xref: /linux/drivers/ata/libata-core.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71 
72 #include "libata.h"
73 #include "libata-transport.h"
74 
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
78 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
79 
80 const struct ata_port_operations ata_base_port_ops = {
81 	.prereset		= ata_std_prereset,
82 	.postreset		= ata_std_postreset,
83 	.error_handler		= ata_std_error_handler,
84 	.sched_eh		= ata_std_sched_eh,
85 	.end_eh			= ata_std_end_eh,
86 };
87 
88 const struct ata_port_operations sata_port_ops = {
89 	.inherits		= &ata_base_port_ops,
90 
91 	.qc_defer		= ata_std_qc_defer,
92 	.hardreset		= sata_std_hardreset,
93 };
94 
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 					u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100 
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102 
103 struct ata_force_param {
104 	const char	*name;
105 	unsigned int	cbl;
106 	int		spd_limit;
107 	unsigned long	xfer_mask;
108 	unsigned int	horkage_on;
109 	unsigned int	horkage_off;
110 	unsigned int	lflags;
111 };
112 
113 struct ata_force_ent {
114 	int			port;
115 	int			device;
116 	struct ata_force_param	param;
117 };
118 
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121 
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171 
172 
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 	return (sstatus & 0xf) == 0x3;
176 }
177 
178 /**
179  *	ata_link_next - link iteration helper
180  *	@link: the previous link, NULL to start
181  *	@ap: ATA port containing links to iterate
182  *	@mode: iteration mode, one of ATA_LITER_*
183  *
184  *	LOCKING:
185  *	Host lock or EH context.
186  *
187  *	RETURNS:
188  *	Pointer to the next link.
189  */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 			       enum ata_link_iter_mode mode)
192 {
193 	BUG_ON(mode != ATA_LITER_EDGE &&
194 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195 
196 	/* NULL link indicates start of iteration */
197 	if (!link)
198 		switch (mode) {
199 		case ATA_LITER_EDGE:
200 		case ATA_LITER_PMP_FIRST:
201 			if (sata_pmp_attached(ap))
202 				return ap->pmp_link;
203 			/* fall through */
204 		case ATA_LITER_HOST_FIRST:
205 			return &ap->link;
206 		}
207 
208 	/* we just iterated over the host link, what's next? */
209 	if (link == &ap->link)
210 		switch (mode) {
211 		case ATA_LITER_HOST_FIRST:
212 			if (sata_pmp_attached(ap))
213 				return ap->pmp_link;
214 			/* fall through */
215 		case ATA_LITER_PMP_FIRST:
216 			if (unlikely(ap->slave_link))
217 				return ap->slave_link;
218 			/* fall through */
219 		case ATA_LITER_EDGE:
220 			return NULL;
221 		}
222 
223 	/* slave_link excludes PMP */
224 	if (unlikely(link == ap->slave_link))
225 		return NULL;
226 
227 	/* we were over a PMP link */
228 	if (++link < ap->pmp_link + ap->nr_pmp_links)
229 		return link;
230 
231 	if (mode == ATA_LITER_PMP_FIRST)
232 		return &ap->link;
233 
234 	return NULL;
235 }
236 
237 /**
238  *	ata_dev_next - device iteration helper
239  *	@dev: the previous device, NULL to start
240  *	@link: ATA link containing devices to iterate
241  *	@mode: iteration mode, one of ATA_DITER_*
242  *
243  *	LOCKING:
244  *	Host lock or EH context.
245  *
246  *	RETURNS:
247  *	Pointer to the next device.
248  */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 				enum ata_dev_iter_mode mode)
251 {
252 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254 
255 	/* NULL dev indicates start of iteration */
256 	if (!dev)
257 		switch (mode) {
258 		case ATA_DITER_ENABLED:
259 		case ATA_DITER_ALL:
260 			dev = link->device;
261 			goto check;
262 		case ATA_DITER_ENABLED_REVERSE:
263 		case ATA_DITER_ALL_REVERSE:
264 			dev = link->device + ata_link_max_devices(link) - 1;
265 			goto check;
266 		}
267 
268  next:
269 	/* move to the next one */
270 	switch (mode) {
271 	case ATA_DITER_ENABLED:
272 	case ATA_DITER_ALL:
273 		if (++dev < link->device + ata_link_max_devices(link))
274 			goto check;
275 		return NULL;
276 	case ATA_DITER_ENABLED_REVERSE:
277 	case ATA_DITER_ALL_REVERSE:
278 		if (--dev >= link->device)
279 			goto check;
280 		return NULL;
281 	}
282 
283  check:
284 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 	    !ata_dev_enabled(dev))
286 		goto next;
287 	return dev;
288 }
289 
290 /**
291  *	ata_dev_phys_link - find physical link for a device
292  *	@dev: ATA device to look up physical link for
293  *
294  *	Look up physical link which @dev is attached to.  Note that
295  *	this is different from @dev->link only when @dev is on slave
296  *	link.  For all other cases, it's the same as @dev->link.
297  *
298  *	LOCKING:
299  *	Don't care.
300  *
301  *	RETURNS:
302  *	Pointer to the found physical link.
303  */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 	struct ata_port *ap = dev->link->ap;
307 
308 	if (!ap->slave_link)
309 		return dev->link;
310 	if (!dev->devno)
311 		return &ap->link;
312 	return ap->slave_link;
313 }
314 
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags) {
391 			link->flags |= fe->param.lflags;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags, link->flags);
395 		}
396 	}
397 }
398 
399 /**
400  *	ata_force_xfermask - force xfermask according to libata.force
401  *	@dev: ATA device of interest
402  *
403  *	Force xfer_mask according to libata.force and whine about it.
404  *	For consistency with link selection, device number 15 selects
405  *	the first device connected to the host link.
406  *
407  *	LOCKING:
408  *	EH context.
409  */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 	int devno = dev->link->pmp + dev->devno;
413 	int alt_devno = devno;
414 	int i;
415 
416 	/* allow n.15/16 for devices attached to host port */
417 	if (ata_is_host_link(dev->link))
418 		alt_devno += 15;
419 
420 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 		const struct ata_force_ent *fe = &ata_force_tbl[i];
422 		unsigned long pio_mask, mwdma_mask, udma_mask;
423 
424 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 			continue;
426 
427 		if (fe->device != -1 && fe->device != devno &&
428 		    fe->device != alt_devno)
429 			continue;
430 
431 		if (!fe->param.xfer_mask)
432 			continue;
433 
434 		ata_unpack_xfermask(fe->param.xfer_mask,
435 				    &pio_mask, &mwdma_mask, &udma_mask);
436 		if (udma_mask)
437 			dev->udma_mask = udma_mask;
438 		else if (mwdma_mask) {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = mwdma_mask;
441 		} else {
442 			dev->udma_mask = 0;
443 			dev->mwdma_mask = 0;
444 			dev->pio_mask = pio_mask;
445 		}
446 
447 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 			       fe->param.name);
449 		return;
450 	}
451 }
452 
453 /**
454  *	ata_force_horkage - force horkage according to libata.force
455  *	@dev: ATA device of interest
456  *
457  *	Force horkage according to libata.force and whine about it.
458  *	For consistency with link selection, device number 15 selects
459  *	the first device connected to the host link.
460  *
461  *	LOCKING:
462  *	EH context.
463  */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 	int devno = dev->link->pmp + dev->devno;
467 	int alt_devno = devno;
468 	int i;
469 
470 	/* allow n.15/16 for devices attached to host port */
471 	if (ata_is_host_link(dev->link))
472 		alt_devno += 15;
473 
474 	for (i = 0; i < ata_force_tbl_size; i++) {
475 		const struct ata_force_ent *fe = &ata_force_tbl[i];
476 
477 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 			continue;
479 
480 		if (fe->device != -1 && fe->device != devno &&
481 		    fe->device != alt_devno)
482 			continue;
483 
484 		if (!(~dev->horkage & fe->param.horkage_on) &&
485 		    !(dev->horkage & fe->param.horkage_off))
486 			continue;
487 
488 		dev->horkage |= fe->param.horkage_on;
489 		dev->horkage &= ~fe->param.horkage_off;
490 
491 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 			       fe->param.name);
493 	}
494 }
495 
496 /**
497  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498  *	@opcode: SCSI opcode
499  *
500  *	Determine ATAPI command type from @opcode.
501  *
502  *	LOCKING:
503  *	None.
504  *
505  *	RETURNS:
506  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507  */
508 int atapi_cmd_type(u8 opcode)
509 {
510 	switch (opcode) {
511 	case GPCMD_READ_10:
512 	case GPCMD_READ_12:
513 		return ATAPI_READ;
514 
515 	case GPCMD_WRITE_10:
516 	case GPCMD_WRITE_12:
517 	case GPCMD_WRITE_AND_VERIFY_10:
518 		return ATAPI_WRITE;
519 
520 	case GPCMD_READ_CD:
521 	case GPCMD_READ_CD_MSF:
522 		return ATAPI_READ_CD;
523 
524 	case ATA_16:
525 	case ATA_12:
526 		if (atapi_passthru16)
527 			return ATAPI_PASS_THRU;
528 		/* fall thru */
529 	default:
530 		return ATAPI_MISC;
531 	}
532 }
533 
534 /**
535  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536  *	@tf: Taskfile to convert
537  *	@pmp: Port multiplier port
538  *	@is_cmd: This FIS is for command
539  *	@fis: Buffer into which data will output
540  *
541  *	Converts a standard ATA taskfile to a Serial ATA
542  *	FIS structure (Register - Host to Device).
543  *
544  *	LOCKING:
545  *	Inherited from caller.
546  */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 	fis[0] = 0x27;			/* Register - Host to Device FIS */
550 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
551 	if (is_cmd)
552 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
553 
554 	fis[2] = tf->command;
555 	fis[3] = tf->feature;
556 
557 	fis[4] = tf->lbal;
558 	fis[5] = tf->lbam;
559 	fis[6] = tf->lbah;
560 	fis[7] = tf->device;
561 
562 	fis[8] = tf->hob_lbal;
563 	fis[9] = tf->hob_lbam;
564 	fis[10] = tf->hob_lbah;
565 	fis[11] = tf->hob_feature;
566 
567 	fis[12] = tf->nsect;
568 	fis[13] = tf->hob_nsect;
569 	fis[14] = 0;
570 	fis[15] = tf->ctl;
571 
572 	fis[16] = tf->auxiliary & 0xff;
573 	fis[17] = (tf->auxiliary >> 8) & 0xff;
574 	fis[18] = (tf->auxiliary >> 16) & 0xff;
575 	fis[19] = (tf->auxiliary >> 24) & 0xff;
576 }
577 
578 /**
579  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580  *	@fis: Buffer from which data will be input
581  *	@tf: Taskfile to output
582  *
583  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
584  *
585  *	LOCKING:
586  *	Inherited from caller.
587  */
588 
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 	tf->command	= fis[2];	/* status */
592 	tf->feature	= fis[3];	/* error */
593 
594 	tf->lbal	= fis[4];
595 	tf->lbam	= fis[5];
596 	tf->lbah	= fis[6];
597 	tf->device	= fis[7];
598 
599 	tf->hob_lbal	= fis[8];
600 	tf->hob_lbam	= fis[9];
601 	tf->hob_lbah	= fis[10];
602 
603 	tf->nsect	= fis[12];
604 	tf->hob_nsect	= fis[13];
605 }
606 
607 static const u8 ata_rw_cmds[] = {
608 	/* pio multi */
609 	ATA_CMD_READ_MULTI,
610 	ATA_CMD_WRITE_MULTI,
611 	ATA_CMD_READ_MULTI_EXT,
612 	ATA_CMD_WRITE_MULTI_EXT,
613 	0,
614 	0,
615 	0,
616 	ATA_CMD_WRITE_MULTI_FUA_EXT,
617 	/* pio */
618 	ATA_CMD_PIO_READ,
619 	ATA_CMD_PIO_WRITE,
620 	ATA_CMD_PIO_READ_EXT,
621 	ATA_CMD_PIO_WRITE_EXT,
622 	0,
623 	0,
624 	0,
625 	0,
626 	/* dma */
627 	ATA_CMD_READ,
628 	ATA_CMD_WRITE,
629 	ATA_CMD_READ_EXT,
630 	ATA_CMD_WRITE_EXT,
631 	0,
632 	0,
633 	0,
634 	ATA_CMD_WRITE_FUA_EXT
635 };
636 
637 /**
638  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
639  *	@tf: command to examine and configure
640  *	@dev: device tf belongs to
641  *
642  *	Examine the device configuration and tf->flags to calculate
643  *	the proper read/write commands and protocol to use.
644  *
645  *	LOCKING:
646  *	caller.
647  */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 	u8 cmd;
651 
652 	int index, fua, lba48, write;
653 
654 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657 
658 	if (dev->flags & ATA_DFLAG_PIO) {
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 		/* Unable to use DMA due to host limitation */
663 		tf->protocol = ATA_PROT_PIO;
664 		index = dev->multi_count ? 0 : 8;
665 	} else {
666 		tf->protocol = ATA_PROT_DMA;
667 		index = 16;
668 	}
669 
670 	cmd = ata_rw_cmds[index + fua + lba48 + write];
671 	if (cmd) {
672 		tf->command = cmd;
673 		return 0;
674 	}
675 	return -1;
676 }
677 
678 /**
679  *	ata_tf_read_block - Read block address from ATA taskfile
680  *	@tf: ATA taskfile of interest
681  *	@dev: ATA device @tf belongs to
682  *
683  *	LOCKING:
684  *	None.
685  *
686  *	Read block address from @tf.  This function can handle all
687  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
688  *	flags select the address format to use.
689  *
690  *	RETURNS:
691  *	Block address read from @tf.
692  */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 	u64 block = 0;
696 
697 	if (tf->flags & ATA_TFLAG_LBA) {
698 		if (tf->flags & ATA_TFLAG_LBA48) {
699 			block |= (u64)tf->hob_lbah << 40;
700 			block |= (u64)tf->hob_lbam << 32;
701 			block |= (u64)tf->hob_lbal << 24;
702 		} else
703 			block |= (tf->device & 0xf) << 24;
704 
705 		block |= tf->lbah << 16;
706 		block |= tf->lbam << 8;
707 		block |= tf->lbal;
708 	} else {
709 		u32 cyl, head, sect;
710 
711 		cyl = tf->lbam | (tf->lbah << 8);
712 		head = tf->device & 0xf;
713 		sect = tf->lbal;
714 
715 		if (!sect) {
716 			ata_dev_warn(dev,
717 				     "device reported invalid CHS sector 0\n");
718 			sect = 1; /* oh well */
719 		}
720 
721 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 	}
723 
724 	return block;
725 }
726 
727 /**
728  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
729  *	@tf: Target ATA taskfile
730  *	@dev: ATA device @tf belongs to
731  *	@block: Block address
732  *	@n_block: Number of blocks
733  *	@tf_flags: RW/FUA etc...
734  *	@tag: tag
735  *
736  *	LOCKING:
737  *	None.
738  *
739  *	Build ATA taskfile @tf for read/write request described by
740  *	@block, @n_block, @tf_flags and @tag on @dev.
741  *
742  *	RETURNS:
743  *
744  *	0 on success, -ERANGE if the request is too large for @dev,
745  *	-EINVAL if the request is invalid.
746  */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 		    u64 block, u32 n_block, unsigned int tf_flags,
749 		    unsigned int tag)
750 {
751 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 	tf->flags |= tf_flags;
753 
754 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 		/* yay, NCQ */
756 		if (!lba_48_ok(block, n_block))
757 			return -ERANGE;
758 
759 		tf->protocol = ATA_PROT_NCQ;
760 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761 
762 		if (tf->flags & ATA_TFLAG_WRITE)
763 			tf->command = ATA_CMD_FPDMA_WRITE;
764 		else
765 			tf->command = ATA_CMD_FPDMA_READ;
766 
767 		tf->nsect = tag << 3;
768 		tf->hob_feature = (n_block >> 8) & 0xff;
769 		tf->feature = n_block & 0xff;
770 
771 		tf->hob_lbah = (block >> 40) & 0xff;
772 		tf->hob_lbam = (block >> 32) & 0xff;
773 		tf->hob_lbal = (block >> 24) & 0xff;
774 		tf->lbah = (block >> 16) & 0xff;
775 		tf->lbam = (block >> 8) & 0xff;
776 		tf->lbal = block & 0xff;
777 
778 		tf->device = ATA_LBA;
779 		if (tf->flags & ATA_TFLAG_FUA)
780 			tf->device |= 1 << 7;
781 	} else if (dev->flags & ATA_DFLAG_LBA) {
782 		tf->flags |= ATA_TFLAG_LBA;
783 
784 		if (lba_28_ok(block, n_block)) {
785 			/* use LBA28 */
786 			tf->device |= (block >> 24) & 0xf;
787 		} else if (lba_48_ok(block, n_block)) {
788 			if (!(dev->flags & ATA_DFLAG_LBA48))
789 				return -ERANGE;
790 
791 			/* use LBA48 */
792 			tf->flags |= ATA_TFLAG_LBA48;
793 
794 			tf->hob_nsect = (n_block >> 8) & 0xff;
795 
796 			tf->hob_lbah = (block >> 40) & 0xff;
797 			tf->hob_lbam = (block >> 32) & 0xff;
798 			tf->hob_lbal = (block >> 24) & 0xff;
799 		} else
800 			/* request too large even for LBA48 */
801 			return -ERANGE;
802 
803 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 			return -EINVAL;
805 
806 		tf->nsect = n_block & 0xff;
807 
808 		tf->lbah = (block >> 16) & 0xff;
809 		tf->lbam = (block >> 8) & 0xff;
810 		tf->lbal = block & 0xff;
811 
812 		tf->device |= ATA_LBA;
813 	} else {
814 		/* CHS */
815 		u32 sect, head, cyl, track;
816 
817 		/* The request -may- be too large for CHS addressing. */
818 		if (!lba_28_ok(block, n_block))
819 			return -ERANGE;
820 
821 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 			return -EINVAL;
823 
824 		/* Convert LBA to CHS */
825 		track = (u32)block / dev->sectors;
826 		cyl   = track / dev->heads;
827 		head  = track % dev->heads;
828 		sect  = (u32)block % dev->sectors + 1;
829 
830 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 			(u32)block, track, cyl, head, sect);
832 
833 		/* Check whether the converted CHS can fit.
834 		   Cylinder: 0-65535
835 		   Head: 0-15
836 		   Sector: 1-255*/
837 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 			return -ERANGE;
839 
840 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 		tf->lbal = sect;
842 		tf->lbam = cyl;
843 		tf->lbah = cyl >> 8;
844 		tf->device |= head;
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852  *	@pio_mask: pio_mask
853  *	@mwdma_mask: mwdma_mask
854  *	@udma_mask: udma_mask
855  *
856  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857  *	unsigned int xfer_mask.
858  *
859  *	LOCKING:
860  *	None.
861  *
862  *	RETURNS:
863  *	Packed xfer_mask.
864  */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 				unsigned long mwdma_mask,
867 				unsigned long udma_mask)
868 {
869 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873 
874 /**
875  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876  *	@xfer_mask: xfer_mask to unpack
877  *	@pio_mask: resulting pio_mask
878  *	@mwdma_mask: resulting mwdma_mask
879  *	@udma_mask: resulting udma_mask
880  *
881  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882  *	Any NULL distination masks will be ignored.
883  */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 	if (pio_mask)
888 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 	if (mwdma_mask)
890 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 	if (udma_mask)
892 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894 
895 static const struct ata_xfer_ent {
896 	int shift, bits;
897 	u8 base;
898 } ata_xfer_tbl[] = {
899 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 	{ -1, },
903 };
904 
905 /**
906  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907  *	@xfer_mask: xfer_mask of interest
908  *
909  *	Return matching XFER_* value for @xfer_mask.  Only the highest
910  *	bit of @xfer_mask is considered.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching XFER_* value, 0xff if no match found.
917  */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 	int highbit = fls(xfer_mask) - 1;
921 	const struct ata_xfer_ent *ent;
922 
923 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 			return ent->base + highbit - ent->shift;
926 	return 0xff;
927 }
928 
929 /**
930  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931  *	@xfer_mode: XFER_* of interest
932  *
933  *	Return matching xfer_mask for @xfer_mode.
934  *
935  *	LOCKING:
936  *	None.
937  *
938  *	RETURNS:
939  *	Matching xfer_mask, 0 if no match found.
940  */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 	const struct ata_xfer_ent *ent;
944 
945 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 				& ~((1 << ent->shift) - 1);
949 	return 0;
950 }
951 
952 /**
953  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954  *	@xfer_mode: XFER_* of interest
955  *
956  *	Return matching xfer_shift for @xfer_mode.
957  *
958  *	LOCKING:
959  *	None.
960  *
961  *	RETURNS:
962  *	Matching xfer_shift, -1 if no match found.
963  */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 	const struct ata_xfer_ent *ent;
967 
968 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 			return ent->shift;
971 	return -1;
972 }
973 
974 /**
975  *	ata_mode_string - convert xfer_mask to string
976  *	@xfer_mask: mask of bits supported; only highest bit counts.
977  *
978  *	Determine string which represents the highest speed
979  *	(highest bit in @modemask).
980  *
981  *	LOCKING:
982  *	None.
983  *
984  *	RETURNS:
985  *	Constant C string representing highest speed listed in
986  *	@mode_mask, or the constant C string "<n/a>".
987  */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 	static const char * const xfer_mode_str[] = {
991 		"PIO0",
992 		"PIO1",
993 		"PIO2",
994 		"PIO3",
995 		"PIO4",
996 		"PIO5",
997 		"PIO6",
998 		"MWDMA0",
999 		"MWDMA1",
1000 		"MWDMA2",
1001 		"MWDMA3",
1002 		"MWDMA4",
1003 		"UDMA/16",
1004 		"UDMA/25",
1005 		"UDMA/33",
1006 		"UDMA/44",
1007 		"UDMA/66",
1008 		"UDMA/100",
1009 		"UDMA/133",
1010 		"UDMA7",
1011 	};
1012 	int highbit;
1013 
1014 	highbit = fls(xfer_mask) - 1;
1015 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 		return xfer_mode_str[highbit];
1017 	return "<n/a>";
1018 }
1019 
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 	static const char * const spd_str[] = {
1023 		"1.5 Gbps",
1024 		"3.0 Gbps",
1025 		"6.0 Gbps",
1026 	};
1027 
1028 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 		return "<unknown>";
1030 	return spd_str[spd - 1];
1031 }
1032 
1033 /**
1034  *	ata_dev_classify - determine device type based on ATA-spec signature
1035  *	@tf: ATA taskfile register set for device to be identified
1036  *
1037  *	Determine from taskfile register contents whether a device is
1038  *	ATA or ATAPI, as per "Signature and persistence" section
1039  *	of ATA/PI spec (volume 1, sect 5.14).
1040  *
1041  *	LOCKING:
1042  *	None.
1043  *
1044  *	RETURNS:
1045  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046  *	%ATA_DEV_UNKNOWN the event of failure.
1047  */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 	/* Apple's open source Darwin code hints that some devices only
1051 	 * put a proper signature into the LBA mid/high registers,
1052 	 * So, we only check those.  It's sufficient for uniqueness.
1053 	 *
1054 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057 	 * spec has never mentioned about using different signatures
1058 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059 	 * Multiplier specification began to use 0x69/0x96 to identify
1060 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 	 * 0x69/0x96 shortly and described them as reserved for
1063 	 * SerialATA.
1064 	 *
1065 	 * We follow the current spec and consider that 0x69/0x96
1066 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 	 * SEMB signature.  This is worked around in
1069 	 * ata_dev_read_id().
1070 	 */
1071 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 		DPRINTK("found ATA device by sig\n");
1073 		return ATA_DEV_ATA;
1074 	}
1075 
1076 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 		DPRINTK("found ATAPI device by sig\n");
1078 		return ATA_DEV_ATAPI;
1079 	}
1080 
1081 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 		DPRINTK("found PMP device by sig\n");
1083 		return ATA_DEV_PMP;
1084 	}
1085 
1086 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 		return ATA_DEV_SEMB;
1089 	}
1090 
1091 	DPRINTK("unknown device\n");
1092 	return ATA_DEV_UNKNOWN;
1093 }
1094 
1095 /**
1096  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097  *	@id: IDENTIFY DEVICE results we will examine
1098  *	@s: string into which data is output
1099  *	@ofs: offset into identify device page
1100  *	@len: length of string to return. must be an even number.
1101  *
1102  *	The strings in the IDENTIFY DEVICE page are broken up into
1103  *	16-bit chunks.  Run through the string, and output each
1104  *	8-bit chunk linearly, regardless of platform.
1105  *
1106  *	LOCKING:
1107  *	caller.
1108  */
1109 
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 		   unsigned int ofs, unsigned int len)
1112 {
1113 	unsigned int c;
1114 
1115 	BUG_ON(len & 1);
1116 
1117 	while (len > 0) {
1118 		c = id[ofs] >> 8;
1119 		*s = c;
1120 		s++;
1121 
1122 		c = id[ofs] & 0xff;
1123 		*s = c;
1124 		s++;
1125 
1126 		ofs++;
1127 		len -= 2;
1128 	}
1129 }
1130 
1131 /**
1132  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133  *	@id: IDENTIFY DEVICE results we will examine
1134  *	@s: string into which data is output
1135  *	@ofs: offset into identify device page
1136  *	@len: length of string to return. must be an odd number.
1137  *
1138  *	This function is identical to ata_id_string except that it
1139  *	trims trailing spaces and terminates the resulting string with
1140  *	null.  @len must be actual maximum length (even number) + 1.
1141  *
1142  *	LOCKING:
1143  *	caller.
1144  */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 		     unsigned int ofs, unsigned int len)
1147 {
1148 	unsigned char *p;
1149 
1150 	ata_id_string(id, s, ofs, len - 1);
1151 
1152 	p = s + strnlen(s, len - 1);
1153 	while (p > s && p[-1] == ' ')
1154 		p--;
1155 	*p = '\0';
1156 }
1157 
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 	if (ata_id_has_lba(id)) {
1161 		if (ata_id_has_lba48(id))
1162 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 		else
1164 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 	} else {
1166 		if (ata_id_current_chs_valid(id))
1167 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 			       id[ATA_ID_CUR_SECTORS];
1169 		else
1170 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 			       id[ATA_ID_SECTORS];
1172 	}
1173 }
1174 
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 	u64 sectors = 0;
1178 
1179 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 	sectors |= (tf->lbah & 0xff) << 16;
1183 	sectors |= (tf->lbam & 0xff) << 8;
1184 	sectors |= (tf->lbal & 0xff);
1185 
1186 	return sectors;
1187 }
1188 
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 	u64 sectors = 0;
1192 
1193 	sectors |= (tf->device & 0x0f) << 24;
1194 	sectors |= (tf->lbah & 0xff) << 16;
1195 	sectors |= (tf->lbam & 0xff) << 8;
1196 	sectors |= (tf->lbal & 0xff);
1197 
1198 	return sectors;
1199 }
1200 
1201 /**
1202  *	ata_read_native_max_address - Read native max address
1203  *	@dev: target device
1204  *	@max_sectors: out parameter for the result native max address
1205  *
1206  *	Perform an LBA48 or LBA28 native size query upon the device in
1207  *	question.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted by the drive.
1211  *	-EIO on other errors.
1212  */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 	unsigned int err_mask;
1216 	struct ata_taskfile tf;
1217 	int lba48 = ata_id_has_lba48(dev->id);
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	/* always clear all address registers */
1222 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223 
1224 	if (lba48) {
1225 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 		tf.flags |= ATA_TFLAG_LBA48;
1227 	} else
1228 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229 
1230 	tf.protocol |= ATA_PROT_NODATA;
1231 	tf.device |= ATA_LBA;
1232 
1233 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 	if (err_mask) {
1235 		ata_dev_warn(dev,
1236 			     "failed to read native max address (err_mask=0x%x)\n",
1237 			     err_mask);
1238 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	if (lba48)
1244 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 	else
1246 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 		(*max_sectors)--;
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	ata_set_max_sectors - Set max sectors
1254  *	@dev: target device
1255  *	@new_sectors: new max sectors value to set for the device
1256  *
1257  *	Set max sectors of @dev to @new_sectors.
1258  *
1259  *	RETURNS:
1260  *	0 on success, -EACCES if command is aborted or denied (due to
1261  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262  *	errors.
1263  */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 	unsigned int err_mask;
1267 	struct ata_taskfile tf;
1268 	int lba48 = ata_id_has_lba48(dev->id);
1269 
1270 	new_sectors--;
1271 
1272 	ata_tf_init(dev, &tf);
1273 
1274 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275 
1276 	if (lba48) {
1277 		tf.command = ATA_CMD_SET_MAX_EXT;
1278 		tf.flags |= ATA_TFLAG_LBA48;
1279 
1280 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 	} else {
1284 		tf.command = ATA_CMD_SET_MAX;
1285 
1286 		tf.device |= (new_sectors >> 24) & 0xf;
1287 	}
1288 
1289 	tf.protocol |= ATA_PROT_NODATA;
1290 	tf.device |= ATA_LBA;
1291 
1292 	tf.lbal = (new_sectors >> 0) & 0xff;
1293 	tf.lbam = (new_sectors >> 8) & 0xff;
1294 	tf.lbah = (new_sectors >> 16) & 0xff;
1295 
1296 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 	if (err_mask) {
1298 		ata_dev_warn(dev,
1299 			     "failed to set max address (err_mask=0x%x)\n",
1300 			     err_mask);
1301 		if (err_mask == AC_ERR_DEV &&
1302 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 			return -EACCES;
1304 		return -EIO;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  *	ata_hpa_resize		-	Resize a device with an HPA set
1312  *	@dev: Device to resize
1313  *
1314  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315  *	it if required to the full size of the media. The caller must check
1316  *	the drive has the HPA feature set enabled.
1317  *
1318  *	RETURNS:
1319  *	0 on success, -errno on failure.
1320  */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 	struct ata_eh_context *ehc = &dev->link->eh_context;
1324 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 	u64 sectors = ata_id_n_sectors(dev->id);
1327 	u64 native_sectors;
1328 	int rc;
1329 
1330 	/* do we need to do it? */
1331 	if (dev->class != ATA_DEV_ATA ||
1332 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 		return 0;
1335 
1336 	/* read native max address */
1337 	rc = ata_read_native_max_address(dev, &native_sectors);
1338 	if (rc) {
1339 		/* If device aborted the command or HPA isn't going to
1340 		 * be unlocked, skip HPA resizing.
1341 		 */
1342 		if (rc == -EACCES || !unlock_hpa) {
1343 			ata_dev_warn(dev,
1344 				     "HPA support seems broken, skipping HPA handling\n");
1345 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346 
1347 			/* we can continue if device aborted the command */
1348 			if (rc == -EACCES)
1349 				rc = 0;
1350 		}
1351 
1352 		return rc;
1353 	}
1354 	dev->n_native_sectors = native_sectors;
1355 
1356 	/* nothing to do? */
1357 	if (native_sectors <= sectors || !unlock_hpa) {
1358 		if (!print_info || native_sectors == sectors)
1359 			return 0;
1360 
1361 		if (native_sectors > sectors)
1362 			ata_dev_info(dev,
1363 				"HPA detected: current %llu, native %llu\n",
1364 				(unsigned long long)sectors,
1365 				(unsigned long long)native_sectors);
1366 		else if (native_sectors < sectors)
1367 			ata_dev_warn(dev,
1368 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369 				(unsigned long long)native_sectors,
1370 				(unsigned long long)sectors);
1371 		return 0;
1372 	}
1373 
1374 	/* let's unlock HPA */
1375 	rc = ata_set_max_sectors(dev, native_sectors);
1376 	if (rc == -EACCES) {
1377 		/* if device aborted the command, skip HPA resizing */
1378 		ata_dev_warn(dev,
1379 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 			     (unsigned long long)sectors,
1381 			     (unsigned long long)native_sectors);
1382 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 		return 0;
1384 	} else if (rc)
1385 		return rc;
1386 
1387 	/* re-read IDENTIFY data */
1388 	rc = ata_dev_reread_id(dev, 0);
1389 	if (rc) {
1390 		ata_dev_err(dev,
1391 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392 		return rc;
1393 	}
1394 
1395 	if (print_info) {
1396 		u64 new_sectors = ata_id_n_sectors(dev->id);
1397 		ata_dev_info(dev,
1398 			"HPA unlocked: %llu -> %llu, native %llu\n",
1399 			(unsigned long long)sectors,
1400 			(unsigned long long)new_sectors,
1401 			(unsigned long long)native_sectors);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409  *	@id: IDENTIFY DEVICE page to dump
1410  *
1411  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412  *	page.
1413  *
1414  *	LOCKING:
1415  *	caller.
1416  */
1417 
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 	DPRINTK("49==0x%04x  "
1421 		"53==0x%04x  "
1422 		"63==0x%04x  "
1423 		"64==0x%04x  "
1424 		"75==0x%04x  \n",
1425 		id[49],
1426 		id[53],
1427 		id[63],
1428 		id[64],
1429 		id[75]);
1430 	DPRINTK("80==0x%04x  "
1431 		"81==0x%04x  "
1432 		"82==0x%04x  "
1433 		"83==0x%04x  "
1434 		"84==0x%04x  \n",
1435 		id[80],
1436 		id[81],
1437 		id[82],
1438 		id[83],
1439 		id[84]);
1440 	DPRINTK("88==0x%04x  "
1441 		"93==0x%04x\n",
1442 		id[88],
1443 		id[93]);
1444 }
1445 
1446 /**
1447  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448  *	@id: IDENTIFY data to compute xfer mask from
1449  *
1450  *	Compute the xfermask for this device. This is not as trivial
1451  *	as it seems if we must consider early devices correctly.
1452  *
1453  *	FIXME: pre IDE drive timing (do we care ?).
1454  *
1455  *	LOCKING:
1456  *	None.
1457  *
1458  *	RETURNS:
1459  *	Computed xfermask
1460  */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 	unsigned long pio_mask, mwdma_mask, udma_mask;
1464 
1465 	/* Usual case. Word 53 indicates word 64 is valid */
1466 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 		pio_mask <<= 3;
1469 		pio_mask |= 0x7;
1470 	} else {
1471 		/* If word 64 isn't valid then Word 51 high byte holds
1472 		 * the PIO timing number for the maximum. Turn it into
1473 		 * a mask.
1474 		 */
1475 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 		if (mode < 5)	/* Valid PIO range */
1477 			pio_mask = (2 << mode) - 1;
1478 		else
1479 			pio_mask = 1;
1480 
1481 		/* But wait.. there's more. Design your standards by
1482 		 * committee and you too can get a free iordy field to
1483 		 * process. However its the speeds not the modes that
1484 		 * are supported... Note drivers using the timing API
1485 		 * will get this right anyway
1486 		 */
1487 	}
1488 
1489 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490 
1491 	if (ata_id_is_cfa(id)) {
1492 		/*
1493 		 *	Process compact flash extended modes
1494 		 */
1495 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497 
1498 		if (pio)
1499 			pio_mask |= (1 << 5);
1500 		if (pio > 1)
1501 			pio_mask |= (1 << 6);
1502 		if (dma)
1503 			mwdma_mask |= (1 << 3);
1504 		if (dma > 1)
1505 			mwdma_mask |= (1 << 4);
1506 	}
1507 
1508 	udma_mask = 0;
1509 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511 
1512 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514 
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 	struct completion *waiting = qc->private_data;
1518 
1519 	complete(waiting);
1520 }
1521 
1522 /**
1523  *	ata_exec_internal_sg - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@sgl: sg list for the data buffer of the command
1529  *	@n_elem: Number of sg entries
1530  *	@timeout: Timeout in msecs (0 for default)
1531  *
1532  *	Executes libata internal command with timeout.  @tf contains
1533  *	command on entry and result on return.  Timeout and error
1534  *	conditions are reported via return value.  No recovery action
1535  *	is taken after a command times out.  It's caller's duty to
1536  *	clean up after timeout.
1537  *
1538  *	LOCKING:
1539  *	None.  Should be called with kernel context, might sleep.
1540  *
1541  *	RETURNS:
1542  *	Zero on success, AC_ERR_* mask on failure
1543  */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 			      struct ata_taskfile *tf, const u8 *cdb,
1546 			      int dma_dir, struct scatterlist *sgl,
1547 			      unsigned int n_elem, unsigned long timeout)
1548 {
1549 	struct ata_link *link = dev->link;
1550 	struct ata_port *ap = link->ap;
1551 	u8 command = tf->command;
1552 	int auto_timeout = 0;
1553 	struct ata_queued_cmd *qc;
1554 	unsigned int tag, preempted_tag;
1555 	u32 preempted_sactive, preempted_qc_active;
1556 	int preempted_nr_active_links;
1557 	DECLARE_COMPLETION_ONSTACK(wait);
1558 	unsigned long flags;
1559 	unsigned int err_mask;
1560 	int rc;
1561 
1562 	spin_lock_irqsave(ap->lock, flags);
1563 
1564 	/* no internal command while frozen */
1565 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 		spin_unlock_irqrestore(ap->lock, flags);
1567 		return AC_ERR_SYSTEM;
1568 	}
1569 
1570 	/* initialize internal qc */
1571 
1572 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573 	 * drivers choke if any other tag is given.  This breaks
1574 	 * ata_tag_internal() test for those drivers.  Don't use new
1575 	 * EH stuff without converting to it.
1576 	 */
1577 	if (ap->ops->error_handler)
1578 		tag = ATA_TAG_INTERNAL;
1579 	else
1580 		tag = 0;
1581 
1582 	if (test_and_set_bit(tag, &ap->qc_allocated))
1583 		BUG();
1584 	qc = __ata_qc_from_tag(ap, tag);
1585 
1586 	qc->tag = tag;
1587 	qc->scsicmd = NULL;
1588 	qc->ap = ap;
1589 	qc->dev = dev;
1590 	ata_qc_reinit(qc);
1591 
1592 	preempted_tag = link->active_tag;
1593 	preempted_sactive = link->sactive;
1594 	preempted_qc_active = ap->qc_active;
1595 	preempted_nr_active_links = ap->nr_active_links;
1596 	link->active_tag = ATA_TAG_POISON;
1597 	link->sactive = 0;
1598 	ap->qc_active = 0;
1599 	ap->nr_active_links = 0;
1600 
1601 	/* prepare & issue qc */
1602 	qc->tf = *tf;
1603 	if (cdb)
1604 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605 
1606 	/* some SATA bridges need us to indicate data xfer direction */
1607 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 	    dma_dir == DMA_FROM_DEVICE)
1609 		qc->tf.feature |= ATAPI_DMADIR;
1610 
1611 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 	qc->dma_dir = dma_dir;
1613 	if (dma_dir != DMA_NONE) {
1614 		unsigned int i, buflen = 0;
1615 		struct scatterlist *sg;
1616 
1617 		for_each_sg(sgl, sg, n_elem, i)
1618 			buflen += sg->length;
1619 
1620 		ata_sg_init(qc, sgl, n_elem);
1621 		qc->nbytes = buflen;
1622 	}
1623 
1624 	qc->private_data = &wait;
1625 	qc->complete_fn = ata_qc_complete_internal;
1626 
1627 	ata_qc_issue(qc);
1628 
1629 	spin_unlock_irqrestore(ap->lock, flags);
1630 
1631 	if (!timeout) {
1632 		if (ata_probe_timeout)
1633 			timeout = ata_probe_timeout * 1000;
1634 		else {
1635 			timeout = ata_internal_cmd_timeout(dev, command);
1636 			auto_timeout = 1;
1637 		}
1638 	}
1639 
1640 	if (ap->ops->error_handler)
1641 		ata_eh_release(ap);
1642 
1643 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644 
1645 	if (ap->ops->error_handler)
1646 		ata_eh_acquire(ap);
1647 
1648 	ata_sff_flush_pio_task(ap);
1649 
1650 	if (!rc) {
1651 		spin_lock_irqsave(ap->lock, flags);
1652 
1653 		/* We're racing with irq here.  If we lose, the
1654 		 * following test prevents us from completing the qc
1655 		 * twice.  If we win, the port is frozen and will be
1656 		 * cleaned up by ->post_internal_cmd().
1657 		 */
1658 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 			qc->err_mask |= AC_ERR_TIMEOUT;
1660 
1661 			if (ap->ops->error_handler)
1662 				ata_port_freeze(ap);
1663 			else
1664 				ata_qc_complete(qc);
1665 
1666 			if (ata_msg_warn(ap))
1667 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 					     command);
1669 		}
1670 
1671 		spin_unlock_irqrestore(ap->lock, flags);
1672 	}
1673 
1674 	/* do post_internal_cmd */
1675 	if (ap->ops->post_internal_cmd)
1676 		ap->ops->post_internal_cmd(qc);
1677 
1678 	/* perform minimal error analysis */
1679 	if (qc->flags & ATA_QCFLAG_FAILED) {
1680 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 			qc->err_mask |= AC_ERR_DEV;
1682 
1683 		if (!qc->err_mask)
1684 			qc->err_mask |= AC_ERR_OTHER;
1685 
1686 		if (qc->err_mask & ~AC_ERR_OTHER)
1687 			qc->err_mask &= ~AC_ERR_OTHER;
1688 	}
1689 
1690 	/* finish up */
1691 	spin_lock_irqsave(ap->lock, flags);
1692 
1693 	*tf = qc->result_tf;
1694 	err_mask = qc->err_mask;
1695 
1696 	ata_qc_free(qc);
1697 	link->active_tag = preempted_tag;
1698 	link->sactive = preempted_sactive;
1699 	ap->qc_active = preempted_qc_active;
1700 	ap->nr_active_links = preempted_nr_active_links;
1701 
1702 	spin_unlock_irqrestore(ap->lock, flags);
1703 
1704 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 		ata_internal_cmd_timed_out(dev, command);
1706 
1707 	return err_mask;
1708 }
1709 
1710 /**
1711  *	ata_exec_internal - execute libata internal command
1712  *	@dev: Device to which the command is sent
1713  *	@tf: Taskfile registers for the command and the result
1714  *	@cdb: CDB for packet command
1715  *	@dma_dir: Data tranfer direction of the command
1716  *	@buf: Data buffer of the command
1717  *	@buflen: Length of data buffer
1718  *	@timeout: Timeout in msecs (0 for default)
1719  *
1720  *	Wrapper around ata_exec_internal_sg() which takes simple
1721  *	buffer instead of sg list.
1722  *
1723  *	LOCKING:
1724  *	None.  Should be called with kernel context, might sleep.
1725  *
1726  *	RETURNS:
1727  *	Zero on success, AC_ERR_* mask on failure
1728  */
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 			   struct ata_taskfile *tf, const u8 *cdb,
1731 			   int dma_dir, void *buf, unsigned int buflen,
1732 			   unsigned long timeout)
1733 {
1734 	struct scatterlist *psg = NULL, sg;
1735 	unsigned int n_elem = 0;
1736 
1737 	if (dma_dir != DMA_NONE) {
1738 		WARN_ON(!buf);
1739 		sg_init_one(&sg, buf, buflen);
1740 		psg = &sg;
1741 		n_elem++;
1742 	}
1743 
1744 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 				    timeout);
1746 }
1747 
1748 /**
1749  *	ata_do_simple_cmd - execute simple internal command
1750  *	@dev: Device to which the command is sent
1751  *	@cmd: Opcode to execute
1752  *
1753  *	Execute a 'simple' command, that only consists of the opcode
1754  *	'cmd' itself, without filling any other registers
1755  *
1756  *	LOCKING:
1757  *	Kernel thread context (may sleep).
1758  *
1759  *	RETURNS:
1760  *	Zero on success, AC_ERR_* mask on failure
1761  */
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763 {
1764 	struct ata_taskfile tf;
1765 
1766 	ata_tf_init(dev, &tf);
1767 
1768 	tf.command = cmd;
1769 	tf.flags |= ATA_TFLAG_DEVICE;
1770 	tf.protocol = ATA_PROT_NODATA;
1771 
1772 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773 }
1774 
1775 /**
1776  *	ata_pio_need_iordy	-	check if iordy needed
1777  *	@adev: ATA device
1778  *
1779  *	Check if the current speed of the device requires IORDY. Used
1780  *	by various controllers for chip configuration.
1781  */
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783 {
1784 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1785 	 * lead to controller lock up on certain controllers if the
1786 	 * port is not occupied.  See bko#11703 for details.
1787 	 */
1788 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 		return 0;
1790 	/* Controller doesn't support IORDY.  Probably a pointless
1791 	 * check as the caller should know this.
1792 	 */
1793 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 		return 0;
1795 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796 	if (ata_id_is_cfa(adev->id)
1797 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 		return 0;
1799 	/* PIO3 and higher it is mandatory */
1800 	if (adev->pio_mode > XFER_PIO_2)
1801 		return 1;
1802 	/* We turn it on when possible */
1803 	if (ata_id_has_iordy(adev->id))
1804 		return 1;
1805 	return 0;
1806 }
1807 
1808 /**
1809  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1810  *	@adev: ATA device
1811  *
1812  *	Compute the highest mode possible if we are not using iordy. Return
1813  *	-1 if no iordy mode is available.
1814  */
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1819 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 		/* Is the speed faster than the drive allows non IORDY ? */
1821 		if (pio) {
1822 			/* This is cycle times not frequency - watch the logic! */
1823 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1824 				return 3 << ATA_SHIFT_PIO;
1825 			return 7 << ATA_SHIFT_PIO;
1826 		}
1827 	}
1828 	return 3 << ATA_SHIFT_PIO;
1829 }
1830 
1831 /**
1832  *	ata_do_dev_read_id		-	default ID read method
1833  *	@dev: device
1834  *	@tf: proposed taskfile
1835  *	@id: data buffer
1836  *
1837  *	Issue the identify taskfile and hand back the buffer containing
1838  *	identify data. For some RAID controllers and for pre ATA devices
1839  *	this function is wrapped or replaced by the driver
1840  */
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 					struct ata_taskfile *tf, u16 *id)
1843 {
1844 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846 }
1847 
1848 /**
1849  *	ata_dev_read_id - Read ID data from the specified device
1850  *	@dev: target device
1851  *	@p_class: pointer to class of the target device (may be changed)
1852  *	@flags: ATA_READID_* flags
1853  *	@id: buffer to read IDENTIFY data into
1854  *
1855  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858  *	for pre-ATA4 drives.
1859  *
1860  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861  *	now we abort if we hit that case.
1862  *
1863  *	LOCKING:
1864  *	Kernel thread context (may sleep)
1865  *
1866  *	RETURNS:
1867  *	0 on success, -errno otherwise.
1868  */
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 		    unsigned int flags, u16 *id)
1871 {
1872 	struct ata_port *ap = dev->link->ap;
1873 	unsigned int class = *p_class;
1874 	struct ata_taskfile tf;
1875 	unsigned int err_mask = 0;
1876 	const char *reason;
1877 	bool is_semb = class == ATA_DEV_SEMB;
1878 	int may_fallback = 1, tried_spinup = 0;
1879 	int rc;
1880 
1881 	if (ata_msg_ctl(ap))
1882 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883 
1884 retry:
1885 	ata_tf_init(dev, &tf);
1886 
1887 	switch (class) {
1888 	case ATA_DEV_SEMB:
1889 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1890 	case ATA_DEV_ATA:
1891 		tf.command = ATA_CMD_ID_ATA;
1892 		break;
1893 	case ATA_DEV_ATAPI:
1894 		tf.command = ATA_CMD_ID_ATAPI;
1895 		break;
1896 	default:
1897 		rc = -ENODEV;
1898 		reason = "unsupported class";
1899 		goto err_out;
1900 	}
1901 
1902 	tf.protocol = ATA_PROT_PIO;
1903 
1904 	/* Some devices choke if TF registers contain garbage.  Make
1905 	 * sure those are properly initialized.
1906 	 */
1907 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908 
1909 	/* Device presence detection is unreliable on some
1910 	 * controllers.  Always poll IDENTIFY if available.
1911 	 */
1912 	tf.flags |= ATA_TFLAG_POLLING;
1913 
1914 	if (ap->ops->read_id)
1915 		err_mask = ap->ops->read_id(dev, &tf, id);
1916 	else
1917 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1918 
1919 	if (err_mask) {
1920 		if (err_mask & AC_ERR_NODEV_HINT) {
1921 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 			return -ENOENT;
1923 		}
1924 
1925 		if (is_semb) {
1926 			ata_dev_info(dev,
1927 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 			/* SEMB is not supported yet */
1929 			*p_class = ATA_DEV_SEMB_UNSUP;
1930 			return 0;
1931 		}
1932 
1933 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 			/* Device or controller might have reported
1935 			 * the wrong device class.  Give a shot at the
1936 			 * other IDENTIFY if the current one is
1937 			 * aborted by the device.
1938 			 */
1939 			if (may_fallback) {
1940 				may_fallback = 0;
1941 
1942 				if (class == ATA_DEV_ATA)
1943 					class = ATA_DEV_ATAPI;
1944 				else
1945 					class = ATA_DEV_ATA;
1946 				goto retry;
1947 			}
1948 
1949 			/* Control reaches here iff the device aborted
1950 			 * both flavors of IDENTIFYs which happens
1951 			 * sometimes with phantom devices.
1952 			 */
1953 			ata_dev_dbg(dev,
1954 				    "both IDENTIFYs aborted, assuming NODEV\n");
1955 			return -ENOENT;
1956 		}
1957 
1958 		rc = -EIO;
1959 		reason = "I/O error";
1960 		goto err_out;
1961 	}
1962 
1963 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1966 			    class, may_fallback, tried_spinup);
1967 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 	}
1970 
1971 	/* Falling back doesn't make sense if ID data was read
1972 	 * successfully at least once.
1973 	 */
1974 	may_fallback = 0;
1975 
1976 	swap_buf_le16(id, ATA_ID_WORDS);
1977 
1978 	/* sanity check */
1979 	rc = -EINVAL;
1980 	reason = "device reports invalid type";
1981 
1982 	if (class == ATA_DEV_ATA) {
1983 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 			goto err_out;
1985 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 							ata_id_is_ata(id)) {
1987 			ata_dev_dbg(dev,
1988 				"host indicates ignore ATA devices, ignored\n");
1989 			return -ENOENT;
1990 		}
1991 	} else {
1992 		if (ata_id_is_ata(id))
1993 			goto err_out;
1994 	}
1995 
1996 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 		tried_spinup = 1;
1998 		/*
1999 		 * Drive powered-up in standby mode, and requires a specific
2000 		 * SET_FEATURES spin-up subcommand before it will accept
2001 		 * anything other than the original IDENTIFY command.
2002 		 */
2003 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 		if (err_mask && id[2] != 0x738c) {
2005 			rc = -EIO;
2006 			reason = "SPINUP failed";
2007 			goto err_out;
2008 		}
2009 		/*
2010 		 * If the drive initially returned incomplete IDENTIFY info,
2011 		 * we now must reissue the IDENTIFY command.
2012 		 */
2013 		if (id[2] == 0x37c8)
2014 			goto retry;
2015 	}
2016 
2017 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 		/*
2019 		 * The exact sequence expected by certain pre-ATA4 drives is:
2020 		 * SRST RESET
2021 		 * IDENTIFY (optional in early ATA)
2022 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 		 * anything else..
2024 		 * Some drives were very specific about that exact sequence.
2025 		 *
2026 		 * Note that ATA4 says lba is mandatory so the second check
2027 		 * should never trigger.
2028 		 */
2029 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 			if (err_mask) {
2032 				rc = -EIO;
2033 				reason = "INIT_DEV_PARAMS failed";
2034 				goto err_out;
2035 			}
2036 
2037 			/* current CHS translation info (id[53-58]) might be
2038 			 * changed. reread the identify device info.
2039 			 */
2040 			flags &= ~ATA_READID_POSTRESET;
2041 			goto retry;
2042 		}
2043 	}
2044 
2045 	*p_class = class;
2046 
2047 	return 0;
2048 
2049  err_out:
2050 	if (ata_msg_warn(ap))
2051 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 			     reason, err_mask);
2053 	return rc;
2054 }
2055 
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 	struct ata_link *plink = ata_dev_phys_link(dev);
2059 	u32 target, target_limit;
2060 
2061 	if (!sata_scr_valid(plink))
2062 		return 0;
2063 
2064 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 		target = 1;
2066 	else
2067 		return 0;
2068 
2069 	target_limit = (1 << target) - 1;
2070 
2071 	/* if already on stricter limit, no need to push further */
2072 	if (plink->sata_spd_limit <= target_limit)
2073 		return 0;
2074 
2075 	plink->sata_spd_limit = target_limit;
2076 
2077 	/* Request another EH round by returning -EAGAIN if link is
2078 	 * going faster than the target speed.  Forward progress is
2079 	 * guaranteed by setting sata_spd_limit to target_limit above.
2080 	 */
2081 	if (plink->sata_spd > target) {
2082 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 			     sata_spd_string(target));
2084 		return -EAGAIN;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 	struct ata_port *ap = dev->link->ap;
2092 
2093 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 		return 0;
2095 
2096 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098 
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 			       char *desc, size_t desc_sz)
2101 {
2102 	struct ata_port *ap = dev->link->ap;
2103 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 	unsigned int err_mask;
2105 	char *aa_desc = "";
2106 
2107 	if (!ata_id_has_ncq(dev->id)) {
2108 		desc[0] = '\0';
2109 		return 0;
2110 	}
2111 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 		snprintf(desc, desc_sz, "NCQ (not used)");
2113 		return 0;
2114 	}
2115 	if (ap->flags & ATA_FLAG_NCQ) {
2116 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 		dev->flags |= ATA_DFLAG_NCQ;
2118 	}
2119 
2120 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 		ata_id_has_fpdma_aa(dev->id)) {
2123 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 			SATA_FPDMA_AA);
2125 		if (err_mask) {
2126 			ata_dev_err(dev,
2127 				    "failed to enable AA (error_mask=0x%x)\n",
2128 				    err_mask);
2129 			if (err_mask != AC_ERR_DEV) {
2130 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 				return -EIO;
2132 			}
2133 		} else
2134 			aa_desc = ", AA";
2135 	}
2136 
2137 	if (hdepth >= ddepth)
2138 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 	else
2140 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 			ddepth, aa_desc);
2142 
2143 	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144 	    ata_id_has_ncq_send_and_recv(dev->id)) {
2145 		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 					     0, ap->sector_buf, 1);
2147 		if (err_mask) {
2148 			ata_dev_dbg(dev,
2149 				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150 				    err_mask);
2151 		} else {
2152 			u8 *cmds = dev->ncq_send_recv_cmds;
2153 
2154 			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155 			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2156 
2157 			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158 				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159 				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160 					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2161 			}
2162 		}
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 /**
2169  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2170  *	@dev: Target device to configure
2171  *
2172  *	Configure @dev according to @dev->id.  Generic and low-level
2173  *	driver specific fixups are also applied.
2174  *
2175  *	LOCKING:
2176  *	Kernel thread context (may sleep)
2177  *
2178  *	RETURNS:
2179  *	0 on success, -errno otherwise
2180  */
2181 int ata_dev_configure(struct ata_device *dev)
2182 {
2183 	struct ata_port *ap = dev->link->ap;
2184 	struct ata_eh_context *ehc = &dev->link->eh_context;
2185 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186 	const u16 *id = dev->id;
2187 	unsigned long xfer_mask;
2188 	unsigned int err_mask;
2189 	char revbuf[7];		/* XYZ-99\0 */
2190 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191 	char modelbuf[ATA_ID_PROD_LEN+1];
2192 	int rc;
2193 
2194 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196 		return 0;
2197 	}
2198 
2199 	if (ata_msg_probe(ap))
2200 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2201 
2202 	/* set horkage */
2203 	dev->horkage |= ata_dev_blacklisted(dev);
2204 	ata_force_horkage(dev);
2205 
2206 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207 		ata_dev_info(dev, "unsupported device, disabling\n");
2208 		ata_dev_disable(dev);
2209 		return 0;
2210 	}
2211 
2212 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213 	    dev->class == ATA_DEV_ATAPI) {
2214 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215 			     atapi_enabled ? "not supported with this driver"
2216 			     : "disabled");
2217 		ata_dev_disable(dev);
2218 		return 0;
2219 	}
2220 
2221 	rc = ata_do_link_spd_horkage(dev);
2222 	if (rc)
2223 		return rc;
2224 
2225 	/* let ACPI work its magic */
2226 	rc = ata_acpi_on_devcfg(dev);
2227 	if (rc)
2228 		return rc;
2229 
2230 	/* massage HPA, do it early as it might change IDENTIFY data */
2231 	rc = ata_hpa_resize(dev);
2232 	if (rc)
2233 		return rc;
2234 
2235 	/* print device capabilities */
2236 	if (ata_msg_probe(ap))
2237 		ata_dev_dbg(dev,
2238 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2239 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2240 			    __func__,
2241 			    id[49], id[82], id[83], id[84],
2242 			    id[85], id[86], id[87], id[88]);
2243 
2244 	/* initialize to-be-configured parameters */
2245 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2246 	dev->max_sectors = 0;
2247 	dev->cdb_len = 0;
2248 	dev->n_sectors = 0;
2249 	dev->cylinders = 0;
2250 	dev->heads = 0;
2251 	dev->sectors = 0;
2252 	dev->multi_count = 0;
2253 
2254 	/*
2255 	 * common ATA, ATAPI feature tests
2256 	 */
2257 
2258 	/* find max transfer mode; for printk only */
2259 	xfer_mask = ata_id_xfermask(id);
2260 
2261 	if (ata_msg_probe(ap))
2262 		ata_dump_id(id);
2263 
2264 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2265 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2266 			sizeof(fwrevbuf));
2267 
2268 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2269 			sizeof(modelbuf));
2270 
2271 	/* ATA-specific feature tests */
2272 	if (dev->class == ATA_DEV_ATA) {
2273 		if (ata_id_is_cfa(id)) {
2274 			/* CPRM may make this media unusable */
2275 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2276 				ata_dev_warn(dev,
2277 	"supports DRM functions and may not be fully accessible\n");
2278 			snprintf(revbuf, 7, "CFA");
2279 		} else {
2280 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2281 			/* Warn the user if the device has TPM extensions */
2282 			if (ata_id_has_tpm(id))
2283 				ata_dev_warn(dev,
2284 	"supports DRM functions and may not be fully accessible\n");
2285 		}
2286 
2287 		dev->n_sectors = ata_id_n_sectors(id);
2288 
2289 		/* get current R/W Multiple count setting */
2290 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2291 			unsigned int max = dev->id[47] & 0xff;
2292 			unsigned int cnt = dev->id[59] & 0xff;
2293 			/* only recognize/allow powers of two here */
2294 			if (is_power_of_2(max) && is_power_of_2(cnt))
2295 				if (cnt <= max)
2296 					dev->multi_count = cnt;
2297 		}
2298 
2299 		if (ata_id_has_lba(id)) {
2300 			const char *lba_desc;
2301 			char ncq_desc[24];
2302 
2303 			lba_desc = "LBA";
2304 			dev->flags |= ATA_DFLAG_LBA;
2305 			if (ata_id_has_lba48(id)) {
2306 				dev->flags |= ATA_DFLAG_LBA48;
2307 				lba_desc = "LBA48";
2308 
2309 				if (dev->n_sectors >= (1UL << 28) &&
2310 				    ata_id_has_flush_ext(id))
2311 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2312 			}
2313 
2314 			/* config NCQ */
2315 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2316 			if (rc)
2317 				return rc;
2318 
2319 			/* print device info to dmesg */
2320 			if (ata_msg_drv(ap) && print_info) {
2321 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2322 					     revbuf, modelbuf, fwrevbuf,
2323 					     ata_mode_string(xfer_mask));
2324 				ata_dev_info(dev,
2325 					     "%llu sectors, multi %u: %s %s\n",
2326 					(unsigned long long)dev->n_sectors,
2327 					dev->multi_count, lba_desc, ncq_desc);
2328 			}
2329 		} else {
2330 			/* CHS */
2331 
2332 			/* Default translation */
2333 			dev->cylinders	= id[1];
2334 			dev->heads	= id[3];
2335 			dev->sectors	= id[6];
2336 
2337 			if (ata_id_current_chs_valid(id)) {
2338 				/* Current CHS translation is valid. */
2339 				dev->cylinders = id[54];
2340 				dev->heads     = id[55];
2341 				dev->sectors   = id[56];
2342 			}
2343 
2344 			/* print device info to dmesg */
2345 			if (ata_msg_drv(ap) && print_info) {
2346 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2347 					     revbuf,	modelbuf, fwrevbuf,
2348 					     ata_mode_string(xfer_mask));
2349 				ata_dev_info(dev,
2350 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2351 					     (unsigned long long)dev->n_sectors,
2352 					     dev->multi_count, dev->cylinders,
2353 					     dev->heads, dev->sectors);
2354 			}
2355 		}
2356 
2357 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2358 		 * from SATA Settings page of Identify Device Data Log.
2359 		 */
2360 		if (ata_id_has_devslp(dev->id)) {
2361 			u8 *sata_setting = ap->sector_buf;
2362 			int i, j;
2363 
2364 			dev->flags |= ATA_DFLAG_DEVSLP;
2365 			err_mask = ata_read_log_page(dev,
2366 						     ATA_LOG_SATA_ID_DEV_DATA,
2367 						     ATA_LOG_SATA_SETTINGS,
2368 						     sata_setting,
2369 						     1);
2370 			if (err_mask)
2371 				ata_dev_dbg(dev,
2372 					    "failed to get Identify Device Data, Emask 0x%x\n",
2373 					    err_mask);
2374 			else
2375 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2376 					j = ATA_LOG_DEVSLP_OFFSET + i;
2377 					dev->devslp_timing[i] = sata_setting[j];
2378 				}
2379 		}
2380 
2381 		dev->cdb_len = 16;
2382 	}
2383 
2384 	/* ATAPI-specific feature tests */
2385 	else if (dev->class == ATA_DEV_ATAPI) {
2386 		const char *cdb_intr_string = "";
2387 		const char *atapi_an_string = "";
2388 		const char *dma_dir_string = "";
2389 		u32 sntf;
2390 
2391 		rc = atapi_cdb_len(id);
2392 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2393 			if (ata_msg_warn(ap))
2394 				ata_dev_warn(dev, "unsupported CDB len\n");
2395 			rc = -EINVAL;
2396 			goto err_out_nosup;
2397 		}
2398 		dev->cdb_len = (unsigned int) rc;
2399 
2400 		/* Enable ATAPI AN if both the host and device have
2401 		 * the support.  If PMP is attached, SNTF is required
2402 		 * to enable ATAPI AN to discern between PHY status
2403 		 * changed notifications and ATAPI ANs.
2404 		 */
2405 		if (atapi_an &&
2406 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2407 		    (!sata_pmp_attached(ap) ||
2408 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2409 			/* issue SET feature command to turn this on */
2410 			err_mask = ata_dev_set_feature(dev,
2411 					SETFEATURES_SATA_ENABLE, SATA_AN);
2412 			if (err_mask)
2413 				ata_dev_err(dev,
2414 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2415 					    err_mask);
2416 			else {
2417 				dev->flags |= ATA_DFLAG_AN;
2418 				atapi_an_string = ", ATAPI AN";
2419 			}
2420 		}
2421 
2422 		if (ata_id_cdb_intr(dev->id)) {
2423 			dev->flags |= ATA_DFLAG_CDB_INTR;
2424 			cdb_intr_string = ", CDB intr";
2425 		}
2426 
2427 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2428 			dev->flags |= ATA_DFLAG_DMADIR;
2429 			dma_dir_string = ", DMADIR";
2430 		}
2431 
2432 		if (ata_id_has_da(dev->id)) {
2433 			dev->flags |= ATA_DFLAG_DA;
2434 			zpodd_init(dev);
2435 		}
2436 
2437 		/* print device info to dmesg */
2438 		if (ata_msg_drv(ap) && print_info)
2439 			ata_dev_info(dev,
2440 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2441 				     modelbuf, fwrevbuf,
2442 				     ata_mode_string(xfer_mask),
2443 				     cdb_intr_string, atapi_an_string,
2444 				     dma_dir_string);
2445 	}
2446 
2447 	/* determine max_sectors */
2448 	dev->max_sectors = ATA_MAX_SECTORS;
2449 	if (dev->flags & ATA_DFLAG_LBA48)
2450 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2451 
2452 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2453 	   200 sectors */
2454 	if (ata_dev_knobble(dev)) {
2455 		if (ata_msg_drv(ap) && print_info)
2456 			ata_dev_info(dev, "applying bridge limits\n");
2457 		dev->udma_mask &= ATA_UDMA5;
2458 		dev->max_sectors = ATA_MAX_SECTORS;
2459 	}
2460 
2461 	if ((dev->class == ATA_DEV_ATAPI) &&
2462 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2463 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2464 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2465 	}
2466 
2467 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2468 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2469 					 dev->max_sectors);
2470 
2471 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2472 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2473 
2474 	if (ap->ops->dev_config)
2475 		ap->ops->dev_config(dev);
2476 
2477 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2478 		/* Let the user know. We don't want to disallow opens for
2479 		   rescue purposes, or in case the vendor is just a blithering
2480 		   idiot. Do this after the dev_config call as some controllers
2481 		   with buggy firmware may want to avoid reporting false device
2482 		   bugs */
2483 
2484 		if (print_info) {
2485 			ata_dev_warn(dev,
2486 "Drive reports diagnostics failure. This may indicate a drive\n");
2487 			ata_dev_warn(dev,
2488 "fault or invalid emulation. Contact drive vendor for information.\n");
2489 		}
2490 	}
2491 
2492 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2493 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2494 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2495 	}
2496 
2497 	return 0;
2498 
2499 err_out_nosup:
2500 	if (ata_msg_probe(ap))
2501 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2502 	return rc;
2503 }
2504 
2505 /**
2506  *	ata_cable_40wire	-	return 40 wire cable type
2507  *	@ap: port
2508  *
2509  *	Helper method for drivers which want to hardwire 40 wire cable
2510  *	detection.
2511  */
2512 
2513 int ata_cable_40wire(struct ata_port *ap)
2514 {
2515 	return ATA_CBL_PATA40;
2516 }
2517 
2518 /**
2519  *	ata_cable_80wire	-	return 80 wire cable type
2520  *	@ap: port
2521  *
2522  *	Helper method for drivers which want to hardwire 80 wire cable
2523  *	detection.
2524  */
2525 
2526 int ata_cable_80wire(struct ata_port *ap)
2527 {
2528 	return ATA_CBL_PATA80;
2529 }
2530 
2531 /**
2532  *	ata_cable_unknown	-	return unknown PATA cable.
2533  *	@ap: port
2534  *
2535  *	Helper method for drivers which have no PATA cable detection.
2536  */
2537 
2538 int ata_cable_unknown(struct ata_port *ap)
2539 {
2540 	return ATA_CBL_PATA_UNK;
2541 }
2542 
2543 /**
2544  *	ata_cable_ignore	-	return ignored PATA cable.
2545  *	@ap: port
2546  *
2547  *	Helper method for drivers which don't use cable type to limit
2548  *	transfer mode.
2549  */
2550 int ata_cable_ignore(struct ata_port *ap)
2551 {
2552 	return ATA_CBL_PATA_IGN;
2553 }
2554 
2555 /**
2556  *	ata_cable_sata	-	return SATA cable type
2557  *	@ap: port
2558  *
2559  *	Helper method for drivers which have SATA cables
2560  */
2561 
2562 int ata_cable_sata(struct ata_port *ap)
2563 {
2564 	return ATA_CBL_SATA;
2565 }
2566 
2567 /**
2568  *	ata_bus_probe - Reset and probe ATA bus
2569  *	@ap: Bus to probe
2570  *
2571  *	Master ATA bus probing function.  Initiates a hardware-dependent
2572  *	bus reset, then attempts to identify any devices found on
2573  *	the bus.
2574  *
2575  *	LOCKING:
2576  *	PCI/etc. bus probe sem.
2577  *
2578  *	RETURNS:
2579  *	Zero on success, negative errno otherwise.
2580  */
2581 
2582 int ata_bus_probe(struct ata_port *ap)
2583 {
2584 	unsigned int classes[ATA_MAX_DEVICES];
2585 	int tries[ATA_MAX_DEVICES];
2586 	int rc;
2587 	struct ata_device *dev;
2588 
2589 	ata_for_each_dev(dev, &ap->link, ALL)
2590 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2591 
2592  retry:
2593 	ata_for_each_dev(dev, &ap->link, ALL) {
2594 		/* If we issue an SRST then an ATA drive (not ATAPI)
2595 		 * may change configuration and be in PIO0 timing. If
2596 		 * we do a hard reset (or are coming from power on)
2597 		 * this is true for ATA or ATAPI. Until we've set a
2598 		 * suitable controller mode we should not touch the
2599 		 * bus as we may be talking too fast.
2600 		 */
2601 		dev->pio_mode = XFER_PIO_0;
2602 		dev->dma_mode = 0xff;
2603 
2604 		/* If the controller has a pio mode setup function
2605 		 * then use it to set the chipset to rights. Don't
2606 		 * touch the DMA setup as that will be dealt with when
2607 		 * configuring devices.
2608 		 */
2609 		if (ap->ops->set_piomode)
2610 			ap->ops->set_piomode(ap, dev);
2611 	}
2612 
2613 	/* reset and determine device classes */
2614 	ap->ops->phy_reset(ap);
2615 
2616 	ata_for_each_dev(dev, &ap->link, ALL) {
2617 		if (dev->class != ATA_DEV_UNKNOWN)
2618 			classes[dev->devno] = dev->class;
2619 		else
2620 			classes[dev->devno] = ATA_DEV_NONE;
2621 
2622 		dev->class = ATA_DEV_UNKNOWN;
2623 	}
2624 
2625 	/* read IDENTIFY page and configure devices. We have to do the identify
2626 	   specific sequence bass-ackwards so that PDIAG- is released by
2627 	   the slave device */
2628 
2629 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2630 		if (tries[dev->devno])
2631 			dev->class = classes[dev->devno];
2632 
2633 		if (!ata_dev_enabled(dev))
2634 			continue;
2635 
2636 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2637 				     dev->id);
2638 		if (rc)
2639 			goto fail;
2640 	}
2641 
2642 	/* Now ask for the cable type as PDIAG- should have been released */
2643 	if (ap->ops->cable_detect)
2644 		ap->cbl = ap->ops->cable_detect(ap);
2645 
2646 	/* We may have SATA bridge glue hiding here irrespective of
2647 	 * the reported cable types and sensed types.  When SATA
2648 	 * drives indicate we have a bridge, we don't know which end
2649 	 * of the link the bridge is which is a problem.
2650 	 */
2651 	ata_for_each_dev(dev, &ap->link, ENABLED)
2652 		if (ata_id_is_sata(dev->id))
2653 			ap->cbl = ATA_CBL_SATA;
2654 
2655 	/* After the identify sequence we can now set up the devices. We do
2656 	   this in the normal order so that the user doesn't get confused */
2657 
2658 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2659 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2660 		rc = ata_dev_configure(dev);
2661 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2662 		if (rc)
2663 			goto fail;
2664 	}
2665 
2666 	/* configure transfer mode */
2667 	rc = ata_set_mode(&ap->link, &dev);
2668 	if (rc)
2669 		goto fail;
2670 
2671 	ata_for_each_dev(dev, &ap->link, ENABLED)
2672 		return 0;
2673 
2674 	return -ENODEV;
2675 
2676  fail:
2677 	tries[dev->devno]--;
2678 
2679 	switch (rc) {
2680 	case -EINVAL:
2681 		/* eeek, something went very wrong, give up */
2682 		tries[dev->devno] = 0;
2683 		break;
2684 
2685 	case -ENODEV:
2686 		/* give it just one more chance */
2687 		tries[dev->devno] = min(tries[dev->devno], 1);
2688 	case -EIO:
2689 		if (tries[dev->devno] == 1) {
2690 			/* This is the last chance, better to slow
2691 			 * down than lose it.
2692 			 */
2693 			sata_down_spd_limit(&ap->link, 0);
2694 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2695 		}
2696 	}
2697 
2698 	if (!tries[dev->devno])
2699 		ata_dev_disable(dev);
2700 
2701 	goto retry;
2702 }
2703 
2704 /**
2705  *	sata_print_link_status - Print SATA link status
2706  *	@link: SATA link to printk link status about
2707  *
2708  *	This function prints link speed and status of a SATA link.
2709  *
2710  *	LOCKING:
2711  *	None.
2712  */
2713 static void sata_print_link_status(struct ata_link *link)
2714 {
2715 	u32 sstatus, scontrol, tmp;
2716 
2717 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2718 		return;
2719 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2720 
2721 	if (ata_phys_link_online(link)) {
2722 		tmp = (sstatus >> 4) & 0xf;
2723 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2724 			      sata_spd_string(tmp), sstatus, scontrol);
2725 	} else {
2726 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2727 			      sstatus, scontrol);
2728 	}
2729 }
2730 
2731 /**
2732  *	ata_dev_pair		-	return other device on cable
2733  *	@adev: device
2734  *
2735  *	Obtain the other device on the same cable, or if none is
2736  *	present NULL is returned
2737  */
2738 
2739 struct ata_device *ata_dev_pair(struct ata_device *adev)
2740 {
2741 	struct ata_link *link = adev->link;
2742 	struct ata_device *pair = &link->device[1 - adev->devno];
2743 	if (!ata_dev_enabled(pair))
2744 		return NULL;
2745 	return pair;
2746 }
2747 
2748 /**
2749  *	sata_down_spd_limit - adjust SATA spd limit downward
2750  *	@link: Link to adjust SATA spd limit for
2751  *	@spd_limit: Additional limit
2752  *
2753  *	Adjust SATA spd limit of @link downward.  Note that this
2754  *	function only adjusts the limit.  The change must be applied
2755  *	using sata_set_spd().
2756  *
2757  *	If @spd_limit is non-zero, the speed is limited to equal to or
2758  *	lower than @spd_limit if such speed is supported.  If
2759  *	@spd_limit is slower than any supported speed, only the lowest
2760  *	supported speed is allowed.
2761  *
2762  *	LOCKING:
2763  *	Inherited from caller.
2764  *
2765  *	RETURNS:
2766  *	0 on success, negative errno on failure
2767  */
2768 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2769 {
2770 	u32 sstatus, spd, mask;
2771 	int rc, bit;
2772 
2773 	if (!sata_scr_valid(link))
2774 		return -EOPNOTSUPP;
2775 
2776 	/* If SCR can be read, use it to determine the current SPD.
2777 	 * If not, use cached value in link->sata_spd.
2778 	 */
2779 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2780 	if (rc == 0 && ata_sstatus_online(sstatus))
2781 		spd = (sstatus >> 4) & 0xf;
2782 	else
2783 		spd = link->sata_spd;
2784 
2785 	mask = link->sata_spd_limit;
2786 	if (mask <= 1)
2787 		return -EINVAL;
2788 
2789 	/* unconditionally mask off the highest bit */
2790 	bit = fls(mask) - 1;
2791 	mask &= ~(1 << bit);
2792 
2793 	/* Mask off all speeds higher than or equal to the current
2794 	 * one.  Force 1.5Gbps if current SPD is not available.
2795 	 */
2796 	if (spd > 1)
2797 		mask &= (1 << (spd - 1)) - 1;
2798 	else
2799 		mask &= 1;
2800 
2801 	/* were we already at the bottom? */
2802 	if (!mask)
2803 		return -EINVAL;
2804 
2805 	if (spd_limit) {
2806 		if (mask & ((1 << spd_limit) - 1))
2807 			mask &= (1 << spd_limit) - 1;
2808 		else {
2809 			bit = ffs(mask) - 1;
2810 			mask = 1 << bit;
2811 		}
2812 	}
2813 
2814 	link->sata_spd_limit = mask;
2815 
2816 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2817 		      sata_spd_string(fls(mask)));
2818 
2819 	return 0;
2820 }
2821 
2822 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2823 {
2824 	struct ata_link *host_link = &link->ap->link;
2825 	u32 limit, target, spd;
2826 
2827 	limit = link->sata_spd_limit;
2828 
2829 	/* Don't configure downstream link faster than upstream link.
2830 	 * It doesn't speed up anything and some PMPs choke on such
2831 	 * configuration.
2832 	 */
2833 	if (!ata_is_host_link(link) && host_link->sata_spd)
2834 		limit &= (1 << host_link->sata_spd) - 1;
2835 
2836 	if (limit == UINT_MAX)
2837 		target = 0;
2838 	else
2839 		target = fls(limit);
2840 
2841 	spd = (*scontrol >> 4) & 0xf;
2842 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2843 
2844 	return spd != target;
2845 }
2846 
2847 /**
2848  *	sata_set_spd_needed - is SATA spd configuration needed
2849  *	@link: Link in question
2850  *
2851  *	Test whether the spd limit in SControl matches
2852  *	@link->sata_spd_limit.  This function is used to determine
2853  *	whether hardreset is necessary to apply SATA spd
2854  *	configuration.
2855  *
2856  *	LOCKING:
2857  *	Inherited from caller.
2858  *
2859  *	RETURNS:
2860  *	1 if SATA spd configuration is needed, 0 otherwise.
2861  */
2862 static int sata_set_spd_needed(struct ata_link *link)
2863 {
2864 	u32 scontrol;
2865 
2866 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2867 		return 1;
2868 
2869 	return __sata_set_spd_needed(link, &scontrol);
2870 }
2871 
2872 /**
2873  *	sata_set_spd - set SATA spd according to spd limit
2874  *	@link: Link to set SATA spd for
2875  *
2876  *	Set SATA spd of @link according to sata_spd_limit.
2877  *
2878  *	LOCKING:
2879  *	Inherited from caller.
2880  *
2881  *	RETURNS:
2882  *	0 if spd doesn't need to be changed, 1 if spd has been
2883  *	changed.  Negative errno if SCR registers are inaccessible.
2884  */
2885 int sata_set_spd(struct ata_link *link)
2886 {
2887 	u32 scontrol;
2888 	int rc;
2889 
2890 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2891 		return rc;
2892 
2893 	if (!__sata_set_spd_needed(link, &scontrol))
2894 		return 0;
2895 
2896 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2897 		return rc;
2898 
2899 	return 1;
2900 }
2901 
2902 /*
2903  * This mode timing computation functionality is ported over from
2904  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2905  */
2906 /*
2907  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2908  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2909  * for UDMA6, which is currently supported only by Maxtor drives.
2910  *
2911  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2912  */
2913 
2914 static const struct ata_timing ata_timing[] = {
2915 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2916 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2917 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2918 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2919 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2920 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2921 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2922 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2923 
2924 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2925 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2926 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2927 
2928 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2929 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2930 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2931 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2932 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2933 
2934 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2935 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2936 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2937 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2938 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2939 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2940 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2941 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2942 
2943 	{ 0xFF }
2944 };
2945 
2946 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2947 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2948 
2949 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2950 {
2951 	q->setup	= EZ(t->setup      * 1000,  T);
2952 	q->act8b	= EZ(t->act8b      * 1000,  T);
2953 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2954 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2955 	q->active	= EZ(t->active     * 1000,  T);
2956 	q->recover	= EZ(t->recover    * 1000,  T);
2957 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2958 	q->cycle	= EZ(t->cycle      * 1000,  T);
2959 	q->udma		= EZ(t->udma       * 1000, UT);
2960 }
2961 
2962 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2963 		      struct ata_timing *m, unsigned int what)
2964 {
2965 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2966 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2967 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2968 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2969 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2970 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2971 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2972 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2973 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2974 }
2975 
2976 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2977 {
2978 	const struct ata_timing *t = ata_timing;
2979 
2980 	while (xfer_mode > t->mode)
2981 		t++;
2982 
2983 	if (xfer_mode == t->mode)
2984 		return t;
2985 
2986 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2987 			__func__, xfer_mode);
2988 
2989 	return NULL;
2990 }
2991 
2992 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2993 		       struct ata_timing *t, int T, int UT)
2994 {
2995 	const u16 *id = adev->id;
2996 	const struct ata_timing *s;
2997 	struct ata_timing p;
2998 
2999 	/*
3000 	 * Find the mode.
3001 	 */
3002 
3003 	if (!(s = ata_timing_find_mode(speed)))
3004 		return -EINVAL;
3005 
3006 	memcpy(t, s, sizeof(*s));
3007 
3008 	/*
3009 	 * If the drive is an EIDE drive, it can tell us it needs extended
3010 	 * PIO/MW_DMA cycle timing.
3011 	 */
3012 
3013 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3014 		memset(&p, 0, sizeof(p));
3015 
3016 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3017 			if (speed <= XFER_PIO_2)
3018 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3019 			else if ((speed <= XFER_PIO_4) ||
3020 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3021 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3022 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3023 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3024 
3025 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3026 	}
3027 
3028 	/*
3029 	 * Convert the timing to bus clock counts.
3030 	 */
3031 
3032 	ata_timing_quantize(t, t, T, UT);
3033 
3034 	/*
3035 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3036 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3037 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3038 	 */
3039 
3040 	if (speed > XFER_PIO_6) {
3041 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3042 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3043 	}
3044 
3045 	/*
3046 	 * Lengthen active & recovery time so that cycle time is correct.
3047 	 */
3048 
3049 	if (t->act8b + t->rec8b < t->cyc8b) {
3050 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3051 		t->rec8b = t->cyc8b - t->act8b;
3052 	}
3053 
3054 	if (t->active + t->recover < t->cycle) {
3055 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3056 		t->recover = t->cycle - t->active;
3057 	}
3058 
3059 	/* In a few cases quantisation may produce enough errors to
3060 	   leave t->cycle too low for the sum of active and recovery
3061 	   if so we must correct this */
3062 	if (t->active + t->recover > t->cycle)
3063 		t->cycle = t->active + t->recover;
3064 
3065 	return 0;
3066 }
3067 
3068 /**
3069  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3070  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3071  *	@cycle: cycle duration in ns
3072  *
3073  *	Return matching xfer mode for @cycle.  The returned mode is of
3074  *	the transfer type specified by @xfer_shift.  If @cycle is too
3075  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3076  *	than the fastest known mode, the fasted mode is returned.
3077  *
3078  *	LOCKING:
3079  *	None.
3080  *
3081  *	RETURNS:
3082  *	Matching xfer_mode, 0xff if no match found.
3083  */
3084 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3085 {
3086 	u8 base_mode = 0xff, last_mode = 0xff;
3087 	const struct ata_xfer_ent *ent;
3088 	const struct ata_timing *t;
3089 
3090 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3091 		if (ent->shift == xfer_shift)
3092 			base_mode = ent->base;
3093 
3094 	for (t = ata_timing_find_mode(base_mode);
3095 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3096 		unsigned short this_cycle;
3097 
3098 		switch (xfer_shift) {
3099 		case ATA_SHIFT_PIO:
3100 		case ATA_SHIFT_MWDMA:
3101 			this_cycle = t->cycle;
3102 			break;
3103 		case ATA_SHIFT_UDMA:
3104 			this_cycle = t->udma;
3105 			break;
3106 		default:
3107 			return 0xff;
3108 		}
3109 
3110 		if (cycle > this_cycle)
3111 			break;
3112 
3113 		last_mode = t->mode;
3114 	}
3115 
3116 	return last_mode;
3117 }
3118 
3119 /**
3120  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3121  *	@dev: Device to adjust xfer masks
3122  *	@sel: ATA_DNXFER_* selector
3123  *
3124  *	Adjust xfer masks of @dev downward.  Note that this function
3125  *	does not apply the change.  Invoking ata_set_mode() afterwards
3126  *	will apply the limit.
3127  *
3128  *	LOCKING:
3129  *	Inherited from caller.
3130  *
3131  *	RETURNS:
3132  *	0 on success, negative errno on failure
3133  */
3134 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3135 {
3136 	char buf[32];
3137 	unsigned long orig_mask, xfer_mask;
3138 	unsigned long pio_mask, mwdma_mask, udma_mask;
3139 	int quiet, highbit;
3140 
3141 	quiet = !!(sel & ATA_DNXFER_QUIET);
3142 	sel &= ~ATA_DNXFER_QUIET;
3143 
3144 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3145 						  dev->mwdma_mask,
3146 						  dev->udma_mask);
3147 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3148 
3149 	switch (sel) {
3150 	case ATA_DNXFER_PIO:
3151 		highbit = fls(pio_mask) - 1;
3152 		pio_mask &= ~(1 << highbit);
3153 		break;
3154 
3155 	case ATA_DNXFER_DMA:
3156 		if (udma_mask) {
3157 			highbit = fls(udma_mask) - 1;
3158 			udma_mask &= ~(1 << highbit);
3159 			if (!udma_mask)
3160 				return -ENOENT;
3161 		} else if (mwdma_mask) {
3162 			highbit = fls(mwdma_mask) - 1;
3163 			mwdma_mask &= ~(1 << highbit);
3164 			if (!mwdma_mask)
3165 				return -ENOENT;
3166 		}
3167 		break;
3168 
3169 	case ATA_DNXFER_40C:
3170 		udma_mask &= ATA_UDMA_MASK_40C;
3171 		break;
3172 
3173 	case ATA_DNXFER_FORCE_PIO0:
3174 		pio_mask &= 1;
3175 	case ATA_DNXFER_FORCE_PIO:
3176 		mwdma_mask = 0;
3177 		udma_mask = 0;
3178 		break;
3179 
3180 	default:
3181 		BUG();
3182 	}
3183 
3184 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3185 
3186 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3187 		return -ENOENT;
3188 
3189 	if (!quiet) {
3190 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3191 			snprintf(buf, sizeof(buf), "%s:%s",
3192 				 ata_mode_string(xfer_mask),
3193 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3194 		else
3195 			snprintf(buf, sizeof(buf), "%s",
3196 				 ata_mode_string(xfer_mask));
3197 
3198 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3199 	}
3200 
3201 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3202 			    &dev->udma_mask);
3203 
3204 	return 0;
3205 }
3206 
3207 static int ata_dev_set_mode(struct ata_device *dev)
3208 {
3209 	struct ata_port *ap = dev->link->ap;
3210 	struct ata_eh_context *ehc = &dev->link->eh_context;
3211 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3212 	const char *dev_err_whine = "";
3213 	int ign_dev_err = 0;
3214 	unsigned int err_mask = 0;
3215 	int rc;
3216 
3217 	dev->flags &= ~ATA_DFLAG_PIO;
3218 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3219 		dev->flags |= ATA_DFLAG_PIO;
3220 
3221 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3222 		dev_err_whine = " (SET_XFERMODE skipped)";
3223 	else {
3224 		if (nosetxfer)
3225 			ata_dev_warn(dev,
3226 				     "NOSETXFER but PATA detected - can't "
3227 				     "skip SETXFER, might malfunction\n");
3228 		err_mask = ata_dev_set_xfermode(dev);
3229 	}
3230 
3231 	if (err_mask & ~AC_ERR_DEV)
3232 		goto fail;
3233 
3234 	/* revalidate */
3235 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3236 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3237 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3238 	if (rc)
3239 		return rc;
3240 
3241 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3242 		/* Old CFA may refuse this command, which is just fine */
3243 		if (ata_id_is_cfa(dev->id))
3244 			ign_dev_err = 1;
3245 		/* Catch several broken garbage emulations plus some pre
3246 		   ATA devices */
3247 		if (ata_id_major_version(dev->id) == 0 &&
3248 					dev->pio_mode <= XFER_PIO_2)
3249 			ign_dev_err = 1;
3250 		/* Some very old devices and some bad newer ones fail
3251 		   any kind of SET_XFERMODE request but support PIO0-2
3252 		   timings and no IORDY */
3253 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3254 			ign_dev_err = 1;
3255 	}
3256 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3257 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3258 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3259 	    dev->dma_mode == XFER_MW_DMA_0 &&
3260 	    (dev->id[63] >> 8) & 1)
3261 		ign_dev_err = 1;
3262 
3263 	/* if the device is actually configured correctly, ignore dev err */
3264 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3265 		ign_dev_err = 1;
3266 
3267 	if (err_mask & AC_ERR_DEV) {
3268 		if (!ign_dev_err)
3269 			goto fail;
3270 		else
3271 			dev_err_whine = " (device error ignored)";
3272 	}
3273 
3274 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3275 		dev->xfer_shift, (int)dev->xfer_mode);
3276 
3277 	ata_dev_info(dev, "configured for %s%s\n",
3278 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3279 		     dev_err_whine);
3280 
3281 	return 0;
3282 
3283  fail:
3284 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3285 	return -EIO;
3286 }
3287 
3288 /**
3289  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3290  *	@link: link on which timings will be programmed
3291  *	@r_failed_dev: out parameter for failed device
3292  *
3293  *	Standard implementation of the function used to tune and set
3294  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3295  *	ata_dev_set_mode() fails, pointer to the failing device is
3296  *	returned in @r_failed_dev.
3297  *
3298  *	LOCKING:
3299  *	PCI/etc. bus probe sem.
3300  *
3301  *	RETURNS:
3302  *	0 on success, negative errno otherwise
3303  */
3304 
3305 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3306 {
3307 	struct ata_port *ap = link->ap;
3308 	struct ata_device *dev;
3309 	int rc = 0, used_dma = 0, found = 0;
3310 
3311 	/* step 1: calculate xfer_mask */
3312 	ata_for_each_dev(dev, link, ENABLED) {
3313 		unsigned long pio_mask, dma_mask;
3314 		unsigned int mode_mask;
3315 
3316 		mode_mask = ATA_DMA_MASK_ATA;
3317 		if (dev->class == ATA_DEV_ATAPI)
3318 			mode_mask = ATA_DMA_MASK_ATAPI;
3319 		else if (ata_id_is_cfa(dev->id))
3320 			mode_mask = ATA_DMA_MASK_CFA;
3321 
3322 		ata_dev_xfermask(dev);
3323 		ata_force_xfermask(dev);
3324 
3325 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3326 
3327 		if (libata_dma_mask & mode_mask)
3328 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3329 						     dev->udma_mask);
3330 		else
3331 			dma_mask = 0;
3332 
3333 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3334 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3335 
3336 		found = 1;
3337 		if (ata_dma_enabled(dev))
3338 			used_dma = 1;
3339 	}
3340 	if (!found)
3341 		goto out;
3342 
3343 	/* step 2: always set host PIO timings */
3344 	ata_for_each_dev(dev, link, ENABLED) {
3345 		if (dev->pio_mode == 0xff) {
3346 			ata_dev_warn(dev, "no PIO support\n");
3347 			rc = -EINVAL;
3348 			goto out;
3349 		}
3350 
3351 		dev->xfer_mode = dev->pio_mode;
3352 		dev->xfer_shift = ATA_SHIFT_PIO;
3353 		if (ap->ops->set_piomode)
3354 			ap->ops->set_piomode(ap, dev);
3355 	}
3356 
3357 	/* step 3: set host DMA timings */
3358 	ata_for_each_dev(dev, link, ENABLED) {
3359 		if (!ata_dma_enabled(dev))
3360 			continue;
3361 
3362 		dev->xfer_mode = dev->dma_mode;
3363 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3364 		if (ap->ops->set_dmamode)
3365 			ap->ops->set_dmamode(ap, dev);
3366 	}
3367 
3368 	/* step 4: update devices' xfer mode */
3369 	ata_for_each_dev(dev, link, ENABLED) {
3370 		rc = ata_dev_set_mode(dev);
3371 		if (rc)
3372 			goto out;
3373 	}
3374 
3375 	/* Record simplex status. If we selected DMA then the other
3376 	 * host channels are not permitted to do so.
3377 	 */
3378 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3379 		ap->host->simplex_claimed = ap;
3380 
3381  out:
3382 	if (rc)
3383 		*r_failed_dev = dev;
3384 	return rc;
3385 }
3386 
3387 /**
3388  *	ata_wait_ready - wait for link to become ready
3389  *	@link: link to be waited on
3390  *	@deadline: deadline jiffies for the operation
3391  *	@check_ready: callback to check link readiness
3392  *
3393  *	Wait for @link to become ready.  @check_ready should return
3394  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3395  *	link doesn't seem to be occupied, other errno for other error
3396  *	conditions.
3397  *
3398  *	Transient -ENODEV conditions are allowed for
3399  *	ATA_TMOUT_FF_WAIT.
3400  *
3401  *	LOCKING:
3402  *	EH context.
3403  *
3404  *	RETURNS:
3405  *	0 if @linke is ready before @deadline; otherwise, -errno.
3406  */
3407 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3408 		   int (*check_ready)(struct ata_link *link))
3409 {
3410 	unsigned long start = jiffies;
3411 	unsigned long nodev_deadline;
3412 	int warned = 0;
3413 
3414 	/* choose which 0xff timeout to use, read comment in libata.h */
3415 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3416 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3417 	else
3418 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3419 
3420 	/* Slave readiness can't be tested separately from master.  On
3421 	 * M/S emulation configuration, this function should be called
3422 	 * only on the master and it will handle both master and slave.
3423 	 */
3424 	WARN_ON(link == link->ap->slave_link);
3425 
3426 	if (time_after(nodev_deadline, deadline))
3427 		nodev_deadline = deadline;
3428 
3429 	while (1) {
3430 		unsigned long now = jiffies;
3431 		int ready, tmp;
3432 
3433 		ready = tmp = check_ready(link);
3434 		if (ready > 0)
3435 			return 0;
3436 
3437 		/*
3438 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3439 		 * is online.  Also, some SATA devices take a long
3440 		 * time to clear 0xff after reset.  Wait for
3441 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3442 		 * offline.
3443 		 *
3444 		 * Note that some PATA controllers (pata_ali) explode
3445 		 * if status register is read more than once when
3446 		 * there's no device attached.
3447 		 */
3448 		if (ready == -ENODEV) {
3449 			if (ata_link_online(link))
3450 				ready = 0;
3451 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3452 				 !ata_link_offline(link) &&
3453 				 time_before(now, nodev_deadline))
3454 				ready = 0;
3455 		}
3456 
3457 		if (ready)
3458 			return ready;
3459 		if (time_after(now, deadline))
3460 			return -EBUSY;
3461 
3462 		if (!warned && time_after(now, start + 5 * HZ) &&
3463 		    (deadline - now > 3 * HZ)) {
3464 			ata_link_warn(link,
3465 				"link is slow to respond, please be patient "
3466 				"(ready=%d)\n", tmp);
3467 			warned = 1;
3468 		}
3469 
3470 		ata_msleep(link->ap, 50);
3471 	}
3472 }
3473 
3474 /**
3475  *	ata_wait_after_reset - wait for link to become ready after reset
3476  *	@link: link to be waited on
3477  *	@deadline: deadline jiffies for the operation
3478  *	@check_ready: callback to check link readiness
3479  *
3480  *	Wait for @link to become ready after reset.
3481  *
3482  *	LOCKING:
3483  *	EH context.
3484  *
3485  *	RETURNS:
3486  *	0 if @linke is ready before @deadline; otherwise, -errno.
3487  */
3488 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3489 				int (*check_ready)(struct ata_link *link))
3490 {
3491 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3492 
3493 	return ata_wait_ready(link, deadline, check_ready);
3494 }
3495 
3496 /**
3497  *	sata_link_debounce - debounce SATA phy status
3498  *	@link: ATA link to debounce SATA phy status for
3499  *	@params: timing parameters { interval, duratinon, timeout } in msec
3500  *	@deadline: deadline jiffies for the operation
3501  *
3502  *	Make sure SStatus of @link reaches stable state, determined by
3503  *	holding the same value where DET is not 1 for @duration polled
3504  *	every @interval, before @timeout.  Timeout constraints the
3505  *	beginning of the stable state.  Because DET gets stuck at 1 on
3506  *	some controllers after hot unplugging, this functions waits
3507  *	until timeout then returns 0 if DET is stable at 1.
3508  *
3509  *	@timeout is further limited by @deadline.  The sooner of the
3510  *	two is used.
3511  *
3512  *	LOCKING:
3513  *	Kernel thread context (may sleep)
3514  *
3515  *	RETURNS:
3516  *	0 on success, -errno on failure.
3517  */
3518 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3519 		       unsigned long deadline)
3520 {
3521 	unsigned long interval = params[0];
3522 	unsigned long duration = params[1];
3523 	unsigned long last_jiffies, t;
3524 	u32 last, cur;
3525 	int rc;
3526 
3527 	t = ata_deadline(jiffies, params[2]);
3528 	if (time_before(t, deadline))
3529 		deadline = t;
3530 
3531 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3532 		return rc;
3533 	cur &= 0xf;
3534 
3535 	last = cur;
3536 	last_jiffies = jiffies;
3537 
3538 	while (1) {
3539 		ata_msleep(link->ap, interval);
3540 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3541 			return rc;
3542 		cur &= 0xf;
3543 
3544 		/* DET stable? */
3545 		if (cur == last) {
3546 			if (cur == 1 && time_before(jiffies, deadline))
3547 				continue;
3548 			if (time_after(jiffies,
3549 				       ata_deadline(last_jiffies, duration)))
3550 				return 0;
3551 			continue;
3552 		}
3553 
3554 		/* unstable, start over */
3555 		last = cur;
3556 		last_jiffies = jiffies;
3557 
3558 		/* Check deadline.  If debouncing failed, return
3559 		 * -EPIPE to tell upper layer to lower link speed.
3560 		 */
3561 		if (time_after(jiffies, deadline))
3562 			return -EPIPE;
3563 	}
3564 }
3565 
3566 /**
3567  *	sata_link_resume - resume SATA link
3568  *	@link: ATA link to resume SATA
3569  *	@params: timing parameters { interval, duratinon, timeout } in msec
3570  *	@deadline: deadline jiffies for the operation
3571  *
3572  *	Resume SATA phy @link and debounce it.
3573  *
3574  *	LOCKING:
3575  *	Kernel thread context (may sleep)
3576  *
3577  *	RETURNS:
3578  *	0 on success, -errno on failure.
3579  */
3580 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3581 		     unsigned long deadline)
3582 {
3583 	int tries = ATA_LINK_RESUME_TRIES;
3584 	u32 scontrol, serror;
3585 	int rc;
3586 
3587 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3588 		return rc;
3589 
3590 	/*
3591 	 * Writes to SControl sometimes get ignored under certain
3592 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3593 	 * cleared.
3594 	 */
3595 	do {
3596 		scontrol = (scontrol & 0x0f0) | 0x300;
3597 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3598 			return rc;
3599 		/*
3600 		 * Some PHYs react badly if SStatus is pounded
3601 		 * immediately after resuming.  Delay 200ms before
3602 		 * debouncing.
3603 		 */
3604 		ata_msleep(link->ap, 200);
3605 
3606 		/* is SControl restored correctly? */
3607 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3608 			return rc;
3609 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3610 
3611 	if ((scontrol & 0xf0f) != 0x300) {
3612 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3613 			     scontrol);
3614 		return 0;
3615 	}
3616 
3617 	if (tries < ATA_LINK_RESUME_TRIES)
3618 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3619 			      ATA_LINK_RESUME_TRIES - tries);
3620 
3621 	if ((rc = sata_link_debounce(link, params, deadline)))
3622 		return rc;
3623 
3624 	/* clear SError, some PHYs require this even for SRST to work */
3625 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3626 		rc = sata_scr_write(link, SCR_ERROR, serror);
3627 
3628 	return rc != -EINVAL ? rc : 0;
3629 }
3630 
3631 /**
3632  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3633  *	@link: ATA link to manipulate SControl for
3634  *	@policy: LPM policy to configure
3635  *	@spm_wakeup: initiate LPM transition to active state
3636  *
3637  *	Manipulate the IPM field of the SControl register of @link
3638  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3639  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3640  *	the link.  This function also clears PHYRDY_CHG before
3641  *	returning.
3642  *
3643  *	LOCKING:
3644  *	EH context.
3645  *
3646  *	RETURNS:
3647  *	0 on succes, -errno otherwise.
3648  */
3649 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3650 		      bool spm_wakeup)
3651 {
3652 	struct ata_eh_context *ehc = &link->eh_context;
3653 	bool woken_up = false;
3654 	u32 scontrol;
3655 	int rc;
3656 
3657 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3658 	if (rc)
3659 		return rc;
3660 
3661 	switch (policy) {
3662 	case ATA_LPM_MAX_POWER:
3663 		/* disable all LPM transitions */
3664 		scontrol |= (0x7 << 8);
3665 		/* initiate transition to active state */
3666 		if (spm_wakeup) {
3667 			scontrol |= (0x4 << 12);
3668 			woken_up = true;
3669 		}
3670 		break;
3671 	case ATA_LPM_MED_POWER:
3672 		/* allow LPM to PARTIAL */
3673 		scontrol &= ~(0x1 << 8);
3674 		scontrol |= (0x6 << 8);
3675 		break;
3676 	case ATA_LPM_MIN_POWER:
3677 		if (ata_link_nr_enabled(link) > 0)
3678 			/* no restrictions on LPM transitions */
3679 			scontrol &= ~(0x7 << 8);
3680 		else {
3681 			/* empty port, power off */
3682 			scontrol &= ~0xf;
3683 			scontrol |= (0x1 << 2);
3684 		}
3685 		break;
3686 	default:
3687 		WARN_ON(1);
3688 	}
3689 
3690 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3691 	if (rc)
3692 		return rc;
3693 
3694 	/* give the link time to transit out of LPM state */
3695 	if (woken_up)
3696 		msleep(10);
3697 
3698 	/* clear PHYRDY_CHG from SError */
3699 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3700 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3701 }
3702 
3703 /**
3704  *	ata_std_prereset - prepare for reset
3705  *	@link: ATA link to be reset
3706  *	@deadline: deadline jiffies for the operation
3707  *
3708  *	@link is about to be reset.  Initialize it.  Failure from
3709  *	prereset makes libata abort whole reset sequence and give up
3710  *	that port, so prereset should be best-effort.  It does its
3711  *	best to prepare for reset sequence but if things go wrong, it
3712  *	should just whine, not fail.
3713  *
3714  *	LOCKING:
3715  *	Kernel thread context (may sleep)
3716  *
3717  *	RETURNS:
3718  *	0 on success, -errno otherwise.
3719  */
3720 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3721 {
3722 	struct ata_port *ap = link->ap;
3723 	struct ata_eh_context *ehc = &link->eh_context;
3724 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3725 	int rc;
3726 
3727 	/* if we're about to do hardreset, nothing more to do */
3728 	if (ehc->i.action & ATA_EH_HARDRESET)
3729 		return 0;
3730 
3731 	/* if SATA, resume link */
3732 	if (ap->flags & ATA_FLAG_SATA) {
3733 		rc = sata_link_resume(link, timing, deadline);
3734 		/* whine about phy resume failure but proceed */
3735 		if (rc && rc != -EOPNOTSUPP)
3736 			ata_link_warn(link,
3737 				      "failed to resume link for reset (errno=%d)\n",
3738 				      rc);
3739 	}
3740 
3741 	/* no point in trying softreset on offline link */
3742 	if (ata_phys_link_offline(link))
3743 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3744 
3745 	return 0;
3746 }
3747 
3748 /**
3749  *	sata_link_hardreset - reset link via SATA phy reset
3750  *	@link: link to reset
3751  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3752  *	@deadline: deadline jiffies for the operation
3753  *	@online: optional out parameter indicating link onlineness
3754  *	@check_ready: optional callback to check link readiness
3755  *
3756  *	SATA phy-reset @link using DET bits of SControl register.
3757  *	After hardreset, link readiness is waited upon using
3758  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3759  *	allowed to not specify @check_ready and wait itself after this
3760  *	function returns.  Device classification is LLD's
3761  *	responsibility.
3762  *
3763  *	*@online is set to one iff reset succeeded and @link is online
3764  *	after reset.
3765  *
3766  *	LOCKING:
3767  *	Kernel thread context (may sleep)
3768  *
3769  *	RETURNS:
3770  *	0 on success, -errno otherwise.
3771  */
3772 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3773 			unsigned long deadline,
3774 			bool *online, int (*check_ready)(struct ata_link *))
3775 {
3776 	u32 scontrol;
3777 	int rc;
3778 
3779 	DPRINTK("ENTER\n");
3780 
3781 	if (online)
3782 		*online = false;
3783 
3784 	if (sata_set_spd_needed(link)) {
3785 		/* SATA spec says nothing about how to reconfigure
3786 		 * spd.  To be on the safe side, turn off phy during
3787 		 * reconfiguration.  This works for at least ICH7 AHCI
3788 		 * and Sil3124.
3789 		 */
3790 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3791 			goto out;
3792 
3793 		scontrol = (scontrol & 0x0f0) | 0x304;
3794 
3795 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3796 			goto out;
3797 
3798 		sata_set_spd(link);
3799 	}
3800 
3801 	/* issue phy wake/reset */
3802 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3803 		goto out;
3804 
3805 	scontrol = (scontrol & 0x0f0) | 0x301;
3806 
3807 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3808 		goto out;
3809 
3810 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3811 	 * 10.4.2 says at least 1 ms.
3812 	 */
3813 	ata_msleep(link->ap, 1);
3814 
3815 	/* bring link back */
3816 	rc = sata_link_resume(link, timing, deadline);
3817 	if (rc)
3818 		goto out;
3819 	/* if link is offline nothing more to do */
3820 	if (ata_phys_link_offline(link))
3821 		goto out;
3822 
3823 	/* Link is online.  From this point, -ENODEV too is an error. */
3824 	if (online)
3825 		*online = true;
3826 
3827 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3828 		/* If PMP is supported, we have to do follow-up SRST.
3829 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3830 		 * the first port is empty.  Wait only for
3831 		 * ATA_TMOUT_PMP_SRST_WAIT.
3832 		 */
3833 		if (check_ready) {
3834 			unsigned long pmp_deadline;
3835 
3836 			pmp_deadline = ata_deadline(jiffies,
3837 						    ATA_TMOUT_PMP_SRST_WAIT);
3838 			if (time_after(pmp_deadline, deadline))
3839 				pmp_deadline = deadline;
3840 			ata_wait_ready(link, pmp_deadline, check_ready);
3841 		}
3842 		rc = -EAGAIN;
3843 		goto out;
3844 	}
3845 
3846 	rc = 0;
3847 	if (check_ready)
3848 		rc = ata_wait_ready(link, deadline, check_ready);
3849  out:
3850 	if (rc && rc != -EAGAIN) {
3851 		/* online is set iff link is online && reset succeeded */
3852 		if (online)
3853 			*online = false;
3854 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3855 	}
3856 	DPRINTK("EXIT, rc=%d\n", rc);
3857 	return rc;
3858 }
3859 
3860 /**
3861  *	sata_std_hardreset - COMRESET w/o waiting or classification
3862  *	@link: link to reset
3863  *	@class: resulting class of attached device
3864  *	@deadline: deadline jiffies for the operation
3865  *
3866  *	Standard SATA COMRESET w/o waiting or classification.
3867  *
3868  *	LOCKING:
3869  *	Kernel thread context (may sleep)
3870  *
3871  *	RETURNS:
3872  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3873  */
3874 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3875 		       unsigned long deadline)
3876 {
3877 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3878 	bool online;
3879 	int rc;
3880 
3881 	/* do hardreset */
3882 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3883 	return online ? -EAGAIN : rc;
3884 }
3885 
3886 /**
3887  *	ata_std_postreset - standard postreset callback
3888  *	@link: the target ata_link
3889  *	@classes: classes of attached devices
3890  *
3891  *	This function is invoked after a successful reset.  Note that
3892  *	the device might have been reset more than once using
3893  *	different reset methods before postreset is invoked.
3894  *
3895  *	LOCKING:
3896  *	Kernel thread context (may sleep)
3897  */
3898 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3899 {
3900 	u32 serror;
3901 
3902 	DPRINTK("ENTER\n");
3903 
3904 	/* reset complete, clear SError */
3905 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3906 		sata_scr_write(link, SCR_ERROR, serror);
3907 
3908 	/* print link status */
3909 	sata_print_link_status(link);
3910 
3911 	DPRINTK("EXIT\n");
3912 }
3913 
3914 /**
3915  *	ata_dev_same_device - Determine whether new ID matches configured device
3916  *	@dev: device to compare against
3917  *	@new_class: class of the new device
3918  *	@new_id: IDENTIFY page of the new device
3919  *
3920  *	Compare @new_class and @new_id against @dev and determine
3921  *	whether @dev is the device indicated by @new_class and
3922  *	@new_id.
3923  *
3924  *	LOCKING:
3925  *	None.
3926  *
3927  *	RETURNS:
3928  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3929  */
3930 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3931 			       const u16 *new_id)
3932 {
3933 	const u16 *old_id = dev->id;
3934 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3935 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3936 
3937 	if (dev->class != new_class) {
3938 		ata_dev_info(dev, "class mismatch %d != %d\n",
3939 			     dev->class, new_class);
3940 		return 0;
3941 	}
3942 
3943 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3944 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3945 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3946 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3947 
3948 	if (strcmp(model[0], model[1])) {
3949 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3950 			     model[0], model[1]);
3951 		return 0;
3952 	}
3953 
3954 	if (strcmp(serial[0], serial[1])) {
3955 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3956 			     serial[0], serial[1]);
3957 		return 0;
3958 	}
3959 
3960 	return 1;
3961 }
3962 
3963 /**
3964  *	ata_dev_reread_id - Re-read IDENTIFY data
3965  *	@dev: target ATA device
3966  *	@readid_flags: read ID flags
3967  *
3968  *	Re-read IDENTIFY page and make sure @dev is still attached to
3969  *	the port.
3970  *
3971  *	LOCKING:
3972  *	Kernel thread context (may sleep)
3973  *
3974  *	RETURNS:
3975  *	0 on success, negative errno otherwise
3976  */
3977 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3978 {
3979 	unsigned int class = dev->class;
3980 	u16 *id = (void *)dev->link->ap->sector_buf;
3981 	int rc;
3982 
3983 	/* read ID data */
3984 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3985 	if (rc)
3986 		return rc;
3987 
3988 	/* is the device still there? */
3989 	if (!ata_dev_same_device(dev, class, id))
3990 		return -ENODEV;
3991 
3992 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3993 	return 0;
3994 }
3995 
3996 /**
3997  *	ata_dev_revalidate - Revalidate ATA device
3998  *	@dev: device to revalidate
3999  *	@new_class: new class code
4000  *	@readid_flags: read ID flags
4001  *
4002  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4003  *	port and reconfigure it according to the new IDENTIFY page.
4004  *
4005  *	LOCKING:
4006  *	Kernel thread context (may sleep)
4007  *
4008  *	RETURNS:
4009  *	0 on success, negative errno otherwise
4010  */
4011 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4012 		       unsigned int readid_flags)
4013 {
4014 	u64 n_sectors = dev->n_sectors;
4015 	u64 n_native_sectors = dev->n_native_sectors;
4016 	int rc;
4017 
4018 	if (!ata_dev_enabled(dev))
4019 		return -ENODEV;
4020 
4021 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4022 	if (ata_class_enabled(new_class) &&
4023 	    new_class != ATA_DEV_ATA &&
4024 	    new_class != ATA_DEV_ATAPI &&
4025 	    new_class != ATA_DEV_SEMB) {
4026 		ata_dev_info(dev, "class mismatch %u != %u\n",
4027 			     dev->class, new_class);
4028 		rc = -ENODEV;
4029 		goto fail;
4030 	}
4031 
4032 	/* re-read ID */
4033 	rc = ata_dev_reread_id(dev, readid_flags);
4034 	if (rc)
4035 		goto fail;
4036 
4037 	/* configure device according to the new ID */
4038 	rc = ata_dev_configure(dev);
4039 	if (rc)
4040 		goto fail;
4041 
4042 	/* verify n_sectors hasn't changed */
4043 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4044 	    dev->n_sectors == n_sectors)
4045 		return 0;
4046 
4047 	/* n_sectors has changed */
4048 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4049 		     (unsigned long long)n_sectors,
4050 		     (unsigned long long)dev->n_sectors);
4051 
4052 	/*
4053 	 * Something could have caused HPA to be unlocked
4054 	 * involuntarily.  If n_native_sectors hasn't changed and the
4055 	 * new size matches it, keep the device.
4056 	 */
4057 	if (dev->n_native_sectors == n_native_sectors &&
4058 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4059 		ata_dev_warn(dev,
4060 			     "new n_sectors matches native, probably "
4061 			     "late HPA unlock, n_sectors updated\n");
4062 		/* use the larger n_sectors */
4063 		return 0;
4064 	}
4065 
4066 	/*
4067 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4068 	 * unlocking HPA in those cases.
4069 	 *
4070 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4071 	 */
4072 	if (dev->n_native_sectors == n_native_sectors &&
4073 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4074 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4075 		ata_dev_warn(dev,
4076 			     "old n_sectors matches native, probably "
4077 			     "late HPA lock, will try to unlock HPA\n");
4078 		/* try unlocking HPA */
4079 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4080 		rc = -EIO;
4081 	} else
4082 		rc = -ENODEV;
4083 
4084 	/* restore original n_[native_]sectors and fail */
4085 	dev->n_native_sectors = n_native_sectors;
4086 	dev->n_sectors = n_sectors;
4087  fail:
4088 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4089 	return rc;
4090 }
4091 
4092 struct ata_blacklist_entry {
4093 	const char *model_num;
4094 	const char *model_rev;
4095 	unsigned long horkage;
4096 };
4097 
4098 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4099 	/* Devices with DMA related problems under Linux */
4100 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4101 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4102 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4103 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4104 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4105 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4106 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4107 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4108 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4109 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4110 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4111 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4112 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4113 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4114 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4115 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4116 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4117 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4118 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4119 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4120 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4121 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4122 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4123 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4124 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4125 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4126 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4127 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4128 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4129 	/* Odd clown on sil3726/4726 PMPs */
4130 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4131 
4132 	/* Weird ATAPI devices */
4133 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4134 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4135 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4136 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4137 
4138 	/* Devices we expect to fail diagnostics */
4139 
4140 	/* Devices where NCQ should be avoided */
4141 	/* NCQ is slow */
4142 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4143 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4144 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4145 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4146 	/* NCQ is broken */
4147 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4148 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4149 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4150 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4151 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4152 
4153 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4154 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4155 						ATA_HORKAGE_FIRMWARE_WARN },
4156 
4157 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4158 						ATA_HORKAGE_FIRMWARE_WARN },
4159 
4160 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4161 						ATA_HORKAGE_FIRMWARE_WARN },
4162 
4163 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4164 						ATA_HORKAGE_FIRMWARE_WARN },
4165 
4166 	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4167 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4168 
4169 	/* Blacklist entries taken from Silicon Image 3124/3132
4170 	   Windows driver .inf file - also several Linux problem reports */
4171 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4172 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4173 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4174 
4175 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4176 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4177 
4178 	/* devices which puke on READ_NATIVE_MAX */
4179 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4180 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4181 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4182 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4183 
4184 	/* this one allows HPA unlocking but fails IOs on the area */
4185 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4186 
4187 	/* Devices which report 1 sector over size HPA */
4188 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4189 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4190 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4191 
4192 	/* Devices which get the IVB wrong */
4193 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4194 	/* Maybe we should just blacklist TSSTcorp... */
4195 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4196 
4197 	/* Devices that do not need bridging limits applied */
4198 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4199 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4200 
4201 	/* Devices which aren't very happy with higher link speeds */
4202 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4203 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4204 
4205 	/*
4206 	 * Devices which choke on SETXFER.  Applies only if both the
4207 	 * device and controller are SATA.
4208 	 */
4209 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4210 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4211 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4212 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4213 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4214 
4215 	/* devices that don't properly handle queued TRIM commands */
4216 	{ "Micron_M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4217 	{ "Crucial_CT???M500SSD1",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4218 
4219 	/* End Marker */
4220 	{ }
4221 };
4222 
4223 /**
4224  *	glob_match - match a text string against a glob-style pattern
4225  *	@text: the string to be examined
4226  *	@pattern: the glob-style pattern to be matched against
4227  *
4228  *	Either/both of text and pattern can be empty strings.
4229  *
4230  *	Match text against a glob-style pattern, with wildcards and simple sets:
4231  *
4232  *		?	matches any single character.
4233  *		*	matches any run of characters.
4234  *		[xyz]	matches a single character from the set: x, y, or z.
4235  *		[a-d]	matches a single character from the range: a, b, c, or d.
4236  *		[a-d0-9] matches a single character from either range.
4237  *
4238  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4239  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4240  *
4241  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4242  *
4243  *	This function uses one level of recursion per '*' in pattern.
4244  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4245  *	this will not cause stack problems for any reasonable use here.
4246  *
4247  *	RETURNS:
4248  *	0 on match, 1 otherwise.
4249  */
4250 static int glob_match (const char *text, const char *pattern)
4251 {
4252 	do {
4253 		/* Match single character or a '?' wildcard */
4254 		if (*text == *pattern || *pattern == '?') {
4255 			if (!*pattern++)
4256 				return 0;  /* End of both strings: match */
4257 		} else {
4258 			/* Match single char against a '[' bracketed ']' pattern set */
4259 			if (!*text || *pattern != '[')
4260 				break;  /* Not a pattern set */
4261 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4262 				if (*pattern == '-' && *(pattern - 1) != '[')
4263 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4264 						++pattern;
4265 						break;
4266 					}
4267 			}
4268 			if (!*pattern || *pattern == ']')
4269 				return 1;  /* No match */
4270 			while (*pattern && *pattern++ != ']');
4271 		}
4272 	} while (*++text && *pattern);
4273 
4274 	/* Match any run of chars against a '*' wildcard */
4275 	if (*pattern == '*') {
4276 		if (!*++pattern)
4277 			return 0;  /* Match: avoid recursion at end of pattern */
4278 		/* Loop to handle additional pattern chars after the wildcard */
4279 		while (*text) {
4280 			if (glob_match(text, pattern) == 0)
4281 				return 0;  /* Remainder matched */
4282 			++text;  /* Absorb (match) this char and try again */
4283 		}
4284 	}
4285 	if (!*text && !*pattern)
4286 		return 0;  /* End of both strings: match */
4287 	return 1;  /* No match */
4288 }
4289 
4290 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4291 {
4292 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4293 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4294 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4295 
4296 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4297 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4298 
4299 	while (ad->model_num) {
4300 		if (!glob_match(model_num, ad->model_num)) {
4301 			if (ad->model_rev == NULL)
4302 				return ad->horkage;
4303 			if (!glob_match(model_rev, ad->model_rev))
4304 				return ad->horkage;
4305 		}
4306 		ad++;
4307 	}
4308 	return 0;
4309 }
4310 
4311 static int ata_dma_blacklisted(const struct ata_device *dev)
4312 {
4313 	/* We don't support polling DMA.
4314 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4315 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4316 	 */
4317 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4318 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4319 		return 1;
4320 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4321 }
4322 
4323 /**
4324  *	ata_is_40wire		-	check drive side detection
4325  *	@dev: device
4326  *
4327  *	Perform drive side detection decoding, allowing for device vendors
4328  *	who can't follow the documentation.
4329  */
4330 
4331 static int ata_is_40wire(struct ata_device *dev)
4332 {
4333 	if (dev->horkage & ATA_HORKAGE_IVB)
4334 		return ata_drive_40wire_relaxed(dev->id);
4335 	return ata_drive_40wire(dev->id);
4336 }
4337 
4338 /**
4339  *	cable_is_40wire		-	40/80/SATA decider
4340  *	@ap: port to consider
4341  *
4342  *	This function encapsulates the policy for speed management
4343  *	in one place. At the moment we don't cache the result but
4344  *	there is a good case for setting ap->cbl to the result when
4345  *	we are called with unknown cables (and figuring out if it
4346  *	impacts hotplug at all).
4347  *
4348  *	Return 1 if the cable appears to be 40 wire.
4349  */
4350 
4351 static int cable_is_40wire(struct ata_port *ap)
4352 {
4353 	struct ata_link *link;
4354 	struct ata_device *dev;
4355 
4356 	/* If the controller thinks we are 40 wire, we are. */
4357 	if (ap->cbl == ATA_CBL_PATA40)
4358 		return 1;
4359 
4360 	/* If the controller thinks we are 80 wire, we are. */
4361 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4362 		return 0;
4363 
4364 	/* If the system is known to be 40 wire short cable (eg
4365 	 * laptop), then we allow 80 wire modes even if the drive
4366 	 * isn't sure.
4367 	 */
4368 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4369 		return 0;
4370 
4371 	/* If the controller doesn't know, we scan.
4372 	 *
4373 	 * Note: We look for all 40 wire detects at this point.  Any
4374 	 *       80 wire detect is taken to be 80 wire cable because
4375 	 * - in many setups only the one drive (slave if present) will
4376 	 *   give a valid detect
4377 	 * - if you have a non detect capable drive you don't want it
4378 	 *   to colour the choice
4379 	 */
4380 	ata_for_each_link(link, ap, EDGE) {
4381 		ata_for_each_dev(dev, link, ENABLED) {
4382 			if (!ata_is_40wire(dev))
4383 				return 0;
4384 		}
4385 	}
4386 	return 1;
4387 }
4388 
4389 /**
4390  *	ata_dev_xfermask - Compute supported xfermask of the given device
4391  *	@dev: Device to compute xfermask for
4392  *
4393  *	Compute supported xfermask of @dev and store it in
4394  *	dev->*_mask.  This function is responsible for applying all
4395  *	known limits including host controller limits, device
4396  *	blacklist, etc...
4397  *
4398  *	LOCKING:
4399  *	None.
4400  */
4401 static void ata_dev_xfermask(struct ata_device *dev)
4402 {
4403 	struct ata_link *link = dev->link;
4404 	struct ata_port *ap = link->ap;
4405 	struct ata_host *host = ap->host;
4406 	unsigned long xfer_mask;
4407 
4408 	/* controller modes available */
4409 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4410 				      ap->mwdma_mask, ap->udma_mask);
4411 
4412 	/* drive modes available */
4413 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4414 				       dev->mwdma_mask, dev->udma_mask);
4415 	xfer_mask &= ata_id_xfermask(dev->id);
4416 
4417 	/*
4418 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4419 	 *	cable
4420 	 */
4421 	if (ata_dev_pair(dev)) {
4422 		/* No PIO5 or PIO6 */
4423 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4424 		/* No MWDMA3 or MWDMA 4 */
4425 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4426 	}
4427 
4428 	if (ata_dma_blacklisted(dev)) {
4429 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4430 		ata_dev_warn(dev,
4431 			     "device is on DMA blacklist, disabling DMA\n");
4432 	}
4433 
4434 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4435 	    host->simplex_claimed && host->simplex_claimed != ap) {
4436 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4437 		ata_dev_warn(dev,
4438 			     "simplex DMA is claimed by other device, disabling DMA\n");
4439 	}
4440 
4441 	if (ap->flags & ATA_FLAG_NO_IORDY)
4442 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4443 
4444 	if (ap->ops->mode_filter)
4445 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4446 
4447 	/* Apply cable rule here.  Don't apply it early because when
4448 	 * we handle hot plug the cable type can itself change.
4449 	 * Check this last so that we know if the transfer rate was
4450 	 * solely limited by the cable.
4451 	 * Unknown or 80 wire cables reported host side are checked
4452 	 * drive side as well. Cases where we know a 40wire cable
4453 	 * is used safely for 80 are not checked here.
4454 	 */
4455 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4456 		/* UDMA/44 or higher would be available */
4457 		if (cable_is_40wire(ap)) {
4458 			ata_dev_warn(dev,
4459 				     "limited to UDMA/33 due to 40-wire cable\n");
4460 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4461 		}
4462 
4463 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4464 			    &dev->mwdma_mask, &dev->udma_mask);
4465 }
4466 
4467 /**
4468  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4469  *	@dev: Device to which command will be sent
4470  *
4471  *	Issue SET FEATURES - XFER MODE command to device @dev
4472  *	on port @ap.
4473  *
4474  *	LOCKING:
4475  *	PCI/etc. bus probe sem.
4476  *
4477  *	RETURNS:
4478  *	0 on success, AC_ERR_* mask otherwise.
4479  */
4480 
4481 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4482 {
4483 	struct ata_taskfile tf;
4484 	unsigned int err_mask;
4485 
4486 	/* set up set-features taskfile */
4487 	DPRINTK("set features - xfer mode\n");
4488 
4489 	/* Some controllers and ATAPI devices show flaky interrupt
4490 	 * behavior after setting xfer mode.  Use polling instead.
4491 	 */
4492 	ata_tf_init(dev, &tf);
4493 	tf.command = ATA_CMD_SET_FEATURES;
4494 	tf.feature = SETFEATURES_XFER;
4495 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4496 	tf.protocol = ATA_PROT_NODATA;
4497 	/* If we are using IORDY we must send the mode setting command */
4498 	if (ata_pio_need_iordy(dev))
4499 		tf.nsect = dev->xfer_mode;
4500 	/* If the device has IORDY and the controller does not - turn it off */
4501  	else if (ata_id_has_iordy(dev->id))
4502 		tf.nsect = 0x01;
4503 	else /* In the ancient relic department - skip all of this */
4504 		return 0;
4505 
4506 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4507 
4508 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 	return err_mask;
4510 }
4511 
4512 /**
4513  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4514  *	@dev: Device to which command will be sent
4515  *	@enable: Whether to enable or disable the feature
4516  *	@feature: The sector count represents the feature to set
4517  *
4518  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4519  *	on port @ap with sector count
4520  *
4521  *	LOCKING:
4522  *	PCI/etc. bus probe sem.
4523  *
4524  *	RETURNS:
4525  *	0 on success, AC_ERR_* mask otherwise.
4526  */
4527 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4528 {
4529 	struct ata_taskfile tf;
4530 	unsigned int err_mask;
4531 
4532 	/* set up set-features taskfile */
4533 	DPRINTK("set features - SATA features\n");
4534 
4535 	ata_tf_init(dev, &tf);
4536 	tf.command = ATA_CMD_SET_FEATURES;
4537 	tf.feature = enable;
4538 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4539 	tf.protocol = ATA_PROT_NODATA;
4540 	tf.nsect = feature;
4541 
4542 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4543 
4544 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4545 	return err_mask;
4546 }
4547 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4548 
4549 /**
4550  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4551  *	@dev: Device to which command will be sent
4552  *	@heads: Number of heads (taskfile parameter)
4553  *	@sectors: Number of sectors (taskfile parameter)
4554  *
4555  *	LOCKING:
4556  *	Kernel thread context (may sleep)
4557  *
4558  *	RETURNS:
4559  *	0 on success, AC_ERR_* mask otherwise.
4560  */
4561 static unsigned int ata_dev_init_params(struct ata_device *dev,
4562 					u16 heads, u16 sectors)
4563 {
4564 	struct ata_taskfile tf;
4565 	unsigned int err_mask;
4566 
4567 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4568 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4569 		return AC_ERR_INVALID;
4570 
4571 	/* set up init dev params taskfile */
4572 	DPRINTK("init dev params \n");
4573 
4574 	ata_tf_init(dev, &tf);
4575 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4576 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4577 	tf.protocol = ATA_PROT_NODATA;
4578 	tf.nsect = sectors;
4579 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4580 
4581 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4582 	/* A clean abort indicates an original or just out of spec drive
4583 	   and we should continue as we issue the setup based on the
4584 	   drive reported working geometry */
4585 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4586 		err_mask = 0;
4587 
4588 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4589 	return err_mask;
4590 }
4591 
4592 /**
4593  *	ata_sg_clean - Unmap DMA memory associated with command
4594  *	@qc: Command containing DMA memory to be released
4595  *
4596  *	Unmap all mapped DMA memory associated with this command.
4597  *
4598  *	LOCKING:
4599  *	spin_lock_irqsave(host lock)
4600  */
4601 void ata_sg_clean(struct ata_queued_cmd *qc)
4602 {
4603 	struct ata_port *ap = qc->ap;
4604 	struct scatterlist *sg = qc->sg;
4605 	int dir = qc->dma_dir;
4606 
4607 	WARN_ON_ONCE(sg == NULL);
4608 
4609 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4610 
4611 	if (qc->n_elem)
4612 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4613 
4614 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 	qc->sg = NULL;
4616 }
4617 
4618 /**
4619  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4620  *	@qc: Metadata associated with taskfile to check
4621  *
4622  *	Allow low-level driver to filter ATA PACKET commands, returning
4623  *	a status indicating whether or not it is OK to use DMA for the
4624  *	supplied PACKET command.
4625  *
4626  *	LOCKING:
4627  *	spin_lock_irqsave(host lock)
4628  *
4629  *	RETURNS: 0 when ATAPI DMA can be used
4630  *               nonzero otherwise
4631  */
4632 int atapi_check_dma(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_port *ap = qc->ap;
4635 
4636 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4637 	 * few ATAPI devices choke on such DMA requests.
4638 	 */
4639 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4640 	    unlikely(qc->nbytes & 15))
4641 		return 1;
4642 
4643 	if (ap->ops->check_atapi_dma)
4644 		return ap->ops->check_atapi_dma(qc);
4645 
4646 	return 0;
4647 }
4648 
4649 /**
4650  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4651  *	@qc: ATA command in question
4652  *
4653  *	Non-NCQ commands cannot run with any other command, NCQ or
4654  *	not.  As upper layer only knows the queue depth, we are
4655  *	responsible for maintaining exclusion.  This function checks
4656  *	whether a new command @qc can be issued.
4657  *
4658  *	LOCKING:
4659  *	spin_lock_irqsave(host lock)
4660  *
4661  *	RETURNS:
4662  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4663  */
4664 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4665 {
4666 	struct ata_link *link = qc->dev->link;
4667 
4668 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4669 		if (!ata_tag_valid(link->active_tag))
4670 			return 0;
4671 	} else {
4672 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4673 			return 0;
4674 	}
4675 
4676 	return ATA_DEFER_LINK;
4677 }
4678 
4679 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4680 
4681 /**
4682  *	ata_sg_init - Associate command with scatter-gather table.
4683  *	@qc: Command to be associated
4684  *	@sg: Scatter-gather table.
4685  *	@n_elem: Number of elements in s/g table.
4686  *
4687  *	Initialize the data-related elements of queued_cmd @qc
4688  *	to point to a scatter-gather table @sg, containing @n_elem
4689  *	elements.
4690  *
4691  *	LOCKING:
4692  *	spin_lock_irqsave(host lock)
4693  */
4694 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4695 		 unsigned int n_elem)
4696 {
4697 	qc->sg = sg;
4698 	qc->n_elem = n_elem;
4699 	qc->cursg = qc->sg;
4700 }
4701 
4702 /**
4703  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4704  *	@qc: Command with scatter-gather table to be mapped.
4705  *
4706  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4707  *
4708  *	LOCKING:
4709  *	spin_lock_irqsave(host lock)
4710  *
4711  *	RETURNS:
4712  *	Zero on success, negative on error.
4713  *
4714  */
4715 static int ata_sg_setup(struct ata_queued_cmd *qc)
4716 {
4717 	struct ata_port *ap = qc->ap;
4718 	unsigned int n_elem;
4719 
4720 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4721 
4722 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4723 	if (n_elem < 1)
4724 		return -1;
4725 
4726 	DPRINTK("%d sg elements mapped\n", n_elem);
4727 	qc->orig_n_elem = qc->n_elem;
4728 	qc->n_elem = n_elem;
4729 	qc->flags |= ATA_QCFLAG_DMAMAP;
4730 
4731 	return 0;
4732 }
4733 
4734 /**
4735  *	swap_buf_le16 - swap halves of 16-bit words in place
4736  *	@buf:  Buffer to swap
4737  *	@buf_words:  Number of 16-bit words in buffer.
4738  *
4739  *	Swap halves of 16-bit words if needed to convert from
4740  *	little-endian byte order to native cpu byte order, or
4741  *	vice-versa.
4742  *
4743  *	LOCKING:
4744  *	Inherited from caller.
4745  */
4746 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4747 {
4748 #ifdef __BIG_ENDIAN
4749 	unsigned int i;
4750 
4751 	for (i = 0; i < buf_words; i++)
4752 		buf[i] = le16_to_cpu(buf[i]);
4753 #endif /* __BIG_ENDIAN */
4754 }
4755 
4756 /**
4757  *	ata_qc_new - Request an available ATA command, for queueing
4758  *	@ap: target port
4759  *
4760  *	LOCKING:
4761  *	None.
4762  */
4763 
4764 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4765 {
4766 	struct ata_queued_cmd *qc = NULL;
4767 	unsigned int i;
4768 
4769 	/* no command while frozen */
4770 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4771 		return NULL;
4772 
4773 	/* the last tag is reserved for internal command. */
4774 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4775 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4776 			qc = __ata_qc_from_tag(ap, i);
4777 			break;
4778 		}
4779 
4780 	if (qc)
4781 		qc->tag = i;
4782 
4783 	return qc;
4784 }
4785 
4786 /**
4787  *	ata_qc_new_init - Request an available ATA command, and initialize it
4788  *	@dev: Device from whom we request an available command structure
4789  *
4790  *	LOCKING:
4791  *	None.
4792  */
4793 
4794 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4795 {
4796 	struct ata_port *ap = dev->link->ap;
4797 	struct ata_queued_cmd *qc;
4798 
4799 	qc = ata_qc_new(ap);
4800 	if (qc) {
4801 		qc->scsicmd = NULL;
4802 		qc->ap = ap;
4803 		qc->dev = dev;
4804 
4805 		ata_qc_reinit(qc);
4806 	}
4807 
4808 	return qc;
4809 }
4810 
4811 /**
4812  *	ata_qc_free - free unused ata_queued_cmd
4813  *	@qc: Command to complete
4814  *
4815  *	Designed to free unused ata_queued_cmd object
4816  *	in case something prevents using it.
4817  *
4818  *	LOCKING:
4819  *	spin_lock_irqsave(host lock)
4820  */
4821 void ata_qc_free(struct ata_queued_cmd *qc)
4822 {
4823 	struct ata_port *ap;
4824 	unsigned int tag;
4825 
4826 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4827 	ap = qc->ap;
4828 
4829 	qc->flags = 0;
4830 	tag = qc->tag;
4831 	if (likely(ata_tag_valid(tag))) {
4832 		qc->tag = ATA_TAG_POISON;
4833 		clear_bit(tag, &ap->qc_allocated);
4834 	}
4835 }
4836 
4837 void __ata_qc_complete(struct ata_queued_cmd *qc)
4838 {
4839 	struct ata_port *ap;
4840 	struct ata_link *link;
4841 
4842 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4843 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4844 	ap = qc->ap;
4845 	link = qc->dev->link;
4846 
4847 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4848 		ata_sg_clean(qc);
4849 
4850 	/* command should be marked inactive atomically with qc completion */
4851 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4852 		link->sactive &= ~(1 << qc->tag);
4853 		if (!link->sactive)
4854 			ap->nr_active_links--;
4855 	} else {
4856 		link->active_tag = ATA_TAG_POISON;
4857 		ap->nr_active_links--;
4858 	}
4859 
4860 	/* clear exclusive status */
4861 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4862 		     ap->excl_link == link))
4863 		ap->excl_link = NULL;
4864 
4865 	/* atapi: mark qc as inactive to prevent the interrupt handler
4866 	 * from completing the command twice later, before the error handler
4867 	 * is called. (when rc != 0 and atapi request sense is needed)
4868 	 */
4869 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4870 	ap->qc_active &= ~(1 << qc->tag);
4871 
4872 	/* call completion callback */
4873 	qc->complete_fn(qc);
4874 }
4875 
4876 static void fill_result_tf(struct ata_queued_cmd *qc)
4877 {
4878 	struct ata_port *ap = qc->ap;
4879 
4880 	qc->result_tf.flags = qc->tf.flags;
4881 	ap->ops->qc_fill_rtf(qc);
4882 }
4883 
4884 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4885 {
4886 	struct ata_device *dev = qc->dev;
4887 
4888 	if (ata_is_nodata(qc->tf.protocol))
4889 		return;
4890 
4891 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4892 		return;
4893 
4894 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4895 }
4896 
4897 /**
4898  *	ata_qc_complete - Complete an active ATA command
4899  *	@qc: Command to complete
4900  *
4901  *	Indicate to the mid and upper layers that an ATA command has
4902  *	completed, with either an ok or not-ok status.
4903  *
4904  *	Refrain from calling this function multiple times when
4905  *	successfully completing multiple NCQ commands.
4906  *	ata_qc_complete_multiple() should be used instead, which will
4907  *	properly update IRQ expect state.
4908  *
4909  *	LOCKING:
4910  *	spin_lock_irqsave(host lock)
4911  */
4912 void ata_qc_complete(struct ata_queued_cmd *qc)
4913 {
4914 	struct ata_port *ap = qc->ap;
4915 
4916 	/* XXX: New EH and old EH use different mechanisms to
4917 	 * synchronize EH with regular execution path.
4918 	 *
4919 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4920 	 * Normal execution path is responsible for not accessing a
4921 	 * failed qc.  libata core enforces the rule by returning NULL
4922 	 * from ata_qc_from_tag() for failed qcs.
4923 	 *
4924 	 * Old EH depends on ata_qc_complete() nullifying completion
4925 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4926 	 * not synchronize with interrupt handler.  Only PIO task is
4927 	 * taken care of.
4928 	 */
4929 	if (ap->ops->error_handler) {
4930 		struct ata_device *dev = qc->dev;
4931 		struct ata_eh_info *ehi = &dev->link->eh_info;
4932 
4933 		if (unlikely(qc->err_mask))
4934 			qc->flags |= ATA_QCFLAG_FAILED;
4935 
4936 		/*
4937 		 * Finish internal commands without any further processing
4938 		 * and always with the result TF filled.
4939 		 */
4940 		if (unlikely(ata_tag_internal(qc->tag))) {
4941 			fill_result_tf(qc);
4942 			__ata_qc_complete(qc);
4943 			return;
4944 		}
4945 
4946 		/*
4947 		 * Non-internal qc has failed.  Fill the result TF and
4948 		 * summon EH.
4949 		 */
4950 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4951 			fill_result_tf(qc);
4952 			ata_qc_schedule_eh(qc);
4953 			return;
4954 		}
4955 
4956 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4957 
4958 		/* read result TF if requested */
4959 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4960 			fill_result_tf(qc);
4961 
4962 		/* Some commands need post-processing after successful
4963 		 * completion.
4964 		 */
4965 		switch (qc->tf.command) {
4966 		case ATA_CMD_SET_FEATURES:
4967 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4968 			    qc->tf.feature != SETFEATURES_WC_OFF)
4969 				break;
4970 			/* fall through */
4971 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4972 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4973 			/* revalidate device */
4974 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4975 			ata_port_schedule_eh(ap);
4976 			break;
4977 
4978 		case ATA_CMD_SLEEP:
4979 			dev->flags |= ATA_DFLAG_SLEEPING;
4980 			break;
4981 		}
4982 
4983 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4984 			ata_verify_xfer(qc);
4985 
4986 		__ata_qc_complete(qc);
4987 	} else {
4988 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4989 			return;
4990 
4991 		/* read result TF if failed or requested */
4992 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4993 			fill_result_tf(qc);
4994 
4995 		__ata_qc_complete(qc);
4996 	}
4997 }
4998 
4999 /**
5000  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5001  *	@ap: port in question
5002  *	@qc_active: new qc_active mask
5003  *
5004  *	Complete in-flight commands.  This functions is meant to be
5005  *	called from low-level driver's interrupt routine to complete
5006  *	requests normally.  ap->qc_active and @qc_active is compared
5007  *	and commands are completed accordingly.
5008  *
5009  *	Always use this function when completing multiple NCQ commands
5010  *	from IRQ handlers instead of calling ata_qc_complete()
5011  *	multiple times to keep IRQ expect status properly in sync.
5012  *
5013  *	LOCKING:
5014  *	spin_lock_irqsave(host lock)
5015  *
5016  *	RETURNS:
5017  *	Number of completed commands on success, -errno otherwise.
5018  */
5019 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5020 {
5021 	int nr_done = 0;
5022 	u32 done_mask;
5023 
5024 	done_mask = ap->qc_active ^ qc_active;
5025 
5026 	if (unlikely(done_mask & qc_active)) {
5027 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5028 			     ap->qc_active, qc_active);
5029 		return -EINVAL;
5030 	}
5031 
5032 	while (done_mask) {
5033 		struct ata_queued_cmd *qc;
5034 		unsigned int tag = __ffs(done_mask);
5035 
5036 		qc = ata_qc_from_tag(ap, tag);
5037 		if (qc) {
5038 			ata_qc_complete(qc);
5039 			nr_done++;
5040 		}
5041 		done_mask &= ~(1 << tag);
5042 	}
5043 
5044 	return nr_done;
5045 }
5046 
5047 /**
5048  *	ata_qc_issue - issue taskfile to device
5049  *	@qc: command to issue to device
5050  *
5051  *	Prepare an ATA command to submission to device.
5052  *	This includes mapping the data into a DMA-able
5053  *	area, filling in the S/G table, and finally
5054  *	writing the taskfile to hardware, starting the command.
5055  *
5056  *	LOCKING:
5057  *	spin_lock_irqsave(host lock)
5058  */
5059 void ata_qc_issue(struct ata_queued_cmd *qc)
5060 {
5061 	struct ata_port *ap = qc->ap;
5062 	struct ata_link *link = qc->dev->link;
5063 	u8 prot = qc->tf.protocol;
5064 
5065 	/* Make sure only one non-NCQ command is outstanding.  The
5066 	 * check is skipped for old EH because it reuses active qc to
5067 	 * request ATAPI sense.
5068 	 */
5069 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5070 
5071 	if (ata_is_ncq(prot)) {
5072 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5073 
5074 		if (!link->sactive)
5075 			ap->nr_active_links++;
5076 		link->sactive |= 1 << qc->tag;
5077 	} else {
5078 		WARN_ON_ONCE(link->sactive);
5079 
5080 		ap->nr_active_links++;
5081 		link->active_tag = qc->tag;
5082 	}
5083 
5084 	qc->flags |= ATA_QCFLAG_ACTIVE;
5085 	ap->qc_active |= 1 << qc->tag;
5086 
5087 	/*
5088 	 * We guarantee to LLDs that they will have at least one
5089 	 * non-zero sg if the command is a data command.
5090 	 */
5091 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5092 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5093 		goto sys_err;
5094 
5095 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5096 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5097 		if (ata_sg_setup(qc))
5098 			goto sys_err;
5099 
5100 	/* if device is sleeping, schedule reset and abort the link */
5101 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5102 		link->eh_info.action |= ATA_EH_RESET;
5103 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5104 		ata_link_abort(link);
5105 		return;
5106 	}
5107 
5108 	ap->ops->qc_prep(qc);
5109 
5110 	qc->err_mask |= ap->ops->qc_issue(qc);
5111 	if (unlikely(qc->err_mask))
5112 		goto err;
5113 	return;
5114 
5115 sys_err:
5116 	qc->err_mask |= AC_ERR_SYSTEM;
5117 err:
5118 	ata_qc_complete(qc);
5119 }
5120 
5121 /**
5122  *	sata_scr_valid - test whether SCRs are accessible
5123  *	@link: ATA link to test SCR accessibility for
5124  *
5125  *	Test whether SCRs are accessible for @link.
5126  *
5127  *	LOCKING:
5128  *	None.
5129  *
5130  *	RETURNS:
5131  *	1 if SCRs are accessible, 0 otherwise.
5132  */
5133 int sata_scr_valid(struct ata_link *link)
5134 {
5135 	struct ata_port *ap = link->ap;
5136 
5137 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5138 }
5139 
5140 /**
5141  *	sata_scr_read - read SCR register of the specified port
5142  *	@link: ATA link to read SCR for
5143  *	@reg: SCR to read
5144  *	@val: Place to store read value
5145  *
5146  *	Read SCR register @reg of @link into *@val.  This function is
5147  *	guaranteed to succeed if @link is ap->link, the cable type of
5148  *	the port is SATA and the port implements ->scr_read.
5149  *
5150  *	LOCKING:
5151  *	None if @link is ap->link.  Kernel thread context otherwise.
5152  *
5153  *	RETURNS:
5154  *	0 on success, negative errno on failure.
5155  */
5156 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5157 {
5158 	if (ata_is_host_link(link)) {
5159 		if (sata_scr_valid(link))
5160 			return link->ap->ops->scr_read(link, reg, val);
5161 		return -EOPNOTSUPP;
5162 	}
5163 
5164 	return sata_pmp_scr_read(link, reg, val);
5165 }
5166 
5167 /**
5168  *	sata_scr_write - write SCR register of the specified port
5169  *	@link: ATA link to write SCR for
5170  *	@reg: SCR to write
5171  *	@val: value to write
5172  *
5173  *	Write @val to SCR register @reg of @link.  This function is
5174  *	guaranteed to succeed if @link is ap->link, the cable type of
5175  *	the port is SATA and the port implements ->scr_read.
5176  *
5177  *	LOCKING:
5178  *	None if @link is ap->link.  Kernel thread context otherwise.
5179  *
5180  *	RETURNS:
5181  *	0 on success, negative errno on failure.
5182  */
5183 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5184 {
5185 	if (ata_is_host_link(link)) {
5186 		if (sata_scr_valid(link))
5187 			return link->ap->ops->scr_write(link, reg, val);
5188 		return -EOPNOTSUPP;
5189 	}
5190 
5191 	return sata_pmp_scr_write(link, reg, val);
5192 }
5193 
5194 /**
5195  *	sata_scr_write_flush - write SCR register of the specified port and flush
5196  *	@link: ATA link to write SCR for
5197  *	@reg: SCR to write
5198  *	@val: value to write
5199  *
5200  *	This function is identical to sata_scr_write() except that this
5201  *	function performs flush after writing to the register.
5202  *
5203  *	LOCKING:
5204  *	None if @link is ap->link.  Kernel thread context otherwise.
5205  *
5206  *	RETURNS:
5207  *	0 on success, negative errno on failure.
5208  */
5209 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5210 {
5211 	if (ata_is_host_link(link)) {
5212 		int rc;
5213 
5214 		if (sata_scr_valid(link)) {
5215 			rc = link->ap->ops->scr_write(link, reg, val);
5216 			if (rc == 0)
5217 				rc = link->ap->ops->scr_read(link, reg, &val);
5218 			return rc;
5219 		}
5220 		return -EOPNOTSUPP;
5221 	}
5222 
5223 	return sata_pmp_scr_write(link, reg, val);
5224 }
5225 
5226 /**
5227  *	ata_phys_link_online - test whether the given link is online
5228  *	@link: ATA link to test
5229  *
5230  *	Test whether @link is online.  Note that this function returns
5231  *	0 if online status of @link cannot be obtained, so
5232  *	ata_link_online(link) != !ata_link_offline(link).
5233  *
5234  *	LOCKING:
5235  *	None.
5236  *
5237  *	RETURNS:
5238  *	True if the port online status is available and online.
5239  */
5240 bool ata_phys_link_online(struct ata_link *link)
5241 {
5242 	u32 sstatus;
5243 
5244 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5245 	    ata_sstatus_online(sstatus))
5246 		return true;
5247 	return false;
5248 }
5249 
5250 /**
5251  *	ata_phys_link_offline - test whether the given link is offline
5252  *	@link: ATA link to test
5253  *
5254  *	Test whether @link is offline.  Note that this function
5255  *	returns 0 if offline status of @link cannot be obtained, so
5256  *	ata_link_online(link) != !ata_link_offline(link).
5257  *
5258  *	LOCKING:
5259  *	None.
5260  *
5261  *	RETURNS:
5262  *	True if the port offline status is available and offline.
5263  */
5264 bool ata_phys_link_offline(struct ata_link *link)
5265 {
5266 	u32 sstatus;
5267 
5268 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5269 	    !ata_sstatus_online(sstatus))
5270 		return true;
5271 	return false;
5272 }
5273 
5274 /**
5275  *	ata_link_online - test whether the given link is online
5276  *	@link: ATA link to test
5277  *
5278  *	Test whether @link is online.  This is identical to
5279  *	ata_phys_link_online() when there's no slave link.  When
5280  *	there's a slave link, this function should only be called on
5281  *	the master link and will return true if any of M/S links is
5282  *	online.
5283  *
5284  *	LOCKING:
5285  *	None.
5286  *
5287  *	RETURNS:
5288  *	True if the port online status is available and online.
5289  */
5290 bool ata_link_online(struct ata_link *link)
5291 {
5292 	struct ata_link *slave = link->ap->slave_link;
5293 
5294 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5295 
5296 	return ata_phys_link_online(link) ||
5297 		(slave && ata_phys_link_online(slave));
5298 }
5299 
5300 /**
5301  *	ata_link_offline - test whether the given link is offline
5302  *	@link: ATA link to test
5303  *
5304  *	Test whether @link is offline.  This is identical to
5305  *	ata_phys_link_offline() when there's no slave link.  When
5306  *	there's a slave link, this function should only be called on
5307  *	the master link and will return true if both M/S links are
5308  *	offline.
5309  *
5310  *	LOCKING:
5311  *	None.
5312  *
5313  *	RETURNS:
5314  *	True if the port offline status is available and offline.
5315  */
5316 bool ata_link_offline(struct ata_link *link)
5317 {
5318 	struct ata_link *slave = link->ap->slave_link;
5319 
5320 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5321 
5322 	return ata_phys_link_offline(link) &&
5323 		(!slave || ata_phys_link_offline(slave));
5324 }
5325 
5326 #ifdef CONFIG_PM
5327 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5328 			       unsigned int action, unsigned int ehi_flags,
5329 			       int *async)
5330 {
5331 	struct ata_link *link;
5332 	unsigned long flags;
5333 	int rc = 0;
5334 
5335 	/* Previous resume operation might still be in
5336 	 * progress.  Wait for PM_PENDING to clear.
5337 	 */
5338 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5339 		if (async) {
5340 			*async = -EAGAIN;
5341 			return 0;
5342 		}
5343 		ata_port_wait_eh(ap);
5344 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5345 	}
5346 
5347 	/* request PM ops to EH */
5348 	spin_lock_irqsave(ap->lock, flags);
5349 
5350 	ap->pm_mesg = mesg;
5351 	if (async)
5352 		ap->pm_result = async;
5353 	else
5354 		ap->pm_result = &rc;
5355 
5356 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5357 	ata_for_each_link(link, ap, HOST_FIRST) {
5358 		link->eh_info.action |= action;
5359 		link->eh_info.flags |= ehi_flags;
5360 	}
5361 
5362 	ata_port_schedule_eh(ap);
5363 
5364 	spin_unlock_irqrestore(ap->lock, flags);
5365 
5366 	/* wait and check result */
5367 	if (!async) {
5368 		ata_port_wait_eh(ap);
5369 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5370 	}
5371 
5372 	return rc;
5373 }
5374 
5375 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5376 {
5377 	/*
5378 	 * On some hardware, device fails to respond after spun down
5379 	 * for suspend.  As the device won't be used before being
5380 	 * resumed, we don't need to touch the device.  Ask EH to skip
5381 	 * the usual stuff and proceed directly to suspend.
5382 	 *
5383 	 * http://thread.gmane.org/gmane.linux.ide/46764
5384 	 */
5385 	unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5386 				 ATA_EHI_NO_RECOVERY;
5387 	return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5388 }
5389 
5390 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5391 {
5392 	struct ata_port *ap = to_ata_port(dev);
5393 
5394 	return __ata_port_suspend_common(ap, mesg, NULL);
5395 }
5396 
5397 static int ata_port_suspend(struct device *dev)
5398 {
5399 	if (pm_runtime_suspended(dev))
5400 		return 0;
5401 
5402 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5403 }
5404 
5405 static int ata_port_do_freeze(struct device *dev)
5406 {
5407 	if (pm_runtime_suspended(dev))
5408 		return 0;
5409 
5410 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5411 }
5412 
5413 static int ata_port_poweroff(struct device *dev)
5414 {
5415 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5416 }
5417 
5418 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5419 				    int *async)
5420 {
5421 	int rc;
5422 
5423 	rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5424 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5425 	return rc;
5426 }
5427 
5428 static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5429 {
5430 	struct ata_port *ap = to_ata_port(dev);
5431 
5432 	return __ata_port_resume_common(ap, mesg, NULL);
5433 }
5434 
5435 static int ata_port_resume(struct device *dev)
5436 {
5437 	int rc;
5438 
5439 	rc = ata_port_resume_common(dev, PMSG_RESUME);
5440 	if (!rc) {
5441 		pm_runtime_disable(dev);
5442 		pm_runtime_set_active(dev);
5443 		pm_runtime_enable(dev);
5444 	}
5445 
5446 	return rc;
5447 }
5448 
5449 /*
5450  * For ODDs, the upper layer will poll for media change every few seconds,
5451  * which will make it enter and leave suspend state every few seconds. And
5452  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5453  * is very little and the ODD may malfunction after constantly being reset.
5454  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5455  * ODD is attached to the port.
5456  */
5457 static int ata_port_runtime_idle(struct device *dev)
5458 {
5459 	struct ata_port *ap = to_ata_port(dev);
5460 	struct ata_link *link;
5461 	struct ata_device *adev;
5462 
5463 	ata_for_each_link(link, ap, HOST_FIRST) {
5464 		ata_for_each_dev(adev, link, ENABLED)
5465 			if (adev->class == ATA_DEV_ATAPI &&
5466 			    !zpodd_dev_enabled(adev))
5467 				return -EBUSY;
5468 	}
5469 
5470 	return 0;
5471 }
5472 
5473 static int ata_port_runtime_suspend(struct device *dev)
5474 {
5475 	return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5476 }
5477 
5478 static int ata_port_runtime_resume(struct device *dev)
5479 {
5480 	return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5481 }
5482 
5483 static const struct dev_pm_ops ata_port_pm_ops = {
5484 	.suspend = ata_port_suspend,
5485 	.resume = ata_port_resume,
5486 	.freeze = ata_port_do_freeze,
5487 	.thaw = ata_port_resume,
5488 	.poweroff = ata_port_poweroff,
5489 	.restore = ata_port_resume,
5490 
5491 	.runtime_suspend = ata_port_runtime_suspend,
5492 	.runtime_resume = ata_port_runtime_resume,
5493 	.runtime_idle = ata_port_runtime_idle,
5494 };
5495 
5496 /* sas ports don't participate in pm runtime management of ata_ports,
5497  * and need to resume ata devices at the domain level, not the per-port
5498  * level. sas suspend/resume is async to allow parallel port recovery
5499  * since sas has multiple ata_port instances per Scsi_Host.
5500  */
5501 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5502 {
5503 	return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5504 }
5505 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5506 
5507 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5508 {
5509 	return __ata_port_resume_common(ap, PMSG_RESUME, async);
5510 }
5511 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5512 
5513 
5514 /**
5515  *	ata_host_suspend - suspend host
5516  *	@host: host to suspend
5517  *	@mesg: PM message
5518  *
5519  *	Suspend @host.  Actual operation is performed by port suspend.
5520  */
5521 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5522 {
5523 	host->dev->power.power_state = mesg;
5524 	return 0;
5525 }
5526 
5527 /**
5528  *	ata_host_resume - resume host
5529  *	@host: host to resume
5530  *
5531  *	Resume @host.  Actual operation is performed by port resume.
5532  */
5533 void ata_host_resume(struct ata_host *host)
5534 {
5535 	host->dev->power.power_state = PMSG_ON;
5536 }
5537 #endif
5538 
5539 struct device_type ata_port_type = {
5540 	.name = "ata_port",
5541 #ifdef CONFIG_PM
5542 	.pm = &ata_port_pm_ops,
5543 #endif
5544 };
5545 
5546 /**
5547  *	ata_dev_init - Initialize an ata_device structure
5548  *	@dev: Device structure to initialize
5549  *
5550  *	Initialize @dev in preparation for probing.
5551  *
5552  *	LOCKING:
5553  *	Inherited from caller.
5554  */
5555 void ata_dev_init(struct ata_device *dev)
5556 {
5557 	struct ata_link *link = ata_dev_phys_link(dev);
5558 	struct ata_port *ap = link->ap;
5559 	unsigned long flags;
5560 
5561 	/* SATA spd limit is bound to the attached device, reset together */
5562 	link->sata_spd_limit = link->hw_sata_spd_limit;
5563 	link->sata_spd = 0;
5564 
5565 	/* High bits of dev->flags are used to record warm plug
5566 	 * requests which occur asynchronously.  Synchronize using
5567 	 * host lock.
5568 	 */
5569 	spin_lock_irqsave(ap->lock, flags);
5570 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5571 	dev->horkage = 0;
5572 	spin_unlock_irqrestore(ap->lock, flags);
5573 
5574 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5575 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5576 	dev->pio_mask = UINT_MAX;
5577 	dev->mwdma_mask = UINT_MAX;
5578 	dev->udma_mask = UINT_MAX;
5579 }
5580 
5581 /**
5582  *	ata_link_init - Initialize an ata_link structure
5583  *	@ap: ATA port link is attached to
5584  *	@link: Link structure to initialize
5585  *	@pmp: Port multiplier port number
5586  *
5587  *	Initialize @link.
5588  *
5589  *	LOCKING:
5590  *	Kernel thread context (may sleep)
5591  */
5592 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5593 {
5594 	int i;
5595 
5596 	/* clear everything except for devices */
5597 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5598 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5599 
5600 	link->ap = ap;
5601 	link->pmp = pmp;
5602 	link->active_tag = ATA_TAG_POISON;
5603 	link->hw_sata_spd_limit = UINT_MAX;
5604 
5605 	/* can't use iterator, ap isn't initialized yet */
5606 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5607 		struct ata_device *dev = &link->device[i];
5608 
5609 		dev->link = link;
5610 		dev->devno = dev - link->device;
5611 #ifdef CONFIG_ATA_ACPI
5612 		dev->gtf_filter = ata_acpi_gtf_filter;
5613 #endif
5614 		ata_dev_init(dev);
5615 	}
5616 }
5617 
5618 /**
5619  *	sata_link_init_spd - Initialize link->sata_spd_limit
5620  *	@link: Link to configure sata_spd_limit for
5621  *
5622  *	Initialize @link->[hw_]sata_spd_limit to the currently
5623  *	configured value.
5624  *
5625  *	LOCKING:
5626  *	Kernel thread context (may sleep).
5627  *
5628  *	RETURNS:
5629  *	0 on success, -errno on failure.
5630  */
5631 int sata_link_init_spd(struct ata_link *link)
5632 {
5633 	u8 spd;
5634 	int rc;
5635 
5636 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5637 	if (rc)
5638 		return rc;
5639 
5640 	spd = (link->saved_scontrol >> 4) & 0xf;
5641 	if (spd)
5642 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5643 
5644 	ata_force_link_limits(link);
5645 
5646 	link->sata_spd_limit = link->hw_sata_spd_limit;
5647 
5648 	return 0;
5649 }
5650 
5651 /**
5652  *	ata_port_alloc - allocate and initialize basic ATA port resources
5653  *	@host: ATA host this allocated port belongs to
5654  *
5655  *	Allocate and initialize basic ATA port resources.
5656  *
5657  *	RETURNS:
5658  *	Allocate ATA port on success, NULL on failure.
5659  *
5660  *	LOCKING:
5661  *	Inherited from calling layer (may sleep).
5662  */
5663 struct ata_port *ata_port_alloc(struct ata_host *host)
5664 {
5665 	struct ata_port *ap;
5666 
5667 	DPRINTK("ENTER\n");
5668 
5669 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5670 	if (!ap)
5671 		return NULL;
5672 
5673 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5674 	ap->lock = &host->lock;
5675 	ap->print_id = -1;
5676 	ap->local_port_no = -1;
5677 	ap->host = host;
5678 	ap->dev = host->dev;
5679 
5680 #if defined(ATA_VERBOSE_DEBUG)
5681 	/* turn on all debugging levels */
5682 	ap->msg_enable = 0x00FF;
5683 #elif defined(ATA_DEBUG)
5684 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5685 #else
5686 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5687 #endif
5688 
5689 	mutex_init(&ap->scsi_scan_mutex);
5690 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5691 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5692 	INIT_LIST_HEAD(&ap->eh_done_q);
5693 	init_waitqueue_head(&ap->eh_wait_q);
5694 	init_completion(&ap->park_req_pending);
5695 	init_timer_deferrable(&ap->fastdrain_timer);
5696 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5697 	ap->fastdrain_timer.data = (unsigned long)ap;
5698 
5699 	ap->cbl = ATA_CBL_NONE;
5700 
5701 	ata_link_init(ap, &ap->link, 0);
5702 
5703 #ifdef ATA_IRQ_TRAP
5704 	ap->stats.unhandled_irq = 1;
5705 	ap->stats.idle_irq = 1;
5706 #endif
5707 	ata_sff_port_init(ap);
5708 
5709 	return ap;
5710 }
5711 
5712 static void ata_host_release(struct device *gendev, void *res)
5713 {
5714 	struct ata_host *host = dev_get_drvdata(gendev);
5715 	int i;
5716 
5717 	for (i = 0; i < host->n_ports; i++) {
5718 		struct ata_port *ap = host->ports[i];
5719 
5720 		if (!ap)
5721 			continue;
5722 
5723 		if (ap->scsi_host)
5724 			scsi_host_put(ap->scsi_host);
5725 
5726 		kfree(ap->pmp_link);
5727 		kfree(ap->slave_link);
5728 		kfree(ap);
5729 		host->ports[i] = NULL;
5730 	}
5731 
5732 	dev_set_drvdata(gendev, NULL);
5733 }
5734 
5735 /**
5736  *	ata_host_alloc - allocate and init basic ATA host resources
5737  *	@dev: generic device this host is associated with
5738  *	@max_ports: maximum number of ATA ports associated with this host
5739  *
5740  *	Allocate and initialize basic ATA host resources.  LLD calls
5741  *	this function to allocate a host, initializes it fully and
5742  *	attaches it using ata_host_register().
5743  *
5744  *	@max_ports ports are allocated and host->n_ports is
5745  *	initialized to @max_ports.  The caller is allowed to decrease
5746  *	host->n_ports before calling ata_host_register().  The unused
5747  *	ports will be automatically freed on registration.
5748  *
5749  *	RETURNS:
5750  *	Allocate ATA host on success, NULL on failure.
5751  *
5752  *	LOCKING:
5753  *	Inherited from calling layer (may sleep).
5754  */
5755 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5756 {
5757 	struct ata_host *host;
5758 	size_t sz;
5759 	int i;
5760 
5761 	DPRINTK("ENTER\n");
5762 
5763 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5764 		return NULL;
5765 
5766 	/* alloc a container for our list of ATA ports (buses) */
5767 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5768 	/* alloc a container for our list of ATA ports (buses) */
5769 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5770 	if (!host)
5771 		goto err_out;
5772 
5773 	devres_add(dev, host);
5774 	dev_set_drvdata(dev, host);
5775 
5776 	spin_lock_init(&host->lock);
5777 	mutex_init(&host->eh_mutex);
5778 	host->dev = dev;
5779 	host->n_ports = max_ports;
5780 
5781 	/* allocate ports bound to this host */
5782 	for (i = 0; i < max_ports; i++) {
5783 		struct ata_port *ap;
5784 
5785 		ap = ata_port_alloc(host);
5786 		if (!ap)
5787 			goto err_out;
5788 
5789 		ap->port_no = i;
5790 		host->ports[i] = ap;
5791 	}
5792 
5793 	devres_remove_group(dev, NULL);
5794 	return host;
5795 
5796  err_out:
5797 	devres_release_group(dev, NULL);
5798 	return NULL;
5799 }
5800 
5801 /**
5802  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5803  *	@dev: generic device this host is associated with
5804  *	@ppi: array of ATA port_info to initialize host with
5805  *	@n_ports: number of ATA ports attached to this host
5806  *
5807  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5808  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5809  *	last entry will be used for the remaining ports.
5810  *
5811  *	RETURNS:
5812  *	Allocate ATA host on success, NULL on failure.
5813  *
5814  *	LOCKING:
5815  *	Inherited from calling layer (may sleep).
5816  */
5817 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5818 				      const struct ata_port_info * const * ppi,
5819 				      int n_ports)
5820 {
5821 	const struct ata_port_info *pi;
5822 	struct ata_host *host;
5823 	int i, j;
5824 
5825 	host = ata_host_alloc(dev, n_ports);
5826 	if (!host)
5827 		return NULL;
5828 
5829 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5830 		struct ata_port *ap = host->ports[i];
5831 
5832 		if (ppi[j])
5833 			pi = ppi[j++];
5834 
5835 		ap->pio_mask = pi->pio_mask;
5836 		ap->mwdma_mask = pi->mwdma_mask;
5837 		ap->udma_mask = pi->udma_mask;
5838 		ap->flags |= pi->flags;
5839 		ap->link.flags |= pi->link_flags;
5840 		ap->ops = pi->port_ops;
5841 
5842 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5843 			host->ops = pi->port_ops;
5844 	}
5845 
5846 	return host;
5847 }
5848 
5849 /**
5850  *	ata_slave_link_init - initialize slave link
5851  *	@ap: port to initialize slave link for
5852  *
5853  *	Create and initialize slave link for @ap.  This enables slave
5854  *	link handling on the port.
5855  *
5856  *	In libata, a port contains links and a link contains devices.
5857  *	There is single host link but if a PMP is attached to it,
5858  *	there can be multiple fan-out links.  On SATA, there's usually
5859  *	a single device connected to a link but PATA and SATA
5860  *	controllers emulating TF based interface can have two - master
5861  *	and slave.
5862  *
5863  *	However, there are a few controllers which don't fit into this
5864  *	abstraction too well - SATA controllers which emulate TF
5865  *	interface with both master and slave devices but also have
5866  *	separate SCR register sets for each device.  These controllers
5867  *	need separate links for physical link handling
5868  *	(e.g. onlineness, link speed) but should be treated like a
5869  *	traditional M/S controller for everything else (e.g. command
5870  *	issue, softreset).
5871  *
5872  *	slave_link is libata's way of handling this class of
5873  *	controllers without impacting core layer too much.  For
5874  *	anything other than physical link handling, the default host
5875  *	link is used for both master and slave.  For physical link
5876  *	handling, separate @ap->slave_link is used.  All dirty details
5877  *	are implemented inside libata core layer.  From LLD's POV, the
5878  *	only difference is that prereset, hardreset and postreset are
5879  *	called once more for the slave link, so the reset sequence
5880  *	looks like the following.
5881  *
5882  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5883  *	softreset(M) -> postreset(M) -> postreset(S)
5884  *
5885  *	Note that softreset is called only for the master.  Softreset
5886  *	resets both M/S by definition, so SRST on master should handle
5887  *	both (the standard method will work just fine).
5888  *
5889  *	LOCKING:
5890  *	Should be called before host is registered.
5891  *
5892  *	RETURNS:
5893  *	0 on success, -errno on failure.
5894  */
5895 int ata_slave_link_init(struct ata_port *ap)
5896 {
5897 	struct ata_link *link;
5898 
5899 	WARN_ON(ap->slave_link);
5900 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5901 
5902 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5903 	if (!link)
5904 		return -ENOMEM;
5905 
5906 	ata_link_init(ap, link, 1);
5907 	ap->slave_link = link;
5908 	return 0;
5909 }
5910 
5911 static void ata_host_stop(struct device *gendev, void *res)
5912 {
5913 	struct ata_host *host = dev_get_drvdata(gendev);
5914 	int i;
5915 
5916 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5917 
5918 	for (i = 0; i < host->n_ports; i++) {
5919 		struct ata_port *ap = host->ports[i];
5920 
5921 		if (ap->ops->port_stop)
5922 			ap->ops->port_stop(ap);
5923 	}
5924 
5925 	if (host->ops->host_stop)
5926 		host->ops->host_stop(host);
5927 }
5928 
5929 /**
5930  *	ata_finalize_port_ops - finalize ata_port_operations
5931  *	@ops: ata_port_operations to finalize
5932  *
5933  *	An ata_port_operations can inherit from another ops and that
5934  *	ops can again inherit from another.  This can go on as many
5935  *	times as necessary as long as there is no loop in the
5936  *	inheritance chain.
5937  *
5938  *	Ops tables are finalized when the host is started.  NULL or
5939  *	unspecified entries are inherited from the closet ancestor
5940  *	which has the method and the entry is populated with it.
5941  *	After finalization, the ops table directly points to all the
5942  *	methods and ->inherits is no longer necessary and cleared.
5943  *
5944  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5945  *
5946  *	LOCKING:
5947  *	None.
5948  */
5949 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5950 {
5951 	static DEFINE_SPINLOCK(lock);
5952 	const struct ata_port_operations *cur;
5953 	void **begin = (void **)ops;
5954 	void **end = (void **)&ops->inherits;
5955 	void **pp;
5956 
5957 	if (!ops || !ops->inherits)
5958 		return;
5959 
5960 	spin_lock(&lock);
5961 
5962 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5963 		void **inherit = (void **)cur;
5964 
5965 		for (pp = begin; pp < end; pp++, inherit++)
5966 			if (!*pp)
5967 				*pp = *inherit;
5968 	}
5969 
5970 	for (pp = begin; pp < end; pp++)
5971 		if (IS_ERR(*pp))
5972 			*pp = NULL;
5973 
5974 	ops->inherits = NULL;
5975 
5976 	spin_unlock(&lock);
5977 }
5978 
5979 /**
5980  *	ata_host_start - start and freeze ports of an ATA host
5981  *	@host: ATA host to start ports for
5982  *
5983  *	Start and then freeze ports of @host.  Started status is
5984  *	recorded in host->flags, so this function can be called
5985  *	multiple times.  Ports are guaranteed to get started only
5986  *	once.  If host->ops isn't initialized yet, its set to the
5987  *	first non-dummy port ops.
5988  *
5989  *	LOCKING:
5990  *	Inherited from calling layer (may sleep).
5991  *
5992  *	RETURNS:
5993  *	0 if all ports are started successfully, -errno otherwise.
5994  */
5995 int ata_host_start(struct ata_host *host)
5996 {
5997 	int have_stop = 0;
5998 	void *start_dr = NULL;
5999 	int i, rc;
6000 
6001 	if (host->flags & ATA_HOST_STARTED)
6002 		return 0;
6003 
6004 	ata_finalize_port_ops(host->ops);
6005 
6006 	for (i = 0; i < host->n_ports; i++) {
6007 		struct ata_port *ap = host->ports[i];
6008 
6009 		ata_finalize_port_ops(ap->ops);
6010 
6011 		if (!host->ops && !ata_port_is_dummy(ap))
6012 			host->ops = ap->ops;
6013 
6014 		if (ap->ops->port_stop)
6015 			have_stop = 1;
6016 	}
6017 
6018 	if (host->ops->host_stop)
6019 		have_stop = 1;
6020 
6021 	if (have_stop) {
6022 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6023 		if (!start_dr)
6024 			return -ENOMEM;
6025 	}
6026 
6027 	for (i = 0; i < host->n_ports; i++) {
6028 		struct ata_port *ap = host->ports[i];
6029 
6030 		if (ap->ops->port_start) {
6031 			rc = ap->ops->port_start(ap);
6032 			if (rc) {
6033 				if (rc != -ENODEV)
6034 					dev_err(host->dev,
6035 						"failed to start port %d (errno=%d)\n",
6036 						i, rc);
6037 				goto err_out;
6038 			}
6039 		}
6040 		ata_eh_freeze_port(ap);
6041 	}
6042 
6043 	if (start_dr)
6044 		devres_add(host->dev, start_dr);
6045 	host->flags |= ATA_HOST_STARTED;
6046 	return 0;
6047 
6048  err_out:
6049 	while (--i >= 0) {
6050 		struct ata_port *ap = host->ports[i];
6051 
6052 		if (ap->ops->port_stop)
6053 			ap->ops->port_stop(ap);
6054 	}
6055 	devres_free(start_dr);
6056 	return rc;
6057 }
6058 
6059 /**
6060  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6061  *	@host:	host to initialize
6062  *	@dev:	device host is attached to
6063  *	@ops:	port_ops
6064  *
6065  */
6066 void ata_host_init(struct ata_host *host, struct device *dev,
6067 		   struct ata_port_operations *ops)
6068 {
6069 	spin_lock_init(&host->lock);
6070 	mutex_init(&host->eh_mutex);
6071 	host->dev = dev;
6072 	host->ops = ops;
6073 }
6074 
6075 void __ata_port_probe(struct ata_port *ap)
6076 {
6077 	struct ata_eh_info *ehi = &ap->link.eh_info;
6078 	unsigned long flags;
6079 
6080 	/* kick EH for boot probing */
6081 	spin_lock_irqsave(ap->lock, flags);
6082 
6083 	ehi->probe_mask |= ATA_ALL_DEVICES;
6084 	ehi->action |= ATA_EH_RESET;
6085 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6086 
6087 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6088 	ap->pflags |= ATA_PFLAG_LOADING;
6089 	ata_port_schedule_eh(ap);
6090 
6091 	spin_unlock_irqrestore(ap->lock, flags);
6092 }
6093 
6094 int ata_port_probe(struct ata_port *ap)
6095 {
6096 	int rc = 0;
6097 
6098 	if (ap->ops->error_handler) {
6099 		__ata_port_probe(ap);
6100 		ata_port_wait_eh(ap);
6101 	} else {
6102 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6103 		rc = ata_bus_probe(ap);
6104 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6105 	}
6106 	return rc;
6107 }
6108 
6109 
6110 static void async_port_probe(void *data, async_cookie_t cookie)
6111 {
6112 	struct ata_port *ap = data;
6113 
6114 	/*
6115 	 * If we're not allowed to scan this host in parallel,
6116 	 * we need to wait until all previous scans have completed
6117 	 * before going further.
6118 	 * Jeff Garzik says this is only within a controller, so we
6119 	 * don't need to wait for port 0, only for later ports.
6120 	 */
6121 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6122 		async_synchronize_cookie(cookie);
6123 
6124 	(void)ata_port_probe(ap);
6125 
6126 	/* in order to keep device order, we need to synchronize at this point */
6127 	async_synchronize_cookie(cookie);
6128 
6129 	ata_scsi_scan_host(ap, 1);
6130 }
6131 
6132 /**
6133  *	ata_host_register - register initialized ATA host
6134  *	@host: ATA host to register
6135  *	@sht: template for SCSI host
6136  *
6137  *	Register initialized ATA host.  @host is allocated using
6138  *	ata_host_alloc() and fully initialized by LLD.  This function
6139  *	starts ports, registers @host with ATA and SCSI layers and
6140  *	probe registered devices.
6141  *
6142  *	LOCKING:
6143  *	Inherited from calling layer (may sleep).
6144  *
6145  *	RETURNS:
6146  *	0 on success, -errno otherwise.
6147  */
6148 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6149 {
6150 	int i, rc;
6151 
6152 	/* host must have been started */
6153 	if (!(host->flags & ATA_HOST_STARTED)) {
6154 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6155 		WARN_ON(1);
6156 		return -EINVAL;
6157 	}
6158 
6159 	/* Blow away unused ports.  This happens when LLD can't
6160 	 * determine the exact number of ports to allocate at
6161 	 * allocation time.
6162 	 */
6163 	for (i = host->n_ports; host->ports[i]; i++)
6164 		kfree(host->ports[i]);
6165 
6166 	/* give ports names and add SCSI hosts */
6167 	for (i = 0; i < host->n_ports; i++) {
6168 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6169 		host->ports[i]->local_port_no = i + 1;
6170 	}
6171 
6172 	/* Create associated sysfs transport objects  */
6173 	for (i = 0; i < host->n_ports; i++) {
6174 		rc = ata_tport_add(host->dev,host->ports[i]);
6175 		if (rc) {
6176 			goto err_tadd;
6177 		}
6178 	}
6179 
6180 	rc = ata_scsi_add_hosts(host, sht);
6181 	if (rc)
6182 		goto err_tadd;
6183 
6184 	/* set cable, sata_spd_limit and report */
6185 	for (i = 0; i < host->n_ports; i++) {
6186 		struct ata_port *ap = host->ports[i];
6187 		unsigned long xfer_mask;
6188 
6189 		/* set SATA cable type if still unset */
6190 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6191 			ap->cbl = ATA_CBL_SATA;
6192 
6193 		/* init sata_spd_limit to the current value */
6194 		sata_link_init_spd(&ap->link);
6195 		if (ap->slave_link)
6196 			sata_link_init_spd(ap->slave_link);
6197 
6198 		/* print per-port info to dmesg */
6199 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6200 					      ap->udma_mask);
6201 
6202 		if (!ata_port_is_dummy(ap)) {
6203 			ata_port_info(ap, "%cATA max %s %s\n",
6204 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6205 				      ata_mode_string(xfer_mask),
6206 				      ap->link.eh_info.desc);
6207 			ata_ehi_clear_desc(&ap->link.eh_info);
6208 		} else
6209 			ata_port_info(ap, "DUMMY\n");
6210 	}
6211 
6212 	/* perform each probe asynchronously */
6213 	for (i = 0; i < host->n_ports; i++) {
6214 		struct ata_port *ap = host->ports[i];
6215 		async_schedule(async_port_probe, ap);
6216 	}
6217 
6218 	return 0;
6219 
6220  err_tadd:
6221 	while (--i >= 0) {
6222 		ata_tport_delete(host->ports[i]);
6223 	}
6224 	return rc;
6225 
6226 }
6227 
6228 /**
6229  *	ata_host_activate - start host, request IRQ and register it
6230  *	@host: target ATA host
6231  *	@irq: IRQ to request
6232  *	@irq_handler: irq_handler used when requesting IRQ
6233  *	@irq_flags: irq_flags used when requesting IRQ
6234  *	@sht: scsi_host_template to use when registering the host
6235  *
6236  *	After allocating an ATA host and initializing it, most libata
6237  *	LLDs perform three steps to activate the host - start host,
6238  *	request IRQ and register it.  This helper takes necessasry
6239  *	arguments and performs the three steps in one go.
6240  *
6241  *	An invalid IRQ skips the IRQ registration and expects the host to
6242  *	have set polling mode on the port. In this case, @irq_handler
6243  *	should be NULL.
6244  *
6245  *	LOCKING:
6246  *	Inherited from calling layer (may sleep).
6247  *
6248  *	RETURNS:
6249  *	0 on success, -errno otherwise.
6250  */
6251 int ata_host_activate(struct ata_host *host, int irq,
6252 		      irq_handler_t irq_handler, unsigned long irq_flags,
6253 		      struct scsi_host_template *sht)
6254 {
6255 	int i, rc;
6256 
6257 	rc = ata_host_start(host);
6258 	if (rc)
6259 		return rc;
6260 
6261 	/* Special case for polling mode */
6262 	if (!irq) {
6263 		WARN_ON(irq_handler);
6264 		return ata_host_register(host, sht);
6265 	}
6266 
6267 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6268 			      dev_driver_string(host->dev), host);
6269 	if (rc)
6270 		return rc;
6271 
6272 	for (i = 0; i < host->n_ports; i++)
6273 		ata_port_desc(host->ports[i], "irq %d", irq);
6274 
6275 	rc = ata_host_register(host, sht);
6276 	/* if failed, just free the IRQ and leave ports alone */
6277 	if (rc)
6278 		devm_free_irq(host->dev, irq, host);
6279 
6280 	return rc;
6281 }
6282 
6283 /**
6284  *	ata_port_detach - Detach ATA port in prepration of device removal
6285  *	@ap: ATA port to be detached
6286  *
6287  *	Detach all ATA devices and the associated SCSI devices of @ap;
6288  *	then, remove the associated SCSI host.  @ap is guaranteed to
6289  *	be quiescent on return from this function.
6290  *
6291  *	LOCKING:
6292  *	Kernel thread context (may sleep).
6293  */
6294 static void ata_port_detach(struct ata_port *ap)
6295 {
6296 	unsigned long flags;
6297 
6298 	if (!ap->ops->error_handler)
6299 		goto skip_eh;
6300 
6301 	/* tell EH we're leaving & flush EH */
6302 	spin_lock_irqsave(ap->lock, flags);
6303 	ap->pflags |= ATA_PFLAG_UNLOADING;
6304 	ata_port_schedule_eh(ap);
6305 	spin_unlock_irqrestore(ap->lock, flags);
6306 
6307 	/* wait till EH commits suicide */
6308 	ata_port_wait_eh(ap);
6309 
6310 	/* it better be dead now */
6311 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6312 
6313 	cancel_delayed_work_sync(&ap->hotplug_task);
6314 
6315  skip_eh:
6316 	if (ap->pmp_link) {
6317 		int i;
6318 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6319 			ata_tlink_delete(&ap->pmp_link[i]);
6320 	}
6321 	/* remove the associated SCSI host */
6322 	scsi_remove_host(ap->scsi_host);
6323 	ata_tport_delete(ap);
6324 }
6325 
6326 /**
6327  *	ata_host_detach - Detach all ports of an ATA host
6328  *	@host: Host to detach
6329  *
6330  *	Detach all ports of @host.
6331  *
6332  *	LOCKING:
6333  *	Kernel thread context (may sleep).
6334  */
6335 void ata_host_detach(struct ata_host *host)
6336 {
6337 	int i;
6338 
6339 	for (i = 0; i < host->n_ports; i++)
6340 		ata_port_detach(host->ports[i]);
6341 
6342 	/* the host is dead now, dissociate ACPI */
6343 	ata_acpi_dissociate(host);
6344 }
6345 
6346 #ifdef CONFIG_PCI
6347 
6348 /**
6349  *	ata_pci_remove_one - PCI layer callback for device removal
6350  *	@pdev: PCI device that was removed
6351  *
6352  *	PCI layer indicates to libata via this hook that hot-unplug or
6353  *	module unload event has occurred.  Detach all ports.  Resource
6354  *	release is handled via devres.
6355  *
6356  *	LOCKING:
6357  *	Inherited from PCI layer (may sleep).
6358  */
6359 void ata_pci_remove_one(struct pci_dev *pdev)
6360 {
6361 	struct ata_host *host = pci_get_drvdata(pdev);
6362 
6363 	ata_host_detach(host);
6364 }
6365 
6366 /* move to PCI subsystem */
6367 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6368 {
6369 	unsigned long tmp = 0;
6370 
6371 	switch (bits->width) {
6372 	case 1: {
6373 		u8 tmp8 = 0;
6374 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6375 		tmp = tmp8;
6376 		break;
6377 	}
6378 	case 2: {
6379 		u16 tmp16 = 0;
6380 		pci_read_config_word(pdev, bits->reg, &tmp16);
6381 		tmp = tmp16;
6382 		break;
6383 	}
6384 	case 4: {
6385 		u32 tmp32 = 0;
6386 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6387 		tmp = tmp32;
6388 		break;
6389 	}
6390 
6391 	default:
6392 		return -EINVAL;
6393 	}
6394 
6395 	tmp &= bits->mask;
6396 
6397 	return (tmp == bits->val) ? 1 : 0;
6398 }
6399 
6400 #ifdef CONFIG_PM
6401 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6402 {
6403 	pci_save_state(pdev);
6404 	pci_disable_device(pdev);
6405 
6406 	if (mesg.event & PM_EVENT_SLEEP)
6407 		pci_set_power_state(pdev, PCI_D3hot);
6408 }
6409 
6410 int ata_pci_device_do_resume(struct pci_dev *pdev)
6411 {
6412 	int rc;
6413 
6414 	pci_set_power_state(pdev, PCI_D0);
6415 	pci_restore_state(pdev);
6416 
6417 	rc = pcim_enable_device(pdev);
6418 	if (rc) {
6419 		dev_err(&pdev->dev,
6420 			"failed to enable device after resume (%d)\n", rc);
6421 		return rc;
6422 	}
6423 
6424 	pci_set_master(pdev);
6425 	return 0;
6426 }
6427 
6428 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6429 {
6430 	struct ata_host *host = pci_get_drvdata(pdev);
6431 	int rc = 0;
6432 
6433 	rc = ata_host_suspend(host, mesg);
6434 	if (rc)
6435 		return rc;
6436 
6437 	ata_pci_device_do_suspend(pdev, mesg);
6438 
6439 	return 0;
6440 }
6441 
6442 int ata_pci_device_resume(struct pci_dev *pdev)
6443 {
6444 	struct ata_host *host = pci_get_drvdata(pdev);
6445 	int rc;
6446 
6447 	rc = ata_pci_device_do_resume(pdev);
6448 	if (rc == 0)
6449 		ata_host_resume(host);
6450 	return rc;
6451 }
6452 #endif /* CONFIG_PM */
6453 
6454 #endif /* CONFIG_PCI */
6455 
6456 /**
6457  *	ata_platform_remove_one - Platform layer callback for device removal
6458  *	@pdev: Platform device that was removed
6459  *
6460  *	Platform layer indicates to libata via this hook that hot-unplug or
6461  *	module unload event has occurred.  Detach all ports.  Resource
6462  *	release is handled via devres.
6463  *
6464  *	LOCKING:
6465  *	Inherited from platform layer (may sleep).
6466  */
6467 int ata_platform_remove_one(struct platform_device *pdev)
6468 {
6469 	struct ata_host *host = platform_get_drvdata(pdev);
6470 
6471 	ata_host_detach(host);
6472 
6473 	return 0;
6474 }
6475 
6476 static int __init ata_parse_force_one(char **cur,
6477 				      struct ata_force_ent *force_ent,
6478 				      const char **reason)
6479 {
6480 	/* FIXME: Currently, there's no way to tag init const data and
6481 	 * using __initdata causes build failure on some versions of
6482 	 * gcc.  Once __initdataconst is implemented, add const to the
6483 	 * following structure.
6484 	 */
6485 	static struct ata_force_param force_tbl[] __initdata = {
6486 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6487 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6488 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6489 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6490 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6491 		{ "sata",	.cbl		= ATA_CBL_SATA },
6492 		{ "1.5Gbps",	.spd_limit	= 1 },
6493 		{ "3.0Gbps",	.spd_limit	= 2 },
6494 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6495 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6496 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6497 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6498 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6499 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6500 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6501 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6502 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6503 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6504 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6505 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6506 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6507 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6508 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6509 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6510 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6511 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6512 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6513 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6514 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6515 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6516 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6517 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6518 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6519 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6520 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6521 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6522 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6523 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6524 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6525 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6526 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6527 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6528 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6529 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6530 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6531 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6532 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6533 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6534 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6535 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6536 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6537 	};
6538 	char *start = *cur, *p = *cur;
6539 	char *id, *val, *endp;
6540 	const struct ata_force_param *match_fp = NULL;
6541 	int nr_matches = 0, i;
6542 
6543 	/* find where this param ends and update *cur */
6544 	while (*p != '\0' && *p != ',')
6545 		p++;
6546 
6547 	if (*p == '\0')
6548 		*cur = p;
6549 	else
6550 		*cur = p + 1;
6551 
6552 	*p = '\0';
6553 
6554 	/* parse */
6555 	p = strchr(start, ':');
6556 	if (!p) {
6557 		val = strstrip(start);
6558 		goto parse_val;
6559 	}
6560 	*p = '\0';
6561 
6562 	id = strstrip(start);
6563 	val = strstrip(p + 1);
6564 
6565 	/* parse id */
6566 	p = strchr(id, '.');
6567 	if (p) {
6568 		*p++ = '\0';
6569 		force_ent->device = simple_strtoul(p, &endp, 10);
6570 		if (p == endp || *endp != '\0') {
6571 			*reason = "invalid device";
6572 			return -EINVAL;
6573 		}
6574 	}
6575 
6576 	force_ent->port = simple_strtoul(id, &endp, 10);
6577 	if (p == endp || *endp != '\0') {
6578 		*reason = "invalid port/link";
6579 		return -EINVAL;
6580 	}
6581 
6582  parse_val:
6583 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6584 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6585 		const struct ata_force_param *fp = &force_tbl[i];
6586 
6587 		if (strncasecmp(val, fp->name, strlen(val)))
6588 			continue;
6589 
6590 		nr_matches++;
6591 		match_fp = fp;
6592 
6593 		if (strcasecmp(val, fp->name) == 0) {
6594 			nr_matches = 1;
6595 			break;
6596 		}
6597 	}
6598 
6599 	if (!nr_matches) {
6600 		*reason = "unknown value";
6601 		return -EINVAL;
6602 	}
6603 	if (nr_matches > 1) {
6604 		*reason = "ambigious value";
6605 		return -EINVAL;
6606 	}
6607 
6608 	force_ent->param = *match_fp;
6609 
6610 	return 0;
6611 }
6612 
6613 static void __init ata_parse_force_param(void)
6614 {
6615 	int idx = 0, size = 1;
6616 	int last_port = -1, last_device = -1;
6617 	char *p, *cur, *next;
6618 
6619 	/* calculate maximum number of params and allocate force_tbl */
6620 	for (p = ata_force_param_buf; *p; p++)
6621 		if (*p == ',')
6622 			size++;
6623 
6624 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6625 	if (!ata_force_tbl) {
6626 		printk(KERN_WARNING "ata: failed to extend force table, "
6627 		       "libata.force ignored\n");
6628 		return;
6629 	}
6630 
6631 	/* parse and populate the table */
6632 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6633 		const char *reason = "";
6634 		struct ata_force_ent te = { .port = -1, .device = -1 };
6635 
6636 		next = cur;
6637 		if (ata_parse_force_one(&next, &te, &reason)) {
6638 			printk(KERN_WARNING "ata: failed to parse force "
6639 			       "parameter \"%s\" (%s)\n",
6640 			       cur, reason);
6641 			continue;
6642 		}
6643 
6644 		if (te.port == -1) {
6645 			te.port = last_port;
6646 			te.device = last_device;
6647 		}
6648 
6649 		ata_force_tbl[idx++] = te;
6650 
6651 		last_port = te.port;
6652 		last_device = te.device;
6653 	}
6654 
6655 	ata_force_tbl_size = idx;
6656 }
6657 
6658 static int __init ata_init(void)
6659 {
6660 	int rc;
6661 
6662 	ata_parse_force_param();
6663 
6664 	rc = ata_sff_init();
6665 	if (rc) {
6666 		kfree(ata_force_tbl);
6667 		return rc;
6668 	}
6669 
6670 	libata_transport_init();
6671 	ata_scsi_transport_template = ata_attach_transport();
6672 	if (!ata_scsi_transport_template) {
6673 		ata_sff_exit();
6674 		rc = -ENOMEM;
6675 		goto err_out;
6676 	}
6677 
6678 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6679 	return 0;
6680 
6681 err_out:
6682 	return rc;
6683 }
6684 
6685 static void __exit ata_exit(void)
6686 {
6687 	ata_release_transport(ata_scsi_transport_template);
6688 	libata_transport_exit();
6689 	ata_sff_exit();
6690 	kfree(ata_force_tbl);
6691 }
6692 
6693 subsys_initcall(ata_init);
6694 module_exit(ata_exit);
6695 
6696 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6697 
6698 int ata_ratelimit(void)
6699 {
6700 	return __ratelimit(&ratelimit);
6701 }
6702 
6703 /**
6704  *	ata_msleep - ATA EH owner aware msleep
6705  *	@ap: ATA port to attribute the sleep to
6706  *	@msecs: duration to sleep in milliseconds
6707  *
6708  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6709  *	ownership is released before going to sleep and reacquired
6710  *	after the sleep is complete.  IOW, other ports sharing the
6711  *	@ap->host will be allowed to own the EH while this task is
6712  *	sleeping.
6713  *
6714  *	LOCKING:
6715  *	Might sleep.
6716  */
6717 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6718 {
6719 	bool owns_eh = ap && ap->host->eh_owner == current;
6720 
6721 	if (owns_eh)
6722 		ata_eh_release(ap);
6723 
6724 	msleep(msecs);
6725 
6726 	if (owns_eh)
6727 		ata_eh_acquire(ap);
6728 }
6729 
6730 /**
6731  *	ata_wait_register - wait until register value changes
6732  *	@ap: ATA port to wait register for, can be NULL
6733  *	@reg: IO-mapped register
6734  *	@mask: Mask to apply to read register value
6735  *	@val: Wait condition
6736  *	@interval: polling interval in milliseconds
6737  *	@timeout: timeout in milliseconds
6738  *
6739  *	Waiting for some bits of register to change is a common
6740  *	operation for ATA controllers.  This function reads 32bit LE
6741  *	IO-mapped register @reg and tests for the following condition.
6742  *
6743  *	(*@reg & mask) != val
6744  *
6745  *	If the condition is met, it returns; otherwise, the process is
6746  *	repeated after @interval_msec until timeout.
6747  *
6748  *	LOCKING:
6749  *	Kernel thread context (may sleep)
6750  *
6751  *	RETURNS:
6752  *	The final register value.
6753  */
6754 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6755 		      unsigned long interval, unsigned long timeout)
6756 {
6757 	unsigned long deadline;
6758 	u32 tmp;
6759 
6760 	tmp = ioread32(reg);
6761 
6762 	/* Calculate timeout _after_ the first read to make sure
6763 	 * preceding writes reach the controller before starting to
6764 	 * eat away the timeout.
6765 	 */
6766 	deadline = ata_deadline(jiffies, timeout);
6767 
6768 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6769 		ata_msleep(ap, interval);
6770 		tmp = ioread32(reg);
6771 	}
6772 
6773 	return tmp;
6774 }
6775 
6776 /*
6777  * Dummy port_ops
6778  */
6779 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6780 {
6781 	return AC_ERR_SYSTEM;
6782 }
6783 
6784 static void ata_dummy_error_handler(struct ata_port *ap)
6785 {
6786 	/* truly dummy */
6787 }
6788 
6789 struct ata_port_operations ata_dummy_port_ops = {
6790 	.qc_prep		= ata_noop_qc_prep,
6791 	.qc_issue		= ata_dummy_qc_issue,
6792 	.error_handler		= ata_dummy_error_handler,
6793 	.sched_eh		= ata_std_sched_eh,
6794 	.end_eh			= ata_std_end_eh,
6795 };
6796 
6797 const struct ata_port_info ata_dummy_port_info = {
6798 	.port_ops		= &ata_dummy_port_ops,
6799 };
6800 
6801 /*
6802  * Utility print functions
6803  */
6804 int ata_port_printk(const struct ata_port *ap, const char *level,
6805 		    const char *fmt, ...)
6806 {
6807 	struct va_format vaf;
6808 	va_list args;
6809 	int r;
6810 
6811 	va_start(args, fmt);
6812 
6813 	vaf.fmt = fmt;
6814 	vaf.va = &args;
6815 
6816 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6817 
6818 	va_end(args);
6819 
6820 	return r;
6821 }
6822 EXPORT_SYMBOL(ata_port_printk);
6823 
6824 int ata_link_printk(const struct ata_link *link, const char *level,
6825 		    const char *fmt, ...)
6826 {
6827 	struct va_format vaf;
6828 	va_list args;
6829 	int r;
6830 
6831 	va_start(args, fmt);
6832 
6833 	vaf.fmt = fmt;
6834 	vaf.va = &args;
6835 
6836 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6837 		r = printk("%sata%u.%02u: %pV",
6838 			   level, link->ap->print_id, link->pmp, &vaf);
6839 	else
6840 		r = printk("%sata%u: %pV",
6841 			   level, link->ap->print_id, &vaf);
6842 
6843 	va_end(args);
6844 
6845 	return r;
6846 }
6847 EXPORT_SYMBOL(ata_link_printk);
6848 
6849 int ata_dev_printk(const struct ata_device *dev, const char *level,
6850 		    const char *fmt, ...)
6851 {
6852 	struct va_format vaf;
6853 	va_list args;
6854 	int r;
6855 
6856 	va_start(args, fmt);
6857 
6858 	vaf.fmt = fmt;
6859 	vaf.va = &args;
6860 
6861 	r = printk("%sata%u.%02u: %pV",
6862 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6863 		   &vaf);
6864 
6865 	va_end(args);
6866 
6867 	return r;
6868 }
6869 EXPORT_SYMBOL(ata_dev_printk);
6870 
6871 void ata_print_version(const struct device *dev, const char *version)
6872 {
6873 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6874 }
6875 EXPORT_SYMBOL(ata_print_version);
6876 
6877 /*
6878  * libata is essentially a library of internal helper functions for
6879  * low-level ATA host controller drivers.  As such, the API/ABI is
6880  * likely to change as new drivers are added and updated.
6881  * Do not depend on ABI/API stability.
6882  */
6883 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6884 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6885 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6886 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6887 EXPORT_SYMBOL_GPL(sata_port_ops);
6888 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6889 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6890 EXPORT_SYMBOL_GPL(ata_link_next);
6891 EXPORT_SYMBOL_GPL(ata_dev_next);
6892 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6893 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6894 EXPORT_SYMBOL_GPL(ata_host_init);
6895 EXPORT_SYMBOL_GPL(ata_host_alloc);
6896 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6897 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6898 EXPORT_SYMBOL_GPL(ata_host_start);
6899 EXPORT_SYMBOL_GPL(ata_host_register);
6900 EXPORT_SYMBOL_GPL(ata_host_activate);
6901 EXPORT_SYMBOL_GPL(ata_host_detach);
6902 EXPORT_SYMBOL_GPL(ata_sg_init);
6903 EXPORT_SYMBOL_GPL(ata_qc_complete);
6904 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6905 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6906 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6907 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6908 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6909 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6910 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6911 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6912 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6913 EXPORT_SYMBOL_GPL(ata_mode_string);
6914 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6915 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6916 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6917 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6918 EXPORT_SYMBOL_GPL(ata_dev_disable);
6919 EXPORT_SYMBOL_GPL(sata_set_spd);
6920 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6921 EXPORT_SYMBOL_GPL(sata_link_debounce);
6922 EXPORT_SYMBOL_GPL(sata_link_resume);
6923 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6924 EXPORT_SYMBOL_GPL(ata_std_prereset);
6925 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6926 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6927 EXPORT_SYMBOL_GPL(ata_std_postreset);
6928 EXPORT_SYMBOL_GPL(ata_dev_classify);
6929 EXPORT_SYMBOL_GPL(ata_dev_pair);
6930 EXPORT_SYMBOL_GPL(ata_ratelimit);
6931 EXPORT_SYMBOL_GPL(ata_msleep);
6932 EXPORT_SYMBOL_GPL(ata_wait_register);
6933 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6934 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6935 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6936 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6937 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6938 EXPORT_SYMBOL_GPL(sata_scr_valid);
6939 EXPORT_SYMBOL_GPL(sata_scr_read);
6940 EXPORT_SYMBOL_GPL(sata_scr_write);
6941 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6942 EXPORT_SYMBOL_GPL(ata_link_online);
6943 EXPORT_SYMBOL_GPL(ata_link_offline);
6944 #ifdef CONFIG_PM
6945 EXPORT_SYMBOL_GPL(ata_host_suspend);
6946 EXPORT_SYMBOL_GPL(ata_host_resume);
6947 #endif /* CONFIG_PM */
6948 EXPORT_SYMBOL_GPL(ata_id_string);
6949 EXPORT_SYMBOL_GPL(ata_id_c_string);
6950 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6951 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6952 
6953 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6954 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6955 EXPORT_SYMBOL_GPL(ata_timing_compute);
6956 EXPORT_SYMBOL_GPL(ata_timing_merge);
6957 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6958 
6959 #ifdef CONFIG_PCI
6960 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6961 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6962 #ifdef CONFIG_PM
6963 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6964 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6965 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6966 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6967 #endif /* CONFIG_PM */
6968 #endif /* CONFIG_PCI */
6969 
6970 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6971 
6972 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6973 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6974 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6975 EXPORT_SYMBOL_GPL(ata_port_desc);
6976 #ifdef CONFIG_PCI
6977 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6978 #endif /* CONFIG_PCI */
6979 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6980 EXPORT_SYMBOL_GPL(ata_link_abort);
6981 EXPORT_SYMBOL_GPL(ata_port_abort);
6982 EXPORT_SYMBOL_GPL(ata_port_freeze);
6983 EXPORT_SYMBOL_GPL(sata_async_notification);
6984 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6985 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6986 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6987 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6988 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6989 EXPORT_SYMBOL_GPL(ata_do_eh);
6990 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6991 
6992 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6993 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6994 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6995 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6996 EXPORT_SYMBOL_GPL(ata_cable_sata);
6997