xref: /linux/drivers/ata/libata-core.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 
70 #include "libata.h"
71 
72 
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
76 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
77 
78 const struct ata_port_operations ata_base_port_ops = {
79 	.prereset		= ata_std_prereset,
80 	.postreset		= ata_std_postreset,
81 	.error_handler		= ata_std_error_handler,
82 };
83 
84 const struct ata_port_operations sata_port_ops = {
85 	.inherits		= &ata_base_port_ops,
86 
87 	.qc_defer		= ata_std_qc_defer,
88 	.hardreset		= sata_std_hardreset,
89 };
90 
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 					u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 					u8 enable, u8 feature);
96 static void ata_dev_xfermask(struct ata_device *dev);
97 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
98 
99 unsigned int ata_print_id = 1;
100 
101 struct workqueue_struct *ata_aux_wq;
102 
103 struct ata_force_param {
104 	const char	*name;
105 	unsigned int	cbl;
106 	int		spd_limit;
107 	unsigned long	xfer_mask;
108 	unsigned int	horkage_on;
109 	unsigned int	horkage_off;
110 	unsigned int	lflags;
111 };
112 
113 struct ata_force_ent {
114 	int			port;
115 	int			device;
116 	struct ata_force_param	param;
117 };
118 
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121 
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
167 
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			/* fall through */
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			/* fall through */
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 
233 /**
234  *	ata_dev_next - device iteration helper
235  *	@dev: the previous device, NULL to start
236  *	@link: ATA link containing devices to iterate
237  *	@mode: iteration mode, one of ATA_DITER_*
238  *
239  *	LOCKING:
240  *	Host lock or EH context.
241  *
242  *	RETURNS:
243  *	Pointer to the next device.
244  */
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 				enum ata_dev_iter_mode mode)
247 {
248 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250 
251 	/* NULL dev indicates start of iteration */
252 	if (!dev)
253 		switch (mode) {
254 		case ATA_DITER_ENABLED:
255 		case ATA_DITER_ALL:
256 			dev = link->device;
257 			goto check;
258 		case ATA_DITER_ENABLED_REVERSE:
259 		case ATA_DITER_ALL_REVERSE:
260 			dev = link->device + ata_link_max_devices(link) - 1;
261 			goto check;
262 		}
263 
264  next:
265 	/* move to the next one */
266 	switch (mode) {
267 	case ATA_DITER_ENABLED:
268 	case ATA_DITER_ALL:
269 		if (++dev < link->device + ata_link_max_devices(link))
270 			goto check;
271 		return NULL;
272 	case ATA_DITER_ENABLED_REVERSE:
273 	case ATA_DITER_ALL_REVERSE:
274 		if (--dev >= link->device)
275 			goto check;
276 		return NULL;
277 	}
278 
279  check:
280 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 	    !ata_dev_enabled(dev))
282 		goto next;
283 	return dev;
284 }
285 
286 /**
287  *	ata_dev_phys_link - find physical link for a device
288  *	@dev: ATA device to look up physical link for
289  *
290  *	Look up physical link which @dev is attached to.  Note that
291  *	this is different from @dev->link only when @dev is on slave
292  *	link.  For all other cases, it's the same as @dev->link.
293  *
294  *	LOCKING:
295  *	Don't care.
296  *
297  *	RETURNS:
298  *	Pointer to the found physical link.
299  */
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301 {
302 	struct ata_port *ap = dev->link->ap;
303 
304 	if (!ap->slave_link)
305 		return dev->link;
306 	if (!dev->devno)
307 		return &ap->link;
308 	return ap->slave_link;
309 }
310 
311 /**
312  *	ata_force_cbl - force cable type according to libata.force
313  *	@ap: ATA port of interest
314  *
315  *	Force cable type according to libata.force and whine about it.
316  *	The last entry which has matching port number is used, so it
317  *	can be specified as part of device force parameters.  For
318  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319  *	same effect.
320  *
321  *	LOCKING:
322  *	EH context.
323  */
324 void ata_force_cbl(struct ata_port *ap)
325 {
326 	int i;
327 
328 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 		const struct ata_force_ent *fe = &ata_force_tbl[i];
330 
331 		if (fe->port != -1 && fe->port != ap->print_id)
332 			continue;
333 
334 		if (fe->param.cbl == ATA_CBL_NONE)
335 			continue;
336 
337 		ap->cbl = fe->param.cbl;
338 		ata_port_printk(ap, KERN_NOTICE,
339 				"FORCE: cable set to %s\n", fe->param.name);
340 		return;
341 	}
342 }
343 
344 /**
345  *	ata_force_link_limits - force link limits according to libata.force
346  *	@link: ATA link of interest
347  *
348  *	Force link flags and SATA spd limit according to libata.force
349  *	and whine about it.  When only the port part is specified
350  *	(e.g. 1:), the limit applies to all links connected to both
351  *	the host link and all fan-out ports connected via PMP.  If the
352  *	device part is specified as 0 (e.g. 1.00:), it specifies the
353  *	first fan-out link not the host link.  Device number 15 always
354  *	points to the host link whether PMP is attached or not.  If the
355  *	controller has slave link, device number 16 points to it.
356  *
357  *	LOCKING:
358  *	EH context.
359  */
360 static void ata_force_link_limits(struct ata_link *link)
361 {
362 	bool did_spd = false;
363 	int linkno = link->pmp;
364 	int i;
365 
366 	if (ata_is_host_link(link))
367 		linkno += 15;
368 
369 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 		const struct ata_force_ent *fe = &ata_force_tbl[i];
371 
372 		if (fe->port != -1 && fe->port != link->ap->print_id)
373 			continue;
374 
375 		if (fe->device != -1 && fe->device != linkno)
376 			continue;
377 
378 		/* only honor the first spd limit */
379 		if (!did_spd && fe->param.spd_limit) {
380 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 			ata_link_printk(link, KERN_NOTICE,
382 					"FORCE: PHY spd limit set to %s\n",
383 					fe->param.name);
384 			did_spd = true;
385 		}
386 
387 		/* let lflags stack */
388 		if (fe->param.lflags) {
389 			link->flags |= fe->param.lflags;
390 			ata_link_printk(link, KERN_NOTICE,
391 					"FORCE: link flag 0x%x forced -> 0x%x\n",
392 					fe->param.lflags, link->flags);
393 		}
394 	}
395 }
396 
397 /**
398  *	ata_force_xfermask - force xfermask according to libata.force
399  *	@dev: ATA device of interest
400  *
401  *	Force xfer_mask according to libata.force and whine about it.
402  *	For consistency with link selection, device number 15 selects
403  *	the first device connected to the host link.
404  *
405  *	LOCKING:
406  *	EH context.
407  */
408 static void ata_force_xfermask(struct ata_device *dev)
409 {
410 	int devno = dev->link->pmp + dev->devno;
411 	int alt_devno = devno;
412 	int i;
413 
414 	/* allow n.15/16 for devices attached to host port */
415 	if (ata_is_host_link(dev->link))
416 		alt_devno += 15;
417 
418 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 		const struct ata_force_ent *fe = &ata_force_tbl[i];
420 		unsigned long pio_mask, mwdma_mask, udma_mask;
421 
422 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 			continue;
424 
425 		if (fe->device != -1 && fe->device != devno &&
426 		    fe->device != alt_devno)
427 			continue;
428 
429 		if (!fe->param.xfer_mask)
430 			continue;
431 
432 		ata_unpack_xfermask(fe->param.xfer_mask,
433 				    &pio_mask, &mwdma_mask, &udma_mask);
434 		if (udma_mask)
435 			dev->udma_mask = udma_mask;
436 		else if (mwdma_mask) {
437 			dev->udma_mask = 0;
438 			dev->mwdma_mask = mwdma_mask;
439 		} else {
440 			dev->udma_mask = 0;
441 			dev->mwdma_mask = 0;
442 			dev->pio_mask = pio_mask;
443 		}
444 
445 		ata_dev_printk(dev, KERN_NOTICE,
446 			"FORCE: xfer_mask set to %s\n", fe->param.name);
447 		return;
448 	}
449 }
450 
451 /**
452  *	ata_force_horkage - force horkage according to libata.force
453  *	@dev: ATA device of interest
454  *
455  *	Force horkage according to libata.force and whine about it.
456  *	For consistency with link selection, device number 15 selects
457  *	the first device connected to the host link.
458  *
459  *	LOCKING:
460  *	EH context.
461  */
462 static void ata_force_horkage(struct ata_device *dev)
463 {
464 	int devno = dev->link->pmp + dev->devno;
465 	int alt_devno = devno;
466 	int i;
467 
468 	/* allow n.15/16 for devices attached to host port */
469 	if (ata_is_host_link(dev->link))
470 		alt_devno += 15;
471 
472 	for (i = 0; i < ata_force_tbl_size; i++) {
473 		const struct ata_force_ent *fe = &ata_force_tbl[i];
474 
475 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 			continue;
477 
478 		if (fe->device != -1 && fe->device != devno &&
479 		    fe->device != alt_devno)
480 			continue;
481 
482 		if (!(~dev->horkage & fe->param.horkage_on) &&
483 		    !(dev->horkage & fe->param.horkage_off))
484 			continue;
485 
486 		dev->horkage |= fe->param.horkage_on;
487 		dev->horkage &= ~fe->param.horkage_off;
488 
489 		ata_dev_printk(dev, KERN_NOTICE,
490 			"FORCE: horkage modified (%s)\n", fe->param.name);
491 	}
492 }
493 
494 /**
495  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496  *	@opcode: SCSI opcode
497  *
498  *	Determine ATAPI command type from @opcode.
499  *
500  *	LOCKING:
501  *	None.
502  *
503  *	RETURNS:
504  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505  */
506 int atapi_cmd_type(u8 opcode)
507 {
508 	switch (opcode) {
509 	case GPCMD_READ_10:
510 	case GPCMD_READ_12:
511 		return ATAPI_READ;
512 
513 	case GPCMD_WRITE_10:
514 	case GPCMD_WRITE_12:
515 	case GPCMD_WRITE_AND_VERIFY_10:
516 		return ATAPI_WRITE;
517 
518 	case GPCMD_READ_CD:
519 	case GPCMD_READ_CD_MSF:
520 		return ATAPI_READ_CD;
521 
522 	case ATA_16:
523 	case ATA_12:
524 		if (atapi_passthru16)
525 			return ATAPI_PASS_THRU;
526 		/* fall thru */
527 	default:
528 		return ATAPI_MISC;
529 	}
530 }
531 
532 /**
533  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534  *	@tf: Taskfile to convert
535  *	@pmp: Port multiplier port
536  *	@is_cmd: This FIS is for command
537  *	@fis: Buffer into which data will output
538  *
539  *	Converts a standard ATA taskfile to a Serial ATA
540  *	FIS structure (Register - Host to Device).
541  *
542  *	LOCKING:
543  *	Inherited from caller.
544  */
545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546 {
547 	fis[0] = 0x27;			/* Register - Host to Device FIS */
548 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
549 	if (is_cmd)
550 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
551 
552 	fis[2] = tf->command;
553 	fis[3] = tf->feature;
554 
555 	fis[4] = tf->lbal;
556 	fis[5] = tf->lbam;
557 	fis[6] = tf->lbah;
558 	fis[7] = tf->device;
559 
560 	fis[8] = tf->hob_lbal;
561 	fis[9] = tf->hob_lbam;
562 	fis[10] = tf->hob_lbah;
563 	fis[11] = tf->hob_feature;
564 
565 	fis[12] = tf->nsect;
566 	fis[13] = tf->hob_nsect;
567 	fis[14] = 0;
568 	fis[15] = tf->ctl;
569 
570 	fis[16] = 0;
571 	fis[17] = 0;
572 	fis[18] = 0;
573 	fis[19] = 0;
574 }
575 
576 /**
577  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578  *	@fis: Buffer from which data will be input
579  *	@tf: Taskfile to output
580  *
581  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
582  *
583  *	LOCKING:
584  *	Inherited from caller.
585  */
586 
587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588 {
589 	tf->command	= fis[2];	/* status */
590 	tf->feature	= fis[3];	/* error */
591 
592 	tf->lbal	= fis[4];
593 	tf->lbam	= fis[5];
594 	tf->lbah	= fis[6];
595 	tf->device	= fis[7];
596 
597 	tf->hob_lbal	= fis[8];
598 	tf->hob_lbam	= fis[9];
599 	tf->hob_lbah	= fis[10];
600 
601 	tf->nsect	= fis[12];
602 	tf->hob_nsect	= fis[13];
603 }
604 
605 static const u8 ata_rw_cmds[] = {
606 	/* pio multi */
607 	ATA_CMD_READ_MULTI,
608 	ATA_CMD_WRITE_MULTI,
609 	ATA_CMD_READ_MULTI_EXT,
610 	ATA_CMD_WRITE_MULTI_EXT,
611 	0,
612 	0,
613 	0,
614 	ATA_CMD_WRITE_MULTI_FUA_EXT,
615 	/* pio */
616 	ATA_CMD_PIO_READ,
617 	ATA_CMD_PIO_WRITE,
618 	ATA_CMD_PIO_READ_EXT,
619 	ATA_CMD_PIO_WRITE_EXT,
620 	0,
621 	0,
622 	0,
623 	0,
624 	/* dma */
625 	ATA_CMD_READ,
626 	ATA_CMD_WRITE,
627 	ATA_CMD_READ_EXT,
628 	ATA_CMD_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	ATA_CMD_WRITE_FUA_EXT
633 };
634 
635 /**
636  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
637  *	@tf: command to examine and configure
638  *	@dev: device tf belongs to
639  *
640  *	Examine the device configuration and tf->flags to calculate
641  *	the proper read/write commands and protocol to use.
642  *
643  *	LOCKING:
644  *	caller.
645  */
646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647 {
648 	u8 cmd;
649 
650 	int index, fua, lba48, write;
651 
652 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
653 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655 
656 	if (dev->flags & ATA_DFLAG_PIO) {
657 		tf->protocol = ATA_PROT_PIO;
658 		index = dev->multi_count ? 0 : 8;
659 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
660 		/* Unable to use DMA due to host limitation */
661 		tf->protocol = ATA_PROT_PIO;
662 		index = dev->multi_count ? 0 : 8;
663 	} else {
664 		tf->protocol = ATA_PROT_DMA;
665 		index = 16;
666 	}
667 
668 	cmd = ata_rw_cmds[index + fua + lba48 + write];
669 	if (cmd) {
670 		tf->command = cmd;
671 		return 0;
672 	}
673 	return -1;
674 }
675 
676 /**
677  *	ata_tf_read_block - Read block address from ATA taskfile
678  *	@tf: ATA taskfile of interest
679  *	@dev: ATA device @tf belongs to
680  *
681  *	LOCKING:
682  *	None.
683  *
684  *	Read block address from @tf.  This function can handle all
685  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
686  *	flags select the address format to use.
687  *
688  *	RETURNS:
689  *	Block address read from @tf.
690  */
691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692 {
693 	u64 block = 0;
694 
695 	if (tf->flags & ATA_TFLAG_LBA) {
696 		if (tf->flags & ATA_TFLAG_LBA48) {
697 			block |= (u64)tf->hob_lbah << 40;
698 			block |= (u64)tf->hob_lbam << 32;
699 			block |= (u64)tf->hob_lbal << 24;
700 		} else
701 			block |= (tf->device & 0xf) << 24;
702 
703 		block |= tf->lbah << 16;
704 		block |= tf->lbam << 8;
705 		block |= tf->lbal;
706 	} else {
707 		u32 cyl, head, sect;
708 
709 		cyl = tf->lbam | (tf->lbah << 8);
710 		head = tf->device & 0xf;
711 		sect = tf->lbal;
712 
713 		if (!sect) {
714 			ata_dev_printk(dev, KERN_WARNING, "device reported "
715 				       "invalid CHS sector 0\n");
716 			sect = 1; /* oh well */
717 		}
718 
719 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
720 	}
721 
722 	return block;
723 }
724 
725 /**
726  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
727  *	@tf: Target ATA taskfile
728  *	@dev: ATA device @tf belongs to
729  *	@block: Block address
730  *	@n_block: Number of blocks
731  *	@tf_flags: RW/FUA etc...
732  *	@tag: tag
733  *
734  *	LOCKING:
735  *	None.
736  *
737  *	Build ATA taskfile @tf for read/write request described by
738  *	@block, @n_block, @tf_flags and @tag on @dev.
739  *
740  *	RETURNS:
741  *
742  *	0 on success, -ERANGE if the request is too large for @dev,
743  *	-EINVAL if the request is invalid.
744  */
745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 		    u64 block, u32 n_block, unsigned int tf_flags,
747 		    unsigned int tag)
748 {
749 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 	tf->flags |= tf_flags;
751 
752 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
753 		/* yay, NCQ */
754 		if (!lba_48_ok(block, n_block))
755 			return -ERANGE;
756 
757 		tf->protocol = ATA_PROT_NCQ;
758 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759 
760 		if (tf->flags & ATA_TFLAG_WRITE)
761 			tf->command = ATA_CMD_FPDMA_WRITE;
762 		else
763 			tf->command = ATA_CMD_FPDMA_READ;
764 
765 		tf->nsect = tag << 3;
766 		tf->hob_feature = (n_block >> 8) & 0xff;
767 		tf->feature = n_block & 0xff;
768 
769 		tf->hob_lbah = (block >> 40) & 0xff;
770 		tf->hob_lbam = (block >> 32) & 0xff;
771 		tf->hob_lbal = (block >> 24) & 0xff;
772 		tf->lbah = (block >> 16) & 0xff;
773 		tf->lbam = (block >> 8) & 0xff;
774 		tf->lbal = block & 0xff;
775 
776 		tf->device = 1 << 6;
777 		if (tf->flags & ATA_TFLAG_FUA)
778 			tf->device |= 1 << 7;
779 	} else if (dev->flags & ATA_DFLAG_LBA) {
780 		tf->flags |= ATA_TFLAG_LBA;
781 
782 		if (lba_28_ok(block, n_block)) {
783 			/* use LBA28 */
784 			tf->device |= (block >> 24) & 0xf;
785 		} else if (lba_48_ok(block, n_block)) {
786 			if (!(dev->flags & ATA_DFLAG_LBA48))
787 				return -ERANGE;
788 
789 			/* use LBA48 */
790 			tf->flags |= ATA_TFLAG_LBA48;
791 
792 			tf->hob_nsect = (n_block >> 8) & 0xff;
793 
794 			tf->hob_lbah = (block >> 40) & 0xff;
795 			tf->hob_lbam = (block >> 32) & 0xff;
796 			tf->hob_lbal = (block >> 24) & 0xff;
797 		} else
798 			/* request too large even for LBA48 */
799 			return -ERANGE;
800 
801 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 			return -EINVAL;
803 
804 		tf->nsect = n_block & 0xff;
805 
806 		tf->lbah = (block >> 16) & 0xff;
807 		tf->lbam = (block >> 8) & 0xff;
808 		tf->lbal = block & 0xff;
809 
810 		tf->device |= ATA_LBA;
811 	} else {
812 		/* CHS */
813 		u32 sect, head, cyl, track;
814 
815 		/* The request -may- be too large for CHS addressing. */
816 		if (!lba_28_ok(block, n_block))
817 			return -ERANGE;
818 
819 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 			return -EINVAL;
821 
822 		/* Convert LBA to CHS */
823 		track = (u32)block / dev->sectors;
824 		cyl   = track / dev->heads;
825 		head  = track % dev->heads;
826 		sect  = (u32)block % dev->sectors + 1;
827 
828 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 			(u32)block, track, cyl, head, sect);
830 
831 		/* Check whether the converted CHS can fit.
832 		   Cylinder: 0-65535
833 		   Head: 0-15
834 		   Sector: 1-255*/
835 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 			return -ERANGE;
837 
838 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 		tf->lbal = sect;
840 		tf->lbam = cyl;
841 		tf->lbah = cyl >> 8;
842 		tf->device |= head;
843 	}
844 
845 	return 0;
846 }
847 
848 /**
849  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850  *	@pio_mask: pio_mask
851  *	@mwdma_mask: mwdma_mask
852  *	@udma_mask: udma_mask
853  *
854  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855  *	unsigned int xfer_mask.
856  *
857  *	LOCKING:
858  *	None.
859  *
860  *	RETURNS:
861  *	Packed xfer_mask.
862  */
863 unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 				unsigned long mwdma_mask,
865 				unsigned long udma_mask)
866 {
867 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870 }
871 
872 /**
873  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874  *	@xfer_mask: xfer_mask to unpack
875  *	@pio_mask: resulting pio_mask
876  *	@mwdma_mask: resulting mwdma_mask
877  *	@udma_mask: resulting udma_mask
878  *
879  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880  *	Any NULL distination masks will be ignored.
881  */
882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
884 {
885 	if (pio_mask)
886 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 	if (mwdma_mask)
888 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 	if (udma_mask)
890 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891 }
892 
893 static const struct ata_xfer_ent {
894 	int shift, bits;
895 	u8 base;
896 } ata_xfer_tbl[] = {
897 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 	{ -1, },
901 };
902 
903 /**
904  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905  *	@xfer_mask: xfer_mask of interest
906  *
907  *	Return matching XFER_* value for @xfer_mask.  Only the highest
908  *	bit of @xfer_mask is considered.
909  *
910  *	LOCKING:
911  *	None.
912  *
913  *	RETURNS:
914  *	Matching XFER_* value, 0xff if no match found.
915  */
916 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917 {
918 	int highbit = fls(xfer_mask) - 1;
919 	const struct ata_xfer_ent *ent;
920 
921 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 			return ent->base + highbit - ent->shift;
924 	return 0xff;
925 }
926 
927 /**
928  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929  *	@xfer_mode: XFER_* of interest
930  *
931  *	Return matching xfer_mask for @xfer_mode.
932  *
933  *	LOCKING:
934  *	None.
935  *
936  *	RETURNS:
937  *	Matching xfer_mask, 0 if no match found.
938  */
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940 {
941 	const struct ata_xfer_ent *ent;
942 
943 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 				& ~((1 << ent->shift) - 1);
947 	return 0;
948 }
949 
950 /**
951  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952  *	@xfer_mode: XFER_* of interest
953  *
954  *	Return matching xfer_shift for @xfer_mode.
955  *
956  *	LOCKING:
957  *	None.
958  *
959  *	RETURNS:
960  *	Matching xfer_shift, -1 if no match found.
961  */
962 int ata_xfer_mode2shift(unsigned long xfer_mode)
963 {
964 	const struct ata_xfer_ent *ent;
965 
966 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 			return ent->shift;
969 	return -1;
970 }
971 
972 /**
973  *	ata_mode_string - convert xfer_mask to string
974  *	@xfer_mask: mask of bits supported; only highest bit counts.
975  *
976  *	Determine string which represents the highest speed
977  *	(highest bit in @modemask).
978  *
979  *	LOCKING:
980  *	None.
981  *
982  *	RETURNS:
983  *	Constant C string representing highest speed listed in
984  *	@mode_mask, or the constant C string "<n/a>".
985  */
986 const char *ata_mode_string(unsigned long xfer_mask)
987 {
988 	static const char * const xfer_mode_str[] = {
989 		"PIO0",
990 		"PIO1",
991 		"PIO2",
992 		"PIO3",
993 		"PIO4",
994 		"PIO5",
995 		"PIO6",
996 		"MWDMA0",
997 		"MWDMA1",
998 		"MWDMA2",
999 		"MWDMA3",
1000 		"MWDMA4",
1001 		"UDMA/16",
1002 		"UDMA/25",
1003 		"UDMA/33",
1004 		"UDMA/44",
1005 		"UDMA/66",
1006 		"UDMA/100",
1007 		"UDMA/133",
1008 		"UDMA7",
1009 	};
1010 	int highbit;
1011 
1012 	highbit = fls(xfer_mask) - 1;
1013 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 		return xfer_mode_str[highbit];
1015 	return "<n/a>";
1016 }
1017 
1018 static const char *sata_spd_string(unsigned int spd)
1019 {
1020 	static const char * const spd_str[] = {
1021 		"1.5 Gbps",
1022 		"3.0 Gbps",
1023 		"6.0 Gbps",
1024 	};
1025 
1026 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 		return "<unknown>";
1028 	return spd_str[spd - 1];
1029 }
1030 
1031 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1032 {
1033 	struct ata_link *link = dev->link;
1034 	struct ata_port *ap = link->ap;
1035 	u32 scontrol;
1036 	unsigned int err_mask;
1037 	int rc;
1038 
1039 	/*
1040 	 * disallow DIPM for drivers which haven't set
1041 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1042 	 * phy ready will be set in the interrupt status on
1043 	 * state changes, which will cause some drivers to
1044 	 * think there are errors - additionally drivers will
1045 	 * need to disable hot plug.
1046 	 */
1047 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1048 		ap->pm_policy = NOT_AVAILABLE;
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * For DIPM, we will only enable it for the
1054 	 * min_power setting.
1055 	 *
1056 	 * Why?  Because Disks are too stupid to know that
1057 	 * If the host rejects a request to go to SLUMBER
1058 	 * they should retry at PARTIAL, and instead it
1059 	 * just would give up.  So, for medium_power to
1060 	 * work at all, we need to only allow HIPM.
1061 	 */
1062 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1063 	if (rc)
1064 		return rc;
1065 
1066 	switch (policy) {
1067 	case MIN_POWER:
1068 		/* no restrictions on IPM transitions */
1069 		scontrol &= ~(0x3 << 8);
1070 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1071 		if (rc)
1072 			return rc;
1073 
1074 		/* enable DIPM */
1075 		if (dev->flags & ATA_DFLAG_DIPM)
1076 			err_mask = ata_dev_set_feature(dev,
1077 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1078 		break;
1079 	case MEDIUM_POWER:
1080 		/* allow IPM to PARTIAL */
1081 		scontrol &= ~(0x1 << 8);
1082 		scontrol |= (0x2 << 8);
1083 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1084 		if (rc)
1085 			return rc;
1086 
1087 		/*
1088 		 * we don't have to disable DIPM since IPM flags
1089 		 * disallow transitions to SLUMBER, which effectively
1090 		 * disable DIPM if it does not support PARTIAL
1091 		 */
1092 		break;
1093 	case NOT_AVAILABLE:
1094 	case MAX_PERFORMANCE:
1095 		/* disable all IPM transitions */
1096 		scontrol |= (0x3 << 8);
1097 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1098 		if (rc)
1099 			return rc;
1100 
1101 		/*
1102 		 * we don't have to disable DIPM since IPM flags
1103 		 * disallow all transitions which effectively
1104 		 * disable DIPM anyway.
1105 		 */
1106 		break;
1107 	}
1108 
1109 	/* FIXME: handle SET FEATURES failure */
1110 	(void) err_mask;
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  *	ata_dev_enable_pm - enable SATA interface power management
1117  *	@dev:  device to enable power management
1118  *	@policy: the link power management policy
1119  *
1120  *	Enable SATA Interface power management.  This will enable
1121  *	Device Interface Power Management (DIPM) for min_power
1122  * 	policy, and then call driver specific callbacks for
1123  *	enabling Host Initiated Power management.
1124  *
1125  *	Locking: Caller.
1126  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127  */
1128 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1129 {
1130 	int rc = 0;
1131 	struct ata_port *ap = dev->link->ap;
1132 
1133 	/* set HIPM first, then DIPM */
1134 	if (ap->ops->enable_pm)
1135 		rc = ap->ops->enable_pm(ap, policy);
1136 	if (rc)
1137 		goto enable_pm_out;
1138 	rc = ata_dev_set_dipm(dev, policy);
1139 
1140 enable_pm_out:
1141 	if (rc)
1142 		ap->pm_policy = MAX_PERFORMANCE;
1143 	else
1144 		ap->pm_policy = policy;
1145 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1146 }
1147 
1148 #ifdef CONFIG_PM
1149 /**
1150  *	ata_dev_disable_pm - disable SATA interface power management
1151  *	@dev: device to disable power management
1152  *
1153  *	Disable SATA Interface power management.  This will disable
1154  *	Device Interface Power Management (DIPM) without changing
1155  * 	policy,  call driver specific callbacks for disabling Host
1156  * 	Initiated Power management.
1157  *
1158  *	Locking: Caller.
1159  *	Returns: void
1160  */
1161 static void ata_dev_disable_pm(struct ata_device *dev)
1162 {
1163 	struct ata_port *ap = dev->link->ap;
1164 
1165 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1166 	if (ap->ops->disable_pm)
1167 		ap->ops->disable_pm(ap);
1168 }
1169 #endif	/* CONFIG_PM */
1170 
1171 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1172 {
1173 	ap->pm_policy = policy;
1174 	ap->link.eh_info.action |= ATA_EH_LPM;
1175 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1176 	ata_port_schedule_eh(ap);
1177 }
1178 
1179 #ifdef CONFIG_PM
1180 static void ata_lpm_enable(struct ata_host *host)
1181 {
1182 	struct ata_link *link;
1183 	struct ata_port *ap;
1184 	struct ata_device *dev;
1185 	int i;
1186 
1187 	for (i = 0; i < host->n_ports; i++) {
1188 		ap = host->ports[i];
1189 		ata_for_each_link(link, ap, EDGE) {
1190 			ata_for_each_dev(dev, link, ALL)
1191 				ata_dev_disable_pm(dev);
1192 		}
1193 	}
1194 }
1195 
1196 static void ata_lpm_disable(struct ata_host *host)
1197 {
1198 	int i;
1199 
1200 	for (i = 0; i < host->n_ports; i++) {
1201 		struct ata_port *ap = host->ports[i];
1202 		ata_lpm_schedule(ap, ap->pm_policy);
1203 	}
1204 }
1205 #endif	/* CONFIG_PM */
1206 
1207 /**
1208  *	ata_dev_classify - determine device type based on ATA-spec signature
1209  *	@tf: ATA taskfile register set for device to be identified
1210  *
1211  *	Determine from taskfile register contents whether a device is
1212  *	ATA or ATAPI, as per "Signature and persistence" section
1213  *	of ATA/PI spec (volume 1, sect 5.14).
1214  *
1215  *	LOCKING:
1216  *	None.
1217  *
1218  *	RETURNS:
1219  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1220  *	%ATA_DEV_UNKNOWN the event of failure.
1221  */
1222 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1223 {
1224 	/* Apple's open source Darwin code hints that some devices only
1225 	 * put a proper signature into the LBA mid/high registers,
1226 	 * So, we only check those.  It's sufficient for uniqueness.
1227 	 *
1228 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1229 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1230 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1231 	 * spec has never mentioned about using different signatures
1232 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1233 	 * Multiplier specification began to use 0x69/0x96 to identify
1234 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1235 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1236 	 * 0x69/0x96 shortly and described them as reserved for
1237 	 * SerialATA.
1238 	 *
1239 	 * We follow the current spec and consider that 0x69/0x96
1240 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1241 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1242 	 * SEMB signature.  This is worked around in
1243 	 * ata_dev_read_id().
1244 	 */
1245 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1246 		DPRINTK("found ATA device by sig\n");
1247 		return ATA_DEV_ATA;
1248 	}
1249 
1250 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1251 		DPRINTK("found ATAPI device by sig\n");
1252 		return ATA_DEV_ATAPI;
1253 	}
1254 
1255 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1256 		DPRINTK("found PMP device by sig\n");
1257 		return ATA_DEV_PMP;
1258 	}
1259 
1260 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1261 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1262 		return ATA_DEV_SEMB;
1263 	}
1264 
1265 	DPRINTK("unknown device\n");
1266 	return ATA_DEV_UNKNOWN;
1267 }
1268 
1269 /**
1270  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1271  *	@id: IDENTIFY DEVICE results we will examine
1272  *	@s: string into which data is output
1273  *	@ofs: offset into identify device page
1274  *	@len: length of string to return. must be an even number.
1275  *
1276  *	The strings in the IDENTIFY DEVICE page are broken up into
1277  *	16-bit chunks.  Run through the string, and output each
1278  *	8-bit chunk linearly, regardless of platform.
1279  *
1280  *	LOCKING:
1281  *	caller.
1282  */
1283 
1284 void ata_id_string(const u16 *id, unsigned char *s,
1285 		   unsigned int ofs, unsigned int len)
1286 {
1287 	unsigned int c;
1288 
1289 	BUG_ON(len & 1);
1290 
1291 	while (len > 0) {
1292 		c = id[ofs] >> 8;
1293 		*s = c;
1294 		s++;
1295 
1296 		c = id[ofs] & 0xff;
1297 		*s = c;
1298 		s++;
1299 
1300 		ofs++;
1301 		len -= 2;
1302 	}
1303 }
1304 
1305 /**
1306  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1307  *	@id: IDENTIFY DEVICE results we will examine
1308  *	@s: string into which data is output
1309  *	@ofs: offset into identify device page
1310  *	@len: length of string to return. must be an odd number.
1311  *
1312  *	This function is identical to ata_id_string except that it
1313  *	trims trailing spaces and terminates the resulting string with
1314  *	null.  @len must be actual maximum length (even number) + 1.
1315  *
1316  *	LOCKING:
1317  *	caller.
1318  */
1319 void ata_id_c_string(const u16 *id, unsigned char *s,
1320 		     unsigned int ofs, unsigned int len)
1321 {
1322 	unsigned char *p;
1323 
1324 	ata_id_string(id, s, ofs, len - 1);
1325 
1326 	p = s + strnlen(s, len - 1);
1327 	while (p > s && p[-1] == ' ')
1328 		p--;
1329 	*p = '\0';
1330 }
1331 
1332 static u64 ata_id_n_sectors(const u16 *id)
1333 {
1334 	if (ata_id_has_lba(id)) {
1335 		if (ata_id_has_lba48(id))
1336 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1337 		else
1338 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1339 	} else {
1340 		if (ata_id_current_chs_valid(id))
1341 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1342 			       id[ATA_ID_CUR_SECTORS];
1343 		else
1344 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1345 			       id[ATA_ID_SECTORS];
1346 	}
1347 }
1348 
1349 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1350 {
1351 	u64 sectors = 0;
1352 
1353 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1354 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1355 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1356 	sectors |= (tf->lbah & 0xff) << 16;
1357 	sectors |= (tf->lbam & 0xff) << 8;
1358 	sectors |= (tf->lbal & 0xff);
1359 
1360 	return sectors;
1361 }
1362 
1363 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1364 {
1365 	u64 sectors = 0;
1366 
1367 	sectors |= (tf->device & 0x0f) << 24;
1368 	sectors |= (tf->lbah & 0xff) << 16;
1369 	sectors |= (tf->lbam & 0xff) << 8;
1370 	sectors |= (tf->lbal & 0xff);
1371 
1372 	return sectors;
1373 }
1374 
1375 /**
1376  *	ata_read_native_max_address - Read native max address
1377  *	@dev: target device
1378  *	@max_sectors: out parameter for the result native max address
1379  *
1380  *	Perform an LBA48 or LBA28 native size query upon the device in
1381  *	question.
1382  *
1383  *	RETURNS:
1384  *	0 on success, -EACCES if command is aborted by the drive.
1385  *	-EIO on other errors.
1386  */
1387 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1388 {
1389 	unsigned int err_mask;
1390 	struct ata_taskfile tf;
1391 	int lba48 = ata_id_has_lba48(dev->id);
1392 
1393 	ata_tf_init(dev, &tf);
1394 
1395 	/* always clear all address registers */
1396 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1397 
1398 	if (lba48) {
1399 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1400 		tf.flags |= ATA_TFLAG_LBA48;
1401 	} else
1402 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1403 
1404 	tf.protocol |= ATA_PROT_NODATA;
1405 	tf.device |= ATA_LBA;
1406 
1407 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1408 	if (err_mask) {
1409 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1410 			       "max address (err_mask=0x%x)\n", err_mask);
1411 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1412 			return -EACCES;
1413 		return -EIO;
1414 	}
1415 
1416 	if (lba48)
1417 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1418 	else
1419 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1420 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1421 		(*max_sectors)--;
1422 	return 0;
1423 }
1424 
1425 /**
1426  *	ata_set_max_sectors - Set max sectors
1427  *	@dev: target device
1428  *	@new_sectors: new max sectors value to set for the device
1429  *
1430  *	Set max sectors of @dev to @new_sectors.
1431  *
1432  *	RETURNS:
1433  *	0 on success, -EACCES if command is aborted or denied (due to
1434  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1435  *	errors.
1436  */
1437 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1438 {
1439 	unsigned int err_mask;
1440 	struct ata_taskfile tf;
1441 	int lba48 = ata_id_has_lba48(dev->id);
1442 
1443 	new_sectors--;
1444 
1445 	ata_tf_init(dev, &tf);
1446 
1447 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1448 
1449 	if (lba48) {
1450 		tf.command = ATA_CMD_SET_MAX_EXT;
1451 		tf.flags |= ATA_TFLAG_LBA48;
1452 
1453 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1454 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1455 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1456 	} else {
1457 		tf.command = ATA_CMD_SET_MAX;
1458 
1459 		tf.device |= (new_sectors >> 24) & 0xf;
1460 	}
1461 
1462 	tf.protocol |= ATA_PROT_NODATA;
1463 	tf.device |= ATA_LBA;
1464 
1465 	tf.lbal = (new_sectors >> 0) & 0xff;
1466 	tf.lbam = (new_sectors >> 8) & 0xff;
1467 	tf.lbah = (new_sectors >> 16) & 0xff;
1468 
1469 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1470 	if (err_mask) {
1471 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1472 			       "max address (err_mask=0x%x)\n", err_mask);
1473 		if (err_mask == AC_ERR_DEV &&
1474 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1475 			return -EACCES;
1476 		return -EIO;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  *	ata_hpa_resize		-	Resize a device with an HPA set
1484  *	@dev: Device to resize
1485  *
1486  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1487  *	it if required to the full size of the media. The caller must check
1488  *	the drive has the HPA feature set enabled.
1489  *
1490  *	RETURNS:
1491  *	0 on success, -errno on failure.
1492  */
1493 static int ata_hpa_resize(struct ata_device *dev)
1494 {
1495 	struct ata_eh_context *ehc = &dev->link->eh_context;
1496 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1497 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1498 	u64 sectors = ata_id_n_sectors(dev->id);
1499 	u64 native_sectors;
1500 	int rc;
1501 
1502 	/* do we need to do it? */
1503 	if (dev->class != ATA_DEV_ATA ||
1504 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1505 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1506 		return 0;
1507 
1508 	/* read native max address */
1509 	rc = ata_read_native_max_address(dev, &native_sectors);
1510 	if (rc) {
1511 		/* If device aborted the command or HPA isn't going to
1512 		 * be unlocked, skip HPA resizing.
1513 		 */
1514 		if (rc == -EACCES || !unlock_hpa) {
1515 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1516 				       "broken, skipping HPA handling\n");
1517 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1518 
1519 			/* we can continue if device aborted the command */
1520 			if (rc == -EACCES)
1521 				rc = 0;
1522 		}
1523 
1524 		return rc;
1525 	}
1526 	dev->n_native_sectors = native_sectors;
1527 
1528 	/* nothing to do? */
1529 	if (native_sectors <= sectors || !unlock_hpa) {
1530 		if (!print_info || native_sectors == sectors)
1531 			return 0;
1532 
1533 		if (native_sectors > sectors)
1534 			ata_dev_printk(dev, KERN_INFO,
1535 				"HPA detected: current %llu, native %llu\n",
1536 				(unsigned long long)sectors,
1537 				(unsigned long long)native_sectors);
1538 		else if (native_sectors < sectors)
1539 			ata_dev_printk(dev, KERN_WARNING,
1540 				"native sectors (%llu) is smaller than "
1541 				"sectors (%llu)\n",
1542 				(unsigned long long)native_sectors,
1543 				(unsigned long long)sectors);
1544 		return 0;
1545 	}
1546 
1547 	/* let's unlock HPA */
1548 	rc = ata_set_max_sectors(dev, native_sectors);
1549 	if (rc == -EACCES) {
1550 		/* if device aborted the command, skip HPA resizing */
1551 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1552 			       "(%llu -> %llu), skipping HPA handling\n",
1553 			       (unsigned long long)sectors,
1554 			       (unsigned long long)native_sectors);
1555 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1556 		return 0;
1557 	} else if (rc)
1558 		return rc;
1559 
1560 	/* re-read IDENTIFY data */
1561 	rc = ata_dev_reread_id(dev, 0);
1562 	if (rc) {
1563 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1564 			       "data after HPA resizing\n");
1565 		return rc;
1566 	}
1567 
1568 	if (print_info) {
1569 		u64 new_sectors = ata_id_n_sectors(dev->id);
1570 		ata_dev_printk(dev, KERN_INFO,
1571 			"HPA unlocked: %llu -> %llu, native %llu\n",
1572 			(unsigned long long)sectors,
1573 			(unsigned long long)new_sectors,
1574 			(unsigned long long)native_sectors);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /**
1581  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1582  *	@id: IDENTIFY DEVICE page to dump
1583  *
1584  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1585  *	page.
1586  *
1587  *	LOCKING:
1588  *	caller.
1589  */
1590 
1591 static inline void ata_dump_id(const u16 *id)
1592 {
1593 	DPRINTK("49==0x%04x  "
1594 		"53==0x%04x  "
1595 		"63==0x%04x  "
1596 		"64==0x%04x  "
1597 		"75==0x%04x  \n",
1598 		id[49],
1599 		id[53],
1600 		id[63],
1601 		id[64],
1602 		id[75]);
1603 	DPRINTK("80==0x%04x  "
1604 		"81==0x%04x  "
1605 		"82==0x%04x  "
1606 		"83==0x%04x  "
1607 		"84==0x%04x  \n",
1608 		id[80],
1609 		id[81],
1610 		id[82],
1611 		id[83],
1612 		id[84]);
1613 	DPRINTK("88==0x%04x  "
1614 		"93==0x%04x\n",
1615 		id[88],
1616 		id[93]);
1617 }
1618 
1619 /**
1620  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1621  *	@id: IDENTIFY data to compute xfer mask from
1622  *
1623  *	Compute the xfermask for this device. This is not as trivial
1624  *	as it seems if we must consider early devices correctly.
1625  *
1626  *	FIXME: pre IDE drive timing (do we care ?).
1627  *
1628  *	LOCKING:
1629  *	None.
1630  *
1631  *	RETURNS:
1632  *	Computed xfermask
1633  */
1634 unsigned long ata_id_xfermask(const u16 *id)
1635 {
1636 	unsigned long pio_mask, mwdma_mask, udma_mask;
1637 
1638 	/* Usual case. Word 53 indicates word 64 is valid */
1639 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1640 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1641 		pio_mask <<= 3;
1642 		pio_mask |= 0x7;
1643 	} else {
1644 		/* If word 64 isn't valid then Word 51 high byte holds
1645 		 * the PIO timing number for the maximum. Turn it into
1646 		 * a mask.
1647 		 */
1648 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1649 		if (mode < 5)	/* Valid PIO range */
1650 			pio_mask = (2 << mode) - 1;
1651 		else
1652 			pio_mask = 1;
1653 
1654 		/* But wait.. there's more. Design your standards by
1655 		 * committee and you too can get a free iordy field to
1656 		 * process. However its the speeds not the modes that
1657 		 * are supported... Note drivers using the timing API
1658 		 * will get this right anyway
1659 		 */
1660 	}
1661 
1662 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1663 
1664 	if (ata_id_is_cfa(id)) {
1665 		/*
1666 		 *	Process compact flash extended modes
1667 		 */
1668 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1669 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1670 
1671 		if (pio)
1672 			pio_mask |= (1 << 5);
1673 		if (pio > 1)
1674 			pio_mask |= (1 << 6);
1675 		if (dma)
1676 			mwdma_mask |= (1 << 3);
1677 		if (dma > 1)
1678 			mwdma_mask |= (1 << 4);
1679 	}
1680 
1681 	udma_mask = 0;
1682 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1683 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1684 
1685 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1686 }
1687 
1688 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1689 {
1690 	struct completion *waiting = qc->private_data;
1691 
1692 	complete(waiting);
1693 }
1694 
1695 /**
1696  *	ata_exec_internal_sg - execute libata internal command
1697  *	@dev: Device to which the command is sent
1698  *	@tf: Taskfile registers for the command and the result
1699  *	@cdb: CDB for packet command
1700  *	@dma_dir: Data tranfer direction of the command
1701  *	@sgl: sg list for the data buffer of the command
1702  *	@n_elem: Number of sg entries
1703  *	@timeout: Timeout in msecs (0 for default)
1704  *
1705  *	Executes libata internal command with timeout.  @tf contains
1706  *	command on entry and result on return.  Timeout and error
1707  *	conditions are reported via return value.  No recovery action
1708  *	is taken after a command times out.  It's caller's duty to
1709  *	clean up after timeout.
1710  *
1711  *	LOCKING:
1712  *	None.  Should be called with kernel context, might sleep.
1713  *
1714  *	RETURNS:
1715  *	Zero on success, AC_ERR_* mask on failure
1716  */
1717 unsigned ata_exec_internal_sg(struct ata_device *dev,
1718 			      struct ata_taskfile *tf, const u8 *cdb,
1719 			      int dma_dir, struct scatterlist *sgl,
1720 			      unsigned int n_elem, unsigned long timeout)
1721 {
1722 	struct ata_link *link = dev->link;
1723 	struct ata_port *ap = link->ap;
1724 	u8 command = tf->command;
1725 	int auto_timeout = 0;
1726 	struct ata_queued_cmd *qc;
1727 	unsigned int tag, preempted_tag;
1728 	u32 preempted_sactive, preempted_qc_active;
1729 	int preempted_nr_active_links;
1730 	DECLARE_COMPLETION_ONSTACK(wait);
1731 	unsigned long flags;
1732 	unsigned int err_mask;
1733 	int rc;
1734 
1735 	spin_lock_irqsave(ap->lock, flags);
1736 
1737 	/* no internal command while frozen */
1738 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1739 		spin_unlock_irqrestore(ap->lock, flags);
1740 		return AC_ERR_SYSTEM;
1741 	}
1742 
1743 	/* initialize internal qc */
1744 
1745 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1746 	 * drivers choke if any other tag is given.  This breaks
1747 	 * ata_tag_internal() test for those drivers.  Don't use new
1748 	 * EH stuff without converting to it.
1749 	 */
1750 	if (ap->ops->error_handler)
1751 		tag = ATA_TAG_INTERNAL;
1752 	else
1753 		tag = 0;
1754 
1755 	if (test_and_set_bit(tag, &ap->qc_allocated))
1756 		BUG();
1757 	qc = __ata_qc_from_tag(ap, tag);
1758 
1759 	qc->tag = tag;
1760 	qc->scsicmd = NULL;
1761 	qc->ap = ap;
1762 	qc->dev = dev;
1763 	ata_qc_reinit(qc);
1764 
1765 	preempted_tag = link->active_tag;
1766 	preempted_sactive = link->sactive;
1767 	preempted_qc_active = ap->qc_active;
1768 	preempted_nr_active_links = ap->nr_active_links;
1769 	link->active_tag = ATA_TAG_POISON;
1770 	link->sactive = 0;
1771 	ap->qc_active = 0;
1772 	ap->nr_active_links = 0;
1773 
1774 	/* prepare & issue qc */
1775 	qc->tf = *tf;
1776 	if (cdb)
1777 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1778 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1779 	qc->dma_dir = dma_dir;
1780 	if (dma_dir != DMA_NONE) {
1781 		unsigned int i, buflen = 0;
1782 		struct scatterlist *sg;
1783 
1784 		for_each_sg(sgl, sg, n_elem, i)
1785 			buflen += sg->length;
1786 
1787 		ata_sg_init(qc, sgl, n_elem);
1788 		qc->nbytes = buflen;
1789 	}
1790 
1791 	qc->private_data = &wait;
1792 	qc->complete_fn = ata_qc_complete_internal;
1793 
1794 	ata_qc_issue(qc);
1795 
1796 	spin_unlock_irqrestore(ap->lock, flags);
1797 
1798 	if (!timeout) {
1799 		if (ata_probe_timeout)
1800 			timeout = ata_probe_timeout * 1000;
1801 		else {
1802 			timeout = ata_internal_cmd_timeout(dev, command);
1803 			auto_timeout = 1;
1804 		}
1805 	}
1806 
1807 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1808 
1809 	ata_sff_flush_pio_task(ap);
1810 
1811 	if (!rc) {
1812 		spin_lock_irqsave(ap->lock, flags);
1813 
1814 		/* We're racing with irq here.  If we lose, the
1815 		 * following test prevents us from completing the qc
1816 		 * twice.  If we win, the port is frozen and will be
1817 		 * cleaned up by ->post_internal_cmd().
1818 		 */
1819 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1820 			qc->err_mask |= AC_ERR_TIMEOUT;
1821 
1822 			if (ap->ops->error_handler)
1823 				ata_port_freeze(ap);
1824 			else
1825 				ata_qc_complete(qc);
1826 
1827 			if (ata_msg_warn(ap))
1828 				ata_dev_printk(dev, KERN_WARNING,
1829 					"qc timeout (cmd 0x%x)\n", command);
1830 		}
1831 
1832 		spin_unlock_irqrestore(ap->lock, flags);
1833 	}
1834 
1835 	/* do post_internal_cmd */
1836 	if (ap->ops->post_internal_cmd)
1837 		ap->ops->post_internal_cmd(qc);
1838 
1839 	/* perform minimal error analysis */
1840 	if (qc->flags & ATA_QCFLAG_FAILED) {
1841 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1842 			qc->err_mask |= AC_ERR_DEV;
1843 
1844 		if (!qc->err_mask)
1845 			qc->err_mask |= AC_ERR_OTHER;
1846 
1847 		if (qc->err_mask & ~AC_ERR_OTHER)
1848 			qc->err_mask &= ~AC_ERR_OTHER;
1849 	}
1850 
1851 	/* finish up */
1852 	spin_lock_irqsave(ap->lock, flags);
1853 
1854 	*tf = qc->result_tf;
1855 	err_mask = qc->err_mask;
1856 
1857 	ata_qc_free(qc);
1858 	link->active_tag = preempted_tag;
1859 	link->sactive = preempted_sactive;
1860 	ap->qc_active = preempted_qc_active;
1861 	ap->nr_active_links = preempted_nr_active_links;
1862 
1863 	spin_unlock_irqrestore(ap->lock, flags);
1864 
1865 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1866 		ata_internal_cmd_timed_out(dev, command);
1867 
1868 	return err_mask;
1869 }
1870 
1871 /**
1872  *	ata_exec_internal - execute libata internal command
1873  *	@dev: Device to which the command is sent
1874  *	@tf: Taskfile registers for the command and the result
1875  *	@cdb: CDB for packet command
1876  *	@dma_dir: Data tranfer direction of the command
1877  *	@buf: Data buffer of the command
1878  *	@buflen: Length of data buffer
1879  *	@timeout: Timeout in msecs (0 for default)
1880  *
1881  *	Wrapper around ata_exec_internal_sg() which takes simple
1882  *	buffer instead of sg list.
1883  *
1884  *	LOCKING:
1885  *	None.  Should be called with kernel context, might sleep.
1886  *
1887  *	RETURNS:
1888  *	Zero on success, AC_ERR_* mask on failure
1889  */
1890 unsigned ata_exec_internal(struct ata_device *dev,
1891 			   struct ata_taskfile *tf, const u8 *cdb,
1892 			   int dma_dir, void *buf, unsigned int buflen,
1893 			   unsigned long timeout)
1894 {
1895 	struct scatterlist *psg = NULL, sg;
1896 	unsigned int n_elem = 0;
1897 
1898 	if (dma_dir != DMA_NONE) {
1899 		WARN_ON(!buf);
1900 		sg_init_one(&sg, buf, buflen);
1901 		psg = &sg;
1902 		n_elem++;
1903 	}
1904 
1905 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1906 				    timeout);
1907 }
1908 
1909 /**
1910  *	ata_do_simple_cmd - execute simple internal command
1911  *	@dev: Device to which the command is sent
1912  *	@cmd: Opcode to execute
1913  *
1914  *	Execute a 'simple' command, that only consists of the opcode
1915  *	'cmd' itself, without filling any other registers
1916  *
1917  *	LOCKING:
1918  *	Kernel thread context (may sleep).
1919  *
1920  *	RETURNS:
1921  *	Zero on success, AC_ERR_* mask on failure
1922  */
1923 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1924 {
1925 	struct ata_taskfile tf;
1926 
1927 	ata_tf_init(dev, &tf);
1928 
1929 	tf.command = cmd;
1930 	tf.flags |= ATA_TFLAG_DEVICE;
1931 	tf.protocol = ATA_PROT_NODATA;
1932 
1933 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1934 }
1935 
1936 /**
1937  *	ata_pio_need_iordy	-	check if iordy needed
1938  *	@adev: ATA device
1939  *
1940  *	Check if the current speed of the device requires IORDY. Used
1941  *	by various controllers for chip configuration.
1942  */
1943 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1944 {
1945 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1946 	 * lead to controller lock up on certain controllers if the
1947 	 * port is not occupied.  See bko#11703 for details.
1948 	 */
1949 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1950 		return 0;
1951 	/* Controller doesn't support IORDY.  Probably a pointless
1952 	 * check as the caller should know this.
1953 	 */
1954 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1955 		return 0;
1956 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1957 	if (ata_id_is_cfa(adev->id)
1958 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1959 		return 0;
1960 	/* PIO3 and higher it is mandatory */
1961 	if (adev->pio_mode > XFER_PIO_2)
1962 		return 1;
1963 	/* We turn it on when possible */
1964 	if (ata_id_has_iordy(adev->id))
1965 		return 1;
1966 	return 0;
1967 }
1968 
1969 /**
1970  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1971  *	@adev: ATA device
1972  *
1973  *	Compute the highest mode possible if we are not using iordy. Return
1974  *	-1 if no iordy mode is available.
1975  */
1976 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1977 {
1978 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1979 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1980 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1981 		/* Is the speed faster than the drive allows non IORDY ? */
1982 		if (pio) {
1983 			/* This is cycle times not frequency - watch the logic! */
1984 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1985 				return 3 << ATA_SHIFT_PIO;
1986 			return 7 << ATA_SHIFT_PIO;
1987 		}
1988 	}
1989 	return 3 << ATA_SHIFT_PIO;
1990 }
1991 
1992 /**
1993  *	ata_do_dev_read_id		-	default ID read method
1994  *	@dev: device
1995  *	@tf: proposed taskfile
1996  *	@id: data buffer
1997  *
1998  *	Issue the identify taskfile and hand back the buffer containing
1999  *	identify data. For some RAID controllers and for pre ATA devices
2000  *	this function is wrapped or replaced by the driver
2001  */
2002 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2003 					struct ata_taskfile *tf, u16 *id)
2004 {
2005 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2006 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2007 }
2008 
2009 /**
2010  *	ata_dev_read_id - Read ID data from the specified device
2011  *	@dev: target device
2012  *	@p_class: pointer to class of the target device (may be changed)
2013  *	@flags: ATA_READID_* flags
2014  *	@id: buffer to read IDENTIFY data into
2015  *
2016  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2017  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2018  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2019  *	for pre-ATA4 drives.
2020  *
2021  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2022  *	now we abort if we hit that case.
2023  *
2024  *	LOCKING:
2025  *	Kernel thread context (may sleep)
2026  *
2027  *	RETURNS:
2028  *	0 on success, -errno otherwise.
2029  */
2030 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2031 		    unsigned int flags, u16 *id)
2032 {
2033 	struct ata_port *ap = dev->link->ap;
2034 	unsigned int class = *p_class;
2035 	struct ata_taskfile tf;
2036 	unsigned int err_mask = 0;
2037 	const char *reason;
2038 	bool is_semb = class == ATA_DEV_SEMB;
2039 	int may_fallback = 1, tried_spinup = 0;
2040 	int rc;
2041 
2042 	if (ata_msg_ctl(ap))
2043 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2044 
2045 retry:
2046 	ata_tf_init(dev, &tf);
2047 
2048 	switch (class) {
2049 	case ATA_DEV_SEMB:
2050 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
2051 	case ATA_DEV_ATA:
2052 		tf.command = ATA_CMD_ID_ATA;
2053 		break;
2054 	case ATA_DEV_ATAPI:
2055 		tf.command = ATA_CMD_ID_ATAPI;
2056 		break;
2057 	default:
2058 		rc = -ENODEV;
2059 		reason = "unsupported class";
2060 		goto err_out;
2061 	}
2062 
2063 	tf.protocol = ATA_PROT_PIO;
2064 
2065 	/* Some devices choke if TF registers contain garbage.  Make
2066 	 * sure those are properly initialized.
2067 	 */
2068 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2069 
2070 	/* Device presence detection is unreliable on some
2071 	 * controllers.  Always poll IDENTIFY if available.
2072 	 */
2073 	tf.flags |= ATA_TFLAG_POLLING;
2074 
2075 	if (ap->ops->read_id)
2076 		err_mask = ap->ops->read_id(dev, &tf, id);
2077 	else
2078 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2079 
2080 	if (err_mask) {
2081 		if (err_mask & AC_ERR_NODEV_HINT) {
2082 			ata_dev_printk(dev, KERN_DEBUG,
2083 				       "NODEV after polling detection\n");
2084 			return -ENOENT;
2085 		}
2086 
2087 		if (is_semb) {
2088 			ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2089 				       "device w/ SEMB sig, disabled\n");
2090 			/* SEMB is not supported yet */
2091 			*p_class = ATA_DEV_SEMB_UNSUP;
2092 			return 0;
2093 		}
2094 
2095 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2096 			/* Device or controller might have reported
2097 			 * the wrong device class.  Give a shot at the
2098 			 * other IDENTIFY if the current one is
2099 			 * aborted by the device.
2100 			 */
2101 			if (may_fallback) {
2102 				may_fallback = 0;
2103 
2104 				if (class == ATA_DEV_ATA)
2105 					class = ATA_DEV_ATAPI;
2106 				else
2107 					class = ATA_DEV_ATA;
2108 				goto retry;
2109 			}
2110 
2111 			/* Control reaches here iff the device aborted
2112 			 * both flavors of IDENTIFYs which happens
2113 			 * sometimes with phantom devices.
2114 			 */
2115 			ata_dev_printk(dev, KERN_DEBUG,
2116 				       "both IDENTIFYs aborted, assuming NODEV\n");
2117 			return -ENOENT;
2118 		}
2119 
2120 		rc = -EIO;
2121 		reason = "I/O error";
2122 		goto err_out;
2123 	}
2124 
2125 	/* Falling back doesn't make sense if ID data was read
2126 	 * successfully at least once.
2127 	 */
2128 	may_fallback = 0;
2129 
2130 	swap_buf_le16(id, ATA_ID_WORDS);
2131 
2132 	/* sanity check */
2133 	rc = -EINVAL;
2134 	reason = "device reports invalid type";
2135 
2136 	if (class == ATA_DEV_ATA) {
2137 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2138 			goto err_out;
2139 	} else {
2140 		if (ata_id_is_ata(id))
2141 			goto err_out;
2142 	}
2143 
2144 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2145 		tried_spinup = 1;
2146 		/*
2147 		 * Drive powered-up in standby mode, and requires a specific
2148 		 * SET_FEATURES spin-up subcommand before it will accept
2149 		 * anything other than the original IDENTIFY command.
2150 		 */
2151 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2152 		if (err_mask && id[2] != 0x738c) {
2153 			rc = -EIO;
2154 			reason = "SPINUP failed";
2155 			goto err_out;
2156 		}
2157 		/*
2158 		 * If the drive initially returned incomplete IDENTIFY info,
2159 		 * we now must reissue the IDENTIFY command.
2160 		 */
2161 		if (id[2] == 0x37c8)
2162 			goto retry;
2163 	}
2164 
2165 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2166 		/*
2167 		 * The exact sequence expected by certain pre-ATA4 drives is:
2168 		 * SRST RESET
2169 		 * IDENTIFY (optional in early ATA)
2170 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2171 		 * anything else..
2172 		 * Some drives were very specific about that exact sequence.
2173 		 *
2174 		 * Note that ATA4 says lba is mandatory so the second check
2175 		 * should never trigger.
2176 		 */
2177 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2178 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2179 			if (err_mask) {
2180 				rc = -EIO;
2181 				reason = "INIT_DEV_PARAMS failed";
2182 				goto err_out;
2183 			}
2184 
2185 			/* current CHS translation info (id[53-58]) might be
2186 			 * changed. reread the identify device info.
2187 			 */
2188 			flags &= ~ATA_READID_POSTRESET;
2189 			goto retry;
2190 		}
2191 	}
2192 
2193 	*p_class = class;
2194 
2195 	return 0;
2196 
2197  err_out:
2198 	if (ata_msg_warn(ap))
2199 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2200 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2201 	return rc;
2202 }
2203 
2204 static int ata_do_link_spd_horkage(struct ata_device *dev)
2205 {
2206 	struct ata_link *plink = ata_dev_phys_link(dev);
2207 	u32 target, target_limit;
2208 
2209 	if (!sata_scr_valid(plink))
2210 		return 0;
2211 
2212 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2213 		target = 1;
2214 	else
2215 		return 0;
2216 
2217 	target_limit = (1 << target) - 1;
2218 
2219 	/* if already on stricter limit, no need to push further */
2220 	if (plink->sata_spd_limit <= target_limit)
2221 		return 0;
2222 
2223 	plink->sata_spd_limit = target_limit;
2224 
2225 	/* Request another EH round by returning -EAGAIN if link is
2226 	 * going faster than the target speed.  Forward progress is
2227 	 * guaranteed by setting sata_spd_limit to target_limit above.
2228 	 */
2229 	if (plink->sata_spd > target) {
2230 		ata_dev_printk(dev, KERN_INFO,
2231 			       "applying link speed limit horkage to %s\n",
2232 			       sata_spd_string(target));
2233 		return -EAGAIN;
2234 	}
2235 	return 0;
2236 }
2237 
2238 static inline u8 ata_dev_knobble(struct ata_device *dev)
2239 {
2240 	struct ata_port *ap = dev->link->ap;
2241 
2242 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2243 		return 0;
2244 
2245 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2246 }
2247 
2248 static int ata_dev_config_ncq(struct ata_device *dev,
2249 			       char *desc, size_t desc_sz)
2250 {
2251 	struct ata_port *ap = dev->link->ap;
2252 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2253 	unsigned int err_mask;
2254 	char *aa_desc = "";
2255 
2256 	if (!ata_id_has_ncq(dev->id)) {
2257 		desc[0] = '\0';
2258 		return 0;
2259 	}
2260 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2261 		snprintf(desc, desc_sz, "NCQ (not used)");
2262 		return 0;
2263 	}
2264 	if (ap->flags & ATA_FLAG_NCQ) {
2265 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2266 		dev->flags |= ATA_DFLAG_NCQ;
2267 	}
2268 
2269 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2270 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2271 		ata_id_has_fpdma_aa(dev->id)) {
2272 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2273 			SATA_FPDMA_AA);
2274 		if (err_mask) {
2275 			ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2276 				"(error_mask=0x%x)\n", err_mask);
2277 			if (err_mask != AC_ERR_DEV) {
2278 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2279 				return -EIO;
2280 			}
2281 		} else
2282 			aa_desc = ", AA";
2283 	}
2284 
2285 	if (hdepth >= ddepth)
2286 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2287 	else
2288 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2289 			ddepth, aa_desc);
2290 	return 0;
2291 }
2292 
2293 /**
2294  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2295  *	@dev: Target device to configure
2296  *
2297  *	Configure @dev according to @dev->id.  Generic and low-level
2298  *	driver specific fixups are also applied.
2299  *
2300  *	LOCKING:
2301  *	Kernel thread context (may sleep)
2302  *
2303  *	RETURNS:
2304  *	0 on success, -errno otherwise
2305  */
2306 int ata_dev_configure(struct ata_device *dev)
2307 {
2308 	struct ata_port *ap = dev->link->ap;
2309 	struct ata_eh_context *ehc = &dev->link->eh_context;
2310 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2311 	const u16 *id = dev->id;
2312 	unsigned long xfer_mask;
2313 	char revbuf[7];		/* XYZ-99\0 */
2314 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2315 	char modelbuf[ATA_ID_PROD_LEN+1];
2316 	int rc;
2317 
2318 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2319 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2320 			       __func__);
2321 		return 0;
2322 	}
2323 
2324 	if (ata_msg_probe(ap))
2325 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2326 
2327 	/* set horkage */
2328 	dev->horkage |= ata_dev_blacklisted(dev);
2329 	ata_force_horkage(dev);
2330 
2331 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2332 		ata_dev_printk(dev, KERN_INFO,
2333 			       "unsupported device, disabling\n");
2334 		ata_dev_disable(dev);
2335 		return 0;
2336 	}
2337 
2338 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2339 	    dev->class == ATA_DEV_ATAPI) {
2340 		ata_dev_printk(dev, KERN_WARNING,
2341 			"WARNING: ATAPI is %s, device ignored.\n",
2342 			atapi_enabled ? "not supported with this driver"
2343 				      : "disabled");
2344 		ata_dev_disable(dev);
2345 		return 0;
2346 	}
2347 
2348 	rc = ata_do_link_spd_horkage(dev);
2349 	if (rc)
2350 		return rc;
2351 
2352 	/* let ACPI work its magic */
2353 	rc = ata_acpi_on_devcfg(dev);
2354 	if (rc)
2355 		return rc;
2356 
2357 	/* massage HPA, do it early as it might change IDENTIFY data */
2358 	rc = ata_hpa_resize(dev);
2359 	if (rc)
2360 		return rc;
2361 
2362 	/* print device capabilities */
2363 	if (ata_msg_probe(ap))
2364 		ata_dev_printk(dev, KERN_DEBUG,
2365 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2366 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2367 			       __func__,
2368 			       id[49], id[82], id[83], id[84],
2369 			       id[85], id[86], id[87], id[88]);
2370 
2371 	/* initialize to-be-configured parameters */
2372 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2373 	dev->max_sectors = 0;
2374 	dev->cdb_len = 0;
2375 	dev->n_sectors = 0;
2376 	dev->cylinders = 0;
2377 	dev->heads = 0;
2378 	dev->sectors = 0;
2379 	dev->multi_count = 0;
2380 
2381 	/*
2382 	 * common ATA, ATAPI feature tests
2383 	 */
2384 
2385 	/* find max transfer mode; for printk only */
2386 	xfer_mask = ata_id_xfermask(id);
2387 
2388 	if (ata_msg_probe(ap))
2389 		ata_dump_id(id);
2390 
2391 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2392 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2393 			sizeof(fwrevbuf));
2394 
2395 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2396 			sizeof(modelbuf));
2397 
2398 	/* ATA-specific feature tests */
2399 	if (dev->class == ATA_DEV_ATA) {
2400 		if (ata_id_is_cfa(id)) {
2401 			/* CPRM may make this media unusable */
2402 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2403 				ata_dev_printk(dev, KERN_WARNING,
2404 					       "supports DRM functions and may "
2405 					       "not be fully accessable.\n");
2406 			snprintf(revbuf, 7, "CFA");
2407 		} else {
2408 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2409 			/* Warn the user if the device has TPM extensions */
2410 			if (ata_id_has_tpm(id))
2411 				ata_dev_printk(dev, KERN_WARNING,
2412 					       "supports DRM functions and may "
2413 					       "not be fully accessable.\n");
2414 		}
2415 
2416 		dev->n_sectors = ata_id_n_sectors(id);
2417 
2418 		/* get current R/W Multiple count setting */
2419 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2420 			unsigned int max = dev->id[47] & 0xff;
2421 			unsigned int cnt = dev->id[59] & 0xff;
2422 			/* only recognize/allow powers of two here */
2423 			if (is_power_of_2(max) && is_power_of_2(cnt))
2424 				if (cnt <= max)
2425 					dev->multi_count = cnt;
2426 		}
2427 
2428 		if (ata_id_has_lba(id)) {
2429 			const char *lba_desc;
2430 			char ncq_desc[24];
2431 
2432 			lba_desc = "LBA";
2433 			dev->flags |= ATA_DFLAG_LBA;
2434 			if (ata_id_has_lba48(id)) {
2435 				dev->flags |= ATA_DFLAG_LBA48;
2436 				lba_desc = "LBA48";
2437 
2438 				if (dev->n_sectors >= (1UL << 28) &&
2439 				    ata_id_has_flush_ext(id))
2440 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2441 			}
2442 
2443 			/* config NCQ */
2444 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2445 			if (rc)
2446 				return rc;
2447 
2448 			/* print device info to dmesg */
2449 			if (ata_msg_drv(ap) && print_info) {
2450 				ata_dev_printk(dev, KERN_INFO,
2451 					"%s: %s, %s, max %s\n",
2452 					revbuf, modelbuf, fwrevbuf,
2453 					ata_mode_string(xfer_mask));
2454 				ata_dev_printk(dev, KERN_INFO,
2455 					"%Lu sectors, multi %u: %s %s\n",
2456 					(unsigned long long)dev->n_sectors,
2457 					dev->multi_count, lba_desc, ncq_desc);
2458 			}
2459 		} else {
2460 			/* CHS */
2461 
2462 			/* Default translation */
2463 			dev->cylinders	= id[1];
2464 			dev->heads	= id[3];
2465 			dev->sectors	= id[6];
2466 
2467 			if (ata_id_current_chs_valid(id)) {
2468 				/* Current CHS translation is valid. */
2469 				dev->cylinders = id[54];
2470 				dev->heads     = id[55];
2471 				dev->sectors   = id[56];
2472 			}
2473 
2474 			/* print device info to dmesg */
2475 			if (ata_msg_drv(ap) && print_info) {
2476 				ata_dev_printk(dev, KERN_INFO,
2477 					"%s: %s, %s, max %s\n",
2478 					revbuf,	modelbuf, fwrevbuf,
2479 					ata_mode_string(xfer_mask));
2480 				ata_dev_printk(dev, KERN_INFO,
2481 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 					(unsigned long long)dev->n_sectors,
2483 					dev->multi_count, dev->cylinders,
2484 					dev->heads, dev->sectors);
2485 			}
2486 		}
2487 
2488 		dev->cdb_len = 16;
2489 	}
2490 
2491 	/* ATAPI-specific feature tests */
2492 	else if (dev->class == ATA_DEV_ATAPI) {
2493 		const char *cdb_intr_string = "";
2494 		const char *atapi_an_string = "";
2495 		const char *dma_dir_string = "";
2496 		u32 sntf;
2497 
2498 		rc = atapi_cdb_len(id);
2499 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2500 			if (ata_msg_warn(ap))
2501 				ata_dev_printk(dev, KERN_WARNING,
2502 					       "unsupported CDB len\n");
2503 			rc = -EINVAL;
2504 			goto err_out_nosup;
2505 		}
2506 		dev->cdb_len = (unsigned int) rc;
2507 
2508 		/* Enable ATAPI AN if both the host and device have
2509 		 * the support.  If PMP is attached, SNTF is required
2510 		 * to enable ATAPI AN to discern between PHY status
2511 		 * changed notifications and ATAPI ANs.
2512 		 */
2513 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2514 		    (!sata_pmp_attached(ap) ||
2515 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2516 			unsigned int err_mask;
2517 
2518 			/* issue SET feature command to turn this on */
2519 			err_mask = ata_dev_set_feature(dev,
2520 					SETFEATURES_SATA_ENABLE, SATA_AN);
2521 			if (err_mask)
2522 				ata_dev_printk(dev, KERN_ERR,
2523 					"failed to enable ATAPI AN "
2524 					"(err_mask=0x%x)\n", err_mask);
2525 			else {
2526 				dev->flags |= ATA_DFLAG_AN;
2527 				atapi_an_string = ", ATAPI AN";
2528 			}
2529 		}
2530 
2531 		if (ata_id_cdb_intr(dev->id)) {
2532 			dev->flags |= ATA_DFLAG_CDB_INTR;
2533 			cdb_intr_string = ", CDB intr";
2534 		}
2535 
2536 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 			dev->flags |= ATA_DFLAG_DMADIR;
2538 			dma_dir_string = ", DMADIR";
2539 		}
2540 
2541 		/* print device info to dmesg */
2542 		if (ata_msg_drv(ap) && print_info)
2543 			ata_dev_printk(dev, KERN_INFO,
2544 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2545 				       modelbuf, fwrevbuf,
2546 				       ata_mode_string(xfer_mask),
2547 				       cdb_intr_string, atapi_an_string,
2548 				       dma_dir_string);
2549 	}
2550 
2551 	/* determine max_sectors */
2552 	dev->max_sectors = ATA_MAX_SECTORS;
2553 	if (dev->flags & ATA_DFLAG_LBA48)
2554 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2555 
2556 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 		if (ata_id_has_hipm(dev->id))
2558 			dev->flags |= ATA_DFLAG_HIPM;
2559 		if (ata_id_has_dipm(dev->id))
2560 			dev->flags |= ATA_DFLAG_DIPM;
2561 	}
2562 
2563 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2564 	   200 sectors */
2565 	if (ata_dev_knobble(dev)) {
2566 		if (ata_msg_drv(ap) && print_info)
2567 			ata_dev_printk(dev, KERN_INFO,
2568 				       "applying bridge limits\n");
2569 		dev->udma_mask &= ATA_UDMA5;
2570 		dev->max_sectors = ATA_MAX_SECTORS;
2571 	}
2572 
2573 	if ((dev->class == ATA_DEV_ATAPI) &&
2574 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2575 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2576 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2577 	}
2578 
2579 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2580 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2581 					 dev->max_sectors);
2582 
2583 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 		dev->horkage |= ATA_HORKAGE_IPM;
2585 
2586 		/* reset link pm_policy for this port to no pm */
2587 		ap->pm_policy = MAX_PERFORMANCE;
2588 	}
2589 
2590 	if (ap->ops->dev_config)
2591 		ap->ops->dev_config(dev);
2592 
2593 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 		/* Let the user know. We don't want to disallow opens for
2595 		   rescue purposes, or in case the vendor is just a blithering
2596 		   idiot. Do this after the dev_config call as some controllers
2597 		   with buggy firmware may want to avoid reporting false device
2598 		   bugs */
2599 
2600 		if (print_info) {
2601 			ata_dev_printk(dev, KERN_WARNING,
2602 "Drive reports diagnostics failure. This may indicate a drive\n");
2603 			ata_dev_printk(dev, KERN_WARNING,
2604 "fault or invalid emulation. Contact drive vendor for information.\n");
2605 		}
2606 	}
2607 
2608 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 			       "firmware update to be fully functional.\n");
2611 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2612 			       "or visit http://ata.wiki.kernel.org.\n");
2613 	}
2614 
2615 	return 0;
2616 
2617 err_out_nosup:
2618 	if (ata_msg_probe(ap))
2619 		ata_dev_printk(dev, KERN_DEBUG,
2620 			       "%s: EXIT, err\n", __func__);
2621 	return rc;
2622 }
2623 
2624 /**
2625  *	ata_cable_40wire	-	return 40 wire cable type
2626  *	@ap: port
2627  *
2628  *	Helper method for drivers which want to hardwire 40 wire cable
2629  *	detection.
2630  */
2631 
2632 int ata_cable_40wire(struct ata_port *ap)
2633 {
2634 	return ATA_CBL_PATA40;
2635 }
2636 
2637 /**
2638  *	ata_cable_80wire	-	return 80 wire cable type
2639  *	@ap: port
2640  *
2641  *	Helper method for drivers which want to hardwire 80 wire cable
2642  *	detection.
2643  */
2644 
2645 int ata_cable_80wire(struct ata_port *ap)
2646 {
2647 	return ATA_CBL_PATA80;
2648 }
2649 
2650 /**
2651  *	ata_cable_unknown	-	return unknown PATA cable.
2652  *	@ap: port
2653  *
2654  *	Helper method for drivers which have no PATA cable detection.
2655  */
2656 
2657 int ata_cable_unknown(struct ata_port *ap)
2658 {
2659 	return ATA_CBL_PATA_UNK;
2660 }
2661 
2662 /**
2663  *	ata_cable_ignore	-	return ignored PATA cable.
2664  *	@ap: port
2665  *
2666  *	Helper method for drivers which don't use cable type to limit
2667  *	transfer mode.
2668  */
2669 int ata_cable_ignore(struct ata_port *ap)
2670 {
2671 	return ATA_CBL_PATA_IGN;
2672 }
2673 
2674 /**
2675  *	ata_cable_sata	-	return SATA cable type
2676  *	@ap: port
2677  *
2678  *	Helper method for drivers which have SATA cables
2679  */
2680 
2681 int ata_cable_sata(struct ata_port *ap)
2682 {
2683 	return ATA_CBL_SATA;
2684 }
2685 
2686 /**
2687  *	ata_bus_probe - Reset and probe ATA bus
2688  *	@ap: Bus to probe
2689  *
2690  *	Master ATA bus probing function.  Initiates a hardware-dependent
2691  *	bus reset, then attempts to identify any devices found on
2692  *	the bus.
2693  *
2694  *	LOCKING:
2695  *	PCI/etc. bus probe sem.
2696  *
2697  *	RETURNS:
2698  *	Zero on success, negative errno otherwise.
2699  */
2700 
2701 int ata_bus_probe(struct ata_port *ap)
2702 {
2703 	unsigned int classes[ATA_MAX_DEVICES];
2704 	int tries[ATA_MAX_DEVICES];
2705 	int rc;
2706 	struct ata_device *dev;
2707 
2708 	ata_for_each_dev(dev, &ap->link, ALL)
2709 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2710 
2711  retry:
2712 	ata_for_each_dev(dev, &ap->link, ALL) {
2713 		/* If we issue an SRST then an ATA drive (not ATAPI)
2714 		 * may change configuration and be in PIO0 timing. If
2715 		 * we do a hard reset (or are coming from power on)
2716 		 * this is true for ATA or ATAPI. Until we've set a
2717 		 * suitable controller mode we should not touch the
2718 		 * bus as we may be talking too fast.
2719 		 */
2720 		dev->pio_mode = XFER_PIO_0;
2721 
2722 		/* If the controller has a pio mode setup function
2723 		 * then use it to set the chipset to rights. Don't
2724 		 * touch the DMA setup as that will be dealt with when
2725 		 * configuring devices.
2726 		 */
2727 		if (ap->ops->set_piomode)
2728 			ap->ops->set_piomode(ap, dev);
2729 	}
2730 
2731 	/* reset and determine device classes */
2732 	ap->ops->phy_reset(ap);
2733 
2734 	ata_for_each_dev(dev, &ap->link, ALL) {
2735 		if (dev->class != ATA_DEV_UNKNOWN)
2736 			classes[dev->devno] = dev->class;
2737 		else
2738 			classes[dev->devno] = ATA_DEV_NONE;
2739 
2740 		dev->class = ATA_DEV_UNKNOWN;
2741 	}
2742 
2743 	/* read IDENTIFY page and configure devices. We have to do the identify
2744 	   specific sequence bass-ackwards so that PDIAG- is released by
2745 	   the slave device */
2746 
2747 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2748 		if (tries[dev->devno])
2749 			dev->class = classes[dev->devno];
2750 
2751 		if (!ata_dev_enabled(dev))
2752 			continue;
2753 
2754 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2755 				     dev->id);
2756 		if (rc)
2757 			goto fail;
2758 	}
2759 
2760 	/* Now ask for the cable type as PDIAG- should have been released */
2761 	if (ap->ops->cable_detect)
2762 		ap->cbl = ap->ops->cable_detect(ap);
2763 
2764 	/* We may have SATA bridge glue hiding here irrespective of
2765 	 * the reported cable types and sensed types.  When SATA
2766 	 * drives indicate we have a bridge, we don't know which end
2767 	 * of the link the bridge is which is a problem.
2768 	 */
2769 	ata_for_each_dev(dev, &ap->link, ENABLED)
2770 		if (ata_id_is_sata(dev->id))
2771 			ap->cbl = ATA_CBL_SATA;
2772 
2773 	/* After the identify sequence we can now set up the devices. We do
2774 	   this in the normal order so that the user doesn't get confused */
2775 
2776 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2777 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2778 		rc = ata_dev_configure(dev);
2779 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2780 		if (rc)
2781 			goto fail;
2782 	}
2783 
2784 	/* configure transfer mode */
2785 	rc = ata_set_mode(&ap->link, &dev);
2786 	if (rc)
2787 		goto fail;
2788 
2789 	ata_for_each_dev(dev, &ap->link, ENABLED)
2790 		return 0;
2791 
2792 	return -ENODEV;
2793 
2794  fail:
2795 	tries[dev->devno]--;
2796 
2797 	switch (rc) {
2798 	case -EINVAL:
2799 		/* eeek, something went very wrong, give up */
2800 		tries[dev->devno] = 0;
2801 		break;
2802 
2803 	case -ENODEV:
2804 		/* give it just one more chance */
2805 		tries[dev->devno] = min(tries[dev->devno], 1);
2806 	case -EIO:
2807 		if (tries[dev->devno] == 1) {
2808 			/* This is the last chance, better to slow
2809 			 * down than lose it.
2810 			 */
2811 			sata_down_spd_limit(&ap->link, 0);
2812 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2813 		}
2814 	}
2815 
2816 	if (!tries[dev->devno])
2817 		ata_dev_disable(dev);
2818 
2819 	goto retry;
2820 }
2821 
2822 /**
2823  *	sata_print_link_status - Print SATA link status
2824  *	@link: SATA link to printk link status about
2825  *
2826  *	This function prints link speed and status of a SATA link.
2827  *
2828  *	LOCKING:
2829  *	None.
2830  */
2831 static void sata_print_link_status(struct ata_link *link)
2832 {
2833 	u32 sstatus, scontrol, tmp;
2834 
2835 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2836 		return;
2837 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2838 
2839 	if (ata_phys_link_online(link)) {
2840 		tmp = (sstatus >> 4) & 0xf;
2841 		ata_link_printk(link, KERN_INFO,
2842 				"SATA link up %s (SStatus %X SControl %X)\n",
2843 				sata_spd_string(tmp), sstatus, scontrol);
2844 	} else {
2845 		ata_link_printk(link, KERN_INFO,
2846 				"SATA link down (SStatus %X SControl %X)\n",
2847 				sstatus, scontrol);
2848 	}
2849 }
2850 
2851 /**
2852  *	ata_dev_pair		-	return other device on cable
2853  *	@adev: device
2854  *
2855  *	Obtain the other device on the same cable, or if none is
2856  *	present NULL is returned
2857  */
2858 
2859 struct ata_device *ata_dev_pair(struct ata_device *adev)
2860 {
2861 	struct ata_link *link = adev->link;
2862 	struct ata_device *pair = &link->device[1 - adev->devno];
2863 	if (!ata_dev_enabled(pair))
2864 		return NULL;
2865 	return pair;
2866 }
2867 
2868 /**
2869  *	sata_down_spd_limit - adjust SATA spd limit downward
2870  *	@link: Link to adjust SATA spd limit for
2871  *	@spd_limit: Additional limit
2872  *
2873  *	Adjust SATA spd limit of @link downward.  Note that this
2874  *	function only adjusts the limit.  The change must be applied
2875  *	using sata_set_spd().
2876  *
2877  *	If @spd_limit is non-zero, the speed is limited to equal to or
2878  *	lower than @spd_limit if such speed is supported.  If
2879  *	@spd_limit is slower than any supported speed, only the lowest
2880  *	supported speed is allowed.
2881  *
2882  *	LOCKING:
2883  *	Inherited from caller.
2884  *
2885  *	RETURNS:
2886  *	0 on success, negative errno on failure
2887  */
2888 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2889 {
2890 	u32 sstatus, spd, mask;
2891 	int rc, bit;
2892 
2893 	if (!sata_scr_valid(link))
2894 		return -EOPNOTSUPP;
2895 
2896 	/* If SCR can be read, use it to determine the current SPD.
2897 	 * If not, use cached value in link->sata_spd.
2898 	 */
2899 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2900 	if (rc == 0 && ata_sstatus_online(sstatus))
2901 		spd = (sstatus >> 4) & 0xf;
2902 	else
2903 		spd = link->sata_spd;
2904 
2905 	mask = link->sata_spd_limit;
2906 	if (mask <= 1)
2907 		return -EINVAL;
2908 
2909 	/* unconditionally mask off the highest bit */
2910 	bit = fls(mask) - 1;
2911 	mask &= ~(1 << bit);
2912 
2913 	/* Mask off all speeds higher than or equal to the current
2914 	 * one.  Force 1.5Gbps if current SPD is not available.
2915 	 */
2916 	if (spd > 1)
2917 		mask &= (1 << (spd - 1)) - 1;
2918 	else
2919 		mask &= 1;
2920 
2921 	/* were we already at the bottom? */
2922 	if (!mask)
2923 		return -EINVAL;
2924 
2925 	if (spd_limit) {
2926 		if (mask & ((1 << spd_limit) - 1))
2927 			mask &= (1 << spd_limit) - 1;
2928 		else {
2929 			bit = ffs(mask) - 1;
2930 			mask = 1 << bit;
2931 		}
2932 	}
2933 
2934 	link->sata_spd_limit = mask;
2935 
2936 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2937 			sata_spd_string(fls(mask)));
2938 
2939 	return 0;
2940 }
2941 
2942 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2943 {
2944 	struct ata_link *host_link = &link->ap->link;
2945 	u32 limit, target, spd;
2946 
2947 	limit = link->sata_spd_limit;
2948 
2949 	/* Don't configure downstream link faster than upstream link.
2950 	 * It doesn't speed up anything and some PMPs choke on such
2951 	 * configuration.
2952 	 */
2953 	if (!ata_is_host_link(link) && host_link->sata_spd)
2954 		limit &= (1 << host_link->sata_spd) - 1;
2955 
2956 	if (limit == UINT_MAX)
2957 		target = 0;
2958 	else
2959 		target = fls(limit);
2960 
2961 	spd = (*scontrol >> 4) & 0xf;
2962 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2963 
2964 	return spd != target;
2965 }
2966 
2967 /**
2968  *	sata_set_spd_needed - is SATA spd configuration needed
2969  *	@link: Link in question
2970  *
2971  *	Test whether the spd limit in SControl matches
2972  *	@link->sata_spd_limit.  This function is used to determine
2973  *	whether hardreset is necessary to apply SATA spd
2974  *	configuration.
2975  *
2976  *	LOCKING:
2977  *	Inherited from caller.
2978  *
2979  *	RETURNS:
2980  *	1 if SATA spd configuration is needed, 0 otherwise.
2981  */
2982 static int sata_set_spd_needed(struct ata_link *link)
2983 {
2984 	u32 scontrol;
2985 
2986 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2987 		return 1;
2988 
2989 	return __sata_set_spd_needed(link, &scontrol);
2990 }
2991 
2992 /**
2993  *	sata_set_spd - set SATA spd according to spd limit
2994  *	@link: Link to set SATA spd for
2995  *
2996  *	Set SATA spd of @link according to sata_spd_limit.
2997  *
2998  *	LOCKING:
2999  *	Inherited from caller.
3000  *
3001  *	RETURNS:
3002  *	0 if spd doesn't need to be changed, 1 if spd has been
3003  *	changed.  Negative errno if SCR registers are inaccessible.
3004  */
3005 int sata_set_spd(struct ata_link *link)
3006 {
3007 	u32 scontrol;
3008 	int rc;
3009 
3010 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3011 		return rc;
3012 
3013 	if (!__sata_set_spd_needed(link, &scontrol))
3014 		return 0;
3015 
3016 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3017 		return rc;
3018 
3019 	return 1;
3020 }
3021 
3022 /*
3023  * This mode timing computation functionality is ported over from
3024  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3025  */
3026 /*
3027  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3028  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3029  * for UDMA6, which is currently supported only by Maxtor drives.
3030  *
3031  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3032  */
3033 
3034 static const struct ata_timing ata_timing[] = {
3035 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3036 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3037 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3038 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3039 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3040 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3041 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3042 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3043 
3044 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3045 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3046 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3047 
3048 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3049 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3050 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3051 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3052 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3053 
3054 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3055 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3056 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3057 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3058 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3059 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3060 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3061 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3062 
3063 	{ 0xFF }
3064 };
3065 
3066 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3067 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3068 
3069 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3070 {
3071 	q->setup	= EZ(t->setup      * 1000,  T);
3072 	q->act8b	= EZ(t->act8b      * 1000,  T);
3073 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3074 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3075 	q->active	= EZ(t->active     * 1000,  T);
3076 	q->recover	= EZ(t->recover    * 1000,  T);
3077 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3078 	q->cycle	= EZ(t->cycle      * 1000,  T);
3079 	q->udma		= EZ(t->udma       * 1000, UT);
3080 }
3081 
3082 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3083 		      struct ata_timing *m, unsigned int what)
3084 {
3085 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3086 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3087 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3088 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3089 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3090 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3091 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3092 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3093 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3094 }
3095 
3096 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3097 {
3098 	const struct ata_timing *t = ata_timing;
3099 
3100 	while (xfer_mode > t->mode)
3101 		t++;
3102 
3103 	if (xfer_mode == t->mode)
3104 		return t;
3105 	return NULL;
3106 }
3107 
3108 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3109 		       struct ata_timing *t, int T, int UT)
3110 {
3111 	const u16 *id = adev->id;
3112 	const struct ata_timing *s;
3113 	struct ata_timing p;
3114 
3115 	/*
3116 	 * Find the mode.
3117 	 */
3118 
3119 	if (!(s = ata_timing_find_mode(speed)))
3120 		return -EINVAL;
3121 
3122 	memcpy(t, s, sizeof(*s));
3123 
3124 	/*
3125 	 * If the drive is an EIDE drive, it can tell us it needs extended
3126 	 * PIO/MW_DMA cycle timing.
3127 	 */
3128 
3129 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3130 		memset(&p, 0, sizeof(p));
3131 
3132 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3133 			if (speed <= XFER_PIO_2)
3134 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3135 			else if ((speed <= XFER_PIO_4) ||
3136 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3137 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3138 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3139 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3140 
3141 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3142 	}
3143 
3144 	/*
3145 	 * Convert the timing to bus clock counts.
3146 	 */
3147 
3148 	ata_timing_quantize(t, t, T, UT);
3149 
3150 	/*
3151 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3152 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3153 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3154 	 */
3155 
3156 	if (speed > XFER_PIO_6) {
3157 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3158 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3159 	}
3160 
3161 	/*
3162 	 * Lengthen active & recovery time so that cycle time is correct.
3163 	 */
3164 
3165 	if (t->act8b + t->rec8b < t->cyc8b) {
3166 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3167 		t->rec8b = t->cyc8b - t->act8b;
3168 	}
3169 
3170 	if (t->active + t->recover < t->cycle) {
3171 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3172 		t->recover = t->cycle - t->active;
3173 	}
3174 
3175 	/* In a few cases quantisation may produce enough errors to
3176 	   leave t->cycle too low for the sum of active and recovery
3177 	   if so we must correct this */
3178 	if (t->active + t->recover > t->cycle)
3179 		t->cycle = t->active + t->recover;
3180 
3181 	return 0;
3182 }
3183 
3184 /**
3185  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3186  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3187  *	@cycle: cycle duration in ns
3188  *
3189  *	Return matching xfer mode for @cycle.  The returned mode is of
3190  *	the transfer type specified by @xfer_shift.  If @cycle is too
3191  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3192  *	than the fastest known mode, the fasted mode is returned.
3193  *
3194  *	LOCKING:
3195  *	None.
3196  *
3197  *	RETURNS:
3198  *	Matching xfer_mode, 0xff if no match found.
3199  */
3200 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3201 {
3202 	u8 base_mode = 0xff, last_mode = 0xff;
3203 	const struct ata_xfer_ent *ent;
3204 	const struct ata_timing *t;
3205 
3206 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3207 		if (ent->shift == xfer_shift)
3208 			base_mode = ent->base;
3209 
3210 	for (t = ata_timing_find_mode(base_mode);
3211 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3212 		unsigned short this_cycle;
3213 
3214 		switch (xfer_shift) {
3215 		case ATA_SHIFT_PIO:
3216 		case ATA_SHIFT_MWDMA:
3217 			this_cycle = t->cycle;
3218 			break;
3219 		case ATA_SHIFT_UDMA:
3220 			this_cycle = t->udma;
3221 			break;
3222 		default:
3223 			return 0xff;
3224 		}
3225 
3226 		if (cycle > this_cycle)
3227 			break;
3228 
3229 		last_mode = t->mode;
3230 	}
3231 
3232 	return last_mode;
3233 }
3234 
3235 /**
3236  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3237  *	@dev: Device to adjust xfer masks
3238  *	@sel: ATA_DNXFER_* selector
3239  *
3240  *	Adjust xfer masks of @dev downward.  Note that this function
3241  *	does not apply the change.  Invoking ata_set_mode() afterwards
3242  *	will apply the limit.
3243  *
3244  *	LOCKING:
3245  *	Inherited from caller.
3246  *
3247  *	RETURNS:
3248  *	0 on success, negative errno on failure
3249  */
3250 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3251 {
3252 	char buf[32];
3253 	unsigned long orig_mask, xfer_mask;
3254 	unsigned long pio_mask, mwdma_mask, udma_mask;
3255 	int quiet, highbit;
3256 
3257 	quiet = !!(sel & ATA_DNXFER_QUIET);
3258 	sel &= ~ATA_DNXFER_QUIET;
3259 
3260 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3261 						  dev->mwdma_mask,
3262 						  dev->udma_mask);
3263 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3264 
3265 	switch (sel) {
3266 	case ATA_DNXFER_PIO:
3267 		highbit = fls(pio_mask) - 1;
3268 		pio_mask &= ~(1 << highbit);
3269 		break;
3270 
3271 	case ATA_DNXFER_DMA:
3272 		if (udma_mask) {
3273 			highbit = fls(udma_mask) - 1;
3274 			udma_mask &= ~(1 << highbit);
3275 			if (!udma_mask)
3276 				return -ENOENT;
3277 		} else if (mwdma_mask) {
3278 			highbit = fls(mwdma_mask) - 1;
3279 			mwdma_mask &= ~(1 << highbit);
3280 			if (!mwdma_mask)
3281 				return -ENOENT;
3282 		}
3283 		break;
3284 
3285 	case ATA_DNXFER_40C:
3286 		udma_mask &= ATA_UDMA_MASK_40C;
3287 		break;
3288 
3289 	case ATA_DNXFER_FORCE_PIO0:
3290 		pio_mask &= 1;
3291 	case ATA_DNXFER_FORCE_PIO:
3292 		mwdma_mask = 0;
3293 		udma_mask = 0;
3294 		break;
3295 
3296 	default:
3297 		BUG();
3298 	}
3299 
3300 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3301 
3302 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3303 		return -ENOENT;
3304 
3305 	if (!quiet) {
3306 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3307 			snprintf(buf, sizeof(buf), "%s:%s",
3308 				 ata_mode_string(xfer_mask),
3309 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3310 		else
3311 			snprintf(buf, sizeof(buf), "%s",
3312 				 ata_mode_string(xfer_mask));
3313 
3314 		ata_dev_printk(dev, KERN_WARNING,
3315 			       "limiting speed to %s\n", buf);
3316 	}
3317 
3318 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3319 			    &dev->udma_mask);
3320 
3321 	return 0;
3322 }
3323 
3324 static int ata_dev_set_mode(struct ata_device *dev)
3325 {
3326 	struct ata_port *ap = dev->link->ap;
3327 	struct ata_eh_context *ehc = &dev->link->eh_context;
3328 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3329 	const char *dev_err_whine = "";
3330 	int ign_dev_err = 0;
3331 	unsigned int err_mask = 0;
3332 	int rc;
3333 
3334 	dev->flags &= ~ATA_DFLAG_PIO;
3335 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3336 		dev->flags |= ATA_DFLAG_PIO;
3337 
3338 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3339 		dev_err_whine = " (SET_XFERMODE skipped)";
3340 	else {
3341 		if (nosetxfer)
3342 			ata_dev_printk(dev, KERN_WARNING,
3343 				       "NOSETXFER but PATA detected - can't "
3344 				       "skip SETXFER, might malfunction\n");
3345 		err_mask = ata_dev_set_xfermode(dev);
3346 	}
3347 
3348 	if (err_mask & ~AC_ERR_DEV)
3349 		goto fail;
3350 
3351 	/* revalidate */
3352 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3353 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3354 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3355 	if (rc)
3356 		return rc;
3357 
3358 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3359 		/* Old CFA may refuse this command, which is just fine */
3360 		if (ata_id_is_cfa(dev->id))
3361 			ign_dev_err = 1;
3362 		/* Catch several broken garbage emulations plus some pre
3363 		   ATA devices */
3364 		if (ata_id_major_version(dev->id) == 0 &&
3365 					dev->pio_mode <= XFER_PIO_2)
3366 			ign_dev_err = 1;
3367 		/* Some very old devices and some bad newer ones fail
3368 		   any kind of SET_XFERMODE request but support PIO0-2
3369 		   timings and no IORDY */
3370 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3371 			ign_dev_err = 1;
3372 	}
3373 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3374 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3375 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3376 	    dev->dma_mode == XFER_MW_DMA_0 &&
3377 	    (dev->id[63] >> 8) & 1)
3378 		ign_dev_err = 1;
3379 
3380 	/* if the device is actually configured correctly, ignore dev err */
3381 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3382 		ign_dev_err = 1;
3383 
3384 	if (err_mask & AC_ERR_DEV) {
3385 		if (!ign_dev_err)
3386 			goto fail;
3387 		else
3388 			dev_err_whine = " (device error ignored)";
3389 	}
3390 
3391 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3392 		dev->xfer_shift, (int)dev->xfer_mode);
3393 
3394 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3395 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3396 		       dev_err_whine);
3397 
3398 	return 0;
3399 
3400  fail:
3401 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3402 		       "(err_mask=0x%x)\n", err_mask);
3403 	return -EIO;
3404 }
3405 
3406 /**
3407  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3408  *	@link: link on which timings will be programmed
3409  *	@r_failed_dev: out parameter for failed device
3410  *
3411  *	Standard implementation of the function used to tune and set
3412  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3413  *	ata_dev_set_mode() fails, pointer to the failing device is
3414  *	returned in @r_failed_dev.
3415  *
3416  *	LOCKING:
3417  *	PCI/etc. bus probe sem.
3418  *
3419  *	RETURNS:
3420  *	0 on success, negative errno otherwise
3421  */
3422 
3423 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3424 {
3425 	struct ata_port *ap = link->ap;
3426 	struct ata_device *dev;
3427 	int rc = 0, used_dma = 0, found = 0;
3428 
3429 	/* step 1: calculate xfer_mask */
3430 	ata_for_each_dev(dev, link, ENABLED) {
3431 		unsigned long pio_mask, dma_mask;
3432 		unsigned int mode_mask;
3433 
3434 		mode_mask = ATA_DMA_MASK_ATA;
3435 		if (dev->class == ATA_DEV_ATAPI)
3436 			mode_mask = ATA_DMA_MASK_ATAPI;
3437 		else if (ata_id_is_cfa(dev->id))
3438 			mode_mask = ATA_DMA_MASK_CFA;
3439 
3440 		ata_dev_xfermask(dev);
3441 		ata_force_xfermask(dev);
3442 
3443 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3444 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3445 
3446 		if (libata_dma_mask & mode_mask)
3447 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3448 		else
3449 			dma_mask = 0;
3450 
3451 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3452 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3453 
3454 		found = 1;
3455 		if (ata_dma_enabled(dev))
3456 			used_dma = 1;
3457 	}
3458 	if (!found)
3459 		goto out;
3460 
3461 	/* step 2: always set host PIO timings */
3462 	ata_for_each_dev(dev, link, ENABLED) {
3463 		if (dev->pio_mode == 0xff) {
3464 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3465 			rc = -EINVAL;
3466 			goto out;
3467 		}
3468 
3469 		dev->xfer_mode = dev->pio_mode;
3470 		dev->xfer_shift = ATA_SHIFT_PIO;
3471 		if (ap->ops->set_piomode)
3472 			ap->ops->set_piomode(ap, dev);
3473 	}
3474 
3475 	/* step 3: set host DMA timings */
3476 	ata_for_each_dev(dev, link, ENABLED) {
3477 		if (!ata_dma_enabled(dev))
3478 			continue;
3479 
3480 		dev->xfer_mode = dev->dma_mode;
3481 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3482 		if (ap->ops->set_dmamode)
3483 			ap->ops->set_dmamode(ap, dev);
3484 	}
3485 
3486 	/* step 4: update devices' xfer mode */
3487 	ata_for_each_dev(dev, link, ENABLED) {
3488 		rc = ata_dev_set_mode(dev);
3489 		if (rc)
3490 			goto out;
3491 	}
3492 
3493 	/* Record simplex status. If we selected DMA then the other
3494 	 * host channels are not permitted to do so.
3495 	 */
3496 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3497 		ap->host->simplex_claimed = ap;
3498 
3499  out:
3500 	if (rc)
3501 		*r_failed_dev = dev;
3502 	return rc;
3503 }
3504 
3505 /**
3506  *	ata_wait_ready - wait for link to become ready
3507  *	@link: link to be waited on
3508  *	@deadline: deadline jiffies for the operation
3509  *	@check_ready: callback to check link readiness
3510  *
3511  *	Wait for @link to become ready.  @check_ready should return
3512  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3513  *	link doesn't seem to be occupied, other errno for other error
3514  *	conditions.
3515  *
3516  *	Transient -ENODEV conditions are allowed for
3517  *	ATA_TMOUT_FF_WAIT.
3518  *
3519  *	LOCKING:
3520  *	EH context.
3521  *
3522  *	RETURNS:
3523  *	0 if @linke is ready before @deadline; otherwise, -errno.
3524  */
3525 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3526 		   int (*check_ready)(struct ata_link *link))
3527 {
3528 	unsigned long start = jiffies;
3529 	unsigned long nodev_deadline;
3530 	int warned = 0;
3531 
3532 	/* choose which 0xff timeout to use, read comment in libata.h */
3533 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3534 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3535 	else
3536 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3537 
3538 	/* Slave readiness can't be tested separately from master.  On
3539 	 * M/S emulation configuration, this function should be called
3540 	 * only on the master and it will handle both master and slave.
3541 	 */
3542 	WARN_ON(link == link->ap->slave_link);
3543 
3544 	if (time_after(nodev_deadline, deadline))
3545 		nodev_deadline = deadline;
3546 
3547 	while (1) {
3548 		unsigned long now = jiffies;
3549 		int ready, tmp;
3550 
3551 		ready = tmp = check_ready(link);
3552 		if (ready > 0)
3553 			return 0;
3554 
3555 		/*
3556 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3557 		 * is online.  Also, some SATA devices take a long
3558 		 * time to clear 0xff after reset.  Wait for
3559 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3560 		 * offline.
3561 		 *
3562 		 * Note that some PATA controllers (pata_ali) explode
3563 		 * if status register is read more than once when
3564 		 * there's no device attached.
3565 		 */
3566 		if (ready == -ENODEV) {
3567 			if (ata_link_online(link))
3568 				ready = 0;
3569 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3570 				 !ata_link_offline(link) &&
3571 				 time_before(now, nodev_deadline))
3572 				ready = 0;
3573 		}
3574 
3575 		if (ready)
3576 			return ready;
3577 		if (time_after(now, deadline))
3578 			return -EBUSY;
3579 
3580 		if (!warned && time_after(now, start + 5 * HZ) &&
3581 		    (deadline - now > 3 * HZ)) {
3582 			ata_link_printk(link, KERN_WARNING,
3583 				"link is slow to respond, please be patient "
3584 				"(ready=%d)\n", tmp);
3585 			warned = 1;
3586 		}
3587 
3588 		msleep(50);
3589 	}
3590 }
3591 
3592 /**
3593  *	ata_wait_after_reset - wait for link to become ready after reset
3594  *	@link: link to be waited on
3595  *	@deadline: deadline jiffies for the operation
3596  *	@check_ready: callback to check link readiness
3597  *
3598  *	Wait for @link to become ready after reset.
3599  *
3600  *	LOCKING:
3601  *	EH context.
3602  *
3603  *	RETURNS:
3604  *	0 if @linke is ready before @deadline; otherwise, -errno.
3605  */
3606 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3607 				int (*check_ready)(struct ata_link *link))
3608 {
3609 	msleep(ATA_WAIT_AFTER_RESET);
3610 
3611 	return ata_wait_ready(link, deadline, check_ready);
3612 }
3613 
3614 /**
3615  *	sata_link_debounce - debounce SATA phy status
3616  *	@link: ATA link to debounce SATA phy status for
3617  *	@params: timing parameters { interval, duratinon, timeout } in msec
3618  *	@deadline: deadline jiffies for the operation
3619  *
3620 *	Make sure SStatus of @link reaches stable state, determined by
3621  *	holding the same value where DET is not 1 for @duration polled
3622  *	every @interval, before @timeout.  Timeout constraints the
3623  *	beginning of the stable state.  Because DET gets stuck at 1 on
3624  *	some controllers after hot unplugging, this functions waits
3625  *	until timeout then returns 0 if DET is stable at 1.
3626  *
3627  *	@timeout is further limited by @deadline.  The sooner of the
3628  *	two is used.
3629  *
3630  *	LOCKING:
3631  *	Kernel thread context (may sleep)
3632  *
3633  *	RETURNS:
3634  *	0 on success, -errno on failure.
3635  */
3636 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3637 		       unsigned long deadline)
3638 {
3639 	unsigned long interval = params[0];
3640 	unsigned long duration = params[1];
3641 	unsigned long last_jiffies, t;
3642 	u32 last, cur;
3643 	int rc;
3644 
3645 	t = ata_deadline(jiffies, params[2]);
3646 	if (time_before(t, deadline))
3647 		deadline = t;
3648 
3649 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3650 		return rc;
3651 	cur &= 0xf;
3652 
3653 	last = cur;
3654 	last_jiffies = jiffies;
3655 
3656 	while (1) {
3657 		msleep(interval);
3658 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3659 			return rc;
3660 		cur &= 0xf;
3661 
3662 		/* DET stable? */
3663 		if (cur == last) {
3664 			if (cur == 1 && time_before(jiffies, deadline))
3665 				continue;
3666 			if (time_after(jiffies,
3667 				       ata_deadline(last_jiffies, duration)))
3668 				return 0;
3669 			continue;
3670 		}
3671 
3672 		/* unstable, start over */
3673 		last = cur;
3674 		last_jiffies = jiffies;
3675 
3676 		/* Check deadline.  If debouncing failed, return
3677 		 * -EPIPE to tell upper layer to lower link speed.
3678 		 */
3679 		if (time_after(jiffies, deadline))
3680 			return -EPIPE;
3681 	}
3682 }
3683 
3684 /**
3685  *	sata_link_resume - resume SATA link
3686  *	@link: ATA link to resume SATA
3687  *	@params: timing parameters { interval, duratinon, timeout } in msec
3688  *	@deadline: deadline jiffies for the operation
3689  *
3690  *	Resume SATA phy @link and debounce it.
3691  *
3692  *	LOCKING:
3693  *	Kernel thread context (may sleep)
3694  *
3695  *	RETURNS:
3696  *	0 on success, -errno on failure.
3697  */
3698 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3699 		     unsigned long deadline)
3700 {
3701 	int tries = ATA_LINK_RESUME_TRIES;
3702 	u32 scontrol, serror;
3703 	int rc;
3704 
3705 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3706 		return rc;
3707 
3708 	/*
3709 	 * Writes to SControl sometimes get ignored under certain
3710 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3711 	 * cleared.
3712 	 */
3713 	do {
3714 		scontrol = (scontrol & 0x0f0) | 0x300;
3715 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3716 			return rc;
3717 		/*
3718 		 * Some PHYs react badly if SStatus is pounded
3719 		 * immediately after resuming.  Delay 200ms before
3720 		 * debouncing.
3721 		 */
3722 		msleep(200);
3723 
3724 		/* is SControl restored correctly? */
3725 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3726 			return rc;
3727 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3728 
3729 	if ((scontrol & 0xf0f) != 0x300) {
3730 		ata_link_printk(link, KERN_ERR,
3731 				"failed to resume link (SControl %X)\n",
3732 				scontrol);
3733 		return 0;
3734 	}
3735 
3736 	if (tries < ATA_LINK_RESUME_TRIES)
3737 		ata_link_printk(link, KERN_WARNING,
3738 				"link resume succeeded after %d retries\n",
3739 				ATA_LINK_RESUME_TRIES - tries);
3740 
3741 	if ((rc = sata_link_debounce(link, params, deadline)))
3742 		return rc;
3743 
3744 	/* clear SError, some PHYs require this even for SRST to work */
3745 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3746 		rc = sata_scr_write(link, SCR_ERROR, serror);
3747 
3748 	return rc != -EINVAL ? rc : 0;
3749 }
3750 
3751 /**
3752  *	ata_std_prereset - prepare for reset
3753  *	@link: ATA link to be reset
3754  *	@deadline: deadline jiffies for the operation
3755  *
3756  *	@link is about to be reset.  Initialize it.  Failure from
3757  *	prereset makes libata abort whole reset sequence and give up
3758  *	that port, so prereset should be best-effort.  It does its
3759  *	best to prepare for reset sequence but if things go wrong, it
3760  *	should just whine, not fail.
3761  *
3762  *	LOCKING:
3763  *	Kernel thread context (may sleep)
3764  *
3765  *	RETURNS:
3766  *	0 on success, -errno otherwise.
3767  */
3768 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3769 {
3770 	struct ata_port *ap = link->ap;
3771 	struct ata_eh_context *ehc = &link->eh_context;
3772 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3773 	int rc;
3774 
3775 	/* if we're about to do hardreset, nothing more to do */
3776 	if (ehc->i.action & ATA_EH_HARDRESET)
3777 		return 0;
3778 
3779 	/* if SATA, resume link */
3780 	if (ap->flags & ATA_FLAG_SATA) {
3781 		rc = sata_link_resume(link, timing, deadline);
3782 		/* whine about phy resume failure but proceed */
3783 		if (rc && rc != -EOPNOTSUPP)
3784 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3785 					"link for reset (errno=%d)\n", rc);
3786 	}
3787 
3788 	/* no point in trying softreset on offline link */
3789 	if (ata_phys_link_offline(link))
3790 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  *	sata_link_hardreset - reset link via SATA phy reset
3797  *	@link: link to reset
3798  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3799  *	@deadline: deadline jiffies for the operation
3800  *	@online: optional out parameter indicating link onlineness
3801  *	@check_ready: optional callback to check link readiness
3802  *
3803  *	SATA phy-reset @link using DET bits of SControl register.
3804  *	After hardreset, link readiness is waited upon using
3805  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3806  *	allowed to not specify @check_ready and wait itself after this
3807  *	function returns.  Device classification is LLD's
3808  *	responsibility.
3809  *
3810  *	*@online is set to one iff reset succeeded and @link is online
3811  *	after reset.
3812  *
3813  *	LOCKING:
3814  *	Kernel thread context (may sleep)
3815  *
3816  *	RETURNS:
3817  *	0 on success, -errno otherwise.
3818  */
3819 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3820 			unsigned long deadline,
3821 			bool *online, int (*check_ready)(struct ata_link *))
3822 {
3823 	u32 scontrol;
3824 	int rc;
3825 
3826 	DPRINTK("ENTER\n");
3827 
3828 	if (online)
3829 		*online = false;
3830 
3831 	if (sata_set_spd_needed(link)) {
3832 		/* SATA spec says nothing about how to reconfigure
3833 		 * spd.  To be on the safe side, turn off phy during
3834 		 * reconfiguration.  This works for at least ICH7 AHCI
3835 		 * and Sil3124.
3836 		 */
3837 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3838 			goto out;
3839 
3840 		scontrol = (scontrol & 0x0f0) | 0x304;
3841 
3842 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3843 			goto out;
3844 
3845 		sata_set_spd(link);
3846 	}
3847 
3848 	/* issue phy wake/reset */
3849 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3850 		goto out;
3851 
3852 	scontrol = (scontrol & 0x0f0) | 0x301;
3853 
3854 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3855 		goto out;
3856 
3857 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3858 	 * 10.4.2 says at least 1 ms.
3859 	 */
3860 	msleep(1);
3861 
3862 	/* bring link back */
3863 	rc = sata_link_resume(link, timing, deadline);
3864 	if (rc)
3865 		goto out;
3866 	/* if link is offline nothing more to do */
3867 	if (ata_phys_link_offline(link))
3868 		goto out;
3869 
3870 	/* Link is online.  From this point, -ENODEV too is an error. */
3871 	if (online)
3872 		*online = true;
3873 
3874 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3875 		/* If PMP is supported, we have to do follow-up SRST.
3876 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3877 		 * the first port is empty.  Wait only for
3878 		 * ATA_TMOUT_PMP_SRST_WAIT.
3879 		 */
3880 		if (check_ready) {
3881 			unsigned long pmp_deadline;
3882 
3883 			pmp_deadline = ata_deadline(jiffies,
3884 						    ATA_TMOUT_PMP_SRST_WAIT);
3885 			if (time_after(pmp_deadline, deadline))
3886 				pmp_deadline = deadline;
3887 			ata_wait_ready(link, pmp_deadline, check_ready);
3888 		}
3889 		rc = -EAGAIN;
3890 		goto out;
3891 	}
3892 
3893 	rc = 0;
3894 	if (check_ready)
3895 		rc = ata_wait_ready(link, deadline, check_ready);
3896  out:
3897 	if (rc && rc != -EAGAIN) {
3898 		/* online is set iff link is online && reset succeeded */
3899 		if (online)
3900 			*online = false;
3901 		ata_link_printk(link, KERN_ERR,
3902 				"COMRESET failed (errno=%d)\n", rc);
3903 	}
3904 	DPRINTK("EXIT, rc=%d\n", rc);
3905 	return rc;
3906 }
3907 
3908 /**
3909  *	sata_std_hardreset - COMRESET w/o waiting or classification
3910  *	@link: link to reset
3911  *	@class: resulting class of attached device
3912  *	@deadline: deadline jiffies for the operation
3913  *
3914  *	Standard SATA COMRESET w/o waiting or classification.
3915  *
3916  *	LOCKING:
3917  *	Kernel thread context (may sleep)
3918  *
3919  *	RETURNS:
3920  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3921  */
3922 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3923 		       unsigned long deadline)
3924 {
3925 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3926 	bool online;
3927 	int rc;
3928 
3929 	/* do hardreset */
3930 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3931 	return online ? -EAGAIN : rc;
3932 }
3933 
3934 /**
3935  *	ata_std_postreset - standard postreset callback
3936  *	@link: the target ata_link
3937  *	@classes: classes of attached devices
3938  *
3939  *	This function is invoked after a successful reset.  Note that
3940  *	the device might have been reset more than once using
3941  *	different reset methods before postreset is invoked.
3942  *
3943  *	LOCKING:
3944  *	Kernel thread context (may sleep)
3945  */
3946 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3947 {
3948 	u32 serror;
3949 
3950 	DPRINTK("ENTER\n");
3951 
3952 	/* reset complete, clear SError */
3953 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3954 		sata_scr_write(link, SCR_ERROR, serror);
3955 
3956 	/* print link status */
3957 	sata_print_link_status(link);
3958 
3959 	DPRINTK("EXIT\n");
3960 }
3961 
3962 /**
3963  *	ata_dev_same_device - Determine whether new ID matches configured device
3964  *	@dev: device to compare against
3965  *	@new_class: class of the new device
3966  *	@new_id: IDENTIFY page of the new device
3967  *
3968  *	Compare @new_class and @new_id against @dev and determine
3969  *	whether @dev is the device indicated by @new_class and
3970  *	@new_id.
3971  *
3972  *	LOCKING:
3973  *	None.
3974  *
3975  *	RETURNS:
3976  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3977  */
3978 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 			       const u16 *new_id)
3980 {
3981 	const u16 *old_id = dev->id;
3982 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3983 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3984 
3985 	if (dev->class != new_class) {
3986 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3987 			       dev->class, new_class);
3988 		return 0;
3989 	}
3990 
3991 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3992 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3993 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3994 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3995 
3996 	if (strcmp(model[0], model[1])) {
3997 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3998 			       "'%s' != '%s'\n", model[0], model[1]);
3999 		return 0;
4000 	}
4001 
4002 	if (strcmp(serial[0], serial[1])) {
4003 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4004 			       "'%s' != '%s'\n", serial[0], serial[1]);
4005 		return 0;
4006 	}
4007 
4008 	return 1;
4009 }
4010 
4011 /**
4012  *	ata_dev_reread_id - Re-read IDENTIFY data
4013  *	@dev: target ATA device
4014  *	@readid_flags: read ID flags
4015  *
4016  *	Re-read IDENTIFY page and make sure @dev is still attached to
4017  *	the port.
4018  *
4019  *	LOCKING:
4020  *	Kernel thread context (may sleep)
4021  *
4022  *	RETURNS:
4023  *	0 on success, negative errno otherwise
4024  */
4025 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4026 {
4027 	unsigned int class = dev->class;
4028 	u16 *id = (void *)dev->link->ap->sector_buf;
4029 	int rc;
4030 
4031 	/* read ID data */
4032 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4033 	if (rc)
4034 		return rc;
4035 
4036 	/* is the device still there? */
4037 	if (!ata_dev_same_device(dev, class, id))
4038 		return -ENODEV;
4039 
4040 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4041 	return 0;
4042 }
4043 
4044 /**
4045  *	ata_dev_revalidate - Revalidate ATA device
4046  *	@dev: device to revalidate
4047  *	@new_class: new class code
4048  *	@readid_flags: read ID flags
4049  *
4050  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4051  *	port and reconfigure it according to the new IDENTIFY page.
4052  *
4053  *	LOCKING:
4054  *	Kernel thread context (may sleep)
4055  *
4056  *	RETURNS:
4057  *	0 on success, negative errno otherwise
4058  */
4059 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4060 		       unsigned int readid_flags)
4061 {
4062 	u64 n_sectors = dev->n_sectors;
4063 	u64 n_native_sectors = dev->n_native_sectors;
4064 	int rc;
4065 
4066 	if (!ata_dev_enabled(dev))
4067 		return -ENODEV;
4068 
4069 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4070 	if (ata_class_enabled(new_class) &&
4071 	    new_class != ATA_DEV_ATA &&
4072 	    new_class != ATA_DEV_ATAPI &&
4073 	    new_class != ATA_DEV_SEMB) {
4074 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4075 			       dev->class, new_class);
4076 		rc = -ENODEV;
4077 		goto fail;
4078 	}
4079 
4080 	/* re-read ID */
4081 	rc = ata_dev_reread_id(dev, readid_flags);
4082 	if (rc)
4083 		goto fail;
4084 
4085 	/* configure device according to the new ID */
4086 	rc = ata_dev_configure(dev);
4087 	if (rc)
4088 		goto fail;
4089 
4090 	/* verify n_sectors hasn't changed */
4091 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4092 	    dev->n_sectors == n_sectors)
4093 		return 0;
4094 
4095 	/* n_sectors has changed */
4096 	ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4097 		       (unsigned long long)n_sectors,
4098 		       (unsigned long long)dev->n_sectors);
4099 
4100 	/*
4101 	 * Something could have caused HPA to be unlocked
4102 	 * involuntarily.  If n_native_sectors hasn't changed and the
4103 	 * new size matches it, keep the device.
4104 	 */
4105 	if (dev->n_native_sectors == n_native_sectors &&
4106 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4107 		ata_dev_printk(dev, KERN_WARNING,
4108 			       "new n_sectors matches native, probably "
4109 			       "late HPA unlock, continuing\n");
4110 		/* keep using the old n_sectors */
4111 		dev->n_sectors = n_sectors;
4112 		return 0;
4113 	}
4114 
4115 	/*
4116 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4117 	 * unlocking HPA in those cases.
4118 	 *
4119 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4120 	 */
4121 	if (dev->n_native_sectors == n_native_sectors &&
4122 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4123 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4124 		ata_dev_printk(dev, KERN_WARNING,
4125 			       "old n_sectors matches native, probably "
4126 			       "late HPA lock, will try to unlock HPA\n");
4127 		/* try unlocking HPA */
4128 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4129 		rc = -EIO;
4130 	} else
4131 		rc = -ENODEV;
4132 
4133 	/* restore original n_[native_]sectors and fail */
4134 	dev->n_native_sectors = n_native_sectors;
4135 	dev->n_sectors = n_sectors;
4136  fail:
4137 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4138 	return rc;
4139 }
4140 
4141 struct ata_blacklist_entry {
4142 	const char *model_num;
4143 	const char *model_rev;
4144 	unsigned long horkage;
4145 };
4146 
4147 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4148 	/* Devices with DMA related problems under Linux */
4149 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4150 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4151 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4152 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4153 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4154 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4155 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4156 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4157 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4158 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4159 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4160 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4161 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4162 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4163 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4164 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4165 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4166 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4167 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4168 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4169 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4170 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4171 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4172 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4173 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4174 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4175 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4176 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4177 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4178 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4179 	/* Odd clown on sil3726/4726 PMPs */
4180 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4181 
4182 	/* Weird ATAPI devices */
4183 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4184 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4185 
4186 	/* Devices we expect to fail diagnostics */
4187 
4188 	/* Devices where NCQ should be avoided */
4189 	/* NCQ is slow */
4190 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4191 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4192 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4193 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4194 	/* NCQ is broken */
4195 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4196 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4197 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4198 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4199 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4200 
4201 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4202 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4203 						ATA_HORKAGE_FIRMWARE_WARN },
4204 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4205 						ATA_HORKAGE_FIRMWARE_WARN },
4206 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4207 						ATA_HORKAGE_FIRMWARE_WARN },
4208 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4209 						ATA_HORKAGE_FIRMWARE_WARN },
4210 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4211 						ATA_HORKAGE_FIRMWARE_WARN },
4212 
4213 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4214 						ATA_HORKAGE_FIRMWARE_WARN },
4215 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4216 						ATA_HORKAGE_FIRMWARE_WARN },
4217 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4218 						ATA_HORKAGE_FIRMWARE_WARN },
4219 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4220 						ATA_HORKAGE_FIRMWARE_WARN },
4221 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4222 						ATA_HORKAGE_FIRMWARE_WARN },
4223 
4224 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4225 						ATA_HORKAGE_FIRMWARE_WARN },
4226 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4227 						ATA_HORKAGE_FIRMWARE_WARN },
4228 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4229 						ATA_HORKAGE_FIRMWARE_WARN },
4230 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4231 						ATA_HORKAGE_FIRMWARE_WARN },
4232 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4233 						ATA_HORKAGE_FIRMWARE_WARN },
4234 
4235 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4236 						ATA_HORKAGE_FIRMWARE_WARN },
4237 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4238 						ATA_HORKAGE_FIRMWARE_WARN },
4239 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4240 						ATA_HORKAGE_FIRMWARE_WARN },
4241 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4242 						ATA_HORKAGE_FIRMWARE_WARN },
4243 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4244 						ATA_HORKAGE_FIRMWARE_WARN },
4245 
4246 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4247 						ATA_HORKAGE_FIRMWARE_WARN },
4248 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4249 						ATA_HORKAGE_FIRMWARE_WARN },
4250 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4251 						ATA_HORKAGE_FIRMWARE_WARN },
4252 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4253 						ATA_HORKAGE_FIRMWARE_WARN },
4254 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4255 						ATA_HORKAGE_FIRMWARE_WARN },
4256 
4257 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4258 						ATA_HORKAGE_FIRMWARE_WARN },
4259 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4260 						ATA_HORKAGE_FIRMWARE_WARN },
4261 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4262 						ATA_HORKAGE_FIRMWARE_WARN },
4263 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4264 						ATA_HORKAGE_FIRMWARE_WARN },
4265 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4266 						ATA_HORKAGE_FIRMWARE_WARN },
4267 
4268 	/* Blacklist entries taken from Silicon Image 3124/3132
4269 	   Windows driver .inf file - also several Linux problem reports */
4270 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4271 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4272 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4273 
4274 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4275 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4276 
4277 	/* devices which puke on READ_NATIVE_MAX */
4278 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4279 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4280 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4281 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4282 
4283 	/* this one allows HPA unlocking but fails IOs on the area */
4284 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4285 
4286 	/* Devices which report 1 sector over size HPA */
4287 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4288 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4289 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4290 
4291 	/* Devices which get the IVB wrong */
4292 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4293 	/* Maybe we should just blacklist TSSTcorp... */
4294 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4295 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4296 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4297 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4298 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4299 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4300 
4301 	/* Devices that do not need bridging limits applied */
4302 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4303 
4304 	/* Devices which aren't very happy with higher link speeds */
4305 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4306 
4307 	/*
4308 	 * Devices which choke on SETXFER.  Applies only if both the
4309 	 * device and controller are SATA.
4310 	 */
4311 	{ "PIONEER DVD-RW  DVRTD08",	"1.00",	ATA_HORKAGE_NOSETXFER },
4312 
4313 	/* End Marker */
4314 	{ }
4315 };
4316 
4317 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4318 {
4319 	const char *p;
4320 	int len;
4321 
4322 	/*
4323 	 * check for trailing wildcard: *\0
4324 	 */
4325 	p = strchr(patt, wildchar);
4326 	if (p && ((*(p + 1)) == 0))
4327 		len = p - patt;
4328 	else {
4329 		len = strlen(name);
4330 		if (!len) {
4331 			if (!*patt)
4332 				return 0;
4333 			return -1;
4334 		}
4335 	}
4336 
4337 	return strncmp(patt, name, len);
4338 }
4339 
4340 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4341 {
4342 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4343 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4344 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4345 
4346 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4347 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4348 
4349 	while (ad->model_num) {
4350 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4351 			if (ad->model_rev == NULL)
4352 				return ad->horkage;
4353 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4354 				return ad->horkage;
4355 		}
4356 		ad++;
4357 	}
4358 	return 0;
4359 }
4360 
4361 static int ata_dma_blacklisted(const struct ata_device *dev)
4362 {
4363 	/* We don't support polling DMA.
4364 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4365 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4366 	 */
4367 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4368 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4369 		return 1;
4370 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4371 }
4372 
4373 /**
4374  *	ata_is_40wire		-	check drive side detection
4375  *	@dev: device
4376  *
4377  *	Perform drive side detection decoding, allowing for device vendors
4378  *	who can't follow the documentation.
4379  */
4380 
4381 static int ata_is_40wire(struct ata_device *dev)
4382 {
4383 	if (dev->horkage & ATA_HORKAGE_IVB)
4384 		return ata_drive_40wire_relaxed(dev->id);
4385 	return ata_drive_40wire(dev->id);
4386 }
4387 
4388 /**
4389  *	cable_is_40wire		-	40/80/SATA decider
4390  *	@ap: port to consider
4391  *
4392  *	This function encapsulates the policy for speed management
4393  *	in one place. At the moment we don't cache the result but
4394  *	there is a good case for setting ap->cbl to the result when
4395  *	we are called with unknown cables (and figuring out if it
4396  *	impacts hotplug at all).
4397  *
4398  *	Return 1 if the cable appears to be 40 wire.
4399  */
4400 
4401 static int cable_is_40wire(struct ata_port *ap)
4402 {
4403 	struct ata_link *link;
4404 	struct ata_device *dev;
4405 
4406 	/* If the controller thinks we are 40 wire, we are. */
4407 	if (ap->cbl == ATA_CBL_PATA40)
4408 		return 1;
4409 
4410 	/* If the controller thinks we are 80 wire, we are. */
4411 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4412 		return 0;
4413 
4414 	/* If the system is known to be 40 wire short cable (eg
4415 	 * laptop), then we allow 80 wire modes even if the drive
4416 	 * isn't sure.
4417 	 */
4418 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4419 		return 0;
4420 
4421 	/* If the controller doesn't know, we scan.
4422 	 *
4423 	 * Note: We look for all 40 wire detects at this point.  Any
4424 	 *       80 wire detect is taken to be 80 wire cable because
4425 	 * - in many setups only the one drive (slave if present) will
4426 	 *   give a valid detect
4427 	 * - if you have a non detect capable drive you don't want it
4428 	 *   to colour the choice
4429 	 */
4430 	ata_for_each_link(link, ap, EDGE) {
4431 		ata_for_each_dev(dev, link, ENABLED) {
4432 			if (!ata_is_40wire(dev))
4433 				return 0;
4434 		}
4435 	}
4436 	return 1;
4437 }
4438 
4439 /**
4440  *	ata_dev_xfermask - Compute supported xfermask of the given device
4441  *	@dev: Device to compute xfermask for
4442  *
4443  *	Compute supported xfermask of @dev and store it in
4444  *	dev->*_mask.  This function is responsible for applying all
4445  *	known limits including host controller limits, device
4446  *	blacklist, etc...
4447  *
4448  *	LOCKING:
4449  *	None.
4450  */
4451 static void ata_dev_xfermask(struct ata_device *dev)
4452 {
4453 	struct ata_link *link = dev->link;
4454 	struct ata_port *ap = link->ap;
4455 	struct ata_host *host = ap->host;
4456 	unsigned long xfer_mask;
4457 
4458 	/* controller modes available */
4459 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4460 				      ap->mwdma_mask, ap->udma_mask);
4461 
4462 	/* drive modes available */
4463 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4464 				       dev->mwdma_mask, dev->udma_mask);
4465 	xfer_mask &= ata_id_xfermask(dev->id);
4466 
4467 	/*
4468 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4469 	 *	cable
4470 	 */
4471 	if (ata_dev_pair(dev)) {
4472 		/* No PIO5 or PIO6 */
4473 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4474 		/* No MWDMA3 or MWDMA 4 */
4475 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4476 	}
4477 
4478 	if (ata_dma_blacklisted(dev)) {
4479 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4480 		ata_dev_printk(dev, KERN_WARNING,
4481 			       "device is on DMA blacklist, disabling DMA\n");
4482 	}
4483 
4484 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4485 	    host->simplex_claimed && host->simplex_claimed != ap) {
4486 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4487 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4488 			       "other device, disabling DMA\n");
4489 	}
4490 
4491 	if (ap->flags & ATA_FLAG_NO_IORDY)
4492 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4493 
4494 	if (ap->ops->mode_filter)
4495 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4496 
4497 	/* Apply cable rule here.  Don't apply it early because when
4498 	 * we handle hot plug the cable type can itself change.
4499 	 * Check this last so that we know if the transfer rate was
4500 	 * solely limited by the cable.
4501 	 * Unknown or 80 wire cables reported host side are checked
4502 	 * drive side as well. Cases where we know a 40wire cable
4503 	 * is used safely for 80 are not checked here.
4504 	 */
4505 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4506 		/* UDMA/44 or higher would be available */
4507 		if (cable_is_40wire(ap)) {
4508 			ata_dev_printk(dev, KERN_WARNING,
4509 				 "limited to UDMA/33 due to 40-wire cable\n");
4510 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4511 		}
4512 
4513 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4514 			    &dev->mwdma_mask, &dev->udma_mask);
4515 }
4516 
4517 /**
4518  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4519  *	@dev: Device to which command will be sent
4520  *
4521  *	Issue SET FEATURES - XFER MODE command to device @dev
4522  *	on port @ap.
4523  *
4524  *	LOCKING:
4525  *	PCI/etc. bus probe sem.
4526  *
4527  *	RETURNS:
4528  *	0 on success, AC_ERR_* mask otherwise.
4529  */
4530 
4531 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4532 {
4533 	struct ata_taskfile tf;
4534 	unsigned int err_mask;
4535 
4536 	/* set up set-features taskfile */
4537 	DPRINTK("set features - xfer mode\n");
4538 
4539 	/* Some controllers and ATAPI devices show flaky interrupt
4540 	 * behavior after setting xfer mode.  Use polling instead.
4541 	 */
4542 	ata_tf_init(dev, &tf);
4543 	tf.command = ATA_CMD_SET_FEATURES;
4544 	tf.feature = SETFEATURES_XFER;
4545 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4546 	tf.protocol = ATA_PROT_NODATA;
4547 	/* If we are using IORDY we must send the mode setting command */
4548 	if (ata_pio_need_iordy(dev))
4549 		tf.nsect = dev->xfer_mode;
4550 	/* If the device has IORDY and the controller does not - turn it off */
4551  	else if (ata_id_has_iordy(dev->id))
4552 		tf.nsect = 0x01;
4553 	else /* In the ancient relic department - skip all of this */
4554 		return 0;
4555 
4556 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4557 
4558 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4559 	return err_mask;
4560 }
4561 /**
4562  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4563  *	@dev: Device to which command will be sent
4564  *	@enable: Whether to enable or disable the feature
4565  *	@feature: The sector count represents the feature to set
4566  *
4567  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4568  *	on port @ap with sector count
4569  *
4570  *	LOCKING:
4571  *	PCI/etc. bus probe sem.
4572  *
4573  *	RETURNS:
4574  *	0 on success, AC_ERR_* mask otherwise.
4575  */
4576 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4577 					u8 feature)
4578 {
4579 	struct ata_taskfile tf;
4580 	unsigned int err_mask;
4581 
4582 	/* set up set-features taskfile */
4583 	DPRINTK("set features - SATA features\n");
4584 
4585 	ata_tf_init(dev, &tf);
4586 	tf.command = ATA_CMD_SET_FEATURES;
4587 	tf.feature = enable;
4588 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4589 	tf.protocol = ATA_PROT_NODATA;
4590 	tf.nsect = feature;
4591 
4592 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4593 
4594 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4595 	return err_mask;
4596 }
4597 
4598 /**
4599  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4600  *	@dev: Device to which command will be sent
4601  *	@heads: Number of heads (taskfile parameter)
4602  *	@sectors: Number of sectors (taskfile parameter)
4603  *
4604  *	LOCKING:
4605  *	Kernel thread context (may sleep)
4606  *
4607  *	RETURNS:
4608  *	0 on success, AC_ERR_* mask otherwise.
4609  */
4610 static unsigned int ata_dev_init_params(struct ata_device *dev,
4611 					u16 heads, u16 sectors)
4612 {
4613 	struct ata_taskfile tf;
4614 	unsigned int err_mask;
4615 
4616 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4617 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4618 		return AC_ERR_INVALID;
4619 
4620 	/* set up init dev params taskfile */
4621 	DPRINTK("init dev params \n");
4622 
4623 	ata_tf_init(dev, &tf);
4624 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4625 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4626 	tf.protocol = ATA_PROT_NODATA;
4627 	tf.nsect = sectors;
4628 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4629 
4630 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4631 	/* A clean abort indicates an original or just out of spec drive
4632 	   and we should continue as we issue the setup based on the
4633 	   drive reported working geometry */
4634 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4635 		err_mask = 0;
4636 
4637 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4638 	return err_mask;
4639 }
4640 
4641 /**
4642  *	ata_sg_clean - Unmap DMA memory associated with command
4643  *	@qc: Command containing DMA memory to be released
4644  *
4645  *	Unmap all mapped DMA memory associated with this command.
4646  *
4647  *	LOCKING:
4648  *	spin_lock_irqsave(host lock)
4649  */
4650 void ata_sg_clean(struct ata_queued_cmd *qc)
4651 {
4652 	struct ata_port *ap = qc->ap;
4653 	struct scatterlist *sg = qc->sg;
4654 	int dir = qc->dma_dir;
4655 
4656 	WARN_ON_ONCE(sg == NULL);
4657 
4658 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4659 
4660 	if (qc->n_elem)
4661 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4662 
4663 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4664 	qc->sg = NULL;
4665 }
4666 
4667 /**
4668  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4669  *	@qc: Metadata associated with taskfile to check
4670  *
4671  *	Allow low-level driver to filter ATA PACKET commands, returning
4672  *	a status indicating whether or not it is OK to use DMA for the
4673  *	supplied PACKET command.
4674  *
4675  *	LOCKING:
4676  *	spin_lock_irqsave(host lock)
4677  *
4678  *	RETURNS: 0 when ATAPI DMA can be used
4679  *               nonzero otherwise
4680  */
4681 int atapi_check_dma(struct ata_queued_cmd *qc)
4682 {
4683 	struct ata_port *ap = qc->ap;
4684 
4685 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4686 	 * few ATAPI devices choke on such DMA requests.
4687 	 */
4688 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4689 	    unlikely(qc->nbytes & 15))
4690 		return 1;
4691 
4692 	if (ap->ops->check_atapi_dma)
4693 		return ap->ops->check_atapi_dma(qc);
4694 
4695 	return 0;
4696 }
4697 
4698 /**
4699  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4700  *	@qc: ATA command in question
4701  *
4702  *	Non-NCQ commands cannot run with any other command, NCQ or
4703  *	not.  As upper layer only knows the queue depth, we are
4704  *	responsible for maintaining exclusion.  This function checks
4705  *	whether a new command @qc can be issued.
4706  *
4707  *	LOCKING:
4708  *	spin_lock_irqsave(host lock)
4709  *
4710  *	RETURNS:
4711  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4712  */
4713 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4714 {
4715 	struct ata_link *link = qc->dev->link;
4716 
4717 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4718 		if (!ata_tag_valid(link->active_tag))
4719 			return 0;
4720 	} else {
4721 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4722 			return 0;
4723 	}
4724 
4725 	return ATA_DEFER_LINK;
4726 }
4727 
4728 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4729 
4730 /**
4731  *	ata_sg_init - Associate command with scatter-gather table.
4732  *	@qc: Command to be associated
4733  *	@sg: Scatter-gather table.
4734  *	@n_elem: Number of elements in s/g table.
4735  *
4736  *	Initialize the data-related elements of queued_cmd @qc
4737  *	to point to a scatter-gather table @sg, containing @n_elem
4738  *	elements.
4739  *
4740  *	LOCKING:
4741  *	spin_lock_irqsave(host lock)
4742  */
4743 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4744 		 unsigned int n_elem)
4745 {
4746 	qc->sg = sg;
4747 	qc->n_elem = n_elem;
4748 	qc->cursg = qc->sg;
4749 }
4750 
4751 /**
4752  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4753  *	@qc: Command with scatter-gather table to be mapped.
4754  *
4755  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4756  *
4757  *	LOCKING:
4758  *	spin_lock_irqsave(host lock)
4759  *
4760  *	RETURNS:
4761  *	Zero on success, negative on error.
4762  *
4763  */
4764 static int ata_sg_setup(struct ata_queued_cmd *qc)
4765 {
4766 	struct ata_port *ap = qc->ap;
4767 	unsigned int n_elem;
4768 
4769 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4770 
4771 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4772 	if (n_elem < 1)
4773 		return -1;
4774 
4775 	DPRINTK("%d sg elements mapped\n", n_elem);
4776 	qc->orig_n_elem = qc->n_elem;
4777 	qc->n_elem = n_elem;
4778 	qc->flags |= ATA_QCFLAG_DMAMAP;
4779 
4780 	return 0;
4781 }
4782 
4783 /**
4784  *	swap_buf_le16 - swap halves of 16-bit words in place
4785  *	@buf:  Buffer to swap
4786  *	@buf_words:  Number of 16-bit words in buffer.
4787  *
4788  *	Swap halves of 16-bit words if needed to convert from
4789  *	little-endian byte order to native cpu byte order, or
4790  *	vice-versa.
4791  *
4792  *	LOCKING:
4793  *	Inherited from caller.
4794  */
4795 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4796 {
4797 #ifdef __BIG_ENDIAN
4798 	unsigned int i;
4799 
4800 	for (i = 0; i < buf_words; i++)
4801 		buf[i] = le16_to_cpu(buf[i]);
4802 #endif /* __BIG_ENDIAN */
4803 }
4804 
4805 /**
4806  *	ata_qc_new - Request an available ATA command, for queueing
4807  *	@ap: target port
4808  *
4809  *	LOCKING:
4810  *	None.
4811  */
4812 
4813 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4814 {
4815 	struct ata_queued_cmd *qc = NULL;
4816 	unsigned int i;
4817 
4818 	/* no command while frozen */
4819 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4820 		return NULL;
4821 
4822 	/* the last tag is reserved for internal command. */
4823 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4824 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4825 			qc = __ata_qc_from_tag(ap, i);
4826 			break;
4827 		}
4828 
4829 	if (qc)
4830 		qc->tag = i;
4831 
4832 	return qc;
4833 }
4834 
4835 /**
4836  *	ata_qc_new_init - Request an available ATA command, and initialize it
4837  *	@dev: Device from whom we request an available command structure
4838  *
4839  *	LOCKING:
4840  *	None.
4841  */
4842 
4843 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4844 {
4845 	struct ata_port *ap = dev->link->ap;
4846 	struct ata_queued_cmd *qc;
4847 
4848 	qc = ata_qc_new(ap);
4849 	if (qc) {
4850 		qc->scsicmd = NULL;
4851 		qc->ap = ap;
4852 		qc->dev = dev;
4853 
4854 		ata_qc_reinit(qc);
4855 	}
4856 
4857 	return qc;
4858 }
4859 
4860 /**
4861  *	ata_qc_free - free unused ata_queued_cmd
4862  *	@qc: Command to complete
4863  *
4864  *	Designed to free unused ata_queued_cmd object
4865  *	in case something prevents using it.
4866  *
4867  *	LOCKING:
4868  *	spin_lock_irqsave(host lock)
4869  */
4870 void ata_qc_free(struct ata_queued_cmd *qc)
4871 {
4872 	struct ata_port *ap;
4873 	unsigned int tag;
4874 
4875 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4876 	ap = qc->ap;
4877 
4878 	qc->flags = 0;
4879 	tag = qc->tag;
4880 	if (likely(ata_tag_valid(tag))) {
4881 		qc->tag = ATA_TAG_POISON;
4882 		clear_bit(tag, &ap->qc_allocated);
4883 	}
4884 }
4885 
4886 void __ata_qc_complete(struct ata_queued_cmd *qc)
4887 {
4888 	struct ata_port *ap;
4889 	struct ata_link *link;
4890 
4891 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4892 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4893 	ap = qc->ap;
4894 	link = qc->dev->link;
4895 
4896 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 		ata_sg_clean(qc);
4898 
4899 	/* command should be marked inactive atomically with qc completion */
4900 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4901 		link->sactive &= ~(1 << qc->tag);
4902 		if (!link->sactive)
4903 			ap->nr_active_links--;
4904 	} else {
4905 		link->active_tag = ATA_TAG_POISON;
4906 		ap->nr_active_links--;
4907 	}
4908 
4909 	/* clear exclusive status */
4910 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 		     ap->excl_link == link))
4912 		ap->excl_link = NULL;
4913 
4914 	/* atapi: mark qc as inactive to prevent the interrupt handler
4915 	 * from completing the command twice later, before the error handler
4916 	 * is called. (when rc != 0 and atapi request sense is needed)
4917 	 */
4918 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4919 	ap->qc_active &= ~(1 << qc->tag);
4920 
4921 	/* call completion callback */
4922 	qc->complete_fn(qc);
4923 }
4924 
4925 static void fill_result_tf(struct ata_queued_cmd *qc)
4926 {
4927 	struct ata_port *ap = qc->ap;
4928 
4929 	qc->result_tf.flags = qc->tf.flags;
4930 	ap->ops->qc_fill_rtf(qc);
4931 }
4932 
4933 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4934 {
4935 	struct ata_device *dev = qc->dev;
4936 
4937 	if (ata_tag_internal(qc->tag))
4938 		return;
4939 
4940 	if (ata_is_nodata(qc->tf.protocol))
4941 		return;
4942 
4943 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 		return;
4945 
4946 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4947 }
4948 
4949 /**
4950  *	ata_qc_complete - Complete an active ATA command
4951  *	@qc: Command to complete
4952  *
4953  *	Indicate to the mid and upper layers that an ATA
4954  *	command has completed, with either an ok or not-ok status.
4955  *
4956  *	LOCKING:
4957  *	spin_lock_irqsave(host lock)
4958  */
4959 void ata_qc_complete(struct ata_queued_cmd *qc)
4960 {
4961 	struct ata_port *ap = qc->ap;
4962 
4963 	/* XXX: New EH and old EH use different mechanisms to
4964 	 * synchronize EH with regular execution path.
4965 	 *
4966 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 	 * Normal execution path is responsible for not accessing a
4968 	 * failed qc.  libata core enforces the rule by returning NULL
4969 	 * from ata_qc_from_tag() for failed qcs.
4970 	 *
4971 	 * Old EH depends on ata_qc_complete() nullifying completion
4972 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4973 	 * not synchronize with interrupt handler.  Only PIO task is
4974 	 * taken care of.
4975 	 */
4976 	if (ap->ops->error_handler) {
4977 		struct ata_device *dev = qc->dev;
4978 		struct ata_eh_info *ehi = &dev->link->eh_info;
4979 
4980 		if (unlikely(qc->err_mask))
4981 			qc->flags |= ATA_QCFLAG_FAILED;
4982 
4983 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4984 			/* always fill result TF for failed qc */
4985 			fill_result_tf(qc);
4986 
4987 			if (!ata_tag_internal(qc->tag))
4988 				ata_qc_schedule_eh(qc);
4989 			else
4990 				__ata_qc_complete(qc);
4991 			return;
4992 		}
4993 
4994 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4995 
4996 		/* read result TF if requested */
4997 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4998 			fill_result_tf(qc);
4999 
5000 		/* Some commands need post-processing after successful
5001 		 * completion.
5002 		 */
5003 		switch (qc->tf.command) {
5004 		case ATA_CMD_SET_FEATURES:
5005 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5006 			    qc->tf.feature != SETFEATURES_WC_OFF)
5007 				break;
5008 			/* fall through */
5009 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5010 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5011 			/* revalidate device */
5012 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5013 			ata_port_schedule_eh(ap);
5014 			break;
5015 
5016 		case ATA_CMD_SLEEP:
5017 			dev->flags |= ATA_DFLAG_SLEEPING;
5018 			break;
5019 		}
5020 
5021 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5022 			ata_verify_xfer(qc);
5023 
5024 		__ata_qc_complete(qc);
5025 	} else {
5026 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5027 			return;
5028 
5029 		/* read result TF if failed or requested */
5030 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5031 			fill_result_tf(qc);
5032 
5033 		__ata_qc_complete(qc);
5034 	}
5035 }
5036 
5037 /**
5038  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5039  *	@ap: port in question
5040  *	@qc_active: new qc_active mask
5041  *
5042  *	Complete in-flight commands.  This functions is meant to be
5043  *	called from low-level driver's interrupt routine to complete
5044  *	requests normally.  ap->qc_active and @qc_active is compared
5045  *	and commands are completed accordingly.
5046  *
5047  *	LOCKING:
5048  *	spin_lock_irqsave(host lock)
5049  *
5050  *	RETURNS:
5051  *	Number of completed commands on success, -errno otherwise.
5052  */
5053 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5054 {
5055 	int nr_done = 0;
5056 	u32 done_mask;
5057 
5058 	done_mask = ap->qc_active ^ qc_active;
5059 
5060 	if (unlikely(done_mask & qc_active)) {
5061 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5062 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5063 		return -EINVAL;
5064 	}
5065 
5066 	while (done_mask) {
5067 		struct ata_queued_cmd *qc;
5068 		unsigned int tag = __ffs(done_mask);
5069 
5070 		qc = ata_qc_from_tag(ap, tag);
5071 		if (qc) {
5072 			ata_qc_complete(qc);
5073 			nr_done++;
5074 		}
5075 		done_mask &= ~(1 << tag);
5076 	}
5077 
5078 	return nr_done;
5079 }
5080 
5081 /**
5082  *	ata_qc_issue - issue taskfile to device
5083  *	@qc: command to issue to device
5084  *
5085  *	Prepare an ATA command to submission to device.
5086  *	This includes mapping the data into a DMA-able
5087  *	area, filling in the S/G table, and finally
5088  *	writing the taskfile to hardware, starting the command.
5089  *
5090  *	LOCKING:
5091  *	spin_lock_irqsave(host lock)
5092  */
5093 void ata_qc_issue(struct ata_queued_cmd *qc)
5094 {
5095 	struct ata_port *ap = qc->ap;
5096 	struct ata_link *link = qc->dev->link;
5097 	u8 prot = qc->tf.protocol;
5098 
5099 	/* Make sure only one non-NCQ command is outstanding.  The
5100 	 * check is skipped for old EH because it reuses active qc to
5101 	 * request ATAPI sense.
5102 	 */
5103 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5104 
5105 	if (ata_is_ncq(prot)) {
5106 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5107 
5108 		if (!link->sactive)
5109 			ap->nr_active_links++;
5110 		link->sactive |= 1 << qc->tag;
5111 	} else {
5112 		WARN_ON_ONCE(link->sactive);
5113 
5114 		ap->nr_active_links++;
5115 		link->active_tag = qc->tag;
5116 	}
5117 
5118 	qc->flags |= ATA_QCFLAG_ACTIVE;
5119 	ap->qc_active |= 1 << qc->tag;
5120 
5121 	/* We guarantee to LLDs that they will have at least one
5122 	 * non-zero sg if the command is a data command.
5123 	 */
5124 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5125 
5126 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5127 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5128 		if (ata_sg_setup(qc))
5129 			goto sg_err;
5130 
5131 	/* if device is sleeping, schedule reset and abort the link */
5132 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5133 		link->eh_info.action |= ATA_EH_RESET;
5134 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5135 		ata_link_abort(link);
5136 		return;
5137 	}
5138 
5139 	ap->ops->qc_prep(qc);
5140 
5141 	qc->err_mask |= ap->ops->qc_issue(qc);
5142 	if (unlikely(qc->err_mask))
5143 		goto err;
5144 	return;
5145 
5146 sg_err:
5147 	qc->err_mask |= AC_ERR_SYSTEM;
5148 err:
5149 	ata_qc_complete(qc);
5150 }
5151 
5152 /**
5153  *	sata_scr_valid - test whether SCRs are accessible
5154  *	@link: ATA link to test SCR accessibility for
5155  *
5156  *	Test whether SCRs are accessible for @link.
5157  *
5158  *	LOCKING:
5159  *	None.
5160  *
5161  *	RETURNS:
5162  *	1 if SCRs are accessible, 0 otherwise.
5163  */
5164 int sata_scr_valid(struct ata_link *link)
5165 {
5166 	struct ata_port *ap = link->ap;
5167 
5168 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5169 }
5170 
5171 /**
5172  *	sata_scr_read - read SCR register of the specified port
5173  *	@link: ATA link to read SCR for
5174  *	@reg: SCR to read
5175  *	@val: Place to store read value
5176  *
5177  *	Read SCR register @reg of @link into *@val.  This function is
5178  *	guaranteed to succeed if @link is ap->link, the cable type of
5179  *	the port is SATA and the port implements ->scr_read.
5180  *
5181  *	LOCKING:
5182  *	None if @link is ap->link.  Kernel thread context otherwise.
5183  *
5184  *	RETURNS:
5185  *	0 on success, negative errno on failure.
5186  */
5187 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5188 {
5189 	if (ata_is_host_link(link)) {
5190 		if (sata_scr_valid(link))
5191 			return link->ap->ops->scr_read(link, reg, val);
5192 		return -EOPNOTSUPP;
5193 	}
5194 
5195 	return sata_pmp_scr_read(link, reg, val);
5196 }
5197 
5198 /**
5199  *	sata_scr_write - write SCR register of the specified port
5200  *	@link: ATA link to write SCR for
5201  *	@reg: SCR to write
5202  *	@val: value to write
5203  *
5204  *	Write @val to SCR register @reg of @link.  This function is
5205  *	guaranteed to succeed if @link is ap->link, the cable type of
5206  *	the port is SATA and the port implements ->scr_read.
5207  *
5208  *	LOCKING:
5209  *	None if @link is ap->link.  Kernel thread context otherwise.
5210  *
5211  *	RETURNS:
5212  *	0 on success, negative errno on failure.
5213  */
5214 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5215 {
5216 	if (ata_is_host_link(link)) {
5217 		if (sata_scr_valid(link))
5218 			return link->ap->ops->scr_write(link, reg, val);
5219 		return -EOPNOTSUPP;
5220 	}
5221 
5222 	return sata_pmp_scr_write(link, reg, val);
5223 }
5224 
5225 /**
5226  *	sata_scr_write_flush - write SCR register of the specified port and flush
5227  *	@link: ATA link to write SCR for
5228  *	@reg: SCR to write
5229  *	@val: value to write
5230  *
5231  *	This function is identical to sata_scr_write() except that this
5232  *	function performs flush after writing to the register.
5233  *
5234  *	LOCKING:
5235  *	None if @link is ap->link.  Kernel thread context otherwise.
5236  *
5237  *	RETURNS:
5238  *	0 on success, negative errno on failure.
5239  */
5240 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5241 {
5242 	if (ata_is_host_link(link)) {
5243 		int rc;
5244 
5245 		if (sata_scr_valid(link)) {
5246 			rc = link->ap->ops->scr_write(link, reg, val);
5247 			if (rc == 0)
5248 				rc = link->ap->ops->scr_read(link, reg, &val);
5249 			return rc;
5250 		}
5251 		return -EOPNOTSUPP;
5252 	}
5253 
5254 	return sata_pmp_scr_write(link, reg, val);
5255 }
5256 
5257 /**
5258  *	ata_phys_link_online - test whether the given link is online
5259  *	@link: ATA link to test
5260  *
5261  *	Test whether @link is online.  Note that this function returns
5262  *	0 if online status of @link cannot be obtained, so
5263  *	ata_link_online(link) != !ata_link_offline(link).
5264  *
5265  *	LOCKING:
5266  *	None.
5267  *
5268  *	RETURNS:
5269  *	True if the port online status is available and online.
5270  */
5271 bool ata_phys_link_online(struct ata_link *link)
5272 {
5273 	u32 sstatus;
5274 
5275 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5276 	    ata_sstatus_online(sstatus))
5277 		return true;
5278 	return false;
5279 }
5280 
5281 /**
5282  *	ata_phys_link_offline - test whether the given link is offline
5283  *	@link: ATA link to test
5284  *
5285  *	Test whether @link is offline.  Note that this function
5286  *	returns 0 if offline status of @link cannot be obtained, so
5287  *	ata_link_online(link) != !ata_link_offline(link).
5288  *
5289  *	LOCKING:
5290  *	None.
5291  *
5292  *	RETURNS:
5293  *	True if the port offline status is available and offline.
5294  */
5295 bool ata_phys_link_offline(struct ata_link *link)
5296 {
5297 	u32 sstatus;
5298 
5299 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5300 	    !ata_sstatus_online(sstatus))
5301 		return true;
5302 	return false;
5303 }
5304 
5305 /**
5306  *	ata_link_online - test whether the given link is online
5307  *	@link: ATA link to test
5308  *
5309  *	Test whether @link is online.  This is identical to
5310  *	ata_phys_link_online() when there's no slave link.  When
5311  *	there's a slave link, this function should only be called on
5312  *	the master link and will return true if any of M/S links is
5313  *	online.
5314  *
5315  *	LOCKING:
5316  *	None.
5317  *
5318  *	RETURNS:
5319  *	True if the port online status is available and online.
5320  */
5321 bool ata_link_online(struct ata_link *link)
5322 {
5323 	struct ata_link *slave = link->ap->slave_link;
5324 
5325 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5326 
5327 	return ata_phys_link_online(link) ||
5328 		(slave && ata_phys_link_online(slave));
5329 }
5330 
5331 /**
5332  *	ata_link_offline - test whether the given link is offline
5333  *	@link: ATA link to test
5334  *
5335  *	Test whether @link is offline.  This is identical to
5336  *	ata_phys_link_offline() when there's no slave link.  When
5337  *	there's a slave link, this function should only be called on
5338  *	the master link and will return true if both M/S links are
5339  *	offline.
5340  *
5341  *	LOCKING:
5342  *	None.
5343  *
5344  *	RETURNS:
5345  *	True if the port offline status is available and offline.
5346  */
5347 bool ata_link_offline(struct ata_link *link)
5348 {
5349 	struct ata_link *slave = link->ap->slave_link;
5350 
5351 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5352 
5353 	return ata_phys_link_offline(link) &&
5354 		(!slave || ata_phys_link_offline(slave));
5355 }
5356 
5357 #ifdef CONFIG_PM
5358 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5359 			       unsigned int action, unsigned int ehi_flags,
5360 			       int wait)
5361 {
5362 	unsigned long flags;
5363 	int i, rc;
5364 
5365 	for (i = 0; i < host->n_ports; i++) {
5366 		struct ata_port *ap = host->ports[i];
5367 		struct ata_link *link;
5368 
5369 		/* Previous resume operation might still be in
5370 		 * progress.  Wait for PM_PENDING to clear.
5371 		 */
5372 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 			ata_port_wait_eh(ap);
5374 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 		}
5376 
5377 		/* request PM ops to EH */
5378 		spin_lock_irqsave(ap->lock, flags);
5379 
5380 		ap->pm_mesg = mesg;
5381 		if (wait) {
5382 			rc = 0;
5383 			ap->pm_result = &rc;
5384 		}
5385 
5386 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5387 		ata_for_each_link(link, ap, HOST_FIRST) {
5388 			link->eh_info.action |= action;
5389 			link->eh_info.flags |= ehi_flags;
5390 		}
5391 
5392 		ata_port_schedule_eh(ap);
5393 
5394 		spin_unlock_irqrestore(ap->lock, flags);
5395 
5396 		/* wait and check result */
5397 		if (wait) {
5398 			ata_port_wait_eh(ap);
5399 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 			if (rc)
5401 				return rc;
5402 		}
5403 	}
5404 
5405 	return 0;
5406 }
5407 
5408 /**
5409  *	ata_host_suspend - suspend host
5410  *	@host: host to suspend
5411  *	@mesg: PM message
5412  *
5413  *	Suspend @host.  Actual operation is performed by EH.  This
5414  *	function requests EH to perform PM operations and waits for EH
5415  *	to finish.
5416  *
5417  *	LOCKING:
5418  *	Kernel thread context (may sleep).
5419  *
5420  *	RETURNS:
5421  *	0 on success, -errno on failure.
5422  */
5423 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5424 {
5425 	int rc;
5426 
5427 	/*
5428 	 * disable link pm on all ports before requesting
5429 	 * any pm activity
5430 	 */
5431 	ata_lpm_enable(host);
5432 
5433 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5434 	if (rc == 0)
5435 		host->dev->power.power_state = mesg;
5436 	return rc;
5437 }
5438 
5439 /**
5440  *	ata_host_resume - resume host
5441  *	@host: host to resume
5442  *
5443  *	Resume @host.  Actual operation is performed by EH.  This
5444  *	function requests EH to perform PM operations and returns.
5445  *	Note that all resume operations are performed parallely.
5446  *
5447  *	LOCKING:
5448  *	Kernel thread context (may sleep).
5449  */
5450 void ata_host_resume(struct ata_host *host)
5451 {
5452 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5453 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5454 	host->dev->power.power_state = PMSG_ON;
5455 
5456 	/* reenable link pm */
5457 	ata_lpm_disable(host);
5458 }
5459 #endif
5460 
5461 /**
5462  *	ata_dev_init - Initialize an ata_device structure
5463  *	@dev: Device structure to initialize
5464  *
5465  *	Initialize @dev in preparation for probing.
5466  *
5467  *	LOCKING:
5468  *	Inherited from caller.
5469  */
5470 void ata_dev_init(struct ata_device *dev)
5471 {
5472 	struct ata_link *link = ata_dev_phys_link(dev);
5473 	struct ata_port *ap = link->ap;
5474 	unsigned long flags;
5475 
5476 	/* SATA spd limit is bound to the attached device, reset together */
5477 	link->sata_spd_limit = link->hw_sata_spd_limit;
5478 	link->sata_spd = 0;
5479 
5480 	/* High bits of dev->flags are used to record warm plug
5481 	 * requests which occur asynchronously.  Synchronize using
5482 	 * host lock.
5483 	 */
5484 	spin_lock_irqsave(ap->lock, flags);
5485 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5486 	dev->horkage = 0;
5487 	spin_unlock_irqrestore(ap->lock, flags);
5488 
5489 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5490 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5491 	dev->pio_mask = UINT_MAX;
5492 	dev->mwdma_mask = UINT_MAX;
5493 	dev->udma_mask = UINT_MAX;
5494 }
5495 
5496 /**
5497  *	ata_link_init - Initialize an ata_link structure
5498  *	@ap: ATA port link is attached to
5499  *	@link: Link structure to initialize
5500  *	@pmp: Port multiplier port number
5501  *
5502  *	Initialize @link.
5503  *
5504  *	LOCKING:
5505  *	Kernel thread context (may sleep)
5506  */
5507 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5508 {
5509 	int i;
5510 
5511 	/* clear everything except for devices */
5512 	memset(link, 0, offsetof(struct ata_link, device[0]));
5513 
5514 	link->ap = ap;
5515 	link->pmp = pmp;
5516 	link->active_tag = ATA_TAG_POISON;
5517 	link->hw_sata_spd_limit = UINT_MAX;
5518 
5519 	/* can't use iterator, ap isn't initialized yet */
5520 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5521 		struct ata_device *dev = &link->device[i];
5522 
5523 		dev->link = link;
5524 		dev->devno = dev - link->device;
5525 #ifdef CONFIG_ATA_ACPI
5526 		dev->gtf_filter = ata_acpi_gtf_filter;
5527 #endif
5528 		ata_dev_init(dev);
5529 	}
5530 }
5531 
5532 /**
5533  *	sata_link_init_spd - Initialize link->sata_spd_limit
5534  *	@link: Link to configure sata_spd_limit for
5535  *
5536  *	Initialize @link->[hw_]sata_spd_limit to the currently
5537  *	configured value.
5538  *
5539  *	LOCKING:
5540  *	Kernel thread context (may sleep).
5541  *
5542  *	RETURNS:
5543  *	0 on success, -errno on failure.
5544  */
5545 int sata_link_init_spd(struct ata_link *link)
5546 {
5547 	u8 spd;
5548 	int rc;
5549 
5550 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5551 	if (rc)
5552 		return rc;
5553 
5554 	spd = (link->saved_scontrol >> 4) & 0xf;
5555 	if (spd)
5556 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5557 
5558 	ata_force_link_limits(link);
5559 
5560 	link->sata_spd_limit = link->hw_sata_spd_limit;
5561 
5562 	return 0;
5563 }
5564 
5565 /**
5566  *	ata_port_alloc - allocate and initialize basic ATA port resources
5567  *	@host: ATA host this allocated port belongs to
5568  *
5569  *	Allocate and initialize basic ATA port resources.
5570  *
5571  *	RETURNS:
5572  *	Allocate ATA port on success, NULL on failure.
5573  *
5574  *	LOCKING:
5575  *	Inherited from calling layer (may sleep).
5576  */
5577 struct ata_port *ata_port_alloc(struct ata_host *host)
5578 {
5579 	struct ata_port *ap;
5580 
5581 	DPRINTK("ENTER\n");
5582 
5583 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5584 	if (!ap)
5585 		return NULL;
5586 
5587 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5588 	ap->lock = &host->lock;
5589 	ap->print_id = -1;
5590 	ap->host = host;
5591 	ap->dev = host->dev;
5592 
5593 #if defined(ATA_VERBOSE_DEBUG)
5594 	/* turn on all debugging levels */
5595 	ap->msg_enable = 0x00FF;
5596 #elif defined(ATA_DEBUG)
5597 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5598 #else
5599 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5600 #endif
5601 
5602 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5603 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5604 	INIT_LIST_HEAD(&ap->eh_done_q);
5605 	init_waitqueue_head(&ap->eh_wait_q);
5606 	init_completion(&ap->park_req_pending);
5607 	init_timer_deferrable(&ap->fastdrain_timer);
5608 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5609 	ap->fastdrain_timer.data = (unsigned long)ap;
5610 
5611 	ap->cbl = ATA_CBL_NONE;
5612 
5613 	ata_link_init(ap, &ap->link, 0);
5614 
5615 #ifdef ATA_IRQ_TRAP
5616 	ap->stats.unhandled_irq = 1;
5617 	ap->stats.idle_irq = 1;
5618 #endif
5619 	ata_sff_port_init(ap);
5620 
5621 	return ap;
5622 }
5623 
5624 static void ata_host_release(struct device *gendev, void *res)
5625 {
5626 	struct ata_host *host = dev_get_drvdata(gendev);
5627 	int i;
5628 
5629 	for (i = 0; i < host->n_ports; i++) {
5630 		struct ata_port *ap = host->ports[i];
5631 
5632 		if (!ap)
5633 			continue;
5634 
5635 		if (ap->scsi_host)
5636 			scsi_host_put(ap->scsi_host);
5637 
5638 		kfree(ap->pmp_link);
5639 		kfree(ap->slave_link);
5640 		kfree(ap);
5641 		host->ports[i] = NULL;
5642 	}
5643 
5644 	dev_set_drvdata(gendev, NULL);
5645 }
5646 
5647 /**
5648  *	ata_host_alloc - allocate and init basic ATA host resources
5649  *	@dev: generic device this host is associated with
5650  *	@max_ports: maximum number of ATA ports associated with this host
5651  *
5652  *	Allocate and initialize basic ATA host resources.  LLD calls
5653  *	this function to allocate a host, initializes it fully and
5654  *	attaches it using ata_host_register().
5655  *
5656  *	@max_ports ports are allocated and host->n_ports is
5657  *	initialized to @max_ports.  The caller is allowed to decrease
5658  *	host->n_ports before calling ata_host_register().  The unused
5659  *	ports will be automatically freed on registration.
5660  *
5661  *	RETURNS:
5662  *	Allocate ATA host on success, NULL on failure.
5663  *
5664  *	LOCKING:
5665  *	Inherited from calling layer (may sleep).
5666  */
5667 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5668 {
5669 	struct ata_host *host;
5670 	size_t sz;
5671 	int i;
5672 
5673 	DPRINTK("ENTER\n");
5674 
5675 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5676 		return NULL;
5677 
5678 	/* alloc a container for our list of ATA ports (buses) */
5679 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5680 	/* alloc a container for our list of ATA ports (buses) */
5681 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5682 	if (!host)
5683 		goto err_out;
5684 
5685 	devres_add(dev, host);
5686 	dev_set_drvdata(dev, host);
5687 
5688 	spin_lock_init(&host->lock);
5689 	host->dev = dev;
5690 	host->n_ports = max_ports;
5691 
5692 	/* allocate ports bound to this host */
5693 	for (i = 0; i < max_ports; i++) {
5694 		struct ata_port *ap;
5695 
5696 		ap = ata_port_alloc(host);
5697 		if (!ap)
5698 			goto err_out;
5699 
5700 		ap->port_no = i;
5701 		host->ports[i] = ap;
5702 	}
5703 
5704 	devres_remove_group(dev, NULL);
5705 	return host;
5706 
5707  err_out:
5708 	devres_release_group(dev, NULL);
5709 	return NULL;
5710 }
5711 
5712 /**
5713  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5714  *	@dev: generic device this host is associated with
5715  *	@ppi: array of ATA port_info to initialize host with
5716  *	@n_ports: number of ATA ports attached to this host
5717  *
5718  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5719  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5720  *	last entry will be used for the remaining ports.
5721  *
5722  *	RETURNS:
5723  *	Allocate ATA host on success, NULL on failure.
5724  *
5725  *	LOCKING:
5726  *	Inherited from calling layer (may sleep).
5727  */
5728 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5729 				      const struct ata_port_info * const * ppi,
5730 				      int n_ports)
5731 {
5732 	const struct ata_port_info *pi;
5733 	struct ata_host *host;
5734 	int i, j;
5735 
5736 	host = ata_host_alloc(dev, n_ports);
5737 	if (!host)
5738 		return NULL;
5739 
5740 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5741 		struct ata_port *ap = host->ports[i];
5742 
5743 		if (ppi[j])
5744 			pi = ppi[j++];
5745 
5746 		ap->pio_mask = pi->pio_mask;
5747 		ap->mwdma_mask = pi->mwdma_mask;
5748 		ap->udma_mask = pi->udma_mask;
5749 		ap->flags |= pi->flags;
5750 		ap->link.flags |= pi->link_flags;
5751 		ap->ops = pi->port_ops;
5752 
5753 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5754 			host->ops = pi->port_ops;
5755 	}
5756 
5757 	return host;
5758 }
5759 
5760 /**
5761  *	ata_slave_link_init - initialize slave link
5762  *	@ap: port to initialize slave link for
5763  *
5764  *	Create and initialize slave link for @ap.  This enables slave
5765  *	link handling on the port.
5766  *
5767  *	In libata, a port contains links and a link contains devices.
5768  *	There is single host link but if a PMP is attached to it,
5769  *	there can be multiple fan-out links.  On SATA, there's usually
5770  *	a single device connected to a link but PATA and SATA
5771  *	controllers emulating TF based interface can have two - master
5772  *	and slave.
5773  *
5774  *	However, there are a few controllers which don't fit into this
5775  *	abstraction too well - SATA controllers which emulate TF
5776  *	interface with both master and slave devices but also have
5777  *	separate SCR register sets for each device.  These controllers
5778  *	need separate links for physical link handling
5779  *	(e.g. onlineness, link speed) but should be treated like a
5780  *	traditional M/S controller for everything else (e.g. command
5781  *	issue, softreset).
5782  *
5783  *	slave_link is libata's way of handling this class of
5784  *	controllers without impacting core layer too much.  For
5785  *	anything other than physical link handling, the default host
5786  *	link is used for both master and slave.  For physical link
5787  *	handling, separate @ap->slave_link is used.  All dirty details
5788  *	are implemented inside libata core layer.  From LLD's POV, the
5789  *	only difference is that prereset, hardreset and postreset are
5790  *	called once more for the slave link, so the reset sequence
5791  *	looks like the following.
5792  *
5793  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5794  *	softreset(M) -> postreset(M) -> postreset(S)
5795  *
5796  *	Note that softreset is called only for the master.  Softreset
5797  *	resets both M/S by definition, so SRST on master should handle
5798  *	both (the standard method will work just fine).
5799  *
5800  *	LOCKING:
5801  *	Should be called before host is registered.
5802  *
5803  *	RETURNS:
5804  *	0 on success, -errno on failure.
5805  */
5806 int ata_slave_link_init(struct ata_port *ap)
5807 {
5808 	struct ata_link *link;
5809 
5810 	WARN_ON(ap->slave_link);
5811 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5812 
5813 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5814 	if (!link)
5815 		return -ENOMEM;
5816 
5817 	ata_link_init(ap, link, 1);
5818 	ap->slave_link = link;
5819 	return 0;
5820 }
5821 
5822 static void ata_host_stop(struct device *gendev, void *res)
5823 {
5824 	struct ata_host *host = dev_get_drvdata(gendev);
5825 	int i;
5826 
5827 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5828 
5829 	for (i = 0; i < host->n_ports; i++) {
5830 		struct ata_port *ap = host->ports[i];
5831 
5832 		if (ap->ops->port_stop)
5833 			ap->ops->port_stop(ap);
5834 	}
5835 
5836 	if (host->ops->host_stop)
5837 		host->ops->host_stop(host);
5838 }
5839 
5840 /**
5841  *	ata_finalize_port_ops - finalize ata_port_operations
5842  *	@ops: ata_port_operations to finalize
5843  *
5844  *	An ata_port_operations can inherit from another ops and that
5845  *	ops can again inherit from another.  This can go on as many
5846  *	times as necessary as long as there is no loop in the
5847  *	inheritance chain.
5848  *
5849  *	Ops tables are finalized when the host is started.  NULL or
5850  *	unspecified entries are inherited from the closet ancestor
5851  *	which has the method and the entry is populated with it.
5852  *	After finalization, the ops table directly points to all the
5853  *	methods and ->inherits is no longer necessary and cleared.
5854  *
5855  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5856  *
5857  *	LOCKING:
5858  *	None.
5859  */
5860 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5861 {
5862 	static DEFINE_SPINLOCK(lock);
5863 	const struct ata_port_operations *cur;
5864 	void **begin = (void **)ops;
5865 	void **end = (void **)&ops->inherits;
5866 	void **pp;
5867 
5868 	if (!ops || !ops->inherits)
5869 		return;
5870 
5871 	spin_lock(&lock);
5872 
5873 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5874 		void **inherit = (void **)cur;
5875 
5876 		for (pp = begin; pp < end; pp++, inherit++)
5877 			if (!*pp)
5878 				*pp = *inherit;
5879 	}
5880 
5881 	for (pp = begin; pp < end; pp++)
5882 		if (IS_ERR(*pp))
5883 			*pp = NULL;
5884 
5885 	ops->inherits = NULL;
5886 
5887 	spin_unlock(&lock);
5888 }
5889 
5890 /**
5891  *	ata_host_start - start and freeze ports of an ATA host
5892  *	@host: ATA host to start ports for
5893  *
5894  *	Start and then freeze ports of @host.  Started status is
5895  *	recorded in host->flags, so this function can be called
5896  *	multiple times.  Ports are guaranteed to get started only
5897  *	once.  If host->ops isn't initialized yet, its set to the
5898  *	first non-dummy port ops.
5899  *
5900  *	LOCKING:
5901  *	Inherited from calling layer (may sleep).
5902  *
5903  *	RETURNS:
5904  *	0 if all ports are started successfully, -errno otherwise.
5905  */
5906 int ata_host_start(struct ata_host *host)
5907 {
5908 	int have_stop = 0;
5909 	void *start_dr = NULL;
5910 	int i, rc;
5911 
5912 	if (host->flags & ATA_HOST_STARTED)
5913 		return 0;
5914 
5915 	ata_finalize_port_ops(host->ops);
5916 
5917 	for (i = 0; i < host->n_ports; i++) {
5918 		struct ata_port *ap = host->ports[i];
5919 
5920 		ata_finalize_port_ops(ap->ops);
5921 
5922 		if (!host->ops && !ata_port_is_dummy(ap))
5923 			host->ops = ap->ops;
5924 
5925 		if (ap->ops->port_stop)
5926 			have_stop = 1;
5927 	}
5928 
5929 	if (host->ops->host_stop)
5930 		have_stop = 1;
5931 
5932 	if (have_stop) {
5933 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5934 		if (!start_dr)
5935 			return -ENOMEM;
5936 	}
5937 
5938 	for (i = 0; i < host->n_ports; i++) {
5939 		struct ata_port *ap = host->ports[i];
5940 
5941 		if (ap->ops->port_start) {
5942 			rc = ap->ops->port_start(ap);
5943 			if (rc) {
5944 				if (rc != -ENODEV)
5945 					dev_printk(KERN_ERR, host->dev,
5946 						"failed to start port %d "
5947 						"(errno=%d)\n", i, rc);
5948 				goto err_out;
5949 			}
5950 		}
5951 		ata_eh_freeze_port(ap);
5952 	}
5953 
5954 	if (start_dr)
5955 		devres_add(host->dev, start_dr);
5956 	host->flags |= ATA_HOST_STARTED;
5957 	return 0;
5958 
5959  err_out:
5960 	while (--i >= 0) {
5961 		struct ata_port *ap = host->ports[i];
5962 
5963 		if (ap->ops->port_stop)
5964 			ap->ops->port_stop(ap);
5965 	}
5966 	devres_free(start_dr);
5967 	return rc;
5968 }
5969 
5970 /**
5971  *	ata_sas_host_init - Initialize a host struct
5972  *	@host:	host to initialize
5973  *	@dev:	device host is attached to
5974  *	@flags:	host flags
5975  *	@ops:	port_ops
5976  *
5977  *	LOCKING:
5978  *	PCI/etc. bus probe sem.
5979  *
5980  */
5981 /* KILLME - the only user left is ipr */
5982 void ata_host_init(struct ata_host *host, struct device *dev,
5983 		   unsigned long flags, struct ata_port_operations *ops)
5984 {
5985 	spin_lock_init(&host->lock);
5986 	host->dev = dev;
5987 	host->flags = flags;
5988 	host->ops = ops;
5989 }
5990 
5991 
5992 static void async_port_probe(void *data, async_cookie_t cookie)
5993 {
5994 	int rc;
5995 	struct ata_port *ap = data;
5996 
5997 	/*
5998 	 * If we're not allowed to scan this host in parallel,
5999 	 * we need to wait until all previous scans have completed
6000 	 * before going further.
6001 	 * Jeff Garzik says this is only within a controller, so we
6002 	 * don't need to wait for port 0, only for later ports.
6003 	 */
6004 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6005 		async_synchronize_cookie(cookie);
6006 
6007 	/* probe */
6008 	if (ap->ops->error_handler) {
6009 		struct ata_eh_info *ehi = &ap->link.eh_info;
6010 		unsigned long flags;
6011 
6012 		/* kick EH for boot probing */
6013 		spin_lock_irqsave(ap->lock, flags);
6014 
6015 		ehi->probe_mask |= ATA_ALL_DEVICES;
6016 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6017 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6018 
6019 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6020 		ap->pflags |= ATA_PFLAG_LOADING;
6021 		ata_port_schedule_eh(ap);
6022 
6023 		spin_unlock_irqrestore(ap->lock, flags);
6024 
6025 		/* wait for EH to finish */
6026 		ata_port_wait_eh(ap);
6027 	} else {
6028 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6029 		rc = ata_bus_probe(ap);
6030 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6031 
6032 		if (rc) {
6033 			/* FIXME: do something useful here?
6034 			 * Current libata behavior will
6035 			 * tear down everything when
6036 			 * the module is removed
6037 			 * or the h/w is unplugged.
6038 			 */
6039 		}
6040 	}
6041 
6042 	/* in order to keep device order, we need to synchronize at this point */
6043 	async_synchronize_cookie(cookie);
6044 
6045 	ata_scsi_scan_host(ap, 1);
6046 
6047 }
6048 /**
6049  *	ata_host_register - register initialized ATA host
6050  *	@host: ATA host to register
6051  *	@sht: template for SCSI host
6052  *
6053  *	Register initialized ATA host.  @host is allocated using
6054  *	ata_host_alloc() and fully initialized by LLD.  This function
6055  *	starts ports, registers @host with ATA and SCSI layers and
6056  *	probe registered devices.
6057  *
6058  *	LOCKING:
6059  *	Inherited from calling layer (may sleep).
6060  *
6061  *	RETURNS:
6062  *	0 on success, -errno otherwise.
6063  */
6064 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6065 {
6066 	int i, rc;
6067 
6068 	/* host must have been started */
6069 	if (!(host->flags & ATA_HOST_STARTED)) {
6070 		dev_printk(KERN_ERR, host->dev,
6071 			   "BUG: trying to register unstarted host\n");
6072 		WARN_ON(1);
6073 		return -EINVAL;
6074 	}
6075 
6076 	/* Blow away unused ports.  This happens when LLD can't
6077 	 * determine the exact number of ports to allocate at
6078 	 * allocation time.
6079 	 */
6080 	for (i = host->n_ports; host->ports[i]; i++)
6081 		kfree(host->ports[i]);
6082 
6083 	/* give ports names and add SCSI hosts */
6084 	for (i = 0; i < host->n_ports; i++)
6085 		host->ports[i]->print_id = ata_print_id++;
6086 
6087 	rc = ata_scsi_add_hosts(host, sht);
6088 	if (rc)
6089 		return rc;
6090 
6091 	/* associate with ACPI nodes */
6092 	ata_acpi_associate(host);
6093 
6094 	/* set cable, sata_spd_limit and report */
6095 	for (i = 0; i < host->n_ports; i++) {
6096 		struct ata_port *ap = host->ports[i];
6097 		unsigned long xfer_mask;
6098 
6099 		/* set SATA cable type if still unset */
6100 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6101 			ap->cbl = ATA_CBL_SATA;
6102 
6103 		/* init sata_spd_limit to the current value */
6104 		sata_link_init_spd(&ap->link);
6105 		if (ap->slave_link)
6106 			sata_link_init_spd(ap->slave_link);
6107 
6108 		/* print per-port info to dmesg */
6109 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6110 					      ap->udma_mask);
6111 
6112 		if (!ata_port_is_dummy(ap)) {
6113 			ata_port_printk(ap, KERN_INFO,
6114 					"%cATA max %s %s\n",
6115 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6116 					ata_mode_string(xfer_mask),
6117 					ap->link.eh_info.desc);
6118 			ata_ehi_clear_desc(&ap->link.eh_info);
6119 		} else
6120 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6121 	}
6122 
6123 	/* perform each probe asynchronously */
6124 	for (i = 0; i < host->n_ports; i++) {
6125 		struct ata_port *ap = host->ports[i];
6126 		async_schedule(async_port_probe, ap);
6127 	}
6128 
6129 	return 0;
6130 }
6131 
6132 /**
6133  *	ata_host_activate - start host, request IRQ and register it
6134  *	@host: target ATA host
6135  *	@irq: IRQ to request
6136  *	@irq_handler: irq_handler used when requesting IRQ
6137  *	@irq_flags: irq_flags used when requesting IRQ
6138  *	@sht: scsi_host_template to use when registering the host
6139  *
6140  *	After allocating an ATA host and initializing it, most libata
6141  *	LLDs perform three steps to activate the host - start host,
6142  *	request IRQ and register it.  This helper takes necessasry
6143  *	arguments and performs the three steps in one go.
6144  *
6145  *	An invalid IRQ skips the IRQ registration and expects the host to
6146  *	have set polling mode on the port. In this case, @irq_handler
6147  *	should be NULL.
6148  *
6149  *	LOCKING:
6150  *	Inherited from calling layer (may sleep).
6151  *
6152  *	RETURNS:
6153  *	0 on success, -errno otherwise.
6154  */
6155 int ata_host_activate(struct ata_host *host, int irq,
6156 		      irq_handler_t irq_handler, unsigned long irq_flags,
6157 		      struct scsi_host_template *sht)
6158 {
6159 	int i, rc;
6160 
6161 	rc = ata_host_start(host);
6162 	if (rc)
6163 		return rc;
6164 
6165 	/* Special case for polling mode */
6166 	if (!irq) {
6167 		WARN_ON(irq_handler);
6168 		return ata_host_register(host, sht);
6169 	}
6170 
6171 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6172 			      dev_driver_string(host->dev), host);
6173 	if (rc)
6174 		return rc;
6175 
6176 	for (i = 0; i < host->n_ports; i++)
6177 		ata_port_desc(host->ports[i], "irq %d", irq);
6178 
6179 	rc = ata_host_register(host, sht);
6180 	/* if failed, just free the IRQ and leave ports alone */
6181 	if (rc)
6182 		devm_free_irq(host->dev, irq, host);
6183 
6184 	return rc;
6185 }
6186 
6187 /**
6188  *	ata_port_detach - Detach ATA port in prepration of device removal
6189  *	@ap: ATA port to be detached
6190  *
6191  *	Detach all ATA devices and the associated SCSI devices of @ap;
6192  *	then, remove the associated SCSI host.  @ap is guaranteed to
6193  *	be quiescent on return from this function.
6194  *
6195  *	LOCKING:
6196  *	Kernel thread context (may sleep).
6197  */
6198 static void ata_port_detach(struct ata_port *ap)
6199 {
6200 	unsigned long flags;
6201 
6202 	if (!ap->ops->error_handler)
6203 		goto skip_eh;
6204 
6205 	/* tell EH we're leaving & flush EH */
6206 	spin_lock_irqsave(ap->lock, flags);
6207 	ap->pflags |= ATA_PFLAG_UNLOADING;
6208 	ata_port_schedule_eh(ap);
6209 	spin_unlock_irqrestore(ap->lock, flags);
6210 
6211 	/* wait till EH commits suicide */
6212 	ata_port_wait_eh(ap);
6213 
6214 	/* it better be dead now */
6215 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6216 
6217 	cancel_rearming_delayed_work(&ap->hotplug_task);
6218 
6219  skip_eh:
6220 	/* remove the associated SCSI host */
6221 	scsi_remove_host(ap->scsi_host);
6222 }
6223 
6224 /**
6225  *	ata_host_detach - Detach all ports of an ATA host
6226  *	@host: Host to detach
6227  *
6228  *	Detach all ports of @host.
6229  *
6230  *	LOCKING:
6231  *	Kernel thread context (may sleep).
6232  */
6233 void ata_host_detach(struct ata_host *host)
6234 {
6235 	int i;
6236 
6237 	for (i = 0; i < host->n_ports; i++)
6238 		ata_port_detach(host->ports[i]);
6239 
6240 	/* the host is dead now, dissociate ACPI */
6241 	ata_acpi_dissociate(host);
6242 }
6243 
6244 #ifdef CONFIG_PCI
6245 
6246 /**
6247  *	ata_pci_remove_one - PCI layer callback for device removal
6248  *	@pdev: PCI device that was removed
6249  *
6250  *	PCI layer indicates to libata via this hook that hot-unplug or
6251  *	module unload event has occurred.  Detach all ports.  Resource
6252  *	release is handled via devres.
6253  *
6254  *	LOCKING:
6255  *	Inherited from PCI layer (may sleep).
6256  */
6257 void ata_pci_remove_one(struct pci_dev *pdev)
6258 {
6259 	struct device *dev = &pdev->dev;
6260 	struct ata_host *host = dev_get_drvdata(dev);
6261 
6262 	ata_host_detach(host);
6263 }
6264 
6265 /* move to PCI subsystem */
6266 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6267 {
6268 	unsigned long tmp = 0;
6269 
6270 	switch (bits->width) {
6271 	case 1: {
6272 		u8 tmp8 = 0;
6273 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6274 		tmp = tmp8;
6275 		break;
6276 	}
6277 	case 2: {
6278 		u16 tmp16 = 0;
6279 		pci_read_config_word(pdev, bits->reg, &tmp16);
6280 		tmp = tmp16;
6281 		break;
6282 	}
6283 	case 4: {
6284 		u32 tmp32 = 0;
6285 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6286 		tmp = tmp32;
6287 		break;
6288 	}
6289 
6290 	default:
6291 		return -EINVAL;
6292 	}
6293 
6294 	tmp &= bits->mask;
6295 
6296 	return (tmp == bits->val) ? 1 : 0;
6297 }
6298 
6299 #ifdef CONFIG_PM
6300 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6301 {
6302 	pci_save_state(pdev);
6303 	pci_disable_device(pdev);
6304 
6305 	if (mesg.event & PM_EVENT_SLEEP)
6306 		pci_set_power_state(pdev, PCI_D3hot);
6307 }
6308 
6309 int ata_pci_device_do_resume(struct pci_dev *pdev)
6310 {
6311 	int rc;
6312 
6313 	pci_set_power_state(pdev, PCI_D0);
6314 	pci_restore_state(pdev);
6315 
6316 	rc = pcim_enable_device(pdev);
6317 	if (rc) {
6318 		dev_printk(KERN_ERR, &pdev->dev,
6319 			   "failed to enable device after resume (%d)\n", rc);
6320 		return rc;
6321 	}
6322 
6323 	pci_set_master(pdev);
6324 	return 0;
6325 }
6326 
6327 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6328 {
6329 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6330 	int rc = 0;
6331 
6332 	rc = ata_host_suspend(host, mesg);
6333 	if (rc)
6334 		return rc;
6335 
6336 	ata_pci_device_do_suspend(pdev, mesg);
6337 
6338 	return 0;
6339 }
6340 
6341 int ata_pci_device_resume(struct pci_dev *pdev)
6342 {
6343 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6344 	int rc;
6345 
6346 	rc = ata_pci_device_do_resume(pdev);
6347 	if (rc == 0)
6348 		ata_host_resume(host);
6349 	return rc;
6350 }
6351 #endif /* CONFIG_PM */
6352 
6353 #endif /* CONFIG_PCI */
6354 
6355 static int __init ata_parse_force_one(char **cur,
6356 				      struct ata_force_ent *force_ent,
6357 				      const char **reason)
6358 {
6359 	/* FIXME: Currently, there's no way to tag init const data and
6360 	 * using __initdata causes build failure on some versions of
6361 	 * gcc.  Once __initdataconst is implemented, add const to the
6362 	 * following structure.
6363 	 */
6364 	static struct ata_force_param force_tbl[] __initdata = {
6365 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6366 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6367 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6368 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6369 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6370 		{ "sata",	.cbl		= ATA_CBL_SATA },
6371 		{ "1.5Gbps",	.spd_limit	= 1 },
6372 		{ "3.0Gbps",	.spd_limit	= 2 },
6373 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6374 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6375 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6376 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6377 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6378 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6379 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6380 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6381 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6382 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6383 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6384 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6385 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6386 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6387 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6388 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6389 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6390 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6391 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6392 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6393 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6394 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6395 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6396 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6397 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6398 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6399 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6400 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6401 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6402 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6403 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6404 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6405 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6406 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6407 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6408 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6409 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6410 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6411 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6412 	};
6413 	char *start = *cur, *p = *cur;
6414 	char *id, *val, *endp;
6415 	const struct ata_force_param *match_fp = NULL;
6416 	int nr_matches = 0, i;
6417 
6418 	/* find where this param ends and update *cur */
6419 	while (*p != '\0' && *p != ',')
6420 		p++;
6421 
6422 	if (*p == '\0')
6423 		*cur = p;
6424 	else
6425 		*cur = p + 1;
6426 
6427 	*p = '\0';
6428 
6429 	/* parse */
6430 	p = strchr(start, ':');
6431 	if (!p) {
6432 		val = strstrip(start);
6433 		goto parse_val;
6434 	}
6435 	*p = '\0';
6436 
6437 	id = strstrip(start);
6438 	val = strstrip(p + 1);
6439 
6440 	/* parse id */
6441 	p = strchr(id, '.');
6442 	if (p) {
6443 		*p++ = '\0';
6444 		force_ent->device = simple_strtoul(p, &endp, 10);
6445 		if (p == endp || *endp != '\0') {
6446 			*reason = "invalid device";
6447 			return -EINVAL;
6448 		}
6449 	}
6450 
6451 	force_ent->port = simple_strtoul(id, &endp, 10);
6452 	if (p == endp || *endp != '\0') {
6453 		*reason = "invalid port/link";
6454 		return -EINVAL;
6455 	}
6456 
6457  parse_val:
6458 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6459 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6460 		const struct ata_force_param *fp = &force_tbl[i];
6461 
6462 		if (strncasecmp(val, fp->name, strlen(val)))
6463 			continue;
6464 
6465 		nr_matches++;
6466 		match_fp = fp;
6467 
6468 		if (strcasecmp(val, fp->name) == 0) {
6469 			nr_matches = 1;
6470 			break;
6471 		}
6472 	}
6473 
6474 	if (!nr_matches) {
6475 		*reason = "unknown value";
6476 		return -EINVAL;
6477 	}
6478 	if (nr_matches > 1) {
6479 		*reason = "ambigious value";
6480 		return -EINVAL;
6481 	}
6482 
6483 	force_ent->param = *match_fp;
6484 
6485 	return 0;
6486 }
6487 
6488 static void __init ata_parse_force_param(void)
6489 {
6490 	int idx = 0, size = 1;
6491 	int last_port = -1, last_device = -1;
6492 	char *p, *cur, *next;
6493 
6494 	/* calculate maximum number of params and allocate force_tbl */
6495 	for (p = ata_force_param_buf; *p; p++)
6496 		if (*p == ',')
6497 			size++;
6498 
6499 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6500 	if (!ata_force_tbl) {
6501 		printk(KERN_WARNING "ata: failed to extend force table, "
6502 		       "libata.force ignored\n");
6503 		return;
6504 	}
6505 
6506 	/* parse and populate the table */
6507 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6508 		const char *reason = "";
6509 		struct ata_force_ent te = { .port = -1, .device = -1 };
6510 
6511 		next = cur;
6512 		if (ata_parse_force_one(&next, &te, &reason)) {
6513 			printk(KERN_WARNING "ata: failed to parse force "
6514 			       "parameter \"%s\" (%s)\n",
6515 			       cur, reason);
6516 			continue;
6517 		}
6518 
6519 		if (te.port == -1) {
6520 			te.port = last_port;
6521 			te.device = last_device;
6522 		}
6523 
6524 		ata_force_tbl[idx++] = te;
6525 
6526 		last_port = te.port;
6527 		last_device = te.device;
6528 	}
6529 
6530 	ata_force_tbl_size = idx;
6531 }
6532 
6533 static int __init ata_init(void)
6534 {
6535 	int rc = -ENOMEM;
6536 
6537 	ata_parse_force_param();
6538 
6539 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6540 	if (!ata_aux_wq)
6541 		goto fail;
6542 
6543 	rc = ata_sff_init();
6544 	if (rc)
6545 		goto fail;
6546 
6547 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6548 	return 0;
6549 
6550 fail:
6551 	kfree(ata_force_tbl);
6552 	if (ata_aux_wq)
6553 		destroy_workqueue(ata_aux_wq);
6554 	return rc;
6555 }
6556 
6557 static void __exit ata_exit(void)
6558 {
6559 	ata_sff_exit();
6560 	kfree(ata_force_tbl);
6561 	destroy_workqueue(ata_aux_wq);
6562 }
6563 
6564 subsys_initcall(ata_init);
6565 module_exit(ata_exit);
6566 
6567 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6568 
6569 int ata_ratelimit(void)
6570 {
6571 	return __ratelimit(&ratelimit);
6572 }
6573 
6574 /**
6575  *	ata_wait_register - wait until register value changes
6576  *	@reg: IO-mapped register
6577  *	@mask: Mask to apply to read register value
6578  *	@val: Wait condition
6579  *	@interval: polling interval in milliseconds
6580  *	@timeout: timeout in milliseconds
6581  *
6582  *	Waiting for some bits of register to change is a common
6583  *	operation for ATA controllers.  This function reads 32bit LE
6584  *	IO-mapped register @reg and tests for the following condition.
6585  *
6586  *	(*@reg & mask) != val
6587  *
6588  *	If the condition is met, it returns; otherwise, the process is
6589  *	repeated after @interval_msec until timeout.
6590  *
6591  *	LOCKING:
6592  *	Kernel thread context (may sleep)
6593  *
6594  *	RETURNS:
6595  *	The final register value.
6596  */
6597 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6598 		      unsigned long interval, unsigned long timeout)
6599 {
6600 	unsigned long deadline;
6601 	u32 tmp;
6602 
6603 	tmp = ioread32(reg);
6604 
6605 	/* Calculate timeout _after_ the first read to make sure
6606 	 * preceding writes reach the controller before starting to
6607 	 * eat away the timeout.
6608 	 */
6609 	deadline = ata_deadline(jiffies, timeout);
6610 
6611 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6612 		msleep(interval);
6613 		tmp = ioread32(reg);
6614 	}
6615 
6616 	return tmp;
6617 }
6618 
6619 /*
6620  * Dummy port_ops
6621  */
6622 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6623 {
6624 	return AC_ERR_SYSTEM;
6625 }
6626 
6627 static void ata_dummy_error_handler(struct ata_port *ap)
6628 {
6629 	/* truly dummy */
6630 }
6631 
6632 struct ata_port_operations ata_dummy_port_ops = {
6633 	.qc_prep		= ata_noop_qc_prep,
6634 	.qc_issue		= ata_dummy_qc_issue,
6635 	.error_handler		= ata_dummy_error_handler,
6636 };
6637 
6638 const struct ata_port_info ata_dummy_port_info = {
6639 	.port_ops		= &ata_dummy_port_ops,
6640 };
6641 
6642 /*
6643  * libata is essentially a library of internal helper functions for
6644  * low-level ATA host controller drivers.  As such, the API/ABI is
6645  * likely to change as new drivers are added and updated.
6646  * Do not depend on ABI/API stability.
6647  */
6648 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6649 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6650 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6651 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6652 EXPORT_SYMBOL_GPL(sata_port_ops);
6653 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6654 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6655 EXPORT_SYMBOL_GPL(ata_link_next);
6656 EXPORT_SYMBOL_GPL(ata_dev_next);
6657 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6658 EXPORT_SYMBOL_GPL(ata_host_init);
6659 EXPORT_SYMBOL_GPL(ata_host_alloc);
6660 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6661 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6662 EXPORT_SYMBOL_GPL(ata_host_start);
6663 EXPORT_SYMBOL_GPL(ata_host_register);
6664 EXPORT_SYMBOL_GPL(ata_host_activate);
6665 EXPORT_SYMBOL_GPL(ata_host_detach);
6666 EXPORT_SYMBOL_GPL(ata_sg_init);
6667 EXPORT_SYMBOL_GPL(ata_qc_complete);
6668 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6669 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6670 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6671 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6672 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6673 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6674 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6675 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6676 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6677 EXPORT_SYMBOL_GPL(ata_mode_string);
6678 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6679 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6680 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6681 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6682 EXPORT_SYMBOL_GPL(ata_dev_disable);
6683 EXPORT_SYMBOL_GPL(sata_set_spd);
6684 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6685 EXPORT_SYMBOL_GPL(sata_link_debounce);
6686 EXPORT_SYMBOL_GPL(sata_link_resume);
6687 EXPORT_SYMBOL_GPL(ata_std_prereset);
6688 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6689 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6690 EXPORT_SYMBOL_GPL(ata_std_postreset);
6691 EXPORT_SYMBOL_GPL(ata_dev_classify);
6692 EXPORT_SYMBOL_GPL(ata_dev_pair);
6693 EXPORT_SYMBOL_GPL(ata_ratelimit);
6694 EXPORT_SYMBOL_GPL(ata_wait_register);
6695 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6696 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6697 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6698 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6699 EXPORT_SYMBOL_GPL(sata_scr_valid);
6700 EXPORT_SYMBOL_GPL(sata_scr_read);
6701 EXPORT_SYMBOL_GPL(sata_scr_write);
6702 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6703 EXPORT_SYMBOL_GPL(ata_link_online);
6704 EXPORT_SYMBOL_GPL(ata_link_offline);
6705 #ifdef CONFIG_PM
6706 EXPORT_SYMBOL_GPL(ata_host_suspend);
6707 EXPORT_SYMBOL_GPL(ata_host_resume);
6708 #endif /* CONFIG_PM */
6709 EXPORT_SYMBOL_GPL(ata_id_string);
6710 EXPORT_SYMBOL_GPL(ata_id_c_string);
6711 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6712 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6713 
6714 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6715 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6716 EXPORT_SYMBOL_GPL(ata_timing_compute);
6717 EXPORT_SYMBOL_GPL(ata_timing_merge);
6718 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6719 
6720 #ifdef CONFIG_PCI
6721 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6722 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6723 #ifdef CONFIG_PM
6724 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6725 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6726 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6727 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6728 #endif /* CONFIG_PM */
6729 #endif /* CONFIG_PCI */
6730 
6731 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6732 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6733 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6734 EXPORT_SYMBOL_GPL(ata_port_desc);
6735 #ifdef CONFIG_PCI
6736 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6737 #endif /* CONFIG_PCI */
6738 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6739 EXPORT_SYMBOL_GPL(ata_link_abort);
6740 EXPORT_SYMBOL_GPL(ata_port_abort);
6741 EXPORT_SYMBOL_GPL(ata_port_freeze);
6742 EXPORT_SYMBOL_GPL(sata_async_notification);
6743 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6744 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6745 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6746 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6747 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6748 EXPORT_SYMBOL_GPL(ata_do_eh);
6749 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6750 
6751 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6752 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6753 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6754 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6755 EXPORT_SYMBOL_GPL(ata_cable_sata);
6756