xref: /linux/drivers/ata/libata-core.c (revision bf74b964775009071cf12f9d59d4dd5e388fbe0b)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.21"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77 
78 struct workqueue_struct *ata_aux_wq;
79 
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95 
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99 
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103 
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108 
109 
110 /**
111  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112  *	@tf: Taskfile to convert
113  *	@fis: Buffer into which data will output
114  *	@pmp: Port multiplier port
115  *
116  *	Converts a standard ATA taskfile to a Serial ATA
117  *	FIS structure (Register - Host to Device).
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
122 
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 	fis[0] = 0x27;	/* Register - Host to Device FIS */
126 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 					    bit 7 indicates Command FIS */
128 	fis[2] = tf->command;
129 	fis[3] = tf->feature;
130 
131 	fis[4] = tf->lbal;
132 	fis[5] = tf->lbam;
133 	fis[6] = tf->lbah;
134 	fis[7] = tf->device;
135 
136 	fis[8] = tf->hob_lbal;
137 	fis[9] = tf->hob_lbam;
138 	fis[10] = tf->hob_lbah;
139 	fis[11] = tf->hob_feature;
140 
141 	fis[12] = tf->nsect;
142 	fis[13] = tf->hob_nsect;
143 	fis[14] = 0;
144 	fis[15] = tf->ctl;
145 
146 	fis[16] = 0;
147 	fis[17] = 0;
148 	fis[18] = 0;
149 	fis[19] = 0;
150 }
151 
152 /**
153  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154  *	@fis: Buffer from which data will be input
155  *	@tf: Taskfile to output
156  *
157  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
158  *
159  *	LOCKING:
160  *	Inherited from caller.
161  */
162 
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 	tf->command	= fis[2];	/* status */
166 	tf->feature	= fis[3];	/* error */
167 
168 	tf->lbal	= fis[4];
169 	tf->lbam	= fis[5];
170 	tf->lbah	= fis[6];
171 	tf->device	= fis[7];
172 
173 	tf->hob_lbal	= fis[8];
174 	tf->hob_lbam	= fis[9];
175 	tf->hob_lbah	= fis[10];
176 
177 	tf->nsect	= fis[12];
178 	tf->hob_nsect	= fis[13];
179 }
180 
181 static const u8 ata_rw_cmds[] = {
182 	/* pio multi */
183 	ATA_CMD_READ_MULTI,
184 	ATA_CMD_WRITE_MULTI,
185 	ATA_CMD_READ_MULTI_EXT,
186 	ATA_CMD_WRITE_MULTI_EXT,
187 	0,
188 	0,
189 	0,
190 	ATA_CMD_WRITE_MULTI_FUA_EXT,
191 	/* pio */
192 	ATA_CMD_PIO_READ,
193 	ATA_CMD_PIO_WRITE,
194 	ATA_CMD_PIO_READ_EXT,
195 	ATA_CMD_PIO_WRITE_EXT,
196 	0,
197 	0,
198 	0,
199 	0,
200 	/* dma */
201 	ATA_CMD_READ,
202 	ATA_CMD_WRITE,
203 	ATA_CMD_READ_EXT,
204 	ATA_CMD_WRITE_EXT,
205 	0,
206 	0,
207 	0,
208 	ATA_CMD_WRITE_FUA_EXT
209 };
210 
211 /**
212  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
213  *	@tf: command to examine and configure
214  *	@dev: device tf belongs to
215  *
216  *	Examine the device configuration and tf->flags to calculate
217  *	the proper read/write commands and protocol to use.
218  *
219  *	LOCKING:
220  *	caller.
221  */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 	u8 cmd;
225 
226 	int index, fua, lba48, write;
227 
228 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231 
232 	if (dev->flags & ATA_DFLAG_PIO) {
233 		tf->protocol = ATA_PROT_PIO;
234 		index = dev->multi_count ? 0 : 8;
235 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 		/* Unable to use DMA due to host limitation */
237 		tf->protocol = ATA_PROT_PIO;
238 		index = dev->multi_count ? 0 : 8;
239 	} else {
240 		tf->protocol = ATA_PROT_DMA;
241 		index = 16;
242 	}
243 
244 	cmd = ata_rw_cmds[index + fua + lba48 + write];
245 	if (cmd) {
246 		tf->command = cmd;
247 		return 0;
248 	}
249 	return -1;
250 }
251 
252 /**
253  *	ata_tf_read_block - Read block address from ATA taskfile
254  *	@tf: ATA taskfile of interest
255  *	@dev: ATA device @tf belongs to
256  *
257  *	LOCKING:
258  *	None.
259  *
260  *	Read block address from @tf.  This function can handle all
261  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
262  *	flags select the address format to use.
263  *
264  *	RETURNS:
265  *	Block address read from @tf.
266  */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 	u64 block = 0;
270 
271 	if (tf->flags & ATA_TFLAG_LBA) {
272 		if (tf->flags & ATA_TFLAG_LBA48) {
273 			block |= (u64)tf->hob_lbah << 40;
274 			block |= (u64)tf->hob_lbam << 32;
275 			block |= tf->hob_lbal << 24;
276 		} else
277 			block |= (tf->device & 0xf) << 24;
278 
279 		block |= tf->lbah << 16;
280 		block |= tf->lbam << 8;
281 		block |= tf->lbal;
282 	} else {
283 		u32 cyl, head, sect;
284 
285 		cyl = tf->lbam | (tf->lbah << 8);
286 		head = tf->device & 0xf;
287 		sect = tf->lbal;
288 
289 		block = (cyl * dev->heads + head) * dev->sectors + sect;
290 	}
291 
292 	return block;
293 }
294 
295 /**
296  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
297  *	@tf: Target ATA taskfile
298  *	@dev: ATA device @tf belongs to
299  *	@block: Block address
300  *	@n_block: Number of blocks
301  *	@tf_flags: RW/FUA etc...
302  *	@tag: tag
303  *
304  *	LOCKING:
305  *	None.
306  *
307  *	Build ATA taskfile @tf for read/write request described by
308  *	@block, @n_block, @tf_flags and @tag on @dev.
309  *
310  *	RETURNS:
311  *
312  *	0 on success, -ERANGE if the request is too large for @dev,
313  *	-EINVAL if the request is invalid.
314  */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 		    u64 block, u32 n_block, unsigned int tf_flags,
317 		    unsigned int tag)
318 {
319 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 	tf->flags |= tf_flags;
321 
322 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 		/* yay, NCQ */
324 		if (!lba_48_ok(block, n_block))
325 			return -ERANGE;
326 
327 		tf->protocol = ATA_PROT_NCQ;
328 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329 
330 		if (tf->flags & ATA_TFLAG_WRITE)
331 			tf->command = ATA_CMD_FPDMA_WRITE;
332 		else
333 			tf->command = ATA_CMD_FPDMA_READ;
334 
335 		tf->nsect = tag << 3;
336 		tf->hob_feature = (n_block >> 8) & 0xff;
337 		tf->feature = n_block & 0xff;
338 
339 		tf->hob_lbah = (block >> 40) & 0xff;
340 		tf->hob_lbam = (block >> 32) & 0xff;
341 		tf->hob_lbal = (block >> 24) & 0xff;
342 		tf->lbah = (block >> 16) & 0xff;
343 		tf->lbam = (block >> 8) & 0xff;
344 		tf->lbal = block & 0xff;
345 
346 		tf->device = 1 << 6;
347 		if (tf->flags & ATA_TFLAG_FUA)
348 			tf->device |= 1 << 7;
349 	} else if (dev->flags & ATA_DFLAG_LBA) {
350 		tf->flags |= ATA_TFLAG_LBA;
351 
352 		if (lba_28_ok(block, n_block)) {
353 			/* use LBA28 */
354 			tf->device |= (block >> 24) & 0xf;
355 		} else if (lba_48_ok(block, n_block)) {
356 			if (!(dev->flags & ATA_DFLAG_LBA48))
357 				return -ERANGE;
358 
359 			/* use LBA48 */
360 			tf->flags |= ATA_TFLAG_LBA48;
361 
362 			tf->hob_nsect = (n_block >> 8) & 0xff;
363 
364 			tf->hob_lbah = (block >> 40) & 0xff;
365 			tf->hob_lbam = (block >> 32) & 0xff;
366 			tf->hob_lbal = (block >> 24) & 0xff;
367 		} else
368 			/* request too large even for LBA48 */
369 			return -ERANGE;
370 
371 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 			return -EINVAL;
373 
374 		tf->nsect = n_block & 0xff;
375 
376 		tf->lbah = (block >> 16) & 0xff;
377 		tf->lbam = (block >> 8) & 0xff;
378 		tf->lbal = block & 0xff;
379 
380 		tf->device |= ATA_LBA;
381 	} else {
382 		/* CHS */
383 		u32 sect, head, cyl, track;
384 
385 		/* The request -may- be too large for CHS addressing. */
386 		if (!lba_28_ok(block, n_block))
387 			return -ERANGE;
388 
389 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 			return -EINVAL;
391 
392 		/* Convert LBA to CHS */
393 		track = (u32)block / dev->sectors;
394 		cyl   = track / dev->heads;
395 		head  = track % dev->heads;
396 		sect  = (u32)block % dev->sectors + 1;
397 
398 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 			(u32)block, track, cyl, head, sect);
400 
401 		/* Check whether the converted CHS can fit.
402 		   Cylinder: 0-65535
403 		   Head: 0-15
404 		   Sector: 1-255*/
405 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 			return -ERANGE;
407 
408 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 		tf->lbal = sect;
410 		tf->lbam = cyl;
411 		tf->lbah = cyl >> 8;
412 		tf->device |= head;
413 	}
414 
415 	return 0;
416 }
417 
418 /**
419  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420  *	@pio_mask: pio_mask
421  *	@mwdma_mask: mwdma_mask
422  *	@udma_mask: udma_mask
423  *
424  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425  *	unsigned int xfer_mask.
426  *
427  *	LOCKING:
428  *	None.
429  *
430  *	RETURNS:
431  *	Packed xfer_mask.
432  */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 				      unsigned int mwdma_mask,
435 				      unsigned int udma_mask)
436 {
437 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441 
442 /**
443  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444  *	@xfer_mask: xfer_mask to unpack
445  *	@pio_mask: resulting pio_mask
446  *	@mwdma_mask: resulting mwdma_mask
447  *	@udma_mask: resulting udma_mask
448  *
449  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450  *	Any NULL distination masks will be ignored.
451  */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 				unsigned int *pio_mask,
454 				unsigned int *mwdma_mask,
455 				unsigned int *udma_mask)
456 {
457 	if (pio_mask)
458 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 	if (mwdma_mask)
460 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 	if (udma_mask)
462 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464 
465 static const struct ata_xfer_ent {
466 	int shift, bits;
467 	u8 base;
468 } ata_xfer_tbl[] = {
469 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 	{ -1, },
473 };
474 
475 /**
476  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477  *	@xfer_mask: xfer_mask of interest
478  *
479  *	Return matching XFER_* value for @xfer_mask.  Only the highest
480  *	bit of @xfer_mask is considered.
481  *
482  *	LOCKING:
483  *	None.
484  *
485  *	RETURNS:
486  *	Matching XFER_* value, 0 if no match found.
487  */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 	int highbit = fls(xfer_mask) - 1;
491 	const struct ata_xfer_ent *ent;
492 
493 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 			return ent->base + highbit - ent->shift;
496 	return 0;
497 }
498 
499 /**
500  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501  *	@xfer_mode: XFER_* of interest
502  *
503  *	Return matching xfer_mask for @xfer_mode.
504  *
505  *	LOCKING:
506  *	None.
507  *
508  *	RETURNS:
509  *	Matching xfer_mask, 0 if no match found.
510  */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 	const struct ata_xfer_ent *ent;
514 
515 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 			return 1 << (ent->shift + xfer_mode - ent->base);
518 	return 0;
519 }
520 
521 /**
522  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523  *	@xfer_mode: XFER_* of interest
524  *
525  *	Return matching xfer_shift for @xfer_mode.
526  *
527  *	LOCKING:
528  *	None.
529  *
530  *	RETURNS:
531  *	Matching xfer_shift, -1 if no match found.
532  */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 	const struct ata_xfer_ent *ent;
536 
537 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 			return ent->shift;
540 	return -1;
541 }
542 
543 /**
544  *	ata_mode_string - convert xfer_mask to string
545  *	@xfer_mask: mask of bits supported; only highest bit counts.
546  *
547  *	Determine string which represents the highest speed
548  *	(highest bit in @modemask).
549  *
550  *	LOCKING:
551  *	None.
552  *
553  *	RETURNS:
554  *	Constant C string representing highest speed listed in
555  *	@mode_mask, or the constant C string "<n/a>".
556  */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 	static const char * const xfer_mode_str[] = {
560 		"PIO0",
561 		"PIO1",
562 		"PIO2",
563 		"PIO3",
564 		"PIO4",
565 		"PIO5",
566 		"PIO6",
567 		"MWDMA0",
568 		"MWDMA1",
569 		"MWDMA2",
570 		"MWDMA3",
571 		"MWDMA4",
572 		"UDMA/16",
573 		"UDMA/25",
574 		"UDMA/33",
575 		"UDMA/44",
576 		"UDMA/66",
577 		"UDMA/100",
578 		"UDMA/133",
579 		"UDMA7",
580 	};
581 	int highbit;
582 
583 	highbit = fls(xfer_mask) - 1;
584 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 		return xfer_mode_str[highbit];
586 	return "<n/a>";
587 }
588 
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 	static const char * const spd_str[] = {
592 		"1.5 Gbps",
593 		"3.0 Gbps",
594 	};
595 
596 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 		return "<unknown>";
598 	return spd_str[spd - 1];
599 }
600 
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 	if (ata_dev_enabled(dev)) {
604 		if (ata_msg_drv(dev->ap))
605 			ata_dev_printk(dev, KERN_WARNING, "disabled\n");
606 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 					     ATA_DNXFER_QUIET);
608 		dev->class++;
609 	}
610 }
611 
612 /**
613  *	ata_devchk - PATA device presence detection
614  *	@ap: ATA channel to examine
615  *	@device: Device to examine (starting at zero)
616  *
617  *	This technique was originally described in
618  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
619  *	later found its way into the ATA/ATAPI spec.
620  *
621  *	Write a pattern to the ATA shadow registers,
622  *	and if a device is present, it will respond by
623  *	correctly storing and echoing back the
624  *	ATA shadow register contents.
625  *
626  *	LOCKING:
627  *	caller.
628  */
629 
630 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631 {
632 	struct ata_ioports *ioaddr = &ap->ioaddr;
633 	u8 nsect, lbal;
634 
635 	ap->ops->dev_select(ap, device);
636 
637 	iowrite8(0x55, ioaddr->nsect_addr);
638 	iowrite8(0xaa, ioaddr->lbal_addr);
639 
640 	iowrite8(0xaa, ioaddr->nsect_addr);
641 	iowrite8(0x55, ioaddr->lbal_addr);
642 
643 	iowrite8(0x55, ioaddr->nsect_addr);
644 	iowrite8(0xaa, ioaddr->lbal_addr);
645 
646 	nsect = ioread8(ioaddr->nsect_addr);
647 	lbal = ioread8(ioaddr->lbal_addr);
648 
649 	if ((nsect == 0x55) && (lbal == 0xaa))
650 		return 1;	/* we found a device */
651 
652 	return 0;		/* nothing found */
653 }
654 
655 /**
656  *	ata_dev_classify - determine device type based on ATA-spec signature
657  *	@tf: ATA taskfile register set for device to be identified
658  *
659  *	Determine from taskfile register contents whether a device is
660  *	ATA or ATAPI, as per "Signature and persistence" section
661  *	of ATA/PI spec (volume 1, sect 5.14).
662  *
663  *	LOCKING:
664  *	None.
665  *
666  *	RETURNS:
667  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668  *	the event of failure.
669  */
670 
671 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672 {
673 	/* Apple's open source Darwin code hints that some devices only
674 	 * put a proper signature into the LBA mid/high registers,
675 	 * So, we only check those.  It's sufficient for uniqueness.
676 	 */
677 
678 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 		DPRINTK("found ATA device by sig\n");
681 		return ATA_DEV_ATA;
682 	}
683 
684 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 		DPRINTK("found ATAPI device by sig\n");
687 		return ATA_DEV_ATAPI;
688 	}
689 
690 	DPRINTK("unknown device\n");
691 	return ATA_DEV_UNKNOWN;
692 }
693 
694 /**
695  *	ata_dev_try_classify - Parse returned ATA device signature
696  *	@ap: ATA channel to examine
697  *	@device: Device to examine (starting at zero)
698  *	@r_err: Value of error register on completion
699  *
700  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701  *	an ATA/ATAPI-defined set of values is placed in the ATA
702  *	shadow registers, indicating the results of device detection
703  *	and diagnostics.
704  *
705  *	Select the ATA device, and read the values from the ATA shadow
706  *	registers.  Then parse according to the Error register value,
707  *	and the spec-defined values examined by ata_dev_classify().
708  *
709  *	LOCKING:
710  *	caller.
711  *
712  *	RETURNS:
713  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
714  */
715 
716 unsigned int
717 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718 {
719 	struct ata_taskfile tf;
720 	unsigned int class;
721 	u8 err;
722 
723 	ap->ops->dev_select(ap, device);
724 
725 	memset(&tf, 0, sizeof(tf));
726 
727 	ap->ops->tf_read(ap, &tf);
728 	err = tf.feature;
729 	if (r_err)
730 		*r_err = err;
731 
732 	/* see if device passed diags: if master then continue and warn later */
733 	if (err == 0 && device == 0)
734 		/* diagnostic fail : do nothing _YET_ */
735 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 	else if (err == 1)
737 		/* do nothing */ ;
738 	else if ((device == 0) && (err == 0x81))
739 		/* do nothing */ ;
740 	else
741 		return ATA_DEV_NONE;
742 
743 	/* determine if device is ATA or ATAPI */
744 	class = ata_dev_classify(&tf);
745 
746 	if (class == ATA_DEV_UNKNOWN)
747 		return ATA_DEV_NONE;
748 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 		return ATA_DEV_NONE;
750 	return class;
751 }
752 
753 /**
754  *	ata_id_string - Convert IDENTIFY DEVICE page into string
755  *	@id: IDENTIFY DEVICE results we will examine
756  *	@s: string into which data is output
757  *	@ofs: offset into identify device page
758  *	@len: length of string to return. must be an even number.
759  *
760  *	The strings in the IDENTIFY DEVICE page are broken up into
761  *	16-bit chunks.  Run through the string, and output each
762  *	8-bit chunk linearly, regardless of platform.
763  *
764  *	LOCKING:
765  *	caller.
766  */
767 
768 void ata_id_string(const u16 *id, unsigned char *s,
769 		   unsigned int ofs, unsigned int len)
770 {
771 	unsigned int c;
772 
773 	while (len > 0) {
774 		c = id[ofs] >> 8;
775 		*s = c;
776 		s++;
777 
778 		c = id[ofs] & 0xff;
779 		*s = c;
780 		s++;
781 
782 		ofs++;
783 		len -= 2;
784 	}
785 }
786 
787 /**
788  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789  *	@id: IDENTIFY DEVICE results we will examine
790  *	@s: string into which data is output
791  *	@ofs: offset into identify device page
792  *	@len: length of string to return. must be an odd number.
793  *
794  *	This function is identical to ata_id_string except that it
795  *	trims trailing spaces and terminates the resulting string with
796  *	null.  @len must be actual maximum length (even number) + 1.
797  *
798  *	LOCKING:
799  *	caller.
800  */
801 void ata_id_c_string(const u16 *id, unsigned char *s,
802 		     unsigned int ofs, unsigned int len)
803 {
804 	unsigned char *p;
805 
806 	WARN_ON(!(len & 1));
807 
808 	ata_id_string(id, s, ofs, len - 1);
809 
810 	p = s + strnlen(s, len - 1);
811 	while (p > s && p[-1] == ' ')
812 		p--;
813 	*p = '\0';
814 }
815 
816 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817 {
818 	u64 sectors = 0;
819 
820 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 	sectors |= (tf->hob_lbal & 0xff) << 24;
823 	sectors |= (tf->lbah & 0xff) << 16;
824 	sectors |= (tf->lbam & 0xff) << 8;
825 	sectors |= (tf->lbal & 0xff);
826 
827 	return ++sectors;
828 }
829 
830 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831 {
832 	u64 sectors = 0;
833 
834 	sectors |= (tf->device & 0x0f) << 24;
835 	sectors |= (tf->lbah & 0xff) << 16;
836 	sectors |= (tf->lbam & 0xff) << 8;
837 	sectors |= (tf->lbal & 0xff);
838 
839 	return ++sectors;
840 }
841 
842 /**
843  *	ata_read_native_max_address_ext	-	LBA48 native max query
844  *	@dev: Device to query
845  *
846  *	Perform an LBA48 size query upon the device in question. Return the
847  *	actual LBA48 size or zero if the command fails.
848  */
849 
850 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851 {
852 	unsigned int err;
853 	struct ata_taskfile tf;
854 
855 	ata_tf_init(dev, &tf);
856 
857 	tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 	tf.protocol |= ATA_PROT_NODATA;
860 	tf.device |= 0x40;
861 
862 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 	if (err)
864 		return 0;
865 
866 	return ata_tf_to_lba48(&tf);
867 }
868 
869 /**
870  *	ata_read_native_max_address	-	LBA28 native max query
871  *	@dev: Device to query
872  *
873  *	Performa an LBA28 size query upon the device in question. Return the
874  *	actual LBA28 size or zero if the command fails.
875  */
876 
877 static u64 ata_read_native_max_address(struct ata_device *dev)
878 {
879 	unsigned int err;
880 	struct ata_taskfile tf;
881 
882 	ata_tf_init(dev, &tf);
883 
884 	tf.command = ATA_CMD_READ_NATIVE_MAX;
885 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 	tf.protocol |= ATA_PROT_NODATA;
887 	tf.device |= 0x40;
888 
889 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 	if (err)
891 		return 0;
892 
893 	return ata_tf_to_lba(&tf);
894 }
895 
896 /**
897  *	ata_set_native_max_address_ext	-	LBA48 native max set
898  *	@dev: Device to query
899  *	@new_sectors: new max sectors value to set for the device
900  *
901  *	Perform an LBA48 size set max upon the device in question. Return the
902  *	actual LBA48 size or zero if the command fails.
903  */
904 
905 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906 {
907 	unsigned int err;
908 	struct ata_taskfile tf;
909 
910 	new_sectors--;
911 
912 	ata_tf_init(dev, &tf);
913 
914 	tf.command = ATA_CMD_SET_MAX_EXT;
915 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 	tf.protocol |= ATA_PROT_NODATA;
917 	tf.device |= 0x40;
918 
919 	tf.lbal = (new_sectors >> 0) & 0xff;
920 	tf.lbam = (new_sectors >> 8) & 0xff;
921 	tf.lbah = (new_sectors >> 16) & 0xff;
922 
923 	tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 	tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 	tf.hob_lbah = (new_sectors >> 40) & 0xff;
926 
927 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 	if (err)
929 		return 0;
930 
931 	return ata_tf_to_lba48(&tf);
932 }
933 
934 /**
935  *	ata_set_native_max_address	-	LBA28 native max set
936  *	@dev: Device to query
937  *	@new_sectors: new max sectors value to set for the device
938  *
939  *	Perform an LBA28 size set max upon the device in question. Return the
940  *	actual LBA28 size or zero if the command fails.
941  */
942 
943 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944 {
945 	unsigned int err;
946 	struct ata_taskfile tf;
947 
948 	new_sectors--;
949 
950 	ata_tf_init(dev, &tf);
951 
952 	tf.command = ATA_CMD_SET_MAX;
953 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 	tf.protocol |= ATA_PROT_NODATA;
955 
956 	tf.lbal = (new_sectors >> 0) & 0xff;
957 	tf.lbam = (new_sectors >> 8) & 0xff;
958 	tf.lbah = (new_sectors >> 16) & 0xff;
959 	tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960 
961 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 	if (err)
963 		return 0;
964 
965 	return ata_tf_to_lba(&tf);
966 }
967 
968 /**
969  *	ata_hpa_resize		-	Resize a device with an HPA set
970  *	@dev: Device to resize
971  *
972  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
973  *	it if required to the full size of the media. The caller must check
974  *	the drive has the HPA feature set enabled.
975  */
976 
977 static u64 ata_hpa_resize(struct ata_device *dev)
978 {
979 	u64 sectors = dev->n_sectors;
980 	u64 hpa_sectors;
981 
982 	if (ata_id_has_lba48(dev->id))
983 		hpa_sectors = ata_read_native_max_address_ext(dev);
984 	else
985 		hpa_sectors = ata_read_native_max_address(dev);
986 
987 	if (hpa_sectors > sectors) {
988 		ata_dev_printk(dev, KERN_INFO,
989 			"Host Protected Area detected:\n"
990 			"\tcurrent size: %lld sectors\n"
991 			"\tnative size: %lld sectors\n",
992 			(long long)sectors, (long long)hpa_sectors);
993 
994 		if (ata_ignore_hpa) {
995 			if (ata_id_has_lba48(dev->id))
996 				hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 			else
998 				hpa_sectors = ata_set_native_max_address(dev,
999 								hpa_sectors);
1000 
1001 			if (hpa_sectors) {
1002 				ata_dev_printk(dev, KERN_INFO, "native size "
1003 					"increased to %lld sectors\n",
1004 					(long long)hpa_sectors);
1005 				return hpa_sectors;
1006 			}
1007 		}
1008 	} else if (hpa_sectors < sectors)
1009 		ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 			       "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 			       (long long)hpa_sectors, (long long)sectors);
1012 
1013 	return sectors;
1014 }
1015 
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 	if (ata_id_has_lba(id)) {
1019 		if (ata_id_has_lba48(id))
1020 			return ata_id_u64(id, 100);
1021 		else
1022 			return ata_id_u32(id, 60);
1023 	} else {
1024 		if (ata_id_current_chs_valid(id))
1025 			return ata_id_u32(id, 57);
1026 		else
1027 			return id[1] * id[3] * id[6];
1028 	}
1029 }
1030 
1031 /**
1032  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
1033  *	@dev: device to identify
1034  *	@unknown: mode to assume if we cannot tell
1035  *
1036  *	Set up the timing values for the device based upon the identify
1037  *	reported values for the DMA mode. This function is used by drivers
1038  *	which rely upon firmware configured modes, but wish to report the
1039  *	mode correctly when possible.
1040  *
1041  *	In addition we emit similarly formatted messages to the default
1042  *	ata_dev_set_mode handler, in order to provide consistency of
1043  *	presentation.
1044  */
1045 
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 	unsigned int mask;
1049 	u8 mode;
1050 
1051 	/* Pack the DMA modes */
1052 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 	if (dev->id[53] & 0x04)
1054 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055 
1056 	/* Select the mode in use */
1057 	mode = ata_xfer_mask2mode(mask);
1058 
1059 	if (mode != 0) {
1060 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 		       ata_mode_string(mask));
1062 	} else {
1063 		/* SWDMA perhaps ? */
1064 		mode = unknown;
1065 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 	}
1067 
1068 	/* Configure the device reporting */
1069 	dev->xfer_mode = mode;
1070 	dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072 
1073 /**
1074  *	ata_noop_dev_select - Select device 0/1 on ATA bus
1075  *	@ap: ATA channel to manipulate
1076  *	@device: ATA device (numbered from zero) to select
1077  *
1078  *	This function performs no actual function.
1079  *
1080  *	May be used as the dev_select() entry in ata_port_operations.
1081  *
1082  *	LOCKING:
1083  *	caller.
1084  */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088 
1089 
1090 /**
1091  *	ata_std_dev_select - Select device 0/1 on ATA bus
1092  *	@ap: ATA channel to manipulate
1093  *	@device: ATA device (numbered from zero) to select
1094  *
1095  *	Use the method defined in the ATA specification to
1096  *	make either device 0, or device 1, active on the
1097  *	ATA channel.  Works with both PIO and MMIO.
1098  *
1099  *	May be used as the dev_select() entry in ata_port_operations.
1100  *
1101  *	LOCKING:
1102  *	caller.
1103  */
1104 
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 	u8 tmp;
1108 
1109 	if (device == 0)
1110 		tmp = ATA_DEVICE_OBS;
1111 	else
1112 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113 
1114 	iowrite8(tmp, ap->ioaddr.device_addr);
1115 	ata_pause(ap);		/* needed; also flushes, for mmio */
1116 }
1117 
1118 /**
1119  *	ata_dev_select - Select device 0/1 on ATA bus
1120  *	@ap: ATA channel to manipulate
1121  *	@device: ATA device (numbered from zero) to select
1122  *	@wait: non-zero to wait for Status register BSY bit to clear
1123  *	@can_sleep: non-zero if context allows sleeping
1124  *
1125  *	Use the method defined in the ATA specification to
1126  *	make either device 0, or device 1, active on the
1127  *	ATA channel.
1128  *
1129  *	This is a high-level version of ata_std_dev_select(),
1130  *	which additionally provides the services of inserting
1131  *	the proper pauses and status polling, where needed.
1132  *
1133  *	LOCKING:
1134  *	caller.
1135  */
1136 
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 			   unsigned int wait, unsigned int can_sleep)
1139 {
1140 	if (ata_msg_probe(ap))
1141 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 				"device %u, wait %u\n", device, wait);
1143 
1144 	if (wait)
1145 		ata_wait_idle(ap);
1146 
1147 	ap->ops->dev_select(ap, device);
1148 
1149 	if (wait) {
1150 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 			msleep(150);
1152 		ata_wait_idle(ap);
1153 	}
1154 }
1155 
1156 /**
1157  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1158  *	@id: IDENTIFY DEVICE page to dump
1159  *
1160  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1161  *	page.
1162  *
1163  *	LOCKING:
1164  *	caller.
1165  */
1166 
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 	DPRINTK("49==0x%04x  "
1170 		"53==0x%04x  "
1171 		"63==0x%04x  "
1172 		"64==0x%04x  "
1173 		"75==0x%04x  \n",
1174 		id[49],
1175 		id[53],
1176 		id[63],
1177 		id[64],
1178 		id[75]);
1179 	DPRINTK("80==0x%04x  "
1180 		"81==0x%04x  "
1181 		"82==0x%04x  "
1182 		"83==0x%04x  "
1183 		"84==0x%04x  \n",
1184 		id[80],
1185 		id[81],
1186 		id[82],
1187 		id[83],
1188 		id[84]);
1189 	DPRINTK("88==0x%04x  "
1190 		"93==0x%04x\n",
1191 		id[88],
1192 		id[93]);
1193 }
1194 
1195 /**
1196  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197  *	@id: IDENTIFY data to compute xfer mask from
1198  *
1199  *	Compute the xfermask for this device. This is not as trivial
1200  *	as it seems if we must consider early devices correctly.
1201  *
1202  *	FIXME: pre IDE drive timing (do we care ?).
1203  *
1204  *	LOCKING:
1205  *	None.
1206  *
1207  *	RETURNS:
1208  *	Computed xfermask
1209  */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 	unsigned int pio_mask, mwdma_mask, udma_mask;
1213 
1214 	/* Usual case. Word 53 indicates word 64 is valid */
1215 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 		pio_mask <<= 3;
1218 		pio_mask |= 0x7;
1219 	} else {
1220 		/* If word 64 isn't valid then Word 51 high byte holds
1221 		 * the PIO timing number for the maximum. Turn it into
1222 		 * a mask.
1223 		 */
1224 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 		if (mode < 5)	/* Valid PIO range */
1226                 	pio_mask = (2 << mode) - 1;
1227 		else
1228 			pio_mask = 1;
1229 
1230 		/* But wait.. there's more. Design your standards by
1231 		 * committee and you too can get a free iordy field to
1232 		 * process. However its the speeds not the modes that
1233 		 * are supported... Note drivers using the timing API
1234 		 * will get this right anyway
1235 		 */
1236 	}
1237 
1238 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239 
1240 	if (ata_id_is_cfa(id)) {
1241 		/*
1242 		 *	Process compact flash extended modes
1243 		 */
1244 		int pio = id[163] & 0x7;
1245 		int dma = (id[163] >> 3) & 7;
1246 
1247 		if (pio)
1248 			pio_mask |= (1 << 5);
1249 		if (pio > 1)
1250 			pio_mask |= (1 << 6);
1251 		if (dma)
1252 			mwdma_mask |= (1 << 3);
1253 		if (dma > 1)
1254 			mwdma_mask |= (1 << 4);
1255 	}
1256 
1257 	udma_mask = 0;
1258 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260 
1261 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263 
1264 /**
1265  *	ata_port_queue_task - Queue port_task
1266  *	@ap: The ata_port to queue port_task for
1267  *	@fn: workqueue function to be scheduled
1268  *	@data: data for @fn to use
1269  *	@delay: delay time for workqueue function
1270  *
1271  *	Schedule @fn(@data) for execution after @delay jiffies using
1272  *	port_task.  There is one port_task per port and it's the
1273  *	user(low level driver)'s responsibility to make sure that only
1274  *	one task is active at any given time.
1275  *
1276  *	libata core layer takes care of synchronization between
1277  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1278  *	synchronization.
1279  *
1280  *	LOCKING:
1281  *	Inherited from caller.
1282  */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 			 unsigned long delay)
1285 {
1286 	int rc;
1287 
1288 	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 		return;
1290 
1291 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 	ap->port_task_data = data;
1293 
1294 	rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295 
1296 	/* rc == 0 means that another user is using port task */
1297 	WARN_ON(rc == 0);
1298 }
1299 
1300 /**
1301  *	ata_port_flush_task - Flush port_task
1302  *	@ap: The ata_port to flush port_task for
1303  *
1304  *	After this function completes, port_task is guranteed not to
1305  *	be running or scheduled.
1306  *
1307  *	LOCKING:
1308  *	Kernel thread context (may sleep)
1309  */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 	unsigned long flags;
1313 
1314 	DPRINTK("ENTER\n");
1315 
1316 	spin_lock_irqsave(ap->lock, flags);
1317 	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 	spin_unlock_irqrestore(ap->lock, flags);
1319 
1320 	DPRINTK("flush #1\n");
1321 	cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322 
1323 	/*
1324 	 * At this point, if a task is running, it's guaranteed to see
1325 	 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 	 * Cancel and flush.
1327 	 */
1328 	if (!cancel_delayed_work(&ap->port_task)) {
1329 		if (ata_msg_ctl(ap))
1330 			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 					__FUNCTION__);
1332 		cancel_work_sync(&ap->port_task.work);
1333 	}
1334 
1335 	spin_lock_irqsave(ap->lock, flags);
1336 	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 	spin_unlock_irqrestore(ap->lock, flags);
1338 
1339 	if (ata_msg_ctl(ap))
1340 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342 
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 	struct completion *waiting = qc->private_data;
1346 
1347 	complete(waiting);
1348 }
1349 
1350 /**
1351  *	ata_exec_internal_sg - execute libata internal command
1352  *	@dev: Device to which the command is sent
1353  *	@tf: Taskfile registers for the command and the result
1354  *	@cdb: CDB for packet command
1355  *	@dma_dir: Data tranfer direction of the command
1356  *	@sg: sg list for the data buffer of the command
1357  *	@n_elem: Number of sg entries
1358  *
1359  *	Executes libata internal command with timeout.  @tf contains
1360  *	command on entry and result on return.  Timeout and error
1361  *	conditions are reported via return value.  No recovery action
1362  *	is taken after a command times out.  It's caller's duty to
1363  *	clean up after timeout.
1364  *
1365  *	LOCKING:
1366  *	None.  Should be called with kernel context, might sleep.
1367  *
1368  *	RETURNS:
1369  *	Zero on success, AC_ERR_* mask on failure
1370  */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 			      struct ata_taskfile *tf, const u8 *cdb,
1373 			      int dma_dir, struct scatterlist *sg,
1374 			      unsigned int n_elem)
1375 {
1376 	struct ata_port *ap = dev->ap;
1377 	u8 command = tf->command;
1378 	struct ata_queued_cmd *qc;
1379 	unsigned int tag, preempted_tag;
1380 	u32 preempted_sactive, preempted_qc_active;
1381 	DECLARE_COMPLETION_ONSTACK(wait);
1382 	unsigned long flags;
1383 	unsigned int err_mask;
1384 	int rc;
1385 
1386 	spin_lock_irqsave(ap->lock, flags);
1387 
1388 	/* no internal command while frozen */
1389 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 		spin_unlock_irqrestore(ap->lock, flags);
1391 		return AC_ERR_SYSTEM;
1392 	}
1393 
1394 	/* initialize internal qc */
1395 
1396 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1397 	 * drivers choke if any other tag is given.  This breaks
1398 	 * ata_tag_internal() test for those drivers.  Don't use new
1399 	 * EH stuff without converting to it.
1400 	 */
1401 	if (ap->ops->error_handler)
1402 		tag = ATA_TAG_INTERNAL;
1403 	else
1404 		tag = 0;
1405 
1406 	if (test_and_set_bit(tag, &ap->qc_allocated))
1407 		BUG();
1408 	qc = __ata_qc_from_tag(ap, tag);
1409 
1410 	qc->tag = tag;
1411 	qc->scsicmd = NULL;
1412 	qc->ap = ap;
1413 	qc->dev = dev;
1414 	ata_qc_reinit(qc);
1415 
1416 	preempted_tag = ap->active_tag;
1417 	preempted_sactive = ap->sactive;
1418 	preempted_qc_active = ap->qc_active;
1419 	ap->active_tag = ATA_TAG_POISON;
1420 	ap->sactive = 0;
1421 	ap->qc_active = 0;
1422 
1423 	/* prepare & issue qc */
1424 	qc->tf = *tf;
1425 	if (cdb)
1426 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 	qc->dma_dir = dma_dir;
1429 	if (dma_dir != DMA_NONE) {
1430 		unsigned int i, buflen = 0;
1431 
1432 		for (i = 0; i < n_elem; i++)
1433 			buflen += sg[i].length;
1434 
1435 		ata_sg_init(qc, sg, n_elem);
1436 		qc->nbytes = buflen;
1437 	}
1438 
1439 	qc->private_data = &wait;
1440 	qc->complete_fn = ata_qc_complete_internal;
1441 
1442 	ata_qc_issue(qc);
1443 
1444 	spin_unlock_irqrestore(ap->lock, flags);
1445 
1446 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447 
1448 	ata_port_flush_task(ap);
1449 
1450 	if (!rc) {
1451 		spin_lock_irqsave(ap->lock, flags);
1452 
1453 		/* We're racing with irq here.  If we lose, the
1454 		 * following test prevents us from completing the qc
1455 		 * twice.  If we win, the port is frozen and will be
1456 		 * cleaned up by ->post_internal_cmd().
1457 		 */
1458 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 			qc->err_mask |= AC_ERR_TIMEOUT;
1460 
1461 			if (ap->ops->error_handler)
1462 				ata_port_freeze(ap);
1463 			else
1464 				ata_qc_complete(qc);
1465 
1466 			if (ata_msg_warn(ap))
1467 				ata_dev_printk(dev, KERN_WARNING,
1468 					"qc timeout (cmd 0x%x)\n", command);
1469 		}
1470 
1471 		spin_unlock_irqrestore(ap->lock, flags);
1472 	}
1473 
1474 	/* do post_internal_cmd */
1475 	if (ap->ops->post_internal_cmd)
1476 		ap->ops->post_internal_cmd(qc);
1477 
1478 	/* perform minimal error analysis */
1479 	if (qc->flags & ATA_QCFLAG_FAILED) {
1480 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 			qc->err_mask |= AC_ERR_DEV;
1482 
1483 		if (!qc->err_mask)
1484 			qc->err_mask |= AC_ERR_OTHER;
1485 
1486 		if (qc->err_mask & ~AC_ERR_OTHER)
1487 			qc->err_mask &= ~AC_ERR_OTHER;
1488 	}
1489 
1490 	/* finish up */
1491 	spin_lock_irqsave(ap->lock, flags);
1492 
1493 	*tf = qc->result_tf;
1494 	err_mask = qc->err_mask;
1495 
1496 	ata_qc_free(qc);
1497 	ap->active_tag = preempted_tag;
1498 	ap->sactive = preempted_sactive;
1499 	ap->qc_active = preempted_qc_active;
1500 
1501 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 	 * Until those drivers are fixed, we detect the condition
1503 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 	 * port.
1505 	 *
1506 	 * Note that this doesn't change any behavior as internal
1507 	 * command failure results in disabling the device in the
1508 	 * higher layer for LLDDs without new reset/EH callbacks.
1509 	 *
1510 	 * Kill the following code as soon as those drivers are fixed.
1511 	 */
1512 	if (ap->flags & ATA_FLAG_DISABLED) {
1513 		err_mask |= AC_ERR_SYSTEM;
1514 		ata_port_probe(ap);
1515 	}
1516 
1517 	spin_unlock_irqrestore(ap->lock, flags);
1518 
1519 	return err_mask;
1520 }
1521 
1522 /**
1523  *	ata_exec_internal - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@buf: Data buffer of the command
1529  *	@buflen: Length of data buffer
1530  *
1531  *	Wrapper around ata_exec_internal_sg() which takes simple
1532  *	buffer instead of sg list.
1533  *
1534  *	LOCKING:
1535  *	None.  Should be called with kernel context, might sleep.
1536  *
1537  *	RETURNS:
1538  *	Zero on success, AC_ERR_* mask on failure
1539  */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 			   struct ata_taskfile *tf, const u8 *cdb,
1542 			   int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 	struct scatterlist *psg = NULL, sg;
1545 	unsigned int n_elem = 0;
1546 
1547 	if (dma_dir != DMA_NONE) {
1548 		WARN_ON(!buf);
1549 		sg_init_one(&sg, buf, buflen);
1550 		psg = &sg;
1551 		n_elem++;
1552 	}
1553 
1554 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556 
1557 /**
1558  *	ata_do_simple_cmd - execute simple internal command
1559  *	@dev: Device to which the command is sent
1560  *	@cmd: Opcode to execute
1561  *
1562  *	Execute a 'simple' command, that only consists of the opcode
1563  *	'cmd' itself, without filling any other registers
1564  *
1565  *	LOCKING:
1566  *	Kernel thread context (may sleep).
1567  *
1568  *	RETURNS:
1569  *	Zero on success, AC_ERR_* mask on failure
1570  */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 	struct ata_taskfile tf;
1574 
1575 	ata_tf_init(dev, &tf);
1576 
1577 	tf.command = cmd;
1578 	tf.flags |= ATA_TFLAG_DEVICE;
1579 	tf.protocol = ATA_PROT_NODATA;
1580 
1581 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583 
1584 /**
1585  *	ata_pio_need_iordy	-	check if iordy needed
1586  *	@adev: ATA device
1587  *
1588  *	Check if the current speed of the device requires IORDY. Used
1589  *	by various controllers for chip configuration.
1590  */
1591 
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 	/* Controller doesn't support  IORDY. Probably a pointless check
1595 	   as the caller should know this */
1596 	if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 		return 0;
1598 	/* PIO3 and higher it is mandatory */
1599 	if (adev->pio_mode > XFER_PIO_2)
1600 		return 1;
1601 	/* We turn it on when possible */
1602 	if (ata_id_has_iordy(adev->id))
1603 		return 1;
1604 	return 0;
1605 }
1606 
1607 /**
1608  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1609  *	@adev: ATA device
1610  *
1611  *	Compute the highest mode possible if we are not using iordy. Return
1612  *	-1 if no iordy mode is available.
1613  */
1614 
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1619 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 		/* Is the speed faster than the drive allows non IORDY ? */
1621 		if (pio) {
1622 			/* This is cycle times not frequency - watch the logic! */
1623 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1624 				return 3 << ATA_SHIFT_PIO;
1625 			return 7 << ATA_SHIFT_PIO;
1626 		}
1627 	}
1628 	return 3 << ATA_SHIFT_PIO;
1629 }
1630 
1631 /**
1632  *	ata_dev_read_id - Read ID data from the specified device
1633  *	@dev: target device
1634  *	@p_class: pointer to class of the target device (may be changed)
1635  *	@flags: ATA_READID_* flags
1636  *	@id: buffer to read IDENTIFY data into
1637  *
1638  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1639  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1641  *	for pre-ATA4 drives.
1642  *
1643  *	LOCKING:
1644  *	Kernel thread context (may sleep)
1645  *
1646  *	RETURNS:
1647  *	0 on success, -errno otherwise.
1648  */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 		    unsigned int flags, u16 *id)
1651 {
1652 	struct ata_port *ap = dev->ap;
1653 	unsigned int class = *p_class;
1654 	struct ata_taskfile tf;
1655 	unsigned int err_mask = 0;
1656 	const char *reason;
1657 	int may_fallback = 1, tried_spinup = 0;
1658 	int rc;
1659 
1660 	if (ata_msg_ctl(ap))
1661 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662 
1663 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664  retry:
1665 	ata_tf_init(dev, &tf);
1666 
1667 	switch (class) {
1668 	case ATA_DEV_ATA:
1669 		tf.command = ATA_CMD_ID_ATA;
1670 		break;
1671 	case ATA_DEV_ATAPI:
1672 		tf.command = ATA_CMD_ID_ATAPI;
1673 		break;
1674 	default:
1675 		rc = -ENODEV;
1676 		reason = "unsupported class";
1677 		goto err_out;
1678 	}
1679 
1680 	tf.protocol = ATA_PROT_PIO;
1681 
1682 	/* Some devices choke if TF registers contain garbage.  Make
1683 	 * sure those are properly initialized.
1684 	 */
1685 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686 
1687 	/* Device presence detection is unreliable on some
1688 	 * controllers.  Always poll IDENTIFY if available.
1689 	 */
1690 	tf.flags |= ATA_TFLAG_POLLING;
1691 
1692 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1694 	if (err_mask) {
1695 		if (err_mask & AC_ERR_NODEV_HINT) {
1696 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 				ap->print_id, dev->devno);
1698 			return -ENOENT;
1699 		}
1700 
1701 		/* Device or controller might have reported the wrong
1702 		 * device class.  Give a shot at the other IDENTIFY if
1703 		 * the current one is aborted by the device.
1704 		 */
1705 		if (may_fallback &&
1706 		    (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 			may_fallback = 0;
1708 
1709 			if (class == ATA_DEV_ATA)
1710 				class = ATA_DEV_ATAPI;
1711 			else
1712 				class = ATA_DEV_ATA;
1713 			goto retry;
1714 		}
1715 
1716 		rc = -EIO;
1717 		reason = "I/O error";
1718 		goto err_out;
1719 	}
1720 
1721 	/* Falling back doesn't make sense if ID data was read
1722 	 * successfully at least once.
1723 	 */
1724 	may_fallback = 0;
1725 
1726 	swap_buf_le16(id, ATA_ID_WORDS);
1727 
1728 	/* sanity check */
1729 	rc = -EINVAL;
1730 	reason = "device reports invalid type";
1731 
1732 	if (class == ATA_DEV_ATA) {
1733 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 			goto err_out;
1735 	} else {
1736 		if (ata_id_is_ata(id))
1737 			goto err_out;
1738 	}
1739 
1740 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 		tried_spinup = 1;
1742 		/*
1743 		 * Drive powered-up in standby mode, and requires a specific
1744 		 * SET_FEATURES spin-up subcommand before it will accept
1745 		 * anything other than the original IDENTIFY command.
1746 		 */
1747 		ata_tf_init(dev, &tf);
1748 		tf.command = ATA_CMD_SET_FEATURES;
1749 		tf.feature = SETFEATURES_SPINUP;
1750 		tf.protocol = ATA_PROT_NODATA;
1751 		tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 		err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 		if (err_mask) {
1754 			rc = -EIO;
1755 			reason = "SPINUP failed";
1756 			goto err_out;
1757 		}
1758 		/*
1759 		 * If the drive initially returned incomplete IDENTIFY info,
1760 		 * we now must reissue the IDENTIFY command.
1761 		 */
1762 		if (id[2] == 0x37c8)
1763 			goto retry;
1764 	}
1765 
1766 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 		/*
1768 		 * The exact sequence expected by certain pre-ATA4 drives is:
1769 		 * SRST RESET
1770 		 * IDENTIFY
1771 		 * INITIALIZE DEVICE PARAMETERS
1772 		 * anything else..
1773 		 * Some drives were very specific about that exact sequence.
1774 		 */
1775 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 			if (err_mask) {
1778 				rc = -EIO;
1779 				reason = "INIT_DEV_PARAMS failed";
1780 				goto err_out;
1781 			}
1782 
1783 			/* current CHS translation info (id[53-58]) might be
1784 			 * changed. reread the identify device info.
1785 			 */
1786 			flags &= ~ATA_READID_POSTRESET;
1787 			goto retry;
1788 		}
1789 	}
1790 
1791 	*p_class = class;
1792 
1793 	return 0;
1794 
1795  err_out:
1796 	if (ata_msg_warn(ap))
1797 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 	return rc;
1800 }
1801 
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806 
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 			       char *desc, size_t desc_sz)
1809 {
1810 	struct ata_port *ap = dev->ap;
1811 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812 
1813 	if (!ata_id_has_ncq(dev->id)) {
1814 		desc[0] = '\0';
1815 		return;
1816 	}
1817 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 		snprintf(desc, desc_sz, "NCQ (not used)");
1819 		return;
1820 	}
1821 	if (ap->flags & ATA_FLAG_NCQ) {
1822 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 		dev->flags |= ATA_DFLAG_NCQ;
1824 	}
1825 
1826 	if (hdepth >= ddepth)
1827 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 	else
1829 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831 
1832 /**
1833  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1834  *	@dev: Target device to configure
1835  *
1836  *	Configure @dev according to @dev->id.  Generic and low-level
1837  *	driver specific fixups are also applied.
1838  *
1839  *	LOCKING:
1840  *	Kernel thread context (may sleep)
1841  *
1842  *	RETURNS:
1843  *	0 on success, -errno otherwise
1844  */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 	struct ata_port *ap = dev->ap;
1848 	int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 	const u16 *id = dev->id;
1850 	unsigned int xfer_mask;
1851 	char revbuf[7];		/* XYZ-99\0 */
1852 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 	char modelbuf[ATA_ID_PROD_LEN+1];
1854 	int rc;
1855 
1856 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 			       __FUNCTION__);
1859 		return 0;
1860 	}
1861 
1862 	if (ata_msg_probe(ap))
1863 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864 
1865 	/* set _SDD */
1866 	rc = ata_acpi_push_id(dev);
1867 	if (rc) {
1868 		ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 			rc);
1870 	}
1871 
1872 	/* retrieve and execute the ATA task file of _GTF */
1873 	ata_acpi_exec_tfs(ap);
1874 
1875 	/* print device capabilities */
1876 	if (ata_msg_probe(ap))
1877 		ata_dev_printk(dev, KERN_DEBUG,
1878 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 			       __FUNCTION__,
1881 			       id[49], id[82], id[83], id[84],
1882 			       id[85], id[86], id[87], id[88]);
1883 
1884 	/* initialize to-be-configured parameters */
1885 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 	dev->max_sectors = 0;
1887 	dev->cdb_len = 0;
1888 	dev->n_sectors = 0;
1889 	dev->cylinders = 0;
1890 	dev->heads = 0;
1891 	dev->sectors = 0;
1892 
1893 	/*
1894 	 * common ATA, ATAPI feature tests
1895 	 */
1896 
1897 	/* find max transfer mode; for printk only */
1898 	xfer_mask = ata_id_xfermask(id);
1899 
1900 	if (ata_msg_probe(ap))
1901 		ata_dump_id(id);
1902 
1903 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 			sizeof(fwrevbuf));
1906 
1907 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 			sizeof(modelbuf));
1909 
1910 	/* ATA-specific feature tests */
1911 	if (dev->class == ATA_DEV_ATA) {
1912 		if (ata_id_is_cfa(id)) {
1913 			if (id[162] & 1) /* CPRM may make this media unusable */
1914 				ata_dev_printk(dev, KERN_WARNING,
1915 					       "supports DRM functions and may "
1916 					       "not be fully accessable.\n");
1917 			snprintf(revbuf, 7, "CFA");
1918 		}
1919 		else
1920 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1921 
1922 		dev->n_sectors = ata_id_n_sectors(id);
1923 
1924 		if (dev->id[59] & 0x100)
1925 			dev->multi_count = dev->id[59] & 0xff;
1926 
1927 		if (ata_id_has_lba(id)) {
1928 			const char *lba_desc;
1929 			char ncq_desc[20];
1930 
1931 			lba_desc = "LBA";
1932 			dev->flags |= ATA_DFLAG_LBA;
1933 			if (ata_id_has_lba48(id)) {
1934 				dev->flags |= ATA_DFLAG_LBA48;
1935 				lba_desc = "LBA48";
1936 
1937 				if (dev->n_sectors >= (1UL << 28) &&
1938 				    ata_id_has_flush_ext(id))
1939 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 			}
1941 
1942 			if (ata_id_hpa_enabled(dev->id))
1943 				dev->n_sectors = ata_hpa_resize(dev);
1944 
1945 			/* config NCQ */
1946 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947 
1948 			/* print device info to dmesg */
1949 			if (ata_msg_drv(ap) && print_info) {
1950 				ata_dev_printk(dev, KERN_INFO,
1951 					"%s: %s, %s, max %s\n",
1952 					revbuf, modelbuf, fwrevbuf,
1953 					ata_mode_string(xfer_mask));
1954 				ata_dev_printk(dev, KERN_INFO,
1955 					"%Lu sectors, multi %u: %s %s\n",
1956 					(unsigned long long)dev->n_sectors,
1957 					dev->multi_count, lba_desc, ncq_desc);
1958 			}
1959 		} else {
1960 			/* CHS */
1961 
1962 			/* Default translation */
1963 			dev->cylinders	= id[1];
1964 			dev->heads	= id[3];
1965 			dev->sectors	= id[6];
1966 
1967 			if (ata_id_current_chs_valid(id)) {
1968 				/* Current CHS translation is valid. */
1969 				dev->cylinders = id[54];
1970 				dev->heads     = id[55];
1971 				dev->sectors   = id[56];
1972 			}
1973 
1974 			/* print device info to dmesg */
1975 			if (ata_msg_drv(ap) && print_info) {
1976 				ata_dev_printk(dev, KERN_INFO,
1977 					"%s: %s, %s, max %s\n",
1978 					revbuf,	modelbuf, fwrevbuf,
1979 					ata_mode_string(xfer_mask));
1980 				ata_dev_printk(dev, KERN_INFO,
1981 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 					(unsigned long long)dev->n_sectors,
1983 					dev->multi_count, dev->cylinders,
1984 					dev->heads, dev->sectors);
1985 			}
1986 		}
1987 
1988 		dev->cdb_len = 16;
1989 	}
1990 
1991 	/* ATAPI-specific feature tests */
1992 	else if (dev->class == ATA_DEV_ATAPI) {
1993 		char *cdb_intr_string = "";
1994 
1995 		rc = atapi_cdb_len(id);
1996 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 			if (ata_msg_warn(ap))
1998 				ata_dev_printk(dev, KERN_WARNING,
1999 					       "unsupported CDB len\n");
2000 			rc = -EINVAL;
2001 			goto err_out_nosup;
2002 		}
2003 		dev->cdb_len = (unsigned int) rc;
2004 
2005 		if (ata_id_cdb_intr(dev->id)) {
2006 			dev->flags |= ATA_DFLAG_CDB_INTR;
2007 			cdb_intr_string = ", CDB intr";
2008 		}
2009 
2010 		/* print device info to dmesg */
2011 		if (ata_msg_drv(ap) && print_info)
2012 			ata_dev_printk(dev, KERN_INFO,
2013 				       "ATAPI: %s, %s, max %s%s\n",
2014 				       modelbuf, fwrevbuf,
2015 				       ata_mode_string(xfer_mask),
2016 				       cdb_intr_string);
2017 	}
2018 
2019 	/* determine max_sectors */
2020 	dev->max_sectors = ATA_MAX_SECTORS;
2021 	if (dev->flags & ATA_DFLAG_LBA48)
2022 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023 
2024 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 		/* Let the user know. We don't want to disallow opens for
2026 		   rescue purposes, or in case the vendor is just a blithering
2027 		   idiot */
2028                 if (print_info) {
2029 			ata_dev_printk(dev, KERN_WARNING,
2030 "Drive reports diagnostics failure. This may indicate a drive\n");
2031 			ata_dev_printk(dev, KERN_WARNING,
2032 "fault or invalid emulation. Contact drive vendor for information.\n");
2033 		}
2034 	}
2035 
2036 	/* limit bridge transfers to udma5, 200 sectors */
2037 	if (ata_dev_knobble(dev)) {
2038 		if (ata_msg_drv(ap) && print_info)
2039 			ata_dev_printk(dev, KERN_INFO,
2040 				       "applying bridge limits\n");
2041 		dev->udma_mask &= ATA_UDMA5;
2042 		dev->max_sectors = ATA_MAX_SECTORS;
2043 	}
2044 
2045 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2046 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 					 dev->max_sectors);
2048 
2049 	if (ap->ops->dev_config)
2050 		ap->ops->dev_config(dev);
2051 
2052 	if (ata_msg_probe(ap))
2053 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2054 			__FUNCTION__, ata_chk_status(ap));
2055 	return 0;
2056 
2057 err_out_nosup:
2058 	if (ata_msg_probe(ap))
2059 		ata_dev_printk(dev, KERN_DEBUG,
2060 			       "%s: EXIT, err\n", __FUNCTION__);
2061 	return rc;
2062 }
2063 
2064 /**
2065  *	ata_cable_40wire	-	return 40 wire cable type
2066  *	@ap: port
2067  *
2068  *	Helper method for drivers which want to hardwire 40 wire cable
2069  *	detection.
2070  */
2071 
2072 int ata_cable_40wire(struct ata_port *ap)
2073 {
2074 	return ATA_CBL_PATA40;
2075 }
2076 
2077 /**
2078  *	ata_cable_80wire	-	return 80 wire cable type
2079  *	@ap: port
2080  *
2081  *	Helper method for drivers which want to hardwire 80 wire cable
2082  *	detection.
2083  */
2084 
2085 int ata_cable_80wire(struct ata_port *ap)
2086 {
2087 	return ATA_CBL_PATA80;
2088 }
2089 
2090 /**
2091  *	ata_cable_unknown	-	return unknown PATA cable.
2092  *	@ap: port
2093  *
2094  *	Helper method for drivers which have no PATA cable detection.
2095  */
2096 
2097 int ata_cable_unknown(struct ata_port *ap)
2098 {
2099 	return ATA_CBL_PATA_UNK;
2100 }
2101 
2102 /**
2103  *	ata_cable_sata	-	return SATA cable type
2104  *	@ap: port
2105  *
2106  *	Helper method for drivers which have SATA cables
2107  */
2108 
2109 int ata_cable_sata(struct ata_port *ap)
2110 {
2111 	return ATA_CBL_SATA;
2112 }
2113 
2114 /**
2115  *	ata_bus_probe - Reset and probe ATA bus
2116  *	@ap: Bus to probe
2117  *
2118  *	Master ATA bus probing function.  Initiates a hardware-dependent
2119  *	bus reset, then attempts to identify any devices found on
2120  *	the bus.
2121  *
2122  *	LOCKING:
2123  *	PCI/etc. bus probe sem.
2124  *
2125  *	RETURNS:
2126  *	Zero on success, negative errno otherwise.
2127  */
2128 
2129 int ata_bus_probe(struct ata_port *ap)
2130 {
2131 	unsigned int classes[ATA_MAX_DEVICES];
2132 	int tries[ATA_MAX_DEVICES];
2133 	int i, rc;
2134 	struct ata_device *dev;
2135 
2136 	ata_port_probe(ap);
2137 
2138 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2139 		tries[i] = ATA_PROBE_MAX_TRIES;
2140 
2141  retry:
2142 	/* reset and determine device classes */
2143 	ap->ops->phy_reset(ap);
2144 
2145 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2146 		dev = &ap->device[i];
2147 
2148 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 		    dev->class != ATA_DEV_UNKNOWN)
2150 			classes[dev->devno] = dev->class;
2151 		else
2152 			classes[dev->devno] = ATA_DEV_NONE;
2153 
2154 		dev->class = ATA_DEV_UNKNOWN;
2155 	}
2156 
2157 	ata_port_probe(ap);
2158 
2159 	/* after the reset the device state is PIO 0 and the controller
2160 	   state is undefined. Record the mode */
2161 
2162 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 		ap->device[i].pio_mode = XFER_PIO_0;
2164 
2165 	/* read IDENTIFY page and configure devices. We have to do the identify
2166 	   specific sequence bass-ackwards so that PDIAG- is released by
2167 	   the slave device */
2168 
2169 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
2170 		dev = &ap->device[i];
2171 
2172 		if (tries[i])
2173 			dev->class = classes[i];
2174 
2175 		if (!ata_dev_enabled(dev))
2176 			continue;
2177 
2178 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2179 				     dev->id);
2180 		if (rc)
2181 			goto fail;
2182 	}
2183 
2184 	/* Now ask for the cable type as PDIAG- should have been released */
2185 	if (ap->ops->cable_detect)
2186 		ap->cbl = ap->ops->cable_detect(ap);
2187 
2188 	/* After the identify sequence we can now set up the devices. We do
2189 	   this in the normal order so that the user doesn't get confused */
2190 
2191 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
2192 		dev = &ap->device[i];
2193 		if (!ata_dev_enabled(dev))
2194 			continue;
2195 
2196 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2197 		rc = ata_dev_configure(dev);
2198 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2199 		if (rc)
2200 			goto fail;
2201 	}
2202 
2203 	/* configure transfer mode */
2204 	rc = ata_set_mode(ap, &dev);
2205 	if (rc)
2206 		goto fail;
2207 
2208 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2209 		if (ata_dev_enabled(&ap->device[i]))
2210 			return 0;
2211 
2212 	/* no device present, disable port */
2213 	ata_port_disable(ap);
2214 	ap->ops->port_disable(ap);
2215 	return -ENODEV;
2216 
2217  fail:
2218 	tries[dev->devno]--;
2219 
2220 	switch (rc) {
2221 	case -EINVAL:
2222 		/* eeek, something went very wrong, give up */
2223 		tries[dev->devno] = 0;
2224 		break;
2225 
2226 	case -ENODEV:
2227 		/* give it just one more chance */
2228 		tries[dev->devno] = min(tries[dev->devno], 1);
2229 	case -EIO:
2230 		if (tries[dev->devno] == 1) {
2231 			/* This is the last chance, better to slow
2232 			 * down than lose it.
2233 			 */
2234 			sata_down_spd_limit(ap);
2235 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2236 		}
2237 	}
2238 
2239 	if (!tries[dev->devno])
2240 		ata_dev_disable(dev);
2241 
2242 	goto retry;
2243 }
2244 
2245 /**
2246  *	ata_port_probe - Mark port as enabled
2247  *	@ap: Port for which we indicate enablement
2248  *
2249  *	Modify @ap data structure such that the system
2250  *	thinks that the entire port is enabled.
2251  *
2252  *	LOCKING: host lock, or some other form of
2253  *	serialization.
2254  */
2255 
2256 void ata_port_probe(struct ata_port *ap)
2257 {
2258 	ap->flags &= ~ATA_FLAG_DISABLED;
2259 }
2260 
2261 /**
2262  *	sata_print_link_status - Print SATA link status
2263  *	@ap: SATA port to printk link status about
2264  *
2265  *	This function prints link speed and status of a SATA link.
2266  *
2267  *	LOCKING:
2268  *	None.
2269  */
2270 void sata_print_link_status(struct ata_port *ap)
2271 {
2272 	u32 sstatus, scontrol, tmp;
2273 
2274 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2275 		return;
2276 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
2277 
2278 	if (ata_port_online(ap)) {
2279 		tmp = (sstatus >> 4) & 0xf;
2280 		ata_port_printk(ap, KERN_INFO,
2281 				"SATA link up %s (SStatus %X SControl %X)\n",
2282 				sata_spd_string(tmp), sstatus, scontrol);
2283 	} else {
2284 		ata_port_printk(ap, KERN_INFO,
2285 				"SATA link down (SStatus %X SControl %X)\n",
2286 				sstatus, scontrol);
2287 	}
2288 }
2289 
2290 /**
2291  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
2292  *	@ap: SATA port associated with target SATA PHY.
2293  *
2294  *	This function issues commands to standard SATA Sxxx
2295  *	PHY registers, to wake up the phy (and device), and
2296  *	clear any reset condition.
2297  *
2298  *	LOCKING:
2299  *	PCI/etc. bus probe sem.
2300  *
2301  */
2302 void __sata_phy_reset(struct ata_port *ap)
2303 {
2304 	u32 sstatus;
2305 	unsigned long timeout = jiffies + (HZ * 5);
2306 
2307 	if (ap->flags & ATA_FLAG_SATA_RESET) {
2308 		/* issue phy wake/reset */
2309 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2310 		/* Couldn't find anything in SATA I/II specs, but
2311 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2312 		mdelay(1);
2313 	}
2314 	/* phy wake/clear reset */
2315 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2316 
2317 	/* wait for phy to become ready, if necessary */
2318 	do {
2319 		msleep(200);
2320 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2321 		if ((sstatus & 0xf) != 1)
2322 			break;
2323 	} while (time_before(jiffies, timeout));
2324 
2325 	/* print link status */
2326 	sata_print_link_status(ap);
2327 
2328 	/* TODO: phy layer with polling, timeouts, etc. */
2329 	if (!ata_port_offline(ap))
2330 		ata_port_probe(ap);
2331 	else
2332 		ata_port_disable(ap);
2333 
2334 	if (ap->flags & ATA_FLAG_DISABLED)
2335 		return;
2336 
2337 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2338 		ata_port_disable(ap);
2339 		return;
2340 	}
2341 
2342 	ap->cbl = ATA_CBL_SATA;
2343 }
2344 
2345 /**
2346  *	sata_phy_reset - Reset SATA bus.
2347  *	@ap: SATA port associated with target SATA PHY.
2348  *
2349  *	This function resets the SATA bus, and then probes
2350  *	the bus for devices.
2351  *
2352  *	LOCKING:
2353  *	PCI/etc. bus probe sem.
2354  *
2355  */
2356 void sata_phy_reset(struct ata_port *ap)
2357 {
2358 	__sata_phy_reset(ap);
2359 	if (ap->flags & ATA_FLAG_DISABLED)
2360 		return;
2361 	ata_bus_reset(ap);
2362 }
2363 
2364 /**
2365  *	ata_dev_pair		-	return other device on cable
2366  *	@adev: device
2367  *
2368  *	Obtain the other device on the same cable, or if none is
2369  *	present NULL is returned
2370  */
2371 
2372 struct ata_device *ata_dev_pair(struct ata_device *adev)
2373 {
2374 	struct ata_port *ap = adev->ap;
2375 	struct ata_device *pair = &ap->device[1 - adev->devno];
2376 	if (!ata_dev_enabled(pair))
2377 		return NULL;
2378 	return pair;
2379 }
2380 
2381 /**
2382  *	ata_port_disable - Disable port.
2383  *	@ap: Port to be disabled.
2384  *
2385  *	Modify @ap data structure such that the system
2386  *	thinks that the entire port is disabled, and should
2387  *	never attempt to probe or communicate with devices
2388  *	on this port.
2389  *
2390  *	LOCKING: host lock, or some other form of
2391  *	serialization.
2392  */
2393 
2394 void ata_port_disable(struct ata_port *ap)
2395 {
2396 	ap->device[0].class = ATA_DEV_NONE;
2397 	ap->device[1].class = ATA_DEV_NONE;
2398 	ap->flags |= ATA_FLAG_DISABLED;
2399 }
2400 
2401 /**
2402  *	sata_down_spd_limit - adjust SATA spd limit downward
2403  *	@ap: Port to adjust SATA spd limit for
2404  *
2405  *	Adjust SATA spd limit of @ap downward.  Note that this
2406  *	function only adjusts the limit.  The change must be applied
2407  *	using sata_set_spd().
2408  *
2409  *	LOCKING:
2410  *	Inherited from caller.
2411  *
2412  *	RETURNS:
2413  *	0 on success, negative errno on failure
2414  */
2415 int sata_down_spd_limit(struct ata_port *ap)
2416 {
2417 	u32 sstatus, spd, mask;
2418 	int rc, highbit;
2419 
2420 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2421 	if (rc)
2422 		return rc;
2423 
2424 	mask = ap->sata_spd_limit;
2425 	if (mask <= 1)
2426 		return -EINVAL;
2427 	highbit = fls(mask) - 1;
2428 	mask &= ~(1 << highbit);
2429 
2430 	spd = (sstatus >> 4) & 0xf;
2431 	if (spd <= 1)
2432 		return -EINVAL;
2433 	spd--;
2434 	mask &= (1 << spd) - 1;
2435 	if (!mask)
2436 		return -EINVAL;
2437 
2438 	ap->sata_spd_limit = mask;
2439 
2440 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2441 			sata_spd_string(fls(mask)));
2442 
2443 	return 0;
2444 }
2445 
2446 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2447 {
2448 	u32 spd, limit;
2449 
2450 	if (ap->sata_spd_limit == UINT_MAX)
2451 		limit = 0;
2452 	else
2453 		limit = fls(ap->sata_spd_limit);
2454 
2455 	spd = (*scontrol >> 4) & 0xf;
2456 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2457 
2458 	return spd != limit;
2459 }
2460 
2461 /**
2462  *	sata_set_spd_needed - is SATA spd configuration needed
2463  *	@ap: Port in question
2464  *
2465  *	Test whether the spd limit in SControl matches
2466  *	@ap->sata_spd_limit.  This function is used to determine
2467  *	whether hardreset is necessary to apply SATA spd
2468  *	configuration.
2469  *
2470  *	LOCKING:
2471  *	Inherited from caller.
2472  *
2473  *	RETURNS:
2474  *	1 if SATA spd configuration is needed, 0 otherwise.
2475  */
2476 int sata_set_spd_needed(struct ata_port *ap)
2477 {
2478 	u32 scontrol;
2479 
2480 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2481 		return 0;
2482 
2483 	return __sata_set_spd_needed(ap, &scontrol);
2484 }
2485 
2486 /**
2487  *	sata_set_spd - set SATA spd according to spd limit
2488  *	@ap: Port to set SATA spd for
2489  *
2490  *	Set SATA spd of @ap according to sata_spd_limit.
2491  *
2492  *	LOCKING:
2493  *	Inherited from caller.
2494  *
2495  *	RETURNS:
2496  *	0 if spd doesn't need to be changed, 1 if spd has been
2497  *	changed.  Negative errno if SCR registers are inaccessible.
2498  */
2499 int sata_set_spd(struct ata_port *ap)
2500 {
2501 	u32 scontrol;
2502 	int rc;
2503 
2504 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 		return rc;
2506 
2507 	if (!__sata_set_spd_needed(ap, &scontrol))
2508 		return 0;
2509 
2510 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2511 		return rc;
2512 
2513 	return 1;
2514 }
2515 
2516 /*
2517  * This mode timing computation functionality is ported over from
2518  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2519  */
2520 /*
2521  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2522  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2523  * for UDMA6, which is currently supported only by Maxtor drives.
2524  *
2525  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2526  */
2527 
2528 static const struct ata_timing ata_timing[] = {
2529 
2530 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2531 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2532 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2533 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2534 
2535 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2536 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2537 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2538 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2539 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2540 
2541 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2542 
2543 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2544 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2545 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2546 
2547 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2548 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2549 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2550 
2551 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2552 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2553 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2554 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2555 
2556 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2557 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2558 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2559 
2560 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2561 
2562 	{ 0xFF }
2563 };
2564 
2565 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2566 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2567 
2568 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2569 {
2570 	q->setup   = EZ(t->setup   * 1000,  T);
2571 	q->act8b   = EZ(t->act8b   * 1000,  T);
2572 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2573 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2574 	q->active  = EZ(t->active  * 1000,  T);
2575 	q->recover = EZ(t->recover * 1000,  T);
2576 	q->cycle   = EZ(t->cycle   * 1000,  T);
2577 	q->udma    = EZ(t->udma    * 1000, UT);
2578 }
2579 
2580 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2581 		      struct ata_timing *m, unsigned int what)
2582 {
2583 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2584 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2585 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2586 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2587 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2588 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2589 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2590 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2591 }
2592 
2593 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2594 {
2595 	const struct ata_timing *t;
2596 
2597 	for (t = ata_timing; t->mode != speed; t++)
2598 		if (t->mode == 0xFF)
2599 			return NULL;
2600 	return t;
2601 }
2602 
2603 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2604 		       struct ata_timing *t, int T, int UT)
2605 {
2606 	const struct ata_timing *s;
2607 	struct ata_timing p;
2608 
2609 	/*
2610 	 * Find the mode.
2611 	 */
2612 
2613 	if (!(s = ata_timing_find_mode(speed)))
2614 		return -EINVAL;
2615 
2616 	memcpy(t, s, sizeof(*s));
2617 
2618 	/*
2619 	 * If the drive is an EIDE drive, it can tell us it needs extended
2620 	 * PIO/MW_DMA cycle timing.
2621 	 */
2622 
2623 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2624 		memset(&p, 0, sizeof(p));
2625 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2626 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2627 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2628 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2629 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2630 		}
2631 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2632 	}
2633 
2634 	/*
2635 	 * Convert the timing to bus clock counts.
2636 	 */
2637 
2638 	ata_timing_quantize(t, t, T, UT);
2639 
2640 	/*
2641 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2642 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2643 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2644 	 */
2645 
2646 	if (speed > XFER_PIO_6) {
2647 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2648 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2649 	}
2650 
2651 	/*
2652 	 * Lengthen active & recovery time so that cycle time is correct.
2653 	 */
2654 
2655 	if (t->act8b + t->rec8b < t->cyc8b) {
2656 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2657 		t->rec8b = t->cyc8b - t->act8b;
2658 	}
2659 
2660 	if (t->active + t->recover < t->cycle) {
2661 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2662 		t->recover = t->cycle - t->active;
2663 	}
2664 
2665 	/* In a few cases quantisation may produce enough errors to
2666 	   leave t->cycle too low for the sum of active and recovery
2667 	   if so we must correct this */
2668 	if (t->active + t->recover > t->cycle)
2669 		t->cycle = t->active + t->recover;
2670 
2671 	return 0;
2672 }
2673 
2674 /**
2675  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2676  *	@dev: Device to adjust xfer masks
2677  *	@sel: ATA_DNXFER_* selector
2678  *
2679  *	Adjust xfer masks of @dev downward.  Note that this function
2680  *	does not apply the change.  Invoking ata_set_mode() afterwards
2681  *	will apply the limit.
2682  *
2683  *	LOCKING:
2684  *	Inherited from caller.
2685  *
2686  *	RETURNS:
2687  *	0 on success, negative errno on failure
2688  */
2689 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2690 {
2691 	char buf[32];
2692 	unsigned int orig_mask, xfer_mask;
2693 	unsigned int pio_mask, mwdma_mask, udma_mask;
2694 	int quiet, highbit;
2695 
2696 	quiet = !!(sel & ATA_DNXFER_QUIET);
2697 	sel &= ~ATA_DNXFER_QUIET;
2698 
2699 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2700 						  dev->mwdma_mask,
2701 						  dev->udma_mask);
2702 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2703 
2704 	switch (sel) {
2705 	case ATA_DNXFER_PIO:
2706 		highbit = fls(pio_mask) - 1;
2707 		pio_mask &= ~(1 << highbit);
2708 		break;
2709 
2710 	case ATA_DNXFER_DMA:
2711 		if (udma_mask) {
2712 			highbit = fls(udma_mask) - 1;
2713 			udma_mask &= ~(1 << highbit);
2714 			if (!udma_mask)
2715 				return -ENOENT;
2716 		} else if (mwdma_mask) {
2717 			highbit = fls(mwdma_mask) - 1;
2718 			mwdma_mask &= ~(1 << highbit);
2719 			if (!mwdma_mask)
2720 				return -ENOENT;
2721 		}
2722 		break;
2723 
2724 	case ATA_DNXFER_40C:
2725 		udma_mask &= ATA_UDMA_MASK_40C;
2726 		break;
2727 
2728 	case ATA_DNXFER_FORCE_PIO0:
2729 		pio_mask &= 1;
2730 	case ATA_DNXFER_FORCE_PIO:
2731 		mwdma_mask = 0;
2732 		udma_mask = 0;
2733 		break;
2734 
2735 	default:
2736 		BUG();
2737 	}
2738 
2739 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2740 
2741 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2742 		return -ENOENT;
2743 
2744 	if (!quiet) {
2745 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2746 			snprintf(buf, sizeof(buf), "%s:%s",
2747 				 ata_mode_string(xfer_mask),
2748 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2749 		else
2750 			snprintf(buf, sizeof(buf), "%s",
2751 				 ata_mode_string(xfer_mask));
2752 
2753 		ata_dev_printk(dev, KERN_WARNING,
2754 			       "limiting speed to %s\n", buf);
2755 	}
2756 
2757 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2758 			    &dev->udma_mask);
2759 
2760 	return 0;
2761 }
2762 
2763 static int ata_dev_set_mode(struct ata_device *dev)
2764 {
2765 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2766 	unsigned int err_mask;
2767 	int rc;
2768 
2769 	dev->flags &= ~ATA_DFLAG_PIO;
2770 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2771 		dev->flags |= ATA_DFLAG_PIO;
2772 
2773 	err_mask = ata_dev_set_xfermode(dev);
2774 	/* Old CFA may refuse this command, which is just fine */
2775 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2776         	err_mask &= ~AC_ERR_DEV;
2777 
2778 	if (err_mask) {
2779 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2780 			       "(err_mask=0x%x)\n", err_mask);
2781 		return -EIO;
2782 	}
2783 
2784 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2785 	rc = ata_dev_revalidate(dev, 0);
2786 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2787 	if (rc)
2788 		return rc;
2789 
2790 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2791 		dev->xfer_shift, (int)dev->xfer_mode);
2792 
2793 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2794 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2795 	return 0;
2796 }
2797 
2798 /**
2799  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2800  *	@ap: port on which timings will be programmed
2801  *	@r_failed_dev: out paramter for failed device
2802  *
2803  *	Standard implementation of the function used to tune and set
2804  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2805  *	ata_dev_set_mode() fails, pointer to the failing device is
2806  *	returned in @r_failed_dev.
2807  *
2808  *	LOCKING:
2809  *	PCI/etc. bus probe sem.
2810  *
2811  *	RETURNS:
2812  *	0 on success, negative errno otherwise
2813  */
2814 
2815 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2816 {
2817 	struct ata_device *dev;
2818 	int i, rc = 0, used_dma = 0, found = 0;
2819 
2820 
2821 	/* step 1: calculate xfer_mask */
2822 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2823 		unsigned int pio_mask, dma_mask;
2824 
2825 		dev = &ap->device[i];
2826 
2827 		if (!ata_dev_enabled(dev))
2828 			continue;
2829 
2830 		ata_dev_xfermask(dev);
2831 
2832 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2833 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2834 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2835 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2836 
2837 		found = 1;
2838 		if (dev->dma_mode)
2839 			used_dma = 1;
2840 	}
2841 	if (!found)
2842 		goto out;
2843 
2844 	/* step 2: always set host PIO timings */
2845 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2846 		dev = &ap->device[i];
2847 		if (!ata_dev_enabled(dev))
2848 			continue;
2849 
2850 		if (!dev->pio_mode) {
2851 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2852 			rc = -EINVAL;
2853 			goto out;
2854 		}
2855 
2856 		dev->xfer_mode = dev->pio_mode;
2857 		dev->xfer_shift = ATA_SHIFT_PIO;
2858 		if (ap->ops->set_piomode)
2859 			ap->ops->set_piomode(ap, dev);
2860 	}
2861 
2862 	/* step 3: set host DMA timings */
2863 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 		dev = &ap->device[i];
2865 
2866 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2867 			continue;
2868 
2869 		dev->xfer_mode = dev->dma_mode;
2870 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2871 		if (ap->ops->set_dmamode)
2872 			ap->ops->set_dmamode(ap, dev);
2873 	}
2874 
2875 	/* step 4: update devices' xfer mode */
2876 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2877 		dev = &ap->device[i];
2878 
2879 		/* don't update suspended devices' xfer mode */
2880 		if (!ata_dev_enabled(dev))
2881 			continue;
2882 
2883 		rc = ata_dev_set_mode(dev);
2884 		if (rc)
2885 			goto out;
2886 	}
2887 
2888 	/* Record simplex status. If we selected DMA then the other
2889 	 * host channels are not permitted to do so.
2890 	 */
2891 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2892 		ap->host->simplex_claimed = ap;
2893 
2894  out:
2895 	if (rc)
2896 		*r_failed_dev = dev;
2897 	return rc;
2898 }
2899 
2900 /**
2901  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2902  *	@ap: port on which timings will be programmed
2903  *	@r_failed_dev: out paramter for failed device
2904  *
2905  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2906  *	ata_set_mode() fails, pointer to the failing device is
2907  *	returned in @r_failed_dev.
2908  *
2909  *	LOCKING:
2910  *	PCI/etc. bus probe sem.
2911  *
2912  *	RETURNS:
2913  *	0 on success, negative errno otherwise
2914  */
2915 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2916 {
2917 	/* has private set_mode? */
2918 	if (ap->ops->set_mode)
2919 		return ap->ops->set_mode(ap, r_failed_dev);
2920 	return ata_do_set_mode(ap, r_failed_dev);
2921 }
2922 
2923 /**
2924  *	ata_tf_to_host - issue ATA taskfile to host controller
2925  *	@ap: port to which command is being issued
2926  *	@tf: ATA taskfile register set
2927  *
2928  *	Issues ATA taskfile register set to ATA host controller,
2929  *	with proper synchronization with interrupt handler and
2930  *	other threads.
2931  *
2932  *	LOCKING:
2933  *	spin_lock_irqsave(host lock)
2934  */
2935 
2936 static inline void ata_tf_to_host(struct ata_port *ap,
2937 				  const struct ata_taskfile *tf)
2938 {
2939 	ap->ops->tf_load(ap, tf);
2940 	ap->ops->exec_command(ap, tf);
2941 }
2942 
2943 /**
2944  *	ata_busy_sleep - sleep until BSY clears, or timeout
2945  *	@ap: port containing status register to be polled
2946  *	@tmout_pat: impatience timeout
2947  *	@tmout: overall timeout
2948  *
2949  *	Sleep until ATA Status register bit BSY clears,
2950  *	or a timeout occurs.
2951  *
2952  *	LOCKING:
2953  *	Kernel thread context (may sleep).
2954  *
2955  *	RETURNS:
2956  *	0 on success, -errno otherwise.
2957  */
2958 int ata_busy_sleep(struct ata_port *ap,
2959 		   unsigned long tmout_pat, unsigned long tmout)
2960 {
2961 	unsigned long timer_start, timeout;
2962 	u8 status;
2963 
2964 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2965 	timer_start = jiffies;
2966 	timeout = timer_start + tmout_pat;
2967 	while (status != 0xff && (status & ATA_BUSY) &&
2968 	       time_before(jiffies, timeout)) {
2969 		msleep(50);
2970 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2971 	}
2972 
2973 	if (status != 0xff && (status & ATA_BUSY))
2974 		ata_port_printk(ap, KERN_WARNING,
2975 				"port is slow to respond, please be patient "
2976 				"(Status 0x%x)\n", status);
2977 
2978 	timeout = timer_start + tmout;
2979 	while (status != 0xff && (status & ATA_BUSY) &&
2980 	       time_before(jiffies, timeout)) {
2981 		msleep(50);
2982 		status = ata_chk_status(ap);
2983 	}
2984 
2985 	if (status == 0xff)
2986 		return -ENODEV;
2987 
2988 	if (status & ATA_BUSY) {
2989 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2990 				"(%lu secs, Status 0x%x)\n",
2991 				tmout / HZ, status);
2992 		return -EBUSY;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 /**
2999  *	ata_wait_ready - sleep until BSY clears, or timeout
3000  *	@ap: port containing status register to be polled
3001  *	@deadline: deadline jiffies for the operation
3002  *
3003  *	Sleep until ATA Status register bit BSY clears, or timeout
3004  *	occurs.
3005  *
3006  *	LOCKING:
3007  *	Kernel thread context (may sleep).
3008  *
3009  *	RETURNS:
3010  *	0 on success, -errno otherwise.
3011  */
3012 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3013 {
3014 	unsigned long start = jiffies;
3015 	int warned = 0;
3016 
3017 	while (1) {
3018 		u8 status = ata_chk_status(ap);
3019 		unsigned long now = jiffies;
3020 
3021 		if (!(status & ATA_BUSY))
3022 			return 0;
3023 		if (!ata_port_online(ap) && status == 0xff)
3024 			return -ENODEV;
3025 		if (time_after(now, deadline))
3026 			return -EBUSY;
3027 
3028 		if (!warned && time_after(now, start + 5 * HZ) &&
3029 		    (deadline - now > 3 * HZ)) {
3030 			ata_port_printk(ap, KERN_WARNING,
3031 				"port is slow to respond, please be patient "
3032 				"(Status 0x%x)\n", status);
3033 			warned = 1;
3034 		}
3035 
3036 		msleep(50);
3037 	}
3038 }
3039 
3040 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3041 			      unsigned long deadline)
3042 {
3043 	struct ata_ioports *ioaddr = &ap->ioaddr;
3044 	unsigned int dev0 = devmask & (1 << 0);
3045 	unsigned int dev1 = devmask & (1 << 1);
3046 	int rc, ret = 0;
3047 
3048 	/* if device 0 was found in ata_devchk, wait for its
3049 	 * BSY bit to clear
3050 	 */
3051 	if (dev0) {
3052 		rc = ata_wait_ready(ap, deadline);
3053 		if (rc) {
3054 			if (rc != -ENODEV)
3055 				return rc;
3056 			ret = rc;
3057 		}
3058 	}
3059 
3060 	/* if device 1 was found in ata_devchk, wait for register
3061 	 * access briefly, then wait for BSY to clear.
3062 	 */
3063 	if (dev1) {
3064 		int i;
3065 
3066 		ap->ops->dev_select(ap, 1);
3067 
3068 		/* Wait for register access.  Some ATAPI devices fail
3069 		 * to set nsect/lbal after reset, so don't waste too
3070 		 * much time on it.  We're gonna wait for !BSY anyway.
3071 		 */
3072 		for (i = 0; i < 2; i++) {
3073 			u8 nsect, lbal;
3074 
3075 			nsect = ioread8(ioaddr->nsect_addr);
3076 			lbal = ioread8(ioaddr->lbal_addr);
3077 			if ((nsect == 1) && (lbal == 1))
3078 				break;
3079 			msleep(50);	/* give drive a breather */
3080 		}
3081 
3082 		rc = ata_wait_ready(ap, deadline);
3083 		if (rc) {
3084 			if (rc != -ENODEV)
3085 				return rc;
3086 			ret = rc;
3087 		}
3088 	}
3089 
3090 	/* is all this really necessary? */
3091 	ap->ops->dev_select(ap, 0);
3092 	if (dev1)
3093 		ap->ops->dev_select(ap, 1);
3094 	if (dev0)
3095 		ap->ops->dev_select(ap, 0);
3096 
3097 	return ret;
3098 }
3099 
3100 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3101 			     unsigned long deadline)
3102 {
3103 	struct ata_ioports *ioaddr = &ap->ioaddr;
3104 
3105 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3106 
3107 	/* software reset.  causes dev0 to be selected */
3108 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3109 	udelay(20);	/* FIXME: flush */
3110 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3111 	udelay(20);	/* FIXME: flush */
3112 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3113 
3114 	/* spec mandates ">= 2ms" before checking status.
3115 	 * We wait 150ms, because that was the magic delay used for
3116 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3117 	 * between when the ATA command register is written, and then
3118 	 * status is checked.  Because waiting for "a while" before
3119 	 * checking status is fine, post SRST, we perform this magic
3120 	 * delay here as well.
3121 	 *
3122 	 * Old drivers/ide uses the 2mS rule and then waits for ready
3123 	 */
3124 	msleep(150);
3125 
3126 	/* Before we perform post reset processing we want to see if
3127 	 * the bus shows 0xFF because the odd clown forgets the D7
3128 	 * pulldown resistor.
3129 	 */
3130 	if (ata_check_status(ap) == 0xFF)
3131 		return -ENODEV;
3132 
3133 	return ata_bus_post_reset(ap, devmask, deadline);
3134 }
3135 
3136 /**
3137  *	ata_bus_reset - reset host port and associated ATA channel
3138  *	@ap: port to reset
3139  *
3140  *	This is typically the first time we actually start issuing
3141  *	commands to the ATA channel.  We wait for BSY to clear, then
3142  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3143  *	result.  Determine what devices, if any, are on the channel
3144  *	by looking at the device 0/1 error register.  Look at the signature
3145  *	stored in each device's taskfile registers, to determine if
3146  *	the device is ATA or ATAPI.
3147  *
3148  *	LOCKING:
3149  *	PCI/etc. bus probe sem.
3150  *	Obtains host lock.
3151  *
3152  *	SIDE EFFECTS:
3153  *	Sets ATA_FLAG_DISABLED if bus reset fails.
3154  */
3155 
3156 void ata_bus_reset(struct ata_port *ap)
3157 {
3158 	struct ata_ioports *ioaddr = &ap->ioaddr;
3159 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3160 	u8 err;
3161 	unsigned int dev0, dev1 = 0, devmask = 0;
3162 	int rc;
3163 
3164 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3165 
3166 	/* determine if device 0/1 are present */
3167 	if (ap->flags & ATA_FLAG_SATA_RESET)
3168 		dev0 = 1;
3169 	else {
3170 		dev0 = ata_devchk(ap, 0);
3171 		if (slave_possible)
3172 			dev1 = ata_devchk(ap, 1);
3173 	}
3174 
3175 	if (dev0)
3176 		devmask |= (1 << 0);
3177 	if (dev1)
3178 		devmask |= (1 << 1);
3179 
3180 	/* select device 0 again */
3181 	ap->ops->dev_select(ap, 0);
3182 
3183 	/* issue bus reset */
3184 	if (ap->flags & ATA_FLAG_SRST) {
3185 		rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3186 		if (rc && rc != -ENODEV)
3187 			goto err_out;
3188 	}
3189 
3190 	/*
3191 	 * determine by signature whether we have ATA or ATAPI devices
3192 	 */
3193 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3194 	if ((slave_possible) && (err != 0x81))
3195 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3196 
3197 	/* re-enable interrupts */
3198 	ap->ops->irq_on(ap);
3199 
3200 	/* is double-select really necessary? */
3201 	if (ap->device[1].class != ATA_DEV_NONE)
3202 		ap->ops->dev_select(ap, 1);
3203 	if (ap->device[0].class != ATA_DEV_NONE)
3204 		ap->ops->dev_select(ap, 0);
3205 
3206 	/* if no devices were detected, disable this port */
3207 	if ((ap->device[0].class == ATA_DEV_NONE) &&
3208 	    (ap->device[1].class == ATA_DEV_NONE))
3209 		goto err_out;
3210 
3211 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3212 		/* set up device control for ATA_FLAG_SATA_RESET */
3213 		iowrite8(ap->ctl, ioaddr->ctl_addr);
3214 	}
3215 
3216 	DPRINTK("EXIT\n");
3217 	return;
3218 
3219 err_out:
3220 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
3221 	ap->ops->port_disable(ap);
3222 
3223 	DPRINTK("EXIT\n");
3224 }
3225 
3226 /**
3227  *	sata_phy_debounce - debounce SATA phy status
3228  *	@ap: ATA port to debounce SATA phy status for
3229  *	@params: timing parameters { interval, duratinon, timeout } in msec
3230  *	@deadline: deadline jiffies for the operation
3231  *
3232  *	Make sure SStatus of @ap reaches stable state, determined by
3233  *	holding the same value where DET is not 1 for @duration polled
3234  *	every @interval, before @timeout.  Timeout constraints the
3235  *	beginning of the stable state.  Because DET gets stuck at 1 on
3236  *	some controllers after hot unplugging, this functions waits
3237  *	until timeout then returns 0 if DET is stable at 1.
3238  *
3239  *	@timeout is further limited by @deadline.  The sooner of the
3240  *	two is used.
3241  *
3242  *	LOCKING:
3243  *	Kernel thread context (may sleep)
3244  *
3245  *	RETURNS:
3246  *	0 on success, -errno on failure.
3247  */
3248 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3249 		      unsigned long deadline)
3250 {
3251 	unsigned long interval_msec = params[0];
3252 	unsigned long duration = msecs_to_jiffies(params[1]);
3253 	unsigned long last_jiffies, t;
3254 	u32 last, cur;
3255 	int rc;
3256 
3257 	t = jiffies + msecs_to_jiffies(params[2]);
3258 	if (time_before(t, deadline))
3259 		deadline = t;
3260 
3261 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3262 		return rc;
3263 	cur &= 0xf;
3264 
3265 	last = cur;
3266 	last_jiffies = jiffies;
3267 
3268 	while (1) {
3269 		msleep(interval_msec);
3270 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3271 			return rc;
3272 		cur &= 0xf;
3273 
3274 		/* DET stable? */
3275 		if (cur == last) {
3276 			if (cur == 1 && time_before(jiffies, deadline))
3277 				continue;
3278 			if (time_after(jiffies, last_jiffies + duration))
3279 				return 0;
3280 			continue;
3281 		}
3282 
3283 		/* unstable, start over */
3284 		last = cur;
3285 		last_jiffies = jiffies;
3286 
3287 		/* check deadline */
3288 		if (time_after(jiffies, deadline))
3289 			return -EBUSY;
3290 	}
3291 }
3292 
3293 /**
3294  *	sata_phy_resume - resume SATA phy
3295  *	@ap: ATA port to resume SATA phy for
3296  *	@params: timing parameters { interval, duratinon, timeout } in msec
3297  *	@deadline: deadline jiffies for the operation
3298  *
3299  *	Resume SATA phy of @ap and debounce it.
3300  *
3301  *	LOCKING:
3302  *	Kernel thread context (may sleep)
3303  *
3304  *	RETURNS:
3305  *	0 on success, -errno on failure.
3306  */
3307 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3308 		    unsigned long deadline)
3309 {
3310 	u32 scontrol;
3311 	int rc;
3312 
3313 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3314 		return rc;
3315 
3316 	scontrol = (scontrol & 0x0f0) | 0x300;
3317 
3318 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3319 		return rc;
3320 
3321 	/* Some PHYs react badly if SStatus is pounded immediately
3322 	 * after resuming.  Delay 200ms before debouncing.
3323 	 */
3324 	msleep(200);
3325 
3326 	return sata_phy_debounce(ap, params, deadline);
3327 }
3328 
3329 /**
3330  *	ata_std_prereset - prepare for reset
3331  *	@ap: ATA port to be reset
3332  *	@deadline: deadline jiffies for the operation
3333  *
3334  *	@ap is about to be reset.  Initialize it.  Failure from
3335  *	prereset makes libata abort whole reset sequence and give up
3336  *	that port, so prereset should be best-effort.  It does its
3337  *	best to prepare for reset sequence but if things go wrong, it
3338  *	should just whine, not fail.
3339  *
3340  *	LOCKING:
3341  *	Kernel thread context (may sleep)
3342  *
3343  *	RETURNS:
3344  *	0 on success, -errno otherwise.
3345  */
3346 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3347 {
3348 	struct ata_eh_context *ehc = &ap->eh_context;
3349 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3350 	int rc;
3351 
3352 	/* handle link resume */
3353 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3354 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3355 		ehc->i.action |= ATA_EH_HARDRESET;
3356 
3357 	/* if we're about to do hardreset, nothing more to do */
3358 	if (ehc->i.action & ATA_EH_HARDRESET)
3359 		return 0;
3360 
3361 	/* if SATA, resume phy */
3362 	if (ap->cbl == ATA_CBL_SATA) {
3363 		rc = sata_phy_resume(ap, timing, deadline);
3364 		/* whine about phy resume failure but proceed */
3365 		if (rc && rc != -EOPNOTSUPP)
3366 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
3367 					"link for reset (errno=%d)\n", rc);
3368 	}
3369 
3370 	/* Wait for !BSY if the controller can wait for the first D2H
3371 	 * Reg FIS and we don't know that no device is attached.
3372 	 */
3373 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3374 		rc = ata_wait_ready(ap, deadline);
3375 		if (rc && rc != -ENODEV) {
3376 			ata_port_printk(ap, KERN_WARNING, "device not ready "
3377 					"(errno=%d), forcing hardreset\n", rc);
3378 			ehc->i.action |= ATA_EH_HARDRESET;
3379 		}
3380 	}
3381 
3382 	return 0;
3383 }
3384 
3385 /**
3386  *	ata_std_softreset - reset host port via ATA SRST
3387  *	@ap: port to reset
3388  *	@classes: resulting classes of attached devices
3389  *	@deadline: deadline jiffies for the operation
3390  *
3391  *	Reset host port using ATA SRST.
3392  *
3393  *	LOCKING:
3394  *	Kernel thread context (may sleep)
3395  *
3396  *	RETURNS:
3397  *	0 on success, -errno otherwise.
3398  */
3399 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3400 		      unsigned long deadline)
3401 {
3402 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3403 	unsigned int devmask = 0;
3404 	int rc;
3405 	u8 err;
3406 
3407 	DPRINTK("ENTER\n");
3408 
3409 	if (ata_port_offline(ap)) {
3410 		classes[0] = ATA_DEV_NONE;
3411 		goto out;
3412 	}
3413 
3414 	/* determine if device 0/1 are present */
3415 	if (ata_devchk(ap, 0))
3416 		devmask |= (1 << 0);
3417 	if (slave_possible && ata_devchk(ap, 1))
3418 		devmask |= (1 << 1);
3419 
3420 	/* select device 0 again */
3421 	ap->ops->dev_select(ap, 0);
3422 
3423 	/* issue bus reset */
3424 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3425 	rc = ata_bus_softreset(ap, devmask, deadline);
3426 	/* if link is occupied, -ENODEV too is an error */
3427 	if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3428 		ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3429 		return rc;
3430 	}
3431 
3432 	/* determine by signature whether we have ATA or ATAPI devices */
3433 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3434 	if (slave_possible && err != 0x81)
3435 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3436 
3437  out:
3438 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3439 	return 0;
3440 }
3441 
3442 /**
3443  *	sata_port_hardreset - reset port via SATA phy reset
3444  *	@ap: port to reset
3445  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3446  *	@deadline: deadline jiffies for the operation
3447  *
3448  *	SATA phy-reset host port using DET bits of SControl register.
3449  *
3450  *	LOCKING:
3451  *	Kernel thread context (may sleep)
3452  *
3453  *	RETURNS:
3454  *	0 on success, -errno otherwise.
3455  */
3456 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3457 			unsigned long deadline)
3458 {
3459 	u32 scontrol;
3460 	int rc;
3461 
3462 	DPRINTK("ENTER\n");
3463 
3464 	if (sata_set_spd_needed(ap)) {
3465 		/* SATA spec says nothing about how to reconfigure
3466 		 * spd.  To be on the safe side, turn off phy during
3467 		 * reconfiguration.  This works for at least ICH7 AHCI
3468 		 * and Sil3124.
3469 		 */
3470 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3471 			goto out;
3472 
3473 		scontrol = (scontrol & 0x0f0) | 0x304;
3474 
3475 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3476 			goto out;
3477 
3478 		sata_set_spd(ap);
3479 	}
3480 
3481 	/* issue phy wake/reset */
3482 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3483 		goto out;
3484 
3485 	scontrol = (scontrol & 0x0f0) | 0x301;
3486 
3487 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3488 		goto out;
3489 
3490 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3491 	 * 10.4.2 says at least 1 ms.
3492 	 */
3493 	msleep(1);
3494 
3495 	/* bring phy back */
3496 	rc = sata_phy_resume(ap, timing, deadline);
3497  out:
3498 	DPRINTK("EXIT, rc=%d\n", rc);
3499 	return rc;
3500 }
3501 
3502 /**
3503  *	sata_std_hardreset - reset host port via SATA phy reset
3504  *	@ap: port to reset
3505  *	@class: resulting class of attached device
3506  *	@deadline: deadline jiffies for the operation
3507  *
3508  *	SATA phy-reset host port using DET bits of SControl register,
3509  *	wait for !BSY and classify the attached device.
3510  *
3511  *	LOCKING:
3512  *	Kernel thread context (may sleep)
3513  *
3514  *	RETURNS:
3515  *	0 on success, -errno otherwise.
3516  */
3517 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3518 		       unsigned long deadline)
3519 {
3520 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3521 	int rc;
3522 
3523 	DPRINTK("ENTER\n");
3524 
3525 	/* do hardreset */
3526 	rc = sata_port_hardreset(ap, timing, deadline);
3527 	if (rc) {
3528 		ata_port_printk(ap, KERN_ERR,
3529 				"COMRESET failed (errno=%d)\n", rc);
3530 		return rc;
3531 	}
3532 
3533 	/* TODO: phy layer with polling, timeouts, etc. */
3534 	if (ata_port_offline(ap)) {
3535 		*class = ATA_DEV_NONE;
3536 		DPRINTK("EXIT, link offline\n");
3537 		return 0;
3538 	}
3539 
3540 	/* wait a while before checking status, see SRST for more info */
3541 	msleep(150);
3542 
3543 	rc = ata_wait_ready(ap, deadline);
3544 	/* link occupied, -ENODEV too is an error */
3545 	if (rc) {
3546 		ata_port_printk(ap, KERN_ERR,
3547 				"COMRESET failed (errno=%d)\n", rc);
3548 		return rc;
3549 	}
3550 
3551 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3552 
3553 	*class = ata_dev_try_classify(ap, 0, NULL);
3554 
3555 	DPRINTK("EXIT, class=%u\n", *class);
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	ata_std_postreset - standard postreset callback
3561  *	@ap: the target ata_port
3562  *	@classes: classes of attached devices
3563  *
3564  *	This function is invoked after a successful reset.  Note that
3565  *	the device might have been reset more than once using
3566  *	different reset methods before postreset is invoked.
3567  *
3568  *	LOCKING:
3569  *	Kernel thread context (may sleep)
3570  */
3571 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3572 {
3573 	u32 serror;
3574 
3575 	DPRINTK("ENTER\n");
3576 
3577 	/* print link status */
3578 	sata_print_link_status(ap);
3579 
3580 	/* clear SError */
3581 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3582 		sata_scr_write(ap, SCR_ERROR, serror);
3583 
3584 	/* re-enable interrupts */
3585 	if (!ap->ops->error_handler)
3586 		ap->ops->irq_on(ap);
3587 
3588 	/* is double-select really necessary? */
3589 	if (classes[0] != ATA_DEV_NONE)
3590 		ap->ops->dev_select(ap, 1);
3591 	if (classes[1] != ATA_DEV_NONE)
3592 		ap->ops->dev_select(ap, 0);
3593 
3594 	/* bail out if no device is present */
3595 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3596 		DPRINTK("EXIT, no device\n");
3597 		return;
3598 	}
3599 
3600 	/* set up device control */
3601 	if (ap->ioaddr.ctl_addr)
3602 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3603 
3604 	DPRINTK("EXIT\n");
3605 }
3606 
3607 /**
3608  *	ata_dev_same_device - Determine whether new ID matches configured device
3609  *	@dev: device to compare against
3610  *	@new_class: class of the new device
3611  *	@new_id: IDENTIFY page of the new device
3612  *
3613  *	Compare @new_class and @new_id against @dev and determine
3614  *	whether @dev is the device indicated by @new_class and
3615  *	@new_id.
3616  *
3617  *	LOCKING:
3618  *	None.
3619  *
3620  *	RETURNS:
3621  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3622  */
3623 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3624 			       const u16 *new_id)
3625 {
3626 	const u16 *old_id = dev->id;
3627 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3628 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3629 
3630 	if (dev->class != new_class) {
3631 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3632 			       dev->class, new_class);
3633 		return 0;
3634 	}
3635 
3636 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3637 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3638 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3639 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3640 
3641 	if (strcmp(model[0], model[1])) {
3642 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3643 			       "'%s' != '%s'\n", model[0], model[1]);
3644 		return 0;
3645 	}
3646 
3647 	if (strcmp(serial[0], serial[1])) {
3648 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3649 			       "'%s' != '%s'\n", serial[0], serial[1]);
3650 		return 0;
3651 	}
3652 
3653 	return 1;
3654 }
3655 
3656 /**
3657  *	ata_dev_reread_id - Re-read IDENTIFY data
3658  *	@dev: target ATA device
3659  *	@readid_flags: read ID flags
3660  *
3661  *	Re-read IDENTIFY page and make sure @dev is still attached to
3662  *	the port.
3663  *
3664  *	LOCKING:
3665  *	Kernel thread context (may sleep)
3666  *
3667  *	RETURNS:
3668  *	0 on success, negative errno otherwise
3669  */
3670 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3671 {
3672 	unsigned int class = dev->class;
3673 	u16 *id = (void *)dev->ap->sector_buf;
3674 	int rc;
3675 
3676 	/* read ID data */
3677 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3678 	if (rc)
3679 		return rc;
3680 
3681 	/* is the device still there? */
3682 	if (!ata_dev_same_device(dev, class, id))
3683 		return -ENODEV;
3684 
3685 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3686 	return 0;
3687 }
3688 
3689 /**
3690  *	ata_dev_revalidate - Revalidate ATA device
3691  *	@dev: device to revalidate
3692  *	@readid_flags: read ID flags
3693  *
3694  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3695  *	port and reconfigure it according to the new IDENTIFY page.
3696  *
3697  *	LOCKING:
3698  *	Kernel thread context (may sleep)
3699  *
3700  *	RETURNS:
3701  *	0 on success, negative errno otherwise
3702  */
3703 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3704 {
3705 	u64 n_sectors = dev->n_sectors;
3706 	int rc;
3707 
3708 	if (!ata_dev_enabled(dev))
3709 		return -ENODEV;
3710 
3711 	/* re-read ID */
3712 	rc = ata_dev_reread_id(dev, readid_flags);
3713 	if (rc)
3714 		goto fail;
3715 
3716 	/* configure device according to the new ID */
3717 	rc = ata_dev_configure(dev);
3718 	if (rc)
3719 		goto fail;
3720 
3721 	/* verify n_sectors hasn't changed */
3722 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3723 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3724 			       "%llu != %llu\n",
3725 			       (unsigned long long)n_sectors,
3726 			       (unsigned long long)dev->n_sectors);
3727 		rc = -ENODEV;
3728 		goto fail;
3729 	}
3730 
3731 	return 0;
3732 
3733  fail:
3734 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3735 	return rc;
3736 }
3737 
3738 struct ata_blacklist_entry {
3739 	const char *model_num;
3740 	const char *model_rev;
3741 	unsigned long horkage;
3742 };
3743 
3744 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3745 	/* Devices with DMA related problems under Linux */
3746 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3747 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3748 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3749 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3750 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3751 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3752 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3753 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3754 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3755 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3756 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3757 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3758 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3759 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3760 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3761 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3762 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3763 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3764 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3765 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3766 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3767 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3768 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3769 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3770 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3771 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3772 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3773 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3774 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3775 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3776 	{ "IOMEGA  ZIP 250       ATAPI", NULL,	ATA_HORKAGE_NODMA }, /* temporary fix */
3777 
3778 	/* Weird ATAPI devices */
3779 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3780 
3781 	/* Devices we expect to fail diagnostics */
3782 
3783 	/* Devices where NCQ should be avoided */
3784 	/* NCQ is slow */
3785         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3786 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3787 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3788 	/* NCQ is broken */
3789 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3790 	{ "Maxtor 6B200M0",	"BANC1B10",	ATA_HORKAGE_NONCQ },
3791 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3792 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3793 	/* Blacklist entries taken from Silicon Image 3124/3132
3794 	   Windows driver .inf file - also several Linux problem reports */
3795 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3796 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3797 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3798 	/* Drives which do spurious command completion */
3799 	{ "HTS541680J9SA00",	"SB2IC7EP",	ATA_HORKAGE_NONCQ, },
3800 	{ "HTS541612J9SA00",	"SBDIC7JP",	ATA_HORKAGE_NONCQ, },
3801 	{ "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3802 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3803 
3804 	/* Devices with NCQ limits */
3805 
3806 	/* End Marker */
3807 	{ }
3808 };
3809 
3810 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3811 {
3812 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3813 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3814 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3815 
3816 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3817 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3818 
3819 	while (ad->model_num) {
3820 		if (!strcmp(ad->model_num, model_num)) {
3821 			if (ad->model_rev == NULL)
3822 				return ad->horkage;
3823 			if (!strcmp(ad->model_rev, model_rev))
3824 				return ad->horkage;
3825 		}
3826 		ad++;
3827 	}
3828 	return 0;
3829 }
3830 
3831 static int ata_dma_blacklisted(const struct ata_device *dev)
3832 {
3833 	/* We don't support polling DMA.
3834 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3835 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 	 */
3837 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3838 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3839 		return 1;
3840 	return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3841 }
3842 
3843 /**
3844  *	ata_dev_xfermask - Compute supported xfermask of the given device
3845  *	@dev: Device to compute xfermask for
3846  *
3847  *	Compute supported xfermask of @dev and store it in
3848  *	dev->*_mask.  This function is responsible for applying all
3849  *	known limits including host controller limits, device
3850  *	blacklist, etc...
3851  *
3852  *	LOCKING:
3853  *	None.
3854  */
3855 static void ata_dev_xfermask(struct ata_device *dev)
3856 {
3857 	struct ata_port *ap = dev->ap;
3858 	struct ata_host *host = ap->host;
3859 	unsigned long xfer_mask;
3860 
3861 	/* controller modes available */
3862 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3863 				      ap->mwdma_mask, ap->udma_mask);
3864 
3865 	/* drive modes available */
3866 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3867 				       dev->mwdma_mask, dev->udma_mask);
3868 	xfer_mask &= ata_id_xfermask(dev->id);
3869 
3870 	/*
3871 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3872 	 *	cable
3873 	 */
3874 	if (ata_dev_pair(dev)) {
3875 		/* No PIO5 or PIO6 */
3876 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3877 		/* No MWDMA3 or MWDMA 4 */
3878 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3879 	}
3880 
3881 	if (ata_dma_blacklisted(dev)) {
3882 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3883 		ata_dev_printk(dev, KERN_WARNING,
3884 			       "device is on DMA blacklist, disabling DMA\n");
3885 	}
3886 
3887 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3888             host->simplex_claimed && host->simplex_claimed != ap) {
3889 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3890 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3891 			       "other device, disabling DMA\n");
3892 	}
3893 
3894 	if (ap->flags & ATA_FLAG_NO_IORDY)
3895 		xfer_mask &= ata_pio_mask_no_iordy(dev);
3896 
3897 	if (ap->ops->mode_filter)
3898 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3899 
3900 	/* Apply cable rule here.  Don't apply it early because when
3901 	 * we handle hot plug the cable type can itself change.
3902 	 * Check this last so that we know if the transfer rate was
3903 	 * solely limited by the cable.
3904 	 * Unknown or 80 wire cables reported host side are checked
3905 	 * drive side as well. Cases where we know a 40wire cable
3906 	 * is used safely for 80 are not checked here.
3907 	 */
3908 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3909 		/* UDMA/44 or higher would be available */
3910 		if((ap->cbl == ATA_CBL_PATA40) ||
3911    		    (ata_drive_40wire(dev->id) &&
3912 		     (ap->cbl == ATA_CBL_PATA_UNK ||
3913                      ap->cbl == ATA_CBL_PATA80))) {
3914 		      	ata_dev_printk(dev, KERN_WARNING,
3915 				 "limited to UDMA/33 due to 40-wire cable\n");
3916 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3917 		}
3918 
3919 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3920 			    &dev->mwdma_mask, &dev->udma_mask);
3921 }
3922 
3923 /**
3924  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3925  *	@dev: Device to which command will be sent
3926  *
3927  *	Issue SET FEATURES - XFER MODE command to device @dev
3928  *	on port @ap.
3929  *
3930  *	LOCKING:
3931  *	PCI/etc. bus probe sem.
3932  *
3933  *	RETURNS:
3934  *	0 on success, AC_ERR_* mask otherwise.
3935  */
3936 
3937 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3938 {
3939 	struct ata_taskfile tf;
3940 	unsigned int err_mask;
3941 
3942 	/* set up set-features taskfile */
3943 	DPRINTK("set features - xfer mode\n");
3944 
3945 	/* Some controllers and ATAPI devices show flaky interrupt
3946 	 * behavior after setting xfer mode.  Use polling instead.
3947 	 */
3948 	ata_tf_init(dev, &tf);
3949 	tf.command = ATA_CMD_SET_FEATURES;
3950 	tf.feature = SETFEATURES_XFER;
3951 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3952 	tf.protocol = ATA_PROT_NODATA;
3953 	tf.nsect = dev->xfer_mode;
3954 
3955 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3956 
3957 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3958 	return err_mask;
3959 }
3960 
3961 /**
3962  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3963  *	@dev: Device to which command will be sent
3964  *	@heads: Number of heads (taskfile parameter)
3965  *	@sectors: Number of sectors (taskfile parameter)
3966  *
3967  *	LOCKING:
3968  *	Kernel thread context (may sleep)
3969  *
3970  *	RETURNS:
3971  *	0 on success, AC_ERR_* mask otherwise.
3972  */
3973 static unsigned int ata_dev_init_params(struct ata_device *dev,
3974 					u16 heads, u16 sectors)
3975 {
3976 	struct ata_taskfile tf;
3977 	unsigned int err_mask;
3978 
3979 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3980 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3981 		return AC_ERR_INVALID;
3982 
3983 	/* set up init dev params taskfile */
3984 	DPRINTK("init dev params \n");
3985 
3986 	ata_tf_init(dev, &tf);
3987 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3988 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3989 	tf.protocol = ATA_PROT_NODATA;
3990 	tf.nsect = sectors;
3991 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3992 
3993 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3994 
3995 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3996 	return err_mask;
3997 }
3998 
3999 /**
4000  *	ata_sg_clean - Unmap DMA memory associated with command
4001  *	@qc: Command containing DMA memory to be released
4002  *
4003  *	Unmap all mapped DMA memory associated with this command.
4004  *
4005  *	LOCKING:
4006  *	spin_lock_irqsave(host lock)
4007  */
4008 void ata_sg_clean(struct ata_queued_cmd *qc)
4009 {
4010 	struct ata_port *ap = qc->ap;
4011 	struct scatterlist *sg = qc->__sg;
4012 	int dir = qc->dma_dir;
4013 	void *pad_buf = NULL;
4014 
4015 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4016 	WARN_ON(sg == NULL);
4017 
4018 	if (qc->flags & ATA_QCFLAG_SINGLE)
4019 		WARN_ON(qc->n_elem > 1);
4020 
4021 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4022 
4023 	/* if we padded the buffer out to 32-bit bound, and data
4024 	 * xfer direction is from-device, we must copy from the
4025 	 * pad buffer back into the supplied buffer
4026 	 */
4027 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4028 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4029 
4030 	if (qc->flags & ATA_QCFLAG_SG) {
4031 		if (qc->n_elem)
4032 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4033 		/* restore last sg */
4034 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
4035 		if (pad_buf) {
4036 			struct scatterlist *psg = &qc->pad_sgent;
4037 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4038 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4039 			kunmap_atomic(addr, KM_IRQ0);
4040 		}
4041 	} else {
4042 		if (qc->n_elem)
4043 			dma_unmap_single(ap->dev,
4044 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4045 				dir);
4046 		/* restore sg */
4047 		sg->length += qc->pad_len;
4048 		if (pad_buf)
4049 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
4050 			       pad_buf, qc->pad_len);
4051 	}
4052 
4053 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4054 	qc->__sg = NULL;
4055 }
4056 
4057 /**
4058  *	ata_fill_sg - Fill PCI IDE PRD table
4059  *	@qc: Metadata associated with taskfile to be transferred
4060  *
4061  *	Fill PCI IDE PRD (scatter-gather) table with segments
4062  *	associated with the current disk command.
4063  *
4064  *	LOCKING:
4065  *	spin_lock_irqsave(host lock)
4066  *
4067  */
4068 static void ata_fill_sg(struct ata_queued_cmd *qc)
4069 {
4070 	struct ata_port *ap = qc->ap;
4071 	struct scatterlist *sg;
4072 	unsigned int idx;
4073 
4074 	WARN_ON(qc->__sg == NULL);
4075 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4076 
4077 	idx = 0;
4078 	ata_for_each_sg(sg, qc) {
4079 		u32 addr, offset;
4080 		u32 sg_len, len;
4081 
4082 		/* determine if physical DMA addr spans 64K boundary.
4083 		 * Note h/w doesn't support 64-bit, so we unconditionally
4084 		 * truncate dma_addr_t to u32.
4085 		 */
4086 		addr = (u32) sg_dma_address(sg);
4087 		sg_len = sg_dma_len(sg);
4088 
4089 		while (sg_len) {
4090 			offset = addr & 0xffff;
4091 			len = sg_len;
4092 			if ((offset + sg_len) > 0x10000)
4093 				len = 0x10000 - offset;
4094 
4095 			ap->prd[idx].addr = cpu_to_le32(addr);
4096 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4097 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4098 
4099 			idx++;
4100 			sg_len -= len;
4101 			addr += len;
4102 		}
4103 	}
4104 
4105 	if (idx)
4106 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4107 }
4108 
4109 /**
4110  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4111  *	@qc: Metadata associated with taskfile to check
4112  *
4113  *	Allow low-level driver to filter ATA PACKET commands, returning
4114  *	a status indicating whether or not it is OK to use DMA for the
4115  *	supplied PACKET command.
4116  *
4117  *	LOCKING:
4118  *	spin_lock_irqsave(host lock)
4119  *
4120  *	RETURNS: 0 when ATAPI DMA can be used
4121  *               nonzero otherwise
4122  */
4123 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4124 {
4125 	struct ata_port *ap = qc->ap;
4126 
4127 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4128 	 * few ATAPI devices choke on such DMA requests.
4129 	 */
4130 	if (unlikely(qc->nbytes & 15))
4131 		return 1;
4132 
4133 	if (ap->ops->check_atapi_dma)
4134 		return ap->ops->check_atapi_dma(qc);
4135 
4136 	return 0;
4137 }
4138 
4139 /**
4140  *	ata_qc_prep - Prepare taskfile for submission
4141  *	@qc: Metadata associated with taskfile to be prepared
4142  *
4143  *	Prepare ATA taskfile for submission.
4144  *
4145  *	LOCKING:
4146  *	spin_lock_irqsave(host lock)
4147  */
4148 void ata_qc_prep(struct ata_queued_cmd *qc)
4149 {
4150 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4151 		return;
4152 
4153 	ata_fill_sg(qc);
4154 }
4155 
4156 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4157 
4158 /**
4159  *	ata_sg_init_one - Associate command with memory buffer
4160  *	@qc: Command to be associated
4161  *	@buf: Memory buffer
4162  *	@buflen: Length of memory buffer, in bytes.
4163  *
4164  *	Initialize the data-related elements of queued_cmd @qc
4165  *	to point to a single memory buffer, @buf of byte length @buflen.
4166  *
4167  *	LOCKING:
4168  *	spin_lock_irqsave(host lock)
4169  */
4170 
4171 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4172 {
4173 	qc->flags |= ATA_QCFLAG_SINGLE;
4174 
4175 	qc->__sg = &qc->sgent;
4176 	qc->n_elem = 1;
4177 	qc->orig_n_elem = 1;
4178 	qc->buf_virt = buf;
4179 	qc->nbytes = buflen;
4180 
4181 	sg_init_one(&qc->sgent, buf, buflen);
4182 }
4183 
4184 /**
4185  *	ata_sg_init - Associate command with scatter-gather table.
4186  *	@qc: Command to be associated
4187  *	@sg: Scatter-gather table.
4188  *	@n_elem: Number of elements in s/g table.
4189  *
4190  *	Initialize the data-related elements of queued_cmd @qc
4191  *	to point to a scatter-gather table @sg, containing @n_elem
4192  *	elements.
4193  *
4194  *	LOCKING:
4195  *	spin_lock_irqsave(host lock)
4196  */
4197 
4198 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4199 		 unsigned int n_elem)
4200 {
4201 	qc->flags |= ATA_QCFLAG_SG;
4202 	qc->__sg = sg;
4203 	qc->n_elem = n_elem;
4204 	qc->orig_n_elem = n_elem;
4205 }
4206 
4207 /**
4208  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209  *	@qc: Command with memory buffer to be mapped.
4210  *
4211  *	DMA-map the memory buffer associated with queued_cmd @qc.
4212  *
4213  *	LOCKING:
4214  *	spin_lock_irqsave(host lock)
4215  *
4216  *	RETURNS:
4217  *	Zero on success, negative on error.
4218  */
4219 
4220 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4221 {
4222 	struct ata_port *ap = qc->ap;
4223 	int dir = qc->dma_dir;
4224 	struct scatterlist *sg = qc->__sg;
4225 	dma_addr_t dma_address;
4226 	int trim_sg = 0;
4227 
4228 	/* we must lengthen transfers to end on a 32-bit boundary */
4229 	qc->pad_len = sg->length & 3;
4230 	if (qc->pad_len) {
4231 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4232 		struct scatterlist *psg = &qc->pad_sgent;
4233 
4234 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4235 
4236 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4237 
4238 		if (qc->tf.flags & ATA_TFLAG_WRITE)
4239 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4240 			       qc->pad_len);
4241 
4242 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4243 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4244 		/* trim sg */
4245 		sg->length -= qc->pad_len;
4246 		if (sg->length == 0)
4247 			trim_sg = 1;
4248 
4249 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 			sg->length, qc->pad_len);
4251 	}
4252 
4253 	if (trim_sg) {
4254 		qc->n_elem--;
4255 		goto skip_map;
4256 	}
4257 
4258 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
4259 				     sg->length, dir);
4260 	if (dma_mapping_error(dma_address)) {
4261 		/* restore sg */
4262 		sg->length += qc->pad_len;
4263 		return -1;
4264 	}
4265 
4266 	sg_dma_address(sg) = dma_address;
4267 	sg_dma_len(sg) = sg->length;
4268 
4269 skip_map:
4270 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4271 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4272 
4273 	return 0;
4274 }
4275 
4276 /**
4277  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278  *	@qc: Command with scatter-gather table to be mapped.
4279  *
4280  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4281  *
4282  *	LOCKING:
4283  *	spin_lock_irqsave(host lock)
4284  *
4285  *	RETURNS:
4286  *	Zero on success, negative on error.
4287  *
4288  */
4289 
4290 static int ata_sg_setup(struct ata_queued_cmd *qc)
4291 {
4292 	struct ata_port *ap = qc->ap;
4293 	struct scatterlist *sg = qc->__sg;
4294 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
4295 	int n_elem, pre_n_elem, dir, trim_sg = 0;
4296 
4297 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4298 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4299 
4300 	/* we must lengthen transfers to end on a 32-bit boundary */
4301 	qc->pad_len = lsg->length & 3;
4302 	if (qc->pad_len) {
4303 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4304 		struct scatterlist *psg = &qc->pad_sgent;
4305 		unsigned int offset;
4306 
4307 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4308 
4309 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310 
4311 		/*
4312 		 * psg->page/offset are used to copy to-be-written
4313 		 * data in this function or read data in ata_sg_clean.
4314 		 */
4315 		offset = lsg->offset + lsg->length - qc->pad_len;
4316 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4317 		psg->offset = offset_in_page(offset);
4318 
4319 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4320 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4321 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4322 			kunmap_atomic(addr, KM_IRQ0);
4323 		}
4324 
4325 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 		/* trim last sg */
4328 		lsg->length -= qc->pad_len;
4329 		if (lsg->length == 0)
4330 			trim_sg = 1;
4331 
4332 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 			qc->n_elem - 1, lsg->length, qc->pad_len);
4334 	}
4335 
4336 	pre_n_elem = qc->n_elem;
4337 	if (trim_sg && pre_n_elem)
4338 		pre_n_elem--;
4339 
4340 	if (!pre_n_elem) {
4341 		n_elem = 0;
4342 		goto skip_map;
4343 	}
4344 
4345 	dir = qc->dma_dir;
4346 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4347 	if (n_elem < 1) {
4348 		/* restore last sg */
4349 		lsg->length += qc->pad_len;
4350 		return -1;
4351 	}
4352 
4353 	DPRINTK("%d sg elements mapped\n", n_elem);
4354 
4355 skip_map:
4356 	qc->n_elem = n_elem;
4357 
4358 	return 0;
4359 }
4360 
4361 /**
4362  *	swap_buf_le16 - swap halves of 16-bit words in place
4363  *	@buf:  Buffer to swap
4364  *	@buf_words:  Number of 16-bit words in buffer.
4365  *
4366  *	Swap halves of 16-bit words if needed to convert from
4367  *	little-endian byte order to native cpu byte order, or
4368  *	vice-versa.
4369  *
4370  *	LOCKING:
4371  *	Inherited from caller.
4372  */
4373 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4374 {
4375 #ifdef __BIG_ENDIAN
4376 	unsigned int i;
4377 
4378 	for (i = 0; i < buf_words; i++)
4379 		buf[i] = le16_to_cpu(buf[i]);
4380 #endif /* __BIG_ENDIAN */
4381 }
4382 
4383 /**
4384  *	ata_data_xfer - Transfer data by PIO
4385  *	@adev: device to target
4386  *	@buf: data buffer
4387  *	@buflen: buffer length
4388  *	@write_data: read/write
4389  *
4390  *	Transfer data from/to the device data register by PIO.
4391  *
4392  *	LOCKING:
4393  *	Inherited from caller.
4394  */
4395 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4396 		   unsigned int buflen, int write_data)
4397 {
4398 	struct ata_port *ap = adev->ap;
4399 	unsigned int words = buflen >> 1;
4400 
4401 	/* Transfer multiple of 2 bytes */
4402 	if (write_data)
4403 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4404 	else
4405 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
4406 
4407 	/* Transfer trailing 1 byte, if any. */
4408 	if (unlikely(buflen & 0x01)) {
4409 		u16 align_buf[1] = { 0 };
4410 		unsigned char *trailing_buf = buf + buflen - 1;
4411 
4412 		if (write_data) {
4413 			memcpy(align_buf, trailing_buf, 1);
4414 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4415 		} else {
4416 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4417 			memcpy(trailing_buf, align_buf, 1);
4418 		}
4419 	}
4420 }
4421 
4422 /**
4423  *	ata_data_xfer_noirq - Transfer data by PIO
4424  *	@adev: device to target
4425  *	@buf: data buffer
4426  *	@buflen: buffer length
4427  *	@write_data: read/write
4428  *
4429  *	Transfer data from/to the device data register by PIO. Do the
4430  *	transfer with interrupts disabled.
4431  *
4432  *	LOCKING:
4433  *	Inherited from caller.
4434  */
4435 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4436 			 unsigned int buflen, int write_data)
4437 {
4438 	unsigned long flags;
4439 	local_irq_save(flags);
4440 	ata_data_xfer(adev, buf, buflen, write_data);
4441 	local_irq_restore(flags);
4442 }
4443 
4444 
4445 /**
4446  *	ata_pio_sector - Transfer a sector of data.
4447  *	@qc: Command on going
4448  *
4449  *	Transfer qc->sect_size bytes of data from/to the ATA device.
4450  *
4451  *	LOCKING:
4452  *	Inherited from caller.
4453  */
4454 
4455 static void ata_pio_sector(struct ata_queued_cmd *qc)
4456 {
4457 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4458 	struct scatterlist *sg = qc->__sg;
4459 	struct ata_port *ap = qc->ap;
4460 	struct page *page;
4461 	unsigned int offset;
4462 	unsigned char *buf;
4463 
4464 	if (qc->curbytes == qc->nbytes - qc->sect_size)
4465 		ap->hsm_task_state = HSM_ST_LAST;
4466 
4467 	page = sg[qc->cursg].page;
4468 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4469 
4470 	/* get the current page and offset */
4471 	page = nth_page(page, (offset >> PAGE_SHIFT));
4472 	offset %= PAGE_SIZE;
4473 
4474 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4475 
4476 	if (PageHighMem(page)) {
4477 		unsigned long flags;
4478 
4479 		/* FIXME: use a bounce buffer */
4480 		local_irq_save(flags);
4481 		buf = kmap_atomic(page, KM_IRQ0);
4482 
4483 		/* do the actual data transfer */
4484 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4485 
4486 		kunmap_atomic(buf, KM_IRQ0);
4487 		local_irq_restore(flags);
4488 	} else {
4489 		buf = page_address(page);
4490 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4491 	}
4492 
4493 	qc->curbytes += qc->sect_size;
4494 	qc->cursg_ofs += qc->sect_size;
4495 
4496 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4497 		qc->cursg++;
4498 		qc->cursg_ofs = 0;
4499 	}
4500 }
4501 
4502 /**
4503  *	ata_pio_sectors - Transfer one or many sectors.
4504  *	@qc: Command on going
4505  *
4506  *	Transfer one or many sectors of data from/to the
4507  *	ATA device for the DRQ request.
4508  *
4509  *	LOCKING:
4510  *	Inherited from caller.
4511  */
4512 
4513 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4514 {
4515 	if (is_multi_taskfile(&qc->tf)) {
4516 		/* READ/WRITE MULTIPLE */
4517 		unsigned int nsect;
4518 
4519 		WARN_ON(qc->dev->multi_count == 0);
4520 
4521 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4522 			    qc->dev->multi_count);
4523 		while (nsect--)
4524 			ata_pio_sector(qc);
4525 	} else
4526 		ata_pio_sector(qc);
4527 }
4528 
4529 /**
4530  *	atapi_send_cdb - Write CDB bytes to hardware
4531  *	@ap: Port to which ATAPI device is attached.
4532  *	@qc: Taskfile currently active
4533  *
4534  *	When device has indicated its readiness to accept
4535  *	a CDB, this function is called.  Send the CDB.
4536  *
4537  *	LOCKING:
4538  *	caller.
4539  */
4540 
4541 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4542 {
4543 	/* send SCSI cdb */
4544 	DPRINTK("send cdb\n");
4545 	WARN_ON(qc->dev->cdb_len < 12);
4546 
4547 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4548 	ata_altstatus(ap); /* flush */
4549 
4550 	switch (qc->tf.protocol) {
4551 	case ATA_PROT_ATAPI:
4552 		ap->hsm_task_state = HSM_ST;
4553 		break;
4554 	case ATA_PROT_ATAPI_NODATA:
4555 		ap->hsm_task_state = HSM_ST_LAST;
4556 		break;
4557 	case ATA_PROT_ATAPI_DMA:
4558 		ap->hsm_task_state = HSM_ST_LAST;
4559 		/* initiate bmdma */
4560 		ap->ops->bmdma_start(qc);
4561 		break;
4562 	}
4563 }
4564 
4565 /**
4566  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567  *	@qc: Command on going
4568  *	@bytes: number of bytes
4569  *
4570  *	Transfer Transfer data from/to the ATAPI device.
4571  *
4572  *	LOCKING:
4573  *	Inherited from caller.
4574  *
4575  */
4576 
4577 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4578 {
4579 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4580 	struct scatterlist *sg = qc->__sg;
4581 	struct ata_port *ap = qc->ap;
4582 	struct page *page;
4583 	unsigned char *buf;
4584 	unsigned int offset, count;
4585 
4586 	if (qc->curbytes + bytes >= qc->nbytes)
4587 		ap->hsm_task_state = HSM_ST_LAST;
4588 
4589 next_sg:
4590 	if (unlikely(qc->cursg >= qc->n_elem)) {
4591 		/*
4592 		 * The end of qc->sg is reached and the device expects
4593 		 * more data to transfer. In order not to overrun qc->sg
4594 		 * and fulfill length specified in the byte count register,
4595 		 *    - for read case, discard trailing data from the device
4596 		 *    - for write case, padding zero data to the device
4597 		 */
4598 		u16 pad_buf[1] = { 0 };
4599 		unsigned int words = bytes >> 1;
4600 		unsigned int i;
4601 
4602 		if (words) /* warning if bytes > 1 */
4603 			ata_dev_printk(qc->dev, KERN_WARNING,
4604 				       "%u bytes trailing data\n", bytes);
4605 
4606 		for (i = 0; i < words; i++)
4607 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4608 
4609 		ap->hsm_task_state = HSM_ST_LAST;
4610 		return;
4611 	}
4612 
4613 	sg = &qc->__sg[qc->cursg];
4614 
4615 	page = sg->page;
4616 	offset = sg->offset + qc->cursg_ofs;
4617 
4618 	/* get the current page and offset */
4619 	page = nth_page(page, (offset >> PAGE_SHIFT));
4620 	offset %= PAGE_SIZE;
4621 
4622 	/* don't overrun current sg */
4623 	count = min(sg->length - qc->cursg_ofs, bytes);
4624 
4625 	/* don't cross page boundaries */
4626 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4627 
4628 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4629 
4630 	if (PageHighMem(page)) {
4631 		unsigned long flags;
4632 
4633 		/* FIXME: use bounce buffer */
4634 		local_irq_save(flags);
4635 		buf = kmap_atomic(page, KM_IRQ0);
4636 
4637 		/* do the actual data transfer */
4638 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4639 
4640 		kunmap_atomic(buf, KM_IRQ0);
4641 		local_irq_restore(flags);
4642 	} else {
4643 		buf = page_address(page);
4644 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4645 	}
4646 
4647 	bytes -= count;
4648 	qc->curbytes += count;
4649 	qc->cursg_ofs += count;
4650 
4651 	if (qc->cursg_ofs == sg->length) {
4652 		qc->cursg++;
4653 		qc->cursg_ofs = 0;
4654 	}
4655 
4656 	if (bytes)
4657 		goto next_sg;
4658 }
4659 
4660 /**
4661  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662  *	@qc: Command on going
4663  *
4664  *	Transfer Transfer data from/to the ATAPI device.
4665  *
4666  *	LOCKING:
4667  *	Inherited from caller.
4668  */
4669 
4670 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4671 {
4672 	struct ata_port *ap = qc->ap;
4673 	struct ata_device *dev = qc->dev;
4674 	unsigned int ireason, bc_lo, bc_hi, bytes;
4675 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4676 
4677 	/* Abuse qc->result_tf for temp storage of intermediate TF
4678 	 * here to save some kernel stack usage.
4679 	 * For normal completion, qc->result_tf is not relevant. For
4680 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 	 * So, the correctness of qc->result_tf is not affected.
4682 	 */
4683 	ap->ops->tf_read(ap, &qc->result_tf);
4684 	ireason = qc->result_tf.nsect;
4685 	bc_lo = qc->result_tf.lbam;
4686 	bc_hi = qc->result_tf.lbah;
4687 	bytes = (bc_hi << 8) | bc_lo;
4688 
4689 	/* shall be cleared to zero, indicating xfer of data */
4690 	if (ireason & (1 << 0))
4691 		goto err_out;
4692 
4693 	/* make sure transfer direction matches expected */
4694 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4695 	if (do_write != i_write)
4696 		goto err_out;
4697 
4698 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4699 
4700 	__atapi_pio_bytes(qc, bytes);
4701 
4702 	return;
4703 
4704 err_out:
4705 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4706 	qc->err_mask |= AC_ERR_HSM;
4707 	ap->hsm_task_state = HSM_ST_ERR;
4708 }
4709 
4710 /**
4711  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712  *	@ap: the target ata_port
4713  *	@qc: qc on going
4714  *
4715  *	RETURNS:
4716  *	1 if ok in workqueue, 0 otherwise.
4717  */
4718 
4719 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4720 {
4721 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4722 		return 1;
4723 
4724 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4725 		if (qc->tf.protocol == ATA_PROT_PIO &&
4726 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4727 		    return 1;
4728 
4729 		if (is_atapi_taskfile(&qc->tf) &&
4730 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4731 			return 1;
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 /**
4738  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4739  *	@qc: Command to complete
4740  *	@in_wq: 1 if called from workqueue, 0 otherwise
4741  *
4742  *	Finish @qc which is running on standard HSM.
4743  *
4744  *	LOCKING:
4745  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4746  *	Otherwise, none on entry and grabs host lock.
4747  */
4748 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4749 {
4750 	struct ata_port *ap = qc->ap;
4751 	unsigned long flags;
4752 
4753 	if (ap->ops->error_handler) {
4754 		if (in_wq) {
4755 			spin_lock_irqsave(ap->lock, flags);
4756 
4757 			/* EH might have kicked in while host lock is
4758 			 * released.
4759 			 */
4760 			qc = ata_qc_from_tag(ap, qc->tag);
4761 			if (qc) {
4762 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4763 					ap->ops->irq_on(ap);
4764 					ata_qc_complete(qc);
4765 				} else
4766 					ata_port_freeze(ap);
4767 			}
4768 
4769 			spin_unlock_irqrestore(ap->lock, flags);
4770 		} else {
4771 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4772 				ata_qc_complete(qc);
4773 			else
4774 				ata_port_freeze(ap);
4775 		}
4776 	} else {
4777 		if (in_wq) {
4778 			spin_lock_irqsave(ap->lock, flags);
4779 			ap->ops->irq_on(ap);
4780 			ata_qc_complete(qc);
4781 			spin_unlock_irqrestore(ap->lock, flags);
4782 		} else
4783 			ata_qc_complete(qc);
4784 	}
4785 }
4786 
4787 /**
4788  *	ata_hsm_move - move the HSM to the next state.
4789  *	@ap: the target ata_port
4790  *	@qc: qc on going
4791  *	@status: current device status
4792  *	@in_wq: 1 if called from workqueue, 0 otherwise
4793  *
4794  *	RETURNS:
4795  *	1 when poll next status needed, 0 otherwise.
4796  */
4797 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4798 		 u8 status, int in_wq)
4799 {
4800 	unsigned long flags = 0;
4801 	int poll_next;
4802 
4803 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4804 
4805 	/* Make sure ata_qc_issue_prot() does not throw things
4806 	 * like DMA polling into the workqueue. Notice that
4807 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4808 	 */
4809 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4810 
4811 fsm_start:
4812 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4813 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4814 
4815 	switch (ap->hsm_task_state) {
4816 	case HSM_ST_FIRST:
4817 		/* Send first data block or PACKET CDB */
4818 
4819 		/* If polling, we will stay in the work queue after
4820 		 * sending the data. Otherwise, interrupt handler
4821 		 * takes over after sending the data.
4822 		 */
4823 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4824 
4825 		/* check device status */
4826 		if (unlikely((status & ATA_DRQ) == 0)) {
4827 			/* handle BSY=0, DRQ=0 as error */
4828 			if (likely(status & (ATA_ERR | ATA_DF)))
4829 				/* device stops HSM for abort/error */
4830 				qc->err_mask |= AC_ERR_DEV;
4831 			else
4832 				/* HSM violation. Let EH handle this */
4833 				qc->err_mask |= AC_ERR_HSM;
4834 
4835 			ap->hsm_task_state = HSM_ST_ERR;
4836 			goto fsm_start;
4837 		}
4838 
4839 		/* Device should not ask for data transfer (DRQ=1)
4840 		 * when it finds something wrong.
4841 		 * We ignore DRQ here and stop the HSM by
4842 		 * changing hsm_task_state to HSM_ST_ERR and
4843 		 * let the EH abort the command or reset the device.
4844 		 */
4845 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4846 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4847 					"error, dev_stat 0x%X\n", status);
4848 			qc->err_mask |= AC_ERR_HSM;
4849 			ap->hsm_task_state = HSM_ST_ERR;
4850 			goto fsm_start;
4851 		}
4852 
4853 		/* Send the CDB (atapi) or the first data block (ata pio out).
4854 		 * During the state transition, interrupt handler shouldn't
4855 		 * be invoked before the data transfer is complete and
4856 		 * hsm_task_state is changed. Hence, the following locking.
4857 		 */
4858 		if (in_wq)
4859 			spin_lock_irqsave(ap->lock, flags);
4860 
4861 		if (qc->tf.protocol == ATA_PROT_PIO) {
4862 			/* PIO data out protocol.
4863 			 * send first data block.
4864 			 */
4865 
4866 			/* ata_pio_sectors() might change the state
4867 			 * to HSM_ST_LAST. so, the state is changed here
4868 			 * before ata_pio_sectors().
4869 			 */
4870 			ap->hsm_task_state = HSM_ST;
4871 			ata_pio_sectors(qc);
4872 			ata_altstatus(ap); /* flush */
4873 		} else
4874 			/* send CDB */
4875 			atapi_send_cdb(ap, qc);
4876 
4877 		if (in_wq)
4878 			spin_unlock_irqrestore(ap->lock, flags);
4879 
4880 		/* if polling, ata_pio_task() handles the rest.
4881 		 * otherwise, interrupt handler takes over from here.
4882 		 */
4883 		break;
4884 
4885 	case HSM_ST:
4886 		/* complete command or read/write the data register */
4887 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4888 			/* ATAPI PIO protocol */
4889 			if ((status & ATA_DRQ) == 0) {
4890 				/* No more data to transfer or device error.
4891 				 * Device error will be tagged in HSM_ST_LAST.
4892 				 */
4893 				ap->hsm_task_state = HSM_ST_LAST;
4894 				goto fsm_start;
4895 			}
4896 
4897 			/* Device should not ask for data transfer (DRQ=1)
4898 			 * when it finds something wrong.
4899 			 * We ignore DRQ here and stop the HSM by
4900 			 * changing hsm_task_state to HSM_ST_ERR and
4901 			 * let the EH abort the command or reset the device.
4902 			 */
4903 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4904 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4905 						"device error, dev_stat 0x%X\n",
4906 						status);
4907 				qc->err_mask |= AC_ERR_HSM;
4908 				ap->hsm_task_state = HSM_ST_ERR;
4909 				goto fsm_start;
4910 			}
4911 
4912 			atapi_pio_bytes(qc);
4913 
4914 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4915 				/* bad ireason reported by device */
4916 				goto fsm_start;
4917 
4918 		} else {
4919 			/* ATA PIO protocol */
4920 			if (unlikely((status & ATA_DRQ) == 0)) {
4921 				/* handle BSY=0, DRQ=0 as error */
4922 				if (likely(status & (ATA_ERR | ATA_DF)))
4923 					/* device stops HSM for abort/error */
4924 					qc->err_mask |= AC_ERR_DEV;
4925 				else
4926 					/* HSM violation. Let EH handle this.
4927 					 * Phantom devices also trigger this
4928 					 * condition.  Mark hint.
4929 					 */
4930 					qc->err_mask |= AC_ERR_HSM |
4931 							AC_ERR_NODEV_HINT;
4932 
4933 				ap->hsm_task_state = HSM_ST_ERR;
4934 				goto fsm_start;
4935 			}
4936 
4937 			/* For PIO reads, some devices may ask for
4938 			 * data transfer (DRQ=1) alone with ERR=1.
4939 			 * We respect DRQ here and transfer one
4940 			 * block of junk data before changing the
4941 			 * hsm_task_state to HSM_ST_ERR.
4942 			 *
4943 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4944 			 * sense since the data block has been
4945 			 * transferred to the device.
4946 			 */
4947 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4948 				/* data might be corrputed */
4949 				qc->err_mask |= AC_ERR_DEV;
4950 
4951 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4952 					ata_pio_sectors(qc);
4953 					ata_altstatus(ap);
4954 					status = ata_wait_idle(ap);
4955 				}
4956 
4957 				if (status & (ATA_BUSY | ATA_DRQ))
4958 					qc->err_mask |= AC_ERR_HSM;
4959 
4960 				/* ata_pio_sectors() might change the
4961 				 * state to HSM_ST_LAST. so, the state
4962 				 * is changed after ata_pio_sectors().
4963 				 */
4964 				ap->hsm_task_state = HSM_ST_ERR;
4965 				goto fsm_start;
4966 			}
4967 
4968 			ata_pio_sectors(qc);
4969 
4970 			if (ap->hsm_task_state == HSM_ST_LAST &&
4971 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4972 				/* all data read */
4973 				ata_altstatus(ap);
4974 				status = ata_wait_idle(ap);
4975 				goto fsm_start;
4976 			}
4977 		}
4978 
4979 		ata_altstatus(ap); /* flush */
4980 		poll_next = 1;
4981 		break;
4982 
4983 	case HSM_ST_LAST:
4984 		if (unlikely(!ata_ok(status))) {
4985 			qc->err_mask |= __ac_err_mask(status);
4986 			ap->hsm_task_state = HSM_ST_ERR;
4987 			goto fsm_start;
4988 		}
4989 
4990 		/* no more data to transfer */
4991 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4992 			ap->print_id, qc->dev->devno, status);
4993 
4994 		WARN_ON(qc->err_mask);
4995 
4996 		ap->hsm_task_state = HSM_ST_IDLE;
4997 
4998 		/* complete taskfile transaction */
4999 		ata_hsm_qc_complete(qc, in_wq);
5000 
5001 		poll_next = 0;
5002 		break;
5003 
5004 	case HSM_ST_ERR:
5005 		/* make sure qc->err_mask is available to
5006 		 * know what's wrong and recover
5007 		 */
5008 		WARN_ON(qc->err_mask == 0);
5009 
5010 		ap->hsm_task_state = HSM_ST_IDLE;
5011 
5012 		/* complete taskfile transaction */
5013 		ata_hsm_qc_complete(qc, in_wq);
5014 
5015 		poll_next = 0;
5016 		break;
5017 	default:
5018 		poll_next = 0;
5019 		BUG();
5020 	}
5021 
5022 	return poll_next;
5023 }
5024 
5025 static void ata_pio_task(struct work_struct *work)
5026 {
5027 	struct ata_port *ap =
5028 		container_of(work, struct ata_port, port_task.work);
5029 	struct ata_queued_cmd *qc = ap->port_task_data;
5030 	u8 status;
5031 	int poll_next;
5032 
5033 fsm_start:
5034 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5035 
5036 	/*
5037 	 * This is purely heuristic.  This is a fast path.
5038 	 * Sometimes when we enter, BSY will be cleared in
5039 	 * a chk-status or two.  If not, the drive is probably seeking
5040 	 * or something.  Snooze for a couple msecs, then
5041 	 * chk-status again.  If still busy, queue delayed work.
5042 	 */
5043 	status = ata_busy_wait(ap, ATA_BUSY, 5);
5044 	if (status & ATA_BUSY) {
5045 		msleep(2);
5046 		status = ata_busy_wait(ap, ATA_BUSY, 10);
5047 		if (status & ATA_BUSY) {
5048 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5049 			return;
5050 		}
5051 	}
5052 
5053 	/* move the HSM */
5054 	poll_next = ata_hsm_move(ap, qc, status, 1);
5055 
5056 	/* another command or interrupt handler
5057 	 * may be running at this point.
5058 	 */
5059 	if (poll_next)
5060 		goto fsm_start;
5061 }
5062 
5063 /**
5064  *	ata_qc_new - Request an available ATA command, for queueing
5065  *	@ap: Port associated with device @dev
5066  *	@dev: Device from whom we request an available command structure
5067  *
5068  *	LOCKING:
5069  *	None.
5070  */
5071 
5072 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5073 {
5074 	struct ata_queued_cmd *qc = NULL;
5075 	unsigned int i;
5076 
5077 	/* no command while frozen */
5078 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5079 		return NULL;
5080 
5081 	/* the last tag is reserved for internal command. */
5082 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5083 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
5084 			qc = __ata_qc_from_tag(ap, i);
5085 			break;
5086 		}
5087 
5088 	if (qc)
5089 		qc->tag = i;
5090 
5091 	return qc;
5092 }
5093 
5094 /**
5095  *	ata_qc_new_init - Request an available ATA command, and initialize it
5096  *	@dev: Device from whom we request an available command structure
5097  *
5098  *	LOCKING:
5099  *	None.
5100  */
5101 
5102 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5103 {
5104 	struct ata_port *ap = dev->ap;
5105 	struct ata_queued_cmd *qc;
5106 
5107 	qc = ata_qc_new(ap);
5108 	if (qc) {
5109 		qc->scsicmd = NULL;
5110 		qc->ap = ap;
5111 		qc->dev = dev;
5112 
5113 		ata_qc_reinit(qc);
5114 	}
5115 
5116 	return qc;
5117 }
5118 
5119 /**
5120  *	ata_qc_free - free unused ata_queued_cmd
5121  *	@qc: Command to complete
5122  *
5123  *	Designed to free unused ata_queued_cmd object
5124  *	in case something prevents using it.
5125  *
5126  *	LOCKING:
5127  *	spin_lock_irqsave(host lock)
5128  */
5129 void ata_qc_free(struct ata_queued_cmd *qc)
5130 {
5131 	struct ata_port *ap = qc->ap;
5132 	unsigned int tag;
5133 
5134 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5135 
5136 	qc->flags = 0;
5137 	tag = qc->tag;
5138 	if (likely(ata_tag_valid(tag))) {
5139 		qc->tag = ATA_TAG_POISON;
5140 		clear_bit(tag, &ap->qc_allocated);
5141 	}
5142 }
5143 
5144 void __ata_qc_complete(struct ata_queued_cmd *qc)
5145 {
5146 	struct ata_port *ap = qc->ap;
5147 
5148 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5149 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5150 
5151 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5152 		ata_sg_clean(qc);
5153 
5154 	/* command should be marked inactive atomically with qc completion */
5155 	if (qc->tf.protocol == ATA_PROT_NCQ)
5156 		ap->sactive &= ~(1 << qc->tag);
5157 	else
5158 		ap->active_tag = ATA_TAG_POISON;
5159 
5160 	/* atapi: mark qc as inactive to prevent the interrupt handler
5161 	 * from completing the command twice later, before the error handler
5162 	 * is called. (when rc != 0 and atapi request sense is needed)
5163 	 */
5164 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5165 	ap->qc_active &= ~(1 << qc->tag);
5166 
5167 	/* call completion callback */
5168 	qc->complete_fn(qc);
5169 }
5170 
5171 static void fill_result_tf(struct ata_queued_cmd *qc)
5172 {
5173 	struct ata_port *ap = qc->ap;
5174 
5175 	qc->result_tf.flags = qc->tf.flags;
5176 	ap->ops->tf_read(ap, &qc->result_tf);
5177 }
5178 
5179 /**
5180  *	ata_qc_complete - Complete an active ATA command
5181  *	@qc: Command to complete
5182  *	@err_mask: ATA Status register contents
5183  *
5184  *	Indicate to the mid and upper layers that an ATA
5185  *	command has completed, with either an ok or not-ok status.
5186  *
5187  *	LOCKING:
5188  *	spin_lock_irqsave(host lock)
5189  */
5190 void ata_qc_complete(struct ata_queued_cmd *qc)
5191 {
5192 	struct ata_port *ap = qc->ap;
5193 
5194 	/* XXX: New EH and old EH use different mechanisms to
5195 	 * synchronize EH with regular execution path.
5196 	 *
5197 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5198 	 * Normal execution path is responsible for not accessing a
5199 	 * failed qc.  libata core enforces the rule by returning NULL
5200 	 * from ata_qc_from_tag() for failed qcs.
5201 	 *
5202 	 * Old EH depends on ata_qc_complete() nullifying completion
5203 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5204 	 * not synchronize with interrupt handler.  Only PIO task is
5205 	 * taken care of.
5206 	 */
5207 	if (ap->ops->error_handler) {
5208 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5209 
5210 		if (unlikely(qc->err_mask))
5211 			qc->flags |= ATA_QCFLAG_FAILED;
5212 
5213 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5214 			if (!ata_tag_internal(qc->tag)) {
5215 				/* always fill result TF for failed qc */
5216 				fill_result_tf(qc);
5217 				ata_qc_schedule_eh(qc);
5218 				return;
5219 			}
5220 		}
5221 
5222 		/* read result TF if requested */
5223 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5224 			fill_result_tf(qc);
5225 
5226 		__ata_qc_complete(qc);
5227 	} else {
5228 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5229 			return;
5230 
5231 		/* read result TF if failed or requested */
5232 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5233 			fill_result_tf(qc);
5234 
5235 		__ata_qc_complete(qc);
5236 	}
5237 }
5238 
5239 /**
5240  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5241  *	@ap: port in question
5242  *	@qc_active: new qc_active mask
5243  *	@finish_qc: LLDD callback invoked before completing a qc
5244  *
5245  *	Complete in-flight commands.  This functions is meant to be
5246  *	called from low-level driver's interrupt routine to complete
5247  *	requests normally.  ap->qc_active and @qc_active is compared
5248  *	and commands are completed accordingly.
5249  *
5250  *	LOCKING:
5251  *	spin_lock_irqsave(host lock)
5252  *
5253  *	RETURNS:
5254  *	Number of completed commands on success, -errno otherwise.
5255  */
5256 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5257 			     void (*finish_qc)(struct ata_queued_cmd *))
5258 {
5259 	int nr_done = 0;
5260 	u32 done_mask;
5261 	int i;
5262 
5263 	done_mask = ap->qc_active ^ qc_active;
5264 
5265 	if (unlikely(done_mask & qc_active)) {
5266 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5267 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5268 		return -EINVAL;
5269 	}
5270 
5271 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5272 		struct ata_queued_cmd *qc;
5273 
5274 		if (!(done_mask & (1 << i)))
5275 			continue;
5276 
5277 		if ((qc = ata_qc_from_tag(ap, i))) {
5278 			if (finish_qc)
5279 				finish_qc(qc);
5280 			ata_qc_complete(qc);
5281 			nr_done++;
5282 		}
5283 	}
5284 
5285 	return nr_done;
5286 }
5287 
5288 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5289 {
5290 	struct ata_port *ap = qc->ap;
5291 
5292 	switch (qc->tf.protocol) {
5293 	case ATA_PROT_NCQ:
5294 	case ATA_PROT_DMA:
5295 	case ATA_PROT_ATAPI_DMA:
5296 		return 1;
5297 
5298 	case ATA_PROT_ATAPI:
5299 	case ATA_PROT_PIO:
5300 		if (ap->flags & ATA_FLAG_PIO_DMA)
5301 			return 1;
5302 
5303 		/* fall through */
5304 
5305 	default:
5306 		return 0;
5307 	}
5308 
5309 	/* never reached */
5310 }
5311 
5312 /**
5313  *	ata_qc_issue - issue taskfile to device
5314  *	@qc: command to issue to device
5315  *
5316  *	Prepare an ATA command to submission to device.
5317  *	This includes mapping the data into a DMA-able
5318  *	area, filling in the S/G table, and finally
5319  *	writing the taskfile to hardware, starting the command.
5320  *
5321  *	LOCKING:
5322  *	spin_lock_irqsave(host lock)
5323  */
5324 void ata_qc_issue(struct ata_queued_cmd *qc)
5325 {
5326 	struct ata_port *ap = qc->ap;
5327 
5328 	/* Make sure only one non-NCQ command is outstanding.  The
5329 	 * check is skipped for old EH because it reuses active qc to
5330 	 * request ATAPI sense.
5331 	 */
5332 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5333 
5334 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5335 		WARN_ON(ap->sactive & (1 << qc->tag));
5336 		ap->sactive |= 1 << qc->tag;
5337 	} else {
5338 		WARN_ON(ap->sactive);
5339 		ap->active_tag = qc->tag;
5340 	}
5341 
5342 	qc->flags |= ATA_QCFLAG_ACTIVE;
5343 	ap->qc_active |= 1 << qc->tag;
5344 
5345 	if (ata_should_dma_map(qc)) {
5346 		if (qc->flags & ATA_QCFLAG_SG) {
5347 			if (ata_sg_setup(qc))
5348 				goto sg_err;
5349 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
5350 			if (ata_sg_setup_one(qc))
5351 				goto sg_err;
5352 		}
5353 	} else {
5354 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
5355 	}
5356 
5357 	ap->ops->qc_prep(qc);
5358 
5359 	qc->err_mask |= ap->ops->qc_issue(qc);
5360 	if (unlikely(qc->err_mask))
5361 		goto err;
5362 	return;
5363 
5364 sg_err:
5365 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5366 	qc->err_mask |= AC_ERR_SYSTEM;
5367 err:
5368 	ata_qc_complete(qc);
5369 }
5370 
5371 /**
5372  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5373  *	@qc: command to issue to device
5374  *
5375  *	Using various libata functions and hooks, this function
5376  *	starts an ATA command.  ATA commands are grouped into
5377  *	classes called "protocols", and issuing each type of protocol
5378  *	is slightly different.
5379  *
5380  *	May be used as the qc_issue() entry in ata_port_operations.
5381  *
5382  *	LOCKING:
5383  *	spin_lock_irqsave(host lock)
5384  *
5385  *	RETURNS:
5386  *	Zero on success, AC_ERR_* mask on failure
5387  */
5388 
5389 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5390 {
5391 	struct ata_port *ap = qc->ap;
5392 
5393 	/* Use polling pio if the LLD doesn't handle
5394 	 * interrupt driven pio and atapi CDB interrupt.
5395 	 */
5396 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
5397 		switch (qc->tf.protocol) {
5398 		case ATA_PROT_PIO:
5399 		case ATA_PROT_NODATA:
5400 		case ATA_PROT_ATAPI:
5401 		case ATA_PROT_ATAPI_NODATA:
5402 			qc->tf.flags |= ATA_TFLAG_POLLING;
5403 			break;
5404 		case ATA_PROT_ATAPI_DMA:
5405 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5406 				/* see ata_dma_blacklisted() */
5407 				BUG();
5408 			break;
5409 		default:
5410 			break;
5411 		}
5412 	}
5413 
5414 	/* select the device */
5415 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5416 
5417 	/* start the command */
5418 	switch (qc->tf.protocol) {
5419 	case ATA_PROT_NODATA:
5420 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5421 			ata_qc_set_polling(qc);
5422 
5423 		ata_tf_to_host(ap, &qc->tf);
5424 		ap->hsm_task_state = HSM_ST_LAST;
5425 
5426 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5427 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5428 
5429 		break;
5430 
5431 	case ATA_PROT_DMA:
5432 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5433 
5434 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5435 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5436 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5437 		ap->hsm_task_state = HSM_ST_LAST;
5438 		break;
5439 
5440 	case ATA_PROT_PIO:
5441 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5442 			ata_qc_set_polling(qc);
5443 
5444 		ata_tf_to_host(ap, &qc->tf);
5445 
5446 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5447 			/* PIO data out protocol */
5448 			ap->hsm_task_state = HSM_ST_FIRST;
5449 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5450 
5451 			/* always send first data block using
5452 			 * the ata_pio_task() codepath.
5453 			 */
5454 		} else {
5455 			/* PIO data in protocol */
5456 			ap->hsm_task_state = HSM_ST;
5457 
5458 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5459 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5460 
5461 			/* if polling, ata_pio_task() handles the rest.
5462 			 * otherwise, interrupt handler takes over from here.
5463 			 */
5464 		}
5465 
5466 		break;
5467 
5468 	case ATA_PROT_ATAPI:
5469 	case ATA_PROT_ATAPI_NODATA:
5470 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5471 			ata_qc_set_polling(qc);
5472 
5473 		ata_tf_to_host(ap, &qc->tf);
5474 
5475 		ap->hsm_task_state = HSM_ST_FIRST;
5476 
5477 		/* send cdb by polling if no cdb interrupt */
5478 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5479 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5480 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5481 		break;
5482 
5483 	case ATA_PROT_ATAPI_DMA:
5484 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5485 
5486 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5487 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5488 		ap->hsm_task_state = HSM_ST_FIRST;
5489 
5490 		/* send cdb by polling if no cdb interrupt */
5491 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5492 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5493 		break;
5494 
5495 	default:
5496 		WARN_ON(1);
5497 		return AC_ERR_SYSTEM;
5498 	}
5499 
5500 	return 0;
5501 }
5502 
5503 /**
5504  *	ata_host_intr - Handle host interrupt for given (port, task)
5505  *	@ap: Port on which interrupt arrived (possibly...)
5506  *	@qc: Taskfile currently active in engine
5507  *
5508  *	Handle host interrupt for given queued command.  Currently,
5509  *	only DMA interrupts are handled.  All other commands are
5510  *	handled via polling with interrupts disabled (nIEN bit).
5511  *
5512  *	LOCKING:
5513  *	spin_lock_irqsave(host lock)
5514  *
5515  *	RETURNS:
5516  *	One if interrupt was handled, zero if not (shared irq).
5517  */
5518 
5519 inline unsigned int ata_host_intr (struct ata_port *ap,
5520 				   struct ata_queued_cmd *qc)
5521 {
5522 	struct ata_eh_info *ehi = &ap->eh_info;
5523 	u8 status, host_stat = 0;
5524 
5525 	VPRINTK("ata%u: protocol %d task_state %d\n",
5526 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5527 
5528 	/* Check whether we are expecting interrupt in this state */
5529 	switch (ap->hsm_task_state) {
5530 	case HSM_ST_FIRST:
5531 		/* Some pre-ATAPI-4 devices assert INTRQ
5532 		 * at this state when ready to receive CDB.
5533 		 */
5534 
5535 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5536 		 * The flag was turned on only for atapi devices.
5537 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5538 		 */
5539 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5540 			goto idle_irq;
5541 		break;
5542 	case HSM_ST_LAST:
5543 		if (qc->tf.protocol == ATA_PROT_DMA ||
5544 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5545 			/* check status of DMA engine */
5546 			host_stat = ap->ops->bmdma_status(ap);
5547 			VPRINTK("ata%u: host_stat 0x%X\n",
5548 				ap->print_id, host_stat);
5549 
5550 			/* if it's not our irq... */
5551 			if (!(host_stat & ATA_DMA_INTR))
5552 				goto idle_irq;
5553 
5554 			/* before we do anything else, clear DMA-Start bit */
5555 			ap->ops->bmdma_stop(qc);
5556 
5557 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5558 				/* error when transfering data to/from memory */
5559 				qc->err_mask |= AC_ERR_HOST_BUS;
5560 				ap->hsm_task_state = HSM_ST_ERR;
5561 			}
5562 		}
5563 		break;
5564 	case HSM_ST:
5565 		break;
5566 	default:
5567 		goto idle_irq;
5568 	}
5569 
5570 	/* check altstatus */
5571 	status = ata_altstatus(ap);
5572 	if (status & ATA_BUSY)
5573 		goto idle_irq;
5574 
5575 	/* check main status, clearing INTRQ */
5576 	status = ata_chk_status(ap);
5577 	if (unlikely(status & ATA_BUSY))
5578 		goto idle_irq;
5579 
5580 	/* ack bmdma irq events */
5581 	ap->ops->irq_clear(ap);
5582 
5583 	ata_hsm_move(ap, qc, status, 0);
5584 
5585 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5586 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5587 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5588 
5589 	return 1;	/* irq handled */
5590 
5591 idle_irq:
5592 	ap->stats.idle_irq++;
5593 
5594 #ifdef ATA_IRQ_TRAP
5595 	if ((ap->stats.idle_irq % 1000) == 0) {
5596 		ap->ops->irq_ack(ap, 0); /* debug trap */
5597 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5598 		return 1;
5599 	}
5600 #endif
5601 	return 0;	/* irq not handled */
5602 }
5603 
5604 /**
5605  *	ata_interrupt - Default ATA host interrupt handler
5606  *	@irq: irq line (unused)
5607  *	@dev_instance: pointer to our ata_host information structure
5608  *
5609  *	Default interrupt handler for PCI IDE devices.  Calls
5610  *	ata_host_intr() for each port that is not disabled.
5611  *
5612  *	LOCKING:
5613  *	Obtains host lock during operation.
5614  *
5615  *	RETURNS:
5616  *	IRQ_NONE or IRQ_HANDLED.
5617  */
5618 
5619 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5620 {
5621 	struct ata_host *host = dev_instance;
5622 	unsigned int i;
5623 	unsigned int handled = 0;
5624 	unsigned long flags;
5625 
5626 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5627 	spin_lock_irqsave(&host->lock, flags);
5628 
5629 	for (i = 0; i < host->n_ports; i++) {
5630 		struct ata_port *ap;
5631 
5632 		ap = host->ports[i];
5633 		if (ap &&
5634 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5635 			struct ata_queued_cmd *qc;
5636 
5637 			qc = ata_qc_from_tag(ap, ap->active_tag);
5638 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5639 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5640 				handled |= ata_host_intr(ap, qc);
5641 		}
5642 	}
5643 
5644 	spin_unlock_irqrestore(&host->lock, flags);
5645 
5646 	return IRQ_RETVAL(handled);
5647 }
5648 
5649 /**
5650  *	sata_scr_valid - test whether SCRs are accessible
5651  *	@ap: ATA port to test SCR accessibility for
5652  *
5653  *	Test whether SCRs are accessible for @ap.
5654  *
5655  *	LOCKING:
5656  *	None.
5657  *
5658  *	RETURNS:
5659  *	1 if SCRs are accessible, 0 otherwise.
5660  */
5661 int sata_scr_valid(struct ata_port *ap)
5662 {
5663 	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5664 }
5665 
5666 /**
5667  *	sata_scr_read - read SCR register of the specified port
5668  *	@ap: ATA port to read SCR for
5669  *	@reg: SCR to read
5670  *	@val: Place to store read value
5671  *
5672  *	Read SCR register @reg of @ap into *@val.  This function is
5673  *	guaranteed to succeed if the cable type of the port is SATA
5674  *	and the port implements ->scr_read.
5675  *
5676  *	LOCKING:
5677  *	None.
5678  *
5679  *	RETURNS:
5680  *	0 on success, negative errno on failure.
5681  */
5682 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5683 {
5684 	if (sata_scr_valid(ap)) {
5685 		*val = ap->ops->scr_read(ap, reg);
5686 		return 0;
5687 	}
5688 	return -EOPNOTSUPP;
5689 }
5690 
5691 /**
5692  *	sata_scr_write - write SCR register of the specified port
5693  *	@ap: ATA port to write SCR for
5694  *	@reg: SCR to write
5695  *	@val: value to write
5696  *
5697  *	Write @val to SCR register @reg of @ap.  This function is
5698  *	guaranteed to succeed if the cable type of the port is SATA
5699  *	and the port implements ->scr_read.
5700  *
5701  *	LOCKING:
5702  *	None.
5703  *
5704  *	RETURNS:
5705  *	0 on success, negative errno on failure.
5706  */
5707 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5708 {
5709 	if (sata_scr_valid(ap)) {
5710 		ap->ops->scr_write(ap, reg, val);
5711 		return 0;
5712 	}
5713 	return -EOPNOTSUPP;
5714 }
5715 
5716 /**
5717  *	sata_scr_write_flush - write SCR register of the specified port and flush
5718  *	@ap: ATA port to write SCR for
5719  *	@reg: SCR to write
5720  *	@val: value to write
5721  *
5722  *	This function is identical to sata_scr_write() except that this
5723  *	function performs flush after writing to the register.
5724  *
5725  *	LOCKING:
5726  *	None.
5727  *
5728  *	RETURNS:
5729  *	0 on success, negative errno on failure.
5730  */
5731 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5732 {
5733 	if (sata_scr_valid(ap)) {
5734 		ap->ops->scr_write(ap, reg, val);
5735 		ap->ops->scr_read(ap, reg);
5736 		return 0;
5737 	}
5738 	return -EOPNOTSUPP;
5739 }
5740 
5741 /**
5742  *	ata_port_online - test whether the given port is online
5743  *	@ap: ATA port to test
5744  *
5745  *	Test whether @ap is online.  Note that this function returns 0
5746  *	if online status of @ap cannot be obtained, so
5747  *	ata_port_online(ap) != !ata_port_offline(ap).
5748  *
5749  *	LOCKING:
5750  *	None.
5751  *
5752  *	RETURNS:
5753  *	1 if the port online status is available and online.
5754  */
5755 int ata_port_online(struct ata_port *ap)
5756 {
5757 	u32 sstatus;
5758 
5759 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5760 		return 1;
5761 	return 0;
5762 }
5763 
5764 /**
5765  *	ata_port_offline - test whether the given port is offline
5766  *	@ap: ATA port to test
5767  *
5768  *	Test whether @ap is offline.  Note that this function returns
5769  *	0 if offline status of @ap cannot be obtained, so
5770  *	ata_port_online(ap) != !ata_port_offline(ap).
5771  *
5772  *	LOCKING:
5773  *	None.
5774  *
5775  *	RETURNS:
5776  *	1 if the port offline status is available and offline.
5777  */
5778 int ata_port_offline(struct ata_port *ap)
5779 {
5780 	u32 sstatus;
5781 
5782 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5783 		return 1;
5784 	return 0;
5785 }
5786 
5787 int ata_flush_cache(struct ata_device *dev)
5788 {
5789 	unsigned int err_mask;
5790 	u8 cmd;
5791 
5792 	if (!ata_try_flush_cache(dev))
5793 		return 0;
5794 
5795 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5796 		cmd = ATA_CMD_FLUSH_EXT;
5797 	else
5798 		cmd = ATA_CMD_FLUSH;
5799 
5800 	err_mask = ata_do_simple_cmd(dev, cmd);
5801 	if (err_mask) {
5802 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5803 		return -EIO;
5804 	}
5805 
5806 	return 0;
5807 }
5808 
5809 #ifdef CONFIG_PM
5810 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5811 			       unsigned int action, unsigned int ehi_flags,
5812 			       int wait)
5813 {
5814 	unsigned long flags;
5815 	int i, rc;
5816 
5817 	for (i = 0; i < host->n_ports; i++) {
5818 		struct ata_port *ap = host->ports[i];
5819 
5820 		/* Previous resume operation might still be in
5821 		 * progress.  Wait for PM_PENDING to clear.
5822 		 */
5823 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5824 			ata_port_wait_eh(ap);
5825 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5826 		}
5827 
5828 		/* request PM ops to EH */
5829 		spin_lock_irqsave(ap->lock, flags);
5830 
5831 		ap->pm_mesg = mesg;
5832 		if (wait) {
5833 			rc = 0;
5834 			ap->pm_result = &rc;
5835 		}
5836 
5837 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5838 		ap->eh_info.action |= action;
5839 		ap->eh_info.flags |= ehi_flags;
5840 
5841 		ata_port_schedule_eh(ap);
5842 
5843 		spin_unlock_irqrestore(ap->lock, flags);
5844 
5845 		/* wait and check result */
5846 		if (wait) {
5847 			ata_port_wait_eh(ap);
5848 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5849 			if (rc)
5850 				return rc;
5851 		}
5852 	}
5853 
5854 	return 0;
5855 }
5856 
5857 /**
5858  *	ata_host_suspend - suspend host
5859  *	@host: host to suspend
5860  *	@mesg: PM message
5861  *
5862  *	Suspend @host.  Actual operation is performed by EH.  This
5863  *	function requests EH to perform PM operations and waits for EH
5864  *	to finish.
5865  *
5866  *	LOCKING:
5867  *	Kernel thread context (may sleep).
5868  *
5869  *	RETURNS:
5870  *	0 on success, -errno on failure.
5871  */
5872 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5873 {
5874 	int rc;
5875 
5876 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5877 	if (rc == 0)
5878 		host->dev->power.power_state = mesg;
5879 	return rc;
5880 }
5881 
5882 /**
5883  *	ata_host_resume - resume host
5884  *	@host: host to resume
5885  *
5886  *	Resume @host.  Actual operation is performed by EH.  This
5887  *	function requests EH to perform PM operations and returns.
5888  *	Note that all resume operations are performed parallely.
5889  *
5890  *	LOCKING:
5891  *	Kernel thread context (may sleep).
5892  */
5893 void ata_host_resume(struct ata_host *host)
5894 {
5895 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5896 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5897 	host->dev->power.power_state = PMSG_ON;
5898 }
5899 #endif
5900 
5901 /**
5902  *	ata_port_start - Set port up for dma.
5903  *	@ap: Port to initialize
5904  *
5905  *	Called just after data structures for each port are
5906  *	initialized.  Allocates space for PRD table.
5907  *
5908  *	May be used as the port_start() entry in ata_port_operations.
5909  *
5910  *	LOCKING:
5911  *	Inherited from caller.
5912  */
5913 int ata_port_start(struct ata_port *ap)
5914 {
5915 	struct device *dev = ap->dev;
5916 	int rc;
5917 
5918 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5919 				      GFP_KERNEL);
5920 	if (!ap->prd)
5921 		return -ENOMEM;
5922 
5923 	rc = ata_pad_alloc(ap, dev);
5924 	if (rc)
5925 		return rc;
5926 
5927 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5928 		(unsigned long long)ap->prd_dma);
5929 	return 0;
5930 }
5931 
5932 /**
5933  *	ata_dev_init - Initialize an ata_device structure
5934  *	@dev: Device structure to initialize
5935  *
5936  *	Initialize @dev in preparation for probing.
5937  *
5938  *	LOCKING:
5939  *	Inherited from caller.
5940  */
5941 void ata_dev_init(struct ata_device *dev)
5942 {
5943 	struct ata_port *ap = dev->ap;
5944 	unsigned long flags;
5945 
5946 	/* SATA spd limit is bound to the first device */
5947 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5948 
5949 	/* High bits of dev->flags are used to record warm plug
5950 	 * requests which occur asynchronously.  Synchronize using
5951 	 * host lock.
5952 	 */
5953 	spin_lock_irqsave(ap->lock, flags);
5954 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5955 	spin_unlock_irqrestore(ap->lock, flags);
5956 
5957 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5958 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5959 	dev->pio_mask = UINT_MAX;
5960 	dev->mwdma_mask = UINT_MAX;
5961 	dev->udma_mask = UINT_MAX;
5962 }
5963 
5964 /**
5965  *	ata_port_alloc - allocate and initialize basic ATA port resources
5966  *	@host: ATA host this allocated port belongs to
5967  *
5968  *	Allocate and initialize basic ATA port resources.
5969  *
5970  *	RETURNS:
5971  *	Allocate ATA port on success, NULL on failure.
5972  *
5973  *	LOCKING:
5974  *	Inherited from calling layer (may sleep).
5975  */
5976 struct ata_port *ata_port_alloc(struct ata_host *host)
5977 {
5978 	struct ata_port *ap;
5979 	unsigned int i;
5980 
5981 	DPRINTK("ENTER\n");
5982 
5983 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5984 	if (!ap)
5985 		return NULL;
5986 
5987 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5988 	ap->lock = &host->lock;
5989 	ap->flags = ATA_FLAG_DISABLED;
5990 	ap->print_id = -1;
5991 	ap->ctl = ATA_DEVCTL_OBS;
5992 	ap->host = host;
5993 	ap->dev = host->dev;
5994 
5995 	ap->hw_sata_spd_limit = UINT_MAX;
5996 	ap->active_tag = ATA_TAG_POISON;
5997 	ap->last_ctl = 0xFF;
5998 
5999 #if defined(ATA_VERBOSE_DEBUG)
6000 	/* turn on all debugging levels */
6001 	ap->msg_enable = 0x00FF;
6002 #elif defined(ATA_DEBUG)
6003 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6004 #else
6005 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6006 #endif
6007 
6008 	INIT_DELAYED_WORK(&ap->port_task, NULL);
6009 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6010 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6011 	INIT_LIST_HEAD(&ap->eh_done_q);
6012 	init_waitqueue_head(&ap->eh_wait_q);
6013 
6014 	ap->cbl = ATA_CBL_NONE;
6015 
6016 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
6017 		struct ata_device *dev = &ap->device[i];
6018 		dev->ap = ap;
6019 		dev->devno = i;
6020 		ata_dev_init(dev);
6021 	}
6022 
6023 #ifdef ATA_IRQ_TRAP
6024 	ap->stats.unhandled_irq = 1;
6025 	ap->stats.idle_irq = 1;
6026 #endif
6027 	return ap;
6028 }
6029 
6030 static void ata_host_release(struct device *gendev, void *res)
6031 {
6032 	struct ata_host *host = dev_get_drvdata(gendev);
6033 	int i;
6034 
6035 	for (i = 0; i < host->n_ports; i++) {
6036 		struct ata_port *ap = host->ports[i];
6037 
6038 		if (!ap)
6039 			continue;
6040 
6041 		if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6042 			ap->ops->port_stop(ap);
6043 	}
6044 
6045 	if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6046 		host->ops->host_stop(host);
6047 
6048 	for (i = 0; i < host->n_ports; i++) {
6049 		struct ata_port *ap = host->ports[i];
6050 
6051 		if (!ap)
6052 			continue;
6053 
6054 		if (ap->scsi_host)
6055 			scsi_host_put(ap->scsi_host);
6056 
6057 		kfree(ap);
6058 		host->ports[i] = NULL;
6059 	}
6060 
6061 	dev_set_drvdata(gendev, NULL);
6062 }
6063 
6064 /**
6065  *	ata_host_alloc - allocate and init basic ATA host resources
6066  *	@dev: generic device this host is associated with
6067  *	@max_ports: maximum number of ATA ports associated with this host
6068  *
6069  *	Allocate and initialize basic ATA host resources.  LLD calls
6070  *	this function to allocate a host, initializes it fully and
6071  *	attaches it using ata_host_register().
6072  *
6073  *	@max_ports ports are allocated and host->n_ports is
6074  *	initialized to @max_ports.  The caller is allowed to decrease
6075  *	host->n_ports before calling ata_host_register().  The unused
6076  *	ports will be automatically freed on registration.
6077  *
6078  *	RETURNS:
6079  *	Allocate ATA host on success, NULL on failure.
6080  *
6081  *	LOCKING:
6082  *	Inherited from calling layer (may sleep).
6083  */
6084 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6085 {
6086 	struct ata_host *host;
6087 	size_t sz;
6088 	int i;
6089 
6090 	DPRINTK("ENTER\n");
6091 
6092 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6093 		return NULL;
6094 
6095 	/* alloc a container for our list of ATA ports (buses) */
6096 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6097 	/* alloc a container for our list of ATA ports (buses) */
6098 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6099 	if (!host)
6100 		goto err_out;
6101 
6102 	devres_add(dev, host);
6103 	dev_set_drvdata(dev, host);
6104 
6105 	spin_lock_init(&host->lock);
6106 	host->dev = dev;
6107 	host->n_ports = max_ports;
6108 
6109 	/* allocate ports bound to this host */
6110 	for (i = 0; i < max_ports; i++) {
6111 		struct ata_port *ap;
6112 
6113 		ap = ata_port_alloc(host);
6114 		if (!ap)
6115 			goto err_out;
6116 
6117 		ap->port_no = i;
6118 		host->ports[i] = ap;
6119 	}
6120 
6121 	devres_remove_group(dev, NULL);
6122 	return host;
6123 
6124  err_out:
6125 	devres_release_group(dev, NULL);
6126 	return NULL;
6127 }
6128 
6129 /**
6130  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6131  *	@dev: generic device this host is associated with
6132  *	@ppi: array of ATA port_info to initialize host with
6133  *	@n_ports: number of ATA ports attached to this host
6134  *
6135  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6136  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6137  *	last entry will be used for the remaining ports.
6138  *
6139  *	RETURNS:
6140  *	Allocate ATA host on success, NULL on failure.
6141  *
6142  *	LOCKING:
6143  *	Inherited from calling layer (may sleep).
6144  */
6145 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6146 				      const struct ata_port_info * const * ppi,
6147 				      int n_ports)
6148 {
6149 	const struct ata_port_info *pi;
6150 	struct ata_host *host;
6151 	int i, j;
6152 
6153 	host = ata_host_alloc(dev, n_ports);
6154 	if (!host)
6155 		return NULL;
6156 
6157 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6158 		struct ata_port *ap = host->ports[i];
6159 
6160 		if (ppi[j])
6161 			pi = ppi[j++];
6162 
6163 		ap->pio_mask = pi->pio_mask;
6164 		ap->mwdma_mask = pi->mwdma_mask;
6165 		ap->udma_mask = pi->udma_mask;
6166 		ap->flags |= pi->flags;
6167 		ap->ops = pi->port_ops;
6168 
6169 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6170 			host->ops = pi->port_ops;
6171 		if (!host->private_data && pi->private_data)
6172 			host->private_data = pi->private_data;
6173 	}
6174 
6175 	return host;
6176 }
6177 
6178 /**
6179  *	ata_host_start - start and freeze ports of an ATA host
6180  *	@host: ATA host to start ports for
6181  *
6182  *	Start and then freeze ports of @host.  Started status is
6183  *	recorded in host->flags, so this function can be called
6184  *	multiple times.  Ports are guaranteed to get started only
6185  *	once.  If host->ops isn't initialized yet, its set to the
6186  *	first non-dummy port ops.
6187  *
6188  *	LOCKING:
6189  *	Inherited from calling layer (may sleep).
6190  *
6191  *	RETURNS:
6192  *	0 if all ports are started successfully, -errno otherwise.
6193  */
6194 int ata_host_start(struct ata_host *host)
6195 {
6196 	int i, rc;
6197 
6198 	if (host->flags & ATA_HOST_STARTED)
6199 		return 0;
6200 
6201 	for (i = 0; i < host->n_ports; i++) {
6202 		struct ata_port *ap = host->ports[i];
6203 
6204 		if (!host->ops && !ata_port_is_dummy(ap))
6205 			host->ops = ap->ops;
6206 
6207 		if (ap->ops->port_start) {
6208 			rc = ap->ops->port_start(ap);
6209 			if (rc) {
6210 				ata_port_printk(ap, KERN_ERR, "failed to "
6211 						"start port (errno=%d)\n", rc);
6212 				goto err_out;
6213 			}
6214 		}
6215 
6216 		ata_eh_freeze_port(ap);
6217 	}
6218 
6219 	host->flags |= ATA_HOST_STARTED;
6220 	return 0;
6221 
6222  err_out:
6223 	while (--i >= 0) {
6224 		struct ata_port *ap = host->ports[i];
6225 
6226 		if (ap->ops->port_stop)
6227 			ap->ops->port_stop(ap);
6228 	}
6229 	return rc;
6230 }
6231 
6232 /**
6233  *	ata_sas_host_init - Initialize a host struct
6234  *	@host:	host to initialize
6235  *	@dev:	device host is attached to
6236  *	@flags:	host flags
6237  *	@ops:	port_ops
6238  *
6239  *	LOCKING:
6240  *	PCI/etc. bus probe sem.
6241  *
6242  */
6243 /* KILLME - the only user left is ipr */
6244 void ata_host_init(struct ata_host *host, struct device *dev,
6245 		   unsigned long flags, const struct ata_port_operations *ops)
6246 {
6247 	spin_lock_init(&host->lock);
6248 	host->dev = dev;
6249 	host->flags = flags;
6250 	host->ops = ops;
6251 }
6252 
6253 /**
6254  *	ata_host_register - register initialized ATA host
6255  *	@host: ATA host to register
6256  *	@sht: template for SCSI host
6257  *
6258  *	Register initialized ATA host.  @host is allocated using
6259  *	ata_host_alloc() and fully initialized by LLD.  This function
6260  *	starts ports, registers @host with ATA and SCSI layers and
6261  *	probe registered devices.
6262  *
6263  *	LOCKING:
6264  *	Inherited from calling layer (may sleep).
6265  *
6266  *	RETURNS:
6267  *	0 on success, -errno otherwise.
6268  */
6269 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6270 {
6271 	int i, rc;
6272 
6273 	/* host must have been started */
6274 	if (!(host->flags & ATA_HOST_STARTED)) {
6275 		dev_printk(KERN_ERR, host->dev,
6276 			   "BUG: trying to register unstarted host\n");
6277 		WARN_ON(1);
6278 		return -EINVAL;
6279 	}
6280 
6281 	/* Blow away unused ports.  This happens when LLD can't
6282 	 * determine the exact number of ports to allocate at
6283 	 * allocation time.
6284 	 */
6285 	for (i = host->n_ports; host->ports[i]; i++)
6286 		kfree(host->ports[i]);
6287 
6288 	/* give ports names and add SCSI hosts */
6289 	for (i = 0; i < host->n_ports; i++)
6290 		host->ports[i]->print_id = ata_print_id++;
6291 
6292 	rc = ata_scsi_add_hosts(host, sht);
6293 	if (rc)
6294 		return rc;
6295 
6296 	/* set cable, sata_spd_limit and report */
6297 	for (i = 0; i < host->n_ports; i++) {
6298 		struct ata_port *ap = host->ports[i];
6299 		int irq_line;
6300 		u32 scontrol;
6301 		unsigned long xfer_mask;
6302 
6303 		/* set SATA cable type if still unset */
6304 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6305 			ap->cbl = ATA_CBL_SATA;
6306 
6307 		/* init sata_spd_limit to the current value */
6308 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6309 			int spd = (scontrol >> 4) & 0xf;
6310 			if (spd)
6311 				ap->hw_sata_spd_limit &= (1 << spd) - 1;
6312 		}
6313 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
6314 
6315 		/* report the secondary IRQ for second channel legacy */
6316 		irq_line = host->irq;
6317 		if (i == 1 && host->irq2)
6318 			irq_line = host->irq2;
6319 
6320 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6321 					      ap->udma_mask);
6322 
6323 		/* print per-port info to dmesg */
6324 		if (!ata_port_is_dummy(ap))
6325 			ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6326 					"ctl 0x%p bmdma 0x%p irq %d\n",
6327 					ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6328 					ata_mode_string(xfer_mask),
6329 					ap->ioaddr.cmd_addr,
6330 					ap->ioaddr.ctl_addr,
6331 					ap->ioaddr.bmdma_addr,
6332 					irq_line);
6333 		else
6334 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6335 	}
6336 
6337 	/* perform each probe synchronously */
6338 	DPRINTK("probe begin\n");
6339 	for (i = 0; i < host->n_ports; i++) {
6340 		struct ata_port *ap = host->ports[i];
6341 		int rc;
6342 
6343 		/* probe */
6344 		if (ap->ops->error_handler) {
6345 			struct ata_eh_info *ehi = &ap->eh_info;
6346 			unsigned long flags;
6347 
6348 			ata_port_probe(ap);
6349 
6350 			/* kick EH for boot probing */
6351 			spin_lock_irqsave(ap->lock, flags);
6352 
6353 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6354 			ehi->action |= ATA_EH_SOFTRESET;
6355 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6356 
6357 			ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6358 			ap->pflags |= ATA_PFLAG_LOADING;
6359 			ata_port_schedule_eh(ap);
6360 
6361 			spin_unlock_irqrestore(ap->lock, flags);
6362 
6363 			/* wait for EH to finish */
6364 			ata_port_wait_eh(ap);
6365 		} else {
6366 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6367 			rc = ata_bus_probe(ap);
6368 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
6369 
6370 			if (rc) {
6371 				/* FIXME: do something useful here?
6372 				 * Current libata behavior will
6373 				 * tear down everything when
6374 				 * the module is removed
6375 				 * or the h/w is unplugged.
6376 				 */
6377 			}
6378 		}
6379 	}
6380 
6381 	/* probes are done, now scan each port's disk(s) */
6382 	DPRINTK("host probe begin\n");
6383 	for (i = 0; i < host->n_ports; i++) {
6384 		struct ata_port *ap = host->ports[i];
6385 
6386 		ata_scsi_scan_host(ap);
6387 	}
6388 
6389 	return 0;
6390 }
6391 
6392 /**
6393  *	ata_host_activate - start host, request IRQ and register it
6394  *	@host: target ATA host
6395  *	@irq: IRQ to request
6396  *	@irq_handler: irq_handler used when requesting IRQ
6397  *	@irq_flags: irq_flags used when requesting IRQ
6398  *	@sht: scsi_host_template to use when registering the host
6399  *
6400  *	After allocating an ATA host and initializing it, most libata
6401  *	LLDs perform three steps to activate the host - start host,
6402  *	request IRQ and register it.  This helper takes necessasry
6403  *	arguments and performs the three steps in one go.
6404  *
6405  *	LOCKING:
6406  *	Inherited from calling layer (may sleep).
6407  *
6408  *	RETURNS:
6409  *	0 on success, -errno otherwise.
6410  */
6411 int ata_host_activate(struct ata_host *host, int irq,
6412 		      irq_handler_t irq_handler, unsigned long irq_flags,
6413 		      struct scsi_host_template *sht)
6414 {
6415 	int rc;
6416 
6417 	rc = ata_host_start(host);
6418 	if (rc)
6419 		return rc;
6420 
6421 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6422 			      dev_driver_string(host->dev), host);
6423 	if (rc)
6424 		return rc;
6425 
6426 	/* Used to print device info at probe */
6427 	host->irq = irq;
6428 
6429 	rc = ata_host_register(host, sht);
6430 	/* if failed, just free the IRQ and leave ports alone */
6431 	if (rc)
6432 		devm_free_irq(host->dev, irq, host);
6433 
6434 	return rc;
6435 }
6436 
6437 /**
6438  *	ata_port_detach - Detach ATA port in prepration of device removal
6439  *	@ap: ATA port to be detached
6440  *
6441  *	Detach all ATA devices and the associated SCSI devices of @ap;
6442  *	then, remove the associated SCSI host.  @ap is guaranteed to
6443  *	be quiescent on return from this function.
6444  *
6445  *	LOCKING:
6446  *	Kernel thread context (may sleep).
6447  */
6448 void ata_port_detach(struct ata_port *ap)
6449 {
6450 	unsigned long flags;
6451 	int i;
6452 
6453 	if (!ap->ops->error_handler)
6454 		goto skip_eh;
6455 
6456 	/* tell EH we're leaving & flush EH */
6457 	spin_lock_irqsave(ap->lock, flags);
6458 	ap->pflags |= ATA_PFLAG_UNLOADING;
6459 	spin_unlock_irqrestore(ap->lock, flags);
6460 
6461 	ata_port_wait_eh(ap);
6462 
6463 	/* EH is now guaranteed to see UNLOADING, so no new device
6464 	 * will be attached.  Disable all existing devices.
6465 	 */
6466 	spin_lock_irqsave(ap->lock, flags);
6467 
6468 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6469 		ata_dev_disable(&ap->device[i]);
6470 
6471 	spin_unlock_irqrestore(ap->lock, flags);
6472 
6473 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6474 	 * will be skipped and retrials will be terminated with bad
6475 	 * target.
6476 	 */
6477 	spin_lock_irqsave(ap->lock, flags);
6478 	ata_port_freeze(ap);	/* won't be thawed */
6479 	spin_unlock_irqrestore(ap->lock, flags);
6480 
6481 	ata_port_wait_eh(ap);
6482 
6483 	/* Flush hotplug task.  The sequence is similar to
6484 	 * ata_port_flush_task().
6485 	 */
6486 	cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6487 	cancel_delayed_work(&ap->hotplug_task);
6488 	cancel_work_sync(&ap->hotplug_task.work);
6489 
6490  skip_eh:
6491 	/* remove the associated SCSI host */
6492 	scsi_remove_host(ap->scsi_host);
6493 }
6494 
6495 /**
6496  *	ata_host_detach - Detach all ports of an ATA host
6497  *	@host: Host to detach
6498  *
6499  *	Detach all ports of @host.
6500  *
6501  *	LOCKING:
6502  *	Kernel thread context (may sleep).
6503  */
6504 void ata_host_detach(struct ata_host *host)
6505 {
6506 	int i;
6507 
6508 	for (i = 0; i < host->n_ports; i++)
6509 		ata_port_detach(host->ports[i]);
6510 }
6511 
6512 /**
6513  *	ata_std_ports - initialize ioaddr with standard port offsets.
6514  *	@ioaddr: IO address structure to be initialized
6515  *
6516  *	Utility function which initializes data_addr, error_addr,
6517  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6518  *	device_addr, status_addr, and command_addr to standard offsets
6519  *	relative to cmd_addr.
6520  *
6521  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6522  */
6523 
6524 void ata_std_ports(struct ata_ioports *ioaddr)
6525 {
6526 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6527 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6528 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6529 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6530 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6531 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6532 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6533 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6534 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6535 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6536 }
6537 
6538 
6539 #ifdef CONFIG_PCI
6540 
6541 /**
6542  *	ata_pci_remove_one - PCI layer callback for device removal
6543  *	@pdev: PCI device that was removed
6544  *
6545  *	PCI layer indicates to libata via this hook that hot-unplug or
6546  *	module unload event has occurred.  Detach all ports.  Resource
6547  *	release is handled via devres.
6548  *
6549  *	LOCKING:
6550  *	Inherited from PCI layer (may sleep).
6551  */
6552 void ata_pci_remove_one(struct pci_dev *pdev)
6553 {
6554 	struct device *dev = pci_dev_to_dev(pdev);
6555 	struct ata_host *host = dev_get_drvdata(dev);
6556 
6557 	ata_host_detach(host);
6558 }
6559 
6560 /* move to PCI subsystem */
6561 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6562 {
6563 	unsigned long tmp = 0;
6564 
6565 	switch (bits->width) {
6566 	case 1: {
6567 		u8 tmp8 = 0;
6568 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6569 		tmp = tmp8;
6570 		break;
6571 	}
6572 	case 2: {
6573 		u16 tmp16 = 0;
6574 		pci_read_config_word(pdev, bits->reg, &tmp16);
6575 		tmp = tmp16;
6576 		break;
6577 	}
6578 	case 4: {
6579 		u32 tmp32 = 0;
6580 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6581 		tmp = tmp32;
6582 		break;
6583 	}
6584 
6585 	default:
6586 		return -EINVAL;
6587 	}
6588 
6589 	tmp &= bits->mask;
6590 
6591 	return (tmp == bits->val) ? 1 : 0;
6592 }
6593 
6594 #ifdef CONFIG_PM
6595 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6596 {
6597 	pci_save_state(pdev);
6598 	pci_disable_device(pdev);
6599 
6600 	if (mesg.event == PM_EVENT_SUSPEND)
6601 		pci_set_power_state(pdev, PCI_D3hot);
6602 }
6603 
6604 int ata_pci_device_do_resume(struct pci_dev *pdev)
6605 {
6606 	int rc;
6607 
6608 	pci_set_power_state(pdev, PCI_D0);
6609 	pci_restore_state(pdev);
6610 
6611 	rc = pcim_enable_device(pdev);
6612 	if (rc) {
6613 		dev_printk(KERN_ERR, &pdev->dev,
6614 			   "failed to enable device after resume (%d)\n", rc);
6615 		return rc;
6616 	}
6617 
6618 	pci_set_master(pdev);
6619 	return 0;
6620 }
6621 
6622 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6623 {
6624 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6625 	int rc = 0;
6626 
6627 	rc = ata_host_suspend(host, mesg);
6628 	if (rc)
6629 		return rc;
6630 
6631 	ata_pci_device_do_suspend(pdev, mesg);
6632 
6633 	return 0;
6634 }
6635 
6636 int ata_pci_device_resume(struct pci_dev *pdev)
6637 {
6638 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6639 	int rc;
6640 
6641 	rc = ata_pci_device_do_resume(pdev);
6642 	if (rc == 0)
6643 		ata_host_resume(host);
6644 	return rc;
6645 }
6646 #endif /* CONFIG_PM */
6647 
6648 #endif /* CONFIG_PCI */
6649 
6650 
6651 static int __init ata_init(void)
6652 {
6653 	ata_probe_timeout *= HZ;
6654 	ata_wq = create_workqueue("ata");
6655 	if (!ata_wq)
6656 		return -ENOMEM;
6657 
6658 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6659 	if (!ata_aux_wq) {
6660 		destroy_workqueue(ata_wq);
6661 		return -ENOMEM;
6662 	}
6663 
6664 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665 	return 0;
6666 }
6667 
6668 static void __exit ata_exit(void)
6669 {
6670 	destroy_workqueue(ata_wq);
6671 	destroy_workqueue(ata_aux_wq);
6672 }
6673 
6674 subsys_initcall(ata_init);
6675 module_exit(ata_exit);
6676 
6677 static unsigned long ratelimit_time;
6678 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6679 
6680 int ata_ratelimit(void)
6681 {
6682 	int rc;
6683 	unsigned long flags;
6684 
6685 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6686 
6687 	if (time_after(jiffies, ratelimit_time)) {
6688 		rc = 1;
6689 		ratelimit_time = jiffies + (HZ/5);
6690 	} else
6691 		rc = 0;
6692 
6693 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6694 
6695 	return rc;
6696 }
6697 
6698 /**
6699  *	ata_wait_register - wait until register value changes
6700  *	@reg: IO-mapped register
6701  *	@mask: Mask to apply to read register value
6702  *	@val: Wait condition
6703  *	@interval_msec: polling interval in milliseconds
6704  *	@timeout_msec: timeout in milliseconds
6705  *
6706  *	Waiting for some bits of register to change is a common
6707  *	operation for ATA controllers.  This function reads 32bit LE
6708  *	IO-mapped register @reg and tests for the following condition.
6709  *
6710  *	(*@reg & mask) != val
6711  *
6712  *	If the condition is met, it returns; otherwise, the process is
6713  *	repeated after @interval_msec until timeout.
6714  *
6715  *	LOCKING:
6716  *	Kernel thread context (may sleep)
6717  *
6718  *	RETURNS:
6719  *	The final register value.
6720  */
6721 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6722 		      unsigned long interval_msec,
6723 		      unsigned long timeout_msec)
6724 {
6725 	unsigned long timeout;
6726 	u32 tmp;
6727 
6728 	tmp = ioread32(reg);
6729 
6730 	/* Calculate timeout _after_ the first read to make sure
6731 	 * preceding writes reach the controller before starting to
6732 	 * eat away the timeout.
6733 	 */
6734 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6735 
6736 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6737 		msleep(interval_msec);
6738 		tmp = ioread32(reg);
6739 	}
6740 
6741 	return tmp;
6742 }
6743 
6744 /*
6745  * Dummy port_ops
6746  */
6747 static void ata_dummy_noret(struct ata_port *ap)	{ }
6748 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6749 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6750 
6751 static u8 ata_dummy_check_status(struct ata_port *ap)
6752 {
6753 	return ATA_DRDY;
6754 }
6755 
6756 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6757 {
6758 	return AC_ERR_SYSTEM;
6759 }
6760 
6761 const struct ata_port_operations ata_dummy_port_ops = {
6762 	.port_disable		= ata_port_disable,
6763 	.check_status		= ata_dummy_check_status,
6764 	.check_altstatus	= ata_dummy_check_status,
6765 	.dev_select		= ata_noop_dev_select,
6766 	.qc_prep		= ata_noop_qc_prep,
6767 	.qc_issue		= ata_dummy_qc_issue,
6768 	.freeze			= ata_dummy_noret,
6769 	.thaw			= ata_dummy_noret,
6770 	.error_handler		= ata_dummy_noret,
6771 	.post_internal_cmd	= ata_dummy_qc_noret,
6772 	.irq_clear		= ata_dummy_noret,
6773 	.port_start		= ata_dummy_ret0,
6774 	.port_stop		= ata_dummy_noret,
6775 };
6776 
6777 const struct ata_port_info ata_dummy_port_info = {
6778 	.port_ops		= &ata_dummy_port_ops,
6779 };
6780 
6781 /*
6782  * libata is essentially a library of internal helper functions for
6783  * low-level ATA host controller drivers.  As such, the API/ABI is
6784  * likely to change as new drivers are added and updated.
6785  * Do not depend on ABI/API stability.
6786  */
6787 
6788 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6790 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6791 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6792 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6793 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6794 EXPORT_SYMBOL_GPL(ata_std_ports);
6795 EXPORT_SYMBOL_GPL(ata_host_init);
6796 EXPORT_SYMBOL_GPL(ata_host_alloc);
6797 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6798 EXPORT_SYMBOL_GPL(ata_host_start);
6799 EXPORT_SYMBOL_GPL(ata_host_register);
6800 EXPORT_SYMBOL_GPL(ata_host_activate);
6801 EXPORT_SYMBOL_GPL(ata_host_detach);
6802 EXPORT_SYMBOL_GPL(ata_sg_init);
6803 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6804 EXPORT_SYMBOL_GPL(ata_hsm_move);
6805 EXPORT_SYMBOL_GPL(ata_qc_complete);
6806 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6807 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6808 EXPORT_SYMBOL_GPL(ata_tf_load);
6809 EXPORT_SYMBOL_GPL(ata_tf_read);
6810 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6811 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6812 EXPORT_SYMBOL_GPL(sata_print_link_status);
6813 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6814 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6815 EXPORT_SYMBOL_GPL(ata_check_status);
6816 EXPORT_SYMBOL_GPL(ata_altstatus);
6817 EXPORT_SYMBOL_GPL(ata_exec_command);
6818 EXPORT_SYMBOL_GPL(ata_port_start);
6819 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6820 EXPORT_SYMBOL_GPL(ata_interrupt);
6821 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6822 EXPORT_SYMBOL_GPL(ata_data_xfer);
6823 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6824 EXPORT_SYMBOL_GPL(ata_qc_prep);
6825 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6826 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6829 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6830 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6836 EXPORT_SYMBOL_GPL(ata_port_probe);
6837 EXPORT_SYMBOL_GPL(ata_dev_disable);
6838 EXPORT_SYMBOL_GPL(sata_set_spd);
6839 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6840 EXPORT_SYMBOL_GPL(sata_phy_resume);
6841 EXPORT_SYMBOL_GPL(sata_phy_reset);
6842 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6843 EXPORT_SYMBOL_GPL(ata_bus_reset);
6844 EXPORT_SYMBOL_GPL(ata_std_prereset);
6845 EXPORT_SYMBOL_GPL(ata_std_softreset);
6846 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6847 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6848 EXPORT_SYMBOL_GPL(ata_std_postreset);
6849 EXPORT_SYMBOL_GPL(ata_dev_classify);
6850 EXPORT_SYMBOL_GPL(ata_dev_pair);
6851 EXPORT_SYMBOL_GPL(ata_port_disable);
6852 EXPORT_SYMBOL_GPL(ata_ratelimit);
6853 EXPORT_SYMBOL_GPL(ata_wait_register);
6854 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6855 EXPORT_SYMBOL_GPL(ata_wait_ready);
6856 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6857 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6858 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6859 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6860 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6861 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6862 EXPORT_SYMBOL_GPL(ata_host_intr);
6863 EXPORT_SYMBOL_GPL(sata_scr_valid);
6864 EXPORT_SYMBOL_GPL(sata_scr_read);
6865 EXPORT_SYMBOL_GPL(sata_scr_write);
6866 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6867 EXPORT_SYMBOL_GPL(ata_port_online);
6868 EXPORT_SYMBOL_GPL(ata_port_offline);
6869 #ifdef CONFIG_PM
6870 EXPORT_SYMBOL_GPL(ata_host_suspend);
6871 EXPORT_SYMBOL_GPL(ata_host_resume);
6872 #endif /* CONFIG_PM */
6873 EXPORT_SYMBOL_GPL(ata_id_string);
6874 EXPORT_SYMBOL_GPL(ata_id_c_string);
6875 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6876 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6877 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6878 
6879 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6880 EXPORT_SYMBOL_GPL(ata_timing_compute);
6881 EXPORT_SYMBOL_GPL(ata_timing_merge);
6882 
6883 #ifdef CONFIG_PCI
6884 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6885 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6886 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6887 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6888 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6889 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6890 #ifdef CONFIG_PM
6891 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6892 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6893 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6894 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6895 #endif /* CONFIG_PM */
6896 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6897 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6898 #endif /* CONFIG_PCI */
6899 
6900 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6901 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6902 EXPORT_SYMBOL_GPL(ata_port_abort);
6903 EXPORT_SYMBOL_GPL(ata_port_freeze);
6904 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6905 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6906 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6907 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6908 EXPORT_SYMBOL_GPL(ata_do_eh);
6909 EXPORT_SYMBOL_GPL(ata_irq_on);
6910 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6911 EXPORT_SYMBOL_GPL(ata_irq_ack);
6912 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6913 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6914 
6915 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6916 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6917 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6918 EXPORT_SYMBOL_GPL(ata_cable_sata);
6919