1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = tf->auxiliary & 0xff; 573 fis[17] = (tf->auxiliary >> 8) & 0xff; 574 fis[18] = (tf->auxiliary >> 16) & 0xff; 575 fis[19] = (tf->auxiliary >> 24) & 0xff; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 1606 /* some SATA bridges need us to indicate data xfer direction */ 1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1608 dma_dir == DMA_FROM_DEVICE) 1609 qc->tf.feature |= ATAPI_DMADIR; 1610 1611 qc->flags |= ATA_QCFLAG_RESULT_TF; 1612 qc->dma_dir = dma_dir; 1613 if (dma_dir != DMA_NONE) { 1614 unsigned int i, buflen = 0; 1615 struct scatterlist *sg; 1616 1617 for_each_sg(sgl, sg, n_elem, i) 1618 buflen += sg->length; 1619 1620 ata_sg_init(qc, sgl, n_elem); 1621 qc->nbytes = buflen; 1622 } 1623 1624 qc->private_data = &wait; 1625 qc->complete_fn = ata_qc_complete_internal; 1626 1627 ata_qc_issue(qc); 1628 1629 spin_unlock_irqrestore(ap->lock, flags); 1630 1631 if (!timeout) { 1632 if (ata_probe_timeout) 1633 timeout = ata_probe_timeout * 1000; 1634 else { 1635 timeout = ata_internal_cmd_timeout(dev, command); 1636 auto_timeout = 1; 1637 } 1638 } 1639 1640 if (ap->ops->error_handler) 1641 ata_eh_release(ap); 1642 1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1644 1645 if (ap->ops->error_handler) 1646 ata_eh_acquire(ap); 1647 1648 ata_sff_flush_pio_task(ap); 1649 1650 if (!rc) { 1651 spin_lock_irqsave(ap->lock, flags); 1652 1653 /* We're racing with irq here. If we lose, the 1654 * following test prevents us from completing the qc 1655 * twice. If we win, the port is frozen and will be 1656 * cleaned up by ->post_internal_cmd(). 1657 */ 1658 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1659 qc->err_mask |= AC_ERR_TIMEOUT; 1660 1661 if (ap->ops->error_handler) 1662 ata_port_freeze(ap); 1663 else 1664 ata_qc_complete(qc); 1665 1666 if (ata_msg_warn(ap)) 1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1668 command); 1669 } 1670 1671 spin_unlock_irqrestore(ap->lock, flags); 1672 } 1673 1674 /* do post_internal_cmd */ 1675 if (ap->ops->post_internal_cmd) 1676 ap->ops->post_internal_cmd(qc); 1677 1678 /* perform minimal error analysis */ 1679 if (qc->flags & ATA_QCFLAG_FAILED) { 1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1681 qc->err_mask |= AC_ERR_DEV; 1682 1683 if (!qc->err_mask) 1684 qc->err_mask |= AC_ERR_OTHER; 1685 1686 if (qc->err_mask & ~AC_ERR_OTHER) 1687 qc->err_mask &= ~AC_ERR_OTHER; 1688 } 1689 1690 /* finish up */ 1691 spin_lock_irqsave(ap->lock, flags); 1692 1693 *tf = qc->result_tf; 1694 err_mask = qc->err_mask; 1695 1696 ata_qc_free(qc); 1697 link->active_tag = preempted_tag; 1698 link->sactive = preempted_sactive; 1699 ap->qc_active = preempted_qc_active; 1700 ap->nr_active_links = preempted_nr_active_links; 1701 1702 spin_unlock_irqrestore(ap->lock, flags); 1703 1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1705 ata_internal_cmd_timed_out(dev, command); 1706 1707 return err_mask; 1708 } 1709 1710 /** 1711 * ata_exec_internal - execute libata internal command 1712 * @dev: Device to which the command is sent 1713 * @tf: Taskfile registers for the command and the result 1714 * @cdb: CDB for packet command 1715 * @dma_dir: Data tranfer direction of the command 1716 * @buf: Data buffer of the command 1717 * @buflen: Length of data buffer 1718 * @timeout: Timeout in msecs (0 for default) 1719 * 1720 * Wrapper around ata_exec_internal_sg() which takes simple 1721 * buffer instead of sg list. 1722 * 1723 * LOCKING: 1724 * None. Should be called with kernel context, might sleep. 1725 * 1726 * RETURNS: 1727 * Zero on success, AC_ERR_* mask on failure 1728 */ 1729 unsigned ata_exec_internal(struct ata_device *dev, 1730 struct ata_taskfile *tf, const u8 *cdb, 1731 int dma_dir, void *buf, unsigned int buflen, 1732 unsigned long timeout) 1733 { 1734 struct scatterlist *psg = NULL, sg; 1735 unsigned int n_elem = 0; 1736 1737 if (dma_dir != DMA_NONE) { 1738 WARN_ON(!buf); 1739 sg_init_one(&sg, buf, buflen); 1740 psg = &sg; 1741 n_elem++; 1742 } 1743 1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1745 timeout); 1746 } 1747 1748 /** 1749 * ata_do_simple_cmd - execute simple internal command 1750 * @dev: Device to which the command is sent 1751 * @cmd: Opcode to execute 1752 * 1753 * Execute a 'simple' command, that only consists of the opcode 1754 * 'cmd' itself, without filling any other registers 1755 * 1756 * LOCKING: 1757 * Kernel thread context (may sleep). 1758 * 1759 * RETURNS: 1760 * Zero on success, AC_ERR_* mask on failure 1761 */ 1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1763 { 1764 struct ata_taskfile tf; 1765 1766 ata_tf_init(dev, &tf); 1767 1768 tf.command = cmd; 1769 tf.flags |= ATA_TFLAG_DEVICE; 1770 tf.protocol = ATA_PROT_NODATA; 1771 1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1773 } 1774 1775 /** 1776 * ata_pio_need_iordy - check if iordy needed 1777 * @adev: ATA device 1778 * 1779 * Check if the current speed of the device requires IORDY. Used 1780 * by various controllers for chip configuration. 1781 */ 1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1783 { 1784 /* Don't set IORDY if we're preparing for reset. IORDY may 1785 * lead to controller lock up on certain controllers if the 1786 * port is not occupied. See bko#11703 for details. 1787 */ 1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1789 return 0; 1790 /* Controller doesn't support IORDY. Probably a pointless 1791 * check as the caller should know this. 1792 */ 1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1794 return 0; 1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1796 if (ata_id_is_cfa(adev->id) 1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1798 return 0; 1799 /* PIO3 and higher it is mandatory */ 1800 if (adev->pio_mode > XFER_PIO_2) 1801 return 1; 1802 /* We turn it on when possible */ 1803 if (ata_id_has_iordy(adev->id)) 1804 return 1; 1805 return 0; 1806 } 1807 1808 /** 1809 * ata_pio_mask_no_iordy - Return the non IORDY mask 1810 * @adev: ATA device 1811 * 1812 * Compute the highest mode possible if we are not using iordy. Return 1813 * -1 if no iordy mode is available. 1814 */ 1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1816 { 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1820 /* Is the speed faster than the drive allows non IORDY ? */ 1821 if (pio) { 1822 /* This is cycle times not frequency - watch the logic! */ 1823 if (pio > 240) /* PIO2 is 240nS per cycle */ 1824 return 3 << ATA_SHIFT_PIO; 1825 return 7 << ATA_SHIFT_PIO; 1826 } 1827 } 1828 return 3 << ATA_SHIFT_PIO; 1829 } 1830 1831 /** 1832 * ata_do_dev_read_id - default ID read method 1833 * @dev: device 1834 * @tf: proposed taskfile 1835 * @id: data buffer 1836 * 1837 * Issue the identify taskfile and hand back the buffer containing 1838 * identify data. For some RAID controllers and for pre ATA devices 1839 * this function is wrapped or replaced by the driver 1840 */ 1841 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1842 struct ata_taskfile *tf, u16 *id) 1843 { 1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1846 } 1847 1848 /** 1849 * ata_dev_read_id - Read ID data from the specified device 1850 * @dev: target device 1851 * @p_class: pointer to class of the target device (may be changed) 1852 * @flags: ATA_READID_* flags 1853 * @id: buffer to read IDENTIFY data into 1854 * 1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1858 * for pre-ATA4 drives. 1859 * 1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1861 * now we abort if we hit that case. 1862 * 1863 * LOCKING: 1864 * Kernel thread context (may sleep) 1865 * 1866 * RETURNS: 1867 * 0 on success, -errno otherwise. 1868 */ 1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1870 unsigned int flags, u16 *id) 1871 { 1872 struct ata_port *ap = dev->link->ap; 1873 unsigned int class = *p_class; 1874 struct ata_taskfile tf; 1875 unsigned int err_mask = 0; 1876 const char *reason; 1877 bool is_semb = class == ATA_DEV_SEMB; 1878 int may_fallback = 1, tried_spinup = 0; 1879 int rc; 1880 1881 if (ata_msg_ctl(ap)) 1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1883 1884 retry: 1885 ata_tf_init(dev, &tf); 1886 1887 switch (class) { 1888 case ATA_DEV_SEMB: 1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1890 case ATA_DEV_ATA: 1891 tf.command = ATA_CMD_ID_ATA; 1892 break; 1893 case ATA_DEV_ATAPI: 1894 tf.command = ATA_CMD_ID_ATAPI; 1895 break; 1896 default: 1897 rc = -ENODEV; 1898 reason = "unsupported class"; 1899 goto err_out; 1900 } 1901 1902 tf.protocol = ATA_PROT_PIO; 1903 1904 /* Some devices choke if TF registers contain garbage. Make 1905 * sure those are properly initialized. 1906 */ 1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1908 1909 /* Device presence detection is unreliable on some 1910 * controllers. Always poll IDENTIFY if available. 1911 */ 1912 tf.flags |= ATA_TFLAG_POLLING; 1913 1914 if (ap->ops->read_id) 1915 err_mask = ap->ops->read_id(dev, &tf, id); 1916 else 1917 err_mask = ata_do_dev_read_id(dev, &tf, id); 1918 1919 if (err_mask) { 1920 if (err_mask & AC_ERR_NODEV_HINT) { 1921 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1922 return -ENOENT; 1923 } 1924 1925 if (is_semb) { 1926 ata_dev_info(dev, 1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1928 /* SEMB is not supported yet */ 1929 *p_class = ATA_DEV_SEMB_UNSUP; 1930 return 0; 1931 } 1932 1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1934 /* Device or controller might have reported 1935 * the wrong device class. Give a shot at the 1936 * other IDENTIFY if the current one is 1937 * aborted by the device. 1938 */ 1939 if (may_fallback) { 1940 may_fallback = 0; 1941 1942 if (class == ATA_DEV_ATA) 1943 class = ATA_DEV_ATAPI; 1944 else 1945 class = ATA_DEV_ATA; 1946 goto retry; 1947 } 1948 1949 /* Control reaches here iff the device aborted 1950 * both flavors of IDENTIFYs which happens 1951 * sometimes with phantom devices. 1952 */ 1953 ata_dev_dbg(dev, 1954 "both IDENTIFYs aborted, assuming NODEV\n"); 1955 return -ENOENT; 1956 } 1957 1958 rc = -EIO; 1959 reason = "I/O error"; 1960 goto err_out; 1961 } 1962 1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1964 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1965 "class=%d may_fallback=%d tried_spinup=%d\n", 1966 class, may_fallback, tried_spinup); 1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1969 } 1970 1971 /* Falling back doesn't make sense if ID data was read 1972 * successfully at least once. 1973 */ 1974 may_fallback = 0; 1975 1976 swap_buf_le16(id, ATA_ID_WORDS); 1977 1978 /* sanity check */ 1979 rc = -EINVAL; 1980 reason = "device reports invalid type"; 1981 1982 if (class == ATA_DEV_ATA) { 1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1984 goto err_out; 1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1986 ata_id_is_ata(id)) { 1987 ata_dev_dbg(dev, 1988 "host indicates ignore ATA devices, ignored\n"); 1989 return -ENOENT; 1990 } 1991 } else { 1992 if (ata_id_is_ata(id)) 1993 goto err_out; 1994 } 1995 1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1997 tried_spinup = 1; 1998 /* 1999 * Drive powered-up in standby mode, and requires a specific 2000 * SET_FEATURES spin-up subcommand before it will accept 2001 * anything other than the original IDENTIFY command. 2002 */ 2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2004 if (err_mask && id[2] != 0x738c) { 2005 rc = -EIO; 2006 reason = "SPINUP failed"; 2007 goto err_out; 2008 } 2009 /* 2010 * If the drive initially returned incomplete IDENTIFY info, 2011 * we now must reissue the IDENTIFY command. 2012 */ 2013 if (id[2] == 0x37c8) 2014 goto retry; 2015 } 2016 2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2018 /* 2019 * The exact sequence expected by certain pre-ATA4 drives is: 2020 * SRST RESET 2021 * IDENTIFY (optional in early ATA) 2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2023 * anything else.. 2024 * Some drives were very specific about that exact sequence. 2025 * 2026 * Note that ATA4 says lba is mandatory so the second check 2027 * should never trigger. 2028 */ 2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2030 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2031 if (err_mask) { 2032 rc = -EIO; 2033 reason = "INIT_DEV_PARAMS failed"; 2034 goto err_out; 2035 } 2036 2037 /* current CHS translation info (id[53-58]) might be 2038 * changed. reread the identify device info. 2039 */ 2040 flags &= ~ATA_READID_POSTRESET; 2041 goto retry; 2042 } 2043 } 2044 2045 *p_class = class; 2046 2047 return 0; 2048 2049 err_out: 2050 if (ata_msg_warn(ap)) 2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2052 reason, err_mask); 2053 return rc; 2054 } 2055 2056 static int ata_do_link_spd_horkage(struct ata_device *dev) 2057 { 2058 struct ata_link *plink = ata_dev_phys_link(dev); 2059 u32 target, target_limit; 2060 2061 if (!sata_scr_valid(plink)) 2062 return 0; 2063 2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2065 target = 1; 2066 else 2067 return 0; 2068 2069 target_limit = (1 << target) - 1; 2070 2071 /* if already on stricter limit, no need to push further */ 2072 if (plink->sata_spd_limit <= target_limit) 2073 return 0; 2074 2075 plink->sata_spd_limit = target_limit; 2076 2077 /* Request another EH round by returning -EAGAIN if link is 2078 * going faster than the target speed. Forward progress is 2079 * guaranteed by setting sata_spd_limit to target_limit above. 2080 */ 2081 if (plink->sata_spd > target) { 2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2083 sata_spd_string(target)); 2084 return -EAGAIN; 2085 } 2086 return 0; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2094 return 0; 2095 2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2097 } 2098 2099 static int ata_dev_config_ncq(struct ata_device *dev, 2100 char *desc, size_t desc_sz) 2101 { 2102 struct ata_port *ap = dev->link->ap; 2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2104 unsigned int err_mask; 2105 char *aa_desc = ""; 2106 2107 if (!ata_id_has_ncq(dev->id)) { 2108 desc[0] = '\0'; 2109 return 0; 2110 } 2111 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2112 snprintf(desc, desc_sz, "NCQ (not used)"); 2113 return 0; 2114 } 2115 if (ap->flags & ATA_FLAG_NCQ) { 2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2117 dev->flags |= ATA_DFLAG_NCQ; 2118 } 2119 2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2121 (ap->flags & ATA_FLAG_FPDMA_AA) && 2122 ata_id_has_fpdma_aa(dev->id)) { 2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2124 SATA_FPDMA_AA); 2125 if (err_mask) { 2126 ata_dev_err(dev, 2127 "failed to enable AA (error_mask=0x%x)\n", 2128 err_mask); 2129 if (err_mask != AC_ERR_DEV) { 2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2131 return -EIO; 2132 } 2133 } else 2134 aa_desc = ", AA"; 2135 } 2136 2137 if (hdepth >= ddepth) 2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2139 else 2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2141 ddepth, aa_desc); 2142 2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2144 ata_id_has_ncq_send_and_recv(dev->id)) { 2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2146 0, ap->sector_buf, 1); 2147 if (err_mask) { 2148 ata_dev_dbg(dev, 2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2150 err_mask); 2151 } else { 2152 u8 *cmds = dev->ncq_send_recv_cmds; 2153 2154 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2156 2157 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2158 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2159 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2161 } 2162 } 2163 } 2164 2165 return 0; 2166 } 2167 2168 /** 2169 * ata_dev_configure - Configure the specified ATA/ATAPI device 2170 * @dev: Target device to configure 2171 * 2172 * Configure @dev according to @dev->id. Generic and low-level 2173 * driver specific fixups are also applied. 2174 * 2175 * LOCKING: 2176 * Kernel thread context (may sleep) 2177 * 2178 * RETURNS: 2179 * 0 on success, -errno otherwise 2180 */ 2181 int ata_dev_configure(struct ata_device *dev) 2182 { 2183 struct ata_port *ap = dev->link->ap; 2184 struct ata_eh_context *ehc = &dev->link->eh_context; 2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2186 const u16 *id = dev->id; 2187 unsigned long xfer_mask; 2188 unsigned int err_mask; 2189 char revbuf[7]; /* XYZ-99\0 */ 2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2191 char modelbuf[ATA_ID_PROD_LEN+1]; 2192 int rc; 2193 2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2196 return 0; 2197 } 2198 2199 if (ata_msg_probe(ap)) 2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2201 2202 /* set horkage */ 2203 dev->horkage |= ata_dev_blacklisted(dev); 2204 ata_force_horkage(dev); 2205 2206 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2207 ata_dev_info(dev, "unsupported device, disabling\n"); 2208 ata_dev_disable(dev); 2209 return 0; 2210 } 2211 2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2213 dev->class == ATA_DEV_ATAPI) { 2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2215 atapi_enabled ? "not supported with this driver" 2216 : "disabled"); 2217 ata_dev_disable(dev); 2218 return 0; 2219 } 2220 2221 rc = ata_do_link_spd_horkage(dev); 2222 if (rc) 2223 return rc; 2224 2225 /* let ACPI work its magic */ 2226 rc = ata_acpi_on_devcfg(dev); 2227 if (rc) 2228 return rc; 2229 2230 /* massage HPA, do it early as it might change IDENTIFY data */ 2231 rc = ata_hpa_resize(dev); 2232 if (rc) 2233 return rc; 2234 2235 /* print device capabilities */ 2236 if (ata_msg_probe(ap)) 2237 ata_dev_dbg(dev, 2238 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2239 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2240 __func__, 2241 id[49], id[82], id[83], id[84], 2242 id[85], id[86], id[87], id[88]); 2243 2244 /* initialize to-be-configured parameters */ 2245 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2246 dev->max_sectors = 0; 2247 dev->cdb_len = 0; 2248 dev->n_sectors = 0; 2249 dev->cylinders = 0; 2250 dev->heads = 0; 2251 dev->sectors = 0; 2252 dev->multi_count = 0; 2253 2254 /* 2255 * common ATA, ATAPI feature tests 2256 */ 2257 2258 /* find max transfer mode; for printk only */ 2259 xfer_mask = ata_id_xfermask(id); 2260 2261 if (ata_msg_probe(ap)) 2262 ata_dump_id(id); 2263 2264 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2265 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2266 sizeof(fwrevbuf)); 2267 2268 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2269 sizeof(modelbuf)); 2270 2271 /* ATA-specific feature tests */ 2272 if (dev->class == ATA_DEV_ATA) { 2273 if (ata_id_is_cfa(id)) { 2274 /* CPRM may make this media unusable */ 2275 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2276 ata_dev_warn(dev, 2277 "supports DRM functions and may not be fully accessible\n"); 2278 snprintf(revbuf, 7, "CFA"); 2279 } else { 2280 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2281 /* Warn the user if the device has TPM extensions */ 2282 if (ata_id_has_tpm(id)) 2283 ata_dev_warn(dev, 2284 "supports DRM functions and may not be fully accessible\n"); 2285 } 2286 2287 dev->n_sectors = ata_id_n_sectors(id); 2288 2289 /* get current R/W Multiple count setting */ 2290 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2291 unsigned int max = dev->id[47] & 0xff; 2292 unsigned int cnt = dev->id[59] & 0xff; 2293 /* only recognize/allow powers of two here */ 2294 if (is_power_of_2(max) && is_power_of_2(cnt)) 2295 if (cnt <= max) 2296 dev->multi_count = cnt; 2297 } 2298 2299 if (ata_id_has_lba(id)) { 2300 const char *lba_desc; 2301 char ncq_desc[24]; 2302 2303 lba_desc = "LBA"; 2304 dev->flags |= ATA_DFLAG_LBA; 2305 if (ata_id_has_lba48(id)) { 2306 dev->flags |= ATA_DFLAG_LBA48; 2307 lba_desc = "LBA48"; 2308 2309 if (dev->n_sectors >= (1UL << 28) && 2310 ata_id_has_flush_ext(id)) 2311 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2312 } 2313 2314 /* config NCQ */ 2315 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2316 if (rc) 2317 return rc; 2318 2319 /* print device info to dmesg */ 2320 if (ata_msg_drv(ap) && print_info) { 2321 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2322 revbuf, modelbuf, fwrevbuf, 2323 ata_mode_string(xfer_mask)); 2324 ata_dev_info(dev, 2325 "%llu sectors, multi %u: %s %s\n", 2326 (unsigned long long)dev->n_sectors, 2327 dev->multi_count, lba_desc, ncq_desc); 2328 } 2329 } else { 2330 /* CHS */ 2331 2332 /* Default translation */ 2333 dev->cylinders = id[1]; 2334 dev->heads = id[3]; 2335 dev->sectors = id[6]; 2336 2337 if (ata_id_current_chs_valid(id)) { 2338 /* Current CHS translation is valid. */ 2339 dev->cylinders = id[54]; 2340 dev->heads = id[55]; 2341 dev->sectors = id[56]; 2342 } 2343 2344 /* print device info to dmesg */ 2345 if (ata_msg_drv(ap) && print_info) { 2346 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2347 revbuf, modelbuf, fwrevbuf, 2348 ata_mode_string(xfer_mask)); 2349 ata_dev_info(dev, 2350 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2351 (unsigned long long)dev->n_sectors, 2352 dev->multi_count, dev->cylinders, 2353 dev->heads, dev->sectors); 2354 } 2355 } 2356 2357 /* Check and mark DevSlp capability. Get DevSlp timing variables 2358 * from SATA Settings page of Identify Device Data Log. 2359 */ 2360 if (ata_id_has_devslp(dev->id)) { 2361 u8 *sata_setting = ap->sector_buf; 2362 int i, j; 2363 2364 dev->flags |= ATA_DFLAG_DEVSLP; 2365 err_mask = ata_read_log_page(dev, 2366 ATA_LOG_SATA_ID_DEV_DATA, 2367 ATA_LOG_SATA_SETTINGS, 2368 sata_setting, 2369 1); 2370 if (err_mask) 2371 ata_dev_dbg(dev, 2372 "failed to get Identify Device Data, Emask 0x%x\n", 2373 err_mask); 2374 else 2375 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2376 j = ATA_LOG_DEVSLP_OFFSET + i; 2377 dev->devslp_timing[i] = sata_setting[j]; 2378 } 2379 } 2380 2381 dev->cdb_len = 16; 2382 } 2383 2384 /* ATAPI-specific feature tests */ 2385 else if (dev->class == ATA_DEV_ATAPI) { 2386 const char *cdb_intr_string = ""; 2387 const char *atapi_an_string = ""; 2388 const char *dma_dir_string = ""; 2389 u32 sntf; 2390 2391 rc = atapi_cdb_len(id); 2392 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2393 if (ata_msg_warn(ap)) 2394 ata_dev_warn(dev, "unsupported CDB len\n"); 2395 rc = -EINVAL; 2396 goto err_out_nosup; 2397 } 2398 dev->cdb_len = (unsigned int) rc; 2399 2400 /* Enable ATAPI AN if both the host and device have 2401 * the support. If PMP is attached, SNTF is required 2402 * to enable ATAPI AN to discern between PHY status 2403 * changed notifications and ATAPI ANs. 2404 */ 2405 if (atapi_an && 2406 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2407 (!sata_pmp_attached(ap) || 2408 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2409 /* issue SET feature command to turn this on */ 2410 err_mask = ata_dev_set_feature(dev, 2411 SETFEATURES_SATA_ENABLE, SATA_AN); 2412 if (err_mask) 2413 ata_dev_err(dev, 2414 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2415 err_mask); 2416 else { 2417 dev->flags |= ATA_DFLAG_AN; 2418 atapi_an_string = ", ATAPI AN"; 2419 } 2420 } 2421 2422 if (ata_id_cdb_intr(dev->id)) { 2423 dev->flags |= ATA_DFLAG_CDB_INTR; 2424 cdb_intr_string = ", CDB intr"; 2425 } 2426 2427 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2428 dev->flags |= ATA_DFLAG_DMADIR; 2429 dma_dir_string = ", DMADIR"; 2430 } 2431 2432 if (ata_id_has_da(dev->id)) { 2433 dev->flags |= ATA_DFLAG_DA; 2434 zpodd_init(dev); 2435 } 2436 2437 /* print device info to dmesg */ 2438 if (ata_msg_drv(ap) && print_info) 2439 ata_dev_info(dev, 2440 "ATAPI: %s, %s, max %s%s%s%s\n", 2441 modelbuf, fwrevbuf, 2442 ata_mode_string(xfer_mask), 2443 cdb_intr_string, atapi_an_string, 2444 dma_dir_string); 2445 } 2446 2447 /* determine max_sectors */ 2448 dev->max_sectors = ATA_MAX_SECTORS; 2449 if (dev->flags & ATA_DFLAG_LBA48) 2450 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2451 2452 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2453 200 sectors */ 2454 if (ata_dev_knobble(dev)) { 2455 if (ata_msg_drv(ap) && print_info) 2456 ata_dev_info(dev, "applying bridge limits\n"); 2457 dev->udma_mask &= ATA_UDMA5; 2458 dev->max_sectors = ATA_MAX_SECTORS; 2459 } 2460 2461 if ((dev->class == ATA_DEV_ATAPI) && 2462 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2463 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2464 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2465 } 2466 2467 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2468 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2469 dev->max_sectors); 2470 2471 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2472 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2473 2474 if (ap->ops->dev_config) 2475 ap->ops->dev_config(dev); 2476 2477 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2478 /* Let the user know. We don't want to disallow opens for 2479 rescue purposes, or in case the vendor is just a blithering 2480 idiot. Do this after the dev_config call as some controllers 2481 with buggy firmware may want to avoid reporting false device 2482 bugs */ 2483 2484 if (print_info) { 2485 ata_dev_warn(dev, 2486 "Drive reports diagnostics failure. This may indicate a drive\n"); 2487 ata_dev_warn(dev, 2488 "fault or invalid emulation. Contact drive vendor for information.\n"); 2489 } 2490 } 2491 2492 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2493 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2494 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2495 } 2496 2497 return 0; 2498 2499 err_out_nosup: 2500 if (ata_msg_probe(ap)) 2501 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2502 return rc; 2503 } 2504 2505 /** 2506 * ata_cable_40wire - return 40 wire cable type 2507 * @ap: port 2508 * 2509 * Helper method for drivers which want to hardwire 40 wire cable 2510 * detection. 2511 */ 2512 2513 int ata_cable_40wire(struct ata_port *ap) 2514 { 2515 return ATA_CBL_PATA40; 2516 } 2517 2518 /** 2519 * ata_cable_80wire - return 80 wire cable type 2520 * @ap: port 2521 * 2522 * Helper method for drivers which want to hardwire 80 wire cable 2523 * detection. 2524 */ 2525 2526 int ata_cable_80wire(struct ata_port *ap) 2527 { 2528 return ATA_CBL_PATA80; 2529 } 2530 2531 /** 2532 * ata_cable_unknown - return unknown PATA cable. 2533 * @ap: port 2534 * 2535 * Helper method for drivers which have no PATA cable detection. 2536 */ 2537 2538 int ata_cable_unknown(struct ata_port *ap) 2539 { 2540 return ATA_CBL_PATA_UNK; 2541 } 2542 2543 /** 2544 * ata_cable_ignore - return ignored PATA cable. 2545 * @ap: port 2546 * 2547 * Helper method for drivers which don't use cable type to limit 2548 * transfer mode. 2549 */ 2550 int ata_cable_ignore(struct ata_port *ap) 2551 { 2552 return ATA_CBL_PATA_IGN; 2553 } 2554 2555 /** 2556 * ata_cable_sata - return SATA cable type 2557 * @ap: port 2558 * 2559 * Helper method for drivers which have SATA cables 2560 */ 2561 2562 int ata_cable_sata(struct ata_port *ap) 2563 { 2564 return ATA_CBL_SATA; 2565 } 2566 2567 /** 2568 * ata_bus_probe - Reset and probe ATA bus 2569 * @ap: Bus to probe 2570 * 2571 * Master ATA bus probing function. Initiates a hardware-dependent 2572 * bus reset, then attempts to identify any devices found on 2573 * the bus. 2574 * 2575 * LOCKING: 2576 * PCI/etc. bus probe sem. 2577 * 2578 * RETURNS: 2579 * Zero on success, negative errno otherwise. 2580 */ 2581 2582 int ata_bus_probe(struct ata_port *ap) 2583 { 2584 unsigned int classes[ATA_MAX_DEVICES]; 2585 int tries[ATA_MAX_DEVICES]; 2586 int rc; 2587 struct ata_device *dev; 2588 2589 ata_for_each_dev(dev, &ap->link, ALL) 2590 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2591 2592 retry: 2593 ata_for_each_dev(dev, &ap->link, ALL) { 2594 /* If we issue an SRST then an ATA drive (not ATAPI) 2595 * may change configuration and be in PIO0 timing. If 2596 * we do a hard reset (or are coming from power on) 2597 * this is true for ATA or ATAPI. Until we've set a 2598 * suitable controller mode we should not touch the 2599 * bus as we may be talking too fast. 2600 */ 2601 dev->pio_mode = XFER_PIO_0; 2602 dev->dma_mode = 0xff; 2603 2604 /* If the controller has a pio mode setup function 2605 * then use it to set the chipset to rights. Don't 2606 * touch the DMA setup as that will be dealt with when 2607 * configuring devices. 2608 */ 2609 if (ap->ops->set_piomode) 2610 ap->ops->set_piomode(ap, dev); 2611 } 2612 2613 /* reset and determine device classes */ 2614 ap->ops->phy_reset(ap); 2615 2616 ata_for_each_dev(dev, &ap->link, ALL) { 2617 if (dev->class != ATA_DEV_UNKNOWN) 2618 classes[dev->devno] = dev->class; 2619 else 2620 classes[dev->devno] = ATA_DEV_NONE; 2621 2622 dev->class = ATA_DEV_UNKNOWN; 2623 } 2624 2625 /* read IDENTIFY page and configure devices. We have to do the identify 2626 specific sequence bass-ackwards so that PDIAG- is released by 2627 the slave device */ 2628 2629 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2630 if (tries[dev->devno]) 2631 dev->class = classes[dev->devno]; 2632 2633 if (!ata_dev_enabled(dev)) 2634 continue; 2635 2636 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2637 dev->id); 2638 if (rc) 2639 goto fail; 2640 } 2641 2642 /* Now ask for the cable type as PDIAG- should have been released */ 2643 if (ap->ops->cable_detect) 2644 ap->cbl = ap->ops->cable_detect(ap); 2645 2646 /* We may have SATA bridge glue hiding here irrespective of 2647 * the reported cable types and sensed types. When SATA 2648 * drives indicate we have a bridge, we don't know which end 2649 * of the link the bridge is which is a problem. 2650 */ 2651 ata_for_each_dev(dev, &ap->link, ENABLED) 2652 if (ata_id_is_sata(dev->id)) 2653 ap->cbl = ATA_CBL_SATA; 2654 2655 /* After the identify sequence we can now set up the devices. We do 2656 this in the normal order so that the user doesn't get confused */ 2657 2658 ata_for_each_dev(dev, &ap->link, ENABLED) { 2659 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2660 rc = ata_dev_configure(dev); 2661 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2662 if (rc) 2663 goto fail; 2664 } 2665 2666 /* configure transfer mode */ 2667 rc = ata_set_mode(&ap->link, &dev); 2668 if (rc) 2669 goto fail; 2670 2671 ata_for_each_dev(dev, &ap->link, ENABLED) 2672 return 0; 2673 2674 return -ENODEV; 2675 2676 fail: 2677 tries[dev->devno]--; 2678 2679 switch (rc) { 2680 case -EINVAL: 2681 /* eeek, something went very wrong, give up */ 2682 tries[dev->devno] = 0; 2683 break; 2684 2685 case -ENODEV: 2686 /* give it just one more chance */ 2687 tries[dev->devno] = min(tries[dev->devno], 1); 2688 case -EIO: 2689 if (tries[dev->devno] == 1) { 2690 /* This is the last chance, better to slow 2691 * down than lose it. 2692 */ 2693 sata_down_spd_limit(&ap->link, 0); 2694 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2695 } 2696 } 2697 2698 if (!tries[dev->devno]) 2699 ata_dev_disable(dev); 2700 2701 goto retry; 2702 } 2703 2704 /** 2705 * sata_print_link_status - Print SATA link status 2706 * @link: SATA link to printk link status about 2707 * 2708 * This function prints link speed and status of a SATA link. 2709 * 2710 * LOCKING: 2711 * None. 2712 */ 2713 static void sata_print_link_status(struct ata_link *link) 2714 { 2715 u32 sstatus, scontrol, tmp; 2716 2717 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2718 return; 2719 sata_scr_read(link, SCR_CONTROL, &scontrol); 2720 2721 if (ata_phys_link_online(link)) { 2722 tmp = (sstatus >> 4) & 0xf; 2723 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2724 sata_spd_string(tmp), sstatus, scontrol); 2725 } else { 2726 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2727 sstatus, scontrol); 2728 } 2729 } 2730 2731 /** 2732 * ata_dev_pair - return other device on cable 2733 * @adev: device 2734 * 2735 * Obtain the other device on the same cable, or if none is 2736 * present NULL is returned 2737 */ 2738 2739 struct ata_device *ata_dev_pair(struct ata_device *adev) 2740 { 2741 struct ata_link *link = adev->link; 2742 struct ata_device *pair = &link->device[1 - adev->devno]; 2743 if (!ata_dev_enabled(pair)) 2744 return NULL; 2745 return pair; 2746 } 2747 2748 /** 2749 * sata_down_spd_limit - adjust SATA spd limit downward 2750 * @link: Link to adjust SATA spd limit for 2751 * @spd_limit: Additional limit 2752 * 2753 * Adjust SATA spd limit of @link downward. Note that this 2754 * function only adjusts the limit. The change must be applied 2755 * using sata_set_spd(). 2756 * 2757 * If @spd_limit is non-zero, the speed is limited to equal to or 2758 * lower than @spd_limit if such speed is supported. If 2759 * @spd_limit is slower than any supported speed, only the lowest 2760 * supported speed is allowed. 2761 * 2762 * LOCKING: 2763 * Inherited from caller. 2764 * 2765 * RETURNS: 2766 * 0 on success, negative errno on failure 2767 */ 2768 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2769 { 2770 u32 sstatus, spd, mask; 2771 int rc, bit; 2772 2773 if (!sata_scr_valid(link)) 2774 return -EOPNOTSUPP; 2775 2776 /* If SCR can be read, use it to determine the current SPD. 2777 * If not, use cached value in link->sata_spd. 2778 */ 2779 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2780 if (rc == 0 && ata_sstatus_online(sstatus)) 2781 spd = (sstatus >> 4) & 0xf; 2782 else 2783 spd = link->sata_spd; 2784 2785 mask = link->sata_spd_limit; 2786 if (mask <= 1) 2787 return -EINVAL; 2788 2789 /* unconditionally mask off the highest bit */ 2790 bit = fls(mask) - 1; 2791 mask &= ~(1 << bit); 2792 2793 /* Mask off all speeds higher than or equal to the current 2794 * one. Force 1.5Gbps if current SPD is not available. 2795 */ 2796 if (spd > 1) 2797 mask &= (1 << (spd - 1)) - 1; 2798 else 2799 mask &= 1; 2800 2801 /* were we already at the bottom? */ 2802 if (!mask) 2803 return -EINVAL; 2804 2805 if (spd_limit) { 2806 if (mask & ((1 << spd_limit) - 1)) 2807 mask &= (1 << spd_limit) - 1; 2808 else { 2809 bit = ffs(mask) - 1; 2810 mask = 1 << bit; 2811 } 2812 } 2813 2814 link->sata_spd_limit = mask; 2815 2816 ata_link_warn(link, "limiting SATA link speed to %s\n", 2817 sata_spd_string(fls(mask))); 2818 2819 return 0; 2820 } 2821 2822 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2823 { 2824 struct ata_link *host_link = &link->ap->link; 2825 u32 limit, target, spd; 2826 2827 limit = link->sata_spd_limit; 2828 2829 /* Don't configure downstream link faster than upstream link. 2830 * It doesn't speed up anything and some PMPs choke on such 2831 * configuration. 2832 */ 2833 if (!ata_is_host_link(link) && host_link->sata_spd) 2834 limit &= (1 << host_link->sata_spd) - 1; 2835 2836 if (limit == UINT_MAX) 2837 target = 0; 2838 else 2839 target = fls(limit); 2840 2841 spd = (*scontrol >> 4) & 0xf; 2842 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2843 2844 return spd != target; 2845 } 2846 2847 /** 2848 * sata_set_spd_needed - is SATA spd configuration needed 2849 * @link: Link in question 2850 * 2851 * Test whether the spd limit in SControl matches 2852 * @link->sata_spd_limit. This function is used to determine 2853 * whether hardreset is necessary to apply SATA spd 2854 * configuration. 2855 * 2856 * LOCKING: 2857 * Inherited from caller. 2858 * 2859 * RETURNS: 2860 * 1 if SATA spd configuration is needed, 0 otherwise. 2861 */ 2862 static int sata_set_spd_needed(struct ata_link *link) 2863 { 2864 u32 scontrol; 2865 2866 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2867 return 1; 2868 2869 return __sata_set_spd_needed(link, &scontrol); 2870 } 2871 2872 /** 2873 * sata_set_spd - set SATA spd according to spd limit 2874 * @link: Link to set SATA spd for 2875 * 2876 * Set SATA spd of @link according to sata_spd_limit. 2877 * 2878 * LOCKING: 2879 * Inherited from caller. 2880 * 2881 * RETURNS: 2882 * 0 if spd doesn't need to be changed, 1 if spd has been 2883 * changed. Negative errno if SCR registers are inaccessible. 2884 */ 2885 int sata_set_spd(struct ata_link *link) 2886 { 2887 u32 scontrol; 2888 int rc; 2889 2890 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2891 return rc; 2892 2893 if (!__sata_set_spd_needed(link, &scontrol)) 2894 return 0; 2895 2896 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2897 return rc; 2898 2899 return 1; 2900 } 2901 2902 /* 2903 * This mode timing computation functionality is ported over from 2904 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2905 */ 2906 /* 2907 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2908 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2909 * for UDMA6, which is currently supported only by Maxtor drives. 2910 * 2911 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2912 */ 2913 2914 static const struct ata_timing ata_timing[] = { 2915 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2916 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2917 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2918 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2919 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2920 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2921 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2922 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2923 2924 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2925 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2926 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2927 2928 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2929 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2930 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2931 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2932 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2933 2934 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2935 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2936 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2937 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2938 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2939 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2940 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2941 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2942 2943 { 0xFF } 2944 }; 2945 2946 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2947 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2948 2949 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2950 { 2951 q->setup = EZ(t->setup * 1000, T); 2952 q->act8b = EZ(t->act8b * 1000, T); 2953 q->rec8b = EZ(t->rec8b * 1000, T); 2954 q->cyc8b = EZ(t->cyc8b * 1000, T); 2955 q->active = EZ(t->active * 1000, T); 2956 q->recover = EZ(t->recover * 1000, T); 2957 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2958 q->cycle = EZ(t->cycle * 1000, T); 2959 q->udma = EZ(t->udma * 1000, UT); 2960 } 2961 2962 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2963 struct ata_timing *m, unsigned int what) 2964 { 2965 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2966 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2967 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2968 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2969 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2970 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2971 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2972 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2973 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2974 } 2975 2976 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2977 { 2978 const struct ata_timing *t = ata_timing; 2979 2980 while (xfer_mode > t->mode) 2981 t++; 2982 2983 if (xfer_mode == t->mode) 2984 return t; 2985 2986 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2987 __func__, xfer_mode); 2988 2989 return NULL; 2990 } 2991 2992 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2993 struct ata_timing *t, int T, int UT) 2994 { 2995 const u16 *id = adev->id; 2996 const struct ata_timing *s; 2997 struct ata_timing p; 2998 2999 /* 3000 * Find the mode. 3001 */ 3002 3003 if (!(s = ata_timing_find_mode(speed))) 3004 return -EINVAL; 3005 3006 memcpy(t, s, sizeof(*s)); 3007 3008 /* 3009 * If the drive is an EIDE drive, it can tell us it needs extended 3010 * PIO/MW_DMA cycle timing. 3011 */ 3012 3013 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3014 memset(&p, 0, sizeof(p)); 3015 3016 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3017 if (speed <= XFER_PIO_2) 3018 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3019 else if ((speed <= XFER_PIO_4) || 3020 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3021 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3022 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3023 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3024 3025 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3026 } 3027 3028 /* 3029 * Convert the timing to bus clock counts. 3030 */ 3031 3032 ata_timing_quantize(t, t, T, UT); 3033 3034 /* 3035 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3036 * S.M.A.R.T * and some other commands. We have to ensure that the 3037 * DMA cycle timing is slower/equal than the fastest PIO timing. 3038 */ 3039 3040 if (speed > XFER_PIO_6) { 3041 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3042 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3043 } 3044 3045 /* 3046 * Lengthen active & recovery time so that cycle time is correct. 3047 */ 3048 3049 if (t->act8b + t->rec8b < t->cyc8b) { 3050 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3051 t->rec8b = t->cyc8b - t->act8b; 3052 } 3053 3054 if (t->active + t->recover < t->cycle) { 3055 t->active += (t->cycle - (t->active + t->recover)) / 2; 3056 t->recover = t->cycle - t->active; 3057 } 3058 3059 /* In a few cases quantisation may produce enough errors to 3060 leave t->cycle too low for the sum of active and recovery 3061 if so we must correct this */ 3062 if (t->active + t->recover > t->cycle) 3063 t->cycle = t->active + t->recover; 3064 3065 return 0; 3066 } 3067 3068 /** 3069 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3070 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3071 * @cycle: cycle duration in ns 3072 * 3073 * Return matching xfer mode for @cycle. The returned mode is of 3074 * the transfer type specified by @xfer_shift. If @cycle is too 3075 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3076 * than the fastest known mode, the fasted mode is returned. 3077 * 3078 * LOCKING: 3079 * None. 3080 * 3081 * RETURNS: 3082 * Matching xfer_mode, 0xff if no match found. 3083 */ 3084 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3085 { 3086 u8 base_mode = 0xff, last_mode = 0xff; 3087 const struct ata_xfer_ent *ent; 3088 const struct ata_timing *t; 3089 3090 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3091 if (ent->shift == xfer_shift) 3092 base_mode = ent->base; 3093 3094 for (t = ata_timing_find_mode(base_mode); 3095 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3096 unsigned short this_cycle; 3097 3098 switch (xfer_shift) { 3099 case ATA_SHIFT_PIO: 3100 case ATA_SHIFT_MWDMA: 3101 this_cycle = t->cycle; 3102 break; 3103 case ATA_SHIFT_UDMA: 3104 this_cycle = t->udma; 3105 break; 3106 default: 3107 return 0xff; 3108 } 3109 3110 if (cycle > this_cycle) 3111 break; 3112 3113 last_mode = t->mode; 3114 } 3115 3116 return last_mode; 3117 } 3118 3119 /** 3120 * ata_down_xfermask_limit - adjust dev xfer masks downward 3121 * @dev: Device to adjust xfer masks 3122 * @sel: ATA_DNXFER_* selector 3123 * 3124 * Adjust xfer masks of @dev downward. Note that this function 3125 * does not apply the change. Invoking ata_set_mode() afterwards 3126 * will apply the limit. 3127 * 3128 * LOCKING: 3129 * Inherited from caller. 3130 * 3131 * RETURNS: 3132 * 0 on success, negative errno on failure 3133 */ 3134 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3135 { 3136 char buf[32]; 3137 unsigned long orig_mask, xfer_mask; 3138 unsigned long pio_mask, mwdma_mask, udma_mask; 3139 int quiet, highbit; 3140 3141 quiet = !!(sel & ATA_DNXFER_QUIET); 3142 sel &= ~ATA_DNXFER_QUIET; 3143 3144 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3145 dev->mwdma_mask, 3146 dev->udma_mask); 3147 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3148 3149 switch (sel) { 3150 case ATA_DNXFER_PIO: 3151 highbit = fls(pio_mask) - 1; 3152 pio_mask &= ~(1 << highbit); 3153 break; 3154 3155 case ATA_DNXFER_DMA: 3156 if (udma_mask) { 3157 highbit = fls(udma_mask) - 1; 3158 udma_mask &= ~(1 << highbit); 3159 if (!udma_mask) 3160 return -ENOENT; 3161 } else if (mwdma_mask) { 3162 highbit = fls(mwdma_mask) - 1; 3163 mwdma_mask &= ~(1 << highbit); 3164 if (!mwdma_mask) 3165 return -ENOENT; 3166 } 3167 break; 3168 3169 case ATA_DNXFER_40C: 3170 udma_mask &= ATA_UDMA_MASK_40C; 3171 break; 3172 3173 case ATA_DNXFER_FORCE_PIO0: 3174 pio_mask &= 1; 3175 case ATA_DNXFER_FORCE_PIO: 3176 mwdma_mask = 0; 3177 udma_mask = 0; 3178 break; 3179 3180 default: 3181 BUG(); 3182 } 3183 3184 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3185 3186 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3187 return -ENOENT; 3188 3189 if (!quiet) { 3190 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3191 snprintf(buf, sizeof(buf), "%s:%s", 3192 ata_mode_string(xfer_mask), 3193 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3194 else 3195 snprintf(buf, sizeof(buf), "%s", 3196 ata_mode_string(xfer_mask)); 3197 3198 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3199 } 3200 3201 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3202 &dev->udma_mask); 3203 3204 return 0; 3205 } 3206 3207 static int ata_dev_set_mode(struct ata_device *dev) 3208 { 3209 struct ata_port *ap = dev->link->ap; 3210 struct ata_eh_context *ehc = &dev->link->eh_context; 3211 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3212 const char *dev_err_whine = ""; 3213 int ign_dev_err = 0; 3214 unsigned int err_mask = 0; 3215 int rc; 3216 3217 dev->flags &= ~ATA_DFLAG_PIO; 3218 if (dev->xfer_shift == ATA_SHIFT_PIO) 3219 dev->flags |= ATA_DFLAG_PIO; 3220 3221 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3222 dev_err_whine = " (SET_XFERMODE skipped)"; 3223 else { 3224 if (nosetxfer) 3225 ata_dev_warn(dev, 3226 "NOSETXFER but PATA detected - can't " 3227 "skip SETXFER, might malfunction\n"); 3228 err_mask = ata_dev_set_xfermode(dev); 3229 } 3230 3231 if (err_mask & ~AC_ERR_DEV) 3232 goto fail; 3233 3234 /* revalidate */ 3235 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3236 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3237 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3238 if (rc) 3239 return rc; 3240 3241 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3242 /* Old CFA may refuse this command, which is just fine */ 3243 if (ata_id_is_cfa(dev->id)) 3244 ign_dev_err = 1; 3245 /* Catch several broken garbage emulations plus some pre 3246 ATA devices */ 3247 if (ata_id_major_version(dev->id) == 0 && 3248 dev->pio_mode <= XFER_PIO_2) 3249 ign_dev_err = 1; 3250 /* Some very old devices and some bad newer ones fail 3251 any kind of SET_XFERMODE request but support PIO0-2 3252 timings and no IORDY */ 3253 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3254 ign_dev_err = 1; 3255 } 3256 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3257 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3258 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3259 dev->dma_mode == XFER_MW_DMA_0 && 3260 (dev->id[63] >> 8) & 1) 3261 ign_dev_err = 1; 3262 3263 /* if the device is actually configured correctly, ignore dev err */ 3264 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3265 ign_dev_err = 1; 3266 3267 if (err_mask & AC_ERR_DEV) { 3268 if (!ign_dev_err) 3269 goto fail; 3270 else 3271 dev_err_whine = " (device error ignored)"; 3272 } 3273 3274 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3275 dev->xfer_shift, (int)dev->xfer_mode); 3276 3277 ata_dev_info(dev, "configured for %s%s\n", 3278 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3279 dev_err_whine); 3280 3281 return 0; 3282 3283 fail: 3284 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3285 return -EIO; 3286 } 3287 3288 /** 3289 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3290 * @link: link on which timings will be programmed 3291 * @r_failed_dev: out parameter for failed device 3292 * 3293 * Standard implementation of the function used to tune and set 3294 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3295 * ata_dev_set_mode() fails, pointer to the failing device is 3296 * returned in @r_failed_dev. 3297 * 3298 * LOCKING: 3299 * PCI/etc. bus probe sem. 3300 * 3301 * RETURNS: 3302 * 0 on success, negative errno otherwise 3303 */ 3304 3305 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3306 { 3307 struct ata_port *ap = link->ap; 3308 struct ata_device *dev; 3309 int rc = 0, used_dma = 0, found = 0; 3310 3311 /* step 1: calculate xfer_mask */ 3312 ata_for_each_dev(dev, link, ENABLED) { 3313 unsigned long pio_mask, dma_mask; 3314 unsigned int mode_mask; 3315 3316 mode_mask = ATA_DMA_MASK_ATA; 3317 if (dev->class == ATA_DEV_ATAPI) 3318 mode_mask = ATA_DMA_MASK_ATAPI; 3319 else if (ata_id_is_cfa(dev->id)) 3320 mode_mask = ATA_DMA_MASK_CFA; 3321 3322 ata_dev_xfermask(dev); 3323 ata_force_xfermask(dev); 3324 3325 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3326 3327 if (libata_dma_mask & mode_mask) 3328 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3329 dev->udma_mask); 3330 else 3331 dma_mask = 0; 3332 3333 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3334 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3335 3336 found = 1; 3337 if (ata_dma_enabled(dev)) 3338 used_dma = 1; 3339 } 3340 if (!found) 3341 goto out; 3342 3343 /* step 2: always set host PIO timings */ 3344 ata_for_each_dev(dev, link, ENABLED) { 3345 if (dev->pio_mode == 0xff) { 3346 ata_dev_warn(dev, "no PIO support\n"); 3347 rc = -EINVAL; 3348 goto out; 3349 } 3350 3351 dev->xfer_mode = dev->pio_mode; 3352 dev->xfer_shift = ATA_SHIFT_PIO; 3353 if (ap->ops->set_piomode) 3354 ap->ops->set_piomode(ap, dev); 3355 } 3356 3357 /* step 3: set host DMA timings */ 3358 ata_for_each_dev(dev, link, ENABLED) { 3359 if (!ata_dma_enabled(dev)) 3360 continue; 3361 3362 dev->xfer_mode = dev->dma_mode; 3363 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3364 if (ap->ops->set_dmamode) 3365 ap->ops->set_dmamode(ap, dev); 3366 } 3367 3368 /* step 4: update devices' xfer mode */ 3369 ata_for_each_dev(dev, link, ENABLED) { 3370 rc = ata_dev_set_mode(dev); 3371 if (rc) 3372 goto out; 3373 } 3374 3375 /* Record simplex status. If we selected DMA then the other 3376 * host channels are not permitted to do so. 3377 */ 3378 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3379 ap->host->simplex_claimed = ap; 3380 3381 out: 3382 if (rc) 3383 *r_failed_dev = dev; 3384 return rc; 3385 } 3386 3387 /** 3388 * ata_wait_ready - wait for link to become ready 3389 * @link: link to be waited on 3390 * @deadline: deadline jiffies for the operation 3391 * @check_ready: callback to check link readiness 3392 * 3393 * Wait for @link to become ready. @check_ready should return 3394 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3395 * link doesn't seem to be occupied, other errno for other error 3396 * conditions. 3397 * 3398 * Transient -ENODEV conditions are allowed for 3399 * ATA_TMOUT_FF_WAIT. 3400 * 3401 * LOCKING: 3402 * EH context. 3403 * 3404 * RETURNS: 3405 * 0 if @linke is ready before @deadline; otherwise, -errno. 3406 */ 3407 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3408 int (*check_ready)(struct ata_link *link)) 3409 { 3410 unsigned long start = jiffies; 3411 unsigned long nodev_deadline; 3412 int warned = 0; 3413 3414 /* choose which 0xff timeout to use, read comment in libata.h */ 3415 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3416 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3417 else 3418 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3419 3420 /* Slave readiness can't be tested separately from master. On 3421 * M/S emulation configuration, this function should be called 3422 * only on the master and it will handle both master and slave. 3423 */ 3424 WARN_ON(link == link->ap->slave_link); 3425 3426 if (time_after(nodev_deadline, deadline)) 3427 nodev_deadline = deadline; 3428 3429 while (1) { 3430 unsigned long now = jiffies; 3431 int ready, tmp; 3432 3433 ready = tmp = check_ready(link); 3434 if (ready > 0) 3435 return 0; 3436 3437 /* 3438 * -ENODEV could be transient. Ignore -ENODEV if link 3439 * is online. Also, some SATA devices take a long 3440 * time to clear 0xff after reset. Wait for 3441 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3442 * offline. 3443 * 3444 * Note that some PATA controllers (pata_ali) explode 3445 * if status register is read more than once when 3446 * there's no device attached. 3447 */ 3448 if (ready == -ENODEV) { 3449 if (ata_link_online(link)) 3450 ready = 0; 3451 else if ((link->ap->flags & ATA_FLAG_SATA) && 3452 !ata_link_offline(link) && 3453 time_before(now, nodev_deadline)) 3454 ready = 0; 3455 } 3456 3457 if (ready) 3458 return ready; 3459 if (time_after(now, deadline)) 3460 return -EBUSY; 3461 3462 if (!warned && time_after(now, start + 5 * HZ) && 3463 (deadline - now > 3 * HZ)) { 3464 ata_link_warn(link, 3465 "link is slow to respond, please be patient " 3466 "(ready=%d)\n", tmp); 3467 warned = 1; 3468 } 3469 3470 ata_msleep(link->ap, 50); 3471 } 3472 } 3473 3474 /** 3475 * ata_wait_after_reset - wait for link to become ready after reset 3476 * @link: link to be waited on 3477 * @deadline: deadline jiffies for the operation 3478 * @check_ready: callback to check link readiness 3479 * 3480 * Wait for @link to become ready after reset. 3481 * 3482 * LOCKING: 3483 * EH context. 3484 * 3485 * RETURNS: 3486 * 0 if @linke is ready before @deadline; otherwise, -errno. 3487 */ 3488 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3489 int (*check_ready)(struct ata_link *link)) 3490 { 3491 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3492 3493 return ata_wait_ready(link, deadline, check_ready); 3494 } 3495 3496 /** 3497 * sata_link_debounce - debounce SATA phy status 3498 * @link: ATA link to debounce SATA phy status for 3499 * @params: timing parameters { interval, duratinon, timeout } in msec 3500 * @deadline: deadline jiffies for the operation 3501 * 3502 * Make sure SStatus of @link reaches stable state, determined by 3503 * holding the same value where DET is not 1 for @duration polled 3504 * every @interval, before @timeout. Timeout constraints the 3505 * beginning of the stable state. Because DET gets stuck at 1 on 3506 * some controllers after hot unplugging, this functions waits 3507 * until timeout then returns 0 if DET is stable at 1. 3508 * 3509 * @timeout is further limited by @deadline. The sooner of the 3510 * two is used. 3511 * 3512 * LOCKING: 3513 * Kernel thread context (may sleep) 3514 * 3515 * RETURNS: 3516 * 0 on success, -errno on failure. 3517 */ 3518 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3519 unsigned long deadline) 3520 { 3521 unsigned long interval = params[0]; 3522 unsigned long duration = params[1]; 3523 unsigned long last_jiffies, t; 3524 u32 last, cur; 3525 int rc; 3526 3527 t = ata_deadline(jiffies, params[2]); 3528 if (time_before(t, deadline)) 3529 deadline = t; 3530 3531 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3532 return rc; 3533 cur &= 0xf; 3534 3535 last = cur; 3536 last_jiffies = jiffies; 3537 3538 while (1) { 3539 ata_msleep(link->ap, interval); 3540 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3541 return rc; 3542 cur &= 0xf; 3543 3544 /* DET stable? */ 3545 if (cur == last) { 3546 if (cur == 1 && time_before(jiffies, deadline)) 3547 continue; 3548 if (time_after(jiffies, 3549 ata_deadline(last_jiffies, duration))) 3550 return 0; 3551 continue; 3552 } 3553 3554 /* unstable, start over */ 3555 last = cur; 3556 last_jiffies = jiffies; 3557 3558 /* Check deadline. If debouncing failed, return 3559 * -EPIPE to tell upper layer to lower link speed. 3560 */ 3561 if (time_after(jiffies, deadline)) 3562 return -EPIPE; 3563 } 3564 } 3565 3566 /** 3567 * sata_link_resume - resume SATA link 3568 * @link: ATA link to resume SATA 3569 * @params: timing parameters { interval, duratinon, timeout } in msec 3570 * @deadline: deadline jiffies for the operation 3571 * 3572 * Resume SATA phy @link and debounce it. 3573 * 3574 * LOCKING: 3575 * Kernel thread context (may sleep) 3576 * 3577 * RETURNS: 3578 * 0 on success, -errno on failure. 3579 */ 3580 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3581 unsigned long deadline) 3582 { 3583 int tries = ATA_LINK_RESUME_TRIES; 3584 u32 scontrol, serror; 3585 int rc; 3586 3587 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3588 return rc; 3589 3590 /* 3591 * Writes to SControl sometimes get ignored under certain 3592 * controllers (ata_piix SIDPR). Make sure DET actually is 3593 * cleared. 3594 */ 3595 do { 3596 scontrol = (scontrol & 0x0f0) | 0x300; 3597 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3598 return rc; 3599 /* 3600 * Some PHYs react badly if SStatus is pounded 3601 * immediately after resuming. Delay 200ms before 3602 * debouncing. 3603 */ 3604 ata_msleep(link->ap, 200); 3605 3606 /* is SControl restored correctly? */ 3607 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3608 return rc; 3609 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3610 3611 if ((scontrol & 0xf0f) != 0x300) { 3612 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3613 scontrol); 3614 return 0; 3615 } 3616 3617 if (tries < ATA_LINK_RESUME_TRIES) 3618 ata_link_warn(link, "link resume succeeded after %d retries\n", 3619 ATA_LINK_RESUME_TRIES - tries); 3620 3621 if ((rc = sata_link_debounce(link, params, deadline))) 3622 return rc; 3623 3624 /* clear SError, some PHYs require this even for SRST to work */ 3625 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3626 rc = sata_scr_write(link, SCR_ERROR, serror); 3627 3628 return rc != -EINVAL ? rc : 0; 3629 } 3630 3631 /** 3632 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3633 * @link: ATA link to manipulate SControl for 3634 * @policy: LPM policy to configure 3635 * @spm_wakeup: initiate LPM transition to active state 3636 * 3637 * Manipulate the IPM field of the SControl register of @link 3638 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3639 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3640 * the link. This function also clears PHYRDY_CHG before 3641 * returning. 3642 * 3643 * LOCKING: 3644 * EH context. 3645 * 3646 * RETURNS: 3647 * 0 on succes, -errno otherwise. 3648 */ 3649 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3650 bool spm_wakeup) 3651 { 3652 struct ata_eh_context *ehc = &link->eh_context; 3653 bool woken_up = false; 3654 u32 scontrol; 3655 int rc; 3656 3657 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3658 if (rc) 3659 return rc; 3660 3661 switch (policy) { 3662 case ATA_LPM_MAX_POWER: 3663 /* disable all LPM transitions */ 3664 scontrol |= (0x7 << 8); 3665 /* initiate transition to active state */ 3666 if (spm_wakeup) { 3667 scontrol |= (0x4 << 12); 3668 woken_up = true; 3669 } 3670 break; 3671 case ATA_LPM_MED_POWER: 3672 /* allow LPM to PARTIAL */ 3673 scontrol &= ~(0x1 << 8); 3674 scontrol |= (0x6 << 8); 3675 break; 3676 case ATA_LPM_MIN_POWER: 3677 if (ata_link_nr_enabled(link) > 0) 3678 /* no restrictions on LPM transitions */ 3679 scontrol &= ~(0x7 << 8); 3680 else { 3681 /* empty port, power off */ 3682 scontrol &= ~0xf; 3683 scontrol |= (0x1 << 2); 3684 } 3685 break; 3686 default: 3687 WARN_ON(1); 3688 } 3689 3690 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3691 if (rc) 3692 return rc; 3693 3694 /* give the link time to transit out of LPM state */ 3695 if (woken_up) 3696 msleep(10); 3697 3698 /* clear PHYRDY_CHG from SError */ 3699 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3700 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3701 } 3702 3703 /** 3704 * ata_std_prereset - prepare for reset 3705 * @link: ATA link to be reset 3706 * @deadline: deadline jiffies for the operation 3707 * 3708 * @link is about to be reset. Initialize it. Failure from 3709 * prereset makes libata abort whole reset sequence and give up 3710 * that port, so prereset should be best-effort. It does its 3711 * best to prepare for reset sequence but if things go wrong, it 3712 * should just whine, not fail. 3713 * 3714 * LOCKING: 3715 * Kernel thread context (may sleep) 3716 * 3717 * RETURNS: 3718 * 0 on success, -errno otherwise. 3719 */ 3720 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3721 { 3722 struct ata_port *ap = link->ap; 3723 struct ata_eh_context *ehc = &link->eh_context; 3724 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3725 int rc; 3726 3727 /* if we're about to do hardreset, nothing more to do */ 3728 if (ehc->i.action & ATA_EH_HARDRESET) 3729 return 0; 3730 3731 /* if SATA, resume link */ 3732 if (ap->flags & ATA_FLAG_SATA) { 3733 rc = sata_link_resume(link, timing, deadline); 3734 /* whine about phy resume failure but proceed */ 3735 if (rc && rc != -EOPNOTSUPP) 3736 ata_link_warn(link, 3737 "failed to resume link for reset (errno=%d)\n", 3738 rc); 3739 } 3740 3741 /* no point in trying softreset on offline link */ 3742 if (ata_phys_link_offline(link)) 3743 ehc->i.action &= ~ATA_EH_SOFTRESET; 3744 3745 return 0; 3746 } 3747 3748 /** 3749 * sata_link_hardreset - reset link via SATA phy reset 3750 * @link: link to reset 3751 * @timing: timing parameters { interval, duratinon, timeout } in msec 3752 * @deadline: deadline jiffies for the operation 3753 * @online: optional out parameter indicating link onlineness 3754 * @check_ready: optional callback to check link readiness 3755 * 3756 * SATA phy-reset @link using DET bits of SControl register. 3757 * After hardreset, link readiness is waited upon using 3758 * ata_wait_ready() if @check_ready is specified. LLDs are 3759 * allowed to not specify @check_ready and wait itself after this 3760 * function returns. Device classification is LLD's 3761 * responsibility. 3762 * 3763 * *@online is set to one iff reset succeeded and @link is online 3764 * after reset. 3765 * 3766 * LOCKING: 3767 * Kernel thread context (may sleep) 3768 * 3769 * RETURNS: 3770 * 0 on success, -errno otherwise. 3771 */ 3772 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3773 unsigned long deadline, 3774 bool *online, int (*check_ready)(struct ata_link *)) 3775 { 3776 u32 scontrol; 3777 int rc; 3778 3779 DPRINTK("ENTER\n"); 3780 3781 if (online) 3782 *online = false; 3783 3784 if (sata_set_spd_needed(link)) { 3785 /* SATA spec says nothing about how to reconfigure 3786 * spd. To be on the safe side, turn off phy during 3787 * reconfiguration. This works for at least ICH7 AHCI 3788 * and Sil3124. 3789 */ 3790 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3791 goto out; 3792 3793 scontrol = (scontrol & 0x0f0) | 0x304; 3794 3795 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3796 goto out; 3797 3798 sata_set_spd(link); 3799 } 3800 3801 /* issue phy wake/reset */ 3802 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3803 goto out; 3804 3805 scontrol = (scontrol & 0x0f0) | 0x301; 3806 3807 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3808 goto out; 3809 3810 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3811 * 10.4.2 says at least 1 ms. 3812 */ 3813 ata_msleep(link->ap, 1); 3814 3815 /* bring link back */ 3816 rc = sata_link_resume(link, timing, deadline); 3817 if (rc) 3818 goto out; 3819 /* if link is offline nothing more to do */ 3820 if (ata_phys_link_offline(link)) 3821 goto out; 3822 3823 /* Link is online. From this point, -ENODEV too is an error. */ 3824 if (online) 3825 *online = true; 3826 3827 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3828 /* If PMP is supported, we have to do follow-up SRST. 3829 * Some PMPs don't send D2H Reg FIS after hardreset if 3830 * the first port is empty. Wait only for 3831 * ATA_TMOUT_PMP_SRST_WAIT. 3832 */ 3833 if (check_ready) { 3834 unsigned long pmp_deadline; 3835 3836 pmp_deadline = ata_deadline(jiffies, 3837 ATA_TMOUT_PMP_SRST_WAIT); 3838 if (time_after(pmp_deadline, deadline)) 3839 pmp_deadline = deadline; 3840 ata_wait_ready(link, pmp_deadline, check_ready); 3841 } 3842 rc = -EAGAIN; 3843 goto out; 3844 } 3845 3846 rc = 0; 3847 if (check_ready) 3848 rc = ata_wait_ready(link, deadline, check_ready); 3849 out: 3850 if (rc && rc != -EAGAIN) { 3851 /* online is set iff link is online && reset succeeded */ 3852 if (online) 3853 *online = false; 3854 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3855 } 3856 DPRINTK("EXIT, rc=%d\n", rc); 3857 return rc; 3858 } 3859 3860 /** 3861 * sata_std_hardreset - COMRESET w/o waiting or classification 3862 * @link: link to reset 3863 * @class: resulting class of attached device 3864 * @deadline: deadline jiffies for the operation 3865 * 3866 * Standard SATA COMRESET w/o waiting or classification. 3867 * 3868 * LOCKING: 3869 * Kernel thread context (may sleep) 3870 * 3871 * RETURNS: 3872 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3873 */ 3874 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3875 unsigned long deadline) 3876 { 3877 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3878 bool online; 3879 int rc; 3880 3881 /* do hardreset */ 3882 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3883 return online ? -EAGAIN : rc; 3884 } 3885 3886 /** 3887 * ata_std_postreset - standard postreset callback 3888 * @link: the target ata_link 3889 * @classes: classes of attached devices 3890 * 3891 * This function is invoked after a successful reset. Note that 3892 * the device might have been reset more than once using 3893 * different reset methods before postreset is invoked. 3894 * 3895 * LOCKING: 3896 * Kernel thread context (may sleep) 3897 */ 3898 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3899 { 3900 u32 serror; 3901 3902 DPRINTK("ENTER\n"); 3903 3904 /* reset complete, clear SError */ 3905 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3906 sata_scr_write(link, SCR_ERROR, serror); 3907 3908 /* print link status */ 3909 sata_print_link_status(link); 3910 3911 DPRINTK("EXIT\n"); 3912 } 3913 3914 /** 3915 * ata_dev_same_device - Determine whether new ID matches configured device 3916 * @dev: device to compare against 3917 * @new_class: class of the new device 3918 * @new_id: IDENTIFY page of the new device 3919 * 3920 * Compare @new_class and @new_id against @dev and determine 3921 * whether @dev is the device indicated by @new_class and 3922 * @new_id. 3923 * 3924 * LOCKING: 3925 * None. 3926 * 3927 * RETURNS: 3928 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3929 */ 3930 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3931 const u16 *new_id) 3932 { 3933 const u16 *old_id = dev->id; 3934 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3935 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3936 3937 if (dev->class != new_class) { 3938 ata_dev_info(dev, "class mismatch %d != %d\n", 3939 dev->class, new_class); 3940 return 0; 3941 } 3942 3943 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3944 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3945 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3946 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3947 3948 if (strcmp(model[0], model[1])) { 3949 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3950 model[0], model[1]); 3951 return 0; 3952 } 3953 3954 if (strcmp(serial[0], serial[1])) { 3955 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3956 serial[0], serial[1]); 3957 return 0; 3958 } 3959 3960 return 1; 3961 } 3962 3963 /** 3964 * ata_dev_reread_id - Re-read IDENTIFY data 3965 * @dev: target ATA device 3966 * @readid_flags: read ID flags 3967 * 3968 * Re-read IDENTIFY page and make sure @dev is still attached to 3969 * the port. 3970 * 3971 * LOCKING: 3972 * Kernel thread context (may sleep) 3973 * 3974 * RETURNS: 3975 * 0 on success, negative errno otherwise 3976 */ 3977 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3978 { 3979 unsigned int class = dev->class; 3980 u16 *id = (void *)dev->link->ap->sector_buf; 3981 int rc; 3982 3983 /* read ID data */ 3984 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3985 if (rc) 3986 return rc; 3987 3988 /* is the device still there? */ 3989 if (!ata_dev_same_device(dev, class, id)) 3990 return -ENODEV; 3991 3992 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3993 return 0; 3994 } 3995 3996 /** 3997 * ata_dev_revalidate - Revalidate ATA device 3998 * @dev: device to revalidate 3999 * @new_class: new class code 4000 * @readid_flags: read ID flags 4001 * 4002 * Re-read IDENTIFY page, make sure @dev is still attached to the 4003 * port and reconfigure it according to the new IDENTIFY page. 4004 * 4005 * LOCKING: 4006 * Kernel thread context (may sleep) 4007 * 4008 * RETURNS: 4009 * 0 on success, negative errno otherwise 4010 */ 4011 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4012 unsigned int readid_flags) 4013 { 4014 u64 n_sectors = dev->n_sectors; 4015 u64 n_native_sectors = dev->n_native_sectors; 4016 int rc; 4017 4018 if (!ata_dev_enabled(dev)) 4019 return -ENODEV; 4020 4021 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4022 if (ata_class_enabled(new_class) && 4023 new_class != ATA_DEV_ATA && 4024 new_class != ATA_DEV_ATAPI && 4025 new_class != ATA_DEV_SEMB) { 4026 ata_dev_info(dev, "class mismatch %u != %u\n", 4027 dev->class, new_class); 4028 rc = -ENODEV; 4029 goto fail; 4030 } 4031 4032 /* re-read ID */ 4033 rc = ata_dev_reread_id(dev, readid_flags); 4034 if (rc) 4035 goto fail; 4036 4037 /* configure device according to the new ID */ 4038 rc = ata_dev_configure(dev); 4039 if (rc) 4040 goto fail; 4041 4042 /* verify n_sectors hasn't changed */ 4043 if (dev->class != ATA_DEV_ATA || !n_sectors || 4044 dev->n_sectors == n_sectors) 4045 return 0; 4046 4047 /* n_sectors has changed */ 4048 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4049 (unsigned long long)n_sectors, 4050 (unsigned long long)dev->n_sectors); 4051 4052 /* 4053 * Something could have caused HPA to be unlocked 4054 * involuntarily. If n_native_sectors hasn't changed and the 4055 * new size matches it, keep the device. 4056 */ 4057 if (dev->n_native_sectors == n_native_sectors && 4058 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4059 ata_dev_warn(dev, 4060 "new n_sectors matches native, probably " 4061 "late HPA unlock, n_sectors updated\n"); 4062 /* use the larger n_sectors */ 4063 return 0; 4064 } 4065 4066 /* 4067 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4068 * unlocking HPA in those cases. 4069 * 4070 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4071 */ 4072 if (dev->n_native_sectors == n_native_sectors && 4073 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4074 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4075 ata_dev_warn(dev, 4076 "old n_sectors matches native, probably " 4077 "late HPA lock, will try to unlock HPA\n"); 4078 /* try unlocking HPA */ 4079 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4080 rc = -EIO; 4081 } else 4082 rc = -ENODEV; 4083 4084 /* restore original n_[native_]sectors and fail */ 4085 dev->n_native_sectors = n_native_sectors; 4086 dev->n_sectors = n_sectors; 4087 fail: 4088 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4089 return rc; 4090 } 4091 4092 struct ata_blacklist_entry { 4093 const char *model_num; 4094 const char *model_rev; 4095 unsigned long horkage; 4096 }; 4097 4098 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4099 /* Devices with DMA related problems under Linux */ 4100 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4101 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4102 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4103 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4104 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4105 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4106 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4107 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4108 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4109 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4110 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4111 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4112 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4113 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4114 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4115 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4116 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4117 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4118 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4119 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4120 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4121 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4122 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4123 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4124 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4125 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4126 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4127 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4128 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4129 /* Odd clown on sil3726/4726 PMPs */ 4130 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4131 4132 /* Weird ATAPI devices */ 4133 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4134 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4135 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4136 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4137 4138 /* Devices we expect to fail diagnostics */ 4139 4140 /* Devices where NCQ should be avoided */ 4141 /* NCQ is slow */ 4142 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4143 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4144 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4145 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4146 /* NCQ is broken */ 4147 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4148 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4149 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4150 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4151 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4152 4153 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4154 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4155 ATA_HORKAGE_FIRMWARE_WARN }, 4156 4157 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4158 ATA_HORKAGE_FIRMWARE_WARN }, 4159 4160 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4161 ATA_HORKAGE_FIRMWARE_WARN }, 4162 4163 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4164 ATA_HORKAGE_FIRMWARE_WARN }, 4165 4166 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */ 4167 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4168 4169 /* Blacklist entries taken from Silicon Image 3124/3132 4170 Windows driver .inf file - also several Linux problem reports */ 4171 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4172 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4173 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4174 4175 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4176 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4177 4178 /* devices which puke on READ_NATIVE_MAX */ 4179 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4180 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4181 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4182 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4183 4184 /* this one allows HPA unlocking but fails IOs on the area */ 4185 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4186 4187 /* Devices which report 1 sector over size HPA */ 4188 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4189 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4190 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4191 4192 /* Devices which get the IVB wrong */ 4193 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4194 /* Maybe we should just blacklist TSSTcorp... */ 4195 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4196 4197 /* Devices that do not need bridging limits applied */ 4198 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4199 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4200 4201 /* Devices which aren't very happy with higher link speeds */ 4202 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4203 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4204 4205 /* 4206 * Devices which choke on SETXFER. Applies only if both the 4207 * device and controller are SATA. 4208 */ 4209 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4210 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4211 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4212 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4213 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4214 4215 /* devices that don't properly handle queued TRIM commands */ 4216 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4217 { "Crucial_CT???M500SSD1", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4218 4219 /* End Marker */ 4220 { } 4221 }; 4222 4223 /** 4224 * glob_match - match a text string against a glob-style pattern 4225 * @text: the string to be examined 4226 * @pattern: the glob-style pattern to be matched against 4227 * 4228 * Either/both of text and pattern can be empty strings. 4229 * 4230 * Match text against a glob-style pattern, with wildcards and simple sets: 4231 * 4232 * ? matches any single character. 4233 * * matches any run of characters. 4234 * [xyz] matches a single character from the set: x, y, or z. 4235 * [a-d] matches a single character from the range: a, b, c, or d. 4236 * [a-d0-9] matches a single character from either range. 4237 * 4238 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4239 * Behaviour with malformed patterns is undefined, though generally reasonable. 4240 * 4241 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4242 * 4243 * This function uses one level of recursion per '*' in pattern. 4244 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4245 * this will not cause stack problems for any reasonable use here. 4246 * 4247 * RETURNS: 4248 * 0 on match, 1 otherwise. 4249 */ 4250 static int glob_match (const char *text, const char *pattern) 4251 { 4252 do { 4253 /* Match single character or a '?' wildcard */ 4254 if (*text == *pattern || *pattern == '?') { 4255 if (!*pattern++) 4256 return 0; /* End of both strings: match */ 4257 } else { 4258 /* Match single char against a '[' bracketed ']' pattern set */ 4259 if (!*text || *pattern != '[') 4260 break; /* Not a pattern set */ 4261 while (*++pattern && *pattern != ']' && *text != *pattern) { 4262 if (*pattern == '-' && *(pattern - 1) != '[') 4263 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4264 ++pattern; 4265 break; 4266 } 4267 } 4268 if (!*pattern || *pattern == ']') 4269 return 1; /* No match */ 4270 while (*pattern && *pattern++ != ']'); 4271 } 4272 } while (*++text && *pattern); 4273 4274 /* Match any run of chars against a '*' wildcard */ 4275 if (*pattern == '*') { 4276 if (!*++pattern) 4277 return 0; /* Match: avoid recursion at end of pattern */ 4278 /* Loop to handle additional pattern chars after the wildcard */ 4279 while (*text) { 4280 if (glob_match(text, pattern) == 0) 4281 return 0; /* Remainder matched */ 4282 ++text; /* Absorb (match) this char and try again */ 4283 } 4284 } 4285 if (!*text && !*pattern) 4286 return 0; /* End of both strings: match */ 4287 return 1; /* No match */ 4288 } 4289 4290 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4291 { 4292 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4293 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4294 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4295 4296 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4297 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4298 4299 while (ad->model_num) { 4300 if (!glob_match(model_num, ad->model_num)) { 4301 if (ad->model_rev == NULL) 4302 return ad->horkage; 4303 if (!glob_match(model_rev, ad->model_rev)) 4304 return ad->horkage; 4305 } 4306 ad++; 4307 } 4308 return 0; 4309 } 4310 4311 static int ata_dma_blacklisted(const struct ata_device *dev) 4312 { 4313 /* We don't support polling DMA. 4314 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4315 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4316 */ 4317 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4318 (dev->flags & ATA_DFLAG_CDB_INTR)) 4319 return 1; 4320 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4321 } 4322 4323 /** 4324 * ata_is_40wire - check drive side detection 4325 * @dev: device 4326 * 4327 * Perform drive side detection decoding, allowing for device vendors 4328 * who can't follow the documentation. 4329 */ 4330 4331 static int ata_is_40wire(struct ata_device *dev) 4332 { 4333 if (dev->horkage & ATA_HORKAGE_IVB) 4334 return ata_drive_40wire_relaxed(dev->id); 4335 return ata_drive_40wire(dev->id); 4336 } 4337 4338 /** 4339 * cable_is_40wire - 40/80/SATA decider 4340 * @ap: port to consider 4341 * 4342 * This function encapsulates the policy for speed management 4343 * in one place. At the moment we don't cache the result but 4344 * there is a good case for setting ap->cbl to the result when 4345 * we are called with unknown cables (and figuring out if it 4346 * impacts hotplug at all). 4347 * 4348 * Return 1 if the cable appears to be 40 wire. 4349 */ 4350 4351 static int cable_is_40wire(struct ata_port *ap) 4352 { 4353 struct ata_link *link; 4354 struct ata_device *dev; 4355 4356 /* If the controller thinks we are 40 wire, we are. */ 4357 if (ap->cbl == ATA_CBL_PATA40) 4358 return 1; 4359 4360 /* If the controller thinks we are 80 wire, we are. */ 4361 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4362 return 0; 4363 4364 /* If the system is known to be 40 wire short cable (eg 4365 * laptop), then we allow 80 wire modes even if the drive 4366 * isn't sure. 4367 */ 4368 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4369 return 0; 4370 4371 /* If the controller doesn't know, we scan. 4372 * 4373 * Note: We look for all 40 wire detects at this point. Any 4374 * 80 wire detect is taken to be 80 wire cable because 4375 * - in many setups only the one drive (slave if present) will 4376 * give a valid detect 4377 * - if you have a non detect capable drive you don't want it 4378 * to colour the choice 4379 */ 4380 ata_for_each_link(link, ap, EDGE) { 4381 ata_for_each_dev(dev, link, ENABLED) { 4382 if (!ata_is_40wire(dev)) 4383 return 0; 4384 } 4385 } 4386 return 1; 4387 } 4388 4389 /** 4390 * ata_dev_xfermask - Compute supported xfermask of the given device 4391 * @dev: Device to compute xfermask for 4392 * 4393 * Compute supported xfermask of @dev and store it in 4394 * dev->*_mask. This function is responsible for applying all 4395 * known limits including host controller limits, device 4396 * blacklist, etc... 4397 * 4398 * LOCKING: 4399 * None. 4400 */ 4401 static void ata_dev_xfermask(struct ata_device *dev) 4402 { 4403 struct ata_link *link = dev->link; 4404 struct ata_port *ap = link->ap; 4405 struct ata_host *host = ap->host; 4406 unsigned long xfer_mask; 4407 4408 /* controller modes available */ 4409 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4410 ap->mwdma_mask, ap->udma_mask); 4411 4412 /* drive modes available */ 4413 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4414 dev->mwdma_mask, dev->udma_mask); 4415 xfer_mask &= ata_id_xfermask(dev->id); 4416 4417 /* 4418 * CFA Advanced TrueIDE timings are not allowed on a shared 4419 * cable 4420 */ 4421 if (ata_dev_pair(dev)) { 4422 /* No PIO5 or PIO6 */ 4423 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4424 /* No MWDMA3 or MWDMA 4 */ 4425 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4426 } 4427 4428 if (ata_dma_blacklisted(dev)) { 4429 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4430 ata_dev_warn(dev, 4431 "device is on DMA blacklist, disabling DMA\n"); 4432 } 4433 4434 if ((host->flags & ATA_HOST_SIMPLEX) && 4435 host->simplex_claimed && host->simplex_claimed != ap) { 4436 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4437 ata_dev_warn(dev, 4438 "simplex DMA is claimed by other device, disabling DMA\n"); 4439 } 4440 4441 if (ap->flags & ATA_FLAG_NO_IORDY) 4442 xfer_mask &= ata_pio_mask_no_iordy(dev); 4443 4444 if (ap->ops->mode_filter) 4445 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4446 4447 /* Apply cable rule here. Don't apply it early because when 4448 * we handle hot plug the cable type can itself change. 4449 * Check this last so that we know if the transfer rate was 4450 * solely limited by the cable. 4451 * Unknown or 80 wire cables reported host side are checked 4452 * drive side as well. Cases where we know a 40wire cable 4453 * is used safely for 80 are not checked here. 4454 */ 4455 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4456 /* UDMA/44 or higher would be available */ 4457 if (cable_is_40wire(ap)) { 4458 ata_dev_warn(dev, 4459 "limited to UDMA/33 due to 40-wire cable\n"); 4460 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4461 } 4462 4463 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4464 &dev->mwdma_mask, &dev->udma_mask); 4465 } 4466 4467 /** 4468 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4469 * @dev: Device to which command will be sent 4470 * 4471 * Issue SET FEATURES - XFER MODE command to device @dev 4472 * on port @ap. 4473 * 4474 * LOCKING: 4475 * PCI/etc. bus probe sem. 4476 * 4477 * RETURNS: 4478 * 0 on success, AC_ERR_* mask otherwise. 4479 */ 4480 4481 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4482 { 4483 struct ata_taskfile tf; 4484 unsigned int err_mask; 4485 4486 /* set up set-features taskfile */ 4487 DPRINTK("set features - xfer mode\n"); 4488 4489 /* Some controllers and ATAPI devices show flaky interrupt 4490 * behavior after setting xfer mode. Use polling instead. 4491 */ 4492 ata_tf_init(dev, &tf); 4493 tf.command = ATA_CMD_SET_FEATURES; 4494 tf.feature = SETFEATURES_XFER; 4495 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4496 tf.protocol = ATA_PROT_NODATA; 4497 /* If we are using IORDY we must send the mode setting command */ 4498 if (ata_pio_need_iordy(dev)) 4499 tf.nsect = dev->xfer_mode; 4500 /* If the device has IORDY and the controller does not - turn it off */ 4501 else if (ata_id_has_iordy(dev->id)) 4502 tf.nsect = 0x01; 4503 else /* In the ancient relic department - skip all of this */ 4504 return 0; 4505 4506 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4507 4508 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4509 return err_mask; 4510 } 4511 4512 /** 4513 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4514 * @dev: Device to which command will be sent 4515 * @enable: Whether to enable or disable the feature 4516 * @feature: The sector count represents the feature to set 4517 * 4518 * Issue SET FEATURES - SATA FEATURES command to device @dev 4519 * on port @ap with sector count 4520 * 4521 * LOCKING: 4522 * PCI/etc. bus probe sem. 4523 * 4524 * RETURNS: 4525 * 0 on success, AC_ERR_* mask otherwise. 4526 */ 4527 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4528 { 4529 struct ata_taskfile tf; 4530 unsigned int err_mask; 4531 4532 /* set up set-features taskfile */ 4533 DPRINTK("set features - SATA features\n"); 4534 4535 ata_tf_init(dev, &tf); 4536 tf.command = ATA_CMD_SET_FEATURES; 4537 tf.feature = enable; 4538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4539 tf.protocol = ATA_PROT_NODATA; 4540 tf.nsect = feature; 4541 4542 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4543 4544 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4545 return err_mask; 4546 } 4547 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4548 4549 /** 4550 * ata_dev_init_params - Issue INIT DEV PARAMS command 4551 * @dev: Device to which command will be sent 4552 * @heads: Number of heads (taskfile parameter) 4553 * @sectors: Number of sectors (taskfile parameter) 4554 * 4555 * LOCKING: 4556 * Kernel thread context (may sleep) 4557 * 4558 * RETURNS: 4559 * 0 on success, AC_ERR_* mask otherwise. 4560 */ 4561 static unsigned int ata_dev_init_params(struct ata_device *dev, 4562 u16 heads, u16 sectors) 4563 { 4564 struct ata_taskfile tf; 4565 unsigned int err_mask; 4566 4567 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4568 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4569 return AC_ERR_INVALID; 4570 4571 /* set up init dev params taskfile */ 4572 DPRINTK("init dev params \n"); 4573 4574 ata_tf_init(dev, &tf); 4575 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4576 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4577 tf.protocol = ATA_PROT_NODATA; 4578 tf.nsect = sectors; 4579 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4580 4581 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4582 /* A clean abort indicates an original or just out of spec drive 4583 and we should continue as we issue the setup based on the 4584 drive reported working geometry */ 4585 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4586 err_mask = 0; 4587 4588 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4589 return err_mask; 4590 } 4591 4592 /** 4593 * ata_sg_clean - Unmap DMA memory associated with command 4594 * @qc: Command containing DMA memory to be released 4595 * 4596 * Unmap all mapped DMA memory associated with this command. 4597 * 4598 * LOCKING: 4599 * spin_lock_irqsave(host lock) 4600 */ 4601 void ata_sg_clean(struct ata_queued_cmd *qc) 4602 { 4603 struct ata_port *ap = qc->ap; 4604 struct scatterlist *sg = qc->sg; 4605 int dir = qc->dma_dir; 4606 4607 WARN_ON_ONCE(sg == NULL); 4608 4609 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4610 4611 if (qc->n_elem) 4612 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4613 4614 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4615 qc->sg = NULL; 4616 } 4617 4618 /** 4619 * atapi_check_dma - Check whether ATAPI DMA can be supported 4620 * @qc: Metadata associated with taskfile to check 4621 * 4622 * Allow low-level driver to filter ATA PACKET commands, returning 4623 * a status indicating whether or not it is OK to use DMA for the 4624 * supplied PACKET command. 4625 * 4626 * LOCKING: 4627 * spin_lock_irqsave(host lock) 4628 * 4629 * RETURNS: 0 when ATAPI DMA can be used 4630 * nonzero otherwise 4631 */ 4632 int atapi_check_dma(struct ata_queued_cmd *qc) 4633 { 4634 struct ata_port *ap = qc->ap; 4635 4636 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4637 * few ATAPI devices choke on such DMA requests. 4638 */ 4639 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4640 unlikely(qc->nbytes & 15)) 4641 return 1; 4642 4643 if (ap->ops->check_atapi_dma) 4644 return ap->ops->check_atapi_dma(qc); 4645 4646 return 0; 4647 } 4648 4649 /** 4650 * ata_std_qc_defer - Check whether a qc needs to be deferred 4651 * @qc: ATA command in question 4652 * 4653 * Non-NCQ commands cannot run with any other command, NCQ or 4654 * not. As upper layer only knows the queue depth, we are 4655 * responsible for maintaining exclusion. This function checks 4656 * whether a new command @qc can be issued. 4657 * 4658 * LOCKING: 4659 * spin_lock_irqsave(host lock) 4660 * 4661 * RETURNS: 4662 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4663 */ 4664 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4665 { 4666 struct ata_link *link = qc->dev->link; 4667 4668 if (qc->tf.protocol == ATA_PROT_NCQ) { 4669 if (!ata_tag_valid(link->active_tag)) 4670 return 0; 4671 } else { 4672 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4673 return 0; 4674 } 4675 4676 return ATA_DEFER_LINK; 4677 } 4678 4679 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4680 4681 /** 4682 * ata_sg_init - Associate command with scatter-gather table. 4683 * @qc: Command to be associated 4684 * @sg: Scatter-gather table. 4685 * @n_elem: Number of elements in s/g table. 4686 * 4687 * Initialize the data-related elements of queued_cmd @qc 4688 * to point to a scatter-gather table @sg, containing @n_elem 4689 * elements. 4690 * 4691 * LOCKING: 4692 * spin_lock_irqsave(host lock) 4693 */ 4694 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4695 unsigned int n_elem) 4696 { 4697 qc->sg = sg; 4698 qc->n_elem = n_elem; 4699 qc->cursg = qc->sg; 4700 } 4701 4702 /** 4703 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4704 * @qc: Command with scatter-gather table to be mapped. 4705 * 4706 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4707 * 4708 * LOCKING: 4709 * spin_lock_irqsave(host lock) 4710 * 4711 * RETURNS: 4712 * Zero on success, negative on error. 4713 * 4714 */ 4715 static int ata_sg_setup(struct ata_queued_cmd *qc) 4716 { 4717 struct ata_port *ap = qc->ap; 4718 unsigned int n_elem; 4719 4720 VPRINTK("ENTER, ata%u\n", ap->print_id); 4721 4722 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4723 if (n_elem < 1) 4724 return -1; 4725 4726 DPRINTK("%d sg elements mapped\n", n_elem); 4727 qc->orig_n_elem = qc->n_elem; 4728 qc->n_elem = n_elem; 4729 qc->flags |= ATA_QCFLAG_DMAMAP; 4730 4731 return 0; 4732 } 4733 4734 /** 4735 * swap_buf_le16 - swap halves of 16-bit words in place 4736 * @buf: Buffer to swap 4737 * @buf_words: Number of 16-bit words in buffer. 4738 * 4739 * Swap halves of 16-bit words if needed to convert from 4740 * little-endian byte order to native cpu byte order, or 4741 * vice-versa. 4742 * 4743 * LOCKING: 4744 * Inherited from caller. 4745 */ 4746 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4747 { 4748 #ifdef __BIG_ENDIAN 4749 unsigned int i; 4750 4751 for (i = 0; i < buf_words; i++) 4752 buf[i] = le16_to_cpu(buf[i]); 4753 #endif /* __BIG_ENDIAN */ 4754 } 4755 4756 /** 4757 * ata_qc_new - Request an available ATA command, for queueing 4758 * @ap: target port 4759 * 4760 * LOCKING: 4761 * None. 4762 */ 4763 4764 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4765 { 4766 struct ata_queued_cmd *qc = NULL; 4767 unsigned int i; 4768 4769 /* no command while frozen */ 4770 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4771 return NULL; 4772 4773 /* the last tag is reserved for internal command. */ 4774 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4775 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4776 qc = __ata_qc_from_tag(ap, i); 4777 break; 4778 } 4779 4780 if (qc) 4781 qc->tag = i; 4782 4783 return qc; 4784 } 4785 4786 /** 4787 * ata_qc_new_init - Request an available ATA command, and initialize it 4788 * @dev: Device from whom we request an available command structure 4789 * 4790 * LOCKING: 4791 * None. 4792 */ 4793 4794 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4795 { 4796 struct ata_port *ap = dev->link->ap; 4797 struct ata_queued_cmd *qc; 4798 4799 qc = ata_qc_new(ap); 4800 if (qc) { 4801 qc->scsicmd = NULL; 4802 qc->ap = ap; 4803 qc->dev = dev; 4804 4805 ata_qc_reinit(qc); 4806 } 4807 4808 return qc; 4809 } 4810 4811 /** 4812 * ata_qc_free - free unused ata_queued_cmd 4813 * @qc: Command to complete 4814 * 4815 * Designed to free unused ata_queued_cmd object 4816 * in case something prevents using it. 4817 * 4818 * LOCKING: 4819 * spin_lock_irqsave(host lock) 4820 */ 4821 void ata_qc_free(struct ata_queued_cmd *qc) 4822 { 4823 struct ata_port *ap; 4824 unsigned int tag; 4825 4826 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4827 ap = qc->ap; 4828 4829 qc->flags = 0; 4830 tag = qc->tag; 4831 if (likely(ata_tag_valid(tag))) { 4832 qc->tag = ATA_TAG_POISON; 4833 clear_bit(tag, &ap->qc_allocated); 4834 } 4835 } 4836 4837 void __ata_qc_complete(struct ata_queued_cmd *qc) 4838 { 4839 struct ata_port *ap; 4840 struct ata_link *link; 4841 4842 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4843 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4844 ap = qc->ap; 4845 link = qc->dev->link; 4846 4847 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4848 ata_sg_clean(qc); 4849 4850 /* command should be marked inactive atomically with qc completion */ 4851 if (qc->tf.protocol == ATA_PROT_NCQ) { 4852 link->sactive &= ~(1 << qc->tag); 4853 if (!link->sactive) 4854 ap->nr_active_links--; 4855 } else { 4856 link->active_tag = ATA_TAG_POISON; 4857 ap->nr_active_links--; 4858 } 4859 4860 /* clear exclusive status */ 4861 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4862 ap->excl_link == link)) 4863 ap->excl_link = NULL; 4864 4865 /* atapi: mark qc as inactive to prevent the interrupt handler 4866 * from completing the command twice later, before the error handler 4867 * is called. (when rc != 0 and atapi request sense is needed) 4868 */ 4869 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4870 ap->qc_active &= ~(1 << qc->tag); 4871 4872 /* call completion callback */ 4873 qc->complete_fn(qc); 4874 } 4875 4876 static void fill_result_tf(struct ata_queued_cmd *qc) 4877 { 4878 struct ata_port *ap = qc->ap; 4879 4880 qc->result_tf.flags = qc->tf.flags; 4881 ap->ops->qc_fill_rtf(qc); 4882 } 4883 4884 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4885 { 4886 struct ata_device *dev = qc->dev; 4887 4888 if (ata_is_nodata(qc->tf.protocol)) 4889 return; 4890 4891 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4892 return; 4893 4894 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4895 } 4896 4897 /** 4898 * ata_qc_complete - Complete an active ATA command 4899 * @qc: Command to complete 4900 * 4901 * Indicate to the mid and upper layers that an ATA command has 4902 * completed, with either an ok or not-ok status. 4903 * 4904 * Refrain from calling this function multiple times when 4905 * successfully completing multiple NCQ commands. 4906 * ata_qc_complete_multiple() should be used instead, which will 4907 * properly update IRQ expect state. 4908 * 4909 * LOCKING: 4910 * spin_lock_irqsave(host lock) 4911 */ 4912 void ata_qc_complete(struct ata_queued_cmd *qc) 4913 { 4914 struct ata_port *ap = qc->ap; 4915 4916 /* XXX: New EH and old EH use different mechanisms to 4917 * synchronize EH with regular execution path. 4918 * 4919 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4920 * Normal execution path is responsible for not accessing a 4921 * failed qc. libata core enforces the rule by returning NULL 4922 * from ata_qc_from_tag() for failed qcs. 4923 * 4924 * Old EH depends on ata_qc_complete() nullifying completion 4925 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4926 * not synchronize with interrupt handler. Only PIO task is 4927 * taken care of. 4928 */ 4929 if (ap->ops->error_handler) { 4930 struct ata_device *dev = qc->dev; 4931 struct ata_eh_info *ehi = &dev->link->eh_info; 4932 4933 if (unlikely(qc->err_mask)) 4934 qc->flags |= ATA_QCFLAG_FAILED; 4935 4936 /* 4937 * Finish internal commands without any further processing 4938 * and always with the result TF filled. 4939 */ 4940 if (unlikely(ata_tag_internal(qc->tag))) { 4941 fill_result_tf(qc); 4942 __ata_qc_complete(qc); 4943 return; 4944 } 4945 4946 /* 4947 * Non-internal qc has failed. Fill the result TF and 4948 * summon EH. 4949 */ 4950 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4951 fill_result_tf(qc); 4952 ata_qc_schedule_eh(qc); 4953 return; 4954 } 4955 4956 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4957 4958 /* read result TF if requested */ 4959 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4960 fill_result_tf(qc); 4961 4962 /* Some commands need post-processing after successful 4963 * completion. 4964 */ 4965 switch (qc->tf.command) { 4966 case ATA_CMD_SET_FEATURES: 4967 if (qc->tf.feature != SETFEATURES_WC_ON && 4968 qc->tf.feature != SETFEATURES_WC_OFF) 4969 break; 4970 /* fall through */ 4971 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4972 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4973 /* revalidate device */ 4974 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4975 ata_port_schedule_eh(ap); 4976 break; 4977 4978 case ATA_CMD_SLEEP: 4979 dev->flags |= ATA_DFLAG_SLEEPING; 4980 break; 4981 } 4982 4983 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4984 ata_verify_xfer(qc); 4985 4986 __ata_qc_complete(qc); 4987 } else { 4988 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4989 return; 4990 4991 /* read result TF if failed or requested */ 4992 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4993 fill_result_tf(qc); 4994 4995 __ata_qc_complete(qc); 4996 } 4997 } 4998 4999 /** 5000 * ata_qc_complete_multiple - Complete multiple qcs successfully 5001 * @ap: port in question 5002 * @qc_active: new qc_active mask 5003 * 5004 * Complete in-flight commands. This functions is meant to be 5005 * called from low-level driver's interrupt routine to complete 5006 * requests normally. ap->qc_active and @qc_active is compared 5007 * and commands are completed accordingly. 5008 * 5009 * Always use this function when completing multiple NCQ commands 5010 * from IRQ handlers instead of calling ata_qc_complete() 5011 * multiple times to keep IRQ expect status properly in sync. 5012 * 5013 * LOCKING: 5014 * spin_lock_irqsave(host lock) 5015 * 5016 * RETURNS: 5017 * Number of completed commands on success, -errno otherwise. 5018 */ 5019 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5020 { 5021 int nr_done = 0; 5022 u32 done_mask; 5023 5024 done_mask = ap->qc_active ^ qc_active; 5025 5026 if (unlikely(done_mask & qc_active)) { 5027 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5028 ap->qc_active, qc_active); 5029 return -EINVAL; 5030 } 5031 5032 while (done_mask) { 5033 struct ata_queued_cmd *qc; 5034 unsigned int tag = __ffs(done_mask); 5035 5036 qc = ata_qc_from_tag(ap, tag); 5037 if (qc) { 5038 ata_qc_complete(qc); 5039 nr_done++; 5040 } 5041 done_mask &= ~(1 << tag); 5042 } 5043 5044 return nr_done; 5045 } 5046 5047 /** 5048 * ata_qc_issue - issue taskfile to device 5049 * @qc: command to issue to device 5050 * 5051 * Prepare an ATA command to submission to device. 5052 * This includes mapping the data into a DMA-able 5053 * area, filling in the S/G table, and finally 5054 * writing the taskfile to hardware, starting the command. 5055 * 5056 * LOCKING: 5057 * spin_lock_irqsave(host lock) 5058 */ 5059 void ata_qc_issue(struct ata_queued_cmd *qc) 5060 { 5061 struct ata_port *ap = qc->ap; 5062 struct ata_link *link = qc->dev->link; 5063 u8 prot = qc->tf.protocol; 5064 5065 /* Make sure only one non-NCQ command is outstanding. The 5066 * check is skipped for old EH because it reuses active qc to 5067 * request ATAPI sense. 5068 */ 5069 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5070 5071 if (ata_is_ncq(prot)) { 5072 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5073 5074 if (!link->sactive) 5075 ap->nr_active_links++; 5076 link->sactive |= 1 << qc->tag; 5077 } else { 5078 WARN_ON_ONCE(link->sactive); 5079 5080 ap->nr_active_links++; 5081 link->active_tag = qc->tag; 5082 } 5083 5084 qc->flags |= ATA_QCFLAG_ACTIVE; 5085 ap->qc_active |= 1 << qc->tag; 5086 5087 /* 5088 * We guarantee to LLDs that they will have at least one 5089 * non-zero sg if the command is a data command. 5090 */ 5091 if (WARN_ON_ONCE(ata_is_data(prot) && 5092 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5093 goto sys_err; 5094 5095 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5096 (ap->flags & ATA_FLAG_PIO_DMA))) 5097 if (ata_sg_setup(qc)) 5098 goto sys_err; 5099 5100 /* if device is sleeping, schedule reset and abort the link */ 5101 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5102 link->eh_info.action |= ATA_EH_RESET; 5103 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5104 ata_link_abort(link); 5105 return; 5106 } 5107 5108 ap->ops->qc_prep(qc); 5109 5110 qc->err_mask |= ap->ops->qc_issue(qc); 5111 if (unlikely(qc->err_mask)) 5112 goto err; 5113 return; 5114 5115 sys_err: 5116 qc->err_mask |= AC_ERR_SYSTEM; 5117 err: 5118 ata_qc_complete(qc); 5119 } 5120 5121 /** 5122 * sata_scr_valid - test whether SCRs are accessible 5123 * @link: ATA link to test SCR accessibility for 5124 * 5125 * Test whether SCRs are accessible for @link. 5126 * 5127 * LOCKING: 5128 * None. 5129 * 5130 * RETURNS: 5131 * 1 if SCRs are accessible, 0 otherwise. 5132 */ 5133 int sata_scr_valid(struct ata_link *link) 5134 { 5135 struct ata_port *ap = link->ap; 5136 5137 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5138 } 5139 5140 /** 5141 * sata_scr_read - read SCR register of the specified port 5142 * @link: ATA link to read SCR for 5143 * @reg: SCR to read 5144 * @val: Place to store read value 5145 * 5146 * Read SCR register @reg of @link into *@val. This function is 5147 * guaranteed to succeed if @link is ap->link, the cable type of 5148 * the port is SATA and the port implements ->scr_read. 5149 * 5150 * LOCKING: 5151 * None if @link is ap->link. Kernel thread context otherwise. 5152 * 5153 * RETURNS: 5154 * 0 on success, negative errno on failure. 5155 */ 5156 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5157 { 5158 if (ata_is_host_link(link)) { 5159 if (sata_scr_valid(link)) 5160 return link->ap->ops->scr_read(link, reg, val); 5161 return -EOPNOTSUPP; 5162 } 5163 5164 return sata_pmp_scr_read(link, reg, val); 5165 } 5166 5167 /** 5168 * sata_scr_write - write SCR register of the specified port 5169 * @link: ATA link to write SCR for 5170 * @reg: SCR to write 5171 * @val: value to write 5172 * 5173 * Write @val to SCR register @reg of @link. This function is 5174 * guaranteed to succeed if @link is ap->link, the cable type of 5175 * the port is SATA and the port implements ->scr_read. 5176 * 5177 * LOCKING: 5178 * None if @link is ap->link. Kernel thread context otherwise. 5179 * 5180 * RETURNS: 5181 * 0 on success, negative errno on failure. 5182 */ 5183 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5184 { 5185 if (ata_is_host_link(link)) { 5186 if (sata_scr_valid(link)) 5187 return link->ap->ops->scr_write(link, reg, val); 5188 return -EOPNOTSUPP; 5189 } 5190 5191 return sata_pmp_scr_write(link, reg, val); 5192 } 5193 5194 /** 5195 * sata_scr_write_flush - write SCR register of the specified port and flush 5196 * @link: ATA link to write SCR for 5197 * @reg: SCR to write 5198 * @val: value to write 5199 * 5200 * This function is identical to sata_scr_write() except that this 5201 * function performs flush after writing to the register. 5202 * 5203 * LOCKING: 5204 * None if @link is ap->link. Kernel thread context otherwise. 5205 * 5206 * RETURNS: 5207 * 0 on success, negative errno on failure. 5208 */ 5209 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5210 { 5211 if (ata_is_host_link(link)) { 5212 int rc; 5213 5214 if (sata_scr_valid(link)) { 5215 rc = link->ap->ops->scr_write(link, reg, val); 5216 if (rc == 0) 5217 rc = link->ap->ops->scr_read(link, reg, &val); 5218 return rc; 5219 } 5220 return -EOPNOTSUPP; 5221 } 5222 5223 return sata_pmp_scr_write(link, reg, val); 5224 } 5225 5226 /** 5227 * ata_phys_link_online - test whether the given link is online 5228 * @link: ATA link to test 5229 * 5230 * Test whether @link is online. Note that this function returns 5231 * 0 if online status of @link cannot be obtained, so 5232 * ata_link_online(link) != !ata_link_offline(link). 5233 * 5234 * LOCKING: 5235 * None. 5236 * 5237 * RETURNS: 5238 * True if the port online status is available and online. 5239 */ 5240 bool ata_phys_link_online(struct ata_link *link) 5241 { 5242 u32 sstatus; 5243 5244 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5245 ata_sstatus_online(sstatus)) 5246 return true; 5247 return false; 5248 } 5249 5250 /** 5251 * ata_phys_link_offline - test whether the given link is offline 5252 * @link: ATA link to test 5253 * 5254 * Test whether @link is offline. Note that this function 5255 * returns 0 if offline status of @link cannot be obtained, so 5256 * ata_link_online(link) != !ata_link_offline(link). 5257 * 5258 * LOCKING: 5259 * None. 5260 * 5261 * RETURNS: 5262 * True if the port offline status is available and offline. 5263 */ 5264 bool ata_phys_link_offline(struct ata_link *link) 5265 { 5266 u32 sstatus; 5267 5268 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5269 !ata_sstatus_online(sstatus)) 5270 return true; 5271 return false; 5272 } 5273 5274 /** 5275 * ata_link_online - test whether the given link is online 5276 * @link: ATA link to test 5277 * 5278 * Test whether @link is online. This is identical to 5279 * ata_phys_link_online() when there's no slave link. When 5280 * there's a slave link, this function should only be called on 5281 * the master link and will return true if any of M/S links is 5282 * online. 5283 * 5284 * LOCKING: 5285 * None. 5286 * 5287 * RETURNS: 5288 * True if the port online status is available and online. 5289 */ 5290 bool ata_link_online(struct ata_link *link) 5291 { 5292 struct ata_link *slave = link->ap->slave_link; 5293 5294 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5295 5296 return ata_phys_link_online(link) || 5297 (slave && ata_phys_link_online(slave)); 5298 } 5299 5300 /** 5301 * ata_link_offline - test whether the given link is offline 5302 * @link: ATA link to test 5303 * 5304 * Test whether @link is offline. This is identical to 5305 * ata_phys_link_offline() when there's no slave link. When 5306 * there's a slave link, this function should only be called on 5307 * the master link and will return true if both M/S links are 5308 * offline. 5309 * 5310 * LOCKING: 5311 * None. 5312 * 5313 * RETURNS: 5314 * True if the port offline status is available and offline. 5315 */ 5316 bool ata_link_offline(struct ata_link *link) 5317 { 5318 struct ata_link *slave = link->ap->slave_link; 5319 5320 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5321 5322 return ata_phys_link_offline(link) && 5323 (!slave || ata_phys_link_offline(slave)); 5324 } 5325 5326 #ifdef CONFIG_PM 5327 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5328 unsigned int action, unsigned int ehi_flags, 5329 int *async) 5330 { 5331 struct ata_link *link; 5332 unsigned long flags; 5333 int rc = 0; 5334 5335 /* Previous resume operation might still be in 5336 * progress. Wait for PM_PENDING to clear. 5337 */ 5338 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5339 if (async) { 5340 *async = -EAGAIN; 5341 return 0; 5342 } 5343 ata_port_wait_eh(ap); 5344 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5345 } 5346 5347 /* request PM ops to EH */ 5348 spin_lock_irqsave(ap->lock, flags); 5349 5350 ap->pm_mesg = mesg; 5351 if (async) 5352 ap->pm_result = async; 5353 else 5354 ap->pm_result = &rc; 5355 5356 ap->pflags |= ATA_PFLAG_PM_PENDING; 5357 ata_for_each_link(link, ap, HOST_FIRST) { 5358 link->eh_info.action |= action; 5359 link->eh_info.flags |= ehi_flags; 5360 } 5361 5362 ata_port_schedule_eh(ap); 5363 5364 spin_unlock_irqrestore(ap->lock, flags); 5365 5366 /* wait and check result */ 5367 if (!async) { 5368 ata_port_wait_eh(ap); 5369 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5370 } 5371 5372 return rc; 5373 } 5374 5375 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5376 { 5377 /* 5378 * On some hardware, device fails to respond after spun down 5379 * for suspend. As the device won't be used before being 5380 * resumed, we don't need to touch the device. Ask EH to skip 5381 * the usual stuff and proceed directly to suspend. 5382 * 5383 * http://thread.gmane.org/gmane.linux.ide/46764 5384 */ 5385 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5386 ATA_EHI_NO_RECOVERY; 5387 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5388 } 5389 5390 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5391 { 5392 struct ata_port *ap = to_ata_port(dev); 5393 5394 return __ata_port_suspend_common(ap, mesg, NULL); 5395 } 5396 5397 static int ata_port_suspend(struct device *dev) 5398 { 5399 if (pm_runtime_suspended(dev)) 5400 return 0; 5401 5402 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5403 } 5404 5405 static int ata_port_do_freeze(struct device *dev) 5406 { 5407 if (pm_runtime_suspended(dev)) 5408 return 0; 5409 5410 return ata_port_suspend_common(dev, PMSG_FREEZE); 5411 } 5412 5413 static int ata_port_poweroff(struct device *dev) 5414 { 5415 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5416 } 5417 5418 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg, 5419 int *async) 5420 { 5421 int rc; 5422 5423 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5424 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5425 return rc; 5426 } 5427 5428 static int ata_port_resume_common(struct device *dev, pm_message_t mesg) 5429 { 5430 struct ata_port *ap = to_ata_port(dev); 5431 5432 return __ata_port_resume_common(ap, mesg, NULL); 5433 } 5434 5435 static int ata_port_resume(struct device *dev) 5436 { 5437 int rc; 5438 5439 rc = ata_port_resume_common(dev, PMSG_RESUME); 5440 if (!rc) { 5441 pm_runtime_disable(dev); 5442 pm_runtime_set_active(dev); 5443 pm_runtime_enable(dev); 5444 } 5445 5446 return rc; 5447 } 5448 5449 /* 5450 * For ODDs, the upper layer will poll for media change every few seconds, 5451 * which will make it enter and leave suspend state every few seconds. And 5452 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5453 * is very little and the ODD may malfunction after constantly being reset. 5454 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5455 * ODD is attached to the port. 5456 */ 5457 static int ata_port_runtime_idle(struct device *dev) 5458 { 5459 struct ata_port *ap = to_ata_port(dev); 5460 struct ata_link *link; 5461 struct ata_device *adev; 5462 5463 ata_for_each_link(link, ap, HOST_FIRST) { 5464 ata_for_each_dev(adev, link, ENABLED) 5465 if (adev->class == ATA_DEV_ATAPI && 5466 !zpodd_dev_enabled(adev)) 5467 return -EBUSY; 5468 } 5469 5470 return 0; 5471 } 5472 5473 static int ata_port_runtime_suspend(struct device *dev) 5474 { 5475 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND); 5476 } 5477 5478 static int ata_port_runtime_resume(struct device *dev) 5479 { 5480 return ata_port_resume_common(dev, PMSG_AUTO_RESUME); 5481 } 5482 5483 static const struct dev_pm_ops ata_port_pm_ops = { 5484 .suspend = ata_port_suspend, 5485 .resume = ata_port_resume, 5486 .freeze = ata_port_do_freeze, 5487 .thaw = ata_port_resume, 5488 .poweroff = ata_port_poweroff, 5489 .restore = ata_port_resume, 5490 5491 .runtime_suspend = ata_port_runtime_suspend, 5492 .runtime_resume = ata_port_runtime_resume, 5493 .runtime_idle = ata_port_runtime_idle, 5494 }; 5495 5496 /* sas ports don't participate in pm runtime management of ata_ports, 5497 * and need to resume ata devices at the domain level, not the per-port 5498 * level. sas suspend/resume is async to allow parallel port recovery 5499 * since sas has multiple ata_port instances per Scsi_Host. 5500 */ 5501 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5502 { 5503 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5504 } 5505 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5506 5507 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5508 { 5509 return __ata_port_resume_common(ap, PMSG_RESUME, async); 5510 } 5511 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5512 5513 5514 /** 5515 * ata_host_suspend - suspend host 5516 * @host: host to suspend 5517 * @mesg: PM message 5518 * 5519 * Suspend @host. Actual operation is performed by port suspend. 5520 */ 5521 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5522 { 5523 host->dev->power.power_state = mesg; 5524 return 0; 5525 } 5526 5527 /** 5528 * ata_host_resume - resume host 5529 * @host: host to resume 5530 * 5531 * Resume @host. Actual operation is performed by port resume. 5532 */ 5533 void ata_host_resume(struct ata_host *host) 5534 { 5535 host->dev->power.power_state = PMSG_ON; 5536 } 5537 #endif 5538 5539 struct device_type ata_port_type = { 5540 .name = "ata_port", 5541 #ifdef CONFIG_PM 5542 .pm = &ata_port_pm_ops, 5543 #endif 5544 }; 5545 5546 /** 5547 * ata_dev_init - Initialize an ata_device structure 5548 * @dev: Device structure to initialize 5549 * 5550 * Initialize @dev in preparation for probing. 5551 * 5552 * LOCKING: 5553 * Inherited from caller. 5554 */ 5555 void ata_dev_init(struct ata_device *dev) 5556 { 5557 struct ata_link *link = ata_dev_phys_link(dev); 5558 struct ata_port *ap = link->ap; 5559 unsigned long flags; 5560 5561 /* SATA spd limit is bound to the attached device, reset together */ 5562 link->sata_spd_limit = link->hw_sata_spd_limit; 5563 link->sata_spd = 0; 5564 5565 /* High bits of dev->flags are used to record warm plug 5566 * requests which occur asynchronously. Synchronize using 5567 * host lock. 5568 */ 5569 spin_lock_irqsave(ap->lock, flags); 5570 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5571 dev->horkage = 0; 5572 spin_unlock_irqrestore(ap->lock, flags); 5573 5574 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5575 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5576 dev->pio_mask = UINT_MAX; 5577 dev->mwdma_mask = UINT_MAX; 5578 dev->udma_mask = UINT_MAX; 5579 } 5580 5581 /** 5582 * ata_link_init - Initialize an ata_link structure 5583 * @ap: ATA port link is attached to 5584 * @link: Link structure to initialize 5585 * @pmp: Port multiplier port number 5586 * 5587 * Initialize @link. 5588 * 5589 * LOCKING: 5590 * Kernel thread context (may sleep) 5591 */ 5592 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5593 { 5594 int i; 5595 5596 /* clear everything except for devices */ 5597 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5598 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5599 5600 link->ap = ap; 5601 link->pmp = pmp; 5602 link->active_tag = ATA_TAG_POISON; 5603 link->hw_sata_spd_limit = UINT_MAX; 5604 5605 /* can't use iterator, ap isn't initialized yet */ 5606 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5607 struct ata_device *dev = &link->device[i]; 5608 5609 dev->link = link; 5610 dev->devno = dev - link->device; 5611 #ifdef CONFIG_ATA_ACPI 5612 dev->gtf_filter = ata_acpi_gtf_filter; 5613 #endif 5614 ata_dev_init(dev); 5615 } 5616 } 5617 5618 /** 5619 * sata_link_init_spd - Initialize link->sata_spd_limit 5620 * @link: Link to configure sata_spd_limit for 5621 * 5622 * Initialize @link->[hw_]sata_spd_limit to the currently 5623 * configured value. 5624 * 5625 * LOCKING: 5626 * Kernel thread context (may sleep). 5627 * 5628 * RETURNS: 5629 * 0 on success, -errno on failure. 5630 */ 5631 int sata_link_init_spd(struct ata_link *link) 5632 { 5633 u8 spd; 5634 int rc; 5635 5636 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5637 if (rc) 5638 return rc; 5639 5640 spd = (link->saved_scontrol >> 4) & 0xf; 5641 if (spd) 5642 link->hw_sata_spd_limit &= (1 << spd) - 1; 5643 5644 ata_force_link_limits(link); 5645 5646 link->sata_spd_limit = link->hw_sata_spd_limit; 5647 5648 return 0; 5649 } 5650 5651 /** 5652 * ata_port_alloc - allocate and initialize basic ATA port resources 5653 * @host: ATA host this allocated port belongs to 5654 * 5655 * Allocate and initialize basic ATA port resources. 5656 * 5657 * RETURNS: 5658 * Allocate ATA port on success, NULL on failure. 5659 * 5660 * LOCKING: 5661 * Inherited from calling layer (may sleep). 5662 */ 5663 struct ata_port *ata_port_alloc(struct ata_host *host) 5664 { 5665 struct ata_port *ap; 5666 5667 DPRINTK("ENTER\n"); 5668 5669 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5670 if (!ap) 5671 return NULL; 5672 5673 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5674 ap->lock = &host->lock; 5675 ap->print_id = -1; 5676 ap->local_port_no = -1; 5677 ap->host = host; 5678 ap->dev = host->dev; 5679 5680 #if defined(ATA_VERBOSE_DEBUG) 5681 /* turn on all debugging levels */ 5682 ap->msg_enable = 0x00FF; 5683 #elif defined(ATA_DEBUG) 5684 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5685 #else 5686 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5687 #endif 5688 5689 mutex_init(&ap->scsi_scan_mutex); 5690 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5691 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5692 INIT_LIST_HEAD(&ap->eh_done_q); 5693 init_waitqueue_head(&ap->eh_wait_q); 5694 init_completion(&ap->park_req_pending); 5695 init_timer_deferrable(&ap->fastdrain_timer); 5696 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5697 ap->fastdrain_timer.data = (unsigned long)ap; 5698 5699 ap->cbl = ATA_CBL_NONE; 5700 5701 ata_link_init(ap, &ap->link, 0); 5702 5703 #ifdef ATA_IRQ_TRAP 5704 ap->stats.unhandled_irq = 1; 5705 ap->stats.idle_irq = 1; 5706 #endif 5707 ata_sff_port_init(ap); 5708 5709 return ap; 5710 } 5711 5712 static void ata_host_release(struct device *gendev, void *res) 5713 { 5714 struct ata_host *host = dev_get_drvdata(gendev); 5715 int i; 5716 5717 for (i = 0; i < host->n_ports; i++) { 5718 struct ata_port *ap = host->ports[i]; 5719 5720 if (!ap) 5721 continue; 5722 5723 if (ap->scsi_host) 5724 scsi_host_put(ap->scsi_host); 5725 5726 kfree(ap->pmp_link); 5727 kfree(ap->slave_link); 5728 kfree(ap); 5729 host->ports[i] = NULL; 5730 } 5731 5732 dev_set_drvdata(gendev, NULL); 5733 } 5734 5735 /** 5736 * ata_host_alloc - allocate and init basic ATA host resources 5737 * @dev: generic device this host is associated with 5738 * @max_ports: maximum number of ATA ports associated with this host 5739 * 5740 * Allocate and initialize basic ATA host resources. LLD calls 5741 * this function to allocate a host, initializes it fully and 5742 * attaches it using ata_host_register(). 5743 * 5744 * @max_ports ports are allocated and host->n_ports is 5745 * initialized to @max_ports. The caller is allowed to decrease 5746 * host->n_ports before calling ata_host_register(). The unused 5747 * ports will be automatically freed on registration. 5748 * 5749 * RETURNS: 5750 * Allocate ATA host on success, NULL on failure. 5751 * 5752 * LOCKING: 5753 * Inherited from calling layer (may sleep). 5754 */ 5755 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5756 { 5757 struct ata_host *host; 5758 size_t sz; 5759 int i; 5760 5761 DPRINTK("ENTER\n"); 5762 5763 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5764 return NULL; 5765 5766 /* alloc a container for our list of ATA ports (buses) */ 5767 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5768 /* alloc a container for our list of ATA ports (buses) */ 5769 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5770 if (!host) 5771 goto err_out; 5772 5773 devres_add(dev, host); 5774 dev_set_drvdata(dev, host); 5775 5776 spin_lock_init(&host->lock); 5777 mutex_init(&host->eh_mutex); 5778 host->dev = dev; 5779 host->n_ports = max_ports; 5780 5781 /* allocate ports bound to this host */ 5782 for (i = 0; i < max_ports; i++) { 5783 struct ata_port *ap; 5784 5785 ap = ata_port_alloc(host); 5786 if (!ap) 5787 goto err_out; 5788 5789 ap->port_no = i; 5790 host->ports[i] = ap; 5791 } 5792 5793 devres_remove_group(dev, NULL); 5794 return host; 5795 5796 err_out: 5797 devres_release_group(dev, NULL); 5798 return NULL; 5799 } 5800 5801 /** 5802 * ata_host_alloc_pinfo - alloc host and init with port_info array 5803 * @dev: generic device this host is associated with 5804 * @ppi: array of ATA port_info to initialize host with 5805 * @n_ports: number of ATA ports attached to this host 5806 * 5807 * Allocate ATA host and initialize with info from @ppi. If NULL 5808 * terminated, @ppi may contain fewer entries than @n_ports. The 5809 * last entry will be used for the remaining ports. 5810 * 5811 * RETURNS: 5812 * Allocate ATA host on success, NULL on failure. 5813 * 5814 * LOCKING: 5815 * Inherited from calling layer (may sleep). 5816 */ 5817 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5818 const struct ata_port_info * const * ppi, 5819 int n_ports) 5820 { 5821 const struct ata_port_info *pi; 5822 struct ata_host *host; 5823 int i, j; 5824 5825 host = ata_host_alloc(dev, n_ports); 5826 if (!host) 5827 return NULL; 5828 5829 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5830 struct ata_port *ap = host->ports[i]; 5831 5832 if (ppi[j]) 5833 pi = ppi[j++]; 5834 5835 ap->pio_mask = pi->pio_mask; 5836 ap->mwdma_mask = pi->mwdma_mask; 5837 ap->udma_mask = pi->udma_mask; 5838 ap->flags |= pi->flags; 5839 ap->link.flags |= pi->link_flags; 5840 ap->ops = pi->port_ops; 5841 5842 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5843 host->ops = pi->port_ops; 5844 } 5845 5846 return host; 5847 } 5848 5849 /** 5850 * ata_slave_link_init - initialize slave link 5851 * @ap: port to initialize slave link for 5852 * 5853 * Create and initialize slave link for @ap. This enables slave 5854 * link handling on the port. 5855 * 5856 * In libata, a port contains links and a link contains devices. 5857 * There is single host link but if a PMP is attached to it, 5858 * there can be multiple fan-out links. On SATA, there's usually 5859 * a single device connected to a link but PATA and SATA 5860 * controllers emulating TF based interface can have two - master 5861 * and slave. 5862 * 5863 * However, there are a few controllers which don't fit into this 5864 * abstraction too well - SATA controllers which emulate TF 5865 * interface with both master and slave devices but also have 5866 * separate SCR register sets for each device. These controllers 5867 * need separate links for physical link handling 5868 * (e.g. onlineness, link speed) but should be treated like a 5869 * traditional M/S controller for everything else (e.g. command 5870 * issue, softreset). 5871 * 5872 * slave_link is libata's way of handling this class of 5873 * controllers without impacting core layer too much. For 5874 * anything other than physical link handling, the default host 5875 * link is used for both master and slave. For physical link 5876 * handling, separate @ap->slave_link is used. All dirty details 5877 * are implemented inside libata core layer. From LLD's POV, the 5878 * only difference is that prereset, hardreset and postreset are 5879 * called once more for the slave link, so the reset sequence 5880 * looks like the following. 5881 * 5882 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5883 * softreset(M) -> postreset(M) -> postreset(S) 5884 * 5885 * Note that softreset is called only for the master. Softreset 5886 * resets both M/S by definition, so SRST on master should handle 5887 * both (the standard method will work just fine). 5888 * 5889 * LOCKING: 5890 * Should be called before host is registered. 5891 * 5892 * RETURNS: 5893 * 0 on success, -errno on failure. 5894 */ 5895 int ata_slave_link_init(struct ata_port *ap) 5896 { 5897 struct ata_link *link; 5898 5899 WARN_ON(ap->slave_link); 5900 WARN_ON(ap->flags & ATA_FLAG_PMP); 5901 5902 link = kzalloc(sizeof(*link), GFP_KERNEL); 5903 if (!link) 5904 return -ENOMEM; 5905 5906 ata_link_init(ap, link, 1); 5907 ap->slave_link = link; 5908 return 0; 5909 } 5910 5911 static void ata_host_stop(struct device *gendev, void *res) 5912 { 5913 struct ata_host *host = dev_get_drvdata(gendev); 5914 int i; 5915 5916 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5917 5918 for (i = 0; i < host->n_ports; i++) { 5919 struct ata_port *ap = host->ports[i]; 5920 5921 if (ap->ops->port_stop) 5922 ap->ops->port_stop(ap); 5923 } 5924 5925 if (host->ops->host_stop) 5926 host->ops->host_stop(host); 5927 } 5928 5929 /** 5930 * ata_finalize_port_ops - finalize ata_port_operations 5931 * @ops: ata_port_operations to finalize 5932 * 5933 * An ata_port_operations can inherit from another ops and that 5934 * ops can again inherit from another. This can go on as many 5935 * times as necessary as long as there is no loop in the 5936 * inheritance chain. 5937 * 5938 * Ops tables are finalized when the host is started. NULL or 5939 * unspecified entries are inherited from the closet ancestor 5940 * which has the method and the entry is populated with it. 5941 * After finalization, the ops table directly points to all the 5942 * methods and ->inherits is no longer necessary and cleared. 5943 * 5944 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5945 * 5946 * LOCKING: 5947 * None. 5948 */ 5949 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5950 { 5951 static DEFINE_SPINLOCK(lock); 5952 const struct ata_port_operations *cur; 5953 void **begin = (void **)ops; 5954 void **end = (void **)&ops->inherits; 5955 void **pp; 5956 5957 if (!ops || !ops->inherits) 5958 return; 5959 5960 spin_lock(&lock); 5961 5962 for (cur = ops->inherits; cur; cur = cur->inherits) { 5963 void **inherit = (void **)cur; 5964 5965 for (pp = begin; pp < end; pp++, inherit++) 5966 if (!*pp) 5967 *pp = *inherit; 5968 } 5969 5970 for (pp = begin; pp < end; pp++) 5971 if (IS_ERR(*pp)) 5972 *pp = NULL; 5973 5974 ops->inherits = NULL; 5975 5976 spin_unlock(&lock); 5977 } 5978 5979 /** 5980 * ata_host_start - start and freeze ports of an ATA host 5981 * @host: ATA host to start ports for 5982 * 5983 * Start and then freeze ports of @host. Started status is 5984 * recorded in host->flags, so this function can be called 5985 * multiple times. Ports are guaranteed to get started only 5986 * once. If host->ops isn't initialized yet, its set to the 5987 * first non-dummy port ops. 5988 * 5989 * LOCKING: 5990 * Inherited from calling layer (may sleep). 5991 * 5992 * RETURNS: 5993 * 0 if all ports are started successfully, -errno otherwise. 5994 */ 5995 int ata_host_start(struct ata_host *host) 5996 { 5997 int have_stop = 0; 5998 void *start_dr = NULL; 5999 int i, rc; 6000 6001 if (host->flags & ATA_HOST_STARTED) 6002 return 0; 6003 6004 ata_finalize_port_ops(host->ops); 6005 6006 for (i = 0; i < host->n_ports; i++) { 6007 struct ata_port *ap = host->ports[i]; 6008 6009 ata_finalize_port_ops(ap->ops); 6010 6011 if (!host->ops && !ata_port_is_dummy(ap)) 6012 host->ops = ap->ops; 6013 6014 if (ap->ops->port_stop) 6015 have_stop = 1; 6016 } 6017 6018 if (host->ops->host_stop) 6019 have_stop = 1; 6020 6021 if (have_stop) { 6022 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6023 if (!start_dr) 6024 return -ENOMEM; 6025 } 6026 6027 for (i = 0; i < host->n_ports; i++) { 6028 struct ata_port *ap = host->ports[i]; 6029 6030 if (ap->ops->port_start) { 6031 rc = ap->ops->port_start(ap); 6032 if (rc) { 6033 if (rc != -ENODEV) 6034 dev_err(host->dev, 6035 "failed to start port %d (errno=%d)\n", 6036 i, rc); 6037 goto err_out; 6038 } 6039 } 6040 ata_eh_freeze_port(ap); 6041 } 6042 6043 if (start_dr) 6044 devres_add(host->dev, start_dr); 6045 host->flags |= ATA_HOST_STARTED; 6046 return 0; 6047 6048 err_out: 6049 while (--i >= 0) { 6050 struct ata_port *ap = host->ports[i]; 6051 6052 if (ap->ops->port_stop) 6053 ap->ops->port_stop(ap); 6054 } 6055 devres_free(start_dr); 6056 return rc; 6057 } 6058 6059 /** 6060 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6061 * @host: host to initialize 6062 * @dev: device host is attached to 6063 * @ops: port_ops 6064 * 6065 */ 6066 void ata_host_init(struct ata_host *host, struct device *dev, 6067 struct ata_port_operations *ops) 6068 { 6069 spin_lock_init(&host->lock); 6070 mutex_init(&host->eh_mutex); 6071 host->dev = dev; 6072 host->ops = ops; 6073 } 6074 6075 void __ata_port_probe(struct ata_port *ap) 6076 { 6077 struct ata_eh_info *ehi = &ap->link.eh_info; 6078 unsigned long flags; 6079 6080 /* kick EH for boot probing */ 6081 spin_lock_irqsave(ap->lock, flags); 6082 6083 ehi->probe_mask |= ATA_ALL_DEVICES; 6084 ehi->action |= ATA_EH_RESET; 6085 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6086 6087 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6088 ap->pflags |= ATA_PFLAG_LOADING; 6089 ata_port_schedule_eh(ap); 6090 6091 spin_unlock_irqrestore(ap->lock, flags); 6092 } 6093 6094 int ata_port_probe(struct ata_port *ap) 6095 { 6096 int rc = 0; 6097 6098 if (ap->ops->error_handler) { 6099 __ata_port_probe(ap); 6100 ata_port_wait_eh(ap); 6101 } else { 6102 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6103 rc = ata_bus_probe(ap); 6104 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6105 } 6106 return rc; 6107 } 6108 6109 6110 static void async_port_probe(void *data, async_cookie_t cookie) 6111 { 6112 struct ata_port *ap = data; 6113 6114 /* 6115 * If we're not allowed to scan this host in parallel, 6116 * we need to wait until all previous scans have completed 6117 * before going further. 6118 * Jeff Garzik says this is only within a controller, so we 6119 * don't need to wait for port 0, only for later ports. 6120 */ 6121 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6122 async_synchronize_cookie(cookie); 6123 6124 (void)ata_port_probe(ap); 6125 6126 /* in order to keep device order, we need to synchronize at this point */ 6127 async_synchronize_cookie(cookie); 6128 6129 ata_scsi_scan_host(ap, 1); 6130 } 6131 6132 /** 6133 * ata_host_register - register initialized ATA host 6134 * @host: ATA host to register 6135 * @sht: template for SCSI host 6136 * 6137 * Register initialized ATA host. @host is allocated using 6138 * ata_host_alloc() and fully initialized by LLD. This function 6139 * starts ports, registers @host with ATA and SCSI layers and 6140 * probe registered devices. 6141 * 6142 * LOCKING: 6143 * Inherited from calling layer (may sleep). 6144 * 6145 * RETURNS: 6146 * 0 on success, -errno otherwise. 6147 */ 6148 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6149 { 6150 int i, rc; 6151 6152 /* host must have been started */ 6153 if (!(host->flags & ATA_HOST_STARTED)) { 6154 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6155 WARN_ON(1); 6156 return -EINVAL; 6157 } 6158 6159 /* Blow away unused ports. This happens when LLD can't 6160 * determine the exact number of ports to allocate at 6161 * allocation time. 6162 */ 6163 for (i = host->n_ports; host->ports[i]; i++) 6164 kfree(host->ports[i]); 6165 6166 /* give ports names and add SCSI hosts */ 6167 for (i = 0; i < host->n_ports; i++) { 6168 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6169 host->ports[i]->local_port_no = i + 1; 6170 } 6171 6172 /* Create associated sysfs transport objects */ 6173 for (i = 0; i < host->n_ports; i++) { 6174 rc = ata_tport_add(host->dev,host->ports[i]); 6175 if (rc) { 6176 goto err_tadd; 6177 } 6178 } 6179 6180 rc = ata_scsi_add_hosts(host, sht); 6181 if (rc) 6182 goto err_tadd; 6183 6184 /* set cable, sata_spd_limit and report */ 6185 for (i = 0; i < host->n_ports; i++) { 6186 struct ata_port *ap = host->ports[i]; 6187 unsigned long xfer_mask; 6188 6189 /* set SATA cable type if still unset */ 6190 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6191 ap->cbl = ATA_CBL_SATA; 6192 6193 /* init sata_spd_limit to the current value */ 6194 sata_link_init_spd(&ap->link); 6195 if (ap->slave_link) 6196 sata_link_init_spd(ap->slave_link); 6197 6198 /* print per-port info to dmesg */ 6199 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6200 ap->udma_mask); 6201 6202 if (!ata_port_is_dummy(ap)) { 6203 ata_port_info(ap, "%cATA max %s %s\n", 6204 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6205 ata_mode_string(xfer_mask), 6206 ap->link.eh_info.desc); 6207 ata_ehi_clear_desc(&ap->link.eh_info); 6208 } else 6209 ata_port_info(ap, "DUMMY\n"); 6210 } 6211 6212 /* perform each probe asynchronously */ 6213 for (i = 0; i < host->n_ports; i++) { 6214 struct ata_port *ap = host->ports[i]; 6215 async_schedule(async_port_probe, ap); 6216 } 6217 6218 return 0; 6219 6220 err_tadd: 6221 while (--i >= 0) { 6222 ata_tport_delete(host->ports[i]); 6223 } 6224 return rc; 6225 6226 } 6227 6228 /** 6229 * ata_host_activate - start host, request IRQ and register it 6230 * @host: target ATA host 6231 * @irq: IRQ to request 6232 * @irq_handler: irq_handler used when requesting IRQ 6233 * @irq_flags: irq_flags used when requesting IRQ 6234 * @sht: scsi_host_template to use when registering the host 6235 * 6236 * After allocating an ATA host and initializing it, most libata 6237 * LLDs perform three steps to activate the host - start host, 6238 * request IRQ and register it. This helper takes necessasry 6239 * arguments and performs the three steps in one go. 6240 * 6241 * An invalid IRQ skips the IRQ registration and expects the host to 6242 * have set polling mode on the port. In this case, @irq_handler 6243 * should be NULL. 6244 * 6245 * LOCKING: 6246 * Inherited from calling layer (may sleep). 6247 * 6248 * RETURNS: 6249 * 0 on success, -errno otherwise. 6250 */ 6251 int ata_host_activate(struct ata_host *host, int irq, 6252 irq_handler_t irq_handler, unsigned long irq_flags, 6253 struct scsi_host_template *sht) 6254 { 6255 int i, rc; 6256 6257 rc = ata_host_start(host); 6258 if (rc) 6259 return rc; 6260 6261 /* Special case for polling mode */ 6262 if (!irq) { 6263 WARN_ON(irq_handler); 6264 return ata_host_register(host, sht); 6265 } 6266 6267 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6268 dev_driver_string(host->dev), host); 6269 if (rc) 6270 return rc; 6271 6272 for (i = 0; i < host->n_ports; i++) 6273 ata_port_desc(host->ports[i], "irq %d", irq); 6274 6275 rc = ata_host_register(host, sht); 6276 /* if failed, just free the IRQ and leave ports alone */ 6277 if (rc) 6278 devm_free_irq(host->dev, irq, host); 6279 6280 return rc; 6281 } 6282 6283 /** 6284 * ata_port_detach - Detach ATA port in prepration of device removal 6285 * @ap: ATA port to be detached 6286 * 6287 * Detach all ATA devices and the associated SCSI devices of @ap; 6288 * then, remove the associated SCSI host. @ap is guaranteed to 6289 * be quiescent on return from this function. 6290 * 6291 * LOCKING: 6292 * Kernel thread context (may sleep). 6293 */ 6294 static void ata_port_detach(struct ata_port *ap) 6295 { 6296 unsigned long flags; 6297 6298 if (!ap->ops->error_handler) 6299 goto skip_eh; 6300 6301 /* tell EH we're leaving & flush EH */ 6302 spin_lock_irqsave(ap->lock, flags); 6303 ap->pflags |= ATA_PFLAG_UNLOADING; 6304 ata_port_schedule_eh(ap); 6305 spin_unlock_irqrestore(ap->lock, flags); 6306 6307 /* wait till EH commits suicide */ 6308 ata_port_wait_eh(ap); 6309 6310 /* it better be dead now */ 6311 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6312 6313 cancel_delayed_work_sync(&ap->hotplug_task); 6314 6315 skip_eh: 6316 if (ap->pmp_link) { 6317 int i; 6318 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6319 ata_tlink_delete(&ap->pmp_link[i]); 6320 } 6321 /* remove the associated SCSI host */ 6322 scsi_remove_host(ap->scsi_host); 6323 ata_tport_delete(ap); 6324 } 6325 6326 /** 6327 * ata_host_detach - Detach all ports of an ATA host 6328 * @host: Host to detach 6329 * 6330 * Detach all ports of @host. 6331 * 6332 * LOCKING: 6333 * Kernel thread context (may sleep). 6334 */ 6335 void ata_host_detach(struct ata_host *host) 6336 { 6337 int i; 6338 6339 for (i = 0; i < host->n_ports; i++) 6340 ata_port_detach(host->ports[i]); 6341 6342 /* the host is dead now, dissociate ACPI */ 6343 ata_acpi_dissociate(host); 6344 } 6345 6346 #ifdef CONFIG_PCI 6347 6348 /** 6349 * ata_pci_remove_one - PCI layer callback for device removal 6350 * @pdev: PCI device that was removed 6351 * 6352 * PCI layer indicates to libata via this hook that hot-unplug or 6353 * module unload event has occurred. Detach all ports. Resource 6354 * release is handled via devres. 6355 * 6356 * LOCKING: 6357 * Inherited from PCI layer (may sleep). 6358 */ 6359 void ata_pci_remove_one(struct pci_dev *pdev) 6360 { 6361 struct ata_host *host = pci_get_drvdata(pdev); 6362 6363 ata_host_detach(host); 6364 } 6365 6366 /* move to PCI subsystem */ 6367 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6368 { 6369 unsigned long tmp = 0; 6370 6371 switch (bits->width) { 6372 case 1: { 6373 u8 tmp8 = 0; 6374 pci_read_config_byte(pdev, bits->reg, &tmp8); 6375 tmp = tmp8; 6376 break; 6377 } 6378 case 2: { 6379 u16 tmp16 = 0; 6380 pci_read_config_word(pdev, bits->reg, &tmp16); 6381 tmp = tmp16; 6382 break; 6383 } 6384 case 4: { 6385 u32 tmp32 = 0; 6386 pci_read_config_dword(pdev, bits->reg, &tmp32); 6387 tmp = tmp32; 6388 break; 6389 } 6390 6391 default: 6392 return -EINVAL; 6393 } 6394 6395 tmp &= bits->mask; 6396 6397 return (tmp == bits->val) ? 1 : 0; 6398 } 6399 6400 #ifdef CONFIG_PM 6401 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6402 { 6403 pci_save_state(pdev); 6404 pci_disable_device(pdev); 6405 6406 if (mesg.event & PM_EVENT_SLEEP) 6407 pci_set_power_state(pdev, PCI_D3hot); 6408 } 6409 6410 int ata_pci_device_do_resume(struct pci_dev *pdev) 6411 { 6412 int rc; 6413 6414 pci_set_power_state(pdev, PCI_D0); 6415 pci_restore_state(pdev); 6416 6417 rc = pcim_enable_device(pdev); 6418 if (rc) { 6419 dev_err(&pdev->dev, 6420 "failed to enable device after resume (%d)\n", rc); 6421 return rc; 6422 } 6423 6424 pci_set_master(pdev); 6425 return 0; 6426 } 6427 6428 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6429 { 6430 struct ata_host *host = pci_get_drvdata(pdev); 6431 int rc = 0; 6432 6433 rc = ata_host_suspend(host, mesg); 6434 if (rc) 6435 return rc; 6436 6437 ata_pci_device_do_suspend(pdev, mesg); 6438 6439 return 0; 6440 } 6441 6442 int ata_pci_device_resume(struct pci_dev *pdev) 6443 { 6444 struct ata_host *host = pci_get_drvdata(pdev); 6445 int rc; 6446 6447 rc = ata_pci_device_do_resume(pdev); 6448 if (rc == 0) 6449 ata_host_resume(host); 6450 return rc; 6451 } 6452 #endif /* CONFIG_PM */ 6453 6454 #endif /* CONFIG_PCI */ 6455 6456 /** 6457 * ata_platform_remove_one - Platform layer callback for device removal 6458 * @pdev: Platform device that was removed 6459 * 6460 * Platform layer indicates to libata via this hook that hot-unplug or 6461 * module unload event has occurred. Detach all ports. Resource 6462 * release is handled via devres. 6463 * 6464 * LOCKING: 6465 * Inherited from platform layer (may sleep). 6466 */ 6467 int ata_platform_remove_one(struct platform_device *pdev) 6468 { 6469 struct ata_host *host = platform_get_drvdata(pdev); 6470 6471 ata_host_detach(host); 6472 6473 return 0; 6474 } 6475 6476 static int __init ata_parse_force_one(char **cur, 6477 struct ata_force_ent *force_ent, 6478 const char **reason) 6479 { 6480 /* FIXME: Currently, there's no way to tag init const data and 6481 * using __initdata causes build failure on some versions of 6482 * gcc. Once __initdataconst is implemented, add const to the 6483 * following structure. 6484 */ 6485 static struct ata_force_param force_tbl[] __initdata = { 6486 { "40c", .cbl = ATA_CBL_PATA40 }, 6487 { "80c", .cbl = ATA_CBL_PATA80 }, 6488 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6489 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6490 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6491 { "sata", .cbl = ATA_CBL_SATA }, 6492 { "1.5Gbps", .spd_limit = 1 }, 6493 { "3.0Gbps", .spd_limit = 2 }, 6494 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6495 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6496 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6497 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6498 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6499 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6500 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6501 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6502 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6503 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6504 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6505 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6506 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6507 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6508 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6509 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6510 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6511 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6512 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6513 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6514 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6515 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6516 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6517 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6518 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6519 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6520 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6521 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6522 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6523 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6524 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6525 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6526 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6527 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6528 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6529 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6530 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6531 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6532 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6533 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6534 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6535 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6536 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6537 }; 6538 char *start = *cur, *p = *cur; 6539 char *id, *val, *endp; 6540 const struct ata_force_param *match_fp = NULL; 6541 int nr_matches = 0, i; 6542 6543 /* find where this param ends and update *cur */ 6544 while (*p != '\0' && *p != ',') 6545 p++; 6546 6547 if (*p == '\0') 6548 *cur = p; 6549 else 6550 *cur = p + 1; 6551 6552 *p = '\0'; 6553 6554 /* parse */ 6555 p = strchr(start, ':'); 6556 if (!p) { 6557 val = strstrip(start); 6558 goto parse_val; 6559 } 6560 *p = '\0'; 6561 6562 id = strstrip(start); 6563 val = strstrip(p + 1); 6564 6565 /* parse id */ 6566 p = strchr(id, '.'); 6567 if (p) { 6568 *p++ = '\0'; 6569 force_ent->device = simple_strtoul(p, &endp, 10); 6570 if (p == endp || *endp != '\0') { 6571 *reason = "invalid device"; 6572 return -EINVAL; 6573 } 6574 } 6575 6576 force_ent->port = simple_strtoul(id, &endp, 10); 6577 if (p == endp || *endp != '\0') { 6578 *reason = "invalid port/link"; 6579 return -EINVAL; 6580 } 6581 6582 parse_val: 6583 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6584 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6585 const struct ata_force_param *fp = &force_tbl[i]; 6586 6587 if (strncasecmp(val, fp->name, strlen(val))) 6588 continue; 6589 6590 nr_matches++; 6591 match_fp = fp; 6592 6593 if (strcasecmp(val, fp->name) == 0) { 6594 nr_matches = 1; 6595 break; 6596 } 6597 } 6598 6599 if (!nr_matches) { 6600 *reason = "unknown value"; 6601 return -EINVAL; 6602 } 6603 if (nr_matches > 1) { 6604 *reason = "ambigious value"; 6605 return -EINVAL; 6606 } 6607 6608 force_ent->param = *match_fp; 6609 6610 return 0; 6611 } 6612 6613 static void __init ata_parse_force_param(void) 6614 { 6615 int idx = 0, size = 1; 6616 int last_port = -1, last_device = -1; 6617 char *p, *cur, *next; 6618 6619 /* calculate maximum number of params and allocate force_tbl */ 6620 for (p = ata_force_param_buf; *p; p++) 6621 if (*p == ',') 6622 size++; 6623 6624 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6625 if (!ata_force_tbl) { 6626 printk(KERN_WARNING "ata: failed to extend force table, " 6627 "libata.force ignored\n"); 6628 return; 6629 } 6630 6631 /* parse and populate the table */ 6632 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6633 const char *reason = ""; 6634 struct ata_force_ent te = { .port = -1, .device = -1 }; 6635 6636 next = cur; 6637 if (ata_parse_force_one(&next, &te, &reason)) { 6638 printk(KERN_WARNING "ata: failed to parse force " 6639 "parameter \"%s\" (%s)\n", 6640 cur, reason); 6641 continue; 6642 } 6643 6644 if (te.port == -1) { 6645 te.port = last_port; 6646 te.device = last_device; 6647 } 6648 6649 ata_force_tbl[idx++] = te; 6650 6651 last_port = te.port; 6652 last_device = te.device; 6653 } 6654 6655 ata_force_tbl_size = idx; 6656 } 6657 6658 static int __init ata_init(void) 6659 { 6660 int rc; 6661 6662 ata_parse_force_param(); 6663 6664 rc = ata_sff_init(); 6665 if (rc) { 6666 kfree(ata_force_tbl); 6667 return rc; 6668 } 6669 6670 libata_transport_init(); 6671 ata_scsi_transport_template = ata_attach_transport(); 6672 if (!ata_scsi_transport_template) { 6673 ata_sff_exit(); 6674 rc = -ENOMEM; 6675 goto err_out; 6676 } 6677 6678 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6679 return 0; 6680 6681 err_out: 6682 return rc; 6683 } 6684 6685 static void __exit ata_exit(void) 6686 { 6687 ata_release_transport(ata_scsi_transport_template); 6688 libata_transport_exit(); 6689 ata_sff_exit(); 6690 kfree(ata_force_tbl); 6691 } 6692 6693 subsys_initcall(ata_init); 6694 module_exit(ata_exit); 6695 6696 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6697 6698 int ata_ratelimit(void) 6699 { 6700 return __ratelimit(&ratelimit); 6701 } 6702 6703 /** 6704 * ata_msleep - ATA EH owner aware msleep 6705 * @ap: ATA port to attribute the sleep to 6706 * @msecs: duration to sleep in milliseconds 6707 * 6708 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6709 * ownership is released before going to sleep and reacquired 6710 * after the sleep is complete. IOW, other ports sharing the 6711 * @ap->host will be allowed to own the EH while this task is 6712 * sleeping. 6713 * 6714 * LOCKING: 6715 * Might sleep. 6716 */ 6717 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6718 { 6719 bool owns_eh = ap && ap->host->eh_owner == current; 6720 6721 if (owns_eh) 6722 ata_eh_release(ap); 6723 6724 msleep(msecs); 6725 6726 if (owns_eh) 6727 ata_eh_acquire(ap); 6728 } 6729 6730 /** 6731 * ata_wait_register - wait until register value changes 6732 * @ap: ATA port to wait register for, can be NULL 6733 * @reg: IO-mapped register 6734 * @mask: Mask to apply to read register value 6735 * @val: Wait condition 6736 * @interval: polling interval in milliseconds 6737 * @timeout: timeout in milliseconds 6738 * 6739 * Waiting for some bits of register to change is a common 6740 * operation for ATA controllers. This function reads 32bit LE 6741 * IO-mapped register @reg and tests for the following condition. 6742 * 6743 * (*@reg & mask) != val 6744 * 6745 * If the condition is met, it returns; otherwise, the process is 6746 * repeated after @interval_msec until timeout. 6747 * 6748 * LOCKING: 6749 * Kernel thread context (may sleep) 6750 * 6751 * RETURNS: 6752 * The final register value. 6753 */ 6754 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6755 unsigned long interval, unsigned long timeout) 6756 { 6757 unsigned long deadline; 6758 u32 tmp; 6759 6760 tmp = ioread32(reg); 6761 6762 /* Calculate timeout _after_ the first read to make sure 6763 * preceding writes reach the controller before starting to 6764 * eat away the timeout. 6765 */ 6766 deadline = ata_deadline(jiffies, timeout); 6767 6768 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6769 ata_msleep(ap, interval); 6770 tmp = ioread32(reg); 6771 } 6772 6773 return tmp; 6774 } 6775 6776 /* 6777 * Dummy port_ops 6778 */ 6779 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6780 { 6781 return AC_ERR_SYSTEM; 6782 } 6783 6784 static void ata_dummy_error_handler(struct ata_port *ap) 6785 { 6786 /* truly dummy */ 6787 } 6788 6789 struct ata_port_operations ata_dummy_port_ops = { 6790 .qc_prep = ata_noop_qc_prep, 6791 .qc_issue = ata_dummy_qc_issue, 6792 .error_handler = ata_dummy_error_handler, 6793 .sched_eh = ata_std_sched_eh, 6794 .end_eh = ata_std_end_eh, 6795 }; 6796 6797 const struct ata_port_info ata_dummy_port_info = { 6798 .port_ops = &ata_dummy_port_ops, 6799 }; 6800 6801 /* 6802 * Utility print functions 6803 */ 6804 int ata_port_printk(const struct ata_port *ap, const char *level, 6805 const char *fmt, ...) 6806 { 6807 struct va_format vaf; 6808 va_list args; 6809 int r; 6810 6811 va_start(args, fmt); 6812 6813 vaf.fmt = fmt; 6814 vaf.va = &args; 6815 6816 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6817 6818 va_end(args); 6819 6820 return r; 6821 } 6822 EXPORT_SYMBOL(ata_port_printk); 6823 6824 int ata_link_printk(const struct ata_link *link, const char *level, 6825 const char *fmt, ...) 6826 { 6827 struct va_format vaf; 6828 va_list args; 6829 int r; 6830 6831 va_start(args, fmt); 6832 6833 vaf.fmt = fmt; 6834 vaf.va = &args; 6835 6836 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6837 r = printk("%sata%u.%02u: %pV", 6838 level, link->ap->print_id, link->pmp, &vaf); 6839 else 6840 r = printk("%sata%u: %pV", 6841 level, link->ap->print_id, &vaf); 6842 6843 va_end(args); 6844 6845 return r; 6846 } 6847 EXPORT_SYMBOL(ata_link_printk); 6848 6849 int ata_dev_printk(const struct ata_device *dev, const char *level, 6850 const char *fmt, ...) 6851 { 6852 struct va_format vaf; 6853 va_list args; 6854 int r; 6855 6856 va_start(args, fmt); 6857 6858 vaf.fmt = fmt; 6859 vaf.va = &args; 6860 6861 r = printk("%sata%u.%02u: %pV", 6862 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6863 &vaf); 6864 6865 va_end(args); 6866 6867 return r; 6868 } 6869 EXPORT_SYMBOL(ata_dev_printk); 6870 6871 void ata_print_version(const struct device *dev, const char *version) 6872 { 6873 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6874 } 6875 EXPORT_SYMBOL(ata_print_version); 6876 6877 /* 6878 * libata is essentially a library of internal helper functions for 6879 * low-level ATA host controller drivers. As such, the API/ABI is 6880 * likely to change as new drivers are added and updated. 6881 * Do not depend on ABI/API stability. 6882 */ 6883 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6884 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6885 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6886 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6887 EXPORT_SYMBOL_GPL(sata_port_ops); 6888 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6889 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6890 EXPORT_SYMBOL_GPL(ata_link_next); 6891 EXPORT_SYMBOL_GPL(ata_dev_next); 6892 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6893 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6894 EXPORT_SYMBOL_GPL(ata_host_init); 6895 EXPORT_SYMBOL_GPL(ata_host_alloc); 6896 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6897 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6898 EXPORT_SYMBOL_GPL(ata_host_start); 6899 EXPORT_SYMBOL_GPL(ata_host_register); 6900 EXPORT_SYMBOL_GPL(ata_host_activate); 6901 EXPORT_SYMBOL_GPL(ata_host_detach); 6902 EXPORT_SYMBOL_GPL(ata_sg_init); 6903 EXPORT_SYMBOL_GPL(ata_qc_complete); 6904 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6905 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6906 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6907 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6908 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6909 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6910 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6911 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6912 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6913 EXPORT_SYMBOL_GPL(ata_mode_string); 6914 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6915 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6916 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6917 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6918 EXPORT_SYMBOL_GPL(ata_dev_disable); 6919 EXPORT_SYMBOL_GPL(sata_set_spd); 6920 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6921 EXPORT_SYMBOL_GPL(sata_link_debounce); 6922 EXPORT_SYMBOL_GPL(sata_link_resume); 6923 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6924 EXPORT_SYMBOL_GPL(ata_std_prereset); 6925 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6926 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6927 EXPORT_SYMBOL_GPL(ata_std_postreset); 6928 EXPORT_SYMBOL_GPL(ata_dev_classify); 6929 EXPORT_SYMBOL_GPL(ata_dev_pair); 6930 EXPORT_SYMBOL_GPL(ata_ratelimit); 6931 EXPORT_SYMBOL_GPL(ata_msleep); 6932 EXPORT_SYMBOL_GPL(ata_wait_register); 6933 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6934 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6935 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6936 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6937 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6938 EXPORT_SYMBOL_GPL(sata_scr_valid); 6939 EXPORT_SYMBOL_GPL(sata_scr_read); 6940 EXPORT_SYMBOL_GPL(sata_scr_write); 6941 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6942 EXPORT_SYMBOL_GPL(ata_link_online); 6943 EXPORT_SYMBOL_GPL(ata_link_offline); 6944 #ifdef CONFIG_PM 6945 EXPORT_SYMBOL_GPL(ata_host_suspend); 6946 EXPORT_SYMBOL_GPL(ata_host_resume); 6947 #endif /* CONFIG_PM */ 6948 EXPORT_SYMBOL_GPL(ata_id_string); 6949 EXPORT_SYMBOL_GPL(ata_id_c_string); 6950 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6951 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6952 6953 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6954 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6955 EXPORT_SYMBOL_GPL(ata_timing_compute); 6956 EXPORT_SYMBOL_GPL(ata_timing_merge); 6957 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6958 6959 #ifdef CONFIG_PCI 6960 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6961 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6962 #ifdef CONFIG_PM 6963 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6964 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6965 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6966 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6967 #endif /* CONFIG_PM */ 6968 #endif /* CONFIG_PCI */ 6969 6970 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6971 6972 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6973 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6974 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6975 EXPORT_SYMBOL_GPL(ata_port_desc); 6976 #ifdef CONFIG_PCI 6977 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6978 #endif /* CONFIG_PCI */ 6979 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6980 EXPORT_SYMBOL_GPL(ata_link_abort); 6981 EXPORT_SYMBOL_GPL(ata_port_abort); 6982 EXPORT_SYMBOL_GPL(ata_port_freeze); 6983 EXPORT_SYMBOL_GPL(sata_async_notification); 6984 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6985 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6986 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6987 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6988 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6989 EXPORT_SYMBOL_GPL(ata_do_eh); 6990 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6991 6992 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6993 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6994 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6995 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6996 EXPORT_SYMBOL_GPL(ata_cable_sata); 6997