xref: /linux/drivers/ata/libata-core.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.20"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77 
78 struct workqueue_struct *ata_aux_wq;
79 
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95 
96 int noacpi;
97 module_param(noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99 
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104 
105 
106 /**
107  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108  *	@tf: Taskfile to convert
109  *	@fis: Buffer into which data will output
110  *	@pmp: Port multiplier port
111  *
112  *	Converts a standard ATA taskfile to a Serial ATA
113  *	FIS structure (Register - Host to Device).
114  *
115  *	LOCKING:
116  *	Inherited from caller.
117  */
118 
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120 {
121 	fis[0] = 0x27;	/* Register - Host to Device FIS */
122 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 					    bit 7 indicates Command FIS */
124 	fis[2] = tf->command;
125 	fis[3] = tf->feature;
126 
127 	fis[4] = tf->lbal;
128 	fis[5] = tf->lbam;
129 	fis[6] = tf->lbah;
130 	fis[7] = tf->device;
131 
132 	fis[8] = tf->hob_lbal;
133 	fis[9] = tf->hob_lbam;
134 	fis[10] = tf->hob_lbah;
135 	fis[11] = tf->hob_feature;
136 
137 	fis[12] = tf->nsect;
138 	fis[13] = tf->hob_nsect;
139 	fis[14] = 0;
140 	fis[15] = tf->ctl;
141 
142 	fis[16] = 0;
143 	fis[17] = 0;
144 	fis[18] = 0;
145 	fis[19] = 0;
146 }
147 
148 /**
149  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150  *	@fis: Buffer from which data will be input
151  *	@tf: Taskfile to output
152  *
153  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
154  *
155  *	LOCKING:
156  *	Inherited from caller.
157  */
158 
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160 {
161 	tf->command	= fis[2];	/* status */
162 	tf->feature	= fis[3];	/* error */
163 
164 	tf->lbal	= fis[4];
165 	tf->lbam	= fis[5];
166 	tf->lbah	= fis[6];
167 	tf->device	= fis[7];
168 
169 	tf->hob_lbal	= fis[8];
170 	tf->hob_lbam	= fis[9];
171 	tf->hob_lbah	= fis[10];
172 
173 	tf->nsect	= fis[12];
174 	tf->hob_nsect	= fis[13];
175 }
176 
177 static const u8 ata_rw_cmds[] = {
178 	/* pio multi */
179 	ATA_CMD_READ_MULTI,
180 	ATA_CMD_WRITE_MULTI,
181 	ATA_CMD_READ_MULTI_EXT,
182 	ATA_CMD_WRITE_MULTI_EXT,
183 	0,
184 	0,
185 	0,
186 	ATA_CMD_WRITE_MULTI_FUA_EXT,
187 	/* pio */
188 	ATA_CMD_PIO_READ,
189 	ATA_CMD_PIO_WRITE,
190 	ATA_CMD_PIO_READ_EXT,
191 	ATA_CMD_PIO_WRITE_EXT,
192 	0,
193 	0,
194 	0,
195 	0,
196 	/* dma */
197 	ATA_CMD_READ,
198 	ATA_CMD_WRITE,
199 	ATA_CMD_READ_EXT,
200 	ATA_CMD_WRITE_EXT,
201 	0,
202 	0,
203 	0,
204 	ATA_CMD_WRITE_FUA_EXT
205 };
206 
207 /**
208  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
209  *	@tf: command to examine and configure
210  *	@dev: device tf belongs to
211  *
212  *	Examine the device configuration and tf->flags to calculate
213  *	the proper read/write commands and protocol to use.
214  *
215  *	LOCKING:
216  *	caller.
217  */
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219 {
220 	u8 cmd;
221 
222 	int index, fua, lba48, write;
223 
224 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227 
228 	if (dev->flags & ATA_DFLAG_PIO) {
229 		tf->protocol = ATA_PROT_PIO;
230 		index = dev->multi_count ? 0 : 8;
231 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 		/* Unable to use DMA due to host limitation */
233 		tf->protocol = ATA_PROT_PIO;
234 		index = dev->multi_count ? 0 : 8;
235 	} else {
236 		tf->protocol = ATA_PROT_DMA;
237 		index = 16;
238 	}
239 
240 	cmd = ata_rw_cmds[index + fua + lba48 + write];
241 	if (cmd) {
242 		tf->command = cmd;
243 		return 0;
244 	}
245 	return -1;
246 }
247 
248 /**
249  *	ata_tf_read_block - Read block address from ATA taskfile
250  *	@tf: ATA taskfile of interest
251  *	@dev: ATA device @tf belongs to
252  *
253  *	LOCKING:
254  *	None.
255  *
256  *	Read block address from @tf.  This function can handle all
257  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
258  *	flags select the address format to use.
259  *
260  *	RETURNS:
261  *	Block address read from @tf.
262  */
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264 {
265 	u64 block = 0;
266 
267 	if (tf->flags & ATA_TFLAG_LBA) {
268 		if (tf->flags & ATA_TFLAG_LBA48) {
269 			block |= (u64)tf->hob_lbah << 40;
270 			block |= (u64)tf->hob_lbam << 32;
271 			block |= tf->hob_lbal << 24;
272 		} else
273 			block |= (tf->device & 0xf) << 24;
274 
275 		block |= tf->lbah << 16;
276 		block |= tf->lbam << 8;
277 		block |= tf->lbal;
278 	} else {
279 		u32 cyl, head, sect;
280 
281 		cyl = tf->lbam | (tf->lbah << 8);
282 		head = tf->device & 0xf;
283 		sect = tf->lbal;
284 
285 		block = (cyl * dev->heads + head) * dev->sectors + sect;
286 	}
287 
288 	return block;
289 }
290 
291 /**
292  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
293  *	@tf: Target ATA taskfile
294  *	@dev: ATA device @tf belongs to
295  *	@block: Block address
296  *	@n_block: Number of blocks
297  *	@tf_flags: RW/FUA etc...
298  *	@tag: tag
299  *
300  *	LOCKING:
301  *	None.
302  *
303  *	Build ATA taskfile @tf for read/write request described by
304  *	@block, @n_block, @tf_flags and @tag on @dev.
305  *
306  *	RETURNS:
307  *
308  *	0 on success, -ERANGE if the request is too large for @dev,
309  *	-EINVAL if the request is invalid.
310  */
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 		    u64 block, u32 n_block, unsigned int tf_flags,
313 		    unsigned int tag)
314 {
315 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 	tf->flags |= tf_flags;
317 
318 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 		/* yay, NCQ */
320 		if (!lba_48_ok(block, n_block))
321 			return -ERANGE;
322 
323 		tf->protocol = ATA_PROT_NCQ;
324 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325 
326 		if (tf->flags & ATA_TFLAG_WRITE)
327 			tf->command = ATA_CMD_FPDMA_WRITE;
328 		else
329 			tf->command = ATA_CMD_FPDMA_READ;
330 
331 		tf->nsect = tag << 3;
332 		tf->hob_feature = (n_block >> 8) & 0xff;
333 		tf->feature = n_block & 0xff;
334 
335 		tf->hob_lbah = (block >> 40) & 0xff;
336 		tf->hob_lbam = (block >> 32) & 0xff;
337 		tf->hob_lbal = (block >> 24) & 0xff;
338 		tf->lbah = (block >> 16) & 0xff;
339 		tf->lbam = (block >> 8) & 0xff;
340 		tf->lbal = block & 0xff;
341 
342 		tf->device = 1 << 6;
343 		if (tf->flags & ATA_TFLAG_FUA)
344 			tf->device |= 1 << 7;
345 	} else if (dev->flags & ATA_DFLAG_LBA) {
346 		tf->flags |= ATA_TFLAG_LBA;
347 
348 		if (lba_28_ok(block, n_block)) {
349 			/* use LBA28 */
350 			tf->device |= (block >> 24) & 0xf;
351 		} else if (lba_48_ok(block, n_block)) {
352 			if (!(dev->flags & ATA_DFLAG_LBA48))
353 				return -ERANGE;
354 
355 			/* use LBA48 */
356 			tf->flags |= ATA_TFLAG_LBA48;
357 
358 			tf->hob_nsect = (n_block >> 8) & 0xff;
359 
360 			tf->hob_lbah = (block >> 40) & 0xff;
361 			tf->hob_lbam = (block >> 32) & 0xff;
362 			tf->hob_lbal = (block >> 24) & 0xff;
363 		} else
364 			/* request too large even for LBA48 */
365 			return -ERANGE;
366 
367 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 			return -EINVAL;
369 
370 		tf->nsect = n_block & 0xff;
371 
372 		tf->lbah = (block >> 16) & 0xff;
373 		tf->lbam = (block >> 8) & 0xff;
374 		tf->lbal = block & 0xff;
375 
376 		tf->device |= ATA_LBA;
377 	} else {
378 		/* CHS */
379 		u32 sect, head, cyl, track;
380 
381 		/* The request -may- be too large for CHS addressing. */
382 		if (!lba_28_ok(block, n_block))
383 			return -ERANGE;
384 
385 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 			return -EINVAL;
387 
388 		/* Convert LBA to CHS */
389 		track = (u32)block / dev->sectors;
390 		cyl   = track / dev->heads;
391 		head  = track % dev->heads;
392 		sect  = (u32)block % dev->sectors + 1;
393 
394 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 			(u32)block, track, cyl, head, sect);
396 
397 		/* Check whether the converted CHS can fit.
398 		   Cylinder: 0-65535
399 		   Head: 0-15
400 		   Sector: 1-255*/
401 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 			return -ERANGE;
403 
404 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 		tf->lbal = sect;
406 		tf->lbam = cyl;
407 		tf->lbah = cyl >> 8;
408 		tf->device |= head;
409 	}
410 
411 	return 0;
412 }
413 
414 /**
415  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416  *	@pio_mask: pio_mask
417  *	@mwdma_mask: mwdma_mask
418  *	@udma_mask: udma_mask
419  *
420  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421  *	unsigned int xfer_mask.
422  *
423  *	LOCKING:
424  *	None.
425  *
426  *	RETURNS:
427  *	Packed xfer_mask.
428  */
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 				      unsigned int mwdma_mask,
431 				      unsigned int udma_mask)
432 {
433 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436 }
437 
438 /**
439  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440  *	@xfer_mask: xfer_mask to unpack
441  *	@pio_mask: resulting pio_mask
442  *	@mwdma_mask: resulting mwdma_mask
443  *	@udma_mask: resulting udma_mask
444  *
445  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446  *	Any NULL distination masks will be ignored.
447  */
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 				unsigned int *pio_mask,
450 				unsigned int *mwdma_mask,
451 				unsigned int *udma_mask)
452 {
453 	if (pio_mask)
454 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 	if (mwdma_mask)
456 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 	if (udma_mask)
458 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459 }
460 
461 static const struct ata_xfer_ent {
462 	int shift, bits;
463 	u8 base;
464 } ata_xfer_tbl[] = {
465 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 	{ -1, },
469 };
470 
471 /**
472  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473  *	@xfer_mask: xfer_mask of interest
474  *
475  *	Return matching XFER_* value for @xfer_mask.  Only the highest
476  *	bit of @xfer_mask is considered.
477  *
478  *	LOCKING:
479  *	None.
480  *
481  *	RETURNS:
482  *	Matching XFER_* value, 0 if no match found.
483  */
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485 {
486 	int highbit = fls(xfer_mask) - 1;
487 	const struct ata_xfer_ent *ent;
488 
489 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 			return ent->base + highbit - ent->shift;
492 	return 0;
493 }
494 
495 /**
496  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497  *	@xfer_mode: XFER_* of interest
498  *
499  *	Return matching xfer_mask for @xfer_mode.
500  *
501  *	LOCKING:
502  *	None.
503  *
504  *	RETURNS:
505  *	Matching xfer_mask, 0 if no match found.
506  */
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508 {
509 	const struct ata_xfer_ent *ent;
510 
511 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 			return 1 << (ent->shift + xfer_mode - ent->base);
514 	return 0;
515 }
516 
517 /**
518  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519  *	@xfer_mode: XFER_* of interest
520  *
521  *	Return matching xfer_shift for @xfer_mode.
522  *
523  *	LOCKING:
524  *	None.
525  *
526  *	RETURNS:
527  *	Matching xfer_shift, -1 if no match found.
528  */
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
530 {
531 	const struct ata_xfer_ent *ent;
532 
533 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 			return ent->shift;
536 	return -1;
537 }
538 
539 /**
540  *	ata_mode_string - convert xfer_mask to string
541  *	@xfer_mask: mask of bits supported; only highest bit counts.
542  *
543  *	Determine string which represents the highest speed
544  *	(highest bit in @modemask).
545  *
546  *	LOCKING:
547  *	None.
548  *
549  *	RETURNS:
550  *	Constant C string representing highest speed listed in
551  *	@mode_mask, or the constant C string "<n/a>".
552  */
553 static const char *ata_mode_string(unsigned int xfer_mask)
554 {
555 	static const char * const xfer_mode_str[] = {
556 		"PIO0",
557 		"PIO1",
558 		"PIO2",
559 		"PIO3",
560 		"PIO4",
561 		"PIO5",
562 		"PIO6",
563 		"MWDMA0",
564 		"MWDMA1",
565 		"MWDMA2",
566 		"MWDMA3",
567 		"MWDMA4",
568 		"UDMA/16",
569 		"UDMA/25",
570 		"UDMA/33",
571 		"UDMA/44",
572 		"UDMA/66",
573 		"UDMA/100",
574 		"UDMA/133",
575 		"UDMA7",
576 	};
577 	int highbit;
578 
579 	highbit = fls(xfer_mask) - 1;
580 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 		return xfer_mode_str[highbit];
582 	return "<n/a>";
583 }
584 
585 static const char *sata_spd_string(unsigned int spd)
586 {
587 	static const char * const spd_str[] = {
588 		"1.5 Gbps",
589 		"3.0 Gbps",
590 	};
591 
592 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 		return "<unknown>";
594 	return spd_str[spd - 1];
595 }
596 
597 void ata_dev_disable(struct ata_device *dev)
598 {
599 	if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 		ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 					     ATA_DNXFER_QUIET);
603 		dev->class++;
604 	}
605 }
606 
607 /**
608  *	ata_devchk - PATA device presence detection
609  *	@ap: ATA channel to examine
610  *	@device: Device to examine (starting at zero)
611  *
612  *	This technique was originally described in
613  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
614  *	later found its way into the ATA/ATAPI spec.
615  *
616  *	Write a pattern to the ATA shadow registers,
617  *	and if a device is present, it will respond by
618  *	correctly storing and echoing back the
619  *	ATA shadow register contents.
620  *
621  *	LOCKING:
622  *	caller.
623  */
624 
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626 {
627 	struct ata_ioports *ioaddr = &ap->ioaddr;
628 	u8 nsect, lbal;
629 
630 	ap->ops->dev_select(ap, device);
631 
632 	iowrite8(0x55, ioaddr->nsect_addr);
633 	iowrite8(0xaa, ioaddr->lbal_addr);
634 
635 	iowrite8(0xaa, ioaddr->nsect_addr);
636 	iowrite8(0x55, ioaddr->lbal_addr);
637 
638 	iowrite8(0x55, ioaddr->nsect_addr);
639 	iowrite8(0xaa, ioaddr->lbal_addr);
640 
641 	nsect = ioread8(ioaddr->nsect_addr);
642 	lbal = ioread8(ioaddr->lbal_addr);
643 
644 	if ((nsect == 0x55) && (lbal == 0xaa))
645 		return 1;	/* we found a device */
646 
647 	return 0;		/* nothing found */
648 }
649 
650 /**
651  *	ata_dev_classify - determine device type based on ATA-spec signature
652  *	@tf: ATA taskfile register set for device to be identified
653  *
654  *	Determine from taskfile register contents whether a device is
655  *	ATA or ATAPI, as per "Signature and persistence" section
656  *	of ATA/PI spec (volume 1, sect 5.14).
657  *
658  *	LOCKING:
659  *	None.
660  *
661  *	RETURNS:
662  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663  *	the event of failure.
664  */
665 
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667 {
668 	/* Apple's open source Darwin code hints that some devices only
669 	 * put a proper signature into the LBA mid/high registers,
670 	 * So, we only check those.  It's sufficient for uniqueness.
671 	 */
672 
673 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 		DPRINTK("found ATA device by sig\n");
676 		return ATA_DEV_ATA;
677 	}
678 
679 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 		DPRINTK("found ATAPI device by sig\n");
682 		return ATA_DEV_ATAPI;
683 	}
684 
685 	DPRINTK("unknown device\n");
686 	return ATA_DEV_UNKNOWN;
687 }
688 
689 /**
690  *	ata_dev_try_classify - Parse returned ATA device signature
691  *	@ap: ATA channel to examine
692  *	@device: Device to examine (starting at zero)
693  *	@r_err: Value of error register on completion
694  *
695  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696  *	an ATA/ATAPI-defined set of values is placed in the ATA
697  *	shadow registers, indicating the results of device detection
698  *	and diagnostics.
699  *
700  *	Select the ATA device, and read the values from the ATA shadow
701  *	registers.  Then parse according to the Error register value,
702  *	and the spec-defined values examined by ata_dev_classify().
703  *
704  *	LOCKING:
705  *	caller.
706  *
707  *	RETURNS:
708  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709  */
710 
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713 {
714 	struct ata_taskfile tf;
715 	unsigned int class;
716 	u8 err;
717 
718 	ap->ops->dev_select(ap, device);
719 
720 	memset(&tf, 0, sizeof(tf));
721 
722 	ap->ops->tf_read(ap, &tf);
723 	err = tf.feature;
724 	if (r_err)
725 		*r_err = err;
726 
727 	/* see if device passed diags: if master then continue and warn later */
728 	if (err == 0 && device == 0)
729 		/* diagnostic fail : do nothing _YET_ */
730 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 	else if (err == 1)
732 		/* do nothing */ ;
733 	else if ((device == 0) && (err == 0x81))
734 		/* do nothing */ ;
735 	else
736 		return ATA_DEV_NONE;
737 
738 	/* determine if device is ATA or ATAPI */
739 	class = ata_dev_classify(&tf);
740 
741 	if (class == ATA_DEV_UNKNOWN)
742 		return ATA_DEV_NONE;
743 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 		return ATA_DEV_NONE;
745 	return class;
746 }
747 
748 /**
749  *	ata_id_string - Convert IDENTIFY DEVICE page into string
750  *	@id: IDENTIFY DEVICE results we will examine
751  *	@s: string into which data is output
752  *	@ofs: offset into identify device page
753  *	@len: length of string to return. must be an even number.
754  *
755  *	The strings in the IDENTIFY DEVICE page are broken up into
756  *	16-bit chunks.  Run through the string, and output each
757  *	8-bit chunk linearly, regardless of platform.
758  *
759  *	LOCKING:
760  *	caller.
761  */
762 
763 void ata_id_string(const u16 *id, unsigned char *s,
764 		   unsigned int ofs, unsigned int len)
765 {
766 	unsigned int c;
767 
768 	while (len > 0) {
769 		c = id[ofs] >> 8;
770 		*s = c;
771 		s++;
772 
773 		c = id[ofs] & 0xff;
774 		*s = c;
775 		s++;
776 
777 		ofs++;
778 		len -= 2;
779 	}
780 }
781 
782 /**
783  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784  *	@id: IDENTIFY DEVICE results we will examine
785  *	@s: string into which data is output
786  *	@ofs: offset into identify device page
787  *	@len: length of string to return. must be an odd number.
788  *
789  *	This function is identical to ata_id_string except that it
790  *	trims trailing spaces and terminates the resulting string with
791  *	null.  @len must be actual maximum length (even number) + 1.
792  *
793  *	LOCKING:
794  *	caller.
795  */
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 		     unsigned int ofs, unsigned int len)
798 {
799 	unsigned char *p;
800 
801 	WARN_ON(!(len & 1));
802 
803 	ata_id_string(id, s, ofs, len - 1);
804 
805 	p = s + strnlen(s, len - 1);
806 	while (p > s && p[-1] == ' ')
807 		p--;
808 	*p = '\0';
809 }
810 
811 static u64 ata_id_n_sectors(const u16 *id)
812 {
813 	if (ata_id_has_lba(id)) {
814 		if (ata_id_has_lba48(id))
815 			return ata_id_u64(id, 100);
816 		else
817 			return ata_id_u32(id, 60);
818 	} else {
819 		if (ata_id_current_chs_valid(id))
820 			return ata_id_u32(id, 57);
821 		else
822 			return id[1] * id[3] * id[6];
823 	}
824 }
825 
826 /**
827  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
828  *	@dev: device to identify
829  *	@mode: mode to assume if we cannot tell
830  *
831  *	Set up the timing values for the device based upon the identify
832  *	reported values for the DMA mode. This function is used by drivers
833  *	which rely upon firmware configured modes, but wish to report the
834  *	mode correctly when possible.
835  *
836  *	In addition we emit similarly formatted messages to the default
837  *	ata_dev_set_mode handler, in order to provide consistency of
838  *	presentation.
839  */
840 
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842 {
843 	unsigned int mask;
844 	u8 mode;
845 
846 	/* Pack the DMA modes */
847 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 	if (dev->id[53] & 0x04)
849 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850 
851 	/* Select the mode in use */
852 	mode = ata_xfer_mask2mode(mask);
853 
854 	if (mode != 0) {
855 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 		       ata_mode_string(mask));
857 	} else {
858 		/* SWDMA perhaps ? */
859 		mode = unknown;
860 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 	}
862 
863 	/* Configure the device reporting */
864 	dev->xfer_mode = mode;
865 	dev->xfer_shift = ata_xfer_mode2shift(mode);
866 }
867 
868 /**
869  *	ata_noop_dev_select - Select device 0/1 on ATA bus
870  *	@ap: ATA channel to manipulate
871  *	@device: ATA device (numbered from zero) to select
872  *
873  *	This function performs no actual function.
874  *
875  *	May be used as the dev_select() entry in ata_port_operations.
876  *
877  *	LOCKING:
878  *	caller.
879  */
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881 {
882 }
883 
884 
885 /**
886  *	ata_std_dev_select - Select device 0/1 on ATA bus
887  *	@ap: ATA channel to manipulate
888  *	@device: ATA device (numbered from zero) to select
889  *
890  *	Use the method defined in the ATA specification to
891  *	make either device 0, or device 1, active on the
892  *	ATA channel.  Works with both PIO and MMIO.
893  *
894  *	May be used as the dev_select() entry in ata_port_operations.
895  *
896  *	LOCKING:
897  *	caller.
898  */
899 
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901 {
902 	u8 tmp;
903 
904 	if (device == 0)
905 		tmp = ATA_DEVICE_OBS;
906 	else
907 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
908 
909 	iowrite8(tmp, ap->ioaddr.device_addr);
910 	ata_pause(ap);		/* needed; also flushes, for mmio */
911 }
912 
913 /**
914  *	ata_dev_select - Select device 0/1 on ATA bus
915  *	@ap: ATA channel to manipulate
916  *	@device: ATA device (numbered from zero) to select
917  *	@wait: non-zero to wait for Status register BSY bit to clear
918  *	@can_sleep: non-zero if context allows sleeping
919  *
920  *	Use the method defined in the ATA specification to
921  *	make either device 0, or device 1, active on the
922  *	ATA channel.
923  *
924  *	This is a high-level version of ata_std_dev_select(),
925  *	which additionally provides the services of inserting
926  *	the proper pauses and status polling, where needed.
927  *
928  *	LOCKING:
929  *	caller.
930  */
931 
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 			   unsigned int wait, unsigned int can_sleep)
934 {
935 	if (ata_msg_probe(ap))
936 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 				"device %u, wait %u\n", device, wait);
938 
939 	if (wait)
940 		ata_wait_idle(ap);
941 
942 	ap->ops->dev_select(ap, device);
943 
944 	if (wait) {
945 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 			msleep(150);
947 		ata_wait_idle(ap);
948 	}
949 }
950 
951 /**
952  *	ata_dump_id - IDENTIFY DEVICE info debugging output
953  *	@id: IDENTIFY DEVICE page to dump
954  *
955  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
956  *	page.
957  *
958  *	LOCKING:
959  *	caller.
960  */
961 
962 static inline void ata_dump_id(const u16 *id)
963 {
964 	DPRINTK("49==0x%04x  "
965 		"53==0x%04x  "
966 		"63==0x%04x  "
967 		"64==0x%04x  "
968 		"75==0x%04x  \n",
969 		id[49],
970 		id[53],
971 		id[63],
972 		id[64],
973 		id[75]);
974 	DPRINTK("80==0x%04x  "
975 		"81==0x%04x  "
976 		"82==0x%04x  "
977 		"83==0x%04x  "
978 		"84==0x%04x  \n",
979 		id[80],
980 		id[81],
981 		id[82],
982 		id[83],
983 		id[84]);
984 	DPRINTK("88==0x%04x  "
985 		"93==0x%04x\n",
986 		id[88],
987 		id[93]);
988 }
989 
990 /**
991  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992  *	@id: IDENTIFY data to compute xfer mask from
993  *
994  *	Compute the xfermask for this device. This is not as trivial
995  *	as it seems if we must consider early devices correctly.
996  *
997  *	FIXME: pre IDE drive timing (do we care ?).
998  *
999  *	LOCKING:
1000  *	None.
1001  *
1002  *	RETURNS:
1003  *	Computed xfermask
1004  */
1005 static unsigned int ata_id_xfermask(const u16 *id)
1006 {
1007 	unsigned int pio_mask, mwdma_mask, udma_mask;
1008 
1009 	/* Usual case. Word 53 indicates word 64 is valid */
1010 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 		pio_mask <<= 3;
1013 		pio_mask |= 0x7;
1014 	} else {
1015 		/* If word 64 isn't valid then Word 51 high byte holds
1016 		 * the PIO timing number for the maximum. Turn it into
1017 		 * a mask.
1018 		 */
1019 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 		if (mode < 5)	/* Valid PIO range */
1021                 	pio_mask = (2 << mode) - 1;
1022 		else
1023 			pio_mask = 1;
1024 
1025 		/* But wait.. there's more. Design your standards by
1026 		 * committee and you too can get a free iordy field to
1027 		 * process. However its the speeds not the modes that
1028 		 * are supported... Note drivers using the timing API
1029 		 * will get this right anyway
1030 		 */
1031 	}
1032 
1033 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1034 
1035 	if (ata_id_is_cfa(id)) {
1036 		/*
1037 		 *	Process compact flash extended modes
1038 		 */
1039 		int pio = id[163] & 0x7;
1040 		int dma = (id[163] >> 3) & 7;
1041 
1042 		if (pio)
1043 			pio_mask |= (1 << 5);
1044 		if (pio > 1)
1045 			pio_mask |= (1 << 6);
1046 		if (dma)
1047 			mwdma_mask |= (1 << 3);
1048 		if (dma > 1)
1049 			mwdma_mask |= (1 << 4);
1050 	}
1051 
1052 	udma_mask = 0;
1053 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1055 
1056 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057 }
1058 
1059 /**
1060  *	ata_port_queue_task - Queue port_task
1061  *	@ap: The ata_port to queue port_task for
1062  *	@fn: workqueue function to be scheduled
1063  *	@data: data for @fn to use
1064  *	@delay: delay time for workqueue function
1065  *
1066  *	Schedule @fn(@data) for execution after @delay jiffies using
1067  *	port_task.  There is one port_task per port and it's the
1068  *	user(low level driver)'s responsibility to make sure that only
1069  *	one task is active at any given time.
1070  *
1071  *	libata core layer takes care of synchronization between
1072  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1073  *	synchronization.
1074  *
1075  *	LOCKING:
1076  *	Inherited from caller.
1077  */
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 			 unsigned long delay)
1080 {
1081 	int rc;
1082 
1083 	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 		return;
1085 
1086 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 	ap->port_task_data = data;
1088 
1089 	rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1090 
1091 	/* rc == 0 means that another user is using port task */
1092 	WARN_ON(rc == 0);
1093 }
1094 
1095 /**
1096  *	ata_port_flush_task - Flush port_task
1097  *	@ap: The ata_port to flush port_task for
1098  *
1099  *	After this function completes, port_task is guranteed not to
1100  *	be running or scheduled.
1101  *
1102  *	LOCKING:
1103  *	Kernel thread context (may sleep)
1104  */
1105 void ata_port_flush_task(struct ata_port *ap)
1106 {
1107 	unsigned long flags;
1108 
1109 	DPRINTK("ENTER\n");
1110 
1111 	spin_lock_irqsave(ap->lock, flags);
1112 	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 	spin_unlock_irqrestore(ap->lock, flags);
1114 
1115 	DPRINTK("flush #1\n");
1116 	flush_workqueue(ata_wq);
1117 
1118 	/*
1119 	 * At this point, if a task is running, it's guaranteed to see
1120 	 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 	 * Cancel and flush.
1122 	 */
1123 	if (!cancel_delayed_work(&ap->port_task)) {
1124 		if (ata_msg_ctl(ap))
1125 			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 					__FUNCTION__);
1127 		flush_workqueue(ata_wq);
1128 	}
1129 
1130 	spin_lock_irqsave(ap->lock, flags);
1131 	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 	spin_unlock_irqrestore(ap->lock, flags);
1133 
1134 	if (ata_msg_ctl(ap))
1135 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1136 }
1137 
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1139 {
1140 	struct completion *waiting = qc->private_data;
1141 
1142 	complete(waiting);
1143 }
1144 
1145 /**
1146  *	ata_exec_internal_sg - execute libata internal command
1147  *	@dev: Device to which the command is sent
1148  *	@tf: Taskfile registers for the command and the result
1149  *	@cdb: CDB for packet command
1150  *	@dma_dir: Data tranfer direction of the command
1151  *	@sg: sg list for the data buffer of the command
1152  *	@n_elem: Number of sg entries
1153  *
1154  *	Executes libata internal command with timeout.  @tf contains
1155  *	command on entry and result on return.  Timeout and error
1156  *	conditions are reported via return value.  No recovery action
1157  *	is taken after a command times out.  It's caller's duty to
1158  *	clean up after timeout.
1159  *
1160  *	LOCKING:
1161  *	None.  Should be called with kernel context, might sleep.
1162  *
1163  *	RETURNS:
1164  *	Zero on success, AC_ERR_* mask on failure
1165  */
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 			      struct ata_taskfile *tf, const u8 *cdb,
1168 			      int dma_dir, struct scatterlist *sg,
1169 			      unsigned int n_elem)
1170 {
1171 	struct ata_port *ap = dev->ap;
1172 	u8 command = tf->command;
1173 	struct ata_queued_cmd *qc;
1174 	unsigned int tag, preempted_tag;
1175 	u32 preempted_sactive, preempted_qc_active;
1176 	DECLARE_COMPLETION_ONSTACK(wait);
1177 	unsigned long flags;
1178 	unsigned int err_mask;
1179 	int rc;
1180 
1181 	spin_lock_irqsave(ap->lock, flags);
1182 
1183 	/* no internal command while frozen */
1184 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 		spin_unlock_irqrestore(ap->lock, flags);
1186 		return AC_ERR_SYSTEM;
1187 	}
1188 
1189 	/* initialize internal qc */
1190 
1191 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1192 	 * drivers choke if any other tag is given.  This breaks
1193 	 * ata_tag_internal() test for those drivers.  Don't use new
1194 	 * EH stuff without converting to it.
1195 	 */
1196 	if (ap->ops->error_handler)
1197 		tag = ATA_TAG_INTERNAL;
1198 	else
1199 		tag = 0;
1200 
1201 	if (test_and_set_bit(tag, &ap->qc_allocated))
1202 		BUG();
1203 	qc = __ata_qc_from_tag(ap, tag);
1204 
1205 	qc->tag = tag;
1206 	qc->scsicmd = NULL;
1207 	qc->ap = ap;
1208 	qc->dev = dev;
1209 	ata_qc_reinit(qc);
1210 
1211 	preempted_tag = ap->active_tag;
1212 	preempted_sactive = ap->sactive;
1213 	preempted_qc_active = ap->qc_active;
1214 	ap->active_tag = ATA_TAG_POISON;
1215 	ap->sactive = 0;
1216 	ap->qc_active = 0;
1217 
1218 	/* prepare & issue qc */
1219 	qc->tf = *tf;
1220 	if (cdb)
1221 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 	qc->dma_dir = dma_dir;
1224 	if (dma_dir != DMA_NONE) {
1225 		unsigned int i, buflen = 0;
1226 
1227 		for (i = 0; i < n_elem; i++)
1228 			buflen += sg[i].length;
1229 
1230 		ata_sg_init(qc, sg, n_elem);
1231 		qc->nbytes = buflen;
1232 	}
1233 
1234 	qc->private_data = &wait;
1235 	qc->complete_fn = ata_qc_complete_internal;
1236 
1237 	ata_qc_issue(qc);
1238 
1239 	spin_unlock_irqrestore(ap->lock, flags);
1240 
1241 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1242 
1243 	ata_port_flush_task(ap);
1244 
1245 	if (!rc) {
1246 		spin_lock_irqsave(ap->lock, flags);
1247 
1248 		/* We're racing with irq here.  If we lose, the
1249 		 * following test prevents us from completing the qc
1250 		 * twice.  If we win, the port is frozen and will be
1251 		 * cleaned up by ->post_internal_cmd().
1252 		 */
1253 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 			qc->err_mask |= AC_ERR_TIMEOUT;
1255 
1256 			if (ap->ops->error_handler)
1257 				ata_port_freeze(ap);
1258 			else
1259 				ata_qc_complete(qc);
1260 
1261 			if (ata_msg_warn(ap))
1262 				ata_dev_printk(dev, KERN_WARNING,
1263 					"qc timeout (cmd 0x%x)\n", command);
1264 		}
1265 
1266 		spin_unlock_irqrestore(ap->lock, flags);
1267 	}
1268 
1269 	/* do post_internal_cmd */
1270 	if (ap->ops->post_internal_cmd)
1271 		ap->ops->post_internal_cmd(qc);
1272 
1273 	if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 		if (ata_msg_warn(ap))
1275 			ata_dev_printk(dev, KERN_WARNING,
1276 				"zero err_mask for failed "
1277 				"internal command, assuming AC_ERR_OTHER\n");
1278 		qc->err_mask |= AC_ERR_OTHER;
1279 	}
1280 
1281 	/* finish up */
1282 	spin_lock_irqsave(ap->lock, flags);
1283 
1284 	*tf = qc->result_tf;
1285 	err_mask = qc->err_mask;
1286 
1287 	ata_qc_free(qc);
1288 	ap->active_tag = preempted_tag;
1289 	ap->sactive = preempted_sactive;
1290 	ap->qc_active = preempted_qc_active;
1291 
1292 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 	 * Until those drivers are fixed, we detect the condition
1294 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 	 * port.
1296 	 *
1297 	 * Note that this doesn't change any behavior as internal
1298 	 * command failure results in disabling the device in the
1299 	 * higher layer for LLDDs without new reset/EH callbacks.
1300 	 *
1301 	 * Kill the following code as soon as those drivers are fixed.
1302 	 */
1303 	if (ap->flags & ATA_FLAG_DISABLED) {
1304 		err_mask |= AC_ERR_SYSTEM;
1305 		ata_port_probe(ap);
1306 	}
1307 
1308 	spin_unlock_irqrestore(ap->lock, flags);
1309 
1310 	return err_mask;
1311 }
1312 
1313 /**
1314  *	ata_exec_internal - execute libata internal command
1315  *	@dev: Device to which the command is sent
1316  *	@tf: Taskfile registers for the command and the result
1317  *	@cdb: CDB for packet command
1318  *	@dma_dir: Data tranfer direction of the command
1319  *	@buf: Data buffer of the command
1320  *	@buflen: Length of data buffer
1321  *
1322  *	Wrapper around ata_exec_internal_sg() which takes simple
1323  *	buffer instead of sg list.
1324  *
1325  *	LOCKING:
1326  *	None.  Should be called with kernel context, might sleep.
1327  *
1328  *	RETURNS:
1329  *	Zero on success, AC_ERR_* mask on failure
1330  */
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 			   struct ata_taskfile *tf, const u8 *cdb,
1333 			   int dma_dir, void *buf, unsigned int buflen)
1334 {
1335 	struct scatterlist *psg = NULL, sg;
1336 	unsigned int n_elem = 0;
1337 
1338 	if (dma_dir != DMA_NONE) {
1339 		WARN_ON(!buf);
1340 		sg_init_one(&sg, buf, buflen);
1341 		psg = &sg;
1342 		n_elem++;
1343 	}
1344 
1345 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1346 }
1347 
1348 /**
1349  *	ata_do_simple_cmd - execute simple internal command
1350  *	@dev: Device to which the command is sent
1351  *	@cmd: Opcode to execute
1352  *
1353  *	Execute a 'simple' command, that only consists of the opcode
1354  *	'cmd' itself, without filling any other registers
1355  *
1356  *	LOCKING:
1357  *	Kernel thread context (may sleep).
1358  *
1359  *	RETURNS:
1360  *	Zero on success, AC_ERR_* mask on failure
1361  */
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1363 {
1364 	struct ata_taskfile tf;
1365 
1366 	ata_tf_init(dev, &tf);
1367 
1368 	tf.command = cmd;
1369 	tf.flags |= ATA_TFLAG_DEVICE;
1370 	tf.protocol = ATA_PROT_NODATA;
1371 
1372 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1373 }
1374 
1375 /**
1376  *	ata_pio_need_iordy	-	check if iordy needed
1377  *	@adev: ATA device
1378  *
1379  *	Check if the current speed of the device requires IORDY. Used
1380  *	by various controllers for chip configuration.
1381  */
1382 
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384 {
1385 	int pio;
1386 	int speed = adev->pio_mode - XFER_PIO_0;
1387 
1388 	if (speed < 2)
1389 		return 0;
1390 	if (speed > 2)
1391 		return 1;
1392 
1393 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1394 
1395 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1396 		pio = adev->id[ATA_ID_EIDE_PIO];
1397 		/* Is the speed faster than the drive allows non IORDY ? */
1398 		if (pio) {
1399 			/* This is cycle times not frequency - watch the logic! */
1400 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1401 				return 1;
1402 			return 0;
1403 		}
1404 	}
1405 	return 0;
1406 }
1407 
1408 /**
1409  *	ata_dev_read_id - Read ID data from the specified device
1410  *	@dev: target device
1411  *	@p_class: pointer to class of the target device (may be changed)
1412  *	@flags: ATA_READID_* flags
1413  *	@id: buffer to read IDENTIFY data into
1414  *
1415  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1416  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1418  *	for pre-ATA4 drives.
1419  *
1420  *	LOCKING:
1421  *	Kernel thread context (may sleep)
1422  *
1423  *	RETURNS:
1424  *	0 on success, -errno otherwise.
1425  */
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 		    unsigned int flags, u16 *id)
1428 {
1429 	struct ata_port *ap = dev->ap;
1430 	unsigned int class = *p_class;
1431 	struct ata_taskfile tf;
1432 	unsigned int err_mask = 0;
1433 	const char *reason;
1434 	int rc;
1435 
1436 	if (ata_msg_ctl(ap))
1437 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1438 
1439 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1440 
1441  retry:
1442 	ata_tf_init(dev, &tf);
1443 
1444 	switch (class) {
1445 	case ATA_DEV_ATA:
1446 		tf.command = ATA_CMD_ID_ATA;
1447 		break;
1448 	case ATA_DEV_ATAPI:
1449 		tf.command = ATA_CMD_ID_ATAPI;
1450 		break;
1451 	default:
1452 		rc = -ENODEV;
1453 		reason = "unsupported class";
1454 		goto err_out;
1455 	}
1456 
1457 	tf.protocol = ATA_PROT_PIO;
1458 
1459 	/* Some devices choke if TF registers contain garbage.  Make
1460 	 * sure those are properly initialized.
1461 	 */
1462 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463 
1464 	/* Device presence detection is unreliable on some
1465 	 * controllers.  Always poll IDENTIFY if available.
1466 	 */
1467 	tf.flags |= ATA_TFLAG_POLLING;
1468 
1469 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1471 	if (err_mask) {
1472 		if (err_mask & AC_ERR_NODEV_HINT) {
1473 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 				ap->print_id, dev->devno);
1475 			return -ENOENT;
1476 		}
1477 
1478 		rc = -EIO;
1479 		reason = "I/O error";
1480 		goto err_out;
1481 	}
1482 
1483 	swap_buf_le16(id, ATA_ID_WORDS);
1484 
1485 	/* sanity check */
1486 	rc = -EINVAL;
1487 	reason = "device reports illegal type";
1488 
1489 	if (class == ATA_DEV_ATA) {
1490 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 			goto err_out;
1492 	} else {
1493 		if (ata_id_is_ata(id))
1494 			goto err_out;
1495 	}
1496 
1497 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1498 		/*
1499 		 * The exact sequence expected by certain pre-ATA4 drives is:
1500 		 * SRST RESET
1501 		 * IDENTIFY
1502 		 * INITIALIZE DEVICE PARAMETERS
1503 		 * anything else..
1504 		 * Some drives were very specific about that exact sequence.
1505 		 */
1506 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 			if (err_mask) {
1509 				rc = -EIO;
1510 				reason = "INIT_DEV_PARAMS failed";
1511 				goto err_out;
1512 			}
1513 
1514 			/* current CHS translation info (id[53-58]) might be
1515 			 * changed. reread the identify device info.
1516 			 */
1517 			flags &= ~ATA_READID_POSTRESET;
1518 			goto retry;
1519 		}
1520 	}
1521 
1522 	*p_class = class;
1523 
1524 	return 0;
1525 
1526  err_out:
1527 	if (ata_msg_warn(ap))
1528 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 	return rc;
1531 }
1532 
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1534 {
1535 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1536 }
1537 
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 			       char *desc, size_t desc_sz)
1540 {
1541 	struct ata_port *ap = dev->ap;
1542 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543 
1544 	if (!ata_id_has_ncq(dev->id)) {
1545 		desc[0] = '\0';
1546 		return;
1547 	}
1548 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 		snprintf(desc, desc_sz, "NCQ (not used)");
1550 		return;
1551 	}
1552 	if (ap->flags & ATA_FLAG_NCQ) {
1553 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 		dev->flags |= ATA_DFLAG_NCQ;
1555 	}
1556 
1557 	if (hdepth >= ddepth)
1558 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 	else
1560 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561 }
1562 
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564 {
1565 	int i;
1566 
1567 	if (ap->scsi_host) {
1568 		unsigned int len = 0;
1569 
1570 		for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 			len = max(len, ap->device[i].cdb_len);
1572 
1573 		ap->scsi_host->max_cmd_len = len;
1574 	}
1575 }
1576 
1577 /**
1578  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1579  *	@dev: Target device to configure
1580  *
1581  *	Configure @dev according to @dev->id.  Generic and low-level
1582  *	driver specific fixups are also applied.
1583  *
1584  *	LOCKING:
1585  *	Kernel thread context (may sleep)
1586  *
1587  *	RETURNS:
1588  *	0 on success, -errno otherwise
1589  */
1590 int ata_dev_configure(struct ata_device *dev)
1591 {
1592 	struct ata_port *ap = dev->ap;
1593 	int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 	const u16 *id = dev->id;
1595 	unsigned int xfer_mask;
1596 	char revbuf[7];		/* XYZ-99\0 */
1597 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 	char modelbuf[ATA_ID_PROD_LEN+1];
1599 	int rc;
1600 
1601 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 			       __FUNCTION__);
1604 		return 0;
1605 	}
1606 
1607 	if (ata_msg_probe(ap))
1608 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1609 
1610 	/* set _SDD */
1611 	rc = ata_acpi_push_id(ap, dev->devno);
1612 	if (rc) {
1613 		ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 			rc);
1615 	}
1616 
1617 	/* retrieve and execute the ATA task file of _GTF */
1618 	ata_acpi_exec_tfs(ap);
1619 
1620 	/* print device capabilities */
1621 	if (ata_msg_probe(ap))
1622 		ata_dev_printk(dev, KERN_DEBUG,
1623 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 			       __FUNCTION__,
1626 			       id[49], id[82], id[83], id[84],
1627 			       id[85], id[86], id[87], id[88]);
1628 
1629 	/* initialize to-be-configured parameters */
1630 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 	dev->max_sectors = 0;
1632 	dev->cdb_len = 0;
1633 	dev->n_sectors = 0;
1634 	dev->cylinders = 0;
1635 	dev->heads = 0;
1636 	dev->sectors = 0;
1637 
1638 	/*
1639 	 * common ATA, ATAPI feature tests
1640 	 */
1641 
1642 	/* find max transfer mode; for printk only */
1643 	xfer_mask = ata_id_xfermask(id);
1644 
1645 	if (ata_msg_probe(ap))
1646 		ata_dump_id(id);
1647 
1648 	/* ATA-specific feature tests */
1649 	if (dev->class == ATA_DEV_ATA) {
1650 		if (ata_id_is_cfa(id)) {
1651 			if (id[162] & 1) /* CPRM may make this media unusable */
1652 				ata_dev_printk(dev, KERN_WARNING,
1653 					       "supports DRM functions and may "
1654 					       "not be fully accessable.\n");
1655 			snprintf(revbuf, 7, "CFA");
1656 		}
1657 		else
1658 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1659 
1660 		dev->n_sectors = ata_id_n_sectors(id);
1661 
1662 		/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 		ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 				sizeof(fwrevbuf));
1665 
1666 		ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 				sizeof(modelbuf));
1668 
1669 		if (dev->id[59] & 0x100)
1670 			dev->multi_count = dev->id[59] & 0xff;
1671 
1672 		if (ata_id_has_lba(id)) {
1673 			const char *lba_desc;
1674 			char ncq_desc[20];
1675 
1676 			lba_desc = "LBA";
1677 			dev->flags |= ATA_DFLAG_LBA;
1678 			if (ata_id_has_lba48(id)) {
1679 				dev->flags |= ATA_DFLAG_LBA48;
1680 				lba_desc = "LBA48";
1681 
1682 				if (dev->n_sectors >= (1UL << 28) &&
1683 				    ata_id_has_flush_ext(id))
1684 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1685 			}
1686 
1687 			/* config NCQ */
1688 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689 
1690 			/* print device info to dmesg */
1691 			if (ata_msg_drv(ap) && print_info) {
1692 				ata_dev_printk(dev, KERN_INFO,
1693 					"%s: %s, %s, max %s\n",
1694 					revbuf, modelbuf, fwrevbuf,
1695 					ata_mode_string(xfer_mask));
1696 				ata_dev_printk(dev, KERN_INFO,
1697 					"%Lu sectors, multi %u: %s %s\n",
1698 					(unsigned long long)dev->n_sectors,
1699 					dev->multi_count, lba_desc, ncq_desc);
1700 			}
1701 		} else {
1702 			/* CHS */
1703 
1704 			/* Default translation */
1705 			dev->cylinders	= id[1];
1706 			dev->heads	= id[3];
1707 			dev->sectors	= id[6];
1708 
1709 			if (ata_id_current_chs_valid(id)) {
1710 				/* Current CHS translation is valid. */
1711 				dev->cylinders = id[54];
1712 				dev->heads     = id[55];
1713 				dev->sectors   = id[56];
1714 			}
1715 
1716 			/* print device info to dmesg */
1717 			if (ata_msg_drv(ap) && print_info) {
1718 				ata_dev_printk(dev, KERN_INFO,
1719 					"%s: %s, %s, max %s\n",
1720 					revbuf,	modelbuf, fwrevbuf,
1721 					ata_mode_string(xfer_mask));
1722 				ata_dev_printk(dev, KERN_INFO,
1723 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 					(unsigned long long)dev->n_sectors,
1725 					dev->multi_count, dev->cylinders,
1726 					dev->heads, dev->sectors);
1727 			}
1728 		}
1729 
1730 		dev->cdb_len = 16;
1731 	}
1732 
1733 	/* ATAPI-specific feature tests */
1734 	else if (dev->class == ATA_DEV_ATAPI) {
1735 		char *cdb_intr_string = "";
1736 
1737 		rc = atapi_cdb_len(id);
1738 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 			if (ata_msg_warn(ap))
1740 				ata_dev_printk(dev, KERN_WARNING,
1741 					       "unsupported CDB len\n");
1742 			rc = -EINVAL;
1743 			goto err_out_nosup;
1744 		}
1745 		dev->cdb_len = (unsigned int) rc;
1746 
1747 		if (ata_id_cdb_intr(dev->id)) {
1748 			dev->flags |= ATA_DFLAG_CDB_INTR;
1749 			cdb_intr_string = ", CDB intr";
1750 		}
1751 
1752 		/* print device info to dmesg */
1753 		if (ata_msg_drv(ap) && print_info)
1754 			ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 				       ata_mode_string(xfer_mask),
1756 				       cdb_intr_string);
1757 	}
1758 
1759 	/* determine max_sectors */
1760 	dev->max_sectors = ATA_MAX_SECTORS;
1761 	if (dev->flags & ATA_DFLAG_LBA48)
1762 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763 
1764 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 		/* Let the user know. We don't want to disallow opens for
1766 		   rescue purposes, or in case the vendor is just a blithering
1767 		   idiot */
1768                 if (print_info) {
1769 			ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 			ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1773 		}
1774 	}
1775 
1776 	ata_set_port_max_cmd_len(ap);
1777 
1778 	/* limit bridge transfers to udma5, 200 sectors */
1779 	if (ata_dev_knobble(dev)) {
1780 		if (ata_msg_drv(ap) && print_info)
1781 			ata_dev_printk(dev, KERN_INFO,
1782 				       "applying bridge limits\n");
1783 		dev->udma_mask &= ATA_UDMA5;
1784 		dev->max_sectors = ATA_MAX_SECTORS;
1785 	}
1786 
1787 	if (ap->ops->dev_config)
1788 		ap->ops->dev_config(ap, dev);
1789 
1790 	if (ata_msg_probe(ap))
1791 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1792 			__FUNCTION__, ata_chk_status(ap));
1793 	return 0;
1794 
1795 err_out_nosup:
1796 	if (ata_msg_probe(ap))
1797 		ata_dev_printk(dev, KERN_DEBUG,
1798 			       "%s: EXIT, err\n", __FUNCTION__);
1799 	return rc;
1800 }
1801 
1802 /**
1803  *	ata_bus_probe - Reset and probe ATA bus
1804  *	@ap: Bus to probe
1805  *
1806  *	Master ATA bus probing function.  Initiates a hardware-dependent
1807  *	bus reset, then attempts to identify any devices found on
1808  *	the bus.
1809  *
1810  *	LOCKING:
1811  *	PCI/etc. bus probe sem.
1812  *
1813  *	RETURNS:
1814  *	Zero on success, negative errno otherwise.
1815  */
1816 
1817 int ata_bus_probe(struct ata_port *ap)
1818 {
1819 	unsigned int classes[ATA_MAX_DEVICES];
1820 	int tries[ATA_MAX_DEVICES];
1821 	int i, rc;
1822 	struct ata_device *dev;
1823 
1824 	ata_port_probe(ap);
1825 
1826 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1827 		tries[i] = ATA_PROBE_MAX_TRIES;
1828 
1829  retry:
1830 	/* reset and determine device classes */
1831 	ap->ops->phy_reset(ap);
1832 
1833 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
1834 		dev = &ap->device[i];
1835 
1836 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
1837 		    dev->class != ATA_DEV_UNKNOWN)
1838 			classes[dev->devno] = dev->class;
1839 		else
1840 			classes[dev->devno] = ATA_DEV_NONE;
1841 
1842 		dev->class = ATA_DEV_UNKNOWN;
1843 	}
1844 
1845 	ata_port_probe(ap);
1846 
1847 	/* after the reset the device state is PIO 0 and the controller
1848 	   state is undefined. Record the mode */
1849 
1850 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1851 		ap->device[i].pio_mode = XFER_PIO_0;
1852 
1853 	/* read IDENTIFY page and configure devices. We have to do the identify
1854 	   specific sequence bass-ackwards so that PDIAG- is released by
1855 	   the slave device */
1856 
1857 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
1858 		dev = &ap->device[i];
1859 
1860 		if (tries[i])
1861 			dev->class = classes[i];
1862 
1863 		if (!ata_dev_enabled(dev))
1864 			continue;
1865 
1866 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1867 				     dev->id);
1868 		if (rc)
1869 			goto fail;
1870 	}
1871 
1872 	/* After the identify sequence we can now set up the devices. We do
1873 	   this in the normal order so that the user doesn't get confused */
1874 
1875 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
1876 		dev = &ap->device[i];
1877 		if (!ata_dev_enabled(dev))
1878 			continue;
1879 
1880 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1881 		rc = ata_dev_configure(dev);
1882 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1883 		if (rc)
1884 			goto fail;
1885 	}
1886 
1887 	/* configure transfer mode */
1888 	rc = ata_set_mode(ap, &dev);
1889 	if (rc)
1890 		goto fail;
1891 
1892 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1893 		if (ata_dev_enabled(&ap->device[i]))
1894 			return 0;
1895 
1896 	/* no device present, disable port */
1897 	ata_port_disable(ap);
1898 	ap->ops->port_disable(ap);
1899 	return -ENODEV;
1900 
1901  fail:
1902 	tries[dev->devno]--;
1903 
1904 	switch (rc) {
1905 	case -EINVAL:
1906 		/* eeek, something went very wrong, give up */
1907 		tries[dev->devno] = 0;
1908 		break;
1909 
1910 	case -ENODEV:
1911 		/* give it just one more chance */
1912 		tries[dev->devno] = min(tries[dev->devno], 1);
1913 	case -EIO:
1914 		if (tries[dev->devno] == 1) {
1915 			/* This is the last chance, better to slow
1916 			 * down than lose it.
1917 			 */
1918 			sata_down_spd_limit(ap);
1919 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1920 		}
1921 	}
1922 
1923 	if (!tries[dev->devno])
1924 		ata_dev_disable(dev);
1925 
1926 	goto retry;
1927 }
1928 
1929 /**
1930  *	ata_port_probe - Mark port as enabled
1931  *	@ap: Port for which we indicate enablement
1932  *
1933  *	Modify @ap data structure such that the system
1934  *	thinks that the entire port is enabled.
1935  *
1936  *	LOCKING: host lock, or some other form of
1937  *	serialization.
1938  */
1939 
1940 void ata_port_probe(struct ata_port *ap)
1941 {
1942 	ap->flags &= ~ATA_FLAG_DISABLED;
1943 }
1944 
1945 /**
1946  *	sata_print_link_status - Print SATA link status
1947  *	@ap: SATA port to printk link status about
1948  *
1949  *	This function prints link speed and status of a SATA link.
1950  *
1951  *	LOCKING:
1952  *	None.
1953  */
1954 static void sata_print_link_status(struct ata_port *ap)
1955 {
1956 	u32 sstatus, scontrol, tmp;
1957 
1958 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1959 		return;
1960 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
1961 
1962 	if (ata_port_online(ap)) {
1963 		tmp = (sstatus >> 4) & 0xf;
1964 		ata_port_printk(ap, KERN_INFO,
1965 				"SATA link up %s (SStatus %X SControl %X)\n",
1966 				sata_spd_string(tmp), sstatus, scontrol);
1967 	} else {
1968 		ata_port_printk(ap, KERN_INFO,
1969 				"SATA link down (SStatus %X SControl %X)\n",
1970 				sstatus, scontrol);
1971 	}
1972 }
1973 
1974 /**
1975  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
1976  *	@ap: SATA port associated with target SATA PHY.
1977  *
1978  *	This function issues commands to standard SATA Sxxx
1979  *	PHY registers, to wake up the phy (and device), and
1980  *	clear any reset condition.
1981  *
1982  *	LOCKING:
1983  *	PCI/etc. bus probe sem.
1984  *
1985  */
1986 void __sata_phy_reset(struct ata_port *ap)
1987 {
1988 	u32 sstatus;
1989 	unsigned long timeout = jiffies + (HZ * 5);
1990 
1991 	if (ap->flags & ATA_FLAG_SATA_RESET) {
1992 		/* issue phy wake/reset */
1993 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1994 		/* Couldn't find anything in SATA I/II specs, but
1995 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
1996 		mdelay(1);
1997 	}
1998 	/* phy wake/clear reset */
1999 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2000 
2001 	/* wait for phy to become ready, if necessary */
2002 	do {
2003 		msleep(200);
2004 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2005 		if ((sstatus & 0xf) != 1)
2006 			break;
2007 	} while (time_before(jiffies, timeout));
2008 
2009 	/* print link status */
2010 	sata_print_link_status(ap);
2011 
2012 	/* TODO: phy layer with polling, timeouts, etc. */
2013 	if (!ata_port_offline(ap))
2014 		ata_port_probe(ap);
2015 	else
2016 		ata_port_disable(ap);
2017 
2018 	if (ap->flags & ATA_FLAG_DISABLED)
2019 		return;
2020 
2021 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2022 		ata_port_disable(ap);
2023 		return;
2024 	}
2025 
2026 	ap->cbl = ATA_CBL_SATA;
2027 }
2028 
2029 /**
2030  *	sata_phy_reset - Reset SATA bus.
2031  *	@ap: SATA port associated with target SATA PHY.
2032  *
2033  *	This function resets the SATA bus, and then probes
2034  *	the bus for devices.
2035  *
2036  *	LOCKING:
2037  *	PCI/etc. bus probe sem.
2038  *
2039  */
2040 void sata_phy_reset(struct ata_port *ap)
2041 {
2042 	__sata_phy_reset(ap);
2043 	if (ap->flags & ATA_FLAG_DISABLED)
2044 		return;
2045 	ata_bus_reset(ap);
2046 }
2047 
2048 /**
2049  *	ata_dev_pair		-	return other device on cable
2050  *	@adev: device
2051  *
2052  *	Obtain the other device on the same cable, or if none is
2053  *	present NULL is returned
2054  */
2055 
2056 struct ata_device *ata_dev_pair(struct ata_device *adev)
2057 {
2058 	struct ata_port *ap = adev->ap;
2059 	struct ata_device *pair = &ap->device[1 - adev->devno];
2060 	if (!ata_dev_enabled(pair))
2061 		return NULL;
2062 	return pair;
2063 }
2064 
2065 /**
2066  *	ata_port_disable - Disable port.
2067  *	@ap: Port to be disabled.
2068  *
2069  *	Modify @ap data structure such that the system
2070  *	thinks that the entire port is disabled, and should
2071  *	never attempt to probe or communicate with devices
2072  *	on this port.
2073  *
2074  *	LOCKING: host lock, or some other form of
2075  *	serialization.
2076  */
2077 
2078 void ata_port_disable(struct ata_port *ap)
2079 {
2080 	ap->device[0].class = ATA_DEV_NONE;
2081 	ap->device[1].class = ATA_DEV_NONE;
2082 	ap->flags |= ATA_FLAG_DISABLED;
2083 }
2084 
2085 /**
2086  *	sata_down_spd_limit - adjust SATA spd limit downward
2087  *	@ap: Port to adjust SATA spd limit for
2088  *
2089  *	Adjust SATA spd limit of @ap downward.  Note that this
2090  *	function only adjusts the limit.  The change must be applied
2091  *	using sata_set_spd().
2092  *
2093  *	LOCKING:
2094  *	Inherited from caller.
2095  *
2096  *	RETURNS:
2097  *	0 on success, negative errno on failure
2098  */
2099 int sata_down_spd_limit(struct ata_port *ap)
2100 {
2101 	u32 sstatus, spd, mask;
2102 	int rc, highbit;
2103 
2104 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2105 	if (rc)
2106 		return rc;
2107 
2108 	mask = ap->sata_spd_limit;
2109 	if (mask <= 1)
2110 		return -EINVAL;
2111 	highbit = fls(mask) - 1;
2112 	mask &= ~(1 << highbit);
2113 
2114 	spd = (sstatus >> 4) & 0xf;
2115 	if (spd <= 1)
2116 		return -EINVAL;
2117 	spd--;
2118 	mask &= (1 << spd) - 1;
2119 	if (!mask)
2120 		return -EINVAL;
2121 
2122 	ap->sata_spd_limit = mask;
2123 
2124 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2125 			sata_spd_string(fls(mask)));
2126 
2127 	return 0;
2128 }
2129 
2130 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2131 {
2132 	u32 spd, limit;
2133 
2134 	if (ap->sata_spd_limit == UINT_MAX)
2135 		limit = 0;
2136 	else
2137 		limit = fls(ap->sata_spd_limit);
2138 
2139 	spd = (*scontrol >> 4) & 0xf;
2140 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2141 
2142 	return spd != limit;
2143 }
2144 
2145 /**
2146  *	sata_set_spd_needed - is SATA spd configuration needed
2147  *	@ap: Port in question
2148  *
2149  *	Test whether the spd limit in SControl matches
2150  *	@ap->sata_spd_limit.  This function is used to determine
2151  *	whether hardreset is necessary to apply SATA spd
2152  *	configuration.
2153  *
2154  *	LOCKING:
2155  *	Inherited from caller.
2156  *
2157  *	RETURNS:
2158  *	1 if SATA spd configuration is needed, 0 otherwise.
2159  */
2160 int sata_set_spd_needed(struct ata_port *ap)
2161 {
2162 	u32 scontrol;
2163 
2164 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2165 		return 0;
2166 
2167 	return __sata_set_spd_needed(ap, &scontrol);
2168 }
2169 
2170 /**
2171  *	sata_set_spd - set SATA spd according to spd limit
2172  *	@ap: Port to set SATA spd for
2173  *
2174  *	Set SATA spd of @ap according to sata_spd_limit.
2175  *
2176  *	LOCKING:
2177  *	Inherited from caller.
2178  *
2179  *	RETURNS:
2180  *	0 if spd doesn't need to be changed, 1 if spd has been
2181  *	changed.  Negative errno if SCR registers are inaccessible.
2182  */
2183 int sata_set_spd(struct ata_port *ap)
2184 {
2185 	u32 scontrol;
2186 	int rc;
2187 
2188 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2189 		return rc;
2190 
2191 	if (!__sata_set_spd_needed(ap, &scontrol))
2192 		return 0;
2193 
2194 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2195 		return rc;
2196 
2197 	return 1;
2198 }
2199 
2200 /*
2201  * This mode timing computation functionality is ported over from
2202  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2203  */
2204 /*
2205  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2206  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2207  * for UDMA6, which is currently supported only by Maxtor drives.
2208  *
2209  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2210  */
2211 
2212 static const struct ata_timing ata_timing[] = {
2213 
2214 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2215 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2216 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2217 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2218 
2219 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2220 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2221 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2222 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2223 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2224 
2225 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2226 
2227 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2228 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2229 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2230 
2231 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2232 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2233 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2234 
2235 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2236 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2237 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2238 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2239 
2240 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2241 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2242 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2243 
2244 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2245 
2246 	{ 0xFF }
2247 };
2248 
2249 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2250 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2251 
2252 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2253 {
2254 	q->setup   = EZ(t->setup   * 1000,  T);
2255 	q->act8b   = EZ(t->act8b   * 1000,  T);
2256 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2257 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2258 	q->active  = EZ(t->active  * 1000,  T);
2259 	q->recover = EZ(t->recover * 1000,  T);
2260 	q->cycle   = EZ(t->cycle   * 1000,  T);
2261 	q->udma    = EZ(t->udma    * 1000, UT);
2262 }
2263 
2264 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2265 		      struct ata_timing *m, unsigned int what)
2266 {
2267 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2268 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2269 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2270 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2271 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2272 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2273 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2274 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2275 }
2276 
2277 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2278 {
2279 	const struct ata_timing *t;
2280 
2281 	for (t = ata_timing; t->mode != speed; t++)
2282 		if (t->mode == 0xFF)
2283 			return NULL;
2284 	return t;
2285 }
2286 
2287 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2288 		       struct ata_timing *t, int T, int UT)
2289 {
2290 	const struct ata_timing *s;
2291 	struct ata_timing p;
2292 
2293 	/*
2294 	 * Find the mode.
2295 	 */
2296 
2297 	if (!(s = ata_timing_find_mode(speed)))
2298 		return -EINVAL;
2299 
2300 	memcpy(t, s, sizeof(*s));
2301 
2302 	/*
2303 	 * If the drive is an EIDE drive, it can tell us it needs extended
2304 	 * PIO/MW_DMA cycle timing.
2305 	 */
2306 
2307 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2308 		memset(&p, 0, sizeof(p));
2309 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2310 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2311 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2312 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2313 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2314 		}
2315 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2316 	}
2317 
2318 	/*
2319 	 * Convert the timing to bus clock counts.
2320 	 */
2321 
2322 	ata_timing_quantize(t, t, T, UT);
2323 
2324 	/*
2325 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2326 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2327 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2328 	 */
2329 
2330 	if (speed > XFER_PIO_6) {
2331 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2332 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2333 	}
2334 
2335 	/*
2336 	 * Lengthen active & recovery time so that cycle time is correct.
2337 	 */
2338 
2339 	if (t->act8b + t->rec8b < t->cyc8b) {
2340 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2341 		t->rec8b = t->cyc8b - t->act8b;
2342 	}
2343 
2344 	if (t->active + t->recover < t->cycle) {
2345 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2346 		t->recover = t->cycle - t->active;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 /**
2353  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2354  *	@dev: Device to adjust xfer masks
2355  *	@sel: ATA_DNXFER_* selector
2356  *
2357  *	Adjust xfer masks of @dev downward.  Note that this function
2358  *	does not apply the change.  Invoking ata_set_mode() afterwards
2359  *	will apply the limit.
2360  *
2361  *	LOCKING:
2362  *	Inherited from caller.
2363  *
2364  *	RETURNS:
2365  *	0 on success, negative errno on failure
2366  */
2367 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2368 {
2369 	char buf[32];
2370 	unsigned int orig_mask, xfer_mask;
2371 	unsigned int pio_mask, mwdma_mask, udma_mask;
2372 	int quiet, highbit;
2373 
2374 	quiet = !!(sel & ATA_DNXFER_QUIET);
2375 	sel &= ~ATA_DNXFER_QUIET;
2376 
2377 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2378 						  dev->mwdma_mask,
2379 						  dev->udma_mask);
2380 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2381 
2382 	switch (sel) {
2383 	case ATA_DNXFER_PIO:
2384 		highbit = fls(pio_mask) - 1;
2385 		pio_mask &= ~(1 << highbit);
2386 		break;
2387 
2388 	case ATA_DNXFER_DMA:
2389 		if (udma_mask) {
2390 			highbit = fls(udma_mask) - 1;
2391 			udma_mask &= ~(1 << highbit);
2392 			if (!udma_mask)
2393 				return -ENOENT;
2394 		} else if (mwdma_mask) {
2395 			highbit = fls(mwdma_mask) - 1;
2396 			mwdma_mask &= ~(1 << highbit);
2397 			if (!mwdma_mask)
2398 				return -ENOENT;
2399 		}
2400 		break;
2401 
2402 	case ATA_DNXFER_40C:
2403 		udma_mask &= ATA_UDMA_MASK_40C;
2404 		break;
2405 
2406 	case ATA_DNXFER_FORCE_PIO0:
2407 		pio_mask &= 1;
2408 	case ATA_DNXFER_FORCE_PIO:
2409 		mwdma_mask = 0;
2410 		udma_mask = 0;
2411 		break;
2412 
2413 	default:
2414 		BUG();
2415 	}
2416 
2417 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2418 
2419 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2420 		return -ENOENT;
2421 
2422 	if (!quiet) {
2423 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2424 			snprintf(buf, sizeof(buf), "%s:%s",
2425 				 ata_mode_string(xfer_mask),
2426 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2427 		else
2428 			snprintf(buf, sizeof(buf), "%s",
2429 				 ata_mode_string(xfer_mask));
2430 
2431 		ata_dev_printk(dev, KERN_WARNING,
2432 			       "limiting speed to %s\n", buf);
2433 	}
2434 
2435 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2436 			    &dev->udma_mask);
2437 
2438 	return 0;
2439 }
2440 
2441 static int ata_dev_set_mode(struct ata_device *dev)
2442 {
2443 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2444 	unsigned int err_mask;
2445 	int rc;
2446 
2447 	dev->flags &= ~ATA_DFLAG_PIO;
2448 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2449 		dev->flags |= ATA_DFLAG_PIO;
2450 
2451 	err_mask = ata_dev_set_xfermode(dev);
2452 	/* Old CFA may refuse this command, which is just fine */
2453 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2454         	err_mask &= ~AC_ERR_DEV;
2455 
2456 	if (err_mask) {
2457 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2458 			       "(err_mask=0x%x)\n", err_mask);
2459 		return -EIO;
2460 	}
2461 
2462 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2463 	rc = ata_dev_revalidate(dev, 0);
2464 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2465 	if (rc)
2466 		return rc;
2467 
2468 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2469 		dev->xfer_shift, (int)dev->xfer_mode);
2470 
2471 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2472 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2473 	return 0;
2474 }
2475 
2476 /**
2477  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2478  *	@ap: port on which timings will be programmed
2479  *	@r_failed_dev: out paramter for failed device
2480  *
2481  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2482  *	ata_set_mode() fails, pointer to the failing device is
2483  *	returned in @r_failed_dev.
2484  *
2485  *	LOCKING:
2486  *	PCI/etc. bus probe sem.
2487  *
2488  *	RETURNS:
2489  *	0 on success, negative errno otherwise
2490  */
2491 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2492 {
2493 	struct ata_device *dev;
2494 	int i, rc = 0, used_dma = 0, found = 0;
2495 
2496 	/* has private set_mode? */
2497 	if (ap->ops->set_mode)
2498 		return ap->ops->set_mode(ap, r_failed_dev);
2499 
2500 	/* step 1: calculate xfer_mask */
2501 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2502 		unsigned int pio_mask, dma_mask;
2503 
2504 		dev = &ap->device[i];
2505 
2506 		if (!ata_dev_enabled(dev))
2507 			continue;
2508 
2509 		ata_dev_xfermask(dev);
2510 
2511 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2512 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2513 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2514 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2515 
2516 		found = 1;
2517 		if (dev->dma_mode)
2518 			used_dma = 1;
2519 	}
2520 	if (!found)
2521 		goto out;
2522 
2523 	/* step 2: always set host PIO timings */
2524 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2525 		dev = &ap->device[i];
2526 		if (!ata_dev_enabled(dev))
2527 			continue;
2528 
2529 		if (!dev->pio_mode) {
2530 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2531 			rc = -EINVAL;
2532 			goto out;
2533 		}
2534 
2535 		dev->xfer_mode = dev->pio_mode;
2536 		dev->xfer_shift = ATA_SHIFT_PIO;
2537 		if (ap->ops->set_piomode)
2538 			ap->ops->set_piomode(ap, dev);
2539 	}
2540 
2541 	/* step 3: set host DMA timings */
2542 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2543 		dev = &ap->device[i];
2544 
2545 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2546 			continue;
2547 
2548 		dev->xfer_mode = dev->dma_mode;
2549 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2550 		if (ap->ops->set_dmamode)
2551 			ap->ops->set_dmamode(ap, dev);
2552 	}
2553 
2554 	/* step 4: update devices' xfer mode */
2555 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2556 		dev = &ap->device[i];
2557 
2558 		/* don't update suspended devices' xfer mode */
2559 		if (!ata_dev_ready(dev))
2560 			continue;
2561 
2562 		rc = ata_dev_set_mode(dev);
2563 		if (rc)
2564 			goto out;
2565 	}
2566 
2567 	/* Record simplex status. If we selected DMA then the other
2568 	 * host channels are not permitted to do so.
2569 	 */
2570 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2571 		ap->host->simplex_claimed = ap;
2572 
2573 	/* step5: chip specific finalisation */
2574 	if (ap->ops->post_set_mode)
2575 		ap->ops->post_set_mode(ap);
2576  out:
2577 	if (rc)
2578 		*r_failed_dev = dev;
2579 	return rc;
2580 }
2581 
2582 /**
2583  *	ata_tf_to_host - issue ATA taskfile to host controller
2584  *	@ap: port to which command is being issued
2585  *	@tf: ATA taskfile register set
2586  *
2587  *	Issues ATA taskfile register set to ATA host controller,
2588  *	with proper synchronization with interrupt handler and
2589  *	other threads.
2590  *
2591  *	LOCKING:
2592  *	spin_lock_irqsave(host lock)
2593  */
2594 
2595 static inline void ata_tf_to_host(struct ata_port *ap,
2596 				  const struct ata_taskfile *tf)
2597 {
2598 	ap->ops->tf_load(ap, tf);
2599 	ap->ops->exec_command(ap, tf);
2600 }
2601 
2602 /**
2603  *	ata_busy_sleep - sleep until BSY clears, or timeout
2604  *	@ap: port containing status register to be polled
2605  *	@tmout_pat: impatience timeout
2606  *	@tmout: overall timeout
2607  *
2608  *	Sleep until ATA Status register bit BSY clears,
2609  *	or a timeout occurs.
2610  *
2611  *	LOCKING:
2612  *	Kernel thread context (may sleep).
2613  *
2614  *	RETURNS:
2615  *	0 on success, -errno otherwise.
2616  */
2617 int ata_busy_sleep(struct ata_port *ap,
2618 		   unsigned long tmout_pat, unsigned long tmout)
2619 {
2620 	unsigned long timer_start, timeout;
2621 	u8 status;
2622 
2623 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2624 	timer_start = jiffies;
2625 	timeout = timer_start + tmout_pat;
2626 	while (status != 0xff && (status & ATA_BUSY) &&
2627 	       time_before(jiffies, timeout)) {
2628 		msleep(50);
2629 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2630 	}
2631 
2632 	if (status != 0xff && (status & ATA_BUSY))
2633 		ata_port_printk(ap, KERN_WARNING,
2634 				"port is slow to respond, please be patient "
2635 				"(Status 0x%x)\n", status);
2636 
2637 	timeout = timer_start + tmout;
2638 	while (status != 0xff && (status & ATA_BUSY) &&
2639 	       time_before(jiffies, timeout)) {
2640 		msleep(50);
2641 		status = ata_chk_status(ap);
2642 	}
2643 
2644 	if (status == 0xff)
2645 		return -ENODEV;
2646 
2647 	if (status & ATA_BUSY) {
2648 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2649 				"(%lu secs, Status 0x%x)\n",
2650 				tmout / HZ, status);
2651 		return -EBUSY;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2658 {
2659 	struct ata_ioports *ioaddr = &ap->ioaddr;
2660 	unsigned int dev0 = devmask & (1 << 0);
2661 	unsigned int dev1 = devmask & (1 << 1);
2662 	unsigned long timeout;
2663 
2664 	/* if device 0 was found in ata_devchk, wait for its
2665 	 * BSY bit to clear
2666 	 */
2667 	if (dev0)
2668 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2669 
2670 	/* if device 1 was found in ata_devchk, wait for
2671 	 * register access, then wait for BSY to clear
2672 	 */
2673 	timeout = jiffies + ATA_TMOUT_BOOT;
2674 	while (dev1) {
2675 		u8 nsect, lbal;
2676 
2677 		ap->ops->dev_select(ap, 1);
2678 		nsect = ioread8(ioaddr->nsect_addr);
2679 		lbal = ioread8(ioaddr->lbal_addr);
2680 		if ((nsect == 1) && (lbal == 1))
2681 			break;
2682 		if (time_after(jiffies, timeout)) {
2683 			dev1 = 0;
2684 			break;
2685 		}
2686 		msleep(50);	/* give drive a breather */
2687 	}
2688 	if (dev1)
2689 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2690 
2691 	/* is all this really necessary? */
2692 	ap->ops->dev_select(ap, 0);
2693 	if (dev1)
2694 		ap->ops->dev_select(ap, 1);
2695 	if (dev0)
2696 		ap->ops->dev_select(ap, 0);
2697 }
2698 
2699 static unsigned int ata_bus_softreset(struct ata_port *ap,
2700 				      unsigned int devmask)
2701 {
2702 	struct ata_ioports *ioaddr = &ap->ioaddr;
2703 
2704 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2705 
2706 	/* software reset.  causes dev0 to be selected */
2707 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2708 	udelay(20);	/* FIXME: flush */
2709 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2710 	udelay(20);	/* FIXME: flush */
2711 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2712 
2713 	/* spec mandates ">= 2ms" before checking status.
2714 	 * We wait 150ms, because that was the magic delay used for
2715 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2716 	 * between when the ATA command register is written, and then
2717 	 * status is checked.  Because waiting for "a while" before
2718 	 * checking status is fine, post SRST, we perform this magic
2719 	 * delay here as well.
2720 	 *
2721 	 * Old drivers/ide uses the 2mS rule and then waits for ready
2722 	 */
2723 	msleep(150);
2724 
2725 	/* Before we perform post reset processing we want to see if
2726 	 * the bus shows 0xFF because the odd clown forgets the D7
2727 	 * pulldown resistor.
2728 	 */
2729 	if (ata_check_status(ap) == 0xFF)
2730 		return 0;
2731 
2732 	ata_bus_post_reset(ap, devmask);
2733 
2734 	return 0;
2735 }
2736 
2737 /**
2738  *	ata_bus_reset - reset host port and associated ATA channel
2739  *	@ap: port to reset
2740  *
2741  *	This is typically the first time we actually start issuing
2742  *	commands to the ATA channel.  We wait for BSY to clear, then
2743  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2744  *	result.  Determine what devices, if any, are on the channel
2745  *	by looking at the device 0/1 error register.  Look at the signature
2746  *	stored in each device's taskfile registers, to determine if
2747  *	the device is ATA or ATAPI.
2748  *
2749  *	LOCKING:
2750  *	PCI/etc. bus probe sem.
2751  *	Obtains host lock.
2752  *
2753  *	SIDE EFFECTS:
2754  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2755  */
2756 
2757 void ata_bus_reset(struct ata_port *ap)
2758 {
2759 	struct ata_ioports *ioaddr = &ap->ioaddr;
2760 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2761 	u8 err;
2762 	unsigned int dev0, dev1 = 0, devmask = 0;
2763 
2764 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2765 
2766 	/* determine if device 0/1 are present */
2767 	if (ap->flags & ATA_FLAG_SATA_RESET)
2768 		dev0 = 1;
2769 	else {
2770 		dev0 = ata_devchk(ap, 0);
2771 		if (slave_possible)
2772 			dev1 = ata_devchk(ap, 1);
2773 	}
2774 
2775 	if (dev0)
2776 		devmask |= (1 << 0);
2777 	if (dev1)
2778 		devmask |= (1 << 1);
2779 
2780 	/* select device 0 again */
2781 	ap->ops->dev_select(ap, 0);
2782 
2783 	/* issue bus reset */
2784 	if (ap->flags & ATA_FLAG_SRST)
2785 		if (ata_bus_softreset(ap, devmask))
2786 			goto err_out;
2787 
2788 	/*
2789 	 * determine by signature whether we have ATA or ATAPI devices
2790 	 */
2791 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2792 	if ((slave_possible) && (err != 0x81))
2793 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2794 
2795 	/* re-enable interrupts */
2796 	ap->ops->irq_on(ap);
2797 
2798 	/* is double-select really necessary? */
2799 	if (ap->device[1].class != ATA_DEV_NONE)
2800 		ap->ops->dev_select(ap, 1);
2801 	if (ap->device[0].class != ATA_DEV_NONE)
2802 		ap->ops->dev_select(ap, 0);
2803 
2804 	/* if no devices were detected, disable this port */
2805 	if ((ap->device[0].class == ATA_DEV_NONE) &&
2806 	    (ap->device[1].class == ATA_DEV_NONE))
2807 		goto err_out;
2808 
2809 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2810 		/* set up device control for ATA_FLAG_SATA_RESET */
2811 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2812 	}
2813 
2814 	DPRINTK("EXIT\n");
2815 	return;
2816 
2817 err_out:
2818 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2819 	ap->ops->port_disable(ap);
2820 
2821 	DPRINTK("EXIT\n");
2822 }
2823 
2824 /**
2825  *	sata_phy_debounce - debounce SATA phy status
2826  *	@ap: ATA port to debounce SATA phy status for
2827  *	@params: timing parameters { interval, duratinon, timeout } in msec
2828  *
2829  *	Make sure SStatus of @ap reaches stable state, determined by
2830  *	holding the same value where DET is not 1 for @duration polled
2831  *	every @interval, before @timeout.  Timeout constraints the
2832  *	beginning of the stable state.  Because, after hot unplugging,
2833  *	DET gets stuck at 1 on some controllers, this functions waits
2834  *	until timeout then returns 0 if DET is stable at 1.
2835  *
2836  *	LOCKING:
2837  *	Kernel thread context (may sleep)
2838  *
2839  *	RETURNS:
2840  *	0 on success, -errno on failure.
2841  */
2842 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2843 {
2844 	unsigned long interval_msec = params[0];
2845 	unsigned long duration = params[1] * HZ / 1000;
2846 	unsigned long timeout = jiffies + params[2] * HZ / 1000;
2847 	unsigned long last_jiffies;
2848 	u32 last, cur;
2849 	int rc;
2850 
2851 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2852 		return rc;
2853 	cur &= 0xf;
2854 
2855 	last = cur;
2856 	last_jiffies = jiffies;
2857 
2858 	while (1) {
2859 		msleep(interval_msec);
2860 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2861 			return rc;
2862 		cur &= 0xf;
2863 
2864 		/* DET stable? */
2865 		if (cur == last) {
2866 			if (cur == 1 && time_before(jiffies, timeout))
2867 				continue;
2868 			if (time_after(jiffies, last_jiffies + duration))
2869 				return 0;
2870 			continue;
2871 		}
2872 
2873 		/* unstable, start over */
2874 		last = cur;
2875 		last_jiffies = jiffies;
2876 
2877 		/* check timeout */
2878 		if (time_after(jiffies, timeout))
2879 			return -EBUSY;
2880 	}
2881 }
2882 
2883 /**
2884  *	sata_phy_resume - resume SATA phy
2885  *	@ap: ATA port to resume SATA phy for
2886  *	@params: timing parameters { interval, duratinon, timeout } in msec
2887  *
2888  *	Resume SATA phy of @ap and debounce it.
2889  *
2890  *	LOCKING:
2891  *	Kernel thread context (may sleep)
2892  *
2893  *	RETURNS:
2894  *	0 on success, -errno on failure.
2895  */
2896 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2897 {
2898 	u32 scontrol;
2899 	int rc;
2900 
2901 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2902 		return rc;
2903 
2904 	scontrol = (scontrol & 0x0f0) | 0x300;
2905 
2906 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2907 		return rc;
2908 
2909 	/* Some PHYs react badly if SStatus is pounded immediately
2910 	 * after resuming.  Delay 200ms before debouncing.
2911 	 */
2912 	msleep(200);
2913 
2914 	return sata_phy_debounce(ap, params);
2915 }
2916 
2917 static void ata_wait_spinup(struct ata_port *ap)
2918 {
2919 	struct ata_eh_context *ehc = &ap->eh_context;
2920 	unsigned long end, secs;
2921 	int rc;
2922 
2923 	/* first, debounce phy if SATA */
2924 	if (ap->cbl == ATA_CBL_SATA) {
2925 		rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2926 
2927 		/* if debounced successfully and offline, no need to wait */
2928 		if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2929 			return;
2930 	}
2931 
2932 	/* okay, let's give the drive time to spin up */
2933 	end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2934 	secs = ((end - jiffies) + HZ - 1) / HZ;
2935 
2936 	if (time_after(jiffies, end))
2937 		return;
2938 
2939 	if (secs > 5)
2940 		ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2941 				"(%lu secs)\n", secs);
2942 
2943 	schedule_timeout_uninterruptible(end - jiffies);
2944 }
2945 
2946 /**
2947  *	ata_std_prereset - prepare for reset
2948  *	@ap: ATA port to be reset
2949  *
2950  *	@ap is about to be reset.  Initialize it.
2951  *
2952  *	LOCKING:
2953  *	Kernel thread context (may sleep)
2954  *
2955  *	RETURNS:
2956  *	0 on success, -errno otherwise.
2957  */
2958 int ata_std_prereset(struct ata_port *ap)
2959 {
2960 	struct ata_eh_context *ehc = &ap->eh_context;
2961 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2962 	int rc;
2963 
2964 	/* handle link resume & hotplug spinup */
2965 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2966 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2967 		ehc->i.action |= ATA_EH_HARDRESET;
2968 
2969 	if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2970 	    (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2971 		ata_wait_spinup(ap);
2972 
2973 	/* if we're about to do hardreset, nothing more to do */
2974 	if (ehc->i.action & ATA_EH_HARDRESET)
2975 		return 0;
2976 
2977 	/* if SATA, resume phy */
2978 	if (ap->cbl == ATA_CBL_SATA) {
2979 		rc = sata_phy_resume(ap, timing);
2980 		if (rc && rc != -EOPNOTSUPP) {
2981 			/* phy resume failed */
2982 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
2983 					"link for reset (errno=%d)\n", rc);
2984 			return rc;
2985 		}
2986 	}
2987 
2988 	/* Wait for !BSY if the controller can wait for the first D2H
2989 	 * Reg FIS and we don't know that no device is attached.
2990 	 */
2991 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2992 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2993 
2994 	return 0;
2995 }
2996 
2997 /**
2998  *	ata_std_softreset - reset host port via ATA SRST
2999  *	@ap: port to reset
3000  *	@classes: resulting classes of attached devices
3001  *
3002  *	Reset host port using ATA SRST.
3003  *
3004  *	LOCKING:
3005  *	Kernel thread context (may sleep)
3006  *
3007  *	RETURNS:
3008  *	0 on success, -errno otherwise.
3009  */
3010 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3011 {
3012 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3013 	unsigned int devmask = 0, err_mask;
3014 	u8 err;
3015 
3016 	DPRINTK("ENTER\n");
3017 
3018 	if (ata_port_offline(ap)) {
3019 		classes[0] = ATA_DEV_NONE;
3020 		goto out;
3021 	}
3022 
3023 	/* determine if device 0/1 are present */
3024 	if (ata_devchk(ap, 0))
3025 		devmask |= (1 << 0);
3026 	if (slave_possible && ata_devchk(ap, 1))
3027 		devmask |= (1 << 1);
3028 
3029 	/* select device 0 again */
3030 	ap->ops->dev_select(ap, 0);
3031 
3032 	/* issue bus reset */
3033 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3034 	err_mask = ata_bus_softreset(ap, devmask);
3035 	if (err_mask) {
3036 		ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3037 				err_mask);
3038 		return -EIO;
3039 	}
3040 
3041 	/* determine by signature whether we have ATA or ATAPI devices */
3042 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3043 	if (slave_possible && err != 0x81)
3044 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3045 
3046  out:
3047 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3048 	return 0;
3049 }
3050 
3051 /**
3052  *	sata_port_hardreset - reset port via SATA phy reset
3053  *	@ap: port to reset
3054  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3055  *
3056  *	SATA phy-reset host port using DET bits of SControl register.
3057  *
3058  *	LOCKING:
3059  *	Kernel thread context (may sleep)
3060  *
3061  *	RETURNS:
3062  *	0 on success, -errno otherwise.
3063  */
3064 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3065 {
3066 	u32 scontrol;
3067 	int rc;
3068 
3069 	DPRINTK("ENTER\n");
3070 
3071 	if (sata_set_spd_needed(ap)) {
3072 		/* SATA spec says nothing about how to reconfigure
3073 		 * spd.  To be on the safe side, turn off phy during
3074 		 * reconfiguration.  This works for at least ICH7 AHCI
3075 		 * and Sil3124.
3076 		 */
3077 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3078 			goto out;
3079 
3080 		scontrol = (scontrol & 0x0f0) | 0x304;
3081 
3082 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3083 			goto out;
3084 
3085 		sata_set_spd(ap);
3086 	}
3087 
3088 	/* issue phy wake/reset */
3089 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3090 		goto out;
3091 
3092 	scontrol = (scontrol & 0x0f0) | 0x301;
3093 
3094 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3095 		goto out;
3096 
3097 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3098 	 * 10.4.2 says at least 1 ms.
3099 	 */
3100 	msleep(1);
3101 
3102 	/* bring phy back */
3103 	rc = sata_phy_resume(ap, timing);
3104  out:
3105 	DPRINTK("EXIT, rc=%d\n", rc);
3106 	return rc;
3107 }
3108 
3109 /**
3110  *	sata_std_hardreset - reset host port via SATA phy reset
3111  *	@ap: port to reset
3112  *	@class: resulting class of attached device
3113  *
3114  *	SATA phy-reset host port using DET bits of SControl register,
3115  *	wait for !BSY and classify the attached device.
3116  *
3117  *	LOCKING:
3118  *	Kernel thread context (may sleep)
3119  *
3120  *	RETURNS:
3121  *	0 on success, -errno otherwise.
3122  */
3123 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3124 {
3125 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3126 	int rc;
3127 
3128 	DPRINTK("ENTER\n");
3129 
3130 	/* do hardreset */
3131 	rc = sata_port_hardreset(ap, timing);
3132 	if (rc) {
3133 		ata_port_printk(ap, KERN_ERR,
3134 				"COMRESET failed (errno=%d)\n", rc);
3135 		return rc;
3136 	}
3137 
3138 	/* TODO: phy layer with polling, timeouts, etc. */
3139 	if (ata_port_offline(ap)) {
3140 		*class = ATA_DEV_NONE;
3141 		DPRINTK("EXIT, link offline\n");
3142 		return 0;
3143 	}
3144 
3145 	/* wait a while before checking status, see SRST for more info */
3146 	msleep(150);
3147 
3148 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3149 		ata_port_printk(ap, KERN_ERR,
3150 				"COMRESET failed (device not ready)\n");
3151 		return -EIO;
3152 	}
3153 
3154 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3155 
3156 	*class = ata_dev_try_classify(ap, 0, NULL);
3157 
3158 	DPRINTK("EXIT, class=%u\n", *class);
3159 	return 0;
3160 }
3161 
3162 /**
3163  *	ata_std_postreset - standard postreset callback
3164  *	@ap: the target ata_port
3165  *	@classes: classes of attached devices
3166  *
3167  *	This function is invoked after a successful reset.  Note that
3168  *	the device might have been reset more than once using
3169  *	different reset methods before postreset is invoked.
3170  *
3171  *	LOCKING:
3172  *	Kernel thread context (may sleep)
3173  */
3174 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3175 {
3176 	u32 serror;
3177 
3178 	DPRINTK("ENTER\n");
3179 
3180 	/* print link status */
3181 	sata_print_link_status(ap);
3182 
3183 	/* clear SError */
3184 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3185 		sata_scr_write(ap, SCR_ERROR, serror);
3186 
3187 	/* re-enable interrupts */
3188 	if (!ap->ops->error_handler)
3189 		ap->ops->irq_on(ap);
3190 
3191 	/* is double-select really necessary? */
3192 	if (classes[0] != ATA_DEV_NONE)
3193 		ap->ops->dev_select(ap, 1);
3194 	if (classes[1] != ATA_DEV_NONE)
3195 		ap->ops->dev_select(ap, 0);
3196 
3197 	/* bail out if no device is present */
3198 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3199 		DPRINTK("EXIT, no device\n");
3200 		return;
3201 	}
3202 
3203 	/* set up device control */
3204 	if (ap->ioaddr.ctl_addr)
3205 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3206 
3207 	DPRINTK("EXIT\n");
3208 }
3209 
3210 /**
3211  *	ata_dev_same_device - Determine whether new ID matches configured device
3212  *	@dev: device to compare against
3213  *	@new_class: class of the new device
3214  *	@new_id: IDENTIFY page of the new device
3215  *
3216  *	Compare @new_class and @new_id against @dev and determine
3217  *	whether @dev is the device indicated by @new_class and
3218  *	@new_id.
3219  *
3220  *	LOCKING:
3221  *	None.
3222  *
3223  *	RETURNS:
3224  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3225  */
3226 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3227 			       const u16 *new_id)
3228 {
3229 	const u16 *old_id = dev->id;
3230 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3231 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3232 	u64 new_n_sectors;
3233 
3234 	if (dev->class != new_class) {
3235 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3236 			       dev->class, new_class);
3237 		return 0;
3238 	}
3239 
3240 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3241 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3242 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3243 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3244 	new_n_sectors = ata_id_n_sectors(new_id);
3245 
3246 	if (strcmp(model[0], model[1])) {
3247 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3248 			       "'%s' != '%s'\n", model[0], model[1]);
3249 		return 0;
3250 	}
3251 
3252 	if (strcmp(serial[0], serial[1])) {
3253 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3254 			       "'%s' != '%s'\n", serial[0], serial[1]);
3255 		return 0;
3256 	}
3257 
3258 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3259 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3260 			       "%llu != %llu\n",
3261 			       (unsigned long long)dev->n_sectors,
3262 			       (unsigned long long)new_n_sectors);
3263 		return 0;
3264 	}
3265 
3266 	return 1;
3267 }
3268 
3269 /**
3270  *	ata_dev_revalidate - Revalidate ATA device
3271  *	@dev: device to revalidate
3272  *	@readid_flags: read ID flags
3273  *
3274  *	Re-read IDENTIFY page and make sure @dev is still attached to
3275  *	the port.
3276  *
3277  *	LOCKING:
3278  *	Kernel thread context (may sleep)
3279  *
3280  *	RETURNS:
3281  *	0 on success, negative errno otherwise
3282  */
3283 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3284 {
3285 	unsigned int class = dev->class;
3286 	u16 *id = (void *)dev->ap->sector_buf;
3287 	int rc;
3288 
3289 	if (!ata_dev_enabled(dev)) {
3290 		rc = -ENODEV;
3291 		goto fail;
3292 	}
3293 
3294 	/* read ID data */
3295 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3296 	if (rc)
3297 		goto fail;
3298 
3299 	/* is the device still there? */
3300 	if (!ata_dev_same_device(dev, class, id)) {
3301 		rc = -ENODEV;
3302 		goto fail;
3303 	}
3304 
3305 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3306 
3307 	/* configure device according to the new ID */
3308 	rc = ata_dev_configure(dev);
3309 	if (rc == 0)
3310 		return 0;
3311 
3312  fail:
3313 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3314 	return rc;
3315 }
3316 
3317 struct ata_blacklist_entry {
3318 	const char *model_num;
3319 	const char *model_rev;
3320 	unsigned long horkage;
3321 };
3322 
3323 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3324 	/* Devices with DMA related problems under Linux */
3325 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3326 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3327 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3328 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3329 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3330 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3331 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3332 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3333 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3334 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3335 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3336 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3337 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3338 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3339 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3340 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3341 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3342 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3343 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3344 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3345 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3346 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3347 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3348 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3349 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3350 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3351 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3352 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3353 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3354 
3355 	/* Devices we expect to fail diagnostics */
3356 
3357 	/* Devices where NCQ should be avoided */
3358 	/* NCQ is slow */
3359         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3360 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3361 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3362 
3363 	/* Devices with NCQ limits */
3364 
3365 	/* End Marker */
3366 	{ }
3367 };
3368 
3369 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3370 {
3371 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3372 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3373 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3374 
3375 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3376 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3377 
3378 	while (ad->model_num) {
3379 		if (!strcmp(ad->model_num, model_num)) {
3380 			if (ad->model_rev == NULL)
3381 				return ad->horkage;
3382 			if (!strcmp(ad->model_rev, model_rev))
3383 				return ad->horkage;
3384 		}
3385 		ad++;
3386 	}
3387 	return 0;
3388 }
3389 
3390 static int ata_dma_blacklisted(const struct ata_device *dev)
3391 {
3392 	/* We don't support polling DMA.
3393 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3394 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3395 	 */
3396 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3397 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3398 		return 1;
3399 	return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3400 }
3401 
3402 /**
3403  *	ata_dev_xfermask - Compute supported xfermask of the given device
3404  *	@dev: Device to compute xfermask for
3405  *
3406  *	Compute supported xfermask of @dev and store it in
3407  *	dev->*_mask.  This function is responsible for applying all
3408  *	known limits including host controller limits, device
3409  *	blacklist, etc...
3410  *
3411  *	LOCKING:
3412  *	None.
3413  */
3414 static void ata_dev_xfermask(struct ata_device *dev)
3415 {
3416 	struct ata_port *ap = dev->ap;
3417 	struct ata_host *host = ap->host;
3418 	unsigned long xfer_mask;
3419 
3420 	/* controller modes available */
3421 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3422 				      ap->mwdma_mask, ap->udma_mask);
3423 
3424 	/* Apply cable rule here.  Don't apply it early because when
3425 	 * we handle hot plug the cable type can itself change.
3426 	 */
3427 	if (ap->cbl == ATA_CBL_PATA40)
3428 		xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3429 	/* Apply drive side cable rule. Unknown or 80 pin cables reported
3430 	 * host side are checked drive side as well. Cases where we know a
3431 	 * 40wire cable is used safely for 80 are not checked here.
3432 	 */
3433         if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3434 		xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3435 
3436 
3437 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3438 				       dev->mwdma_mask, dev->udma_mask);
3439 	xfer_mask &= ata_id_xfermask(dev->id);
3440 
3441 	/*
3442 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3443 	 *	cable
3444 	 */
3445 	if (ata_dev_pair(dev)) {
3446 		/* No PIO5 or PIO6 */
3447 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3448 		/* No MWDMA3 or MWDMA 4 */
3449 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3450 	}
3451 
3452 	if (ata_dma_blacklisted(dev)) {
3453 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3454 		ata_dev_printk(dev, KERN_WARNING,
3455 			       "device is on DMA blacklist, disabling DMA\n");
3456 	}
3457 
3458 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3459             host->simplex_claimed && host->simplex_claimed != ap) {
3460 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3461 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3462 			       "other device, disabling DMA\n");
3463 	}
3464 
3465 	if (ap->ops->mode_filter)
3466 		xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3467 
3468 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3469 			    &dev->mwdma_mask, &dev->udma_mask);
3470 }
3471 
3472 /**
3473  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3474  *	@dev: Device to which command will be sent
3475  *
3476  *	Issue SET FEATURES - XFER MODE command to device @dev
3477  *	on port @ap.
3478  *
3479  *	LOCKING:
3480  *	PCI/etc. bus probe sem.
3481  *
3482  *	RETURNS:
3483  *	0 on success, AC_ERR_* mask otherwise.
3484  */
3485 
3486 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3487 {
3488 	struct ata_taskfile tf;
3489 	unsigned int err_mask;
3490 
3491 	/* set up set-features taskfile */
3492 	DPRINTK("set features - xfer mode\n");
3493 
3494 	ata_tf_init(dev, &tf);
3495 	tf.command = ATA_CMD_SET_FEATURES;
3496 	tf.feature = SETFEATURES_XFER;
3497 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3498 	tf.protocol = ATA_PROT_NODATA;
3499 	tf.nsect = dev->xfer_mode;
3500 
3501 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3502 
3503 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3504 	return err_mask;
3505 }
3506 
3507 /**
3508  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3509  *	@dev: Device to which command will be sent
3510  *	@heads: Number of heads (taskfile parameter)
3511  *	@sectors: Number of sectors (taskfile parameter)
3512  *
3513  *	LOCKING:
3514  *	Kernel thread context (may sleep)
3515  *
3516  *	RETURNS:
3517  *	0 on success, AC_ERR_* mask otherwise.
3518  */
3519 static unsigned int ata_dev_init_params(struct ata_device *dev,
3520 					u16 heads, u16 sectors)
3521 {
3522 	struct ata_taskfile tf;
3523 	unsigned int err_mask;
3524 
3525 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3526 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3527 		return AC_ERR_INVALID;
3528 
3529 	/* set up init dev params taskfile */
3530 	DPRINTK("init dev params \n");
3531 
3532 	ata_tf_init(dev, &tf);
3533 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3534 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3535 	tf.protocol = ATA_PROT_NODATA;
3536 	tf.nsect = sectors;
3537 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3538 
3539 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3540 
3541 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3542 	return err_mask;
3543 }
3544 
3545 /**
3546  *	ata_sg_clean - Unmap DMA memory associated with command
3547  *	@qc: Command containing DMA memory to be released
3548  *
3549  *	Unmap all mapped DMA memory associated with this command.
3550  *
3551  *	LOCKING:
3552  *	spin_lock_irqsave(host lock)
3553  */
3554 void ata_sg_clean(struct ata_queued_cmd *qc)
3555 {
3556 	struct ata_port *ap = qc->ap;
3557 	struct scatterlist *sg = qc->__sg;
3558 	int dir = qc->dma_dir;
3559 	void *pad_buf = NULL;
3560 
3561 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3562 	WARN_ON(sg == NULL);
3563 
3564 	if (qc->flags & ATA_QCFLAG_SINGLE)
3565 		WARN_ON(qc->n_elem > 1);
3566 
3567 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3568 
3569 	/* if we padded the buffer out to 32-bit bound, and data
3570 	 * xfer direction is from-device, we must copy from the
3571 	 * pad buffer back into the supplied buffer
3572 	 */
3573 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3574 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3575 
3576 	if (qc->flags & ATA_QCFLAG_SG) {
3577 		if (qc->n_elem)
3578 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3579 		/* restore last sg */
3580 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
3581 		if (pad_buf) {
3582 			struct scatterlist *psg = &qc->pad_sgent;
3583 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
3584 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3585 			kunmap_atomic(addr, KM_IRQ0);
3586 		}
3587 	} else {
3588 		if (qc->n_elem)
3589 			dma_unmap_single(ap->dev,
3590 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3591 				dir);
3592 		/* restore sg */
3593 		sg->length += qc->pad_len;
3594 		if (pad_buf)
3595 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
3596 			       pad_buf, qc->pad_len);
3597 	}
3598 
3599 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
3600 	qc->__sg = NULL;
3601 }
3602 
3603 /**
3604  *	ata_fill_sg - Fill PCI IDE PRD table
3605  *	@qc: Metadata associated with taskfile to be transferred
3606  *
3607  *	Fill PCI IDE PRD (scatter-gather) table with segments
3608  *	associated with the current disk command.
3609  *
3610  *	LOCKING:
3611  *	spin_lock_irqsave(host lock)
3612  *
3613  */
3614 static void ata_fill_sg(struct ata_queued_cmd *qc)
3615 {
3616 	struct ata_port *ap = qc->ap;
3617 	struct scatterlist *sg;
3618 	unsigned int idx;
3619 
3620 	WARN_ON(qc->__sg == NULL);
3621 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3622 
3623 	idx = 0;
3624 	ata_for_each_sg(sg, qc) {
3625 		u32 addr, offset;
3626 		u32 sg_len, len;
3627 
3628 		/* determine if physical DMA addr spans 64K boundary.
3629 		 * Note h/w doesn't support 64-bit, so we unconditionally
3630 		 * truncate dma_addr_t to u32.
3631 		 */
3632 		addr = (u32) sg_dma_address(sg);
3633 		sg_len = sg_dma_len(sg);
3634 
3635 		while (sg_len) {
3636 			offset = addr & 0xffff;
3637 			len = sg_len;
3638 			if ((offset + sg_len) > 0x10000)
3639 				len = 0x10000 - offset;
3640 
3641 			ap->prd[idx].addr = cpu_to_le32(addr);
3642 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3643 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3644 
3645 			idx++;
3646 			sg_len -= len;
3647 			addr += len;
3648 		}
3649 	}
3650 
3651 	if (idx)
3652 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3653 }
3654 /**
3655  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3656  *	@qc: Metadata associated with taskfile to check
3657  *
3658  *	Allow low-level driver to filter ATA PACKET commands, returning
3659  *	a status indicating whether or not it is OK to use DMA for the
3660  *	supplied PACKET command.
3661  *
3662  *	LOCKING:
3663  *	spin_lock_irqsave(host lock)
3664  *
3665  *	RETURNS: 0 when ATAPI DMA can be used
3666  *               nonzero otherwise
3667  */
3668 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3669 {
3670 	struct ata_port *ap = qc->ap;
3671 	int rc = 0; /* Assume ATAPI DMA is OK by default */
3672 
3673 	if (ap->ops->check_atapi_dma)
3674 		rc = ap->ops->check_atapi_dma(qc);
3675 
3676 	return rc;
3677 }
3678 /**
3679  *	ata_qc_prep - Prepare taskfile for submission
3680  *	@qc: Metadata associated with taskfile to be prepared
3681  *
3682  *	Prepare ATA taskfile for submission.
3683  *
3684  *	LOCKING:
3685  *	spin_lock_irqsave(host lock)
3686  */
3687 void ata_qc_prep(struct ata_queued_cmd *qc)
3688 {
3689 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3690 		return;
3691 
3692 	ata_fill_sg(qc);
3693 }
3694 
3695 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3696 
3697 /**
3698  *	ata_sg_init_one - Associate command with memory buffer
3699  *	@qc: Command to be associated
3700  *	@buf: Memory buffer
3701  *	@buflen: Length of memory buffer, in bytes.
3702  *
3703  *	Initialize the data-related elements of queued_cmd @qc
3704  *	to point to a single memory buffer, @buf of byte length @buflen.
3705  *
3706  *	LOCKING:
3707  *	spin_lock_irqsave(host lock)
3708  */
3709 
3710 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3711 {
3712 	qc->flags |= ATA_QCFLAG_SINGLE;
3713 
3714 	qc->__sg = &qc->sgent;
3715 	qc->n_elem = 1;
3716 	qc->orig_n_elem = 1;
3717 	qc->buf_virt = buf;
3718 	qc->nbytes = buflen;
3719 
3720 	sg_init_one(&qc->sgent, buf, buflen);
3721 }
3722 
3723 /**
3724  *	ata_sg_init - Associate command with scatter-gather table.
3725  *	@qc: Command to be associated
3726  *	@sg: Scatter-gather table.
3727  *	@n_elem: Number of elements in s/g table.
3728  *
3729  *	Initialize the data-related elements of queued_cmd @qc
3730  *	to point to a scatter-gather table @sg, containing @n_elem
3731  *	elements.
3732  *
3733  *	LOCKING:
3734  *	spin_lock_irqsave(host lock)
3735  */
3736 
3737 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3738 		 unsigned int n_elem)
3739 {
3740 	qc->flags |= ATA_QCFLAG_SG;
3741 	qc->__sg = sg;
3742 	qc->n_elem = n_elem;
3743 	qc->orig_n_elem = n_elem;
3744 }
3745 
3746 /**
3747  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3748  *	@qc: Command with memory buffer to be mapped.
3749  *
3750  *	DMA-map the memory buffer associated with queued_cmd @qc.
3751  *
3752  *	LOCKING:
3753  *	spin_lock_irqsave(host lock)
3754  *
3755  *	RETURNS:
3756  *	Zero on success, negative on error.
3757  */
3758 
3759 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3760 {
3761 	struct ata_port *ap = qc->ap;
3762 	int dir = qc->dma_dir;
3763 	struct scatterlist *sg = qc->__sg;
3764 	dma_addr_t dma_address;
3765 	int trim_sg = 0;
3766 
3767 	/* we must lengthen transfers to end on a 32-bit boundary */
3768 	qc->pad_len = sg->length & 3;
3769 	if (qc->pad_len) {
3770 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3771 		struct scatterlist *psg = &qc->pad_sgent;
3772 
3773 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3774 
3775 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3776 
3777 		if (qc->tf.flags & ATA_TFLAG_WRITE)
3778 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3779 			       qc->pad_len);
3780 
3781 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3782 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3783 		/* trim sg */
3784 		sg->length -= qc->pad_len;
3785 		if (sg->length == 0)
3786 			trim_sg = 1;
3787 
3788 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3789 			sg->length, qc->pad_len);
3790 	}
3791 
3792 	if (trim_sg) {
3793 		qc->n_elem--;
3794 		goto skip_map;
3795 	}
3796 
3797 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
3798 				     sg->length, dir);
3799 	if (dma_mapping_error(dma_address)) {
3800 		/* restore sg */
3801 		sg->length += qc->pad_len;
3802 		return -1;
3803 	}
3804 
3805 	sg_dma_address(sg) = dma_address;
3806 	sg_dma_len(sg) = sg->length;
3807 
3808 skip_map:
3809 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3810 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3811 
3812 	return 0;
3813 }
3814 
3815 /**
3816  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3817  *	@qc: Command with scatter-gather table to be mapped.
3818  *
3819  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
3820  *
3821  *	LOCKING:
3822  *	spin_lock_irqsave(host lock)
3823  *
3824  *	RETURNS:
3825  *	Zero on success, negative on error.
3826  *
3827  */
3828 
3829 static int ata_sg_setup(struct ata_queued_cmd *qc)
3830 {
3831 	struct ata_port *ap = qc->ap;
3832 	struct scatterlist *sg = qc->__sg;
3833 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
3834 	int n_elem, pre_n_elem, dir, trim_sg = 0;
3835 
3836 	VPRINTK("ENTER, ata%u\n", ap->print_id);
3837 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3838 
3839 	/* we must lengthen transfers to end on a 32-bit boundary */
3840 	qc->pad_len = lsg->length & 3;
3841 	if (qc->pad_len) {
3842 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3843 		struct scatterlist *psg = &qc->pad_sgent;
3844 		unsigned int offset;
3845 
3846 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3847 
3848 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3849 
3850 		/*
3851 		 * psg->page/offset are used to copy to-be-written
3852 		 * data in this function or read data in ata_sg_clean.
3853 		 */
3854 		offset = lsg->offset + lsg->length - qc->pad_len;
3855 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3856 		psg->offset = offset_in_page(offset);
3857 
3858 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
3859 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
3860 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3861 			kunmap_atomic(addr, KM_IRQ0);
3862 		}
3863 
3864 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3865 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3866 		/* trim last sg */
3867 		lsg->length -= qc->pad_len;
3868 		if (lsg->length == 0)
3869 			trim_sg = 1;
3870 
3871 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3872 			qc->n_elem - 1, lsg->length, qc->pad_len);
3873 	}
3874 
3875 	pre_n_elem = qc->n_elem;
3876 	if (trim_sg && pre_n_elem)
3877 		pre_n_elem--;
3878 
3879 	if (!pre_n_elem) {
3880 		n_elem = 0;
3881 		goto skip_map;
3882 	}
3883 
3884 	dir = qc->dma_dir;
3885 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3886 	if (n_elem < 1) {
3887 		/* restore last sg */
3888 		lsg->length += qc->pad_len;
3889 		return -1;
3890 	}
3891 
3892 	DPRINTK("%d sg elements mapped\n", n_elem);
3893 
3894 skip_map:
3895 	qc->n_elem = n_elem;
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  *	swap_buf_le16 - swap halves of 16-bit words in place
3902  *	@buf:  Buffer to swap
3903  *	@buf_words:  Number of 16-bit words in buffer.
3904  *
3905  *	Swap halves of 16-bit words if needed to convert from
3906  *	little-endian byte order to native cpu byte order, or
3907  *	vice-versa.
3908  *
3909  *	LOCKING:
3910  *	Inherited from caller.
3911  */
3912 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3913 {
3914 #ifdef __BIG_ENDIAN
3915 	unsigned int i;
3916 
3917 	for (i = 0; i < buf_words; i++)
3918 		buf[i] = le16_to_cpu(buf[i]);
3919 #endif /* __BIG_ENDIAN */
3920 }
3921 
3922 /**
3923  *	ata_data_xfer - Transfer data by PIO
3924  *	@adev: device to target
3925  *	@buf: data buffer
3926  *	@buflen: buffer length
3927  *	@write_data: read/write
3928  *
3929  *	Transfer data from/to the device data register by PIO.
3930  *
3931  *	LOCKING:
3932  *	Inherited from caller.
3933  */
3934 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3935 		   unsigned int buflen, int write_data)
3936 {
3937 	struct ata_port *ap = adev->ap;
3938 	unsigned int words = buflen >> 1;
3939 
3940 	/* Transfer multiple of 2 bytes */
3941 	if (write_data)
3942 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3943 	else
3944 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
3945 
3946 	/* Transfer trailing 1 byte, if any. */
3947 	if (unlikely(buflen & 0x01)) {
3948 		u16 align_buf[1] = { 0 };
3949 		unsigned char *trailing_buf = buf + buflen - 1;
3950 
3951 		if (write_data) {
3952 			memcpy(align_buf, trailing_buf, 1);
3953 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3954 		} else {
3955 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3956 			memcpy(trailing_buf, align_buf, 1);
3957 		}
3958 	}
3959 }
3960 
3961 /**
3962  *	ata_data_xfer_noirq - Transfer data by PIO
3963  *	@adev: device to target
3964  *	@buf: data buffer
3965  *	@buflen: buffer length
3966  *	@write_data: read/write
3967  *
3968  *	Transfer data from/to the device data register by PIO. Do the
3969  *	transfer with interrupts disabled.
3970  *
3971  *	LOCKING:
3972  *	Inherited from caller.
3973  */
3974 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3975 			 unsigned int buflen, int write_data)
3976 {
3977 	unsigned long flags;
3978 	local_irq_save(flags);
3979 	ata_data_xfer(adev, buf, buflen, write_data);
3980 	local_irq_restore(flags);
3981 }
3982 
3983 
3984 /**
3985  *	ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3986  *	@qc: Command on going
3987  *
3988  *	Transfer ATA_SECT_SIZE of data from/to the ATA device.
3989  *
3990  *	LOCKING:
3991  *	Inherited from caller.
3992  */
3993 
3994 static void ata_pio_sector(struct ata_queued_cmd *qc)
3995 {
3996 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3997 	struct scatterlist *sg = qc->__sg;
3998 	struct ata_port *ap = qc->ap;
3999 	struct page *page;
4000 	unsigned int offset;
4001 	unsigned char *buf;
4002 
4003 	if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4004 		ap->hsm_task_state = HSM_ST_LAST;
4005 
4006 	page = sg[qc->cursg].page;
4007 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4008 
4009 	/* get the current page and offset */
4010 	page = nth_page(page, (offset >> PAGE_SHIFT));
4011 	offset %= PAGE_SIZE;
4012 
4013 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4014 
4015 	if (PageHighMem(page)) {
4016 		unsigned long flags;
4017 
4018 		/* FIXME: use a bounce buffer */
4019 		local_irq_save(flags);
4020 		buf = kmap_atomic(page, KM_IRQ0);
4021 
4022 		/* do the actual data transfer */
4023 		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4024 
4025 		kunmap_atomic(buf, KM_IRQ0);
4026 		local_irq_restore(flags);
4027 	} else {
4028 		buf = page_address(page);
4029 		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4030 	}
4031 
4032 	qc->curbytes += ATA_SECT_SIZE;
4033 	qc->cursg_ofs += ATA_SECT_SIZE;
4034 
4035 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4036 		qc->cursg++;
4037 		qc->cursg_ofs = 0;
4038 	}
4039 }
4040 
4041 /**
4042  *	ata_pio_sectors - Transfer one or many 512-byte sectors.
4043  *	@qc: Command on going
4044  *
4045  *	Transfer one or many ATA_SECT_SIZE of data from/to the
4046  *	ATA device for the DRQ request.
4047  *
4048  *	LOCKING:
4049  *	Inherited from caller.
4050  */
4051 
4052 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4053 {
4054 	if (is_multi_taskfile(&qc->tf)) {
4055 		/* READ/WRITE MULTIPLE */
4056 		unsigned int nsect;
4057 
4058 		WARN_ON(qc->dev->multi_count == 0);
4059 
4060 		nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4061 			    qc->dev->multi_count);
4062 		while (nsect--)
4063 			ata_pio_sector(qc);
4064 	} else
4065 		ata_pio_sector(qc);
4066 }
4067 
4068 /**
4069  *	atapi_send_cdb - Write CDB bytes to hardware
4070  *	@ap: Port to which ATAPI device is attached.
4071  *	@qc: Taskfile currently active
4072  *
4073  *	When device has indicated its readiness to accept
4074  *	a CDB, this function is called.  Send the CDB.
4075  *
4076  *	LOCKING:
4077  *	caller.
4078  */
4079 
4080 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4081 {
4082 	/* send SCSI cdb */
4083 	DPRINTK("send cdb\n");
4084 	WARN_ON(qc->dev->cdb_len < 12);
4085 
4086 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4087 	ata_altstatus(ap); /* flush */
4088 
4089 	switch (qc->tf.protocol) {
4090 	case ATA_PROT_ATAPI:
4091 		ap->hsm_task_state = HSM_ST;
4092 		break;
4093 	case ATA_PROT_ATAPI_NODATA:
4094 		ap->hsm_task_state = HSM_ST_LAST;
4095 		break;
4096 	case ATA_PROT_ATAPI_DMA:
4097 		ap->hsm_task_state = HSM_ST_LAST;
4098 		/* initiate bmdma */
4099 		ap->ops->bmdma_start(qc);
4100 		break;
4101 	}
4102 }
4103 
4104 /**
4105  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4106  *	@qc: Command on going
4107  *	@bytes: number of bytes
4108  *
4109  *	Transfer Transfer data from/to the ATAPI device.
4110  *
4111  *	LOCKING:
4112  *	Inherited from caller.
4113  *
4114  */
4115 
4116 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4117 {
4118 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4119 	struct scatterlist *sg = qc->__sg;
4120 	struct ata_port *ap = qc->ap;
4121 	struct page *page;
4122 	unsigned char *buf;
4123 	unsigned int offset, count;
4124 
4125 	if (qc->curbytes + bytes >= qc->nbytes)
4126 		ap->hsm_task_state = HSM_ST_LAST;
4127 
4128 next_sg:
4129 	if (unlikely(qc->cursg >= qc->n_elem)) {
4130 		/*
4131 		 * The end of qc->sg is reached and the device expects
4132 		 * more data to transfer. In order not to overrun qc->sg
4133 		 * and fulfill length specified in the byte count register,
4134 		 *    - for read case, discard trailing data from the device
4135 		 *    - for write case, padding zero data to the device
4136 		 */
4137 		u16 pad_buf[1] = { 0 };
4138 		unsigned int words = bytes >> 1;
4139 		unsigned int i;
4140 
4141 		if (words) /* warning if bytes > 1 */
4142 			ata_dev_printk(qc->dev, KERN_WARNING,
4143 				       "%u bytes trailing data\n", bytes);
4144 
4145 		for (i = 0; i < words; i++)
4146 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4147 
4148 		ap->hsm_task_state = HSM_ST_LAST;
4149 		return;
4150 	}
4151 
4152 	sg = &qc->__sg[qc->cursg];
4153 
4154 	page = sg->page;
4155 	offset = sg->offset + qc->cursg_ofs;
4156 
4157 	/* get the current page and offset */
4158 	page = nth_page(page, (offset >> PAGE_SHIFT));
4159 	offset %= PAGE_SIZE;
4160 
4161 	/* don't overrun current sg */
4162 	count = min(sg->length - qc->cursg_ofs, bytes);
4163 
4164 	/* don't cross page boundaries */
4165 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4166 
4167 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4168 
4169 	if (PageHighMem(page)) {
4170 		unsigned long flags;
4171 
4172 		/* FIXME: use bounce buffer */
4173 		local_irq_save(flags);
4174 		buf = kmap_atomic(page, KM_IRQ0);
4175 
4176 		/* do the actual data transfer */
4177 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4178 
4179 		kunmap_atomic(buf, KM_IRQ0);
4180 		local_irq_restore(flags);
4181 	} else {
4182 		buf = page_address(page);
4183 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4184 	}
4185 
4186 	bytes -= count;
4187 	qc->curbytes += count;
4188 	qc->cursg_ofs += count;
4189 
4190 	if (qc->cursg_ofs == sg->length) {
4191 		qc->cursg++;
4192 		qc->cursg_ofs = 0;
4193 	}
4194 
4195 	if (bytes)
4196 		goto next_sg;
4197 }
4198 
4199 /**
4200  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4201  *	@qc: Command on going
4202  *
4203  *	Transfer Transfer data from/to the ATAPI device.
4204  *
4205  *	LOCKING:
4206  *	Inherited from caller.
4207  */
4208 
4209 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4210 {
4211 	struct ata_port *ap = qc->ap;
4212 	struct ata_device *dev = qc->dev;
4213 	unsigned int ireason, bc_lo, bc_hi, bytes;
4214 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4215 
4216 	/* Abuse qc->result_tf for temp storage of intermediate TF
4217 	 * here to save some kernel stack usage.
4218 	 * For normal completion, qc->result_tf is not relevant. For
4219 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4220 	 * So, the correctness of qc->result_tf is not affected.
4221 	 */
4222 	ap->ops->tf_read(ap, &qc->result_tf);
4223 	ireason = qc->result_tf.nsect;
4224 	bc_lo = qc->result_tf.lbam;
4225 	bc_hi = qc->result_tf.lbah;
4226 	bytes = (bc_hi << 8) | bc_lo;
4227 
4228 	/* shall be cleared to zero, indicating xfer of data */
4229 	if (ireason & (1 << 0))
4230 		goto err_out;
4231 
4232 	/* make sure transfer direction matches expected */
4233 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4234 	if (do_write != i_write)
4235 		goto err_out;
4236 
4237 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4238 
4239 	__atapi_pio_bytes(qc, bytes);
4240 
4241 	return;
4242 
4243 err_out:
4244 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4245 	qc->err_mask |= AC_ERR_HSM;
4246 	ap->hsm_task_state = HSM_ST_ERR;
4247 }
4248 
4249 /**
4250  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4251  *	@ap: the target ata_port
4252  *	@qc: qc on going
4253  *
4254  *	RETURNS:
4255  *	1 if ok in workqueue, 0 otherwise.
4256  */
4257 
4258 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4259 {
4260 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4261 		return 1;
4262 
4263 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4264 		if (qc->tf.protocol == ATA_PROT_PIO &&
4265 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4266 		    return 1;
4267 
4268 		if (is_atapi_taskfile(&qc->tf) &&
4269 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4270 			return 1;
4271 	}
4272 
4273 	return 0;
4274 }
4275 
4276 /**
4277  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4278  *	@qc: Command to complete
4279  *	@in_wq: 1 if called from workqueue, 0 otherwise
4280  *
4281  *	Finish @qc which is running on standard HSM.
4282  *
4283  *	LOCKING:
4284  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4285  *	Otherwise, none on entry and grabs host lock.
4286  */
4287 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4288 {
4289 	struct ata_port *ap = qc->ap;
4290 	unsigned long flags;
4291 
4292 	if (ap->ops->error_handler) {
4293 		if (in_wq) {
4294 			spin_lock_irqsave(ap->lock, flags);
4295 
4296 			/* EH might have kicked in while host lock is
4297 			 * released.
4298 			 */
4299 			qc = ata_qc_from_tag(ap, qc->tag);
4300 			if (qc) {
4301 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4302 					ap->ops->irq_on(ap);
4303 					ata_qc_complete(qc);
4304 				} else
4305 					ata_port_freeze(ap);
4306 			}
4307 
4308 			spin_unlock_irqrestore(ap->lock, flags);
4309 		} else {
4310 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4311 				ata_qc_complete(qc);
4312 			else
4313 				ata_port_freeze(ap);
4314 		}
4315 	} else {
4316 		if (in_wq) {
4317 			spin_lock_irqsave(ap->lock, flags);
4318 			ap->ops->irq_on(ap);
4319 			ata_qc_complete(qc);
4320 			spin_unlock_irqrestore(ap->lock, flags);
4321 		} else
4322 			ata_qc_complete(qc);
4323 	}
4324 
4325 	ata_altstatus(ap); /* flush */
4326 }
4327 
4328 /**
4329  *	ata_hsm_move - move the HSM to the next state.
4330  *	@ap: the target ata_port
4331  *	@qc: qc on going
4332  *	@status: current device status
4333  *	@in_wq: 1 if called from workqueue, 0 otherwise
4334  *
4335  *	RETURNS:
4336  *	1 when poll next status needed, 0 otherwise.
4337  */
4338 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4339 		 u8 status, int in_wq)
4340 {
4341 	unsigned long flags = 0;
4342 	int poll_next;
4343 
4344 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4345 
4346 	/* Make sure ata_qc_issue_prot() does not throw things
4347 	 * like DMA polling into the workqueue. Notice that
4348 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4349 	 */
4350 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4351 
4352 fsm_start:
4353 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4354 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4355 
4356 	switch (ap->hsm_task_state) {
4357 	case HSM_ST_FIRST:
4358 		/* Send first data block or PACKET CDB */
4359 
4360 		/* If polling, we will stay in the work queue after
4361 		 * sending the data. Otherwise, interrupt handler
4362 		 * takes over after sending the data.
4363 		 */
4364 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4365 
4366 		/* check device status */
4367 		if (unlikely((status & ATA_DRQ) == 0)) {
4368 			/* handle BSY=0, DRQ=0 as error */
4369 			if (likely(status & (ATA_ERR | ATA_DF)))
4370 				/* device stops HSM for abort/error */
4371 				qc->err_mask |= AC_ERR_DEV;
4372 			else
4373 				/* HSM violation. Let EH handle this */
4374 				qc->err_mask |= AC_ERR_HSM;
4375 
4376 			ap->hsm_task_state = HSM_ST_ERR;
4377 			goto fsm_start;
4378 		}
4379 
4380 		/* Device should not ask for data transfer (DRQ=1)
4381 		 * when it finds something wrong.
4382 		 * We ignore DRQ here and stop the HSM by
4383 		 * changing hsm_task_state to HSM_ST_ERR and
4384 		 * let the EH abort the command or reset the device.
4385 		 */
4386 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4387 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4388 					"error, dev_stat 0x%X\n", status);
4389 			qc->err_mask |= AC_ERR_HSM;
4390 			ap->hsm_task_state = HSM_ST_ERR;
4391 			goto fsm_start;
4392 		}
4393 
4394 		/* Send the CDB (atapi) or the first data block (ata pio out).
4395 		 * During the state transition, interrupt handler shouldn't
4396 		 * be invoked before the data transfer is complete and
4397 		 * hsm_task_state is changed. Hence, the following locking.
4398 		 */
4399 		if (in_wq)
4400 			spin_lock_irqsave(ap->lock, flags);
4401 
4402 		if (qc->tf.protocol == ATA_PROT_PIO) {
4403 			/* PIO data out protocol.
4404 			 * send first data block.
4405 			 */
4406 
4407 			/* ata_pio_sectors() might change the state
4408 			 * to HSM_ST_LAST. so, the state is changed here
4409 			 * before ata_pio_sectors().
4410 			 */
4411 			ap->hsm_task_state = HSM_ST;
4412 			ata_pio_sectors(qc);
4413 			ata_altstatus(ap); /* flush */
4414 		} else
4415 			/* send CDB */
4416 			atapi_send_cdb(ap, qc);
4417 
4418 		if (in_wq)
4419 			spin_unlock_irqrestore(ap->lock, flags);
4420 
4421 		/* if polling, ata_pio_task() handles the rest.
4422 		 * otherwise, interrupt handler takes over from here.
4423 		 */
4424 		break;
4425 
4426 	case HSM_ST:
4427 		/* complete command or read/write the data register */
4428 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4429 			/* ATAPI PIO protocol */
4430 			if ((status & ATA_DRQ) == 0) {
4431 				/* No more data to transfer or device error.
4432 				 * Device error will be tagged in HSM_ST_LAST.
4433 				 */
4434 				ap->hsm_task_state = HSM_ST_LAST;
4435 				goto fsm_start;
4436 			}
4437 
4438 			/* Device should not ask for data transfer (DRQ=1)
4439 			 * when it finds something wrong.
4440 			 * We ignore DRQ here and stop the HSM by
4441 			 * changing hsm_task_state to HSM_ST_ERR and
4442 			 * let the EH abort the command or reset the device.
4443 			 */
4444 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4445 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4446 						"device error, dev_stat 0x%X\n",
4447 						status);
4448 				qc->err_mask |= AC_ERR_HSM;
4449 				ap->hsm_task_state = HSM_ST_ERR;
4450 				goto fsm_start;
4451 			}
4452 
4453 			atapi_pio_bytes(qc);
4454 
4455 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4456 				/* bad ireason reported by device */
4457 				goto fsm_start;
4458 
4459 		} else {
4460 			/* ATA PIO protocol */
4461 			if (unlikely((status & ATA_DRQ) == 0)) {
4462 				/* handle BSY=0, DRQ=0 as error */
4463 				if (likely(status & (ATA_ERR | ATA_DF)))
4464 					/* device stops HSM for abort/error */
4465 					qc->err_mask |= AC_ERR_DEV;
4466 				else
4467 					/* HSM violation. Let EH handle this.
4468 					 * Phantom devices also trigger this
4469 					 * condition.  Mark hint.
4470 					 */
4471 					qc->err_mask |= AC_ERR_HSM |
4472 							AC_ERR_NODEV_HINT;
4473 
4474 				ap->hsm_task_state = HSM_ST_ERR;
4475 				goto fsm_start;
4476 			}
4477 
4478 			/* For PIO reads, some devices may ask for
4479 			 * data transfer (DRQ=1) alone with ERR=1.
4480 			 * We respect DRQ here and transfer one
4481 			 * block of junk data before changing the
4482 			 * hsm_task_state to HSM_ST_ERR.
4483 			 *
4484 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4485 			 * sense since the data block has been
4486 			 * transferred to the device.
4487 			 */
4488 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4489 				/* data might be corrputed */
4490 				qc->err_mask |= AC_ERR_DEV;
4491 
4492 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4493 					ata_pio_sectors(qc);
4494 					ata_altstatus(ap);
4495 					status = ata_wait_idle(ap);
4496 				}
4497 
4498 				if (status & (ATA_BUSY | ATA_DRQ))
4499 					qc->err_mask |= AC_ERR_HSM;
4500 
4501 				/* ata_pio_sectors() might change the
4502 				 * state to HSM_ST_LAST. so, the state
4503 				 * is changed after ata_pio_sectors().
4504 				 */
4505 				ap->hsm_task_state = HSM_ST_ERR;
4506 				goto fsm_start;
4507 			}
4508 
4509 			ata_pio_sectors(qc);
4510 
4511 			if (ap->hsm_task_state == HSM_ST_LAST &&
4512 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4513 				/* all data read */
4514 				ata_altstatus(ap);
4515 				status = ata_wait_idle(ap);
4516 				goto fsm_start;
4517 			}
4518 		}
4519 
4520 		ata_altstatus(ap); /* flush */
4521 		poll_next = 1;
4522 		break;
4523 
4524 	case HSM_ST_LAST:
4525 		if (unlikely(!ata_ok(status))) {
4526 			qc->err_mask |= __ac_err_mask(status);
4527 			ap->hsm_task_state = HSM_ST_ERR;
4528 			goto fsm_start;
4529 		}
4530 
4531 		/* no more data to transfer */
4532 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4533 			ap->print_id, qc->dev->devno, status);
4534 
4535 		WARN_ON(qc->err_mask);
4536 
4537 		ap->hsm_task_state = HSM_ST_IDLE;
4538 
4539 		/* complete taskfile transaction */
4540 		ata_hsm_qc_complete(qc, in_wq);
4541 
4542 		poll_next = 0;
4543 		break;
4544 
4545 	case HSM_ST_ERR:
4546 		/* make sure qc->err_mask is available to
4547 		 * know what's wrong and recover
4548 		 */
4549 		WARN_ON(qc->err_mask == 0);
4550 
4551 		ap->hsm_task_state = HSM_ST_IDLE;
4552 
4553 		/* complete taskfile transaction */
4554 		ata_hsm_qc_complete(qc, in_wq);
4555 
4556 		poll_next = 0;
4557 		break;
4558 	default:
4559 		poll_next = 0;
4560 		BUG();
4561 	}
4562 
4563 	return poll_next;
4564 }
4565 
4566 static void ata_pio_task(struct work_struct *work)
4567 {
4568 	struct ata_port *ap =
4569 		container_of(work, struct ata_port, port_task.work);
4570 	struct ata_queued_cmd *qc = ap->port_task_data;
4571 	u8 status;
4572 	int poll_next;
4573 
4574 fsm_start:
4575 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4576 
4577 	/*
4578 	 * This is purely heuristic.  This is a fast path.
4579 	 * Sometimes when we enter, BSY will be cleared in
4580 	 * a chk-status or two.  If not, the drive is probably seeking
4581 	 * or something.  Snooze for a couple msecs, then
4582 	 * chk-status again.  If still busy, queue delayed work.
4583 	 */
4584 	status = ata_busy_wait(ap, ATA_BUSY, 5);
4585 	if (status & ATA_BUSY) {
4586 		msleep(2);
4587 		status = ata_busy_wait(ap, ATA_BUSY, 10);
4588 		if (status & ATA_BUSY) {
4589 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4590 			return;
4591 		}
4592 	}
4593 
4594 	/* move the HSM */
4595 	poll_next = ata_hsm_move(ap, qc, status, 1);
4596 
4597 	/* another command or interrupt handler
4598 	 * may be running at this point.
4599 	 */
4600 	if (poll_next)
4601 		goto fsm_start;
4602 }
4603 
4604 /**
4605  *	ata_qc_new - Request an available ATA command, for queueing
4606  *	@ap: Port associated with device @dev
4607  *	@dev: Device from whom we request an available command structure
4608  *
4609  *	LOCKING:
4610  *	None.
4611  */
4612 
4613 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4614 {
4615 	struct ata_queued_cmd *qc = NULL;
4616 	unsigned int i;
4617 
4618 	/* no command while frozen */
4619 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4620 		return NULL;
4621 
4622 	/* the last tag is reserved for internal command. */
4623 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4624 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4625 			qc = __ata_qc_from_tag(ap, i);
4626 			break;
4627 		}
4628 
4629 	if (qc)
4630 		qc->tag = i;
4631 
4632 	return qc;
4633 }
4634 
4635 /**
4636  *	ata_qc_new_init - Request an available ATA command, and initialize it
4637  *	@dev: Device from whom we request an available command structure
4638  *
4639  *	LOCKING:
4640  *	None.
4641  */
4642 
4643 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4644 {
4645 	struct ata_port *ap = dev->ap;
4646 	struct ata_queued_cmd *qc;
4647 
4648 	qc = ata_qc_new(ap);
4649 	if (qc) {
4650 		qc->scsicmd = NULL;
4651 		qc->ap = ap;
4652 		qc->dev = dev;
4653 
4654 		ata_qc_reinit(qc);
4655 	}
4656 
4657 	return qc;
4658 }
4659 
4660 /**
4661  *	ata_qc_free - free unused ata_queued_cmd
4662  *	@qc: Command to complete
4663  *
4664  *	Designed to free unused ata_queued_cmd object
4665  *	in case something prevents using it.
4666  *
4667  *	LOCKING:
4668  *	spin_lock_irqsave(host lock)
4669  */
4670 void ata_qc_free(struct ata_queued_cmd *qc)
4671 {
4672 	struct ata_port *ap = qc->ap;
4673 	unsigned int tag;
4674 
4675 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
4676 
4677 	qc->flags = 0;
4678 	tag = qc->tag;
4679 	if (likely(ata_tag_valid(tag))) {
4680 		qc->tag = ATA_TAG_POISON;
4681 		clear_bit(tag, &ap->qc_allocated);
4682 	}
4683 }
4684 
4685 void __ata_qc_complete(struct ata_queued_cmd *qc)
4686 {
4687 	struct ata_port *ap = qc->ap;
4688 
4689 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
4690 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4691 
4692 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4693 		ata_sg_clean(qc);
4694 
4695 	/* command should be marked inactive atomically with qc completion */
4696 	if (qc->tf.protocol == ATA_PROT_NCQ)
4697 		ap->sactive &= ~(1 << qc->tag);
4698 	else
4699 		ap->active_tag = ATA_TAG_POISON;
4700 
4701 	/* atapi: mark qc as inactive to prevent the interrupt handler
4702 	 * from completing the command twice later, before the error handler
4703 	 * is called. (when rc != 0 and atapi request sense is needed)
4704 	 */
4705 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4706 	ap->qc_active &= ~(1 << qc->tag);
4707 
4708 	/* call completion callback */
4709 	qc->complete_fn(qc);
4710 }
4711 
4712 static void fill_result_tf(struct ata_queued_cmd *qc)
4713 {
4714 	struct ata_port *ap = qc->ap;
4715 
4716 	ap->ops->tf_read(ap, &qc->result_tf);
4717 	qc->result_tf.flags = qc->tf.flags;
4718 }
4719 
4720 /**
4721  *	ata_qc_complete - Complete an active ATA command
4722  *	@qc: Command to complete
4723  *	@err_mask: ATA Status register contents
4724  *
4725  *	Indicate to the mid and upper layers that an ATA
4726  *	command has completed, with either an ok or not-ok status.
4727  *
4728  *	LOCKING:
4729  *	spin_lock_irqsave(host lock)
4730  */
4731 void ata_qc_complete(struct ata_queued_cmd *qc)
4732 {
4733 	struct ata_port *ap = qc->ap;
4734 
4735 	/* XXX: New EH and old EH use different mechanisms to
4736 	 * synchronize EH with regular execution path.
4737 	 *
4738 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4739 	 * Normal execution path is responsible for not accessing a
4740 	 * failed qc.  libata core enforces the rule by returning NULL
4741 	 * from ata_qc_from_tag() for failed qcs.
4742 	 *
4743 	 * Old EH depends on ata_qc_complete() nullifying completion
4744 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4745 	 * not synchronize with interrupt handler.  Only PIO task is
4746 	 * taken care of.
4747 	 */
4748 	if (ap->ops->error_handler) {
4749 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4750 
4751 		if (unlikely(qc->err_mask))
4752 			qc->flags |= ATA_QCFLAG_FAILED;
4753 
4754 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4755 			if (!ata_tag_internal(qc->tag)) {
4756 				/* always fill result TF for failed qc */
4757 				fill_result_tf(qc);
4758 				ata_qc_schedule_eh(qc);
4759 				return;
4760 			}
4761 		}
4762 
4763 		/* read result TF if requested */
4764 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4765 			fill_result_tf(qc);
4766 
4767 		__ata_qc_complete(qc);
4768 	} else {
4769 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4770 			return;
4771 
4772 		/* read result TF if failed or requested */
4773 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4774 			fill_result_tf(qc);
4775 
4776 		__ata_qc_complete(qc);
4777 	}
4778 }
4779 
4780 /**
4781  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4782  *	@ap: port in question
4783  *	@qc_active: new qc_active mask
4784  *	@finish_qc: LLDD callback invoked before completing a qc
4785  *
4786  *	Complete in-flight commands.  This functions is meant to be
4787  *	called from low-level driver's interrupt routine to complete
4788  *	requests normally.  ap->qc_active and @qc_active is compared
4789  *	and commands are completed accordingly.
4790  *
4791  *	LOCKING:
4792  *	spin_lock_irqsave(host lock)
4793  *
4794  *	RETURNS:
4795  *	Number of completed commands on success, -errno otherwise.
4796  */
4797 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4798 			     void (*finish_qc)(struct ata_queued_cmd *))
4799 {
4800 	int nr_done = 0;
4801 	u32 done_mask;
4802 	int i;
4803 
4804 	done_mask = ap->qc_active ^ qc_active;
4805 
4806 	if (unlikely(done_mask & qc_active)) {
4807 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4808 				"(%08x->%08x)\n", ap->qc_active, qc_active);
4809 		return -EINVAL;
4810 	}
4811 
4812 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
4813 		struct ata_queued_cmd *qc;
4814 
4815 		if (!(done_mask & (1 << i)))
4816 			continue;
4817 
4818 		if ((qc = ata_qc_from_tag(ap, i))) {
4819 			if (finish_qc)
4820 				finish_qc(qc);
4821 			ata_qc_complete(qc);
4822 			nr_done++;
4823 		}
4824 	}
4825 
4826 	return nr_done;
4827 }
4828 
4829 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4830 {
4831 	struct ata_port *ap = qc->ap;
4832 
4833 	switch (qc->tf.protocol) {
4834 	case ATA_PROT_NCQ:
4835 	case ATA_PROT_DMA:
4836 	case ATA_PROT_ATAPI_DMA:
4837 		return 1;
4838 
4839 	case ATA_PROT_ATAPI:
4840 	case ATA_PROT_PIO:
4841 		if (ap->flags & ATA_FLAG_PIO_DMA)
4842 			return 1;
4843 
4844 		/* fall through */
4845 
4846 	default:
4847 		return 0;
4848 	}
4849 
4850 	/* never reached */
4851 }
4852 
4853 /**
4854  *	ata_qc_issue - issue taskfile to device
4855  *	@qc: command to issue to device
4856  *
4857  *	Prepare an ATA command to submission to device.
4858  *	This includes mapping the data into a DMA-able
4859  *	area, filling in the S/G table, and finally
4860  *	writing the taskfile to hardware, starting the command.
4861  *
4862  *	LOCKING:
4863  *	spin_lock_irqsave(host lock)
4864  */
4865 void ata_qc_issue(struct ata_queued_cmd *qc)
4866 {
4867 	struct ata_port *ap = qc->ap;
4868 
4869 	/* Make sure only one non-NCQ command is outstanding.  The
4870 	 * check is skipped for old EH because it reuses active qc to
4871 	 * request ATAPI sense.
4872 	 */
4873 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4874 
4875 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4876 		WARN_ON(ap->sactive & (1 << qc->tag));
4877 		ap->sactive |= 1 << qc->tag;
4878 	} else {
4879 		WARN_ON(ap->sactive);
4880 		ap->active_tag = qc->tag;
4881 	}
4882 
4883 	qc->flags |= ATA_QCFLAG_ACTIVE;
4884 	ap->qc_active |= 1 << qc->tag;
4885 
4886 	if (ata_should_dma_map(qc)) {
4887 		if (qc->flags & ATA_QCFLAG_SG) {
4888 			if (ata_sg_setup(qc))
4889 				goto sg_err;
4890 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
4891 			if (ata_sg_setup_one(qc))
4892 				goto sg_err;
4893 		}
4894 	} else {
4895 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
4896 	}
4897 
4898 	ap->ops->qc_prep(qc);
4899 
4900 	qc->err_mask |= ap->ops->qc_issue(qc);
4901 	if (unlikely(qc->err_mask))
4902 		goto err;
4903 	return;
4904 
4905 sg_err:
4906 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4907 	qc->err_mask |= AC_ERR_SYSTEM;
4908 err:
4909 	ata_qc_complete(qc);
4910 }
4911 
4912 /**
4913  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4914  *	@qc: command to issue to device
4915  *
4916  *	Using various libata functions and hooks, this function
4917  *	starts an ATA command.  ATA commands are grouped into
4918  *	classes called "protocols", and issuing each type of protocol
4919  *	is slightly different.
4920  *
4921  *	May be used as the qc_issue() entry in ata_port_operations.
4922  *
4923  *	LOCKING:
4924  *	spin_lock_irqsave(host lock)
4925  *
4926  *	RETURNS:
4927  *	Zero on success, AC_ERR_* mask on failure
4928  */
4929 
4930 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4931 {
4932 	struct ata_port *ap = qc->ap;
4933 
4934 	/* Use polling pio if the LLD doesn't handle
4935 	 * interrupt driven pio and atapi CDB interrupt.
4936 	 */
4937 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
4938 		switch (qc->tf.protocol) {
4939 		case ATA_PROT_PIO:
4940 		case ATA_PROT_NODATA:
4941 		case ATA_PROT_ATAPI:
4942 		case ATA_PROT_ATAPI_NODATA:
4943 			qc->tf.flags |= ATA_TFLAG_POLLING;
4944 			break;
4945 		case ATA_PROT_ATAPI_DMA:
4946 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4947 				/* see ata_dma_blacklisted() */
4948 				BUG();
4949 			break;
4950 		default:
4951 			break;
4952 		}
4953 	}
4954 
4955 	/* Some controllers show flaky interrupt behavior after
4956 	 * setting xfer mode.  Use polling instead.
4957 	 */
4958 	if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4959 		     qc->tf.feature == SETFEATURES_XFER) &&
4960 	    (ap->flags & ATA_FLAG_SETXFER_POLLING))
4961 		qc->tf.flags |= ATA_TFLAG_POLLING;
4962 
4963 	/* select the device */
4964 	ata_dev_select(ap, qc->dev->devno, 1, 0);
4965 
4966 	/* start the command */
4967 	switch (qc->tf.protocol) {
4968 	case ATA_PROT_NODATA:
4969 		if (qc->tf.flags & ATA_TFLAG_POLLING)
4970 			ata_qc_set_polling(qc);
4971 
4972 		ata_tf_to_host(ap, &qc->tf);
4973 		ap->hsm_task_state = HSM_ST_LAST;
4974 
4975 		if (qc->tf.flags & ATA_TFLAG_POLLING)
4976 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
4977 
4978 		break;
4979 
4980 	case ATA_PROT_DMA:
4981 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4982 
4983 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
4984 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
4985 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
4986 		ap->hsm_task_state = HSM_ST_LAST;
4987 		break;
4988 
4989 	case ATA_PROT_PIO:
4990 		if (qc->tf.flags & ATA_TFLAG_POLLING)
4991 			ata_qc_set_polling(qc);
4992 
4993 		ata_tf_to_host(ap, &qc->tf);
4994 
4995 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4996 			/* PIO data out protocol */
4997 			ap->hsm_task_state = HSM_ST_FIRST;
4998 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
4999 
5000 			/* always send first data block using
5001 			 * the ata_pio_task() codepath.
5002 			 */
5003 		} else {
5004 			/* PIO data in protocol */
5005 			ap->hsm_task_state = HSM_ST;
5006 
5007 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5008 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5009 
5010 			/* if polling, ata_pio_task() handles the rest.
5011 			 * otherwise, interrupt handler takes over from here.
5012 			 */
5013 		}
5014 
5015 		break;
5016 
5017 	case ATA_PROT_ATAPI:
5018 	case ATA_PROT_ATAPI_NODATA:
5019 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5020 			ata_qc_set_polling(qc);
5021 
5022 		ata_tf_to_host(ap, &qc->tf);
5023 
5024 		ap->hsm_task_state = HSM_ST_FIRST;
5025 
5026 		/* send cdb by polling if no cdb interrupt */
5027 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5028 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5029 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5030 		break;
5031 
5032 	case ATA_PROT_ATAPI_DMA:
5033 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5034 
5035 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5036 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5037 		ap->hsm_task_state = HSM_ST_FIRST;
5038 
5039 		/* send cdb by polling if no cdb interrupt */
5040 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5041 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5042 		break;
5043 
5044 	default:
5045 		WARN_ON(1);
5046 		return AC_ERR_SYSTEM;
5047 	}
5048 
5049 	return 0;
5050 }
5051 
5052 /**
5053  *	ata_host_intr - Handle host interrupt for given (port, task)
5054  *	@ap: Port on which interrupt arrived (possibly...)
5055  *	@qc: Taskfile currently active in engine
5056  *
5057  *	Handle host interrupt for given queued command.  Currently,
5058  *	only DMA interrupts are handled.  All other commands are
5059  *	handled via polling with interrupts disabled (nIEN bit).
5060  *
5061  *	LOCKING:
5062  *	spin_lock_irqsave(host lock)
5063  *
5064  *	RETURNS:
5065  *	One if interrupt was handled, zero if not (shared irq).
5066  */
5067 
5068 inline unsigned int ata_host_intr (struct ata_port *ap,
5069 				   struct ata_queued_cmd *qc)
5070 {
5071 	struct ata_eh_info *ehi = &ap->eh_info;
5072 	u8 status, host_stat = 0;
5073 
5074 	VPRINTK("ata%u: protocol %d task_state %d\n",
5075 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5076 
5077 	/* Check whether we are expecting interrupt in this state */
5078 	switch (ap->hsm_task_state) {
5079 	case HSM_ST_FIRST:
5080 		/* Some pre-ATAPI-4 devices assert INTRQ
5081 		 * at this state when ready to receive CDB.
5082 		 */
5083 
5084 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5085 		 * The flag was turned on only for atapi devices.
5086 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5087 		 */
5088 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5089 			goto idle_irq;
5090 		break;
5091 	case HSM_ST_LAST:
5092 		if (qc->tf.protocol == ATA_PROT_DMA ||
5093 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5094 			/* check status of DMA engine */
5095 			host_stat = ap->ops->bmdma_status(ap);
5096 			VPRINTK("ata%u: host_stat 0x%X\n",
5097 				ap->print_id, host_stat);
5098 
5099 			/* if it's not our irq... */
5100 			if (!(host_stat & ATA_DMA_INTR))
5101 				goto idle_irq;
5102 
5103 			/* before we do anything else, clear DMA-Start bit */
5104 			ap->ops->bmdma_stop(qc);
5105 
5106 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5107 				/* error when transfering data to/from memory */
5108 				qc->err_mask |= AC_ERR_HOST_BUS;
5109 				ap->hsm_task_state = HSM_ST_ERR;
5110 			}
5111 		}
5112 		break;
5113 	case HSM_ST:
5114 		break;
5115 	default:
5116 		goto idle_irq;
5117 	}
5118 
5119 	/* check altstatus */
5120 	status = ata_altstatus(ap);
5121 	if (status & ATA_BUSY)
5122 		goto idle_irq;
5123 
5124 	/* check main status, clearing INTRQ */
5125 	status = ata_chk_status(ap);
5126 	if (unlikely(status & ATA_BUSY))
5127 		goto idle_irq;
5128 
5129 	/* ack bmdma irq events */
5130 	ap->ops->irq_clear(ap);
5131 
5132 	ata_hsm_move(ap, qc, status, 0);
5133 
5134 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5135 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5136 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5137 
5138 	return 1;	/* irq handled */
5139 
5140 idle_irq:
5141 	ap->stats.idle_irq++;
5142 
5143 #ifdef ATA_IRQ_TRAP
5144 	if ((ap->stats.idle_irq % 1000) == 0) {
5145 		ap->ops->irq_ack(ap, 0); /* debug trap */
5146 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5147 		return 1;
5148 	}
5149 #endif
5150 	return 0;	/* irq not handled */
5151 }
5152 
5153 /**
5154  *	ata_interrupt - Default ATA host interrupt handler
5155  *	@irq: irq line (unused)
5156  *	@dev_instance: pointer to our ata_host information structure
5157  *
5158  *	Default interrupt handler for PCI IDE devices.  Calls
5159  *	ata_host_intr() for each port that is not disabled.
5160  *
5161  *	LOCKING:
5162  *	Obtains host lock during operation.
5163  *
5164  *	RETURNS:
5165  *	IRQ_NONE or IRQ_HANDLED.
5166  */
5167 
5168 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5169 {
5170 	struct ata_host *host = dev_instance;
5171 	unsigned int i;
5172 	unsigned int handled = 0;
5173 	unsigned long flags;
5174 
5175 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5176 	spin_lock_irqsave(&host->lock, flags);
5177 
5178 	for (i = 0; i < host->n_ports; i++) {
5179 		struct ata_port *ap;
5180 
5181 		ap = host->ports[i];
5182 		if (ap &&
5183 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5184 			struct ata_queued_cmd *qc;
5185 
5186 			qc = ata_qc_from_tag(ap, ap->active_tag);
5187 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5188 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5189 				handled |= ata_host_intr(ap, qc);
5190 		}
5191 	}
5192 
5193 	spin_unlock_irqrestore(&host->lock, flags);
5194 
5195 	return IRQ_RETVAL(handled);
5196 }
5197 
5198 /**
5199  *	sata_scr_valid - test whether SCRs are accessible
5200  *	@ap: ATA port to test SCR accessibility for
5201  *
5202  *	Test whether SCRs are accessible for @ap.
5203  *
5204  *	LOCKING:
5205  *	None.
5206  *
5207  *	RETURNS:
5208  *	1 if SCRs are accessible, 0 otherwise.
5209  */
5210 int sata_scr_valid(struct ata_port *ap)
5211 {
5212 	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5213 }
5214 
5215 /**
5216  *	sata_scr_read - read SCR register of the specified port
5217  *	@ap: ATA port to read SCR for
5218  *	@reg: SCR to read
5219  *	@val: Place to store read value
5220  *
5221  *	Read SCR register @reg of @ap into *@val.  This function is
5222  *	guaranteed to succeed if the cable type of the port is SATA
5223  *	and the port implements ->scr_read.
5224  *
5225  *	LOCKING:
5226  *	None.
5227  *
5228  *	RETURNS:
5229  *	0 on success, negative errno on failure.
5230  */
5231 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5232 {
5233 	if (sata_scr_valid(ap)) {
5234 		*val = ap->ops->scr_read(ap, reg);
5235 		return 0;
5236 	}
5237 	return -EOPNOTSUPP;
5238 }
5239 
5240 /**
5241  *	sata_scr_write - write SCR register of the specified port
5242  *	@ap: ATA port to write SCR for
5243  *	@reg: SCR to write
5244  *	@val: value to write
5245  *
5246  *	Write @val to SCR register @reg of @ap.  This function is
5247  *	guaranteed to succeed if the cable type of the port is SATA
5248  *	and the port implements ->scr_read.
5249  *
5250  *	LOCKING:
5251  *	None.
5252  *
5253  *	RETURNS:
5254  *	0 on success, negative errno on failure.
5255  */
5256 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5257 {
5258 	if (sata_scr_valid(ap)) {
5259 		ap->ops->scr_write(ap, reg, val);
5260 		return 0;
5261 	}
5262 	return -EOPNOTSUPP;
5263 }
5264 
5265 /**
5266  *	sata_scr_write_flush - write SCR register of the specified port and flush
5267  *	@ap: ATA port to write SCR for
5268  *	@reg: SCR to write
5269  *	@val: value to write
5270  *
5271  *	This function is identical to sata_scr_write() except that this
5272  *	function performs flush after writing to the register.
5273  *
5274  *	LOCKING:
5275  *	None.
5276  *
5277  *	RETURNS:
5278  *	0 on success, negative errno on failure.
5279  */
5280 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5281 {
5282 	if (sata_scr_valid(ap)) {
5283 		ap->ops->scr_write(ap, reg, val);
5284 		ap->ops->scr_read(ap, reg);
5285 		return 0;
5286 	}
5287 	return -EOPNOTSUPP;
5288 }
5289 
5290 /**
5291  *	ata_port_online - test whether the given port is online
5292  *	@ap: ATA port to test
5293  *
5294  *	Test whether @ap is online.  Note that this function returns 0
5295  *	if online status of @ap cannot be obtained, so
5296  *	ata_port_online(ap) != !ata_port_offline(ap).
5297  *
5298  *	LOCKING:
5299  *	None.
5300  *
5301  *	RETURNS:
5302  *	1 if the port online status is available and online.
5303  */
5304 int ata_port_online(struct ata_port *ap)
5305 {
5306 	u32 sstatus;
5307 
5308 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5309 		return 1;
5310 	return 0;
5311 }
5312 
5313 /**
5314  *	ata_port_offline - test whether the given port is offline
5315  *	@ap: ATA port to test
5316  *
5317  *	Test whether @ap is offline.  Note that this function returns
5318  *	0 if offline status of @ap cannot be obtained, so
5319  *	ata_port_online(ap) != !ata_port_offline(ap).
5320  *
5321  *	LOCKING:
5322  *	None.
5323  *
5324  *	RETURNS:
5325  *	1 if the port offline status is available and offline.
5326  */
5327 int ata_port_offline(struct ata_port *ap)
5328 {
5329 	u32 sstatus;
5330 
5331 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5332 		return 1;
5333 	return 0;
5334 }
5335 
5336 int ata_flush_cache(struct ata_device *dev)
5337 {
5338 	unsigned int err_mask;
5339 	u8 cmd;
5340 
5341 	if (!ata_try_flush_cache(dev))
5342 		return 0;
5343 
5344 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5345 		cmd = ATA_CMD_FLUSH_EXT;
5346 	else
5347 		cmd = ATA_CMD_FLUSH;
5348 
5349 	err_mask = ata_do_simple_cmd(dev, cmd);
5350 	if (err_mask) {
5351 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5352 		return -EIO;
5353 	}
5354 
5355 	return 0;
5356 }
5357 
5358 #ifdef CONFIG_PM
5359 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5360 			       unsigned int action, unsigned int ehi_flags,
5361 			       int wait)
5362 {
5363 	unsigned long flags;
5364 	int i, rc;
5365 
5366 	for (i = 0; i < host->n_ports; i++) {
5367 		struct ata_port *ap = host->ports[i];
5368 
5369 		/* Previous resume operation might still be in
5370 		 * progress.  Wait for PM_PENDING to clear.
5371 		 */
5372 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 			ata_port_wait_eh(ap);
5374 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 		}
5376 
5377 		/* request PM ops to EH */
5378 		spin_lock_irqsave(ap->lock, flags);
5379 
5380 		ap->pm_mesg = mesg;
5381 		if (wait) {
5382 			rc = 0;
5383 			ap->pm_result = &rc;
5384 		}
5385 
5386 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5387 		ap->eh_info.action |= action;
5388 		ap->eh_info.flags |= ehi_flags;
5389 
5390 		ata_port_schedule_eh(ap);
5391 
5392 		spin_unlock_irqrestore(ap->lock, flags);
5393 
5394 		/* wait and check result */
5395 		if (wait) {
5396 			ata_port_wait_eh(ap);
5397 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5398 			if (rc)
5399 				return rc;
5400 		}
5401 	}
5402 
5403 	return 0;
5404 }
5405 
5406 /**
5407  *	ata_host_suspend - suspend host
5408  *	@host: host to suspend
5409  *	@mesg: PM message
5410  *
5411  *	Suspend @host.  Actual operation is performed by EH.  This
5412  *	function requests EH to perform PM operations and waits for EH
5413  *	to finish.
5414  *
5415  *	LOCKING:
5416  *	Kernel thread context (may sleep).
5417  *
5418  *	RETURNS:
5419  *	0 on success, -errno on failure.
5420  */
5421 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5422 {
5423 	int i, j, rc;
5424 
5425 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5426 	if (rc)
5427 		goto fail;
5428 
5429 	/* EH is quiescent now.  Fail if we have any ready device.
5430 	 * This happens if hotplug occurs between completion of device
5431 	 * suspension and here.
5432 	 */
5433 	for (i = 0; i < host->n_ports; i++) {
5434 		struct ata_port *ap = host->ports[i];
5435 
5436 		for (j = 0; j < ATA_MAX_DEVICES; j++) {
5437 			struct ata_device *dev = &ap->device[j];
5438 
5439 			if (ata_dev_ready(dev)) {
5440 				ata_port_printk(ap, KERN_WARNING,
5441 						"suspend failed, device %d "
5442 						"still active\n", dev->devno);
5443 				rc = -EBUSY;
5444 				goto fail;
5445 			}
5446 		}
5447 	}
5448 
5449 	host->dev->power.power_state = mesg;
5450 	return 0;
5451 
5452  fail:
5453 	ata_host_resume(host);
5454 	return rc;
5455 }
5456 
5457 /**
5458  *	ata_host_resume - resume host
5459  *	@host: host to resume
5460  *
5461  *	Resume @host.  Actual operation is performed by EH.  This
5462  *	function requests EH to perform PM operations and returns.
5463  *	Note that all resume operations are performed parallely.
5464  *
5465  *	LOCKING:
5466  *	Kernel thread context (may sleep).
5467  */
5468 void ata_host_resume(struct ata_host *host)
5469 {
5470 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5471 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5472 	host->dev->power.power_state = PMSG_ON;
5473 }
5474 #endif
5475 
5476 /**
5477  *	ata_port_start - Set port up for dma.
5478  *	@ap: Port to initialize
5479  *
5480  *	Called just after data structures for each port are
5481  *	initialized.  Allocates space for PRD table.
5482  *
5483  *	May be used as the port_start() entry in ata_port_operations.
5484  *
5485  *	LOCKING:
5486  *	Inherited from caller.
5487  */
5488 int ata_port_start(struct ata_port *ap)
5489 {
5490 	struct device *dev = ap->dev;
5491 	int rc;
5492 
5493 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5494 				      GFP_KERNEL);
5495 	if (!ap->prd)
5496 		return -ENOMEM;
5497 
5498 	rc = ata_pad_alloc(ap, dev);
5499 	if (rc)
5500 		return rc;
5501 
5502 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5503 		(unsigned long long)ap->prd_dma);
5504 	return 0;
5505 }
5506 
5507 /**
5508  *	ata_dev_init - Initialize an ata_device structure
5509  *	@dev: Device structure to initialize
5510  *
5511  *	Initialize @dev in preparation for probing.
5512  *
5513  *	LOCKING:
5514  *	Inherited from caller.
5515  */
5516 void ata_dev_init(struct ata_device *dev)
5517 {
5518 	struct ata_port *ap = dev->ap;
5519 	unsigned long flags;
5520 
5521 	/* SATA spd limit is bound to the first device */
5522 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5523 
5524 	/* High bits of dev->flags are used to record warm plug
5525 	 * requests which occur asynchronously.  Synchronize using
5526 	 * host lock.
5527 	 */
5528 	spin_lock_irqsave(ap->lock, flags);
5529 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5530 	spin_unlock_irqrestore(ap->lock, flags);
5531 
5532 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5533 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5534 	dev->pio_mask = UINT_MAX;
5535 	dev->mwdma_mask = UINT_MAX;
5536 	dev->udma_mask = UINT_MAX;
5537 }
5538 
5539 /**
5540  *	ata_port_init - Initialize an ata_port structure
5541  *	@ap: Structure to initialize
5542  *	@host: Collection of hosts to which @ap belongs
5543  *	@ent: Probe information provided by low-level driver
5544  *	@port_no: Port number associated with this ata_port
5545  *
5546  *	Initialize a new ata_port structure.
5547  *
5548  *	LOCKING:
5549  *	Inherited from caller.
5550  */
5551 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5552 		   const struct ata_probe_ent *ent, unsigned int port_no)
5553 {
5554 	unsigned int i;
5555 
5556 	ap->lock = &host->lock;
5557 	ap->flags = ATA_FLAG_DISABLED;
5558 	ap->print_id = ata_print_id++;
5559 	ap->ctl = ATA_DEVCTL_OBS;
5560 	ap->host = host;
5561 	ap->dev = ent->dev;
5562 	ap->port_no = port_no;
5563 	if (port_no == 1 && ent->pinfo2) {
5564 		ap->pio_mask = ent->pinfo2->pio_mask;
5565 		ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5566 		ap->udma_mask = ent->pinfo2->udma_mask;
5567 		ap->flags |= ent->pinfo2->flags;
5568 		ap->ops = ent->pinfo2->port_ops;
5569 	} else {
5570 		ap->pio_mask = ent->pio_mask;
5571 		ap->mwdma_mask = ent->mwdma_mask;
5572 		ap->udma_mask = ent->udma_mask;
5573 		ap->flags |= ent->port_flags;
5574 		ap->ops = ent->port_ops;
5575 	}
5576 	ap->hw_sata_spd_limit = UINT_MAX;
5577 	ap->active_tag = ATA_TAG_POISON;
5578 	ap->last_ctl = 0xFF;
5579 
5580 #if defined(ATA_VERBOSE_DEBUG)
5581 	/* turn on all debugging levels */
5582 	ap->msg_enable = 0x00FF;
5583 #elif defined(ATA_DEBUG)
5584 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5585 #else
5586 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5587 #endif
5588 
5589 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5590 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5591 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5592 	INIT_LIST_HEAD(&ap->eh_done_q);
5593 	init_waitqueue_head(&ap->eh_wait_q);
5594 
5595 	/* set cable type */
5596 	ap->cbl = ATA_CBL_NONE;
5597 	if (ap->flags & ATA_FLAG_SATA)
5598 		ap->cbl = ATA_CBL_SATA;
5599 
5600 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5601 		struct ata_device *dev = &ap->device[i];
5602 		dev->ap = ap;
5603 		dev->devno = i;
5604 		ata_dev_init(dev);
5605 	}
5606 
5607 #ifdef ATA_IRQ_TRAP
5608 	ap->stats.unhandled_irq = 1;
5609 	ap->stats.idle_irq = 1;
5610 #endif
5611 
5612 	memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5613 }
5614 
5615 /**
5616  *	ata_port_init_shost - Initialize SCSI host associated with ATA port
5617  *	@ap: ATA port to initialize SCSI host for
5618  *	@shost: SCSI host associated with @ap
5619  *
5620  *	Initialize SCSI host @shost associated with ATA port @ap.
5621  *
5622  *	LOCKING:
5623  *	Inherited from caller.
5624  */
5625 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5626 {
5627 	ap->scsi_host = shost;
5628 
5629 	shost->unique_id = ap->print_id;
5630 	shost->max_id = 16;
5631 	shost->max_lun = 1;
5632 	shost->max_channel = 1;
5633 	shost->max_cmd_len = 12;
5634 }
5635 
5636 /**
5637  *	ata_port_add - Attach low-level ATA driver to system
5638  *	@ent: Information provided by low-level driver
5639  *	@host: Collections of ports to which we add
5640  *	@port_no: Port number associated with this host
5641  *
5642  *	Attach low-level ATA driver to system.
5643  *
5644  *	LOCKING:
5645  *	PCI/etc. bus probe sem.
5646  *
5647  *	RETURNS:
5648  *	New ata_port on success, for NULL on error.
5649  */
5650 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5651 				      struct ata_host *host,
5652 				      unsigned int port_no)
5653 {
5654 	struct Scsi_Host *shost;
5655 	struct ata_port *ap;
5656 
5657 	DPRINTK("ENTER\n");
5658 
5659 	if (!ent->port_ops->error_handler &&
5660 	    !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5661 		printk(KERN_ERR "ata%u: no reset mechanism available\n",
5662 		       port_no);
5663 		return NULL;
5664 	}
5665 
5666 	shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5667 	if (!shost)
5668 		return NULL;
5669 
5670 	shost->transportt = &ata_scsi_transport_template;
5671 
5672 	ap = ata_shost_to_port(shost);
5673 
5674 	ata_port_init(ap, host, ent, port_no);
5675 	ata_port_init_shost(ap, shost);
5676 
5677 	return ap;
5678 }
5679 
5680 static void ata_host_release(struct device *gendev, void *res)
5681 {
5682 	struct ata_host *host = dev_get_drvdata(gendev);
5683 	int i;
5684 
5685 	for (i = 0; i < host->n_ports; i++) {
5686 		struct ata_port *ap = host->ports[i];
5687 
5688 		if (ap && ap->ops->port_stop)
5689 			ap->ops->port_stop(ap);
5690 	}
5691 
5692 	if (host->ops->host_stop)
5693 		host->ops->host_stop(host);
5694 
5695 	for (i = 0; i < host->n_ports; i++) {
5696 		struct ata_port *ap = host->ports[i];
5697 
5698 		if (ap)
5699 			scsi_host_put(ap->scsi_host);
5700 
5701 		host->ports[i] = NULL;
5702 	}
5703 
5704 	dev_set_drvdata(gendev, NULL);
5705 }
5706 
5707 /**
5708  *	ata_sas_host_init - Initialize a host struct
5709  *	@host:	host to initialize
5710  *	@dev:	device host is attached to
5711  *	@flags:	host flags
5712  *	@ops:	port_ops
5713  *
5714  *	LOCKING:
5715  *	PCI/etc. bus probe sem.
5716  *
5717  */
5718 
5719 void ata_host_init(struct ata_host *host, struct device *dev,
5720 		   unsigned long flags, const struct ata_port_operations *ops)
5721 {
5722 	spin_lock_init(&host->lock);
5723 	host->dev = dev;
5724 	host->flags = flags;
5725 	host->ops = ops;
5726 }
5727 
5728 /**
5729  *	ata_device_add - Register hardware device with ATA and SCSI layers
5730  *	@ent: Probe information describing hardware device to be registered
5731  *
5732  *	This function processes the information provided in the probe
5733  *	information struct @ent, allocates the necessary ATA and SCSI
5734  *	host information structures, initializes them, and registers
5735  *	everything with requisite kernel subsystems.
5736  *
5737  *	This function requests irqs, probes the ATA bus, and probes
5738  *	the SCSI bus.
5739  *
5740  *	LOCKING:
5741  *	PCI/etc. bus probe sem.
5742  *
5743  *	RETURNS:
5744  *	Number of ports registered.  Zero on error (no ports registered).
5745  */
5746 int ata_device_add(const struct ata_probe_ent *ent)
5747 {
5748 	unsigned int i;
5749 	struct device *dev = ent->dev;
5750 	struct ata_host *host;
5751 	int rc;
5752 
5753 	DPRINTK("ENTER\n");
5754 
5755 	if (ent->irq == 0) {
5756 		dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5757 		return 0;
5758 	}
5759 
5760 	if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5761 		return 0;
5762 
5763 	/* alloc a container for our list of ATA ports (buses) */
5764 	host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5765 			    (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5766 	if (!host)
5767 		goto err_out;
5768 	devres_add(dev, host);
5769 	dev_set_drvdata(dev, host);
5770 
5771 	ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5772 	host->n_ports = ent->n_ports;
5773 	host->irq = ent->irq;
5774 	host->irq2 = ent->irq2;
5775 	host->iomap = ent->iomap;
5776 	host->private_data = ent->private_data;
5777 
5778 	/* register each port bound to this device */
5779 	for (i = 0; i < host->n_ports; i++) {
5780 		struct ata_port *ap;
5781 		unsigned long xfer_mode_mask;
5782 		int irq_line = ent->irq;
5783 
5784 		ap = ata_port_add(ent, host, i);
5785 		host->ports[i] = ap;
5786 		if (!ap)
5787 			goto err_out;
5788 
5789 		/* dummy? */
5790 		if (ent->dummy_port_mask & (1 << i)) {
5791 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5792 			ap->ops = &ata_dummy_port_ops;
5793 			continue;
5794 		}
5795 
5796 		/* start port */
5797 		rc = ap->ops->port_start(ap);
5798 		if (rc) {
5799 			host->ports[i] = NULL;
5800 			scsi_host_put(ap->scsi_host);
5801 			goto err_out;
5802 		}
5803 
5804 		/* Report the secondary IRQ for second channel legacy */
5805 		if (i == 1 && ent->irq2)
5806 			irq_line = ent->irq2;
5807 
5808 		xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5809 				(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5810 				(ap->pio_mask << ATA_SHIFT_PIO);
5811 
5812 		/* print per-port info to dmesg */
5813 		ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5814 				"ctl 0x%p bmdma 0x%p irq %d\n",
5815 				ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5816 				ata_mode_string(xfer_mode_mask),
5817 				ap->ioaddr.cmd_addr,
5818 				ap->ioaddr.ctl_addr,
5819 				ap->ioaddr.bmdma_addr,
5820 				irq_line);
5821 
5822 		/* freeze port before requesting IRQ */
5823 		ata_eh_freeze_port(ap);
5824 	}
5825 
5826 	/* obtain irq, that may be shared between channels */
5827 	rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5828 			      ent->irq_flags, DRV_NAME, host);
5829 	if (rc) {
5830 		dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5831 			   ent->irq, rc);
5832 		goto err_out;
5833 	}
5834 
5835 	/* do we have a second IRQ for the other channel, eg legacy mode */
5836 	if (ent->irq2) {
5837 		/* We will get weird core code crashes later if this is true
5838 		   so trap it now */
5839 		BUG_ON(ent->irq == ent->irq2);
5840 
5841 		rc = devm_request_irq(dev, ent->irq2,
5842 				ent->port_ops->irq_handler, ent->irq_flags,
5843 				DRV_NAME, host);
5844 		if (rc) {
5845 			dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5846 				   ent->irq2, rc);
5847 			goto err_out;
5848 		}
5849 	}
5850 
5851 	/* resource acquisition complete */
5852 	devres_remove_group(dev, ata_device_add);
5853 
5854 	/* perform each probe synchronously */
5855 	DPRINTK("probe begin\n");
5856 	for (i = 0; i < host->n_ports; i++) {
5857 		struct ata_port *ap = host->ports[i];
5858 		u32 scontrol;
5859 		int rc;
5860 
5861 		/* init sata_spd_limit to the current value */
5862 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5863 			int spd = (scontrol >> 4) & 0xf;
5864 			ap->hw_sata_spd_limit &= (1 << spd) - 1;
5865 		}
5866 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
5867 
5868 		rc = scsi_add_host(ap->scsi_host, dev);
5869 		if (rc) {
5870 			ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5871 			/* FIXME: do something useful here */
5872 			/* FIXME: handle unconditional calls to
5873 			 * scsi_scan_host and ata_host_remove, below,
5874 			 * at the very least
5875 			 */
5876 		}
5877 
5878 		if (ap->ops->error_handler) {
5879 			struct ata_eh_info *ehi = &ap->eh_info;
5880 			unsigned long flags;
5881 
5882 			ata_port_probe(ap);
5883 
5884 			/* kick EH for boot probing */
5885 			spin_lock_irqsave(ap->lock, flags);
5886 
5887 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5888 			ehi->action |= ATA_EH_SOFTRESET;
5889 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5890 
5891 			ap->pflags |= ATA_PFLAG_LOADING;
5892 			ata_port_schedule_eh(ap);
5893 
5894 			spin_unlock_irqrestore(ap->lock, flags);
5895 
5896 			/* wait for EH to finish */
5897 			ata_port_wait_eh(ap);
5898 		} else {
5899 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5900 			rc = ata_bus_probe(ap);
5901 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
5902 
5903 			if (rc) {
5904 				/* FIXME: do something useful here?
5905 				 * Current libata behavior will
5906 				 * tear down everything when
5907 				 * the module is removed
5908 				 * or the h/w is unplugged.
5909 				 */
5910 			}
5911 		}
5912 	}
5913 
5914 	/* probes are done, now scan each port's disk(s) */
5915 	DPRINTK("host probe begin\n");
5916 	for (i = 0; i < host->n_ports; i++) {
5917 		struct ata_port *ap = host->ports[i];
5918 
5919 		ata_scsi_scan_host(ap);
5920 	}
5921 
5922 	VPRINTK("EXIT, returning %u\n", ent->n_ports);
5923 	return ent->n_ports; /* success */
5924 
5925  err_out:
5926 	devres_release_group(dev, ata_device_add);
5927 	VPRINTK("EXIT, returning %d\n", rc);
5928 	return 0;
5929 }
5930 
5931 /**
5932  *	ata_port_detach - Detach ATA port in prepration of device removal
5933  *	@ap: ATA port to be detached
5934  *
5935  *	Detach all ATA devices and the associated SCSI devices of @ap;
5936  *	then, remove the associated SCSI host.  @ap is guaranteed to
5937  *	be quiescent on return from this function.
5938  *
5939  *	LOCKING:
5940  *	Kernel thread context (may sleep).
5941  */
5942 void ata_port_detach(struct ata_port *ap)
5943 {
5944 	unsigned long flags;
5945 	int i;
5946 
5947 	if (!ap->ops->error_handler)
5948 		goto skip_eh;
5949 
5950 	/* tell EH we're leaving & flush EH */
5951 	spin_lock_irqsave(ap->lock, flags);
5952 	ap->pflags |= ATA_PFLAG_UNLOADING;
5953 	spin_unlock_irqrestore(ap->lock, flags);
5954 
5955 	ata_port_wait_eh(ap);
5956 
5957 	/* EH is now guaranteed to see UNLOADING, so no new device
5958 	 * will be attached.  Disable all existing devices.
5959 	 */
5960 	spin_lock_irqsave(ap->lock, flags);
5961 
5962 	for (i = 0; i < ATA_MAX_DEVICES; i++)
5963 		ata_dev_disable(&ap->device[i]);
5964 
5965 	spin_unlock_irqrestore(ap->lock, flags);
5966 
5967 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
5968 	 * will be skipped and retrials will be terminated with bad
5969 	 * target.
5970 	 */
5971 	spin_lock_irqsave(ap->lock, flags);
5972 	ata_port_freeze(ap);	/* won't be thawed */
5973 	spin_unlock_irqrestore(ap->lock, flags);
5974 
5975 	ata_port_wait_eh(ap);
5976 
5977 	/* Flush hotplug task.  The sequence is similar to
5978 	 * ata_port_flush_task().
5979 	 */
5980 	flush_workqueue(ata_aux_wq);
5981 	cancel_delayed_work(&ap->hotplug_task);
5982 	flush_workqueue(ata_aux_wq);
5983 
5984  skip_eh:
5985 	/* remove the associated SCSI host */
5986 	scsi_remove_host(ap->scsi_host);
5987 }
5988 
5989 /**
5990  *	ata_host_detach - Detach all ports of an ATA host
5991  *	@host: Host to detach
5992  *
5993  *	Detach all ports of @host.
5994  *
5995  *	LOCKING:
5996  *	Kernel thread context (may sleep).
5997  */
5998 void ata_host_detach(struct ata_host *host)
5999 {
6000 	int i;
6001 
6002 	for (i = 0; i < host->n_ports; i++)
6003 		ata_port_detach(host->ports[i]);
6004 }
6005 
6006 struct ata_probe_ent *
6007 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6008 {
6009 	struct ata_probe_ent *probe_ent;
6010 
6011 	probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6012 	if (!probe_ent) {
6013 		printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6014 		       kobject_name(&(dev->kobj)));
6015 		return NULL;
6016 	}
6017 
6018 	INIT_LIST_HEAD(&probe_ent->node);
6019 	probe_ent->dev = dev;
6020 
6021 	probe_ent->sht = port->sht;
6022 	probe_ent->port_flags = port->flags;
6023 	probe_ent->pio_mask = port->pio_mask;
6024 	probe_ent->mwdma_mask = port->mwdma_mask;
6025 	probe_ent->udma_mask = port->udma_mask;
6026 	probe_ent->port_ops = port->port_ops;
6027 	probe_ent->private_data = port->private_data;
6028 
6029 	return probe_ent;
6030 }
6031 
6032 /**
6033  *	ata_std_ports - initialize ioaddr with standard port offsets.
6034  *	@ioaddr: IO address structure to be initialized
6035  *
6036  *	Utility function which initializes data_addr, error_addr,
6037  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6038  *	device_addr, status_addr, and command_addr to standard offsets
6039  *	relative to cmd_addr.
6040  *
6041  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6042  */
6043 
6044 void ata_std_ports(struct ata_ioports *ioaddr)
6045 {
6046 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6047 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6048 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6049 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6050 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6051 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6052 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6053 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6054 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6055 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6056 }
6057 
6058 
6059 #ifdef CONFIG_PCI
6060 
6061 /**
6062  *	ata_pci_remove_one - PCI layer callback for device removal
6063  *	@pdev: PCI device that was removed
6064  *
6065  *	PCI layer indicates to libata via this hook that hot-unplug or
6066  *	module unload event has occurred.  Detach all ports.  Resource
6067  *	release is handled via devres.
6068  *
6069  *	LOCKING:
6070  *	Inherited from PCI layer (may sleep).
6071  */
6072 void ata_pci_remove_one(struct pci_dev *pdev)
6073 {
6074 	struct device *dev = pci_dev_to_dev(pdev);
6075 	struct ata_host *host = dev_get_drvdata(dev);
6076 
6077 	ata_host_detach(host);
6078 }
6079 
6080 /* move to PCI subsystem */
6081 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6082 {
6083 	unsigned long tmp = 0;
6084 
6085 	switch (bits->width) {
6086 	case 1: {
6087 		u8 tmp8 = 0;
6088 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6089 		tmp = tmp8;
6090 		break;
6091 	}
6092 	case 2: {
6093 		u16 tmp16 = 0;
6094 		pci_read_config_word(pdev, bits->reg, &tmp16);
6095 		tmp = tmp16;
6096 		break;
6097 	}
6098 	case 4: {
6099 		u32 tmp32 = 0;
6100 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6101 		tmp = tmp32;
6102 		break;
6103 	}
6104 
6105 	default:
6106 		return -EINVAL;
6107 	}
6108 
6109 	tmp &= bits->mask;
6110 
6111 	return (tmp == bits->val) ? 1 : 0;
6112 }
6113 
6114 #ifdef CONFIG_PM
6115 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6116 {
6117 	pci_save_state(pdev);
6118 	pci_disable_device(pdev);
6119 
6120 	if (mesg.event == PM_EVENT_SUSPEND)
6121 		pci_set_power_state(pdev, PCI_D3hot);
6122 }
6123 
6124 int ata_pci_device_do_resume(struct pci_dev *pdev)
6125 {
6126 	int rc;
6127 
6128 	pci_set_power_state(pdev, PCI_D0);
6129 	pci_restore_state(pdev);
6130 
6131 	rc = pcim_enable_device(pdev);
6132 	if (rc) {
6133 		dev_printk(KERN_ERR, &pdev->dev,
6134 			   "failed to enable device after resume (%d)\n", rc);
6135 		return rc;
6136 	}
6137 
6138 	pci_set_master(pdev);
6139 	return 0;
6140 }
6141 
6142 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6143 {
6144 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6145 	int rc = 0;
6146 
6147 	rc = ata_host_suspend(host, mesg);
6148 	if (rc)
6149 		return rc;
6150 
6151 	ata_pci_device_do_suspend(pdev, mesg);
6152 
6153 	return 0;
6154 }
6155 
6156 int ata_pci_device_resume(struct pci_dev *pdev)
6157 {
6158 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6159 	int rc;
6160 
6161 	rc = ata_pci_device_do_resume(pdev);
6162 	if (rc == 0)
6163 		ata_host_resume(host);
6164 	return rc;
6165 }
6166 #endif /* CONFIG_PM */
6167 
6168 #endif /* CONFIG_PCI */
6169 
6170 
6171 static int __init ata_init(void)
6172 {
6173 	ata_probe_timeout *= HZ;
6174 	ata_wq = create_workqueue("ata");
6175 	if (!ata_wq)
6176 		return -ENOMEM;
6177 
6178 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6179 	if (!ata_aux_wq) {
6180 		destroy_workqueue(ata_wq);
6181 		return -ENOMEM;
6182 	}
6183 
6184 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6185 	return 0;
6186 }
6187 
6188 static void __exit ata_exit(void)
6189 {
6190 	destroy_workqueue(ata_wq);
6191 	destroy_workqueue(ata_aux_wq);
6192 }
6193 
6194 subsys_initcall(ata_init);
6195 module_exit(ata_exit);
6196 
6197 static unsigned long ratelimit_time;
6198 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6199 
6200 int ata_ratelimit(void)
6201 {
6202 	int rc;
6203 	unsigned long flags;
6204 
6205 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6206 
6207 	if (time_after(jiffies, ratelimit_time)) {
6208 		rc = 1;
6209 		ratelimit_time = jiffies + (HZ/5);
6210 	} else
6211 		rc = 0;
6212 
6213 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6214 
6215 	return rc;
6216 }
6217 
6218 /**
6219  *	ata_wait_register - wait until register value changes
6220  *	@reg: IO-mapped register
6221  *	@mask: Mask to apply to read register value
6222  *	@val: Wait condition
6223  *	@interval_msec: polling interval in milliseconds
6224  *	@timeout_msec: timeout in milliseconds
6225  *
6226  *	Waiting for some bits of register to change is a common
6227  *	operation for ATA controllers.  This function reads 32bit LE
6228  *	IO-mapped register @reg and tests for the following condition.
6229  *
6230  *	(*@reg & mask) != val
6231  *
6232  *	If the condition is met, it returns; otherwise, the process is
6233  *	repeated after @interval_msec until timeout.
6234  *
6235  *	LOCKING:
6236  *	Kernel thread context (may sleep)
6237  *
6238  *	RETURNS:
6239  *	The final register value.
6240  */
6241 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6242 		      unsigned long interval_msec,
6243 		      unsigned long timeout_msec)
6244 {
6245 	unsigned long timeout;
6246 	u32 tmp;
6247 
6248 	tmp = ioread32(reg);
6249 
6250 	/* Calculate timeout _after_ the first read to make sure
6251 	 * preceding writes reach the controller before starting to
6252 	 * eat away the timeout.
6253 	 */
6254 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6255 
6256 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6257 		msleep(interval_msec);
6258 		tmp = ioread32(reg);
6259 	}
6260 
6261 	return tmp;
6262 }
6263 
6264 /*
6265  * Dummy port_ops
6266  */
6267 static void ata_dummy_noret(struct ata_port *ap)	{ }
6268 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6269 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6270 
6271 static u8 ata_dummy_check_status(struct ata_port *ap)
6272 {
6273 	return ATA_DRDY;
6274 }
6275 
6276 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6277 {
6278 	return AC_ERR_SYSTEM;
6279 }
6280 
6281 const struct ata_port_operations ata_dummy_port_ops = {
6282 	.port_disable		= ata_port_disable,
6283 	.check_status		= ata_dummy_check_status,
6284 	.check_altstatus	= ata_dummy_check_status,
6285 	.dev_select		= ata_noop_dev_select,
6286 	.qc_prep		= ata_noop_qc_prep,
6287 	.qc_issue		= ata_dummy_qc_issue,
6288 	.freeze			= ata_dummy_noret,
6289 	.thaw			= ata_dummy_noret,
6290 	.error_handler		= ata_dummy_noret,
6291 	.post_internal_cmd	= ata_dummy_qc_noret,
6292 	.irq_clear		= ata_dummy_noret,
6293 	.port_start		= ata_dummy_ret0,
6294 	.port_stop		= ata_dummy_noret,
6295 };
6296 
6297 /*
6298  * libata is essentially a library of internal helper functions for
6299  * low-level ATA host controller drivers.  As such, the API/ABI is
6300  * likely to change as new drivers are added and updated.
6301  * Do not depend on ABI/API stability.
6302  */
6303 
6304 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6305 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6306 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6307 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6308 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6309 EXPORT_SYMBOL_GPL(ata_std_ports);
6310 EXPORT_SYMBOL_GPL(ata_host_init);
6311 EXPORT_SYMBOL_GPL(ata_device_add);
6312 EXPORT_SYMBOL_GPL(ata_host_detach);
6313 EXPORT_SYMBOL_GPL(ata_sg_init);
6314 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6315 EXPORT_SYMBOL_GPL(ata_hsm_move);
6316 EXPORT_SYMBOL_GPL(ata_qc_complete);
6317 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6318 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6319 EXPORT_SYMBOL_GPL(ata_tf_load);
6320 EXPORT_SYMBOL_GPL(ata_tf_read);
6321 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6322 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6323 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6324 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6325 EXPORT_SYMBOL_GPL(ata_check_status);
6326 EXPORT_SYMBOL_GPL(ata_altstatus);
6327 EXPORT_SYMBOL_GPL(ata_exec_command);
6328 EXPORT_SYMBOL_GPL(ata_port_start);
6329 EXPORT_SYMBOL_GPL(ata_interrupt);
6330 EXPORT_SYMBOL_GPL(ata_data_xfer);
6331 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6332 EXPORT_SYMBOL_GPL(ata_qc_prep);
6333 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6334 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6335 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6336 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6337 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6338 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6339 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6340 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6341 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6342 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6343 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6344 EXPORT_SYMBOL_GPL(ata_port_probe);
6345 EXPORT_SYMBOL_GPL(ata_dev_disable);
6346 EXPORT_SYMBOL_GPL(sata_set_spd);
6347 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6348 EXPORT_SYMBOL_GPL(sata_phy_resume);
6349 EXPORT_SYMBOL_GPL(sata_phy_reset);
6350 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6351 EXPORT_SYMBOL_GPL(ata_bus_reset);
6352 EXPORT_SYMBOL_GPL(ata_std_prereset);
6353 EXPORT_SYMBOL_GPL(ata_std_softreset);
6354 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6355 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6356 EXPORT_SYMBOL_GPL(ata_std_postreset);
6357 EXPORT_SYMBOL_GPL(ata_dev_classify);
6358 EXPORT_SYMBOL_GPL(ata_dev_pair);
6359 EXPORT_SYMBOL_GPL(ata_port_disable);
6360 EXPORT_SYMBOL_GPL(ata_ratelimit);
6361 EXPORT_SYMBOL_GPL(ata_wait_register);
6362 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6363 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6364 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6365 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6366 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6367 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6368 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6369 EXPORT_SYMBOL_GPL(ata_host_intr);
6370 EXPORT_SYMBOL_GPL(sata_scr_valid);
6371 EXPORT_SYMBOL_GPL(sata_scr_read);
6372 EXPORT_SYMBOL_GPL(sata_scr_write);
6373 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6374 EXPORT_SYMBOL_GPL(ata_port_online);
6375 EXPORT_SYMBOL_GPL(ata_port_offline);
6376 #ifdef CONFIG_PM
6377 EXPORT_SYMBOL_GPL(ata_host_suspend);
6378 EXPORT_SYMBOL_GPL(ata_host_resume);
6379 #endif /* CONFIG_PM */
6380 EXPORT_SYMBOL_GPL(ata_id_string);
6381 EXPORT_SYMBOL_GPL(ata_id_c_string);
6382 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6383 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6384 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6385 
6386 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6387 EXPORT_SYMBOL_GPL(ata_timing_compute);
6388 EXPORT_SYMBOL_GPL(ata_timing_merge);
6389 
6390 #ifdef CONFIG_PCI
6391 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6392 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6393 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6394 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6395 #ifdef CONFIG_PM
6396 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6397 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6398 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6399 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6400 #endif /* CONFIG_PM */
6401 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6402 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6403 #endif /* CONFIG_PCI */
6404 
6405 #ifdef CONFIG_PM
6406 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6407 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6408 #endif /* CONFIG_PM */
6409 
6410 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6411 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6412 EXPORT_SYMBOL_GPL(ata_port_abort);
6413 EXPORT_SYMBOL_GPL(ata_port_freeze);
6414 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6415 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6416 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6417 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6418 EXPORT_SYMBOL_GPL(ata_do_eh);
6419 EXPORT_SYMBOL_GPL(ata_irq_on);
6420 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6421 EXPORT_SYMBOL_GPL(ata_irq_ack);
6422 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6423 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6424