1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /** 167 * ata_force_cbl - force cable type according to libata.force 168 * @ap: ATA port of interest 169 * 170 * Force cable type according to libata.force and whine about it. 171 * The last entry which has matching port number is used, so it 172 * can be specified as part of device force parameters. For 173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 174 * same effect. 175 * 176 * LOCKING: 177 * EH context. 178 */ 179 void ata_force_cbl(struct ata_port *ap) 180 { 181 int i; 182 183 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 184 const struct ata_force_ent *fe = &ata_force_tbl[i]; 185 186 if (fe->port != -1 && fe->port != ap->print_id) 187 continue; 188 189 if (fe->param.cbl == ATA_CBL_NONE) 190 continue; 191 192 ap->cbl = fe->param.cbl; 193 ata_port_printk(ap, KERN_NOTICE, 194 "FORCE: cable set to %s\n", fe->param.name); 195 return; 196 } 197 } 198 199 /** 200 * ata_force_link_limits - force link limits according to libata.force 201 * @link: ATA link of interest 202 * 203 * Force link flags and SATA spd limit according to libata.force 204 * and whine about it. When only the port part is specified 205 * (e.g. 1:), the limit applies to all links connected to both 206 * the host link and all fan-out ports connected via PMP. If the 207 * device part is specified as 0 (e.g. 1.00:), it specifies the 208 * first fan-out link not the host link. Device number 15 always 209 * points to the host link whether PMP is attached or not. 210 * 211 * LOCKING: 212 * EH context. 213 */ 214 static void ata_force_link_limits(struct ata_link *link) 215 { 216 bool did_spd = false; 217 int linkno, i; 218 219 if (ata_is_host_link(link)) 220 linkno = 15; 221 else 222 linkno = link->pmp; 223 224 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 225 const struct ata_force_ent *fe = &ata_force_tbl[i]; 226 227 if (fe->port != -1 && fe->port != link->ap->print_id) 228 continue; 229 230 if (fe->device != -1 && fe->device != linkno) 231 continue; 232 233 /* only honor the first spd limit */ 234 if (!did_spd && fe->param.spd_limit) { 235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 236 ata_link_printk(link, KERN_NOTICE, 237 "FORCE: PHY spd limit set to %s\n", 238 fe->param.name); 239 did_spd = true; 240 } 241 242 /* let lflags stack */ 243 if (fe->param.lflags) { 244 link->flags |= fe->param.lflags; 245 ata_link_printk(link, KERN_NOTICE, 246 "FORCE: link flag 0x%x forced -> 0x%x\n", 247 fe->param.lflags, link->flags); 248 } 249 } 250 } 251 252 /** 253 * ata_force_xfermask - force xfermask according to libata.force 254 * @dev: ATA device of interest 255 * 256 * Force xfer_mask according to libata.force and whine about it. 257 * For consistency with link selection, device number 15 selects 258 * the first device connected to the host link. 259 * 260 * LOCKING: 261 * EH context. 262 */ 263 static void ata_force_xfermask(struct ata_device *dev) 264 { 265 int devno = dev->link->pmp + dev->devno; 266 int alt_devno = devno; 267 int i; 268 269 /* allow n.15 for the first device attached to host port */ 270 if (ata_is_host_link(dev->link) && devno == 0) 271 alt_devno = 15; 272 273 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 274 const struct ata_force_ent *fe = &ata_force_tbl[i]; 275 unsigned long pio_mask, mwdma_mask, udma_mask; 276 277 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 278 continue; 279 280 if (fe->device != -1 && fe->device != devno && 281 fe->device != alt_devno) 282 continue; 283 284 if (!fe->param.xfer_mask) 285 continue; 286 287 ata_unpack_xfermask(fe->param.xfer_mask, 288 &pio_mask, &mwdma_mask, &udma_mask); 289 if (udma_mask) 290 dev->udma_mask = udma_mask; 291 else if (mwdma_mask) { 292 dev->udma_mask = 0; 293 dev->mwdma_mask = mwdma_mask; 294 } else { 295 dev->udma_mask = 0; 296 dev->mwdma_mask = 0; 297 dev->pio_mask = pio_mask; 298 } 299 300 ata_dev_printk(dev, KERN_NOTICE, 301 "FORCE: xfer_mask set to %s\n", fe->param.name); 302 return; 303 } 304 } 305 306 /** 307 * ata_force_horkage - force horkage according to libata.force 308 * @dev: ATA device of interest 309 * 310 * Force horkage according to libata.force and whine about it. 311 * For consistency with link selection, device number 15 selects 312 * the first device connected to the host link. 313 * 314 * LOCKING: 315 * EH context. 316 */ 317 static void ata_force_horkage(struct ata_device *dev) 318 { 319 int devno = dev->link->pmp + dev->devno; 320 int alt_devno = devno; 321 int i; 322 323 /* allow n.15 for the first device attached to host port */ 324 if (ata_is_host_link(dev->link) && devno == 0) 325 alt_devno = 15; 326 327 for (i = 0; i < ata_force_tbl_size; i++) { 328 const struct ata_force_ent *fe = &ata_force_tbl[i]; 329 330 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 331 continue; 332 333 if (fe->device != -1 && fe->device != devno && 334 fe->device != alt_devno) 335 continue; 336 337 if (!(~dev->horkage & fe->param.horkage_on) && 338 !(dev->horkage & fe->param.horkage_off)) 339 continue; 340 341 dev->horkage |= fe->param.horkage_on; 342 dev->horkage &= ~fe->param.horkage_off; 343 344 ata_dev_printk(dev, KERN_NOTICE, 345 "FORCE: horkage modified (%s)\n", fe->param.name); 346 } 347 } 348 349 /** 350 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 351 * @opcode: SCSI opcode 352 * 353 * Determine ATAPI command type from @opcode. 354 * 355 * LOCKING: 356 * None. 357 * 358 * RETURNS: 359 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 360 */ 361 int atapi_cmd_type(u8 opcode) 362 { 363 switch (opcode) { 364 case GPCMD_READ_10: 365 case GPCMD_READ_12: 366 return ATAPI_READ; 367 368 case GPCMD_WRITE_10: 369 case GPCMD_WRITE_12: 370 case GPCMD_WRITE_AND_VERIFY_10: 371 return ATAPI_WRITE; 372 373 case GPCMD_READ_CD: 374 case GPCMD_READ_CD_MSF: 375 return ATAPI_READ_CD; 376 377 case ATA_16: 378 case ATA_12: 379 if (atapi_passthru16) 380 return ATAPI_PASS_THRU; 381 /* fall thru */ 382 default: 383 return ATAPI_MISC; 384 } 385 } 386 387 /** 388 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 389 * @tf: Taskfile to convert 390 * @pmp: Port multiplier port 391 * @is_cmd: This FIS is for command 392 * @fis: Buffer into which data will output 393 * 394 * Converts a standard ATA taskfile to a Serial ATA 395 * FIS structure (Register - Host to Device). 396 * 397 * LOCKING: 398 * Inherited from caller. 399 */ 400 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 401 { 402 fis[0] = 0x27; /* Register - Host to Device FIS */ 403 fis[1] = pmp & 0xf; /* Port multiplier number*/ 404 if (is_cmd) 405 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 406 407 fis[2] = tf->command; 408 fis[3] = tf->feature; 409 410 fis[4] = tf->lbal; 411 fis[5] = tf->lbam; 412 fis[6] = tf->lbah; 413 fis[7] = tf->device; 414 415 fis[8] = tf->hob_lbal; 416 fis[9] = tf->hob_lbam; 417 fis[10] = tf->hob_lbah; 418 fis[11] = tf->hob_feature; 419 420 fis[12] = tf->nsect; 421 fis[13] = tf->hob_nsect; 422 fis[14] = 0; 423 fis[15] = tf->ctl; 424 425 fis[16] = 0; 426 fis[17] = 0; 427 fis[18] = 0; 428 fis[19] = 0; 429 } 430 431 /** 432 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 433 * @fis: Buffer from which data will be input 434 * @tf: Taskfile to output 435 * 436 * Converts a serial ATA FIS structure to a standard ATA taskfile. 437 * 438 * LOCKING: 439 * Inherited from caller. 440 */ 441 442 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 443 { 444 tf->command = fis[2]; /* status */ 445 tf->feature = fis[3]; /* error */ 446 447 tf->lbal = fis[4]; 448 tf->lbam = fis[5]; 449 tf->lbah = fis[6]; 450 tf->device = fis[7]; 451 452 tf->hob_lbal = fis[8]; 453 tf->hob_lbam = fis[9]; 454 tf->hob_lbah = fis[10]; 455 456 tf->nsect = fis[12]; 457 tf->hob_nsect = fis[13]; 458 } 459 460 static const u8 ata_rw_cmds[] = { 461 /* pio multi */ 462 ATA_CMD_READ_MULTI, 463 ATA_CMD_WRITE_MULTI, 464 ATA_CMD_READ_MULTI_EXT, 465 ATA_CMD_WRITE_MULTI_EXT, 466 0, 467 0, 468 0, 469 ATA_CMD_WRITE_MULTI_FUA_EXT, 470 /* pio */ 471 ATA_CMD_PIO_READ, 472 ATA_CMD_PIO_WRITE, 473 ATA_CMD_PIO_READ_EXT, 474 ATA_CMD_PIO_WRITE_EXT, 475 0, 476 0, 477 0, 478 0, 479 /* dma */ 480 ATA_CMD_READ, 481 ATA_CMD_WRITE, 482 ATA_CMD_READ_EXT, 483 ATA_CMD_WRITE_EXT, 484 0, 485 0, 486 0, 487 ATA_CMD_WRITE_FUA_EXT 488 }; 489 490 /** 491 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 492 * @tf: command to examine and configure 493 * @dev: device tf belongs to 494 * 495 * Examine the device configuration and tf->flags to calculate 496 * the proper read/write commands and protocol to use. 497 * 498 * LOCKING: 499 * caller. 500 */ 501 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 502 { 503 u8 cmd; 504 505 int index, fua, lba48, write; 506 507 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 508 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 509 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 510 511 if (dev->flags & ATA_DFLAG_PIO) { 512 tf->protocol = ATA_PROT_PIO; 513 index = dev->multi_count ? 0 : 8; 514 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 515 /* Unable to use DMA due to host limitation */ 516 tf->protocol = ATA_PROT_PIO; 517 index = dev->multi_count ? 0 : 8; 518 } else { 519 tf->protocol = ATA_PROT_DMA; 520 index = 16; 521 } 522 523 cmd = ata_rw_cmds[index + fua + lba48 + write]; 524 if (cmd) { 525 tf->command = cmd; 526 return 0; 527 } 528 return -1; 529 } 530 531 /** 532 * ata_tf_read_block - Read block address from ATA taskfile 533 * @tf: ATA taskfile of interest 534 * @dev: ATA device @tf belongs to 535 * 536 * LOCKING: 537 * None. 538 * 539 * Read block address from @tf. This function can handle all 540 * three address formats - LBA, LBA48 and CHS. tf->protocol and 541 * flags select the address format to use. 542 * 543 * RETURNS: 544 * Block address read from @tf. 545 */ 546 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 547 { 548 u64 block = 0; 549 550 if (tf->flags & ATA_TFLAG_LBA) { 551 if (tf->flags & ATA_TFLAG_LBA48) { 552 block |= (u64)tf->hob_lbah << 40; 553 block |= (u64)tf->hob_lbam << 32; 554 block |= tf->hob_lbal << 24; 555 } else 556 block |= (tf->device & 0xf) << 24; 557 558 block |= tf->lbah << 16; 559 block |= tf->lbam << 8; 560 block |= tf->lbal; 561 } else { 562 u32 cyl, head, sect; 563 564 cyl = tf->lbam | (tf->lbah << 8); 565 head = tf->device & 0xf; 566 sect = tf->lbal; 567 568 block = (cyl * dev->heads + head) * dev->sectors + sect; 569 } 570 571 return block; 572 } 573 574 /** 575 * ata_build_rw_tf - Build ATA taskfile for given read/write request 576 * @tf: Target ATA taskfile 577 * @dev: ATA device @tf belongs to 578 * @block: Block address 579 * @n_block: Number of blocks 580 * @tf_flags: RW/FUA etc... 581 * @tag: tag 582 * 583 * LOCKING: 584 * None. 585 * 586 * Build ATA taskfile @tf for read/write request described by 587 * @block, @n_block, @tf_flags and @tag on @dev. 588 * 589 * RETURNS: 590 * 591 * 0 on success, -ERANGE if the request is too large for @dev, 592 * -EINVAL if the request is invalid. 593 */ 594 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 595 u64 block, u32 n_block, unsigned int tf_flags, 596 unsigned int tag) 597 { 598 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 599 tf->flags |= tf_flags; 600 601 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 602 /* yay, NCQ */ 603 if (!lba_48_ok(block, n_block)) 604 return -ERANGE; 605 606 tf->protocol = ATA_PROT_NCQ; 607 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 608 609 if (tf->flags & ATA_TFLAG_WRITE) 610 tf->command = ATA_CMD_FPDMA_WRITE; 611 else 612 tf->command = ATA_CMD_FPDMA_READ; 613 614 tf->nsect = tag << 3; 615 tf->hob_feature = (n_block >> 8) & 0xff; 616 tf->feature = n_block & 0xff; 617 618 tf->hob_lbah = (block >> 40) & 0xff; 619 tf->hob_lbam = (block >> 32) & 0xff; 620 tf->hob_lbal = (block >> 24) & 0xff; 621 tf->lbah = (block >> 16) & 0xff; 622 tf->lbam = (block >> 8) & 0xff; 623 tf->lbal = block & 0xff; 624 625 tf->device = 1 << 6; 626 if (tf->flags & ATA_TFLAG_FUA) 627 tf->device |= 1 << 7; 628 } else if (dev->flags & ATA_DFLAG_LBA) { 629 tf->flags |= ATA_TFLAG_LBA; 630 631 if (lba_28_ok(block, n_block)) { 632 /* use LBA28 */ 633 tf->device |= (block >> 24) & 0xf; 634 } else if (lba_48_ok(block, n_block)) { 635 if (!(dev->flags & ATA_DFLAG_LBA48)) 636 return -ERANGE; 637 638 /* use LBA48 */ 639 tf->flags |= ATA_TFLAG_LBA48; 640 641 tf->hob_nsect = (n_block >> 8) & 0xff; 642 643 tf->hob_lbah = (block >> 40) & 0xff; 644 tf->hob_lbam = (block >> 32) & 0xff; 645 tf->hob_lbal = (block >> 24) & 0xff; 646 } else 647 /* request too large even for LBA48 */ 648 return -ERANGE; 649 650 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 651 return -EINVAL; 652 653 tf->nsect = n_block & 0xff; 654 655 tf->lbah = (block >> 16) & 0xff; 656 tf->lbam = (block >> 8) & 0xff; 657 tf->lbal = block & 0xff; 658 659 tf->device |= ATA_LBA; 660 } else { 661 /* CHS */ 662 u32 sect, head, cyl, track; 663 664 /* The request -may- be too large for CHS addressing. */ 665 if (!lba_28_ok(block, n_block)) 666 return -ERANGE; 667 668 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 669 return -EINVAL; 670 671 /* Convert LBA to CHS */ 672 track = (u32)block / dev->sectors; 673 cyl = track / dev->heads; 674 head = track % dev->heads; 675 sect = (u32)block % dev->sectors + 1; 676 677 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 678 (u32)block, track, cyl, head, sect); 679 680 /* Check whether the converted CHS can fit. 681 Cylinder: 0-65535 682 Head: 0-15 683 Sector: 1-255*/ 684 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 685 return -ERANGE; 686 687 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 688 tf->lbal = sect; 689 tf->lbam = cyl; 690 tf->lbah = cyl >> 8; 691 tf->device |= head; 692 } 693 694 return 0; 695 } 696 697 /** 698 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 699 * @pio_mask: pio_mask 700 * @mwdma_mask: mwdma_mask 701 * @udma_mask: udma_mask 702 * 703 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 704 * unsigned int xfer_mask. 705 * 706 * LOCKING: 707 * None. 708 * 709 * RETURNS: 710 * Packed xfer_mask. 711 */ 712 unsigned long ata_pack_xfermask(unsigned long pio_mask, 713 unsigned long mwdma_mask, 714 unsigned long udma_mask) 715 { 716 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 717 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 718 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 719 } 720 721 /** 722 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 723 * @xfer_mask: xfer_mask to unpack 724 * @pio_mask: resulting pio_mask 725 * @mwdma_mask: resulting mwdma_mask 726 * @udma_mask: resulting udma_mask 727 * 728 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 729 * Any NULL distination masks will be ignored. 730 */ 731 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 732 unsigned long *mwdma_mask, unsigned long *udma_mask) 733 { 734 if (pio_mask) 735 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 736 if (mwdma_mask) 737 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 738 if (udma_mask) 739 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 740 } 741 742 static const struct ata_xfer_ent { 743 int shift, bits; 744 u8 base; 745 } ata_xfer_tbl[] = { 746 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 747 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 748 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 749 { -1, }, 750 }; 751 752 /** 753 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 754 * @xfer_mask: xfer_mask of interest 755 * 756 * Return matching XFER_* value for @xfer_mask. Only the highest 757 * bit of @xfer_mask is considered. 758 * 759 * LOCKING: 760 * None. 761 * 762 * RETURNS: 763 * Matching XFER_* value, 0xff if no match found. 764 */ 765 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 766 { 767 int highbit = fls(xfer_mask) - 1; 768 const struct ata_xfer_ent *ent; 769 770 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 771 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 772 return ent->base + highbit - ent->shift; 773 return 0xff; 774 } 775 776 /** 777 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 778 * @xfer_mode: XFER_* of interest 779 * 780 * Return matching xfer_mask for @xfer_mode. 781 * 782 * LOCKING: 783 * None. 784 * 785 * RETURNS: 786 * Matching xfer_mask, 0 if no match found. 787 */ 788 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 789 { 790 const struct ata_xfer_ent *ent; 791 792 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 793 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 794 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 795 & ~((1 << ent->shift) - 1); 796 return 0; 797 } 798 799 /** 800 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 801 * @xfer_mode: XFER_* of interest 802 * 803 * Return matching xfer_shift for @xfer_mode. 804 * 805 * LOCKING: 806 * None. 807 * 808 * RETURNS: 809 * Matching xfer_shift, -1 if no match found. 810 */ 811 int ata_xfer_mode2shift(unsigned long xfer_mode) 812 { 813 const struct ata_xfer_ent *ent; 814 815 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 816 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 817 return ent->shift; 818 return -1; 819 } 820 821 /** 822 * ata_mode_string - convert xfer_mask to string 823 * @xfer_mask: mask of bits supported; only highest bit counts. 824 * 825 * Determine string which represents the highest speed 826 * (highest bit in @modemask). 827 * 828 * LOCKING: 829 * None. 830 * 831 * RETURNS: 832 * Constant C string representing highest speed listed in 833 * @mode_mask, or the constant C string "<n/a>". 834 */ 835 const char *ata_mode_string(unsigned long xfer_mask) 836 { 837 static const char * const xfer_mode_str[] = { 838 "PIO0", 839 "PIO1", 840 "PIO2", 841 "PIO3", 842 "PIO4", 843 "PIO5", 844 "PIO6", 845 "MWDMA0", 846 "MWDMA1", 847 "MWDMA2", 848 "MWDMA3", 849 "MWDMA4", 850 "UDMA/16", 851 "UDMA/25", 852 "UDMA/33", 853 "UDMA/44", 854 "UDMA/66", 855 "UDMA/100", 856 "UDMA/133", 857 "UDMA7", 858 }; 859 int highbit; 860 861 highbit = fls(xfer_mask) - 1; 862 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 863 return xfer_mode_str[highbit]; 864 return "<n/a>"; 865 } 866 867 static const char *sata_spd_string(unsigned int spd) 868 { 869 static const char * const spd_str[] = { 870 "1.5 Gbps", 871 "3.0 Gbps", 872 }; 873 874 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 875 return "<unknown>"; 876 return spd_str[spd - 1]; 877 } 878 879 void ata_dev_disable(struct ata_device *dev) 880 { 881 if (ata_dev_enabled(dev)) { 882 if (ata_msg_drv(dev->link->ap)) 883 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 884 ata_acpi_on_disable(dev); 885 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 886 ATA_DNXFER_QUIET); 887 dev->class++; 888 } 889 } 890 891 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 892 { 893 struct ata_link *link = dev->link; 894 struct ata_port *ap = link->ap; 895 u32 scontrol; 896 unsigned int err_mask; 897 int rc; 898 899 /* 900 * disallow DIPM for drivers which haven't set 901 * ATA_FLAG_IPM. This is because when DIPM is enabled, 902 * phy ready will be set in the interrupt status on 903 * state changes, which will cause some drivers to 904 * think there are errors - additionally drivers will 905 * need to disable hot plug. 906 */ 907 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 908 ap->pm_policy = NOT_AVAILABLE; 909 return -EINVAL; 910 } 911 912 /* 913 * For DIPM, we will only enable it for the 914 * min_power setting. 915 * 916 * Why? Because Disks are too stupid to know that 917 * If the host rejects a request to go to SLUMBER 918 * they should retry at PARTIAL, and instead it 919 * just would give up. So, for medium_power to 920 * work at all, we need to only allow HIPM. 921 */ 922 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 923 if (rc) 924 return rc; 925 926 switch (policy) { 927 case MIN_POWER: 928 /* no restrictions on IPM transitions */ 929 scontrol &= ~(0x3 << 8); 930 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 931 if (rc) 932 return rc; 933 934 /* enable DIPM */ 935 if (dev->flags & ATA_DFLAG_DIPM) 936 err_mask = ata_dev_set_feature(dev, 937 SETFEATURES_SATA_ENABLE, SATA_DIPM); 938 break; 939 case MEDIUM_POWER: 940 /* allow IPM to PARTIAL */ 941 scontrol &= ~(0x1 << 8); 942 scontrol |= (0x2 << 8); 943 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 944 if (rc) 945 return rc; 946 947 /* 948 * we don't have to disable DIPM since IPM flags 949 * disallow transitions to SLUMBER, which effectively 950 * disable DIPM if it does not support PARTIAL 951 */ 952 break; 953 case NOT_AVAILABLE: 954 case MAX_PERFORMANCE: 955 /* disable all IPM transitions */ 956 scontrol |= (0x3 << 8); 957 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 958 if (rc) 959 return rc; 960 961 /* 962 * we don't have to disable DIPM since IPM flags 963 * disallow all transitions which effectively 964 * disable DIPM anyway. 965 */ 966 break; 967 } 968 969 /* FIXME: handle SET FEATURES failure */ 970 (void) err_mask; 971 972 return 0; 973 } 974 975 /** 976 * ata_dev_enable_pm - enable SATA interface power management 977 * @dev: device to enable power management 978 * @policy: the link power management policy 979 * 980 * Enable SATA Interface power management. This will enable 981 * Device Interface Power Management (DIPM) for min_power 982 * policy, and then call driver specific callbacks for 983 * enabling Host Initiated Power management. 984 * 985 * Locking: Caller. 986 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 987 */ 988 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 989 { 990 int rc = 0; 991 struct ata_port *ap = dev->link->ap; 992 993 /* set HIPM first, then DIPM */ 994 if (ap->ops->enable_pm) 995 rc = ap->ops->enable_pm(ap, policy); 996 if (rc) 997 goto enable_pm_out; 998 rc = ata_dev_set_dipm(dev, policy); 999 1000 enable_pm_out: 1001 if (rc) 1002 ap->pm_policy = MAX_PERFORMANCE; 1003 else 1004 ap->pm_policy = policy; 1005 return /* rc */; /* hopefully we can use 'rc' eventually */ 1006 } 1007 1008 #ifdef CONFIG_PM 1009 /** 1010 * ata_dev_disable_pm - disable SATA interface power management 1011 * @dev: device to disable power management 1012 * 1013 * Disable SATA Interface power management. This will disable 1014 * Device Interface Power Management (DIPM) without changing 1015 * policy, call driver specific callbacks for disabling Host 1016 * Initiated Power management. 1017 * 1018 * Locking: Caller. 1019 * Returns: void 1020 */ 1021 static void ata_dev_disable_pm(struct ata_device *dev) 1022 { 1023 struct ata_port *ap = dev->link->ap; 1024 1025 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1026 if (ap->ops->disable_pm) 1027 ap->ops->disable_pm(ap); 1028 } 1029 #endif /* CONFIG_PM */ 1030 1031 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1032 { 1033 ap->pm_policy = policy; 1034 ap->link.eh_info.action |= ATA_EH_LPM; 1035 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1036 ata_port_schedule_eh(ap); 1037 } 1038 1039 #ifdef CONFIG_PM 1040 static void ata_lpm_enable(struct ata_host *host) 1041 { 1042 struct ata_link *link; 1043 struct ata_port *ap; 1044 struct ata_device *dev; 1045 int i; 1046 1047 for (i = 0; i < host->n_ports; i++) { 1048 ap = host->ports[i]; 1049 ata_port_for_each_link(link, ap) { 1050 ata_link_for_each_dev(dev, link) 1051 ata_dev_disable_pm(dev); 1052 } 1053 } 1054 } 1055 1056 static void ata_lpm_disable(struct ata_host *host) 1057 { 1058 int i; 1059 1060 for (i = 0; i < host->n_ports; i++) { 1061 struct ata_port *ap = host->ports[i]; 1062 ata_lpm_schedule(ap, ap->pm_policy); 1063 } 1064 } 1065 #endif /* CONFIG_PM */ 1066 1067 /** 1068 * ata_dev_classify - determine device type based on ATA-spec signature 1069 * @tf: ATA taskfile register set for device to be identified 1070 * 1071 * Determine from taskfile register contents whether a device is 1072 * ATA or ATAPI, as per "Signature and persistence" section 1073 * of ATA/PI spec (volume 1, sect 5.14). 1074 * 1075 * LOCKING: 1076 * None. 1077 * 1078 * RETURNS: 1079 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1080 * %ATA_DEV_UNKNOWN the event of failure. 1081 */ 1082 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1083 { 1084 /* Apple's open source Darwin code hints that some devices only 1085 * put a proper signature into the LBA mid/high registers, 1086 * So, we only check those. It's sufficient for uniqueness. 1087 * 1088 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1089 * signatures for ATA and ATAPI devices attached on SerialATA, 1090 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1091 * spec has never mentioned about using different signatures 1092 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1093 * Multiplier specification began to use 0x69/0x96 to identify 1094 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1095 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1096 * 0x69/0x96 shortly and described them as reserved for 1097 * SerialATA. 1098 * 1099 * We follow the current spec and consider that 0x69/0x96 1100 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1101 */ 1102 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1103 DPRINTK("found ATA device by sig\n"); 1104 return ATA_DEV_ATA; 1105 } 1106 1107 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1108 DPRINTK("found ATAPI device by sig\n"); 1109 return ATA_DEV_ATAPI; 1110 } 1111 1112 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1113 DPRINTK("found PMP device by sig\n"); 1114 return ATA_DEV_PMP; 1115 } 1116 1117 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1118 printk(KERN_INFO "ata: SEMB device ignored\n"); 1119 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1120 } 1121 1122 DPRINTK("unknown device\n"); 1123 return ATA_DEV_UNKNOWN; 1124 } 1125 1126 /** 1127 * ata_id_string - Convert IDENTIFY DEVICE page into string 1128 * @id: IDENTIFY DEVICE results we will examine 1129 * @s: string into which data is output 1130 * @ofs: offset into identify device page 1131 * @len: length of string to return. must be an even number. 1132 * 1133 * The strings in the IDENTIFY DEVICE page are broken up into 1134 * 16-bit chunks. Run through the string, and output each 1135 * 8-bit chunk linearly, regardless of platform. 1136 * 1137 * LOCKING: 1138 * caller. 1139 */ 1140 1141 void ata_id_string(const u16 *id, unsigned char *s, 1142 unsigned int ofs, unsigned int len) 1143 { 1144 unsigned int c; 1145 1146 BUG_ON(len & 1); 1147 1148 while (len > 0) { 1149 c = id[ofs] >> 8; 1150 *s = c; 1151 s++; 1152 1153 c = id[ofs] & 0xff; 1154 *s = c; 1155 s++; 1156 1157 ofs++; 1158 len -= 2; 1159 } 1160 } 1161 1162 /** 1163 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1164 * @id: IDENTIFY DEVICE results we will examine 1165 * @s: string into which data is output 1166 * @ofs: offset into identify device page 1167 * @len: length of string to return. must be an odd number. 1168 * 1169 * This function is identical to ata_id_string except that it 1170 * trims trailing spaces and terminates the resulting string with 1171 * null. @len must be actual maximum length (even number) + 1. 1172 * 1173 * LOCKING: 1174 * caller. 1175 */ 1176 void ata_id_c_string(const u16 *id, unsigned char *s, 1177 unsigned int ofs, unsigned int len) 1178 { 1179 unsigned char *p; 1180 1181 ata_id_string(id, s, ofs, len - 1); 1182 1183 p = s + strnlen(s, len - 1); 1184 while (p > s && p[-1] == ' ') 1185 p--; 1186 *p = '\0'; 1187 } 1188 1189 static u64 ata_id_n_sectors(const u16 *id) 1190 { 1191 if (ata_id_has_lba(id)) { 1192 if (ata_id_has_lba48(id)) 1193 return ata_id_u64(id, 100); 1194 else 1195 return ata_id_u32(id, 60); 1196 } else { 1197 if (ata_id_current_chs_valid(id)) 1198 return ata_id_u32(id, 57); 1199 else 1200 return id[1] * id[3] * id[6]; 1201 } 1202 } 1203 1204 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1205 { 1206 u64 sectors = 0; 1207 1208 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1209 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1210 sectors |= (tf->hob_lbal & 0xff) << 24; 1211 sectors |= (tf->lbah & 0xff) << 16; 1212 sectors |= (tf->lbam & 0xff) << 8; 1213 sectors |= (tf->lbal & 0xff); 1214 1215 return sectors; 1216 } 1217 1218 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1219 { 1220 u64 sectors = 0; 1221 1222 sectors |= (tf->device & 0x0f) << 24; 1223 sectors |= (tf->lbah & 0xff) << 16; 1224 sectors |= (tf->lbam & 0xff) << 8; 1225 sectors |= (tf->lbal & 0xff); 1226 1227 return sectors; 1228 } 1229 1230 /** 1231 * ata_read_native_max_address - Read native max address 1232 * @dev: target device 1233 * @max_sectors: out parameter for the result native max address 1234 * 1235 * Perform an LBA48 or LBA28 native size query upon the device in 1236 * question. 1237 * 1238 * RETURNS: 1239 * 0 on success, -EACCES if command is aborted by the drive. 1240 * -EIO on other errors. 1241 */ 1242 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1243 { 1244 unsigned int err_mask; 1245 struct ata_taskfile tf; 1246 int lba48 = ata_id_has_lba48(dev->id); 1247 1248 ata_tf_init(dev, &tf); 1249 1250 /* always clear all address registers */ 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 } else 1257 tf.command = ATA_CMD_READ_NATIVE_MAX; 1258 1259 tf.protocol |= ATA_PROT_NODATA; 1260 tf.device |= ATA_LBA; 1261 1262 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1263 if (err_mask) { 1264 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1265 "max address (err_mask=0x%x)\n", err_mask); 1266 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1267 return -EACCES; 1268 return -EIO; 1269 } 1270 1271 if (lba48) 1272 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1273 else 1274 *max_sectors = ata_tf_to_lba(&tf) + 1; 1275 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1276 (*max_sectors)--; 1277 return 0; 1278 } 1279 1280 /** 1281 * ata_set_max_sectors - Set max sectors 1282 * @dev: target device 1283 * @new_sectors: new max sectors value to set for the device 1284 * 1285 * Set max sectors of @dev to @new_sectors. 1286 * 1287 * RETURNS: 1288 * 0 on success, -EACCES if command is aborted or denied (due to 1289 * previous non-volatile SET_MAX) by the drive. -EIO on other 1290 * errors. 1291 */ 1292 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1293 { 1294 unsigned int err_mask; 1295 struct ata_taskfile tf; 1296 int lba48 = ata_id_has_lba48(dev->id); 1297 1298 new_sectors--; 1299 1300 ata_tf_init(dev, &tf); 1301 1302 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1303 1304 if (lba48) { 1305 tf.command = ATA_CMD_SET_MAX_EXT; 1306 tf.flags |= ATA_TFLAG_LBA48; 1307 1308 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1309 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1310 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1311 } else { 1312 tf.command = ATA_CMD_SET_MAX; 1313 1314 tf.device |= (new_sectors >> 24) & 0xf; 1315 } 1316 1317 tf.protocol |= ATA_PROT_NODATA; 1318 tf.device |= ATA_LBA; 1319 1320 tf.lbal = (new_sectors >> 0) & 0xff; 1321 tf.lbam = (new_sectors >> 8) & 0xff; 1322 tf.lbah = (new_sectors >> 16) & 0xff; 1323 1324 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1325 if (err_mask) { 1326 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1327 "max address (err_mask=0x%x)\n", err_mask); 1328 if (err_mask == AC_ERR_DEV && 1329 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1330 return -EACCES; 1331 return -EIO; 1332 } 1333 1334 return 0; 1335 } 1336 1337 /** 1338 * ata_hpa_resize - Resize a device with an HPA set 1339 * @dev: Device to resize 1340 * 1341 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1342 * it if required to the full size of the media. The caller must check 1343 * the drive has the HPA feature set enabled. 1344 * 1345 * RETURNS: 1346 * 0 on success, -errno on failure. 1347 */ 1348 static int ata_hpa_resize(struct ata_device *dev) 1349 { 1350 struct ata_eh_context *ehc = &dev->link->eh_context; 1351 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1352 u64 sectors = ata_id_n_sectors(dev->id); 1353 u64 native_sectors; 1354 int rc; 1355 1356 /* do we need to do it? */ 1357 if (dev->class != ATA_DEV_ATA || 1358 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1359 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1360 return 0; 1361 1362 /* read native max address */ 1363 rc = ata_read_native_max_address(dev, &native_sectors); 1364 if (rc) { 1365 /* If device aborted the command or HPA isn't going to 1366 * be unlocked, skip HPA resizing. 1367 */ 1368 if (rc == -EACCES || !ata_ignore_hpa) { 1369 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1370 "broken, skipping HPA handling\n"); 1371 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1372 1373 /* we can continue if device aborted the command */ 1374 if (rc == -EACCES) 1375 rc = 0; 1376 } 1377 1378 return rc; 1379 } 1380 1381 /* nothing to do? */ 1382 if (native_sectors <= sectors || !ata_ignore_hpa) { 1383 if (!print_info || native_sectors == sectors) 1384 return 0; 1385 1386 if (native_sectors > sectors) 1387 ata_dev_printk(dev, KERN_INFO, 1388 "HPA detected: current %llu, native %llu\n", 1389 (unsigned long long)sectors, 1390 (unsigned long long)native_sectors); 1391 else if (native_sectors < sectors) 1392 ata_dev_printk(dev, KERN_WARNING, 1393 "native sectors (%llu) is smaller than " 1394 "sectors (%llu)\n", 1395 (unsigned long long)native_sectors, 1396 (unsigned long long)sectors); 1397 return 0; 1398 } 1399 1400 /* let's unlock HPA */ 1401 rc = ata_set_max_sectors(dev, native_sectors); 1402 if (rc == -EACCES) { 1403 /* if device aborted the command, skip HPA resizing */ 1404 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1405 "(%llu -> %llu), skipping HPA handling\n", 1406 (unsigned long long)sectors, 1407 (unsigned long long)native_sectors); 1408 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1409 return 0; 1410 } else if (rc) 1411 return rc; 1412 1413 /* re-read IDENTIFY data */ 1414 rc = ata_dev_reread_id(dev, 0); 1415 if (rc) { 1416 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1417 "data after HPA resizing\n"); 1418 return rc; 1419 } 1420 1421 if (print_info) { 1422 u64 new_sectors = ata_id_n_sectors(dev->id); 1423 ata_dev_printk(dev, KERN_INFO, 1424 "HPA unlocked: %llu -> %llu, native %llu\n", 1425 (unsigned long long)sectors, 1426 (unsigned long long)new_sectors, 1427 (unsigned long long)native_sectors); 1428 } 1429 1430 return 0; 1431 } 1432 1433 /** 1434 * ata_dump_id - IDENTIFY DEVICE info debugging output 1435 * @id: IDENTIFY DEVICE page to dump 1436 * 1437 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1438 * page. 1439 * 1440 * LOCKING: 1441 * caller. 1442 */ 1443 1444 static inline void ata_dump_id(const u16 *id) 1445 { 1446 DPRINTK("49==0x%04x " 1447 "53==0x%04x " 1448 "63==0x%04x " 1449 "64==0x%04x " 1450 "75==0x%04x \n", 1451 id[49], 1452 id[53], 1453 id[63], 1454 id[64], 1455 id[75]); 1456 DPRINTK("80==0x%04x " 1457 "81==0x%04x " 1458 "82==0x%04x " 1459 "83==0x%04x " 1460 "84==0x%04x \n", 1461 id[80], 1462 id[81], 1463 id[82], 1464 id[83], 1465 id[84]); 1466 DPRINTK("88==0x%04x " 1467 "93==0x%04x\n", 1468 id[88], 1469 id[93]); 1470 } 1471 1472 /** 1473 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1474 * @id: IDENTIFY data to compute xfer mask from 1475 * 1476 * Compute the xfermask for this device. This is not as trivial 1477 * as it seems if we must consider early devices correctly. 1478 * 1479 * FIXME: pre IDE drive timing (do we care ?). 1480 * 1481 * LOCKING: 1482 * None. 1483 * 1484 * RETURNS: 1485 * Computed xfermask 1486 */ 1487 unsigned long ata_id_xfermask(const u16 *id) 1488 { 1489 unsigned long pio_mask, mwdma_mask, udma_mask; 1490 1491 /* Usual case. Word 53 indicates word 64 is valid */ 1492 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1493 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1494 pio_mask <<= 3; 1495 pio_mask |= 0x7; 1496 } else { 1497 /* If word 64 isn't valid then Word 51 high byte holds 1498 * the PIO timing number for the maximum. Turn it into 1499 * a mask. 1500 */ 1501 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1502 if (mode < 5) /* Valid PIO range */ 1503 pio_mask = (2 << mode) - 1; 1504 else 1505 pio_mask = 1; 1506 1507 /* But wait.. there's more. Design your standards by 1508 * committee and you too can get a free iordy field to 1509 * process. However its the speeds not the modes that 1510 * are supported... Note drivers using the timing API 1511 * will get this right anyway 1512 */ 1513 } 1514 1515 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1516 1517 if (ata_id_is_cfa(id)) { 1518 /* 1519 * Process compact flash extended modes 1520 */ 1521 int pio = id[163] & 0x7; 1522 int dma = (id[163] >> 3) & 7; 1523 1524 if (pio) 1525 pio_mask |= (1 << 5); 1526 if (pio > 1) 1527 pio_mask |= (1 << 6); 1528 if (dma) 1529 mwdma_mask |= (1 << 3); 1530 if (dma > 1) 1531 mwdma_mask |= (1 << 4); 1532 } 1533 1534 udma_mask = 0; 1535 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1536 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1537 1538 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1539 } 1540 1541 /** 1542 * ata_pio_queue_task - Queue port_task 1543 * @ap: The ata_port to queue port_task for 1544 * @fn: workqueue function to be scheduled 1545 * @data: data for @fn to use 1546 * @delay: delay time in msecs for workqueue function 1547 * 1548 * Schedule @fn(@data) for execution after @delay jiffies using 1549 * port_task. There is one port_task per port and it's the 1550 * user(low level driver)'s responsibility to make sure that only 1551 * one task is active at any given time. 1552 * 1553 * libata core layer takes care of synchronization between 1554 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1555 * synchronization. 1556 * 1557 * LOCKING: 1558 * Inherited from caller. 1559 */ 1560 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1561 { 1562 ap->port_task_data = data; 1563 1564 /* may fail if ata_port_flush_task() in progress */ 1565 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1566 } 1567 1568 /** 1569 * ata_port_flush_task - Flush port_task 1570 * @ap: The ata_port to flush port_task for 1571 * 1572 * After this function completes, port_task is guranteed not to 1573 * be running or scheduled. 1574 * 1575 * LOCKING: 1576 * Kernel thread context (may sleep) 1577 */ 1578 void ata_port_flush_task(struct ata_port *ap) 1579 { 1580 DPRINTK("ENTER\n"); 1581 1582 cancel_rearming_delayed_work(&ap->port_task); 1583 1584 if (ata_msg_ctl(ap)) 1585 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1586 } 1587 1588 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1589 { 1590 struct completion *waiting = qc->private_data; 1591 1592 complete(waiting); 1593 } 1594 1595 /** 1596 * ata_exec_internal_sg - execute libata internal command 1597 * @dev: Device to which the command is sent 1598 * @tf: Taskfile registers for the command and the result 1599 * @cdb: CDB for packet command 1600 * @dma_dir: Data tranfer direction of the command 1601 * @sgl: sg list for the data buffer of the command 1602 * @n_elem: Number of sg entries 1603 * @timeout: Timeout in msecs (0 for default) 1604 * 1605 * Executes libata internal command with timeout. @tf contains 1606 * command on entry and result on return. Timeout and error 1607 * conditions are reported via return value. No recovery action 1608 * is taken after a command times out. It's caller's duty to 1609 * clean up after timeout. 1610 * 1611 * LOCKING: 1612 * None. Should be called with kernel context, might sleep. 1613 * 1614 * RETURNS: 1615 * Zero on success, AC_ERR_* mask on failure 1616 */ 1617 unsigned ata_exec_internal_sg(struct ata_device *dev, 1618 struct ata_taskfile *tf, const u8 *cdb, 1619 int dma_dir, struct scatterlist *sgl, 1620 unsigned int n_elem, unsigned long timeout) 1621 { 1622 struct ata_link *link = dev->link; 1623 struct ata_port *ap = link->ap; 1624 u8 command = tf->command; 1625 int auto_timeout = 0; 1626 struct ata_queued_cmd *qc; 1627 unsigned int tag, preempted_tag; 1628 u32 preempted_sactive, preempted_qc_active; 1629 int preempted_nr_active_links; 1630 DECLARE_COMPLETION_ONSTACK(wait); 1631 unsigned long flags; 1632 unsigned int err_mask; 1633 int rc; 1634 1635 spin_lock_irqsave(ap->lock, flags); 1636 1637 /* no internal command while frozen */ 1638 if (ap->pflags & ATA_PFLAG_FROZEN) { 1639 spin_unlock_irqrestore(ap->lock, flags); 1640 return AC_ERR_SYSTEM; 1641 } 1642 1643 /* initialize internal qc */ 1644 1645 /* XXX: Tag 0 is used for drivers with legacy EH as some 1646 * drivers choke if any other tag is given. This breaks 1647 * ata_tag_internal() test for those drivers. Don't use new 1648 * EH stuff without converting to it. 1649 */ 1650 if (ap->ops->error_handler) 1651 tag = ATA_TAG_INTERNAL; 1652 else 1653 tag = 0; 1654 1655 if (test_and_set_bit(tag, &ap->qc_allocated)) 1656 BUG(); 1657 qc = __ata_qc_from_tag(ap, tag); 1658 1659 qc->tag = tag; 1660 qc->scsicmd = NULL; 1661 qc->ap = ap; 1662 qc->dev = dev; 1663 ata_qc_reinit(qc); 1664 1665 preempted_tag = link->active_tag; 1666 preempted_sactive = link->sactive; 1667 preempted_qc_active = ap->qc_active; 1668 preempted_nr_active_links = ap->nr_active_links; 1669 link->active_tag = ATA_TAG_POISON; 1670 link->sactive = 0; 1671 ap->qc_active = 0; 1672 ap->nr_active_links = 0; 1673 1674 /* prepare & issue qc */ 1675 qc->tf = *tf; 1676 if (cdb) 1677 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1678 qc->flags |= ATA_QCFLAG_RESULT_TF; 1679 qc->dma_dir = dma_dir; 1680 if (dma_dir != DMA_NONE) { 1681 unsigned int i, buflen = 0; 1682 struct scatterlist *sg; 1683 1684 for_each_sg(sgl, sg, n_elem, i) 1685 buflen += sg->length; 1686 1687 ata_sg_init(qc, sgl, n_elem); 1688 qc->nbytes = buflen; 1689 } 1690 1691 qc->private_data = &wait; 1692 qc->complete_fn = ata_qc_complete_internal; 1693 1694 ata_qc_issue(qc); 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if (!timeout) { 1699 if (ata_probe_timeout) 1700 timeout = ata_probe_timeout * 1000; 1701 else { 1702 timeout = ata_internal_cmd_timeout(dev, command); 1703 auto_timeout = 1; 1704 } 1705 } 1706 1707 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1708 1709 ata_port_flush_task(ap); 1710 1711 if (!rc) { 1712 spin_lock_irqsave(ap->lock, flags); 1713 1714 /* We're racing with irq here. If we lose, the 1715 * following test prevents us from completing the qc 1716 * twice. If we win, the port is frozen and will be 1717 * cleaned up by ->post_internal_cmd(). 1718 */ 1719 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1720 qc->err_mask |= AC_ERR_TIMEOUT; 1721 1722 if (ap->ops->error_handler) 1723 ata_port_freeze(ap); 1724 else 1725 ata_qc_complete(qc); 1726 1727 if (ata_msg_warn(ap)) 1728 ata_dev_printk(dev, KERN_WARNING, 1729 "qc timeout (cmd 0x%x)\n", command); 1730 } 1731 1732 spin_unlock_irqrestore(ap->lock, flags); 1733 } 1734 1735 /* do post_internal_cmd */ 1736 if (ap->ops->post_internal_cmd) 1737 ap->ops->post_internal_cmd(qc); 1738 1739 /* perform minimal error analysis */ 1740 if (qc->flags & ATA_QCFLAG_FAILED) { 1741 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1742 qc->err_mask |= AC_ERR_DEV; 1743 1744 if (!qc->err_mask) 1745 qc->err_mask |= AC_ERR_OTHER; 1746 1747 if (qc->err_mask & ~AC_ERR_OTHER) 1748 qc->err_mask &= ~AC_ERR_OTHER; 1749 } 1750 1751 /* finish up */ 1752 spin_lock_irqsave(ap->lock, flags); 1753 1754 *tf = qc->result_tf; 1755 err_mask = qc->err_mask; 1756 1757 ata_qc_free(qc); 1758 link->active_tag = preempted_tag; 1759 link->sactive = preempted_sactive; 1760 ap->qc_active = preempted_qc_active; 1761 ap->nr_active_links = preempted_nr_active_links; 1762 1763 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1764 * Until those drivers are fixed, we detect the condition 1765 * here, fail the command with AC_ERR_SYSTEM and reenable the 1766 * port. 1767 * 1768 * Note that this doesn't change any behavior as internal 1769 * command failure results in disabling the device in the 1770 * higher layer for LLDDs without new reset/EH callbacks. 1771 * 1772 * Kill the following code as soon as those drivers are fixed. 1773 */ 1774 if (ap->flags & ATA_FLAG_DISABLED) { 1775 err_mask |= AC_ERR_SYSTEM; 1776 ata_port_probe(ap); 1777 } 1778 1779 spin_unlock_irqrestore(ap->lock, flags); 1780 1781 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1782 ata_internal_cmd_timed_out(dev, command); 1783 1784 return err_mask; 1785 } 1786 1787 /** 1788 * ata_exec_internal - execute libata internal command 1789 * @dev: Device to which the command is sent 1790 * @tf: Taskfile registers for the command and the result 1791 * @cdb: CDB for packet command 1792 * @dma_dir: Data tranfer direction of the command 1793 * @buf: Data buffer of the command 1794 * @buflen: Length of data buffer 1795 * @timeout: Timeout in msecs (0 for default) 1796 * 1797 * Wrapper around ata_exec_internal_sg() which takes simple 1798 * buffer instead of sg list. 1799 * 1800 * LOCKING: 1801 * None. Should be called with kernel context, might sleep. 1802 * 1803 * RETURNS: 1804 * Zero on success, AC_ERR_* mask on failure 1805 */ 1806 unsigned ata_exec_internal(struct ata_device *dev, 1807 struct ata_taskfile *tf, const u8 *cdb, 1808 int dma_dir, void *buf, unsigned int buflen, 1809 unsigned long timeout) 1810 { 1811 struct scatterlist *psg = NULL, sg; 1812 unsigned int n_elem = 0; 1813 1814 if (dma_dir != DMA_NONE) { 1815 WARN_ON(!buf); 1816 sg_init_one(&sg, buf, buflen); 1817 psg = &sg; 1818 n_elem++; 1819 } 1820 1821 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1822 timeout); 1823 } 1824 1825 /** 1826 * ata_do_simple_cmd - execute simple internal command 1827 * @dev: Device to which the command is sent 1828 * @cmd: Opcode to execute 1829 * 1830 * Execute a 'simple' command, that only consists of the opcode 1831 * 'cmd' itself, without filling any other registers 1832 * 1833 * LOCKING: 1834 * Kernel thread context (may sleep). 1835 * 1836 * RETURNS: 1837 * Zero on success, AC_ERR_* mask on failure 1838 */ 1839 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1840 { 1841 struct ata_taskfile tf; 1842 1843 ata_tf_init(dev, &tf); 1844 1845 tf.command = cmd; 1846 tf.flags |= ATA_TFLAG_DEVICE; 1847 tf.protocol = ATA_PROT_NODATA; 1848 1849 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1850 } 1851 1852 /** 1853 * ata_pio_need_iordy - check if iordy needed 1854 * @adev: ATA device 1855 * 1856 * Check if the current speed of the device requires IORDY. Used 1857 * by various controllers for chip configuration. 1858 */ 1859 1860 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1861 { 1862 /* Controller doesn't support IORDY. Probably a pointless check 1863 as the caller should know this */ 1864 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1865 return 0; 1866 /* PIO3 and higher it is mandatory */ 1867 if (adev->pio_mode > XFER_PIO_2) 1868 return 1; 1869 /* We turn it on when possible */ 1870 if (ata_id_has_iordy(adev->id)) 1871 return 1; 1872 return 0; 1873 } 1874 1875 /** 1876 * ata_pio_mask_no_iordy - Return the non IORDY mask 1877 * @adev: ATA device 1878 * 1879 * Compute the highest mode possible if we are not using iordy. Return 1880 * -1 if no iordy mode is available. 1881 */ 1882 1883 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1884 { 1885 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1886 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1887 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1888 /* Is the speed faster than the drive allows non IORDY ? */ 1889 if (pio) { 1890 /* This is cycle times not frequency - watch the logic! */ 1891 if (pio > 240) /* PIO2 is 240nS per cycle */ 1892 return 3 << ATA_SHIFT_PIO; 1893 return 7 << ATA_SHIFT_PIO; 1894 } 1895 } 1896 return 3 << ATA_SHIFT_PIO; 1897 } 1898 1899 /** 1900 * ata_do_dev_read_id - default ID read method 1901 * @dev: device 1902 * @tf: proposed taskfile 1903 * @id: data buffer 1904 * 1905 * Issue the identify taskfile and hand back the buffer containing 1906 * identify data. For some RAID controllers and for pre ATA devices 1907 * this function is wrapped or replaced by the driver 1908 */ 1909 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1910 struct ata_taskfile *tf, u16 *id) 1911 { 1912 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1913 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1914 } 1915 1916 /** 1917 * ata_dev_read_id - Read ID data from the specified device 1918 * @dev: target device 1919 * @p_class: pointer to class of the target device (may be changed) 1920 * @flags: ATA_READID_* flags 1921 * @id: buffer to read IDENTIFY data into 1922 * 1923 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1924 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1925 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1926 * for pre-ATA4 drives. 1927 * 1928 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1929 * now we abort if we hit that case. 1930 * 1931 * LOCKING: 1932 * Kernel thread context (may sleep) 1933 * 1934 * RETURNS: 1935 * 0 on success, -errno otherwise. 1936 */ 1937 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1938 unsigned int flags, u16 *id) 1939 { 1940 struct ata_port *ap = dev->link->ap; 1941 unsigned int class = *p_class; 1942 struct ata_taskfile tf; 1943 unsigned int err_mask = 0; 1944 const char *reason; 1945 int may_fallback = 1, tried_spinup = 0; 1946 int rc; 1947 1948 if (ata_msg_ctl(ap)) 1949 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1950 1951 retry: 1952 ata_tf_init(dev, &tf); 1953 1954 switch (class) { 1955 case ATA_DEV_ATA: 1956 tf.command = ATA_CMD_ID_ATA; 1957 break; 1958 case ATA_DEV_ATAPI: 1959 tf.command = ATA_CMD_ID_ATAPI; 1960 break; 1961 default: 1962 rc = -ENODEV; 1963 reason = "unsupported class"; 1964 goto err_out; 1965 } 1966 1967 tf.protocol = ATA_PROT_PIO; 1968 1969 /* Some devices choke if TF registers contain garbage. Make 1970 * sure those are properly initialized. 1971 */ 1972 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1973 1974 /* Device presence detection is unreliable on some 1975 * controllers. Always poll IDENTIFY if available. 1976 */ 1977 tf.flags |= ATA_TFLAG_POLLING; 1978 1979 if (ap->ops->read_id) 1980 err_mask = ap->ops->read_id(dev, &tf, id); 1981 else 1982 err_mask = ata_do_dev_read_id(dev, &tf, id); 1983 1984 if (err_mask) { 1985 if (err_mask & AC_ERR_NODEV_HINT) { 1986 ata_dev_printk(dev, KERN_DEBUG, 1987 "NODEV after polling detection\n"); 1988 return -ENOENT; 1989 } 1990 1991 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1992 /* Device or controller might have reported 1993 * the wrong device class. Give a shot at the 1994 * other IDENTIFY if the current one is 1995 * aborted by the device. 1996 */ 1997 if (may_fallback) { 1998 may_fallback = 0; 1999 2000 if (class == ATA_DEV_ATA) 2001 class = ATA_DEV_ATAPI; 2002 else 2003 class = ATA_DEV_ATA; 2004 goto retry; 2005 } 2006 2007 /* Control reaches here iff the device aborted 2008 * both flavors of IDENTIFYs which happens 2009 * sometimes with phantom devices. 2010 */ 2011 ata_dev_printk(dev, KERN_DEBUG, 2012 "both IDENTIFYs aborted, assuming NODEV\n"); 2013 return -ENOENT; 2014 } 2015 2016 rc = -EIO; 2017 reason = "I/O error"; 2018 goto err_out; 2019 } 2020 2021 /* Falling back doesn't make sense if ID data was read 2022 * successfully at least once. 2023 */ 2024 may_fallback = 0; 2025 2026 swap_buf_le16(id, ATA_ID_WORDS); 2027 2028 /* sanity check */ 2029 rc = -EINVAL; 2030 reason = "device reports invalid type"; 2031 2032 if (class == ATA_DEV_ATA) { 2033 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2034 goto err_out; 2035 } else { 2036 if (ata_id_is_ata(id)) 2037 goto err_out; 2038 } 2039 2040 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2041 tried_spinup = 1; 2042 /* 2043 * Drive powered-up in standby mode, and requires a specific 2044 * SET_FEATURES spin-up subcommand before it will accept 2045 * anything other than the original IDENTIFY command. 2046 */ 2047 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2048 if (err_mask && id[2] != 0x738c) { 2049 rc = -EIO; 2050 reason = "SPINUP failed"; 2051 goto err_out; 2052 } 2053 /* 2054 * If the drive initially returned incomplete IDENTIFY info, 2055 * we now must reissue the IDENTIFY command. 2056 */ 2057 if (id[2] == 0x37c8) 2058 goto retry; 2059 } 2060 2061 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2062 /* 2063 * The exact sequence expected by certain pre-ATA4 drives is: 2064 * SRST RESET 2065 * IDENTIFY (optional in early ATA) 2066 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2067 * anything else.. 2068 * Some drives were very specific about that exact sequence. 2069 * 2070 * Note that ATA4 says lba is mandatory so the second check 2071 * shoud never trigger. 2072 */ 2073 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2074 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2075 if (err_mask) { 2076 rc = -EIO; 2077 reason = "INIT_DEV_PARAMS failed"; 2078 goto err_out; 2079 } 2080 2081 /* current CHS translation info (id[53-58]) might be 2082 * changed. reread the identify device info. 2083 */ 2084 flags &= ~ATA_READID_POSTRESET; 2085 goto retry; 2086 } 2087 } 2088 2089 *p_class = class; 2090 2091 return 0; 2092 2093 err_out: 2094 if (ata_msg_warn(ap)) 2095 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2096 "(%s, err_mask=0x%x)\n", reason, err_mask); 2097 return rc; 2098 } 2099 2100 static inline u8 ata_dev_knobble(struct ata_device *dev) 2101 { 2102 struct ata_port *ap = dev->link->ap; 2103 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2104 } 2105 2106 static void ata_dev_config_ncq(struct ata_device *dev, 2107 char *desc, size_t desc_sz) 2108 { 2109 struct ata_port *ap = dev->link->ap; 2110 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2111 2112 if (!ata_id_has_ncq(dev->id)) { 2113 desc[0] = '\0'; 2114 return; 2115 } 2116 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2117 snprintf(desc, desc_sz, "NCQ (not used)"); 2118 return; 2119 } 2120 if (ap->flags & ATA_FLAG_NCQ) { 2121 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2122 dev->flags |= ATA_DFLAG_NCQ; 2123 } 2124 2125 if (hdepth >= ddepth) 2126 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2127 else 2128 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2129 } 2130 2131 /** 2132 * ata_dev_configure - Configure the specified ATA/ATAPI device 2133 * @dev: Target device to configure 2134 * 2135 * Configure @dev according to @dev->id. Generic and low-level 2136 * driver specific fixups are also applied. 2137 * 2138 * LOCKING: 2139 * Kernel thread context (may sleep) 2140 * 2141 * RETURNS: 2142 * 0 on success, -errno otherwise 2143 */ 2144 int ata_dev_configure(struct ata_device *dev) 2145 { 2146 struct ata_port *ap = dev->link->ap; 2147 struct ata_eh_context *ehc = &dev->link->eh_context; 2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2149 const u16 *id = dev->id; 2150 unsigned long xfer_mask; 2151 char revbuf[7]; /* XYZ-99\0 */ 2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2153 char modelbuf[ATA_ID_PROD_LEN+1]; 2154 int rc; 2155 2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2158 __func__); 2159 return 0; 2160 } 2161 2162 if (ata_msg_probe(ap)) 2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2164 2165 /* set horkage */ 2166 dev->horkage |= ata_dev_blacklisted(dev); 2167 ata_force_horkage(dev); 2168 2169 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2170 ata_dev_printk(dev, KERN_INFO, 2171 "unsupported device, disabling\n"); 2172 ata_dev_disable(dev); 2173 return 0; 2174 } 2175 2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2177 dev->class == ATA_DEV_ATAPI) { 2178 ata_dev_printk(dev, KERN_WARNING, 2179 "WARNING: ATAPI is %s, device ignored.\n", 2180 atapi_enabled ? "not supported with this driver" 2181 : "disabled"); 2182 ata_dev_disable(dev); 2183 return 0; 2184 } 2185 2186 /* let ACPI work its magic */ 2187 rc = ata_acpi_on_devcfg(dev); 2188 if (rc) 2189 return rc; 2190 2191 /* massage HPA, do it early as it might change IDENTIFY data */ 2192 rc = ata_hpa_resize(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* print device capabilities */ 2197 if (ata_msg_probe(ap)) 2198 ata_dev_printk(dev, KERN_DEBUG, 2199 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2200 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2201 __func__, 2202 id[49], id[82], id[83], id[84], 2203 id[85], id[86], id[87], id[88]); 2204 2205 /* initialize to-be-configured parameters */ 2206 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2207 dev->max_sectors = 0; 2208 dev->cdb_len = 0; 2209 dev->n_sectors = 0; 2210 dev->cylinders = 0; 2211 dev->heads = 0; 2212 dev->sectors = 0; 2213 2214 /* 2215 * common ATA, ATAPI feature tests 2216 */ 2217 2218 /* find max transfer mode; for printk only */ 2219 xfer_mask = ata_id_xfermask(id); 2220 2221 if (ata_msg_probe(ap)) 2222 ata_dump_id(id); 2223 2224 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2225 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2226 sizeof(fwrevbuf)); 2227 2228 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2229 sizeof(modelbuf)); 2230 2231 /* ATA-specific feature tests */ 2232 if (dev->class == ATA_DEV_ATA) { 2233 if (ata_id_is_cfa(id)) { 2234 if (id[162] & 1) /* CPRM may make this media unusable */ 2235 ata_dev_printk(dev, KERN_WARNING, 2236 "supports DRM functions and may " 2237 "not be fully accessable.\n"); 2238 snprintf(revbuf, 7, "CFA"); 2239 } else { 2240 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2241 /* Warn the user if the device has TPM extensions */ 2242 if (ata_id_has_tpm(id)) 2243 ata_dev_printk(dev, KERN_WARNING, 2244 "supports DRM functions and may " 2245 "not be fully accessable.\n"); 2246 } 2247 2248 dev->n_sectors = ata_id_n_sectors(id); 2249 2250 if (dev->id[59] & 0x100) 2251 dev->multi_count = dev->id[59] & 0xff; 2252 2253 if (ata_id_has_lba(id)) { 2254 const char *lba_desc; 2255 char ncq_desc[20]; 2256 2257 lba_desc = "LBA"; 2258 dev->flags |= ATA_DFLAG_LBA; 2259 if (ata_id_has_lba48(id)) { 2260 dev->flags |= ATA_DFLAG_LBA48; 2261 lba_desc = "LBA48"; 2262 2263 if (dev->n_sectors >= (1UL << 28) && 2264 ata_id_has_flush_ext(id)) 2265 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2266 } 2267 2268 /* config NCQ */ 2269 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2270 2271 /* print device info to dmesg */ 2272 if (ata_msg_drv(ap) && print_info) { 2273 ata_dev_printk(dev, KERN_INFO, 2274 "%s: %s, %s, max %s\n", 2275 revbuf, modelbuf, fwrevbuf, 2276 ata_mode_string(xfer_mask)); 2277 ata_dev_printk(dev, KERN_INFO, 2278 "%Lu sectors, multi %u: %s %s\n", 2279 (unsigned long long)dev->n_sectors, 2280 dev->multi_count, lba_desc, ncq_desc); 2281 } 2282 } else { 2283 /* CHS */ 2284 2285 /* Default translation */ 2286 dev->cylinders = id[1]; 2287 dev->heads = id[3]; 2288 dev->sectors = id[6]; 2289 2290 if (ata_id_current_chs_valid(id)) { 2291 /* Current CHS translation is valid. */ 2292 dev->cylinders = id[54]; 2293 dev->heads = id[55]; 2294 dev->sectors = id[56]; 2295 } 2296 2297 /* print device info to dmesg */ 2298 if (ata_msg_drv(ap) && print_info) { 2299 ata_dev_printk(dev, KERN_INFO, 2300 "%s: %s, %s, max %s\n", 2301 revbuf, modelbuf, fwrevbuf, 2302 ata_mode_string(xfer_mask)); 2303 ata_dev_printk(dev, KERN_INFO, 2304 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2305 (unsigned long long)dev->n_sectors, 2306 dev->multi_count, dev->cylinders, 2307 dev->heads, dev->sectors); 2308 } 2309 } 2310 2311 dev->cdb_len = 16; 2312 } 2313 2314 /* ATAPI-specific feature tests */ 2315 else if (dev->class == ATA_DEV_ATAPI) { 2316 const char *cdb_intr_string = ""; 2317 const char *atapi_an_string = ""; 2318 const char *dma_dir_string = ""; 2319 u32 sntf; 2320 2321 rc = atapi_cdb_len(id); 2322 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2323 if (ata_msg_warn(ap)) 2324 ata_dev_printk(dev, KERN_WARNING, 2325 "unsupported CDB len\n"); 2326 rc = -EINVAL; 2327 goto err_out_nosup; 2328 } 2329 dev->cdb_len = (unsigned int) rc; 2330 2331 /* Enable ATAPI AN if both the host and device have 2332 * the support. If PMP is attached, SNTF is required 2333 * to enable ATAPI AN to discern between PHY status 2334 * changed notifications and ATAPI ANs. 2335 */ 2336 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2337 (!sata_pmp_attached(ap) || 2338 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2339 unsigned int err_mask; 2340 2341 /* issue SET feature command to turn this on */ 2342 err_mask = ata_dev_set_feature(dev, 2343 SETFEATURES_SATA_ENABLE, SATA_AN); 2344 if (err_mask) 2345 ata_dev_printk(dev, KERN_ERR, 2346 "failed to enable ATAPI AN " 2347 "(err_mask=0x%x)\n", err_mask); 2348 else { 2349 dev->flags |= ATA_DFLAG_AN; 2350 atapi_an_string = ", ATAPI AN"; 2351 } 2352 } 2353 2354 if (ata_id_cdb_intr(dev->id)) { 2355 dev->flags |= ATA_DFLAG_CDB_INTR; 2356 cdb_intr_string = ", CDB intr"; 2357 } 2358 2359 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2360 dev->flags |= ATA_DFLAG_DMADIR; 2361 dma_dir_string = ", DMADIR"; 2362 } 2363 2364 /* print device info to dmesg */ 2365 if (ata_msg_drv(ap) && print_info) 2366 ata_dev_printk(dev, KERN_INFO, 2367 "ATAPI: %s, %s, max %s%s%s%s\n", 2368 modelbuf, fwrevbuf, 2369 ata_mode_string(xfer_mask), 2370 cdb_intr_string, atapi_an_string, 2371 dma_dir_string); 2372 } 2373 2374 /* determine max_sectors */ 2375 dev->max_sectors = ATA_MAX_SECTORS; 2376 if (dev->flags & ATA_DFLAG_LBA48) 2377 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2378 2379 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2380 if (ata_id_has_hipm(dev->id)) 2381 dev->flags |= ATA_DFLAG_HIPM; 2382 if (ata_id_has_dipm(dev->id)) 2383 dev->flags |= ATA_DFLAG_DIPM; 2384 } 2385 2386 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2387 200 sectors */ 2388 if (ata_dev_knobble(dev)) { 2389 if (ata_msg_drv(ap) && print_info) 2390 ata_dev_printk(dev, KERN_INFO, 2391 "applying bridge limits\n"); 2392 dev->udma_mask &= ATA_UDMA5; 2393 dev->max_sectors = ATA_MAX_SECTORS; 2394 } 2395 2396 if ((dev->class == ATA_DEV_ATAPI) && 2397 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2398 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2399 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2400 } 2401 2402 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2403 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2404 dev->max_sectors); 2405 2406 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2407 dev->horkage |= ATA_HORKAGE_IPM; 2408 2409 /* reset link pm_policy for this port to no pm */ 2410 ap->pm_policy = MAX_PERFORMANCE; 2411 } 2412 2413 if (ap->ops->dev_config) 2414 ap->ops->dev_config(dev); 2415 2416 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2417 /* Let the user know. We don't want to disallow opens for 2418 rescue purposes, or in case the vendor is just a blithering 2419 idiot. Do this after the dev_config call as some controllers 2420 with buggy firmware may want to avoid reporting false device 2421 bugs */ 2422 2423 if (print_info) { 2424 ata_dev_printk(dev, KERN_WARNING, 2425 "Drive reports diagnostics failure. This may indicate a drive\n"); 2426 ata_dev_printk(dev, KERN_WARNING, 2427 "fault or invalid emulation. Contact drive vendor for information.\n"); 2428 } 2429 } 2430 2431 return 0; 2432 2433 err_out_nosup: 2434 if (ata_msg_probe(ap)) 2435 ata_dev_printk(dev, KERN_DEBUG, 2436 "%s: EXIT, err\n", __func__); 2437 return rc; 2438 } 2439 2440 /** 2441 * ata_cable_40wire - return 40 wire cable type 2442 * @ap: port 2443 * 2444 * Helper method for drivers which want to hardwire 40 wire cable 2445 * detection. 2446 */ 2447 2448 int ata_cable_40wire(struct ata_port *ap) 2449 { 2450 return ATA_CBL_PATA40; 2451 } 2452 2453 /** 2454 * ata_cable_80wire - return 80 wire cable type 2455 * @ap: port 2456 * 2457 * Helper method for drivers which want to hardwire 80 wire cable 2458 * detection. 2459 */ 2460 2461 int ata_cable_80wire(struct ata_port *ap) 2462 { 2463 return ATA_CBL_PATA80; 2464 } 2465 2466 /** 2467 * ata_cable_unknown - return unknown PATA cable. 2468 * @ap: port 2469 * 2470 * Helper method for drivers which have no PATA cable detection. 2471 */ 2472 2473 int ata_cable_unknown(struct ata_port *ap) 2474 { 2475 return ATA_CBL_PATA_UNK; 2476 } 2477 2478 /** 2479 * ata_cable_ignore - return ignored PATA cable. 2480 * @ap: port 2481 * 2482 * Helper method for drivers which don't use cable type to limit 2483 * transfer mode. 2484 */ 2485 int ata_cable_ignore(struct ata_port *ap) 2486 { 2487 return ATA_CBL_PATA_IGN; 2488 } 2489 2490 /** 2491 * ata_cable_sata - return SATA cable type 2492 * @ap: port 2493 * 2494 * Helper method for drivers which have SATA cables 2495 */ 2496 2497 int ata_cable_sata(struct ata_port *ap) 2498 { 2499 return ATA_CBL_SATA; 2500 } 2501 2502 /** 2503 * ata_bus_probe - Reset and probe ATA bus 2504 * @ap: Bus to probe 2505 * 2506 * Master ATA bus probing function. Initiates a hardware-dependent 2507 * bus reset, then attempts to identify any devices found on 2508 * the bus. 2509 * 2510 * LOCKING: 2511 * PCI/etc. bus probe sem. 2512 * 2513 * RETURNS: 2514 * Zero on success, negative errno otherwise. 2515 */ 2516 2517 int ata_bus_probe(struct ata_port *ap) 2518 { 2519 unsigned int classes[ATA_MAX_DEVICES]; 2520 int tries[ATA_MAX_DEVICES]; 2521 int rc; 2522 struct ata_device *dev; 2523 2524 ata_port_probe(ap); 2525 2526 ata_link_for_each_dev(dev, &ap->link) 2527 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2528 2529 retry: 2530 ata_link_for_each_dev(dev, &ap->link) { 2531 /* If we issue an SRST then an ATA drive (not ATAPI) 2532 * may change configuration and be in PIO0 timing. If 2533 * we do a hard reset (or are coming from power on) 2534 * this is true for ATA or ATAPI. Until we've set a 2535 * suitable controller mode we should not touch the 2536 * bus as we may be talking too fast. 2537 */ 2538 dev->pio_mode = XFER_PIO_0; 2539 2540 /* If the controller has a pio mode setup function 2541 * then use it to set the chipset to rights. Don't 2542 * touch the DMA setup as that will be dealt with when 2543 * configuring devices. 2544 */ 2545 if (ap->ops->set_piomode) 2546 ap->ops->set_piomode(ap, dev); 2547 } 2548 2549 /* reset and determine device classes */ 2550 ap->ops->phy_reset(ap); 2551 2552 ata_link_for_each_dev(dev, &ap->link) { 2553 if (!(ap->flags & ATA_FLAG_DISABLED) && 2554 dev->class != ATA_DEV_UNKNOWN) 2555 classes[dev->devno] = dev->class; 2556 else 2557 classes[dev->devno] = ATA_DEV_NONE; 2558 2559 dev->class = ATA_DEV_UNKNOWN; 2560 } 2561 2562 ata_port_probe(ap); 2563 2564 /* read IDENTIFY page and configure devices. We have to do the identify 2565 specific sequence bass-ackwards so that PDIAG- is released by 2566 the slave device */ 2567 2568 ata_link_for_each_dev_reverse(dev, &ap->link) { 2569 if (tries[dev->devno]) 2570 dev->class = classes[dev->devno]; 2571 2572 if (!ata_dev_enabled(dev)) 2573 continue; 2574 2575 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2576 dev->id); 2577 if (rc) 2578 goto fail; 2579 } 2580 2581 /* Now ask for the cable type as PDIAG- should have been released */ 2582 if (ap->ops->cable_detect) 2583 ap->cbl = ap->ops->cable_detect(ap); 2584 2585 /* We may have SATA bridge glue hiding here irrespective of the 2586 reported cable types and sensed types */ 2587 ata_link_for_each_dev(dev, &ap->link) { 2588 if (!ata_dev_enabled(dev)) 2589 continue; 2590 /* SATA drives indicate we have a bridge. We don't know which 2591 end of the link the bridge is which is a problem */ 2592 if (ata_id_is_sata(dev->id)) 2593 ap->cbl = ATA_CBL_SATA; 2594 } 2595 2596 /* After the identify sequence we can now set up the devices. We do 2597 this in the normal order so that the user doesn't get confused */ 2598 2599 ata_link_for_each_dev(dev, &ap->link) { 2600 if (!ata_dev_enabled(dev)) 2601 continue; 2602 2603 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2604 rc = ata_dev_configure(dev); 2605 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2606 if (rc) 2607 goto fail; 2608 } 2609 2610 /* configure transfer mode */ 2611 rc = ata_set_mode(&ap->link, &dev); 2612 if (rc) 2613 goto fail; 2614 2615 ata_link_for_each_dev(dev, &ap->link) 2616 if (ata_dev_enabled(dev)) 2617 return 0; 2618 2619 /* no device present, disable port */ 2620 ata_port_disable(ap); 2621 return -ENODEV; 2622 2623 fail: 2624 tries[dev->devno]--; 2625 2626 switch (rc) { 2627 case -EINVAL: 2628 /* eeek, something went very wrong, give up */ 2629 tries[dev->devno] = 0; 2630 break; 2631 2632 case -ENODEV: 2633 /* give it just one more chance */ 2634 tries[dev->devno] = min(tries[dev->devno], 1); 2635 case -EIO: 2636 if (tries[dev->devno] == 1) { 2637 /* This is the last chance, better to slow 2638 * down than lose it. 2639 */ 2640 sata_down_spd_limit(&ap->link); 2641 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2642 } 2643 } 2644 2645 if (!tries[dev->devno]) 2646 ata_dev_disable(dev); 2647 2648 goto retry; 2649 } 2650 2651 /** 2652 * ata_port_probe - Mark port as enabled 2653 * @ap: Port for which we indicate enablement 2654 * 2655 * Modify @ap data structure such that the system 2656 * thinks that the entire port is enabled. 2657 * 2658 * LOCKING: host lock, or some other form of 2659 * serialization. 2660 */ 2661 2662 void ata_port_probe(struct ata_port *ap) 2663 { 2664 ap->flags &= ~ATA_FLAG_DISABLED; 2665 } 2666 2667 /** 2668 * sata_print_link_status - Print SATA link status 2669 * @link: SATA link to printk link status about 2670 * 2671 * This function prints link speed and status of a SATA link. 2672 * 2673 * LOCKING: 2674 * None. 2675 */ 2676 static void sata_print_link_status(struct ata_link *link) 2677 { 2678 u32 sstatus, scontrol, tmp; 2679 2680 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2681 return; 2682 sata_scr_read(link, SCR_CONTROL, &scontrol); 2683 2684 if (ata_link_online(link)) { 2685 tmp = (sstatus >> 4) & 0xf; 2686 ata_link_printk(link, KERN_INFO, 2687 "SATA link up %s (SStatus %X SControl %X)\n", 2688 sata_spd_string(tmp), sstatus, scontrol); 2689 } else { 2690 ata_link_printk(link, KERN_INFO, 2691 "SATA link down (SStatus %X SControl %X)\n", 2692 sstatus, scontrol); 2693 } 2694 } 2695 2696 /** 2697 * ata_dev_pair - return other device on cable 2698 * @adev: device 2699 * 2700 * Obtain the other device on the same cable, or if none is 2701 * present NULL is returned 2702 */ 2703 2704 struct ata_device *ata_dev_pair(struct ata_device *adev) 2705 { 2706 struct ata_link *link = adev->link; 2707 struct ata_device *pair = &link->device[1 - adev->devno]; 2708 if (!ata_dev_enabled(pair)) 2709 return NULL; 2710 return pair; 2711 } 2712 2713 /** 2714 * ata_port_disable - Disable port. 2715 * @ap: Port to be disabled. 2716 * 2717 * Modify @ap data structure such that the system 2718 * thinks that the entire port is disabled, and should 2719 * never attempt to probe or communicate with devices 2720 * on this port. 2721 * 2722 * LOCKING: host lock, or some other form of 2723 * serialization. 2724 */ 2725 2726 void ata_port_disable(struct ata_port *ap) 2727 { 2728 ap->link.device[0].class = ATA_DEV_NONE; 2729 ap->link.device[1].class = ATA_DEV_NONE; 2730 ap->flags |= ATA_FLAG_DISABLED; 2731 } 2732 2733 /** 2734 * sata_down_spd_limit - adjust SATA spd limit downward 2735 * @link: Link to adjust SATA spd limit for 2736 * 2737 * Adjust SATA spd limit of @link downward. Note that this 2738 * function only adjusts the limit. The change must be applied 2739 * using sata_set_spd(). 2740 * 2741 * LOCKING: 2742 * Inherited from caller. 2743 * 2744 * RETURNS: 2745 * 0 on success, negative errno on failure 2746 */ 2747 int sata_down_spd_limit(struct ata_link *link) 2748 { 2749 u32 sstatus, spd, mask; 2750 int rc, highbit; 2751 2752 if (!sata_scr_valid(link)) 2753 return -EOPNOTSUPP; 2754 2755 /* If SCR can be read, use it to determine the current SPD. 2756 * If not, use cached value in link->sata_spd. 2757 */ 2758 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2759 if (rc == 0) 2760 spd = (sstatus >> 4) & 0xf; 2761 else 2762 spd = link->sata_spd; 2763 2764 mask = link->sata_spd_limit; 2765 if (mask <= 1) 2766 return -EINVAL; 2767 2768 /* unconditionally mask off the highest bit */ 2769 highbit = fls(mask) - 1; 2770 mask &= ~(1 << highbit); 2771 2772 /* Mask off all speeds higher than or equal to the current 2773 * one. Force 1.5Gbps if current SPD is not available. 2774 */ 2775 if (spd > 1) 2776 mask &= (1 << (spd - 1)) - 1; 2777 else 2778 mask &= 1; 2779 2780 /* were we already at the bottom? */ 2781 if (!mask) 2782 return -EINVAL; 2783 2784 link->sata_spd_limit = mask; 2785 2786 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2787 sata_spd_string(fls(mask))); 2788 2789 return 0; 2790 } 2791 2792 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2793 { 2794 struct ata_link *host_link = &link->ap->link; 2795 u32 limit, target, spd; 2796 2797 limit = link->sata_spd_limit; 2798 2799 /* Don't configure downstream link faster than upstream link. 2800 * It doesn't speed up anything and some PMPs choke on such 2801 * configuration. 2802 */ 2803 if (!ata_is_host_link(link) && host_link->sata_spd) 2804 limit &= (1 << host_link->sata_spd) - 1; 2805 2806 if (limit == UINT_MAX) 2807 target = 0; 2808 else 2809 target = fls(limit); 2810 2811 spd = (*scontrol >> 4) & 0xf; 2812 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2813 2814 return spd != target; 2815 } 2816 2817 /** 2818 * sata_set_spd_needed - is SATA spd configuration needed 2819 * @link: Link in question 2820 * 2821 * Test whether the spd limit in SControl matches 2822 * @link->sata_spd_limit. This function is used to determine 2823 * whether hardreset is necessary to apply SATA spd 2824 * configuration. 2825 * 2826 * LOCKING: 2827 * Inherited from caller. 2828 * 2829 * RETURNS: 2830 * 1 if SATA spd configuration is needed, 0 otherwise. 2831 */ 2832 static int sata_set_spd_needed(struct ata_link *link) 2833 { 2834 u32 scontrol; 2835 2836 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2837 return 1; 2838 2839 return __sata_set_spd_needed(link, &scontrol); 2840 } 2841 2842 /** 2843 * sata_set_spd - set SATA spd according to spd limit 2844 * @link: Link to set SATA spd for 2845 * 2846 * Set SATA spd of @link according to sata_spd_limit. 2847 * 2848 * LOCKING: 2849 * Inherited from caller. 2850 * 2851 * RETURNS: 2852 * 0 if spd doesn't need to be changed, 1 if spd has been 2853 * changed. Negative errno if SCR registers are inaccessible. 2854 */ 2855 int sata_set_spd(struct ata_link *link) 2856 { 2857 u32 scontrol; 2858 int rc; 2859 2860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2861 return rc; 2862 2863 if (!__sata_set_spd_needed(link, &scontrol)) 2864 return 0; 2865 2866 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2867 return rc; 2868 2869 return 1; 2870 } 2871 2872 /* 2873 * This mode timing computation functionality is ported over from 2874 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2875 */ 2876 /* 2877 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2878 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2879 * for UDMA6, which is currently supported only by Maxtor drives. 2880 * 2881 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2882 */ 2883 2884 static const struct ata_timing ata_timing[] = { 2885 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2886 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2887 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2888 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2889 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2890 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2891 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2892 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2893 2894 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2895 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2896 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2897 2898 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2899 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2900 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2901 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2902 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2903 2904 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2905 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2906 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2907 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2908 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2909 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2910 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2911 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2912 2913 { 0xFF } 2914 }; 2915 2916 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2917 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2918 2919 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2920 { 2921 q->setup = EZ(t->setup * 1000, T); 2922 q->act8b = EZ(t->act8b * 1000, T); 2923 q->rec8b = EZ(t->rec8b * 1000, T); 2924 q->cyc8b = EZ(t->cyc8b * 1000, T); 2925 q->active = EZ(t->active * 1000, T); 2926 q->recover = EZ(t->recover * 1000, T); 2927 q->cycle = EZ(t->cycle * 1000, T); 2928 q->udma = EZ(t->udma * 1000, UT); 2929 } 2930 2931 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2932 struct ata_timing *m, unsigned int what) 2933 { 2934 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2935 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2936 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2937 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2938 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2939 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2940 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2941 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2942 } 2943 2944 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2945 { 2946 const struct ata_timing *t = ata_timing; 2947 2948 while (xfer_mode > t->mode) 2949 t++; 2950 2951 if (xfer_mode == t->mode) 2952 return t; 2953 return NULL; 2954 } 2955 2956 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2957 struct ata_timing *t, int T, int UT) 2958 { 2959 const struct ata_timing *s; 2960 struct ata_timing p; 2961 2962 /* 2963 * Find the mode. 2964 */ 2965 2966 if (!(s = ata_timing_find_mode(speed))) 2967 return -EINVAL; 2968 2969 memcpy(t, s, sizeof(*s)); 2970 2971 /* 2972 * If the drive is an EIDE drive, it can tell us it needs extended 2973 * PIO/MW_DMA cycle timing. 2974 */ 2975 2976 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2977 memset(&p, 0, sizeof(p)); 2978 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2979 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2980 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2981 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2982 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2983 } 2984 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2985 } 2986 2987 /* 2988 * Convert the timing to bus clock counts. 2989 */ 2990 2991 ata_timing_quantize(t, t, T, UT); 2992 2993 /* 2994 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2995 * S.M.A.R.T * and some other commands. We have to ensure that the 2996 * DMA cycle timing is slower/equal than the fastest PIO timing. 2997 */ 2998 2999 if (speed > XFER_PIO_6) { 3000 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3001 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3002 } 3003 3004 /* 3005 * Lengthen active & recovery time so that cycle time is correct. 3006 */ 3007 3008 if (t->act8b + t->rec8b < t->cyc8b) { 3009 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3010 t->rec8b = t->cyc8b - t->act8b; 3011 } 3012 3013 if (t->active + t->recover < t->cycle) { 3014 t->active += (t->cycle - (t->active + t->recover)) / 2; 3015 t->recover = t->cycle - t->active; 3016 } 3017 3018 /* In a few cases quantisation may produce enough errors to 3019 leave t->cycle too low for the sum of active and recovery 3020 if so we must correct this */ 3021 if (t->active + t->recover > t->cycle) 3022 t->cycle = t->active + t->recover; 3023 3024 return 0; 3025 } 3026 3027 /** 3028 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3029 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3030 * @cycle: cycle duration in ns 3031 * 3032 * Return matching xfer mode for @cycle. The returned mode is of 3033 * the transfer type specified by @xfer_shift. If @cycle is too 3034 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3035 * than the fastest known mode, the fasted mode is returned. 3036 * 3037 * LOCKING: 3038 * None. 3039 * 3040 * RETURNS: 3041 * Matching xfer_mode, 0xff if no match found. 3042 */ 3043 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3044 { 3045 u8 base_mode = 0xff, last_mode = 0xff; 3046 const struct ata_xfer_ent *ent; 3047 const struct ata_timing *t; 3048 3049 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3050 if (ent->shift == xfer_shift) 3051 base_mode = ent->base; 3052 3053 for (t = ata_timing_find_mode(base_mode); 3054 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3055 unsigned short this_cycle; 3056 3057 switch (xfer_shift) { 3058 case ATA_SHIFT_PIO: 3059 case ATA_SHIFT_MWDMA: 3060 this_cycle = t->cycle; 3061 break; 3062 case ATA_SHIFT_UDMA: 3063 this_cycle = t->udma; 3064 break; 3065 default: 3066 return 0xff; 3067 } 3068 3069 if (cycle > this_cycle) 3070 break; 3071 3072 last_mode = t->mode; 3073 } 3074 3075 return last_mode; 3076 } 3077 3078 /** 3079 * ata_down_xfermask_limit - adjust dev xfer masks downward 3080 * @dev: Device to adjust xfer masks 3081 * @sel: ATA_DNXFER_* selector 3082 * 3083 * Adjust xfer masks of @dev downward. Note that this function 3084 * does not apply the change. Invoking ata_set_mode() afterwards 3085 * will apply the limit. 3086 * 3087 * LOCKING: 3088 * Inherited from caller. 3089 * 3090 * RETURNS: 3091 * 0 on success, negative errno on failure 3092 */ 3093 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3094 { 3095 char buf[32]; 3096 unsigned long orig_mask, xfer_mask; 3097 unsigned long pio_mask, mwdma_mask, udma_mask; 3098 int quiet, highbit; 3099 3100 quiet = !!(sel & ATA_DNXFER_QUIET); 3101 sel &= ~ATA_DNXFER_QUIET; 3102 3103 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3104 dev->mwdma_mask, 3105 dev->udma_mask); 3106 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3107 3108 switch (sel) { 3109 case ATA_DNXFER_PIO: 3110 highbit = fls(pio_mask) - 1; 3111 pio_mask &= ~(1 << highbit); 3112 break; 3113 3114 case ATA_DNXFER_DMA: 3115 if (udma_mask) { 3116 highbit = fls(udma_mask) - 1; 3117 udma_mask &= ~(1 << highbit); 3118 if (!udma_mask) 3119 return -ENOENT; 3120 } else if (mwdma_mask) { 3121 highbit = fls(mwdma_mask) - 1; 3122 mwdma_mask &= ~(1 << highbit); 3123 if (!mwdma_mask) 3124 return -ENOENT; 3125 } 3126 break; 3127 3128 case ATA_DNXFER_40C: 3129 udma_mask &= ATA_UDMA_MASK_40C; 3130 break; 3131 3132 case ATA_DNXFER_FORCE_PIO0: 3133 pio_mask &= 1; 3134 case ATA_DNXFER_FORCE_PIO: 3135 mwdma_mask = 0; 3136 udma_mask = 0; 3137 break; 3138 3139 default: 3140 BUG(); 3141 } 3142 3143 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3144 3145 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3146 return -ENOENT; 3147 3148 if (!quiet) { 3149 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3150 snprintf(buf, sizeof(buf), "%s:%s", 3151 ata_mode_string(xfer_mask), 3152 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3153 else 3154 snprintf(buf, sizeof(buf), "%s", 3155 ata_mode_string(xfer_mask)); 3156 3157 ata_dev_printk(dev, KERN_WARNING, 3158 "limiting speed to %s\n", buf); 3159 } 3160 3161 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3162 &dev->udma_mask); 3163 3164 return 0; 3165 } 3166 3167 static int ata_dev_set_mode(struct ata_device *dev) 3168 { 3169 struct ata_eh_context *ehc = &dev->link->eh_context; 3170 const char *dev_err_whine = ""; 3171 int ign_dev_err = 0; 3172 unsigned int err_mask; 3173 int rc; 3174 3175 dev->flags &= ~ATA_DFLAG_PIO; 3176 if (dev->xfer_shift == ATA_SHIFT_PIO) 3177 dev->flags |= ATA_DFLAG_PIO; 3178 3179 err_mask = ata_dev_set_xfermode(dev); 3180 3181 if (err_mask & ~AC_ERR_DEV) 3182 goto fail; 3183 3184 /* revalidate */ 3185 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3186 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3187 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3188 if (rc) 3189 return rc; 3190 3191 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3192 /* Old CFA may refuse this command, which is just fine */ 3193 if (ata_id_is_cfa(dev->id)) 3194 ign_dev_err = 1; 3195 /* Catch several broken garbage emulations plus some pre 3196 ATA devices */ 3197 if (ata_id_major_version(dev->id) == 0 && 3198 dev->pio_mode <= XFER_PIO_2) 3199 ign_dev_err = 1; 3200 /* Some very old devices and some bad newer ones fail 3201 any kind of SET_XFERMODE request but support PIO0-2 3202 timings and no IORDY */ 3203 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3204 ign_dev_err = 1; 3205 } 3206 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3207 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3208 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3209 dev->dma_mode == XFER_MW_DMA_0 && 3210 (dev->id[63] >> 8) & 1) 3211 ign_dev_err = 1; 3212 3213 /* if the device is actually configured correctly, ignore dev err */ 3214 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3215 ign_dev_err = 1; 3216 3217 if (err_mask & AC_ERR_DEV) { 3218 if (!ign_dev_err) 3219 goto fail; 3220 else 3221 dev_err_whine = " (device error ignored)"; 3222 } 3223 3224 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3225 dev->xfer_shift, (int)dev->xfer_mode); 3226 3227 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3228 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3229 dev_err_whine); 3230 3231 return 0; 3232 3233 fail: 3234 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3235 "(err_mask=0x%x)\n", err_mask); 3236 return -EIO; 3237 } 3238 3239 /** 3240 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3241 * @link: link on which timings will be programmed 3242 * @r_failed_dev: out parameter for failed device 3243 * 3244 * Standard implementation of the function used to tune and set 3245 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3246 * ata_dev_set_mode() fails, pointer to the failing device is 3247 * returned in @r_failed_dev. 3248 * 3249 * LOCKING: 3250 * PCI/etc. bus probe sem. 3251 * 3252 * RETURNS: 3253 * 0 on success, negative errno otherwise 3254 */ 3255 3256 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3257 { 3258 struct ata_port *ap = link->ap; 3259 struct ata_device *dev; 3260 int rc = 0, used_dma = 0, found = 0; 3261 3262 /* step 1: calculate xfer_mask */ 3263 ata_link_for_each_dev(dev, link) { 3264 unsigned long pio_mask, dma_mask; 3265 unsigned int mode_mask; 3266 3267 if (!ata_dev_enabled(dev)) 3268 continue; 3269 3270 mode_mask = ATA_DMA_MASK_ATA; 3271 if (dev->class == ATA_DEV_ATAPI) 3272 mode_mask = ATA_DMA_MASK_ATAPI; 3273 else if (ata_id_is_cfa(dev->id)) 3274 mode_mask = ATA_DMA_MASK_CFA; 3275 3276 ata_dev_xfermask(dev); 3277 ata_force_xfermask(dev); 3278 3279 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3280 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3281 3282 if (libata_dma_mask & mode_mask) 3283 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3284 else 3285 dma_mask = 0; 3286 3287 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3288 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3289 3290 found = 1; 3291 if (ata_dma_enabled(dev)) 3292 used_dma = 1; 3293 } 3294 if (!found) 3295 goto out; 3296 3297 /* step 2: always set host PIO timings */ 3298 ata_link_for_each_dev(dev, link) { 3299 if (!ata_dev_enabled(dev)) 3300 continue; 3301 3302 if (dev->pio_mode == 0xff) { 3303 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3304 rc = -EINVAL; 3305 goto out; 3306 } 3307 3308 dev->xfer_mode = dev->pio_mode; 3309 dev->xfer_shift = ATA_SHIFT_PIO; 3310 if (ap->ops->set_piomode) 3311 ap->ops->set_piomode(ap, dev); 3312 } 3313 3314 /* step 3: set host DMA timings */ 3315 ata_link_for_each_dev(dev, link) { 3316 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev)) 3317 continue; 3318 3319 dev->xfer_mode = dev->dma_mode; 3320 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3321 if (ap->ops->set_dmamode) 3322 ap->ops->set_dmamode(ap, dev); 3323 } 3324 3325 /* step 4: update devices' xfer mode */ 3326 ata_link_for_each_dev(dev, link) { 3327 /* don't update suspended devices' xfer mode */ 3328 if (!ata_dev_enabled(dev)) 3329 continue; 3330 3331 rc = ata_dev_set_mode(dev); 3332 if (rc) 3333 goto out; 3334 } 3335 3336 /* Record simplex status. If we selected DMA then the other 3337 * host channels are not permitted to do so. 3338 */ 3339 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3340 ap->host->simplex_claimed = ap; 3341 3342 out: 3343 if (rc) 3344 *r_failed_dev = dev; 3345 return rc; 3346 } 3347 3348 /** 3349 * ata_wait_ready - wait for link to become ready 3350 * @link: link to be waited on 3351 * @deadline: deadline jiffies for the operation 3352 * @check_ready: callback to check link readiness 3353 * 3354 * Wait for @link to become ready. @check_ready should return 3355 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3356 * link doesn't seem to be occupied, other errno for other error 3357 * conditions. 3358 * 3359 * Transient -ENODEV conditions are allowed for 3360 * ATA_TMOUT_FF_WAIT. 3361 * 3362 * LOCKING: 3363 * EH context. 3364 * 3365 * RETURNS: 3366 * 0 if @linke is ready before @deadline; otherwise, -errno. 3367 */ 3368 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3369 int (*check_ready)(struct ata_link *link)) 3370 { 3371 unsigned long start = jiffies; 3372 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3373 int warned = 0; 3374 3375 if (time_after(nodev_deadline, deadline)) 3376 nodev_deadline = deadline; 3377 3378 while (1) { 3379 unsigned long now = jiffies; 3380 int ready, tmp; 3381 3382 ready = tmp = check_ready(link); 3383 if (ready > 0) 3384 return 0; 3385 3386 /* -ENODEV could be transient. Ignore -ENODEV if link 3387 * is online. Also, some SATA devices take a long 3388 * time to clear 0xff after reset. For example, 3389 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3390 * GoVault needs even more than that. Wait for 3391 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3392 * 3393 * Note that some PATA controllers (pata_ali) explode 3394 * if status register is read more than once when 3395 * there's no device attached. 3396 */ 3397 if (ready == -ENODEV) { 3398 if (ata_link_online(link)) 3399 ready = 0; 3400 else if ((link->ap->flags & ATA_FLAG_SATA) && 3401 !ata_link_offline(link) && 3402 time_before(now, nodev_deadline)) 3403 ready = 0; 3404 } 3405 3406 if (ready) 3407 return ready; 3408 if (time_after(now, deadline)) 3409 return -EBUSY; 3410 3411 if (!warned && time_after(now, start + 5 * HZ) && 3412 (deadline - now > 3 * HZ)) { 3413 ata_link_printk(link, KERN_WARNING, 3414 "link is slow to respond, please be patient " 3415 "(ready=%d)\n", tmp); 3416 warned = 1; 3417 } 3418 3419 msleep(50); 3420 } 3421 } 3422 3423 /** 3424 * ata_wait_after_reset - wait for link to become ready after reset 3425 * @link: link to be waited on 3426 * @deadline: deadline jiffies for the operation 3427 * @check_ready: callback to check link readiness 3428 * 3429 * Wait for @link to become ready after reset. 3430 * 3431 * LOCKING: 3432 * EH context. 3433 * 3434 * RETURNS: 3435 * 0 if @linke is ready before @deadline; otherwise, -errno. 3436 */ 3437 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3438 int (*check_ready)(struct ata_link *link)) 3439 { 3440 msleep(ATA_WAIT_AFTER_RESET); 3441 3442 return ata_wait_ready(link, deadline, check_ready); 3443 } 3444 3445 /** 3446 * sata_link_debounce - debounce SATA phy status 3447 * @link: ATA link to debounce SATA phy status for 3448 * @params: timing parameters { interval, duratinon, timeout } in msec 3449 * @deadline: deadline jiffies for the operation 3450 * 3451 * Make sure SStatus of @link reaches stable state, determined by 3452 * holding the same value where DET is not 1 for @duration polled 3453 * every @interval, before @timeout. Timeout constraints the 3454 * beginning of the stable state. Because DET gets stuck at 1 on 3455 * some controllers after hot unplugging, this functions waits 3456 * until timeout then returns 0 if DET is stable at 1. 3457 * 3458 * @timeout is further limited by @deadline. The sooner of the 3459 * two is used. 3460 * 3461 * LOCKING: 3462 * Kernel thread context (may sleep) 3463 * 3464 * RETURNS: 3465 * 0 on success, -errno on failure. 3466 */ 3467 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3468 unsigned long deadline) 3469 { 3470 unsigned long interval = params[0]; 3471 unsigned long duration = params[1]; 3472 unsigned long last_jiffies, t; 3473 u32 last, cur; 3474 int rc; 3475 3476 t = ata_deadline(jiffies, params[2]); 3477 if (time_before(t, deadline)) 3478 deadline = t; 3479 3480 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3481 return rc; 3482 cur &= 0xf; 3483 3484 last = cur; 3485 last_jiffies = jiffies; 3486 3487 while (1) { 3488 msleep(interval); 3489 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3490 return rc; 3491 cur &= 0xf; 3492 3493 /* DET stable? */ 3494 if (cur == last) { 3495 if (cur == 1 && time_before(jiffies, deadline)) 3496 continue; 3497 if (time_after(jiffies, 3498 ata_deadline(last_jiffies, duration))) 3499 return 0; 3500 continue; 3501 } 3502 3503 /* unstable, start over */ 3504 last = cur; 3505 last_jiffies = jiffies; 3506 3507 /* Check deadline. If debouncing failed, return 3508 * -EPIPE to tell upper layer to lower link speed. 3509 */ 3510 if (time_after(jiffies, deadline)) 3511 return -EPIPE; 3512 } 3513 } 3514 3515 /** 3516 * sata_link_resume - resume SATA link 3517 * @link: ATA link to resume SATA 3518 * @params: timing parameters { interval, duratinon, timeout } in msec 3519 * @deadline: deadline jiffies for the operation 3520 * 3521 * Resume SATA phy @link and debounce it. 3522 * 3523 * LOCKING: 3524 * Kernel thread context (may sleep) 3525 * 3526 * RETURNS: 3527 * 0 on success, -errno on failure. 3528 */ 3529 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3530 unsigned long deadline) 3531 { 3532 u32 scontrol, serror; 3533 int rc; 3534 3535 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3536 return rc; 3537 3538 scontrol = (scontrol & 0x0f0) | 0x300; 3539 3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3541 return rc; 3542 3543 /* Some PHYs react badly if SStatus is pounded immediately 3544 * after resuming. Delay 200ms before debouncing. 3545 */ 3546 msleep(200); 3547 3548 if ((rc = sata_link_debounce(link, params, deadline))) 3549 return rc; 3550 3551 /* clear SError, some PHYs require this even for SRST to work */ 3552 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3553 rc = sata_scr_write(link, SCR_ERROR, serror); 3554 3555 return rc != -EINVAL ? rc : 0; 3556 } 3557 3558 /** 3559 * ata_std_prereset - prepare for reset 3560 * @link: ATA link to be reset 3561 * @deadline: deadline jiffies for the operation 3562 * 3563 * @link is about to be reset. Initialize it. Failure from 3564 * prereset makes libata abort whole reset sequence and give up 3565 * that port, so prereset should be best-effort. It does its 3566 * best to prepare for reset sequence but if things go wrong, it 3567 * should just whine, not fail. 3568 * 3569 * LOCKING: 3570 * Kernel thread context (may sleep) 3571 * 3572 * RETURNS: 3573 * 0 on success, -errno otherwise. 3574 */ 3575 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3576 { 3577 struct ata_port *ap = link->ap; 3578 struct ata_eh_context *ehc = &link->eh_context; 3579 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3580 int rc; 3581 3582 /* if we're about to do hardreset, nothing more to do */ 3583 if (ehc->i.action & ATA_EH_HARDRESET) 3584 return 0; 3585 3586 /* if SATA, resume link */ 3587 if (ap->flags & ATA_FLAG_SATA) { 3588 rc = sata_link_resume(link, timing, deadline); 3589 /* whine about phy resume failure but proceed */ 3590 if (rc && rc != -EOPNOTSUPP) 3591 ata_link_printk(link, KERN_WARNING, "failed to resume " 3592 "link for reset (errno=%d)\n", rc); 3593 } 3594 3595 /* no point in trying softreset on offline link */ 3596 if (ata_link_offline(link)) 3597 ehc->i.action &= ~ATA_EH_SOFTRESET; 3598 3599 return 0; 3600 } 3601 3602 /** 3603 * sata_link_hardreset - reset link via SATA phy reset 3604 * @link: link to reset 3605 * @timing: timing parameters { interval, duratinon, timeout } in msec 3606 * @deadline: deadline jiffies for the operation 3607 * @online: optional out parameter indicating link onlineness 3608 * @check_ready: optional callback to check link readiness 3609 * 3610 * SATA phy-reset @link using DET bits of SControl register. 3611 * After hardreset, link readiness is waited upon using 3612 * ata_wait_ready() if @check_ready is specified. LLDs are 3613 * allowed to not specify @check_ready and wait itself after this 3614 * function returns. Device classification is LLD's 3615 * responsibility. 3616 * 3617 * *@online is set to one iff reset succeeded and @link is online 3618 * after reset. 3619 * 3620 * LOCKING: 3621 * Kernel thread context (may sleep) 3622 * 3623 * RETURNS: 3624 * 0 on success, -errno otherwise. 3625 */ 3626 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3627 unsigned long deadline, 3628 bool *online, int (*check_ready)(struct ata_link *)) 3629 { 3630 u32 scontrol; 3631 int rc; 3632 3633 DPRINTK("ENTER\n"); 3634 3635 if (online) 3636 *online = false; 3637 3638 if (sata_set_spd_needed(link)) { 3639 /* SATA spec says nothing about how to reconfigure 3640 * spd. To be on the safe side, turn off phy during 3641 * reconfiguration. This works for at least ICH7 AHCI 3642 * and Sil3124. 3643 */ 3644 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3645 goto out; 3646 3647 scontrol = (scontrol & 0x0f0) | 0x304; 3648 3649 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3650 goto out; 3651 3652 sata_set_spd(link); 3653 } 3654 3655 /* issue phy wake/reset */ 3656 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3657 goto out; 3658 3659 scontrol = (scontrol & 0x0f0) | 0x301; 3660 3661 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3662 goto out; 3663 3664 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3665 * 10.4.2 says at least 1 ms. 3666 */ 3667 msleep(1); 3668 3669 /* bring link back */ 3670 rc = sata_link_resume(link, timing, deadline); 3671 if (rc) 3672 goto out; 3673 /* if link is offline nothing more to do */ 3674 if (ata_link_offline(link)) 3675 goto out; 3676 3677 /* Link is online. From this point, -ENODEV too is an error. */ 3678 if (online) 3679 *online = true; 3680 3681 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3682 /* If PMP is supported, we have to do follow-up SRST. 3683 * Some PMPs don't send D2H Reg FIS after hardreset if 3684 * the first port is empty. Wait only for 3685 * ATA_TMOUT_PMP_SRST_WAIT. 3686 */ 3687 if (check_ready) { 3688 unsigned long pmp_deadline; 3689 3690 pmp_deadline = ata_deadline(jiffies, 3691 ATA_TMOUT_PMP_SRST_WAIT); 3692 if (time_after(pmp_deadline, deadline)) 3693 pmp_deadline = deadline; 3694 ata_wait_ready(link, pmp_deadline, check_ready); 3695 } 3696 rc = -EAGAIN; 3697 goto out; 3698 } 3699 3700 rc = 0; 3701 if (check_ready) 3702 rc = ata_wait_ready(link, deadline, check_ready); 3703 out: 3704 if (rc && rc != -EAGAIN) { 3705 /* online is set iff link is online && reset succeeded */ 3706 if (online) 3707 *online = false; 3708 ata_link_printk(link, KERN_ERR, 3709 "COMRESET failed (errno=%d)\n", rc); 3710 } 3711 DPRINTK("EXIT, rc=%d\n", rc); 3712 return rc; 3713 } 3714 3715 /** 3716 * sata_std_hardreset - COMRESET w/o waiting or classification 3717 * @link: link to reset 3718 * @class: resulting class of attached device 3719 * @deadline: deadline jiffies for the operation 3720 * 3721 * Standard SATA COMRESET w/o waiting or classification. 3722 * 3723 * LOCKING: 3724 * Kernel thread context (may sleep) 3725 * 3726 * RETURNS: 3727 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3728 */ 3729 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3730 unsigned long deadline) 3731 { 3732 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3733 bool online; 3734 int rc; 3735 3736 /* do hardreset */ 3737 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3738 return online ? -EAGAIN : rc; 3739 } 3740 3741 /** 3742 * ata_std_postreset - standard postreset callback 3743 * @link: the target ata_link 3744 * @classes: classes of attached devices 3745 * 3746 * This function is invoked after a successful reset. Note that 3747 * the device might have been reset more than once using 3748 * different reset methods before postreset is invoked. 3749 * 3750 * LOCKING: 3751 * Kernel thread context (may sleep) 3752 */ 3753 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3754 { 3755 u32 serror; 3756 3757 DPRINTK("ENTER\n"); 3758 3759 /* reset complete, clear SError */ 3760 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3761 sata_scr_write(link, SCR_ERROR, serror); 3762 3763 /* print link status */ 3764 sata_print_link_status(link); 3765 3766 DPRINTK("EXIT\n"); 3767 } 3768 3769 /** 3770 * ata_dev_same_device - Determine whether new ID matches configured device 3771 * @dev: device to compare against 3772 * @new_class: class of the new device 3773 * @new_id: IDENTIFY page of the new device 3774 * 3775 * Compare @new_class and @new_id against @dev and determine 3776 * whether @dev is the device indicated by @new_class and 3777 * @new_id. 3778 * 3779 * LOCKING: 3780 * None. 3781 * 3782 * RETURNS: 3783 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3784 */ 3785 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3786 const u16 *new_id) 3787 { 3788 const u16 *old_id = dev->id; 3789 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3790 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3791 3792 if (dev->class != new_class) { 3793 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3794 dev->class, new_class); 3795 return 0; 3796 } 3797 3798 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3799 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3800 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3801 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3802 3803 if (strcmp(model[0], model[1])) { 3804 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3805 "'%s' != '%s'\n", model[0], model[1]); 3806 return 0; 3807 } 3808 3809 if (strcmp(serial[0], serial[1])) { 3810 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3811 "'%s' != '%s'\n", serial[0], serial[1]); 3812 return 0; 3813 } 3814 3815 return 1; 3816 } 3817 3818 /** 3819 * ata_dev_reread_id - Re-read IDENTIFY data 3820 * @dev: target ATA device 3821 * @readid_flags: read ID flags 3822 * 3823 * Re-read IDENTIFY page and make sure @dev is still attached to 3824 * the port. 3825 * 3826 * LOCKING: 3827 * Kernel thread context (may sleep) 3828 * 3829 * RETURNS: 3830 * 0 on success, negative errno otherwise 3831 */ 3832 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3833 { 3834 unsigned int class = dev->class; 3835 u16 *id = (void *)dev->link->ap->sector_buf; 3836 int rc; 3837 3838 /* read ID data */ 3839 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3840 if (rc) 3841 return rc; 3842 3843 /* is the device still there? */ 3844 if (!ata_dev_same_device(dev, class, id)) 3845 return -ENODEV; 3846 3847 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3848 return 0; 3849 } 3850 3851 /** 3852 * ata_dev_revalidate - Revalidate ATA device 3853 * @dev: device to revalidate 3854 * @new_class: new class code 3855 * @readid_flags: read ID flags 3856 * 3857 * Re-read IDENTIFY page, make sure @dev is still attached to the 3858 * port and reconfigure it according to the new IDENTIFY page. 3859 * 3860 * LOCKING: 3861 * Kernel thread context (may sleep) 3862 * 3863 * RETURNS: 3864 * 0 on success, negative errno otherwise 3865 */ 3866 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3867 unsigned int readid_flags) 3868 { 3869 u64 n_sectors = dev->n_sectors; 3870 int rc; 3871 3872 if (!ata_dev_enabled(dev)) 3873 return -ENODEV; 3874 3875 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3876 if (ata_class_enabled(new_class) && 3877 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3878 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3879 dev->class, new_class); 3880 rc = -ENODEV; 3881 goto fail; 3882 } 3883 3884 /* re-read ID */ 3885 rc = ata_dev_reread_id(dev, readid_flags); 3886 if (rc) 3887 goto fail; 3888 3889 /* configure device according to the new ID */ 3890 rc = ata_dev_configure(dev); 3891 if (rc) 3892 goto fail; 3893 3894 /* verify n_sectors hasn't changed */ 3895 if (dev->class == ATA_DEV_ATA && n_sectors && 3896 dev->n_sectors != n_sectors) { 3897 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3898 "%llu != %llu\n", 3899 (unsigned long long)n_sectors, 3900 (unsigned long long)dev->n_sectors); 3901 3902 /* restore original n_sectors */ 3903 dev->n_sectors = n_sectors; 3904 3905 rc = -ENODEV; 3906 goto fail; 3907 } 3908 3909 return 0; 3910 3911 fail: 3912 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3913 return rc; 3914 } 3915 3916 struct ata_blacklist_entry { 3917 const char *model_num; 3918 const char *model_rev; 3919 unsigned long horkage; 3920 }; 3921 3922 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3923 /* Devices with DMA related problems under Linux */ 3924 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3925 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3926 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3927 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3928 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3929 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3930 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3931 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3932 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3933 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3934 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3935 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3936 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3937 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3938 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3939 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3940 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3941 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3942 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3943 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3944 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3945 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3946 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3947 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3948 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3949 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3950 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3951 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3952 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3953 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3954 /* Odd clown on sil3726/4726 PMPs */ 3955 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3956 3957 /* Weird ATAPI devices */ 3958 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3959 3960 /* Devices we expect to fail diagnostics */ 3961 3962 /* Devices where NCQ should be avoided */ 3963 /* NCQ is slow */ 3964 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3965 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3966 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3967 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3968 /* NCQ is broken */ 3969 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3970 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3971 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3972 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3973 3974 /* Blacklist entries taken from Silicon Image 3124/3132 3975 Windows driver .inf file - also several Linux problem reports */ 3976 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3977 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3978 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3979 3980 /* devices which puke on READ_NATIVE_MAX */ 3981 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3982 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3983 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3984 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3985 3986 /* Devices which report 1 sector over size HPA */ 3987 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3988 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3989 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3990 3991 /* Devices which get the IVB wrong */ 3992 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3993 /* Maybe we should just blacklist TSSTcorp... */ 3994 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 3995 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 3996 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 3997 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 3998 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 3999 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4000 4001 /* End Marker */ 4002 { } 4003 }; 4004 4005 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4006 { 4007 const char *p; 4008 int len; 4009 4010 /* 4011 * check for trailing wildcard: *\0 4012 */ 4013 p = strchr(patt, wildchar); 4014 if (p && ((*(p + 1)) == 0)) 4015 len = p - patt; 4016 else { 4017 len = strlen(name); 4018 if (!len) { 4019 if (!*patt) 4020 return 0; 4021 return -1; 4022 } 4023 } 4024 4025 return strncmp(patt, name, len); 4026 } 4027 4028 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4029 { 4030 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4031 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4032 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4033 4034 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4035 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4036 4037 while (ad->model_num) { 4038 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4039 if (ad->model_rev == NULL) 4040 return ad->horkage; 4041 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4042 return ad->horkage; 4043 } 4044 ad++; 4045 } 4046 return 0; 4047 } 4048 4049 static int ata_dma_blacklisted(const struct ata_device *dev) 4050 { 4051 /* We don't support polling DMA. 4052 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4053 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4054 */ 4055 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4056 (dev->flags & ATA_DFLAG_CDB_INTR)) 4057 return 1; 4058 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4059 } 4060 4061 /** 4062 * ata_is_40wire - check drive side detection 4063 * @dev: device 4064 * 4065 * Perform drive side detection decoding, allowing for device vendors 4066 * who can't follow the documentation. 4067 */ 4068 4069 static int ata_is_40wire(struct ata_device *dev) 4070 { 4071 if (dev->horkage & ATA_HORKAGE_IVB) 4072 return ata_drive_40wire_relaxed(dev->id); 4073 return ata_drive_40wire(dev->id); 4074 } 4075 4076 /** 4077 * cable_is_40wire - 40/80/SATA decider 4078 * @ap: port to consider 4079 * 4080 * This function encapsulates the policy for speed management 4081 * in one place. At the moment we don't cache the result but 4082 * there is a good case for setting ap->cbl to the result when 4083 * we are called with unknown cables (and figuring out if it 4084 * impacts hotplug at all). 4085 * 4086 * Return 1 if the cable appears to be 40 wire. 4087 */ 4088 4089 static int cable_is_40wire(struct ata_port *ap) 4090 { 4091 struct ata_link *link; 4092 struct ata_device *dev; 4093 4094 /* If the controller thinks we are 40 wire, we are */ 4095 if (ap->cbl == ATA_CBL_PATA40) 4096 return 1; 4097 /* If the controller thinks we are 80 wire, we are */ 4098 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4099 return 0; 4100 /* If the system is known to be 40 wire short cable (eg laptop), 4101 then we allow 80 wire modes even if the drive isn't sure */ 4102 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4103 return 0; 4104 /* If the controller doesn't know we scan 4105 4106 - Note: We look for all 40 wire detects at this point. 4107 Any 80 wire detect is taken to be 80 wire cable 4108 because 4109 - In many setups only the one drive (slave if present) 4110 will give a valid detect 4111 - If you have a non detect capable drive you don't 4112 want it to colour the choice 4113 */ 4114 ata_port_for_each_link(link, ap) { 4115 ata_link_for_each_dev(dev, link) { 4116 if (!ata_is_40wire(dev)) 4117 return 0; 4118 } 4119 } 4120 return 1; 4121 } 4122 4123 /** 4124 * ata_dev_xfermask - Compute supported xfermask of the given device 4125 * @dev: Device to compute xfermask for 4126 * 4127 * Compute supported xfermask of @dev and store it in 4128 * dev->*_mask. This function is responsible for applying all 4129 * known limits including host controller limits, device 4130 * blacklist, etc... 4131 * 4132 * LOCKING: 4133 * None. 4134 */ 4135 static void ata_dev_xfermask(struct ata_device *dev) 4136 { 4137 struct ata_link *link = dev->link; 4138 struct ata_port *ap = link->ap; 4139 struct ata_host *host = ap->host; 4140 unsigned long xfer_mask; 4141 4142 /* controller modes available */ 4143 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4144 ap->mwdma_mask, ap->udma_mask); 4145 4146 /* drive modes available */ 4147 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4148 dev->mwdma_mask, dev->udma_mask); 4149 xfer_mask &= ata_id_xfermask(dev->id); 4150 4151 /* 4152 * CFA Advanced TrueIDE timings are not allowed on a shared 4153 * cable 4154 */ 4155 if (ata_dev_pair(dev)) { 4156 /* No PIO5 or PIO6 */ 4157 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4158 /* No MWDMA3 or MWDMA 4 */ 4159 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4160 } 4161 4162 if (ata_dma_blacklisted(dev)) { 4163 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4164 ata_dev_printk(dev, KERN_WARNING, 4165 "device is on DMA blacklist, disabling DMA\n"); 4166 } 4167 4168 if ((host->flags & ATA_HOST_SIMPLEX) && 4169 host->simplex_claimed && host->simplex_claimed != ap) { 4170 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4171 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4172 "other device, disabling DMA\n"); 4173 } 4174 4175 if (ap->flags & ATA_FLAG_NO_IORDY) 4176 xfer_mask &= ata_pio_mask_no_iordy(dev); 4177 4178 if (ap->ops->mode_filter) 4179 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4180 4181 /* Apply cable rule here. Don't apply it early because when 4182 * we handle hot plug the cable type can itself change. 4183 * Check this last so that we know if the transfer rate was 4184 * solely limited by the cable. 4185 * Unknown or 80 wire cables reported host side are checked 4186 * drive side as well. Cases where we know a 40wire cable 4187 * is used safely for 80 are not checked here. 4188 */ 4189 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4190 /* UDMA/44 or higher would be available */ 4191 if (cable_is_40wire(ap)) { 4192 ata_dev_printk(dev, KERN_WARNING, 4193 "limited to UDMA/33 due to 40-wire cable\n"); 4194 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4195 } 4196 4197 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4198 &dev->mwdma_mask, &dev->udma_mask); 4199 } 4200 4201 /** 4202 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4203 * @dev: Device to which command will be sent 4204 * 4205 * Issue SET FEATURES - XFER MODE command to device @dev 4206 * on port @ap. 4207 * 4208 * LOCKING: 4209 * PCI/etc. bus probe sem. 4210 * 4211 * RETURNS: 4212 * 0 on success, AC_ERR_* mask otherwise. 4213 */ 4214 4215 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4216 { 4217 struct ata_taskfile tf; 4218 unsigned int err_mask; 4219 4220 /* set up set-features taskfile */ 4221 DPRINTK("set features - xfer mode\n"); 4222 4223 /* Some controllers and ATAPI devices show flaky interrupt 4224 * behavior after setting xfer mode. Use polling instead. 4225 */ 4226 ata_tf_init(dev, &tf); 4227 tf.command = ATA_CMD_SET_FEATURES; 4228 tf.feature = SETFEATURES_XFER; 4229 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4230 tf.protocol = ATA_PROT_NODATA; 4231 /* If we are using IORDY we must send the mode setting command */ 4232 if (ata_pio_need_iordy(dev)) 4233 tf.nsect = dev->xfer_mode; 4234 /* If the device has IORDY and the controller does not - turn it off */ 4235 else if (ata_id_has_iordy(dev->id)) 4236 tf.nsect = 0x01; 4237 else /* In the ancient relic department - skip all of this */ 4238 return 0; 4239 4240 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4241 4242 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4243 return err_mask; 4244 } 4245 /** 4246 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4247 * @dev: Device to which command will be sent 4248 * @enable: Whether to enable or disable the feature 4249 * @feature: The sector count represents the feature to set 4250 * 4251 * Issue SET FEATURES - SATA FEATURES command to device @dev 4252 * on port @ap with sector count 4253 * 4254 * LOCKING: 4255 * PCI/etc. bus probe sem. 4256 * 4257 * RETURNS: 4258 * 0 on success, AC_ERR_* mask otherwise. 4259 */ 4260 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4261 u8 feature) 4262 { 4263 struct ata_taskfile tf; 4264 unsigned int err_mask; 4265 4266 /* set up set-features taskfile */ 4267 DPRINTK("set features - SATA features\n"); 4268 4269 ata_tf_init(dev, &tf); 4270 tf.command = ATA_CMD_SET_FEATURES; 4271 tf.feature = enable; 4272 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4273 tf.protocol = ATA_PROT_NODATA; 4274 tf.nsect = feature; 4275 4276 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4277 4278 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4279 return err_mask; 4280 } 4281 4282 /** 4283 * ata_dev_init_params - Issue INIT DEV PARAMS command 4284 * @dev: Device to which command will be sent 4285 * @heads: Number of heads (taskfile parameter) 4286 * @sectors: Number of sectors (taskfile parameter) 4287 * 4288 * LOCKING: 4289 * Kernel thread context (may sleep) 4290 * 4291 * RETURNS: 4292 * 0 on success, AC_ERR_* mask otherwise. 4293 */ 4294 static unsigned int ata_dev_init_params(struct ata_device *dev, 4295 u16 heads, u16 sectors) 4296 { 4297 struct ata_taskfile tf; 4298 unsigned int err_mask; 4299 4300 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4301 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4302 return AC_ERR_INVALID; 4303 4304 /* set up init dev params taskfile */ 4305 DPRINTK("init dev params \n"); 4306 4307 ata_tf_init(dev, &tf); 4308 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4309 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4310 tf.protocol = ATA_PROT_NODATA; 4311 tf.nsect = sectors; 4312 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4313 4314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4315 /* A clean abort indicates an original or just out of spec drive 4316 and we should continue as we issue the setup based on the 4317 drive reported working geometry */ 4318 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4319 err_mask = 0; 4320 4321 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4322 return err_mask; 4323 } 4324 4325 /** 4326 * ata_sg_clean - Unmap DMA memory associated with command 4327 * @qc: Command containing DMA memory to be released 4328 * 4329 * Unmap all mapped DMA memory associated with this command. 4330 * 4331 * LOCKING: 4332 * spin_lock_irqsave(host lock) 4333 */ 4334 void ata_sg_clean(struct ata_queued_cmd *qc) 4335 { 4336 struct ata_port *ap = qc->ap; 4337 struct scatterlist *sg = qc->sg; 4338 int dir = qc->dma_dir; 4339 4340 WARN_ON(sg == NULL); 4341 4342 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4343 4344 if (qc->n_elem) 4345 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4346 4347 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4348 qc->sg = NULL; 4349 } 4350 4351 /** 4352 * atapi_check_dma - Check whether ATAPI DMA can be supported 4353 * @qc: Metadata associated with taskfile to check 4354 * 4355 * Allow low-level driver to filter ATA PACKET commands, returning 4356 * a status indicating whether or not it is OK to use DMA for the 4357 * supplied PACKET command. 4358 * 4359 * LOCKING: 4360 * spin_lock_irqsave(host lock) 4361 * 4362 * RETURNS: 0 when ATAPI DMA can be used 4363 * nonzero otherwise 4364 */ 4365 int atapi_check_dma(struct ata_queued_cmd *qc) 4366 { 4367 struct ata_port *ap = qc->ap; 4368 4369 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4370 * few ATAPI devices choke on such DMA requests. 4371 */ 4372 if (unlikely(qc->nbytes & 15)) 4373 return 1; 4374 4375 if (ap->ops->check_atapi_dma) 4376 return ap->ops->check_atapi_dma(qc); 4377 4378 return 0; 4379 } 4380 4381 /** 4382 * ata_std_qc_defer - Check whether a qc needs to be deferred 4383 * @qc: ATA command in question 4384 * 4385 * Non-NCQ commands cannot run with any other command, NCQ or 4386 * not. As upper layer only knows the queue depth, we are 4387 * responsible for maintaining exclusion. This function checks 4388 * whether a new command @qc can be issued. 4389 * 4390 * LOCKING: 4391 * spin_lock_irqsave(host lock) 4392 * 4393 * RETURNS: 4394 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4395 */ 4396 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4397 { 4398 struct ata_link *link = qc->dev->link; 4399 4400 if (qc->tf.protocol == ATA_PROT_NCQ) { 4401 if (!ata_tag_valid(link->active_tag)) 4402 return 0; 4403 } else { 4404 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4405 return 0; 4406 } 4407 4408 return ATA_DEFER_LINK; 4409 } 4410 4411 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4412 4413 /** 4414 * ata_sg_init - Associate command with scatter-gather table. 4415 * @qc: Command to be associated 4416 * @sg: Scatter-gather table. 4417 * @n_elem: Number of elements in s/g table. 4418 * 4419 * Initialize the data-related elements of queued_cmd @qc 4420 * to point to a scatter-gather table @sg, containing @n_elem 4421 * elements. 4422 * 4423 * LOCKING: 4424 * spin_lock_irqsave(host lock) 4425 */ 4426 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4427 unsigned int n_elem) 4428 { 4429 qc->sg = sg; 4430 qc->n_elem = n_elem; 4431 qc->cursg = qc->sg; 4432 } 4433 4434 /** 4435 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4436 * @qc: Command with scatter-gather table to be mapped. 4437 * 4438 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4439 * 4440 * LOCKING: 4441 * spin_lock_irqsave(host lock) 4442 * 4443 * RETURNS: 4444 * Zero on success, negative on error. 4445 * 4446 */ 4447 static int ata_sg_setup(struct ata_queued_cmd *qc) 4448 { 4449 struct ata_port *ap = qc->ap; 4450 unsigned int n_elem; 4451 4452 VPRINTK("ENTER, ata%u\n", ap->print_id); 4453 4454 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4455 if (n_elem < 1) 4456 return -1; 4457 4458 DPRINTK("%d sg elements mapped\n", n_elem); 4459 4460 qc->n_elem = n_elem; 4461 qc->flags |= ATA_QCFLAG_DMAMAP; 4462 4463 return 0; 4464 } 4465 4466 /** 4467 * swap_buf_le16 - swap halves of 16-bit words in place 4468 * @buf: Buffer to swap 4469 * @buf_words: Number of 16-bit words in buffer. 4470 * 4471 * Swap halves of 16-bit words if needed to convert from 4472 * little-endian byte order to native cpu byte order, or 4473 * vice-versa. 4474 * 4475 * LOCKING: 4476 * Inherited from caller. 4477 */ 4478 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4479 { 4480 #ifdef __BIG_ENDIAN 4481 unsigned int i; 4482 4483 for (i = 0; i < buf_words; i++) 4484 buf[i] = le16_to_cpu(buf[i]); 4485 #endif /* __BIG_ENDIAN */ 4486 } 4487 4488 /** 4489 * ata_qc_new - Request an available ATA command, for queueing 4490 * @ap: Port associated with device @dev 4491 * @dev: Device from whom we request an available command structure 4492 * 4493 * LOCKING: 4494 * None. 4495 */ 4496 4497 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4498 { 4499 struct ata_queued_cmd *qc = NULL; 4500 unsigned int i; 4501 4502 /* no command while frozen */ 4503 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4504 return NULL; 4505 4506 /* the last tag is reserved for internal command. */ 4507 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4508 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4509 qc = __ata_qc_from_tag(ap, i); 4510 break; 4511 } 4512 4513 if (qc) 4514 qc->tag = i; 4515 4516 return qc; 4517 } 4518 4519 /** 4520 * ata_qc_new_init - Request an available ATA command, and initialize it 4521 * @dev: Device from whom we request an available command structure 4522 * 4523 * LOCKING: 4524 * None. 4525 */ 4526 4527 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4528 { 4529 struct ata_port *ap = dev->link->ap; 4530 struct ata_queued_cmd *qc; 4531 4532 qc = ata_qc_new(ap); 4533 if (qc) { 4534 qc->scsicmd = NULL; 4535 qc->ap = ap; 4536 qc->dev = dev; 4537 4538 ata_qc_reinit(qc); 4539 } 4540 4541 return qc; 4542 } 4543 4544 /** 4545 * ata_qc_free - free unused ata_queued_cmd 4546 * @qc: Command to complete 4547 * 4548 * Designed to free unused ata_queued_cmd object 4549 * in case something prevents using it. 4550 * 4551 * LOCKING: 4552 * spin_lock_irqsave(host lock) 4553 */ 4554 void ata_qc_free(struct ata_queued_cmd *qc) 4555 { 4556 struct ata_port *ap = qc->ap; 4557 unsigned int tag; 4558 4559 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4560 4561 qc->flags = 0; 4562 tag = qc->tag; 4563 if (likely(ata_tag_valid(tag))) { 4564 qc->tag = ATA_TAG_POISON; 4565 clear_bit(tag, &ap->qc_allocated); 4566 } 4567 } 4568 4569 void __ata_qc_complete(struct ata_queued_cmd *qc) 4570 { 4571 struct ata_port *ap = qc->ap; 4572 struct ata_link *link = qc->dev->link; 4573 4574 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4575 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4576 4577 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4578 ata_sg_clean(qc); 4579 4580 /* command should be marked inactive atomically with qc completion */ 4581 if (qc->tf.protocol == ATA_PROT_NCQ) { 4582 link->sactive &= ~(1 << qc->tag); 4583 if (!link->sactive) 4584 ap->nr_active_links--; 4585 } else { 4586 link->active_tag = ATA_TAG_POISON; 4587 ap->nr_active_links--; 4588 } 4589 4590 /* clear exclusive status */ 4591 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4592 ap->excl_link == link)) 4593 ap->excl_link = NULL; 4594 4595 /* atapi: mark qc as inactive to prevent the interrupt handler 4596 * from completing the command twice later, before the error handler 4597 * is called. (when rc != 0 and atapi request sense is needed) 4598 */ 4599 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4600 ap->qc_active &= ~(1 << qc->tag); 4601 4602 /* call completion callback */ 4603 qc->complete_fn(qc); 4604 } 4605 4606 static void fill_result_tf(struct ata_queued_cmd *qc) 4607 { 4608 struct ata_port *ap = qc->ap; 4609 4610 qc->result_tf.flags = qc->tf.flags; 4611 ap->ops->qc_fill_rtf(qc); 4612 } 4613 4614 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4615 { 4616 struct ata_device *dev = qc->dev; 4617 4618 if (ata_tag_internal(qc->tag)) 4619 return; 4620 4621 if (ata_is_nodata(qc->tf.protocol)) 4622 return; 4623 4624 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4625 return; 4626 4627 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4628 } 4629 4630 /** 4631 * ata_qc_complete - Complete an active ATA command 4632 * @qc: Command to complete 4633 * @err_mask: ATA Status register contents 4634 * 4635 * Indicate to the mid and upper layers that an ATA 4636 * command has completed, with either an ok or not-ok status. 4637 * 4638 * LOCKING: 4639 * spin_lock_irqsave(host lock) 4640 */ 4641 void ata_qc_complete(struct ata_queued_cmd *qc) 4642 { 4643 struct ata_port *ap = qc->ap; 4644 4645 /* XXX: New EH and old EH use different mechanisms to 4646 * synchronize EH with regular execution path. 4647 * 4648 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4649 * Normal execution path is responsible for not accessing a 4650 * failed qc. libata core enforces the rule by returning NULL 4651 * from ata_qc_from_tag() for failed qcs. 4652 * 4653 * Old EH depends on ata_qc_complete() nullifying completion 4654 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4655 * not synchronize with interrupt handler. Only PIO task is 4656 * taken care of. 4657 */ 4658 if (ap->ops->error_handler) { 4659 struct ata_device *dev = qc->dev; 4660 struct ata_eh_info *ehi = &dev->link->eh_info; 4661 4662 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4663 4664 if (unlikely(qc->err_mask)) 4665 qc->flags |= ATA_QCFLAG_FAILED; 4666 4667 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4668 if (!ata_tag_internal(qc->tag)) { 4669 /* always fill result TF for failed qc */ 4670 fill_result_tf(qc); 4671 ata_qc_schedule_eh(qc); 4672 return; 4673 } 4674 } 4675 4676 /* read result TF if requested */ 4677 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4678 fill_result_tf(qc); 4679 4680 /* Some commands need post-processing after successful 4681 * completion. 4682 */ 4683 switch (qc->tf.command) { 4684 case ATA_CMD_SET_FEATURES: 4685 if (qc->tf.feature != SETFEATURES_WC_ON && 4686 qc->tf.feature != SETFEATURES_WC_OFF) 4687 break; 4688 /* fall through */ 4689 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4690 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4691 /* revalidate device */ 4692 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4693 ata_port_schedule_eh(ap); 4694 break; 4695 4696 case ATA_CMD_SLEEP: 4697 dev->flags |= ATA_DFLAG_SLEEPING; 4698 break; 4699 } 4700 4701 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4702 ata_verify_xfer(qc); 4703 4704 __ata_qc_complete(qc); 4705 } else { 4706 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4707 return; 4708 4709 /* read result TF if failed or requested */ 4710 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4711 fill_result_tf(qc); 4712 4713 __ata_qc_complete(qc); 4714 } 4715 } 4716 4717 /** 4718 * ata_qc_complete_multiple - Complete multiple qcs successfully 4719 * @ap: port in question 4720 * @qc_active: new qc_active mask 4721 * 4722 * Complete in-flight commands. This functions is meant to be 4723 * called from low-level driver's interrupt routine to complete 4724 * requests normally. ap->qc_active and @qc_active is compared 4725 * and commands are completed accordingly. 4726 * 4727 * LOCKING: 4728 * spin_lock_irqsave(host lock) 4729 * 4730 * RETURNS: 4731 * Number of completed commands on success, -errno otherwise. 4732 */ 4733 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4734 { 4735 int nr_done = 0; 4736 u32 done_mask; 4737 int i; 4738 4739 done_mask = ap->qc_active ^ qc_active; 4740 4741 if (unlikely(done_mask & qc_active)) { 4742 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4743 "(%08x->%08x)\n", ap->qc_active, qc_active); 4744 return -EINVAL; 4745 } 4746 4747 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4748 struct ata_queued_cmd *qc; 4749 4750 if (!(done_mask & (1 << i))) 4751 continue; 4752 4753 if ((qc = ata_qc_from_tag(ap, i))) { 4754 ata_qc_complete(qc); 4755 nr_done++; 4756 } 4757 } 4758 4759 return nr_done; 4760 } 4761 4762 /** 4763 * ata_qc_issue - issue taskfile to device 4764 * @qc: command to issue to device 4765 * 4766 * Prepare an ATA command to submission to device. 4767 * This includes mapping the data into a DMA-able 4768 * area, filling in the S/G table, and finally 4769 * writing the taskfile to hardware, starting the command. 4770 * 4771 * LOCKING: 4772 * spin_lock_irqsave(host lock) 4773 */ 4774 void ata_qc_issue(struct ata_queued_cmd *qc) 4775 { 4776 struct ata_port *ap = qc->ap; 4777 struct ata_link *link = qc->dev->link; 4778 u8 prot = qc->tf.protocol; 4779 4780 /* Make sure only one non-NCQ command is outstanding. The 4781 * check is skipped for old EH because it reuses active qc to 4782 * request ATAPI sense. 4783 */ 4784 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4785 4786 if (ata_is_ncq(prot)) { 4787 WARN_ON(link->sactive & (1 << qc->tag)); 4788 4789 if (!link->sactive) 4790 ap->nr_active_links++; 4791 link->sactive |= 1 << qc->tag; 4792 } else { 4793 WARN_ON(link->sactive); 4794 4795 ap->nr_active_links++; 4796 link->active_tag = qc->tag; 4797 } 4798 4799 qc->flags |= ATA_QCFLAG_ACTIVE; 4800 ap->qc_active |= 1 << qc->tag; 4801 4802 /* We guarantee to LLDs that they will have at least one 4803 * non-zero sg if the command is a data command. 4804 */ 4805 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4806 4807 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4808 (ap->flags & ATA_FLAG_PIO_DMA))) 4809 if (ata_sg_setup(qc)) 4810 goto sg_err; 4811 4812 /* if device is sleeping, schedule reset and abort the link */ 4813 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4814 link->eh_info.action |= ATA_EH_RESET; 4815 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4816 ata_link_abort(link); 4817 return; 4818 } 4819 4820 ap->ops->qc_prep(qc); 4821 4822 qc->err_mask |= ap->ops->qc_issue(qc); 4823 if (unlikely(qc->err_mask)) 4824 goto err; 4825 return; 4826 4827 sg_err: 4828 qc->err_mask |= AC_ERR_SYSTEM; 4829 err: 4830 ata_qc_complete(qc); 4831 } 4832 4833 /** 4834 * sata_scr_valid - test whether SCRs are accessible 4835 * @link: ATA link to test SCR accessibility for 4836 * 4837 * Test whether SCRs are accessible for @link. 4838 * 4839 * LOCKING: 4840 * None. 4841 * 4842 * RETURNS: 4843 * 1 if SCRs are accessible, 0 otherwise. 4844 */ 4845 int sata_scr_valid(struct ata_link *link) 4846 { 4847 struct ata_port *ap = link->ap; 4848 4849 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4850 } 4851 4852 /** 4853 * sata_scr_read - read SCR register of the specified port 4854 * @link: ATA link to read SCR for 4855 * @reg: SCR to read 4856 * @val: Place to store read value 4857 * 4858 * Read SCR register @reg of @link into *@val. This function is 4859 * guaranteed to succeed if @link is ap->link, the cable type of 4860 * the port is SATA and the port implements ->scr_read. 4861 * 4862 * LOCKING: 4863 * None if @link is ap->link. Kernel thread context otherwise. 4864 * 4865 * RETURNS: 4866 * 0 on success, negative errno on failure. 4867 */ 4868 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4869 { 4870 if (ata_is_host_link(link)) { 4871 struct ata_port *ap = link->ap; 4872 4873 if (sata_scr_valid(link)) 4874 return ap->ops->scr_read(ap, reg, val); 4875 return -EOPNOTSUPP; 4876 } 4877 4878 return sata_pmp_scr_read(link, reg, val); 4879 } 4880 4881 /** 4882 * sata_scr_write - write SCR register of the specified port 4883 * @link: ATA link to write SCR for 4884 * @reg: SCR to write 4885 * @val: value to write 4886 * 4887 * Write @val to SCR register @reg of @link. This function is 4888 * guaranteed to succeed if @link is ap->link, the cable type of 4889 * the port is SATA and the port implements ->scr_read. 4890 * 4891 * LOCKING: 4892 * None if @link is ap->link. Kernel thread context otherwise. 4893 * 4894 * RETURNS: 4895 * 0 on success, negative errno on failure. 4896 */ 4897 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4898 { 4899 if (ata_is_host_link(link)) { 4900 struct ata_port *ap = link->ap; 4901 4902 if (sata_scr_valid(link)) 4903 return ap->ops->scr_write(ap, reg, val); 4904 return -EOPNOTSUPP; 4905 } 4906 4907 return sata_pmp_scr_write(link, reg, val); 4908 } 4909 4910 /** 4911 * sata_scr_write_flush - write SCR register of the specified port and flush 4912 * @link: ATA link to write SCR for 4913 * @reg: SCR to write 4914 * @val: value to write 4915 * 4916 * This function is identical to sata_scr_write() except that this 4917 * function performs flush after writing to the register. 4918 * 4919 * LOCKING: 4920 * None if @link is ap->link. Kernel thread context otherwise. 4921 * 4922 * RETURNS: 4923 * 0 on success, negative errno on failure. 4924 */ 4925 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4926 { 4927 if (ata_is_host_link(link)) { 4928 struct ata_port *ap = link->ap; 4929 int rc; 4930 4931 if (sata_scr_valid(link)) { 4932 rc = ap->ops->scr_write(ap, reg, val); 4933 if (rc == 0) 4934 rc = ap->ops->scr_read(ap, reg, &val); 4935 return rc; 4936 } 4937 return -EOPNOTSUPP; 4938 } 4939 4940 return sata_pmp_scr_write(link, reg, val); 4941 } 4942 4943 /** 4944 * ata_link_online - test whether the given link is online 4945 * @link: ATA link to test 4946 * 4947 * Test whether @link is online. Note that this function returns 4948 * 0 if online status of @link cannot be obtained, so 4949 * ata_link_online(link) != !ata_link_offline(link). 4950 * 4951 * LOCKING: 4952 * None. 4953 * 4954 * RETURNS: 4955 * 1 if the port online status is available and online. 4956 */ 4957 int ata_link_online(struct ata_link *link) 4958 { 4959 u32 sstatus; 4960 4961 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4962 (sstatus & 0xf) == 0x3) 4963 return 1; 4964 return 0; 4965 } 4966 4967 /** 4968 * ata_link_offline - test whether the given link is offline 4969 * @link: ATA link to test 4970 * 4971 * Test whether @link is offline. Note that this function 4972 * returns 0 if offline status of @link cannot be obtained, so 4973 * ata_link_online(link) != !ata_link_offline(link). 4974 * 4975 * LOCKING: 4976 * None. 4977 * 4978 * RETURNS: 4979 * 1 if the port offline status is available and offline. 4980 */ 4981 int ata_link_offline(struct ata_link *link) 4982 { 4983 u32 sstatus; 4984 4985 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4986 (sstatus & 0xf) != 0x3) 4987 return 1; 4988 return 0; 4989 } 4990 4991 #ifdef CONFIG_PM 4992 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 4993 unsigned int action, unsigned int ehi_flags, 4994 int wait) 4995 { 4996 unsigned long flags; 4997 int i, rc; 4998 4999 for (i = 0; i < host->n_ports; i++) { 5000 struct ata_port *ap = host->ports[i]; 5001 struct ata_link *link; 5002 5003 /* Previous resume operation might still be in 5004 * progress. Wait for PM_PENDING to clear. 5005 */ 5006 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5007 ata_port_wait_eh(ap); 5008 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5009 } 5010 5011 /* request PM ops to EH */ 5012 spin_lock_irqsave(ap->lock, flags); 5013 5014 ap->pm_mesg = mesg; 5015 if (wait) { 5016 rc = 0; 5017 ap->pm_result = &rc; 5018 } 5019 5020 ap->pflags |= ATA_PFLAG_PM_PENDING; 5021 __ata_port_for_each_link(link, ap) { 5022 link->eh_info.action |= action; 5023 link->eh_info.flags |= ehi_flags; 5024 } 5025 5026 ata_port_schedule_eh(ap); 5027 5028 spin_unlock_irqrestore(ap->lock, flags); 5029 5030 /* wait and check result */ 5031 if (wait) { 5032 ata_port_wait_eh(ap); 5033 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5034 if (rc) 5035 return rc; 5036 } 5037 } 5038 5039 return 0; 5040 } 5041 5042 /** 5043 * ata_host_suspend - suspend host 5044 * @host: host to suspend 5045 * @mesg: PM message 5046 * 5047 * Suspend @host. Actual operation is performed by EH. This 5048 * function requests EH to perform PM operations and waits for EH 5049 * to finish. 5050 * 5051 * LOCKING: 5052 * Kernel thread context (may sleep). 5053 * 5054 * RETURNS: 5055 * 0 on success, -errno on failure. 5056 */ 5057 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5058 { 5059 int rc; 5060 5061 /* 5062 * disable link pm on all ports before requesting 5063 * any pm activity 5064 */ 5065 ata_lpm_enable(host); 5066 5067 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5068 if (rc == 0) 5069 host->dev->power.power_state = mesg; 5070 return rc; 5071 } 5072 5073 /** 5074 * ata_host_resume - resume host 5075 * @host: host to resume 5076 * 5077 * Resume @host. Actual operation is performed by EH. This 5078 * function requests EH to perform PM operations and returns. 5079 * Note that all resume operations are performed parallely. 5080 * 5081 * LOCKING: 5082 * Kernel thread context (may sleep). 5083 */ 5084 void ata_host_resume(struct ata_host *host) 5085 { 5086 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5087 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5088 host->dev->power.power_state = PMSG_ON; 5089 5090 /* reenable link pm */ 5091 ata_lpm_disable(host); 5092 } 5093 #endif 5094 5095 /** 5096 * ata_port_start - Set port up for dma. 5097 * @ap: Port to initialize 5098 * 5099 * Called just after data structures for each port are 5100 * initialized. Allocates space for PRD table. 5101 * 5102 * May be used as the port_start() entry in ata_port_operations. 5103 * 5104 * LOCKING: 5105 * Inherited from caller. 5106 */ 5107 int ata_port_start(struct ata_port *ap) 5108 { 5109 struct device *dev = ap->dev; 5110 5111 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5112 GFP_KERNEL); 5113 if (!ap->prd) 5114 return -ENOMEM; 5115 5116 return 0; 5117 } 5118 5119 /** 5120 * ata_dev_init - Initialize an ata_device structure 5121 * @dev: Device structure to initialize 5122 * 5123 * Initialize @dev in preparation for probing. 5124 * 5125 * LOCKING: 5126 * Inherited from caller. 5127 */ 5128 void ata_dev_init(struct ata_device *dev) 5129 { 5130 struct ata_link *link = dev->link; 5131 struct ata_port *ap = link->ap; 5132 unsigned long flags; 5133 5134 /* SATA spd limit is bound to the first device */ 5135 link->sata_spd_limit = link->hw_sata_spd_limit; 5136 link->sata_spd = 0; 5137 5138 /* High bits of dev->flags are used to record warm plug 5139 * requests which occur asynchronously. Synchronize using 5140 * host lock. 5141 */ 5142 spin_lock_irqsave(ap->lock, flags); 5143 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5144 dev->horkage = 0; 5145 spin_unlock_irqrestore(ap->lock, flags); 5146 5147 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5148 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5149 dev->pio_mask = UINT_MAX; 5150 dev->mwdma_mask = UINT_MAX; 5151 dev->udma_mask = UINT_MAX; 5152 } 5153 5154 /** 5155 * ata_link_init - Initialize an ata_link structure 5156 * @ap: ATA port link is attached to 5157 * @link: Link structure to initialize 5158 * @pmp: Port multiplier port number 5159 * 5160 * Initialize @link. 5161 * 5162 * LOCKING: 5163 * Kernel thread context (may sleep) 5164 */ 5165 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5166 { 5167 int i; 5168 5169 /* clear everything except for devices */ 5170 memset(link, 0, offsetof(struct ata_link, device[0])); 5171 5172 link->ap = ap; 5173 link->pmp = pmp; 5174 link->active_tag = ATA_TAG_POISON; 5175 link->hw_sata_spd_limit = UINT_MAX; 5176 5177 /* can't use iterator, ap isn't initialized yet */ 5178 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5179 struct ata_device *dev = &link->device[i]; 5180 5181 dev->link = link; 5182 dev->devno = dev - link->device; 5183 ata_dev_init(dev); 5184 } 5185 } 5186 5187 /** 5188 * sata_link_init_spd - Initialize link->sata_spd_limit 5189 * @link: Link to configure sata_spd_limit for 5190 * 5191 * Initialize @link->[hw_]sata_spd_limit to the currently 5192 * configured value. 5193 * 5194 * LOCKING: 5195 * Kernel thread context (may sleep). 5196 * 5197 * RETURNS: 5198 * 0 on success, -errno on failure. 5199 */ 5200 int sata_link_init_spd(struct ata_link *link) 5201 { 5202 u8 spd; 5203 int rc; 5204 5205 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5206 if (rc) 5207 return rc; 5208 5209 spd = (link->saved_scontrol >> 4) & 0xf; 5210 if (spd) 5211 link->hw_sata_spd_limit &= (1 << spd) - 1; 5212 5213 ata_force_link_limits(link); 5214 5215 link->sata_spd_limit = link->hw_sata_spd_limit; 5216 5217 return 0; 5218 } 5219 5220 /** 5221 * ata_port_alloc - allocate and initialize basic ATA port resources 5222 * @host: ATA host this allocated port belongs to 5223 * 5224 * Allocate and initialize basic ATA port resources. 5225 * 5226 * RETURNS: 5227 * Allocate ATA port on success, NULL on failure. 5228 * 5229 * LOCKING: 5230 * Inherited from calling layer (may sleep). 5231 */ 5232 struct ata_port *ata_port_alloc(struct ata_host *host) 5233 { 5234 struct ata_port *ap; 5235 5236 DPRINTK("ENTER\n"); 5237 5238 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5239 if (!ap) 5240 return NULL; 5241 5242 ap->pflags |= ATA_PFLAG_INITIALIZING; 5243 ap->lock = &host->lock; 5244 ap->flags = ATA_FLAG_DISABLED; 5245 ap->print_id = -1; 5246 ap->ctl = ATA_DEVCTL_OBS; 5247 ap->host = host; 5248 ap->dev = host->dev; 5249 ap->last_ctl = 0xFF; 5250 5251 #if defined(ATA_VERBOSE_DEBUG) 5252 /* turn on all debugging levels */ 5253 ap->msg_enable = 0x00FF; 5254 #elif defined(ATA_DEBUG) 5255 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5256 #else 5257 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5258 #endif 5259 5260 #ifdef CONFIG_ATA_SFF 5261 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5262 #endif 5263 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5264 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5265 INIT_LIST_HEAD(&ap->eh_done_q); 5266 init_waitqueue_head(&ap->eh_wait_q); 5267 init_timer_deferrable(&ap->fastdrain_timer); 5268 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5269 ap->fastdrain_timer.data = (unsigned long)ap; 5270 5271 ap->cbl = ATA_CBL_NONE; 5272 5273 ata_link_init(ap, &ap->link, 0); 5274 5275 #ifdef ATA_IRQ_TRAP 5276 ap->stats.unhandled_irq = 1; 5277 ap->stats.idle_irq = 1; 5278 #endif 5279 return ap; 5280 } 5281 5282 static void ata_host_release(struct device *gendev, void *res) 5283 { 5284 struct ata_host *host = dev_get_drvdata(gendev); 5285 int i; 5286 5287 for (i = 0; i < host->n_ports; i++) { 5288 struct ata_port *ap = host->ports[i]; 5289 5290 if (!ap) 5291 continue; 5292 5293 if (ap->scsi_host) 5294 scsi_host_put(ap->scsi_host); 5295 5296 kfree(ap->pmp_link); 5297 kfree(ap); 5298 host->ports[i] = NULL; 5299 } 5300 5301 dev_set_drvdata(gendev, NULL); 5302 } 5303 5304 /** 5305 * ata_host_alloc - allocate and init basic ATA host resources 5306 * @dev: generic device this host is associated with 5307 * @max_ports: maximum number of ATA ports associated with this host 5308 * 5309 * Allocate and initialize basic ATA host resources. LLD calls 5310 * this function to allocate a host, initializes it fully and 5311 * attaches it using ata_host_register(). 5312 * 5313 * @max_ports ports are allocated and host->n_ports is 5314 * initialized to @max_ports. The caller is allowed to decrease 5315 * host->n_ports before calling ata_host_register(). The unused 5316 * ports will be automatically freed on registration. 5317 * 5318 * RETURNS: 5319 * Allocate ATA host on success, NULL on failure. 5320 * 5321 * LOCKING: 5322 * Inherited from calling layer (may sleep). 5323 */ 5324 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5325 { 5326 struct ata_host *host; 5327 size_t sz; 5328 int i; 5329 5330 DPRINTK("ENTER\n"); 5331 5332 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5333 return NULL; 5334 5335 /* alloc a container for our list of ATA ports (buses) */ 5336 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5337 /* alloc a container for our list of ATA ports (buses) */ 5338 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5339 if (!host) 5340 goto err_out; 5341 5342 devres_add(dev, host); 5343 dev_set_drvdata(dev, host); 5344 5345 spin_lock_init(&host->lock); 5346 host->dev = dev; 5347 host->n_ports = max_ports; 5348 5349 /* allocate ports bound to this host */ 5350 for (i = 0; i < max_ports; i++) { 5351 struct ata_port *ap; 5352 5353 ap = ata_port_alloc(host); 5354 if (!ap) 5355 goto err_out; 5356 5357 ap->port_no = i; 5358 host->ports[i] = ap; 5359 } 5360 5361 devres_remove_group(dev, NULL); 5362 return host; 5363 5364 err_out: 5365 devres_release_group(dev, NULL); 5366 return NULL; 5367 } 5368 5369 /** 5370 * ata_host_alloc_pinfo - alloc host and init with port_info array 5371 * @dev: generic device this host is associated with 5372 * @ppi: array of ATA port_info to initialize host with 5373 * @n_ports: number of ATA ports attached to this host 5374 * 5375 * Allocate ATA host and initialize with info from @ppi. If NULL 5376 * terminated, @ppi may contain fewer entries than @n_ports. The 5377 * last entry will be used for the remaining ports. 5378 * 5379 * RETURNS: 5380 * Allocate ATA host on success, NULL on failure. 5381 * 5382 * LOCKING: 5383 * Inherited from calling layer (may sleep). 5384 */ 5385 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5386 const struct ata_port_info * const * ppi, 5387 int n_ports) 5388 { 5389 const struct ata_port_info *pi; 5390 struct ata_host *host; 5391 int i, j; 5392 5393 host = ata_host_alloc(dev, n_ports); 5394 if (!host) 5395 return NULL; 5396 5397 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5398 struct ata_port *ap = host->ports[i]; 5399 5400 if (ppi[j]) 5401 pi = ppi[j++]; 5402 5403 ap->pio_mask = pi->pio_mask; 5404 ap->mwdma_mask = pi->mwdma_mask; 5405 ap->udma_mask = pi->udma_mask; 5406 ap->flags |= pi->flags; 5407 ap->link.flags |= pi->link_flags; 5408 ap->ops = pi->port_ops; 5409 5410 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5411 host->ops = pi->port_ops; 5412 } 5413 5414 return host; 5415 } 5416 5417 static void ata_host_stop(struct device *gendev, void *res) 5418 { 5419 struct ata_host *host = dev_get_drvdata(gendev); 5420 int i; 5421 5422 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5423 5424 for (i = 0; i < host->n_ports; i++) { 5425 struct ata_port *ap = host->ports[i]; 5426 5427 if (ap->ops->port_stop) 5428 ap->ops->port_stop(ap); 5429 } 5430 5431 if (host->ops->host_stop) 5432 host->ops->host_stop(host); 5433 } 5434 5435 /** 5436 * ata_finalize_port_ops - finalize ata_port_operations 5437 * @ops: ata_port_operations to finalize 5438 * 5439 * An ata_port_operations can inherit from another ops and that 5440 * ops can again inherit from another. This can go on as many 5441 * times as necessary as long as there is no loop in the 5442 * inheritance chain. 5443 * 5444 * Ops tables are finalized when the host is started. NULL or 5445 * unspecified entries are inherited from the closet ancestor 5446 * which has the method and the entry is populated with it. 5447 * After finalization, the ops table directly points to all the 5448 * methods and ->inherits is no longer necessary and cleared. 5449 * 5450 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5451 * 5452 * LOCKING: 5453 * None. 5454 */ 5455 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5456 { 5457 static DEFINE_SPINLOCK(lock); 5458 const struct ata_port_operations *cur; 5459 void **begin = (void **)ops; 5460 void **end = (void **)&ops->inherits; 5461 void **pp; 5462 5463 if (!ops || !ops->inherits) 5464 return; 5465 5466 spin_lock(&lock); 5467 5468 for (cur = ops->inherits; cur; cur = cur->inherits) { 5469 void **inherit = (void **)cur; 5470 5471 for (pp = begin; pp < end; pp++, inherit++) 5472 if (!*pp) 5473 *pp = *inherit; 5474 } 5475 5476 for (pp = begin; pp < end; pp++) 5477 if (IS_ERR(*pp)) 5478 *pp = NULL; 5479 5480 ops->inherits = NULL; 5481 5482 spin_unlock(&lock); 5483 } 5484 5485 /** 5486 * ata_host_start - start and freeze ports of an ATA host 5487 * @host: ATA host to start ports for 5488 * 5489 * Start and then freeze ports of @host. Started status is 5490 * recorded in host->flags, so this function can be called 5491 * multiple times. Ports are guaranteed to get started only 5492 * once. If host->ops isn't initialized yet, its set to the 5493 * first non-dummy port ops. 5494 * 5495 * LOCKING: 5496 * Inherited from calling layer (may sleep). 5497 * 5498 * RETURNS: 5499 * 0 if all ports are started successfully, -errno otherwise. 5500 */ 5501 int ata_host_start(struct ata_host *host) 5502 { 5503 int have_stop = 0; 5504 void *start_dr = NULL; 5505 int i, rc; 5506 5507 if (host->flags & ATA_HOST_STARTED) 5508 return 0; 5509 5510 ata_finalize_port_ops(host->ops); 5511 5512 for (i = 0; i < host->n_ports; i++) { 5513 struct ata_port *ap = host->ports[i]; 5514 5515 ata_finalize_port_ops(ap->ops); 5516 5517 if (!host->ops && !ata_port_is_dummy(ap)) 5518 host->ops = ap->ops; 5519 5520 if (ap->ops->port_stop) 5521 have_stop = 1; 5522 } 5523 5524 if (host->ops->host_stop) 5525 have_stop = 1; 5526 5527 if (have_stop) { 5528 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5529 if (!start_dr) 5530 return -ENOMEM; 5531 } 5532 5533 for (i = 0; i < host->n_ports; i++) { 5534 struct ata_port *ap = host->ports[i]; 5535 5536 if (ap->ops->port_start) { 5537 rc = ap->ops->port_start(ap); 5538 if (rc) { 5539 if (rc != -ENODEV) 5540 dev_printk(KERN_ERR, host->dev, 5541 "failed to start port %d " 5542 "(errno=%d)\n", i, rc); 5543 goto err_out; 5544 } 5545 } 5546 ata_eh_freeze_port(ap); 5547 } 5548 5549 if (start_dr) 5550 devres_add(host->dev, start_dr); 5551 host->flags |= ATA_HOST_STARTED; 5552 return 0; 5553 5554 err_out: 5555 while (--i >= 0) { 5556 struct ata_port *ap = host->ports[i]; 5557 5558 if (ap->ops->port_stop) 5559 ap->ops->port_stop(ap); 5560 } 5561 devres_free(start_dr); 5562 return rc; 5563 } 5564 5565 /** 5566 * ata_sas_host_init - Initialize a host struct 5567 * @host: host to initialize 5568 * @dev: device host is attached to 5569 * @flags: host flags 5570 * @ops: port_ops 5571 * 5572 * LOCKING: 5573 * PCI/etc. bus probe sem. 5574 * 5575 */ 5576 /* KILLME - the only user left is ipr */ 5577 void ata_host_init(struct ata_host *host, struct device *dev, 5578 unsigned long flags, struct ata_port_operations *ops) 5579 { 5580 spin_lock_init(&host->lock); 5581 host->dev = dev; 5582 host->flags = flags; 5583 host->ops = ops; 5584 } 5585 5586 /** 5587 * ata_host_register - register initialized ATA host 5588 * @host: ATA host to register 5589 * @sht: template for SCSI host 5590 * 5591 * Register initialized ATA host. @host is allocated using 5592 * ata_host_alloc() and fully initialized by LLD. This function 5593 * starts ports, registers @host with ATA and SCSI layers and 5594 * probe registered devices. 5595 * 5596 * LOCKING: 5597 * Inherited from calling layer (may sleep). 5598 * 5599 * RETURNS: 5600 * 0 on success, -errno otherwise. 5601 */ 5602 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5603 { 5604 int i, rc; 5605 5606 /* host must have been started */ 5607 if (!(host->flags & ATA_HOST_STARTED)) { 5608 dev_printk(KERN_ERR, host->dev, 5609 "BUG: trying to register unstarted host\n"); 5610 WARN_ON(1); 5611 return -EINVAL; 5612 } 5613 5614 /* Blow away unused ports. This happens when LLD can't 5615 * determine the exact number of ports to allocate at 5616 * allocation time. 5617 */ 5618 for (i = host->n_ports; host->ports[i]; i++) 5619 kfree(host->ports[i]); 5620 5621 /* give ports names and add SCSI hosts */ 5622 for (i = 0; i < host->n_ports; i++) 5623 host->ports[i]->print_id = ata_print_id++; 5624 5625 rc = ata_scsi_add_hosts(host, sht); 5626 if (rc) 5627 return rc; 5628 5629 /* associate with ACPI nodes */ 5630 ata_acpi_associate(host); 5631 5632 /* set cable, sata_spd_limit and report */ 5633 for (i = 0; i < host->n_ports; i++) { 5634 struct ata_port *ap = host->ports[i]; 5635 unsigned long xfer_mask; 5636 5637 /* set SATA cable type if still unset */ 5638 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5639 ap->cbl = ATA_CBL_SATA; 5640 5641 /* init sata_spd_limit to the current value */ 5642 sata_link_init_spd(&ap->link); 5643 5644 /* print per-port info to dmesg */ 5645 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5646 ap->udma_mask); 5647 5648 if (!ata_port_is_dummy(ap)) { 5649 ata_port_printk(ap, KERN_INFO, 5650 "%cATA max %s %s\n", 5651 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5652 ata_mode_string(xfer_mask), 5653 ap->link.eh_info.desc); 5654 ata_ehi_clear_desc(&ap->link.eh_info); 5655 } else 5656 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5657 } 5658 5659 /* perform each probe synchronously */ 5660 DPRINTK("probe begin\n"); 5661 for (i = 0; i < host->n_ports; i++) { 5662 struct ata_port *ap = host->ports[i]; 5663 5664 /* probe */ 5665 if (ap->ops->error_handler) { 5666 struct ata_eh_info *ehi = &ap->link.eh_info; 5667 unsigned long flags; 5668 5669 ata_port_probe(ap); 5670 5671 /* kick EH for boot probing */ 5672 spin_lock_irqsave(ap->lock, flags); 5673 5674 ehi->probe_mask |= ATA_ALL_DEVICES; 5675 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5676 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5677 5678 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5679 ap->pflags |= ATA_PFLAG_LOADING; 5680 ata_port_schedule_eh(ap); 5681 5682 spin_unlock_irqrestore(ap->lock, flags); 5683 5684 /* wait for EH to finish */ 5685 ata_port_wait_eh(ap); 5686 } else { 5687 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5688 rc = ata_bus_probe(ap); 5689 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5690 5691 if (rc) { 5692 /* FIXME: do something useful here? 5693 * Current libata behavior will 5694 * tear down everything when 5695 * the module is removed 5696 * or the h/w is unplugged. 5697 */ 5698 } 5699 } 5700 } 5701 5702 /* probes are done, now scan each port's disk(s) */ 5703 DPRINTK("host probe begin\n"); 5704 for (i = 0; i < host->n_ports; i++) { 5705 struct ata_port *ap = host->ports[i]; 5706 5707 ata_scsi_scan_host(ap, 1); 5708 } 5709 5710 return 0; 5711 } 5712 5713 /** 5714 * ata_host_activate - start host, request IRQ and register it 5715 * @host: target ATA host 5716 * @irq: IRQ to request 5717 * @irq_handler: irq_handler used when requesting IRQ 5718 * @irq_flags: irq_flags used when requesting IRQ 5719 * @sht: scsi_host_template to use when registering the host 5720 * 5721 * After allocating an ATA host and initializing it, most libata 5722 * LLDs perform three steps to activate the host - start host, 5723 * request IRQ and register it. This helper takes necessasry 5724 * arguments and performs the three steps in one go. 5725 * 5726 * An invalid IRQ skips the IRQ registration and expects the host to 5727 * have set polling mode on the port. In this case, @irq_handler 5728 * should be NULL. 5729 * 5730 * LOCKING: 5731 * Inherited from calling layer (may sleep). 5732 * 5733 * RETURNS: 5734 * 0 on success, -errno otherwise. 5735 */ 5736 int ata_host_activate(struct ata_host *host, int irq, 5737 irq_handler_t irq_handler, unsigned long irq_flags, 5738 struct scsi_host_template *sht) 5739 { 5740 int i, rc; 5741 5742 rc = ata_host_start(host); 5743 if (rc) 5744 return rc; 5745 5746 /* Special case for polling mode */ 5747 if (!irq) { 5748 WARN_ON(irq_handler); 5749 return ata_host_register(host, sht); 5750 } 5751 5752 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5753 dev_driver_string(host->dev), host); 5754 if (rc) 5755 return rc; 5756 5757 for (i = 0; i < host->n_ports; i++) 5758 ata_port_desc(host->ports[i], "irq %d", irq); 5759 5760 rc = ata_host_register(host, sht); 5761 /* if failed, just free the IRQ and leave ports alone */ 5762 if (rc) 5763 devm_free_irq(host->dev, irq, host); 5764 5765 return rc; 5766 } 5767 5768 /** 5769 * ata_port_detach - Detach ATA port in prepration of device removal 5770 * @ap: ATA port to be detached 5771 * 5772 * Detach all ATA devices and the associated SCSI devices of @ap; 5773 * then, remove the associated SCSI host. @ap is guaranteed to 5774 * be quiescent on return from this function. 5775 * 5776 * LOCKING: 5777 * Kernel thread context (may sleep). 5778 */ 5779 static void ata_port_detach(struct ata_port *ap) 5780 { 5781 unsigned long flags; 5782 struct ata_link *link; 5783 struct ata_device *dev; 5784 5785 if (!ap->ops->error_handler) 5786 goto skip_eh; 5787 5788 /* tell EH we're leaving & flush EH */ 5789 spin_lock_irqsave(ap->lock, flags); 5790 ap->pflags |= ATA_PFLAG_UNLOADING; 5791 spin_unlock_irqrestore(ap->lock, flags); 5792 5793 ata_port_wait_eh(ap); 5794 5795 /* EH is now guaranteed to see UNLOADING - EH context belongs 5796 * to us. Restore SControl and disable all existing devices. 5797 */ 5798 __ata_port_for_each_link(link, ap) { 5799 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol); 5800 ata_link_for_each_dev(dev, link) 5801 ata_dev_disable(dev); 5802 } 5803 5804 /* Final freeze & EH. All in-flight commands are aborted. EH 5805 * will be skipped and retrials will be terminated with bad 5806 * target. 5807 */ 5808 spin_lock_irqsave(ap->lock, flags); 5809 ata_port_freeze(ap); /* won't be thawed */ 5810 spin_unlock_irqrestore(ap->lock, flags); 5811 5812 ata_port_wait_eh(ap); 5813 cancel_rearming_delayed_work(&ap->hotplug_task); 5814 5815 skip_eh: 5816 /* remove the associated SCSI host */ 5817 scsi_remove_host(ap->scsi_host); 5818 } 5819 5820 /** 5821 * ata_host_detach - Detach all ports of an ATA host 5822 * @host: Host to detach 5823 * 5824 * Detach all ports of @host. 5825 * 5826 * LOCKING: 5827 * Kernel thread context (may sleep). 5828 */ 5829 void ata_host_detach(struct ata_host *host) 5830 { 5831 int i; 5832 5833 for (i = 0; i < host->n_ports; i++) 5834 ata_port_detach(host->ports[i]); 5835 5836 /* the host is dead now, dissociate ACPI */ 5837 ata_acpi_dissociate(host); 5838 } 5839 5840 #ifdef CONFIG_PCI 5841 5842 /** 5843 * ata_pci_remove_one - PCI layer callback for device removal 5844 * @pdev: PCI device that was removed 5845 * 5846 * PCI layer indicates to libata via this hook that hot-unplug or 5847 * module unload event has occurred. Detach all ports. Resource 5848 * release is handled via devres. 5849 * 5850 * LOCKING: 5851 * Inherited from PCI layer (may sleep). 5852 */ 5853 void ata_pci_remove_one(struct pci_dev *pdev) 5854 { 5855 struct device *dev = &pdev->dev; 5856 struct ata_host *host = dev_get_drvdata(dev); 5857 5858 ata_host_detach(host); 5859 } 5860 5861 /* move to PCI subsystem */ 5862 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5863 { 5864 unsigned long tmp = 0; 5865 5866 switch (bits->width) { 5867 case 1: { 5868 u8 tmp8 = 0; 5869 pci_read_config_byte(pdev, bits->reg, &tmp8); 5870 tmp = tmp8; 5871 break; 5872 } 5873 case 2: { 5874 u16 tmp16 = 0; 5875 pci_read_config_word(pdev, bits->reg, &tmp16); 5876 tmp = tmp16; 5877 break; 5878 } 5879 case 4: { 5880 u32 tmp32 = 0; 5881 pci_read_config_dword(pdev, bits->reg, &tmp32); 5882 tmp = tmp32; 5883 break; 5884 } 5885 5886 default: 5887 return -EINVAL; 5888 } 5889 5890 tmp &= bits->mask; 5891 5892 return (tmp == bits->val) ? 1 : 0; 5893 } 5894 5895 #ifdef CONFIG_PM 5896 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 5897 { 5898 pci_save_state(pdev); 5899 pci_disable_device(pdev); 5900 5901 if (mesg.event & PM_EVENT_SLEEP) 5902 pci_set_power_state(pdev, PCI_D3hot); 5903 } 5904 5905 int ata_pci_device_do_resume(struct pci_dev *pdev) 5906 { 5907 int rc; 5908 5909 pci_set_power_state(pdev, PCI_D0); 5910 pci_restore_state(pdev); 5911 5912 rc = pcim_enable_device(pdev); 5913 if (rc) { 5914 dev_printk(KERN_ERR, &pdev->dev, 5915 "failed to enable device after resume (%d)\n", rc); 5916 return rc; 5917 } 5918 5919 pci_set_master(pdev); 5920 return 0; 5921 } 5922 5923 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 5924 { 5925 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5926 int rc = 0; 5927 5928 rc = ata_host_suspend(host, mesg); 5929 if (rc) 5930 return rc; 5931 5932 ata_pci_device_do_suspend(pdev, mesg); 5933 5934 return 0; 5935 } 5936 5937 int ata_pci_device_resume(struct pci_dev *pdev) 5938 { 5939 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5940 int rc; 5941 5942 rc = ata_pci_device_do_resume(pdev); 5943 if (rc == 0) 5944 ata_host_resume(host); 5945 return rc; 5946 } 5947 #endif /* CONFIG_PM */ 5948 5949 #endif /* CONFIG_PCI */ 5950 5951 static int __init ata_parse_force_one(char **cur, 5952 struct ata_force_ent *force_ent, 5953 const char **reason) 5954 { 5955 /* FIXME: Currently, there's no way to tag init const data and 5956 * using __initdata causes build failure on some versions of 5957 * gcc. Once __initdataconst is implemented, add const to the 5958 * following structure. 5959 */ 5960 static struct ata_force_param force_tbl[] __initdata = { 5961 { "40c", .cbl = ATA_CBL_PATA40 }, 5962 { "80c", .cbl = ATA_CBL_PATA80 }, 5963 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 5964 { "unk", .cbl = ATA_CBL_PATA_UNK }, 5965 { "ign", .cbl = ATA_CBL_PATA_IGN }, 5966 { "sata", .cbl = ATA_CBL_SATA }, 5967 { "1.5Gbps", .spd_limit = 1 }, 5968 { "3.0Gbps", .spd_limit = 2 }, 5969 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 5970 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 5971 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 5972 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 5973 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 5974 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 5975 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 5976 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 5977 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 5978 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 5979 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 5980 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 5981 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 5982 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 5983 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5984 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5985 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5986 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5987 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5988 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5989 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5990 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5991 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5992 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5993 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5994 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5995 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5996 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5997 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5998 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5999 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6000 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6001 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6002 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6003 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6004 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6005 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6006 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6007 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6008 }; 6009 char *start = *cur, *p = *cur; 6010 char *id, *val, *endp; 6011 const struct ata_force_param *match_fp = NULL; 6012 int nr_matches = 0, i; 6013 6014 /* find where this param ends and update *cur */ 6015 while (*p != '\0' && *p != ',') 6016 p++; 6017 6018 if (*p == '\0') 6019 *cur = p; 6020 else 6021 *cur = p + 1; 6022 6023 *p = '\0'; 6024 6025 /* parse */ 6026 p = strchr(start, ':'); 6027 if (!p) { 6028 val = strstrip(start); 6029 goto parse_val; 6030 } 6031 *p = '\0'; 6032 6033 id = strstrip(start); 6034 val = strstrip(p + 1); 6035 6036 /* parse id */ 6037 p = strchr(id, '.'); 6038 if (p) { 6039 *p++ = '\0'; 6040 force_ent->device = simple_strtoul(p, &endp, 10); 6041 if (p == endp || *endp != '\0') { 6042 *reason = "invalid device"; 6043 return -EINVAL; 6044 } 6045 } 6046 6047 force_ent->port = simple_strtoul(id, &endp, 10); 6048 if (p == endp || *endp != '\0') { 6049 *reason = "invalid port/link"; 6050 return -EINVAL; 6051 } 6052 6053 parse_val: 6054 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6055 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6056 const struct ata_force_param *fp = &force_tbl[i]; 6057 6058 if (strncasecmp(val, fp->name, strlen(val))) 6059 continue; 6060 6061 nr_matches++; 6062 match_fp = fp; 6063 6064 if (strcasecmp(val, fp->name) == 0) { 6065 nr_matches = 1; 6066 break; 6067 } 6068 } 6069 6070 if (!nr_matches) { 6071 *reason = "unknown value"; 6072 return -EINVAL; 6073 } 6074 if (nr_matches > 1) { 6075 *reason = "ambigious value"; 6076 return -EINVAL; 6077 } 6078 6079 force_ent->param = *match_fp; 6080 6081 return 0; 6082 } 6083 6084 static void __init ata_parse_force_param(void) 6085 { 6086 int idx = 0, size = 1; 6087 int last_port = -1, last_device = -1; 6088 char *p, *cur, *next; 6089 6090 /* calculate maximum number of params and allocate force_tbl */ 6091 for (p = ata_force_param_buf; *p; p++) 6092 if (*p == ',') 6093 size++; 6094 6095 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6096 if (!ata_force_tbl) { 6097 printk(KERN_WARNING "ata: failed to extend force table, " 6098 "libata.force ignored\n"); 6099 return; 6100 } 6101 6102 /* parse and populate the table */ 6103 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6104 const char *reason = ""; 6105 struct ata_force_ent te = { .port = -1, .device = -1 }; 6106 6107 next = cur; 6108 if (ata_parse_force_one(&next, &te, &reason)) { 6109 printk(KERN_WARNING "ata: failed to parse force " 6110 "parameter \"%s\" (%s)\n", 6111 cur, reason); 6112 continue; 6113 } 6114 6115 if (te.port == -1) { 6116 te.port = last_port; 6117 te.device = last_device; 6118 } 6119 6120 ata_force_tbl[idx++] = te; 6121 6122 last_port = te.port; 6123 last_device = te.device; 6124 } 6125 6126 ata_force_tbl_size = idx; 6127 } 6128 6129 static int __init ata_init(void) 6130 { 6131 ata_parse_force_param(); 6132 6133 ata_wq = create_workqueue("ata"); 6134 if (!ata_wq) 6135 goto free_force_tbl; 6136 6137 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6138 if (!ata_aux_wq) 6139 goto free_wq; 6140 6141 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6142 return 0; 6143 6144 free_wq: 6145 destroy_workqueue(ata_wq); 6146 free_force_tbl: 6147 kfree(ata_force_tbl); 6148 return -ENOMEM; 6149 } 6150 6151 static void __exit ata_exit(void) 6152 { 6153 kfree(ata_force_tbl); 6154 destroy_workqueue(ata_wq); 6155 destroy_workqueue(ata_aux_wq); 6156 } 6157 6158 subsys_initcall(ata_init); 6159 module_exit(ata_exit); 6160 6161 static unsigned long ratelimit_time; 6162 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6163 6164 int ata_ratelimit(void) 6165 { 6166 int rc; 6167 unsigned long flags; 6168 6169 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6170 6171 if (time_after(jiffies, ratelimit_time)) { 6172 rc = 1; 6173 ratelimit_time = jiffies + (HZ/5); 6174 } else 6175 rc = 0; 6176 6177 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6178 6179 return rc; 6180 } 6181 6182 /** 6183 * ata_wait_register - wait until register value changes 6184 * @reg: IO-mapped register 6185 * @mask: Mask to apply to read register value 6186 * @val: Wait condition 6187 * @interval: polling interval in milliseconds 6188 * @timeout: timeout in milliseconds 6189 * 6190 * Waiting for some bits of register to change is a common 6191 * operation for ATA controllers. This function reads 32bit LE 6192 * IO-mapped register @reg and tests for the following condition. 6193 * 6194 * (*@reg & mask) != val 6195 * 6196 * If the condition is met, it returns; otherwise, the process is 6197 * repeated after @interval_msec until timeout. 6198 * 6199 * LOCKING: 6200 * Kernel thread context (may sleep) 6201 * 6202 * RETURNS: 6203 * The final register value. 6204 */ 6205 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6206 unsigned long interval, unsigned long timeout) 6207 { 6208 unsigned long deadline; 6209 u32 tmp; 6210 6211 tmp = ioread32(reg); 6212 6213 /* Calculate timeout _after_ the first read to make sure 6214 * preceding writes reach the controller before starting to 6215 * eat away the timeout. 6216 */ 6217 deadline = ata_deadline(jiffies, timeout); 6218 6219 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6220 msleep(interval); 6221 tmp = ioread32(reg); 6222 } 6223 6224 return tmp; 6225 } 6226 6227 /* 6228 * Dummy port_ops 6229 */ 6230 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6231 { 6232 return AC_ERR_SYSTEM; 6233 } 6234 6235 static void ata_dummy_error_handler(struct ata_port *ap) 6236 { 6237 /* truly dummy */ 6238 } 6239 6240 struct ata_port_operations ata_dummy_port_ops = { 6241 .qc_prep = ata_noop_qc_prep, 6242 .qc_issue = ata_dummy_qc_issue, 6243 .error_handler = ata_dummy_error_handler, 6244 }; 6245 6246 const struct ata_port_info ata_dummy_port_info = { 6247 .port_ops = &ata_dummy_port_ops, 6248 }; 6249 6250 /* 6251 * libata is essentially a library of internal helper functions for 6252 * low-level ATA host controller drivers. As such, the API/ABI is 6253 * likely to change as new drivers are added and updated. 6254 * Do not depend on ABI/API stability. 6255 */ 6256 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6257 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6258 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6259 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6260 EXPORT_SYMBOL_GPL(sata_port_ops); 6261 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6262 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6263 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6264 EXPORT_SYMBOL_GPL(ata_host_init); 6265 EXPORT_SYMBOL_GPL(ata_host_alloc); 6266 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6267 EXPORT_SYMBOL_GPL(ata_host_start); 6268 EXPORT_SYMBOL_GPL(ata_host_register); 6269 EXPORT_SYMBOL_GPL(ata_host_activate); 6270 EXPORT_SYMBOL_GPL(ata_host_detach); 6271 EXPORT_SYMBOL_GPL(ata_sg_init); 6272 EXPORT_SYMBOL_GPL(ata_qc_complete); 6273 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6274 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6275 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6276 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6277 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6278 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6279 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6280 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6281 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6282 EXPORT_SYMBOL_GPL(ata_mode_string); 6283 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6284 EXPORT_SYMBOL_GPL(ata_port_start); 6285 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6286 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6287 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6288 EXPORT_SYMBOL_GPL(ata_port_probe); 6289 EXPORT_SYMBOL_GPL(ata_dev_disable); 6290 EXPORT_SYMBOL_GPL(sata_set_spd); 6291 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6292 EXPORT_SYMBOL_GPL(sata_link_debounce); 6293 EXPORT_SYMBOL_GPL(sata_link_resume); 6294 EXPORT_SYMBOL_GPL(ata_std_prereset); 6295 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6296 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6297 EXPORT_SYMBOL_GPL(ata_std_postreset); 6298 EXPORT_SYMBOL_GPL(ata_dev_classify); 6299 EXPORT_SYMBOL_GPL(ata_dev_pair); 6300 EXPORT_SYMBOL_GPL(ata_port_disable); 6301 EXPORT_SYMBOL_GPL(ata_ratelimit); 6302 EXPORT_SYMBOL_GPL(ata_wait_register); 6303 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6304 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6305 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6306 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6307 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6308 EXPORT_SYMBOL_GPL(sata_scr_valid); 6309 EXPORT_SYMBOL_GPL(sata_scr_read); 6310 EXPORT_SYMBOL_GPL(sata_scr_write); 6311 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6312 EXPORT_SYMBOL_GPL(ata_link_online); 6313 EXPORT_SYMBOL_GPL(ata_link_offline); 6314 #ifdef CONFIG_PM 6315 EXPORT_SYMBOL_GPL(ata_host_suspend); 6316 EXPORT_SYMBOL_GPL(ata_host_resume); 6317 #endif /* CONFIG_PM */ 6318 EXPORT_SYMBOL_GPL(ata_id_string); 6319 EXPORT_SYMBOL_GPL(ata_id_c_string); 6320 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6321 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6322 6323 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6324 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6325 EXPORT_SYMBOL_GPL(ata_timing_compute); 6326 EXPORT_SYMBOL_GPL(ata_timing_merge); 6327 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6328 6329 #ifdef CONFIG_PCI 6330 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6331 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6332 #ifdef CONFIG_PM 6333 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6334 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6335 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6336 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6337 #endif /* CONFIG_PM */ 6338 #endif /* CONFIG_PCI */ 6339 6340 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6341 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6342 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6343 EXPORT_SYMBOL_GPL(ata_port_desc); 6344 #ifdef CONFIG_PCI 6345 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6346 #endif /* CONFIG_PCI */ 6347 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6348 EXPORT_SYMBOL_GPL(ata_link_abort); 6349 EXPORT_SYMBOL_GPL(ata_port_abort); 6350 EXPORT_SYMBOL_GPL(ata_port_freeze); 6351 EXPORT_SYMBOL_GPL(sata_async_notification); 6352 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6353 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6354 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6355 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6356 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6357 EXPORT_SYMBOL_GPL(ata_do_eh); 6358 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6359 6360 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6361 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6362 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6363 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6364 EXPORT_SYMBOL_GPL(ata_cable_sata); 6365