectors; 1363 } 1364 1365 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1366 { 1367 u64 sectors = 0; 1368 1369 sectors |= (tf->device & 0x0f) << 24; 1370 sectors |= (tf->lbah & 0xff) << 16; 1371 sectors |= (tf->lbam & 0xff) << 8; 1372 sectors |= (tf->lbal & 0xff); 1373 1374 return sectors; 1375 } 1376 1377 /** 1378 * ata_read_native_max_address - Read native max address 1379 * @dev: target device 1380 * @max_sectors: out parameter for the result native max address 1381 * 1382 * Perform an LBA48 or LBA28 native size query upon the device in 1383 * question. 1384 * 1385 * RETURNS: 1386 * 0 on success, -EACCES if command is aborted by the drive. 1387 * -EIO on other errors. 1388 */ 1389 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1390 { 1391 unsigned int err_mask; 1392 struct ata_taskfile tf; 1393 int lba48 = ata_id_has_lba48(dev->id); 1394 1395 ata_tf_init(dev, &tf); 1396 1397 /* always clear all address registers */ 1398 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1399 1400 if (lba48) { 1401 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1402 tf.flags |= ATA_TFLAG_LBA48; 1403 } else 1404 tf.command = ATA_CMD_READ_NATIVE_MAX; 1405 1406 tf.protocol |= ATA_PROT_NODATA; 1407 tf.device |= ATA_LBA; 1408 1409 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1410 if (err_mask) { 1411 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1412 "max address (err_mask=0x%x)\n", err_mask); 1413 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1414 return -EACCES; 1415 return -EIO; 1416 } 1417 1418 if (lba48) 1419 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1420 else 1421 *max_sectors = ata_tf_to_lba(&tf) + 1; 1422 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1423 (*max_sectors)--; 1424 return 0; 1425 } 1426 1427 /** 1428 * ata_set_max_sectors - Set max sectors 1429 * @dev: target device 1430 * @new_sectors: new max sectors value to set for the device 1431 * 1432 * Set max sectors of @dev to @new_sectors. 1433 * 1434 * RETURNS: 1435 * 0 on success, -EACCES if command is aborted or denied (due to 1436 * previous non-volatile SET_MAX) by the drive. -EIO on other 1437 * errors. 1438 */ 1439 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1440 { 1441 unsigned int err_mask; 1442 struct ata_taskfile tf; 1443 int lba48 = ata_id_has_lba48(dev->id); 1444 1445 new_sectors--; 1446 1447 ata_tf_init(dev, &tf); 1448 1449 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1450 1451 if (lba48) { 1452 tf.command = ATA_CMD_SET_MAX_EXT; 1453 tf.flags |= ATA_TFLAG_LBA48; 1454 1455 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1456 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1457 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1458 } else { 1459 tf.command = ATA_CMD_SET_MAX; 1460 1461 tf.device |= (new_sectors >> 24) & 0xf; 1462 } 1463 1464 tf.protocol |= ATA_PROT_NODATA; 1465 tf.device |= ATA_LBA; 1466 1467 tf.lbal = (new_sectors >> 0) & 0xff; 1468 tf.lbam = (new_sectors >> 8) & 0xff; 1469 tf.lbah = (new_sectors >> 16) & 0xff; 1470 1471 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1472 if (err_mask) { 1473 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1474 "max address (err_mask=0x%x)\n", err_mask); 1475 if (err_mask == AC_ERR_DEV && 1476 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1477 return -EACCES; 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * ata_hpa_resize - Resize a device with an HPA set 1486 * @dev: Device to resize 1487 * 1488 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1489 * it if required to the full size of the media. The caller must check 1490 * the drive has the HPA feature set enabled. 1491 * 1492 * RETURNS: 1493 * 0 on success, -errno on failure. 1494 */ 1495 static int ata_hpa_resize(struct ata_device *dev) 1496 { 1497 struct ata_eh_context *ehc = &dev->link->eh_context; 1498 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1499 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1500 u64 sectors = ata_id_n_sectors(dev->id); 1501 u64 native_sectors; 1502 int rc; 1503 1504 /* do we need to do it? */ 1505 if (dev->class != ATA_DEV_ATA || 1506 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1507 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1508 return 0; 1509 1510 /* read native max address */ 1511 rc = ata_read_native_max_address(dev, &native_sectors); 1512 if (rc) { 1513 /* If device aborted the command or HPA isn't going to 1514 * be unlocked, skip HPA resizing. 1515 */ 1516 if (rc == -EACCES || !unlock_hpa) { 1517 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1518 "broken, skipping HPA handling\n"); 1519 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1520 1521 /* we can continue if device aborted the command */ 1522 if (rc == -EACCES) 1523 rc = 0; 1524 } 1525 1526 return rc; 1527 } 1528 dev->n_native_sectors = native_sectors; 1529 1530 /* nothing to do? */ 1531 if (native_sectors <= sectors || !unlock_hpa) { 1532 if (!print_info || native_sectors == sectors) 1533 return 0; 1534 1535 if (native_sectors > sectors) 1536 ata_dev_printk(dev, KERN_INFO, 1537 "HPA detected: current %llu, native %llu\n", 1538 (unsigned long long)sectors, 1539 (unsigned long long)native_sectors); 1540 else if (native_sectors < sectors) 1541 ata_dev_printk(dev, KERN_WARNING, 1542 "native sectors (%llu) is smaller than " 1543 "sectors (%llu)\n", 1544 (unsigned long long)native_sectors, 1545 (unsigned long long)sectors); 1546 return 0; 1547 } 1548 1549 /* let's unlock HPA */ 1550 rc = ata_set_max_sectors(dev, native_sectors); 1551 if (rc == -EACCES) { 1552 /* if device aborted the command, skip HPA resizing */ 1553 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1554 "(%llu -> %llu), skipping HPA handling\n", 1555 (unsigned long long)sectors, 1556 (unsigned long long)native_sectors); 1557 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1558 return 0; 1559 } else if (rc) 1560 return rc; 1561 1562 /* re-read IDENTIFY data */ 1563 rc = ata_dev_reread_id(dev, 0); 1564 if (rc) { 1565 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1566 "data after HPA resizing\n"); 1567 return rc; 1568 } 1569 1570 if (print_info) { 1571 u64 new_sectors = ata_id_n_sectors(dev->id); 1572 ata_dev_printk(dev, KERN_INFO, 1573 "HPA unlocked: %llu -> %llu, native %llu\n", 1574 (unsigned long long)sectors, 1575 (unsigned long long)new_sectors, 1576 (unsigned long long)native_sectors); 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * ata_dump_id - IDENTIFY DEVICE info debugging output 1584 * @id: IDENTIFY DEVICE page to dump 1585 * 1586 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1587 * page. 1588 * 1589 * LOCKING: 1590 * caller. 1591 */ 1592 1593 static inline void ata_dump_id(const u16 *id) 1594 { 1595 DPRINTK("49==0x%04x " 1596 "53==0x%04x " 1597 "63==0x%04x " 1598 "64==0x%04x " 1599 "75==0x%04x \n", 1600 id[49], 1601 id[53], 1602 id[63], 1603 id[64], 1604 id[75]); 1605 DPRINTK("80==0x%04x " 1606 "81==0x%04x " 1607 "82==0x%04x " 1608 "83==0x%04x " 1609 "84==0x%04x \n", 1610 id[80], 1611 id[81], 1612 id[82], 1613 id[83], 1614 id[84]); 1615 DPRINTK("88==0x%04x " 1616 "93==0x%04x\n", 1617 id[88], 1618 id[93]); 1619 } 1620 1621 /** 1622 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1623 * @id: IDENTIFY data to compute xfer mask from 1624 * 1625 * Compute the xfermask for this device. This is not as trivial 1626 * as it seems if we must consider early devices correctly. 1627 * 1628 * FIXME: pre IDE drive timing (do we care ?). 1629 * 1630 * LOCKING: 1631 * None. 1632 * 1633 * RETURNS: 1634 * Computed xfermask 1635 */ 1636 unsigned long ata_id_xfermask(const u16 *id) 1637 { 1638 unsigned long pio_mask, mwdma_mask, udma_mask; 1639 1640 /* Usual case. Word 53 indicates word 64 is valid */ 1641 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1642 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1643 pio_mask <<= 3; 1644 pio_mask |= 0x7; 1645 } else { 1646 /* If word 64 isn't valid then Word 51 high byte holds 1647 * the PIO timing number for the maximum. Turn it into 1648 * a mask. 1649 */ 1650 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1651 if (mode < 5) /* Valid PIO range */ 1652 pio_mask = (2 << mode) - 1; 1653 else 1654 pio_mask = 1; 1655 1656 /* But wait.. there's more. Design your standards by 1657 * committee and you too can get a free iordy field to 1658 * process. However its the speeds not the modes that 1659 * are supported... Note drivers using the timing API 1660 * will get this right anyway 1661 */ 1662 } 1663 1664 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1665 1666 if (ata_id_is_cfa(id)) { 1667 /* 1668 * Process compact flash extended modes 1669 */ 1670 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1671 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1672 1673 if (pio) 1674 pio_mask |= (1 << 5); 1675 if (pio > 1) 1676 pio_mask |= (1 << 6); 1677 if (dma) 1678 mwdma_mask |= (1 << 3); 1679 if (dma > 1) 1680 mwdma_mask |= (1 << 4); 1681 } 1682 1683 udma_mask = 0; 1684 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1685 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1686 1687 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1688 } 1689 1690 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1691 { 1692 struct completion *waiting = qc->private_data; 1693 1694 complete(waiting); 1695 } 1696 1697 /** 1698 * ata_exec_internal_sg - execute libata internal command 1699 * @dev: Device to which the command is sent 1700 * @tf: Taskfile registers for the command and the result 1701 * @cdb: CDB for packet command 1702 * @dma_dir: Data tranfer direction of the command 1703 * @sgl: sg list for the data buffer of the command 1704 * @n_elem: Number of sg entries 1705 * @timeout: Timeout in msecs (0 for default) 1706 * 1707 * Executes libata internal command with timeout. @tf contains 1708 * command on entry and result on return. Timeout and error 1709 * conditions are reported via return value. No recovery action 1710 * is taken after a command times out. It's caller's duty to 1711 * clean up after timeout. 1712 * 1713 * LOCKING: 1714 * None. Should be called with kernel context, might sleep. 1715 * 1716 * RETURNS: 1717 * Zero on success, AC_ERR_* mask on failure 1718 */ 1719 unsigned ata_exec_internal_sg(struct ata_device *dev, 1720 struct ata_taskfile *tf, const u8 *cdb, 1721 int dma_dir, struct scatterlist *sgl, 1722 unsigned int n_elem, unsigned long timeout) 1723 { 1724 struct ata_link *link = dev->link; 1725 struct ata_port *ap = link->ap; 1726 u8 command = tf->command; 1727 int auto_timeout = 0; 1728 struct ata_queued_cmd *qc; 1729 unsigned int tag, preempted_tag; 1730 u32 preempted_sactive, preempted_qc_active; 1731 int preempted_nr_active_links; 1732 DECLARE_COMPLETION_ONSTACK(wait); 1733 unsigned long flags; 1734 unsigned int err_mask; 1735 int rc; 1736 1737 spin_lock_irqsave(ap->lock, flags); 1738 1739 /* no internal command while frozen */ 1740 if (ap->pflags & ATA_PFLAG_FROZEN) { 1741 spin_unlock_irqrestore(ap->lock, flags); 1742 return AC_ERR_SYSTEM; 1743 } 1744 1745 /* initialize internal qc */ 1746 1747 /* XXX: Tag 0 is used for drivers with legacy EH as some 1748 * drivers choke if any other tag is given. This breaks 1749 * ata_tag_internal() test for those drivers. Don't use new 1750 * EH stuff without converting to it. 1751 */ 1752 if (ap->ops->error_handler) 1753 tag = ATA_TAG_INTERNAL; 1754 else 1755 tag = 0; 1756 1757 if (test_and_set_bit(tag, &ap->qc_allocated)) 1758 BUG(); 1759 qc = __ata_qc_from_tag(ap, tag); 1760 1761 qc->tag = tag; 1762 qc->scsicmd = NULL; 1763 qc->ap = ap; 1764 qc->dev = dev; 1765 ata_qc_reinit(qc); 1766 1767 preempted_tag = link->active_tag; 1768 preempted_sactive = link->sactive; 1769 preempted_qc_active = ap->qc_active; 1770 preempted_nr_active_links = ap->nr_active_links; 1771 link->active_tag = ATA_TAG_POISON; 1772 link->sactive = 0; 1773 ap->qc_active = 0; 1774 ap->nr_active_links = 0; 1775 1776 /* prepare & issue qc */ 1777 qc->tf = *tf; 1778 if (cdb) 1779 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1780 qc->flags |= ATA_QCFLAG_RESULT_TF; 1781 qc->dma_dir = dma_dir; 1782 if (dma_dir != DMA_NONE) { 1783 unsigned int i, buflen = 0; 1784 struct scatterlist *sg; 1785 1786 for_each_sg(sgl, sg, n_elem, i) 1787 buflen += sg->length; 1788 1789 ata_sg_init(qc, sgl, n_elem); 1790 qc->nbytes = buflen; 1791 } 1792 1793 qc->private_data = &wait; 1794 qc->complete_fn = ata_qc_complete_internal; 1795 1796 ata_qc_issue(qc); 1797 1798 spin_unlock_irqrestore(ap->lock, flags); 1799 1800 if (!timeout) { 1801 if (ata_probe_timeout) 1802 timeout = ata_probe_timeout * 1000; 1803 else { 1804 timeout = ata_internal_cmd_timeout(dev, command); 1805 auto_timeout = 1; 1806 } 1807 } 1808 1809 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1810 1811 ata_sff_flush_pio_task(ap); 1812 1813 if (!rc) { 1814 spin_lock_irqsave(ap->lock, flags); 1815 1816 /* We're racing with irq here. If we lose, the 1817 * following test prevents us from completing the qc 1818 * twice. If we win, the port is frozen and will be 1819 * cleaned up by ->post_internal_cmd(). 1820 */ 1821 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1822 qc->err_mask |= AC_ERR_TIMEOUT; 1823 1824 if (ap->ops->error_handler) 1825 ata_port_freeze(ap); 1826 else 1827 ata_qc_complete(qc); 1828 1829 if (ata_msg_warn(ap)) 1830 ata_dev_printk(dev, KERN_WARNING, 1831 "qc timeout (cmd 0x%x)\n", command); 1832 } 1833 1834 spin_unlock_irqrestore(ap->lock, flags); 1835 } 1836 1837 /* do post_internal_cmd */ 1838 if (ap->ops->post_internal_cmd) 1839 ap->ops->post_internal_cmd(qc); 1840 1841 /* perform minimal error analysis */ 1842 if (qc->flags & ATA_QCFLAG_FAILED) { 1843 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1844 qc->err_mask |= AC_ERR_DEV; 1845 1846 if (!qc->err_mask) 1847 qc->err_mask |= AC_ERR_OTHER; 1848 1849 if (qc->err_mask & ~AC_ERR_OTHER) 1850 qc->err_mask &= ~AC_ERR_OTHER; 1851 } 1852 1853 /* finish up */ 1854 spin_lock_irqsave(ap->lock, flags); 1855 1856 *tf = qc->result_tf; 1857 err_mask = qc->err_mask; 1858 1859 ata_qc_free(qc); 1860 link->active_tag = preempted_tag; 1861 link->sactive = preempted_sactive; 1862 ap->qc_active = preempted_qc_active; 1863 ap->nr_active_links = preempted_nr_active_links; 1864 1865 spin_unlock_irqrestore(ap->lock, flags); 1866 1867 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1868 ata_internal_cmd_timed_out(dev, command); 1869 1870 return err_mask; 1871 } 1872 1873 /** 1874 * ata_exec_internal - execute libata internal command 1875 * @dev: Device to which the command is sent 1876 * @tf: Taskfile registers for the command and the result 1877 * @cdb: CDB for packet command 1878 * @dma_dir: Data tranfer direction of the command 1879 * @buf: Data buffer of the command 1880 * @buflen: Length of data buffer 1881 * @timeout: Timeout in msecs (0 for default) 1882 * 1883 * Wrapper around ata_exec_internal_sg() which takes simple 1884 * buffer instead of sg list. 1885 * 1886 * LOCKING: 1887 * None. Should be called with kernel context, might sleep. 1888 * 1889 * RETURNS: 1890 * Zero on success, AC_ERR_* mask on failure 1891 */ 1892 unsigned ata_exec_internal(struct ata_device *dev, 1893 struct ata_taskfile *tf, const u8 *cdb, 1894 int dma_dir, void *buf, unsigned int buflen, 1895 unsigned long timeout) 1896 { 1897 struct scatterlist *psg = NULL, sg; 1898 unsigned int n_elem = 0; 1899 1900 if (dma_dir != DMA_NONE) { 1901 WARN_ON(!buf); 1902 sg_init_one(&sg, buf, buflen); 1903 psg = &sg; 1904 n_elem++; 1905 } 1906 1907 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1908 timeout); 1909 } 1910 1911 /** 1912 * ata_do_simple_cmd - execute simple internal command 1913 * @dev: Device to which the command is sent 1914 * @cmd: Opcode to execute 1915 * 1916 * Execute a 'simple' command, that only consists of the opcode 1917 * 'cmd' itself, without filling any other registers 1918 * 1919 * LOCKING: 1920 * Kernel thread context (may sleep). 1921 * 1922 * RETURNS: 1923 * Zero on success, AC_ERR_* mask on failure 1924 */ 1925 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1926 { 1927 struct ata_taskfile tf; 1928 1929 ata_tf_init(dev, &tf); 1930 1931 tf.command = cmd; 1932 tf.flags |= ATA_TFLAG_DEVICE; 1933 tf.protocol = ATA_PROT_NODATA; 1934 1935 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1936 } 1937 1938 /** 1939 * ata_pio_need_iordy - check if iordy needed 1940 * @adev: ATA device 1941 * 1942 * Check if the current speed of the device requires IORDY. Used 1943 * by various controllers for chip configuration. 1944 */ 1945 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1946 { 1947 /* Don't set IORDY if we're preparing for reset. IORDY may 1948 * lead to controller lock up on certain controllers if the 1949 * port is not occupied. See bko#11703 for details. 1950 */ 1951 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1952 return 0; 1953 /* Controller doesn't support IORDY. Probably a pointless 1954 * check as the caller should know this. 1955 */ 1956 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1957 return 0; 1958 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1959 if (ata_id_is_cfa(adev->id) 1960 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1961 return 0; 1962 /* PIO3 and higher it is mandatory */ 1963 if (adev->pio_mode > XFER_PIO_2) 1964 return 1; 1965 /* We turn it on when possible */ 1966 if (ata_id_has_iordy(adev->id)) 1967 return 1; 1968 return 0; 1969 } 1970 1971 /** 1972 * ata_pio_mask_no_iordy - Return the non IORDY mask 1973 * @adev: ATA device 1974 * 1975 * Compute the highest mode possible if we are not using iordy. Return 1976 * -1 if no iordy mode is available. 1977 */ 1978 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1979 { 1980 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1981 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1982 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1983 /* Is the speed faster than the drive allows non IORDY ? */ 1984 if (pio) { 1985 /* This is cycle times not frequency - watch the logic! */ 1986 if (pio > 240) /* PIO2 is 240nS per cycle */ 1987 return 3 << ATA_SHIFT_PIO; 1988 return 7 << ATA_SHIFT_PIO; 1989 } 1990 } 1991 return 3 << ATA_SHIFT_PIO; 1992 } 1993 1994 /** 1995 * ata_do_dev_read_id - default ID read method 1996 * @dev: device 1997 * @tf: proposed taskfile 1998 * @id: data buffer 1999 * 2000 * Issue the identify taskfile and hand back the buffer containing 2001 * identify data. For some RAID controllers and for pre ATA devices 2002 * this function is wrapped or replaced by the driver 2003 */ 2004 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2005 struct ata_taskfile *tf, u16 *id) 2006 { 2007 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2008 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2009 } 2010 2011 /** 2012 * ata_dev_read_id - Read ID data from the specified device 2013 * @dev: target device 2014 * @p_class: pointer to class of the target device (may be changed) 2015 * @flags: ATA_READID_* flags 2016 * @id: buffer to read IDENTIFY data into 2017 * 2018 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2019 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2020 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2021 * for pre-ATA4 drives. 2022 * 2023 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2024 * now we abort if we hit that case. 2025 * 2026 * LOCKING: 2027 * Kernel thread context (may sleep) 2028 * 2029 * RETURNS: 2030 * 0 on success, -errno otherwise. 2031 */ 2032 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2033 unsigned int flags, u16 *id) 2034 { 2035 struct ata_port *ap = dev->link->ap; 2036 unsigned int class = *p_class; 2037 struct ata_taskfile tf; 2038 unsigned int err_mask = 0; 2039 const char *reason; 2040 bool is_semb = class == ATA_DEV_SEMB; 2041 int may_fallback = 1, tried_spinup = 0; 2042 int rc; 2043 2044 if (ata_msg_ctl(ap)) 2045 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2046 2047 retry: 2048 ata_tf_init(dev, &tf); 2049 2050 switch (class) { 2051 case ATA_DEV_SEMB: 2052 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2053 case ATA_DEV_ATA: 2054 tf.command = ATA_CMD_ID_ATA; 2055 break; 2056 case ATA_DEV_ATAPI: 2057 tf.command = ATA_CMD_ID_ATAPI; 2058 break; 2059 default: 2060 rc = -ENODEV; 2061 reason = "unsupported class"; 2062 goto err_out; 2063 } 2064 2065 tf.protocol = ATA_PROT_PIO; 2066 2067 /* Some devices choke if TF registers contain garbage. Make 2068 * sure those are properly initialized. 2069 */ 2070 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2071 2072 /* Device presence detection is unreliable on some 2073 * controllers. Always poll IDENTIFY if available. 2074 */ 2075 tf.flags |= ATA_TFLAG_POLLING; 2076 2077 if (ap->ops->read_id) 2078 err_mask = ap->ops->read_id(dev, &tf, id); 2079 else 2080 err_mask = ata_do_dev_read_id(dev, &tf, id); 2081 2082 if (err_mask) { 2083 if (err_mask & AC_ERR_NODEV_HINT) { 2084 ata_dev_printk(dev, KERN_DEBUG, 2085 "NODEV after polling detection\n"); 2086 return -ENOENT; 2087 } 2088 2089 if (is_semb) { 2090 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2091 "device w/ SEMB sig, disabled\n"); 2092 /* SEMB is not supported yet */ 2093 *p_class = ATA_DEV_SEMB_UNSUP; 2094 return 0; 2095 } 2096 2097 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2098 /* Device or controller might have reported 2099 * the wrong device class. Give a shot at the 2100 * other IDENTIFY if the current one is 2101 * aborted by the device. 2102 */ 2103 if (may_fallback) { 2104 may_fallback = 0; 2105 2106 if (class == ATA_DEV_ATA) 2107 class = ATA_DEV_ATAPI; 2108 else 2109 class = ATA_DEV_ATA; 2110 goto retry; 2111 } 2112 2113 /* Control reaches here iff the device aborted 2114 * both flavors of IDENTIFYs which happens 2115 * sometimes with phantom devices. 2116 */ 2117 ata_dev_printk(dev, KERN_DEBUG, 2118 "both IDENTIFYs aborted, assuming NODEV\n"); 2119 return -ENOENT; 2120 } 2121 2122 rc = -EIO; 2123 reason = "I/O error"; 2124 goto err_out; 2125 } 2126 2127 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 2128 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, " 2129 "class=%d may_fallback=%d tried_spinup=%d\n", 2130 class, may_fallback, tried_spinup); 2131 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 2132 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 2133 } 2134 2135 /* Falling back doesn't make sense if ID data was read 2136 * successfully at least once. 2137 */ 2138 may_fallback = 0; 2139 2140 swap_buf_le16(id, ATA_ID_WORDS); 2141 2142 /* sanity check */ 2143 rc = -EINVAL; 2144 reason = "device reports invalid type"; 2145 2146 if (class == ATA_DEV_ATA) { 2147 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2148 goto err_out; 2149 } else { 2150 if (ata_id_is_ata(id)) 2151 goto err_out; 2152 } 2153 2154 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2155 tried_spinup = 1; 2156 /* 2157 * Drive powered-up in standby mode, and requires a specific 2158 * SET_FEATURES spin-up subcommand before it will accept 2159 * anything other than the original IDENTIFY command. 2160 */ 2161 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2162 if (err_mask && id[2] != 0x738c) { 2163 rc = -EIO; 2164 reason = "SPINUP failed"; 2165 goto err_out; 2166 } 2167 /* 2168 * If the drive initially returned incomplete IDENTIFY info, 2169 * we now must reissue the IDENTIFY command. 2170 */ 2171 if (id[2] == 0x37c8) 2172 goto retry; 2173 } 2174 2175 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2176 /* 2177 * The exact sequence expected by certain pre-ATA4 drives is: 2178 * SRST RESET 2179 * IDENTIFY (optional in early ATA) 2180 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2181 * anything else.. 2182 * Some drives were very specific about that exact sequence. 2183 * 2184 * Note that ATA4 says lba is mandatory so the second check 2185 * should never trigger. 2186 */ 2187 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2188 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2189 if (err_mask) { 2190 rc = -EIO; 2191 reason = "INIT_DEV_PARAMS failed"; 2192 goto err_out; 2193 } 2194 2195 /* current CHS translation info (id[53-58]) might be 2196 * changed. reread the identify device info. 2197 */ 2198 flags &= ~ATA_READID_POSTRESET; 2199 goto retry; 2200 } 2201 } 2202 2203 *p_class = class; 2204 2205 return 0; 2206 2207 err_out: 2208 if (ata_msg_warn(ap)) 2209 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2210 "(%s, err_mask=0x%x)\n", reason, err_mask); 2211 return rc; 2212 } 2213 2214 static int ata_do_link_spd_horkage(struct ata_device *dev) 2215 { 2216 struct ata_link *plink = ata_dev_phys_link(dev); 2217 u32 target, target_limit; 2218 2219 if (!sata_scr_valid(plink)) 2220 return 0; 2221 2222 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2223 target = 1; 2224 else 2225 return 0; 2226 2227 target_limit = (1 << target) - 1; 2228 2229 /* if already on stricter limit, no need to push further */ 2230 if (plink->sata_spd_limit <= target_limit) 2231 return 0; 2232 2233 plink->sata_spd_limit = target_limit; 2234 2235 /* Request another EH round by returning -EAGAIN if link is 2236 * going faster than the target speed. Forward progress is 2237 * guaranteed by setting sata_spd_limit to target_limit above. 2238 */ 2239 if (plink->sata_spd > target) { 2240 ata_dev_printk(dev, KERN_INFO, 2241 "applying link speed limit horkage to %s\n", 2242 sata_spd_string(target)); 2243 return -EAGAIN; 2244 } 2245 return 0; 2246 } 2247 2248 static inline u8 ata_dev_knobble(struct ata_device *dev) 2249 { 2250 struct ata_port *ap = dev->link->ap; 2251 2252 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2253 return 0; 2254 2255 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2256 } 2257 2258 static int ata_dev_config_ncq(struct ata_device *dev, 2259 char *desc, size_t desc_sz) 2260 { 2261 struct ata_port *ap = dev->link->ap; 2262 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2263 unsigned int err_mask; 2264 char *aa_desc = ""; 2265 2266 if (!ata_id_has_ncq(dev->id)) { 2267 desc[0] = '\0'; 2268 return 0; 2269 } 2270 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2271 snprintf(desc, desc_sz, "NCQ (not used)"); 2272 return 0; 2273 } 2274 if (ap->flags & ATA_FLAG_NCQ) { 2275 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2276 dev->flags |= ATA_DFLAG_NCQ; 2277 } 2278 2279 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2280 (ap->flags & ATA_FLAG_FPDMA_AA) && 2281 ata_id_has_fpdma_aa(dev->id)) { 2282 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2283 SATA_FPDMA_AA); 2284 if (err_mask) { 2285 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2286 "(error_mask=0x%x)\n", err_mask); 2287 if (err_mask != AC_ERR_DEV) { 2288 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2289 return -EIO; 2290 } 2291 } else 2292 aa_desc = ", AA"; 2293 } 2294 2295 if (hdepth >= ddepth) 2296 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2297 else 2298 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2299 ddepth, aa_desc); 2300 return 0; 2301 } 2302 2303 /** 2304 * ata_dev_configure - Configure the specified ATA/ATAPI device 2305 * @dev: Target device to configure 2306 * 2307 * Configure @dev according to @dev->id. Generic and low-level 2308 * driver specific fixups are also applied. 2309 * 2310 * LOCKING: 2311 * Kernel thread context (may sleep) 2312 * 2313 * RETURNS: 2314 * 0 on success, -errno otherwise 2315 */ 2316 int ata_dev_configure(struct ata_device *dev) 2317 { 2318 struct ata_port *ap = dev->link->ap; 2319 struct ata_eh_context *ehc = &dev->link->eh_context; 2320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2321 const u16 *id = dev->id; 2322 unsigned long xfer_mask; 2323 char revbuf[7]; /* XYZ-99\0 */ 2324 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2325 char modelbuf[ATA_ID_PROD_LEN+1]; 2326 int rc; 2327 2328 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2329 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2330 __func__); 2331 return 0; 2332 } 2333 2334 if (ata_msg_probe(ap)) 2335 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2336 2337 /* set horkage */ 2338 dev->horkage |= ata_dev_blacklisted(dev); 2339 ata_force_horkage(dev); 2340 2341 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2342 ata_dev_printk(dev, KERN_INFO, 2343 "unsupported device, disabling\n"); 2344 ata_dev_disable(dev); 2345 return 0; 2346 } 2347 2348 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2349 dev->class == ATA_DEV_ATAPI) { 2350 ata_dev_printk(dev, KERN_WARNING, 2351 "WARNING: ATAPI is %s, device ignored.\n", 2352 atapi_enabled ? "not supported with this driver" 2353 : "disabled"); 2354 ata_dev_disable(dev); 2355 return 0; 2356 } 2357 2358 rc = ata_do_link_spd_horkage(dev); 2359 if (rc) 2360 return rc; 2361 2362 /* let ACPI work its magic */ 2363 rc = ata_acpi_on_devcfg(dev); 2364 if (rc) 2365 return rc; 2366 2367 /* massage HPA, do it early as it might change IDENTIFY data */ 2368 rc = ata_hpa_resize(dev); 2369 if (rc) 2370 return rc; 2371 2372 /* print device capabilities */ 2373 if (ata_msg_probe(ap)) 2374 ata_dev_printk(dev, KERN_DEBUG, 2375 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2376 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2377 __func__, 2378 id[49], id[82], id[83], id[84], 2379 id[85], id[86], id[87], id[88]); 2380 2381 /* initialize to-be-configured parameters */ 2382 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2383 dev->max_sectors = 0; 2384 dev->cdb_len = 0; 2385 dev->n_sectors = 0; 2386 dev->cylinders = 0; 2387 dev->heads = 0; 2388 dev->sectors = 0; 2389 dev->multi_count = 0; 2390 2391 /* 2392 * common ATA, ATAPI feature tests 2393 */ 2394 2395 /* find max transfer mode; for printk only */ 2396 xfer_mask = ata_id_xfermask(id); 2397 2398 if (ata_msg_probe(ap)) 2399 ata_dump_id(id); 2400 2401 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2402 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2403 sizeof(fwrevbuf)); 2404 2405 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2406 sizeof(modelbuf)); 2407 2408 /* ATA-specific feature tests */ 2409 if (dev->class == ATA_DEV_ATA) { 2410 if (ata_id_is_cfa(id)) { 2411 /* CPRM may make this media unusable */ 2412 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2413 ata_dev_printk(dev, KERN_WARNING, 2414 "supports DRM functions and may " 2415 "not be fully accessable.\n"); 2416 snprintf(revbuf, 7, "CFA"); 2417 } else { 2418 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2419 /* Warn the user if the device has TPM extensions */ 2420 if (ata_id_has_tpm(id)) 2421 ata_dev_printk(dev, KERN_WARNING, 2422 "supports DRM functions and may " 2423 "not be fully accessable.\n"); 2424 } 2425 2426 dev->n_sectors = ata_id_n_sectors(id); 2427 2428 /* get current R/W Multiple count setting */ 2429 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2430 unsigned int max = dev->id[47] & 0xff; 2431 unsigned int cnt = dev->id[59] & 0xff; 2432 /* only recognize/allow powers of two here */ 2433 if (is_power_of_2(max) && is_power_of_2(cnt)) 2434 if (cnt <= max) 2435 dev->multi_count = cnt; 2436 } 2437 2438 if (ata_id_has_lba(id)) { 2439 const char *lba_desc; 2440 char ncq_desc[24]; 2441 2442 lba_desc = "LBA"; 2443 dev->flags |= ATA_DFLAG_LBA; 2444 if (ata_id_has_lba48(id)) { 2445 dev->flags |= ATA_DFLAG_LBA48; 2446 lba_desc = "LBA48"; 2447 2448 if (dev->n_sectors >= (1UL << 28) && 2449 ata_id_has_flush_ext(id)) 2450 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2451 } 2452 2453 /* config NCQ */ 2454 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2455 if (rc) 2456 return rc; 2457 2458 /* print device info to dmesg */ 2459 if (ata_msg_drv(ap) && print_info) { 2460 ata_dev_printk(dev, KERN_INFO, 2461 "%s: %s, %s, max %s\n", 2462 revbuf, modelbuf, fwrevbuf, 2463 ata_mode_string(xfer_mask)); 2464 ata_dev_printk(dev, KERN_INFO, 2465 "%Lu sectors, multi %u: %s %s\n", 2466 (unsigned long long)dev->n_sectors, 2467 dev->multi_count, lba_desc, ncq_desc); 2468 } 2469 } else { 2470 /* CHS */ 2471 2472 /* Default translation */ 2473 dev->cylinders = id[1]; 2474 dev->heads = id[3]; 2475 dev->sectors = id[6]; 2476 2477 if (ata_id_current_chs_valid(id)) { 2478 /* Current CHS translation is valid. */ 2479 dev->cylinders = id[54]; 2480 dev->heads = id[55]; 2481 dev->sectors = id[56]; 2482 } 2483 2484 /* print device info to dmesg */ 2485 if (ata_msg_drv(ap) && print_info) { 2486 ata_dev_printk(dev, KERN_INFO, 2487 "%s: %s, %s, max %s\n", 2488 revbuf, modelbuf, fwrevbuf, 2489 ata_mode_string(xfer_mask)); 2490 ata_dev_printk(dev, KERN_INFO, 2491 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2492 (unsigned long long)dev->n_sectors, 2493 dev->multi_count, dev->cylinders, 2494 dev->heads, dev->sectors); 2495 } 2496 } 2497 2498 dev->cdb_len = 16; 2499 } 2500 2501 /* ATAPI-specific feature tests */ 2502 else if (dev->class == ATA_DEV_ATAPI) { 2503 const char *cdb_intr_string = ""; 2504 const char *atapi_an_string = ""; 2505 const char *dma_dir_string = ""; 2506 u32 sntf; 2507 2508 rc = atapi_cdb_len(id); 2509 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2510 if (ata_msg_warn(ap)) 2511 ata_dev_printk(dev, KERN_WARNING, 2512 "unsupported CDB len\n"); 2513 rc = -EINVAL; 2514 goto err_out_nosup; 2515 } 2516 dev->cdb_len = (unsigned int) rc; 2517 2518 /* Enable ATAPI AN if both the host and device have 2519 * the support. If PMP is attached, SNTF is required 2520 * to enable ATAPI AN to discern between PHY status 2521 * changed notifications and ATAPI ANs. 2522 */ 2523 if (atapi_an && 2524 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2525 (!sata_pmp_attached(ap) || 2526 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2527 unsigned int err_mask; 2528 2529 /* issue SET feature command to turn this on */ 2530 err_mask = ata_dev_set_feature(dev, 2531 SETFEATURES_SATA_ENABLE, SATA_AN); 2532 if (err_mask) 2533 ata_dev_printk(dev, KERN_ERR, 2534 "failed to enable ATAPI AN " 2535 "(err_mask=0x%x)\n", err_mask); 2536 else { 2537 dev->flags |= ATA_DFLAG_AN; 2538 atapi_an_string = ", ATAPI AN"; 2539 } 2540 } 2541 2542 if (ata_id_cdb_intr(dev->id)) { 2543 dev->flags |= ATA_DFLAG_CDB_INTR; 2544 cdb_intr_string = ", CDB intr"; 2545 } 2546 2547 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2548 dev->flags |= ATA_DFLAG_DMADIR; 2549 dma_dir_string = ", DMADIR"; 2550 } 2551 2552 /* print device info to dmesg */ 2553 if (ata_msg_drv(ap) && print_info) 2554 ata_dev_printk(dev, KERN_INFO, 2555 "ATAPI: %s, %s, max %s%s%s%s\n", 2556 modelbuf, fwrevbuf, 2557 ata_mode_string(xfer_mask), 2558 cdb_intr_string, atapi_an_string, 2559 dma_dir_string); 2560 } 2561 2562 /* determine max_sectors */ 2563 dev->max_sectors = ATA_MAX_SECTORS; 2564 if (dev->flags & ATA_DFLAG_LBA48) 2565 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2566 2567 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2568 if (ata_id_has_hipm(dev->id)) 2569 dev->flags |= ATA_DFLAG_HIPM; 2570 if (ata_id_has_dipm(dev->id)) 2571 dev->flags |= ATA_DFLAG_DIPM; 2572 } 2573 2574 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2575 200 sectors */ 2576 if (ata_dev_knobble(dev)) { 2577 if (ata_msg_drv(ap) && print_info) 2578 ata_dev_printk(dev, KERN_INFO, 2579 "applying bridge limits\n"); 2580 dev->udma_mask &= ATA_UDMA5; 2581 dev->max_sectors = ATA_MAX_SECTORS; 2582 } 2583 2584 if ((dev->class == ATA_DEV_ATAPI) && 2585 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2586 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2587 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2588 } 2589 2590 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2591 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2592 dev->max_sectors); 2593 2594 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2595 dev->horkage |= ATA_HORKAGE_IPM; 2596 2597 /* reset link pm_policy for this port to no pm */ 2598 ap->pm_policy = MAX_PERFORMANCE; 2599 } 2600 2601 if (ap->ops->dev_config) 2602 ap->ops->dev_config(dev); 2603 2604 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2605 /* Let the user know. We don't want to disallow opens for 2606 rescue purposes, or in case the vendor is just a blithering 2607 idiot. Do this after the dev_config call as some controllers 2608 with buggy firmware may want to avoid reporting false device 2609 bugs */ 2610 2611 if (print_info) { 2612 ata_dev_printk(dev, KERN_WARNING, 2613 "Drive reports diagnostics failure. This may indicate a drive\n"); 2614 ata_dev_printk(dev, KERN_WARNING, 2615 "fault or invalid emulation. Contact drive vendor for information.\n"); 2616 } 2617 } 2618 2619 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2620 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2621 "firmware update to be fully functional.\n"); 2622 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2623 "or visit http://ata.wiki.kernel.org.\n"); 2624 } 2625 2626 return 0; 2627 2628 err_out_nosup: 2629 if (ata_msg_probe(ap)) 2630 ata_dev_printk(dev, KERN_DEBUG, 2631 "%s: EXIT, err\n", __func__); 2632 return rc; 2633 } 2634 2635 /** 2636 * ata_cable_40wire - return 40 wire cable type 2637 * @ap: port 2638 * 2639 * Helper method for drivers which want to hardwire 40 wire cable 2640 * detection. 2641 */ 2642 2643 int ata_cable_40wire(struct ata_port *ap) 2644 { 2645 return ATA_CBL_PATA40; 2646 } 2647 2648 /** 2649 * ata_cable_80wire - return 80 wire cable type 2650 * @ap: port 2651 * 2652 * Helper method for drivers which want to hardwire 80 wire cable 2653 * detection. 2654 */ 2655 2656 int ata_cable_80wire(struct ata_port *ap) 2657 { 2658 return ATA_CBL_PATA80; 2659 } 2660 2661 /** 2662 * ata_cable_unknown - return unknown PATA cable. 2663 * @ap: port 2664 * 2665 * Helper method for drivers which have no PATA cable detection. 2666 */ 2667 2668 int ata_cable_unknown(struct ata_port *ap) 2669 { 2670 return ATA_CBL_PATA_UNK; 2671 } 2672 2673 /** 2674 * ata_cable_ignore - return ignored PATA cable. 2675 * @ap: port 2676 * 2677 * Helper method for drivers which don't use cable type to limit 2678 * transfer mode. 2679 */ 2680 int ata_cable_ignore(struct ata_port *ap) 2681 { 2682 return ATA_CBL_PATA_IGN; 2683 } 2684 2685 /** 2686 * ata_cable_sata - return SATA cable type 2687 * @ap: port 2688 * 2689 * Helper method for drivers which have SATA cables 2690 */ 2691 2692 int ata_cable_sata(struct ata_port *ap) 2693 { 2694 return ATA_CBL_SATA; 2695 } 2696 2697 /** 2698 * ata_bus_probe - Reset and probe ATA bus 2699 * @ap: Bus to probe 2700 * 2701 * Master ATA bus probing function. Initiates a hardware-dependent 2702 * bus reset, then attempts to identify any devices found on 2703 * the bus. 2704 * 2705 * LOCKING: 2706 * PCI/etc. bus probe sem. 2707 * 2708 * RETURNS: 2709 * Zero on success, negative errno otherwise. 2710 */ 2711 2712 int ata_bus_probe(struct ata_port *ap) 2713 { 2714 unsigned int classes[ATA_MAX_DEVICES]; 2715 int tries[ATA_MAX_DEVICES]; 2716 int rc; 2717 struct ata_device *dev; 2718 2719 ata_for_each_dev(dev, &ap->link, ALL) 2720 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2721 2722 retry: 2723 ata_for_each_dev(dev, &ap->link, ALL) { 2724 /* If we issue an SRST then an ATA drive (not ATAPI) 2725 * may change configuration and be in PIO0 timing. If 2726 * we do a hard reset (or are coming from power on) 2727 * this is true for ATA or ATAPI. Until we've set a 2728 * suitable controller mode we should not touch the 2729 * bus as we may be talking too fast. 2730 */ 2731 dev->pio_mode = XFER_PIO_0; 2732 2733 /* If the controller has a pio mode setup function 2734 * then use it to set the chipset to rights. Don't 2735 * touch the DMA setup as that will be dealt with when 2736 * configuring devices. 2737 */ 2738 if (ap->ops->set_piomode) 2739 ap->ops->set_piomode(ap, dev); 2740 } 2741 2742 /* reset and determine device classes */ 2743 ap->ops->phy_reset(ap); 2744 2745 ata_for_each_dev(dev, &ap->link, ALL) { 2746 if (dev->class != ATA_DEV_UNKNOWN) 2747 classes[dev->devno] = dev->class; 2748 else 2749 classes[dev->devno] = ATA_DEV_NONE; 2750 2751 dev->class = ATA_DEV_UNKNOWN; 2752 } 2753 2754 /* read IDENTIFY page and configure devices. We have to do the identify 2755 specific sequence bass-ackwards so that PDIAG- is released by 2756 the slave device */ 2757 2758 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2759 if (tries[dev->devno]) 2760 dev->class = classes[dev->devno]; 2761 2762 if (!ata_dev_enabled(dev)) 2763 continue; 2764 2765 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2766 dev->id); 2767 if (rc) 2768 goto fail; 2769 } 2770 2771 /* Now ask for the cable type as PDIAG- should have been released */ 2772 if (ap->ops->cable_detect) 2773 ap->cbl = ap->ops->cable_detect(ap); 2774 2775 /* We may have SATA bridge glue hiding here irrespective of 2776 * the reported cable types and sensed types. When SATA 2777 * drives indicate we have a bridge, we don't know which end 2778 * of the link the bridge is which is a problem. 2779 */ 2780 ata_for_each_dev(dev, &ap->link, ENABLED) 2781 if (ata_id_is_sata(dev->id)) 2782 ap->cbl = ATA_CBL_SATA; 2783 2784 /* After the identify sequence we can now set up the devices. We do 2785 this in the normal order so that the user doesn't get confused */ 2786 2787 ata_for_each_dev(dev, &ap->link, ENABLED) { 2788 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2789 rc = ata_dev_configure(dev); 2790 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2791 if (rc) 2792 goto fail; 2793 } 2794 2795 /* configure transfer mode */ 2796 rc = ata_set_mode(&ap->link, &dev); 2797 if (rc) 2798 goto fail; 2799 2800 ata_for_each_dev(dev, &ap->link, ENABLED) 2801 return 0; 2802 2803 return -ENODEV; 2804 2805 fail: 2806 tries[dev->devno]--; 2807 2808 switch (rc) { 2809 case -EINVAL: 2810 /* eeek, something went very wrong, give up */ 2811 tries[dev->devno] = 0; 2812 break; 2813 2814 case -ENODEV: 2815 /* give it just one more chance */ 2816 tries[dev->devno] = min(tries[dev->devno], 1); 2817 case -EIO: 2818 if (tries[dev->devno] == 1) { 2819 /* This is the last chance, better to slow 2820 * down than lose it. 2821 */ 2822 sata_down_spd_limit(&ap->link, 0); 2823 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2824 } 2825 } 2826 2827 if (!tries[dev->devno]) 2828 ata_dev_disable(dev); 2829 2830 goto retry; 2831 } 2832 2833 /** 2834 * sata_print_link_status - Print SATA link status 2835 * @link: SATA link to printk link status about 2836 * 2837 * This function prints link speed and status of a SATA link. 2838 * 2839 * LOCKING: 2840 * None. 2841 */ 2842 static void sata_print_link_status(struct ata_link *link) 2843 { 2844 u32 sstatus, scontrol, tmp; 2845 2846 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2847 return; 2848 sata_scr_read(link, SCR_CONTROL, &scontrol); 2849 2850 if (ata_phys_link_online(link)) { 2851 tmp = (sstatus >> 4) & 0xf; 2852 ata_link_printk(link, KERN_INFO, 2853 "SATA link up %s (SStatus %X SControl %X)\n", 2854 sata_spd_string(tmp), sstatus, scontrol); 2855 } else { 2856 ata_link_printk(link, KERN_INFO, 2857 "SATA link down (SStatus %X SControl %X)\n", 2858 sstatus, scontrol); 2859 } 2860 } 2861 2862 /** 2863 * ata_dev_pair - return other device on cable 2864 * @adev: device 2865 * 2866 * Obtain the other device on the same cable, or if none is 2867 * present NULL is returned 2868 */ 2869 2870 struct ata_device *ata_dev_pair(struct ata_device *adev) 2871 { 2872 struct ata_link *link = adev->link; 2873 struct ata_device *pair = &link->device[1 - adev->devno]; 2874 if (!ata_dev_enabled(pair)) 2875 return NULL; 2876 return pair; 2877 } 2878 2879 /** 2880 * sata_down_spd_limit - adjust SATA spd limit downward 2881 * @link: Link to adjust SATA spd limit for 2882 * @spd_limit: Additional limit 2883 * 2884 * Adjust SATA spd limit of @link downward. Note that this 2885 * function only adjusts the limit. The change must be applied 2886 * using sata_set_spd(). 2887 * 2888 * If @spd_limit is non-zero, the speed is limited to equal to or 2889 * lower than @spd_limit if such speed is supported. If 2890 * @spd_limit is slower than any supported speed, only the lowest 2891 * supported speed is allowed. 2892 * 2893 * LOCKING: 2894 * Inherited from caller. 2895 * 2896 * RETURNS: 2897 * 0 on success, negative errno on failure 2898 */ 2899 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2900 { 2901 u32 sstatus, spd, mask; 2902 int rc, bit; 2903 2904 if (!sata_scr_valid(link)) 2905 return -EOPNOTSUPP; 2906 2907 /* If SCR can be read, use it to determine the current SPD. 2908 * If not, use cached value in link->sata_spd. 2909 */ 2910 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2911 if (rc == 0 && ata_sstatus_online(sstatus)) 2912 spd = (sstatus >> 4) & 0xf; 2913 else 2914 spd = link->sata_spd; 2915 2916 mask = link->sata_spd_limit; 2917 if (mask <= 1) 2918 return -EINVAL; 2919 2920 /* unconditionally mask off the highest bit */ 2921 bit = fls(mask) - 1; 2922 mask &= ~(1 << bit); 2923 2924 /* Mask off all speeds higher than or equal to the current 2925 * one. Force 1.5Gbps if current SPD is not available. 2926 */ 2927 if (spd > 1) 2928 mask &= (1 << (spd - 1)) - 1; 2929 else 2930 mask &= 1; 2931 2932 /* were we already at the bottom? */ 2933 if (!mask) 2934 return -EINVAL; 2935 2936 if (spd_limit) { 2937 if (mask & ((1 << spd_limit) - 1)) 2938 mask &= (1 << spd_limit) - 1; 2939 else { 2940 bit = ffs(mask) - 1; 2941 mask = 1 << bit; 2942 } 2943 } 2944 2945 link->sata_spd_limit = mask; 2946 2947 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2948 sata_spd_string(fls(mask))); 2949 2950 return 0; 2951 } 2952 2953 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2954 { 2955 struct ata_link *host_link = &link->ap->link; 2956 u32 limit, target, spd; 2957 2958 limit = link->sata_spd_limit; 2959 2960 /* Don't configure downstream link faster than upstream link. 2961 * It doesn't speed up anything and some PMPs choke on such 2962 * configuration. 2963 */ 2964 if (!ata_is_host_link(link) && host_link->sata_spd) 2965 limit &= (1 << host_link->sata_spd) - 1; 2966 2967 if (limit == UINT_MAX) 2968 target = 0; 2969 else 2970 target = fls(limit); 2971 2972 spd = (*scontrol >> 4) & 0xf; 2973 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2974 2975 return spd != target; 2976 } 2977 2978 /** 2979 * sata_set_spd_needed - is SATA spd configuration needed 2980 * @link: Link in question 2981 * 2982 * Test whether the spd limit in SControl matches 2983 * @link->sata_spd_limit. This function is used to determine 2984 * whether hardreset is necessary to apply SATA spd 2985 * configuration. 2986 * 2987 * LOCKING: 2988 * Inherited from caller. 2989 * 2990 * RETURNS: 2991 * 1 if SATA spd configuration is needed, 0 otherwise. 2992 */ 2993 static int sata_set_spd_needed(struct ata_link *link) 2994 { 2995 u32 scontrol; 2996 2997 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2998 return 1; 2999 3000 return __sata_set_spd_needed(link, &scontrol); 3001 } 3002 3003 /** 3004 * sata_set_spd - set SATA spd according to spd limit 3005 * @link: Link to set SATA spd for 3006 * 3007 * Set SATA spd of @link according to sata_spd_limit. 3008 * 3009 * LOCKING: 3010 * Inherited from caller. 3011 * 3012 * RETURNS: 3013 * 0 if spd doesn't need to be changed, 1 if spd has been 3014 * changed. Negative errno if SCR registers are inaccessible. 3015 */ 3016 int sata_set_spd(struct ata_link *link) 3017 { 3018 u32 scontrol; 3019 int rc; 3020 3021 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3022 return rc; 3023 3024 if (!__sata_set_spd_needed(link, &scontrol)) 3025 return 0; 3026 3027 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3028 return rc; 3029 3030 return 1; 3031 } 3032 3033 /* 3034 * This mode timing computation functionality is ported over from 3035 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3036 */ 3037 /* 3038 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3039 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3040 * for UDMA6, which is currently supported only by Maxtor drives. 3041 * 3042 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3043 */ 3044 3045 static const struct ata_timing ata_timing[] = { 3046 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3047 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3048 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3049 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3050 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3051 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3052 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3053 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3054 3055 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3056 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3057 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3058 3059 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3060 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3061 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3062 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3063 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3064 3065 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3066 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3067 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3068 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3069 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3070 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3071 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3072 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3073 3074 { 0xFF } 3075 }; 3076 3077 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3078 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3079 3080 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3081 { 3082 q->setup = EZ(t->setup * 1000, T); 3083 q->act8b = EZ(t->act8b * 1000, T); 3084 q->rec8b = EZ(t->rec8b * 1000, T); 3085 q->cyc8b = EZ(t->cyc8b * 1000, T); 3086 q->active = EZ(t->active * 1000, T); 3087 q->recover = EZ(t->recover * 1000, T); 3088 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3089 q->cycle = EZ(t->cycle * 1000, T); 3090 q->udma = EZ(t->udma * 1000, UT); 3091 } 3092 3093 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3094 struct ata_timing *m, unsigned int what) 3095 { 3096 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3097 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3098 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3099 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3100 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3101 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3102 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3103 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3104 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3105 } 3106 3107 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3108 { 3109 const struct ata_timing *t = ata_timing; 3110 3111 while (xfer_mode > t->mode) 3112 t++; 3113 3114 if (xfer_mode == t->mode) 3115 return t; 3116 return NULL; 3117 } 3118 3119 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3120 struct ata_timing *t, int T, int UT) 3121 { 3122 const u16 *id = adev->id; 3123 const struct ata_timing *s; 3124 struct ata_timing p; 3125 3126 /* 3127 * Find the mode. 3128 */ 3129 3130 if (!(s = ata_timing_find_mode(speed))) 3131 return -EINVAL; 3132 3133 memcpy(t, s, sizeof(*s)); 3134 3135 /* 3136 * If the drive is an EIDE drive, it can tell us it needs extended 3137 * PIO/MW_DMA cycle timing. 3138 */ 3139 3140 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3141 memset(&p, 0, sizeof(p)); 3142 3143 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3144 if (speed <= XFER_PIO_2) 3145 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3146 else if ((speed <= XFER_PIO_4) || 3147 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3148 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3149 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3150 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3151 3152 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3153 } 3154 3155 /* 3156 * Convert the timing to bus clock counts. 3157 */ 3158 3159 ata_timing_quantize(t, t, T, UT); 3160 3161 /* 3162 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3163 * S.M.A.R.T * and some other commands. We have to ensure that the 3164 * DMA cycle timing is slower/equal than the fastest PIO timing. 3165 */ 3166 3167 if (speed > XFER_PIO_6) { 3168 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3169 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3170 } 3171 3172 /* 3173 * Lengthen active & recovery time so that cycle time is correct. 3174 */ 3175 3176 if (t->act8b + t->rec8b < t->cyc8b) { 3177 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3178 t->rec8b = t->cyc8b - t->act8b; 3179 } 3180 3181 if (t->active + t->recover < t->cycle) { 3182 t->active += (t->cycle - (t->active + t->recover)) / 2; 3183 t->recover = t->cycle - t->active; 3184 } 3185 3186 /* In a few cases quantisation may produce enough errors to 3187 leave t->cycle too low for the sum of active and recovery 3188 if so we must correct this */ 3189 if (t->active + t->recover > t->cycle) 3190 t->cycle = t->active + t->recover; 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3197 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3198 * @cycle: cycle duration in ns 3199 * 3200 * Return matching xfer mode for @cycle. The returned mode is of 3201 * the transfer type specified by @xfer_shift. If @cycle is too 3202 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3203 * than the fastest known mode, the fasted mode is returned. 3204 * 3205 * LOCKING: 3206 * None. 3207 * 3208 * RETURNS: 3209 * Matching xfer_mode, 0xff if no match found. 3210 */ 3211 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3212 { 3213 u8 base_mode = 0xff, last_mode = 0xff; 3214 const struct ata_xfer_ent *ent; 3215 const struct ata_timing *t; 3216 3217 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3218 if (ent->shift == xfer_shift) 3219 base_mode = ent->base; 3220 3221 for (t = ata_timing_find_mode(base_mode); 3222 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3223 unsigned short this_cycle; 3224 3225 switch (xfer_shift) { 3226 case ATA_SHIFT_PIO: 3227 case ATA_SHIFT_MWDMA: 3228 this_cycle = t->cycle; 3229 break; 3230 case ATA_SHIFT_UDMA: 3231 this_cycle = t->udma; 3232 break; 3233 default: 3234 return 0xff; 3235 } 3236 3237 if (cycle > this_cycle) 3238 break; 3239 3240 last_mode = t->mode; 3241 } 3242 3243 return last_mode; 3244 } 3245 3246 /** 3247 * ata_down_xfermask_limit - adjust dev xfer masks downward 3248 * @dev: Device to adjust xfer masks 3249 * @sel: ATA_DNXFER_* selector 3250 * 3251 * Adjust xfer masks of @dev downward. Note that this function 3252 * does not apply the change. Invoking ata_set_mode() afterwards 3253 * will apply the limit. 3254 * 3255 * LOCKING: 3256 * Inherited from caller. 3257 * 3258 * RETURNS: 3259 * 0 on success, negative errno on failure 3260 */ 3261 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3262 { 3263 char buf[32]; 3264 unsigned long orig_mask, xfer_mask; 3265 unsigned long pio_mask, mwdma_mask, udma_mask; 3266 int quiet, highbit; 3267 3268 quiet = !!(sel & ATA_DNXFER_QUIET); 3269 sel &= ~ATA_DNXFER_QUIET; 3270 3271 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3272 dev->mwdma_mask, 3273 dev->udma_mask); 3274 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3275 3276 switch (sel) { 3277 case ATA_DNXFER_PIO: 3278 highbit = fls(pio_mask) - 1; 3279 pio_mask &= ~(1 << highbit); 3280 break; 3281 3282 case ATA_DNXFER_DMA: 3283 if (udma_mask) { 3284 highbit = fls(udma_mask) - 1; 3285 udma_mask &= ~(1 << highbit); 3286 if (!udma_mask) 3287 return -ENOENT; 3288 } else if (mwdma_mask) { 3289 highbit = fls(mwdma_mask) - 1; 3290 mwdma_mask &= ~(1 << highbit); 3291 if (!mwdma_mask) 3292 return -ENOENT; 3293 } 3294 break; 3295 3296 case ATA_DNXFER_40C: 3297 udma_mask &= ATA_UDMA_MASK_40C; 3298 break; 3299 3300 case ATA_DNXFER_FORCE_PIO0: 3301 pio_mask &= 1; 3302 case ATA_DNXFER_FORCE_PIO: 3303 mwdma_mask = 0; 3304 udma_mask = 0; 3305 break; 3306 3307 default: 3308 BUG(); 3309 } 3310 3311 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3312 3313 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3314 return -ENOENT; 3315 3316 if (!quiet) { 3317 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3318 snprintf(buf, sizeof(buf), "%s:%s", 3319 ata_mode_string(xfer_mask), 3320 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3321 else 3322 snprintf(buf, sizeof(buf), "%s", 3323 ata_mode_string(xfer_mask)); 3324 3325 ata_dev_printk(dev, KERN_WARNING, 3326 "limiting speed to %s\n", buf); 3327 } 3328 3329 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3330 &dev->udma_mask); 3331 3332 return 0; 3333 } 3334 3335 static int ata_dev_set_mode(struct ata_device *dev) 3336 { 3337 struct ata_port *ap = dev->link->ap; 3338 struct ata_eh_context *ehc = &dev->link->eh_context; 3339 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3340 const char *dev_err_whine = ""; 3341 int ign_dev_err = 0; 3342 unsigned int err_mask = 0; 3343 int rc; 3344 3345 dev->flags &= ~ATA_DFLAG_PIO; 3346 if (dev->xfer_shift == ATA_SHIFT_PIO) 3347 dev->flags |= ATA_DFLAG_PIO; 3348 3349 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3350 dev_err_whine = " (SET_XFERMODE skipped)"; 3351 else { 3352 if (nosetxfer) 3353 ata_dev_printk(dev, KERN_WARNING, 3354 "NOSETXFER but PATA detected - can't " 3355 "skip SETXFER, might malfunction\n"); 3356 err_mask = ata_dev_set_xfermode(dev); 3357 } 3358 3359 if (err_mask & ~AC_ERR_DEV) 3360 goto fail; 3361 3362 /* revalidate */ 3363 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3364 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3365 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3366 if (rc) 3367 return rc; 3368 3369 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3370 /* Old CFA may refuse this command, which is just fine */ 3371 if (ata_id_is_cfa(dev->id)) 3372 ign_dev_err = 1; 3373 /* Catch several broken garbage emulations plus some pre 3374 ATA devices */ 3375 if (ata_id_major_version(dev->id) == 0 && 3376 dev->pio_mode <= XFER_PIO_2) 3377 ign_dev_err = 1; 3378 /* Some very old devices and some bad newer ones fail 3379 any kind of SET_XFERMODE request but support PIO0-2 3380 timings and no IORDY */ 3381 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3382 ign_dev_err = 1; 3383 } 3384 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3385 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3386 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3387 dev->dma_mode == XFER_MW_DMA_0 && 3388 (dev->id[63] >> 8) & 1) 3389 ign_dev_err = 1; 3390 3391 /* if the device is actually configured correctly, ignore dev err */ 3392 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3393 ign_dev_err = 1; 3394 3395 if (err_mask & AC_ERR_DEV) { 3396 if (!ign_dev_err) 3397 goto fail; 3398 else 3399 dev_err_whine = " (device error ignored)"; 3400 } 3401 3402 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3403 dev->xfer_shift, (int)dev->xfer_mode); 3404 3405 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3406 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3407 dev_err_whine); 3408 3409 return 0; 3410 3411 fail: 3412 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3413 "(err_mask=0x%x)\n", err_mask); 3414 return -EIO; 3415 } 3416 3417 /** 3418 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3419 * @link: link on which timings will be programmed 3420 * @r_failed_dev: out parameter for failed device 3421 * 3422 * Standard implementation of the function used to tune and set 3423 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3424 * ata_dev_set_mode() fails, pointer to the failing device is 3425 * returned in @r_failed_dev. 3426 * 3427 * LOCKING: 3428 * PCI/etc. bus probe sem. 3429 * 3430 * RETURNS: 3431 * 0 on success, negative errno otherwise 3432 */ 3433 3434 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3435 { 3436 struct ata_port *ap = link->ap; 3437 struct ata_device *dev; 3438 int rc = 0, used_dma = 0, found = 0; 3439 3440 /* step 1: calculate xfer_mask */ 3441 ata_for_each_dev(dev, link, ENABLED) { 3442 unsigned long pio_mask, dma_mask; 3443 unsigned int mode_mask; 3444 3445 mode_mask = ATA_DMA_MASK_ATA; 3446 if (dev->class == ATA_DEV_ATAPI) 3447 mode_mask = ATA_DMA_MASK_ATAPI; 3448 else if (ata_id_is_cfa(dev->id)) 3449 mode_mask = ATA_DMA_MASK_CFA; 3450 3451 ata_dev_xfermask(dev); 3452 ata_force_xfermask(dev); 3453 3454 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3455 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3456 3457 if (libata_dma_mask & mode_mask) 3458 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3459 else 3460 dma_mask = 0; 3461 3462 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3463 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3464 3465 found = 1; 3466 if (ata_dma_enabled(dev)) 3467 used_dma = 1; 3468 } 3469 if (!found) 3470 goto out; 3471 3472 /* step 2: always set host PIO timings */ 3473 ata_for_each_dev(dev, link, ENABLED) { 3474 if (dev->pio_mode == 0xff) { 3475 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3476 rc = -EINVAL; 3477 goto out; 3478 } 3479 3480 dev->xfer_mode = dev->pio_mode; 3481 dev->xfer_shift = ATA_SHIFT_PIO; 3482 if (ap->ops->set_piomode) 3483 ap->ops->set_piomode(ap, dev); 3484 } 3485 3486 /* step 3: set host DMA timings */ 3487 ata_for_each_dev(dev, link, ENABLED) { 3488 if (!ata_dma_enabled(dev)) 3489 continue; 3490 3491 dev->xfer_mode = dev->dma_mode; 3492 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3493 if (ap->ops->set_dmamode) 3494 ap->ops->set_dmamode(ap, dev); 3495 } 3496 3497 /* step 4: update devices' xfer mode */ 3498 ata_for_each_dev(dev, link, ENABLED) { 3499 rc = ata_dev_set_mode(dev); 3500 if (rc) 3501 goto out; 3502 } 3503 3504 /* Record simplex status. If we selected DMA then the other 3505 * host channels are not permitted to do so. 3506 */ 3507 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3508 ap->host->simplex_claimed = ap; 3509 3510 out: 3511 if (rc) 3512 *r_failed_dev = dev; 3513 return rc; 3514 } 3515 3516 /** 3517 * ata_wait_ready - wait for link to become ready 3518 * @link: link to be waited on 3519 * @deadline: deadline jiffies for the operation 3520 * @check_ready: callback to check link readiness 3521 * 3522 * Wait for @link to become ready. @check_ready should return 3523 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3524 * link doesn't seem to be occupied, other errno for other error 3525 * conditions. 3526 * 3527 * Transient -ENODEV conditions are allowed for 3528 * ATA_TMOUT_FF_WAIT. 3529 * 3530 * LOCKING: 3531 * EH context. 3532 * 3533 * RETURNS: 3534 * 0 if @linke is ready before @deadline; otherwise, -errno. 3535 */ 3536 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3537 int (*check_ready)(struct ata_link *link)) 3538 { 3539 unsigned long start = jiffies; 3540 unsigned long nodev_deadline; 3541 int warned = 0; 3542 3543 /* choose which 0xff timeout to use, read comment in libata.h */ 3544 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3545 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3546 else 3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3548 3549 /* Slave readiness can't be tested separately from master. On 3550 * M/S emulation configuration, this function should be called 3551 * only on the master and it will handle both master and slave. 3552 */ 3553 WARN_ON(link == link->ap->slave_link); 3554 3555 if (time_after(nodev_deadline, deadline)) 3556 nodev_deadline = deadline; 3557 3558 while (1) { 3559 unsigned long now = jiffies; 3560 int ready, tmp; 3561 3562 ready = tmp = check_ready(link); 3563 if (ready > 0) 3564 return 0; 3565 3566 /* 3567 * -ENODEV could be transient. Ignore -ENODEV if link 3568 * is online. Also, some SATA devices take a long 3569 * time to clear 0xff after reset. Wait for 3570 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3571 * offline. 3572 * 3573 * Note that some PATA controllers (pata_ali) explode 3574 * if status register is read more than once when 3575 * there's no device attached. 3576 */ 3577 if (ready == -ENODEV) { 3578 if (ata_link_online(link)) 3579 ready = 0; 3580 else if ((link->ap->flags & ATA_FLAG_SATA) && 3581 !ata_link_offline(link) && 3582 time_before(now, nodev_deadline)) 3583 ready = 0; 3584 } 3585 3586 if (ready) 3587 return ready; 3588 if (time_after(now, deadline)) 3589 return -EBUSY; 3590 3591 if (!warned && time_after(now, start + 5 * HZ) && 3592 (deadline - now > 3 * HZ)) { 3593 ata_link_printk(link, KERN_WARNING, 3594 "link is slow to respond, please be patient " 3595 "(ready=%d)\n", tmp); 3596 warned = 1; 3597 } 3598 3599 msleep(50); 3600 } 3601 } 3602 3603 /** 3604 * ata_wait_after_reset - wait for link to become ready after reset 3605 * @link: link to be waited on 3606 * @deadline: deadline jiffies for the operation 3607 * @check_ready: callback to check link readiness 3608 * 3609 * Wait for @link to become ready after reset. 3610 * 3611 * LOCKING: 3612 * EH context. 3613 * 3614 * RETURNS: 3615 * 0 if @linke is ready before @deadline; otherwise, -errno. 3616 */ 3617 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3618 int (*check_ready)(struct ata_link *link)) 3619 { 3620 msleep(ATA_WAIT_AFTER_RESET); 3621 3622 return ata_wait_ready(link, deadline, check_ready); 3623 } 3624 3625 /** 3626 * sata_link_debounce - debounce SATA phy status 3627 * @link: ATA link to debounce SATA phy status for 3628 * @params: timing parameters { interval, duratinon, timeout } in msec 3629 * @deadline: deadline jiffies for the operation 3630 * 3631 * Make sure SStatus of @link reaches stable state, determined by 3632 * holding the same value where DET is not 1 for @duration polled 3633 * every @interval, before @timeout. Timeout constraints the 3634 * beginning of the stable state. Because DET gets stuck at 1 on 3635 * some controllers after hot unplugging, this functions waits 3636 * until timeout then returns 0 if DET is stable at 1. 3637 * 3638 * @timeout is further limited by @deadline. The sooner of the 3639 * two is used. 3640 * 3641 * LOCKING: 3642 * Kernel thread context (may sleep) 3643 * 3644 * RETURNS: 3645 * 0 on success, -errno on failure. 3646 */ 3647 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3648 unsigned long deadline) 3649 { 3650 unsigned long interval = params[0]; 3651 unsigned long duration = params[1]; 3652 unsigned long last_jiffies, t; 3653 u32 last, cur; 3654 int rc; 3655 3656 t = ata_deadline(jiffies, params[2]); 3657 if (time_before(t, deadline)) 3658 deadline = t; 3659 3660 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3661 return rc; 3662 cur &= 0xf; 3663 3664 last = cur; 3665 last_jiffies = jiffies; 3666 3667 while (1) { 3668 msleep(interval); 3669 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3670 return rc; 3671 cur &= 0xf; 3672 3673 /* DET stable? */ 3674 if (cur == last) { 3675 if (cur == 1 && time_before(jiffies, deadline)) 3676 continue; 3677 if (time_after(jiffies, 3678 ata_deadline(last_jiffies, duration))) 3679 return 0; 3680 continue; 3681 } 3682 3683 /* unstable, start over */ 3684 last = cur; 3685 last_jiffies = jiffies; 3686 3687 /* Check deadline. If debouncing failed, return 3688 * -EPIPE to tell upper layer to lower link speed. 3689 */ 3690 if (time_after(jiffies, deadline)) 3691 return -EPIPE; 3692 } 3693 } 3694 3695 /** 3696 * sata_link_resume - resume SATA link 3697 * @link: ATA link to resume SATA 3698 * @params: timing parameters { interval, duratinon, timeout } in msec 3699 * @deadline: deadline jiffies for the operation 3700 * 3701 * Resume SATA phy @link and debounce it. 3702 * 3703 * LOCKING: 3704 * Kernel thread context (may sleep) 3705 * 3706 * RETURNS: 3707 * 0 on success, -errno on failure. 3708 */ 3709 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3710 unsigned long deadline) 3711 { 3712 int tries = ATA_LINK_RESUME_TRIES; 3713 u32 scontrol, serror; 3714 int rc; 3715 3716 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3717 return rc; 3718 3719 /* 3720 * Writes to SControl sometimes get ignored under certain 3721 * controllers (ata_piix SIDPR). Make sure DET actually is 3722 * cleared. 3723 */ 3724 do { 3725 scontrol = (scontrol & 0x0f0) | 0x300; 3726 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3727 return rc; 3728 /* 3729 * Some PHYs react badly if SStatus is pounded 3730 * immediately after resuming. Delay 200ms before 3731 * debouncing. 3732 */ 3733 msleep(200); 3734 3735 /* is SControl restored correctly? */ 3736 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3737 return rc; 3738 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3739 3740 if ((scontrol & 0xf0f) != 0x300) { 3741 ata_link_printk(link, KERN_ERR, 3742 "failed to resume link (SControl %X)\n", 3743 scontrol); 3744 return 0; 3745 } 3746 3747 if (tries < ATA_LINK_RESUME_TRIES) 3748 ata_link_printk(link, KERN_WARNING, 3749 "link resume succeeded after %d retries\n", 3750 ATA_LINK_RESUME_TRIES - tries); 3751 3752 if ((rc = sata_link_debounce(link, params, deadline))) 3753 return rc; 3754 3755 /* clear SError, some PHYs require this even for SRST to work */ 3756 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3757 rc = sata_scr_write(link, SCR_ERROR, serror); 3758 3759 return rc != -EINVAL ? rc : 0; 3760 } 3761 3762 /** 3763 * ata_std_prereset - prepare for reset 3764 * @link: ATA link to be reset 3765 * @deadline: deadline jiffies for the operation 3766 * 3767 * @link is about to be reset. Initialize it. Failure from 3768 * prereset makes libata abort whole reset sequence and give up 3769 * that port, so prereset should be best-effort. It does its 3770 * best to prepare for reset sequence but if things go wrong, it 3771 * should just whine, not fail. 3772 * 3773 * LOCKING: 3774 * Kernel thread context (may sleep) 3775 * 3776 * RETURNS: 3777 * 0 on success, -errno otherwise. 3778 */ 3779 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3780 { 3781 struct ata_port *ap = link->ap; 3782 struct ata_eh_context *ehc = &link->eh_context; 3783 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3784 int rc; 3785 3786 /* if we're about to do hardreset, nothing more to do */ 3787 if (ehc->i.action & ATA_EH_HARDRESET) 3788 return 0; 3789 3790 /* if SATA, resume link */ 3791 if (ap->flags & ATA_FLAG_SATA) { 3792 rc = sata_link_resume(link, timing, deadline); 3793 /* whine about phy resume failure but proceed */ 3794 if (rc && rc != -EOPNOTSUPP) 3795 ata_link_printk(link, KERN_WARNING, "failed to resume " 3796 "link for reset (errno=%d)\n", rc); 3797 } 3798 3799 /* no point in trying softreset on offline link */ 3800 if (ata_phys_link_offline(link)) 3801 ehc->i.action &= ~ATA_EH_SOFTRESET; 3802 3803 return 0; 3804 } 3805 3806 /** 3807 * sata_link_hardreset - reset link via SATA phy reset 3808 * @link: link to reset 3809 * @timing: timing parameters { interval, duratinon, timeout } in msec 3810 * @deadline: deadline jiffies for the operation 3811 * @online: optional out parameter indicating link onlineness 3812 * @check_ready: optional callback to check link readiness 3813 * 3814 * SATA phy-reset @link using DET bits of SControl register. 3815 * After hardreset, link readiness is waited upon using 3816 * ata_wait_ready() if @check_ready is specified. LLDs are 3817 * allowed to not specify @check_ready and wait itself after this 3818 * function returns. Device classification is LLD's 3819 * responsibility. 3820 * 3821 * *@online is set to one iff reset succeeded and @link is online 3822 * after reset. 3823 * 3824 * LOCKING: 3825 * Kernel thread context (may sleep) 3826 * 3827 * RETURNS: 3828 * 0 on success, -errno otherwise. 3829 */ 3830 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3831 unsigned long deadline, 3832 bool *online, int (*check_ready)(struct ata_link *)) 3833 { 3834 u32 scontrol; 3835 int rc; 3836 3837 DPRINTK("ENTER\n"); 3838 3839 if (online) 3840 *online = false; 3841 3842 if (sata_set_spd_needed(link)) { 3843 /* SATA spec says nothing about how to reconfigure 3844 * spd. To be on the safe side, turn off phy during 3845 * reconfiguration. This works for at least ICH7 AHCI 3846 * and Sil3124. 3847 */ 3848 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3849 goto out; 3850 3851 scontrol = (scontrol & 0x0f0) | 0x304; 3852 3853 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3854 goto out; 3855 3856 sata_set_spd(link); 3857 } 3858 3859 /* issue phy wake/reset */ 3860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3861 goto out; 3862 3863 scontrol = (scontrol & 0x0f0) | 0x301; 3864 3865 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3866 goto out; 3867 3868 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3869 * 10.4.2 says at least 1 ms. 3870 */ 3871 msleep(1); 3872 3873 /* bring link back */ 3874 rc = sata_link_resume(link, timing, deadline); 3875 if (rc) 3876 goto out; 3877 /* if link is offline nothing more to do */ 3878 if (ata_phys_link_offline(link)) 3879 goto out; 3880 3881 /* Link is online. From this point, -ENODEV too is an error. */ 3882 if (online) 3883 *online = true; 3884 3885 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3886 /* If PMP is supported, we have to do follow-up SRST. 3887 * Some PMPs don't send D2H Reg FIS after hardreset if 3888 * the first port is empty. Wait only for 3889 * ATA_TMOUT_PMP_SRST_WAIT. 3890 */ 3891 if (check_ready) { 3892 unsigned long pmp_deadline; 3893 3894 pmp_deadline = ata_deadline(jiffies, 3895 ATA_TMOUT_PMP_SRST_WAIT); 3896 if (time_after(pmp_deadline, deadline)) 3897 pmp_deadline = deadline; 3898 ata_wait_ready(link, pmp_deadline, check_ready); 3899 } 3900 rc = -EAGAIN; 3901 goto out; 3902 } 3903 3904 rc = 0; 3905 if (check_ready) 3906 rc = ata_wait_ready(link, deadline, check_ready); 3907 out: 3908 if (rc && rc != -EAGAIN) { 3909 /* online is set iff link is online && reset succeeded */ 3910 if (online) 3911 *online = false; 3912 ata_link_printk(link, KERN_ERR, 3913 "COMRESET failed (errno=%d)\n", rc); 3914 } 3915 DPRINTK("EXIT, rc=%d\n", rc); 3916 return rc; 3917 } 3918 3919 /** 3920 * sata_std_hardreset - COMRESET w/o waiting or classification 3921 * @link: link to reset 3922 * @class: resulting class of attached device 3923 * @deadline: deadline jiffies for the operation 3924 * 3925 * Standard SATA COMRESET w/o waiting or classification. 3926 * 3927 * LOCKING: 3928 * Kernel thread context (may sleep) 3929 * 3930 * RETURNS: 3931 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3932 */ 3933 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3934 unsigned long deadline) 3935 { 3936 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3937 bool online; 3938 int rc; 3939 3940 /* do hardreset */ 3941 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3942 return online ? -EAGAIN : rc; 3943 } 3944 3945 /** 3946 * ata_std_postreset - standard postreset callback 3947 * @link: the target ata_link 3948 * @classes: classes of attached devices 3949 * 3950 * This function is invoked after a successful reset. Note that 3951 * the device might have been reset more than once using 3952 * different reset methods before postreset is invoked. 3953 * 3954 * LOCKING: 3955 * Kernel thread context (may sleep) 3956 */ 3957 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3958 { 3959 u32 serror; 3960 3961 DPRINTK("ENTER\n"); 3962 3963 /* reset complete, clear SError */ 3964 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3965 sata_scr_write(link, SCR_ERROR, serror); 3966 3967 /* print link status */ 3968 sata_print_link_status(link); 3969 3970 DPRINTK("EXIT\n"); 3971 } 3972 3973 /** 3974 * ata_dev_same_device - Determine whether new ID matches configured device 3975 * @dev: device to compare against 3976 * @new_class: class of the new device 3977 * @new_id: IDENTIFY page of the new device 3978 * 3979 * Compare @new_class and @new_id against @dev and determine 3980 * whether @dev is the device indicated by @new_class and 3981 * @new_id. 3982 * 3983 * LOCKING: 3984 * None. 3985 * 3986 * RETURNS: 3987 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3988 */ 3989 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3990 const u16 *new_id) 3991 { 3992 const u16 *old_id = dev->id; 3993 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3994 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3995 3996 if (dev->class != new_class) { 3997 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3998 dev->class, new_class); 3999 return 0; 4000 } 4001 4002 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4003 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4004 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4005 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4006 4007 if (strcmp(model[0], model[1])) { 4008 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4009 "'%s' != '%s'\n", model[0], model[1]); 4010 return 0; 4011 } 4012 4013 if (strcmp(serial[0], serial[1])) { 4014 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4015 "'%s' != '%s'\n", serial[0], serial[1]); 4016 return 0; 4017 } 4018 4019 return 1; 4020 } 4021 4022 /** 4023 * ata_dev_reread_id - Re-read IDENTIFY data 4024 * @dev: target ATA device 4025 * @readid_flags: read ID flags 4026 * 4027 * Re-read IDENTIFY page and make sure @dev is still attached to 4028 * the port. 4029 * 4030 * LOCKING: 4031 * Kernel thread context (may sleep) 4032 * 4033 * RETURNS: 4034 * 0 on success, negative errno otherwise 4035 */ 4036 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4037 { 4038 unsigned int class = dev->class; 4039 u16 *id = (void *)dev->link->ap->sector_buf; 4040 int rc; 4041 4042 /* read ID data */ 4043 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4044 if (rc) 4045 return rc; 4046 4047 /* is the device still there? */ 4048 if (!ata_dev_same_device(dev, class, id)) 4049 return -ENODEV; 4050 4051 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4052 return 0; 4053 } 4054 4055 /** 4056 * ata_dev_revalidate - Revalidate ATA device 4057 * @dev: device to revalidate 4058 * @new_class: new class code 4059 * @readid_flags: read ID flags 4060 * 4061 * Re-read IDENTIFY page, make sure @dev is still attached to the 4062 * port and reconfigure it according to the new IDENTIFY page. 4063 * 4064 * LOCKING: 4065 * Kernel thread context (may sleep) 4066 * 4067 * RETURNS: 4068 * 0 on success, negative errno otherwise 4069 */ 4070 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4071 unsigned int readid_flags) 4072 { 4073 u64 n_sectors = dev->n_sectors; 4074 u64 n_native_sectors = dev->n_native_sectors; 4075 int rc; 4076 4077 if (!ata_dev_enabled(dev)) 4078 return -ENODEV; 4079 4080 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4081 if (ata_class_enabled(new_class) && 4082 new_class != ATA_DEV_ATA && 4083 new_class != ATA_DEV_ATAPI && 4084 new_class != ATA_DEV_SEMB) { 4085 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4086 dev->class, new_class); 4087 rc = -ENODEV; 4088 goto fail; 4089 } 4090 4091 /* re-read ID */ 4092 rc = ata_dev_reread_id(dev, readid_flags); 4093 if (rc) 4094 goto fail; 4095 4096 /* configure device according to the new ID */ 4097 rc = ata_dev_configure(dev); 4098 if (rc) 4099 goto fail; 4100 4101 /* verify n_sectors hasn't changed */ 4102 if (dev->class != ATA_DEV_ATA || !n_sectors || 4103 dev->n_sectors == n_sectors) 4104 return 0; 4105 4106 /* n_sectors has changed */ 4107 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n", 4108 (unsigned long long)n_sectors, 4109 (unsigned long long)dev->n_sectors); 4110 4111 /* 4112 * Something could have caused HPA to be unlocked 4113 * involuntarily. If n_native_sectors hasn't changed and the 4114 * new size matches it, keep the device. 4115 */ 4116 if (dev->n_native_sectors == n_native_sectors && 4117 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4118 ata_dev_printk(dev, KERN_WARNING, 4119 "new n_sectors matches native, probably " 4120 "late HPA unlock, n_sectors updated\n"); 4121 /* use the larger n_sectors */ 4122 return 0; 4123 } 4124 4125 /* 4126 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4127 * unlocking HPA in those cases. 4128 * 4129 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4130 */ 4131 if (dev->n_native_sectors == n_native_sectors && 4132 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4133 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4134 ata_dev_printk(dev, KERN_WARNING, 4135 "old n_sectors matches native, probably " 4136 "late HPA lock, will try to unlock HPA\n"); 4137 /* try unlocking HPA */ 4138 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4139 rc = -EIO; 4140 } else 4141 rc = -ENODEV; 4142 4143 /* restore original n_[native_]sectors and fail */ 4144 dev->n_native_sectors = n_native_sectors; 4145 dev->n_sectors = n_sectors; 4146 fail: 4147 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4148 return rc; 4149 } 4150 4151 struct ata_blacklist_entry { 4152 const char *model_num; 4153 const char *model_rev; 4154 unsigned long horkage; 4155 }; 4156 4157 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4158 /* Devices with DMA related problems under Linux */ 4159 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4160 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4161 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4162 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4163 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4164 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4165 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4166 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4167 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4168 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4169 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4170 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4171 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4172 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4173 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4174 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4175 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4176 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4177 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4178 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4179 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4180 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4181 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4182 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4183 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4184 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4185 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4186 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4187 /* Odd clown on sil3726/4726 PMPs */ 4188 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4189 4190 /* Weird ATAPI devices */ 4191 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4192 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4193 4194 /* Devices we expect to fail diagnostics */ 4195 4196 /* Devices where NCQ should be avoided */ 4197 /* NCQ is slow */ 4198 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4199 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4200 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4201 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4202 /* NCQ is broken */ 4203 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4204 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4205 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4206 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4207 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4208 4209 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4210 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4211 ATA_HORKAGE_FIRMWARE_WARN }, 4212 4213 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4214 ATA_HORKAGE_FIRMWARE_WARN }, 4215 4216 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4217 ATA_HORKAGE_FIRMWARE_WARN }, 4218 4219 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4220 ATA_HORKAGE_FIRMWARE_WARN }, 4221 4222 /* Blacklist entries taken from Silicon Image 3124/3132 4223 Windows driver .inf file - also several Linux problem reports */ 4224 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4225 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4226 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4227 4228 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4229 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4230 4231 /* devices which puke on READ_NATIVE_MAX */ 4232 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4233 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4234 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4235 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4236 4237 /* this one allows HPA unlocking but fails IOs on the area */ 4238 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4239 4240 /* Devices which report 1 sector over size HPA */ 4241 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4242 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4243 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4244 4245 /* Devices which get the IVB wrong */ 4246 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4247 /* Maybe we should just blacklist TSSTcorp... */ 4248 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4249 4250 /* Devices that do not need bridging limits applied */ 4251 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4252 4253 /* Devices which aren't very happy with higher link speeds */ 4254 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4255 4256 /* 4257 * Devices which choke on SETXFER. Applies only if both the 4258 * device and controller are SATA. 4259 */ 4260 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4261 4262 /* End Marker */ 4263 { } 4264 }; 4265 4266 /** 4267 * glob_match - match a text string against a glob-style pattern 4268 * @text: the string to be examined 4269 * @pattern: the glob-style pattern to be matched against 4270 * 4271 * Either/both of text and pattern can be empty strings. 4272 * 4273 * Match text against a glob-style pattern, with wildcards and simple sets: 4274 * 4275 * ? matches any single character. 4276 * * matches any run of characters. 4277 * [xyz] matches a single character from the set: x, y, or z. 4278 * [a-d] matches a single character from the range: a, b, c, or d. 4279 * [a-d0-9] matches a single character from either range. 4280 * 4281 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4282 * Behaviour with malformed patterns is undefined, though generally reasonable. 4283 * 4284 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4285 * 4286 * This function uses one level of recursion per '*' in pattern. 4287 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4288 * this will not cause stack problems for any reasonable use here. 4289 * 4290 * RETURNS: 4291 * 0 on match, 1 otherwise. 4292 */ 4293 static int glob_match (const char *text, const char *pattern) 4294 { 4295 do { 4296 /* Match single character or a '?' wildcard */ 4297 if (*text == *pattern || *pattern == '?') { 4298 if (!*pattern++) 4299 return 0; /* End of both strings: match */ 4300 } else { 4301 /* Match single char against a '[' bracketed ']' pattern set */ 4302 if (!*text || *pattern != '[') 4303 break; /* Not a pattern set */ 4304 while (*++pattern && *pattern != ']' && *text != *pattern) { 4305 if (*pattern == '-' && *(pattern - 1) != '[') 4306 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4307 ++pattern; 4308 break; 4309 } 4310 } 4311 if (!*pattern || *pattern == ']') 4312 return 1; /* No match */ 4313 while (*pattern && *pattern++ != ']'); 4314 } 4315 } while (*++text && *pattern); 4316 4317 /* Match any run of chars against a '*' wildcard */ 4318 if (*pattern == '*') { 4319 if (!*++pattern) 4320 return 0; /* Match: avoid recursion at end of pattern */ 4321 /* Loop to handle additional pattern chars after the wildcard */ 4322 while (*text) { 4323 if (glob_match(text, pattern) == 0) 4324 return 0; /* Remainder matched */ 4325 ++text; /* Absorb (match) this char and try again */ 4326 } 4327 } 4328 if (!*text && !*pattern) 4329 return 0; /* End of both strings: match */ 4330 return 1; /* No match */ 4331 } 4332 4333 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4334 { 4335 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4336 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4337 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4338 4339 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4340 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4341 4342 while (ad->model_num) { 4343 if (!glob_match(model_num, ad->model_num)) { 4344 if (ad->model_rev == NULL) 4345 return ad->horkage; 4346 if (!glob_match(model_rev, ad->model_rev)) 4347 return ad->horkage; 4348 } 4349 ad++; 4350 } 4351 return 0; 4352 } 4353 4354 static int ata_dma_blacklisted(const struct ata_device *dev) 4355 { 4356 /* We don't support polling DMA. 4357 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4358 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4359 */ 4360 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4361 (dev->flags & ATA_DFLAG_CDB_INTR)) 4362 return 1; 4363 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4364 } 4365 4366 /** 4367 * ata_is_40wire - check drive side detection 4368 * @dev: device 4369 * 4370 * Perform drive side detection decoding, allowing for device vendors 4371 * who can't follow the documentation. 4372 */ 4373 4374 static int ata_is_40wire(struct ata_device *dev) 4375 { 4376 if (dev->horkage & ATA_HORKAGE_IVB) 4377 return ata_drive_40wire_relaxed(dev->id); 4378 return ata_drive_40wire(dev->id); 4379 } 4380 4381 /** 4382 * cable_is_40wire - 40/80/SATA decider 4383 * @ap: port to consider 4384 * 4385 * This function encapsulates the policy for speed management 4386 * in one place. At the moment we don't cache the result but 4387 * there is a good case for setting ap->cbl to the result when 4388 * we are called with unknown cables (and figuring out if it 4389 * impacts hotplug at all). 4390 * 4391 * Return 1 if the cable appears to be 40 wire. 4392 */ 4393 4394 static int cable_is_40wire(struct ata_port *ap) 4395 { 4396 struct ata_link *link; 4397 struct ata_device *dev; 4398 4399 /* If the controller thinks we are 40 wire, we are. */ 4400 if (ap->cbl == ATA_CBL_PATA40) 4401 return 1; 4402 4403 /* If the controller thinks we are 80 wire, we are. */ 4404 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4405 return 0; 4406 4407 /* If the system is known to be 40 wire short cable (eg 4408 * laptop), then we allow 80 wire modes even if the drive 4409 * isn't sure. 4410 */ 4411 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4412 return 0; 4413 4414 /* If the controller doesn't know, we scan. 4415 * 4416 * Note: We look for all 40 wire detects at this point. Any 4417 * 80 wire detect is taken to be 80 wire cable because 4418 * - in many setups only the one drive (slave if present) will 4419 * give a valid detect 4420 * - if you have a non detect capable drive you don't want it 4421 * to colour the choice 4422 */ 4423 ata_for_each_link(link, ap, EDGE) { 4424 ata_for_each_dev(dev, link, ENABLED) { 4425 if (!ata_is_40wire(dev)) 4426 return 0; 4427 } 4428 } 4429 return 1; 4430 } 4431 4432 /** 4433 * ata_dev_xfermask - Compute supported xfermask of the given device 4434 * @dev: Device to compute xfermask for 4435 * 4436 * Compute supported xfermask of @dev and store it in 4437 * dev->*_mask. This function is responsible for applying all 4438 * known limits including host controller limits, device 4439 * blacklist, etc... 4440 * 4441 * LOCKING: 4442 * None. 4443 */ 4444 static void ata_dev_xfermask(struct ata_device *dev) 4445 { 4446 struct ata_link *link = dev->link; 4447 struct ata_port *ap = link->ap; 4448 struct ata_host *host = ap->host; 4449 unsigned long xfer_mask; 4450 4451 /* controller modes available */ 4452 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4453 ap->mwdma_mask, ap->udma_mask); 4454 4455 /* drive modes available */ 4456 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4457 dev->mwdma_mask, dev->udma_mask); 4458 xfer_mask &= ata_id_xfermask(dev->id); 4459 4460 /* 4461 * CFA Advanced TrueIDE timings are not allowed on a shared 4462 * cable 4463 */ 4464 if (ata_dev_pair(dev)) { 4465 /* No PIO5 or PIO6 */ 4466 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4467 /* No MWDMA3 or MWDMA 4 */ 4468 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4469 } 4470 4471 if (ata_dma_blacklisted(dev)) { 4472 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4473 ata_dev_printk(dev, KERN_WARNING, 4474 "device is on DMA blacklist, disabling DMA\n"); 4475 } 4476 4477 if ((host->flags & ATA_HOST_SIMPLEX) && 4478 host->simplex_claimed && host->simplex_claimed != ap) { 4479 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4480 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4481 "other device, disabling DMA\n"); 4482 } 4483 4484 if (ap->flags & ATA_FLAG_NO_IORDY) 4485 xfer_mask &= ata_pio_mask_no_iordy(dev); 4486 4487 if (ap->ops->mode_filter) 4488 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4489 4490 /* Apply cable rule here. Don't apply it early because when 4491 * we handle hot plug the cable type can itself change. 4492 * Check this last so that we know if the transfer rate was 4493 * solely limited by the cable. 4494 * Unknown or 80 wire cables reported host side are checked 4495 * drive side as well. Cases where we know a 40wire cable 4496 * is used safely for 80 are not checked here. 4497 */ 4498 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4499 /* UDMA/44 or higher would be available */ 4500 if (cable_is_40wire(ap)) { 4501 ata_dev_printk(dev, KERN_WARNING, 4502 "limited to UDMA/33 due to 40-wire cable\n"); 4503 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4504 } 4505 4506 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4507 &dev->mwdma_mask, &dev->udma_mask); 4508 } 4509 4510 /** 4511 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4512 * @dev: Device to which command will be sent 4513 * 4514 * Issue SET FEATURES - XFER MODE command to device @dev 4515 * on port @ap. 4516 * 4517 * LOCKING: 4518 * PCI/etc. bus probe sem. 4519 * 4520 * RETURNS: 4521 * 0 on success, AC_ERR_* mask otherwise. 4522 */ 4523 4524 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4525 { 4526 struct ata_taskfile tf; 4527 unsigned int err_mask; 4528 4529 /* set up set-features taskfile */ 4530 DPRINTK("set features - xfer mode\n"); 4531 4532 /* Some controllers and ATAPI devices show flaky interrupt 4533 * behavior after setting xfer mode. Use polling instead. 4534 */ 4535 ata_tf_init(dev, &tf); 4536 tf.command = ATA_CMD_SET_FEATURES; 4537 tf.feature = SETFEATURES_XFER; 4538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4539 tf.protocol = ATA_PROT_NODATA; 4540 /* If we are using IORDY we must send the mode setting command */ 4541 if (ata_pio_need_iordy(dev)) 4542 tf.nsect = dev->xfer_mode; 4543 /* If the device has IORDY and the controller does not - turn it off */ 4544 else if (ata_id_has_iordy(dev->id)) 4545 tf.nsect = 0x01; 4546 else /* In the ancient relic department - skip all of this */ 4547 return 0; 4548 4549 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4550 4551 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4552 return err_mask; 4553 } 4554 /** 4555 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4556 * @dev: Device to which command will be sent 4557 * @enable: Whether to enable or disable the feature 4558 * @feature: The sector count represents the feature to set 4559 * 4560 * Issue SET FEATURES - SATA FEATURES command to device @dev 4561 * on port @ap with sector count 4562 * 4563 * LOCKING: 4564 * PCI/etc. bus probe sem. 4565 * 4566 * RETURNS: 4567 * 0 on success, AC_ERR_* mask otherwise. 4568 */ 4569 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4570 u8 feature) 4571 { 4572 struct ata_taskfile tf; 4573 unsigned int err_mask; 4574 4575 /* set up set-features taskfile */ 4576 DPRINTK("set features - SATA features\n"); 4577 4578 ata_tf_init(dev, &tf); 4579 tf.command = ATA_CMD_SET_FEATURES; 4580 tf.feature = enable; 4581 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4582 tf.protocol = ATA_PROT_NODATA; 4583 tf.nsect = feature; 4584 4585 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4586 4587 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4588 return err_mask; 4589 } 4590 4591 /** 4592 * ata_dev_init_params - Issue INIT DEV PARAMS command 4593 * @dev: Device to which command will be sent 4594 * @heads: Number of heads (taskfile parameter) 4595 * @sectors: Number of sectors (taskfile parameter) 4596 * 4597 * LOCKING: 4598 * Kernel thread context (may sleep) 4599 * 4600 * RETURNS: 4601 * 0 on success, AC_ERR_* mask otherwise. 4602 */ 4603 static unsigned int ata_dev_init_params(struct ata_device *dev, 4604 u16 heads, u16 sectors) 4605 { 4606 struct ata_taskfile tf; 4607 unsigned int err_mask; 4608 4609 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4610 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4611 return AC_ERR_INVALID; 4612 4613 /* set up init dev params taskfile */ 4614 DPRINTK("init dev params \n"); 4615 4616 ata_tf_init(dev, &tf); 4617 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4618 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4619 tf.protocol = ATA_PROT_NODATA; 4620 tf.nsect = sectors; 4621 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4622 4623 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4624 /* A clean abort indicates an original or just out of spec drive 4625 and we should continue as we issue the setup based on the 4626 drive reported working geometry */ 4627 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4628 err_mask = 0; 4629 4630 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4631 return err_mask; 4632 } 4633 4634 /** 4635 * ata_sg_clean - Unmap DMA memory associated with command 4636 * @qc: Command containing DMA memory to be released 4637 * 4638 * Unmap all mapped DMA memory associated with this command. 4639 * 4640 * LOCKING: 4641 * spin_lock_irqsave(host lock) 4642 */ 4643 void ata_sg_clean(struct ata_queued_cmd *qc) 4644 { 4645 struct ata_port *ap = qc->ap; 4646 struct scatterlist *sg = qc->sg; 4647 int dir = qc->dma_dir; 4648 4649 WARN_ON_ONCE(sg == NULL); 4650 4651 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4652 4653 if (qc->n_elem) 4654 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4655 4656 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4657 qc->sg = NULL; 4658 } 4659 4660 /** 4661 * atapi_check_dma - Check whether ATAPI DMA can be supported 4662 * @qc: Metadata associated with taskfile to check 4663 * 4664 * Allow low-level driver to filter ATA PACKET commands, returning 4665 * a status indicating whether or not it is OK to use DMA for the 4666 * supplied PACKET command. 4667 * 4668 * LOCKING: 4669 * spin_lock_irqsave(host lock) 4670 * 4671 * RETURNS: 0 when ATAPI DMA can be used 4672 * nonzero otherwise 4673 */ 4674 int atapi_check_dma(struct ata_queued_cmd *qc) 4675 { 4676 struct ata_port *ap = qc->ap; 4677 4678 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4679 * few ATAPI devices choke on such DMA requests. 4680 */ 4681 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4682 unlikely(qc->nbytes & 15)) 4683 return 1; 4684 4685 if (ap->ops->check_atapi_dma) 4686 return ap->ops->check_atapi_dma(qc); 4687 4688 return 0; 4689 } 4690 4691 /** 4692 * ata_std_qc_defer - Check whether a qc needs to be deferred 4693 * @qc: ATA command in question 4694 * 4695 * Non-NCQ commands cannot run with any other command, NCQ or 4696 * not. As upper layer only knows the queue depth, we are 4697 * responsible for maintaining exclusion. This function checks 4698 * whether a new command @qc can be issued. 4699 * 4700 * LOCKING: 4701 * spin_lock_irqsave(host lock) 4702 * 4703 * RETURNS: 4704 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4705 */ 4706 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4707 { 4708 struct ata_link *link = qc->dev->link; 4709 4710 if (qc->tf.protocol == ATA_PROT_NCQ) { 4711 if (!ata_tag_valid(link->active_tag)) 4712 return 0; 4713 } else { 4714 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4715 return 0; 4716 } 4717 4718 return ATA_DEFER_LINK; 4719 } 4720 4721 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4722 4723 /** 4724 * ata_sg_init - Associate command with scatter-gather table. 4725 * @qc: Command to be associated 4726 * @sg: Scatter-gather table. 4727 * @n_elem: Number of elements in s/g table. 4728 * 4729 * Initialize the data-related elements of queued_cmd @qc 4730 * to point to a scatter-gather table @sg, containing @n_elem 4731 * elements. 4732 * 4733 * LOCKING: 4734 * spin_lock_irqsave(host lock) 4735 */ 4736 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4737 unsigned int n_elem) 4738 { 4739 qc->sg = sg; 4740 qc->n_elem = n_elem; 4741 qc->cursg = qc->sg; 4742 } 4743 4744 /** 4745 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4746 * @qc: Command with scatter-gather table to be mapped. 4747 * 4748 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4749 * 4750 * LOCKING: 4751 * spin_lock_irqsave(host lock) 4752 * 4753 * RETURNS: 4754 * Zero on success, negative on error. 4755 * 4756 */ 4757 static int ata_sg_setup(struct ata_queued_cmd *qc) 4758 { 4759 struct ata_port *ap = qc->ap; 4760 unsigned int n_elem; 4761 4762 VPRINTK("ENTER, ata%u\n", ap->print_id); 4763 4764 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4765 if (n_elem < 1) 4766 return -1; 4767 4768 DPRINTK("%d sg elements mapped\n", n_elem); 4769 qc->orig_n_elem = qc->n_elem; 4770 qc->n_elem = n_elem; 4771 qc->flags |= ATA_QCFLAG_DMAMAP; 4772 4773 return 0; 4774 } 4775 4776 /** 4777 * swap_buf_le16 - swap halves of 16-bit words in place 4778 * @buf: Buffer to swap 4779 * @buf_words: Number of 16-bit words in buffer. 4780 * 4781 * Swap halves of 16-bit words if needed to convert from 4782 * little-endian byte order to native cpu byte order, or 4783 * vice-versa. 4784 * 4785 * LOCKING: 4786 * Inherited from caller. 4787 */ 4788 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4789 { 4790 #ifdef __BIG_ENDIAN 4791 unsigned int i; 4792 4793 for (i = 0; i < buf_words; i++) 4794 buf[i] = le16_to_cpu(buf[i]); 4795 #endif /* __BIG_ENDIAN */ 4796 } 4797 4798 /** 4799 * ata_qc_new - Request an available ATA command, for queueing 4800 * @ap: target port 4801 * 4802 * LOCKING: 4803 * None. 4804 */ 4805 4806 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4807 { 4808 struct ata_queued_cmd *qc = NULL; 4809 unsigned int i; 4810 4811 /* no command while frozen */ 4812 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4813 return NULL; 4814 4815 /* the last tag is reserved for internal command. */ 4816 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4817 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4818 qc = __ata_qc_from_tag(ap, i); 4819 break; 4820 } 4821 4822 if (qc) 4823 qc->tag = i; 4824 4825 return qc; 4826 } 4827 4828 /** 4829 * ata_qc_new_init - Request an available ATA command, and initialize it 4830 * @dev: Device from whom we request an available command structure 4831 * 4832 * LOCKING: 4833 * None. 4834 */ 4835 4836 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4837 { 4838 struct ata_port *ap = dev->link->ap; 4839 struct ata_queued_cmd *qc; 4840 4841 qc = ata_qc_new(ap); 4842 if (qc) { 4843 qc->scsicmd = NULL; 4844 qc->ap = ap; 4845 qc->dev = dev; 4846 4847 ata_qc_reinit(qc); 4848 } 4849 4850 return qc; 4851 } 4852 4853 /** 4854 * ata_qc_free - free unused ata_queued_cmd 4855 * @qc: Command to complete 4856 * 4857 * Designed to free unused ata_queued_cmd object 4858 * in case something prevents using it. 4859 * 4860 * LOCKING: 4861 * spin_lock_irqsave(host lock) 4862 */ 4863 void ata_qc_free(struct ata_queued_cmd *qc) 4864 { 4865 struct ata_port *ap; 4866 unsigned int tag; 4867 4868 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4869 ap = qc->ap; 4870 4871 qc->flags = 0; 4872 tag = qc->tag; 4873 if (likely(ata_tag_valid(tag))) { 4874 qc->tag = ATA_TAG_POISON; 4875 clear_bit(tag, &ap->qc_allocated); 4876 } 4877 } 4878 4879 void __ata_qc_complete(struct ata_queued_cmd *qc) 4880 { 4881 struct ata_port *ap; 4882 struct ata_link *link; 4883 4884 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4885 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4886 ap = qc->ap; 4887 link = qc->dev->link; 4888 4889 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4890 ata_sg_clean(qc); 4891 4892 /* command should be marked inactive atomically with qc completion */ 4893 if (qc->tf.protocol == ATA_PROT_NCQ) { 4894 link->sactive &= ~(1 << qc->tag); 4895 if (!link->sactive) 4896 ap->nr_active_links--; 4897 } else { 4898 link->active_tag = ATA_TAG_POISON; 4899 ap->nr_active_links--; 4900 } 4901 4902 /* clear exclusive status */ 4903 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4904 ap->excl_link == link)) 4905 ap->excl_link = NULL; 4906 4907 /* atapi: mark qc as inactive to prevent the interrupt handler 4908 * from completing the command twice later, before the error handler 4909 * is called. (when rc != 0 and atapi request sense is needed) 4910 */ 4911 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4912 ap->qc_active &= ~(1 << qc->tag); 4913 4914 /* call completion callback */ 4915 qc->complete_fn(qc); 4916 } 4917 4918 static void fill_result_tf(struct ata_queued_cmd *qc) 4919 { 4920 struct ata_port *ap = qc->ap; 4921 4922 qc->result_tf.flags = qc->tf.flags; 4923 ap->ops->qc_fill_rtf(qc); 4924 } 4925 4926 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4927 { 4928 struct ata_device *dev = qc->dev; 4929 4930 if (ata_tag_internal(qc->tag)) 4931 return; 4932 4933 if (ata_is_nodata(qc->tf.protocol)) 4934 return; 4935 4936 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4937 return; 4938 4939 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4940 } 4941 4942 /** 4943 * ata_qc_complete - Complete an active ATA command 4944 * @qc: Command to complete 4945 * 4946 * Indicate to the mid and upper layers that an ATA 4947 * command has completed, with either an ok or not-ok status. 4948 * 4949 * LOCKING: 4950 * spin_lock_irqsave(host lock) 4951 */ 4952 void ata_qc_complete(struct ata_queued_cmd *qc) 4953 { 4954 struct ata_port *ap = qc->ap; 4955 4956 /* XXX: New EH and old EH use different mechanisms to 4957 * synchronize EH with regular execution path. 4958 * 4959 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4960 * Normal execution path is responsible for not accessing a 4961 * failed qc. libata core enforces the rule by returning NULL 4962 * from ata_qc_from_tag() for failed qcs. 4963 * 4964 * Old EH depends on ata_qc_complete() nullifying completion 4965 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4966 * not synchronize with interrupt handler. Only PIO task is 4967 * taken care of. 4968 */ 4969 if (ap->ops->error_handler) { 4970 struct ata_device *dev = qc->dev; 4971 struct ata_eh_info *ehi = &dev->link->eh_info; 4972 4973 if (unlikely(qc->err_mask)) 4974 qc->flags |= ATA_QCFLAG_FAILED; 4975 4976 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4977 /* always fill result TF for failed qc */ 4978 fill_result_tf(qc); 4979 4980 if (!ata_tag_internal(qc->tag)) 4981 ata_qc_schedule_eh(qc); 4982 else 4983 __ata_qc_complete(qc); 4984 return; 4985 } 4986 4987 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4988 4989 /* read result TF if requested */ 4990 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4991 fill_result_tf(qc); 4992 4993 /* Some commands need post-processing after successful 4994 * completion. 4995 */ 4996 switch (qc->tf.command) { 4997 case ATA_CMD_SET_FEATURES: 4998 if (qc->tf.feature != SETFEATURES_WC_ON && 4999 qc->tf.feature != SETFEATURES_WC_OFF) 5000 break; 5001 /* fall through */ 5002 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5003 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5004 /* revalidate device */ 5005 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5006 ata_port_schedule_eh(ap); 5007 break; 5008 5009 case ATA_CMD_SLEEP: 5010 dev->flags |= ATA_DFLAG_SLEEPING; 5011 break; 5012 } 5013 5014 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5015 ata_verify_xfer(qc); 5016 5017 __ata_qc_complete(qc); 5018 } else { 5019 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5020 return; 5021 5022 /* read result TF if failed or requested */ 5023 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5024 fill_result_tf(qc); 5025 5026 __ata_qc_complete(qc); 5027 } 5028 } 5029 5030 /** 5031 * ata_qc_complete_multiple - Complete multiple qcs successfully 5032 * @ap: port in question 5033 * @qc_active: new qc_active mask 5034 * 5035 * Complete in-flight commands. This functions is meant to be 5036 * called from low-level driver's interrupt routine to complete 5037 * requests normally. ap->qc_active and @qc_active is compared 5038 * and commands are completed accordingly. 5039 * 5040 * LOCKING: 5041 * spin_lock_irqsave(host lock) 5042 * 5043 * RETURNS: 5044 * Number of completed commands on success, -errno otherwise. 5045 */ 5046 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5047 { 5048 int nr_done = 0; 5049 u32 done_mask; 5050 5051 done_mask = ap->qc_active ^ qc_active; 5052 5053 if (unlikely(done_mask & qc_active)) { 5054 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5055 "(%08x->%08x)\n", ap->qc_active, qc_active); 5056 return -EINVAL; 5057 } 5058 5059 while (done_mask) { 5060 struct ata_queued_cmd *qc; 5061 unsigned int tag = __ffs(done_mask); 5062 5063 qc = ata_qc_from_tag(ap, tag); 5064 if (qc) { 5065 ata_qc_complete(qc); 5066 nr_done++; 5067 } 5068 done_mask &= ~(1 << tag); 5069 } 5070 5071 return nr_done; 5072 } 5073 5074 /** 5075 * ata_qc_issue - issue taskfile to device 5076 * @qc: command to issue to device 5077 * 5078 * Prepare an ATA command to submission to device. 5079 * This includes mapping the data into a DMA-able 5080 * area, filling in the S/G table, and finally 5081 * writing the taskfile to hardware, starting the command. 5082 * 5083 * LOCKING: 5084 * spin_lock_irqsave(host lock) 5085 */ 5086 void ata_qc_issue(struct ata_queued_cmd *qc) 5087 { 5088 struct ata_port *ap = qc->ap; 5089 struct ata_link *link = qc->dev->link; 5090 u8 prot = qc->tf.protocol; 5091 5092 /* Make sure only one non-NCQ command is outstanding. The 5093 * check is skipped for old EH because it reuses active qc to 5094 * request ATAPI sense. 5095 */ 5096 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5097 5098 if (ata_is_ncq(prot)) { 5099 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5100 5101 if (!link->sactive) 5102 ap->nr_active_links++; 5103 link->sactive |= 1 << qc->tag; 5104 } else { 5105 WARN_ON_ONCE(link->sactive); 5106 5107 ap->nr_active_links++; 5108 link->active_tag = qc->tag; 5109 } 5110 5111 qc->flags |= ATA_QCFLAG_ACTIVE; 5112 ap->qc_active |= 1 << qc->tag; 5113 5114 /* We guarantee to LLDs that they will have at least one 5115 * non-zero sg if the command is a data command. 5116 */ 5117 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5118 5119 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5120 (ap->flags & ATA_FLAG_PIO_DMA))) 5121 if (ata_sg_setup(qc)) 5122 goto sg_err; 5123 5124 /* if device is sleeping, schedule reset and abort the link */ 5125 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5126 link->eh_info.action |= ATA_EH_RESET; 5127 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5128 ata_link_abort(link); 5129 return; 5130 } 5131 5132 ap->ops->qc_prep(qc); 5133 5134 qc->err_mask |= ap->ops->qc_issue(qc); 5135 if (unlikely(qc->err_mask)) 5136 goto err; 5137 return; 5138 5139 sg_err: 5140 qc->err_mask |= AC_ERR_SYSTEM; 5141 err: 5142 ata_qc_complete(qc); 5143 } 5144 5145 /** 5146 * sata_scr_valid - test whether SCRs are accessible 5147 * @link: ATA link to test SCR accessibility for 5148 * 5149 * Test whether SCRs are accessible for @link. 5150 * 5151 * LOCKING: 5152 * None. 5153 * 5154 * RETURNS: 5155 * 1 if SCRs are accessible, 0 otherwise. 5156 */ 5157 int sata_scr_valid(struct ata_link *link) 5158 { 5159 struct ata_port *ap = link->ap; 5160 5161 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5162 } 5163 5164 /** 5165 * sata_scr_read - read SCR register of the specified port 5166 * @link: ATA link to read SCR for 5167 * @reg: SCR to read 5168 * @val: Place to store read value 5169 * 5170 * Read SCR register @reg of @link into *@val. This function is 5171 * guaranteed to succeed if @link is ap->link, the cable type of 5172 * the port is SATA and the port implements ->scr_read. 5173 * 5174 * LOCKING: 5175 * None if @link is ap->link. Kernel thread context otherwise. 5176 * 5177 * RETURNS: 5178 * 0 on success, negative errno on failure. 5179 */ 5180 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5181 { 5182 if (ata_is_host_link(link)) { 5183 if (sata_scr_valid(link)) 5184 return link->ap->ops->scr_read(link, reg, val); 5185 return -EOPNOTSUPP; 5186 } 5187 5188 return sata_pmp_scr_read(link, reg, val); 5189 } 5190 5191 /** 5192 * sata_scr_write - write SCR register of the specified port 5193 * @link: ATA link to write SCR for 5194 * @reg: SCR to write 5195 * @val: value to write 5196 * 5197 * Write @val to SCR register @reg of @link. This function is 5198 * guaranteed to succeed if @link is ap->link, the cable type of 5199 * the port is SATA and the port implements ->scr_read. 5200 * 5201 * LOCKING: 5202 * None if @link is ap->link. Kernel thread context otherwise. 5203 * 5204 * RETURNS: 5205 * 0 on success, negative errno on failure. 5206 */ 5207 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5208 { 5209 if (ata_is_host_link(link)) { 5210 if (sata_scr_valid(link)) 5211 return link->ap->ops->scr_write(link, reg, val); 5212 return -EOPNOTSUPP; 5213 } 5214 5215 return sata_pmp_scr_write(link, reg, val); 5216 } 5217 5218 /** 5219 * sata_scr_write_flush - write SCR register of the specified port and flush 5220 * @link: ATA link to write SCR for 5221 * @reg: SCR to write 5222 * @val: value to write 5223 * 5224 * This function is identical to sata_scr_write() except that this 5225 * function performs flush after writing to the register. 5226 * 5227 * LOCKING: 5228 * None if @link is ap->link. Kernel thread context otherwise. 5229 * 5230 * RETURNS: 5231 * 0 on success, negative errno on failure. 5232 */ 5233 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5234 { 5235 if (ata_is_host_link(link)) { 5236 int rc; 5237 5238 if (sata_scr_valid(link)) { 5239 rc = link->ap->ops->scr_write(link, reg, val); 5240 if (rc == 0) 5241 rc = link->ap->ops->scr_read(link, reg, &val); 5242 return rc; 5243 } 5244 return -EOPNOTSUPP; 5245 } 5246 5247 return sata_pmp_scr_write(link, reg, val); 5248 } 5249 5250 /** 5251 * ata_phys_link_online - test whether the given link is online 5252 * @link: ATA link to test 5253 * 5254 * Test whether @link is online. Note that this function returns 5255 * 0 if online status of @link cannot be obtained, so 5256 * ata_link_online(link) != !ata_link_offline(link). 5257 * 5258 * LOCKING: 5259 * None. 5260 * 5261 * RETURNS: 5262 * True if the port online status is available and online. 5263 */ 5264 bool ata_phys_link_online(struct ata_link *link) 5265 { 5266 u32 sstatus; 5267 5268 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5269 ata_sstatus_online(sstatus)) 5270 return true; 5271 return false; 5272 } 5273 5274 /** 5275 * ata_phys_link_offline - test whether the given link is offline 5276 * @link: ATA link to test 5277 * 5278 * Test whether @link is offline. Note that this function 5279 * returns 0 if offline status of @link cannot be obtained, so 5280 * ata_link_online(link) != !ata_link_offline(link). 5281 * 5282 * LOCKING: 5283 * None. 5284 * 5285 * RETURNS: 5286 * True if the port offline status is available and offline. 5287 */ 5288 bool ata_phys_link_offline(struct ata_link *link) 5289 { 5290 u32 sstatus; 5291 5292 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5293 !ata_sstatus_online(sstatus)) 5294 return true; 5295 return false; 5296 } 5297 5298 /** 5299 * ata_link_online - test whether the given link is online 5300 * @link: ATA link to test 5301 * 5302 * Test whether @link is online. This is identical to 5303 * ata_phys_link_online() when there's no slave link. When 5304 * there's a slave link, this function should only be called on 5305 * the master link and will return true if any of M/S links is 5306 * online. 5307 * 5308 * LOCKING: 5309 * None. 5310 * 5311 * RETURNS: 5312 * True if the port online status is available and online. 5313 */ 5314 bool ata_link_online(struct ata_link *link) 5315 { 5316 struct ata_link *slave = link->ap->slave_link; 5317 5318 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5319 5320 return ata_phys_link_online(link) || 5321 (slave && ata_phys_link_online(slave)); 5322 } 5323 5324 /** 5325 * ata_link_offline - test whether the given link is offline 5326 * @link: ATA link to test 5327 * 5328 * Test whether @link is offline. This is identical to 5329 * ata_phys_link_offline() when there's no slave link. When 5330 * there's a slave link, this function should only be called on 5331 * the master link and will return true if both M/S links are 5332 * offline. 5333 * 5334 * LOCKING: 5335 * None. 5336 * 5337 * RETURNS: 5338 * True if the port offline status is available and offline. 5339 */ 5340 bool ata_link_offline(struct ata_link *link) 5341 { 5342 struct ata_link *slave = link->ap->slave_link; 5343 5344 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5345 5346 return ata_phys_link_offline(link) && 5347 (!slave || ata_phys_link_offline(slave)); 5348 } 5349 5350 #ifdef CONFIG_PM 5351 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5352 unsigned int action, unsigned int ehi_flags, 5353 int wait) 5354 { 5355 unsigned long flags; 5356 int i, rc; 5357 5358 for (i = 0; i < host->n_ports; i++) { 5359 struct ata_port *ap = host->ports[i]; 5360 struct ata_link *link; 5361 5362 /* Previous resume operation might still be in 5363 * progress. Wait for PM_PENDING to clear. 5364 */ 5365 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5366 ata_port_wait_eh(ap); 5367 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5368 } 5369 5370 /* request PM ops to EH */ 5371 spin_lock_irqsave(ap->lock, flags); 5372 5373 ap->pm_mesg = mesg; 5374 if (wait) { 5375 rc = 0; 5376 ap->pm_result = &rc; 5377 } 5378 5379 ap->pflags |= ATA_PFLAG_PM_PENDING; 5380 ata_for_each_link(link, ap, HOST_FIRST) { 5381 link->eh_info.action |= action; 5382 link->eh_info.flags |= ehi_flags; 5383 } 5384 5385 ata_port_schedule_eh(ap); 5386 5387 spin_unlock_irqrestore(ap->lock, flags); 5388 5389 /* wait and check result */ 5390 if (wait) { 5391 ata_port_wait_eh(ap); 5392 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5393 if (rc) 5394 return rc; 5395 } 5396 } 5397 5398 return 0; 5399 } 5400 5401 /** 5402 * ata_host_suspend - suspend host 5403 * @host: host to suspend 5404 * @mesg: PM message 5405 * 5406 * Suspend @host. Actual operation is performed by EH. This 5407 * function requests EH to perform PM operations and waits for EH 5408 * to finish. 5409 * 5410 * LOCKING: 5411 * Kernel thread context (may sleep). 5412 * 5413 * RETURNS: 5414 * 0 on success, -errno on failure. 5415 */ 5416 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5417 { 5418 int rc; 5419 5420 /* 5421 * disable link pm on all ports before requesting 5422 * any pm activity 5423 */ 5424 ata_lpm_enable(host); 5425 5426 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5427 if (rc == 0) 5428 host->dev->power.power_state = mesg; 5429 return rc; 5430 } 5431 5432 /** 5433 * ata_host_resume - resume host 5434 * @host: host to resume 5435 * 5436 * Resume @host. Actual operation is performed by EH. This 5437 * function requests EH to perform PM operations and returns. 5438 * Note that all resume operations are performed parallely. 5439 * 5440 * LOCKING: 5441 * Kernel thread context (may sleep). 5442 */ 5443 void ata_host_resume(struct ata_host *host) 5444 { 5445 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5446 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5447 host->dev->power.power_state = PMSG_ON; 5448 5449 /* reenable link pm */ 5450 ata_lpm_disable(host); 5451 } 5452 #endif 5453 5454 /** 5455 * ata_dev_init - Initialize an ata_device structure 5456 * @dev: Device structure to initialize 5457 * 5458 * Initialize @dev in preparation for probing. 5459 * 5460 * LOCKING: 5461 * Inherited from caller. 5462 */ 5463 void ata_dev_init(struct ata_device *dev) 5464 { 5465 struct ata_link *link = ata_dev_phys_link(dev); 5466 struct ata_port *ap = link->ap; 5467 unsigned long flags; 5468 5469 /* SATA spd limit is bound to the attached device, reset together */ 5470 link->sata_spd_limit = link->hw_sata_spd_limit; 5471 link->sata_spd = 0; 5472 5473 /* High bits of dev->flags are used to record warm plug 5474 * requests which occur asynchronously. Synchronize using 5475 * host lock. 5476 */ 5477 spin_lock_irqsave(ap->lock, flags); 5478 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5479 dev->horkage = 0; 5480 spin_unlock_irqrestore(ap->lock, flags); 5481 5482 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5483 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5484 dev->pio_mask = UINT_MAX; 5485 dev->mwdma_mask = UINT_MAX; 5486 dev->udma_mask = UINT_MAX; 5487 } 5488 5489 /** 5490 * ata_link_init - Initialize an ata_link structure 5491 * @ap: ATA port link is attached to 5492 * @link: Link structure to initialize 5493 * @pmp: Port multiplier port number 5494 * 5495 * Initialize @link. 5496 * 5497 * LOCKING: 5498 * Kernel thread context (may sleep) 5499 */ 5500 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5501 { 5502 int i; 5503 5504 /* clear everything except for devices */ 5505 memset(link, 0, offsetof(struct ata_link, device[0])); 5506 5507 link->ap = ap; 5508 link->pmp = pmp; 5509 link->active_tag = ATA_TAG_POISON; 5510 link->hw_sata_spd_limit = UINT_MAX; 5511 5512 /* can't use iterator, ap isn't initialized yet */ 5513 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5514 struct ata_device *dev = &link->device[i]; 5515 5516 dev->link = link; 5517 dev->devno = dev - link->device; 5518 #ifdef CONFIG_ATA_ACPI 5519 dev->gtf_filter = ata_acpi_gtf_filter; 5520 #endif 5521 ata_dev_init(dev); 5522 } 5523 } 5524 5525 /** 5526 * sata_link_init_spd - Initialize link->sata_spd_limit 5527 * @link: Link to configure sata_spd_limit for 5528 * 5529 * Initialize @link->[hw_]sata_spd_limit to the currently 5530 * configured value. 5531 * 5532 * LOCKING: 5533 * Kernel thread context (may sleep). 5534 * 5535 * RETURNS: 5536 * 0 on success, -errno on failure. 5537 */ 5538 int sata_link_init_spd(struct ata_link *link) 5539 { 5540 u8 spd; 5541 int rc; 5542 5543 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5544 if (rc) 5545 return rc; 5546 5547 spd = (link->saved_scontrol >> 4) & 0xf; 5548 if (spd) 5549 link->hw_sata_spd_limit &= (1 << spd) - 1; 5550 5551 ata_force_link_limits(link); 5552 5553 link->sata_spd_limit = link->hw_sata_spd_limit; 5554 5555 return 0; 5556 } 5557 5558 /** 5559 * ata_port_alloc - allocate and initialize basic ATA port resources 5560 * @host: ATA host this allocated port belongs to 5561 * 5562 * Allocate and initialize basic ATA port resources. 5563 * 5564 * RETURNS: 5565 * Allocate ATA port on success, NULL on failure. 5566 * 5567 * LOCKING: 5568 * Inherited from calling layer (may sleep). 5569 */ 5570 struct ata_port *ata_port_alloc(struct ata_host *host) 5571 { 5572 struct ata_port *ap; 5573 5574 DPRINTK("ENTER\n"); 5575 5576 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5577 if (!ap) 5578 return NULL; 5579 5580 ap->pflags |= ATA_PFLAG_INITIALIZING; 5581 ap->lock = &host->lock; 5582 ap->print_id = -1; 5583 ap->host = host; 5584 ap->dev = host->dev; 5585 5586 #if defined(ATA_VERBOSE_DEBUG) 5587 /* turn on all debugging levels */ 5588 ap->msg_enable = 0x00FF; 5589 #elif defined(ATA_DEBUG) 5590 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5591 #else 5592 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5593 #endif 5594 5595 mutex_init(&ap->scsi_scan_mutex); 5596 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5597 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5598 INIT_LIST_HEAD(&ap->eh_done_q); 5599 init_waitqueue_head(&ap->eh_wait_q); 5600 init_completion(&ap->park_req_pending); 5601 init_timer_deferrable(&ap->fastdrain_timer); 5602 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5603 ap->fastdrain_timer.data = (unsigned long)ap; 5604 5605 ap->cbl = ATA_CBL_NONE; 5606 5607 ata_link_init(ap, &ap->link, 0); 5608 5609 #ifdef ATA_IRQ_TRAP 5610 ap->stats.unhandled_irq = 1; 5611 ap->stats.idle_irq = 1; 5612 #endif 5613 ata_sff_port_init(ap); 5614 5615 return ap; 5616 } 5617 5618 static void ata_host_release(struct device *gendev, void *res) 5619 { 5620 struct ata_host *host = dev_get_drvdata(gendev); 5621 int i; 5622 5623 for (i = 0; i < host->n_ports; i++) { 5624 struct ata_port *ap = host->ports[i]; 5625 5626 if (!ap) 5627 continue; 5628 5629 if (ap->scsi_host) 5630 scsi_host_put(ap->scsi_host); 5631 5632 kfree(ap->pmp_link); 5633 kfree(ap->slave_link); 5634 kfree(ap); 5635 host->ports[i] = NULL; 5636 } 5637 5638 dev_set_drvdata(gendev, NULL); 5639 } 5640 5641 /** 5642 * ata_host_alloc - allocate and init basic ATA host resources 5643 * @dev: generic device this host is associated with 5644 * @max_ports: maximum number of ATA ports associated with this host 5645 * 5646 * Allocate and initialize basic ATA host resources. LLD calls 5647 * this function to allocate a host, initializes it fully and 5648 * attaches it using ata_host_register(). 5649 * 5650 * @max_ports ports are allocated and host->n_ports is 5651 * initialized to @max_ports. The caller is allowed to decrease 5652 * host->n_ports before calling ata_host_register(). The unused 5653 * ports will be automatically freed on registration. 5654 * 5655 * RETURNS: 5656 * Allocate ATA host on success, NULL on failure. 5657 * 5658 * LOCKING: 5659 * Inherited from calling layer (may sleep). 5660 */ 5661 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5662 { 5663 struct ata_host *host; 5664 size_t sz; 5665 int i; 5666 5667 DPRINTK("ENTER\n"); 5668 5669 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5670 return NULL; 5671 5672 /* alloc a container for our list of ATA ports (buses) */ 5673 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5674 /* alloc a container for our list of ATA ports (buses) */ 5675 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5676 if (!host) 5677 goto err_out; 5678 5679 devres_add(dev, host); 5680 dev_set_drvdata(dev, host); 5681 5682 spin_lock_init(&host->lock); 5683 host->dev = dev; 5684 host->n_ports = max_ports; 5685 5686 /* allocate ports bound to this host */ 5687 for (i = 0; i < max_ports; i++) { 5688 struct ata_port *ap; 5689 5690 ap = ata_port_alloc(host); 5691 if (!ap) 5692 goto err_out; 5693 5694 ap->port_no = i; 5695 host->ports[i] = ap; 5696 } 5697 5698 devres_remove_group(dev, NULL); 5699 return host; 5700 5701 err_out: 5702 devres_release_group(dev, NULL); 5703 return NULL; 5704 } 5705 5706 /** 5707 * ata_host_alloc_pinfo - alloc host and init with port_info array 5708 * @dev: generic device this host is associated with 5709 * @ppi: array of ATA port_info to initialize host with 5710 * @n_ports: number of ATA ports attached to this host 5711 * 5712 * Allocate ATA host and initialize with info from @ppi. If NULL 5713 * terminated, @ppi may contain fewer entries than @n_ports. The 5714 * last entry will be used for the remaining ports. 5715 * 5716 * RETURNS: 5717 * Allocate ATA host on success, NULL on failure. 5718 * 5719 * LOCKING: 5720 * Inherited from calling layer (may sleep). 5721 */ 5722 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5723 const struct ata_port_info * const * ppi, 5724 int n_ports) 5725 { 5726 const struct ata_port_info *pi; 5727 struct ata_host *host; 5728 int i, j; 5729 5730 host = ata_host_alloc(dev, n_ports); 5731 if (!host) 5732 return NULL; 5733 5734 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5735 struct ata_port *ap = host->ports[i]; 5736 5737 if (ppi[j]) 5738 pi = ppi[j++]; 5739 5740 ap->pio_mask = pi->pio_mask; 5741 ap->mwdma_mask = pi->mwdma_mask; 5742 ap->udma_mask = pi->udma_mask; 5743 ap->flags |= pi->flags; 5744 ap->link.flags |= pi->link_flags; 5745 ap->ops = pi->port_ops; 5746 5747 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5748 host->ops = pi->port_ops; 5749 } 5750 5751 return host; 5752 } 5753 5754 /** 5755 * ata_slave_link_init - initialize slave link 5756 * @ap: port to initialize slave link for 5757 * 5758 * Create and initialize slave link for @ap. This enables slave 5759 * link handling on the port. 5760 * 5761 * In libata, a port contains links and a link contains devices. 5762 * There is single host link but if a PMP is attached to it, 5763 * there can be multiple fan-out links. On SATA, there's usually 5764 * a single device connected to a link but PATA and SATA 5765 * controllers emulating TF based interface can have two - master 5766 * and slave. 5767 * 5768 * However, there are a few controllers which don't fit into this 5769 * abstraction too well - SATA controllers which emulate TF 5770 * interface with both master and slave devices but also have 5771 * separate SCR register sets for each device. These controllers 5772 * need separate links for physical link handling 5773 * (e.g. onlineness, link speed) but should be treated like a 5774 * traditional M/S controller for everything else (e.g. command 5775 * issue, softreset). 5776 * 5777 * slave_link is libata's way of handling this class of 5778 * controllers without impacting core layer too much. For 5779 * anything other than physical link handling, the default host 5780 * link is used for both master and slave. For physical link 5781 * handling, separate @ap->slave_link is used. All dirty details 5782 * are implemented inside libata core layer. From LLD's POV, the 5783 * only difference is that prereset, hardreset and postreset are 5784 * called once more for the slave link, so the reset sequence 5785 * looks like the following. 5786 * 5787 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5788 * softreset(M) -> postreset(M) -> postreset(S) 5789 * 5790 * Note that softreset is called only for the master. Softreset 5791 * resets both M/S by definition, so SRST on master should handle 5792 * both (the standard method will work just fine). 5793 * 5794 * LOCKING: 5795 * Should be called before host is registered. 5796 * 5797 * RETURNS: 5798 * 0 on success, -errno on failure. 5799 */ 5800 int ata_slave_link_init(struct ata_port *ap) 5801 { 5802 struct ata_link *link; 5803 5804 WARN_ON(ap->slave_link); 5805 WARN_ON(ap->flags & ATA_FLAG_PMP); 5806 5807 link = kzalloc(sizeof(*link), GFP_KERNEL); 5808 if (!link) 5809 return -ENOMEM; 5810 5811 ata_link_init(ap, link, 1); 5812 ap->slave_link = link; 5813 return 0; 5814 } 5815 5816 static void ata_host_stop(struct device *gendev, void *res) 5817 { 5818 struct ata_host *host = dev_get_drvdata(gendev); 5819 int i; 5820 5821 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5822 5823 for (i = 0; i < host->n_ports; i++) { 5824 struct ata_port *ap = host->ports[i]; 5825 5826 if (ap->ops->port_stop) 5827 ap->ops->port_stop(ap); 5828 } 5829 5830 if (host->ops->host_stop) 5831 host->ops->host_stop(host); 5832 } 5833 5834 /** 5835 * ata_finalize_port_ops - finalize ata_port_operations 5836 * @ops: ata_port_operations to finalize 5837 * 5838 * An ata_port_operations can inherit from another ops and that 5839 * ops can again inherit from another. This can go on as many 5840 * times as necessary as long as there is no loop in the 5841 * inheritance chain. 5842 * 5843 * Ops tables are finalized when the host is started. NULL or 5844 * unspecified entries are inherited from the closet ancestor 5845 * which has the method and the entry is populated with it. 5846 * After finalization, the ops table directly points to all the 5847 * methods and ->inherits is no longer necessary and cleared. 5848 * 5849 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5850 * 5851 * LOCKING: 5852 * None. 5853 */ 5854 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5855 { 5856 static DEFINE_SPINLOCK(lock); 5857 const struct ata_port_operations *cur; 5858 void **begin = (void **)ops; 5859 void **end = (void **)&ops->inherits; 5860 void **pp; 5861 5862 if (!ops || !ops->inherits) 5863 return; 5864 5865 spin_lock(&lock); 5866 5867 for (cur = ops->inherits; cur; cur = cur->inherits) { 5868 void **inherit = (void **)cur; 5869 5870 for (pp = begin; pp < end; pp++, inherit++) 5871 if (!*pp) 5872 *pp = *inherit; 5873 } 5874 5875 for (pp = begin; pp < end; pp++) 5876 if (IS_ERR(*pp)) 5877 *pp = NULL; 5878 5879 ops->inherits = NULL; 5880 5881 spin_unlock(&lock); 5882 } 5883 5884 /** 5885 * ata_host_start - start and freeze ports of an ATA host 5886 * @host: ATA host to start ports for 5887 * 5888 * Start and then freeze ports of @host. Started status is 5889 * recorded in host->flags, so this function can be called 5890 * multiple times. Ports are guaranteed to get started only 5891 * once. If host->ops isn't initialized yet, its set to the 5892 * first non-dummy port ops. 5893 * 5894 * LOCKING: 5895 * Inherited from calling layer (may sleep). 5896 * 5897 * RETURNS: 5898 * 0 if all ports are started successfully, -errno otherwise. 5899 */ 5900 int ata_host_start(struct ata_host *host) 5901 { 5902 int have_stop = 0; 5903 void *start_dr = NULL; 5904 int i, rc; 5905 5906 if (host->flags & ATA_HOST_STARTED) 5907 return 0; 5908 5909 ata_finalize_port_ops(host->ops); 5910 5911 for (i = 0; i < host->n_ports; i++) { 5912 struct ata_port *ap = host->ports[i]; 5913 5914 ata_finalize_port_ops(ap->ops); 5915 5916 if (!host->ops && !ata_port_is_dummy(ap)) 5917 host->ops = ap->ops; 5918 5919 if (ap->ops->port_stop) 5920 have_stop = 1; 5921 } 5922 5923 if (host->ops->host_stop) 5924 have_stop = 1; 5925 5926 if (have_stop) { 5927 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5928 if (!start_dr) 5929 return -ENOMEM; 5930 } 5931 5932 for (i = 0; i < host->n_ports; i++) { 5933 struct ata_port *ap = host->ports[i]; 5934 5935 if (ap->ops->port_start) { 5936 rc = ap->ops->port_start(ap); 5937 if (rc) { 5938 if (rc != -ENODEV) 5939 dev_printk(KERN_ERR, host->dev, 5940 "failed to start port %d " 5941 "(errno=%d)\n", i, rc); 5942 goto err_out; 5943 } 5944 } 5945 ata_eh_freeze_port(ap); 5946 } 5947 5948 if (start_dr) 5949 devres_add(host->dev, start_dr); 5950 host->flags |= ATA_HOST_STARTED; 5951 return 0; 5952 5953 err_out: 5954 while (--i >= 0) { 5955 struct ata_port *ap = host->ports[i]; 5956 5957 if (ap->ops->port_stop) 5958 ap->ops->port_stop(ap); 5959 } 5960 devres_free(start_dr); 5961 return rc; 5962 } 5963 5964 /** 5965 * ata_sas_host_init - Initialize a host struct 5966 * @host: host to initialize 5967 * @dev: device host is attached to 5968 * @flags: host flags 5969 * @ops: port_ops 5970 * 5971 * LOCKING: 5972 * PCI/etc. bus probe sem. 5973 * 5974 */ 5975 /* KILLME - the only user left is ipr */ 5976 void ata_host_init(struct ata_host *host, struct device *dev, 5977 unsigned long flags, struct ata_port_operations *ops) 5978 { 5979 spin_lock_init(&host->lock); 5980 host->dev = dev; 5981 host->flags = flags; 5982 host->ops = ops; 5983 } 5984 5985 5986 static void async_port_probe(void *data, async_cookie_t cookie) 5987 { 5988 int rc; 5989 struct ata_port *ap = data; 5990 5991 /* 5992 * If we're not allowed to scan this host in parallel, 5993 * we need to wait until all previous scans have completed 5994 * before going further. 5995 * Jeff Garzik says this is only within a controller, so we 5996 * don't need to wait for port 0, only for later ports. 5997 */ 5998 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5999 async_synchronize_cookie(cookie); 6000 6001 /* probe */ 6002 if (ap->ops->error_handler) { 6003 struct ata_eh_info *ehi = &ap->link.eh_info; 6004 unsigned long flags; 6005 6006 /* kick EH for boot probing */ 6007 spin_lock_irqsave(ap->lock, flags); 6008 6009 ehi->probe_mask |= ATA_ALL_DEVICES; 6010 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6011 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6012 6013 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6014 ap->pflags |= ATA_PFLAG_LOADING; 6015 ata_port_schedule_eh(ap); 6016 6017 spin_unlock_irqrestore(ap->lock, flags); 6018 6019 /* wait for EH to finish */ 6020 ata_port_wait_eh(ap); 6021 } else { 6022 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6023 rc = ata_bus_probe(ap); 6024 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6025 6026 if (rc) { 6027 /* FIXME: do something useful here? 6028 * Current libata behavior will 6029 * tear down everything when 6030 * the module is removed 6031 * or the h/w is unplugged. 6032 */ 6033 } 6034 } 6035 6036 /* in order to keep device order, we need to synchronize at this point */ 6037 async_synchronize_cookie(cookie); 6038 6039 ata_scsi_scan_host(ap, 1); 6040 6041 } 6042 /** 6043 * ata_host_register - register initialized ATA host 6044 * @host: ATA host to register 6045 * @sht: template for SCSI host 6046 * 6047 * Register initialized ATA host. @host is allocated using 6048 * ata_host_alloc() and fully initialized by LLD. This function 6049 * starts ports, registers @host with ATA and SCSI layers and 6050 * probe registered devices. 6051 * 6052 * LOCKING: 6053 * Inherited from calling layer (may sleep). 6054 * 6055 * RETURNS: 6056 * 0 on success, -errno otherwise. 6057 */ 6058 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6059 { 6060 int i, rc; 6061 6062 /* host must have been started */ 6063 if (!(host->flags & ATA_HOST_STARTED)) { 6064 dev_printk(KERN_ERR, host->dev, 6065 "BUG: trying to register unstarted host\n"); 6066 WARN_ON(1); 6067 return -EINVAL; 6068 } 6069 6070 /* Blow away unused ports. This happens when LLD can't 6071 * determine the exact number of ports to allocate at 6072 * allocation time. 6073 */ 6074 for (i = host->n_ports; host->ports[i]; i++) 6075 kfree(host->ports[i]); 6076 6077 /* give ports names and add SCSI hosts */ 6078 for (i = 0; i < host->n_ports; i++) 6079 host->ports[i]->print_id = ata_print_id++; 6080 6081 rc = ata_scsi_add_hosts(host, sht); 6082 if (rc) 6083 return rc; 6084 6085 /* associate with ACPI nodes */ 6086 ata_acpi_associate(host); 6087 6088 /* set cable, sata_spd_limit and report */ 6089 for (i = 0; i < host->n_ports; i++) { 6090 struct ata_port *ap = host->ports[i]; 6091 unsigned long xfer_mask; 6092 6093 /* set SATA cable type if still unset */ 6094 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6095 ap->cbl = ATA_CBL_SATA; 6096 6097 /* init sata_spd_limit to the current value */ 6098 sata_link_init_spd(&ap->link); 6099 if (ap->slave_link) 6100 sata_link_init_spd(ap->slave_link); 6101 6102 /* print per-port info to dmesg */ 6103 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6104 ap->udma_mask); 6105 6106 if (!ata_port_is_dummy(ap)) { 6107 ata_port_printk(ap, KERN_INFO, 6108 "%cATA max %s %s\n", 6109 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6110 ata_mode_string(xfer_mask), 6111 ap->link.eh_info.desc); 6112 ata_ehi_clear_desc(&ap->link.eh_info); 6113 } else 6114 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6115 } 6116 6117 /* perform each probe asynchronously */ 6118 for (i = 0; i < host->n_ports; i++) { 6119 struct ata_port *ap = host->ports[i]; 6120 async_schedule(async_port_probe, ap); 6121 } 6122 6123 return 0; 6124 } 6125 6126 /** 6127 * ata_host_activate - start host, request IRQ and register it 6128 * @host: target ATA host 6129 * @irq: IRQ to request 6130 * @irq_handler: irq_handler used when requesting IRQ 6131 * @irq_flags: irq_flags used when requesting IRQ 6132 * @sht: scsi_host_template to use when registering the host 6133 * 6134 * After allocating an ATA host and initializing it, most libata 6135 * LLDs perform three steps to activate the host - start host, 6136 * request IRQ and register it. This helper takes necessasry 6137 * arguments and performs the three steps in one go. 6138 * 6139 * An invalid IRQ skips the IRQ registration and expects the host to 6140 * have set polling mode on the port. In this case, @irq_handler 6141 * should be NULL. 6142 * 6143 * LOCKING: 6144 * Inherited from calling layer (may sleep). 6145 * 6146 * RETURNS: 6147 * 0 on success, -errno otherwise. 6148 */ 6149 int ata_host_activate(struct ata_host *host, int irq, 6150 irq_handler_t irq_handler, unsigned long irq_flags, 6151 struct scsi_host_template *sht) 6152 { 6153 int i, rc; 6154 6155 rc = ata_host_start(host); 6156 if (rc) 6157 return rc; 6158 6159 /* Special case for polling mode */ 6160 if (!irq) { 6161 WARN_ON(irq_handler); 6162 return ata_host_register(host, sht); 6163 } 6164 6165 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6166 dev_driver_string(host->dev), host); 6167 if (rc) 6168 return rc; 6169 6170 for (i = 0; i < host->n_ports; i++) 6171 ata_port_desc(host->ports[i], "irq %d", irq); 6172 6173 rc = ata_host_register(host, sht); 6174 /* if failed, just free the IRQ and leave ports alone */ 6175 if (rc) 6176 devm_free_irq(host->dev, irq, host); 6177 6178 return rc; 6179 } 6180 6181 /** 6182 * ata_port_detach - Detach ATA port in prepration of device removal 6183 * @ap: ATA port to be detached 6184 * 6185 * Detach all ATA devices and the associated SCSI devices of @ap; 6186 * then, remove the associated SCSI host. @ap is guaranteed to 6187 * be quiescent on return from this function. 6188 * 6189 * LOCKING: 6190 * Kernel thread context (may sleep). 6191 */ 6192 static void ata_port_detach(struct ata_port *ap) 6193 { 6194 unsigned long flags; 6195 6196 if (!ap->ops->error_handler) 6197 goto skip_eh; 6198 6199 /* tell EH we're leaving & flush EH */ 6200 spin_lock_irqsave(ap->lock, flags); 6201 ap->pflags |= ATA_PFLAG_UNLOADING; 6202 ata_port_schedule_eh(ap); 6203 spin_unlock_irqrestore(ap->lock, flags); 6204 6205 /* wait till EH commits suicide */ 6206 ata_port_wait_eh(ap); 6207 6208 /* it better be dead now */ 6209 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6210 6211 cancel_rearming_delayed_work(&ap->hotplug_task); 6212 6213 skip_eh: 6214 /* remove the associated SCSI host */ 6215 scsi_remove_host(ap->scsi_host); 6216 } 6217 6218 /** 6219 * ata_host_detach - Detach all ports of an ATA host 6220 * @host: Host to detach 6221 * 6222 * Detach all ports of @host. 6223 * 6224 * LOCKING: 6225 * Kernel thread context (may sleep). 6226 */ 6227 void ata_host_detach(struct ata_host *host) 6228 { 6229 int i; 6230 6231 for (i = 0; i < host->n_ports; i++) 6232 ata_port_detach(host->ports[i]); 6233 6234 /* the host is dead now, dissociate ACPI */ 6235 ata_acpi_dissociate(host); 6236 } 6237 6238 #ifdef CONFIG_PCI 6239 6240 /** 6241 * ata_pci_remove_one - PCI layer callback for device removal 6242 * @pdev: PCI device that was removed 6243 * 6244 * PCI layer indicates to libata via this hook that hot-unplug or 6245 * module unload event has occurred. Detach all ports. Resource 6246 * release is handled via devres. 6247 * 6248 * LOCKING: 6249 * Inherited from PCI layer (may sleep). 6250 */ 6251 void ata_pci_remove_one(struct pci_dev *pdev) 6252 { 6253 struct device *dev = &pdev->dev; 6254 struct ata_host *host = dev_get_drvdata(dev); 6255 6256 ata_host_detach(host); 6257 } 6258 6259 /* move to PCI subsystem */ 6260 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6261 { 6262 unsigned long tmp = 0; 6263 6264 switch (bits->width) { 6265 case 1: { 6266 u8 tmp8 = 0; 6267 pci_read_config_byte(pdev, bits->reg, &tmp8); 6268 tmp = tmp8; 6269 break; 6270 } 6271 case 2: { 6272 u16 tmp16 = 0; 6273 pci_read_config_word(pdev, bits->reg, &tmp16); 6274 tmp = tmp16; 6275 break; 6276 } 6277 case 4: { 6278 u32 tmp32 = 0; 6279 pci_read_config_dword(pdev, bits->reg, &tmp32); 6280 tmp = tmp32; 6281 break; 6282 } 6283 6284 default: 6285 return -EINVAL; 6286 } 6287 6288 tmp &= bits->mask; 6289 6290 return (tmp == bits->val) ? 1 : 0; 6291 } 6292 6293 #ifdef CONFIG_PM 6294 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6295 { 6296 pci_save_state(pdev); 6297 pci_disable_device(pdev); 6298 6299 if (mesg.event & PM_EVENT_SLEEP) 6300 pci_set_power_state(pdev, PCI_D3hot); 6301 } 6302 6303 int ata_pci_device_do_resume(struct pci_dev *pdev) 6304 { 6305 int rc; 6306 6307 pci_set_power_state(pdev, PCI_D0); 6308 pci_restore_state(pdev); 6309 6310 rc = pcim_enable_device(pdev); 6311 if (rc) { 6312 dev_printk(KERN_ERR, &pdev->dev, 6313 "failed to enable device after resume (%d)\n", rc); 6314 return rc; 6315 } 6316 6317 pci_set_master(pdev); 6318 return 0; 6319 } 6320 6321 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6322 { 6323 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6324 int rc = 0; 6325 6326 rc = ata_host_suspend(host, mesg); 6327 if (rc) 6328 return rc; 6329 6330 ata_pci_device_do_suspend(pdev, mesg); 6331 6332 return 0; 6333 } 6334 6335 int ata_pci_device_resume(struct pci_dev *pdev) 6336 { 6337 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6338 int rc; 6339 6340 rc = ata_pci_device_do_resume(pdev); 6341 if (rc == 0) 6342 ata_host_resume(host); 6343 return rc; 6344 } 6345 #endif /* CONFIG_PM */ 6346 6347 #endif /* CONFIG_PCI */ 6348 6349 static int __init ata_parse_force_one(char **cur, 6350 struct ata_force_ent *force_ent, 6351 const char **reason) 6352 { 6353 /* FIXME: Currently, there's no way to tag init const data and 6354 * using __initdata causes build failure on some versions of 6355 * gcc. Once __initdataconst is implemented, add const to the 6356 * following structure. 6357 */ 6358 static struct ata_force_param force_tbl[] __initdata = { 6359 { "40c", .cbl = ATA_CBL_PATA40 }, 6360 { "80c", .cbl = ATA_CBL_PATA80 }, 6361 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6362 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6363 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6364 { "sata", .cbl = ATA_CBL_SATA }, 6365 { "1.5Gbps", .spd_limit = 1 }, 6366 { "3.0Gbps", .spd_limit = 2 }, 6367 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6368 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6369 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6370 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6371 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6372 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6373 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6374 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6375 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6376 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6377 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6378 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6379 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6380 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6381 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6382 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6383 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6384 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6385 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6386 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6387 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6388 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6389 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6390 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6391 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6392 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6393 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6394 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6395 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6396 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6397 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6398 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6399 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6400 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6401 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6402 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6403 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6404 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6405 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6406 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6407 }; 6408 char *start = *cur, *p = *cur; 6409 char *id, *val, *endp; 6410 const struct ata_force_param *match_fp = NULL; 6411 int nr_matches = 0, i; 6412 6413 /* find where this param ends and update *cur */ 6414 while (*p != '\0' && *p != ',') 6415 p++; 6416 6417 if (*p == '\0') 6418 *cur = p; 6419 else 6420 *cur = p + 1; 6421 6422 *p = '\0'; 6423 6424 /* parse */ 6425 p = strchr(start, ':'); 6426 if (!p) { 6427 val = strstrip(start); 6428 goto parse_val; 6429 } 6430 *p = '\0'; 6431 6432 id = strstrip(start); 6433 val = strstrip(p + 1); 6434 6435 /* parse id */ 6436 p = strchr(id, '.'); 6437 if (p) { 6438 *p++ = '\0'; 6439 force_ent->device = simple_strtoul(p, &endp, 10); 6440 if (p == endp || *endp != '\0') { 6441 *reason = "invalid device"; 6442 return -EINVAL; 6443 } 6444 } 6445 6446 force_ent->port = simple_strtoul(id, &endp, 10); 6447 if (p == endp || *endp != '\0') { 6448 *reason = "invalid port/link"; 6449 return -EINVAL; 6450 } 6451 6452 parse_val: 6453 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6454 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6455 const struct ata_force_param *fp = &force_tbl[i]; 6456 6457 if (strncasecmp(val, fp->name, strlen(val))) 6458 continue; 6459 6460 nr_matches++; 6461 match_fp = fp; 6462 6463 if (strcasecmp(val, fp->name) == 0) { 6464 nr_matches = 1; 6465 break; 6466 } 6467 } 6468 6469 if (!nr_matches) { 6470 *reason = "unknown value"; 6471 return -EINVAL; 6472 } 6473 if (nr_matches > 1) { 6474 *reason = "ambigious value"; 6475 return -EINVAL; 6476 } 6477 6478 force_ent->param = *match_fp; 6479 6480 return 0; 6481 } 6482 6483 static void __init ata_parse_force_param(void) 6484 { 6485 int idx = 0, size = 1; 6486 int last_port = -1, last_device = -1; 6487 char *p, *cur, *next; 6488 6489 /* calculate maximum number of params and allocate force_tbl */ 6490 for (p = ata_force_param_buf; *p; p++) 6491 if (*p == ',') 6492 size++; 6493 6494 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6495 if (!ata_force_tbl) { 6496 printk(KERN_WARNING "ata: failed to extend force table, " 6497 "libata.force ignored\n"); 6498 return; 6499 } 6500 6501 /* parse and populate the table */ 6502 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6503 const char *reason = ""; 6504 struct ata_force_ent te = { .port = -1, .device = -1 }; 6505 6506 next = cur; 6507 if (ata_parse_force_one(&next, &te, &reason)) { 6508 printk(KERN_WARNING "ata: failed to parse force " 6509 "parameter \"%s\" (%s)\n", 6510 cur, reason); 6511 continue; 6512 } 6513 6514 if (te.port == -1) { 6515 te.port = last_port; 6516 te.device = last_device; 6517 } 6518 6519 ata_force_tbl[idx++] = te; 6520 6521 last_port = te.port; 6522 last_device = te.device; 6523 } 6524 6525 ata_force_tbl_size = idx; 6526 } 6527 6528 static int __init ata_init(void) 6529 { 6530 int rc = -ENOMEM; 6531 6532 ata_parse_force_param(); 6533 6534 rc = ata_sff_init(); 6535 if (rc) { 6536 kfree(ata_force_tbl); 6537 return rc; 6538 } 6539 6540 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6541 return 0; 6542 } 6543 6544 static void __exit ata_exit(void) 6545 { 6546 ata_sff_exit(); 6547 kfree(ata_force_tbl); 6548 } 6549 6550 subsys_initcall(ata_init); 6551 module_exit(ata_exit); 6552 6553 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6554 6555 int ata_ratelimit(void) 6556 { 6557 return __ratelimit(&ratelimit); 6558 } 6559 6560 /** 6561 * ata_wait_register - wait until register value changes 6562 * @reg: IO-mapped register 6563 * @mask: Mask to apply to read register value 6564 * @val: Wait condition 6565 * @interval: polling interval in milliseconds 6566 * @timeout: timeout in milliseconds 6567 * 6568 * Waiting for some bits of register to change is a common 6569 * operation for ATA controllers. This function reads 32bit LE 6570 * IO-mapped register @reg and tests for the following condition. 6571 * 6572 * (*@reg & mask) != val 6573 * 6574 * If the condition is met, it returns; otherwise, the process is 6575 * repeated after @interval_msec until timeout. 6576 * 6577 * LOCKING: 6578 * Kernel thread context (may sleep) 6579 * 6580 * RETURNS: 6581 * The final register value. 6582 */ 6583 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6584 unsigned long interval, unsigned long timeout) 6585 { 6586 unsigned long deadline; 6587 u32 tmp; 6588 6589 tmp = ioread32(reg); 6590 6591 /* Calculate timeout _after_ the first read to make sure 6592 * preceding writes reach the controller before starting to 6593 * eat away the timeout. 6594 */ 6595 deadline = ata_deadline(jiffies, timeout); 6596 6597 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6598 msleep(interval); 6599 tmp = ioread32(reg); 6600 } 6601 6602 return tmp; 6603 } 6604 6605 /* 6606 * Dummy port_ops 6607 */ 6608 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6609 { 6610 return AC_ERR_SYSTEM; 6611 } 6612 6613 static void ata_dummy_error_handler(struct ata_port *ap) 6614 { 6615 /* truly dummy */ 6616 } 6617 6618 struct ata_port_operations ata_dummy_port_ops = { 6619 .qc_prep = ata_noop_qc_prep, 6620 .qc_issue = ata_dummy_qc_issue, 6621 .error_handler = ata_dummy_error_handler, 6622 }; 6623 6624 const struct ata_port_info ata_dummy_port_info = { 6625 .port_ops = &ata_dummy_port_ops, 6626 }; 6627 6628 /* 6629 * libata is essentially a library of internal helper functions for 6630 * low-level ATA host controller drivers. As such, the API/ABI is 6631 * likely to change as new drivers are added and updated. 6632 * Do not depend on ABI/API stability. 6633 */ 6634 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6635 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6636 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6637 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6638 EXPORT_SYMBOL_GPL(sata_port_ops); 6639 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6640 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6641 EXPORT_SYMBOL_GPL(ata_link_next); 6642 EXPORT_SYMBOL_GPL(ata_dev_next); 6643 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6644 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6645 EXPORT_SYMBOL_GPL(ata_host_init); 6646 EXPORT_SYMBOL_GPL(ata_host_alloc); 6647 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6648 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6649 EXPORT_SYMBOL_GPL(ata_host_start); 6650 EXPORT_SYMBOL_GPL(ata_host_register); 6651 EXPORT_SYMBOL_GPL(ata_host_activate); 6652 EXPORT_SYMBOL_GPL(ata_host_detach); 6653 EXPORT_SYMBOL_GPL(ata_sg_init); 6654 EXPORT_SYMBOL_GPL(ata_qc_complete); 6655 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6656 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6657 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6658 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6659 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6660 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6661 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6662 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6663 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6664 EXPORT_SYMBOL_GPL(ata_mode_string); 6665 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6666 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6667 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6668 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6669 EXPORT_SYMBOL_GPL(ata_dev_disable); 6670 EXPORT_SYMBOL_GPL(sata_set_spd); 6671 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6672 EXPORT_SYMBOL_GPL(sata_link_debounce); 6673 EXPORT_SYMBOL_GPL(sata_link_resume); 6674 EXPORT_SYMBOL_GPL(ata_std_prereset); 6675 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6676 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6677 EXPORT_SYMBOL_GPL(ata_std_postreset); 6678 EXPORT_SYMBOL_GPL(ata_dev_classify); 6679 EXPORT_SYMBOL_GPL(ata_dev_pair); 6680 EXPORT_SYMBOL_GPL(ata_ratelimit); 6681 EXPORT_SYMBOL_GPL(ata_wait_register); 6682 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6683 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6684 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6685 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6686 EXPORT_SYMBOL_GPL(sata_scr_valid); 6687 EXPORT_SYMBOL_GPL(sata_scr_read); 6688 EXPORT_SYMBOL_GPL(sata_scr_write); 6689 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6690 EXPORT_SYMBOL_GPL(ata_link_online); 6691 EXPORT_SYMBOL_GPL(ata_link_offline); 6692 #ifdef CONFIG_PM 6693 EXPORT_SYMBOL_GPL(ata_host_suspend); 6694 EXPORT_SYMBOL_GPL(ata_host_resume); 6695 #endif /* CONFIG_PM */ 6696 EXPORT_SYMBOL_GPL(ata_id_string); 6697 EXPORT_SYMBOL_GPL(ata_id_c_string); 6698 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6699 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6700 6701 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6702 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6703 EXPORT_SYMBOL_GPL(ata_timing_compute); 6704 EXPORT_SYMBOL_GPL(ata_timing_merge); 6705 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6706 6707 #ifdef CONFIG_PCI 6708 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6709 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6710 #ifdef CONFIG_PM 6711 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6712 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6713 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6714 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6715 #endif /* CONFIG_PM */ 6716 #endif /* CONFIG_PCI */ 6717 6718 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6719 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6720 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6721 EXPORT_SYMBOL_GPL(ata_port_desc); 6722 #ifdef CONFIG_PCI 6723 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6724 #endif /* CONFIG_PCI */ 6725 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6726 EXPORT_SYMBOL_GPL(ata_link_abort); 6727 EXPORT_SYMBOL_GPL(ata_port_abort); 6728 EXPORT_SYMBOL_GPL(ata_port_freeze); 6729 EXPORT_SYMBOL_GPL(sata_async_notification); 6730 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6731 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6732 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6733 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6734 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6735 EXPORT_SYMBOL_GPL(ata_do_eh); 6736 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6737 6738 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6739 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6740 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6741 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6742 EXPORT_SYMBOL_GPL(ata_cable_sata); 6743