1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 71 #include "libata.h" 72 #include "libata-transport.h" 73 74 /* debounce timing parameters in msecs { interval, duration, timeout } */ 75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 78 79 const struct ata_port_operations ata_base_port_ops = { 80 .prereset = ata_std_prereset, 81 .postreset = ata_std_postreset, 82 .error_handler = ata_std_error_handler, 83 .sched_eh = ata_std_sched_eh, 84 .end_eh = ata_std_end_eh, 85 }; 86 87 const struct ata_port_operations sata_port_ops = { 88 .inherits = &ata_base_port_ops, 89 90 .qc_defer = ata_std_qc_defer, 91 .hardreset = sata_std_hardreset, 92 }; 93 94 static unsigned int ata_dev_init_params(struct ata_device *dev, 95 u16 heads, u16 sectors); 96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 97 static void ata_dev_xfermask(struct ata_device *dev); 98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 99 100 atomic_t ata_print_id = ATOMIC_INIT(0); 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 static int atapi_an; 163 module_param(atapi_an, int, 0444); 164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 165 166 MODULE_AUTHOR("Jeff Garzik"); 167 MODULE_DESCRIPTION("Library module for ATA devices"); 168 MODULE_LICENSE("GPL"); 169 MODULE_VERSION(DRV_VERSION); 170 171 172 static bool ata_sstatus_online(u32 sstatus) 173 { 174 return (sstatus & 0xf) == 0x3; 175 } 176 177 /** 178 * ata_link_next - link iteration helper 179 * @link: the previous link, NULL to start 180 * @ap: ATA port containing links to iterate 181 * @mode: iteration mode, one of ATA_LITER_* 182 * 183 * LOCKING: 184 * Host lock or EH context. 185 * 186 * RETURNS: 187 * Pointer to the next link. 188 */ 189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 190 enum ata_link_iter_mode mode) 191 { 192 BUG_ON(mode != ATA_LITER_EDGE && 193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 194 195 /* NULL link indicates start of iteration */ 196 if (!link) 197 switch (mode) { 198 case ATA_LITER_EDGE: 199 case ATA_LITER_PMP_FIRST: 200 if (sata_pmp_attached(ap)) 201 return ap->pmp_link; 202 /* fall through */ 203 case ATA_LITER_HOST_FIRST: 204 return &ap->link; 205 } 206 207 /* we just iterated over the host link, what's next? */ 208 if (link == &ap->link) 209 switch (mode) { 210 case ATA_LITER_HOST_FIRST: 211 if (sata_pmp_attached(ap)) 212 return ap->pmp_link; 213 /* fall through */ 214 case ATA_LITER_PMP_FIRST: 215 if (unlikely(ap->slave_link)) 216 return ap->slave_link; 217 /* fall through */ 218 case ATA_LITER_EDGE: 219 return NULL; 220 } 221 222 /* slave_link excludes PMP */ 223 if (unlikely(link == ap->slave_link)) 224 return NULL; 225 226 /* we were over a PMP link */ 227 if (++link < ap->pmp_link + ap->nr_pmp_links) 228 return link; 229 230 if (mode == ATA_LITER_PMP_FIRST) 231 return &ap->link; 232 233 return NULL; 234 } 235 236 /** 237 * ata_dev_next - device iteration helper 238 * @dev: the previous device, NULL to start 239 * @link: ATA link containing devices to iterate 240 * @mode: iteration mode, one of ATA_DITER_* 241 * 242 * LOCKING: 243 * Host lock or EH context. 244 * 245 * RETURNS: 246 * Pointer to the next device. 247 */ 248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 249 enum ata_dev_iter_mode mode) 250 { 251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 253 254 /* NULL dev indicates start of iteration */ 255 if (!dev) 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 dev = link->device; 260 goto check; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 dev = link->device + ata_link_max_devices(link) - 1; 264 goto check; 265 } 266 267 next: 268 /* move to the next one */ 269 switch (mode) { 270 case ATA_DITER_ENABLED: 271 case ATA_DITER_ALL: 272 if (++dev < link->device + ata_link_max_devices(link)) 273 goto check; 274 return NULL; 275 case ATA_DITER_ENABLED_REVERSE: 276 case ATA_DITER_ALL_REVERSE: 277 if (--dev >= link->device) 278 goto check; 279 return NULL; 280 } 281 282 check: 283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 284 !ata_dev_enabled(dev)) 285 goto next; 286 return dev; 287 } 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 495 /** 496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 497 * @opcode: SCSI opcode 498 * 499 * Determine ATAPI command type from @opcode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 506 */ 507 int atapi_cmd_type(u8 opcode) 508 { 509 switch (opcode) { 510 case GPCMD_READ_10: 511 case GPCMD_READ_12: 512 return ATAPI_READ; 513 514 case GPCMD_WRITE_10: 515 case GPCMD_WRITE_12: 516 case GPCMD_WRITE_AND_VERIFY_10: 517 return ATAPI_WRITE; 518 519 case GPCMD_READ_CD: 520 case GPCMD_READ_CD_MSF: 521 return ATAPI_READ_CD; 522 523 case ATA_16: 524 case ATA_12: 525 if (atapi_passthru16) 526 return ATAPI_PASS_THRU; 527 /* fall thru */ 528 default: 529 return ATAPI_MISC; 530 } 531 } 532 533 /** 534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 535 * @tf: Taskfile to convert 536 * @pmp: Port multiplier port 537 * @is_cmd: This FIS is for command 538 * @fis: Buffer into which data will output 539 * 540 * Converts a standard ATA taskfile to a Serial ATA 541 * FIS structure (Register - Host to Device). 542 * 543 * LOCKING: 544 * Inherited from caller. 545 */ 546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 547 { 548 fis[0] = 0x27; /* Register - Host to Device FIS */ 549 fis[1] = pmp & 0xf; /* Port multiplier number*/ 550 if (is_cmd) 551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 552 553 fis[2] = tf->command; 554 fis[3] = tf->feature; 555 556 fis[4] = tf->lbal; 557 fis[5] = tf->lbam; 558 fis[6] = tf->lbah; 559 fis[7] = tf->device; 560 561 fis[8] = tf->hob_lbal; 562 fis[9] = tf->hob_lbam; 563 fis[10] = tf->hob_lbah; 564 fis[11] = tf->hob_feature; 565 566 fis[12] = tf->nsect; 567 fis[13] = tf->hob_nsect; 568 fis[14] = 0; 569 fis[15] = tf->ctl; 570 571 fis[16] = 0; 572 fis[17] = 0; 573 fis[18] = 0; 574 fis[19] = 0; 575 } 576 577 /** 578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 579 * @fis: Buffer from which data will be input 580 * @tf: Taskfile to output 581 * 582 * Converts a serial ATA FIS structure to a standard ATA taskfile. 583 * 584 * LOCKING: 585 * Inherited from caller. 586 */ 587 588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 589 { 590 tf->command = fis[2]; /* status */ 591 tf->feature = fis[3]; /* error */ 592 593 tf->lbal = fis[4]; 594 tf->lbam = fis[5]; 595 tf->lbah = fis[6]; 596 tf->device = fis[7]; 597 598 tf->hob_lbal = fis[8]; 599 tf->hob_lbam = fis[9]; 600 tf->hob_lbah = fis[10]; 601 602 tf->nsect = fis[12]; 603 tf->hob_nsect = fis[13]; 604 } 605 606 static const u8 ata_rw_cmds[] = { 607 /* pio multi */ 608 ATA_CMD_READ_MULTI, 609 ATA_CMD_WRITE_MULTI, 610 ATA_CMD_READ_MULTI_EXT, 611 ATA_CMD_WRITE_MULTI_EXT, 612 0, 613 0, 614 0, 615 ATA_CMD_WRITE_MULTI_FUA_EXT, 616 /* pio */ 617 ATA_CMD_PIO_READ, 618 ATA_CMD_PIO_WRITE, 619 ATA_CMD_PIO_READ_EXT, 620 ATA_CMD_PIO_WRITE_EXT, 621 0, 622 0, 623 0, 624 0, 625 /* dma */ 626 ATA_CMD_READ, 627 ATA_CMD_WRITE, 628 ATA_CMD_READ_EXT, 629 ATA_CMD_WRITE_EXT, 630 0, 631 0, 632 0, 633 ATA_CMD_WRITE_FUA_EXT 634 }; 635 636 /** 637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 638 * @tf: command to examine and configure 639 * @dev: device tf belongs to 640 * 641 * Examine the device configuration and tf->flags to calculate 642 * the proper read/write commands and protocol to use. 643 * 644 * LOCKING: 645 * caller. 646 */ 647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 648 { 649 u8 cmd; 650 651 int index, fua, lba48, write; 652 653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 656 657 if (dev->flags & ATA_DFLAG_PIO) { 658 tf->protocol = ATA_PROT_PIO; 659 index = dev->multi_count ? 0 : 8; 660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 661 /* Unable to use DMA due to host limitation */ 662 tf->protocol = ATA_PROT_PIO; 663 index = dev->multi_count ? 0 : 8; 664 } else { 665 tf->protocol = ATA_PROT_DMA; 666 index = 16; 667 } 668 669 cmd = ata_rw_cmds[index + fua + lba48 + write]; 670 if (cmd) { 671 tf->command = cmd; 672 return 0; 673 } 674 return -1; 675 } 676 677 /** 678 * ata_tf_read_block - Read block address from ATA taskfile 679 * @tf: ATA taskfile of interest 680 * @dev: ATA device @tf belongs to 681 * 682 * LOCKING: 683 * None. 684 * 685 * Read block address from @tf. This function can handle all 686 * three address formats - LBA, LBA48 and CHS. tf->protocol and 687 * flags select the address format to use. 688 * 689 * RETURNS: 690 * Block address read from @tf. 691 */ 692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 693 { 694 u64 block = 0; 695 696 if (tf->flags & ATA_TFLAG_LBA) { 697 if (tf->flags & ATA_TFLAG_LBA48) { 698 block |= (u64)tf->hob_lbah << 40; 699 block |= (u64)tf->hob_lbam << 32; 700 block |= (u64)tf->hob_lbal << 24; 701 } else 702 block |= (tf->device & 0xf) << 24; 703 704 block |= tf->lbah << 16; 705 block |= tf->lbam << 8; 706 block |= tf->lbal; 707 } else { 708 u32 cyl, head, sect; 709 710 cyl = tf->lbam | (tf->lbah << 8); 711 head = tf->device & 0xf; 712 sect = tf->lbal; 713 714 if (!sect) { 715 ata_dev_warn(dev, 716 "device reported invalid CHS sector 0\n"); 717 sect = 1; /* oh well */ 718 } 719 720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 721 } 722 723 return block; 724 } 725 726 /** 727 * ata_build_rw_tf - Build ATA taskfile for given read/write request 728 * @tf: Target ATA taskfile 729 * @dev: ATA device @tf belongs to 730 * @block: Block address 731 * @n_block: Number of blocks 732 * @tf_flags: RW/FUA etc... 733 * @tag: tag 734 * 735 * LOCKING: 736 * None. 737 * 738 * Build ATA taskfile @tf for read/write request described by 739 * @block, @n_block, @tf_flags and @tag on @dev. 740 * 741 * RETURNS: 742 * 743 * 0 on success, -ERANGE if the request is too large for @dev, 744 * -EINVAL if the request is invalid. 745 */ 746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 747 u64 block, u32 n_block, unsigned int tf_flags, 748 unsigned int tag) 749 { 750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 751 tf->flags |= tf_flags; 752 753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 754 /* yay, NCQ */ 755 if (!lba_48_ok(block, n_block)) 756 return -ERANGE; 757 758 tf->protocol = ATA_PROT_NCQ; 759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 760 761 if (tf->flags & ATA_TFLAG_WRITE) 762 tf->command = ATA_CMD_FPDMA_WRITE; 763 else 764 tf->command = ATA_CMD_FPDMA_READ; 765 766 tf->nsect = tag << 3; 767 tf->hob_feature = (n_block >> 8) & 0xff; 768 tf->feature = n_block & 0xff; 769 770 tf->hob_lbah = (block >> 40) & 0xff; 771 tf->hob_lbam = (block >> 32) & 0xff; 772 tf->hob_lbal = (block >> 24) & 0xff; 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device = 1 << 6; 778 if (tf->flags & ATA_TFLAG_FUA) 779 tf->device |= 1 << 7; 780 } else if (dev->flags & ATA_DFLAG_LBA) { 781 tf->flags |= ATA_TFLAG_LBA; 782 783 if (lba_28_ok(block, n_block)) { 784 /* use LBA28 */ 785 tf->device |= (block >> 24) & 0xf; 786 } else if (lba_48_ok(block, n_block)) { 787 if (!(dev->flags & ATA_DFLAG_LBA48)) 788 return -ERANGE; 789 790 /* use LBA48 */ 791 tf->flags |= ATA_TFLAG_LBA48; 792 793 tf->hob_nsect = (n_block >> 8) & 0xff; 794 795 tf->hob_lbah = (block >> 40) & 0xff; 796 tf->hob_lbam = (block >> 32) & 0xff; 797 tf->hob_lbal = (block >> 24) & 0xff; 798 } else 799 /* request too large even for LBA48 */ 800 return -ERANGE; 801 802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 803 return -EINVAL; 804 805 tf->nsect = n_block & 0xff; 806 807 tf->lbah = (block >> 16) & 0xff; 808 tf->lbam = (block >> 8) & 0xff; 809 tf->lbal = block & 0xff; 810 811 tf->device |= ATA_LBA; 812 } else { 813 /* CHS */ 814 u32 sect, head, cyl, track; 815 816 /* The request -may- be too large for CHS addressing. */ 817 if (!lba_28_ok(block, n_block)) 818 return -ERANGE; 819 820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 821 return -EINVAL; 822 823 /* Convert LBA to CHS */ 824 track = (u32)block / dev->sectors; 825 cyl = track / dev->heads; 826 head = track % dev->heads; 827 sect = (u32)block % dev->sectors + 1; 828 829 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 830 (u32)block, track, cyl, head, sect); 831 832 /* Check whether the converted CHS can fit. 833 Cylinder: 0-65535 834 Head: 0-15 835 Sector: 1-255*/ 836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 837 return -ERANGE; 838 839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 840 tf->lbal = sect; 841 tf->lbam = cyl; 842 tf->lbah = cyl >> 8; 843 tf->device |= head; 844 } 845 846 return 0; 847 } 848 849 /** 850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 851 * @pio_mask: pio_mask 852 * @mwdma_mask: mwdma_mask 853 * @udma_mask: udma_mask 854 * 855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 856 * unsigned int xfer_mask. 857 * 858 * LOCKING: 859 * None. 860 * 861 * RETURNS: 862 * Packed xfer_mask. 863 */ 864 unsigned long ata_pack_xfermask(unsigned long pio_mask, 865 unsigned long mwdma_mask, 866 unsigned long udma_mask) 867 { 868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 871 } 872 873 /** 874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 875 * @xfer_mask: xfer_mask to unpack 876 * @pio_mask: resulting pio_mask 877 * @mwdma_mask: resulting mwdma_mask 878 * @udma_mask: resulting udma_mask 879 * 880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 881 * Any NULL distination masks will be ignored. 882 */ 883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 884 unsigned long *mwdma_mask, unsigned long *udma_mask) 885 { 886 if (pio_mask) 887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 888 if (mwdma_mask) 889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 890 if (udma_mask) 891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 892 } 893 894 static const struct ata_xfer_ent { 895 int shift, bits; 896 u8 base; 897 } ata_xfer_tbl[] = { 898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 901 { -1, }, 902 }; 903 904 /** 905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 906 * @xfer_mask: xfer_mask of interest 907 * 908 * Return matching XFER_* value for @xfer_mask. Only the highest 909 * bit of @xfer_mask is considered. 910 * 911 * LOCKING: 912 * None. 913 * 914 * RETURNS: 915 * Matching XFER_* value, 0xff if no match found. 916 */ 917 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 918 { 919 int highbit = fls(xfer_mask) - 1; 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 924 return ent->base + highbit - ent->shift; 925 return 0xff; 926 } 927 928 /** 929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 930 * @xfer_mode: XFER_* of interest 931 * 932 * Return matching xfer_mask for @xfer_mode. 933 * 934 * LOCKING: 935 * None. 936 * 937 * RETURNS: 938 * Matching xfer_mask, 0 if no match found. 939 */ 940 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 941 { 942 const struct ata_xfer_ent *ent; 943 944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 947 & ~((1 << ent->shift) - 1); 948 return 0; 949 } 950 951 /** 952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 953 * @xfer_mode: XFER_* of interest 954 * 955 * Return matching xfer_shift for @xfer_mode. 956 * 957 * LOCKING: 958 * None. 959 * 960 * RETURNS: 961 * Matching xfer_shift, -1 if no match found. 962 */ 963 int ata_xfer_mode2shift(unsigned long xfer_mode) 964 { 965 const struct ata_xfer_ent *ent; 966 967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 969 return ent->shift; 970 return -1; 971 } 972 973 /** 974 * ata_mode_string - convert xfer_mask to string 975 * @xfer_mask: mask of bits supported; only highest bit counts. 976 * 977 * Determine string which represents the highest speed 978 * (highest bit in @modemask). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Constant C string representing highest speed listed in 985 * @mode_mask, or the constant C string "<n/a>". 986 */ 987 const char *ata_mode_string(unsigned long xfer_mask) 988 { 989 static const char * const xfer_mode_str[] = { 990 "PIO0", 991 "PIO1", 992 "PIO2", 993 "PIO3", 994 "PIO4", 995 "PIO5", 996 "PIO6", 997 "MWDMA0", 998 "MWDMA1", 999 "MWDMA2", 1000 "MWDMA3", 1001 "MWDMA4", 1002 "UDMA/16", 1003 "UDMA/25", 1004 "UDMA/33", 1005 "UDMA/44", 1006 "UDMA/66", 1007 "UDMA/100", 1008 "UDMA/133", 1009 "UDMA7", 1010 }; 1011 int highbit; 1012 1013 highbit = fls(xfer_mask) - 1; 1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1015 return xfer_mode_str[highbit]; 1016 return "<n/a>"; 1017 } 1018 1019 const char *sata_spd_string(unsigned int spd) 1020 { 1021 static const char * const spd_str[] = { 1022 "1.5 Gbps", 1023 "3.0 Gbps", 1024 "6.0 Gbps", 1025 }; 1026 1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1028 return "<unknown>"; 1029 return spd_str[spd - 1]; 1030 } 1031 1032 /** 1033 * ata_dev_classify - determine device type based on ATA-spec signature 1034 * @tf: ATA taskfile register set for device to be identified 1035 * 1036 * Determine from taskfile register contents whether a device is 1037 * ATA or ATAPI, as per "Signature and persistence" section 1038 * of ATA/PI spec (volume 1, sect 5.14). 1039 * 1040 * LOCKING: 1041 * None. 1042 * 1043 * RETURNS: 1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1045 * %ATA_DEV_UNKNOWN the event of failure. 1046 */ 1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1048 { 1049 /* Apple's open source Darwin code hints that some devices only 1050 * put a proper signature into the LBA mid/high registers, 1051 * So, we only check those. It's sufficient for uniqueness. 1052 * 1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1054 * signatures for ATA and ATAPI devices attached on SerialATA, 1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1056 * spec has never mentioned about using different signatures 1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1058 * Multiplier specification began to use 0x69/0x96 to identify 1059 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1061 * 0x69/0x96 shortly and described them as reserved for 1062 * SerialATA. 1063 * 1064 * We follow the current spec and consider that 0x69/0x96 1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1067 * SEMB signature. This is worked around in 1068 * ata_dev_read_id(). 1069 */ 1070 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1071 DPRINTK("found ATA device by sig\n"); 1072 return ATA_DEV_ATA; 1073 } 1074 1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1076 DPRINTK("found ATAPI device by sig\n"); 1077 return ATA_DEV_ATAPI; 1078 } 1079 1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1081 DPRINTK("found PMP device by sig\n"); 1082 return ATA_DEV_PMP; 1083 } 1084 1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1086 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1087 return ATA_DEV_SEMB; 1088 } 1089 1090 DPRINTK("unknown device\n"); 1091 return ATA_DEV_UNKNOWN; 1092 } 1093 1094 /** 1095 * ata_id_string - Convert IDENTIFY DEVICE page into string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an even number. 1100 * 1101 * The strings in the IDENTIFY DEVICE page are broken up into 1102 * 16-bit chunks. Run through the string, and output each 1103 * 8-bit chunk linearly, regardless of platform. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 1109 void ata_id_string(const u16 *id, unsigned char *s, 1110 unsigned int ofs, unsigned int len) 1111 { 1112 unsigned int c; 1113 1114 BUG_ON(len & 1); 1115 1116 while (len > 0) { 1117 c = id[ofs] >> 8; 1118 *s = c; 1119 s++; 1120 1121 c = id[ofs] & 0xff; 1122 *s = c; 1123 s++; 1124 1125 ofs++; 1126 len -= 2; 1127 } 1128 } 1129 1130 /** 1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1132 * @id: IDENTIFY DEVICE results we will examine 1133 * @s: string into which data is output 1134 * @ofs: offset into identify device page 1135 * @len: length of string to return. must be an odd number. 1136 * 1137 * This function is identical to ata_id_string except that it 1138 * trims trailing spaces and terminates the resulting string with 1139 * null. @len must be actual maximum length (even number) + 1. 1140 * 1141 * LOCKING: 1142 * caller. 1143 */ 1144 void ata_id_c_string(const u16 *id, unsigned char *s, 1145 unsigned int ofs, unsigned int len) 1146 { 1147 unsigned char *p; 1148 1149 ata_id_string(id, s, ofs, len - 1); 1150 1151 p = s + strnlen(s, len - 1); 1152 while (p > s && p[-1] == ' ') 1153 p--; 1154 *p = '\0'; 1155 } 1156 1157 static u64 ata_id_n_sectors(const u16 *id) 1158 { 1159 if (ata_id_has_lba(id)) { 1160 if (ata_id_has_lba48(id)) 1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1162 else 1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1164 } else { 1165 if (ata_id_current_chs_valid(id)) 1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1167 id[ATA_ID_CUR_SECTORS]; 1168 else 1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1170 id[ATA_ID_SECTORS]; 1171 } 1172 } 1173 1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1175 { 1176 u64 sectors = 0; 1177 1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1181 sectors |= (tf->lbah & 0xff) << 16; 1182 sectors |= (tf->lbam & 0xff) << 8; 1183 sectors |= (tf->lbal & 0xff); 1184 1185 return sectors; 1186 } 1187 1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1189 { 1190 u64 sectors = 0; 1191 1192 sectors |= (tf->device & 0x0f) << 24; 1193 sectors |= (tf->lbah & 0xff) << 16; 1194 sectors |= (tf->lbam & 0xff) << 8; 1195 sectors |= (tf->lbal & 0xff); 1196 1197 return sectors; 1198 } 1199 1200 /** 1201 * ata_read_native_max_address - Read native max address 1202 * @dev: target device 1203 * @max_sectors: out parameter for the result native max address 1204 * 1205 * Perform an LBA48 or LBA28 native size query upon the device in 1206 * question. 1207 * 1208 * RETURNS: 1209 * 0 on success, -EACCES if command is aborted by the drive. 1210 * -EIO on other errors. 1211 */ 1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1213 { 1214 unsigned int err_mask; 1215 struct ata_taskfile tf; 1216 int lba48 = ata_id_has_lba48(dev->id); 1217 1218 ata_tf_init(dev, &tf); 1219 1220 /* always clear all address registers */ 1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1222 1223 if (lba48) { 1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1225 tf.flags |= ATA_TFLAG_LBA48; 1226 } else 1227 tf.command = ATA_CMD_READ_NATIVE_MAX; 1228 1229 tf.protocol |= ATA_PROT_NODATA; 1230 tf.device |= ATA_LBA; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to read native max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1238 return -EACCES; 1239 return -EIO; 1240 } 1241 1242 if (lba48) 1243 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1244 else 1245 *max_sectors = ata_tf_to_lba(&tf) + 1; 1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1247 (*max_sectors)--; 1248 return 0; 1249 } 1250 1251 /** 1252 * ata_set_max_sectors - Set max sectors 1253 * @dev: target device 1254 * @new_sectors: new max sectors value to set for the device 1255 * 1256 * Set max sectors of @dev to @new_sectors. 1257 * 1258 * RETURNS: 1259 * 0 on success, -EACCES if command is aborted or denied (due to 1260 * previous non-volatile SET_MAX) by the drive. -EIO on other 1261 * errors. 1262 */ 1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1264 { 1265 unsigned int err_mask; 1266 struct ata_taskfile tf; 1267 int lba48 = ata_id_has_lba48(dev->id); 1268 1269 new_sectors--; 1270 1271 ata_tf_init(dev, &tf); 1272 1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1274 1275 if (lba48) { 1276 tf.command = ATA_CMD_SET_MAX_EXT; 1277 tf.flags |= ATA_TFLAG_LBA48; 1278 1279 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1280 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1281 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1282 } else { 1283 tf.command = ATA_CMD_SET_MAX; 1284 1285 tf.device |= (new_sectors >> 24) & 0xf; 1286 } 1287 1288 tf.protocol |= ATA_PROT_NODATA; 1289 tf.device |= ATA_LBA; 1290 1291 tf.lbal = (new_sectors >> 0) & 0xff; 1292 tf.lbam = (new_sectors >> 8) & 0xff; 1293 tf.lbah = (new_sectors >> 16) & 0xff; 1294 1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1296 if (err_mask) { 1297 ata_dev_warn(dev, 1298 "failed to set max address (err_mask=0x%x)\n", 1299 err_mask); 1300 if (err_mask == AC_ERR_DEV && 1301 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1302 return -EACCES; 1303 return -EIO; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * ata_hpa_resize - Resize a device with an HPA set 1311 * @dev: Device to resize 1312 * 1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1314 * it if required to the full size of the media. The caller must check 1315 * the drive has the HPA feature set enabled. 1316 * 1317 * RETURNS: 1318 * 0 on success, -errno on failure. 1319 */ 1320 static int ata_hpa_resize(struct ata_device *dev) 1321 { 1322 struct ata_eh_context *ehc = &dev->link->eh_context; 1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1325 u64 sectors = ata_id_n_sectors(dev->id); 1326 u64 native_sectors; 1327 int rc; 1328 1329 /* do we need to do it? */ 1330 if (dev->class != ATA_DEV_ATA || 1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1333 return 0; 1334 1335 /* read native max address */ 1336 rc = ata_read_native_max_address(dev, &native_sectors); 1337 if (rc) { 1338 /* If device aborted the command or HPA isn't going to 1339 * be unlocked, skip HPA resizing. 1340 */ 1341 if (rc == -EACCES || !unlock_hpa) { 1342 ata_dev_warn(dev, 1343 "HPA support seems broken, skipping HPA handling\n"); 1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1345 1346 /* we can continue if device aborted the command */ 1347 if (rc == -EACCES) 1348 rc = 0; 1349 } 1350 1351 return rc; 1352 } 1353 dev->n_native_sectors = native_sectors; 1354 1355 /* nothing to do? */ 1356 if (native_sectors <= sectors || !unlock_hpa) { 1357 if (!print_info || native_sectors == sectors) 1358 return 0; 1359 1360 if (native_sectors > sectors) 1361 ata_dev_info(dev, 1362 "HPA detected: current %llu, native %llu\n", 1363 (unsigned long long)sectors, 1364 (unsigned long long)native_sectors); 1365 else if (native_sectors < sectors) 1366 ata_dev_warn(dev, 1367 "native sectors (%llu) is smaller than sectors (%llu)\n", 1368 (unsigned long long)native_sectors, 1369 (unsigned long long)sectors); 1370 return 0; 1371 } 1372 1373 /* let's unlock HPA */ 1374 rc = ata_set_max_sectors(dev, native_sectors); 1375 if (rc == -EACCES) { 1376 /* if device aborted the command, skip HPA resizing */ 1377 ata_dev_warn(dev, 1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1379 (unsigned long long)sectors, 1380 (unsigned long long)native_sectors); 1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1382 return 0; 1383 } else if (rc) 1384 return rc; 1385 1386 /* re-read IDENTIFY data */ 1387 rc = ata_dev_reread_id(dev, 0); 1388 if (rc) { 1389 ata_dev_err(dev, 1390 "failed to re-read IDENTIFY data after HPA resizing\n"); 1391 return rc; 1392 } 1393 1394 if (print_info) { 1395 u64 new_sectors = ata_id_n_sectors(dev->id); 1396 ata_dev_info(dev, 1397 "HPA unlocked: %llu -> %llu, native %llu\n", 1398 (unsigned long long)sectors, 1399 (unsigned long long)new_sectors, 1400 (unsigned long long)native_sectors); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * ata_dump_id - IDENTIFY DEVICE info debugging output 1408 * @id: IDENTIFY DEVICE page to dump 1409 * 1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1411 * page. 1412 * 1413 * LOCKING: 1414 * caller. 1415 */ 1416 1417 static inline void ata_dump_id(const u16 *id) 1418 { 1419 DPRINTK("49==0x%04x " 1420 "53==0x%04x " 1421 "63==0x%04x " 1422 "64==0x%04x " 1423 "75==0x%04x \n", 1424 id[49], 1425 id[53], 1426 id[63], 1427 id[64], 1428 id[75]); 1429 DPRINTK("80==0x%04x " 1430 "81==0x%04x " 1431 "82==0x%04x " 1432 "83==0x%04x " 1433 "84==0x%04x \n", 1434 id[80], 1435 id[81], 1436 id[82], 1437 id[83], 1438 id[84]); 1439 DPRINTK("88==0x%04x " 1440 "93==0x%04x\n", 1441 id[88], 1442 id[93]); 1443 } 1444 1445 /** 1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1447 * @id: IDENTIFY data to compute xfer mask from 1448 * 1449 * Compute the xfermask for this device. This is not as trivial 1450 * as it seems if we must consider early devices correctly. 1451 * 1452 * FIXME: pre IDE drive timing (do we care ?). 1453 * 1454 * LOCKING: 1455 * None. 1456 * 1457 * RETURNS: 1458 * Computed xfermask 1459 */ 1460 unsigned long ata_id_xfermask(const u16 *id) 1461 { 1462 unsigned long pio_mask, mwdma_mask, udma_mask; 1463 1464 /* Usual case. Word 53 indicates word 64 is valid */ 1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1467 pio_mask <<= 3; 1468 pio_mask |= 0x7; 1469 } else { 1470 /* If word 64 isn't valid then Word 51 high byte holds 1471 * the PIO timing number for the maximum. Turn it into 1472 * a mask. 1473 */ 1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1475 if (mode < 5) /* Valid PIO range */ 1476 pio_mask = (2 << mode) - 1; 1477 else 1478 pio_mask = 1; 1479 1480 /* But wait.. there's more. Design your standards by 1481 * committee and you too can get a free iordy field to 1482 * process. However its the speeds not the modes that 1483 * are supported... Note drivers using the timing API 1484 * will get this right anyway 1485 */ 1486 } 1487 1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1489 1490 if (ata_id_is_cfa(id)) { 1491 /* 1492 * Process compact flash extended modes 1493 */ 1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1496 1497 if (pio) 1498 pio_mask |= (1 << 5); 1499 if (pio > 1) 1500 pio_mask |= (1 << 6); 1501 if (dma) 1502 mwdma_mask |= (1 << 3); 1503 if (dma > 1) 1504 mwdma_mask |= (1 << 4); 1505 } 1506 1507 udma_mask = 0; 1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1510 1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1512 } 1513 1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1515 { 1516 struct completion *waiting = qc->private_data; 1517 1518 complete(waiting); 1519 } 1520 1521 /** 1522 * ata_exec_internal_sg - execute libata internal command 1523 * @dev: Device to which the command is sent 1524 * @tf: Taskfile registers for the command and the result 1525 * @cdb: CDB for packet command 1526 * @dma_dir: Data tranfer direction of the command 1527 * @sgl: sg list for the data buffer of the command 1528 * @n_elem: Number of sg entries 1529 * @timeout: Timeout in msecs (0 for default) 1530 * 1531 * Executes libata internal command with timeout. @tf contains 1532 * command on entry and result on return. Timeout and error 1533 * conditions are reported via return value. No recovery action 1534 * is taken after a command times out. It's caller's duty to 1535 * clean up after timeout. 1536 * 1537 * LOCKING: 1538 * None. Should be called with kernel context, might sleep. 1539 * 1540 * RETURNS: 1541 * Zero on success, AC_ERR_* mask on failure 1542 */ 1543 unsigned ata_exec_internal_sg(struct ata_device *dev, 1544 struct ata_taskfile *tf, const u8 *cdb, 1545 int dma_dir, struct scatterlist *sgl, 1546 unsigned int n_elem, unsigned long timeout) 1547 { 1548 struct ata_link *link = dev->link; 1549 struct ata_port *ap = link->ap; 1550 u8 command = tf->command; 1551 int auto_timeout = 0; 1552 struct ata_queued_cmd *qc; 1553 unsigned int tag, preempted_tag; 1554 u32 preempted_sactive, preempted_qc_active; 1555 int preempted_nr_active_links; 1556 DECLARE_COMPLETION_ONSTACK(wait); 1557 unsigned long flags; 1558 unsigned int err_mask; 1559 int rc; 1560 1561 spin_lock_irqsave(ap->lock, flags); 1562 1563 /* no internal command while frozen */ 1564 if (ap->pflags & ATA_PFLAG_FROZEN) { 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 return AC_ERR_SYSTEM; 1567 } 1568 1569 /* initialize internal qc */ 1570 1571 /* XXX: Tag 0 is used for drivers with legacy EH as some 1572 * drivers choke if any other tag is given. This breaks 1573 * ata_tag_internal() test for those drivers. Don't use new 1574 * EH stuff without converting to it. 1575 */ 1576 if (ap->ops->error_handler) 1577 tag = ATA_TAG_INTERNAL; 1578 else 1579 tag = 0; 1580 1581 if (test_and_set_bit(tag, &ap->qc_allocated)) 1582 BUG(); 1583 qc = __ata_qc_from_tag(ap, tag); 1584 1585 qc->tag = tag; 1586 qc->scsicmd = NULL; 1587 qc->ap = ap; 1588 qc->dev = dev; 1589 ata_qc_reinit(qc); 1590 1591 preempted_tag = link->active_tag; 1592 preempted_sactive = link->sactive; 1593 preempted_qc_active = ap->qc_active; 1594 preempted_nr_active_links = ap->nr_active_links; 1595 link->active_tag = ATA_TAG_POISON; 1596 link->sactive = 0; 1597 ap->qc_active = 0; 1598 ap->nr_active_links = 0; 1599 1600 /* prepare & issue qc */ 1601 qc->tf = *tf; 1602 if (cdb) 1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1604 qc->flags |= ATA_QCFLAG_RESULT_TF; 1605 qc->dma_dir = dma_dir; 1606 if (dma_dir != DMA_NONE) { 1607 unsigned int i, buflen = 0; 1608 struct scatterlist *sg; 1609 1610 for_each_sg(sgl, sg, n_elem, i) 1611 buflen += sg->length; 1612 1613 ata_sg_init(qc, sgl, n_elem); 1614 qc->nbytes = buflen; 1615 } 1616 1617 qc->private_data = &wait; 1618 qc->complete_fn = ata_qc_complete_internal; 1619 1620 ata_qc_issue(qc); 1621 1622 spin_unlock_irqrestore(ap->lock, flags); 1623 1624 if (!timeout) { 1625 if (ata_probe_timeout) 1626 timeout = ata_probe_timeout * 1000; 1627 else { 1628 timeout = ata_internal_cmd_timeout(dev, command); 1629 auto_timeout = 1; 1630 } 1631 } 1632 1633 if (ap->ops->error_handler) 1634 ata_eh_release(ap); 1635 1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1637 1638 if (ap->ops->error_handler) 1639 ata_eh_acquire(ap); 1640 1641 ata_sff_flush_pio_task(ap); 1642 1643 if (!rc) { 1644 spin_lock_irqsave(ap->lock, flags); 1645 1646 /* We're racing with irq here. If we lose, the 1647 * following test prevents us from completing the qc 1648 * twice. If we win, the port is frozen and will be 1649 * cleaned up by ->post_internal_cmd(). 1650 */ 1651 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1652 qc->err_mask |= AC_ERR_TIMEOUT; 1653 1654 if (ap->ops->error_handler) 1655 ata_port_freeze(ap); 1656 else 1657 ata_qc_complete(qc); 1658 1659 if (ata_msg_warn(ap)) 1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1661 command); 1662 } 1663 1664 spin_unlock_irqrestore(ap->lock, flags); 1665 } 1666 1667 /* do post_internal_cmd */ 1668 if (ap->ops->post_internal_cmd) 1669 ap->ops->post_internal_cmd(qc); 1670 1671 /* perform minimal error analysis */ 1672 if (qc->flags & ATA_QCFLAG_FAILED) { 1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1674 qc->err_mask |= AC_ERR_DEV; 1675 1676 if (!qc->err_mask) 1677 qc->err_mask |= AC_ERR_OTHER; 1678 1679 if (qc->err_mask & ~AC_ERR_OTHER) 1680 qc->err_mask &= ~AC_ERR_OTHER; 1681 } 1682 1683 /* finish up */ 1684 spin_lock_irqsave(ap->lock, flags); 1685 1686 *tf = qc->result_tf; 1687 err_mask = qc->err_mask; 1688 1689 ata_qc_free(qc); 1690 link->active_tag = preempted_tag; 1691 link->sactive = preempted_sactive; 1692 ap->qc_active = preempted_qc_active; 1693 ap->nr_active_links = preempted_nr_active_links; 1694 1695 spin_unlock_irqrestore(ap->lock, flags); 1696 1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1698 ata_internal_cmd_timed_out(dev, command); 1699 1700 return err_mask; 1701 } 1702 1703 /** 1704 * ata_exec_internal - execute libata internal command 1705 * @dev: Device to which the command is sent 1706 * @tf: Taskfile registers for the command and the result 1707 * @cdb: CDB for packet command 1708 * @dma_dir: Data tranfer direction of the command 1709 * @buf: Data buffer of the command 1710 * @buflen: Length of data buffer 1711 * @timeout: Timeout in msecs (0 for default) 1712 * 1713 * Wrapper around ata_exec_internal_sg() which takes simple 1714 * buffer instead of sg list. 1715 * 1716 * LOCKING: 1717 * None. Should be called with kernel context, might sleep. 1718 * 1719 * RETURNS: 1720 * Zero on success, AC_ERR_* mask on failure 1721 */ 1722 unsigned ata_exec_internal(struct ata_device *dev, 1723 struct ata_taskfile *tf, const u8 *cdb, 1724 int dma_dir, void *buf, unsigned int buflen, 1725 unsigned long timeout) 1726 { 1727 struct scatterlist *psg = NULL, sg; 1728 unsigned int n_elem = 0; 1729 1730 if (dma_dir != DMA_NONE) { 1731 WARN_ON(!buf); 1732 sg_init_one(&sg, buf, buflen); 1733 psg = &sg; 1734 n_elem++; 1735 } 1736 1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1738 timeout); 1739 } 1740 1741 /** 1742 * ata_do_simple_cmd - execute simple internal command 1743 * @dev: Device to which the command is sent 1744 * @cmd: Opcode to execute 1745 * 1746 * Execute a 'simple' command, that only consists of the opcode 1747 * 'cmd' itself, without filling any other registers 1748 * 1749 * LOCKING: 1750 * Kernel thread context (may sleep). 1751 * 1752 * RETURNS: 1753 * Zero on success, AC_ERR_* mask on failure 1754 */ 1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1756 { 1757 struct ata_taskfile tf; 1758 1759 ata_tf_init(dev, &tf); 1760 1761 tf.command = cmd; 1762 tf.flags |= ATA_TFLAG_DEVICE; 1763 tf.protocol = ATA_PROT_NODATA; 1764 1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1766 } 1767 1768 /** 1769 * ata_pio_need_iordy - check if iordy needed 1770 * @adev: ATA device 1771 * 1772 * Check if the current speed of the device requires IORDY. Used 1773 * by various controllers for chip configuration. 1774 */ 1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1776 { 1777 /* Don't set IORDY if we're preparing for reset. IORDY may 1778 * lead to controller lock up on certain controllers if the 1779 * port is not occupied. See bko#11703 for details. 1780 */ 1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1782 return 0; 1783 /* Controller doesn't support IORDY. Probably a pointless 1784 * check as the caller should know this. 1785 */ 1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1787 return 0; 1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1789 if (ata_id_is_cfa(adev->id) 1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1791 return 0; 1792 /* PIO3 and higher it is mandatory */ 1793 if (adev->pio_mode > XFER_PIO_2) 1794 return 1; 1795 /* We turn it on when possible */ 1796 if (ata_id_has_iordy(adev->id)) 1797 return 1; 1798 return 0; 1799 } 1800 1801 /** 1802 * ata_pio_mask_no_iordy - Return the non IORDY mask 1803 * @adev: ATA device 1804 * 1805 * Compute the highest mode possible if we are not using iordy. Return 1806 * -1 if no iordy mode is available. 1807 */ 1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1809 { 1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1812 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1813 /* Is the speed faster than the drive allows non IORDY ? */ 1814 if (pio) { 1815 /* This is cycle times not frequency - watch the logic! */ 1816 if (pio > 240) /* PIO2 is 240nS per cycle */ 1817 return 3 << ATA_SHIFT_PIO; 1818 return 7 << ATA_SHIFT_PIO; 1819 } 1820 } 1821 return 3 << ATA_SHIFT_PIO; 1822 } 1823 1824 /** 1825 * ata_do_dev_read_id - default ID read method 1826 * @dev: device 1827 * @tf: proposed taskfile 1828 * @id: data buffer 1829 * 1830 * Issue the identify taskfile and hand back the buffer containing 1831 * identify data. For some RAID controllers and for pre ATA devices 1832 * this function is wrapped or replaced by the driver 1833 */ 1834 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1835 struct ata_taskfile *tf, u16 *id) 1836 { 1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1839 } 1840 1841 /** 1842 * ata_dev_read_id - Read ID data from the specified device 1843 * @dev: target device 1844 * @p_class: pointer to class of the target device (may be changed) 1845 * @flags: ATA_READID_* flags 1846 * @id: buffer to read IDENTIFY data into 1847 * 1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1851 * for pre-ATA4 drives. 1852 * 1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1854 * now we abort if we hit that case. 1855 * 1856 * LOCKING: 1857 * Kernel thread context (may sleep) 1858 * 1859 * RETURNS: 1860 * 0 on success, -errno otherwise. 1861 */ 1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1863 unsigned int flags, u16 *id) 1864 { 1865 struct ata_port *ap = dev->link->ap; 1866 unsigned int class = *p_class; 1867 struct ata_taskfile tf; 1868 unsigned int err_mask = 0; 1869 const char *reason; 1870 bool is_semb = class == ATA_DEV_SEMB; 1871 int may_fallback = 1, tried_spinup = 0; 1872 int rc; 1873 1874 if (ata_msg_ctl(ap)) 1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1876 1877 retry: 1878 ata_tf_init(dev, &tf); 1879 1880 switch (class) { 1881 case ATA_DEV_SEMB: 1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1883 case ATA_DEV_ATA: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2011 /* 2012 * The exact sequence expected by certain pre-ATA4 drives is: 2013 * SRST RESET 2014 * IDENTIFY (optional in early ATA) 2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2016 * anything else.. 2017 * Some drives were very specific about that exact sequence. 2018 * 2019 * Note that ATA4 says lba is mandatory so the second check 2020 * should never trigger. 2021 */ 2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2023 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2024 if (err_mask) { 2025 rc = -EIO; 2026 reason = "INIT_DEV_PARAMS failed"; 2027 goto err_out; 2028 } 2029 2030 /* current CHS translation info (id[53-58]) might be 2031 * changed. reread the identify device info. 2032 */ 2033 flags &= ~ATA_READID_POSTRESET; 2034 goto retry; 2035 } 2036 } 2037 2038 *p_class = class; 2039 2040 return 0; 2041 2042 err_out: 2043 if (ata_msg_warn(ap)) 2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2045 reason, err_mask); 2046 return rc; 2047 } 2048 2049 static int ata_do_link_spd_horkage(struct ata_device *dev) 2050 { 2051 struct ata_link *plink = ata_dev_phys_link(dev); 2052 u32 target, target_limit; 2053 2054 if (!sata_scr_valid(plink)) 2055 return 0; 2056 2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2058 target = 1; 2059 else 2060 return 0; 2061 2062 target_limit = (1 << target) - 1; 2063 2064 /* if already on stricter limit, no need to push further */ 2065 if (plink->sata_spd_limit <= target_limit) 2066 return 0; 2067 2068 plink->sata_spd_limit = target_limit; 2069 2070 /* Request another EH round by returning -EAGAIN if link is 2071 * going faster than the target speed. Forward progress is 2072 * guaranteed by setting sata_spd_limit to target_limit above. 2073 */ 2074 if (plink->sata_spd > target) { 2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2076 sata_spd_string(target)); 2077 return -EAGAIN; 2078 } 2079 return 0; 2080 } 2081 2082 static inline u8 ata_dev_knobble(struct ata_device *dev) 2083 { 2084 struct ata_port *ap = dev->link->ap; 2085 2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2087 return 0; 2088 2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2090 } 2091 2092 static int ata_dev_config_ncq(struct ata_device *dev, 2093 char *desc, size_t desc_sz) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2097 unsigned int err_mask; 2098 char *aa_desc = ""; 2099 2100 if (!ata_id_has_ncq(dev->id)) { 2101 desc[0] = '\0'; 2102 return 0; 2103 } 2104 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2105 snprintf(desc, desc_sz, "NCQ (not used)"); 2106 return 0; 2107 } 2108 if (ap->flags & ATA_FLAG_NCQ) { 2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2110 dev->flags |= ATA_DFLAG_NCQ; 2111 } 2112 2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2114 (ap->flags & ATA_FLAG_FPDMA_AA) && 2115 ata_id_has_fpdma_aa(dev->id)) { 2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2117 SATA_FPDMA_AA); 2118 if (err_mask) { 2119 ata_dev_err(dev, 2120 "failed to enable AA (error_mask=0x%x)\n", 2121 err_mask); 2122 if (err_mask != AC_ERR_DEV) { 2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2124 return -EIO; 2125 } 2126 } else 2127 aa_desc = ", AA"; 2128 } 2129 2130 if (hdepth >= ddepth) 2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2132 else 2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2134 ddepth, aa_desc); 2135 return 0; 2136 } 2137 2138 /** 2139 * ata_dev_configure - Configure the specified ATA/ATAPI device 2140 * @dev: Target device to configure 2141 * 2142 * Configure @dev according to @dev->id. Generic and low-level 2143 * driver specific fixups are also applied. 2144 * 2145 * LOCKING: 2146 * Kernel thread context (may sleep) 2147 * 2148 * RETURNS: 2149 * 0 on success, -errno otherwise 2150 */ 2151 int ata_dev_configure(struct ata_device *dev) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 struct ata_eh_context *ehc = &dev->link->eh_context; 2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2156 const u16 *id = dev->id; 2157 unsigned long xfer_mask; 2158 char revbuf[7]; /* XYZ-99\0 */ 2159 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2160 char modelbuf[ATA_ID_PROD_LEN+1]; 2161 int rc; 2162 2163 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2164 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2165 return 0; 2166 } 2167 2168 if (ata_msg_probe(ap)) 2169 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2170 2171 /* set horkage */ 2172 dev->horkage |= ata_dev_blacklisted(dev); 2173 ata_force_horkage(dev); 2174 2175 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2176 ata_dev_info(dev, "unsupported device, disabling\n"); 2177 ata_dev_disable(dev); 2178 return 0; 2179 } 2180 2181 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2182 dev->class == ATA_DEV_ATAPI) { 2183 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2184 atapi_enabled ? "not supported with this driver" 2185 : "disabled"); 2186 ata_dev_disable(dev); 2187 return 0; 2188 } 2189 2190 rc = ata_do_link_spd_horkage(dev); 2191 if (rc) 2192 return rc; 2193 2194 /* let ACPI work its magic */ 2195 rc = ata_acpi_on_devcfg(dev); 2196 if (rc) 2197 return rc; 2198 2199 /* massage HPA, do it early as it might change IDENTIFY data */ 2200 rc = ata_hpa_resize(dev); 2201 if (rc) 2202 return rc; 2203 2204 /* print device capabilities */ 2205 if (ata_msg_probe(ap)) 2206 ata_dev_dbg(dev, 2207 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2208 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2209 __func__, 2210 id[49], id[82], id[83], id[84], 2211 id[85], id[86], id[87], id[88]); 2212 2213 /* initialize to-be-configured parameters */ 2214 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2215 dev->max_sectors = 0; 2216 dev->cdb_len = 0; 2217 dev->n_sectors = 0; 2218 dev->cylinders = 0; 2219 dev->heads = 0; 2220 dev->sectors = 0; 2221 dev->multi_count = 0; 2222 2223 /* 2224 * common ATA, ATAPI feature tests 2225 */ 2226 2227 /* find max transfer mode; for printk only */ 2228 xfer_mask = ata_id_xfermask(id); 2229 2230 if (ata_msg_probe(ap)) 2231 ata_dump_id(id); 2232 2233 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2234 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2235 sizeof(fwrevbuf)); 2236 2237 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2238 sizeof(modelbuf)); 2239 2240 /* ATA-specific feature tests */ 2241 if (dev->class == ATA_DEV_ATA) { 2242 if (ata_id_is_cfa(id)) { 2243 /* CPRM may make this media unusable */ 2244 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2245 ata_dev_warn(dev, 2246 "supports DRM functions and may not be fully accessible\n"); 2247 snprintf(revbuf, 7, "CFA"); 2248 } else { 2249 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2250 /* Warn the user if the device has TPM extensions */ 2251 if (ata_id_has_tpm(id)) 2252 ata_dev_warn(dev, 2253 "supports DRM functions and may not be fully accessible\n"); 2254 } 2255 2256 dev->n_sectors = ata_id_n_sectors(id); 2257 2258 /* get current R/W Multiple count setting */ 2259 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2260 unsigned int max = dev->id[47] & 0xff; 2261 unsigned int cnt = dev->id[59] & 0xff; 2262 /* only recognize/allow powers of two here */ 2263 if (is_power_of_2(max) && is_power_of_2(cnt)) 2264 if (cnt <= max) 2265 dev->multi_count = cnt; 2266 } 2267 2268 if (ata_id_has_lba(id)) { 2269 const char *lba_desc; 2270 char ncq_desc[24]; 2271 2272 lba_desc = "LBA"; 2273 dev->flags |= ATA_DFLAG_LBA; 2274 if (ata_id_has_lba48(id)) { 2275 dev->flags |= ATA_DFLAG_LBA48; 2276 lba_desc = "LBA48"; 2277 2278 if (dev->n_sectors >= (1UL << 28) && 2279 ata_id_has_flush_ext(id)) 2280 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2281 } 2282 2283 /* config NCQ */ 2284 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2285 if (rc) 2286 return rc; 2287 2288 /* print device info to dmesg */ 2289 if (ata_msg_drv(ap) && print_info) { 2290 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2291 revbuf, modelbuf, fwrevbuf, 2292 ata_mode_string(xfer_mask)); 2293 ata_dev_info(dev, 2294 "%llu sectors, multi %u: %s %s\n", 2295 (unsigned long long)dev->n_sectors, 2296 dev->multi_count, lba_desc, ncq_desc); 2297 } 2298 } else { 2299 /* CHS */ 2300 2301 /* Default translation */ 2302 dev->cylinders = id[1]; 2303 dev->heads = id[3]; 2304 dev->sectors = id[6]; 2305 2306 if (ata_id_current_chs_valid(id)) { 2307 /* Current CHS translation is valid. */ 2308 dev->cylinders = id[54]; 2309 dev->heads = id[55]; 2310 dev->sectors = id[56]; 2311 } 2312 2313 /* print device info to dmesg */ 2314 if (ata_msg_drv(ap) && print_info) { 2315 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2316 revbuf, modelbuf, fwrevbuf, 2317 ata_mode_string(xfer_mask)); 2318 ata_dev_info(dev, 2319 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2320 (unsigned long long)dev->n_sectors, 2321 dev->multi_count, dev->cylinders, 2322 dev->heads, dev->sectors); 2323 } 2324 } 2325 2326 dev->cdb_len = 16; 2327 } 2328 2329 /* ATAPI-specific feature tests */ 2330 else if (dev->class == ATA_DEV_ATAPI) { 2331 const char *cdb_intr_string = ""; 2332 const char *atapi_an_string = ""; 2333 const char *dma_dir_string = ""; 2334 u32 sntf; 2335 2336 rc = atapi_cdb_len(id); 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2338 if (ata_msg_warn(ap)) 2339 ata_dev_warn(dev, "unsupported CDB len\n"); 2340 rc = -EINVAL; 2341 goto err_out_nosup; 2342 } 2343 dev->cdb_len = (unsigned int) rc; 2344 2345 /* Enable ATAPI AN if both the host and device have 2346 * the support. If PMP is attached, SNTF is required 2347 * to enable ATAPI AN to discern between PHY status 2348 * changed notifications and ATAPI ANs. 2349 */ 2350 if (atapi_an && 2351 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2352 (!sata_pmp_attached(ap) || 2353 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2354 unsigned int err_mask; 2355 2356 /* issue SET feature command to turn this on */ 2357 err_mask = ata_dev_set_feature(dev, 2358 SETFEATURES_SATA_ENABLE, SATA_AN); 2359 if (err_mask) 2360 ata_dev_err(dev, 2361 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2362 err_mask); 2363 else { 2364 dev->flags |= ATA_DFLAG_AN; 2365 atapi_an_string = ", ATAPI AN"; 2366 } 2367 } 2368 2369 if (ata_id_cdb_intr(dev->id)) { 2370 dev->flags |= ATA_DFLAG_CDB_INTR; 2371 cdb_intr_string = ", CDB intr"; 2372 } 2373 2374 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2375 dev->flags |= ATA_DFLAG_DMADIR; 2376 dma_dir_string = ", DMADIR"; 2377 } 2378 2379 /* print device info to dmesg */ 2380 if (ata_msg_drv(ap) && print_info) 2381 ata_dev_info(dev, 2382 "ATAPI: %s, %s, max %s%s%s%s\n", 2383 modelbuf, fwrevbuf, 2384 ata_mode_string(xfer_mask), 2385 cdb_intr_string, atapi_an_string, 2386 dma_dir_string); 2387 } 2388 2389 /* determine max_sectors */ 2390 dev->max_sectors = ATA_MAX_SECTORS; 2391 if (dev->flags & ATA_DFLAG_LBA48) 2392 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2393 2394 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2395 200 sectors */ 2396 if (ata_dev_knobble(dev)) { 2397 if (ata_msg_drv(ap) && print_info) 2398 ata_dev_info(dev, "applying bridge limits\n"); 2399 dev->udma_mask &= ATA_UDMA5; 2400 dev->max_sectors = ATA_MAX_SECTORS; 2401 } 2402 2403 if ((dev->class == ATA_DEV_ATAPI) && 2404 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2405 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2406 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2407 } 2408 2409 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2410 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2411 dev->max_sectors); 2412 2413 if (ap->ops->dev_config) 2414 ap->ops->dev_config(dev); 2415 2416 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2417 /* Let the user know. We don't want to disallow opens for 2418 rescue purposes, or in case the vendor is just a blithering 2419 idiot. Do this after the dev_config call as some controllers 2420 with buggy firmware may want to avoid reporting false device 2421 bugs */ 2422 2423 if (print_info) { 2424 ata_dev_warn(dev, 2425 "Drive reports diagnostics failure. This may indicate a drive\n"); 2426 ata_dev_warn(dev, 2427 "fault or invalid emulation. Contact drive vendor for information.\n"); 2428 } 2429 } 2430 2431 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2432 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2433 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2434 } 2435 2436 return 0; 2437 2438 err_out_nosup: 2439 if (ata_msg_probe(ap)) 2440 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2441 return rc; 2442 } 2443 2444 /** 2445 * ata_cable_40wire - return 40 wire cable type 2446 * @ap: port 2447 * 2448 * Helper method for drivers which want to hardwire 40 wire cable 2449 * detection. 2450 */ 2451 2452 int ata_cable_40wire(struct ata_port *ap) 2453 { 2454 return ATA_CBL_PATA40; 2455 } 2456 2457 /** 2458 * ata_cable_80wire - return 80 wire cable type 2459 * @ap: port 2460 * 2461 * Helper method for drivers which want to hardwire 80 wire cable 2462 * detection. 2463 */ 2464 2465 int ata_cable_80wire(struct ata_port *ap) 2466 { 2467 return ATA_CBL_PATA80; 2468 } 2469 2470 /** 2471 * ata_cable_unknown - return unknown PATA cable. 2472 * @ap: port 2473 * 2474 * Helper method for drivers which have no PATA cable detection. 2475 */ 2476 2477 int ata_cable_unknown(struct ata_port *ap) 2478 { 2479 return ATA_CBL_PATA_UNK; 2480 } 2481 2482 /** 2483 * ata_cable_ignore - return ignored PATA cable. 2484 * @ap: port 2485 * 2486 * Helper method for drivers which don't use cable type to limit 2487 * transfer mode. 2488 */ 2489 int ata_cable_ignore(struct ata_port *ap) 2490 { 2491 return ATA_CBL_PATA_IGN; 2492 } 2493 2494 /** 2495 * ata_cable_sata - return SATA cable type 2496 * @ap: port 2497 * 2498 * Helper method for drivers which have SATA cables 2499 */ 2500 2501 int ata_cable_sata(struct ata_port *ap) 2502 { 2503 return ATA_CBL_SATA; 2504 } 2505 2506 /** 2507 * ata_bus_probe - Reset and probe ATA bus 2508 * @ap: Bus to probe 2509 * 2510 * Master ATA bus probing function. Initiates a hardware-dependent 2511 * bus reset, then attempts to identify any devices found on 2512 * the bus. 2513 * 2514 * LOCKING: 2515 * PCI/etc. bus probe sem. 2516 * 2517 * RETURNS: 2518 * Zero on success, negative errno otherwise. 2519 */ 2520 2521 int ata_bus_probe(struct ata_port *ap) 2522 { 2523 unsigned int classes[ATA_MAX_DEVICES]; 2524 int tries[ATA_MAX_DEVICES]; 2525 int rc; 2526 struct ata_device *dev; 2527 2528 ata_for_each_dev(dev, &ap->link, ALL) 2529 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2530 2531 retry: 2532 ata_for_each_dev(dev, &ap->link, ALL) { 2533 /* If we issue an SRST then an ATA drive (not ATAPI) 2534 * may change configuration and be in PIO0 timing. If 2535 * we do a hard reset (or are coming from power on) 2536 * this is true for ATA or ATAPI. Until we've set a 2537 * suitable controller mode we should not touch the 2538 * bus as we may be talking too fast. 2539 */ 2540 dev->pio_mode = XFER_PIO_0; 2541 2542 /* If the controller has a pio mode setup function 2543 * then use it to set the chipset to rights. Don't 2544 * touch the DMA setup as that will be dealt with when 2545 * configuring devices. 2546 */ 2547 if (ap->ops->set_piomode) 2548 ap->ops->set_piomode(ap, dev); 2549 } 2550 2551 /* reset and determine device classes */ 2552 ap->ops->phy_reset(ap); 2553 2554 ata_for_each_dev(dev, &ap->link, ALL) { 2555 if (dev->class != ATA_DEV_UNKNOWN) 2556 classes[dev->devno] = dev->class; 2557 else 2558 classes[dev->devno] = ATA_DEV_NONE; 2559 2560 dev->class = ATA_DEV_UNKNOWN; 2561 } 2562 2563 /* read IDENTIFY page and configure devices. We have to do the identify 2564 specific sequence bass-ackwards so that PDIAG- is released by 2565 the slave device */ 2566 2567 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2568 if (tries[dev->devno]) 2569 dev->class = classes[dev->devno]; 2570 2571 if (!ata_dev_enabled(dev)) 2572 continue; 2573 2574 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2575 dev->id); 2576 if (rc) 2577 goto fail; 2578 } 2579 2580 /* Now ask for the cable type as PDIAG- should have been released */ 2581 if (ap->ops->cable_detect) 2582 ap->cbl = ap->ops->cable_detect(ap); 2583 2584 /* We may have SATA bridge glue hiding here irrespective of 2585 * the reported cable types and sensed types. When SATA 2586 * drives indicate we have a bridge, we don't know which end 2587 * of the link the bridge is which is a problem. 2588 */ 2589 ata_for_each_dev(dev, &ap->link, ENABLED) 2590 if (ata_id_is_sata(dev->id)) 2591 ap->cbl = ATA_CBL_SATA; 2592 2593 /* After the identify sequence we can now set up the devices. We do 2594 this in the normal order so that the user doesn't get confused */ 2595 2596 ata_for_each_dev(dev, &ap->link, ENABLED) { 2597 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2598 rc = ata_dev_configure(dev); 2599 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2600 if (rc) 2601 goto fail; 2602 } 2603 2604 /* configure transfer mode */ 2605 rc = ata_set_mode(&ap->link, &dev); 2606 if (rc) 2607 goto fail; 2608 2609 ata_for_each_dev(dev, &ap->link, ENABLED) 2610 return 0; 2611 2612 return -ENODEV; 2613 2614 fail: 2615 tries[dev->devno]--; 2616 2617 switch (rc) { 2618 case -EINVAL: 2619 /* eeek, something went very wrong, give up */ 2620 tries[dev->devno] = 0; 2621 break; 2622 2623 case -ENODEV: 2624 /* give it just one more chance */ 2625 tries[dev->devno] = min(tries[dev->devno], 1); 2626 case -EIO: 2627 if (tries[dev->devno] == 1) { 2628 /* This is the last chance, better to slow 2629 * down than lose it. 2630 */ 2631 sata_down_spd_limit(&ap->link, 0); 2632 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2633 } 2634 } 2635 2636 if (!tries[dev->devno]) 2637 ata_dev_disable(dev); 2638 2639 goto retry; 2640 } 2641 2642 /** 2643 * sata_print_link_status - Print SATA link status 2644 * @link: SATA link to printk link status about 2645 * 2646 * This function prints link speed and status of a SATA link. 2647 * 2648 * LOCKING: 2649 * None. 2650 */ 2651 static void sata_print_link_status(struct ata_link *link) 2652 { 2653 u32 sstatus, scontrol, tmp; 2654 2655 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2656 return; 2657 sata_scr_read(link, SCR_CONTROL, &scontrol); 2658 2659 if (ata_phys_link_online(link)) { 2660 tmp = (sstatus >> 4) & 0xf; 2661 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2662 sata_spd_string(tmp), sstatus, scontrol); 2663 } else { 2664 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2665 sstatus, scontrol); 2666 } 2667 } 2668 2669 /** 2670 * ata_dev_pair - return other device on cable 2671 * @adev: device 2672 * 2673 * Obtain the other device on the same cable, or if none is 2674 * present NULL is returned 2675 */ 2676 2677 struct ata_device *ata_dev_pair(struct ata_device *adev) 2678 { 2679 struct ata_link *link = adev->link; 2680 struct ata_device *pair = &link->device[1 - adev->devno]; 2681 if (!ata_dev_enabled(pair)) 2682 return NULL; 2683 return pair; 2684 } 2685 2686 /** 2687 * sata_down_spd_limit - adjust SATA spd limit downward 2688 * @link: Link to adjust SATA spd limit for 2689 * @spd_limit: Additional limit 2690 * 2691 * Adjust SATA spd limit of @link downward. Note that this 2692 * function only adjusts the limit. The change must be applied 2693 * using sata_set_spd(). 2694 * 2695 * If @spd_limit is non-zero, the speed is limited to equal to or 2696 * lower than @spd_limit if such speed is supported. If 2697 * @spd_limit is slower than any supported speed, only the lowest 2698 * supported speed is allowed. 2699 * 2700 * LOCKING: 2701 * Inherited from caller. 2702 * 2703 * RETURNS: 2704 * 0 on success, negative errno on failure 2705 */ 2706 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2707 { 2708 u32 sstatus, spd, mask; 2709 int rc, bit; 2710 2711 if (!sata_scr_valid(link)) 2712 return -EOPNOTSUPP; 2713 2714 /* If SCR can be read, use it to determine the current SPD. 2715 * If not, use cached value in link->sata_spd. 2716 */ 2717 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2718 if (rc == 0 && ata_sstatus_online(sstatus)) 2719 spd = (sstatus >> 4) & 0xf; 2720 else 2721 spd = link->sata_spd; 2722 2723 mask = link->sata_spd_limit; 2724 if (mask <= 1) 2725 return -EINVAL; 2726 2727 /* unconditionally mask off the highest bit */ 2728 bit = fls(mask) - 1; 2729 mask &= ~(1 << bit); 2730 2731 /* Mask off all speeds higher than or equal to the current 2732 * one. Force 1.5Gbps if current SPD is not available. 2733 */ 2734 if (spd > 1) 2735 mask &= (1 << (spd - 1)) - 1; 2736 else 2737 mask &= 1; 2738 2739 /* were we already at the bottom? */ 2740 if (!mask) 2741 return -EINVAL; 2742 2743 if (spd_limit) { 2744 if (mask & ((1 << spd_limit) - 1)) 2745 mask &= (1 << spd_limit) - 1; 2746 else { 2747 bit = ffs(mask) - 1; 2748 mask = 1 << bit; 2749 } 2750 } 2751 2752 link->sata_spd_limit = mask; 2753 2754 ata_link_warn(link, "limiting SATA link speed to %s\n", 2755 sata_spd_string(fls(mask))); 2756 2757 return 0; 2758 } 2759 2760 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2761 { 2762 struct ata_link *host_link = &link->ap->link; 2763 u32 limit, target, spd; 2764 2765 limit = link->sata_spd_limit; 2766 2767 /* Don't configure downstream link faster than upstream link. 2768 * It doesn't speed up anything and some PMPs choke on such 2769 * configuration. 2770 */ 2771 if (!ata_is_host_link(link) && host_link->sata_spd) 2772 limit &= (1 << host_link->sata_spd) - 1; 2773 2774 if (limit == UINT_MAX) 2775 target = 0; 2776 else 2777 target = fls(limit); 2778 2779 spd = (*scontrol >> 4) & 0xf; 2780 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2781 2782 return spd != target; 2783 } 2784 2785 /** 2786 * sata_set_spd_needed - is SATA spd configuration needed 2787 * @link: Link in question 2788 * 2789 * Test whether the spd limit in SControl matches 2790 * @link->sata_spd_limit. This function is used to determine 2791 * whether hardreset is necessary to apply SATA spd 2792 * configuration. 2793 * 2794 * LOCKING: 2795 * Inherited from caller. 2796 * 2797 * RETURNS: 2798 * 1 if SATA spd configuration is needed, 0 otherwise. 2799 */ 2800 static int sata_set_spd_needed(struct ata_link *link) 2801 { 2802 u32 scontrol; 2803 2804 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2805 return 1; 2806 2807 return __sata_set_spd_needed(link, &scontrol); 2808 } 2809 2810 /** 2811 * sata_set_spd - set SATA spd according to spd limit 2812 * @link: Link to set SATA spd for 2813 * 2814 * Set SATA spd of @link according to sata_spd_limit. 2815 * 2816 * LOCKING: 2817 * Inherited from caller. 2818 * 2819 * RETURNS: 2820 * 0 if spd doesn't need to be changed, 1 if spd has been 2821 * changed. Negative errno if SCR registers are inaccessible. 2822 */ 2823 int sata_set_spd(struct ata_link *link) 2824 { 2825 u32 scontrol; 2826 int rc; 2827 2828 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2829 return rc; 2830 2831 if (!__sata_set_spd_needed(link, &scontrol)) 2832 return 0; 2833 2834 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2835 return rc; 2836 2837 return 1; 2838 } 2839 2840 /* 2841 * This mode timing computation functionality is ported over from 2842 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2843 */ 2844 /* 2845 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2846 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2847 * for UDMA6, which is currently supported only by Maxtor drives. 2848 * 2849 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2850 */ 2851 2852 static const struct ata_timing ata_timing[] = { 2853 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2854 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2855 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2856 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2857 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2858 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2859 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2860 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2861 2862 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2863 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2864 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2865 2866 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2867 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2868 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2869 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2870 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2871 2872 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2873 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2874 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2875 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2876 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2877 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2878 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2879 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2880 2881 { 0xFF } 2882 }; 2883 2884 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2885 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2886 2887 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2888 { 2889 q->setup = EZ(t->setup * 1000, T); 2890 q->act8b = EZ(t->act8b * 1000, T); 2891 q->rec8b = EZ(t->rec8b * 1000, T); 2892 q->cyc8b = EZ(t->cyc8b * 1000, T); 2893 q->active = EZ(t->active * 1000, T); 2894 q->recover = EZ(t->recover * 1000, T); 2895 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2896 q->cycle = EZ(t->cycle * 1000, T); 2897 q->udma = EZ(t->udma * 1000, UT); 2898 } 2899 2900 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2901 struct ata_timing *m, unsigned int what) 2902 { 2903 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2904 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2905 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2906 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2907 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2908 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2909 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2910 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2911 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2912 } 2913 2914 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2915 { 2916 const struct ata_timing *t = ata_timing; 2917 2918 while (xfer_mode > t->mode) 2919 t++; 2920 2921 if (xfer_mode == t->mode) 2922 return t; 2923 return NULL; 2924 } 2925 2926 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2927 struct ata_timing *t, int T, int UT) 2928 { 2929 const u16 *id = adev->id; 2930 const struct ata_timing *s; 2931 struct ata_timing p; 2932 2933 /* 2934 * Find the mode. 2935 */ 2936 2937 if (!(s = ata_timing_find_mode(speed))) 2938 return -EINVAL; 2939 2940 memcpy(t, s, sizeof(*s)); 2941 2942 /* 2943 * If the drive is an EIDE drive, it can tell us it needs extended 2944 * PIO/MW_DMA cycle timing. 2945 */ 2946 2947 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2948 memset(&p, 0, sizeof(p)); 2949 2950 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2951 if (speed <= XFER_PIO_2) 2952 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2953 else if ((speed <= XFER_PIO_4) || 2954 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2955 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2956 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2957 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2958 2959 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2960 } 2961 2962 /* 2963 * Convert the timing to bus clock counts. 2964 */ 2965 2966 ata_timing_quantize(t, t, T, UT); 2967 2968 /* 2969 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2970 * S.M.A.R.T * and some other commands. We have to ensure that the 2971 * DMA cycle timing is slower/equal than the fastest PIO timing. 2972 */ 2973 2974 if (speed > XFER_PIO_6) { 2975 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2976 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2977 } 2978 2979 /* 2980 * Lengthen active & recovery time so that cycle time is correct. 2981 */ 2982 2983 if (t->act8b + t->rec8b < t->cyc8b) { 2984 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2985 t->rec8b = t->cyc8b - t->act8b; 2986 } 2987 2988 if (t->active + t->recover < t->cycle) { 2989 t->active += (t->cycle - (t->active + t->recover)) / 2; 2990 t->recover = t->cycle - t->active; 2991 } 2992 2993 /* In a few cases quantisation may produce enough errors to 2994 leave t->cycle too low for the sum of active and recovery 2995 if so we must correct this */ 2996 if (t->active + t->recover > t->cycle) 2997 t->cycle = t->active + t->recover; 2998 2999 return 0; 3000 } 3001 3002 /** 3003 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3004 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3005 * @cycle: cycle duration in ns 3006 * 3007 * Return matching xfer mode for @cycle. The returned mode is of 3008 * the transfer type specified by @xfer_shift. If @cycle is too 3009 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3010 * than the fastest known mode, the fasted mode is returned. 3011 * 3012 * LOCKING: 3013 * None. 3014 * 3015 * RETURNS: 3016 * Matching xfer_mode, 0xff if no match found. 3017 */ 3018 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3019 { 3020 u8 base_mode = 0xff, last_mode = 0xff; 3021 const struct ata_xfer_ent *ent; 3022 const struct ata_timing *t; 3023 3024 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3025 if (ent->shift == xfer_shift) 3026 base_mode = ent->base; 3027 3028 for (t = ata_timing_find_mode(base_mode); 3029 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3030 unsigned short this_cycle; 3031 3032 switch (xfer_shift) { 3033 case ATA_SHIFT_PIO: 3034 case ATA_SHIFT_MWDMA: 3035 this_cycle = t->cycle; 3036 break; 3037 case ATA_SHIFT_UDMA: 3038 this_cycle = t->udma; 3039 break; 3040 default: 3041 return 0xff; 3042 } 3043 3044 if (cycle > this_cycle) 3045 break; 3046 3047 last_mode = t->mode; 3048 } 3049 3050 return last_mode; 3051 } 3052 3053 /** 3054 * ata_down_xfermask_limit - adjust dev xfer masks downward 3055 * @dev: Device to adjust xfer masks 3056 * @sel: ATA_DNXFER_* selector 3057 * 3058 * Adjust xfer masks of @dev downward. Note that this function 3059 * does not apply the change. Invoking ata_set_mode() afterwards 3060 * will apply the limit. 3061 * 3062 * LOCKING: 3063 * Inherited from caller. 3064 * 3065 * RETURNS: 3066 * 0 on success, negative errno on failure 3067 */ 3068 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3069 { 3070 char buf[32]; 3071 unsigned long orig_mask, xfer_mask; 3072 unsigned long pio_mask, mwdma_mask, udma_mask; 3073 int quiet, highbit; 3074 3075 quiet = !!(sel & ATA_DNXFER_QUIET); 3076 sel &= ~ATA_DNXFER_QUIET; 3077 3078 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3079 dev->mwdma_mask, 3080 dev->udma_mask); 3081 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3082 3083 switch (sel) { 3084 case ATA_DNXFER_PIO: 3085 highbit = fls(pio_mask) - 1; 3086 pio_mask &= ~(1 << highbit); 3087 break; 3088 3089 case ATA_DNXFER_DMA: 3090 if (udma_mask) { 3091 highbit = fls(udma_mask) - 1; 3092 udma_mask &= ~(1 << highbit); 3093 if (!udma_mask) 3094 return -ENOENT; 3095 } else if (mwdma_mask) { 3096 highbit = fls(mwdma_mask) - 1; 3097 mwdma_mask &= ~(1 << highbit); 3098 if (!mwdma_mask) 3099 return -ENOENT; 3100 } 3101 break; 3102 3103 case ATA_DNXFER_40C: 3104 udma_mask &= ATA_UDMA_MASK_40C; 3105 break; 3106 3107 case ATA_DNXFER_FORCE_PIO0: 3108 pio_mask &= 1; 3109 case ATA_DNXFER_FORCE_PIO: 3110 mwdma_mask = 0; 3111 udma_mask = 0; 3112 break; 3113 3114 default: 3115 BUG(); 3116 } 3117 3118 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3119 3120 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3121 return -ENOENT; 3122 3123 if (!quiet) { 3124 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3125 snprintf(buf, sizeof(buf), "%s:%s", 3126 ata_mode_string(xfer_mask), 3127 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3128 else 3129 snprintf(buf, sizeof(buf), "%s", 3130 ata_mode_string(xfer_mask)); 3131 3132 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3133 } 3134 3135 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3136 &dev->udma_mask); 3137 3138 return 0; 3139 } 3140 3141 static int ata_dev_set_mode(struct ata_device *dev) 3142 { 3143 struct ata_port *ap = dev->link->ap; 3144 struct ata_eh_context *ehc = &dev->link->eh_context; 3145 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3146 const char *dev_err_whine = ""; 3147 int ign_dev_err = 0; 3148 unsigned int err_mask = 0; 3149 int rc; 3150 3151 dev->flags &= ~ATA_DFLAG_PIO; 3152 if (dev->xfer_shift == ATA_SHIFT_PIO) 3153 dev->flags |= ATA_DFLAG_PIO; 3154 3155 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3156 dev_err_whine = " (SET_XFERMODE skipped)"; 3157 else { 3158 if (nosetxfer) 3159 ata_dev_warn(dev, 3160 "NOSETXFER but PATA detected - can't " 3161 "skip SETXFER, might malfunction\n"); 3162 err_mask = ata_dev_set_xfermode(dev); 3163 } 3164 3165 if (err_mask & ~AC_ERR_DEV) 3166 goto fail; 3167 3168 /* revalidate */ 3169 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3170 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3171 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3172 if (rc) 3173 return rc; 3174 3175 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3176 /* Old CFA may refuse this command, which is just fine */ 3177 if (ata_id_is_cfa(dev->id)) 3178 ign_dev_err = 1; 3179 /* Catch several broken garbage emulations plus some pre 3180 ATA devices */ 3181 if (ata_id_major_version(dev->id) == 0 && 3182 dev->pio_mode <= XFER_PIO_2) 3183 ign_dev_err = 1; 3184 /* Some very old devices and some bad newer ones fail 3185 any kind of SET_XFERMODE request but support PIO0-2 3186 timings and no IORDY */ 3187 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3188 ign_dev_err = 1; 3189 } 3190 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3191 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3192 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3193 dev->dma_mode == XFER_MW_DMA_0 && 3194 (dev->id[63] >> 8) & 1) 3195 ign_dev_err = 1; 3196 3197 /* if the device is actually configured correctly, ignore dev err */ 3198 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3199 ign_dev_err = 1; 3200 3201 if (err_mask & AC_ERR_DEV) { 3202 if (!ign_dev_err) 3203 goto fail; 3204 else 3205 dev_err_whine = " (device error ignored)"; 3206 } 3207 3208 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3209 dev->xfer_shift, (int)dev->xfer_mode); 3210 3211 ata_dev_info(dev, "configured for %s%s\n", 3212 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3213 dev_err_whine); 3214 3215 return 0; 3216 3217 fail: 3218 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3219 return -EIO; 3220 } 3221 3222 /** 3223 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3224 * @link: link on which timings will be programmed 3225 * @r_failed_dev: out parameter for failed device 3226 * 3227 * Standard implementation of the function used to tune and set 3228 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3229 * ata_dev_set_mode() fails, pointer to the failing device is 3230 * returned in @r_failed_dev. 3231 * 3232 * LOCKING: 3233 * PCI/etc. bus probe sem. 3234 * 3235 * RETURNS: 3236 * 0 on success, negative errno otherwise 3237 */ 3238 3239 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3240 { 3241 struct ata_port *ap = link->ap; 3242 struct ata_device *dev; 3243 int rc = 0, used_dma = 0, found = 0; 3244 3245 /* step 1: calculate xfer_mask */ 3246 ata_for_each_dev(dev, link, ENABLED) { 3247 unsigned long pio_mask, dma_mask; 3248 unsigned int mode_mask; 3249 3250 mode_mask = ATA_DMA_MASK_ATA; 3251 if (dev->class == ATA_DEV_ATAPI) 3252 mode_mask = ATA_DMA_MASK_ATAPI; 3253 else if (ata_id_is_cfa(dev->id)) 3254 mode_mask = ATA_DMA_MASK_CFA; 3255 3256 ata_dev_xfermask(dev); 3257 ata_force_xfermask(dev); 3258 3259 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3260 3261 if (libata_dma_mask & mode_mask) 3262 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3263 dev->udma_mask); 3264 else 3265 dma_mask = 0; 3266 3267 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3268 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3269 3270 found = 1; 3271 if (ata_dma_enabled(dev)) 3272 used_dma = 1; 3273 } 3274 if (!found) 3275 goto out; 3276 3277 /* step 2: always set host PIO timings */ 3278 ata_for_each_dev(dev, link, ENABLED) { 3279 if (dev->pio_mode == 0xff) { 3280 ata_dev_warn(dev, "no PIO support\n"); 3281 rc = -EINVAL; 3282 goto out; 3283 } 3284 3285 dev->xfer_mode = dev->pio_mode; 3286 dev->xfer_shift = ATA_SHIFT_PIO; 3287 if (ap->ops->set_piomode) 3288 ap->ops->set_piomode(ap, dev); 3289 } 3290 3291 /* step 3: set host DMA timings */ 3292 ata_for_each_dev(dev, link, ENABLED) { 3293 if (!ata_dma_enabled(dev)) 3294 continue; 3295 3296 dev->xfer_mode = dev->dma_mode; 3297 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3298 if (ap->ops->set_dmamode) 3299 ap->ops->set_dmamode(ap, dev); 3300 } 3301 3302 /* step 4: update devices' xfer mode */ 3303 ata_for_each_dev(dev, link, ENABLED) { 3304 rc = ata_dev_set_mode(dev); 3305 if (rc) 3306 goto out; 3307 } 3308 3309 /* Record simplex status. If we selected DMA then the other 3310 * host channels are not permitted to do so. 3311 */ 3312 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3313 ap->host->simplex_claimed = ap; 3314 3315 out: 3316 if (rc) 3317 *r_failed_dev = dev; 3318 return rc; 3319 } 3320 3321 /** 3322 * ata_wait_ready - wait for link to become ready 3323 * @link: link to be waited on 3324 * @deadline: deadline jiffies for the operation 3325 * @check_ready: callback to check link readiness 3326 * 3327 * Wait for @link to become ready. @check_ready should return 3328 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3329 * link doesn't seem to be occupied, other errno for other error 3330 * conditions. 3331 * 3332 * Transient -ENODEV conditions are allowed for 3333 * ATA_TMOUT_FF_WAIT. 3334 * 3335 * LOCKING: 3336 * EH context. 3337 * 3338 * RETURNS: 3339 * 0 if @linke is ready before @deadline; otherwise, -errno. 3340 */ 3341 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3342 int (*check_ready)(struct ata_link *link)) 3343 { 3344 unsigned long start = jiffies; 3345 unsigned long nodev_deadline; 3346 int warned = 0; 3347 3348 /* choose which 0xff timeout to use, read comment in libata.h */ 3349 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3350 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3351 else 3352 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3353 3354 /* Slave readiness can't be tested separately from master. On 3355 * M/S emulation configuration, this function should be called 3356 * only on the master and it will handle both master and slave. 3357 */ 3358 WARN_ON(link == link->ap->slave_link); 3359 3360 if (time_after(nodev_deadline, deadline)) 3361 nodev_deadline = deadline; 3362 3363 while (1) { 3364 unsigned long now = jiffies; 3365 int ready, tmp; 3366 3367 ready = tmp = check_ready(link); 3368 if (ready > 0) 3369 return 0; 3370 3371 /* 3372 * -ENODEV could be transient. Ignore -ENODEV if link 3373 * is online. Also, some SATA devices take a long 3374 * time to clear 0xff after reset. Wait for 3375 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3376 * offline. 3377 * 3378 * Note that some PATA controllers (pata_ali) explode 3379 * if status register is read more than once when 3380 * there's no device attached. 3381 */ 3382 if (ready == -ENODEV) { 3383 if (ata_link_online(link)) 3384 ready = 0; 3385 else if ((link->ap->flags & ATA_FLAG_SATA) && 3386 !ata_link_offline(link) && 3387 time_before(now, nodev_deadline)) 3388 ready = 0; 3389 } 3390 3391 if (ready) 3392 return ready; 3393 if (time_after(now, deadline)) 3394 return -EBUSY; 3395 3396 if (!warned && time_after(now, start + 5 * HZ) && 3397 (deadline - now > 3 * HZ)) { 3398 ata_link_warn(link, 3399 "link is slow to respond, please be patient " 3400 "(ready=%d)\n", tmp); 3401 warned = 1; 3402 } 3403 3404 ata_msleep(link->ap, 50); 3405 } 3406 } 3407 3408 /** 3409 * ata_wait_after_reset - wait for link to become ready after reset 3410 * @link: link to be waited on 3411 * @deadline: deadline jiffies for the operation 3412 * @check_ready: callback to check link readiness 3413 * 3414 * Wait for @link to become ready after reset. 3415 * 3416 * LOCKING: 3417 * EH context. 3418 * 3419 * RETURNS: 3420 * 0 if @linke is ready before @deadline; otherwise, -errno. 3421 */ 3422 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3423 int (*check_ready)(struct ata_link *link)) 3424 { 3425 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3426 3427 return ata_wait_ready(link, deadline, check_ready); 3428 } 3429 3430 /** 3431 * sata_link_debounce - debounce SATA phy status 3432 * @link: ATA link to debounce SATA phy status for 3433 * @params: timing parameters { interval, duratinon, timeout } in msec 3434 * @deadline: deadline jiffies for the operation 3435 * 3436 * Make sure SStatus of @link reaches stable state, determined by 3437 * holding the same value where DET is not 1 for @duration polled 3438 * every @interval, before @timeout. Timeout constraints the 3439 * beginning of the stable state. Because DET gets stuck at 1 on 3440 * some controllers after hot unplugging, this functions waits 3441 * until timeout then returns 0 if DET is stable at 1. 3442 * 3443 * @timeout is further limited by @deadline. The sooner of the 3444 * two is used. 3445 * 3446 * LOCKING: 3447 * Kernel thread context (may sleep) 3448 * 3449 * RETURNS: 3450 * 0 on success, -errno on failure. 3451 */ 3452 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3453 unsigned long deadline) 3454 { 3455 unsigned long interval = params[0]; 3456 unsigned long duration = params[1]; 3457 unsigned long last_jiffies, t; 3458 u32 last, cur; 3459 int rc; 3460 3461 t = ata_deadline(jiffies, params[2]); 3462 if (time_before(t, deadline)) 3463 deadline = t; 3464 3465 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3466 return rc; 3467 cur &= 0xf; 3468 3469 last = cur; 3470 last_jiffies = jiffies; 3471 3472 while (1) { 3473 ata_msleep(link->ap, interval); 3474 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3475 return rc; 3476 cur &= 0xf; 3477 3478 /* DET stable? */ 3479 if (cur == last) { 3480 if (cur == 1 && time_before(jiffies, deadline)) 3481 continue; 3482 if (time_after(jiffies, 3483 ata_deadline(last_jiffies, duration))) 3484 return 0; 3485 continue; 3486 } 3487 3488 /* unstable, start over */ 3489 last = cur; 3490 last_jiffies = jiffies; 3491 3492 /* Check deadline. If debouncing failed, return 3493 * -EPIPE to tell upper layer to lower link speed. 3494 */ 3495 if (time_after(jiffies, deadline)) 3496 return -EPIPE; 3497 } 3498 } 3499 3500 /** 3501 * sata_link_resume - resume SATA link 3502 * @link: ATA link to resume SATA 3503 * @params: timing parameters { interval, duratinon, timeout } in msec 3504 * @deadline: deadline jiffies for the operation 3505 * 3506 * Resume SATA phy @link and debounce it. 3507 * 3508 * LOCKING: 3509 * Kernel thread context (may sleep) 3510 * 3511 * RETURNS: 3512 * 0 on success, -errno on failure. 3513 */ 3514 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3515 unsigned long deadline) 3516 { 3517 int tries = ATA_LINK_RESUME_TRIES; 3518 u32 scontrol, serror; 3519 int rc; 3520 3521 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3522 return rc; 3523 3524 /* 3525 * Writes to SControl sometimes get ignored under certain 3526 * controllers (ata_piix SIDPR). Make sure DET actually is 3527 * cleared. 3528 */ 3529 do { 3530 scontrol = (scontrol & 0x0f0) | 0x300; 3531 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3532 return rc; 3533 /* 3534 * Some PHYs react badly if SStatus is pounded 3535 * immediately after resuming. Delay 200ms before 3536 * debouncing. 3537 */ 3538 ata_msleep(link->ap, 200); 3539 3540 /* is SControl restored correctly? */ 3541 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3542 return rc; 3543 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3544 3545 if ((scontrol & 0xf0f) != 0x300) { 3546 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3547 scontrol); 3548 return 0; 3549 } 3550 3551 if (tries < ATA_LINK_RESUME_TRIES) 3552 ata_link_warn(link, "link resume succeeded after %d retries\n", 3553 ATA_LINK_RESUME_TRIES - tries); 3554 3555 if ((rc = sata_link_debounce(link, params, deadline))) 3556 return rc; 3557 3558 /* clear SError, some PHYs require this even for SRST to work */ 3559 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3560 rc = sata_scr_write(link, SCR_ERROR, serror); 3561 3562 return rc != -EINVAL ? rc : 0; 3563 } 3564 3565 /** 3566 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3567 * @link: ATA link to manipulate SControl for 3568 * @policy: LPM policy to configure 3569 * @spm_wakeup: initiate LPM transition to active state 3570 * 3571 * Manipulate the IPM field of the SControl register of @link 3572 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3573 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3574 * the link. This function also clears PHYRDY_CHG before 3575 * returning. 3576 * 3577 * LOCKING: 3578 * EH context. 3579 * 3580 * RETURNS: 3581 * 0 on succes, -errno otherwise. 3582 */ 3583 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3584 bool spm_wakeup) 3585 { 3586 struct ata_eh_context *ehc = &link->eh_context; 3587 bool woken_up = false; 3588 u32 scontrol; 3589 int rc; 3590 3591 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3592 if (rc) 3593 return rc; 3594 3595 switch (policy) { 3596 case ATA_LPM_MAX_POWER: 3597 /* disable all LPM transitions */ 3598 scontrol |= (0x3 << 8); 3599 /* initiate transition to active state */ 3600 if (spm_wakeup) { 3601 scontrol |= (0x4 << 12); 3602 woken_up = true; 3603 } 3604 break; 3605 case ATA_LPM_MED_POWER: 3606 /* allow LPM to PARTIAL */ 3607 scontrol &= ~(0x1 << 8); 3608 scontrol |= (0x2 << 8); 3609 break; 3610 case ATA_LPM_MIN_POWER: 3611 if (ata_link_nr_enabled(link) > 0) 3612 /* no restrictions on LPM transitions */ 3613 scontrol &= ~(0x3 << 8); 3614 else { 3615 /* empty port, power off */ 3616 scontrol &= ~0xf; 3617 scontrol |= (0x1 << 2); 3618 } 3619 break; 3620 default: 3621 WARN_ON(1); 3622 } 3623 3624 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3625 if (rc) 3626 return rc; 3627 3628 /* give the link time to transit out of LPM state */ 3629 if (woken_up) 3630 msleep(10); 3631 3632 /* clear PHYRDY_CHG from SError */ 3633 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3634 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3635 } 3636 3637 /** 3638 * ata_std_prereset - prepare for reset 3639 * @link: ATA link to be reset 3640 * @deadline: deadline jiffies for the operation 3641 * 3642 * @link is about to be reset. Initialize it. Failure from 3643 * prereset makes libata abort whole reset sequence and give up 3644 * that port, so prereset should be best-effort. It does its 3645 * best to prepare for reset sequence but if things go wrong, it 3646 * should just whine, not fail. 3647 * 3648 * LOCKING: 3649 * Kernel thread context (may sleep) 3650 * 3651 * RETURNS: 3652 * 0 on success, -errno otherwise. 3653 */ 3654 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3655 { 3656 struct ata_port *ap = link->ap; 3657 struct ata_eh_context *ehc = &link->eh_context; 3658 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3659 int rc; 3660 3661 /* if we're about to do hardreset, nothing more to do */ 3662 if (ehc->i.action & ATA_EH_HARDRESET) 3663 return 0; 3664 3665 /* if SATA, resume link */ 3666 if (ap->flags & ATA_FLAG_SATA) { 3667 rc = sata_link_resume(link, timing, deadline); 3668 /* whine about phy resume failure but proceed */ 3669 if (rc && rc != -EOPNOTSUPP) 3670 ata_link_warn(link, 3671 "failed to resume link for reset (errno=%d)\n", 3672 rc); 3673 } 3674 3675 /* no point in trying softreset on offline link */ 3676 if (ata_phys_link_offline(link)) 3677 ehc->i.action &= ~ATA_EH_SOFTRESET; 3678 3679 return 0; 3680 } 3681 3682 /** 3683 * sata_link_hardreset - reset link via SATA phy reset 3684 * @link: link to reset 3685 * @timing: timing parameters { interval, duratinon, timeout } in msec 3686 * @deadline: deadline jiffies for the operation 3687 * @online: optional out parameter indicating link onlineness 3688 * @check_ready: optional callback to check link readiness 3689 * 3690 * SATA phy-reset @link using DET bits of SControl register. 3691 * After hardreset, link readiness is waited upon using 3692 * ata_wait_ready() if @check_ready is specified. LLDs are 3693 * allowed to not specify @check_ready and wait itself after this 3694 * function returns. Device classification is LLD's 3695 * responsibility. 3696 * 3697 * *@online is set to one iff reset succeeded and @link is online 3698 * after reset. 3699 * 3700 * LOCKING: 3701 * Kernel thread context (may sleep) 3702 * 3703 * RETURNS: 3704 * 0 on success, -errno otherwise. 3705 */ 3706 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3707 unsigned long deadline, 3708 bool *online, int (*check_ready)(struct ata_link *)) 3709 { 3710 u32 scontrol; 3711 int rc; 3712 3713 DPRINTK("ENTER\n"); 3714 3715 if (online) 3716 *online = false; 3717 3718 if (sata_set_spd_needed(link)) { 3719 /* SATA spec says nothing about how to reconfigure 3720 * spd. To be on the safe side, turn off phy during 3721 * reconfiguration. This works for at least ICH7 AHCI 3722 * and Sil3124. 3723 */ 3724 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3725 goto out; 3726 3727 scontrol = (scontrol & 0x0f0) | 0x304; 3728 3729 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3730 goto out; 3731 3732 sata_set_spd(link); 3733 } 3734 3735 /* issue phy wake/reset */ 3736 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3737 goto out; 3738 3739 scontrol = (scontrol & 0x0f0) | 0x301; 3740 3741 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3742 goto out; 3743 3744 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3745 * 10.4.2 says at least 1 ms. 3746 */ 3747 ata_msleep(link->ap, 1); 3748 3749 /* bring link back */ 3750 rc = sata_link_resume(link, timing, deadline); 3751 if (rc) 3752 goto out; 3753 /* if link is offline nothing more to do */ 3754 if (ata_phys_link_offline(link)) 3755 goto out; 3756 3757 /* Link is online. From this point, -ENODEV too is an error. */ 3758 if (online) 3759 *online = true; 3760 3761 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3762 /* If PMP is supported, we have to do follow-up SRST. 3763 * Some PMPs don't send D2H Reg FIS after hardreset if 3764 * the first port is empty. Wait only for 3765 * ATA_TMOUT_PMP_SRST_WAIT. 3766 */ 3767 if (check_ready) { 3768 unsigned long pmp_deadline; 3769 3770 pmp_deadline = ata_deadline(jiffies, 3771 ATA_TMOUT_PMP_SRST_WAIT); 3772 if (time_after(pmp_deadline, deadline)) 3773 pmp_deadline = deadline; 3774 ata_wait_ready(link, pmp_deadline, check_ready); 3775 } 3776 rc = -EAGAIN; 3777 goto out; 3778 } 3779 3780 rc = 0; 3781 if (check_ready) 3782 rc = ata_wait_ready(link, deadline, check_ready); 3783 out: 3784 if (rc && rc != -EAGAIN) { 3785 /* online is set iff link is online && reset succeeded */ 3786 if (online) 3787 *online = false; 3788 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3789 } 3790 DPRINTK("EXIT, rc=%d\n", rc); 3791 return rc; 3792 } 3793 3794 /** 3795 * sata_std_hardreset - COMRESET w/o waiting or classification 3796 * @link: link to reset 3797 * @class: resulting class of attached device 3798 * @deadline: deadline jiffies for the operation 3799 * 3800 * Standard SATA COMRESET w/o waiting or classification. 3801 * 3802 * LOCKING: 3803 * Kernel thread context (may sleep) 3804 * 3805 * RETURNS: 3806 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3807 */ 3808 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3809 unsigned long deadline) 3810 { 3811 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3812 bool online; 3813 int rc; 3814 3815 /* do hardreset */ 3816 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3817 return online ? -EAGAIN : rc; 3818 } 3819 3820 /** 3821 * ata_std_postreset - standard postreset callback 3822 * @link: the target ata_link 3823 * @classes: classes of attached devices 3824 * 3825 * This function is invoked after a successful reset. Note that 3826 * the device might have been reset more than once using 3827 * different reset methods before postreset is invoked. 3828 * 3829 * LOCKING: 3830 * Kernel thread context (may sleep) 3831 */ 3832 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3833 { 3834 u32 serror; 3835 3836 DPRINTK("ENTER\n"); 3837 3838 /* reset complete, clear SError */ 3839 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3840 sata_scr_write(link, SCR_ERROR, serror); 3841 3842 /* print link status */ 3843 sata_print_link_status(link); 3844 3845 DPRINTK("EXIT\n"); 3846 } 3847 3848 /** 3849 * ata_dev_same_device - Determine whether new ID matches configured device 3850 * @dev: device to compare against 3851 * @new_class: class of the new device 3852 * @new_id: IDENTIFY page of the new device 3853 * 3854 * Compare @new_class and @new_id against @dev and determine 3855 * whether @dev is the device indicated by @new_class and 3856 * @new_id. 3857 * 3858 * LOCKING: 3859 * None. 3860 * 3861 * RETURNS: 3862 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3863 */ 3864 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3865 const u16 *new_id) 3866 { 3867 const u16 *old_id = dev->id; 3868 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3869 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3870 3871 if (dev->class != new_class) { 3872 ata_dev_info(dev, "class mismatch %d != %d\n", 3873 dev->class, new_class); 3874 return 0; 3875 } 3876 3877 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3878 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3879 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3880 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3881 3882 if (strcmp(model[0], model[1])) { 3883 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3884 model[0], model[1]); 3885 return 0; 3886 } 3887 3888 if (strcmp(serial[0], serial[1])) { 3889 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3890 serial[0], serial[1]); 3891 return 0; 3892 } 3893 3894 return 1; 3895 } 3896 3897 /** 3898 * ata_dev_reread_id - Re-read IDENTIFY data 3899 * @dev: target ATA device 3900 * @readid_flags: read ID flags 3901 * 3902 * Re-read IDENTIFY page and make sure @dev is still attached to 3903 * the port. 3904 * 3905 * LOCKING: 3906 * Kernel thread context (may sleep) 3907 * 3908 * RETURNS: 3909 * 0 on success, negative errno otherwise 3910 */ 3911 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3912 { 3913 unsigned int class = dev->class; 3914 u16 *id = (void *)dev->link->ap->sector_buf; 3915 int rc; 3916 3917 /* read ID data */ 3918 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3919 if (rc) 3920 return rc; 3921 3922 /* is the device still there? */ 3923 if (!ata_dev_same_device(dev, class, id)) 3924 return -ENODEV; 3925 3926 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3927 return 0; 3928 } 3929 3930 /** 3931 * ata_dev_revalidate - Revalidate ATA device 3932 * @dev: device to revalidate 3933 * @new_class: new class code 3934 * @readid_flags: read ID flags 3935 * 3936 * Re-read IDENTIFY page, make sure @dev is still attached to the 3937 * port and reconfigure it according to the new IDENTIFY page. 3938 * 3939 * LOCKING: 3940 * Kernel thread context (may sleep) 3941 * 3942 * RETURNS: 3943 * 0 on success, negative errno otherwise 3944 */ 3945 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3946 unsigned int readid_flags) 3947 { 3948 u64 n_sectors = dev->n_sectors; 3949 u64 n_native_sectors = dev->n_native_sectors; 3950 int rc; 3951 3952 if (!ata_dev_enabled(dev)) 3953 return -ENODEV; 3954 3955 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3956 if (ata_class_enabled(new_class) && 3957 new_class != ATA_DEV_ATA && 3958 new_class != ATA_DEV_ATAPI && 3959 new_class != ATA_DEV_SEMB) { 3960 ata_dev_info(dev, "class mismatch %u != %u\n", 3961 dev->class, new_class); 3962 rc = -ENODEV; 3963 goto fail; 3964 } 3965 3966 /* re-read ID */ 3967 rc = ata_dev_reread_id(dev, readid_flags); 3968 if (rc) 3969 goto fail; 3970 3971 /* configure device according to the new ID */ 3972 rc = ata_dev_configure(dev); 3973 if (rc) 3974 goto fail; 3975 3976 /* verify n_sectors hasn't changed */ 3977 if (dev->class != ATA_DEV_ATA || !n_sectors || 3978 dev->n_sectors == n_sectors) 3979 return 0; 3980 3981 /* n_sectors has changed */ 3982 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3983 (unsigned long long)n_sectors, 3984 (unsigned long long)dev->n_sectors); 3985 3986 /* 3987 * Something could have caused HPA to be unlocked 3988 * involuntarily. If n_native_sectors hasn't changed and the 3989 * new size matches it, keep the device. 3990 */ 3991 if (dev->n_native_sectors == n_native_sectors && 3992 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3993 ata_dev_warn(dev, 3994 "new n_sectors matches native, probably " 3995 "late HPA unlock, n_sectors updated\n"); 3996 /* use the larger n_sectors */ 3997 return 0; 3998 } 3999 4000 /* 4001 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4002 * unlocking HPA in those cases. 4003 * 4004 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4005 */ 4006 if (dev->n_native_sectors == n_native_sectors && 4007 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4008 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4009 ata_dev_warn(dev, 4010 "old n_sectors matches native, probably " 4011 "late HPA lock, will try to unlock HPA\n"); 4012 /* try unlocking HPA */ 4013 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4014 rc = -EIO; 4015 } else 4016 rc = -ENODEV; 4017 4018 /* restore original n_[native_]sectors and fail */ 4019 dev->n_native_sectors = n_native_sectors; 4020 dev->n_sectors = n_sectors; 4021 fail: 4022 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4023 return rc; 4024 } 4025 4026 struct ata_blacklist_entry { 4027 const char *model_num; 4028 const char *model_rev; 4029 unsigned long horkage; 4030 }; 4031 4032 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4033 /* Devices with DMA related problems under Linux */ 4034 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4035 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4036 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4037 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4038 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4039 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4040 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4041 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4042 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4043 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4044 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4045 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4046 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4047 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4048 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4049 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4050 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4051 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4052 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4053 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4054 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4055 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4056 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4057 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4058 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4059 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4060 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4061 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4062 { "2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4063 /* Odd clown on sil3726/4726 PMPs */ 4064 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4065 4066 /* Weird ATAPI devices */ 4067 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4068 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4069 4070 /* Devices we expect to fail diagnostics */ 4071 4072 /* Devices where NCQ should be avoided */ 4073 /* NCQ is slow */ 4074 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4075 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4076 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4077 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4078 /* NCQ is broken */ 4079 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4080 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4081 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4082 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4083 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4084 4085 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4086 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4087 ATA_HORKAGE_FIRMWARE_WARN }, 4088 4089 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4090 ATA_HORKAGE_FIRMWARE_WARN }, 4091 4092 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4093 ATA_HORKAGE_FIRMWARE_WARN }, 4094 4095 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4096 ATA_HORKAGE_FIRMWARE_WARN }, 4097 4098 /* Blacklist entries taken from Silicon Image 3124/3132 4099 Windows driver .inf file - also several Linux problem reports */ 4100 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4101 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4102 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4103 4104 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4105 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4106 4107 /* devices which puke on READ_NATIVE_MAX */ 4108 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4109 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4110 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4111 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4112 4113 /* this one allows HPA unlocking but fails IOs on the area */ 4114 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4115 4116 /* Devices which report 1 sector over size HPA */ 4117 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4118 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4119 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4120 4121 /* Devices which get the IVB wrong */ 4122 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4123 /* Maybe we should just blacklist TSSTcorp... */ 4124 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4125 4126 /* Devices that do not need bridging limits applied */ 4127 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4128 4129 /* Devices which aren't very happy with higher link speeds */ 4130 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4131 4132 /* 4133 * Devices which choke on SETXFER. Applies only if both the 4134 * device and controller are SATA. 4135 */ 4136 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4137 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4138 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4139 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4140 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4141 4142 /* End Marker */ 4143 { } 4144 }; 4145 4146 /** 4147 * glob_match - match a text string against a glob-style pattern 4148 * @text: the string to be examined 4149 * @pattern: the glob-style pattern to be matched against 4150 * 4151 * Either/both of text and pattern can be empty strings. 4152 * 4153 * Match text against a glob-style pattern, with wildcards and simple sets: 4154 * 4155 * ? matches any single character. 4156 * * matches any run of characters. 4157 * [xyz] matches a single character from the set: x, y, or z. 4158 * [a-d] matches a single character from the range: a, b, c, or d. 4159 * [a-d0-9] matches a single character from either range. 4160 * 4161 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4162 * Behaviour with malformed patterns is undefined, though generally reasonable. 4163 * 4164 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4165 * 4166 * This function uses one level of recursion per '*' in pattern. 4167 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4168 * this will not cause stack problems for any reasonable use here. 4169 * 4170 * RETURNS: 4171 * 0 on match, 1 otherwise. 4172 */ 4173 static int glob_match (const char *text, const char *pattern) 4174 { 4175 do { 4176 /* Match single character or a '?' wildcard */ 4177 if (*text == *pattern || *pattern == '?') { 4178 if (!*pattern++) 4179 return 0; /* End of both strings: match */ 4180 } else { 4181 /* Match single char against a '[' bracketed ']' pattern set */ 4182 if (!*text || *pattern != '[') 4183 break; /* Not a pattern set */ 4184 while (*++pattern && *pattern != ']' && *text != *pattern) { 4185 if (*pattern == '-' && *(pattern - 1) != '[') 4186 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4187 ++pattern; 4188 break; 4189 } 4190 } 4191 if (!*pattern || *pattern == ']') 4192 return 1; /* No match */ 4193 while (*pattern && *pattern++ != ']'); 4194 } 4195 } while (*++text && *pattern); 4196 4197 /* Match any run of chars against a '*' wildcard */ 4198 if (*pattern == '*') { 4199 if (!*++pattern) 4200 return 0; /* Match: avoid recursion at end of pattern */ 4201 /* Loop to handle additional pattern chars after the wildcard */ 4202 while (*text) { 4203 if (glob_match(text, pattern) == 0) 4204 return 0; /* Remainder matched */ 4205 ++text; /* Absorb (match) this char and try again */ 4206 } 4207 } 4208 if (!*text && !*pattern) 4209 return 0; /* End of both strings: match */ 4210 return 1; /* No match */ 4211 } 4212 4213 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4214 { 4215 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4216 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4217 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4218 4219 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4220 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4221 4222 while (ad->model_num) { 4223 if (!glob_match(model_num, ad->model_num)) { 4224 if (ad->model_rev == NULL) 4225 return ad->horkage; 4226 if (!glob_match(model_rev, ad->model_rev)) 4227 return ad->horkage; 4228 } 4229 ad++; 4230 } 4231 return 0; 4232 } 4233 4234 static int ata_dma_blacklisted(const struct ata_device *dev) 4235 { 4236 /* We don't support polling DMA. 4237 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4238 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4239 */ 4240 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4241 (dev->flags & ATA_DFLAG_CDB_INTR)) 4242 return 1; 4243 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4244 } 4245 4246 /** 4247 * ata_is_40wire - check drive side detection 4248 * @dev: device 4249 * 4250 * Perform drive side detection decoding, allowing for device vendors 4251 * who can't follow the documentation. 4252 */ 4253 4254 static int ata_is_40wire(struct ata_device *dev) 4255 { 4256 if (dev->horkage & ATA_HORKAGE_IVB) 4257 return ata_drive_40wire_relaxed(dev->id); 4258 return ata_drive_40wire(dev->id); 4259 } 4260 4261 /** 4262 * cable_is_40wire - 40/80/SATA decider 4263 * @ap: port to consider 4264 * 4265 * This function encapsulates the policy for speed management 4266 * in one place. At the moment we don't cache the result but 4267 * there is a good case for setting ap->cbl to the result when 4268 * we are called with unknown cables (and figuring out if it 4269 * impacts hotplug at all). 4270 * 4271 * Return 1 if the cable appears to be 40 wire. 4272 */ 4273 4274 static int cable_is_40wire(struct ata_port *ap) 4275 { 4276 struct ata_link *link; 4277 struct ata_device *dev; 4278 4279 /* If the controller thinks we are 40 wire, we are. */ 4280 if (ap->cbl == ATA_CBL_PATA40) 4281 return 1; 4282 4283 /* If the controller thinks we are 80 wire, we are. */ 4284 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4285 return 0; 4286 4287 /* If the system is known to be 40 wire short cable (eg 4288 * laptop), then we allow 80 wire modes even if the drive 4289 * isn't sure. 4290 */ 4291 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4292 return 0; 4293 4294 /* If the controller doesn't know, we scan. 4295 * 4296 * Note: We look for all 40 wire detects at this point. Any 4297 * 80 wire detect is taken to be 80 wire cable because 4298 * - in many setups only the one drive (slave if present) will 4299 * give a valid detect 4300 * - if you have a non detect capable drive you don't want it 4301 * to colour the choice 4302 */ 4303 ata_for_each_link(link, ap, EDGE) { 4304 ata_for_each_dev(dev, link, ENABLED) { 4305 if (!ata_is_40wire(dev)) 4306 return 0; 4307 } 4308 } 4309 return 1; 4310 } 4311 4312 /** 4313 * ata_dev_xfermask - Compute supported xfermask of the given device 4314 * @dev: Device to compute xfermask for 4315 * 4316 * Compute supported xfermask of @dev and store it in 4317 * dev->*_mask. This function is responsible for applying all 4318 * known limits including host controller limits, device 4319 * blacklist, etc... 4320 * 4321 * LOCKING: 4322 * None. 4323 */ 4324 static void ata_dev_xfermask(struct ata_device *dev) 4325 { 4326 struct ata_link *link = dev->link; 4327 struct ata_port *ap = link->ap; 4328 struct ata_host *host = ap->host; 4329 unsigned long xfer_mask; 4330 4331 /* controller modes available */ 4332 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4333 ap->mwdma_mask, ap->udma_mask); 4334 4335 /* drive modes available */ 4336 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4337 dev->mwdma_mask, dev->udma_mask); 4338 xfer_mask &= ata_id_xfermask(dev->id); 4339 4340 /* 4341 * CFA Advanced TrueIDE timings are not allowed on a shared 4342 * cable 4343 */ 4344 if (ata_dev_pair(dev)) { 4345 /* No PIO5 or PIO6 */ 4346 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4347 /* No MWDMA3 or MWDMA 4 */ 4348 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4349 } 4350 4351 if (ata_dma_blacklisted(dev)) { 4352 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4353 ata_dev_warn(dev, 4354 "device is on DMA blacklist, disabling DMA\n"); 4355 } 4356 4357 if ((host->flags & ATA_HOST_SIMPLEX) && 4358 host->simplex_claimed && host->simplex_claimed != ap) { 4359 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4360 ata_dev_warn(dev, 4361 "simplex DMA is claimed by other device, disabling DMA\n"); 4362 } 4363 4364 if (ap->flags & ATA_FLAG_NO_IORDY) 4365 xfer_mask &= ata_pio_mask_no_iordy(dev); 4366 4367 if (ap->ops->mode_filter) 4368 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4369 4370 /* Apply cable rule here. Don't apply it early because when 4371 * we handle hot plug the cable type can itself change. 4372 * Check this last so that we know if the transfer rate was 4373 * solely limited by the cable. 4374 * Unknown or 80 wire cables reported host side are checked 4375 * drive side as well. Cases where we know a 40wire cable 4376 * is used safely for 80 are not checked here. 4377 */ 4378 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4379 /* UDMA/44 or higher would be available */ 4380 if (cable_is_40wire(ap)) { 4381 ata_dev_warn(dev, 4382 "limited to UDMA/33 due to 40-wire cable\n"); 4383 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4384 } 4385 4386 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4387 &dev->mwdma_mask, &dev->udma_mask); 4388 } 4389 4390 /** 4391 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4392 * @dev: Device to which command will be sent 4393 * 4394 * Issue SET FEATURES - XFER MODE command to device @dev 4395 * on port @ap. 4396 * 4397 * LOCKING: 4398 * PCI/etc. bus probe sem. 4399 * 4400 * RETURNS: 4401 * 0 on success, AC_ERR_* mask otherwise. 4402 */ 4403 4404 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4405 { 4406 struct ata_taskfile tf; 4407 unsigned int err_mask; 4408 4409 /* set up set-features taskfile */ 4410 DPRINTK("set features - xfer mode\n"); 4411 4412 /* Some controllers and ATAPI devices show flaky interrupt 4413 * behavior after setting xfer mode. Use polling instead. 4414 */ 4415 ata_tf_init(dev, &tf); 4416 tf.command = ATA_CMD_SET_FEATURES; 4417 tf.feature = SETFEATURES_XFER; 4418 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4419 tf.protocol = ATA_PROT_NODATA; 4420 /* If we are using IORDY we must send the mode setting command */ 4421 if (ata_pio_need_iordy(dev)) 4422 tf.nsect = dev->xfer_mode; 4423 /* If the device has IORDY and the controller does not - turn it off */ 4424 else if (ata_id_has_iordy(dev->id)) 4425 tf.nsect = 0x01; 4426 else /* In the ancient relic department - skip all of this */ 4427 return 0; 4428 4429 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4430 4431 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4432 return err_mask; 4433 } 4434 4435 /** 4436 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4437 * @dev: Device to which command will be sent 4438 * @enable: Whether to enable or disable the feature 4439 * @feature: The sector count represents the feature to set 4440 * 4441 * Issue SET FEATURES - SATA FEATURES command to device @dev 4442 * on port @ap with sector count 4443 * 4444 * LOCKING: 4445 * PCI/etc. bus probe sem. 4446 * 4447 * RETURNS: 4448 * 0 on success, AC_ERR_* mask otherwise. 4449 */ 4450 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4451 { 4452 struct ata_taskfile tf; 4453 unsigned int err_mask; 4454 4455 /* set up set-features taskfile */ 4456 DPRINTK("set features - SATA features\n"); 4457 4458 ata_tf_init(dev, &tf); 4459 tf.command = ATA_CMD_SET_FEATURES; 4460 tf.feature = enable; 4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4462 tf.protocol = ATA_PROT_NODATA; 4463 tf.nsect = feature; 4464 4465 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4466 4467 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4468 return err_mask; 4469 } 4470 4471 /** 4472 * ata_dev_init_params - Issue INIT DEV PARAMS command 4473 * @dev: Device to which command will be sent 4474 * @heads: Number of heads (taskfile parameter) 4475 * @sectors: Number of sectors (taskfile parameter) 4476 * 4477 * LOCKING: 4478 * Kernel thread context (may sleep) 4479 * 4480 * RETURNS: 4481 * 0 on success, AC_ERR_* mask otherwise. 4482 */ 4483 static unsigned int ata_dev_init_params(struct ata_device *dev, 4484 u16 heads, u16 sectors) 4485 { 4486 struct ata_taskfile tf; 4487 unsigned int err_mask; 4488 4489 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4490 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4491 return AC_ERR_INVALID; 4492 4493 /* set up init dev params taskfile */ 4494 DPRINTK("init dev params \n"); 4495 4496 ata_tf_init(dev, &tf); 4497 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4498 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4499 tf.protocol = ATA_PROT_NODATA; 4500 tf.nsect = sectors; 4501 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4502 4503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4504 /* A clean abort indicates an original or just out of spec drive 4505 and we should continue as we issue the setup based on the 4506 drive reported working geometry */ 4507 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4508 err_mask = 0; 4509 4510 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4511 return err_mask; 4512 } 4513 4514 /** 4515 * ata_sg_clean - Unmap DMA memory associated with command 4516 * @qc: Command containing DMA memory to be released 4517 * 4518 * Unmap all mapped DMA memory associated with this command. 4519 * 4520 * LOCKING: 4521 * spin_lock_irqsave(host lock) 4522 */ 4523 void ata_sg_clean(struct ata_queued_cmd *qc) 4524 { 4525 struct ata_port *ap = qc->ap; 4526 struct scatterlist *sg = qc->sg; 4527 int dir = qc->dma_dir; 4528 4529 WARN_ON_ONCE(sg == NULL); 4530 4531 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4532 4533 if (qc->n_elem) 4534 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4535 4536 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4537 qc->sg = NULL; 4538 } 4539 4540 /** 4541 * atapi_check_dma - Check whether ATAPI DMA can be supported 4542 * @qc: Metadata associated with taskfile to check 4543 * 4544 * Allow low-level driver to filter ATA PACKET commands, returning 4545 * a status indicating whether or not it is OK to use DMA for the 4546 * supplied PACKET command. 4547 * 4548 * LOCKING: 4549 * spin_lock_irqsave(host lock) 4550 * 4551 * RETURNS: 0 when ATAPI DMA can be used 4552 * nonzero otherwise 4553 */ 4554 int atapi_check_dma(struct ata_queued_cmd *qc) 4555 { 4556 struct ata_port *ap = qc->ap; 4557 4558 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4559 * few ATAPI devices choke on such DMA requests. 4560 */ 4561 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4562 unlikely(qc->nbytes & 15)) 4563 return 1; 4564 4565 if (ap->ops->check_atapi_dma) 4566 return ap->ops->check_atapi_dma(qc); 4567 4568 return 0; 4569 } 4570 4571 /** 4572 * ata_std_qc_defer - Check whether a qc needs to be deferred 4573 * @qc: ATA command in question 4574 * 4575 * Non-NCQ commands cannot run with any other command, NCQ or 4576 * not. As upper layer only knows the queue depth, we are 4577 * responsible for maintaining exclusion. This function checks 4578 * whether a new command @qc can be issued. 4579 * 4580 * LOCKING: 4581 * spin_lock_irqsave(host lock) 4582 * 4583 * RETURNS: 4584 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4585 */ 4586 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4587 { 4588 struct ata_link *link = qc->dev->link; 4589 4590 if (qc->tf.protocol == ATA_PROT_NCQ) { 4591 if (!ata_tag_valid(link->active_tag)) 4592 return 0; 4593 } else { 4594 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4595 return 0; 4596 } 4597 4598 return ATA_DEFER_LINK; 4599 } 4600 4601 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4602 4603 /** 4604 * ata_sg_init - Associate command with scatter-gather table. 4605 * @qc: Command to be associated 4606 * @sg: Scatter-gather table. 4607 * @n_elem: Number of elements in s/g table. 4608 * 4609 * Initialize the data-related elements of queued_cmd @qc 4610 * to point to a scatter-gather table @sg, containing @n_elem 4611 * elements. 4612 * 4613 * LOCKING: 4614 * spin_lock_irqsave(host lock) 4615 */ 4616 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4617 unsigned int n_elem) 4618 { 4619 qc->sg = sg; 4620 qc->n_elem = n_elem; 4621 qc->cursg = qc->sg; 4622 } 4623 4624 /** 4625 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4626 * @qc: Command with scatter-gather table to be mapped. 4627 * 4628 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4629 * 4630 * LOCKING: 4631 * spin_lock_irqsave(host lock) 4632 * 4633 * RETURNS: 4634 * Zero on success, negative on error. 4635 * 4636 */ 4637 static int ata_sg_setup(struct ata_queued_cmd *qc) 4638 { 4639 struct ata_port *ap = qc->ap; 4640 unsigned int n_elem; 4641 4642 VPRINTK("ENTER, ata%u\n", ap->print_id); 4643 4644 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4645 if (n_elem < 1) 4646 return -1; 4647 4648 DPRINTK("%d sg elements mapped\n", n_elem); 4649 qc->orig_n_elem = qc->n_elem; 4650 qc->n_elem = n_elem; 4651 qc->flags |= ATA_QCFLAG_DMAMAP; 4652 4653 return 0; 4654 } 4655 4656 /** 4657 * swap_buf_le16 - swap halves of 16-bit words in place 4658 * @buf: Buffer to swap 4659 * @buf_words: Number of 16-bit words in buffer. 4660 * 4661 * Swap halves of 16-bit words if needed to convert from 4662 * little-endian byte order to native cpu byte order, or 4663 * vice-versa. 4664 * 4665 * LOCKING: 4666 * Inherited from caller. 4667 */ 4668 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4669 { 4670 #ifdef __BIG_ENDIAN 4671 unsigned int i; 4672 4673 for (i = 0; i < buf_words; i++) 4674 buf[i] = le16_to_cpu(buf[i]); 4675 #endif /* __BIG_ENDIAN */ 4676 } 4677 4678 /** 4679 * ata_qc_new - Request an available ATA command, for queueing 4680 * @ap: target port 4681 * 4682 * LOCKING: 4683 * None. 4684 */ 4685 4686 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4687 { 4688 struct ata_queued_cmd *qc = NULL; 4689 unsigned int i; 4690 4691 /* no command while frozen */ 4692 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4693 return NULL; 4694 4695 /* the last tag is reserved for internal command. */ 4696 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4697 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4698 qc = __ata_qc_from_tag(ap, i); 4699 break; 4700 } 4701 4702 if (qc) 4703 qc->tag = i; 4704 4705 return qc; 4706 } 4707 4708 /** 4709 * ata_qc_new_init - Request an available ATA command, and initialize it 4710 * @dev: Device from whom we request an available command structure 4711 * 4712 * LOCKING: 4713 * None. 4714 */ 4715 4716 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4717 { 4718 struct ata_port *ap = dev->link->ap; 4719 struct ata_queued_cmd *qc; 4720 4721 qc = ata_qc_new(ap); 4722 if (qc) { 4723 qc->scsicmd = NULL; 4724 qc->ap = ap; 4725 qc->dev = dev; 4726 4727 ata_qc_reinit(qc); 4728 } 4729 4730 return qc; 4731 } 4732 4733 /** 4734 * ata_qc_free - free unused ata_queued_cmd 4735 * @qc: Command to complete 4736 * 4737 * Designed to free unused ata_queued_cmd object 4738 * in case something prevents using it. 4739 * 4740 * LOCKING: 4741 * spin_lock_irqsave(host lock) 4742 */ 4743 void ata_qc_free(struct ata_queued_cmd *qc) 4744 { 4745 struct ata_port *ap; 4746 unsigned int tag; 4747 4748 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4749 ap = qc->ap; 4750 4751 qc->flags = 0; 4752 tag = qc->tag; 4753 if (likely(ata_tag_valid(tag))) { 4754 qc->tag = ATA_TAG_POISON; 4755 clear_bit(tag, &ap->qc_allocated); 4756 } 4757 } 4758 4759 void __ata_qc_complete(struct ata_queued_cmd *qc) 4760 { 4761 struct ata_port *ap; 4762 struct ata_link *link; 4763 4764 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4765 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4766 ap = qc->ap; 4767 link = qc->dev->link; 4768 4769 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4770 ata_sg_clean(qc); 4771 4772 /* command should be marked inactive atomically with qc completion */ 4773 if (qc->tf.protocol == ATA_PROT_NCQ) { 4774 link->sactive &= ~(1 << qc->tag); 4775 if (!link->sactive) 4776 ap->nr_active_links--; 4777 } else { 4778 link->active_tag = ATA_TAG_POISON; 4779 ap->nr_active_links--; 4780 } 4781 4782 /* clear exclusive status */ 4783 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4784 ap->excl_link == link)) 4785 ap->excl_link = NULL; 4786 4787 /* atapi: mark qc as inactive to prevent the interrupt handler 4788 * from completing the command twice later, before the error handler 4789 * is called. (when rc != 0 and atapi request sense is needed) 4790 */ 4791 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4792 ap->qc_active &= ~(1 << qc->tag); 4793 4794 /* call completion callback */ 4795 qc->complete_fn(qc); 4796 } 4797 4798 static void fill_result_tf(struct ata_queued_cmd *qc) 4799 { 4800 struct ata_port *ap = qc->ap; 4801 4802 qc->result_tf.flags = qc->tf.flags; 4803 ap->ops->qc_fill_rtf(qc); 4804 } 4805 4806 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4807 { 4808 struct ata_device *dev = qc->dev; 4809 4810 if (ata_is_nodata(qc->tf.protocol)) 4811 return; 4812 4813 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4814 return; 4815 4816 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4817 } 4818 4819 /** 4820 * ata_qc_complete - Complete an active ATA command 4821 * @qc: Command to complete 4822 * 4823 * Indicate to the mid and upper layers that an ATA command has 4824 * completed, with either an ok or not-ok status. 4825 * 4826 * Refrain from calling this function multiple times when 4827 * successfully completing multiple NCQ commands. 4828 * ata_qc_complete_multiple() should be used instead, which will 4829 * properly update IRQ expect state. 4830 * 4831 * LOCKING: 4832 * spin_lock_irqsave(host lock) 4833 */ 4834 void ata_qc_complete(struct ata_queued_cmd *qc) 4835 { 4836 struct ata_port *ap = qc->ap; 4837 4838 /* XXX: New EH and old EH use different mechanisms to 4839 * synchronize EH with regular execution path. 4840 * 4841 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4842 * Normal execution path is responsible for not accessing a 4843 * failed qc. libata core enforces the rule by returning NULL 4844 * from ata_qc_from_tag() for failed qcs. 4845 * 4846 * Old EH depends on ata_qc_complete() nullifying completion 4847 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4848 * not synchronize with interrupt handler. Only PIO task is 4849 * taken care of. 4850 */ 4851 if (ap->ops->error_handler) { 4852 struct ata_device *dev = qc->dev; 4853 struct ata_eh_info *ehi = &dev->link->eh_info; 4854 4855 if (unlikely(qc->err_mask)) 4856 qc->flags |= ATA_QCFLAG_FAILED; 4857 4858 /* 4859 * Finish internal commands without any further processing 4860 * and always with the result TF filled. 4861 */ 4862 if (unlikely(ata_tag_internal(qc->tag))) { 4863 fill_result_tf(qc); 4864 __ata_qc_complete(qc); 4865 return; 4866 } 4867 4868 /* 4869 * Non-internal qc has failed. Fill the result TF and 4870 * summon EH. 4871 */ 4872 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4873 fill_result_tf(qc); 4874 ata_qc_schedule_eh(qc); 4875 return; 4876 } 4877 4878 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4879 4880 /* read result TF if requested */ 4881 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4882 fill_result_tf(qc); 4883 4884 /* Some commands need post-processing after successful 4885 * completion. 4886 */ 4887 switch (qc->tf.command) { 4888 case ATA_CMD_SET_FEATURES: 4889 if (qc->tf.feature != SETFEATURES_WC_ON && 4890 qc->tf.feature != SETFEATURES_WC_OFF) 4891 break; 4892 /* fall through */ 4893 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4894 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4895 /* revalidate device */ 4896 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4897 ata_port_schedule_eh(ap); 4898 break; 4899 4900 case ATA_CMD_SLEEP: 4901 dev->flags |= ATA_DFLAG_SLEEPING; 4902 break; 4903 } 4904 4905 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4906 ata_verify_xfer(qc); 4907 4908 __ata_qc_complete(qc); 4909 } else { 4910 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4911 return; 4912 4913 /* read result TF if failed or requested */ 4914 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4915 fill_result_tf(qc); 4916 4917 __ata_qc_complete(qc); 4918 } 4919 } 4920 4921 /** 4922 * ata_qc_complete_multiple - Complete multiple qcs successfully 4923 * @ap: port in question 4924 * @qc_active: new qc_active mask 4925 * 4926 * Complete in-flight commands. This functions is meant to be 4927 * called from low-level driver's interrupt routine to complete 4928 * requests normally. ap->qc_active and @qc_active is compared 4929 * and commands are completed accordingly. 4930 * 4931 * Always use this function when completing multiple NCQ commands 4932 * from IRQ handlers instead of calling ata_qc_complete() 4933 * multiple times to keep IRQ expect status properly in sync. 4934 * 4935 * LOCKING: 4936 * spin_lock_irqsave(host lock) 4937 * 4938 * RETURNS: 4939 * Number of completed commands on success, -errno otherwise. 4940 */ 4941 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4942 { 4943 int nr_done = 0; 4944 u32 done_mask; 4945 4946 done_mask = ap->qc_active ^ qc_active; 4947 4948 if (unlikely(done_mask & qc_active)) { 4949 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4950 ap->qc_active, qc_active); 4951 return -EINVAL; 4952 } 4953 4954 while (done_mask) { 4955 struct ata_queued_cmd *qc; 4956 unsigned int tag = __ffs(done_mask); 4957 4958 qc = ata_qc_from_tag(ap, tag); 4959 if (qc) { 4960 ata_qc_complete(qc); 4961 nr_done++; 4962 } 4963 done_mask &= ~(1 << tag); 4964 } 4965 4966 return nr_done; 4967 } 4968 4969 /** 4970 * ata_qc_issue - issue taskfile to device 4971 * @qc: command to issue to device 4972 * 4973 * Prepare an ATA command to submission to device. 4974 * This includes mapping the data into a DMA-able 4975 * area, filling in the S/G table, and finally 4976 * writing the taskfile to hardware, starting the command. 4977 * 4978 * LOCKING: 4979 * spin_lock_irqsave(host lock) 4980 */ 4981 void ata_qc_issue(struct ata_queued_cmd *qc) 4982 { 4983 struct ata_port *ap = qc->ap; 4984 struct ata_link *link = qc->dev->link; 4985 u8 prot = qc->tf.protocol; 4986 4987 /* Make sure only one non-NCQ command is outstanding. The 4988 * check is skipped for old EH because it reuses active qc to 4989 * request ATAPI sense. 4990 */ 4991 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4992 4993 if (ata_is_ncq(prot)) { 4994 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 4995 4996 if (!link->sactive) 4997 ap->nr_active_links++; 4998 link->sactive |= 1 << qc->tag; 4999 } else { 5000 WARN_ON_ONCE(link->sactive); 5001 5002 ap->nr_active_links++; 5003 link->active_tag = qc->tag; 5004 } 5005 5006 qc->flags |= ATA_QCFLAG_ACTIVE; 5007 ap->qc_active |= 1 << qc->tag; 5008 5009 /* 5010 * We guarantee to LLDs that they will have at least one 5011 * non-zero sg if the command is a data command. 5012 */ 5013 if (WARN_ON_ONCE(ata_is_data(prot) && 5014 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5015 goto sys_err; 5016 5017 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5018 (ap->flags & ATA_FLAG_PIO_DMA))) 5019 if (ata_sg_setup(qc)) 5020 goto sys_err; 5021 5022 /* if device is sleeping, schedule reset and abort the link */ 5023 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5024 link->eh_info.action |= ATA_EH_RESET; 5025 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5026 ata_link_abort(link); 5027 return; 5028 } 5029 5030 ap->ops->qc_prep(qc); 5031 5032 qc->err_mask |= ap->ops->qc_issue(qc); 5033 if (unlikely(qc->err_mask)) 5034 goto err; 5035 return; 5036 5037 sys_err: 5038 qc->err_mask |= AC_ERR_SYSTEM; 5039 err: 5040 ata_qc_complete(qc); 5041 } 5042 5043 /** 5044 * sata_scr_valid - test whether SCRs are accessible 5045 * @link: ATA link to test SCR accessibility for 5046 * 5047 * Test whether SCRs are accessible for @link. 5048 * 5049 * LOCKING: 5050 * None. 5051 * 5052 * RETURNS: 5053 * 1 if SCRs are accessible, 0 otherwise. 5054 */ 5055 int sata_scr_valid(struct ata_link *link) 5056 { 5057 struct ata_port *ap = link->ap; 5058 5059 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5060 } 5061 5062 /** 5063 * sata_scr_read - read SCR register of the specified port 5064 * @link: ATA link to read SCR for 5065 * @reg: SCR to read 5066 * @val: Place to store read value 5067 * 5068 * Read SCR register @reg of @link into *@val. This function is 5069 * guaranteed to succeed if @link is ap->link, the cable type of 5070 * the port is SATA and the port implements ->scr_read. 5071 * 5072 * LOCKING: 5073 * None if @link is ap->link. Kernel thread context otherwise. 5074 * 5075 * RETURNS: 5076 * 0 on success, negative errno on failure. 5077 */ 5078 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5079 { 5080 if (ata_is_host_link(link)) { 5081 if (sata_scr_valid(link)) 5082 return link->ap->ops->scr_read(link, reg, val); 5083 return -EOPNOTSUPP; 5084 } 5085 5086 return sata_pmp_scr_read(link, reg, val); 5087 } 5088 5089 /** 5090 * sata_scr_write - write SCR register of the specified port 5091 * @link: ATA link to write SCR for 5092 * @reg: SCR to write 5093 * @val: value to write 5094 * 5095 * Write @val to SCR register @reg of @link. This function is 5096 * guaranteed to succeed if @link is ap->link, the cable type of 5097 * the port is SATA and the port implements ->scr_read. 5098 * 5099 * LOCKING: 5100 * None if @link is ap->link. Kernel thread context otherwise. 5101 * 5102 * RETURNS: 5103 * 0 on success, negative errno on failure. 5104 */ 5105 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5106 { 5107 if (ata_is_host_link(link)) { 5108 if (sata_scr_valid(link)) 5109 return link->ap->ops->scr_write(link, reg, val); 5110 return -EOPNOTSUPP; 5111 } 5112 5113 return sata_pmp_scr_write(link, reg, val); 5114 } 5115 5116 /** 5117 * sata_scr_write_flush - write SCR register of the specified port and flush 5118 * @link: ATA link to write SCR for 5119 * @reg: SCR to write 5120 * @val: value to write 5121 * 5122 * This function is identical to sata_scr_write() except that this 5123 * function performs flush after writing to the register. 5124 * 5125 * LOCKING: 5126 * None if @link is ap->link. Kernel thread context otherwise. 5127 * 5128 * RETURNS: 5129 * 0 on success, negative errno on failure. 5130 */ 5131 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5132 { 5133 if (ata_is_host_link(link)) { 5134 int rc; 5135 5136 if (sata_scr_valid(link)) { 5137 rc = link->ap->ops->scr_write(link, reg, val); 5138 if (rc == 0) 5139 rc = link->ap->ops->scr_read(link, reg, &val); 5140 return rc; 5141 } 5142 return -EOPNOTSUPP; 5143 } 5144 5145 return sata_pmp_scr_write(link, reg, val); 5146 } 5147 5148 /** 5149 * ata_phys_link_online - test whether the given link is online 5150 * @link: ATA link to test 5151 * 5152 * Test whether @link is online. Note that this function returns 5153 * 0 if online status of @link cannot be obtained, so 5154 * ata_link_online(link) != !ata_link_offline(link). 5155 * 5156 * LOCKING: 5157 * None. 5158 * 5159 * RETURNS: 5160 * True if the port online status is available and online. 5161 */ 5162 bool ata_phys_link_online(struct ata_link *link) 5163 { 5164 u32 sstatus; 5165 5166 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5167 ata_sstatus_online(sstatus)) 5168 return true; 5169 return false; 5170 } 5171 5172 /** 5173 * ata_phys_link_offline - test whether the given link is offline 5174 * @link: ATA link to test 5175 * 5176 * Test whether @link is offline. Note that this function 5177 * returns 0 if offline status of @link cannot be obtained, so 5178 * ata_link_online(link) != !ata_link_offline(link). 5179 * 5180 * LOCKING: 5181 * None. 5182 * 5183 * RETURNS: 5184 * True if the port offline status is available and offline. 5185 */ 5186 bool ata_phys_link_offline(struct ata_link *link) 5187 { 5188 u32 sstatus; 5189 5190 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5191 !ata_sstatus_online(sstatus)) 5192 return true; 5193 return false; 5194 } 5195 5196 /** 5197 * ata_link_online - test whether the given link is online 5198 * @link: ATA link to test 5199 * 5200 * Test whether @link is online. This is identical to 5201 * ata_phys_link_online() when there's no slave link. When 5202 * there's a slave link, this function should only be called on 5203 * the master link and will return true if any of M/S links is 5204 * online. 5205 * 5206 * LOCKING: 5207 * None. 5208 * 5209 * RETURNS: 5210 * True if the port online status is available and online. 5211 */ 5212 bool ata_link_online(struct ata_link *link) 5213 { 5214 struct ata_link *slave = link->ap->slave_link; 5215 5216 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5217 5218 return ata_phys_link_online(link) || 5219 (slave && ata_phys_link_online(slave)); 5220 } 5221 5222 /** 5223 * ata_link_offline - test whether the given link is offline 5224 * @link: ATA link to test 5225 * 5226 * Test whether @link is offline. This is identical to 5227 * ata_phys_link_offline() when there's no slave link. When 5228 * there's a slave link, this function should only be called on 5229 * the master link and will return true if both M/S links are 5230 * offline. 5231 * 5232 * LOCKING: 5233 * None. 5234 * 5235 * RETURNS: 5236 * True if the port offline status is available and offline. 5237 */ 5238 bool ata_link_offline(struct ata_link *link) 5239 { 5240 struct ata_link *slave = link->ap->slave_link; 5241 5242 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5243 5244 return ata_phys_link_offline(link) && 5245 (!slave || ata_phys_link_offline(slave)); 5246 } 5247 5248 #ifdef CONFIG_PM 5249 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5250 unsigned int action, unsigned int ehi_flags, 5251 int wait) 5252 { 5253 struct ata_link *link; 5254 unsigned long flags; 5255 int rc; 5256 5257 /* Previous resume operation might still be in 5258 * progress. Wait for PM_PENDING to clear. 5259 */ 5260 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5261 ata_port_wait_eh(ap); 5262 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5263 } 5264 5265 /* request PM ops to EH */ 5266 spin_lock_irqsave(ap->lock, flags); 5267 5268 ap->pm_mesg = mesg; 5269 if (wait) { 5270 rc = 0; 5271 ap->pm_result = &rc; 5272 } 5273 5274 ap->pflags |= ATA_PFLAG_PM_PENDING; 5275 ata_for_each_link(link, ap, HOST_FIRST) { 5276 link->eh_info.action |= action; 5277 link->eh_info.flags |= ehi_flags; 5278 } 5279 5280 ata_port_schedule_eh(ap); 5281 5282 spin_unlock_irqrestore(ap->lock, flags); 5283 5284 /* wait and check result */ 5285 if (wait) { 5286 ata_port_wait_eh(ap); 5287 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5288 } 5289 5290 return rc; 5291 } 5292 5293 #define to_ata_port(d) container_of(d, struct ata_port, tdev) 5294 5295 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5296 { 5297 struct ata_port *ap = to_ata_port(dev); 5298 unsigned int ehi_flags = ATA_EHI_QUIET; 5299 int rc; 5300 5301 /* 5302 * On some hardware, device fails to respond after spun down 5303 * for suspend. As the device won't be used before being 5304 * resumed, we don't need to touch the device. Ask EH to skip 5305 * the usual stuff and proceed directly to suspend. 5306 * 5307 * http://thread.gmane.org/gmane.linux.ide/46764 5308 */ 5309 if (mesg.event == PM_EVENT_SUSPEND) 5310 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5311 5312 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1); 5313 return rc; 5314 } 5315 5316 static int ata_port_suspend(struct device *dev) 5317 { 5318 if (pm_runtime_suspended(dev)) 5319 return 0; 5320 5321 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5322 } 5323 5324 static int ata_port_do_freeze(struct device *dev) 5325 { 5326 if (pm_runtime_suspended(dev)) 5327 pm_runtime_resume(dev); 5328 5329 return ata_port_suspend_common(dev, PMSG_FREEZE); 5330 } 5331 5332 static int ata_port_poweroff(struct device *dev) 5333 { 5334 if (pm_runtime_suspended(dev)) 5335 return 0; 5336 5337 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5338 } 5339 5340 static int ata_port_resume_common(struct device *dev) 5341 { 5342 struct ata_port *ap = to_ata_port(dev); 5343 int rc; 5344 5345 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5346 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1); 5347 return rc; 5348 } 5349 5350 static int ata_port_resume(struct device *dev) 5351 { 5352 int rc; 5353 5354 rc = ata_port_resume_common(dev); 5355 if (!rc) { 5356 pm_runtime_disable(dev); 5357 pm_runtime_set_active(dev); 5358 pm_runtime_enable(dev); 5359 } 5360 5361 return rc; 5362 } 5363 5364 static int ata_port_runtime_idle(struct device *dev) 5365 { 5366 return pm_runtime_suspend(dev); 5367 } 5368 5369 static const struct dev_pm_ops ata_port_pm_ops = { 5370 .suspend = ata_port_suspend, 5371 .resume = ata_port_resume, 5372 .freeze = ata_port_do_freeze, 5373 .thaw = ata_port_resume, 5374 .poweroff = ata_port_poweroff, 5375 .restore = ata_port_resume, 5376 5377 .runtime_suspend = ata_port_suspend, 5378 .runtime_resume = ata_port_resume_common, 5379 .runtime_idle = ata_port_runtime_idle, 5380 }; 5381 5382 /** 5383 * ata_host_suspend - suspend host 5384 * @host: host to suspend 5385 * @mesg: PM message 5386 * 5387 * Suspend @host. Actual operation is performed by port suspend. 5388 */ 5389 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5390 { 5391 host->dev->power.power_state = mesg; 5392 return 0; 5393 } 5394 5395 /** 5396 * ata_host_resume - resume host 5397 * @host: host to resume 5398 * 5399 * Resume @host. Actual operation is performed by port resume. 5400 */ 5401 void ata_host_resume(struct ata_host *host) 5402 { 5403 host->dev->power.power_state = PMSG_ON; 5404 } 5405 #endif 5406 5407 struct device_type ata_port_type = { 5408 .name = "ata_port", 5409 #ifdef CONFIG_PM 5410 .pm = &ata_port_pm_ops, 5411 #endif 5412 }; 5413 5414 /** 5415 * ata_dev_init - Initialize an ata_device structure 5416 * @dev: Device structure to initialize 5417 * 5418 * Initialize @dev in preparation for probing. 5419 * 5420 * LOCKING: 5421 * Inherited from caller. 5422 */ 5423 void ata_dev_init(struct ata_device *dev) 5424 { 5425 struct ata_link *link = ata_dev_phys_link(dev); 5426 struct ata_port *ap = link->ap; 5427 unsigned long flags; 5428 5429 /* SATA spd limit is bound to the attached device, reset together */ 5430 link->sata_spd_limit = link->hw_sata_spd_limit; 5431 link->sata_spd = 0; 5432 5433 /* High bits of dev->flags are used to record warm plug 5434 * requests which occur asynchronously. Synchronize using 5435 * host lock. 5436 */ 5437 spin_lock_irqsave(ap->lock, flags); 5438 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5439 dev->horkage = 0; 5440 spin_unlock_irqrestore(ap->lock, flags); 5441 5442 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5443 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5444 dev->pio_mask = UINT_MAX; 5445 dev->mwdma_mask = UINT_MAX; 5446 dev->udma_mask = UINT_MAX; 5447 } 5448 5449 /** 5450 * ata_link_init - Initialize an ata_link structure 5451 * @ap: ATA port link is attached to 5452 * @link: Link structure to initialize 5453 * @pmp: Port multiplier port number 5454 * 5455 * Initialize @link. 5456 * 5457 * LOCKING: 5458 * Kernel thread context (may sleep) 5459 */ 5460 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5461 { 5462 int i; 5463 5464 /* clear everything except for devices */ 5465 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5466 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5467 5468 link->ap = ap; 5469 link->pmp = pmp; 5470 link->active_tag = ATA_TAG_POISON; 5471 link->hw_sata_spd_limit = UINT_MAX; 5472 5473 /* can't use iterator, ap isn't initialized yet */ 5474 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5475 struct ata_device *dev = &link->device[i]; 5476 5477 dev->link = link; 5478 dev->devno = dev - link->device; 5479 #ifdef CONFIG_ATA_ACPI 5480 dev->gtf_filter = ata_acpi_gtf_filter; 5481 #endif 5482 ata_dev_init(dev); 5483 } 5484 } 5485 5486 /** 5487 * sata_link_init_spd - Initialize link->sata_spd_limit 5488 * @link: Link to configure sata_spd_limit for 5489 * 5490 * Initialize @link->[hw_]sata_spd_limit to the currently 5491 * configured value. 5492 * 5493 * LOCKING: 5494 * Kernel thread context (may sleep). 5495 * 5496 * RETURNS: 5497 * 0 on success, -errno on failure. 5498 */ 5499 int sata_link_init_spd(struct ata_link *link) 5500 { 5501 u8 spd; 5502 int rc; 5503 5504 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5505 if (rc) 5506 return rc; 5507 5508 spd = (link->saved_scontrol >> 4) & 0xf; 5509 if (spd) 5510 link->hw_sata_spd_limit &= (1 << spd) - 1; 5511 5512 ata_force_link_limits(link); 5513 5514 link->sata_spd_limit = link->hw_sata_spd_limit; 5515 5516 return 0; 5517 } 5518 5519 /** 5520 * ata_port_alloc - allocate and initialize basic ATA port resources 5521 * @host: ATA host this allocated port belongs to 5522 * 5523 * Allocate and initialize basic ATA port resources. 5524 * 5525 * RETURNS: 5526 * Allocate ATA port on success, NULL on failure. 5527 * 5528 * LOCKING: 5529 * Inherited from calling layer (may sleep). 5530 */ 5531 struct ata_port *ata_port_alloc(struct ata_host *host) 5532 { 5533 struct ata_port *ap; 5534 5535 DPRINTK("ENTER\n"); 5536 5537 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5538 if (!ap) 5539 return NULL; 5540 5541 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5542 ap->lock = &host->lock; 5543 ap->print_id = -1; 5544 ap->host = host; 5545 ap->dev = host->dev; 5546 5547 #if defined(ATA_VERBOSE_DEBUG) 5548 /* turn on all debugging levels */ 5549 ap->msg_enable = 0x00FF; 5550 #elif defined(ATA_DEBUG) 5551 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5552 #else 5553 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5554 #endif 5555 5556 mutex_init(&ap->scsi_scan_mutex); 5557 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5558 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5559 INIT_LIST_HEAD(&ap->eh_done_q); 5560 init_waitqueue_head(&ap->eh_wait_q); 5561 init_completion(&ap->park_req_pending); 5562 init_timer_deferrable(&ap->fastdrain_timer); 5563 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5564 ap->fastdrain_timer.data = (unsigned long)ap; 5565 5566 ap->cbl = ATA_CBL_NONE; 5567 5568 ata_link_init(ap, &ap->link, 0); 5569 5570 #ifdef ATA_IRQ_TRAP 5571 ap->stats.unhandled_irq = 1; 5572 ap->stats.idle_irq = 1; 5573 #endif 5574 ata_sff_port_init(ap); 5575 5576 return ap; 5577 } 5578 5579 static void ata_host_release(struct device *gendev, void *res) 5580 { 5581 struct ata_host *host = dev_get_drvdata(gendev); 5582 int i; 5583 5584 for (i = 0; i < host->n_ports; i++) { 5585 struct ata_port *ap = host->ports[i]; 5586 5587 if (!ap) 5588 continue; 5589 5590 if (ap->scsi_host) 5591 scsi_host_put(ap->scsi_host); 5592 5593 kfree(ap->pmp_link); 5594 kfree(ap->slave_link); 5595 kfree(ap); 5596 host->ports[i] = NULL; 5597 } 5598 5599 dev_set_drvdata(gendev, NULL); 5600 } 5601 5602 /** 5603 * ata_host_alloc - allocate and init basic ATA host resources 5604 * @dev: generic device this host is associated with 5605 * @max_ports: maximum number of ATA ports associated with this host 5606 * 5607 * Allocate and initialize basic ATA host resources. LLD calls 5608 * this function to allocate a host, initializes it fully and 5609 * attaches it using ata_host_register(). 5610 * 5611 * @max_ports ports are allocated and host->n_ports is 5612 * initialized to @max_ports. The caller is allowed to decrease 5613 * host->n_ports before calling ata_host_register(). The unused 5614 * ports will be automatically freed on registration. 5615 * 5616 * RETURNS: 5617 * Allocate ATA host on success, NULL on failure. 5618 * 5619 * LOCKING: 5620 * Inherited from calling layer (may sleep). 5621 */ 5622 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5623 { 5624 struct ata_host *host; 5625 size_t sz; 5626 int i; 5627 5628 DPRINTK("ENTER\n"); 5629 5630 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5631 return NULL; 5632 5633 /* alloc a container for our list of ATA ports (buses) */ 5634 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5635 /* alloc a container for our list of ATA ports (buses) */ 5636 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5637 if (!host) 5638 goto err_out; 5639 5640 devres_add(dev, host); 5641 dev_set_drvdata(dev, host); 5642 5643 spin_lock_init(&host->lock); 5644 mutex_init(&host->eh_mutex); 5645 host->dev = dev; 5646 host->n_ports = max_ports; 5647 5648 /* allocate ports bound to this host */ 5649 for (i = 0; i < max_ports; i++) { 5650 struct ata_port *ap; 5651 5652 ap = ata_port_alloc(host); 5653 if (!ap) 5654 goto err_out; 5655 5656 ap->port_no = i; 5657 host->ports[i] = ap; 5658 } 5659 5660 devres_remove_group(dev, NULL); 5661 return host; 5662 5663 err_out: 5664 devres_release_group(dev, NULL); 5665 return NULL; 5666 } 5667 5668 /** 5669 * ata_host_alloc_pinfo - alloc host and init with port_info array 5670 * @dev: generic device this host is associated with 5671 * @ppi: array of ATA port_info to initialize host with 5672 * @n_ports: number of ATA ports attached to this host 5673 * 5674 * Allocate ATA host and initialize with info from @ppi. If NULL 5675 * terminated, @ppi may contain fewer entries than @n_ports. The 5676 * last entry will be used for the remaining ports. 5677 * 5678 * RETURNS: 5679 * Allocate ATA host on success, NULL on failure. 5680 * 5681 * LOCKING: 5682 * Inherited from calling layer (may sleep). 5683 */ 5684 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5685 const struct ata_port_info * const * ppi, 5686 int n_ports) 5687 { 5688 const struct ata_port_info *pi; 5689 struct ata_host *host; 5690 int i, j; 5691 5692 host = ata_host_alloc(dev, n_ports); 5693 if (!host) 5694 return NULL; 5695 5696 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5697 struct ata_port *ap = host->ports[i]; 5698 5699 if (ppi[j]) 5700 pi = ppi[j++]; 5701 5702 ap->pio_mask = pi->pio_mask; 5703 ap->mwdma_mask = pi->mwdma_mask; 5704 ap->udma_mask = pi->udma_mask; 5705 ap->flags |= pi->flags; 5706 ap->link.flags |= pi->link_flags; 5707 ap->ops = pi->port_ops; 5708 5709 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5710 host->ops = pi->port_ops; 5711 } 5712 5713 return host; 5714 } 5715 5716 /** 5717 * ata_slave_link_init - initialize slave link 5718 * @ap: port to initialize slave link for 5719 * 5720 * Create and initialize slave link for @ap. This enables slave 5721 * link handling on the port. 5722 * 5723 * In libata, a port contains links and a link contains devices. 5724 * There is single host link but if a PMP is attached to it, 5725 * there can be multiple fan-out links. On SATA, there's usually 5726 * a single device connected to a link but PATA and SATA 5727 * controllers emulating TF based interface can have two - master 5728 * and slave. 5729 * 5730 * However, there are a few controllers which don't fit into this 5731 * abstraction too well - SATA controllers which emulate TF 5732 * interface with both master and slave devices but also have 5733 * separate SCR register sets for each device. These controllers 5734 * need separate links for physical link handling 5735 * (e.g. onlineness, link speed) but should be treated like a 5736 * traditional M/S controller for everything else (e.g. command 5737 * issue, softreset). 5738 * 5739 * slave_link is libata's way of handling this class of 5740 * controllers without impacting core layer too much. For 5741 * anything other than physical link handling, the default host 5742 * link is used for both master and slave. For physical link 5743 * handling, separate @ap->slave_link is used. All dirty details 5744 * are implemented inside libata core layer. From LLD's POV, the 5745 * only difference is that prereset, hardreset and postreset are 5746 * called once more for the slave link, so the reset sequence 5747 * looks like the following. 5748 * 5749 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5750 * softreset(M) -> postreset(M) -> postreset(S) 5751 * 5752 * Note that softreset is called only for the master. Softreset 5753 * resets both M/S by definition, so SRST on master should handle 5754 * both (the standard method will work just fine). 5755 * 5756 * LOCKING: 5757 * Should be called before host is registered. 5758 * 5759 * RETURNS: 5760 * 0 on success, -errno on failure. 5761 */ 5762 int ata_slave_link_init(struct ata_port *ap) 5763 { 5764 struct ata_link *link; 5765 5766 WARN_ON(ap->slave_link); 5767 WARN_ON(ap->flags & ATA_FLAG_PMP); 5768 5769 link = kzalloc(sizeof(*link), GFP_KERNEL); 5770 if (!link) 5771 return -ENOMEM; 5772 5773 ata_link_init(ap, link, 1); 5774 ap->slave_link = link; 5775 return 0; 5776 } 5777 5778 static void ata_host_stop(struct device *gendev, void *res) 5779 { 5780 struct ata_host *host = dev_get_drvdata(gendev); 5781 int i; 5782 5783 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5784 5785 for (i = 0; i < host->n_ports; i++) { 5786 struct ata_port *ap = host->ports[i]; 5787 5788 if (ap->ops->port_stop) 5789 ap->ops->port_stop(ap); 5790 } 5791 5792 if (host->ops->host_stop) 5793 host->ops->host_stop(host); 5794 } 5795 5796 /** 5797 * ata_finalize_port_ops - finalize ata_port_operations 5798 * @ops: ata_port_operations to finalize 5799 * 5800 * An ata_port_operations can inherit from another ops and that 5801 * ops can again inherit from another. This can go on as many 5802 * times as necessary as long as there is no loop in the 5803 * inheritance chain. 5804 * 5805 * Ops tables are finalized when the host is started. NULL or 5806 * unspecified entries are inherited from the closet ancestor 5807 * which has the method and the entry is populated with it. 5808 * After finalization, the ops table directly points to all the 5809 * methods and ->inherits is no longer necessary and cleared. 5810 * 5811 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5812 * 5813 * LOCKING: 5814 * None. 5815 */ 5816 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5817 { 5818 static DEFINE_SPINLOCK(lock); 5819 const struct ata_port_operations *cur; 5820 void **begin = (void **)ops; 5821 void **end = (void **)&ops->inherits; 5822 void **pp; 5823 5824 if (!ops || !ops->inherits) 5825 return; 5826 5827 spin_lock(&lock); 5828 5829 for (cur = ops->inherits; cur; cur = cur->inherits) { 5830 void **inherit = (void **)cur; 5831 5832 for (pp = begin; pp < end; pp++, inherit++) 5833 if (!*pp) 5834 *pp = *inherit; 5835 } 5836 5837 for (pp = begin; pp < end; pp++) 5838 if (IS_ERR(*pp)) 5839 *pp = NULL; 5840 5841 ops->inherits = NULL; 5842 5843 spin_unlock(&lock); 5844 } 5845 5846 /** 5847 * ata_host_start - start and freeze ports of an ATA host 5848 * @host: ATA host to start ports for 5849 * 5850 * Start and then freeze ports of @host. Started status is 5851 * recorded in host->flags, so this function can be called 5852 * multiple times. Ports are guaranteed to get started only 5853 * once. If host->ops isn't initialized yet, its set to the 5854 * first non-dummy port ops. 5855 * 5856 * LOCKING: 5857 * Inherited from calling layer (may sleep). 5858 * 5859 * RETURNS: 5860 * 0 if all ports are started successfully, -errno otherwise. 5861 */ 5862 int ata_host_start(struct ata_host *host) 5863 { 5864 int have_stop = 0; 5865 void *start_dr = NULL; 5866 int i, rc; 5867 5868 if (host->flags & ATA_HOST_STARTED) 5869 return 0; 5870 5871 ata_finalize_port_ops(host->ops); 5872 5873 for (i = 0; i < host->n_ports; i++) { 5874 struct ata_port *ap = host->ports[i]; 5875 5876 ata_finalize_port_ops(ap->ops); 5877 5878 if (!host->ops && !ata_port_is_dummy(ap)) 5879 host->ops = ap->ops; 5880 5881 if (ap->ops->port_stop) 5882 have_stop = 1; 5883 } 5884 5885 if (host->ops->host_stop) 5886 have_stop = 1; 5887 5888 if (have_stop) { 5889 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5890 if (!start_dr) 5891 return -ENOMEM; 5892 } 5893 5894 for (i = 0; i < host->n_ports; i++) { 5895 struct ata_port *ap = host->ports[i]; 5896 5897 if (ap->ops->port_start) { 5898 rc = ap->ops->port_start(ap); 5899 if (rc) { 5900 if (rc != -ENODEV) 5901 dev_err(host->dev, 5902 "failed to start port %d (errno=%d)\n", 5903 i, rc); 5904 goto err_out; 5905 } 5906 } 5907 ata_eh_freeze_port(ap); 5908 } 5909 5910 if (start_dr) 5911 devres_add(host->dev, start_dr); 5912 host->flags |= ATA_HOST_STARTED; 5913 return 0; 5914 5915 err_out: 5916 while (--i >= 0) { 5917 struct ata_port *ap = host->ports[i]; 5918 5919 if (ap->ops->port_stop) 5920 ap->ops->port_stop(ap); 5921 } 5922 devres_free(start_dr); 5923 return rc; 5924 } 5925 5926 /** 5927 * ata_sas_host_init - Initialize a host struct 5928 * @host: host to initialize 5929 * @dev: device host is attached to 5930 * @flags: host flags 5931 * @ops: port_ops 5932 * 5933 * LOCKING: 5934 * PCI/etc. bus probe sem. 5935 * 5936 */ 5937 /* KILLME - the only user left is ipr */ 5938 void ata_host_init(struct ata_host *host, struct device *dev, 5939 unsigned long flags, struct ata_port_operations *ops) 5940 { 5941 spin_lock_init(&host->lock); 5942 mutex_init(&host->eh_mutex); 5943 host->dev = dev; 5944 host->flags = flags; 5945 host->ops = ops; 5946 } 5947 5948 void __ata_port_probe(struct ata_port *ap) 5949 { 5950 struct ata_eh_info *ehi = &ap->link.eh_info; 5951 unsigned long flags; 5952 5953 /* kick EH for boot probing */ 5954 spin_lock_irqsave(ap->lock, flags); 5955 5956 ehi->probe_mask |= ATA_ALL_DEVICES; 5957 ehi->action |= ATA_EH_RESET; 5958 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5959 5960 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5961 ap->pflags |= ATA_PFLAG_LOADING; 5962 ata_port_schedule_eh(ap); 5963 5964 spin_unlock_irqrestore(ap->lock, flags); 5965 } 5966 5967 int ata_port_probe(struct ata_port *ap) 5968 { 5969 int rc = 0; 5970 5971 if (ap->ops->error_handler) { 5972 __ata_port_probe(ap); 5973 ata_port_wait_eh(ap); 5974 } else { 5975 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5976 rc = ata_bus_probe(ap); 5977 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5978 } 5979 return rc; 5980 } 5981 5982 5983 static void async_port_probe(void *data, async_cookie_t cookie) 5984 { 5985 struct ata_port *ap = data; 5986 5987 /* 5988 * If we're not allowed to scan this host in parallel, 5989 * we need to wait until all previous scans have completed 5990 * before going further. 5991 * Jeff Garzik says this is only within a controller, so we 5992 * don't need to wait for port 0, only for later ports. 5993 */ 5994 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5995 async_synchronize_cookie(cookie); 5996 5997 (void)ata_port_probe(ap); 5998 5999 /* in order to keep device order, we need to synchronize at this point */ 6000 async_synchronize_cookie(cookie); 6001 6002 ata_scsi_scan_host(ap, 1); 6003 } 6004 6005 /** 6006 * ata_host_register - register initialized ATA host 6007 * @host: ATA host to register 6008 * @sht: template for SCSI host 6009 * 6010 * Register initialized ATA host. @host is allocated using 6011 * ata_host_alloc() and fully initialized by LLD. This function 6012 * starts ports, registers @host with ATA and SCSI layers and 6013 * probe registered devices. 6014 * 6015 * LOCKING: 6016 * Inherited from calling layer (may sleep). 6017 * 6018 * RETURNS: 6019 * 0 on success, -errno otherwise. 6020 */ 6021 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6022 { 6023 int i, rc; 6024 6025 /* host must have been started */ 6026 if (!(host->flags & ATA_HOST_STARTED)) { 6027 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6028 WARN_ON(1); 6029 return -EINVAL; 6030 } 6031 6032 /* Blow away unused ports. This happens when LLD can't 6033 * determine the exact number of ports to allocate at 6034 * allocation time. 6035 */ 6036 for (i = host->n_ports; host->ports[i]; i++) 6037 kfree(host->ports[i]); 6038 6039 /* give ports names and add SCSI hosts */ 6040 for (i = 0; i < host->n_ports; i++) 6041 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6042 6043 6044 /* Create associated sysfs transport objects */ 6045 for (i = 0; i < host->n_ports; i++) { 6046 rc = ata_tport_add(host->dev,host->ports[i]); 6047 if (rc) { 6048 goto err_tadd; 6049 } 6050 } 6051 6052 rc = ata_scsi_add_hosts(host, sht); 6053 if (rc) 6054 goto err_tadd; 6055 6056 /* associate with ACPI nodes */ 6057 ata_acpi_associate(host); 6058 6059 /* set cable, sata_spd_limit and report */ 6060 for (i = 0; i < host->n_ports; i++) { 6061 struct ata_port *ap = host->ports[i]; 6062 unsigned long xfer_mask; 6063 6064 /* set SATA cable type if still unset */ 6065 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6066 ap->cbl = ATA_CBL_SATA; 6067 6068 /* init sata_spd_limit to the current value */ 6069 sata_link_init_spd(&ap->link); 6070 if (ap->slave_link) 6071 sata_link_init_spd(ap->slave_link); 6072 6073 /* print per-port info to dmesg */ 6074 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6075 ap->udma_mask); 6076 6077 if (!ata_port_is_dummy(ap)) { 6078 ata_port_info(ap, "%cATA max %s %s\n", 6079 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6080 ata_mode_string(xfer_mask), 6081 ap->link.eh_info.desc); 6082 ata_ehi_clear_desc(&ap->link.eh_info); 6083 } else 6084 ata_port_info(ap, "DUMMY\n"); 6085 } 6086 6087 /* perform each probe asynchronously */ 6088 for (i = 0; i < host->n_ports; i++) { 6089 struct ata_port *ap = host->ports[i]; 6090 async_schedule(async_port_probe, ap); 6091 } 6092 6093 return 0; 6094 6095 err_tadd: 6096 while (--i >= 0) { 6097 ata_tport_delete(host->ports[i]); 6098 } 6099 return rc; 6100 6101 } 6102 6103 /** 6104 * ata_host_activate - start host, request IRQ and register it 6105 * @host: target ATA host 6106 * @irq: IRQ to request 6107 * @irq_handler: irq_handler used when requesting IRQ 6108 * @irq_flags: irq_flags used when requesting IRQ 6109 * @sht: scsi_host_template to use when registering the host 6110 * 6111 * After allocating an ATA host and initializing it, most libata 6112 * LLDs perform three steps to activate the host - start host, 6113 * request IRQ and register it. This helper takes necessasry 6114 * arguments and performs the three steps in one go. 6115 * 6116 * An invalid IRQ skips the IRQ registration and expects the host to 6117 * have set polling mode on the port. In this case, @irq_handler 6118 * should be NULL. 6119 * 6120 * LOCKING: 6121 * Inherited from calling layer (may sleep). 6122 * 6123 * RETURNS: 6124 * 0 on success, -errno otherwise. 6125 */ 6126 int ata_host_activate(struct ata_host *host, int irq, 6127 irq_handler_t irq_handler, unsigned long irq_flags, 6128 struct scsi_host_template *sht) 6129 { 6130 int i, rc; 6131 6132 rc = ata_host_start(host); 6133 if (rc) 6134 return rc; 6135 6136 /* Special case for polling mode */ 6137 if (!irq) { 6138 WARN_ON(irq_handler); 6139 return ata_host_register(host, sht); 6140 } 6141 6142 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6143 dev_driver_string(host->dev), host); 6144 if (rc) 6145 return rc; 6146 6147 for (i = 0; i < host->n_ports; i++) 6148 ata_port_desc(host->ports[i], "irq %d", irq); 6149 6150 rc = ata_host_register(host, sht); 6151 /* if failed, just free the IRQ and leave ports alone */ 6152 if (rc) 6153 devm_free_irq(host->dev, irq, host); 6154 6155 return rc; 6156 } 6157 6158 /** 6159 * ata_port_detach - Detach ATA port in prepration of device removal 6160 * @ap: ATA port to be detached 6161 * 6162 * Detach all ATA devices and the associated SCSI devices of @ap; 6163 * then, remove the associated SCSI host. @ap is guaranteed to 6164 * be quiescent on return from this function. 6165 * 6166 * LOCKING: 6167 * Kernel thread context (may sleep). 6168 */ 6169 static void ata_port_detach(struct ata_port *ap) 6170 { 6171 unsigned long flags; 6172 6173 if (!ap->ops->error_handler) 6174 goto skip_eh; 6175 6176 /* tell EH we're leaving & flush EH */ 6177 spin_lock_irqsave(ap->lock, flags); 6178 ap->pflags |= ATA_PFLAG_UNLOADING; 6179 ata_port_schedule_eh(ap); 6180 spin_unlock_irqrestore(ap->lock, flags); 6181 6182 /* wait till EH commits suicide */ 6183 ata_port_wait_eh(ap); 6184 6185 /* it better be dead now */ 6186 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6187 6188 cancel_delayed_work_sync(&ap->hotplug_task); 6189 6190 skip_eh: 6191 if (ap->pmp_link) { 6192 int i; 6193 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6194 ata_tlink_delete(&ap->pmp_link[i]); 6195 } 6196 ata_tport_delete(ap); 6197 6198 /* remove the associated SCSI host */ 6199 scsi_remove_host(ap->scsi_host); 6200 } 6201 6202 /** 6203 * ata_host_detach - Detach all ports of an ATA host 6204 * @host: Host to detach 6205 * 6206 * Detach all ports of @host. 6207 * 6208 * LOCKING: 6209 * Kernel thread context (may sleep). 6210 */ 6211 void ata_host_detach(struct ata_host *host) 6212 { 6213 int i; 6214 6215 for (i = 0; i < host->n_ports; i++) 6216 ata_port_detach(host->ports[i]); 6217 6218 /* the host is dead now, dissociate ACPI */ 6219 ata_acpi_dissociate(host); 6220 } 6221 6222 #ifdef CONFIG_PCI 6223 6224 /** 6225 * ata_pci_remove_one - PCI layer callback for device removal 6226 * @pdev: PCI device that was removed 6227 * 6228 * PCI layer indicates to libata via this hook that hot-unplug or 6229 * module unload event has occurred. Detach all ports. Resource 6230 * release is handled via devres. 6231 * 6232 * LOCKING: 6233 * Inherited from PCI layer (may sleep). 6234 */ 6235 void ata_pci_remove_one(struct pci_dev *pdev) 6236 { 6237 struct device *dev = &pdev->dev; 6238 struct ata_host *host = dev_get_drvdata(dev); 6239 6240 ata_host_detach(host); 6241 } 6242 6243 /* move to PCI subsystem */ 6244 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6245 { 6246 unsigned long tmp = 0; 6247 6248 switch (bits->width) { 6249 case 1: { 6250 u8 tmp8 = 0; 6251 pci_read_config_byte(pdev, bits->reg, &tmp8); 6252 tmp = tmp8; 6253 break; 6254 } 6255 case 2: { 6256 u16 tmp16 = 0; 6257 pci_read_config_word(pdev, bits->reg, &tmp16); 6258 tmp = tmp16; 6259 break; 6260 } 6261 case 4: { 6262 u32 tmp32 = 0; 6263 pci_read_config_dword(pdev, bits->reg, &tmp32); 6264 tmp = tmp32; 6265 break; 6266 } 6267 6268 default: 6269 return -EINVAL; 6270 } 6271 6272 tmp &= bits->mask; 6273 6274 return (tmp == bits->val) ? 1 : 0; 6275 } 6276 6277 #ifdef CONFIG_PM 6278 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6279 { 6280 pci_save_state(pdev); 6281 pci_disable_device(pdev); 6282 6283 if (mesg.event & PM_EVENT_SLEEP) 6284 pci_set_power_state(pdev, PCI_D3hot); 6285 } 6286 6287 int ata_pci_device_do_resume(struct pci_dev *pdev) 6288 { 6289 int rc; 6290 6291 pci_set_power_state(pdev, PCI_D0); 6292 pci_restore_state(pdev); 6293 6294 rc = pcim_enable_device(pdev); 6295 if (rc) { 6296 dev_err(&pdev->dev, 6297 "failed to enable device after resume (%d)\n", rc); 6298 return rc; 6299 } 6300 6301 pci_set_master(pdev); 6302 return 0; 6303 } 6304 6305 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6306 { 6307 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6308 int rc = 0; 6309 6310 rc = ata_host_suspend(host, mesg); 6311 if (rc) 6312 return rc; 6313 6314 ata_pci_device_do_suspend(pdev, mesg); 6315 6316 return 0; 6317 } 6318 6319 int ata_pci_device_resume(struct pci_dev *pdev) 6320 { 6321 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6322 int rc; 6323 6324 rc = ata_pci_device_do_resume(pdev); 6325 if (rc == 0) 6326 ata_host_resume(host); 6327 return rc; 6328 } 6329 #endif /* CONFIG_PM */ 6330 6331 #endif /* CONFIG_PCI */ 6332 6333 static int __init ata_parse_force_one(char **cur, 6334 struct ata_force_ent *force_ent, 6335 const char **reason) 6336 { 6337 /* FIXME: Currently, there's no way to tag init const data and 6338 * using __initdata causes build failure on some versions of 6339 * gcc. Once __initdataconst is implemented, add const to the 6340 * following structure. 6341 */ 6342 static struct ata_force_param force_tbl[] __initdata = { 6343 { "40c", .cbl = ATA_CBL_PATA40 }, 6344 { "80c", .cbl = ATA_CBL_PATA80 }, 6345 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6346 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6347 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6348 { "sata", .cbl = ATA_CBL_SATA }, 6349 { "1.5Gbps", .spd_limit = 1 }, 6350 { "3.0Gbps", .spd_limit = 2 }, 6351 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6352 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6353 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6354 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6355 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6356 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6357 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6358 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6359 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6360 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6361 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6362 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6363 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6364 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6365 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6366 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6367 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6368 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6369 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6370 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6371 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6372 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6373 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6374 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6375 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6376 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6377 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6378 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6379 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6380 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6381 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6382 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6383 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6384 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6385 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6386 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6387 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6388 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6389 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6390 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6391 }; 6392 char *start = *cur, *p = *cur; 6393 char *id, *val, *endp; 6394 const struct ata_force_param *match_fp = NULL; 6395 int nr_matches = 0, i; 6396 6397 /* find where this param ends and update *cur */ 6398 while (*p != '\0' && *p != ',') 6399 p++; 6400 6401 if (*p == '\0') 6402 *cur = p; 6403 else 6404 *cur = p + 1; 6405 6406 *p = '\0'; 6407 6408 /* parse */ 6409 p = strchr(start, ':'); 6410 if (!p) { 6411 val = strstrip(start); 6412 goto parse_val; 6413 } 6414 *p = '\0'; 6415 6416 id = strstrip(start); 6417 val = strstrip(p + 1); 6418 6419 /* parse id */ 6420 p = strchr(id, '.'); 6421 if (p) { 6422 *p++ = '\0'; 6423 force_ent->device = simple_strtoul(p, &endp, 10); 6424 if (p == endp || *endp != '\0') { 6425 *reason = "invalid device"; 6426 return -EINVAL; 6427 } 6428 } 6429 6430 force_ent->port = simple_strtoul(id, &endp, 10); 6431 if (p == endp || *endp != '\0') { 6432 *reason = "invalid port/link"; 6433 return -EINVAL; 6434 } 6435 6436 parse_val: 6437 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6438 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6439 const struct ata_force_param *fp = &force_tbl[i]; 6440 6441 if (strncasecmp(val, fp->name, strlen(val))) 6442 continue; 6443 6444 nr_matches++; 6445 match_fp = fp; 6446 6447 if (strcasecmp(val, fp->name) == 0) { 6448 nr_matches = 1; 6449 break; 6450 } 6451 } 6452 6453 if (!nr_matches) { 6454 *reason = "unknown value"; 6455 return -EINVAL; 6456 } 6457 if (nr_matches > 1) { 6458 *reason = "ambigious value"; 6459 return -EINVAL; 6460 } 6461 6462 force_ent->param = *match_fp; 6463 6464 return 0; 6465 } 6466 6467 static void __init ata_parse_force_param(void) 6468 { 6469 int idx = 0, size = 1; 6470 int last_port = -1, last_device = -1; 6471 char *p, *cur, *next; 6472 6473 /* calculate maximum number of params and allocate force_tbl */ 6474 for (p = ata_force_param_buf; *p; p++) 6475 if (*p == ',') 6476 size++; 6477 6478 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6479 if (!ata_force_tbl) { 6480 printk(KERN_WARNING "ata: failed to extend force table, " 6481 "libata.force ignored\n"); 6482 return; 6483 } 6484 6485 /* parse and populate the table */ 6486 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6487 const char *reason = ""; 6488 struct ata_force_ent te = { .port = -1, .device = -1 }; 6489 6490 next = cur; 6491 if (ata_parse_force_one(&next, &te, &reason)) { 6492 printk(KERN_WARNING "ata: failed to parse force " 6493 "parameter \"%s\" (%s)\n", 6494 cur, reason); 6495 continue; 6496 } 6497 6498 if (te.port == -1) { 6499 te.port = last_port; 6500 te.device = last_device; 6501 } 6502 6503 ata_force_tbl[idx++] = te; 6504 6505 last_port = te.port; 6506 last_device = te.device; 6507 } 6508 6509 ata_force_tbl_size = idx; 6510 } 6511 6512 static int __init ata_init(void) 6513 { 6514 int rc; 6515 6516 ata_parse_force_param(); 6517 6518 rc = ata_sff_init(); 6519 if (rc) { 6520 kfree(ata_force_tbl); 6521 return rc; 6522 } 6523 6524 libata_transport_init(); 6525 ata_scsi_transport_template = ata_attach_transport(); 6526 if (!ata_scsi_transport_template) { 6527 ata_sff_exit(); 6528 rc = -ENOMEM; 6529 goto err_out; 6530 } 6531 6532 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6533 return 0; 6534 6535 err_out: 6536 return rc; 6537 } 6538 6539 static void __exit ata_exit(void) 6540 { 6541 ata_release_transport(ata_scsi_transport_template); 6542 libata_transport_exit(); 6543 ata_sff_exit(); 6544 kfree(ata_force_tbl); 6545 } 6546 6547 subsys_initcall(ata_init); 6548 module_exit(ata_exit); 6549 6550 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6551 6552 int ata_ratelimit(void) 6553 { 6554 return __ratelimit(&ratelimit); 6555 } 6556 6557 /** 6558 * ata_msleep - ATA EH owner aware msleep 6559 * @ap: ATA port to attribute the sleep to 6560 * @msecs: duration to sleep in milliseconds 6561 * 6562 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6563 * ownership is released before going to sleep and reacquired 6564 * after the sleep is complete. IOW, other ports sharing the 6565 * @ap->host will be allowed to own the EH while this task is 6566 * sleeping. 6567 * 6568 * LOCKING: 6569 * Might sleep. 6570 */ 6571 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6572 { 6573 bool owns_eh = ap && ap->host->eh_owner == current; 6574 6575 if (owns_eh) 6576 ata_eh_release(ap); 6577 6578 msleep(msecs); 6579 6580 if (owns_eh) 6581 ata_eh_acquire(ap); 6582 } 6583 6584 /** 6585 * ata_wait_register - wait until register value changes 6586 * @ap: ATA port to wait register for, can be NULL 6587 * @reg: IO-mapped register 6588 * @mask: Mask to apply to read register value 6589 * @val: Wait condition 6590 * @interval: polling interval in milliseconds 6591 * @timeout: timeout in milliseconds 6592 * 6593 * Waiting for some bits of register to change is a common 6594 * operation for ATA controllers. This function reads 32bit LE 6595 * IO-mapped register @reg and tests for the following condition. 6596 * 6597 * (*@reg & mask) != val 6598 * 6599 * If the condition is met, it returns; otherwise, the process is 6600 * repeated after @interval_msec until timeout. 6601 * 6602 * LOCKING: 6603 * Kernel thread context (may sleep) 6604 * 6605 * RETURNS: 6606 * The final register value. 6607 */ 6608 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6609 unsigned long interval, unsigned long timeout) 6610 { 6611 unsigned long deadline; 6612 u32 tmp; 6613 6614 tmp = ioread32(reg); 6615 6616 /* Calculate timeout _after_ the first read to make sure 6617 * preceding writes reach the controller before starting to 6618 * eat away the timeout. 6619 */ 6620 deadline = ata_deadline(jiffies, timeout); 6621 6622 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6623 ata_msleep(ap, interval); 6624 tmp = ioread32(reg); 6625 } 6626 6627 return tmp; 6628 } 6629 6630 /* 6631 * Dummy port_ops 6632 */ 6633 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6634 { 6635 return AC_ERR_SYSTEM; 6636 } 6637 6638 static void ata_dummy_error_handler(struct ata_port *ap) 6639 { 6640 /* truly dummy */ 6641 } 6642 6643 struct ata_port_operations ata_dummy_port_ops = { 6644 .qc_prep = ata_noop_qc_prep, 6645 .qc_issue = ata_dummy_qc_issue, 6646 .error_handler = ata_dummy_error_handler, 6647 .sched_eh = ata_std_sched_eh, 6648 .end_eh = ata_std_end_eh, 6649 }; 6650 6651 const struct ata_port_info ata_dummy_port_info = { 6652 .port_ops = &ata_dummy_port_ops, 6653 }; 6654 6655 /* 6656 * Utility print functions 6657 */ 6658 int ata_port_printk(const struct ata_port *ap, const char *level, 6659 const char *fmt, ...) 6660 { 6661 struct va_format vaf; 6662 va_list args; 6663 int r; 6664 6665 va_start(args, fmt); 6666 6667 vaf.fmt = fmt; 6668 vaf.va = &args; 6669 6670 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6671 6672 va_end(args); 6673 6674 return r; 6675 } 6676 EXPORT_SYMBOL(ata_port_printk); 6677 6678 int ata_link_printk(const struct ata_link *link, const char *level, 6679 const char *fmt, ...) 6680 { 6681 struct va_format vaf; 6682 va_list args; 6683 int r; 6684 6685 va_start(args, fmt); 6686 6687 vaf.fmt = fmt; 6688 vaf.va = &args; 6689 6690 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6691 r = printk("%sata%u.%02u: %pV", 6692 level, link->ap->print_id, link->pmp, &vaf); 6693 else 6694 r = printk("%sata%u: %pV", 6695 level, link->ap->print_id, &vaf); 6696 6697 va_end(args); 6698 6699 return r; 6700 } 6701 EXPORT_SYMBOL(ata_link_printk); 6702 6703 int ata_dev_printk(const struct ata_device *dev, const char *level, 6704 const char *fmt, ...) 6705 { 6706 struct va_format vaf; 6707 va_list args; 6708 int r; 6709 6710 va_start(args, fmt); 6711 6712 vaf.fmt = fmt; 6713 vaf.va = &args; 6714 6715 r = printk("%sata%u.%02u: %pV", 6716 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6717 &vaf); 6718 6719 va_end(args); 6720 6721 return r; 6722 } 6723 EXPORT_SYMBOL(ata_dev_printk); 6724 6725 void ata_print_version(const struct device *dev, const char *version) 6726 { 6727 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6728 } 6729 EXPORT_SYMBOL(ata_print_version); 6730 6731 /* 6732 * libata is essentially a library of internal helper functions for 6733 * low-level ATA host controller drivers. As such, the API/ABI is 6734 * likely to change as new drivers are added and updated. 6735 * Do not depend on ABI/API stability. 6736 */ 6737 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6738 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6739 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6740 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6741 EXPORT_SYMBOL_GPL(sata_port_ops); 6742 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6743 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6744 EXPORT_SYMBOL_GPL(ata_link_next); 6745 EXPORT_SYMBOL_GPL(ata_dev_next); 6746 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6747 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6748 EXPORT_SYMBOL_GPL(ata_host_init); 6749 EXPORT_SYMBOL_GPL(ata_host_alloc); 6750 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6751 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6752 EXPORT_SYMBOL_GPL(ata_host_start); 6753 EXPORT_SYMBOL_GPL(ata_host_register); 6754 EXPORT_SYMBOL_GPL(ata_host_activate); 6755 EXPORT_SYMBOL_GPL(ata_host_detach); 6756 EXPORT_SYMBOL_GPL(ata_sg_init); 6757 EXPORT_SYMBOL_GPL(ata_qc_complete); 6758 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6759 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6760 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6761 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6762 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6763 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6764 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6765 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6766 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6767 EXPORT_SYMBOL_GPL(ata_mode_string); 6768 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6769 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6770 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6771 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6772 EXPORT_SYMBOL_GPL(ata_dev_disable); 6773 EXPORT_SYMBOL_GPL(sata_set_spd); 6774 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6775 EXPORT_SYMBOL_GPL(sata_link_debounce); 6776 EXPORT_SYMBOL_GPL(sata_link_resume); 6777 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6778 EXPORT_SYMBOL_GPL(ata_std_prereset); 6779 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6780 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6781 EXPORT_SYMBOL_GPL(ata_std_postreset); 6782 EXPORT_SYMBOL_GPL(ata_dev_classify); 6783 EXPORT_SYMBOL_GPL(ata_dev_pair); 6784 EXPORT_SYMBOL_GPL(ata_ratelimit); 6785 EXPORT_SYMBOL_GPL(ata_msleep); 6786 EXPORT_SYMBOL_GPL(ata_wait_register); 6787 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6788 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6789 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6790 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6791 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6792 EXPORT_SYMBOL_GPL(sata_scr_valid); 6793 EXPORT_SYMBOL_GPL(sata_scr_read); 6794 EXPORT_SYMBOL_GPL(sata_scr_write); 6795 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6796 EXPORT_SYMBOL_GPL(ata_link_online); 6797 EXPORT_SYMBOL_GPL(ata_link_offline); 6798 #ifdef CONFIG_PM 6799 EXPORT_SYMBOL_GPL(ata_host_suspend); 6800 EXPORT_SYMBOL_GPL(ata_host_resume); 6801 #endif /* CONFIG_PM */ 6802 EXPORT_SYMBOL_GPL(ata_id_string); 6803 EXPORT_SYMBOL_GPL(ata_id_c_string); 6804 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6805 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6806 6807 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6808 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6809 EXPORT_SYMBOL_GPL(ata_timing_compute); 6810 EXPORT_SYMBOL_GPL(ata_timing_merge); 6811 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6812 6813 #ifdef CONFIG_PCI 6814 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6815 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6816 #ifdef CONFIG_PM 6817 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6818 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6819 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6820 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6821 #endif /* CONFIG_PM */ 6822 #endif /* CONFIG_PCI */ 6823 6824 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6825 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6826 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6827 EXPORT_SYMBOL_GPL(ata_port_desc); 6828 #ifdef CONFIG_PCI 6829 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6830 #endif /* CONFIG_PCI */ 6831 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6832 EXPORT_SYMBOL_GPL(ata_link_abort); 6833 EXPORT_SYMBOL_GPL(ata_port_abort); 6834 EXPORT_SYMBOL_GPL(ata_port_freeze); 6835 EXPORT_SYMBOL_GPL(sata_async_notification); 6836 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6837 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6838 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6839 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6840 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6841 EXPORT_SYMBOL_GPL(ata_do_eh); 6842 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6843 6844 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6845 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6846 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6847 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6848 EXPORT_SYMBOL_GPL(ata_cable_sata); 6849