1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.20" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 75 static unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int libata_fua = 0; 89 module_param_named(fua, libata_fua, int, 0444); 90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 91 92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 93 module_param(ata_probe_timeout, int, 0444); 94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 95 96 int noacpi; 97 module_param(noacpi, int, 0444); 98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 99 100 MODULE_AUTHOR("Jeff Garzik"); 101 MODULE_DESCRIPTION("Library module for ATA devices"); 102 MODULE_LICENSE("GPL"); 103 MODULE_VERSION(DRV_VERSION); 104 105 106 /** 107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 108 * @tf: Taskfile to convert 109 * @fis: Buffer into which data will output 110 * @pmp: Port multiplier port 111 * 112 * Converts a standard ATA taskfile to a Serial ATA 113 * FIS structure (Register - Host to Device). 114 * 115 * LOCKING: 116 * Inherited from caller. 117 */ 118 119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 120 { 121 fis[0] = 0x27; /* Register - Host to Device FIS */ 122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 123 bit 7 indicates Command FIS */ 124 fis[2] = tf->command; 125 fis[3] = tf->feature; 126 127 fis[4] = tf->lbal; 128 fis[5] = tf->lbam; 129 fis[6] = tf->lbah; 130 fis[7] = tf->device; 131 132 fis[8] = tf->hob_lbal; 133 fis[9] = tf->hob_lbam; 134 fis[10] = tf->hob_lbah; 135 fis[11] = tf->hob_feature; 136 137 fis[12] = tf->nsect; 138 fis[13] = tf->hob_nsect; 139 fis[14] = 0; 140 fis[15] = tf->ctl; 141 142 fis[16] = 0; 143 fis[17] = 0; 144 fis[18] = 0; 145 fis[19] = 0; 146 } 147 148 /** 149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 150 * @fis: Buffer from which data will be input 151 * @tf: Taskfile to output 152 * 153 * Converts a serial ATA FIS structure to a standard ATA taskfile. 154 * 155 * LOCKING: 156 * Inherited from caller. 157 */ 158 159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 160 { 161 tf->command = fis[2]; /* status */ 162 tf->feature = fis[3]; /* error */ 163 164 tf->lbal = fis[4]; 165 tf->lbam = fis[5]; 166 tf->lbah = fis[6]; 167 tf->device = fis[7]; 168 169 tf->hob_lbal = fis[8]; 170 tf->hob_lbam = fis[9]; 171 tf->hob_lbah = fis[10]; 172 173 tf->nsect = fis[12]; 174 tf->hob_nsect = fis[13]; 175 } 176 177 static const u8 ata_rw_cmds[] = { 178 /* pio multi */ 179 ATA_CMD_READ_MULTI, 180 ATA_CMD_WRITE_MULTI, 181 ATA_CMD_READ_MULTI_EXT, 182 ATA_CMD_WRITE_MULTI_EXT, 183 0, 184 0, 185 0, 186 ATA_CMD_WRITE_MULTI_FUA_EXT, 187 /* pio */ 188 ATA_CMD_PIO_READ, 189 ATA_CMD_PIO_WRITE, 190 ATA_CMD_PIO_READ_EXT, 191 ATA_CMD_PIO_WRITE_EXT, 192 0, 193 0, 194 0, 195 0, 196 /* dma */ 197 ATA_CMD_READ, 198 ATA_CMD_WRITE, 199 ATA_CMD_READ_EXT, 200 ATA_CMD_WRITE_EXT, 201 0, 202 0, 203 0, 204 ATA_CMD_WRITE_FUA_EXT 205 }; 206 207 /** 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 209 * @tf: command to examine and configure 210 * @dev: device tf belongs to 211 * 212 * Examine the device configuration and tf->flags to calculate 213 * the proper read/write commands and protocol to use. 214 * 215 * LOCKING: 216 * caller. 217 */ 218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 219 { 220 u8 cmd; 221 222 int index, fua, lba48, write; 223 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 227 228 if (dev->flags & ATA_DFLAG_PIO) { 229 tf->protocol = ATA_PROT_PIO; 230 index = dev->multi_count ? 0 : 8; 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 232 /* Unable to use DMA due to host limitation */ 233 tf->protocol = ATA_PROT_PIO; 234 index = dev->multi_count ? 0 : 8; 235 } else { 236 tf->protocol = ATA_PROT_DMA; 237 index = 16; 238 } 239 240 cmd = ata_rw_cmds[index + fua + lba48 + write]; 241 if (cmd) { 242 tf->command = cmd; 243 return 0; 244 } 245 return -1; 246 } 247 248 /** 249 * ata_tf_read_block - Read block address from ATA taskfile 250 * @tf: ATA taskfile of interest 251 * @dev: ATA device @tf belongs to 252 * 253 * LOCKING: 254 * None. 255 * 256 * Read block address from @tf. This function can handle all 257 * three address formats - LBA, LBA48 and CHS. tf->protocol and 258 * flags select the address format to use. 259 * 260 * RETURNS: 261 * Block address read from @tf. 262 */ 263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 264 { 265 u64 block = 0; 266 267 if (tf->flags & ATA_TFLAG_LBA) { 268 if (tf->flags & ATA_TFLAG_LBA48) { 269 block |= (u64)tf->hob_lbah << 40; 270 block |= (u64)tf->hob_lbam << 32; 271 block |= tf->hob_lbal << 24; 272 } else 273 block |= (tf->device & 0xf) << 24; 274 275 block |= tf->lbah << 16; 276 block |= tf->lbam << 8; 277 block |= tf->lbal; 278 } else { 279 u32 cyl, head, sect; 280 281 cyl = tf->lbam | (tf->lbah << 8); 282 head = tf->device & 0xf; 283 sect = tf->lbal; 284 285 block = (cyl * dev->heads + head) * dev->sectors + sect; 286 } 287 288 return block; 289 } 290 291 /** 292 * ata_build_rw_tf - Build ATA taskfile for given read/write request 293 * @tf: Target ATA taskfile 294 * @dev: ATA device @tf belongs to 295 * @block: Block address 296 * @n_block: Number of blocks 297 * @tf_flags: RW/FUA etc... 298 * @tag: tag 299 * 300 * LOCKING: 301 * None. 302 * 303 * Build ATA taskfile @tf for read/write request described by 304 * @block, @n_block, @tf_flags and @tag on @dev. 305 * 306 * RETURNS: 307 * 308 * 0 on success, -ERANGE if the request is too large for @dev, 309 * -EINVAL if the request is invalid. 310 */ 311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 312 u64 block, u32 n_block, unsigned int tf_flags, 313 unsigned int tag) 314 { 315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 316 tf->flags |= tf_flags; 317 318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 319 /* yay, NCQ */ 320 if (!lba_48_ok(block, n_block)) 321 return -ERANGE; 322 323 tf->protocol = ATA_PROT_NCQ; 324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 325 326 if (tf->flags & ATA_TFLAG_WRITE) 327 tf->command = ATA_CMD_FPDMA_WRITE; 328 else 329 tf->command = ATA_CMD_FPDMA_READ; 330 331 tf->nsect = tag << 3; 332 tf->hob_feature = (n_block >> 8) & 0xff; 333 tf->feature = n_block & 0xff; 334 335 tf->hob_lbah = (block >> 40) & 0xff; 336 tf->hob_lbam = (block >> 32) & 0xff; 337 tf->hob_lbal = (block >> 24) & 0xff; 338 tf->lbah = (block >> 16) & 0xff; 339 tf->lbam = (block >> 8) & 0xff; 340 tf->lbal = block & 0xff; 341 342 tf->device = 1 << 6; 343 if (tf->flags & ATA_TFLAG_FUA) 344 tf->device |= 1 << 7; 345 } else if (dev->flags & ATA_DFLAG_LBA) { 346 tf->flags |= ATA_TFLAG_LBA; 347 348 if (lba_28_ok(block, n_block)) { 349 /* use LBA28 */ 350 tf->device |= (block >> 24) & 0xf; 351 } else if (lba_48_ok(block, n_block)) { 352 if (!(dev->flags & ATA_DFLAG_LBA48)) 353 return -ERANGE; 354 355 /* use LBA48 */ 356 tf->flags |= ATA_TFLAG_LBA48; 357 358 tf->hob_nsect = (n_block >> 8) & 0xff; 359 360 tf->hob_lbah = (block >> 40) & 0xff; 361 tf->hob_lbam = (block >> 32) & 0xff; 362 tf->hob_lbal = (block >> 24) & 0xff; 363 } else 364 /* request too large even for LBA48 */ 365 return -ERANGE; 366 367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 368 return -EINVAL; 369 370 tf->nsect = n_block & 0xff; 371 372 tf->lbah = (block >> 16) & 0xff; 373 tf->lbam = (block >> 8) & 0xff; 374 tf->lbal = block & 0xff; 375 376 tf->device |= ATA_LBA; 377 } else { 378 /* CHS */ 379 u32 sect, head, cyl, track; 380 381 /* The request -may- be too large for CHS addressing. */ 382 if (!lba_28_ok(block, n_block)) 383 return -ERANGE; 384 385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 386 return -EINVAL; 387 388 /* Convert LBA to CHS */ 389 track = (u32)block / dev->sectors; 390 cyl = track / dev->heads; 391 head = track % dev->heads; 392 sect = (u32)block % dev->sectors + 1; 393 394 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 395 (u32)block, track, cyl, head, sect); 396 397 /* Check whether the converted CHS can fit. 398 Cylinder: 0-65535 399 Head: 0-15 400 Sector: 1-255*/ 401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 402 return -ERANGE; 403 404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 405 tf->lbal = sect; 406 tf->lbam = cyl; 407 tf->lbah = cyl >> 8; 408 tf->device |= head; 409 } 410 411 return 0; 412 } 413 414 /** 415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 416 * @pio_mask: pio_mask 417 * @mwdma_mask: mwdma_mask 418 * @udma_mask: udma_mask 419 * 420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 421 * unsigned int xfer_mask. 422 * 423 * LOCKING: 424 * None. 425 * 426 * RETURNS: 427 * Packed xfer_mask. 428 */ 429 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 430 unsigned int mwdma_mask, 431 unsigned int udma_mask) 432 { 433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 436 } 437 438 /** 439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 440 * @xfer_mask: xfer_mask to unpack 441 * @pio_mask: resulting pio_mask 442 * @mwdma_mask: resulting mwdma_mask 443 * @udma_mask: resulting udma_mask 444 * 445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 446 * Any NULL distination masks will be ignored. 447 */ 448 static void ata_unpack_xfermask(unsigned int xfer_mask, 449 unsigned int *pio_mask, 450 unsigned int *mwdma_mask, 451 unsigned int *udma_mask) 452 { 453 if (pio_mask) 454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 455 if (mwdma_mask) 456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 457 if (udma_mask) 458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 459 } 460 461 static const struct ata_xfer_ent { 462 int shift, bits; 463 u8 base; 464 } ata_xfer_tbl[] = { 465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 468 { -1, }, 469 }; 470 471 /** 472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 473 * @xfer_mask: xfer_mask of interest 474 * 475 * Return matching XFER_* value for @xfer_mask. Only the highest 476 * bit of @xfer_mask is considered. 477 * 478 * LOCKING: 479 * None. 480 * 481 * RETURNS: 482 * Matching XFER_* value, 0 if no match found. 483 */ 484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 485 { 486 int highbit = fls(xfer_mask) - 1; 487 const struct ata_xfer_ent *ent; 488 489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 491 return ent->base + highbit - ent->shift; 492 return 0; 493 } 494 495 /** 496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 497 * @xfer_mode: XFER_* of interest 498 * 499 * Return matching xfer_mask for @xfer_mode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * Matching xfer_mask, 0 if no match found. 506 */ 507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 508 { 509 const struct ata_xfer_ent *ent; 510 511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 513 return 1 << (ent->shift + xfer_mode - ent->base); 514 return 0; 515 } 516 517 /** 518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 519 * @xfer_mode: XFER_* of interest 520 * 521 * Return matching xfer_shift for @xfer_mode. 522 * 523 * LOCKING: 524 * None. 525 * 526 * RETURNS: 527 * Matching xfer_shift, -1 if no match found. 528 */ 529 static int ata_xfer_mode2shift(unsigned int xfer_mode) 530 { 531 const struct ata_xfer_ent *ent; 532 533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 535 return ent->shift; 536 return -1; 537 } 538 539 /** 540 * ata_mode_string - convert xfer_mask to string 541 * @xfer_mask: mask of bits supported; only highest bit counts. 542 * 543 * Determine string which represents the highest speed 544 * (highest bit in @modemask). 545 * 546 * LOCKING: 547 * None. 548 * 549 * RETURNS: 550 * Constant C string representing highest speed listed in 551 * @mode_mask, or the constant C string "<n/a>". 552 */ 553 static const char *ata_mode_string(unsigned int xfer_mask) 554 { 555 static const char * const xfer_mode_str[] = { 556 "PIO0", 557 "PIO1", 558 "PIO2", 559 "PIO3", 560 "PIO4", 561 "PIO5", 562 "PIO6", 563 "MWDMA0", 564 "MWDMA1", 565 "MWDMA2", 566 "MWDMA3", 567 "MWDMA4", 568 "UDMA/16", 569 "UDMA/25", 570 "UDMA/33", 571 "UDMA/44", 572 "UDMA/66", 573 "UDMA/100", 574 "UDMA/133", 575 "UDMA7", 576 }; 577 int highbit; 578 579 highbit = fls(xfer_mask) - 1; 580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 581 return xfer_mode_str[highbit]; 582 return "<n/a>"; 583 } 584 585 static const char *sata_spd_string(unsigned int spd) 586 { 587 static const char * const spd_str[] = { 588 "1.5 Gbps", 589 "3.0 Gbps", 590 }; 591 592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 593 return "<unknown>"; 594 return spd_str[spd - 1]; 595 } 596 597 void ata_dev_disable(struct ata_device *dev) 598 { 599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { 600 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 602 ATA_DNXFER_QUIET); 603 dev->class++; 604 } 605 } 606 607 /** 608 * ata_devchk - PATA device presence detection 609 * @ap: ATA channel to examine 610 * @device: Device to examine (starting at zero) 611 * 612 * This technique was originally described in 613 * Hale Landis's ATADRVR (www.ata-atapi.com), and 614 * later found its way into the ATA/ATAPI spec. 615 * 616 * Write a pattern to the ATA shadow registers, 617 * and if a device is present, it will respond by 618 * correctly storing and echoing back the 619 * ATA shadow register contents. 620 * 621 * LOCKING: 622 * caller. 623 */ 624 625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 626 { 627 struct ata_ioports *ioaddr = &ap->ioaddr; 628 u8 nsect, lbal; 629 630 ap->ops->dev_select(ap, device); 631 632 iowrite8(0x55, ioaddr->nsect_addr); 633 iowrite8(0xaa, ioaddr->lbal_addr); 634 635 iowrite8(0xaa, ioaddr->nsect_addr); 636 iowrite8(0x55, ioaddr->lbal_addr); 637 638 iowrite8(0x55, ioaddr->nsect_addr); 639 iowrite8(0xaa, ioaddr->lbal_addr); 640 641 nsect = ioread8(ioaddr->nsect_addr); 642 lbal = ioread8(ioaddr->lbal_addr); 643 644 if ((nsect == 0x55) && (lbal == 0xaa)) 645 return 1; /* we found a device */ 646 647 return 0; /* nothing found */ 648 } 649 650 /** 651 * ata_dev_classify - determine device type based on ATA-spec signature 652 * @tf: ATA taskfile register set for device to be identified 653 * 654 * Determine from taskfile register contents whether a device is 655 * ATA or ATAPI, as per "Signature and persistence" section 656 * of ATA/PI spec (volume 1, sect 5.14). 657 * 658 * LOCKING: 659 * None. 660 * 661 * RETURNS: 662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 663 * the event of failure. 664 */ 665 666 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 667 { 668 /* Apple's open source Darwin code hints that some devices only 669 * put a proper signature into the LBA mid/high registers, 670 * So, we only check those. It's sufficient for uniqueness. 671 */ 672 673 if (((tf->lbam == 0) && (tf->lbah == 0)) || 674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 675 DPRINTK("found ATA device by sig\n"); 676 return ATA_DEV_ATA; 677 } 678 679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 681 DPRINTK("found ATAPI device by sig\n"); 682 return ATA_DEV_ATAPI; 683 } 684 685 DPRINTK("unknown device\n"); 686 return ATA_DEV_UNKNOWN; 687 } 688 689 /** 690 * ata_dev_try_classify - Parse returned ATA device signature 691 * @ap: ATA channel to examine 692 * @device: Device to examine (starting at zero) 693 * @r_err: Value of error register on completion 694 * 695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 696 * an ATA/ATAPI-defined set of values is placed in the ATA 697 * shadow registers, indicating the results of device detection 698 * and diagnostics. 699 * 700 * Select the ATA device, and read the values from the ATA shadow 701 * registers. Then parse according to the Error register value, 702 * and the spec-defined values examined by ata_dev_classify(). 703 * 704 * LOCKING: 705 * caller. 706 * 707 * RETURNS: 708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 709 */ 710 711 unsigned int 712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 713 { 714 struct ata_taskfile tf; 715 unsigned int class; 716 u8 err; 717 718 ap->ops->dev_select(ap, device); 719 720 memset(&tf, 0, sizeof(tf)); 721 722 ap->ops->tf_read(ap, &tf); 723 err = tf.feature; 724 if (r_err) 725 *r_err = err; 726 727 /* see if device passed diags: if master then continue and warn later */ 728 if (err == 0 && device == 0) 729 /* diagnostic fail : do nothing _YET_ */ 730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 731 else if (err == 1) 732 /* do nothing */ ; 733 else if ((device == 0) && (err == 0x81)) 734 /* do nothing */ ; 735 else 736 return ATA_DEV_NONE; 737 738 /* determine if device is ATA or ATAPI */ 739 class = ata_dev_classify(&tf); 740 741 if (class == ATA_DEV_UNKNOWN) 742 return ATA_DEV_NONE; 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 744 return ATA_DEV_NONE; 745 return class; 746 } 747 748 /** 749 * ata_id_string - Convert IDENTIFY DEVICE page into string 750 * @id: IDENTIFY DEVICE results we will examine 751 * @s: string into which data is output 752 * @ofs: offset into identify device page 753 * @len: length of string to return. must be an even number. 754 * 755 * The strings in the IDENTIFY DEVICE page are broken up into 756 * 16-bit chunks. Run through the string, and output each 757 * 8-bit chunk linearly, regardless of platform. 758 * 759 * LOCKING: 760 * caller. 761 */ 762 763 void ata_id_string(const u16 *id, unsigned char *s, 764 unsigned int ofs, unsigned int len) 765 { 766 unsigned int c; 767 768 while (len > 0) { 769 c = id[ofs] >> 8; 770 *s = c; 771 s++; 772 773 c = id[ofs] & 0xff; 774 *s = c; 775 s++; 776 777 ofs++; 778 len -= 2; 779 } 780 } 781 782 /** 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 784 * @id: IDENTIFY DEVICE results we will examine 785 * @s: string into which data is output 786 * @ofs: offset into identify device page 787 * @len: length of string to return. must be an odd number. 788 * 789 * This function is identical to ata_id_string except that it 790 * trims trailing spaces and terminates the resulting string with 791 * null. @len must be actual maximum length (even number) + 1. 792 * 793 * LOCKING: 794 * caller. 795 */ 796 void ata_id_c_string(const u16 *id, unsigned char *s, 797 unsigned int ofs, unsigned int len) 798 { 799 unsigned char *p; 800 801 WARN_ON(!(len & 1)); 802 803 ata_id_string(id, s, ofs, len - 1); 804 805 p = s + strnlen(s, len - 1); 806 while (p > s && p[-1] == ' ') 807 p--; 808 *p = '\0'; 809 } 810 811 static u64 ata_id_n_sectors(const u16 *id) 812 { 813 if (ata_id_has_lba(id)) { 814 if (ata_id_has_lba48(id)) 815 return ata_id_u64(id, 100); 816 else 817 return ata_id_u32(id, 60); 818 } else { 819 if (ata_id_current_chs_valid(id)) 820 return ata_id_u32(id, 57); 821 else 822 return id[1] * id[3] * id[6]; 823 } 824 } 825 826 /** 827 * ata_id_to_dma_mode - Identify DMA mode from id block 828 * @dev: device to identify 829 * @mode: mode to assume if we cannot tell 830 * 831 * Set up the timing values for the device based upon the identify 832 * reported values for the DMA mode. This function is used by drivers 833 * which rely upon firmware configured modes, but wish to report the 834 * mode correctly when possible. 835 * 836 * In addition we emit similarly formatted messages to the default 837 * ata_dev_set_mode handler, in order to provide consistency of 838 * presentation. 839 */ 840 841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 842 { 843 unsigned int mask; 844 u8 mode; 845 846 /* Pack the DMA modes */ 847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 848 if (dev->id[53] & 0x04) 849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 850 851 /* Select the mode in use */ 852 mode = ata_xfer_mask2mode(mask); 853 854 if (mode != 0) { 855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 856 ata_mode_string(mask)); 857 } else { 858 /* SWDMA perhaps ? */ 859 mode = unknown; 860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 861 } 862 863 /* Configure the device reporting */ 864 dev->xfer_mode = mode; 865 dev->xfer_shift = ata_xfer_mode2shift(mode); 866 } 867 868 /** 869 * ata_noop_dev_select - Select device 0/1 on ATA bus 870 * @ap: ATA channel to manipulate 871 * @device: ATA device (numbered from zero) to select 872 * 873 * This function performs no actual function. 874 * 875 * May be used as the dev_select() entry in ata_port_operations. 876 * 877 * LOCKING: 878 * caller. 879 */ 880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 881 { 882 } 883 884 885 /** 886 * ata_std_dev_select - Select device 0/1 on ATA bus 887 * @ap: ATA channel to manipulate 888 * @device: ATA device (numbered from zero) to select 889 * 890 * Use the method defined in the ATA specification to 891 * make either device 0, or device 1, active on the 892 * ATA channel. Works with both PIO and MMIO. 893 * 894 * May be used as the dev_select() entry in ata_port_operations. 895 * 896 * LOCKING: 897 * caller. 898 */ 899 900 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 901 { 902 u8 tmp; 903 904 if (device == 0) 905 tmp = ATA_DEVICE_OBS; 906 else 907 tmp = ATA_DEVICE_OBS | ATA_DEV1; 908 909 iowrite8(tmp, ap->ioaddr.device_addr); 910 ata_pause(ap); /* needed; also flushes, for mmio */ 911 } 912 913 /** 914 * ata_dev_select - Select device 0/1 on ATA bus 915 * @ap: ATA channel to manipulate 916 * @device: ATA device (numbered from zero) to select 917 * @wait: non-zero to wait for Status register BSY bit to clear 918 * @can_sleep: non-zero if context allows sleeping 919 * 920 * Use the method defined in the ATA specification to 921 * make either device 0, or device 1, active on the 922 * ATA channel. 923 * 924 * This is a high-level version of ata_std_dev_select(), 925 * which additionally provides the services of inserting 926 * the proper pauses and status polling, where needed. 927 * 928 * LOCKING: 929 * caller. 930 */ 931 932 void ata_dev_select(struct ata_port *ap, unsigned int device, 933 unsigned int wait, unsigned int can_sleep) 934 { 935 if (ata_msg_probe(ap)) 936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 937 "device %u, wait %u\n", device, wait); 938 939 if (wait) 940 ata_wait_idle(ap); 941 942 ap->ops->dev_select(ap, device); 943 944 if (wait) { 945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 946 msleep(150); 947 ata_wait_idle(ap); 948 } 949 } 950 951 /** 952 * ata_dump_id - IDENTIFY DEVICE info debugging output 953 * @id: IDENTIFY DEVICE page to dump 954 * 955 * Dump selected 16-bit words from the given IDENTIFY DEVICE 956 * page. 957 * 958 * LOCKING: 959 * caller. 960 */ 961 962 static inline void ata_dump_id(const u16 *id) 963 { 964 DPRINTK("49==0x%04x " 965 "53==0x%04x " 966 "63==0x%04x " 967 "64==0x%04x " 968 "75==0x%04x \n", 969 id[49], 970 id[53], 971 id[63], 972 id[64], 973 id[75]); 974 DPRINTK("80==0x%04x " 975 "81==0x%04x " 976 "82==0x%04x " 977 "83==0x%04x " 978 "84==0x%04x \n", 979 id[80], 980 id[81], 981 id[82], 982 id[83], 983 id[84]); 984 DPRINTK("88==0x%04x " 985 "93==0x%04x\n", 986 id[88], 987 id[93]); 988 } 989 990 /** 991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 992 * @id: IDENTIFY data to compute xfer mask from 993 * 994 * Compute the xfermask for this device. This is not as trivial 995 * as it seems if we must consider early devices correctly. 996 * 997 * FIXME: pre IDE drive timing (do we care ?). 998 * 999 * LOCKING: 1000 * None. 1001 * 1002 * RETURNS: 1003 * Computed xfermask 1004 */ 1005 static unsigned int ata_id_xfermask(const u16 *id) 1006 { 1007 unsigned int pio_mask, mwdma_mask, udma_mask; 1008 1009 /* Usual case. Word 53 indicates word 64 is valid */ 1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1012 pio_mask <<= 3; 1013 pio_mask |= 0x7; 1014 } else { 1015 /* If word 64 isn't valid then Word 51 high byte holds 1016 * the PIO timing number for the maximum. Turn it into 1017 * a mask. 1018 */ 1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1020 if (mode < 5) /* Valid PIO range */ 1021 pio_mask = (2 << mode) - 1; 1022 else 1023 pio_mask = 1; 1024 1025 /* But wait.. there's more. Design your standards by 1026 * committee and you too can get a free iordy field to 1027 * process. However its the speeds not the modes that 1028 * are supported... Note drivers using the timing API 1029 * will get this right anyway 1030 */ 1031 } 1032 1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1034 1035 if (ata_id_is_cfa(id)) { 1036 /* 1037 * Process compact flash extended modes 1038 */ 1039 int pio = id[163] & 0x7; 1040 int dma = (id[163] >> 3) & 7; 1041 1042 if (pio) 1043 pio_mask |= (1 << 5); 1044 if (pio > 1) 1045 pio_mask |= (1 << 6); 1046 if (dma) 1047 mwdma_mask |= (1 << 3); 1048 if (dma > 1) 1049 mwdma_mask |= (1 << 4); 1050 } 1051 1052 udma_mask = 0; 1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1055 1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1057 } 1058 1059 /** 1060 * ata_port_queue_task - Queue port_task 1061 * @ap: The ata_port to queue port_task for 1062 * @fn: workqueue function to be scheduled 1063 * @data: data for @fn to use 1064 * @delay: delay time for workqueue function 1065 * 1066 * Schedule @fn(@data) for execution after @delay jiffies using 1067 * port_task. There is one port_task per port and it's the 1068 * user(low level driver)'s responsibility to make sure that only 1069 * one task is active at any given time. 1070 * 1071 * libata core layer takes care of synchronization between 1072 * port_task and EH. ata_port_queue_task() may be ignored for EH 1073 * synchronization. 1074 * 1075 * LOCKING: 1076 * Inherited from caller. 1077 */ 1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1079 unsigned long delay) 1080 { 1081 int rc; 1082 1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) 1084 return; 1085 1086 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1087 ap->port_task_data = data; 1088 1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay); 1090 1091 /* rc == 0 means that another user is using port task */ 1092 WARN_ON(rc == 0); 1093 } 1094 1095 /** 1096 * ata_port_flush_task - Flush port_task 1097 * @ap: The ata_port to flush port_task for 1098 * 1099 * After this function completes, port_task is guranteed not to 1100 * be running or scheduled. 1101 * 1102 * LOCKING: 1103 * Kernel thread context (may sleep) 1104 */ 1105 void ata_port_flush_task(struct ata_port *ap) 1106 { 1107 unsigned long flags; 1108 1109 DPRINTK("ENTER\n"); 1110 1111 spin_lock_irqsave(ap->lock, flags); 1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; 1113 spin_unlock_irqrestore(ap->lock, flags); 1114 1115 DPRINTK("flush #1\n"); 1116 flush_workqueue(ata_wq); 1117 1118 /* 1119 * At this point, if a task is running, it's guaranteed to see 1120 * the FLUSH flag; thus, it will never queue pio tasks again. 1121 * Cancel and flush. 1122 */ 1123 if (!cancel_delayed_work(&ap->port_task)) { 1124 if (ata_msg_ctl(ap)) 1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", 1126 __FUNCTION__); 1127 flush_workqueue(ata_wq); 1128 } 1129 1130 spin_lock_irqsave(ap->lock, flags); 1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; 1132 spin_unlock_irqrestore(ap->lock, flags); 1133 1134 if (ata_msg_ctl(ap)) 1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1136 } 1137 1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1139 { 1140 struct completion *waiting = qc->private_data; 1141 1142 complete(waiting); 1143 } 1144 1145 /** 1146 * ata_exec_internal_sg - execute libata internal command 1147 * @dev: Device to which the command is sent 1148 * @tf: Taskfile registers for the command and the result 1149 * @cdb: CDB for packet command 1150 * @dma_dir: Data tranfer direction of the command 1151 * @sg: sg list for the data buffer of the command 1152 * @n_elem: Number of sg entries 1153 * 1154 * Executes libata internal command with timeout. @tf contains 1155 * command on entry and result on return. Timeout and error 1156 * conditions are reported via return value. No recovery action 1157 * is taken after a command times out. It's caller's duty to 1158 * clean up after timeout. 1159 * 1160 * LOCKING: 1161 * None. Should be called with kernel context, might sleep. 1162 * 1163 * RETURNS: 1164 * Zero on success, AC_ERR_* mask on failure 1165 */ 1166 unsigned ata_exec_internal_sg(struct ata_device *dev, 1167 struct ata_taskfile *tf, const u8 *cdb, 1168 int dma_dir, struct scatterlist *sg, 1169 unsigned int n_elem) 1170 { 1171 struct ata_port *ap = dev->ap; 1172 u8 command = tf->command; 1173 struct ata_queued_cmd *qc; 1174 unsigned int tag, preempted_tag; 1175 u32 preempted_sactive, preempted_qc_active; 1176 DECLARE_COMPLETION_ONSTACK(wait); 1177 unsigned long flags; 1178 unsigned int err_mask; 1179 int rc; 1180 1181 spin_lock_irqsave(ap->lock, flags); 1182 1183 /* no internal command while frozen */ 1184 if (ap->pflags & ATA_PFLAG_FROZEN) { 1185 spin_unlock_irqrestore(ap->lock, flags); 1186 return AC_ERR_SYSTEM; 1187 } 1188 1189 /* initialize internal qc */ 1190 1191 /* XXX: Tag 0 is used for drivers with legacy EH as some 1192 * drivers choke if any other tag is given. This breaks 1193 * ata_tag_internal() test for those drivers. Don't use new 1194 * EH stuff without converting to it. 1195 */ 1196 if (ap->ops->error_handler) 1197 tag = ATA_TAG_INTERNAL; 1198 else 1199 tag = 0; 1200 1201 if (test_and_set_bit(tag, &ap->qc_allocated)) 1202 BUG(); 1203 qc = __ata_qc_from_tag(ap, tag); 1204 1205 qc->tag = tag; 1206 qc->scsicmd = NULL; 1207 qc->ap = ap; 1208 qc->dev = dev; 1209 ata_qc_reinit(qc); 1210 1211 preempted_tag = ap->active_tag; 1212 preempted_sactive = ap->sactive; 1213 preempted_qc_active = ap->qc_active; 1214 ap->active_tag = ATA_TAG_POISON; 1215 ap->sactive = 0; 1216 ap->qc_active = 0; 1217 1218 /* prepare & issue qc */ 1219 qc->tf = *tf; 1220 if (cdb) 1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1222 qc->flags |= ATA_QCFLAG_RESULT_TF; 1223 qc->dma_dir = dma_dir; 1224 if (dma_dir != DMA_NONE) { 1225 unsigned int i, buflen = 0; 1226 1227 for (i = 0; i < n_elem; i++) 1228 buflen += sg[i].length; 1229 1230 ata_sg_init(qc, sg, n_elem); 1231 qc->nbytes = buflen; 1232 } 1233 1234 qc->private_data = &wait; 1235 qc->complete_fn = ata_qc_complete_internal; 1236 1237 ata_qc_issue(qc); 1238 1239 spin_unlock_irqrestore(ap->lock, flags); 1240 1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1242 1243 ata_port_flush_task(ap); 1244 1245 if (!rc) { 1246 spin_lock_irqsave(ap->lock, flags); 1247 1248 /* We're racing with irq here. If we lose, the 1249 * following test prevents us from completing the qc 1250 * twice. If we win, the port is frozen and will be 1251 * cleaned up by ->post_internal_cmd(). 1252 */ 1253 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1254 qc->err_mask |= AC_ERR_TIMEOUT; 1255 1256 if (ap->ops->error_handler) 1257 ata_port_freeze(ap); 1258 else 1259 ata_qc_complete(qc); 1260 1261 if (ata_msg_warn(ap)) 1262 ata_dev_printk(dev, KERN_WARNING, 1263 "qc timeout (cmd 0x%x)\n", command); 1264 } 1265 1266 spin_unlock_irqrestore(ap->lock, flags); 1267 } 1268 1269 /* do post_internal_cmd */ 1270 if (ap->ops->post_internal_cmd) 1271 ap->ops->post_internal_cmd(qc); 1272 1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) { 1274 if (ata_msg_warn(ap)) 1275 ata_dev_printk(dev, KERN_WARNING, 1276 "zero err_mask for failed " 1277 "internal command, assuming AC_ERR_OTHER\n"); 1278 qc->err_mask |= AC_ERR_OTHER; 1279 } 1280 1281 /* finish up */ 1282 spin_lock_irqsave(ap->lock, flags); 1283 1284 *tf = qc->result_tf; 1285 err_mask = qc->err_mask; 1286 1287 ata_qc_free(qc); 1288 ap->active_tag = preempted_tag; 1289 ap->sactive = preempted_sactive; 1290 ap->qc_active = preempted_qc_active; 1291 1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1293 * Until those drivers are fixed, we detect the condition 1294 * here, fail the command with AC_ERR_SYSTEM and reenable the 1295 * port. 1296 * 1297 * Note that this doesn't change any behavior as internal 1298 * command failure results in disabling the device in the 1299 * higher layer for LLDDs without new reset/EH callbacks. 1300 * 1301 * Kill the following code as soon as those drivers are fixed. 1302 */ 1303 if (ap->flags & ATA_FLAG_DISABLED) { 1304 err_mask |= AC_ERR_SYSTEM; 1305 ata_port_probe(ap); 1306 } 1307 1308 spin_unlock_irqrestore(ap->lock, flags); 1309 1310 return err_mask; 1311 } 1312 1313 /** 1314 * ata_exec_internal - execute libata internal command 1315 * @dev: Device to which the command is sent 1316 * @tf: Taskfile registers for the command and the result 1317 * @cdb: CDB for packet command 1318 * @dma_dir: Data tranfer direction of the command 1319 * @buf: Data buffer of the command 1320 * @buflen: Length of data buffer 1321 * 1322 * Wrapper around ata_exec_internal_sg() which takes simple 1323 * buffer instead of sg list. 1324 * 1325 * LOCKING: 1326 * None. Should be called with kernel context, might sleep. 1327 * 1328 * RETURNS: 1329 * Zero on success, AC_ERR_* mask on failure 1330 */ 1331 unsigned ata_exec_internal(struct ata_device *dev, 1332 struct ata_taskfile *tf, const u8 *cdb, 1333 int dma_dir, void *buf, unsigned int buflen) 1334 { 1335 struct scatterlist *psg = NULL, sg; 1336 unsigned int n_elem = 0; 1337 1338 if (dma_dir != DMA_NONE) { 1339 WARN_ON(!buf); 1340 sg_init_one(&sg, buf, buflen); 1341 psg = &sg; 1342 n_elem++; 1343 } 1344 1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1346 } 1347 1348 /** 1349 * ata_do_simple_cmd - execute simple internal command 1350 * @dev: Device to which the command is sent 1351 * @cmd: Opcode to execute 1352 * 1353 * Execute a 'simple' command, that only consists of the opcode 1354 * 'cmd' itself, without filling any other registers 1355 * 1356 * LOCKING: 1357 * Kernel thread context (may sleep). 1358 * 1359 * RETURNS: 1360 * Zero on success, AC_ERR_* mask on failure 1361 */ 1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1363 { 1364 struct ata_taskfile tf; 1365 1366 ata_tf_init(dev, &tf); 1367 1368 tf.command = cmd; 1369 tf.flags |= ATA_TFLAG_DEVICE; 1370 tf.protocol = ATA_PROT_NODATA; 1371 1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1373 } 1374 1375 /** 1376 * ata_pio_need_iordy - check if iordy needed 1377 * @adev: ATA device 1378 * 1379 * Check if the current speed of the device requires IORDY. Used 1380 * by various controllers for chip configuration. 1381 */ 1382 1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1384 { 1385 int pio; 1386 int speed = adev->pio_mode - XFER_PIO_0; 1387 1388 if (speed < 2) 1389 return 0; 1390 if (speed > 2) 1391 return 1; 1392 1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1394 1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1396 pio = adev->id[ATA_ID_EIDE_PIO]; 1397 /* Is the speed faster than the drive allows non IORDY ? */ 1398 if (pio) { 1399 /* This is cycle times not frequency - watch the logic! */ 1400 if (pio > 240) /* PIO2 is 240nS per cycle */ 1401 return 1; 1402 return 0; 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 /** 1409 * ata_dev_read_id - Read ID data from the specified device 1410 * @dev: target device 1411 * @p_class: pointer to class of the target device (may be changed) 1412 * @flags: ATA_READID_* flags 1413 * @id: buffer to read IDENTIFY data into 1414 * 1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1418 * for pre-ATA4 drives. 1419 * 1420 * LOCKING: 1421 * Kernel thread context (may sleep) 1422 * 1423 * RETURNS: 1424 * 0 on success, -errno otherwise. 1425 */ 1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1427 unsigned int flags, u16 *id) 1428 { 1429 struct ata_port *ap = dev->ap; 1430 unsigned int class = *p_class; 1431 struct ata_taskfile tf; 1432 unsigned int err_mask = 0; 1433 const char *reason; 1434 int rc; 1435 1436 if (ata_msg_ctl(ap)) 1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1438 1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1440 1441 retry: 1442 ata_tf_init(dev, &tf); 1443 1444 switch (class) { 1445 case ATA_DEV_ATA: 1446 tf.command = ATA_CMD_ID_ATA; 1447 break; 1448 case ATA_DEV_ATAPI: 1449 tf.command = ATA_CMD_ID_ATAPI; 1450 break; 1451 default: 1452 rc = -ENODEV; 1453 reason = "unsupported class"; 1454 goto err_out; 1455 } 1456 1457 tf.protocol = ATA_PROT_PIO; 1458 1459 /* Some devices choke if TF registers contain garbage. Make 1460 * sure those are properly initialized. 1461 */ 1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1463 1464 /* Device presence detection is unreliable on some 1465 * controllers. Always poll IDENTIFY if available. 1466 */ 1467 tf.flags |= ATA_TFLAG_POLLING; 1468 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1470 id, sizeof(id[0]) * ATA_ID_WORDS); 1471 if (err_mask) { 1472 if (err_mask & AC_ERR_NODEV_HINT) { 1473 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1474 ap->print_id, dev->devno); 1475 return -ENOENT; 1476 } 1477 1478 rc = -EIO; 1479 reason = "I/O error"; 1480 goto err_out; 1481 } 1482 1483 swap_buf_le16(id, ATA_ID_WORDS); 1484 1485 /* sanity check */ 1486 rc = -EINVAL; 1487 reason = "device reports illegal type"; 1488 1489 if (class == ATA_DEV_ATA) { 1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1491 goto err_out; 1492 } else { 1493 if (ata_id_is_ata(id)) 1494 goto err_out; 1495 } 1496 1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1498 /* 1499 * The exact sequence expected by certain pre-ATA4 drives is: 1500 * SRST RESET 1501 * IDENTIFY 1502 * INITIALIZE DEVICE PARAMETERS 1503 * anything else.. 1504 * Some drives were very specific about that exact sequence. 1505 */ 1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1507 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1508 if (err_mask) { 1509 rc = -EIO; 1510 reason = "INIT_DEV_PARAMS failed"; 1511 goto err_out; 1512 } 1513 1514 /* current CHS translation info (id[53-58]) might be 1515 * changed. reread the identify device info. 1516 */ 1517 flags &= ~ATA_READID_POSTRESET; 1518 goto retry; 1519 } 1520 } 1521 1522 *p_class = class; 1523 1524 return 0; 1525 1526 err_out: 1527 if (ata_msg_warn(ap)) 1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1529 "(%s, err_mask=0x%x)\n", reason, err_mask); 1530 return rc; 1531 } 1532 1533 static inline u8 ata_dev_knobble(struct ata_device *dev) 1534 { 1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1536 } 1537 1538 static void ata_dev_config_ncq(struct ata_device *dev, 1539 char *desc, size_t desc_sz) 1540 { 1541 struct ata_port *ap = dev->ap; 1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1543 1544 if (!ata_id_has_ncq(dev->id)) { 1545 desc[0] = '\0'; 1546 return; 1547 } 1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { 1549 snprintf(desc, desc_sz, "NCQ (not used)"); 1550 return; 1551 } 1552 if (ap->flags & ATA_FLAG_NCQ) { 1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1554 dev->flags |= ATA_DFLAG_NCQ; 1555 } 1556 1557 if (hdepth >= ddepth) 1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1559 else 1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1561 } 1562 1563 static void ata_set_port_max_cmd_len(struct ata_port *ap) 1564 { 1565 int i; 1566 1567 if (ap->scsi_host) { 1568 unsigned int len = 0; 1569 1570 for (i = 0; i < ATA_MAX_DEVICES; i++) 1571 len = max(len, ap->device[i].cdb_len); 1572 1573 ap->scsi_host->max_cmd_len = len; 1574 } 1575 } 1576 1577 /** 1578 * ata_dev_configure - Configure the specified ATA/ATAPI device 1579 * @dev: Target device to configure 1580 * 1581 * Configure @dev according to @dev->id. Generic and low-level 1582 * driver specific fixups are also applied. 1583 * 1584 * LOCKING: 1585 * Kernel thread context (may sleep) 1586 * 1587 * RETURNS: 1588 * 0 on success, -errno otherwise 1589 */ 1590 int ata_dev_configure(struct ata_device *dev) 1591 { 1592 struct ata_port *ap = dev->ap; 1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; 1594 const u16 *id = dev->id; 1595 unsigned int xfer_mask; 1596 char revbuf[7]; /* XYZ-99\0 */ 1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1598 char modelbuf[ATA_ID_PROD_LEN+1]; 1599 int rc; 1600 1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1603 __FUNCTION__); 1604 return 0; 1605 } 1606 1607 if (ata_msg_probe(ap)) 1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1609 1610 /* set _SDD */ 1611 rc = ata_acpi_push_id(ap, dev->devno); 1612 if (rc) { 1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", 1614 rc); 1615 } 1616 1617 /* retrieve and execute the ATA task file of _GTF */ 1618 ata_acpi_exec_tfs(ap); 1619 1620 /* print device capabilities */ 1621 if (ata_msg_probe(ap)) 1622 ata_dev_printk(dev, KERN_DEBUG, 1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1624 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1625 __FUNCTION__, 1626 id[49], id[82], id[83], id[84], 1627 id[85], id[86], id[87], id[88]); 1628 1629 /* initialize to-be-configured parameters */ 1630 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1631 dev->max_sectors = 0; 1632 dev->cdb_len = 0; 1633 dev->n_sectors = 0; 1634 dev->cylinders = 0; 1635 dev->heads = 0; 1636 dev->sectors = 0; 1637 1638 /* 1639 * common ATA, ATAPI feature tests 1640 */ 1641 1642 /* find max transfer mode; for printk only */ 1643 xfer_mask = ata_id_xfermask(id); 1644 1645 if (ata_msg_probe(ap)) 1646 ata_dump_id(id); 1647 1648 /* ATA-specific feature tests */ 1649 if (dev->class == ATA_DEV_ATA) { 1650 if (ata_id_is_cfa(id)) { 1651 if (id[162] & 1) /* CPRM may make this media unusable */ 1652 ata_dev_printk(dev, KERN_WARNING, 1653 "supports DRM functions and may " 1654 "not be fully accessable.\n"); 1655 snprintf(revbuf, 7, "CFA"); 1656 } 1657 else 1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1659 1660 dev->n_sectors = ata_id_n_sectors(id); 1661 1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1664 sizeof(fwrevbuf)); 1665 1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1667 sizeof(modelbuf)); 1668 1669 if (dev->id[59] & 0x100) 1670 dev->multi_count = dev->id[59] & 0xff; 1671 1672 if (ata_id_has_lba(id)) { 1673 const char *lba_desc; 1674 char ncq_desc[20]; 1675 1676 lba_desc = "LBA"; 1677 dev->flags |= ATA_DFLAG_LBA; 1678 if (ata_id_has_lba48(id)) { 1679 dev->flags |= ATA_DFLAG_LBA48; 1680 lba_desc = "LBA48"; 1681 1682 if (dev->n_sectors >= (1UL << 28) && 1683 ata_id_has_flush_ext(id)) 1684 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1685 } 1686 1687 /* config NCQ */ 1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1689 1690 /* print device info to dmesg */ 1691 if (ata_msg_drv(ap) && print_info) { 1692 ata_dev_printk(dev, KERN_INFO, 1693 "%s: %s, %s, max %s\n", 1694 revbuf, modelbuf, fwrevbuf, 1695 ata_mode_string(xfer_mask)); 1696 ata_dev_printk(dev, KERN_INFO, 1697 "%Lu sectors, multi %u: %s %s\n", 1698 (unsigned long long)dev->n_sectors, 1699 dev->multi_count, lba_desc, ncq_desc); 1700 } 1701 } else { 1702 /* CHS */ 1703 1704 /* Default translation */ 1705 dev->cylinders = id[1]; 1706 dev->heads = id[3]; 1707 dev->sectors = id[6]; 1708 1709 if (ata_id_current_chs_valid(id)) { 1710 /* Current CHS translation is valid. */ 1711 dev->cylinders = id[54]; 1712 dev->heads = id[55]; 1713 dev->sectors = id[56]; 1714 } 1715 1716 /* print device info to dmesg */ 1717 if (ata_msg_drv(ap) && print_info) { 1718 ata_dev_printk(dev, KERN_INFO, 1719 "%s: %s, %s, max %s\n", 1720 revbuf, modelbuf, fwrevbuf, 1721 ata_mode_string(xfer_mask)); 1722 ata_dev_printk(dev, KERN_INFO, 1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1724 (unsigned long long)dev->n_sectors, 1725 dev->multi_count, dev->cylinders, 1726 dev->heads, dev->sectors); 1727 } 1728 } 1729 1730 dev->cdb_len = 16; 1731 } 1732 1733 /* ATAPI-specific feature tests */ 1734 else if (dev->class == ATA_DEV_ATAPI) { 1735 char *cdb_intr_string = ""; 1736 1737 rc = atapi_cdb_len(id); 1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1739 if (ata_msg_warn(ap)) 1740 ata_dev_printk(dev, KERN_WARNING, 1741 "unsupported CDB len\n"); 1742 rc = -EINVAL; 1743 goto err_out_nosup; 1744 } 1745 dev->cdb_len = (unsigned int) rc; 1746 1747 if (ata_id_cdb_intr(dev->id)) { 1748 dev->flags |= ATA_DFLAG_CDB_INTR; 1749 cdb_intr_string = ", CDB intr"; 1750 } 1751 1752 /* print device info to dmesg */ 1753 if (ata_msg_drv(ap) && print_info) 1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", 1755 ata_mode_string(xfer_mask), 1756 cdb_intr_string); 1757 } 1758 1759 /* determine max_sectors */ 1760 dev->max_sectors = ATA_MAX_SECTORS; 1761 if (dev->flags & ATA_DFLAG_LBA48) 1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 1763 1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 1765 /* Let the user know. We don't want to disallow opens for 1766 rescue purposes, or in case the vendor is just a blithering 1767 idiot */ 1768 if (print_info) { 1769 ata_dev_printk(dev, KERN_WARNING, 1770 "Drive reports diagnostics failure. This may indicate a drive\n"); 1771 ata_dev_printk(dev, KERN_WARNING, 1772 "fault or invalid emulation. Contact drive vendor for information.\n"); 1773 } 1774 } 1775 1776 ata_set_port_max_cmd_len(ap); 1777 1778 /* limit bridge transfers to udma5, 200 sectors */ 1779 if (ata_dev_knobble(dev)) { 1780 if (ata_msg_drv(ap) && print_info) 1781 ata_dev_printk(dev, KERN_INFO, 1782 "applying bridge limits\n"); 1783 dev->udma_mask &= ATA_UDMA5; 1784 dev->max_sectors = ATA_MAX_SECTORS; 1785 } 1786 1787 if (ap->ops->dev_config) 1788 ap->ops->dev_config(ap, dev); 1789 1790 if (ata_msg_probe(ap)) 1791 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 1792 __FUNCTION__, ata_chk_status(ap)); 1793 return 0; 1794 1795 err_out_nosup: 1796 if (ata_msg_probe(ap)) 1797 ata_dev_printk(dev, KERN_DEBUG, 1798 "%s: EXIT, err\n", __FUNCTION__); 1799 return rc; 1800 } 1801 1802 /** 1803 * ata_bus_probe - Reset and probe ATA bus 1804 * @ap: Bus to probe 1805 * 1806 * Master ATA bus probing function. Initiates a hardware-dependent 1807 * bus reset, then attempts to identify any devices found on 1808 * the bus. 1809 * 1810 * LOCKING: 1811 * PCI/etc. bus probe sem. 1812 * 1813 * RETURNS: 1814 * Zero on success, negative errno otherwise. 1815 */ 1816 1817 int ata_bus_probe(struct ata_port *ap) 1818 { 1819 unsigned int classes[ATA_MAX_DEVICES]; 1820 int tries[ATA_MAX_DEVICES]; 1821 int i, rc; 1822 struct ata_device *dev; 1823 1824 ata_port_probe(ap); 1825 1826 for (i = 0; i < ATA_MAX_DEVICES; i++) 1827 tries[i] = ATA_PROBE_MAX_TRIES; 1828 1829 retry: 1830 /* reset and determine device classes */ 1831 ap->ops->phy_reset(ap); 1832 1833 for (i = 0; i < ATA_MAX_DEVICES; i++) { 1834 dev = &ap->device[i]; 1835 1836 if (!(ap->flags & ATA_FLAG_DISABLED) && 1837 dev->class != ATA_DEV_UNKNOWN) 1838 classes[dev->devno] = dev->class; 1839 else 1840 classes[dev->devno] = ATA_DEV_NONE; 1841 1842 dev->class = ATA_DEV_UNKNOWN; 1843 } 1844 1845 ata_port_probe(ap); 1846 1847 /* after the reset the device state is PIO 0 and the controller 1848 state is undefined. Record the mode */ 1849 1850 for (i = 0; i < ATA_MAX_DEVICES; i++) 1851 ap->device[i].pio_mode = XFER_PIO_0; 1852 1853 /* read IDENTIFY page and configure devices. We have to do the identify 1854 specific sequence bass-ackwards so that PDIAG- is released by 1855 the slave device */ 1856 1857 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 1858 dev = &ap->device[i]; 1859 1860 if (tries[i]) 1861 dev->class = classes[i]; 1862 1863 if (!ata_dev_enabled(dev)) 1864 continue; 1865 1866 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 1867 dev->id); 1868 if (rc) 1869 goto fail; 1870 } 1871 1872 /* After the identify sequence we can now set up the devices. We do 1873 this in the normal order so that the user doesn't get confused */ 1874 1875 for(i = 0; i < ATA_MAX_DEVICES; i++) { 1876 dev = &ap->device[i]; 1877 if (!ata_dev_enabled(dev)) 1878 continue; 1879 1880 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 1881 rc = ata_dev_configure(dev); 1882 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 1883 if (rc) 1884 goto fail; 1885 } 1886 1887 /* configure transfer mode */ 1888 rc = ata_set_mode(ap, &dev); 1889 if (rc) 1890 goto fail; 1891 1892 for (i = 0; i < ATA_MAX_DEVICES; i++) 1893 if (ata_dev_enabled(&ap->device[i])) 1894 return 0; 1895 1896 /* no device present, disable port */ 1897 ata_port_disable(ap); 1898 ap->ops->port_disable(ap); 1899 return -ENODEV; 1900 1901 fail: 1902 tries[dev->devno]--; 1903 1904 switch (rc) { 1905 case -EINVAL: 1906 /* eeek, something went very wrong, give up */ 1907 tries[dev->devno] = 0; 1908 break; 1909 1910 case -ENODEV: 1911 /* give it just one more chance */ 1912 tries[dev->devno] = min(tries[dev->devno], 1); 1913 case -EIO: 1914 if (tries[dev->devno] == 1) { 1915 /* This is the last chance, better to slow 1916 * down than lose it. 1917 */ 1918 sata_down_spd_limit(ap); 1919 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 1920 } 1921 } 1922 1923 if (!tries[dev->devno]) 1924 ata_dev_disable(dev); 1925 1926 goto retry; 1927 } 1928 1929 /** 1930 * ata_port_probe - Mark port as enabled 1931 * @ap: Port for which we indicate enablement 1932 * 1933 * Modify @ap data structure such that the system 1934 * thinks that the entire port is enabled. 1935 * 1936 * LOCKING: host lock, or some other form of 1937 * serialization. 1938 */ 1939 1940 void ata_port_probe(struct ata_port *ap) 1941 { 1942 ap->flags &= ~ATA_FLAG_DISABLED; 1943 } 1944 1945 /** 1946 * sata_print_link_status - Print SATA link status 1947 * @ap: SATA port to printk link status about 1948 * 1949 * This function prints link speed and status of a SATA link. 1950 * 1951 * LOCKING: 1952 * None. 1953 */ 1954 static void sata_print_link_status(struct ata_port *ap) 1955 { 1956 u32 sstatus, scontrol, tmp; 1957 1958 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 1959 return; 1960 sata_scr_read(ap, SCR_CONTROL, &scontrol); 1961 1962 if (ata_port_online(ap)) { 1963 tmp = (sstatus >> 4) & 0xf; 1964 ata_port_printk(ap, KERN_INFO, 1965 "SATA link up %s (SStatus %X SControl %X)\n", 1966 sata_spd_string(tmp), sstatus, scontrol); 1967 } else { 1968 ata_port_printk(ap, KERN_INFO, 1969 "SATA link down (SStatus %X SControl %X)\n", 1970 sstatus, scontrol); 1971 } 1972 } 1973 1974 /** 1975 * __sata_phy_reset - Wake/reset a low-level SATA PHY 1976 * @ap: SATA port associated with target SATA PHY. 1977 * 1978 * This function issues commands to standard SATA Sxxx 1979 * PHY registers, to wake up the phy (and device), and 1980 * clear any reset condition. 1981 * 1982 * LOCKING: 1983 * PCI/etc. bus probe sem. 1984 * 1985 */ 1986 void __sata_phy_reset(struct ata_port *ap) 1987 { 1988 u32 sstatus; 1989 unsigned long timeout = jiffies + (HZ * 5); 1990 1991 if (ap->flags & ATA_FLAG_SATA_RESET) { 1992 /* issue phy wake/reset */ 1993 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 1994 /* Couldn't find anything in SATA I/II specs, but 1995 * AHCI-1.1 10.4.2 says at least 1 ms. */ 1996 mdelay(1); 1997 } 1998 /* phy wake/clear reset */ 1999 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2000 2001 /* wait for phy to become ready, if necessary */ 2002 do { 2003 msleep(200); 2004 sata_scr_read(ap, SCR_STATUS, &sstatus); 2005 if ((sstatus & 0xf) != 1) 2006 break; 2007 } while (time_before(jiffies, timeout)); 2008 2009 /* print link status */ 2010 sata_print_link_status(ap); 2011 2012 /* TODO: phy layer with polling, timeouts, etc. */ 2013 if (!ata_port_offline(ap)) 2014 ata_port_probe(ap); 2015 else 2016 ata_port_disable(ap); 2017 2018 if (ap->flags & ATA_FLAG_DISABLED) 2019 return; 2020 2021 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2022 ata_port_disable(ap); 2023 return; 2024 } 2025 2026 ap->cbl = ATA_CBL_SATA; 2027 } 2028 2029 /** 2030 * sata_phy_reset - Reset SATA bus. 2031 * @ap: SATA port associated with target SATA PHY. 2032 * 2033 * This function resets the SATA bus, and then probes 2034 * the bus for devices. 2035 * 2036 * LOCKING: 2037 * PCI/etc. bus probe sem. 2038 * 2039 */ 2040 void sata_phy_reset(struct ata_port *ap) 2041 { 2042 __sata_phy_reset(ap); 2043 if (ap->flags & ATA_FLAG_DISABLED) 2044 return; 2045 ata_bus_reset(ap); 2046 } 2047 2048 /** 2049 * ata_dev_pair - return other device on cable 2050 * @adev: device 2051 * 2052 * Obtain the other device on the same cable, or if none is 2053 * present NULL is returned 2054 */ 2055 2056 struct ata_device *ata_dev_pair(struct ata_device *adev) 2057 { 2058 struct ata_port *ap = adev->ap; 2059 struct ata_device *pair = &ap->device[1 - adev->devno]; 2060 if (!ata_dev_enabled(pair)) 2061 return NULL; 2062 return pair; 2063 } 2064 2065 /** 2066 * ata_port_disable - Disable port. 2067 * @ap: Port to be disabled. 2068 * 2069 * Modify @ap data structure such that the system 2070 * thinks that the entire port is disabled, and should 2071 * never attempt to probe or communicate with devices 2072 * on this port. 2073 * 2074 * LOCKING: host lock, or some other form of 2075 * serialization. 2076 */ 2077 2078 void ata_port_disable(struct ata_port *ap) 2079 { 2080 ap->device[0].class = ATA_DEV_NONE; 2081 ap->device[1].class = ATA_DEV_NONE; 2082 ap->flags |= ATA_FLAG_DISABLED; 2083 } 2084 2085 /** 2086 * sata_down_spd_limit - adjust SATA spd limit downward 2087 * @ap: Port to adjust SATA spd limit for 2088 * 2089 * Adjust SATA spd limit of @ap downward. Note that this 2090 * function only adjusts the limit. The change must be applied 2091 * using sata_set_spd(). 2092 * 2093 * LOCKING: 2094 * Inherited from caller. 2095 * 2096 * RETURNS: 2097 * 0 on success, negative errno on failure 2098 */ 2099 int sata_down_spd_limit(struct ata_port *ap) 2100 { 2101 u32 sstatus, spd, mask; 2102 int rc, highbit; 2103 2104 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2105 if (rc) 2106 return rc; 2107 2108 mask = ap->sata_spd_limit; 2109 if (mask <= 1) 2110 return -EINVAL; 2111 highbit = fls(mask) - 1; 2112 mask &= ~(1 << highbit); 2113 2114 spd = (sstatus >> 4) & 0xf; 2115 if (spd <= 1) 2116 return -EINVAL; 2117 spd--; 2118 mask &= (1 << spd) - 1; 2119 if (!mask) 2120 return -EINVAL; 2121 2122 ap->sata_spd_limit = mask; 2123 2124 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2125 sata_spd_string(fls(mask))); 2126 2127 return 0; 2128 } 2129 2130 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2131 { 2132 u32 spd, limit; 2133 2134 if (ap->sata_spd_limit == UINT_MAX) 2135 limit = 0; 2136 else 2137 limit = fls(ap->sata_spd_limit); 2138 2139 spd = (*scontrol >> 4) & 0xf; 2140 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2141 2142 return spd != limit; 2143 } 2144 2145 /** 2146 * sata_set_spd_needed - is SATA spd configuration needed 2147 * @ap: Port in question 2148 * 2149 * Test whether the spd limit in SControl matches 2150 * @ap->sata_spd_limit. This function is used to determine 2151 * whether hardreset is necessary to apply SATA spd 2152 * configuration. 2153 * 2154 * LOCKING: 2155 * Inherited from caller. 2156 * 2157 * RETURNS: 2158 * 1 if SATA spd configuration is needed, 0 otherwise. 2159 */ 2160 int sata_set_spd_needed(struct ata_port *ap) 2161 { 2162 u32 scontrol; 2163 2164 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2165 return 0; 2166 2167 return __sata_set_spd_needed(ap, &scontrol); 2168 } 2169 2170 /** 2171 * sata_set_spd - set SATA spd according to spd limit 2172 * @ap: Port to set SATA spd for 2173 * 2174 * Set SATA spd of @ap according to sata_spd_limit. 2175 * 2176 * LOCKING: 2177 * Inherited from caller. 2178 * 2179 * RETURNS: 2180 * 0 if spd doesn't need to be changed, 1 if spd has been 2181 * changed. Negative errno if SCR registers are inaccessible. 2182 */ 2183 int sata_set_spd(struct ata_port *ap) 2184 { 2185 u32 scontrol; 2186 int rc; 2187 2188 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2189 return rc; 2190 2191 if (!__sata_set_spd_needed(ap, &scontrol)) 2192 return 0; 2193 2194 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2195 return rc; 2196 2197 return 1; 2198 } 2199 2200 /* 2201 * This mode timing computation functionality is ported over from 2202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2203 */ 2204 /* 2205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2207 * for UDMA6, which is currently supported only by Maxtor drives. 2208 * 2209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2210 */ 2211 2212 static const struct ata_timing ata_timing[] = { 2213 2214 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2215 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2216 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2217 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2218 2219 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2220 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2221 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2222 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2223 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2224 2225 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2226 2227 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2228 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2230 2231 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2232 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2233 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2234 2235 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2236 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2237 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2238 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2239 2240 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2241 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2242 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2243 2244 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2245 2246 { 0xFF } 2247 }; 2248 2249 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2250 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2251 2252 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2253 { 2254 q->setup = EZ(t->setup * 1000, T); 2255 q->act8b = EZ(t->act8b * 1000, T); 2256 q->rec8b = EZ(t->rec8b * 1000, T); 2257 q->cyc8b = EZ(t->cyc8b * 1000, T); 2258 q->active = EZ(t->active * 1000, T); 2259 q->recover = EZ(t->recover * 1000, T); 2260 q->cycle = EZ(t->cycle * 1000, T); 2261 q->udma = EZ(t->udma * 1000, UT); 2262 } 2263 2264 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2265 struct ata_timing *m, unsigned int what) 2266 { 2267 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2268 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2269 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2270 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2271 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2272 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2275 } 2276 2277 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2278 { 2279 const struct ata_timing *t; 2280 2281 for (t = ata_timing; t->mode != speed; t++) 2282 if (t->mode == 0xFF) 2283 return NULL; 2284 return t; 2285 } 2286 2287 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2288 struct ata_timing *t, int T, int UT) 2289 { 2290 const struct ata_timing *s; 2291 struct ata_timing p; 2292 2293 /* 2294 * Find the mode. 2295 */ 2296 2297 if (!(s = ata_timing_find_mode(speed))) 2298 return -EINVAL; 2299 2300 memcpy(t, s, sizeof(*s)); 2301 2302 /* 2303 * If the drive is an EIDE drive, it can tell us it needs extended 2304 * PIO/MW_DMA cycle timing. 2305 */ 2306 2307 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2308 memset(&p, 0, sizeof(p)); 2309 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2310 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2311 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2312 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2313 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2314 } 2315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2316 } 2317 2318 /* 2319 * Convert the timing to bus clock counts. 2320 */ 2321 2322 ata_timing_quantize(t, t, T, UT); 2323 2324 /* 2325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2326 * S.M.A.R.T * and some other commands. We have to ensure that the 2327 * DMA cycle timing is slower/equal than the fastest PIO timing. 2328 */ 2329 2330 if (speed > XFER_PIO_6) { 2331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2333 } 2334 2335 /* 2336 * Lengthen active & recovery time so that cycle time is correct. 2337 */ 2338 2339 if (t->act8b + t->rec8b < t->cyc8b) { 2340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2341 t->rec8b = t->cyc8b - t->act8b; 2342 } 2343 2344 if (t->active + t->recover < t->cycle) { 2345 t->active += (t->cycle - (t->active + t->recover)) / 2; 2346 t->recover = t->cycle - t->active; 2347 } 2348 2349 return 0; 2350 } 2351 2352 /** 2353 * ata_down_xfermask_limit - adjust dev xfer masks downward 2354 * @dev: Device to adjust xfer masks 2355 * @sel: ATA_DNXFER_* selector 2356 * 2357 * Adjust xfer masks of @dev downward. Note that this function 2358 * does not apply the change. Invoking ata_set_mode() afterwards 2359 * will apply the limit. 2360 * 2361 * LOCKING: 2362 * Inherited from caller. 2363 * 2364 * RETURNS: 2365 * 0 on success, negative errno on failure 2366 */ 2367 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2368 { 2369 char buf[32]; 2370 unsigned int orig_mask, xfer_mask; 2371 unsigned int pio_mask, mwdma_mask, udma_mask; 2372 int quiet, highbit; 2373 2374 quiet = !!(sel & ATA_DNXFER_QUIET); 2375 sel &= ~ATA_DNXFER_QUIET; 2376 2377 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2378 dev->mwdma_mask, 2379 dev->udma_mask); 2380 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2381 2382 switch (sel) { 2383 case ATA_DNXFER_PIO: 2384 highbit = fls(pio_mask) - 1; 2385 pio_mask &= ~(1 << highbit); 2386 break; 2387 2388 case ATA_DNXFER_DMA: 2389 if (udma_mask) { 2390 highbit = fls(udma_mask) - 1; 2391 udma_mask &= ~(1 << highbit); 2392 if (!udma_mask) 2393 return -ENOENT; 2394 } else if (mwdma_mask) { 2395 highbit = fls(mwdma_mask) - 1; 2396 mwdma_mask &= ~(1 << highbit); 2397 if (!mwdma_mask) 2398 return -ENOENT; 2399 } 2400 break; 2401 2402 case ATA_DNXFER_40C: 2403 udma_mask &= ATA_UDMA_MASK_40C; 2404 break; 2405 2406 case ATA_DNXFER_FORCE_PIO0: 2407 pio_mask &= 1; 2408 case ATA_DNXFER_FORCE_PIO: 2409 mwdma_mask = 0; 2410 udma_mask = 0; 2411 break; 2412 2413 default: 2414 BUG(); 2415 } 2416 2417 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2418 2419 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2420 return -ENOENT; 2421 2422 if (!quiet) { 2423 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2424 snprintf(buf, sizeof(buf), "%s:%s", 2425 ata_mode_string(xfer_mask), 2426 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2427 else 2428 snprintf(buf, sizeof(buf), "%s", 2429 ata_mode_string(xfer_mask)); 2430 2431 ata_dev_printk(dev, KERN_WARNING, 2432 "limiting speed to %s\n", buf); 2433 } 2434 2435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2436 &dev->udma_mask); 2437 2438 return 0; 2439 } 2440 2441 static int ata_dev_set_mode(struct ata_device *dev) 2442 { 2443 struct ata_eh_context *ehc = &dev->ap->eh_context; 2444 unsigned int err_mask; 2445 int rc; 2446 2447 dev->flags &= ~ATA_DFLAG_PIO; 2448 if (dev->xfer_shift == ATA_SHIFT_PIO) 2449 dev->flags |= ATA_DFLAG_PIO; 2450 2451 err_mask = ata_dev_set_xfermode(dev); 2452 /* Old CFA may refuse this command, which is just fine */ 2453 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2454 err_mask &= ~AC_ERR_DEV; 2455 2456 if (err_mask) { 2457 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2458 "(err_mask=0x%x)\n", err_mask); 2459 return -EIO; 2460 } 2461 2462 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2463 rc = ata_dev_revalidate(dev, 0); 2464 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2465 if (rc) 2466 return rc; 2467 2468 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2469 dev->xfer_shift, (int)dev->xfer_mode); 2470 2471 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2472 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2473 return 0; 2474 } 2475 2476 /** 2477 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2478 * @ap: port on which timings will be programmed 2479 * @r_failed_dev: out paramter for failed device 2480 * 2481 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2482 * ata_set_mode() fails, pointer to the failing device is 2483 * returned in @r_failed_dev. 2484 * 2485 * LOCKING: 2486 * PCI/etc. bus probe sem. 2487 * 2488 * RETURNS: 2489 * 0 on success, negative errno otherwise 2490 */ 2491 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2492 { 2493 struct ata_device *dev; 2494 int i, rc = 0, used_dma = 0, found = 0; 2495 2496 /* has private set_mode? */ 2497 if (ap->ops->set_mode) 2498 return ap->ops->set_mode(ap, r_failed_dev); 2499 2500 /* step 1: calculate xfer_mask */ 2501 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2502 unsigned int pio_mask, dma_mask; 2503 2504 dev = &ap->device[i]; 2505 2506 if (!ata_dev_enabled(dev)) 2507 continue; 2508 2509 ata_dev_xfermask(dev); 2510 2511 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2512 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2513 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2514 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2515 2516 found = 1; 2517 if (dev->dma_mode) 2518 used_dma = 1; 2519 } 2520 if (!found) 2521 goto out; 2522 2523 /* step 2: always set host PIO timings */ 2524 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2525 dev = &ap->device[i]; 2526 if (!ata_dev_enabled(dev)) 2527 continue; 2528 2529 if (!dev->pio_mode) { 2530 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2531 rc = -EINVAL; 2532 goto out; 2533 } 2534 2535 dev->xfer_mode = dev->pio_mode; 2536 dev->xfer_shift = ATA_SHIFT_PIO; 2537 if (ap->ops->set_piomode) 2538 ap->ops->set_piomode(ap, dev); 2539 } 2540 2541 /* step 3: set host DMA timings */ 2542 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2543 dev = &ap->device[i]; 2544 2545 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2546 continue; 2547 2548 dev->xfer_mode = dev->dma_mode; 2549 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2550 if (ap->ops->set_dmamode) 2551 ap->ops->set_dmamode(ap, dev); 2552 } 2553 2554 /* step 4: update devices' xfer mode */ 2555 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2556 dev = &ap->device[i]; 2557 2558 /* don't update suspended devices' xfer mode */ 2559 if (!ata_dev_ready(dev)) 2560 continue; 2561 2562 rc = ata_dev_set_mode(dev); 2563 if (rc) 2564 goto out; 2565 } 2566 2567 /* Record simplex status. If we selected DMA then the other 2568 * host channels are not permitted to do so. 2569 */ 2570 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2571 ap->host->simplex_claimed = ap; 2572 2573 /* step5: chip specific finalisation */ 2574 if (ap->ops->post_set_mode) 2575 ap->ops->post_set_mode(ap); 2576 out: 2577 if (rc) 2578 *r_failed_dev = dev; 2579 return rc; 2580 } 2581 2582 /** 2583 * ata_tf_to_host - issue ATA taskfile to host controller 2584 * @ap: port to which command is being issued 2585 * @tf: ATA taskfile register set 2586 * 2587 * Issues ATA taskfile register set to ATA host controller, 2588 * with proper synchronization with interrupt handler and 2589 * other threads. 2590 * 2591 * LOCKING: 2592 * spin_lock_irqsave(host lock) 2593 */ 2594 2595 static inline void ata_tf_to_host(struct ata_port *ap, 2596 const struct ata_taskfile *tf) 2597 { 2598 ap->ops->tf_load(ap, tf); 2599 ap->ops->exec_command(ap, tf); 2600 } 2601 2602 /** 2603 * ata_busy_sleep - sleep until BSY clears, or timeout 2604 * @ap: port containing status register to be polled 2605 * @tmout_pat: impatience timeout 2606 * @tmout: overall timeout 2607 * 2608 * Sleep until ATA Status register bit BSY clears, 2609 * or a timeout occurs. 2610 * 2611 * LOCKING: 2612 * Kernel thread context (may sleep). 2613 * 2614 * RETURNS: 2615 * 0 on success, -errno otherwise. 2616 */ 2617 int ata_busy_sleep(struct ata_port *ap, 2618 unsigned long tmout_pat, unsigned long tmout) 2619 { 2620 unsigned long timer_start, timeout; 2621 u8 status; 2622 2623 status = ata_busy_wait(ap, ATA_BUSY, 300); 2624 timer_start = jiffies; 2625 timeout = timer_start + tmout_pat; 2626 while (status != 0xff && (status & ATA_BUSY) && 2627 time_before(jiffies, timeout)) { 2628 msleep(50); 2629 status = ata_busy_wait(ap, ATA_BUSY, 3); 2630 } 2631 2632 if (status != 0xff && (status & ATA_BUSY)) 2633 ata_port_printk(ap, KERN_WARNING, 2634 "port is slow to respond, please be patient " 2635 "(Status 0x%x)\n", status); 2636 2637 timeout = timer_start + tmout; 2638 while (status != 0xff && (status & ATA_BUSY) && 2639 time_before(jiffies, timeout)) { 2640 msleep(50); 2641 status = ata_chk_status(ap); 2642 } 2643 2644 if (status == 0xff) 2645 return -ENODEV; 2646 2647 if (status & ATA_BUSY) { 2648 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2649 "(%lu secs, Status 0x%x)\n", 2650 tmout / HZ, status); 2651 return -EBUSY; 2652 } 2653 2654 return 0; 2655 } 2656 2657 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) 2658 { 2659 struct ata_ioports *ioaddr = &ap->ioaddr; 2660 unsigned int dev0 = devmask & (1 << 0); 2661 unsigned int dev1 = devmask & (1 << 1); 2662 unsigned long timeout; 2663 2664 /* if device 0 was found in ata_devchk, wait for its 2665 * BSY bit to clear 2666 */ 2667 if (dev0) 2668 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2669 2670 /* if device 1 was found in ata_devchk, wait for 2671 * register access, then wait for BSY to clear 2672 */ 2673 timeout = jiffies + ATA_TMOUT_BOOT; 2674 while (dev1) { 2675 u8 nsect, lbal; 2676 2677 ap->ops->dev_select(ap, 1); 2678 nsect = ioread8(ioaddr->nsect_addr); 2679 lbal = ioread8(ioaddr->lbal_addr); 2680 if ((nsect == 1) && (lbal == 1)) 2681 break; 2682 if (time_after(jiffies, timeout)) { 2683 dev1 = 0; 2684 break; 2685 } 2686 msleep(50); /* give drive a breather */ 2687 } 2688 if (dev1) 2689 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2690 2691 /* is all this really necessary? */ 2692 ap->ops->dev_select(ap, 0); 2693 if (dev1) 2694 ap->ops->dev_select(ap, 1); 2695 if (dev0) 2696 ap->ops->dev_select(ap, 0); 2697 } 2698 2699 static unsigned int ata_bus_softreset(struct ata_port *ap, 2700 unsigned int devmask) 2701 { 2702 struct ata_ioports *ioaddr = &ap->ioaddr; 2703 2704 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2705 2706 /* software reset. causes dev0 to be selected */ 2707 iowrite8(ap->ctl, ioaddr->ctl_addr); 2708 udelay(20); /* FIXME: flush */ 2709 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2710 udelay(20); /* FIXME: flush */ 2711 iowrite8(ap->ctl, ioaddr->ctl_addr); 2712 2713 /* spec mandates ">= 2ms" before checking status. 2714 * We wait 150ms, because that was the magic delay used for 2715 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 2716 * between when the ATA command register is written, and then 2717 * status is checked. Because waiting for "a while" before 2718 * checking status is fine, post SRST, we perform this magic 2719 * delay here as well. 2720 * 2721 * Old drivers/ide uses the 2mS rule and then waits for ready 2722 */ 2723 msleep(150); 2724 2725 /* Before we perform post reset processing we want to see if 2726 * the bus shows 0xFF because the odd clown forgets the D7 2727 * pulldown resistor. 2728 */ 2729 if (ata_check_status(ap) == 0xFF) 2730 return 0; 2731 2732 ata_bus_post_reset(ap, devmask); 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * ata_bus_reset - reset host port and associated ATA channel 2739 * @ap: port to reset 2740 * 2741 * This is typically the first time we actually start issuing 2742 * commands to the ATA channel. We wait for BSY to clear, then 2743 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2744 * result. Determine what devices, if any, are on the channel 2745 * by looking at the device 0/1 error register. Look at the signature 2746 * stored in each device's taskfile registers, to determine if 2747 * the device is ATA or ATAPI. 2748 * 2749 * LOCKING: 2750 * PCI/etc. bus probe sem. 2751 * Obtains host lock. 2752 * 2753 * SIDE EFFECTS: 2754 * Sets ATA_FLAG_DISABLED if bus reset fails. 2755 */ 2756 2757 void ata_bus_reset(struct ata_port *ap) 2758 { 2759 struct ata_ioports *ioaddr = &ap->ioaddr; 2760 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2761 u8 err; 2762 unsigned int dev0, dev1 = 0, devmask = 0; 2763 2764 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2765 2766 /* determine if device 0/1 are present */ 2767 if (ap->flags & ATA_FLAG_SATA_RESET) 2768 dev0 = 1; 2769 else { 2770 dev0 = ata_devchk(ap, 0); 2771 if (slave_possible) 2772 dev1 = ata_devchk(ap, 1); 2773 } 2774 2775 if (dev0) 2776 devmask |= (1 << 0); 2777 if (dev1) 2778 devmask |= (1 << 1); 2779 2780 /* select device 0 again */ 2781 ap->ops->dev_select(ap, 0); 2782 2783 /* issue bus reset */ 2784 if (ap->flags & ATA_FLAG_SRST) 2785 if (ata_bus_softreset(ap, devmask)) 2786 goto err_out; 2787 2788 /* 2789 * determine by signature whether we have ATA or ATAPI devices 2790 */ 2791 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 2792 if ((slave_possible) && (err != 0x81)) 2793 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 2794 2795 /* re-enable interrupts */ 2796 ap->ops->irq_on(ap); 2797 2798 /* is double-select really necessary? */ 2799 if (ap->device[1].class != ATA_DEV_NONE) 2800 ap->ops->dev_select(ap, 1); 2801 if (ap->device[0].class != ATA_DEV_NONE) 2802 ap->ops->dev_select(ap, 0); 2803 2804 /* if no devices were detected, disable this port */ 2805 if ((ap->device[0].class == ATA_DEV_NONE) && 2806 (ap->device[1].class == ATA_DEV_NONE)) 2807 goto err_out; 2808 2809 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2810 /* set up device control for ATA_FLAG_SATA_RESET */ 2811 iowrite8(ap->ctl, ioaddr->ctl_addr); 2812 } 2813 2814 DPRINTK("EXIT\n"); 2815 return; 2816 2817 err_out: 2818 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2819 ap->ops->port_disable(ap); 2820 2821 DPRINTK("EXIT\n"); 2822 } 2823 2824 /** 2825 * sata_phy_debounce - debounce SATA phy status 2826 * @ap: ATA port to debounce SATA phy status for 2827 * @params: timing parameters { interval, duratinon, timeout } in msec 2828 * 2829 * Make sure SStatus of @ap reaches stable state, determined by 2830 * holding the same value where DET is not 1 for @duration polled 2831 * every @interval, before @timeout. Timeout constraints the 2832 * beginning of the stable state. Because, after hot unplugging, 2833 * DET gets stuck at 1 on some controllers, this functions waits 2834 * until timeout then returns 0 if DET is stable at 1. 2835 * 2836 * LOCKING: 2837 * Kernel thread context (may sleep) 2838 * 2839 * RETURNS: 2840 * 0 on success, -errno on failure. 2841 */ 2842 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params) 2843 { 2844 unsigned long interval_msec = params[0]; 2845 unsigned long duration = params[1] * HZ / 1000; 2846 unsigned long timeout = jiffies + params[2] * HZ / 1000; 2847 unsigned long last_jiffies; 2848 u32 last, cur; 2849 int rc; 2850 2851 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 2852 return rc; 2853 cur &= 0xf; 2854 2855 last = cur; 2856 last_jiffies = jiffies; 2857 2858 while (1) { 2859 msleep(interval_msec); 2860 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 2861 return rc; 2862 cur &= 0xf; 2863 2864 /* DET stable? */ 2865 if (cur == last) { 2866 if (cur == 1 && time_before(jiffies, timeout)) 2867 continue; 2868 if (time_after(jiffies, last_jiffies + duration)) 2869 return 0; 2870 continue; 2871 } 2872 2873 /* unstable, start over */ 2874 last = cur; 2875 last_jiffies = jiffies; 2876 2877 /* check timeout */ 2878 if (time_after(jiffies, timeout)) 2879 return -EBUSY; 2880 } 2881 } 2882 2883 /** 2884 * sata_phy_resume - resume SATA phy 2885 * @ap: ATA port to resume SATA phy for 2886 * @params: timing parameters { interval, duratinon, timeout } in msec 2887 * 2888 * Resume SATA phy of @ap and debounce it. 2889 * 2890 * LOCKING: 2891 * Kernel thread context (may sleep) 2892 * 2893 * RETURNS: 2894 * 0 on success, -errno on failure. 2895 */ 2896 int sata_phy_resume(struct ata_port *ap, const unsigned long *params) 2897 { 2898 u32 scontrol; 2899 int rc; 2900 2901 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2902 return rc; 2903 2904 scontrol = (scontrol & 0x0f0) | 0x300; 2905 2906 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2907 return rc; 2908 2909 /* Some PHYs react badly if SStatus is pounded immediately 2910 * after resuming. Delay 200ms before debouncing. 2911 */ 2912 msleep(200); 2913 2914 return sata_phy_debounce(ap, params); 2915 } 2916 2917 static void ata_wait_spinup(struct ata_port *ap) 2918 { 2919 struct ata_eh_context *ehc = &ap->eh_context; 2920 unsigned long end, secs; 2921 int rc; 2922 2923 /* first, debounce phy if SATA */ 2924 if (ap->cbl == ATA_CBL_SATA) { 2925 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug); 2926 2927 /* if debounced successfully and offline, no need to wait */ 2928 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap)) 2929 return; 2930 } 2931 2932 /* okay, let's give the drive time to spin up */ 2933 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000; 2934 secs = ((end - jiffies) + HZ - 1) / HZ; 2935 2936 if (time_after(jiffies, end)) 2937 return; 2938 2939 if (secs > 5) 2940 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up " 2941 "(%lu secs)\n", secs); 2942 2943 schedule_timeout_uninterruptible(end - jiffies); 2944 } 2945 2946 /** 2947 * ata_std_prereset - prepare for reset 2948 * @ap: ATA port to be reset 2949 * 2950 * @ap is about to be reset. Initialize it. 2951 * 2952 * LOCKING: 2953 * Kernel thread context (may sleep) 2954 * 2955 * RETURNS: 2956 * 0 on success, -errno otherwise. 2957 */ 2958 int ata_std_prereset(struct ata_port *ap) 2959 { 2960 struct ata_eh_context *ehc = &ap->eh_context; 2961 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2962 int rc; 2963 2964 /* handle link resume & hotplug spinup */ 2965 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 2966 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 2967 ehc->i.action |= ATA_EH_HARDRESET; 2968 2969 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) && 2970 (ap->flags & ATA_FLAG_SKIP_D2H_BSY)) 2971 ata_wait_spinup(ap); 2972 2973 /* if we're about to do hardreset, nothing more to do */ 2974 if (ehc->i.action & ATA_EH_HARDRESET) 2975 return 0; 2976 2977 /* if SATA, resume phy */ 2978 if (ap->cbl == ATA_CBL_SATA) { 2979 rc = sata_phy_resume(ap, timing); 2980 if (rc && rc != -EOPNOTSUPP) { 2981 /* phy resume failed */ 2982 ata_port_printk(ap, KERN_WARNING, "failed to resume " 2983 "link for reset (errno=%d)\n", rc); 2984 return rc; 2985 } 2986 } 2987 2988 /* Wait for !BSY if the controller can wait for the first D2H 2989 * Reg FIS and we don't know that no device is attached. 2990 */ 2991 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) 2992 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2993 2994 return 0; 2995 } 2996 2997 /** 2998 * ata_std_softreset - reset host port via ATA SRST 2999 * @ap: port to reset 3000 * @classes: resulting classes of attached devices 3001 * 3002 * Reset host port using ATA SRST. 3003 * 3004 * LOCKING: 3005 * Kernel thread context (may sleep) 3006 * 3007 * RETURNS: 3008 * 0 on success, -errno otherwise. 3009 */ 3010 int ata_std_softreset(struct ata_port *ap, unsigned int *classes) 3011 { 3012 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3013 unsigned int devmask = 0, err_mask; 3014 u8 err; 3015 3016 DPRINTK("ENTER\n"); 3017 3018 if (ata_port_offline(ap)) { 3019 classes[0] = ATA_DEV_NONE; 3020 goto out; 3021 } 3022 3023 /* determine if device 0/1 are present */ 3024 if (ata_devchk(ap, 0)) 3025 devmask |= (1 << 0); 3026 if (slave_possible && ata_devchk(ap, 1)) 3027 devmask |= (1 << 1); 3028 3029 /* select device 0 again */ 3030 ap->ops->dev_select(ap, 0); 3031 3032 /* issue bus reset */ 3033 DPRINTK("about to softreset, devmask=%x\n", devmask); 3034 err_mask = ata_bus_softreset(ap, devmask); 3035 if (err_mask) { 3036 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", 3037 err_mask); 3038 return -EIO; 3039 } 3040 3041 /* determine by signature whether we have ATA or ATAPI devices */ 3042 classes[0] = ata_dev_try_classify(ap, 0, &err); 3043 if (slave_possible && err != 0x81) 3044 classes[1] = ata_dev_try_classify(ap, 1, &err); 3045 3046 out: 3047 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3048 return 0; 3049 } 3050 3051 /** 3052 * sata_port_hardreset - reset port via SATA phy reset 3053 * @ap: port to reset 3054 * @timing: timing parameters { interval, duratinon, timeout } in msec 3055 * 3056 * SATA phy-reset host port using DET bits of SControl register. 3057 * 3058 * LOCKING: 3059 * Kernel thread context (may sleep) 3060 * 3061 * RETURNS: 3062 * 0 on success, -errno otherwise. 3063 */ 3064 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing) 3065 { 3066 u32 scontrol; 3067 int rc; 3068 3069 DPRINTK("ENTER\n"); 3070 3071 if (sata_set_spd_needed(ap)) { 3072 /* SATA spec says nothing about how to reconfigure 3073 * spd. To be on the safe side, turn off phy during 3074 * reconfiguration. This works for at least ICH7 AHCI 3075 * and Sil3124. 3076 */ 3077 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3078 goto out; 3079 3080 scontrol = (scontrol & 0x0f0) | 0x304; 3081 3082 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3083 goto out; 3084 3085 sata_set_spd(ap); 3086 } 3087 3088 /* issue phy wake/reset */ 3089 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3090 goto out; 3091 3092 scontrol = (scontrol & 0x0f0) | 0x301; 3093 3094 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3095 goto out; 3096 3097 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3098 * 10.4.2 says at least 1 ms. 3099 */ 3100 msleep(1); 3101 3102 /* bring phy back */ 3103 rc = sata_phy_resume(ap, timing); 3104 out: 3105 DPRINTK("EXIT, rc=%d\n", rc); 3106 return rc; 3107 } 3108 3109 /** 3110 * sata_std_hardreset - reset host port via SATA phy reset 3111 * @ap: port to reset 3112 * @class: resulting class of attached device 3113 * 3114 * SATA phy-reset host port using DET bits of SControl register, 3115 * wait for !BSY and classify the attached device. 3116 * 3117 * LOCKING: 3118 * Kernel thread context (may sleep) 3119 * 3120 * RETURNS: 3121 * 0 on success, -errno otherwise. 3122 */ 3123 int sata_std_hardreset(struct ata_port *ap, unsigned int *class) 3124 { 3125 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3126 int rc; 3127 3128 DPRINTK("ENTER\n"); 3129 3130 /* do hardreset */ 3131 rc = sata_port_hardreset(ap, timing); 3132 if (rc) { 3133 ata_port_printk(ap, KERN_ERR, 3134 "COMRESET failed (errno=%d)\n", rc); 3135 return rc; 3136 } 3137 3138 /* TODO: phy layer with polling, timeouts, etc. */ 3139 if (ata_port_offline(ap)) { 3140 *class = ATA_DEV_NONE; 3141 DPRINTK("EXIT, link offline\n"); 3142 return 0; 3143 } 3144 3145 /* wait a while before checking status, see SRST for more info */ 3146 msleep(150); 3147 3148 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 3149 ata_port_printk(ap, KERN_ERR, 3150 "COMRESET failed (device not ready)\n"); 3151 return -EIO; 3152 } 3153 3154 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3155 3156 *class = ata_dev_try_classify(ap, 0, NULL); 3157 3158 DPRINTK("EXIT, class=%u\n", *class); 3159 return 0; 3160 } 3161 3162 /** 3163 * ata_std_postreset - standard postreset callback 3164 * @ap: the target ata_port 3165 * @classes: classes of attached devices 3166 * 3167 * This function is invoked after a successful reset. Note that 3168 * the device might have been reset more than once using 3169 * different reset methods before postreset is invoked. 3170 * 3171 * LOCKING: 3172 * Kernel thread context (may sleep) 3173 */ 3174 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3175 { 3176 u32 serror; 3177 3178 DPRINTK("ENTER\n"); 3179 3180 /* print link status */ 3181 sata_print_link_status(ap); 3182 3183 /* clear SError */ 3184 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3185 sata_scr_write(ap, SCR_ERROR, serror); 3186 3187 /* re-enable interrupts */ 3188 if (!ap->ops->error_handler) 3189 ap->ops->irq_on(ap); 3190 3191 /* is double-select really necessary? */ 3192 if (classes[0] != ATA_DEV_NONE) 3193 ap->ops->dev_select(ap, 1); 3194 if (classes[1] != ATA_DEV_NONE) 3195 ap->ops->dev_select(ap, 0); 3196 3197 /* bail out if no device is present */ 3198 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3199 DPRINTK("EXIT, no device\n"); 3200 return; 3201 } 3202 3203 /* set up device control */ 3204 if (ap->ioaddr.ctl_addr) 3205 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3206 3207 DPRINTK("EXIT\n"); 3208 } 3209 3210 /** 3211 * ata_dev_same_device - Determine whether new ID matches configured device 3212 * @dev: device to compare against 3213 * @new_class: class of the new device 3214 * @new_id: IDENTIFY page of the new device 3215 * 3216 * Compare @new_class and @new_id against @dev and determine 3217 * whether @dev is the device indicated by @new_class and 3218 * @new_id. 3219 * 3220 * LOCKING: 3221 * None. 3222 * 3223 * RETURNS: 3224 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3225 */ 3226 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3227 const u16 *new_id) 3228 { 3229 const u16 *old_id = dev->id; 3230 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3231 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3232 u64 new_n_sectors; 3233 3234 if (dev->class != new_class) { 3235 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3236 dev->class, new_class); 3237 return 0; 3238 } 3239 3240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3244 new_n_sectors = ata_id_n_sectors(new_id); 3245 3246 if (strcmp(model[0], model[1])) { 3247 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3248 "'%s' != '%s'\n", model[0], model[1]); 3249 return 0; 3250 } 3251 3252 if (strcmp(serial[0], serial[1])) { 3253 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3254 "'%s' != '%s'\n", serial[0], serial[1]); 3255 return 0; 3256 } 3257 3258 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { 3259 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3260 "%llu != %llu\n", 3261 (unsigned long long)dev->n_sectors, 3262 (unsigned long long)new_n_sectors); 3263 return 0; 3264 } 3265 3266 return 1; 3267 } 3268 3269 /** 3270 * ata_dev_revalidate - Revalidate ATA device 3271 * @dev: device to revalidate 3272 * @readid_flags: read ID flags 3273 * 3274 * Re-read IDENTIFY page and make sure @dev is still attached to 3275 * the port. 3276 * 3277 * LOCKING: 3278 * Kernel thread context (may sleep) 3279 * 3280 * RETURNS: 3281 * 0 on success, negative errno otherwise 3282 */ 3283 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3284 { 3285 unsigned int class = dev->class; 3286 u16 *id = (void *)dev->ap->sector_buf; 3287 int rc; 3288 3289 if (!ata_dev_enabled(dev)) { 3290 rc = -ENODEV; 3291 goto fail; 3292 } 3293 3294 /* read ID data */ 3295 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3296 if (rc) 3297 goto fail; 3298 3299 /* is the device still there? */ 3300 if (!ata_dev_same_device(dev, class, id)) { 3301 rc = -ENODEV; 3302 goto fail; 3303 } 3304 3305 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3306 3307 /* configure device according to the new ID */ 3308 rc = ata_dev_configure(dev); 3309 if (rc == 0) 3310 return 0; 3311 3312 fail: 3313 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3314 return rc; 3315 } 3316 3317 struct ata_blacklist_entry { 3318 const char *model_num; 3319 const char *model_rev; 3320 unsigned long horkage; 3321 }; 3322 3323 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3324 /* Devices with DMA related problems under Linux */ 3325 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3326 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3327 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3328 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3329 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3330 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3331 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3332 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3333 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3334 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3335 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3336 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3337 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3338 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3339 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3340 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3341 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3342 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3343 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3344 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3345 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3346 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3347 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3348 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3349 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3350 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3351 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3352 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3353 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3354 3355 /* Devices we expect to fail diagnostics */ 3356 3357 /* Devices where NCQ should be avoided */ 3358 /* NCQ is slow */ 3359 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3360 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3361 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3362 3363 /* Devices with NCQ limits */ 3364 3365 /* End Marker */ 3366 { } 3367 }; 3368 3369 unsigned long ata_device_blacklisted(const struct ata_device *dev) 3370 { 3371 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3372 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3373 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3374 3375 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3376 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3377 3378 while (ad->model_num) { 3379 if (!strcmp(ad->model_num, model_num)) { 3380 if (ad->model_rev == NULL) 3381 return ad->horkage; 3382 if (!strcmp(ad->model_rev, model_rev)) 3383 return ad->horkage; 3384 } 3385 ad++; 3386 } 3387 return 0; 3388 } 3389 3390 static int ata_dma_blacklisted(const struct ata_device *dev) 3391 { 3392 /* We don't support polling DMA. 3393 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3394 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3395 */ 3396 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3397 (dev->flags & ATA_DFLAG_CDB_INTR)) 3398 return 1; 3399 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; 3400 } 3401 3402 /** 3403 * ata_dev_xfermask - Compute supported xfermask of the given device 3404 * @dev: Device to compute xfermask for 3405 * 3406 * Compute supported xfermask of @dev and store it in 3407 * dev->*_mask. This function is responsible for applying all 3408 * known limits including host controller limits, device 3409 * blacklist, etc... 3410 * 3411 * LOCKING: 3412 * None. 3413 */ 3414 static void ata_dev_xfermask(struct ata_device *dev) 3415 { 3416 struct ata_port *ap = dev->ap; 3417 struct ata_host *host = ap->host; 3418 unsigned long xfer_mask; 3419 3420 /* controller modes available */ 3421 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3422 ap->mwdma_mask, ap->udma_mask); 3423 3424 /* Apply cable rule here. Don't apply it early because when 3425 * we handle hot plug the cable type can itself change. 3426 */ 3427 if (ap->cbl == ATA_CBL_PATA40) 3428 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3429 /* Apply drive side cable rule. Unknown or 80 pin cables reported 3430 * host side are checked drive side as well. Cases where we know a 3431 * 40wire cable is used safely for 80 are not checked here. 3432 */ 3433 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80)) 3434 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3435 3436 3437 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3438 dev->mwdma_mask, dev->udma_mask); 3439 xfer_mask &= ata_id_xfermask(dev->id); 3440 3441 /* 3442 * CFA Advanced TrueIDE timings are not allowed on a shared 3443 * cable 3444 */ 3445 if (ata_dev_pair(dev)) { 3446 /* No PIO5 or PIO6 */ 3447 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3448 /* No MWDMA3 or MWDMA 4 */ 3449 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3450 } 3451 3452 if (ata_dma_blacklisted(dev)) { 3453 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3454 ata_dev_printk(dev, KERN_WARNING, 3455 "device is on DMA blacklist, disabling DMA\n"); 3456 } 3457 3458 if ((host->flags & ATA_HOST_SIMPLEX) && 3459 host->simplex_claimed && host->simplex_claimed != ap) { 3460 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3461 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3462 "other device, disabling DMA\n"); 3463 } 3464 3465 if (ap->ops->mode_filter) 3466 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask); 3467 3468 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3469 &dev->mwdma_mask, &dev->udma_mask); 3470 } 3471 3472 /** 3473 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3474 * @dev: Device to which command will be sent 3475 * 3476 * Issue SET FEATURES - XFER MODE command to device @dev 3477 * on port @ap. 3478 * 3479 * LOCKING: 3480 * PCI/etc. bus probe sem. 3481 * 3482 * RETURNS: 3483 * 0 on success, AC_ERR_* mask otherwise. 3484 */ 3485 3486 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3487 { 3488 struct ata_taskfile tf; 3489 unsigned int err_mask; 3490 3491 /* set up set-features taskfile */ 3492 DPRINTK("set features - xfer mode\n"); 3493 3494 ata_tf_init(dev, &tf); 3495 tf.command = ATA_CMD_SET_FEATURES; 3496 tf.feature = SETFEATURES_XFER; 3497 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3498 tf.protocol = ATA_PROT_NODATA; 3499 tf.nsect = dev->xfer_mode; 3500 3501 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3502 3503 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3504 return err_mask; 3505 } 3506 3507 /** 3508 * ata_dev_init_params - Issue INIT DEV PARAMS command 3509 * @dev: Device to which command will be sent 3510 * @heads: Number of heads (taskfile parameter) 3511 * @sectors: Number of sectors (taskfile parameter) 3512 * 3513 * LOCKING: 3514 * Kernel thread context (may sleep) 3515 * 3516 * RETURNS: 3517 * 0 on success, AC_ERR_* mask otherwise. 3518 */ 3519 static unsigned int ata_dev_init_params(struct ata_device *dev, 3520 u16 heads, u16 sectors) 3521 { 3522 struct ata_taskfile tf; 3523 unsigned int err_mask; 3524 3525 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3526 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3527 return AC_ERR_INVALID; 3528 3529 /* set up init dev params taskfile */ 3530 DPRINTK("init dev params \n"); 3531 3532 ata_tf_init(dev, &tf); 3533 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3534 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3535 tf.protocol = ATA_PROT_NODATA; 3536 tf.nsect = sectors; 3537 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3538 3539 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3540 3541 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3542 return err_mask; 3543 } 3544 3545 /** 3546 * ata_sg_clean - Unmap DMA memory associated with command 3547 * @qc: Command containing DMA memory to be released 3548 * 3549 * Unmap all mapped DMA memory associated with this command. 3550 * 3551 * LOCKING: 3552 * spin_lock_irqsave(host lock) 3553 */ 3554 void ata_sg_clean(struct ata_queued_cmd *qc) 3555 { 3556 struct ata_port *ap = qc->ap; 3557 struct scatterlist *sg = qc->__sg; 3558 int dir = qc->dma_dir; 3559 void *pad_buf = NULL; 3560 3561 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 3562 WARN_ON(sg == NULL); 3563 3564 if (qc->flags & ATA_QCFLAG_SINGLE) 3565 WARN_ON(qc->n_elem > 1); 3566 3567 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 3568 3569 /* if we padded the buffer out to 32-bit bound, and data 3570 * xfer direction is from-device, we must copy from the 3571 * pad buffer back into the supplied buffer 3572 */ 3573 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 3574 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3575 3576 if (qc->flags & ATA_QCFLAG_SG) { 3577 if (qc->n_elem) 3578 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 3579 /* restore last sg */ 3580 sg[qc->orig_n_elem - 1].length += qc->pad_len; 3581 if (pad_buf) { 3582 struct scatterlist *psg = &qc->pad_sgent; 3583 void *addr = kmap_atomic(psg->page, KM_IRQ0); 3584 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 3585 kunmap_atomic(addr, KM_IRQ0); 3586 } 3587 } else { 3588 if (qc->n_elem) 3589 dma_unmap_single(ap->dev, 3590 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 3591 dir); 3592 /* restore sg */ 3593 sg->length += qc->pad_len; 3594 if (pad_buf) 3595 memcpy(qc->buf_virt + sg->length - qc->pad_len, 3596 pad_buf, qc->pad_len); 3597 } 3598 3599 qc->flags &= ~ATA_QCFLAG_DMAMAP; 3600 qc->__sg = NULL; 3601 } 3602 3603 /** 3604 * ata_fill_sg - Fill PCI IDE PRD table 3605 * @qc: Metadata associated with taskfile to be transferred 3606 * 3607 * Fill PCI IDE PRD (scatter-gather) table with segments 3608 * associated with the current disk command. 3609 * 3610 * LOCKING: 3611 * spin_lock_irqsave(host lock) 3612 * 3613 */ 3614 static void ata_fill_sg(struct ata_queued_cmd *qc) 3615 { 3616 struct ata_port *ap = qc->ap; 3617 struct scatterlist *sg; 3618 unsigned int idx; 3619 3620 WARN_ON(qc->__sg == NULL); 3621 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 3622 3623 idx = 0; 3624 ata_for_each_sg(sg, qc) { 3625 u32 addr, offset; 3626 u32 sg_len, len; 3627 3628 /* determine if physical DMA addr spans 64K boundary. 3629 * Note h/w doesn't support 64-bit, so we unconditionally 3630 * truncate dma_addr_t to u32. 3631 */ 3632 addr = (u32) sg_dma_address(sg); 3633 sg_len = sg_dma_len(sg); 3634 3635 while (sg_len) { 3636 offset = addr & 0xffff; 3637 len = sg_len; 3638 if ((offset + sg_len) > 0x10000) 3639 len = 0x10000 - offset; 3640 3641 ap->prd[idx].addr = cpu_to_le32(addr); 3642 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 3643 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 3644 3645 idx++; 3646 sg_len -= len; 3647 addr += len; 3648 } 3649 } 3650 3651 if (idx) 3652 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 3653 } 3654 /** 3655 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 3656 * @qc: Metadata associated with taskfile to check 3657 * 3658 * Allow low-level driver to filter ATA PACKET commands, returning 3659 * a status indicating whether or not it is OK to use DMA for the 3660 * supplied PACKET command. 3661 * 3662 * LOCKING: 3663 * spin_lock_irqsave(host lock) 3664 * 3665 * RETURNS: 0 when ATAPI DMA can be used 3666 * nonzero otherwise 3667 */ 3668 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 3669 { 3670 struct ata_port *ap = qc->ap; 3671 int rc = 0; /* Assume ATAPI DMA is OK by default */ 3672 3673 if (ap->ops->check_atapi_dma) 3674 rc = ap->ops->check_atapi_dma(qc); 3675 3676 return rc; 3677 } 3678 /** 3679 * ata_qc_prep - Prepare taskfile for submission 3680 * @qc: Metadata associated with taskfile to be prepared 3681 * 3682 * Prepare ATA taskfile for submission. 3683 * 3684 * LOCKING: 3685 * spin_lock_irqsave(host lock) 3686 */ 3687 void ata_qc_prep(struct ata_queued_cmd *qc) 3688 { 3689 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 3690 return; 3691 3692 ata_fill_sg(qc); 3693 } 3694 3695 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 3696 3697 /** 3698 * ata_sg_init_one - Associate command with memory buffer 3699 * @qc: Command to be associated 3700 * @buf: Memory buffer 3701 * @buflen: Length of memory buffer, in bytes. 3702 * 3703 * Initialize the data-related elements of queued_cmd @qc 3704 * to point to a single memory buffer, @buf of byte length @buflen. 3705 * 3706 * LOCKING: 3707 * spin_lock_irqsave(host lock) 3708 */ 3709 3710 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 3711 { 3712 qc->flags |= ATA_QCFLAG_SINGLE; 3713 3714 qc->__sg = &qc->sgent; 3715 qc->n_elem = 1; 3716 qc->orig_n_elem = 1; 3717 qc->buf_virt = buf; 3718 qc->nbytes = buflen; 3719 3720 sg_init_one(&qc->sgent, buf, buflen); 3721 } 3722 3723 /** 3724 * ata_sg_init - Associate command with scatter-gather table. 3725 * @qc: Command to be associated 3726 * @sg: Scatter-gather table. 3727 * @n_elem: Number of elements in s/g table. 3728 * 3729 * Initialize the data-related elements of queued_cmd @qc 3730 * to point to a scatter-gather table @sg, containing @n_elem 3731 * elements. 3732 * 3733 * LOCKING: 3734 * spin_lock_irqsave(host lock) 3735 */ 3736 3737 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 3738 unsigned int n_elem) 3739 { 3740 qc->flags |= ATA_QCFLAG_SG; 3741 qc->__sg = sg; 3742 qc->n_elem = n_elem; 3743 qc->orig_n_elem = n_elem; 3744 } 3745 3746 /** 3747 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 3748 * @qc: Command with memory buffer to be mapped. 3749 * 3750 * DMA-map the memory buffer associated with queued_cmd @qc. 3751 * 3752 * LOCKING: 3753 * spin_lock_irqsave(host lock) 3754 * 3755 * RETURNS: 3756 * Zero on success, negative on error. 3757 */ 3758 3759 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 3760 { 3761 struct ata_port *ap = qc->ap; 3762 int dir = qc->dma_dir; 3763 struct scatterlist *sg = qc->__sg; 3764 dma_addr_t dma_address; 3765 int trim_sg = 0; 3766 3767 /* we must lengthen transfers to end on a 32-bit boundary */ 3768 qc->pad_len = sg->length & 3; 3769 if (qc->pad_len) { 3770 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3771 struct scatterlist *psg = &qc->pad_sgent; 3772 3773 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 3774 3775 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 3776 3777 if (qc->tf.flags & ATA_TFLAG_WRITE) 3778 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 3779 qc->pad_len); 3780 3781 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 3782 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 3783 /* trim sg */ 3784 sg->length -= qc->pad_len; 3785 if (sg->length == 0) 3786 trim_sg = 1; 3787 3788 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 3789 sg->length, qc->pad_len); 3790 } 3791 3792 if (trim_sg) { 3793 qc->n_elem--; 3794 goto skip_map; 3795 } 3796 3797 dma_address = dma_map_single(ap->dev, qc->buf_virt, 3798 sg->length, dir); 3799 if (dma_mapping_error(dma_address)) { 3800 /* restore sg */ 3801 sg->length += qc->pad_len; 3802 return -1; 3803 } 3804 3805 sg_dma_address(sg) = dma_address; 3806 sg_dma_len(sg) = sg->length; 3807 3808 skip_map: 3809 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 3810 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 3811 3812 return 0; 3813 } 3814 3815 /** 3816 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 3817 * @qc: Command with scatter-gather table to be mapped. 3818 * 3819 * DMA-map the scatter-gather table associated with queued_cmd @qc. 3820 * 3821 * LOCKING: 3822 * spin_lock_irqsave(host lock) 3823 * 3824 * RETURNS: 3825 * Zero on success, negative on error. 3826 * 3827 */ 3828 3829 static int ata_sg_setup(struct ata_queued_cmd *qc) 3830 { 3831 struct ata_port *ap = qc->ap; 3832 struct scatterlist *sg = qc->__sg; 3833 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 3834 int n_elem, pre_n_elem, dir, trim_sg = 0; 3835 3836 VPRINTK("ENTER, ata%u\n", ap->print_id); 3837 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 3838 3839 /* we must lengthen transfers to end on a 32-bit boundary */ 3840 qc->pad_len = lsg->length & 3; 3841 if (qc->pad_len) { 3842 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3843 struct scatterlist *psg = &qc->pad_sgent; 3844 unsigned int offset; 3845 3846 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 3847 3848 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 3849 3850 /* 3851 * psg->page/offset are used to copy to-be-written 3852 * data in this function or read data in ata_sg_clean. 3853 */ 3854 offset = lsg->offset + lsg->length - qc->pad_len; 3855 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 3856 psg->offset = offset_in_page(offset); 3857 3858 if (qc->tf.flags & ATA_TFLAG_WRITE) { 3859 void *addr = kmap_atomic(psg->page, KM_IRQ0); 3860 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 3861 kunmap_atomic(addr, KM_IRQ0); 3862 } 3863 3864 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 3865 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 3866 /* trim last sg */ 3867 lsg->length -= qc->pad_len; 3868 if (lsg->length == 0) 3869 trim_sg = 1; 3870 3871 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 3872 qc->n_elem - 1, lsg->length, qc->pad_len); 3873 } 3874 3875 pre_n_elem = qc->n_elem; 3876 if (trim_sg && pre_n_elem) 3877 pre_n_elem--; 3878 3879 if (!pre_n_elem) { 3880 n_elem = 0; 3881 goto skip_map; 3882 } 3883 3884 dir = qc->dma_dir; 3885 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 3886 if (n_elem < 1) { 3887 /* restore last sg */ 3888 lsg->length += qc->pad_len; 3889 return -1; 3890 } 3891 3892 DPRINTK("%d sg elements mapped\n", n_elem); 3893 3894 skip_map: 3895 qc->n_elem = n_elem; 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * swap_buf_le16 - swap halves of 16-bit words in place 3902 * @buf: Buffer to swap 3903 * @buf_words: Number of 16-bit words in buffer. 3904 * 3905 * Swap halves of 16-bit words if needed to convert from 3906 * little-endian byte order to native cpu byte order, or 3907 * vice-versa. 3908 * 3909 * LOCKING: 3910 * Inherited from caller. 3911 */ 3912 void swap_buf_le16(u16 *buf, unsigned int buf_words) 3913 { 3914 #ifdef __BIG_ENDIAN 3915 unsigned int i; 3916 3917 for (i = 0; i < buf_words; i++) 3918 buf[i] = le16_to_cpu(buf[i]); 3919 #endif /* __BIG_ENDIAN */ 3920 } 3921 3922 /** 3923 * ata_data_xfer - Transfer data by PIO 3924 * @adev: device to target 3925 * @buf: data buffer 3926 * @buflen: buffer length 3927 * @write_data: read/write 3928 * 3929 * Transfer data from/to the device data register by PIO. 3930 * 3931 * LOCKING: 3932 * Inherited from caller. 3933 */ 3934 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 3935 unsigned int buflen, int write_data) 3936 { 3937 struct ata_port *ap = adev->ap; 3938 unsigned int words = buflen >> 1; 3939 3940 /* Transfer multiple of 2 bytes */ 3941 if (write_data) 3942 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 3943 else 3944 ioread16_rep(ap->ioaddr.data_addr, buf, words); 3945 3946 /* Transfer trailing 1 byte, if any. */ 3947 if (unlikely(buflen & 0x01)) { 3948 u16 align_buf[1] = { 0 }; 3949 unsigned char *trailing_buf = buf + buflen - 1; 3950 3951 if (write_data) { 3952 memcpy(align_buf, trailing_buf, 1); 3953 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 3954 } else { 3955 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 3956 memcpy(trailing_buf, align_buf, 1); 3957 } 3958 } 3959 } 3960 3961 /** 3962 * ata_data_xfer_noirq - Transfer data by PIO 3963 * @adev: device to target 3964 * @buf: data buffer 3965 * @buflen: buffer length 3966 * @write_data: read/write 3967 * 3968 * Transfer data from/to the device data register by PIO. Do the 3969 * transfer with interrupts disabled. 3970 * 3971 * LOCKING: 3972 * Inherited from caller. 3973 */ 3974 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 3975 unsigned int buflen, int write_data) 3976 { 3977 unsigned long flags; 3978 local_irq_save(flags); 3979 ata_data_xfer(adev, buf, buflen, write_data); 3980 local_irq_restore(flags); 3981 } 3982 3983 3984 /** 3985 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. 3986 * @qc: Command on going 3987 * 3988 * Transfer ATA_SECT_SIZE of data from/to the ATA device. 3989 * 3990 * LOCKING: 3991 * Inherited from caller. 3992 */ 3993 3994 static void ata_pio_sector(struct ata_queued_cmd *qc) 3995 { 3996 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 3997 struct scatterlist *sg = qc->__sg; 3998 struct ata_port *ap = qc->ap; 3999 struct page *page; 4000 unsigned int offset; 4001 unsigned char *buf; 4002 4003 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE) 4004 ap->hsm_task_state = HSM_ST_LAST; 4005 4006 page = sg[qc->cursg].page; 4007 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4008 4009 /* get the current page and offset */ 4010 page = nth_page(page, (offset >> PAGE_SHIFT)); 4011 offset %= PAGE_SIZE; 4012 4013 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4014 4015 if (PageHighMem(page)) { 4016 unsigned long flags; 4017 4018 /* FIXME: use a bounce buffer */ 4019 local_irq_save(flags); 4020 buf = kmap_atomic(page, KM_IRQ0); 4021 4022 /* do the actual data transfer */ 4023 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); 4024 4025 kunmap_atomic(buf, KM_IRQ0); 4026 local_irq_restore(flags); 4027 } else { 4028 buf = page_address(page); 4029 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); 4030 } 4031 4032 qc->curbytes += ATA_SECT_SIZE; 4033 qc->cursg_ofs += ATA_SECT_SIZE; 4034 4035 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4036 qc->cursg++; 4037 qc->cursg_ofs = 0; 4038 } 4039 } 4040 4041 /** 4042 * ata_pio_sectors - Transfer one or many 512-byte sectors. 4043 * @qc: Command on going 4044 * 4045 * Transfer one or many ATA_SECT_SIZE of data from/to the 4046 * ATA device for the DRQ request. 4047 * 4048 * LOCKING: 4049 * Inherited from caller. 4050 */ 4051 4052 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4053 { 4054 if (is_multi_taskfile(&qc->tf)) { 4055 /* READ/WRITE MULTIPLE */ 4056 unsigned int nsect; 4057 4058 WARN_ON(qc->dev->multi_count == 0); 4059 4060 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE, 4061 qc->dev->multi_count); 4062 while (nsect--) 4063 ata_pio_sector(qc); 4064 } else 4065 ata_pio_sector(qc); 4066 } 4067 4068 /** 4069 * atapi_send_cdb - Write CDB bytes to hardware 4070 * @ap: Port to which ATAPI device is attached. 4071 * @qc: Taskfile currently active 4072 * 4073 * When device has indicated its readiness to accept 4074 * a CDB, this function is called. Send the CDB. 4075 * 4076 * LOCKING: 4077 * caller. 4078 */ 4079 4080 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4081 { 4082 /* send SCSI cdb */ 4083 DPRINTK("send cdb\n"); 4084 WARN_ON(qc->dev->cdb_len < 12); 4085 4086 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4087 ata_altstatus(ap); /* flush */ 4088 4089 switch (qc->tf.protocol) { 4090 case ATA_PROT_ATAPI: 4091 ap->hsm_task_state = HSM_ST; 4092 break; 4093 case ATA_PROT_ATAPI_NODATA: 4094 ap->hsm_task_state = HSM_ST_LAST; 4095 break; 4096 case ATA_PROT_ATAPI_DMA: 4097 ap->hsm_task_state = HSM_ST_LAST; 4098 /* initiate bmdma */ 4099 ap->ops->bmdma_start(qc); 4100 break; 4101 } 4102 } 4103 4104 /** 4105 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4106 * @qc: Command on going 4107 * @bytes: number of bytes 4108 * 4109 * Transfer Transfer data from/to the ATAPI device. 4110 * 4111 * LOCKING: 4112 * Inherited from caller. 4113 * 4114 */ 4115 4116 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4117 { 4118 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4119 struct scatterlist *sg = qc->__sg; 4120 struct ata_port *ap = qc->ap; 4121 struct page *page; 4122 unsigned char *buf; 4123 unsigned int offset, count; 4124 4125 if (qc->curbytes + bytes >= qc->nbytes) 4126 ap->hsm_task_state = HSM_ST_LAST; 4127 4128 next_sg: 4129 if (unlikely(qc->cursg >= qc->n_elem)) { 4130 /* 4131 * The end of qc->sg is reached and the device expects 4132 * more data to transfer. In order not to overrun qc->sg 4133 * and fulfill length specified in the byte count register, 4134 * - for read case, discard trailing data from the device 4135 * - for write case, padding zero data to the device 4136 */ 4137 u16 pad_buf[1] = { 0 }; 4138 unsigned int words = bytes >> 1; 4139 unsigned int i; 4140 4141 if (words) /* warning if bytes > 1 */ 4142 ata_dev_printk(qc->dev, KERN_WARNING, 4143 "%u bytes trailing data\n", bytes); 4144 4145 for (i = 0; i < words; i++) 4146 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4147 4148 ap->hsm_task_state = HSM_ST_LAST; 4149 return; 4150 } 4151 4152 sg = &qc->__sg[qc->cursg]; 4153 4154 page = sg->page; 4155 offset = sg->offset + qc->cursg_ofs; 4156 4157 /* get the current page and offset */ 4158 page = nth_page(page, (offset >> PAGE_SHIFT)); 4159 offset %= PAGE_SIZE; 4160 4161 /* don't overrun current sg */ 4162 count = min(sg->length - qc->cursg_ofs, bytes); 4163 4164 /* don't cross page boundaries */ 4165 count = min(count, (unsigned int)PAGE_SIZE - offset); 4166 4167 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4168 4169 if (PageHighMem(page)) { 4170 unsigned long flags; 4171 4172 /* FIXME: use bounce buffer */ 4173 local_irq_save(flags); 4174 buf = kmap_atomic(page, KM_IRQ0); 4175 4176 /* do the actual data transfer */ 4177 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4178 4179 kunmap_atomic(buf, KM_IRQ0); 4180 local_irq_restore(flags); 4181 } else { 4182 buf = page_address(page); 4183 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4184 } 4185 4186 bytes -= count; 4187 qc->curbytes += count; 4188 qc->cursg_ofs += count; 4189 4190 if (qc->cursg_ofs == sg->length) { 4191 qc->cursg++; 4192 qc->cursg_ofs = 0; 4193 } 4194 4195 if (bytes) 4196 goto next_sg; 4197 } 4198 4199 /** 4200 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4201 * @qc: Command on going 4202 * 4203 * Transfer Transfer data from/to the ATAPI device. 4204 * 4205 * LOCKING: 4206 * Inherited from caller. 4207 */ 4208 4209 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4210 { 4211 struct ata_port *ap = qc->ap; 4212 struct ata_device *dev = qc->dev; 4213 unsigned int ireason, bc_lo, bc_hi, bytes; 4214 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4215 4216 /* Abuse qc->result_tf for temp storage of intermediate TF 4217 * here to save some kernel stack usage. 4218 * For normal completion, qc->result_tf is not relevant. For 4219 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4220 * So, the correctness of qc->result_tf is not affected. 4221 */ 4222 ap->ops->tf_read(ap, &qc->result_tf); 4223 ireason = qc->result_tf.nsect; 4224 bc_lo = qc->result_tf.lbam; 4225 bc_hi = qc->result_tf.lbah; 4226 bytes = (bc_hi << 8) | bc_lo; 4227 4228 /* shall be cleared to zero, indicating xfer of data */ 4229 if (ireason & (1 << 0)) 4230 goto err_out; 4231 4232 /* make sure transfer direction matches expected */ 4233 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4234 if (do_write != i_write) 4235 goto err_out; 4236 4237 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4238 4239 __atapi_pio_bytes(qc, bytes); 4240 4241 return; 4242 4243 err_out: 4244 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4245 qc->err_mask |= AC_ERR_HSM; 4246 ap->hsm_task_state = HSM_ST_ERR; 4247 } 4248 4249 /** 4250 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4251 * @ap: the target ata_port 4252 * @qc: qc on going 4253 * 4254 * RETURNS: 4255 * 1 if ok in workqueue, 0 otherwise. 4256 */ 4257 4258 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4259 { 4260 if (qc->tf.flags & ATA_TFLAG_POLLING) 4261 return 1; 4262 4263 if (ap->hsm_task_state == HSM_ST_FIRST) { 4264 if (qc->tf.protocol == ATA_PROT_PIO && 4265 (qc->tf.flags & ATA_TFLAG_WRITE)) 4266 return 1; 4267 4268 if (is_atapi_taskfile(&qc->tf) && 4269 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4270 return 1; 4271 } 4272 4273 return 0; 4274 } 4275 4276 /** 4277 * ata_hsm_qc_complete - finish a qc running on standard HSM 4278 * @qc: Command to complete 4279 * @in_wq: 1 if called from workqueue, 0 otherwise 4280 * 4281 * Finish @qc which is running on standard HSM. 4282 * 4283 * LOCKING: 4284 * If @in_wq is zero, spin_lock_irqsave(host lock). 4285 * Otherwise, none on entry and grabs host lock. 4286 */ 4287 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4288 { 4289 struct ata_port *ap = qc->ap; 4290 unsigned long flags; 4291 4292 if (ap->ops->error_handler) { 4293 if (in_wq) { 4294 spin_lock_irqsave(ap->lock, flags); 4295 4296 /* EH might have kicked in while host lock is 4297 * released. 4298 */ 4299 qc = ata_qc_from_tag(ap, qc->tag); 4300 if (qc) { 4301 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4302 ap->ops->irq_on(ap); 4303 ata_qc_complete(qc); 4304 } else 4305 ata_port_freeze(ap); 4306 } 4307 4308 spin_unlock_irqrestore(ap->lock, flags); 4309 } else { 4310 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4311 ata_qc_complete(qc); 4312 else 4313 ata_port_freeze(ap); 4314 } 4315 } else { 4316 if (in_wq) { 4317 spin_lock_irqsave(ap->lock, flags); 4318 ap->ops->irq_on(ap); 4319 ata_qc_complete(qc); 4320 spin_unlock_irqrestore(ap->lock, flags); 4321 } else 4322 ata_qc_complete(qc); 4323 } 4324 4325 ata_altstatus(ap); /* flush */ 4326 } 4327 4328 /** 4329 * ata_hsm_move - move the HSM to the next state. 4330 * @ap: the target ata_port 4331 * @qc: qc on going 4332 * @status: current device status 4333 * @in_wq: 1 if called from workqueue, 0 otherwise 4334 * 4335 * RETURNS: 4336 * 1 when poll next status needed, 0 otherwise. 4337 */ 4338 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4339 u8 status, int in_wq) 4340 { 4341 unsigned long flags = 0; 4342 int poll_next; 4343 4344 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4345 4346 /* Make sure ata_qc_issue_prot() does not throw things 4347 * like DMA polling into the workqueue. Notice that 4348 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4349 */ 4350 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4351 4352 fsm_start: 4353 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4354 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4355 4356 switch (ap->hsm_task_state) { 4357 case HSM_ST_FIRST: 4358 /* Send first data block or PACKET CDB */ 4359 4360 /* If polling, we will stay in the work queue after 4361 * sending the data. Otherwise, interrupt handler 4362 * takes over after sending the data. 4363 */ 4364 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4365 4366 /* check device status */ 4367 if (unlikely((status & ATA_DRQ) == 0)) { 4368 /* handle BSY=0, DRQ=0 as error */ 4369 if (likely(status & (ATA_ERR | ATA_DF))) 4370 /* device stops HSM for abort/error */ 4371 qc->err_mask |= AC_ERR_DEV; 4372 else 4373 /* HSM violation. Let EH handle this */ 4374 qc->err_mask |= AC_ERR_HSM; 4375 4376 ap->hsm_task_state = HSM_ST_ERR; 4377 goto fsm_start; 4378 } 4379 4380 /* Device should not ask for data transfer (DRQ=1) 4381 * when it finds something wrong. 4382 * We ignore DRQ here and stop the HSM by 4383 * changing hsm_task_state to HSM_ST_ERR and 4384 * let the EH abort the command or reset the device. 4385 */ 4386 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4387 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4388 "error, dev_stat 0x%X\n", status); 4389 qc->err_mask |= AC_ERR_HSM; 4390 ap->hsm_task_state = HSM_ST_ERR; 4391 goto fsm_start; 4392 } 4393 4394 /* Send the CDB (atapi) or the first data block (ata pio out). 4395 * During the state transition, interrupt handler shouldn't 4396 * be invoked before the data transfer is complete and 4397 * hsm_task_state is changed. Hence, the following locking. 4398 */ 4399 if (in_wq) 4400 spin_lock_irqsave(ap->lock, flags); 4401 4402 if (qc->tf.protocol == ATA_PROT_PIO) { 4403 /* PIO data out protocol. 4404 * send first data block. 4405 */ 4406 4407 /* ata_pio_sectors() might change the state 4408 * to HSM_ST_LAST. so, the state is changed here 4409 * before ata_pio_sectors(). 4410 */ 4411 ap->hsm_task_state = HSM_ST; 4412 ata_pio_sectors(qc); 4413 ata_altstatus(ap); /* flush */ 4414 } else 4415 /* send CDB */ 4416 atapi_send_cdb(ap, qc); 4417 4418 if (in_wq) 4419 spin_unlock_irqrestore(ap->lock, flags); 4420 4421 /* if polling, ata_pio_task() handles the rest. 4422 * otherwise, interrupt handler takes over from here. 4423 */ 4424 break; 4425 4426 case HSM_ST: 4427 /* complete command or read/write the data register */ 4428 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4429 /* ATAPI PIO protocol */ 4430 if ((status & ATA_DRQ) == 0) { 4431 /* No more data to transfer or device error. 4432 * Device error will be tagged in HSM_ST_LAST. 4433 */ 4434 ap->hsm_task_state = HSM_ST_LAST; 4435 goto fsm_start; 4436 } 4437 4438 /* Device should not ask for data transfer (DRQ=1) 4439 * when it finds something wrong. 4440 * We ignore DRQ here and stop the HSM by 4441 * changing hsm_task_state to HSM_ST_ERR and 4442 * let the EH abort the command or reset the device. 4443 */ 4444 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4445 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4446 "device error, dev_stat 0x%X\n", 4447 status); 4448 qc->err_mask |= AC_ERR_HSM; 4449 ap->hsm_task_state = HSM_ST_ERR; 4450 goto fsm_start; 4451 } 4452 4453 atapi_pio_bytes(qc); 4454 4455 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4456 /* bad ireason reported by device */ 4457 goto fsm_start; 4458 4459 } else { 4460 /* ATA PIO protocol */ 4461 if (unlikely((status & ATA_DRQ) == 0)) { 4462 /* handle BSY=0, DRQ=0 as error */ 4463 if (likely(status & (ATA_ERR | ATA_DF))) 4464 /* device stops HSM for abort/error */ 4465 qc->err_mask |= AC_ERR_DEV; 4466 else 4467 /* HSM violation. Let EH handle this. 4468 * Phantom devices also trigger this 4469 * condition. Mark hint. 4470 */ 4471 qc->err_mask |= AC_ERR_HSM | 4472 AC_ERR_NODEV_HINT; 4473 4474 ap->hsm_task_state = HSM_ST_ERR; 4475 goto fsm_start; 4476 } 4477 4478 /* For PIO reads, some devices may ask for 4479 * data transfer (DRQ=1) alone with ERR=1. 4480 * We respect DRQ here and transfer one 4481 * block of junk data before changing the 4482 * hsm_task_state to HSM_ST_ERR. 4483 * 4484 * For PIO writes, ERR=1 DRQ=1 doesn't make 4485 * sense since the data block has been 4486 * transferred to the device. 4487 */ 4488 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4489 /* data might be corrputed */ 4490 qc->err_mask |= AC_ERR_DEV; 4491 4492 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 4493 ata_pio_sectors(qc); 4494 ata_altstatus(ap); 4495 status = ata_wait_idle(ap); 4496 } 4497 4498 if (status & (ATA_BUSY | ATA_DRQ)) 4499 qc->err_mask |= AC_ERR_HSM; 4500 4501 /* ata_pio_sectors() might change the 4502 * state to HSM_ST_LAST. so, the state 4503 * is changed after ata_pio_sectors(). 4504 */ 4505 ap->hsm_task_state = HSM_ST_ERR; 4506 goto fsm_start; 4507 } 4508 4509 ata_pio_sectors(qc); 4510 4511 if (ap->hsm_task_state == HSM_ST_LAST && 4512 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 4513 /* all data read */ 4514 ata_altstatus(ap); 4515 status = ata_wait_idle(ap); 4516 goto fsm_start; 4517 } 4518 } 4519 4520 ata_altstatus(ap); /* flush */ 4521 poll_next = 1; 4522 break; 4523 4524 case HSM_ST_LAST: 4525 if (unlikely(!ata_ok(status))) { 4526 qc->err_mask |= __ac_err_mask(status); 4527 ap->hsm_task_state = HSM_ST_ERR; 4528 goto fsm_start; 4529 } 4530 4531 /* no more data to transfer */ 4532 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 4533 ap->print_id, qc->dev->devno, status); 4534 4535 WARN_ON(qc->err_mask); 4536 4537 ap->hsm_task_state = HSM_ST_IDLE; 4538 4539 /* complete taskfile transaction */ 4540 ata_hsm_qc_complete(qc, in_wq); 4541 4542 poll_next = 0; 4543 break; 4544 4545 case HSM_ST_ERR: 4546 /* make sure qc->err_mask is available to 4547 * know what's wrong and recover 4548 */ 4549 WARN_ON(qc->err_mask == 0); 4550 4551 ap->hsm_task_state = HSM_ST_IDLE; 4552 4553 /* complete taskfile transaction */ 4554 ata_hsm_qc_complete(qc, in_wq); 4555 4556 poll_next = 0; 4557 break; 4558 default: 4559 poll_next = 0; 4560 BUG(); 4561 } 4562 4563 return poll_next; 4564 } 4565 4566 static void ata_pio_task(struct work_struct *work) 4567 { 4568 struct ata_port *ap = 4569 container_of(work, struct ata_port, port_task.work); 4570 struct ata_queued_cmd *qc = ap->port_task_data; 4571 u8 status; 4572 int poll_next; 4573 4574 fsm_start: 4575 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 4576 4577 /* 4578 * This is purely heuristic. This is a fast path. 4579 * Sometimes when we enter, BSY will be cleared in 4580 * a chk-status or two. If not, the drive is probably seeking 4581 * or something. Snooze for a couple msecs, then 4582 * chk-status again. If still busy, queue delayed work. 4583 */ 4584 status = ata_busy_wait(ap, ATA_BUSY, 5); 4585 if (status & ATA_BUSY) { 4586 msleep(2); 4587 status = ata_busy_wait(ap, ATA_BUSY, 10); 4588 if (status & ATA_BUSY) { 4589 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 4590 return; 4591 } 4592 } 4593 4594 /* move the HSM */ 4595 poll_next = ata_hsm_move(ap, qc, status, 1); 4596 4597 /* another command or interrupt handler 4598 * may be running at this point. 4599 */ 4600 if (poll_next) 4601 goto fsm_start; 4602 } 4603 4604 /** 4605 * ata_qc_new - Request an available ATA command, for queueing 4606 * @ap: Port associated with device @dev 4607 * @dev: Device from whom we request an available command structure 4608 * 4609 * LOCKING: 4610 * None. 4611 */ 4612 4613 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4614 { 4615 struct ata_queued_cmd *qc = NULL; 4616 unsigned int i; 4617 4618 /* no command while frozen */ 4619 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4620 return NULL; 4621 4622 /* the last tag is reserved for internal command. */ 4623 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4624 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4625 qc = __ata_qc_from_tag(ap, i); 4626 break; 4627 } 4628 4629 if (qc) 4630 qc->tag = i; 4631 4632 return qc; 4633 } 4634 4635 /** 4636 * ata_qc_new_init - Request an available ATA command, and initialize it 4637 * @dev: Device from whom we request an available command structure 4638 * 4639 * LOCKING: 4640 * None. 4641 */ 4642 4643 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4644 { 4645 struct ata_port *ap = dev->ap; 4646 struct ata_queued_cmd *qc; 4647 4648 qc = ata_qc_new(ap); 4649 if (qc) { 4650 qc->scsicmd = NULL; 4651 qc->ap = ap; 4652 qc->dev = dev; 4653 4654 ata_qc_reinit(qc); 4655 } 4656 4657 return qc; 4658 } 4659 4660 /** 4661 * ata_qc_free - free unused ata_queued_cmd 4662 * @qc: Command to complete 4663 * 4664 * Designed to free unused ata_queued_cmd object 4665 * in case something prevents using it. 4666 * 4667 * LOCKING: 4668 * spin_lock_irqsave(host lock) 4669 */ 4670 void ata_qc_free(struct ata_queued_cmd *qc) 4671 { 4672 struct ata_port *ap = qc->ap; 4673 unsigned int tag; 4674 4675 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4676 4677 qc->flags = 0; 4678 tag = qc->tag; 4679 if (likely(ata_tag_valid(tag))) { 4680 qc->tag = ATA_TAG_POISON; 4681 clear_bit(tag, &ap->qc_allocated); 4682 } 4683 } 4684 4685 void __ata_qc_complete(struct ata_queued_cmd *qc) 4686 { 4687 struct ata_port *ap = qc->ap; 4688 4689 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4690 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4691 4692 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4693 ata_sg_clean(qc); 4694 4695 /* command should be marked inactive atomically with qc completion */ 4696 if (qc->tf.protocol == ATA_PROT_NCQ) 4697 ap->sactive &= ~(1 << qc->tag); 4698 else 4699 ap->active_tag = ATA_TAG_POISON; 4700 4701 /* atapi: mark qc as inactive to prevent the interrupt handler 4702 * from completing the command twice later, before the error handler 4703 * is called. (when rc != 0 and atapi request sense is needed) 4704 */ 4705 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4706 ap->qc_active &= ~(1 << qc->tag); 4707 4708 /* call completion callback */ 4709 qc->complete_fn(qc); 4710 } 4711 4712 static void fill_result_tf(struct ata_queued_cmd *qc) 4713 { 4714 struct ata_port *ap = qc->ap; 4715 4716 ap->ops->tf_read(ap, &qc->result_tf); 4717 qc->result_tf.flags = qc->tf.flags; 4718 } 4719 4720 /** 4721 * ata_qc_complete - Complete an active ATA command 4722 * @qc: Command to complete 4723 * @err_mask: ATA Status register contents 4724 * 4725 * Indicate to the mid and upper layers that an ATA 4726 * command has completed, with either an ok or not-ok status. 4727 * 4728 * LOCKING: 4729 * spin_lock_irqsave(host lock) 4730 */ 4731 void ata_qc_complete(struct ata_queued_cmd *qc) 4732 { 4733 struct ata_port *ap = qc->ap; 4734 4735 /* XXX: New EH and old EH use different mechanisms to 4736 * synchronize EH with regular execution path. 4737 * 4738 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4739 * Normal execution path is responsible for not accessing a 4740 * failed qc. libata core enforces the rule by returning NULL 4741 * from ata_qc_from_tag() for failed qcs. 4742 * 4743 * Old EH depends on ata_qc_complete() nullifying completion 4744 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4745 * not synchronize with interrupt handler. Only PIO task is 4746 * taken care of. 4747 */ 4748 if (ap->ops->error_handler) { 4749 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4750 4751 if (unlikely(qc->err_mask)) 4752 qc->flags |= ATA_QCFLAG_FAILED; 4753 4754 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4755 if (!ata_tag_internal(qc->tag)) { 4756 /* always fill result TF for failed qc */ 4757 fill_result_tf(qc); 4758 ata_qc_schedule_eh(qc); 4759 return; 4760 } 4761 } 4762 4763 /* read result TF if requested */ 4764 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4765 fill_result_tf(qc); 4766 4767 __ata_qc_complete(qc); 4768 } else { 4769 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4770 return; 4771 4772 /* read result TF if failed or requested */ 4773 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4774 fill_result_tf(qc); 4775 4776 __ata_qc_complete(qc); 4777 } 4778 } 4779 4780 /** 4781 * ata_qc_complete_multiple - Complete multiple qcs successfully 4782 * @ap: port in question 4783 * @qc_active: new qc_active mask 4784 * @finish_qc: LLDD callback invoked before completing a qc 4785 * 4786 * Complete in-flight commands. This functions is meant to be 4787 * called from low-level driver's interrupt routine to complete 4788 * requests normally. ap->qc_active and @qc_active is compared 4789 * and commands are completed accordingly. 4790 * 4791 * LOCKING: 4792 * spin_lock_irqsave(host lock) 4793 * 4794 * RETURNS: 4795 * Number of completed commands on success, -errno otherwise. 4796 */ 4797 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 4798 void (*finish_qc)(struct ata_queued_cmd *)) 4799 { 4800 int nr_done = 0; 4801 u32 done_mask; 4802 int i; 4803 4804 done_mask = ap->qc_active ^ qc_active; 4805 4806 if (unlikely(done_mask & qc_active)) { 4807 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4808 "(%08x->%08x)\n", ap->qc_active, qc_active); 4809 return -EINVAL; 4810 } 4811 4812 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4813 struct ata_queued_cmd *qc; 4814 4815 if (!(done_mask & (1 << i))) 4816 continue; 4817 4818 if ((qc = ata_qc_from_tag(ap, i))) { 4819 if (finish_qc) 4820 finish_qc(qc); 4821 ata_qc_complete(qc); 4822 nr_done++; 4823 } 4824 } 4825 4826 return nr_done; 4827 } 4828 4829 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 4830 { 4831 struct ata_port *ap = qc->ap; 4832 4833 switch (qc->tf.protocol) { 4834 case ATA_PROT_NCQ: 4835 case ATA_PROT_DMA: 4836 case ATA_PROT_ATAPI_DMA: 4837 return 1; 4838 4839 case ATA_PROT_ATAPI: 4840 case ATA_PROT_PIO: 4841 if (ap->flags & ATA_FLAG_PIO_DMA) 4842 return 1; 4843 4844 /* fall through */ 4845 4846 default: 4847 return 0; 4848 } 4849 4850 /* never reached */ 4851 } 4852 4853 /** 4854 * ata_qc_issue - issue taskfile to device 4855 * @qc: command to issue to device 4856 * 4857 * Prepare an ATA command to submission to device. 4858 * This includes mapping the data into a DMA-able 4859 * area, filling in the S/G table, and finally 4860 * writing the taskfile to hardware, starting the command. 4861 * 4862 * LOCKING: 4863 * spin_lock_irqsave(host lock) 4864 */ 4865 void ata_qc_issue(struct ata_queued_cmd *qc) 4866 { 4867 struct ata_port *ap = qc->ap; 4868 4869 /* Make sure only one non-NCQ command is outstanding. The 4870 * check is skipped for old EH because it reuses active qc to 4871 * request ATAPI sense. 4872 */ 4873 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 4874 4875 if (qc->tf.protocol == ATA_PROT_NCQ) { 4876 WARN_ON(ap->sactive & (1 << qc->tag)); 4877 ap->sactive |= 1 << qc->tag; 4878 } else { 4879 WARN_ON(ap->sactive); 4880 ap->active_tag = qc->tag; 4881 } 4882 4883 qc->flags |= ATA_QCFLAG_ACTIVE; 4884 ap->qc_active |= 1 << qc->tag; 4885 4886 if (ata_should_dma_map(qc)) { 4887 if (qc->flags & ATA_QCFLAG_SG) { 4888 if (ata_sg_setup(qc)) 4889 goto sg_err; 4890 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 4891 if (ata_sg_setup_one(qc)) 4892 goto sg_err; 4893 } 4894 } else { 4895 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4896 } 4897 4898 ap->ops->qc_prep(qc); 4899 4900 qc->err_mask |= ap->ops->qc_issue(qc); 4901 if (unlikely(qc->err_mask)) 4902 goto err; 4903 return; 4904 4905 sg_err: 4906 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4907 qc->err_mask |= AC_ERR_SYSTEM; 4908 err: 4909 ata_qc_complete(qc); 4910 } 4911 4912 /** 4913 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 4914 * @qc: command to issue to device 4915 * 4916 * Using various libata functions and hooks, this function 4917 * starts an ATA command. ATA commands are grouped into 4918 * classes called "protocols", and issuing each type of protocol 4919 * is slightly different. 4920 * 4921 * May be used as the qc_issue() entry in ata_port_operations. 4922 * 4923 * LOCKING: 4924 * spin_lock_irqsave(host lock) 4925 * 4926 * RETURNS: 4927 * Zero on success, AC_ERR_* mask on failure 4928 */ 4929 4930 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 4931 { 4932 struct ata_port *ap = qc->ap; 4933 4934 /* Use polling pio if the LLD doesn't handle 4935 * interrupt driven pio and atapi CDB interrupt. 4936 */ 4937 if (ap->flags & ATA_FLAG_PIO_POLLING) { 4938 switch (qc->tf.protocol) { 4939 case ATA_PROT_PIO: 4940 case ATA_PROT_NODATA: 4941 case ATA_PROT_ATAPI: 4942 case ATA_PROT_ATAPI_NODATA: 4943 qc->tf.flags |= ATA_TFLAG_POLLING; 4944 break; 4945 case ATA_PROT_ATAPI_DMA: 4946 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 4947 /* see ata_dma_blacklisted() */ 4948 BUG(); 4949 break; 4950 default: 4951 break; 4952 } 4953 } 4954 4955 /* Some controllers show flaky interrupt behavior after 4956 * setting xfer mode. Use polling instead. 4957 */ 4958 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && 4959 qc->tf.feature == SETFEATURES_XFER) && 4960 (ap->flags & ATA_FLAG_SETXFER_POLLING)) 4961 qc->tf.flags |= ATA_TFLAG_POLLING; 4962 4963 /* select the device */ 4964 ata_dev_select(ap, qc->dev->devno, 1, 0); 4965 4966 /* start the command */ 4967 switch (qc->tf.protocol) { 4968 case ATA_PROT_NODATA: 4969 if (qc->tf.flags & ATA_TFLAG_POLLING) 4970 ata_qc_set_polling(qc); 4971 4972 ata_tf_to_host(ap, &qc->tf); 4973 ap->hsm_task_state = HSM_ST_LAST; 4974 4975 if (qc->tf.flags & ATA_TFLAG_POLLING) 4976 ata_port_queue_task(ap, ata_pio_task, qc, 0); 4977 4978 break; 4979 4980 case ATA_PROT_DMA: 4981 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 4982 4983 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 4984 ap->ops->bmdma_setup(qc); /* set up bmdma */ 4985 ap->ops->bmdma_start(qc); /* initiate bmdma */ 4986 ap->hsm_task_state = HSM_ST_LAST; 4987 break; 4988 4989 case ATA_PROT_PIO: 4990 if (qc->tf.flags & ATA_TFLAG_POLLING) 4991 ata_qc_set_polling(qc); 4992 4993 ata_tf_to_host(ap, &qc->tf); 4994 4995 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4996 /* PIO data out protocol */ 4997 ap->hsm_task_state = HSM_ST_FIRST; 4998 ata_port_queue_task(ap, ata_pio_task, qc, 0); 4999 5000 /* always send first data block using 5001 * the ata_pio_task() codepath. 5002 */ 5003 } else { 5004 /* PIO data in protocol */ 5005 ap->hsm_task_state = HSM_ST; 5006 5007 if (qc->tf.flags & ATA_TFLAG_POLLING) 5008 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5009 5010 /* if polling, ata_pio_task() handles the rest. 5011 * otherwise, interrupt handler takes over from here. 5012 */ 5013 } 5014 5015 break; 5016 5017 case ATA_PROT_ATAPI: 5018 case ATA_PROT_ATAPI_NODATA: 5019 if (qc->tf.flags & ATA_TFLAG_POLLING) 5020 ata_qc_set_polling(qc); 5021 5022 ata_tf_to_host(ap, &qc->tf); 5023 5024 ap->hsm_task_state = HSM_ST_FIRST; 5025 5026 /* send cdb by polling if no cdb interrupt */ 5027 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5028 (qc->tf.flags & ATA_TFLAG_POLLING)) 5029 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5030 break; 5031 5032 case ATA_PROT_ATAPI_DMA: 5033 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5034 5035 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5036 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5037 ap->hsm_task_state = HSM_ST_FIRST; 5038 5039 /* send cdb by polling if no cdb interrupt */ 5040 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5041 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5042 break; 5043 5044 default: 5045 WARN_ON(1); 5046 return AC_ERR_SYSTEM; 5047 } 5048 5049 return 0; 5050 } 5051 5052 /** 5053 * ata_host_intr - Handle host interrupt for given (port, task) 5054 * @ap: Port on which interrupt arrived (possibly...) 5055 * @qc: Taskfile currently active in engine 5056 * 5057 * Handle host interrupt for given queued command. Currently, 5058 * only DMA interrupts are handled. All other commands are 5059 * handled via polling with interrupts disabled (nIEN bit). 5060 * 5061 * LOCKING: 5062 * spin_lock_irqsave(host lock) 5063 * 5064 * RETURNS: 5065 * One if interrupt was handled, zero if not (shared irq). 5066 */ 5067 5068 inline unsigned int ata_host_intr (struct ata_port *ap, 5069 struct ata_queued_cmd *qc) 5070 { 5071 struct ata_eh_info *ehi = &ap->eh_info; 5072 u8 status, host_stat = 0; 5073 5074 VPRINTK("ata%u: protocol %d task_state %d\n", 5075 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5076 5077 /* Check whether we are expecting interrupt in this state */ 5078 switch (ap->hsm_task_state) { 5079 case HSM_ST_FIRST: 5080 /* Some pre-ATAPI-4 devices assert INTRQ 5081 * at this state when ready to receive CDB. 5082 */ 5083 5084 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5085 * The flag was turned on only for atapi devices. 5086 * No need to check is_atapi_taskfile(&qc->tf) again. 5087 */ 5088 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5089 goto idle_irq; 5090 break; 5091 case HSM_ST_LAST: 5092 if (qc->tf.protocol == ATA_PROT_DMA || 5093 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5094 /* check status of DMA engine */ 5095 host_stat = ap->ops->bmdma_status(ap); 5096 VPRINTK("ata%u: host_stat 0x%X\n", 5097 ap->print_id, host_stat); 5098 5099 /* if it's not our irq... */ 5100 if (!(host_stat & ATA_DMA_INTR)) 5101 goto idle_irq; 5102 5103 /* before we do anything else, clear DMA-Start bit */ 5104 ap->ops->bmdma_stop(qc); 5105 5106 if (unlikely(host_stat & ATA_DMA_ERR)) { 5107 /* error when transfering data to/from memory */ 5108 qc->err_mask |= AC_ERR_HOST_BUS; 5109 ap->hsm_task_state = HSM_ST_ERR; 5110 } 5111 } 5112 break; 5113 case HSM_ST: 5114 break; 5115 default: 5116 goto idle_irq; 5117 } 5118 5119 /* check altstatus */ 5120 status = ata_altstatus(ap); 5121 if (status & ATA_BUSY) 5122 goto idle_irq; 5123 5124 /* check main status, clearing INTRQ */ 5125 status = ata_chk_status(ap); 5126 if (unlikely(status & ATA_BUSY)) 5127 goto idle_irq; 5128 5129 /* ack bmdma irq events */ 5130 ap->ops->irq_clear(ap); 5131 5132 ata_hsm_move(ap, qc, status, 0); 5133 5134 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5135 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5136 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5137 5138 return 1; /* irq handled */ 5139 5140 idle_irq: 5141 ap->stats.idle_irq++; 5142 5143 #ifdef ATA_IRQ_TRAP 5144 if ((ap->stats.idle_irq % 1000) == 0) { 5145 ap->ops->irq_ack(ap, 0); /* debug trap */ 5146 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5147 return 1; 5148 } 5149 #endif 5150 return 0; /* irq not handled */ 5151 } 5152 5153 /** 5154 * ata_interrupt - Default ATA host interrupt handler 5155 * @irq: irq line (unused) 5156 * @dev_instance: pointer to our ata_host information structure 5157 * 5158 * Default interrupt handler for PCI IDE devices. Calls 5159 * ata_host_intr() for each port that is not disabled. 5160 * 5161 * LOCKING: 5162 * Obtains host lock during operation. 5163 * 5164 * RETURNS: 5165 * IRQ_NONE or IRQ_HANDLED. 5166 */ 5167 5168 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5169 { 5170 struct ata_host *host = dev_instance; 5171 unsigned int i; 5172 unsigned int handled = 0; 5173 unsigned long flags; 5174 5175 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5176 spin_lock_irqsave(&host->lock, flags); 5177 5178 for (i = 0; i < host->n_ports; i++) { 5179 struct ata_port *ap; 5180 5181 ap = host->ports[i]; 5182 if (ap && 5183 !(ap->flags & ATA_FLAG_DISABLED)) { 5184 struct ata_queued_cmd *qc; 5185 5186 qc = ata_qc_from_tag(ap, ap->active_tag); 5187 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5188 (qc->flags & ATA_QCFLAG_ACTIVE)) 5189 handled |= ata_host_intr(ap, qc); 5190 } 5191 } 5192 5193 spin_unlock_irqrestore(&host->lock, flags); 5194 5195 return IRQ_RETVAL(handled); 5196 } 5197 5198 /** 5199 * sata_scr_valid - test whether SCRs are accessible 5200 * @ap: ATA port to test SCR accessibility for 5201 * 5202 * Test whether SCRs are accessible for @ap. 5203 * 5204 * LOCKING: 5205 * None. 5206 * 5207 * RETURNS: 5208 * 1 if SCRs are accessible, 0 otherwise. 5209 */ 5210 int sata_scr_valid(struct ata_port *ap) 5211 { 5212 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; 5213 } 5214 5215 /** 5216 * sata_scr_read - read SCR register of the specified port 5217 * @ap: ATA port to read SCR for 5218 * @reg: SCR to read 5219 * @val: Place to store read value 5220 * 5221 * Read SCR register @reg of @ap into *@val. This function is 5222 * guaranteed to succeed if the cable type of the port is SATA 5223 * and the port implements ->scr_read. 5224 * 5225 * LOCKING: 5226 * None. 5227 * 5228 * RETURNS: 5229 * 0 on success, negative errno on failure. 5230 */ 5231 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5232 { 5233 if (sata_scr_valid(ap)) { 5234 *val = ap->ops->scr_read(ap, reg); 5235 return 0; 5236 } 5237 return -EOPNOTSUPP; 5238 } 5239 5240 /** 5241 * sata_scr_write - write SCR register of the specified port 5242 * @ap: ATA port to write SCR for 5243 * @reg: SCR to write 5244 * @val: value to write 5245 * 5246 * Write @val to SCR register @reg of @ap. This function is 5247 * guaranteed to succeed if the cable type of the port is SATA 5248 * and the port implements ->scr_read. 5249 * 5250 * LOCKING: 5251 * None. 5252 * 5253 * RETURNS: 5254 * 0 on success, negative errno on failure. 5255 */ 5256 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5257 { 5258 if (sata_scr_valid(ap)) { 5259 ap->ops->scr_write(ap, reg, val); 5260 return 0; 5261 } 5262 return -EOPNOTSUPP; 5263 } 5264 5265 /** 5266 * sata_scr_write_flush - write SCR register of the specified port and flush 5267 * @ap: ATA port to write SCR for 5268 * @reg: SCR to write 5269 * @val: value to write 5270 * 5271 * This function is identical to sata_scr_write() except that this 5272 * function performs flush after writing to the register. 5273 * 5274 * LOCKING: 5275 * None. 5276 * 5277 * RETURNS: 5278 * 0 on success, negative errno on failure. 5279 */ 5280 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5281 { 5282 if (sata_scr_valid(ap)) { 5283 ap->ops->scr_write(ap, reg, val); 5284 ap->ops->scr_read(ap, reg); 5285 return 0; 5286 } 5287 return -EOPNOTSUPP; 5288 } 5289 5290 /** 5291 * ata_port_online - test whether the given port is online 5292 * @ap: ATA port to test 5293 * 5294 * Test whether @ap is online. Note that this function returns 0 5295 * if online status of @ap cannot be obtained, so 5296 * ata_port_online(ap) != !ata_port_offline(ap). 5297 * 5298 * LOCKING: 5299 * None. 5300 * 5301 * RETURNS: 5302 * 1 if the port online status is available and online. 5303 */ 5304 int ata_port_online(struct ata_port *ap) 5305 { 5306 u32 sstatus; 5307 5308 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5309 return 1; 5310 return 0; 5311 } 5312 5313 /** 5314 * ata_port_offline - test whether the given port is offline 5315 * @ap: ATA port to test 5316 * 5317 * Test whether @ap is offline. Note that this function returns 5318 * 0 if offline status of @ap cannot be obtained, so 5319 * ata_port_online(ap) != !ata_port_offline(ap). 5320 * 5321 * LOCKING: 5322 * None. 5323 * 5324 * RETURNS: 5325 * 1 if the port offline status is available and offline. 5326 */ 5327 int ata_port_offline(struct ata_port *ap) 5328 { 5329 u32 sstatus; 5330 5331 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5332 return 1; 5333 return 0; 5334 } 5335 5336 int ata_flush_cache(struct ata_device *dev) 5337 { 5338 unsigned int err_mask; 5339 u8 cmd; 5340 5341 if (!ata_try_flush_cache(dev)) 5342 return 0; 5343 5344 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5345 cmd = ATA_CMD_FLUSH_EXT; 5346 else 5347 cmd = ATA_CMD_FLUSH; 5348 5349 err_mask = ata_do_simple_cmd(dev, cmd); 5350 if (err_mask) { 5351 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5352 return -EIO; 5353 } 5354 5355 return 0; 5356 } 5357 5358 #ifdef CONFIG_PM 5359 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5360 unsigned int action, unsigned int ehi_flags, 5361 int wait) 5362 { 5363 unsigned long flags; 5364 int i, rc; 5365 5366 for (i = 0; i < host->n_ports; i++) { 5367 struct ata_port *ap = host->ports[i]; 5368 5369 /* Previous resume operation might still be in 5370 * progress. Wait for PM_PENDING to clear. 5371 */ 5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5373 ata_port_wait_eh(ap); 5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5375 } 5376 5377 /* request PM ops to EH */ 5378 spin_lock_irqsave(ap->lock, flags); 5379 5380 ap->pm_mesg = mesg; 5381 if (wait) { 5382 rc = 0; 5383 ap->pm_result = &rc; 5384 } 5385 5386 ap->pflags |= ATA_PFLAG_PM_PENDING; 5387 ap->eh_info.action |= action; 5388 ap->eh_info.flags |= ehi_flags; 5389 5390 ata_port_schedule_eh(ap); 5391 5392 spin_unlock_irqrestore(ap->lock, flags); 5393 5394 /* wait and check result */ 5395 if (wait) { 5396 ata_port_wait_eh(ap); 5397 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5398 if (rc) 5399 return rc; 5400 } 5401 } 5402 5403 return 0; 5404 } 5405 5406 /** 5407 * ata_host_suspend - suspend host 5408 * @host: host to suspend 5409 * @mesg: PM message 5410 * 5411 * Suspend @host. Actual operation is performed by EH. This 5412 * function requests EH to perform PM operations and waits for EH 5413 * to finish. 5414 * 5415 * LOCKING: 5416 * Kernel thread context (may sleep). 5417 * 5418 * RETURNS: 5419 * 0 on success, -errno on failure. 5420 */ 5421 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5422 { 5423 int i, j, rc; 5424 5425 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5426 if (rc) 5427 goto fail; 5428 5429 /* EH is quiescent now. Fail if we have any ready device. 5430 * This happens if hotplug occurs between completion of device 5431 * suspension and here. 5432 */ 5433 for (i = 0; i < host->n_ports; i++) { 5434 struct ata_port *ap = host->ports[i]; 5435 5436 for (j = 0; j < ATA_MAX_DEVICES; j++) { 5437 struct ata_device *dev = &ap->device[j]; 5438 5439 if (ata_dev_ready(dev)) { 5440 ata_port_printk(ap, KERN_WARNING, 5441 "suspend failed, device %d " 5442 "still active\n", dev->devno); 5443 rc = -EBUSY; 5444 goto fail; 5445 } 5446 } 5447 } 5448 5449 host->dev->power.power_state = mesg; 5450 return 0; 5451 5452 fail: 5453 ata_host_resume(host); 5454 return rc; 5455 } 5456 5457 /** 5458 * ata_host_resume - resume host 5459 * @host: host to resume 5460 * 5461 * Resume @host. Actual operation is performed by EH. This 5462 * function requests EH to perform PM operations and returns. 5463 * Note that all resume operations are performed parallely. 5464 * 5465 * LOCKING: 5466 * Kernel thread context (may sleep). 5467 */ 5468 void ata_host_resume(struct ata_host *host) 5469 { 5470 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5471 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5472 host->dev->power.power_state = PMSG_ON; 5473 } 5474 #endif 5475 5476 /** 5477 * ata_port_start - Set port up for dma. 5478 * @ap: Port to initialize 5479 * 5480 * Called just after data structures for each port are 5481 * initialized. Allocates space for PRD table. 5482 * 5483 * May be used as the port_start() entry in ata_port_operations. 5484 * 5485 * LOCKING: 5486 * Inherited from caller. 5487 */ 5488 int ata_port_start(struct ata_port *ap) 5489 { 5490 struct device *dev = ap->dev; 5491 int rc; 5492 5493 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5494 GFP_KERNEL); 5495 if (!ap->prd) 5496 return -ENOMEM; 5497 5498 rc = ata_pad_alloc(ap, dev); 5499 if (rc) 5500 return rc; 5501 5502 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5503 (unsigned long long)ap->prd_dma); 5504 return 0; 5505 } 5506 5507 /** 5508 * ata_dev_init - Initialize an ata_device structure 5509 * @dev: Device structure to initialize 5510 * 5511 * Initialize @dev in preparation for probing. 5512 * 5513 * LOCKING: 5514 * Inherited from caller. 5515 */ 5516 void ata_dev_init(struct ata_device *dev) 5517 { 5518 struct ata_port *ap = dev->ap; 5519 unsigned long flags; 5520 5521 /* SATA spd limit is bound to the first device */ 5522 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5523 5524 /* High bits of dev->flags are used to record warm plug 5525 * requests which occur asynchronously. Synchronize using 5526 * host lock. 5527 */ 5528 spin_lock_irqsave(ap->lock, flags); 5529 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5530 spin_unlock_irqrestore(ap->lock, flags); 5531 5532 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5533 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5534 dev->pio_mask = UINT_MAX; 5535 dev->mwdma_mask = UINT_MAX; 5536 dev->udma_mask = UINT_MAX; 5537 } 5538 5539 /** 5540 * ata_port_init - Initialize an ata_port structure 5541 * @ap: Structure to initialize 5542 * @host: Collection of hosts to which @ap belongs 5543 * @ent: Probe information provided by low-level driver 5544 * @port_no: Port number associated with this ata_port 5545 * 5546 * Initialize a new ata_port structure. 5547 * 5548 * LOCKING: 5549 * Inherited from caller. 5550 */ 5551 void ata_port_init(struct ata_port *ap, struct ata_host *host, 5552 const struct ata_probe_ent *ent, unsigned int port_no) 5553 { 5554 unsigned int i; 5555 5556 ap->lock = &host->lock; 5557 ap->flags = ATA_FLAG_DISABLED; 5558 ap->print_id = ata_print_id++; 5559 ap->ctl = ATA_DEVCTL_OBS; 5560 ap->host = host; 5561 ap->dev = ent->dev; 5562 ap->port_no = port_no; 5563 if (port_no == 1 && ent->pinfo2) { 5564 ap->pio_mask = ent->pinfo2->pio_mask; 5565 ap->mwdma_mask = ent->pinfo2->mwdma_mask; 5566 ap->udma_mask = ent->pinfo2->udma_mask; 5567 ap->flags |= ent->pinfo2->flags; 5568 ap->ops = ent->pinfo2->port_ops; 5569 } else { 5570 ap->pio_mask = ent->pio_mask; 5571 ap->mwdma_mask = ent->mwdma_mask; 5572 ap->udma_mask = ent->udma_mask; 5573 ap->flags |= ent->port_flags; 5574 ap->ops = ent->port_ops; 5575 } 5576 ap->hw_sata_spd_limit = UINT_MAX; 5577 ap->active_tag = ATA_TAG_POISON; 5578 ap->last_ctl = 0xFF; 5579 5580 #if defined(ATA_VERBOSE_DEBUG) 5581 /* turn on all debugging levels */ 5582 ap->msg_enable = 0x00FF; 5583 #elif defined(ATA_DEBUG) 5584 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5585 #else 5586 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5587 #endif 5588 5589 INIT_DELAYED_WORK(&ap->port_task, NULL); 5590 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5591 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5592 INIT_LIST_HEAD(&ap->eh_done_q); 5593 init_waitqueue_head(&ap->eh_wait_q); 5594 5595 /* set cable type */ 5596 ap->cbl = ATA_CBL_NONE; 5597 if (ap->flags & ATA_FLAG_SATA) 5598 ap->cbl = ATA_CBL_SATA; 5599 5600 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5601 struct ata_device *dev = &ap->device[i]; 5602 dev->ap = ap; 5603 dev->devno = i; 5604 ata_dev_init(dev); 5605 } 5606 5607 #ifdef ATA_IRQ_TRAP 5608 ap->stats.unhandled_irq = 1; 5609 ap->stats.idle_irq = 1; 5610 #endif 5611 5612 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); 5613 } 5614 5615 /** 5616 * ata_port_init_shost - Initialize SCSI host associated with ATA port 5617 * @ap: ATA port to initialize SCSI host for 5618 * @shost: SCSI host associated with @ap 5619 * 5620 * Initialize SCSI host @shost associated with ATA port @ap. 5621 * 5622 * LOCKING: 5623 * Inherited from caller. 5624 */ 5625 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost) 5626 { 5627 ap->scsi_host = shost; 5628 5629 shost->unique_id = ap->print_id; 5630 shost->max_id = 16; 5631 shost->max_lun = 1; 5632 shost->max_channel = 1; 5633 shost->max_cmd_len = 12; 5634 } 5635 5636 /** 5637 * ata_port_add - Attach low-level ATA driver to system 5638 * @ent: Information provided by low-level driver 5639 * @host: Collections of ports to which we add 5640 * @port_no: Port number associated with this host 5641 * 5642 * Attach low-level ATA driver to system. 5643 * 5644 * LOCKING: 5645 * PCI/etc. bus probe sem. 5646 * 5647 * RETURNS: 5648 * New ata_port on success, for NULL on error. 5649 */ 5650 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent, 5651 struct ata_host *host, 5652 unsigned int port_no) 5653 { 5654 struct Scsi_Host *shost; 5655 struct ata_port *ap; 5656 5657 DPRINTK("ENTER\n"); 5658 5659 if (!ent->port_ops->error_handler && 5660 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) { 5661 printk(KERN_ERR "ata%u: no reset mechanism available\n", 5662 port_no); 5663 return NULL; 5664 } 5665 5666 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); 5667 if (!shost) 5668 return NULL; 5669 5670 shost->transportt = &ata_scsi_transport_template; 5671 5672 ap = ata_shost_to_port(shost); 5673 5674 ata_port_init(ap, host, ent, port_no); 5675 ata_port_init_shost(ap, shost); 5676 5677 return ap; 5678 } 5679 5680 static void ata_host_release(struct device *gendev, void *res) 5681 { 5682 struct ata_host *host = dev_get_drvdata(gendev); 5683 int i; 5684 5685 for (i = 0; i < host->n_ports; i++) { 5686 struct ata_port *ap = host->ports[i]; 5687 5688 if (ap && ap->ops->port_stop) 5689 ap->ops->port_stop(ap); 5690 } 5691 5692 if (host->ops->host_stop) 5693 host->ops->host_stop(host); 5694 5695 for (i = 0; i < host->n_ports; i++) { 5696 struct ata_port *ap = host->ports[i]; 5697 5698 if (ap) 5699 scsi_host_put(ap->scsi_host); 5700 5701 host->ports[i] = NULL; 5702 } 5703 5704 dev_set_drvdata(gendev, NULL); 5705 } 5706 5707 /** 5708 * ata_sas_host_init - Initialize a host struct 5709 * @host: host to initialize 5710 * @dev: device host is attached to 5711 * @flags: host flags 5712 * @ops: port_ops 5713 * 5714 * LOCKING: 5715 * PCI/etc. bus probe sem. 5716 * 5717 */ 5718 5719 void ata_host_init(struct ata_host *host, struct device *dev, 5720 unsigned long flags, const struct ata_port_operations *ops) 5721 { 5722 spin_lock_init(&host->lock); 5723 host->dev = dev; 5724 host->flags = flags; 5725 host->ops = ops; 5726 } 5727 5728 /** 5729 * ata_device_add - Register hardware device with ATA and SCSI layers 5730 * @ent: Probe information describing hardware device to be registered 5731 * 5732 * This function processes the information provided in the probe 5733 * information struct @ent, allocates the necessary ATA and SCSI 5734 * host information structures, initializes them, and registers 5735 * everything with requisite kernel subsystems. 5736 * 5737 * This function requests irqs, probes the ATA bus, and probes 5738 * the SCSI bus. 5739 * 5740 * LOCKING: 5741 * PCI/etc. bus probe sem. 5742 * 5743 * RETURNS: 5744 * Number of ports registered. Zero on error (no ports registered). 5745 */ 5746 int ata_device_add(const struct ata_probe_ent *ent) 5747 { 5748 unsigned int i; 5749 struct device *dev = ent->dev; 5750 struct ata_host *host; 5751 int rc; 5752 5753 DPRINTK("ENTER\n"); 5754 5755 if (ent->irq == 0) { 5756 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n"); 5757 return 0; 5758 } 5759 5760 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL)) 5761 return 0; 5762 5763 /* alloc a container for our list of ATA ports (buses) */ 5764 host = devres_alloc(ata_host_release, sizeof(struct ata_host) + 5765 (ent->n_ports * sizeof(void *)), GFP_KERNEL); 5766 if (!host) 5767 goto err_out; 5768 devres_add(dev, host); 5769 dev_set_drvdata(dev, host); 5770 5771 ata_host_init(host, dev, ent->_host_flags, ent->port_ops); 5772 host->n_ports = ent->n_ports; 5773 host->irq = ent->irq; 5774 host->irq2 = ent->irq2; 5775 host->iomap = ent->iomap; 5776 host->private_data = ent->private_data; 5777 5778 /* register each port bound to this device */ 5779 for (i = 0; i < host->n_ports; i++) { 5780 struct ata_port *ap; 5781 unsigned long xfer_mode_mask; 5782 int irq_line = ent->irq; 5783 5784 ap = ata_port_add(ent, host, i); 5785 host->ports[i] = ap; 5786 if (!ap) 5787 goto err_out; 5788 5789 /* dummy? */ 5790 if (ent->dummy_port_mask & (1 << i)) { 5791 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5792 ap->ops = &ata_dummy_port_ops; 5793 continue; 5794 } 5795 5796 /* start port */ 5797 rc = ap->ops->port_start(ap); 5798 if (rc) { 5799 host->ports[i] = NULL; 5800 scsi_host_put(ap->scsi_host); 5801 goto err_out; 5802 } 5803 5804 /* Report the secondary IRQ for second channel legacy */ 5805 if (i == 1 && ent->irq2) 5806 irq_line = ent->irq2; 5807 5808 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | 5809 (ap->mwdma_mask << ATA_SHIFT_MWDMA) | 5810 (ap->pio_mask << ATA_SHIFT_PIO); 5811 5812 /* print per-port info to dmesg */ 5813 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 5814 "ctl 0x%p bmdma 0x%p irq %d\n", 5815 ap->flags & ATA_FLAG_SATA ? 'S' : 'P', 5816 ata_mode_string(xfer_mode_mask), 5817 ap->ioaddr.cmd_addr, 5818 ap->ioaddr.ctl_addr, 5819 ap->ioaddr.bmdma_addr, 5820 irq_line); 5821 5822 /* freeze port before requesting IRQ */ 5823 ata_eh_freeze_port(ap); 5824 } 5825 5826 /* obtain irq, that may be shared between channels */ 5827 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler, 5828 ent->irq_flags, DRV_NAME, host); 5829 if (rc) { 5830 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", 5831 ent->irq, rc); 5832 goto err_out; 5833 } 5834 5835 /* do we have a second IRQ for the other channel, eg legacy mode */ 5836 if (ent->irq2) { 5837 /* We will get weird core code crashes later if this is true 5838 so trap it now */ 5839 BUG_ON(ent->irq == ent->irq2); 5840 5841 rc = devm_request_irq(dev, ent->irq2, 5842 ent->port_ops->irq_handler, ent->irq_flags, 5843 DRV_NAME, host); 5844 if (rc) { 5845 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", 5846 ent->irq2, rc); 5847 goto err_out; 5848 } 5849 } 5850 5851 /* resource acquisition complete */ 5852 devres_remove_group(dev, ata_device_add); 5853 5854 /* perform each probe synchronously */ 5855 DPRINTK("probe begin\n"); 5856 for (i = 0; i < host->n_ports; i++) { 5857 struct ata_port *ap = host->ports[i]; 5858 u32 scontrol; 5859 int rc; 5860 5861 /* init sata_spd_limit to the current value */ 5862 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 5863 int spd = (scontrol >> 4) & 0xf; 5864 ap->hw_sata_spd_limit &= (1 << spd) - 1; 5865 } 5866 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5867 5868 rc = scsi_add_host(ap->scsi_host, dev); 5869 if (rc) { 5870 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n"); 5871 /* FIXME: do something useful here */ 5872 /* FIXME: handle unconditional calls to 5873 * scsi_scan_host and ata_host_remove, below, 5874 * at the very least 5875 */ 5876 } 5877 5878 if (ap->ops->error_handler) { 5879 struct ata_eh_info *ehi = &ap->eh_info; 5880 unsigned long flags; 5881 5882 ata_port_probe(ap); 5883 5884 /* kick EH for boot probing */ 5885 spin_lock_irqsave(ap->lock, flags); 5886 5887 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 5888 ehi->action |= ATA_EH_SOFTRESET; 5889 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5890 5891 ap->pflags |= ATA_PFLAG_LOADING; 5892 ata_port_schedule_eh(ap); 5893 5894 spin_unlock_irqrestore(ap->lock, flags); 5895 5896 /* wait for EH to finish */ 5897 ata_port_wait_eh(ap); 5898 } else { 5899 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5900 rc = ata_bus_probe(ap); 5901 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5902 5903 if (rc) { 5904 /* FIXME: do something useful here? 5905 * Current libata behavior will 5906 * tear down everything when 5907 * the module is removed 5908 * or the h/w is unplugged. 5909 */ 5910 } 5911 } 5912 } 5913 5914 /* probes are done, now scan each port's disk(s) */ 5915 DPRINTK("host probe begin\n"); 5916 for (i = 0; i < host->n_ports; i++) { 5917 struct ata_port *ap = host->ports[i]; 5918 5919 ata_scsi_scan_host(ap); 5920 } 5921 5922 VPRINTK("EXIT, returning %u\n", ent->n_ports); 5923 return ent->n_ports; /* success */ 5924 5925 err_out: 5926 devres_release_group(dev, ata_device_add); 5927 VPRINTK("EXIT, returning %d\n", rc); 5928 return 0; 5929 } 5930 5931 /** 5932 * ata_port_detach - Detach ATA port in prepration of device removal 5933 * @ap: ATA port to be detached 5934 * 5935 * Detach all ATA devices and the associated SCSI devices of @ap; 5936 * then, remove the associated SCSI host. @ap is guaranteed to 5937 * be quiescent on return from this function. 5938 * 5939 * LOCKING: 5940 * Kernel thread context (may sleep). 5941 */ 5942 void ata_port_detach(struct ata_port *ap) 5943 { 5944 unsigned long flags; 5945 int i; 5946 5947 if (!ap->ops->error_handler) 5948 goto skip_eh; 5949 5950 /* tell EH we're leaving & flush EH */ 5951 spin_lock_irqsave(ap->lock, flags); 5952 ap->pflags |= ATA_PFLAG_UNLOADING; 5953 spin_unlock_irqrestore(ap->lock, flags); 5954 5955 ata_port_wait_eh(ap); 5956 5957 /* EH is now guaranteed to see UNLOADING, so no new device 5958 * will be attached. Disable all existing devices. 5959 */ 5960 spin_lock_irqsave(ap->lock, flags); 5961 5962 for (i = 0; i < ATA_MAX_DEVICES; i++) 5963 ata_dev_disable(&ap->device[i]); 5964 5965 spin_unlock_irqrestore(ap->lock, flags); 5966 5967 /* Final freeze & EH. All in-flight commands are aborted. EH 5968 * will be skipped and retrials will be terminated with bad 5969 * target. 5970 */ 5971 spin_lock_irqsave(ap->lock, flags); 5972 ata_port_freeze(ap); /* won't be thawed */ 5973 spin_unlock_irqrestore(ap->lock, flags); 5974 5975 ata_port_wait_eh(ap); 5976 5977 /* Flush hotplug task. The sequence is similar to 5978 * ata_port_flush_task(). 5979 */ 5980 flush_workqueue(ata_aux_wq); 5981 cancel_delayed_work(&ap->hotplug_task); 5982 flush_workqueue(ata_aux_wq); 5983 5984 skip_eh: 5985 /* remove the associated SCSI host */ 5986 scsi_remove_host(ap->scsi_host); 5987 } 5988 5989 /** 5990 * ata_host_detach - Detach all ports of an ATA host 5991 * @host: Host to detach 5992 * 5993 * Detach all ports of @host. 5994 * 5995 * LOCKING: 5996 * Kernel thread context (may sleep). 5997 */ 5998 void ata_host_detach(struct ata_host *host) 5999 { 6000 int i; 6001 6002 for (i = 0; i < host->n_ports; i++) 6003 ata_port_detach(host->ports[i]); 6004 } 6005 6006 struct ata_probe_ent * 6007 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port) 6008 { 6009 struct ata_probe_ent *probe_ent; 6010 6011 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL); 6012 if (!probe_ent) { 6013 printk(KERN_ERR DRV_NAME "(%s): out of memory\n", 6014 kobject_name(&(dev->kobj))); 6015 return NULL; 6016 } 6017 6018 INIT_LIST_HEAD(&probe_ent->node); 6019 probe_ent->dev = dev; 6020 6021 probe_ent->sht = port->sht; 6022 probe_ent->port_flags = port->flags; 6023 probe_ent->pio_mask = port->pio_mask; 6024 probe_ent->mwdma_mask = port->mwdma_mask; 6025 probe_ent->udma_mask = port->udma_mask; 6026 probe_ent->port_ops = port->port_ops; 6027 probe_ent->private_data = port->private_data; 6028 6029 return probe_ent; 6030 } 6031 6032 /** 6033 * ata_std_ports - initialize ioaddr with standard port offsets. 6034 * @ioaddr: IO address structure to be initialized 6035 * 6036 * Utility function which initializes data_addr, error_addr, 6037 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6038 * device_addr, status_addr, and command_addr to standard offsets 6039 * relative to cmd_addr. 6040 * 6041 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6042 */ 6043 6044 void ata_std_ports(struct ata_ioports *ioaddr) 6045 { 6046 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6047 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6048 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6049 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6050 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6051 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6052 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6053 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6054 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6055 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6056 } 6057 6058 6059 #ifdef CONFIG_PCI 6060 6061 /** 6062 * ata_pci_remove_one - PCI layer callback for device removal 6063 * @pdev: PCI device that was removed 6064 * 6065 * PCI layer indicates to libata via this hook that hot-unplug or 6066 * module unload event has occurred. Detach all ports. Resource 6067 * release is handled via devres. 6068 * 6069 * LOCKING: 6070 * Inherited from PCI layer (may sleep). 6071 */ 6072 void ata_pci_remove_one(struct pci_dev *pdev) 6073 { 6074 struct device *dev = pci_dev_to_dev(pdev); 6075 struct ata_host *host = dev_get_drvdata(dev); 6076 6077 ata_host_detach(host); 6078 } 6079 6080 /* move to PCI subsystem */ 6081 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6082 { 6083 unsigned long tmp = 0; 6084 6085 switch (bits->width) { 6086 case 1: { 6087 u8 tmp8 = 0; 6088 pci_read_config_byte(pdev, bits->reg, &tmp8); 6089 tmp = tmp8; 6090 break; 6091 } 6092 case 2: { 6093 u16 tmp16 = 0; 6094 pci_read_config_word(pdev, bits->reg, &tmp16); 6095 tmp = tmp16; 6096 break; 6097 } 6098 case 4: { 6099 u32 tmp32 = 0; 6100 pci_read_config_dword(pdev, bits->reg, &tmp32); 6101 tmp = tmp32; 6102 break; 6103 } 6104 6105 default: 6106 return -EINVAL; 6107 } 6108 6109 tmp &= bits->mask; 6110 6111 return (tmp == bits->val) ? 1 : 0; 6112 } 6113 6114 #ifdef CONFIG_PM 6115 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6116 { 6117 pci_save_state(pdev); 6118 pci_disable_device(pdev); 6119 6120 if (mesg.event == PM_EVENT_SUSPEND) 6121 pci_set_power_state(pdev, PCI_D3hot); 6122 } 6123 6124 int ata_pci_device_do_resume(struct pci_dev *pdev) 6125 { 6126 int rc; 6127 6128 pci_set_power_state(pdev, PCI_D0); 6129 pci_restore_state(pdev); 6130 6131 rc = pcim_enable_device(pdev); 6132 if (rc) { 6133 dev_printk(KERN_ERR, &pdev->dev, 6134 "failed to enable device after resume (%d)\n", rc); 6135 return rc; 6136 } 6137 6138 pci_set_master(pdev); 6139 return 0; 6140 } 6141 6142 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6143 { 6144 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6145 int rc = 0; 6146 6147 rc = ata_host_suspend(host, mesg); 6148 if (rc) 6149 return rc; 6150 6151 ata_pci_device_do_suspend(pdev, mesg); 6152 6153 return 0; 6154 } 6155 6156 int ata_pci_device_resume(struct pci_dev *pdev) 6157 { 6158 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6159 int rc; 6160 6161 rc = ata_pci_device_do_resume(pdev); 6162 if (rc == 0) 6163 ata_host_resume(host); 6164 return rc; 6165 } 6166 #endif /* CONFIG_PM */ 6167 6168 #endif /* CONFIG_PCI */ 6169 6170 6171 static int __init ata_init(void) 6172 { 6173 ata_probe_timeout *= HZ; 6174 ata_wq = create_workqueue("ata"); 6175 if (!ata_wq) 6176 return -ENOMEM; 6177 6178 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6179 if (!ata_aux_wq) { 6180 destroy_workqueue(ata_wq); 6181 return -ENOMEM; 6182 } 6183 6184 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6185 return 0; 6186 } 6187 6188 static void __exit ata_exit(void) 6189 { 6190 destroy_workqueue(ata_wq); 6191 destroy_workqueue(ata_aux_wq); 6192 } 6193 6194 subsys_initcall(ata_init); 6195 module_exit(ata_exit); 6196 6197 static unsigned long ratelimit_time; 6198 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6199 6200 int ata_ratelimit(void) 6201 { 6202 int rc; 6203 unsigned long flags; 6204 6205 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6206 6207 if (time_after(jiffies, ratelimit_time)) { 6208 rc = 1; 6209 ratelimit_time = jiffies + (HZ/5); 6210 } else 6211 rc = 0; 6212 6213 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6214 6215 return rc; 6216 } 6217 6218 /** 6219 * ata_wait_register - wait until register value changes 6220 * @reg: IO-mapped register 6221 * @mask: Mask to apply to read register value 6222 * @val: Wait condition 6223 * @interval_msec: polling interval in milliseconds 6224 * @timeout_msec: timeout in milliseconds 6225 * 6226 * Waiting for some bits of register to change is a common 6227 * operation for ATA controllers. This function reads 32bit LE 6228 * IO-mapped register @reg and tests for the following condition. 6229 * 6230 * (*@reg & mask) != val 6231 * 6232 * If the condition is met, it returns; otherwise, the process is 6233 * repeated after @interval_msec until timeout. 6234 * 6235 * LOCKING: 6236 * Kernel thread context (may sleep) 6237 * 6238 * RETURNS: 6239 * The final register value. 6240 */ 6241 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6242 unsigned long interval_msec, 6243 unsigned long timeout_msec) 6244 { 6245 unsigned long timeout; 6246 u32 tmp; 6247 6248 tmp = ioread32(reg); 6249 6250 /* Calculate timeout _after_ the first read to make sure 6251 * preceding writes reach the controller before starting to 6252 * eat away the timeout. 6253 */ 6254 timeout = jiffies + (timeout_msec * HZ) / 1000; 6255 6256 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6257 msleep(interval_msec); 6258 tmp = ioread32(reg); 6259 } 6260 6261 return tmp; 6262 } 6263 6264 /* 6265 * Dummy port_ops 6266 */ 6267 static void ata_dummy_noret(struct ata_port *ap) { } 6268 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6269 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6270 6271 static u8 ata_dummy_check_status(struct ata_port *ap) 6272 { 6273 return ATA_DRDY; 6274 } 6275 6276 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6277 { 6278 return AC_ERR_SYSTEM; 6279 } 6280 6281 const struct ata_port_operations ata_dummy_port_ops = { 6282 .port_disable = ata_port_disable, 6283 .check_status = ata_dummy_check_status, 6284 .check_altstatus = ata_dummy_check_status, 6285 .dev_select = ata_noop_dev_select, 6286 .qc_prep = ata_noop_qc_prep, 6287 .qc_issue = ata_dummy_qc_issue, 6288 .freeze = ata_dummy_noret, 6289 .thaw = ata_dummy_noret, 6290 .error_handler = ata_dummy_noret, 6291 .post_internal_cmd = ata_dummy_qc_noret, 6292 .irq_clear = ata_dummy_noret, 6293 .port_start = ata_dummy_ret0, 6294 .port_stop = ata_dummy_noret, 6295 }; 6296 6297 /* 6298 * libata is essentially a library of internal helper functions for 6299 * low-level ATA host controller drivers. As such, the API/ABI is 6300 * likely to change as new drivers are added and updated. 6301 * Do not depend on ABI/API stability. 6302 */ 6303 6304 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6305 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6306 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6307 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6308 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6309 EXPORT_SYMBOL_GPL(ata_std_ports); 6310 EXPORT_SYMBOL_GPL(ata_host_init); 6311 EXPORT_SYMBOL_GPL(ata_device_add); 6312 EXPORT_SYMBOL_GPL(ata_host_detach); 6313 EXPORT_SYMBOL_GPL(ata_sg_init); 6314 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6315 EXPORT_SYMBOL_GPL(ata_hsm_move); 6316 EXPORT_SYMBOL_GPL(ata_qc_complete); 6317 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6318 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6319 EXPORT_SYMBOL_GPL(ata_tf_load); 6320 EXPORT_SYMBOL_GPL(ata_tf_read); 6321 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6322 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6323 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6324 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6325 EXPORT_SYMBOL_GPL(ata_check_status); 6326 EXPORT_SYMBOL_GPL(ata_altstatus); 6327 EXPORT_SYMBOL_GPL(ata_exec_command); 6328 EXPORT_SYMBOL_GPL(ata_port_start); 6329 EXPORT_SYMBOL_GPL(ata_interrupt); 6330 EXPORT_SYMBOL_GPL(ata_data_xfer); 6331 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6332 EXPORT_SYMBOL_GPL(ata_qc_prep); 6333 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6334 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6335 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6336 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6337 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6338 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6339 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6340 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6341 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6342 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6343 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6344 EXPORT_SYMBOL_GPL(ata_port_probe); 6345 EXPORT_SYMBOL_GPL(ata_dev_disable); 6346 EXPORT_SYMBOL_GPL(sata_set_spd); 6347 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6348 EXPORT_SYMBOL_GPL(sata_phy_resume); 6349 EXPORT_SYMBOL_GPL(sata_phy_reset); 6350 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6351 EXPORT_SYMBOL_GPL(ata_bus_reset); 6352 EXPORT_SYMBOL_GPL(ata_std_prereset); 6353 EXPORT_SYMBOL_GPL(ata_std_softreset); 6354 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6355 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6356 EXPORT_SYMBOL_GPL(ata_std_postreset); 6357 EXPORT_SYMBOL_GPL(ata_dev_classify); 6358 EXPORT_SYMBOL_GPL(ata_dev_pair); 6359 EXPORT_SYMBOL_GPL(ata_port_disable); 6360 EXPORT_SYMBOL_GPL(ata_ratelimit); 6361 EXPORT_SYMBOL_GPL(ata_wait_register); 6362 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6363 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6364 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6365 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6366 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6367 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6368 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6369 EXPORT_SYMBOL_GPL(ata_host_intr); 6370 EXPORT_SYMBOL_GPL(sata_scr_valid); 6371 EXPORT_SYMBOL_GPL(sata_scr_read); 6372 EXPORT_SYMBOL_GPL(sata_scr_write); 6373 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6374 EXPORT_SYMBOL_GPL(ata_port_online); 6375 EXPORT_SYMBOL_GPL(ata_port_offline); 6376 #ifdef CONFIG_PM 6377 EXPORT_SYMBOL_GPL(ata_host_suspend); 6378 EXPORT_SYMBOL_GPL(ata_host_resume); 6379 #endif /* CONFIG_PM */ 6380 EXPORT_SYMBOL_GPL(ata_id_string); 6381 EXPORT_SYMBOL_GPL(ata_id_c_string); 6382 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6383 EXPORT_SYMBOL_GPL(ata_device_blacklisted); 6384 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6385 6386 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6387 EXPORT_SYMBOL_GPL(ata_timing_compute); 6388 EXPORT_SYMBOL_GPL(ata_timing_merge); 6389 6390 #ifdef CONFIG_PCI 6391 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6392 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); 6393 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6394 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6395 #ifdef CONFIG_PM 6396 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6397 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6398 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6399 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6400 #endif /* CONFIG_PM */ 6401 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6402 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6403 #endif /* CONFIG_PCI */ 6404 6405 #ifdef CONFIG_PM 6406 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); 6407 EXPORT_SYMBOL_GPL(ata_scsi_device_resume); 6408 #endif /* CONFIG_PM */ 6409 6410 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6411 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6412 EXPORT_SYMBOL_GPL(ata_port_abort); 6413 EXPORT_SYMBOL_GPL(ata_port_freeze); 6414 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6415 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6416 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6417 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6418 EXPORT_SYMBOL_GPL(ata_do_eh); 6419 EXPORT_SYMBOL_GPL(ata_irq_on); 6420 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6421 EXPORT_SYMBOL_GPL(ata_irq_ack); 6422 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6423 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6424