1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.21" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 75 unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int libata_fua = 0; 89 module_param_named(fua, libata_fua, int, 0444); 90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 91 92 static int ata_ignore_hpa = 0; 93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 95 96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 97 module_param(ata_probe_timeout, int, 0444); 98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 99 100 int libata_noacpi = 1; 101 module_param_named(noacpi, libata_noacpi, int, 0444); 102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 103 104 MODULE_AUTHOR("Jeff Garzik"); 105 MODULE_DESCRIPTION("Library module for ATA devices"); 106 MODULE_LICENSE("GPL"); 107 MODULE_VERSION(DRV_VERSION); 108 109 110 /** 111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 112 * @tf: Taskfile to convert 113 * @fis: Buffer into which data will output 114 * @pmp: Port multiplier port 115 * 116 * Converts a standard ATA taskfile to a Serial ATA 117 * FIS structure (Register - Host to Device). 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 124 { 125 fis[0] = 0x27; /* Register - Host to Device FIS */ 126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 127 bit 7 indicates Command FIS */ 128 fis[2] = tf->command; 129 fis[3] = tf->feature; 130 131 fis[4] = tf->lbal; 132 fis[5] = tf->lbam; 133 fis[6] = tf->lbah; 134 fis[7] = tf->device; 135 136 fis[8] = tf->hob_lbal; 137 fis[9] = tf->hob_lbam; 138 fis[10] = tf->hob_lbah; 139 fis[11] = tf->hob_feature; 140 141 fis[12] = tf->nsect; 142 fis[13] = tf->hob_nsect; 143 fis[14] = 0; 144 fis[15] = tf->ctl; 145 146 fis[16] = 0; 147 fis[17] = 0; 148 fis[18] = 0; 149 fis[19] = 0; 150 } 151 152 /** 153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 154 * @fis: Buffer from which data will be input 155 * @tf: Taskfile to output 156 * 157 * Converts a serial ATA FIS structure to a standard ATA taskfile. 158 * 159 * LOCKING: 160 * Inherited from caller. 161 */ 162 163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 164 { 165 tf->command = fis[2]; /* status */ 166 tf->feature = fis[3]; /* error */ 167 168 tf->lbal = fis[4]; 169 tf->lbam = fis[5]; 170 tf->lbah = fis[6]; 171 tf->device = fis[7]; 172 173 tf->hob_lbal = fis[8]; 174 tf->hob_lbam = fis[9]; 175 tf->hob_lbah = fis[10]; 176 177 tf->nsect = fis[12]; 178 tf->hob_nsect = fis[13]; 179 } 180 181 static const u8 ata_rw_cmds[] = { 182 /* pio multi */ 183 ATA_CMD_READ_MULTI, 184 ATA_CMD_WRITE_MULTI, 185 ATA_CMD_READ_MULTI_EXT, 186 ATA_CMD_WRITE_MULTI_EXT, 187 0, 188 0, 189 0, 190 ATA_CMD_WRITE_MULTI_FUA_EXT, 191 /* pio */ 192 ATA_CMD_PIO_READ, 193 ATA_CMD_PIO_WRITE, 194 ATA_CMD_PIO_READ_EXT, 195 ATA_CMD_PIO_WRITE_EXT, 196 0, 197 0, 198 0, 199 0, 200 /* dma */ 201 ATA_CMD_READ, 202 ATA_CMD_WRITE, 203 ATA_CMD_READ_EXT, 204 ATA_CMD_WRITE_EXT, 205 0, 206 0, 207 0, 208 ATA_CMD_WRITE_FUA_EXT 209 }; 210 211 /** 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 213 * @tf: command to examine and configure 214 * @dev: device tf belongs to 215 * 216 * Examine the device configuration and tf->flags to calculate 217 * the proper read/write commands and protocol to use. 218 * 219 * LOCKING: 220 * caller. 221 */ 222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 223 { 224 u8 cmd; 225 226 int index, fua, lba48, write; 227 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 231 232 if (dev->flags & ATA_DFLAG_PIO) { 233 tf->protocol = ATA_PROT_PIO; 234 index = dev->multi_count ? 0 : 8; 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 236 /* Unable to use DMA due to host limitation */ 237 tf->protocol = ATA_PROT_PIO; 238 index = dev->multi_count ? 0 : 8; 239 } else { 240 tf->protocol = ATA_PROT_DMA; 241 index = 16; 242 } 243 244 cmd = ata_rw_cmds[index + fua + lba48 + write]; 245 if (cmd) { 246 tf->command = cmd; 247 return 0; 248 } 249 return -1; 250 } 251 252 /** 253 * ata_tf_read_block - Read block address from ATA taskfile 254 * @tf: ATA taskfile of interest 255 * @dev: ATA device @tf belongs to 256 * 257 * LOCKING: 258 * None. 259 * 260 * Read block address from @tf. This function can handle all 261 * three address formats - LBA, LBA48 and CHS. tf->protocol and 262 * flags select the address format to use. 263 * 264 * RETURNS: 265 * Block address read from @tf. 266 */ 267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 268 { 269 u64 block = 0; 270 271 if (tf->flags & ATA_TFLAG_LBA) { 272 if (tf->flags & ATA_TFLAG_LBA48) { 273 block |= (u64)tf->hob_lbah << 40; 274 block |= (u64)tf->hob_lbam << 32; 275 block |= tf->hob_lbal << 24; 276 } else 277 block |= (tf->device & 0xf) << 24; 278 279 block |= tf->lbah << 16; 280 block |= tf->lbam << 8; 281 block |= tf->lbal; 282 } else { 283 u32 cyl, head, sect; 284 285 cyl = tf->lbam | (tf->lbah << 8); 286 head = tf->device & 0xf; 287 sect = tf->lbal; 288 289 block = (cyl * dev->heads + head) * dev->sectors + sect; 290 } 291 292 return block; 293 } 294 295 /** 296 * ata_build_rw_tf - Build ATA taskfile for given read/write request 297 * @tf: Target ATA taskfile 298 * @dev: ATA device @tf belongs to 299 * @block: Block address 300 * @n_block: Number of blocks 301 * @tf_flags: RW/FUA etc... 302 * @tag: tag 303 * 304 * LOCKING: 305 * None. 306 * 307 * Build ATA taskfile @tf for read/write request described by 308 * @block, @n_block, @tf_flags and @tag on @dev. 309 * 310 * RETURNS: 311 * 312 * 0 on success, -ERANGE if the request is too large for @dev, 313 * -EINVAL if the request is invalid. 314 */ 315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 316 u64 block, u32 n_block, unsigned int tf_flags, 317 unsigned int tag) 318 { 319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 320 tf->flags |= tf_flags; 321 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 323 /* yay, NCQ */ 324 if (!lba_48_ok(block, n_block)) 325 return -ERANGE; 326 327 tf->protocol = ATA_PROT_NCQ; 328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 329 330 if (tf->flags & ATA_TFLAG_WRITE) 331 tf->command = ATA_CMD_FPDMA_WRITE; 332 else 333 tf->command = ATA_CMD_FPDMA_READ; 334 335 tf->nsect = tag << 3; 336 tf->hob_feature = (n_block >> 8) & 0xff; 337 tf->feature = n_block & 0xff; 338 339 tf->hob_lbah = (block >> 40) & 0xff; 340 tf->hob_lbam = (block >> 32) & 0xff; 341 tf->hob_lbal = (block >> 24) & 0xff; 342 tf->lbah = (block >> 16) & 0xff; 343 tf->lbam = (block >> 8) & 0xff; 344 tf->lbal = block & 0xff; 345 346 tf->device = 1 << 6; 347 if (tf->flags & ATA_TFLAG_FUA) 348 tf->device |= 1 << 7; 349 } else if (dev->flags & ATA_DFLAG_LBA) { 350 tf->flags |= ATA_TFLAG_LBA; 351 352 if (lba_28_ok(block, n_block)) { 353 /* use LBA28 */ 354 tf->device |= (block >> 24) & 0xf; 355 } else if (lba_48_ok(block, n_block)) { 356 if (!(dev->flags & ATA_DFLAG_LBA48)) 357 return -ERANGE; 358 359 /* use LBA48 */ 360 tf->flags |= ATA_TFLAG_LBA48; 361 362 tf->hob_nsect = (n_block >> 8) & 0xff; 363 364 tf->hob_lbah = (block >> 40) & 0xff; 365 tf->hob_lbam = (block >> 32) & 0xff; 366 tf->hob_lbal = (block >> 24) & 0xff; 367 } else 368 /* request too large even for LBA48 */ 369 return -ERANGE; 370 371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 372 return -EINVAL; 373 374 tf->nsect = n_block & 0xff; 375 376 tf->lbah = (block >> 16) & 0xff; 377 tf->lbam = (block >> 8) & 0xff; 378 tf->lbal = block & 0xff; 379 380 tf->device |= ATA_LBA; 381 } else { 382 /* CHS */ 383 u32 sect, head, cyl, track; 384 385 /* The request -may- be too large for CHS addressing. */ 386 if (!lba_28_ok(block, n_block)) 387 return -ERANGE; 388 389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 390 return -EINVAL; 391 392 /* Convert LBA to CHS */ 393 track = (u32)block / dev->sectors; 394 cyl = track / dev->heads; 395 head = track % dev->heads; 396 sect = (u32)block % dev->sectors + 1; 397 398 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 399 (u32)block, track, cyl, head, sect); 400 401 /* Check whether the converted CHS can fit. 402 Cylinder: 0-65535 403 Head: 0-15 404 Sector: 1-255*/ 405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 406 return -ERANGE; 407 408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 409 tf->lbal = sect; 410 tf->lbam = cyl; 411 tf->lbah = cyl >> 8; 412 tf->device |= head; 413 } 414 415 return 0; 416 } 417 418 /** 419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 420 * @pio_mask: pio_mask 421 * @mwdma_mask: mwdma_mask 422 * @udma_mask: udma_mask 423 * 424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 425 * unsigned int xfer_mask. 426 * 427 * LOCKING: 428 * None. 429 * 430 * RETURNS: 431 * Packed xfer_mask. 432 */ 433 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 434 unsigned int mwdma_mask, 435 unsigned int udma_mask) 436 { 437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 440 } 441 442 /** 443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 444 * @xfer_mask: xfer_mask to unpack 445 * @pio_mask: resulting pio_mask 446 * @mwdma_mask: resulting mwdma_mask 447 * @udma_mask: resulting udma_mask 448 * 449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 450 * Any NULL distination masks will be ignored. 451 */ 452 static void ata_unpack_xfermask(unsigned int xfer_mask, 453 unsigned int *pio_mask, 454 unsigned int *mwdma_mask, 455 unsigned int *udma_mask) 456 { 457 if (pio_mask) 458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 459 if (mwdma_mask) 460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 461 if (udma_mask) 462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 463 } 464 465 static const struct ata_xfer_ent { 466 int shift, bits; 467 u8 base; 468 } ata_xfer_tbl[] = { 469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 472 { -1, }, 473 }; 474 475 /** 476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 477 * @xfer_mask: xfer_mask of interest 478 * 479 * Return matching XFER_* value for @xfer_mask. Only the highest 480 * bit of @xfer_mask is considered. 481 * 482 * LOCKING: 483 * None. 484 * 485 * RETURNS: 486 * Matching XFER_* value, 0 if no match found. 487 */ 488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 489 { 490 int highbit = fls(xfer_mask) - 1; 491 const struct ata_xfer_ent *ent; 492 493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 495 return ent->base + highbit - ent->shift; 496 return 0; 497 } 498 499 /** 500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 501 * @xfer_mode: XFER_* of interest 502 * 503 * Return matching xfer_mask for @xfer_mode. 504 * 505 * LOCKING: 506 * None. 507 * 508 * RETURNS: 509 * Matching xfer_mask, 0 if no match found. 510 */ 511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 512 { 513 const struct ata_xfer_ent *ent; 514 515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 517 return 1 << (ent->shift + xfer_mode - ent->base); 518 return 0; 519 } 520 521 /** 522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 523 * @xfer_mode: XFER_* of interest 524 * 525 * Return matching xfer_shift for @xfer_mode. 526 * 527 * LOCKING: 528 * None. 529 * 530 * RETURNS: 531 * Matching xfer_shift, -1 if no match found. 532 */ 533 static int ata_xfer_mode2shift(unsigned int xfer_mode) 534 { 535 const struct ata_xfer_ent *ent; 536 537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 539 return ent->shift; 540 return -1; 541 } 542 543 /** 544 * ata_mode_string - convert xfer_mask to string 545 * @xfer_mask: mask of bits supported; only highest bit counts. 546 * 547 * Determine string which represents the highest speed 548 * (highest bit in @modemask). 549 * 550 * LOCKING: 551 * None. 552 * 553 * RETURNS: 554 * Constant C string representing highest speed listed in 555 * @mode_mask, or the constant C string "<n/a>". 556 */ 557 static const char *ata_mode_string(unsigned int xfer_mask) 558 { 559 static const char * const xfer_mode_str[] = { 560 "PIO0", 561 "PIO1", 562 "PIO2", 563 "PIO3", 564 "PIO4", 565 "PIO5", 566 "PIO6", 567 "MWDMA0", 568 "MWDMA1", 569 "MWDMA2", 570 "MWDMA3", 571 "MWDMA4", 572 "UDMA/16", 573 "UDMA/25", 574 "UDMA/33", 575 "UDMA/44", 576 "UDMA/66", 577 "UDMA/100", 578 "UDMA/133", 579 "UDMA7", 580 }; 581 int highbit; 582 583 highbit = fls(xfer_mask) - 1; 584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 585 return xfer_mode_str[highbit]; 586 return "<n/a>"; 587 } 588 589 static const char *sata_spd_string(unsigned int spd) 590 { 591 static const char * const spd_str[] = { 592 "1.5 Gbps", 593 "3.0 Gbps", 594 }; 595 596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 597 return "<unknown>"; 598 return spd_str[spd - 1]; 599 } 600 601 void ata_dev_disable(struct ata_device *dev) 602 { 603 if (ata_dev_enabled(dev)) { 604 if (ata_msg_drv(dev->ap)) 605 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 607 ATA_DNXFER_QUIET); 608 dev->class++; 609 } 610 } 611 612 /** 613 * ata_devchk - PATA device presence detection 614 * @ap: ATA channel to examine 615 * @device: Device to examine (starting at zero) 616 * 617 * This technique was originally described in 618 * Hale Landis's ATADRVR (www.ata-atapi.com), and 619 * later found its way into the ATA/ATAPI spec. 620 * 621 * Write a pattern to the ATA shadow registers, 622 * and if a device is present, it will respond by 623 * correctly storing and echoing back the 624 * ATA shadow register contents. 625 * 626 * LOCKING: 627 * caller. 628 */ 629 630 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 631 { 632 struct ata_ioports *ioaddr = &ap->ioaddr; 633 u8 nsect, lbal; 634 635 ap->ops->dev_select(ap, device); 636 637 iowrite8(0x55, ioaddr->nsect_addr); 638 iowrite8(0xaa, ioaddr->lbal_addr); 639 640 iowrite8(0xaa, ioaddr->nsect_addr); 641 iowrite8(0x55, ioaddr->lbal_addr); 642 643 iowrite8(0x55, ioaddr->nsect_addr); 644 iowrite8(0xaa, ioaddr->lbal_addr); 645 646 nsect = ioread8(ioaddr->nsect_addr); 647 lbal = ioread8(ioaddr->lbal_addr); 648 649 if ((nsect == 0x55) && (lbal == 0xaa)) 650 return 1; /* we found a device */ 651 652 return 0; /* nothing found */ 653 } 654 655 /** 656 * ata_dev_classify - determine device type based on ATA-spec signature 657 * @tf: ATA taskfile register set for device to be identified 658 * 659 * Determine from taskfile register contents whether a device is 660 * ATA or ATAPI, as per "Signature and persistence" section 661 * of ATA/PI spec (volume 1, sect 5.14). 662 * 663 * LOCKING: 664 * None. 665 * 666 * RETURNS: 667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 668 * the event of failure. 669 */ 670 671 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 672 { 673 /* Apple's open source Darwin code hints that some devices only 674 * put a proper signature into the LBA mid/high registers, 675 * So, we only check those. It's sufficient for uniqueness. 676 */ 677 678 if (((tf->lbam == 0) && (tf->lbah == 0)) || 679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 680 DPRINTK("found ATA device by sig\n"); 681 return ATA_DEV_ATA; 682 } 683 684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 686 DPRINTK("found ATAPI device by sig\n"); 687 return ATA_DEV_ATAPI; 688 } 689 690 DPRINTK("unknown device\n"); 691 return ATA_DEV_UNKNOWN; 692 } 693 694 /** 695 * ata_dev_try_classify - Parse returned ATA device signature 696 * @ap: ATA channel to examine 697 * @device: Device to examine (starting at zero) 698 * @r_err: Value of error register on completion 699 * 700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 701 * an ATA/ATAPI-defined set of values is placed in the ATA 702 * shadow registers, indicating the results of device detection 703 * and diagnostics. 704 * 705 * Select the ATA device, and read the values from the ATA shadow 706 * registers. Then parse according to the Error register value, 707 * and the spec-defined values examined by ata_dev_classify(). 708 * 709 * LOCKING: 710 * caller. 711 * 712 * RETURNS: 713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 714 */ 715 716 unsigned int 717 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 718 { 719 struct ata_taskfile tf; 720 unsigned int class; 721 u8 err; 722 723 ap->ops->dev_select(ap, device); 724 725 memset(&tf, 0, sizeof(tf)); 726 727 ap->ops->tf_read(ap, &tf); 728 err = tf.feature; 729 if (r_err) 730 *r_err = err; 731 732 /* see if device passed diags: if master then continue and warn later */ 733 if (err == 0 && device == 0) 734 /* diagnostic fail : do nothing _YET_ */ 735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 736 else if (err == 1) 737 /* do nothing */ ; 738 else if ((device == 0) && (err == 0x81)) 739 /* do nothing */ ; 740 else 741 return ATA_DEV_NONE; 742 743 /* determine if device is ATA or ATAPI */ 744 class = ata_dev_classify(&tf); 745 746 if (class == ATA_DEV_UNKNOWN) 747 return ATA_DEV_NONE; 748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 749 return ATA_DEV_NONE; 750 return class; 751 } 752 753 /** 754 * ata_id_string - Convert IDENTIFY DEVICE page into string 755 * @id: IDENTIFY DEVICE results we will examine 756 * @s: string into which data is output 757 * @ofs: offset into identify device page 758 * @len: length of string to return. must be an even number. 759 * 760 * The strings in the IDENTIFY DEVICE page are broken up into 761 * 16-bit chunks. Run through the string, and output each 762 * 8-bit chunk linearly, regardless of platform. 763 * 764 * LOCKING: 765 * caller. 766 */ 767 768 void ata_id_string(const u16 *id, unsigned char *s, 769 unsigned int ofs, unsigned int len) 770 { 771 unsigned int c; 772 773 while (len > 0) { 774 c = id[ofs] >> 8; 775 *s = c; 776 s++; 777 778 c = id[ofs] & 0xff; 779 *s = c; 780 s++; 781 782 ofs++; 783 len -= 2; 784 } 785 } 786 787 /** 788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 789 * @id: IDENTIFY DEVICE results we will examine 790 * @s: string into which data is output 791 * @ofs: offset into identify device page 792 * @len: length of string to return. must be an odd number. 793 * 794 * This function is identical to ata_id_string except that it 795 * trims trailing spaces and terminates the resulting string with 796 * null. @len must be actual maximum length (even number) + 1. 797 * 798 * LOCKING: 799 * caller. 800 */ 801 void ata_id_c_string(const u16 *id, unsigned char *s, 802 unsigned int ofs, unsigned int len) 803 { 804 unsigned char *p; 805 806 WARN_ON(!(len & 1)); 807 808 ata_id_string(id, s, ofs, len - 1); 809 810 p = s + strnlen(s, len - 1); 811 while (p > s && p[-1] == ' ') 812 p--; 813 *p = '\0'; 814 } 815 816 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 817 { 818 u64 sectors = 0; 819 820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 822 sectors |= (tf->hob_lbal & 0xff) << 24; 823 sectors |= (tf->lbah & 0xff) << 16; 824 sectors |= (tf->lbam & 0xff) << 8; 825 sectors |= (tf->lbal & 0xff); 826 827 return ++sectors; 828 } 829 830 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 831 { 832 u64 sectors = 0; 833 834 sectors |= (tf->device & 0x0f) << 24; 835 sectors |= (tf->lbah & 0xff) << 16; 836 sectors |= (tf->lbam & 0xff) << 8; 837 sectors |= (tf->lbal & 0xff); 838 839 return ++sectors; 840 } 841 842 /** 843 * ata_read_native_max_address_ext - LBA48 native max query 844 * @dev: Device to query 845 * 846 * Perform an LBA48 size query upon the device in question. Return the 847 * actual LBA48 size or zero if the command fails. 848 */ 849 850 static u64 ata_read_native_max_address_ext(struct ata_device *dev) 851 { 852 unsigned int err; 853 struct ata_taskfile tf; 854 855 ata_tf_init(dev, &tf); 856 857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 859 tf.protocol |= ATA_PROT_NODATA; 860 tf.device |= 0x40; 861 862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 863 if (err) 864 return 0; 865 866 return ata_tf_to_lba48(&tf); 867 } 868 869 /** 870 * ata_read_native_max_address - LBA28 native max query 871 * @dev: Device to query 872 * 873 * Performa an LBA28 size query upon the device in question. Return the 874 * actual LBA28 size or zero if the command fails. 875 */ 876 877 static u64 ata_read_native_max_address(struct ata_device *dev) 878 { 879 unsigned int err; 880 struct ata_taskfile tf; 881 882 ata_tf_init(dev, &tf); 883 884 tf.command = ATA_CMD_READ_NATIVE_MAX; 885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 886 tf.protocol |= ATA_PROT_NODATA; 887 tf.device |= 0x40; 888 889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 890 if (err) 891 return 0; 892 893 return ata_tf_to_lba(&tf); 894 } 895 896 /** 897 * ata_set_native_max_address_ext - LBA48 native max set 898 * @dev: Device to query 899 * @new_sectors: new max sectors value to set for the device 900 * 901 * Perform an LBA48 size set max upon the device in question. Return the 902 * actual LBA48 size or zero if the command fails. 903 */ 904 905 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) 906 { 907 unsigned int err; 908 struct ata_taskfile tf; 909 910 new_sectors--; 911 912 ata_tf_init(dev, &tf); 913 914 tf.command = ATA_CMD_SET_MAX_EXT; 915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 916 tf.protocol |= ATA_PROT_NODATA; 917 tf.device |= 0x40; 918 919 tf.lbal = (new_sectors >> 0) & 0xff; 920 tf.lbam = (new_sectors >> 8) & 0xff; 921 tf.lbah = (new_sectors >> 16) & 0xff; 922 923 tf.hob_lbal = (new_sectors >> 24) & 0xff; 924 tf.hob_lbam = (new_sectors >> 32) & 0xff; 925 tf.hob_lbah = (new_sectors >> 40) & 0xff; 926 927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 928 if (err) 929 return 0; 930 931 return ata_tf_to_lba48(&tf); 932 } 933 934 /** 935 * ata_set_native_max_address - LBA28 native max set 936 * @dev: Device to query 937 * @new_sectors: new max sectors value to set for the device 938 * 939 * Perform an LBA28 size set max upon the device in question. Return the 940 * actual LBA28 size or zero if the command fails. 941 */ 942 943 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) 944 { 945 unsigned int err; 946 struct ata_taskfile tf; 947 948 new_sectors--; 949 950 ata_tf_init(dev, &tf); 951 952 tf.command = ATA_CMD_SET_MAX; 953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 954 tf.protocol |= ATA_PROT_NODATA; 955 956 tf.lbal = (new_sectors >> 0) & 0xff; 957 tf.lbam = (new_sectors >> 8) & 0xff; 958 tf.lbah = (new_sectors >> 16) & 0xff; 959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; 960 961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 962 if (err) 963 return 0; 964 965 return ata_tf_to_lba(&tf); 966 } 967 968 /** 969 * ata_hpa_resize - Resize a device with an HPA set 970 * @dev: Device to resize 971 * 972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 973 * it if required to the full size of the media. The caller must check 974 * the drive has the HPA feature set enabled. 975 */ 976 977 static u64 ata_hpa_resize(struct ata_device *dev) 978 { 979 u64 sectors = dev->n_sectors; 980 u64 hpa_sectors; 981 982 if (ata_id_has_lba48(dev->id)) 983 hpa_sectors = ata_read_native_max_address_ext(dev); 984 else 985 hpa_sectors = ata_read_native_max_address(dev); 986 987 if (hpa_sectors > sectors) { 988 ata_dev_printk(dev, KERN_INFO, 989 "Host Protected Area detected:\n" 990 "\tcurrent size: %lld sectors\n" 991 "\tnative size: %lld sectors\n", 992 (long long)sectors, (long long)hpa_sectors); 993 994 if (ata_ignore_hpa) { 995 if (ata_id_has_lba48(dev->id)) 996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); 997 else 998 hpa_sectors = ata_set_native_max_address(dev, 999 hpa_sectors); 1000 1001 if (hpa_sectors) { 1002 ata_dev_printk(dev, KERN_INFO, "native size " 1003 "increased to %lld sectors\n", 1004 (long long)hpa_sectors); 1005 return hpa_sectors; 1006 } 1007 } 1008 } else if (hpa_sectors < sectors) 1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) " 1010 "is smaller than sectors (%lld)\n", __FUNCTION__, 1011 (long long)hpa_sectors, (long long)sectors); 1012 1013 return sectors; 1014 } 1015 1016 static u64 ata_id_n_sectors(const u16 *id) 1017 { 1018 if (ata_id_has_lba(id)) { 1019 if (ata_id_has_lba48(id)) 1020 return ata_id_u64(id, 100); 1021 else 1022 return ata_id_u32(id, 60); 1023 } else { 1024 if (ata_id_current_chs_valid(id)) 1025 return ata_id_u32(id, 57); 1026 else 1027 return id[1] * id[3] * id[6]; 1028 } 1029 } 1030 1031 /** 1032 * ata_id_to_dma_mode - Identify DMA mode from id block 1033 * @dev: device to identify 1034 * @unknown: mode to assume if we cannot tell 1035 * 1036 * Set up the timing values for the device based upon the identify 1037 * reported values for the DMA mode. This function is used by drivers 1038 * which rely upon firmware configured modes, but wish to report the 1039 * mode correctly when possible. 1040 * 1041 * In addition we emit similarly formatted messages to the default 1042 * ata_dev_set_mode handler, in order to provide consistency of 1043 * presentation. 1044 */ 1045 1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1047 { 1048 unsigned int mask; 1049 u8 mode; 1050 1051 /* Pack the DMA modes */ 1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1053 if (dev->id[53] & 0x04) 1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1055 1056 /* Select the mode in use */ 1057 mode = ata_xfer_mask2mode(mask); 1058 1059 if (mode != 0) { 1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1061 ata_mode_string(mask)); 1062 } else { 1063 /* SWDMA perhaps ? */ 1064 mode = unknown; 1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1066 } 1067 1068 /* Configure the device reporting */ 1069 dev->xfer_mode = mode; 1070 dev->xfer_shift = ata_xfer_mode2shift(mode); 1071 } 1072 1073 /** 1074 * ata_noop_dev_select - Select device 0/1 on ATA bus 1075 * @ap: ATA channel to manipulate 1076 * @device: ATA device (numbered from zero) to select 1077 * 1078 * This function performs no actual function. 1079 * 1080 * May be used as the dev_select() entry in ata_port_operations. 1081 * 1082 * LOCKING: 1083 * caller. 1084 */ 1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1086 { 1087 } 1088 1089 1090 /** 1091 * ata_std_dev_select - Select device 0/1 on ATA bus 1092 * @ap: ATA channel to manipulate 1093 * @device: ATA device (numbered from zero) to select 1094 * 1095 * Use the method defined in the ATA specification to 1096 * make either device 0, or device 1, active on the 1097 * ATA channel. Works with both PIO and MMIO. 1098 * 1099 * May be used as the dev_select() entry in ata_port_operations. 1100 * 1101 * LOCKING: 1102 * caller. 1103 */ 1104 1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1106 { 1107 u8 tmp; 1108 1109 if (device == 0) 1110 tmp = ATA_DEVICE_OBS; 1111 else 1112 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1113 1114 iowrite8(tmp, ap->ioaddr.device_addr); 1115 ata_pause(ap); /* needed; also flushes, for mmio */ 1116 } 1117 1118 /** 1119 * ata_dev_select - Select device 0/1 on ATA bus 1120 * @ap: ATA channel to manipulate 1121 * @device: ATA device (numbered from zero) to select 1122 * @wait: non-zero to wait for Status register BSY bit to clear 1123 * @can_sleep: non-zero if context allows sleeping 1124 * 1125 * Use the method defined in the ATA specification to 1126 * make either device 0, or device 1, active on the 1127 * ATA channel. 1128 * 1129 * This is a high-level version of ata_std_dev_select(), 1130 * which additionally provides the services of inserting 1131 * the proper pauses and status polling, where needed. 1132 * 1133 * LOCKING: 1134 * caller. 1135 */ 1136 1137 void ata_dev_select(struct ata_port *ap, unsigned int device, 1138 unsigned int wait, unsigned int can_sleep) 1139 { 1140 if (ata_msg_probe(ap)) 1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1142 "device %u, wait %u\n", device, wait); 1143 1144 if (wait) 1145 ata_wait_idle(ap); 1146 1147 ap->ops->dev_select(ap, device); 1148 1149 if (wait) { 1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 1151 msleep(150); 1152 ata_wait_idle(ap); 1153 } 1154 } 1155 1156 /** 1157 * ata_dump_id - IDENTIFY DEVICE info debugging output 1158 * @id: IDENTIFY DEVICE page to dump 1159 * 1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1161 * page. 1162 * 1163 * LOCKING: 1164 * caller. 1165 */ 1166 1167 static inline void ata_dump_id(const u16 *id) 1168 { 1169 DPRINTK("49==0x%04x " 1170 "53==0x%04x " 1171 "63==0x%04x " 1172 "64==0x%04x " 1173 "75==0x%04x \n", 1174 id[49], 1175 id[53], 1176 id[63], 1177 id[64], 1178 id[75]); 1179 DPRINTK("80==0x%04x " 1180 "81==0x%04x " 1181 "82==0x%04x " 1182 "83==0x%04x " 1183 "84==0x%04x \n", 1184 id[80], 1185 id[81], 1186 id[82], 1187 id[83], 1188 id[84]); 1189 DPRINTK("88==0x%04x " 1190 "93==0x%04x\n", 1191 id[88], 1192 id[93]); 1193 } 1194 1195 /** 1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1197 * @id: IDENTIFY data to compute xfer mask from 1198 * 1199 * Compute the xfermask for this device. This is not as trivial 1200 * as it seems if we must consider early devices correctly. 1201 * 1202 * FIXME: pre IDE drive timing (do we care ?). 1203 * 1204 * LOCKING: 1205 * None. 1206 * 1207 * RETURNS: 1208 * Computed xfermask 1209 */ 1210 static unsigned int ata_id_xfermask(const u16 *id) 1211 { 1212 unsigned int pio_mask, mwdma_mask, udma_mask; 1213 1214 /* Usual case. Word 53 indicates word 64 is valid */ 1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1217 pio_mask <<= 3; 1218 pio_mask |= 0x7; 1219 } else { 1220 /* If word 64 isn't valid then Word 51 high byte holds 1221 * the PIO timing number for the maximum. Turn it into 1222 * a mask. 1223 */ 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1225 if (mode < 5) /* Valid PIO range */ 1226 pio_mask = (2 << mode) - 1; 1227 else 1228 pio_mask = 1; 1229 1230 /* But wait.. there's more. Design your standards by 1231 * committee and you too can get a free iordy field to 1232 * process. However its the speeds not the modes that 1233 * are supported... Note drivers using the timing API 1234 * will get this right anyway 1235 */ 1236 } 1237 1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1239 1240 if (ata_id_is_cfa(id)) { 1241 /* 1242 * Process compact flash extended modes 1243 */ 1244 int pio = id[163] & 0x7; 1245 int dma = (id[163] >> 3) & 7; 1246 1247 if (pio) 1248 pio_mask |= (1 << 5); 1249 if (pio > 1) 1250 pio_mask |= (1 << 6); 1251 if (dma) 1252 mwdma_mask |= (1 << 3); 1253 if (dma > 1) 1254 mwdma_mask |= (1 << 4); 1255 } 1256 1257 udma_mask = 0; 1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1260 1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1262 } 1263 1264 /** 1265 * ata_port_queue_task - Queue port_task 1266 * @ap: The ata_port to queue port_task for 1267 * @fn: workqueue function to be scheduled 1268 * @data: data for @fn to use 1269 * @delay: delay time for workqueue function 1270 * 1271 * Schedule @fn(@data) for execution after @delay jiffies using 1272 * port_task. There is one port_task per port and it's the 1273 * user(low level driver)'s responsibility to make sure that only 1274 * one task is active at any given time. 1275 * 1276 * libata core layer takes care of synchronization between 1277 * port_task and EH. ata_port_queue_task() may be ignored for EH 1278 * synchronization. 1279 * 1280 * LOCKING: 1281 * Inherited from caller. 1282 */ 1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1284 unsigned long delay) 1285 { 1286 int rc; 1287 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) 1289 return; 1290 1291 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1292 ap->port_task_data = data; 1293 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay); 1295 1296 /* rc == 0 means that another user is using port task */ 1297 WARN_ON(rc == 0); 1298 } 1299 1300 /** 1301 * ata_port_flush_task - Flush port_task 1302 * @ap: The ata_port to flush port_task for 1303 * 1304 * After this function completes, port_task is guranteed not to 1305 * be running or scheduled. 1306 * 1307 * LOCKING: 1308 * Kernel thread context (may sleep) 1309 */ 1310 void ata_port_flush_task(struct ata_port *ap) 1311 { 1312 unsigned long flags; 1313 1314 DPRINTK("ENTER\n"); 1315 1316 spin_lock_irqsave(ap->lock, flags); 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; 1318 spin_unlock_irqrestore(ap->lock, flags); 1319 1320 DPRINTK("flush #1\n"); 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */ 1322 1323 /* 1324 * At this point, if a task is running, it's guaranteed to see 1325 * the FLUSH flag; thus, it will never queue pio tasks again. 1326 * Cancel and flush. 1327 */ 1328 if (!cancel_delayed_work(&ap->port_task)) { 1329 if (ata_msg_ctl(ap)) 1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", 1331 __FUNCTION__); 1332 cancel_work_sync(&ap->port_task.work); 1333 } 1334 1335 spin_lock_irqsave(ap->lock, flags); 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; 1337 spin_unlock_irqrestore(ap->lock, flags); 1338 1339 if (ata_msg_ctl(ap)) 1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1341 } 1342 1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1344 { 1345 struct completion *waiting = qc->private_data; 1346 1347 complete(waiting); 1348 } 1349 1350 /** 1351 * ata_exec_internal_sg - execute libata internal command 1352 * @dev: Device to which the command is sent 1353 * @tf: Taskfile registers for the command and the result 1354 * @cdb: CDB for packet command 1355 * @dma_dir: Data tranfer direction of the command 1356 * @sg: sg list for the data buffer of the command 1357 * @n_elem: Number of sg entries 1358 * 1359 * Executes libata internal command with timeout. @tf contains 1360 * command on entry and result on return. Timeout and error 1361 * conditions are reported via return value. No recovery action 1362 * is taken after a command times out. It's caller's duty to 1363 * clean up after timeout. 1364 * 1365 * LOCKING: 1366 * None. Should be called with kernel context, might sleep. 1367 * 1368 * RETURNS: 1369 * Zero on success, AC_ERR_* mask on failure 1370 */ 1371 unsigned ata_exec_internal_sg(struct ata_device *dev, 1372 struct ata_taskfile *tf, const u8 *cdb, 1373 int dma_dir, struct scatterlist *sg, 1374 unsigned int n_elem) 1375 { 1376 struct ata_port *ap = dev->ap; 1377 u8 command = tf->command; 1378 struct ata_queued_cmd *qc; 1379 unsigned int tag, preempted_tag; 1380 u32 preempted_sactive, preempted_qc_active; 1381 DECLARE_COMPLETION_ONSTACK(wait); 1382 unsigned long flags; 1383 unsigned int err_mask; 1384 int rc; 1385 1386 spin_lock_irqsave(ap->lock, flags); 1387 1388 /* no internal command while frozen */ 1389 if (ap->pflags & ATA_PFLAG_FROZEN) { 1390 spin_unlock_irqrestore(ap->lock, flags); 1391 return AC_ERR_SYSTEM; 1392 } 1393 1394 /* initialize internal qc */ 1395 1396 /* XXX: Tag 0 is used for drivers with legacy EH as some 1397 * drivers choke if any other tag is given. This breaks 1398 * ata_tag_internal() test for those drivers. Don't use new 1399 * EH stuff without converting to it. 1400 */ 1401 if (ap->ops->error_handler) 1402 tag = ATA_TAG_INTERNAL; 1403 else 1404 tag = 0; 1405 1406 if (test_and_set_bit(tag, &ap->qc_allocated)) 1407 BUG(); 1408 qc = __ata_qc_from_tag(ap, tag); 1409 1410 qc->tag = tag; 1411 qc->scsicmd = NULL; 1412 qc->ap = ap; 1413 qc->dev = dev; 1414 ata_qc_reinit(qc); 1415 1416 preempted_tag = ap->active_tag; 1417 preempted_sactive = ap->sactive; 1418 preempted_qc_active = ap->qc_active; 1419 ap->active_tag = ATA_TAG_POISON; 1420 ap->sactive = 0; 1421 ap->qc_active = 0; 1422 1423 /* prepare & issue qc */ 1424 qc->tf = *tf; 1425 if (cdb) 1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1427 qc->flags |= ATA_QCFLAG_RESULT_TF; 1428 qc->dma_dir = dma_dir; 1429 if (dma_dir != DMA_NONE) { 1430 unsigned int i, buflen = 0; 1431 1432 for (i = 0; i < n_elem; i++) 1433 buflen += sg[i].length; 1434 1435 ata_sg_init(qc, sg, n_elem); 1436 qc->nbytes = buflen; 1437 } 1438 1439 qc->private_data = &wait; 1440 qc->complete_fn = ata_qc_complete_internal; 1441 1442 ata_qc_issue(qc); 1443 1444 spin_unlock_irqrestore(ap->lock, flags); 1445 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1447 1448 ata_port_flush_task(ap); 1449 1450 if (!rc) { 1451 spin_lock_irqsave(ap->lock, flags); 1452 1453 /* We're racing with irq here. If we lose, the 1454 * following test prevents us from completing the qc 1455 * twice. If we win, the port is frozen and will be 1456 * cleaned up by ->post_internal_cmd(). 1457 */ 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1459 qc->err_mask |= AC_ERR_TIMEOUT; 1460 1461 if (ap->ops->error_handler) 1462 ata_port_freeze(ap); 1463 else 1464 ata_qc_complete(qc); 1465 1466 if (ata_msg_warn(ap)) 1467 ata_dev_printk(dev, KERN_WARNING, 1468 "qc timeout (cmd 0x%x)\n", command); 1469 } 1470 1471 spin_unlock_irqrestore(ap->lock, flags); 1472 } 1473 1474 /* do post_internal_cmd */ 1475 if (ap->ops->post_internal_cmd) 1476 ap->ops->post_internal_cmd(qc); 1477 1478 /* perform minimal error analysis */ 1479 if (qc->flags & ATA_QCFLAG_FAILED) { 1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1481 qc->err_mask |= AC_ERR_DEV; 1482 1483 if (!qc->err_mask) 1484 qc->err_mask |= AC_ERR_OTHER; 1485 1486 if (qc->err_mask & ~AC_ERR_OTHER) 1487 qc->err_mask &= ~AC_ERR_OTHER; 1488 } 1489 1490 /* finish up */ 1491 spin_lock_irqsave(ap->lock, flags); 1492 1493 *tf = qc->result_tf; 1494 err_mask = qc->err_mask; 1495 1496 ata_qc_free(qc); 1497 ap->active_tag = preempted_tag; 1498 ap->sactive = preempted_sactive; 1499 ap->qc_active = preempted_qc_active; 1500 1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1502 * Until those drivers are fixed, we detect the condition 1503 * here, fail the command with AC_ERR_SYSTEM and reenable the 1504 * port. 1505 * 1506 * Note that this doesn't change any behavior as internal 1507 * command failure results in disabling the device in the 1508 * higher layer for LLDDs without new reset/EH callbacks. 1509 * 1510 * Kill the following code as soon as those drivers are fixed. 1511 */ 1512 if (ap->flags & ATA_FLAG_DISABLED) { 1513 err_mask |= AC_ERR_SYSTEM; 1514 ata_port_probe(ap); 1515 } 1516 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 1519 return err_mask; 1520 } 1521 1522 /** 1523 * ata_exec_internal - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @buf: Data buffer of the command 1529 * @buflen: Length of data buffer 1530 * 1531 * Wrapper around ata_exec_internal_sg() which takes simple 1532 * buffer instead of sg list. 1533 * 1534 * LOCKING: 1535 * None. Should be called with kernel context, might sleep. 1536 * 1537 * RETURNS: 1538 * Zero on success, AC_ERR_* mask on failure 1539 */ 1540 unsigned ata_exec_internal(struct ata_device *dev, 1541 struct ata_taskfile *tf, const u8 *cdb, 1542 int dma_dir, void *buf, unsigned int buflen) 1543 { 1544 struct scatterlist *psg = NULL, sg; 1545 unsigned int n_elem = 0; 1546 1547 if (dma_dir != DMA_NONE) { 1548 WARN_ON(!buf); 1549 sg_init_one(&sg, buf, buflen); 1550 psg = &sg; 1551 n_elem++; 1552 } 1553 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1555 } 1556 1557 /** 1558 * ata_do_simple_cmd - execute simple internal command 1559 * @dev: Device to which the command is sent 1560 * @cmd: Opcode to execute 1561 * 1562 * Execute a 'simple' command, that only consists of the opcode 1563 * 'cmd' itself, without filling any other registers 1564 * 1565 * LOCKING: 1566 * Kernel thread context (may sleep). 1567 * 1568 * RETURNS: 1569 * Zero on success, AC_ERR_* mask on failure 1570 */ 1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1572 { 1573 struct ata_taskfile tf; 1574 1575 ata_tf_init(dev, &tf); 1576 1577 tf.command = cmd; 1578 tf.flags |= ATA_TFLAG_DEVICE; 1579 tf.protocol = ATA_PROT_NODATA; 1580 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1582 } 1583 1584 /** 1585 * ata_pio_need_iordy - check if iordy needed 1586 * @adev: ATA device 1587 * 1588 * Check if the current speed of the device requires IORDY. Used 1589 * by various controllers for chip configuration. 1590 */ 1591 1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1593 { 1594 /* Controller doesn't support IORDY. Probably a pointless check 1595 as the caller should know this */ 1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY) 1597 return 0; 1598 /* PIO3 and higher it is mandatory */ 1599 if (adev->pio_mode > XFER_PIO_2) 1600 return 1; 1601 /* We turn it on when possible */ 1602 if (ata_id_has_iordy(adev->id)) 1603 return 1; 1604 return 0; 1605 } 1606 1607 /** 1608 * ata_pio_mask_no_iordy - Return the non IORDY mask 1609 * @adev: ATA device 1610 * 1611 * Compute the highest mode possible if we are not using iordy. Return 1612 * -1 if no iordy mode is available. 1613 */ 1614 1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1616 { 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1620 /* Is the speed faster than the drive allows non IORDY ? */ 1621 if (pio) { 1622 /* This is cycle times not frequency - watch the logic! */ 1623 if (pio > 240) /* PIO2 is 240nS per cycle */ 1624 return 3 << ATA_SHIFT_PIO; 1625 return 7 << ATA_SHIFT_PIO; 1626 } 1627 } 1628 return 3 << ATA_SHIFT_PIO; 1629 } 1630 1631 /** 1632 * ata_dev_read_id - Read ID data from the specified device 1633 * @dev: target device 1634 * @p_class: pointer to class of the target device (may be changed) 1635 * @flags: ATA_READID_* flags 1636 * @id: buffer to read IDENTIFY data into 1637 * 1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1641 * for pre-ATA4 drives. 1642 * 1643 * LOCKING: 1644 * Kernel thread context (may sleep) 1645 * 1646 * RETURNS: 1647 * 0 on success, -errno otherwise. 1648 */ 1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1650 unsigned int flags, u16 *id) 1651 { 1652 struct ata_port *ap = dev->ap; 1653 unsigned int class = *p_class; 1654 struct ata_taskfile tf; 1655 unsigned int err_mask = 0; 1656 const char *reason; 1657 int may_fallback = 1, tried_spinup = 0; 1658 int rc; 1659 1660 if (ata_msg_ctl(ap)) 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1662 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1664 retry: 1665 ata_tf_init(dev, &tf); 1666 1667 switch (class) { 1668 case ATA_DEV_ATA: 1669 tf.command = ATA_CMD_ID_ATA; 1670 break; 1671 case ATA_DEV_ATAPI: 1672 tf.command = ATA_CMD_ID_ATAPI; 1673 break; 1674 default: 1675 rc = -ENODEV; 1676 reason = "unsupported class"; 1677 goto err_out; 1678 } 1679 1680 tf.protocol = ATA_PROT_PIO; 1681 1682 /* Some devices choke if TF registers contain garbage. Make 1683 * sure those are properly initialized. 1684 */ 1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1686 1687 /* Device presence detection is unreliable on some 1688 * controllers. Always poll IDENTIFY if available. 1689 */ 1690 tf.flags |= ATA_TFLAG_POLLING; 1691 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1693 id, sizeof(id[0]) * ATA_ID_WORDS); 1694 if (err_mask) { 1695 if (err_mask & AC_ERR_NODEV_HINT) { 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1697 ap->print_id, dev->devno); 1698 return -ENOENT; 1699 } 1700 1701 /* Device or controller might have reported the wrong 1702 * device class. Give a shot at the other IDENTIFY if 1703 * the current one is aborted by the device. 1704 */ 1705 if (may_fallback && 1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1707 may_fallback = 0; 1708 1709 if (class == ATA_DEV_ATA) 1710 class = ATA_DEV_ATAPI; 1711 else 1712 class = ATA_DEV_ATA; 1713 goto retry; 1714 } 1715 1716 rc = -EIO; 1717 reason = "I/O error"; 1718 goto err_out; 1719 } 1720 1721 /* Falling back doesn't make sense if ID data was read 1722 * successfully at least once. 1723 */ 1724 may_fallback = 0; 1725 1726 swap_buf_le16(id, ATA_ID_WORDS); 1727 1728 /* sanity check */ 1729 rc = -EINVAL; 1730 reason = "device reports invalid type"; 1731 1732 if (class == ATA_DEV_ATA) { 1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1734 goto err_out; 1735 } else { 1736 if (ata_id_is_ata(id)) 1737 goto err_out; 1738 } 1739 1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1741 tried_spinup = 1; 1742 /* 1743 * Drive powered-up in standby mode, and requires a specific 1744 * SET_FEATURES spin-up subcommand before it will accept 1745 * anything other than the original IDENTIFY command. 1746 */ 1747 ata_tf_init(dev, &tf); 1748 tf.command = ATA_CMD_SET_FEATURES; 1749 tf.feature = SETFEATURES_SPINUP; 1750 tf.protocol = ATA_PROT_NODATA; 1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1753 if (err_mask) { 1754 rc = -EIO; 1755 reason = "SPINUP failed"; 1756 goto err_out; 1757 } 1758 /* 1759 * If the drive initially returned incomplete IDENTIFY info, 1760 * we now must reissue the IDENTIFY command. 1761 */ 1762 if (id[2] == 0x37c8) 1763 goto retry; 1764 } 1765 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1767 /* 1768 * The exact sequence expected by certain pre-ATA4 drives is: 1769 * SRST RESET 1770 * IDENTIFY 1771 * INITIALIZE DEVICE PARAMETERS 1772 * anything else.. 1773 * Some drives were very specific about that exact sequence. 1774 */ 1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1777 if (err_mask) { 1778 rc = -EIO; 1779 reason = "INIT_DEV_PARAMS failed"; 1780 goto err_out; 1781 } 1782 1783 /* current CHS translation info (id[53-58]) might be 1784 * changed. reread the identify device info. 1785 */ 1786 flags &= ~ATA_READID_POSTRESET; 1787 goto retry; 1788 } 1789 } 1790 1791 *p_class = class; 1792 1793 return 0; 1794 1795 err_out: 1796 if (ata_msg_warn(ap)) 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1798 "(%s, err_mask=0x%x)\n", reason, err_mask); 1799 return rc; 1800 } 1801 1802 static inline u8 ata_dev_knobble(struct ata_device *dev) 1803 { 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1805 } 1806 1807 static void ata_dev_config_ncq(struct ata_device *dev, 1808 char *desc, size_t desc_sz) 1809 { 1810 struct ata_port *ap = dev->ap; 1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1812 1813 if (!ata_id_has_ncq(dev->id)) { 1814 desc[0] = '\0'; 1815 return; 1816 } 1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { 1818 snprintf(desc, desc_sz, "NCQ (not used)"); 1819 return; 1820 } 1821 if (ap->flags & ATA_FLAG_NCQ) { 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1823 dev->flags |= ATA_DFLAG_NCQ; 1824 } 1825 1826 if (hdepth >= ddepth) 1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1828 else 1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1830 } 1831 1832 /** 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device 1834 * @dev: Target device to configure 1835 * 1836 * Configure @dev according to @dev->id. Generic and low-level 1837 * driver specific fixups are also applied. 1838 * 1839 * LOCKING: 1840 * Kernel thread context (may sleep) 1841 * 1842 * RETURNS: 1843 * 0 on success, -errno otherwise 1844 */ 1845 int ata_dev_configure(struct ata_device *dev) 1846 { 1847 struct ata_port *ap = dev->ap; 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; 1849 const u16 *id = dev->id; 1850 unsigned int xfer_mask; 1851 char revbuf[7]; /* XYZ-99\0 */ 1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1853 char modelbuf[ATA_ID_PROD_LEN+1]; 1854 int rc; 1855 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1858 __FUNCTION__); 1859 return 0; 1860 } 1861 1862 if (ata_msg_probe(ap)) 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1864 1865 /* set _SDD */ 1866 rc = ata_acpi_push_id(dev); 1867 if (rc) { 1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", 1869 rc); 1870 } 1871 1872 /* retrieve and execute the ATA task file of _GTF */ 1873 ata_acpi_exec_tfs(ap); 1874 1875 /* print device capabilities */ 1876 if (ata_msg_probe(ap)) 1877 ata_dev_printk(dev, KERN_DEBUG, 1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1879 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1880 __FUNCTION__, 1881 id[49], id[82], id[83], id[84], 1882 id[85], id[86], id[87], id[88]); 1883 1884 /* initialize to-be-configured parameters */ 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1886 dev->max_sectors = 0; 1887 dev->cdb_len = 0; 1888 dev->n_sectors = 0; 1889 dev->cylinders = 0; 1890 dev->heads = 0; 1891 dev->sectors = 0; 1892 1893 /* 1894 * common ATA, ATAPI feature tests 1895 */ 1896 1897 /* find max transfer mode; for printk only */ 1898 xfer_mask = ata_id_xfermask(id); 1899 1900 if (ata_msg_probe(ap)) 1901 ata_dump_id(id); 1902 1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1905 sizeof(fwrevbuf)); 1906 1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1908 sizeof(modelbuf)); 1909 1910 /* ATA-specific feature tests */ 1911 if (dev->class == ATA_DEV_ATA) { 1912 if (ata_id_is_cfa(id)) { 1913 if (id[162] & 1) /* CPRM may make this media unusable */ 1914 ata_dev_printk(dev, KERN_WARNING, 1915 "supports DRM functions and may " 1916 "not be fully accessable.\n"); 1917 snprintf(revbuf, 7, "CFA"); 1918 } 1919 else 1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1921 1922 dev->n_sectors = ata_id_n_sectors(id); 1923 1924 if (dev->id[59] & 0x100) 1925 dev->multi_count = dev->id[59] & 0xff; 1926 1927 if (ata_id_has_lba(id)) { 1928 const char *lba_desc; 1929 char ncq_desc[20]; 1930 1931 lba_desc = "LBA"; 1932 dev->flags |= ATA_DFLAG_LBA; 1933 if (ata_id_has_lba48(id)) { 1934 dev->flags |= ATA_DFLAG_LBA48; 1935 lba_desc = "LBA48"; 1936 1937 if (dev->n_sectors >= (1UL << 28) && 1938 ata_id_has_flush_ext(id)) 1939 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1940 } 1941 1942 if (ata_id_hpa_enabled(dev->id)) 1943 dev->n_sectors = ata_hpa_resize(dev); 1944 1945 /* config NCQ */ 1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1947 1948 /* print device info to dmesg */ 1949 if (ata_msg_drv(ap) && print_info) { 1950 ata_dev_printk(dev, KERN_INFO, 1951 "%s: %s, %s, max %s\n", 1952 revbuf, modelbuf, fwrevbuf, 1953 ata_mode_string(xfer_mask)); 1954 ata_dev_printk(dev, KERN_INFO, 1955 "%Lu sectors, multi %u: %s %s\n", 1956 (unsigned long long)dev->n_sectors, 1957 dev->multi_count, lba_desc, ncq_desc); 1958 } 1959 } else { 1960 /* CHS */ 1961 1962 /* Default translation */ 1963 dev->cylinders = id[1]; 1964 dev->heads = id[3]; 1965 dev->sectors = id[6]; 1966 1967 if (ata_id_current_chs_valid(id)) { 1968 /* Current CHS translation is valid. */ 1969 dev->cylinders = id[54]; 1970 dev->heads = id[55]; 1971 dev->sectors = id[56]; 1972 } 1973 1974 /* print device info to dmesg */ 1975 if (ata_msg_drv(ap) && print_info) { 1976 ata_dev_printk(dev, KERN_INFO, 1977 "%s: %s, %s, max %s\n", 1978 revbuf, modelbuf, fwrevbuf, 1979 ata_mode_string(xfer_mask)); 1980 ata_dev_printk(dev, KERN_INFO, 1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1982 (unsigned long long)dev->n_sectors, 1983 dev->multi_count, dev->cylinders, 1984 dev->heads, dev->sectors); 1985 } 1986 } 1987 1988 dev->cdb_len = 16; 1989 } 1990 1991 /* ATAPI-specific feature tests */ 1992 else if (dev->class == ATA_DEV_ATAPI) { 1993 char *cdb_intr_string = ""; 1994 1995 rc = atapi_cdb_len(id); 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1997 if (ata_msg_warn(ap)) 1998 ata_dev_printk(dev, KERN_WARNING, 1999 "unsupported CDB len\n"); 2000 rc = -EINVAL; 2001 goto err_out_nosup; 2002 } 2003 dev->cdb_len = (unsigned int) rc; 2004 2005 if (ata_id_cdb_intr(dev->id)) { 2006 dev->flags |= ATA_DFLAG_CDB_INTR; 2007 cdb_intr_string = ", CDB intr"; 2008 } 2009 2010 /* print device info to dmesg */ 2011 if (ata_msg_drv(ap) && print_info) 2012 ata_dev_printk(dev, KERN_INFO, 2013 "ATAPI: %s, %s, max %s%s\n", 2014 modelbuf, fwrevbuf, 2015 ata_mode_string(xfer_mask), 2016 cdb_intr_string); 2017 } 2018 2019 /* determine max_sectors */ 2020 dev->max_sectors = ATA_MAX_SECTORS; 2021 if (dev->flags & ATA_DFLAG_LBA48) 2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2023 2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2025 /* Let the user know. We don't want to disallow opens for 2026 rescue purposes, or in case the vendor is just a blithering 2027 idiot */ 2028 if (print_info) { 2029 ata_dev_printk(dev, KERN_WARNING, 2030 "Drive reports diagnostics failure. This may indicate a drive\n"); 2031 ata_dev_printk(dev, KERN_WARNING, 2032 "fault or invalid emulation. Contact drive vendor for information.\n"); 2033 } 2034 } 2035 2036 /* limit bridge transfers to udma5, 200 sectors */ 2037 if (ata_dev_knobble(dev)) { 2038 if (ata_msg_drv(ap) && print_info) 2039 ata_dev_printk(dev, KERN_INFO, 2040 "applying bridge limits\n"); 2041 dev->udma_mask &= ATA_UDMA5; 2042 dev->max_sectors = ATA_MAX_SECTORS; 2043 } 2044 2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128) 2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2047 dev->max_sectors); 2048 2049 if (ap->ops->dev_config) 2050 ap->ops->dev_config(dev); 2051 2052 if (ata_msg_probe(ap)) 2053 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2054 __FUNCTION__, ata_chk_status(ap)); 2055 return 0; 2056 2057 err_out_nosup: 2058 if (ata_msg_probe(ap)) 2059 ata_dev_printk(dev, KERN_DEBUG, 2060 "%s: EXIT, err\n", __FUNCTION__); 2061 return rc; 2062 } 2063 2064 /** 2065 * ata_cable_40wire - return 40 wire cable type 2066 * @ap: port 2067 * 2068 * Helper method for drivers which want to hardwire 40 wire cable 2069 * detection. 2070 */ 2071 2072 int ata_cable_40wire(struct ata_port *ap) 2073 { 2074 return ATA_CBL_PATA40; 2075 } 2076 2077 /** 2078 * ata_cable_80wire - return 80 wire cable type 2079 * @ap: port 2080 * 2081 * Helper method for drivers which want to hardwire 80 wire cable 2082 * detection. 2083 */ 2084 2085 int ata_cable_80wire(struct ata_port *ap) 2086 { 2087 return ATA_CBL_PATA80; 2088 } 2089 2090 /** 2091 * ata_cable_unknown - return unknown PATA cable. 2092 * @ap: port 2093 * 2094 * Helper method for drivers which have no PATA cable detection. 2095 */ 2096 2097 int ata_cable_unknown(struct ata_port *ap) 2098 { 2099 return ATA_CBL_PATA_UNK; 2100 } 2101 2102 /** 2103 * ata_cable_sata - return SATA cable type 2104 * @ap: port 2105 * 2106 * Helper method for drivers which have SATA cables 2107 */ 2108 2109 int ata_cable_sata(struct ata_port *ap) 2110 { 2111 return ATA_CBL_SATA; 2112 } 2113 2114 /** 2115 * ata_bus_probe - Reset and probe ATA bus 2116 * @ap: Bus to probe 2117 * 2118 * Master ATA bus probing function. Initiates a hardware-dependent 2119 * bus reset, then attempts to identify any devices found on 2120 * the bus. 2121 * 2122 * LOCKING: 2123 * PCI/etc. bus probe sem. 2124 * 2125 * RETURNS: 2126 * Zero on success, negative errno otherwise. 2127 */ 2128 2129 int ata_bus_probe(struct ata_port *ap) 2130 { 2131 unsigned int classes[ATA_MAX_DEVICES]; 2132 int tries[ATA_MAX_DEVICES]; 2133 int i, rc; 2134 struct ata_device *dev; 2135 2136 ata_port_probe(ap); 2137 2138 for (i = 0; i < ATA_MAX_DEVICES; i++) 2139 tries[i] = ATA_PROBE_MAX_TRIES; 2140 2141 retry: 2142 /* reset and determine device classes */ 2143 ap->ops->phy_reset(ap); 2144 2145 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2146 dev = &ap->device[i]; 2147 2148 if (!(ap->flags & ATA_FLAG_DISABLED) && 2149 dev->class != ATA_DEV_UNKNOWN) 2150 classes[dev->devno] = dev->class; 2151 else 2152 classes[dev->devno] = ATA_DEV_NONE; 2153 2154 dev->class = ATA_DEV_UNKNOWN; 2155 } 2156 2157 ata_port_probe(ap); 2158 2159 /* after the reset the device state is PIO 0 and the controller 2160 state is undefined. Record the mode */ 2161 2162 for (i = 0; i < ATA_MAX_DEVICES; i++) 2163 ap->device[i].pio_mode = XFER_PIO_0; 2164 2165 /* read IDENTIFY page and configure devices. We have to do the identify 2166 specific sequence bass-ackwards so that PDIAG- is released by 2167 the slave device */ 2168 2169 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 2170 dev = &ap->device[i]; 2171 2172 if (tries[i]) 2173 dev->class = classes[i]; 2174 2175 if (!ata_dev_enabled(dev)) 2176 continue; 2177 2178 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2179 dev->id); 2180 if (rc) 2181 goto fail; 2182 } 2183 2184 /* Now ask for the cable type as PDIAG- should have been released */ 2185 if (ap->ops->cable_detect) 2186 ap->cbl = ap->ops->cable_detect(ap); 2187 2188 /* After the identify sequence we can now set up the devices. We do 2189 this in the normal order so that the user doesn't get confused */ 2190 2191 for(i = 0; i < ATA_MAX_DEVICES; i++) { 2192 dev = &ap->device[i]; 2193 if (!ata_dev_enabled(dev)) 2194 continue; 2195 2196 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 2197 rc = ata_dev_configure(dev); 2198 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2199 if (rc) 2200 goto fail; 2201 } 2202 2203 /* configure transfer mode */ 2204 rc = ata_set_mode(ap, &dev); 2205 if (rc) 2206 goto fail; 2207 2208 for (i = 0; i < ATA_MAX_DEVICES; i++) 2209 if (ata_dev_enabled(&ap->device[i])) 2210 return 0; 2211 2212 /* no device present, disable port */ 2213 ata_port_disable(ap); 2214 ap->ops->port_disable(ap); 2215 return -ENODEV; 2216 2217 fail: 2218 tries[dev->devno]--; 2219 2220 switch (rc) { 2221 case -EINVAL: 2222 /* eeek, something went very wrong, give up */ 2223 tries[dev->devno] = 0; 2224 break; 2225 2226 case -ENODEV: 2227 /* give it just one more chance */ 2228 tries[dev->devno] = min(tries[dev->devno], 1); 2229 case -EIO: 2230 if (tries[dev->devno] == 1) { 2231 /* This is the last chance, better to slow 2232 * down than lose it. 2233 */ 2234 sata_down_spd_limit(ap); 2235 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2236 } 2237 } 2238 2239 if (!tries[dev->devno]) 2240 ata_dev_disable(dev); 2241 2242 goto retry; 2243 } 2244 2245 /** 2246 * ata_port_probe - Mark port as enabled 2247 * @ap: Port for which we indicate enablement 2248 * 2249 * Modify @ap data structure such that the system 2250 * thinks that the entire port is enabled. 2251 * 2252 * LOCKING: host lock, or some other form of 2253 * serialization. 2254 */ 2255 2256 void ata_port_probe(struct ata_port *ap) 2257 { 2258 ap->flags &= ~ATA_FLAG_DISABLED; 2259 } 2260 2261 /** 2262 * sata_print_link_status - Print SATA link status 2263 * @ap: SATA port to printk link status about 2264 * 2265 * This function prints link speed and status of a SATA link. 2266 * 2267 * LOCKING: 2268 * None. 2269 */ 2270 void sata_print_link_status(struct ata_port *ap) 2271 { 2272 u32 sstatus, scontrol, tmp; 2273 2274 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 2275 return; 2276 sata_scr_read(ap, SCR_CONTROL, &scontrol); 2277 2278 if (ata_port_online(ap)) { 2279 tmp = (sstatus >> 4) & 0xf; 2280 ata_port_printk(ap, KERN_INFO, 2281 "SATA link up %s (SStatus %X SControl %X)\n", 2282 sata_spd_string(tmp), sstatus, scontrol); 2283 } else { 2284 ata_port_printk(ap, KERN_INFO, 2285 "SATA link down (SStatus %X SControl %X)\n", 2286 sstatus, scontrol); 2287 } 2288 } 2289 2290 /** 2291 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2292 * @ap: SATA port associated with target SATA PHY. 2293 * 2294 * This function issues commands to standard SATA Sxxx 2295 * PHY registers, to wake up the phy (and device), and 2296 * clear any reset condition. 2297 * 2298 * LOCKING: 2299 * PCI/etc. bus probe sem. 2300 * 2301 */ 2302 void __sata_phy_reset(struct ata_port *ap) 2303 { 2304 u32 sstatus; 2305 unsigned long timeout = jiffies + (HZ * 5); 2306 2307 if (ap->flags & ATA_FLAG_SATA_RESET) { 2308 /* issue phy wake/reset */ 2309 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2310 /* Couldn't find anything in SATA I/II specs, but 2311 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2312 mdelay(1); 2313 } 2314 /* phy wake/clear reset */ 2315 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2316 2317 /* wait for phy to become ready, if necessary */ 2318 do { 2319 msleep(200); 2320 sata_scr_read(ap, SCR_STATUS, &sstatus); 2321 if ((sstatus & 0xf) != 1) 2322 break; 2323 } while (time_before(jiffies, timeout)); 2324 2325 /* print link status */ 2326 sata_print_link_status(ap); 2327 2328 /* TODO: phy layer with polling, timeouts, etc. */ 2329 if (!ata_port_offline(ap)) 2330 ata_port_probe(ap); 2331 else 2332 ata_port_disable(ap); 2333 2334 if (ap->flags & ATA_FLAG_DISABLED) 2335 return; 2336 2337 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2338 ata_port_disable(ap); 2339 return; 2340 } 2341 2342 ap->cbl = ATA_CBL_SATA; 2343 } 2344 2345 /** 2346 * sata_phy_reset - Reset SATA bus. 2347 * @ap: SATA port associated with target SATA PHY. 2348 * 2349 * This function resets the SATA bus, and then probes 2350 * the bus for devices. 2351 * 2352 * LOCKING: 2353 * PCI/etc. bus probe sem. 2354 * 2355 */ 2356 void sata_phy_reset(struct ata_port *ap) 2357 { 2358 __sata_phy_reset(ap); 2359 if (ap->flags & ATA_FLAG_DISABLED) 2360 return; 2361 ata_bus_reset(ap); 2362 } 2363 2364 /** 2365 * ata_dev_pair - return other device on cable 2366 * @adev: device 2367 * 2368 * Obtain the other device on the same cable, or if none is 2369 * present NULL is returned 2370 */ 2371 2372 struct ata_device *ata_dev_pair(struct ata_device *adev) 2373 { 2374 struct ata_port *ap = adev->ap; 2375 struct ata_device *pair = &ap->device[1 - adev->devno]; 2376 if (!ata_dev_enabled(pair)) 2377 return NULL; 2378 return pair; 2379 } 2380 2381 /** 2382 * ata_port_disable - Disable port. 2383 * @ap: Port to be disabled. 2384 * 2385 * Modify @ap data structure such that the system 2386 * thinks that the entire port is disabled, and should 2387 * never attempt to probe or communicate with devices 2388 * on this port. 2389 * 2390 * LOCKING: host lock, or some other form of 2391 * serialization. 2392 */ 2393 2394 void ata_port_disable(struct ata_port *ap) 2395 { 2396 ap->device[0].class = ATA_DEV_NONE; 2397 ap->device[1].class = ATA_DEV_NONE; 2398 ap->flags |= ATA_FLAG_DISABLED; 2399 } 2400 2401 /** 2402 * sata_down_spd_limit - adjust SATA spd limit downward 2403 * @ap: Port to adjust SATA spd limit for 2404 * 2405 * Adjust SATA spd limit of @ap downward. Note that this 2406 * function only adjusts the limit. The change must be applied 2407 * using sata_set_spd(). 2408 * 2409 * LOCKING: 2410 * Inherited from caller. 2411 * 2412 * RETURNS: 2413 * 0 on success, negative errno on failure 2414 */ 2415 int sata_down_spd_limit(struct ata_port *ap) 2416 { 2417 u32 sstatus, spd, mask; 2418 int rc, highbit; 2419 2420 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2421 if (rc) 2422 return rc; 2423 2424 mask = ap->sata_spd_limit; 2425 if (mask <= 1) 2426 return -EINVAL; 2427 highbit = fls(mask) - 1; 2428 mask &= ~(1 << highbit); 2429 2430 spd = (sstatus >> 4) & 0xf; 2431 if (spd <= 1) 2432 return -EINVAL; 2433 spd--; 2434 mask &= (1 << spd) - 1; 2435 if (!mask) 2436 return -EINVAL; 2437 2438 ap->sata_spd_limit = mask; 2439 2440 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2441 sata_spd_string(fls(mask))); 2442 2443 return 0; 2444 } 2445 2446 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2447 { 2448 u32 spd, limit; 2449 2450 if (ap->sata_spd_limit == UINT_MAX) 2451 limit = 0; 2452 else 2453 limit = fls(ap->sata_spd_limit); 2454 2455 spd = (*scontrol >> 4) & 0xf; 2456 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2457 2458 return spd != limit; 2459 } 2460 2461 /** 2462 * sata_set_spd_needed - is SATA spd configuration needed 2463 * @ap: Port in question 2464 * 2465 * Test whether the spd limit in SControl matches 2466 * @ap->sata_spd_limit. This function is used to determine 2467 * whether hardreset is necessary to apply SATA spd 2468 * configuration. 2469 * 2470 * LOCKING: 2471 * Inherited from caller. 2472 * 2473 * RETURNS: 2474 * 1 if SATA spd configuration is needed, 0 otherwise. 2475 */ 2476 int sata_set_spd_needed(struct ata_port *ap) 2477 { 2478 u32 scontrol; 2479 2480 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2481 return 0; 2482 2483 return __sata_set_spd_needed(ap, &scontrol); 2484 } 2485 2486 /** 2487 * sata_set_spd - set SATA spd according to spd limit 2488 * @ap: Port to set SATA spd for 2489 * 2490 * Set SATA spd of @ap according to sata_spd_limit. 2491 * 2492 * LOCKING: 2493 * Inherited from caller. 2494 * 2495 * RETURNS: 2496 * 0 if spd doesn't need to be changed, 1 if spd has been 2497 * changed. Negative errno if SCR registers are inaccessible. 2498 */ 2499 int sata_set_spd(struct ata_port *ap) 2500 { 2501 u32 scontrol; 2502 int rc; 2503 2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2505 return rc; 2506 2507 if (!__sata_set_spd_needed(ap, &scontrol)) 2508 return 0; 2509 2510 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2511 return rc; 2512 2513 return 1; 2514 } 2515 2516 /* 2517 * This mode timing computation functionality is ported over from 2518 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2519 */ 2520 /* 2521 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2522 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2523 * for UDMA6, which is currently supported only by Maxtor drives. 2524 * 2525 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2526 */ 2527 2528 static const struct ata_timing ata_timing[] = { 2529 2530 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2531 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2532 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2533 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2534 2535 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2536 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2537 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2538 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2539 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2540 2541 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2542 2543 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2544 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2545 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2546 2547 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2548 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2549 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2550 2551 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2552 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2553 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2554 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2555 2556 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2557 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2558 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2559 2560 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2561 2562 { 0xFF } 2563 }; 2564 2565 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2566 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2567 2568 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2569 { 2570 q->setup = EZ(t->setup * 1000, T); 2571 q->act8b = EZ(t->act8b * 1000, T); 2572 q->rec8b = EZ(t->rec8b * 1000, T); 2573 q->cyc8b = EZ(t->cyc8b * 1000, T); 2574 q->active = EZ(t->active * 1000, T); 2575 q->recover = EZ(t->recover * 1000, T); 2576 q->cycle = EZ(t->cycle * 1000, T); 2577 q->udma = EZ(t->udma * 1000, UT); 2578 } 2579 2580 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2581 struct ata_timing *m, unsigned int what) 2582 { 2583 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2584 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2585 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2586 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2587 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2588 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2589 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2590 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2591 } 2592 2593 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2594 { 2595 const struct ata_timing *t; 2596 2597 for (t = ata_timing; t->mode != speed; t++) 2598 if (t->mode == 0xFF) 2599 return NULL; 2600 return t; 2601 } 2602 2603 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2604 struct ata_timing *t, int T, int UT) 2605 { 2606 const struct ata_timing *s; 2607 struct ata_timing p; 2608 2609 /* 2610 * Find the mode. 2611 */ 2612 2613 if (!(s = ata_timing_find_mode(speed))) 2614 return -EINVAL; 2615 2616 memcpy(t, s, sizeof(*s)); 2617 2618 /* 2619 * If the drive is an EIDE drive, it can tell us it needs extended 2620 * PIO/MW_DMA cycle timing. 2621 */ 2622 2623 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2624 memset(&p, 0, sizeof(p)); 2625 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2626 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2627 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2628 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2629 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2630 } 2631 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2632 } 2633 2634 /* 2635 * Convert the timing to bus clock counts. 2636 */ 2637 2638 ata_timing_quantize(t, t, T, UT); 2639 2640 /* 2641 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2642 * S.M.A.R.T * and some other commands. We have to ensure that the 2643 * DMA cycle timing is slower/equal than the fastest PIO timing. 2644 */ 2645 2646 if (speed > XFER_PIO_6) { 2647 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2648 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2649 } 2650 2651 /* 2652 * Lengthen active & recovery time so that cycle time is correct. 2653 */ 2654 2655 if (t->act8b + t->rec8b < t->cyc8b) { 2656 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2657 t->rec8b = t->cyc8b - t->act8b; 2658 } 2659 2660 if (t->active + t->recover < t->cycle) { 2661 t->active += (t->cycle - (t->active + t->recover)) / 2; 2662 t->recover = t->cycle - t->active; 2663 } 2664 2665 /* In a few cases quantisation may produce enough errors to 2666 leave t->cycle too low for the sum of active and recovery 2667 if so we must correct this */ 2668 if (t->active + t->recover > t->cycle) 2669 t->cycle = t->active + t->recover; 2670 2671 return 0; 2672 } 2673 2674 /** 2675 * ata_down_xfermask_limit - adjust dev xfer masks downward 2676 * @dev: Device to adjust xfer masks 2677 * @sel: ATA_DNXFER_* selector 2678 * 2679 * Adjust xfer masks of @dev downward. Note that this function 2680 * does not apply the change. Invoking ata_set_mode() afterwards 2681 * will apply the limit. 2682 * 2683 * LOCKING: 2684 * Inherited from caller. 2685 * 2686 * RETURNS: 2687 * 0 on success, negative errno on failure 2688 */ 2689 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2690 { 2691 char buf[32]; 2692 unsigned int orig_mask, xfer_mask; 2693 unsigned int pio_mask, mwdma_mask, udma_mask; 2694 int quiet, highbit; 2695 2696 quiet = !!(sel & ATA_DNXFER_QUIET); 2697 sel &= ~ATA_DNXFER_QUIET; 2698 2699 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2700 dev->mwdma_mask, 2701 dev->udma_mask); 2702 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2703 2704 switch (sel) { 2705 case ATA_DNXFER_PIO: 2706 highbit = fls(pio_mask) - 1; 2707 pio_mask &= ~(1 << highbit); 2708 break; 2709 2710 case ATA_DNXFER_DMA: 2711 if (udma_mask) { 2712 highbit = fls(udma_mask) - 1; 2713 udma_mask &= ~(1 << highbit); 2714 if (!udma_mask) 2715 return -ENOENT; 2716 } else if (mwdma_mask) { 2717 highbit = fls(mwdma_mask) - 1; 2718 mwdma_mask &= ~(1 << highbit); 2719 if (!mwdma_mask) 2720 return -ENOENT; 2721 } 2722 break; 2723 2724 case ATA_DNXFER_40C: 2725 udma_mask &= ATA_UDMA_MASK_40C; 2726 break; 2727 2728 case ATA_DNXFER_FORCE_PIO0: 2729 pio_mask &= 1; 2730 case ATA_DNXFER_FORCE_PIO: 2731 mwdma_mask = 0; 2732 udma_mask = 0; 2733 break; 2734 2735 default: 2736 BUG(); 2737 } 2738 2739 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2740 2741 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2742 return -ENOENT; 2743 2744 if (!quiet) { 2745 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2746 snprintf(buf, sizeof(buf), "%s:%s", 2747 ata_mode_string(xfer_mask), 2748 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2749 else 2750 snprintf(buf, sizeof(buf), "%s", 2751 ata_mode_string(xfer_mask)); 2752 2753 ata_dev_printk(dev, KERN_WARNING, 2754 "limiting speed to %s\n", buf); 2755 } 2756 2757 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2758 &dev->udma_mask); 2759 2760 return 0; 2761 } 2762 2763 static int ata_dev_set_mode(struct ata_device *dev) 2764 { 2765 struct ata_eh_context *ehc = &dev->ap->eh_context; 2766 unsigned int err_mask; 2767 int rc; 2768 2769 dev->flags &= ~ATA_DFLAG_PIO; 2770 if (dev->xfer_shift == ATA_SHIFT_PIO) 2771 dev->flags |= ATA_DFLAG_PIO; 2772 2773 err_mask = ata_dev_set_xfermode(dev); 2774 /* Old CFA may refuse this command, which is just fine */ 2775 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2776 err_mask &= ~AC_ERR_DEV; 2777 2778 if (err_mask) { 2779 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2780 "(err_mask=0x%x)\n", err_mask); 2781 return -EIO; 2782 } 2783 2784 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2785 rc = ata_dev_revalidate(dev, 0); 2786 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2787 if (rc) 2788 return rc; 2789 2790 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2791 dev->xfer_shift, (int)dev->xfer_mode); 2792 2793 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2794 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2795 return 0; 2796 } 2797 2798 /** 2799 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2800 * @ap: port on which timings will be programmed 2801 * @r_failed_dev: out paramter for failed device 2802 * 2803 * Standard implementation of the function used to tune and set 2804 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2805 * ata_dev_set_mode() fails, pointer to the failing device is 2806 * returned in @r_failed_dev. 2807 * 2808 * LOCKING: 2809 * PCI/etc. bus probe sem. 2810 * 2811 * RETURNS: 2812 * 0 on success, negative errno otherwise 2813 */ 2814 2815 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2816 { 2817 struct ata_device *dev; 2818 int i, rc = 0, used_dma = 0, found = 0; 2819 2820 2821 /* step 1: calculate xfer_mask */ 2822 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2823 unsigned int pio_mask, dma_mask; 2824 2825 dev = &ap->device[i]; 2826 2827 if (!ata_dev_enabled(dev)) 2828 continue; 2829 2830 ata_dev_xfermask(dev); 2831 2832 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2833 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2834 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2835 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2836 2837 found = 1; 2838 if (dev->dma_mode) 2839 used_dma = 1; 2840 } 2841 if (!found) 2842 goto out; 2843 2844 /* step 2: always set host PIO timings */ 2845 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2846 dev = &ap->device[i]; 2847 if (!ata_dev_enabled(dev)) 2848 continue; 2849 2850 if (!dev->pio_mode) { 2851 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2852 rc = -EINVAL; 2853 goto out; 2854 } 2855 2856 dev->xfer_mode = dev->pio_mode; 2857 dev->xfer_shift = ATA_SHIFT_PIO; 2858 if (ap->ops->set_piomode) 2859 ap->ops->set_piomode(ap, dev); 2860 } 2861 2862 /* step 3: set host DMA timings */ 2863 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2864 dev = &ap->device[i]; 2865 2866 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2867 continue; 2868 2869 dev->xfer_mode = dev->dma_mode; 2870 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2871 if (ap->ops->set_dmamode) 2872 ap->ops->set_dmamode(ap, dev); 2873 } 2874 2875 /* step 4: update devices' xfer mode */ 2876 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2877 dev = &ap->device[i]; 2878 2879 /* don't update suspended devices' xfer mode */ 2880 if (!ata_dev_enabled(dev)) 2881 continue; 2882 2883 rc = ata_dev_set_mode(dev); 2884 if (rc) 2885 goto out; 2886 } 2887 2888 /* Record simplex status. If we selected DMA then the other 2889 * host channels are not permitted to do so. 2890 */ 2891 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2892 ap->host->simplex_claimed = ap; 2893 2894 out: 2895 if (rc) 2896 *r_failed_dev = dev; 2897 return rc; 2898 } 2899 2900 /** 2901 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2902 * @ap: port on which timings will be programmed 2903 * @r_failed_dev: out paramter for failed device 2904 * 2905 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2906 * ata_set_mode() fails, pointer to the failing device is 2907 * returned in @r_failed_dev. 2908 * 2909 * LOCKING: 2910 * PCI/etc. bus probe sem. 2911 * 2912 * RETURNS: 2913 * 0 on success, negative errno otherwise 2914 */ 2915 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2916 { 2917 /* has private set_mode? */ 2918 if (ap->ops->set_mode) 2919 return ap->ops->set_mode(ap, r_failed_dev); 2920 return ata_do_set_mode(ap, r_failed_dev); 2921 } 2922 2923 /** 2924 * ata_tf_to_host - issue ATA taskfile to host controller 2925 * @ap: port to which command is being issued 2926 * @tf: ATA taskfile register set 2927 * 2928 * Issues ATA taskfile register set to ATA host controller, 2929 * with proper synchronization with interrupt handler and 2930 * other threads. 2931 * 2932 * LOCKING: 2933 * spin_lock_irqsave(host lock) 2934 */ 2935 2936 static inline void ata_tf_to_host(struct ata_port *ap, 2937 const struct ata_taskfile *tf) 2938 { 2939 ap->ops->tf_load(ap, tf); 2940 ap->ops->exec_command(ap, tf); 2941 } 2942 2943 /** 2944 * ata_busy_sleep - sleep until BSY clears, or timeout 2945 * @ap: port containing status register to be polled 2946 * @tmout_pat: impatience timeout 2947 * @tmout: overall timeout 2948 * 2949 * Sleep until ATA Status register bit BSY clears, 2950 * or a timeout occurs. 2951 * 2952 * LOCKING: 2953 * Kernel thread context (may sleep). 2954 * 2955 * RETURNS: 2956 * 0 on success, -errno otherwise. 2957 */ 2958 int ata_busy_sleep(struct ata_port *ap, 2959 unsigned long tmout_pat, unsigned long tmout) 2960 { 2961 unsigned long timer_start, timeout; 2962 u8 status; 2963 2964 status = ata_busy_wait(ap, ATA_BUSY, 300); 2965 timer_start = jiffies; 2966 timeout = timer_start + tmout_pat; 2967 while (status != 0xff && (status & ATA_BUSY) && 2968 time_before(jiffies, timeout)) { 2969 msleep(50); 2970 status = ata_busy_wait(ap, ATA_BUSY, 3); 2971 } 2972 2973 if (status != 0xff && (status & ATA_BUSY)) 2974 ata_port_printk(ap, KERN_WARNING, 2975 "port is slow to respond, please be patient " 2976 "(Status 0x%x)\n", status); 2977 2978 timeout = timer_start + tmout; 2979 while (status != 0xff && (status & ATA_BUSY) && 2980 time_before(jiffies, timeout)) { 2981 msleep(50); 2982 status = ata_chk_status(ap); 2983 } 2984 2985 if (status == 0xff) 2986 return -ENODEV; 2987 2988 if (status & ATA_BUSY) { 2989 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2990 "(%lu secs, Status 0x%x)\n", 2991 tmout / HZ, status); 2992 return -EBUSY; 2993 } 2994 2995 return 0; 2996 } 2997 2998 /** 2999 * ata_wait_ready - sleep until BSY clears, or timeout 3000 * @ap: port containing status register to be polled 3001 * @deadline: deadline jiffies for the operation 3002 * 3003 * Sleep until ATA Status register bit BSY clears, or timeout 3004 * occurs. 3005 * 3006 * LOCKING: 3007 * Kernel thread context (may sleep). 3008 * 3009 * RETURNS: 3010 * 0 on success, -errno otherwise. 3011 */ 3012 int ata_wait_ready(struct ata_port *ap, unsigned long deadline) 3013 { 3014 unsigned long start = jiffies; 3015 int warned = 0; 3016 3017 while (1) { 3018 u8 status = ata_chk_status(ap); 3019 unsigned long now = jiffies; 3020 3021 if (!(status & ATA_BUSY)) 3022 return 0; 3023 if (!ata_port_online(ap) && status == 0xff) 3024 return -ENODEV; 3025 if (time_after(now, deadline)) 3026 return -EBUSY; 3027 3028 if (!warned && time_after(now, start + 5 * HZ) && 3029 (deadline - now > 3 * HZ)) { 3030 ata_port_printk(ap, KERN_WARNING, 3031 "port is slow to respond, please be patient " 3032 "(Status 0x%x)\n", status); 3033 warned = 1; 3034 } 3035 3036 msleep(50); 3037 } 3038 } 3039 3040 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, 3041 unsigned long deadline) 3042 { 3043 struct ata_ioports *ioaddr = &ap->ioaddr; 3044 unsigned int dev0 = devmask & (1 << 0); 3045 unsigned int dev1 = devmask & (1 << 1); 3046 int rc, ret = 0; 3047 3048 /* if device 0 was found in ata_devchk, wait for its 3049 * BSY bit to clear 3050 */ 3051 if (dev0) { 3052 rc = ata_wait_ready(ap, deadline); 3053 if (rc) { 3054 if (rc != -ENODEV) 3055 return rc; 3056 ret = rc; 3057 } 3058 } 3059 3060 /* if device 1 was found in ata_devchk, wait for register 3061 * access briefly, then wait for BSY to clear. 3062 */ 3063 if (dev1) { 3064 int i; 3065 3066 ap->ops->dev_select(ap, 1); 3067 3068 /* Wait for register access. Some ATAPI devices fail 3069 * to set nsect/lbal after reset, so don't waste too 3070 * much time on it. We're gonna wait for !BSY anyway. 3071 */ 3072 for (i = 0; i < 2; i++) { 3073 u8 nsect, lbal; 3074 3075 nsect = ioread8(ioaddr->nsect_addr); 3076 lbal = ioread8(ioaddr->lbal_addr); 3077 if ((nsect == 1) && (lbal == 1)) 3078 break; 3079 msleep(50); /* give drive a breather */ 3080 } 3081 3082 rc = ata_wait_ready(ap, deadline); 3083 if (rc) { 3084 if (rc != -ENODEV) 3085 return rc; 3086 ret = rc; 3087 } 3088 } 3089 3090 /* is all this really necessary? */ 3091 ap->ops->dev_select(ap, 0); 3092 if (dev1) 3093 ap->ops->dev_select(ap, 1); 3094 if (dev0) 3095 ap->ops->dev_select(ap, 0); 3096 3097 return ret; 3098 } 3099 3100 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 3101 unsigned long deadline) 3102 { 3103 struct ata_ioports *ioaddr = &ap->ioaddr; 3104 3105 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3106 3107 /* software reset. causes dev0 to be selected */ 3108 iowrite8(ap->ctl, ioaddr->ctl_addr); 3109 udelay(20); /* FIXME: flush */ 3110 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3111 udelay(20); /* FIXME: flush */ 3112 iowrite8(ap->ctl, ioaddr->ctl_addr); 3113 3114 /* spec mandates ">= 2ms" before checking status. 3115 * We wait 150ms, because that was the magic delay used for 3116 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3117 * between when the ATA command register is written, and then 3118 * status is checked. Because waiting for "a while" before 3119 * checking status is fine, post SRST, we perform this magic 3120 * delay here as well. 3121 * 3122 * Old drivers/ide uses the 2mS rule and then waits for ready 3123 */ 3124 msleep(150); 3125 3126 /* Before we perform post reset processing we want to see if 3127 * the bus shows 0xFF because the odd clown forgets the D7 3128 * pulldown resistor. 3129 */ 3130 if (ata_check_status(ap) == 0xFF) 3131 return -ENODEV; 3132 3133 return ata_bus_post_reset(ap, devmask, deadline); 3134 } 3135 3136 /** 3137 * ata_bus_reset - reset host port and associated ATA channel 3138 * @ap: port to reset 3139 * 3140 * This is typically the first time we actually start issuing 3141 * commands to the ATA channel. We wait for BSY to clear, then 3142 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3143 * result. Determine what devices, if any, are on the channel 3144 * by looking at the device 0/1 error register. Look at the signature 3145 * stored in each device's taskfile registers, to determine if 3146 * the device is ATA or ATAPI. 3147 * 3148 * LOCKING: 3149 * PCI/etc. bus probe sem. 3150 * Obtains host lock. 3151 * 3152 * SIDE EFFECTS: 3153 * Sets ATA_FLAG_DISABLED if bus reset fails. 3154 */ 3155 3156 void ata_bus_reset(struct ata_port *ap) 3157 { 3158 struct ata_ioports *ioaddr = &ap->ioaddr; 3159 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3160 u8 err; 3161 unsigned int dev0, dev1 = 0, devmask = 0; 3162 int rc; 3163 3164 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3165 3166 /* determine if device 0/1 are present */ 3167 if (ap->flags & ATA_FLAG_SATA_RESET) 3168 dev0 = 1; 3169 else { 3170 dev0 = ata_devchk(ap, 0); 3171 if (slave_possible) 3172 dev1 = ata_devchk(ap, 1); 3173 } 3174 3175 if (dev0) 3176 devmask |= (1 << 0); 3177 if (dev1) 3178 devmask |= (1 << 1); 3179 3180 /* select device 0 again */ 3181 ap->ops->dev_select(ap, 0); 3182 3183 /* issue bus reset */ 3184 if (ap->flags & ATA_FLAG_SRST) { 3185 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 3186 if (rc && rc != -ENODEV) 3187 goto err_out; 3188 } 3189 3190 /* 3191 * determine by signature whether we have ATA or ATAPI devices 3192 */ 3193 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 3194 if ((slave_possible) && (err != 0x81)) 3195 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 3196 3197 /* re-enable interrupts */ 3198 ap->ops->irq_on(ap); 3199 3200 /* is double-select really necessary? */ 3201 if (ap->device[1].class != ATA_DEV_NONE) 3202 ap->ops->dev_select(ap, 1); 3203 if (ap->device[0].class != ATA_DEV_NONE) 3204 ap->ops->dev_select(ap, 0); 3205 3206 /* if no devices were detected, disable this port */ 3207 if ((ap->device[0].class == ATA_DEV_NONE) && 3208 (ap->device[1].class == ATA_DEV_NONE)) 3209 goto err_out; 3210 3211 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3212 /* set up device control for ATA_FLAG_SATA_RESET */ 3213 iowrite8(ap->ctl, ioaddr->ctl_addr); 3214 } 3215 3216 DPRINTK("EXIT\n"); 3217 return; 3218 3219 err_out: 3220 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3221 ap->ops->port_disable(ap); 3222 3223 DPRINTK("EXIT\n"); 3224 } 3225 3226 /** 3227 * sata_phy_debounce - debounce SATA phy status 3228 * @ap: ATA port to debounce SATA phy status for 3229 * @params: timing parameters { interval, duratinon, timeout } in msec 3230 * @deadline: deadline jiffies for the operation 3231 * 3232 * Make sure SStatus of @ap reaches stable state, determined by 3233 * holding the same value where DET is not 1 for @duration polled 3234 * every @interval, before @timeout. Timeout constraints the 3235 * beginning of the stable state. Because DET gets stuck at 1 on 3236 * some controllers after hot unplugging, this functions waits 3237 * until timeout then returns 0 if DET is stable at 1. 3238 * 3239 * @timeout is further limited by @deadline. The sooner of the 3240 * two is used. 3241 * 3242 * LOCKING: 3243 * Kernel thread context (may sleep) 3244 * 3245 * RETURNS: 3246 * 0 on success, -errno on failure. 3247 */ 3248 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params, 3249 unsigned long deadline) 3250 { 3251 unsigned long interval_msec = params[0]; 3252 unsigned long duration = msecs_to_jiffies(params[1]); 3253 unsigned long last_jiffies, t; 3254 u32 last, cur; 3255 int rc; 3256 3257 t = jiffies + msecs_to_jiffies(params[2]); 3258 if (time_before(t, deadline)) 3259 deadline = t; 3260 3261 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3262 return rc; 3263 cur &= 0xf; 3264 3265 last = cur; 3266 last_jiffies = jiffies; 3267 3268 while (1) { 3269 msleep(interval_msec); 3270 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3271 return rc; 3272 cur &= 0xf; 3273 3274 /* DET stable? */ 3275 if (cur == last) { 3276 if (cur == 1 && time_before(jiffies, deadline)) 3277 continue; 3278 if (time_after(jiffies, last_jiffies + duration)) 3279 return 0; 3280 continue; 3281 } 3282 3283 /* unstable, start over */ 3284 last = cur; 3285 last_jiffies = jiffies; 3286 3287 /* check deadline */ 3288 if (time_after(jiffies, deadline)) 3289 return -EBUSY; 3290 } 3291 } 3292 3293 /** 3294 * sata_phy_resume - resume SATA phy 3295 * @ap: ATA port to resume SATA phy for 3296 * @params: timing parameters { interval, duratinon, timeout } in msec 3297 * @deadline: deadline jiffies for the operation 3298 * 3299 * Resume SATA phy of @ap and debounce it. 3300 * 3301 * LOCKING: 3302 * Kernel thread context (may sleep) 3303 * 3304 * RETURNS: 3305 * 0 on success, -errno on failure. 3306 */ 3307 int sata_phy_resume(struct ata_port *ap, const unsigned long *params, 3308 unsigned long deadline) 3309 { 3310 u32 scontrol; 3311 int rc; 3312 3313 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3314 return rc; 3315 3316 scontrol = (scontrol & 0x0f0) | 0x300; 3317 3318 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3319 return rc; 3320 3321 /* Some PHYs react badly if SStatus is pounded immediately 3322 * after resuming. Delay 200ms before debouncing. 3323 */ 3324 msleep(200); 3325 3326 return sata_phy_debounce(ap, params, deadline); 3327 } 3328 3329 /** 3330 * ata_std_prereset - prepare for reset 3331 * @ap: ATA port to be reset 3332 * @deadline: deadline jiffies for the operation 3333 * 3334 * @ap is about to be reset. Initialize it. Failure from 3335 * prereset makes libata abort whole reset sequence and give up 3336 * that port, so prereset should be best-effort. It does its 3337 * best to prepare for reset sequence but if things go wrong, it 3338 * should just whine, not fail. 3339 * 3340 * LOCKING: 3341 * Kernel thread context (may sleep) 3342 * 3343 * RETURNS: 3344 * 0 on success, -errno otherwise. 3345 */ 3346 int ata_std_prereset(struct ata_port *ap, unsigned long deadline) 3347 { 3348 struct ata_eh_context *ehc = &ap->eh_context; 3349 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3350 int rc; 3351 3352 /* handle link resume */ 3353 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3354 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 3355 ehc->i.action |= ATA_EH_HARDRESET; 3356 3357 /* if we're about to do hardreset, nothing more to do */ 3358 if (ehc->i.action & ATA_EH_HARDRESET) 3359 return 0; 3360 3361 /* if SATA, resume phy */ 3362 if (ap->cbl == ATA_CBL_SATA) { 3363 rc = sata_phy_resume(ap, timing, deadline); 3364 /* whine about phy resume failure but proceed */ 3365 if (rc && rc != -EOPNOTSUPP) 3366 ata_port_printk(ap, KERN_WARNING, "failed to resume " 3367 "link for reset (errno=%d)\n", rc); 3368 } 3369 3370 /* Wait for !BSY if the controller can wait for the first D2H 3371 * Reg FIS and we don't know that no device is attached. 3372 */ 3373 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) { 3374 rc = ata_wait_ready(ap, deadline); 3375 if (rc && rc != -ENODEV) { 3376 ata_port_printk(ap, KERN_WARNING, "device not ready " 3377 "(errno=%d), forcing hardreset\n", rc); 3378 ehc->i.action |= ATA_EH_HARDRESET; 3379 } 3380 } 3381 3382 return 0; 3383 } 3384 3385 /** 3386 * ata_std_softreset - reset host port via ATA SRST 3387 * @ap: port to reset 3388 * @classes: resulting classes of attached devices 3389 * @deadline: deadline jiffies for the operation 3390 * 3391 * Reset host port using ATA SRST. 3392 * 3393 * LOCKING: 3394 * Kernel thread context (may sleep) 3395 * 3396 * RETURNS: 3397 * 0 on success, -errno otherwise. 3398 */ 3399 int ata_std_softreset(struct ata_port *ap, unsigned int *classes, 3400 unsigned long deadline) 3401 { 3402 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3403 unsigned int devmask = 0; 3404 int rc; 3405 u8 err; 3406 3407 DPRINTK("ENTER\n"); 3408 3409 if (ata_port_offline(ap)) { 3410 classes[0] = ATA_DEV_NONE; 3411 goto out; 3412 } 3413 3414 /* determine if device 0/1 are present */ 3415 if (ata_devchk(ap, 0)) 3416 devmask |= (1 << 0); 3417 if (slave_possible && ata_devchk(ap, 1)) 3418 devmask |= (1 << 1); 3419 3420 /* select device 0 again */ 3421 ap->ops->dev_select(ap, 0); 3422 3423 /* issue bus reset */ 3424 DPRINTK("about to softreset, devmask=%x\n", devmask); 3425 rc = ata_bus_softreset(ap, devmask, deadline); 3426 /* if link is occupied, -ENODEV too is an error */ 3427 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) { 3428 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc); 3429 return rc; 3430 } 3431 3432 /* determine by signature whether we have ATA or ATAPI devices */ 3433 classes[0] = ata_dev_try_classify(ap, 0, &err); 3434 if (slave_possible && err != 0x81) 3435 classes[1] = ata_dev_try_classify(ap, 1, &err); 3436 3437 out: 3438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3439 return 0; 3440 } 3441 3442 /** 3443 * sata_port_hardreset - reset port via SATA phy reset 3444 * @ap: port to reset 3445 * @timing: timing parameters { interval, duratinon, timeout } in msec 3446 * @deadline: deadline jiffies for the operation 3447 * 3448 * SATA phy-reset host port using DET bits of SControl register. 3449 * 3450 * LOCKING: 3451 * Kernel thread context (may sleep) 3452 * 3453 * RETURNS: 3454 * 0 on success, -errno otherwise. 3455 */ 3456 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing, 3457 unsigned long deadline) 3458 { 3459 u32 scontrol; 3460 int rc; 3461 3462 DPRINTK("ENTER\n"); 3463 3464 if (sata_set_spd_needed(ap)) { 3465 /* SATA spec says nothing about how to reconfigure 3466 * spd. To be on the safe side, turn off phy during 3467 * reconfiguration. This works for at least ICH7 AHCI 3468 * and Sil3124. 3469 */ 3470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3471 goto out; 3472 3473 scontrol = (scontrol & 0x0f0) | 0x304; 3474 3475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3476 goto out; 3477 3478 sata_set_spd(ap); 3479 } 3480 3481 /* issue phy wake/reset */ 3482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3483 goto out; 3484 3485 scontrol = (scontrol & 0x0f0) | 0x301; 3486 3487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3488 goto out; 3489 3490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3491 * 10.4.2 says at least 1 ms. 3492 */ 3493 msleep(1); 3494 3495 /* bring phy back */ 3496 rc = sata_phy_resume(ap, timing, deadline); 3497 out: 3498 DPRINTK("EXIT, rc=%d\n", rc); 3499 return rc; 3500 } 3501 3502 /** 3503 * sata_std_hardreset - reset host port via SATA phy reset 3504 * @ap: port to reset 3505 * @class: resulting class of attached device 3506 * @deadline: deadline jiffies for the operation 3507 * 3508 * SATA phy-reset host port using DET bits of SControl register, 3509 * wait for !BSY and classify the attached device. 3510 * 3511 * LOCKING: 3512 * Kernel thread context (may sleep) 3513 * 3514 * RETURNS: 3515 * 0 on success, -errno otherwise. 3516 */ 3517 int sata_std_hardreset(struct ata_port *ap, unsigned int *class, 3518 unsigned long deadline) 3519 { 3520 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3521 int rc; 3522 3523 DPRINTK("ENTER\n"); 3524 3525 /* do hardreset */ 3526 rc = sata_port_hardreset(ap, timing, deadline); 3527 if (rc) { 3528 ata_port_printk(ap, KERN_ERR, 3529 "COMRESET failed (errno=%d)\n", rc); 3530 return rc; 3531 } 3532 3533 /* TODO: phy layer with polling, timeouts, etc. */ 3534 if (ata_port_offline(ap)) { 3535 *class = ATA_DEV_NONE; 3536 DPRINTK("EXIT, link offline\n"); 3537 return 0; 3538 } 3539 3540 /* wait a while before checking status, see SRST for more info */ 3541 msleep(150); 3542 3543 rc = ata_wait_ready(ap, deadline); 3544 /* link occupied, -ENODEV too is an error */ 3545 if (rc) { 3546 ata_port_printk(ap, KERN_ERR, 3547 "COMRESET failed (errno=%d)\n", rc); 3548 return rc; 3549 } 3550 3551 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3552 3553 *class = ata_dev_try_classify(ap, 0, NULL); 3554 3555 DPRINTK("EXIT, class=%u\n", *class); 3556 return 0; 3557 } 3558 3559 /** 3560 * ata_std_postreset - standard postreset callback 3561 * @ap: the target ata_port 3562 * @classes: classes of attached devices 3563 * 3564 * This function is invoked after a successful reset. Note that 3565 * the device might have been reset more than once using 3566 * different reset methods before postreset is invoked. 3567 * 3568 * LOCKING: 3569 * Kernel thread context (may sleep) 3570 */ 3571 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3572 { 3573 u32 serror; 3574 3575 DPRINTK("ENTER\n"); 3576 3577 /* print link status */ 3578 sata_print_link_status(ap); 3579 3580 /* clear SError */ 3581 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3582 sata_scr_write(ap, SCR_ERROR, serror); 3583 3584 /* re-enable interrupts */ 3585 if (!ap->ops->error_handler) 3586 ap->ops->irq_on(ap); 3587 3588 /* is double-select really necessary? */ 3589 if (classes[0] != ATA_DEV_NONE) 3590 ap->ops->dev_select(ap, 1); 3591 if (classes[1] != ATA_DEV_NONE) 3592 ap->ops->dev_select(ap, 0); 3593 3594 /* bail out if no device is present */ 3595 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3596 DPRINTK("EXIT, no device\n"); 3597 return; 3598 } 3599 3600 /* set up device control */ 3601 if (ap->ioaddr.ctl_addr) 3602 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3603 3604 DPRINTK("EXIT\n"); 3605 } 3606 3607 /** 3608 * ata_dev_same_device - Determine whether new ID matches configured device 3609 * @dev: device to compare against 3610 * @new_class: class of the new device 3611 * @new_id: IDENTIFY page of the new device 3612 * 3613 * Compare @new_class and @new_id against @dev and determine 3614 * whether @dev is the device indicated by @new_class and 3615 * @new_id. 3616 * 3617 * LOCKING: 3618 * None. 3619 * 3620 * RETURNS: 3621 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3622 */ 3623 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3624 const u16 *new_id) 3625 { 3626 const u16 *old_id = dev->id; 3627 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3628 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3629 3630 if (dev->class != new_class) { 3631 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3632 dev->class, new_class); 3633 return 0; 3634 } 3635 3636 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3637 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3638 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3639 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3640 3641 if (strcmp(model[0], model[1])) { 3642 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3643 "'%s' != '%s'\n", model[0], model[1]); 3644 return 0; 3645 } 3646 3647 if (strcmp(serial[0], serial[1])) { 3648 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3649 "'%s' != '%s'\n", serial[0], serial[1]); 3650 return 0; 3651 } 3652 3653 return 1; 3654 } 3655 3656 /** 3657 * ata_dev_reread_id - Re-read IDENTIFY data 3658 * @dev: target ATA device 3659 * @readid_flags: read ID flags 3660 * 3661 * Re-read IDENTIFY page and make sure @dev is still attached to 3662 * the port. 3663 * 3664 * LOCKING: 3665 * Kernel thread context (may sleep) 3666 * 3667 * RETURNS: 3668 * 0 on success, negative errno otherwise 3669 */ 3670 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3671 { 3672 unsigned int class = dev->class; 3673 u16 *id = (void *)dev->ap->sector_buf; 3674 int rc; 3675 3676 /* read ID data */ 3677 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3678 if (rc) 3679 return rc; 3680 3681 /* is the device still there? */ 3682 if (!ata_dev_same_device(dev, class, id)) 3683 return -ENODEV; 3684 3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3686 return 0; 3687 } 3688 3689 /** 3690 * ata_dev_revalidate - Revalidate ATA device 3691 * @dev: device to revalidate 3692 * @readid_flags: read ID flags 3693 * 3694 * Re-read IDENTIFY page, make sure @dev is still attached to the 3695 * port and reconfigure it according to the new IDENTIFY page. 3696 * 3697 * LOCKING: 3698 * Kernel thread context (may sleep) 3699 * 3700 * RETURNS: 3701 * 0 on success, negative errno otherwise 3702 */ 3703 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3704 { 3705 u64 n_sectors = dev->n_sectors; 3706 int rc; 3707 3708 if (!ata_dev_enabled(dev)) 3709 return -ENODEV; 3710 3711 /* re-read ID */ 3712 rc = ata_dev_reread_id(dev, readid_flags); 3713 if (rc) 3714 goto fail; 3715 3716 /* configure device according to the new ID */ 3717 rc = ata_dev_configure(dev); 3718 if (rc) 3719 goto fail; 3720 3721 /* verify n_sectors hasn't changed */ 3722 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) { 3723 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3724 "%llu != %llu\n", 3725 (unsigned long long)n_sectors, 3726 (unsigned long long)dev->n_sectors); 3727 rc = -ENODEV; 3728 goto fail; 3729 } 3730 3731 return 0; 3732 3733 fail: 3734 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3735 return rc; 3736 } 3737 3738 struct ata_blacklist_entry { 3739 const char *model_num; 3740 const char *model_rev; 3741 unsigned long horkage; 3742 }; 3743 3744 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3745 /* Devices with DMA related problems under Linux */ 3746 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3747 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3748 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3749 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3750 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3751 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3752 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3753 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3754 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3755 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3756 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3757 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3758 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3759 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3760 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3761 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3762 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3763 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3764 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3765 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3766 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3767 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3768 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3769 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3770 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3771 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3772 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3773 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3774 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3775 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3776 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */ 3777 3778 /* Weird ATAPI devices */ 3779 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3780 3781 /* Devices we expect to fail diagnostics */ 3782 3783 /* Devices where NCQ should be avoided */ 3784 /* NCQ is slow */ 3785 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3786 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3787 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3788 /* NCQ is broken */ 3789 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3790 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ }, 3791 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3792 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3793 /* Blacklist entries taken from Silicon Image 3124/3132 3794 Windows driver .inf file - also several Linux problem reports */ 3795 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3796 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3797 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3798 /* Drives which do spurious command completion */ 3799 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, }, 3800 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, }, 3801 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, }, 3802 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3803 3804 /* Devices with NCQ limits */ 3805 3806 /* End Marker */ 3807 { } 3808 }; 3809 3810 unsigned long ata_device_blacklisted(const struct ata_device *dev) 3811 { 3812 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3813 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3814 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3815 3816 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3817 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3818 3819 while (ad->model_num) { 3820 if (!strcmp(ad->model_num, model_num)) { 3821 if (ad->model_rev == NULL) 3822 return ad->horkage; 3823 if (!strcmp(ad->model_rev, model_rev)) 3824 return ad->horkage; 3825 } 3826 ad++; 3827 } 3828 return 0; 3829 } 3830 3831 static int ata_dma_blacklisted(const struct ata_device *dev) 3832 { 3833 /* We don't support polling DMA. 3834 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3835 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3836 */ 3837 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3838 (dev->flags & ATA_DFLAG_CDB_INTR)) 3839 return 1; 3840 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; 3841 } 3842 3843 /** 3844 * ata_dev_xfermask - Compute supported xfermask of the given device 3845 * @dev: Device to compute xfermask for 3846 * 3847 * Compute supported xfermask of @dev and store it in 3848 * dev->*_mask. This function is responsible for applying all 3849 * known limits including host controller limits, device 3850 * blacklist, etc... 3851 * 3852 * LOCKING: 3853 * None. 3854 */ 3855 static void ata_dev_xfermask(struct ata_device *dev) 3856 { 3857 struct ata_port *ap = dev->ap; 3858 struct ata_host *host = ap->host; 3859 unsigned long xfer_mask; 3860 3861 /* controller modes available */ 3862 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3863 ap->mwdma_mask, ap->udma_mask); 3864 3865 /* drive modes available */ 3866 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3867 dev->mwdma_mask, dev->udma_mask); 3868 xfer_mask &= ata_id_xfermask(dev->id); 3869 3870 /* 3871 * CFA Advanced TrueIDE timings are not allowed on a shared 3872 * cable 3873 */ 3874 if (ata_dev_pair(dev)) { 3875 /* No PIO5 or PIO6 */ 3876 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3877 /* No MWDMA3 or MWDMA 4 */ 3878 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3879 } 3880 3881 if (ata_dma_blacklisted(dev)) { 3882 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3883 ata_dev_printk(dev, KERN_WARNING, 3884 "device is on DMA blacklist, disabling DMA\n"); 3885 } 3886 3887 if ((host->flags & ATA_HOST_SIMPLEX) && 3888 host->simplex_claimed && host->simplex_claimed != ap) { 3889 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3890 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3891 "other device, disabling DMA\n"); 3892 } 3893 3894 if (ap->flags & ATA_FLAG_NO_IORDY) 3895 xfer_mask &= ata_pio_mask_no_iordy(dev); 3896 3897 if (ap->ops->mode_filter) 3898 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 3899 3900 /* Apply cable rule here. Don't apply it early because when 3901 * we handle hot plug the cable type can itself change. 3902 * Check this last so that we know if the transfer rate was 3903 * solely limited by the cable. 3904 * Unknown or 80 wire cables reported host side are checked 3905 * drive side as well. Cases where we know a 40wire cable 3906 * is used safely for 80 are not checked here. 3907 */ 3908 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 3909 /* UDMA/44 or higher would be available */ 3910 if((ap->cbl == ATA_CBL_PATA40) || 3911 (ata_drive_40wire(dev->id) && 3912 (ap->cbl == ATA_CBL_PATA_UNK || 3913 ap->cbl == ATA_CBL_PATA80))) { 3914 ata_dev_printk(dev, KERN_WARNING, 3915 "limited to UDMA/33 due to 40-wire cable\n"); 3916 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3917 } 3918 3919 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3920 &dev->mwdma_mask, &dev->udma_mask); 3921 } 3922 3923 /** 3924 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3925 * @dev: Device to which command will be sent 3926 * 3927 * Issue SET FEATURES - XFER MODE command to device @dev 3928 * on port @ap. 3929 * 3930 * LOCKING: 3931 * PCI/etc. bus probe sem. 3932 * 3933 * RETURNS: 3934 * 0 on success, AC_ERR_* mask otherwise. 3935 */ 3936 3937 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3938 { 3939 struct ata_taskfile tf; 3940 unsigned int err_mask; 3941 3942 /* set up set-features taskfile */ 3943 DPRINTK("set features - xfer mode\n"); 3944 3945 /* Some controllers and ATAPI devices show flaky interrupt 3946 * behavior after setting xfer mode. Use polling instead. 3947 */ 3948 ata_tf_init(dev, &tf); 3949 tf.command = ATA_CMD_SET_FEATURES; 3950 tf.feature = SETFEATURES_XFER; 3951 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 3952 tf.protocol = ATA_PROT_NODATA; 3953 tf.nsect = dev->xfer_mode; 3954 3955 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3956 3957 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3958 return err_mask; 3959 } 3960 3961 /** 3962 * ata_dev_init_params - Issue INIT DEV PARAMS command 3963 * @dev: Device to which command will be sent 3964 * @heads: Number of heads (taskfile parameter) 3965 * @sectors: Number of sectors (taskfile parameter) 3966 * 3967 * LOCKING: 3968 * Kernel thread context (may sleep) 3969 * 3970 * RETURNS: 3971 * 0 on success, AC_ERR_* mask otherwise. 3972 */ 3973 static unsigned int ata_dev_init_params(struct ata_device *dev, 3974 u16 heads, u16 sectors) 3975 { 3976 struct ata_taskfile tf; 3977 unsigned int err_mask; 3978 3979 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3980 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3981 return AC_ERR_INVALID; 3982 3983 /* set up init dev params taskfile */ 3984 DPRINTK("init dev params \n"); 3985 3986 ata_tf_init(dev, &tf); 3987 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3988 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3989 tf.protocol = ATA_PROT_NODATA; 3990 tf.nsect = sectors; 3991 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3992 3993 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3994 3995 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3996 return err_mask; 3997 } 3998 3999 /** 4000 * ata_sg_clean - Unmap DMA memory associated with command 4001 * @qc: Command containing DMA memory to be released 4002 * 4003 * Unmap all mapped DMA memory associated with this command. 4004 * 4005 * LOCKING: 4006 * spin_lock_irqsave(host lock) 4007 */ 4008 void ata_sg_clean(struct ata_queued_cmd *qc) 4009 { 4010 struct ata_port *ap = qc->ap; 4011 struct scatterlist *sg = qc->__sg; 4012 int dir = qc->dma_dir; 4013 void *pad_buf = NULL; 4014 4015 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 4016 WARN_ON(sg == NULL); 4017 4018 if (qc->flags & ATA_QCFLAG_SINGLE) 4019 WARN_ON(qc->n_elem > 1); 4020 4021 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4022 4023 /* if we padded the buffer out to 32-bit bound, and data 4024 * xfer direction is from-device, we must copy from the 4025 * pad buffer back into the supplied buffer 4026 */ 4027 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 4028 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4029 4030 if (qc->flags & ATA_QCFLAG_SG) { 4031 if (qc->n_elem) 4032 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4033 /* restore last sg */ 4034 sg[qc->orig_n_elem - 1].length += qc->pad_len; 4035 if (pad_buf) { 4036 struct scatterlist *psg = &qc->pad_sgent; 4037 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4038 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 4039 kunmap_atomic(addr, KM_IRQ0); 4040 } 4041 } else { 4042 if (qc->n_elem) 4043 dma_unmap_single(ap->dev, 4044 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 4045 dir); 4046 /* restore sg */ 4047 sg->length += qc->pad_len; 4048 if (pad_buf) 4049 memcpy(qc->buf_virt + sg->length - qc->pad_len, 4050 pad_buf, qc->pad_len); 4051 } 4052 4053 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4054 qc->__sg = NULL; 4055 } 4056 4057 /** 4058 * ata_fill_sg - Fill PCI IDE PRD table 4059 * @qc: Metadata associated with taskfile to be transferred 4060 * 4061 * Fill PCI IDE PRD (scatter-gather) table with segments 4062 * associated with the current disk command. 4063 * 4064 * LOCKING: 4065 * spin_lock_irqsave(host lock) 4066 * 4067 */ 4068 static void ata_fill_sg(struct ata_queued_cmd *qc) 4069 { 4070 struct ata_port *ap = qc->ap; 4071 struct scatterlist *sg; 4072 unsigned int idx; 4073 4074 WARN_ON(qc->__sg == NULL); 4075 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4076 4077 idx = 0; 4078 ata_for_each_sg(sg, qc) { 4079 u32 addr, offset; 4080 u32 sg_len, len; 4081 4082 /* determine if physical DMA addr spans 64K boundary. 4083 * Note h/w doesn't support 64-bit, so we unconditionally 4084 * truncate dma_addr_t to u32. 4085 */ 4086 addr = (u32) sg_dma_address(sg); 4087 sg_len = sg_dma_len(sg); 4088 4089 while (sg_len) { 4090 offset = addr & 0xffff; 4091 len = sg_len; 4092 if ((offset + sg_len) > 0x10000) 4093 len = 0x10000 - offset; 4094 4095 ap->prd[idx].addr = cpu_to_le32(addr); 4096 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 4097 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4098 4099 idx++; 4100 sg_len -= len; 4101 addr += len; 4102 } 4103 } 4104 4105 if (idx) 4106 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4107 } 4108 4109 /** 4110 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4111 * @qc: Metadata associated with taskfile to check 4112 * 4113 * Allow low-level driver to filter ATA PACKET commands, returning 4114 * a status indicating whether or not it is OK to use DMA for the 4115 * supplied PACKET command. 4116 * 4117 * LOCKING: 4118 * spin_lock_irqsave(host lock) 4119 * 4120 * RETURNS: 0 when ATAPI DMA can be used 4121 * nonzero otherwise 4122 */ 4123 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4124 { 4125 struct ata_port *ap = qc->ap; 4126 4127 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4128 * few ATAPI devices choke on such DMA requests. 4129 */ 4130 if (unlikely(qc->nbytes & 15)) 4131 return 1; 4132 4133 if (ap->ops->check_atapi_dma) 4134 return ap->ops->check_atapi_dma(qc); 4135 4136 return 0; 4137 } 4138 4139 /** 4140 * ata_qc_prep - Prepare taskfile for submission 4141 * @qc: Metadata associated with taskfile to be prepared 4142 * 4143 * Prepare ATA taskfile for submission. 4144 * 4145 * LOCKING: 4146 * spin_lock_irqsave(host lock) 4147 */ 4148 void ata_qc_prep(struct ata_queued_cmd *qc) 4149 { 4150 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4151 return; 4152 4153 ata_fill_sg(qc); 4154 } 4155 4156 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4157 4158 /** 4159 * ata_sg_init_one - Associate command with memory buffer 4160 * @qc: Command to be associated 4161 * @buf: Memory buffer 4162 * @buflen: Length of memory buffer, in bytes. 4163 * 4164 * Initialize the data-related elements of queued_cmd @qc 4165 * to point to a single memory buffer, @buf of byte length @buflen. 4166 * 4167 * LOCKING: 4168 * spin_lock_irqsave(host lock) 4169 */ 4170 4171 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4172 { 4173 qc->flags |= ATA_QCFLAG_SINGLE; 4174 4175 qc->__sg = &qc->sgent; 4176 qc->n_elem = 1; 4177 qc->orig_n_elem = 1; 4178 qc->buf_virt = buf; 4179 qc->nbytes = buflen; 4180 4181 sg_init_one(&qc->sgent, buf, buflen); 4182 } 4183 4184 /** 4185 * ata_sg_init - Associate command with scatter-gather table. 4186 * @qc: Command to be associated 4187 * @sg: Scatter-gather table. 4188 * @n_elem: Number of elements in s/g table. 4189 * 4190 * Initialize the data-related elements of queued_cmd @qc 4191 * to point to a scatter-gather table @sg, containing @n_elem 4192 * elements. 4193 * 4194 * LOCKING: 4195 * spin_lock_irqsave(host lock) 4196 */ 4197 4198 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4199 unsigned int n_elem) 4200 { 4201 qc->flags |= ATA_QCFLAG_SG; 4202 qc->__sg = sg; 4203 qc->n_elem = n_elem; 4204 qc->orig_n_elem = n_elem; 4205 } 4206 4207 /** 4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4209 * @qc: Command with memory buffer to be mapped. 4210 * 4211 * DMA-map the memory buffer associated with queued_cmd @qc. 4212 * 4213 * LOCKING: 4214 * spin_lock_irqsave(host lock) 4215 * 4216 * RETURNS: 4217 * Zero on success, negative on error. 4218 */ 4219 4220 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4221 { 4222 struct ata_port *ap = qc->ap; 4223 int dir = qc->dma_dir; 4224 struct scatterlist *sg = qc->__sg; 4225 dma_addr_t dma_address; 4226 int trim_sg = 0; 4227 4228 /* we must lengthen transfers to end on a 32-bit boundary */ 4229 qc->pad_len = sg->length & 3; 4230 if (qc->pad_len) { 4231 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4232 struct scatterlist *psg = &qc->pad_sgent; 4233 4234 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4235 4236 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4237 4238 if (qc->tf.flags & ATA_TFLAG_WRITE) 4239 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4240 qc->pad_len); 4241 4242 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4243 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4244 /* trim sg */ 4245 sg->length -= qc->pad_len; 4246 if (sg->length == 0) 4247 trim_sg = 1; 4248 4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4250 sg->length, qc->pad_len); 4251 } 4252 4253 if (trim_sg) { 4254 qc->n_elem--; 4255 goto skip_map; 4256 } 4257 4258 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4259 sg->length, dir); 4260 if (dma_mapping_error(dma_address)) { 4261 /* restore sg */ 4262 sg->length += qc->pad_len; 4263 return -1; 4264 } 4265 4266 sg_dma_address(sg) = dma_address; 4267 sg_dma_len(sg) = sg->length; 4268 4269 skip_map: 4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4271 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4272 4273 return 0; 4274 } 4275 4276 /** 4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4278 * @qc: Command with scatter-gather table to be mapped. 4279 * 4280 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4281 * 4282 * LOCKING: 4283 * spin_lock_irqsave(host lock) 4284 * 4285 * RETURNS: 4286 * Zero on success, negative on error. 4287 * 4288 */ 4289 4290 static int ata_sg_setup(struct ata_queued_cmd *qc) 4291 { 4292 struct ata_port *ap = qc->ap; 4293 struct scatterlist *sg = qc->__sg; 4294 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4295 int n_elem, pre_n_elem, dir, trim_sg = 0; 4296 4297 VPRINTK("ENTER, ata%u\n", ap->print_id); 4298 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4299 4300 /* we must lengthen transfers to end on a 32-bit boundary */ 4301 qc->pad_len = lsg->length & 3; 4302 if (qc->pad_len) { 4303 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4304 struct scatterlist *psg = &qc->pad_sgent; 4305 unsigned int offset; 4306 4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4308 4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4310 4311 /* 4312 * psg->page/offset are used to copy to-be-written 4313 * data in this function or read data in ata_sg_clean. 4314 */ 4315 offset = lsg->offset + lsg->length - qc->pad_len; 4316 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4317 psg->offset = offset_in_page(offset); 4318 4319 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4320 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4321 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4322 kunmap_atomic(addr, KM_IRQ0); 4323 } 4324 4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4327 /* trim last sg */ 4328 lsg->length -= qc->pad_len; 4329 if (lsg->length == 0) 4330 trim_sg = 1; 4331 4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4333 qc->n_elem - 1, lsg->length, qc->pad_len); 4334 } 4335 4336 pre_n_elem = qc->n_elem; 4337 if (trim_sg && pre_n_elem) 4338 pre_n_elem--; 4339 4340 if (!pre_n_elem) { 4341 n_elem = 0; 4342 goto skip_map; 4343 } 4344 4345 dir = qc->dma_dir; 4346 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4347 if (n_elem < 1) { 4348 /* restore last sg */ 4349 lsg->length += qc->pad_len; 4350 return -1; 4351 } 4352 4353 DPRINTK("%d sg elements mapped\n", n_elem); 4354 4355 skip_map: 4356 qc->n_elem = n_elem; 4357 4358 return 0; 4359 } 4360 4361 /** 4362 * swap_buf_le16 - swap halves of 16-bit words in place 4363 * @buf: Buffer to swap 4364 * @buf_words: Number of 16-bit words in buffer. 4365 * 4366 * Swap halves of 16-bit words if needed to convert from 4367 * little-endian byte order to native cpu byte order, or 4368 * vice-versa. 4369 * 4370 * LOCKING: 4371 * Inherited from caller. 4372 */ 4373 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4374 { 4375 #ifdef __BIG_ENDIAN 4376 unsigned int i; 4377 4378 for (i = 0; i < buf_words; i++) 4379 buf[i] = le16_to_cpu(buf[i]); 4380 #endif /* __BIG_ENDIAN */ 4381 } 4382 4383 /** 4384 * ata_data_xfer - Transfer data by PIO 4385 * @adev: device to target 4386 * @buf: data buffer 4387 * @buflen: buffer length 4388 * @write_data: read/write 4389 * 4390 * Transfer data from/to the device data register by PIO. 4391 * 4392 * LOCKING: 4393 * Inherited from caller. 4394 */ 4395 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4396 unsigned int buflen, int write_data) 4397 { 4398 struct ata_port *ap = adev->ap; 4399 unsigned int words = buflen >> 1; 4400 4401 /* Transfer multiple of 2 bytes */ 4402 if (write_data) 4403 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4404 else 4405 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4406 4407 /* Transfer trailing 1 byte, if any. */ 4408 if (unlikely(buflen & 0x01)) { 4409 u16 align_buf[1] = { 0 }; 4410 unsigned char *trailing_buf = buf + buflen - 1; 4411 4412 if (write_data) { 4413 memcpy(align_buf, trailing_buf, 1); 4414 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4415 } else { 4416 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4417 memcpy(trailing_buf, align_buf, 1); 4418 } 4419 } 4420 } 4421 4422 /** 4423 * ata_data_xfer_noirq - Transfer data by PIO 4424 * @adev: device to target 4425 * @buf: data buffer 4426 * @buflen: buffer length 4427 * @write_data: read/write 4428 * 4429 * Transfer data from/to the device data register by PIO. Do the 4430 * transfer with interrupts disabled. 4431 * 4432 * LOCKING: 4433 * Inherited from caller. 4434 */ 4435 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4436 unsigned int buflen, int write_data) 4437 { 4438 unsigned long flags; 4439 local_irq_save(flags); 4440 ata_data_xfer(adev, buf, buflen, write_data); 4441 local_irq_restore(flags); 4442 } 4443 4444 4445 /** 4446 * ata_pio_sector - Transfer a sector of data. 4447 * @qc: Command on going 4448 * 4449 * Transfer qc->sect_size bytes of data from/to the ATA device. 4450 * 4451 * LOCKING: 4452 * Inherited from caller. 4453 */ 4454 4455 static void ata_pio_sector(struct ata_queued_cmd *qc) 4456 { 4457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4458 struct scatterlist *sg = qc->__sg; 4459 struct ata_port *ap = qc->ap; 4460 struct page *page; 4461 unsigned int offset; 4462 unsigned char *buf; 4463 4464 if (qc->curbytes == qc->nbytes - qc->sect_size) 4465 ap->hsm_task_state = HSM_ST_LAST; 4466 4467 page = sg[qc->cursg].page; 4468 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4469 4470 /* get the current page and offset */ 4471 page = nth_page(page, (offset >> PAGE_SHIFT)); 4472 offset %= PAGE_SIZE; 4473 4474 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4475 4476 if (PageHighMem(page)) { 4477 unsigned long flags; 4478 4479 /* FIXME: use a bounce buffer */ 4480 local_irq_save(flags); 4481 buf = kmap_atomic(page, KM_IRQ0); 4482 4483 /* do the actual data transfer */ 4484 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4485 4486 kunmap_atomic(buf, KM_IRQ0); 4487 local_irq_restore(flags); 4488 } else { 4489 buf = page_address(page); 4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4491 } 4492 4493 qc->curbytes += qc->sect_size; 4494 qc->cursg_ofs += qc->sect_size; 4495 4496 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4497 qc->cursg++; 4498 qc->cursg_ofs = 0; 4499 } 4500 } 4501 4502 /** 4503 * ata_pio_sectors - Transfer one or many sectors. 4504 * @qc: Command on going 4505 * 4506 * Transfer one or many sectors of data from/to the 4507 * ATA device for the DRQ request. 4508 * 4509 * LOCKING: 4510 * Inherited from caller. 4511 */ 4512 4513 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4514 { 4515 if (is_multi_taskfile(&qc->tf)) { 4516 /* READ/WRITE MULTIPLE */ 4517 unsigned int nsect; 4518 4519 WARN_ON(qc->dev->multi_count == 0); 4520 4521 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4522 qc->dev->multi_count); 4523 while (nsect--) 4524 ata_pio_sector(qc); 4525 } else 4526 ata_pio_sector(qc); 4527 } 4528 4529 /** 4530 * atapi_send_cdb - Write CDB bytes to hardware 4531 * @ap: Port to which ATAPI device is attached. 4532 * @qc: Taskfile currently active 4533 * 4534 * When device has indicated its readiness to accept 4535 * a CDB, this function is called. Send the CDB. 4536 * 4537 * LOCKING: 4538 * caller. 4539 */ 4540 4541 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4542 { 4543 /* send SCSI cdb */ 4544 DPRINTK("send cdb\n"); 4545 WARN_ON(qc->dev->cdb_len < 12); 4546 4547 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4548 ata_altstatus(ap); /* flush */ 4549 4550 switch (qc->tf.protocol) { 4551 case ATA_PROT_ATAPI: 4552 ap->hsm_task_state = HSM_ST; 4553 break; 4554 case ATA_PROT_ATAPI_NODATA: 4555 ap->hsm_task_state = HSM_ST_LAST; 4556 break; 4557 case ATA_PROT_ATAPI_DMA: 4558 ap->hsm_task_state = HSM_ST_LAST; 4559 /* initiate bmdma */ 4560 ap->ops->bmdma_start(qc); 4561 break; 4562 } 4563 } 4564 4565 /** 4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4567 * @qc: Command on going 4568 * @bytes: number of bytes 4569 * 4570 * Transfer Transfer data from/to the ATAPI device. 4571 * 4572 * LOCKING: 4573 * Inherited from caller. 4574 * 4575 */ 4576 4577 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4578 { 4579 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4580 struct scatterlist *sg = qc->__sg; 4581 struct ata_port *ap = qc->ap; 4582 struct page *page; 4583 unsigned char *buf; 4584 unsigned int offset, count; 4585 4586 if (qc->curbytes + bytes >= qc->nbytes) 4587 ap->hsm_task_state = HSM_ST_LAST; 4588 4589 next_sg: 4590 if (unlikely(qc->cursg >= qc->n_elem)) { 4591 /* 4592 * The end of qc->sg is reached and the device expects 4593 * more data to transfer. In order not to overrun qc->sg 4594 * and fulfill length specified in the byte count register, 4595 * - for read case, discard trailing data from the device 4596 * - for write case, padding zero data to the device 4597 */ 4598 u16 pad_buf[1] = { 0 }; 4599 unsigned int words = bytes >> 1; 4600 unsigned int i; 4601 4602 if (words) /* warning if bytes > 1 */ 4603 ata_dev_printk(qc->dev, KERN_WARNING, 4604 "%u bytes trailing data\n", bytes); 4605 4606 for (i = 0; i < words; i++) 4607 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4608 4609 ap->hsm_task_state = HSM_ST_LAST; 4610 return; 4611 } 4612 4613 sg = &qc->__sg[qc->cursg]; 4614 4615 page = sg->page; 4616 offset = sg->offset + qc->cursg_ofs; 4617 4618 /* get the current page and offset */ 4619 page = nth_page(page, (offset >> PAGE_SHIFT)); 4620 offset %= PAGE_SIZE; 4621 4622 /* don't overrun current sg */ 4623 count = min(sg->length - qc->cursg_ofs, bytes); 4624 4625 /* don't cross page boundaries */ 4626 count = min(count, (unsigned int)PAGE_SIZE - offset); 4627 4628 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4629 4630 if (PageHighMem(page)) { 4631 unsigned long flags; 4632 4633 /* FIXME: use bounce buffer */ 4634 local_irq_save(flags); 4635 buf = kmap_atomic(page, KM_IRQ0); 4636 4637 /* do the actual data transfer */ 4638 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4639 4640 kunmap_atomic(buf, KM_IRQ0); 4641 local_irq_restore(flags); 4642 } else { 4643 buf = page_address(page); 4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4645 } 4646 4647 bytes -= count; 4648 qc->curbytes += count; 4649 qc->cursg_ofs += count; 4650 4651 if (qc->cursg_ofs == sg->length) { 4652 qc->cursg++; 4653 qc->cursg_ofs = 0; 4654 } 4655 4656 if (bytes) 4657 goto next_sg; 4658 } 4659 4660 /** 4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4662 * @qc: Command on going 4663 * 4664 * Transfer Transfer data from/to the ATAPI device. 4665 * 4666 * LOCKING: 4667 * Inherited from caller. 4668 */ 4669 4670 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4671 { 4672 struct ata_port *ap = qc->ap; 4673 struct ata_device *dev = qc->dev; 4674 unsigned int ireason, bc_lo, bc_hi, bytes; 4675 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4676 4677 /* Abuse qc->result_tf for temp storage of intermediate TF 4678 * here to save some kernel stack usage. 4679 * For normal completion, qc->result_tf is not relevant. For 4680 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4681 * So, the correctness of qc->result_tf is not affected. 4682 */ 4683 ap->ops->tf_read(ap, &qc->result_tf); 4684 ireason = qc->result_tf.nsect; 4685 bc_lo = qc->result_tf.lbam; 4686 bc_hi = qc->result_tf.lbah; 4687 bytes = (bc_hi << 8) | bc_lo; 4688 4689 /* shall be cleared to zero, indicating xfer of data */ 4690 if (ireason & (1 << 0)) 4691 goto err_out; 4692 4693 /* make sure transfer direction matches expected */ 4694 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4695 if (do_write != i_write) 4696 goto err_out; 4697 4698 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4699 4700 __atapi_pio_bytes(qc, bytes); 4701 4702 return; 4703 4704 err_out: 4705 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4706 qc->err_mask |= AC_ERR_HSM; 4707 ap->hsm_task_state = HSM_ST_ERR; 4708 } 4709 4710 /** 4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4712 * @ap: the target ata_port 4713 * @qc: qc on going 4714 * 4715 * RETURNS: 4716 * 1 if ok in workqueue, 0 otherwise. 4717 */ 4718 4719 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4720 { 4721 if (qc->tf.flags & ATA_TFLAG_POLLING) 4722 return 1; 4723 4724 if (ap->hsm_task_state == HSM_ST_FIRST) { 4725 if (qc->tf.protocol == ATA_PROT_PIO && 4726 (qc->tf.flags & ATA_TFLAG_WRITE)) 4727 return 1; 4728 4729 if (is_atapi_taskfile(&qc->tf) && 4730 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4731 return 1; 4732 } 4733 4734 return 0; 4735 } 4736 4737 /** 4738 * ata_hsm_qc_complete - finish a qc running on standard HSM 4739 * @qc: Command to complete 4740 * @in_wq: 1 if called from workqueue, 0 otherwise 4741 * 4742 * Finish @qc which is running on standard HSM. 4743 * 4744 * LOCKING: 4745 * If @in_wq is zero, spin_lock_irqsave(host lock). 4746 * Otherwise, none on entry and grabs host lock. 4747 */ 4748 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4749 { 4750 struct ata_port *ap = qc->ap; 4751 unsigned long flags; 4752 4753 if (ap->ops->error_handler) { 4754 if (in_wq) { 4755 spin_lock_irqsave(ap->lock, flags); 4756 4757 /* EH might have kicked in while host lock is 4758 * released. 4759 */ 4760 qc = ata_qc_from_tag(ap, qc->tag); 4761 if (qc) { 4762 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4763 ap->ops->irq_on(ap); 4764 ata_qc_complete(qc); 4765 } else 4766 ata_port_freeze(ap); 4767 } 4768 4769 spin_unlock_irqrestore(ap->lock, flags); 4770 } else { 4771 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4772 ata_qc_complete(qc); 4773 else 4774 ata_port_freeze(ap); 4775 } 4776 } else { 4777 if (in_wq) { 4778 spin_lock_irqsave(ap->lock, flags); 4779 ap->ops->irq_on(ap); 4780 ata_qc_complete(qc); 4781 spin_unlock_irqrestore(ap->lock, flags); 4782 } else 4783 ata_qc_complete(qc); 4784 } 4785 } 4786 4787 /** 4788 * ata_hsm_move - move the HSM to the next state. 4789 * @ap: the target ata_port 4790 * @qc: qc on going 4791 * @status: current device status 4792 * @in_wq: 1 if called from workqueue, 0 otherwise 4793 * 4794 * RETURNS: 4795 * 1 when poll next status needed, 0 otherwise. 4796 */ 4797 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4798 u8 status, int in_wq) 4799 { 4800 unsigned long flags = 0; 4801 int poll_next; 4802 4803 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4804 4805 /* Make sure ata_qc_issue_prot() does not throw things 4806 * like DMA polling into the workqueue. Notice that 4807 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4808 */ 4809 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4810 4811 fsm_start: 4812 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4813 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4814 4815 switch (ap->hsm_task_state) { 4816 case HSM_ST_FIRST: 4817 /* Send first data block or PACKET CDB */ 4818 4819 /* If polling, we will stay in the work queue after 4820 * sending the data. Otherwise, interrupt handler 4821 * takes over after sending the data. 4822 */ 4823 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4824 4825 /* check device status */ 4826 if (unlikely((status & ATA_DRQ) == 0)) { 4827 /* handle BSY=0, DRQ=0 as error */ 4828 if (likely(status & (ATA_ERR | ATA_DF))) 4829 /* device stops HSM for abort/error */ 4830 qc->err_mask |= AC_ERR_DEV; 4831 else 4832 /* HSM violation. Let EH handle this */ 4833 qc->err_mask |= AC_ERR_HSM; 4834 4835 ap->hsm_task_state = HSM_ST_ERR; 4836 goto fsm_start; 4837 } 4838 4839 /* Device should not ask for data transfer (DRQ=1) 4840 * when it finds something wrong. 4841 * We ignore DRQ here and stop the HSM by 4842 * changing hsm_task_state to HSM_ST_ERR and 4843 * let the EH abort the command or reset the device. 4844 */ 4845 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4846 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4847 "error, dev_stat 0x%X\n", status); 4848 qc->err_mask |= AC_ERR_HSM; 4849 ap->hsm_task_state = HSM_ST_ERR; 4850 goto fsm_start; 4851 } 4852 4853 /* Send the CDB (atapi) or the first data block (ata pio out). 4854 * During the state transition, interrupt handler shouldn't 4855 * be invoked before the data transfer is complete and 4856 * hsm_task_state is changed. Hence, the following locking. 4857 */ 4858 if (in_wq) 4859 spin_lock_irqsave(ap->lock, flags); 4860 4861 if (qc->tf.protocol == ATA_PROT_PIO) { 4862 /* PIO data out protocol. 4863 * send first data block. 4864 */ 4865 4866 /* ata_pio_sectors() might change the state 4867 * to HSM_ST_LAST. so, the state is changed here 4868 * before ata_pio_sectors(). 4869 */ 4870 ap->hsm_task_state = HSM_ST; 4871 ata_pio_sectors(qc); 4872 ata_altstatus(ap); /* flush */ 4873 } else 4874 /* send CDB */ 4875 atapi_send_cdb(ap, qc); 4876 4877 if (in_wq) 4878 spin_unlock_irqrestore(ap->lock, flags); 4879 4880 /* if polling, ata_pio_task() handles the rest. 4881 * otherwise, interrupt handler takes over from here. 4882 */ 4883 break; 4884 4885 case HSM_ST: 4886 /* complete command or read/write the data register */ 4887 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4888 /* ATAPI PIO protocol */ 4889 if ((status & ATA_DRQ) == 0) { 4890 /* No more data to transfer or device error. 4891 * Device error will be tagged in HSM_ST_LAST. 4892 */ 4893 ap->hsm_task_state = HSM_ST_LAST; 4894 goto fsm_start; 4895 } 4896 4897 /* Device should not ask for data transfer (DRQ=1) 4898 * when it finds something wrong. 4899 * We ignore DRQ here and stop the HSM by 4900 * changing hsm_task_state to HSM_ST_ERR and 4901 * let the EH abort the command or reset the device. 4902 */ 4903 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4904 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4905 "device error, dev_stat 0x%X\n", 4906 status); 4907 qc->err_mask |= AC_ERR_HSM; 4908 ap->hsm_task_state = HSM_ST_ERR; 4909 goto fsm_start; 4910 } 4911 4912 atapi_pio_bytes(qc); 4913 4914 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4915 /* bad ireason reported by device */ 4916 goto fsm_start; 4917 4918 } else { 4919 /* ATA PIO protocol */ 4920 if (unlikely((status & ATA_DRQ) == 0)) { 4921 /* handle BSY=0, DRQ=0 as error */ 4922 if (likely(status & (ATA_ERR | ATA_DF))) 4923 /* device stops HSM for abort/error */ 4924 qc->err_mask |= AC_ERR_DEV; 4925 else 4926 /* HSM violation. Let EH handle this. 4927 * Phantom devices also trigger this 4928 * condition. Mark hint. 4929 */ 4930 qc->err_mask |= AC_ERR_HSM | 4931 AC_ERR_NODEV_HINT; 4932 4933 ap->hsm_task_state = HSM_ST_ERR; 4934 goto fsm_start; 4935 } 4936 4937 /* For PIO reads, some devices may ask for 4938 * data transfer (DRQ=1) alone with ERR=1. 4939 * We respect DRQ here and transfer one 4940 * block of junk data before changing the 4941 * hsm_task_state to HSM_ST_ERR. 4942 * 4943 * For PIO writes, ERR=1 DRQ=1 doesn't make 4944 * sense since the data block has been 4945 * transferred to the device. 4946 */ 4947 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4948 /* data might be corrputed */ 4949 qc->err_mask |= AC_ERR_DEV; 4950 4951 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 4952 ata_pio_sectors(qc); 4953 ata_altstatus(ap); 4954 status = ata_wait_idle(ap); 4955 } 4956 4957 if (status & (ATA_BUSY | ATA_DRQ)) 4958 qc->err_mask |= AC_ERR_HSM; 4959 4960 /* ata_pio_sectors() might change the 4961 * state to HSM_ST_LAST. so, the state 4962 * is changed after ata_pio_sectors(). 4963 */ 4964 ap->hsm_task_state = HSM_ST_ERR; 4965 goto fsm_start; 4966 } 4967 4968 ata_pio_sectors(qc); 4969 4970 if (ap->hsm_task_state == HSM_ST_LAST && 4971 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 4972 /* all data read */ 4973 ata_altstatus(ap); 4974 status = ata_wait_idle(ap); 4975 goto fsm_start; 4976 } 4977 } 4978 4979 ata_altstatus(ap); /* flush */ 4980 poll_next = 1; 4981 break; 4982 4983 case HSM_ST_LAST: 4984 if (unlikely(!ata_ok(status))) { 4985 qc->err_mask |= __ac_err_mask(status); 4986 ap->hsm_task_state = HSM_ST_ERR; 4987 goto fsm_start; 4988 } 4989 4990 /* no more data to transfer */ 4991 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 4992 ap->print_id, qc->dev->devno, status); 4993 4994 WARN_ON(qc->err_mask); 4995 4996 ap->hsm_task_state = HSM_ST_IDLE; 4997 4998 /* complete taskfile transaction */ 4999 ata_hsm_qc_complete(qc, in_wq); 5000 5001 poll_next = 0; 5002 break; 5003 5004 case HSM_ST_ERR: 5005 /* make sure qc->err_mask is available to 5006 * know what's wrong and recover 5007 */ 5008 WARN_ON(qc->err_mask == 0); 5009 5010 ap->hsm_task_state = HSM_ST_IDLE; 5011 5012 /* complete taskfile transaction */ 5013 ata_hsm_qc_complete(qc, in_wq); 5014 5015 poll_next = 0; 5016 break; 5017 default: 5018 poll_next = 0; 5019 BUG(); 5020 } 5021 5022 return poll_next; 5023 } 5024 5025 static void ata_pio_task(struct work_struct *work) 5026 { 5027 struct ata_port *ap = 5028 container_of(work, struct ata_port, port_task.work); 5029 struct ata_queued_cmd *qc = ap->port_task_data; 5030 u8 status; 5031 int poll_next; 5032 5033 fsm_start: 5034 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 5035 5036 /* 5037 * This is purely heuristic. This is a fast path. 5038 * Sometimes when we enter, BSY will be cleared in 5039 * a chk-status or two. If not, the drive is probably seeking 5040 * or something. Snooze for a couple msecs, then 5041 * chk-status again. If still busy, queue delayed work. 5042 */ 5043 status = ata_busy_wait(ap, ATA_BUSY, 5); 5044 if (status & ATA_BUSY) { 5045 msleep(2); 5046 status = ata_busy_wait(ap, ATA_BUSY, 10); 5047 if (status & ATA_BUSY) { 5048 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 5049 return; 5050 } 5051 } 5052 5053 /* move the HSM */ 5054 poll_next = ata_hsm_move(ap, qc, status, 1); 5055 5056 /* another command or interrupt handler 5057 * may be running at this point. 5058 */ 5059 if (poll_next) 5060 goto fsm_start; 5061 } 5062 5063 /** 5064 * ata_qc_new - Request an available ATA command, for queueing 5065 * @ap: Port associated with device @dev 5066 * @dev: Device from whom we request an available command structure 5067 * 5068 * LOCKING: 5069 * None. 5070 */ 5071 5072 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 5073 { 5074 struct ata_queued_cmd *qc = NULL; 5075 unsigned int i; 5076 5077 /* no command while frozen */ 5078 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5079 return NULL; 5080 5081 /* the last tag is reserved for internal command. */ 5082 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 5083 if (!test_and_set_bit(i, &ap->qc_allocated)) { 5084 qc = __ata_qc_from_tag(ap, i); 5085 break; 5086 } 5087 5088 if (qc) 5089 qc->tag = i; 5090 5091 return qc; 5092 } 5093 5094 /** 5095 * ata_qc_new_init - Request an available ATA command, and initialize it 5096 * @dev: Device from whom we request an available command structure 5097 * 5098 * LOCKING: 5099 * None. 5100 */ 5101 5102 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5103 { 5104 struct ata_port *ap = dev->ap; 5105 struct ata_queued_cmd *qc; 5106 5107 qc = ata_qc_new(ap); 5108 if (qc) { 5109 qc->scsicmd = NULL; 5110 qc->ap = ap; 5111 qc->dev = dev; 5112 5113 ata_qc_reinit(qc); 5114 } 5115 5116 return qc; 5117 } 5118 5119 /** 5120 * ata_qc_free - free unused ata_queued_cmd 5121 * @qc: Command to complete 5122 * 5123 * Designed to free unused ata_queued_cmd object 5124 * in case something prevents using it. 5125 * 5126 * LOCKING: 5127 * spin_lock_irqsave(host lock) 5128 */ 5129 void ata_qc_free(struct ata_queued_cmd *qc) 5130 { 5131 struct ata_port *ap = qc->ap; 5132 unsigned int tag; 5133 5134 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5135 5136 qc->flags = 0; 5137 tag = qc->tag; 5138 if (likely(ata_tag_valid(tag))) { 5139 qc->tag = ATA_TAG_POISON; 5140 clear_bit(tag, &ap->qc_allocated); 5141 } 5142 } 5143 5144 void __ata_qc_complete(struct ata_queued_cmd *qc) 5145 { 5146 struct ata_port *ap = qc->ap; 5147 5148 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5149 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5150 5151 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5152 ata_sg_clean(qc); 5153 5154 /* command should be marked inactive atomically with qc completion */ 5155 if (qc->tf.protocol == ATA_PROT_NCQ) 5156 ap->sactive &= ~(1 << qc->tag); 5157 else 5158 ap->active_tag = ATA_TAG_POISON; 5159 5160 /* atapi: mark qc as inactive to prevent the interrupt handler 5161 * from completing the command twice later, before the error handler 5162 * is called. (when rc != 0 and atapi request sense is needed) 5163 */ 5164 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5165 ap->qc_active &= ~(1 << qc->tag); 5166 5167 /* call completion callback */ 5168 qc->complete_fn(qc); 5169 } 5170 5171 static void fill_result_tf(struct ata_queued_cmd *qc) 5172 { 5173 struct ata_port *ap = qc->ap; 5174 5175 qc->result_tf.flags = qc->tf.flags; 5176 ap->ops->tf_read(ap, &qc->result_tf); 5177 } 5178 5179 /** 5180 * ata_qc_complete - Complete an active ATA command 5181 * @qc: Command to complete 5182 * @err_mask: ATA Status register contents 5183 * 5184 * Indicate to the mid and upper layers that an ATA 5185 * command has completed, with either an ok or not-ok status. 5186 * 5187 * LOCKING: 5188 * spin_lock_irqsave(host lock) 5189 */ 5190 void ata_qc_complete(struct ata_queued_cmd *qc) 5191 { 5192 struct ata_port *ap = qc->ap; 5193 5194 /* XXX: New EH and old EH use different mechanisms to 5195 * synchronize EH with regular execution path. 5196 * 5197 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5198 * Normal execution path is responsible for not accessing a 5199 * failed qc. libata core enforces the rule by returning NULL 5200 * from ata_qc_from_tag() for failed qcs. 5201 * 5202 * Old EH depends on ata_qc_complete() nullifying completion 5203 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5204 * not synchronize with interrupt handler. Only PIO task is 5205 * taken care of. 5206 */ 5207 if (ap->ops->error_handler) { 5208 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5209 5210 if (unlikely(qc->err_mask)) 5211 qc->flags |= ATA_QCFLAG_FAILED; 5212 5213 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5214 if (!ata_tag_internal(qc->tag)) { 5215 /* always fill result TF for failed qc */ 5216 fill_result_tf(qc); 5217 ata_qc_schedule_eh(qc); 5218 return; 5219 } 5220 } 5221 5222 /* read result TF if requested */ 5223 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5224 fill_result_tf(qc); 5225 5226 __ata_qc_complete(qc); 5227 } else { 5228 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5229 return; 5230 5231 /* read result TF if failed or requested */ 5232 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5233 fill_result_tf(qc); 5234 5235 __ata_qc_complete(qc); 5236 } 5237 } 5238 5239 /** 5240 * ata_qc_complete_multiple - Complete multiple qcs successfully 5241 * @ap: port in question 5242 * @qc_active: new qc_active mask 5243 * @finish_qc: LLDD callback invoked before completing a qc 5244 * 5245 * Complete in-flight commands. This functions is meant to be 5246 * called from low-level driver's interrupt routine to complete 5247 * requests normally. ap->qc_active and @qc_active is compared 5248 * and commands are completed accordingly. 5249 * 5250 * LOCKING: 5251 * spin_lock_irqsave(host lock) 5252 * 5253 * RETURNS: 5254 * Number of completed commands on success, -errno otherwise. 5255 */ 5256 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5257 void (*finish_qc)(struct ata_queued_cmd *)) 5258 { 5259 int nr_done = 0; 5260 u32 done_mask; 5261 int i; 5262 5263 done_mask = ap->qc_active ^ qc_active; 5264 5265 if (unlikely(done_mask & qc_active)) { 5266 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5267 "(%08x->%08x)\n", ap->qc_active, qc_active); 5268 return -EINVAL; 5269 } 5270 5271 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5272 struct ata_queued_cmd *qc; 5273 5274 if (!(done_mask & (1 << i))) 5275 continue; 5276 5277 if ((qc = ata_qc_from_tag(ap, i))) { 5278 if (finish_qc) 5279 finish_qc(qc); 5280 ata_qc_complete(qc); 5281 nr_done++; 5282 } 5283 } 5284 5285 return nr_done; 5286 } 5287 5288 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5289 { 5290 struct ata_port *ap = qc->ap; 5291 5292 switch (qc->tf.protocol) { 5293 case ATA_PROT_NCQ: 5294 case ATA_PROT_DMA: 5295 case ATA_PROT_ATAPI_DMA: 5296 return 1; 5297 5298 case ATA_PROT_ATAPI: 5299 case ATA_PROT_PIO: 5300 if (ap->flags & ATA_FLAG_PIO_DMA) 5301 return 1; 5302 5303 /* fall through */ 5304 5305 default: 5306 return 0; 5307 } 5308 5309 /* never reached */ 5310 } 5311 5312 /** 5313 * ata_qc_issue - issue taskfile to device 5314 * @qc: command to issue to device 5315 * 5316 * Prepare an ATA command to submission to device. 5317 * This includes mapping the data into a DMA-able 5318 * area, filling in the S/G table, and finally 5319 * writing the taskfile to hardware, starting the command. 5320 * 5321 * LOCKING: 5322 * spin_lock_irqsave(host lock) 5323 */ 5324 void ata_qc_issue(struct ata_queued_cmd *qc) 5325 { 5326 struct ata_port *ap = qc->ap; 5327 5328 /* Make sure only one non-NCQ command is outstanding. The 5329 * check is skipped for old EH because it reuses active qc to 5330 * request ATAPI sense. 5331 */ 5332 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 5333 5334 if (qc->tf.protocol == ATA_PROT_NCQ) { 5335 WARN_ON(ap->sactive & (1 << qc->tag)); 5336 ap->sactive |= 1 << qc->tag; 5337 } else { 5338 WARN_ON(ap->sactive); 5339 ap->active_tag = qc->tag; 5340 } 5341 5342 qc->flags |= ATA_QCFLAG_ACTIVE; 5343 ap->qc_active |= 1 << qc->tag; 5344 5345 if (ata_should_dma_map(qc)) { 5346 if (qc->flags & ATA_QCFLAG_SG) { 5347 if (ata_sg_setup(qc)) 5348 goto sg_err; 5349 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5350 if (ata_sg_setup_one(qc)) 5351 goto sg_err; 5352 } 5353 } else { 5354 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5355 } 5356 5357 ap->ops->qc_prep(qc); 5358 5359 qc->err_mask |= ap->ops->qc_issue(qc); 5360 if (unlikely(qc->err_mask)) 5361 goto err; 5362 return; 5363 5364 sg_err: 5365 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5366 qc->err_mask |= AC_ERR_SYSTEM; 5367 err: 5368 ata_qc_complete(qc); 5369 } 5370 5371 /** 5372 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5373 * @qc: command to issue to device 5374 * 5375 * Using various libata functions and hooks, this function 5376 * starts an ATA command. ATA commands are grouped into 5377 * classes called "protocols", and issuing each type of protocol 5378 * is slightly different. 5379 * 5380 * May be used as the qc_issue() entry in ata_port_operations. 5381 * 5382 * LOCKING: 5383 * spin_lock_irqsave(host lock) 5384 * 5385 * RETURNS: 5386 * Zero on success, AC_ERR_* mask on failure 5387 */ 5388 5389 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5390 { 5391 struct ata_port *ap = qc->ap; 5392 5393 /* Use polling pio if the LLD doesn't handle 5394 * interrupt driven pio and atapi CDB interrupt. 5395 */ 5396 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5397 switch (qc->tf.protocol) { 5398 case ATA_PROT_PIO: 5399 case ATA_PROT_NODATA: 5400 case ATA_PROT_ATAPI: 5401 case ATA_PROT_ATAPI_NODATA: 5402 qc->tf.flags |= ATA_TFLAG_POLLING; 5403 break; 5404 case ATA_PROT_ATAPI_DMA: 5405 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5406 /* see ata_dma_blacklisted() */ 5407 BUG(); 5408 break; 5409 default: 5410 break; 5411 } 5412 } 5413 5414 /* select the device */ 5415 ata_dev_select(ap, qc->dev->devno, 1, 0); 5416 5417 /* start the command */ 5418 switch (qc->tf.protocol) { 5419 case ATA_PROT_NODATA: 5420 if (qc->tf.flags & ATA_TFLAG_POLLING) 5421 ata_qc_set_polling(qc); 5422 5423 ata_tf_to_host(ap, &qc->tf); 5424 ap->hsm_task_state = HSM_ST_LAST; 5425 5426 if (qc->tf.flags & ATA_TFLAG_POLLING) 5427 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5428 5429 break; 5430 5431 case ATA_PROT_DMA: 5432 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5433 5434 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5435 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5436 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5437 ap->hsm_task_state = HSM_ST_LAST; 5438 break; 5439 5440 case ATA_PROT_PIO: 5441 if (qc->tf.flags & ATA_TFLAG_POLLING) 5442 ata_qc_set_polling(qc); 5443 5444 ata_tf_to_host(ap, &qc->tf); 5445 5446 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5447 /* PIO data out protocol */ 5448 ap->hsm_task_state = HSM_ST_FIRST; 5449 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5450 5451 /* always send first data block using 5452 * the ata_pio_task() codepath. 5453 */ 5454 } else { 5455 /* PIO data in protocol */ 5456 ap->hsm_task_state = HSM_ST; 5457 5458 if (qc->tf.flags & ATA_TFLAG_POLLING) 5459 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5460 5461 /* if polling, ata_pio_task() handles the rest. 5462 * otherwise, interrupt handler takes over from here. 5463 */ 5464 } 5465 5466 break; 5467 5468 case ATA_PROT_ATAPI: 5469 case ATA_PROT_ATAPI_NODATA: 5470 if (qc->tf.flags & ATA_TFLAG_POLLING) 5471 ata_qc_set_polling(qc); 5472 5473 ata_tf_to_host(ap, &qc->tf); 5474 5475 ap->hsm_task_state = HSM_ST_FIRST; 5476 5477 /* send cdb by polling if no cdb interrupt */ 5478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5479 (qc->tf.flags & ATA_TFLAG_POLLING)) 5480 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5481 break; 5482 5483 case ATA_PROT_ATAPI_DMA: 5484 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5485 5486 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5487 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5488 ap->hsm_task_state = HSM_ST_FIRST; 5489 5490 /* send cdb by polling if no cdb interrupt */ 5491 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5492 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5493 break; 5494 5495 default: 5496 WARN_ON(1); 5497 return AC_ERR_SYSTEM; 5498 } 5499 5500 return 0; 5501 } 5502 5503 /** 5504 * ata_host_intr - Handle host interrupt for given (port, task) 5505 * @ap: Port on which interrupt arrived (possibly...) 5506 * @qc: Taskfile currently active in engine 5507 * 5508 * Handle host interrupt for given queued command. Currently, 5509 * only DMA interrupts are handled. All other commands are 5510 * handled via polling with interrupts disabled (nIEN bit). 5511 * 5512 * LOCKING: 5513 * spin_lock_irqsave(host lock) 5514 * 5515 * RETURNS: 5516 * One if interrupt was handled, zero if not (shared irq). 5517 */ 5518 5519 inline unsigned int ata_host_intr (struct ata_port *ap, 5520 struct ata_queued_cmd *qc) 5521 { 5522 struct ata_eh_info *ehi = &ap->eh_info; 5523 u8 status, host_stat = 0; 5524 5525 VPRINTK("ata%u: protocol %d task_state %d\n", 5526 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5527 5528 /* Check whether we are expecting interrupt in this state */ 5529 switch (ap->hsm_task_state) { 5530 case HSM_ST_FIRST: 5531 /* Some pre-ATAPI-4 devices assert INTRQ 5532 * at this state when ready to receive CDB. 5533 */ 5534 5535 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5536 * The flag was turned on only for atapi devices. 5537 * No need to check is_atapi_taskfile(&qc->tf) again. 5538 */ 5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5540 goto idle_irq; 5541 break; 5542 case HSM_ST_LAST: 5543 if (qc->tf.protocol == ATA_PROT_DMA || 5544 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5545 /* check status of DMA engine */ 5546 host_stat = ap->ops->bmdma_status(ap); 5547 VPRINTK("ata%u: host_stat 0x%X\n", 5548 ap->print_id, host_stat); 5549 5550 /* if it's not our irq... */ 5551 if (!(host_stat & ATA_DMA_INTR)) 5552 goto idle_irq; 5553 5554 /* before we do anything else, clear DMA-Start bit */ 5555 ap->ops->bmdma_stop(qc); 5556 5557 if (unlikely(host_stat & ATA_DMA_ERR)) { 5558 /* error when transfering data to/from memory */ 5559 qc->err_mask |= AC_ERR_HOST_BUS; 5560 ap->hsm_task_state = HSM_ST_ERR; 5561 } 5562 } 5563 break; 5564 case HSM_ST: 5565 break; 5566 default: 5567 goto idle_irq; 5568 } 5569 5570 /* check altstatus */ 5571 status = ata_altstatus(ap); 5572 if (status & ATA_BUSY) 5573 goto idle_irq; 5574 5575 /* check main status, clearing INTRQ */ 5576 status = ata_chk_status(ap); 5577 if (unlikely(status & ATA_BUSY)) 5578 goto idle_irq; 5579 5580 /* ack bmdma irq events */ 5581 ap->ops->irq_clear(ap); 5582 5583 ata_hsm_move(ap, qc, status, 0); 5584 5585 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5586 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5587 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5588 5589 return 1; /* irq handled */ 5590 5591 idle_irq: 5592 ap->stats.idle_irq++; 5593 5594 #ifdef ATA_IRQ_TRAP 5595 if ((ap->stats.idle_irq % 1000) == 0) { 5596 ap->ops->irq_ack(ap, 0); /* debug trap */ 5597 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5598 return 1; 5599 } 5600 #endif 5601 return 0; /* irq not handled */ 5602 } 5603 5604 /** 5605 * ata_interrupt - Default ATA host interrupt handler 5606 * @irq: irq line (unused) 5607 * @dev_instance: pointer to our ata_host information structure 5608 * 5609 * Default interrupt handler for PCI IDE devices. Calls 5610 * ata_host_intr() for each port that is not disabled. 5611 * 5612 * LOCKING: 5613 * Obtains host lock during operation. 5614 * 5615 * RETURNS: 5616 * IRQ_NONE or IRQ_HANDLED. 5617 */ 5618 5619 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5620 { 5621 struct ata_host *host = dev_instance; 5622 unsigned int i; 5623 unsigned int handled = 0; 5624 unsigned long flags; 5625 5626 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5627 spin_lock_irqsave(&host->lock, flags); 5628 5629 for (i = 0; i < host->n_ports; i++) { 5630 struct ata_port *ap; 5631 5632 ap = host->ports[i]; 5633 if (ap && 5634 !(ap->flags & ATA_FLAG_DISABLED)) { 5635 struct ata_queued_cmd *qc; 5636 5637 qc = ata_qc_from_tag(ap, ap->active_tag); 5638 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5639 (qc->flags & ATA_QCFLAG_ACTIVE)) 5640 handled |= ata_host_intr(ap, qc); 5641 } 5642 } 5643 5644 spin_unlock_irqrestore(&host->lock, flags); 5645 5646 return IRQ_RETVAL(handled); 5647 } 5648 5649 /** 5650 * sata_scr_valid - test whether SCRs are accessible 5651 * @ap: ATA port to test SCR accessibility for 5652 * 5653 * Test whether SCRs are accessible for @ap. 5654 * 5655 * LOCKING: 5656 * None. 5657 * 5658 * RETURNS: 5659 * 1 if SCRs are accessible, 0 otherwise. 5660 */ 5661 int sata_scr_valid(struct ata_port *ap) 5662 { 5663 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; 5664 } 5665 5666 /** 5667 * sata_scr_read - read SCR register of the specified port 5668 * @ap: ATA port to read SCR for 5669 * @reg: SCR to read 5670 * @val: Place to store read value 5671 * 5672 * Read SCR register @reg of @ap into *@val. This function is 5673 * guaranteed to succeed if the cable type of the port is SATA 5674 * and the port implements ->scr_read. 5675 * 5676 * LOCKING: 5677 * None. 5678 * 5679 * RETURNS: 5680 * 0 on success, negative errno on failure. 5681 */ 5682 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5683 { 5684 if (sata_scr_valid(ap)) { 5685 *val = ap->ops->scr_read(ap, reg); 5686 return 0; 5687 } 5688 return -EOPNOTSUPP; 5689 } 5690 5691 /** 5692 * sata_scr_write - write SCR register of the specified port 5693 * @ap: ATA port to write SCR for 5694 * @reg: SCR to write 5695 * @val: value to write 5696 * 5697 * Write @val to SCR register @reg of @ap. This function is 5698 * guaranteed to succeed if the cable type of the port is SATA 5699 * and the port implements ->scr_read. 5700 * 5701 * LOCKING: 5702 * None. 5703 * 5704 * RETURNS: 5705 * 0 on success, negative errno on failure. 5706 */ 5707 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5708 { 5709 if (sata_scr_valid(ap)) { 5710 ap->ops->scr_write(ap, reg, val); 5711 return 0; 5712 } 5713 return -EOPNOTSUPP; 5714 } 5715 5716 /** 5717 * sata_scr_write_flush - write SCR register of the specified port and flush 5718 * @ap: ATA port to write SCR for 5719 * @reg: SCR to write 5720 * @val: value to write 5721 * 5722 * This function is identical to sata_scr_write() except that this 5723 * function performs flush after writing to the register. 5724 * 5725 * LOCKING: 5726 * None. 5727 * 5728 * RETURNS: 5729 * 0 on success, negative errno on failure. 5730 */ 5731 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5732 { 5733 if (sata_scr_valid(ap)) { 5734 ap->ops->scr_write(ap, reg, val); 5735 ap->ops->scr_read(ap, reg); 5736 return 0; 5737 } 5738 return -EOPNOTSUPP; 5739 } 5740 5741 /** 5742 * ata_port_online - test whether the given port is online 5743 * @ap: ATA port to test 5744 * 5745 * Test whether @ap is online. Note that this function returns 0 5746 * if online status of @ap cannot be obtained, so 5747 * ata_port_online(ap) != !ata_port_offline(ap). 5748 * 5749 * LOCKING: 5750 * None. 5751 * 5752 * RETURNS: 5753 * 1 if the port online status is available and online. 5754 */ 5755 int ata_port_online(struct ata_port *ap) 5756 { 5757 u32 sstatus; 5758 5759 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5760 return 1; 5761 return 0; 5762 } 5763 5764 /** 5765 * ata_port_offline - test whether the given port is offline 5766 * @ap: ATA port to test 5767 * 5768 * Test whether @ap is offline. Note that this function returns 5769 * 0 if offline status of @ap cannot be obtained, so 5770 * ata_port_online(ap) != !ata_port_offline(ap). 5771 * 5772 * LOCKING: 5773 * None. 5774 * 5775 * RETURNS: 5776 * 1 if the port offline status is available and offline. 5777 */ 5778 int ata_port_offline(struct ata_port *ap) 5779 { 5780 u32 sstatus; 5781 5782 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5783 return 1; 5784 return 0; 5785 } 5786 5787 int ata_flush_cache(struct ata_device *dev) 5788 { 5789 unsigned int err_mask; 5790 u8 cmd; 5791 5792 if (!ata_try_flush_cache(dev)) 5793 return 0; 5794 5795 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5796 cmd = ATA_CMD_FLUSH_EXT; 5797 else 5798 cmd = ATA_CMD_FLUSH; 5799 5800 err_mask = ata_do_simple_cmd(dev, cmd); 5801 if (err_mask) { 5802 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5803 return -EIO; 5804 } 5805 5806 return 0; 5807 } 5808 5809 #ifdef CONFIG_PM 5810 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5811 unsigned int action, unsigned int ehi_flags, 5812 int wait) 5813 { 5814 unsigned long flags; 5815 int i, rc; 5816 5817 for (i = 0; i < host->n_ports; i++) { 5818 struct ata_port *ap = host->ports[i]; 5819 5820 /* Previous resume operation might still be in 5821 * progress. Wait for PM_PENDING to clear. 5822 */ 5823 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5824 ata_port_wait_eh(ap); 5825 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5826 } 5827 5828 /* request PM ops to EH */ 5829 spin_lock_irqsave(ap->lock, flags); 5830 5831 ap->pm_mesg = mesg; 5832 if (wait) { 5833 rc = 0; 5834 ap->pm_result = &rc; 5835 } 5836 5837 ap->pflags |= ATA_PFLAG_PM_PENDING; 5838 ap->eh_info.action |= action; 5839 ap->eh_info.flags |= ehi_flags; 5840 5841 ata_port_schedule_eh(ap); 5842 5843 spin_unlock_irqrestore(ap->lock, flags); 5844 5845 /* wait and check result */ 5846 if (wait) { 5847 ata_port_wait_eh(ap); 5848 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5849 if (rc) 5850 return rc; 5851 } 5852 } 5853 5854 return 0; 5855 } 5856 5857 /** 5858 * ata_host_suspend - suspend host 5859 * @host: host to suspend 5860 * @mesg: PM message 5861 * 5862 * Suspend @host. Actual operation is performed by EH. This 5863 * function requests EH to perform PM operations and waits for EH 5864 * to finish. 5865 * 5866 * LOCKING: 5867 * Kernel thread context (may sleep). 5868 * 5869 * RETURNS: 5870 * 0 on success, -errno on failure. 5871 */ 5872 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5873 { 5874 int rc; 5875 5876 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5877 if (rc == 0) 5878 host->dev->power.power_state = mesg; 5879 return rc; 5880 } 5881 5882 /** 5883 * ata_host_resume - resume host 5884 * @host: host to resume 5885 * 5886 * Resume @host. Actual operation is performed by EH. This 5887 * function requests EH to perform PM operations and returns. 5888 * Note that all resume operations are performed parallely. 5889 * 5890 * LOCKING: 5891 * Kernel thread context (may sleep). 5892 */ 5893 void ata_host_resume(struct ata_host *host) 5894 { 5895 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5896 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5897 host->dev->power.power_state = PMSG_ON; 5898 } 5899 #endif 5900 5901 /** 5902 * ata_port_start - Set port up for dma. 5903 * @ap: Port to initialize 5904 * 5905 * Called just after data structures for each port are 5906 * initialized. Allocates space for PRD table. 5907 * 5908 * May be used as the port_start() entry in ata_port_operations. 5909 * 5910 * LOCKING: 5911 * Inherited from caller. 5912 */ 5913 int ata_port_start(struct ata_port *ap) 5914 { 5915 struct device *dev = ap->dev; 5916 int rc; 5917 5918 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5919 GFP_KERNEL); 5920 if (!ap->prd) 5921 return -ENOMEM; 5922 5923 rc = ata_pad_alloc(ap, dev); 5924 if (rc) 5925 return rc; 5926 5927 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5928 (unsigned long long)ap->prd_dma); 5929 return 0; 5930 } 5931 5932 /** 5933 * ata_dev_init - Initialize an ata_device structure 5934 * @dev: Device structure to initialize 5935 * 5936 * Initialize @dev in preparation for probing. 5937 * 5938 * LOCKING: 5939 * Inherited from caller. 5940 */ 5941 void ata_dev_init(struct ata_device *dev) 5942 { 5943 struct ata_port *ap = dev->ap; 5944 unsigned long flags; 5945 5946 /* SATA spd limit is bound to the first device */ 5947 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5948 5949 /* High bits of dev->flags are used to record warm plug 5950 * requests which occur asynchronously. Synchronize using 5951 * host lock. 5952 */ 5953 spin_lock_irqsave(ap->lock, flags); 5954 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5955 spin_unlock_irqrestore(ap->lock, flags); 5956 5957 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5958 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5959 dev->pio_mask = UINT_MAX; 5960 dev->mwdma_mask = UINT_MAX; 5961 dev->udma_mask = UINT_MAX; 5962 } 5963 5964 /** 5965 * ata_port_alloc - allocate and initialize basic ATA port resources 5966 * @host: ATA host this allocated port belongs to 5967 * 5968 * Allocate and initialize basic ATA port resources. 5969 * 5970 * RETURNS: 5971 * Allocate ATA port on success, NULL on failure. 5972 * 5973 * LOCKING: 5974 * Inherited from calling layer (may sleep). 5975 */ 5976 struct ata_port *ata_port_alloc(struct ata_host *host) 5977 { 5978 struct ata_port *ap; 5979 unsigned int i; 5980 5981 DPRINTK("ENTER\n"); 5982 5983 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5984 if (!ap) 5985 return NULL; 5986 5987 ap->pflags |= ATA_PFLAG_INITIALIZING; 5988 ap->lock = &host->lock; 5989 ap->flags = ATA_FLAG_DISABLED; 5990 ap->print_id = -1; 5991 ap->ctl = ATA_DEVCTL_OBS; 5992 ap->host = host; 5993 ap->dev = host->dev; 5994 5995 ap->hw_sata_spd_limit = UINT_MAX; 5996 ap->active_tag = ATA_TAG_POISON; 5997 ap->last_ctl = 0xFF; 5998 5999 #if defined(ATA_VERBOSE_DEBUG) 6000 /* turn on all debugging levels */ 6001 ap->msg_enable = 0x00FF; 6002 #elif defined(ATA_DEBUG) 6003 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6004 #else 6005 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6006 #endif 6007 6008 INIT_DELAYED_WORK(&ap->port_task, NULL); 6009 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6010 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6011 INIT_LIST_HEAD(&ap->eh_done_q); 6012 init_waitqueue_head(&ap->eh_wait_q); 6013 6014 ap->cbl = ATA_CBL_NONE; 6015 6016 for (i = 0; i < ATA_MAX_DEVICES; i++) { 6017 struct ata_device *dev = &ap->device[i]; 6018 dev->ap = ap; 6019 dev->devno = i; 6020 ata_dev_init(dev); 6021 } 6022 6023 #ifdef ATA_IRQ_TRAP 6024 ap->stats.unhandled_irq = 1; 6025 ap->stats.idle_irq = 1; 6026 #endif 6027 return ap; 6028 } 6029 6030 static void ata_host_release(struct device *gendev, void *res) 6031 { 6032 struct ata_host *host = dev_get_drvdata(gendev); 6033 int i; 6034 6035 for (i = 0; i < host->n_ports; i++) { 6036 struct ata_port *ap = host->ports[i]; 6037 6038 if (!ap) 6039 continue; 6040 6041 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 6042 ap->ops->port_stop(ap); 6043 } 6044 6045 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 6046 host->ops->host_stop(host); 6047 6048 for (i = 0; i < host->n_ports; i++) { 6049 struct ata_port *ap = host->ports[i]; 6050 6051 if (!ap) 6052 continue; 6053 6054 if (ap->scsi_host) 6055 scsi_host_put(ap->scsi_host); 6056 6057 kfree(ap); 6058 host->ports[i] = NULL; 6059 } 6060 6061 dev_set_drvdata(gendev, NULL); 6062 } 6063 6064 /** 6065 * ata_host_alloc - allocate and init basic ATA host resources 6066 * @dev: generic device this host is associated with 6067 * @max_ports: maximum number of ATA ports associated with this host 6068 * 6069 * Allocate and initialize basic ATA host resources. LLD calls 6070 * this function to allocate a host, initializes it fully and 6071 * attaches it using ata_host_register(). 6072 * 6073 * @max_ports ports are allocated and host->n_ports is 6074 * initialized to @max_ports. The caller is allowed to decrease 6075 * host->n_ports before calling ata_host_register(). The unused 6076 * ports will be automatically freed on registration. 6077 * 6078 * RETURNS: 6079 * Allocate ATA host on success, NULL on failure. 6080 * 6081 * LOCKING: 6082 * Inherited from calling layer (may sleep). 6083 */ 6084 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6085 { 6086 struct ata_host *host; 6087 size_t sz; 6088 int i; 6089 6090 DPRINTK("ENTER\n"); 6091 6092 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6093 return NULL; 6094 6095 /* alloc a container for our list of ATA ports (buses) */ 6096 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6097 /* alloc a container for our list of ATA ports (buses) */ 6098 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6099 if (!host) 6100 goto err_out; 6101 6102 devres_add(dev, host); 6103 dev_set_drvdata(dev, host); 6104 6105 spin_lock_init(&host->lock); 6106 host->dev = dev; 6107 host->n_ports = max_ports; 6108 6109 /* allocate ports bound to this host */ 6110 for (i = 0; i < max_ports; i++) { 6111 struct ata_port *ap; 6112 6113 ap = ata_port_alloc(host); 6114 if (!ap) 6115 goto err_out; 6116 6117 ap->port_no = i; 6118 host->ports[i] = ap; 6119 } 6120 6121 devres_remove_group(dev, NULL); 6122 return host; 6123 6124 err_out: 6125 devres_release_group(dev, NULL); 6126 return NULL; 6127 } 6128 6129 /** 6130 * ata_host_alloc_pinfo - alloc host and init with port_info array 6131 * @dev: generic device this host is associated with 6132 * @ppi: array of ATA port_info to initialize host with 6133 * @n_ports: number of ATA ports attached to this host 6134 * 6135 * Allocate ATA host and initialize with info from @ppi. If NULL 6136 * terminated, @ppi may contain fewer entries than @n_ports. The 6137 * last entry will be used for the remaining ports. 6138 * 6139 * RETURNS: 6140 * Allocate ATA host on success, NULL on failure. 6141 * 6142 * LOCKING: 6143 * Inherited from calling layer (may sleep). 6144 */ 6145 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6146 const struct ata_port_info * const * ppi, 6147 int n_ports) 6148 { 6149 const struct ata_port_info *pi; 6150 struct ata_host *host; 6151 int i, j; 6152 6153 host = ata_host_alloc(dev, n_ports); 6154 if (!host) 6155 return NULL; 6156 6157 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6158 struct ata_port *ap = host->ports[i]; 6159 6160 if (ppi[j]) 6161 pi = ppi[j++]; 6162 6163 ap->pio_mask = pi->pio_mask; 6164 ap->mwdma_mask = pi->mwdma_mask; 6165 ap->udma_mask = pi->udma_mask; 6166 ap->flags |= pi->flags; 6167 ap->ops = pi->port_ops; 6168 6169 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6170 host->ops = pi->port_ops; 6171 if (!host->private_data && pi->private_data) 6172 host->private_data = pi->private_data; 6173 } 6174 6175 return host; 6176 } 6177 6178 /** 6179 * ata_host_start - start and freeze ports of an ATA host 6180 * @host: ATA host to start ports for 6181 * 6182 * Start and then freeze ports of @host. Started status is 6183 * recorded in host->flags, so this function can be called 6184 * multiple times. Ports are guaranteed to get started only 6185 * once. If host->ops isn't initialized yet, its set to the 6186 * first non-dummy port ops. 6187 * 6188 * LOCKING: 6189 * Inherited from calling layer (may sleep). 6190 * 6191 * RETURNS: 6192 * 0 if all ports are started successfully, -errno otherwise. 6193 */ 6194 int ata_host_start(struct ata_host *host) 6195 { 6196 int i, rc; 6197 6198 if (host->flags & ATA_HOST_STARTED) 6199 return 0; 6200 6201 for (i = 0; i < host->n_ports; i++) { 6202 struct ata_port *ap = host->ports[i]; 6203 6204 if (!host->ops && !ata_port_is_dummy(ap)) 6205 host->ops = ap->ops; 6206 6207 if (ap->ops->port_start) { 6208 rc = ap->ops->port_start(ap); 6209 if (rc) { 6210 ata_port_printk(ap, KERN_ERR, "failed to " 6211 "start port (errno=%d)\n", rc); 6212 goto err_out; 6213 } 6214 } 6215 6216 ata_eh_freeze_port(ap); 6217 } 6218 6219 host->flags |= ATA_HOST_STARTED; 6220 return 0; 6221 6222 err_out: 6223 while (--i >= 0) { 6224 struct ata_port *ap = host->ports[i]; 6225 6226 if (ap->ops->port_stop) 6227 ap->ops->port_stop(ap); 6228 } 6229 return rc; 6230 } 6231 6232 /** 6233 * ata_sas_host_init - Initialize a host struct 6234 * @host: host to initialize 6235 * @dev: device host is attached to 6236 * @flags: host flags 6237 * @ops: port_ops 6238 * 6239 * LOCKING: 6240 * PCI/etc. bus probe sem. 6241 * 6242 */ 6243 /* KILLME - the only user left is ipr */ 6244 void ata_host_init(struct ata_host *host, struct device *dev, 6245 unsigned long flags, const struct ata_port_operations *ops) 6246 { 6247 spin_lock_init(&host->lock); 6248 host->dev = dev; 6249 host->flags = flags; 6250 host->ops = ops; 6251 } 6252 6253 /** 6254 * ata_host_register - register initialized ATA host 6255 * @host: ATA host to register 6256 * @sht: template for SCSI host 6257 * 6258 * Register initialized ATA host. @host is allocated using 6259 * ata_host_alloc() and fully initialized by LLD. This function 6260 * starts ports, registers @host with ATA and SCSI layers and 6261 * probe registered devices. 6262 * 6263 * LOCKING: 6264 * Inherited from calling layer (may sleep). 6265 * 6266 * RETURNS: 6267 * 0 on success, -errno otherwise. 6268 */ 6269 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6270 { 6271 int i, rc; 6272 6273 /* host must have been started */ 6274 if (!(host->flags & ATA_HOST_STARTED)) { 6275 dev_printk(KERN_ERR, host->dev, 6276 "BUG: trying to register unstarted host\n"); 6277 WARN_ON(1); 6278 return -EINVAL; 6279 } 6280 6281 /* Blow away unused ports. This happens when LLD can't 6282 * determine the exact number of ports to allocate at 6283 * allocation time. 6284 */ 6285 for (i = host->n_ports; host->ports[i]; i++) 6286 kfree(host->ports[i]); 6287 6288 /* give ports names and add SCSI hosts */ 6289 for (i = 0; i < host->n_ports; i++) 6290 host->ports[i]->print_id = ata_print_id++; 6291 6292 rc = ata_scsi_add_hosts(host, sht); 6293 if (rc) 6294 return rc; 6295 6296 /* set cable, sata_spd_limit and report */ 6297 for (i = 0; i < host->n_ports; i++) { 6298 struct ata_port *ap = host->ports[i]; 6299 int irq_line; 6300 u32 scontrol; 6301 unsigned long xfer_mask; 6302 6303 /* set SATA cable type if still unset */ 6304 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6305 ap->cbl = ATA_CBL_SATA; 6306 6307 /* init sata_spd_limit to the current value */ 6308 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 6309 int spd = (scontrol >> 4) & 0xf; 6310 if (spd) 6311 ap->hw_sata_spd_limit &= (1 << spd) - 1; 6312 } 6313 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6314 6315 /* report the secondary IRQ for second channel legacy */ 6316 irq_line = host->irq; 6317 if (i == 1 && host->irq2) 6318 irq_line = host->irq2; 6319 6320 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6321 ap->udma_mask); 6322 6323 /* print per-port info to dmesg */ 6324 if (!ata_port_is_dummy(ap)) 6325 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 6326 "ctl 0x%p bmdma 0x%p irq %d\n", 6327 ap->cbl == ATA_CBL_SATA ? 'S' : 'P', 6328 ata_mode_string(xfer_mask), 6329 ap->ioaddr.cmd_addr, 6330 ap->ioaddr.ctl_addr, 6331 ap->ioaddr.bmdma_addr, 6332 irq_line); 6333 else 6334 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6335 } 6336 6337 /* perform each probe synchronously */ 6338 DPRINTK("probe begin\n"); 6339 for (i = 0; i < host->n_ports; i++) { 6340 struct ata_port *ap = host->ports[i]; 6341 int rc; 6342 6343 /* probe */ 6344 if (ap->ops->error_handler) { 6345 struct ata_eh_info *ehi = &ap->eh_info; 6346 unsigned long flags; 6347 6348 ata_port_probe(ap); 6349 6350 /* kick EH for boot probing */ 6351 spin_lock_irqsave(ap->lock, flags); 6352 6353 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 6354 ehi->action |= ATA_EH_SOFTRESET; 6355 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6356 6357 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6358 ap->pflags |= ATA_PFLAG_LOADING; 6359 ata_port_schedule_eh(ap); 6360 6361 spin_unlock_irqrestore(ap->lock, flags); 6362 6363 /* wait for EH to finish */ 6364 ata_port_wait_eh(ap); 6365 } else { 6366 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6367 rc = ata_bus_probe(ap); 6368 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6369 6370 if (rc) { 6371 /* FIXME: do something useful here? 6372 * Current libata behavior will 6373 * tear down everything when 6374 * the module is removed 6375 * or the h/w is unplugged. 6376 */ 6377 } 6378 } 6379 } 6380 6381 /* probes are done, now scan each port's disk(s) */ 6382 DPRINTK("host probe begin\n"); 6383 for (i = 0; i < host->n_ports; i++) { 6384 struct ata_port *ap = host->ports[i]; 6385 6386 ata_scsi_scan_host(ap); 6387 } 6388 6389 return 0; 6390 } 6391 6392 /** 6393 * ata_host_activate - start host, request IRQ and register it 6394 * @host: target ATA host 6395 * @irq: IRQ to request 6396 * @irq_handler: irq_handler used when requesting IRQ 6397 * @irq_flags: irq_flags used when requesting IRQ 6398 * @sht: scsi_host_template to use when registering the host 6399 * 6400 * After allocating an ATA host and initializing it, most libata 6401 * LLDs perform three steps to activate the host - start host, 6402 * request IRQ and register it. This helper takes necessasry 6403 * arguments and performs the three steps in one go. 6404 * 6405 * LOCKING: 6406 * Inherited from calling layer (may sleep). 6407 * 6408 * RETURNS: 6409 * 0 on success, -errno otherwise. 6410 */ 6411 int ata_host_activate(struct ata_host *host, int irq, 6412 irq_handler_t irq_handler, unsigned long irq_flags, 6413 struct scsi_host_template *sht) 6414 { 6415 int rc; 6416 6417 rc = ata_host_start(host); 6418 if (rc) 6419 return rc; 6420 6421 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6422 dev_driver_string(host->dev), host); 6423 if (rc) 6424 return rc; 6425 6426 /* Used to print device info at probe */ 6427 host->irq = irq; 6428 6429 rc = ata_host_register(host, sht); 6430 /* if failed, just free the IRQ and leave ports alone */ 6431 if (rc) 6432 devm_free_irq(host->dev, irq, host); 6433 6434 return rc; 6435 } 6436 6437 /** 6438 * ata_port_detach - Detach ATA port in prepration of device removal 6439 * @ap: ATA port to be detached 6440 * 6441 * Detach all ATA devices and the associated SCSI devices of @ap; 6442 * then, remove the associated SCSI host. @ap is guaranteed to 6443 * be quiescent on return from this function. 6444 * 6445 * LOCKING: 6446 * Kernel thread context (may sleep). 6447 */ 6448 void ata_port_detach(struct ata_port *ap) 6449 { 6450 unsigned long flags; 6451 int i; 6452 6453 if (!ap->ops->error_handler) 6454 goto skip_eh; 6455 6456 /* tell EH we're leaving & flush EH */ 6457 spin_lock_irqsave(ap->lock, flags); 6458 ap->pflags |= ATA_PFLAG_UNLOADING; 6459 spin_unlock_irqrestore(ap->lock, flags); 6460 6461 ata_port_wait_eh(ap); 6462 6463 /* EH is now guaranteed to see UNLOADING, so no new device 6464 * will be attached. Disable all existing devices. 6465 */ 6466 spin_lock_irqsave(ap->lock, flags); 6467 6468 for (i = 0; i < ATA_MAX_DEVICES; i++) 6469 ata_dev_disable(&ap->device[i]); 6470 6471 spin_unlock_irqrestore(ap->lock, flags); 6472 6473 /* Final freeze & EH. All in-flight commands are aborted. EH 6474 * will be skipped and retrials will be terminated with bad 6475 * target. 6476 */ 6477 spin_lock_irqsave(ap->lock, flags); 6478 ata_port_freeze(ap); /* won't be thawed */ 6479 spin_unlock_irqrestore(ap->lock, flags); 6480 6481 ata_port_wait_eh(ap); 6482 6483 /* Flush hotplug task. The sequence is similar to 6484 * ata_port_flush_task(). 6485 */ 6486 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */ 6487 cancel_delayed_work(&ap->hotplug_task); 6488 cancel_work_sync(&ap->hotplug_task.work); 6489 6490 skip_eh: 6491 /* remove the associated SCSI host */ 6492 scsi_remove_host(ap->scsi_host); 6493 } 6494 6495 /** 6496 * ata_host_detach - Detach all ports of an ATA host 6497 * @host: Host to detach 6498 * 6499 * Detach all ports of @host. 6500 * 6501 * LOCKING: 6502 * Kernel thread context (may sleep). 6503 */ 6504 void ata_host_detach(struct ata_host *host) 6505 { 6506 int i; 6507 6508 for (i = 0; i < host->n_ports; i++) 6509 ata_port_detach(host->ports[i]); 6510 } 6511 6512 /** 6513 * ata_std_ports - initialize ioaddr with standard port offsets. 6514 * @ioaddr: IO address structure to be initialized 6515 * 6516 * Utility function which initializes data_addr, error_addr, 6517 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6518 * device_addr, status_addr, and command_addr to standard offsets 6519 * relative to cmd_addr. 6520 * 6521 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6522 */ 6523 6524 void ata_std_ports(struct ata_ioports *ioaddr) 6525 { 6526 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6527 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6528 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6529 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6530 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6531 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6532 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6533 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6534 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6535 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6536 } 6537 6538 6539 #ifdef CONFIG_PCI 6540 6541 /** 6542 * ata_pci_remove_one - PCI layer callback for device removal 6543 * @pdev: PCI device that was removed 6544 * 6545 * PCI layer indicates to libata via this hook that hot-unplug or 6546 * module unload event has occurred. Detach all ports. Resource 6547 * release is handled via devres. 6548 * 6549 * LOCKING: 6550 * Inherited from PCI layer (may sleep). 6551 */ 6552 void ata_pci_remove_one(struct pci_dev *pdev) 6553 { 6554 struct device *dev = pci_dev_to_dev(pdev); 6555 struct ata_host *host = dev_get_drvdata(dev); 6556 6557 ata_host_detach(host); 6558 } 6559 6560 /* move to PCI subsystem */ 6561 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6562 { 6563 unsigned long tmp = 0; 6564 6565 switch (bits->width) { 6566 case 1: { 6567 u8 tmp8 = 0; 6568 pci_read_config_byte(pdev, bits->reg, &tmp8); 6569 tmp = tmp8; 6570 break; 6571 } 6572 case 2: { 6573 u16 tmp16 = 0; 6574 pci_read_config_word(pdev, bits->reg, &tmp16); 6575 tmp = tmp16; 6576 break; 6577 } 6578 case 4: { 6579 u32 tmp32 = 0; 6580 pci_read_config_dword(pdev, bits->reg, &tmp32); 6581 tmp = tmp32; 6582 break; 6583 } 6584 6585 default: 6586 return -EINVAL; 6587 } 6588 6589 tmp &= bits->mask; 6590 6591 return (tmp == bits->val) ? 1 : 0; 6592 } 6593 6594 #ifdef CONFIG_PM 6595 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6596 { 6597 pci_save_state(pdev); 6598 pci_disable_device(pdev); 6599 6600 if (mesg.event == PM_EVENT_SUSPEND) 6601 pci_set_power_state(pdev, PCI_D3hot); 6602 } 6603 6604 int ata_pci_device_do_resume(struct pci_dev *pdev) 6605 { 6606 int rc; 6607 6608 pci_set_power_state(pdev, PCI_D0); 6609 pci_restore_state(pdev); 6610 6611 rc = pcim_enable_device(pdev); 6612 if (rc) { 6613 dev_printk(KERN_ERR, &pdev->dev, 6614 "failed to enable device after resume (%d)\n", rc); 6615 return rc; 6616 } 6617 6618 pci_set_master(pdev); 6619 return 0; 6620 } 6621 6622 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6623 { 6624 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6625 int rc = 0; 6626 6627 rc = ata_host_suspend(host, mesg); 6628 if (rc) 6629 return rc; 6630 6631 ata_pci_device_do_suspend(pdev, mesg); 6632 6633 return 0; 6634 } 6635 6636 int ata_pci_device_resume(struct pci_dev *pdev) 6637 { 6638 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6639 int rc; 6640 6641 rc = ata_pci_device_do_resume(pdev); 6642 if (rc == 0) 6643 ata_host_resume(host); 6644 return rc; 6645 } 6646 #endif /* CONFIG_PM */ 6647 6648 #endif /* CONFIG_PCI */ 6649 6650 6651 static int __init ata_init(void) 6652 { 6653 ata_probe_timeout *= HZ; 6654 ata_wq = create_workqueue("ata"); 6655 if (!ata_wq) 6656 return -ENOMEM; 6657 6658 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6659 if (!ata_aux_wq) { 6660 destroy_workqueue(ata_wq); 6661 return -ENOMEM; 6662 } 6663 6664 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6665 return 0; 6666 } 6667 6668 static void __exit ata_exit(void) 6669 { 6670 destroy_workqueue(ata_wq); 6671 destroy_workqueue(ata_aux_wq); 6672 } 6673 6674 subsys_initcall(ata_init); 6675 module_exit(ata_exit); 6676 6677 static unsigned long ratelimit_time; 6678 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6679 6680 int ata_ratelimit(void) 6681 { 6682 int rc; 6683 unsigned long flags; 6684 6685 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6686 6687 if (time_after(jiffies, ratelimit_time)) { 6688 rc = 1; 6689 ratelimit_time = jiffies + (HZ/5); 6690 } else 6691 rc = 0; 6692 6693 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6694 6695 return rc; 6696 } 6697 6698 /** 6699 * ata_wait_register - wait until register value changes 6700 * @reg: IO-mapped register 6701 * @mask: Mask to apply to read register value 6702 * @val: Wait condition 6703 * @interval_msec: polling interval in milliseconds 6704 * @timeout_msec: timeout in milliseconds 6705 * 6706 * Waiting for some bits of register to change is a common 6707 * operation for ATA controllers. This function reads 32bit LE 6708 * IO-mapped register @reg and tests for the following condition. 6709 * 6710 * (*@reg & mask) != val 6711 * 6712 * If the condition is met, it returns; otherwise, the process is 6713 * repeated after @interval_msec until timeout. 6714 * 6715 * LOCKING: 6716 * Kernel thread context (may sleep) 6717 * 6718 * RETURNS: 6719 * The final register value. 6720 */ 6721 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6722 unsigned long interval_msec, 6723 unsigned long timeout_msec) 6724 { 6725 unsigned long timeout; 6726 u32 tmp; 6727 6728 tmp = ioread32(reg); 6729 6730 /* Calculate timeout _after_ the first read to make sure 6731 * preceding writes reach the controller before starting to 6732 * eat away the timeout. 6733 */ 6734 timeout = jiffies + (timeout_msec * HZ) / 1000; 6735 6736 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6737 msleep(interval_msec); 6738 tmp = ioread32(reg); 6739 } 6740 6741 return tmp; 6742 } 6743 6744 /* 6745 * Dummy port_ops 6746 */ 6747 static void ata_dummy_noret(struct ata_port *ap) { } 6748 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6749 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6750 6751 static u8 ata_dummy_check_status(struct ata_port *ap) 6752 { 6753 return ATA_DRDY; 6754 } 6755 6756 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6757 { 6758 return AC_ERR_SYSTEM; 6759 } 6760 6761 const struct ata_port_operations ata_dummy_port_ops = { 6762 .port_disable = ata_port_disable, 6763 .check_status = ata_dummy_check_status, 6764 .check_altstatus = ata_dummy_check_status, 6765 .dev_select = ata_noop_dev_select, 6766 .qc_prep = ata_noop_qc_prep, 6767 .qc_issue = ata_dummy_qc_issue, 6768 .freeze = ata_dummy_noret, 6769 .thaw = ata_dummy_noret, 6770 .error_handler = ata_dummy_noret, 6771 .post_internal_cmd = ata_dummy_qc_noret, 6772 .irq_clear = ata_dummy_noret, 6773 .port_start = ata_dummy_ret0, 6774 .port_stop = ata_dummy_noret, 6775 }; 6776 6777 const struct ata_port_info ata_dummy_port_info = { 6778 .port_ops = &ata_dummy_port_ops, 6779 }; 6780 6781 /* 6782 * libata is essentially a library of internal helper functions for 6783 * low-level ATA host controller drivers. As such, the API/ABI is 6784 * likely to change as new drivers are added and updated. 6785 * Do not depend on ABI/API stability. 6786 */ 6787 6788 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6789 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6790 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6791 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6792 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6793 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6794 EXPORT_SYMBOL_GPL(ata_std_ports); 6795 EXPORT_SYMBOL_GPL(ata_host_init); 6796 EXPORT_SYMBOL_GPL(ata_host_alloc); 6797 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6798 EXPORT_SYMBOL_GPL(ata_host_start); 6799 EXPORT_SYMBOL_GPL(ata_host_register); 6800 EXPORT_SYMBOL_GPL(ata_host_activate); 6801 EXPORT_SYMBOL_GPL(ata_host_detach); 6802 EXPORT_SYMBOL_GPL(ata_sg_init); 6803 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6804 EXPORT_SYMBOL_GPL(ata_hsm_move); 6805 EXPORT_SYMBOL_GPL(ata_qc_complete); 6806 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6807 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6808 EXPORT_SYMBOL_GPL(ata_tf_load); 6809 EXPORT_SYMBOL_GPL(ata_tf_read); 6810 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6811 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6812 EXPORT_SYMBOL_GPL(sata_print_link_status); 6813 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6814 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6815 EXPORT_SYMBOL_GPL(ata_check_status); 6816 EXPORT_SYMBOL_GPL(ata_altstatus); 6817 EXPORT_SYMBOL_GPL(ata_exec_command); 6818 EXPORT_SYMBOL_GPL(ata_port_start); 6819 EXPORT_SYMBOL_GPL(ata_sff_port_start); 6820 EXPORT_SYMBOL_GPL(ata_interrupt); 6821 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6822 EXPORT_SYMBOL_GPL(ata_data_xfer); 6823 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6824 EXPORT_SYMBOL_GPL(ata_qc_prep); 6825 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6826 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6827 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6828 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6829 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6830 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6831 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6832 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6833 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6834 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6835 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6836 EXPORT_SYMBOL_GPL(ata_port_probe); 6837 EXPORT_SYMBOL_GPL(ata_dev_disable); 6838 EXPORT_SYMBOL_GPL(sata_set_spd); 6839 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6840 EXPORT_SYMBOL_GPL(sata_phy_resume); 6841 EXPORT_SYMBOL_GPL(sata_phy_reset); 6842 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6843 EXPORT_SYMBOL_GPL(ata_bus_reset); 6844 EXPORT_SYMBOL_GPL(ata_std_prereset); 6845 EXPORT_SYMBOL_GPL(ata_std_softreset); 6846 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6847 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6848 EXPORT_SYMBOL_GPL(ata_std_postreset); 6849 EXPORT_SYMBOL_GPL(ata_dev_classify); 6850 EXPORT_SYMBOL_GPL(ata_dev_pair); 6851 EXPORT_SYMBOL_GPL(ata_port_disable); 6852 EXPORT_SYMBOL_GPL(ata_ratelimit); 6853 EXPORT_SYMBOL_GPL(ata_wait_register); 6854 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6855 EXPORT_SYMBOL_GPL(ata_wait_ready); 6856 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6857 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6858 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6859 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6860 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6861 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6862 EXPORT_SYMBOL_GPL(ata_host_intr); 6863 EXPORT_SYMBOL_GPL(sata_scr_valid); 6864 EXPORT_SYMBOL_GPL(sata_scr_read); 6865 EXPORT_SYMBOL_GPL(sata_scr_write); 6866 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6867 EXPORT_SYMBOL_GPL(ata_port_online); 6868 EXPORT_SYMBOL_GPL(ata_port_offline); 6869 #ifdef CONFIG_PM 6870 EXPORT_SYMBOL_GPL(ata_host_suspend); 6871 EXPORT_SYMBOL_GPL(ata_host_resume); 6872 #endif /* CONFIG_PM */ 6873 EXPORT_SYMBOL_GPL(ata_id_string); 6874 EXPORT_SYMBOL_GPL(ata_id_c_string); 6875 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6876 EXPORT_SYMBOL_GPL(ata_device_blacklisted); 6877 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6878 6879 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6880 EXPORT_SYMBOL_GPL(ata_timing_compute); 6881 EXPORT_SYMBOL_GPL(ata_timing_merge); 6882 6883 #ifdef CONFIG_PCI 6884 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6885 EXPORT_SYMBOL_GPL(ata_pci_init_native_host); 6886 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma); 6887 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host); 6888 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6889 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6890 #ifdef CONFIG_PM 6891 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6892 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6893 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6894 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6895 #endif /* CONFIG_PM */ 6896 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6897 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6898 #endif /* CONFIG_PCI */ 6899 6900 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6901 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6902 EXPORT_SYMBOL_GPL(ata_port_abort); 6903 EXPORT_SYMBOL_GPL(ata_port_freeze); 6904 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6905 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6906 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6907 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6908 EXPORT_SYMBOL_GPL(ata_do_eh); 6909 EXPORT_SYMBOL_GPL(ata_irq_on); 6910 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6911 EXPORT_SYMBOL_GPL(ata_irq_ack); 6912 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6913 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6914 6915 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6916 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6917 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6918 EXPORT_SYMBOL_GPL(ata_cable_sata); 6919