xref: /linux/drivers/ata/libata-core.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.20"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77 
78 struct workqueue_struct *ata_aux_wq;
79 
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95 
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99 
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104 
105 
106 /**
107  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108  *	@tf: Taskfile to convert
109  *	@fis: Buffer into which data will output
110  *	@pmp: Port multiplier port
111  *
112  *	Converts a standard ATA taskfile to a Serial ATA
113  *	FIS structure (Register - Host to Device).
114  *
115  *	LOCKING:
116  *	Inherited from caller.
117  */
118 
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120 {
121 	fis[0] = 0x27;	/* Register - Host to Device FIS */
122 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 					    bit 7 indicates Command FIS */
124 	fis[2] = tf->command;
125 	fis[3] = tf->feature;
126 
127 	fis[4] = tf->lbal;
128 	fis[5] = tf->lbam;
129 	fis[6] = tf->lbah;
130 	fis[7] = tf->device;
131 
132 	fis[8] = tf->hob_lbal;
133 	fis[9] = tf->hob_lbam;
134 	fis[10] = tf->hob_lbah;
135 	fis[11] = tf->hob_feature;
136 
137 	fis[12] = tf->nsect;
138 	fis[13] = tf->hob_nsect;
139 	fis[14] = 0;
140 	fis[15] = tf->ctl;
141 
142 	fis[16] = 0;
143 	fis[17] = 0;
144 	fis[18] = 0;
145 	fis[19] = 0;
146 }
147 
148 /**
149  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150  *	@fis: Buffer from which data will be input
151  *	@tf: Taskfile to output
152  *
153  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
154  *
155  *	LOCKING:
156  *	Inherited from caller.
157  */
158 
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160 {
161 	tf->command	= fis[2];	/* status */
162 	tf->feature	= fis[3];	/* error */
163 
164 	tf->lbal	= fis[4];
165 	tf->lbam	= fis[5];
166 	tf->lbah	= fis[6];
167 	tf->device	= fis[7];
168 
169 	tf->hob_lbal	= fis[8];
170 	tf->hob_lbam	= fis[9];
171 	tf->hob_lbah	= fis[10];
172 
173 	tf->nsect	= fis[12];
174 	tf->hob_nsect	= fis[13];
175 }
176 
177 static const u8 ata_rw_cmds[] = {
178 	/* pio multi */
179 	ATA_CMD_READ_MULTI,
180 	ATA_CMD_WRITE_MULTI,
181 	ATA_CMD_READ_MULTI_EXT,
182 	ATA_CMD_WRITE_MULTI_EXT,
183 	0,
184 	0,
185 	0,
186 	ATA_CMD_WRITE_MULTI_FUA_EXT,
187 	/* pio */
188 	ATA_CMD_PIO_READ,
189 	ATA_CMD_PIO_WRITE,
190 	ATA_CMD_PIO_READ_EXT,
191 	ATA_CMD_PIO_WRITE_EXT,
192 	0,
193 	0,
194 	0,
195 	0,
196 	/* dma */
197 	ATA_CMD_READ,
198 	ATA_CMD_WRITE,
199 	ATA_CMD_READ_EXT,
200 	ATA_CMD_WRITE_EXT,
201 	0,
202 	0,
203 	0,
204 	ATA_CMD_WRITE_FUA_EXT
205 };
206 
207 /**
208  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
209  *	@tf: command to examine and configure
210  *	@dev: device tf belongs to
211  *
212  *	Examine the device configuration and tf->flags to calculate
213  *	the proper read/write commands and protocol to use.
214  *
215  *	LOCKING:
216  *	caller.
217  */
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219 {
220 	u8 cmd;
221 
222 	int index, fua, lba48, write;
223 
224 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227 
228 	if (dev->flags & ATA_DFLAG_PIO) {
229 		tf->protocol = ATA_PROT_PIO;
230 		index = dev->multi_count ? 0 : 8;
231 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 		/* Unable to use DMA due to host limitation */
233 		tf->protocol = ATA_PROT_PIO;
234 		index = dev->multi_count ? 0 : 8;
235 	} else {
236 		tf->protocol = ATA_PROT_DMA;
237 		index = 16;
238 	}
239 
240 	cmd = ata_rw_cmds[index + fua + lba48 + write];
241 	if (cmd) {
242 		tf->command = cmd;
243 		return 0;
244 	}
245 	return -1;
246 }
247 
248 /**
249  *	ata_tf_read_block - Read block address from ATA taskfile
250  *	@tf: ATA taskfile of interest
251  *	@dev: ATA device @tf belongs to
252  *
253  *	LOCKING:
254  *	None.
255  *
256  *	Read block address from @tf.  This function can handle all
257  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
258  *	flags select the address format to use.
259  *
260  *	RETURNS:
261  *	Block address read from @tf.
262  */
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264 {
265 	u64 block = 0;
266 
267 	if (tf->flags & ATA_TFLAG_LBA) {
268 		if (tf->flags & ATA_TFLAG_LBA48) {
269 			block |= (u64)tf->hob_lbah << 40;
270 			block |= (u64)tf->hob_lbam << 32;
271 			block |= tf->hob_lbal << 24;
272 		} else
273 			block |= (tf->device & 0xf) << 24;
274 
275 		block |= tf->lbah << 16;
276 		block |= tf->lbam << 8;
277 		block |= tf->lbal;
278 	} else {
279 		u32 cyl, head, sect;
280 
281 		cyl = tf->lbam | (tf->lbah << 8);
282 		head = tf->device & 0xf;
283 		sect = tf->lbal;
284 
285 		block = (cyl * dev->heads + head) * dev->sectors + sect;
286 	}
287 
288 	return block;
289 }
290 
291 /**
292  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
293  *	@tf: Target ATA taskfile
294  *	@dev: ATA device @tf belongs to
295  *	@block: Block address
296  *	@n_block: Number of blocks
297  *	@tf_flags: RW/FUA etc...
298  *	@tag: tag
299  *
300  *	LOCKING:
301  *	None.
302  *
303  *	Build ATA taskfile @tf for read/write request described by
304  *	@block, @n_block, @tf_flags and @tag on @dev.
305  *
306  *	RETURNS:
307  *
308  *	0 on success, -ERANGE if the request is too large for @dev,
309  *	-EINVAL if the request is invalid.
310  */
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 		    u64 block, u32 n_block, unsigned int tf_flags,
313 		    unsigned int tag)
314 {
315 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 	tf->flags |= tf_flags;
317 
318 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 		/* yay, NCQ */
320 		if (!lba_48_ok(block, n_block))
321 			return -ERANGE;
322 
323 		tf->protocol = ATA_PROT_NCQ;
324 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325 
326 		if (tf->flags & ATA_TFLAG_WRITE)
327 			tf->command = ATA_CMD_FPDMA_WRITE;
328 		else
329 			tf->command = ATA_CMD_FPDMA_READ;
330 
331 		tf->nsect = tag << 3;
332 		tf->hob_feature = (n_block >> 8) & 0xff;
333 		tf->feature = n_block & 0xff;
334 
335 		tf->hob_lbah = (block >> 40) & 0xff;
336 		tf->hob_lbam = (block >> 32) & 0xff;
337 		tf->hob_lbal = (block >> 24) & 0xff;
338 		tf->lbah = (block >> 16) & 0xff;
339 		tf->lbam = (block >> 8) & 0xff;
340 		tf->lbal = block & 0xff;
341 
342 		tf->device = 1 << 6;
343 		if (tf->flags & ATA_TFLAG_FUA)
344 			tf->device |= 1 << 7;
345 	} else if (dev->flags & ATA_DFLAG_LBA) {
346 		tf->flags |= ATA_TFLAG_LBA;
347 
348 		if (lba_28_ok(block, n_block)) {
349 			/* use LBA28 */
350 			tf->device |= (block >> 24) & 0xf;
351 		} else if (lba_48_ok(block, n_block)) {
352 			if (!(dev->flags & ATA_DFLAG_LBA48))
353 				return -ERANGE;
354 
355 			/* use LBA48 */
356 			tf->flags |= ATA_TFLAG_LBA48;
357 
358 			tf->hob_nsect = (n_block >> 8) & 0xff;
359 
360 			tf->hob_lbah = (block >> 40) & 0xff;
361 			tf->hob_lbam = (block >> 32) & 0xff;
362 			tf->hob_lbal = (block >> 24) & 0xff;
363 		} else
364 			/* request too large even for LBA48 */
365 			return -ERANGE;
366 
367 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 			return -EINVAL;
369 
370 		tf->nsect = n_block & 0xff;
371 
372 		tf->lbah = (block >> 16) & 0xff;
373 		tf->lbam = (block >> 8) & 0xff;
374 		tf->lbal = block & 0xff;
375 
376 		tf->device |= ATA_LBA;
377 	} else {
378 		/* CHS */
379 		u32 sect, head, cyl, track;
380 
381 		/* The request -may- be too large for CHS addressing. */
382 		if (!lba_28_ok(block, n_block))
383 			return -ERANGE;
384 
385 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 			return -EINVAL;
387 
388 		/* Convert LBA to CHS */
389 		track = (u32)block / dev->sectors;
390 		cyl   = track / dev->heads;
391 		head  = track % dev->heads;
392 		sect  = (u32)block % dev->sectors + 1;
393 
394 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 			(u32)block, track, cyl, head, sect);
396 
397 		/* Check whether the converted CHS can fit.
398 		   Cylinder: 0-65535
399 		   Head: 0-15
400 		   Sector: 1-255*/
401 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 			return -ERANGE;
403 
404 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 		tf->lbal = sect;
406 		tf->lbam = cyl;
407 		tf->lbah = cyl >> 8;
408 		tf->device |= head;
409 	}
410 
411 	return 0;
412 }
413 
414 /**
415  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416  *	@pio_mask: pio_mask
417  *	@mwdma_mask: mwdma_mask
418  *	@udma_mask: udma_mask
419  *
420  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421  *	unsigned int xfer_mask.
422  *
423  *	LOCKING:
424  *	None.
425  *
426  *	RETURNS:
427  *	Packed xfer_mask.
428  */
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 				      unsigned int mwdma_mask,
431 				      unsigned int udma_mask)
432 {
433 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436 }
437 
438 /**
439  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440  *	@xfer_mask: xfer_mask to unpack
441  *	@pio_mask: resulting pio_mask
442  *	@mwdma_mask: resulting mwdma_mask
443  *	@udma_mask: resulting udma_mask
444  *
445  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446  *	Any NULL distination masks will be ignored.
447  */
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 				unsigned int *pio_mask,
450 				unsigned int *mwdma_mask,
451 				unsigned int *udma_mask)
452 {
453 	if (pio_mask)
454 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 	if (mwdma_mask)
456 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 	if (udma_mask)
458 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459 }
460 
461 static const struct ata_xfer_ent {
462 	int shift, bits;
463 	u8 base;
464 } ata_xfer_tbl[] = {
465 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 	{ -1, },
469 };
470 
471 /**
472  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473  *	@xfer_mask: xfer_mask of interest
474  *
475  *	Return matching XFER_* value for @xfer_mask.  Only the highest
476  *	bit of @xfer_mask is considered.
477  *
478  *	LOCKING:
479  *	None.
480  *
481  *	RETURNS:
482  *	Matching XFER_* value, 0 if no match found.
483  */
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485 {
486 	int highbit = fls(xfer_mask) - 1;
487 	const struct ata_xfer_ent *ent;
488 
489 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 			return ent->base + highbit - ent->shift;
492 	return 0;
493 }
494 
495 /**
496  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497  *	@xfer_mode: XFER_* of interest
498  *
499  *	Return matching xfer_mask for @xfer_mode.
500  *
501  *	LOCKING:
502  *	None.
503  *
504  *	RETURNS:
505  *	Matching xfer_mask, 0 if no match found.
506  */
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508 {
509 	const struct ata_xfer_ent *ent;
510 
511 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 			return 1 << (ent->shift + xfer_mode - ent->base);
514 	return 0;
515 }
516 
517 /**
518  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519  *	@xfer_mode: XFER_* of interest
520  *
521  *	Return matching xfer_shift for @xfer_mode.
522  *
523  *	LOCKING:
524  *	None.
525  *
526  *	RETURNS:
527  *	Matching xfer_shift, -1 if no match found.
528  */
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
530 {
531 	const struct ata_xfer_ent *ent;
532 
533 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 			return ent->shift;
536 	return -1;
537 }
538 
539 /**
540  *	ata_mode_string - convert xfer_mask to string
541  *	@xfer_mask: mask of bits supported; only highest bit counts.
542  *
543  *	Determine string which represents the highest speed
544  *	(highest bit in @modemask).
545  *
546  *	LOCKING:
547  *	None.
548  *
549  *	RETURNS:
550  *	Constant C string representing highest speed listed in
551  *	@mode_mask, or the constant C string "<n/a>".
552  */
553 static const char *ata_mode_string(unsigned int xfer_mask)
554 {
555 	static const char * const xfer_mode_str[] = {
556 		"PIO0",
557 		"PIO1",
558 		"PIO2",
559 		"PIO3",
560 		"PIO4",
561 		"PIO5",
562 		"PIO6",
563 		"MWDMA0",
564 		"MWDMA1",
565 		"MWDMA2",
566 		"MWDMA3",
567 		"MWDMA4",
568 		"UDMA/16",
569 		"UDMA/25",
570 		"UDMA/33",
571 		"UDMA/44",
572 		"UDMA/66",
573 		"UDMA/100",
574 		"UDMA/133",
575 		"UDMA7",
576 	};
577 	int highbit;
578 
579 	highbit = fls(xfer_mask) - 1;
580 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 		return xfer_mode_str[highbit];
582 	return "<n/a>";
583 }
584 
585 static const char *sata_spd_string(unsigned int spd)
586 {
587 	static const char * const spd_str[] = {
588 		"1.5 Gbps",
589 		"3.0 Gbps",
590 	};
591 
592 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 		return "<unknown>";
594 	return spd_str[spd - 1];
595 }
596 
597 void ata_dev_disable(struct ata_device *dev)
598 {
599 	if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 		ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 					     ATA_DNXFER_QUIET);
603 		dev->class++;
604 	}
605 }
606 
607 /**
608  *	ata_devchk - PATA device presence detection
609  *	@ap: ATA channel to examine
610  *	@device: Device to examine (starting at zero)
611  *
612  *	This technique was originally described in
613  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
614  *	later found its way into the ATA/ATAPI spec.
615  *
616  *	Write a pattern to the ATA shadow registers,
617  *	and if a device is present, it will respond by
618  *	correctly storing and echoing back the
619  *	ATA shadow register contents.
620  *
621  *	LOCKING:
622  *	caller.
623  */
624 
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626 {
627 	struct ata_ioports *ioaddr = &ap->ioaddr;
628 	u8 nsect, lbal;
629 
630 	ap->ops->dev_select(ap, device);
631 
632 	iowrite8(0x55, ioaddr->nsect_addr);
633 	iowrite8(0xaa, ioaddr->lbal_addr);
634 
635 	iowrite8(0xaa, ioaddr->nsect_addr);
636 	iowrite8(0x55, ioaddr->lbal_addr);
637 
638 	iowrite8(0x55, ioaddr->nsect_addr);
639 	iowrite8(0xaa, ioaddr->lbal_addr);
640 
641 	nsect = ioread8(ioaddr->nsect_addr);
642 	lbal = ioread8(ioaddr->lbal_addr);
643 
644 	if ((nsect == 0x55) && (lbal == 0xaa))
645 		return 1;	/* we found a device */
646 
647 	return 0;		/* nothing found */
648 }
649 
650 /**
651  *	ata_dev_classify - determine device type based on ATA-spec signature
652  *	@tf: ATA taskfile register set for device to be identified
653  *
654  *	Determine from taskfile register contents whether a device is
655  *	ATA or ATAPI, as per "Signature and persistence" section
656  *	of ATA/PI spec (volume 1, sect 5.14).
657  *
658  *	LOCKING:
659  *	None.
660  *
661  *	RETURNS:
662  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663  *	the event of failure.
664  */
665 
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667 {
668 	/* Apple's open source Darwin code hints that some devices only
669 	 * put a proper signature into the LBA mid/high registers,
670 	 * So, we only check those.  It's sufficient for uniqueness.
671 	 */
672 
673 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 		DPRINTK("found ATA device by sig\n");
676 		return ATA_DEV_ATA;
677 	}
678 
679 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 		DPRINTK("found ATAPI device by sig\n");
682 		return ATA_DEV_ATAPI;
683 	}
684 
685 	DPRINTK("unknown device\n");
686 	return ATA_DEV_UNKNOWN;
687 }
688 
689 /**
690  *	ata_dev_try_classify - Parse returned ATA device signature
691  *	@ap: ATA channel to examine
692  *	@device: Device to examine (starting at zero)
693  *	@r_err: Value of error register on completion
694  *
695  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696  *	an ATA/ATAPI-defined set of values is placed in the ATA
697  *	shadow registers, indicating the results of device detection
698  *	and diagnostics.
699  *
700  *	Select the ATA device, and read the values from the ATA shadow
701  *	registers.  Then parse according to the Error register value,
702  *	and the spec-defined values examined by ata_dev_classify().
703  *
704  *	LOCKING:
705  *	caller.
706  *
707  *	RETURNS:
708  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709  */
710 
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713 {
714 	struct ata_taskfile tf;
715 	unsigned int class;
716 	u8 err;
717 
718 	ap->ops->dev_select(ap, device);
719 
720 	memset(&tf, 0, sizeof(tf));
721 
722 	ap->ops->tf_read(ap, &tf);
723 	err = tf.feature;
724 	if (r_err)
725 		*r_err = err;
726 
727 	/* see if device passed diags: if master then continue and warn later */
728 	if (err == 0 && device == 0)
729 		/* diagnostic fail : do nothing _YET_ */
730 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 	else if (err == 1)
732 		/* do nothing */ ;
733 	else if ((device == 0) && (err == 0x81))
734 		/* do nothing */ ;
735 	else
736 		return ATA_DEV_NONE;
737 
738 	/* determine if device is ATA or ATAPI */
739 	class = ata_dev_classify(&tf);
740 
741 	if (class == ATA_DEV_UNKNOWN)
742 		return ATA_DEV_NONE;
743 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 		return ATA_DEV_NONE;
745 	return class;
746 }
747 
748 /**
749  *	ata_id_string - Convert IDENTIFY DEVICE page into string
750  *	@id: IDENTIFY DEVICE results we will examine
751  *	@s: string into which data is output
752  *	@ofs: offset into identify device page
753  *	@len: length of string to return. must be an even number.
754  *
755  *	The strings in the IDENTIFY DEVICE page are broken up into
756  *	16-bit chunks.  Run through the string, and output each
757  *	8-bit chunk linearly, regardless of platform.
758  *
759  *	LOCKING:
760  *	caller.
761  */
762 
763 void ata_id_string(const u16 *id, unsigned char *s,
764 		   unsigned int ofs, unsigned int len)
765 {
766 	unsigned int c;
767 
768 	while (len > 0) {
769 		c = id[ofs] >> 8;
770 		*s = c;
771 		s++;
772 
773 		c = id[ofs] & 0xff;
774 		*s = c;
775 		s++;
776 
777 		ofs++;
778 		len -= 2;
779 	}
780 }
781 
782 /**
783  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784  *	@id: IDENTIFY DEVICE results we will examine
785  *	@s: string into which data is output
786  *	@ofs: offset into identify device page
787  *	@len: length of string to return. must be an odd number.
788  *
789  *	This function is identical to ata_id_string except that it
790  *	trims trailing spaces and terminates the resulting string with
791  *	null.  @len must be actual maximum length (even number) + 1.
792  *
793  *	LOCKING:
794  *	caller.
795  */
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 		     unsigned int ofs, unsigned int len)
798 {
799 	unsigned char *p;
800 
801 	WARN_ON(!(len & 1));
802 
803 	ata_id_string(id, s, ofs, len - 1);
804 
805 	p = s + strnlen(s, len - 1);
806 	while (p > s && p[-1] == ' ')
807 		p--;
808 	*p = '\0';
809 }
810 
811 static u64 ata_id_n_sectors(const u16 *id)
812 {
813 	if (ata_id_has_lba(id)) {
814 		if (ata_id_has_lba48(id))
815 			return ata_id_u64(id, 100);
816 		else
817 			return ata_id_u32(id, 60);
818 	} else {
819 		if (ata_id_current_chs_valid(id))
820 			return ata_id_u32(id, 57);
821 		else
822 			return id[1] * id[3] * id[6];
823 	}
824 }
825 
826 /**
827  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
828  *	@dev: device to identify
829  *	@unknown: mode to assume if we cannot tell
830  *
831  *	Set up the timing values for the device based upon the identify
832  *	reported values for the DMA mode. This function is used by drivers
833  *	which rely upon firmware configured modes, but wish to report the
834  *	mode correctly when possible.
835  *
836  *	In addition we emit similarly formatted messages to the default
837  *	ata_dev_set_mode handler, in order to provide consistency of
838  *	presentation.
839  */
840 
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842 {
843 	unsigned int mask;
844 	u8 mode;
845 
846 	/* Pack the DMA modes */
847 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 	if (dev->id[53] & 0x04)
849 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850 
851 	/* Select the mode in use */
852 	mode = ata_xfer_mask2mode(mask);
853 
854 	if (mode != 0) {
855 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 		       ata_mode_string(mask));
857 	} else {
858 		/* SWDMA perhaps ? */
859 		mode = unknown;
860 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 	}
862 
863 	/* Configure the device reporting */
864 	dev->xfer_mode = mode;
865 	dev->xfer_shift = ata_xfer_mode2shift(mode);
866 }
867 
868 /**
869  *	ata_noop_dev_select - Select device 0/1 on ATA bus
870  *	@ap: ATA channel to manipulate
871  *	@device: ATA device (numbered from zero) to select
872  *
873  *	This function performs no actual function.
874  *
875  *	May be used as the dev_select() entry in ata_port_operations.
876  *
877  *	LOCKING:
878  *	caller.
879  */
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881 {
882 }
883 
884 
885 /**
886  *	ata_std_dev_select - Select device 0/1 on ATA bus
887  *	@ap: ATA channel to manipulate
888  *	@device: ATA device (numbered from zero) to select
889  *
890  *	Use the method defined in the ATA specification to
891  *	make either device 0, or device 1, active on the
892  *	ATA channel.  Works with both PIO and MMIO.
893  *
894  *	May be used as the dev_select() entry in ata_port_operations.
895  *
896  *	LOCKING:
897  *	caller.
898  */
899 
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901 {
902 	u8 tmp;
903 
904 	if (device == 0)
905 		tmp = ATA_DEVICE_OBS;
906 	else
907 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
908 
909 	iowrite8(tmp, ap->ioaddr.device_addr);
910 	ata_pause(ap);		/* needed; also flushes, for mmio */
911 }
912 
913 /**
914  *	ata_dev_select - Select device 0/1 on ATA bus
915  *	@ap: ATA channel to manipulate
916  *	@device: ATA device (numbered from zero) to select
917  *	@wait: non-zero to wait for Status register BSY bit to clear
918  *	@can_sleep: non-zero if context allows sleeping
919  *
920  *	Use the method defined in the ATA specification to
921  *	make either device 0, or device 1, active on the
922  *	ATA channel.
923  *
924  *	This is a high-level version of ata_std_dev_select(),
925  *	which additionally provides the services of inserting
926  *	the proper pauses and status polling, where needed.
927  *
928  *	LOCKING:
929  *	caller.
930  */
931 
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 			   unsigned int wait, unsigned int can_sleep)
934 {
935 	if (ata_msg_probe(ap))
936 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 				"device %u, wait %u\n", device, wait);
938 
939 	if (wait)
940 		ata_wait_idle(ap);
941 
942 	ap->ops->dev_select(ap, device);
943 
944 	if (wait) {
945 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 			msleep(150);
947 		ata_wait_idle(ap);
948 	}
949 }
950 
951 /**
952  *	ata_dump_id - IDENTIFY DEVICE info debugging output
953  *	@id: IDENTIFY DEVICE page to dump
954  *
955  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
956  *	page.
957  *
958  *	LOCKING:
959  *	caller.
960  */
961 
962 static inline void ata_dump_id(const u16 *id)
963 {
964 	DPRINTK("49==0x%04x  "
965 		"53==0x%04x  "
966 		"63==0x%04x  "
967 		"64==0x%04x  "
968 		"75==0x%04x  \n",
969 		id[49],
970 		id[53],
971 		id[63],
972 		id[64],
973 		id[75]);
974 	DPRINTK("80==0x%04x  "
975 		"81==0x%04x  "
976 		"82==0x%04x  "
977 		"83==0x%04x  "
978 		"84==0x%04x  \n",
979 		id[80],
980 		id[81],
981 		id[82],
982 		id[83],
983 		id[84]);
984 	DPRINTK("88==0x%04x  "
985 		"93==0x%04x\n",
986 		id[88],
987 		id[93]);
988 }
989 
990 /**
991  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992  *	@id: IDENTIFY data to compute xfer mask from
993  *
994  *	Compute the xfermask for this device. This is not as trivial
995  *	as it seems if we must consider early devices correctly.
996  *
997  *	FIXME: pre IDE drive timing (do we care ?).
998  *
999  *	LOCKING:
1000  *	None.
1001  *
1002  *	RETURNS:
1003  *	Computed xfermask
1004  */
1005 static unsigned int ata_id_xfermask(const u16 *id)
1006 {
1007 	unsigned int pio_mask, mwdma_mask, udma_mask;
1008 
1009 	/* Usual case. Word 53 indicates word 64 is valid */
1010 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 		pio_mask <<= 3;
1013 		pio_mask |= 0x7;
1014 	} else {
1015 		/* If word 64 isn't valid then Word 51 high byte holds
1016 		 * the PIO timing number for the maximum. Turn it into
1017 		 * a mask.
1018 		 */
1019 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 		if (mode < 5)	/* Valid PIO range */
1021                 	pio_mask = (2 << mode) - 1;
1022 		else
1023 			pio_mask = 1;
1024 
1025 		/* But wait.. there's more. Design your standards by
1026 		 * committee and you too can get a free iordy field to
1027 		 * process. However its the speeds not the modes that
1028 		 * are supported... Note drivers using the timing API
1029 		 * will get this right anyway
1030 		 */
1031 	}
1032 
1033 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1034 
1035 	if (ata_id_is_cfa(id)) {
1036 		/*
1037 		 *	Process compact flash extended modes
1038 		 */
1039 		int pio = id[163] & 0x7;
1040 		int dma = (id[163] >> 3) & 7;
1041 
1042 		if (pio)
1043 			pio_mask |= (1 << 5);
1044 		if (pio > 1)
1045 			pio_mask |= (1 << 6);
1046 		if (dma)
1047 			mwdma_mask |= (1 << 3);
1048 		if (dma > 1)
1049 			mwdma_mask |= (1 << 4);
1050 	}
1051 
1052 	udma_mask = 0;
1053 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1055 
1056 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057 }
1058 
1059 /**
1060  *	ata_port_queue_task - Queue port_task
1061  *	@ap: The ata_port to queue port_task for
1062  *	@fn: workqueue function to be scheduled
1063  *	@data: data for @fn to use
1064  *	@delay: delay time for workqueue function
1065  *
1066  *	Schedule @fn(@data) for execution after @delay jiffies using
1067  *	port_task.  There is one port_task per port and it's the
1068  *	user(low level driver)'s responsibility to make sure that only
1069  *	one task is active at any given time.
1070  *
1071  *	libata core layer takes care of synchronization between
1072  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1073  *	synchronization.
1074  *
1075  *	LOCKING:
1076  *	Inherited from caller.
1077  */
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 			 unsigned long delay)
1080 {
1081 	int rc;
1082 
1083 	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 		return;
1085 
1086 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 	ap->port_task_data = data;
1088 
1089 	rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1090 
1091 	/* rc == 0 means that another user is using port task */
1092 	WARN_ON(rc == 0);
1093 }
1094 
1095 /**
1096  *	ata_port_flush_task - Flush port_task
1097  *	@ap: The ata_port to flush port_task for
1098  *
1099  *	After this function completes, port_task is guranteed not to
1100  *	be running or scheduled.
1101  *
1102  *	LOCKING:
1103  *	Kernel thread context (may sleep)
1104  */
1105 void ata_port_flush_task(struct ata_port *ap)
1106 {
1107 	unsigned long flags;
1108 
1109 	DPRINTK("ENTER\n");
1110 
1111 	spin_lock_irqsave(ap->lock, flags);
1112 	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 	spin_unlock_irqrestore(ap->lock, flags);
1114 
1115 	DPRINTK("flush #1\n");
1116 	flush_workqueue(ata_wq);
1117 
1118 	/*
1119 	 * At this point, if a task is running, it's guaranteed to see
1120 	 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 	 * Cancel and flush.
1122 	 */
1123 	if (!cancel_delayed_work(&ap->port_task)) {
1124 		if (ata_msg_ctl(ap))
1125 			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 					__FUNCTION__);
1127 		flush_workqueue(ata_wq);
1128 	}
1129 
1130 	spin_lock_irqsave(ap->lock, flags);
1131 	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 	spin_unlock_irqrestore(ap->lock, flags);
1133 
1134 	if (ata_msg_ctl(ap))
1135 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1136 }
1137 
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1139 {
1140 	struct completion *waiting = qc->private_data;
1141 
1142 	complete(waiting);
1143 }
1144 
1145 /**
1146  *	ata_exec_internal_sg - execute libata internal command
1147  *	@dev: Device to which the command is sent
1148  *	@tf: Taskfile registers for the command and the result
1149  *	@cdb: CDB for packet command
1150  *	@dma_dir: Data tranfer direction of the command
1151  *	@sg: sg list for the data buffer of the command
1152  *	@n_elem: Number of sg entries
1153  *
1154  *	Executes libata internal command with timeout.  @tf contains
1155  *	command on entry and result on return.  Timeout and error
1156  *	conditions are reported via return value.  No recovery action
1157  *	is taken after a command times out.  It's caller's duty to
1158  *	clean up after timeout.
1159  *
1160  *	LOCKING:
1161  *	None.  Should be called with kernel context, might sleep.
1162  *
1163  *	RETURNS:
1164  *	Zero on success, AC_ERR_* mask on failure
1165  */
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 			      struct ata_taskfile *tf, const u8 *cdb,
1168 			      int dma_dir, struct scatterlist *sg,
1169 			      unsigned int n_elem)
1170 {
1171 	struct ata_port *ap = dev->ap;
1172 	u8 command = tf->command;
1173 	struct ata_queued_cmd *qc;
1174 	unsigned int tag, preempted_tag;
1175 	u32 preempted_sactive, preempted_qc_active;
1176 	DECLARE_COMPLETION_ONSTACK(wait);
1177 	unsigned long flags;
1178 	unsigned int err_mask;
1179 	int rc;
1180 
1181 	spin_lock_irqsave(ap->lock, flags);
1182 
1183 	/* no internal command while frozen */
1184 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 		spin_unlock_irqrestore(ap->lock, flags);
1186 		return AC_ERR_SYSTEM;
1187 	}
1188 
1189 	/* initialize internal qc */
1190 
1191 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1192 	 * drivers choke if any other tag is given.  This breaks
1193 	 * ata_tag_internal() test for those drivers.  Don't use new
1194 	 * EH stuff without converting to it.
1195 	 */
1196 	if (ap->ops->error_handler)
1197 		tag = ATA_TAG_INTERNAL;
1198 	else
1199 		tag = 0;
1200 
1201 	if (test_and_set_bit(tag, &ap->qc_allocated))
1202 		BUG();
1203 	qc = __ata_qc_from_tag(ap, tag);
1204 
1205 	qc->tag = tag;
1206 	qc->scsicmd = NULL;
1207 	qc->ap = ap;
1208 	qc->dev = dev;
1209 	ata_qc_reinit(qc);
1210 
1211 	preempted_tag = ap->active_tag;
1212 	preempted_sactive = ap->sactive;
1213 	preempted_qc_active = ap->qc_active;
1214 	ap->active_tag = ATA_TAG_POISON;
1215 	ap->sactive = 0;
1216 	ap->qc_active = 0;
1217 
1218 	/* prepare & issue qc */
1219 	qc->tf = *tf;
1220 	if (cdb)
1221 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 	qc->dma_dir = dma_dir;
1224 	if (dma_dir != DMA_NONE) {
1225 		unsigned int i, buflen = 0;
1226 
1227 		for (i = 0; i < n_elem; i++)
1228 			buflen += sg[i].length;
1229 
1230 		ata_sg_init(qc, sg, n_elem);
1231 		qc->nbytes = buflen;
1232 	}
1233 
1234 	qc->private_data = &wait;
1235 	qc->complete_fn = ata_qc_complete_internal;
1236 
1237 	ata_qc_issue(qc);
1238 
1239 	spin_unlock_irqrestore(ap->lock, flags);
1240 
1241 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1242 
1243 	ata_port_flush_task(ap);
1244 
1245 	if (!rc) {
1246 		spin_lock_irqsave(ap->lock, flags);
1247 
1248 		/* We're racing with irq here.  If we lose, the
1249 		 * following test prevents us from completing the qc
1250 		 * twice.  If we win, the port is frozen and will be
1251 		 * cleaned up by ->post_internal_cmd().
1252 		 */
1253 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 			qc->err_mask |= AC_ERR_TIMEOUT;
1255 
1256 			if (ap->ops->error_handler)
1257 				ata_port_freeze(ap);
1258 			else
1259 				ata_qc_complete(qc);
1260 
1261 			if (ata_msg_warn(ap))
1262 				ata_dev_printk(dev, KERN_WARNING,
1263 					"qc timeout (cmd 0x%x)\n", command);
1264 		}
1265 
1266 		spin_unlock_irqrestore(ap->lock, flags);
1267 	}
1268 
1269 	/* do post_internal_cmd */
1270 	if (ap->ops->post_internal_cmd)
1271 		ap->ops->post_internal_cmd(qc);
1272 
1273 	if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 		if (ata_msg_warn(ap))
1275 			ata_dev_printk(dev, KERN_WARNING,
1276 				"zero err_mask for failed "
1277 				"internal command, assuming AC_ERR_OTHER\n");
1278 		qc->err_mask |= AC_ERR_OTHER;
1279 	}
1280 
1281 	/* finish up */
1282 	spin_lock_irqsave(ap->lock, flags);
1283 
1284 	*tf = qc->result_tf;
1285 	err_mask = qc->err_mask;
1286 
1287 	ata_qc_free(qc);
1288 	ap->active_tag = preempted_tag;
1289 	ap->sactive = preempted_sactive;
1290 	ap->qc_active = preempted_qc_active;
1291 
1292 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 	 * Until those drivers are fixed, we detect the condition
1294 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 	 * port.
1296 	 *
1297 	 * Note that this doesn't change any behavior as internal
1298 	 * command failure results in disabling the device in the
1299 	 * higher layer for LLDDs without new reset/EH callbacks.
1300 	 *
1301 	 * Kill the following code as soon as those drivers are fixed.
1302 	 */
1303 	if (ap->flags & ATA_FLAG_DISABLED) {
1304 		err_mask |= AC_ERR_SYSTEM;
1305 		ata_port_probe(ap);
1306 	}
1307 
1308 	spin_unlock_irqrestore(ap->lock, flags);
1309 
1310 	return err_mask;
1311 }
1312 
1313 /**
1314  *	ata_exec_internal - execute libata internal command
1315  *	@dev: Device to which the command is sent
1316  *	@tf: Taskfile registers for the command and the result
1317  *	@cdb: CDB for packet command
1318  *	@dma_dir: Data tranfer direction of the command
1319  *	@buf: Data buffer of the command
1320  *	@buflen: Length of data buffer
1321  *
1322  *	Wrapper around ata_exec_internal_sg() which takes simple
1323  *	buffer instead of sg list.
1324  *
1325  *	LOCKING:
1326  *	None.  Should be called with kernel context, might sleep.
1327  *
1328  *	RETURNS:
1329  *	Zero on success, AC_ERR_* mask on failure
1330  */
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 			   struct ata_taskfile *tf, const u8 *cdb,
1333 			   int dma_dir, void *buf, unsigned int buflen)
1334 {
1335 	struct scatterlist *psg = NULL, sg;
1336 	unsigned int n_elem = 0;
1337 
1338 	if (dma_dir != DMA_NONE) {
1339 		WARN_ON(!buf);
1340 		sg_init_one(&sg, buf, buflen);
1341 		psg = &sg;
1342 		n_elem++;
1343 	}
1344 
1345 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1346 }
1347 
1348 /**
1349  *	ata_do_simple_cmd - execute simple internal command
1350  *	@dev: Device to which the command is sent
1351  *	@cmd: Opcode to execute
1352  *
1353  *	Execute a 'simple' command, that only consists of the opcode
1354  *	'cmd' itself, without filling any other registers
1355  *
1356  *	LOCKING:
1357  *	Kernel thread context (may sleep).
1358  *
1359  *	RETURNS:
1360  *	Zero on success, AC_ERR_* mask on failure
1361  */
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1363 {
1364 	struct ata_taskfile tf;
1365 
1366 	ata_tf_init(dev, &tf);
1367 
1368 	tf.command = cmd;
1369 	tf.flags |= ATA_TFLAG_DEVICE;
1370 	tf.protocol = ATA_PROT_NODATA;
1371 
1372 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1373 }
1374 
1375 /**
1376  *	ata_pio_need_iordy	-	check if iordy needed
1377  *	@adev: ATA device
1378  *
1379  *	Check if the current speed of the device requires IORDY. Used
1380  *	by various controllers for chip configuration.
1381  */
1382 
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384 {
1385 	int pio;
1386 	int speed = adev->pio_mode - XFER_PIO_0;
1387 
1388 	if (speed < 2)
1389 		return 0;
1390 	if (speed > 2)
1391 		return 1;
1392 
1393 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1394 
1395 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1396 		pio = adev->id[ATA_ID_EIDE_PIO];
1397 		/* Is the speed faster than the drive allows non IORDY ? */
1398 		if (pio) {
1399 			/* This is cycle times not frequency - watch the logic! */
1400 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1401 				return 1;
1402 			return 0;
1403 		}
1404 	}
1405 	return 0;
1406 }
1407 
1408 /**
1409  *	ata_dev_read_id - Read ID data from the specified device
1410  *	@dev: target device
1411  *	@p_class: pointer to class of the target device (may be changed)
1412  *	@flags: ATA_READID_* flags
1413  *	@id: buffer to read IDENTIFY data into
1414  *
1415  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1416  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1418  *	for pre-ATA4 drives.
1419  *
1420  *	LOCKING:
1421  *	Kernel thread context (may sleep)
1422  *
1423  *	RETURNS:
1424  *	0 on success, -errno otherwise.
1425  */
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 		    unsigned int flags, u16 *id)
1428 {
1429 	struct ata_port *ap = dev->ap;
1430 	unsigned int class = *p_class;
1431 	struct ata_taskfile tf;
1432 	unsigned int err_mask = 0;
1433 	const char *reason;
1434 	int rc;
1435 
1436 	if (ata_msg_ctl(ap))
1437 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1438 
1439 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1440 
1441  retry:
1442 	ata_tf_init(dev, &tf);
1443 
1444 	switch (class) {
1445 	case ATA_DEV_ATA:
1446 		tf.command = ATA_CMD_ID_ATA;
1447 		break;
1448 	case ATA_DEV_ATAPI:
1449 		tf.command = ATA_CMD_ID_ATAPI;
1450 		break;
1451 	default:
1452 		rc = -ENODEV;
1453 		reason = "unsupported class";
1454 		goto err_out;
1455 	}
1456 
1457 	tf.protocol = ATA_PROT_PIO;
1458 
1459 	/* Some devices choke if TF registers contain garbage.  Make
1460 	 * sure those are properly initialized.
1461 	 */
1462 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463 
1464 	/* Device presence detection is unreliable on some
1465 	 * controllers.  Always poll IDENTIFY if available.
1466 	 */
1467 	tf.flags |= ATA_TFLAG_POLLING;
1468 
1469 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1471 	if (err_mask) {
1472 		if (err_mask & AC_ERR_NODEV_HINT) {
1473 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 				ap->print_id, dev->devno);
1475 			return -ENOENT;
1476 		}
1477 
1478 		rc = -EIO;
1479 		reason = "I/O error";
1480 		goto err_out;
1481 	}
1482 
1483 	swap_buf_le16(id, ATA_ID_WORDS);
1484 
1485 	/* sanity check */
1486 	rc = -EINVAL;
1487 	reason = "device reports illegal type";
1488 
1489 	if (class == ATA_DEV_ATA) {
1490 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 			goto err_out;
1492 	} else {
1493 		if (ata_id_is_ata(id))
1494 			goto err_out;
1495 	}
1496 
1497 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1498 		/*
1499 		 * The exact sequence expected by certain pre-ATA4 drives is:
1500 		 * SRST RESET
1501 		 * IDENTIFY
1502 		 * INITIALIZE DEVICE PARAMETERS
1503 		 * anything else..
1504 		 * Some drives were very specific about that exact sequence.
1505 		 */
1506 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 			if (err_mask) {
1509 				rc = -EIO;
1510 				reason = "INIT_DEV_PARAMS failed";
1511 				goto err_out;
1512 			}
1513 
1514 			/* current CHS translation info (id[53-58]) might be
1515 			 * changed. reread the identify device info.
1516 			 */
1517 			flags &= ~ATA_READID_POSTRESET;
1518 			goto retry;
1519 		}
1520 	}
1521 
1522 	*p_class = class;
1523 
1524 	return 0;
1525 
1526  err_out:
1527 	if (ata_msg_warn(ap))
1528 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 	return rc;
1531 }
1532 
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1534 {
1535 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1536 }
1537 
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 			       char *desc, size_t desc_sz)
1540 {
1541 	struct ata_port *ap = dev->ap;
1542 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543 
1544 	if (!ata_id_has_ncq(dev->id)) {
1545 		desc[0] = '\0';
1546 		return;
1547 	}
1548 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 		snprintf(desc, desc_sz, "NCQ (not used)");
1550 		return;
1551 	}
1552 	if (ap->flags & ATA_FLAG_NCQ) {
1553 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 		dev->flags |= ATA_DFLAG_NCQ;
1555 	}
1556 
1557 	if (hdepth >= ddepth)
1558 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 	else
1560 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561 }
1562 
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564 {
1565 	int i;
1566 
1567 	if (ap->scsi_host) {
1568 		unsigned int len = 0;
1569 
1570 		for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 			len = max(len, ap->device[i].cdb_len);
1572 
1573 		ap->scsi_host->max_cmd_len = len;
1574 	}
1575 }
1576 
1577 /**
1578  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1579  *	@dev: Target device to configure
1580  *
1581  *	Configure @dev according to @dev->id.  Generic and low-level
1582  *	driver specific fixups are also applied.
1583  *
1584  *	LOCKING:
1585  *	Kernel thread context (may sleep)
1586  *
1587  *	RETURNS:
1588  *	0 on success, -errno otherwise
1589  */
1590 int ata_dev_configure(struct ata_device *dev)
1591 {
1592 	struct ata_port *ap = dev->ap;
1593 	int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 	const u16 *id = dev->id;
1595 	unsigned int xfer_mask;
1596 	char revbuf[7];		/* XYZ-99\0 */
1597 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 	char modelbuf[ATA_ID_PROD_LEN+1];
1599 	int rc;
1600 
1601 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 			       __FUNCTION__);
1604 		return 0;
1605 	}
1606 
1607 	if (ata_msg_probe(ap))
1608 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1609 
1610 	/* set _SDD */
1611 	rc = ata_acpi_push_id(ap, dev->devno);
1612 	if (rc) {
1613 		ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 			rc);
1615 	}
1616 
1617 	/* retrieve and execute the ATA task file of _GTF */
1618 	ata_acpi_exec_tfs(ap);
1619 
1620 	/* print device capabilities */
1621 	if (ata_msg_probe(ap))
1622 		ata_dev_printk(dev, KERN_DEBUG,
1623 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 			       __FUNCTION__,
1626 			       id[49], id[82], id[83], id[84],
1627 			       id[85], id[86], id[87], id[88]);
1628 
1629 	/* initialize to-be-configured parameters */
1630 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 	dev->max_sectors = 0;
1632 	dev->cdb_len = 0;
1633 	dev->n_sectors = 0;
1634 	dev->cylinders = 0;
1635 	dev->heads = 0;
1636 	dev->sectors = 0;
1637 
1638 	/*
1639 	 * common ATA, ATAPI feature tests
1640 	 */
1641 
1642 	/* find max transfer mode; for printk only */
1643 	xfer_mask = ata_id_xfermask(id);
1644 
1645 	if (ata_msg_probe(ap))
1646 		ata_dump_id(id);
1647 
1648 	/* ATA-specific feature tests */
1649 	if (dev->class == ATA_DEV_ATA) {
1650 		if (ata_id_is_cfa(id)) {
1651 			if (id[162] & 1) /* CPRM may make this media unusable */
1652 				ata_dev_printk(dev, KERN_WARNING,
1653 					       "supports DRM functions and may "
1654 					       "not be fully accessable.\n");
1655 			snprintf(revbuf, 7, "CFA");
1656 		}
1657 		else
1658 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1659 
1660 		dev->n_sectors = ata_id_n_sectors(id);
1661 
1662 		/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 		ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 				sizeof(fwrevbuf));
1665 
1666 		ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 				sizeof(modelbuf));
1668 
1669 		if (dev->id[59] & 0x100)
1670 			dev->multi_count = dev->id[59] & 0xff;
1671 
1672 		if (ata_id_has_lba(id)) {
1673 			const char *lba_desc;
1674 			char ncq_desc[20];
1675 
1676 			lba_desc = "LBA";
1677 			dev->flags |= ATA_DFLAG_LBA;
1678 			if (ata_id_has_lba48(id)) {
1679 				dev->flags |= ATA_DFLAG_LBA48;
1680 				lba_desc = "LBA48";
1681 
1682 				if (dev->n_sectors >= (1UL << 28) &&
1683 				    ata_id_has_flush_ext(id))
1684 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1685 			}
1686 
1687 			/* config NCQ */
1688 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689 
1690 			/* print device info to dmesg */
1691 			if (ata_msg_drv(ap) && print_info) {
1692 				ata_dev_printk(dev, KERN_INFO,
1693 					"%s: %s, %s, max %s\n",
1694 					revbuf, modelbuf, fwrevbuf,
1695 					ata_mode_string(xfer_mask));
1696 				ata_dev_printk(dev, KERN_INFO,
1697 					"%Lu sectors, multi %u: %s %s\n",
1698 					(unsigned long long)dev->n_sectors,
1699 					dev->multi_count, lba_desc, ncq_desc);
1700 			}
1701 		} else {
1702 			/* CHS */
1703 
1704 			/* Default translation */
1705 			dev->cylinders	= id[1];
1706 			dev->heads	= id[3];
1707 			dev->sectors	= id[6];
1708 
1709 			if (ata_id_current_chs_valid(id)) {
1710 				/* Current CHS translation is valid. */
1711 				dev->cylinders = id[54];
1712 				dev->heads     = id[55];
1713 				dev->sectors   = id[56];
1714 			}
1715 
1716 			/* print device info to dmesg */
1717 			if (ata_msg_drv(ap) && print_info) {
1718 				ata_dev_printk(dev, KERN_INFO,
1719 					"%s: %s, %s, max %s\n",
1720 					revbuf,	modelbuf, fwrevbuf,
1721 					ata_mode_string(xfer_mask));
1722 				ata_dev_printk(dev, KERN_INFO,
1723 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 					(unsigned long long)dev->n_sectors,
1725 					dev->multi_count, dev->cylinders,
1726 					dev->heads, dev->sectors);
1727 			}
1728 		}
1729 
1730 		dev->cdb_len = 16;
1731 	}
1732 
1733 	/* ATAPI-specific feature tests */
1734 	else if (dev->class == ATA_DEV_ATAPI) {
1735 		char *cdb_intr_string = "";
1736 
1737 		rc = atapi_cdb_len(id);
1738 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 			if (ata_msg_warn(ap))
1740 				ata_dev_printk(dev, KERN_WARNING,
1741 					       "unsupported CDB len\n");
1742 			rc = -EINVAL;
1743 			goto err_out_nosup;
1744 		}
1745 		dev->cdb_len = (unsigned int) rc;
1746 
1747 		if (ata_id_cdb_intr(dev->id)) {
1748 			dev->flags |= ATA_DFLAG_CDB_INTR;
1749 			cdb_intr_string = ", CDB intr";
1750 		}
1751 
1752 		/* print device info to dmesg */
1753 		if (ata_msg_drv(ap) && print_info)
1754 			ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 				       ata_mode_string(xfer_mask),
1756 				       cdb_intr_string);
1757 	}
1758 
1759 	/* determine max_sectors */
1760 	dev->max_sectors = ATA_MAX_SECTORS;
1761 	if (dev->flags & ATA_DFLAG_LBA48)
1762 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763 
1764 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 		/* Let the user know. We don't want to disallow opens for
1766 		   rescue purposes, or in case the vendor is just a blithering
1767 		   idiot */
1768                 if (print_info) {
1769 			ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 			ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1773 		}
1774 	}
1775 
1776 	ata_set_port_max_cmd_len(ap);
1777 
1778 	/* limit bridge transfers to udma5, 200 sectors */
1779 	if (ata_dev_knobble(dev)) {
1780 		if (ata_msg_drv(ap) && print_info)
1781 			ata_dev_printk(dev, KERN_INFO,
1782 				       "applying bridge limits\n");
1783 		dev->udma_mask &= ATA_UDMA5;
1784 		dev->max_sectors = ATA_MAX_SECTORS;
1785 	}
1786 
1787 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1788 		dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1789 
1790 	/* limit ATAPI DMA to R/W commands only */
1791 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1792 		dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1793 
1794 	if (ap->ops->dev_config)
1795 		ap->ops->dev_config(ap, dev);
1796 
1797 	if (ata_msg_probe(ap))
1798 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1799 			__FUNCTION__, ata_chk_status(ap));
1800 	return 0;
1801 
1802 err_out_nosup:
1803 	if (ata_msg_probe(ap))
1804 		ata_dev_printk(dev, KERN_DEBUG,
1805 			       "%s: EXIT, err\n", __FUNCTION__);
1806 	return rc;
1807 }
1808 
1809 /**
1810  *	ata_bus_probe - Reset and probe ATA bus
1811  *	@ap: Bus to probe
1812  *
1813  *	Master ATA bus probing function.  Initiates a hardware-dependent
1814  *	bus reset, then attempts to identify any devices found on
1815  *	the bus.
1816  *
1817  *	LOCKING:
1818  *	PCI/etc. bus probe sem.
1819  *
1820  *	RETURNS:
1821  *	Zero on success, negative errno otherwise.
1822  */
1823 
1824 int ata_bus_probe(struct ata_port *ap)
1825 {
1826 	unsigned int classes[ATA_MAX_DEVICES];
1827 	int tries[ATA_MAX_DEVICES];
1828 	int i, rc;
1829 	struct ata_device *dev;
1830 
1831 	ata_port_probe(ap);
1832 
1833 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1834 		tries[i] = ATA_PROBE_MAX_TRIES;
1835 
1836  retry:
1837 	/* reset and determine device classes */
1838 	ap->ops->phy_reset(ap);
1839 
1840 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
1841 		dev = &ap->device[i];
1842 
1843 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
1844 		    dev->class != ATA_DEV_UNKNOWN)
1845 			classes[dev->devno] = dev->class;
1846 		else
1847 			classes[dev->devno] = ATA_DEV_NONE;
1848 
1849 		dev->class = ATA_DEV_UNKNOWN;
1850 	}
1851 
1852 	ata_port_probe(ap);
1853 
1854 	/* after the reset the device state is PIO 0 and the controller
1855 	   state is undefined. Record the mode */
1856 
1857 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1858 		ap->device[i].pio_mode = XFER_PIO_0;
1859 
1860 	/* read IDENTIFY page and configure devices. We have to do the identify
1861 	   specific sequence bass-ackwards so that PDIAG- is released by
1862 	   the slave device */
1863 
1864 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
1865 		dev = &ap->device[i];
1866 
1867 		if (tries[i])
1868 			dev->class = classes[i];
1869 
1870 		if (!ata_dev_enabled(dev))
1871 			continue;
1872 
1873 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1874 				     dev->id);
1875 		if (rc)
1876 			goto fail;
1877 	}
1878 
1879 	/* After the identify sequence we can now set up the devices. We do
1880 	   this in the normal order so that the user doesn't get confused */
1881 
1882 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
1883 		dev = &ap->device[i];
1884 		if (!ata_dev_enabled(dev))
1885 			continue;
1886 
1887 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1888 		rc = ata_dev_configure(dev);
1889 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1890 		if (rc)
1891 			goto fail;
1892 	}
1893 
1894 	/* configure transfer mode */
1895 	rc = ata_set_mode(ap, &dev);
1896 	if (rc)
1897 		goto fail;
1898 
1899 	for (i = 0; i < ATA_MAX_DEVICES; i++)
1900 		if (ata_dev_enabled(&ap->device[i]))
1901 			return 0;
1902 
1903 	/* no device present, disable port */
1904 	ata_port_disable(ap);
1905 	ap->ops->port_disable(ap);
1906 	return -ENODEV;
1907 
1908  fail:
1909 	tries[dev->devno]--;
1910 
1911 	switch (rc) {
1912 	case -EINVAL:
1913 		/* eeek, something went very wrong, give up */
1914 		tries[dev->devno] = 0;
1915 		break;
1916 
1917 	case -ENODEV:
1918 		/* give it just one more chance */
1919 		tries[dev->devno] = min(tries[dev->devno], 1);
1920 	case -EIO:
1921 		if (tries[dev->devno] == 1) {
1922 			/* This is the last chance, better to slow
1923 			 * down than lose it.
1924 			 */
1925 			sata_down_spd_limit(ap);
1926 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1927 		}
1928 	}
1929 
1930 	if (!tries[dev->devno])
1931 		ata_dev_disable(dev);
1932 
1933 	goto retry;
1934 }
1935 
1936 /**
1937  *	ata_port_probe - Mark port as enabled
1938  *	@ap: Port for which we indicate enablement
1939  *
1940  *	Modify @ap data structure such that the system
1941  *	thinks that the entire port is enabled.
1942  *
1943  *	LOCKING: host lock, or some other form of
1944  *	serialization.
1945  */
1946 
1947 void ata_port_probe(struct ata_port *ap)
1948 {
1949 	ap->flags &= ~ATA_FLAG_DISABLED;
1950 }
1951 
1952 /**
1953  *	sata_print_link_status - Print SATA link status
1954  *	@ap: SATA port to printk link status about
1955  *
1956  *	This function prints link speed and status of a SATA link.
1957  *
1958  *	LOCKING:
1959  *	None.
1960  */
1961 static void sata_print_link_status(struct ata_port *ap)
1962 {
1963 	u32 sstatus, scontrol, tmp;
1964 
1965 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1966 		return;
1967 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
1968 
1969 	if (ata_port_online(ap)) {
1970 		tmp = (sstatus >> 4) & 0xf;
1971 		ata_port_printk(ap, KERN_INFO,
1972 				"SATA link up %s (SStatus %X SControl %X)\n",
1973 				sata_spd_string(tmp), sstatus, scontrol);
1974 	} else {
1975 		ata_port_printk(ap, KERN_INFO,
1976 				"SATA link down (SStatus %X SControl %X)\n",
1977 				sstatus, scontrol);
1978 	}
1979 }
1980 
1981 /**
1982  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
1983  *	@ap: SATA port associated with target SATA PHY.
1984  *
1985  *	This function issues commands to standard SATA Sxxx
1986  *	PHY registers, to wake up the phy (and device), and
1987  *	clear any reset condition.
1988  *
1989  *	LOCKING:
1990  *	PCI/etc. bus probe sem.
1991  *
1992  */
1993 void __sata_phy_reset(struct ata_port *ap)
1994 {
1995 	u32 sstatus;
1996 	unsigned long timeout = jiffies + (HZ * 5);
1997 
1998 	if (ap->flags & ATA_FLAG_SATA_RESET) {
1999 		/* issue phy wake/reset */
2000 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2001 		/* Couldn't find anything in SATA I/II specs, but
2002 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2003 		mdelay(1);
2004 	}
2005 	/* phy wake/clear reset */
2006 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2007 
2008 	/* wait for phy to become ready, if necessary */
2009 	do {
2010 		msleep(200);
2011 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2012 		if ((sstatus & 0xf) != 1)
2013 			break;
2014 	} while (time_before(jiffies, timeout));
2015 
2016 	/* print link status */
2017 	sata_print_link_status(ap);
2018 
2019 	/* TODO: phy layer with polling, timeouts, etc. */
2020 	if (!ata_port_offline(ap))
2021 		ata_port_probe(ap);
2022 	else
2023 		ata_port_disable(ap);
2024 
2025 	if (ap->flags & ATA_FLAG_DISABLED)
2026 		return;
2027 
2028 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2029 		ata_port_disable(ap);
2030 		return;
2031 	}
2032 
2033 	ap->cbl = ATA_CBL_SATA;
2034 }
2035 
2036 /**
2037  *	sata_phy_reset - Reset SATA bus.
2038  *	@ap: SATA port associated with target SATA PHY.
2039  *
2040  *	This function resets the SATA bus, and then probes
2041  *	the bus for devices.
2042  *
2043  *	LOCKING:
2044  *	PCI/etc. bus probe sem.
2045  *
2046  */
2047 void sata_phy_reset(struct ata_port *ap)
2048 {
2049 	__sata_phy_reset(ap);
2050 	if (ap->flags & ATA_FLAG_DISABLED)
2051 		return;
2052 	ata_bus_reset(ap);
2053 }
2054 
2055 /**
2056  *	ata_dev_pair		-	return other device on cable
2057  *	@adev: device
2058  *
2059  *	Obtain the other device on the same cable, or if none is
2060  *	present NULL is returned
2061  */
2062 
2063 struct ata_device *ata_dev_pair(struct ata_device *adev)
2064 {
2065 	struct ata_port *ap = adev->ap;
2066 	struct ata_device *pair = &ap->device[1 - adev->devno];
2067 	if (!ata_dev_enabled(pair))
2068 		return NULL;
2069 	return pair;
2070 }
2071 
2072 /**
2073  *	ata_port_disable - Disable port.
2074  *	@ap: Port to be disabled.
2075  *
2076  *	Modify @ap data structure such that the system
2077  *	thinks that the entire port is disabled, and should
2078  *	never attempt to probe or communicate with devices
2079  *	on this port.
2080  *
2081  *	LOCKING: host lock, or some other form of
2082  *	serialization.
2083  */
2084 
2085 void ata_port_disable(struct ata_port *ap)
2086 {
2087 	ap->device[0].class = ATA_DEV_NONE;
2088 	ap->device[1].class = ATA_DEV_NONE;
2089 	ap->flags |= ATA_FLAG_DISABLED;
2090 }
2091 
2092 /**
2093  *	sata_down_spd_limit - adjust SATA spd limit downward
2094  *	@ap: Port to adjust SATA spd limit for
2095  *
2096  *	Adjust SATA spd limit of @ap downward.  Note that this
2097  *	function only adjusts the limit.  The change must be applied
2098  *	using sata_set_spd().
2099  *
2100  *	LOCKING:
2101  *	Inherited from caller.
2102  *
2103  *	RETURNS:
2104  *	0 on success, negative errno on failure
2105  */
2106 int sata_down_spd_limit(struct ata_port *ap)
2107 {
2108 	u32 sstatus, spd, mask;
2109 	int rc, highbit;
2110 
2111 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2112 	if (rc)
2113 		return rc;
2114 
2115 	mask = ap->sata_spd_limit;
2116 	if (mask <= 1)
2117 		return -EINVAL;
2118 	highbit = fls(mask) - 1;
2119 	mask &= ~(1 << highbit);
2120 
2121 	spd = (sstatus >> 4) & 0xf;
2122 	if (spd <= 1)
2123 		return -EINVAL;
2124 	spd--;
2125 	mask &= (1 << spd) - 1;
2126 	if (!mask)
2127 		return -EINVAL;
2128 
2129 	ap->sata_spd_limit = mask;
2130 
2131 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2132 			sata_spd_string(fls(mask)));
2133 
2134 	return 0;
2135 }
2136 
2137 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2138 {
2139 	u32 spd, limit;
2140 
2141 	if (ap->sata_spd_limit == UINT_MAX)
2142 		limit = 0;
2143 	else
2144 		limit = fls(ap->sata_spd_limit);
2145 
2146 	spd = (*scontrol >> 4) & 0xf;
2147 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2148 
2149 	return spd != limit;
2150 }
2151 
2152 /**
2153  *	sata_set_spd_needed - is SATA spd configuration needed
2154  *	@ap: Port in question
2155  *
2156  *	Test whether the spd limit in SControl matches
2157  *	@ap->sata_spd_limit.  This function is used to determine
2158  *	whether hardreset is necessary to apply SATA spd
2159  *	configuration.
2160  *
2161  *	LOCKING:
2162  *	Inherited from caller.
2163  *
2164  *	RETURNS:
2165  *	1 if SATA spd configuration is needed, 0 otherwise.
2166  */
2167 int sata_set_spd_needed(struct ata_port *ap)
2168 {
2169 	u32 scontrol;
2170 
2171 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2172 		return 0;
2173 
2174 	return __sata_set_spd_needed(ap, &scontrol);
2175 }
2176 
2177 /**
2178  *	sata_set_spd - set SATA spd according to spd limit
2179  *	@ap: Port to set SATA spd for
2180  *
2181  *	Set SATA spd of @ap according to sata_spd_limit.
2182  *
2183  *	LOCKING:
2184  *	Inherited from caller.
2185  *
2186  *	RETURNS:
2187  *	0 if spd doesn't need to be changed, 1 if spd has been
2188  *	changed.  Negative errno if SCR registers are inaccessible.
2189  */
2190 int sata_set_spd(struct ata_port *ap)
2191 {
2192 	u32 scontrol;
2193 	int rc;
2194 
2195 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2196 		return rc;
2197 
2198 	if (!__sata_set_spd_needed(ap, &scontrol))
2199 		return 0;
2200 
2201 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2202 		return rc;
2203 
2204 	return 1;
2205 }
2206 
2207 /*
2208  * This mode timing computation functionality is ported over from
2209  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2210  */
2211 /*
2212  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2213  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2214  * for UDMA6, which is currently supported only by Maxtor drives.
2215  *
2216  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2217  */
2218 
2219 static const struct ata_timing ata_timing[] = {
2220 
2221 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2222 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2223 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2224 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2225 
2226 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2227 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2228 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2229 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2230 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2231 
2232 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2233 
2234 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2235 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2236 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2237 
2238 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2239 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2240 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2241 
2242 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2243 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2244 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2245 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2246 
2247 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2248 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2249 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2250 
2251 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2252 
2253 	{ 0xFF }
2254 };
2255 
2256 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2257 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2258 
2259 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2260 {
2261 	q->setup   = EZ(t->setup   * 1000,  T);
2262 	q->act8b   = EZ(t->act8b   * 1000,  T);
2263 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2264 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2265 	q->active  = EZ(t->active  * 1000,  T);
2266 	q->recover = EZ(t->recover * 1000,  T);
2267 	q->cycle   = EZ(t->cycle   * 1000,  T);
2268 	q->udma    = EZ(t->udma    * 1000, UT);
2269 }
2270 
2271 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2272 		      struct ata_timing *m, unsigned int what)
2273 {
2274 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2275 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2276 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2277 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2278 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2279 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2280 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2281 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2282 }
2283 
2284 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2285 {
2286 	const struct ata_timing *t;
2287 
2288 	for (t = ata_timing; t->mode != speed; t++)
2289 		if (t->mode == 0xFF)
2290 			return NULL;
2291 	return t;
2292 }
2293 
2294 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2295 		       struct ata_timing *t, int T, int UT)
2296 {
2297 	const struct ata_timing *s;
2298 	struct ata_timing p;
2299 
2300 	/*
2301 	 * Find the mode.
2302 	 */
2303 
2304 	if (!(s = ata_timing_find_mode(speed)))
2305 		return -EINVAL;
2306 
2307 	memcpy(t, s, sizeof(*s));
2308 
2309 	/*
2310 	 * If the drive is an EIDE drive, it can tell us it needs extended
2311 	 * PIO/MW_DMA cycle timing.
2312 	 */
2313 
2314 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2315 		memset(&p, 0, sizeof(p));
2316 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2317 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2318 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2319 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2320 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2321 		}
2322 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2323 	}
2324 
2325 	/*
2326 	 * Convert the timing to bus clock counts.
2327 	 */
2328 
2329 	ata_timing_quantize(t, t, T, UT);
2330 
2331 	/*
2332 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2333 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2334 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2335 	 */
2336 
2337 	if (speed > XFER_PIO_6) {
2338 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2339 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2340 	}
2341 
2342 	/*
2343 	 * Lengthen active & recovery time so that cycle time is correct.
2344 	 */
2345 
2346 	if (t->act8b + t->rec8b < t->cyc8b) {
2347 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2348 		t->rec8b = t->cyc8b - t->act8b;
2349 	}
2350 
2351 	if (t->active + t->recover < t->cycle) {
2352 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2353 		t->recover = t->cycle - t->active;
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 /**
2360  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2361  *	@dev: Device to adjust xfer masks
2362  *	@sel: ATA_DNXFER_* selector
2363  *
2364  *	Adjust xfer masks of @dev downward.  Note that this function
2365  *	does not apply the change.  Invoking ata_set_mode() afterwards
2366  *	will apply the limit.
2367  *
2368  *	LOCKING:
2369  *	Inherited from caller.
2370  *
2371  *	RETURNS:
2372  *	0 on success, negative errno on failure
2373  */
2374 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2375 {
2376 	char buf[32];
2377 	unsigned int orig_mask, xfer_mask;
2378 	unsigned int pio_mask, mwdma_mask, udma_mask;
2379 	int quiet, highbit;
2380 
2381 	quiet = !!(sel & ATA_DNXFER_QUIET);
2382 	sel &= ~ATA_DNXFER_QUIET;
2383 
2384 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2385 						  dev->mwdma_mask,
2386 						  dev->udma_mask);
2387 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2388 
2389 	switch (sel) {
2390 	case ATA_DNXFER_PIO:
2391 		highbit = fls(pio_mask) - 1;
2392 		pio_mask &= ~(1 << highbit);
2393 		break;
2394 
2395 	case ATA_DNXFER_DMA:
2396 		if (udma_mask) {
2397 			highbit = fls(udma_mask) - 1;
2398 			udma_mask &= ~(1 << highbit);
2399 			if (!udma_mask)
2400 				return -ENOENT;
2401 		} else if (mwdma_mask) {
2402 			highbit = fls(mwdma_mask) - 1;
2403 			mwdma_mask &= ~(1 << highbit);
2404 			if (!mwdma_mask)
2405 				return -ENOENT;
2406 		}
2407 		break;
2408 
2409 	case ATA_DNXFER_40C:
2410 		udma_mask &= ATA_UDMA_MASK_40C;
2411 		break;
2412 
2413 	case ATA_DNXFER_FORCE_PIO0:
2414 		pio_mask &= 1;
2415 	case ATA_DNXFER_FORCE_PIO:
2416 		mwdma_mask = 0;
2417 		udma_mask = 0;
2418 		break;
2419 
2420 	default:
2421 		BUG();
2422 	}
2423 
2424 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2425 
2426 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2427 		return -ENOENT;
2428 
2429 	if (!quiet) {
2430 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2431 			snprintf(buf, sizeof(buf), "%s:%s",
2432 				 ata_mode_string(xfer_mask),
2433 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2434 		else
2435 			snprintf(buf, sizeof(buf), "%s",
2436 				 ata_mode_string(xfer_mask));
2437 
2438 		ata_dev_printk(dev, KERN_WARNING,
2439 			       "limiting speed to %s\n", buf);
2440 	}
2441 
2442 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2443 			    &dev->udma_mask);
2444 
2445 	return 0;
2446 }
2447 
2448 static int ata_dev_set_mode(struct ata_device *dev)
2449 {
2450 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2451 	unsigned int err_mask;
2452 	int rc;
2453 
2454 	dev->flags &= ~ATA_DFLAG_PIO;
2455 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2456 		dev->flags |= ATA_DFLAG_PIO;
2457 
2458 	err_mask = ata_dev_set_xfermode(dev);
2459 	/* Old CFA may refuse this command, which is just fine */
2460 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2461         	err_mask &= ~AC_ERR_DEV;
2462 
2463 	if (err_mask) {
2464 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2465 			       "(err_mask=0x%x)\n", err_mask);
2466 		return -EIO;
2467 	}
2468 
2469 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2470 	rc = ata_dev_revalidate(dev, 0);
2471 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2472 	if (rc)
2473 		return rc;
2474 
2475 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2476 		dev->xfer_shift, (int)dev->xfer_mode);
2477 
2478 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2479 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2480 	return 0;
2481 }
2482 
2483 /**
2484  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2485  *	@ap: port on which timings will be programmed
2486  *	@r_failed_dev: out paramter for failed device
2487  *
2488  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2489  *	ata_set_mode() fails, pointer to the failing device is
2490  *	returned in @r_failed_dev.
2491  *
2492  *	LOCKING:
2493  *	PCI/etc. bus probe sem.
2494  *
2495  *	RETURNS:
2496  *	0 on success, negative errno otherwise
2497  */
2498 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2499 {
2500 	struct ata_device *dev;
2501 	int i, rc = 0, used_dma = 0, found = 0;
2502 
2503 	/* has private set_mode? */
2504 	if (ap->ops->set_mode)
2505 		return ap->ops->set_mode(ap, r_failed_dev);
2506 
2507 	/* step 1: calculate xfer_mask */
2508 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2509 		unsigned int pio_mask, dma_mask;
2510 
2511 		dev = &ap->device[i];
2512 
2513 		if (!ata_dev_enabled(dev))
2514 			continue;
2515 
2516 		ata_dev_xfermask(dev);
2517 
2518 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2519 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2520 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2521 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2522 
2523 		found = 1;
2524 		if (dev->dma_mode)
2525 			used_dma = 1;
2526 	}
2527 	if (!found)
2528 		goto out;
2529 
2530 	/* step 2: always set host PIO timings */
2531 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2532 		dev = &ap->device[i];
2533 		if (!ata_dev_enabled(dev))
2534 			continue;
2535 
2536 		if (!dev->pio_mode) {
2537 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2538 			rc = -EINVAL;
2539 			goto out;
2540 		}
2541 
2542 		dev->xfer_mode = dev->pio_mode;
2543 		dev->xfer_shift = ATA_SHIFT_PIO;
2544 		if (ap->ops->set_piomode)
2545 			ap->ops->set_piomode(ap, dev);
2546 	}
2547 
2548 	/* step 3: set host DMA timings */
2549 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2550 		dev = &ap->device[i];
2551 
2552 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2553 			continue;
2554 
2555 		dev->xfer_mode = dev->dma_mode;
2556 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2557 		if (ap->ops->set_dmamode)
2558 			ap->ops->set_dmamode(ap, dev);
2559 	}
2560 
2561 	/* step 4: update devices' xfer mode */
2562 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2563 		dev = &ap->device[i];
2564 
2565 		/* don't update suspended devices' xfer mode */
2566 		if (!ata_dev_ready(dev))
2567 			continue;
2568 
2569 		rc = ata_dev_set_mode(dev);
2570 		if (rc)
2571 			goto out;
2572 	}
2573 
2574 	/* Record simplex status. If we selected DMA then the other
2575 	 * host channels are not permitted to do so.
2576 	 */
2577 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2578 		ap->host->simplex_claimed = ap;
2579 
2580 	/* step5: chip specific finalisation */
2581 	if (ap->ops->post_set_mode)
2582 		ap->ops->post_set_mode(ap);
2583  out:
2584 	if (rc)
2585 		*r_failed_dev = dev;
2586 	return rc;
2587 }
2588 
2589 /**
2590  *	ata_tf_to_host - issue ATA taskfile to host controller
2591  *	@ap: port to which command is being issued
2592  *	@tf: ATA taskfile register set
2593  *
2594  *	Issues ATA taskfile register set to ATA host controller,
2595  *	with proper synchronization with interrupt handler and
2596  *	other threads.
2597  *
2598  *	LOCKING:
2599  *	spin_lock_irqsave(host lock)
2600  */
2601 
2602 static inline void ata_tf_to_host(struct ata_port *ap,
2603 				  const struct ata_taskfile *tf)
2604 {
2605 	ap->ops->tf_load(ap, tf);
2606 	ap->ops->exec_command(ap, tf);
2607 }
2608 
2609 /**
2610  *	ata_busy_sleep - sleep until BSY clears, or timeout
2611  *	@ap: port containing status register to be polled
2612  *	@tmout_pat: impatience timeout
2613  *	@tmout: overall timeout
2614  *
2615  *	Sleep until ATA Status register bit BSY clears,
2616  *	or a timeout occurs.
2617  *
2618  *	LOCKING:
2619  *	Kernel thread context (may sleep).
2620  *
2621  *	RETURNS:
2622  *	0 on success, -errno otherwise.
2623  */
2624 int ata_busy_sleep(struct ata_port *ap,
2625 		   unsigned long tmout_pat, unsigned long tmout)
2626 {
2627 	unsigned long timer_start, timeout;
2628 	u8 status;
2629 
2630 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2631 	timer_start = jiffies;
2632 	timeout = timer_start + tmout_pat;
2633 	while (status != 0xff && (status & ATA_BUSY) &&
2634 	       time_before(jiffies, timeout)) {
2635 		msleep(50);
2636 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2637 	}
2638 
2639 	if (status != 0xff && (status & ATA_BUSY))
2640 		ata_port_printk(ap, KERN_WARNING,
2641 				"port is slow to respond, please be patient "
2642 				"(Status 0x%x)\n", status);
2643 
2644 	timeout = timer_start + tmout;
2645 	while (status != 0xff && (status & ATA_BUSY) &&
2646 	       time_before(jiffies, timeout)) {
2647 		msleep(50);
2648 		status = ata_chk_status(ap);
2649 	}
2650 
2651 	if (status == 0xff)
2652 		return -ENODEV;
2653 
2654 	if (status & ATA_BUSY) {
2655 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2656 				"(%lu secs, Status 0x%x)\n",
2657 				tmout / HZ, status);
2658 		return -EBUSY;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2665 {
2666 	struct ata_ioports *ioaddr = &ap->ioaddr;
2667 	unsigned int dev0 = devmask & (1 << 0);
2668 	unsigned int dev1 = devmask & (1 << 1);
2669 	unsigned long timeout;
2670 
2671 	/* if device 0 was found in ata_devchk, wait for its
2672 	 * BSY bit to clear
2673 	 */
2674 	if (dev0)
2675 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2676 
2677 	/* if device 1 was found in ata_devchk, wait for
2678 	 * register access, then wait for BSY to clear
2679 	 */
2680 	timeout = jiffies + ATA_TMOUT_BOOT;
2681 	while (dev1) {
2682 		u8 nsect, lbal;
2683 
2684 		ap->ops->dev_select(ap, 1);
2685 		nsect = ioread8(ioaddr->nsect_addr);
2686 		lbal = ioread8(ioaddr->lbal_addr);
2687 		if ((nsect == 1) && (lbal == 1))
2688 			break;
2689 		if (time_after(jiffies, timeout)) {
2690 			dev1 = 0;
2691 			break;
2692 		}
2693 		msleep(50);	/* give drive a breather */
2694 	}
2695 	if (dev1)
2696 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2697 
2698 	/* is all this really necessary? */
2699 	ap->ops->dev_select(ap, 0);
2700 	if (dev1)
2701 		ap->ops->dev_select(ap, 1);
2702 	if (dev0)
2703 		ap->ops->dev_select(ap, 0);
2704 }
2705 
2706 static unsigned int ata_bus_softreset(struct ata_port *ap,
2707 				      unsigned int devmask)
2708 {
2709 	struct ata_ioports *ioaddr = &ap->ioaddr;
2710 
2711 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2712 
2713 	/* software reset.  causes dev0 to be selected */
2714 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2715 	udelay(20);	/* FIXME: flush */
2716 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2717 	udelay(20);	/* FIXME: flush */
2718 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2719 
2720 	/* spec mandates ">= 2ms" before checking status.
2721 	 * We wait 150ms, because that was the magic delay used for
2722 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2723 	 * between when the ATA command register is written, and then
2724 	 * status is checked.  Because waiting for "a while" before
2725 	 * checking status is fine, post SRST, we perform this magic
2726 	 * delay here as well.
2727 	 *
2728 	 * Old drivers/ide uses the 2mS rule and then waits for ready
2729 	 */
2730 	msleep(150);
2731 
2732 	/* Before we perform post reset processing we want to see if
2733 	 * the bus shows 0xFF because the odd clown forgets the D7
2734 	 * pulldown resistor.
2735 	 */
2736 	if (ata_check_status(ap) == 0xFF)
2737 		return 0;
2738 
2739 	ata_bus_post_reset(ap, devmask);
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  *	ata_bus_reset - reset host port and associated ATA channel
2746  *	@ap: port to reset
2747  *
2748  *	This is typically the first time we actually start issuing
2749  *	commands to the ATA channel.  We wait for BSY to clear, then
2750  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2751  *	result.  Determine what devices, if any, are on the channel
2752  *	by looking at the device 0/1 error register.  Look at the signature
2753  *	stored in each device's taskfile registers, to determine if
2754  *	the device is ATA or ATAPI.
2755  *
2756  *	LOCKING:
2757  *	PCI/etc. bus probe sem.
2758  *	Obtains host lock.
2759  *
2760  *	SIDE EFFECTS:
2761  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2762  */
2763 
2764 void ata_bus_reset(struct ata_port *ap)
2765 {
2766 	struct ata_ioports *ioaddr = &ap->ioaddr;
2767 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2768 	u8 err;
2769 	unsigned int dev0, dev1 = 0, devmask = 0;
2770 
2771 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2772 
2773 	/* determine if device 0/1 are present */
2774 	if (ap->flags & ATA_FLAG_SATA_RESET)
2775 		dev0 = 1;
2776 	else {
2777 		dev0 = ata_devchk(ap, 0);
2778 		if (slave_possible)
2779 			dev1 = ata_devchk(ap, 1);
2780 	}
2781 
2782 	if (dev0)
2783 		devmask |= (1 << 0);
2784 	if (dev1)
2785 		devmask |= (1 << 1);
2786 
2787 	/* select device 0 again */
2788 	ap->ops->dev_select(ap, 0);
2789 
2790 	/* issue bus reset */
2791 	if (ap->flags & ATA_FLAG_SRST)
2792 		if (ata_bus_softreset(ap, devmask))
2793 			goto err_out;
2794 
2795 	/*
2796 	 * determine by signature whether we have ATA or ATAPI devices
2797 	 */
2798 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2799 	if ((slave_possible) && (err != 0x81))
2800 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2801 
2802 	/* re-enable interrupts */
2803 	ap->ops->irq_on(ap);
2804 
2805 	/* is double-select really necessary? */
2806 	if (ap->device[1].class != ATA_DEV_NONE)
2807 		ap->ops->dev_select(ap, 1);
2808 	if (ap->device[0].class != ATA_DEV_NONE)
2809 		ap->ops->dev_select(ap, 0);
2810 
2811 	/* if no devices were detected, disable this port */
2812 	if ((ap->device[0].class == ATA_DEV_NONE) &&
2813 	    (ap->device[1].class == ATA_DEV_NONE))
2814 		goto err_out;
2815 
2816 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2817 		/* set up device control for ATA_FLAG_SATA_RESET */
2818 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2819 	}
2820 
2821 	DPRINTK("EXIT\n");
2822 	return;
2823 
2824 err_out:
2825 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2826 	ap->ops->port_disable(ap);
2827 
2828 	DPRINTK("EXIT\n");
2829 }
2830 
2831 /**
2832  *	sata_phy_debounce - debounce SATA phy status
2833  *	@ap: ATA port to debounce SATA phy status for
2834  *	@params: timing parameters { interval, duratinon, timeout } in msec
2835  *
2836  *	Make sure SStatus of @ap reaches stable state, determined by
2837  *	holding the same value where DET is not 1 for @duration polled
2838  *	every @interval, before @timeout.  Timeout constraints the
2839  *	beginning of the stable state.  Because, after hot unplugging,
2840  *	DET gets stuck at 1 on some controllers, this functions waits
2841  *	until timeout then returns 0 if DET is stable at 1.
2842  *
2843  *	LOCKING:
2844  *	Kernel thread context (may sleep)
2845  *
2846  *	RETURNS:
2847  *	0 on success, -errno on failure.
2848  */
2849 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2850 {
2851 	unsigned long interval_msec = params[0];
2852 	unsigned long duration = params[1] * HZ / 1000;
2853 	unsigned long timeout = jiffies + params[2] * HZ / 1000;
2854 	unsigned long last_jiffies;
2855 	u32 last, cur;
2856 	int rc;
2857 
2858 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2859 		return rc;
2860 	cur &= 0xf;
2861 
2862 	last = cur;
2863 	last_jiffies = jiffies;
2864 
2865 	while (1) {
2866 		msleep(interval_msec);
2867 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2868 			return rc;
2869 		cur &= 0xf;
2870 
2871 		/* DET stable? */
2872 		if (cur == last) {
2873 			if (cur == 1 && time_before(jiffies, timeout))
2874 				continue;
2875 			if (time_after(jiffies, last_jiffies + duration))
2876 				return 0;
2877 			continue;
2878 		}
2879 
2880 		/* unstable, start over */
2881 		last = cur;
2882 		last_jiffies = jiffies;
2883 
2884 		/* check timeout */
2885 		if (time_after(jiffies, timeout))
2886 			return -EBUSY;
2887 	}
2888 }
2889 
2890 /**
2891  *	sata_phy_resume - resume SATA phy
2892  *	@ap: ATA port to resume SATA phy for
2893  *	@params: timing parameters { interval, duratinon, timeout } in msec
2894  *
2895  *	Resume SATA phy of @ap and debounce it.
2896  *
2897  *	LOCKING:
2898  *	Kernel thread context (may sleep)
2899  *
2900  *	RETURNS:
2901  *	0 on success, -errno on failure.
2902  */
2903 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2904 {
2905 	u32 scontrol;
2906 	int rc;
2907 
2908 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2909 		return rc;
2910 
2911 	scontrol = (scontrol & 0x0f0) | 0x300;
2912 
2913 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2914 		return rc;
2915 
2916 	/* Some PHYs react badly if SStatus is pounded immediately
2917 	 * after resuming.  Delay 200ms before debouncing.
2918 	 */
2919 	msleep(200);
2920 
2921 	return sata_phy_debounce(ap, params);
2922 }
2923 
2924 static void ata_wait_spinup(struct ata_port *ap)
2925 {
2926 	struct ata_eh_context *ehc = &ap->eh_context;
2927 	unsigned long end, secs;
2928 	int rc;
2929 
2930 	/* first, debounce phy if SATA */
2931 	if (ap->cbl == ATA_CBL_SATA) {
2932 		rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2933 
2934 		/* if debounced successfully and offline, no need to wait */
2935 		if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2936 			return;
2937 	}
2938 
2939 	/* okay, let's give the drive time to spin up */
2940 	end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2941 	secs = ((end - jiffies) + HZ - 1) / HZ;
2942 
2943 	if (time_after(jiffies, end))
2944 		return;
2945 
2946 	if (secs > 5)
2947 		ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2948 				"(%lu secs)\n", secs);
2949 
2950 	schedule_timeout_uninterruptible(end - jiffies);
2951 }
2952 
2953 /**
2954  *	ata_std_prereset - prepare for reset
2955  *	@ap: ATA port to be reset
2956  *
2957  *	@ap is about to be reset.  Initialize it.
2958  *
2959  *	LOCKING:
2960  *	Kernel thread context (may sleep)
2961  *
2962  *	RETURNS:
2963  *	0 on success, -errno otherwise.
2964  */
2965 int ata_std_prereset(struct ata_port *ap)
2966 {
2967 	struct ata_eh_context *ehc = &ap->eh_context;
2968 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2969 	int rc;
2970 
2971 	/* handle link resume & hotplug spinup */
2972 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2973 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2974 		ehc->i.action |= ATA_EH_HARDRESET;
2975 
2976 	if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2977 	    (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2978 		ata_wait_spinup(ap);
2979 
2980 	/* if we're about to do hardreset, nothing more to do */
2981 	if (ehc->i.action & ATA_EH_HARDRESET)
2982 		return 0;
2983 
2984 	/* if SATA, resume phy */
2985 	if (ap->cbl == ATA_CBL_SATA) {
2986 		rc = sata_phy_resume(ap, timing);
2987 		if (rc && rc != -EOPNOTSUPP) {
2988 			/* phy resume failed */
2989 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
2990 					"link for reset (errno=%d)\n", rc);
2991 			return rc;
2992 		}
2993 	}
2994 
2995 	/* Wait for !BSY if the controller can wait for the first D2H
2996 	 * Reg FIS and we don't know that no device is attached.
2997 	 */
2998 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2999 		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3000 
3001 	return 0;
3002 }
3003 
3004 /**
3005  *	ata_std_softreset - reset host port via ATA SRST
3006  *	@ap: port to reset
3007  *	@classes: resulting classes of attached devices
3008  *
3009  *	Reset host port using ATA SRST.
3010  *
3011  *	LOCKING:
3012  *	Kernel thread context (may sleep)
3013  *
3014  *	RETURNS:
3015  *	0 on success, -errno otherwise.
3016  */
3017 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3018 {
3019 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3020 	unsigned int devmask = 0, err_mask;
3021 	u8 err;
3022 
3023 	DPRINTK("ENTER\n");
3024 
3025 	if (ata_port_offline(ap)) {
3026 		classes[0] = ATA_DEV_NONE;
3027 		goto out;
3028 	}
3029 
3030 	/* determine if device 0/1 are present */
3031 	if (ata_devchk(ap, 0))
3032 		devmask |= (1 << 0);
3033 	if (slave_possible && ata_devchk(ap, 1))
3034 		devmask |= (1 << 1);
3035 
3036 	/* select device 0 again */
3037 	ap->ops->dev_select(ap, 0);
3038 
3039 	/* issue bus reset */
3040 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3041 	err_mask = ata_bus_softreset(ap, devmask);
3042 	if (err_mask) {
3043 		ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3044 				err_mask);
3045 		return -EIO;
3046 	}
3047 
3048 	/* determine by signature whether we have ATA or ATAPI devices */
3049 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3050 	if (slave_possible && err != 0x81)
3051 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3052 
3053  out:
3054 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3055 	return 0;
3056 }
3057 
3058 /**
3059  *	sata_port_hardreset - reset port via SATA phy reset
3060  *	@ap: port to reset
3061  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3062  *
3063  *	SATA phy-reset host port using DET bits of SControl register.
3064  *
3065  *	LOCKING:
3066  *	Kernel thread context (may sleep)
3067  *
3068  *	RETURNS:
3069  *	0 on success, -errno otherwise.
3070  */
3071 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3072 {
3073 	u32 scontrol;
3074 	int rc;
3075 
3076 	DPRINTK("ENTER\n");
3077 
3078 	if (sata_set_spd_needed(ap)) {
3079 		/* SATA spec says nothing about how to reconfigure
3080 		 * spd.  To be on the safe side, turn off phy during
3081 		 * reconfiguration.  This works for at least ICH7 AHCI
3082 		 * and Sil3124.
3083 		 */
3084 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3085 			goto out;
3086 
3087 		scontrol = (scontrol & 0x0f0) | 0x304;
3088 
3089 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3090 			goto out;
3091 
3092 		sata_set_spd(ap);
3093 	}
3094 
3095 	/* issue phy wake/reset */
3096 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3097 		goto out;
3098 
3099 	scontrol = (scontrol & 0x0f0) | 0x301;
3100 
3101 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3102 		goto out;
3103 
3104 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3105 	 * 10.4.2 says at least 1 ms.
3106 	 */
3107 	msleep(1);
3108 
3109 	/* bring phy back */
3110 	rc = sata_phy_resume(ap, timing);
3111  out:
3112 	DPRINTK("EXIT, rc=%d\n", rc);
3113 	return rc;
3114 }
3115 
3116 /**
3117  *	sata_std_hardreset - reset host port via SATA phy reset
3118  *	@ap: port to reset
3119  *	@class: resulting class of attached device
3120  *
3121  *	SATA phy-reset host port using DET bits of SControl register,
3122  *	wait for !BSY and classify the attached device.
3123  *
3124  *	LOCKING:
3125  *	Kernel thread context (may sleep)
3126  *
3127  *	RETURNS:
3128  *	0 on success, -errno otherwise.
3129  */
3130 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3131 {
3132 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3133 	int rc;
3134 
3135 	DPRINTK("ENTER\n");
3136 
3137 	/* do hardreset */
3138 	rc = sata_port_hardreset(ap, timing);
3139 	if (rc) {
3140 		ata_port_printk(ap, KERN_ERR,
3141 				"COMRESET failed (errno=%d)\n", rc);
3142 		return rc;
3143 	}
3144 
3145 	/* TODO: phy layer with polling, timeouts, etc. */
3146 	if (ata_port_offline(ap)) {
3147 		*class = ATA_DEV_NONE;
3148 		DPRINTK("EXIT, link offline\n");
3149 		return 0;
3150 	}
3151 
3152 	/* wait a while before checking status, see SRST for more info */
3153 	msleep(150);
3154 
3155 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3156 		ata_port_printk(ap, KERN_ERR,
3157 				"COMRESET failed (device not ready)\n");
3158 		return -EIO;
3159 	}
3160 
3161 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3162 
3163 	*class = ata_dev_try_classify(ap, 0, NULL);
3164 
3165 	DPRINTK("EXIT, class=%u\n", *class);
3166 	return 0;
3167 }
3168 
3169 /**
3170  *	ata_std_postreset - standard postreset callback
3171  *	@ap: the target ata_port
3172  *	@classes: classes of attached devices
3173  *
3174  *	This function is invoked after a successful reset.  Note that
3175  *	the device might have been reset more than once using
3176  *	different reset methods before postreset is invoked.
3177  *
3178  *	LOCKING:
3179  *	Kernel thread context (may sleep)
3180  */
3181 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3182 {
3183 	u32 serror;
3184 
3185 	DPRINTK("ENTER\n");
3186 
3187 	/* print link status */
3188 	sata_print_link_status(ap);
3189 
3190 	/* clear SError */
3191 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3192 		sata_scr_write(ap, SCR_ERROR, serror);
3193 
3194 	/* re-enable interrupts */
3195 	if (!ap->ops->error_handler)
3196 		ap->ops->irq_on(ap);
3197 
3198 	/* is double-select really necessary? */
3199 	if (classes[0] != ATA_DEV_NONE)
3200 		ap->ops->dev_select(ap, 1);
3201 	if (classes[1] != ATA_DEV_NONE)
3202 		ap->ops->dev_select(ap, 0);
3203 
3204 	/* bail out if no device is present */
3205 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3206 		DPRINTK("EXIT, no device\n");
3207 		return;
3208 	}
3209 
3210 	/* set up device control */
3211 	if (ap->ioaddr.ctl_addr)
3212 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3213 
3214 	DPRINTK("EXIT\n");
3215 }
3216 
3217 /**
3218  *	ata_dev_same_device - Determine whether new ID matches configured device
3219  *	@dev: device to compare against
3220  *	@new_class: class of the new device
3221  *	@new_id: IDENTIFY page of the new device
3222  *
3223  *	Compare @new_class and @new_id against @dev and determine
3224  *	whether @dev is the device indicated by @new_class and
3225  *	@new_id.
3226  *
3227  *	LOCKING:
3228  *	None.
3229  *
3230  *	RETURNS:
3231  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3232  */
3233 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3234 			       const u16 *new_id)
3235 {
3236 	const u16 *old_id = dev->id;
3237 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3238 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3239 	u64 new_n_sectors;
3240 
3241 	if (dev->class != new_class) {
3242 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3243 			       dev->class, new_class);
3244 		return 0;
3245 	}
3246 
3247 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3248 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3249 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3250 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3251 	new_n_sectors = ata_id_n_sectors(new_id);
3252 
3253 	if (strcmp(model[0], model[1])) {
3254 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3255 			       "'%s' != '%s'\n", model[0], model[1]);
3256 		return 0;
3257 	}
3258 
3259 	if (strcmp(serial[0], serial[1])) {
3260 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3261 			       "'%s' != '%s'\n", serial[0], serial[1]);
3262 		return 0;
3263 	}
3264 
3265 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3266 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3267 			       "%llu != %llu\n",
3268 			       (unsigned long long)dev->n_sectors,
3269 			       (unsigned long long)new_n_sectors);
3270 		return 0;
3271 	}
3272 
3273 	return 1;
3274 }
3275 
3276 /**
3277  *	ata_dev_revalidate - Revalidate ATA device
3278  *	@dev: device to revalidate
3279  *	@readid_flags: read ID flags
3280  *
3281  *	Re-read IDENTIFY page and make sure @dev is still attached to
3282  *	the port.
3283  *
3284  *	LOCKING:
3285  *	Kernel thread context (may sleep)
3286  *
3287  *	RETURNS:
3288  *	0 on success, negative errno otherwise
3289  */
3290 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3291 {
3292 	unsigned int class = dev->class;
3293 	u16 *id = (void *)dev->ap->sector_buf;
3294 	int rc;
3295 
3296 	if (!ata_dev_enabled(dev)) {
3297 		rc = -ENODEV;
3298 		goto fail;
3299 	}
3300 
3301 	/* read ID data */
3302 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3303 	if (rc)
3304 		goto fail;
3305 
3306 	/* is the device still there? */
3307 	if (!ata_dev_same_device(dev, class, id)) {
3308 		rc = -ENODEV;
3309 		goto fail;
3310 	}
3311 
3312 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3313 
3314 	/* configure device according to the new ID */
3315 	rc = ata_dev_configure(dev);
3316 	if (rc == 0)
3317 		return 0;
3318 
3319  fail:
3320 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3321 	return rc;
3322 }
3323 
3324 struct ata_blacklist_entry {
3325 	const char *model_num;
3326 	const char *model_rev;
3327 	unsigned long horkage;
3328 };
3329 
3330 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3331 	/* Devices with DMA related problems under Linux */
3332 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3333 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3334 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3335 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3336 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3337 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3338 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3339 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3340 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3341 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3342 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3343 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3344 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3345 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3346 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3347 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3348 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3349 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3350 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3351 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3352 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3353 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3354 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3355 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3356 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3357 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3358 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3359 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3360 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3361 
3362 	/* Weird ATAPI devices */
3363 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 |
3364 						ATA_HORKAGE_DMA_RW_ONLY },
3365 
3366 	/* Devices we expect to fail diagnostics */
3367 
3368 	/* Devices where NCQ should be avoided */
3369 	/* NCQ is slow */
3370         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3371 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3372 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3373 	/* NCQ is broken */
3374 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3375 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3376 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3377 	/* Blacklist entries taken from Silicon Image 3124/3132
3378 	   Windows driver .inf file - also several Linux problem reports */
3379 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3380 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3381 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3382 
3383 	/* Devices with NCQ limits */
3384 
3385 	/* End Marker */
3386 	{ }
3387 };
3388 
3389 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3390 {
3391 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3392 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3393 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3394 
3395 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3396 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3397 
3398 	while (ad->model_num) {
3399 		if (!strcmp(ad->model_num, model_num)) {
3400 			if (ad->model_rev == NULL)
3401 				return ad->horkage;
3402 			if (!strcmp(ad->model_rev, model_rev))
3403 				return ad->horkage;
3404 		}
3405 		ad++;
3406 	}
3407 	return 0;
3408 }
3409 
3410 static int ata_dma_blacklisted(const struct ata_device *dev)
3411 {
3412 	/* We don't support polling DMA.
3413 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3414 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3415 	 */
3416 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3417 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3418 		return 1;
3419 	return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3420 }
3421 
3422 /**
3423  *	ata_dev_xfermask - Compute supported xfermask of the given device
3424  *	@dev: Device to compute xfermask for
3425  *
3426  *	Compute supported xfermask of @dev and store it in
3427  *	dev->*_mask.  This function is responsible for applying all
3428  *	known limits including host controller limits, device
3429  *	blacklist, etc...
3430  *
3431  *	LOCKING:
3432  *	None.
3433  */
3434 static void ata_dev_xfermask(struct ata_device *dev)
3435 {
3436 	struct ata_port *ap = dev->ap;
3437 	struct ata_host *host = ap->host;
3438 	unsigned long xfer_mask;
3439 
3440 	/* controller modes available */
3441 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3442 				      ap->mwdma_mask, ap->udma_mask);
3443 
3444 	/* Apply cable rule here.  Don't apply it early because when
3445 	 * we handle hot plug the cable type can itself change.
3446 	 */
3447 	if (ap->cbl == ATA_CBL_PATA40)
3448 		xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3449 	/* Apply drive side cable rule. Unknown or 80 pin cables reported
3450 	 * host side are checked drive side as well. Cases where we know a
3451 	 * 40wire cable is used safely for 80 are not checked here.
3452 	 */
3453         if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3454 		xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3455 
3456 
3457 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3458 				       dev->mwdma_mask, dev->udma_mask);
3459 	xfer_mask &= ata_id_xfermask(dev->id);
3460 
3461 	/*
3462 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3463 	 *	cable
3464 	 */
3465 	if (ata_dev_pair(dev)) {
3466 		/* No PIO5 or PIO6 */
3467 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3468 		/* No MWDMA3 or MWDMA 4 */
3469 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3470 	}
3471 
3472 	if (ata_dma_blacklisted(dev)) {
3473 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3474 		ata_dev_printk(dev, KERN_WARNING,
3475 			       "device is on DMA blacklist, disabling DMA\n");
3476 	}
3477 
3478 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3479             host->simplex_claimed && host->simplex_claimed != ap) {
3480 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3481 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3482 			       "other device, disabling DMA\n");
3483 	}
3484 
3485 	if (ap->ops->mode_filter)
3486 		xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3487 
3488 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3489 			    &dev->mwdma_mask, &dev->udma_mask);
3490 }
3491 
3492 /**
3493  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3494  *	@dev: Device to which command will be sent
3495  *
3496  *	Issue SET FEATURES - XFER MODE command to device @dev
3497  *	on port @ap.
3498  *
3499  *	LOCKING:
3500  *	PCI/etc. bus probe sem.
3501  *
3502  *	RETURNS:
3503  *	0 on success, AC_ERR_* mask otherwise.
3504  */
3505 
3506 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3507 {
3508 	struct ata_taskfile tf;
3509 	unsigned int err_mask;
3510 
3511 	/* set up set-features taskfile */
3512 	DPRINTK("set features - xfer mode\n");
3513 
3514 	ata_tf_init(dev, &tf);
3515 	tf.command = ATA_CMD_SET_FEATURES;
3516 	tf.feature = SETFEATURES_XFER;
3517 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3518 	tf.protocol = ATA_PROT_NODATA;
3519 	tf.nsect = dev->xfer_mode;
3520 
3521 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3522 
3523 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3524 	return err_mask;
3525 }
3526 
3527 /**
3528  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3529  *	@dev: Device to which command will be sent
3530  *	@heads: Number of heads (taskfile parameter)
3531  *	@sectors: Number of sectors (taskfile parameter)
3532  *
3533  *	LOCKING:
3534  *	Kernel thread context (may sleep)
3535  *
3536  *	RETURNS:
3537  *	0 on success, AC_ERR_* mask otherwise.
3538  */
3539 static unsigned int ata_dev_init_params(struct ata_device *dev,
3540 					u16 heads, u16 sectors)
3541 {
3542 	struct ata_taskfile tf;
3543 	unsigned int err_mask;
3544 
3545 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3546 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3547 		return AC_ERR_INVALID;
3548 
3549 	/* set up init dev params taskfile */
3550 	DPRINTK("init dev params \n");
3551 
3552 	ata_tf_init(dev, &tf);
3553 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3554 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3555 	tf.protocol = ATA_PROT_NODATA;
3556 	tf.nsect = sectors;
3557 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3558 
3559 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3560 
3561 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3562 	return err_mask;
3563 }
3564 
3565 /**
3566  *	ata_sg_clean - Unmap DMA memory associated with command
3567  *	@qc: Command containing DMA memory to be released
3568  *
3569  *	Unmap all mapped DMA memory associated with this command.
3570  *
3571  *	LOCKING:
3572  *	spin_lock_irqsave(host lock)
3573  */
3574 void ata_sg_clean(struct ata_queued_cmd *qc)
3575 {
3576 	struct ata_port *ap = qc->ap;
3577 	struct scatterlist *sg = qc->__sg;
3578 	int dir = qc->dma_dir;
3579 	void *pad_buf = NULL;
3580 
3581 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3582 	WARN_ON(sg == NULL);
3583 
3584 	if (qc->flags & ATA_QCFLAG_SINGLE)
3585 		WARN_ON(qc->n_elem > 1);
3586 
3587 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3588 
3589 	/* if we padded the buffer out to 32-bit bound, and data
3590 	 * xfer direction is from-device, we must copy from the
3591 	 * pad buffer back into the supplied buffer
3592 	 */
3593 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3594 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3595 
3596 	if (qc->flags & ATA_QCFLAG_SG) {
3597 		if (qc->n_elem)
3598 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3599 		/* restore last sg */
3600 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
3601 		if (pad_buf) {
3602 			struct scatterlist *psg = &qc->pad_sgent;
3603 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
3604 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3605 			kunmap_atomic(addr, KM_IRQ0);
3606 		}
3607 	} else {
3608 		if (qc->n_elem)
3609 			dma_unmap_single(ap->dev,
3610 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3611 				dir);
3612 		/* restore sg */
3613 		sg->length += qc->pad_len;
3614 		if (pad_buf)
3615 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
3616 			       pad_buf, qc->pad_len);
3617 	}
3618 
3619 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
3620 	qc->__sg = NULL;
3621 }
3622 
3623 /**
3624  *	ata_fill_sg - Fill PCI IDE PRD table
3625  *	@qc: Metadata associated with taskfile to be transferred
3626  *
3627  *	Fill PCI IDE PRD (scatter-gather) table with segments
3628  *	associated with the current disk command.
3629  *
3630  *	LOCKING:
3631  *	spin_lock_irqsave(host lock)
3632  *
3633  */
3634 static void ata_fill_sg(struct ata_queued_cmd *qc)
3635 {
3636 	struct ata_port *ap = qc->ap;
3637 	struct scatterlist *sg;
3638 	unsigned int idx;
3639 
3640 	WARN_ON(qc->__sg == NULL);
3641 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3642 
3643 	idx = 0;
3644 	ata_for_each_sg(sg, qc) {
3645 		u32 addr, offset;
3646 		u32 sg_len, len;
3647 
3648 		/* determine if physical DMA addr spans 64K boundary.
3649 		 * Note h/w doesn't support 64-bit, so we unconditionally
3650 		 * truncate dma_addr_t to u32.
3651 		 */
3652 		addr = (u32) sg_dma_address(sg);
3653 		sg_len = sg_dma_len(sg);
3654 
3655 		while (sg_len) {
3656 			offset = addr & 0xffff;
3657 			len = sg_len;
3658 			if ((offset + sg_len) > 0x10000)
3659 				len = 0x10000 - offset;
3660 
3661 			ap->prd[idx].addr = cpu_to_le32(addr);
3662 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3663 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3664 
3665 			idx++;
3666 			sg_len -= len;
3667 			addr += len;
3668 		}
3669 	}
3670 
3671 	if (idx)
3672 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3673 }
3674 /**
3675  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3676  *	@qc: Metadata associated with taskfile to check
3677  *
3678  *	Allow low-level driver to filter ATA PACKET commands, returning
3679  *	a status indicating whether or not it is OK to use DMA for the
3680  *	supplied PACKET command.
3681  *
3682  *	LOCKING:
3683  *	spin_lock_irqsave(host lock)
3684  *
3685  *	RETURNS: 0 when ATAPI DMA can be used
3686  *               nonzero otherwise
3687  */
3688 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3689 {
3690 	struct ata_port *ap = qc->ap;
3691 	int rc = 0; /* Assume ATAPI DMA is OK by default */
3692 
3693 	/* some drives can only do ATAPI DMA on read/write */
3694 	if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3695 		struct scsi_cmnd *cmd = qc->scsicmd;
3696 		u8 *scsicmd = cmd->cmnd;
3697 
3698 		switch (scsicmd[0]) {
3699 		case READ_10:
3700 		case WRITE_10:
3701 		case READ_12:
3702 		case WRITE_12:
3703 		case READ_6:
3704 		case WRITE_6:
3705 			/* atapi dma maybe ok */
3706 			break;
3707 		default:
3708 			/* turn off atapi dma */
3709 			return 1;
3710 		}
3711 	}
3712 
3713 	if (ap->ops->check_atapi_dma)
3714 		rc = ap->ops->check_atapi_dma(qc);
3715 
3716 	return rc;
3717 }
3718 /**
3719  *	ata_qc_prep - Prepare taskfile for submission
3720  *	@qc: Metadata associated with taskfile to be prepared
3721  *
3722  *	Prepare ATA taskfile for submission.
3723  *
3724  *	LOCKING:
3725  *	spin_lock_irqsave(host lock)
3726  */
3727 void ata_qc_prep(struct ata_queued_cmd *qc)
3728 {
3729 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3730 		return;
3731 
3732 	ata_fill_sg(qc);
3733 }
3734 
3735 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3736 
3737 /**
3738  *	ata_sg_init_one - Associate command with memory buffer
3739  *	@qc: Command to be associated
3740  *	@buf: Memory buffer
3741  *	@buflen: Length of memory buffer, in bytes.
3742  *
3743  *	Initialize the data-related elements of queued_cmd @qc
3744  *	to point to a single memory buffer, @buf of byte length @buflen.
3745  *
3746  *	LOCKING:
3747  *	spin_lock_irqsave(host lock)
3748  */
3749 
3750 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3751 {
3752 	qc->flags |= ATA_QCFLAG_SINGLE;
3753 
3754 	qc->__sg = &qc->sgent;
3755 	qc->n_elem = 1;
3756 	qc->orig_n_elem = 1;
3757 	qc->buf_virt = buf;
3758 	qc->nbytes = buflen;
3759 
3760 	sg_init_one(&qc->sgent, buf, buflen);
3761 }
3762 
3763 /**
3764  *	ata_sg_init - Associate command with scatter-gather table.
3765  *	@qc: Command to be associated
3766  *	@sg: Scatter-gather table.
3767  *	@n_elem: Number of elements in s/g table.
3768  *
3769  *	Initialize the data-related elements of queued_cmd @qc
3770  *	to point to a scatter-gather table @sg, containing @n_elem
3771  *	elements.
3772  *
3773  *	LOCKING:
3774  *	spin_lock_irqsave(host lock)
3775  */
3776 
3777 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3778 		 unsigned int n_elem)
3779 {
3780 	qc->flags |= ATA_QCFLAG_SG;
3781 	qc->__sg = sg;
3782 	qc->n_elem = n_elem;
3783 	qc->orig_n_elem = n_elem;
3784 }
3785 
3786 /**
3787  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3788  *	@qc: Command with memory buffer to be mapped.
3789  *
3790  *	DMA-map the memory buffer associated with queued_cmd @qc.
3791  *
3792  *	LOCKING:
3793  *	spin_lock_irqsave(host lock)
3794  *
3795  *	RETURNS:
3796  *	Zero on success, negative on error.
3797  */
3798 
3799 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3800 {
3801 	struct ata_port *ap = qc->ap;
3802 	int dir = qc->dma_dir;
3803 	struct scatterlist *sg = qc->__sg;
3804 	dma_addr_t dma_address;
3805 	int trim_sg = 0;
3806 
3807 	/* we must lengthen transfers to end on a 32-bit boundary */
3808 	qc->pad_len = sg->length & 3;
3809 	if (qc->pad_len) {
3810 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3811 		struct scatterlist *psg = &qc->pad_sgent;
3812 
3813 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3814 
3815 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3816 
3817 		if (qc->tf.flags & ATA_TFLAG_WRITE)
3818 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3819 			       qc->pad_len);
3820 
3821 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3822 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3823 		/* trim sg */
3824 		sg->length -= qc->pad_len;
3825 		if (sg->length == 0)
3826 			trim_sg = 1;
3827 
3828 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3829 			sg->length, qc->pad_len);
3830 	}
3831 
3832 	if (trim_sg) {
3833 		qc->n_elem--;
3834 		goto skip_map;
3835 	}
3836 
3837 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
3838 				     sg->length, dir);
3839 	if (dma_mapping_error(dma_address)) {
3840 		/* restore sg */
3841 		sg->length += qc->pad_len;
3842 		return -1;
3843 	}
3844 
3845 	sg_dma_address(sg) = dma_address;
3846 	sg_dma_len(sg) = sg->length;
3847 
3848 skip_map:
3849 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3850 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3851 
3852 	return 0;
3853 }
3854 
3855 /**
3856  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3857  *	@qc: Command with scatter-gather table to be mapped.
3858  *
3859  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
3860  *
3861  *	LOCKING:
3862  *	spin_lock_irqsave(host lock)
3863  *
3864  *	RETURNS:
3865  *	Zero on success, negative on error.
3866  *
3867  */
3868 
3869 static int ata_sg_setup(struct ata_queued_cmd *qc)
3870 {
3871 	struct ata_port *ap = qc->ap;
3872 	struct scatterlist *sg = qc->__sg;
3873 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
3874 	int n_elem, pre_n_elem, dir, trim_sg = 0;
3875 
3876 	VPRINTK("ENTER, ata%u\n", ap->print_id);
3877 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3878 
3879 	/* we must lengthen transfers to end on a 32-bit boundary */
3880 	qc->pad_len = lsg->length & 3;
3881 	if (qc->pad_len) {
3882 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3883 		struct scatterlist *psg = &qc->pad_sgent;
3884 		unsigned int offset;
3885 
3886 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3887 
3888 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3889 
3890 		/*
3891 		 * psg->page/offset are used to copy to-be-written
3892 		 * data in this function or read data in ata_sg_clean.
3893 		 */
3894 		offset = lsg->offset + lsg->length - qc->pad_len;
3895 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3896 		psg->offset = offset_in_page(offset);
3897 
3898 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
3899 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
3900 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3901 			kunmap_atomic(addr, KM_IRQ0);
3902 		}
3903 
3904 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3905 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3906 		/* trim last sg */
3907 		lsg->length -= qc->pad_len;
3908 		if (lsg->length == 0)
3909 			trim_sg = 1;
3910 
3911 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3912 			qc->n_elem - 1, lsg->length, qc->pad_len);
3913 	}
3914 
3915 	pre_n_elem = qc->n_elem;
3916 	if (trim_sg && pre_n_elem)
3917 		pre_n_elem--;
3918 
3919 	if (!pre_n_elem) {
3920 		n_elem = 0;
3921 		goto skip_map;
3922 	}
3923 
3924 	dir = qc->dma_dir;
3925 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3926 	if (n_elem < 1) {
3927 		/* restore last sg */
3928 		lsg->length += qc->pad_len;
3929 		return -1;
3930 	}
3931 
3932 	DPRINTK("%d sg elements mapped\n", n_elem);
3933 
3934 skip_map:
3935 	qc->n_elem = n_elem;
3936 
3937 	return 0;
3938 }
3939 
3940 /**
3941  *	swap_buf_le16 - swap halves of 16-bit words in place
3942  *	@buf:  Buffer to swap
3943  *	@buf_words:  Number of 16-bit words in buffer.
3944  *
3945  *	Swap halves of 16-bit words if needed to convert from
3946  *	little-endian byte order to native cpu byte order, or
3947  *	vice-versa.
3948  *
3949  *	LOCKING:
3950  *	Inherited from caller.
3951  */
3952 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3953 {
3954 #ifdef __BIG_ENDIAN
3955 	unsigned int i;
3956 
3957 	for (i = 0; i < buf_words; i++)
3958 		buf[i] = le16_to_cpu(buf[i]);
3959 #endif /* __BIG_ENDIAN */
3960 }
3961 
3962 /**
3963  *	ata_data_xfer - Transfer data by PIO
3964  *	@adev: device to target
3965  *	@buf: data buffer
3966  *	@buflen: buffer length
3967  *	@write_data: read/write
3968  *
3969  *	Transfer data from/to the device data register by PIO.
3970  *
3971  *	LOCKING:
3972  *	Inherited from caller.
3973  */
3974 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3975 		   unsigned int buflen, int write_data)
3976 {
3977 	struct ata_port *ap = adev->ap;
3978 	unsigned int words = buflen >> 1;
3979 
3980 	/* Transfer multiple of 2 bytes */
3981 	if (write_data)
3982 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3983 	else
3984 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
3985 
3986 	/* Transfer trailing 1 byte, if any. */
3987 	if (unlikely(buflen & 0x01)) {
3988 		u16 align_buf[1] = { 0 };
3989 		unsigned char *trailing_buf = buf + buflen - 1;
3990 
3991 		if (write_data) {
3992 			memcpy(align_buf, trailing_buf, 1);
3993 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3994 		} else {
3995 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3996 			memcpy(trailing_buf, align_buf, 1);
3997 		}
3998 	}
3999 }
4000 
4001 /**
4002  *	ata_data_xfer_noirq - Transfer data by PIO
4003  *	@adev: device to target
4004  *	@buf: data buffer
4005  *	@buflen: buffer length
4006  *	@write_data: read/write
4007  *
4008  *	Transfer data from/to the device data register by PIO. Do the
4009  *	transfer with interrupts disabled.
4010  *
4011  *	LOCKING:
4012  *	Inherited from caller.
4013  */
4014 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4015 			 unsigned int buflen, int write_data)
4016 {
4017 	unsigned long flags;
4018 	local_irq_save(flags);
4019 	ata_data_xfer(adev, buf, buflen, write_data);
4020 	local_irq_restore(flags);
4021 }
4022 
4023 
4024 /**
4025  *	ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4026  *	@qc: Command on going
4027  *
4028  *	Transfer ATA_SECT_SIZE of data from/to the ATA device.
4029  *
4030  *	LOCKING:
4031  *	Inherited from caller.
4032  */
4033 
4034 static void ata_pio_sector(struct ata_queued_cmd *qc)
4035 {
4036 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4037 	struct scatterlist *sg = qc->__sg;
4038 	struct ata_port *ap = qc->ap;
4039 	struct page *page;
4040 	unsigned int offset;
4041 	unsigned char *buf;
4042 
4043 	if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4044 		ap->hsm_task_state = HSM_ST_LAST;
4045 
4046 	page = sg[qc->cursg].page;
4047 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4048 
4049 	/* get the current page and offset */
4050 	page = nth_page(page, (offset >> PAGE_SHIFT));
4051 	offset %= PAGE_SIZE;
4052 
4053 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4054 
4055 	if (PageHighMem(page)) {
4056 		unsigned long flags;
4057 
4058 		/* FIXME: use a bounce buffer */
4059 		local_irq_save(flags);
4060 		buf = kmap_atomic(page, KM_IRQ0);
4061 
4062 		/* do the actual data transfer */
4063 		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4064 
4065 		kunmap_atomic(buf, KM_IRQ0);
4066 		local_irq_restore(flags);
4067 	} else {
4068 		buf = page_address(page);
4069 		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4070 	}
4071 
4072 	qc->curbytes += ATA_SECT_SIZE;
4073 	qc->cursg_ofs += ATA_SECT_SIZE;
4074 
4075 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4076 		qc->cursg++;
4077 		qc->cursg_ofs = 0;
4078 	}
4079 }
4080 
4081 /**
4082  *	ata_pio_sectors - Transfer one or many 512-byte sectors.
4083  *	@qc: Command on going
4084  *
4085  *	Transfer one or many ATA_SECT_SIZE of data from/to the
4086  *	ATA device for the DRQ request.
4087  *
4088  *	LOCKING:
4089  *	Inherited from caller.
4090  */
4091 
4092 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4093 {
4094 	if (is_multi_taskfile(&qc->tf)) {
4095 		/* READ/WRITE MULTIPLE */
4096 		unsigned int nsect;
4097 
4098 		WARN_ON(qc->dev->multi_count == 0);
4099 
4100 		nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4101 			    qc->dev->multi_count);
4102 		while (nsect--)
4103 			ata_pio_sector(qc);
4104 	} else
4105 		ata_pio_sector(qc);
4106 }
4107 
4108 /**
4109  *	atapi_send_cdb - Write CDB bytes to hardware
4110  *	@ap: Port to which ATAPI device is attached.
4111  *	@qc: Taskfile currently active
4112  *
4113  *	When device has indicated its readiness to accept
4114  *	a CDB, this function is called.  Send the CDB.
4115  *
4116  *	LOCKING:
4117  *	caller.
4118  */
4119 
4120 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4121 {
4122 	/* send SCSI cdb */
4123 	DPRINTK("send cdb\n");
4124 	WARN_ON(qc->dev->cdb_len < 12);
4125 
4126 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4127 	ata_altstatus(ap); /* flush */
4128 
4129 	switch (qc->tf.protocol) {
4130 	case ATA_PROT_ATAPI:
4131 		ap->hsm_task_state = HSM_ST;
4132 		break;
4133 	case ATA_PROT_ATAPI_NODATA:
4134 		ap->hsm_task_state = HSM_ST_LAST;
4135 		break;
4136 	case ATA_PROT_ATAPI_DMA:
4137 		ap->hsm_task_state = HSM_ST_LAST;
4138 		/* initiate bmdma */
4139 		ap->ops->bmdma_start(qc);
4140 		break;
4141 	}
4142 }
4143 
4144 /**
4145  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4146  *	@qc: Command on going
4147  *	@bytes: number of bytes
4148  *
4149  *	Transfer Transfer data from/to the ATAPI device.
4150  *
4151  *	LOCKING:
4152  *	Inherited from caller.
4153  *
4154  */
4155 
4156 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4157 {
4158 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4159 	struct scatterlist *sg = qc->__sg;
4160 	struct ata_port *ap = qc->ap;
4161 	struct page *page;
4162 	unsigned char *buf;
4163 	unsigned int offset, count;
4164 
4165 	if (qc->curbytes + bytes >= qc->nbytes)
4166 		ap->hsm_task_state = HSM_ST_LAST;
4167 
4168 next_sg:
4169 	if (unlikely(qc->cursg >= qc->n_elem)) {
4170 		/*
4171 		 * The end of qc->sg is reached and the device expects
4172 		 * more data to transfer. In order not to overrun qc->sg
4173 		 * and fulfill length specified in the byte count register,
4174 		 *    - for read case, discard trailing data from the device
4175 		 *    - for write case, padding zero data to the device
4176 		 */
4177 		u16 pad_buf[1] = { 0 };
4178 		unsigned int words = bytes >> 1;
4179 		unsigned int i;
4180 
4181 		if (words) /* warning if bytes > 1 */
4182 			ata_dev_printk(qc->dev, KERN_WARNING,
4183 				       "%u bytes trailing data\n", bytes);
4184 
4185 		for (i = 0; i < words; i++)
4186 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4187 
4188 		ap->hsm_task_state = HSM_ST_LAST;
4189 		return;
4190 	}
4191 
4192 	sg = &qc->__sg[qc->cursg];
4193 
4194 	page = sg->page;
4195 	offset = sg->offset + qc->cursg_ofs;
4196 
4197 	/* get the current page and offset */
4198 	page = nth_page(page, (offset >> PAGE_SHIFT));
4199 	offset %= PAGE_SIZE;
4200 
4201 	/* don't overrun current sg */
4202 	count = min(sg->length - qc->cursg_ofs, bytes);
4203 
4204 	/* don't cross page boundaries */
4205 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4206 
4207 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4208 
4209 	if (PageHighMem(page)) {
4210 		unsigned long flags;
4211 
4212 		/* FIXME: use bounce buffer */
4213 		local_irq_save(flags);
4214 		buf = kmap_atomic(page, KM_IRQ0);
4215 
4216 		/* do the actual data transfer */
4217 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4218 
4219 		kunmap_atomic(buf, KM_IRQ0);
4220 		local_irq_restore(flags);
4221 	} else {
4222 		buf = page_address(page);
4223 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4224 	}
4225 
4226 	bytes -= count;
4227 	qc->curbytes += count;
4228 	qc->cursg_ofs += count;
4229 
4230 	if (qc->cursg_ofs == sg->length) {
4231 		qc->cursg++;
4232 		qc->cursg_ofs = 0;
4233 	}
4234 
4235 	if (bytes)
4236 		goto next_sg;
4237 }
4238 
4239 /**
4240  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4241  *	@qc: Command on going
4242  *
4243  *	Transfer Transfer data from/to the ATAPI device.
4244  *
4245  *	LOCKING:
4246  *	Inherited from caller.
4247  */
4248 
4249 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4250 {
4251 	struct ata_port *ap = qc->ap;
4252 	struct ata_device *dev = qc->dev;
4253 	unsigned int ireason, bc_lo, bc_hi, bytes;
4254 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4255 
4256 	/* Abuse qc->result_tf for temp storage of intermediate TF
4257 	 * here to save some kernel stack usage.
4258 	 * For normal completion, qc->result_tf is not relevant. For
4259 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4260 	 * So, the correctness of qc->result_tf is not affected.
4261 	 */
4262 	ap->ops->tf_read(ap, &qc->result_tf);
4263 	ireason = qc->result_tf.nsect;
4264 	bc_lo = qc->result_tf.lbam;
4265 	bc_hi = qc->result_tf.lbah;
4266 	bytes = (bc_hi << 8) | bc_lo;
4267 
4268 	/* shall be cleared to zero, indicating xfer of data */
4269 	if (ireason & (1 << 0))
4270 		goto err_out;
4271 
4272 	/* make sure transfer direction matches expected */
4273 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4274 	if (do_write != i_write)
4275 		goto err_out;
4276 
4277 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4278 
4279 	__atapi_pio_bytes(qc, bytes);
4280 
4281 	return;
4282 
4283 err_out:
4284 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4285 	qc->err_mask |= AC_ERR_HSM;
4286 	ap->hsm_task_state = HSM_ST_ERR;
4287 }
4288 
4289 /**
4290  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4291  *	@ap: the target ata_port
4292  *	@qc: qc on going
4293  *
4294  *	RETURNS:
4295  *	1 if ok in workqueue, 0 otherwise.
4296  */
4297 
4298 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4299 {
4300 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4301 		return 1;
4302 
4303 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4304 		if (qc->tf.protocol == ATA_PROT_PIO &&
4305 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4306 		    return 1;
4307 
4308 		if (is_atapi_taskfile(&qc->tf) &&
4309 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4310 			return 1;
4311 	}
4312 
4313 	return 0;
4314 }
4315 
4316 /**
4317  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4318  *	@qc: Command to complete
4319  *	@in_wq: 1 if called from workqueue, 0 otherwise
4320  *
4321  *	Finish @qc which is running on standard HSM.
4322  *
4323  *	LOCKING:
4324  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4325  *	Otherwise, none on entry and grabs host lock.
4326  */
4327 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4328 {
4329 	struct ata_port *ap = qc->ap;
4330 	unsigned long flags;
4331 
4332 	if (ap->ops->error_handler) {
4333 		if (in_wq) {
4334 			spin_lock_irqsave(ap->lock, flags);
4335 
4336 			/* EH might have kicked in while host lock is
4337 			 * released.
4338 			 */
4339 			qc = ata_qc_from_tag(ap, qc->tag);
4340 			if (qc) {
4341 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4342 					ap->ops->irq_on(ap);
4343 					ata_qc_complete(qc);
4344 				} else
4345 					ata_port_freeze(ap);
4346 			}
4347 
4348 			spin_unlock_irqrestore(ap->lock, flags);
4349 		} else {
4350 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4351 				ata_qc_complete(qc);
4352 			else
4353 				ata_port_freeze(ap);
4354 		}
4355 	} else {
4356 		if (in_wq) {
4357 			spin_lock_irqsave(ap->lock, flags);
4358 			ap->ops->irq_on(ap);
4359 			ata_qc_complete(qc);
4360 			spin_unlock_irqrestore(ap->lock, flags);
4361 		} else
4362 			ata_qc_complete(qc);
4363 	}
4364 
4365 	ata_altstatus(ap); /* flush */
4366 }
4367 
4368 /**
4369  *	ata_hsm_move - move the HSM to the next state.
4370  *	@ap: the target ata_port
4371  *	@qc: qc on going
4372  *	@status: current device status
4373  *	@in_wq: 1 if called from workqueue, 0 otherwise
4374  *
4375  *	RETURNS:
4376  *	1 when poll next status needed, 0 otherwise.
4377  */
4378 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4379 		 u8 status, int in_wq)
4380 {
4381 	unsigned long flags = 0;
4382 	int poll_next;
4383 
4384 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4385 
4386 	/* Make sure ata_qc_issue_prot() does not throw things
4387 	 * like DMA polling into the workqueue. Notice that
4388 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4389 	 */
4390 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4391 
4392 fsm_start:
4393 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4394 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4395 
4396 	switch (ap->hsm_task_state) {
4397 	case HSM_ST_FIRST:
4398 		/* Send first data block or PACKET CDB */
4399 
4400 		/* If polling, we will stay in the work queue after
4401 		 * sending the data. Otherwise, interrupt handler
4402 		 * takes over after sending the data.
4403 		 */
4404 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4405 
4406 		/* check device status */
4407 		if (unlikely((status & ATA_DRQ) == 0)) {
4408 			/* handle BSY=0, DRQ=0 as error */
4409 			if (likely(status & (ATA_ERR | ATA_DF)))
4410 				/* device stops HSM for abort/error */
4411 				qc->err_mask |= AC_ERR_DEV;
4412 			else
4413 				/* HSM violation. Let EH handle this */
4414 				qc->err_mask |= AC_ERR_HSM;
4415 
4416 			ap->hsm_task_state = HSM_ST_ERR;
4417 			goto fsm_start;
4418 		}
4419 
4420 		/* Device should not ask for data transfer (DRQ=1)
4421 		 * when it finds something wrong.
4422 		 * We ignore DRQ here and stop the HSM by
4423 		 * changing hsm_task_state to HSM_ST_ERR and
4424 		 * let the EH abort the command or reset the device.
4425 		 */
4426 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4427 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4428 					"error, dev_stat 0x%X\n", status);
4429 			qc->err_mask |= AC_ERR_HSM;
4430 			ap->hsm_task_state = HSM_ST_ERR;
4431 			goto fsm_start;
4432 		}
4433 
4434 		/* Send the CDB (atapi) or the first data block (ata pio out).
4435 		 * During the state transition, interrupt handler shouldn't
4436 		 * be invoked before the data transfer is complete and
4437 		 * hsm_task_state is changed. Hence, the following locking.
4438 		 */
4439 		if (in_wq)
4440 			spin_lock_irqsave(ap->lock, flags);
4441 
4442 		if (qc->tf.protocol == ATA_PROT_PIO) {
4443 			/* PIO data out protocol.
4444 			 * send first data block.
4445 			 */
4446 
4447 			/* ata_pio_sectors() might change the state
4448 			 * to HSM_ST_LAST. so, the state is changed here
4449 			 * before ata_pio_sectors().
4450 			 */
4451 			ap->hsm_task_state = HSM_ST;
4452 			ata_pio_sectors(qc);
4453 			ata_altstatus(ap); /* flush */
4454 		} else
4455 			/* send CDB */
4456 			atapi_send_cdb(ap, qc);
4457 
4458 		if (in_wq)
4459 			spin_unlock_irqrestore(ap->lock, flags);
4460 
4461 		/* if polling, ata_pio_task() handles the rest.
4462 		 * otherwise, interrupt handler takes over from here.
4463 		 */
4464 		break;
4465 
4466 	case HSM_ST:
4467 		/* complete command or read/write the data register */
4468 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4469 			/* ATAPI PIO protocol */
4470 			if ((status & ATA_DRQ) == 0) {
4471 				/* No more data to transfer or device error.
4472 				 * Device error will be tagged in HSM_ST_LAST.
4473 				 */
4474 				ap->hsm_task_state = HSM_ST_LAST;
4475 				goto fsm_start;
4476 			}
4477 
4478 			/* Device should not ask for data transfer (DRQ=1)
4479 			 * when it finds something wrong.
4480 			 * We ignore DRQ here and stop the HSM by
4481 			 * changing hsm_task_state to HSM_ST_ERR and
4482 			 * let the EH abort the command or reset the device.
4483 			 */
4484 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4485 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4486 						"device error, dev_stat 0x%X\n",
4487 						status);
4488 				qc->err_mask |= AC_ERR_HSM;
4489 				ap->hsm_task_state = HSM_ST_ERR;
4490 				goto fsm_start;
4491 			}
4492 
4493 			atapi_pio_bytes(qc);
4494 
4495 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4496 				/* bad ireason reported by device */
4497 				goto fsm_start;
4498 
4499 		} else {
4500 			/* ATA PIO protocol */
4501 			if (unlikely((status & ATA_DRQ) == 0)) {
4502 				/* handle BSY=0, DRQ=0 as error */
4503 				if (likely(status & (ATA_ERR | ATA_DF)))
4504 					/* device stops HSM for abort/error */
4505 					qc->err_mask |= AC_ERR_DEV;
4506 				else
4507 					/* HSM violation. Let EH handle this.
4508 					 * Phantom devices also trigger this
4509 					 * condition.  Mark hint.
4510 					 */
4511 					qc->err_mask |= AC_ERR_HSM |
4512 							AC_ERR_NODEV_HINT;
4513 
4514 				ap->hsm_task_state = HSM_ST_ERR;
4515 				goto fsm_start;
4516 			}
4517 
4518 			/* For PIO reads, some devices may ask for
4519 			 * data transfer (DRQ=1) alone with ERR=1.
4520 			 * We respect DRQ here and transfer one
4521 			 * block of junk data before changing the
4522 			 * hsm_task_state to HSM_ST_ERR.
4523 			 *
4524 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4525 			 * sense since the data block has been
4526 			 * transferred to the device.
4527 			 */
4528 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4529 				/* data might be corrputed */
4530 				qc->err_mask |= AC_ERR_DEV;
4531 
4532 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4533 					ata_pio_sectors(qc);
4534 					ata_altstatus(ap);
4535 					status = ata_wait_idle(ap);
4536 				}
4537 
4538 				if (status & (ATA_BUSY | ATA_DRQ))
4539 					qc->err_mask |= AC_ERR_HSM;
4540 
4541 				/* ata_pio_sectors() might change the
4542 				 * state to HSM_ST_LAST. so, the state
4543 				 * is changed after ata_pio_sectors().
4544 				 */
4545 				ap->hsm_task_state = HSM_ST_ERR;
4546 				goto fsm_start;
4547 			}
4548 
4549 			ata_pio_sectors(qc);
4550 
4551 			if (ap->hsm_task_state == HSM_ST_LAST &&
4552 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4553 				/* all data read */
4554 				ata_altstatus(ap);
4555 				status = ata_wait_idle(ap);
4556 				goto fsm_start;
4557 			}
4558 		}
4559 
4560 		ata_altstatus(ap); /* flush */
4561 		poll_next = 1;
4562 		break;
4563 
4564 	case HSM_ST_LAST:
4565 		if (unlikely(!ata_ok(status))) {
4566 			qc->err_mask |= __ac_err_mask(status);
4567 			ap->hsm_task_state = HSM_ST_ERR;
4568 			goto fsm_start;
4569 		}
4570 
4571 		/* no more data to transfer */
4572 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4573 			ap->print_id, qc->dev->devno, status);
4574 
4575 		WARN_ON(qc->err_mask);
4576 
4577 		ap->hsm_task_state = HSM_ST_IDLE;
4578 
4579 		/* complete taskfile transaction */
4580 		ata_hsm_qc_complete(qc, in_wq);
4581 
4582 		poll_next = 0;
4583 		break;
4584 
4585 	case HSM_ST_ERR:
4586 		/* make sure qc->err_mask is available to
4587 		 * know what's wrong and recover
4588 		 */
4589 		WARN_ON(qc->err_mask == 0);
4590 
4591 		ap->hsm_task_state = HSM_ST_IDLE;
4592 
4593 		/* complete taskfile transaction */
4594 		ata_hsm_qc_complete(qc, in_wq);
4595 
4596 		poll_next = 0;
4597 		break;
4598 	default:
4599 		poll_next = 0;
4600 		BUG();
4601 	}
4602 
4603 	return poll_next;
4604 }
4605 
4606 static void ata_pio_task(struct work_struct *work)
4607 {
4608 	struct ata_port *ap =
4609 		container_of(work, struct ata_port, port_task.work);
4610 	struct ata_queued_cmd *qc = ap->port_task_data;
4611 	u8 status;
4612 	int poll_next;
4613 
4614 fsm_start:
4615 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4616 
4617 	/*
4618 	 * This is purely heuristic.  This is a fast path.
4619 	 * Sometimes when we enter, BSY will be cleared in
4620 	 * a chk-status or two.  If not, the drive is probably seeking
4621 	 * or something.  Snooze for a couple msecs, then
4622 	 * chk-status again.  If still busy, queue delayed work.
4623 	 */
4624 	status = ata_busy_wait(ap, ATA_BUSY, 5);
4625 	if (status & ATA_BUSY) {
4626 		msleep(2);
4627 		status = ata_busy_wait(ap, ATA_BUSY, 10);
4628 		if (status & ATA_BUSY) {
4629 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4630 			return;
4631 		}
4632 	}
4633 
4634 	/* move the HSM */
4635 	poll_next = ata_hsm_move(ap, qc, status, 1);
4636 
4637 	/* another command or interrupt handler
4638 	 * may be running at this point.
4639 	 */
4640 	if (poll_next)
4641 		goto fsm_start;
4642 }
4643 
4644 /**
4645  *	ata_qc_new - Request an available ATA command, for queueing
4646  *	@ap: Port associated with device @dev
4647  *	@dev: Device from whom we request an available command structure
4648  *
4649  *	LOCKING:
4650  *	None.
4651  */
4652 
4653 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4654 {
4655 	struct ata_queued_cmd *qc = NULL;
4656 	unsigned int i;
4657 
4658 	/* no command while frozen */
4659 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4660 		return NULL;
4661 
4662 	/* the last tag is reserved for internal command. */
4663 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4664 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4665 			qc = __ata_qc_from_tag(ap, i);
4666 			break;
4667 		}
4668 
4669 	if (qc)
4670 		qc->tag = i;
4671 
4672 	return qc;
4673 }
4674 
4675 /**
4676  *	ata_qc_new_init - Request an available ATA command, and initialize it
4677  *	@dev: Device from whom we request an available command structure
4678  *
4679  *	LOCKING:
4680  *	None.
4681  */
4682 
4683 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4684 {
4685 	struct ata_port *ap = dev->ap;
4686 	struct ata_queued_cmd *qc;
4687 
4688 	qc = ata_qc_new(ap);
4689 	if (qc) {
4690 		qc->scsicmd = NULL;
4691 		qc->ap = ap;
4692 		qc->dev = dev;
4693 
4694 		ata_qc_reinit(qc);
4695 	}
4696 
4697 	return qc;
4698 }
4699 
4700 /**
4701  *	ata_qc_free - free unused ata_queued_cmd
4702  *	@qc: Command to complete
4703  *
4704  *	Designed to free unused ata_queued_cmd object
4705  *	in case something prevents using it.
4706  *
4707  *	LOCKING:
4708  *	spin_lock_irqsave(host lock)
4709  */
4710 void ata_qc_free(struct ata_queued_cmd *qc)
4711 {
4712 	struct ata_port *ap = qc->ap;
4713 	unsigned int tag;
4714 
4715 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
4716 
4717 	qc->flags = 0;
4718 	tag = qc->tag;
4719 	if (likely(ata_tag_valid(tag))) {
4720 		qc->tag = ATA_TAG_POISON;
4721 		clear_bit(tag, &ap->qc_allocated);
4722 	}
4723 }
4724 
4725 void __ata_qc_complete(struct ata_queued_cmd *qc)
4726 {
4727 	struct ata_port *ap = qc->ap;
4728 
4729 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
4730 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4731 
4732 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4733 		ata_sg_clean(qc);
4734 
4735 	/* command should be marked inactive atomically with qc completion */
4736 	if (qc->tf.protocol == ATA_PROT_NCQ)
4737 		ap->sactive &= ~(1 << qc->tag);
4738 	else
4739 		ap->active_tag = ATA_TAG_POISON;
4740 
4741 	/* atapi: mark qc as inactive to prevent the interrupt handler
4742 	 * from completing the command twice later, before the error handler
4743 	 * is called. (when rc != 0 and atapi request sense is needed)
4744 	 */
4745 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4746 	ap->qc_active &= ~(1 << qc->tag);
4747 
4748 	/* call completion callback */
4749 	qc->complete_fn(qc);
4750 }
4751 
4752 static void fill_result_tf(struct ata_queued_cmd *qc)
4753 {
4754 	struct ata_port *ap = qc->ap;
4755 
4756 	qc->result_tf.flags = qc->tf.flags;
4757 	ap->ops->tf_read(ap, &qc->result_tf);
4758 }
4759 
4760 /**
4761  *	ata_qc_complete - Complete an active ATA command
4762  *	@qc: Command to complete
4763  *	@err_mask: ATA Status register contents
4764  *
4765  *	Indicate to the mid and upper layers that an ATA
4766  *	command has completed, with either an ok or not-ok status.
4767  *
4768  *	LOCKING:
4769  *	spin_lock_irqsave(host lock)
4770  */
4771 void ata_qc_complete(struct ata_queued_cmd *qc)
4772 {
4773 	struct ata_port *ap = qc->ap;
4774 
4775 	/* XXX: New EH and old EH use different mechanisms to
4776 	 * synchronize EH with regular execution path.
4777 	 *
4778 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4779 	 * Normal execution path is responsible for not accessing a
4780 	 * failed qc.  libata core enforces the rule by returning NULL
4781 	 * from ata_qc_from_tag() for failed qcs.
4782 	 *
4783 	 * Old EH depends on ata_qc_complete() nullifying completion
4784 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4785 	 * not synchronize with interrupt handler.  Only PIO task is
4786 	 * taken care of.
4787 	 */
4788 	if (ap->ops->error_handler) {
4789 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4790 
4791 		if (unlikely(qc->err_mask))
4792 			qc->flags |= ATA_QCFLAG_FAILED;
4793 
4794 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4795 			if (!ata_tag_internal(qc->tag)) {
4796 				/* always fill result TF for failed qc */
4797 				fill_result_tf(qc);
4798 				ata_qc_schedule_eh(qc);
4799 				return;
4800 			}
4801 		}
4802 
4803 		/* read result TF if requested */
4804 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4805 			fill_result_tf(qc);
4806 
4807 		__ata_qc_complete(qc);
4808 	} else {
4809 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4810 			return;
4811 
4812 		/* read result TF if failed or requested */
4813 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4814 			fill_result_tf(qc);
4815 
4816 		__ata_qc_complete(qc);
4817 	}
4818 }
4819 
4820 /**
4821  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4822  *	@ap: port in question
4823  *	@qc_active: new qc_active mask
4824  *	@finish_qc: LLDD callback invoked before completing a qc
4825  *
4826  *	Complete in-flight commands.  This functions is meant to be
4827  *	called from low-level driver's interrupt routine to complete
4828  *	requests normally.  ap->qc_active and @qc_active is compared
4829  *	and commands are completed accordingly.
4830  *
4831  *	LOCKING:
4832  *	spin_lock_irqsave(host lock)
4833  *
4834  *	RETURNS:
4835  *	Number of completed commands on success, -errno otherwise.
4836  */
4837 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4838 			     void (*finish_qc)(struct ata_queued_cmd *))
4839 {
4840 	int nr_done = 0;
4841 	u32 done_mask;
4842 	int i;
4843 
4844 	done_mask = ap->qc_active ^ qc_active;
4845 
4846 	if (unlikely(done_mask & qc_active)) {
4847 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4848 				"(%08x->%08x)\n", ap->qc_active, qc_active);
4849 		return -EINVAL;
4850 	}
4851 
4852 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
4853 		struct ata_queued_cmd *qc;
4854 
4855 		if (!(done_mask & (1 << i)))
4856 			continue;
4857 
4858 		if ((qc = ata_qc_from_tag(ap, i))) {
4859 			if (finish_qc)
4860 				finish_qc(qc);
4861 			ata_qc_complete(qc);
4862 			nr_done++;
4863 		}
4864 	}
4865 
4866 	return nr_done;
4867 }
4868 
4869 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4870 {
4871 	struct ata_port *ap = qc->ap;
4872 
4873 	switch (qc->tf.protocol) {
4874 	case ATA_PROT_NCQ:
4875 	case ATA_PROT_DMA:
4876 	case ATA_PROT_ATAPI_DMA:
4877 		return 1;
4878 
4879 	case ATA_PROT_ATAPI:
4880 	case ATA_PROT_PIO:
4881 		if (ap->flags & ATA_FLAG_PIO_DMA)
4882 			return 1;
4883 
4884 		/* fall through */
4885 
4886 	default:
4887 		return 0;
4888 	}
4889 
4890 	/* never reached */
4891 }
4892 
4893 /**
4894  *	ata_qc_issue - issue taskfile to device
4895  *	@qc: command to issue to device
4896  *
4897  *	Prepare an ATA command to submission to device.
4898  *	This includes mapping the data into a DMA-able
4899  *	area, filling in the S/G table, and finally
4900  *	writing the taskfile to hardware, starting the command.
4901  *
4902  *	LOCKING:
4903  *	spin_lock_irqsave(host lock)
4904  */
4905 void ata_qc_issue(struct ata_queued_cmd *qc)
4906 {
4907 	struct ata_port *ap = qc->ap;
4908 
4909 	/* Make sure only one non-NCQ command is outstanding.  The
4910 	 * check is skipped for old EH because it reuses active qc to
4911 	 * request ATAPI sense.
4912 	 */
4913 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4914 
4915 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4916 		WARN_ON(ap->sactive & (1 << qc->tag));
4917 		ap->sactive |= 1 << qc->tag;
4918 	} else {
4919 		WARN_ON(ap->sactive);
4920 		ap->active_tag = qc->tag;
4921 	}
4922 
4923 	qc->flags |= ATA_QCFLAG_ACTIVE;
4924 	ap->qc_active |= 1 << qc->tag;
4925 
4926 	if (ata_should_dma_map(qc)) {
4927 		if (qc->flags & ATA_QCFLAG_SG) {
4928 			if (ata_sg_setup(qc))
4929 				goto sg_err;
4930 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
4931 			if (ata_sg_setup_one(qc))
4932 				goto sg_err;
4933 		}
4934 	} else {
4935 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
4936 	}
4937 
4938 	ap->ops->qc_prep(qc);
4939 
4940 	qc->err_mask |= ap->ops->qc_issue(qc);
4941 	if (unlikely(qc->err_mask))
4942 		goto err;
4943 	return;
4944 
4945 sg_err:
4946 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4947 	qc->err_mask |= AC_ERR_SYSTEM;
4948 err:
4949 	ata_qc_complete(qc);
4950 }
4951 
4952 /**
4953  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4954  *	@qc: command to issue to device
4955  *
4956  *	Using various libata functions and hooks, this function
4957  *	starts an ATA command.  ATA commands are grouped into
4958  *	classes called "protocols", and issuing each type of protocol
4959  *	is slightly different.
4960  *
4961  *	May be used as the qc_issue() entry in ata_port_operations.
4962  *
4963  *	LOCKING:
4964  *	spin_lock_irqsave(host lock)
4965  *
4966  *	RETURNS:
4967  *	Zero on success, AC_ERR_* mask on failure
4968  */
4969 
4970 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4971 {
4972 	struct ata_port *ap = qc->ap;
4973 
4974 	/* Use polling pio if the LLD doesn't handle
4975 	 * interrupt driven pio and atapi CDB interrupt.
4976 	 */
4977 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
4978 		switch (qc->tf.protocol) {
4979 		case ATA_PROT_PIO:
4980 		case ATA_PROT_NODATA:
4981 		case ATA_PROT_ATAPI:
4982 		case ATA_PROT_ATAPI_NODATA:
4983 			qc->tf.flags |= ATA_TFLAG_POLLING;
4984 			break;
4985 		case ATA_PROT_ATAPI_DMA:
4986 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4987 				/* see ata_dma_blacklisted() */
4988 				BUG();
4989 			break;
4990 		default:
4991 			break;
4992 		}
4993 	}
4994 
4995 	/* Some controllers show flaky interrupt behavior after
4996 	 * setting xfer mode.  Use polling instead.
4997 	 */
4998 	if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4999 		     qc->tf.feature == SETFEATURES_XFER) &&
5000 	    (ap->flags & ATA_FLAG_SETXFER_POLLING))
5001 		qc->tf.flags |= ATA_TFLAG_POLLING;
5002 
5003 	/* select the device */
5004 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5005 
5006 	/* start the command */
5007 	switch (qc->tf.protocol) {
5008 	case ATA_PROT_NODATA:
5009 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5010 			ata_qc_set_polling(qc);
5011 
5012 		ata_tf_to_host(ap, &qc->tf);
5013 		ap->hsm_task_state = HSM_ST_LAST;
5014 
5015 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5016 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5017 
5018 		break;
5019 
5020 	case ATA_PROT_DMA:
5021 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5022 
5023 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5024 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5025 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5026 		ap->hsm_task_state = HSM_ST_LAST;
5027 		break;
5028 
5029 	case ATA_PROT_PIO:
5030 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5031 			ata_qc_set_polling(qc);
5032 
5033 		ata_tf_to_host(ap, &qc->tf);
5034 
5035 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5036 			/* PIO data out protocol */
5037 			ap->hsm_task_state = HSM_ST_FIRST;
5038 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5039 
5040 			/* always send first data block using
5041 			 * the ata_pio_task() codepath.
5042 			 */
5043 		} else {
5044 			/* PIO data in protocol */
5045 			ap->hsm_task_state = HSM_ST;
5046 
5047 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5048 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5049 
5050 			/* if polling, ata_pio_task() handles the rest.
5051 			 * otherwise, interrupt handler takes over from here.
5052 			 */
5053 		}
5054 
5055 		break;
5056 
5057 	case ATA_PROT_ATAPI:
5058 	case ATA_PROT_ATAPI_NODATA:
5059 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5060 			ata_qc_set_polling(qc);
5061 
5062 		ata_tf_to_host(ap, &qc->tf);
5063 
5064 		ap->hsm_task_state = HSM_ST_FIRST;
5065 
5066 		/* send cdb by polling if no cdb interrupt */
5067 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5068 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5069 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5070 		break;
5071 
5072 	case ATA_PROT_ATAPI_DMA:
5073 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5074 
5075 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5076 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5077 		ap->hsm_task_state = HSM_ST_FIRST;
5078 
5079 		/* send cdb by polling if no cdb interrupt */
5080 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5081 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5082 		break;
5083 
5084 	default:
5085 		WARN_ON(1);
5086 		return AC_ERR_SYSTEM;
5087 	}
5088 
5089 	return 0;
5090 }
5091 
5092 /**
5093  *	ata_host_intr - Handle host interrupt for given (port, task)
5094  *	@ap: Port on which interrupt arrived (possibly...)
5095  *	@qc: Taskfile currently active in engine
5096  *
5097  *	Handle host interrupt for given queued command.  Currently,
5098  *	only DMA interrupts are handled.  All other commands are
5099  *	handled via polling with interrupts disabled (nIEN bit).
5100  *
5101  *	LOCKING:
5102  *	spin_lock_irqsave(host lock)
5103  *
5104  *	RETURNS:
5105  *	One if interrupt was handled, zero if not (shared irq).
5106  */
5107 
5108 inline unsigned int ata_host_intr (struct ata_port *ap,
5109 				   struct ata_queued_cmd *qc)
5110 {
5111 	struct ata_eh_info *ehi = &ap->eh_info;
5112 	u8 status, host_stat = 0;
5113 
5114 	VPRINTK("ata%u: protocol %d task_state %d\n",
5115 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5116 
5117 	/* Check whether we are expecting interrupt in this state */
5118 	switch (ap->hsm_task_state) {
5119 	case HSM_ST_FIRST:
5120 		/* Some pre-ATAPI-4 devices assert INTRQ
5121 		 * at this state when ready to receive CDB.
5122 		 */
5123 
5124 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5125 		 * The flag was turned on only for atapi devices.
5126 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5127 		 */
5128 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5129 			goto idle_irq;
5130 		break;
5131 	case HSM_ST_LAST:
5132 		if (qc->tf.protocol == ATA_PROT_DMA ||
5133 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5134 			/* check status of DMA engine */
5135 			host_stat = ap->ops->bmdma_status(ap);
5136 			VPRINTK("ata%u: host_stat 0x%X\n",
5137 				ap->print_id, host_stat);
5138 
5139 			/* if it's not our irq... */
5140 			if (!(host_stat & ATA_DMA_INTR))
5141 				goto idle_irq;
5142 
5143 			/* before we do anything else, clear DMA-Start bit */
5144 			ap->ops->bmdma_stop(qc);
5145 
5146 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5147 				/* error when transfering data to/from memory */
5148 				qc->err_mask |= AC_ERR_HOST_BUS;
5149 				ap->hsm_task_state = HSM_ST_ERR;
5150 			}
5151 		}
5152 		break;
5153 	case HSM_ST:
5154 		break;
5155 	default:
5156 		goto idle_irq;
5157 	}
5158 
5159 	/* check altstatus */
5160 	status = ata_altstatus(ap);
5161 	if (status & ATA_BUSY)
5162 		goto idle_irq;
5163 
5164 	/* check main status, clearing INTRQ */
5165 	status = ata_chk_status(ap);
5166 	if (unlikely(status & ATA_BUSY))
5167 		goto idle_irq;
5168 
5169 	/* ack bmdma irq events */
5170 	ap->ops->irq_clear(ap);
5171 
5172 	ata_hsm_move(ap, qc, status, 0);
5173 
5174 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5175 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5176 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5177 
5178 	return 1;	/* irq handled */
5179 
5180 idle_irq:
5181 	ap->stats.idle_irq++;
5182 
5183 #ifdef ATA_IRQ_TRAP
5184 	if ((ap->stats.idle_irq % 1000) == 0) {
5185 		ap->ops->irq_ack(ap, 0); /* debug trap */
5186 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5187 		return 1;
5188 	}
5189 #endif
5190 	return 0;	/* irq not handled */
5191 }
5192 
5193 /**
5194  *	ata_interrupt - Default ATA host interrupt handler
5195  *	@irq: irq line (unused)
5196  *	@dev_instance: pointer to our ata_host information structure
5197  *
5198  *	Default interrupt handler for PCI IDE devices.  Calls
5199  *	ata_host_intr() for each port that is not disabled.
5200  *
5201  *	LOCKING:
5202  *	Obtains host lock during operation.
5203  *
5204  *	RETURNS:
5205  *	IRQ_NONE or IRQ_HANDLED.
5206  */
5207 
5208 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5209 {
5210 	struct ata_host *host = dev_instance;
5211 	unsigned int i;
5212 	unsigned int handled = 0;
5213 	unsigned long flags;
5214 
5215 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5216 	spin_lock_irqsave(&host->lock, flags);
5217 
5218 	for (i = 0; i < host->n_ports; i++) {
5219 		struct ata_port *ap;
5220 
5221 		ap = host->ports[i];
5222 		if (ap &&
5223 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5224 			struct ata_queued_cmd *qc;
5225 
5226 			qc = ata_qc_from_tag(ap, ap->active_tag);
5227 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5228 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5229 				handled |= ata_host_intr(ap, qc);
5230 		}
5231 	}
5232 
5233 	spin_unlock_irqrestore(&host->lock, flags);
5234 
5235 	return IRQ_RETVAL(handled);
5236 }
5237 
5238 /**
5239  *	sata_scr_valid - test whether SCRs are accessible
5240  *	@ap: ATA port to test SCR accessibility for
5241  *
5242  *	Test whether SCRs are accessible for @ap.
5243  *
5244  *	LOCKING:
5245  *	None.
5246  *
5247  *	RETURNS:
5248  *	1 if SCRs are accessible, 0 otherwise.
5249  */
5250 int sata_scr_valid(struct ata_port *ap)
5251 {
5252 	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5253 }
5254 
5255 /**
5256  *	sata_scr_read - read SCR register of the specified port
5257  *	@ap: ATA port to read SCR for
5258  *	@reg: SCR to read
5259  *	@val: Place to store read value
5260  *
5261  *	Read SCR register @reg of @ap into *@val.  This function is
5262  *	guaranteed to succeed if the cable type of the port is SATA
5263  *	and the port implements ->scr_read.
5264  *
5265  *	LOCKING:
5266  *	None.
5267  *
5268  *	RETURNS:
5269  *	0 on success, negative errno on failure.
5270  */
5271 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5272 {
5273 	if (sata_scr_valid(ap)) {
5274 		*val = ap->ops->scr_read(ap, reg);
5275 		return 0;
5276 	}
5277 	return -EOPNOTSUPP;
5278 }
5279 
5280 /**
5281  *	sata_scr_write - write SCR register of the specified port
5282  *	@ap: ATA port to write SCR for
5283  *	@reg: SCR to write
5284  *	@val: value to write
5285  *
5286  *	Write @val to SCR register @reg of @ap.  This function is
5287  *	guaranteed to succeed if the cable type of the port is SATA
5288  *	and the port implements ->scr_read.
5289  *
5290  *	LOCKING:
5291  *	None.
5292  *
5293  *	RETURNS:
5294  *	0 on success, negative errno on failure.
5295  */
5296 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5297 {
5298 	if (sata_scr_valid(ap)) {
5299 		ap->ops->scr_write(ap, reg, val);
5300 		return 0;
5301 	}
5302 	return -EOPNOTSUPP;
5303 }
5304 
5305 /**
5306  *	sata_scr_write_flush - write SCR register of the specified port and flush
5307  *	@ap: ATA port to write SCR for
5308  *	@reg: SCR to write
5309  *	@val: value to write
5310  *
5311  *	This function is identical to sata_scr_write() except that this
5312  *	function performs flush after writing to the register.
5313  *
5314  *	LOCKING:
5315  *	None.
5316  *
5317  *	RETURNS:
5318  *	0 on success, negative errno on failure.
5319  */
5320 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5321 {
5322 	if (sata_scr_valid(ap)) {
5323 		ap->ops->scr_write(ap, reg, val);
5324 		ap->ops->scr_read(ap, reg);
5325 		return 0;
5326 	}
5327 	return -EOPNOTSUPP;
5328 }
5329 
5330 /**
5331  *	ata_port_online - test whether the given port is online
5332  *	@ap: ATA port to test
5333  *
5334  *	Test whether @ap is online.  Note that this function returns 0
5335  *	if online status of @ap cannot be obtained, so
5336  *	ata_port_online(ap) != !ata_port_offline(ap).
5337  *
5338  *	LOCKING:
5339  *	None.
5340  *
5341  *	RETURNS:
5342  *	1 if the port online status is available and online.
5343  */
5344 int ata_port_online(struct ata_port *ap)
5345 {
5346 	u32 sstatus;
5347 
5348 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5349 		return 1;
5350 	return 0;
5351 }
5352 
5353 /**
5354  *	ata_port_offline - test whether the given port is offline
5355  *	@ap: ATA port to test
5356  *
5357  *	Test whether @ap is offline.  Note that this function returns
5358  *	0 if offline status of @ap cannot be obtained, so
5359  *	ata_port_online(ap) != !ata_port_offline(ap).
5360  *
5361  *	LOCKING:
5362  *	None.
5363  *
5364  *	RETURNS:
5365  *	1 if the port offline status is available and offline.
5366  */
5367 int ata_port_offline(struct ata_port *ap)
5368 {
5369 	u32 sstatus;
5370 
5371 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5372 		return 1;
5373 	return 0;
5374 }
5375 
5376 int ata_flush_cache(struct ata_device *dev)
5377 {
5378 	unsigned int err_mask;
5379 	u8 cmd;
5380 
5381 	if (!ata_try_flush_cache(dev))
5382 		return 0;
5383 
5384 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5385 		cmd = ATA_CMD_FLUSH_EXT;
5386 	else
5387 		cmd = ATA_CMD_FLUSH;
5388 
5389 	err_mask = ata_do_simple_cmd(dev, cmd);
5390 	if (err_mask) {
5391 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5392 		return -EIO;
5393 	}
5394 
5395 	return 0;
5396 }
5397 
5398 #ifdef CONFIG_PM
5399 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5400 			       unsigned int action, unsigned int ehi_flags,
5401 			       int wait)
5402 {
5403 	unsigned long flags;
5404 	int i, rc;
5405 
5406 	for (i = 0; i < host->n_ports; i++) {
5407 		struct ata_port *ap = host->ports[i];
5408 
5409 		/* Previous resume operation might still be in
5410 		 * progress.  Wait for PM_PENDING to clear.
5411 		 */
5412 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5413 			ata_port_wait_eh(ap);
5414 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5415 		}
5416 
5417 		/* request PM ops to EH */
5418 		spin_lock_irqsave(ap->lock, flags);
5419 
5420 		ap->pm_mesg = mesg;
5421 		if (wait) {
5422 			rc = 0;
5423 			ap->pm_result = &rc;
5424 		}
5425 
5426 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5427 		ap->eh_info.action |= action;
5428 		ap->eh_info.flags |= ehi_flags;
5429 
5430 		ata_port_schedule_eh(ap);
5431 
5432 		spin_unlock_irqrestore(ap->lock, flags);
5433 
5434 		/* wait and check result */
5435 		if (wait) {
5436 			ata_port_wait_eh(ap);
5437 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5438 			if (rc)
5439 				return rc;
5440 		}
5441 	}
5442 
5443 	return 0;
5444 }
5445 
5446 /**
5447  *	ata_host_suspend - suspend host
5448  *	@host: host to suspend
5449  *	@mesg: PM message
5450  *
5451  *	Suspend @host.  Actual operation is performed by EH.  This
5452  *	function requests EH to perform PM operations and waits for EH
5453  *	to finish.
5454  *
5455  *	LOCKING:
5456  *	Kernel thread context (may sleep).
5457  *
5458  *	RETURNS:
5459  *	0 on success, -errno on failure.
5460  */
5461 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5462 {
5463 	int i, j, rc;
5464 
5465 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5466 	if (rc)
5467 		goto fail;
5468 
5469 	/* EH is quiescent now.  Fail if we have any ready device.
5470 	 * This happens if hotplug occurs between completion of device
5471 	 * suspension and here.
5472 	 */
5473 	for (i = 0; i < host->n_ports; i++) {
5474 		struct ata_port *ap = host->ports[i];
5475 
5476 		for (j = 0; j < ATA_MAX_DEVICES; j++) {
5477 			struct ata_device *dev = &ap->device[j];
5478 
5479 			if (ata_dev_ready(dev)) {
5480 				ata_port_printk(ap, KERN_WARNING,
5481 						"suspend failed, device %d "
5482 						"still active\n", dev->devno);
5483 				rc = -EBUSY;
5484 				goto fail;
5485 			}
5486 		}
5487 	}
5488 
5489 	host->dev->power.power_state = mesg;
5490 	return 0;
5491 
5492  fail:
5493 	ata_host_resume(host);
5494 	return rc;
5495 }
5496 
5497 /**
5498  *	ata_host_resume - resume host
5499  *	@host: host to resume
5500  *
5501  *	Resume @host.  Actual operation is performed by EH.  This
5502  *	function requests EH to perform PM operations and returns.
5503  *	Note that all resume operations are performed parallely.
5504  *
5505  *	LOCKING:
5506  *	Kernel thread context (may sleep).
5507  */
5508 void ata_host_resume(struct ata_host *host)
5509 {
5510 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5511 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5512 	host->dev->power.power_state = PMSG_ON;
5513 }
5514 #endif
5515 
5516 /**
5517  *	ata_port_start - Set port up for dma.
5518  *	@ap: Port to initialize
5519  *
5520  *	Called just after data structures for each port are
5521  *	initialized.  Allocates space for PRD table.
5522  *
5523  *	May be used as the port_start() entry in ata_port_operations.
5524  *
5525  *	LOCKING:
5526  *	Inherited from caller.
5527  */
5528 int ata_port_start(struct ata_port *ap)
5529 {
5530 	struct device *dev = ap->dev;
5531 	int rc;
5532 
5533 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5534 				      GFP_KERNEL);
5535 	if (!ap->prd)
5536 		return -ENOMEM;
5537 
5538 	rc = ata_pad_alloc(ap, dev);
5539 	if (rc)
5540 		return rc;
5541 
5542 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5543 		(unsigned long long)ap->prd_dma);
5544 	return 0;
5545 }
5546 
5547 /**
5548  *	ata_dev_init - Initialize an ata_device structure
5549  *	@dev: Device structure to initialize
5550  *
5551  *	Initialize @dev in preparation for probing.
5552  *
5553  *	LOCKING:
5554  *	Inherited from caller.
5555  */
5556 void ata_dev_init(struct ata_device *dev)
5557 {
5558 	struct ata_port *ap = dev->ap;
5559 	unsigned long flags;
5560 
5561 	/* SATA spd limit is bound to the first device */
5562 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5563 
5564 	/* High bits of dev->flags are used to record warm plug
5565 	 * requests which occur asynchronously.  Synchronize using
5566 	 * host lock.
5567 	 */
5568 	spin_lock_irqsave(ap->lock, flags);
5569 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5570 	spin_unlock_irqrestore(ap->lock, flags);
5571 
5572 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5573 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5574 	dev->pio_mask = UINT_MAX;
5575 	dev->mwdma_mask = UINT_MAX;
5576 	dev->udma_mask = UINT_MAX;
5577 }
5578 
5579 /**
5580  *	ata_port_init - Initialize an ata_port structure
5581  *	@ap: Structure to initialize
5582  *	@host: Collection of hosts to which @ap belongs
5583  *	@ent: Probe information provided by low-level driver
5584  *	@port_no: Port number associated with this ata_port
5585  *
5586  *	Initialize a new ata_port structure.
5587  *
5588  *	LOCKING:
5589  *	Inherited from caller.
5590  */
5591 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5592 		   const struct ata_probe_ent *ent, unsigned int port_no)
5593 {
5594 	unsigned int i;
5595 
5596 	ap->lock = &host->lock;
5597 	ap->flags = ATA_FLAG_DISABLED;
5598 	ap->print_id = ata_print_id++;
5599 	ap->ctl = ATA_DEVCTL_OBS;
5600 	ap->host = host;
5601 	ap->dev = ent->dev;
5602 	ap->port_no = port_no;
5603 	if (port_no == 1 && ent->pinfo2) {
5604 		ap->pio_mask = ent->pinfo2->pio_mask;
5605 		ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5606 		ap->udma_mask = ent->pinfo2->udma_mask;
5607 		ap->flags |= ent->pinfo2->flags;
5608 		ap->ops = ent->pinfo2->port_ops;
5609 	} else {
5610 		ap->pio_mask = ent->pio_mask;
5611 		ap->mwdma_mask = ent->mwdma_mask;
5612 		ap->udma_mask = ent->udma_mask;
5613 		ap->flags |= ent->port_flags;
5614 		ap->ops = ent->port_ops;
5615 	}
5616 	ap->hw_sata_spd_limit = UINT_MAX;
5617 	ap->active_tag = ATA_TAG_POISON;
5618 	ap->last_ctl = 0xFF;
5619 
5620 #if defined(ATA_VERBOSE_DEBUG)
5621 	/* turn on all debugging levels */
5622 	ap->msg_enable = 0x00FF;
5623 #elif defined(ATA_DEBUG)
5624 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5625 #else
5626 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5627 #endif
5628 
5629 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5630 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5631 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5632 	INIT_LIST_HEAD(&ap->eh_done_q);
5633 	init_waitqueue_head(&ap->eh_wait_q);
5634 
5635 	/* set cable type */
5636 	ap->cbl = ATA_CBL_NONE;
5637 	if (ap->flags & ATA_FLAG_SATA)
5638 		ap->cbl = ATA_CBL_SATA;
5639 
5640 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5641 		struct ata_device *dev = &ap->device[i];
5642 		dev->ap = ap;
5643 		dev->devno = i;
5644 		ata_dev_init(dev);
5645 	}
5646 
5647 #ifdef ATA_IRQ_TRAP
5648 	ap->stats.unhandled_irq = 1;
5649 	ap->stats.idle_irq = 1;
5650 #endif
5651 
5652 	memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5653 }
5654 
5655 /**
5656  *	ata_port_init_shost - Initialize SCSI host associated with ATA port
5657  *	@ap: ATA port to initialize SCSI host for
5658  *	@shost: SCSI host associated with @ap
5659  *
5660  *	Initialize SCSI host @shost associated with ATA port @ap.
5661  *
5662  *	LOCKING:
5663  *	Inherited from caller.
5664  */
5665 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5666 {
5667 	ap->scsi_host = shost;
5668 
5669 	shost->unique_id = ap->print_id;
5670 	shost->max_id = 16;
5671 	shost->max_lun = 1;
5672 	shost->max_channel = 1;
5673 	shost->max_cmd_len = 12;
5674 }
5675 
5676 /**
5677  *	ata_port_add - Attach low-level ATA driver to system
5678  *	@ent: Information provided by low-level driver
5679  *	@host: Collections of ports to which we add
5680  *	@port_no: Port number associated with this host
5681  *
5682  *	Attach low-level ATA driver to system.
5683  *
5684  *	LOCKING:
5685  *	PCI/etc. bus probe sem.
5686  *
5687  *	RETURNS:
5688  *	New ata_port on success, for NULL on error.
5689  */
5690 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5691 				      struct ata_host *host,
5692 				      unsigned int port_no)
5693 {
5694 	struct Scsi_Host *shost;
5695 	struct ata_port *ap;
5696 
5697 	DPRINTK("ENTER\n");
5698 
5699 	if (!ent->port_ops->error_handler &&
5700 	    !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5701 		printk(KERN_ERR "ata%u: no reset mechanism available\n",
5702 		       port_no);
5703 		return NULL;
5704 	}
5705 
5706 	shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5707 	if (!shost)
5708 		return NULL;
5709 
5710 	shost->transportt = &ata_scsi_transport_template;
5711 
5712 	ap = ata_shost_to_port(shost);
5713 
5714 	ata_port_init(ap, host, ent, port_no);
5715 	ata_port_init_shost(ap, shost);
5716 
5717 	return ap;
5718 }
5719 
5720 static void ata_host_release(struct device *gendev, void *res)
5721 {
5722 	struct ata_host *host = dev_get_drvdata(gendev);
5723 	int i;
5724 
5725 	for (i = 0; i < host->n_ports; i++) {
5726 		struct ata_port *ap = host->ports[i];
5727 
5728 		if (ap && ap->ops->port_stop)
5729 			ap->ops->port_stop(ap);
5730 	}
5731 
5732 	if (host->ops->host_stop)
5733 		host->ops->host_stop(host);
5734 
5735 	for (i = 0; i < host->n_ports; i++) {
5736 		struct ata_port *ap = host->ports[i];
5737 
5738 		if (ap)
5739 			scsi_host_put(ap->scsi_host);
5740 
5741 		host->ports[i] = NULL;
5742 	}
5743 
5744 	dev_set_drvdata(gendev, NULL);
5745 }
5746 
5747 /**
5748  *	ata_sas_host_init - Initialize a host struct
5749  *	@host:	host to initialize
5750  *	@dev:	device host is attached to
5751  *	@flags:	host flags
5752  *	@ops:	port_ops
5753  *
5754  *	LOCKING:
5755  *	PCI/etc. bus probe sem.
5756  *
5757  */
5758 
5759 void ata_host_init(struct ata_host *host, struct device *dev,
5760 		   unsigned long flags, const struct ata_port_operations *ops)
5761 {
5762 	spin_lock_init(&host->lock);
5763 	host->dev = dev;
5764 	host->flags = flags;
5765 	host->ops = ops;
5766 }
5767 
5768 /**
5769  *	ata_device_add - Register hardware device with ATA and SCSI layers
5770  *	@ent: Probe information describing hardware device to be registered
5771  *
5772  *	This function processes the information provided in the probe
5773  *	information struct @ent, allocates the necessary ATA and SCSI
5774  *	host information structures, initializes them, and registers
5775  *	everything with requisite kernel subsystems.
5776  *
5777  *	This function requests irqs, probes the ATA bus, and probes
5778  *	the SCSI bus.
5779  *
5780  *	LOCKING:
5781  *	PCI/etc. bus probe sem.
5782  *
5783  *	RETURNS:
5784  *	Number of ports registered.  Zero on error (no ports registered).
5785  */
5786 int ata_device_add(const struct ata_probe_ent *ent)
5787 {
5788 	unsigned int i;
5789 	struct device *dev = ent->dev;
5790 	struct ata_host *host;
5791 	int rc;
5792 
5793 	DPRINTK("ENTER\n");
5794 
5795 	if (ent->irq == 0) {
5796 		dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5797 		return 0;
5798 	}
5799 
5800 	if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5801 		return 0;
5802 
5803 	/* alloc a container for our list of ATA ports (buses) */
5804 	host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5805 			    (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5806 	if (!host)
5807 		goto err_out;
5808 	devres_add(dev, host);
5809 	dev_set_drvdata(dev, host);
5810 
5811 	ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5812 	host->n_ports = ent->n_ports;
5813 	host->irq = ent->irq;
5814 	host->irq2 = ent->irq2;
5815 	host->iomap = ent->iomap;
5816 	host->private_data = ent->private_data;
5817 
5818 	/* register each port bound to this device */
5819 	for (i = 0; i < host->n_ports; i++) {
5820 		struct ata_port *ap;
5821 		unsigned long xfer_mode_mask;
5822 		int irq_line = ent->irq;
5823 
5824 		ap = ata_port_add(ent, host, i);
5825 		host->ports[i] = ap;
5826 		if (!ap)
5827 			goto err_out;
5828 
5829 		/* dummy? */
5830 		if (ent->dummy_port_mask & (1 << i)) {
5831 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5832 			ap->ops = &ata_dummy_port_ops;
5833 			continue;
5834 		}
5835 
5836 		/* start port */
5837 		rc = ap->ops->port_start(ap);
5838 		if (rc) {
5839 			host->ports[i] = NULL;
5840 			scsi_host_put(ap->scsi_host);
5841 			goto err_out;
5842 		}
5843 
5844 		/* Report the secondary IRQ for second channel legacy */
5845 		if (i == 1 && ent->irq2)
5846 			irq_line = ent->irq2;
5847 
5848 		xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5849 				(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5850 				(ap->pio_mask << ATA_SHIFT_PIO);
5851 
5852 		/* print per-port info to dmesg */
5853 		ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5854 				"ctl 0x%p bmdma 0x%p irq %d\n",
5855 				ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5856 				ata_mode_string(xfer_mode_mask),
5857 				ap->ioaddr.cmd_addr,
5858 				ap->ioaddr.ctl_addr,
5859 				ap->ioaddr.bmdma_addr,
5860 				irq_line);
5861 
5862 		/* freeze port before requesting IRQ */
5863 		ata_eh_freeze_port(ap);
5864 	}
5865 
5866 	/* obtain irq, that may be shared between channels */
5867 	rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5868 			      ent->irq_flags, DRV_NAME, host);
5869 	if (rc) {
5870 		dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5871 			   ent->irq, rc);
5872 		goto err_out;
5873 	}
5874 
5875 	/* do we have a second IRQ for the other channel, eg legacy mode */
5876 	if (ent->irq2) {
5877 		/* We will get weird core code crashes later if this is true
5878 		   so trap it now */
5879 		BUG_ON(ent->irq == ent->irq2);
5880 
5881 		rc = devm_request_irq(dev, ent->irq2,
5882 				ent->port_ops->irq_handler, ent->irq_flags,
5883 				DRV_NAME, host);
5884 		if (rc) {
5885 			dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5886 				   ent->irq2, rc);
5887 			goto err_out;
5888 		}
5889 	}
5890 
5891 	/* resource acquisition complete */
5892 	devres_remove_group(dev, ata_device_add);
5893 
5894 	/* perform each probe synchronously */
5895 	DPRINTK("probe begin\n");
5896 	for (i = 0; i < host->n_ports; i++) {
5897 		struct ata_port *ap = host->ports[i];
5898 		u32 scontrol;
5899 		int rc;
5900 
5901 		/* init sata_spd_limit to the current value */
5902 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5903 			int spd = (scontrol >> 4) & 0xf;
5904 			ap->hw_sata_spd_limit &= (1 << spd) - 1;
5905 		}
5906 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
5907 
5908 		rc = scsi_add_host(ap->scsi_host, dev);
5909 		if (rc) {
5910 			ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5911 			/* FIXME: do something useful here */
5912 			/* FIXME: handle unconditional calls to
5913 			 * scsi_scan_host and ata_host_remove, below,
5914 			 * at the very least
5915 			 */
5916 		}
5917 
5918 		if (ap->ops->error_handler) {
5919 			struct ata_eh_info *ehi = &ap->eh_info;
5920 			unsigned long flags;
5921 
5922 			ata_port_probe(ap);
5923 
5924 			/* kick EH for boot probing */
5925 			spin_lock_irqsave(ap->lock, flags);
5926 
5927 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5928 			ehi->action |= ATA_EH_SOFTRESET;
5929 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5930 
5931 			ap->pflags |= ATA_PFLAG_LOADING;
5932 			ata_port_schedule_eh(ap);
5933 
5934 			spin_unlock_irqrestore(ap->lock, flags);
5935 
5936 			/* wait for EH to finish */
5937 			ata_port_wait_eh(ap);
5938 		} else {
5939 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5940 			rc = ata_bus_probe(ap);
5941 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
5942 
5943 			if (rc) {
5944 				/* FIXME: do something useful here?
5945 				 * Current libata behavior will
5946 				 * tear down everything when
5947 				 * the module is removed
5948 				 * or the h/w is unplugged.
5949 				 */
5950 			}
5951 		}
5952 	}
5953 
5954 	/* probes are done, now scan each port's disk(s) */
5955 	DPRINTK("host probe begin\n");
5956 	for (i = 0; i < host->n_ports; i++) {
5957 		struct ata_port *ap = host->ports[i];
5958 
5959 		ata_scsi_scan_host(ap);
5960 	}
5961 
5962 	VPRINTK("EXIT, returning %u\n", ent->n_ports);
5963 	return ent->n_ports; /* success */
5964 
5965  err_out:
5966 	devres_release_group(dev, ata_device_add);
5967 	VPRINTK("EXIT, returning %d\n", rc);
5968 	return 0;
5969 }
5970 
5971 /**
5972  *	ata_port_detach - Detach ATA port in prepration of device removal
5973  *	@ap: ATA port to be detached
5974  *
5975  *	Detach all ATA devices and the associated SCSI devices of @ap;
5976  *	then, remove the associated SCSI host.  @ap is guaranteed to
5977  *	be quiescent on return from this function.
5978  *
5979  *	LOCKING:
5980  *	Kernel thread context (may sleep).
5981  */
5982 void ata_port_detach(struct ata_port *ap)
5983 {
5984 	unsigned long flags;
5985 	int i;
5986 
5987 	if (!ap->ops->error_handler)
5988 		goto skip_eh;
5989 
5990 	/* tell EH we're leaving & flush EH */
5991 	spin_lock_irqsave(ap->lock, flags);
5992 	ap->pflags |= ATA_PFLAG_UNLOADING;
5993 	spin_unlock_irqrestore(ap->lock, flags);
5994 
5995 	ata_port_wait_eh(ap);
5996 
5997 	/* EH is now guaranteed to see UNLOADING, so no new device
5998 	 * will be attached.  Disable all existing devices.
5999 	 */
6000 	spin_lock_irqsave(ap->lock, flags);
6001 
6002 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6003 		ata_dev_disable(&ap->device[i]);
6004 
6005 	spin_unlock_irqrestore(ap->lock, flags);
6006 
6007 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6008 	 * will be skipped and retrials will be terminated with bad
6009 	 * target.
6010 	 */
6011 	spin_lock_irqsave(ap->lock, flags);
6012 	ata_port_freeze(ap);	/* won't be thawed */
6013 	spin_unlock_irqrestore(ap->lock, flags);
6014 
6015 	ata_port_wait_eh(ap);
6016 
6017 	/* Flush hotplug task.  The sequence is similar to
6018 	 * ata_port_flush_task().
6019 	 */
6020 	flush_workqueue(ata_aux_wq);
6021 	cancel_delayed_work(&ap->hotplug_task);
6022 	flush_workqueue(ata_aux_wq);
6023 
6024  skip_eh:
6025 	/* remove the associated SCSI host */
6026 	scsi_remove_host(ap->scsi_host);
6027 }
6028 
6029 /**
6030  *	ata_host_detach - Detach all ports of an ATA host
6031  *	@host: Host to detach
6032  *
6033  *	Detach all ports of @host.
6034  *
6035  *	LOCKING:
6036  *	Kernel thread context (may sleep).
6037  */
6038 void ata_host_detach(struct ata_host *host)
6039 {
6040 	int i;
6041 
6042 	for (i = 0; i < host->n_ports; i++)
6043 		ata_port_detach(host->ports[i]);
6044 }
6045 
6046 struct ata_probe_ent *
6047 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6048 {
6049 	struct ata_probe_ent *probe_ent;
6050 
6051 	probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6052 	if (!probe_ent) {
6053 		printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6054 		       kobject_name(&(dev->kobj)));
6055 		return NULL;
6056 	}
6057 
6058 	INIT_LIST_HEAD(&probe_ent->node);
6059 	probe_ent->dev = dev;
6060 
6061 	probe_ent->sht = port->sht;
6062 	probe_ent->port_flags = port->flags;
6063 	probe_ent->pio_mask = port->pio_mask;
6064 	probe_ent->mwdma_mask = port->mwdma_mask;
6065 	probe_ent->udma_mask = port->udma_mask;
6066 	probe_ent->port_ops = port->port_ops;
6067 	probe_ent->private_data = port->private_data;
6068 
6069 	return probe_ent;
6070 }
6071 
6072 /**
6073  *	ata_std_ports - initialize ioaddr with standard port offsets.
6074  *	@ioaddr: IO address structure to be initialized
6075  *
6076  *	Utility function which initializes data_addr, error_addr,
6077  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6078  *	device_addr, status_addr, and command_addr to standard offsets
6079  *	relative to cmd_addr.
6080  *
6081  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6082  */
6083 
6084 void ata_std_ports(struct ata_ioports *ioaddr)
6085 {
6086 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6087 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6088 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6089 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6090 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6091 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6092 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6093 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6094 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6095 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6096 }
6097 
6098 
6099 #ifdef CONFIG_PCI
6100 
6101 /**
6102  *	ata_pci_remove_one - PCI layer callback for device removal
6103  *	@pdev: PCI device that was removed
6104  *
6105  *	PCI layer indicates to libata via this hook that hot-unplug or
6106  *	module unload event has occurred.  Detach all ports.  Resource
6107  *	release is handled via devres.
6108  *
6109  *	LOCKING:
6110  *	Inherited from PCI layer (may sleep).
6111  */
6112 void ata_pci_remove_one(struct pci_dev *pdev)
6113 {
6114 	struct device *dev = pci_dev_to_dev(pdev);
6115 	struct ata_host *host = dev_get_drvdata(dev);
6116 
6117 	ata_host_detach(host);
6118 }
6119 
6120 /* move to PCI subsystem */
6121 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6122 {
6123 	unsigned long tmp = 0;
6124 
6125 	switch (bits->width) {
6126 	case 1: {
6127 		u8 tmp8 = 0;
6128 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6129 		tmp = tmp8;
6130 		break;
6131 	}
6132 	case 2: {
6133 		u16 tmp16 = 0;
6134 		pci_read_config_word(pdev, bits->reg, &tmp16);
6135 		tmp = tmp16;
6136 		break;
6137 	}
6138 	case 4: {
6139 		u32 tmp32 = 0;
6140 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6141 		tmp = tmp32;
6142 		break;
6143 	}
6144 
6145 	default:
6146 		return -EINVAL;
6147 	}
6148 
6149 	tmp &= bits->mask;
6150 
6151 	return (tmp == bits->val) ? 1 : 0;
6152 }
6153 
6154 #ifdef CONFIG_PM
6155 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6156 {
6157 	pci_save_state(pdev);
6158 	pci_disable_device(pdev);
6159 
6160 	if (mesg.event == PM_EVENT_SUSPEND)
6161 		pci_set_power_state(pdev, PCI_D3hot);
6162 }
6163 
6164 int ata_pci_device_do_resume(struct pci_dev *pdev)
6165 {
6166 	int rc;
6167 
6168 	pci_set_power_state(pdev, PCI_D0);
6169 	pci_restore_state(pdev);
6170 
6171 	rc = pcim_enable_device(pdev);
6172 	if (rc) {
6173 		dev_printk(KERN_ERR, &pdev->dev,
6174 			   "failed to enable device after resume (%d)\n", rc);
6175 		return rc;
6176 	}
6177 
6178 	pci_set_master(pdev);
6179 	return 0;
6180 }
6181 
6182 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6183 {
6184 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6185 	int rc = 0;
6186 
6187 	rc = ata_host_suspend(host, mesg);
6188 	if (rc)
6189 		return rc;
6190 
6191 	ata_pci_device_do_suspend(pdev, mesg);
6192 
6193 	return 0;
6194 }
6195 
6196 int ata_pci_device_resume(struct pci_dev *pdev)
6197 {
6198 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6199 	int rc;
6200 
6201 	rc = ata_pci_device_do_resume(pdev);
6202 	if (rc == 0)
6203 		ata_host_resume(host);
6204 	return rc;
6205 }
6206 #endif /* CONFIG_PM */
6207 
6208 #endif /* CONFIG_PCI */
6209 
6210 
6211 static int __init ata_init(void)
6212 {
6213 	ata_probe_timeout *= HZ;
6214 	ata_wq = create_workqueue("ata");
6215 	if (!ata_wq)
6216 		return -ENOMEM;
6217 
6218 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6219 	if (!ata_aux_wq) {
6220 		destroy_workqueue(ata_wq);
6221 		return -ENOMEM;
6222 	}
6223 
6224 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6225 	return 0;
6226 }
6227 
6228 static void __exit ata_exit(void)
6229 {
6230 	destroy_workqueue(ata_wq);
6231 	destroy_workqueue(ata_aux_wq);
6232 }
6233 
6234 subsys_initcall(ata_init);
6235 module_exit(ata_exit);
6236 
6237 static unsigned long ratelimit_time;
6238 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6239 
6240 int ata_ratelimit(void)
6241 {
6242 	int rc;
6243 	unsigned long flags;
6244 
6245 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6246 
6247 	if (time_after(jiffies, ratelimit_time)) {
6248 		rc = 1;
6249 		ratelimit_time = jiffies + (HZ/5);
6250 	} else
6251 		rc = 0;
6252 
6253 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6254 
6255 	return rc;
6256 }
6257 
6258 /**
6259  *	ata_wait_register - wait until register value changes
6260  *	@reg: IO-mapped register
6261  *	@mask: Mask to apply to read register value
6262  *	@val: Wait condition
6263  *	@interval_msec: polling interval in milliseconds
6264  *	@timeout_msec: timeout in milliseconds
6265  *
6266  *	Waiting for some bits of register to change is a common
6267  *	operation for ATA controllers.  This function reads 32bit LE
6268  *	IO-mapped register @reg and tests for the following condition.
6269  *
6270  *	(*@reg & mask) != val
6271  *
6272  *	If the condition is met, it returns; otherwise, the process is
6273  *	repeated after @interval_msec until timeout.
6274  *
6275  *	LOCKING:
6276  *	Kernel thread context (may sleep)
6277  *
6278  *	RETURNS:
6279  *	The final register value.
6280  */
6281 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6282 		      unsigned long interval_msec,
6283 		      unsigned long timeout_msec)
6284 {
6285 	unsigned long timeout;
6286 	u32 tmp;
6287 
6288 	tmp = ioread32(reg);
6289 
6290 	/* Calculate timeout _after_ the first read to make sure
6291 	 * preceding writes reach the controller before starting to
6292 	 * eat away the timeout.
6293 	 */
6294 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6295 
6296 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6297 		msleep(interval_msec);
6298 		tmp = ioread32(reg);
6299 	}
6300 
6301 	return tmp;
6302 }
6303 
6304 /*
6305  * Dummy port_ops
6306  */
6307 static void ata_dummy_noret(struct ata_port *ap)	{ }
6308 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6309 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6310 
6311 static u8 ata_dummy_check_status(struct ata_port *ap)
6312 {
6313 	return ATA_DRDY;
6314 }
6315 
6316 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6317 {
6318 	return AC_ERR_SYSTEM;
6319 }
6320 
6321 const struct ata_port_operations ata_dummy_port_ops = {
6322 	.port_disable		= ata_port_disable,
6323 	.check_status		= ata_dummy_check_status,
6324 	.check_altstatus	= ata_dummy_check_status,
6325 	.dev_select		= ata_noop_dev_select,
6326 	.qc_prep		= ata_noop_qc_prep,
6327 	.qc_issue		= ata_dummy_qc_issue,
6328 	.freeze			= ata_dummy_noret,
6329 	.thaw			= ata_dummy_noret,
6330 	.error_handler		= ata_dummy_noret,
6331 	.post_internal_cmd	= ata_dummy_qc_noret,
6332 	.irq_clear		= ata_dummy_noret,
6333 	.port_start		= ata_dummy_ret0,
6334 	.port_stop		= ata_dummy_noret,
6335 };
6336 
6337 /*
6338  * libata is essentially a library of internal helper functions for
6339  * low-level ATA host controller drivers.  As such, the API/ABI is
6340  * likely to change as new drivers are added and updated.
6341  * Do not depend on ABI/API stability.
6342  */
6343 
6344 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6345 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6346 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6347 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6348 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6349 EXPORT_SYMBOL_GPL(ata_std_ports);
6350 EXPORT_SYMBOL_GPL(ata_host_init);
6351 EXPORT_SYMBOL_GPL(ata_device_add);
6352 EXPORT_SYMBOL_GPL(ata_host_detach);
6353 EXPORT_SYMBOL_GPL(ata_sg_init);
6354 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6355 EXPORT_SYMBOL_GPL(ata_hsm_move);
6356 EXPORT_SYMBOL_GPL(ata_qc_complete);
6357 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6358 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6359 EXPORT_SYMBOL_GPL(ata_tf_load);
6360 EXPORT_SYMBOL_GPL(ata_tf_read);
6361 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6362 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6363 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6364 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6365 EXPORT_SYMBOL_GPL(ata_check_status);
6366 EXPORT_SYMBOL_GPL(ata_altstatus);
6367 EXPORT_SYMBOL_GPL(ata_exec_command);
6368 EXPORT_SYMBOL_GPL(ata_port_start);
6369 EXPORT_SYMBOL_GPL(ata_interrupt);
6370 EXPORT_SYMBOL_GPL(ata_data_xfer);
6371 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6372 EXPORT_SYMBOL_GPL(ata_qc_prep);
6373 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6374 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6375 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6376 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6377 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6378 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6379 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6380 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6381 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6382 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6383 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6384 EXPORT_SYMBOL_GPL(ata_port_probe);
6385 EXPORT_SYMBOL_GPL(ata_dev_disable);
6386 EXPORT_SYMBOL_GPL(sata_set_spd);
6387 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6388 EXPORT_SYMBOL_GPL(sata_phy_resume);
6389 EXPORT_SYMBOL_GPL(sata_phy_reset);
6390 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6391 EXPORT_SYMBOL_GPL(ata_bus_reset);
6392 EXPORT_SYMBOL_GPL(ata_std_prereset);
6393 EXPORT_SYMBOL_GPL(ata_std_softreset);
6394 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6395 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6396 EXPORT_SYMBOL_GPL(ata_std_postreset);
6397 EXPORT_SYMBOL_GPL(ata_dev_classify);
6398 EXPORT_SYMBOL_GPL(ata_dev_pair);
6399 EXPORT_SYMBOL_GPL(ata_port_disable);
6400 EXPORT_SYMBOL_GPL(ata_ratelimit);
6401 EXPORT_SYMBOL_GPL(ata_wait_register);
6402 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6403 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6404 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6405 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6406 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6407 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6408 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6409 EXPORT_SYMBOL_GPL(ata_host_intr);
6410 EXPORT_SYMBOL_GPL(sata_scr_valid);
6411 EXPORT_SYMBOL_GPL(sata_scr_read);
6412 EXPORT_SYMBOL_GPL(sata_scr_write);
6413 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6414 EXPORT_SYMBOL_GPL(ata_port_online);
6415 EXPORT_SYMBOL_GPL(ata_port_offline);
6416 #ifdef CONFIG_PM
6417 EXPORT_SYMBOL_GPL(ata_host_suspend);
6418 EXPORT_SYMBOL_GPL(ata_host_resume);
6419 #endif /* CONFIG_PM */
6420 EXPORT_SYMBOL_GPL(ata_id_string);
6421 EXPORT_SYMBOL_GPL(ata_id_c_string);
6422 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6423 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6424 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6425 
6426 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6427 EXPORT_SYMBOL_GPL(ata_timing_compute);
6428 EXPORT_SYMBOL_GPL(ata_timing_merge);
6429 
6430 #ifdef CONFIG_PCI
6431 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6432 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6433 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6434 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6435 #ifdef CONFIG_PM
6436 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6437 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6438 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6439 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6440 #endif /* CONFIG_PM */
6441 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6442 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6443 #endif /* CONFIG_PCI */
6444 
6445 #ifdef CONFIG_PM
6446 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6447 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6448 #endif /* CONFIG_PM */
6449 
6450 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6451 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6452 EXPORT_SYMBOL_GPL(ata_port_abort);
6453 EXPORT_SYMBOL_GPL(ata_port_freeze);
6454 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6455 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6456 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6457 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6458 EXPORT_SYMBOL_GPL(ata_do_eh);
6459 EXPORT_SYMBOL_GPL(ata_irq_on);
6460 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6461 EXPORT_SYMBOL_GPL(ata_irq_ack);
6462 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6463 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6464