1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 static unsigned int ata_dev_init_params(struct ata_device *dev, 76 u16 heads, u16 sectors); 77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 78 static void ata_dev_xfermask(struct ata_device *dev); 79 static unsigned int ata_dev_quirks(const struct ata_device *dev); 80 81 static DEFINE_IDA(ata_ida); 82 83 #ifdef CONFIG_ATA_FORCE 84 struct ata_force_param { 85 const char *name; 86 u8 cbl; 87 u8 spd_limit; 88 unsigned int xfer_mask; 89 unsigned int quirk_on; 90 unsigned int quirk_off; 91 u16 lflags_on; 92 u16 lflags_off; 93 }; 94 95 struct ata_force_ent { 96 int port; 97 int device; 98 struct ata_force_param param; 99 }; 100 101 static struct ata_force_ent *ata_force_tbl; 102 static int ata_force_tbl_size; 103 104 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 105 /* param_buf is thrown away after initialization, disallow read */ 106 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 107 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 108 #endif 109 110 static int atapi_enabled = 1; 111 module_param(atapi_enabled, int, 0444); 112 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 113 114 static int atapi_dmadir = 0; 115 module_param(atapi_dmadir, int, 0444); 116 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 117 118 int atapi_passthru16 = 1; 119 module_param(atapi_passthru16, int, 0444); 120 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 121 122 int libata_fua = 0; 123 module_param_named(fua, libata_fua, int, 0444); 124 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 125 126 static int ata_ignore_hpa; 127 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 128 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 129 130 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 131 module_param_named(dma, libata_dma_mask, int, 0444); 132 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 133 134 static int ata_probe_timeout; 135 module_param(ata_probe_timeout, int, 0444); 136 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 137 138 int libata_noacpi = 0; 139 module_param_named(noacpi, libata_noacpi, int, 0444); 140 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 141 142 int libata_allow_tpm = 0; 143 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 144 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 145 146 static int atapi_an; 147 module_param(atapi_an, int, 0444); 148 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 149 150 MODULE_AUTHOR("Jeff Garzik"); 151 MODULE_DESCRIPTION("Library module for ATA devices"); 152 MODULE_LICENSE("GPL"); 153 MODULE_VERSION(DRV_VERSION); 154 155 static inline bool ata_dev_print_info(const struct ata_device *dev) 156 { 157 struct ata_eh_context *ehc = &dev->link->eh_context; 158 159 return ehc->i.flags & ATA_EHI_PRINTINFO; 160 } 161 162 /** 163 * ata_link_next - link iteration helper 164 * @link: the previous link, NULL to start 165 * @ap: ATA port containing links to iterate 166 * @mode: iteration mode, one of ATA_LITER_* 167 * 168 * LOCKING: 169 * Host lock or EH context. 170 * 171 * RETURNS: 172 * Pointer to the next link. 173 */ 174 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 175 enum ata_link_iter_mode mode) 176 { 177 BUG_ON(mode != ATA_LITER_EDGE && 178 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 179 180 /* NULL link indicates start of iteration */ 181 if (!link) 182 switch (mode) { 183 case ATA_LITER_EDGE: 184 case ATA_LITER_PMP_FIRST: 185 if (sata_pmp_attached(ap)) 186 return ap->pmp_link; 187 fallthrough; 188 case ATA_LITER_HOST_FIRST: 189 return &ap->link; 190 } 191 192 /* we just iterated over the host link, what's next? */ 193 if (link == &ap->link) 194 switch (mode) { 195 case ATA_LITER_HOST_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 fallthrough; 199 case ATA_LITER_PMP_FIRST: 200 if (unlikely(ap->slave_link)) 201 return ap->slave_link; 202 fallthrough; 203 case ATA_LITER_EDGE: 204 return NULL; 205 } 206 207 /* slave_link excludes PMP */ 208 if (unlikely(link == ap->slave_link)) 209 return NULL; 210 211 /* we were over a PMP link */ 212 if (++link < ap->pmp_link + ap->nr_pmp_links) 213 return link; 214 215 if (mode == ATA_LITER_PMP_FIRST) 216 return &ap->link; 217 218 return NULL; 219 } 220 EXPORT_SYMBOL_GPL(ata_link_next); 221 222 /** 223 * ata_dev_next - device iteration helper 224 * @dev: the previous device, NULL to start 225 * @link: ATA link containing devices to iterate 226 * @mode: iteration mode, one of ATA_DITER_* 227 * 228 * LOCKING: 229 * Host lock or EH context. 230 * 231 * RETURNS: 232 * Pointer to the next device. 233 */ 234 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 235 enum ata_dev_iter_mode mode) 236 { 237 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 238 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 239 240 /* NULL dev indicates start of iteration */ 241 if (!dev) 242 switch (mode) { 243 case ATA_DITER_ENABLED: 244 case ATA_DITER_ALL: 245 dev = link->device; 246 goto check; 247 case ATA_DITER_ENABLED_REVERSE: 248 case ATA_DITER_ALL_REVERSE: 249 dev = link->device + ata_link_max_devices(link) - 1; 250 goto check; 251 } 252 253 next: 254 /* move to the next one */ 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 if (++dev < link->device + ata_link_max_devices(link)) 259 goto check; 260 return NULL; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 if (--dev >= link->device) 264 goto check; 265 return NULL; 266 } 267 268 check: 269 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 270 !ata_dev_enabled(dev)) 271 goto next; 272 return dev; 273 } 274 EXPORT_SYMBOL_GPL(ata_dev_next); 275 276 /** 277 * ata_dev_phys_link - find physical link for a device 278 * @dev: ATA device to look up physical link for 279 * 280 * Look up physical link which @dev is attached to. Note that 281 * this is different from @dev->link only when @dev is on slave 282 * link. For all other cases, it's the same as @dev->link. 283 * 284 * LOCKING: 285 * Don't care. 286 * 287 * RETURNS: 288 * Pointer to the found physical link. 289 */ 290 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 291 { 292 struct ata_port *ap = dev->link->ap; 293 294 if (!ap->slave_link) 295 return dev->link; 296 if (!dev->devno) 297 return &ap->link; 298 return ap->slave_link; 299 } 300 301 #ifdef CONFIG_ATA_FORCE 302 /** 303 * ata_force_cbl - force cable type according to libata.force 304 * @ap: ATA port of interest 305 * 306 * Force cable type according to libata.force and whine about it. 307 * The last entry which has matching port number is used, so it 308 * can be specified as part of device force parameters. For 309 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 310 * same effect. 311 * 312 * LOCKING: 313 * EH context. 314 */ 315 void ata_force_cbl(struct ata_port *ap) 316 { 317 int i; 318 319 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 320 const struct ata_force_ent *fe = &ata_force_tbl[i]; 321 322 if (fe->port != -1 && fe->port != ap->print_id) 323 continue; 324 325 if (fe->param.cbl == ATA_CBL_NONE) 326 continue; 327 328 ap->cbl = fe->param.cbl; 329 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 330 return; 331 } 332 } 333 334 /** 335 * ata_force_link_limits - force link limits according to libata.force 336 * @link: ATA link of interest 337 * 338 * Force link flags and SATA spd limit according to libata.force 339 * and whine about it. When only the port part is specified 340 * (e.g. 1:), the limit applies to all links connected to both 341 * the host link and all fan-out ports connected via PMP. If the 342 * device part is specified as 0 (e.g. 1.00:), it specifies the 343 * first fan-out link not the host link. Device number 15 always 344 * points to the host link whether PMP is attached or not. If the 345 * controller has slave link, device number 16 points to it. 346 * 347 * LOCKING: 348 * EH context. 349 */ 350 static void ata_force_link_limits(struct ata_link *link) 351 { 352 bool did_spd = false; 353 int linkno = link->pmp; 354 int i; 355 356 if (ata_is_host_link(link)) 357 linkno += 15; 358 359 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 360 const struct ata_force_ent *fe = &ata_force_tbl[i]; 361 362 if (fe->port != -1 && fe->port != link->ap->print_id) 363 continue; 364 365 if (fe->device != -1 && fe->device != linkno) 366 continue; 367 368 /* only honor the first spd limit */ 369 if (!did_spd && fe->param.spd_limit) { 370 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 371 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 372 fe->param.name); 373 did_spd = true; 374 } 375 376 /* let lflags stack */ 377 if (fe->param.lflags_on) { 378 link->flags |= fe->param.lflags_on; 379 ata_link_notice(link, 380 "FORCE: link flag 0x%x forced -> 0x%x\n", 381 fe->param.lflags_on, link->flags); 382 } 383 if (fe->param.lflags_off) { 384 link->flags &= ~fe->param.lflags_off; 385 ata_link_notice(link, 386 "FORCE: link flag 0x%x cleared -> 0x%x\n", 387 fe->param.lflags_off, link->flags); 388 } 389 } 390 } 391 392 /** 393 * ata_force_xfermask - force xfermask according to libata.force 394 * @dev: ATA device of interest 395 * 396 * Force xfer_mask according to libata.force and whine about it. 397 * For consistency with link selection, device number 15 selects 398 * the first device connected to the host link. 399 * 400 * LOCKING: 401 * EH context. 402 */ 403 static void ata_force_xfermask(struct ata_device *dev) 404 { 405 int devno = dev->link->pmp + dev->devno; 406 int alt_devno = devno; 407 int i; 408 409 /* allow n.15/16 for devices attached to host port */ 410 if (ata_is_host_link(dev->link)) 411 alt_devno += 15; 412 413 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 414 const struct ata_force_ent *fe = &ata_force_tbl[i]; 415 unsigned int pio_mask, mwdma_mask, udma_mask; 416 417 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 418 continue; 419 420 if (fe->device != -1 && fe->device != devno && 421 fe->device != alt_devno) 422 continue; 423 424 if (!fe->param.xfer_mask) 425 continue; 426 427 ata_unpack_xfermask(fe->param.xfer_mask, 428 &pio_mask, &mwdma_mask, &udma_mask); 429 if (udma_mask) 430 dev->udma_mask = udma_mask; 431 else if (mwdma_mask) { 432 dev->udma_mask = 0; 433 dev->mwdma_mask = mwdma_mask; 434 } else { 435 dev->udma_mask = 0; 436 dev->mwdma_mask = 0; 437 dev->pio_mask = pio_mask; 438 } 439 440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 441 fe->param.name); 442 return; 443 } 444 } 445 446 /** 447 * ata_force_quirks - force quirks according to libata.force 448 * @dev: ATA device of interest 449 * 450 * Force quirks according to libata.force and whine about it. 451 * For consistency with link selection, device number 15 selects 452 * the first device connected to the host link. 453 * 454 * LOCKING: 455 * EH context. 456 */ 457 static void ata_force_quirks(struct ata_device *dev) 458 { 459 int devno = dev->link->pmp + dev->devno; 460 int alt_devno = devno; 461 int i; 462 463 /* allow n.15/16 for devices attached to host port */ 464 if (ata_is_host_link(dev->link)) 465 alt_devno += 15; 466 467 for (i = 0; i < ata_force_tbl_size; i++) { 468 const struct ata_force_ent *fe = &ata_force_tbl[i]; 469 470 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 471 continue; 472 473 if (fe->device != -1 && fe->device != devno && 474 fe->device != alt_devno) 475 continue; 476 477 if (!(~dev->quirks & fe->param.quirk_on) && 478 !(dev->quirks & fe->param.quirk_off)) 479 continue; 480 481 dev->quirks |= fe->param.quirk_on; 482 dev->quirks &= ~fe->param.quirk_off; 483 484 ata_dev_notice(dev, "FORCE: modified (%s)\n", 485 fe->param.name); 486 } 487 } 488 #else 489 static inline void ata_force_link_limits(struct ata_link *link) { } 490 static inline void ata_force_xfermask(struct ata_device *dev) { } 491 static inline void ata_force_quirks(struct ata_device *dev) { } 492 #endif 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 fallthrough; 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 EXPORT_SYMBOL_GPL(atapi_cmd_type); 532 533 static const u8 ata_rw_cmds[] = { 534 /* pio multi */ 535 ATA_CMD_READ_MULTI, 536 ATA_CMD_WRITE_MULTI, 537 ATA_CMD_READ_MULTI_EXT, 538 ATA_CMD_WRITE_MULTI_EXT, 539 0, 540 0, 541 0, 542 0, 543 /* pio */ 544 ATA_CMD_PIO_READ, 545 ATA_CMD_PIO_WRITE, 546 ATA_CMD_PIO_READ_EXT, 547 ATA_CMD_PIO_WRITE_EXT, 548 0, 549 0, 550 0, 551 0, 552 /* dma */ 553 ATA_CMD_READ, 554 ATA_CMD_WRITE, 555 ATA_CMD_READ_EXT, 556 ATA_CMD_WRITE_EXT, 557 0, 558 0, 559 0, 560 ATA_CMD_WRITE_FUA_EXT 561 }; 562 563 /** 564 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 565 * @dev: target device for the taskfile 566 * @tf: taskfile to examine and configure 567 * 568 * Examine the device configuration and tf->flags to determine 569 * the proper read/write command and protocol to use for @tf. 570 * 571 * LOCKING: 572 * caller. 573 */ 574 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 575 struct ata_taskfile *tf) 576 { 577 u8 cmd; 578 579 int index, fua, lba48, write; 580 581 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 582 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 583 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 584 585 if (dev->flags & ATA_DFLAG_PIO) { 586 tf->protocol = ATA_PROT_PIO; 587 index = dev->multi_count ? 0 : 8; 588 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 589 /* Unable to use DMA due to host limitation */ 590 tf->protocol = ATA_PROT_PIO; 591 index = dev->multi_count ? 0 : 8; 592 } else { 593 tf->protocol = ATA_PROT_DMA; 594 index = 16; 595 } 596 597 cmd = ata_rw_cmds[index + fua + lba48 + write]; 598 if (!cmd) 599 return false; 600 601 tf->command = cmd; 602 603 return true; 604 } 605 606 /** 607 * ata_tf_read_block - Read block address from ATA taskfile 608 * @tf: ATA taskfile of interest 609 * @dev: ATA device @tf belongs to 610 * 611 * LOCKING: 612 * None. 613 * 614 * Read block address from @tf. This function can handle all 615 * three address formats - LBA, LBA48 and CHS. tf->protocol and 616 * flags select the address format to use. 617 * 618 * RETURNS: 619 * Block address read from @tf. 620 */ 621 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 622 { 623 u64 block = 0; 624 625 if (tf->flags & ATA_TFLAG_LBA) { 626 if (tf->flags & ATA_TFLAG_LBA48) { 627 block |= (u64)tf->hob_lbah << 40; 628 block |= (u64)tf->hob_lbam << 32; 629 block |= (u64)tf->hob_lbal << 24; 630 } else 631 block |= (tf->device & 0xf) << 24; 632 633 block |= tf->lbah << 16; 634 block |= tf->lbam << 8; 635 block |= tf->lbal; 636 } else { 637 u32 cyl, head, sect; 638 639 cyl = tf->lbam | (tf->lbah << 8); 640 head = tf->device & 0xf; 641 sect = tf->lbal; 642 643 if (!sect) { 644 ata_dev_warn(dev, 645 "device reported invalid CHS sector 0\n"); 646 return U64_MAX; 647 } 648 649 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 650 } 651 652 return block; 653 } 654 655 /* 656 * Set a taskfile command duration limit index. 657 */ 658 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 659 { 660 struct ata_taskfile *tf = &qc->tf; 661 662 if (tf->protocol == ATA_PROT_NCQ) 663 tf->auxiliary |= cdl; 664 else 665 tf->feature |= cdl; 666 667 /* 668 * Mark this command as having a CDL and request the result 669 * task file so that we can inspect the sense data available 670 * bit on completion. 671 */ 672 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 673 } 674 675 /** 676 * ata_build_rw_tf - Build ATA taskfile for given read/write request 677 * @qc: Metadata associated with the taskfile to build 678 * @block: Block address 679 * @n_block: Number of blocks 680 * @tf_flags: RW/FUA etc... 681 * @cdl: Command duration limit index 682 * @class: IO priority class 683 * 684 * LOCKING: 685 * None. 686 * 687 * Build ATA taskfile for the command @qc for read/write request described 688 * by @block, @n_block, @tf_flags and @class. 689 * 690 * RETURNS: 691 * 692 * 0 on success, -ERANGE if the request is too large for @dev, 693 * -EINVAL if the request is invalid. 694 */ 695 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 696 unsigned int tf_flags, int cdl, int class) 697 { 698 struct ata_taskfile *tf = &qc->tf; 699 struct ata_device *dev = qc->dev; 700 701 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 702 tf->flags |= tf_flags; 703 704 if (ata_ncq_enabled(dev)) { 705 /* yay, NCQ */ 706 if (!lba_48_ok(block, n_block)) 707 return -ERANGE; 708 709 tf->protocol = ATA_PROT_NCQ; 710 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 711 712 if (tf->flags & ATA_TFLAG_WRITE) 713 tf->command = ATA_CMD_FPDMA_WRITE; 714 else 715 tf->command = ATA_CMD_FPDMA_READ; 716 717 tf->nsect = qc->hw_tag << 3; 718 tf->hob_feature = (n_block >> 8) & 0xff; 719 tf->feature = n_block & 0xff; 720 721 tf->hob_lbah = (block >> 40) & 0xff; 722 tf->hob_lbam = (block >> 32) & 0xff; 723 tf->hob_lbal = (block >> 24) & 0xff; 724 tf->lbah = (block >> 16) & 0xff; 725 tf->lbam = (block >> 8) & 0xff; 726 tf->lbal = block & 0xff; 727 728 tf->device = ATA_LBA; 729 if (tf->flags & ATA_TFLAG_FUA) 730 tf->device |= 1 << 7; 731 732 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 733 class == IOPRIO_CLASS_RT) 734 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 735 736 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 737 ata_set_tf_cdl(qc, cdl); 738 739 } else if (dev->flags & ATA_DFLAG_LBA) { 740 tf->flags |= ATA_TFLAG_LBA; 741 742 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 743 ata_set_tf_cdl(qc, cdl); 744 745 /* Both FUA writes and a CDL index require 48-bit commands */ 746 if (!(tf->flags & ATA_TFLAG_FUA) && 747 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 748 lba_28_ok(block, n_block)) { 749 /* use LBA28 */ 750 tf->device |= (block >> 24) & 0xf; 751 } else if (lba_48_ok(block, n_block)) { 752 if (!(dev->flags & ATA_DFLAG_LBA48)) 753 return -ERANGE; 754 755 /* use LBA48 */ 756 tf->flags |= ATA_TFLAG_LBA48; 757 758 tf->hob_nsect = (n_block >> 8) & 0xff; 759 760 tf->hob_lbah = (block >> 40) & 0xff; 761 tf->hob_lbam = (block >> 32) & 0xff; 762 tf->hob_lbal = (block >> 24) & 0xff; 763 } else { 764 /* request too large even for LBA48 */ 765 return -ERANGE; 766 } 767 768 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 769 return -EINVAL; 770 771 tf->nsect = n_block & 0xff; 772 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device |= ATA_LBA; 778 } else { 779 /* CHS */ 780 u32 sect, head, cyl, track; 781 782 /* The request -may- be too large for CHS addressing. */ 783 if (!lba_28_ok(block, n_block)) 784 return -ERANGE; 785 786 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 787 return -EINVAL; 788 789 /* Convert LBA to CHS */ 790 track = (u32)block / dev->sectors; 791 cyl = track / dev->heads; 792 head = track % dev->heads; 793 sect = (u32)block % dev->sectors + 1; 794 795 /* Check whether the converted CHS can fit. 796 Cylinder: 0-65535 797 Head: 0-15 798 Sector: 1-255*/ 799 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 800 return -ERANGE; 801 802 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 803 tf->lbal = sect; 804 tf->lbam = cyl; 805 tf->lbah = cyl >> 8; 806 tf->device |= head; 807 } 808 809 return 0; 810 } 811 812 /** 813 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 814 * @pio_mask: pio_mask 815 * @mwdma_mask: mwdma_mask 816 * @udma_mask: udma_mask 817 * 818 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 819 * unsigned int xfer_mask. 820 * 821 * LOCKING: 822 * None. 823 * 824 * RETURNS: 825 * Packed xfer_mask. 826 */ 827 unsigned int ata_pack_xfermask(unsigned int pio_mask, 828 unsigned int mwdma_mask, 829 unsigned int udma_mask) 830 { 831 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 832 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 833 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 834 } 835 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 836 837 /** 838 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 839 * @xfer_mask: xfer_mask to unpack 840 * @pio_mask: resulting pio_mask 841 * @mwdma_mask: resulting mwdma_mask 842 * @udma_mask: resulting udma_mask 843 * 844 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 845 * Any NULL destination masks will be ignored. 846 */ 847 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 848 unsigned int *mwdma_mask, unsigned int *udma_mask) 849 { 850 if (pio_mask) 851 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 852 if (mwdma_mask) 853 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 854 if (udma_mask) 855 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 856 } 857 858 static const struct ata_xfer_ent { 859 int shift, bits; 860 u8 base; 861 } ata_xfer_tbl[] = { 862 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 863 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 864 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 865 { -1, }, 866 }; 867 868 /** 869 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 870 * @xfer_mask: xfer_mask of interest 871 * 872 * Return matching XFER_* value for @xfer_mask. Only the highest 873 * bit of @xfer_mask is considered. 874 * 875 * LOCKING: 876 * None. 877 * 878 * RETURNS: 879 * Matching XFER_* value, 0xff if no match found. 880 */ 881 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 882 { 883 int highbit = fls(xfer_mask) - 1; 884 const struct ata_xfer_ent *ent; 885 886 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 887 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 888 return ent->base + highbit - ent->shift; 889 return 0xff; 890 } 891 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 892 893 /** 894 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 895 * @xfer_mode: XFER_* of interest 896 * 897 * Return matching xfer_mask for @xfer_mode. 898 * 899 * LOCKING: 900 * None. 901 * 902 * RETURNS: 903 * Matching xfer_mask, 0 if no match found. 904 */ 905 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 906 { 907 const struct ata_xfer_ent *ent; 908 909 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 910 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 911 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 912 & ~((1 << ent->shift) - 1); 913 return 0; 914 } 915 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 916 917 /** 918 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 919 * @xfer_mode: XFER_* of interest 920 * 921 * Return matching xfer_shift for @xfer_mode. 922 * 923 * LOCKING: 924 * None. 925 * 926 * RETURNS: 927 * Matching xfer_shift, -1 if no match found. 928 */ 929 int ata_xfer_mode2shift(u8 xfer_mode) 930 { 931 const struct ata_xfer_ent *ent; 932 933 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 934 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 935 return ent->shift; 936 return -1; 937 } 938 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 939 940 /** 941 * ata_mode_string - convert xfer_mask to string 942 * @xfer_mask: mask of bits supported; only highest bit counts. 943 * 944 * Determine string which represents the highest speed 945 * (highest bit in @modemask). 946 * 947 * LOCKING: 948 * None. 949 * 950 * RETURNS: 951 * Constant C string representing highest speed listed in 952 * @mode_mask, or the constant C string "<n/a>". 953 */ 954 const char *ata_mode_string(unsigned int xfer_mask) 955 { 956 static const char * const xfer_mode_str[] = { 957 "PIO0", 958 "PIO1", 959 "PIO2", 960 "PIO3", 961 "PIO4", 962 "PIO5", 963 "PIO6", 964 "MWDMA0", 965 "MWDMA1", 966 "MWDMA2", 967 "MWDMA3", 968 "MWDMA4", 969 "UDMA/16", 970 "UDMA/25", 971 "UDMA/33", 972 "UDMA/44", 973 "UDMA/66", 974 "UDMA/100", 975 "UDMA/133", 976 "UDMA7", 977 }; 978 int highbit; 979 980 highbit = fls(xfer_mask) - 1; 981 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 982 return xfer_mode_str[highbit]; 983 return "<n/a>"; 984 } 985 EXPORT_SYMBOL_GPL(ata_mode_string); 986 987 const char *sata_spd_string(unsigned int spd) 988 { 989 static const char * const spd_str[] = { 990 "1.5 Gbps", 991 "3.0 Gbps", 992 "6.0 Gbps", 993 }; 994 995 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 996 return "<unknown>"; 997 return spd_str[spd - 1]; 998 } 999 1000 /** 1001 * ata_dev_classify - determine device type based on ATA-spec signature 1002 * @tf: ATA taskfile register set for device to be identified 1003 * 1004 * Determine from taskfile register contents whether a device is 1005 * ATA or ATAPI, as per "Signature and persistence" section 1006 * of ATA/PI spec (volume 1, sect 5.14). 1007 * 1008 * LOCKING: 1009 * None. 1010 * 1011 * RETURNS: 1012 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1013 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1014 */ 1015 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1016 { 1017 /* Apple's open source Darwin code hints that some devices only 1018 * put a proper signature into the LBA mid/high registers, 1019 * So, we only check those. It's sufficient for uniqueness. 1020 * 1021 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1022 * signatures for ATA and ATAPI devices attached on SerialATA, 1023 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1024 * spec has never mentioned about using different signatures 1025 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1026 * Multiplier specification began to use 0x69/0x96 to identify 1027 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1028 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1029 * 0x69/0x96 shortly and described them as reserved for 1030 * SerialATA. 1031 * 1032 * We follow the current spec and consider that 0x69/0x96 1033 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1034 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1035 * SEMB signature. This is worked around in 1036 * ata_dev_read_id(). 1037 */ 1038 if (tf->lbam == 0 && tf->lbah == 0) 1039 return ATA_DEV_ATA; 1040 1041 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1042 return ATA_DEV_ATAPI; 1043 1044 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1045 return ATA_DEV_PMP; 1046 1047 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1048 return ATA_DEV_SEMB; 1049 1050 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1051 return ATA_DEV_ZAC; 1052 1053 return ATA_DEV_UNKNOWN; 1054 } 1055 EXPORT_SYMBOL_GPL(ata_dev_classify); 1056 1057 /** 1058 * ata_id_string - Convert IDENTIFY DEVICE page into string 1059 * @id: IDENTIFY DEVICE results we will examine 1060 * @s: string into which data is output 1061 * @ofs: offset into identify device page 1062 * @len: length of string to return. must be an even number. 1063 * 1064 * The strings in the IDENTIFY DEVICE page are broken up into 1065 * 16-bit chunks. Run through the string, and output each 1066 * 8-bit chunk linearly, regardless of platform. 1067 * 1068 * LOCKING: 1069 * caller. 1070 */ 1071 1072 void ata_id_string(const u16 *id, unsigned char *s, 1073 unsigned int ofs, unsigned int len) 1074 { 1075 unsigned int c; 1076 1077 BUG_ON(len & 1); 1078 1079 while (len > 0) { 1080 c = id[ofs] >> 8; 1081 *s = c; 1082 s++; 1083 1084 c = id[ofs] & 0xff; 1085 *s = c; 1086 s++; 1087 1088 ofs++; 1089 len -= 2; 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(ata_id_string); 1093 1094 /** 1095 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an odd number. 1100 * 1101 * This function is identical to ata_id_string except that it 1102 * trims trailing spaces and terminates the resulting string with 1103 * null. @len must be actual maximum length (even number) + 1. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 void ata_id_c_string(const u16 *id, unsigned char *s, 1109 unsigned int ofs, unsigned int len) 1110 { 1111 unsigned char *p; 1112 1113 ata_id_string(id, s, ofs, len - 1); 1114 1115 p = s + strnlen(s, len - 1); 1116 while (p > s && p[-1] == ' ') 1117 p--; 1118 *p = '\0'; 1119 } 1120 EXPORT_SYMBOL_GPL(ata_id_c_string); 1121 1122 static u64 ata_id_n_sectors(const u16 *id) 1123 { 1124 if (ata_id_has_lba(id)) { 1125 if (ata_id_has_lba48(id)) 1126 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1127 1128 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1129 } 1130 1131 if (ata_id_current_chs_valid(id)) 1132 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1133 (u32)id[ATA_ID_CUR_SECTORS]; 1134 1135 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1136 (u32)id[ATA_ID_SECTORS]; 1137 } 1138 1139 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1144 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1145 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1146 sectors |= (tf->lbah & 0xff) << 16; 1147 sectors |= (tf->lbam & 0xff) << 8; 1148 sectors |= (tf->lbal & 0xff); 1149 1150 return sectors; 1151 } 1152 1153 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1154 { 1155 u64 sectors = 0; 1156 1157 sectors |= (tf->device & 0x0f) << 24; 1158 sectors |= (tf->lbah & 0xff) << 16; 1159 sectors |= (tf->lbam & 0xff) << 8; 1160 sectors |= (tf->lbal & 0xff); 1161 1162 return sectors; 1163 } 1164 1165 /** 1166 * ata_read_native_max_address - Read native max address 1167 * @dev: target device 1168 * @max_sectors: out parameter for the result native max address 1169 * 1170 * Perform an LBA48 or LBA28 native size query upon the device in 1171 * question. 1172 * 1173 * RETURNS: 1174 * 0 on success, -EACCES if command is aborted by the drive. 1175 * -EIO on other errors. 1176 */ 1177 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1178 { 1179 unsigned int err_mask; 1180 struct ata_taskfile tf; 1181 int lba48 = ata_id_has_lba48(dev->id); 1182 1183 ata_tf_init(dev, &tf); 1184 1185 /* always clear all address registers */ 1186 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1187 1188 if (lba48) { 1189 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1190 tf.flags |= ATA_TFLAG_LBA48; 1191 } else 1192 tf.command = ATA_CMD_READ_NATIVE_MAX; 1193 1194 tf.protocol = ATA_PROT_NODATA; 1195 tf.device |= ATA_LBA; 1196 1197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1198 if (err_mask) { 1199 ata_dev_warn(dev, 1200 "failed to read native max address (err_mask=0x%x)\n", 1201 err_mask); 1202 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1203 return -EACCES; 1204 return -EIO; 1205 } 1206 1207 if (lba48) 1208 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1209 else 1210 *max_sectors = ata_tf_to_lba(&tf) + 1; 1211 if (dev->quirks & ATA_QUIRK_HPA_SIZE) 1212 (*max_sectors)--; 1213 return 0; 1214 } 1215 1216 /** 1217 * ata_set_max_sectors - Set max sectors 1218 * @dev: target device 1219 * @new_sectors: new max sectors value to set for the device 1220 * 1221 * Set max sectors of @dev to @new_sectors. 1222 * 1223 * RETURNS: 1224 * 0 on success, -EACCES if command is aborted or denied (due to 1225 * previous non-volatile SET_MAX) by the drive. -EIO on other 1226 * errors. 1227 */ 1228 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1229 { 1230 unsigned int err_mask; 1231 struct ata_taskfile tf; 1232 int lba48 = ata_id_has_lba48(dev->id); 1233 1234 new_sectors--; 1235 1236 ata_tf_init(dev, &tf); 1237 1238 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1239 1240 if (lba48) { 1241 tf.command = ATA_CMD_SET_MAX_EXT; 1242 tf.flags |= ATA_TFLAG_LBA48; 1243 1244 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1245 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1246 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1247 } else { 1248 tf.command = ATA_CMD_SET_MAX; 1249 1250 tf.device |= (new_sectors >> 24) & 0xf; 1251 } 1252 1253 tf.protocol = ATA_PROT_NODATA; 1254 tf.device |= ATA_LBA; 1255 1256 tf.lbal = (new_sectors >> 0) & 0xff; 1257 tf.lbam = (new_sectors >> 8) & 0xff; 1258 tf.lbah = (new_sectors >> 16) & 0xff; 1259 1260 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1261 if (err_mask) { 1262 ata_dev_warn(dev, 1263 "failed to set max address (err_mask=0x%x)\n", 1264 err_mask); 1265 if (err_mask == AC_ERR_DEV && 1266 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1267 return -EACCES; 1268 return -EIO; 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * ata_hpa_resize - Resize a device with an HPA set 1276 * @dev: Device to resize 1277 * 1278 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1279 * it if required to the full size of the media. The caller must check 1280 * the drive has the HPA feature set enabled. 1281 * 1282 * RETURNS: 1283 * 0 on success, -errno on failure. 1284 */ 1285 static int ata_hpa_resize(struct ata_device *dev) 1286 { 1287 bool print_info = ata_dev_print_info(dev); 1288 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1289 u64 sectors = ata_id_n_sectors(dev->id); 1290 u64 native_sectors; 1291 int rc; 1292 1293 /* do we need to do it? */ 1294 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1295 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1296 (dev->quirks & ATA_QUIRK_BROKEN_HPA)) 1297 return 0; 1298 1299 /* read native max address */ 1300 rc = ata_read_native_max_address(dev, &native_sectors); 1301 if (rc) { 1302 /* If device aborted the command or HPA isn't going to 1303 * be unlocked, skip HPA resizing. 1304 */ 1305 if (rc == -EACCES || !unlock_hpa) { 1306 ata_dev_warn(dev, 1307 "HPA support seems broken, skipping HPA handling\n"); 1308 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1309 1310 /* we can continue if device aborted the command */ 1311 if (rc == -EACCES) 1312 rc = 0; 1313 } 1314 1315 return rc; 1316 } 1317 dev->n_native_sectors = native_sectors; 1318 1319 /* nothing to do? */ 1320 if (native_sectors <= sectors || !unlock_hpa) { 1321 if (!print_info || native_sectors == sectors) 1322 return 0; 1323 1324 if (native_sectors > sectors) 1325 ata_dev_info(dev, 1326 "HPA detected: current %llu, native %llu\n", 1327 (unsigned long long)sectors, 1328 (unsigned long long)native_sectors); 1329 else if (native_sectors < sectors) 1330 ata_dev_warn(dev, 1331 "native sectors (%llu) is smaller than sectors (%llu)\n", 1332 (unsigned long long)native_sectors, 1333 (unsigned long long)sectors); 1334 return 0; 1335 } 1336 1337 /* let's unlock HPA */ 1338 rc = ata_set_max_sectors(dev, native_sectors); 1339 if (rc == -EACCES) { 1340 /* if device aborted the command, skip HPA resizing */ 1341 ata_dev_warn(dev, 1342 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1343 (unsigned long long)sectors, 1344 (unsigned long long)native_sectors); 1345 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1346 return 0; 1347 } else if (rc) 1348 return rc; 1349 1350 /* re-read IDENTIFY data */ 1351 rc = ata_dev_reread_id(dev, 0); 1352 if (rc) { 1353 ata_dev_err(dev, 1354 "failed to re-read IDENTIFY data after HPA resizing\n"); 1355 return rc; 1356 } 1357 1358 if (print_info) { 1359 u64 new_sectors = ata_id_n_sectors(dev->id); 1360 ata_dev_info(dev, 1361 "HPA unlocked: %llu -> %llu, native %llu\n", 1362 (unsigned long long)sectors, 1363 (unsigned long long)new_sectors, 1364 (unsigned long long)native_sectors); 1365 } 1366 1367 return 0; 1368 } 1369 1370 /** 1371 * ata_dump_id - IDENTIFY DEVICE info debugging output 1372 * @dev: device from which the information is fetched 1373 * @id: IDENTIFY DEVICE page to dump 1374 * 1375 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1376 * page. 1377 * 1378 * LOCKING: 1379 * caller. 1380 */ 1381 1382 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1383 { 1384 ata_dev_dbg(dev, 1385 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1386 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1387 "88==0x%04x 93==0x%04x\n", 1388 id[49], id[53], id[63], id[64], id[75], id[80], 1389 id[81], id[82], id[83], id[84], id[88], id[93]); 1390 } 1391 1392 /** 1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1394 * @id: IDENTIFY data to compute xfer mask from 1395 * 1396 * Compute the xfermask for this device. This is not as trivial 1397 * as it seems if we must consider early devices correctly. 1398 * 1399 * FIXME: pre IDE drive timing (do we care ?). 1400 * 1401 * LOCKING: 1402 * None. 1403 * 1404 * RETURNS: 1405 * Computed xfermask 1406 */ 1407 unsigned int ata_id_xfermask(const u16 *id) 1408 { 1409 unsigned int pio_mask, mwdma_mask, udma_mask; 1410 1411 /* Usual case. Word 53 indicates word 64 is valid */ 1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1414 pio_mask <<= 3; 1415 pio_mask |= 0x7; 1416 } else { 1417 /* If word 64 isn't valid then Word 51 high byte holds 1418 * the PIO timing number for the maximum. Turn it into 1419 * a mask. 1420 */ 1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1422 if (mode < 5) /* Valid PIO range */ 1423 pio_mask = (2 << mode) - 1; 1424 else 1425 pio_mask = 1; 1426 1427 /* But wait.. there's more. Design your standards by 1428 * committee and you too can get a free iordy field to 1429 * process. However it is the speeds not the modes that 1430 * are supported... Note drivers using the timing API 1431 * will get this right anyway 1432 */ 1433 } 1434 1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1436 1437 if (ata_id_is_cfa(id)) { 1438 /* 1439 * Process compact flash extended modes 1440 */ 1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1443 1444 if (pio) 1445 pio_mask |= (1 << 5); 1446 if (pio > 1) 1447 pio_mask |= (1 << 6); 1448 if (dma) 1449 mwdma_mask |= (1 << 3); 1450 if (dma > 1) 1451 mwdma_mask |= (1 << 4); 1452 } 1453 1454 udma_mask = 0; 1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1457 1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1459 } 1460 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1461 1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1463 { 1464 struct completion *waiting = qc->private_data; 1465 1466 complete(waiting); 1467 } 1468 1469 /** 1470 * ata_exec_internal - execute libata internal command 1471 * @dev: Device to which the command is sent 1472 * @tf: Taskfile registers for the command and the result 1473 * @cdb: CDB for packet command 1474 * @dma_dir: Data transfer direction of the command 1475 * @buf: Data buffer of the command 1476 * @buflen: Length of data buffer 1477 * @timeout: Timeout in msecs (0 for default) 1478 * 1479 * Executes libata internal command with timeout. @tf contains 1480 * the command on entry and the result on return. Timeout and error 1481 * conditions are reported via the return value. No recovery action 1482 * is taken after a command times out. It is the caller's duty to 1483 * clean up after timeout. 1484 * 1485 * LOCKING: 1486 * None. Should be called with kernel context, might sleep. 1487 * 1488 * RETURNS: 1489 * Zero on success, AC_ERR_* mask on failure 1490 */ 1491 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1492 const u8 *cdb, enum dma_data_direction dma_dir, 1493 void *buf, unsigned int buflen, 1494 unsigned int timeout) 1495 { 1496 struct ata_link *link = dev->link; 1497 struct ata_port *ap = link->ap; 1498 u8 command = tf->command; 1499 struct ata_queued_cmd *qc; 1500 struct scatterlist sgl; 1501 unsigned int preempted_tag; 1502 u32 preempted_sactive; 1503 u64 preempted_qc_active; 1504 int preempted_nr_active_links; 1505 bool auto_timeout = false; 1506 DECLARE_COMPLETION_ONSTACK(wait); 1507 unsigned long flags; 1508 unsigned int err_mask; 1509 int rc; 1510 1511 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1512 return AC_ERR_INVALID; 1513 1514 spin_lock_irqsave(ap->lock, flags); 1515 1516 /* No internal command while frozen */ 1517 if (ata_port_is_frozen(ap)) { 1518 spin_unlock_irqrestore(ap->lock, flags); 1519 return AC_ERR_SYSTEM; 1520 } 1521 1522 /* Initialize internal qc */ 1523 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1524 1525 qc->tag = ATA_TAG_INTERNAL; 1526 qc->hw_tag = 0; 1527 qc->scsicmd = NULL; 1528 qc->ap = ap; 1529 qc->dev = dev; 1530 ata_qc_reinit(qc); 1531 1532 preempted_tag = link->active_tag; 1533 preempted_sactive = link->sactive; 1534 preempted_qc_active = ap->qc_active; 1535 preempted_nr_active_links = ap->nr_active_links; 1536 link->active_tag = ATA_TAG_POISON; 1537 link->sactive = 0; 1538 ap->qc_active = 0; 1539 ap->nr_active_links = 0; 1540 1541 /* Prepare and issue qc */ 1542 qc->tf = *tf; 1543 if (cdb) 1544 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1545 1546 /* Some SATA bridges need us to indicate data xfer direction */ 1547 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1548 dma_dir == DMA_FROM_DEVICE) 1549 qc->tf.feature |= ATAPI_DMADIR; 1550 1551 qc->flags |= ATA_QCFLAG_RESULT_TF; 1552 qc->dma_dir = dma_dir; 1553 if (dma_dir != DMA_NONE) { 1554 sg_init_one(&sgl, buf, buflen); 1555 ata_sg_init(qc, &sgl, 1); 1556 qc->nbytes = buflen; 1557 } 1558 1559 qc->private_data = &wait; 1560 qc->complete_fn = ata_qc_complete_internal; 1561 1562 ata_qc_issue(qc); 1563 1564 spin_unlock_irqrestore(ap->lock, flags); 1565 1566 if (!timeout) { 1567 if (ata_probe_timeout) { 1568 timeout = ata_probe_timeout * 1000; 1569 } else { 1570 timeout = ata_internal_cmd_timeout(dev, command); 1571 auto_timeout = true; 1572 } 1573 } 1574 1575 ata_eh_release(ap); 1576 1577 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1578 1579 ata_eh_acquire(ap); 1580 1581 ata_sff_flush_pio_task(ap); 1582 1583 if (!rc) { 1584 /* 1585 * We are racing with irq here. If we lose, the following test 1586 * prevents us from completing the qc twice. If we win, the port 1587 * is frozen and will be cleaned up by ->post_internal_cmd(). 1588 */ 1589 spin_lock_irqsave(ap->lock, flags); 1590 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1591 qc->err_mask |= AC_ERR_TIMEOUT; 1592 ata_port_freeze(ap); 1593 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1594 timeout, command); 1595 } 1596 spin_unlock_irqrestore(ap->lock, flags); 1597 } 1598 1599 if (ap->ops->post_internal_cmd) 1600 ap->ops->post_internal_cmd(qc); 1601 1602 /* Perform minimal error analysis */ 1603 if (qc->flags & ATA_QCFLAG_EH) { 1604 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1605 qc->err_mask |= AC_ERR_DEV; 1606 1607 if (!qc->err_mask) 1608 qc->err_mask |= AC_ERR_OTHER; 1609 1610 if (qc->err_mask & ~AC_ERR_OTHER) 1611 qc->err_mask &= ~AC_ERR_OTHER; 1612 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1613 qc->result_tf.status |= ATA_SENSE; 1614 } 1615 1616 /* Finish up */ 1617 spin_lock_irqsave(ap->lock, flags); 1618 1619 *tf = qc->result_tf; 1620 err_mask = qc->err_mask; 1621 1622 ata_qc_free(qc); 1623 link->active_tag = preempted_tag; 1624 link->sactive = preempted_sactive; 1625 ap->qc_active = preempted_qc_active; 1626 ap->nr_active_links = preempted_nr_active_links; 1627 1628 spin_unlock_irqrestore(ap->lock, flags); 1629 1630 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1631 ata_internal_cmd_timed_out(dev, command); 1632 1633 return err_mask; 1634 } 1635 1636 /** 1637 * ata_pio_need_iordy - check if iordy needed 1638 * @adev: ATA device 1639 * 1640 * Check if the current speed of the device requires IORDY. Used 1641 * by various controllers for chip configuration. 1642 */ 1643 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1644 { 1645 /* Don't set IORDY if we're preparing for reset. IORDY may 1646 * lead to controller lock up on certain controllers if the 1647 * port is not occupied. See bko#11703 for details. 1648 */ 1649 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1650 return 0; 1651 /* Controller doesn't support IORDY. Probably a pointless 1652 * check as the caller should know this. 1653 */ 1654 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1655 return 0; 1656 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1657 if (ata_id_is_cfa(adev->id) 1658 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1659 return 0; 1660 /* PIO3 and higher it is mandatory */ 1661 if (adev->pio_mode > XFER_PIO_2) 1662 return 1; 1663 /* We turn it on when possible */ 1664 if (ata_id_has_iordy(adev->id)) 1665 return 1; 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1669 1670 /** 1671 * ata_pio_mask_no_iordy - Return the non IORDY mask 1672 * @adev: ATA device 1673 * 1674 * Compute the highest mode possible if we are not using iordy. Return 1675 * -1 if no iordy mode is available. 1676 */ 1677 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1678 { 1679 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1680 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1681 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1682 /* Is the speed faster than the drive allows non IORDY ? */ 1683 if (pio) { 1684 /* This is cycle times not frequency - watch the logic! */ 1685 if (pio > 240) /* PIO2 is 240nS per cycle */ 1686 return 3 << ATA_SHIFT_PIO; 1687 return 7 << ATA_SHIFT_PIO; 1688 } 1689 } 1690 return 3 << ATA_SHIFT_PIO; 1691 } 1692 1693 /** 1694 * ata_do_dev_read_id - default ID read method 1695 * @dev: device 1696 * @tf: proposed taskfile 1697 * @id: data buffer 1698 * 1699 * Issue the identify taskfile and hand back the buffer containing 1700 * identify data. For some RAID controllers and for pre ATA devices 1701 * this function is wrapped or replaced by the driver 1702 */ 1703 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1704 struct ata_taskfile *tf, __le16 *id) 1705 { 1706 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1707 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1708 } 1709 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1710 1711 /** 1712 * ata_dev_read_id - Read ID data from the specified device 1713 * @dev: target device 1714 * @p_class: pointer to class of the target device (may be changed) 1715 * @flags: ATA_READID_* flags 1716 * @id: buffer to read IDENTIFY data into 1717 * 1718 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1719 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1720 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1721 * for pre-ATA4 drives. 1722 * 1723 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1724 * now we abort if we hit that case. 1725 * 1726 * LOCKING: 1727 * Kernel thread context (may sleep) 1728 * 1729 * RETURNS: 1730 * 0 on success, -errno otherwise. 1731 */ 1732 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1733 unsigned int flags, u16 *id) 1734 { 1735 struct ata_port *ap = dev->link->ap; 1736 unsigned int class = *p_class; 1737 struct ata_taskfile tf; 1738 unsigned int err_mask = 0; 1739 const char *reason; 1740 bool is_semb = class == ATA_DEV_SEMB; 1741 int may_fallback = 1, tried_spinup = 0; 1742 int rc; 1743 1744 retry: 1745 ata_tf_init(dev, &tf); 1746 1747 switch (class) { 1748 case ATA_DEV_SEMB: 1749 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1750 fallthrough; 1751 case ATA_DEV_ATA: 1752 case ATA_DEV_ZAC: 1753 tf.command = ATA_CMD_ID_ATA; 1754 break; 1755 case ATA_DEV_ATAPI: 1756 tf.command = ATA_CMD_ID_ATAPI; 1757 break; 1758 default: 1759 rc = -ENODEV; 1760 reason = "unsupported class"; 1761 goto err_out; 1762 } 1763 1764 tf.protocol = ATA_PROT_PIO; 1765 1766 /* Some devices choke if TF registers contain garbage. Make 1767 * sure those are properly initialized. 1768 */ 1769 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1770 1771 /* Device presence detection is unreliable on some 1772 * controllers. Always poll IDENTIFY if available. 1773 */ 1774 tf.flags |= ATA_TFLAG_POLLING; 1775 1776 if (ap->ops->read_id) 1777 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1778 else 1779 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1780 1781 if (err_mask) { 1782 if (err_mask & AC_ERR_NODEV_HINT) { 1783 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1784 return -ENOENT; 1785 } 1786 1787 if (is_semb) { 1788 ata_dev_info(dev, 1789 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1790 /* SEMB is not supported yet */ 1791 *p_class = ATA_DEV_SEMB_UNSUP; 1792 return 0; 1793 } 1794 1795 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1796 /* Device or controller might have reported 1797 * the wrong device class. Give a shot at the 1798 * other IDENTIFY if the current one is 1799 * aborted by the device. 1800 */ 1801 if (may_fallback) { 1802 may_fallback = 0; 1803 1804 if (class == ATA_DEV_ATA) 1805 class = ATA_DEV_ATAPI; 1806 else 1807 class = ATA_DEV_ATA; 1808 goto retry; 1809 } 1810 1811 /* Control reaches here iff the device aborted 1812 * both flavors of IDENTIFYs which happens 1813 * sometimes with phantom devices. 1814 */ 1815 ata_dev_dbg(dev, 1816 "both IDENTIFYs aborted, assuming NODEV\n"); 1817 return -ENOENT; 1818 } 1819 1820 rc = -EIO; 1821 reason = "I/O error"; 1822 goto err_out; 1823 } 1824 1825 if (dev->quirks & ATA_QUIRK_DUMP_ID) { 1826 ata_dev_info(dev, "dumping IDENTIFY data, " 1827 "class=%d may_fallback=%d tried_spinup=%d\n", 1828 class, may_fallback, tried_spinup); 1829 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1830 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1831 } 1832 1833 /* Falling back doesn't make sense if ID data was read 1834 * successfully at least once. 1835 */ 1836 may_fallback = 0; 1837 1838 swap_buf_le16(id, ATA_ID_WORDS); 1839 1840 /* sanity check */ 1841 rc = -EINVAL; 1842 reason = "device reports invalid type"; 1843 1844 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1845 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1846 goto err_out; 1847 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1848 ata_id_is_ata(id)) { 1849 ata_dev_dbg(dev, 1850 "host indicates ignore ATA devices, ignored\n"); 1851 return -ENOENT; 1852 } 1853 } else { 1854 if (ata_id_is_ata(id)) 1855 goto err_out; 1856 } 1857 1858 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1859 tried_spinup = 1; 1860 /* 1861 * Drive powered-up in standby mode, and requires a specific 1862 * SET_FEATURES spin-up subcommand before it will accept 1863 * anything other than the original IDENTIFY command. 1864 */ 1865 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1866 if (err_mask && id[2] != 0x738c) { 1867 rc = -EIO; 1868 reason = "SPINUP failed"; 1869 goto err_out; 1870 } 1871 /* 1872 * If the drive initially returned incomplete IDENTIFY info, 1873 * we now must reissue the IDENTIFY command. 1874 */ 1875 if (id[2] == 0x37c8) 1876 goto retry; 1877 } 1878 1879 if ((flags & ATA_READID_POSTRESET) && 1880 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1881 /* 1882 * The exact sequence expected by certain pre-ATA4 drives is: 1883 * SRST RESET 1884 * IDENTIFY (optional in early ATA) 1885 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1886 * anything else.. 1887 * Some drives were very specific about that exact sequence. 1888 * 1889 * Note that ATA4 says lba is mandatory so the second check 1890 * should never trigger. 1891 */ 1892 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1893 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1894 if (err_mask) { 1895 rc = -EIO; 1896 reason = "INIT_DEV_PARAMS failed"; 1897 goto err_out; 1898 } 1899 1900 /* current CHS translation info (id[53-58]) might be 1901 * changed. reread the identify device info. 1902 */ 1903 flags &= ~ATA_READID_POSTRESET; 1904 goto retry; 1905 } 1906 } 1907 1908 *p_class = class; 1909 1910 return 0; 1911 1912 err_out: 1913 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1914 reason, err_mask); 1915 return rc; 1916 } 1917 1918 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1919 bool set_active) 1920 { 1921 /* Only applies to ATA and ZAC devices */ 1922 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1923 return false; 1924 1925 ata_tf_init(dev, tf); 1926 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1927 tf->protocol = ATA_PROT_NODATA; 1928 1929 if (set_active) { 1930 /* VERIFY for 1 sector at lba=0 */ 1931 tf->command = ATA_CMD_VERIFY; 1932 tf->nsect = 1; 1933 if (dev->flags & ATA_DFLAG_LBA) { 1934 tf->flags |= ATA_TFLAG_LBA; 1935 tf->device |= ATA_LBA; 1936 } else { 1937 /* CHS */ 1938 tf->lbal = 0x1; /* sect */ 1939 } 1940 } else { 1941 tf->command = ATA_CMD_STANDBYNOW1; 1942 } 1943 1944 return true; 1945 } 1946 1947 static bool ata_dev_power_is_active(struct ata_device *dev) 1948 { 1949 struct ata_taskfile tf; 1950 unsigned int err_mask; 1951 1952 ata_tf_init(dev, &tf); 1953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1954 tf.protocol = ATA_PROT_NODATA; 1955 tf.command = ATA_CMD_CHK_POWER; 1956 1957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1958 if (err_mask) { 1959 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 1960 err_mask); 1961 /* 1962 * Assume we are in standby mode so that we always force a 1963 * spinup in ata_dev_power_set_active(). 1964 */ 1965 return false; 1966 } 1967 1968 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 1969 1970 /* Active or idle */ 1971 return tf.nsect == 0xff; 1972 } 1973 1974 /** 1975 * ata_dev_power_set_standby - Set a device power mode to standby 1976 * @dev: target device 1977 * 1978 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 1979 * For an HDD device, this spins down the disks. 1980 * 1981 * LOCKING: 1982 * Kernel thread context (may sleep). 1983 */ 1984 void ata_dev_power_set_standby(struct ata_device *dev) 1985 { 1986 unsigned long ap_flags = dev->link->ap->flags; 1987 struct ata_taskfile tf; 1988 unsigned int err_mask; 1989 1990 /* If the device is already sleeping or in standby, do nothing. */ 1991 if ((dev->flags & ATA_DFLAG_SLEEPING) || 1992 !ata_dev_power_is_active(dev)) 1993 return; 1994 1995 /* 1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 1997 * causing some drives to spin up and down again. For these, do nothing 1998 * if we are being called on shutdown. 1999 */ 2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2001 system_state == SYSTEM_POWER_OFF) 2002 return; 2003 2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2005 system_entering_hibernation()) 2006 return; 2007 2008 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2009 if (!ata_dev_power_init_tf(dev, &tf, false)) 2010 return; 2011 2012 ata_dev_notice(dev, "Entering standby power mode\n"); 2013 2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2015 if (err_mask) 2016 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2017 err_mask); 2018 } 2019 2020 /** 2021 * ata_dev_power_set_active - Set a device power mode to active 2022 * @dev: target device 2023 * 2024 * Issue a VERIFY command to enter to ensure that the device is in the 2025 * active power mode. For a spun-down HDD (standby or idle power mode), 2026 * the VERIFY command will complete after the disk spins up. 2027 * 2028 * LOCKING: 2029 * Kernel thread context (may sleep). 2030 */ 2031 void ata_dev_power_set_active(struct ata_device *dev) 2032 { 2033 struct ata_taskfile tf; 2034 unsigned int err_mask; 2035 2036 /* 2037 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2038 * if supported by the device. 2039 */ 2040 if (!ata_dev_power_init_tf(dev, &tf, true)) 2041 return; 2042 2043 /* 2044 * Check the device power state & condition and force a spinup with 2045 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2046 */ 2047 if (ata_dev_power_is_active(dev)) 2048 return; 2049 2050 ata_dev_notice(dev, "Entering active power mode\n"); 2051 2052 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2053 if (err_mask) 2054 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2055 err_mask); 2056 } 2057 2058 /** 2059 * ata_read_log_page - read a specific log page 2060 * @dev: target device 2061 * @log: log to read 2062 * @page: page to read 2063 * @buf: buffer to store read page 2064 * @sectors: number of sectors to read 2065 * 2066 * Read log page using READ_LOG_EXT command. 2067 * 2068 * LOCKING: 2069 * Kernel thread context (may sleep). 2070 * 2071 * RETURNS: 2072 * 0 on success, AC_ERR_* mask otherwise. 2073 */ 2074 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2075 u8 page, void *buf, unsigned int sectors) 2076 { 2077 unsigned long ap_flags = dev->link->ap->flags; 2078 struct ata_taskfile tf; 2079 unsigned int err_mask; 2080 bool dma = false; 2081 2082 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2083 2084 /* 2085 * Return error without actually issuing the command on controllers 2086 * which e.g. lockup on a read log page. 2087 */ 2088 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2089 return AC_ERR_DEV; 2090 2091 retry: 2092 ata_tf_init(dev, &tf); 2093 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2094 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) { 2095 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2096 tf.protocol = ATA_PROT_DMA; 2097 dma = true; 2098 } else { 2099 tf.command = ATA_CMD_READ_LOG_EXT; 2100 tf.protocol = ATA_PROT_PIO; 2101 dma = false; 2102 } 2103 tf.lbal = log; 2104 tf.lbam = page; 2105 tf.nsect = sectors; 2106 tf.hob_nsect = sectors >> 8; 2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2108 2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2110 buf, sectors * ATA_SECT_SIZE, 0); 2111 2112 if (err_mask) { 2113 if (dma) { 2114 dev->quirks |= ATA_QUIRK_NO_DMA_LOG; 2115 if (!ata_port_is_frozen(dev->link->ap)) 2116 goto retry; 2117 } 2118 ata_dev_err(dev, 2119 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2120 (unsigned int)log, (unsigned int)page, err_mask); 2121 } 2122 2123 return err_mask; 2124 } 2125 2126 static int ata_log_supported(struct ata_device *dev, u8 log) 2127 { 2128 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR) 2129 return 0; 2130 2131 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1)) 2132 return 0; 2133 return get_unaligned_le16(&dev->sector_buf[log * 2]); 2134 } 2135 2136 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2137 { 2138 unsigned int err, i; 2139 2140 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG) 2141 return false; 2142 2143 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2144 /* 2145 * IDENTIFY DEVICE data log is defined as mandatory starting 2146 * with ACS-3 (ATA version 10). Warn about the missing log 2147 * for drives which implement this ATA level or above. 2148 */ 2149 if (ata_id_major_version(dev->id) >= 10) 2150 ata_dev_warn(dev, 2151 "ATA Identify Device Log not supported\n"); 2152 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG; 2153 return false; 2154 } 2155 2156 /* 2157 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2158 * supported. 2159 */ 2160 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, 2161 dev->sector_buf, 1); 2162 if (err) 2163 return false; 2164 2165 for (i = 0; i < dev->sector_buf[8]; i++) { 2166 if (dev->sector_buf[9 + i] == page) 2167 return true; 2168 } 2169 2170 return false; 2171 } 2172 2173 static int ata_do_link_spd_quirk(struct ata_device *dev) 2174 { 2175 struct ata_link *plink = ata_dev_phys_link(dev); 2176 u32 target, target_limit; 2177 2178 if (!sata_scr_valid(plink)) 2179 return 0; 2180 2181 if (dev->quirks & ATA_QUIRK_1_5_GBPS) 2182 target = 1; 2183 else 2184 return 0; 2185 2186 target_limit = (1 << target) - 1; 2187 2188 /* if already on stricter limit, no need to push further */ 2189 if (plink->sata_spd_limit <= target_limit) 2190 return 0; 2191 2192 plink->sata_spd_limit = target_limit; 2193 2194 /* Request another EH round by returning -EAGAIN if link is 2195 * going faster than the target speed. Forward progress is 2196 * guaranteed by setting sata_spd_limit to target_limit above. 2197 */ 2198 if (plink->sata_spd > target) { 2199 ata_dev_info(dev, "applying link speed limit quirk to %s\n", 2200 sata_spd_string(target)); 2201 return -EAGAIN; 2202 } 2203 return 0; 2204 } 2205 2206 static inline bool ata_dev_knobble(struct ata_device *dev) 2207 { 2208 struct ata_port *ap = dev->link->ap; 2209 2210 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK) 2211 return false; 2212 2213 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2214 } 2215 2216 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2217 { 2218 unsigned int err_mask; 2219 2220 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2221 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2222 return; 2223 } 2224 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2225 0, dev->sector_buf, 1); 2226 if (!err_mask) { 2227 u8 *cmds = dev->ncq_send_recv_cmds; 2228 2229 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2230 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2231 2232 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) { 2233 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2234 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2235 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2236 } 2237 } 2238 } 2239 2240 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2241 { 2242 unsigned int err_mask; 2243 2244 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2245 ata_dev_warn(dev, 2246 "NCQ Send/Recv Log not supported\n"); 2247 return; 2248 } 2249 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2250 0, dev->sector_buf, 1); 2251 if (!err_mask) 2252 memcpy(dev->ncq_non_data_cmds, dev->sector_buf, 2253 ATA_LOG_NCQ_NON_DATA_SIZE); 2254 } 2255 2256 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2257 { 2258 unsigned int err_mask; 2259 2260 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2261 return; 2262 2263 err_mask = ata_read_log_page(dev, 2264 ATA_LOG_IDENTIFY_DEVICE, 2265 ATA_LOG_SATA_SETTINGS, 2266 dev->sector_buf, 1); 2267 if (err_mask) 2268 goto not_supported; 2269 2270 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2271 goto not_supported; 2272 2273 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2274 2275 return; 2276 2277 not_supported: 2278 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2279 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2280 } 2281 2282 static bool ata_dev_check_adapter(struct ata_device *dev, 2283 unsigned short vendor_id) 2284 { 2285 struct pci_dev *pcidev = NULL; 2286 struct device *parent_dev = NULL; 2287 2288 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2289 parent_dev = parent_dev->parent) { 2290 if (dev_is_pci(parent_dev)) { 2291 pcidev = to_pci_dev(parent_dev); 2292 if (pcidev->vendor == vendor_id) 2293 return true; 2294 break; 2295 } 2296 } 2297 2298 return false; 2299 } 2300 2301 static int ata_dev_config_ncq(struct ata_device *dev, 2302 char *desc, size_t desc_sz) 2303 { 2304 struct ata_port *ap = dev->link->ap; 2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2306 unsigned int err_mask; 2307 char *aa_desc = ""; 2308 2309 if (!ata_id_has_ncq(dev->id)) { 2310 desc[0] = '\0'; 2311 return 0; 2312 } 2313 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2314 return 0; 2315 if (dev->quirks & ATA_QUIRK_NONCQ) { 2316 snprintf(desc, desc_sz, "NCQ (not used)"); 2317 return 0; 2318 } 2319 2320 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI && 2321 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2322 snprintf(desc, desc_sz, "NCQ (not used)"); 2323 return 0; 2324 } 2325 2326 if (ap->flags & ATA_FLAG_NCQ) { 2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2328 dev->flags |= ATA_DFLAG_NCQ; 2329 } 2330 2331 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) && 2332 (ap->flags & ATA_FLAG_FPDMA_AA) && 2333 ata_id_has_fpdma_aa(dev->id)) { 2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2335 SATA_FPDMA_AA); 2336 if (err_mask) { 2337 ata_dev_err(dev, 2338 "failed to enable AA (error_mask=0x%x)\n", 2339 err_mask); 2340 if (err_mask != AC_ERR_DEV) { 2341 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA; 2342 return -EIO; 2343 } 2344 } else 2345 aa_desc = ", AA"; 2346 } 2347 2348 if (hdepth >= ddepth) 2349 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2350 else 2351 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2352 ddepth, aa_desc); 2353 2354 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2355 if (ata_id_has_ncq_send_and_recv(dev->id)) 2356 ata_dev_config_ncq_send_recv(dev); 2357 if (ata_id_has_ncq_non_data(dev->id)) 2358 ata_dev_config_ncq_non_data(dev); 2359 if (ata_id_has_ncq_prio(dev->id)) 2360 ata_dev_config_ncq_prio(dev); 2361 } 2362 2363 return 0; 2364 } 2365 2366 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2367 { 2368 unsigned int err_mask; 2369 2370 if (!ata_id_has_sense_reporting(dev->id)) 2371 return; 2372 2373 if (ata_id_sense_reporting_enabled(dev->id)) 2374 return; 2375 2376 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2377 if (err_mask) { 2378 ata_dev_dbg(dev, 2379 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2380 err_mask); 2381 } 2382 } 2383 2384 static void ata_dev_config_zac(struct ata_device *dev) 2385 { 2386 unsigned int err_mask; 2387 u8 *identify_buf = dev->sector_buf; 2388 2389 dev->zac_zones_optimal_open = U32_MAX; 2390 dev->zac_zones_optimal_nonseq = U32_MAX; 2391 dev->zac_zones_max_open = U32_MAX; 2392 2393 /* 2394 * Always set the 'ZAC' flag for Host-managed devices. 2395 */ 2396 if (dev->class == ATA_DEV_ZAC) 2397 dev->flags |= ATA_DFLAG_ZAC; 2398 else if (ata_id_zoned_cap(dev->id) == 0x01) 2399 /* 2400 * Check for host-aware devices. 2401 */ 2402 dev->flags |= ATA_DFLAG_ZAC; 2403 2404 if (!(dev->flags & ATA_DFLAG_ZAC)) 2405 return; 2406 2407 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2408 ata_dev_warn(dev, 2409 "ATA Zoned Information Log not supported\n"); 2410 return; 2411 } 2412 2413 /* 2414 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2415 */ 2416 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2417 ATA_LOG_ZONED_INFORMATION, 2418 identify_buf, 1); 2419 if (!err_mask) { 2420 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2421 2422 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2423 if ((zoned_cap >> 63)) 2424 dev->zac_zoned_cap = (zoned_cap & 1); 2425 opt_open = get_unaligned_le64(&identify_buf[24]); 2426 if ((opt_open >> 63)) 2427 dev->zac_zones_optimal_open = (u32)opt_open; 2428 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2429 if ((opt_nonseq >> 63)) 2430 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2431 max_open = get_unaligned_le64(&identify_buf[40]); 2432 if ((max_open >> 63)) 2433 dev->zac_zones_max_open = (u32)max_open; 2434 } 2435 } 2436 2437 static void ata_dev_config_trusted(struct ata_device *dev) 2438 { 2439 u64 trusted_cap; 2440 unsigned int err; 2441 2442 if (!ata_id_has_trusted(dev->id)) 2443 return; 2444 2445 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2446 ata_dev_warn(dev, 2447 "Security Log not supported\n"); 2448 return; 2449 } 2450 2451 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2452 dev->sector_buf, 1); 2453 if (err) 2454 return; 2455 2456 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]); 2457 if (!(trusted_cap & (1ULL << 63))) { 2458 ata_dev_dbg(dev, 2459 "Trusted Computing capability qword not valid!\n"); 2460 return; 2461 } 2462 2463 if (trusted_cap & (1 << 0)) 2464 dev->flags |= ATA_DFLAG_TRUSTED; 2465 } 2466 2467 void ata_dev_cleanup_cdl_resources(struct ata_device *dev) 2468 { 2469 kfree(dev->cdl); 2470 dev->cdl = NULL; 2471 } 2472 2473 static int ata_dev_init_cdl_resources(struct ata_device *dev) 2474 { 2475 struct ata_cdl *cdl = dev->cdl; 2476 unsigned int err_mask; 2477 2478 if (!cdl) { 2479 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL); 2480 if (!cdl) 2481 return -ENOMEM; 2482 dev->cdl = cdl; 2483 } 2484 2485 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf, 2486 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE); 2487 if (err_mask) { 2488 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2489 ata_dev_cleanup_cdl_resources(dev); 2490 return -EIO; 2491 } 2492 2493 return 0; 2494 } 2495 2496 static void ata_dev_config_cdl(struct ata_device *dev) 2497 { 2498 unsigned int err_mask; 2499 bool cdl_enabled; 2500 u64 val; 2501 int ret; 2502 2503 if (ata_id_major_version(dev->id) < 11) 2504 goto not_supported; 2505 2506 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2507 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2508 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2509 goto not_supported; 2510 2511 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2512 ATA_LOG_SUPPORTED_CAPABILITIES, 2513 dev->sector_buf, 1); 2514 if (err_mask) 2515 goto not_supported; 2516 2517 /* Check Command Duration Limit Supported bits */ 2518 val = get_unaligned_le64(&dev->sector_buf[168]); 2519 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2520 goto not_supported; 2521 2522 /* Warn the user if command duration guideline is not supported */ 2523 if (!(val & BIT_ULL(1))) 2524 ata_dev_warn(dev, 2525 "Command duration guideline is not supported\n"); 2526 2527 /* 2528 * We must have support for the sense data for successful NCQ commands 2529 * log indicated by the successful NCQ command sense data supported bit. 2530 */ 2531 val = get_unaligned_le64(&dev->sector_buf[8]); 2532 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2533 ata_dev_warn(dev, 2534 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2535 goto not_supported; 2536 } 2537 2538 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2539 if (!ata_id_has_ncq_autosense(dev->id)) { 2540 ata_dev_warn(dev, 2541 "CDL supported but NCQ autosense is not supported\n"); 2542 goto not_supported; 2543 } 2544 2545 /* 2546 * If CDL is marked as enabled, make sure the feature is enabled too. 2547 * Conversely, if CDL is disabled, make sure the feature is turned off. 2548 */ 2549 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2550 ATA_LOG_CURRENT_SETTINGS, 2551 dev->sector_buf, 1); 2552 if (err_mask) 2553 goto not_supported; 2554 2555 val = get_unaligned_le64(&dev->sector_buf[8]); 2556 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2557 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2558 if (!cdl_enabled) { 2559 /* Enable CDL on the device */ 2560 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2561 if (err_mask) { 2562 ata_dev_err(dev, 2563 "Enable CDL feature failed\n"); 2564 goto not_supported; 2565 } 2566 } 2567 } else { 2568 if (cdl_enabled) { 2569 /* Disable CDL on the device */ 2570 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2571 if (err_mask) { 2572 ata_dev_err(dev, 2573 "Disable CDL feature failed\n"); 2574 goto not_supported; 2575 } 2576 } 2577 } 2578 2579 /* 2580 * While CDL itself has to be enabled using sysfs, CDL requires that 2581 * sense data for successful NCQ commands is enabled to work properly. 2582 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2583 * if supported. 2584 */ 2585 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2586 err_mask = ata_dev_set_feature(dev, 2587 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2588 if (err_mask) { 2589 ata_dev_warn(dev, 2590 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2591 err_mask); 2592 goto not_supported; 2593 } 2594 } 2595 2596 /* CDL is supported: allocate and initialize needed resources. */ 2597 ret = ata_dev_init_cdl_resources(dev); 2598 if (ret) { 2599 ata_dev_warn(dev, "Initialize CDL resources failed\n"); 2600 goto not_supported; 2601 } 2602 2603 dev->flags |= ATA_DFLAG_CDL; 2604 2605 return; 2606 2607 not_supported: 2608 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2609 ata_dev_cleanup_cdl_resources(dev); 2610 } 2611 2612 static int ata_dev_config_lba(struct ata_device *dev) 2613 { 2614 const u16 *id = dev->id; 2615 const char *lba_desc; 2616 char ncq_desc[32]; 2617 int ret; 2618 2619 dev->flags |= ATA_DFLAG_LBA; 2620 2621 if (ata_id_has_lba48(id)) { 2622 lba_desc = "LBA48"; 2623 dev->flags |= ATA_DFLAG_LBA48; 2624 if (dev->n_sectors >= (1UL << 28) && 2625 ata_id_has_flush_ext(id)) 2626 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2627 } else { 2628 lba_desc = "LBA"; 2629 } 2630 2631 /* config NCQ */ 2632 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2633 2634 /* print device info to dmesg */ 2635 if (ata_dev_print_info(dev)) 2636 ata_dev_info(dev, 2637 "%llu sectors, multi %u: %s %s\n", 2638 (unsigned long long)dev->n_sectors, 2639 dev->multi_count, lba_desc, ncq_desc); 2640 2641 return ret; 2642 } 2643 2644 static void ata_dev_config_chs(struct ata_device *dev) 2645 { 2646 const u16 *id = dev->id; 2647 2648 if (ata_id_current_chs_valid(id)) { 2649 /* Current CHS translation is valid. */ 2650 dev->cylinders = id[54]; 2651 dev->heads = id[55]; 2652 dev->sectors = id[56]; 2653 } else { 2654 /* Default translation */ 2655 dev->cylinders = id[1]; 2656 dev->heads = id[3]; 2657 dev->sectors = id[6]; 2658 } 2659 2660 /* print device info to dmesg */ 2661 if (ata_dev_print_info(dev)) 2662 ata_dev_info(dev, 2663 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2664 (unsigned long long)dev->n_sectors, 2665 dev->multi_count, dev->cylinders, 2666 dev->heads, dev->sectors); 2667 } 2668 2669 static void ata_dev_config_fua(struct ata_device *dev) 2670 { 2671 /* Ignore FUA support if its use is disabled globally */ 2672 if (!libata_fua) 2673 goto nofua; 2674 2675 /* Ignore devices without support for WRITE DMA FUA EXT */ 2676 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2677 goto nofua; 2678 2679 /* Ignore known bad devices and devices that lack NCQ support */ 2680 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA)) 2681 goto nofua; 2682 2683 dev->flags |= ATA_DFLAG_FUA; 2684 2685 return; 2686 2687 nofua: 2688 dev->flags &= ~ATA_DFLAG_FUA; 2689 } 2690 2691 static void ata_dev_config_devslp(struct ata_device *dev) 2692 { 2693 u8 *sata_setting = dev->sector_buf; 2694 unsigned int err_mask; 2695 int i, j; 2696 2697 /* 2698 * Check device sleep capability. Get DevSlp timing variables 2699 * from SATA Settings page of Identify Device Data Log. 2700 */ 2701 if (!ata_id_has_devslp(dev->id) || 2702 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2703 return; 2704 2705 err_mask = ata_read_log_page(dev, 2706 ATA_LOG_IDENTIFY_DEVICE, 2707 ATA_LOG_SATA_SETTINGS, 2708 sata_setting, 1); 2709 if (err_mask) 2710 return; 2711 2712 dev->flags |= ATA_DFLAG_DEVSLP; 2713 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2714 j = ATA_LOG_DEVSLP_OFFSET + i; 2715 dev->devslp_timing[i] = sata_setting[j]; 2716 } 2717 } 2718 2719 static void ata_dev_config_cpr(struct ata_device *dev) 2720 { 2721 unsigned int err_mask; 2722 size_t buf_len; 2723 int i, nr_cpr = 0; 2724 struct ata_cpr_log *cpr_log = NULL; 2725 u8 *desc, *buf = NULL; 2726 2727 if (ata_id_major_version(dev->id) < 11) 2728 goto out; 2729 2730 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2731 if (buf_len == 0) 2732 goto out; 2733 2734 /* 2735 * Read the concurrent positioning ranges log (0x47). We can have at 2736 * most 255 32B range descriptors plus a 64B header. This log varies in 2737 * size, so use the size reported in the GPL directory. Reading beyond 2738 * the supported length will result in an error. 2739 */ 2740 buf_len <<= 9; 2741 buf = kzalloc(buf_len, GFP_KERNEL); 2742 if (!buf) 2743 goto out; 2744 2745 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2746 0, buf, buf_len >> 9); 2747 if (err_mask) 2748 goto out; 2749 2750 nr_cpr = buf[0]; 2751 if (!nr_cpr) 2752 goto out; 2753 2754 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2755 if (!cpr_log) 2756 goto out; 2757 2758 cpr_log->nr_cpr = nr_cpr; 2759 desc = &buf[64]; 2760 for (i = 0; i < nr_cpr; i++, desc += 32) { 2761 cpr_log->cpr[i].num = desc[0]; 2762 cpr_log->cpr[i].num_storage_elements = desc[1]; 2763 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2764 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2765 } 2766 2767 out: 2768 swap(dev->cpr_log, cpr_log); 2769 kfree(cpr_log); 2770 kfree(buf); 2771 } 2772 2773 static void ata_dev_print_features(struct ata_device *dev) 2774 { 2775 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2776 return; 2777 2778 ata_dev_info(dev, 2779 "Features:%s%s%s%s%s%s%s%s\n", 2780 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2781 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2782 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2783 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2784 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2785 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2786 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2787 dev->cpr_log ? " CPR" : ""); 2788 } 2789 2790 /** 2791 * ata_dev_configure - Configure the specified ATA/ATAPI device 2792 * @dev: Target device to configure 2793 * 2794 * Configure @dev according to @dev->id. Generic and low-level 2795 * driver specific fixups are also applied. 2796 * 2797 * LOCKING: 2798 * Kernel thread context (may sleep) 2799 * 2800 * RETURNS: 2801 * 0 on success, -errno otherwise 2802 */ 2803 int ata_dev_configure(struct ata_device *dev) 2804 { 2805 struct ata_port *ap = dev->link->ap; 2806 bool print_info = ata_dev_print_info(dev); 2807 const u16 *id = dev->id; 2808 unsigned int xfer_mask; 2809 unsigned int err_mask; 2810 char revbuf[7]; /* XYZ-99\0 */ 2811 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2812 char modelbuf[ATA_ID_PROD_LEN+1]; 2813 int rc; 2814 2815 if (!ata_dev_enabled(dev)) { 2816 ata_dev_dbg(dev, "no device\n"); 2817 return 0; 2818 } 2819 2820 /* Set quirks */ 2821 dev->quirks |= ata_dev_quirks(dev); 2822 ata_force_quirks(dev); 2823 2824 if (dev->quirks & ATA_QUIRK_DISABLE) { 2825 ata_dev_info(dev, "unsupported device, disabling\n"); 2826 ata_dev_disable(dev); 2827 return 0; 2828 } 2829 2830 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2831 dev->class == ATA_DEV_ATAPI) { 2832 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2833 atapi_enabled ? "not supported with this driver" 2834 : "disabled"); 2835 ata_dev_disable(dev); 2836 return 0; 2837 } 2838 2839 rc = ata_do_link_spd_quirk(dev); 2840 if (rc) 2841 return rc; 2842 2843 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) && 2845 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2846 dev->quirks |= ATA_QUIRK_NOLPM; 2847 2848 if (ap->flags & ATA_FLAG_NO_LPM) 2849 dev->quirks |= ATA_QUIRK_NOLPM; 2850 2851 if (dev->quirks & ATA_QUIRK_NOLPM) { 2852 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2853 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2854 } 2855 2856 /* let ACPI work its magic */ 2857 rc = ata_acpi_on_devcfg(dev); 2858 if (rc) 2859 return rc; 2860 2861 /* massage HPA, do it early as it might change IDENTIFY data */ 2862 rc = ata_hpa_resize(dev); 2863 if (rc) 2864 return rc; 2865 2866 /* print device capabilities */ 2867 ata_dev_dbg(dev, 2868 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2869 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2870 __func__, 2871 id[49], id[82], id[83], id[84], 2872 id[85], id[86], id[87], id[88]); 2873 2874 /* initialize to-be-configured parameters */ 2875 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2876 dev->max_sectors = 0; 2877 dev->cdb_len = 0; 2878 dev->n_sectors = 0; 2879 dev->cylinders = 0; 2880 dev->heads = 0; 2881 dev->sectors = 0; 2882 dev->multi_count = 0; 2883 2884 /* 2885 * common ATA, ATAPI feature tests 2886 */ 2887 2888 /* find max transfer mode; for printk only */ 2889 xfer_mask = ata_id_xfermask(id); 2890 2891 ata_dump_id(dev, id); 2892 2893 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2894 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2895 sizeof(fwrevbuf)); 2896 2897 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2898 sizeof(modelbuf)); 2899 2900 /* ATA-specific feature tests */ 2901 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2902 if (ata_id_is_cfa(id)) { 2903 /* CPRM may make this media unusable */ 2904 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2905 ata_dev_warn(dev, 2906 "supports DRM functions and may not be fully accessible\n"); 2907 snprintf(revbuf, 7, "CFA"); 2908 } else { 2909 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2910 /* Warn the user if the device has TPM extensions */ 2911 if (ata_id_has_tpm(id)) 2912 ata_dev_warn(dev, 2913 "supports DRM functions and may not be fully accessible\n"); 2914 } 2915 2916 dev->n_sectors = ata_id_n_sectors(id); 2917 2918 /* get current R/W Multiple count setting */ 2919 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2920 unsigned int max = dev->id[47] & 0xff; 2921 unsigned int cnt = dev->id[59] & 0xff; 2922 /* only recognize/allow powers of two here */ 2923 if (is_power_of_2(max) && is_power_of_2(cnt)) 2924 if (cnt <= max) 2925 dev->multi_count = cnt; 2926 } 2927 2928 /* print device info to dmesg */ 2929 if (print_info) 2930 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2931 revbuf, modelbuf, fwrevbuf, 2932 ata_mode_string(xfer_mask)); 2933 2934 if (ata_id_has_lba(id)) { 2935 rc = ata_dev_config_lba(dev); 2936 if (rc) 2937 return rc; 2938 } else { 2939 ata_dev_config_chs(dev); 2940 } 2941 2942 ata_dev_config_fua(dev); 2943 ata_dev_config_devslp(dev); 2944 ata_dev_config_sense_reporting(dev); 2945 ata_dev_config_zac(dev); 2946 ata_dev_config_trusted(dev); 2947 ata_dev_config_cpr(dev); 2948 ata_dev_config_cdl(dev); 2949 dev->cdb_len = 32; 2950 2951 if (print_info) 2952 ata_dev_print_features(dev); 2953 } 2954 2955 /* ATAPI-specific feature tests */ 2956 else if (dev->class == ATA_DEV_ATAPI) { 2957 const char *cdb_intr_string = ""; 2958 const char *atapi_an_string = ""; 2959 const char *dma_dir_string = ""; 2960 u32 sntf; 2961 2962 rc = atapi_cdb_len(id); 2963 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2964 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2965 rc = -EINVAL; 2966 goto err_out_nosup; 2967 } 2968 dev->cdb_len = (unsigned int) rc; 2969 2970 /* Enable ATAPI AN if both the host and device have 2971 * the support. If PMP is attached, SNTF is required 2972 * to enable ATAPI AN to discern between PHY status 2973 * changed notifications and ATAPI ANs. 2974 */ 2975 if (atapi_an && 2976 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2977 (!sata_pmp_attached(ap) || 2978 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2979 /* issue SET feature command to turn this on */ 2980 err_mask = ata_dev_set_feature(dev, 2981 SETFEATURES_SATA_ENABLE, SATA_AN); 2982 if (err_mask) 2983 ata_dev_err(dev, 2984 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2985 err_mask); 2986 else { 2987 dev->flags |= ATA_DFLAG_AN; 2988 atapi_an_string = ", ATAPI AN"; 2989 } 2990 } 2991 2992 if (ata_id_cdb_intr(dev->id)) { 2993 dev->flags |= ATA_DFLAG_CDB_INTR; 2994 cdb_intr_string = ", CDB intr"; 2995 } 2996 2997 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) || 2998 atapi_id_dmadir(dev->id)) { 2999 dev->flags |= ATA_DFLAG_DMADIR; 3000 dma_dir_string = ", DMADIR"; 3001 } 3002 3003 if (ata_id_has_da(dev->id)) { 3004 dev->flags |= ATA_DFLAG_DA; 3005 zpodd_init(dev); 3006 } 3007 3008 /* print device info to dmesg */ 3009 if (print_info) 3010 ata_dev_info(dev, 3011 "ATAPI: %s, %s, max %s%s%s%s\n", 3012 modelbuf, fwrevbuf, 3013 ata_mode_string(xfer_mask), 3014 cdb_intr_string, atapi_an_string, 3015 dma_dir_string); 3016 } 3017 3018 /* determine max_sectors */ 3019 dev->max_sectors = ATA_MAX_SECTORS; 3020 if (dev->flags & ATA_DFLAG_LBA48) 3021 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3022 3023 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3024 200 sectors */ 3025 if (ata_dev_knobble(dev)) { 3026 if (print_info) 3027 ata_dev_info(dev, "applying bridge limits\n"); 3028 dev->udma_mask &= ATA_UDMA5; 3029 dev->max_sectors = ATA_MAX_SECTORS; 3030 } 3031 3032 if ((dev->class == ATA_DEV_ATAPI) && 3033 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3034 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3035 dev->quirks |= ATA_QUIRK_STUCK_ERR; 3036 } 3037 3038 if (dev->quirks & ATA_QUIRK_MAX_SEC_128) 3039 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3040 dev->max_sectors); 3041 3042 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024) 3043 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3044 dev->max_sectors); 3045 3046 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48) 3047 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3048 3049 if (ap->ops->dev_config) 3050 ap->ops->dev_config(dev); 3051 3052 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) { 3053 /* Let the user know. We don't want to disallow opens for 3054 rescue purposes, or in case the vendor is just a blithering 3055 idiot. Do this after the dev_config call as some controllers 3056 with buggy firmware may want to avoid reporting false device 3057 bugs */ 3058 3059 if (print_info) { 3060 ata_dev_warn(dev, 3061 "Drive reports diagnostics failure. This may indicate a drive\n"); 3062 ata_dev_warn(dev, 3063 "fault or invalid emulation. Contact drive vendor for information.\n"); 3064 } 3065 } 3066 3067 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) { 3068 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3069 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3070 } 3071 3072 return 0; 3073 3074 err_out_nosup: 3075 return rc; 3076 } 3077 3078 /** 3079 * ata_cable_40wire - return 40 wire cable type 3080 * @ap: port 3081 * 3082 * Helper method for drivers which want to hardwire 40 wire cable 3083 * detection. 3084 */ 3085 3086 int ata_cable_40wire(struct ata_port *ap) 3087 { 3088 return ATA_CBL_PATA40; 3089 } 3090 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3091 3092 /** 3093 * ata_cable_80wire - return 80 wire cable type 3094 * @ap: port 3095 * 3096 * Helper method for drivers which want to hardwire 80 wire cable 3097 * detection. 3098 */ 3099 3100 int ata_cable_80wire(struct ata_port *ap) 3101 { 3102 return ATA_CBL_PATA80; 3103 } 3104 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3105 3106 /** 3107 * ata_cable_unknown - return unknown PATA cable. 3108 * @ap: port 3109 * 3110 * Helper method for drivers which have no PATA cable detection. 3111 */ 3112 3113 int ata_cable_unknown(struct ata_port *ap) 3114 { 3115 return ATA_CBL_PATA_UNK; 3116 } 3117 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3118 3119 /** 3120 * ata_cable_ignore - return ignored PATA cable. 3121 * @ap: port 3122 * 3123 * Helper method for drivers which don't use cable type to limit 3124 * transfer mode. 3125 */ 3126 int ata_cable_ignore(struct ata_port *ap) 3127 { 3128 return ATA_CBL_PATA_IGN; 3129 } 3130 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3131 3132 /** 3133 * ata_cable_sata - return SATA cable type 3134 * @ap: port 3135 * 3136 * Helper method for drivers which have SATA cables 3137 */ 3138 3139 int ata_cable_sata(struct ata_port *ap) 3140 { 3141 return ATA_CBL_SATA; 3142 } 3143 EXPORT_SYMBOL_GPL(ata_cable_sata); 3144 3145 /** 3146 * sata_print_link_status - Print SATA link status 3147 * @link: SATA link to printk link status about 3148 * 3149 * This function prints link speed and status of a SATA link. 3150 * 3151 * LOCKING: 3152 * None. 3153 */ 3154 static void sata_print_link_status(struct ata_link *link) 3155 { 3156 u32 sstatus, scontrol, tmp; 3157 3158 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3159 return; 3160 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3161 return; 3162 3163 if (ata_phys_link_online(link)) { 3164 tmp = (sstatus >> 4) & 0xf; 3165 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3166 sata_spd_string(tmp), sstatus, scontrol); 3167 } else { 3168 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3169 sstatus, scontrol); 3170 } 3171 } 3172 3173 /** 3174 * ata_dev_pair - return other device on cable 3175 * @adev: device 3176 * 3177 * Obtain the other device on the same cable, or if none is 3178 * present NULL is returned 3179 */ 3180 3181 struct ata_device *ata_dev_pair(struct ata_device *adev) 3182 { 3183 struct ata_link *link = adev->link; 3184 struct ata_device *pair = &link->device[1 - adev->devno]; 3185 if (!ata_dev_enabled(pair)) 3186 return NULL; 3187 return pair; 3188 } 3189 EXPORT_SYMBOL_GPL(ata_dev_pair); 3190 3191 #ifdef CONFIG_ATA_ACPI 3192 /** 3193 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3194 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3195 * @cycle: cycle duration in ns 3196 * 3197 * Return matching xfer mode for @cycle. The returned mode is of 3198 * the transfer type specified by @xfer_shift. If @cycle is too 3199 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3200 * than the fastest known mode, the fasted mode is returned. 3201 * 3202 * LOCKING: 3203 * None. 3204 * 3205 * RETURNS: 3206 * Matching xfer_mode, 0xff if no match found. 3207 */ 3208 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3209 { 3210 u8 base_mode = 0xff, last_mode = 0xff; 3211 const struct ata_xfer_ent *ent; 3212 const struct ata_timing *t; 3213 3214 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3215 if (ent->shift == xfer_shift) 3216 base_mode = ent->base; 3217 3218 for (t = ata_timing_find_mode(base_mode); 3219 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3220 unsigned short this_cycle; 3221 3222 switch (xfer_shift) { 3223 case ATA_SHIFT_PIO: 3224 case ATA_SHIFT_MWDMA: 3225 this_cycle = t->cycle; 3226 break; 3227 case ATA_SHIFT_UDMA: 3228 this_cycle = t->udma; 3229 break; 3230 default: 3231 return 0xff; 3232 } 3233 3234 if (cycle > this_cycle) 3235 break; 3236 3237 last_mode = t->mode; 3238 } 3239 3240 return last_mode; 3241 } 3242 #endif 3243 3244 /** 3245 * ata_down_xfermask_limit - adjust dev xfer masks downward 3246 * @dev: Device to adjust xfer masks 3247 * @sel: ATA_DNXFER_* selector 3248 * 3249 * Adjust xfer masks of @dev downward. Note that this function 3250 * does not apply the change. Invoking ata_set_mode() afterwards 3251 * will apply the limit. 3252 * 3253 * LOCKING: 3254 * Inherited from caller. 3255 * 3256 * RETURNS: 3257 * 0 on success, negative errno on failure 3258 */ 3259 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3260 { 3261 char buf[32]; 3262 unsigned int orig_mask, xfer_mask; 3263 unsigned int pio_mask, mwdma_mask, udma_mask; 3264 int quiet, highbit; 3265 3266 quiet = !!(sel & ATA_DNXFER_QUIET); 3267 sel &= ~ATA_DNXFER_QUIET; 3268 3269 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3270 dev->mwdma_mask, 3271 dev->udma_mask); 3272 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3273 3274 switch (sel) { 3275 case ATA_DNXFER_PIO: 3276 highbit = fls(pio_mask) - 1; 3277 pio_mask &= ~(1 << highbit); 3278 break; 3279 3280 case ATA_DNXFER_DMA: 3281 if (udma_mask) { 3282 highbit = fls(udma_mask) - 1; 3283 udma_mask &= ~(1 << highbit); 3284 if (!udma_mask) 3285 return -ENOENT; 3286 } else if (mwdma_mask) { 3287 highbit = fls(mwdma_mask) - 1; 3288 mwdma_mask &= ~(1 << highbit); 3289 if (!mwdma_mask) 3290 return -ENOENT; 3291 } 3292 break; 3293 3294 case ATA_DNXFER_40C: 3295 udma_mask &= ATA_UDMA_MASK_40C; 3296 break; 3297 3298 case ATA_DNXFER_FORCE_PIO0: 3299 pio_mask &= 1; 3300 fallthrough; 3301 case ATA_DNXFER_FORCE_PIO: 3302 mwdma_mask = 0; 3303 udma_mask = 0; 3304 break; 3305 3306 default: 3307 BUG(); 3308 } 3309 3310 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3311 3312 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3313 return -ENOENT; 3314 3315 if (!quiet) { 3316 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3317 snprintf(buf, sizeof(buf), "%s:%s", 3318 ata_mode_string(xfer_mask), 3319 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3320 else 3321 snprintf(buf, sizeof(buf), "%s", 3322 ata_mode_string(xfer_mask)); 3323 3324 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3325 } 3326 3327 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3328 &dev->udma_mask); 3329 3330 return 0; 3331 } 3332 3333 static int ata_dev_set_mode(struct ata_device *dev) 3334 { 3335 struct ata_port *ap = dev->link->ap; 3336 struct ata_eh_context *ehc = &dev->link->eh_context; 3337 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER; 3338 const char *dev_err_whine = ""; 3339 int ign_dev_err = 0; 3340 unsigned int err_mask = 0; 3341 int rc; 3342 3343 dev->flags &= ~ATA_DFLAG_PIO; 3344 if (dev->xfer_shift == ATA_SHIFT_PIO) 3345 dev->flags |= ATA_DFLAG_PIO; 3346 3347 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3348 dev_err_whine = " (SET_XFERMODE skipped)"; 3349 else { 3350 if (nosetxfer) 3351 ata_dev_warn(dev, 3352 "NOSETXFER but PATA detected - can't " 3353 "skip SETXFER, might malfunction\n"); 3354 err_mask = ata_dev_set_xfermode(dev); 3355 } 3356 3357 if (err_mask & ~AC_ERR_DEV) 3358 goto fail; 3359 3360 /* revalidate */ 3361 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3362 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3363 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3364 if (rc) 3365 return rc; 3366 3367 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3368 /* Old CFA may refuse this command, which is just fine */ 3369 if (ata_id_is_cfa(dev->id)) 3370 ign_dev_err = 1; 3371 /* Catch several broken garbage emulations plus some pre 3372 ATA devices */ 3373 if (ata_id_major_version(dev->id) == 0 && 3374 dev->pio_mode <= XFER_PIO_2) 3375 ign_dev_err = 1; 3376 /* Some very old devices and some bad newer ones fail 3377 any kind of SET_XFERMODE request but support PIO0-2 3378 timings and no IORDY */ 3379 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3380 ign_dev_err = 1; 3381 } 3382 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3383 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3384 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3385 dev->dma_mode == XFER_MW_DMA_0 && 3386 (dev->id[63] >> 8) & 1) 3387 ign_dev_err = 1; 3388 3389 /* if the device is actually configured correctly, ignore dev err */ 3390 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3391 ign_dev_err = 1; 3392 3393 if (err_mask & AC_ERR_DEV) { 3394 if (!ign_dev_err) 3395 goto fail; 3396 else 3397 dev_err_whine = " (device error ignored)"; 3398 } 3399 3400 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3401 dev->xfer_shift, (int)dev->xfer_mode); 3402 3403 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3404 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3405 ata_dev_info(dev, "configured for %s%s\n", 3406 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3407 dev_err_whine); 3408 3409 return 0; 3410 3411 fail: 3412 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3413 return -EIO; 3414 } 3415 3416 /** 3417 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3418 * @link: link on which timings will be programmed 3419 * @r_failed_dev: out parameter for failed device 3420 * 3421 * Standard implementation of the function used to tune and set 3422 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3423 * ata_dev_set_mode() fails, pointer to the failing device is 3424 * returned in @r_failed_dev. 3425 * 3426 * LOCKING: 3427 * PCI/etc. bus probe sem. 3428 * 3429 * RETURNS: 3430 * 0 on success, negative errno otherwise 3431 */ 3432 3433 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3434 { 3435 struct ata_port *ap = link->ap; 3436 struct ata_device *dev; 3437 int rc = 0, used_dma = 0, found = 0; 3438 3439 /* step 1: calculate xfer_mask */ 3440 ata_for_each_dev(dev, link, ENABLED) { 3441 unsigned int pio_mask, dma_mask; 3442 unsigned int mode_mask; 3443 3444 mode_mask = ATA_DMA_MASK_ATA; 3445 if (dev->class == ATA_DEV_ATAPI) 3446 mode_mask = ATA_DMA_MASK_ATAPI; 3447 else if (ata_id_is_cfa(dev->id)) 3448 mode_mask = ATA_DMA_MASK_CFA; 3449 3450 ata_dev_xfermask(dev); 3451 ata_force_xfermask(dev); 3452 3453 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3454 3455 if (libata_dma_mask & mode_mask) 3456 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3457 dev->udma_mask); 3458 else 3459 dma_mask = 0; 3460 3461 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3462 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3463 3464 found = 1; 3465 if (ata_dma_enabled(dev)) 3466 used_dma = 1; 3467 } 3468 if (!found) 3469 goto out; 3470 3471 /* step 2: always set host PIO timings */ 3472 ata_for_each_dev(dev, link, ENABLED) { 3473 if (dev->pio_mode == 0xff) { 3474 ata_dev_warn(dev, "no PIO support\n"); 3475 rc = -EINVAL; 3476 goto out; 3477 } 3478 3479 dev->xfer_mode = dev->pio_mode; 3480 dev->xfer_shift = ATA_SHIFT_PIO; 3481 if (ap->ops->set_piomode) 3482 ap->ops->set_piomode(ap, dev); 3483 } 3484 3485 /* step 3: set host DMA timings */ 3486 ata_for_each_dev(dev, link, ENABLED) { 3487 if (!ata_dma_enabled(dev)) 3488 continue; 3489 3490 dev->xfer_mode = dev->dma_mode; 3491 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3492 if (ap->ops->set_dmamode) 3493 ap->ops->set_dmamode(ap, dev); 3494 } 3495 3496 /* step 4: update devices' xfer mode */ 3497 ata_for_each_dev(dev, link, ENABLED) { 3498 rc = ata_dev_set_mode(dev); 3499 if (rc) 3500 goto out; 3501 } 3502 3503 /* Record simplex status. If we selected DMA then the other 3504 * host channels are not permitted to do so. 3505 */ 3506 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3507 ap->host->simplex_claimed = ap; 3508 3509 out: 3510 if (rc) 3511 *r_failed_dev = dev; 3512 return rc; 3513 } 3514 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3515 3516 /** 3517 * ata_wait_ready - wait for link to become ready 3518 * @link: link to be waited on 3519 * @deadline: deadline jiffies for the operation 3520 * @check_ready: callback to check link readiness 3521 * 3522 * Wait for @link to become ready. @check_ready should return 3523 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3524 * link doesn't seem to be occupied, other errno for other error 3525 * conditions. 3526 * 3527 * Transient -ENODEV conditions are allowed for 3528 * ATA_TMOUT_FF_WAIT. 3529 * 3530 * LOCKING: 3531 * EH context. 3532 * 3533 * RETURNS: 3534 * 0 if @link is ready before @deadline; otherwise, -errno. 3535 */ 3536 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3537 int (*check_ready)(struct ata_link *link)) 3538 { 3539 unsigned long start = jiffies; 3540 unsigned long nodev_deadline; 3541 int warned = 0; 3542 3543 /* choose which 0xff timeout to use, read comment in libata.h */ 3544 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3545 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3546 else 3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3548 3549 /* Slave readiness can't be tested separately from master. On 3550 * M/S emulation configuration, this function should be called 3551 * only on the master and it will handle both master and slave. 3552 */ 3553 WARN_ON(link == link->ap->slave_link); 3554 3555 if (time_after(nodev_deadline, deadline)) 3556 nodev_deadline = deadline; 3557 3558 while (1) { 3559 unsigned long now = jiffies; 3560 int ready, tmp; 3561 3562 ready = tmp = check_ready(link); 3563 if (ready > 0) 3564 return 0; 3565 3566 /* 3567 * -ENODEV could be transient. Ignore -ENODEV if link 3568 * is online. Also, some SATA devices take a long 3569 * time to clear 0xff after reset. Wait for 3570 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3571 * offline. 3572 * 3573 * Note that some PATA controllers (pata_ali) explode 3574 * if status register is read more than once when 3575 * there's no device attached. 3576 */ 3577 if (ready == -ENODEV) { 3578 if (ata_link_online(link)) 3579 ready = 0; 3580 else if ((link->ap->flags & ATA_FLAG_SATA) && 3581 !ata_link_offline(link) && 3582 time_before(now, nodev_deadline)) 3583 ready = 0; 3584 } 3585 3586 if (ready) 3587 return ready; 3588 if (time_after(now, deadline)) 3589 return -EBUSY; 3590 3591 if (!warned && time_after(now, start + 5 * HZ) && 3592 (deadline - now > 3 * HZ)) { 3593 ata_link_warn(link, 3594 "link is slow to respond, please be patient " 3595 "(ready=%d)\n", tmp); 3596 warned = 1; 3597 } 3598 3599 ata_msleep(link->ap, 50); 3600 } 3601 } 3602 3603 /** 3604 * ata_wait_after_reset - wait for link to become ready after reset 3605 * @link: link to be waited on 3606 * @deadline: deadline jiffies for the operation 3607 * @check_ready: callback to check link readiness 3608 * 3609 * Wait for @link to become ready after reset. 3610 * 3611 * LOCKING: 3612 * EH context. 3613 * 3614 * RETURNS: 3615 * 0 if @link is ready before @deadline; otherwise, -errno. 3616 */ 3617 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3618 int (*check_ready)(struct ata_link *link)) 3619 { 3620 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3621 3622 return ata_wait_ready(link, deadline, check_ready); 3623 } 3624 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3625 3626 /** 3627 * ata_std_prereset - prepare for reset 3628 * @link: ATA link to be reset 3629 * @deadline: deadline jiffies for the operation 3630 * 3631 * @link is about to be reset. Initialize it. Failure from 3632 * prereset makes libata abort whole reset sequence and give up 3633 * that port, so prereset should be best-effort. It does its 3634 * best to prepare for reset sequence but if things go wrong, it 3635 * should just whine, not fail. 3636 * 3637 * LOCKING: 3638 * Kernel thread context (may sleep) 3639 * 3640 * RETURNS: 3641 * Always 0. 3642 */ 3643 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3644 { 3645 struct ata_port *ap = link->ap; 3646 struct ata_eh_context *ehc = &link->eh_context; 3647 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3648 int rc; 3649 3650 /* if we're about to do hardreset, nothing more to do */ 3651 if (ehc->i.action & ATA_EH_HARDRESET) 3652 return 0; 3653 3654 /* if SATA, resume link */ 3655 if (ap->flags & ATA_FLAG_SATA) { 3656 rc = sata_link_resume(link, timing, deadline); 3657 /* whine about phy resume failure but proceed */ 3658 if (rc && rc != -EOPNOTSUPP) 3659 ata_link_warn(link, 3660 "failed to resume link for reset (errno=%d)\n", 3661 rc); 3662 } 3663 3664 /* no point in trying softreset on offline link */ 3665 if (ata_phys_link_offline(link)) 3666 ehc->i.action &= ~ATA_EH_SOFTRESET; 3667 3668 return 0; 3669 } 3670 EXPORT_SYMBOL_GPL(ata_std_prereset); 3671 3672 /** 3673 * ata_std_postreset - standard postreset callback 3674 * @link: the target ata_link 3675 * @classes: classes of attached devices 3676 * 3677 * This function is invoked after a successful reset. Note that 3678 * the device might have been reset more than once using 3679 * different reset methods before postreset is invoked. 3680 * 3681 * LOCKING: 3682 * Kernel thread context (may sleep) 3683 */ 3684 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3685 { 3686 u32 serror; 3687 3688 /* reset complete, clear SError */ 3689 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3690 sata_scr_write(link, SCR_ERROR, serror); 3691 3692 /* print link status */ 3693 sata_print_link_status(link); 3694 } 3695 EXPORT_SYMBOL_GPL(ata_std_postreset); 3696 3697 /** 3698 * ata_dev_same_device - Determine whether new ID matches configured device 3699 * @dev: device to compare against 3700 * @new_class: class of the new device 3701 * @new_id: IDENTIFY page of the new device 3702 * 3703 * Compare @new_class and @new_id against @dev and determine 3704 * whether @dev is the device indicated by @new_class and 3705 * @new_id. 3706 * 3707 * LOCKING: 3708 * None. 3709 * 3710 * RETURNS: 3711 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3712 */ 3713 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3714 const u16 *new_id) 3715 { 3716 const u16 *old_id = dev->id; 3717 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3718 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3719 3720 if (dev->class != new_class) { 3721 ata_dev_info(dev, "class mismatch %d != %d\n", 3722 dev->class, new_class); 3723 return 0; 3724 } 3725 3726 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3727 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3728 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3729 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3730 3731 if (strcmp(model[0], model[1])) { 3732 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3733 model[0], model[1]); 3734 return 0; 3735 } 3736 3737 if (strcmp(serial[0], serial[1])) { 3738 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3739 serial[0], serial[1]); 3740 return 0; 3741 } 3742 3743 return 1; 3744 } 3745 3746 /** 3747 * ata_dev_reread_id - Re-read IDENTIFY data 3748 * @dev: target ATA device 3749 * @readid_flags: read ID flags 3750 * 3751 * Re-read IDENTIFY page and make sure @dev is still attached to 3752 * the port. 3753 * 3754 * LOCKING: 3755 * Kernel thread context (may sleep) 3756 * 3757 * RETURNS: 3758 * 0 on success, negative errno otherwise 3759 */ 3760 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3761 { 3762 unsigned int class = dev->class; 3763 u16 *id = (void *)dev->sector_buf; 3764 int rc; 3765 3766 /* read ID data */ 3767 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3768 if (rc) 3769 return rc; 3770 3771 /* is the device still there? */ 3772 if (!ata_dev_same_device(dev, class, id)) 3773 return -ENODEV; 3774 3775 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3776 return 0; 3777 } 3778 3779 /** 3780 * ata_dev_revalidate - Revalidate ATA device 3781 * @dev: device to revalidate 3782 * @new_class: new class code 3783 * @readid_flags: read ID flags 3784 * 3785 * Re-read IDENTIFY page, make sure @dev is still attached to the 3786 * port and reconfigure it according to the new IDENTIFY page. 3787 * 3788 * LOCKING: 3789 * Kernel thread context (may sleep) 3790 * 3791 * RETURNS: 3792 * 0 on success, negative errno otherwise 3793 */ 3794 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3795 unsigned int readid_flags) 3796 { 3797 u64 n_sectors = dev->n_sectors; 3798 u64 n_native_sectors = dev->n_native_sectors; 3799 int rc; 3800 3801 if (!ata_dev_enabled(dev)) 3802 return -ENODEV; 3803 3804 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3805 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3806 ata_dev_info(dev, "class mismatch %u != %u\n", 3807 dev->class, new_class); 3808 rc = -ENODEV; 3809 goto fail; 3810 } 3811 3812 /* re-read ID */ 3813 rc = ata_dev_reread_id(dev, readid_flags); 3814 if (rc) 3815 goto fail; 3816 3817 /* configure device according to the new ID */ 3818 rc = ata_dev_configure(dev); 3819 if (rc) 3820 goto fail; 3821 3822 /* verify n_sectors hasn't changed */ 3823 if (dev->class != ATA_DEV_ATA || !n_sectors || 3824 dev->n_sectors == n_sectors) 3825 return 0; 3826 3827 /* n_sectors has changed */ 3828 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3829 (unsigned long long)n_sectors, 3830 (unsigned long long)dev->n_sectors); 3831 3832 /* 3833 * Something could have caused HPA to be unlocked 3834 * involuntarily. If n_native_sectors hasn't changed and the 3835 * new size matches it, keep the device. 3836 */ 3837 if (dev->n_native_sectors == n_native_sectors && 3838 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3839 ata_dev_warn(dev, 3840 "new n_sectors matches native, probably " 3841 "late HPA unlock, n_sectors updated\n"); 3842 /* use the larger n_sectors */ 3843 return 0; 3844 } 3845 3846 /* 3847 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3848 * unlocking HPA in those cases. 3849 * 3850 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3851 */ 3852 if (dev->n_native_sectors == n_native_sectors && 3853 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3854 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) { 3855 ata_dev_warn(dev, 3856 "old n_sectors matches native, probably " 3857 "late HPA lock, will try to unlock HPA\n"); 3858 /* try unlocking HPA */ 3859 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3860 rc = -EIO; 3861 } else 3862 rc = -ENODEV; 3863 3864 /* restore original n_[native_]sectors and fail */ 3865 dev->n_native_sectors = n_native_sectors; 3866 dev->n_sectors = n_sectors; 3867 fail: 3868 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3869 return rc; 3870 } 3871 3872 static const char * const ata_quirk_names[] = { 3873 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic", 3874 [__ATA_QUIRK_NODMA] = "nodma", 3875 [__ATA_QUIRK_NONCQ] = "noncq", 3876 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128", 3877 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa", 3878 [__ATA_QUIRK_DISABLE] = "disable", 3879 [__ATA_QUIRK_HPA_SIZE] = "hpasize", 3880 [__ATA_QUIRK_IVB] = "ivb", 3881 [__ATA_QUIRK_STUCK_ERR] = "stuckerr", 3882 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok", 3883 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma", 3884 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn", 3885 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps", 3886 [__ATA_QUIRK_NOSETXFER] = "nosetxfer", 3887 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa", 3888 [__ATA_QUIRK_DUMP_ID] = "dumpid", 3889 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48", 3890 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir", 3891 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim", 3892 [__ATA_QUIRK_NOLPM] = "nolpm", 3893 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm", 3894 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim", 3895 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog", 3896 [__ATA_QUIRK_NOTRIM] = "notrim", 3897 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024", 3898 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m", 3899 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati", 3900 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog", 3901 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir", 3902 [__ATA_QUIRK_NO_FUA] = "nofua", 3903 }; 3904 3905 static void ata_dev_print_quirks(const struct ata_device *dev, 3906 const char *model, const char *rev, 3907 unsigned int quirks) 3908 { 3909 struct ata_eh_context *ehc = &dev->link->eh_context; 3910 int n = 0, i; 3911 size_t sz; 3912 char *str; 3913 3914 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS) 3915 return; 3916 3917 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS; 3918 3919 if (!quirks) 3920 return; 3921 3922 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16; 3923 str = kmalloc(sz, GFP_KERNEL); 3924 if (!str) 3925 return; 3926 3927 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:", 3928 model, rev); 3929 3930 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) { 3931 if (quirks & (1U << i)) 3932 n += snprintf(str + n, sz - n, 3933 " %s", ata_quirk_names[i]); 3934 } 3935 3936 ata_dev_warn(dev, "%s\n", str); 3937 3938 kfree(str); 3939 } 3940 3941 struct ata_dev_quirks_entry { 3942 const char *model_num; 3943 const char *model_rev; 3944 unsigned int quirks; 3945 }; 3946 3947 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = { 3948 /* Devices with DMA related problems under Linux */ 3949 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA }, 3950 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA }, 3951 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA }, 3952 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA }, 3953 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA }, 3954 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA }, 3955 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA }, 3956 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA }, 3957 { "CRD-8400B", NULL, ATA_QUIRK_NODMA }, 3958 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA }, 3959 { "CRD-84", NULL, ATA_QUIRK_NODMA }, 3960 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA }, 3961 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA }, 3962 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA }, 3963 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA }, 3964 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA }, 3965 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA }, 3966 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA }, 3967 { "CD-532E-A", NULL, ATA_QUIRK_NODMA }, 3968 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA }, 3969 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA }, 3970 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA }, 3971 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA }, 3972 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA }, 3973 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA }, 3974 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA }, 3975 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA }, 3976 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA }, 3977 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA }, 3978 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA }, 3979 /* Odd clown on sil3726/4726 PMPs */ 3980 { "Config Disk", NULL, ATA_QUIRK_DISABLE }, 3981 /* Similar story with ASMedia 1092 */ 3982 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE }, 3983 3984 /* Weird ATAPI devices */ 3985 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 }, 3986 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA }, 3987 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 3988 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 3989 3990 /* 3991 * Causes silent data corruption with higher max sects. 3992 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3993 */ 3994 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 }, 3995 3996 /* 3997 * These devices time out with higher max sects. 3998 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3999 */ 4000 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4001 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4002 4003 /* Devices we expect to fail diagnostics */ 4004 4005 /* Devices where NCQ should be avoided */ 4006 /* NCQ is slow */ 4007 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ }, 4008 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ }, 4009 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4010 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ }, 4011 /* NCQ is broken */ 4012 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ }, 4013 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ }, 4014 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ }, 4015 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ }, 4016 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ }, 4017 4018 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4019 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4020 ATA_QUIRK_FIRMWARE_WARN }, 4021 4022 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4023 ATA_QUIRK_FIRMWARE_WARN }, 4024 4025 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4026 ATA_QUIRK_FIRMWARE_WARN }, 4027 4028 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4029 ATA_QUIRK_FIRMWARE_WARN }, 4030 4031 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4032 the ST disks also have LPM issues */ 4033 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA | 4034 ATA_QUIRK_NOLPM }, 4035 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA }, 4036 4037 /* Blacklist entries taken from Silicon Image 3124/3132 4038 Windows driver .inf file - also several Linux problem reports */ 4039 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ }, 4040 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ }, 4041 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ }, 4042 4043 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4044 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ }, 4045 4046 /* Sandisk SD7/8/9s lock up hard on large trims */ 4047 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M }, 4048 4049 /* devices which puke on READ_NATIVE_MAX */ 4050 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA }, 4051 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA }, 4052 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA }, 4053 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA }, 4054 4055 /* this one allows HPA unlocking but fails IOs on the area */ 4056 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA }, 4057 4058 /* Devices which report 1 sector over size HPA */ 4059 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE }, 4060 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE }, 4061 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE }, 4062 4063 /* Devices which get the IVB wrong */ 4064 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB }, 4065 /* Maybe we should just add all TSSTcorp devices... */ 4066 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB }, 4067 4068 /* Devices that do not need bridging limits applied */ 4069 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK }, 4070 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK }, 4071 4072 /* Devices which aren't very happy with higher link speeds */ 4073 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS }, 4074 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS }, 4075 4076 /* 4077 * Devices which choke on SETXFER. Applies only if both the 4078 * device and controller are SATA. 4079 */ 4080 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER }, 4081 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER }, 4082 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER }, 4083 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER }, 4084 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER }, 4085 4086 /* These specific Pioneer models have LPM issues */ 4087 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM }, 4088 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM }, 4089 4090 /* Crucial devices with broken LPM support */ 4091 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM }, 4092 4093 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4094 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4095 ATA_QUIRK_ZERO_AFTER_TRIM | 4096 ATA_QUIRK_NOLPM }, 4097 /* 512GB MX100 with newer firmware has only LPM issues */ 4098 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM | 4099 ATA_QUIRK_NOLPM }, 4100 4101 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4102 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4103 ATA_QUIRK_ZERO_AFTER_TRIM | 4104 ATA_QUIRK_NOLPM }, 4105 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4106 ATA_QUIRK_ZERO_AFTER_TRIM | 4107 ATA_QUIRK_NOLPM }, 4108 4109 /* AMD Radeon devices with broken LPM support */ 4110 { "R3SL240G", NULL, ATA_QUIRK_NOLPM }, 4111 4112 /* Apacer models with LPM issues */ 4113 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM }, 4114 4115 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4116 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM }, 4117 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM }, 4118 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM }, 4119 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM }, 4120 4121 /* devices that don't properly handle queued TRIM commands */ 4122 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4123 ATA_QUIRK_ZERO_AFTER_TRIM }, 4124 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4125 ATA_QUIRK_ZERO_AFTER_TRIM }, 4126 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4127 ATA_QUIRK_ZERO_AFTER_TRIM }, 4128 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4129 ATA_QUIRK_ZERO_AFTER_TRIM, }, 4130 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4131 ATA_QUIRK_ZERO_AFTER_TRIM }, 4132 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4133 ATA_QUIRK_ZERO_AFTER_TRIM }, 4134 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4135 ATA_QUIRK_ZERO_AFTER_TRIM }, 4136 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4137 ATA_QUIRK_NO_DMA_LOG | 4138 ATA_QUIRK_ZERO_AFTER_TRIM }, 4139 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4140 ATA_QUIRK_ZERO_AFTER_TRIM }, 4141 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4142 ATA_QUIRK_ZERO_AFTER_TRIM }, 4143 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4144 ATA_QUIRK_ZERO_AFTER_TRIM | 4145 ATA_QUIRK_NO_NCQ_ON_ATI }, 4146 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4147 ATA_QUIRK_ZERO_AFTER_TRIM | 4148 ATA_QUIRK_NO_NCQ_ON_ATI }, 4149 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4150 ATA_QUIRK_ZERO_AFTER_TRIM | 4151 ATA_QUIRK_NO_NCQ_ON_ATI, }, 4152 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4153 ATA_QUIRK_ZERO_AFTER_TRIM }, 4154 4155 /* devices that don't properly handle TRIM commands */ 4156 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM }, 4157 { "M88V29*", NULL, ATA_QUIRK_NOTRIM }, 4158 4159 /* 4160 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4161 * (Return Zero After Trim) flags in the ATA Command Set are 4162 * unreliable in the sense that they only define what happens if 4163 * the device successfully executed the DSM TRIM command. TRIM 4164 * is only advisory, however, and the device is free to silently 4165 * ignore all or parts of the request. 4166 * 4167 * Whitelist drives that are known to reliably return zeroes 4168 * after TRIM. 4169 */ 4170 4171 /* 4172 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4173 * that model before whitelisting all other intel SSDs. 4174 */ 4175 { "INTEL*SSDSC2MH*", NULL, 0 }, 4176 4177 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4178 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4179 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4180 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4181 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4182 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4183 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4184 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4185 4186 /* 4187 * Some WD SATA-I drives spin up and down erratically when the link 4188 * is put into the slumber mode. We don't have full list of the 4189 * affected devices. Disable LPM if the device matches one of the 4190 * known prefixes and is SATA-1. As a side effect LPM partial is 4191 * lost too. 4192 * 4193 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4194 */ 4195 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4196 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4197 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4198 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4199 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4200 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4201 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4202 4203 /* 4204 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4205 * log page is accessed. Ensure we never ask for this log page with 4206 * these devices. 4207 */ 4208 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR }, 4209 4210 /* Buggy FUA */ 4211 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA }, 4212 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA }, 4213 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA }, 4214 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA }, 4215 4216 /* End Marker */ 4217 { } 4218 }; 4219 4220 static unsigned int ata_dev_quirks(const struct ata_device *dev) 4221 { 4222 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4223 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4224 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks; 4225 4226 /* dev->quirks is an unsigned int. */ 4227 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32); 4228 4229 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4230 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4231 4232 while (ad->model_num) { 4233 if (glob_match(ad->model_num, model_num) && 4234 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4235 ata_dev_print_quirks(dev, model_num, model_rev, 4236 ad->quirks); 4237 return ad->quirks; 4238 } 4239 ad++; 4240 } 4241 return 0; 4242 } 4243 4244 static bool ata_dev_nodma(const struct ata_device *dev) 4245 { 4246 /* 4247 * We do not support polling DMA. Deny DMA for those ATAPI devices 4248 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in 4249 * the HSM_ST_LAST state. 4250 */ 4251 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4252 (dev->flags & ATA_DFLAG_CDB_INTR)) 4253 return true; 4254 return dev->quirks & ATA_QUIRK_NODMA; 4255 } 4256 4257 /** 4258 * ata_is_40wire - check drive side detection 4259 * @dev: device 4260 * 4261 * Perform drive side detection decoding, allowing for device vendors 4262 * who can't follow the documentation. 4263 */ 4264 4265 static int ata_is_40wire(struct ata_device *dev) 4266 { 4267 if (dev->quirks & ATA_QUIRK_IVB) 4268 return ata_drive_40wire_relaxed(dev->id); 4269 return ata_drive_40wire(dev->id); 4270 } 4271 4272 /** 4273 * cable_is_40wire - 40/80/SATA decider 4274 * @ap: port to consider 4275 * 4276 * This function encapsulates the policy for speed management 4277 * in one place. At the moment we don't cache the result but 4278 * there is a good case for setting ap->cbl to the result when 4279 * we are called with unknown cables (and figuring out if it 4280 * impacts hotplug at all). 4281 * 4282 * Return 1 if the cable appears to be 40 wire. 4283 */ 4284 4285 static int cable_is_40wire(struct ata_port *ap) 4286 { 4287 struct ata_link *link; 4288 struct ata_device *dev; 4289 4290 /* If the controller thinks we are 40 wire, we are. */ 4291 if (ap->cbl == ATA_CBL_PATA40) 4292 return 1; 4293 4294 /* If the controller thinks we are 80 wire, we are. */ 4295 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4296 return 0; 4297 4298 /* If the system is known to be 40 wire short cable (eg 4299 * laptop), then we allow 80 wire modes even if the drive 4300 * isn't sure. 4301 */ 4302 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4303 return 0; 4304 4305 /* If the controller doesn't know, we scan. 4306 * 4307 * Note: We look for all 40 wire detects at this point. Any 4308 * 80 wire detect is taken to be 80 wire cable because 4309 * - in many setups only the one drive (slave if present) will 4310 * give a valid detect 4311 * - if you have a non detect capable drive you don't want it 4312 * to colour the choice 4313 */ 4314 ata_for_each_link(link, ap, EDGE) { 4315 ata_for_each_dev(dev, link, ENABLED) { 4316 if (!ata_is_40wire(dev)) 4317 return 0; 4318 } 4319 } 4320 return 1; 4321 } 4322 4323 /** 4324 * ata_dev_xfermask - Compute supported xfermask of the given device 4325 * @dev: Device to compute xfermask for 4326 * 4327 * Compute supported xfermask of @dev and store it in 4328 * dev->*_mask. This function is responsible for applying all 4329 * known limits including host controller limits, device quirks, etc... 4330 * 4331 * LOCKING: 4332 * None. 4333 */ 4334 static void ata_dev_xfermask(struct ata_device *dev) 4335 { 4336 struct ata_link *link = dev->link; 4337 struct ata_port *ap = link->ap; 4338 struct ata_host *host = ap->host; 4339 unsigned int xfer_mask; 4340 4341 /* controller modes available */ 4342 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4343 ap->mwdma_mask, ap->udma_mask); 4344 4345 /* drive modes available */ 4346 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4347 dev->mwdma_mask, dev->udma_mask); 4348 xfer_mask &= ata_id_xfermask(dev->id); 4349 4350 /* 4351 * CFA Advanced TrueIDE timings are not allowed on a shared 4352 * cable 4353 */ 4354 if (ata_dev_pair(dev)) { 4355 /* No PIO5 or PIO6 */ 4356 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4357 /* No MWDMA3 or MWDMA 4 */ 4358 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4359 } 4360 4361 if (ata_dev_nodma(dev)) { 4362 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4363 ata_dev_warn(dev, 4364 "device does not support DMA, disabling DMA\n"); 4365 } 4366 4367 if ((host->flags & ATA_HOST_SIMPLEX) && 4368 host->simplex_claimed && host->simplex_claimed != ap) { 4369 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4370 ata_dev_warn(dev, 4371 "simplex DMA is claimed by other device, disabling DMA\n"); 4372 } 4373 4374 if (ap->flags & ATA_FLAG_NO_IORDY) 4375 xfer_mask &= ata_pio_mask_no_iordy(dev); 4376 4377 if (ap->ops->mode_filter) 4378 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4379 4380 /* Apply cable rule here. Don't apply it early because when 4381 * we handle hot plug the cable type can itself change. 4382 * Check this last so that we know if the transfer rate was 4383 * solely limited by the cable. 4384 * Unknown or 80 wire cables reported host side are checked 4385 * drive side as well. Cases where we know a 40wire cable 4386 * is used safely for 80 are not checked here. 4387 */ 4388 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4389 /* UDMA/44 or higher would be available */ 4390 if (cable_is_40wire(ap)) { 4391 ata_dev_warn(dev, 4392 "limited to UDMA/33 due to 40-wire cable\n"); 4393 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4394 } 4395 4396 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4397 &dev->mwdma_mask, &dev->udma_mask); 4398 } 4399 4400 /** 4401 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4402 * @dev: Device to which command will be sent 4403 * 4404 * Issue SET FEATURES - XFER MODE command to device @dev 4405 * on port @ap. 4406 * 4407 * LOCKING: 4408 * PCI/etc. bus probe sem. 4409 * 4410 * RETURNS: 4411 * 0 on success, AC_ERR_* mask otherwise. 4412 */ 4413 4414 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4415 { 4416 struct ata_taskfile tf; 4417 4418 /* set up set-features taskfile */ 4419 ata_dev_dbg(dev, "set features - xfer mode\n"); 4420 4421 /* Some controllers and ATAPI devices show flaky interrupt 4422 * behavior after setting xfer mode. Use polling instead. 4423 */ 4424 ata_tf_init(dev, &tf); 4425 tf.command = ATA_CMD_SET_FEATURES; 4426 tf.feature = SETFEATURES_XFER; 4427 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4428 tf.protocol = ATA_PROT_NODATA; 4429 /* If we are using IORDY we must send the mode setting command */ 4430 if (ata_pio_need_iordy(dev)) 4431 tf.nsect = dev->xfer_mode; 4432 /* If the device has IORDY and the controller does not - turn it off */ 4433 else if (ata_id_has_iordy(dev->id)) 4434 tf.nsect = 0x01; 4435 else /* In the ancient relic department - skip all of this */ 4436 return 0; 4437 4438 /* 4439 * On some disks, this command causes spin-up, so we need longer 4440 * timeout. 4441 */ 4442 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4443 } 4444 4445 /** 4446 * ata_dev_set_feature - Issue SET FEATURES 4447 * @dev: Device to which command will be sent 4448 * @subcmd: The SET FEATURES subcommand to be sent 4449 * @action: The sector count represents a subcommand specific action 4450 * 4451 * Issue SET FEATURES command to device @dev on port @ap with sector count 4452 * 4453 * LOCKING: 4454 * PCI/etc. bus probe sem. 4455 * 4456 * RETURNS: 4457 * 0 on success, AC_ERR_* mask otherwise. 4458 */ 4459 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4460 { 4461 struct ata_taskfile tf; 4462 unsigned int timeout = 0; 4463 4464 /* set up set-features taskfile */ 4465 ata_dev_dbg(dev, "set features\n"); 4466 4467 ata_tf_init(dev, &tf); 4468 tf.command = ATA_CMD_SET_FEATURES; 4469 tf.feature = subcmd; 4470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4471 tf.protocol = ATA_PROT_NODATA; 4472 tf.nsect = action; 4473 4474 if (subcmd == SETFEATURES_SPINUP) 4475 timeout = ata_probe_timeout ? 4476 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4477 4478 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4479 } 4480 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4481 4482 /** 4483 * ata_dev_init_params - Issue INIT DEV PARAMS command 4484 * @dev: Device to which command will be sent 4485 * @heads: Number of heads (taskfile parameter) 4486 * @sectors: Number of sectors (taskfile parameter) 4487 * 4488 * LOCKING: 4489 * Kernel thread context (may sleep) 4490 * 4491 * RETURNS: 4492 * 0 on success, AC_ERR_* mask otherwise. 4493 */ 4494 static unsigned int ata_dev_init_params(struct ata_device *dev, 4495 u16 heads, u16 sectors) 4496 { 4497 struct ata_taskfile tf; 4498 unsigned int err_mask; 4499 4500 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4501 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4502 return AC_ERR_INVALID; 4503 4504 /* set up init dev params taskfile */ 4505 ata_dev_dbg(dev, "init dev params \n"); 4506 4507 ata_tf_init(dev, &tf); 4508 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4509 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4510 tf.protocol = ATA_PROT_NODATA; 4511 tf.nsect = sectors; 4512 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4513 4514 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4515 /* A clean abort indicates an original or just out of spec drive 4516 and we should continue as we issue the setup based on the 4517 drive reported working geometry */ 4518 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4519 err_mask = 0; 4520 4521 return err_mask; 4522 } 4523 4524 /** 4525 * atapi_check_dma - Check whether ATAPI DMA can be supported 4526 * @qc: Metadata associated with taskfile to check 4527 * 4528 * Allow low-level driver to filter ATA PACKET commands, returning 4529 * a status indicating whether or not it is OK to use DMA for the 4530 * supplied PACKET command. 4531 * 4532 * LOCKING: 4533 * spin_lock_irqsave(host lock) 4534 * 4535 * RETURNS: 0 when ATAPI DMA can be used 4536 * nonzero otherwise 4537 */ 4538 int atapi_check_dma(struct ata_queued_cmd *qc) 4539 { 4540 struct ata_port *ap = qc->ap; 4541 4542 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4543 * few ATAPI devices choke on such DMA requests. 4544 */ 4545 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) && 4546 unlikely(qc->nbytes & 15)) 4547 return 1; 4548 4549 if (ap->ops->check_atapi_dma) 4550 return ap->ops->check_atapi_dma(qc); 4551 4552 return 0; 4553 } 4554 4555 /** 4556 * ata_std_qc_defer - Check whether a qc needs to be deferred 4557 * @qc: ATA command in question 4558 * 4559 * Non-NCQ commands cannot run with any other command, NCQ or 4560 * not. As upper layer only knows the queue depth, we are 4561 * responsible for maintaining exclusion. This function checks 4562 * whether a new command @qc can be issued. 4563 * 4564 * LOCKING: 4565 * spin_lock_irqsave(host lock) 4566 * 4567 * RETURNS: 4568 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4569 */ 4570 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4571 { 4572 struct ata_link *link = qc->dev->link; 4573 4574 if (ata_is_ncq(qc->tf.protocol)) { 4575 if (!ata_tag_valid(link->active_tag)) 4576 return 0; 4577 } else { 4578 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4579 return 0; 4580 } 4581 4582 return ATA_DEFER_LINK; 4583 } 4584 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4585 4586 /** 4587 * ata_sg_init - Associate command with scatter-gather table. 4588 * @qc: Command to be associated 4589 * @sg: Scatter-gather table. 4590 * @n_elem: Number of elements in s/g table. 4591 * 4592 * Initialize the data-related elements of queued_cmd @qc 4593 * to point to a scatter-gather table @sg, containing @n_elem 4594 * elements. 4595 * 4596 * LOCKING: 4597 * spin_lock_irqsave(host lock) 4598 */ 4599 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4600 unsigned int n_elem) 4601 { 4602 qc->sg = sg; 4603 qc->n_elem = n_elem; 4604 qc->cursg = qc->sg; 4605 } 4606 4607 #ifdef CONFIG_HAS_DMA 4608 4609 /** 4610 * ata_sg_clean - Unmap DMA memory associated with command 4611 * @qc: Command containing DMA memory to be released 4612 * 4613 * Unmap all mapped DMA memory associated with this command. 4614 * 4615 * LOCKING: 4616 * spin_lock_irqsave(host lock) 4617 */ 4618 static void ata_sg_clean(struct ata_queued_cmd *qc) 4619 { 4620 struct ata_port *ap = qc->ap; 4621 struct scatterlist *sg = qc->sg; 4622 int dir = qc->dma_dir; 4623 4624 WARN_ON_ONCE(sg == NULL); 4625 4626 if (qc->n_elem) 4627 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4628 4629 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4630 qc->sg = NULL; 4631 } 4632 4633 /** 4634 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4635 * @qc: Command with scatter-gather table to be mapped. 4636 * 4637 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4638 * 4639 * LOCKING: 4640 * spin_lock_irqsave(host lock) 4641 * 4642 * RETURNS: 4643 * Zero on success, negative on error. 4644 * 4645 */ 4646 static int ata_sg_setup(struct ata_queued_cmd *qc) 4647 { 4648 struct ata_port *ap = qc->ap; 4649 unsigned int n_elem; 4650 4651 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4652 if (n_elem < 1) 4653 return -1; 4654 4655 qc->orig_n_elem = qc->n_elem; 4656 qc->n_elem = n_elem; 4657 qc->flags |= ATA_QCFLAG_DMAMAP; 4658 4659 return 0; 4660 } 4661 4662 #else /* !CONFIG_HAS_DMA */ 4663 4664 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4665 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4666 4667 #endif /* !CONFIG_HAS_DMA */ 4668 4669 /** 4670 * swap_buf_le16 - swap halves of 16-bit words in place 4671 * @buf: Buffer to swap 4672 * @buf_words: Number of 16-bit words in buffer. 4673 * 4674 * Swap halves of 16-bit words if needed to convert from 4675 * little-endian byte order to native cpu byte order, or 4676 * vice-versa. 4677 * 4678 * LOCKING: 4679 * Inherited from caller. 4680 */ 4681 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4682 { 4683 #ifdef __BIG_ENDIAN 4684 unsigned int i; 4685 4686 for (i = 0; i < buf_words; i++) 4687 buf[i] = le16_to_cpu(buf[i]); 4688 #endif /* __BIG_ENDIAN */ 4689 } 4690 4691 /** 4692 * ata_qc_free - free unused ata_queued_cmd 4693 * @qc: Command to complete 4694 * 4695 * Designed to free unused ata_queued_cmd object 4696 * in case something prevents using it. 4697 * 4698 * LOCKING: 4699 * spin_lock_irqsave(host lock) 4700 */ 4701 void ata_qc_free(struct ata_queued_cmd *qc) 4702 { 4703 qc->flags = 0; 4704 if (ata_tag_valid(qc->tag)) 4705 qc->tag = ATA_TAG_POISON; 4706 } 4707 4708 void __ata_qc_complete(struct ata_queued_cmd *qc) 4709 { 4710 struct ata_port *ap; 4711 struct ata_link *link; 4712 4713 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE))) 4714 return; 4715 4716 ap = qc->ap; 4717 link = qc->dev->link; 4718 4719 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4720 ata_sg_clean(qc); 4721 4722 /* command should be marked inactive atomically with qc completion */ 4723 if (ata_is_ncq(qc->tf.protocol)) { 4724 link->sactive &= ~(1 << qc->hw_tag); 4725 if (!link->sactive) 4726 ap->nr_active_links--; 4727 } else { 4728 link->active_tag = ATA_TAG_POISON; 4729 ap->nr_active_links--; 4730 } 4731 4732 /* clear exclusive status */ 4733 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4734 ap->excl_link == link)) 4735 ap->excl_link = NULL; 4736 4737 /* 4738 * Mark qc as inactive to prevent the port interrupt handler from 4739 * completing the command twice later, before the error handler is 4740 * called. 4741 */ 4742 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4743 ap->qc_active &= ~(1ULL << qc->tag); 4744 4745 /* call completion callback */ 4746 qc->complete_fn(qc); 4747 } 4748 4749 static void fill_result_tf(struct ata_queued_cmd *qc) 4750 { 4751 struct ata_port *ap = qc->ap; 4752 4753 /* 4754 * rtf may already be filled (e.g. for successful NCQ commands). 4755 * If that is the case, we have nothing to do. 4756 */ 4757 if (qc->flags & ATA_QCFLAG_RTF_FILLED) 4758 return; 4759 4760 qc->result_tf.flags = qc->tf.flags; 4761 ap->ops->qc_fill_rtf(qc); 4762 qc->flags |= ATA_QCFLAG_RTF_FILLED; 4763 } 4764 4765 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4766 { 4767 struct ata_device *dev = qc->dev; 4768 4769 if (!ata_is_data(qc->tf.protocol)) 4770 return; 4771 4772 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4773 return; 4774 4775 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4776 } 4777 4778 /** 4779 * ata_qc_complete - Complete an active ATA command 4780 * @qc: Command to complete 4781 * 4782 * Indicate to the mid and upper layers that an ATA command has 4783 * completed, with either an ok or not-ok status. 4784 * 4785 * Refrain from calling this function multiple times when 4786 * successfully completing multiple NCQ commands. 4787 * ata_qc_complete_multiple() should be used instead, which will 4788 * properly update IRQ expect state. 4789 * 4790 * LOCKING: 4791 * spin_lock_irqsave(host lock) 4792 */ 4793 void ata_qc_complete(struct ata_queued_cmd *qc) 4794 { 4795 struct ata_port *ap = qc->ap; 4796 struct ata_device *dev = qc->dev; 4797 struct ata_eh_info *ehi = &dev->link->eh_info; 4798 4799 /* Trigger the LED (if available) */ 4800 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4801 4802 /* 4803 * In order to synchronize EH with the regular execution path, a qc that 4804 * is owned by EH is marked with ATA_QCFLAG_EH. 4805 * 4806 * The normal execution path is responsible for not accessing a qc owned 4807 * by EH. libata core enforces the rule by returning NULL from 4808 * ata_qc_from_tag() for qcs owned by EH. 4809 */ 4810 if (unlikely(qc->err_mask)) 4811 qc->flags |= ATA_QCFLAG_EH; 4812 4813 /* 4814 * Finish internal commands without any further processing and always 4815 * with the result TF filled. 4816 */ 4817 if (unlikely(ata_tag_internal(qc->tag))) { 4818 fill_result_tf(qc); 4819 trace_ata_qc_complete_internal(qc); 4820 __ata_qc_complete(qc); 4821 return; 4822 } 4823 4824 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4825 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4826 fill_result_tf(qc); 4827 trace_ata_qc_complete_failed(qc); 4828 ata_qc_schedule_eh(qc); 4829 return; 4830 } 4831 4832 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4833 4834 /* read result TF if requested */ 4835 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4836 fill_result_tf(qc); 4837 4838 trace_ata_qc_complete_done(qc); 4839 4840 /* 4841 * For CDL commands that completed without an error, check if we have 4842 * sense data (ATA_SENSE is set). If we do, then the command may have 4843 * been aborted by the device due to a limit timeout using the policy 4844 * 0xD. For these commands, invoke EH to get the command sense data. 4845 */ 4846 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4847 qc->result_tf.status & ATA_SENSE) { 4848 /* 4849 * Tell SCSI EH to not overwrite scmd->result even if this 4850 * command is finished with result SAM_STAT_GOOD. 4851 */ 4852 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4853 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4854 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4855 4856 /* 4857 * set pending so that ata_qc_schedule_eh() does not trigger 4858 * fast drain, and freeze the port. 4859 */ 4860 ap->pflags |= ATA_PFLAG_EH_PENDING; 4861 ata_qc_schedule_eh(qc); 4862 return; 4863 } 4864 4865 /* Some commands need post-processing after successful completion. */ 4866 switch (qc->tf.command) { 4867 case ATA_CMD_SET_FEATURES: 4868 if (qc->tf.feature != SETFEATURES_WC_ON && 4869 qc->tf.feature != SETFEATURES_WC_OFF && 4870 qc->tf.feature != SETFEATURES_RA_ON && 4871 qc->tf.feature != SETFEATURES_RA_OFF) 4872 break; 4873 fallthrough; 4874 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4875 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4876 /* revalidate device */ 4877 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4878 ata_port_schedule_eh(ap); 4879 break; 4880 4881 case ATA_CMD_SLEEP: 4882 dev->flags |= ATA_DFLAG_SLEEPING; 4883 break; 4884 } 4885 4886 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4887 ata_verify_xfer(qc); 4888 4889 __ata_qc_complete(qc); 4890 } 4891 EXPORT_SYMBOL_GPL(ata_qc_complete); 4892 4893 /** 4894 * ata_qc_get_active - get bitmask of active qcs 4895 * @ap: port in question 4896 * 4897 * LOCKING: 4898 * spin_lock_irqsave(host lock) 4899 * 4900 * RETURNS: 4901 * Bitmask of active qcs 4902 */ 4903 u64 ata_qc_get_active(struct ata_port *ap) 4904 { 4905 u64 qc_active = ap->qc_active; 4906 4907 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4908 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4909 qc_active |= (1 << 0); 4910 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4911 } 4912 4913 return qc_active; 4914 } 4915 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4916 4917 /** 4918 * ata_qc_issue - issue taskfile to device 4919 * @qc: command to issue to device 4920 * 4921 * Prepare an ATA command to submission to device. 4922 * This includes mapping the data into a DMA-able 4923 * area, filling in the S/G table, and finally 4924 * writing the taskfile to hardware, starting the command. 4925 * 4926 * LOCKING: 4927 * spin_lock_irqsave(host lock) 4928 */ 4929 void ata_qc_issue(struct ata_queued_cmd *qc) 4930 { 4931 struct ata_port *ap = qc->ap; 4932 struct ata_link *link = qc->dev->link; 4933 u8 prot = qc->tf.protocol; 4934 4935 /* Make sure only one non-NCQ command is outstanding. */ 4936 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4937 4938 if (ata_is_ncq(prot)) { 4939 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4940 4941 if (!link->sactive) 4942 ap->nr_active_links++; 4943 link->sactive |= 1 << qc->hw_tag; 4944 } else { 4945 WARN_ON_ONCE(link->sactive); 4946 4947 ap->nr_active_links++; 4948 link->active_tag = qc->tag; 4949 } 4950 4951 qc->flags |= ATA_QCFLAG_ACTIVE; 4952 ap->qc_active |= 1ULL << qc->tag; 4953 4954 /* 4955 * We guarantee to LLDs that they will have at least one 4956 * non-zero sg if the command is a data command. 4957 */ 4958 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4959 goto sys_err; 4960 4961 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4962 (ap->flags & ATA_FLAG_PIO_DMA))) 4963 if (ata_sg_setup(qc)) 4964 goto sys_err; 4965 4966 /* if device is sleeping, schedule reset and abort the link */ 4967 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4968 link->eh_info.action |= ATA_EH_RESET; 4969 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4970 ata_link_abort(link); 4971 return; 4972 } 4973 4974 if (ap->ops->qc_prep) { 4975 trace_ata_qc_prep(qc); 4976 qc->err_mask |= ap->ops->qc_prep(qc); 4977 if (unlikely(qc->err_mask)) 4978 goto err; 4979 } 4980 4981 trace_ata_qc_issue(qc); 4982 qc->err_mask |= ap->ops->qc_issue(qc); 4983 if (unlikely(qc->err_mask)) 4984 goto err; 4985 return; 4986 4987 sys_err: 4988 qc->err_mask |= AC_ERR_SYSTEM; 4989 err: 4990 ata_qc_complete(qc); 4991 } 4992 4993 /** 4994 * ata_phys_link_online - test whether the given link is online 4995 * @link: ATA link to test 4996 * 4997 * Test whether @link is online. Note that this function returns 4998 * 0 if online status of @link cannot be obtained, so 4999 * ata_link_online(link) != !ata_link_offline(link). 5000 * 5001 * LOCKING: 5002 * None. 5003 * 5004 * RETURNS: 5005 * True if the port online status is available and online. 5006 */ 5007 bool ata_phys_link_online(struct ata_link *link) 5008 { 5009 u32 sstatus; 5010 5011 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5012 ata_sstatus_online(sstatus)) 5013 return true; 5014 return false; 5015 } 5016 5017 /** 5018 * ata_phys_link_offline - test whether the given link is offline 5019 * @link: ATA link to test 5020 * 5021 * Test whether @link is offline. Note that this function 5022 * returns 0 if offline status of @link cannot be obtained, so 5023 * ata_link_online(link) != !ata_link_offline(link). 5024 * 5025 * LOCKING: 5026 * None. 5027 * 5028 * RETURNS: 5029 * True if the port offline status is available and offline. 5030 */ 5031 bool ata_phys_link_offline(struct ata_link *link) 5032 { 5033 u32 sstatus; 5034 5035 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5036 !ata_sstatus_online(sstatus)) 5037 return true; 5038 return false; 5039 } 5040 5041 /** 5042 * ata_link_online - test whether the given link is online 5043 * @link: ATA link to test 5044 * 5045 * Test whether @link is online. This is identical to 5046 * ata_phys_link_online() when there's no slave link. When 5047 * there's a slave link, this function should only be called on 5048 * the master link and will return true if any of M/S links is 5049 * online. 5050 * 5051 * LOCKING: 5052 * None. 5053 * 5054 * RETURNS: 5055 * True if the port online status is available and online. 5056 */ 5057 bool ata_link_online(struct ata_link *link) 5058 { 5059 struct ata_link *slave = link->ap->slave_link; 5060 5061 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5062 5063 return ata_phys_link_online(link) || 5064 (slave && ata_phys_link_online(slave)); 5065 } 5066 EXPORT_SYMBOL_GPL(ata_link_online); 5067 5068 /** 5069 * ata_link_offline - test whether the given link is offline 5070 * @link: ATA link to test 5071 * 5072 * Test whether @link is offline. This is identical to 5073 * ata_phys_link_offline() when there's no slave link. When 5074 * there's a slave link, this function should only be called on 5075 * the master link and will return true if both M/S links are 5076 * offline. 5077 * 5078 * LOCKING: 5079 * None. 5080 * 5081 * RETURNS: 5082 * True if the port offline status is available and offline. 5083 */ 5084 bool ata_link_offline(struct ata_link *link) 5085 { 5086 struct ata_link *slave = link->ap->slave_link; 5087 5088 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5089 5090 return ata_phys_link_offline(link) && 5091 (!slave || ata_phys_link_offline(slave)); 5092 } 5093 EXPORT_SYMBOL_GPL(ata_link_offline); 5094 5095 #ifdef CONFIG_PM 5096 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5097 unsigned int action, unsigned int ehi_flags, 5098 bool async) 5099 { 5100 struct ata_link *link; 5101 unsigned long flags; 5102 5103 spin_lock_irqsave(ap->lock, flags); 5104 5105 /* 5106 * A previous PM operation might still be in progress. Wait for 5107 * ATA_PFLAG_PM_PENDING to clear. 5108 */ 5109 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5110 spin_unlock_irqrestore(ap->lock, flags); 5111 ata_port_wait_eh(ap); 5112 spin_lock_irqsave(ap->lock, flags); 5113 } 5114 5115 /* Request PM operation to EH */ 5116 ap->pm_mesg = mesg; 5117 ap->pflags |= ATA_PFLAG_PM_PENDING; 5118 ata_for_each_link(link, ap, HOST_FIRST) { 5119 link->eh_info.action |= action; 5120 link->eh_info.flags |= ehi_flags; 5121 } 5122 5123 ata_port_schedule_eh(ap); 5124 5125 spin_unlock_irqrestore(ap->lock, flags); 5126 5127 if (!async) 5128 ata_port_wait_eh(ap); 5129 } 5130 5131 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5132 bool async) 5133 { 5134 /* 5135 * We are about to suspend the port, so we do not care about 5136 * scsi_rescan_device() calls scheduled by previous resume operations. 5137 * The next resume will schedule the rescan again. So cancel any rescan 5138 * that is not done yet. 5139 */ 5140 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5141 5142 /* 5143 * On some hardware, device fails to respond after spun down for 5144 * suspend. As the device will not be used until being resumed, we 5145 * do not need to touch the device. Ask EH to skip the usual stuff 5146 * and proceed directly to suspend. 5147 * 5148 * http://thread.gmane.org/gmane.linux.ide/46764 5149 */ 5150 ata_port_request_pm(ap, mesg, 0, 5151 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5152 ATA_EHI_NO_RECOVERY, 5153 async); 5154 } 5155 5156 static int ata_port_pm_suspend(struct device *dev) 5157 { 5158 struct ata_port *ap = to_ata_port(dev); 5159 5160 if (pm_runtime_suspended(dev)) 5161 return 0; 5162 5163 ata_port_suspend(ap, PMSG_SUSPEND, false); 5164 return 0; 5165 } 5166 5167 static int ata_port_pm_freeze(struct device *dev) 5168 { 5169 struct ata_port *ap = to_ata_port(dev); 5170 5171 if (pm_runtime_suspended(dev)) 5172 return 0; 5173 5174 ata_port_suspend(ap, PMSG_FREEZE, false); 5175 return 0; 5176 } 5177 5178 static int ata_port_pm_poweroff(struct device *dev) 5179 { 5180 if (!pm_runtime_suspended(dev)) 5181 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5182 return 0; 5183 } 5184 5185 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5186 bool async) 5187 { 5188 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5189 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5190 async); 5191 } 5192 5193 static int ata_port_pm_resume(struct device *dev) 5194 { 5195 if (!pm_runtime_suspended(dev)) 5196 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5197 return 0; 5198 } 5199 5200 /* 5201 * For ODDs, the upper layer will poll for media change every few seconds, 5202 * which will make it enter and leave suspend state every few seconds. And 5203 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5204 * is very little and the ODD may malfunction after constantly being reset. 5205 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5206 * ODD is attached to the port. 5207 */ 5208 static int ata_port_runtime_idle(struct device *dev) 5209 { 5210 struct ata_port *ap = to_ata_port(dev); 5211 struct ata_link *link; 5212 struct ata_device *adev; 5213 5214 ata_for_each_link(link, ap, HOST_FIRST) { 5215 ata_for_each_dev(adev, link, ENABLED) 5216 if (adev->class == ATA_DEV_ATAPI && 5217 !zpodd_dev_enabled(adev)) 5218 return -EBUSY; 5219 } 5220 5221 return 0; 5222 } 5223 5224 static int ata_port_runtime_suspend(struct device *dev) 5225 { 5226 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5227 return 0; 5228 } 5229 5230 static int ata_port_runtime_resume(struct device *dev) 5231 { 5232 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5233 return 0; 5234 } 5235 5236 static const struct dev_pm_ops ata_port_pm_ops = { 5237 .suspend = ata_port_pm_suspend, 5238 .resume = ata_port_pm_resume, 5239 .freeze = ata_port_pm_freeze, 5240 .thaw = ata_port_pm_resume, 5241 .poweroff = ata_port_pm_poweroff, 5242 .restore = ata_port_pm_resume, 5243 5244 .runtime_suspend = ata_port_runtime_suspend, 5245 .runtime_resume = ata_port_runtime_resume, 5246 .runtime_idle = ata_port_runtime_idle, 5247 }; 5248 5249 /* sas ports don't participate in pm runtime management of ata_ports, 5250 * and need to resume ata devices at the domain level, not the per-port 5251 * level. sas suspend/resume is async to allow parallel port recovery 5252 * since sas has multiple ata_port instances per Scsi_Host. 5253 */ 5254 void ata_sas_port_suspend(struct ata_port *ap) 5255 { 5256 ata_port_suspend(ap, PMSG_SUSPEND, true); 5257 } 5258 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5259 5260 void ata_sas_port_resume(struct ata_port *ap) 5261 { 5262 ata_port_resume(ap, PMSG_RESUME, true); 5263 } 5264 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5265 5266 /** 5267 * ata_host_suspend - suspend host 5268 * @host: host to suspend 5269 * @mesg: PM message 5270 * 5271 * Suspend @host. Actual operation is performed by port suspend. 5272 */ 5273 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5274 { 5275 host->dev->power.power_state = mesg; 5276 } 5277 EXPORT_SYMBOL_GPL(ata_host_suspend); 5278 5279 /** 5280 * ata_host_resume - resume host 5281 * @host: host to resume 5282 * 5283 * Resume @host. Actual operation is performed by port resume. 5284 */ 5285 void ata_host_resume(struct ata_host *host) 5286 { 5287 host->dev->power.power_state = PMSG_ON; 5288 } 5289 EXPORT_SYMBOL_GPL(ata_host_resume); 5290 #endif 5291 5292 const struct device_type ata_port_type = { 5293 .name = ATA_PORT_TYPE_NAME, 5294 #ifdef CONFIG_PM 5295 .pm = &ata_port_pm_ops, 5296 #endif 5297 }; 5298 5299 /** 5300 * ata_dev_init - Initialize an ata_device structure 5301 * @dev: Device structure to initialize 5302 * 5303 * Initialize @dev in preparation for probing. 5304 * 5305 * LOCKING: 5306 * Inherited from caller. 5307 */ 5308 void ata_dev_init(struct ata_device *dev) 5309 { 5310 struct ata_link *link = ata_dev_phys_link(dev); 5311 struct ata_port *ap = link->ap; 5312 unsigned long flags; 5313 5314 /* SATA spd limit is bound to the attached device, reset together */ 5315 link->sata_spd_limit = link->hw_sata_spd_limit; 5316 link->sata_spd = 0; 5317 5318 /* High bits of dev->flags are used to record warm plug 5319 * requests which occur asynchronously. Synchronize using 5320 * host lock. 5321 */ 5322 spin_lock_irqsave(ap->lock, flags); 5323 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5324 dev->quirks = 0; 5325 spin_unlock_irqrestore(ap->lock, flags); 5326 5327 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5328 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5329 dev->pio_mask = UINT_MAX; 5330 dev->mwdma_mask = UINT_MAX; 5331 dev->udma_mask = UINT_MAX; 5332 } 5333 5334 /** 5335 * ata_link_init - Initialize an ata_link structure 5336 * @ap: ATA port link is attached to 5337 * @link: Link structure to initialize 5338 * @pmp: Port multiplier port number 5339 * 5340 * Initialize @link. 5341 * 5342 * LOCKING: 5343 * Kernel thread context (may sleep) 5344 */ 5345 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5346 { 5347 int i; 5348 5349 /* clear everything except for devices */ 5350 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5351 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5352 5353 link->ap = ap; 5354 link->pmp = pmp; 5355 link->active_tag = ATA_TAG_POISON; 5356 link->hw_sata_spd_limit = UINT_MAX; 5357 5358 /* can't use iterator, ap isn't initialized yet */ 5359 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5360 struct ata_device *dev = &link->device[i]; 5361 5362 dev->link = link; 5363 dev->devno = dev - link->device; 5364 #ifdef CONFIG_ATA_ACPI 5365 dev->gtf_filter = ata_acpi_gtf_filter; 5366 #endif 5367 ata_dev_init(dev); 5368 } 5369 } 5370 5371 /** 5372 * sata_link_init_spd - Initialize link->sata_spd_limit 5373 * @link: Link to configure sata_spd_limit for 5374 * 5375 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5376 * configured value. 5377 * 5378 * LOCKING: 5379 * Kernel thread context (may sleep). 5380 * 5381 * RETURNS: 5382 * 0 on success, -errno on failure. 5383 */ 5384 int sata_link_init_spd(struct ata_link *link) 5385 { 5386 u8 spd; 5387 int rc; 5388 5389 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5390 if (rc) 5391 return rc; 5392 5393 spd = (link->saved_scontrol >> 4) & 0xf; 5394 if (spd) 5395 link->hw_sata_spd_limit &= (1 << spd) - 1; 5396 5397 ata_force_link_limits(link); 5398 5399 link->sata_spd_limit = link->hw_sata_spd_limit; 5400 5401 return 0; 5402 } 5403 5404 /** 5405 * ata_port_alloc - allocate and initialize basic ATA port resources 5406 * @host: ATA host this allocated port belongs to 5407 * 5408 * Allocate and initialize basic ATA port resources. 5409 * 5410 * RETURNS: 5411 * Allocate ATA port on success, NULL on failure. 5412 * 5413 * LOCKING: 5414 * Inherited from calling layer (may sleep). 5415 */ 5416 struct ata_port *ata_port_alloc(struct ata_host *host) 5417 { 5418 struct ata_port *ap; 5419 int id; 5420 5421 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5422 if (!ap) 5423 return NULL; 5424 5425 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5426 ap->lock = &host->lock; 5427 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL); 5428 if (id < 0) { 5429 kfree(ap); 5430 return NULL; 5431 } 5432 ap->print_id = id; 5433 ap->host = host; 5434 ap->dev = host->dev; 5435 5436 mutex_init(&ap->scsi_scan_mutex); 5437 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5438 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5439 INIT_LIST_HEAD(&ap->eh_done_q); 5440 init_waitqueue_head(&ap->eh_wait_q); 5441 init_completion(&ap->park_req_pending); 5442 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5443 TIMER_DEFERRABLE); 5444 5445 ap->cbl = ATA_CBL_NONE; 5446 5447 ata_link_init(ap, &ap->link, 0); 5448 5449 #ifdef ATA_IRQ_TRAP 5450 ap->stats.unhandled_irq = 1; 5451 ap->stats.idle_irq = 1; 5452 #endif 5453 ata_sff_port_init(ap); 5454 5455 return ap; 5456 } 5457 EXPORT_SYMBOL_GPL(ata_port_alloc); 5458 5459 void ata_port_free(struct ata_port *ap) 5460 { 5461 if (!ap) 5462 return; 5463 5464 kfree(ap->pmp_link); 5465 kfree(ap->slave_link); 5466 ida_free(&ata_ida, ap->print_id); 5467 kfree(ap); 5468 } 5469 EXPORT_SYMBOL_GPL(ata_port_free); 5470 5471 static void ata_devres_release(struct device *gendev, void *res) 5472 { 5473 struct ata_host *host = dev_get_drvdata(gendev); 5474 int i; 5475 5476 for (i = 0; i < host->n_ports; i++) { 5477 struct ata_port *ap = host->ports[i]; 5478 5479 if (!ap) 5480 continue; 5481 5482 if (ap->scsi_host) 5483 scsi_host_put(ap->scsi_host); 5484 5485 } 5486 5487 dev_set_drvdata(gendev, NULL); 5488 ata_host_put(host); 5489 } 5490 5491 static void ata_host_release(struct kref *kref) 5492 { 5493 struct ata_host *host = container_of(kref, struct ata_host, kref); 5494 int i; 5495 5496 for (i = 0; i < host->n_ports; i++) { 5497 ata_port_free(host->ports[i]); 5498 host->ports[i] = NULL; 5499 } 5500 kfree(host); 5501 } 5502 5503 void ata_host_get(struct ata_host *host) 5504 { 5505 kref_get(&host->kref); 5506 } 5507 5508 void ata_host_put(struct ata_host *host) 5509 { 5510 kref_put(&host->kref, ata_host_release); 5511 } 5512 EXPORT_SYMBOL_GPL(ata_host_put); 5513 5514 /** 5515 * ata_host_alloc - allocate and init basic ATA host resources 5516 * @dev: generic device this host is associated with 5517 * @n_ports: the number of ATA ports associated with this host 5518 * 5519 * Allocate and initialize basic ATA host resources. LLD calls 5520 * this function to allocate a host, initializes it fully and 5521 * attaches it using ata_host_register(). 5522 * 5523 * RETURNS: 5524 * Allocate ATA host on success, NULL on failure. 5525 * 5526 * LOCKING: 5527 * Inherited from calling layer (may sleep). 5528 */ 5529 struct ata_host *ata_host_alloc(struct device *dev, int n_ports) 5530 { 5531 struct ata_host *host; 5532 size_t sz; 5533 int i; 5534 void *dr; 5535 5536 /* alloc a container for our list of ATA ports (buses) */ 5537 sz = sizeof(struct ata_host) + n_ports * sizeof(void *); 5538 host = kzalloc(sz, GFP_KERNEL); 5539 if (!host) 5540 return NULL; 5541 5542 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5543 kfree(host); 5544 return NULL; 5545 } 5546 5547 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5548 if (!dr) { 5549 kfree(host); 5550 goto err_out; 5551 } 5552 5553 devres_add(dev, dr); 5554 dev_set_drvdata(dev, host); 5555 5556 spin_lock_init(&host->lock); 5557 mutex_init(&host->eh_mutex); 5558 host->dev = dev; 5559 host->n_ports = n_ports; 5560 kref_init(&host->kref); 5561 5562 /* allocate ports bound to this host */ 5563 for (i = 0; i < n_ports; i++) { 5564 struct ata_port *ap; 5565 5566 ap = ata_port_alloc(host); 5567 if (!ap) 5568 goto err_out; 5569 5570 ap->port_no = i; 5571 host->ports[i] = ap; 5572 } 5573 5574 devres_remove_group(dev, NULL); 5575 return host; 5576 5577 err_out: 5578 devres_release_group(dev, NULL); 5579 return NULL; 5580 } 5581 EXPORT_SYMBOL_GPL(ata_host_alloc); 5582 5583 /** 5584 * ata_host_alloc_pinfo - alloc host and init with port_info array 5585 * @dev: generic device this host is associated with 5586 * @ppi: array of ATA port_info to initialize host with 5587 * @n_ports: number of ATA ports attached to this host 5588 * 5589 * Allocate ATA host and initialize with info from @ppi. If NULL 5590 * terminated, @ppi may contain fewer entries than @n_ports. The 5591 * last entry will be used for the remaining ports. 5592 * 5593 * RETURNS: 5594 * Allocate ATA host on success, NULL on failure. 5595 * 5596 * LOCKING: 5597 * Inherited from calling layer (may sleep). 5598 */ 5599 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5600 const struct ata_port_info * const * ppi, 5601 int n_ports) 5602 { 5603 const struct ata_port_info *pi = &ata_dummy_port_info; 5604 struct ata_host *host; 5605 int i, j; 5606 5607 host = ata_host_alloc(dev, n_ports); 5608 if (!host) 5609 return NULL; 5610 5611 for (i = 0, j = 0; i < host->n_ports; i++) { 5612 struct ata_port *ap = host->ports[i]; 5613 5614 if (ppi[j]) 5615 pi = ppi[j++]; 5616 5617 ap->pio_mask = pi->pio_mask; 5618 ap->mwdma_mask = pi->mwdma_mask; 5619 ap->udma_mask = pi->udma_mask; 5620 ap->flags |= pi->flags; 5621 ap->link.flags |= pi->link_flags; 5622 ap->ops = pi->port_ops; 5623 5624 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5625 host->ops = pi->port_ops; 5626 } 5627 5628 return host; 5629 } 5630 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5631 5632 static void ata_host_stop(struct device *gendev, void *res) 5633 { 5634 struct ata_host *host = dev_get_drvdata(gendev); 5635 int i; 5636 5637 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5638 5639 for (i = 0; i < host->n_ports; i++) { 5640 struct ata_port *ap = host->ports[i]; 5641 5642 if (ap->ops->port_stop) 5643 ap->ops->port_stop(ap); 5644 } 5645 5646 if (host->ops->host_stop) 5647 host->ops->host_stop(host); 5648 } 5649 5650 /** 5651 * ata_finalize_port_ops - finalize ata_port_operations 5652 * @ops: ata_port_operations to finalize 5653 * 5654 * An ata_port_operations can inherit from another ops and that 5655 * ops can again inherit from another. This can go on as many 5656 * times as necessary as long as there is no loop in the 5657 * inheritance chain. 5658 * 5659 * Ops tables are finalized when the host is started. NULL or 5660 * unspecified entries are inherited from the closet ancestor 5661 * which has the method and the entry is populated with it. 5662 * After finalization, the ops table directly points to all the 5663 * methods and ->inherits is no longer necessary and cleared. 5664 * 5665 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5666 * 5667 * LOCKING: 5668 * None. 5669 */ 5670 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5671 { 5672 static DEFINE_SPINLOCK(lock); 5673 const struct ata_port_operations *cur; 5674 void **begin = (void **)ops; 5675 void **end = (void **)&ops->inherits; 5676 void **pp; 5677 5678 if (!ops || !ops->inherits) 5679 return; 5680 5681 spin_lock(&lock); 5682 5683 for (cur = ops->inherits; cur; cur = cur->inherits) { 5684 void **inherit = (void **)cur; 5685 5686 for (pp = begin; pp < end; pp++, inherit++) 5687 if (!*pp) 5688 *pp = *inherit; 5689 } 5690 5691 for (pp = begin; pp < end; pp++) 5692 if (IS_ERR(*pp)) 5693 *pp = NULL; 5694 5695 ops->inherits = NULL; 5696 5697 spin_unlock(&lock); 5698 } 5699 5700 /** 5701 * ata_host_start - start and freeze ports of an ATA host 5702 * @host: ATA host to start ports for 5703 * 5704 * Start and then freeze ports of @host. Started status is 5705 * recorded in host->flags, so this function can be called 5706 * multiple times. Ports are guaranteed to get started only 5707 * once. If host->ops is not initialized yet, it is set to the 5708 * first non-dummy port ops. 5709 * 5710 * LOCKING: 5711 * Inherited from calling layer (may sleep). 5712 * 5713 * RETURNS: 5714 * 0 if all ports are started successfully, -errno otherwise. 5715 */ 5716 int ata_host_start(struct ata_host *host) 5717 { 5718 int have_stop = 0; 5719 void *start_dr = NULL; 5720 int i, rc; 5721 5722 if (host->flags & ATA_HOST_STARTED) 5723 return 0; 5724 5725 ata_finalize_port_ops(host->ops); 5726 5727 for (i = 0; i < host->n_ports; i++) { 5728 struct ata_port *ap = host->ports[i]; 5729 5730 ata_finalize_port_ops(ap->ops); 5731 5732 if (!host->ops && !ata_port_is_dummy(ap)) 5733 host->ops = ap->ops; 5734 5735 if (ap->ops->port_stop) 5736 have_stop = 1; 5737 } 5738 5739 if (host->ops && host->ops->host_stop) 5740 have_stop = 1; 5741 5742 if (have_stop) { 5743 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5744 if (!start_dr) 5745 return -ENOMEM; 5746 } 5747 5748 for (i = 0; i < host->n_ports; i++) { 5749 struct ata_port *ap = host->ports[i]; 5750 5751 if (ap->ops->port_start) { 5752 rc = ap->ops->port_start(ap); 5753 if (rc) { 5754 if (rc != -ENODEV) 5755 dev_err(host->dev, 5756 "failed to start port %d (errno=%d)\n", 5757 i, rc); 5758 goto err_out; 5759 } 5760 } 5761 ata_eh_freeze_port(ap); 5762 } 5763 5764 if (start_dr) 5765 devres_add(host->dev, start_dr); 5766 host->flags |= ATA_HOST_STARTED; 5767 return 0; 5768 5769 err_out: 5770 while (--i >= 0) { 5771 struct ata_port *ap = host->ports[i]; 5772 5773 if (ap->ops->port_stop) 5774 ap->ops->port_stop(ap); 5775 } 5776 devres_free(start_dr); 5777 return rc; 5778 } 5779 EXPORT_SYMBOL_GPL(ata_host_start); 5780 5781 /** 5782 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5783 * @host: host to initialize 5784 * @dev: device host is attached to 5785 * @ops: port_ops 5786 * 5787 */ 5788 void ata_host_init(struct ata_host *host, struct device *dev, 5789 struct ata_port_operations *ops) 5790 { 5791 spin_lock_init(&host->lock); 5792 mutex_init(&host->eh_mutex); 5793 host->n_tags = ATA_MAX_QUEUE; 5794 host->dev = dev; 5795 host->ops = ops; 5796 kref_init(&host->kref); 5797 } 5798 EXPORT_SYMBOL_GPL(ata_host_init); 5799 5800 void ata_port_probe(struct ata_port *ap) 5801 { 5802 struct ata_eh_info *ehi = &ap->link.eh_info; 5803 unsigned long flags; 5804 5805 /* kick EH for boot probing */ 5806 spin_lock_irqsave(ap->lock, flags); 5807 5808 ehi->probe_mask |= ATA_ALL_DEVICES; 5809 ehi->action |= ATA_EH_RESET; 5810 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5811 5812 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5813 ap->pflags |= ATA_PFLAG_LOADING; 5814 ata_port_schedule_eh(ap); 5815 5816 spin_unlock_irqrestore(ap->lock, flags); 5817 } 5818 EXPORT_SYMBOL_GPL(ata_port_probe); 5819 5820 static void async_port_probe(void *data, async_cookie_t cookie) 5821 { 5822 struct ata_port *ap = data; 5823 5824 /* 5825 * If we're not allowed to scan this host in parallel, 5826 * we need to wait until all previous scans have completed 5827 * before going further. 5828 * Jeff Garzik says this is only within a controller, so we 5829 * don't need to wait for port 0, only for later ports. 5830 */ 5831 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5832 async_synchronize_cookie(cookie); 5833 5834 ata_port_probe(ap); 5835 ata_port_wait_eh(ap); 5836 5837 /* in order to keep device order, we need to synchronize at this point */ 5838 async_synchronize_cookie(cookie); 5839 5840 ata_scsi_scan_host(ap, 1); 5841 } 5842 5843 /** 5844 * ata_host_register - register initialized ATA host 5845 * @host: ATA host to register 5846 * @sht: template for SCSI host 5847 * 5848 * Register initialized ATA host. @host is allocated using 5849 * ata_host_alloc() and fully initialized by LLD. This function 5850 * starts ports, registers @host with ATA and SCSI layers and 5851 * probe registered devices. 5852 * 5853 * LOCKING: 5854 * Inherited from calling layer (may sleep). 5855 * 5856 * RETURNS: 5857 * 0 on success, -errno otherwise. 5858 */ 5859 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5860 { 5861 int i, rc; 5862 5863 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5864 5865 /* host must have been started */ 5866 if (!(host->flags & ATA_HOST_STARTED)) { 5867 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5868 WARN_ON(1); 5869 return -EINVAL; 5870 } 5871 5872 /* Create associated sysfs transport objects */ 5873 for (i = 0; i < host->n_ports; i++) { 5874 rc = ata_tport_add(host->dev,host->ports[i]); 5875 if (rc) { 5876 goto err_tadd; 5877 } 5878 } 5879 5880 rc = ata_scsi_add_hosts(host, sht); 5881 if (rc) 5882 goto err_tadd; 5883 5884 /* set cable, sata_spd_limit and report */ 5885 for (i = 0; i < host->n_ports; i++) { 5886 struct ata_port *ap = host->ports[i]; 5887 unsigned int xfer_mask; 5888 5889 /* set SATA cable type if still unset */ 5890 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5891 ap->cbl = ATA_CBL_SATA; 5892 5893 /* init sata_spd_limit to the current value */ 5894 sata_link_init_spd(&ap->link); 5895 if (ap->slave_link) 5896 sata_link_init_spd(ap->slave_link); 5897 5898 /* print per-port info to dmesg */ 5899 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5900 ap->udma_mask); 5901 5902 if (!ata_port_is_dummy(ap)) { 5903 ata_port_info(ap, "%cATA max %s %s\n", 5904 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5905 ata_mode_string(xfer_mask), 5906 ap->link.eh_info.desc); 5907 ata_ehi_clear_desc(&ap->link.eh_info); 5908 } else 5909 ata_port_info(ap, "DUMMY\n"); 5910 } 5911 5912 /* perform each probe asynchronously */ 5913 for (i = 0; i < host->n_ports; i++) { 5914 struct ata_port *ap = host->ports[i]; 5915 ap->cookie = async_schedule(async_port_probe, ap); 5916 } 5917 5918 return 0; 5919 5920 err_tadd: 5921 while (--i >= 0) { 5922 ata_tport_delete(host->ports[i]); 5923 } 5924 return rc; 5925 5926 } 5927 EXPORT_SYMBOL_GPL(ata_host_register); 5928 5929 /** 5930 * ata_host_activate - start host, request IRQ and register it 5931 * @host: target ATA host 5932 * @irq: IRQ to request 5933 * @irq_handler: irq_handler used when requesting IRQ 5934 * @irq_flags: irq_flags used when requesting IRQ 5935 * @sht: scsi_host_template to use when registering the host 5936 * 5937 * After allocating an ATA host and initializing it, most libata 5938 * LLDs perform three steps to activate the host - start host, 5939 * request IRQ and register it. This helper takes necessary 5940 * arguments and performs the three steps in one go. 5941 * 5942 * An invalid IRQ skips the IRQ registration and expects the host to 5943 * have set polling mode on the port. In this case, @irq_handler 5944 * should be NULL. 5945 * 5946 * LOCKING: 5947 * Inherited from calling layer (may sleep). 5948 * 5949 * RETURNS: 5950 * 0 on success, -errno otherwise. 5951 */ 5952 int ata_host_activate(struct ata_host *host, int irq, 5953 irq_handler_t irq_handler, unsigned long irq_flags, 5954 const struct scsi_host_template *sht) 5955 { 5956 int i, rc; 5957 char *irq_desc; 5958 5959 rc = ata_host_start(host); 5960 if (rc) 5961 return rc; 5962 5963 /* Special case for polling mode */ 5964 if (!irq) { 5965 WARN_ON(irq_handler); 5966 return ata_host_register(host, sht); 5967 } 5968 5969 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5970 dev_driver_string(host->dev), 5971 dev_name(host->dev)); 5972 if (!irq_desc) 5973 return -ENOMEM; 5974 5975 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5976 irq_desc, host); 5977 if (rc) 5978 return rc; 5979 5980 for (i = 0; i < host->n_ports; i++) 5981 ata_port_desc_misc(host->ports[i], irq); 5982 5983 rc = ata_host_register(host, sht); 5984 /* if failed, just free the IRQ and leave ports alone */ 5985 if (rc) 5986 devm_free_irq(host->dev, irq, host); 5987 5988 return rc; 5989 } 5990 EXPORT_SYMBOL_GPL(ata_host_activate); 5991 5992 /** 5993 * ata_dev_free_resources - Free a device resources 5994 * @dev: Target ATA device 5995 * 5996 * Free resources allocated to support a device features. 5997 * 5998 * LOCKING: 5999 * Kernel thread context (may sleep). 6000 */ 6001 void ata_dev_free_resources(struct ata_device *dev) 6002 { 6003 if (zpodd_dev_enabled(dev)) 6004 zpodd_exit(dev); 6005 6006 ata_dev_cleanup_cdl_resources(dev); 6007 } 6008 6009 /** 6010 * ata_port_detach - Detach ATA port in preparation of device removal 6011 * @ap: ATA port to be detached 6012 * 6013 * Detach all ATA devices and the associated SCSI devices of @ap; 6014 * then, remove the associated SCSI host. @ap is guaranteed to 6015 * be quiescent on return from this function. 6016 * 6017 * LOCKING: 6018 * Kernel thread context (may sleep). 6019 */ 6020 static void ata_port_detach(struct ata_port *ap) 6021 { 6022 unsigned long flags; 6023 struct ata_link *link; 6024 struct ata_device *dev; 6025 6026 /* Ensure ata_port probe has completed */ 6027 async_synchronize_cookie(ap->cookie + 1); 6028 6029 /* Wait for any ongoing EH */ 6030 ata_port_wait_eh(ap); 6031 6032 mutex_lock(&ap->scsi_scan_mutex); 6033 spin_lock_irqsave(ap->lock, flags); 6034 6035 /* Remove scsi devices */ 6036 ata_for_each_link(link, ap, HOST_FIRST) { 6037 ata_for_each_dev(dev, link, ALL) { 6038 if (dev->sdev) { 6039 spin_unlock_irqrestore(ap->lock, flags); 6040 scsi_remove_device(dev->sdev); 6041 spin_lock_irqsave(ap->lock, flags); 6042 dev->sdev = NULL; 6043 } 6044 } 6045 } 6046 6047 /* Tell EH to disable all devices */ 6048 ap->pflags |= ATA_PFLAG_UNLOADING; 6049 ata_port_schedule_eh(ap); 6050 6051 spin_unlock_irqrestore(ap->lock, flags); 6052 mutex_unlock(&ap->scsi_scan_mutex); 6053 6054 /* wait till EH commits suicide */ 6055 ata_port_wait_eh(ap); 6056 6057 /* it better be dead now */ 6058 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6059 6060 cancel_delayed_work_sync(&ap->hotplug_task); 6061 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6062 6063 /* Delete port multiplier link transport devices */ 6064 if (ap->pmp_link) { 6065 int i; 6066 6067 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6068 ata_tlink_delete(&ap->pmp_link[i]); 6069 } 6070 6071 /* Remove the associated SCSI host */ 6072 scsi_remove_host(ap->scsi_host); 6073 ata_tport_delete(ap); 6074 } 6075 6076 /** 6077 * ata_host_detach - Detach all ports of an ATA host 6078 * @host: Host to detach 6079 * 6080 * Detach all ports of @host. 6081 * 6082 * LOCKING: 6083 * Kernel thread context (may sleep). 6084 */ 6085 void ata_host_detach(struct ata_host *host) 6086 { 6087 int i; 6088 6089 for (i = 0; i < host->n_ports; i++) 6090 ata_port_detach(host->ports[i]); 6091 6092 /* the host is dead now, dissociate ACPI */ 6093 ata_acpi_dissociate(host); 6094 } 6095 EXPORT_SYMBOL_GPL(ata_host_detach); 6096 6097 #ifdef CONFIG_PCI 6098 6099 /** 6100 * ata_pci_remove_one - PCI layer callback for device removal 6101 * @pdev: PCI device that was removed 6102 * 6103 * PCI layer indicates to libata via this hook that hot-unplug or 6104 * module unload event has occurred. Detach all ports. Resource 6105 * release is handled via devres. 6106 * 6107 * LOCKING: 6108 * Inherited from PCI layer (may sleep). 6109 */ 6110 void ata_pci_remove_one(struct pci_dev *pdev) 6111 { 6112 struct ata_host *host = pci_get_drvdata(pdev); 6113 6114 ata_host_detach(host); 6115 } 6116 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6117 6118 void ata_pci_shutdown_one(struct pci_dev *pdev) 6119 { 6120 struct ata_host *host = pci_get_drvdata(pdev); 6121 int i; 6122 6123 for (i = 0; i < host->n_ports; i++) { 6124 struct ata_port *ap = host->ports[i]; 6125 6126 ap->pflags |= ATA_PFLAG_FROZEN; 6127 6128 /* Disable port interrupts */ 6129 if (ap->ops->freeze) 6130 ap->ops->freeze(ap); 6131 6132 /* Stop the port DMA engines */ 6133 if (ap->ops->port_stop) 6134 ap->ops->port_stop(ap); 6135 } 6136 } 6137 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6138 6139 /* move to PCI subsystem */ 6140 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6141 { 6142 unsigned long tmp = 0; 6143 6144 switch (bits->width) { 6145 case 1: { 6146 u8 tmp8 = 0; 6147 pci_read_config_byte(pdev, bits->reg, &tmp8); 6148 tmp = tmp8; 6149 break; 6150 } 6151 case 2: { 6152 u16 tmp16 = 0; 6153 pci_read_config_word(pdev, bits->reg, &tmp16); 6154 tmp = tmp16; 6155 break; 6156 } 6157 case 4: { 6158 u32 tmp32 = 0; 6159 pci_read_config_dword(pdev, bits->reg, &tmp32); 6160 tmp = tmp32; 6161 break; 6162 } 6163 6164 default: 6165 return -EINVAL; 6166 } 6167 6168 tmp &= bits->mask; 6169 6170 return (tmp == bits->val) ? 1 : 0; 6171 } 6172 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6173 6174 #ifdef CONFIG_PM 6175 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6176 { 6177 pci_save_state(pdev); 6178 pci_disable_device(pdev); 6179 6180 if (mesg.event & PM_EVENT_SLEEP) 6181 pci_set_power_state(pdev, PCI_D3hot); 6182 } 6183 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6184 6185 int ata_pci_device_do_resume(struct pci_dev *pdev) 6186 { 6187 int rc; 6188 6189 pci_set_power_state(pdev, PCI_D0); 6190 pci_restore_state(pdev); 6191 6192 rc = pcim_enable_device(pdev); 6193 if (rc) { 6194 dev_err(&pdev->dev, 6195 "failed to enable device after resume (%d)\n", rc); 6196 return rc; 6197 } 6198 6199 pci_set_master(pdev); 6200 return 0; 6201 } 6202 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6203 6204 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6205 { 6206 struct ata_host *host = pci_get_drvdata(pdev); 6207 6208 ata_host_suspend(host, mesg); 6209 6210 ata_pci_device_do_suspend(pdev, mesg); 6211 6212 return 0; 6213 } 6214 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6215 6216 int ata_pci_device_resume(struct pci_dev *pdev) 6217 { 6218 struct ata_host *host = pci_get_drvdata(pdev); 6219 int rc; 6220 6221 rc = ata_pci_device_do_resume(pdev); 6222 if (rc == 0) 6223 ata_host_resume(host); 6224 return rc; 6225 } 6226 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6227 #endif /* CONFIG_PM */ 6228 #endif /* CONFIG_PCI */ 6229 6230 /** 6231 * ata_platform_remove_one - Platform layer callback for device removal 6232 * @pdev: Platform device that was removed 6233 * 6234 * Platform layer indicates to libata via this hook that hot-unplug or 6235 * module unload event has occurred. Detach all ports. Resource 6236 * release is handled via devres. 6237 * 6238 * LOCKING: 6239 * Inherited from platform layer (may sleep). 6240 */ 6241 void ata_platform_remove_one(struct platform_device *pdev) 6242 { 6243 struct ata_host *host = platform_get_drvdata(pdev); 6244 6245 ata_host_detach(host); 6246 } 6247 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6248 6249 #ifdef CONFIG_ATA_FORCE 6250 6251 #define force_cbl(name, flag) \ 6252 { #name, .cbl = (flag) } 6253 6254 #define force_spd_limit(spd, val) \ 6255 { #spd, .spd_limit = (val) } 6256 6257 #define force_xfer(mode, shift) \ 6258 { #mode, .xfer_mask = (1UL << (shift)) } 6259 6260 #define force_lflag_on(name, flags) \ 6261 { #name, .lflags_on = (flags) } 6262 6263 #define force_lflag_onoff(name, flags) \ 6264 { "no" #name, .lflags_on = (flags) }, \ 6265 { #name, .lflags_off = (flags) } 6266 6267 #define force_quirk_on(name, flag) \ 6268 { #name, .quirk_on = (flag) } 6269 6270 #define force_quirk_onoff(name, flag) \ 6271 { "no" #name, .quirk_on = (flag) }, \ 6272 { #name, .quirk_off = (flag) } 6273 6274 static const struct ata_force_param force_tbl[] __initconst = { 6275 force_cbl(40c, ATA_CBL_PATA40), 6276 force_cbl(80c, ATA_CBL_PATA80), 6277 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6278 force_cbl(unk, ATA_CBL_PATA_UNK), 6279 force_cbl(ign, ATA_CBL_PATA_IGN), 6280 force_cbl(sata, ATA_CBL_SATA), 6281 6282 force_spd_limit(1.5Gbps, 1), 6283 force_spd_limit(3.0Gbps, 2), 6284 6285 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6286 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6287 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6288 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6289 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6290 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6291 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6292 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6293 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6294 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6295 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6296 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6297 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6298 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6299 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6300 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6301 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6302 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6303 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6304 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6305 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6306 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6307 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6308 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6309 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6310 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6311 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6312 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6313 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6314 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6315 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6316 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6317 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6318 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6319 6320 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6321 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6322 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6323 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6324 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6325 6326 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ), 6327 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM), 6328 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI), 6329 6330 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM), 6331 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM), 6332 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M), 6333 6334 force_quirk_onoff(dma, ATA_QUIRK_NODMA), 6335 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR), 6336 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA), 6337 6338 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG), 6339 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG), 6340 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR), 6341 6342 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128), 6343 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024), 6344 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48), 6345 6346 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM), 6347 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER), 6348 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID), 6349 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA), 6350 6351 force_quirk_on(disable, ATA_QUIRK_DISABLE), 6352 }; 6353 6354 static int __init ata_parse_force_one(char **cur, 6355 struct ata_force_ent *force_ent, 6356 const char **reason) 6357 { 6358 char *start = *cur, *p = *cur; 6359 char *id, *val, *endp; 6360 const struct ata_force_param *match_fp = NULL; 6361 int nr_matches = 0, i; 6362 6363 /* find where this param ends and update *cur */ 6364 while (*p != '\0' && *p != ',') 6365 p++; 6366 6367 if (*p == '\0') 6368 *cur = p; 6369 else 6370 *cur = p + 1; 6371 6372 *p = '\0'; 6373 6374 /* parse */ 6375 p = strchr(start, ':'); 6376 if (!p) { 6377 val = strstrip(start); 6378 goto parse_val; 6379 } 6380 *p = '\0'; 6381 6382 id = strstrip(start); 6383 val = strstrip(p + 1); 6384 6385 /* parse id */ 6386 p = strchr(id, '.'); 6387 if (p) { 6388 *p++ = '\0'; 6389 force_ent->device = simple_strtoul(p, &endp, 10); 6390 if (p == endp || *endp != '\0') { 6391 *reason = "invalid device"; 6392 return -EINVAL; 6393 } 6394 } 6395 6396 force_ent->port = simple_strtoul(id, &endp, 10); 6397 if (id == endp || *endp != '\0') { 6398 *reason = "invalid port/link"; 6399 return -EINVAL; 6400 } 6401 6402 parse_val: 6403 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6404 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6405 const struct ata_force_param *fp = &force_tbl[i]; 6406 6407 if (strncasecmp(val, fp->name, strlen(val))) 6408 continue; 6409 6410 nr_matches++; 6411 match_fp = fp; 6412 6413 if (strcasecmp(val, fp->name) == 0) { 6414 nr_matches = 1; 6415 break; 6416 } 6417 } 6418 6419 if (!nr_matches) { 6420 *reason = "unknown value"; 6421 return -EINVAL; 6422 } 6423 if (nr_matches > 1) { 6424 *reason = "ambiguous value"; 6425 return -EINVAL; 6426 } 6427 6428 force_ent->param = *match_fp; 6429 6430 return 0; 6431 } 6432 6433 static void __init ata_parse_force_param(void) 6434 { 6435 int idx = 0, size = 1; 6436 int last_port = -1, last_device = -1; 6437 char *p, *cur, *next; 6438 6439 /* Calculate maximum number of params and allocate ata_force_tbl */ 6440 for (p = ata_force_param_buf; *p; p++) 6441 if (*p == ',') 6442 size++; 6443 6444 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6445 if (!ata_force_tbl) { 6446 printk(KERN_WARNING "ata: failed to extend force table, " 6447 "libata.force ignored\n"); 6448 return; 6449 } 6450 6451 /* parse and populate the table */ 6452 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6453 const char *reason = ""; 6454 struct ata_force_ent te = { .port = -1, .device = -1 }; 6455 6456 next = cur; 6457 if (ata_parse_force_one(&next, &te, &reason)) { 6458 printk(KERN_WARNING "ata: failed to parse force " 6459 "parameter \"%s\" (%s)\n", 6460 cur, reason); 6461 continue; 6462 } 6463 6464 if (te.port == -1) { 6465 te.port = last_port; 6466 te.device = last_device; 6467 } 6468 6469 ata_force_tbl[idx++] = te; 6470 6471 last_port = te.port; 6472 last_device = te.device; 6473 } 6474 6475 ata_force_tbl_size = idx; 6476 } 6477 6478 static void ata_free_force_param(void) 6479 { 6480 kfree(ata_force_tbl); 6481 } 6482 #else 6483 static inline void ata_parse_force_param(void) { } 6484 static inline void ata_free_force_param(void) { } 6485 #endif 6486 6487 static int __init ata_init(void) 6488 { 6489 int rc; 6490 6491 ata_parse_force_param(); 6492 6493 rc = ata_sff_init(); 6494 if (rc) { 6495 ata_free_force_param(); 6496 return rc; 6497 } 6498 6499 libata_transport_init(); 6500 ata_scsi_transport_template = ata_attach_transport(); 6501 if (!ata_scsi_transport_template) { 6502 ata_sff_exit(); 6503 rc = -ENOMEM; 6504 goto err_out; 6505 } 6506 6507 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6508 return 0; 6509 6510 err_out: 6511 return rc; 6512 } 6513 6514 static void __exit ata_exit(void) 6515 { 6516 ata_release_transport(ata_scsi_transport_template); 6517 libata_transport_exit(); 6518 ata_sff_exit(); 6519 ata_free_force_param(); 6520 } 6521 6522 subsys_initcall(ata_init); 6523 module_exit(ata_exit); 6524 6525 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6526 6527 int ata_ratelimit(void) 6528 { 6529 return __ratelimit(&ratelimit); 6530 } 6531 EXPORT_SYMBOL_GPL(ata_ratelimit); 6532 6533 /** 6534 * ata_msleep - ATA EH owner aware msleep 6535 * @ap: ATA port to attribute the sleep to 6536 * @msecs: duration to sleep in milliseconds 6537 * 6538 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6539 * ownership is released before going to sleep and reacquired 6540 * after the sleep is complete. IOW, other ports sharing the 6541 * @ap->host will be allowed to own the EH while this task is 6542 * sleeping. 6543 * 6544 * LOCKING: 6545 * Might sleep. 6546 */ 6547 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6548 { 6549 bool owns_eh = ap && ap->host->eh_owner == current; 6550 6551 if (owns_eh) 6552 ata_eh_release(ap); 6553 6554 if (msecs < 20) { 6555 unsigned long usecs = msecs * USEC_PER_MSEC; 6556 usleep_range(usecs, usecs + 50); 6557 } else { 6558 msleep(msecs); 6559 } 6560 6561 if (owns_eh) 6562 ata_eh_acquire(ap); 6563 } 6564 EXPORT_SYMBOL_GPL(ata_msleep); 6565 6566 /** 6567 * ata_wait_register - wait until register value changes 6568 * @ap: ATA port to wait register for, can be NULL 6569 * @reg: IO-mapped register 6570 * @mask: Mask to apply to read register value 6571 * @val: Wait condition 6572 * @interval: polling interval in milliseconds 6573 * @timeout: timeout in milliseconds 6574 * 6575 * Waiting for some bits of register to change is a common 6576 * operation for ATA controllers. This function reads 32bit LE 6577 * IO-mapped register @reg and tests for the following condition. 6578 * 6579 * (*@reg & mask) != val 6580 * 6581 * If the condition is met, it returns; otherwise, the process is 6582 * repeated after @interval_msec until timeout. 6583 * 6584 * LOCKING: 6585 * Kernel thread context (may sleep) 6586 * 6587 * RETURNS: 6588 * The final register value. 6589 */ 6590 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6591 unsigned int interval, unsigned int timeout) 6592 { 6593 unsigned long deadline; 6594 u32 tmp; 6595 6596 tmp = ioread32(reg); 6597 6598 /* Calculate timeout _after_ the first read to make sure 6599 * preceding writes reach the controller before starting to 6600 * eat away the timeout. 6601 */ 6602 deadline = ata_deadline(jiffies, timeout); 6603 6604 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6605 ata_msleep(ap, interval); 6606 tmp = ioread32(reg); 6607 } 6608 6609 return tmp; 6610 } 6611 EXPORT_SYMBOL_GPL(ata_wait_register); 6612 6613 /* 6614 * Dummy port_ops 6615 */ 6616 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6617 { 6618 return AC_ERR_SYSTEM; 6619 } 6620 6621 static void ata_dummy_error_handler(struct ata_port *ap) 6622 { 6623 /* truly dummy */ 6624 } 6625 6626 struct ata_port_operations ata_dummy_port_ops = { 6627 .qc_issue = ata_dummy_qc_issue, 6628 .error_handler = ata_dummy_error_handler, 6629 .sched_eh = ata_std_sched_eh, 6630 .end_eh = ata_std_end_eh, 6631 }; 6632 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6633 6634 const struct ata_port_info ata_dummy_port_info = { 6635 .port_ops = &ata_dummy_port_ops, 6636 }; 6637 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6638 6639 void ata_print_version(const struct device *dev, const char *version) 6640 { 6641 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6642 } 6643 EXPORT_SYMBOL(ata_print_version); 6644 6645 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6646 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6647 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6648 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6649 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6650