1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <linux/glob.h> 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_host.h> 66 #include <linux/libata.h> 67 #include <asm/byteorder.h> 68 #include <linux/cdrom.h> 69 #include <linux/ratelimit.h> 70 #include <linux/pm_runtime.h> 71 #include <linux/platform_device.h> 72 73 #define CREATE_TRACE_POINTS 74 #include <trace/events/libata.h> 75 76 #include "libata.h" 77 #include "libata-transport.h" 78 79 /* debounce timing parameters in msecs { interval, duration, timeout } */ 80 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 81 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 82 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 83 84 const struct ata_port_operations ata_base_port_ops = { 85 .prereset = ata_std_prereset, 86 .postreset = ata_std_postreset, 87 .error_handler = ata_std_error_handler, 88 .sched_eh = ata_std_sched_eh, 89 .end_eh = ata_std_end_eh, 90 }; 91 92 const struct ata_port_operations sata_port_ops = { 93 .inherits = &ata_base_port_ops, 94 95 .qc_defer = ata_std_qc_defer, 96 .hardreset = sata_std_hardreset, 97 }; 98 99 static unsigned int ata_dev_init_params(struct ata_device *dev, 100 u16 heads, u16 sectors); 101 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 102 static void ata_dev_xfermask(struct ata_device *dev); 103 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 104 105 atomic_t ata_print_id = ATOMIC_INIT(0); 106 107 struct ata_force_param { 108 const char *name; 109 unsigned int cbl; 110 int spd_limit; 111 unsigned long xfer_mask; 112 unsigned int horkage_on; 113 unsigned int horkage_off; 114 unsigned int lflags; 115 }; 116 117 struct ata_force_ent { 118 int port; 119 int device; 120 struct ata_force_param param; 121 }; 122 123 static struct ata_force_ent *ata_force_tbl; 124 static int ata_force_tbl_size; 125 126 static char ata_force_param_buf[PAGE_SIZE] __initdata; 127 /* param_buf is thrown away after initialization, disallow read */ 128 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 129 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 130 131 static int atapi_enabled = 1; 132 module_param(atapi_enabled, int, 0444); 133 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 134 135 static int atapi_dmadir = 0; 136 module_param(atapi_dmadir, int, 0444); 137 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 138 139 int atapi_passthru16 = 1; 140 module_param(atapi_passthru16, int, 0444); 141 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 142 143 int libata_fua = 0; 144 module_param_named(fua, libata_fua, int, 0444); 145 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 146 147 static int ata_ignore_hpa; 148 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 149 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 150 151 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 152 module_param_named(dma, libata_dma_mask, int, 0444); 153 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 154 155 static int ata_probe_timeout; 156 module_param(ata_probe_timeout, int, 0444); 157 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 158 159 int libata_noacpi = 0; 160 module_param_named(noacpi, libata_noacpi, int, 0444); 161 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 162 163 int libata_allow_tpm = 0; 164 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 165 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 166 167 static int atapi_an; 168 module_param(atapi_an, int, 0444); 169 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 170 171 MODULE_AUTHOR("Jeff Garzik"); 172 MODULE_DESCRIPTION("Library module for ATA devices"); 173 MODULE_LICENSE("GPL"); 174 MODULE_VERSION(DRV_VERSION); 175 176 177 static bool ata_sstatus_online(u32 sstatus) 178 { 179 return (sstatus & 0xf) == 0x3; 180 } 181 182 /** 183 * ata_link_next - link iteration helper 184 * @link: the previous link, NULL to start 185 * @ap: ATA port containing links to iterate 186 * @mode: iteration mode, one of ATA_LITER_* 187 * 188 * LOCKING: 189 * Host lock or EH context. 190 * 191 * RETURNS: 192 * Pointer to the next link. 193 */ 194 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 195 enum ata_link_iter_mode mode) 196 { 197 BUG_ON(mode != ATA_LITER_EDGE && 198 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 199 200 /* NULL link indicates start of iteration */ 201 if (!link) 202 switch (mode) { 203 case ATA_LITER_EDGE: 204 case ATA_LITER_PMP_FIRST: 205 if (sata_pmp_attached(ap)) 206 return ap->pmp_link; 207 /* fall through */ 208 case ATA_LITER_HOST_FIRST: 209 return &ap->link; 210 } 211 212 /* we just iterated over the host link, what's next? */ 213 if (link == &ap->link) 214 switch (mode) { 215 case ATA_LITER_HOST_FIRST: 216 if (sata_pmp_attached(ap)) 217 return ap->pmp_link; 218 /* fall through */ 219 case ATA_LITER_PMP_FIRST: 220 if (unlikely(ap->slave_link)) 221 return ap->slave_link; 222 /* fall through */ 223 case ATA_LITER_EDGE: 224 return NULL; 225 } 226 227 /* slave_link excludes PMP */ 228 if (unlikely(link == ap->slave_link)) 229 return NULL; 230 231 /* we were over a PMP link */ 232 if (++link < ap->pmp_link + ap->nr_pmp_links) 233 return link; 234 235 if (mode == ATA_LITER_PMP_FIRST) 236 return &ap->link; 237 238 return NULL; 239 } 240 241 /** 242 * ata_dev_next - device iteration helper 243 * @dev: the previous device, NULL to start 244 * @link: ATA link containing devices to iterate 245 * @mode: iteration mode, one of ATA_DITER_* 246 * 247 * LOCKING: 248 * Host lock or EH context. 249 * 250 * RETURNS: 251 * Pointer to the next device. 252 */ 253 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 254 enum ata_dev_iter_mode mode) 255 { 256 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 257 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 258 259 /* NULL dev indicates start of iteration */ 260 if (!dev) 261 switch (mode) { 262 case ATA_DITER_ENABLED: 263 case ATA_DITER_ALL: 264 dev = link->device; 265 goto check; 266 case ATA_DITER_ENABLED_REVERSE: 267 case ATA_DITER_ALL_REVERSE: 268 dev = link->device + ata_link_max_devices(link) - 1; 269 goto check; 270 } 271 272 next: 273 /* move to the next one */ 274 switch (mode) { 275 case ATA_DITER_ENABLED: 276 case ATA_DITER_ALL: 277 if (++dev < link->device + ata_link_max_devices(link)) 278 goto check; 279 return NULL; 280 case ATA_DITER_ENABLED_REVERSE: 281 case ATA_DITER_ALL_REVERSE: 282 if (--dev >= link->device) 283 goto check; 284 return NULL; 285 } 286 287 check: 288 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 289 !ata_dev_enabled(dev)) 290 goto next; 291 return dev; 292 } 293 294 /** 295 * ata_dev_phys_link - find physical link for a device 296 * @dev: ATA device to look up physical link for 297 * 298 * Look up physical link which @dev is attached to. Note that 299 * this is different from @dev->link only when @dev is on slave 300 * link. For all other cases, it's the same as @dev->link. 301 * 302 * LOCKING: 303 * Don't care. 304 * 305 * RETURNS: 306 * Pointer to the found physical link. 307 */ 308 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 309 { 310 struct ata_port *ap = dev->link->ap; 311 312 if (!ap->slave_link) 313 return dev->link; 314 if (!dev->devno) 315 return &ap->link; 316 return ap->slave_link; 317 } 318 319 /** 320 * ata_force_cbl - force cable type according to libata.force 321 * @ap: ATA port of interest 322 * 323 * Force cable type according to libata.force and whine about it. 324 * The last entry which has matching port number is used, so it 325 * can be specified as part of device force parameters. For 326 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 327 * same effect. 328 * 329 * LOCKING: 330 * EH context. 331 */ 332 void ata_force_cbl(struct ata_port *ap) 333 { 334 int i; 335 336 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 337 const struct ata_force_ent *fe = &ata_force_tbl[i]; 338 339 if (fe->port != -1 && fe->port != ap->print_id) 340 continue; 341 342 if (fe->param.cbl == ATA_CBL_NONE) 343 continue; 344 345 ap->cbl = fe->param.cbl; 346 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 347 return; 348 } 349 } 350 351 /** 352 * ata_force_link_limits - force link limits according to libata.force 353 * @link: ATA link of interest 354 * 355 * Force link flags and SATA spd limit according to libata.force 356 * and whine about it. When only the port part is specified 357 * (e.g. 1:), the limit applies to all links connected to both 358 * the host link and all fan-out ports connected via PMP. If the 359 * device part is specified as 0 (e.g. 1.00:), it specifies the 360 * first fan-out link not the host link. Device number 15 always 361 * points to the host link whether PMP is attached or not. If the 362 * controller has slave link, device number 16 points to it. 363 * 364 * LOCKING: 365 * EH context. 366 */ 367 static void ata_force_link_limits(struct ata_link *link) 368 { 369 bool did_spd = false; 370 int linkno = link->pmp; 371 int i; 372 373 if (ata_is_host_link(link)) 374 linkno += 15; 375 376 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 377 const struct ata_force_ent *fe = &ata_force_tbl[i]; 378 379 if (fe->port != -1 && fe->port != link->ap->print_id) 380 continue; 381 382 if (fe->device != -1 && fe->device != linkno) 383 continue; 384 385 /* only honor the first spd limit */ 386 if (!did_spd && fe->param.spd_limit) { 387 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 388 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 389 fe->param.name); 390 did_spd = true; 391 } 392 393 /* let lflags stack */ 394 if (fe->param.lflags) { 395 link->flags |= fe->param.lflags; 396 ata_link_notice(link, 397 "FORCE: link flag 0x%x forced -> 0x%x\n", 398 fe->param.lflags, link->flags); 399 } 400 } 401 } 402 403 /** 404 * ata_force_xfermask - force xfermask according to libata.force 405 * @dev: ATA device of interest 406 * 407 * Force xfer_mask according to libata.force and whine about it. 408 * For consistency with link selection, device number 15 selects 409 * the first device connected to the host link. 410 * 411 * LOCKING: 412 * EH context. 413 */ 414 static void ata_force_xfermask(struct ata_device *dev) 415 { 416 int devno = dev->link->pmp + dev->devno; 417 int alt_devno = devno; 418 int i; 419 420 /* allow n.15/16 for devices attached to host port */ 421 if (ata_is_host_link(dev->link)) 422 alt_devno += 15; 423 424 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 425 const struct ata_force_ent *fe = &ata_force_tbl[i]; 426 unsigned long pio_mask, mwdma_mask, udma_mask; 427 428 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 429 continue; 430 431 if (fe->device != -1 && fe->device != devno && 432 fe->device != alt_devno) 433 continue; 434 435 if (!fe->param.xfer_mask) 436 continue; 437 438 ata_unpack_xfermask(fe->param.xfer_mask, 439 &pio_mask, &mwdma_mask, &udma_mask); 440 if (udma_mask) 441 dev->udma_mask = udma_mask; 442 else if (mwdma_mask) { 443 dev->udma_mask = 0; 444 dev->mwdma_mask = mwdma_mask; 445 } else { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = 0; 448 dev->pio_mask = pio_mask; 449 } 450 451 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 452 fe->param.name); 453 return; 454 } 455 } 456 457 /** 458 * ata_force_horkage - force horkage according to libata.force 459 * @dev: ATA device of interest 460 * 461 * Force horkage according to libata.force and whine about it. 462 * For consistency with link selection, device number 15 selects 463 * the first device connected to the host link. 464 * 465 * LOCKING: 466 * EH context. 467 */ 468 static void ata_force_horkage(struct ata_device *dev) 469 { 470 int devno = dev->link->pmp + dev->devno; 471 int alt_devno = devno; 472 int i; 473 474 /* allow n.15/16 for devices attached to host port */ 475 if (ata_is_host_link(dev->link)) 476 alt_devno += 15; 477 478 for (i = 0; i < ata_force_tbl_size; i++) { 479 const struct ata_force_ent *fe = &ata_force_tbl[i]; 480 481 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 482 continue; 483 484 if (fe->device != -1 && fe->device != devno && 485 fe->device != alt_devno) 486 continue; 487 488 if (!(~dev->horkage & fe->param.horkage_on) && 489 !(dev->horkage & fe->param.horkage_off)) 490 continue; 491 492 dev->horkage |= fe->param.horkage_on; 493 dev->horkage &= ~fe->param.horkage_off; 494 495 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 496 fe->param.name); 497 } 498 } 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 /* fall thru */ 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 538 /** 539 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 540 * @tf: Taskfile to convert 541 * @pmp: Port multiplier port 542 * @is_cmd: This FIS is for command 543 * @fis: Buffer into which data will output 544 * 545 * Converts a standard ATA taskfile to a Serial ATA 546 * FIS structure (Register - Host to Device). 547 * 548 * LOCKING: 549 * Inherited from caller. 550 */ 551 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 552 { 553 fis[0] = 0x27; /* Register - Host to Device FIS */ 554 fis[1] = pmp & 0xf; /* Port multiplier number*/ 555 if (is_cmd) 556 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 557 558 fis[2] = tf->command; 559 fis[3] = tf->feature; 560 561 fis[4] = tf->lbal; 562 fis[5] = tf->lbam; 563 fis[6] = tf->lbah; 564 fis[7] = tf->device; 565 566 fis[8] = tf->hob_lbal; 567 fis[9] = tf->hob_lbam; 568 fis[10] = tf->hob_lbah; 569 fis[11] = tf->hob_feature; 570 571 fis[12] = tf->nsect; 572 fis[13] = tf->hob_nsect; 573 fis[14] = 0; 574 fis[15] = tf->ctl; 575 576 fis[16] = tf->auxiliary & 0xff; 577 fis[17] = (tf->auxiliary >> 8) & 0xff; 578 fis[18] = (tf->auxiliary >> 16) & 0xff; 579 fis[19] = (tf->auxiliary >> 24) & 0xff; 580 } 581 582 /** 583 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 584 * @fis: Buffer from which data will be input 585 * @tf: Taskfile to output 586 * 587 * Converts a serial ATA FIS structure to a standard ATA taskfile. 588 * 589 * LOCKING: 590 * Inherited from caller. 591 */ 592 593 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 594 { 595 tf->command = fis[2]; /* status */ 596 tf->feature = fis[3]; /* error */ 597 598 tf->lbal = fis[4]; 599 tf->lbam = fis[5]; 600 tf->lbah = fis[6]; 601 tf->device = fis[7]; 602 603 tf->hob_lbal = fis[8]; 604 tf->hob_lbam = fis[9]; 605 tf->hob_lbah = fis[10]; 606 607 tf->nsect = fis[12]; 608 tf->hob_nsect = fis[13]; 609 } 610 611 static const u8 ata_rw_cmds[] = { 612 /* pio multi */ 613 ATA_CMD_READ_MULTI, 614 ATA_CMD_WRITE_MULTI, 615 ATA_CMD_READ_MULTI_EXT, 616 ATA_CMD_WRITE_MULTI_EXT, 617 0, 618 0, 619 0, 620 ATA_CMD_WRITE_MULTI_FUA_EXT, 621 /* pio */ 622 ATA_CMD_PIO_READ, 623 ATA_CMD_PIO_WRITE, 624 ATA_CMD_PIO_READ_EXT, 625 ATA_CMD_PIO_WRITE_EXT, 626 0, 627 0, 628 0, 629 0, 630 /* dma */ 631 ATA_CMD_READ, 632 ATA_CMD_WRITE, 633 ATA_CMD_READ_EXT, 634 ATA_CMD_WRITE_EXT, 635 0, 636 0, 637 0, 638 ATA_CMD_WRITE_FUA_EXT 639 }; 640 641 /** 642 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 643 * @tf: command to examine and configure 644 * @dev: device tf belongs to 645 * 646 * Examine the device configuration and tf->flags to calculate 647 * the proper read/write commands and protocol to use. 648 * 649 * LOCKING: 650 * caller. 651 */ 652 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 653 { 654 u8 cmd; 655 656 int index, fua, lba48, write; 657 658 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 659 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 660 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 661 662 if (dev->flags & ATA_DFLAG_PIO) { 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 666 /* Unable to use DMA due to host limitation */ 667 tf->protocol = ATA_PROT_PIO; 668 index = dev->multi_count ? 0 : 8; 669 } else { 670 tf->protocol = ATA_PROT_DMA; 671 index = 16; 672 } 673 674 cmd = ata_rw_cmds[index + fua + lba48 + write]; 675 if (cmd) { 676 tf->command = cmd; 677 return 0; 678 } 679 return -1; 680 } 681 682 /** 683 * ata_tf_read_block - Read block address from ATA taskfile 684 * @tf: ATA taskfile of interest 685 * @dev: ATA device @tf belongs to 686 * 687 * LOCKING: 688 * None. 689 * 690 * Read block address from @tf. This function can handle all 691 * three address formats - LBA, LBA48 and CHS. tf->protocol and 692 * flags select the address format to use. 693 * 694 * RETURNS: 695 * Block address read from @tf. 696 */ 697 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 698 { 699 u64 block = 0; 700 701 if (tf->flags & ATA_TFLAG_LBA) { 702 if (tf->flags & ATA_TFLAG_LBA48) { 703 block |= (u64)tf->hob_lbah << 40; 704 block |= (u64)tf->hob_lbam << 32; 705 block |= (u64)tf->hob_lbal << 24; 706 } else 707 block |= (tf->device & 0xf) << 24; 708 709 block |= tf->lbah << 16; 710 block |= tf->lbam << 8; 711 block |= tf->lbal; 712 } else { 713 u32 cyl, head, sect; 714 715 cyl = tf->lbam | (tf->lbah << 8); 716 head = tf->device & 0xf; 717 sect = tf->lbal; 718 719 if (!sect) { 720 ata_dev_warn(dev, 721 "device reported invalid CHS sector 0\n"); 722 sect = 1; /* oh well */ 723 } 724 725 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 726 } 727 728 return block; 729 } 730 731 /** 732 * ata_build_rw_tf - Build ATA taskfile for given read/write request 733 * @tf: Target ATA taskfile 734 * @dev: ATA device @tf belongs to 735 * @block: Block address 736 * @n_block: Number of blocks 737 * @tf_flags: RW/FUA etc... 738 * @tag: tag 739 * 740 * LOCKING: 741 * None. 742 * 743 * Build ATA taskfile @tf for read/write request described by 744 * @block, @n_block, @tf_flags and @tag on @dev. 745 * 746 * RETURNS: 747 * 748 * 0 on success, -ERANGE if the request is too large for @dev, 749 * -EINVAL if the request is invalid. 750 */ 751 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 752 u64 block, u32 n_block, unsigned int tf_flags, 753 unsigned int tag) 754 { 755 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 756 tf->flags |= tf_flags; 757 758 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 759 /* yay, NCQ */ 760 if (!lba_48_ok(block, n_block)) 761 return -ERANGE; 762 763 tf->protocol = ATA_PROT_NCQ; 764 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 765 766 if (tf->flags & ATA_TFLAG_WRITE) 767 tf->command = ATA_CMD_FPDMA_WRITE; 768 else 769 tf->command = ATA_CMD_FPDMA_READ; 770 771 tf->nsect = tag << 3; 772 tf->hob_feature = (n_block >> 8) & 0xff; 773 tf->feature = n_block & 0xff; 774 775 tf->hob_lbah = (block >> 40) & 0xff; 776 tf->hob_lbam = (block >> 32) & 0xff; 777 tf->hob_lbal = (block >> 24) & 0xff; 778 tf->lbah = (block >> 16) & 0xff; 779 tf->lbam = (block >> 8) & 0xff; 780 tf->lbal = block & 0xff; 781 782 tf->device = ATA_LBA; 783 if (tf->flags & ATA_TFLAG_FUA) 784 tf->device |= 1 << 7; 785 } else if (dev->flags & ATA_DFLAG_LBA) { 786 tf->flags |= ATA_TFLAG_LBA; 787 788 if (lba_28_ok(block, n_block)) { 789 /* use LBA28 */ 790 tf->device |= (block >> 24) & 0xf; 791 } else if (lba_48_ok(block, n_block)) { 792 if (!(dev->flags & ATA_DFLAG_LBA48)) 793 return -ERANGE; 794 795 /* use LBA48 */ 796 tf->flags |= ATA_TFLAG_LBA48; 797 798 tf->hob_nsect = (n_block >> 8) & 0xff; 799 800 tf->hob_lbah = (block >> 40) & 0xff; 801 tf->hob_lbam = (block >> 32) & 0xff; 802 tf->hob_lbal = (block >> 24) & 0xff; 803 } else 804 /* request too large even for LBA48 */ 805 return -ERANGE; 806 807 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 808 return -EINVAL; 809 810 tf->nsect = n_block & 0xff; 811 812 tf->lbah = (block >> 16) & 0xff; 813 tf->lbam = (block >> 8) & 0xff; 814 tf->lbal = block & 0xff; 815 816 tf->device |= ATA_LBA; 817 } else { 818 /* CHS */ 819 u32 sect, head, cyl, track; 820 821 /* The request -may- be too large for CHS addressing. */ 822 if (!lba_28_ok(block, n_block)) 823 return -ERANGE; 824 825 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 826 return -EINVAL; 827 828 /* Convert LBA to CHS */ 829 track = (u32)block / dev->sectors; 830 cyl = track / dev->heads; 831 head = track % dev->heads; 832 sect = (u32)block % dev->sectors + 1; 833 834 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 835 (u32)block, track, cyl, head, sect); 836 837 /* Check whether the converted CHS can fit. 838 Cylinder: 0-65535 839 Head: 0-15 840 Sector: 1-255*/ 841 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 842 return -ERANGE; 843 844 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 845 tf->lbal = sect; 846 tf->lbam = cyl; 847 tf->lbah = cyl >> 8; 848 tf->device |= head; 849 } 850 851 return 0; 852 } 853 854 /** 855 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 856 * @pio_mask: pio_mask 857 * @mwdma_mask: mwdma_mask 858 * @udma_mask: udma_mask 859 * 860 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 861 * unsigned int xfer_mask. 862 * 863 * LOCKING: 864 * None. 865 * 866 * RETURNS: 867 * Packed xfer_mask. 868 */ 869 unsigned long ata_pack_xfermask(unsigned long pio_mask, 870 unsigned long mwdma_mask, 871 unsigned long udma_mask) 872 { 873 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 874 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 875 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 876 } 877 878 /** 879 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 880 * @xfer_mask: xfer_mask to unpack 881 * @pio_mask: resulting pio_mask 882 * @mwdma_mask: resulting mwdma_mask 883 * @udma_mask: resulting udma_mask 884 * 885 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 886 * Any NULL distination masks will be ignored. 887 */ 888 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 889 unsigned long *mwdma_mask, unsigned long *udma_mask) 890 { 891 if (pio_mask) 892 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 893 if (mwdma_mask) 894 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 895 if (udma_mask) 896 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 897 } 898 899 static const struct ata_xfer_ent { 900 int shift, bits; 901 u8 base; 902 } ata_xfer_tbl[] = { 903 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 904 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 905 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 906 { -1, }, 907 }; 908 909 /** 910 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 911 * @xfer_mask: xfer_mask of interest 912 * 913 * Return matching XFER_* value for @xfer_mask. Only the highest 914 * bit of @xfer_mask is considered. 915 * 916 * LOCKING: 917 * None. 918 * 919 * RETURNS: 920 * Matching XFER_* value, 0xff if no match found. 921 */ 922 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 923 { 924 int highbit = fls(xfer_mask) - 1; 925 const struct ata_xfer_ent *ent; 926 927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 928 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 929 return ent->base + highbit - ent->shift; 930 return 0xff; 931 } 932 933 /** 934 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 935 * @xfer_mode: XFER_* of interest 936 * 937 * Return matching xfer_mask for @xfer_mode. 938 * 939 * LOCKING: 940 * None. 941 * 942 * RETURNS: 943 * Matching xfer_mask, 0 if no match found. 944 */ 945 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 946 { 947 const struct ata_xfer_ent *ent; 948 949 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 950 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 951 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 952 & ~((1 << ent->shift) - 1); 953 return 0; 954 } 955 956 /** 957 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 958 * @xfer_mode: XFER_* of interest 959 * 960 * Return matching xfer_shift for @xfer_mode. 961 * 962 * LOCKING: 963 * None. 964 * 965 * RETURNS: 966 * Matching xfer_shift, -1 if no match found. 967 */ 968 int ata_xfer_mode2shift(unsigned long xfer_mode) 969 { 970 const struct ata_xfer_ent *ent; 971 972 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 973 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 974 return ent->shift; 975 return -1; 976 } 977 978 /** 979 * ata_mode_string - convert xfer_mask to string 980 * @xfer_mask: mask of bits supported; only highest bit counts. 981 * 982 * Determine string which represents the highest speed 983 * (highest bit in @modemask). 984 * 985 * LOCKING: 986 * None. 987 * 988 * RETURNS: 989 * Constant C string representing highest speed listed in 990 * @mode_mask, or the constant C string "<n/a>". 991 */ 992 const char *ata_mode_string(unsigned long xfer_mask) 993 { 994 static const char * const xfer_mode_str[] = { 995 "PIO0", 996 "PIO1", 997 "PIO2", 998 "PIO3", 999 "PIO4", 1000 "PIO5", 1001 "PIO6", 1002 "MWDMA0", 1003 "MWDMA1", 1004 "MWDMA2", 1005 "MWDMA3", 1006 "MWDMA4", 1007 "UDMA/16", 1008 "UDMA/25", 1009 "UDMA/33", 1010 "UDMA/44", 1011 "UDMA/66", 1012 "UDMA/100", 1013 "UDMA/133", 1014 "UDMA7", 1015 }; 1016 int highbit; 1017 1018 highbit = fls(xfer_mask) - 1; 1019 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1020 return xfer_mode_str[highbit]; 1021 return "<n/a>"; 1022 } 1023 1024 const char *sata_spd_string(unsigned int spd) 1025 { 1026 static const char * const spd_str[] = { 1027 "1.5 Gbps", 1028 "3.0 Gbps", 1029 "6.0 Gbps", 1030 }; 1031 1032 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1033 return "<unknown>"; 1034 return spd_str[spd - 1]; 1035 } 1036 1037 /** 1038 * ata_dev_classify - determine device type based on ATA-spec signature 1039 * @tf: ATA taskfile register set for device to be identified 1040 * 1041 * Determine from taskfile register contents whether a device is 1042 * ATA or ATAPI, as per "Signature and persistence" section 1043 * of ATA/PI spec (volume 1, sect 5.14). 1044 * 1045 * LOCKING: 1046 * None. 1047 * 1048 * RETURNS: 1049 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1050 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1051 */ 1052 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1053 { 1054 /* Apple's open source Darwin code hints that some devices only 1055 * put a proper signature into the LBA mid/high registers, 1056 * So, we only check those. It's sufficient for uniqueness. 1057 * 1058 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1059 * signatures for ATA and ATAPI devices attached on SerialATA, 1060 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1061 * spec has never mentioned about using different signatures 1062 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1063 * Multiplier specification began to use 0x69/0x96 to identify 1064 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1065 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1066 * 0x69/0x96 shortly and described them as reserved for 1067 * SerialATA. 1068 * 1069 * We follow the current spec and consider that 0x69/0x96 1070 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1071 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1072 * SEMB signature. This is worked around in 1073 * ata_dev_read_id(). 1074 */ 1075 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1076 DPRINTK("found ATA device by sig\n"); 1077 return ATA_DEV_ATA; 1078 } 1079 1080 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1081 DPRINTK("found ATAPI device by sig\n"); 1082 return ATA_DEV_ATAPI; 1083 } 1084 1085 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1086 DPRINTK("found PMP device by sig\n"); 1087 return ATA_DEV_PMP; 1088 } 1089 1090 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1091 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1092 return ATA_DEV_SEMB; 1093 } 1094 1095 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1096 DPRINTK("found ZAC device by sig\n"); 1097 return ATA_DEV_ZAC; 1098 } 1099 1100 DPRINTK("unknown device\n"); 1101 return ATA_DEV_UNKNOWN; 1102 } 1103 1104 /** 1105 * ata_id_string - Convert IDENTIFY DEVICE page into string 1106 * @id: IDENTIFY DEVICE results we will examine 1107 * @s: string into which data is output 1108 * @ofs: offset into identify device page 1109 * @len: length of string to return. must be an even number. 1110 * 1111 * The strings in the IDENTIFY DEVICE page are broken up into 1112 * 16-bit chunks. Run through the string, and output each 1113 * 8-bit chunk linearly, regardless of platform. 1114 * 1115 * LOCKING: 1116 * caller. 1117 */ 1118 1119 void ata_id_string(const u16 *id, unsigned char *s, 1120 unsigned int ofs, unsigned int len) 1121 { 1122 unsigned int c; 1123 1124 BUG_ON(len & 1); 1125 1126 while (len > 0) { 1127 c = id[ofs] >> 8; 1128 *s = c; 1129 s++; 1130 1131 c = id[ofs] & 0xff; 1132 *s = c; 1133 s++; 1134 1135 ofs++; 1136 len -= 2; 1137 } 1138 } 1139 1140 /** 1141 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1142 * @id: IDENTIFY DEVICE results we will examine 1143 * @s: string into which data is output 1144 * @ofs: offset into identify device page 1145 * @len: length of string to return. must be an odd number. 1146 * 1147 * This function is identical to ata_id_string except that it 1148 * trims trailing spaces and terminates the resulting string with 1149 * null. @len must be actual maximum length (even number) + 1. 1150 * 1151 * LOCKING: 1152 * caller. 1153 */ 1154 void ata_id_c_string(const u16 *id, unsigned char *s, 1155 unsigned int ofs, unsigned int len) 1156 { 1157 unsigned char *p; 1158 1159 ata_id_string(id, s, ofs, len - 1); 1160 1161 p = s + strnlen(s, len - 1); 1162 while (p > s && p[-1] == ' ') 1163 p--; 1164 *p = '\0'; 1165 } 1166 1167 static u64 ata_id_n_sectors(const u16 *id) 1168 { 1169 if (ata_id_has_lba(id)) { 1170 if (ata_id_has_lba48(id)) 1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1172 else 1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1174 } else { 1175 if (ata_id_current_chs_valid(id)) 1176 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1177 id[ATA_ID_CUR_SECTORS]; 1178 else 1179 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1180 id[ATA_ID_SECTORS]; 1181 } 1182 } 1183 1184 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1185 { 1186 u64 sectors = 0; 1187 1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1191 sectors |= (tf->lbah & 0xff) << 16; 1192 sectors |= (tf->lbam & 0xff) << 8; 1193 sectors |= (tf->lbal & 0xff); 1194 1195 return sectors; 1196 } 1197 1198 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1199 { 1200 u64 sectors = 0; 1201 1202 sectors |= (tf->device & 0x0f) << 24; 1203 sectors |= (tf->lbah & 0xff) << 16; 1204 sectors |= (tf->lbam & 0xff) << 8; 1205 sectors |= (tf->lbal & 0xff); 1206 1207 return sectors; 1208 } 1209 1210 /** 1211 * ata_read_native_max_address - Read native max address 1212 * @dev: target device 1213 * @max_sectors: out parameter for the result native max address 1214 * 1215 * Perform an LBA48 or LBA28 native size query upon the device in 1216 * question. 1217 * 1218 * RETURNS: 1219 * 0 on success, -EACCES if command is aborted by the drive. 1220 * -EIO on other errors. 1221 */ 1222 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1223 { 1224 unsigned int err_mask; 1225 struct ata_taskfile tf; 1226 int lba48 = ata_id_has_lba48(dev->id); 1227 1228 ata_tf_init(dev, &tf); 1229 1230 /* always clear all address registers */ 1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1232 1233 if (lba48) { 1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1235 tf.flags |= ATA_TFLAG_LBA48; 1236 } else 1237 tf.command = ATA_CMD_READ_NATIVE_MAX; 1238 1239 tf.protocol |= ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1243 if (err_mask) { 1244 ata_dev_warn(dev, 1245 "failed to read native max address (err_mask=0x%x)\n", 1246 err_mask); 1247 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1248 return -EACCES; 1249 return -EIO; 1250 } 1251 1252 if (lba48) 1253 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1254 else 1255 *max_sectors = ata_tf_to_lba(&tf) + 1; 1256 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1257 (*max_sectors)--; 1258 return 0; 1259 } 1260 1261 /** 1262 * ata_set_max_sectors - Set max sectors 1263 * @dev: target device 1264 * @new_sectors: new max sectors value to set for the device 1265 * 1266 * Set max sectors of @dev to @new_sectors. 1267 * 1268 * RETURNS: 1269 * 0 on success, -EACCES if command is aborted or denied (due to 1270 * previous non-volatile SET_MAX) by the drive. -EIO on other 1271 * errors. 1272 */ 1273 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1274 { 1275 unsigned int err_mask; 1276 struct ata_taskfile tf; 1277 int lba48 = ata_id_has_lba48(dev->id); 1278 1279 new_sectors--; 1280 1281 ata_tf_init(dev, &tf); 1282 1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1284 1285 if (lba48) { 1286 tf.command = ATA_CMD_SET_MAX_EXT; 1287 tf.flags |= ATA_TFLAG_LBA48; 1288 1289 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1290 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1291 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1292 } else { 1293 tf.command = ATA_CMD_SET_MAX; 1294 1295 tf.device |= (new_sectors >> 24) & 0xf; 1296 } 1297 1298 tf.protocol |= ATA_PROT_NODATA; 1299 tf.device |= ATA_LBA; 1300 1301 tf.lbal = (new_sectors >> 0) & 0xff; 1302 tf.lbam = (new_sectors >> 8) & 0xff; 1303 tf.lbah = (new_sectors >> 16) & 0xff; 1304 1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1306 if (err_mask) { 1307 ata_dev_warn(dev, 1308 "failed to set max address (err_mask=0x%x)\n", 1309 err_mask); 1310 if (err_mask == AC_ERR_DEV && 1311 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1312 return -EACCES; 1313 return -EIO; 1314 } 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * ata_hpa_resize - Resize a device with an HPA set 1321 * @dev: Device to resize 1322 * 1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1324 * it if required to the full size of the media. The caller must check 1325 * the drive has the HPA feature set enabled. 1326 * 1327 * RETURNS: 1328 * 0 on success, -errno on failure. 1329 */ 1330 static int ata_hpa_resize(struct ata_device *dev) 1331 { 1332 struct ata_eh_context *ehc = &dev->link->eh_context; 1333 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1334 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1335 u64 sectors = ata_id_n_sectors(dev->id); 1336 u64 native_sectors; 1337 int rc; 1338 1339 /* do we need to do it? */ 1340 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1341 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1342 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1343 return 0; 1344 1345 /* read native max address */ 1346 rc = ata_read_native_max_address(dev, &native_sectors); 1347 if (rc) { 1348 /* If device aborted the command or HPA isn't going to 1349 * be unlocked, skip HPA resizing. 1350 */ 1351 if (rc == -EACCES || !unlock_hpa) { 1352 ata_dev_warn(dev, 1353 "HPA support seems broken, skipping HPA handling\n"); 1354 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1355 1356 /* we can continue if device aborted the command */ 1357 if (rc == -EACCES) 1358 rc = 0; 1359 } 1360 1361 return rc; 1362 } 1363 dev->n_native_sectors = native_sectors; 1364 1365 /* nothing to do? */ 1366 if (native_sectors <= sectors || !unlock_hpa) { 1367 if (!print_info || native_sectors == sectors) 1368 return 0; 1369 1370 if (native_sectors > sectors) 1371 ata_dev_info(dev, 1372 "HPA detected: current %llu, native %llu\n", 1373 (unsigned long long)sectors, 1374 (unsigned long long)native_sectors); 1375 else if (native_sectors < sectors) 1376 ata_dev_warn(dev, 1377 "native sectors (%llu) is smaller than sectors (%llu)\n", 1378 (unsigned long long)native_sectors, 1379 (unsigned long long)sectors); 1380 return 0; 1381 } 1382 1383 /* let's unlock HPA */ 1384 rc = ata_set_max_sectors(dev, native_sectors); 1385 if (rc == -EACCES) { 1386 /* if device aborted the command, skip HPA resizing */ 1387 ata_dev_warn(dev, 1388 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1389 (unsigned long long)sectors, 1390 (unsigned long long)native_sectors); 1391 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1392 return 0; 1393 } else if (rc) 1394 return rc; 1395 1396 /* re-read IDENTIFY data */ 1397 rc = ata_dev_reread_id(dev, 0); 1398 if (rc) { 1399 ata_dev_err(dev, 1400 "failed to re-read IDENTIFY data after HPA resizing\n"); 1401 return rc; 1402 } 1403 1404 if (print_info) { 1405 u64 new_sectors = ata_id_n_sectors(dev->id); 1406 ata_dev_info(dev, 1407 "HPA unlocked: %llu -> %llu, native %llu\n", 1408 (unsigned long long)sectors, 1409 (unsigned long long)new_sectors, 1410 (unsigned long long)native_sectors); 1411 } 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * ata_dump_id - IDENTIFY DEVICE info debugging output 1418 * @id: IDENTIFY DEVICE page to dump 1419 * 1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1421 * page. 1422 * 1423 * LOCKING: 1424 * caller. 1425 */ 1426 1427 static inline void ata_dump_id(const u16 *id) 1428 { 1429 DPRINTK("49==0x%04x " 1430 "53==0x%04x " 1431 "63==0x%04x " 1432 "64==0x%04x " 1433 "75==0x%04x \n", 1434 id[49], 1435 id[53], 1436 id[63], 1437 id[64], 1438 id[75]); 1439 DPRINTK("80==0x%04x " 1440 "81==0x%04x " 1441 "82==0x%04x " 1442 "83==0x%04x " 1443 "84==0x%04x \n", 1444 id[80], 1445 id[81], 1446 id[82], 1447 id[83], 1448 id[84]); 1449 DPRINTK("88==0x%04x " 1450 "93==0x%04x\n", 1451 id[88], 1452 id[93]); 1453 } 1454 1455 /** 1456 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1457 * @id: IDENTIFY data to compute xfer mask from 1458 * 1459 * Compute the xfermask for this device. This is not as trivial 1460 * as it seems if we must consider early devices correctly. 1461 * 1462 * FIXME: pre IDE drive timing (do we care ?). 1463 * 1464 * LOCKING: 1465 * None. 1466 * 1467 * RETURNS: 1468 * Computed xfermask 1469 */ 1470 unsigned long ata_id_xfermask(const u16 *id) 1471 { 1472 unsigned long pio_mask, mwdma_mask, udma_mask; 1473 1474 /* Usual case. Word 53 indicates word 64 is valid */ 1475 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1476 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1477 pio_mask <<= 3; 1478 pio_mask |= 0x7; 1479 } else { 1480 /* If word 64 isn't valid then Word 51 high byte holds 1481 * the PIO timing number for the maximum. Turn it into 1482 * a mask. 1483 */ 1484 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1485 if (mode < 5) /* Valid PIO range */ 1486 pio_mask = (2 << mode) - 1; 1487 else 1488 pio_mask = 1; 1489 1490 /* But wait.. there's more. Design your standards by 1491 * committee and you too can get a free iordy field to 1492 * process. However its the speeds not the modes that 1493 * are supported... Note drivers using the timing API 1494 * will get this right anyway 1495 */ 1496 } 1497 1498 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1499 1500 if (ata_id_is_cfa(id)) { 1501 /* 1502 * Process compact flash extended modes 1503 */ 1504 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1505 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1506 1507 if (pio) 1508 pio_mask |= (1 << 5); 1509 if (pio > 1) 1510 pio_mask |= (1 << 6); 1511 if (dma) 1512 mwdma_mask |= (1 << 3); 1513 if (dma > 1) 1514 mwdma_mask |= (1 << 4); 1515 } 1516 1517 udma_mask = 0; 1518 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1519 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1520 1521 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1522 } 1523 1524 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1525 { 1526 struct completion *waiting = qc->private_data; 1527 1528 complete(waiting); 1529 } 1530 1531 /** 1532 * ata_exec_internal_sg - execute libata internal command 1533 * @dev: Device to which the command is sent 1534 * @tf: Taskfile registers for the command and the result 1535 * @cdb: CDB for packet command 1536 * @dma_dir: Data transfer direction of the command 1537 * @sgl: sg list for the data buffer of the command 1538 * @n_elem: Number of sg entries 1539 * @timeout: Timeout in msecs (0 for default) 1540 * 1541 * Executes libata internal command with timeout. @tf contains 1542 * command on entry and result on return. Timeout and error 1543 * conditions are reported via return value. No recovery action 1544 * is taken after a command times out. It's caller's duty to 1545 * clean up after timeout. 1546 * 1547 * LOCKING: 1548 * None. Should be called with kernel context, might sleep. 1549 * 1550 * RETURNS: 1551 * Zero on success, AC_ERR_* mask on failure 1552 */ 1553 unsigned ata_exec_internal_sg(struct ata_device *dev, 1554 struct ata_taskfile *tf, const u8 *cdb, 1555 int dma_dir, struct scatterlist *sgl, 1556 unsigned int n_elem, unsigned long timeout) 1557 { 1558 struct ata_link *link = dev->link; 1559 struct ata_port *ap = link->ap; 1560 u8 command = tf->command; 1561 int auto_timeout = 0; 1562 struct ata_queued_cmd *qc; 1563 unsigned int tag, preempted_tag; 1564 u32 preempted_sactive, preempted_qc_active; 1565 int preempted_nr_active_links; 1566 DECLARE_COMPLETION_ONSTACK(wait); 1567 unsigned long flags; 1568 unsigned int err_mask; 1569 int rc; 1570 1571 spin_lock_irqsave(ap->lock, flags); 1572 1573 /* no internal command while frozen */ 1574 if (ap->pflags & ATA_PFLAG_FROZEN) { 1575 spin_unlock_irqrestore(ap->lock, flags); 1576 return AC_ERR_SYSTEM; 1577 } 1578 1579 /* initialize internal qc */ 1580 1581 /* XXX: Tag 0 is used for drivers with legacy EH as some 1582 * drivers choke if any other tag is given. This breaks 1583 * ata_tag_internal() test for those drivers. Don't use new 1584 * EH stuff without converting to it. 1585 */ 1586 if (ap->ops->error_handler) 1587 tag = ATA_TAG_INTERNAL; 1588 else 1589 tag = 0; 1590 1591 qc = __ata_qc_from_tag(ap, tag); 1592 1593 qc->tag = tag; 1594 qc->scsicmd = NULL; 1595 qc->ap = ap; 1596 qc->dev = dev; 1597 ata_qc_reinit(qc); 1598 1599 preempted_tag = link->active_tag; 1600 preempted_sactive = link->sactive; 1601 preempted_qc_active = ap->qc_active; 1602 preempted_nr_active_links = ap->nr_active_links; 1603 link->active_tag = ATA_TAG_POISON; 1604 link->sactive = 0; 1605 ap->qc_active = 0; 1606 ap->nr_active_links = 0; 1607 1608 /* prepare & issue qc */ 1609 qc->tf = *tf; 1610 if (cdb) 1611 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1612 1613 /* some SATA bridges need us to indicate data xfer direction */ 1614 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1615 dma_dir == DMA_FROM_DEVICE) 1616 qc->tf.feature |= ATAPI_DMADIR; 1617 1618 qc->flags |= ATA_QCFLAG_RESULT_TF; 1619 qc->dma_dir = dma_dir; 1620 if (dma_dir != DMA_NONE) { 1621 unsigned int i, buflen = 0; 1622 struct scatterlist *sg; 1623 1624 for_each_sg(sgl, sg, n_elem, i) 1625 buflen += sg->length; 1626 1627 ata_sg_init(qc, sgl, n_elem); 1628 qc->nbytes = buflen; 1629 } 1630 1631 qc->private_data = &wait; 1632 qc->complete_fn = ata_qc_complete_internal; 1633 1634 ata_qc_issue(qc); 1635 1636 spin_unlock_irqrestore(ap->lock, flags); 1637 1638 if (!timeout) { 1639 if (ata_probe_timeout) 1640 timeout = ata_probe_timeout * 1000; 1641 else { 1642 timeout = ata_internal_cmd_timeout(dev, command); 1643 auto_timeout = 1; 1644 } 1645 } 1646 1647 if (ap->ops->error_handler) 1648 ata_eh_release(ap); 1649 1650 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1651 1652 if (ap->ops->error_handler) 1653 ata_eh_acquire(ap); 1654 1655 ata_sff_flush_pio_task(ap); 1656 1657 if (!rc) { 1658 spin_lock_irqsave(ap->lock, flags); 1659 1660 /* We're racing with irq here. If we lose, the 1661 * following test prevents us from completing the qc 1662 * twice. If we win, the port is frozen and will be 1663 * cleaned up by ->post_internal_cmd(). 1664 */ 1665 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1666 qc->err_mask |= AC_ERR_TIMEOUT; 1667 1668 if (ap->ops->error_handler) 1669 ata_port_freeze(ap); 1670 else 1671 ata_qc_complete(qc); 1672 1673 if (ata_msg_warn(ap)) 1674 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1675 command); 1676 } 1677 1678 spin_unlock_irqrestore(ap->lock, flags); 1679 } 1680 1681 /* do post_internal_cmd */ 1682 if (ap->ops->post_internal_cmd) 1683 ap->ops->post_internal_cmd(qc); 1684 1685 /* perform minimal error analysis */ 1686 if (qc->flags & ATA_QCFLAG_FAILED) { 1687 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1688 qc->err_mask |= AC_ERR_DEV; 1689 1690 if (!qc->err_mask) 1691 qc->err_mask |= AC_ERR_OTHER; 1692 1693 if (qc->err_mask & ~AC_ERR_OTHER) 1694 qc->err_mask &= ~AC_ERR_OTHER; 1695 } 1696 1697 /* finish up */ 1698 spin_lock_irqsave(ap->lock, flags); 1699 1700 *tf = qc->result_tf; 1701 err_mask = qc->err_mask; 1702 1703 ata_qc_free(qc); 1704 link->active_tag = preempted_tag; 1705 link->sactive = preempted_sactive; 1706 ap->qc_active = preempted_qc_active; 1707 ap->nr_active_links = preempted_nr_active_links; 1708 1709 spin_unlock_irqrestore(ap->lock, flags); 1710 1711 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1712 ata_internal_cmd_timed_out(dev, command); 1713 1714 return err_mask; 1715 } 1716 1717 /** 1718 * ata_exec_internal - execute libata internal command 1719 * @dev: Device to which the command is sent 1720 * @tf: Taskfile registers for the command and the result 1721 * @cdb: CDB for packet command 1722 * @dma_dir: Data transfer direction of the command 1723 * @buf: Data buffer of the command 1724 * @buflen: Length of data buffer 1725 * @timeout: Timeout in msecs (0 for default) 1726 * 1727 * Wrapper around ata_exec_internal_sg() which takes simple 1728 * buffer instead of sg list. 1729 * 1730 * LOCKING: 1731 * None. Should be called with kernel context, might sleep. 1732 * 1733 * RETURNS: 1734 * Zero on success, AC_ERR_* mask on failure 1735 */ 1736 unsigned ata_exec_internal(struct ata_device *dev, 1737 struct ata_taskfile *tf, const u8 *cdb, 1738 int dma_dir, void *buf, unsigned int buflen, 1739 unsigned long timeout) 1740 { 1741 struct scatterlist *psg = NULL, sg; 1742 unsigned int n_elem = 0; 1743 1744 if (dma_dir != DMA_NONE) { 1745 WARN_ON(!buf); 1746 sg_init_one(&sg, buf, buflen); 1747 psg = &sg; 1748 n_elem++; 1749 } 1750 1751 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1752 timeout); 1753 } 1754 1755 /** 1756 * ata_pio_need_iordy - check if iordy needed 1757 * @adev: ATA device 1758 * 1759 * Check if the current speed of the device requires IORDY. Used 1760 * by various controllers for chip configuration. 1761 */ 1762 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1763 { 1764 /* Don't set IORDY if we're preparing for reset. IORDY may 1765 * lead to controller lock up on certain controllers if the 1766 * port is not occupied. See bko#11703 for details. 1767 */ 1768 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1769 return 0; 1770 /* Controller doesn't support IORDY. Probably a pointless 1771 * check as the caller should know this. 1772 */ 1773 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1774 return 0; 1775 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1776 if (ata_id_is_cfa(adev->id) 1777 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1778 return 0; 1779 /* PIO3 and higher it is mandatory */ 1780 if (adev->pio_mode > XFER_PIO_2) 1781 return 1; 1782 /* We turn it on when possible */ 1783 if (ata_id_has_iordy(adev->id)) 1784 return 1; 1785 return 0; 1786 } 1787 1788 /** 1789 * ata_pio_mask_no_iordy - Return the non IORDY mask 1790 * @adev: ATA device 1791 * 1792 * Compute the highest mode possible if we are not using iordy. Return 1793 * -1 if no iordy mode is available. 1794 */ 1795 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1796 { 1797 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1798 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1799 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1800 /* Is the speed faster than the drive allows non IORDY ? */ 1801 if (pio) { 1802 /* This is cycle times not frequency - watch the logic! */ 1803 if (pio > 240) /* PIO2 is 240nS per cycle */ 1804 return 3 << ATA_SHIFT_PIO; 1805 return 7 << ATA_SHIFT_PIO; 1806 } 1807 } 1808 return 3 << ATA_SHIFT_PIO; 1809 } 1810 1811 /** 1812 * ata_do_dev_read_id - default ID read method 1813 * @dev: device 1814 * @tf: proposed taskfile 1815 * @id: data buffer 1816 * 1817 * Issue the identify taskfile and hand back the buffer containing 1818 * identify data. For some RAID controllers and for pre ATA devices 1819 * this function is wrapped or replaced by the driver 1820 */ 1821 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1822 struct ata_taskfile *tf, u16 *id) 1823 { 1824 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1825 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1826 } 1827 1828 /** 1829 * ata_dev_read_id - Read ID data from the specified device 1830 * @dev: target device 1831 * @p_class: pointer to class of the target device (may be changed) 1832 * @flags: ATA_READID_* flags 1833 * @id: buffer to read IDENTIFY data into 1834 * 1835 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1836 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1837 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1838 * for pre-ATA4 drives. 1839 * 1840 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1841 * now we abort if we hit that case. 1842 * 1843 * LOCKING: 1844 * Kernel thread context (may sleep) 1845 * 1846 * RETURNS: 1847 * 0 on success, -errno otherwise. 1848 */ 1849 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1850 unsigned int flags, u16 *id) 1851 { 1852 struct ata_port *ap = dev->link->ap; 1853 unsigned int class = *p_class; 1854 struct ata_taskfile tf; 1855 unsigned int err_mask = 0; 1856 const char *reason; 1857 bool is_semb = class == ATA_DEV_SEMB; 1858 int may_fallback = 1, tried_spinup = 0; 1859 int rc; 1860 1861 if (ata_msg_ctl(ap)) 1862 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1863 1864 retry: 1865 ata_tf_init(dev, &tf); 1866 1867 switch (class) { 1868 case ATA_DEV_SEMB: 1869 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1870 case ATA_DEV_ATA: 1871 case ATA_DEV_ZAC: 1872 tf.command = ATA_CMD_ID_ATA; 1873 break; 1874 case ATA_DEV_ATAPI: 1875 tf.command = ATA_CMD_ID_ATAPI; 1876 break; 1877 default: 1878 rc = -ENODEV; 1879 reason = "unsupported class"; 1880 goto err_out; 1881 } 1882 1883 tf.protocol = ATA_PROT_PIO; 1884 1885 /* Some devices choke if TF registers contain garbage. Make 1886 * sure those are properly initialized. 1887 */ 1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1889 1890 /* Device presence detection is unreliable on some 1891 * controllers. Always poll IDENTIFY if available. 1892 */ 1893 tf.flags |= ATA_TFLAG_POLLING; 1894 1895 if (ap->ops->read_id) 1896 err_mask = ap->ops->read_id(dev, &tf, id); 1897 else 1898 err_mask = ata_do_dev_read_id(dev, &tf, id); 1899 1900 if (err_mask) { 1901 if (err_mask & AC_ERR_NODEV_HINT) { 1902 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1903 return -ENOENT; 1904 } 1905 1906 if (is_semb) { 1907 ata_dev_info(dev, 1908 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1909 /* SEMB is not supported yet */ 1910 *p_class = ATA_DEV_SEMB_UNSUP; 1911 return 0; 1912 } 1913 1914 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1915 /* Device or controller might have reported 1916 * the wrong device class. Give a shot at the 1917 * other IDENTIFY if the current one is 1918 * aborted by the device. 1919 */ 1920 if (may_fallback) { 1921 may_fallback = 0; 1922 1923 if (class == ATA_DEV_ATA) 1924 class = ATA_DEV_ATAPI; 1925 else 1926 class = ATA_DEV_ATA; 1927 goto retry; 1928 } 1929 1930 /* Control reaches here iff the device aborted 1931 * both flavors of IDENTIFYs which happens 1932 * sometimes with phantom devices. 1933 */ 1934 ata_dev_dbg(dev, 1935 "both IDENTIFYs aborted, assuming NODEV\n"); 1936 return -ENOENT; 1937 } 1938 1939 rc = -EIO; 1940 reason = "I/O error"; 1941 goto err_out; 1942 } 1943 1944 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1945 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1946 "class=%d may_fallback=%d tried_spinup=%d\n", 1947 class, may_fallback, tried_spinup); 1948 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1949 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1950 } 1951 1952 /* Falling back doesn't make sense if ID data was read 1953 * successfully at least once. 1954 */ 1955 may_fallback = 0; 1956 1957 swap_buf_le16(id, ATA_ID_WORDS); 1958 1959 /* sanity check */ 1960 rc = -EINVAL; 1961 reason = "device reports invalid type"; 1962 1963 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1965 goto err_out; 1966 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1967 ata_id_is_ata(id)) { 1968 ata_dev_dbg(dev, 1969 "host indicates ignore ATA devices, ignored\n"); 1970 return -ENOENT; 1971 } 1972 } else { 1973 if (ata_id_is_ata(id)) 1974 goto err_out; 1975 } 1976 1977 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1978 tried_spinup = 1; 1979 /* 1980 * Drive powered-up in standby mode, and requires a specific 1981 * SET_FEATURES spin-up subcommand before it will accept 1982 * anything other than the original IDENTIFY command. 1983 */ 1984 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1985 if (err_mask && id[2] != 0x738c) { 1986 rc = -EIO; 1987 reason = "SPINUP failed"; 1988 goto err_out; 1989 } 1990 /* 1991 * If the drive initially returned incomplete IDENTIFY info, 1992 * we now must reissue the IDENTIFY command. 1993 */ 1994 if (id[2] == 0x37c8) 1995 goto retry; 1996 } 1997 1998 if ((flags & ATA_READID_POSTRESET) && 1999 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2000 /* 2001 * The exact sequence expected by certain pre-ATA4 drives is: 2002 * SRST RESET 2003 * IDENTIFY (optional in early ATA) 2004 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2005 * anything else.. 2006 * Some drives were very specific about that exact sequence. 2007 * 2008 * Note that ATA4 says lba is mandatory so the second check 2009 * should never trigger. 2010 */ 2011 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2012 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2013 if (err_mask) { 2014 rc = -EIO; 2015 reason = "INIT_DEV_PARAMS failed"; 2016 goto err_out; 2017 } 2018 2019 /* current CHS translation info (id[53-58]) might be 2020 * changed. reread the identify device info. 2021 */ 2022 flags &= ~ATA_READID_POSTRESET; 2023 goto retry; 2024 } 2025 } 2026 2027 *p_class = class; 2028 2029 return 0; 2030 2031 err_out: 2032 if (ata_msg_warn(ap)) 2033 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2034 reason, err_mask); 2035 return rc; 2036 } 2037 2038 static int ata_do_link_spd_horkage(struct ata_device *dev) 2039 { 2040 struct ata_link *plink = ata_dev_phys_link(dev); 2041 u32 target, target_limit; 2042 2043 if (!sata_scr_valid(plink)) 2044 return 0; 2045 2046 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2047 target = 1; 2048 else 2049 return 0; 2050 2051 target_limit = (1 << target) - 1; 2052 2053 /* if already on stricter limit, no need to push further */ 2054 if (plink->sata_spd_limit <= target_limit) 2055 return 0; 2056 2057 plink->sata_spd_limit = target_limit; 2058 2059 /* Request another EH round by returning -EAGAIN if link is 2060 * going faster than the target speed. Forward progress is 2061 * guaranteed by setting sata_spd_limit to target_limit above. 2062 */ 2063 if (plink->sata_spd > target) { 2064 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2065 sata_spd_string(target)); 2066 return -EAGAIN; 2067 } 2068 return 0; 2069 } 2070 2071 static inline u8 ata_dev_knobble(struct ata_device *dev) 2072 { 2073 struct ata_port *ap = dev->link->ap; 2074 2075 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2076 return 0; 2077 2078 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2079 } 2080 2081 static int ata_dev_config_ncq(struct ata_device *dev, 2082 char *desc, size_t desc_sz) 2083 { 2084 struct ata_port *ap = dev->link->ap; 2085 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2086 unsigned int err_mask; 2087 char *aa_desc = ""; 2088 2089 if (!ata_id_has_ncq(dev->id)) { 2090 desc[0] = '\0'; 2091 return 0; 2092 } 2093 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2094 snprintf(desc, desc_sz, "NCQ (not used)"); 2095 return 0; 2096 } 2097 if (ap->flags & ATA_FLAG_NCQ) { 2098 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2099 dev->flags |= ATA_DFLAG_NCQ; 2100 } 2101 2102 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2103 (ap->flags & ATA_FLAG_FPDMA_AA) && 2104 ata_id_has_fpdma_aa(dev->id)) { 2105 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2106 SATA_FPDMA_AA); 2107 if (err_mask) { 2108 ata_dev_err(dev, 2109 "failed to enable AA (error_mask=0x%x)\n", 2110 err_mask); 2111 if (err_mask != AC_ERR_DEV) { 2112 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2113 return -EIO; 2114 } 2115 } else 2116 aa_desc = ", AA"; 2117 } 2118 2119 if (hdepth >= ddepth) 2120 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2121 else 2122 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2123 ddepth, aa_desc); 2124 2125 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2126 ata_id_has_ncq_send_and_recv(dev->id)) { 2127 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2128 0, ap->sector_buf, 1); 2129 if (err_mask) { 2130 ata_dev_dbg(dev, 2131 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2132 err_mask); 2133 } else { 2134 u8 *cmds = dev->ncq_send_recv_cmds; 2135 2136 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2137 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2138 2139 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2140 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2141 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2142 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2143 } 2144 } 2145 } 2146 2147 return 0; 2148 } 2149 2150 /** 2151 * ata_dev_configure - Configure the specified ATA/ATAPI device 2152 * @dev: Target device to configure 2153 * 2154 * Configure @dev according to @dev->id. Generic and low-level 2155 * driver specific fixups are also applied. 2156 * 2157 * LOCKING: 2158 * Kernel thread context (may sleep) 2159 * 2160 * RETURNS: 2161 * 0 on success, -errno otherwise 2162 */ 2163 int ata_dev_configure(struct ata_device *dev) 2164 { 2165 struct ata_port *ap = dev->link->ap; 2166 struct ata_eh_context *ehc = &dev->link->eh_context; 2167 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2168 const u16 *id = dev->id; 2169 unsigned long xfer_mask; 2170 unsigned int err_mask; 2171 char revbuf[7]; /* XYZ-99\0 */ 2172 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2173 char modelbuf[ATA_ID_PROD_LEN+1]; 2174 int rc; 2175 2176 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2177 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2178 return 0; 2179 } 2180 2181 if (ata_msg_probe(ap)) 2182 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2183 2184 /* set horkage */ 2185 dev->horkage |= ata_dev_blacklisted(dev); 2186 ata_force_horkage(dev); 2187 2188 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2189 ata_dev_info(dev, "unsupported device, disabling\n"); 2190 ata_dev_disable(dev); 2191 return 0; 2192 } 2193 2194 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2195 dev->class == ATA_DEV_ATAPI) { 2196 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2197 atapi_enabled ? "not supported with this driver" 2198 : "disabled"); 2199 ata_dev_disable(dev); 2200 return 0; 2201 } 2202 2203 rc = ata_do_link_spd_horkage(dev); 2204 if (rc) 2205 return rc; 2206 2207 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2208 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2209 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2210 dev->horkage |= ATA_HORKAGE_NOLPM; 2211 2212 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2213 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2214 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2215 } 2216 2217 /* let ACPI work its magic */ 2218 rc = ata_acpi_on_devcfg(dev); 2219 if (rc) 2220 return rc; 2221 2222 /* massage HPA, do it early as it might change IDENTIFY data */ 2223 rc = ata_hpa_resize(dev); 2224 if (rc) 2225 return rc; 2226 2227 /* print device capabilities */ 2228 if (ata_msg_probe(ap)) 2229 ata_dev_dbg(dev, 2230 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2231 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2232 __func__, 2233 id[49], id[82], id[83], id[84], 2234 id[85], id[86], id[87], id[88]); 2235 2236 /* initialize to-be-configured parameters */ 2237 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2238 dev->max_sectors = 0; 2239 dev->cdb_len = 0; 2240 dev->n_sectors = 0; 2241 dev->cylinders = 0; 2242 dev->heads = 0; 2243 dev->sectors = 0; 2244 dev->multi_count = 0; 2245 2246 /* 2247 * common ATA, ATAPI feature tests 2248 */ 2249 2250 /* find max transfer mode; for printk only */ 2251 xfer_mask = ata_id_xfermask(id); 2252 2253 if (ata_msg_probe(ap)) 2254 ata_dump_id(id); 2255 2256 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2257 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2258 sizeof(fwrevbuf)); 2259 2260 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2261 sizeof(modelbuf)); 2262 2263 /* ATA-specific feature tests */ 2264 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2265 if (ata_id_is_cfa(id)) { 2266 /* CPRM may make this media unusable */ 2267 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2268 ata_dev_warn(dev, 2269 "supports DRM functions and may not be fully accessible\n"); 2270 snprintf(revbuf, 7, "CFA"); 2271 } else { 2272 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2273 /* Warn the user if the device has TPM extensions */ 2274 if (ata_id_has_tpm(id)) 2275 ata_dev_warn(dev, 2276 "supports DRM functions and may not be fully accessible\n"); 2277 } 2278 2279 dev->n_sectors = ata_id_n_sectors(id); 2280 2281 /* get current R/W Multiple count setting */ 2282 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2283 unsigned int max = dev->id[47] & 0xff; 2284 unsigned int cnt = dev->id[59] & 0xff; 2285 /* only recognize/allow powers of two here */ 2286 if (is_power_of_2(max) && is_power_of_2(cnt)) 2287 if (cnt <= max) 2288 dev->multi_count = cnt; 2289 } 2290 2291 if (ata_id_has_lba(id)) { 2292 const char *lba_desc; 2293 char ncq_desc[24]; 2294 2295 lba_desc = "LBA"; 2296 dev->flags |= ATA_DFLAG_LBA; 2297 if (ata_id_has_lba48(id)) { 2298 dev->flags |= ATA_DFLAG_LBA48; 2299 lba_desc = "LBA48"; 2300 2301 if (dev->n_sectors >= (1UL << 28) && 2302 ata_id_has_flush_ext(id)) 2303 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2304 } 2305 2306 /* config NCQ */ 2307 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2308 if (rc) 2309 return rc; 2310 2311 /* print device info to dmesg */ 2312 if (ata_msg_drv(ap) && print_info) { 2313 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2314 revbuf, modelbuf, fwrevbuf, 2315 ata_mode_string(xfer_mask)); 2316 ata_dev_info(dev, 2317 "%llu sectors, multi %u: %s %s\n", 2318 (unsigned long long)dev->n_sectors, 2319 dev->multi_count, lba_desc, ncq_desc); 2320 } 2321 } else { 2322 /* CHS */ 2323 2324 /* Default translation */ 2325 dev->cylinders = id[1]; 2326 dev->heads = id[3]; 2327 dev->sectors = id[6]; 2328 2329 if (ata_id_current_chs_valid(id)) { 2330 /* Current CHS translation is valid. */ 2331 dev->cylinders = id[54]; 2332 dev->heads = id[55]; 2333 dev->sectors = id[56]; 2334 } 2335 2336 /* print device info to dmesg */ 2337 if (ata_msg_drv(ap) && print_info) { 2338 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2339 revbuf, modelbuf, fwrevbuf, 2340 ata_mode_string(xfer_mask)); 2341 ata_dev_info(dev, 2342 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2343 (unsigned long long)dev->n_sectors, 2344 dev->multi_count, dev->cylinders, 2345 dev->heads, dev->sectors); 2346 } 2347 } 2348 2349 /* Check and mark DevSlp capability. Get DevSlp timing variables 2350 * from SATA Settings page of Identify Device Data Log. 2351 */ 2352 if (ata_id_has_devslp(dev->id)) { 2353 u8 *sata_setting = ap->sector_buf; 2354 int i, j; 2355 2356 dev->flags |= ATA_DFLAG_DEVSLP; 2357 err_mask = ata_read_log_page(dev, 2358 ATA_LOG_SATA_ID_DEV_DATA, 2359 ATA_LOG_SATA_SETTINGS, 2360 sata_setting, 2361 1); 2362 if (err_mask) 2363 ata_dev_dbg(dev, 2364 "failed to get Identify Device Data, Emask 0x%x\n", 2365 err_mask); 2366 else 2367 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2368 j = ATA_LOG_DEVSLP_OFFSET + i; 2369 dev->devslp_timing[i] = sata_setting[j]; 2370 } 2371 } 2372 2373 dev->cdb_len = 16; 2374 } 2375 2376 /* ATAPI-specific feature tests */ 2377 else if (dev->class == ATA_DEV_ATAPI) { 2378 const char *cdb_intr_string = ""; 2379 const char *atapi_an_string = ""; 2380 const char *dma_dir_string = ""; 2381 u32 sntf; 2382 2383 rc = atapi_cdb_len(id); 2384 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2385 if (ata_msg_warn(ap)) 2386 ata_dev_warn(dev, "unsupported CDB len\n"); 2387 rc = -EINVAL; 2388 goto err_out_nosup; 2389 } 2390 dev->cdb_len = (unsigned int) rc; 2391 2392 /* Enable ATAPI AN if both the host and device have 2393 * the support. If PMP is attached, SNTF is required 2394 * to enable ATAPI AN to discern between PHY status 2395 * changed notifications and ATAPI ANs. 2396 */ 2397 if (atapi_an && 2398 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2399 (!sata_pmp_attached(ap) || 2400 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2401 /* issue SET feature command to turn this on */ 2402 err_mask = ata_dev_set_feature(dev, 2403 SETFEATURES_SATA_ENABLE, SATA_AN); 2404 if (err_mask) 2405 ata_dev_err(dev, 2406 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2407 err_mask); 2408 else { 2409 dev->flags |= ATA_DFLAG_AN; 2410 atapi_an_string = ", ATAPI AN"; 2411 } 2412 } 2413 2414 if (ata_id_cdb_intr(dev->id)) { 2415 dev->flags |= ATA_DFLAG_CDB_INTR; 2416 cdb_intr_string = ", CDB intr"; 2417 } 2418 2419 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2420 dev->flags |= ATA_DFLAG_DMADIR; 2421 dma_dir_string = ", DMADIR"; 2422 } 2423 2424 if (ata_id_has_da(dev->id)) { 2425 dev->flags |= ATA_DFLAG_DA; 2426 zpodd_init(dev); 2427 } 2428 2429 /* print device info to dmesg */ 2430 if (ata_msg_drv(ap) && print_info) 2431 ata_dev_info(dev, 2432 "ATAPI: %s, %s, max %s%s%s%s\n", 2433 modelbuf, fwrevbuf, 2434 ata_mode_string(xfer_mask), 2435 cdb_intr_string, atapi_an_string, 2436 dma_dir_string); 2437 } 2438 2439 /* determine max_sectors */ 2440 dev->max_sectors = ATA_MAX_SECTORS; 2441 if (dev->flags & ATA_DFLAG_LBA48) 2442 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2443 2444 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2445 200 sectors */ 2446 if (ata_dev_knobble(dev)) { 2447 if (ata_msg_drv(ap) && print_info) 2448 ata_dev_info(dev, "applying bridge limits\n"); 2449 dev->udma_mask &= ATA_UDMA5; 2450 dev->max_sectors = ATA_MAX_SECTORS; 2451 } 2452 2453 if ((dev->class == ATA_DEV_ATAPI) && 2454 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2455 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2456 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2457 } 2458 2459 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2460 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2461 dev->max_sectors); 2462 2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2465 dev->max_sectors); 2466 2467 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2468 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2469 2470 if (ap->ops->dev_config) 2471 ap->ops->dev_config(dev); 2472 2473 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2474 /* Let the user know. We don't want to disallow opens for 2475 rescue purposes, or in case the vendor is just a blithering 2476 idiot. Do this after the dev_config call as some controllers 2477 with buggy firmware may want to avoid reporting false device 2478 bugs */ 2479 2480 if (print_info) { 2481 ata_dev_warn(dev, 2482 "Drive reports diagnostics failure. This may indicate a drive\n"); 2483 ata_dev_warn(dev, 2484 "fault or invalid emulation. Contact drive vendor for information.\n"); 2485 } 2486 } 2487 2488 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2489 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2490 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2491 } 2492 2493 return 0; 2494 2495 err_out_nosup: 2496 if (ata_msg_probe(ap)) 2497 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2498 return rc; 2499 } 2500 2501 /** 2502 * ata_cable_40wire - return 40 wire cable type 2503 * @ap: port 2504 * 2505 * Helper method for drivers which want to hardwire 40 wire cable 2506 * detection. 2507 */ 2508 2509 int ata_cable_40wire(struct ata_port *ap) 2510 { 2511 return ATA_CBL_PATA40; 2512 } 2513 2514 /** 2515 * ata_cable_80wire - return 80 wire cable type 2516 * @ap: port 2517 * 2518 * Helper method for drivers which want to hardwire 80 wire cable 2519 * detection. 2520 */ 2521 2522 int ata_cable_80wire(struct ata_port *ap) 2523 { 2524 return ATA_CBL_PATA80; 2525 } 2526 2527 /** 2528 * ata_cable_unknown - return unknown PATA cable. 2529 * @ap: port 2530 * 2531 * Helper method for drivers which have no PATA cable detection. 2532 */ 2533 2534 int ata_cable_unknown(struct ata_port *ap) 2535 { 2536 return ATA_CBL_PATA_UNK; 2537 } 2538 2539 /** 2540 * ata_cable_ignore - return ignored PATA cable. 2541 * @ap: port 2542 * 2543 * Helper method for drivers which don't use cable type to limit 2544 * transfer mode. 2545 */ 2546 int ata_cable_ignore(struct ata_port *ap) 2547 { 2548 return ATA_CBL_PATA_IGN; 2549 } 2550 2551 /** 2552 * ata_cable_sata - return SATA cable type 2553 * @ap: port 2554 * 2555 * Helper method for drivers which have SATA cables 2556 */ 2557 2558 int ata_cable_sata(struct ata_port *ap) 2559 { 2560 return ATA_CBL_SATA; 2561 } 2562 2563 /** 2564 * ata_bus_probe - Reset and probe ATA bus 2565 * @ap: Bus to probe 2566 * 2567 * Master ATA bus probing function. Initiates a hardware-dependent 2568 * bus reset, then attempts to identify any devices found on 2569 * the bus. 2570 * 2571 * LOCKING: 2572 * PCI/etc. bus probe sem. 2573 * 2574 * RETURNS: 2575 * Zero on success, negative errno otherwise. 2576 */ 2577 2578 int ata_bus_probe(struct ata_port *ap) 2579 { 2580 unsigned int classes[ATA_MAX_DEVICES]; 2581 int tries[ATA_MAX_DEVICES]; 2582 int rc; 2583 struct ata_device *dev; 2584 2585 ata_for_each_dev(dev, &ap->link, ALL) 2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2587 2588 retry: 2589 ata_for_each_dev(dev, &ap->link, ALL) { 2590 /* If we issue an SRST then an ATA drive (not ATAPI) 2591 * may change configuration and be in PIO0 timing. If 2592 * we do a hard reset (or are coming from power on) 2593 * this is true for ATA or ATAPI. Until we've set a 2594 * suitable controller mode we should not touch the 2595 * bus as we may be talking too fast. 2596 */ 2597 dev->pio_mode = XFER_PIO_0; 2598 dev->dma_mode = 0xff; 2599 2600 /* If the controller has a pio mode setup function 2601 * then use it to set the chipset to rights. Don't 2602 * touch the DMA setup as that will be dealt with when 2603 * configuring devices. 2604 */ 2605 if (ap->ops->set_piomode) 2606 ap->ops->set_piomode(ap, dev); 2607 } 2608 2609 /* reset and determine device classes */ 2610 ap->ops->phy_reset(ap); 2611 2612 ata_for_each_dev(dev, &ap->link, ALL) { 2613 if (dev->class != ATA_DEV_UNKNOWN) 2614 classes[dev->devno] = dev->class; 2615 else 2616 classes[dev->devno] = ATA_DEV_NONE; 2617 2618 dev->class = ATA_DEV_UNKNOWN; 2619 } 2620 2621 /* read IDENTIFY page and configure devices. We have to do the identify 2622 specific sequence bass-ackwards so that PDIAG- is released by 2623 the slave device */ 2624 2625 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2626 if (tries[dev->devno]) 2627 dev->class = classes[dev->devno]; 2628 2629 if (!ata_dev_enabled(dev)) 2630 continue; 2631 2632 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2633 dev->id); 2634 if (rc) 2635 goto fail; 2636 } 2637 2638 /* Now ask for the cable type as PDIAG- should have been released */ 2639 if (ap->ops->cable_detect) 2640 ap->cbl = ap->ops->cable_detect(ap); 2641 2642 /* We may have SATA bridge glue hiding here irrespective of 2643 * the reported cable types and sensed types. When SATA 2644 * drives indicate we have a bridge, we don't know which end 2645 * of the link the bridge is which is a problem. 2646 */ 2647 ata_for_each_dev(dev, &ap->link, ENABLED) 2648 if (ata_id_is_sata(dev->id)) 2649 ap->cbl = ATA_CBL_SATA; 2650 2651 /* After the identify sequence we can now set up the devices. We do 2652 this in the normal order so that the user doesn't get confused */ 2653 2654 ata_for_each_dev(dev, &ap->link, ENABLED) { 2655 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2656 rc = ata_dev_configure(dev); 2657 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2658 if (rc) 2659 goto fail; 2660 } 2661 2662 /* configure transfer mode */ 2663 rc = ata_set_mode(&ap->link, &dev); 2664 if (rc) 2665 goto fail; 2666 2667 ata_for_each_dev(dev, &ap->link, ENABLED) 2668 return 0; 2669 2670 return -ENODEV; 2671 2672 fail: 2673 tries[dev->devno]--; 2674 2675 switch (rc) { 2676 case -EINVAL: 2677 /* eeek, something went very wrong, give up */ 2678 tries[dev->devno] = 0; 2679 break; 2680 2681 case -ENODEV: 2682 /* give it just one more chance */ 2683 tries[dev->devno] = min(tries[dev->devno], 1); 2684 case -EIO: 2685 if (tries[dev->devno] == 1) { 2686 /* This is the last chance, better to slow 2687 * down than lose it. 2688 */ 2689 sata_down_spd_limit(&ap->link, 0); 2690 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2691 } 2692 } 2693 2694 if (!tries[dev->devno]) 2695 ata_dev_disable(dev); 2696 2697 goto retry; 2698 } 2699 2700 /** 2701 * sata_print_link_status - Print SATA link status 2702 * @link: SATA link to printk link status about 2703 * 2704 * This function prints link speed and status of a SATA link. 2705 * 2706 * LOCKING: 2707 * None. 2708 */ 2709 static void sata_print_link_status(struct ata_link *link) 2710 { 2711 u32 sstatus, scontrol, tmp; 2712 2713 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2714 return; 2715 sata_scr_read(link, SCR_CONTROL, &scontrol); 2716 2717 if (ata_phys_link_online(link)) { 2718 tmp = (sstatus >> 4) & 0xf; 2719 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2720 sata_spd_string(tmp), sstatus, scontrol); 2721 } else { 2722 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2723 sstatus, scontrol); 2724 } 2725 } 2726 2727 /** 2728 * ata_dev_pair - return other device on cable 2729 * @adev: device 2730 * 2731 * Obtain the other device on the same cable, or if none is 2732 * present NULL is returned 2733 */ 2734 2735 struct ata_device *ata_dev_pair(struct ata_device *adev) 2736 { 2737 struct ata_link *link = adev->link; 2738 struct ata_device *pair = &link->device[1 - adev->devno]; 2739 if (!ata_dev_enabled(pair)) 2740 return NULL; 2741 return pair; 2742 } 2743 2744 /** 2745 * sata_down_spd_limit - adjust SATA spd limit downward 2746 * @link: Link to adjust SATA spd limit for 2747 * @spd_limit: Additional limit 2748 * 2749 * Adjust SATA spd limit of @link downward. Note that this 2750 * function only adjusts the limit. The change must be applied 2751 * using sata_set_spd(). 2752 * 2753 * If @spd_limit is non-zero, the speed is limited to equal to or 2754 * lower than @spd_limit if such speed is supported. If 2755 * @spd_limit is slower than any supported speed, only the lowest 2756 * supported speed is allowed. 2757 * 2758 * LOCKING: 2759 * Inherited from caller. 2760 * 2761 * RETURNS: 2762 * 0 on success, negative errno on failure 2763 */ 2764 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2765 { 2766 u32 sstatus, spd, mask; 2767 int rc, bit; 2768 2769 if (!sata_scr_valid(link)) 2770 return -EOPNOTSUPP; 2771 2772 /* If SCR can be read, use it to determine the current SPD. 2773 * If not, use cached value in link->sata_spd. 2774 */ 2775 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2776 if (rc == 0 && ata_sstatus_online(sstatus)) 2777 spd = (sstatus >> 4) & 0xf; 2778 else 2779 spd = link->sata_spd; 2780 2781 mask = link->sata_spd_limit; 2782 if (mask <= 1) 2783 return -EINVAL; 2784 2785 /* unconditionally mask off the highest bit */ 2786 bit = fls(mask) - 1; 2787 mask &= ~(1 << bit); 2788 2789 /* Mask off all speeds higher than or equal to the current 2790 * one. Force 1.5Gbps if current SPD is not available. 2791 */ 2792 if (spd > 1) 2793 mask &= (1 << (spd - 1)) - 1; 2794 else 2795 mask &= 1; 2796 2797 /* were we already at the bottom? */ 2798 if (!mask) 2799 return -EINVAL; 2800 2801 if (spd_limit) { 2802 if (mask & ((1 << spd_limit) - 1)) 2803 mask &= (1 << spd_limit) - 1; 2804 else { 2805 bit = ffs(mask) - 1; 2806 mask = 1 << bit; 2807 } 2808 } 2809 2810 link->sata_spd_limit = mask; 2811 2812 ata_link_warn(link, "limiting SATA link speed to %s\n", 2813 sata_spd_string(fls(mask))); 2814 2815 return 0; 2816 } 2817 2818 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2819 { 2820 struct ata_link *host_link = &link->ap->link; 2821 u32 limit, target, spd; 2822 2823 limit = link->sata_spd_limit; 2824 2825 /* Don't configure downstream link faster than upstream link. 2826 * It doesn't speed up anything and some PMPs choke on such 2827 * configuration. 2828 */ 2829 if (!ata_is_host_link(link) && host_link->sata_spd) 2830 limit &= (1 << host_link->sata_spd) - 1; 2831 2832 if (limit == UINT_MAX) 2833 target = 0; 2834 else 2835 target = fls(limit); 2836 2837 spd = (*scontrol >> 4) & 0xf; 2838 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2839 2840 return spd != target; 2841 } 2842 2843 /** 2844 * sata_set_spd_needed - is SATA spd configuration needed 2845 * @link: Link in question 2846 * 2847 * Test whether the spd limit in SControl matches 2848 * @link->sata_spd_limit. This function is used to determine 2849 * whether hardreset is necessary to apply SATA spd 2850 * configuration. 2851 * 2852 * LOCKING: 2853 * Inherited from caller. 2854 * 2855 * RETURNS: 2856 * 1 if SATA spd configuration is needed, 0 otherwise. 2857 */ 2858 static int sata_set_spd_needed(struct ata_link *link) 2859 { 2860 u32 scontrol; 2861 2862 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2863 return 1; 2864 2865 return __sata_set_spd_needed(link, &scontrol); 2866 } 2867 2868 /** 2869 * sata_set_spd - set SATA spd according to spd limit 2870 * @link: Link to set SATA spd for 2871 * 2872 * Set SATA spd of @link according to sata_spd_limit. 2873 * 2874 * LOCKING: 2875 * Inherited from caller. 2876 * 2877 * RETURNS: 2878 * 0 if spd doesn't need to be changed, 1 if spd has been 2879 * changed. Negative errno if SCR registers are inaccessible. 2880 */ 2881 int sata_set_spd(struct ata_link *link) 2882 { 2883 u32 scontrol; 2884 int rc; 2885 2886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2887 return rc; 2888 2889 if (!__sata_set_spd_needed(link, &scontrol)) 2890 return 0; 2891 2892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2893 return rc; 2894 2895 return 1; 2896 } 2897 2898 /* 2899 * This mode timing computation functionality is ported over from 2900 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2901 */ 2902 /* 2903 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2904 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2905 * for UDMA6, which is currently supported only by Maxtor drives. 2906 * 2907 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2908 */ 2909 2910 static const struct ata_timing ata_timing[] = { 2911 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2912 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2913 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2914 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2915 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2916 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2917 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2918 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2919 2920 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2921 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2922 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2923 2924 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2925 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2926 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2927 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2928 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2929 2930 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2931 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2932 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2933 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2934 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2935 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2936 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2937 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2938 2939 { 0xFF } 2940 }; 2941 2942 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2943 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2944 2945 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2946 { 2947 q->setup = EZ(t->setup * 1000, T); 2948 q->act8b = EZ(t->act8b * 1000, T); 2949 q->rec8b = EZ(t->rec8b * 1000, T); 2950 q->cyc8b = EZ(t->cyc8b * 1000, T); 2951 q->active = EZ(t->active * 1000, T); 2952 q->recover = EZ(t->recover * 1000, T); 2953 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2954 q->cycle = EZ(t->cycle * 1000, T); 2955 q->udma = EZ(t->udma * 1000, UT); 2956 } 2957 2958 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2959 struct ata_timing *m, unsigned int what) 2960 { 2961 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2962 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2963 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2964 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2965 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2966 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2967 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2970 } 2971 2972 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2973 { 2974 const struct ata_timing *t = ata_timing; 2975 2976 while (xfer_mode > t->mode) 2977 t++; 2978 2979 if (xfer_mode == t->mode) 2980 return t; 2981 2982 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2983 __func__, xfer_mode); 2984 2985 return NULL; 2986 } 2987 2988 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2989 struct ata_timing *t, int T, int UT) 2990 { 2991 const u16 *id = adev->id; 2992 const struct ata_timing *s; 2993 struct ata_timing p; 2994 2995 /* 2996 * Find the mode. 2997 */ 2998 2999 if (!(s = ata_timing_find_mode(speed))) 3000 return -EINVAL; 3001 3002 memcpy(t, s, sizeof(*s)); 3003 3004 /* 3005 * If the drive is an EIDE drive, it can tell us it needs extended 3006 * PIO/MW_DMA cycle timing. 3007 */ 3008 3009 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3010 memset(&p, 0, sizeof(p)); 3011 3012 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3013 if (speed <= XFER_PIO_2) 3014 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3015 else if ((speed <= XFER_PIO_4) || 3016 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3017 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3018 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3019 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3020 3021 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3022 } 3023 3024 /* 3025 * Convert the timing to bus clock counts. 3026 */ 3027 3028 ata_timing_quantize(t, t, T, UT); 3029 3030 /* 3031 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3032 * S.M.A.R.T * and some other commands. We have to ensure that the 3033 * DMA cycle timing is slower/equal than the fastest PIO timing. 3034 */ 3035 3036 if (speed > XFER_PIO_6) { 3037 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3038 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3039 } 3040 3041 /* 3042 * Lengthen active & recovery time so that cycle time is correct. 3043 */ 3044 3045 if (t->act8b + t->rec8b < t->cyc8b) { 3046 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3047 t->rec8b = t->cyc8b - t->act8b; 3048 } 3049 3050 if (t->active + t->recover < t->cycle) { 3051 t->active += (t->cycle - (t->active + t->recover)) / 2; 3052 t->recover = t->cycle - t->active; 3053 } 3054 3055 /* In a few cases quantisation may produce enough errors to 3056 leave t->cycle too low for the sum of active and recovery 3057 if so we must correct this */ 3058 if (t->active + t->recover > t->cycle) 3059 t->cycle = t->active + t->recover; 3060 3061 return 0; 3062 } 3063 3064 /** 3065 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3066 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3067 * @cycle: cycle duration in ns 3068 * 3069 * Return matching xfer mode for @cycle. The returned mode is of 3070 * the transfer type specified by @xfer_shift. If @cycle is too 3071 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3072 * than the fastest known mode, the fasted mode is returned. 3073 * 3074 * LOCKING: 3075 * None. 3076 * 3077 * RETURNS: 3078 * Matching xfer_mode, 0xff if no match found. 3079 */ 3080 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3081 { 3082 u8 base_mode = 0xff, last_mode = 0xff; 3083 const struct ata_xfer_ent *ent; 3084 const struct ata_timing *t; 3085 3086 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3087 if (ent->shift == xfer_shift) 3088 base_mode = ent->base; 3089 3090 for (t = ata_timing_find_mode(base_mode); 3091 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3092 unsigned short this_cycle; 3093 3094 switch (xfer_shift) { 3095 case ATA_SHIFT_PIO: 3096 case ATA_SHIFT_MWDMA: 3097 this_cycle = t->cycle; 3098 break; 3099 case ATA_SHIFT_UDMA: 3100 this_cycle = t->udma; 3101 break; 3102 default: 3103 return 0xff; 3104 } 3105 3106 if (cycle > this_cycle) 3107 break; 3108 3109 last_mode = t->mode; 3110 } 3111 3112 return last_mode; 3113 } 3114 3115 /** 3116 * ata_down_xfermask_limit - adjust dev xfer masks downward 3117 * @dev: Device to adjust xfer masks 3118 * @sel: ATA_DNXFER_* selector 3119 * 3120 * Adjust xfer masks of @dev downward. Note that this function 3121 * does not apply the change. Invoking ata_set_mode() afterwards 3122 * will apply the limit. 3123 * 3124 * LOCKING: 3125 * Inherited from caller. 3126 * 3127 * RETURNS: 3128 * 0 on success, negative errno on failure 3129 */ 3130 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3131 { 3132 char buf[32]; 3133 unsigned long orig_mask, xfer_mask; 3134 unsigned long pio_mask, mwdma_mask, udma_mask; 3135 int quiet, highbit; 3136 3137 quiet = !!(sel & ATA_DNXFER_QUIET); 3138 sel &= ~ATA_DNXFER_QUIET; 3139 3140 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3141 dev->mwdma_mask, 3142 dev->udma_mask); 3143 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3144 3145 switch (sel) { 3146 case ATA_DNXFER_PIO: 3147 highbit = fls(pio_mask) - 1; 3148 pio_mask &= ~(1 << highbit); 3149 break; 3150 3151 case ATA_DNXFER_DMA: 3152 if (udma_mask) { 3153 highbit = fls(udma_mask) - 1; 3154 udma_mask &= ~(1 << highbit); 3155 if (!udma_mask) 3156 return -ENOENT; 3157 } else if (mwdma_mask) { 3158 highbit = fls(mwdma_mask) - 1; 3159 mwdma_mask &= ~(1 << highbit); 3160 if (!mwdma_mask) 3161 return -ENOENT; 3162 } 3163 break; 3164 3165 case ATA_DNXFER_40C: 3166 udma_mask &= ATA_UDMA_MASK_40C; 3167 break; 3168 3169 case ATA_DNXFER_FORCE_PIO0: 3170 pio_mask &= 1; 3171 case ATA_DNXFER_FORCE_PIO: 3172 mwdma_mask = 0; 3173 udma_mask = 0; 3174 break; 3175 3176 default: 3177 BUG(); 3178 } 3179 3180 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3181 3182 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3183 return -ENOENT; 3184 3185 if (!quiet) { 3186 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3187 snprintf(buf, sizeof(buf), "%s:%s", 3188 ata_mode_string(xfer_mask), 3189 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3190 else 3191 snprintf(buf, sizeof(buf), "%s", 3192 ata_mode_string(xfer_mask)); 3193 3194 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3195 } 3196 3197 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3198 &dev->udma_mask); 3199 3200 return 0; 3201 } 3202 3203 static int ata_dev_set_mode(struct ata_device *dev) 3204 { 3205 struct ata_port *ap = dev->link->ap; 3206 struct ata_eh_context *ehc = &dev->link->eh_context; 3207 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3208 const char *dev_err_whine = ""; 3209 int ign_dev_err = 0; 3210 unsigned int err_mask = 0; 3211 int rc; 3212 3213 dev->flags &= ~ATA_DFLAG_PIO; 3214 if (dev->xfer_shift == ATA_SHIFT_PIO) 3215 dev->flags |= ATA_DFLAG_PIO; 3216 3217 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3218 dev_err_whine = " (SET_XFERMODE skipped)"; 3219 else { 3220 if (nosetxfer) 3221 ata_dev_warn(dev, 3222 "NOSETXFER but PATA detected - can't " 3223 "skip SETXFER, might malfunction\n"); 3224 err_mask = ata_dev_set_xfermode(dev); 3225 } 3226 3227 if (err_mask & ~AC_ERR_DEV) 3228 goto fail; 3229 3230 /* revalidate */ 3231 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3232 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3233 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3234 if (rc) 3235 return rc; 3236 3237 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3238 /* Old CFA may refuse this command, which is just fine */ 3239 if (ata_id_is_cfa(dev->id)) 3240 ign_dev_err = 1; 3241 /* Catch several broken garbage emulations plus some pre 3242 ATA devices */ 3243 if (ata_id_major_version(dev->id) == 0 && 3244 dev->pio_mode <= XFER_PIO_2) 3245 ign_dev_err = 1; 3246 /* Some very old devices and some bad newer ones fail 3247 any kind of SET_XFERMODE request but support PIO0-2 3248 timings and no IORDY */ 3249 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3250 ign_dev_err = 1; 3251 } 3252 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3253 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3254 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3255 dev->dma_mode == XFER_MW_DMA_0 && 3256 (dev->id[63] >> 8) & 1) 3257 ign_dev_err = 1; 3258 3259 /* if the device is actually configured correctly, ignore dev err */ 3260 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3261 ign_dev_err = 1; 3262 3263 if (err_mask & AC_ERR_DEV) { 3264 if (!ign_dev_err) 3265 goto fail; 3266 else 3267 dev_err_whine = " (device error ignored)"; 3268 } 3269 3270 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3271 dev->xfer_shift, (int)dev->xfer_mode); 3272 3273 ata_dev_info(dev, "configured for %s%s\n", 3274 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3275 dev_err_whine); 3276 3277 return 0; 3278 3279 fail: 3280 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3281 return -EIO; 3282 } 3283 3284 /** 3285 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3286 * @link: link on which timings will be programmed 3287 * @r_failed_dev: out parameter for failed device 3288 * 3289 * Standard implementation of the function used to tune and set 3290 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3291 * ata_dev_set_mode() fails, pointer to the failing device is 3292 * returned in @r_failed_dev. 3293 * 3294 * LOCKING: 3295 * PCI/etc. bus probe sem. 3296 * 3297 * RETURNS: 3298 * 0 on success, negative errno otherwise 3299 */ 3300 3301 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3302 { 3303 struct ata_port *ap = link->ap; 3304 struct ata_device *dev; 3305 int rc = 0, used_dma = 0, found = 0; 3306 3307 /* step 1: calculate xfer_mask */ 3308 ata_for_each_dev(dev, link, ENABLED) { 3309 unsigned long pio_mask, dma_mask; 3310 unsigned int mode_mask; 3311 3312 mode_mask = ATA_DMA_MASK_ATA; 3313 if (dev->class == ATA_DEV_ATAPI) 3314 mode_mask = ATA_DMA_MASK_ATAPI; 3315 else if (ata_id_is_cfa(dev->id)) 3316 mode_mask = ATA_DMA_MASK_CFA; 3317 3318 ata_dev_xfermask(dev); 3319 ata_force_xfermask(dev); 3320 3321 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3322 3323 if (libata_dma_mask & mode_mask) 3324 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3325 dev->udma_mask); 3326 else 3327 dma_mask = 0; 3328 3329 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3330 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3331 3332 found = 1; 3333 if (ata_dma_enabled(dev)) 3334 used_dma = 1; 3335 } 3336 if (!found) 3337 goto out; 3338 3339 /* step 2: always set host PIO timings */ 3340 ata_for_each_dev(dev, link, ENABLED) { 3341 if (dev->pio_mode == 0xff) { 3342 ata_dev_warn(dev, "no PIO support\n"); 3343 rc = -EINVAL; 3344 goto out; 3345 } 3346 3347 dev->xfer_mode = dev->pio_mode; 3348 dev->xfer_shift = ATA_SHIFT_PIO; 3349 if (ap->ops->set_piomode) 3350 ap->ops->set_piomode(ap, dev); 3351 } 3352 3353 /* step 3: set host DMA timings */ 3354 ata_for_each_dev(dev, link, ENABLED) { 3355 if (!ata_dma_enabled(dev)) 3356 continue; 3357 3358 dev->xfer_mode = dev->dma_mode; 3359 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3360 if (ap->ops->set_dmamode) 3361 ap->ops->set_dmamode(ap, dev); 3362 } 3363 3364 /* step 4: update devices' xfer mode */ 3365 ata_for_each_dev(dev, link, ENABLED) { 3366 rc = ata_dev_set_mode(dev); 3367 if (rc) 3368 goto out; 3369 } 3370 3371 /* Record simplex status. If we selected DMA then the other 3372 * host channels are not permitted to do so. 3373 */ 3374 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3375 ap->host->simplex_claimed = ap; 3376 3377 out: 3378 if (rc) 3379 *r_failed_dev = dev; 3380 return rc; 3381 } 3382 3383 /** 3384 * ata_wait_ready - wait for link to become ready 3385 * @link: link to be waited on 3386 * @deadline: deadline jiffies for the operation 3387 * @check_ready: callback to check link readiness 3388 * 3389 * Wait for @link to become ready. @check_ready should return 3390 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3391 * link doesn't seem to be occupied, other errno for other error 3392 * conditions. 3393 * 3394 * Transient -ENODEV conditions are allowed for 3395 * ATA_TMOUT_FF_WAIT. 3396 * 3397 * LOCKING: 3398 * EH context. 3399 * 3400 * RETURNS: 3401 * 0 if @linke is ready before @deadline; otherwise, -errno. 3402 */ 3403 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3404 int (*check_ready)(struct ata_link *link)) 3405 { 3406 unsigned long start = jiffies; 3407 unsigned long nodev_deadline; 3408 int warned = 0; 3409 3410 /* choose which 0xff timeout to use, read comment in libata.h */ 3411 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3412 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3413 else 3414 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3415 3416 /* Slave readiness can't be tested separately from master. On 3417 * M/S emulation configuration, this function should be called 3418 * only on the master and it will handle both master and slave. 3419 */ 3420 WARN_ON(link == link->ap->slave_link); 3421 3422 if (time_after(nodev_deadline, deadline)) 3423 nodev_deadline = deadline; 3424 3425 while (1) { 3426 unsigned long now = jiffies; 3427 int ready, tmp; 3428 3429 ready = tmp = check_ready(link); 3430 if (ready > 0) 3431 return 0; 3432 3433 /* 3434 * -ENODEV could be transient. Ignore -ENODEV if link 3435 * is online. Also, some SATA devices take a long 3436 * time to clear 0xff after reset. Wait for 3437 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3438 * offline. 3439 * 3440 * Note that some PATA controllers (pata_ali) explode 3441 * if status register is read more than once when 3442 * there's no device attached. 3443 */ 3444 if (ready == -ENODEV) { 3445 if (ata_link_online(link)) 3446 ready = 0; 3447 else if ((link->ap->flags & ATA_FLAG_SATA) && 3448 !ata_link_offline(link) && 3449 time_before(now, nodev_deadline)) 3450 ready = 0; 3451 } 3452 3453 if (ready) 3454 return ready; 3455 if (time_after(now, deadline)) 3456 return -EBUSY; 3457 3458 if (!warned && time_after(now, start + 5 * HZ) && 3459 (deadline - now > 3 * HZ)) { 3460 ata_link_warn(link, 3461 "link is slow to respond, please be patient " 3462 "(ready=%d)\n", tmp); 3463 warned = 1; 3464 } 3465 3466 ata_msleep(link->ap, 50); 3467 } 3468 } 3469 3470 /** 3471 * ata_wait_after_reset - wait for link to become ready after reset 3472 * @link: link to be waited on 3473 * @deadline: deadline jiffies for the operation 3474 * @check_ready: callback to check link readiness 3475 * 3476 * Wait for @link to become ready after reset. 3477 * 3478 * LOCKING: 3479 * EH context. 3480 * 3481 * RETURNS: 3482 * 0 if @linke is ready before @deadline; otherwise, -errno. 3483 */ 3484 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3485 int (*check_ready)(struct ata_link *link)) 3486 { 3487 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3488 3489 return ata_wait_ready(link, deadline, check_ready); 3490 } 3491 3492 /** 3493 * sata_link_debounce - debounce SATA phy status 3494 * @link: ATA link to debounce SATA phy status for 3495 * @params: timing parameters { interval, duratinon, timeout } in msec 3496 * @deadline: deadline jiffies for the operation 3497 * 3498 * Make sure SStatus of @link reaches stable state, determined by 3499 * holding the same value where DET is not 1 for @duration polled 3500 * every @interval, before @timeout. Timeout constraints the 3501 * beginning of the stable state. Because DET gets stuck at 1 on 3502 * some controllers after hot unplugging, this functions waits 3503 * until timeout then returns 0 if DET is stable at 1. 3504 * 3505 * @timeout is further limited by @deadline. The sooner of the 3506 * two is used. 3507 * 3508 * LOCKING: 3509 * Kernel thread context (may sleep) 3510 * 3511 * RETURNS: 3512 * 0 on success, -errno on failure. 3513 */ 3514 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3515 unsigned long deadline) 3516 { 3517 unsigned long interval = params[0]; 3518 unsigned long duration = params[1]; 3519 unsigned long last_jiffies, t; 3520 u32 last, cur; 3521 int rc; 3522 3523 t = ata_deadline(jiffies, params[2]); 3524 if (time_before(t, deadline)) 3525 deadline = t; 3526 3527 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3528 return rc; 3529 cur &= 0xf; 3530 3531 last = cur; 3532 last_jiffies = jiffies; 3533 3534 while (1) { 3535 ata_msleep(link->ap, interval); 3536 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3537 return rc; 3538 cur &= 0xf; 3539 3540 /* DET stable? */ 3541 if (cur == last) { 3542 if (cur == 1 && time_before(jiffies, deadline)) 3543 continue; 3544 if (time_after(jiffies, 3545 ata_deadline(last_jiffies, duration))) 3546 return 0; 3547 continue; 3548 } 3549 3550 /* unstable, start over */ 3551 last = cur; 3552 last_jiffies = jiffies; 3553 3554 /* Check deadline. If debouncing failed, return 3555 * -EPIPE to tell upper layer to lower link speed. 3556 */ 3557 if (time_after(jiffies, deadline)) 3558 return -EPIPE; 3559 } 3560 } 3561 3562 /** 3563 * sata_link_resume - resume SATA link 3564 * @link: ATA link to resume SATA 3565 * @params: timing parameters { interval, duratinon, timeout } in msec 3566 * @deadline: deadline jiffies for the operation 3567 * 3568 * Resume SATA phy @link and debounce it. 3569 * 3570 * LOCKING: 3571 * Kernel thread context (may sleep) 3572 * 3573 * RETURNS: 3574 * 0 on success, -errno on failure. 3575 */ 3576 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3577 unsigned long deadline) 3578 { 3579 int tries = ATA_LINK_RESUME_TRIES; 3580 u32 scontrol, serror; 3581 int rc; 3582 3583 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3584 return rc; 3585 3586 /* 3587 * Writes to SControl sometimes get ignored under certain 3588 * controllers (ata_piix SIDPR). Make sure DET actually is 3589 * cleared. 3590 */ 3591 do { 3592 scontrol = (scontrol & 0x0f0) | 0x300; 3593 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3594 return rc; 3595 /* 3596 * Some PHYs react badly if SStatus is pounded 3597 * immediately after resuming. Delay 200ms before 3598 * debouncing. 3599 */ 3600 ata_msleep(link->ap, 200); 3601 3602 /* is SControl restored correctly? */ 3603 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3604 return rc; 3605 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3606 3607 if ((scontrol & 0xf0f) != 0x300) { 3608 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3609 scontrol); 3610 return 0; 3611 } 3612 3613 if (tries < ATA_LINK_RESUME_TRIES) 3614 ata_link_warn(link, "link resume succeeded after %d retries\n", 3615 ATA_LINK_RESUME_TRIES - tries); 3616 3617 if ((rc = sata_link_debounce(link, params, deadline))) 3618 return rc; 3619 3620 /* clear SError, some PHYs require this even for SRST to work */ 3621 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3622 rc = sata_scr_write(link, SCR_ERROR, serror); 3623 3624 return rc != -EINVAL ? rc : 0; 3625 } 3626 3627 /** 3628 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3629 * @link: ATA link to manipulate SControl for 3630 * @policy: LPM policy to configure 3631 * @spm_wakeup: initiate LPM transition to active state 3632 * 3633 * Manipulate the IPM field of the SControl register of @link 3634 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3635 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3636 * the link. This function also clears PHYRDY_CHG before 3637 * returning. 3638 * 3639 * LOCKING: 3640 * EH context. 3641 * 3642 * RETURNS: 3643 * 0 on success, -errno otherwise. 3644 */ 3645 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3646 bool spm_wakeup) 3647 { 3648 struct ata_eh_context *ehc = &link->eh_context; 3649 bool woken_up = false; 3650 u32 scontrol; 3651 int rc; 3652 3653 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3654 if (rc) 3655 return rc; 3656 3657 switch (policy) { 3658 case ATA_LPM_MAX_POWER: 3659 /* disable all LPM transitions */ 3660 scontrol |= (0x7 << 8); 3661 /* initiate transition to active state */ 3662 if (spm_wakeup) { 3663 scontrol |= (0x4 << 12); 3664 woken_up = true; 3665 } 3666 break; 3667 case ATA_LPM_MED_POWER: 3668 /* allow LPM to PARTIAL */ 3669 scontrol &= ~(0x1 << 8); 3670 scontrol |= (0x6 << 8); 3671 break; 3672 case ATA_LPM_MIN_POWER: 3673 if (ata_link_nr_enabled(link) > 0) 3674 /* no restrictions on LPM transitions */ 3675 scontrol &= ~(0x7 << 8); 3676 else { 3677 /* empty port, power off */ 3678 scontrol &= ~0xf; 3679 scontrol |= (0x1 << 2); 3680 } 3681 break; 3682 default: 3683 WARN_ON(1); 3684 } 3685 3686 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3687 if (rc) 3688 return rc; 3689 3690 /* give the link time to transit out of LPM state */ 3691 if (woken_up) 3692 msleep(10); 3693 3694 /* clear PHYRDY_CHG from SError */ 3695 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3696 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3697 } 3698 3699 /** 3700 * ata_std_prereset - prepare for reset 3701 * @link: ATA link to be reset 3702 * @deadline: deadline jiffies for the operation 3703 * 3704 * @link is about to be reset. Initialize it. Failure from 3705 * prereset makes libata abort whole reset sequence and give up 3706 * that port, so prereset should be best-effort. It does its 3707 * best to prepare for reset sequence but if things go wrong, it 3708 * should just whine, not fail. 3709 * 3710 * LOCKING: 3711 * Kernel thread context (may sleep) 3712 * 3713 * RETURNS: 3714 * 0 on success, -errno otherwise. 3715 */ 3716 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3717 { 3718 struct ata_port *ap = link->ap; 3719 struct ata_eh_context *ehc = &link->eh_context; 3720 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3721 int rc; 3722 3723 /* if we're about to do hardreset, nothing more to do */ 3724 if (ehc->i.action & ATA_EH_HARDRESET) 3725 return 0; 3726 3727 /* if SATA, resume link */ 3728 if (ap->flags & ATA_FLAG_SATA) { 3729 rc = sata_link_resume(link, timing, deadline); 3730 /* whine about phy resume failure but proceed */ 3731 if (rc && rc != -EOPNOTSUPP) 3732 ata_link_warn(link, 3733 "failed to resume link for reset (errno=%d)\n", 3734 rc); 3735 } 3736 3737 /* no point in trying softreset on offline link */ 3738 if (ata_phys_link_offline(link)) 3739 ehc->i.action &= ~ATA_EH_SOFTRESET; 3740 3741 return 0; 3742 } 3743 3744 /** 3745 * sata_link_hardreset - reset link via SATA phy reset 3746 * @link: link to reset 3747 * @timing: timing parameters { interval, duratinon, timeout } in msec 3748 * @deadline: deadline jiffies for the operation 3749 * @online: optional out parameter indicating link onlineness 3750 * @check_ready: optional callback to check link readiness 3751 * 3752 * SATA phy-reset @link using DET bits of SControl register. 3753 * After hardreset, link readiness is waited upon using 3754 * ata_wait_ready() if @check_ready is specified. LLDs are 3755 * allowed to not specify @check_ready and wait itself after this 3756 * function returns. Device classification is LLD's 3757 * responsibility. 3758 * 3759 * *@online is set to one iff reset succeeded and @link is online 3760 * after reset. 3761 * 3762 * LOCKING: 3763 * Kernel thread context (may sleep) 3764 * 3765 * RETURNS: 3766 * 0 on success, -errno otherwise. 3767 */ 3768 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3769 unsigned long deadline, 3770 bool *online, int (*check_ready)(struct ata_link *)) 3771 { 3772 u32 scontrol; 3773 int rc; 3774 3775 DPRINTK("ENTER\n"); 3776 3777 if (online) 3778 *online = false; 3779 3780 if (sata_set_spd_needed(link)) { 3781 /* SATA spec says nothing about how to reconfigure 3782 * spd. To be on the safe side, turn off phy during 3783 * reconfiguration. This works for at least ICH7 AHCI 3784 * and Sil3124. 3785 */ 3786 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3787 goto out; 3788 3789 scontrol = (scontrol & 0x0f0) | 0x304; 3790 3791 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3792 goto out; 3793 3794 sata_set_spd(link); 3795 } 3796 3797 /* issue phy wake/reset */ 3798 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3799 goto out; 3800 3801 scontrol = (scontrol & 0x0f0) | 0x301; 3802 3803 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3804 goto out; 3805 3806 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3807 * 10.4.2 says at least 1 ms. 3808 */ 3809 ata_msleep(link->ap, 1); 3810 3811 /* bring link back */ 3812 rc = sata_link_resume(link, timing, deadline); 3813 if (rc) 3814 goto out; 3815 /* if link is offline nothing more to do */ 3816 if (ata_phys_link_offline(link)) 3817 goto out; 3818 3819 /* Link is online. From this point, -ENODEV too is an error. */ 3820 if (online) 3821 *online = true; 3822 3823 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3824 /* If PMP is supported, we have to do follow-up SRST. 3825 * Some PMPs don't send D2H Reg FIS after hardreset if 3826 * the first port is empty. Wait only for 3827 * ATA_TMOUT_PMP_SRST_WAIT. 3828 */ 3829 if (check_ready) { 3830 unsigned long pmp_deadline; 3831 3832 pmp_deadline = ata_deadline(jiffies, 3833 ATA_TMOUT_PMP_SRST_WAIT); 3834 if (time_after(pmp_deadline, deadline)) 3835 pmp_deadline = deadline; 3836 ata_wait_ready(link, pmp_deadline, check_ready); 3837 } 3838 rc = -EAGAIN; 3839 goto out; 3840 } 3841 3842 rc = 0; 3843 if (check_ready) 3844 rc = ata_wait_ready(link, deadline, check_ready); 3845 out: 3846 if (rc && rc != -EAGAIN) { 3847 /* online is set iff link is online && reset succeeded */ 3848 if (online) 3849 *online = false; 3850 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3851 } 3852 DPRINTK("EXIT, rc=%d\n", rc); 3853 return rc; 3854 } 3855 3856 /** 3857 * sata_std_hardreset - COMRESET w/o waiting or classification 3858 * @link: link to reset 3859 * @class: resulting class of attached device 3860 * @deadline: deadline jiffies for the operation 3861 * 3862 * Standard SATA COMRESET w/o waiting or classification. 3863 * 3864 * LOCKING: 3865 * Kernel thread context (may sleep) 3866 * 3867 * RETURNS: 3868 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3869 */ 3870 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3871 unsigned long deadline) 3872 { 3873 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3874 bool online; 3875 int rc; 3876 3877 /* do hardreset */ 3878 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3879 return online ? -EAGAIN : rc; 3880 } 3881 3882 /** 3883 * ata_std_postreset - standard postreset callback 3884 * @link: the target ata_link 3885 * @classes: classes of attached devices 3886 * 3887 * This function is invoked after a successful reset. Note that 3888 * the device might have been reset more than once using 3889 * different reset methods before postreset is invoked. 3890 * 3891 * LOCKING: 3892 * Kernel thread context (may sleep) 3893 */ 3894 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3895 { 3896 u32 serror; 3897 3898 DPRINTK("ENTER\n"); 3899 3900 /* reset complete, clear SError */ 3901 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3902 sata_scr_write(link, SCR_ERROR, serror); 3903 3904 /* print link status */ 3905 sata_print_link_status(link); 3906 3907 DPRINTK("EXIT\n"); 3908 } 3909 3910 /** 3911 * ata_dev_same_device - Determine whether new ID matches configured device 3912 * @dev: device to compare against 3913 * @new_class: class of the new device 3914 * @new_id: IDENTIFY page of the new device 3915 * 3916 * Compare @new_class and @new_id against @dev and determine 3917 * whether @dev is the device indicated by @new_class and 3918 * @new_id. 3919 * 3920 * LOCKING: 3921 * None. 3922 * 3923 * RETURNS: 3924 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3925 */ 3926 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3927 const u16 *new_id) 3928 { 3929 const u16 *old_id = dev->id; 3930 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3931 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3932 3933 if (dev->class != new_class) { 3934 ata_dev_info(dev, "class mismatch %d != %d\n", 3935 dev->class, new_class); 3936 return 0; 3937 } 3938 3939 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3940 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3941 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3942 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3943 3944 if (strcmp(model[0], model[1])) { 3945 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3946 model[0], model[1]); 3947 return 0; 3948 } 3949 3950 if (strcmp(serial[0], serial[1])) { 3951 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3952 serial[0], serial[1]); 3953 return 0; 3954 } 3955 3956 return 1; 3957 } 3958 3959 /** 3960 * ata_dev_reread_id - Re-read IDENTIFY data 3961 * @dev: target ATA device 3962 * @readid_flags: read ID flags 3963 * 3964 * Re-read IDENTIFY page and make sure @dev is still attached to 3965 * the port. 3966 * 3967 * LOCKING: 3968 * Kernel thread context (may sleep) 3969 * 3970 * RETURNS: 3971 * 0 on success, negative errno otherwise 3972 */ 3973 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3974 { 3975 unsigned int class = dev->class; 3976 u16 *id = (void *)dev->link->ap->sector_buf; 3977 int rc; 3978 3979 /* read ID data */ 3980 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3981 if (rc) 3982 return rc; 3983 3984 /* is the device still there? */ 3985 if (!ata_dev_same_device(dev, class, id)) 3986 return -ENODEV; 3987 3988 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3989 return 0; 3990 } 3991 3992 /** 3993 * ata_dev_revalidate - Revalidate ATA device 3994 * @dev: device to revalidate 3995 * @new_class: new class code 3996 * @readid_flags: read ID flags 3997 * 3998 * Re-read IDENTIFY page, make sure @dev is still attached to the 3999 * port and reconfigure it according to the new IDENTIFY page. 4000 * 4001 * LOCKING: 4002 * Kernel thread context (may sleep) 4003 * 4004 * RETURNS: 4005 * 0 on success, negative errno otherwise 4006 */ 4007 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4008 unsigned int readid_flags) 4009 { 4010 u64 n_sectors = dev->n_sectors; 4011 u64 n_native_sectors = dev->n_native_sectors; 4012 int rc; 4013 4014 if (!ata_dev_enabled(dev)) 4015 return -ENODEV; 4016 4017 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4018 if (ata_class_enabled(new_class) && 4019 new_class != ATA_DEV_ATA && 4020 new_class != ATA_DEV_ATAPI && 4021 new_class != ATA_DEV_ZAC && 4022 new_class != ATA_DEV_SEMB) { 4023 ata_dev_info(dev, "class mismatch %u != %u\n", 4024 dev->class, new_class); 4025 rc = -ENODEV; 4026 goto fail; 4027 } 4028 4029 /* re-read ID */ 4030 rc = ata_dev_reread_id(dev, readid_flags); 4031 if (rc) 4032 goto fail; 4033 4034 /* configure device according to the new ID */ 4035 rc = ata_dev_configure(dev); 4036 if (rc) 4037 goto fail; 4038 4039 /* verify n_sectors hasn't changed */ 4040 if (dev->class != ATA_DEV_ATA || !n_sectors || 4041 dev->n_sectors == n_sectors) 4042 return 0; 4043 4044 /* n_sectors has changed */ 4045 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4046 (unsigned long long)n_sectors, 4047 (unsigned long long)dev->n_sectors); 4048 4049 /* 4050 * Something could have caused HPA to be unlocked 4051 * involuntarily. If n_native_sectors hasn't changed and the 4052 * new size matches it, keep the device. 4053 */ 4054 if (dev->n_native_sectors == n_native_sectors && 4055 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4056 ata_dev_warn(dev, 4057 "new n_sectors matches native, probably " 4058 "late HPA unlock, n_sectors updated\n"); 4059 /* use the larger n_sectors */ 4060 return 0; 4061 } 4062 4063 /* 4064 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4065 * unlocking HPA in those cases. 4066 * 4067 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4068 */ 4069 if (dev->n_native_sectors == n_native_sectors && 4070 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4071 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4072 ata_dev_warn(dev, 4073 "old n_sectors matches native, probably " 4074 "late HPA lock, will try to unlock HPA\n"); 4075 /* try unlocking HPA */ 4076 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4077 rc = -EIO; 4078 } else 4079 rc = -ENODEV; 4080 4081 /* restore original n_[native_]sectors and fail */ 4082 dev->n_native_sectors = n_native_sectors; 4083 dev->n_sectors = n_sectors; 4084 fail: 4085 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4086 return rc; 4087 } 4088 4089 struct ata_blacklist_entry { 4090 const char *model_num; 4091 const char *model_rev; 4092 unsigned long horkage; 4093 }; 4094 4095 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4096 /* Devices with DMA related problems under Linux */ 4097 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4098 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4099 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4100 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4101 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4102 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4103 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4104 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4105 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4106 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4107 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4108 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4109 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4110 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4111 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4112 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4113 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4114 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4115 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4116 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4117 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4118 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4119 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4120 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4121 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4122 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4123 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4124 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4125 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4126 /* Odd clown on sil3726/4726 PMPs */ 4127 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4128 4129 /* Weird ATAPI devices */ 4130 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4131 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4132 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4133 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4134 4135 /* 4136 * Causes silent data corruption with higher max sects. 4137 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4138 */ 4139 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4140 4141 /* Devices we expect to fail diagnostics */ 4142 4143 /* Devices where NCQ should be avoided */ 4144 /* NCQ is slow */ 4145 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4146 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4147 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4148 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4149 /* NCQ is broken */ 4150 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4151 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4152 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4153 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4154 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4155 4156 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4157 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4158 ATA_HORKAGE_FIRMWARE_WARN }, 4159 4160 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4161 ATA_HORKAGE_FIRMWARE_WARN }, 4162 4163 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4164 ATA_HORKAGE_FIRMWARE_WARN }, 4165 4166 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4167 ATA_HORKAGE_FIRMWARE_WARN }, 4168 4169 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4170 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4171 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4172 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4173 4174 /* Blacklist entries taken from Silicon Image 3124/3132 4175 Windows driver .inf file - also several Linux problem reports */ 4176 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4177 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4178 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4179 4180 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4181 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4182 4183 /* devices which puke on READ_NATIVE_MAX */ 4184 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4185 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4186 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4187 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4188 4189 /* this one allows HPA unlocking but fails IOs on the area */ 4190 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4191 4192 /* Devices which report 1 sector over size HPA */ 4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4196 4197 /* Devices which get the IVB wrong */ 4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4199 /* Maybe we should just blacklist TSSTcorp... */ 4200 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4201 4202 /* Devices that do not need bridging limits applied */ 4203 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4204 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4205 4206 /* Devices which aren't very happy with higher link speeds */ 4207 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4208 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4209 4210 /* 4211 * Devices which choke on SETXFER. Applies only if both the 4212 * device and controller are SATA. 4213 */ 4214 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4215 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4216 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4217 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4218 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4219 4220 /* devices that don't properly handle queued TRIM commands */ 4221 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4222 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4223 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4224 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4225 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4226 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4227 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4228 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4229 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4230 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4231 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4232 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4233 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4234 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4235 4236 /* devices that don't properly handle TRIM commands */ 4237 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4238 4239 /* 4240 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4241 * (Return Zero After Trim) flags in the ATA Command Set are 4242 * unreliable in the sense that they only define what happens if 4243 * the device successfully executed the DSM TRIM command. TRIM 4244 * is only advisory, however, and the device is free to silently 4245 * ignore all or parts of the request. 4246 * 4247 * Whitelist drives that are known to reliably return zeroes 4248 * after TRIM. 4249 */ 4250 4251 /* 4252 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4253 * that model before whitelisting all other intel SSDs. 4254 */ 4255 { "INTEL*SSDSC2MH*", NULL, 0, }, 4256 4257 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4258 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4259 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4260 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4261 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4262 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4263 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4264 4265 /* 4266 * Some WD SATA-I drives spin up and down erratically when the link 4267 * is put into the slumber mode. We don't have full list of the 4268 * affected devices. Disable LPM if the device matches one of the 4269 * known prefixes and is SATA-1. As a side effect LPM partial is 4270 * lost too. 4271 * 4272 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4273 */ 4274 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4275 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4276 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4277 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4278 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4279 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4280 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4281 4282 /* End Marker */ 4283 { } 4284 }; 4285 4286 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4287 { 4288 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4289 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4290 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4291 4292 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4293 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4294 4295 while (ad->model_num) { 4296 if (glob_match(ad->model_num, model_num)) { 4297 if (ad->model_rev == NULL) 4298 return ad->horkage; 4299 if (glob_match(ad->model_rev, model_rev)) 4300 return ad->horkage; 4301 } 4302 ad++; 4303 } 4304 return 0; 4305 } 4306 4307 static int ata_dma_blacklisted(const struct ata_device *dev) 4308 { 4309 /* We don't support polling DMA. 4310 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4311 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4312 */ 4313 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4314 (dev->flags & ATA_DFLAG_CDB_INTR)) 4315 return 1; 4316 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4317 } 4318 4319 /** 4320 * ata_is_40wire - check drive side detection 4321 * @dev: device 4322 * 4323 * Perform drive side detection decoding, allowing for device vendors 4324 * who can't follow the documentation. 4325 */ 4326 4327 static int ata_is_40wire(struct ata_device *dev) 4328 { 4329 if (dev->horkage & ATA_HORKAGE_IVB) 4330 return ata_drive_40wire_relaxed(dev->id); 4331 return ata_drive_40wire(dev->id); 4332 } 4333 4334 /** 4335 * cable_is_40wire - 40/80/SATA decider 4336 * @ap: port to consider 4337 * 4338 * This function encapsulates the policy for speed management 4339 * in one place. At the moment we don't cache the result but 4340 * there is a good case for setting ap->cbl to the result when 4341 * we are called with unknown cables (and figuring out if it 4342 * impacts hotplug at all). 4343 * 4344 * Return 1 if the cable appears to be 40 wire. 4345 */ 4346 4347 static int cable_is_40wire(struct ata_port *ap) 4348 { 4349 struct ata_link *link; 4350 struct ata_device *dev; 4351 4352 /* If the controller thinks we are 40 wire, we are. */ 4353 if (ap->cbl == ATA_CBL_PATA40) 4354 return 1; 4355 4356 /* If the controller thinks we are 80 wire, we are. */ 4357 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4358 return 0; 4359 4360 /* If the system is known to be 40 wire short cable (eg 4361 * laptop), then we allow 80 wire modes even if the drive 4362 * isn't sure. 4363 */ 4364 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4365 return 0; 4366 4367 /* If the controller doesn't know, we scan. 4368 * 4369 * Note: We look for all 40 wire detects at this point. Any 4370 * 80 wire detect is taken to be 80 wire cable because 4371 * - in many setups only the one drive (slave if present) will 4372 * give a valid detect 4373 * - if you have a non detect capable drive you don't want it 4374 * to colour the choice 4375 */ 4376 ata_for_each_link(link, ap, EDGE) { 4377 ata_for_each_dev(dev, link, ENABLED) { 4378 if (!ata_is_40wire(dev)) 4379 return 0; 4380 } 4381 } 4382 return 1; 4383 } 4384 4385 /** 4386 * ata_dev_xfermask - Compute supported xfermask of the given device 4387 * @dev: Device to compute xfermask for 4388 * 4389 * Compute supported xfermask of @dev and store it in 4390 * dev->*_mask. This function is responsible for applying all 4391 * known limits including host controller limits, device 4392 * blacklist, etc... 4393 * 4394 * LOCKING: 4395 * None. 4396 */ 4397 static void ata_dev_xfermask(struct ata_device *dev) 4398 { 4399 struct ata_link *link = dev->link; 4400 struct ata_port *ap = link->ap; 4401 struct ata_host *host = ap->host; 4402 unsigned long xfer_mask; 4403 4404 /* controller modes available */ 4405 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4406 ap->mwdma_mask, ap->udma_mask); 4407 4408 /* drive modes available */ 4409 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4410 dev->mwdma_mask, dev->udma_mask); 4411 xfer_mask &= ata_id_xfermask(dev->id); 4412 4413 /* 4414 * CFA Advanced TrueIDE timings are not allowed on a shared 4415 * cable 4416 */ 4417 if (ata_dev_pair(dev)) { 4418 /* No PIO5 or PIO6 */ 4419 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4420 /* No MWDMA3 or MWDMA 4 */ 4421 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4422 } 4423 4424 if (ata_dma_blacklisted(dev)) { 4425 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4426 ata_dev_warn(dev, 4427 "device is on DMA blacklist, disabling DMA\n"); 4428 } 4429 4430 if ((host->flags & ATA_HOST_SIMPLEX) && 4431 host->simplex_claimed && host->simplex_claimed != ap) { 4432 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4433 ata_dev_warn(dev, 4434 "simplex DMA is claimed by other device, disabling DMA\n"); 4435 } 4436 4437 if (ap->flags & ATA_FLAG_NO_IORDY) 4438 xfer_mask &= ata_pio_mask_no_iordy(dev); 4439 4440 if (ap->ops->mode_filter) 4441 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4442 4443 /* Apply cable rule here. Don't apply it early because when 4444 * we handle hot plug the cable type can itself change. 4445 * Check this last so that we know if the transfer rate was 4446 * solely limited by the cable. 4447 * Unknown or 80 wire cables reported host side are checked 4448 * drive side as well. Cases where we know a 40wire cable 4449 * is used safely for 80 are not checked here. 4450 */ 4451 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4452 /* UDMA/44 or higher would be available */ 4453 if (cable_is_40wire(ap)) { 4454 ata_dev_warn(dev, 4455 "limited to UDMA/33 due to 40-wire cable\n"); 4456 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4457 } 4458 4459 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4460 &dev->mwdma_mask, &dev->udma_mask); 4461 } 4462 4463 /** 4464 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4465 * @dev: Device to which command will be sent 4466 * 4467 * Issue SET FEATURES - XFER MODE command to device @dev 4468 * on port @ap. 4469 * 4470 * LOCKING: 4471 * PCI/etc. bus probe sem. 4472 * 4473 * RETURNS: 4474 * 0 on success, AC_ERR_* mask otherwise. 4475 */ 4476 4477 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4478 { 4479 struct ata_taskfile tf; 4480 unsigned int err_mask; 4481 4482 /* set up set-features taskfile */ 4483 DPRINTK("set features - xfer mode\n"); 4484 4485 /* Some controllers and ATAPI devices show flaky interrupt 4486 * behavior after setting xfer mode. Use polling instead. 4487 */ 4488 ata_tf_init(dev, &tf); 4489 tf.command = ATA_CMD_SET_FEATURES; 4490 tf.feature = SETFEATURES_XFER; 4491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4492 tf.protocol = ATA_PROT_NODATA; 4493 /* If we are using IORDY we must send the mode setting command */ 4494 if (ata_pio_need_iordy(dev)) 4495 tf.nsect = dev->xfer_mode; 4496 /* If the device has IORDY and the controller does not - turn it off */ 4497 else if (ata_id_has_iordy(dev->id)) 4498 tf.nsect = 0x01; 4499 else /* In the ancient relic department - skip all of this */ 4500 return 0; 4501 4502 /* On some disks, this command causes spin-up, so we need longer timeout */ 4503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4504 4505 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4506 return err_mask; 4507 } 4508 4509 /** 4510 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4511 * @dev: Device to which command will be sent 4512 * @enable: Whether to enable or disable the feature 4513 * @feature: The sector count represents the feature to set 4514 * 4515 * Issue SET FEATURES - SATA FEATURES command to device @dev 4516 * on port @ap with sector count 4517 * 4518 * LOCKING: 4519 * PCI/etc. bus probe sem. 4520 * 4521 * RETURNS: 4522 * 0 on success, AC_ERR_* mask otherwise. 4523 */ 4524 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4525 { 4526 struct ata_taskfile tf; 4527 unsigned int err_mask; 4528 4529 /* set up set-features taskfile */ 4530 DPRINTK("set features - SATA features\n"); 4531 4532 ata_tf_init(dev, &tf); 4533 tf.command = ATA_CMD_SET_FEATURES; 4534 tf.feature = enable; 4535 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4536 tf.protocol = ATA_PROT_NODATA; 4537 tf.nsect = feature; 4538 4539 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4540 4541 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4542 return err_mask; 4543 } 4544 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4545 4546 /** 4547 * ata_dev_init_params - Issue INIT DEV PARAMS command 4548 * @dev: Device to which command will be sent 4549 * @heads: Number of heads (taskfile parameter) 4550 * @sectors: Number of sectors (taskfile parameter) 4551 * 4552 * LOCKING: 4553 * Kernel thread context (may sleep) 4554 * 4555 * RETURNS: 4556 * 0 on success, AC_ERR_* mask otherwise. 4557 */ 4558 static unsigned int ata_dev_init_params(struct ata_device *dev, 4559 u16 heads, u16 sectors) 4560 { 4561 struct ata_taskfile tf; 4562 unsigned int err_mask; 4563 4564 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4565 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4566 return AC_ERR_INVALID; 4567 4568 /* set up init dev params taskfile */ 4569 DPRINTK("init dev params \n"); 4570 4571 ata_tf_init(dev, &tf); 4572 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4573 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4574 tf.protocol = ATA_PROT_NODATA; 4575 tf.nsect = sectors; 4576 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4577 4578 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4579 /* A clean abort indicates an original or just out of spec drive 4580 and we should continue as we issue the setup based on the 4581 drive reported working geometry */ 4582 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4583 err_mask = 0; 4584 4585 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4586 return err_mask; 4587 } 4588 4589 /** 4590 * ata_sg_clean - Unmap DMA memory associated with command 4591 * @qc: Command containing DMA memory to be released 4592 * 4593 * Unmap all mapped DMA memory associated with this command. 4594 * 4595 * LOCKING: 4596 * spin_lock_irqsave(host lock) 4597 */ 4598 void ata_sg_clean(struct ata_queued_cmd *qc) 4599 { 4600 struct ata_port *ap = qc->ap; 4601 struct scatterlist *sg = qc->sg; 4602 int dir = qc->dma_dir; 4603 4604 WARN_ON_ONCE(sg == NULL); 4605 4606 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4607 4608 if (qc->n_elem) 4609 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4610 4611 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4612 qc->sg = NULL; 4613 } 4614 4615 /** 4616 * atapi_check_dma - Check whether ATAPI DMA can be supported 4617 * @qc: Metadata associated with taskfile to check 4618 * 4619 * Allow low-level driver to filter ATA PACKET commands, returning 4620 * a status indicating whether or not it is OK to use DMA for the 4621 * supplied PACKET command. 4622 * 4623 * LOCKING: 4624 * spin_lock_irqsave(host lock) 4625 * 4626 * RETURNS: 0 when ATAPI DMA can be used 4627 * nonzero otherwise 4628 */ 4629 int atapi_check_dma(struct ata_queued_cmd *qc) 4630 { 4631 struct ata_port *ap = qc->ap; 4632 4633 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4634 * few ATAPI devices choke on such DMA requests. 4635 */ 4636 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4637 unlikely(qc->nbytes & 15)) 4638 return 1; 4639 4640 if (ap->ops->check_atapi_dma) 4641 return ap->ops->check_atapi_dma(qc); 4642 4643 return 0; 4644 } 4645 4646 /** 4647 * ata_std_qc_defer - Check whether a qc needs to be deferred 4648 * @qc: ATA command in question 4649 * 4650 * Non-NCQ commands cannot run with any other command, NCQ or 4651 * not. As upper layer only knows the queue depth, we are 4652 * responsible for maintaining exclusion. This function checks 4653 * whether a new command @qc can be issued. 4654 * 4655 * LOCKING: 4656 * spin_lock_irqsave(host lock) 4657 * 4658 * RETURNS: 4659 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4660 */ 4661 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4662 { 4663 struct ata_link *link = qc->dev->link; 4664 4665 if (qc->tf.protocol == ATA_PROT_NCQ) { 4666 if (!ata_tag_valid(link->active_tag)) 4667 return 0; 4668 } else { 4669 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4670 return 0; 4671 } 4672 4673 return ATA_DEFER_LINK; 4674 } 4675 4676 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4677 4678 /** 4679 * ata_sg_init - Associate command with scatter-gather table. 4680 * @qc: Command to be associated 4681 * @sg: Scatter-gather table. 4682 * @n_elem: Number of elements in s/g table. 4683 * 4684 * Initialize the data-related elements of queued_cmd @qc 4685 * to point to a scatter-gather table @sg, containing @n_elem 4686 * elements. 4687 * 4688 * LOCKING: 4689 * spin_lock_irqsave(host lock) 4690 */ 4691 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4692 unsigned int n_elem) 4693 { 4694 qc->sg = sg; 4695 qc->n_elem = n_elem; 4696 qc->cursg = qc->sg; 4697 } 4698 4699 /** 4700 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4701 * @qc: Command with scatter-gather table to be mapped. 4702 * 4703 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4704 * 4705 * LOCKING: 4706 * spin_lock_irqsave(host lock) 4707 * 4708 * RETURNS: 4709 * Zero on success, negative on error. 4710 * 4711 */ 4712 static int ata_sg_setup(struct ata_queued_cmd *qc) 4713 { 4714 struct ata_port *ap = qc->ap; 4715 unsigned int n_elem; 4716 4717 VPRINTK("ENTER, ata%u\n", ap->print_id); 4718 4719 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4720 if (n_elem < 1) 4721 return -1; 4722 4723 DPRINTK("%d sg elements mapped\n", n_elem); 4724 qc->orig_n_elem = qc->n_elem; 4725 qc->n_elem = n_elem; 4726 qc->flags |= ATA_QCFLAG_DMAMAP; 4727 4728 return 0; 4729 } 4730 4731 /** 4732 * swap_buf_le16 - swap halves of 16-bit words in place 4733 * @buf: Buffer to swap 4734 * @buf_words: Number of 16-bit words in buffer. 4735 * 4736 * Swap halves of 16-bit words if needed to convert from 4737 * little-endian byte order to native cpu byte order, or 4738 * vice-versa. 4739 * 4740 * LOCKING: 4741 * Inherited from caller. 4742 */ 4743 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4744 { 4745 #ifdef __BIG_ENDIAN 4746 unsigned int i; 4747 4748 for (i = 0; i < buf_words; i++) 4749 buf[i] = le16_to_cpu(buf[i]); 4750 #endif /* __BIG_ENDIAN */ 4751 } 4752 4753 /** 4754 * ata_qc_new_init - Request an available ATA command, and initialize it 4755 * @dev: Device from whom we request an available command structure 4756 * 4757 * LOCKING: 4758 * None. 4759 */ 4760 4761 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4762 { 4763 struct ata_port *ap = dev->link->ap; 4764 struct ata_queued_cmd *qc; 4765 4766 /* no command while frozen */ 4767 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4768 return NULL; 4769 4770 /* libsas case */ 4771 if (ap->flags & ATA_FLAG_SAS_HOST) { 4772 tag = ata_sas_allocate_tag(ap); 4773 if (tag < 0) 4774 return NULL; 4775 } 4776 4777 qc = __ata_qc_from_tag(ap, tag); 4778 qc->tag = tag; 4779 qc->scsicmd = NULL; 4780 qc->ap = ap; 4781 qc->dev = dev; 4782 4783 ata_qc_reinit(qc); 4784 4785 return qc; 4786 } 4787 4788 /** 4789 * ata_qc_free - free unused ata_queued_cmd 4790 * @qc: Command to complete 4791 * 4792 * Designed to free unused ata_queued_cmd object 4793 * in case something prevents using it. 4794 * 4795 * LOCKING: 4796 * spin_lock_irqsave(host lock) 4797 */ 4798 void ata_qc_free(struct ata_queued_cmd *qc) 4799 { 4800 struct ata_port *ap; 4801 unsigned int tag; 4802 4803 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4804 ap = qc->ap; 4805 4806 qc->flags = 0; 4807 tag = qc->tag; 4808 if (likely(ata_tag_valid(tag))) { 4809 qc->tag = ATA_TAG_POISON; 4810 if (ap->flags & ATA_FLAG_SAS_HOST) 4811 ata_sas_free_tag(tag, ap); 4812 } 4813 } 4814 4815 void __ata_qc_complete(struct ata_queued_cmd *qc) 4816 { 4817 struct ata_port *ap; 4818 struct ata_link *link; 4819 4820 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4821 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4822 ap = qc->ap; 4823 link = qc->dev->link; 4824 4825 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4826 ata_sg_clean(qc); 4827 4828 /* command should be marked inactive atomically with qc completion */ 4829 if (qc->tf.protocol == ATA_PROT_NCQ) { 4830 link->sactive &= ~(1 << qc->tag); 4831 if (!link->sactive) 4832 ap->nr_active_links--; 4833 } else { 4834 link->active_tag = ATA_TAG_POISON; 4835 ap->nr_active_links--; 4836 } 4837 4838 /* clear exclusive status */ 4839 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4840 ap->excl_link == link)) 4841 ap->excl_link = NULL; 4842 4843 /* atapi: mark qc as inactive to prevent the interrupt handler 4844 * from completing the command twice later, before the error handler 4845 * is called. (when rc != 0 and atapi request sense is needed) 4846 */ 4847 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4848 ap->qc_active &= ~(1 << qc->tag); 4849 4850 /* call completion callback */ 4851 qc->complete_fn(qc); 4852 } 4853 4854 static void fill_result_tf(struct ata_queued_cmd *qc) 4855 { 4856 struct ata_port *ap = qc->ap; 4857 4858 qc->result_tf.flags = qc->tf.flags; 4859 ap->ops->qc_fill_rtf(qc); 4860 } 4861 4862 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4863 { 4864 struct ata_device *dev = qc->dev; 4865 4866 if (ata_is_nodata(qc->tf.protocol)) 4867 return; 4868 4869 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4870 return; 4871 4872 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4873 } 4874 4875 /** 4876 * ata_qc_complete - Complete an active ATA command 4877 * @qc: Command to complete 4878 * 4879 * Indicate to the mid and upper layers that an ATA command has 4880 * completed, with either an ok or not-ok status. 4881 * 4882 * Refrain from calling this function multiple times when 4883 * successfully completing multiple NCQ commands. 4884 * ata_qc_complete_multiple() should be used instead, which will 4885 * properly update IRQ expect state. 4886 * 4887 * LOCKING: 4888 * spin_lock_irqsave(host lock) 4889 */ 4890 void ata_qc_complete(struct ata_queued_cmd *qc) 4891 { 4892 struct ata_port *ap = qc->ap; 4893 4894 /* XXX: New EH and old EH use different mechanisms to 4895 * synchronize EH with regular execution path. 4896 * 4897 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4898 * Normal execution path is responsible for not accessing a 4899 * failed qc. libata core enforces the rule by returning NULL 4900 * from ata_qc_from_tag() for failed qcs. 4901 * 4902 * Old EH depends on ata_qc_complete() nullifying completion 4903 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4904 * not synchronize with interrupt handler. Only PIO task is 4905 * taken care of. 4906 */ 4907 if (ap->ops->error_handler) { 4908 struct ata_device *dev = qc->dev; 4909 struct ata_eh_info *ehi = &dev->link->eh_info; 4910 4911 if (unlikely(qc->err_mask)) 4912 qc->flags |= ATA_QCFLAG_FAILED; 4913 4914 /* 4915 * Finish internal commands without any further processing 4916 * and always with the result TF filled. 4917 */ 4918 if (unlikely(ata_tag_internal(qc->tag))) { 4919 fill_result_tf(qc); 4920 trace_ata_qc_complete_internal(qc); 4921 __ata_qc_complete(qc); 4922 return; 4923 } 4924 4925 /* 4926 * Non-internal qc has failed. Fill the result TF and 4927 * summon EH. 4928 */ 4929 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4930 fill_result_tf(qc); 4931 trace_ata_qc_complete_failed(qc); 4932 ata_qc_schedule_eh(qc); 4933 return; 4934 } 4935 4936 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4937 4938 /* read result TF if requested */ 4939 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4940 fill_result_tf(qc); 4941 4942 trace_ata_qc_complete_done(qc); 4943 /* Some commands need post-processing after successful 4944 * completion. 4945 */ 4946 switch (qc->tf.command) { 4947 case ATA_CMD_SET_FEATURES: 4948 if (qc->tf.feature != SETFEATURES_WC_ON && 4949 qc->tf.feature != SETFEATURES_WC_OFF) 4950 break; 4951 /* fall through */ 4952 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4953 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4954 /* revalidate device */ 4955 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4956 ata_port_schedule_eh(ap); 4957 break; 4958 4959 case ATA_CMD_SLEEP: 4960 dev->flags |= ATA_DFLAG_SLEEPING; 4961 break; 4962 } 4963 4964 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4965 ata_verify_xfer(qc); 4966 4967 __ata_qc_complete(qc); 4968 } else { 4969 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4970 return; 4971 4972 /* read result TF if failed or requested */ 4973 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4974 fill_result_tf(qc); 4975 4976 __ata_qc_complete(qc); 4977 } 4978 } 4979 4980 /** 4981 * ata_qc_complete_multiple - Complete multiple qcs successfully 4982 * @ap: port in question 4983 * @qc_active: new qc_active mask 4984 * 4985 * Complete in-flight commands. This functions is meant to be 4986 * called from low-level driver's interrupt routine to complete 4987 * requests normally. ap->qc_active and @qc_active is compared 4988 * and commands are completed accordingly. 4989 * 4990 * Always use this function when completing multiple NCQ commands 4991 * from IRQ handlers instead of calling ata_qc_complete() 4992 * multiple times to keep IRQ expect status properly in sync. 4993 * 4994 * LOCKING: 4995 * spin_lock_irqsave(host lock) 4996 * 4997 * RETURNS: 4998 * Number of completed commands on success, -errno otherwise. 4999 */ 5000 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5001 { 5002 int nr_done = 0; 5003 u32 done_mask; 5004 5005 done_mask = ap->qc_active ^ qc_active; 5006 5007 if (unlikely(done_mask & qc_active)) { 5008 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5009 ap->qc_active, qc_active); 5010 return -EINVAL; 5011 } 5012 5013 while (done_mask) { 5014 struct ata_queued_cmd *qc; 5015 unsigned int tag = __ffs(done_mask); 5016 5017 qc = ata_qc_from_tag(ap, tag); 5018 if (qc) { 5019 ata_qc_complete(qc); 5020 nr_done++; 5021 } 5022 done_mask &= ~(1 << tag); 5023 } 5024 5025 return nr_done; 5026 } 5027 5028 /** 5029 * ata_qc_issue - issue taskfile to device 5030 * @qc: command to issue to device 5031 * 5032 * Prepare an ATA command to submission to device. 5033 * This includes mapping the data into a DMA-able 5034 * area, filling in the S/G table, and finally 5035 * writing the taskfile to hardware, starting the command. 5036 * 5037 * LOCKING: 5038 * spin_lock_irqsave(host lock) 5039 */ 5040 void ata_qc_issue(struct ata_queued_cmd *qc) 5041 { 5042 struct ata_port *ap = qc->ap; 5043 struct ata_link *link = qc->dev->link; 5044 u8 prot = qc->tf.protocol; 5045 5046 /* Make sure only one non-NCQ command is outstanding. The 5047 * check is skipped for old EH because it reuses active qc to 5048 * request ATAPI sense. 5049 */ 5050 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5051 5052 if (ata_is_ncq(prot)) { 5053 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5054 5055 if (!link->sactive) 5056 ap->nr_active_links++; 5057 link->sactive |= 1 << qc->tag; 5058 } else { 5059 WARN_ON_ONCE(link->sactive); 5060 5061 ap->nr_active_links++; 5062 link->active_tag = qc->tag; 5063 } 5064 5065 qc->flags |= ATA_QCFLAG_ACTIVE; 5066 ap->qc_active |= 1 << qc->tag; 5067 5068 /* 5069 * We guarantee to LLDs that they will have at least one 5070 * non-zero sg if the command is a data command. 5071 */ 5072 if (WARN_ON_ONCE(ata_is_data(prot) && 5073 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5074 goto sys_err; 5075 5076 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5077 (ap->flags & ATA_FLAG_PIO_DMA))) 5078 if (ata_sg_setup(qc)) 5079 goto sys_err; 5080 5081 /* if device is sleeping, schedule reset and abort the link */ 5082 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5083 link->eh_info.action |= ATA_EH_RESET; 5084 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5085 ata_link_abort(link); 5086 return; 5087 } 5088 5089 ap->ops->qc_prep(qc); 5090 trace_ata_qc_issue(qc); 5091 qc->err_mask |= ap->ops->qc_issue(qc); 5092 if (unlikely(qc->err_mask)) 5093 goto err; 5094 return; 5095 5096 sys_err: 5097 qc->err_mask |= AC_ERR_SYSTEM; 5098 err: 5099 ata_qc_complete(qc); 5100 } 5101 5102 /** 5103 * sata_scr_valid - test whether SCRs are accessible 5104 * @link: ATA link to test SCR accessibility for 5105 * 5106 * Test whether SCRs are accessible for @link. 5107 * 5108 * LOCKING: 5109 * None. 5110 * 5111 * RETURNS: 5112 * 1 if SCRs are accessible, 0 otherwise. 5113 */ 5114 int sata_scr_valid(struct ata_link *link) 5115 { 5116 struct ata_port *ap = link->ap; 5117 5118 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5119 } 5120 5121 /** 5122 * sata_scr_read - read SCR register of the specified port 5123 * @link: ATA link to read SCR for 5124 * @reg: SCR to read 5125 * @val: Place to store read value 5126 * 5127 * Read SCR register @reg of @link into *@val. This function is 5128 * guaranteed to succeed if @link is ap->link, the cable type of 5129 * the port is SATA and the port implements ->scr_read. 5130 * 5131 * LOCKING: 5132 * None if @link is ap->link. Kernel thread context otherwise. 5133 * 5134 * RETURNS: 5135 * 0 on success, negative errno on failure. 5136 */ 5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5138 { 5139 if (ata_is_host_link(link)) { 5140 if (sata_scr_valid(link)) 5141 return link->ap->ops->scr_read(link, reg, val); 5142 return -EOPNOTSUPP; 5143 } 5144 5145 return sata_pmp_scr_read(link, reg, val); 5146 } 5147 5148 /** 5149 * sata_scr_write - write SCR register of the specified port 5150 * @link: ATA link to write SCR for 5151 * @reg: SCR to write 5152 * @val: value to write 5153 * 5154 * Write @val to SCR register @reg of @link. This function is 5155 * guaranteed to succeed if @link is ap->link, the cable type of 5156 * the port is SATA and the port implements ->scr_read. 5157 * 5158 * LOCKING: 5159 * None if @link is ap->link. Kernel thread context otherwise. 5160 * 5161 * RETURNS: 5162 * 0 on success, negative errno on failure. 5163 */ 5164 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5165 { 5166 if (ata_is_host_link(link)) { 5167 if (sata_scr_valid(link)) 5168 return link->ap->ops->scr_write(link, reg, val); 5169 return -EOPNOTSUPP; 5170 } 5171 5172 return sata_pmp_scr_write(link, reg, val); 5173 } 5174 5175 /** 5176 * sata_scr_write_flush - write SCR register of the specified port and flush 5177 * @link: ATA link to write SCR for 5178 * @reg: SCR to write 5179 * @val: value to write 5180 * 5181 * This function is identical to sata_scr_write() except that this 5182 * function performs flush after writing to the register. 5183 * 5184 * LOCKING: 5185 * None if @link is ap->link. Kernel thread context otherwise. 5186 * 5187 * RETURNS: 5188 * 0 on success, negative errno on failure. 5189 */ 5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5191 { 5192 if (ata_is_host_link(link)) { 5193 int rc; 5194 5195 if (sata_scr_valid(link)) { 5196 rc = link->ap->ops->scr_write(link, reg, val); 5197 if (rc == 0) 5198 rc = link->ap->ops->scr_read(link, reg, &val); 5199 return rc; 5200 } 5201 return -EOPNOTSUPP; 5202 } 5203 5204 return sata_pmp_scr_write(link, reg, val); 5205 } 5206 5207 /** 5208 * ata_phys_link_online - test whether the given link is online 5209 * @link: ATA link to test 5210 * 5211 * Test whether @link is online. Note that this function returns 5212 * 0 if online status of @link cannot be obtained, so 5213 * ata_link_online(link) != !ata_link_offline(link). 5214 * 5215 * LOCKING: 5216 * None. 5217 * 5218 * RETURNS: 5219 * True if the port online status is available and online. 5220 */ 5221 bool ata_phys_link_online(struct ata_link *link) 5222 { 5223 u32 sstatus; 5224 5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5226 ata_sstatus_online(sstatus)) 5227 return true; 5228 return false; 5229 } 5230 5231 /** 5232 * ata_phys_link_offline - test whether the given link is offline 5233 * @link: ATA link to test 5234 * 5235 * Test whether @link is offline. Note that this function 5236 * returns 0 if offline status of @link cannot be obtained, so 5237 * ata_link_online(link) != !ata_link_offline(link). 5238 * 5239 * LOCKING: 5240 * None. 5241 * 5242 * RETURNS: 5243 * True if the port offline status is available and offline. 5244 */ 5245 bool ata_phys_link_offline(struct ata_link *link) 5246 { 5247 u32 sstatus; 5248 5249 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5250 !ata_sstatus_online(sstatus)) 5251 return true; 5252 return false; 5253 } 5254 5255 /** 5256 * ata_link_online - test whether the given link is online 5257 * @link: ATA link to test 5258 * 5259 * Test whether @link is online. This is identical to 5260 * ata_phys_link_online() when there's no slave link. When 5261 * there's a slave link, this function should only be called on 5262 * the master link and will return true if any of M/S links is 5263 * online. 5264 * 5265 * LOCKING: 5266 * None. 5267 * 5268 * RETURNS: 5269 * True if the port online status is available and online. 5270 */ 5271 bool ata_link_online(struct ata_link *link) 5272 { 5273 struct ata_link *slave = link->ap->slave_link; 5274 5275 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5276 5277 return ata_phys_link_online(link) || 5278 (slave && ata_phys_link_online(slave)); 5279 } 5280 5281 /** 5282 * ata_link_offline - test whether the given link is offline 5283 * @link: ATA link to test 5284 * 5285 * Test whether @link is offline. This is identical to 5286 * ata_phys_link_offline() when there's no slave link. When 5287 * there's a slave link, this function should only be called on 5288 * the master link and will return true if both M/S links are 5289 * offline. 5290 * 5291 * LOCKING: 5292 * None. 5293 * 5294 * RETURNS: 5295 * True if the port offline status is available and offline. 5296 */ 5297 bool ata_link_offline(struct ata_link *link) 5298 { 5299 struct ata_link *slave = link->ap->slave_link; 5300 5301 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5302 5303 return ata_phys_link_offline(link) && 5304 (!slave || ata_phys_link_offline(slave)); 5305 } 5306 5307 #ifdef CONFIG_PM 5308 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5309 unsigned int action, unsigned int ehi_flags, 5310 bool async) 5311 { 5312 struct ata_link *link; 5313 unsigned long flags; 5314 5315 /* Previous resume operation might still be in 5316 * progress. Wait for PM_PENDING to clear. 5317 */ 5318 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5319 ata_port_wait_eh(ap); 5320 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5321 } 5322 5323 /* request PM ops to EH */ 5324 spin_lock_irqsave(ap->lock, flags); 5325 5326 ap->pm_mesg = mesg; 5327 ap->pflags |= ATA_PFLAG_PM_PENDING; 5328 ata_for_each_link(link, ap, HOST_FIRST) { 5329 link->eh_info.action |= action; 5330 link->eh_info.flags |= ehi_flags; 5331 } 5332 5333 ata_port_schedule_eh(ap); 5334 5335 spin_unlock_irqrestore(ap->lock, flags); 5336 5337 if (!async) { 5338 ata_port_wait_eh(ap); 5339 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5340 } 5341 } 5342 5343 /* 5344 * On some hardware, device fails to respond after spun down for suspend. As 5345 * the device won't be used before being resumed, we don't need to touch the 5346 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5347 * 5348 * http://thread.gmane.org/gmane.linux.ide/46764 5349 */ 5350 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5351 | ATA_EHI_NO_AUTOPSY 5352 | ATA_EHI_NO_RECOVERY; 5353 5354 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5355 { 5356 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5357 } 5358 5359 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5360 { 5361 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5362 } 5363 5364 static int ata_port_pm_suspend(struct device *dev) 5365 { 5366 struct ata_port *ap = to_ata_port(dev); 5367 5368 if (pm_runtime_suspended(dev)) 5369 return 0; 5370 5371 ata_port_suspend(ap, PMSG_SUSPEND); 5372 return 0; 5373 } 5374 5375 static int ata_port_pm_freeze(struct device *dev) 5376 { 5377 struct ata_port *ap = to_ata_port(dev); 5378 5379 if (pm_runtime_suspended(dev)) 5380 return 0; 5381 5382 ata_port_suspend(ap, PMSG_FREEZE); 5383 return 0; 5384 } 5385 5386 static int ata_port_pm_poweroff(struct device *dev) 5387 { 5388 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5389 return 0; 5390 } 5391 5392 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5393 | ATA_EHI_QUIET; 5394 5395 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5396 { 5397 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5398 } 5399 5400 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5401 { 5402 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5403 } 5404 5405 static int ata_port_pm_resume(struct device *dev) 5406 { 5407 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5408 pm_runtime_disable(dev); 5409 pm_runtime_set_active(dev); 5410 pm_runtime_enable(dev); 5411 return 0; 5412 } 5413 5414 /* 5415 * For ODDs, the upper layer will poll for media change every few seconds, 5416 * which will make it enter and leave suspend state every few seconds. And 5417 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5418 * is very little and the ODD may malfunction after constantly being reset. 5419 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5420 * ODD is attached to the port. 5421 */ 5422 static int ata_port_runtime_idle(struct device *dev) 5423 { 5424 struct ata_port *ap = to_ata_port(dev); 5425 struct ata_link *link; 5426 struct ata_device *adev; 5427 5428 ata_for_each_link(link, ap, HOST_FIRST) { 5429 ata_for_each_dev(adev, link, ENABLED) 5430 if (adev->class == ATA_DEV_ATAPI && 5431 !zpodd_dev_enabled(adev)) 5432 return -EBUSY; 5433 } 5434 5435 return 0; 5436 } 5437 5438 static int ata_port_runtime_suspend(struct device *dev) 5439 { 5440 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5441 return 0; 5442 } 5443 5444 static int ata_port_runtime_resume(struct device *dev) 5445 { 5446 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5447 return 0; 5448 } 5449 5450 static const struct dev_pm_ops ata_port_pm_ops = { 5451 .suspend = ata_port_pm_suspend, 5452 .resume = ata_port_pm_resume, 5453 .freeze = ata_port_pm_freeze, 5454 .thaw = ata_port_pm_resume, 5455 .poweroff = ata_port_pm_poweroff, 5456 .restore = ata_port_pm_resume, 5457 5458 .runtime_suspend = ata_port_runtime_suspend, 5459 .runtime_resume = ata_port_runtime_resume, 5460 .runtime_idle = ata_port_runtime_idle, 5461 }; 5462 5463 /* sas ports don't participate in pm runtime management of ata_ports, 5464 * and need to resume ata devices at the domain level, not the per-port 5465 * level. sas suspend/resume is async to allow parallel port recovery 5466 * since sas has multiple ata_port instances per Scsi_Host. 5467 */ 5468 void ata_sas_port_suspend(struct ata_port *ap) 5469 { 5470 ata_port_suspend_async(ap, PMSG_SUSPEND); 5471 } 5472 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5473 5474 void ata_sas_port_resume(struct ata_port *ap) 5475 { 5476 ata_port_resume_async(ap, PMSG_RESUME); 5477 } 5478 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5479 5480 /** 5481 * ata_host_suspend - suspend host 5482 * @host: host to suspend 5483 * @mesg: PM message 5484 * 5485 * Suspend @host. Actual operation is performed by port suspend. 5486 */ 5487 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5488 { 5489 host->dev->power.power_state = mesg; 5490 return 0; 5491 } 5492 5493 /** 5494 * ata_host_resume - resume host 5495 * @host: host to resume 5496 * 5497 * Resume @host. Actual operation is performed by port resume. 5498 */ 5499 void ata_host_resume(struct ata_host *host) 5500 { 5501 host->dev->power.power_state = PMSG_ON; 5502 } 5503 #endif 5504 5505 struct device_type ata_port_type = { 5506 .name = "ata_port", 5507 #ifdef CONFIG_PM 5508 .pm = &ata_port_pm_ops, 5509 #endif 5510 }; 5511 5512 /** 5513 * ata_dev_init - Initialize an ata_device structure 5514 * @dev: Device structure to initialize 5515 * 5516 * Initialize @dev in preparation for probing. 5517 * 5518 * LOCKING: 5519 * Inherited from caller. 5520 */ 5521 void ata_dev_init(struct ata_device *dev) 5522 { 5523 struct ata_link *link = ata_dev_phys_link(dev); 5524 struct ata_port *ap = link->ap; 5525 unsigned long flags; 5526 5527 /* SATA spd limit is bound to the attached device, reset together */ 5528 link->sata_spd_limit = link->hw_sata_spd_limit; 5529 link->sata_spd = 0; 5530 5531 /* High bits of dev->flags are used to record warm plug 5532 * requests which occur asynchronously. Synchronize using 5533 * host lock. 5534 */ 5535 spin_lock_irqsave(ap->lock, flags); 5536 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5537 dev->horkage = 0; 5538 spin_unlock_irqrestore(ap->lock, flags); 5539 5540 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5541 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5542 dev->pio_mask = UINT_MAX; 5543 dev->mwdma_mask = UINT_MAX; 5544 dev->udma_mask = UINT_MAX; 5545 } 5546 5547 /** 5548 * ata_link_init - Initialize an ata_link structure 5549 * @ap: ATA port link is attached to 5550 * @link: Link structure to initialize 5551 * @pmp: Port multiplier port number 5552 * 5553 * Initialize @link. 5554 * 5555 * LOCKING: 5556 * Kernel thread context (may sleep) 5557 */ 5558 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5559 { 5560 int i; 5561 5562 /* clear everything except for devices */ 5563 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5564 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5565 5566 link->ap = ap; 5567 link->pmp = pmp; 5568 link->active_tag = ATA_TAG_POISON; 5569 link->hw_sata_spd_limit = UINT_MAX; 5570 5571 /* can't use iterator, ap isn't initialized yet */ 5572 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5573 struct ata_device *dev = &link->device[i]; 5574 5575 dev->link = link; 5576 dev->devno = dev - link->device; 5577 #ifdef CONFIG_ATA_ACPI 5578 dev->gtf_filter = ata_acpi_gtf_filter; 5579 #endif 5580 ata_dev_init(dev); 5581 } 5582 } 5583 5584 /** 5585 * sata_link_init_spd - Initialize link->sata_spd_limit 5586 * @link: Link to configure sata_spd_limit for 5587 * 5588 * Initialize @link->[hw_]sata_spd_limit to the currently 5589 * configured value. 5590 * 5591 * LOCKING: 5592 * Kernel thread context (may sleep). 5593 * 5594 * RETURNS: 5595 * 0 on success, -errno on failure. 5596 */ 5597 int sata_link_init_spd(struct ata_link *link) 5598 { 5599 u8 spd; 5600 int rc; 5601 5602 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5603 if (rc) 5604 return rc; 5605 5606 spd = (link->saved_scontrol >> 4) & 0xf; 5607 if (spd) 5608 link->hw_sata_spd_limit &= (1 << spd) - 1; 5609 5610 ata_force_link_limits(link); 5611 5612 link->sata_spd_limit = link->hw_sata_spd_limit; 5613 5614 return 0; 5615 } 5616 5617 /** 5618 * ata_port_alloc - allocate and initialize basic ATA port resources 5619 * @host: ATA host this allocated port belongs to 5620 * 5621 * Allocate and initialize basic ATA port resources. 5622 * 5623 * RETURNS: 5624 * Allocate ATA port on success, NULL on failure. 5625 * 5626 * LOCKING: 5627 * Inherited from calling layer (may sleep). 5628 */ 5629 struct ata_port *ata_port_alloc(struct ata_host *host) 5630 { 5631 struct ata_port *ap; 5632 5633 DPRINTK("ENTER\n"); 5634 5635 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5636 if (!ap) 5637 return NULL; 5638 5639 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5640 ap->lock = &host->lock; 5641 ap->print_id = -1; 5642 ap->local_port_no = -1; 5643 ap->host = host; 5644 ap->dev = host->dev; 5645 5646 #if defined(ATA_VERBOSE_DEBUG) 5647 /* turn on all debugging levels */ 5648 ap->msg_enable = 0x00FF; 5649 #elif defined(ATA_DEBUG) 5650 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5651 #else 5652 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5653 #endif 5654 5655 mutex_init(&ap->scsi_scan_mutex); 5656 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5657 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5658 INIT_LIST_HEAD(&ap->eh_done_q); 5659 init_waitqueue_head(&ap->eh_wait_q); 5660 init_completion(&ap->park_req_pending); 5661 init_timer_deferrable(&ap->fastdrain_timer); 5662 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5663 ap->fastdrain_timer.data = (unsigned long)ap; 5664 5665 ap->cbl = ATA_CBL_NONE; 5666 5667 ata_link_init(ap, &ap->link, 0); 5668 5669 #ifdef ATA_IRQ_TRAP 5670 ap->stats.unhandled_irq = 1; 5671 ap->stats.idle_irq = 1; 5672 #endif 5673 ata_sff_port_init(ap); 5674 5675 return ap; 5676 } 5677 5678 static void ata_host_release(struct device *gendev, void *res) 5679 { 5680 struct ata_host *host = dev_get_drvdata(gendev); 5681 int i; 5682 5683 for (i = 0; i < host->n_ports; i++) { 5684 struct ata_port *ap = host->ports[i]; 5685 5686 if (!ap) 5687 continue; 5688 5689 if (ap->scsi_host) 5690 scsi_host_put(ap->scsi_host); 5691 5692 kfree(ap->pmp_link); 5693 kfree(ap->slave_link); 5694 kfree(ap); 5695 host->ports[i] = NULL; 5696 } 5697 5698 dev_set_drvdata(gendev, NULL); 5699 } 5700 5701 /** 5702 * ata_host_alloc - allocate and init basic ATA host resources 5703 * @dev: generic device this host is associated with 5704 * @max_ports: maximum number of ATA ports associated with this host 5705 * 5706 * Allocate and initialize basic ATA host resources. LLD calls 5707 * this function to allocate a host, initializes it fully and 5708 * attaches it using ata_host_register(). 5709 * 5710 * @max_ports ports are allocated and host->n_ports is 5711 * initialized to @max_ports. The caller is allowed to decrease 5712 * host->n_ports before calling ata_host_register(). The unused 5713 * ports will be automatically freed on registration. 5714 * 5715 * RETURNS: 5716 * Allocate ATA host on success, NULL on failure. 5717 * 5718 * LOCKING: 5719 * Inherited from calling layer (may sleep). 5720 */ 5721 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5722 { 5723 struct ata_host *host; 5724 size_t sz; 5725 int i; 5726 5727 DPRINTK("ENTER\n"); 5728 5729 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5730 return NULL; 5731 5732 /* alloc a container for our list of ATA ports (buses) */ 5733 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5734 /* alloc a container for our list of ATA ports (buses) */ 5735 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5736 if (!host) 5737 goto err_out; 5738 5739 devres_add(dev, host); 5740 dev_set_drvdata(dev, host); 5741 5742 spin_lock_init(&host->lock); 5743 mutex_init(&host->eh_mutex); 5744 host->dev = dev; 5745 host->n_ports = max_ports; 5746 5747 /* allocate ports bound to this host */ 5748 for (i = 0; i < max_ports; i++) { 5749 struct ata_port *ap; 5750 5751 ap = ata_port_alloc(host); 5752 if (!ap) 5753 goto err_out; 5754 5755 ap->port_no = i; 5756 host->ports[i] = ap; 5757 } 5758 5759 devres_remove_group(dev, NULL); 5760 return host; 5761 5762 err_out: 5763 devres_release_group(dev, NULL); 5764 return NULL; 5765 } 5766 5767 /** 5768 * ata_host_alloc_pinfo - alloc host and init with port_info array 5769 * @dev: generic device this host is associated with 5770 * @ppi: array of ATA port_info to initialize host with 5771 * @n_ports: number of ATA ports attached to this host 5772 * 5773 * Allocate ATA host and initialize with info from @ppi. If NULL 5774 * terminated, @ppi may contain fewer entries than @n_ports. The 5775 * last entry will be used for the remaining ports. 5776 * 5777 * RETURNS: 5778 * Allocate ATA host on success, NULL on failure. 5779 * 5780 * LOCKING: 5781 * Inherited from calling layer (may sleep). 5782 */ 5783 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5784 const struct ata_port_info * const * ppi, 5785 int n_ports) 5786 { 5787 const struct ata_port_info *pi; 5788 struct ata_host *host; 5789 int i, j; 5790 5791 host = ata_host_alloc(dev, n_ports); 5792 if (!host) 5793 return NULL; 5794 5795 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5796 struct ata_port *ap = host->ports[i]; 5797 5798 if (ppi[j]) 5799 pi = ppi[j++]; 5800 5801 ap->pio_mask = pi->pio_mask; 5802 ap->mwdma_mask = pi->mwdma_mask; 5803 ap->udma_mask = pi->udma_mask; 5804 ap->flags |= pi->flags; 5805 ap->link.flags |= pi->link_flags; 5806 ap->ops = pi->port_ops; 5807 5808 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5809 host->ops = pi->port_ops; 5810 } 5811 5812 return host; 5813 } 5814 5815 /** 5816 * ata_slave_link_init - initialize slave link 5817 * @ap: port to initialize slave link for 5818 * 5819 * Create and initialize slave link for @ap. This enables slave 5820 * link handling on the port. 5821 * 5822 * In libata, a port contains links and a link contains devices. 5823 * There is single host link but if a PMP is attached to it, 5824 * there can be multiple fan-out links. On SATA, there's usually 5825 * a single device connected to a link but PATA and SATA 5826 * controllers emulating TF based interface can have two - master 5827 * and slave. 5828 * 5829 * However, there are a few controllers which don't fit into this 5830 * abstraction too well - SATA controllers which emulate TF 5831 * interface with both master and slave devices but also have 5832 * separate SCR register sets for each device. These controllers 5833 * need separate links for physical link handling 5834 * (e.g. onlineness, link speed) but should be treated like a 5835 * traditional M/S controller for everything else (e.g. command 5836 * issue, softreset). 5837 * 5838 * slave_link is libata's way of handling this class of 5839 * controllers without impacting core layer too much. For 5840 * anything other than physical link handling, the default host 5841 * link is used for both master and slave. For physical link 5842 * handling, separate @ap->slave_link is used. All dirty details 5843 * are implemented inside libata core layer. From LLD's POV, the 5844 * only difference is that prereset, hardreset and postreset are 5845 * called once more for the slave link, so the reset sequence 5846 * looks like the following. 5847 * 5848 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5849 * softreset(M) -> postreset(M) -> postreset(S) 5850 * 5851 * Note that softreset is called only for the master. Softreset 5852 * resets both M/S by definition, so SRST on master should handle 5853 * both (the standard method will work just fine). 5854 * 5855 * LOCKING: 5856 * Should be called before host is registered. 5857 * 5858 * RETURNS: 5859 * 0 on success, -errno on failure. 5860 */ 5861 int ata_slave_link_init(struct ata_port *ap) 5862 { 5863 struct ata_link *link; 5864 5865 WARN_ON(ap->slave_link); 5866 WARN_ON(ap->flags & ATA_FLAG_PMP); 5867 5868 link = kzalloc(sizeof(*link), GFP_KERNEL); 5869 if (!link) 5870 return -ENOMEM; 5871 5872 ata_link_init(ap, link, 1); 5873 ap->slave_link = link; 5874 return 0; 5875 } 5876 5877 static void ata_host_stop(struct device *gendev, void *res) 5878 { 5879 struct ata_host *host = dev_get_drvdata(gendev); 5880 int i; 5881 5882 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5883 5884 for (i = 0; i < host->n_ports; i++) { 5885 struct ata_port *ap = host->ports[i]; 5886 5887 if (ap->ops->port_stop) 5888 ap->ops->port_stop(ap); 5889 } 5890 5891 if (host->ops->host_stop) 5892 host->ops->host_stop(host); 5893 } 5894 5895 /** 5896 * ata_finalize_port_ops - finalize ata_port_operations 5897 * @ops: ata_port_operations to finalize 5898 * 5899 * An ata_port_operations can inherit from another ops and that 5900 * ops can again inherit from another. This can go on as many 5901 * times as necessary as long as there is no loop in the 5902 * inheritance chain. 5903 * 5904 * Ops tables are finalized when the host is started. NULL or 5905 * unspecified entries are inherited from the closet ancestor 5906 * which has the method and the entry is populated with it. 5907 * After finalization, the ops table directly points to all the 5908 * methods and ->inherits is no longer necessary and cleared. 5909 * 5910 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5911 * 5912 * LOCKING: 5913 * None. 5914 */ 5915 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5916 { 5917 static DEFINE_SPINLOCK(lock); 5918 const struct ata_port_operations *cur; 5919 void **begin = (void **)ops; 5920 void **end = (void **)&ops->inherits; 5921 void **pp; 5922 5923 if (!ops || !ops->inherits) 5924 return; 5925 5926 spin_lock(&lock); 5927 5928 for (cur = ops->inherits; cur; cur = cur->inherits) { 5929 void **inherit = (void **)cur; 5930 5931 for (pp = begin; pp < end; pp++, inherit++) 5932 if (!*pp) 5933 *pp = *inherit; 5934 } 5935 5936 for (pp = begin; pp < end; pp++) 5937 if (IS_ERR(*pp)) 5938 *pp = NULL; 5939 5940 ops->inherits = NULL; 5941 5942 spin_unlock(&lock); 5943 } 5944 5945 /** 5946 * ata_host_start - start and freeze ports of an ATA host 5947 * @host: ATA host to start ports for 5948 * 5949 * Start and then freeze ports of @host. Started status is 5950 * recorded in host->flags, so this function can be called 5951 * multiple times. Ports are guaranteed to get started only 5952 * once. If host->ops isn't initialized yet, its set to the 5953 * first non-dummy port ops. 5954 * 5955 * LOCKING: 5956 * Inherited from calling layer (may sleep). 5957 * 5958 * RETURNS: 5959 * 0 if all ports are started successfully, -errno otherwise. 5960 */ 5961 int ata_host_start(struct ata_host *host) 5962 { 5963 int have_stop = 0; 5964 void *start_dr = NULL; 5965 int i, rc; 5966 5967 if (host->flags & ATA_HOST_STARTED) 5968 return 0; 5969 5970 ata_finalize_port_ops(host->ops); 5971 5972 for (i = 0; i < host->n_ports; i++) { 5973 struct ata_port *ap = host->ports[i]; 5974 5975 ata_finalize_port_ops(ap->ops); 5976 5977 if (!host->ops && !ata_port_is_dummy(ap)) 5978 host->ops = ap->ops; 5979 5980 if (ap->ops->port_stop) 5981 have_stop = 1; 5982 } 5983 5984 if (host->ops->host_stop) 5985 have_stop = 1; 5986 5987 if (have_stop) { 5988 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5989 if (!start_dr) 5990 return -ENOMEM; 5991 } 5992 5993 for (i = 0; i < host->n_ports; i++) { 5994 struct ata_port *ap = host->ports[i]; 5995 5996 if (ap->ops->port_start) { 5997 rc = ap->ops->port_start(ap); 5998 if (rc) { 5999 if (rc != -ENODEV) 6000 dev_err(host->dev, 6001 "failed to start port %d (errno=%d)\n", 6002 i, rc); 6003 goto err_out; 6004 } 6005 } 6006 ata_eh_freeze_port(ap); 6007 } 6008 6009 if (start_dr) 6010 devres_add(host->dev, start_dr); 6011 host->flags |= ATA_HOST_STARTED; 6012 return 0; 6013 6014 err_out: 6015 while (--i >= 0) { 6016 struct ata_port *ap = host->ports[i]; 6017 6018 if (ap->ops->port_stop) 6019 ap->ops->port_stop(ap); 6020 } 6021 devres_free(start_dr); 6022 return rc; 6023 } 6024 6025 /** 6026 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6027 * @host: host to initialize 6028 * @dev: device host is attached to 6029 * @ops: port_ops 6030 * 6031 */ 6032 void ata_host_init(struct ata_host *host, struct device *dev, 6033 struct ata_port_operations *ops) 6034 { 6035 spin_lock_init(&host->lock); 6036 mutex_init(&host->eh_mutex); 6037 host->n_tags = ATA_MAX_QUEUE - 1; 6038 host->dev = dev; 6039 host->ops = ops; 6040 } 6041 6042 void __ata_port_probe(struct ata_port *ap) 6043 { 6044 struct ata_eh_info *ehi = &ap->link.eh_info; 6045 unsigned long flags; 6046 6047 /* kick EH for boot probing */ 6048 spin_lock_irqsave(ap->lock, flags); 6049 6050 ehi->probe_mask |= ATA_ALL_DEVICES; 6051 ehi->action |= ATA_EH_RESET; 6052 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6053 6054 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6055 ap->pflags |= ATA_PFLAG_LOADING; 6056 ata_port_schedule_eh(ap); 6057 6058 spin_unlock_irqrestore(ap->lock, flags); 6059 } 6060 6061 int ata_port_probe(struct ata_port *ap) 6062 { 6063 int rc = 0; 6064 6065 if (ap->ops->error_handler) { 6066 __ata_port_probe(ap); 6067 ata_port_wait_eh(ap); 6068 } else { 6069 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6070 rc = ata_bus_probe(ap); 6071 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6072 } 6073 return rc; 6074 } 6075 6076 6077 static void async_port_probe(void *data, async_cookie_t cookie) 6078 { 6079 struct ata_port *ap = data; 6080 6081 /* 6082 * If we're not allowed to scan this host in parallel, 6083 * we need to wait until all previous scans have completed 6084 * before going further. 6085 * Jeff Garzik says this is only within a controller, so we 6086 * don't need to wait for port 0, only for later ports. 6087 */ 6088 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6089 async_synchronize_cookie(cookie); 6090 6091 (void)ata_port_probe(ap); 6092 6093 /* in order to keep device order, we need to synchronize at this point */ 6094 async_synchronize_cookie(cookie); 6095 6096 ata_scsi_scan_host(ap, 1); 6097 } 6098 6099 /** 6100 * ata_host_register - register initialized ATA host 6101 * @host: ATA host to register 6102 * @sht: template for SCSI host 6103 * 6104 * Register initialized ATA host. @host is allocated using 6105 * ata_host_alloc() and fully initialized by LLD. This function 6106 * starts ports, registers @host with ATA and SCSI layers and 6107 * probe registered devices. 6108 * 6109 * LOCKING: 6110 * Inherited from calling layer (may sleep). 6111 * 6112 * RETURNS: 6113 * 0 on success, -errno otherwise. 6114 */ 6115 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6116 { 6117 int i, rc; 6118 6119 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6120 6121 /* host must have been started */ 6122 if (!(host->flags & ATA_HOST_STARTED)) { 6123 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6124 WARN_ON(1); 6125 return -EINVAL; 6126 } 6127 6128 /* Blow away unused ports. This happens when LLD can't 6129 * determine the exact number of ports to allocate at 6130 * allocation time. 6131 */ 6132 for (i = host->n_ports; host->ports[i]; i++) 6133 kfree(host->ports[i]); 6134 6135 /* give ports names and add SCSI hosts */ 6136 for (i = 0; i < host->n_ports; i++) { 6137 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6138 host->ports[i]->local_port_no = i + 1; 6139 } 6140 6141 /* Create associated sysfs transport objects */ 6142 for (i = 0; i < host->n_ports; i++) { 6143 rc = ata_tport_add(host->dev,host->ports[i]); 6144 if (rc) { 6145 goto err_tadd; 6146 } 6147 } 6148 6149 rc = ata_scsi_add_hosts(host, sht); 6150 if (rc) 6151 goto err_tadd; 6152 6153 /* set cable, sata_spd_limit and report */ 6154 for (i = 0; i < host->n_ports; i++) { 6155 struct ata_port *ap = host->ports[i]; 6156 unsigned long xfer_mask; 6157 6158 /* set SATA cable type if still unset */ 6159 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6160 ap->cbl = ATA_CBL_SATA; 6161 6162 /* init sata_spd_limit to the current value */ 6163 sata_link_init_spd(&ap->link); 6164 if (ap->slave_link) 6165 sata_link_init_spd(ap->slave_link); 6166 6167 /* print per-port info to dmesg */ 6168 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6169 ap->udma_mask); 6170 6171 if (!ata_port_is_dummy(ap)) { 6172 ata_port_info(ap, "%cATA max %s %s\n", 6173 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6174 ata_mode_string(xfer_mask), 6175 ap->link.eh_info.desc); 6176 ata_ehi_clear_desc(&ap->link.eh_info); 6177 } else 6178 ata_port_info(ap, "DUMMY\n"); 6179 } 6180 6181 /* perform each probe asynchronously */ 6182 for (i = 0; i < host->n_ports; i++) { 6183 struct ata_port *ap = host->ports[i]; 6184 async_schedule(async_port_probe, ap); 6185 } 6186 6187 return 0; 6188 6189 err_tadd: 6190 while (--i >= 0) { 6191 ata_tport_delete(host->ports[i]); 6192 } 6193 return rc; 6194 6195 } 6196 6197 /** 6198 * ata_host_activate - start host, request IRQ and register it 6199 * @host: target ATA host 6200 * @irq: IRQ to request 6201 * @irq_handler: irq_handler used when requesting IRQ 6202 * @irq_flags: irq_flags used when requesting IRQ 6203 * @sht: scsi_host_template to use when registering the host 6204 * 6205 * After allocating an ATA host and initializing it, most libata 6206 * LLDs perform three steps to activate the host - start host, 6207 * request IRQ and register it. This helper takes necessasry 6208 * arguments and performs the three steps in one go. 6209 * 6210 * An invalid IRQ skips the IRQ registration and expects the host to 6211 * have set polling mode on the port. In this case, @irq_handler 6212 * should be NULL. 6213 * 6214 * LOCKING: 6215 * Inherited from calling layer (may sleep). 6216 * 6217 * RETURNS: 6218 * 0 on success, -errno otherwise. 6219 */ 6220 int ata_host_activate(struct ata_host *host, int irq, 6221 irq_handler_t irq_handler, unsigned long irq_flags, 6222 struct scsi_host_template *sht) 6223 { 6224 int i, rc; 6225 6226 rc = ata_host_start(host); 6227 if (rc) 6228 return rc; 6229 6230 /* Special case for polling mode */ 6231 if (!irq) { 6232 WARN_ON(irq_handler); 6233 return ata_host_register(host, sht); 6234 } 6235 6236 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6237 dev_name(host->dev), host); 6238 if (rc) 6239 return rc; 6240 6241 for (i = 0; i < host->n_ports; i++) 6242 ata_port_desc(host->ports[i], "irq %d", irq); 6243 6244 rc = ata_host_register(host, sht); 6245 /* if failed, just free the IRQ and leave ports alone */ 6246 if (rc) 6247 devm_free_irq(host->dev, irq, host); 6248 6249 return rc; 6250 } 6251 6252 /** 6253 * ata_port_detach - Detach ATA port in prepration of device removal 6254 * @ap: ATA port to be detached 6255 * 6256 * Detach all ATA devices and the associated SCSI devices of @ap; 6257 * then, remove the associated SCSI host. @ap is guaranteed to 6258 * be quiescent on return from this function. 6259 * 6260 * LOCKING: 6261 * Kernel thread context (may sleep). 6262 */ 6263 static void ata_port_detach(struct ata_port *ap) 6264 { 6265 unsigned long flags; 6266 struct ata_link *link; 6267 struct ata_device *dev; 6268 6269 if (!ap->ops->error_handler) 6270 goto skip_eh; 6271 6272 /* tell EH we're leaving & flush EH */ 6273 spin_lock_irqsave(ap->lock, flags); 6274 ap->pflags |= ATA_PFLAG_UNLOADING; 6275 ata_port_schedule_eh(ap); 6276 spin_unlock_irqrestore(ap->lock, flags); 6277 6278 /* wait till EH commits suicide */ 6279 ata_port_wait_eh(ap); 6280 6281 /* it better be dead now */ 6282 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6283 6284 cancel_delayed_work_sync(&ap->hotplug_task); 6285 6286 skip_eh: 6287 /* clean up zpodd on port removal */ 6288 ata_for_each_link(link, ap, HOST_FIRST) { 6289 ata_for_each_dev(dev, link, ALL) { 6290 if (zpodd_dev_enabled(dev)) 6291 zpodd_exit(dev); 6292 } 6293 } 6294 if (ap->pmp_link) { 6295 int i; 6296 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6297 ata_tlink_delete(&ap->pmp_link[i]); 6298 } 6299 /* remove the associated SCSI host */ 6300 scsi_remove_host(ap->scsi_host); 6301 ata_tport_delete(ap); 6302 } 6303 6304 /** 6305 * ata_host_detach - Detach all ports of an ATA host 6306 * @host: Host to detach 6307 * 6308 * Detach all ports of @host. 6309 * 6310 * LOCKING: 6311 * Kernel thread context (may sleep). 6312 */ 6313 void ata_host_detach(struct ata_host *host) 6314 { 6315 int i; 6316 6317 for (i = 0; i < host->n_ports; i++) 6318 ata_port_detach(host->ports[i]); 6319 6320 /* the host is dead now, dissociate ACPI */ 6321 ata_acpi_dissociate(host); 6322 } 6323 6324 #ifdef CONFIG_PCI 6325 6326 /** 6327 * ata_pci_remove_one - PCI layer callback for device removal 6328 * @pdev: PCI device that was removed 6329 * 6330 * PCI layer indicates to libata via this hook that hot-unplug or 6331 * module unload event has occurred. Detach all ports. Resource 6332 * release is handled via devres. 6333 * 6334 * LOCKING: 6335 * Inherited from PCI layer (may sleep). 6336 */ 6337 void ata_pci_remove_one(struct pci_dev *pdev) 6338 { 6339 struct ata_host *host = pci_get_drvdata(pdev); 6340 6341 ata_host_detach(host); 6342 } 6343 6344 /* move to PCI subsystem */ 6345 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6346 { 6347 unsigned long tmp = 0; 6348 6349 switch (bits->width) { 6350 case 1: { 6351 u8 tmp8 = 0; 6352 pci_read_config_byte(pdev, bits->reg, &tmp8); 6353 tmp = tmp8; 6354 break; 6355 } 6356 case 2: { 6357 u16 tmp16 = 0; 6358 pci_read_config_word(pdev, bits->reg, &tmp16); 6359 tmp = tmp16; 6360 break; 6361 } 6362 case 4: { 6363 u32 tmp32 = 0; 6364 pci_read_config_dword(pdev, bits->reg, &tmp32); 6365 tmp = tmp32; 6366 break; 6367 } 6368 6369 default: 6370 return -EINVAL; 6371 } 6372 6373 tmp &= bits->mask; 6374 6375 return (tmp == bits->val) ? 1 : 0; 6376 } 6377 6378 #ifdef CONFIG_PM 6379 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6380 { 6381 pci_save_state(pdev); 6382 pci_disable_device(pdev); 6383 6384 if (mesg.event & PM_EVENT_SLEEP) 6385 pci_set_power_state(pdev, PCI_D3hot); 6386 } 6387 6388 int ata_pci_device_do_resume(struct pci_dev *pdev) 6389 { 6390 int rc; 6391 6392 pci_set_power_state(pdev, PCI_D0); 6393 pci_restore_state(pdev); 6394 6395 rc = pcim_enable_device(pdev); 6396 if (rc) { 6397 dev_err(&pdev->dev, 6398 "failed to enable device after resume (%d)\n", rc); 6399 return rc; 6400 } 6401 6402 pci_set_master(pdev); 6403 return 0; 6404 } 6405 6406 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6407 { 6408 struct ata_host *host = pci_get_drvdata(pdev); 6409 int rc = 0; 6410 6411 rc = ata_host_suspend(host, mesg); 6412 if (rc) 6413 return rc; 6414 6415 ata_pci_device_do_suspend(pdev, mesg); 6416 6417 return 0; 6418 } 6419 6420 int ata_pci_device_resume(struct pci_dev *pdev) 6421 { 6422 struct ata_host *host = pci_get_drvdata(pdev); 6423 int rc; 6424 6425 rc = ata_pci_device_do_resume(pdev); 6426 if (rc == 0) 6427 ata_host_resume(host); 6428 return rc; 6429 } 6430 #endif /* CONFIG_PM */ 6431 6432 #endif /* CONFIG_PCI */ 6433 6434 /** 6435 * ata_platform_remove_one - Platform layer callback for device removal 6436 * @pdev: Platform device that was removed 6437 * 6438 * Platform layer indicates to libata via this hook that hot-unplug or 6439 * module unload event has occurred. Detach all ports. Resource 6440 * release is handled via devres. 6441 * 6442 * LOCKING: 6443 * Inherited from platform layer (may sleep). 6444 */ 6445 int ata_platform_remove_one(struct platform_device *pdev) 6446 { 6447 struct ata_host *host = platform_get_drvdata(pdev); 6448 6449 ata_host_detach(host); 6450 6451 return 0; 6452 } 6453 6454 static int __init ata_parse_force_one(char **cur, 6455 struct ata_force_ent *force_ent, 6456 const char **reason) 6457 { 6458 static const struct ata_force_param force_tbl[] __initconst = { 6459 { "40c", .cbl = ATA_CBL_PATA40 }, 6460 { "80c", .cbl = ATA_CBL_PATA80 }, 6461 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6462 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6463 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6464 { "sata", .cbl = ATA_CBL_SATA }, 6465 { "1.5Gbps", .spd_limit = 1 }, 6466 { "3.0Gbps", .spd_limit = 2 }, 6467 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6468 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6469 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6470 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6471 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6472 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6473 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6474 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6475 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6476 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6477 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6478 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6479 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6480 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6481 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6482 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6483 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6484 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6485 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6486 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6487 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6488 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6489 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6490 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6491 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6492 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6493 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6494 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6495 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6496 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6497 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6498 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6499 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6500 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6501 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6502 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6503 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6504 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6505 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6506 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6507 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6508 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6509 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6510 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6511 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6512 }; 6513 char *start = *cur, *p = *cur; 6514 char *id, *val, *endp; 6515 const struct ata_force_param *match_fp = NULL; 6516 int nr_matches = 0, i; 6517 6518 /* find where this param ends and update *cur */ 6519 while (*p != '\0' && *p != ',') 6520 p++; 6521 6522 if (*p == '\0') 6523 *cur = p; 6524 else 6525 *cur = p + 1; 6526 6527 *p = '\0'; 6528 6529 /* parse */ 6530 p = strchr(start, ':'); 6531 if (!p) { 6532 val = strstrip(start); 6533 goto parse_val; 6534 } 6535 *p = '\0'; 6536 6537 id = strstrip(start); 6538 val = strstrip(p + 1); 6539 6540 /* parse id */ 6541 p = strchr(id, '.'); 6542 if (p) { 6543 *p++ = '\0'; 6544 force_ent->device = simple_strtoul(p, &endp, 10); 6545 if (p == endp || *endp != '\0') { 6546 *reason = "invalid device"; 6547 return -EINVAL; 6548 } 6549 } 6550 6551 force_ent->port = simple_strtoul(id, &endp, 10); 6552 if (p == endp || *endp != '\0') { 6553 *reason = "invalid port/link"; 6554 return -EINVAL; 6555 } 6556 6557 parse_val: 6558 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6559 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6560 const struct ata_force_param *fp = &force_tbl[i]; 6561 6562 if (strncasecmp(val, fp->name, strlen(val))) 6563 continue; 6564 6565 nr_matches++; 6566 match_fp = fp; 6567 6568 if (strcasecmp(val, fp->name) == 0) { 6569 nr_matches = 1; 6570 break; 6571 } 6572 } 6573 6574 if (!nr_matches) { 6575 *reason = "unknown value"; 6576 return -EINVAL; 6577 } 6578 if (nr_matches > 1) { 6579 *reason = "ambigious value"; 6580 return -EINVAL; 6581 } 6582 6583 force_ent->param = *match_fp; 6584 6585 return 0; 6586 } 6587 6588 static void __init ata_parse_force_param(void) 6589 { 6590 int idx = 0, size = 1; 6591 int last_port = -1, last_device = -1; 6592 char *p, *cur, *next; 6593 6594 /* calculate maximum number of params and allocate force_tbl */ 6595 for (p = ata_force_param_buf; *p; p++) 6596 if (*p == ',') 6597 size++; 6598 6599 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6600 if (!ata_force_tbl) { 6601 printk(KERN_WARNING "ata: failed to extend force table, " 6602 "libata.force ignored\n"); 6603 return; 6604 } 6605 6606 /* parse and populate the table */ 6607 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6608 const char *reason = ""; 6609 struct ata_force_ent te = { .port = -1, .device = -1 }; 6610 6611 next = cur; 6612 if (ata_parse_force_one(&next, &te, &reason)) { 6613 printk(KERN_WARNING "ata: failed to parse force " 6614 "parameter \"%s\" (%s)\n", 6615 cur, reason); 6616 continue; 6617 } 6618 6619 if (te.port == -1) { 6620 te.port = last_port; 6621 te.device = last_device; 6622 } 6623 6624 ata_force_tbl[idx++] = te; 6625 6626 last_port = te.port; 6627 last_device = te.device; 6628 } 6629 6630 ata_force_tbl_size = idx; 6631 } 6632 6633 static int __init ata_init(void) 6634 { 6635 int rc; 6636 6637 ata_parse_force_param(); 6638 6639 rc = ata_sff_init(); 6640 if (rc) { 6641 kfree(ata_force_tbl); 6642 return rc; 6643 } 6644 6645 libata_transport_init(); 6646 ata_scsi_transport_template = ata_attach_transport(); 6647 if (!ata_scsi_transport_template) { 6648 ata_sff_exit(); 6649 rc = -ENOMEM; 6650 goto err_out; 6651 } 6652 6653 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6654 return 0; 6655 6656 err_out: 6657 return rc; 6658 } 6659 6660 static void __exit ata_exit(void) 6661 { 6662 ata_release_transport(ata_scsi_transport_template); 6663 libata_transport_exit(); 6664 ata_sff_exit(); 6665 kfree(ata_force_tbl); 6666 } 6667 6668 subsys_initcall(ata_init); 6669 module_exit(ata_exit); 6670 6671 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6672 6673 int ata_ratelimit(void) 6674 { 6675 return __ratelimit(&ratelimit); 6676 } 6677 6678 /** 6679 * ata_msleep - ATA EH owner aware msleep 6680 * @ap: ATA port to attribute the sleep to 6681 * @msecs: duration to sleep in milliseconds 6682 * 6683 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6684 * ownership is released before going to sleep and reacquired 6685 * after the sleep is complete. IOW, other ports sharing the 6686 * @ap->host will be allowed to own the EH while this task is 6687 * sleeping. 6688 * 6689 * LOCKING: 6690 * Might sleep. 6691 */ 6692 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6693 { 6694 bool owns_eh = ap && ap->host->eh_owner == current; 6695 6696 if (owns_eh) 6697 ata_eh_release(ap); 6698 6699 msleep(msecs); 6700 6701 if (owns_eh) 6702 ata_eh_acquire(ap); 6703 } 6704 6705 /** 6706 * ata_wait_register - wait until register value changes 6707 * @ap: ATA port to wait register for, can be NULL 6708 * @reg: IO-mapped register 6709 * @mask: Mask to apply to read register value 6710 * @val: Wait condition 6711 * @interval: polling interval in milliseconds 6712 * @timeout: timeout in milliseconds 6713 * 6714 * Waiting for some bits of register to change is a common 6715 * operation for ATA controllers. This function reads 32bit LE 6716 * IO-mapped register @reg and tests for the following condition. 6717 * 6718 * (*@reg & mask) != val 6719 * 6720 * If the condition is met, it returns; otherwise, the process is 6721 * repeated after @interval_msec until timeout. 6722 * 6723 * LOCKING: 6724 * Kernel thread context (may sleep) 6725 * 6726 * RETURNS: 6727 * The final register value. 6728 */ 6729 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6730 unsigned long interval, unsigned long timeout) 6731 { 6732 unsigned long deadline; 6733 u32 tmp; 6734 6735 tmp = ioread32(reg); 6736 6737 /* Calculate timeout _after_ the first read to make sure 6738 * preceding writes reach the controller before starting to 6739 * eat away the timeout. 6740 */ 6741 deadline = ata_deadline(jiffies, timeout); 6742 6743 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6744 ata_msleep(ap, interval); 6745 tmp = ioread32(reg); 6746 } 6747 6748 return tmp; 6749 } 6750 6751 /** 6752 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 6753 * @link: Link receiving the event 6754 * 6755 * Test whether the received PHY event has to be ignored or not. 6756 * 6757 * LOCKING: 6758 * None: 6759 * 6760 * RETURNS: 6761 * True if the event has to be ignored. 6762 */ 6763 bool sata_lpm_ignore_phy_events(struct ata_link *link) 6764 { 6765 unsigned long lpm_timeout = link->last_lpm_change + 6766 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 6767 6768 /* if LPM is enabled, PHYRDY doesn't mean anything */ 6769 if (link->lpm_policy > ATA_LPM_MAX_POWER) 6770 return true; 6771 6772 /* ignore the first PHY event after the LPM policy changed 6773 * as it is might be spurious 6774 */ 6775 if ((link->flags & ATA_LFLAG_CHANGED) && 6776 time_before(jiffies, lpm_timeout)) 6777 return true; 6778 6779 return false; 6780 } 6781 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 6782 6783 /* 6784 * Dummy port_ops 6785 */ 6786 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6787 { 6788 return AC_ERR_SYSTEM; 6789 } 6790 6791 static void ata_dummy_error_handler(struct ata_port *ap) 6792 { 6793 /* truly dummy */ 6794 } 6795 6796 struct ata_port_operations ata_dummy_port_ops = { 6797 .qc_prep = ata_noop_qc_prep, 6798 .qc_issue = ata_dummy_qc_issue, 6799 .error_handler = ata_dummy_error_handler, 6800 .sched_eh = ata_std_sched_eh, 6801 .end_eh = ata_std_end_eh, 6802 }; 6803 6804 const struct ata_port_info ata_dummy_port_info = { 6805 .port_ops = &ata_dummy_port_ops, 6806 }; 6807 6808 /* 6809 * Utility print functions 6810 */ 6811 void ata_port_printk(const struct ata_port *ap, const char *level, 6812 const char *fmt, ...) 6813 { 6814 struct va_format vaf; 6815 va_list args; 6816 6817 va_start(args, fmt); 6818 6819 vaf.fmt = fmt; 6820 vaf.va = &args; 6821 6822 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6823 6824 va_end(args); 6825 } 6826 EXPORT_SYMBOL(ata_port_printk); 6827 6828 void ata_link_printk(const struct ata_link *link, const char *level, 6829 const char *fmt, ...) 6830 { 6831 struct va_format vaf; 6832 va_list args; 6833 6834 va_start(args, fmt); 6835 6836 vaf.fmt = fmt; 6837 vaf.va = &args; 6838 6839 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6840 printk("%sata%u.%02u: %pV", 6841 level, link->ap->print_id, link->pmp, &vaf); 6842 else 6843 printk("%sata%u: %pV", 6844 level, link->ap->print_id, &vaf); 6845 6846 va_end(args); 6847 } 6848 EXPORT_SYMBOL(ata_link_printk); 6849 6850 void ata_dev_printk(const struct ata_device *dev, const char *level, 6851 const char *fmt, ...) 6852 { 6853 struct va_format vaf; 6854 va_list args; 6855 6856 va_start(args, fmt); 6857 6858 vaf.fmt = fmt; 6859 vaf.va = &args; 6860 6861 printk("%sata%u.%02u: %pV", 6862 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6863 &vaf); 6864 6865 va_end(args); 6866 } 6867 EXPORT_SYMBOL(ata_dev_printk); 6868 6869 void ata_print_version(const struct device *dev, const char *version) 6870 { 6871 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6872 } 6873 EXPORT_SYMBOL(ata_print_version); 6874 6875 /* 6876 * libata is essentially a library of internal helper functions for 6877 * low-level ATA host controller drivers. As such, the API/ABI is 6878 * likely to change as new drivers are added and updated. 6879 * Do not depend on ABI/API stability. 6880 */ 6881 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6882 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6883 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6884 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6885 EXPORT_SYMBOL_GPL(sata_port_ops); 6886 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6887 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6888 EXPORT_SYMBOL_GPL(ata_link_next); 6889 EXPORT_SYMBOL_GPL(ata_dev_next); 6890 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6891 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6892 EXPORT_SYMBOL_GPL(ata_host_init); 6893 EXPORT_SYMBOL_GPL(ata_host_alloc); 6894 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6895 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6896 EXPORT_SYMBOL_GPL(ata_host_start); 6897 EXPORT_SYMBOL_GPL(ata_host_register); 6898 EXPORT_SYMBOL_GPL(ata_host_activate); 6899 EXPORT_SYMBOL_GPL(ata_host_detach); 6900 EXPORT_SYMBOL_GPL(ata_sg_init); 6901 EXPORT_SYMBOL_GPL(ata_qc_complete); 6902 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6903 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6904 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6905 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6906 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6907 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6908 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6909 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6911 EXPORT_SYMBOL_GPL(ata_mode_string); 6912 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6913 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6914 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6915 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6916 EXPORT_SYMBOL_GPL(ata_dev_disable); 6917 EXPORT_SYMBOL_GPL(sata_set_spd); 6918 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6919 EXPORT_SYMBOL_GPL(sata_link_debounce); 6920 EXPORT_SYMBOL_GPL(sata_link_resume); 6921 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6922 EXPORT_SYMBOL_GPL(ata_std_prereset); 6923 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6924 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6925 EXPORT_SYMBOL_GPL(ata_std_postreset); 6926 EXPORT_SYMBOL_GPL(ata_dev_classify); 6927 EXPORT_SYMBOL_GPL(ata_dev_pair); 6928 EXPORT_SYMBOL_GPL(ata_ratelimit); 6929 EXPORT_SYMBOL_GPL(ata_msleep); 6930 EXPORT_SYMBOL_GPL(ata_wait_register); 6931 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6932 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6933 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6934 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6935 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6936 EXPORT_SYMBOL_GPL(sata_scr_valid); 6937 EXPORT_SYMBOL_GPL(sata_scr_read); 6938 EXPORT_SYMBOL_GPL(sata_scr_write); 6939 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6940 EXPORT_SYMBOL_GPL(ata_link_online); 6941 EXPORT_SYMBOL_GPL(ata_link_offline); 6942 #ifdef CONFIG_PM 6943 EXPORT_SYMBOL_GPL(ata_host_suspend); 6944 EXPORT_SYMBOL_GPL(ata_host_resume); 6945 #endif /* CONFIG_PM */ 6946 EXPORT_SYMBOL_GPL(ata_id_string); 6947 EXPORT_SYMBOL_GPL(ata_id_c_string); 6948 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6949 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6950 6951 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6952 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6953 EXPORT_SYMBOL_GPL(ata_timing_compute); 6954 EXPORT_SYMBOL_GPL(ata_timing_merge); 6955 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6956 6957 #ifdef CONFIG_PCI 6958 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6959 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6960 #ifdef CONFIG_PM 6961 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6962 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6963 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6964 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6965 #endif /* CONFIG_PM */ 6966 #endif /* CONFIG_PCI */ 6967 6968 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6969 6970 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6971 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6972 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6973 EXPORT_SYMBOL_GPL(ata_port_desc); 6974 #ifdef CONFIG_PCI 6975 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6976 #endif /* CONFIG_PCI */ 6977 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6978 EXPORT_SYMBOL_GPL(ata_link_abort); 6979 EXPORT_SYMBOL_GPL(ata_port_abort); 6980 EXPORT_SYMBOL_GPL(ata_port_freeze); 6981 EXPORT_SYMBOL_GPL(sata_async_notification); 6982 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6983 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6984 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6985 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6986 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6987 EXPORT_SYMBOL_GPL(ata_do_eh); 6988 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6989 6990 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6991 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6992 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6993 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6994 EXPORT_SYMBOL_GPL(ata_cable_sata); 6995