xref: /linux/drivers/ata/libata-core.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71 
72 #include "libata.h"
73 #include "libata-transport.h"
74 
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
78 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
79 
80 const struct ata_port_operations ata_base_port_ops = {
81 	.prereset		= ata_std_prereset,
82 	.postreset		= ata_std_postreset,
83 	.error_handler		= ata_std_error_handler,
84 	.sched_eh		= ata_std_sched_eh,
85 	.end_eh			= ata_std_end_eh,
86 };
87 
88 const struct ata_port_operations sata_port_ops = {
89 	.inherits		= &ata_base_port_ops,
90 
91 	.qc_defer		= ata_std_qc_defer,
92 	.hardreset		= sata_std_hardreset,
93 };
94 
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 					u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100 
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102 
103 struct ata_force_param {
104 	const char	*name;
105 	unsigned int	cbl;
106 	int		spd_limit;
107 	unsigned long	xfer_mask;
108 	unsigned int	horkage_on;
109 	unsigned int	horkage_off;
110 	unsigned int	lflags;
111 };
112 
113 struct ata_force_ent {
114 	int			port;
115 	int			device;
116 	struct ata_force_param	param;
117 };
118 
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121 
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171 
172 
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 	return (sstatus & 0xf) == 0x3;
176 }
177 
178 /**
179  *	ata_link_next - link iteration helper
180  *	@link: the previous link, NULL to start
181  *	@ap: ATA port containing links to iterate
182  *	@mode: iteration mode, one of ATA_LITER_*
183  *
184  *	LOCKING:
185  *	Host lock or EH context.
186  *
187  *	RETURNS:
188  *	Pointer to the next link.
189  */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 			       enum ata_link_iter_mode mode)
192 {
193 	BUG_ON(mode != ATA_LITER_EDGE &&
194 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195 
196 	/* NULL link indicates start of iteration */
197 	if (!link)
198 		switch (mode) {
199 		case ATA_LITER_EDGE:
200 		case ATA_LITER_PMP_FIRST:
201 			if (sata_pmp_attached(ap))
202 				return ap->pmp_link;
203 			/* fall through */
204 		case ATA_LITER_HOST_FIRST:
205 			return &ap->link;
206 		}
207 
208 	/* we just iterated over the host link, what's next? */
209 	if (link == &ap->link)
210 		switch (mode) {
211 		case ATA_LITER_HOST_FIRST:
212 			if (sata_pmp_attached(ap))
213 				return ap->pmp_link;
214 			/* fall through */
215 		case ATA_LITER_PMP_FIRST:
216 			if (unlikely(ap->slave_link))
217 				return ap->slave_link;
218 			/* fall through */
219 		case ATA_LITER_EDGE:
220 			return NULL;
221 		}
222 
223 	/* slave_link excludes PMP */
224 	if (unlikely(link == ap->slave_link))
225 		return NULL;
226 
227 	/* we were over a PMP link */
228 	if (++link < ap->pmp_link + ap->nr_pmp_links)
229 		return link;
230 
231 	if (mode == ATA_LITER_PMP_FIRST)
232 		return &ap->link;
233 
234 	return NULL;
235 }
236 
237 /**
238  *	ata_dev_next - device iteration helper
239  *	@dev: the previous device, NULL to start
240  *	@link: ATA link containing devices to iterate
241  *	@mode: iteration mode, one of ATA_DITER_*
242  *
243  *	LOCKING:
244  *	Host lock or EH context.
245  *
246  *	RETURNS:
247  *	Pointer to the next device.
248  */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 				enum ata_dev_iter_mode mode)
251 {
252 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254 
255 	/* NULL dev indicates start of iteration */
256 	if (!dev)
257 		switch (mode) {
258 		case ATA_DITER_ENABLED:
259 		case ATA_DITER_ALL:
260 			dev = link->device;
261 			goto check;
262 		case ATA_DITER_ENABLED_REVERSE:
263 		case ATA_DITER_ALL_REVERSE:
264 			dev = link->device + ata_link_max_devices(link) - 1;
265 			goto check;
266 		}
267 
268  next:
269 	/* move to the next one */
270 	switch (mode) {
271 	case ATA_DITER_ENABLED:
272 	case ATA_DITER_ALL:
273 		if (++dev < link->device + ata_link_max_devices(link))
274 			goto check;
275 		return NULL;
276 	case ATA_DITER_ENABLED_REVERSE:
277 	case ATA_DITER_ALL_REVERSE:
278 		if (--dev >= link->device)
279 			goto check;
280 		return NULL;
281 	}
282 
283  check:
284 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 	    !ata_dev_enabled(dev))
286 		goto next;
287 	return dev;
288 }
289 
290 /**
291  *	ata_dev_phys_link - find physical link for a device
292  *	@dev: ATA device to look up physical link for
293  *
294  *	Look up physical link which @dev is attached to.  Note that
295  *	this is different from @dev->link only when @dev is on slave
296  *	link.  For all other cases, it's the same as @dev->link.
297  *
298  *	LOCKING:
299  *	Don't care.
300  *
301  *	RETURNS:
302  *	Pointer to the found physical link.
303  */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 	struct ata_port *ap = dev->link->ap;
307 
308 	if (!ap->slave_link)
309 		return dev->link;
310 	if (!dev->devno)
311 		return &ap->link;
312 	return ap->slave_link;
313 }
314 
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags) {
391 			link->flags |= fe->param.lflags;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags, link->flags);
395 		}
396 	}
397 }
398 
399 /**
400  *	ata_force_xfermask - force xfermask according to libata.force
401  *	@dev: ATA device of interest
402  *
403  *	Force xfer_mask according to libata.force and whine about it.
404  *	For consistency with link selection, device number 15 selects
405  *	the first device connected to the host link.
406  *
407  *	LOCKING:
408  *	EH context.
409  */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 	int devno = dev->link->pmp + dev->devno;
413 	int alt_devno = devno;
414 	int i;
415 
416 	/* allow n.15/16 for devices attached to host port */
417 	if (ata_is_host_link(dev->link))
418 		alt_devno += 15;
419 
420 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 		const struct ata_force_ent *fe = &ata_force_tbl[i];
422 		unsigned long pio_mask, mwdma_mask, udma_mask;
423 
424 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 			continue;
426 
427 		if (fe->device != -1 && fe->device != devno &&
428 		    fe->device != alt_devno)
429 			continue;
430 
431 		if (!fe->param.xfer_mask)
432 			continue;
433 
434 		ata_unpack_xfermask(fe->param.xfer_mask,
435 				    &pio_mask, &mwdma_mask, &udma_mask);
436 		if (udma_mask)
437 			dev->udma_mask = udma_mask;
438 		else if (mwdma_mask) {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = mwdma_mask;
441 		} else {
442 			dev->udma_mask = 0;
443 			dev->mwdma_mask = 0;
444 			dev->pio_mask = pio_mask;
445 		}
446 
447 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 			       fe->param.name);
449 		return;
450 	}
451 }
452 
453 /**
454  *	ata_force_horkage - force horkage according to libata.force
455  *	@dev: ATA device of interest
456  *
457  *	Force horkage according to libata.force and whine about it.
458  *	For consistency with link selection, device number 15 selects
459  *	the first device connected to the host link.
460  *
461  *	LOCKING:
462  *	EH context.
463  */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 	int devno = dev->link->pmp + dev->devno;
467 	int alt_devno = devno;
468 	int i;
469 
470 	/* allow n.15/16 for devices attached to host port */
471 	if (ata_is_host_link(dev->link))
472 		alt_devno += 15;
473 
474 	for (i = 0; i < ata_force_tbl_size; i++) {
475 		const struct ata_force_ent *fe = &ata_force_tbl[i];
476 
477 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 			continue;
479 
480 		if (fe->device != -1 && fe->device != devno &&
481 		    fe->device != alt_devno)
482 			continue;
483 
484 		if (!(~dev->horkage & fe->param.horkage_on) &&
485 		    !(dev->horkage & fe->param.horkage_off))
486 			continue;
487 
488 		dev->horkage |= fe->param.horkage_on;
489 		dev->horkage &= ~fe->param.horkage_off;
490 
491 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 			       fe->param.name);
493 	}
494 }
495 
496 /**
497  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498  *	@opcode: SCSI opcode
499  *
500  *	Determine ATAPI command type from @opcode.
501  *
502  *	LOCKING:
503  *	None.
504  *
505  *	RETURNS:
506  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507  */
508 int atapi_cmd_type(u8 opcode)
509 {
510 	switch (opcode) {
511 	case GPCMD_READ_10:
512 	case GPCMD_READ_12:
513 		return ATAPI_READ;
514 
515 	case GPCMD_WRITE_10:
516 	case GPCMD_WRITE_12:
517 	case GPCMD_WRITE_AND_VERIFY_10:
518 		return ATAPI_WRITE;
519 
520 	case GPCMD_READ_CD:
521 	case GPCMD_READ_CD_MSF:
522 		return ATAPI_READ_CD;
523 
524 	case ATA_16:
525 	case ATA_12:
526 		if (atapi_passthru16)
527 			return ATAPI_PASS_THRU;
528 		/* fall thru */
529 	default:
530 		return ATAPI_MISC;
531 	}
532 }
533 
534 /**
535  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536  *	@tf: Taskfile to convert
537  *	@pmp: Port multiplier port
538  *	@is_cmd: This FIS is for command
539  *	@fis: Buffer into which data will output
540  *
541  *	Converts a standard ATA taskfile to a Serial ATA
542  *	FIS structure (Register - Host to Device).
543  *
544  *	LOCKING:
545  *	Inherited from caller.
546  */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 	fis[0] = 0x27;			/* Register - Host to Device FIS */
550 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
551 	if (is_cmd)
552 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
553 
554 	fis[2] = tf->command;
555 	fis[3] = tf->feature;
556 
557 	fis[4] = tf->lbal;
558 	fis[5] = tf->lbam;
559 	fis[6] = tf->lbah;
560 	fis[7] = tf->device;
561 
562 	fis[8] = tf->hob_lbal;
563 	fis[9] = tf->hob_lbam;
564 	fis[10] = tf->hob_lbah;
565 	fis[11] = tf->hob_feature;
566 
567 	fis[12] = tf->nsect;
568 	fis[13] = tf->hob_nsect;
569 	fis[14] = 0;
570 	fis[15] = tf->ctl;
571 
572 	fis[16] = 0;
573 	fis[17] = 0;
574 	fis[18] = 0;
575 	fis[19] = 0;
576 }
577 
578 /**
579  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580  *	@fis: Buffer from which data will be input
581  *	@tf: Taskfile to output
582  *
583  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
584  *
585  *	LOCKING:
586  *	Inherited from caller.
587  */
588 
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 	tf->command	= fis[2];	/* status */
592 	tf->feature	= fis[3];	/* error */
593 
594 	tf->lbal	= fis[4];
595 	tf->lbam	= fis[5];
596 	tf->lbah	= fis[6];
597 	tf->device	= fis[7];
598 
599 	tf->hob_lbal	= fis[8];
600 	tf->hob_lbam	= fis[9];
601 	tf->hob_lbah	= fis[10];
602 
603 	tf->nsect	= fis[12];
604 	tf->hob_nsect	= fis[13];
605 }
606 
607 static const u8 ata_rw_cmds[] = {
608 	/* pio multi */
609 	ATA_CMD_READ_MULTI,
610 	ATA_CMD_WRITE_MULTI,
611 	ATA_CMD_READ_MULTI_EXT,
612 	ATA_CMD_WRITE_MULTI_EXT,
613 	0,
614 	0,
615 	0,
616 	ATA_CMD_WRITE_MULTI_FUA_EXT,
617 	/* pio */
618 	ATA_CMD_PIO_READ,
619 	ATA_CMD_PIO_WRITE,
620 	ATA_CMD_PIO_READ_EXT,
621 	ATA_CMD_PIO_WRITE_EXT,
622 	0,
623 	0,
624 	0,
625 	0,
626 	/* dma */
627 	ATA_CMD_READ,
628 	ATA_CMD_WRITE,
629 	ATA_CMD_READ_EXT,
630 	ATA_CMD_WRITE_EXT,
631 	0,
632 	0,
633 	0,
634 	ATA_CMD_WRITE_FUA_EXT
635 };
636 
637 /**
638  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
639  *	@tf: command to examine and configure
640  *	@dev: device tf belongs to
641  *
642  *	Examine the device configuration and tf->flags to calculate
643  *	the proper read/write commands and protocol to use.
644  *
645  *	LOCKING:
646  *	caller.
647  */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 	u8 cmd;
651 
652 	int index, fua, lba48, write;
653 
654 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657 
658 	if (dev->flags & ATA_DFLAG_PIO) {
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 		/* Unable to use DMA due to host limitation */
663 		tf->protocol = ATA_PROT_PIO;
664 		index = dev->multi_count ? 0 : 8;
665 	} else {
666 		tf->protocol = ATA_PROT_DMA;
667 		index = 16;
668 	}
669 
670 	cmd = ata_rw_cmds[index + fua + lba48 + write];
671 	if (cmd) {
672 		tf->command = cmd;
673 		return 0;
674 	}
675 	return -1;
676 }
677 
678 /**
679  *	ata_tf_read_block - Read block address from ATA taskfile
680  *	@tf: ATA taskfile of interest
681  *	@dev: ATA device @tf belongs to
682  *
683  *	LOCKING:
684  *	None.
685  *
686  *	Read block address from @tf.  This function can handle all
687  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
688  *	flags select the address format to use.
689  *
690  *	RETURNS:
691  *	Block address read from @tf.
692  */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 	u64 block = 0;
696 
697 	if (tf->flags & ATA_TFLAG_LBA) {
698 		if (tf->flags & ATA_TFLAG_LBA48) {
699 			block |= (u64)tf->hob_lbah << 40;
700 			block |= (u64)tf->hob_lbam << 32;
701 			block |= (u64)tf->hob_lbal << 24;
702 		} else
703 			block |= (tf->device & 0xf) << 24;
704 
705 		block |= tf->lbah << 16;
706 		block |= tf->lbam << 8;
707 		block |= tf->lbal;
708 	} else {
709 		u32 cyl, head, sect;
710 
711 		cyl = tf->lbam | (tf->lbah << 8);
712 		head = tf->device & 0xf;
713 		sect = tf->lbal;
714 
715 		if (!sect) {
716 			ata_dev_warn(dev,
717 				     "device reported invalid CHS sector 0\n");
718 			sect = 1; /* oh well */
719 		}
720 
721 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 	}
723 
724 	return block;
725 }
726 
727 /**
728  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
729  *	@tf: Target ATA taskfile
730  *	@dev: ATA device @tf belongs to
731  *	@block: Block address
732  *	@n_block: Number of blocks
733  *	@tf_flags: RW/FUA etc...
734  *	@tag: tag
735  *
736  *	LOCKING:
737  *	None.
738  *
739  *	Build ATA taskfile @tf for read/write request described by
740  *	@block, @n_block, @tf_flags and @tag on @dev.
741  *
742  *	RETURNS:
743  *
744  *	0 on success, -ERANGE if the request is too large for @dev,
745  *	-EINVAL if the request is invalid.
746  */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 		    u64 block, u32 n_block, unsigned int tf_flags,
749 		    unsigned int tag)
750 {
751 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 	tf->flags |= tf_flags;
753 
754 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 		/* yay, NCQ */
756 		if (!lba_48_ok(block, n_block))
757 			return -ERANGE;
758 
759 		tf->protocol = ATA_PROT_NCQ;
760 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761 
762 		if (tf->flags & ATA_TFLAG_WRITE)
763 			tf->command = ATA_CMD_FPDMA_WRITE;
764 		else
765 			tf->command = ATA_CMD_FPDMA_READ;
766 
767 		tf->nsect = tag << 3;
768 		tf->hob_feature = (n_block >> 8) & 0xff;
769 		tf->feature = n_block & 0xff;
770 
771 		tf->hob_lbah = (block >> 40) & 0xff;
772 		tf->hob_lbam = (block >> 32) & 0xff;
773 		tf->hob_lbal = (block >> 24) & 0xff;
774 		tf->lbah = (block >> 16) & 0xff;
775 		tf->lbam = (block >> 8) & 0xff;
776 		tf->lbal = block & 0xff;
777 
778 		tf->device = ATA_LBA;
779 		if (tf->flags & ATA_TFLAG_FUA)
780 			tf->device |= 1 << 7;
781 	} else if (dev->flags & ATA_DFLAG_LBA) {
782 		tf->flags |= ATA_TFLAG_LBA;
783 
784 		if (lba_28_ok(block, n_block)) {
785 			/* use LBA28 */
786 			tf->device |= (block >> 24) & 0xf;
787 		} else if (lba_48_ok(block, n_block)) {
788 			if (!(dev->flags & ATA_DFLAG_LBA48))
789 				return -ERANGE;
790 
791 			/* use LBA48 */
792 			tf->flags |= ATA_TFLAG_LBA48;
793 
794 			tf->hob_nsect = (n_block >> 8) & 0xff;
795 
796 			tf->hob_lbah = (block >> 40) & 0xff;
797 			tf->hob_lbam = (block >> 32) & 0xff;
798 			tf->hob_lbal = (block >> 24) & 0xff;
799 		} else
800 			/* request too large even for LBA48 */
801 			return -ERANGE;
802 
803 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 			return -EINVAL;
805 
806 		tf->nsect = n_block & 0xff;
807 
808 		tf->lbah = (block >> 16) & 0xff;
809 		tf->lbam = (block >> 8) & 0xff;
810 		tf->lbal = block & 0xff;
811 
812 		tf->device |= ATA_LBA;
813 	} else {
814 		/* CHS */
815 		u32 sect, head, cyl, track;
816 
817 		/* The request -may- be too large for CHS addressing. */
818 		if (!lba_28_ok(block, n_block))
819 			return -ERANGE;
820 
821 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 			return -EINVAL;
823 
824 		/* Convert LBA to CHS */
825 		track = (u32)block / dev->sectors;
826 		cyl   = track / dev->heads;
827 		head  = track % dev->heads;
828 		sect  = (u32)block % dev->sectors + 1;
829 
830 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 			(u32)block, track, cyl, head, sect);
832 
833 		/* Check whether the converted CHS can fit.
834 		   Cylinder: 0-65535
835 		   Head: 0-15
836 		   Sector: 1-255*/
837 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 			return -ERANGE;
839 
840 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 		tf->lbal = sect;
842 		tf->lbam = cyl;
843 		tf->lbah = cyl >> 8;
844 		tf->device |= head;
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852  *	@pio_mask: pio_mask
853  *	@mwdma_mask: mwdma_mask
854  *	@udma_mask: udma_mask
855  *
856  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857  *	unsigned int xfer_mask.
858  *
859  *	LOCKING:
860  *	None.
861  *
862  *	RETURNS:
863  *	Packed xfer_mask.
864  */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 				unsigned long mwdma_mask,
867 				unsigned long udma_mask)
868 {
869 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873 
874 /**
875  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876  *	@xfer_mask: xfer_mask to unpack
877  *	@pio_mask: resulting pio_mask
878  *	@mwdma_mask: resulting mwdma_mask
879  *	@udma_mask: resulting udma_mask
880  *
881  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882  *	Any NULL distination masks will be ignored.
883  */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 	if (pio_mask)
888 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 	if (mwdma_mask)
890 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 	if (udma_mask)
892 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894 
895 static const struct ata_xfer_ent {
896 	int shift, bits;
897 	u8 base;
898 } ata_xfer_tbl[] = {
899 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 	{ -1, },
903 };
904 
905 /**
906  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907  *	@xfer_mask: xfer_mask of interest
908  *
909  *	Return matching XFER_* value for @xfer_mask.  Only the highest
910  *	bit of @xfer_mask is considered.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching XFER_* value, 0xff if no match found.
917  */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 	int highbit = fls(xfer_mask) - 1;
921 	const struct ata_xfer_ent *ent;
922 
923 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 			return ent->base + highbit - ent->shift;
926 	return 0xff;
927 }
928 
929 /**
930  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931  *	@xfer_mode: XFER_* of interest
932  *
933  *	Return matching xfer_mask for @xfer_mode.
934  *
935  *	LOCKING:
936  *	None.
937  *
938  *	RETURNS:
939  *	Matching xfer_mask, 0 if no match found.
940  */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 	const struct ata_xfer_ent *ent;
944 
945 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 				& ~((1 << ent->shift) - 1);
949 	return 0;
950 }
951 
952 /**
953  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954  *	@xfer_mode: XFER_* of interest
955  *
956  *	Return matching xfer_shift for @xfer_mode.
957  *
958  *	LOCKING:
959  *	None.
960  *
961  *	RETURNS:
962  *	Matching xfer_shift, -1 if no match found.
963  */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 	const struct ata_xfer_ent *ent;
967 
968 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 			return ent->shift;
971 	return -1;
972 }
973 
974 /**
975  *	ata_mode_string - convert xfer_mask to string
976  *	@xfer_mask: mask of bits supported; only highest bit counts.
977  *
978  *	Determine string which represents the highest speed
979  *	(highest bit in @modemask).
980  *
981  *	LOCKING:
982  *	None.
983  *
984  *	RETURNS:
985  *	Constant C string representing highest speed listed in
986  *	@mode_mask, or the constant C string "<n/a>".
987  */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 	static const char * const xfer_mode_str[] = {
991 		"PIO0",
992 		"PIO1",
993 		"PIO2",
994 		"PIO3",
995 		"PIO4",
996 		"PIO5",
997 		"PIO6",
998 		"MWDMA0",
999 		"MWDMA1",
1000 		"MWDMA2",
1001 		"MWDMA3",
1002 		"MWDMA4",
1003 		"UDMA/16",
1004 		"UDMA/25",
1005 		"UDMA/33",
1006 		"UDMA/44",
1007 		"UDMA/66",
1008 		"UDMA/100",
1009 		"UDMA/133",
1010 		"UDMA7",
1011 	};
1012 	int highbit;
1013 
1014 	highbit = fls(xfer_mask) - 1;
1015 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 		return xfer_mode_str[highbit];
1017 	return "<n/a>";
1018 }
1019 
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 	static const char * const spd_str[] = {
1023 		"1.5 Gbps",
1024 		"3.0 Gbps",
1025 		"6.0 Gbps",
1026 	};
1027 
1028 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 		return "<unknown>";
1030 	return spd_str[spd - 1];
1031 }
1032 
1033 /**
1034  *	ata_dev_classify - determine device type based on ATA-spec signature
1035  *	@tf: ATA taskfile register set for device to be identified
1036  *
1037  *	Determine from taskfile register contents whether a device is
1038  *	ATA or ATAPI, as per "Signature and persistence" section
1039  *	of ATA/PI spec (volume 1, sect 5.14).
1040  *
1041  *	LOCKING:
1042  *	None.
1043  *
1044  *	RETURNS:
1045  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046  *	%ATA_DEV_UNKNOWN the event of failure.
1047  */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 	/* Apple's open source Darwin code hints that some devices only
1051 	 * put a proper signature into the LBA mid/high registers,
1052 	 * So, we only check those.  It's sufficient for uniqueness.
1053 	 *
1054 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057 	 * spec has never mentioned about using different signatures
1058 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059 	 * Multiplier specification began to use 0x69/0x96 to identify
1060 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 	 * 0x69/0x96 shortly and described them as reserved for
1063 	 * SerialATA.
1064 	 *
1065 	 * We follow the current spec and consider that 0x69/0x96
1066 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 	 * SEMB signature.  This is worked around in
1069 	 * ata_dev_read_id().
1070 	 */
1071 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 		DPRINTK("found ATA device by sig\n");
1073 		return ATA_DEV_ATA;
1074 	}
1075 
1076 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 		DPRINTK("found ATAPI device by sig\n");
1078 		return ATA_DEV_ATAPI;
1079 	}
1080 
1081 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 		DPRINTK("found PMP device by sig\n");
1083 		return ATA_DEV_PMP;
1084 	}
1085 
1086 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 		return ATA_DEV_SEMB;
1089 	}
1090 
1091 	DPRINTK("unknown device\n");
1092 	return ATA_DEV_UNKNOWN;
1093 }
1094 
1095 /**
1096  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097  *	@id: IDENTIFY DEVICE results we will examine
1098  *	@s: string into which data is output
1099  *	@ofs: offset into identify device page
1100  *	@len: length of string to return. must be an even number.
1101  *
1102  *	The strings in the IDENTIFY DEVICE page are broken up into
1103  *	16-bit chunks.  Run through the string, and output each
1104  *	8-bit chunk linearly, regardless of platform.
1105  *
1106  *	LOCKING:
1107  *	caller.
1108  */
1109 
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 		   unsigned int ofs, unsigned int len)
1112 {
1113 	unsigned int c;
1114 
1115 	BUG_ON(len & 1);
1116 
1117 	while (len > 0) {
1118 		c = id[ofs] >> 8;
1119 		*s = c;
1120 		s++;
1121 
1122 		c = id[ofs] & 0xff;
1123 		*s = c;
1124 		s++;
1125 
1126 		ofs++;
1127 		len -= 2;
1128 	}
1129 }
1130 
1131 /**
1132  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133  *	@id: IDENTIFY DEVICE results we will examine
1134  *	@s: string into which data is output
1135  *	@ofs: offset into identify device page
1136  *	@len: length of string to return. must be an odd number.
1137  *
1138  *	This function is identical to ata_id_string except that it
1139  *	trims trailing spaces and terminates the resulting string with
1140  *	null.  @len must be actual maximum length (even number) + 1.
1141  *
1142  *	LOCKING:
1143  *	caller.
1144  */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 		     unsigned int ofs, unsigned int len)
1147 {
1148 	unsigned char *p;
1149 
1150 	ata_id_string(id, s, ofs, len - 1);
1151 
1152 	p = s + strnlen(s, len - 1);
1153 	while (p > s && p[-1] == ' ')
1154 		p--;
1155 	*p = '\0';
1156 }
1157 
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 	if (ata_id_has_lba(id)) {
1161 		if (ata_id_has_lba48(id))
1162 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 		else
1164 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 	} else {
1166 		if (ata_id_current_chs_valid(id))
1167 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 			       id[ATA_ID_CUR_SECTORS];
1169 		else
1170 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 			       id[ATA_ID_SECTORS];
1172 	}
1173 }
1174 
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 	u64 sectors = 0;
1178 
1179 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 	sectors |= (tf->lbah & 0xff) << 16;
1183 	sectors |= (tf->lbam & 0xff) << 8;
1184 	sectors |= (tf->lbal & 0xff);
1185 
1186 	return sectors;
1187 }
1188 
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 	u64 sectors = 0;
1192 
1193 	sectors |= (tf->device & 0x0f) << 24;
1194 	sectors |= (tf->lbah & 0xff) << 16;
1195 	sectors |= (tf->lbam & 0xff) << 8;
1196 	sectors |= (tf->lbal & 0xff);
1197 
1198 	return sectors;
1199 }
1200 
1201 /**
1202  *	ata_read_native_max_address - Read native max address
1203  *	@dev: target device
1204  *	@max_sectors: out parameter for the result native max address
1205  *
1206  *	Perform an LBA48 or LBA28 native size query upon the device in
1207  *	question.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted by the drive.
1211  *	-EIO on other errors.
1212  */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 	unsigned int err_mask;
1216 	struct ata_taskfile tf;
1217 	int lba48 = ata_id_has_lba48(dev->id);
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	/* always clear all address registers */
1222 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223 
1224 	if (lba48) {
1225 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 		tf.flags |= ATA_TFLAG_LBA48;
1227 	} else
1228 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229 
1230 	tf.protocol |= ATA_PROT_NODATA;
1231 	tf.device |= ATA_LBA;
1232 
1233 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 	if (err_mask) {
1235 		ata_dev_warn(dev,
1236 			     "failed to read native max address (err_mask=0x%x)\n",
1237 			     err_mask);
1238 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	if (lba48)
1244 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 	else
1246 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 		(*max_sectors)--;
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	ata_set_max_sectors - Set max sectors
1254  *	@dev: target device
1255  *	@new_sectors: new max sectors value to set for the device
1256  *
1257  *	Set max sectors of @dev to @new_sectors.
1258  *
1259  *	RETURNS:
1260  *	0 on success, -EACCES if command is aborted or denied (due to
1261  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262  *	errors.
1263  */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 	unsigned int err_mask;
1267 	struct ata_taskfile tf;
1268 	int lba48 = ata_id_has_lba48(dev->id);
1269 
1270 	new_sectors--;
1271 
1272 	ata_tf_init(dev, &tf);
1273 
1274 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275 
1276 	if (lba48) {
1277 		tf.command = ATA_CMD_SET_MAX_EXT;
1278 		tf.flags |= ATA_TFLAG_LBA48;
1279 
1280 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 	} else {
1284 		tf.command = ATA_CMD_SET_MAX;
1285 
1286 		tf.device |= (new_sectors >> 24) & 0xf;
1287 	}
1288 
1289 	tf.protocol |= ATA_PROT_NODATA;
1290 	tf.device |= ATA_LBA;
1291 
1292 	tf.lbal = (new_sectors >> 0) & 0xff;
1293 	tf.lbam = (new_sectors >> 8) & 0xff;
1294 	tf.lbah = (new_sectors >> 16) & 0xff;
1295 
1296 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 	if (err_mask) {
1298 		ata_dev_warn(dev,
1299 			     "failed to set max address (err_mask=0x%x)\n",
1300 			     err_mask);
1301 		if (err_mask == AC_ERR_DEV &&
1302 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 			return -EACCES;
1304 		return -EIO;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  *	ata_hpa_resize		-	Resize a device with an HPA set
1312  *	@dev: Device to resize
1313  *
1314  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315  *	it if required to the full size of the media. The caller must check
1316  *	the drive has the HPA feature set enabled.
1317  *
1318  *	RETURNS:
1319  *	0 on success, -errno on failure.
1320  */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 	struct ata_eh_context *ehc = &dev->link->eh_context;
1324 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 	u64 sectors = ata_id_n_sectors(dev->id);
1327 	u64 native_sectors;
1328 	int rc;
1329 
1330 	/* do we need to do it? */
1331 	if (dev->class != ATA_DEV_ATA ||
1332 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 		return 0;
1335 
1336 	/* read native max address */
1337 	rc = ata_read_native_max_address(dev, &native_sectors);
1338 	if (rc) {
1339 		/* If device aborted the command or HPA isn't going to
1340 		 * be unlocked, skip HPA resizing.
1341 		 */
1342 		if (rc == -EACCES || !unlock_hpa) {
1343 			ata_dev_warn(dev,
1344 				     "HPA support seems broken, skipping HPA handling\n");
1345 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346 
1347 			/* we can continue if device aborted the command */
1348 			if (rc == -EACCES)
1349 				rc = 0;
1350 		}
1351 
1352 		return rc;
1353 	}
1354 	dev->n_native_sectors = native_sectors;
1355 
1356 	/* nothing to do? */
1357 	if (native_sectors <= sectors || !unlock_hpa) {
1358 		if (!print_info || native_sectors == sectors)
1359 			return 0;
1360 
1361 		if (native_sectors > sectors)
1362 			ata_dev_info(dev,
1363 				"HPA detected: current %llu, native %llu\n",
1364 				(unsigned long long)sectors,
1365 				(unsigned long long)native_sectors);
1366 		else if (native_sectors < sectors)
1367 			ata_dev_warn(dev,
1368 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369 				(unsigned long long)native_sectors,
1370 				(unsigned long long)sectors);
1371 		return 0;
1372 	}
1373 
1374 	/* let's unlock HPA */
1375 	rc = ata_set_max_sectors(dev, native_sectors);
1376 	if (rc == -EACCES) {
1377 		/* if device aborted the command, skip HPA resizing */
1378 		ata_dev_warn(dev,
1379 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 			     (unsigned long long)sectors,
1381 			     (unsigned long long)native_sectors);
1382 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 		return 0;
1384 	} else if (rc)
1385 		return rc;
1386 
1387 	/* re-read IDENTIFY data */
1388 	rc = ata_dev_reread_id(dev, 0);
1389 	if (rc) {
1390 		ata_dev_err(dev,
1391 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392 		return rc;
1393 	}
1394 
1395 	if (print_info) {
1396 		u64 new_sectors = ata_id_n_sectors(dev->id);
1397 		ata_dev_info(dev,
1398 			"HPA unlocked: %llu -> %llu, native %llu\n",
1399 			(unsigned long long)sectors,
1400 			(unsigned long long)new_sectors,
1401 			(unsigned long long)native_sectors);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409  *	@id: IDENTIFY DEVICE page to dump
1410  *
1411  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412  *	page.
1413  *
1414  *	LOCKING:
1415  *	caller.
1416  */
1417 
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 	DPRINTK("49==0x%04x  "
1421 		"53==0x%04x  "
1422 		"63==0x%04x  "
1423 		"64==0x%04x  "
1424 		"75==0x%04x  \n",
1425 		id[49],
1426 		id[53],
1427 		id[63],
1428 		id[64],
1429 		id[75]);
1430 	DPRINTK("80==0x%04x  "
1431 		"81==0x%04x  "
1432 		"82==0x%04x  "
1433 		"83==0x%04x  "
1434 		"84==0x%04x  \n",
1435 		id[80],
1436 		id[81],
1437 		id[82],
1438 		id[83],
1439 		id[84]);
1440 	DPRINTK("88==0x%04x  "
1441 		"93==0x%04x\n",
1442 		id[88],
1443 		id[93]);
1444 }
1445 
1446 /**
1447  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448  *	@id: IDENTIFY data to compute xfer mask from
1449  *
1450  *	Compute the xfermask for this device. This is not as trivial
1451  *	as it seems if we must consider early devices correctly.
1452  *
1453  *	FIXME: pre IDE drive timing (do we care ?).
1454  *
1455  *	LOCKING:
1456  *	None.
1457  *
1458  *	RETURNS:
1459  *	Computed xfermask
1460  */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 	unsigned long pio_mask, mwdma_mask, udma_mask;
1464 
1465 	/* Usual case. Word 53 indicates word 64 is valid */
1466 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 		pio_mask <<= 3;
1469 		pio_mask |= 0x7;
1470 	} else {
1471 		/* If word 64 isn't valid then Word 51 high byte holds
1472 		 * the PIO timing number for the maximum. Turn it into
1473 		 * a mask.
1474 		 */
1475 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 		if (mode < 5)	/* Valid PIO range */
1477 			pio_mask = (2 << mode) - 1;
1478 		else
1479 			pio_mask = 1;
1480 
1481 		/* But wait.. there's more. Design your standards by
1482 		 * committee and you too can get a free iordy field to
1483 		 * process. However its the speeds not the modes that
1484 		 * are supported... Note drivers using the timing API
1485 		 * will get this right anyway
1486 		 */
1487 	}
1488 
1489 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490 
1491 	if (ata_id_is_cfa(id)) {
1492 		/*
1493 		 *	Process compact flash extended modes
1494 		 */
1495 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497 
1498 		if (pio)
1499 			pio_mask |= (1 << 5);
1500 		if (pio > 1)
1501 			pio_mask |= (1 << 6);
1502 		if (dma)
1503 			mwdma_mask |= (1 << 3);
1504 		if (dma > 1)
1505 			mwdma_mask |= (1 << 4);
1506 	}
1507 
1508 	udma_mask = 0;
1509 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511 
1512 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514 
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 	struct completion *waiting = qc->private_data;
1518 
1519 	complete(waiting);
1520 }
1521 
1522 /**
1523  *	ata_exec_internal_sg - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@sgl: sg list for the data buffer of the command
1529  *	@n_elem: Number of sg entries
1530  *	@timeout: Timeout in msecs (0 for default)
1531  *
1532  *	Executes libata internal command with timeout.  @tf contains
1533  *	command on entry and result on return.  Timeout and error
1534  *	conditions are reported via return value.  No recovery action
1535  *	is taken after a command times out.  It's caller's duty to
1536  *	clean up after timeout.
1537  *
1538  *	LOCKING:
1539  *	None.  Should be called with kernel context, might sleep.
1540  *
1541  *	RETURNS:
1542  *	Zero on success, AC_ERR_* mask on failure
1543  */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 			      struct ata_taskfile *tf, const u8 *cdb,
1546 			      int dma_dir, struct scatterlist *sgl,
1547 			      unsigned int n_elem, unsigned long timeout)
1548 {
1549 	struct ata_link *link = dev->link;
1550 	struct ata_port *ap = link->ap;
1551 	u8 command = tf->command;
1552 	int auto_timeout = 0;
1553 	struct ata_queued_cmd *qc;
1554 	unsigned int tag, preempted_tag;
1555 	u32 preempted_sactive, preempted_qc_active;
1556 	int preempted_nr_active_links;
1557 	DECLARE_COMPLETION_ONSTACK(wait);
1558 	unsigned long flags;
1559 	unsigned int err_mask;
1560 	int rc;
1561 
1562 	spin_lock_irqsave(ap->lock, flags);
1563 
1564 	/* no internal command while frozen */
1565 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 		spin_unlock_irqrestore(ap->lock, flags);
1567 		return AC_ERR_SYSTEM;
1568 	}
1569 
1570 	/* initialize internal qc */
1571 
1572 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573 	 * drivers choke if any other tag is given.  This breaks
1574 	 * ata_tag_internal() test for those drivers.  Don't use new
1575 	 * EH stuff without converting to it.
1576 	 */
1577 	if (ap->ops->error_handler)
1578 		tag = ATA_TAG_INTERNAL;
1579 	else
1580 		tag = 0;
1581 
1582 	if (test_and_set_bit(tag, &ap->qc_allocated))
1583 		BUG();
1584 	qc = __ata_qc_from_tag(ap, tag);
1585 
1586 	qc->tag = tag;
1587 	qc->scsicmd = NULL;
1588 	qc->ap = ap;
1589 	qc->dev = dev;
1590 	ata_qc_reinit(qc);
1591 
1592 	preempted_tag = link->active_tag;
1593 	preempted_sactive = link->sactive;
1594 	preempted_qc_active = ap->qc_active;
1595 	preempted_nr_active_links = ap->nr_active_links;
1596 	link->active_tag = ATA_TAG_POISON;
1597 	link->sactive = 0;
1598 	ap->qc_active = 0;
1599 	ap->nr_active_links = 0;
1600 
1601 	/* prepare & issue qc */
1602 	qc->tf = *tf;
1603 	if (cdb)
1604 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605 
1606 	/* some SATA bridges need us to indicate data xfer direction */
1607 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 	    dma_dir == DMA_FROM_DEVICE)
1609 		qc->tf.feature |= ATAPI_DMADIR;
1610 
1611 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 	qc->dma_dir = dma_dir;
1613 	if (dma_dir != DMA_NONE) {
1614 		unsigned int i, buflen = 0;
1615 		struct scatterlist *sg;
1616 
1617 		for_each_sg(sgl, sg, n_elem, i)
1618 			buflen += sg->length;
1619 
1620 		ata_sg_init(qc, sgl, n_elem);
1621 		qc->nbytes = buflen;
1622 	}
1623 
1624 	qc->private_data = &wait;
1625 	qc->complete_fn = ata_qc_complete_internal;
1626 
1627 	ata_qc_issue(qc);
1628 
1629 	spin_unlock_irqrestore(ap->lock, flags);
1630 
1631 	if (!timeout) {
1632 		if (ata_probe_timeout)
1633 			timeout = ata_probe_timeout * 1000;
1634 		else {
1635 			timeout = ata_internal_cmd_timeout(dev, command);
1636 			auto_timeout = 1;
1637 		}
1638 	}
1639 
1640 	if (ap->ops->error_handler)
1641 		ata_eh_release(ap);
1642 
1643 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644 
1645 	if (ap->ops->error_handler)
1646 		ata_eh_acquire(ap);
1647 
1648 	ata_sff_flush_pio_task(ap);
1649 
1650 	if (!rc) {
1651 		spin_lock_irqsave(ap->lock, flags);
1652 
1653 		/* We're racing with irq here.  If we lose, the
1654 		 * following test prevents us from completing the qc
1655 		 * twice.  If we win, the port is frozen and will be
1656 		 * cleaned up by ->post_internal_cmd().
1657 		 */
1658 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 			qc->err_mask |= AC_ERR_TIMEOUT;
1660 
1661 			if (ap->ops->error_handler)
1662 				ata_port_freeze(ap);
1663 			else
1664 				ata_qc_complete(qc);
1665 
1666 			if (ata_msg_warn(ap))
1667 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 					     command);
1669 		}
1670 
1671 		spin_unlock_irqrestore(ap->lock, flags);
1672 	}
1673 
1674 	/* do post_internal_cmd */
1675 	if (ap->ops->post_internal_cmd)
1676 		ap->ops->post_internal_cmd(qc);
1677 
1678 	/* perform minimal error analysis */
1679 	if (qc->flags & ATA_QCFLAG_FAILED) {
1680 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 			qc->err_mask |= AC_ERR_DEV;
1682 
1683 		if (!qc->err_mask)
1684 			qc->err_mask |= AC_ERR_OTHER;
1685 
1686 		if (qc->err_mask & ~AC_ERR_OTHER)
1687 			qc->err_mask &= ~AC_ERR_OTHER;
1688 	}
1689 
1690 	/* finish up */
1691 	spin_lock_irqsave(ap->lock, flags);
1692 
1693 	*tf = qc->result_tf;
1694 	err_mask = qc->err_mask;
1695 
1696 	ata_qc_free(qc);
1697 	link->active_tag = preempted_tag;
1698 	link->sactive = preempted_sactive;
1699 	ap->qc_active = preempted_qc_active;
1700 	ap->nr_active_links = preempted_nr_active_links;
1701 
1702 	spin_unlock_irqrestore(ap->lock, flags);
1703 
1704 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 		ata_internal_cmd_timed_out(dev, command);
1706 
1707 	return err_mask;
1708 }
1709 
1710 /**
1711  *	ata_exec_internal - execute libata internal command
1712  *	@dev: Device to which the command is sent
1713  *	@tf: Taskfile registers for the command and the result
1714  *	@cdb: CDB for packet command
1715  *	@dma_dir: Data tranfer direction of the command
1716  *	@buf: Data buffer of the command
1717  *	@buflen: Length of data buffer
1718  *	@timeout: Timeout in msecs (0 for default)
1719  *
1720  *	Wrapper around ata_exec_internal_sg() which takes simple
1721  *	buffer instead of sg list.
1722  *
1723  *	LOCKING:
1724  *	None.  Should be called with kernel context, might sleep.
1725  *
1726  *	RETURNS:
1727  *	Zero on success, AC_ERR_* mask on failure
1728  */
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 			   struct ata_taskfile *tf, const u8 *cdb,
1731 			   int dma_dir, void *buf, unsigned int buflen,
1732 			   unsigned long timeout)
1733 {
1734 	struct scatterlist *psg = NULL, sg;
1735 	unsigned int n_elem = 0;
1736 
1737 	if (dma_dir != DMA_NONE) {
1738 		WARN_ON(!buf);
1739 		sg_init_one(&sg, buf, buflen);
1740 		psg = &sg;
1741 		n_elem++;
1742 	}
1743 
1744 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 				    timeout);
1746 }
1747 
1748 /**
1749  *	ata_do_simple_cmd - execute simple internal command
1750  *	@dev: Device to which the command is sent
1751  *	@cmd: Opcode to execute
1752  *
1753  *	Execute a 'simple' command, that only consists of the opcode
1754  *	'cmd' itself, without filling any other registers
1755  *
1756  *	LOCKING:
1757  *	Kernel thread context (may sleep).
1758  *
1759  *	RETURNS:
1760  *	Zero on success, AC_ERR_* mask on failure
1761  */
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763 {
1764 	struct ata_taskfile tf;
1765 
1766 	ata_tf_init(dev, &tf);
1767 
1768 	tf.command = cmd;
1769 	tf.flags |= ATA_TFLAG_DEVICE;
1770 	tf.protocol = ATA_PROT_NODATA;
1771 
1772 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773 }
1774 
1775 /**
1776  *	ata_pio_need_iordy	-	check if iordy needed
1777  *	@adev: ATA device
1778  *
1779  *	Check if the current speed of the device requires IORDY. Used
1780  *	by various controllers for chip configuration.
1781  */
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783 {
1784 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1785 	 * lead to controller lock up on certain controllers if the
1786 	 * port is not occupied.  See bko#11703 for details.
1787 	 */
1788 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 		return 0;
1790 	/* Controller doesn't support IORDY.  Probably a pointless
1791 	 * check as the caller should know this.
1792 	 */
1793 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 		return 0;
1795 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796 	if (ata_id_is_cfa(adev->id)
1797 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 		return 0;
1799 	/* PIO3 and higher it is mandatory */
1800 	if (adev->pio_mode > XFER_PIO_2)
1801 		return 1;
1802 	/* We turn it on when possible */
1803 	if (ata_id_has_iordy(adev->id))
1804 		return 1;
1805 	return 0;
1806 }
1807 
1808 /**
1809  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1810  *	@adev: ATA device
1811  *
1812  *	Compute the highest mode possible if we are not using iordy. Return
1813  *	-1 if no iordy mode is available.
1814  */
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1819 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 		/* Is the speed faster than the drive allows non IORDY ? */
1821 		if (pio) {
1822 			/* This is cycle times not frequency - watch the logic! */
1823 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1824 				return 3 << ATA_SHIFT_PIO;
1825 			return 7 << ATA_SHIFT_PIO;
1826 		}
1827 	}
1828 	return 3 << ATA_SHIFT_PIO;
1829 }
1830 
1831 /**
1832  *	ata_do_dev_read_id		-	default ID read method
1833  *	@dev: device
1834  *	@tf: proposed taskfile
1835  *	@id: data buffer
1836  *
1837  *	Issue the identify taskfile and hand back the buffer containing
1838  *	identify data. For some RAID controllers and for pre ATA devices
1839  *	this function is wrapped or replaced by the driver
1840  */
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 					struct ata_taskfile *tf, u16 *id)
1843 {
1844 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846 }
1847 
1848 /**
1849  *	ata_dev_read_id - Read ID data from the specified device
1850  *	@dev: target device
1851  *	@p_class: pointer to class of the target device (may be changed)
1852  *	@flags: ATA_READID_* flags
1853  *	@id: buffer to read IDENTIFY data into
1854  *
1855  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858  *	for pre-ATA4 drives.
1859  *
1860  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861  *	now we abort if we hit that case.
1862  *
1863  *	LOCKING:
1864  *	Kernel thread context (may sleep)
1865  *
1866  *	RETURNS:
1867  *	0 on success, -errno otherwise.
1868  */
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 		    unsigned int flags, u16 *id)
1871 {
1872 	struct ata_port *ap = dev->link->ap;
1873 	unsigned int class = *p_class;
1874 	struct ata_taskfile tf;
1875 	unsigned int err_mask = 0;
1876 	const char *reason;
1877 	bool is_semb = class == ATA_DEV_SEMB;
1878 	int may_fallback = 1, tried_spinup = 0;
1879 	int rc;
1880 
1881 	if (ata_msg_ctl(ap))
1882 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883 
1884 retry:
1885 	ata_tf_init(dev, &tf);
1886 
1887 	switch (class) {
1888 	case ATA_DEV_SEMB:
1889 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1890 	case ATA_DEV_ATA:
1891 		tf.command = ATA_CMD_ID_ATA;
1892 		break;
1893 	case ATA_DEV_ATAPI:
1894 		tf.command = ATA_CMD_ID_ATAPI;
1895 		break;
1896 	default:
1897 		rc = -ENODEV;
1898 		reason = "unsupported class";
1899 		goto err_out;
1900 	}
1901 
1902 	tf.protocol = ATA_PROT_PIO;
1903 
1904 	/* Some devices choke if TF registers contain garbage.  Make
1905 	 * sure those are properly initialized.
1906 	 */
1907 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908 
1909 	/* Device presence detection is unreliable on some
1910 	 * controllers.  Always poll IDENTIFY if available.
1911 	 */
1912 	tf.flags |= ATA_TFLAG_POLLING;
1913 
1914 	if (ap->ops->read_id)
1915 		err_mask = ap->ops->read_id(dev, &tf, id);
1916 	else
1917 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1918 
1919 	if (err_mask) {
1920 		if (err_mask & AC_ERR_NODEV_HINT) {
1921 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 			return -ENOENT;
1923 		}
1924 
1925 		if (is_semb) {
1926 			ata_dev_info(dev,
1927 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 			/* SEMB is not supported yet */
1929 			*p_class = ATA_DEV_SEMB_UNSUP;
1930 			return 0;
1931 		}
1932 
1933 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 			/* Device or controller might have reported
1935 			 * the wrong device class.  Give a shot at the
1936 			 * other IDENTIFY if the current one is
1937 			 * aborted by the device.
1938 			 */
1939 			if (may_fallback) {
1940 				may_fallback = 0;
1941 
1942 				if (class == ATA_DEV_ATA)
1943 					class = ATA_DEV_ATAPI;
1944 				else
1945 					class = ATA_DEV_ATA;
1946 				goto retry;
1947 			}
1948 
1949 			/* Control reaches here iff the device aborted
1950 			 * both flavors of IDENTIFYs which happens
1951 			 * sometimes with phantom devices.
1952 			 */
1953 			ata_dev_dbg(dev,
1954 				    "both IDENTIFYs aborted, assuming NODEV\n");
1955 			return -ENOENT;
1956 		}
1957 
1958 		rc = -EIO;
1959 		reason = "I/O error";
1960 		goto err_out;
1961 	}
1962 
1963 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1966 			    class, may_fallback, tried_spinup);
1967 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 	}
1970 
1971 	/* Falling back doesn't make sense if ID data was read
1972 	 * successfully at least once.
1973 	 */
1974 	may_fallback = 0;
1975 
1976 	swap_buf_le16(id, ATA_ID_WORDS);
1977 
1978 	/* sanity check */
1979 	rc = -EINVAL;
1980 	reason = "device reports invalid type";
1981 
1982 	if (class == ATA_DEV_ATA) {
1983 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 			goto err_out;
1985 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 							ata_id_is_ata(id)) {
1987 			ata_dev_dbg(dev,
1988 				"host indicates ignore ATA devices, ignored\n");
1989 			return -ENOENT;
1990 		}
1991 	} else {
1992 		if (ata_id_is_ata(id))
1993 			goto err_out;
1994 	}
1995 
1996 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 		tried_spinup = 1;
1998 		/*
1999 		 * Drive powered-up in standby mode, and requires a specific
2000 		 * SET_FEATURES spin-up subcommand before it will accept
2001 		 * anything other than the original IDENTIFY command.
2002 		 */
2003 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 		if (err_mask && id[2] != 0x738c) {
2005 			rc = -EIO;
2006 			reason = "SPINUP failed";
2007 			goto err_out;
2008 		}
2009 		/*
2010 		 * If the drive initially returned incomplete IDENTIFY info,
2011 		 * we now must reissue the IDENTIFY command.
2012 		 */
2013 		if (id[2] == 0x37c8)
2014 			goto retry;
2015 	}
2016 
2017 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 		/*
2019 		 * The exact sequence expected by certain pre-ATA4 drives is:
2020 		 * SRST RESET
2021 		 * IDENTIFY (optional in early ATA)
2022 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 		 * anything else..
2024 		 * Some drives were very specific about that exact sequence.
2025 		 *
2026 		 * Note that ATA4 says lba is mandatory so the second check
2027 		 * should never trigger.
2028 		 */
2029 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 			if (err_mask) {
2032 				rc = -EIO;
2033 				reason = "INIT_DEV_PARAMS failed";
2034 				goto err_out;
2035 			}
2036 
2037 			/* current CHS translation info (id[53-58]) might be
2038 			 * changed. reread the identify device info.
2039 			 */
2040 			flags &= ~ATA_READID_POSTRESET;
2041 			goto retry;
2042 		}
2043 	}
2044 
2045 	*p_class = class;
2046 
2047 	return 0;
2048 
2049  err_out:
2050 	if (ata_msg_warn(ap))
2051 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 			     reason, err_mask);
2053 	return rc;
2054 }
2055 
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 	struct ata_link *plink = ata_dev_phys_link(dev);
2059 	u32 target, target_limit;
2060 
2061 	if (!sata_scr_valid(plink))
2062 		return 0;
2063 
2064 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 		target = 1;
2066 	else
2067 		return 0;
2068 
2069 	target_limit = (1 << target) - 1;
2070 
2071 	/* if already on stricter limit, no need to push further */
2072 	if (plink->sata_spd_limit <= target_limit)
2073 		return 0;
2074 
2075 	plink->sata_spd_limit = target_limit;
2076 
2077 	/* Request another EH round by returning -EAGAIN if link is
2078 	 * going faster than the target speed.  Forward progress is
2079 	 * guaranteed by setting sata_spd_limit to target_limit above.
2080 	 */
2081 	if (plink->sata_spd > target) {
2082 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 			     sata_spd_string(target));
2084 		return -EAGAIN;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 	struct ata_port *ap = dev->link->ap;
2092 
2093 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 		return 0;
2095 
2096 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098 
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 			       char *desc, size_t desc_sz)
2101 {
2102 	struct ata_port *ap = dev->link->ap;
2103 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 	unsigned int err_mask;
2105 	char *aa_desc = "";
2106 
2107 	if (!ata_id_has_ncq(dev->id)) {
2108 		desc[0] = '\0';
2109 		return 0;
2110 	}
2111 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 		snprintf(desc, desc_sz, "NCQ (not used)");
2113 		return 0;
2114 	}
2115 	if (ap->flags & ATA_FLAG_NCQ) {
2116 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 		dev->flags |= ATA_DFLAG_NCQ;
2118 	}
2119 
2120 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 		ata_id_has_fpdma_aa(dev->id)) {
2123 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 			SATA_FPDMA_AA);
2125 		if (err_mask) {
2126 			ata_dev_err(dev,
2127 				    "failed to enable AA (error_mask=0x%x)\n",
2128 				    err_mask);
2129 			if (err_mask != AC_ERR_DEV) {
2130 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 				return -EIO;
2132 			}
2133 		} else
2134 			aa_desc = ", AA";
2135 	}
2136 
2137 	if (hdepth >= ddepth)
2138 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 	else
2140 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 			ddepth, aa_desc);
2142 	return 0;
2143 }
2144 
2145 /**
2146  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2147  *	@dev: Target device to configure
2148  *
2149  *	Configure @dev according to @dev->id.  Generic and low-level
2150  *	driver specific fixups are also applied.
2151  *
2152  *	LOCKING:
2153  *	Kernel thread context (may sleep)
2154  *
2155  *	RETURNS:
2156  *	0 on success, -errno otherwise
2157  */
2158 int ata_dev_configure(struct ata_device *dev)
2159 {
2160 	struct ata_port *ap = dev->link->ap;
2161 	struct ata_eh_context *ehc = &dev->link->eh_context;
2162 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2163 	const u16 *id = dev->id;
2164 	unsigned long xfer_mask;
2165 	unsigned int err_mask;
2166 	char revbuf[7];		/* XYZ-99\0 */
2167 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2168 	char modelbuf[ATA_ID_PROD_LEN+1];
2169 	int rc;
2170 
2171 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2172 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2173 		return 0;
2174 	}
2175 
2176 	if (ata_msg_probe(ap))
2177 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2178 
2179 	/* set horkage */
2180 	dev->horkage |= ata_dev_blacklisted(dev);
2181 	ata_force_horkage(dev);
2182 
2183 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2184 		ata_dev_info(dev, "unsupported device, disabling\n");
2185 		ata_dev_disable(dev);
2186 		return 0;
2187 	}
2188 
2189 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2190 	    dev->class == ATA_DEV_ATAPI) {
2191 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2192 			     atapi_enabled ? "not supported with this driver"
2193 			     : "disabled");
2194 		ata_dev_disable(dev);
2195 		return 0;
2196 	}
2197 
2198 	rc = ata_do_link_spd_horkage(dev);
2199 	if (rc)
2200 		return rc;
2201 
2202 	/* let ACPI work its magic */
2203 	rc = ata_acpi_on_devcfg(dev);
2204 	if (rc)
2205 		return rc;
2206 
2207 	/* massage HPA, do it early as it might change IDENTIFY data */
2208 	rc = ata_hpa_resize(dev);
2209 	if (rc)
2210 		return rc;
2211 
2212 	/* print device capabilities */
2213 	if (ata_msg_probe(ap))
2214 		ata_dev_dbg(dev,
2215 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2216 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2217 			    __func__,
2218 			    id[49], id[82], id[83], id[84],
2219 			    id[85], id[86], id[87], id[88]);
2220 
2221 	/* initialize to-be-configured parameters */
2222 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2223 	dev->max_sectors = 0;
2224 	dev->cdb_len = 0;
2225 	dev->n_sectors = 0;
2226 	dev->cylinders = 0;
2227 	dev->heads = 0;
2228 	dev->sectors = 0;
2229 	dev->multi_count = 0;
2230 
2231 	/*
2232 	 * common ATA, ATAPI feature tests
2233 	 */
2234 
2235 	/* find max transfer mode; for printk only */
2236 	xfer_mask = ata_id_xfermask(id);
2237 
2238 	if (ata_msg_probe(ap))
2239 		ata_dump_id(id);
2240 
2241 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2242 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2243 			sizeof(fwrevbuf));
2244 
2245 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2246 			sizeof(modelbuf));
2247 
2248 	/* ATA-specific feature tests */
2249 	if (dev->class == ATA_DEV_ATA) {
2250 		if (ata_id_is_cfa(id)) {
2251 			/* CPRM may make this media unusable */
2252 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2253 				ata_dev_warn(dev,
2254 	"supports DRM functions and may not be fully accessible\n");
2255 			snprintf(revbuf, 7, "CFA");
2256 		} else {
2257 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2258 			/* Warn the user if the device has TPM extensions */
2259 			if (ata_id_has_tpm(id))
2260 				ata_dev_warn(dev,
2261 	"supports DRM functions and may not be fully accessible\n");
2262 		}
2263 
2264 		dev->n_sectors = ata_id_n_sectors(id);
2265 
2266 		/* get current R/W Multiple count setting */
2267 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2268 			unsigned int max = dev->id[47] & 0xff;
2269 			unsigned int cnt = dev->id[59] & 0xff;
2270 			/* only recognize/allow powers of two here */
2271 			if (is_power_of_2(max) && is_power_of_2(cnt))
2272 				if (cnt <= max)
2273 					dev->multi_count = cnt;
2274 		}
2275 
2276 		if (ata_id_has_lba(id)) {
2277 			const char *lba_desc;
2278 			char ncq_desc[24];
2279 
2280 			lba_desc = "LBA";
2281 			dev->flags |= ATA_DFLAG_LBA;
2282 			if (ata_id_has_lba48(id)) {
2283 				dev->flags |= ATA_DFLAG_LBA48;
2284 				lba_desc = "LBA48";
2285 
2286 				if (dev->n_sectors >= (1UL << 28) &&
2287 				    ata_id_has_flush_ext(id))
2288 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2289 			}
2290 
2291 			/* config NCQ */
2292 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2293 			if (rc)
2294 				return rc;
2295 
2296 			/* print device info to dmesg */
2297 			if (ata_msg_drv(ap) && print_info) {
2298 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2299 					     revbuf, modelbuf, fwrevbuf,
2300 					     ata_mode_string(xfer_mask));
2301 				ata_dev_info(dev,
2302 					     "%llu sectors, multi %u: %s %s\n",
2303 					(unsigned long long)dev->n_sectors,
2304 					dev->multi_count, lba_desc, ncq_desc);
2305 			}
2306 		} else {
2307 			/* CHS */
2308 
2309 			/* Default translation */
2310 			dev->cylinders	= id[1];
2311 			dev->heads	= id[3];
2312 			dev->sectors	= id[6];
2313 
2314 			if (ata_id_current_chs_valid(id)) {
2315 				/* Current CHS translation is valid. */
2316 				dev->cylinders = id[54];
2317 				dev->heads     = id[55];
2318 				dev->sectors   = id[56];
2319 			}
2320 
2321 			/* print device info to dmesg */
2322 			if (ata_msg_drv(ap) && print_info) {
2323 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2324 					     revbuf,	modelbuf, fwrevbuf,
2325 					     ata_mode_string(xfer_mask));
2326 				ata_dev_info(dev,
2327 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2328 					     (unsigned long long)dev->n_sectors,
2329 					     dev->multi_count, dev->cylinders,
2330 					     dev->heads, dev->sectors);
2331 			}
2332 		}
2333 
2334 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2335 		 * from SATA Settings page of Identify Device Data Log.
2336 		 */
2337 		if (ata_id_has_devslp(dev->id)) {
2338 			u8 *sata_setting = ap->sector_buf;
2339 			int i, j;
2340 
2341 			dev->flags |= ATA_DFLAG_DEVSLP;
2342 			err_mask = ata_read_log_page(dev,
2343 						     ATA_LOG_SATA_ID_DEV_DATA,
2344 						     ATA_LOG_SATA_SETTINGS,
2345 						     sata_setting,
2346 						     1);
2347 			if (err_mask)
2348 				ata_dev_dbg(dev,
2349 					    "failed to get Identify Device Data, Emask 0x%x\n",
2350 					    err_mask);
2351 			else
2352 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2353 					j = ATA_LOG_DEVSLP_OFFSET + i;
2354 					dev->devslp_timing[i] = sata_setting[j];
2355 				}
2356 		}
2357 
2358 		dev->cdb_len = 16;
2359 	}
2360 
2361 	/* ATAPI-specific feature tests */
2362 	else if (dev->class == ATA_DEV_ATAPI) {
2363 		const char *cdb_intr_string = "";
2364 		const char *atapi_an_string = "";
2365 		const char *dma_dir_string = "";
2366 		u32 sntf;
2367 
2368 		rc = atapi_cdb_len(id);
2369 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2370 			if (ata_msg_warn(ap))
2371 				ata_dev_warn(dev, "unsupported CDB len\n");
2372 			rc = -EINVAL;
2373 			goto err_out_nosup;
2374 		}
2375 		dev->cdb_len = (unsigned int) rc;
2376 
2377 		/* Enable ATAPI AN if both the host and device have
2378 		 * the support.  If PMP is attached, SNTF is required
2379 		 * to enable ATAPI AN to discern between PHY status
2380 		 * changed notifications and ATAPI ANs.
2381 		 */
2382 		if (atapi_an &&
2383 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2384 		    (!sata_pmp_attached(ap) ||
2385 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2386 			/* issue SET feature command to turn this on */
2387 			err_mask = ata_dev_set_feature(dev,
2388 					SETFEATURES_SATA_ENABLE, SATA_AN);
2389 			if (err_mask)
2390 				ata_dev_err(dev,
2391 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2392 					    err_mask);
2393 			else {
2394 				dev->flags |= ATA_DFLAG_AN;
2395 				atapi_an_string = ", ATAPI AN";
2396 			}
2397 		}
2398 
2399 		if (ata_id_cdb_intr(dev->id)) {
2400 			dev->flags |= ATA_DFLAG_CDB_INTR;
2401 			cdb_intr_string = ", CDB intr";
2402 		}
2403 
2404 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2405 			dev->flags |= ATA_DFLAG_DMADIR;
2406 			dma_dir_string = ", DMADIR";
2407 		}
2408 
2409 		if (ata_id_has_da(dev->id)) {
2410 			dev->flags |= ATA_DFLAG_DA;
2411 			zpodd_init(dev);
2412 		}
2413 
2414 		/* print device info to dmesg */
2415 		if (ata_msg_drv(ap) && print_info)
2416 			ata_dev_info(dev,
2417 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2418 				     modelbuf, fwrevbuf,
2419 				     ata_mode_string(xfer_mask),
2420 				     cdb_intr_string, atapi_an_string,
2421 				     dma_dir_string);
2422 	}
2423 
2424 	/* determine max_sectors */
2425 	dev->max_sectors = ATA_MAX_SECTORS;
2426 	if (dev->flags & ATA_DFLAG_LBA48)
2427 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2428 
2429 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2430 	   200 sectors */
2431 	if (ata_dev_knobble(dev)) {
2432 		if (ata_msg_drv(ap) && print_info)
2433 			ata_dev_info(dev, "applying bridge limits\n");
2434 		dev->udma_mask &= ATA_UDMA5;
2435 		dev->max_sectors = ATA_MAX_SECTORS;
2436 	}
2437 
2438 	if ((dev->class == ATA_DEV_ATAPI) &&
2439 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2440 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2441 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2442 	}
2443 
2444 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2445 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2446 					 dev->max_sectors);
2447 
2448 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2449 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2450 
2451 	if (ap->ops->dev_config)
2452 		ap->ops->dev_config(dev);
2453 
2454 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2455 		/* Let the user know. We don't want to disallow opens for
2456 		   rescue purposes, or in case the vendor is just a blithering
2457 		   idiot. Do this after the dev_config call as some controllers
2458 		   with buggy firmware may want to avoid reporting false device
2459 		   bugs */
2460 
2461 		if (print_info) {
2462 			ata_dev_warn(dev,
2463 "Drive reports diagnostics failure. This may indicate a drive\n");
2464 			ata_dev_warn(dev,
2465 "fault or invalid emulation. Contact drive vendor for information.\n");
2466 		}
2467 	}
2468 
2469 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2470 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2471 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2472 	}
2473 
2474 	return 0;
2475 
2476 err_out_nosup:
2477 	if (ata_msg_probe(ap))
2478 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2479 	return rc;
2480 }
2481 
2482 /**
2483  *	ata_cable_40wire	-	return 40 wire cable type
2484  *	@ap: port
2485  *
2486  *	Helper method for drivers which want to hardwire 40 wire cable
2487  *	detection.
2488  */
2489 
2490 int ata_cable_40wire(struct ata_port *ap)
2491 {
2492 	return ATA_CBL_PATA40;
2493 }
2494 
2495 /**
2496  *	ata_cable_80wire	-	return 80 wire cable type
2497  *	@ap: port
2498  *
2499  *	Helper method for drivers which want to hardwire 80 wire cable
2500  *	detection.
2501  */
2502 
2503 int ata_cable_80wire(struct ata_port *ap)
2504 {
2505 	return ATA_CBL_PATA80;
2506 }
2507 
2508 /**
2509  *	ata_cable_unknown	-	return unknown PATA cable.
2510  *	@ap: port
2511  *
2512  *	Helper method for drivers which have no PATA cable detection.
2513  */
2514 
2515 int ata_cable_unknown(struct ata_port *ap)
2516 {
2517 	return ATA_CBL_PATA_UNK;
2518 }
2519 
2520 /**
2521  *	ata_cable_ignore	-	return ignored PATA cable.
2522  *	@ap: port
2523  *
2524  *	Helper method for drivers which don't use cable type to limit
2525  *	transfer mode.
2526  */
2527 int ata_cable_ignore(struct ata_port *ap)
2528 {
2529 	return ATA_CBL_PATA_IGN;
2530 }
2531 
2532 /**
2533  *	ata_cable_sata	-	return SATA cable type
2534  *	@ap: port
2535  *
2536  *	Helper method for drivers which have SATA cables
2537  */
2538 
2539 int ata_cable_sata(struct ata_port *ap)
2540 {
2541 	return ATA_CBL_SATA;
2542 }
2543 
2544 /**
2545  *	ata_bus_probe - Reset and probe ATA bus
2546  *	@ap: Bus to probe
2547  *
2548  *	Master ATA bus probing function.  Initiates a hardware-dependent
2549  *	bus reset, then attempts to identify any devices found on
2550  *	the bus.
2551  *
2552  *	LOCKING:
2553  *	PCI/etc. bus probe sem.
2554  *
2555  *	RETURNS:
2556  *	Zero on success, negative errno otherwise.
2557  */
2558 
2559 int ata_bus_probe(struct ata_port *ap)
2560 {
2561 	unsigned int classes[ATA_MAX_DEVICES];
2562 	int tries[ATA_MAX_DEVICES];
2563 	int rc;
2564 	struct ata_device *dev;
2565 
2566 	ata_for_each_dev(dev, &ap->link, ALL)
2567 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2568 
2569  retry:
2570 	ata_for_each_dev(dev, &ap->link, ALL) {
2571 		/* If we issue an SRST then an ATA drive (not ATAPI)
2572 		 * may change configuration and be in PIO0 timing. If
2573 		 * we do a hard reset (or are coming from power on)
2574 		 * this is true for ATA or ATAPI. Until we've set a
2575 		 * suitable controller mode we should not touch the
2576 		 * bus as we may be talking too fast.
2577 		 */
2578 		dev->pio_mode = XFER_PIO_0;
2579 		dev->dma_mode = 0xff;
2580 
2581 		/* If the controller has a pio mode setup function
2582 		 * then use it to set the chipset to rights. Don't
2583 		 * touch the DMA setup as that will be dealt with when
2584 		 * configuring devices.
2585 		 */
2586 		if (ap->ops->set_piomode)
2587 			ap->ops->set_piomode(ap, dev);
2588 	}
2589 
2590 	/* reset and determine device classes */
2591 	ap->ops->phy_reset(ap);
2592 
2593 	ata_for_each_dev(dev, &ap->link, ALL) {
2594 		if (dev->class != ATA_DEV_UNKNOWN)
2595 			classes[dev->devno] = dev->class;
2596 		else
2597 			classes[dev->devno] = ATA_DEV_NONE;
2598 
2599 		dev->class = ATA_DEV_UNKNOWN;
2600 	}
2601 
2602 	/* read IDENTIFY page and configure devices. We have to do the identify
2603 	   specific sequence bass-ackwards so that PDIAG- is released by
2604 	   the slave device */
2605 
2606 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2607 		if (tries[dev->devno])
2608 			dev->class = classes[dev->devno];
2609 
2610 		if (!ata_dev_enabled(dev))
2611 			continue;
2612 
2613 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2614 				     dev->id);
2615 		if (rc)
2616 			goto fail;
2617 	}
2618 
2619 	/* Now ask for the cable type as PDIAG- should have been released */
2620 	if (ap->ops->cable_detect)
2621 		ap->cbl = ap->ops->cable_detect(ap);
2622 
2623 	/* We may have SATA bridge glue hiding here irrespective of
2624 	 * the reported cable types and sensed types.  When SATA
2625 	 * drives indicate we have a bridge, we don't know which end
2626 	 * of the link the bridge is which is a problem.
2627 	 */
2628 	ata_for_each_dev(dev, &ap->link, ENABLED)
2629 		if (ata_id_is_sata(dev->id))
2630 			ap->cbl = ATA_CBL_SATA;
2631 
2632 	/* After the identify sequence we can now set up the devices. We do
2633 	   this in the normal order so that the user doesn't get confused */
2634 
2635 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2636 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2637 		rc = ata_dev_configure(dev);
2638 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2639 		if (rc)
2640 			goto fail;
2641 	}
2642 
2643 	/* configure transfer mode */
2644 	rc = ata_set_mode(&ap->link, &dev);
2645 	if (rc)
2646 		goto fail;
2647 
2648 	ata_for_each_dev(dev, &ap->link, ENABLED)
2649 		return 0;
2650 
2651 	return -ENODEV;
2652 
2653  fail:
2654 	tries[dev->devno]--;
2655 
2656 	switch (rc) {
2657 	case -EINVAL:
2658 		/* eeek, something went very wrong, give up */
2659 		tries[dev->devno] = 0;
2660 		break;
2661 
2662 	case -ENODEV:
2663 		/* give it just one more chance */
2664 		tries[dev->devno] = min(tries[dev->devno], 1);
2665 	case -EIO:
2666 		if (tries[dev->devno] == 1) {
2667 			/* This is the last chance, better to slow
2668 			 * down than lose it.
2669 			 */
2670 			sata_down_spd_limit(&ap->link, 0);
2671 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2672 		}
2673 	}
2674 
2675 	if (!tries[dev->devno])
2676 		ata_dev_disable(dev);
2677 
2678 	goto retry;
2679 }
2680 
2681 /**
2682  *	sata_print_link_status - Print SATA link status
2683  *	@link: SATA link to printk link status about
2684  *
2685  *	This function prints link speed and status of a SATA link.
2686  *
2687  *	LOCKING:
2688  *	None.
2689  */
2690 static void sata_print_link_status(struct ata_link *link)
2691 {
2692 	u32 sstatus, scontrol, tmp;
2693 
2694 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2695 		return;
2696 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2697 
2698 	if (ata_phys_link_online(link)) {
2699 		tmp = (sstatus >> 4) & 0xf;
2700 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2701 			      sata_spd_string(tmp), sstatus, scontrol);
2702 	} else {
2703 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2704 			      sstatus, scontrol);
2705 	}
2706 }
2707 
2708 /**
2709  *	ata_dev_pair		-	return other device on cable
2710  *	@adev: device
2711  *
2712  *	Obtain the other device on the same cable, or if none is
2713  *	present NULL is returned
2714  */
2715 
2716 struct ata_device *ata_dev_pair(struct ata_device *adev)
2717 {
2718 	struct ata_link *link = adev->link;
2719 	struct ata_device *pair = &link->device[1 - adev->devno];
2720 	if (!ata_dev_enabled(pair))
2721 		return NULL;
2722 	return pair;
2723 }
2724 
2725 /**
2726  *	sata_down_spd_limit - adjust SATA spd limit downward
2727  *	@link: Link to adjust SATA spd limit for
2728  *	@spd_limit: Additional limit
2729  *
2730  *	Adjust SATA spd limit of @link downward.  Note that this
2731  *	function only adjusts the limit.  The change must be applied
2732  *	using sata_set_spd().
2733  *
2734  *	If @spd_limit is non-zero, the speed is limited to equal to or
2735  *	lower than @spd_limit if such speed is supported.  If
2736  *	@spd_limit is slower than any supported speed, only the lowest
2737  *	supported speed is allowed.
2738  *
2739  *	LOCKING:
2740  *	Inherited from caller.
2741  *
2742  *	RETURNS:
2743  *	0 on success, negative errno on failure
2744  */
2745 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2746 {
2747 	u32 sstatus, spd, mask;
2748 	int rc, bit;
2749 
2750 	if (!sata_scr_valid(link))
2751 		return -EOPNOTSUPP;
2752 
2753 	/* If SCR can be read, use it to determine the current SPD.
2754 	 * If not, use cached value in link->sata_spd.
2755 	 */
2756 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2757 	if (rc == 0 && ata_sstatus_online(sstatus))
2758 		spd = (sstatus >> 4) & 0xf;
2759 	else
2760 		spd = link->sata_spd;
2761 
2762 	mask = link->sata_spd_limit;
2763 	if (mask <= 1)
2764 		return -EINVAL;
2765 
2766 	/* unconditionally mask off the highest bit */
2767 	bit = fls(mask) - 1;
2768 	mask &= ~(1 << bit);
2769 
2770 	/* Mask off all speeds higher than or equal to the current
2771 	 * one.  Force 1.5Gbps if current SPD is not available.
2772 	 */
2773 	if (spd > 1)
2774 		mask &= (1 << (spd - 1)) - 1;
2775 	else
2776 		mask &= 1;
2777 
2778 	/* were we already at the bottom? */
2779 	if (!mask)
2780 		return -EINVAL;
2781 
2782 	if (spd_limit) {
2783 		if (mask & ((1 << spd_limit) - 1))
2784 			mask &= (1 << spd_limit) - 1;
2785 		else {
2786 			bit = ffs(mask) - 1;
2787 			mask = 1 << bit;
2788 		}
2789 	}
2790 
2791 	link->sata_spd_limit = mask;
2792 
2793 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2794 		      sata_spd_string(fls(mask)));
2795 
2796 	return 0;
2797 }
2798 
2799 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2800 {
2801 	struct ata_link *host_link = &link->ap->link;
2802 	u32 limit, target, spd;
2803 
2804 	limit = link->sata_spd_limit;
2805 
2806 	/* Don't configure downstream link faster than upstream link.
2807 	 * It doesn't speed up anything and some PMPs choke on such
2808 	 * configuration.
2809 	 */
2810 	if (!ata_is_host_link(link) && host_link->sata_spd)
2811 		limit &= (1 << host_link->sata_spd) - 1;
2812 
2813 	if (limit == UINT_MAX)
2814 		target = 0;
2815 	else
2816 		target = fls(limit);
2817 
2818 	spd = (*scontrol >> 4) & 0xf;
2819 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2820 
2821 	return spd != target;
2822 }
2823 
2824 /**
2825  *	sata_set_spd_needed - is SATA spd configuration needed
2826  *	@link: Link in question
2827  *
2828  *	Test whether the spd limit in SControl matches
2829  *	@link->sata_spd_limit.  This function is used to determine
2830  *	whether hardreset is necessary to apply SATA spd
2831  *	configuration.
2832  *
2833  *	LOCKING:
2834  *	Inherited from caller.
2835  *
2836  *	RETURNS:
2837  *	1 if SATA spd configuration is needed, 0 otherwise.
2838  */
2839 static int sata_set_spd_needed(struct ata_link *link)
2840 {
2841 	u32 scontrol;
2842 
2843 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2844 		return 1;
2845 
2846 	return __sata_set_spd_needed(link, &scontrol);
2847 }
2848 
2849 /**
2850  *	sata_set_spd - set SATA spd according to spd limit
2851  *	@link: Link to set SATA spd for
2852  *
2853  *	Set SATA spd of @link according to sata_spd_limit.
2854  *
2855  *	LOCKING:
2856  *	Inherited from caller.
2857  *
2858  *	RETURNS:
2859  *	0 if spd doesn't need to be changed, 1 if spd has been
2860  *	changed.  Negative errno if SCR registers are inaccessible.
2861  */
2862 int sata_set_spd(struct ata_link *link)
2863 {
2864 	u32 scontrol;
2865 	int rc;
2866 
2867 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2868 		return rc;
2869 
2870 	if (!__sata_set_spd_needed(link, &scontrol))
2871 		return 0;
2872 
2873 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2874 		return rc;
2875 
2876 	return 1;
2877 }
2878 
2879 /*
2880  * This mode timing computation functionality is ported over from
2881  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2882  */
2883 /*
2884  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2885  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2886  * for UDMA6, which is currently supported only by Maxtor drives.
2887  *
2888  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2889  */
2890 
2891 static const struct ata_timing ata_timing[] = {
2892 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2893 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2894 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2895 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2896 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2897 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2898 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2899 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2900 
2901 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2902 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2903 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2904 
2905 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2906 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2907 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2908 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2909 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2910 
2911 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2912 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2913 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2914 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2915 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2916 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2917 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2918 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2919 
2920 	{ 0xFF }
2921 };
2922 
2923 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2924 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2925 
2926 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2927 {
2928 	q->setup	= EZ(t->setup      * 1000,  T);
2929 	q->act8b	= EZ(t->act8b      * 1000,  T);
2930 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2931 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2932 	q->active	= EZ(t->active     * 1000,  T);
2933 	q->recover	= EZ(t->recover    * 1000,  T);
2934 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2935 	q->cycle	= EZ(t->cycle      * 1000,  T);
2936 	q->udma		= EZ(t->udma       * 1000, UT);
2937 }
2938 
2939 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2940 		      struct ata_timing *m, unsigned int what)
2941 {
2942 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2943 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2944 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2945 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2946 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2947 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2948 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2949 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2950 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2951 }
2952 
2953 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2954 {
2955 	const struct ata_timing *t = ata_timing;
2956 
2957 	while (xfer_mode > t->mode)
2958 		t++;
2959 
2960 	if (xfer_mode == t->mode)
2961 		return t;
2962 
2963 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2964 			__func__, xfer_mode);
2965 
2966 	return NULL;
2967 }
2968 
2969 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2970 		       struct ata_timing *t, int T, int UT)
2971 {
2972 	const u16 *id = adev->id;
2973 	const struct ata_timing *s;
2974 	struct ata_timing p;
2975 
2976 	/*
2977 	 * Find the mode.
2978 	 */
2979 
2980 	if (!(s = ata_timing_find_mode(speed)))
2981 		return -EINVAL;
2982 
2983 	memcpy(t, s, sizeof(*s));
2984 
2985 	/*
2986 	 * If the drive is an EIDE drive, it can tell us it needs extended
2987 	 * PIO/MW_DMA cycle timing.
2988 	 */
2989 
2990 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2991 		memset(&p, 0, sizeof(p));
2992 
2993 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2994 			if (speed <= XFER_PIO_2)
2995 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2996 			else if ((speed <= XFER_PIO_4) ||
2997 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2998 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2999 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3000 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3001 
3002 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3003 	}
3004 
3005 	/*
3006 	 * Convert the timing to bus clock counts.
3007 	 */
3008 
3009 	ata_timing_quantize(t, t, T, UT);
3010 
3011 	/*
3012 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3013 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3014 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3015 	 */
3016 
3017 	if (speed > XFER_PIO_6) {
3018 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3019 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3020 	}
3021 
3022 	/*
3023 	 * Lengthen active & recovery time so that cycle time is correct.
3024 	 */
3025 
3026 	if (t->act8b + t->rec8b < t->cyc8b) {
3027 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3028 		t->rec8b = t->cyc8b - t->act8b;
3029 	}
3030 
3031 	if (t->active + t->recover < t->cycle) {
3032 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3033 		t->recover = t->cycle - t->active;
3034 	}
3035 
3036 	/* In a few cases quantisation may produce enough errors to
3037 	   leave t->cycle too low for the sum of active and recovery
3038 	   if so we must correct this */
3039 	if (t->active + t->recover > t->cycle)
3040 		t->cycle = t->active + t->recover;
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3047  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3048  *	@cycle: cycle duration in ns
3049  *
3050  *	Return matching xfer mode for @cycle.  The returned mode is of
3051  *	the transfer type specified by @xfer_shift.  If @cycle is too
3052  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3053  *	than the fastest known mode, the fasted mode is returned.
3054  *
3055  *	LOCKING:
3056  *	None.
3057  *
3058  *	RETURNS:
3059  *	Matching xfer_mode, 0xff if no match found.
3060  */
3061 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3062 {
3063 	u8 base_mode = 0xff, last_mode = 0xff;
3064 	const struct ata_xfer_ent *ent;
3065 	const struct ata_timing *t;
3066 
3067 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3068 		if (ent->shift == xfer_shift)
3069 			base_mode = ent->base;
3070 
3071 	for (t = ata_timing_find_mode(base_mode);
3072 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3073 		unsigned short this_cycle;
3074 
3075 		switch (xfer_shift) {
3076 		case ATA_SHIFT_PIO:
3077 		case ATA_SHIFT_MWDMA:
3078 			this_cycle = t->cycle;
3079 			break;
3080 		case ATA_SHIFT_UDMA:
3081 			this_cycle = t->udma;
3082 			break;
3083 		default:
3084 			return 0xff;
3085 		}
3086 
3087 		if (cycle > this_cycle)
3088 			break;
3089 
3090 		last_mode = t->mode;
3091 	}
3092 
3093 	return last_mode;
3094 }
3095 
3096 /**
3097  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3098  *	@dev: Device to adjust xfer masks
3099  *	@sel: ATA_DNXFER_* selector
3100  *
3101  *	Adjust xfer masks of @dev downward.  Note that this function
3102  *	does not apply the change.  Invoking ata_set_mode() afterwards
3103  *	will apply the limit.
3104  *
3105  *	LOCKING:
3106  *	Inherited from caller.
3107  *
3108  *	RETURNS:
3109  *	0 on success, negative errno on failure
3110  */
3111 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3112 {
3113 	char buf[32];
3114 	unsigned long orig_mask, xfer_mask;
3115 	unsigned long pio_mask, mwdma_mask, udma_mask;
3116 	int quiet, highbit;
3117 
3118 	quiet = !!(sel & ATA_DNXFER_QUIET);
3119 	sel &= ~ATA_DNXFER_QUIET;
3120 
3121 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3122 						  dev->mwdma_mask,
3123 						  dev->udma_mask);
3124 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3125 
3126 	switch (sel) {
3127 	case ATA_DNXFER_PIO:
3128 		highbit = fls(pio_mask) - 1;
3129 		pio_mask &= ~(1 << highbit);
3130 		break;
3131 
3132 	case ATA_DNXFER_DMA:
3133 		if (udma_mask) {
3134 			highbit = fls(udma_mask) - 1;
3135 			udma_mask &= ~(1 << highbit);
3136 			if (!udma_mask)
3137 				return -ENOENT;
3138 		} else if (mwdma_mask) {
3139 			highbit = fls(mwdma_mask) - 1;
3140 			mwdma_mask &= ~(1 << highbit);
3141 			if (!mwdma_mask)
3142 				return -ENOENT;
3143 		}
3144 		break;
3145 
3146 	case ATA_DNXFER_40C:
3147 		udma_mask &= ATA_UDMA_MASK_40C;
3148 		break;
3149 
3150 	case ATA_DNXFER_FORCE_PIO0:
3151 		pio_mask &= 1;
3152 	case ATA_DNXFER_FORCE_PIO:
3153 		mwdma_mask = 0;
3154 		udma_mask = 0;
3155 		break;
3156 
3157 	default:
3158 		BUG();
3159 	}
3160 
3161 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3162 
3163 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3164 		return -ENOENT;
3165 
3166 	if (!quiet) {
3167 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3168 			snprintf(buf, sizeof(buf), "%s:%s",
3169 				 ata_mode_string(xfer_mask),
3170 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3171 		else
3172 			snprintf(buf, sizeof(buf), "%s",
3173 				 ata_mode_string(xfer_mask));
3174 
3175 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3176 	}
3177 
3178 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3179 			    &dev->udma_mask);
3180 
3181 	return 0;
3182 }
3183 
3184 static int ata_dev_set_mode(struct ata_device *dev)
3185 {
3186 	struct ata_port *ap = dev->link->ap;
3187 	struct ata_eh_context *ehc = &dev->link->eh_context;
3188 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3189 	const char *dev_err_whine = "";
3190 	int ign_dev_err = 0;
3191 	unsigned int err_mask = 0;
3192 	int rc;
3193 
3194 	dev->flags &= ~ATA_DFLAG_PIO;
3195 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3196 		dev->flags |= ATA_DFLAG_PIO;
3197 
3198 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3199 		dev_err_whine = " (SET_XFERMODE skipped)";
3200 	else {
3201 		if (nosetxfer)
3202 			ata_dev_warn(dev,
3203 				     "NOSETXFER but PATA detected - can't "
3204 				     "skip SETXFER, might malfunction\n");
3205 		err_mask = ata_dev_set_xfermode(dev);
3206 	}
3207 
3208 	if (err_mask & ~AC_ERR_DEV)
3209 		goto fail;
3210 
3211 	/* revalidate */
3212 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3213 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3214 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3215 	if (rc)
3216 		return rc;
3217 
3218 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3219 		/* Old CFA may refuse this command, which is just fine */
3220 		if (ata_id_is_cfa(dev->id))
3221 			ign_dev_err = 1;
3222 		/* Catch several broken garbage emulations plus some pre
3223 		   ATA devices */
3224 		if (ata_id_major_version(dev->id) == 0 &&
3225 					dev->pio_mode <= XFER_PIO_2)
3226 			ign_dev_err = 1;
3227 		/* Some very old devices and some bad newer ones fail
3228 		   any kind of SET_XFERMODE request but support PIO0-2
3229 		   timings and no IORDY */
3230 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3231 			ign_dev_err = 1;
3232 	}
3233 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3234 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3235 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3236 	    dev->dma_mode == XFER_MW_DMA_0 &&
3237 	    (dev->id[63] >> 8) & 1)
3238 		ign_dev_err = 1;
3239 
3240 	/* if the device is actually configured correctly, ignore dev err */
3241 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3242 		ign_dev_err = 1;
3243 
3244 	if (err_mask & AC_ERR_DEV) {
3245 		if (!ign_dev_err)
3246 			goto fail;
3247 		else
3248 			dev_err_whine = " (device error ignored)";
3249 	}
3250 
3251 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3252 		dev->xfer_shift, (int)dev->xfer_mode);
3253 
3254 	ata_dev_info(dev, "configured for %s%s\n",
3255 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3256 		     dev_err_whine);
3257 
3258 	return 0;
3259 
3260  fail:
3261 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3262 	return -EIO;
3263 }
3264 
3265 /**
3266  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3267  *	@link: link on which timings will be programmed
3268  *	@r_failed_dev: out parameter for failed device
3269  *
3270  *	Standard implementation of the function used to tune and set
3271  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3272  *	ata_dev_set_mode() fails, pointer to the failing device is
3273  *	returned in @r_failed_dev.
3274  *
3275  *	LOCKING:
3276  *	PCI/etc. bus probe sem.
3277  *
3278  *	RETURNS:
3279  *	0 on success, negative errno otherwise
3280  */
3281 
3282 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3283 {
3284 	struct ata_port *ap = link->ap;
3285 	struct ata_device *dev;
3286 	int rc = 0, used_dma = 0, found = 0;
3287 
3288 	/* step 1: calculate xfer_mask */
3289 	ata_for_each_dev(dev, link, ENABLED) {
3290 		unsigned long pio_mask, dma_mask;
3291 		unsigned int mode_mask;
3292 
3293 		mode_mask = ATA_DMA_MASK_ATA;
3294 		if (dev->class == ATA_DEV_ATAPI)
3295 			mode_mask = ATA_DMA_MASK_ATAPI;
3296 		else if (ata_id_is_cfa(dev->id))
3297 			mode_mask = ATA_DMA_MASK_CFA;
3298 
3299 		ata_dev_xfermask(dev);
3300 		ata_force_xfermask(dev);
3301 
3302 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3303 
3304 		if (libata_dma_mask & mode_mask)
3305 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3306 						     dev->udma_mask);
3307 		else
3308 			dma_mask = 0;
3309 
3310 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3311 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3312 
3313 		found = 1;
3314 		if (ata_dma_enabled(dev))
3315 			used_dma = 1;
3316 	}
3317 	if (!found)
3318 		goto out;
3319 
3320 	/* step 2: always set host PIO timings */
3321 	ata_for_each_dev(dev, link, ENABLED) {
3322 		if (dev->pio_mode == 0xff) {
3323 			ata_dev_warn(dev, "no PIO support\n");
3324 			rc = -EINVAL;
3325 			goto out;
3326 		}
3327 
3328 		dev->xfer_mode = dev->pio_mode;
3329 		dev->xfer_shift = ATA_SHIFT_PIO;
3330 		if (ap->ops->set_piomode)
3331 			ap->ops->set_piomode(ap, dev);
3332 	}
3333 
3334 	/* step 3: set host DMA timings */
3335 	ata_for_each_dev(dev, link, ENABLED) {
3336 		if (!ata_dma_enabled(dev))
3337 			continue;
3338 
3339 		dev->xfer_mode = dev->dma_mode;
3340 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3341 		if (ap->ops->set_dmamode)
3342 			ap->ops->set_dmamode(ap, dev);
3343 	}
3344 
3345 	/* step 4: update devices' xfer mode */
3346 	ata_for_each_dev(dev, link, ENABLED) {
3347 		rc = ata_dev_set_mode(dev);
3348 		if (rc)
3349 			goto out;
3350 	}
3351 
3352 	/* Record simplex status. If we selected DMA then the other
3353 	 * host channels are not permitted to do so.
3354 	 */
3355 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3356 		ap->host->simplex_claimed = ap;
3357 
3358  out:
3359 	if (rc)
3360 		*r_failed_dev = dev;
3361 	return rc;
3362 }
3363 
3364 /**
3365  *	ata_wait_ready - wait for link to become ready
3366  *	@link: link to be waited on
3367  *	@deadline: deadline jiffies for the operation
3368  *	@check_ready: callback to check link readiness
3369  *
3370  *	Wait for @link to become ready.  @check_ready should return
3371  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3372  *	link doesn't seem to be occupied, other errno for other error
3373  *	conditions.
3374  *
3375  *	Transient -ENODEV conditions are allowed for
3376  *	ATA_TMOUT_FF_WAIT.
3377  *
3378  *	LOCKING:
3379  *	EH context.
3380  *
3381  *	RETURNS:
3382  *	0 if @linke is ready before @deadline; otherwise, -errno.
3383  */
3384 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3385 		   int (*check_ready)(struct ata_link *link))
3386 {
3387 	unsigned long start = jiffies;
3388 	unsigned long nodev_deadline;
3389 	int warned = 0;
3390 
3391 	/* choose which 0xff timeout to use, read comment in libata.h */
3392 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3393 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3394 	else
3395 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3396 
3397 	/* Slave readiness can't be tested separately from master.  On
3398 	 * M/S emulation configuration, this function should be called
3399 	 * only on the master and it will handle both master and slave.
3400 	 */
3401 	WARN_ON(link == link->ap->slave_link);
3402 
3403 	if (time_after(nodev_deadline, deadline))
3404 		nodev_deadline = deadline;
3405 
3406 	while (1) {
3407 		unsigned long now = jiffies;
3408 		int ready, tmp;
3409 
3410 		ready = tmp = check_ready(link);
3411 		if (ready > 0)
3412 			return 0;
3413 
3414 		/*
3415 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3416 		 * is online.  Also, some SATA devices take a long
3417 		 * time to clear 0xff after reset.  Wait for
3418 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3419 		 * offline.
3420 		 *
3421 		 * Note that some PATA controllers (pata_ali) explode
3422 		 * if status register is read more than once when
3423 		 * there's no device attached.
3424 		 */
3425 		if (ready == -ENODEV) {
3426 			if (ata_link_online(link))
3427 				ready = 0;
3428 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3429 				 !ata_link_offline(link) &&
3430 				 time_before(now, nodev_deadline))
3431 				ready = 0;
3432 		}
3433 
3434 		if (ready)
3435 			return ready;
3436 		if (time_after(now, deadline))
3437 			return -EBUSY;
3438 
3439 		if (!warned && time_after(now, start + 5 * HZ) &&
3440 		    (deadline - now > 3 * HZ)) {
3441 			ata_link_warn(link,
3442 				"link is slow to respond, please be patient "
3443 				"(ready=%d)\n", tmp);
3444 			warned = 1;
3445 		}
3446 
3447 		ata_msleep(link->ap, 50);
3448 	}
3449 }
3450 
3451 /**
3452  *	ata_wait_after_reset - wait for link to become ready after reset
3453  *	@link: link to be waited on
3454  *	@deadline: deadline jiffies for the operation
3455  *	@check_ready: callback to check link readiness
3456  *
3457  *	Wait for @link to become ready after reset.
3458  *
3459  *	LOCKING:
3460  *	EH context.
3461  *
3462  *	RETURNS:
3463  *	0 if @linke is ready before @deadline; otherwise, -errno.
3464  */
3465 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3466 				int (*check_ready)(struct ata_link *link))
3467 {
3468 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3469 
3470 	return ata_wait_ready(link, deadline, check_ready);
3471 }
3472 
3473 /**
3474  *	sata_link_debounce - debounce SATA phy status
3475  *	@link: ATA link to debounce SATA phy status for
3476  *	@params: timing parameters { interval, duratinon, timeout } in msec
3477  *	@deadline: deadline jiffies for the operation
3478  *
3479  *	Make sure SStatus of @link reaches stable state, determined by
3480  *	holding the same value where DET is not 1 for @duration polled
3481  *	every @interval, before @timeout.  Timeout constraints the
3482  *	beginning of the stable state.  Because DET gets stuck at 1 on
3483  *	some controllers after hot unplugging, this functions waits
3484  *	until timeout then returns 0 if DET is stable at 1.
3485  *
3486  *	@timeout is further limited by @deadline.  The sooner of the
3487  *	two is used.
3488  *
3489  *	LOCKING:
3490  *	Kernel thread context (may sleep)
3491  *
3492  *	RETURNS:
3493  *	0 on success, -errno on failure.
3494  */
3495 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3496 		       unsigned long deadline)
3497 {
3498 	unsigned long interval = params[0];
3499 	unsigned long duration = params[1];
3500 	unsigned long last_jiffies, t;
3501 	u32 last, cur;
3502 	int rc;
3503 
3504 	t = ata_deadline(jiffies, params[2]);
3505 	if (time_before(t, deadline))
3506 		deadline = t;
3507 
3508 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3509 		return rc;
3510 	cur &= 0xf;
3511 
3512 	last = cur;
3513 	last_jiffies = jiffies;
3514 
3515 	while (1) {
3516 		ata_msleep(link->ap, interval);
3517 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3518 			return rc;
3519 		cur &= 0xf;
3520 
3521 		/* DET stable? */
3522 		if (cur == last) {
3523 			if (cur == 1 && time_before(jiffies, deadline))
3524 				continue;
3525 			if (time_after(jiffies,
3526 				       ata_deadline(last_jiffies, duration)))
3527 				return 0;
3528 			continue;
3529 		}
3530 
3531 		/* unstable, start over */
3532 		last = cur;
3533 		last_jiffies = jiffies;
3534 
3535 		/* Check deadline.  If debouncing failed, return
3536 		 * -EPIPE to tell upper layer to lower link speed.
3537 		 */
3538 		if (time_after(jiffies, deadline))
3539 			return -EPIPE;
3540 	}
3541 }
3542 
3543 /**
3544  *	sata_link_resume - resume SATA link
3545  *	@link: ATA link to resume SATA
3546  *	@params: timing parameters { interval, duratinon, timeout } in msec
3547  *	@deadline: deadline jiffies for the operation
3548  *
3549  *	Resume SATA phy @link and debounce it.
3550  *
3551  *	LOCKING:
3552  *	Kernel thread context (may sleep)
3553  *
3554  *	RETURNS:
3555  *	0 on success, -errno on failure.
3556  */
3557 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3558 		     unsigned long deadline)
3559 {
3560 	int tries = ATA_LINK_RESUME_TRIES;
3561 	u32 scontrol, serror;
3562 	int rc;
3563 
3564 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3565 		return rc;
3566 
3567 	/*
3568 	 * Writes to SControl sometimes get ignored under certain
3569 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3570 	 * cleared.
3571 	 */
3572 	do {
3573 		scontrol = (scontrol & 0x0f0) | 0x300;
3574 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3575 			return rc;
3576 		/*
3577 		 * Some PHYs react badly if SStatus is pounded
3578 		 * immediately after resuming.  Delay 200ms before
3579 		 * debouncing.
3580 		 */
3581 		ata_msleep(link->ap, 200);
3582 
3583 		/* is SControl restored correctly? */
3584 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585 			return rc;
3586 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3587 
3588 	if ((scontrol & 0xf0f) != 0x300) {
3589 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3590 			     scontrol);
3591 		return 0;
3592 	}
3593 
3594 	if (tries < ATA_LINK_RESUME_TRIES)
3595 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3596 			      ATA_LINK_RESUME_TRIES - tries);
3597 
3598 	if ((rc = sata_link_debounce(link, params, deadline)))
3599 		return rc;
3600 
3601 	/* clear SError, some PHYs require this even for SRST to work */
3602 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3603 		rc = sata_scr_write(link, SCR_ERROR, serror);
3604 
3605 	return rc != -EINVAL ? rc : 0;
3606 }
3607 
3608 /**
3609  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3610  *	@link: ATA link to manipulate SControl for
3611  *	@policy: LPM policy to configure
3612  *	@spm_wakeup: initiate LPM transition to active state
3613  *
3614  *	Manipulate the IPM field of the SControl register of @link
3615  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3616  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3617  *	the link.  This function also clears PHYRDY_CHG before
3618  *	returning.
3619  *
3620  *	LOCKING:
3621  *	EH context.
3622  *
3623  *	RETURNS:
3624  *	0 on succes, -errno otherwise.
3625  */
3626 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3627 		      bool spm_wakeup)
3628 {
3629 	struct ata_eh_context *ehc = &link->eh_context;
3630 	bool woken_up = false;
3631 	u32 scontrol;
3632 	int rc;
3633 
3634 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3635 	if (rc)
3636 		return rc;
3637 
3638 	switch (policy) {
3639 	case ATA_LPM_MAX_POWER:
3640 		/* disable all LPM transitions */
3641 		scontrol |= (0x7 << 8);
3642 		/* initiate transition to active state */
3643 		if (spm_wakeup) {
3644 			scontrol |= (0x4 << 12);
3645 			woken_up = true;
3646 		}
3647 		break;
3648 	case ATA_LPM_MED_POWER:
3649 		/* allow LPM to PARTIAL */
3650 		scontrol &= ~(0x1 << 8);
3651 		scontrol |= (0x6 << 8);
3652 		break;
3653 	case ATA_LPM_MIN_POWER:
3654 		if (ata_link_nr_enabled(link) > 0)
3655 			/* no restrictions on LPM transitions */
3656 			scontrol &= ~(0x7 << 8);
3657 		else {
3658 			/* empty port, power off */
3659 			scontrol &= ~0xf;
3660 			scontrol |= (0x1 << 2);
3661 		}
3662 		break;
3663 	default:
3664 		WARN_ON(1);
3665 	}
3666 
3667 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3668 	if (rc)
3669 		return rc;
3670 
3671 	/* give the link time to transit out of LPM state */
3672 	if (woken_up)
3673 		msleep(10);
3674 
3675 	/* clear PHYRDY_CHG from SError */
3676 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3677 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3678 }
3679 
3680 /**
3681  *	ata_std_prereset - prepare for reset
3682  *	@link: ATA link to be reset
3683  *	@deadline: deadline jiffies for the operation
3684  *
3685  *	@link is about to be reset.  Initialize it.  Failure from
3686  *	prereset makes libata abort whole reset sequence and give up
3687  *	that port, so prereset should be best-effort.  It does its
3688  *	best to prepare for reset sequence but if things go wrong, it
3689  *	should just whine, not fail.
3690  *
3691  *	LOCKING:
3692  *	Kernel thread context (may sleep)
3693  *
3694  *	RETURNS:
3695  *	0 on success, -errno otherwise.
3696  */
3697 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3698 {
3699 	struct ata_port *ap = link->ap;
3700 	struct ata_eh_context *ehc = &link->eh_context;
3701 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3702 	int rc;
3703 
3704 	/* if we're about to do hardreset, nothing more to do */
3705 	if (ehc->i.action & ATA_EH_HARDRESET)
3706 		return 0;
3707 
3708 	/* if SATA, resume link */
3709 	if (ap->flags & ATA_FLAG_SATA) {
3710 		rc = sata_link_resume(link, timing, deadline);
3711 		/* whine about phy resume failure but proceed */
3712 		if (rc && rc != -EOPNOTSUPP)
3713 			ata_link_warn(link,
3714 				      "failed to resume link for reset (errno=%d)\n",
3715 				      rc);
3716 	}
3717 
3718 	/* no point in trying softreset on offline link */
3719 	if (ata_phys_link_offline(link))
3720 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3721 
3722 	return 0;
3723 }
3724 
3725 /**
3726  *	sata_link_hardreset - reset link via SATA phy reset
3727  *	@link: link to reset
3728  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3729  *	@deadline: deadline jiffies for the operation
3730  *	@online: optional out parameter indicating link onlineness
3731  *	@check_ready: optional callback to check link readiness
3732  *
3733  *	SATA phy-reset @link using DET bits of SControl register.
3734  *	After hardreset, link readiness is waited upon using
3735  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3736  *	allowed to not specify @check_ready and wait itself after this
3737  *	function returns.  Device classification is LLD's
3738  *	responsibility.
3739  *
3740  *	*@online is set to one iff reset succeeded and @link is online
3741  *	after reset.
3742  *
3743  *	LOCKING:
3744  *	Kernel thread context (may sleep)
3745  *
3746  *	RETURNS:
3747  *	0 on success, -errno otherwise.
3748  */
3749 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3750 			unsigned long deadline,
3751 			bool *online, int (*check_ready)(struct ata_link *))
3752 {
3753 	u32 scontrol;
3754 	int rc;
3755 
3756 	DPRINTK("ENTER\n");
3757 
3758 	if (online)
3759 		*online = false;
3760 
3761 	if (sata_set_spd_needed(link)) {
3762 		/* SATA spec says nothing about how to reconfigure
3763 		 * spd.  To be on the safe side, turn off phy during
3764 		 * reconfiguration.  This works for at least ICH7 AHCI
3765 		 * and Sil3124.
3766 		 */
3767 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768 			goto out;
3769 
3770 		scontrol = (scontrol & 0x0f0) | 0x304;
3771 
3772 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3773 			goto out;
3774 
3775 		sata_set_spd(link);
3776 	}
3777 
3778 	/* issue phy wake/reset */
3779 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 		goto out;
3781 
3782 	scontrol = (scontrol & 0x0f0) | 0x301;
3783 
3784 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3785 		goto out;
3786 
3787 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3788 	 * 10.4.2 says at least 1 ms.
3789 	 */
3790 	ata_msleep(link->ap, 1);
3791 
3792 	/* bring link back */
3793 	rc = sata_link_resume(link, timing, deadline);
3794 	if (rc)
3795 		goto out;
3796 	/* if link is offline nothing more to do */
3797 	if (ata_phys_link_offline(link))
3798 		goto out;
3799 
3800 	/* Link is online.  From this point, -ENODEV too is an error. */
3801 	if (online)
3802 		*online = true;
3803 
3804 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3805 		/* If PMP is supported, we have to do follow-up SRST.
3806 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3807 		 * the first port is empty.  Wait only for
3808 		 * ATA_TMOUT_PMP_SRST_WAIT.
3809 		 */
3810 		if (check_ready) {
3811 			unsigned long pmp_deadline;
3812 
3813 			pmp_deadline = ata_deadline(jiffies,
3814 						    ATA_TMOUT_PMP_SRST_WAIT);
3815 			if (time_after(pmp_deadline, deadline))
3816 				pmp_deadline = deadline;
3817 			ata_wait_ready(link, pmp_deadline, check_ready);
3818 		}
3819 		rc = -EAGAIN;
3820 		goto out;
3821 	}
3822 
3823 	rc = 0;
3824 	if (check_ready)
3825 		rc = ata_wait_ready(link, deadline, check_ready);
3826  out:
3827 	if (rc && rc != -EAGAIN) {
3828 		/* online is set iff link is online && reset succeeded */
3829 		if (online)
3830 			*online = false;
3831 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3832 	}
3833 	DPRINTK("EXIT, rc=%d\n", rc);
3834 	return rc;
3835 }
3836 
3837 /**
3838  *	sata_std_hardreset - COMRESET w/o waiting or classification
3839  *	@link: link to reset
3840  *	@class: resulting class of attached device
3841  *	@deadline: deadline jiffies for the operation
3842  *
3843  *	Standard SATA COMRESET w/o waiting or classification.
3844  *
3845  *	LOCKING:
3846  *	Kernel thread context (may sleep)
3847  *
3848  *	RETURNS:
3849  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3850  */
3851 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3852 		       unsigned long deadline)
3853 {
3854 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3855 	bool online;
3856 	int rc;
3857 
3858 	/* do hardreset */
3859 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3860 	return online ? -EAGAIN : rc;
3861 }
3862 
3863 /**
3864  *	ata_std_postreset - standard postreset callback
3865  *	@link: the target ata_link
3866  *	@classes: classes of attached devices
3867  *
3868  *	This function is invoked after a successful reset.  Note that
3869  *	the device might have been reset more than once using
3870  *	different reset methods before postreset is invoked.
3871  *
3872  *	LOCKING:
3873  *	Kernel thread context (may sleep)
3874  */
3875 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3876 {
3877 	u32 serror;
3878 
3879 	DPRINTK("ENTER\n");
3880 
3881 	/* reset complete, clear SError */
3882 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3883 		sata_scr_write(link, SCR_ERROR, serror);
3884 
3885 	/* print link status */
3886 	sata_print_link_status(link);
3887 
3888 	DPRINTK("EXIT\n");
3889 }
3890 
3891 /**
3892  *	ata_dev_same_device - Determine whether new ID matches configured device
3893  *	@dev: device to compare against
3894  *	@new_class: class of the new device
3895  *	@new_id: IDENTIFY page of the new device
3896  *
3897  *	Compare @new_class and @new_id against @dev and determine
3898  *	whether @dev is the device indicated by @new_class and
3899  *	@new_id.
3900  *
3901  *	LOCKING:
3902  *	None.
3903  *
3904  *	RETURNS:
3905  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3906  */
3907 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3908 			       const u16 *new_id)
3909 {
3910 	const u16 *old_id = dev->id;
3911 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3912 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3913 
3914 	if (dev->class != new_class) {
3915 		ata_dev_info(dev, "class mismatch %d != %d\n",
3916 			     dev->class, new_class);
3917 		return 0;
3918 	}
3919 
3920 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3921 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3922 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3923 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3924 
3925 	if (strcmp(model[0], model[1])) {
3926 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3927 			     model[0], model[1]);
3928 		return 0;
3929 	}
3930 
3931 	if (strcmp(serial[0], serial[1])) {
3932 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3933 			     serial[0], serial[1]);
3934 		return 0;
3935 	}
3936 
3937 	return 1;
3938 }
3939 
3940 /**
3941  *	ata_dev_reread_id - Re-read IDENTIFY data
3942  *	@dev: target ATA device
3943  *	@readid_flags: read ID flags
3944  *
3945  *	Re-read IDENTIFY page and make sure @dev is still attached to
3946  *	the port.
3947  *
3948  *	LOCKING:
3949  *	Kernel thread context (may sleep)
3950  *
3951  *	RETURNS:
3952  *	0 on success, negative errno otherwise
3953  */
3954 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3955 {
3956 	unsigned int class = dev->class;
3957 	u16 *id = (void *)dev->link->ap->sector_buf;
3958 	int rc;
3959 
3960 	/* read ID data */
3961 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3962 	if (rc)
3963 		return rc;
3964 
3965 	/* is the device still there? */
3966 	if (!ata_dev_same_device(dev, class, id))
3967 		return -ENODEV;
3968 
3969 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3970 	return 0;
3971 }
3972 
3973 /**
3974  *	ata_dev_revalidate - Revalidate ATA device
3975  *	@dev: device to revalidate
3976  *	@new_class: new class code
3977  *	@readid_flags: read ID flags
3978  *
3979  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3980  *	port and reconfigure it according to the new IDENTIFY page.
3981  *
3982  *	LOCKING:
3983  *	Kernel thread context (may sleep)
3984  *
3985  *	RETURNS:
3986  *	0 on success, negative errno otherwise
3987  */
3988 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3989 		       unsigned int readid_flags)
3990 {
3991 	u64 n_sectors = dev->n_sectors;
3992 	u64 n_native_sectors = dev->n_native_sectors;
3993 	int rc;
3994 
3995 	if (!ata_dev_enabled(dev))
3996 		return -ENODEV;
3997 
3998 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3999 	if (ata_class_enabled(new_class) &&
4000 	    new_class != ATA_DEV_ATA &&
4001 	    new_class != ATA_DEV_ATAPI &&
4002 	    new_class != ATA_DEV_SEMB) {
4003 		ata_dev_info(dev, "class mismatch %u != %u\n",
4004 			     dev->class, new_class);
4005 		rc = -ENODEV;
4006 		goto fail;
4007 	}
4008 
4009 	/* re-read ID */
4010 	rc = ata_dev_reread_id(dev, readid_flags);
4011 	if (rc)
4012 		goto fail;
4013 
4014 	/* configure device according to the new ID */
4015 	rc = ata_dev_configure(dev);
4016 	if (rc)
4017 		goto fail;
4018 
4019 	/* verify n_sectors hasn't changed */
4020 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4021 	    dev->n_sectors == n_sectors)
4022 		return 0;
4023 
4024 	/* n_sectors has changed */
4025 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4026 		     (unsigned long long)n_sectors,
4027 		     (unsigned long long)dev->n_sectors);
4028 
4029 	/*
4030 	 * Something could have caused HPA to be unlocked
4031 	 * involuntarily.  If n_native_sectors hasn't changed and the
4032 	 * new size matches it, keep the device.
4033 	 */
4034 	if (dev->n_native_sectors == n_native_sectors &&
4035 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4036 		ata_dev_warn(dev,
4037 			     "new n_sectors matches native, probably "
4038 			     "late HPA unlock, n_sectors updated\n");
4039 		/* use the larger n_sectors */
4040 		return 0;
4041 	}
4042 
4043 	/*
4044 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4045 	 * unlocking HPA in those cases.
4046 	 *
4047 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4048 	 */
4049 	if (dev->n_native_sectors == n_native_sectors &&
4050 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4051 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4052 		ata_dev_warn(dev,
4053 			     "old n_sectors matches native, probably "
4054 			     "late HPA lock, will try to unlock HPA\n");
4055 		/* try unlocking HPA */
4056 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4057 		rc = -EIO;
4058 	} else
4059 		rc = -ENODEV;
4060 
4061 	/* restore original n_[native_]sectors and fail */
4062 	dev->n_native_sectors = n_native_sectors;
4063 	dev->n_sectors = n_sectors;
4064  fail:
4065 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4066 	return rc;
4067 }
4068 
4069 struct ata_blacklist_entry {
4070 	const char *model_num;
4071 	const char *model_rev;
4072 	unsigned long horkage;
4073 };
4074 
4075 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4076 	/* Devices with DMA related problems under Linux */
4077 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4078 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4079 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4080 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4081 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4082 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4083 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4084 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4085 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4086 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4087 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4088 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4089 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4090 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4091 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4092 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4093 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4094 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4095 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4096 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4097 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4098 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4099 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4100 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4101 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4102 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4103 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4104 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4105 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4106 	/* Odd clown on sil3726/4726 PMPs */
4107 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4108 
4109 	/* Weird ATAPI devices */
4110 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4111 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4112 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4113 
4114 	/* Devices we expect to fail diagnostics */
4115 
4116 	/* Devices where NCQ should be avoided */
4117 	/* NCQ is slow */
4118 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4119 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4120 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4121 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4122 	/* NCQ is broken */
4123 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4124 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4125 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4126 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4127 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4128 
4129 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4130 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4131 						ATA_HORKAGE_FIRMWARE_WARN },
4132 
4133 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4134 						ATA_HORKAGE_FIRMWARE_WARN },
4135 
4136 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4137 						ATA_HORKAGE_FIRMWARE_WARN },
4138 
4139 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4140 						ATA_HORKAGE_FIRMWARE_WARN },
4141 
4142 	/* Blacklist entries taken from Silicon Image 3124/3132
4143 	   Windows driver .inf file - also several Linux problem reports */
4144 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4145 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4146 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4147 
4148 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4149 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4150 
4151 	/* devices which puke on READ_NATIVE_MAX */
4152 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4153 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4154 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4155 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4156 
4157 	/* this one allows HPA unlocking but fails IOs on the area */
4158 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4159 
4160 	/* Devices which report 1 sector over size HPA */
4161 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4162 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4163 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4164 
4165 	/* Devices which get the IVB wrong */
4166 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4167 	/* Maybe we should just blacklist TSSTcorp... */
4168 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4169 
4170 	/* Devices that do not need bridging limits applied */
4171 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4172 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4173 
4174 	/* Devices which aren't very happy with higher link speeds */
4175 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4176 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4177 
4178 	/*
4179 	 * Devices which choke on SETXFER.  Applies only if both the
4180 	 * device and controller are SATA.
4181 	 */
4182 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4183 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4184 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4185 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4186 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4187 
4188 	/* End Marker */
4189 	{ }
4190 };
4191 
4192 /**
4193  *	glob_match - match a text string against a glob-style pattern
4194  *	@text: the string to be examined
4195  *	@pattern: the glob-style pattern to be matched against
4196  *
4197  *	Either/both of text and pattern can be empty strings.
4198  *
4199  *	Match text against a glob-style pattern, with wildcards and simple sets:
4200  *
4201  *		?	matches any single character.
4202  *		*	matches any run of characters.
4203  *		[xyz]	matches a single character from the set: x, y, or z.
4204  *		[a-d]	matches a single character from the range: a, b, c, or d.
4205  *		[a-d0-9] matches a single character from either range.
4206  *
4207  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4208  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4209  *
4210  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4211  *
4212  *	This function uses one level of recursion per '*' in pattern.
4213  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4214  *	this will not cause stack problems for any reasonable use here.
4215  *
4216  *	RETURNS:
4217  *	0 on match, 1 otherwise.
4218  */
4219 static int glob_match (const char *text, const char *pattern)
4220 {
4221 	do {
4222 		/* Match single character or a '?' wildcard */
4223 		if (*text == *pattern || *pattern == '?') {
4224 			if (!*pattern++)
4225 				return 0;  /* End of both strings: match */
4226 		} else {
4227 			/* Match single char against a '[' bracketed ']' pattern set */
4228 			if (!*text || *pattern != '[')
4229 				break;  /* Not a pattern set */
4230 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4231 				if (*pattern == '-' && *(pattern - 1) != '[')
4232 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4233 						++pattern;
4234 						break;
4235 					}
4236 			}
4237 			if (!*pattern || *pattern == ']')
4238 				return 1;  /* No match */
4239 			while (*pattern && *pattern++ != ']');
4240 		}
4241 	} while (*++text && *pattern);
4242 
4243 	/* Match any run of chars against a '*' wildcard */
4244 	if (*pattern == '*') {
4245 		if (!*++pattern)
4246 			return 0;  /* Match: avoid recursion at end of pattern */
4247 		/* Loop to handle additional pattern chars after the wildcard */
4248 		while (*text) {
4249 			if (glob_match(text, pattern) == 0)
4250 				return 0;  /* Remainder matched */
4251 			++text;  /* Absorb (match) this char and try again */
4252 		}
4253 	}
4254 	if (!*text && !*pattern)
4255 		return 0;  /* End of both strings: match */
4256 	return 1;  /* No match */
4257 }
4258 
4259 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4260 {
4261 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4263 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4264 
4265 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4266 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4267 
4268 	while (ad->model_num) {
4269 		if (!glob_match(model_num, ad->model_num)) {
4270 			if (ad->model_rev == NULL)
4271 				return ad->horkage;
4272 			if (!glob_match(model_rev, ad->model_rev))
4273 				return ad->horkage;
4274 		}
4275 		ad++;
4276 	}
4277 	return 0;
4278 }
4279 
4280 static int ata_dma_blacklisted(const struct ata_device *dev)
4281 {
4282 	/* We don't support polling DMA.
4283 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4284 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4285 	 */
4286 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4287 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4288 		return 1;
4289 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4290 }
4291 
4292 /**
4293  *	ata_is_40wire		-	check drive side detection
4294  *	@dev: device
4295  *
4296  *	Perform drive side detection decoding, allowing for device vendors
4297  *	who can't follow the documentation.
4298  */
4299 
4300 static int ata_is_40wire(struct ata_device *dev)
4301 {
4302 	if (dev->horkage & ATA_HORKAGE_IVB)
4303 		return ata_drive_40wire_relaxed(dev->id);
4304 	return ata_drive_40wire(dev->id);
4305 }
4306 
4307 /**
4308  *	cable_is_40wire		-	40/80/SATA decider
4309  *	@ap: port to consider
4310  *
4311  *	This function encapsulates the policy for speed management
4312  *	in one place. At the moment we don't cache the result but
4313  *	there is a good case for setting ap->cbl to the result when
4314  *	we are called with unknown cables (and figuring out if it
4315  *	impacts hotplug at all).
4316  *
4317  *	Return 1 if the cable appears to be 40 wire.
4318  */
4319 
4320 static int cable_is_40wire(struct ata_port *ap)
4321 {
4322 	struct ata_link *link;
4323 	struct ata_device *dev;
4324 
4325 	/* If the controller thinks we are 40 wire, we are. */
4326 	if (ap->cbl == ATA_CBL_PATA40)
4327 		return 1;
4328 
4329 	/* If the controller thinks we are 80 wire, we are. */
4330 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4331 		return 0;
4332 
4333 	/* If the system is known to be 40 wire short cable (eg
4334 	 * laptop), then we allow 80 wire modes even if the drive
4335 	 * isn't sure.
4336 	 */
4337 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4338 		return 0;
4339 
4340 	/* If the controller doesn't know, we scan.
4341 	 *
4342 	 * Note: We look for all 40 wire detects at this point.  Any
4343 	 *       80 wire detect is taken to be 80 wire cable because
4344 	 * - in many setups only the one drive (slave if present) will
4345 	 *   give a valid detect
4346 	 * - if you have a non detect capable drive you don't want it
4347 	 *   to colour the choice
4348 	 */
4349 	ata_for_each_link(link, ap, EDGE) {
4350 		ata_for_each_dev(dev, link, ENABLED) {
4351 			if (!ata_is_40wire(dev))
4352 				return 0;
4353 		}
4354 	}
4355 	return 1;
4356 }
4357 
4358 /**
4359  *	ata_dev_xfermask - Compute supported xfermask of the given device
4360  *	@dev: Device to compute xfermask for
4361  *
4362  *	Compute supported xfermask of @dev and store it in
4363  *	dev->*_mask.  This function is responsible for applying all
4364  *	known limits including host controller limits, device
4365  *	blacklist, etc...
4366  *
4367  *	LOCKING:
4368  *	None.
4369  */
4370 static void ata_dev_xfermask(struct ata_device *dev)
4371 {
4372 	struct ata_link *link = dev->link;
4373 	struct ata_port *ap = link->ap;
4374 	struct ata_host *host = ap->host;
4375 	unsigned long xfer_mask;
4376 
4377 	/* controller modes available */
4378 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4379 				      ap->mwdma_mask, ap->udma_mask);
4380 
4381 	/* drive modes available */
4382 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4383 				       dev->mwdma_mask, dev->udma_mask);
4384 	xfer_mask &= ata_id_xfermask(dev->id);
4385 
4386 	/*
4387 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4388 	 *	cable
4389 	 */
4390 	if (ata_dev_pair(dev)) {
4391 		/* No PIO5 or PIO6 */
4392 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4393 		/* No MWDMA3 or MWDMA 4 */
4394 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4395 	}
4396 
4397 	if (ata_dma_blacklisted(dev)) {
4398 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4399 		ata_dev_warn(dev,
4400 			     "device is on DMA blacklist, disabling DMA\n");
4401 	}
4402 
4403 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4404 	    host->simplex_claimed && host->simplex_claimed != ap) {
4405 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4406 		ata_dev_warn(dev,
4407 			     "simplex DMA is claimed by other device, disabling DMA\n");
4408 	}
4409 
4410 	if (ap->flags & ATA_FLAG_NO_IORDY)
4411 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4412 
4413 	if (ap->ops->mode_filter)
4414 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4415 
4416 	/* Apply cable rule here.  Don't apply it early because when
4417 	 * we handle hot plug the cable type can itself change.
4418 	 * Check this last so that we know if the transfer rate was
4419 	 * solely limited by the cable.
4420 	 * Unknown or 80 wire cables reported host side are checked
4421 	 * drive side as well. Cases where we know a 40wire cable
4422 	 * is used safely for 80 are not checked here.
4423 	 */
4424 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4425 		/* UDMA/44 or higher would be available */
4426 		if (cable_is_40wire(ap)) {
4427 			ata_dev_warn(dev,
4428 				     "limited to UDMA/33 due to 40-wire cable\n");
4429 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4430 		}
4431 
4432 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4433 			    &dev->mwdma_mask, &dev->udma_mask);
4434 }
4435 
4436 /**
4437  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4438  *	@dev: Device to which command will be sent
4439  *
4440  *	Issue SET FEATURES - XFER MODE command to device @dev
4441  *	on port @ap.
4442  *
4443  *	LOCKING:
4444  *	PCI/etc. bus probe sem.
4445  *
4446  *	RETURNS:
4447  *	0 on success, AC_ERR_* mask otherwise.
4448  */
4449 
4450 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4451 {
4452 	struct ata_taskfile tf;
4453 	unsigned int err_mask;
4454 
4455 	/* set up set-features taskfile */
4456 	DPRINTK("set features - xfer mode\n");
4457 
4458 	/* Some controllers and ATAPI devices show flaky interrupt
4459 	 * behavior after setting xfer mode.  Use polling instead.
4460 	 */
4461 	ata_tf_init(dev, &tf);
4462 	tf.command = ATA_CMD_SET_FEATURES;
4463 	tf.feature = SETFEATURES_XFER;
4464 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4465 	tf.protocol = ATA_PROT_NODATA;
4466 	/* If we are using IORDY we must send the mode setting command */
4467 	if (ata_pio_need_iordy(dev))
4468 		tf.nsect = dev->xfer_mode;
4469 	/* If the device has IORDY and the controller does not - turn it off */
4470  	else if (ata_id_has_iordy(dev->id))
4471 		tf.nsect = 0x01;
4472 	else /* In the ancient relic department - skip all of this */
4473 		return 0;
4474 
4475 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4476 
4477 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4478 	return err_mask;
4479 }
4480 
4481 /**
4482  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4483  *	@dev: Device to which command will be sent
4484  *	@enable: Whether to enable or disable the feature
4485  *	@feature: The sector count represents the feature to set
4486  *
4487  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4488  *	on port @ap with sector count
4489  *
4490  *	LOCKING:
4491  *	PCI/etc. bus probe sem.
4492  *
4493  *	RETURNS:
4494  *	0 on success, AC_ERR_* mask otherwise.
4495  */
4496 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4497 {
4498 	struct ata_taskfile tf;
4499 	unsigned int err_mask;
4500 
4501 	/* set up set-features taskfile */
4502 	DPRINTK("set features - SATA features\n");
4503 
4504 	ata_tf_init(dev, &tf);
4505 	tf.command = ATA_CMD_SET_FEATURES;
4506 	tf.feature = enable;
4507 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4508 	tf.protocol = ATA_PROT_NODATA;
4509 	tf.nsect = feature;
4510 
4511 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4512 
4513 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4514 	return err_mask;
4515 }
4516 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4517 
4518 /**
4519  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4520  *	@dev: Device to which command will be sent
4521  *	@heads: Number of heads (taskfile parameter)
4522  *	@sectors: Number of sectors (taskfile parameter)
4523  *
4524  *	LOCKING:
4525  *	Kernel thread context (may sleep)
4526  *
4527  *	RETURNS:
4528  *	0 on success, AC_ERR_* mask otherwise.
4529  */
4530 static unsigned int ata_dev_init_params(struct ata_device *dev,
4531 					u16 heads, u16 sectors)
4532 {
4533 	struct ata_taskfile tf;
4534 	unsigned int err_mask;
4535 
4536 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4537 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4538 		return AC_ERR_INVALID;
4539 
4540 	/* set up init dev params taskfile */
4541 	DPRINTK("init dev params \n");
4542 
4543 	ata_tf_init(dev, &tf);
4544 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4545 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4546 	tf.protocol = ATA_PROT_NODATA;
4547 	tf.nsect = sectors;
4548 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4549 
4550 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4551 	/* A clean abort indicates an original or just out of spec drive
4552 	   and we should continue as we issue the setup based on the
4553 	   drive reported working geometry */
4554 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4555 		err_mask = 0;
4556 
4557 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4558 	return err_mask;
4559 }
4560 
4561 /**
4562  *	ata_sg_clean - Unmap DMA memory associated with command
4563  *	@qc: Command containing DMA memory to be released
4564  *
4565  *	Unmap all mapped DMA memory associated with this command.
4566  *
4567  *	LOCKING:
4568  *	spin_lock_irqsave(host lock)
4569  */
4570 void ata_sg_clean(struct ata_queued_cmd *qc)
4571 {
4572 	struct ata_port *ap = qc->ap;
4573 	struct scatterlist *sg = qc->sg;
4574 	int dir = qc->dma_dir;
4575 
4576 	WARN_ON_ONCE(sg == NULL);
4577 
4578 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4579 
4580 	if (qc->n_elem)
4581 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4582 
4583 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4584 	qc->sg = NULL;
4585 }
4586 
4587 /**
4588  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4589  *	@qc: Metadata associated with taskfile to check
4590  *
4591  *	Allow low-level driver to filter ATA PACKET commands, returning
4592  *	a status indicating whether or not it is OK to use DMA for the
4593  *	supplied PACKET command.
4594  *
4595  *	LOCKING:
4596  *	spin_lock_irqsave(host lock)
4597  *
4598  *	RETURNS: 0 when ATAPI DMA can be used
4599  *               nonzero otherwise
4600  */
4601 int atapi_check_dma(struct ata_queued_cmd *qc)
4602 {
4603 	struct ata_port *ap = qc->ap;
4604 
4605 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4606 	 * few ATAPI devices choke on such DMA requests.
4607 	 */
4608 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4609 	    unlikely(qc->nbytes & 15))
4610 		return 1;
4611 
4612 	if (ap->ops->check_atapi_dma)
4613 		return ap->ops->check_atapi_dma(qc);
4614 
4615 	return 0;
4616 }
4617 
4618 /**
4619  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4620  *	@qc: ATA command in question
4621  *
4622  *	Non-NCQ commands cannot run with any other command, NCQ or
4623  *	not.  As upper layer only knows the queue depth, we are
4624  *	responsible for maintaining exclusion.  This function checks
4625  *	whether a new command @qc can be issued.
4626  *
4627  *	LOCKING:
4628  *	spin_lock_irqsave(host lock)
4629  *
4630  *	RETURNS:
4631  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4632  */
4633 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4634 {
4635 	struct ata_link *link = qc->dev->link;
4636 
4637 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4638 		if (!ata_tag_valid(link->active_tag))
4639 			return 0;
4640 	} else {
4641 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4642 			return 0;
4643 	}
4644 
4645 	return ATA_DEFER_LINK;
4646 }
4647 
4648 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4649 
4650 /**
4651  *	ata_sg_init - Associate command with scatter-gather table.
4652  *	@qc: Command to be associated
4653  *	@sg: Scatter-gather table.
4654  *	@n_elem: Number of elements in s/g table.
4655  *
4656  *	Initialize the data-related elements of queued_cmd @qc
4657  *	to point to a scatter-gather table @sg, containing @n_elem
4658  *	elements.
4659  *
4660  *	LOCKING:
4661  *	spin_lock_irqsave(host lock)
4662  */
4663 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4664 		 unsigned int n_elem)
4665 {
4666 	qc->sg = sg;
4667 	qc->n_elem = n_elem;
4668 	qc->cursg = qc->sg;
4669 }
4670 
4671 /**
4672  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4673  *	@qc: Command with scatter-gather table to be mapped.
4674  *
4675  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4676  *
4677  *	LOCKING:
4678  *	spin_lock_irqsave(host lock)
4679  *
4680  *	RETURNS:
4681  *	Zero on success, negative on error.
4682  *
4683  */
4684 static int ata_sg_setup(struct ata_queued_cmd *qc)
4685 {
4686 	struct ata_port *ap = qc->ap;
4687 	unsigned int n_elem;
4688 
4689 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4690 
4691 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4692 	if (n_elem < 1)
4693 		return -1;
4694 
4695 	DPRINTK("%d sg elements mapped\n", n_elem);
4696 	qc->orig_n_elem = qc->n_elem;
4697 	qc->n_elem = n_elem;
4698 	qc->flags |= ATA_QCFLAG_DMAMAP;
4699 
4700 	return 0;
4701 }
4702 
4703 /**
4704  *	swap_buf_le16 - swap halves of 16-bit words in place
4705  *	@buf:  Buffer to swap
4706  *	@buf_words:  Number of 16-bit words in buffer.
4707  *
4708  *	Swap halves of 16-bit words if needed to convert from
4709  *	little-endian byte order to native cpu byte order, or
4710  *	vice-versa.
4711  *
4712  *	LOCKING:
4713  *	Inherited from caller.
4714  */
4715 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4716 {
4717 #ifdef __BIG_ENDIAN
4718 	unsigned int i;
4719 
4720 	for (i = 0; i < buf_words; i++)
4721 		buf[i] = le16_to_cpu(buf[i]);
4722 #endif /* __BIG_ENDIAN */
4723 }
4724 
4725 /**
4726  *	ata_qc_new - Request an available ATA command, for queueing
4727  *	@ap: target port
4728  *
4729  *	LOCKING:
4730  *	None.
4731  */
4732 
4733 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4734 {
4735 	struct ata_queued_cmd *qc = NULL;
4736 	unsigned int i;
4737 
4738 	/* no command while frozen */
4739 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4740 		return NULL;
4741 
4742 	/* the last tag is reserved for internal command. */
4743 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4744 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4745 			qc = __ata_qc_from_tag(ap, i);
4746 			break;
4747 		}
4748 
4749 	if (qc)
4750 		qc->tag = i;
4751 
4752 	return qc;
4753 }
4754 
4755 /**
4756  *	ata_qc_new_init - Request an available ATA command, and initialize it
4757  *	@dev: Device from whom we request an available command structure
4758  *
4759  *	LOCKING:
4760  *	None.
4761  */
4762 
4763 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4764 {
4765 	struct ata_port *ap = dev->link->ap;
4766 	struct ata_queued_cmd *qc;
4767 
4768 	qc = ata_qc_new(ap);
4769 	if (qc) {
4770 		qc->scsicmd = NULL;
4771 		qc->ap = ap;
4772 		qc->dev = dev;
4773 
4774 		ata_qc_reinit(qc);
4775 	}
4776 
4777 	return qc;
4778 }
4779 
4780 /**
4781  *	ata_qc_free - free unused ata_queued_cmd
4782  *	@qc: Command to complete
4783  *
4784  *	Designed to free unused ata_queued_cmd object
4785  *	in case something prevents using it.
4786  *
4787  *	LOCKING:
4788  *	spin_lock_irqsave(host lock)
4789  */
4790 void ata_qc_free(struct ata_queued_cmd *qc)
4791 {
4792 	struct ata_port *ap;
4793 	unsigned int tag;
4794 
4795 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796 	ap = qc->ap;
4797 
4798 	qc->flags = 0;
4799 	tag = qc->tag;
4800 	if (likely(ata_tag_valid(tag))) {
4801 		qc->tag = ATA_TAG_POISON;
4802 		clear_bit(tag, &ap->qc_allocated);
4803 	}
4804 }
4805 
4806 void __ata_qc_complete(struct ata_queued_cmd *qc)
4807 {
4808 	struct ata_port *ap;
4809 	struct ata_link *link;
4810 
4811 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4812 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4813 	ap = qc->ap;
4814 	link = qc->dev->link;
4815 
4816 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4817 		ata_sg_clean(qc);
4818 
4819 	/* command should be marked inactive atomically with qc completion */
4820 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4821 		link->sactive &= ~(1 << qc->tag);
4822 		if (!link->sactive)
4823 			ap->nr_active_links--;
4824 	} else {
4825 		link->active_tag = ATA_TAG_POISON;
4826 		ap->nr_active_links--;
4827 	}
4828 
4829 	/* clear exclusive status */
4830 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4831 		     ap->excl_link == link))
4832 		ap->excl_link = NULL;
4833 
4834 	/* atapi: mark qc as inactive to prevent the interrupt handler
4835 	 * from completing the command twice later, before the error handler
4836 	 * is called. (when rc != 0 and atapi request sense is needed)
4837 	 */
4838 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4839 	ap->qc_active &= ~(1 << qc->tag);
4840 
4841 	/* call completion callback */
4842 	qc->complete_fn(qc);
4843 }
4844 
4845 static void fill_result_tf(struct ata_queued_cmd *qc)
4846 {
4847 	struct ata_port *ap = qc->ap;
4848 
4849 	qc->result_tf.flags = qc->tf.flags;
4850 	ap->ops->qc_fill_rtf(qc);
4851 }
4852 
4853 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4854 {
4855 	struct ata_device *dev = qc->dev;
4856 
4857 	if (ata_is_nodata(qc->tf.protocol))
4858 		return;
4859 
4860 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4861 		return;
4862 
4863 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4864 }
4865 
4866 /**
4867  *	ata_qc_complete - Complete an active ATA command
4868  *	@qc: Command to complete
4869  *
4870  *	Indicate to the mid and upper layers that an ATA command has
4871  *	completed, with either an ok or not-ok status.
4872  *
4873  *	Refrain from calling this function multiple times when
4874  *	successfully completing multiple NCQ commands.
4875  *	ata_qc_complete_multiple() should be used instead, which will
4876  *	properly update IRQ expect state.
4877  *
4878  *	LOCKING:
4879  *	spin_lock_irqsave(host lock)
4880  */
4881 void ata_qc_complete(struct ata_queued_cmd *qc)
4882 {
4883 	struct ata_port *ap = qc->ap;
4884 
4885 	/* XXX: New EH and old EH use different mechanisms to
4886 	 * synchronize EH with regular execution path.
4887 	 *
4888 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4889 	 * Normal execution path is responsible for not accessing a
4890 	 * failed qc.  libata core enforces the rule by returning NULL
4891 	 * from ata_qc_from_tag() for failed qcs.
4892 	 *
4893 	 * Old EH depends on ata_qc_complete() nullifying completion
4894 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4895 	 * not synchronize with interrupt handler.  Only PIO task is
4896 	 * taken care of.
4897 	 */
4898 	if (ap->ops->error_handler) {
4899 		struct ata_device *dev = qc->dev;
4900 		struct ata_eh_info *ehi = &dev->link->eh_info;
4901 
4902 		if (unlikely(qc->err_mask))
4903 			qc->flags |= ATA_QCFLAG_FAILED;
4904 
4905 		/*
4906 		 * Finish internal commands without any further processing
4907 		 * and always with the result TF filled.
4908 		 */
4909 		if (unlikely(ata_tag_internal(qc->tag))) {
4910 			fill_result_tf(qc);
4911 			__ata_qc_complete(qc);
4912 			return;
4913 		}
4914 
4915 		/*
4916 		 * Non-internal qc has failed.  Fill the result TF and
4917 		 * summon EH.
4918 		 */
4919 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4920 			fill_result_tf(qc);
4921 			ata_qc_schedule_eh(qc);
4922 			return;
4923 		}
4924 
4925 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4926 
4927 		/* read result TF if requested */
4928 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4929 			fill_result_tf(qc);
4930 
4931 		/* Some commands need post-processing after successful
4932 		 * completion.
4933 		 */
4934 		switch (qc->tf.command) {
4935 		case ATA_CMD_SET_FEATURES:
4936 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4937 			    qc->tf.feature != SETFEATURES_WC_OFF)
4938 				break;
4939 			/* fall through */
4940 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4941 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4942 			/* revalidate device */
4943 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4944 			ata_port_schedule_eh(ap);
4945 			break;
4946 
4947 		case ATA_CMD_SLEEP:
4948 			dev->flags |= ATA_DFLAG_SLEEPING;
4949 			break;
4950 		}
4951 
4952 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4953 			ata_verify_xfer(qc);
4954 
4955 		__ata_qc_complete(qc);
4956 	} else {
4957 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4958 			return;
4959 
4960 		/* read result TF if failed or requested */
4961 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4962 			fill_result_tf(qc);
4963 
4964 		__ata_qc_complete(qc);
4965 	}
4966 }
4967 
4968 /**
4969  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4970  *	@ap: port in question
4971  *	@qc_active: new qc_active mask
4972  *
4973  *	Complete in-flight commands.  This functions is meant to be
4974  *	called from low-level driver's interrupt routine to complete
4975  *	requests normally.  ap->qc_active and @qc_active is compared
4976  *	and commands are completed accordingly.
4977  *
4978  *	Always use this function when completing multiple NCQ commands
4979  *	from IRQ handlers instead of calling ata_qc_complete()
4980  *	multiple times to keep IRQ expect status properly in sync.
4981  *
4982  *	LOCKING:
4983  *	spin_lock_irqsave(host lock)
4984  *
4985  *	RETURNS:
4986  *	Number of completed commands on success, -errno otherwise.
4987  */
4988 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4989 {
4990 	int nr_done = 0;
4991 	u32 done_mask;
4992 
4993 	done_mask = ap->qc_active ^ qc_active;
4994 
4995 	if (unlikely(done_mask & qc_active)) {
4996 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4997 			     ap->qc_active, qc_active);
4998 		return -EINVAL;
4999 	}
5000 
5001 	while (done_mask) {
5002 		struct ata_queued_cmd *qc;
5003 		unsigned int tag = __ffs(done_mask);
5004 
5005 		qc = ata_qc_from_tag(ap, tag);
5006 		if (qc) {
5007 			ata_qc_complete(qc);
5008 			nr_done++;
5009 		}
5010 		done_mask &= ~(1 << tag);
5011 	}
5012 
5013 	return nr_done;
5014 }
5015 
5016 /**
5017  *	ata_qc_issue - issue taskfile to device
5018  *	@qc: command to issue to device
5019  *
5020  *	Prepare an ATA command to submission to device.
5021  *	This includes mapping the data into a DMA-able
5022  *	area, filling in the S/G table, and finally
5023  *	writing the taskfile to hardware, starting the command.
5024  *
5025  *	LOCKING:
5026  *	spin_lock_irqsave(host lock)
5027  */
5028 void ata_qc_issue(struct ata_queued_cmd *qc)
5029 {
5030 	struct ata_port *ap = qc->ap;
5031 	struct ata_link *link = qc->dev->link;
5032 	u8 prot = qc->tf.protocol;
5033 
5034 	/* Make sure only one non-NCQ command is outstanding.  The
5035 	 * check is skipped for old EH because it reuses active qc to
5036 	 * request ATAPI sense.
5037 	 */
5038 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5039 
5040 	if (ata_is_ncq(prot)) {
5041 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5042 
5043 		if (!link->sactive)
5044 			ap->nr_active_links++;
5045 		link->sactive |= 1 << qc->tag;
5046 	} else {
5047 		WARN_ON_ONCE(link->sactive);
5048 
5049 		ap->nr_active_links++;
5050 		link->active_tag = qc->tag;
5051 	}
5052 
5053 	qc->flags |= ATA_QCFLAG_ACTIVE;
5054 	ap->qc_active |= 1 << qc->tag;
5055 
5056 	/*
5057 	 * We guarantee to LLDs that they will have at least one
5058 	 * non-zero sg if the command is a data command.
5059 	 */
5060 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5061 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5062 		goto sys_err;
5063 
5064 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5065 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5066 		if (ata_sg_setup(qc))
5067 			goto sys_err;
5068 
5069 	/* if device is sleeping, schedule reset and abort the link */
5070 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5071 		link->eh_info.action |= ATA_EH_RESET;
5072 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5073 		ata_link_abort(link);
5074 		return;
5075 	}
5076 
5077 	ap->ops->qc_prep(qc);
5078 
5079 	qc->err_mask |= ap->ops->qc_issue(qc);
5080 	if (unlikely(qc->err_mask))
5081 		goto err;
5082 	return;
5083 
5084 sys_err:
5085 	qc->err_mask |= AC_ERR_SYSTEM;
5086 err:
5087 	ata_qc_complete(qc);
5088 }
5089 
5090 /**
5091  *	sata_scr_valid - test whether SCRs are accessible
5092  *	@link: ATA link to test SCR accessibility for
5093  *
5094  *	Test whether SCRs are accessible for @link.
5095  *
5096  *	LOCKING:
5097  *	None.
5098  *
5099  *	RETURNS:
5100  *	1 if SCRs are accessible, 0 otherwise.
5101  */
5102 int sata_scr_valid(struct ata_link *link)
5103 {
5104 	struct ata_port *ap = link->ap;
5105 
5106 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5107 }
5108 
5109 /**
5110  *	sata_scr_read - read SCR register of the specified port
5111  *	@link: ATA link to read SCR for
5112  *	@reg: SCR to read
5113  *	@val: Place to store read value
5114  *
5115  *	Read SCR register @reg of @link into *@val.  This function is
5116  *	guaranteed to succeed if @link is ap->link, the cable type of
5117  *	the port is SATA and the port implements ->scr_read.
5118  *
5119  *	LOCKING:
5120  *	None if @link is ap->link.  Kernel thread context otherwise.
5121  *
5122  *	RETURNS:
5123  *	0 on success, negative errno on failure.
5124  */
5125 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5126 {
5127 	if (ata_is_host_link(link)) {
5128 		if (sata_scr_valid(link))
5129 			return link->ap->ops->scr_read(link, reg, val);
5130 		return -EOPNOTSUPP;
5131 	}
5132 
5133 	return sata_pmp_scr_read(link, reg, val);
5134 }
5135 
5136 /**
5137  *	sata_scr_write - write SCR register of the specified port
5138  *	@link: ATA link to write SCR for
5139  *	@reg: SCR to write
5140  *	@val: value to write
5141  *
5142  *	Write @val to SCR register @reg of @link.  This function is
5143  *	guaranteed to succeed if @link is ap->link, the cable type of
5144  *	the port is SATA and the port implements ->scr_read.
5145  *
5146  *	LOCKING:
5147  *	None if @link is ap->link.  Kernel thread context otherwise.
5148  *
5149  *	RETURNS:
5150  *	0 on success, negative errno on failure.
5151  */
5152 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5153 {
5154 	if (ata_is_host_link(link)) {
5155 		if (sata_scr_valid(link))
5156 			return link->ap->ops->scr_write(link, reg, val);
5157 		return -EOPNOTSUPP;
5158 	}
5159 
5160 	return sata_pmp_scr_write(link, reg, val);
5161 }
5162 
5163 /**
5164  *	sata_scr_write_flush - write SCR register of the specified port and flush
5165  *	@link: ATA link to write SCR for
5166  *	@reg: SCR to write
5167  *	@val: value to write
5168  *
5169  *	This function is identical to sata_scr_write() except that this
5170  *	function performs flush after writing to the register.
5171  *
5172  *	LOCKING:
5173  *	None if @link is ap->link.  Kernel thread context otherwise.
5174  *
5175  *	RETURNS:
5176  *	0 on success, negative errno on failure.
5177  */
5178 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5179 {
5180 	if (ata_is_host_link(link)) {
5181 		int rc;
5182 
5183 		if (sata_scr_valid(link)) {
5184 			rc = link->ap->ops->scr_write(link, reg, val);
5185 			if (rc == 0)
5186 				rc = link->ap->ops->scr_read(link, reg, &val);
5187 			return rc;
5188 		}
5189 		return -EOPNOTSUPP;
5190 	}
5191 
5192 	return sata_pmp_scr_write(link, reg, val);
5193 }
5194 
5195 /**
5196  *	ata_phys_link_online - test whether the given link is online
5197  *	@link: ATA link to test
5198  *
5199  *	Test whether @link is online.  Note that this function returns
5200  *	0 if online status of @link cannot be obtained, so
5201  *	ata_link_online(link) != !ata_link_offline(link).
5202  *
5203  *	LOCKING:
5204  *	None.
5205  *
5206  *	RETURNS:
5207  *	True if the port online status is available and online.
5208  */
5209 bool ata_phys_link_online(struct ata_link *link)
5210 {
5211 	u32 sstatus;
5212 
5213 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5214 	    ata_sstatus_online(sstatus))
5215 		return true;
5216 	return false;
5217 }
5218 
5219 /**
5220  *	ata_phys_link_offline - test whether the given link is offline
5221  *	@link: ATA link to test
5222  *
5223  *	Test whether @link is offline.  Note that this function
5224  *	returns 0 if offline status of @link cannot be obtained, so
5225  *	ata_link_online(link) != !ata_link_offline(link).
5226  *
5227  *	LOCKING:
5228  *	None.
5229  *
5230  *	RETURNS:
5231  *	True if the port offline status is available and offline.
5232  */
5233 bool ata_phys_link_offline(struct ata_link *link)
5234 {
5235 	u32 sstatus;
5236 
5237 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5238 	    !ata_sstatus_online(sstatus))
5239 		return true;
5240 	return false;
5241 }
5242 
5243 /**
5244  *	ata_link_online - test whether the given link is online
5245  *	@link: ATA link to test
5246  *
5247  *	Test whether @link is online.  This is identical to
5248  *	ata_phys_link_online() when there's no slave link.  When
5249  *	there's a slave link, this function should only be called on
5250  *	the master link and will return true if any of M/S links is
5251  *	online.
5252  *
5253  *	LOCKING:
5254  *	None.
5255  *
5256  *	RETURNS:
5257  *	True if the port online status is available and online.
5258  */
5259 bool ata_link_online(struct ata_link *link)
5260 {
5261 	struct ata_link *slave = link->ap->slave_link;
5262 
5263 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5264 
5265 	return ata_phys_link_online(link) ||
5266 		(slave && ata_phys_link_online(slave));
5267 }
5268 
5269 /**
5270  *	ata_link_offline - test whether the given link is offline
5271  *	@link: ATA link to test
5272  *
5273  *	Test whether @link is offline.  This is identical to
5274  *	ata_phys_link_offline() when there's no slave link.  When
5275  *	there's a slave link, this function should only be called on
5276  *	the master link and will return true if both M/S links are
5277  *	offline.
5278  *
5279  *	LOCKING:
5280  *	None.
5281  *
5282  *	RETURNS:
5283  *	True if the port offline status is available and offline.
5284  */
5285 bool ata_link_offline(struct ata_link *link)
5286 {
5287 	struct ata_link *slave = link->ap->slave_link;
5288 
5289 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5290 
5291 	return ata_phys_link_offline(link) &&
5292 		(!slave || ata_phys_link_offline(slave));
5293 }
5294 
5295 #ifdef CONFIG_PM
5296 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5297 			       unsigned int action, unsigned int ehi_flags,
5298 			       int *async)
5299 {
5300 	struct ata_link *link;
5301 	unsigned long flags;
5302 	int rc = 0;
5303 
5304 	/* Previous resume operation might still be in
5305 	 * progress.  Wait for PM_PENDING to clear.
5306 	 */
5307 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5308 		if (async) {
5309 			*async = -EAGAIN;
5310 			return 0;
5311 		}
5312 		ata_port_wait_eh(ap);
5313 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5314 	}
5315 
5316 	/* request PM ops to EH */
5317 	spin_lock_irqsave(ap->lock, flags);
5318 
5319 	ap->pm_mesg = mesg;
5320 	if (async)
5321 		ap->pm_result = async;
5322 	else
5323 		ap->pm_result = &rc;
5324 
5325 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5326 	ata_for_each_link(link, ap, HOST_FIRST) {
5327 		link->eh_info.action |= action;
5328 		link->eh_info.flags |= ehi_flags;
5329 	}
5330 
5331 	ata_port_schedule_eh(ap);
5332 
5333 	spin_unlock_irqrestore(ap->lock, flags);
5334 
5335 	/* wait and check result */
5336 	if (!async) {
5337 		ata_port_wait_eh(ap);
5338 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5339 	}
5340 
5341 	return rc;
5342 }
5343 
5344 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5345 {
5346 	/*
5347 	 * On some hardware, device fails to respond after spun down
5348 	 * for suspend.  As the device won't be used before being
5349 	 * resumed, we don't need to touch the device.  Ask EH to skip
5350 	 * the usual stuff and proceed directly to suspend.
5351 	 *
5352 	 * http://thread.gmane.org/gmane.linux.ide/46764
5353 	 */
5354 	unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5355 				 ATA_EHI_NO_RECOVERY;
5356 	return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5357 }
5358 
5359 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5360 {
5361 	struct ata_port *ap = to_ata_port(dev);
5362 
5363 	return __ata_port_suspend_common(ap, mesg, NULL);
5364 }
5365 
5366 static int ata_port_suspend(struct device *dev)
5367 {
5368 	if (pm_runtime_suspended(dev))
5369 		return 0;
5370 
5371 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5372 }
5373 
5374 static int ata_port_do_freeze(struct device *dev)
5375 {
5376 	if (pm_runtime_suspended(dev))
5377 		return 0;
5378 
5379 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5380 }
5381 
5382 static int ata_port_poweroff(struct device *dev)
5383 {
5384 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5385 }
5386 
5387 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5388 				    int *async)
5389 {
5390 	int rc;
5391 
5392 	rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5393 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5394 	return rc;
5395 }
5396 
5397 static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5398 {
5399 	struct ata_port *ap = to_ata_port(dev);
5400 
5401 	return __ata_port_resume_common(ap, mesg, NULL);
5402 }
5403 
5404 static int ata_port_resume(struct device *dev)
5405 {
5406 	int rc;
5407 
5408 	rc = ata_port_resume_common(dev, PMSG_RESUME);
5409 	if (!rc) {
5410 		pm_runtime_disable(dev);
5411 		pm_runtime_set_active(dev);
5412 		pm_runtime_enable(dev);
5413 	}
5414 
5415 	return rc;
5416 }
5417 
5418 /*
5419  * For ODDs, the upper layer will poll for media change every few seconds,
5420  * which will make it enter and leave suspend state every few seconds. And
5421  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422  * is very little and the ODD may malfunction after constantly being reset.
5423  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424  * ODD is attached to the port.
5425  */
5426 static int ata_port_runtime_idle(struct device *dev)
5427 {
5428 	struct ata_port *ap = to_ata_port(dev);
5429 	struct ata_link *link;
5430 	struct ata_device *adev;
5431 
5432 	ata_for_each_link(link, ap, HOST_FIRST) {
5433 		ata_for_each_dev(adev, link, ENABLED)
5434 			if (adev->class == ATA_DEV_ATAPI &&
5435 			    !zpodd_dev_enabled(adev))
5436 				return -EBUSY;
5437 	}
5438 
5439 	return 0;
5440 }
5441 
5442 static int ata_port_runtime_suspend(struct device *dev)
5443 {
5444 	return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5445 }
5446 
5447 static int ata_port_runtime_resume(struct device *dev)
5448 {
5449 	return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5450 }
5451 
5452 static const struct dev_pm_ops ata_port_pm_ops = {
5453 	.suspend = ata_port_suspend,
5454 	.resume = ata_port_resume,
5455 	.freeze = ata_port_do_freeze,
5456 	.thaw = ata_port_resume,
5457 	.poweroff = ata_port_poweroff,
5458 	.restore = ata_port_resume,
5459 
5460 	.runtime_suspend = ata_port_runtime_suspend,
5461 	.runtime_resume = ata_port_runtime_resume,
5462 	.runtime_idle = ata_port_runtime_idle,
5463 };
5464 
5465 /* sas ports don't participate in pm runtime management of ata_ports,
5466  * and need to resume ata devices at the domain level, not the per-port
5467  * level. sas suspend/resume is async to allow parallel port recovery
5468  * since sas has multiple ata_port instances per Scsi_Host.
5469  */
5470 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5471 {
5472 	return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5473 }
5474 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5475 
5476 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5477 {
5478 	return __ata_port_resume_common(ap, PMSG_RESUME, async);
5479 }
5480 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5481 
5482 
5483 /**
5484  *	ata_host_suspend - suspend host
5485  *	@host: host to suspend
5486  *	@mesg: PM message
5487  *
5488  *	Suspend @host.  Actual operation is performed by port suspend.
5489  */
5490 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5491 {
5492 	host->dev->power.power_state = mesg;
5493 	return 0;
5494 }
5495 
5496 /**
5497  *	ata_host_resume - resume host
5498  *	@host: host to resume
5499  *
5500  *	Resume @host.  Actual operation is performed by port resume.
5501  */
5502 void ata_host_resume(struct ata_host *host)
5503 {
5504 	host->dev->power.power_state = PMSG_ON;
5505 }
5506 #endif
5507 
5508 struct device_type ata_port_type = {
5509 	.name = "ata_port",
5510 #ifdef CONFIG_PM
5511 	.pm = &ata_port_pm_ops,
5512 #endif
5513 };
5514 
5515 /**
5516  *	ata_dev_init - Initialize an ata_device structure
5517  *	@dev: Device structure to initialize
5518  *
5519  *	Initialize @dev in preparation for probing.
5520  *
5521  *	LOCKING:
5522  *	Inherited from caller.
5523  */
5524 void ata_dev_init(struct ata_device *dev)
5525 {
5526 	struct ata_link *link = ata_dev_phys_link(dev);
5527 	struct ata_port *ap = link->ap;
5528 	unsigned long flags;
5529 
5530 	/* SATA spd limit is bound to the attached device, reset together */
5531 	link->sata_spd_limit = link->hw_sata_spd_limit;
5532 	link->sata_spd = 0;
5533 
5534 	/* High bits of dev->flags are used to record warm plug
5535 	 * requests which occur asynchronously.  Synchronize using
5536 	 * host lock.
5537 	 */
5538 	spin_lock_irqsave(ap->lock, flags);
5539 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5540 	dev->horkage = 0;
5541 	spin_unlock_irqrestore(ap->lock, flags);
5542 
5543 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5544 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5545 	dev->pio_mask = UINT_MAX;
5546 	dev->mwdma_mask = UINT_MAX;
5547 	dev->udma_mask = UINT_MAX;
5548 }
5549 
5550 /**
5551  *	ata_link_init - Initialize an ata_link structure
5552  *	@ap: ATA port link is attached to
5553  *	@link: Link structure to initialize
5554  *	@pmp: Port multiplier port number
5555  *
5556  *	Initialize @link.
5557  *
5558  *	LOCKING:
5559  *	Kernel thread context (may sleep)
5560  */
5561 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5562 {
5563 	int i;
5564 
5565 	/* clear everything except for devices */
5566 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5567 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5568 
5569 	link->ap = ap;
5570 	link->pmp = pmp;
5571 	link->active_tag = ATA_TAG_POISON;
5572 	link->hw_sata_spd_limit = UINT_MAX;
5573 
5574 	/* can't use iterator, ap isn't initialized yet */
5575 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5576 		struct ata_device *dev = &link->device[i];
5577 
5578 		dev->link = link;
5579 		dev->devno = dev - link->device;
5580 #ifdef CONFIG_ATA_ACPI
5581 		dev->gtf_filter = ata_acpi_gtf_filter;
5582 #endif
5583 		ata_dev_init(dev);
5584 	}
5585 }
5586 
5587 /**
5588  *	sata_link_init_spd - Initialize link->sata_spd_limit
5589  *	@link: Link to configure sata_spd_limit for
5590  *
5591  *	Initialize @link->[hw_]sata_spd_limit to the currently
5592  *	configured value.
5593  *
5594  *	LOCKING:
5595  *	Kernel thread context (may sleep).
5596  *
5597  *	RETURNS:
5598  *	0 on success, -errno on failure.
5599  */
5600 int sata_link_init_spd(struct ata_link *link)
5601 {
5602 	u8 spd;
5603 	int rc;
5604 
5605 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5606 	if (rc)
5607 		return rc;
5608 
5609 	spd = (link->saved_scontrol >> 4) & 0xf;
5610 	if (spd)
5611 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5612 
5613 	ata_force_link_limits(link);
5614 
5615 	link->sata_spd_limit = link->hw_sata_spd_limit;
5616 
5617 	return 0;
5618 }
5619 
5620 /**
5621  *	ata_port_alloc - allocate and initialize basic ATA port resources
5622  *	@host: ATA host this allocated port belongs to
5623  *
5624  *	Allocate and initialize basic ATA port resources.
5625  *
5626  *	RETURNS:
5627  *	Allocate ATA port on success, NULL on failure.
5628  *
5629  *	LOCKING:
5630  *	Inherited from calling layer (may sleep).
5631  */
5632 struct ata_port *ata_port_alloc(struct ata_host *host)
5633 {
5634 	struct ata_port *ap;
5635 
5636 	DPRINTK("ENTER\n");
5637 
5638 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5639 	if (!ap)
5640 		return NULL;
5641 
5642 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5643 	ap->lock = &host->lock;
5644 	ap->print_id = -1;
5645 	ap->local_port_no = -1;
5646 	ap->host = host;
5647 	ap->dev = host->dev;
5648 
5649 #if defined(ATA_VERBOSE_DEBUG)
5650 	/* turn on all debugging levels */
5651 	ap->msg_enable = 0x00FF;
5652 #elif defined(ATA_DEBUG)
5653 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5654 #else
5655 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5656 #endif
5657 
5658 	mutex_init(&ap->scsi_scan_mutex);
5659 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5660 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5661 	INIT_LIST_HEAD(&ap->eh_done_q);
5662 	init_waitqueue_head(&ap->eh_wait_q);
5663 	init_completion(&ap->park_req_pending);
5664 	init_timer_deferrable(&ap->fastdrain_timer);
5665 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5666 	ap->fastdrain_timer.data = (unsigned long)ap;
5667 
5668 	ap->cbl = ATA_CBL_NONE;
5669 
5670 	ata_link_init(ap, &ap->link, 0);
5671 
5672 #ifdef ATA_IRQ_TRAP
5673 	ap->stats.unhandled_irq = 1;
5674 	ap->stats.idle_irq = 1;
5675 #endif
5676 	ata_sff_port_init(ap);
5677 
5678 	return ap;
5679 }
5680 
5681 static void ata_host_release(struct device *gendev, void *res)
5682 {
5683 	struct ata_host *host = dev_get_drvdata(gendev);
5684 	int i;
5685 
5686 	for (i = 0; i < host->n_ports; i++) {
5687 		struct ata_port *ap = host->ports[i];
5688 
5689 		if (!ap)
5690 			continue;
5691 
5692 		if (ap->scsi_host)
5693 			scsi_host_put(ap->scsi_host);
5694 
5695 		kfree(ap->pmp_link);
5696 		kfree(ap->slave_link);
5697 		kfree(ap);
5698 		host->ports[i] = NULL;
5699 	}
5700 
5701 	dev_set_drvdata(gendev, NULL);
5702 }
5703 
5704 /**
5705  *	ata_host_alloc - allocate and init basic ATA host resources
5706  *	@dev: generic device this host is associated with
5707  *	@max_ports: maximum number of ATA ports associated with this host
5708  *
5709  *	Allocate and initialize basic ATA host resources.  LLD calls
5710  *	this function to allocate a host, initializes it fully and
5711  *	attaches it using ata_host_register().
5712  *
5713  *	@max_ports ports are allocated and host->n_ports is
5714  *	initialized to @max_ports.  The caller is allowed to decrease
5715  *	host->n_ports before calling ata_host_register().  The unused
5716  *	ports will be automatically freed on registration.
5717  *
5718  *	RETURNS:
5719  *	Allocate ATA host on success, NULL on failure.
5720  *
5721  *	LOCKING:
5722  *	Inherited from calling layer (may sleep).
5723  */
5724 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5725 {
5726 	struct ata_host *host;
5727 	size_t sz;
5728 	int i;
5729 
5730 	DPRINTK("ENTER\n");
5731 
5732 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5733 		return NULL;
5734 
5735 	/* alloc a container for our list of ATA ports (buses) */
5736 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5737 	/* alloc a container for our list of ATA ports (buses) */
5738 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5739 	if (!host)
5740 		goto err_out;
5741 
5742 	devres_add(dev, host);
5743 	dev_set_drvdata(dev, host);
5744 
5745 	spin_lock_init(&host->lock);
5746 	mutex_init(&host->eh_mutex);
5747 	host->dev = dev;
5748 	host->n_ports = max_ports;
5749 
5750 	/* allocate ports bound to this host */
5751 	for (i = 0; i < max_ports; i++) {
5752 		struct ata_port *ap;
5753 
5754 		ap = ata_port_alloc(host);
5755 		if (!ap)
5756 			goto err_out;
5757 
5758 		ap->port_no = i;
5759 		host->ports[i] = ap;
5760 	}
5761 
5762 	devres_remove_group(dev, NULL);
5763 	return host;
5764 
5765  err_out:
5766 	devres_release_group(dev, NULL);
5767 	return NULL;
5768 }
5769 
5770 /**
5771  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5772  *	@dev: generic device this host is associated with
5773  *	@ppi: array of ATA port_info to initialize host with
5774  *	@n_ports: number of ATA ports attached to this host
5775  *
5776  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5777  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5778  *	last entry will be used for the remaining ports.
5779  *
5780  *	RETURNS:
5781  *	Allocate ATA host on success, NULL on failure.
5782  *
5783  *	LOCKING:
5784  *	Inherited from calling layer (may sleep).
5785  */
5786 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5787 				      const struct ata_port_info * const * ppi,
5788 				      int n_ports)
5789 {
5790 	const struct ata_port_info *pi;
5791 	struct ata_host *host;
5792 	int i, j;
5793 
5794 	host = ata_host_alloc(dev, n_ports);
5795 	if (!host)
5796 		return NULL;
5797 
5798 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5799 		struct ata_port *ap = host->ports[i];
5800 
5801 		if (ppi[j])
5802 			pi = ppi[j++];
5803 
5804 		ap->pio_mask = pi->pio_mask;
5805 		ap->mwdma_mask = pi->mwdma_mask;
5806 		ap->udma_mask = pi->udma_mask;
5807 		ap->flags |= pi->flags;
5808 		ap->link.flags |= pi->link_flags;
5809 		ap->ops = pi->port_ops;
5810 
5811 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5812 			host->ops = pi->port_ops;
5813 	}
5814 
5815 	return host;
5816 }
5817 
5818 /**
5819  *	ata_slave_link_init - initialize slave link
5820  *	@ap: port to initialize slave link for
5821  *
5822  *	Create and initialize slave link for @ap.  This enables slave
5823  *	link handling on the port.
5824  *
5825  *	In libata, a port contains links and a link contains devices.
5826  *	There is single host link but if a PMP is attached to it,
5827  *	there can be multiple fan-out links.  On SATA, there's usually
5828  *	a single device connected to a link but PATA and SATA
5829  *	controllers emulating TF based interface can have two - master
5830  *	and slave.
5831  *
5832  *	However, there are a few controllers which don't fit into this
5833  *	abstraction too well - SATA controllers which emulate TF
5834  *	interface with both master and slave devices but also have
5835  *	separate SCR register sets for each device.  These controllers
5836  *	need separate links for physical link handling
5837  *	(e.g. onlineness, link speed) but should be treated like a
5838  *	traditional M/S controller for everything else (e.g. command
5839  *	issue, softreset).
5840  *
5841  *	slave_link is libata's way of handling this class of
5842  *	controllers without impacting core layer too much.  For
5843  *	anything other than physical link handling, the default host
5844  *	link is used for both master and slave.  For physical link
5845  *	handling, separate @ap->slave_link is used.  All dirty details
5846  *	are implemented inside libata core layer.  From LLD's POV, the
5847  *	only difference is that prereset, hardreset and postreset are
5848  *	called once more for the slave link, so the reset sequence
5849  *	looks like the following.
5850  *
5851  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5852  *	softreset(M) -> postreset(M) -> postreset(S)
5853  *
5854  *	Note that softreset is called only for the master.  Softreset
5855  *	resets both M/S by definition, so SRST on master should handle
5856  *	both (the standard method will work just fine).
5857  *
5858  *	LOCKING:
5859  *	Should be called before host is registered.
5860  *
5861  *	RETURNS:
5862  *	0 on success, -errno on failure.
5863  */
5864 int ata_slave_link_init(struct ata_port *ap)
5865 {
5866 	struct ata_link *link;
5867 
5868 	WARN_ON(ap->slave_link);
5869 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5870 
5871 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5872 	if (!link)
5873 		return -ENOMEM;
5874 
5875 	ata_link_init(ap, link, 1);
5876 	ap->slave_link = link;
5877 	return 0;
5878 }
5879 
5880 static void ata_host_stop(struct device *gendev, void *res)
5881 {
5882 	struct ata_host *host = dev_get_drvdata(gendev);
5883 	int i;
5884 
5885 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5886 
5887 	for (i = 0; i < host->n_ports; i++) {
5888 		struct ata_port *ap = host->ports[i];
5889 
5890 		if (ap->ops->port_stop)
5891 			ap->ops->port_stop(ap);
5892 	}
5893 
5894 	if (host->ops->host_stop)
5895 		host->ops->host_stop(host);
5896 }
5897 
5898 /**
5899  *	ata_finalize_port_ops - finalize ata_port_operations
5900  *	@ops: ata_port_operations to finalize
5901  *
5902  *	An ata_port_operations can inherit from another ops and that
5903  *	ops can again inherit from another.  This can go on as many
5904  *	times as necessary as long as there is no loop in the
5905  *	inheritance chain.
5906  *
5907  *	Ops tables are finalized when the host is started.  NULL or
5908  *	unspecified entries are inherited from the closet ancestor
5909  *	which has the method and the entry is populated with it.
5910  *	After finalization, the ops table directly points to all the
5911  *	methods and ->inherits is no longer necessary and cleared.
5912  *
5913  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5914  *
5915  *	LOCKING:
5916  *	None.
5917  */
5918 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5919 {
5920 	static DEFINE_SPINLOCK(lock);
5921 	const struct ata_port_operations *cur;
5922 	void **begin = (void **)ops;
5923 	void **end = (void **)&ops->inherits;
5924 	void **pp;
5925 
5926 	if (!ops || !ops->inherits)
5927 		return;
5928 
5929 	spin_lock(&lock);
5930 
5931 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5932 		void **inherit = (void **)cur;
5933 
5934 		for (pp = begin; pp < end; pp++, inherit++)
5935 			if (!*pp)
5936 				*pp = *inherit;
5937 	}
5938 
5939 	for (pp = begin; pp < end; pp++)
5940 		if (IS_ERR(*pp))
5941 			*pp = NULL;
5942 
5943 	ops->inherits = NULL;
5944 
5945 	spin_unlock(&lock);
5946 }
5947 
5948 /**
5949  *	ata_host_start - start and freeze ports of an ATA host
5950  *	@host: ATA host to start ports for
5951  *
5952  *	Start and then freeze ports of @host.  Started status is
5953  *	recorded in host->flags, so this function can be called
5954  *	multiple times.  Ports are guaranteed to get started only
5955  *	once.  If host->ops isn't initialized yet, its set to the
5956  *	first non-dummy port ops.
5957  *
5958  *	LOCKING:
5959  *	Inherited from calling layer (may sleep).
5960  *
5961  *	RETURNS:
5962  *	0 if all ports are started successfully, -errno otherwise.
5963  */
5964 int ata_host_start(struct ata_host *host)
5965 {
5966 	int have_stop = 0;
5967 	void *start_dr = NULL;
5968 	int i, rc;
5969 
5970 	if (host->flags & ATA_HOST_STARTED)
5971 		return 0;
5972 
5973 	ata_finalize_port_ops(host->ops);
5974 
5975 	for (i = 0; i < host->n_ports; i++) {
5976 		struct ata_port *ap = host->ports[i];
5977 
5978 		ata_finalize_port_ops(ap->ops);
5979 
5980 		if (!host->ops && !ata_port_is_dummy(ap))
5981 			host->ops = ap->ops;
5982 
5983 		if (ap->ops->port_stop)
5984 			have_stop = 1;
5985 	}
5986 
5987 	if (host->ops->host_stop)
5988 		have_stop = 1;
5989 
5990 	if (have_stop) {
5991 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5992 		if (!start_dr)
5993 			return -ENOMEM;
5994 	}
5995 
5996 	for (i = 0; i < host->n_ports; i++) {
5997 		struct ata_port *ap = host->ports[i];
5998 
5999 		if (ap->ops->port_start) {
6000 			rc = ap->ops->port_start(ap);
6001 			if (rc) {
6002 				if (rc != -ENODEV)
6003 					dev_err(host->dev,
6004 						"failed to start port %d (errno=%d)\n",
6005 						i, rc);
6006 				goto err_out;
6007 			}
6008 		}
6009 		ata_eh_freeze_port(ap);
6010 	}
6011 
6012 	if (start_dr)
6013 		devres_add(host->dev, start_dr);
6014 	host->flags |= ATA_HOST_STARTED;
6015 	return 0;
6016 
6017  err_out:
6018 	while (--i >= 0) {
6019 		struct ata_port *ap = host->ports[i];
6020 
6021 		if (ap->ops->port_stop)
6022 			ap->ops->port_stop(ap);
6023 	}
6024 	devres_free(start_dr);
6025 	return rc;
6026 }
6027 
6028 /**
6029  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6030  *	@host:	host to initialize
6031  *	@dev:	device host is attached to
6032  *	@ops:	port_ops
6033  *
6034  */
6035 void ata_host_init(struct ata_host *host, struct device *dev,
6036 		   struct ata_port_operations *ops)
6037 {
6038 	spin_lock_init(&host->lock);
6039 	mutex_init(&host->eh_mutex);
6040 	host->dev = dev;
6041 	host->ops = ops;
6042 }
6043 
6044 void __ata_port_probe(struct ata_port *ap)
6045 {
6046 	struct ata_eh_info *ehi = &ap->link.eh_info;
6047 	unsigned long flags;
6048 
6049 	/* kick EH for boot probing */
6050 	spin_lock_irqsave(ap->lock, flags);
6051 
6052 	ehi->probe_mask |= ATA_ALL_DEVICES;
6053 	ehi->action |= ATA_EH_RESET;
6054 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6055 
6056 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6057 	ap->pflags |= ATA_PFLAG_LOADING;
6058 	ata_port_schedule_eh(ap);
6059 
6060 	spin_unlock_irqrestore(ap->lock, flags);
6061 }
6062 
6063 int ata_port_probe(struct ata_port *ap)
6064 {
6065 	int rc = 0;
6066 
6067 	if (ap->ops->error_handler) {
6068 		__ata_port_probe(ap);
6069 		ata_port_wait_eh(ap);
6070 	} else {
6071 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6072 		rc = ata_bus_probe(ap);
6073 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6074 	}
6075 	return rc;
6076 }
6077 
6078 
6079 static void async_port_probe(void *data, async_cookie_t cookie)
6080 {
6081 	struct ata_port *ap = data;
6082 
6083 	/*
6084 	 * If we're not allowed to scan this host in parallel,
6085 	 * we need to wait until all previous scans have completed
6086 	 * before going further.
6087 	 * Jeff Garzik says this is only within a controller, so we
6088 	 * don't need to wait for port 0, only for later ports.
6089 	 */
6090 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6091 		async_synchronize_cookie(cookie);
6092 
6093 	(void)ata_port_probe(ap);
6094 
6095 	/* in order to keep device order, we need to synchronize at this point */
6096 	async_synchronize_cookie(cookie);
6097 
6098 	ata_scsi_scan_host(ap, 1);
6099 }
6100 
6101 /**
6102  *	ata_host_register - register initialized ATA host
6103  *	@host: ATA host to register
6104  *	@sht: template for SCSI host
6105  *
6106  *	Register initialized ATA host.  @host is allocated using
6107  *	ata_host_alloc() and fully initialized by LLD.  This function
6108  *	starts ports, registers @host with ATA and SCSI layers and
6109  *	probe registered devices.
6110  *
6111  *	LOCKING:
6112  *	Inherited from calling layer (may sleep).
6113  *
6114  *	RETURNS:
6115  *	0 on success, -errno otherwise.
6116  */
6117 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6118 {
6119 	int i, rc;
6120 
6121 	/* host must have been started */
6122 	if (!(host->flags & ATA_HOST_STARTED)) {
6123 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6124 		WARN_ON(1);
6125 		return -EINVAL;
6126 	}
6127 
6128 	/* Blow away unused ports.  This happens when LLD can't
6129 	 * determine the exact number of ports to allocate at
6130 	 * allocation time.
6131 	 */
6132 	for (i = host->n_ports; host->ports[i]; i++)
6133 		kfree(host->ports[i]);
6134 
6135 	/* give ports names and add SCSI hosts */
6136 	for (i = 0; i < host->n_ports; i++) {
6137 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6138 		host->ports[i]->local_port_no = i + 1;
6139 	}
6140 
6141 	/* Create associated sysfs transport objects  */
6142 	for (i = 0; i < host->n_ports; i++) {
6143 		rc = ata_tport_add(host->dev,host->ports[i]);
6144 		if (rc) {
6145 			goto err_tadd;
6146 		}
6147 	}
6148 
6149 	rc = ata_scsi_add_hosts(host, sht);
6150 	if (rc)
6151 		goto err_tadd;
6152 
6153 	ata_acpi_hotplug_init(host);
6154 
6155 	/* set cable, sata_spd_limit and report */
6156 	for (i = 0; i < host->n_ports; i++) {
6157 		struct ata_port *ap = host->ports[i];
6158 		unsigned long xfer_mask;
6159 
6160 		/* set SATA cable type if still unset */
6161 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6162 			ap->cbl = ATA_CBL_SATA;
6163 
6164 		/* init sata_spd_limit to the current value */
6165 		sata_link_init_spd(&ap->link);
6166 		if (ap->slave_link)
6167 			sata_link_init_spd(ap->slave_link);
6168 
6169 		/* print per-port info to dmesg */
6170 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6171 					      ap->udma_mask);
6172 
6173 		if (!ata_port_is_dummy(ap)) {
6174 			ata_port_info(ap, "%cATA max %s %s\n",
6175 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6176 				      ata_mode_string(xfer_mask),
6177 				      ap->link.eh_info.desc);
6178 			ata_ehi_clear_desc(&ap->link.eh_info);
6179 		} else
6180 			ata_port_info(ap, "DUMMY\n");
6181 	}
6182 
6183 	/* perform each probe asynchronously */
6184 	for (i = 0; i < host->n_ports; i++) {
6185 		struct ata_port *ap = host->ports[i];
6186 		async_schedule(async_port_probe, ap);
6187 	}
6188 
6189 	return 0;
6190 
6191  err_tadd:
6192 	while (--i >= 0) {
6193 		ata_tport_delete(host->ports[i]);
6194 	}
6195 	return rc;
6196 
6197 }
6198 
6199 /**
6200  *	ata_host_activate - start host, request IRQ and register it
6201  *	@host: target ATA host
6202  *	@irq: IRQ to request
6203  *	@irq_handler: irq_handler used when requesting IRQ
6204  *	@irq_flags: irq_flags used when requesting IRQ
6205  *	@sht: scsi_host_template to use when registering the host
6206  *
6207  *	After allocating an ATA host and initializing it, most libata
6208  *	LLDs perform three steps to activate the host - start host,
6209  *	request IRQ and register it.  This helper takes necessasry
6210  *	arguments and performs the three steps in one go.
6211  *
6212  *	An invalid IRQ skips the IRQ registration and expects the host to
6213  *	have set polling mode on the port. In this case, @irq_handler
6214  *	should be NULL.
6215  *
6216  *	LOCKING:
6217  *	Inherited from calling layer (may sleep).
6218  *
6219  *	RETURNS:
6220  *	0 on success, -errno otherwise.
6221  */
6222 int ata_host_activate(struct ata_host *host, int irq,
6223 		      irq_handler_t irq_handler, unsigned long irq_flags,
6224 		      struct scsi_host_template *sht)
6225 {
6226 	int i, rc;
6227 
6228 	rc = ata_host_start(host);
6229 	if (rc)
6230 		return rc;
6231 
6232 	/* Special case for polling mode */
6233 	if (!irq) {
6234 		WARN_ON(irq_handler);
6235 		return ata_host_register(host, sht);
6236 	}
6237 
6238 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6239 			      dev_driver_string(host->dev), host);
6240 	if (rc)
6241 		return rc;
6242 
6243 	for (i = 0; i < host->n_ports; i++)
6244 		ata_port_desc(host->ports[i], "irq %d", irq);
6245 
6246 	rc = ata_host_register(host, sht);
6247 	/* if failed, just free the IRQ and leave ports alone */
6248 	if (rc)
6249 		devm_free_irq(host->dev, irq, host);
6250 
6251 	return rc;
6252 }
6253 
6254 /**
6255  *	ata_port_detach - Detach ATA port in prepration of device removal
6256  *	@ap: ATA port to be detached
6257  *
6258  *	Detach all ATA devices and the associated SCSI devices of @ap;
6259  *	then, remove the associated SCSI host.  @ap is guaranteed to
6260  *	be quiescent on return from this function.
6261  *
6262  *	LOCKING:
6263  *	Kernel thread context (may sleep).
6264  */
6265 static void ata_port_detach(struct ata_port *ap)
6266 {
6267 	unsigned long flags;
6268 
6269 	if (!ap->ops->error_handler)
6270 		goto skip_eh;
6271 
6272 	/* tell EH we're leaving & flush EH */
6273 	spin_lock_irqsave(ap->lock, flags);
6274 	ap->pflags |= ATA_PFLAG_UNLOADING;
6275 	ata_port_schedule_eh(ap);
6276 	spin_unlock_irqrestore(ap->lock, flags);
6277 
6278 	/* wait till EH commits suicide */
6279 	ata_port_wait_eh(ap);
6280 
6281 	/* it better be dead now */
6282 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6283 
6284 	cancel_delayed_work_sync(&ap->hotplug_task);
6285 
6286  skip_eh:
6287 	if (ap->pmp_link) {
6288 		int i;
6289 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6290 			ata_tlink_delete(&ap->pmp_link[i]);
6291 	}
6292 	ata_tport_delete(ap);
6293 
6294 	/* remove the associated SCSI host */
6295 	scsi_remove_host(ap->scsi_host);
6296 }
6297 
6298 /**
6299  *	ata_host_detach - Detach all ports of an ATA host
6300  *	@host: Host to detach
6301  *
6302  *	Detach all ports of @host.
6303  *
6304  *	LOCKING:
6305  *	Kernel thread context (may sleep).
6306  */
6307 void ata_host_detach(struct ata_host *host)
6308 {
6309 	int i;
6310 
6311 	for (i = 0; i < host->n_ports; i++)
6312 		ata_port_detach(host->ports[i]);
6313 
6314 	/* the host is dead now, dissociate ACPI */
6315 	ata_acpi_dissociate(host);
6316 }
6317 
6318 #ifdef CONFIG_PCI
6319 
6320 /**
6321  *	ata_pci_remove_one - PCI layer callback for device removal
6322  *	@pdev: PCI device that was removed
6323  *
6324  *	PCI layer indicates to libata via this hook that hot-unplug or
6325  *	module unload event has occurred.  Detach all ports.  Resource
6326  *	release is handled via devres.
6327  *
6328  *	LOCKING:
6329  *	Inherited from PCI layer (may sleep).
6330  */
6331 void ata_pci_remove_one(struct pci_dev *pdev)
6332 {
6333 	struct ata_host *host = pci_get_drvdata(pdev);
6334 
6335 	ata_host_detach(host);
6336 }
6337 
6338 /* move to PCI subsystem */
6339 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6340 {
6341 	unsigned long tmp = 0;
6342 
6343 	switch (bits->width) {
6344 	case 1: {
6345 		u8 tmp8 = 0;
6346 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6347 		tmp = tmp8;
6348 		break;
6349 	}
6350 	case 2: {
6351 		u16 tmp16 = 0;
6352 		pci_read_config_word(pdev, bits->reg, &tmp16);
6353 		tmp = tmp16;
6354 		break;
6355 	}
6356 	case 4: {
6357 		u32 tmp32 = 0;
6358 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6359 		tmp = tmp32;
6360 		break;
6361 	}
6362 
6363 	default:
6364 		return -EINVAL;
6365 	}
6366 
6367 	tmp &= bits->mask;
6368 
6369 	return (tmp == bits->val) ? 1 : 0;
6370 }
6371 
6372 #ifdef CONFIG_PM
6373 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6374 {
6375 	pci_save_state(pdev);
6376 	pci_disable_device(pdev);
6377 
6378 	if (mesg.event & PM_EVENT_SLEEP)
6379 		pci_set_power_state(pdev, PCI_D3hot);
6380 }
6381 
6382 int ata_pci_device_do_resume(struct pci_dev *pdev)
6383 {
6384 	int rc;
6385 
6386 	pci_set_power_state(pdev, PCI_D0);
6387 	pci_restore_state(pdev);
6388 
6389 	rc = pcim_enable_device(pdev);
6390 	if (rc) {
6391 		dev_err(&pdev->dev,
6392 			"failed to enable device after resume (%d)\n", rc);
6393 		return rc;
6394 	}
6395 
6396 	pci_set_master(pdev);
6397 	return 0;
6398 }
6399 
6400 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6401 {
6402 	struct ata_host *host = pci_get_drvdata(pdev);
6403 	int rc = 0;
6404 
6405 	rc = ata_host_suspend(host, mesg);
6406 	if (rc)
6407 		return rc;
6408 
6409 	ata_pci_device_do_suspend(pdev, mesg);
6410 
6411 	return 0;
6412 }
6413 
6414 int ata_pci_device_resume(struct pci_dev *pdev)
6415 {
6416 	struct ata_host *host = pci_get_drvdata(pdev);
6417 	int rc;
6418 
6419 	rc = ata_pci_device_do_resume(pdev);
6420 	if (rc == 0)
6421 		ata_host_resume(host);
6422 	return rc;
6423 }
6424 #endif /* CONFIG_PM */
6425 
6426 #endif /* CONFIG_PCI */
6427 
6428 /**
6429  *	ata_platform_remove_one - Platform layer callback for device removal
6430  *	@pdev: Platform device that was removed
6431  *
6432  *	Platform layer indicates to libata via this hook that hot-unplug or
6433  *	module unload event has occurred.  Detach all ports.  Resource
6434  *	release is handled via devres.
6435  *
6436  *	LOCKING:
6437  *	Inherited from platform layer (may sleep).
6438  */
6439 int ata_platform_remove_one(struct platform_device *pdev)
6440 {
6441 	struct ata_host *host = platform_get_drvdata(pdev);
6442 
6443 	ata_host_detach(host);
6444 
6445 	return 0;
6446 }
6447 
6448 static int __init ata_parse_force_one(char **cur,
6449 				      struct ata_force_ent *force_ent,
6450 				      const char **reason)
6451 {
6452 	/* FIXME: Currently, there's no way to tag init const data and
6453 	 * using __initdata causes build failure on some versions of
6454 	 * gcc.  Once __initdataconst is implemented, add const to the
6455 	 * following structure.
6456 	 */
6457 	static struct ata_force_param force_tbl[] __initdata = {
6458 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6459 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6460 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6461 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6462 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6463 		{ "sata",	.cbl		= ATA_CBL_SATA },
6464 		{ "1.5Gbps",	.spd_limit	= 1 },
6465 		{ "3.0Gbps",	.spd_limit	= 2 },
6466 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6467 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6468 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6469 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6470 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6471 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6472 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6473 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6474 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6475 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6476 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6477 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6478 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6479 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6480 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6481 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6482 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6483 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6484 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6485 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6486 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6487 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6488 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6489 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6490 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6491 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6492 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6493 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6494 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6495 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6496 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6497 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6498 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6499 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6500 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6501 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6502 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6503 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6504 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6505 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6506 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6507 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6508 	};
6509 	char *start = *cur, *p = *cur;
6510 	char *id, *val, *endp;
6511 	const struct ata_force_param *match_fp = NULL;
6512 	int nr_matches = 0, i;
6513 
6514 	/* find where this param ends and update *cur */
6515 	while (*p != '\0' && *p != ',')
6516 		p++;
6517 
6518 	if (*p == '\0')
6519 		*cur = p;
6520 	else
6521 		*cur = p + 1;
6522 
6523 	*p = '\0';
6524 
6525 	/* parse */
6526 	p = strchr(start, ':');
6527 	if (!p) {
6528 		val = strstrip(start);
6529 		goto parse_val;
6530 	}
6531 	*p = '\0';
6532 
6533 	id = strstrip(start);
6534 	val = strstrip(p + 1);
6535 
6536 	/* parse id */
6537 	p = strchr(id, '.');
6538 	if (p) {
6539 		*p++ = '\0';
6540 		force_ent->device = simple_strtoul(p, &endp, 10);
6541 		if (p == endp || *endp != '\0') {
6542 			*reason = "invalid device";
6543 			return -EINVAL;
6544 		}
6545 	}
6546 
6547 	force_ent->port = simple_strtoul(id, &endp, 10);
6548 	if (p == endp || *endp != '\0') {
6549 		*reason = "invalid port/link";
6550 		return -EINVAL;
6551 	}
6552 
6553  parse_val:
6554 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6555 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6556 		const struct ata_force_param *fp = &force_tbl[i];
6557 
6558 		if (strncasecmp(val, fp->name, strlen(val)))
6559 			continue;
6560 
6561 		nr_matches++;
6562 		match_fp = fp;
6563 
6564 		if (strcasecmp(val, fp->name) == 0) {
6565 			nr_matches = 1;
6566 			break;
6567 		}
6568 	}
6569 
6570 	if (!nr_matches) {
6571 		*reason = "unknown value";
6572 		return -EINVAL;
6573 	}
6574 	if (nr_matches > 1) {
6575 		*reason = "ambigious value";
6576 		return -EINVAL;
6577 	}
6578 
6579 	force_ent->param = *match_fp;
6580 
6581 	return 0;
6582 }
6583 
6584 static void __init ata_parse_force_param(void)
6585 {
6586 	int idx = 0, size = 1;
6587 	int last_port = -1, last_device = -1;
6588 	char *p, *cur, *next;
6589 
6590 	/* calculate maximum number of params and allocate force_tbl */
6591 	for (p = ata_force_param_buf; *p; p++)
6592 		if (*p == ',')
6593 			size++;
6594 
6595 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6596 	if (!ata_force_tbl) {
6597 		printk(KERN_WARNING "ata: failed to extend force table, "
6598 		       "libata.force ignored\n");
6599 		return;
6600 	}
6601 
6602 	/* parse and populate the table */
6603 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6604 		const char *reason = "";
6605 		struct ata_force_ent te = { .port = -1, .device = -1 };
6606 
6607 		next = cur;
6608 		if (ata_parse_force_one(&next, &te, &reason)) {
6609 			printk(KERN_WARNING "ata: failed to parse force "
6610 			       "parameter \"%s\" (%s)\n",
6611 			       cur, reason);
6612 			continue;
6613 		}
6614 
6615 		if (te.port == -1) {
6616 			te.port = last_port;
6617 			te.device = last_device;
6618 		}
6619 
6620 		ata_force_tbl[idx++] = te;
6621 
6622 		last_port = te.port;
6623 		last_device = te.device;
6624 	}
6625 
6626 	ata_force_tbl_size = idx;
6627 }
6628 
6629 static int __init ata_init(void)
6630 {
6631 	int rc;
6632 
6633 	ata_parse_force_param();
6634 
6635 	ata_acpi_register();
6636 
6637 	rc = ata_sff_init();
6638 	if (rc) {
6639 		kfree(ata_force_tbl);
6640 		return rc;
6641 	}
6642 
6643 	libata_transport_init();
6644 	ata_scsi_transport_template = ata_attach_transport();
6645 	if (!ata_scsi_transport_template) {
6646 		ata_sff_exit();
6647 		rc = -ENOMEM;
6648 		goto err_out;
6649 	}
6650 
6651 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6652 	return 0;
6653 
6654 err_out:
6655 	return rc;
6656 }
6657 
6658 static void __exit ata_exit(void)
6659 {
6660 	ata_release_transport(ata_scsi_transport_template);
6661 	libata_transport_exit();
6662 	ata_sff_exit();
6663 	ata_acpi_unregister();
6664 	kfree(ata_force_tbl);
6665 }
6666 
6667 subsys_initcall(ata_init);
6668 module_exit(ata_exit);
6669 
6670 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6671 
6672 int ata_ratelimit(void)
6673 {
6674 	return __ratelimit(&ratelimit);
6675 }
6676 
6677 /**
6678  *	ata_msleep - ATA EH owner aware msleep
6679  *	@ap: ATA port to attribute the sleep to
6680  *	@msecs: duration to sleep in milliseconds
6681  *
6682  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6683  *	ownership is released before going to sleep and reacquired
6684  *	after the sleep is complete.  IOW, other ports sharing the
6685  *	@ap->host will be allowed to own the EH while this task is
6686  *	sleeping.
6687  *
6688  *	LOCKING:
6689  *	Might sleep.
6690  */
6691 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6692 {
6693 	bool owns_eh = ap && ap->host->eh_owner == current;
6694 
6695 	if (owns_eh)
6696 		ata_eh_release(ap);
6697 
6698 	msleep(msecs);
6699 
6700 	if (owns_eh)
6701 		ata_eh_acquire(ap);
6702 }
6703 
6704 /**
6705  *	ata_wait_register - wait until register value changes
6706  *	@ap: ATA port to wait register for, can be NULL
6707  *	@reg: IO-mapped register
6708  *	@mask: Mask to apply to read register value
6709  *	@val: Wait condition
6710  *	@interval: polling interval in milliseconds
6711  *	@timeout: timeout in milliseconds
6712  *
6713  *	Waiting for some bits of register to change is a common
6714  *	operation for ATA controllers.  This function reads 32bit LE
6715  *	IO-mapped register @reg and tests for the following condition.
6716  *
6717  *	(*@reg & mask) != val
6718  *
6719  *	If the condition is met, it returns; otherwise, the process is
6720  *	repeated after @interval_msec until timeout.
6721  *
6722  *	LOCKING:
6723  *	Kernel thread context (may sleep)
6724  *
6725  *	RETURNS:
6726  *	The final register value.
6727  */
6728 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6729 		      unsigned long interval, unsigned long timeout)
6730 {
6731 	unsigned long deadline;
6732 	u32 tmp;
6733 
6734 	tmp = ioread32(reg);
6735 
6736 	/* Calculate timeout _after_ the first read to make sure
6737 	 * preceding writes reach the controller before starting to
6738 	 * eat away the timeout.
6739 	 */
6740 	deadline = ata_deadline(jiffies, timeout);
6741 
6742 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6743 		ata_msleep(ap, interval);
6744 		tmp = ioread32(reg);
6745 	}
6746 
6747 	return tmp;
6748 }
6749 
6750 /*
6751  * Dummy port_ops
6752  */
6753 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6754 {
6755 	return AC_ERR_SYSTEM;
6756 }
6757 
6758 static void ata_dummy_error_handler(struct ata_port *ap)
6759 {
6760 	/* truly dummy */
6761 }
6762 
6763 struct ata_port_operations ata_dummy_port_ops = {
6764 	.qc_prep		= ata_noop_qc_prep,
6765 	.qc_issue		= ata_dummy_qc_issue,
6766 	.error_handler		= ata_dummy_error_handler,
6767 	.sched_eh		= ata_std_sched_eh,
6768 	.end_eh			= ata_std_end_eh,
6769 };
6770 
6771 const struct ata_port_info ata_dummy_port_info = {
6772 	.port_ops		= &ata_dummy_port_ops,
6773 };
6774 
6775 /*
6776  * Utility print functions
6777  */
6778 int ata_port_printk(const struct ata_port *ap, const char *level,
6779 		    const char *fmt, ...)
6780 {
6781 	struct va_format vaf;
6782 	va_list args;
6783 	int r;
6784 
6785 	va_start(args, fmt);
6786 
6787 	vaf.fmt = fmt;
6788 	vaf.va = &args;
6789 
6790 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6791 
6792 	va_end(args);
6793 
6794 	return r;
6795 }
6796 EXPORT_SYMBOL(ata_port_printk);
6797 
6798 int ata_link_printk(const struct ata_link *link, const char *level,
6799 		    const char *fmt, ...)
6800 {
6801 	struct va_format vaf;
6802 	va_list args;
6803 	int r;
6804 
6805 	va_start(args, fmt);
6806 
6807 	vaf.fmt = fmt;
6808 	vaf.va = &args;
6809 
6810 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6811 		r = printk("%sata%u.%02u: %pV",
6812 			   level, link->ap->print_id, link->pmp, &vaf);
6813 	else
6814 		r = printk("%sata%u: %pV",
6815 			   level, link->ap->print_id, &vaf);
6816 
6817 	va_end(args);
6818 
6819 	return r;
6820 }
6821 EXPORT_SYMBOL(ata_link_printk);
6822 
6823 int ata_dev_printk(const struct ata_device *dev, const char *level,
6824 		    const char *fmt, ...)
6825 {
6826 	struct va_format vaf;
6827 	va_list args;
6828 	int r;
6829 
6830 	va_start(args, fmt);
6831 
6832 	vaf.fmt = fmt;
6833 	vaf.va = &args;
6834 
6835 	r = printk("%sata%u.%02u: %pV",
6836 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6837 		   &vaf);
6838 
6839 	va_end(args);
6840 
6841 	return r;
6842 }
6843 EXPORT_SYMBOL(ata_dev_printk);
6844 
6845 void ata_print_version(const struct device *dev, const char *version)
6846 {
6847 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6848 }
6849 EXPORT_SYMBOL(ata_print_version);
6850 
6851 /*
6852  * libata is essentially a library of internal helper functions for
6853  * low-level ATA host controller drivers.  As such, the API/ABI is
6854  * likely to change as new drivers are added and updated.
6855  * Do not depend on ABI/API stability.
6856  */
6857 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6858 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6859 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6860 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6861 EXPORT_SYMBOL_GPL(sata_port_ops);
6862 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6863 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6864 EXPORT_SYMBOL_GPL(ata_link_next);
6865 EXPORT_SYMBOL_GPL(ata_dev_next);
6866 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6867 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6868 EXPORT_SYMBOL_GPL(ata_host_init);
6869 EXPORT_SYMBOL_GPL(ata_host_alloc);
6870 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6871 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6872 EXPORT_SYMBOL_GPL(ata_host_start);
6873 EXPORT_SYMBOL_GPL(ata_host_register);
6874 EXPORT_SYMBOL_GPL(ata_host_activate);
6875 EXPORT_SYMBOL_GPL(ata_host_detach);
6876 EXPORT_SYMBOL_GPL(ata_sg_init);
6877 EXPORT_SYMBOL_GPL(ata_qc_complete);
6878 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6879 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6880 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6881 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6882 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6883 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6884 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6885 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6886 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6887 EXPORT_SYMBOL_GPL(ata_mode_string);
6888 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6889 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6890 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6891 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6892 EXPORT_SYMBOL_GPL(ata_dev_disable);
6893 EXPORT_SYMBOL_GPL(sata_set_spd);
6894 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6895 EXPORT_SYMBOL_GPL(sata_link_debounce);
6896 EXPORT_SYMBOL_GPL(sata_link_resume);
6897 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6898 EXPORT_SYMBOL_GPL(ata_std_prereset);
6899 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6900 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6901 EXPORT_SYMBOL_GPL(ata_std_postreset);
6902 EXPORT_SYMBOL_GPL(ata_dev_classify);
6903 EXPORT_SYMBOL_GPL(ata_dev_pair);
6904 EXPORT_SYMBOL_GPL(ata_ratelimit);
6905 EXPORT_SYMBOL_GPL(ata_msleep);
6906 EXPORT_SYMBOL_GPL(ata_wait_register);
6907 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6908 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6909 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6910 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6911 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6912 EXPORT_SYMBOL_GPL(sata_scr_valid);
6913 EXPORT_SYMBOL_GPL(sata_scr_read);
6914 EXPORT_SYMBOL_GPL(sata_scr_write);
6915 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6916 EXPORT_SYMBOL_GPL(ata_link_online);
6917 EXPORT_SYMBOL_GPL(ata_link_offline);
6918 #ifdef CONFIG_PM
6919 EXPORT_SYMBOL_GPL(ata_host_suspend);
6920 EXPORT_SYMBOL_GPL(ata_host_resume);
6921 #endif /* CONFIG_PM */
6922 EXPORT_SYMBOL_GPL(ata_id_string);
6923 EXPORT_SYMBOL_GPL(ata_id_c_string);
6924 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6925 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6926 
6927 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6928 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6929 EXPORT_SYMBOL_GPL(ata_timing_compute);
6930 EXPORT_SYMBOL_GPL(ata_timing_merge);
6931 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6932 
6933 #ifdef CONFIG_PCI
6934 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6935 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6936 #ifdef CONFIG_PM
6937 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6938 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6939 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6940 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6941 #endif /* CONFIG_PM */
6942 #endif /* CONFIG_PCI */
6943 
6944 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6945 
6946 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6947 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6948 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6949 EXPORT_SYMBOL_GPL(ata_port_desc);
6950 #ifdef CONFIG_PCI
6951 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6952 #endif /* CONFIG_PCI */
6953 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6954 EXPORT_SYMBOL_GPL(ata_link_abort);
6955 EXPORT_SYMBOL_GPL(ata_port_abort);
6956 EXPORT_SYMBOL_GPL(ata_port_freeze);
6957 EXPORT_SYMBOL_GPL(sata_async_notification);
6958 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6959 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6960 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6961 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6962 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6963 EXPORT_SYMBOL_GPL(ata_do_eh);
6964 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6965 
6966 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6967 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6968 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6969 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6970 EXPORT_SYMBOL_GPL(ata_cable_sata);
6971