1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.20" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 75 static unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int libata_fua = 0; 89 module_param_named(fua, libata_fua, int, 0444); 90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 91 92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 93 module_param(ata_probe_timeout, int, 0444); 94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 95 96 int libata_noacpi = 1; 97 module_param_named(noacpi, libata_noacpi, int, 0444); 98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 99 100 MODULE_AUTHOR("Jeff Garzik"); 101 MODULE_DESCRIPTION("Library module for ATA devices"); 102 MODULE_LICENSE("GPL"); 103 MODULE_VERSION(DRV_VERSION); 104 105 106 /** 107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 108 * @tf: Taskfile to convert 109 * @fis: Buffer into which data will output 110 * @pmp: Port multiplier port 111 * 112 * Converts a standard ATA taskfile to a Serial ATA 113 * FIS structure (Register - Host to Device). 114 * 115 * LOCKING: 116 * Inherited from caller. 117 */ 118 119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 120 { 121 fis[0] = 0x27; /* Register - Host to Device FIS */ 122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 123 bit 7 indicates Command FIS */ 124 fis[2] = tf->command; 125 fis[3] = tf->feature; 126 127 fis[4] = tf->lbal; 128 fis[5] = tf->lbam; 129 fis[6] = tf->lbah; 130 fis[7] = tf->device; 131 132 fis[8] = tf->hob_lbal; 133 fis[9] = tf->hob_lbam; 134 fis[10] = tf->hob_lbah; 135 fis[11] = tf->hob_feature; 136 137 fis[12] = tf->nsect; 138 fis[13] = tf->hob_nsect; 139 fis[14] = 0; 140 fis[15] = tf->ctl; 141 142 fis[16] = 0; 143 fis[17] = 0; 144 fis[18] = 0; 145 fis[19] = 0; 146 } 147 148 /** 149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 150 * @fis: Buffer from which data will be input 151 * @tf: Taskfile to output 152 * 153 * Converts a serial ATA FIS structure to a standard ATA taskfile. 154 * 155 * LOCKING: 156 * Inherited from caller. 157 */ 158 159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 160 { 161 tf->command = fis[2]; /* status */ 162 tf->feature = fis[3]; /* error */ 163 164 tf->lbal = fis[4]; 165 tf->lbam = fis[5]; 166 tf->lbah = fis[6]; 167 tf->device = fis[7]; 168 169 tf->hob_lbal = fis[8]; 170 tf->hob_lbam = fis[9]; 171 tf->hob_lbah = fis[10]; 172 173 tf->nsect = fis[12]; 174 tf->hob_nsect = fis[13]; 175 } 176 177 static const u8 ata_rw_cmds[] = { 178 /* pio multi */ 179 ATA_CMD_READ_MULTI, 180 ATA_CMD_WRITE_MULTI, 181 ATA_CMD_READ_MULTI_EXT, 182 ATA_CMD_WRITE_MULTI_EXT, 183 0, 184 0, 185 0, 186 ATA_CMD_WRITE_MULTI_FUA_EXT, 187 /* pio */ 188 ATA_CMD_PIO_READ, 189 ATA_CMD_PIO_WRITE, 190 ATA_CMD_PIO_READ_EXT, 191 ATA_CMD_PIO_WRITE_EXT, 192 0, 193 0, 194 0, 195 0, 196 /* dma */ 197 ATA_CMD_READ, 198 ATA_CMD_WRITE, 199 ATA_CMD_READ_EXT, 200 ATA_CMD_WRITE_EXT, 201 0, 202 0, 203 0, 204 ATA_CMD_WRITE_FUA_EXT 205 }; 206 207 /** 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 209 * @tf: command to examine and configure 210 * @dev: device tf belongs to 211 * 212 * Examine the device configuration and tf->flags to calculate 213 * the proper read/write commands and protocol to use. 214 * 215 * LOCKING: 216 * caller. 217 */ 218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 219 { 220 u8 cmd; 221 222 int index, fua, lba48, write; 223 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 227 228 if (dev->flags & ATA_DFLAG_PIO) { 229 tf->protocol = ATA_PROT_PIO; 230 index = dev->multi_count ? 0 : 8; 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 232 /* Unable to use DMA due to host limitation */ 233 tf->protocol = ATA_PROT_PIO; 234 index = dev->multi_count ? 0 : 8; 235 } else { 236 tf->protocol = ATA_PROT_DMA; 237 index = 16; 238 } 239 240 cmd = ata_rw_cmds[index + fua + lba48 + write]; 241 if (cmd) { 242 tf->command = cmd; 243 return 0; 244 } 245 return -1; 246 } 247 248 /** 249 * ata_tf_read_block - Read block address from ATA taskfile 250 * @tf: ATA taskfile of interest 251 * @dev: ATA device @tf belongs to 252 * 253 * LOCKING: 254 * None. 255 * 256 * Read block address from @tf. This function can handle all 257 * three address formats - LBA, LBA48 and CHS. tf->protocol and 258 * flags select the address format to use. 259 * 260 * RETURNS: 261 * Block address read from @tf. 262 */ 263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 264 { 265 u64 block = 0; 266 267 if (tf->flags & ATA_TFLAG_LBA) { 268 if (tf->flags & ATA_TFLAG_LBA48) { 269 block |= (u64)tf->hob_lbah << 40; 270 block |= (u64)tf->hob_lbam << 32; 271 block |= tf->hob_lbal << 24; 272 } else 273 block |= (tf->device & 0xf) << 24; 274 275 block |= tf->lbah << 16; 276 block |= tf->lbam << 8; 277 block |= tf->lbal; 278 } else { 279 u32 cyl, head, sect; 280 281 cyl = tf->lbam | (tf->lbah << 8); 282 head = tf->device & 0xf; 283 sect = tf->lbal; 284 285 block = (cyl * dev->heads + head) * dev->sectors + sect; 286 } 287 288 return block; 289 } 290 291 /** 292 * ata_build_rw_tf - Build ATA taskfile for given read/write request 293 * @tf: Target ATA taskfile 294 * @dev: ATA device @tf belongs to 295 * @block: Block address 296 * @n_block: Number of blocks 297 * @tf_flags: RW/FUA etc... 298 * @tag: tag 299 * 300 * LOCKING: 301 * None. 302 * 303 * Build ATA taskfile @tf for read/write request described by 304 * @block, @n_block, @tf_flags and @tag on @dev. 305 * 306 * RETURNS: 307 * 308 * 0 on success, -ERANGE if the request is too large for @dev, 309 * -EINVAL if the request is invalid. 310 */ 311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 312 u64 block, u32 n_block, unsigned int tf_flags, 313 unsigned int tag) 314 { 315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 316 tf->flags |= tf_flags; 317 318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 319 /* yay, NCQ */ 320 if (!lba_48_ok(block, n_block)) 321 return -ERANGE; 322 323 tf->protocol = ATA_PROT_NCQ; 324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 325 326 if (tf->flags & ATA_TFLAG_WRITE) 327 tf->command = ATA_CMD_FPDMA_WRITE; 328 else 329 tf->command = ATA_CMD_FPDMA_READ; 330 331 tf->nsect = tag << 3; 332 tf->hob_feature = (n_block >> 8) & 0xff; 333 tf->feature = n_block & 0xff; 334 335 tf->hob_lbah = (block >> 40) & 0xff; 336 tf->hob_lbam = (block >> 32) & 0xff; 337 tf->hob_lbal = (block >> 24) & 0xff; 338 tf->lbah = (block >> 16) & 0xff; 339 tf->lbam = (block >> 8) & 0xff; 340 tf->lbal = block & 0xff; 341 342 tf->device = 1 << 6; 343 if (tf->flags & ATA_TFLAG_FUA) 344 tf->device |= 1 << 7; 345 } else if (dev->flags & ATA_DFLAG_LBA) { 346 tf->flags |= ATA_TFLAG_LBA; 347 348 if (lba_28_ok(block, n_block)) { 349 /* use LBA28 */ 350 tf->device |= (block >> 24) & 0xf; 351 } else if (lba_48_ok(block, n_block)) { 352 if (!(dev->flags & ATA_DFLAG_LBA48)) 353 return -ERANGE; 354 355 /* use LBA48 */ 356 tf->flags |= ATA_TFLAG_LBA48; 357 358 tf->hob_nsect = (n_block >> 8) & 0xff; 359 360 tf->hob_lbah = (block >> 40) & 0xff; 361 tf->hob_lbam = (block >> 32) & 0xff; 362 tf->hob_lbal = (block >> 24) & 0xff; 363 } else 364 /* request too large even for LBA48 */ 365 return -ERANGE; 366 367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 368 return -EINVAL; 369 370 tf->nsect = n_block & 0xff; 371 372 tf->lbah = (block >> 16) & 0xff; 373 tf->lbam = (block >> 8) & 0xff; 374 tf->lbal = block & 0xff; 375 376 tf->device |= ATA_LBA; 377 } else { 378 /* CHS */ 379 u32 sect, head, cyl, track; 380 381 /* The request -may- be too large for CHS addressing. */ 382 if (!lba_28_ok(block, n_block)) 383 return -ERANGE; 384 385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 386 return -EINVAL; 387 388 /* Convert LBA to CHS */ 389 track = (u32)block / dev->sectors; 390 cyl = track / dev->heads; 391 head = track % dev->heads; 392 sect = (u32)block % dev->sectors + 1; 393 394 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 395 (u32)block, track, cyl, head, sect); 396 397 /* Check whether the converted CHS can fit. 398 Cylinder: 0-65535 399 Head: 0-15 400 Sector: 1-255*/ 401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 402 return -ERANGE; 403 404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 405 tf->lbal = sect; 406 tf->lbam = cyl; 407 tf->lbah = cyl >> 8; 408 tf->device |= head; 409 } 410 411 return 0; 412 } 413 414 /** 415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 416 * @pio_mask: pio_mask 417 * @mwdma_mask: mwdma_mask 418 * @udma_mask: udma_mask 419 * 420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 421 * unsigned int xfer_mask. 422 * 423 * LOCKING: 424 * None. 425 * 426 * RETURNS: 427 * Packed xfer_mask. 428 */ 429 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 430 unsigned int mwdma_mask, 431 unsigned int udma_mask) 432 { 433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 436 } 437 438 /** 439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 440 * @xfer_mask: xfer_mask to unpack 441 * @pio_mask: resulting pio_mask 442 * @mwdma_mask: resulting mwdma_mask 443 * @udma_mask: resulting udma_mask 444 * 445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 446 * Any NULL distination masks will be ignored. 447 */ 448 static void ata_unpack_xfermask(unsigned int xfer_mask, 449 unsigned int *pio_mask, 450 unsigned int *mwdma_mask, 451 unsigned int *udma_mask) 452 { 453 if (pio_mask) 454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 455 if (mwdma_mask) 456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 457 if (udma_mask) 458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 459 } 460 461 static const struct ata_xfer_ent { 462 int shift, bits; 463 u8 base; 464 } ata_xfer_tbl[] = { 465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 468 { -1, }, 469 }; 470 471 /** 472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 473 * @xfer_mask: xfer_mask of interest 474 * 475 * Return matching XFER_* value for @xfer_mask. Only the highest 476 * bit of @xfer_mask is considered. 477 * 478 * LOCKING: 479 * None. 480 * 481 * RETURNS: 482 * Matching XFER_* value, 0 if no match found. 483 */ 484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 485 { 486 int highbit = fls(xfer_mask) - 1; 487 const struct ata_xfer_ent *ent; 488 489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 491 return ent->base + highbit - ent->shift; 492 return 0; 493 } 494 495 /** 496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 497 * @xfer_mode: XFER_* of interest 498 * 499 * Return matching xfer_mask for @xfer_mode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * Matching xfer_mask, 0 if no match found. 506 */ 507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 508 { 509 const struct ata_xfer_ent *ent; 510 511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 513 return 1 << (ent->shift + xfer_mode - ent->base); 514 return 0; 515 } 516 517 /** 518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 519 * @xfer_mode: XFER_* of interest 520 * 521 * Return matching xfer_shift for @xfer_mode. 522 * 523 * LOCKING: 524 * None. 525 * 526 * RETURNS: 527 * Matching xfer_shift, -1 if no match found. 528 */ 529 static int ata_xfer_mode2shift(unsigned int xfer_mode) 530 { 531 const struct ata_xfer_ent *ent; 532 533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 535 return ent->shift; 536 return -1; 537 } 538 539 /** 540 * ata_mode_string - convert xfer_mask to string 541 * @xfer_mask: mask of bits supported; only highest bit counts. 542 * 543 * Determine string which represents the highest speed 544 * (highest bit in @modemask). 545 * 546 * LOCKING: 547 * None. 548 * 549 * RETURNS: 550 * Constant C string representing highest speed listed in 551 * @mode_mask, or the constant C string "<n/a>". 552 */ 553 static const char *ata_mode_string(unsigned int xfer_mask) 554 { 555 static const char * const xfer_mode_str[] = { 556 "PIO0", 557 "PIO1", 558 "PIO2", 559 "PIO3", 560 "PIO4", 561 "PIO5", 562 "PIO6", 563 "MWDMA0", 564 "MWDMA1", 565 "MWDMA2", 566 "MWDMA3", 567 "MWDMA4", 568 "UDMA/16", 569 "UDMA/25", 570 "UDMA/33", 571 "UDMA/44", 572 "UDMA/66", 573 "UDMA/100", 574 "UDMA/133", 575 "UDMA7", 576 }; 577 int highbit; 578 579 highbit = fls(xfer_mask) - 1; 580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 581 return xfer_mode_str[highbit]; 582 return "<n/a>"; 583 } 584 585 static const char *sata_spd_string(unsigned int spd) 586 { 587 static const char * const spd_str[] = { 588 "1.5 Gbps", 589 "3.0 Gbps", 590 }; 591 592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 593 return "<unknown>"; 594 return spd_str[spd - 1]; 595 } 596 597 void ata_dev_disable(struct ata_device *dev) 598 { 599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { 600 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 602 ATA_DNXFER_QUIET); 603 dev->class++; 604 } 605 } 606 607 /** 608 * ata_devchk - PATA device presence detection 609 * @ap: ATA channel to examine 610 * @device: Device to examine (starting at zero) 611 * 612 * This technique was originally described in 613 * Hale Landis's ATADRVR (www.ata-atapi.com), and 614 * later found its way into the ATA/ATAPI spec. 615 * 616 * Write a pattern to the ATA shadow registers, 617 * and if a device is present, it will respond by 618 * correctly storing and echoing back the 619 * ATA shadow register contents. 620 * 621 * LOCKING: 622 * caller. 623 */ 624 625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 626 { 627 struct ata_ioports *ioaddr = &ap->ioaddr; 628 u8 nsect, lbal; 629 630 ap->ops->dev_select(ap, device); 631 632 iowrite8(0x55, ioaddr->nsect_addr); 633 iowrite8(0xaa, ioaddr->lbal_addr); 634 635 iowrite8(0xaa, ioaddr->nsect_addr); 636 iowrite8(0x55, ioaddr->lbal_addr); 637 638 iowrite8(0x55, ioaddr->nsect_addr); 639 iowrite8(0xaa, ioaddr->lbal_addr); 640 641 nsect = ioread8(ioaddr->nsect_addr); 642 lbal = ioread8(ioaddr->lbal_addr); 643 644 if ((nsect == 0x55) && (lbal == 0xaa)) 645 return 1; /* we found a device */ 646 647 return 0; /* nothing found */ 648 } 649 650 /** 651 * ata_dev_classify - determine device type based on ATA-spec signature 652 * @tf: ATA taskfile register set for device to be identified 653 * 654 * Determine from taskfile register contents whether a device is 655 * ATA or ATAPI, as per "Signature and persistence" section 656 * of ATA/PI spec (volume 1, sect 5.14). 657 * 658 * LOCKING: 659 * None. 660 * 661 * RETURNS: 662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 663 * the event of failure. 664 */ 665 666 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 667 { 668 /* Apple's open source Darwin code hints that some devices only 669 * put a proper signature into the LBA mid/high registers, 670 * So, we only check those. It's sufficient for uniqueness. 671 */ 672 673 if (((tf->lbam == 0) && (tf->lbah == 0)) || 674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 675 DPRINTK("found ATA device by sig\n"); 676 return ATA_DEV_ATA; 677 } 678 679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 681 DPRINTK("found ATAPI device by sig\n"); 682 return ATA_DEV_ATAPI; 683 } 684 685 DPRINTK("unknown device\n"); 686 return ATA_DEV_UNKNOWN; 687 } 688 689 /** 690 * ata_dev_try_classify - Parse returned ATA device signature 691 * @ap: ATA channel to examine 692 * @device: Device to examine (starting at zero) 693 * @r_err: Value of error register on completion 694 * 695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 696 * an ATA/ATAPI-defined set of values is placed in the ATA 697 * shadow registers, indicating the results of device detection 698 * and diagnostics. 699 * 700 * Select the ATA device, and read the values from the ATA shadow 701 * registers. Then parse according to the Error register value, 702 * and the spec-defined values examined by ata_dev_classify(). 703 * 704 * LOCKING: 705 * caller. 706 * 707 * RETURNS: 708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 709 */ 710 711 unsigned int 712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 713 { 714 struct ata_taskfile tf; 715 unsigned int class; 716 u8 err; 717 718 ap->ops->dev_select(ap, device); 719 720 memset(&tf, 0, sizeof(tf)); 721 722 ap->ops->tf_read(ap, &tf); 723 err = tf.feature; 724 if (r_err) 725 *r_err = err; 726 727 /* see if device passed diags: if master then continue and warn later */ 728 if (err == 0 && device == 0) 729 /* diagnostic fail : do nothing _YET_ */ 730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 731 else if (err == 1) 732 /* do nothing */ ; 733 else if ((device == 0) && (err == 0x81)) 734 /* do nothing */ ; 735 else 736 return ATA_DEV_NONE; 737 738 /* determine if device is ATA or ATAPI */ 739 class = ata_dev_classify(&tf); 740 741 if (class == ATA_DEV_UNKNOWN) 742 return ATA_DEV_NONE; 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 744 return ATA_DEV_NONE; 745 return class; 746 } 747 748 /** 749 * ata_id_string - Convert IDENTIFY DEVICE page into string 750 * @id: IDENTIFY DEVICE results we will examine 751 * @s: string into which data is output 752 * @ofs: offset into identify device page 753 * @len: length of string to return. must be an even number. 754 * 755 * The strings in the IDENTIFY DEVICE page are broken up into 756 * 16-bit chunks. Run through the string, and output each 757 * 8-bit chunk linearly, regardless of platform. 758 * 759 * LOCKING: 760 * caller. 761 */ 762 763 void ata_id_string(const u16 *id, unsigned char *s, 764 unsigned int ofs, unsigned int len) 765 { 766 unsigned int c; 767 768 while (len > 0) { 769 c = id[ofs] >> 8; 770 *s = c; 771 s++; 772 773 c = id[ofs] & 0xff; 774 *s = c; 775 s++; 776 777 ofs++; 778 len -= 2; 779 } 780 } 781 782 /** 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 784 * @id: IDENTIFY DEVICE results we will examine 785 * @s: string into which data is output 786 * @ofs: offset into identify device page 787 * @len: length of string to return. must be an odd number. 788 * 789 * This function is identical to ata_id_string except that it 790 * trims trailing spaces and terminates the resulting string with 791 * null. @len must be actual maximum length (even number) + 1. 792 * 793 * LOCKING: 794 * caller. 795 */ 796 void ata_id_c_string(const u16 *id, unsigned char *s, 797 unsigned int ofs, unsigned int len) 798 { 799 unsigned char *p; 800 801 WARN_ON(!(len & 1)); 802 803 ata_id_string(id, s, ofs, len - 1); 804 805 p = s + strnlen(s, len - 1); 806 while (p > s && p[-1] == ' ') 807 p--; 808 *p = '\0'; 809 } 810 811 static u64 ata_id_n_sectors(const u16 *id) 812 { 813 if (ata_id_has_lba(id)) { 814 if (ata_id_has_lba48(id)) 815 return ata_id_u64(id, 100); 816 else 817 return ata_id_u32(id, 60); 818 } else { 819 if (ata_id_current_chs_valid(id)) 820 return ata_id_u32(id, 57); 821 else 822 return id[1] * id[3] * id[6]; 823 } 824 } 825 826 /** 827 * ata_id_to_dma_mode - Identify DMA mode from id block 828 * @dev: device to identify 829 * @unknown: mode to assume if we cannot tell 830 * 831 * Set up the timing values for the device based upon the identify 832 * reported values for the DMA mode. This function is used by drivers 833 * which rely upon firmware configured modes, but wish to report the 834 * mode correctly when possible. 835 * 836 * In addition we emit similarly formatted messages to the default 837 * ata_dev_set_mode handler, in order to provide consistency of 838 * presentation. 839 */ 840 841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 842 { 843 unsigned int mask; 844 u8 mode; 845 846 /* Pack the DMA modes */ 847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 848 if (dev->id[53] & 0x04) 849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 850 851 /* Select the mode in use */ 852 mode = ata_xfer_mask2mode(mask); 853 854 if (mode != 0) { 855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 856 ata_mode_string(mask)); 857 } else { 858 /* SWDMA perhaps ? */ 859 mode = unknown; 860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 861 } 862 863 /* Configure the device reporting */ 864 dev->xfer_mode = mode; 865 dev->xfer_shift = ata_xfer_mode2shift(mode); 866 } 867 868 /** 869 * ata_noop_dev_select - Select device 0/1 on ATA bus 870 * @ap: ATA channel to manipulate 871 * @device: ATA device (numbered from zero) to select 872 * 873 * This function performs no actual function. 874 * 875 * May be used as the dev_select() entry in ata_port_operations. 876 * 877 * LOCKING: 878 * caller. 879 */ 880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 881 { 882 } 883 884 885 /** 886 * ata_std_dev_select - Select device 0/1 on ATA bus 887 * @ap: ATA channel to manipulate 888 * @device: ATA device (numbered from zero) to select 889 * 890 * Use the method defined in the ATA specification to 891 * make either device 0, or device 1, active on the 892 * ATA channel. Works with both PIO and MMIO. 893 * 894 * May be used as the dev_select() entry in ata_port_operations. 895 * 896 * LOCKING: 897 * caller. 898 */ 899 900 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 901 { 902 u8 tmp; 903 904 if (device == 0) 905 tmp = ATA_DEVICE_OBS; 906 else 907 tmp = ATA_DEVICE_OBS | ATA_DEV1; 908 909 iowrite8(tmp, ap->ioaddr.device_addr); 910 ata_pause(ap); /* needed; also flushes, for mmio */ 911 } 912 913 /** 914 * ata_dev_select - Select device 0/1 on ATA bus 915 * @ap: ATA channel to manipulate 916 * @device: ATA device (numbered from zero) to select 917 * @wait: non-zero to wait for Status register BSY bit to clear 918 * @can_sleep: non-zero if context allows sleeping 919 * 920 * Use the method defined in the ATA specification to 921 * make either device 0, or device 1, active on the 922 * ATA channel. 923 * 924 * This is a high-level version of ata_std_dev_select(), 925 * which additionally provides the services of inserting 926 * the proper pauses and status polling, where needed. 927 * 928 * LOCKING: 929 * caller. 930 */ 931 932 void ata_dev_select(struct ata_port *ap, unsigned int device, 933 unsigned int wait, unsigned int can_sleep) 934 { 935 if (ata_msg_probe(ap)) 936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 937 "device %u, wait %u\n", device, wait); 938 939 if (wait) 940 ata_wait_idle(ap); 941 942 ap->ops->dev_select(ap, device); 943 944 if (wait) { 945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 946 msleep(150); 947 ata_wait_idle(ap); 948 } 949 } 950 951 /** 952 * ata_dump_id - IDENTIFY DEVICE info debugging output 953 * @id: IDENTIFY DEVICE page to dump 954 * 955 * Dump selected 16-bit words from the given IDENTIFY DEVICE 956 * page. 957 * 958 * LOCKING: 959 * caller. 960 */ 961 962 static inline void ata_dump_id(const u16 *id) 963 { 964 DPRINTK("49==0x%04x " 965 "53==0x%04x " 966 "63==0x%04x " 967 "64==0x%04x " 968 "75==0x%04x \n", 969 id[49], 970 id[53], 971 id[63], 972 id[64], 973 id[75]); 974 DPRINTK("80==0x%04x " 975 "81==0x%04x " 976 "82==0x%04x " 977 "83==0x%04x " 978 "84==0x%04x \n", 979 id[80], 980 id[81], 981 id[82], 982 id[83], 983 id[84]); 984 DPRINTK("88==0x%04x " 985 "93==0x%04x\n", 986 id[88], 987 id[93]); 988 } 989 990 /** 991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 992 * @id: IDENTIFY data to compute xfer mask from 993 * 994 * Compute the xfermask for this device. This is not as trivial 995 * as it seems if we must consider early devices correctly. 996 * 997 * FIXME: pre IDE drive timing (do we care ?). 998 * 999 * LOCKING: 1000 * None. 1001 * 1002 * RETURNS: 1003 * Computed xfermask 1004 */ 1005 static unsigned int ata_id_xfermask(const u16 *id) 1006 { 1007 unsigned int pio_mask, mwdma_mask, udma_mask; 1008 1009 /* Usual case. Word 53 indicates word 64 is valid */ 1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1012 pio_mask <<= 3; 1013 pio_mask |= 0x7; 1014 } else { 1015 /* If word 64 isn't valid then Word 51 high byte holds 1016 * the PIO timing number for the maximum. Turn it into 1017 * a mask. 1018 */ 1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1020 if (mode < 5) /* Valid PIO range */ 1021 pio_mask = (2 << mode) - 1; 1022 else 1023 pio_mask = 1; 1024 1025 /* But wait.. there's more. Design your standards by 1026 * committee and you too can get a free iordy field to 1027 * process. However its the speeds not the modes that 1028 * are supported... Note drivers using the timing API 1029 * will get this right anyway 1030 */ 1031 } 1032 1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1034 1035 if (ata_id_is_cfa(id)) { 1036 /* 1037 * Process compact flash extended modes 1038 */ 1039 int pio = id[163] & 0x7; 1040 int dma = (id[163] >> 3) & 7; 1041 1042 if (pio) 1043 pio_mask |= (1 << 5); 1044 if (pio > 1) 1045 pio_mask |= (1 << 6); 1046 if (dma) 1047 mwdma_mask |= (1 << 3); 1048 if (dma > 1) 1049 mwdma_mask |= (1 << 4); 1050 } 1051 1052 udma_mask = 0; 1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1055 1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1057 } 1058 1059 /** 1060 * ata_port_queue_task - Queue port_task 1061 * @ap: The ata_port to queue port_task for 1062 * @fn: workqueue function to be scheduled 1063 * @data: data for @fn to use 1064 * @delay: delay time for workqueue function 1065 * 1066 * Schedule @fn(@data) for execution after @delay jiffies using 1067 * port_task. There is one port_task per port and it's the 1068 * user(low level driver)'s responsibility to make sure that only 1069 * one task is active at any given time. 1070 * 1071 * libata core layer takes care of synchronization between 1072 * port_task and EH. ata_port_queue_task() may be ignored for EH 1073 * synchronization. 1074 * 1075 * LOCKING: 1076 * Inherited from caller. 1077 */ 1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1079 unsigned long delay) 1080 { 1081 int rc; 1082 1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) 1084 return; 1085 1086 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1087 ap->port_task_data = data; 1088 1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay); 1090 1091 /* rc == 0 means that another user is using port task */ 1092 WARN_ON(rc == 0); 1093 } 1094 1095 /** 1096 * ata_port_flush_task - Flush port_task 1097 * @ap: The ata_port to flush port_task for 1098 * 1099 * After this function completes, port_task is guranteed not to 1100 * be running or scheduled. 1101 * 1102 * LOCKING: 1103 * Kernel thread context (may sleep) 1104 */ 1105 void ata_port_flush_task(struct ata_port *ap) 1106 { 1107 unsigned long flags; 1108 1109 DPRINTK("ENTER\n"); 1110 1111 spin_lock_irqsave(ap->lock, flags); 1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; 1113 spin_unlock_irqrestore(ap->lock, flags); 1114 1115 DPRINTK("flush #1\n"); 1116 flush_workqueue(ata_wq); 1117 1118 /* 1119 * At this point, if a task is running, it's guaranteed to see 1120 * the FLUSH flag; thus, it will never queue pio tasks again. 1121 * Cancel and flush. 1122 */ 1123 if (!cancel_delayed_work(&ap->port_task)) { 1124 if (ata_msg_ctl(ap)) 1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", 1126 __FUNCTION__); 1127 flush_workqueue(ata_wq); 1128 } 1129 1130 spin_lock_irqsave(ap->lock, flags); 1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; 1132 spin_unlock_irqrestore(ap->lock, flags); 1133 1134 if (ata_msg_ctl(ap)) 1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1136 } 1137 1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1139 { 1140 struct completion *waiting = qc->private_data; 1141 1142 complete(waiting); 1143 } 1144 1145 /** 1146 * ata_exec_internal_sg - execute libata internal command 1147 * @dev: Device to which the command is sent 1148 * @tf: Taskfile registers for the command and the result 1149 * @cdb: CDB for packet command 1150 * @dma_dir: Data tranfer direction of the command 1151 * @sg: sg list for the data buffer of the command 1152 * @n_elem: Number of sg entries 1153 * 1154 * Executes libata internal command with timeout. @tf contains 1155 * command on entry and result on return. Timeout and error 1156 * conditions are reported via return value. No recovery action 1157 * is taken after a command times out. It's caller's duty to 1158 * clean up after timeout. 1159 * 1160 * LOCKING: 1161 * None. Should be called with kernel context, might sleep. 1162 * 1163 * RETURNS: 1164 * Zero on success, AC_ERR_* mask on failure 1165 */ 1166 unsigned ata_exec_internal_sg(struct ata_device *dev, 1167 struct ata_taskfile *tf, const u8 *cdb, 1168 int dma_dir, struct scatterlist *sg, 1169 unsigned int n_elem) 1170 { 1171 struct ata_port *ap = dev->ap; 1172 u8 command = tf->command; 1173 struct ata_queued_cmd *qc; 1174 unsigned int tag, preempted_tag; 1175 u32 preempted_sactive, preempted_qc_active; 1176 DECLARE_COMPLETION_ONSTACK(wait); 1177 unsigned long flags; 1178 unsigned int err_mask; 1179 int rc; 1180 1181 spin_lock_irqsave(ap->lock, flags); 1182 1183 /* no internal command while frozen */ 1184 if (ap->pflags & ATA_PFLAG_FROZEN) { 1185 spin_unlock_irqrestore(ap->lock, flags); 1186 return AC_ERR_SYSTEM; 1187 } 1188 1189 /* initialize internal qc */ 1190 1191 /* XXX: Tag 0 is used for drivers with legacy EH as some 1192 * drivers choke if any other tag is given. This breaks 1193 * ata_tag_internal() test for those drivers. Don't use new 1194 * EH stuff without converting to it. 1195 */ 1196 if (ap->ops->error_handler) 1197 tag = ATA_TAG_INTERNAL; 1198 else 1199 tag = 0; 1200 1201 if (test_and_set_bit(tag, &ap->qc_allocated)) 1202 BUG(); 1203 qc = __ata_qc_from_tag(ap, tag); 1204 1205 qc->tag = tag; 1206 qc->scsicmd = NULL; 1207 qc->ap = ap; 1208 qc->dev = dev; 1209 ata_qc_reinit(qc); 1210 1211 preempted_tag = ap->active_tag; 1212 preempted_sactive = ap->sactive; 1213 preempted_qc_active = ap->qc_active; 1214 ap->active_tag = ATA_TAG_POISON; 1215 ap->sactive = 0; 1216 ap->qc_active = 0; 1217 1218 /* prepare & issue qc */ 1219 qc->tf = *tf; 1220 if (cdb) 1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1222 qc->flags |= ATA_QCFLAG_RESULT_TF; 1223 qc->dma_dir = dma_dir; 1224 if (dma_dir != DMA_NONE) { 1225 unsigned int i, buflen = 0; 1226 1227 for (i = 0; i < n_elem; i++) 1228 buflen += sg[i].length; 1229 1230 ata_sg_init(qc, sg, n_elem); 1231 qc->nbytes = buflen; 1232 } 1233 1234 qc->private_data = &wait; 1235 qc->complete_fn = ata_qc_complete_internal; 1236 1237 ata_qc_issue(qc); 1238 1239 spin_unlock_irqrestore(ap->lock, flags); 1240 1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1242 1243 ata_port_flush_task(ap); 1244 1245 if (!rc) { 1246 spin_lock_irqsave(ap->lock, flags); 1247 1248 /* We're racing with irq here. If we lose, the 1249 * following test prevents us from completing the qc 1250 * twice. If we win, the port is frozen and will be 1251 * cleaned up by ->post_internal_cmd(). 1252 */ 1253 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1254 qc->err_mask |= AC_ERR_TIMEOUT; 1255 1256 if (ap->ops->error_handler) 1257 ata_port_freeze(ap); 1258 else 1259 ata_qc_complete(qc); 1260 1261 if (ata_msg_warn(ap)) 1262 ata_dev_printk(dev, KERN_WARNING, 1263 "qc timeout (cmd 0x%x)\n", command); 1264 } 1265 1266 spin_unlock_irqrestore(ap->lock, flags); 1267 } 1268 1269 /* do post_internal_cmd */ 1270 if (ap->ops->post_internal_cmd) 1271 ap->ops->post_internal_cmd(qc); 1272 1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) { 1274 if (ata_msg_warn(ap)) 1275 ata_dev_printk(dev, KERN_WARNING, 1276 "zero err_mask for failed " 1277 "internal command, assuming AC_ERR_OTHER\n"); 1278 qc->err_mask |= AC_ERR_OTHER; 1279 } 1280 1281 /* finish up */ 1282 spin_lock_irqsave(ap->lock, flags); 1283 1284 *tf = qc->result_tf; 1285 err_mask = qc->err_mask; 1286 1287 ata_qc_free(qc); 1288 ap->active_tag = preempted_tag; 1289 ap->sactive = preempted_sactive; 1290 ap->qc_active = preempted_qc_active; 1291 1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1293 * Until those drivers are fixed, we detect the condition 1294 * here, fail the command with AC_ERR_SYSTEM and reenable the 1295 * port. 1296 * 1297 * Note that this doesn't change any behavior as internal 1298 * command failure results in disabling the device in the 1299 * higher layer for LLDDs without new reset/EH callbacks. 1300 * 1301 * Kill the following code as soon as those drivers are fixed. 1302 */ 1303 if (ap->flags & ATA_FLAG_DISABLED) { 1304 err_mask |= AC_ERR_SYSTEM; 1305 ata_port_probe(ap); 1306 } 1307 1308 spin_unlock_irqrestore(ap->lock, flags); 1309 1310 return err_mask; 1311 } 1312 1313 /** 1314 * ata_exec_internal - execute libata internal command 1315 * @dev: Device to which the command is sent 1316 * @tf: Taskfile registers for the command and the result 1317 * @cdb: CDB for packet command 1318 * @dma_dir: Data tranfer direction of the command 1319 * @buf: Data buffer of the command 1320 * @buflen: Length of data buffer 1321 * 1322 * Wrapper around ata_exec_internal_sg() which takes simple 1323 * buffer instead of sg list. 1324 * 1325 * LOCKING: 1326 * None. Should be called with kernel context, might sleep. 1327 * 1328 * RETURNS: 1329 * Zero on success, AC_ERR_* mask on failure 1330 */ 1331 unsigned ata_exec_internal(struct ata_device *dev, 1332 struct ata_taskfile *tf, const u8 *cdb, 1333 int dma_dir, void *buf, unsigned int buflen) 1334 { 1335 struct scatterlist *psg = NULL, sg; 1336 unsigned int n_elem = 0; 1337 1338 if (dma_dir != DMA_NONE) { 1339 WARN_ON(!buf); 1340 sg_init_one(&sg, buf, buflen); 1341 psg = &sg; 1342 n_elem++; 1343 } 1344 1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1346 } 1347 1348 /** 1349 * ata_do_simple_cmd - execute simple internal command 1350 * @dev: Device to which the command is sent 1351 * @cmd: Opcode to execute 1352 * 1353 * Execute a 'simple' command, that only consists of the opcode 1354 * 'cmd' itself, without filling any other registers 1355 * 1356 * LOCKING: 1357 * Kernel thread context (may sleep). 1358 * 1359 * RETURNS: 1360 * Zero on success, AC_ERR_* mask on failure 1361 */ 1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1363 { 1364 struct ata_taskfile tf; 1365 1366 ata_tf_init(dev, &tf); 1367 1368 tf.command = cmd; 1369 tf.flags |= ATA_TFLAG_DEVICE; 1370 tf.protocol = ATA_PROT_NODATA; 1371 1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1373 } 1374 1375 /** 1376 * ata_pio_need_iordy - check if iordy needed 1377 * @adev: ATA device 1378 * 1379 * Check if the current speed of the device requires IORDY. Used 1380 * by various controllers for chip configuration. 1381 */ 1382 1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1384 { 1385 int pio; 1386 int speed = adev->pio_mode - XFER_PIO_0; 1387 1388 if (speed < 2) 1389 return 0; 1390 if (speed > 2) 1391 return 1; 1392 1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1394 1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1396 pio = adev->id[ATA_ID_EIDE_PIO]; 1397 /* Is the speed faster than the drive allows non IORDY ? */ 1398 if (pio) { 1399 /* This is cycle times not frequency - watch the logic! */ 1400 if (pio > 240) /* PIO2 is 240nS per cycle */ 1401 return 1; 1402 return 0; 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 /** 1409 * ata_dev_read_id - Read ID data from the specified device 1410 * @dev: target device 1411 * @p_class: pointer to class of the target device (may be changed) 1412 * @flags: ATA_READID_* flags 1413 * @id: buffer to read IDENTIFY data into 1414 * 1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1418 * for pre-ATA4 drives. 1419 * 1420 * LOCKING: 1421 * Kernel thread context (may sleep) 1422 * 1423 * RETURNS: 1424 * 0 on success, -errno otherwise. 1425 */ 1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1427 unsigned int flags, u16 *id) 1428 { 1429 struct ata_port *ap = dev->ap; 1430 unsigned int class = *p_class; 1431 struct ata_taskfile tf; 1432 unsigned int err_mask = 0; 1433 const char *reason; 1434 int rc; 1435 1436 if (ata_msg_ctl(ap)) 1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1438 1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1440 1441 retry: 1442 ata_tf_init(dev, &tf); 1443 1444 switch (class) { 1445 case ATA_DEV_ATA: 1446 tf.command = ATA_CMD_ID_ATA; 1447 break; 1448 case ATA_DEV_ATAPI: 1449 tf.command = ATA_CMD_ID_ATAPI; 1450 break; 1451 default: 1452 rc = -ENODEV; 1453 reason = "unsupported class"; 1454 goto err_out; 1455 } 1456 1457 tf.protocol = ATA_PROT_PIO; 1458 1459 /* Some devices choke if TF registers contain garbage. Make 1460 * sure those are properly initialized. 1461 */ 1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1463 1464 /* Device presence detection is unreliable on some 1465 * controllers. Always poll IDENTIFY if available. 1466 */ 1467 tf.flags |= ATA_TFLAG_POLLING; 1468 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1470 id, sizeof(id[0]) * ATA_ID_WORDS); 1471 if (err_mask) { 1472 if (err_mask & AC_ERR_NODEV_HINT) { 1473 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1474 ap->print_id, dev->devno); 1475 return -ENOENT; 1476 } 1477 1478 rc = -EIO; 1479 reason = "I/O error"; 1480 goto err_out; 1481 } 1482 1483 swap_buf_le16(id, ATA_ID_WORDS); 1484 1485 /* sanity check */ 1486 rc = -EINVAL; 1487 reason = "device reports illegal type"; 1488 1489 if (class == ATA_DEV_ATA) { 1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1491 goto err_out; 1492 } else { 1493 if (ata_id_is_ata(id)) 1494 goto err_out; 1495 } 1496 1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1498 /* 1499 * The exact sequence expected by certain pre-ATA4 drives is: 1500 * SRST RESET 1501 * IDENTIFY 1502 * INITIALIZE DEVICE PARAMETERS 1503 * anything else.. 1504 * Some drives were very specific about that exact sequence. 1505 */ 1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1507 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1508 if (err_mask) { 1509 rc = -EIO; 1510 reason = "INIT_DEV_PARAMS failed"; 1511 goto err_out; 1512 } 1513 1514 /* current CHS translation info (id[53-58]) might be 1515 * changed. reread the identify device info. 1516 */ 1517 flags &= ~ATA_READID_POSTRESET; 1518 goto retry; 1519 } 1520 } 1521 1522 *p_class = class; 1523 1524 return 0; 1525 1526 err_out: 1527 if (ata_msg_warn(ap)) 1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1529 "(%s, err_mask=0x%x)\n", reason, err_mask); 1530 return rc; 1531 } 1532 1533 static inline u8 ata_dev_knobble(struct ata_device *dev) 1534 { 1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1536 } 1537 1538 static void ata_dev_config_ncq(struct ata_device *dev, 1539 char *desc, size_t desc_sz) 1540 { 1541 struct ata_port *ap = dev->ap; 1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1543 1544 if (!ata_id_has_ncq(dev->id)) { 1545 desc[0] = '\0'; 1546 return; 1547 } 1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { 1549 snprintf(desc, desc_sz, "NCQ (not used)"); 1550 return; 1551 } 1552 if (ap->flags & ATA_FLAG_NCQ) { 1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1554 dev->flags |= ATA_DFLAG_NCQ; 1555 } 1556 1557 if (hdepth >= ddepth) 1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1559 else 1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1561 } 1562 1563 static void ata_set_port_max_cmd_len(struct ata_port *ap) 1564 { 1565 int i; 1566 1567 if (ap->scsi_host) { 1568 unsigned int len = 0; 1569 1570 for (i = 0; i < ATA_MAX_DEVICES; i++) 1571 len = max(len, ap->device[i].cdb_len); 1572 1573 ap->scsi_host->max_cmd_len = len; 1574 } 1575 } 1576 1577 /** 1578 * ata_dev_configure - Configure the specified ATA/ATAPI device 1579 * @dev: Target device to configure 1580 * 1581 * Configure @dev according to @dev->id. Generic and low-level 1582 * driver specific fixups are also applied. 1583 * 1584 * LOCKING: 1585 * Kernel thread context (may sleep) 1586 * 1587 * RETURNS: 1588 * 0 on success, -errno otherwise 1589 */ 1590 int ata_dev_configure(struct ata_device *dev) 1591 { 1592 struct ata_port *ap = dev->ap; 1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; 1594 const u16 *id = dev->id; 1595 unsigned int xfer_mask; 1596 char revbuf[7]; /* XYZ-99\0 */ 1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1598 char modelbuf[ATA_ID_PROD_LEN+1]; 1599 int rc; 1600 1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1603 __FUNCTION__); 1604 return 0; 1605 } 1606 1607 if (ata_msg_probe(ap)) 1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1609 1610 /* set _SDD */ 1611 rc = ata_acpi_push_id(ap, dev->devno); 1612 if (rc) { 1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n", 1614 rc); 1615 } 1616 1617 /* retrieve and execute the ATA task file of _GTF */ 1618 ata_acpi_exec_tfs(ap); 1619 1620 /* print device capabilities */ 1621 if (ata_msg_probe(ap)) 1622 ata_dev_printk(dev, KERN_DEBUG, 1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1624 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1625 __FUNCTION__, 1626 id[49], id[82], id[83], id[84], 1627 id[85], id[86], id[87], id[88]); 1628 1629 /* initialize to-be-configured parameters */ 1630 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1631 dev->max_sectors = 0; 1632 dev->cdb_len = 0; 1633 dev->n_sectors = 0; 1634 dev->cylinders = 0; 1635 dev->heads = 0; 1636 dev->sectors = 0; 1637 1638 /* 1639 * common ATA, ATAPI feature tests 1640 */ 1641 1642 /* find max transfer mode; for printk only */ 1643 xfer_mask = ata_id_xfermask(id); 1644 1645 if (ata_msg_probe(ap)) 1646 ata_dump_id(id); 1647 1648 /* ATA-specific feature tests */ 1649 if (dev->class == ATA_DEV_ATA) { 1650 if (ata_id_is_cfa(id)) { 1651 if (id[162] & 1) /* CPRM may make this media unusable */ 1652 ata_dev_printk(dev, KERN_WARNING, 1653 "supports DRM functions and may " 1654 "not be fully accessable.\n"); 1655 snprintf(revbuf, 7, "CFA"); 1656 } 1657 else 1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1659 1660 dev->n_sectors = ata_id_n_sectors(id); 1661 1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1664 sizeof(fwrevbuf)); 1665 1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1667 sizeof(modelbuf)); 1668 1669 if (dev->id[59] & 0x100) 1670 dev->multi_count = dev->id[59] & 0xff; 1671 1672 if (ata_id_has_lba(id)) { 1673 const char *lba_desc; 1674 char ncq_desc[20]; 1675 1676 lba_desc = "LBA"; 1677 dev->flags |= ATA_DFLAG_LBA; 1678 if (ata_id_has_lba48(id)) { 1679 dev->flags |= ATA_DFLAG_LBA48; 1680 lba_desc = "LBA48"; 1681 1682 if (dev->n_sectors >= (1UL << 28) && 1683 ata_id_has_flush_ext(id)) 1684 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1685 } 1686 1687 /* config NCQ */ 1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1689 1690 /* print device info to dmesg */ 1691 if (ata_msg_drv(ap) && print_info) { 1692 ata_dev_printk(dev, KERN_INFO, 1693 "%s: %s, %s, max %s\n", 1694 revbuf, modelbuf, fwrevbuf, 1695 ata_mode_string(xfer_mask)); 1696 ata_dev_printk(dev, KERN_INFO, 1697 "%Lu sectors, multi %u: %s %s\n", 1698 (unsigned long long)dev->n_sectors, 1699 dev->multi_count, lba_desc, ncq_desc); 1700 } 1701 } else { 1702 /* CHS */ 1703 1704 /* Default translation */ 1705 dev->cylinders = id[1]; 1706 dev->heads = id[3]; 1707 dev->sectors = id[6]; 1708 1709 if (ata_id_current_chs_valid(id)) { 1710 /* Current CHS translation is valid. */ 1711 dev->cylinders = id[54]; 1712 dev->heads = id[55]; 1713 dev->sectors = id[56]; 1714 } 1715 1716 /* print device info to dmesg */ 1717 if (ata_msg_drv(ap) && print_info) { 1718 ata_dev_printk(dev, KERN_INFO, 1719 "%s: %s, %s, max %s\n", 1720 revbuf, modelbuf, fwrevbuf, 1721 ata_mode_string(xfer_mask)); 1722 ata_dev_printk(dev, KERN_INFO, 1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1724 (unsigned long long)dev->n_sectors, 1725 dev->multi_count, dev->cylinders, 1726 dev->heads, dev->sectors); 1727 } 1728 } 1729 1730 dev->cdb_len = 16; 1731 } 1732 1733 /* ATAPI-specific feature tests */ 1734 else if (dev->class == ATA_DEV_ATAPI) { 1735 char *cdb_intr_string = ""; 1736 1737 rc = atapi_cdb_len(id); 1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1739 if (ata_msg_warn(ap)) 1740 ata_dev_printk(dev, KERN_WARNING, 1741 "unsupported CDB len\n"); 1742 rc = -EINVAL; 1743 goto err_out_nosup; 1744 } 1745 dev->cdb_len = (unsigned int) rc; 1746 1747 if (ata_id_cdb_intr(dev->id)) { 1748 dev->flags |= ATA_DFLAG_CDB_INTR; 1749 cdb_intr_string = ", CDB intr"; 1750 } 1751 1752 /* print device info to dmesg */ 1753 if (ata_msg_drv(ap) && print_info) 1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", 1755 ata_mode_string(xfer_mask), 1756 cdb_intr_string); 1757 } 1758 1759 /* determine max_sectors */ 1760 dev->max_sectors = ATA_MAX_SECTORS; 1761 if (dev->flags & ATA_DFLAG_LBA48) 1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 1763 1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 1765 /* Let the user know. We don't want to disallow opens for 1766 rescue purposes, or in case the vendor is just a blithering 1767 idiot */ 1768 if (print_info) { 1769 ata_dev_printk(dev, KERN_WARNING, 1770 "Drive reports diagnostics failure. This may indicate a drive\n"); 1771 ata_dev_printk(dev, KERN_WARNING, 1772 "fault or invalid emulation. Contact drive vendor for information.\n"); 1773 } 1774 } 1775 1776 ata_set_port_max_cmd_len(ap); 1777 1778 /* limit bridge transfers to udma5, 200 sectors */ 1779 if (ata_dev_knobble(dev)) { 1780 if (ata_msg_drv(ap) && print_info) 1781 ata_dev_printk(dev, KERN_INFO, 1782 "applying bridge limits\n"); 1783 dev->udma_mask &= ATA_UDMA5; 1784 dev->max_sectors = ATA_MAX_SECTORS; 1785 } 1786 1787 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128) 1788 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors); 1789 1790 /* limit ATAPI DMA to R/W commands only */ 1791 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY) 1792 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY; 1793 1794 if (ap->ops->dev_config) 1795 ap->ops->dev_config(ap, dev); 1796 1797 if (ata_msg_probe(ap)) 1798 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 1799 __FUNCTION__, ata_chk_status(ap)); 1800 return 0; 1801 1802 err_out_nosup: 1803 if (ata_msg_probe(ap)) 1804 ata_dev_printk(dev, KERN_DEBUG, 1805 "%s: EXIT, err\n", __FUNCTION__); 1806 return rc; 1807 } 1808 1809 /** 1810 * ata_bus_probe - Reset and probe ATA bus 1811 * @ap: Bus to probe 1812 * 1813 * Master ATA bus probing function. Initiates a hardware-dependent 1814 * bus reset, then attempts to identify any devices found on 1815 * the bus. 1816 * 1817 * LOCKING: 1818 * PCI/etc. bus probe sem. 1819 * 1820 * RETURNS: 1821 * Zero on success, negative errno otherwise. 1822 */ 1823 1824 int ata_bus_probe(struct ata_port *ap) 1825 { 1826 unsigned int classes[ATA_MAX_DEVICES]; 1827 int tries[ATA_MAX_DEVICES]; 1828 int i, rc; 1829 struct ata_device *dev; 1830 1831 ata_port_probe(ap); 1832 1833 for (i = 0; i < ATA_MAX_DEVICES; i++) 1834 tries[i] = ATA_PROBE_MAX_TRIES; 1835 1836 retry: 1837 /* reset and determine device classes */ 1838 ap->ops->phy_reset(ap); 1839 1840 for (i = 0; i < ATA_MAX_DEVICES; i++) { 1841 dev = &ap->device[i]; 1842 1843 if (!(ap->flags & ATA_FLAG_DISABLED) && 1844 dev->class != ATA_DEV_UNKNOWN) 1845 classes[dev->devno] = dev->class; 1846 else 1847 classes[dev->devno] = ATA_DEV_NONE; 1848 1849 dev->class = ATA_DEV_UNKNOWN; 1850 } 1851 1852 ata_port_probe(ap); 1853 1854 /* after the reset the device state is PIO 0 and the controller 1855 state is undefined. Record the mode */ 1856 1857 for (i = 0; i < ATA_MAX_DEVICES; i++) 1858 ap->device[i].pio_mode = XFER_PIO_0; 1859 1860 /* read IDENTIFY page and configure devices. We have to do the identify 1861 specific sequence bass-ackwards so that PDIAG- is released by 1862 the slave device */ 1863 1864 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 1865 dev = &ap->device[i]; 1866 1867 if (tries[i]) 1868 dev->class = classes[i]; 1869 1870 if (!ata_dev_enabled(dev)) 1871 continue; 1872 1873 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 1874 dev->id); 1875 if (rc) 1876 goto fail; 1877 } 1878 1879 /* After the identify sequence we can now set up the devices. We do 1880 this in the normal order so that the user doesn't get confused */ 1881 1882 for(i = 0; i < ATA_MAX_DEVICES; i++) { 1883 dev = &ap->device[i]; 1884 if (!ata_dev_enabled(dev)) 1885 continue; 1886 1887 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 1888 rc = ata_dev_configure(dev); 1889 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 1890 if (rc) 1891 goto fail; 1892 } 1893 1894 /* configure transfer mode */ 1895 rc = ata_set_mode(ap, &dev); 1896 if (rc) 1897 goto fail; 1898 1899 for (i = 0; i < ATA_MAX_DEVICES; i++) 1900 if (ata_dev_enabled(&ap->device[i])) 1901 return 0; 1902 1903 /* no device present, disable port */ 1904 ata_port_disable(ap); 1905 ap->ops->port_disable(ap); 1906 return -ENODEV; 1907 1908 fail: 1909 tries[dev->devno]--; 1910 1911 switch (rc) { 1912 case -EINVAL: 1913 /* eeek, something went very wrong, give up */ 1914 tries[dev->devno] = 0; 1915 break; 1916 1917 case -ENODEV: 1918 /* give it just one more chance */ 1919 tries[dev->devno] = min(tries[dev->devno], 1); 1920 case -EIO: 1921 if (tries[dev->devno] == 1) { 1922 /* This is the last chance, better to slow 1923 * down than lose it. 1924 */ 1925 sata_down_spd_limit(ap); 1926 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 1927 } 1928 } 1929 1930 if (!tries[dev->devno]) 1931 ata_dev_disable(dev); 1932 1933 goto retry; 1934 } 1935 1936 /** 1937 * ata_port_probe - Mark port as enabled 1938 * @ap: Port for which we indicate enablement 1939 * 1940 * Modify @ap data structure such that the system 1941 * thinks that the entire port is enabled. 1942 * 1943 * LOCKING: host lock, or some other form of 1944 * serialization. 1945 */ 1946 1947 void ata_port_probe(struct ata_port *ap) 1948 { 1949 ap->flags &= ~ATA_FLAG_DISABLED; 1950 } 1951 1952 /** 1953 * sata_print_link_status - Print SATA link status 1954 * @ap: SATA port to printk link status about 1955 * 1956 * This function prints link speed and status of a SATA link. 1957 * 1958 * LOCKING: 1959 * None. 1960 */ 1961 static void sata_print_link_status(struct ata_port *ap) 1962 { 1963 u32 sstatus, scontrol, tmp; 1964 1965 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 1966 return; 1967 sata_scr_read(ap, SCR_CONTROL, &scontrol); 1968 1969 if (ata_port_online(ap)) { 1970 tmp = (sstatus >> 4) & 0xf; 1971 ata_port_printk(ap, KERN_INFO, 1972 "SATA link up %s (SStatus %X SControl %X)\n", 1973 sata_spd_string(tmp), sstatus, scontrol); 1974 } else { 1975 ata_port_printk(ap, KERN_INFO, 1976 "SATA link down (SStatus %X SControl %X)\n", 1977 sstatus, scontrol); 1978 } 1979 } 1980 1981 /** 1982 * __sata_phy_reset - Wake/reset a low-level SATA PHY 1983 * @ap: SATA port associated with target SATA PHY. 1984 * 1985 * This function issues commands to standard SATA Sxxx 1986 * PHY registers, to wake up the phy (and device), and 1987 * clear any reset condition. 1988 * 1989 * LOCKING: 1990 * PCI/etc. bus probe sem. 1991 * 1992 */ 1993 void __sata_phy_reset(struct ata_port *ap) 1994 { 1995 u32 sstatus; 1996 unsigned long timeout = jiffies + (HZ * 5); 1997 1998 if (ap->flags & ATA_FLAG_SATA_RESET) { 1999 /* issue phy wake/reset */ 2000 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2001 /* Couldn't find anything in SATA I/II specs, but 2002 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2003 mdelay(1); 2004 } 2005 /* phy wake/clear reset */ 2006 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2007 2008 /* wait for phy to become ready, if necessary */ 2009 do { 2010 msleep(200); 2011 sata_scr_read(ap, SCR_STATUS, &sstatus); 2012 if ((sstatus & 0xf) != 1) 2013 break; 2014 } while (time_before(jiffies, timeout)); 2015 2016 /* print link status */ 2017 sata_print_link_status(ap); 2018 2019 /* TODO: phy layer with polling, timeouts, etc. */ 2020 if (!ata_port_offline(ap)) 2021 ata_port_probe(ap); 2022 else 2023 ata_port_disable(ap); 2024 2025 if (ap->flags & ATA_FLAG_DISABLED) 2026 return; 2027 2028 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2029 ata_port_disable(ap); 2030 return; 2031 } 2032 2033 ap->cbl = ATA_CBL_SATA; 2034 } 2035 2036 /** 2037 * sata_phy_reset - Reset SATA bus. 2038 * @ap: SATA port associated with target SATA PHY. 2039 * 2040 * This function resets the SATA bus, and then probes 2041 * the bus for devices. 2042 * 2043 * LOCKING: 2044 * PCI/etc. bus probe sem. 2045 * 2046 */ 2047 void sata_phy_reset(struct ata_port *ap) 2048 { 2049 __sata_phy_reset(ap); 2050 if (ap->flags & ATA_FLAG_DISABLED) 2051 return; 2052 ata_bus_reset(ap); 2053 } 2054 2055 /** 2056 * ata_dev_pair - return other device on cable 2057 * @adev: device 2058 * 2059 * Obtain the other device on the same cable, or if none is 2060 * present NULL is returned 2061 */ 2062 2063 struct ata_device *ata_dev_pair(struct ata_device *adev) 2064 { 2065 struct ata_port *ap = adev->ap; 2066 struct ata_device *pair = &ap->device[1 - adev->devno]; 2067 if (!ata_dev_enabled(pair)) 2068 return NULL; 2069 return pair; 2070 } 2071 2072 /** 2073 * ata_port_disable - Disable port. 2074 * @ap: Port to be disabled. 2075 * 2076 * Modify @ap data structure such that the system 2077 * thinks that the entire port is disabled, and should 2078 * never attempt to probe or communicate with devices 2079 * on this port. 2080 * 2081 * LOCKING: host lock, or some other form of 2082 * serialization. 2083 */ 2084 2085 void ata_port_disable(struct ata_port *ap) 2086 { 2087 ap->device[0].class = ATA_DEV_NONE; 2088 ap->device[1].class = ATA_DEV_NONE; 2089 ap->flags |= ATA_FLAG_DISABLED; 2090 } 2091 2092 /** 2093 * sata_down_spd_limit - adjust SATA spd limit downward 2094 * @ap: Port to adjust SATA spd limit for 2095 * 2096 * Adjust SATA spd limit of @ap downward. Note that this 2097 * function only adjusts the limit. The change must be applied 2098 * using sata_set_spd(). 2099 * 2100 * LOCKING: 2101 * Inherited from caller. 2102 * 2103 * RETURNS: 2104 * 0 on success, negative errno on failure 2105 */ 2106 int sata_down_spd_limit(struct ata_port *ap) 2107 { 2108 u32 sstatus, spd, mask; 2109 int rc, highbit; 2110 2111 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2112 if (rc) 2113 return rc; 2114 2115 mask = ap->sata_spd_limit; 2116 if (mask <= 1) 2117 return -EINVAL; 2118 highbit = fls(mask) - 1; 2119 mask &= ~(1 << highbit); 2120 2121 spd = (sstatus >> 4) & 0xf; 2122 if (spd <= 1) 2123 return -EINVAL; 2124 spd--; 2125 mask &= (1 << spd) - 1; 2126 if (!mask) 2127 return -EINVAL; 2128 2129 ap->sata_spd_limit = mask; 2130 2131 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2132 sata_spd_string(fls(mask))); 2133 2134 return 0; 2135 } 2136 2137 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2138 { 2139 u32 spd, limit; 2140 2141 if (ap->sata_spd_limit == UINT_MAX) 2142 limit = 0; 2143 else 2144 limit = fls(ap->sata_spd_limit); 2145 2146 spd = (*scontrol >> 4) & 0xf; 2147 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2148 2149 return spd != limit; 2150 } 2151 2152 /** 2153 * sata_set_spd_needed - is SATA spd configuration needed 2154 * @ap: Port in question 2155 * 2156 * Test whether the spd limit in SControl matches 2157 * @ap->sata_spd_limit. This function is used to determine 2158 * whether hardreset is necessary to apply SATA spd 2159 * configuration. 2160 * 2161 * LOCKING: 2162 * Inherited from caller. 2163 * 2164 * RETURNS: 2165 * 1 if SATA spd configuration is needed, 0 otherwise. 2166 */ 2167 int sata_set_spd_needed(struct ata_port *ap) 2168 { 2169 u32 scontrol; 2170 2171 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2172 return 0; 2173 2174 return __sata_set_spd_needed(ap, &scontrol); 2175 } 2176 2177 /** 2178 * sata_set_spd - set SATA spd according to spd limit 2179 * @ap: Port to set SATA spd for 2180 * 2181 * Set SATA spd of @ap according to sata_spd_limit. 2182 * 2183 * LOCKING: 2184 * Inherited from caller. 2185 * 2186 * RETURNS: 2187 * 0 if spd doesn't need to be changed, 1 if spd has been 2188 * changed. Negative errno if SCR registers are inaccessible. 2189 */ 2190 int sata_set_spd(struct ata_port *ap) 2191 { 2192 u32 scontrol; 2193 int rc; 2194 2195 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2196 return rc; 2197 2198 if (!__sata_set_spd_needed(ap, &scontrol)) 2199 return 0; 2200 2201 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2202 return rc; 2203 2204 return 1; 2205 } 2206 2207 /* 2208 * This mode timing computation functionality is ported over from 2209 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2210 */ 2211 /* 2212 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2213 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2214 * for UDMA6, which is currently supported only by Maxtor drives. 2215 * 2216 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2217 */ 2218 2219 static const struct ata_timing ata_timing[] = { 2220 2221 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2222 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2223 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2224 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2225 2226 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2227 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2228 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2229 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2230 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2231 2232 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2233 2234 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2235 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2236 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2237 2238 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2239 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2240 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2241 2242 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2243 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2244 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2245 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2246 2247 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2248 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2249 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2250 2251 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2252 2253 { 0xFF } 2254 }; 2255 2256 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2257 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2258 2259 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2260 { 2261 q->setup = EZ(t->setup * 1000, T); 2262 q->act8b = EZ(t->act8b * 1000, T); 2263 q->rec8b = EZ(t->rec8b * 1000, T); 2264 q->cyc8b = EZ(t->cyc8b * 1000, T); 2265 q->active = EZ(t->active * 1000, T); 2266 q->recover = EZ(t->recover * 1000, T); 2267 q->cycle = EZ(t->cycle * 1000, T); 2268 q->udma = EZ(t->udma * 1000, UT); 2269 } 2270 2271 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2272 struct ata_timing *m, unsigned int what) 2273 { 2274 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2275 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2276 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2277 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2278 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2279 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2280 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2281 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2282 } 2283 2284 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2285 { 2286 const struct ata_timing *t; 2287 2288 for (t = ata_timing; t->mode != speed; t++) 2289 if (t->mode == 0xFF) 2290 return NULL; 2291 return t; 2292 } 2293 2294 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2295 struct ata_timing *t, int T, int UT) 2296 { 2297 const struct ata_timing *s; 2298 struct ata_timing p; 2299 2300 /* 2301 * Find the mode. 2302 */ 2303 2304 if (!(s = ata_timing_find_mode(speed))) 2305 return -EINVAL; 2306 2307 memcpy(t, s, sizeof(*s)); 2308 2309 /* 2310 * If the drive is an EIDE drive, it can tell us it needs extended 2311 * PIO/MW_DMA cycle timing. 2312 */ 2313 2314 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2315 memset(&p, 0, sizeof(p)); 2316 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2317 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2318 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2319 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2320 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2321 } 2322 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2323 } 2324 2325 /* 2326 * Convert the timing to bus clock counts. 2327 */ 2328 2329 ata_timing_quantize(t, t, T, UT); 2330 2331 /* 2332 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2333 * S.M.A.R.T * and some other commands. We have to ensure that the 2334 * DMA cycle timing is slower/equal than the fastest PIO timing. 2335 */ 2336 2337 if (speed > XFER_PIO_6) { 2338 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2339 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2340 } 2341 2342 /* 2343 * Lengthen active & recovery time so that cycle time is correct. 2344 */ 2345 2346 if (t->act8b + t->rec8b < t->cyc8b) { 2347 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2348 t->rec8b = t->cyc8b - t->act8b; 2349 } 2350 2351 if (t->active + t->recover < t->cycle) { 2352 t->active += (t->cycle - (t->active + t->recover)) / 2; 2353 t->recover = t->cycle - t->active; 2354 } 2355 2356 return 0; 2357 } 2358 2359 /** 2360 * ata_down_xfermask_limit - adjust dev xfer masks downward 2361 * @dev: Device to adjust xfer masks 2362 * @sel: ATA_DNXFER_* selector 2363 * 2364 * Adjust xfer masks of @dev downward. Note that this function 2365 * does not apply the change. Invoking ata_set_mode() afterwards 2366 * will apply the limit. 2367 * 2368 * LOCKING: 2369 * Inherited from caller. 2370 * 2371 * RETURNS: 2372 * 0 on success, negative errno on failure 2373 */ 2374 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2375 { 2376 char buf[32]; 2377 unsigned int orig_mask, xfer_mask; 2378 unsigned int pio_mask, mwdma_mask, udma_mask; 2379 int quiet, highbit; 2380 2381 quiet = !!(sel & ATA_DNXFER_QUIET); 2382 sel &= ~ATA_DNXFER_QUIET; 2383 2384 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2385 dev->mwdma_mask, 2386 dev->udma_mask); 2387 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2388 2389 switch (sel) { 2390 case ATA_DNXFER_PIO: 2391 highbit = fls(pio_mask) - 1; 2392 pio_mask &= ~(1 << highbit); 2393 break; 2394 2395 case ATA_DNXFER_DMA: 2396 if (udma_mask) { 2397 highbit = fls(udma_mask) - 1; 2398 udma_mask &= ~(1 << highbit); 2399 if (!udma_mask) 2400 return -ENOENT; 2401 } else if (mwdma_mask) { 2402 highbit = fls(mwdma_mask) - 1; 2403 mwdma_mask &= ~(1 << highbit); 2404 if (!mwdma_mask) 2405 return -ENOENT; 2406 } 2407 break; 2408 2409 case ATA_DNXFER_40C: 2410 udma_mask &= ATA_UDMA_MASK_40C; 2411 break; 2412 2413 case ATA_DNXFER_FORCE_PIO0: 2414 pio_mask &= 1; 2415 case ATA_DNXFER_FORCE_PIO: 2416 mwdma_mask = 0; 2417 udma_mask = 0; 2418 break; 2419 2420 default: 2421 BUG(); 2422 } 2423 2424 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2425 2426 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2427 return -ENOENT; 2428 2429 if (!quiet) { 2430 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2431 snprintf(buf, sizeof(buf), "%s:%s", 2432 ata_mode_string(xfer_mask), 2433 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2434 else 2435 snprintf(buf, sizeof(buf), "%s", 2436 ata_mode_string(xfer_mask)); 2437 2438 ata_dev_printk(dev, KERN_WARNING, 2439 "limiting speed to %s\n", buf); 2440 } 2441 2442 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2443 &dev->udma_mask); 2444 2445 return 0; 2446 } 2447 2448 static int ata_dev_set_mode(struct ata_device *dev) 2449 { 2450 struct ata_eh_context *ehc = &dev->ap->eh_context; 2451 unsigned int err_mask; 2452 int rc; 2453 2454 dev->flags &= ~ATA_DFLAG_PIO; 2455 if (dev->xfer_shift == ATA_SHIFT_PIO) 2456 dev->flags |= ATA_DFLAG_PIO; 2457 2458 err_mask = ata_dev_set_xfermode(dev); 2459 /* Old CFA may refuse this command, which is just fine */ 2460 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2461 err_mask &= ~AC_ERR_DEV; 2462 2463 if (err_mask) { 2464 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2465 "(err_mask=0x%x)\n", err_mask); 2466 return -EIO; 2467 } 2468 2469 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2470 rc = ata_dev_revalidate(dev, 0); 2471 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2472 if (rc) 2473 return rc; 2474 2475 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2476 dev->xfer_shift, (int)dev->xfer_mode); 2477 2478 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2479 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2480 return 0; 2481 } 2482 2483 /** 2484 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2485 * @ap: port on which timings will be programmed 2486 * @r_failed_dev: out paramter for failed device 2487 * 2488 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2489 * ata_set_mode() fails, pointer to the failing device is 2490 * returned in @r_failed_dev. 2491 * 2492 * LOCKING: 2493 * PCI/etc. bus probe sem. 2494 * 2495 * RETURNS: 2496 * 0 on success, negative errno otherwise 2497 */ 2498 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2499 { 2500 struct ata_device *dev; 2501 int i, rc = 0, used_dma = 0, found = 0; 2502 2503 /* has private set_mode? */ 2504 if (ap->ops->set_mode) 2505 return ap->ops->set_mode(ap, r_failed_dev); 2506 2507 /* step 1: calculate xfer_mask */ 2508 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2509 unsigned int pio_mask, dma_mask; 2510 2511 dev = &ap->device[i]; 2512 2513 if (!ata_dev_enabled(dev)) 2514 continue; 2515 2516 ata_dev_xfermask(dev); 2517 2518 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2519 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2520 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2521 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2522 2523 found = 1; 2524 if (dev->dma_mode) 2525 used_dma = 1; 2526 } 2527 if (!found) 2528 goto out; 2529 2530 /* step 2: always set host PIO timings */ 2531 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2532 dev = &ap->device[i]; 2533 if (!ata_dev_enabled(dev)) 2534 continue; 2535 2536 if (!dev->pio_mode) { 2537 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2538 rc = -EINVAL; 2539 goto out; 2540 } 2541 2542 dev->xfer_mode = dev->pio_mode; 2543 dev->xfer_shift = ATA_SHIFT_PIO; 2544 if (ap->ops->set_piomode) 2545 ap->ops->set_piomode(ap, dev); 2546 } 2547 2548 /* step 3: set host DMA timings */ 2549 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2550 dev = &ap->device[i]; 2551 2552 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2553 continue; 2554 2555 dev->xfer_mode = dev->dma_mode; 2556 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2557 if (ap->ops->set_dmamode) 2558 ap->ops->set_dmamode(ap, dev); 2559 } 2560 2561 /* step 4: update devices' xfer mode */ 2562 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2563 dev = &ap->device[i]; 2564 2565 /* don't update suspended devices' xfer mode */ 2566 if (!ata_dev_ready(dev)) 2567 continue; 2568 2569 rc = ata_dev_set_mode(dev); 2570 if (rc) 2571 goto out; 2572 } 2573 2574 /* Record simplex status. If we selected DMA then the other 2575 * host channels are not permitted to do so. 2576 */ 2577 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2578 ap->host->simplex_claimed = ap; 2579 2580 /* step5: chip specific finalisation */ 2581 if (ap->ops->post_set_mode) 2582 ap->ops->post_set_mode(ap); 2583 out: 2584 if (rc) 2585 *r_failed_dev = dev; 2586 return rc; 2587 } 2588 2589 /** 2590 * ata_tf_to_host - issue ATA taskfile to host controller 2591 * @ap: port to which command is being issued 2592 * @tf: ATA taskfile register set 2593 * 2594 * Issues ATA taskfile register set to ATA host controller, 2595 * with proper synchronization with interrupt handler and 2596 * other threads. 2597 * 2598 * LOCKING: 2599 * spin_lock_irqsave(host lock) 2600 */ 2601 2602 static inline void ata_tf_to_host(struct ata_port *ap, 2603 const struct ata_taskfile *tf) 2604 { 2605 ap->ops->tf_load(ap, tf); 2606 ap->ops->exec_command(ap, tf); 2607 } 2608 2609 /** 2610 * ata_busy_sleep - sleep until BSY clears, or timeout 2611 * @ap: port containing status register to be polled 2612 * @tmout_pat: impatience timeout 2613 * @tmout: overall timeout 2614 * 2615 * Sleep until ATA Status register bit BSY clears, 2616 * or a timeout occurs. 2617 * 2618 * LOCKING: 2619 * Kernel thread context (may sleep). 2620 * 2621 * RETURNS: 2622 * 0 on success, -errno otherwise. 2623 */ 2624 int ata_busy_sleep(struct ata_port *ap, 2625 unsigned long tmout_pat, unsigned long tmout) 2626 { 2627 unsigned long timer_start, timeout; 2628 u8 status; 2629 2630 status = ata_busy_wait(ap, ATA_BUSY, 300); 2631 timer_start = jiffies; 2632 timeout = timer_start + tmout_pat; 2633 while (status != 0xff && (status & ATA_BUSY) && 2634 time_before(jiffies, timeout)) { 2635 msleep(50); 2636 status = ata_busy_wait(ap, ATA_BUSY, 3); 2637 } 2638 2639 if (status != 0xff && (status & ATA_BUSY)) 2640 ata_port_printk(ap, KERN_WARNING, 2641 "port is slow to respond, please be patient " 2642 "(Status 0x%x)\n", status); 2643 2644 timeout = timer_start + tmout; 2645 while (status != 0xff && (status & ATA_BUSY) && 2646 time_before(jiffies, timeout)) { 2647 msleep(50); 2648 status = ata_chk_status(ap); 2649 } 2650 2651 if (status == 0xff) 2652 return -ENODEV; 2653 2654 if (status & ATA_BUSY) { 2655 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2656 "(%lu secs, Status 0x%x)\n", 2657 tmout / HZ, status); 2658 return -EBUSY; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) 2665 { 2666 struct ata_ioports *ioaddr = &ap->ioaddr; 2667 unsigned int dev0 = devmask & (1 << 0); 2668 unsigned int dev1 = devmask & (1 << 1); 2669 unsigned long timeout; 2670 2671 /* if device 0 was found in ata_devchk, wait for its 2672 * BSY bit to clear 2673 */ 2674 if (dev0) 2675 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2676 2677 /* if device 1 was found in ata_devchk, wait for 2678 * register access, then wait for BSY to clear 2679 */ 2680 timeout = jiffies + ATA_TMOUT_BOOT; 2681 while (dev1) { 2682 u8 nsect, lbal; 2683 2684 ap->ops->dev_select(ap, 1); 2685 nsect = ioread8(ioaddr->nsect_addr); 2686 lbal = ioread8(ioaddr->lbal_addr); 2687 if ((nsect == 1) && (lbal == 1)) 2688 break; 2689 if (time_after(jiffies, timeout)) { 2690 dev1 = 0; 2691 break; 2692 } 2693 msleep(50); /* give drive a breather */ 2694 } 2695 if (dev1) 2696 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 2697 2698 /* is all this really necessary? */ 2699 ap->ops->dev_select(ap, 0); 2700 if (dev1) 2701 ap->ops->dev_select(ap, 1); 2702 if (dev0) 2703 ap->ops->dev_select(ap, 0); 2704 } 2705 2706 static unsigned int ata_bus_softreset(struct ata_port *ap, 2707 unsigned int devmask) 2708 { 2709 struct ata_ioports *ioaddr = &ap->ioaddr; 2710 2711 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2712 2713 /* software reset. causes dev0 to be selected */ 2714 iowrite8(ap->ctl, ioaddr->ctl_addr); 2715 udelay(20); /* FIXME: flush */ 2716 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2717 udelay(20); /* FIXME: flush */ 2718 iowrite8(ap->ctl, ioaddr->ctl_addr); 2719 2720 /* spec mandates ">= 2ms" before checking status. 2721 * We wait 150ms, because that was the magic delay used for 2722 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 2723 * between when the ATA command register is written, and then 2724 * status is checked. Because waiting for "a while" before 2725 * checking status is fine, post SRST, we perform this magic 2726 * delay here as well. 2727 * 2728 * Old drivers/ide uses the 2mS rule and then waits for ready 2729 */ 2730 msleep(150); 2731 2732 /* Before we perform post reset processing we want to see if 2733 * the bus shows 0xFF because the odd clown forgets the D7 2734 * pulldown resistor. 2735 */ 2736 if (ata_check_status(ap) == 0xFF) 2737 return 0; 2738 2739 ata_bus_post_reset(ap, devmask); 2740 2741 return 0; 2742 } 2743 2744 /** 2745 * ata_bus_reset - reset host port and associated ATA channel 2746 * @ap: port to reset 2747 * 2748 * This is typically the first time we actually start issuing 2749 * commands to the ATA channel. We wait for BSY to clear, then 2750 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2751 * result. Determine what devices, if any, are on the channel 2752 * by looking at the device 0/1 error register. Look at the signature 2753 * stored in each device's taskfile registers, to determine if 2754 * the device is ATA or ATAPI. 2755 * 2756 * LOCKING: 2757 * PCI/etc. bus probe sem. 2758 * Obtains host lock. 2759 * 2760 * SIDE EFFECTS: 2761 * Sets ATA_FLAG_DISABLED if bus reset fails. 2762 */ 2763 2764 void ata_bus_reset(struct ata_port *ap) 2765 { 2766 struct ata_ioports *ioaddr = &ap->ioaddr; 2767 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2768 u8 err; 2769 unsigned int dev0, dev1 = 0, devmask = 0; 2770 2771 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2772 2773 /* determine if device 0/1 are present */ 2774 if (ap->flags & ATA_FLAG_SATA_RESET) 2775 dev0 = 1; 2776 else { 2777 dev0 = ata_devchk(ap, 0); 2778 if (slave_possible) 2779 dev1 = ata_devchk(ap, 1); 2780 } 2781 2782 if (dev0) 2783 devmask |= (1 << 0); 2784 if (dev1) 2785 devmask |= (1 << 1); 2786 2787 /* select device 0 again */ 2788 ap->ops->dev_select(ap, 0); 2789 2790 /* issue bus reset */ 2791 if (ap->flags & ATA_FLAG_SRST) 2792 if (ata_bus_softreset(ap, devmask)) 2793 goto err_out; 2794 2795 /* 2796 * determine by signature whether we have ATA or ATAPI devices 2797 */ 2798 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 2799 if ((slave_possible) && (err != 0x81)) 2800 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 2801 2802 /* re-enable interrupts */ 2803 ap->ops->irq_on(ap); 2804 2805 /* is double-select really necessary? */ 2806 if (ap->device[1].class != ATA_DEV_NONE) 2807 ap->ops->dev_select(ap, 1); 2808 if (ap->device[0].class != ATA_DEV_NONE) 2809 ap->ops->dev_select(ap, 0); 2810 2811 /* if no devices were detected, disable this port */ 2812 if ((ap->device[0].class == ATA_DEV_NONE) && 2813 (ap->device[1].class == ATA_DEV_NONE)) 2814 goto err_out; 2815 2816 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2817 /* set up device control for ATA_FLAG_SATA_RESET */ 2818 iowrite8(ap->ctl, ioaddr->ctl_addr); 2819 } 2820 2821 DPRINTK("EXIT\n"); 2822 return; 2823 2824 err_out: 2825 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2826 ap->ops->port_disable(ap); 2827 2828 DPRINTK("EXIT\n"); 2829 } 2830 2831 /** 2832 * sata_phy_debounce - debounce SATA phy status 2833 * @ap: ATA port to debounce SATA phy status for 2834 * @params: timing parameters { interval, duratinon, timeout } in msec 2835 * 2836 * Make sure SStatus of @ap reaches stable state, determined by 2837 * holding the same value where DET is not 1 for @duration polled 2838 * every @interval, before @timeout. Timeout constraints the 2839 * beginning of the stable state. Because, after hot unplugging, 2840 * DET gets stuck at 1 on some controllers, this functions waits 2841 * until timeout then returns 0 if DET is stable at 1. 2842 * 2843 * LOCKING: 2844 * Kernel thread context (may sleep) 2845 * 2846 * RETURNS: 2847 * 0 on success, -errno on failure. 2848 */ 2849 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params) 2850 { 2851 unsigned long interval_msec = params[0]; 2852 unsigned long duration = params[1] * HZ / 1000; 2853 unsigned long timeout = jiffies + params[2] * HZ / 1000; 2854 unsigned long last_jiffies; 2855 u32 last, cur; 2856 int rc; 2857 2858 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 2859 return rc; 2860 cur &= 0xf; 2861 2862 last = cur; 2863 last_jiffies = jiffies; 2864 2865 while (1) { 2866 msleep(interval_msec); 2867 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 2868 return rc; 2869 cur &= 0xf; 2870 2871 /* DET stable? */ 2872 if (cur == last) { 2873 if (cur == 1 && time_before(jiffies, timeout)) 2874 continue; 2875 if (time_after(jiffies, last_jiffies + duration)) 2876 return 0; 2877 continue; 2878 } 2879 2880 /* unstable, start over */ 2881 last = cur; 2882 last_jiffies = jiffies; 2883 2884 /* check timeout */ 2885 if (time_after(jiffies, timeout)) 2886 return -EBUSY; 2887 } 2888 } 2889 2890 /** 2891 * sata_phy_resume - resume SATA phy 2892 * @ap: ATA port to resume SATA phy for 2893 * @params: timing parameters { interval, duratinon, timeout } in msec 2894 * 2895 * Resume SATA phy of @ap and debounce it. 2896 * 2897 * LOCKING: 2898 * Kernel thread context (may sleep) 2899 * 2900 * RETURNS: 2901 * 0 on success, -errno on failure. 2902 */ 2903 int sata_phy_resume(struct ata_port *ap, const unsigned long *params) 2904 { 2905 u32 scontrol; 2906 int rc; 2907 2908 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2909 return rc; 2910 2911 scontrol = (scontrol & 0x0f0) | 0x300; 2912 2913 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2914 return rc; 2915 2916 /* Some PHYs react badly if SStatus is pounded immediately 2917 * after resuming. Delay 200ms before debouncing. 2918 */ 2919 msleep(200); 2920 2921 return sata_phy_debounce(ap, params); 2922 } 2923 2924 static void ata_wait_spinup(struct ata_port *ap) 2925 { 2926 struct ata_eh_context *ehc = &ap->eh_context; 2927 unsigned long end, secs; 2928 int rc; 2929 2930 /* first, debounce phy if SATA */ 2931 if (ap->cbl == ATA_CBL_SATA) { 2932 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug); 2933 2934 /* if debounced successfully and offline, no need to wait */ 2935 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap)) 2936 return; 2937 } 2938 2939 /* okay, let's give the drive time to spin up */ 2940 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000; 2941 secs = ((end - jiffies) + HZ - 1) / HZ; 2942 2943 if (time_after(jiffies, end)) 2944 return; 2945 2946 if (secs > 5) 2947 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up " 2948 "(%lu secs)\n", secs); 2949 2950 schedule_timeout_uninterruptible(end - jiffies); 2951 } 2952 2953 /** 2954 * ata_std_prereset - prepare for reset 2955 * @ap: ATA port to be reset 2956 * 2957 * @ap is about to be reset. Initialize it. 2958 * 2959 * LOCKING: 2960 * Kernel thread context (may sleep) 2961 * 2962 * RETURNS: 2963 * 0 on success, -errno otherwise. 2964 */ 2965 int ata_std_prereset(struct ata_port *ap) 2966 { 2967 struct ata_eh_context *ehc = &ap->eh_context; 2968 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2969 int rc; 2970 2971 /* handle link resume & hotplug spinup */ 2972 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 2973 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 2974 ehc->i.action |= ATA_EH_HARDRESET; 2975 2976 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) && 2977 (ap->flags & ATA_FLAG_SKIP_D2H_BSY)) 2978 ata_wait_spinup(ap); 2979 2980 /* if we're about to do hardreset, nothing more to do */ 2981 if (ehc->i.action & ATA_EH_HARDRESET) 2982 return 0; 2983 2984 /* if SATA, resume phy */ 2985 if (ap->cbl == ATA_CBL_SATA) { 2986 rc = sata_phy_resume(ap, timing); 2987 if (rc && rc != -EOPNOTSUPP) { 2988 /* phy resume failed */ 2989 ata_port_printk(ap, KERN_WARNING, "failed to resume " 2990 "link for reset (errno=%d)\n", rc); 2991 return rc; 2992 } 2993 } 2994 2995 /* Wait for !BSY if the controller can wait for the first D2H 2996 * Reg FIS and we don't know that no device is attached. 2997 */ 2998 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) 2999 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); 3000 3001 return 0; 3002 } 3003 3004 /** 3005 * ata_std_softreset - reset host port via ATA SRST 3006 * @ap: port to reset 3007 * @classes: resulting classes of attached devices 3008 * 3009 * Reset host port using ATA SRST. 3010 * 3011 * LOCKING: 3012 * Kernel thread context (may sleep) 3013 * 3014 * RETURNS: 3015 * 0 on success, -errno otherwise. 3016 */ 3017 int ata_std_softreset(struct ata_port *ap, unsigned int *classes) 3018 { 3019 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3020 unsigned int devmask = 0, err_mask; 3021 u8 err; 3022 3023 DPRINTK("ENTER\n"); 3024 3025 if (ata_port_offline(ap)) { 3026 classes[0] = ATA_DEV_NONE; 3027 goto out; 3028 } 3029 3030 /* determine if device 0/1 are present */ 3031 if (ata_devchk(ap, 0)) 3032 devmask |= (1 << 0); 3033 if (slave_possible && ata_devchk(ap, 1)) 3034 devmask |= (1 << 1); 3035 3036 /* select device 0 again */ 3037 ap->ops->dev_select(ap, 0); 3038 3039 /* issue bus reset */ 3040 DPRINTK("about to softreset, devmask=%x\n", devmask); 3041 err_mask = ata_bus_softreset(ap, devmask); 3042 if (err_mask) { 3043 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", 3044 err_mask); 3045 return -EIO; 3046 } 3047 3048 /* determine by signature whether we have ATA or ATAPI devices */ 3049 classes[0] = ata_dev_try_classify(ap, 0, &err); 3050 if (slave_possible && err != 0x81) 3051 classes[1] = ata_dev_try_classify(ap, 1, &err); 3052 3053 out: 3054 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3055 return 0; 3056 } 3057 3058 /** 3059 * sata_port_hardreset - reset port via SATA phy reset 3060 * @ap: port to reset 3061 * @timing: timing parameters { interval, duratinon, timeout } in msec 3062 * 3063 * SATA phy-reset host port using DET bits of SControl register. 3064 * 3065 * LOCKING: 3066 * Kernel thread context (may sleep) 3067 * 3068 * RETURNS: 3069 * 0 on success, -errno otherwise. 3070 */ 3071 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing) 3072 { 3073 u32 scontrol; 3074 int rc; 3075 3076 DPRINTK("ENTER\n"); 3077 3078 if (sata_set_spd_needed(ap)) { 3079 /* SATA spec says nothing about how to reconfigure 3080 * spd. To be on the safe side, turn off phy during 3081 * reconfiguration. This works for at least ICH7 AHCI 3082 * and Sil3124. 3083 */ 3084 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3085 goto out; 3086 3087 scontrol = (scontrol & 0x0f0) | 0x304; 3088 3089 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3090 goto out; 3091 3092 sata_set_spd(ap); 3093 } 3094 3095 /* issue phy wake/reset */ 3096 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3097 goto out; 3098 3099 scontrol = (scontrol & 0x0f0) | 0x301; 3100 3101 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3102 goto out; 3103 3104 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3105 * 10.4.2 says at least 1 ms. 3106 */ 3107 msleep(1); 3108 3109 /* bring phy back */ 3110 rc = sata_phy_resume(ap, timing); 3111 out: 3112 DPRINTK("EXIT, rc=%d\n", rc); 3113 return rc; 3114 } 3115 3116 /** 3117 * sata_std_hardreset - reset host port via SATA phy reset 3118 * @ap: port to reset 3119 * @class: resulting class of attached device 3120 * 3121 * SATA phy-reset host port using DET bits of SControl register, 3122 * wait for !BSY and classify the attached device. 3123 * 3124 * LOCKING: 3125 * Kernel thread context (may sleep) 3126 * 3127 * RETURNS: 3128 * 0 on success, -errno otherwise. 3129 */ 3130 int sata_std_hardreset(struct ata_port *ap, unsigned int *class) 3131 { 3132 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3133 int rc; 3134 3135 DPRINTK("ENTER\n"); 3136 3137 /* do hardreset */ 3138 rc = sata_port_hardreset(ap, timing); 3139 if (rc) { 3140 ata_port_printk(ap, KERN_ERR, 3141 "COMRESET failed (errno=%d)\n", rc); 3142 return rc; 3143 } 3144 3145 /* TODO: phy layer with polling, timeouts, etc. */ 3146 if (ata_port_offline(ap)) { 3147 *class = ATA_DEV_NONE; 3148 DPRINTK("EXIT, link offline\n"); 3149 return 0; 3150 } 3151 3152 /* wait a while before checking status, see SRST for more info */ 3153 msleep(150); 3154 3155 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 3156 ata_port_printk(ap, KERN_ERR, 3157 "COMRESET failed (device not ready)\n"); 3158 return -EIO; 3159 } 3160 3161 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3162 3163 *class = ata_dev_try_classify(ap, 0, NULL); 3164 3165 DPRINTK("EXIT, class=%u\n", *class); 3166 return 0; 3167 } 3168 3169 /** 3170 * ata_std_postreset - standard postreset callback 3171 * @ap: the target ata_port 3172 * @classes: classes of attached devices 3173 * 3174 * This function is invoked after a successful reset. Note that 3175 * the device might have been reset more than once using 3176 * different reset methods before postreset is invoked. 3177 * 3178 * LOCKING: 3179 * Kernel thread context (may sleep) 3180 */ 3181 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3182 { 3183 u32 serror; 3184 3185 DPRINTK("ENTER\n"); 3186 3187 /* print link status */ 3188 sata_print_link_status(ap); 3189 3190 /* clear SError */ 3191 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3192 sata_scr_write(ap, SCR_ERROR, serror); 3193 3194 /* re-enable interrupts */ 3195 if (!ap->ops->error_handler) 3196 ap->ops->irq_on(ap); 3197 3198 /* is double-select really necessary? */ 3199 if (classes[0] != ATA_DEV_NONE) 3200 ap->ops->dev_select(ap, 1); 3201 if (classes[1] != ATA_DEV_NONE) 3202 ap->ops->dev_select(ap, 0); 3203 3204 /* bail out if no device is present */ 3205 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3206 DPRINTK("EXIT, no device\n"); 3207 return; 3208 } 3209 3210 /* set up device control */ 3211 if (ap->ioaddr.ctl_addr) 3212 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3213 3214 DPRINTK("EXIT\n"); 3215 } 3216 3217 /** 3218 * ata_dev_same_device - Determine whether new ID matches configured device 3219 * @dev: device to compare against 3220 * @new_class: class of the new device 3221 * @new_id: IDENTIFY page of the new device 3222 * 3223 * Compare @new_class and @new_id against @dev and determine 3224 * whether @dev is the device indicated by @new_class and 3225 * @new_id. 3226 * 3227 * LOCKING: 3228 * None. 3229 * 3230 * RETURNS: 3231 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3232 */ 3233 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3234 const u16 *new_id) 3235 { 3236 const u16 *old_id = dev->id; 3237 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3238 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3239 u64 new_n_sectors; 3240 3241 if (dev->class != new_class) { 3242 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3243 dev->class, new_class); 3244 return 0; 3245 } 3246 3247 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3248 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3249 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3250 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3251 new_n_sectors = ata_id_n_sectors(new_id); 3252 3253 if (strcmp(model[0], model[1])) { 3254 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3255 "'%s' != '%s'\n", model[0], model[1]); 3256 return 0; 3257 } 3258 3259 if (strcmp(serial[0], serial[1])) { 3260 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3261 "'%s' != '%s'\n", serial[0], serial[1]); 3262 return 0; 3263 } 3264 3265 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { 3266 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3267 "%llu != %llu\n", 3268 (unsigned long long)dev->n_sectors, 3269 (unsigned long long)new_n_sectors); 3270 return 0; 3271 } 3272 3273 return 1; 3274 } 3275 3276 /** 3277 * ata_dev_revalidate - Revalidate ATA device 3278 * @dev: device to revalidate 3279 * @readid_flags: read ID flags 3280 * 3281 * Re-read IDENTIFY page and make sure @dev is still attached to 3282 * the port. 3283 * 3284 * LOCKING: 3285 * Kernel thread context (may sleep) 3286 * 3287 * RETURNS: 3288 * 0 on success, negative errno otherwise 3289 */ 3290 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3291 { 3292 unsigned int class = dev->class; 3293 u16 *id = (void *)dev->ap->sector_buf; 3294 int rc; 3295 3296 if (!ata_dev_enabled(dev)) { 3297 rc = -ENODEV; 3298 goto fail; 3299 } 3300 3301 /* read ID data */ 3302 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3303 if (rc) 3304 goto fail; 3305 3306 /* is the device still there? */ 3307 if (!ata_dev_same_device(dev, class, id)) { 3308 rc = -ENODEV; 3309 goto fail; 3310 } 3311 3312 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3313 3314 /* configure device according to the new ID */ 3315 rc = ata_dev_configure(dev); 3316 if (rc == 0) 3317 return 0; 3318 3319 fail: 3320 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3321 return rc; 3322 } 3323 3324 struct ata_blacklist_entry { 3325 const char *model_num; 3326 const char *model_rev; 3327 unsigned long horkage; 3328 }; 3329 3330 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3331 /* Devices with DMA related problems under Linux */ 3332 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3333 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3334 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3335 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3336 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3337 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3338 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3339 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3340 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3341 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3342 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3343 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3344 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3345 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3346 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3347 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3348 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3349 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3350 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3351 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3352 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3353 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3354 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3355 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3356 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3357 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3358 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3359 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3360 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3361 3362 /* Weird ATAPI devices */ 3363 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 | 3364 ATA_HORKAGE_DMA_RW_ONLY }, 3365 3366 /* Devices we expect to fail diagnostics */ 3367 3368 /* Devices where NCQ should be avoided */ 3369 /* NCQ is slow */ 3370 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3371 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3372 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3373 /* NCQ is broken */ 3374 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3375 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3376 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3377 /* Blacklist entries taken from Silicon Image 3124/3132 3378 Windows driver .inf file - also several Linux problem reports */ 3379 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3380 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3381 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3382 3383 /* Devices with NCQ limits */ 3384 3385 /* End Marker */ 3386 { } 3387 }; 3388 3389 unsigned long ata_device_blacklisted(const struct ata_device *dev) 3390 { 3391 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3392 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3393 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3394 3395 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3396 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3397 3398 while (ad->model_num) { 3399 if (!strcmp(ad->model_num, model_num)) { 3400 if (ad->model_rev == NULL) 3401 return ad->horkage; 3402 if (!strcmp(ad->model_rev, model_rev)) 3403 return ad->horkage; 3404 } 3405 ad++; 3406 } 3407 return 0; 3408 } 3409 3410 static int ata_dma_blacklisted(const struct ata_device *dev) 3411 { 3412 /* We don't support polling DMA. 3413 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3414 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3415 */ 3416 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3417 (dev->flags & ATA_DFLAG_CDB_INTR)) 3418 return 1; 3419 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; 3420 } 3421 3422 /** 3423 * ata_dev_xfermask - Compute supported xfermask of the given device 3424 * @dev: Device to compute xfermask for 3425 * 3426 * Compute supported xfermask of @dev and store it in 3427 * dev->*_mask. This function is responsible for applying all 3428 * known limits including host controller limits, device 3429 * blacklist, etc... 3430 * 3431 * LOCKING: 3432 * None. 3433 */ 3434 static void ata_dev_xfermask(struct ata_device *dev) 3435 { 3436 struct ata_port *ap = dev->ap; 3437 struct ata_host *host = ap->host; 3438 unsigned long xfer_mask; 3439 3440 /* controller modes available */ 3441 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3442 ap->mwdma_mask, ap->udma_mask); 3443 3444 /* Apply cable rule here. Don't apply it early because when 3445 * we handle hot plug the cable type can itself change. 3446 */ 3447 if (ap->cbl == ATA_CBL_PATA40) 3448 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3449 /* Apply drive side cable rule. Unknown or 80 pin cables reported 3450 * host side are checked drive side as well. Cases where we know a 3451 * 40wire cable is used safely for 80 are not checked here. 3452 */ 3453 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80)) 3454 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3455 3456 3457 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3458 dev->mwdma_mask, dev->udma_mask); 3459 xfer_mask &= ata_id_xfermask(dev->id); 3460 3461 /* 3462 * CFA Advanced TrueIDE timings are not allowed on a shared 3463 * cable 3464 */ 3465 if (ata_dev_pair(dev)) { 3466 /* No PIO5 or PIO6 */ 3467 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3468 /* No MWDMA3 or MWDMA 4 */ 3469 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3470 } 3471 3472 if (ata_dma_blacklisted(dev)) { 3473 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3474 ata_dev_printk(dev, KERN_WARNING, 3475 "device is on DMA blacklist, disabling DMA\n"); 3476 } 3477 3478 if ((host->flags & ATA_HOST_SIMPLEX) && 3479 host->simplex_claimed && host->simplex_claimed != ap) { 3480 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3481 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3482 "other device, disabling DMA\n"); 3483 } 3484 3485 if (ap->ops->mode_filter) 3486 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask); 3487 3488 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3489 &dev->mwdma_mask, &dev->udma_mask); 3490 } 3491 3492 /** 3493 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3494 * @dev: Device to which command will be sent 3495 * 3496 * Issue SET FEATURES - XFER MODE command to device @dev 3497 * on port @ap. 3498 * 3499 * LOCKING: 3500 * PCI/etc. bus probe sem. 3501 * 3502 * RETURNS: 3503 * 0 on success, AC_ERR_* mask otherwise. 3504 */ 3505 3506 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3507 { 3508 struct ata_taskfile tf; 3509 unsigned int err_mask; 3510 3511 /* set up set-features taskfile */ 3512 DPRINTK("set features - xfer mode\n"); 3513 3514 ata_tf_init(dev, &tf); 3515 tf.command = ATA_CMD_SET_FEATURES; 3516 tf.feature = SETFEATURES_XFER; 3517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3518 tf.protocol = ATA_PROT_NODATA; 3519 tf.nsect = dev->xfer_mode; 3520 3521 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3522 3523 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3524 return err_mask; 3525 } 3526 3527 /** 3528 * ata_dev_init_params - Issue INIT DEV PARAMS command 3529 * @dev: Device to which command will be sent 3530 * @heads: Number of heads (taskfile parameter) 3531 * @sectors: Number of sectors (taskfile parameter) 3532 * 3533 * LOCKING: 3534 * Kernel thread context (may sleep) 3535 * 3536 * RETURNS: 3537 * 0 on success, AC_ERR_* mask otherwise. 3538 */ 3539 static unsigned int ata_dev_init_params(struct ata_device *dev, 3540 u16 heads, u16 sectors) 3541 { 3542 struct ata_taskfile tf; 3543 unsigned int err_mask; 3544 3545 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3546 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3547 return AC_ERR_INVALID; 3548 3549 /* set up init dev params taskfile */ 3550 DPRINTK("init dev params \n"); 3551 3552 ata_tf_init(dev, &tf); 3553 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3554 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3555 tf.protocol = ATA_PROT_NODATA; 3556 tf.nsect = sectors; 3557 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3558 3559 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3560 3561 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3562 return err_mask; 3563 } 3564 3565 /** 3566 * ata_sg_clean - Unmap DMA memory associated with command 3567 * @qc: Command containing DMA memory to be released 3568 * 3569 * Unmap all mapped DMA memory associated with this command. 3570 * 3571 * LOCKING: 3572 * spin_lock_irqsave(host lock) 3573 */ 3574 void ata_sg_clean(struct ata_queued_cmd *qc) 3575 { 3576 struct ata_port *ap = qc->ap; 3577 struct scatterlist *sg = qc->__sg; 3578 int dir = qc->dma_dir; 3579 void *pad_buf = NULL; 3580 3581 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 3582 WARN_ON(sg == NULL); 3583 3584 if (qc->flags & ATA_QCFLAG_SINGLE) 3585 WARN_ON(qc->n_elem > 1); 3586 3587 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 3588 3589 /* if we padded the buffer out to 32-bit bound, and data 3590 * xfer direction is from-device, we must copy from the 3591 * pad buffer back into the supplied buffer 3592 */ 3593 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 3594 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3595 3596 if (qc->flags & ATA_QCFLAG_SG) { 3597 if (qc->n_elem) 3598 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 3599 /* restore last sg */ 3600 sg[qc->orig_n_elem - 1].length += qc->pad_len; 3601 if (pad_buf) { 3602 struct scatterlist *psg = &qc->pad_sgent; 3603 void *addr = kmap_atomic(psg->page, KM_IRQ0); 3604 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 3605 kunmap_atomic(addr, KM_IRQ0); 3606 } 3607 } else { 3608 if (qc->n_elem) 3609 dma_unmap_single(ap->dev, 3610 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 3611 dir); 3612 /* restore sg */ 3613 sg->length += qc->pad_len; 3614 if (pad_buf) 3615 memcpy(qc->buf_virt + sg->length - qc->pad_len, 3616 pad_buf, qc->pad_len); 3617 } 3618 3619 qc->flags &= ~ATA_QCFLAG_DMAMAP; 3620 qc->__sg = NULL; 3621 } 3622 3623 /** 3624 * ata_fill_sg - Fill PCI IDE PRD table 3625 * @qc: Metadata associated with taskfile to be transferred 3626 * 3627 * Fill PCI IDE PRD (scatter-gather) table with segments 3628 * associated with the current disk command. 3629 * 3630 * LOCKING: 3631 * spin_lock_irqsave(host lock) 3632 * 3633 */ 3634 static void ata_fill_sg(struct ata_queued_cmd *qc) 3635 { 3636 struct ata_port *ap = qc->ap; 3637 struct scatterlist *sg; 3638 unsigned int idx; 3639 3640 WARN_ON(qc->__sg == NULL); 3641 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 3642 3643 idx = 0; 3644 ata_for_each_sg(sg, qc) { 3645 u32 addr, offset; 3646 u32 sg_len, len; 3647 3648 /* determine if physical DMA addr spans 64K boundary. 3649 * Note h/w doesn't support 64-bit, so we unconditionally 3650 * truncate dma_addr_t to u32. 3651 */ 3652 addr = (u32) sg_dma_address(sg); 3653 sg_len = sg_dma_len(sg); 3654 3655 while (sg_len) { 3656 offset = addr & 0xffff; 3657 len = sg_len; 3658 if ((offset + sg_len) > 0x10000) 3659 len = 0x10000 - offset; 3660 3661 ap->prd[idx].addr = cpu_to_le32(addr); 3662 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 3663 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 3664 3665 idx++; 3666 sg_len -= len; 3667 addr += len; 3668 } 3669 } 3670 3671 if (idx) 3672 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 3673 } 3674 /** 3675 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 3676 * @qc: Metadata associated with taskfile to check 3677 * 3678 * Allow low-level driver to filter ATA PACKET commands, returning 3679 * a status indicating whether or not it is OK to use DMA for the 3680 * supplied PACKET command. 3681 * 3682 * LOCKING: 3683 * spin_lock_irqsave(host lock) 3684 * 3685 * RETURNS: 0 when ATAPI DMA can be used 3686 * nonzero otherwise 3687 */ 3688 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 3689 { 3690 struct ata_port *ap = qc->ap; 3691 int rc = 0; /* Assume ATAPI DMA is OK by default */ 3692 3693 /* some drives can only do ATAPI DMA on read/write */ 3694 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) { 3695 struct scsi_cmnd *cmd = qc->scsicmd; 3696 u8 *scsicmd = cmd->cmnd; 3697 3698 switch (scsicmd[0]) { 3699 case READ_10: 3700 case WRITE_10: 3701 case READ_12: 3702 case WRITE_12: 3703 case READ_6: 3704 case WRITE_6: 3705 /* atapi dma maybe ok */ 3706 break; 3707 default: 3708 /* turn off atapi dma */ 3709 return 1; 3710 } 3711 } 3712 3713 if (ap->ops->check_atapi_dma) 3714 rc = ap->ops->check_atapi_dma(qc); 3715 3716 return rc; 3717 } 3718 /** 3719 * ata_qc_prep - Prepare taskfile for submission 3720 * @qc: Metadata associated with taskfile to be prepared 3721 * 3722 * Prepare ATA taskfile for submission. 3723 * 3724 * LOCKING: 3725 * spin_lock_irqsave(host lock) 3726 */ 3727 void ata_qc_prep(struct ata_queued_cmd *qc) 3728 { 3729 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 3730 return; 3731 3732 ata_fill_sg(qc); 3733 } 3734 3735 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 3736 3737 /** 3738 * ata_sg_init_one - Associate command with memory buffer 3739 * @qc: Command to be associated 3740 * @buf: Memory buffer 3741 * @buflen: Length of memory buffer, in bytes. 3742 * 3743 * Initialize the data-related elements of queued_cmd @qc 3744 * to point to a single memory buffer, @buf of byte length @buflen. 3745 * 3746 * LOCKING: 3747 * spin_lock_irqsave(host lock) 3748 */ 3749 3750 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 3751 { 3752 qc->flags |= ATA_QCFLAG_SINGLE; 3753 3754 qc->__sg = &qc->sgent; 3755 qc->n_elem = 1; 3756 qc->orig_n_elem = 1; 3757 qc->buf_virt = buf; 3758 qc->nbytes = buflen; 3759 3760 sg_init_one(&qc->sgent, buf, buflen); 3761 } 3762 3763 /** 3764 * ata_sg_init - Associate command with scatter-gather table. 3765 * @qc: Command to be associated 3766 * @sg: Scatter-gather table. 3767 * @n_elem: Number of elements in s/g table. 3768 * 3769 * Initialize the data-related elements of queued_cmd @qc 3770 * to point to a scatter-gather table @sg, containing @n_elem 3771 * elements. 3772 * 3773 * LOCKING: 3774 * spin_lock_irqsave(host lock) 3775 */ 3776 3777 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 3778 unsigned int n_elem) 3779 { 3780 qc->flags |= ATA_QCFLAG_SG; 3781 qc->__sg = sg; 3782 qc->n_elem = n_elem; 3783 qc->orig_n_elem = n_elem; 3784 } 3785 3786 /** 3787 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 3788 * @qc: Command with memory buffer to be mapped. 3789 * 3790 * DMA-map the memory buffer associated with queued_cmd @qc. 3791 * 3792 * LOCKING: 3793 * spin_lock_irqsave(host lock) 3794 * 3795 * RETURNS: 3796 * Zero on success, negative on error. 3797 */ 3798 3799 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 3800 { 3801 struct ata_port *ap = qc->ap; 3802 int dir = qc->dma_dir; 3803 struct scatterlist *sg = qc->__sg; 3804 dma_addr_t dma_address; 3805 int trim_sg = 0; 3806 3807 /* we must lengthen transfers to end on a 32-bit boundary */ 3808 qc->pad_len = sg->length & 3; 3809 if (qc->pad_len) { 3810 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3811 struct scatterlist *psg = &qc->pad_sgent; 3812 3813 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 3814 3815 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 3816 3817 if (qc->tf.flags & ATA_TFLAG_WRITE) 3818 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 3819 qc->pad_len); 3820 3821 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 3822 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 3823 /* trim sg */ 3824 sg->length -= qc->pad_len; 3825 if (sg->length == 0) 3826 trim_sg = 1; 3827 3828 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 3829 sg->length, qc->pad_len); 3830 } 3831 3832 if (trim_sg) { 3833 qc->n_elem--; 3834 goto skip_map; 3835 } 3836 3837 dma_address = dma_map_single(ap->dev, qc->buf_virt, 3838 sg->length, dir); 3839 if (dma_mapping_error(dma_address)) { 3840 /* restore sg */ 3841 sg->length += qc->pad_len; 3842 return -1; 3843 } 3844 3845 sg_dma_address(sg) = dma_address; 3846 sg_dma_len(sg) = sg->length; 3847 3848 skip_map: 3849 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 3850 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 3851 3852 return 0; 3853 } 3854 3855 /** 3856 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 3857 * @qc: Command with scatter-gather table to be mapped. 3858 * 3859 * DMA-map the scatter-gather table associated with queued_cmd @qc. 3860 * 3861 * LOCKING: 3862 * spin_lock_irqsave(host lock) 3863 * 3864 * RETURNS: 3865 * Zero on success, negative on error. 3866 * 3867 */ 3868 3869 static int ata_sg_setup(struct ata_queued_cmd *qc) 3870 { 3871 struct ata_port *ap = qc->ap; 3872 struct scatterlist *sg = qc->__sg; 3873 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 3874 int n_elem, pre_n_elem, dir, trim_sg = 0; 3875 3876 VPRINTK("ENTER, ata%u\n", ap->print_id); 3877 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 3878 3879 /* we must lengthen transfers to end on a 32-bit boundary */ 3880 qc->pad_len = lsg->length & 3; 3881 if (qc->pad_len) { 3882 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3883 struct scatterlist *psg = &qc->pad_sgent; 3884 unsigned int offset; 3885 3886 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 3887 3888 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 3889 3890 /* 3891 * psg->page/offset are used to copy to-be-written 3892 * data in this function or read data in ata_sg_clean. 3893 */ 3894 offset = lsg->offset + lsg->length - qc->pad_len; 3895 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 3896 psg->offset = offset_in_page(offset); 3897 3898 if (qc->tf.flags & ATA_TFLAG_WRITE) { 3899 void *addr = kmap_atomic(psg->page, KM_IRQ0); 3900 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 3901 kunmap_atomic(addr, KM_IRQ0); 3902 } 3903 3904 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 3905 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 3906 /* trim last sg */ 3907 lsg->length -= qc->pad_len; 3908 if (lsg->length == 0) 3909 trim_sg = 1; 3910 3911 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 3912 qc->n_elem - 1, lsg->length, qc->pad_len); 3913 } 3914 3915 pre_n_elem = qc->n_elem; 3916 if (trim_sg && pre_n_elem) 3917 pre_n_elem--; 3918 3919 if (!pre_n_elem) { 3920 n_elem = 0; 3921 goto skip_map; 3922 } 3923 3924 dir = qc->dma_dir; 3925 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 3926 if (n_elem < 1) { 3927 /* restore last sg */ 3928 lsg->length += qc->pad_len; 3929 return -1; 3930 } 3931 3932 DPRINTK("%d sg elements mapped\n", n_elem); 3933 3934 skip_map: 3935 qc->n_elem = n_elem; 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * swap_buf_le16 - swap halves of 16-bit words in place 3942 * @buf: Buffer to swap 3943 * @buf_words: Number of 16-bit words in buffer. 3944 * 3945 * Swap halves of 16-bit words if needed to convert from 3946 * little-endian byte order to native cpu byte order, or 3947 * vice-versa. 3948 * 3949 * LOCKING: 3950 * Inherited from caller. 3951 */ 3952 void swap_buf_le16(u16 *buf, unsigned int buf_words) 3953 { 3954 #ifdef __BIG_ENDIAN 3955 unsigned int i; 3956 3957 for (i = 0; i < buf_words; i++) 3958 buf[i] = le16_to_cpu(buf[i]); 3959 #endif /* __BIG_ENDIAN */ 3960 } 3961 3962 /** 3963 * ata_data_xfer - Transfer data by PIO 3964 * @adev: device to target 3965 * @buf: data buffer 3966 * @buflen: buffer length 3967 * @write_data: read/write 3968 * 3969 * Transfer data from/to the device data register by PIO. 3970 * 3971 * LOCKING: 3972 * Inherited from caller. 3973 */ 3974 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 3975 unsigned int buflen, int write_data) 3976 { 3977 struct ata_port *ap = adev->ap; 3978 unsigned int words = buflen >> 1; 3979 3980 /* Transfer multiple of 2 bytes */ 3981 if (write_data) 3982 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 3983 else 3984 ioread16_rep(ap->ioaddr.data_addr, buf, words); 3985 3986 /* Transfer trailing 1 byte, if any. */ 3987 if (unlikely(buflen & 0x01)) { 3988 u16 align_buf[1] = { 0 }; 3989 unsigned char *trailing_buf = buf + buflen - 1; 3990 3991 if (write_data) { 3992 memcpy(align_buf, trailing_buf, 1); 3993 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 3994 } else { 3995 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 3996 memcpy(trailing_buf, align_buf, 1); 3997 } 3998 } 3999 } 4000 4001 /** 4002 * ata_data_xfer_noirq - Transfer data by PIO 4003 * @adev: device to target 4004 * @buf: data buffer 4005 * @buflen: buffer length 4006 * @write_data: read/write 4007 * 4008 * Transfer data from/to the device data register by PIO. Do the 4009 * transfer with interrupts disabled. 4010 * 4011 * LOCKING: 4012 * Inherited from caller. 4013 */ 4014 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4015 unsigned int buflen, int write_data) 4016 { 4017 unsigned long flags; 4018 local_irq_save(flags); 4019 ata_data_xfer(adev, buf, buflen, write_data); 4020 local_irq_restore(flags); 4021 } 4022 4023 4024 /** 4025 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. 4026 * @qc: Command on going 4027 * 4028 * Transfer ATA_SECT_SIZE of data from/to the ATA device. 4029 * 4030 * LOCKING: 4031 * Inherited from caller. 4032 */ 4033 4034 static void ata_pio_sector(struct ata_queued_cmd *qc) 4035 { 4036 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4037 struct scatterlist *sg = qc->__sg; 4038 struct ata_port *ap = qc->ap; 4039 struct page *page; 4040 unsigned int offset; 4041 unsigned char *buf; 4042 4043 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE) 4044 ap->hsm_task_state = HSM_ST_LAST; 4045 4046 page = sg[qc->cursg].page; 4047 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4048 4049 /* get the current page and offset */ 4050 page = nth_page(page, (offset >> PAGE_SHIFT)); 4051 offset %= PAGE_SIZE; 4052 4053 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4054 4055 if (PageHighMem(page)) { 4056 unsigned long flags; 4057 4058 /* FIXME: use a bounce buffer */ 4059 local_irq_save(flags); 4060 buf = kmap_atomic(page, KM_IRQ0); 4061 4062 /* do the actual data transfer */ 4063 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); 4064 4065 kunmap_atomic(buf, KM_IRQ0); 4066 local_irq_restore(flags); 4067 } else { 4068 buf = page_address(page); 4069 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); 4070 } 4071 4072 qc->curbytes += ATA_SECT_SIZE; 4073 qc->cursg_ofs += ATA_SECT_SIZE; 4074 4075 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4076 qc->cursg++; 4077 qc->cursg_ofs = 0; 4078 } 4079 } 4080 4081 /** 4082 * ata_pio_sectors - Transfer one or many 512-byte sectors. 4083 * @qc: Command on going 4084 * 4085 * Transfer one or many ATA_SECT_SIZE of data from/to the 4086 * ATA device for the DRQ request. 4087 * 4088 * LOCKING: 4089 * Inherited from caller. 4090 */ 4091 4092 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4093 { 4094 if (is_multi_taskfile(&qc->tf)) { 4095 /* READ/WRITE MULTIPLE */ 4096 unsigned int nsect; 4097 4098 WARN_ON(qc->dev->multi_count == 0); 4099 4100 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE, 4101 qc->dev->multi_count); 4102 while (nsect--) 4103 ata_pio_sector(qc); 4104 } else 4105 ata_pio_sector(qc); 4106 } 4107 4108 /** 4109 * atapi_send_cdb - Write CDB bytes to hardware 4110 * @ap: Port to which ATAPI device is attached. 4111 * @qc: Taskfile currently active 4112 * 4113 * When device has indicated its readiness to accept 4114 * a CDB, this function is called. Send the CDB. 4115 * 4116 * LOCKING: 4117 * caller. 4118 */ 4119 4120 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4121 { 4122 /* send SCSI cdb */ 4123 DPRINTK("send cdb\n"); 4124 WARN_ON(qc->dev->cdb_len < 12); 4125 4126 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4127 ata_altstatus(ap); /* flush */ 4128 4129 switch (qc->tf.protocol) { 4130 case ATA_PROT_ATAPI: 4131 ap->hsm_task_state = HSM_ST; 4132 break; 4133 case ATA_PROT_ATAPI_NODATA: 4134 ap->hsm_task_state = HSM_ST_LAST; 4135 break; 4136 case ATA_PROT_ATAPI_DMA: 4137 ap->hsm_task_state = HSM_ST_LAST; 4138 /* initiate bmdma */ 4139 ap->ops->bmdma_start(qc); 4140 break; 4141 } 4142 } 4143 4144 /** 4145 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4146 * @qc: Command on going 4147 * @bytes: number of bytes 4148 * 4149 * Transfer Transfer data from/to the ATAPI device. 4150 * 4151 * LOCKING: 4152 * Inherited from caller. 4153 * 4154 */ 4155 4156 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4157 { 4158 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4159 struct scatterlist *sg = qc->__sg; 4160 struct ata_port *ap = qc->ap; 4161 struct page *page; 4162 unsigned char *buf; 4163 unsigned int offset, count; 4164 4165 if (qc->curbytes + bytes >= qc->nbytes) 4166 ap->hsm_task_state = HSM_ST_LAST; 4167 4168 next_sg: 4169 if (unlikely(qc->cursg >= qc->n_elem)) { 4170 /* 4171 * The end of qc->sg is reached and the device expects 4172 * more data to transfer. In order not to overrun qc->sg 4173 * and fulfill length specified in the byte count register, 4174 * - for read case, discard trailing data from the device 4175 * - for write case, padding zero data to the device 4176 */ 4177 u16 pad_buf[1] = { 0 }; 4178 unsigned int words = bytes >> 1; 4179 unsigned int i; 4180 4181 if (words) /* warning if bytes > 1 */ 4182 ata_dev_printk(qc->dev, KERN_WARNING, 4183 "%u bytes trailing data\n", bytes); 4184 4185 for (i = 0; i < words; i++) 4186 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4187 4188 ap->hsm_task_state = HSM_ST_LAST; 4189 return; 4190 } 4191 4192 sg = &qc->__sg[qc->cursg]; 4193 4194 page = sg->page; 4195 offset = sg->offset + qc->cursg_ofs; 4196 4197 /* get the current page and offset */ 4198 page = nth_page(page, (offset >> PAGE_SHIFT)); 4199 offset %= PAGE_SIZE; 4200 4201 /* don't overrun current sg */ 4202 count = min(sg->length - qc->cursg_ofs, bytes); 4203 4204 /* don't cross page boundaries */ 4205 count = min(count, (unsigned int)PAGE_SIZE - offset); 4206 4207 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4208 4209 if (PageHighMem(page)) { 4210 unsigned long flags; 4211 4212 /* FIXME: use bounce buffer */ 4213 local_irq_save(flags); 4214 buf = kmap_atomic(page, KM_IRQ0); 4215 4216 /* do the actual data transfer */ 4217 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4218 4219 kunmap_atomic(buf, KM_IRQ0); 4220 local_irq_restore(flags); 4221 } else { 4222 buf = page_address(page); 4223 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4224 } 4225 4226 bytes -= count; 4227 qc->curbytes += count; 4228 qc->cursg_ofs += count; 4229 4230 if (qc->cursg_ofs == sg->length) { 4231 qc->cursg++; 4232 qc->cursg_ofs = 0; 4233 } 4234 4235 if (bytes) 4236 goto next_sg; 4237 } 4238 4239 /** 4240 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4241 * @qc: Command on going 4242 * 4243 * Transfer Transfer data from/to the ATAPI device. 4244 * 4245 * LOCKING: 4246 * Inherited from caller. 4247 */ 4248 4249 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4250 { 4251 struct ata_port *ap = qc->ap; 4252 struct ata_device *dev = qc->dev; 4253 unsigned int ireason, bc_lo, bc_hi, bytes; 4254 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4255 4256 /* Abuse qc->result_tf for temp storage of intermediate TF 4257 * here to save some kernel stack usage. 4258 * For normal completion, qc->result_tf is not relevant. For 4259 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4260 * So, the correctness of qc->result_tf is not affected. 4261 */ 4262 ap->ops->tf_read(ap, &qc->result_tf); 4263 ireason = qc->result_tf.nsect; 4264 bc_lo = qc->result_tf.lbam; 4265 bc_hi = qc->result_tf.lbah; 4266 bytes = (bc_hi << 8) | bc_lo; 4267 4268 /* shall be cleared to zero, indicating xfer of data */ 4269 if (ireason & (1 << 0)) 4270 goto err_out; 4271 4272 /* make sure transfer direction matches expected */ 4273 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4274 if (do_write != i_write) 4275 goto err_out; 4276 4277 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4278 4279 __atapi_pio_bytes(qc, bytes); 4280 4281 return; 4282 4283 err_out: 4284 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4285 qc->err_mask |= AC_ERR_HSM; 4286 ap->hsm_task_state = HSM_ST_ERR; 4287 } 4288 4289 /** 4290 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4291 * @ap: the target ata_port 4292 * @qc: qc on going 4293 * 4294 * RETURNS: 4295 * 1 if ok in workqueue, 0 otherwise. 4296 */ 4297 4298 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4299 { 4300 if (qc->tf.flags & ATA_TFLAG_POLLING) 4301 return 1; 4302 4303 if (ap->hsm_task_state == HSM_ST_FIRST) { 4304 if (qc->tf.protocol == ATA_PROT_PIO && 4305 (qc->tf.flags & ATA_TFLAG_WRITE)) 4306 return 1; 4307 4308 if (is_atapi_taskfile(&qc->tf) && 4309 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4310 return 1; 4311 } 4312 4313 return 0; 4314 } 4315 4316 /** 4317 * ata_hsm_qc_complete - finish a qc running on standard HSM 4318 * @qc: Command to complete 4319 * @in_wq: 1 if called from workqueue, 0 otherwise 4320 * 4321 * Finish @qc which is running on standard HSM. 4322 * 4323 * LOCKING: 4324 * If @in_wq is zero, spin_lock_irqsave(host lock). 4325 * Otherwise, none on entry and grabs host lock. 4326 */ 4327 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4328 { 4329 struct ata_port *ap = qc->ap; 4330 unsigned long flags; 4331 4332 if (ap->ops->error_handler) { 4333 if (in_wq) { 4334 spin_lock_irqsave(ap->lock, flags); 4335 4336 /* EH might have kicked in while host lock is 4337 * released. 4338 */ 4339 qc = ata_qc_from_tag(ap, qc->tag); 4340 if (qc) { 4341 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4342 ap->ops->irq_on(ap); 4343 ata_qc_complete(qc); 4344 } else 4345 ata_port_freeze(ap); 4346 } 4347 4348 spin_unlock_irqrestore(ap->lock, flags); 4349 } else { 4350 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4351 ata_qc_complete(qc); 4352 else 4353 ata_port_freeze(ap); 4354 } 4355 } else { 4356 if (in_wq) { 4357 spin_lock_irqsave(ap->lock, flags); 4358 ap->ops->irq_on(ap); 4359 ata_qc_complete(qc); 4360 spin_unlock_irqrestore(ap->lock, flags); 4361 } else 4362 ata_qc_complete(qc); 4363 } 4364 4365 ata_altstatus(ap); /* flush */ 4366 } 4367 4368 /** 4369 * ata_hsm_move - move the HSM to the next state. 4370 * @ap: the target ata_port 4371 * @qc: qc on going 4372 * @status: current device status 4373 * @in_wq: 1 if called from workqueue, 0 otherwise 4374 * 4375 * RETURNS: 4376 * 1 when poll next status needed, 0 otherwise. 4377 */ 4378 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4379 u8 status, int in_wq) 4380 { 4381 unsigned long flags = 0; 4382 int poll_next; 4383 4384 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4385 4386 /* Make sure ata_qc_issue_prot() does not throw things 4387 * like DMA polling into the workqueue. Notice that 4388 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4389 */ 4390 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4391 4392 fsm_start: 4393 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4394 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4395 4396 switch (ap->hsm_task_state) { 4397 case HSM_ST_FIRST: 4398 /* Send first data block or PACKET CDB */ 4399 4400 /* If polling, we will stay in the work queue after 4401 * sending the data. Otherwise, interrupt handler 4402 * takes over after sending the data. 4403 */ 4404 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4405 4406 /* check device status */ 4407 if (unlikely((status & ATA_DRQ) == 0)) { 4408 /* handle BSY=0, DRQ=0 as error */ 4409 if (likely(status & (ATA_ERR | ATA_DF))) 4410 /* device stops HSM for abort/error */ 4411 qc->err_mask |= AC_ERR_DEV; 4412 else 4413 /* HSM violation. Let EH handle this */ 4414 qc->err_mask |= AC_ERR_HSM; 4415 4416 ap->hsm_task_state = HSM_ST_ERR; 4417 goto fsm_start; 4418 } 4419 4420 /* Device should not ask for data transfer (DRQ=1) 4421 * when it finds something wrong. 4422 * We ignore DRQ here and stop the HSM by 4423 * changing hsm_task_state to HSM_ST_ERR and 4424 * let the EH abort the command or reset the device. 4425 */ 4426 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4427 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4428 "error, dev_stat 0x%X\n", status); 4429 qc->err_mask |= AC_ERR_HSM; 4430 ap->hsm_task_state = HSM_ST_ERR; 4431 goto fsm_start; 4432 } 4433 4434 /* Send the CDB (atapi) or the first data block (ata pio out). 4435 * During the state transition, interrupt handler shouldn't 4436 * be invoked before the data transfer is complete and 4437 * hsm_task_state is changed. Hence, the following locking. 4438 */ 4439 if (in_wq) 4440 spin_lock_irqsave(ap->lock, flags); 4441 4442 if (qc->tf.protocol == ATA_PROT_PIO) { 4443 /* PIO data out protocol. 4444 * send first data block. 4445 */ 4446 4447 /* ata_pio_sectors() might change the state 4448 * to HSM_ST_LAST. so, the state is changed here 4449 * before ata_pio_sectors(). 4450 */ 4451 ap->hsm_task_state = HSM_ST; 4452 ata_pio_sectors(qc); 4453 ata_altstatus(ap); /* flush */ 4454 } else 4455 /* send CDB */ 4456 atapi_send_cdb(ap, qc); 4457 4458 if (in_wq) 4459 spin_unlock_irqrestore(ap->lock, flags); 4460 4461 /* if polling, ata_pio_task() handles the rest. 4462 * otherwise, interrupt handler takes over from here. 4463 */ 4464 break; 4465 4466 case HSM_ST: 4467 /* complete command or read/write the data register */ 4468 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4469 /* ATAPI PIO protocol */ 4470 if ((status & ATA_DRQ) == 0) { 4471 /* No more data to transfer or device error. 4472 * Device error will be tagged in HSM_ST_LAST. 4473 */ 4474 ap->hsm_task_state = HSM_ST_LAST; 4475 goto fsm_start; 4476 } 4477 4478 /* Device should not ask for data transfer (DRQ=1) 4479 * when it finds something wrong. 4480 * We ignore DRQ here and stop the HSM by 4481 * changing hsm_task_state to HSM_ST_ERR and 4482 * let the EH abort the command or reset the device. 4483 */ 4484 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4485 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4486 "device error, dev_stat 0x%X\n", 4487 status); 4488 qc->err_mask |= AC_ERR_HSM; 4489 ap->hsm_task_state = HSM_ST_ERR; 4490 goto fsm_start; 4491 } 4492 4493 atapi_pio_bytes(qc); 4494 4495 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4496 /* bad ireason reported by device */ 4497 goto fsm_start; 4498 4499 } else { 4500 /* ATA PIO protocol */ 4501 if (unlikely((status & ATA_DRQ) == 0)) { 4502 /* handle BSY=0, DRQ=0 as error */ 4503 if (likely(status & (ATA_ERR | ATA_DF))) 4504 /* device stops HSM for abort/error */ 4505 qc->err_mask |= AC_ERR_DEV; 4506 else 4507 /* HSM violation. Let EH handle this. 4508 * Phantom devices also trigger this 4509 * condition. Mark hint. 4510 */ 4511 qc->err_mask |= AC_ERR_HSM | 4512 AC_ERR_NODEV_HINT; 4513 4514 ap->hsm_task_state = HSM_ST_ERR; 4515 goto fsm_start; 4516 } 4517 4518 /* For PIO reads, some devices may ask for 4519 * data transfer (DRQ=1) alone with ERR=1. 4520 * We respect DRQ here and transfer one 4521 * block of junk data before changing the 4522 * hsm_task_state to HSM_ST_ERR. 4523 * 4524 * For PIO writes, ERR=1 DRQ=1 doesn't make 4525 * sense since the data block has been 4526 * transferred to the device. 4527 */ 4528 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4529 /* data might be corrputed */ 4530 qc->err_mask |= AC_ERR_DEV; 4531 4532 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 4533 ata_pio_sectors(qc); 4534 ata_altstatus(ap); 4535 status = ata_wait_idle(ap); 4536 } 4537 4538 if (status & (ATA_BUSY | ATA_DRQ)) 4539 qc->err_mask |= AC_ERR_HSM; 4540 4541 /* ata_pio_sectors() might change the 4542 * state to HSM_ST_LAST. so, the state 4543 * is changed after ata_pio_sectors(). 4544 */ 4545 ap->hsm_task_state = HSM_ST_ERR; 4546 goto fsm_start; 4547 } 4548 4549 ata_pio_sectors(qc); 4550 4551 if (ap->hsm_task_state == HSM_ST_LAST && 4552 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 4553 /* all data read */ 4554 ata_altstatus(ap); 4555 status = ata_wait_idle(ap); 4556 goto fsm_start; 4557 } 4558 } 4559 4560 ata_altstatus(ap); /* flush */ 4561 poll_next = 1; 4562 break; 4563 4564 case HSM_ST_LAST: 4565 if (unlikely(!ata_ok(status))) { 4566 qc->err_mask |= __ac_err_mask(status); 4567 ap->hsm_task_state = HSM_ST_ERR; 4568 goto fsm_start; 4569 } 4570 4571 /* no more data to transfer */ 4572 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 4573 ap->print_id, qc->dev->devno, status); 4574 4575 WARN_ON(qc->err_mask); 4576 4577 ap->hsm_task_state = HSM_ST_IDLE; 4578 4579 /* complete taskfile transaction */ 4580 ata_hsm_qc_complete(qc, in_wq); 4581 4582 poll_next = 0; 4583 break; 4584 4585 case HSM_ST_ERR: 4586 /* make sure qc->err_mask is available to 4587 * know what's wrong and recover 4588 */ 4589 WARN_ON(qc->err_mask == 0); 4590 4591 ap->hsm_task_state = HSM_ST_IDLE; 4592 4593 /* complete taskfile transaction */ 4594 ata_hsm_qc_complete(qc, in_wq); 4595 4596 poll_next = 0; 4597 break; 4598 default: 4599 poll_next = 0; 4600 BUG(); 4601 } 4602 4603 return poll_next; 4604 } 4605 4606 static void ata_pio_task(struct work_struct *work) 4607 { 4608 struct ata_port *ap = 4609 container_of(work, struct ata_port, port_task.work); 4610 struct ata_queued_cmd *qc = ap->port_task_data; 4611 u8 status; 4612 int poll_next; 4613 4614 fsm_start: 4615 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 4616 4617 /* 4618 * This is purely heuristic. This is a fast path. 4619 * Sometimes when we enter, BSY will be cleared in 4620 * a chk-status or two. If not, the drive is probably seeking 4621 * or something. Snooze for a couple msecs, then 4622 * chk-status again. If still busy, queue delayed work. 4623 */ 4624 status = ata_busy_wait(ap, ATA_BUSY, 5); 4625 if (status & ATA_BUSY) { 4626 msleep(2); 4627 status = ata_busy_wait(ap, ATA_BUSY, 10); 4628 if (status & ATA_BUSY) { 4629 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 4630 return; 4631 } 4632 } 4633 4634 /* move the HSM */ 4635 poll_next = ata_hsm_move(ap, qc, status, 1); 4636 4637 /* another command or interrupt handler 4638 * may be running at this point. 4639 */ 4640 if (poll_next) 4641 goto fsm_start; 4642 } 4643 4644 /** 4645 * ata_qc_new - Request an available ATA command, for queueing 4646 * @ap: Port associated with device @dev 4647 * @dev: Device from whom we request an available command structure 4648 * 4649 * LOCKING: 4650 * None. 4651 */ 4652 4653 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4654 { 4655 struct ata_queued_cmd *qc = NULL; 4656 unsigned int i; 4657 4658 /* no command while frozen */ 4659 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4660 return NULL; 4661 4662 /* the last tag is reserved for internal command. */ 4663 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4664 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4665 qc = __ata_qc_from_tag(ap, i); 4666 break; 4667 } 4668 4669 if (qc) 4670 qc->tag = i; 4671 4672 return qc; 4673 } 4674 4675 /** 4676 * ata_qc_new_init - Request an available ATA command, and initialize it 4677 * @dev: Device from whom we request an available command structure 4678 * 4679 * LOCKING: 4680 * None. 4681 */ 4682 4683 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4684 { 4685 struct ata_port *ap = dev->ap; 4686 struct ata_queued_cmd *qc; 4687 4688 qc = ata_qc_new(ap); 4689 if (qc) { 4690 qc->scsicmd = NULL; 4691 qc->ap = ap; 4692 qc->dev = dev; 4693 4694 ata_qc_reinit(qc); 4695 } 4696 4697 return qc; 4698 } 4699 4700 /** 4701 * ata_qc_free - free unused ata_queued_cmd 4702 * @qc: Command to complete 4703 * 4704 * Designed to free unused ata_queued_cmd object 4705 * in case something prevents using it. 4706 * 4707 * LOCKING: 4708 * spin_lock_irqsave(host lock) 4709 */ 4710 void ata_qc_free(struct ata_queued_cmd *qc) 4711 { 4712 struct ata_port *ap = qc->ap; 4713 unsigned int tag; 4714 4715 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4716 4717 qc->flags = 0; 4718 tag = qc->tag; 4719 if (likely(ata_tag_valid(tag))) { 4720 qc->tag = ATA_TAG_POISON; 4721 clear_bit(tag, &ap->qc_allocated); 4722 } 4723 } 4724 4725 void __ata_qc_complete(struct ata_queued_cmd *qc) 4726 { 4727 struct ata_port *ap = qc->ap; 4728 4729 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4730 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4731 4732 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4733 ata_sg_clean(qc); 4734 4735 /* command should be marked inactive atomically with qc completion */ 4736 if (qc->tf.protocol == ATA_PROT_NCQ) 4737 ap->sactive &= ~(1 << qc->tag); 4738 else 4739 ap->active_tag = ATA_TAG_POISON; 4740 4741 /* atapi: mark qc as inactive to prevent the interrupt handler 4742 * from completing the command twice later, before the error handler 4743 * is called. (when rc != 0 and atapi request sense is needed) 4744 */ 4745 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4746 ap->qc_active &= ~(1 << qc->tag); 4747 4748 /* call completion callback */ 4749 qc->complete_fn(qc); 4750 } 4751 4752 static void fill_result_tf(struct ata_queued_cmd *qc) 4753 { 4754 struct ata_port *ap = qc->ap; 4755 4756 qc->result_tf.flags = qc->tf.flags; 4757 ap->ops->tf_read(ap, &qc->result_tf); 4758 } 4759 4760 /** 4761 * ata_qc_complete - Complete an active ATA command 4762 * @qc: Command to complete 4763 * @err_mask: ATA Status register contents 4764 * 4765 * Indicate to the mid and upper layers that an ATA 4766 * command has completed, with either an ok or not-ok status. 4767 * 4768 * LOCKING: 4769 * spin_lock_irqsave(host lock) 4770 */ 4771 void ata_qc_complete(struct ata_queued_cmd *qc) 4772 { 4773 struct ata_port *ap = qc->ap; 4774 4775 /* XXX: New EH and old EH use different mechanisms to 4776 * synchronize EH with regular execution path. 4777 * 4778 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4779 * Normal execution path is responsible for not accessing a 4780 * failed qc. libata core enforces the rule by returning NULL 4781 * from ata_qc_from_tag() for failed qcs. 4782 * 4783 * Old EH depends on ata_qc_complete() nullifying completion 4784 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4785 * not synchronize with interrupt handler. Only PIO task is 4786 * taken care of. 4787 */ 4788 if (ap->ops->error_handler) { 4789 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4790 4791 if (unlikely(qc->err_mask)) 4792 qc->flags |= ATA_QCFLAG_FAILED; 4793 4794 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4795 if (!ata_tag_internal(qc->tag)) { 4796 /* always fill result TF for failed qc */ 4797 fill_result_tf(qc); 4798 ata_qc_schedule_eh(qc); 4799 return; 4800 } 4801 } 4802 4803 /* read result TF if requested */ 4804 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4805 fill_result_tf(qc); 4806 4807 __ata_qc_complete(qc); 4808 } else { 4809 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4810 return; 4811 4812 /* read result TF if failed or requested */ 4813 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4814 fill_result_tf(qc); 4815 4816 __ata_qc_complete(qc); 4817 } 4818 } 4819 4820 /** 4821 * ata_qc_complete_multiple - Complete multiple qcs successfully 4822 * @ap: port in question 4823 * @qc_active: new qc_active mask 4824 * @finish_qc: LLDD callback invoked before completing a qc 4825 * 4826 * Complete in-flight commands. This functions is meant to be 4827 * called from low-level driver's interrupt routine to complete 4828 * requests normally. ap->qc_active and @qc_active is compared 4829 * and commands are completed accordingly. 4830 * 4831 * LOCKING: 4832 * spin_lock_irqsave(host lock) 4833 * 4834 * RETURNS: 4835 * Number of completed commands on success, -errno otherwise. 4836 */ 4837 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 4838 void (*finish_qc)(struct ata_queued_cmd *)) 4839 { 4840 int nr_done = 0; 4841 u32 done_mask; 4842 int i; 4843 4844 done_mask = ap->qc_active ^ qc_active; 4845 4846 if (unlikely(done_mask & qc_active)) { 4847 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4848 "(%08x->%08x)\n", ap->qc_active, qc_active); 4849 return -EINVAL; 4850 } 4851 4852 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4853 struct ata_queued_cmd *qc; 4854 4855 if (!(done_mask & (1 << i))) 4856 continue; 4857 4858 if ((qc = ata_qc_from_tag(ap, i))) { 4859 if (finish_qc) 4860 finish_qc(qc); 4861 ata_qc_complete(qc); 4862 nr_done++; 4863 } 4864 } 4865 4866 return nr_done; 4867 } 4868 4869 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 4870 { 4871 struct ata_port *ap = qc->ap; 4872 4873 switch (qc->tf.protocol) { 4874 case ATA_PROT_NCQ: 4875 case ATA_PROT_DMA: 4876 case ATA_PROT_ATAPI_DMA: 4877 return 1; 4878 4879 case ATA_PROT_ATAPI: 4880 case ATA_PROT_PIO: 4881 if (ap->flags & ATA_FLAG_PIO_DMA) 4882 return 1; 4883 4884 /* fall through */ 4885 4886 default: 4887 return 0; 4888 } 4889 4890 /* never reached */ 4891 } 4892 4893 /** 4894 * ata_qc_issue - issue taskfile to device 4895 * @qc: command to issue to device 4896 * 4897 * Prepare an ATA command to submission to device. 4898 * This includes mapping the data into a DMA-able 4899 * area, filling in the S/G table, and finally 4900 * writing the taskfile to hardware, starting the command. 4901 * 4902 * LOCKING: 4903 * spin_lock_irqsave(host lock) 4904 */ 4905 void ata_qc_issue(struct ata_queued_cmd *qc) 4906 { 4907 struct ata_port *ap = qc->ap; 4908 4909 /* Make sure only one non-NCQ command is outstanding. The 4910 * check is skipped for old EH because it reuses active qc to 4911 * request ATAPI sense. 4912 */ 4913 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 4914 4915 if (qc->tf.protocol == ATA_PROT_NCQ) { 4916 WARN_ON(ap->sactive & (1 << qc->tag)); 4917 ap->sactive |= 1 << qc->tag; 4918 } else { 4919 WARN_ON(ap->sactive); 4920 ap->active_tag = qc->tag; 4921 } 4922 4923 qc->flags |= ATA_QCFLAG_ACTIVE; 4924 ap->qc_active |= 1 << qc->tag; 4925 4926 if (ata_should_dma_map(qc)) { 4927 if (qc->flags & ATA_QCFLAG_SG) { 4928 if (ata_sg_setup(qc)) 4929 goto sg_err; 4930 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 4931 if (ata_sg_setup_one(qc)) 4932 goto sg_err; 4933 } 4934 } else { 4935 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4936 } 4937 4938 ap->ops->qc_prep(qc); 4939 4940 qc->err_mask |= ap->ops->qc_issue(qc); 4941 if (unlikely(qc->err_mask)) 4942 goto err; 4943 return; 4944 4945 sg_err: 4946 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4947 qc->err_mask |= AC_ERR_SYSTEM; 4948 err: 4949 ata_qc_complete(qc); 4950 } 4951 4952 /** 4953 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 4954 * @qc: command to issue to device 4955 * 4956 * Using various libata functions and hooks, this function 4957 * starts an ATA command. ATA commands are grouped into 4958 * classes called "protocols", and issuing each type of protocol 4959 * is slightly different. 4960 * 4961 * May be used as the qc_issue() entry in ata_port_operations. 4962 * 4963 * LOCKING: 4964 * spin_lock_irqsave(host lock) 4965 * 4966 * RETURNS: 4967 * Zero on success, AC_ERR_* mask on failure 4968 */ 4969 4970 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 4971 { 4972 struct ata_port *ap = qc->ap; 4973 4974 /* Use polling pio if the LLD doesn't handle 4975 * interrupt driven pio and atapi CDB interrupt. 4976 */ 4977 if (ap->flags & ATA_FLAG_PIO_POLLING) { 4978 switch (qc->tf.protocol) { 4979 case ATA_PROT_PIO: 4980 case ATA_PROT_NODATA: 4981 case ATA_PROT_ATAPI: 4982 case ATA_PROT_ATAPI_NODATA: 4983 qc->tf.flags |= ATA_TFLAG_POLLING; 4984 break; 4985 case ATA_PROT_ATAPI_DMA: 4986 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 4987 /* see ata_dma_blacklisted() */ 4988 BUG(); 4989 break; 4990 default: 4991 break; 4992 } 4993 } 4994 4995 /* Some controllers show flaky interrupt behavior after 4996 * setting xfer mode. Use polling instead. 4997 */ 4998 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && 4999 qc->tf.feature == SETFEATURES_XFER) && 5000 (ap->flags & ATA_FLAG_SETXFER_POLLING)) 5001 qc->tf.flags |= ATA_TFLAG_POLLING; 5002 5003 /* select the device */ 5004 ata_dev_select(ap, qc->dev->devno, 1, 0); 5005 5006 /* start the command */ 5007 switch (qc->tf.protocol) { 5008 case ATA_PROT_NODATA: 5009 if (qc->tf.flags & ATA_TFLAG_POLLING) 5010 ata_qc_set_polling(qc); 5011 5012 ata_tf_to_host(ap, &qc->tf); 5013 ap->hsm_task_state = HSM_ST_LAST; 5014 5015 if (qc->tf.flags & ATA_TFLAG_POLLING) 5016 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5017 5018 break; 5019 5020 case ATA_PROT_DMA: 5021 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5022 5023 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5024 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5025 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5026 ap->hsm_task_state = HSM_ST_LAST; 5027 break; 5028 5029 case ATA_PROT_PIO: 5030 if (qc->tf.flags & ATA_TFLAG_POLLING) 5031 ata_qc_set_polling(qc); 5032 5033 ata_tf_to_host(ap, &qc->tf); 5034 5035 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5036 /* PIO data out protocol */ 5037 ap->hsm_task_state = HSM_ST_FIRST; 5038 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5039 5040 /* always send first data block using 5041 * the ata_pio_task() codepath. 5042 */ 5043 } else { 5044 /* PIO data in protocol */ 5045 ap->hsm_task_state = HSM_ST; 5046 5047 if (qc->tf.flags & ATA_TFLAG_POLLING) 5048 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5049 5050 /* if polling, ata_pio_task() handles the rest. 5051 * otherwise, interrupt handler takes over from here. 5052 */ 5053 } 5054 5055 break; 5056 5057 case ATA_PROT_ATAPI: 5058 case ATA_PROT_ATAPI_NODATA: 5059 if (qc->tf.flags & ATA_TFLAG_POLLING) 5060 ata_qc_set_polling(qc); 5061 5062 ata_tf_to_host(ap, &qc->tf); 5063 5064 ap->hsm_task_state = HSM_ST_FIRST; 5065 5066 /* send cdb by polling if no cdb interrupt */ 5067 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5068 (qc->tf.flags & ATA_TFLAG_POLLING)) 5069 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5070 break; 5071 5072 case ATA_PROT_ATAPI_DMA: 5073 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5074 5075 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5076 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5077 ap->hsm_task_state = HSM_ST_FIRST; 5078 5079 /* send cdb by polling if no cdb interrupt */ 5080 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5081 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5082 break; 5083 5084 default: 5085 WARN_ON(1); 5086 return AC_ERR_SYSTEM; 5087 } 5088 5089 return 0; 5090 } 5091 5092 /** 5093 * ata_host_intr - Handle host interrupt for given (port, task) 5094 * @ap: Port on which interrupt arrived (possibly...) 5095 * @qc: Taskfile currently active in engine 5096 * 5097 * Handle host interrupt for given queued command. Currently, 5098 * only DMA interrupts are handled. All other commands are 5099 * handled via polling with interrupts disabled (nIEN bit). 5100 * 5101 * LOCKING: 5102 * spin_lock_irqsave(host lock) 5103 * 5104 * RETURNS: 5105 * One if interrupt was handled, zero if not (shared irq). 5106 */ 5107 5108 inline unsigned int ata_host_intr (struct ata_port *ap, 5109 struct ata_queued_cmd *qc) 5110 { 5111 struct ata_eh_info *ehi = &ap->eh_info; 5112 u8 status, host_stat = 0; 5113 5114 VPRINTK("ata%u: protocol %d task_state %d\n", 5115 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5116 5117 /* Check whether we are expecting interrupt in this state */ 5118 switch (ap->hsm_task_state) { 5119 case HSM_ST_FIRST: 5120 /* Some pre-ATAPI-4 devices assert INTRQ 5121 * at this state when ready to receive CDB. 5122 */ 5123 5124 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5125 * The flag was turned on only for atapi devices. 5126 * No need to check is_atapi_taskfile(&qc->tf) again. 5127 */ 5128 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5129 goto idle_irq; 5130 break; 5131 case HSM_ST_LAST: 5132 if (qc->tf.protocol == ATA_PROT_DMA || 5133 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5134 /* check status of DMA engine */ 5135 host_stat = ap->ops->bmdma_status(ap); 5136 VPRINTK("ata%u: host_stat 0x%X\n", 5137 ap->print_id, host_stat); 5138 5139 /* if it's not our irq... */ 5140 if (!(host_stat & ATA_DMA_INTR)) 5141 goto idle_irq; 5142 5143 /* before we do anything else, clear DMA-Start bit */ 5144 ap->ops->bmdma_stop(qc); 5145 5146 if (unlikely(host_stat & ATA_DMA_ERR)) { 5147 /* error when transfering data to/from memory */ 5148 qc->err_mask |= AC_ERR_HOST_BUS; 5149 ap->hsm_task_state = HSM_ST_ERR; 5150 } 5151 } 5152 break; 5153 case HSM_ST: 5154 break; 5155 default: 5156 goto idle_irq; 5157 } 5158 5159 /* check altstatus */ 5160 status = ata_altstatus(ap); 5161 if (status & ATA_BUSY) 5162 goto idle_irq; 5163 5164 /* check main status, clearing INTRQ */ 5165 status = ata_chk_status(ap); 5166 if (unlikely(status & ATA_BUSY)) 5167 goto idle_irq; 5168 5169 /* ack bmdma irq events */ 5170 ap->ops->irq_clear(ap); 5171 5172 ata_hsm_move(ap, qc, status, 0); 5173 5174 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5175 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5176 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5177 5178 return 1; /* irq handled */ 5179 5180 idle_irq: 5181 ap->stats.idle_irq++; 5182 5183 #ifdef ATA_IRQ_TRAP 5184 if ((ap->stats.idle_irq % 1000) == 0) { 5185 ap->ops->irq_ack(ap, 0); /* debug trap */ 5186 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5187 return 1; 5188 } 5189 #endif 5190 return 0; /* irq not handled */ 5191 } 5192 5193 /** 5194 * ata_interrupt - Default ATA host interrupt handler 5195 * @irq: irq line (unused) 5196 * @dev_instance: pointer to our ata_host information structure 5197 * 5198 * Default interrupt handler for PCI IDE devices. Calls 5199 * ata_host_intr() for each port that is not disabled. 5200 * 5201 * LOCKING: 5202 * Obtains host lock during operation. 5203 * 5204 * RETURNS: 5205 * IRQ_NONE or IRQ_HANDLED. 5206 */ 5207 5208 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5209 { 5210 struct ata_host *host = dev_instance; 5211 unsigned int i; 5212 unsigned int handled = 0; 5213 unsigned long flags; 5214 5215 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5216 spin_lock_irqsave(&host->lock, flags); 5217 5218 for (i = 0; i < host->n_ports; i++) { 5219 struct ata_port *ap; 5220 5221 ap = host->ports[i]; 5222 if (ap && 5223 !(ap->flags & ATA_FLAG_DISABLED)) { 5224 struct ata_queued_cmd *qc; 5225 5226 qc = ata_qc_from_tag(ap, ap->active_tag); 5227 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5228 (qc->flags & ATA_QCFLAG_ACTIVE)) 5229 handled |= ata_host_intr(ap, qc); 5230 } 5231 } 5232 5233 spin_unlock_irqrestore(&host->lock, flags); 5234 5235 return IRQ_RETVAL(handled); 5236 } 5237 5238 /** 5239 * sata_scr_valid - test whether SCRs are accessible 5240 * @ap: ATA port to test SCR accessibility for 5241 * 5242 * Test whether SCRs are accessible for @ap. 5243 * 5244 * LOCKING: 5245 * None. 5246 * 5247 * RETURNS: 5248 * 1 if SCRs are accessible, 0 otherwise. 5249 */ 5250 int sata_scr_valid(struct ata_port *ap) 5251 { 5252 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; 5253 } 5254 5255 /** 5256 * sata_scr_read - read SCR register of the specified port 5257 * @ap: ATA port to read SCR for 5258 * @reg: SCR to read 5259 * @val: Place to store read value 5260 * 5261 * Read SCR register @reg of @ap into *@val. This function is 5262 * guaranteed to succeed if the cable type of the port is SATA 5263 * and the port implements ->scr_read. 5264 * 5265 * LOCKING: 5266 * None. 5267 * 5268 * RETURNS: 5269 * 0 on success, negative errno on failure. 5270 */ 5271 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5272 { 5273 if (sata_scr_valid(ap)) { 5274 *val = ap->ops->scr_read(ap, reg); 5275 return 0; 5276 } 5277 return -EOPNOTSUPP; 5278 } 5279 5280 /** 5281 * sata_scr_write - write SCR register of the specified port 5282 * @ap: ATA port to write SCR for 5283 * @reg: SCR to write 5284 * @val: value to write 5285 * 5286 * Write @val to SCR register @reg of @ap. This function is 5287 * guaranteed to succeed if the cable type of the port is SATA 5288 * and the port implements ->scr_read. 5289 * 5290 * LOCKING: 5291 * None. 5292 * 5293 * RETURNS: 5294 * 0 on success, negative errno on failure. 5295 */ 5296 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5297 { 5298 if (sata_scr_valid(ap)) { 5299 ap->ops->scr_write(ap, reg, val); 5300 return 0; 5301 } 5302 return -EOPNOTSUPP; 5303 } 5304 5305 /** 5306 * sata_scr_write_flush - write SCR register of the specified port and flush 5307 * @ap: ATA port to write SCR for 5308 * @reg: SCR to write 5309 * @val: value to write 5310 * 5311 * This function is identical to sata_scr_write() except that this 5312 * function performs flush after writing to the register. 5313 * 5314 * LOCKING: 5315 * None. 5316 * 5317 * RETURNS: 5318 * 0 on success, negative errno on failure. 5319 */ 5320 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5321 { 5322 if (sata_scr_valid(ap)) { 5323 ap->ops->scr_write(ap, reg, val); 5324 ap->ops->scr_read(ap, reg); 5325 return 0; 5326 } 5327 return -EOPNOTSUPP; 5328 } 5329 5330 /** 5331 * ata_port_online - test whether the given port is online 5332 * @ap: ATA port to test 5333 * 5334 * Test whether @ap is online. Note that this function returns 0 5335 * if online status of @ap cannot be obtained, so 5336 * ata_port_online(ap) != !ata_port_offline(ap). 5337 * 5338 * LOCKING: 5339 * None. 5340 * 5341 * RETURNS: 5342 * 1 if the port online status is available and online. 5343 */ 5344 int ata_port_online(struct ata_port *ap) 5345 { 5346 u32 sstatus; 5347 5348 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5349 return 1; 5350 return 0; 5351 } 5352 5353 /** 5354 * ata_port_offline - test whether the given port is offline 5355 * @ap: ATA port to test 5356 * 5357 * Test whether @ap is offline. Note that this function returns 5358 * 0 if offline status of @ap cannot be obtained, so 5359 * ata_port_online(ap) != !ata_port_offline(ap). 5360 * 5361 * LOCKING: 5362 * None. 5363 * 5364 * RETURNS: 5365 * 1 if the port offline status is available and offline. 5366 */ 5367 int ata_port_offline(struct ata_port *ap) 5368 { 5369 u32 sstatus; 5370 5371 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5372 return 1; 5373 return 0; 5374 } 5375 5376 int ata_flush_cache(struct ata_device *dev) 5377 { 5378 unsigned int err_mask; 5379 u8 cmd; 5380 5381 if (!ata_try_flush_cache(dev)) 5382 return 0; 5383 5384 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5385 cmd = ATA_CMD_FLUSH_EXT; 5386 else 5387 cmd = ATA_CMD_FLUSH; 5388 5389 err_mask = ata_do_simple_cmd(dev, cmd); 5390 if (err_mask) { 5391 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5392 return -EIO; 5393 } 5394 5395 return 0; 5396 } 5397 5398 #ifdef CONFIG_PM 5399 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5400 unsigned int action, unsigned int ehi_flags, 5401 int wait) 5402 { 5403 unsigned long flags; 5404 int i, rc; 5405 5406 for (i = 0; i < host->n_ports; i++) { 5407 struct ata_port *ap = host->ports[i]; 5408 5409 /* Previous resume operation might still be in 5410 * progress. Wait for PM_PENDING to clear. 5411 */ 5412 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5413 ata_port_wait_eh(ap); 5414 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5415 } 5416 5417 /* request PM ops to EH */ 5418 spin_lock_irqsave(ap->lock, flags); 5419 5420 ap->pm_mesg = mesg; 5421 if (wait) { 5422 rc = 0; 5423 ap->pm_result = &rc; 5424 } 5425 5426 ap->pflags |= ATA_PFLAG_PM_PENDING; 5427 ap->eh_info.action |= action; 5428 ap->eh_info.flags |= ehi_flags; 5429 5430 ata_port_schedule_eh(ap); 5431 5432 spin_unlock_irqrestore(ap->lock, flags); 5433 5434 /* wait and check result */ 5435 if (wait) { 5436 ata_port_wait_eh(ap); 5437 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5438 if (rc) 5439 return rc; 5440 } 5441 } 5442 5443 return 0; 5444 } 5445 5446 /** 5447 * ata_host_suspend - suspend host 5448 * @host: host to suspend 5449 * @mesg: PM message 5450 * 5451 * Suspend @host. Actual operation is performed by EH. This 5452 * function requests EH to perform PM operations and waits for EH 5453 * to finish. 5454 * 5455 * LOCKING: 5456 * Kernel thread context (may sleep). 5457 * 5458 * RETURNS: 5459 * 0 on success, -errno on failure. 5460 */ 5461 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5462 { 5463 int i, j, rc; 5464 5465 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5466 if (rc) 5467 goto fail; 5468 5469 /* EH is quiescent now. Fail if we have any ready device. 5470 * This happens if hotplug occurs between completion of device 5471 * suspension and here. 5472 */ 5473 for (i = 0; i < host->n_ports; i++) { 5474 struct ata_port *ap = host->ports[i]; 5475 5476 for (j = 0; j < ATA_MAX_DEVICES; j++) { 5477 struct ata_device *dev = &ap->device[j]; 5478 5479 if (ata_dev_ready(dev)) { 5480 ata_port_printk(ap, KERN_WARNING, 5481 "suspend failed, device %d " 5482 "still active\n", dev->devno); 5483 rc = -EBUSY; 5484 goto fail; 5485 } 5486 } 5487 } 5488 5489 host->dev->power.power_state = mesg; 5490 return 0; 5491 5492 fail: 5493 ata_host_resume(host); 5494 return rc; 5495 } 5496 5497 /** 5498 * ata_host_resume - resume host 5499 * @host: host to resume 5500 * 5501 * Resume @host. Actual operation is performed by EH. This 5502 * function requests EH to perform PM operations and returns. 5503 * Note that all resume operations are performed parallely. 5504 * 5505 * LOCKING: 5506 * Kernel thread context (may sleep). 5507 */ 5508 void ata_host_resume(struct ata_host *host) 5509 { 5510 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5511 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5512 host->dev->power.power_state = PMSG_ON; 5513 } 5514 #endif 5515 5516 /** 5517 * ata_port_start - Set port up for dma. 5518 * @ap: Port to initialize 5519 * 5520 * Called just after data structures for each port are 5521 * initialized. Allocates space for PRD table. 5522 * 5523 * May be used as the port_start() entry in ata_port_operations. 5524 * 5525 * LOCKING: 5526 * Inherited from caller. 5527 */ 5528 int ata_port_start(struct ata_port *ap) 5529 { 5530 struct device *dev = ap->dev; 5531 int rc; 5532 5533 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5534 GFP_KERNEL); 5535 if (!ap->prd) 5536 return -ENOMEM; 5537 5538 rc = ata_pad_alloc(ap, dev); 5539 if (rc) 5540 return rc; 5541 5542 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5543 (unsigned long long)ap->prd_dma); 5544 return 0; 5545 } 5546 5547 /** 5548 * ata_dev_init - Initialize an ata_device structure 5549 * @dev: Device structure to initialize 5550 * 5551 * Initialize @dev in preparation for probing. 5552 * 5553 * LOCKING: 5554 * Inherited from caller. 5555 */ 5556 void ata_dev_init(struct ata_device *dev) 5557 { 5558 struct ata_port *ap = dev->ap; 5559 unsigned long flags; 5560 5561 /* SATA spd limit is bound to the first device */ 5562 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5563 5564 /* High bits of dev->flags are used to record warm plug 5565 * requests which occur asynchronously. Synchronize using 5566 * host lock. 5567 */ 5568 spin_lock_irqsave(ap->lock, flags); 5569 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5570 spin_unlock_irqrestore(ap->lock, flags); 5571 5572 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5573 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5574 dev->pio_mask = UINT_MAX; 5575 dev->mwdma_mask = UINT_MAX; 5576 dev->udma_mask = UINT_MAX; 5577 } 5578 5579 /** 5580 * ata_port_init - Initialize an ata_port structure 5581 * @ap: Structure to initialize 5582 * @host: Collection of hosts to which @ap belongs 5583 * @ent: Probe information provided by low-level driver 5584 * @port_no: Port number associated with this ata_port 5585 * 5586 * Initialize a new ata_port structure. 5587 * 5588 * LOCKING: 5589 * Inherited from caller. 5590 */ 5591 void ata_port_init(struct ata_port *ap, struct ata_host *host, 5592 const struct ata_probe_ent *ent, unsigned int port_no) 5593 { 5594 unsigned int i; 5595 5596 ap->lock = &host->lock; 5597 ap->flags = ATA_FLAG_DISABLED; 5598 ap->print_id = ata_print_id++; 5599 ap->ctl = ATA_DEVCTL_OBS; 5600 ap->host = host; 5601 ap->dev = ent->dev; 5602 ap->port_no = port_no; 5603 if (port_no == 1 && ent->pinfo2) { 5604 ap->pio_mask = ent->pinfo2->pio_mask; 5605 ap->mwdma_mask = ent->pinfo2->mwdma_mask; 5606 ap->udma_mask = ent->pinfo2->udma_mask; 5607 ap->flags |= ent->pinfo2->flags; 5608 ap->ops = ent->pinfo2->port_ops; 5609 } else { 5610 ap->pio_mask = ent->pio_mask; 5611 ap->mwdma_mask = ent->mwdma_mask; 5612 ap->udma_mask = ent->udma_mask; 5613 ap->flags |= ent->port_flags; 5614 ap->ops = ent->port_ops; 5615 } 5616 ap->hw_sata_spd_limit = UINT_MAX; 5617 ap->active_tag = ATA_TAG_POISON; 5618 ap->last_ctl = 0xFF; 5619 5620 #if defined(ATA_VERBOSE_DEBUG) 5621 /* turn on all debugging levels */ 5622 ap->msg_enable = 0x00FF; 5623 #elif defined(ATA_DEBUG) 5624 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5625 #else 5626 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5627 #endif 5628 5629 INIT_DELAYED_WORK(&ap->port_task, NULL); 5630 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5631 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5632 INIT_LIST_HEAD(&ap->eh_done_q); 5633 init_waitqueue_head(&ap->eh_wait_q); 5634 5635 /* set cable type */ 5636 ap->cbl = ATA_CBL_NONE; 5637 if (ap->flags & ATA_FLAG_SATA) 5638 ap->cbl = ATA_CBL_SATA; 5639 5640 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5641 struct ata_device *dev = &ap->device[i]; 5642 dev->ap = ap; 5643 dev->devno = i; 5644 ata_dev_init(dev); 5645 } 5646 5647 #ifdef ATA_IRQ_TRAP 5648 ap->stats.unhandled_irq = 1; 5649 ap->stats.idle_irq = 1; 5650 #endif 5651 5652 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); 5653 } 5654 5655 /** 5656 * ata_port_init_shost - Initialize SCSI host associated with ATA port 5657 * @ap: ATA port to initialize SCSI host for 5658 * @shost: SCSI host associated with @ap 5659 * 5660 * Initialize SCSI host @shost associated with ATA port @ap. 5661 * 5662 * LOCKING: 5663 * Inherited from caller. 5664 */ 5665 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost) 5666 { 5667 ap->scsi_host = shost; 5668 5669 shost->unique_id = ap->print_id; 5670 shost->max_id = 16; 5671 shost->max_lun = 1; 5672 shost->max_channel = 1; 5673 shost->max_cmd_len = 12; 5674 } 5675 5676 /** 5677 * ata_port_add - Attach low-level ATA driver to system 5678 * @ent: Information provided by low-level driver 5679 * @host: Collections of ports to which we add 5680 * @port_no: Port number associated with this host 5681 * 5682 * Attach low-level ATA driver to system. 5683 * 5684 * LOCKING: 5685 * PCI/etc. bus probe sem. 5686 * 5687 * RETURNS: 5688 * New ata_port on success, for NULL on error. 5689 */ 5690 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent, 5691 struct ata_host *host, 5692 unsigned int port_no) 5693 { 5694 struct Scsi_Host *shost; 5695 struct ata_port *ap; 5696 5697 DPRINTK("ENTER\n"); 5698 5699 if (!ent->port_ops->error_handler && 5700 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) { 5701 printk(KERN_ERR "ata%u: no reset mechanism available\n", 5702 port_no); 5703 return NULL; 5704 } 5705 5706 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); 5707 if (!shost) 5708 return NULL; 5709 5710 shost->transportt = &ata_scsi_transport_template; 5711 5712 ap = ata_shost_to_port(shost); 5713 5714 ata_port_init(ap, host, ent, port_no); 5715 ata_port_init_shost(ap, shost); 5716 5717 return ap; 5718 } 5719 5720 static void ata_host_release(struct device *gendev, void *res) 5721 { 5722 struct ata_host *host = dev_get_drvdata(gendev); 5723 int i; 5724 5725 for (i = 0; i < host->n_ports; i++) { 5726 struct ata_port *ap = host->ports[i]; 5727 5728 if (ap && ap->ops->port_stop) 5729 ap->ops->port_stop(ap); 5730 } 5731 5732 if (host->ops->host_stop) 5733 host->ops->host_stop(host); 5734 5735 for (i = 0; i < host->n_ports; i++) { 5736 struct ata_port *ap = host->ports[i]; 5737 5738 if (ap) 5739 scsi_host_put(ap->scsi_host); 5740 5741 host->ports[i] = NULL; 5742 } 5743 5744 dev_set_drvdata(gendev, NULL); 5745 } 5746 5747 /** 5748 * ata_sas_host_init - Initialize a host struct 5749 * @host: host to initialize 5750 * @dev: device host is attached to 5751 * @flags: host flags 5752 * @ops: port_ops 5753 * 5754 * LOCKING: 5755 * PCI/etc. bus probe sem. 5756 * 5757 */ 5758 5759 void ata_host_init(struct ata_host *host, struct device *dev, 5760 unsigned long flags, const struct ata_port_operations *ops) 5761 { 5762 spin_lock_init(&host->lock); 5763 host->dev = dev; 5764 host->flags = flags; 5765 host->ops = ops; 5766 } 5767 5768 /** 5769 * ata_device_add - Register hardware device with ATA and SCSI layers 5770 * @ent: Probe information describing hardware device to be registered 5771 * 5772 * This function processes the information provided in the probe 5773 * information struct @ent, allocates the necessary ATA and SCSI 5774 * host information structures, initializes them, and registers 5775 * everything with requisite kernel subsystems. 5776 * 5777 * This function requests irqs, probes the ATA bus, and probes 5778 * the SCSI bus. 5779 * 5780 * LOCKING: 5781 * PCI/etc. bus probe sem. 5782 * 5783 * RETURNS: 5784 * Number of ports registered. Zero on error (no ports registered). 5785 */ 5786 int ata_device_add(const struct ata_probe_ent *ent) 5787 { 5788 unsigned int i; 5789 struct device *dev = ent->dev; 5790 struct ata_host *host; 5791 int rc; 5792 5793 DPRINTK("ENTER\n"); 5794 5795 if (ent->irq == 0) { 5796 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n"); 5797 return 0; 5798 } 5799 5800 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL)) 5801 return 0; 5802 5803 /* alloc a container for our list of ATA ports (buses) */ 5804 host = devres_alloc(ata_host_release, sizeof(struct ata_host) + 5805 (ent->n_ports * sizeof(void *)), GFP_KERNEL); 5806 if (!host) 5807 goto err_out; 5808 devres_add(dev, host); 5809 dev_set_drvdata(dev, host); 5810 5811 ata_host_init(host, dev, ent->_host_flags, ent->port_ops); 5812 host->n_ports = ent->n_ports; 5813 host->irq = ent->irq; 5814 host->irq2 = ent->irq2; 5815 host->iomap = ent->iomap; 5816 host->private_data = ent->private_data; 5817 5818 /* register each port bound to this device */ 5819 for (i = 0; i < host->n_ports; i++) { 5820 struct ata_port *ap; 5821 unsigned long xfer_mode_mask; 5822 int irq_line = ent->irq; 5823 5824 ap = ata_port_add(ent, host, i); 5825 host->ports[i] = ap; 5826 if (!ap) 5827 goto err_out; 5828 5829 /* dummy? */ 5830 if (ent->dummy_port_mask & (1 << i)) { 5831 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5832 ap->ops = &ata_dummy_port_ops; 5833 continue; 5834 } 5835 5836 /* start port */ 5837 rc = ap->ops->port_start(ap); 5838 if (rc) { 5839 host->ports[i] = NULL; 5840 scsi_host_put(ap->scsi_host); 5841 goto err_out; 5842 } 5843 5844 /* Report the secondary IRQ for second channel legacy */ 5845 if (i == 1 && ent->irq2) 5846 irq_line = ent->irq2; 5847 5848 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | 5849 (ap->mwdma_mask << ATA_SHIFT_MWDMA) | 5850 (ap->pio_mask << ATA_SHIFT_PIO); 5851 5852 /* print per-port info to dmesg */ 5853 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 5854 "ctl 0x%p bmdma 0x%p irq %d\n", 5855 ap->flags & ATA_FLAG_SATA ? 'S' : 'P', 5856 ata_mode_string(xfer_mode_mask), 5857 ap->ioaddr.cmd_addr, 5858 ap->ioaddr.ctl_addr, 5859 ap->ioaddr.bmdma_addr, 5860 irq_line); 5861 5862 /* freeze port before requesting IRQ */ 5863 ata_eh_freeze_port(ap); 5864 } 5865 5866 /* obtain irq, that may be shared between channels */ 5867 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler, 5868 ent->irq_flags, DRV_NAME, host); 5869 if (rc) { 5870 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", 5871 ent->irq, rc); 5872 goto err_out; 5873 } 5874 5875 /* do we have a second IRQ for the other channel, eg legacy mode */ 5876 if (ent->irq2) { 5877 /* We will get weird core code crashes later if this is true 5878 so trap it now */ 5879 BUG_ON(ent->irq == ent->irq2); 5880 5881 rc = devm_request_irq(dev, ent->irq2, 5882 ent->port_ops->irq_handler, ent->irq_flags, 5883 DRV_NAME, host); 5884 if (rc) { 5885 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", 5886 ent->irq2, rc); 5887 goto err_out; 5888 } 5889 } 5890 5891 /* resource acquisition complete */ 5892 devres_remove_group(dev, ata_device_add); 5893 5894 /* perform each probe synchronously */ 5895 DPRINTK("probe begin\n"); 5896 for (i = 0; i < host->n_ports; i++) { 5897 struct ata_port *ap = host->ports[i]; 5898 u32 scontrol; 5899 int rc; 5900 5901 /* init sata_spd_limit to the current value */ 5902 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 5903 int spd = (scontrol >> 4) & 0xf; 5904 ap->hw_sata_spd_limit &= (1 << spd) - 1; 5905 } 5906 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5907 5908 rc = scsi_add_host(ap->scsi_host, dev); 5909 if (rc) { 5910 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n"); 5911 /* FIXME: do something useful here */ 5912 /* FIXME: handle unconditional calls to 5913 * scsi_scan_host and ata_host_remove, below, 5914 * at the very least 5915 */ 5916 } 5917 5918 if (ap->ops->error_handler) { 5919 struct ata_eh_info *ehi = &ap->eh_info; 5920 unsigned long flags; 5921 5922 ata_port_probe(ap); 5923 5924 /* kick EH for boot probing */ 5925 spin_lock_irqsave(ap->lock, flags); 5926 5927 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 5928 ehi->action |= ATA_EH_SOFTRESET; 5929 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5930 5931 ap->pflags |= ATA_PFLAG_LOADING; 5932 ata_port_schedule_eh(ap); 5933 5934 spin_unlock_irqrestore(ap->lock, flags); 5935 5936 /* wait for EH to finish */ 5937 ata_port_wait_eh(ap); 5938 } else { 5939 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5940 rc = ata_bus_probe(ap); 5941 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5942 5943 if (rc) { 5944 /* FIXME: do something useful here? 5945 * Current libata behavior will 5946 * tear down everything when 5947 * the module is removed 5948 * or the h/w is unplugged. 5949 */ 5950 } 5951 } 5952 } 5953 5954 /* probes are done, now scan each port's disk(s) */ 5955 DPRINTK("host probe begin\n"); 5956 for (i = 0; i < host->n_ports; i++) { 5957 struct ata_port *ap = host->ports[i]; 5958 5959 ata_scsi_scan_host(ap); 5960 } 5961 5962 VPRINTK("EXIT, returning %u\n", ent->n_ports); 5963 return ent->n_ports; /* success */ 5964 5965 err_out: 5966 devres_release_group(dev, ata_device_add); 5967 VPRINTK("EXIT, returning %d\n", rc); 5968 return 0; 5969 } 5970 5971 /** 5972 * ata_port_detach - Detach ATA port in prepration of device removal 5973 * @ap: ATA port to be detached 5974 * 5975 * Detach all ATA devices and the associated SCSI devices of @ap; 5976 * then, remove the associated SCSI host. @ap is guaranteed to 5977 * be quiescent on return from this function. 5978 * 5979 * LOCKING: 5980 * Kernel thread context (may sleep). 5981 */ 5982 void ata_port_detach(struct ata_port *ap) 5983 { 5984 unsigned long flags; 5985 int i; 5986 5987 if (!ap->ops->error_handler) 5988 goto skip_eh; 5989 5990 /* tell EH we're leaving & flush EH */ 5991 spin_lock_irqsave(ap->lock, flags); 5992 ap->pflags |= ATA_PFLAG_UNLOADING; 5993 spin_unlock_irqrestore(ap->lock, flags); 5994 5995 ata_port_wait_eh(ap); 5996 5997 /* EH is now guaranteed to see UNLOADING, so no new device 5998 * will be attached. Disable all existing devices. 5999 */ 6000 spin_lock_irqsave(ap->lock, flags); 6001 6002 for (i = 0; i < ATA_MAX_DEVICES; i++) 6003 ata_dev_disable(&ap->device[i]); 6004 6005 spin_unlock_irqrestore(ap->lock, flags); 6006 6007 /* Final freeze & EH. All in-flight commands are aborted. EH 6008 * will be skipped and retrials will be terminated with bad 6009 * target. 6010 */ 6011 spin_lock_irqsave(ap->lock, flags); 6012 ata_port_freeze(ap); /* won't be thawed */ 6013 spin_unlock_irqrestore(ap->lock, flags); 6014 6015 ata_port_wait_eh(ap); 6016 6017 /* Flush hotplug task. The sequence is similar to 6018 * ata_port_flush_task(). 6019 */ 6020 flush_workqueue(ata_aux_wq); 6021 cancel_delayed_work(&ap->hotplug_task); 6022 flush_workqueue(ata_aux_wq); 6023 6024 skip_eh: 6025 /* remove the associated SCSI host */ 6026 scsi_remove_host(ap->scsi_host); 6027 } 6028 6029 /** 6030 * ata_host_detach - Detach all ports of an ATA host 6031 * @host: Host to detach 6032 * 6033 * Detach all ports of @host. 6034 * 6035 * LOCKING: 6036 * Kernel thread context (may sleep). 6037 */ 6038 void ata_host_detach(struct ata_host *host) 6039 { 6040 int i; 6041 6042 for (i = 0; i < host->n_ports; i++) 6043 ata_port_detach(host->ports[i]); 6044 } 6045 6046 struct ata_probe_ent * 6047 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port) 6048 { 6049 struct ata_probe_ent *probe_ent; 6050 6051 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL); 6052 if (!probe_ent) { 6053 printk(KERN_ERR DRV_NAME "(%s): out of memory\n", 6054 kobject_name(&(dev->kobj))); 6055 return NULL; 6056 } 6057 6058 INIT_LIST_HEAD(&probe_ent->node); 6059 probe_ent->dev = dev; 6060 6061 probe_ent->sht = port->sht; 6062 probe_ent->port_flags = port->flags; 6063 probe_ent->pio_mask = port->pio_mask; 6064 probe_ent->mwdma_mask = port->mwdma_mask; 6065 probe_ent->udma_mask = port->udma_mask; 6066 probe_ent->port_ops = port->port_ops; 6067 probe_ent->private_data = port->private_data; 6068 6069 return probe_ent; 6070 } 6071 6072 /** 6073 * ata_std_ports - initialize ioaddr with standard port offsets. 6074 * @ioaddr: IO address structure to be initialized 6075 * 6076 * Utility function which initializes data_addr, error_addr, 6077 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6078 * device_addr, status_addr, and command_addr to standard offsets 6079 * relative to cmd_addr. 6080 * 6081 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6082 */ 6083 6084 void ata_std_ports(struct ata_ioports *ioaddr) 6085 { 6086 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6087 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6088 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6089 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6090 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6091 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6092 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6093 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6094 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6095 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6096 } 6097 6098 6099 #ifdef CONFIG_PCI 6100 6101 /** 6102 * ata_pci_remove_one - PCI layer callback for device removal 6103 * @pdev: PCI device that was removed 6104 * 6105 * PCI layer indicates to libata via this hook that hot-unplug or 6106 * module unload event has occurred. Detach all ports. Resource 6107 * release is handled via devres. 6108 * 6109 * LOCKING: 6110 * Inherited from PCI layer (may sleep). 6111 */ 6112 void ata_pci_remove_one(struct pci_dev *pdev) 6113 { 6114 struct device *dev = pci_dev_to_dev(pdev); 6115 struct ata_host *host = dev_get_drvdata(dev); 6116 6117 ata_host_detach(host); 6118 } 6119 6120 /* move to PCI subsystem */ 6121 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6122 { 6123 unsigned long tmp = 0; 6124 6125 switch (bits->width) { 6126 case 1: { 6127 u8 tmp8 = 0; 6128 pci_read_config_byte(pdev, bits->reg, &tmp8); 6129 tmp = tmp8; 6130 break; 6131 } 6132 case 2: { 6133 u16 tmp16 = 0; 6134 pci_read_config_word(pdev, bits->reg, &tmp16); 6135 tmp = tmp16; 6136 break; 6137 } 6138 case 4: { 6139 u32 tmp32 = 0; 6140 pci_read_config_dword(pdev, bits->reg, &tmp32); 6141 tmp = tmp32; 6142 break; 6143 } 6144 6145 default: 6146 return -EINVAL; 6147 } 6148 6149 tmp &= bits->mask; 6150 6151 return (tmp == bits->val) ? 1 : 0; 6152 } 6153 6154 #ifdef CONFIG_PM 6155 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6156 { 6157 pci_save_state(pdev); 6158 pci_disable_device(pdev); 6159 6160 if (mesg.event == PM_EVENT_SUSPEND) 6161 pci_set_power_state(pdev, PCI_D3hot); 6162 } 6163 6164 int ata_pci_device_do_resume(struct pci_dev *pdev) 6165 { 6166 int rc; 6167 6168 pci_set_power_state(pdev, PCI_D0); 6169 pci_restore_state(pdev); 6170 6171 rc = pcim_enable_device(pdev); 6172 if (rc) { 6173 dev_printk(KERN_ERR, &pdev->dev, 6174 "failed to enable device after resume (%d)\n", rc); 6175 return rc; 6176 } 6177 6178 pci_set_master(pdev); 6179 return 0; 6180 } 6181 6182 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6183 { 6184 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6185 int rc = 0; 6186 6187 rc = ata_host_suspend(host, mesg); 6188 if (rc) 6189 return rc; 6190 6191 ata_pci_device_do_suspend(pdev, mesg); 6192 6193 return 0; 6194 } 6195 6196 int ata_pci_device_resume(struct pci_dev *pdev) 6197 { 6198 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6199 int rc; 6200 6201 rc = ata_pci_device_do_resume(pdev); 6202 if (rc == 0) 6203 ata_host_resume(host); 6204 return rc; 6205 } 6206 #endif /* CONFIG_PM */ 6207 6208 #endif /* CONFIG_PCI */ 6209 6210 6211 static int __init ata_init(void) 6212 { 6213 ata_probe_timeout *= HZ; 6214 ata_wq = create_workqueue("ata"); 6215 if (!ata_wq) 6216 return -ENOMEM; 6217 6218 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6219 if (!ata_aux_wq) { 6220 destroy_workqueue(ata_wq); 6221 return -ENOMEM; 6222 } 6223 6224 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6225 return 0; 6226 } 6227 6228 static void __exit ata_exit(void) 6229 { 6230 destroy_workqueue(ata_wq); 6231 destroy_workqueue(ata_aux_wq); 6232 } 6233 6234 subsys_initcall(ata_init); 6235 module_exit(ata_exit); 6236 6237 static unsigned long ratelimit_time; 6238 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6239 6240 int ata_ratelimit(void) 6241 { 6242 int rc; 6243 unsigned long flags; 6244 6245 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6246 6247 if (time_after(jiffies, ratelimit_time)) { 6248 rc = 1; 6249 ratelimit_time = jiffies + (HZ/5); 6250 } else 6251 rc = 0; 6252 6253 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6254 6255 return rc; 6256 } 6257 6258 /** 6259 * ata_wait_register - wait until register value changes 6260 * @reg: IO-mapped register 6261 * @mask: Mask to apply to read register value 6262 * @val: Wait condition 6263 * @interval_msec: polling interval in milliseconds 6264 * @timeout_msec: timeout in milliseconds 6265 * 6266 * Waiting for some bits of register to change is a common 6267 * operation for ATA controllers. This function reads 32bit LE 6268 * IO-mapped register @reg and tests for the following condition. 6269 * 6270 * (*@reg & mask) != val 6271 * 6272 * If the condition is met, it returns; otherwise, the process is 6273 * repeated after @interval_msec until timeout. 6274 * 6275 * LOCKING: 6276 * Kernel thread context (may sleep) 6277 * 6278 * RETURNS: 6279 * The final register value. 6280 */ 6281 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6282 unsigned long interval_msec, 6283 unsigned long timeout_msec) 6284 { 6285 unsigned long timeout; 6286 u32 tmp; 6287 6288 tmp = ioread32(reg); 6289 6290 /* Calculate timeout _after_ the first read to make sure 6291 * preceding writes reach the controller before starting to 6292 * eat away the timeout. 6293 */ 6294 timeout = jiffies + (timeout_msec * HZ) / 1000; 6295 6296 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6297 msleep(interval_msec); 6298 tmp = ioread32(reg); 6299 } 6300 6301 return tmp; 6302 } 6303 6304 /* 6305 * Dummy port_ops 6306 */ 6307 static void ata_dummy_noret(struct ata_port *ap) { } 6308 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6309 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6310 6311 static u8 ata_dummy_check_status(struct ata_port *ap) 6312 { 6313 return ATA_DRDY; 6314 } 6315 6316 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6317 { 6318 return AC_ERR_SYSTEM; 6319 } 6320 6321 const struct ata_port_operations ata_dummy_port_ops = { 6322 .port_disable = ata_port_disable, 6323 .check_status = ata_dummy_check_status, 6324 .check_altstatus = ata_dummy_check_status, 6325 .dev_select = ata_noop_dev_select, 6326 .qc_prep = ata_noop_qc_prep, 6327 .qc_issue = ata_dummy_qc_issue, 6328 .freeze = ata_dummy_noret, 6329 .thaw = ata_dummy_noret, 6330 .error_handler = ata_dummy_noret, 6331 .post_internal_cmd = ata_dummy_qc_noret, 6332 .irq_clear = ata_dummy_noret, 6333 .port_start = ata_dummy_ret0, 6334 .port_stop = ata_dummy_noret, 6335 }; 6336 6337 /* 6338 * libata is essentially a library of internal helper functions for 6339 * low-level ATA host controller drivers. As such, the API/ABI is 6340 * likely to change as new drivers are added and updated. 6341 * Do not depend on ABI/API stability. 6342 */ 6343 6344 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6345 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6346 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6347 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6348 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6349 EXPORT_SYMBOL_GPL(ata_std_ports); 6350 EXPORT_SYMBOL_GPL(ata_host_init); 6351 EXPORT_SYMBOL_GPL(ata_device_add); 6352 EXPORT_SYMBOL_GPL(ata_host_detach); 6353 EXPORT_SYMBOL_GPL(ata_sg_init); 6354 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6355 EXPORT_SYMBOL_GPL(ata_hsm_move); 6356 EXPORT_SYMBOL_GPL(ata_qc_complete); 6357 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6358 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6359 EXPORT_SYMBOL_GPL(ata_tf_load); 6360 EXPORT_SYMBOL_GPL(ata_tf_read); 6361 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6362 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6363 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6364 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6365 EXPORT_SYMBOL_GPL(ata_check_status); 6366 EXPORT_SYMBOL_GPL(ata_altstatus); 6367 EXPORT_SYMBOL_GPL(ata_exec_command); 6368 EXPORT_SYMBOL_GPL(ata_port_start); 6369 EXPORT_SYMBOL_GPL(ata_interrupt); 6370 EXPORT_SYMBOL_GPL(ata_data_xfer); 6371 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6372 EXPORT_SYMBOL_GPL(ata_qc_prep); 6373 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6374 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6375 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6376 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6377 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6378 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6379 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6380 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6381 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6382 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6383 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6384 EXPORT_SYMBOL_GPL(ata_port_probe); 6385 EXPORT_SYMBOL_GPL(ata_dev_disable); 6386 EXPORT_SYMBOL_GPL(sata_set_spd); 6387 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6388 EXPORT_SYMBOL_GPL(sata_phy_resume); 6389 EXPORT_SYMBOL_GPL(sata_phy_reset); 6390 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6391 EXPORT_SYMBOL_GPL(ata_bus_reset); 6392 EXPORT_SYMBOL_GPL(ata_std_prereset); 6393 EXPORT_SYMBOL_GPL(ata_std_softreset); 6394 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6395 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6396 EXPORT_SYMBOL_GPL(ata_std_postreset); 6397 EXPORT_SYMBOL_GPL(ata_dev_classify); 6398 EXPORT_SYMBOL_GPL(ata_dev_pair); 6399 EXPORT_SYMBOL_GPL(ata_port_disable); 6400 EXPORT_SYMBOL_GPL(ata_ratelimit); 6401 EXPORT_SYMBOL_GPL(ata_wait_register); 6402 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6403 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6404 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6405 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6406 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6407 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6408 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6409 EXPORT_SYMBOL_GPL(ata_host_intr); 6410 EXPORT_SYMBOL_GPL(sata_scr_valid); 6411 EXPORT_SYMBOL_GPL(sata_scr_read); 6412 EXPORT_SYMBOL_GPL(sata_scr_write); 6413 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6414 EXPORT_SYMBOL_GPL(ata_port_online); 6415 EXPORT_SYMBOL_GPL(ata_port_offline); 6416 #ifdef CONFIG_PM 6417 EXPORT_SYMBOL_GPL(ata_host_suspend); 6418 EXPORT_SYMBOL_GPL(ata_host_resume); 6419 #endif /* CONFIG_PM */ 6420 EXPORT_SYMBOL_GPL(ata_id_string); 6421 EXPORT_SYMBOL_GPL(ata_id_c_string); 6422 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6423 EXPORT_SYMBOL_GPL(ata_device_blacklisted); 6424 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6425 6426 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6427 EXPORT_SYMBOL_GPL(ata_timing_compute); 6428 EXPORT_SYMBOL_GPL(ata_timing_merge); 6429 6430 #ifdef CONFIG_PCI 6431 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6432 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); 6433 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6434 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6435 #ifdef CONFIG_PM 6436 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6437 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6438 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6439 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6440 #endif /* CONFIG_PM */ 6441 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6442 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6443 #endif /* CONFIG_PCI */ 6444 6445 #ifdef CONFIG_PM 6446 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); 6447 EXPORT_SYMBOL_GPL(ata_scsi_device_resume); 6448 #endif /* CONFIG_PM */ 6449 6450 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6451 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6452 EXPORT_SYMBOL_GPL(ata_port_abort); 6453 EXPORT_SYMBOL_GPL(ata_port_freeze); 6454 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6455 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6456 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6457 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6458 EXPORT_SYMBOL_GPL(ata_do_eh); 6459 EXPORT_SYMBOL_GPL(ata_irq_on); 6460 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6461 EXPORT_SYMBOL_GPL(ata_irq_ack); 6462 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6463 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6464