1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 70 #include "libata.h" 71 72 73 /* debounce timing parameters in msecs { interval, duration, timeout } */ 74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 77 78 const struct ata_port_operations ata_base_port_ops = { 79 .prereset = ata_std_prereset, 80 .postreset = ata_std_postreset, 81 .error_handler = ata_std_error_handler, 82 }; 83 84 const struct ata_port_operations sata_port_ops = { 85 .inherits = &ata_base_port_ops, 86 87 .qc_defer = ata_std_qc_defer, 88 .hardreset = sata_std_hardreset, 89 }; 90 91 static unsigned int ata_dev_init_params(struct ata_device *dev, 92 u16 heads, u16 sectors); 93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 94 static unsigned int ata_dev_set_feature(struct ata_device *dev, 95 u8 enable, u8 feature); 96 static void ata_dev_xfermask(struct ata_device *dev); 97 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 98 99 unsigned int ata_print_id = 1; 100 101 struct workqueue_struct *ata_aux_wq; 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_printk(ap, KERN_NOTICE, 343 "FORCE: cable set to %s\n", fe->param.name); 344 return; 345 } 346 } 347 348 /** 349 * ata_force_link_limits - force link limits according to libata.force 350 * @link: ATA link of interest 351 * 352 * Force link flags and SATA spd limit according to libata.force 353 * and whine about it. When only the port part is specified 354 * (e.g. 1:), the limit applies to all links connected to both 355 * the host link and all fan-out ports connected via PMP. If the 356 * device part is specified as 0 (e.g. 1.00:), it specifies the 357 * first fan-out link not the host link. Device number 15 always 358 * points to the host link whether PMP is attached or not. If the 359 * controller has slave link, device number 16 points to it. 360 * 361 * LOCKING: 362 * EH context. 363 */ 364 static void ata_force_link_limits(struct ata_link *link) 365 { 366 bool did_spd = false; 367 int linkno = link->pmp; 368 int i; 369 370 if (ata_is_host_link(link)) 371 linkno += 15; 372 373 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 374 const struct ata_force_ent *fe = &ata_force_tbl[i]; 375 376 if (fe->port != -1 && fe->port != link->ap->print_id) 377 continue; 378 379 if (fe->device != -1 && fe->device != linkno) 380 continue; 381 382 /* only honor the first spd limit */ 383 if (!did_spd && fe->param.spd_limit) { 384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 385 ata_link_printk(link, KERN_NOTICE, 386 "FORCE: PHY spd limit set to %s\n", 387 fe->param.name); 388 did_spd = true; 389 } 390 391 /* let lflags stack */ 392 if (fe->param.lflags) { 393 link->flags |= fe->param.lflags; 394 ata_link_printk(link, KERN_NOTICE, 395 "FORCE: link flag 0x%x forced -> 0x%x\n", 396 fe->param.lflags, link->flags); 397 } 398 } 399 } 400 401 /** 402 * ata_force_xfermask - force xfermask according to libata.force 403 * @dev: ATA device of interest 404 * 405 * Force xfer_mask according to libata.force and whine about it. 406 * For consistency with link selection, device number 15 selects 407 * the first device connected to the host link. 408 * 409 * LOCKING: 410 * EH context. 411 */ 412 static void ata_force_xfermask(struct ata_device *dev) 413 { 414 int devno = dev->link->pmp + dev->devno; 415 int alt_devno = devno; 416 int i; 417 418 /* allow n.15/16 for devices attached to host port */ 419 if (ata_is_host_link(dev->link)) 420 alt_devno += 15; 421 422 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 423 const struct ata_force_ent *fe = &ata_force_tbl[i]; 424 unsigned long pio_mask, mwdma_mask, udma_mask; 425 426 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 427 continue; 428 429 if (fe->device != -1 && fe->device != devno && 430 fe->device != alt_devno) 431 continue; 432 433 if (!fe->param.xfer_mask) 434 continue; 435 436 ata_unpack_xfermask(fe->param.xfer_mask, 437 &pio_mask, &mwdma_mask, &udma_mask); 438 if (udma_mask) 439 dev->udma_mask = udma_mask; 440 else if (mwdma_mask) { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = mwdma_mask; 443 } else { 444 dev->udma_mask = 0; 445 dev->mwdma_mask = 0; 446 dev->pio_mask = pio_mask; 447 } 448 449 ata_dev_printk(dev, KERN_NOTICE, 450 "FORCE: xfer_mask set to %s\n", fe->param.name); 451 return; 452 } 453 } 454 455 /** 456 * ata_force_horkage - force horkage according to libata.force 457 * @dev: ATA device of interest 458 * 459 * Force horkage according to libata.force and whine about it. 460 * For consistency with link selection, device number 15 selects 461 * the first device connected to the host link. 462 * 463 * LOCKING: 464 * EH context. 465 */ 466 static void ata_force_horkage(struct ata_device *dev) 467 { 468 int devno = dev->link->pmp + dev->devno; 469 int alt_devno = devno; 470 int i; 471 472 /* allow n.15/16 for devices attached to host port */ 473 if (ata_is_host_link(dev->link)) 474 alt_devno += 15; 475 476 for (i = 0; i < ata_force_tbl_size; i++) { 477 const struct ata_force_ent *fe = &ata_force_tbl[i]; 478 479 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 480 continue; 481 482 if (fe->device != -1 && fe->device != devno && 483 fe->device != alt_devno) 484 continue; 485 486 if (!(~dev->horkage & fe->param.horkage_on) && 487 !(dev->horkage & fe->param.horkage_off)) 488 continue; 489 490 dev->horkage |= fe->param.horkage_on; 491 dev->horkage &= ~fe->param.horkage_off; 492 493 ata_dev_printk(dev, KERN_NOTICE, 494 "FORCE: horkage modified (%s)\n", fe->param.name); 495 } 496 } 497 498 /** 499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 500 * @opcode: SCSI opcode 501 * 502 * Determine ATAPI command type from @opcode. 503 * 504 * LOCKING: 505 * None. 506 * 507 * RETURNS: 508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 509 */ 510 int atapi_cmd_type(u8 opcode) 511 { 512 switch (opcode) { 513 case GPCMD_READ_10: 514 case GPCMD_READ_12: 515 return ATAPI_READ; 516 517 case GPCMD_WRITE_10: 518 case GPCMD_WRITE_12: 519 case GPCMD_WRITE_AND_VERIFY_10: 520 return ATAPI_WRITE; 521 522 case GPCMD_READ_CD: 523 case GPCMD_READ_CD_MSF: 524 return ATAPI_READ_CD; 525 526 case ATA_16: 527 case ATA_12: 528 if (atapi_passthru16) 529 return ATAPI_PASS_THRU; 530 /* fall thru */ 531 default: 532 return ATAPI_MISC; 533 } 534 } 535 536 /** 537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 538 * @tf: Taskfile to convert 539 * @pmp: Port multiplier port 540 * @is_cmd: This FIS is for command 541 * @fis: Buffer into which data will output 542 * 543 * Converts a standard ATA taskfile to a Serial ATA 544 * FIS structure (Register - Host to Device). 545 * 546 * LOCKING: 547 * Inherited from caller. 548 */ 549 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 550 { 551 fis[0] = 0x27; /* Register - Host to Device FIS */ 552 fis[1] = pmp & 0xf; /* Port multiplier number*/ 553 if (is_cmd) 554 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 555 556 fis[2] = tf->command; 557 fis[3] = tf->feature; 558 559 fis[4] = tf->lbal; 560 fis[5] = tf->lbam; 561 fis[6] = tf->lbah; 562 fis[7] = tf->device; 563 564 fis[8] = tf->hob_lbal; 565 fis[9] = tf->hob_lbam; 566 fis[10] = tf->hob_lbah; 567 fis[11] = tf->hob_feature; 568 569 fis[12] = tf->nsect; 570 fis[13] = tf->hob_nsect; 571 fis[14] = 0; 572 fis[15] = tf->ctl; 573 574 fis[16] = 0; 575 fis[17] = 0; 576 fis[18] = 0; 577 fis[19] = 0; 578 } 579 580 /** 581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 582 * @fis: Buffer from which data will be input 583 * @tf: Taskfile to output 584 * 585 * Converts a serial ATA FIS structure to a standard ATA taskfile. 586 * 587 * LOCKING: 588 * Inherited from caller. 589 */ 590 591 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 592 { 593 tf->command = fis[2]; /* status */ 594 tf->feature = fis[3]; /* error */ 595 596 tf->lbal = fis[4]; 597 tf->lbam = fis[5]; 598 tf->lbah = fis[6]; 599 tf->device = fis[7]; 600 601 tf->hob_lbal = fis[8]; 602 tf->hob_lbam = fis[9]; 603 tf->hob_lbah = fis[10]; 604 605 tf->nsect = fis[12]; 606 tf->hob_nsect = fis[13]; 607 } 608 609 static const u8 ata_rw_cmds[] = { 610 /* pio multi */ 611 ATA_CMD_READ_MULTI, 612 ATA_CMD_WRITE_MULTI, 613 ATA_CMD_READ_MULTI_EXT, 614 ATA_CMD_WRITE_MULTI_EXT, 615 0, 616 0, 617 0, 618 ATA_CMD_WRITE_MULTI_FUA_EXT, 619 /* pio */ 620 ATA_CMD_PIO_READ, 621 ATA_CMD_PIO_WRITE, 622 ATA_CMD_PIO_READ_EXT, 623 ATA_CMD_PIO_WRITE_EXT, 624 0, 625 0, 626 0, 627 0, 628 /* dma */ 629 ATA_CMD_READ, 630 ATA_CMD_WRITE, 631 ATA_CMD_READ_EXT, 632 ATA_CMD_WRITE_EXT, 633 0, 634 0, 635 0, 636 ATA_CMD_WRITE_FUA_EXT 637 }; 638 639 /** 640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 641 * @tf: command to examine and configure 642 * @dev: device tf belongs to 643 * 644 * Examine the device configuration and tf->flags to calculate 645 * the proper read/write commands and protocol to use. 646 * 647 * LOCKING: 648 * caller. 649 */ 650 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 651 { 652 u8 cmd; 653 654 int index, fua, lba48, write; 655 656 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 657 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 658 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 659 660 if (dev->flags & ATA_DFLAG_PIO) { 661 tf->protocol = ATA_PROT_PIO; 662 index = dev->multi_count ? 0 : 8; 663 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 664 /* Unable to use DMA due to host limitation */ 665 tf->protocol = ATA_PROT_PIO; 666 index = dev->multi_count ? 0 : 8; 667 } else { 668 tf->protocol = ATA_PROT_DMA; 669 index = 16; 670 } 671 672 cmd = ata_rw_cmds[index + fua + lba48 + write]; 673 if (cmd) { 674 tf->command = cmd; 675 return 0; 676 } 677 return -1; 678 } 679 680 /** 681 * ata_tf_read_block - Read block address from ATA taskfile 682 * @tf: ATA taskfile of interest 683 * @dev: ATA device @tf belongs to 684 * 685 * LOCKING: 686 * None. 687 * 688 * Read block address from @tf. This function can handle all 689 * three address formats - LBA, LBA48 and CHS. tf->protocol and 690 * flags select the address format to use. 691 * 692 * RETURNS: 693 * Block address read from @tf. 694 */ 695 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 696 { 697 u64 block = 0; 698 699 if (tf->flags & ATA_TFLAG_LBA) { 700 if (tf->flags & ATA_TFLAG_LBA48) { 701 block |= (u64)tf->hob_lbah << 40; 702 block |= (u64)tf->hob_lbam << 32; 703 block |= (u64)tf->hob_lbal << 24; 704 } else 705 block |= (tf->device & 0xf) << 24; 706 707 block |= tf->lbah << 16; 708 block |= tf->lbam << 8; 709 block |= tf->lbal; 710 } else { 711 u32 cyl, head, sect; 712 713 cyl = tf->lbam | (tf->lbah << 8); 714 head = tf->device & 0xf; 715 sect = tf->lbal; 716 717 if (!sect) { 718 ata_dev_printk(dev, KERN_WARNING, "device reported " 719 "invalid CHS sector 0\n"); 720 sect = 1; /* oh well */ 721 } 722 723 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 724 } 725 726 return block; 727 } 728 729 /** 730 * ata_build_rw_tf - Build ATA taskfile for given read/write request 731 * @tf: Target ATA taskfile 732 * @dev: ATA device @tf belongs to 733 * @block: Block address 734 * @n_block: Number of blocks 735 * @tf_flags: RW/FUA etc... 736 * @tag: tag 737 * 738 * LOCKING: 739 * None. 740 * 741 * Build ATA taskfile @tf for read/write request described by 742 * @block, @n_block, @tf_flags and @tag on @dev. 743 * 744 * RETURNS: 745 * 746 * 0 on success, -ERANGE if the request is too large for @dev, 747 * -EINVAL if the request is invalid. 748 */ 749 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 750 u64 block, u32 n_block, unsigned int tf_flags, 751 unsigned int tag) 752 { 753 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 754 tf->flags |= tf_flags; 755 756 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 757 /* yay, NCQ */ 758 if (!lba_48_ok(block, n_block)) 759 return -ERANGE; 760 761 tf->protocol = ATA_PROT_NCQ; 762 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 763 764 if (tf->flags & ATA_TFLAG_WRITE) 765 tf->command = ATA_CMD_FPDMA_WRITE; 766 else 767 tf->command = ATA_CMD_FPDMA_READ; 768 769 tf->nsect = tag << 3; 770 tf->hob_feature = (n_block >> 8) & 0xff; 771 tf->feature = n_block & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 tf->lbah = (block >> 16) & 0xff; 777 tf->lbam = (block >> 8) & 0xff; 778 tf->lbal = block & 0xff; 779 780 tf->device = 1 << 6; 781 if (tf->flags & ATA_TFLAG_FUA) 782 tf->device |= 1 << 7; 783 } else if (dev->flags & ATA_DFLAG_LBA) { 784 tf->flags |= ATA_TFLAG_LBA; 785 786 if (lba_28_ok(block, n_block)) { 787 /* use LBA28 */ 788 tf->device |= (block >> 24) & 0xf; 789 } else if (lba_48_ok(block, n_block)) { 790 if (!(dev->flags & ATA_DFLAG_LBA48)) 791 return -ERANGE; 792 793 /* use LBA48 */ 794 tf->flags |= ATA_TFLAG_LBA48; 795 796 tf->hob_nsect = (n_block >> 8) & 0xff; 797 798 tf->hob_lbah = (block >> 40) & 0xff; 799 tf->hob_lbam = (block >> 32) & 0xff; 800 tf->hob_lbal = (block >> 24) & 0xff; 801 } else 802 /* request too large even for LBA48 */ 803 return -ERANGE; 804 805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 806 return -EINVAL; 807 808 tf->nsect = n_block & 0xff; 809 810 tf->lbah = (block >> 16) & 0xff; 811 tf->lbam = (block >> 8) & 0xff; 812 tf->lbal = block & 0xff; 813 814 tf->device |= ATA_LBA; 815 } else { 816 /* CHS */ 817 u32 sect, head, cyl, track; 818 819 /* The request -may- be too large for CHS addressing. */ 820 if (!lba_28_ok(block, n_block)) 821 return -ERANGE; 822 823 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 824 return -EINVAL; 825 826 /* Convert LBA to CHS */ 827 track = (u32)block / dev->sectors; 828 cyl = track / dev->heads; 829 head = track % dev->heads; 830 sect = (u32)block % dev->sectors + 1; 831 832 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 833 (u32)block, track, cyl, head, sect); 834 835 /* Check whether the converted CHS can fit. 836 Cylinder: 0-65535 837 Head: 0-15 838 Sector: 1-255*/ 839 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 840 return -ERANGE; 841 842 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 843 tf->lbal = sect; 844 tf->lbam = cyl; 845 tf->lbah = cyl >> 8; 846 tf->device |= head; 847 } 848 849 return 0; 850 } 851 852 /** 853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 854 * @pio_mask: pio_mask 855 * @mwdma_mask: mwdma_mask 856 * @udma_mask: udma_mask 857 * 858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 859 * unsigned int xfer_mask. 860 * 861 * LOCKING: 862 * None. 863 * 864 * RETURNS: 865 * Packed xfer_mask. 866 */ 867 unsigned long ata_pack_xfermask(unsigned long pio_mask, 868 unsigned long mwdma_mask, 869 unsigned long udma_mask) 870 { 871 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 872 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 873 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 874 } 875 876 /** 877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 878 * @xfer_mask: xfer_mask to unpack 879 * @pio_mask: resulting pio_mask 880 * @mwdma_mask: resulting mwdma_mask 881 * @udma_mask: resulting udma_mask 882 * 883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 884 * Any NULL distination masks will be ignored. 885 */ 886 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 887 unsigned long *mwdma_mask, unsigned long *udma_mask) 888 { 889 if (pio_mask) 890 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 891 if (mwdma_mask) 892 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 893 if (udma_mask) 894 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 895 } 896 897 static const struct ata_xfer_ent { 898 int shift, bits; 899 u8 base; 900 } ata_xfer_tbl[] = { 901 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 902 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 903 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 904 { -1, }, 905 }; 906 907 /** 908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 909 * @xfer_mask: xfer_mask of interest 910 * 911 * Return matching XFER_* value for @xfer_mask. Only the highest 912 * bit of @xfer_mask is considered. 913 * 914 * LOCKING: 915 * None. 916 * 917 * RETURNS: 918 * Matching XFER_* value, 0xff if no match found. 919 */ 920 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 921 { 922 int highbit = fls(xfer_mask) - 1; 923 const struct ata_xfer_ent *ent; 924 925 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 926 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 927 return ent->base + highbit - ent->shift; 928 return 0xff; 929 } 930 931 /** 932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 933 * @xfer_mode: XFER_* of interest 934 * 935 * Return matching xfer_mask for @xfer_mode. 936 * 937 * LOCKING: 938 * None. 939 * 940 * RETURNS: 941 * Matching xfer_mask, 0 if no match found. 942 */ 943 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 944 { 945 const struct ata_xfer_ent *ent; 946 947 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 948 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 949 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 950 & ~((1 << ent->shift) - 1); 951 return 0; 952 } 953 954 /** 955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 956 * @xfer_mode: XFER_* of interest 957 * 958 * Return matching xfer_shift for @xfer_mode. 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Matching xfer_shift, -1 if no match found. 965 */ 966 int ata_xfer_mode2shift(unsigned long xfer_mode) 967 { 968 const struct ata_xfer_ent *ent; 969 970 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 971 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 972 return ent->shift; 973 return -1; 974 } 975 976 /** 977 * ata_mode_string - convert xfer_mask to string 978 * @xfer_mask: mask of bits supported; only highest bit counts. 979 * 980 * Determine string which represents the highest speed 981 * (highest bit in @modemask). 982 * 983 * LOCKING: 984 * None. 985 * 986 * RETURNS: 987 * Constant C string representing highest speed listed in 988 * @mode_mask, or the constant C string "<n/a>". 989 */ 990 const char *ata_mode_string(unsigned long xfer_mask) 991 { 992 static const char * const xfer_mode_str[] = { 993 "PIO0", 994 "PIO1", 995 "PIO2", 996 "PIO3", 997 "PIO4", 998 "PIO5", 999 "PIO6", 1000 "MWDMA0", 1001 "MWDMA1", 1002 "MWDMA2", 1003 "MWDMA3", 1004 "MWDMA4", 1005 "UDMA/16", 1006 "UDMA/25", 1007 "UDMA/33", 1008 "UDMA/44", 1009 "UDMA/66", 1010 "UDMA/100", 1011 "UDMA/133", 1012 "UDMA7", 1013 }; 1014 int highbit; 1015 1016 highbit = fls(xfer_mask) - 1; 1017 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1018 return xfer_mode_str[highbit]; 1019 return "<n/a>"; 1020 } 1021 1022 static const char *sata_spd_string(unsigned int spd) 1023 { 1024 static const char * const spd_str[] = { 1025 "1.5 Gbps", 1026 "3.0 Gbps", 1027 "6.0 Gbps", 1028 }; 1029 1030 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1031 return "<unknown>"; 1032 return spd_str[spd - 1]; 1033 } 1034 1035 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1036 { 1037 struct ata_link *link = dev->link; 1038 struct ata_port *ap = link->ap; 1039 u32 scontrol; 1040 unsigned int err_mask; 1041 int rc; 1042 1043 /* 1044 * disallow DIPM for drivers which haven't set 1045 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1046 * phy ready will be set in the interrupt status on 1047 * state changes, which will cause some drivers to 1048 * think there are errors - additionally drivers will 1049 * need to disable hot plug. 1050 */ 1051 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1052 ap->pm_policy = NOT_AVAILABLE; 1053 return -EINVAL; 1054 } 1055 1056 /* 1057 * For DIPM, we will only enable it for the 1058 * min_power setting. 1059 * 1060 * Why? Because Disks are too stupid to know that 1061 * If the host rejects a request to go to SLUMBER 1062 * they should retry at PARTIAL, and instead it 1063 * just would give up. So, for medium_power to 1064 * work at all, we need to only allow HIPM. 1065 */ 1066 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1067 if (rc) 1068 return rc; 1069 1070 switch (policy) { 1071 case MIN_POWER: 1072 /* no restrictions on IPM transitions */ 1073 scontrol &= ~(0x3 << 8); 1074 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1075 if (rc) 1076 return rc; 1077 1078 /* enable DIPM */ 1079 if (dev->flags & ATA_DFLAG_DIPM) 1080 err_mask = ata_dev_set_feature(dev, 1081 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1082 break; 1083 case MEDIUM_POWER: 1084 /* allow IPM to PARTIAL */ 1085 scontrol &= ~(0x1 << 8); 1086 scontrol |= (0x2 << 8); 1087 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1088 if (rc) 1089 return rc; 1090 1091 /* 1092 * we don't have to disable DIPM since IPM flags 1093 * disallow transitions to SLUMBER, which effectively 1094 * disable DIPM if it does not support PARTIAL 1095 */ 1096 break; 1097 case NOT_AVAILABLE: 1098 case MAX_PERFORMANCE: 1099 /* disable all IPM transitions */ 1100 scontrol |= (0x3 << 8); 1101 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1102 if (rc) 1103 return rc; 1104 1105 /* 1106 * we don't have to disable DIPM since IPM flags 1107 * disallow all transitions which effectively 1108 * disable DIPM anyway. 1109 */ 1110 break; 1111 } 1112 1113 /* FIXME: handle SET FEATURES failure */ 1114 (void) err_mask; 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * ata_dev_enable_pm - enable SATA interface power management 1121 * @dev: device to enable power management 1122 * @policy: the link power management policy 1123 * 1124 * Enable SATA Interface power management. This will enable 1125 * Device Interface Power Management (DIPM) for min_power 1126 * policy, and then call driver specific callbacks for 1127 * enabling Host Initiated Power management. 1128 * 1129 * Locking: Caller. 1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1131 */ 1132 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1133 { 1134 int rc = 0; 1135 struct ata_port *ap = dev->link->ap; 1136 1137 /* set HIPM first, then DIPM */ 1138 if (ap->ops->enable_pm) 1139 rc = ap->ops->enable_pm(ap, policy); 1140 if (rc) 1141 goto enable_pm_out; 1142 rc = ata_dev_set_dipm(dev, policy); 1143 1144 enable_pm_out: 1145 if (rc) 1146 ap->pm_policy = MAX_PERFORMANCE; 1147 else 1148 ap->pm_policy = policy; 1149 return /* rc */; /* hopefully we can use 'rc' eventually */ 1150 } 1151 1152 #ifdef CONFIG_PM 1153 /** 1154 * ata_dev_disable_pm - disable SATA interface power management 1155 * @dev: device to disable power management 1156 * 1157 * Disable SATA Interface power management. This will disable 1158 * Device Interface Power Management (DIPM) without changing 1159 * policy, call driver specific callbacks for disabling Host 1160 * Initiated Power management. 1161 * 1162 * Locking: Caller. 1163 * Returns: void 1164 */ 1165 static void ata_dev_disable_pm(struct ata_device *dev) 1166 { 1167 struct ata_port *ap = dev->link->ap; 1168 1169 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1170 if (ap->ops->disable_pm) 1171 ap->ops->disable_pm(ap); 1172 } 1173 #endif /* CONFIG_PM */ 1174 1175 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1176 { 1177 ap->pm_policy = policy; 1178 ap->link.eh_info.action |= ATA_EH_LPM; 1179 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1180 ata_port_schedule_eh(ap); 1181 } 1182 1183 #ifdef CONFIG_PM 1184 static void ata_lpm_enable(struct ata_host *host) 1185 { 1186 struct ata_link *link; 1187 struct ata_port *ap; 1188 struct ata_device *dev; 1189 int i; 1190 1191 for (i = 0; i < host->n_ports; i++) { 1192 ap = host->ports[i]; 1193 ata_for_each_link(link, ap, EDGE) { 1194 ata_for_each_dev(dev, link, ALL) 1195 ata_dev_disable_pm(dev); 1196 } 1197 } 1198 } 1199 1200 static void ata_lpm_disable(struct ata_host *host) 1201 { 1202 int i; 1203 1204 for (i = 0; i < host->n_ports; i++) { 1205 struct ata_port *ap = host->ports[i]; 1206 ata_lpm_schedule(ap, ap->pm_policy); 1207 } 1208 } 1209 #endif /* CONFIG_PM */ 1210 1211 /** 1212 * ata_dev_classify - determine device type based on ATA-spec signature 1213 * @tf: ATA taskfile register set for device to be identified 1214 * 1215 * Determine from taskfile register contents whether a device is 1216 * ATA or ATAPI, as per "Signature and persistence" section 1217 * of ATA/PI spec (volume 1, sect 5.14). 1218 * 1219 * LOCKING: 1220 * None. 1221 * 1222 * RETURNS: 1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1224 * %ATA_DEV_UNKNOWN the event of failure. 1225 */ 1226 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1227 { 1228 /* Apple's open source Darwin code hints that some devices only 1229 * put a proper signature into the LBA mid/high registers, 1230 * So, we only check those. It's sufficient for uniqueness. 1231 * 1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1233 * signatures for ATA and ATAPI devices attached on SerialATA, 1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1235 * spec has never mentioned about using different signatures 1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1237 * Multiplier specification began to use 0x69/0x96 to identify 1238 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1240 * 0x69/0x96 shortly and described them as reserved for 1241 * SerialATA. 1242 * 1243 * We follow the current spec and consider that 0x69/0x96 1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1246 * SEMB signature. This is worked around in 1247 * ata_dev_read_id(). 1248 */ 1249 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1250 DPRINTK("found ATA device by sig\n"); 1251 return ATA_DEV_ATA; 1252 } 1253 1254 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1255 DPRINTK("found ATAPI device by sig\n"); 1256 return ATA_DEV_ATAPI; 1257 } 1258 1259 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1260 DPRINTK("found PMP device by sig\n"); 1261 return ATA_DEV_PMP; 1262 } 1263 1264 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1265 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1266 return ATA_DEV_SEMB; 1267 } 1268 1269 DPRINTK("unknown device\n"); 1270 return ATA_DEV_UNKNOWN; 1271 } 1272 1273 /** 1274 * ata_id_string - Convert IDENTIFY DEVICE page into string 1275 * @id: IDENTIFY DEVICE results we will examine 1276 * @s: string into which data is output 1277 * @ofs: offset into identify device page 1278 * @len: length of string to return. must be an even number. 1279 * 1280 * The strings in the IDENTIFY DEVICE page are broken up into 1281 * 16-bit chunks. Run through the string, and output each 1282 * 8-bit chunk linearly, regardless of platform. 1283 * 1284 * LOCKING: 1285 * caller. 1286 */ 1287 1288 void ata_id_string(const u16 *id, unsigned char *s, 1289 unsigned int ofs, unsigned int len) 1290 { 1291 unsigned int c; 1292 1293 BUG_ON(len & 1); 1294 1295 while (len > 0) { 1296 c = id[ofs] >> 8; 1297 *s = c; 1298 s++; 1299 1300 c = id[ofs] & 0xff; 1301 *s = c; 1302 s++; 1303 1304 ofs++; 1305 len -= 2; 1306 } 1307 } 1308 1309 /** 1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1311 * @id: IDENTIFY DEVICE results we will examine 1312 * @s: string into which data is output 1313 * @ofs: offset into identify device page 1314 * @len: length of string to return. must be an odd number. 1315 * 1316 * This function is identical to ata_id_string except that it 1317 * trims trailing spaces and terminates the resulting string with 1318 * null. @len must be actual maximum length (even number) + 1. 1319 * 1320 * LOCKING: 1321 * caller. 1322 */ 1323 void ata_id_c_string(const u16 *id, unsigned char *s, 1324 unsigned int ofs, unsigned int len) 1325 { 1326 unsigned char *p; 1327 1328 ata_id_string(id, s, ofs, len - 1); 1329 1330 p = s + strnlen(s, len - 1); 1331 while (p > s && p[-1] == ' ') 1332 p--; 1333 *p = '\0'; 1334 } 1335 1336 static u64 ata_id_n_sectors(const u16 *id) 1337 { 1338 if (ata_id_has_lba(id)) { 1339 if (ata_id_has_lba48(id)) 1340 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1341 else 1342 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1343 } else { 1344 if (ata_id_current_chs_valid(id)) 1345 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1346 id[ATA_ID_CUR_SECTORS]; 1347 else 1348 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1349 id[ATA_ID_SECTORS]; 1350 } 1351 } 1352 1353 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1354 { 1355 u64 sectors = 0; 1356 1357 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1358 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1359 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1360 sectors |= (tf->lbah & 0xff) << 16; 1361 sectors |= (tf->lbam & 0xff) << 8; 1362 sectors |= (tf->lbal & 0xff); 1363 1364 return sectors; 1365 } 1366 1367 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1368 { 1369 u64 sectors = 0; 1370 1371 sectors |= (tf->device & 0x0f) << 24; 1372 sectors |= (tf->lbah & 0xff) << 16; 1373 sectors |= (tf->lbam & 0xff) << 8; 1374 sectors |= (tf->lbal & 0xff); 1375 1376 return sectors; 1377 } 1378 1379 /** 1380 * ata_read_native_max_address - Read native max address 1381 * @dev: target device 1382 * @max_sectors: out parameter for the result native max address 1383 * 1384 * Perform an LBA48 or LBA28 native size query upon the device in 1385 * question. 1386 * 1387 * RETURNS: 1388 * 0 on success, -EACCES if command is aborted by the drive. 1389 * -EIO on other errors. 1390 */ 1391 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1392 { 1393 unsigned int err_mask; 1394 struct ata_taskfile tf; 1395 int lba48 = ata_id_has_lba48(dev->id); 1396 1397 ata_tf_init(dev, &tf); 1398 1399 /* always clear all address registers */ 1400 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1401 1402 if (lba48) { 1403 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1404 tf.flags |= ATA_TFLAG_LBA48; 1405 } else 1406 tf.command = ATA_CMD_READ_NATIVE_MAX; 1407 1408 tf.protocol |= ATA_PROT_NODATA; 1409 tf.device |= ATA_LBA; 1410 1411 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1412 if (err_mask) { 1413 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1414 "max address (err_mask=0x%x)\n", err_mask); 1415 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1416 return -EACCES; 1417 return -EIO; 1418 } 1419 1420 if (lba48) 1421 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1422 else 1423 *max_sectors = ata_tf_to_lba(&tf) + 1; 1424 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1425 (*max_sectors)--; 1426 return 0; 1427 } 1428 1429 /** 1430 * ata_set_max_sectors - Set max sectors 1431 * @dev: target device 1432 * @new_sectors: new max sectors value to set for the device 1433 * 1434 * Set max sectors of @dev to @new_sectors. 1435 * 1436 * RETURNS: 1437 * 0 on success, -EACCES if command is aborted or denied (due to 1438 * previous non-volatile SET_MAX) by the drive. -EIO on other 1439 * errors. 1440 */ 1441 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1442 { 1443 unsigned int err_mask; 1444 struct ata_taskfile tf; 1445 int lba48 = ata_id_has_lba48(dev->id); 1446 1447 new_sectors--; 1448 1449 ata_tf_init(dev, &tf); 1450 1451 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1452 1453 if (lba48) { 1454 tf.command = ATA_CMD_SET_MAX_EXT; 1455 tf.flags |= ATA_TFLAG_LBA48; 1456 1457 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1458 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1459 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1460 } else { 1461 tf.command = ATA_CMD_SET_MAX; 1462 1463 tf.device |= (new_sectors >> 24) & 0xf; 1464 } 1465 1466 tf.protocol |= ATA_PROT_NODATA; 1467 tf.device |= ATA_LBA; 1468 1469 tf.lbal = (new_sectors >> 0) & 0xff; 1470 tf.lbam = (new_sectors >> 8) & 0xff; 1471 tf.lbah = (new_sectors >> 16) & 0xff; 1472 1473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1474 if (err_mask) { 1475 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1476 "max address (err_mask=0x%x)\n", err_mask); 1477 if (err_mask == AC_ERR_DEV && 1478 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1479 return -EACCES; 1480 return -EIO; 1481 } 1482 1483 return 0; 1484 } 1485 1486 /** 1487 * ata_hpa_resize - Resize a device with an HPA set 1488 * @dev: Device to resize 1489 * 1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1491 * it if required to the full size of the media. The caller must check 1492 * the drive has the HPA feature set enabled. 1493 * 1494 * RETURNS: 1495 * 0 on success, -errno on failure. 1496 */ 1497 static int ata_hpa_resize(struct ata_device *dev) 1498 { 1499 struct ata_eh_context *ehc = &dev->link->eh_context; 1500 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1501 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1502 u64 sectors = ata_id_n_sectors(dev->id); 1503 u64 native_sectors; 1504 int rc; 1505 1506 /* do we need to do it? */ 1507 if (dev->class != ATA_DEV_ATA || 1508 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1509 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1510 return 0; 1511 1512 /* read native max address */ 1513 rc = ata_read_native_max_address(dev, &native_sectors); 1514 if (rc) { 1515 /* If device aborted the command or HPA isn't going to 1516 * be unlocked, skip HPA resizing. 1517 */ 1518 if (rc == -EACCES || !unlock_hpa) { 1519 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1520 "broken, skipping HPA handling\n"); 1521 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1522 1523 /* we can continue if device aborted the command */ 1524 if (rc == -EACCES) 1525 rc = 0; 1526 } 1527 1528 return rc; 1529 } 1530 dev->n_native_sectors = native_sectors; 1531 1532 /* nothing to do? */ 1533 if (native_sectors <= sectors || !unlock_hpa) { 1534 if (!print_info || native_sectors == sectors) 1535 return 0; 1536 1537 if (native_sectors > sectors) 1538 ata_dev_printk(dev, KERN_INFO, 1539 "HPA detected: current %llu, native %llu\n", 1540 (unsigned long long)sectors, 1541 (unsigned long long)native_sectors); 1542 else if (native_sectors < sectors) 1543 ata_dev_printk(dev, KERN_WARNING, 1544 "native sectors (%llu) is smaller than " 1545 "sectors (%llu)\n", 1546 (unsigned long long)native_sectors, 1547 (unsigned long long)sectors); 1548 return 0; 1549 } 1550 1551 /* let's unlock HPA */ 1552 rc = ata_set_max_sectors(dev, native_sectors); 1553 if (rc == -EACCES) { 1554 /* if device aborted the command, skip HPA resizing */ 1555 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1556 "(%llu -> %llu), skipping HPA handling\n", 1557 (unsigned long long)sectors, 1558 (unsigned long long)native_sectors); 1559 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1560 return 0; 1561 } else if (rc) 1562 return rc; 1563 1564 /* re-read IDENTIFY data */ 1565 rc = ata_dev_reread_id(dev, 0); 1566 if (rc) { 1567 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1568 "data after HPA resizing\n"); 1569 return rc; 1570 } 1571 1572 if (print_info) { 1573 u64 new_sectors = ata_id_n_sectors(dev->id); 1574 ata_dev_printk(dev, KERN_INFO, 1575 "HPA unlocked: %llu -> %llu, native %llu\n", 1576 (unsigned long long)sectors, 1577 (unsigned long long)new_sectors, 1578 (unsigned long long)native_sectors); 1579 } 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * ata_dump_id - IDENTIFY DEVICE info debugging output 1586 * @id: IDENTIFY DEVICE page to dump 1587 * 1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1589 * page. 1590 * 1591 * LOCKING: 1592 * caller. 1593 */ 1594 1595 static inline void ata_dump_id(const u16 *id) 1596 { 1597 DPRINTK("49==0x%04x " 1598 "53==0x%04x " 1599 "63==0x%04x " 1600 "64==0x%04x " 1601 "75==0x%04x \n", 1602 id[49], 1603 id[53], 1604 id[63], 1605 id[64], 1606 id[75]); 1607 DPRINTK("80==0x%04x " 1608 "81==0x%04x " 1609 "82==0x%04x " 1610 "83==0x%04x " 1611 "84==0x%04x \n", 1612 id[80], 1613 id[81], 1614 id[82], 1615 id[83], 1616 id[84]); 1617 DPRINTK("88==0x%04x " 1618 "93==0x%04x\n", 1619 id[88], 1620 id[93]); 1621 } 1622 1623 /** 1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1625 * @id: IDENTIFY data to compute xfer mask from 1626 * 1627 * Compute the xfermask for this device. This is not as trivial 1628 * as it seems if we must consider early devices correctly. 1629 * 1630 * FIXME: pre IDE drive timing (do we care ?). 1631 * 1632 * LOCKING: 1633 * None. 1634 * 1635 * RETURNS: 1636 * Computed xfermask 1637 */ 1638 unsigned long ata_id_xfermask(const u16 *id) 1639 { 1640 unsigned long pio_mask, mwdma_mask, udma_mask; 1641 1642 /* Usual case. Word 53 indicates word 64 is valid */ 1643 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1644 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1645 pio_mask <<= 3; 1646 pio_mask |= 0x7; 1647 } else { 1648 /* If word 64 isn't valid then Word 51 high byte holds 1649 * the PIO timing number for the maximum. Turn it into 1650 * a mask. 1651 */ 1652 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1653 if (mode < 5) /* Valid PIO range */ 1654 pio_mask = (2 << mode) - 1; 1655 else 1656 pio_mask = 1; 1657 1658 /* But wait.. there's more. Design your standards by 1659 * committee and you too can get a free iordy field to 1660 * process. However its the speeds not the modes that 1661 * are supported... Note drivers using the timing API 1662 * will get this right anyway 1663 */ 1664 } 1665 1666 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1667 1668 if (ata_id_is_cfa(id)) { 1669 /* 1670 * Process compact flash extended modes 1671 */ 1672 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1673 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1674 1675 if (pio) 1676 pio_mask |= (1 << 5); 1677 if (pio > 1) 1678 pio_mask |= (1 << 6); 1679 if (dma) 1680 mwdma_mask |= (1 << 3); 1681 if (dma > 1) 1682 mwdma_mask |= (1 << 4); 1683 } 1684 1685 udma_mask = 0; 1686 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1687 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1688 1689 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1690 } 1691 1692 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1693 { 1694 struct completion *waiting = qc->private_data; 1695 1696 complete(waiting); 1697 } 1698 1699 /** 1700 * ata_exec_internal_sg - execute libata internal command 1701 * @dev: Device to which the command is sent 1702 * @tf: Taskfile registers for the command and the result 1703 * @cdb: CDB for packet command 1704 * @dma_dir: Data tranfer direction of the command 1705 * @sgl: sg list for the data buffer of the command 1706 * @n_elem: Number of sg entries 1707 * @timeout: Timeout in msecs (0 for default) 1708 * 1709 * Executes libata internal command with timeout. @tf contains 1710 * command on entry and result on return. Timeout and error 1711 * conditions are reported via return value. No recovery action 1712 * is taken after a command times out. It's caller's duty to 1713 * clean up after timeout. 1714 * 1715 * LOCKING: 1716 * None. Should be called with kernel context, might sleep. 1717 * 1718 * RETURNS: 1719 * Zero on success, AC_ERR_* mask on failure 1720 */ 1721 unsigned ata_exec_internal_sg(struct ata_device *dev, 1722 struct ata_taskfile *tf, const u8 *cdb, 1723 int dma_dir, struct scatterlist *sgl, 1724 unsigned int n_elem, unsigned long timeout) 1725 { 1726 struct ata_link *link = dev->link; 1727 struct ata_port *ap = link->ap; 1728 u8 command = tf->command; 1729 int auto_timeout = 0; 1730 struct ata_queued_cmd *qc; 1731 unsigned int tag, preempted_tag; 1732 u32 preempted_sactive, preempted_qc_active; 1733 int preempted_nr_active_links; 1734 DECLARE_COMPLETION_ONSTACK(wait); 1735 unsigned long flags; 1736 unsigned int err_mask; 1737 int rc; 1738 1739 spin_lock_irqsave(ap->lock, flags); 1740 1741 /* no internal command while frozen */ 1742 if (ap->pflags & ATA_PFLAG_FROZEN) { 1743 spin_unlock_irqrestore(ap->lock, flags); 1744 return AC_ERR_SYSTEM; 1745 } 1746 1747 /* initialize internal qc */ 1748 1749 /* XXX: Tag 0 is used for drivers with legacy EH as some 1750 * drivers choke if any other tag is given. This breaks 1751 * ata_tag_internal() test for those drivers. Don't use new 1752 * EH stuff without converting to it. 1753 */ 1754 if (ap->ops->error_handler) 1755 tag = ATA_TAG_INTERNAL; 1756 else 1757 tag = 0; 1758 1759 if (test_and_set_bit(tag, &ap->qc_allocated)) 1760 BUG(); 1761 qc = __ata_qc_from_tag(ap, tag); 1762 1763 qc->tag = tag; 1764 qc->scsicmd = NULL; 1765 qc->ap = ap; 1766 qc->dev = dev; 1767 ata_qc_reinit(qc); 1768 1769 preempted_tag = link->active_tag; 1770 preempted_sactive = link->sactive; 1771 preempted_qc_active = ap->qc_active; 1772 preempted_nr_active_links = ap->nr_active_links; 1773 link->active_tag = ATA_TAG_POISON; 1774 link->sactive = 0; 1775 ap->qc_active = 0; 1776 ap->nr_active_links = 0; 1777 1778 /* prepare & issue qc */ 1779 qc->tf = *tf; 1780 if (cdb) 1781 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1782 qc->flags |= ATA_QCFLAG_RESULT_TF; 1783 qc->dma_dir = dma_dir; 1784 if (dma_dir != DMA_NONE) { 1785 unsigned int i, buflen = 0; 1786 struct scatterlist *sg; 1787 1788 for_each_sg(sgl, sg, n_elem, i) 1789 buflen += sg->length; 1790 1791 ata_sg_init(qc, sgl, n_elem); 1792 qc->nbytes = buflen; 1793 } 1794 1795 qc->private_data = &wait; 1796 qc->complete_fn = ata_qc_complete_internal; 1797 1798 ata_qc_issue(qc); 1799 1800 spin_unlock_irqrestore(ap->lock, flags); 1801 1802 if (!timeout) { 1803 if (ata_probe_timeout) 1804 timeout = ata_probe_timeout * 1000; 1805 else { 1806 timeout = ata_internal_cmd_timeout(dev, command); 1807 auto_timeout = 1; 1808 } 1809 } 1810 1811 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1812 1813 ata_sff_flush_pio_task(ap); 1814 1815 if (!rc) { 1816 spin_lock_irqsave(ap->lock, flags); 1817 1818 /* We're racing with irq here. If we lose, the 1819 * following test prevents us from completing the qc 1820 * twice. If we win, the port is frozen and will be 1821 * cleaned up by ->post_internal_cmd(). 1822 */ 1823 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1824 qc->err_mask |= AC_ERR_TIMEOUT; 1825 1826 if (ap->ops->error_handler) 1827 ata_port_freeze(ap); 1828 else 1829 ata_qc_complete(qc); 1830 1831 if (ata_msg_warn(ap)) 1832 ata_dev_printk(dev, KERN_WARNING, 1833 "qc timeout (cmd 0x%x)\n", command); 1834 } 1835 1836 spin_unlock_irqrestore(ap->lock, flags); 1837 } 1838 1839 /* do post_internal_cmd */ 1840 if (ap->ops->post_internal_cmd) 1841 ap->ops->post_internal_cmd(qc); 1842 1843 /* perform minimal error analysis */ 1844 if (qc->flags & ATA_QCFLAG_FAILED) { 1845 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1846 qc->err_mask |= AC_ERR_DEV; 1847 1848 if (!qc->err_mask) 1849 qc->err_mask |= AC_ERR_OTHER; 1850 1851 if (qc->err_mask & ~AC_ERR_OTHER) 1852 qc->err_mask &= ~AC_ERR_OTHER; 1853 } 1854 1855 /* finish up */ 1856 spin_lock_irqsave(ap->lock, flags); 1857 1858 *tf = qc->result_tf; 1859 err_mask = qc->err_mask; 1860 1861 ata_qc_free(qc); 1862 link->active_tag = preempted_tag; 1863 link->sactive = preempted_sactive; 1864 ap->qc_active = preempted_qc_active; 1865 ap->nr_active_links = preempted_nr_active_links; 1866 1867 spin_unlock_irqrestore(ap->lock, flags); 1868 1869 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1870 ata_internal_cmd_timed_out(dev, command); 1871 1872 return err_mask; 1873 } 1874 1875 /** 1876 * ata_exec_internal - execute libata internal command 1877 * @dev: Device to which the command is sent 1878 * @tf: Taskfile registers for the command and the result 1879 * @cdb: CDB for packet command 1880 * @dma_dir: Data tranfer direction of the command 1881 * @buf: Data buffer of the command 1882 * @buflen: Length of data buffer 1883 * @timeout: Timeout in msecs (0 for default) 1884 * 1885 * Wrapper around ata_exec_internal_sg() which takes simple 1886 * buffer instead of sg list. 1887 * 1888 * LOCKING: 1889 * None. Should be called with kernel context, might sleep. 1890 * 1891 * RETURNS: 1892 * Zero on success, AC_ERR_* mask on failure 1893 */ 1894 unsigned ata_exec_internal(struct ata_device *dev, 1895 struct ata_taskfile *tf, const u8 *cdb, 1896 int dma_dir, void *buf, unsigned int buflen, 1897 unsigned long timeout) 1898 { 1899 struct scatterlist *psg = NULL, sg; 1900 unsigned int n_elem = 0; 1901 1902 if (dma_dir != DMA_NONE) { 1903 WARN_ON(!buf); 1904 sg_init_one(&sg, buf, buflen); 1905 psg = &sg; 1906 n_elem++; 1907 } 1908 1909 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1910 timeout); 1911 } 1912 1913 /** 1914 * ata_do_simple_cmd - execute simple internal command 1915 * @dev: Device to which the command is sent 1916 * @cmd: Opcode to execute 1917 * 1918 * Execute a 'simple' command, that only consists of the opcode 1919 * 'cmd' itself, without filling any other registers 1920 * 1921 * LOCKING: 1922 * Kernel thread context (may sleep). 1923 * 1924 * RETURNS: 1925 * Zero on success, AC_ERR_* mask on failure 1926 */ 1927 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1928 { 1929 struct ata_taskfile tf; 1930 1931 ata_tf_init(dev, &tf); 1932 1933 tf.command = cmd; 1934 tf.flags |= ATA_TFLAG_DEVICE; 1935 tf.protocol = ATA_PROT_NODATA; 1936 1937 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1938 } 1939 1940 /** 1941 * ata_pio_need_iordy - check if iordy needed 1942 * @adev: ATA device 1943 * 1944 * Check if the current speed of the device requires IORDY. Used 1945 * by various controllers for chip configuration. 1946 */ 1947 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1948 { 1949 /* Don't set IORDY if we're preparing for reset. IORDY may 1950 * lead to controller lock up on certain controllers if the 1951 * port is not occupied. See bko#11703 for details. 1952 */ 1953 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1954 return 0; 1955 /* Controller doesn't support IORDY. Probably a pointless 1956 * check as the caller should know this. 1957 */ 1958 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1959 return 0; 1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1961 if (ata_id_is_cfa(adev->id) 1962 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1963 return 0; 1964 /* PIO3 and higher it is mandatory */ 1965 if (adev->pio_mode > XFER_PIO_2) 1966 return 1; 1967 /* We turn it on when possible */ 1968 if (ata_id_has_iordy(adev->id)) 1969 return 1; 1970 return 0; 1971 } 1972 1973 /** 1974 * ata_pio_mask_no_iordy - Return the non IORDY mask 1975 * @adev: ATA device 1976 * 1977 * Compute the highest mode possible if we are not using iordy. Return 1978 * -1 if no iordy mode is available. 1979 */ 1980 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1981 { 1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1984 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1985 /* Is the speed faster than the drive allows non IORDY ? */ 1986 if (pio) { 1987 /* This is cycle times not frequency - watch the logic! */ 1988 if (pio > 240) /* PIO2 is 240nS per cycle */ 1989 return 3 << ATA_SHIFT_PIO; 1990 return 7 << ATA_SHIFT_PIO; 1991 } 1992 } 1993 return 3 << ATA_SHIFT_PIO; 1994 } 1995 1996 /** 1997 * ata_do_dev_read_id - default ID read method 1998 * @dev: device 1999 * @tf: proposed taskfile 2000 * @id: data buffer 2001 * 2002 * Issue the identify taskfile and hand back the buffer containing 2003 * identify data. For some RAID controllers and for pre ATA devices 2004 * this function is wrapped or replaced by the driver 2005 */ 2006 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2007 struct ata_taskfile *tf, u16 *id) 2008 { 2009 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2010 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2011 } 2012 2013 /** 2014 * ata_dev_read_id - Read ID data from the specified device 2015 * @dev: target device 2016 * @p_class: pointer to class of the target device (may be changed) 2017 * @flags: ATA_READID_* flags 2018 * @id: buffer to read IDENTIFY data into 2019 * 2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2023 * for pre-ATA4 drives. 2024 * 2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2026 * now we abort if we hit that case. 2027 * 2028 * LOCKING: 2029 * Kernel thread context (may sleep) 2030 * 2031 * RETURNS: 2032 * 0 on success, -errno otherwise. 2033 */ 2034 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2035 unsigned int flags, u16 *id) 2036 { 2037 struct ata_port *ap = dev->link->ap; 2038 unsigned int class = *p_class; 2039 struct ata_taskfile tf; 2040 unsigned int err_mask = 0; 2041 const char *reason; 2042 bool is_semb = class == ATA_DEV_SEMB; 2043 int may_fallback = 1, tried_spinup = 0; 2044 int rc; 2045 2046 if (ata_msg_ctl(ap)) 2047 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2048 2049 retry: 2050 ata_tf_init(dev, &tf); 2051 2052 switch (class) { 2053 case ATA_DEV_SEMB: 2054 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2055 case ATA_DEV_ATA: 2056 tf.command = ATA_CMD_ID_ATA; 2057 break; 2058 case ATA_DEV_ATAPI: 2059 tf.command = ATA_CMD_ID_ATAPI; 2060 break; 2061 default: 2062 rc = -ENODEV; 2063 reason = "unsupported class"; 2064 goto err_out; 2065 } 2066 2067 tf.protocol = ATA_PROT_PIO; 2068 2069 /* Some devices choke if TF registers contain garbage. Make 2070 * sure those are properly initialized. 2071 */ 2072 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2073 2074 /* Device presence detection is unreliable on some 2075 * controllers. Always poll IDENTIFY if available. 2076 */ 2077 tf.flags |= ATA_TFLAG_POLLING; 2078 2079 if (ap->ops->read_id) 2080 err_mask = ap->ops->read_id(dev, &tf, id); 2081 else 2082 err_mask = ata_do_dev_read_id(dev, &tf, id); 2083 2084 if (err_mask) { 2085 if (err_mask & AC_ERR_NODEV_HINT) { 2086 ata_dev_printk(dev, KERN_DEBUG, 2087 "NODEV after polling detection\n"); 2088 return -ENOENT; 2089 } 2090 2091 if (is_semb) { 2092 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2093 "device w/ SEMB sig, disabled\n"); 2094 /* SEMB is not supported yet */ 2095 *p_class = ATA_DEV_SEMB_UNSUP; 2096 return 0; 2097 } 2098 2099 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2100 /* Device or controller might have reported 2101 * the wrong device class. Give a shot at the 2102 * other IDENTIFY if the current one is 2103 * aborted by the device. 2104 */ 2105 if (may_fallback) { 2106 may_fallback = 0; 2107 2108 if (class == ATA_DEV_ATA) 2109 class = ATA_DEV_ATAPI; 2110 else 2111 class = ATA_DEV_ATA; 2112 goto retry; 2113 } 2114 2115 /* Control reaches here iff the device aborted 2116 * both flavors of IDENTIFYs which happens 2117 * sometimes with phantom devices. 2118 */ 2119 ata_dev_printk(dev, KERN_DEBUG, 2120 "both IDENTIFYs aborted, assuming NODEV\n"); 2121 return -ENOENT; 2122 } 2123 2124 rc = -EIO; 2125 reason = "I/O error"; 2126 goto err_out; 2127 } 2128 2129 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 2130 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, " 2131 "class=%d may_fallback=%d tried_spinup=%d\n", 2132 class, may_fallback, tried_spinup); 2133 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 2134 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 2135 } 2136 2137 /* Falling back doesn't make sense if ID data was read 2138 * successfully at least once. 2139 */ 2140 may_fallback = 0; 2141 2142 swap_buf_le16(id, ATA_ID_WORDS); 2143 2144 /* sanity check */ 2145 rc = -EINVAL; 2146 reason = "device reports invalid type"; 2147 2148 if (class == ATA_DEV_ATA) { 2149 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2150 goto err_out; 2151 } else { 2152 if (ata_id_is_ata(id)) 2153 goto err_out; 2154 } 2155 2156 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2157 tried_spinup = 1; 2158 /* 2159 * Drive powered-up in standby mode, and requires a specific 2160 * SET_FEATURES spin-up subcommand before it will accept 2161 * anything other than the original IDENTIFY command. 2162 */ 2163 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2164 if (err_mask && id[2] != 0x738c) { 2165 rc = -EIO; 2166 reason = "SPINUP failed"; 2167 goto err_out; 2168 } 2169 /* 2170 * If the drive initially returned incomplete IDENTIFY info, 2171 * we now must reissue the IDENTIFY command. 2172 */ 2173 if (id[2] == 0x37c8) 2174 goto retry; 2175 } 2176 2177 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2178 /* 2179 * The exact sequence expected by certain pre-ATA4 drives is: 2180 * SRST RESET 2181 * IDENTIFY (optional in early ATA) 2182 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2183 * anything else.. 2184 * Some drives were very specific about that exact sequence. 2185 * 2186 * Note that ATA4 says lba is mandatory so the second check 2187 * should never trigger. 2188 */ 2189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2190 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2191 if (err_mask) { 2192 rc = -EIO; 2193 reason = "INIT_DEV_PARAMS failed"; 2194 goto err_out; 2195 } 2196 2197 /* current CHS translation info (id[53-58]) might be 2198 * changed. reread the identify device info. 2199 */ 2200 flags &= ~ATA_READID_POSTRESET; 2201 goto retry; 2202 } 2203 } 2204 2205 *p_class = class; 2206 2207 return 0; 2208 2209 err_out: 2210 if (ata_msg_warn(ap)) 2211 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2212 "(%s, err_mask=0x%x)\n", reason, err_mask); 2213 return rc; 2214 } 2215 2216 static int ata_do_link_spd_horkage(struct ata_device *dev) 2217 { 2218 struct ata_link *plink = ata_dev_phys_link(dev); 2219 u32 target, target_limit; 2220 2221 if (!sata_scr_valid(plink)) 2222 return 0; 2223 2224 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2225 target = 1; 2226 else 2227 return 0; 2228 2229 target_limit = (1 << target) - 1; 2230 2231 /* if already on stricter limit, no need to push further */ 2232 if (plink->sata_spd_limit <= target_limit) 2233 return 0; 2234 2235 plink->sata_spd_limit = target_limit; 2236 2237 /* Request another EH round by returning -EAGAIN if link is 2238 * going faster than the target speed. Forward progress is 2239 * guaranteed by setting sata_spd_limit to target_limit above. 2240 */ 2241 if (plink->sata_spd > target) { 2242 ata_dev_printk(dev, KERN_INFO, 2243 "applying link speed limit horkage to %s\n", 2244 sata_spd_string(target)); 2245 return -EAGAIN; 2246 } 2247 return 0; 2248 } 2249 2250 static inline u8 ata_dev_knobble(struct ata_device *dev) 2251 { 2252 struct ata_port *ap = dev->link->ap; 2253 2254 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2255 return 0; 2256 2257 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2258 } 2259 2260 static int ata_dev_config_ncq(struct ata_device *dev, 2261 char *desc, size_t desc_sz) 2262 { 2263 struct ata_port *ap = dev->link->ap; 2264 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2265 unsigned int err_mask; 2266 char *aa_desc = ""; 2267 2268 if (!ata_id_has_ncq(dev->id)) { 2269 desc[0] = '\0'; 2270 return 0; 2271 } 2272 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2273 snprintf(desc, desc_sz, "NCQ (not used)"); 2274 return 0; 2275 } 2276 if (ap->flags & ATA_FLAG_NCQ) { 2277 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2278 dev->flags |= ATA_DFLAG_NCQ; 2279 } 2280 2281 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2282 (ap->flags & ATA_FLAG_FPDMA_AA) && 2283 ata_id_has_fpdma_aa(dev->id)) { 2284 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2285 SATA_FPDMA_AA); 2286 if (err_mask) { 2287 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2288 "(error_mask=0x%x)\n", err_mask); 2289 if (err_mask != AC_ERR_DEV) { 2290 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2291 return -EIO; 2292 } 2293 } else 2294 aa_desc = ", AA"; 2295 } 2296 2297 if (hdepth >= ddepth) 2298 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2299 else 2300 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2301 ddepth, aa_desc); 2302 return 0; 2303 } 2304 2305 /** 2306 * ata_dev_configure - Configure the specified ATA/ATAPI device 2307 * @dev: Target device to configure 2308 * 2309 * Configure @dev according to @dev->id. Generic and low-level 2310 * driver specific fixups are also applied. 2311 * 2312 * LOCKING: 2313 * Kernel thread context (may sleep) 2314 * 2315 * RETURNS: 2316 * 0 on success, -errno otherwise 2317 */ 2318 int ata_dev_configure(struct ata_device *dev) 2319 { 2320 struct ata_port *ap = dev->link->ap; 2321 struct ata_eh_context *ehc = &dev->link->eh_context; 2322 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2323 const u16 *id = dev->id; 2324 unsigned long xfer_mask; 2325 char revbuf[7]; /* XYZ-99\0 */ 2326 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2327 char modelbuf[ATA_ID_PROD_LEN+1]; 2328 int rc; 2329 2330 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2331 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2332 __func__); 2333 return 0; 2334 } 2335 2336 if (ata_msg_probe(ap)) 2337 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2338 2339 /* set horkage */ 2340 dev->horkage |= ata_dev_blacklisted(dev); 2341 ata_force_horkage(dev); 2342 2343 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2344 ata_dev_printk(dev, KERN_INFO, 2345 "unsupported device, disabling\n"); 2346 ata_dev_disable(dev); 2347 return 0; 2348 } 2349 2350 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2351 dev->class == ATA_DEV_ATAPI) { 2352 ata_dev_printk(dev, KERN_WARNING, 2353 "WARNING: ATAPI is %s, device ignored.\n", 2354 atapi_enabled ? "not supported with this driver" 2355 : "disabled"); 2356 ata_dev_disable(dev); 2357 return 0; 2358 } 2359 2360 rc = ata_do_link_spd_horkage(dev); 2361 if (rc) 2362 return rc; 2363 2364 /* let ACPI work its magic */ 2365 rc = ata_acpi_on_devcfg(dev); 2366 if (rc) 2367 return rc; 2368 2369 /* massage HPA, do it early as it might change IDENTIFY data */ 2370 rc = ata_hpa_resize(dev); 2371 if (rc) 2372 return rc; 2373 2374 /* print device capabilities */ 2375 if (ata_msg_probe(ap)) 2376 ata_dev_printk(dev, KERN_DEBUG, 2377 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2378 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2379 __func__, 2380 id[49], id[82], id[83], id[84], 2381 id[85], id[86], id[87], id[88]); 2382 2383 /* initialize to-be-configured parameters */ 2384 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2385 dev->max_sectors = 0; 2386 dev->cdb_len = 0; 2387 dev->n_sectors = 0; 2388 dev->cylinders = 0; 2389 dev->heads = 0; 2390 dev->sectors = 0; 2391 dev->multi_count = 0; 2392 2393 /* 2394 * common ATA, ATAPI feature tests 2395 */ 2396 2397 /* find max transfer mode; for printk only */ 2398 xfer_mask = ata_id_xfermask(id); 2399 2400 if (ata_msg_probe(ap)) 2401 ata_dump_id(id); 2402 2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2405 sizeof(fwrevbuf)); 2406 2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2408 sizeof(modelbuf)); 2409 2410 /* ATA-specific feature tests */ 2411 if (dev->class == ATA_DEV_ATA) { 2412 if (ata_id_is_cfa(id)) { 2413 /* CPRM may make this media unusable */ 2414 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2415 ata_dev_printk(dev, KERN_WARNING, 2416 "supports DRM functions and may " 2417 "not be fully accessable.\n"); 2418 snprintf(revbuf, 7, "CFA"); 2419 } else { 2420 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2421 /* Warn the user if the device has TPM extensions */ 2422 if (ata_id_has_tpm(id)) 2423 ata_dev_printk(dev, KERN_WARNING, 2424 "supports DRM functions and may " 2425 "not be fully accessable.\n"); 2426 } 2427 2428 dev->n_sectors = ata_id_n_sectors(id); 2429 2430 /* get current R/W Multiple count setting */ 2431 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2432 unsigned int max = dev->id[47] & 0xff; 2433 unsigned int cnt = dev->id[59] & 0xff; 2434 /* only recognize/allow powers of two here */ 2435 if (is_power_of_2(max) && is_power_of_2(cnt)) 2436 if (cnt <= max) 2437 dev->multi_count = cnt; 2438 } 2439 2440 if (ata_id_has_lba(id)) { 2441 const char *lba_desc; 2442 char ncq_desc[24]; 2443 2444 lba_desc = "LBA"; 2445 dev->flags |= ATA_DFLAG_LBA; 2446 if (ata_id_has_lba48(id)) { 2447 dev->flags |= ATA_DFLAG_LBA48; 2448 lba_desc = "LBA48"; 2449 2450 if (dev->n_sectors >= (1UL << 28) && 2451 ata_id_has_flush_ext(id)) 2452 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2453 } 2454 2455 /* config NCQ */ 2456 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2457 if (rc) 2458 return rc; 2459 2460 /* print device info to dmesg */ 2461 if (ata_msg_drv(ap) && print_info) { 2462 ata_dev_printk(dev, KERN_INFO, 2463 "%s: %s, %s, max %s\n", 2464 revbuf, modelbuf, fwrevbuf, 2465 ata_mode_string(xfer_mask)); 2466 ata_dev_printk(dev, KERN_INFO, 2467 "%Lu sectors, multi %u: %s %s\n", 2468 (unsigned long long)dev->n_sectors, 2469 dev->multi_count, lba_desc, ncq_desc); 2470 } 2471 } else { 2472 /* CHS */ 2473 2474 /* Default translation */ 2475 dev->cylinders = id[1]; 2476 dev->heads = id[3]; 2477 dev->sectors = id[6]; 2478 2479 if (ata_id_current_chs_valid(id)) { 2480 /* Current CHS translation is valid. */ 2481 dev->cylinders = id[54]; 2482 dev->heads = id[55]; 2483 dev->sectors = id[56]; 2484 } 2485 2486 /* print device info to dmesg */ 2487 if (ata_msg_drv(ap) && print_info) { 2488 ata_dev_printk(dev, KERN_INFO, 2489 "%s: %s, %s, max %s\n", 2490 revbuf, modelbuf, fwrevbuf, 2491 ata_mode_string(xfer_mask)); 2492 ata_dev_printk(dev, KERN_INFO, 2493 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2494 (unsigned long long)dev->n_sectors, 2495 dev->multi_count, dev->cylinders, 2496 dev->heads, dev->sectors); 2497 } 2498 } 2499 2500 dev->cdb_len = 16; 2501 } 2502 2503 /* ATAPI-specific feature tests */ 2504 else if (dev->class == ATA_DEV_ATAPI) { 2505 const char *cdb_intr_string = ""; 2506 const char *atapi_an_string = ""; 2507 const char *dma_dir_string = ""; 2508 u32 sntf; 2509 2510 rc = atapi_cdb_len(id); 2511 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2512 if (ata_msg_warn(ap)) 2513 ata_dev_printk(dev, KERN_WARNING, 2514 "unsupported CDB len\n"); 2515 rc = -EINVAL; 2516 goto err_out_nosup; 2517 } 2518 dev->cdb_len = (unsigned int) rc; 2519 2520 /* Enable ATAPI AN if both the host and device have 2521 * the support. If PMP is attached, SNTF is required 2522 * to enable ATAPI AN to discern between PHY status 2523 * changed notifications and ATAPI ANs. 2524 */ 2525 if (atapi_an && 2526 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2527 (!sata_pmp_attached(ap) || 2528 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2529 unsigned int err_mask; 2530 2531 /* issue SET feature command to turn this on */ 2532 err_mask = ata_dev_set_feature(dev, 2533 SETFEATURES_SATA_ENABLE, SATA_AN); 2534 if (err_mask) 2535 ata_dev_printk(dev, KERN_ERR, 2536 "failed to enable ATAPI AN " 2537 "(err_mask=0x%x)\n", err_mask); 2538 else { 2539 dev->flags |= ATA_DFLAG_AN; 2540 atapi_an_string = ", ATAPI AN"; 2541 } 2542 } 2543 2544 if (ata_id_cdb_intr(dev->id)) { 2545 dev->flags |= ATA_DFLAG_CDB_INTR; 2546 cdb_intr_string = ", CDB intr"; 2547 } 2548 2549 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2550 dev->flags |= ATA_DFLAG_DMADIR; 2551 dma_dir_string = ", DMADIR"; 2552 } 2553 2554 /* print device info to dmesg */ 2555 if (ata_msg_drv(ap) && print_info) 2556 ata_dev_printk(dev, KERN_INFO, 2557 "ATAPI: %s, %s, max %s%s%s%s\n", 2558 modelbuf, fwrevbuf, 2559 ata_mode_string(xfer_mask), 2560 cdb_intr_string, atapi_an_string, 2561 dma_dir_string); 2562 } 2563 2564 /* determine max_sectors */ 2565 dev->max_sectors = ATA_MAX_SECTORS; 2566 if (dev->flags & ATA_DFLAG_LBA48) 2567 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2568 2569 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2570 if (ata_id_has_hipm(dev->id)) 2571 dev->flags |= ATA_DFLAG_HIPM; 2572 if (ata_id_has_dipm(dev->id)) 2573 dev->flags |= ATA_DFLAG_DIPM; 2574 } 2575 2576 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2577 200 sectors */ 2578 if (ata_dev_knobble(dev)) { 2579 if (ata_msg_drv(ap) && print_info) 2580 ata_dev_printk(dev, KERN_INFO, 2581 "applying bridge limits\n"); 2582 dev->udma_mask &= ATA_UDMA5; 2583 dev->max_sectors = ATA_MAX_SECTORS; 2584 } 2585 2586 if ((dev->class == ATA_DEV_ATAPI) && 2587 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2588 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2589 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2590 } 2591 2592 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2593 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2594 dev->max_sectors); 2595 2596 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2597 dev->horkage |= ATA_HORKAGE_IPM; 2598 2599 /* reset link pm_policy for this port to no pm */ 2600 ap->pm_policy = MAX_PERFORMANCE; 2601 } 2602 2603 if (ap->ops->dev_config) 2604 ap->ops->dev_config(dev); 2605 2606 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2607 /* Let the user know. We don't want to disallow opens for 2608 rescue purposes, or in case the vendor is just a blithering 2609 idiot. Do this after the dev_config call as some controllers 2610 with buggy firmware may want to avoid reporting false device 2611 bugs */ 2612 2613 if (print_info) { 2614 ata_dev_printk(dev, KERN_WARNING, 2615 "Drive reports diagnostics failure. This may indicate a drive\n"); 2616 ata_dev_printk(dev, KERN_WARNING, 2617 "fault or invalid emulation. Contact drive vendor for information.\n"); 2618 } 2619 } 2620 2621 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2622 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2623 "firmware update to be fully functional.\n"); 2624 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2625 "or visit http://ata.wiki.kernel.org.\n"); 2626 } 2627 2628 return 0; 2629 2630 err_out_nosup: 2631 if (ata_msg_probe(ap)) 2632 ata_dev_printk(dev, KERN_DEBUG, 2633 "%s: EXIT, err\n", __func__); 2634 return rc; 2635 } 2636 2637 /** 2638 * ata_cable_40wire - return 40 wire cable type 2639 * @ap: port 2640 * 2641 * Helper method for drivers which want to hardwire 40 wire cable 2642 * detection. 2643 */ 2644 2645 int ata_cable_40wire(struct ata_port *ap) 2646 { 2647 return ATA_CBL_PATA40; 2648 } 2649 2650 /** 2651 * ata_cable_80wire - return 80 wire cable type 2652 * @ap: port 2653 * 2654 * Helper method for drivers which want to hardwire 80 wire cable 2655 * detection. 2656 */ 2657 2658 int ata_cable_80wire(struct ata_port *ap) 2659 { 2660 return ATA_CBL_PATA80; 2661 } 2662 2663 /** 2664 * ata_cable_unknown - return unknown PATA cable. 2665 * @ap: port 2666 * 2667 * Helper method for drivers which have no PATA cable detection. 2668 */ 2669 2670 int ata_cable_unknown(struct ata_port *ap) 2671 { 2672 return ATA_CBL_PATA_UNK; 2673 } 2674 2675 /** 2676 * ata_cable_ignore - return ignored PATA cable. 2677 * @ap: port 2678 * 2679 * Helper method for drivers which don't use cable type to limit 2680 * transfer mode. 2681 */ 2682 int ata_cable_ignore(struct ata_port *ap) 2683 { 2684 return ATA_CBL_PATA_IGN; 2685 } 2686 2687 /** 2688 * ata_cable_sata - return SATA cable type 2689 * @ap: port 2690 * 2691 * Helper method for drivers which have SATA cables 2692 */ 2693 2694 int ata_cable_sata(struct ata_port *ap) 2695 { 2696 return ATA_CBL_SATA; 2697 } 2698 2699 /** 2700 * ata_bus_probe - Reset and probe ATA bus 2701 * @ap: Bus to probe 2702 * 2703 * Master ATA bus probing function. Initiates a hardware-dependent 2704 * bus reset, then attempts to identify any devices found on 2705 * the bus. 2706 * 2707 * LOCKING: 2708 * PCI/etc. bus probe sem. 2709 * 2710 * RETURNS: 2711 * Zero on success, negative errno otherwise. 2712 */ 2713 2714 int ata_bus_probe(struct ata_port *ap) 2715 { 2716 unsigned int classes[ATA_MAX_DEVICES]; 2717 int tries[ATA_MAX_DEVICES]; 2718 int rc; 2719 struct ata_device *dev; 2720 2721 ata_for_each_dev(dev, &ap->link, ALL) 2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2723 2724 retry: 2725 ata_for_each_dev(dev, &ap->link, ALL) { 2726 /* If we issue an SRST then an ATA drive (not ATAPI) 2727 * may change configuration and be in PIO0 timing. If 2728 * we do a hard reset (or are coming from power on) 2729 * this is true for ATA or ATAPI. Until we've set a 2730 * suitable controller mode we should not touch the 2731 * bus as we may be talking too fast. 2732 */ 2733 dev->pio_mode = XFER_PIO_0; 2734 2735 /* If the controller has a pio mode setup function 2736 * then use it to set the chipset to rights. Don't 2737 * touch the DMA setup as that will be dealt with when 2738 * configuring devices. 2739 */ 2740 if (ap->ops->set_piomode) 2741 ap->ops->set_piomode(ap, dev); 2742 } 2743 2744 /* reset and determine device classes */ 2745 ap->ops->phy_reset(ap); 2746 2747 ata_for_each_dev(dev, &ap->link, ALL) { 2748 if (dev->class != ATA_DEV_UNKNOWN) 2749 classes[dev->devno] = dev->class; 2750 else 2751 classes[dev->devno] = ATA_DEV_NONE; 2752 2753 dev->class = ATA_DEV_UNKNOWN; 2754 } 2755 2756 /* read IDENTIFY page and configure devices. We have to do the identify 2757 specific sequence bass-ackwards so that PDIAG- is released by 2758 the slave device */ 2759 2760 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2761 if (tries[dev->devno]) 2762 dev->class = classes[dev->devno]; 2763 2764 if (!ata_dev_enabled(dev)) 2765 continue; 2766 2767 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2768 dev->id); 2769 if (rc) 2770 goto fail; 2771 } 2772 2773 /* Now ask for the cable type as PDIAG- should have been released */ 2774 if (ap->ops->cable_detect) 2775 ap->cbl = ap->ops->cable_detect(ap); 2776 2777 /* We may have SATA bridge glue hiding here irrespective of 2778 * the reported cable types and sensed types. When SATA 2779 * drives indicate we have a bridge, we don't know which end 2780 * of the link the bridge is which is a problem. 2781 */ 2782 ata_for_each_dev(dev, &ap->link, ENABLED) 2783 if (ata_id_is_sata(dev->id)) 2784 ap->cbl = ATA_CBL_SATA; 2785 2786 /* After the identify sequence we can now set up the devices. We do 2787 this in the normal order so that the user doesn't get confused */ 2788 2789 ata_for_each_dev(dev, &ap->link, ENABLED) { 2790 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2791 rc = ata_dev_configure(dev); 2792 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2793 if (rc) 2794 goto fail; 2795 } 2796 2797 /* configure transfer mode */ 2798 rc = ata_set_mode(&ap->link, &dev); 2799 if (rc) 2800 goto fail; 2801 2802 ata_for_each_dev(dev, &ap->link, ENABLED) 2803 return 0; 2804 2805 return -ENODEV; 2806 2807 fail: 2808 tries[dev->devno]--; 2809 2810 switch (rc) { 2811 case -EINVAL: 2812 /* eeek, something went very wrong, give up */ 2813 tries[dev->devno] = 0; 2814 break; 2815 2816 case -ENODEV: 2817 /* give it just one more chance */ 2818 tries[dev->devno] = min(tries[dev->devno], 1); 2819 case -EIO: 2820 if (tries[dev->devno] == 1) { 2821 /* This is the last chance, better to slow 2822 * down than lose it. 2823 */ 2824 sata_down_spd_limit(&ap->link, 0); 2825 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2826 } 2827 } 2828 2829 if (!tries[dev->devno]) 2830 ata_dev_disable(dev); 2831 2832 goto retry; 2833 } 2834 2835 /** 2836 * sata_print_link_status - Print SATA link status 2837 * @link: SATA link to printk link status about 2838 * 2839 * This function prints link speed and status of a SATA link. 2840 * 2841 * LOCKING: 2842 * None. 2843 */ 2844 static void sata_print_link_status(struct ata_link *link) 2845 { 2846 u32 sstatus, scontrol, tmp; 2847 2848 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2849 return; 2850 sata_scr_read(link, SCR_CONTROL, &scontrol); 2851 2852 if (ata_phys_link_online(link)) { 2853 tmp = (sstatus >> 4) & 0xf; 2854 ata_link_printk(link, KERN_INFO, 2855 "SATA link up %s (SStatus %X SControl %X)\n", 2856 sata_spd_string(tmp), sstatus, scontrol); 2857 } else { 2858 ata_link_printk(link, KERN_INFO, 2859 "SATA link down (SStatus %X SControl %X)\n", 2860 sstatus, scontrol); 2861 } 2862 } 2863 2864 /** 2865 * ata_dev_pair - return other device on cable 2866 * @adev: device 2867 * 2868 * Obtain the other device on the same cable, or if none is 2869 * present NULL is returned 2870 */ 2871 2872 struct ata_device *ata_dev_pair(struct ata_device *adev) 2873 { 2874 struct ata_link *link = adev->link; 2875 struct ata_device *pair = &link->device[1 - adev->devno]; 2876 if (!ata_dev_enabled(pair)) 2877 return NULL; 2878 return pair; 2879 } 2880 2881 /** 2882 * sata_down_spd_limit - adjust SATA spd limit downward 2883 * @link: Link to adjust SATA spd limit for 2884 * @spd_limit: Additional limit 2885 * 2886 * Adjust SATA spd limit of @link downward. Note that this 2887 * function only adjusts the limit. The change must be applied 2888 * using sata_set_spd(). 2889 * 2890 * If @spd_limit is non-zero, the speed is limited to equal to or 2891 * lower than @spd_limit if such speed is supported. If 2892 * @spd_limit is slower than any supported speed, only the lowest 2893 * supported speed is allowed. 2894 * 2895 * LOCKING: 2896 * Inherited from caller. 2897 * 2898 * RETURNS: 2899 * 0 on success, negative errno on failure 2900 */ 2901 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2902 { 2903 u32 sstatus, spd, mask; 2904 int rc, bit; 2905 2906 if (!sata_scr_valid(link)) 2907 return -EOPNOTSUPP; 2908 2909 /* If SCR can be read, use it to determine the current SPD. 2910 * If not, use cached value in link->sata_spd. 2911 */ 2912 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2913 if (rc == 0 && ata_sstatus_online(sstatus)) 2914 spd = (sstatus >> 4) & 0xf; 2915 else 2916 spd = link->sata_spd; 2917 2918 mask = link->sata_spd_limit; 2919 if (mask <= 1) 2920 return -EINVAL; 2921 2922 /* unconditionally mask off the highest bit */ 2923 bit = fls(mask) - 1; 2924 mask &= ~(1 << bit); 2925 2926 /* Mask off all speeds higher than or equal to the current 2927 * one. Force 1.5Gbps if current SPD is not available. 2928 */ 2929 if (spd > 1) 2930 mask &= (1 << (spd - 1)) - 1; 2931 else 2932 mask &= 1; 2933 2934 /* were we already at the bottom? */ 2935 if (!mask) 2936 return -EINVAL; 2937 2938 if (spd_limit) { 2939 if (mask & ((1 << spd_limit) - 1)) 2940 mask &= (1 << spd_limit) - 1; 2941 else { 2942 bit = ffs(mask) - 1; 2943 mask = 1 << bit; 2944 } 2945 } 2946 2947 link->sata_spd_limit = mask; 2948 2949 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2950 sata_spd_string(fls(mask))); 2951 2952 return 0; 2953 } 2954 2955 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2956 { 2957 struct ata_link *host_link = &link->ap->link; 2958 u32 limit, target, spd; 2959 2960 limit = link->sata_spd_limit; 2961 2962 /* Don't configure downstream link faster than upstream link. 2963 * It doesn't speed up anything and some PMPs choke on such 2964 * configuration. 2965 */ 2966 if (!ata_is_host_link(link) && host_link->sata_spd) 2967 limit &= (1 << host_link->sata_spd) - 1; 2968 2969 if (limit == UINT_MAX) 2970 target = 0; 2971 else 2972 target = fls(limit); 2973 2974 spd = (*scontrol >> 4) & 0xf; 2975 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2976 2977 return spd != target; 2978 } 2979 2980 /** 2981 * sata_set_spd_needed - is SATA spd configuration needed 2982 * @link: Link in question 2983 * 2984 * Test whether the spd limit in SControl matches 2985 * @link->sata_spd_limit. This function is used to determine 2986 * whether hardreset is necessary to apply SATA spd 2987 * configuration. 2988 * 2989 * LOCKING: 2990 * Inherited from caller. 2991 * 2992 * RETURNS: 2993 * 1 if SATA spd configuration is needed, 0 otherwise. 2994 */ 2995 static int sata_set_spd_needed(struct ata_link *link) 2996 { 2997 u32 scontrol; 2998 2999 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3000 return 1; 3001 3002 return __sata_set_spd_needed(link, &scontrol); 3003 } 3004 3005 /** 3006 * sata_set_spd - set SATA spd according to spd limit 3007 * @link: Link to set SATA spd for 3008 * 3009 * Set SATA spd of @link according to sata_spd_limit. 3010 * 3011 * LOCKING: 3012 * Inherited from caller. 3013 * 3014 * RETURNS: 3015 * 0 if spd doesn't need to be changed, 1 if spd has been 3016 * changed. Negative errno if SCR registers are inaccessible. 3017 */ 3018 int sata_set_spd(struct ata_link *link) 3019 { 3020 u32 scontrol; 3021 int rc; 3022 3023 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3024 return rc; 3025 3026 if (!__sata_set_spd_needed(link, &scontrol)) 3027 return 0; 3028 3029 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3030 return rc; 3031 3032 return 1; 3033 } 3034 3035 /* 3036 * This mode timing computation functionality is ported over from 3037 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3038 */ 3039 /* 3040 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3041 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3042 * for UDMA6, which is currently supported only by Maxtor drives. 3043 * 3044 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3045 */ 3046 3047 static const struct ata_timing ata_timing[] = { 3048 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3049 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3050 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3051 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3052 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3053 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3054 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3055 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3056 3057 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3058 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3059 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3060 3061 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3062 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3063 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3064 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3065 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3066 3067 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3068 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3069 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3070 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3071 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3072 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3073 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3074 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3075 3076 { 0xFF } 3077 }; 3078 3079 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3080 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3081 3082 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3083 { 3084 q->setup = EZ(t->setup * 1000, T); 3085 q->act8b = EZ(t->act8b * 1000, T); 3086 q->rec8b = EZ(t->rec8b * 1000, T); 3087 q->cyc8b = EZ(t->cyc8b * 1000, T); 3088 q->active = EZ(t->active * 1000, T); 3089 q->recover = EZ(t->recover * 1000, T); 3090 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3091 q->cycle = EZ(t->cycle * 1000, T); 3092 q->udma = EZ(t->udma * 1000, UT); 3093 } 3094 3095 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3096 struct ata_timing *m, unsigned int what) 3097 { 3098 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3099 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3100 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3101 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3102 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3103 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3104 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3105 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3106 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3107 } 3108 3109 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3110 { 3111 const struct ata_timing *t = ata_timing; 3112 3113 while (xfer_mode > t->mode) 3114 t++; 3115 3116 if (xfer_mode == t->mode) 3117 return t; 3118 return NULL; 3119 } 3120 3121 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3122 struct ata_timing *t, int T, int UT) 3123 { 3124 const u16 *id = adev->id; 3125 const struct ata_timing *s; 3126 struct ata_timing p; 3127 3128 /* 3129 * Find the mode. 3130 */ 3131 3132 if (!(s = ata_timing_find_mode(speed))) 3133 return -EINVAL; 3134 3135 memcpy(t, s, sizeof(*s)); 3136 3137 /* 3138 * If the drive is an EIDE drive, it can tell us it needs extended 3139 * PIO/MW_DMA cycle timing. 3140 */ 3141 3142 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3143 memset(&p, 0, sizeof(p)); 3144 3145 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3146 if (speed <= XFER_PIO_2) 3147 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3148 else if ((speed <= XFER_PIO_4) || 3149 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3150 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3151 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3152 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3153 3154 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3155 } 3156 3157 /* 3158 * Convert the timing to bus clock counts. 3159 */ 3160 3161 ata_timing_quantize(t, t, T, UT); 3162 3163 /* 3164 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3165 * S.M.A.R.T * and some other commands. We have to ensure that the 3166 * DMA cycle timing is slower/equal than the fastest PIO timing. 3167 */ 3168 3169 if (speed > XFER_PIO_6) { 3170 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3171 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3172 } 3173 3174 /* 3175 * Lengthen active & recovery time so that cycle time is correct. 3176 */ 3177 3178 if (t->act8b + t->rec8b < t->cyc8b) { 3179 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3180 t->rec8b = t->cyc8b - t->act8b; 3181 } 3182 3183 if (t->active + t->recover < t->cycle) { 3184 t->active += (t->cycle - (t->active + t->recover)) / 2; 3185 t->recover = t->cycle - t->active; 3186 } 3187 3188 /* In a few cases quantisation may produce enough errors to 3189 leave t->cycle too low for the sum of active and recovery 3190 if so we must correct this */ 3191 if (t->active + t->recover > t->cycle) 3192 t->cycle = t->active + t->recover; 3193 3194 return 0; 3195 } 3196 3197 /** 3198 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3199 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3200 * @cycle: cycle duration in ns 3201 * 3202 * Return matching xfer mode for @cycle. The returned mode is of 3203 * the transfer type specified by @xfer_shift. If @cycle is too 3204 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3205 * than the fastest known mode, the fasted mode is returned. 3206 * 3207 * LOCKING: 3208 * None. 3209 * 3210 * RETURNS: 3211 * Matching xfer_mode, 0xff if no match found. 3212 */ 3213 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3214 { 3215 u8 base_mode = 0xff, last_mode = 0xff; 3216 const struct ata_xfer_ent *ent; 3217 const struct ata_timing *t; 3218 3219 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3220 if (ent->shift == xfer_shift) 3221 base_mode = ent->base; 3222 3223 for (t = ata_timing_find_mode(base_mode); 3224 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3225 unsigned short this_cycle; 3226 3227 switch (xfer_shift) { 3228 case ATA_SHIFT_PIO: 3229 case ATA_SHIFT_MWDMA: 3230 this_cycle = t->cycle; 3231 break; 3232 case ATA_SHIFT_UDMA: 3233 this_cycle = t->udma; 3234 break; 3235 default: 3236 return 0xff; 3237 } 3238 3239 if (cycle > this_cycle) 3240 break; 3241 3242 last_mode = t->mode; 3243 } 3244 3245 return last_mode; 3246 } 3247 3248 /** 3249 * ata_down_xfermask_limit - adjust dev xfer masks downward 3250 * @dev: Device to adjust xfer masks 3251 * @sel: ATA_DNXFER_* selector 3252 * 3253 * Adjust xfer masks of @dev downward. Note that this function 3254 * does not apply the change. Invoking ata_set_mode() afterwards 3255 * will apply the limit. 3256 * 3257 * LOCKING: 3258 * Inherited from caller. 3259 * 3260 * RETURNS: 3261 * 0 on success, negative errno on failure 3262 */ 3263 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3264 { 3265 char buf[32]; 3266 unsigned long orig_mask, xfer_mask; 3267 unsigned long pio_mask, mwdma_mask, udma_mask; 3268 int quiet, highbit; 3269 3270 quiet = !!(sel & ATA_DNXFER_QUIET); 3271 sel &= ~ATA_DNXFER_QUIET; 3272 3273 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3274 dev->mwdma_mask, 3275 dev->udma_mask); 3276 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3277 3278 switch (sel) { 3279 case ATA_DNXFER_PIO: 3280 highbit = fls(pio_mask) - 1; 3281 pio_mask &= ~(1 << highbit); 3282 break; 3283 3284 case ATA_DNXFER_DMA: 3285 if (udma_mask) { 3286 highbit = fls(udma_mask) - 1; 3287 udma_mask &= ~(1 << highbit); 3288 if (!udma_mask) 3289 return -ENOENT; 3290 } else if (mwdma_mask) { 3291 highbit = fls(mwdma_mask) - 1; 3292 mwdma_mask &= ~(1 << highbit); 3293 if (!mwdma_mask) 3294 return -ENOENT; 3295 } 3296 break; 3297 3298 case ATA_DNXFER_40C: 3299 udma_mask &= ATA_UDMA_MASK_40C; 3300 break; 3301 3302 case ATA_DNXFER_FORCE_PIO0: 3303 pio_mask &= 1; 3304 case ATA_DNXFER_FORCE_PIO: 3305 mwdma_mask = 0; 3306 udma_mask = 0; 3307 break; 3308 3309 default: 3310 BUG(); 3311 } 3312 3313 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3314 3315 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3316 return -ENOENT; 3317 3318 if (!quiet) { 3319 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3320 snprintf(buf, sizeof(buf), "%s:%s", 3321 ata_mode_string(xfer_mask), 3322 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3323 else 3324 snprintf(buf, sizeof(buf), "%s", 3325 ata_mode_string(xfer_mask)); 3326 3327 ata_dev_printk(dev, KERN_WARNING, 3328 "limiting speed to %s\n", buf); 3329 } 3330 3331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3332 &dev->udma_mask); 3333 3334 return 0; 3335 } 3336 3337 static int ata_dev_set_mode(struct ata_device *dev) 3338 { 3339 struct ata_port *ap = dev->link->ap; 3340 struct ata_eh_context *ehc = &dev->link->eh_context; 3341 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3342 const char *dev_err_whine = ""; 3343 int ign_dev_err = 0; 3344 unsigned int err_mask = 0; 3345 int rc; 3346 3347 dev->flags &= ~ATA_DFLAG_PIO; 3348 if (dev->xfer_shift == ATA_SHIFT_PIO) 3349 dev->flags |= ATA_DFLAG_PIO; 3350 3351 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3352 dev_err_whine = " (SET_XFERMODE skipped)"; 3353 else { 3354 if (nosetxfer) 3355 ata_dev_printk(dev, KERN_WARNING, 3356 "NOSETXFER but PATA detected - can't " 3357 "skip SETXFER, might malfunction\n"); 3358 err_mask = ata_dev_set_xfermode(dev); 3359 } 3360 3361 if (err_mask & ~AC_ERR_DEV) 3362 goto fail; 3363 3364 /* revalidate */ 3365 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3366 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3367 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3368 if (rc) 3369 return rc; 3370 3371 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3372 /* Old CFA may refuse this command, which is just fine */ 3373 if (ata_id_is_cfa(dev->id)) 3374 ign_dev_err = 1; 3375 /* Catch several broken garbage emulations plus some pre 3376 ATA devices */ 3377 if (ata_id_major_version(dev->id) == 0 && 3378 dev->pio_mode <= XFER_PIO_2) 3379 ign_dev_err = 1; 3380 /* Some very old devices and some bad newer ones fail 3381 any kind of SET_XFERMODE request but support PIO0-2 3382 timings and no IORDY */ 3383 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3384 ign_dev_err = 1; 3385 } 3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3388 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3389 dev->dma_mode == XFER_MW_DMA_0 && 3390 (dev->id[63] >> 8) & 1) 3391 ign_dev_err = 1; 3392 3393 /* if the device is actually configured correctly, ignore dev err */ 3394 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3395 ign_dev_err = 1; 3396 3397 if (err_mask & AC_ERR_DEV) { 3398 if (!ign_dev_err) 3399 goto fail; 3400 else 3401 dev_err_whine = " (device error ignored)"; 3402 } 3403 3404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3405 dev->xfer_shift, (int)dev->xfer_mode); 3406 3407 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3408 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3409 dev_err_whine); 3410 3411 return 0; 3412 3413 fail: 3414 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3415 "(err_mask=0x%x)\n", err_mask); 3416 return -EIO; 3417 } 3418 3419 /** 3420 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3421 * @link: link on which timings will be programmed 3422 * @r_failed_dev: out parameter for failed device 3423 * 3424 * Standard implementation of the function used to tune and set 3425 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3426 * ata_dev_set_mode() fails, pointer to the failing device is 3427 * returned in @r_failed_dev. 3428 * 3429 * LOCKING: 3430 * PCI/etc. bus probe sem. 3431 * 3432 * RETURNS: 3433 * 0 on success, negative errno otherwise 3434 */ 3435 3436 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3437 { 3438 struct ata_port *ap = link->ap; 3439 struct ata_device *dev; 3440 int rc = 0, used_dma = 0, found = 0; 3441 3442 /* step 1: calculate xfer_mask */ 3443 ata_for_each_dev(dev, link, ENABLED) { 3444 unsigned long pio_mask, dma_mask; 3445 unsigned int mode_mask; 3446 3447 mode_mask = ATA_DMA_MASK_ATA; 3448 if (dev->class == ATA_DEV_ATAPI) 3449 mode_mask = ATA_DMA_MASK_ATAPI; 3450 else if (ata_id_is_cfa(dev->id)) 3451 mode_mask = ATA_DMA_MASK_CFA; 3452 3453 ata_dev_xfermask(dev); 3454 ata_force_xfermask(dev); 3455 3456 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3457 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3458 3459 if (libata_dma_mask & mode_mask) 3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3461 else 3462 dma_mask = 0; 3463 3464 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3465 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3466 3467 found = 1; 3468 if (ata_dma_enabled(dev)) 3469 used_dma = 1; 3470 } 3471 if (!found) 3472 goto out; 3473 3474 /* step 2: always set host PIO timings */ 3475 ata_for_each_dev(dev, link, ENABLED) { 3476 if (dev->pio_mode == 0xff) { 3477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3478 rc = -EINVAL; 3479 goto out; 3480 } 3481 3482 dev->xfer_mode = dev->pio_mode; 3483 dev->xfer_shift = ATA_SHIFT_PIO; 3484 if (ap->ops->set_piomode) 3485 ap->ops->set_piomode(ap, dev); 3486 } 3487 3488 /* step 3: set host DMA timings */ 3489 ata_for_each_dev(dev, link, ENABLED) { 3490 if (!ata_dma_enabled(dev)) 3491 continue; 3492 3493 dev->xfer_mode = dev->dma_mode; 3494 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3495 if (ap->ops->set_dmamode) 3496 ap->ops->set_dmamode(ap, dev); 3497 } 3498 3499 /* step 4: update devices' xfer mode */ 3500 ata_for_each_dev(dev, link, ENABLED) { 3501 rc = ata_dev_set_mode(dev); 3502 if (rc) 3503 goto out; 3504 } 3505 3506 /* Record simplex status. If we selected DMA then the other 3507 * host channels are not permitted to do so. 3508 */ 3509 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3510 ap->host->simplex_claimed = ap; 3511 3512 out: 3513 if (rc) 3514 *r_failed_dev = dev; 3515 return rc; 3516 } 3517 3518 /** 3519 * ata_wait_ready - wait for link to become ready 3520 * @link: link to be waited on 3521 * @deadline: deadline jiffies for the operation 3522 * @check_ready: callback to check link readiness 3523 * 3524 * Wait for @link to become ready. @check_ready should return 3525 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3526 * link doesn't seem to be occupied, other errno for other error 3527 * conditions. 3528 * 3529 * Transient -ENODEV conditions are allowed for 3530 * ATA_TMOUT_FF_WAIT. 3531 * 3532 * LOCKING: 3533 * EH context. 3534 * 3535 * RETURNS: 3536 * 0 if @linke is ready before @deadline; otherwise, -errno. 3537 */ 3538 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3539 int (*check_ready)(struct ata_link *link)) 3540 { 3541 unsigned long start = jiffies; 3542 unsigned long nodev_deadline; 3543 int warned = 0; 3544 3545 /* choose which 0xff timeout to use, read comment in libata.h */ 3546 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3548 else 3549 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3550 3551 /* Slave readiness can't be tested separately from master. On 3552 * M/S emulation configuration, this function should be called 3553 * only on the master and it will handle both master and slave. 3554 */ 3555 WARN_ON(link == link->ap->slave_link); 3556 3557 if (time_after(nodev_deadline, deadline)) 3558 nodev_deadline = deadline; 3559 3560 while (1) { 3561 unsigned long now = jiffies; 3562 int ready, tmp; 3563 3564 ready = tmp = check_ready(link); 3565 if (ready > 0) 3566 return 0; 3567 3568 /* 3569 * -ENODEV could be transient. Ignore -ENODEV if link 3570 * is online. Also, some SATA devices take a long 3571 * time to clear 0xff after reset. Wait for 3572 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3573 * offline. 3574 * 3575 * Note that some PATA controllers (pata_ali) explode 3576 * if status register is read more than once when 3577 * there's no device attached. 3578 */ 3579 if (ready == -ENODEV) { 3580 if (ata_link_online(link)) 3581 ready = 0; 3582 else if ((link->ap->flags & ATA_FLAG_SATA) && 3583 !ata_link_offline(link) && 3584 time_before(now, nodev_deadline)) 3585 ready = 0; 3586 } 3587 3588 if (ready) 3589 return ready; 3590 if (time_after(now, deadline)) 3591 return -EBUSY; 3592 3593 if (!warned && time_after(now, start + 5 * HZ) && 3594 (deadline - now > 3 * HZ)) { 3595 ata_link_printk(link, KERN_WARNING, 3596 "link is slow to respond, please be patient " 3597 "(ready=%d)\n", tmp); 3598 warned = 1; 3599 } 3600 3601 msleep(50); 3602 } 3603 } 3604 3605 /** 3606 * ata_wait_after_reset - wait for link to become ready after reset 3607 * @link: link to be waited on 3608 * @deadline: deadline jiffies for the operation 3609 * @check_ready: callback to check link readiness 3610 * 3611 * Wait for @link to become ready after reset. 3612 * 3613 * LOCKING: 3614 * EH context. 3615 * 3616 * RETURNS: 3617 * 0 if @linke is ready before @deadline; otherwise, -errno. 3618 */ 3619 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3620 int (*check_ready)(struct ata_link *link)) 3621 { 3622 msleep(ATA_WAIT_AFTER_RESET); 3623 3624 return ata_wait_ready(link, deadline, check_ready); 3625 } 3626 3627 /** 3628 * sata_link_debounce - debounce SATA phy status 3629 * @link: ATA link to debounce SATA phy status for 3630 * @params: timing parameters { interval, duratinon, timeout } in msec 3631 * @deadline: deadline jiffies for the operation 3632 * 3633 * Make sure SStatus of @link reaches stable state, determined by 3634 * holding the same value where DET is not 1 for @duration polled 3635 * every @interval, before @timeout. Timeout constraints the 3636 * beginning of the stable state. Because DET gets stuck at 1 on 3637 * some controllers after hot unplugging, this functions waits 3638 * until timeout then returns 0 if DET is stable at 1. 3639 * 3640 * @timeout is further limited by @deadline. The sooner of the 3641 * two is used. 3642 * 3643 * LOCKING: 3644 * Kernel thread context (may sleep) 3645 * 3646 * RETURNS: 3647 * 0 on success, -errno on failure. 3648 */ 3649 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3650 unsigned long deadline) 3651 { 3652 unsigned long interval = params[0]; 3653 unsigned long duration = params[1]; 3654 unsigned long last_jiffies, t; 3655 u32 last, cur; 3656 int rc; 3657 3658 t = ata_deadline(jiffies, params[2]); 3659 if (time_before(t, deadline)) 3660 deadline = t; 3661 3662 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3663 return rc; 3664 cur &= 0xf; 3665 3666 last = cur; 3667 last_jiffies = jiffies; 3668 3669 while (1) { 3670 msleep(interval); 3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3672 return rc; 3673 cur &= 0xf; 3674 3675 /* DET stable? */ 3676 if (cur == last) { 3677 if (cur == 1 && time_before(jiffies, deadline)) 3678 continue; 3679 if (time_after(jiffies, 3680 ata_deadline(last_jiffies, duration))) 3681 return 0; 3682 continue; 3683 } 3684 3685 /* unstable, start over */ 3686 last = cur; 3687 last_jiffies = jiffies; 3688 3689 /* Check deadline. If debouncing failed, return 3690 * -EPIPE to tell upper layer to lower link speed. 3691 */ 3692 if (time_after(jiffies, deadline)) 3693 return -EPIPE; 3694 } 3695 } 3696 3697 /** 3698 * sata_link_resume - resume SATA link 3699 * @link: ATA link to resume SATA 3700 * @params: timing parameters { interval, duratinon, timeout } in msec 3701 * @deadline: deadline jiffies for the operation 3702 * 3703 * Resume SATA phy @link and debounce it. 3704 * 3705 * LOCKING: 3706 * Kernel thread context (may sleep) 3707 * 3708 * RETURNS: 3709 * 0 on success, -errno on failure. 3710 */ 3711 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3712 unsigned long deadline) 3713 { 3714 int tries = ATA_LINK_RESUME_TRIES; 3715 u32 scontrol, serror; 3716 int rc; 3717 3718 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3719 return rc; 3720 3721 /* 3722 * Writes to SControl sometimes get ignored under certain 3723 * controllers (ata_piix SIDPR). Make sure DET actually is 3724 * cleared. 3725 */ 3726 do { 3727 scontrol = (scontrol & 0x0f0) | 0x300; 3728 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3729 return rc; 3730 /* 3731 * Some PHYs react badly if SStatus is pounded 3732 * immediately after resuming. Delay 200ms before 3733 * debouncing. 3734 */ 3735 msleep(200); 3736 3737 /* is SControl restored correctly? */ 3738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3739 return rc; 3740 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3741 3742 if ((scontrol & 0xf0f) != 0x300) { 3743 ata_link_printk(link, KERN_ERR, 3744 "failed to resume link (SControl %X)\n", 3745 scontrol); 3746 return 0; 3747 } 3748 3749 if (tries < ATA_LINK_RESUME_TRIES) 3750 ata_link_printk(link, KERN_WARNING, 3751 "link resume succeeded after %d retries\n", 3752 ATA_LINK_RESUME_TRIES - tries); 3753 3754 if ((rc = sata_link_debounce(link, params, deadline))) 3755 return rc; 3756 3757 /* clear SError, some PHYs require this even for SRST to work */ 3758 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3759 rc = sata_scr_write(link, SCR_ERROR, serror); 3760 3761 return rc != -EINVAL ? rc : 0; 3762 } 3763 3764 /** 3765 * ata_std_prereset - prepare for reset 3766 * @link: ATA link to be reset 3767 * @deadline: deadline jiffies for the operation 3768 * 3769 * @link is about to be reset. Initialize it. Failure from 3770 * prereset makes libata abort whole reset sequence and give up 3771 * that port, so prereset should be best-effort. It does its 3772 * best to prepare for reset sequence but if things go wrong, it 3773 * should just whine, not fail. 3774 * 3775 * LOCKING: 3776 * Kernel thread context (may sleep) 3777 * 3778 * RETURNS: 3779 * 0 on success, -errno otherwise. 3780 */ 3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3782 { 3783 struct ata_port *ap = link->ap; 3784 struct ata_eh_context *ehc = &link->eh_context; 3785 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3786 int rc; 3787 3788 /* if we're about to do hardreset, nothing more to do */ 3789 if (ehc->i.action & ATA_EH_HARDRESET) 3790 return 0; 3791 3792 /* if SATA, resume link */ 3793 if (ap->flags & ATA_FLAG_SATA) { 3794 rc = sata_link_resume(link, timing, deadline); 3795 /* whine about phy resume failure but proceed */ 3796 if (rc && rc != -EOPNOTSUPP) 3797 ata_link_printk(link, KERN_WARNING, "failed to resume " 3798 "link for reset (errno=%d)\n", rc); 3799 } 3800 3801 /* no point in trying softreset on offline link */ 3802 if (ata_phys_link_offline(link)) 3803 ehc->i.action &= ~ATA_EH_SOFTRESET; 3804 3805 return 0; 3806 } 3807 3808 /** 3809 * sata_link_hardreset - reset link via SATA phy reset 3810 * @link: link to reset 3811 * @timing: timing parameters { interval, duratinon, timeout } in msec 3812 * @deadline: deadline jiffies for the operation 3813 * @online: optional out parameter indicating link onlineness 3814 * @check_ready: optional callback to check link readiness 3815 * 3816 * SATA phy-reset @link using DET bits of SControl register. 3817 * After hardreset, link readiness is waited upon using 3818 * ata_wait_ready() if @check_ready is specified. LLDs are 3819 * allowed to not specify @check_ready and wait itself after this 3820 * function returns. Device classification is LLD's 3821 * responsibility. 3822 * 3823 * *@online is set to one iff reset succeeded and @link is online 3824 * after reset. 3825 * 3826 * LOCKING: 3827 * Kernel thread context (may sleep) 3828 * 3829 * RETURNS: 3830 * 0 on success, -errno otherwise. 3831 */ 3832 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3833 unsigned long deadline, 3834 bool *online, int (*check_ready)(struct ata_link *)) 3835 { 3836 u32 scontrol; 3837 int rc; 3838 3839 DPRINTK("ENTER\n"); 3840 3841 if (online) 3842 *online = false; 3843 3844 if (sata_set_spd_needed(link)) { 3845 /* SATA spec says nothing about how to reconfigure 3846 * spd. To be on the safe side, turn off phy during 3847 * reconfiguration. This works for at least ICH7 AHCI 3848 * and Sil3124. 3849 */ 3850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3851 goto out; 3852 3853 scontrol = (scontrol & 0x0f0) | 0x304; 3854 3855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3856 goto out; 3857 3858 sata_set_spd(link); 3859 } 3860 3861 /* issue phy wake/reset */ 3862 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3863 goto out; 3864 3865 scontrol = (scontrol & 0x0f0) | 0x301; 3866 3867 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3868 goto out; 3869 3870 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3871 * 10.4.2 says at least 1 ms. 3872 */ 3873 msleep(1); 3874 3875 /* bring link back */ 3876 rc = sata_link_resume(link, timing, deadline); 3877 if (rc) 3878 goto out; 3879 /* if link is offline nothing more to do */ 3880 if (ata_phys_link_offline(link)) 3881 goto out; 3882 3883 /* Link is online. From this point, -ENODEV too is an error. */ 3884 if (online) 3885 *online = true; 3886 3887 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3888 /* If PMP is supported, we have to do follow-up SRST. 3889 * Some PMPs don't send D2H Reg FIS after hardreset if 3890 * the first port is empty. Wait only for 3891 * ATA_TMOUT_PMP_SRST_WAIT. 3892 */ 3893 if (check_ready) { 3894 unsigned long pmp_deadline; 3895 3896 pmp_deadline = ata_deadline(jiffies, 3897 ATA_TMOUT_PMP_SRST_WAIT); 3898 if (time_after(pmp_deadline, deadline)) 3899 pmp_deadline = deadline; 3900 ata_wait_ready(link, pmp_deadline, check_ready); 3901 } 3902 rc = -EAGAIN; 3903 goto out; 3904 } 3905 3906 rc = 0; 3907 if (check_ready) 3908 rc = ata_wait_ready(link, deadline, check_ready); 3909 out: 3910 if (rc && rc != -EAGAIN) { 3911 /* online is set iff link is online && reset succeeded */ 3912 if (online) 3913 *online = false; 3914 ata_link_printk(link, KERN_ERR, 3915 "COMRESET failed (errno=%d)\n", rc); 3916 } 3917 DPRINTK("EXIT, rc=%d\n", rc); 3918 return rc; 3919 } 3920 3921 /** 3922 * sata_std_hardreset - COMRESET w/o waiting or classification 3923 * @link: link to reset 3924 * @class: resulting class of attached device 3925 * @deadline: deadline jiffies for the operation 3926 * 3927 * Standard SATA COMRESET w/o waiting or classification. 3928 * 3929 * LOCKING: 3930 * Kernel thread context (may sleep) 3931 * 3932 * RETURNS: 3933 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3934 */ 3935 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3936 unsigned long deadline) 3937 { 3938 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3939 bool online; 3940 int rc; 3941 3942 /* do hardreset */ 3943 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3944 return online ? -EAGAIN : rc; 3945 } 3946 3947 /** 3948 * ata_std_postreset - standard postreset callback 3949 * @link: the target ata_link 3950 * @classes: classes of attached devices 3951 * 3952 * This function is invoked after a successful reset. Note that 3953 * the device might have been reset more than once using 3954 * different reset methods before postreset is invoked. 3955 * 3956 * LOCKING: 3957 * Kernel thread context (may sleep) 3958 */ 3959 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3960 { 3961 u32 serror; 3962 3963 DPRINTK("ENTER\n"); 3964 3965 /* reset complete, clear SError */ 3966 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3967 sata_scr_write(link, SCR_ERROR, serror); 3968 3969 /* print link status */ 3970 sata_print_link_status(link); 3971 3972 DPRINTK("EXIT\n"); 3973 } 3974 3975 /** 3976 * ata_dev_same_device - Determine whether new ID matches configured device 3977 * @dev: device to compare against 3978 * @new_class: class of the new device 3979 * @new_id: IDENTIFY page of the new device 3980 * 3981 * Compare @new_class and @new_id against @dev and determine 3982 * whether @dev is the device indicated by @new_class and 3983 * @new_id. 3984 * 3985 * LOCKING: 3986 * None. 3987 * 3988 * RETURNS: 3989 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3990 */ 3991 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3992 const u16 *new_id) 3993 { 3994 const u16 *old_id = dev->id; 3995 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3996 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3997 3998 if (dev->class != new_class) { 3999 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 4000 dev->class, new_class); 4001 return 0; 4002 } 4003 4004 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4005 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4006 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4007 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4008 4009 if (strcmp(model[0], model[1])) { 4010 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4011 "'%s' != '%s'\n", model[0], model[1]); 4012 return 0; 4013 } 4014 4015 if (strcmp(serial[0], serial[1])) { 4016 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4017 "'%s' != '%s'\n", serial[0], serial[1]); 4018 return 0; 4019 } 4020 4021 return 1; 4022 } 4023 4024 /** 4025 * ata_dev_reread_id - Re-read IDENTIFY data 4026 * @dev: target ATA device 4027 * @readid_flags: read ID flags 4028 * 4029 * Re-read IDENTIFY page and make sure @dev is still attached to 4030 * the port. 4031 * 4032 * LOCKING: 4033 * Kernel thread context (may sleep) 4034 * 4035 * RETURNS: 4036 * 0 on success, negative errno otherwise 4037 */ 4038 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4039 { 4040 unsigned int class = dev->class; 4041 u16 *id = (void *)dev->link->ap->sector_buf; 4042 int rc; 4043 4044 /* read ID data */ 4045 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4046 if (rc) 4047 return rc; 4048 4049 /* is the device still there? */ 4050 if (!ata_dev_same_device(dev, class, id)) 4051 return -ENODEV; 4052 4053 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4054 return 0; 4055 } 4056 4057 /** 4058 * ata_dev_revalidate - Revalidate ATA device 4059 * @dev: device to revalidate 4060 * @new_class: new class code 4061 * @readid_flags: read ID flags 4062 * 4063 * Re-read IDENTIFY page, make sure @dev is still attached to the 4064 * port and reconfigure it according to the new IDENTIFY page. 4065 * 4066 * LOCKING: 4067 * Kernel thread context (may sleep) 4068 * 4069 * RETURNS: 4070 * 0 on success, negative errno otherwise 4071 */ 4072 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4073 unsigned int readid_flags) 4074 { 4075 u64 n_sectors = dev->n_sectors; 4076 u64 n_native_sectors = dev->n_native_sectors; 4077 int rc; 4078 4079 if (!ata_dev_enabled(dev)) 4080 return -ENODEV; 4081 4082 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4083 if (ata_class_enabled(new_class) && 4084 new_class != ATA_DEV_ATA && 4085 new_class != ATA_DEV_ATAPI && 4086 new_class != ATA_DEV_SEMB) { 4087 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4088 dev->class, new_class); 4089 rc = -ENODEV; 4090 goto fail; 4091 } 4092 4093 /* re-read ID */ 4094 rc = ata_dev_reread_id(dev, readid_flags); 4095 if (rc) 4096 goto fail; 4097 4098 /* configure device according to the new ID */ 4099 rc = ata_dev_configure(dev); 4100 if (rc) 4101 goto fail; 4102 4103 /* verify n_sectors hasn't changed */ 4104 if (dev->class != ATA_DEV_ATA || !n_sectors || 4105 dev->n_sectors == n_sectors) 4106 return 0; 4107 4108 /* n_sectors has changed */ 4109 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n", 4110 (unsigned long long)n_sectors, 4111 (unsigned long long)dev->n_sectors); 4112 4113 /* 4114 * Something could have caused HPA to be unlocked 4115 * involuntarily. If n_native_sectors hasn't changed and the 4116 * new size matches it, keep the device. 4117 */ 4118 if (dev->n_native_sectors == n_native_sectors && 4119 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4120 ata_dev_printk(dev, KERN_WARNING, 4121 "new n_sectors matches native, probably " 4122 "late HPA unlock, continuing\n"); 4123 /* keep using the old n_sectors */ 4124 dev->n_sectors = n_sectors; 4125 return 0; 4126 } 4127 4128 /* 4129 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4130 * unlocking HPA in those cases. 4131 * 4132 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4133 */ 4134 if (dev->n_native_sectors == n_native_sectors && 4135 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4136 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4137 ata_dev_printk(dev, KERN_WARNING, 4138 "old n_sectors matches native, probably " 4139 "late HPA lock, will try to unlock HPA\n"); 4140 /* try unlocking HPA */ 4141 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4142 rc = -EIO; 4143 } else 4144 rc = -ENODEV; 4145 4146 /* restore original n_[native_]sectors and fail */ 4147 dev->n_native_sectors = n_native_sectors; 4148 dev->n_sectors = n_sectors; 4149 fail: 4150 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4151 return rc; 4152 } 4153 4154 struct ata_blacklist_entry { 4155 const char *model_num; 4156 const char *model_rev; 4157 unsigned long horkage; 4158 }; 4159 4160 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4161 /* Devices with DMA related problems under Linux */ 4162 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4163 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4164 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4165 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4166 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4167 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4168 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4169 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4170 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4171 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4172 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4173 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4174 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4175 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4176 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4177 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4178 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4179 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4180 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4181 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4182 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4183 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4184 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4185 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4186 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4187 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4188 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4189 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4190 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4191 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4192 /* Odd clown on sil3726/4726 PMPs */ 4193 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4194 4195 /* Weird ATAPI devices */ 4196 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4197 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4198 4199 /* Devices we expect to fail diagnostics */ 4200 4201 /* Devices where NCQ should be avoided */ 4202 /* NCQ is slow */ 4203 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4204 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4205 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4206 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4207 /* NCQ is broken */ 4208 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4209 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4210 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4211 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4212 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4213 4214 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4215 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4216 ATA_HORKAGE_FIRMWARE_WARN }, 4217 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4218 ATA_HORKAGE_FIRMWARE_WARN }, 4219 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4220 ATA_HORKAGE_FIRMWARE_WARN }, 4221 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4222 ATA_HORKAGE_FIRMWARE_WARN }, 4223 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4224 ATA_HORKAGE_FIRMWARE_WARN }, 4225 4226 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4227 ATA_HORKAGE_FIRMWARE_WARN }, 4228 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4229 ATA_HORKAGE_FIRMWARE_WARN }, 4230 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4231 ATA_HORKAGE_FIRMWARE_WARN }, 4232 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4233 ATA_HORKAGE_FIRMWARE_WARN }, 4234 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4235 ATA_HORKAGE_FIRMWARE_WARN }, 4236 4237 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4238 ATA_HORKAGE_FIRMWARE_WARN }, 4239 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4240 ATA_HORKAGE_FIRMWARE_WARN }, 4241 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4242 ATA_HORKAGE_FIRMWARE_WARN }, 4243 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4244 ATA_HORKAGE_FIRMWARE_WARN }, 4245 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4246 ATA_HORKAGE_FIRMWARE_WARN }, 4247 4248 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4249 ATA_HORKAGE_FIRMWARE_WARN }, 4250 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4251 ATA_HORKAGE_FIRMWARE_WARN }, 4252 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4253 ATA_HORKAGE_FIRMWARE_WARN }, 4254 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4255 ATA_HORKAGE_FIRMWARE_WARN }, 4256 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4257 ATA_HORKAGE_FIRMWARE_WARN }, 4258 4259 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4260 ATA_HORKAGE_FIRMWARE_WARN }, 4261 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4262 ATA_HORKAGE_FIRMWARE_WARN }, 4263 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4264 ATA_HORKAGE_FIRMWARE_WARN }, 4265 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4266 ATA_HORKAGE_FIRMWARE_WARN }, 4267 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4268 ATA_HORKAGE_FIRMWARE_WARN }, 4269 4270 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4271 ATA_HORKAGE_FIRMWARE_WARN }, 4272 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4273 ATA_HORKAGE_FIRMWARE_WARN }, 4274 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4275 ATA_HORKAGE_FIRMWARE_WARN }, 4276 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4277 ATA_HORKAGE_FIRMWARE_WARN }, 4278 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4279 ATA_HORKAGE_FIRMWARE_WARN }, 4280 4281 /* Blacklist entries taken from Silicon Image 3124/3132 4282 Windows driver .inf file - also several Linux problem reports */ 4283 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4284 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4285 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4286 4287 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4288 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4289 4290 /* devices which puke on READ_NATIVE_MAX */ 4291 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4292 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4293 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4294 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4295 4296 /* this one allows HPA unlocking but fails IOs on the area */ 4297 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4298 4299 /* Devices which report 1 sector over size HPA */ 4300 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4301 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4302 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4303 4304 /* Devices which get the IVB wrong */ 4305 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4306 /* Maybe we should just blacklist TSSTcorp... */ 4307 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4308 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4309 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4310 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4311 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4312 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4313 4314 /* Devices that do not need bridging limits applied */ 4315 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4316 4317 /* Devices which aren't very happy with higher link speeds */ 4318 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4319 4320 /* 4321 * Devices which choke on SETXFER. Applies only if both the 4322 * device and controller are SATA. 4323 */ 4324 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4325 4326 /* End Marker */ 4327 { } 4328 }; 4329 4330 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4331 { 4332 const char *p; 4333 int len; 4334 4335 /* 4336 * check for trailing wildcard: *\0 4337 */ 4338 p = strchr(patt, wildchar); 4339 if (p && ((*(p + 1)) == 0)) 4340 len = p - patt; 4341 else { 4342 len = strlen(name); 4343 if (!len) { 4344 if (!*patt) 4345 return 0; 4346 return -1; 4347 } 4348 } 4349 4350 return strncmp(patt, name, len); 4351 } 4352 4353 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4354 { 4355 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4356 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4357 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4358 4359 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4360 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4361 4362 while (ad->model_num) { 4363 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4364 if (ad->model_rev == NULL) 4365 return ad->horkage; 4366 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4367 return ad->horkage; 4368 } 4369 ad++; 4370 } 4371 return 0; 4372 } 4373 4374 static int ata_dma_blacklisted(const struct ata_device *dev) 4375 { 4376 /* We don't support polling DMA. 4377 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4378 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4379 */ 4380 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4381 (dev->flags & ATA_DFLAG_CDB_INTR)) 4382 return 1; 4383 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4384 } 4385 4386 /** 4387 * ata_is_40wire - check drive side detection 4388 * @dev: device 4389 * 4390 * Perform drive side detection decoding, allowing for device vendors 4391 * who can't follow the documentation. 4392 */ 4393 4394 static int ata_is_40wire(struct ata_device *dev) 4395 { 4396 if (dev->horkage & ATA_HORKAGE_IVB) 4397 return ata_drive_40wire_relaxed(dev->id); 4398 return ata_drive_40wire(dev->id); 4399 } 4400 4401 /** 4402 * cable_is_40wire - 40/80/SATA decider 4403 * @ap: port to consider 4404 * 4405 * This function encapsulates the policy for speed management 4406 * in one place. At the moment we don't cache the result but 4407 * there is a good case for setting ap->cbl to the result when 4408 * we are called with unknown cables (and figuring out if it 4409 * impacts hotplug at all). 4410 * 4411 * Return 1 if the cable appears to be 40 wire. 4412 */ 4413 4414 static int cable_is_40wire(struct ata_port *ap) 4415 { 4416 struct ata_link *link; 4417 struct ata_device *dev; 4418 4419 /* If the controller thinks we are 40 wire, we are. */ 4420 if (ap->cbl == ATA_CBL_PATA40) 4421 return 1; 4422 4423 /* If the controller thinks we are 80 wire, we are. */ 4424 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4425 return 0; 4426 4427 /* If the system is known to be 40 wire short cable (eg 4428 * laptop), then we allow 80 wire modes even if the drive 4429 * isn't sure. 4430 */ 4431 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4432 return 0; 4433 4434 /* If the controller doesn't know, we scan. 4435 * 4436 * Note: We look for all 40 wire detects at this point. Any 4437 * 80 wire detect is taken to be 80 wire cable because 4438 * - in many setups only the one drive (slave if present) will 4439 * give a valid detect 4440 * - if you have a non detect capable drive you don't want it 4441 * to colour the choice 4442 */ 4443 ata_for_each_link(link, ap, EDGE) { 4444 ata_for_each_dev(dev, link, ENABLED) { 4445 if (!ata_is_40wire(dev)) 4446 return 0; 4447 } 4448 } 4449 return 1; 4450 } 4451 4452 /** 4453 * ata_dev_xfermask - Compute supported xfermask of the given device 4454 * @dev: Device to compute xfermask for 4455 * 4456 * Compute supported xfermask of @dev and store it in 4457 * dev->*_mask. This function is responsible for applying all 4458 * known limits including host controller limits, device 4459 * blacklist, etc... 4460 * 4461 * LOCKING: 4462 * None. 4463 */ 4464 static void ata_dev_xfermask(struct ata_device *dev) 4465 { 4466 struct ata_link *link = dev->link; 4467 struct ata_port *ap = link->ap; 4468 struct ata_host *host = ap->host; 4469 unsigned long xfer_mask; 4470 4471 /* controller modes available */ 4472 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4473 ap->mwdma_mask, ap->udma_mask); 4474 4475 /* drive modes available */ 4476 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4477 dev->mwdma_mask, dev->udma_mask); 4478 xfer_mask &= ata_id_xfermask(dev->id); 4479 4480 /* 4481 * CFA Advanced TrueIDE timings are not allowed on a shared 4482 * cable 4483 */ 4484 if (ata_dev_pair(dev)) { 4485 /* No PIO5 or PIO6 */ 4486 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4487 /* No MWDMA3 or MWDMA 4 */ 4488 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4489 } 4490 4491 if (ata_dma_blacklisted(dev)) { 4492 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4493 ata_dev_printk(dev, KERN_WARNING, 4494 "device is on DMA blacklist, disabling DMA\n"); 4495 } 4496 4497 if ((host->flags & ATA_HOST_SIMPLEX) && 4498 host->simplex_claimed && host->simplex_claimed != ap) { 4499 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4500 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4501 "other device, disabling DMA\n"); 4502 } 4503 4504 if (ap->flags & ATA_FLAG_NO_IORDY) 4505 xfer_mask &= ata_pio_mask_no_iordy(dev); 4506 4507 if (ap->ops->mode_filter) 4508 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4509 4510 /* Apply cable rule here. Don't apply it early because when 4511 * we handle hot plug the cable type can itself change. 4512 * Check this last so that we know if the transfer rate was 4513 * solely limited by the cable. 4514 * Unknown or 80 wire cables reported host side are checked 4515 * drive side as well. Cases where we know a 40wire cable 4516 * is used safely for 80 are not checked here. 4517 */ 4518 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4519 /* UDMA/44 or higher would be available */ 4520 if (cable_is_40wire(ap)) { 4521 ata_dev_printk(dev, KERN_WARNING, 4522 "limited to UDMA/33 due to 40-wire cable\n"); 4523 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4524 } 4525 4526 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4527 &dev->mwdma_mask, &dev->udma_mask); 4528 } 4529 4530 /** 4531 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4532 * @dev: Device to which command will be sent 4533 * 4534 * Issue SET FEATURES - XFER MODE command to device @dev 4535 * on port @ap. 4536 * 4537 * LOCKING: 4538 * PCI/etc. bus probe sem. 4539 * 4540 * RETURNS: 4541 * 0 on success, AC_ERR_* mask otherwise. 4542 */ 4543 4544 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4545 { 4546 struct ata_taskfile tf; 4547 unsigned int err_mask; 4548 4549 /* set up set-features taskfile */ 4550 DPRINTK("set features - xfer mode\n"); 4551 4552 /* Some controllers and ATAPI devices show flaky interrupt 4553 * behavior after setting xfer mode. Use polling instead. 4554 */ 4555 ata_tf_init(dev, &tf); 4556 tf.command = ATA_CMD_SET_FEATURES; 4557 tf.feature = SETFEATURES_XFER; 4558 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4559 tf.protocol = ATA_PROT_NODATA; 4560 /* If we are using IORDY we must send the mode setting command */ 4561 if (ata_pio_need_iordy(dev)) 4562 tf.nsect = dev->xfer_mode; 4563 /* If the device has IORDY and the controller does not - turn it off */ 4564 else if (ata_id_has_iordy(dev->id)) 4565 tf.nsect = 0x01; 4566 else /* In the ancient relic department - skip all of this */ 4567 return 0; 4568 4569 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4570 4571 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4572 return err_mask; 4573 } 4574 /** 4575 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4576 * @dev: Device to which command will be sent 4577 * @enable: Whether to enable or disable the feature 4578 * @feature: The sector count represents the feature to set 4579 * 4580 * Issue SET FEATURES - SATA FEATURES command to device @dev 4581 * on port @ap with sector count 4582 * 4583 * LOCKING: 4584 * PCI/etc. bus probe sem. 4585 * 4586 * RETURNS: 4587 * 0 on success, AC_ERR_* mask otherwise. 4588 */ 4589 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4590 u8 feature) 4591 { 4592 struct ata_taskfile tf; 4593 unsigned int err_mask; 4594 4595 /* set up set-features taskfile */ 4596 DPRINTK("set features - SATA features\n"); 4597 4598 ata_tf_init(dev, &tf); 4599 tf.command = ATA_CMD_SET_FEATURES; 4600 tf.feature = enable; 4601 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4602 tf.protocol = ATA_PROT_NODATA; 4603 tf.nsect = feature; 4604 4605 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4606 4607 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4608 return err_mask; 4609 } 4610 4611 /** 4612 * ata_dev_init_params - Issue INIT DEV PARAMS command 4613 * @dev: Device to which command will be sent 4614 * @heads: Number of heads (taskfile parameter) 4615 * @sectors: Number of sectors (taskfile parameter) 4616 * 4617 * LOCKING: 4618 * Kernel thread context (may sleep) 4619 * 4620 * RETURNS: 4621 * 0 on success, AC_ERR_* mask otherwise. 4622 */ 4623 static unsigned int ata_dev_init_params(struct ata_device *dev, 4624 u16 heads, u16 sectors) 4625 { 4626 struct ata_taskfile tf; 4627 unsigned int err_mask; 4628 4629 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4630 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4631 return AC_ERR_INVALID; 4632 4633 /* set up init dev params taskfile */ 4634 DPRINTK("init dev params \n"); 4635 4636 ata_tf_init(dev, &tf); 4637 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4638 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4639 tf.protocol = ATA_PROT_NODATA; 4640 tf.nsect = sectors; 4641 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4642 4643 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4644 /* A clean abort indicates an original or just out of spec drive 4645 and we should continue as we issue the setup based on the 4646 drive reported working geometry */ 4647 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4648 err_mask = 0; 4649 4650 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4651 return err_mask; 4652 } 4653 4654 /** 4655 * ata_sg_clean - Unmap DMA memory associated with command 4656 * @qc: Command containing DMA memory to be released 4657 * 4658 * Unmap all mapped DMA memory associated with this command. 4659 * 4660 * LOCKING: 4661 * spin_lock_irqsave(host lock) 4662 */ 4663 void ata_sg_clean(struct ata_queued_cmd *qc) 4664 { 4665 struct ata_port *ap = qc->ap; 4666 struct scatterlist *sg = qc->sg; 4667 int dir = qc->dma_dir; 4668 4669 WARN_ON_ONCE(sg == NULL); 4670 4671 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4672 4673 if (qc->n_elem) 4674 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4675 4676 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4677 qc->sg = NULL; 4678 } 4679 4680 /** 4681 * atapi_check_dma - Check whether ATAPI DMA can be supported 4682 * @qc: Metadata associated with taskfile to check 4683 * 4684 * Allow low-level driver to filter ATA PACKET commands, returning 4685 * a status indicating whether or not it is OK to use DMA for the 4686 * supplied PACKET command. 4687 * 4688 * LOCKING: 4689 * spin_lock_irqsave(host lock) 4690 * 4691 * RETURNS: 0 when ATAPI DMA can be used 4692 * nonzero otherwise 4693 */ 4694 int atapi_check_dma(struct ata_queued_cmd *qc) 4695 { 4696 struct ata_port *ap = qc->ap; 4697 4698 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4699 * few ATAPI devices choke on such DMA requests. 4700 */ 4701 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4702 unlikely(qc->nbytes & 15)) 4703 return 1; 4704 4705 if (ap->ops->check_atapi_dma) 4706 return ap->ops->check_atapi_dma(qc); 4707 4708 return 0; 4709 } 4710 4711 /** 4712 * ata_std_qc_defer - Check whether a qc needs to be deferred 4713 * @qc: ATA command in question 4714 * 4715 * Non-NCQ commands cannot run with any other command, NCQ or 4716 * not. As upper layer only knows the queue depth, we are 4717 * responsible for maintaining exclusion. This function checks 4718 * whether a new command @qc can be issued. 4719 * 4720 * LOCKING: 4721 * spin_lock_irqsave(host lock) 4722 * 4723 * RETURNS: 4724 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4725 */ 4726 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4727 { 4728 struct ata_link *link = qc->dev->link; 4729 4730 if (qc->tf.protocol == ATA_PROT_NCQ) { 4731 if (!ata_tag_valid(link->active_tag)) 4732 return 0; 4733 } else { 4734 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4735 return 0; 4736 } 4737 4738 return ATA_DEFER_LINK; 4739 } 4740 4741 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4742 4743 /** 4744 * ata_sg_init - Associate command with scatter-gather table. 4745 * @qc: Command to be associated 4746 * @sg: Scatter-gather table. 4747 * @n_elem: Number of elements in s/g table. 4748 * 4749 * Initialize the data-related elements of queued_cmd @qc 4750 * to point to a scatter-gather table @sg, containing @n_elem 4751 * elements. 4752 * 4753 * LOCKING: 4754 * spin_lock_irqsave(host lock) 4755 */ 4756 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4757 unsigned int n_elem) 4758 { 4759 qc->sg = sg; 4760 qc->n_elem = n_elem; 4761 qc->cursg = qc->sg; 4762 } 4763 4764 /** 4765 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4766 * @qc: Command with scatter-gather table to be mapped. 4767 * 4768 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4769 * 4770 * LOCKING: 4771 * spin_lock_irqsave(host lock) 4772 * 4773 * RETURNS: 4774 * Zero on success, negative on error. 4775 * 4776 */ 4777 static int ata_sg_setup(struct ata_queued_cmd *qc) 4778 { 4779 struct ata_port *ap = qc->ap; 4780 unsigned int n_elem; 4781 4782 VPRINTK("ENTER, ata%u\n", ap->print_id); 4783 4784 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4785 if (n_elem < 1) 4786 return -1; 4787 4788 DPRINTK("%d sg elements mapped\n", n_elem); 4789 qc->orig_n_elem = qc->n_elem; 4790 qc->n_elem = n_elem; 4791 qc->flags |= ATA_QCFLAG_DMAMAP; 4792 4793 return 0; 4794 } 4795 4796 /** 4797 * swap_buf_le16 - swap halves of 16-bit words in place 4798 * @buf: Buffer to swap 4799 * @buf_words: Number of 16-bit words in buffer. 4800 * 4801 * Swap halves of 16-bit words if needed to convert from 4802 * little-endian byte order to native cpu byte order, or 4803 * vice-versa. 4804 * 4805 * LOCKING: 4806 * Inherited from caller. 4807 */ 4808 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4809 { 4810 #ifdef __BIG_ENDIAN 4811 unsigned int i; 4812 4813 for (i = 0; i < buf_words; i++) 4814 buf[i] = le16_to_cpu(buf[i]); 4815 #endif /* __BIG_ENDIAN */ 4816 } 4817 4818 /** 4819 * ata_qc_new - Request an available ATA command, for queueing 4820 * @ap: target port 4821 * 4822 * LOCKING: 4823 * None. 4824 */ 4825 4826 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4827 { 4828 struct ata_queued_cmd *qc = NULL; 4829 unsigned int i; 4830 4831 /* no command while frozen */ 4832 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4833 return NULL; 4834 4835 /* the last tag is reserved for internal command. */ 4836 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4837 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4838 qc = __ata_qc_from_tag(ap, i); 4839 break; 4840 } 4841 4842 if (qc) 4843 qc->tag = i; 4844 4845 return qc; 4846 } 4847 4848 /** 4849 * ata_qc_new_init - Request an available ATA command, and initialize it 4850 * @dev: Device from whom we request an available command structure 4851 * 4852 * LOCKING: 4853 * None. 4854 */ 4855 4856 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4857 { 4858 struct ata_port *ap = dev->link->ap; 4859 struct ata_queued_cmd *qc; 4860 4861 qc = ata_qc_new(ap); 4862 if (qc) { 4863 qc->scsicmd = NULL; 4864 qc->ap = ap; 4865 qc->dev = dev; 4866 4867 ata_qc_reinit(qc); 4868 } 4869 4870 return qc; 4871 } 4872 4873 /** 4874 * ata_qc_free - free unused ata_queued_cmd 4875 * @qc: Command to complete 4876 * 4877 * Designed to free unused ata_queued_cmd object 4878 * in case something prevents using it. 4879 * 4880 * LOCKING: 4881 * spin_lock_irqsave(host lock) 4882 */ 4883 void ata_qc_free(struct ata_queued_cmd *qc) 4884 { 4885 struct ata_port *ap; 4886 unsigned int tag; 4887 4888 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4889 ap = qc->ap; 4890 4891 qc->flags = 0; 4892 tag = qc->tag; 4893 if (likely(ata_tag_valid(tag))) { 4894 qc->tag = ATA_TAG_POISON; 4895 clear_bit(tag, &ap->qc_allocated); 4896 } 4897 } 4898 4899 void __ata_qc_complete(struct ata_queued_cmd *qc) 4900 { 4901 struct ata_port *ap; 4902 struct ata_link *link; 4903 4904 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4905 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4906 ap = qc->ap; 4907 link = qc->dev->link; 4908 4909 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4910 ata_sg_clean(qc); 4911 4912 /* command should be marked inactive atomically with qc completion */ 4913 if (qc->tf.protocol == ATA_PROT_NCQ) { 4914 link->sactive &= ~(1 << qc->tag); 4915 if (!link->sactive) 4916 ap->nr_active_links--; 4917 } else { 4918 link->active_tag = ATA_TAG_POISON; 4919 ap->nr_active_links--; 4920 } 4921 4922 /* clear exclusive status */ 4923 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4924 ap->excl_link == link)) 4925 ap->excl_link = NULL; 4926 4927 /* atapi: mark qc as inactive to prevent the interrupt handler 4928 * from completing the command twice later, before the error handler 4929 * is called. (when rc != 0 and atapi request sense is needed) 4930 */ 4931 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4932 ap->qc_active &= ~(1 << qc->tag); 4933 4934 /* call completion callback */ 4935 qc->complete_fn(qc); 4936 } 4937 4938 static void fill_result_tf(struct ata_queued_cmd *qc) 4939 { 4940 struct ata_port *ap = qc->ap; 4941 4942 qc->result_tf.flags = qc->tf.flags; 4943 ap->ops->qc_fill_rtf(qc); 4944 } 4945 4946 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4947 { 4948 struct ata_device *dev = qc->dev; 4949 4950 if (ata_tag_internal(qc->tag)) 4951 return; 4952 4953 if (ata_is_nodata(qc->tf.protocol)) 4954 return; 4955 4956 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4957 return; 4958 4959 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4960 } 4961 4962 /** 4963 * ata_qc_complete - Complete an active ATA command 4964 * @qc: Command to complete 4965 * 4966 * Indicate to the mid and upper layers that an ATA 4967 * command has completed, with either an ok or not-ok status. 4968 * 4969 * LOCKING: 4970 * spin_lock_irqsave(host lock) 4971 */ 4972 void ata_qc_complete(struct ata_queued_cmd *qc) 4973 { 4974 struct ata_port *ap = qc->ap; 4975 4976 /* XXX: New EH and old EH use different mechanisms to 4977 * synchronize EH with regular execution path. 4978 * 4979 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4980 * Normal execution path is responsible for not accessing a 4981 * failed qc. libata core enforces the rule by returning NULL 4982 * from ata_qc_from_tag() for failed qcs. 4983 * 4984 * Old EH depends on ata_qc_complete() nullifying completion 4985 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4986 * not synchronize with interrupt handler. Only PIO task is 4987 * taken care of. 4988 */ 4989 if (ap->ops->error_handler) { 4990 struct ata_device *dev = qc->dev; 4991 struct ata_eh_info *ehi = &dev->link->eh_info; 4992 4993 if (unlikely(qc->err_mask)) 4994 qc->flags |= ATA_QCFLAG_FAILED; 4995 4996 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4997 /* always fill result TF for failed qc */ 4998 fill_result_tf(qc); 4999 5000 if (!ata_tag_internal(qc->tag)) 5001 ata_qc_schedule_eh(qc); 5002 else 5003 __ata_qc_complete(qc); 5004 return; 5005 } 5006 5007 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5008 5009 /* read result TF if requested */ 5010 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5011 fill_result_tf(qc); 5012 5013 /* Some commands need post-processing after successful 5014 * completion. 5015 */ 5016 switch (qc->tf.command) { 5017 case ATA_CMD_SET_FEATURES: 5018 if (qc->tf.feature != SETFEATURES_WC_ON && 5019 qc->tf.feature != SETFEATURES_WC_OFF) 5020 break; 5021 /* fall through */ 5022 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5023 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5024 /* revalidate device */ 5025 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5026 ata_port_schedule_eh(ap); 5027 break; 5028 5029 case ATA_CMD_SLEEP: 5030 dev->flags |= ATA_DFLAG_SLEEPING; 5031 break; 5032 } 5033 5034 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5035 ata_verify_xfer(qc); 5036 5037 __ata_qc_complete(qc); 5038 } else { 5039 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5040 return; 5041 5042 /* read result TF if failed or requested */ 5043 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5044 fill_result_tf(qc); 5045 5046 __ata_qc_complete(qc); 5047 } 5048 } 5049 5050 /** 5051 * ata_qc_complete_multiple - Complete multiple qcs successfully 5052 * @ap: port in question 5053 * @qc_active: new qc_active mask 5054 * 5055 * Complete in-flight commands. This functions is meant to be 5056 * called from low-level driver's interrupt routine to complete 5057 * requests normally. ap->qc_active and @qc_active is compared 5058 * and commands are completed accordingly. 5059 * 5060 * LOCKING: 5061 * spin_lock_irqsave(host lock) 5062 * 5063 * RETURNS: 5064 * Number of completed commands on success, -errno otherwise. 5065 */ 5066 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5067 { 5068 int nr_done = 0; 5069 u32 done_mask; 5070 5071 done_mask = ap->qc_active ^ qc_active; 5072 5073 if (unlikely(done_mask & qc_active)) { 5074 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5075 "(%08x->%08x)\n", ap->qc_active, qc_active); 5076 return -EINVAL; 5077 } 5078 5079 while (done_mask) { 5080 struct ata_queued_cmd *qc; 5081 unsigned int tag = __ffs(done_mask); 5082 5083 qc = ata_qc_from_tag(ap, tag); 5084 if (qc) { 5085 ata_qc_complete(qc); 5086 nr_done++; 5087 } 5088 done_mask &= ~(1 << tag); 5089 } 5090 5091 return nr_done; 5092 } 5093 5094 /** 5095 * ata_qc_issue - issue taskfile to device 5096 * @qc: command to issue to device 5097 * 5098 * Prepare an ATA command to submission to device. 5099 * This includes mapping the data into a DMA-able 5100 * area, filling in the S/G table, and finally 5101 * writing the taskfile to hardware, starting the command. 5102 * 5103 * LOCKING: 5104 * spin_lock_irqsave(host lock) 5105 */ 5106 void ata_qc_issue(struct ata_queued_cmd *qc) 5107 { 5108 struct ata_port *ap = qc->ap; 5109 struct ata_link *link = qc->dev->link; 5110 u8 prot = qc->tf.protocol; 5111 5112 /* Make sure only one non-NCQ command is outstanding. The 5113 * check is skipped for old EH because it reuses active qc to 5114 * request ATAPI sense. 5115 */ 5116 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5117 5118 if (ata_is_ncq(prot)) { 5119 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5120 5121 if (!link->sactive) 5122 ap->nr_active_links++; 5123 link->sactive |= 1 << qc->tag; 5124 } else { 5125 WARN_ON_ONCE(link->sactive); 5126 5127 ap->nr_active_links++; 5128 link->active_tag = qc->tag; 5129 } 5130 5131 qc->flags |= ATA_QCFLAG_ACTIVE; 5132 ap->qc_active |= 1 << qc->tag; 5133 5134 /* We guarantee to LLDs that they will have at least one 5135 * non-zero sg if the command is a data command. 5136 */ 5137 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5138 5139 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5140 (ap->flags & ATA_FLAG_PIO_DMA))) 5141 if (ata_sg_setup(qc)) 5142 goto sg_err; 5143 5144 /* if device is sleeping, schedule reset and abort the link */ 5145 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5146 link->eh_info.action |= ATA_EH_RESET; 5147 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5148 ata_link_abort(link); 5149 return; 5150 } 5151 5152 ap->ops->qc_prep(qc); 5153 5154 qc->err_mask |= ap->ops->qc_issue(qc); 5155 if (unlikely(qc->err_mask)) 5156 goto err; 5157 return; 5158 5159 sg_err: 5160 qc->err_mask |= AC_ERR_SYSTEM; 5161 err: 5162 ata_qc_complete(qc); 5163 } 5164 5165 /** 5166 * sata_scr_valid - test whether SCRs are accessible 5167 * @link: ATA link to test SCR accessibility for 5168 * 5169 * Test whether SCRs are accessible for @link. 5170 * 5171 * LOCKING: 5172 * None. 5173 * 5174 * RETURNS: 5175 * 1 if SCRs are accessible, 0 otherwise. 5176 */ 5177 int sata_scr_valid(struct ata_link *link) 5178 { 5179 struct ata_port *ap = link->ap; 5180 5181 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5182 } 5183 5184 /** 5185 * sata_scr_read - read SCR register of the specified port 5186 * @link: ATA link to read SCR for 5187 * @reg: SCR to read 5188 * @val: Place to store read value 5189 * 5190 * Read SCR register @reg of @link into *@val. This function is 5191 * guaranteed to succeed if @link is ap->link, the cable type of 5192 * the port is SATA and the port implements ->scr_read. 5193 * 5194 * LOCKING: 5195 * None if @link is ap->link. Kernel thread context otherwise. 5196 * 5197 * RETURNS: 5198 * 0 on success, negative errno on failure. 5199 */ 5200 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5201 { 5202 if (ata_is_host_link(link)) { 5203 if (sata_scr_valid(link)) 5204 return link->ap->ops->scr_read(link, reg, val); 5205 return -EOPNOTSUPP; 5206 } 5207 5208 return sata_pmp_scr_read(link, reg, val); 5209 } 5210 5211 /** 5212 * sata_scr_write - write SCR register of the specified port 5213 * @link: ATA link to write SCR for 5214 * @reg: SCR to write 5215 * @val: value to write 5216 * 5217 * Write @val to SCR register @reg of @link. This function is 5218 * guaranteed to succeed if @link is ap->link, the cable type of 5219 * the port is SATA and the port implements ->scr_read. 5220 * 5221 * LOCKING: 5222 * None if @link is ap->link. Kernel thread context otherwise. 5223 * 5224 * RETURNS: 5225 * 0 on success, negative errno on failure. 5226 */ 5227 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5228 { 5229 if (ata_is_host_link(link)) { 5230 if (sata_scr_valid(link)) 5231 return link->ap->ops->scr_write(link, reg, val); 5232 return -EOPNOTSUPP; 5233 } 5234 5235 return sata_pmp_scr_write(link, reg, val); 5236 } 5237 5238 /** 5239 * sata_scr_write_flush - write SCR register of the specified port and flush 5240 * @link: ATA link to write SCR for 5241 * @reg: SCR to write 5242 * @val: value to write 5243 * 5244 * This function is identical to sata_scr_write() except that this 5245 * function performs flush after writing to the register. 5246 * 5247 * LOCKING: 5248 * None if @link is ap->link. Kernel thread context otherwise. 5249 * 5250 * RETURNS: 5251 * 0 on success, negative errno on failure. 5252 */ 5253 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5254 { 5255 if (ata_is_host_link(link)) { 5256 int rc; 5257 5258 if (sata_scr_valid(link)) { 5259 rc = link->ap->ops->scr_write(link, reg, val); 5260 if (rc == 0) 5261 rc = link->ap->ops->scr_read(link, reg, &val); 5262 return rc; 5263 } 5264 return -EOPNOTSUPP; 5265 } 5266 5267 return sata_pmp_scr_write(link, reg, val); 5268 } 5269 5270 /** 5271 * ata_phys_link_online - test whether the given link is online 5272 * @link: ATA link to test 5273 * 5274 * Test whether @link is online. Note that this function returns 5275 * 0 if online status of @link cannot be obtained, so 5276 * ata_link_online(link) != !ata_link_offline(link). 5277 * 5278 * LOCKING: 5279 * None. 5280 * 5281 * RETURNS: 5282 * True if the port online status is available and online. 5283 */ 5284 bool ata_phys_link_online(struct ata_link *link) 5285 { 5286 u32 sstatus; 5287 5288 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5289 ata_sstatus_online(sstatus)) 5290 return true; 5291 return false; 5292 } 5293 5294 /** 5295 * ata_phys_link_offline - test whether the given link is offline 5296 * @link: ATA link to test 5297 * 5298 * Test whether @link is offline. Note that this function 5299 * returns 0 if offline status of @link cannot be obtained, so 5300 * ata_link_online(link) != !ata_link_offline(link). 5301 * 5302 * LOCKING: 5303 * None. 5304 * 5305 * RETURNS: 5306 * True if the port offline status is available and offline. 5307 */ 5308 bool ata_phys_link_offline(struct ata_link *link) 5309 { 5310 u32 sstatus; 5311 5312 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5313 !ata_sstatus_online(sstatus)) 5314 return true; 5315 return false; 5316 } 5317 5318 /** 5319 * ata_link_online - test whether the given link is online 5320 * @link: ATA link to test 5321 * 5322 * Test whether @link is online. This is identical to 5323 * ata_phys_link_online() when there's no slave link. When 5324 * there's a slave link, this function should only be called on 5325 * the master link and will return true if any of M/S links is 5326 * online. 5327 * 5328 * LOCKING: 5329 * None. 5330 * 5331 * RETURNS: 5332 * True if the port online status is available and online. 5333 */ 5334 bool ata_link_online(struct ata_link *link) 5335 { 5336 struct ata_link *slave = link->ap->slave_link; 5337 5338 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5339 5340 return ata_phys_link_online(link) || 5341 (slave && ata_phys_link_online(slave)); 5342 } 5343 5344 /** 5345 * ata_link_offline - test whether the given link is offline 5346 * @link: ATA link to test 5347 * 5348 * Test whether @link is offline. This is identical to 5349 * ata_phys_link_offline() when there's no slave link. When 5350 * there's a slave link, this function should only be called on 5351 * the master link and will return true if both M/S links are 5352 * offline. 5353 * 5354 * LOCKING: 5355 * None. 5356 * 5357 * RETURNS: 5358 * True if the port offline status is available and offline. 5359 */ 5360 bool ata_link_offline(struct ata_link *link) 5361 { 5362 struct ata_link *slave = link->ap->slave_link; 5363 5364 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5365 5366 return ata_phys_link_offline(link) && 5367 (!slave || ata_phys_link_offline(slave)); 5368 } 5369 5370 #ifdef CONFIG_PM 5371 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5372 unsigned int action, unsigned int ehi_flags, 5373 int wait) 5374 { 5375 unsigned long flags; 5376 int i, rc; 5377 5378 for (i = 0; i < host->n_ports; i++) { 5379 struct ata_port *ap = host->ports[i]; 5380 struct ata_link *link; 5381 5382 /* Previous resume operation might still be in 5383 * progress. Wait for PM_PENDING to clear. 5384 */ 5385 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5386 ata_port_wait_eh(ap); 5387 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5388 } 5389 5390 /* request PM ops to EH */ 5391 spin_lock_irqsave(ap->lock, flags); 5392 5393 ap->pm_mesg = mesg; 5394 if (wait) { 5395 rc = 0; 5396 ap->pm_result = &rc; 5397 } 5398 5399 ap->pflags |= ATA_PFLAG_PM_PENDING; 5400 ata_for_each_link(link, ap, HOST_FIRST) { 5401 link->eh_info.action |= action; 5402 link->eh_info.flags |= ehi_flags; 5403 } 5404 5405 ata_port_schedule_eh(ap); 5406 5407 spin_unlock_irqrestore(ap->lock, flags); 5408 5409 /* wait and check result */ 5410 if (wait) { 5411 ata_port_wait_eh(ap); 5412 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5413 if (rc) 5414 return rc; 5415 } 5416 } 5417 5418 return 0; 5419 } 5420 5421 /** 5422 * ata_host_suspend - suspend host 5423 * @host: host to suspend 5424 * @mesg: PM message 5425 * 5426 * Suspend @host. Actual operation is performed by EH. This 5427 * function requests EH to perform PM operations and waits for EH 5428 * to finish. 5429 * 5430 * LOCKING: 5431 * Kernel thread context (may sleep). 5432 * 5433 * RETURNS: 5434 * 0 on success, -errno on failure. 5435 */ 5436 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5437 { 5438 int rc; 5439 5440 /* 5441 * disable link pm on all ports before requesting 5442 * any pm activity 5443 */ 5444 ata_lpm_enable(host); 5445 5446 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5447 if (rc == 0) 5448 host->dev->power.power_state = mesg; 5449 return rc; 5450 } 5451 5452 /** 5453 * ata_host_resume - resume host 5454 * @host: host to resume 5455 * 5456 * Resume @host. Actual operation is performed by EH. This 5457 * function requests EH to perform PM operations and returns. 5458 * Note that all resume operations are performed parallely. 5459 * 5460 * LOCKING: 5461 * Kernel thread context (may sleep). 5462 */ 5463 void ata_host_resume(struct ata_host *host) 5464 { 5465 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5466 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5467 host->dev->power.power_state = PMSG_ON; 5468 5469 /* reenable link pm */ 5470 ata_lpm_disable(host); 5471 } 5472 #endif 5473 5474 /** 5475 * ata_dev_init - Initialize an ata_device structure 5476 * @dev: Device structure to initialize 5477 * 5478 * Initialize @dev in preparation for probing. 5479 * 5480 * LOCKING: 5481 * Inherited from caller. 5482 */ 5483 void ata_dev_init(struct ata_device *dev) 5484 { 5485 struct ata_link *link = ata_dev_phys_link(dev); 5486 struct ata_port *ap = link->ap; 5487 unsigned long flags; 5488 5489 /* SATA spd limit is bound to the attached device, reset together */ 5490 link->sata_spd_limit = link->hw_sata_spd_limit; 5491 link->sata_spd = 0; 5492 5493 /* High bits of dev->flags are used to record warm plug 5494 * requests which occur asynchronously. Synchronize using 5495 * host lock. 5496 */ 5497 spin_lock_irqsave(ap->lock, flags); 5498 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5499 dev->horkage = 0; 5500 spin_unlock_irqrestore(ap->lock, flags); 5501 5502 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5503 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5504 dev->pio_mask = UINT_MAX; 5505 dev->mwdma_mask = UINT_MAX; 5506 dev->udma_mask = UINT_MAX; 5507 } 5508 5509 /** 5510 * ata_link_init - Initialize an ata_link structure 5511 * @ap: ATA port link is attached to 5512 * @link: Link structure to initialize 5513 * @pmp: Port multiplier port number 5514 * 5515 * Initialize @link. 5516 * 5517 * LOCKING: 5518 * Kernel thread context (may sleep) 5519 */ 5520 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5521 { 5522 int i; 5523 5524 /* clear everything except for devices */ 5525 memset(link, 0, offsetof(struct ata_link, device[0])); 5526 5527 link->ap = ap; 5528 link->pmp = pmp; 5529 link->active_tag = ATA_TAG_POISON; 5530 link->hw_sata_spd_limit = UINT_MAX; 5531 5532 /* can't use iterator, ap isn't initialized yet */ 5533 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5534 struct ata_device *dev = &link->device[i]; 5535 5536 dev->link = link; 5537 dev->devno = dev - link->device; 5538 #ifdef CONFIG_ATA_ACPI 5539 dev->gtf_filter = ata_acpi_gtf_filter; 5540 #endif 5541 ata_dev_init(dev); 5542 } 5543 } 5544 5545 /** 5546 * sata_link_init_spd - Initialize link->sata_spd_limit 5547 * @link: Link to configure sata_spd_limit for 5548 * 5549 * Initialize @link->[hw_]sata_spd_limit to the currently 5550 * configured value. 5551 * 5552 * LOCKING: 5553 * Kernel thread context (may sleep). 5554 * 5555 * RETURNS: 5556 * 0 on success, -errno on failure. 5557 */ 5558 int sata_link_init_spd(struct ata_link *link) 5559 { 5560 u8 spd; 5561 int rc; 5562 5563 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5564 if (rc) 5565 return rc; 5566 5567 spd = (link->saved_scontrol >> 4) & 0xf; 5568 if (spd) 5569 link->hw_sata_spd_limit &= (1 << spd) - 1; 5570 5571 ata_force_link_limits(link); 5572 5573 link->sata_spd_limit = link->hw_sata_spd_limit; 5574 5575 return 0; 5576 } 5577 5578 /** 5579 * ata_port_alloc - allocate and initialize basic ATA port resources 5580 * @host: ATA host this allocated port belongs to 5581 * 5582 * Allocate and initialize basic ATA port resources. 5583 * 5584 * RETURNS: 5585 * Allocate ATA port on success, NULL on failure. 5586 * 5587 * LOCKING: 5588 * Inherited from calling layer (may sleep). 5589 */ 5590 struct ata_port *ata_port_alloc(struct ata_host *host) 5591 { 5592 struct ata_port *ap; 5593 5594 DPRINTK("ENTER\n"); 5595 5596 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5597 if (!ap) 5598 return NULL; 5599 5600 ap->pflags |= ATA_PFLAG_INITIALIZING; 5601 ap->lock = &host->lock; 5602 ap->print_id = -1; 5603 ap->host = host; 5604 ap->dev = host->dev; 5605 5606 #if defined(ATA_VERBOSE_DEBUG) 5607 /* turn on all debugging levels */ 5608 ap->msg_enable = 0x00FF; 5609 #elif defined(ATA_DEBUG) 5610 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5611 #else 5612 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5613 #endif 5614 5615 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5616 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5617 INIT_LIST_HEAD(&ap->eh_done_q); 5618 init_waitqueue_head(&ap->eh_wait_q); 5619 init_completion(&ap->park_req_pending); 5620 init_timer_deferrable(&ap->fastdrain_timer); 5621 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5622 ap->fastdrain_timer.data = (unsigned long)ap; 5623 5624 ap->cbl = ATA_CBL_NONE; 5625 5626 ata_link_init(ap, &ap->link, 0); 5627 5628 #ifdef ATA_IRQ_TRAP 5629 ap->stats.unhandled_irq = 1; 5630 ap->stats.idle_irq = 1; 5631 #endif 5632 ata_sff_port_init(ap); 5633 5634 return ap; 5635 } 5636 5637 static void ata_host_release(struct device *gendev, void *res) 5638 { 5639 struct ata_host *host = dev_get_drvdata(gendev); 5640 int i; 5641 5642 for (i = 0; i < host->n_ports; i++) { 5643 struct ata_port *ap = host->ports[i]; 5644 5645 if (!ap) 5646 continue; 5647 5648 if (ap->scsi_host) 5649 scsi_host_put(ap->scsi_host); 5650 5651 kfree(ap->pmp_link); 5652 kfree(ap->slave_link); 5653 kfree(ap); 5654 host->ports[i] = NULL; 5655 } 5656 5657 dev_set_drvdata(gendev, NULL); 5658 } 5659 5660 /** 5661 * ata_host_alloc - allocate and init basic ATA host resources 5662 * @dev: generic device this host is associated with 5663 * @max_ports: maximum number of ATA ports associated with this host 5664 * 5665 * Allocate and initialize basic ATA host resources. LLD calls 5666 * this function to allocate a host, initializes it fully and 5667 * attaches it using ata_host_register(). 5668 * 5669 * @max_ports ports are allocated and host->n_ports is 5670 * initialized to @max_ports. The caller is allowed to decrease 5671 * host->n_ports before calling ata_host_register(). The unused 5672 * ports will be automatically freed on registration. 5673 * 5674 * RETURNS: 5675 * Allocate ATA host on success, NULL on failure. 5676 * 5677 * LOCKING: 5678 * Inherited from calling layer (may sleep). 5679 */ 5680 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5681 { 5682 struct ata_host *host; 5683 size_t sz; 5684 int i; 5685 5686 DPRINTK("ENTER\n"); 5687 5688 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5689 return NULL; 5690 5691 /* alloc a container for our list of ATA ports (buses) */ 5692 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5693 /* alloc a container for our list of ATA ports (buses) */ 5694 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5695 if (!host) 5696 goto err_out; 5697 5698 devres_add(dev, host); 5699 dev_set_drvdata(dev, host); 5700 5701 spin_lock_init(&host->lock); 5702 host->dev = dev; 5703 host->n_ports = max_ports; 5704 5705 /* allocate ports bound to this host */ 5706 for (i = 0; i < max_ports; i++) { 5707 struct ata_port *ap; 5708 5709 ap = ata_port_alloc(host); 5710 if (!ap) 5711 goto err_out; 5712 5713 ap->port_no = i; 5714 host->ports[i] = ap; 5715 } 5716 5717 devres_remove_group(dev, NULL); 5718 return host; 5719 5720 err_out: 5721 devres_release_group(dev, NULL); 5722 return NULL; 5723 } 5724 5725 /** 5726 * ata_host_alloc_pinfo - alloc host and init with port_info array 5727 * @dev: generic device this host is associated with 5728 * @ppi: array of ATA port_info to initialize host with 5729 * @n_ports: number of ATA ports attached to this host 5730 * 5731 * Allocate ATA host and initialize with info from @ppi. If NULL 5732 * terminated, @ppi may contain fewer entries than @n_ports. The 5733 * last entry will be used for the remaining ports. 5734 * 5735 * RETURNS: 5736 * Allocate ATA host on success, NULL on failure. 5737 * 5738 * LOCKING: 5739 * Inherited from calling layer (may sleep). 5740 */ 5741 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5742 const struct ata_port_info * const * ppi, 5743 int n_ports) 5744 { 5745 const struct ata_port_info *pi; 5746 struct ata_host *host; 5747 int i, j; 5748 5749 host = ata_host_alloc(dev, n_ports); 5750 if (!host) 5751 return NULL; 5752 5753 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5754 struct ata_port *ap = host->ports[i]; 5755 5756 if (ppi[j]) 5757 pi = ppi[j++]; 5758 5759 ap->pio_mask = pi->pio_mask; 5760 ap->mwdma_mask = pi->mwdma_mask; 5761 ap->udma_mask = pi->udma_mask; 5762 ap->flags |= pi->flags; 5763 ap->link.flags |= pi->link_flags; 5764 ap->ops = pi->port_ops; 5765 5766 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5767 host->ops = pi->port_ops; 5768 } 5769 5770 return host; 5771 } 5772 5773 /** 5774 * ata_slave_link_init - initialize slave link 5775 * @ap: port to initialize slave link for 5776 * 5777 * Create and initialize slave link for @ap. This enables slave 5778 * link handling on the port. 5779 * 5780 * In libata, a port contains links and a link contains devices. 5781 * There is single host link but if a PMP is attached to it, 5782 * there can be multiple fan-out links. On SATA, there's usually 5783 * a single device connected to a link but PATA and SATA 5784 * controllers emulating TF based interface can have two - master 5785 * and slave. 5786 * 5787 * However, there are a few controllers which don't fit into this 5788 * abstraction too well - SATA controllers which emulate TF 5789 * interface with both master and slave devices but also have 5790 * separate SCR register sets for each device. These controllers 5791 * need separate links for physical link handling 5792 * (e.g. onlineness, link speed) but should be treated like a 5793 * traditional M/S controller for everything else (e.g. command 5794 * issue, softreset). 5795 * 5796 * slave_link is libata's way of handling this class of 5797 * controllers without impacting core layer too much. For 5798 * anything other than physical link handling, the default host 5799 * link is used for both master and slave. For physical link 5800 * handling, separate @ap->slave_link is used. All dirty details 5801 * are implemented inside libata core layer. From LLD's POV, the 5802 * only difference is that prereset, hardreset and postreset are 5803 * called once more for the slave link, so the reset sequence 5804 * looks like the following. 5805 * 5806 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5807 * softreset(M) -> postreset(M) -> postreset(S) 5808 * 5809 * Note that softreset is called only for the master. Softreset 5810 * resets both M/S by definition, so SRST on master should handle 5811 * both (the standard method will work just fine). 5812 * 5813 * LOCKING: 5814 * Should be called before host is registered. 5815 * 5816 * RETURNS: 5817 * 0 on success, -errno on failure. 5818 */ 5819 int ata_slave_link_init(struct ata_port *ap) 5820 { 5821 struct ata_link *link; 5822 5823 WARN_ON(ap->slave_link); 5824 WARN_ON(ap->flags & ATA_FLAG_PMP); 5825 5826 link = kzalloc(sizeof(*link), GFP_KERNEL); 5827 if (!link) 5828 return -ENOMEM; 5829 5830 ata_link_init(ap, link, 1); 5831 ap->slave_link = link; 5832 return 0; 5833 } 5834 5835 static void ata_host_stop(struct device *gendev, void *res) 5836 { 5837 struct ata_host *host = dev_get_drvdata(gendev); 5838 int i; 5839 5840 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5841 5842 for (i = 0; i < host->n_ports; i++) { 5843 struct ata_port *ap = host->ports[i]; 5844 5845 if (ap->ops->port_stop) 5846 ap->ops->port_stop(ap); 5847 } 5848 5849 if (host->ops->host_stop) 5850 host->ops->host_stop(host); 5851 } 5852 5853 /** 5854 * ata_finalize_port_ops - finalize ata_port_operations 5855 * @ops: ata_port_operations to finalize 5856 * 5857 * An ata_port_operations can inherit from another ops and that 5858 * ops can again inherit from another. This can go on as many 5859 * times as necessary as long as there is no loop in the 5860 * inheritance chain. 5861 * 5862 * Ops tables are finalized when the host is started. NULL or 5863 * unspecified entries are inherited from the closet ancestor 5864 * which has the method and the entry is populated with it. 5865 * After finalization, the ops table directly points to all the 5866 * methods and ->inherits is no longer necessary and cleared. 5867 * 5868 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5869 * 5870 * LOCKING: 5871 * None. 5872 */ 5873 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5874 { 5875 static DEFINE_SPINLOCK(lock); 5876 const struct ata_port_operations *cur; 5877 void **begin = (void **)ops; 5878 void **end = (void **)&ops->inherits; 5879 void **pp; 5880 5881 if (!ops || !ops->inherits) 5882 return; 5883 5884 spin_lock(&lock); 5885 5886 for (cur = ops->inherits; cur; cur = cur->inherits) { 5887 void **inherit = (void **)cur; 5888 5889 for (pp = begin; pp < end; pp++, inherit++) 5890 if (!*pp) 5891 *pp = *inherit; 5892 } 5893 5894 for (pp = begin; pp < end; pp++) 5895 if (IS_ERR(*pp)) 5896 *pp = NULL; 5897 5898 ops->inherits = NULL; 5899 5900 spin_unlock(&lock); 5901 } 5902 5903 /** 5904 * ata_host_start - start and freeze ports of an ATA host 5905 * @host: ATA host to start ports for 5906 * 5907 * Start and then freeze ports of @host. Started status is 5908 * recorded in host->flags, so this function can be called 5909 * multiple times. Ports are guaranteed to get started only 5910 * once. If host->ops isn't initialized yet, its set to the 5911 * first non-dummy port ops. 5912 * 5913 * LOCKING: 5914 * Inherited from calling layer (may sleep). 5915 * 5916 * RETURNS: 5917 * 0 if all ports are started successfully, -errno otherwise. 5918 */ 5919 int ata_host_start(struct ata_host *host) 5920 { 5921 int have_stop = 0; 5922 void *start_dr = NULL; 5923 int i, rc; 5924 5925 if (host->flags & ATA_HOST_STARTED) 5926 return 0; 5927 5928 ata_finalize_port_ops(host->ops); 5929 5930 for (i = 0; i < host->n_ports; i++) { 5931 struct ata_port *ap = host->ports[i]; 5932 5933 ata_finalize_port_ops(ap->ops); 5934 5935 if (!host->ops && !ata_port_is_dummy(ap)) 5936 host->ops = ap->ops; 5937 5938 if (ap->ops->port_stop) 5939 have_stop = 1; 5940 } 5941 5942 if (host->ops->host_stop) 5943 have_stop = 1; 5944 5945 if (have_stop) { 5946 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5947 if (!start_dr) 5948 return -ENOMEM; 5949 } 5950 5951 for (i = 0; i < host->n_ports; i++) { 5952 struct ata_port *ap = host->ports[i]; 5953 5954 if (ap->ops->port_start) { 5955 rc = ap->ops->port_start(ap); 5956 if (rc) { 5957 if (rc != -ENODEV) 5958 dev_printk(KERN_ERR, host->dev, 5959 "failed to start port %d " 5960 "(errno=%d)\n", i, rc); 5961 goto err_out; 5962 } 5963 } 5964 ata_eh_freeze_port(ap); 5965 } 5966 5967 if (start_dr) 5968 devres_add(host->dev, start_dr); 5969 host->flags |= ATA_HOST_STARTED; 5970 return 0; 5971 5972 err_out: 5973 while (--i >= 0) { 5974 struct ata_port *ap = host->ports[i]; 5975 5976 if (ap->ops->port_stop) 5977 ap->ops->port_stop(ap); 5978 } 5979 devres_free(start_dr); 5980 return rc; 5981 } 5982 5983 /** 5984 * ata_sas_host_init - Initialize a host struct 5985 * @host: host to initialize 5986 * @dev: device host is attached to 5987 * @flags: host flags 5988 * @ops: port_ops 5989 * 5990 * LOCKING: 5991 * PCI/etc. bus probe sem. 5992 * 5993 */ 5994 /* KILLME - the only user left is ipr */ 5995 void ata_host_init(struct ata_host *host, struct device *dev, 5996 unsigned long flags, struct ata_port_operations *ops) 5997 { 5998 spin_lock_init(&host->lock); 5999 host->dev = dev; 6000 host->flags = flags; 6001 host->ops = ops; 6002 } 6003 6004 6005 static void async_port_probe(void *data, async_cookie_t cookie) 6006 { 6007 int rc; 6008 struct ata_port *ap = data; 6009 6010 /* 6011 * If we're not allowed to scan this host in parallel, 6012 * we need to wait until all previous scans have completed 6013 * before going further. 6014 * Jeff Garzik says this is only within a controller, so we 6015 * don't need to wait for port 0, only for later ports. 6016 */ 6017 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6018 async_synchronize_cookie(cookie); 6019 6020 /* probe */ 6021 if (ap->ops->error_handler) { 6022 struct ata_eh_info *ehi = &ap->link.eh_info; 6023 unsigned long flags; 6024 6025 /* kick EH for boot probing */ 6026 spin_lock_irqsave(ap->lock, flags); 6027 6028 ehi->probe_mask |= ATA_ALL_DEVICES; 6029 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6030 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6031 6032 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6033 ap->pflags |= ATA_PFLAG_LOADING; 6034 ata_port_schedule_eh(ap); 6035 6036 spin_unlock_irqrestore(ap->lock, flags); 6037 6038 /* wait for EH to finish */ 6039 ata_port_wait_eh(ap); 6040 } else { 6041 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6042 rc = ata_bus_probe(ap); 6043 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6044 6045 if (rc) { 6046 /* FIXME: do something useful here? 6047 * Current libata behavior will 6048 * tear down everything when 6049 * the module is removed 6050 * or the h/w is unplugged. 6051 */ 6052 } 6053 } 6054 6055 /* in order to keep device order, we need to synchronize at this point */ 6056 async_synchronize_cookie(cookie); 6057 6058 ata_scsi_scan_host(ap, 1); 6059 6060 } 6061 /** 6062 * ata_host_register - register initialized ATA host 6063 * @host: ATA host to register 6064 * @sht: template for SCSI host 6065 * 6066 * Register initialized ATA host. @host is allocated using 6067 * ata_host_alloc() and fully initialized by LLD. This function 6068 * starts ports, registers @host with ATA and SCSI layers and 6069 * probe registered devices. 6070 * 6071 * LOCKING: 6072 * Inherited from calling layer (may sleep). 6073 * 6074 * RETURNS: 6075 * 0 on success, -errno otherwise. 6076 */ 6077 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6078 { 6079 int i, rc; 6080 6081 /* host must have been started */ 6082 if (!(host->flags & ATA_HOST_STARTED)) { 6083 dev_printk(KERN_ERR, host->dev, 6084 "BUG: trying to register unstarted host\n"); 6085 WARN_ON(1); 6086 return -EINVAL; 6087 } 6088 6089 /* Blow away unused ports. This happens when LLD can't 6090 * determine the exact number of ports to allocate at 6091 * allocation time. 6092 */ 6093 for (i = host->n_ports; host->ports[i]; i++) 6094 kfree(host->ports[i]); 6095 6096 /* give ports names and add SCSI hosts */ 6097 for (i = 0; i < host->n_ports; i++) 6098 host->ports[i]->print_id = ata_print_id++; 6099 6100 rc = ata_scsi_add_hosts(host, sht); 6101 if (rc) 6102 return rc; 6103 6104 /* associate with ACPI nodes */ 6105 ata_acpi_associate(host); 6106 6107 /* set cable, sata_spd_limit and report */ 6108 for (i = 0; i < host->n_ports; i++) { 6109 struct ata_port *ap = host->ports[i]; 6110 unsigned long xfer_mask; 6111 6112 /* set SATA cable type if still unset */ 6113 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6114 ap->cbl = ATA_CBL_SATA; 6115 6116 /* init sata_spd_limit to the current value */ 6117 sata_link_init_spd(&ap->link); 6118 if (ap->slave_link) 6119 sata_link_init_spd(ap->slave_link); 6120 6121 /* print per-port info to dmesg */ 6122 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6123 ap->udma_mask); 6124 6125 if (!ata_port_is_dummy(ap)) { 6126 ata_port_printk(ap, KERN_INFO, 6127 "%cATA max %s %s\n", 6128 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6129 ata_mode_string(xfer_mask), 6130 ap->link.eh_info.desc); 6131 ata_ehi_clear_desc(&ap->link.eh_info); 6132 } else 6133 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6134 } 6135 6136 /* perform each probe asynchronously */ 6137 for (i = 0; i < host->n_ports; i++) { 6138 struct ata_port *ap = host->ports[i]; 6139 async_schedule(async_port_probe, ap); 6140 } 6141 6142 return 0; 6143 } 6144 6145 /** 6146 * ata_host_activate - start host, request IRQ and register it 6147 * @host: target ATA host 6148 * @irq: IRQ to request 6149 * @irq_handler: irq_handler used when requesting IRQ 6150 * @irq_flags: irq_flags used when requesting IRQ 6151 * @sht: scsi_host_template to use when registering the host 6152 * 6153 * After allocating an ATA host and initializing it, most libata 6154 * LLDs perform three steps to activate the host - start host, 6155 * request IRQ and register it. This helper takes necessasry 6156 * arguments and performs the three steps in one go. 6157 * 6158 * An invalid IRQ skips the IRQ registration and expects the host to 6159 * have set polling mode on the port. In this case, @irq_handler 6160 * should be NULL. 6161 * 6162 * LOCKING: 6163 * Inherited from calling layer (may sleep). 6164 * 6165 * RETURNS: 6166 * 0 on success, -errno otherwise. 6167 */ 6168 int ata_host_activate(struct ata_host *host, int irq, 6169 irq_handler_t irq_handler, unsigned long irq_flags, 6170 struct scsi_host_template *sht) 6171 { 6172 int i, rc; 6173 6174 rc = ata_host_start(host); 6175 if (rc) 6176 return rc; 6177 6178 /* Special case for polling mode */ 6179 if (!irq) { 6180 WARN_ON(irq_handler); 6181 return ata_host_register(host, sht); 6182 } 6183 6184 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6185 dev_driver_string(host->dev), host); 6186 if (rc) 6187 return rc; 6188 6189 for (i = 0; i < host->n_ports; i++) 6190 ata_port_desc(host->ports[i], "irq %d", irq); 6191 6192 rc = ata_host_register(host, sht); 6193 /* if failed, just free the IRQ and leave ports alone */ 6194 if (rc) 6195 devm_free_irq(host->dev, irq, host); 6196 6197 return rc; 6198 } 6199 6200 /** 6201 * ata_port_detach - Detach ATA port in prepration of device removal 6202 * @ap: ATA port to be detached 6203 * 6204 * Detach all ATA devices and the associated SCSI devices of @ap; 6205 * then, remove the associated SCSI host. @ap is guaranteed to 6206 * be quiescent on return from this function. 6207 * 6208 * LOCKING: 6209 * Kernel thread context (may sleep). 6210 */ 6211 static void ata_port_detach(struct ata_port *ap) 6212 { 6213 unsigned long flags; 6214 6215 if (!ap->ops->error_handler) 6216 goto skip_eh; 6217 6218 /* tell EH we're leaving & flush EH */ 6219 spin_lock_irqsave(ap->lock, flags); 6220 ap->pflags |= ATA_PFLAG_UNLOADING; 6221 ata_port_schedule_eh(ap); 6222 spin_unlock_irqrestore(ap->lock, flags); 6223 6224 /* wait till EH commits suicide */ 6225 ata_port_wait_eh(ap); 6226 6227 /* it better be dead now */ 6228 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6229 6230 cancel_rearming_delayed_work(&ap->hotplug_task); 6231 6232 skip_eh: 6233 /* remove the associated SCSI host */ 6234 scsi_remove_host(ap->scsi_host); 6235 } 6236 6237 /** 6238 * ata_host_detach - Detach all ports of an ATA host 6239 * @host: Host to detach 6240 * 6241 * Detach all ports of @host. 6242 * 6243 * LOCKING: 6244 * Kernel thread context (may sleep). 6245 */ 6246 void ata_host_detach(struct ata_host *host) 6247 { 6248 int i; 6249 6250 for (i = 0; i < host->n_ports; i++) 6251 ata_port_detach(host->ports[i]); 6252 6253 /* the host is dead now, dissociate ACPI */ 6254 ata_acpi_dissociate(host); 6255 } 6256 6257 #ifdef CONFIG_PCI 6258 6259 /** 6260 * ata_pci_remove_one - PCI layer callback for device removal 6261 * @pdev: PCI device that was removed 6262 * 6263 * PCI layer indicates to libata via this hook that hot-unplug or 6264 * module unload event has occurred. Detach all ports. Resource 6265 * release is handled via devres. 6266 * 6267 * LOCKING: 6268 * Inherited from PCI layer (may sleep). 6269 */ 6270 void ata_pci_remove_one(struct pci_dev *pdev) 6271 { 6272 struct device *dev = &pdev->dev; 6273 struct ata_host *host = dev_get_drvdata(dev); 6274 6275 ata_host_detach(host); 6276 } 6277 6278 /* move to PCI subsystem */ 6279 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6280 { 6281 unsigned long tmp = 0; 6282 6283 switch (bits->width) { 6284 case 1: { 6285 u8 tmp8 = 0; 6286 pci_read_config_byte(pdev, bits->reg, &tmp8); 6287 tmp = tmp8; 6288 break; 6289 } 6290 case 2: { 6291 u16 tmp16 = 0; 6292 pci_read_config_word(pdev, bits->reg, &tmp16); 6293 tmp = tmp16; 6294 break; 6295 } 6296 case 4: { 6297 u32 tmp32 = 0; 6298 pci_read_config_dword(pdev, bits->reg, &tmp32); 6299 tmp = tmp32; 6300 break; 6301 } 6302 6303 default: 6304 return -EINVAL; 6305 } 6306 6307 tmp &= bits->mask; 6308 6309 return (tmp == bits->val) ? 1 : 0; 6310 } 6311 6312 #ifdef CONFIG_PM 6313 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6314 { 6315 pci_save_state(pdev); 6316 pci_disable_device(pdev); 6317 6318 if (mesg.event & PM_EVENT_SLEEP) 6319 pci_set_power_state(pdev, PCI_D3hot); 6320 } 6321 6322 int ata_pci_device_do_resume(struct pci_dev *pdev) 6323 { 6324 int rc; 6325 6326 pci_set_power_state(pdev, PCI_D0); 6327 pci_restore_state(pdev); 6328 6329 rc = pcim_enable_device(pdev); 6330 if (rc) { 6331 dev_printk(KERN_ERR, &pdev->dev, 6332 "failed to enable device after resume (%d)\n", rc); 6333 return rc; 6334 } 6335 6336 pci_set_master(pdev); 6337 return 0; 6338 } 6339 6340 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6341 { 6342 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6343 int rc = 0; 6344 6345 rc = ata_host_suspend(host, mesg); 6346 if (rc) 6347 return rc; 6348 6349 ata_pci_device_do_suspend(pdev, mesg); 6350 6351 return 0; 6352 } 6353 6354 int ata_pci_device_resume(struct pci_dev *pdev) 6355 { 6356 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6357 int rc; 6358 6359 rc = ata_pci_device_do_resume(pdev); 6360 if (rc == 0) 6361 ata_host_resume(host); 6362 return rc; 6363 } 6364 #endif /* CONFIG_PM */ 6365 6366 #endif /* CONFIG_PCI */ 6367 6368 static int __init ata_parse_force_one(char **cur, 6369 struct ata_force_ent *force_ent, 6370 const char **reason) 6371 { 6372 /* FIXME: Currently, there's no way to tag init const data and 6373 * using __initdata causes build failure on some versions of 6374 * gcc. Once __initdataconst is implemented, add const to the 6375 * following structure. 6376 */ 6377 static struct ata_force_param force_tbl[] __initdata = { 6378 { "40c", .cbl = ATA_CBL_PATA40 }, 6379 { "80c", .cbl = ATA_CBL_PATA80 }, 6380 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6381 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6382 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6383 { "sata", .cbl = ATA_CBL_SATA }, 6384 { "1.5Gbps", .spd_limit = 1 }, 6385 { "3.0Gbps", .spd_limit = 2 }, 6386 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6387 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6388 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6389 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6390 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6391 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6392 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6393 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6394 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6395 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6396 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6397 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6398 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6399 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6400 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6401 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6402 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6403 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6404 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6405 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6406 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6407 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6408 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6409 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6410 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6411 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6412 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6413 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6414 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6415 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6416 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6417 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6418 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6419 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6420 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6421 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6422 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6423 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6424 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6425 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6426 }; 6427 char *start = *cur, *p = *cur; 6428 char *id, *val, *endp; 6429 const struct ata_force_param *match_fp = NULL; 6430 int nr_matches = 0, i; 6431 6432 /* find where this param ends and update *cur */ 6433 while (*p != '\0' && *p != ',') 6434 p++; 6435 6436 if (*p == '\0') 6437 *cur = p; 6438 else 6439 *cur = p + 1; 6440 6441 *p = '\0'; 6442 6443 /* parse */ 6444 p = strchr(start, ':'); 6445 if (!p) { 6446 val = strstrip(start); 6447 goto parse_val; 6448 } 6449 *p = '\0'; 6450 6451 id = strstrip(start); 6452 val = strstrip(p + 1); 6453 6454 /* parse id */ 6455 p = strchr(id, '.'); 6456 if (p) { 6457 *p++ = '\0'; 6458 force_ent->device = simple_strtoul(p, &endp, 10); 6459 if (p == endp || *endp != '\0') { 6460 *reason = "invalid device"; 6461 return -EINVAL; 6462 } 6463 } 6464 6465 force_ent->port = simple_strtoul(id, &endp, 10); 6466 if (p == endp || *endp != '\0') { 6467 *reason = "invalid port/link"; 6468 return -EINVAL; 6469 } 6470 6471 parse_val: 6472 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6473 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6474 const struct ata_force_param *fp = &force_tbl[i]; 6475 6476 if (strncasecmp(val, fp->name, strlen(val))) 6477 continue; 6478 6479 nr_matches++; 6480 match_fp = fp; 6481 6482 if (strcasecmp(val, fp->name) == 0) { 6483 nr_matches = 1; 6484 break; 6485 } 6486 } 6487 6488 if (!nr_matches) { 6489 *reason = "unknown value"; 6490 return -EINVAL; 6491 } 6492 if (nr_matches > 1) { 6493 *reason = "ambigious value"; 6494 return -EINVAL; 6495 } 6496 6497 force_ent->param = *match_fp; 6498 6499 return 0; 6500 } 6501 6502 static void __init ata_parse_force_param(void) 6503 { 6504 int idx = 0, size = 1; 6505 int last_port = -1, last_device = -1; 6506 char *p, *cur, *next; 6507 6508 /* calculate maximum number of params and allocate force_tbl */ 6509 for (p = ata_force_param_buf; *p; p++) 6510 if (*p == ',') 6511 size++; 6512 6513 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6514 if (!ata_force_tbl) { 6515 printk(KERN_WARNING "ata: failed to extend force table, " 6516 "libata.force ignored\n"); 6517 return; 6518 } 6519 6520 /* parse and populate the table */ 6521 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6522 const char *reason = ""; 6523 struct ata_force_ent te = { .port = -1, .device = -1 }; 6524 6525 next = cur; 6526 if (ata_parse_force_one(&next, &te, &reason)) { 6527 printk(KERN_WARNING "ata: failed to parse force " 6528 "parameter \"%s\" (%s)\n", 6529 cur, reason); 6530 continue; 6531 } 6532 6533 if (te.port == -1) { 6534 te.port = last_port; 6535 te.device = last_device; 6536 } 6537 6538 ata_force_tbl[idx++] = te; 6539 6540 last_port = te.port; 6541 last_device = te.device; 6542 } 6543 6544 ata_force_tbl_size = idx; 6545 } 6546 6547 static int __init ata_init(void) 6548 { 6549 int rc = -ENOMEM; 6550 6551 ata_parse_force_param(); 6552 6553 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6554 if (!ata_aux_wq) 6555 goto fail; 6556 6557 rc = ata_sff_init(); 6558 if (rc) 6559 goto fail; 6560 6561 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6562 return 0; 6563 6564 fail: 6565 kfree(ata_force_tbl); 6566 if (ata_aux_wq) 6567 destroy_workqueue(ata_aux_wq); 6568 return rc; 6569 } 6570 6571 static void __exit ata_exit(void) 6572 { 6573 ata_sff_exit(); 6574 kfree(ata_force_tbl); 6575 destroy_workqueue(ata_aux_wq); 6576 } 6577 6578 subsys_initcall(ata_init); 6579 module_exit(ata_exit); 6580 6581 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6582 6583 int ata_ratelimit(void) 6584 { 6585 return __ratelimit(&ratelimit); 6586 } 6587 6588 /** 6589 * ata_wait_register - wait until register value changes 6590 * @reg: IO-mapped register 6591 * @mask: Mask to apply to read register value 6592 * @val: Wait condition 6593 * @interval: polling interval in milliseconds 6594 * @timeout: timeout in milliseconds 6595 * 6596 * Waiting for some bits of register to change is a common 6597 * operation for ATA controllers. This function reads 32bit LE 6598 * IO-mapped register @reg and tests for the following condition. 6599 * 6600 * (*@reg & mask) != val 6601 * 6602 * If the condition is met, it returns; otherwise, the process is 6603 * repeated after @interval_msec until timeout. 6604 * 6605 * LOCKING: 6606 * Kernel thread context (may sleep) 6607 * 6608 * RETURNS: 6609 * The final register value. 6610 */ 6611 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6612 unsigned long interval, unsigned long timeout) 6613 { 6614 unsigned long deadline; 6615 u32 tmp; 6616 6617 tmp = ioread32(reg); 6618 6619 /* Calculate timeout _after_ the first read to make sure 6620 * preceding writes reach the controller before starting to 6621 * eat away the timeout. 6622 */ 6623 deadline = ata_deadline(jiffies, timeout); 6624 6625 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6626 msleep(interval); 6627 tmp = ioread32(reg); 6628 } 6629 6630 return tmp; 6631 } 6632 6633 /* 6634 * Dummy port_ops 6635 */ 6636 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6637 { 6638 return AC_ERR_SYSTEM; 6639 } 6640 6641 static void ata_dummy_error_handler(struct ata_port *ap) 6642 { 6643 /* truly dummy */ 6644 } 6645 6646 struct ata_port_operations ata_dummy_port_ops = { 6647 .qc_prep = ata_noop_qc_prep, 6648 .qc_issue = ata_dummy_qc_issue, 6649 .error_handler = ata_dummy_error_handler, 6650 }; 6651 6652 const struct ata_port_info ata_dummy_port_info = { 6653 .port_ops = &ata_dummy_port_ops, 6654 }; 6655 6656 /* 6657 * libata is essentially a library of internal helper functions for 6658 * low-level ATA host controller drivers. As such, the API/ABI is 6659 * likely to change as new drivers are added and updated. 6660 * Do not depend on ABI/API stability. 6661 */ 6662 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6663 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6664 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6665 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6666 EXPORT_SYMBOL_GPL(sata_port_ops); 6667 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6668 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6669 EXPORT_SYMBOL_GPL(ata_link_next); 6670 EXPORT_SYMBOL_GPL(ata_dev_next); 6671 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6672 EXPORT_SYMBOL_GPL(ata_host_init); 6673 EXPORT_SYMBOL_GPL(ata_host_alloc); 6674 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6675 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6676 EXPORT_SYMBOL_GPL(ata_host_start); 6677 EXPORT_SYMBOL_GPL(ata_host_register); 6678 EXPORT_SYMBOL_GPL(ata_host_activate); 6679 EXPORT_SYMBOL_GPL(ata_host_detach); 6680 EXPORT_SYMBOL_GPL(ata_sg_init); 6681 EXPORT_SYMBOL_GPL(ata_qc_complete); 6682 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6683 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6684 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6685 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6686 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6687 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6688 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6689 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6690 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6691 EXPORT_SYMBOL_GPL(ata_mode_string); 6692 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6693 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6694 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6695 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6696 EXPORT_SYMBOL_GPL(ata_dev_disable); 6697 EXPORT_SYMBOL_GPL(sata_set_spd); 6698 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6699 EXPORT_SYMBOL_GPL(sata_link_debounce); 6700 EXPORT_SYMBOL_GPL(sata_link_resume); 6701 EXPORT_SYMBOL_GPL(ata_std_prereset); 6702 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6703 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6704 EXPORT_SYMBOL_GPL(ata_std_postreset); 6705 EXPORT_SYMBOL_GPL(ata_dev_classify); 6706 EXPORT_SYMBOL_GPL(ata_dev_pair); 6707 EXPORT_SYMBOL_GPL(ata_ratelimit); 6708 EXPORT_SYMBOL_GPL(ata_wait_register); 6709 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6710 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6711 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6712 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6713 EXPORT_SYMBOL_GPL(sata_scr_valid); 6714 EXPORT_SYMBOL_GPL(sata_scr_read); 6715 EXPORT_SYMBOL_GPL(sata_scr_write); 6716 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6717 EXPORT_SYMBOL_GPL(ata_link_online); 6718 EXPORT_SYMBOL_GPL(ata_link_offline); 6719 #ifdef CONFIG_PM 6720 EXPORT_SYMBOL_GPL(ata_host_suspend); 6721 EXPORT_SYMBOL_GPL(ata_host_resume); 6722 #endif /* CONFIG_PM */ 6723 EXPORT_SYMBOL_GPL(ata_id_string); 6724 EXPORT_SYMBOL_GPL(ata_id_c_string); 6725 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6726 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6727 6728 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6729 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6730 EXPORT_SYMBOL_GPL(ata_timing_compute); 6731 EXPORT_SYMBOL_GPL(ata_timing_merge); 6732 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6733 6734 #ifdef CONFIG_PCI 6735 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6736 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6737 #ifdef CONFIG_PM 6738 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6739 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6740 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6741 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6742 #endif /* CONFIG_PM */ 6743 #endif /* CONFIG_PCI */ 6744 6745 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6746 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6747 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6748 EXPORT_SYMBOL_GPL(ata_port_desc); 6749 #ifdef CONFIG_PCI 6750 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6751 #endif /* CONFIG_PCI */ 6752 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6753 EXPORT_SYMBOL_GPL(ata_link_abort); 6754 EXPORT_SYMBOL_GPL(ata_port_abort); 6755 EXPORT_SYMBOL_GPL(ata_port_freeze); 6756 EXPORT_SYMBOL_GPL(sata_async_notification); 6757 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6758 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6759 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6760 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6761 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6762 EXPORT_SYMBOL_GPL(ata_do_eh); 6763 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6764 6765 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6766 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6767 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6768 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6769 EXPORT_SYMBOL_GPL(ata_cable_sata); 6770