xref: /linux/drivers/ata/libata-core.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
66 
67 #include "libata.h"
68 
69 
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
73 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
74 
75 const struct ata_port_operations ata_base_port_ops = {
76 	.prereset		= ata_std_prereset,
77 	.postreset		= ata_std_postreset,
78 	.error_handler		= ata_std_error_handler,
79 };
80 
81 const struct ata_port_operations sata_port_ops = {
82 	.inherits		= &ata_base_port_ops,
83 
84 	.qc_defer		= ata_std_qc_defer,
85 	.hardreset		= sata_std_hardreset,
86 };
87 
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 					u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 					u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
98 
99 struct workqueue_struct *ata_aux_wq;
100 
101 struct ata_force_param {
102 	const char	*name;
103 	unsigned int	cbl;
104 	int		spd_limit;
105 	unsigned long	xfer_mask;
106 	unsigned int	horkage_on;
107 	unsigned int	horkage_off;
108 	unsigned int	lflags;
109 };
110 
111 struct ata_force_ent {
112 	int			port;
113 	int			device;
114 	struct ata_force_param	param;
115 };
116 
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
119 
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
165 
166 
167 static bool ata_sstatus_online(u32 sstatus)
168 {
169 	return (sstatus & 0xf) == 0x3;
170 }
171 
172 /**
173  *	ata_link_next - link iteration helper
174  *	@link: the previous link, NULL to start
175  *	@ap: ATA port containing links to iterate
176  *	@mode: iteration mode, one of ATA_LITER_*
177  *
178  *	LOCKING:
179  *	Host lock or EH context.
180  *
181  *	RETURNS:
182  *	Pointer to the next link.
183  */
184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 			       enum ata_link_iter_mode mode)
186 {
187 	BUG_ON(mode != ATA_LITER_EDGE &&
188 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
189 
190 	/* NULL link indicates start of iteration */
191 	if (!link)
192 		switch (mode) {
193 		case ATA_LITER_EDGE:
194 		case ATA_LITER_PMP_FIRST:
195 			if (sata_pmp_attached(ap))
196 				return ap->pmp_link;
197 			/* fall through */
198 		case ATA_LITER_HOST_FIRST:
199 			return &ap->link;
200 		}
201 
202 	/* we just iterated over the host link, what's next? */
203 	if (link == &ap->link)
204 		switch (mode) {
205 		case ATA_LITER_HOST_FIRST:
206 			if (sata_pmp_attached(ap))
207 				return ap->pmp_link;
208 			/* fall through */
209 		case ATA_LITER_PMP_FIRST:
210 			if (unlikely(ap->slave_link))
211 				return ap->slave_link;
212 			/* fall through */
213 		case ATA_LITER_EDGE:
214 			return NULL;
215 		}
216 
217 	/* slave_link excludes PMP */
218 	if (unlikely(link == ap->slave_link))
219 		return NULL;
220 
221 	/* we were over a PMP link */
222 	if (++link < ap->pmp_link + ap->nr_pmp_links)
223 		return link;
224 
225 	if (mode == ATA_LITER_PMP_FIRST)
226 		return &ap->link;
227 
228 	return NULL;
229 }
230 
231 /**
232  *	ata_dev_next - device iteration helper
233  *	@dev: the previous device, NULL to start
234  *	@link: ATA link containing devices to iterate
235  *	@mode: iteration mode, one of ATA_DITER_*
236  *
237  *	LOCKING:
238  *	Host lock or EH context.
239  *
240  *	RETURNS:
241  *	Pointer to the next device.
242  */
243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 				enum ata_dev_iter_mode mode)
245 {
246 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
248 
249 	/* NULL dev indicates start of iteration */
250 	if (!dev)
251 		switch (mode) {
252 		case ATA_DITER_ENABLED:
253 		case ATA_DITER_ALL:
254 			dev = link->device;
255 			goto check;
256 		case ATA_DITER_ENABLED_REVERSE:
257 		case ATA_DITER_ALL_REVERSE:
258 			dev = link->device + ata_link_max_devices(link) - 1;
259 			goto check;
260 		}
261 
262  next:
263 	/* move to the next one */
264 	switch (mode) {
265 	case ATA_DITER_ENABLED:
266 	case ATA_DITER_ALL:
267 		if (++dev < link->device + ata_link_max_devices(link))
268 			goto check;
269 		return NULL;
270 	case ATA_DITER_ENABLED_REVERSE:
271 	case ATA_DITER_ALL_REVERSE:
272 		if (--dev >= link->device)
273 			goto check;
274 		return NULL;
275 	}
276 
277  check:
278 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 	    !ata_dev_enabled(dev))
280 		goto next;
281 	return dev;
282 }
283 
284 /**
285  *	ata_dev_phys_link - find physical link for a device
286  *	@dev: ATA device to look up physical link for
287  *
288  *	Look up physical link which @dev is attached to.  Note that
289  *	this is different from @dev->link only when @dev is on slave
290  *	link.  For all other cases, it's the same as @dev->link.
291  *
292  *	LOCKING:
293  *	Don't care.
294  *
295  *	RETURNS:
296  *	Pointer to the found physical link.
297  */
298 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
299 {
300 	struct ata_port *ap = dev->link->ap;
301 
302 	if (!ap->slave_link)
303 		return dev->link;
304 	if (!dev->devno)
305 		return &ap->link;
306 	return ap->slave_link;
307 }
308 
309 /**
310  *	ata_force_cbl - force cable type according to libata.force
311  *	@ap: ATA port of interest
312  *
313  *	Force cable type according to libata.force and whine about it.
314  *	The last entry which has matching port number is used, so it
315  *	can be specified as part of device force parameters.  For
316  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317  *	same effect.
318  *
319  *	LOCKING:
320  *	EH context.
321  */
322 void ata_force_cbl(struct ata_port *ap)
323 {
324 	int i;
325 
326 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 		const struct ata_force_ent *fe = &ata_force_tbl[i];
328 
329 		if (fe->port != -1 && fe->port != ap->print_id)
330 			continue;
331 
332 		if (fe->param.cbl == ATA_CBL_NONE)
333 			continue;
334 
335 		ap->cbl = fe->param.cbl;
336 		ata_port_printk(ap, KERN_NOTICE,
337 				"FORCE: cable set to %s\n", fe->param.name);
338 		return;
339 	}
340 }
341 
342 /**
343  *	ata_force_link_limits - force link limits according to libata.force
344  *	@link: ATA link of interest
345  *
346  *	Force link flags and SATA spd limit according to libata.force
347  *	and whine about it.  When only the port part is specified
348  *	(e.g. 1:), the limit applies to all links connected to both
349  *	the host link and all fan-out ports connected via PMP.  If the
350  *	device part is specified as 0 (e.g. 1.00:), it specifies the
351  *	first fan-out link not the host link.  Device number 15 always
352  *	points to the host link whether PMP is attached or not.  If the
353  *	controller has slave link, device number 16 points to it.
354  *
355  *	LOCKING:
356  *	EH context.
357  */
358 static void ata_force_link_limits(struct ata_link *link)
359 {
360 	bool did_spd = false;
361 	int linkno = link->pmp;
362 	int i;
363 
364 	if (ata_is_host_link(link))
365 		linkno += 15;
366 
367 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 		const struct ata_force_ent *fe = &ata_force_tbl[i];
369 
370 		if (fe->port != -1 && fe->port != link->ap->print_id)
371 			continue;
372 
373 		if (fe->device != -1 && fe->device != linkno)
374 			continue;
375 
376 		/* only honor the first spd limit */
377 		if (!did_spd && fe->param.spd_limit) {
378 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 			ata_link_printk(link, KERN_NOTICE,
380 					"FORCE: PHY spd limit set to %s\n",
381 					fe->param.name);
382 			did_spd = true;
383 		}
384 
385 		/* let lflags stack */
386 		if (fe->param.lflags) {
387 			link->flags |= fe->param.lflags;
388 			ata_link_printk(link, KERN_NOTICE,
389 					"FORCE: link flag 0x%x forced -> 0x%x\n",
390 					fe->param.lflags, link->flags);
391 		}
392 	}
393 }
394 
395 /**
396  *	ata_force_xfermask - force xfermask according to libata.force
397  *	@dev: ATA device of interest
398  *
399  *	Force xfer_mask according to libata.force and whine about it.
400  *	For consistency with link selection, device number 15 selects
401  *	the first device connected to the host link.
402  *
403  *	LOCKING:
404  *	EH context.
405  */
406 static void ata_force_xfermask(struct ata_device *dev)
407 {
408 	int devno = dev->link->pmp + dev->devno;
409 	int alt_devno = devno;
410 	int i;
411 
412 	/* allow n.15/16 for devices attached to host port */
413 	if (ata_is_host_link(dev->link))
414 		alt_devno += 15;
415 
416 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 		const struct ata_force_ent *fe = &ata_force_tbl[i];
418 		unsigned long pio_mask, mwdma_mask, udma_mask;
419 
420 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 			continue;
422 
423 		if (fe->device != -1 && fe->device != devno &&
424 		    fe->device != alt_devno)
425 			continue;
426 
427 		if (!fe->param.xfer_mask)
428 			continue;
429 
430 		ata_unpack_xfermask(fe->param.xfer_mask,
431 				    &pio_mask, &mwdma_mask, &udma_mask);
432 		if (udma_mask)
433 			dev->udma_mask = udma_mask;
434 		else if (mwdma_mask) {
435 			dev->udma_mask = 0;
436 			dev->mwdma_mask = mwdma_mask;
437 		} else {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = 0;
440 			dev->pio_mask = pio_mask;
441 		}
442 
443 		ata_dev_printk(dev, KERN_NOTICE,
444 			"FORCE: xfer_mask set to %s\n", fe->param.name);
445 		return;
446 	}
447 }
448 
449 /**
450  *	ata_force_horkage - force horkage according to libata.force
451  *	@dev: ATA device of interest
452  *
453  *	Force horkage according to libata.force and whine about it.
454  *	For consistency with link selection, device number 15 selects
455  *	the first device connected to the host link.
456  *
457  *	LOCKING:
458  *	EH context.
459  */
460 static void ata_force_horkage(struct ata_device *dev)
461 {
462 	int devno = dev->link->pmp + dev->devno;
463 	int alt_devno = devno;
464 	int i;
465 
466 	/* allow n.15/16 for devices attached to host port */
467 	if (ata_is_host_link(dev->link))
468 		alt_devno += 15;
469 
470 	for (i = 0; i < ata_force_tbl_size; i++) {
471 		const struct ata_force_ent *fe = &ata_force_tbl[i];
472 
473 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 			continue;
475 
476 		if (fe->device != -1 && fe->device != devno &&
477 		    fe->device != alt_devno)
478 			continue;
479 
480 		if (!(~dev->horkage & fe->param.horkage_on) &&
481 		    !(dev->horkage & fe->param.horkage_off))
482 			continue;
483 
484 		dev->horkage |= fe->param.horkage_on;
485 		dev->horkage &= ~fe->param.horkage_off;
486 
487 		ata_dev_printk(dev, KERN_NOTICE,
488 			"FORCE: horkage modified (%s)\n", fe->param.name);
489 	}
490 }
491 
492 /**
493  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494  *	@opcode: SCSI opcode
495  *
496  *	Determine ATAPI command type from @opcode.
497  *
498  *	LOCKING:
499  *	None.
500  *
501  *	RETURNS:
502  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
503  */
504 int atapi_cmd_type(u8 opcode)
505 {
506 	switch (opcode) {
507 	case GPCMD_READ_10:
508 	case GPCMD_READ_12:
509 		return ATAPI_READ;
510 
511 	case GPCMD_WRITE_10:
512 	case GPCMD_WRITE_12:
513 	case GPCMD_WRITE_AND_VERIFY_10:
514 		return ATAPI_WRITE;
515 
516 	case GPCMD_READ_CD:
517 	case GPCMD_READ_CD_MSF:
518 		return ATAPI_READ_CD;
519 
520 	case ATA_16:
521 	case ATA_12:
522 		if (atapi_passthru16)
523 			return ATAPI_PASS_THRU;
524 		/* fall thru */
525 	default:
526 		return ATAPI_MISC;
527 	}
528 }
529 
530 /**
531  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532  *	@tf: Taskfile to convert
533  *	@pmp: Port multiplier port
534  *	@is_cmd: This FIS is for command
535  *	@fis: Buffer into which data will output
536  *
537  *	Converts a standard ATA taskfile to a Serial ATA
538  *	FIS structure (Register - Host to Device).
539  *
540  *	LOCKING:
541  *	Inherited from caller.
542  */
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
544 {
545 	fis[0] = 0x27;			/* Register - Host to Device FIS */
546 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
547 	if (is_cmd)
548 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
549 
550 	fis[2] = tf->command;
551 	fis[3] = tf->feature;
552 
553 	fis[4] = tf->lbal;
554 	fis[5] = tf->lbam;
555 	fis[6] = tf->lbah;
556 	fis[7] = tf->device;
557 
558 	fis[8] = tf->hob_lbal;
559 	fis[9] = tf->hob_lbam;
560 	fis[10] = tf->hob_lbah;
561 	fis[11] = tf->hob_feature;
562 
563 	fis[12] = tf->nsect;
564 	fis[13] = tf->hob_nsect;
565 	fis[14] = 0;
566 	fis[15] = tf->ctl;
567 
568 	fis[16] = 0;
569 	fis[17] = 0;
570 	fis[18] = 0;
571 	fis[19] = 0;
572 }
573 
574 /**
575  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576  *	@fis: Buffer from which data will be input
577  *	@tf: Taskfile to output
578  *
579  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
580  *
581  *	LOCKING:
582  *	Inherited from caller.
583  */
584 
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
586 {
587 	tf->command	= fis[2];	/* status */
588 	tf->feature	= fis[3];	/* error */
589 
590 	tf->lbal	= fis[4];
591 	tf->lbam	= fis[5];
592 	tf->lbah	= fis[6];
593 	tf->device	= fis[7];
594 
595 	tf->hob_lbal	= fis[8];
596 	tf->hob_lbam	= fis[9];
597 	tf->hob_lbah	= fis[10];
598 
599 	tf->nsect	= fis[12];
600 	tf->hob_nsect	= fis[13];
601 }
602 
603 static const u8 ata_rw_cmds[] = {
604 	/* pio multi */
605 	ATA_CMD_READ_MULTI,
606 	ATA_CMD_WRITE_MULTI,
607 	ATA_CMD_READ_MULTI_EXT,
608 	ATA_CMD_WRITE_MULTI_EXT,
609 	0,
610 	0,
611 	0,
612 	ATA_CMD_WRITE_MULTI_FUA_EXT,
613 	/* pio */
614 	ATA_CMD_PIO_READ,
615 	ATA_CMD_PIO_WRITE,
616 	ATA_CMD_PIO_READ_EXT,
617 	ATA_CMD_PIO_WRITE_EXT,
618 	0,
619 	0,
620 	0,
621 	0,
622 	/* dma */
623 	ATA_CMD_READ,
624 	ATA_CMD_WRITE,
625 	ATA_CMD_READ_EXT,
626 	ATA_CMD_WRITE_EXT,
627 	0,
628 	0,
629 	0,
630 	ATA_CMD_WRITE_FUA_EXT
631 };
632 
633 /**
634  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
635  *	@tf: command to examine and configure
636  *	@dev: device tf belongs to
637  *
638  *	Examine the device configuration and tf->flags to calculate
639  *	the proper read/write commands and protocol to use.
640  *
641  *	LOCKING:
642  *	caller.
643  */
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
645 {
646 	u8 cmd;
647 
648 	int index, fua, lba48, write;
649 
650 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
653 
654 	if (dev->flags & ATA_DFLAG_PIO) {
655 		tf->protocol = ATA_PROT_PIO;
656 		index = dev->multi_count ? 0 : 8;
657 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 		/* Unable to use DMA due to host limitation */
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else {
662 		tf->protocol = ATA_PROT_DMA;
663 		index = 16;
664 	}
665 
666 	cmd = ata_rw_cmds[index + fua + lba48 + write];
667 	if (cmd) {
668 		tf->command = cmd;
669 		return 0;
670 	}
671 	return -1;
672 }
673 
674 /**
675  *	ata_tf_read_block - Read block address from ATA taskfile
676  *	@tf: ATA taskfile of interest
677  *	@dev: ATA device @tf belongs to
678  *
679  *	LOCKING:
680  *	None.
681  *
682  *	Read block address from @tf.  This function can handle all
683  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
684  *	flags select the address format to use.
685  *
686  *	RETURNS:
687  *	Block address read from @tf.
688  */
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
690 {
691 	u64 block = 0;
692 
693 	if (tf->flags & ATA_TFLAG_LBA) {
694 		if (tf->flags & ATA_TFLAG_LBA48) {
695 			block |= (u64)tf->hob_lbah << 40;
696 			block |= (u64)tf->hob_lbam << 32;
697 			block |= (u64)tf->hob_lbal << 24;
698 		} else
699 			block |= (tf->device & 0xf) << 24;
700 
701 		block |= tf->lbah << 16;
702 		block |= tf->lbam << 8;
703 		block |= tf->lbal;
704 	} else {
705 		u32 cyl, head, sect;
706 
707 		cyl = tf->lbam | (tf->lbah << 8);
708 		head = tf->device & 0xf;
709 		sect = tf->lbal;
710 
711 		block = (cyl * dev->heads + head) * dev->sectors + sect;
712 	}
713 
714 	return block;
715 }
716 
717 /**
718  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
719  *	@tf: Target ATA taskfile
720  *	@dev: ATA device @tf belongs to
721  *	@block: Block address
722  *	@n_block: Number of blocks
723  *	@tf_flags: RW/FUA etc...
724  *	@tag: tag
725  *
726  *	LOCKING:
727  *	None.
728  *
729  *	Build ATA taskfile @tf for read/write request described by
730  *	@block, @n_block, @tf_flags and @tag on @dev.
731  *
732  *	RETURNS:
733  *
734  *	0 on success, -ERANGE if the request is too large for @dev,
735  *	-EINVAL if the request is invalid.
736  */
737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 		    u64 block, u32 n_block, unsigned int tf_flags,
739 		    unsigned int tag)
740 {
741 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 	tf->flags |= tf_flags;
743 
744 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
745 		/* yay, NCQ */
746 		if (!lba_48_ok(block, n_block))
747 			return -ERANGE;
748 
749 		tf->protocol = ATA_PROT_NCQ;
750 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
751 
752 		if (tf->flags & ATA_TFLAG_WRITE)
753 			tf->command = ATA_CMD_FPDMA_WRITE;
754 		else
755 			tf->command = ATA_CMD_FPDMA_READ;
756 
757 		tf->nsect = tag << 3;
758 		tf->hob_feature = (n_block >> 8) & 0xff;
759 		tf->feature = n_block & 0xff;
760 
761 		tf->hob_lbah = (block >> 40) & 0xff;
762 		tf->hob_lbam = (block >> 32) & 0xff;
763 		tf->hob_lbal = (block >> 24) & 0xff;
764 		tf->lbah = (block >> 16) & 0xff;
765 		tf->lbam = (block >> 8) & 0xff;
766 		tf->lbal = block & 0xff;
767 
768 		tf->device = 1 << 6;
769 		if (tf->flags & ATA_TFLAG_FUA)
770 			tf->device |= 1 << 7;
771 	} else if (dev->flags & ATA_DFLAG_LBA) {
772 		tf->flags |= ATA_TFLAG_LBA;
773 
774 		if (lba_28_ok(block, n_block)) {
775 			/* use LBA28 */
776 			tf->device |= (block >> 24) & 0xf;
777 		} else if (lba_48_ok(block, n_block)) {
778 			if (!(dev->flags & ATA_DFLAG_LBA48))
779 				return -ERANGE;
780 
781 			/* use LBA48 */
782 			tf->flags |= ATA_TFLAG_LBA48;
783 
784 			tf->hob_nsect = (n_block >> 8) & 0xff;
785 
786 			tf->hob_lbah = (block >> 40) & 0xff;
787 			tf->hob_lbam = (block >> 32) & 0xff;
788 			tf->hob_lbal = (block >> 24) & 0xff;
789 		} else
790 			/* request too large even for LBA48 */
791 			return -ERANGE;
792 
793 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
794 			return -EINVAL;
795 
796 		tf->nsect = n_block & 0xff;
797 
798 		tf->lbah = (block >> 16) & 0xff;
799 		tf->lbam = (block >> 8) & 0xff;
800 		tf->lbal = block & 0xff;
801 
802 		tf->device |= ATA_LBA;
803 	} else {
804 		/* CHS */
805 		u32 sect, head, cyl, track;
806 
807 		/* The request -may- be too large for CHS addressing. */
808 		if (!lba_28_ok(block, n_block))
809 			return -ERANGE;
810 
811 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
812 			return -EINVAL;
813 
814 		/* Convert LBA to CHS */
815 		track = (u32)block / dev->sectors;
816 		cyl   = track / dev->heads;
817 		head  = track % dev->heads;
818 		sect  = (u32)block % dev->sectors + 1;
819 
820 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 			(u32)block, track, cyl, head, sect);
822 
823 		/* Check whether the converted CHS can fit.
824 		   Cylinder: 0-65535
825 		   Head: 0-15
826 		   Sector: 1-255*/
827 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
828 			return -ERANGE;
829 
830 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
831 		tf->lbal = sect;
832 		tf->lbam = cyl;
833 		tf->lbah = cyl >> 8;
834 		tf->device |= head;
835 	}
836 
837 	return 0;
838 }
839 
840 /**
841  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842  *	@pio_mask: pio_mask
843  *	@mwdma_mask: mwdma_mask
844  *	@udma_mask: udma_mask
845  *
846  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847  *	unsigned int xfer_mask.
848  *
849  *	LOCKING:
850  *	None.
851  *
852  *	RETURNS:
853  *	Packed xfer_mask.
854  */
855 unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 				unsigned long mwdma_mask,
857 				unsigned long udma_mask)
858 {
859 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
862 }
863 
864 /**
865  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866  *	@xfer_mask: xfer_mask to unpack
867  *	@pio_mask: resulting pio_mask
868  *	@mwdma_mask: resulting mwdma_mask
869  *	@udma_mask: resulting udma_mask
870  *
871  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872  *	Any NULL distination masks will be ignored.
873  */
874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
876 {
877 	if (pio_mask)
878 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
879 	if (mwdma_mask)
880 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
881 	if (udma_mask)
882 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
883 }
884 
885 static const struct ata_xfer_ent {
886 	int shift, bits;
887 	u8 base;
888 } ata_xfer_tbl[] = {
889 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
892 	{ -1, },
893 };
894 
895 /**
896  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897  *	@xfer_mask: xfer_mask of interest
898  *
899  *	Return matching XFER_* value for @xfer_mask.  Only the highest
900  *	bit of @xfer_mask is considered.
901  *
902  *	LOCKING:
903  *	None.
904  *
905  *	RETURNS:
906  *	Matching XFER_* value, 0xff if no match found.
907  */
908 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
909 {
910 	int highbit = fls(xfer_mask) - 1;
911 	const struct ata_xfer_ent *ent;
912 
913 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 			return ent->base + highbit - ent->shift;
916 	return 0xff;
917 }
918 
919 /**
920  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921  *	@xfer_mode: XFER_* of interest
922  *
923  *	Return matching xfer_mask for @xfer_mode.
924  *
925  *	LOCKING:
926  *	None.
927  *
928  *	RETURNS:
929  *	Matching xfer_mask, 0 if no match found.
930  */
931 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
932 {
933 	const struct ata_xfer_ent *ent;
934 
935 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
937 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 				& ~((1 << ent->shift) - 1);
939 	return 0;
940 }
941 
942 /**
943  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944  *	@xfer_mode: XFER_* of interest
945  *
946  *	Return matching xfer_shift for @xfer_mode.
947  *
948  *	LOCKING:
949  *	None.
950  *
951  *	RETURNS:
952  *	Matching xfer_shift, -1 if no match found.
953  */
954 int ata_xfer_mode2shift(unsigned long xfer_mode)
955 {
956 	const struct ata_xfer_ent *ent;
957 
958 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 			return ent->shift;
961 	return -1;
962 }
963 
964 /**
965  *	ata_mode_string - convert xfer_mask to string
966  *	@xfer_mask: mask of bits supported; only highest bit counts.
967  *
968  *	Determine string which represents the highest speed
969  *	(highest bit in @modemask).
970  *
971  *	LOCKING:
972  *	None.
973  *
974  *	RETURNS:
975  *	Constant C string representing highest speed listed in
976  *	@mode_mask, or the constant C string "<n/a>".
977  */
978 const char *ata_mode_string(unsigned long xfer_mask)
979 {
980 	static const char * const xfer_mode_str[] = {
981 		"PIO0",
982 		"PIO1",
983 		"PIO2",
984 		"PIO3",
985 		"PIO4",
986 		"PIO5",
987 		"PIO6",
988 		"MWDMA0",
989 		"MWDMA1",
990 		"MWDMA2",
991 		"MWDMA3",
992 		"MWDMA4",
993 		"UDMA/16",
994 		"UDMA/25",
995 		"UDMA/33",
996 		"UDMA/44",
997 		"UDMA/66",
998 		"UDMA/100",
999 		"UDMA/133",
1000 		"UDMA7",
1001 	};
1002 	int highbit;
1003 
1004 	highbit = fls(xfer_mask) - 1;
1005 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 		return xfer_mode_str[highbit];
1007 	return "<n/a>";
1008 }
1009 
1010 static const char *sata_spd_string(unsigned int spd)
1011 {
1012 	static const char * const spd_str[] = {
1013 		"1.5 Gbps",
1014 		"3.0 Gbps",
1015 		"6.0 Gbps",
1016 	};
1017 
1018 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1019 		return "<unknown>";
1020 	return spd_str[spd - 1];
1021 }
1022 
1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1024 {
1025 	struct ata_link *link = dev->link;
1026 	struct ata_port *ap = link->ap;
1027 	u32 scontrol;
1028 	unsigned int err_mask;
1029 	int rc;
1030 
1031 	/*
1032 	 * disallow DIPM for drivers which haven't set
1033 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1034 	 * phy ready will be set in the interrupt status on
1035 	 * state changes, which will cause some drivers to
1036 	 * think there are errors - additionally drivers will
1037 	 * need to disable hot plug.
1038 	 */
1039 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 		ap->pm_policy = NOT_AVAILABLE;
1041 		return -EINVAL;
1042 	}
1043 
1044 	/*
1045 	 * For DIPM, we will only enable it for the
1046 	 * min_power setting.
1047 	 *
1048 	 * Why?  Because Disks are too stupid to know that
1049 	 * If the host rejects a request to go to SLUMBER
1050 	 * they should retry at PARTIAL, and instead it
1051 	 * just would give up.  So, for medium_power to
1052 	 * work at all, we need to only allow HIPM.
1053 	 */
1054 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1055 	if (rc)
1056 		return rc;
1057 
1058 	switch (policy) {
1059 	case MIN_POWER:
1060 		/* no restrictions on IPM transitions */
1061 		scontrol &= ~(0x3 << 8);
1062 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1063 		if (rc)
1064 			return rc;
1065 
1066 		/* enable DIPM */
1067 		if (dev->flags & ATA_DFLAG_DIPM)
1068 			err_mask = ata_dev_set_feature(dev,
1069 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1070 		break;
1071 	case MEDIUM_POWER:
1072 		/* allow IPM to PARTIAL */
1073 		scontrol &= ~(0x1 << 8);
1074 		scontrol |= (0x2 << 8);
1075 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1076 		if (rc)
1077 			return rc;
1078 
1079 		/*
1080 		 * we don't have to disable DIPM since IPM flags
1081 		 * disallow transitions to SLUMBER, which effectively
1082 		 * disable DIPM if it does not support PARTIAL
1083 		 */
1084 		break;
1085 	case NOT_AVAILABLE:
1086 	case MAX_PERFORMANCE:
1087 		/* disable all IPM transitions */
1088 		scontrol |= (0x3 << 8);
1089 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1090 		if (rc)
1091 			return rc;
1092 
1093 		/*
1094 		 * we don't have to disable DIPM since IPM flags
1095 		 * disallow all transitions which effectively
1096 		 * disable DIPM anyway.
1097 		 */
1098 		break;
1099 	}
1100 
1101 	/* FIXME: handle SET FEATURES failure */
1102 	(void) err_mask;
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  *	ata_dev_enable_pm - enable SATA interface power management
1109  *	@dev:  device to enable power management
1110  *	@policy: the link power management policy
1111  *
1112  *	Enable SATA Interface power management.  This will enable
1113  *	Device Interface Power Management (DIPM) for min_power
1114  * 	policy, and then call driver specific callbacks for
1115  *	enabling Host Initiated Power management.
1116  *
1117  *	Locking: Caller.
1118  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1119  */
1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1121 {
1122 	int rc = 0;
1123 	struct ata_port *ap = dev->link->ap;
1124 
1125 	/* set HIPM first, then DIPM */
1126 	if (ap->ops->enable_pm)
1127 		rc = ap->ops->enable_pm(ap, policy);
1128 	if (rc)
1129 		goto enable_pm_out;
1130 	rc = ata_dev_set_dipm(dev, policy);
1131 
1132 enable_pm_out:
1133 	if (rc)
1134 		ap->pm_policy = MAX_PERFORMANCE;
1135 	else
1136 		ap->pm_policy = policy;
1137 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1138 }
1139 
1140 #ifdef CONFIG_PM
1141 /**
1142  *	ata_dev_disable_pm - disable SATA interface power management
1143  *	@dev: device to disable power management
1144  *
1145  *	Disable SATA Interface power management.  This will disable
1146  *	Device Interface Power Management (DIPM) without changing
1147  * 	policy,  call driver specific callbacks for disabling Host
1148  * 	Initiated Power management.
1149  *
1150  *	Locking: Caller.
1151  *	Returns: void
1152  */
1153 static void ata_dev_disable_pm(struct ata_device *dev)
1154 {
1155 	struct ata_port *ap = dev->link->ap;
1156 
1157 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 	if (ap->ops->disable_pm)
1159 		ap->ops->disable_pm(ap);
1160 }
1161 #endif	/* CONFIG_PM */
1162 
1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1164 {
1165 	ap->pm_policy = policy;
1166 	ap->link.eh_info.action |= ATA_EH_LPM;
1167 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 	ata_port_schedule_eh(ap);
1169 }
1170 
1171 #ifdef CONFIG_PM
1172 static void ata_lpm_enable(struct ata_host *host)
1173 {
1174 	struct ata_link *link;
1175 	struct ata_port *ap;
1176 	struct ata_device *dev;
1177 	int i;
1178 
1179 	for (i = 0; i < host->n_ports; i++) {
1180 		ap = host->ports[i];
1181 		ata_for_each_link(link, ap, EDGE) {
1182 			ata_for_each_dev(dev, link, ALL)
1183 				ata_dev_disable_pm(dev);
1184 		}
1185 	}
1186 }
1187 
1188 static void ata_lpm_disable(struct ata_host *host)
1189 {
1190 	int i;
1191 
1192 	for (i = 0; i < host->n_ports; i++) {
1193 		struct ata_port *ap = host->ports[i];
1194 		ata_lpm_schedule(ap, ap->pm_policy);
1195 	}
1196 }
1197 #endif	/* CONFIG_PM */
1198 
1199 /**
1200  *	ata_dev_classify - determine device type based on ATA-spec signature
1201  *	@tf: ATA taskfile register set for device to be identified
1202  *
1203  *	Determine from taskfile register contents whether a device is
1204  *	ATA or ATAPI, as per "Signature and persistence" section
1205  *	of ATA/PI spec (volume 1, sect 5.14).
1206  *
1207  *	LOCKING:
1208  *	None.
1209  *
1210  *	RETURNS:
1211  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212  *	%ATA_DEV_UNKNOWN the event of failure.
1213  */
1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1215 {
1216 	/* Apple's open source Darwin code hints that some devices only
1217 	 * put a proper signature into the LBA mid/high registers,
1218 	 * So, we only check those.  It's sufficient for uniqueness.
1219 	 *
1220 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1223 	 * spec has never mentioned about using different signatures
1224 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1225 	 * Multiplier specification began to use 0x69/0x96 to identify
1226 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 	 * 0x69/0x96 shortly and described them as reserved for
1229 	 * SerialATA.
1230 	 *
1231 	 * We follow the current spec and consider that 0x69/0x96
1232 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1233 	 */
1234 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1235 		DPRINTK("found ATA device by sig\n");
1236 		return ATA_DEV_ATA;
1237 	}
1238 
1239 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1240 		DPRINTK("found ATAPI device by sig\n");
1241 		return ATA_DEV_ATAPI;
1242 	}
1243 
1244 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 		DPRINTK("found PMP device by sig\n");
1246 		return ATA_DEV_PMP;
1247 	}
1248 
1249 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1250 		printk(KERN_INFO "ata: SEMB device ignored\n");
1251 		return ATA_DEV_SEMB_UNSUP; /* not yet */
1252 	}
1253 
1254 	DPRINTK("unknown device\n");
1255 	return ATA_DEV_UNKNOWN;
1256 }
1257 
1258 /**
1259  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1260  *	@id: IDENTIFY DEVICE results we will examine
1261  *	@s: string into which data is output
1262  *	@ofs: offset into identify device page
1263  *	@len: length of string to return. must be an even number.
1264  *
1265  *	The strings in the IDENTIFY DEVICE page are broken up into
1266  *	16-bit chunks.  Run through the string, and output each
1267  *	8-bit chunk linearly, regardless of platform.
1268  *
1269  *	LOCKING:
1270  *	caller.
1271  */
1272 
1273 void ata_id_string(const u16 *id, unsigned char *s,
1274 		   unsigned int ofs, unsigned int len)
1275 {
1276 	unsigned int c;
1277 
1278 	BUG_ON(len & 1);
1279 
1280 	while (len > 0) {
1281 		c = id[ofs] >> 8;
1282 		*s = c;
1283 		s++;
1284 
1285 		c = id[ofs] & 0xff;
1286 		*s = c;
1287 		s++;
1288 
1289 		ofs++;
1290 		len -= 2;
1291 	}
1292 }
1293 
1294 /**
1295  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296  *	@id: IDENTIFY DEVICE results we will examine
1297  *	@s: string into which data is output
1298  *	@ofs: offset into identify device page
1299  *	@len: length of string to return. must be an odd number.
1300  *
1301  *	This function is identical to ata_id_string except that it
1302  *	trims trailing spaces and terminates the resulting string with
1303  *	null.  @len must be actual maximum length (even number) + 1.
1304  *
1305  *	LOCKING:
1306  *	caller.
1307  */
1308 void ata_id_c_string(const u16 *id, unsigned char *s,
1309 		     unsigned int ofs, unsigned int len)
1310 {
1311 	unsigned char *p;
1312 
1313 	ata_id_string(id, s, ofs, len - 1);
1314 
1315 	p = s + strnlen(s, len - 1);
1316 	while (p > s && p[-1] == ' ')
1317 		p--;
1318 	*p = '\0';
1319 }
1320 
1321 static u64 ata_id_n_sectors(const u16 *id)
1322 {
1323 	if (ata_id_has_lba(id)) {
1324 		if (ata_id_has_lba48(id))
1325 			return ata_id_u64(id, 100);
1326 		else
1327 			return ata_id_u32(id, 60);
1328 	} else {
1329 		if (ata_id_current_chs_valid(id))
1330 			return ata_id_u32(id, 57);
1331 		else
1332 			return id[1] * id[3] * id[6];
1333 	}
1334 }
1335 
1336 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1337 {
1338 	u64 sectors = 0;
1339 
1340 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1341 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1342 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1343 	sectors |= (tf->lbah & 0xff) << 16;
1344 	sectors |= (tf->lbam & 0xff) << 8;
1345 	sectors |= (tf->lbal & 0xff);
1346 
1347 	return sectors;
1348 }
1349 
1350 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1351 {
1352 	u64 sectors = 0;
1353 
1354 	sectors |= (tf->device & 0x0f) << 24;
1355 	sectors |= (tf->lbah & 0xff) << 16;
1356 	sectors |= (tf->lbam & 0xff) << 8;
1357 	sectors |= (tf->lbal & 0xff);
1358 
1359 	return sectors;
1360 }
1361 
1362 /**
1363  *	ata_read_native_max_address - Read native max address
1364  *	@dev: target device
1365  *	@max_sectors: out parameter for the result native max address
1366  *
1367  *	Perform an LBA48 or LBA28 native size query upon the device in
1368  *	question.
1369  *
1370  *	RETURNS:
1371  *	0 on success, -EACCES if command is aborted by the drive.
1372  *	-EIO on other errors.
1373  */
1374 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1375 {
1376 	unsigned int err_mask;
1377 	struct ata_taskfile tf;
1378 	int lba48 = ata_id_has_lba48(dev->id);
1379 
1380 	ata_tf_init(dev, &tf);
1381 
1382 	/* always clear all address registers */
1383 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1384 
1385 	if (lba48) {
1386 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1387 		tf.flags |= ATA_TFLAG_LBA48;
1388 	} else
1389 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1390 
1391 	tf.protocol |= ATA_PROT_NODATA;
1392 	tf.device |= ATA_LBA;
1393 
1394 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1395 	if (err_mask) {
1396 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1397 			       "max address (err_mask=0x%x)\n", err_mask);
1398 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1399 			return -EACCES;
1400 		return -EIO;
1401 	}
1402 
1403 	if (lba48)
1404 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1405 	else
1406 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1407 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1408 		(*max_sectors)--;
1409 	return 0;
1410 }
1411 
1412 /**
1413  *	ata_set_max_sectors - Set max sectors
1414  *	@dev: target device
1415  *	@new_sectors: new max sectors value to set for the device
1416  *
1417  *	Set max sectors of @dev to @new_sectors.
1418  *
1419  *	RETURNS:
1420  *	0 on success, -EACCES if command is aborted or denied (due to
1421  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1422  *	errors.
1423  */
1424 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1425 {
1426 	unsigned int err_mask;
1427 	struct ata_taskfile tf;
1428 	int lba48 = ata_id_has_lba48(dev->id);
1429 
1430 	new_sectors--;
1431 
1432 	ata_tf_init(dev, &tf);
1433 
1434 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1435 
1436 	if (lba48) {
1437 		tf.command = ATA_CMD_SET_MAX_EXT;
1438 		tf.flags |= ATA_TFLAG_LBA48;
1439 
1440 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1441 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1442 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1443 	} else {
1444 		tf.command = ATA_CMD_SET_MAX;
1445 
1446 		tf.device |= (new_sectors >> 24) & 0xf;
1447 	}
1448 
1449 	tf.protocol |= ATA_PROT_NODATA;
1450 	tf.device |= ATA_LBA;
1451 
1452 	tf.lbal = (new_sectors >> 0) & 0xff;
1453 	tf.lbam = (new_sectors >> 8) & 0xff;
1454 	tf.lbah = (new_sectors >> 16) & 0xff;
1455 
1456 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1457 	if (err_mask) {
1458 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1459 			       "max address (err_mask=0x%x)\n", err_mask);
1460 		if (err_mask == AC_ERR_DEV &&
1461 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1462 			return -EACCES;
1463 		return -EIO;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 /**
1470  *	ata_hpa_resize		-	Resize a device with an HPA set
1471  *	@dev: Device to resize
1472  *
1473  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1474  *	it if required to the full size of the media. The caller must check
1475  *	the drive has the HPA feature set enabled.
1476  *
1477  *	RETURNS:
1478  *	0 on success, -errno on failure.
1479  */
1480 static int ata_hpa_resize(struct ata_device *dev)
1481 {
1482 	struct ata_eh_context *ehc = &dev->link->eh_context;
1483 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1484 	u64 sectors = ata_id_n_sectors(dev->id);
1485 	u64 native_sectors;
1486 	int rc;
1487 
1488 	/* do we need to do it? */
1489 	if (dev->class != ATA_DEV_ATA ||
1490 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1491 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1492 		return 0;
1493 
1494 	/* read native max address */
1495 	rc = ata_read_native_max_address(dev, &native_sectors);
1496 	if (rc) {
1497 		/* If device aborted the command or HPA isn't going to
1498 		 * be unlocked, skip HPA resizing.
1499 		 */
1500 		if (rc == -EACCES || !ata_ignore_hpa) {
1501 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1502 				       "broken, skipping HPA handling\n");
1503 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1504 
1505 			/* we can continue if device aborted the command */
1506 			if (rc == -EACCES)
1507 				rc = 0;
1508 		}
1509 
1510 		return rc;
1511 	}
1512 
1513 	/* nothing to do? */
1514 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1515 		if (!print_info || native_sectors == sectors)
1516 			return 0;
1517 
1518 		if (native_sectors > sectors)
1519 			ata_dev_printk(dev, KERN_INFO,
1520 				"HPA detected: current %llu, native %llu\n",
1521 				(unsigned long long)sectors,
1522 				(unsigned long long)native_sectors);
1523 		else if (native_sectors < sectors)
1524 			ata_dev_printk(dev, KERN_WARNING,
1525 				"native sectors (%llu) is smaller than "
1526 				"sectors (%llu)\n",
1527 				(unsigned long long)native_sectors,
1528 				(unsigned long long)sectors);
1529 		return 0;
1530 	}
1531 
1532 	/* let's unlock HPA */
1533 	rc = ata_set_max_sectors(dev, native_sectors);
1534 	if (rc == -EACCES) {
1535 		/* if device aborted the command, skip HPA resizing */
1536 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1537 			       "(%llu -> %llu), skipping HPA handling\n",
1538 			       (unsigned long long)sectors,
1539 			       (unsigned long long)native_sectors);
1540 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1541 		return 0;
1542 	} else if (rc)
1543 		return rc;
1544 
1545 	/* re-read IDENTIFY data */
1546 	rc = ata_dev_reread_id(dev, 0);
1547 	if (rc) {
1548 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1549 			       "data after HPA resizing\n");
1550 		return rc;
1551 	}
1552 
1553 	if (print_info) {
1554 		u64 new_sectors = ata_id_n_sectors(dev->id);
1555 		ata_dev_printk(dev, KERN_INFO,
1556 			"HPA unlocked: %llu -> %llu, native %llu\n",
1557 			(unsigned long long)sectors,
1558 			(unsigned long long)new_sectors,
1559 			(unsigned long long)native_sectors);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1567  *	@id: IDENTIFY DEVICE page to dump
1568  *
1569  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1570  *	page.
1571  *
1572  *	LOCKING:
1573  *	caller.
1574  */
1575 
1576 static inline void ata_dump_id(const u16 *id)
1577 {
1578 	DPRINTK("49==0x%04x  "
1579 		"53==0x%04x  "
1580 		"63==0x%04x  "
1581 		"64==0x%04x  "
1582 		"75==0x%04x  \n",
1583 		id[49],
1584 		id[53],
1585 		id[63],
1586 		id[64],
1587 		id[75]);
1588 	DPRINTK("80==0x%04x  "
1589 		"81==0x%04x  "
1590 		"82==0x%04x  "
1591 		"83==0x%04x  "
1592 		"84==0x%04x  \n",
1593 		id[80],
1594 		id[81],
1595 		id[82],
1596 		id[83],
1597 		id[84]);
1598 	DPRINTK("88==0x%04x  "
1599 		"93==0x%04x\n",
1600 		id[88],
1601 		id[93]);
1602 }
1603 
1604 /**
1605  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1606  *	@id: IDENTIFY data to compute xfer mask from
1607  *
1608  *	Compute the xfermask for this device. This is not as trivial
1609  *	as it seems if we must consider early devices correctly.
1610  *
1611  *	FIXME: pre IDE drive timing (do we care ?).
1612  *
1613  *	LOCKING:
1614  *	None.
1615  *
1616  *	RETURNS:
1617  *	Computed xfermask
1618  */
1619 unsigned long ata_id_xfermask(const u16 *id)
1620 {
1621 	unsigned long pio_mask, mwdma_mask, udma_mask;
1622 
1623 	/* Usual case. Word 53 indicates word 64 is valid */
1624 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1625 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1626 		pio_mask <<= 3;
1627 		pio_mask |= 0x7;
1628 	} else {
1629 		/* If word 64 isn't valid then Word 51 high byte holds
1630 		 * the PIO timing number for the maximum. Turn it into
1631 		 * a mask.
1632 		 */
1633 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1634 		if (mode < 5)	/* Valid PIO range */
1635 			pio_mask = (2 << mode) - 1;
1636 		else
1637 			pio_mask = 1;
1638 
1639 		/* But wait.. there's more. Design your standards by
1640 		 * committee and you too can get a free iordy field to
1641 		 * process. However its the speeds not the modes that
1642 		 * are supported... Note drivers using the timing API
1643 		 * will get this right anyway
1644 		 */
1645 	}
1646 
1647 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1648 
1649 	if (ata_id_is_cfa(id)) {
1650 		/*
1651 		 *	Process compact flash extended modes
1652 		 */
1653 		int pio = id[163] & 0x7;
1654 		int dma = (id[163] >> 3) & 7;
1655 
1656 		if (pio)
1657 			pio_mask |= (1 << 5);
1658 		if (pio > 1)
1659 			pio_mask |= (1 << 6);
1660 		if (dma)
1661 			mwdma_mask |= (1 << 3);
1662 		if (dma > 1)
1663 			mwdma_mask |= (1 << 4);
1664 	}
1665 
1666 	udma_mask = 0;
1667 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1668 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1669 
1670 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1671 }
1672 
1673 /**
1674  *	ata_pio_queue_task - Queue port_task
1675  *	@ap: The ata_port to queue port_task for
1676  *	@data: data for @fn to use
1677  *	@delay: delay time in msecs for workqueue function
1678  *
1679  *	Schedule @fn(@data) for execution after @delay jiffies using
1680  *	port_task.  There is one port_task per port and it's the
1681  *	user(low level driver)'s responsibility to make sure that only
1682  *	one task is active at any given time.
1683  *
1684  *	libata core layer takes care of synchronization between
1685  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1686  *	synchronization.
1687  *
1688  *	LOCKING:
1689  *	Inherited from caller.
1690  */
1691 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1692 {
1693 	ap->port_task_data = data;
1694 
1695 	/* may fail if ata_port_flush_task() in progress */
1696 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1697 }
1698 
1699 /**
1700  *	ata_port_flush_task - Flush port_task
1701  *	@ap: The ata_port to flush port_task for
1702  *
1703  *	After this function completes, port_task is guranteed not to
1704  *	be running or scheduled.
1705  *
1706  *	LOCKING:
1707  *	Kernel thread context (may sleep)
1708  */
1709 void ata_port_flush_task(struct ata_port *ap)
1710 {
1711 	DPRINTK("ENTER\n");
1712 
1713 	cancel_rearming_delayed_work(&ap->port_task);
1714 
1715 	if (ata_msg_ctl(ap))
1716 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1717 }
1718 
1719 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1720 {
1721 	struct completion *waiting = qc->private_data;
1722 
1723 	complete(waiting);
1724 }
1725 
1726 /**
1727  *	ata_exec_internal_sg - execute libata internal command
1728  *	@dev: Device to which the command is sent
1729  *	@tf: Taskfile registers for the command and the result
1730  *	@cdb: CDB for packet command
1731  *	@dma_dir: Data tranfer direction of the command
1732  *	@sgl: sg list for the data buffer of the command
1733  *	@n_elem: Number of sg entries
1734  *	@timeout: Timeout in msecs (0 for default)
1735  *
1736  *	Executes libata internal command with timeout.  @tf contains
1737  *	command on entry and result on return.  Timeout and error
1738  *	conditions are reported via return value.  No recovery action
1739  *	is taken after a command times out.  It's caller's duty to
1740  *	clean up after timeout.
1741  *
1742  *	LOCKING:
1743  *	None.  Should be called with kernel context, might sleep.
1744  *
1745  *	RETURNS:
1746  *	Zero on success, AC_ERR_* mask on failure
1747  */
1748 unsigned ata_exec_internal_sg(struct ata_device *dev,
1749 			      struct ata_taskfile *tf, const u8 *cdb,
1750 			      int dma_dir, struct scatterlist *sgl,
1751 			      unsigned int n_elem, unsigned long timeout)
1752 {
1753 	struct ata_link *link = dev->link;
1754 	struct ata_port *ap = link->ap;
1755 	u8 command = tf->command;
1756 	int auto_timeout = 0;
1757 	struct ata_queued_cmd *qc;
1758 	unsigned int tag, preempted_tag;
1759 	u32 preempted_sactive, preempted_qc_active;
1760 	int preempted_nr_active_links;
1761 	DECLARE_COMPLETION_ONSTACK(wait);
1762 	unsigned long flags;
1763 	unsigned int err_mask;
1764 	int rc;
1765 
1766 	spin_lock_irqsave(ap->lock, flags);
1767 
1768 	/* no internal command while frozen */
1769 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1770 		spin_unlock_irqrestore(ap->lock, flags);
1771 		return AC_ERR_SYSTEM;
1772 	}
1773 
1774 	/* initialize internal qc */
1775 
1776 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1777 	 * drivers choke if any other tag is given.  This breaks
1778 	 * ata_tag_internal() test for those drivers.  Don't use new
1779 	 * EH stuff without converting to it.
1780 	 */
1781 	if (ap->ops->error_handler)
1782 		tag = ATA_TAG_INTERNAL;
1783 	else
1784 		tag = 0;
1785 
1786 	if (test_and_set_bit(tag, &ap->qc_allocated))
1787 		BUG();
1788 	qc = __ata_qc_from_tag(ap, tag);
1789 
1790 	qc->tag = tag;
1791 	qc->scsicmd = NULL;
1792 	qc->ap = ap;
1793 	qc->dev = dev;
1794 	ata_qc_reinit(qc);
1795 
1796 	preempted_tag = link->active_tag;
1797 	preempted_sactive = link->sactive;
1798 	preempted_qc_active = ap->qc_active;
1799 	preempted_nr_active_links = ap->nr_active_links;
1800 	link->active_tag = ATA_TAG_POISON;
1801 	link->sactive = 0;
1802 	ap->qc_active = 0;
1803 	ap->nr_active_links = 0;
1804 
1805 	/* prepare & issue qc */
1806 	qc->tf = *tf;
1807 	if (cdb)
1808 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1809 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1810 	qc->dma_dir = dma_dir;
1811 	if (dma_dir != DMA_NONE) {
1812 		unsigned int i, buflen = 0;
1813 		struct scatterlist *sg;
1814 
1815 		for_each_sg(sgl, sg, n_elem, i)
1816 			buflen += sg->length;
1817 
1818 		ata_sg_init(qc, sgl, n_elem);
1819 		qc->nbytes = buflen;
1820 	}
1821 
1822 	qc->private_data = &wait;
1823 	qc->complete_fn = ata_qc_complete_internal;
1824 
1825 	ata_qc_issue(qc);
1826 
1827 	spin_unlock_irqrestore(ap->lock, flags);
1828 
1829 	if (!timeout) {
1830 		if (ata_probe_timeout)
1831 			timeout = ata_probe_timeout * 1000;
1832 		else {
1833 			timeout = ata_internal_cmd_timeout(dev, command);
1834 			auto_timeout = 1;
1835 		}
1836 	}
1837 
1838 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1839 
1840 	ata_port_flush_task(ap);
1841 
1842 	if (!rc) {
1843 		spin_lock_irqsave(ap->lock, flags);
1844 
1845 		/* We're racing with irq here.  If we lose, the
1846 		 * following test prevents us from completing the qc
1847 		 * twice.  If we win, the port is frozen and will be
1848 		 * cleaned up by ->post_internal_cmd().
1849 		 */
1850 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1851 			qc->err_mask |= AC_ERR_TIMEOUT;
1852 
1853 			if (ap->ops->error_handler)
1854 				ata_port_freeze(ap);
1855 			else
1856 				ata_qc_complete(qc);
1857 
1858 			if (ata_msg_warn(ap))
1859 				ata_dev_printk(dev, KERN_WARNING,
1860 					"qc timeout (cmd 0x%x)\n", command);
1861 		}
1862 
1863 		spin_unlock_irqrestore(ap->lock, flags);
1864 	}
1865 
1866 	/* do post_internal_cmd */
1867 	if (ap->ops->post_internal_cmd)
1868 		ap->ops->post_internal_cmd(qc);
1869 
1870 	/* perform minimal error analysis */
1871 	if (qc->flags & ATA_QCFLAG_FAILED) {
1872 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 			qc->err_mask |= AC_ERR_DEV;
1874 
1875 		if (!qc->err_mask)
1876 			qc->err_mask |= AC_ERR_OTHER;
1877 
1878 		if (qc->err_mask & ~AC_ERR_OTHER)
1879 			qc->err_mask &= ~AC_ERR_OTHER;
1880 	}
1881 
1882 	/* finish up */
1883 	spin_lock_irqsave(ap->lock, flags);
1884 
1885 	*tf = qc->result_tf;
1886 	err_mask = qc->err_mask;
1887 
1888 	ata_qc_free(qc);
1889 	link->active_tag = preempted_tag;
1890 	link->sactive = preempted_sactive;
1891 	ap->qc_active = preempted_qc_active;
1892 	ap->nr_active_links = preempted_nr_active_links;
1893 
1894 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 	 * Until those drivers are fixed, we detect the condition
1896 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 	 * port.
1898 	 *
1899 	 * Note that this doesn't change any behavior as internal
1900 	 * command failure results in disabling the device in the
1901 	 * higher layer for LLDDs without new reset/EH callbacks.
1902 	 *
1903 	 * Kill the following code as soon as those drivers are fixed.
1904 	 */
1905 	if (ap->flags & ATA_FLAG_DISABLED) {
1906 		err_mask |= AC_ERR_SYSTEM;
1907 		ata_port_probe(ap);
1908 	}
1909 
1910 	spin_unlock_irqrestore(ap->lock, flags);
1911 
1912 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1913 		ata_internal_cmd_timed_out(dev, command);
1914 
1915 	return err_mask;
1916 }
1917 
1918 /**
1919  *	ata_exec_internal - execute libata internal command
1920  *	@dev: Device to which the command is sent
1921  *	@tf: Taskfile registers for the command and the result
1922  *	@cdb: CDB for packet command
1923  *	@dma_dir: Data tranfer direction of the command
1924  *	@buf: Data buffer of the command
1925  *	@buflen: Length of data buffer
1926  *	@timeout: Timeout in msecs (0 for default)
1927  *
1928  *	Wrapper around ata_exec_internal_sg() which takes simple
1929  *	buffer instead of sg list.
1930  *
1931  *	LOCKING:
1932  *	None.  Should be called with kernel context, might sleep.
1933  *
1934  *	RETURNS:
1935  *	Zero on success, AC_ERR_* mask on failure
1936  */
1937 unsigned ata_exec_internal(struct ata_device *dev,
1938 			   struct ata_taskfile *tf, const u8 *cdb,
1939 			   int dma_dir, void *buf, unsigned int buflen,
1940 			   unsigned long timeout)
1941 {
1942 	struct scatterlist *psg = NULL, sg;
1943 	unsigned int n_elem = 0;
1944 
1945 	if (dma_dir != DMA_NONE) {
1946 		WARN_ON(!buf);
1947 		sg_init_one(&sg, buf, buflen);
1948 		psg = &sg;
1949 		n_elem++;
1950 	}
1951 
1952 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1953 				    timeout);
1954 }
1955 
1956 /**
1957  *	ata_do_simple_cmd - execute simple internal command
1958  *	@dev: Device to which the command is sent
1959  *	@cmd: Opcode to execute
1960  *
1961  *	Execute a 'simple' command, that only consists of the opcode
1962  *	'cmd' itself, without filling any other registers
1963  *
1964  *	LOCKING:
1965  *	Kernel thread context (may sleep).
1966  *
1967  *	RETURNS:
1968  *	Zero on success, AC_ERR_* mask on failure
1969  */
1970 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1971 {
1972 	struct ata_taskfile tf;
1973 
1974 	ata_tf_init(dev, &tf);
1975 
1976 	tf.command = cmd;
1977 	tf.flags |= ATA_TFLAG_DEVICE;
1978 	tf.protocol = ATA_PROT_NODATA;
1979 
1980 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1981 }
1982 
1983 /**
1984  *	ata_pio_need_iordy	-	check if iordy needed
1985  *	@adev: ATA device
1986  *
1987  *	Check if the current speed of the device requires IORDY. Used
1988  *	by various controllers for chip configuration.
1989  */
1990 
1991 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1992 {
1993 	/* Controller doesn't support  IORDY. Probably a pointless check
1994 	   as the caller should know this */
1995 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1996 		return 0;
1997 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1998 	if (ata_id_is_cfa(adev->id)
1999 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2000 		return 0;
2001 	/* PIO3 and higher it is mandatory */
2002 	if (adev->pio_mode > XFER_PIO_2)
2003 		return 1;
2004 	/* We turn it on when possible */
2005 	if (ata_id_has_iordy(adev->id))
2006 		return 1;
2007 	return 0;
2008 }
2009 
2010 /**
2011  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2012  *	@adev: ATA device
2013  *
2014  *	Compute the highest mode possible if we are not using iordy. Return
2015  *	-1 if no iordy mode is available.
2016  */
2017 
2018 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2019 {
2020 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2021 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2022 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2023 		/* Is the speed faster than the drive allows non IORDY ? */
2024 		if (pio) {
2025 			/* This is cycle times not frequency - watch the logic! */
2026 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2027 				return 3 << ATA_SHIFT_PIO;
2028 			return 7 << ATA_SHIFT_PIO;
2029 		}
2030 	}
2031 	return 3 << ATA_SHIFT_PIO;
2032 }
2033 
2034 /**
2035  *	ata_do_dev_read_id		-	default ID read method
2036  *	@dev: device
2037  *	@tf: proposed taskfile
2038  *	@id: data buffer
2039  *
2040  *	Issue the identify taskfile and hand back the buffer containing
2041  *	identify data. For some RAID controllers and for pre ATA devices
2042  *	this function is wrapped or replaced by the driver
2043  */
2044 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2045 					struct ata_taskfile *tf, u16 *id)
2046 {
2047 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2048 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2049 }
2050 
2051 /**
2052  *	ata_dev_read_id - Read ID data from the specified device
2053  *	@dev: target device
2054  *	@p_class: pointer to class of the target device (may be changed)
2055  *	@flags: ATA_READID_* flags
2056  *	@id: buffer to read IDENTIFY data into
2057  *
2058  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2059  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2060  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2061  *	for pre-ATA4 drives.
2062  *
2063  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2064  *	now we abort if we hit that case.
2065  *
2066  *	LOCKING:
2067  *	Kernel thread context (may sleep)
2068  *
2069  *	RETURNS:
2070  *	0 on success, -errno otherwise.
2071  */
2072 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2073 		    unsigned int flags, u16 *id)
2074 {
2075 	struct ata_port *ap = dev->link->ap;
2076 	unsigned int class = *p_class;
2077 	struct ata_taskfile tf;
2078 	unsigned int err_mask = 0;
2079 	const char *reason;
2080 	int may_fallback = 1, tried_spinup = 0;
2081 	int rc;
2082 
2083 	if (ata_msg_ctl(ap))
2084 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2085 
2086 retry:
2087 	ata_tf_init(dev, &tf);
2088 
2089 	switch (class) {
2090 	case ATA_DEV_ATA:
2091 		tf.command = ATA_CMD_ID_ATA;
2092 		break;
2093 	case ATA_DEV_ATAPI:
2094 		tf.command = ATA_CMD_ID_ATAPI;
2095 		break;
2096 	default:
2097 		rc = -ENODEV;
2098 		reason = "unsupported class";
2099 		goto err_out;
2100 	}
2101 
2102 	tf.protocol = ATA_PROT_PIO;
2103 
2104 	/* Some devices choke if TF registers contain garbage.  Make
2105 	 * sure those are properly initialized.
2106 	 */
2107 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2108 
2109 	/* Device presence detection is unreliable on some
2110 	 * controllers.  Always poll IDENTIFY if available.
2111 	 */
2112 	tf.flags |= ATA_TFLAG_POLLING;
2113 
2114 	if (ap->ops->read_id)
2115 		err_mask = ap->ops->read_id(dev, &tf, id);
2116 	else
2117 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2118 
2119 	if (err_mask) {
2120 		if (err_mask & AC_ERR_NODEV_HINT) {
2121 			ata_dev_printk(dev, KERN_DEBUG,
2122 				       "NODEV after polling detection\n");
2123 			return -ENOENT;
2124 		}
2125 
2126 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2127 			/* Device or controller might have reported
2128 			 * the wrong device class.  Give a shot at the
2129 			 * other IDENTIFY if the current one is
2130 			 * aborted by the device.
2131 			 */
2132 			if (may_fallback) {
2133 				may_fallback = 0;
2134 
2135 				if (class == ATA_DEV_ATA)
2136 					class = ATA_DEV_ATAPI;
2137 				else
2138 					class = ATA_DEV_ATA;
2139 				goto retry;
2140 			}
2141 
2142 			/* Control reaches here iff the device aborted
2143 			 * both flavors of IDENTIFYs which happens
2144 			 * sometimes with phantom devices.
2145 			 */
2146 			ata_dev_printk(dev, KERN_DEBUG,
2147 				       "both IDENTIFYs aborted, assuming NODEV\n");
2148 			return -ENOENT;
2149 		}
2150 
2151 		rc = -EIO;
2152 		reason = "I/O error";
2153 		goto err_out;
2154 	}
2155 
2156 	/* Falling back doesn't make sense if ID data was read
2157 	 * successfully at least once.
2158 	 */
2159 	may_fallback = 0;
2160 
2161 	swap_buf_le16(id, ATA_ID_WORDS);
2162 
2163 	/* sanity check */
2164 	rc = -EINVAL;
2165 	reason = "device reports invalid type";
2166 
2167 	if (class == ATA_DEV_ATA) {
2168 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2169 			goto err_out;
2170 	} else {
2171 		if (ata_id_is_ata(id))
2172 			goto err_out;
2173 	}
2174 
2175 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2176 		tried_spinup = 1;
2177 		/*
2178 		 * Drive powered-up in standby mode, and requires a specific
2179 		 * SET_FEATURES spin-up subcommand before it will accept
2180 		 * anything other than the original IDENTIFY command.
2181 		 */
2182 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2183 		if (err_mask && id[2] != 0x738c) {
2184 			rc = -EIO;
2185 			reason = "SPINUP failed";
2186 			goto err_out;
2187 		}
2188 		/*
2189 		 * If the drive initially returned incomplete IDENTIFY info,
2190 		 * we now must reissue the IDENTIFY command.
2191 		 */
2192 		if (id[2] == 0x37c8)
2193 			goto retry;
2194 	}
2195 
2196 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2197 		/*
2198 		 * The exact sequence expected by certain pre-ATA4 drives is:
2199 		 * SRST RESET
2200 		 * IDENTIFY (optional in early ATA)
2201 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2202 		 * anything else..
2203 		 * Some drives were very specific about that exact sequence.
2204 		 *
2205 		 * Note that ATA4 says lba is mandatory so the second check
2206 		 * shoud never trigger.
2207 		 */
2208 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2209 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2210 			if (err_mask) {
2211 				rc = -EIO;
2212 				reason = "INIT_DEV_PARAMS failed";
2213 				goto err_out;
2214 			}
2215 
2216 			/* current CHS translation info (id[53-58]) might be
2217 			 * changed. reread the identify device info.
2218 			 */
2219 			flags &= ~ATA_READID_POSTRESET;
2220 			goto retry;
2221 		}
2222 	}
2223 
2224 	*p_class = class;
2225 
2226 	return 0;
2227 
2228  err_out:
2229 	if (ata_msg_warn(ap))
2230 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2231 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2232 	return rc;
2233 }
2234 
2235 static int ata_do_link_spd_horkage(struct ata_device *dev)
2236 {
2237 	struct ata_link *plink = ata_dev_phys_link(dev);
2238 	u32 target, target_limit;
2239 
2240 	if (!sata_scr_valid(plink))
2241 		return 0;
2242 
2243 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2244 		target = 1;
2245 	else
2246 		return 0;
2247 
2248 	target_limit = (1 << target) - 1;
2249 
2250 	/* if already on stricter limit, no need to push further */
2251 	if (plink->sata_spd_limit <= target_limit)
2252 		return 0;
2253 
2254 	plink->sata_spd_limit = target_limit;
2255 
2256 	/* Request another EH round by returning -EAGAIN if link is
2257 	 * going faster than the target speed.  Forward progress is
2258 	 * guaranteed by setting sata_spd_limit to target_limit above.
2259 	 */
2260 	if (plink->sata_spd > target) {
2261 		ata_dev_printk(dev, KERN_INFO,
2262 			       "applying link speed limit horkage to %s\n",
2263 			       sata_spd_string(target));
2264 		return -EAGAIN;
2265 	}
2266 	return 0;
2267 }
2268 
2269 static inline u8 ata_dev_knobble(struct ata_device *dev)
2270 {
2271 	struct ata_port *ap = dev->link->ap;
2272 
2273 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2274 		return 0;
2275 
2276 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2277 }
2278 
2279 static void ata_dev_config_ncq(struct ata_device *dev,
2280 			       char *desc, size_t desc_sz)
2281 {
2282 	struct ata_port *ap = dev->link->ap;
2283 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2284 
2285 	if (!ata_id_has_ncq(dev->id)) {
2286 		desc[0] = '\0';
2287 		return;
2288 	}
2289 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2290 		snprintf(desc, desc_sz, "NCQ (not used)");
2291 		return;
2292 	}
2293 	if (ap->flags & ATA_FLAG_NCQ) {
2294 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2295 		dev->flags |= ATA_DFLAG_NCQ;
2296 	}
2297 
2298 	if (hdepth >= ddepth)
2299 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2300 	else
2301 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2302 }
2303 
2304 /**
2305  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2306  *	@dev: Target device to configure
2307  *
2308  *	Configure @dev according to @dev->id.  Generic and low-level
2309  *	driver specific fixups are also applied.
2310  *
2311  *	LOCKING:
2312  *	Kernel thread context (may sleep)
2313  *
2314  *	RETURNS:
2315  *	0 on success, -errno otherwise
2316  */
2317 int ata_dev_configure(struct ata_device *dev)
2318 {
2319 	struct ata_port *ap = dev->link->ap;
2320 	struct ata_eh_context *ehc = &dev->link->eh_context;
2321 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2322 	const u16 *id = dev->id;
2323 	unsigned long xfer_mask;
2324 	char revbuf[7];		/* XYZ-99\0 */
2325 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2326 	char modelbuf[ATA_ID_PROD_LEN+1];
2327 	int rc;
2328 
2329 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2330 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2331 			       __func__);
2332 		return 0;
2333 	}
2334 
2335 	if (ata_msg_probe(ap))
2336 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2337 
2338 	/* set horkage */
2339 	dev->horkage |= ata_dev_blacklisted(dev);
2340 	ata_force_horkage(dev);
2341 
2342 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2343 		ata_dev_printk(dev, KERN_INFO,
2344 			       "unsupported device, disabling\n");
2345 		ata_dev_disable(dev);
2346 		return 0;
2347 	}
2348 
2349 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2350 	    dev->class == ATA_DEV_ATAPI) {
2351 		ata_dev_printk(dev, KERN_WARNING,
2352 			"WARNING: ATAPI is %s, device ignored.\n",
2353 			atapi_enabled ? "not supported with this driver"
2354 				      : "disabled");
2355 		ata_dev_disable(dev);
2356 		return 0;
2357 	}
2358 
2359 	rc = ata_do_link_spd_horkage(dev);
2360 	if (rc)
2361 		return rc;
2362 
2363 	/* let ACPI work its magic */
2364 	rc = ata_acpi_on_devcfg(dev);
2365 	if (rc)
2366 		return rc;
2367 
2368 	/* massage HPA, do it early as it might change IDENTIFY data */
2369 	rc = ata_hpa_resize(dev);
2370 	if (rc)
2371 		return rc;
2372 
2373 	/* print device capabilities */
2374 	if (ata_msg_probe(ap))
2375 		ata_dev_printk(dev, KERN_DEBUG,
2376 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2377 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2378 			       __func__,
2379 			       id[49], id[82], id[83], id[84],
2380 			       id[85], id[86], id[87], id[88]);
2381 
2382 	/* initialize to-be-configured parameters */
2383 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2384 	dev->max_sectors = 0;
2385 	dev->cdb_len = 0;
2386 	dev->n_sectors = 0;
2387 	dev->cylinders = 0;
2388 	dev->heads = 0;
2389 	dev->sectors = 0;
2390 
2391 	/*
2392 	 * common ATA, ATAPI feature tests
2393 	 */
2394 
2395 	/* find max transfer mode; for printk only */
2396 	xfer_mask = ata_id_xfermask(id);
2397 
2398 	if (ata_msg_probe(ap))
2399 		ata_dump_id(id);
2400 
2401 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2402 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2403 			sizeof(fwrevbuf));
2404 
2405 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2406 			sizeof(modelbuf));
2407 
2408 	/* ATA-specific feature tests */
2409 	if (dev->class == ATA_DEV_ATA) {
2410 		if (ata_id_is_cfa(id)) {
2411 			if (id[162] & 1) /* CPRM may make this media unusable */
2412 				ata_dev_printk(dev, KERN_WARNING,
2413 					       "supports DRM functions and may "
2414 					       "not be fully accessable.\n");
2415 			snprintf(revbuf, 7, "CFA");
2416 		} else {
2417 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2418 			/* Warn the user if the device has TPM extensions */
2419 			if (ata_id_has_tpm(id))
2420 				ata_dev_printk(dev, KERN_WARNING,
2421 					       "supports DRM functions and may "
2422 					       "not be fully accessable.\n");
2423 		}
2424 
2425 		dev->n_sectors = ata_id_n_sectors(id);
2426 
2427 		if (dev->id[59] & 0x100)
2428 			dev->multi_count = dev->id[59] & 0xff;
2429 
2430 		if (ata_id_has_lba(id)) {
2431 			const char *lba_desc;
2432 			char ncq_desc[20];
2433 
2434 			lba_desc = "LBA";
2435 			dev->flags |= ATA_DFLAG_LBA;
2436 			if (ata_id_has_lba48(id)) {
2437 				dev->flags |= ATA_DFLAG_LBA48;
2438 				lba_desc = "LBA48";
2439 
2440 				if (dev->n_sectors >= (1UL << 28) &&
2441 				    ata_id_has_flush_ext(id))
2442 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2443 			}
2444 
2445 			/* config NCQ */
2446 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2447 
2448 			/* print device info to dmesg */
2449 			if (ata_msg_drv(ap) && print_info) {
2450 				ata_dev_printk(dev, KERN_INFO,
2451 					"%s: %s, %s, max %s\n",
2452 					revbuf, modelbuf, fwrevbuf,
2453 					ata_mode_string(xfer_mask));
2454 				ata_dev_printk(dev, KERN_INFO,
2455 					"%Lu sectors, multi %u: %s %s\n",
2456 					(unsigned long long)dev->n_sectors,
2457 					dev->multi_count, lba_desc, ncq_desc);
2458 			}
2459 		} else {
2460 			/* CHS */
2461 
2462 			/* Default translation */
2463 			dev->cylinders	= id[1];
2464 			dev->heads	= id[3];
2465 			dev->sectors	= id[6];
2466 
2467 			if (ata_id_current_chs_valid(id)) {
2468 				/* Current CHS translation is valid. */
2469 				dev->cylinders = id[54];
2470 				dev->heads     = id[55];
2471 				dev->sectors   = id[56];
2472 			}
2473 
2474 			/* print device info to dmesg */
2475 			if (ata_msg_drv(ap) && print_info) {
2476 				ata_dev_printk(dev, KERN_INFO,
2477 					"%s: %s, %s, max %s\n",
2478 					revbuf,	modelbuf, fwrevbuf,
2479 					ata_mode_string(xfer_mask));
2480 				ata_dev_printk(dev, KERN_INFO,
2481 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 					(unsigned long long)dev->n_sectors,
2483 					dev->multi_count, dev->cylinders,
2484 					dev->heads, dev->sectors);
2485 			}
2486 		}
2487 
2488 		dev->cdb_len = 16;
2489 	}
2490 
2491 	/* ATAPI-specific feature tests */
2492 	else if (dev->class == ATA_DEV_ATAPI) {
2493 		const char *cdb_intr_string = "";
2494 		const char *atapi_an_string = "";
2495 		const char *dma_dir_string = "";
2496 		u32 sntf;
2497 
2498 		rc = atapi_cdb_len(id);
2499 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2500 			if (ata_msg_warn(ap))
2501 				ata_dev_printk(dev, KERN_WARNING,
2502 					       "unsupported CDB len\n");
2503 			rc = -EINVAL;
2504 			goto err_out_nosup;
2505 		}
2506 		dev->cdb_len = (unsigned int) rc;
2507 
2508 		/* Enable ATAPI AN if both the host and device have
2509 		 * the support.  If PMP is attached, SNTF is required
2510 		 * to enable ATAPI AN to discern between PHY status
2511 		 * changed notifications and ATAPI ANs.
2512 		 */
2513 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2514 		    (!sata_pmp_attached(ap) ||
2515 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2516 			unsigned int err_mask;
2517 
2518 			/* issue SET feature command to turn this on */
2519 			err_mask = ata_dev_set_feature(dev,
2520 					SETFEATURES_SATA_ENABLE, SATA_AN);
2521 			if (err_mask)
2522 				ata_dev_printk(dev, KERN_ERR,
2523 					"failed to enable ATAPI AN "
2524 					"(err_mask=0x%x)\n", err_mask);
2525 			else {
2526 				dev->flags |= ATA_DFLAG_AN;
2527 				atapi_an_string = ", ATAPI AN";
2528 			}
2529 		}
2530 
2531 		if (ata_id_cdb_intr(dev->id)) {
2532 			dev->flags |= ATA_DFLAG_CDB_INTR;
2533 			cdb_intr_string = ", CDB intr";
2534 		}
2535 
2536 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 			dev->flags |= ATA_DFLAG_DMADIR;
2538 			dma_dir_string = ", DMADIR";
2539 		}
2540 
2541 		/* print device info to dmesg */
2542 		if (ata_msg_drv(ap) && print_info)
2543 			ata_dev_printk(dev, KERN_INFO,
2544 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2545 				       modelbuf, fwrevbuf,
2546 				       ata_mode_string(xfer_mask),
2547 				       cdb_intr_string, atapi_an_string,
2548 				       dma_dir_string);
2549 	}
2550 
2551 	/* determine max_sectors */
2552 	dev->max_sectors = ATA_MAX_SECTORS;
2553 	if (dev->flags & ATA_DFLAG_LBA48)
2554 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2555 
2556 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 		if (ata_id_has_hipm(dev->id))
2558 			dev->flags |= ATA_DFLAG_HIPM;
2559 		if (ata_id_has_dipm(dev->id))
2560 			dev->flags |= ATA_DFLAG_DIPM;
2561 	}
2562 
2563 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2564 	   200 sectors */
2565 	if (ata_dev_knobble(dev)) {
2566 		if (ata_msg_drv(ap) && print_info)
2567 			ata_dev_printk(dev, KERN_INFO,
2568 				       "applying bridge limits\n");
2569 		dev->udma_mask &= ATA_UDMA5;
2570 		dev->max_sectors = ATA_MAX_SECTORS;
2571 	}
2572 
2573 	if ((dev->class == ATA_DEV_ATAPI) &&
2574 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2575 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2576 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2577 	}
2578 
2579 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2580 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2581 					 dev->max_sectors);
2582 
2583 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 		dev->horkage |= ATA_HORKAGE_IPM;
2585 
2586 		/* reset link pm_policy for this port to no pm */
2587 		ap->pm_policy = MAX_PERFORMANCE;
2588 	}
2589 
2590 	if (ap->ops->dev_config)
2591 		ap->ops->dev_config(dev);
2592 
2593 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 		/* Let the user know. We don't want to disallow opens for
2595 		   rescue purposes, or in case the vendor is just a blithering
2596 		   idiot. Do this after the dev_config call as some controllers
2597 		   with buggy firmware may want to avoid reporting false device
2598 		   bugs */
2599 
2600 		if (print_info) {
2601 			ata_dev_printk(dev, KERN_WARNING,
2602 "Drive reports diagnostics failure. This may indicate a drive\n");
2603 			ata_dev_printk(dev, KERN_WARNING,
2604 "fault or invalid emulation. Contact drive vendor for information.\n");
2605 		}
2606 	}
2607 
2608 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 			       "firmware update to be fully functional.\n");
2611 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2612 			       "or visit http://ata.wiki.kernel.org.\n");
2613 	}
2614 
2615 	return 0;
2616 
2617 err_out_nosup:
2618 	if (ata_msg_probe(ap))
2619 		ata_dev_printk(dev, KERN_DEBUG,
2620 			       "%s: EXIT, err\n", __func__);
2621 	return rc;
2622 }
2623 
2624 /**
2625  *	ata_cable_40wire	-	return 40 wire cable type
2626  *	@ap: port
2627  *
2628  *	Helper method for drivers which want to hardwire 40 wire cable
2629  *	detection.
2630  */
2631 
2632 int ata_cable_40wire(struct ata_port *ap)
2633 {
2634 	return ATA_CBL_PATA40;
2635 }
2636 
2637 /**
2638  *	ata_cable_80wire	-	return 80 wire cable type
2639  *	@ap: port
2640  *
2641  *	Helper method for drivers which want to hardwire 80 wire cable
2642  *	detection.
2643  */
2644 
2645 int ata_cable_80wire(struct ata_port *ap)
2646 {
2647 	return ATA_CBL_PATA80;
2648 }
2649 
2650 /**
2651  *	ata_cable_unknown	-	return unknown PATA cable.
2652  *	@ap: port
2653  *
2654  *	Helper method for drivers which have no PATA cable detection.
2655  */
2656 
2657 int ata_cable_unknown(struct ata_port *ap)
2658 {
2659 	return ATA_CBL_PATA_UNK;
2660 }
2661 
2662 /**
2663  *	ata_cable_ignore	-	return ignored PATA cable.
2664  *	@ap: port
2665  *
2666  *	Helper method for drivers which don't use cable type to limit
2667  *	transfer mode.
2668  */
2669 int ata_cable_ignore(struct ata_port *ap)
2670 {
2671 	return ATA_CBL_PATA_IGN;
2672 }
2673 
2674 /**
2675  *	ata_cable_sata	-	return SATA cable type
2676  *	@ap: port
2677  *
2678  *	Helper method for drivers which have SATA cables
2679  */
2680 
2681 int ata_cable_sata(struct ata_port *ap)
2682 {
2683 	return ATA_CBL_SATA;
2684 }
2685 
2686 /**
2687  *	ata_bus_probe - Reset and probe ATA bus
2688  *	@ap: Bus to probe
2689  *
2690  *	Master ATA bus probing function.  Initiates a hardware-dependent
2691  *	bus reset, then attempts to identify any devices found on
2692  *	the bus.
2693  *
2694  *	LOCKING:
2695  *	PCI/etc. bus probe sem.
2696  *
2697  *	RETURNS:
2698  *	Zero on success, negative errno otherwise.
2699  */
2700 
2701 int ata_bus_probe(struct ata_port *ap)
2702 {
2703 	unsigned int classes[ATA_MAX_DEVICES];
2704 	int tries[ATA_MAX_DEVICES];
2705 	int rc;
2706 	struct ata_device *dev;
2707 
2708 	ata_port_probe(ap);
2709 
2710 	ata_for_each_dev(dev, &ap->link, ALL)
2711 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2712 
2713  retry:
2714 	ata_for_each_dev(dev, &ap->link, ALL) {
2715 		/* If we issue an SRST then an ATA drive (not ATAPI)
2716 		 * may change configuration and be in PIO0 timing. If
2717 		 * we do a hard reset (or are coming from power on)
2718 		 * this is true for ATA or ATAPI. Until we've set a
2719 		 * suitable controller mode we should not touch the
2720 		 * bus as we may be talking too fast.
2721 		 */
2722 		dev->pio_mode = XFER_PIO_0;
2723 
2724 		/* If the controller has a pio mode setup function
2725 		 * then use it to set the chipset to rights. Don't
2726 		 * touch the DMA setup as that will be dealt with when
2727 		 * configuring devices.
2728 		 */
2729 		if (ap->ops->set_piomode)
2730 			ap->ops->set_piomode(ap, dev);
2731 	}
2732 
2733 	/* reset and determine device classes */
2734 	ap->ops->phy_reset(ap);
2735 
2736 	ata_for_each_dev(dev, &ap->link, ALL) {
2737 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2738 		    dev->class != ATA_DEV_UNKNOWN)
2739 			classes[dev->devno] = dev->class;
2740 		else
2741 			classes[dev->devno] = ATA_DEV_NONE;
2742 
2743 		dev->class = ATA_DEV_UNKNOWN;
2744 	}
2745 
2746 	ata_port_probe(ap);
2747 
2748 	/* read IDENTIFY page and configure devices. We have to do the identify
2749 	   specific sequence bass-ackwards so that PDIAG- is released by
2750 	   the slave device */
2751 
2752 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2753 		if (tries[dev->devno])
2754 			dev->class = classes[dev->devno];
2755 
2756 		if (!ata_dev_enabled(dev))
2757 			continue;
2758 
2759 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2760 				     dev->id);
2761 		if (rc)
2762 			goto fail;
2763 	}
2764 
2765 	/* Now ask for the cable type as PDIAG- should have been released */
2766 	if (ap->ops->cable_detect)
2767 		ap->cbl = ap->ops->cable_detect(ap);
2768 
2769 	/* We may have SATA bridge glue hiding here irrespective of
2770 	 * the reported cable types and sensed types.  When SATA
2771 	 * drives indicate we have a bridge, we don't know which end
2772 	 * of the link the bridge is which is a problem.
2773 	 */
2774 	ata_for_each_dev(dev, &ap->link, ENABLED)
2775 		if (ata_id_is_sata(dev->id))
2776 			ap->cbl = ATA_CBL_SATA;
2777 
2778 	/* After the identify sequence we can now set up the devices. We do
2779 	   this in the normal order so that the user doesn't get confused */
2780 
2781 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2782 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2783 		rc = ata_dev_configure(dev);
2784 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2785 		if (rc)
2786 			goto fail;
2787 	}
2788 
2789 	/* configure transfer mode */
2790 	rc = ata_set_mode(&ap->link, &dev);
2791 	if (rc)
2792 		goto fail;
2793 
2794 	ata_for_each_dev(dev, &ap->link, ENABLED)
2795 		return 0;
2796 
2797 	/* no device present, disable port */
2798 	ata_port_disable(ap);
2799 	return -ENODEV;
2800 
2801  fail:
2802 	tries[dev->devno]--;
2803 
2804 	switch (rc) {
2805 	case -EINVAL:
2806 		/* eeek, something went very wrong, give up */
2807 		tries[dev->devno] = 0;
2808 		break;
2809 
2810 	case -ENODEV:
2811 		/* give it just one more chance */
2812 		tries[dev->devno] = min(tries[dev->devno], 1);
2813 	case -EIO:
2814 		if (tries[dev->devno] == 1) {
2815 			/* This is the last chance, better to slow
2816 			 * down than lose it.
2817 			 */
2818 			sata_down_spd_limit(&ap->link, 0);
2819 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2820 		}
2821 	}
2822 
2823 	if (!tries[dev->devno])
2824 		ata_dev_disable(dev);
2825 
2826 	goto retry;
2827 }
2828 
2829 /**
2830  *	ata_port_probe - Mark port as enabled
2831  *	@ap: Port for which we indicate enablement
2832  *
2833  *	Modify @ap data structure such that the system
2834  *	thinks that the entire port is enabled.
2835  *
2836  *	LOCKING: host lock, or some other form of
2837  *	serialization.
2838  */
2839 
2840 void ata_port_probe(struct ata_port *ap)
2841 {
2842 	ap->flags &= ~ATA_FLAG_DISABLED;
2843 }
2844 
2845 /**
2846  *	sata_print_link_status - Print SATA link status
2847  *	@link: SATA link to printk link status about
2848  *
2849  *	This function prints link speed and status of a SATA link.
2850  *
2851  *	LOCKING:
2852  *	None.
2853  */
2854 static void sata_print_link_status(struct ata_link *link)
2855 {
2856 	u32 sstatus, scontrol, tmp;
2857 
2858 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2859 		return;
2860 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2861 
2862 	if (ata_phys_link_online(link)) {
2863 		tmp = (sstatus >> 4) & 0xf;
2864 		ata_link_printk(link, KERN_INFO,
2865 				"SATA link up %s (SStatus %X SControl %X)\n",
2866 				sata_spd_string(tmp), sstatus, scontrol);
2867 	} else {
2868 		ata_link_printk(link, KERN_INFO,
2869 				"SATA link down (SStatus %X SControl %X)\n",
2870 				sstatus, scontrol);
2871 	}
2872 }
2873 
2874 /**
2875  *	ata_dev_pair		-	return other device on cable
2876  *	@adev: device
2877  *
2878  *	Obtain the other device on the same cable, or if none is
2879  *	present NULL is returned
2880  */
2881 
2882 struct ata_device *ata_dev_pair(struct ata_device *adev)
2883 {
2884 	struct ata_link *link = adev->link;
2885 	struct ata_device *pair = &link->device[1 - adev->devno];
2886 	if (!ata_dev_enabled(pair))
2887 		return NULL;
2888 	return pair;
2889 }
2890 
2891 /**
2892  *	ata_port_disable - Disable port.
2893  *	@ap: Port to be disabled.
2894  *
2895  *	Modify @ap data structure such that the system
2896  *	thinks that the entire port is disabled, and should
2897  *	never attempt to probe or communicate with devices
2898  *	on this port.
2899  *
2900  *	LOCKING: host lock, or some other form of
2901  *	serialization.
2902  */
2903 
2904 void ata_port_disable(struct ata_port *ap)
2905 {
2906 	ap->link.device[0].class = ATA_DEV_NONE;
2907 	ap->link.device[1].class = ATA_DEV_NONE;
2908 	ap->flags |= ATA_FLAG_DISABLED;
2909 }
2910 
2911 /**
2912  *	sata_down_spd_limit - adjust SATA spd limit downward
2913  *	@link: Link to adjust SATA spd limit for
2914  *	@spd_limit: Additional limit
2915  *
2916  *	Adjust SATA spd limit of @link downward.  Note that this
2917  *	function only adjusts the limit.  The change must be applied
2918  *	using sata_set_spd().
2919  *
2920  *	If @spd_limit is non-zero, the speed is limited to equal to or
2921  *	lower than @spd_limit if such speed is supported.  If
2922  *	@spd_limit is slower than any supported speed, only the lowest
2923  *	supported speed is allowed.
2924  *
2925  *	LOCKING:
2926  *	Inherited from caller.
2927  *
2928  *	RETURNS:
2929  *	0 on success, negative errno on failure
2930  */
2931 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2932 {
2933 	u32 sstatus, spd, mask;
2934 	int rc, bit;
2935 
2936 	if (!sata_scr_valid(link))
2937 		return -EOPNOTSUPP;
2938 
2939 	/* If SCR can be read, use it to determine the current SPD.
2940 	 * If not, use cached value in link->sata_spd.
2941 	 */
2942 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2943 	if (rc == 0 && ata_sstatus_online(sstatus))
2944 		spd = (sstatus >> 4) & 0xf;
2945 	else
2946 		spd = link->sata_spd;
2947 
2948 	mask = link->sata_spd_limit;
2949 	if (mask <= 1)
2950 		return -EINVAL;
2951 
2952 	/* unconditionally mask off the highest bit */
2953 	bit = fls(mask) - 1;
2954 	mask &= ~(1 << bit);
2955 
2956 	/* Mask off all speeds higher than or equal to the current
2957 	 * one.  Force 1.5Gbps if current SPD is not available.
2958 	 */
2959 	if (spd > 1)
2960 		mask &= (1 << (spd - 1)) - 1;
2961 	else
2962 		mask &= 1;
2963 
2964 	/* were we already at the bottom? */
2965 	if (!mask)
2966 		return -EINVAL;
2967 
2968 	if (spd_limit) {
2969 		if (mask & ((1 << spd_limit) - 1))
2970 			mask &= (1 << spd_limit) - 1;
2971 		else {
2972 			bit = ffs(mask) - 1;
2973 			mask = 1 << bit;
2974 		}
2975 	}
2976 
2977 	link->sata_spd_limit = mask;
2978 
2979 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2980 			sata_spd_string(fls(mask)));
2981 
2982 	return 0;
2983 }
2984 
2985 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2986 {
2987 	struct ata_link *host_link = &link->ap->link;
2988 	u32 limit, target, spd;
2989 
2990 	limit = link->sata_spd_limit;
2991 
2992 	/* Don't configure downstream link faster than upstream link.
2993 	 * It doesn't speed up anything and some PMPs choke on such
2994 	 * configuration.
2995 	 */
2996 	if (!ata_is_host_link(link) && host_link->sata_spd)
2997 		limit &= (1 << host_link->sata_spd) - 1;
2998 
2999 	if (limit == UINT_MAX)
3000 		target = 0;
3001 	else
3002 		target = fls(limit);
3003 
3004 	spd = (*scontrol >> 4) & 0xf;
3005 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3006 
3007 	return spd != target;
3008 }
3009 
3010 /**
3011  *	sata_set_spd_needed - is SATA spd configuration needed
3012  *	@link: Link in question
3013  *
3014  *	Test whether the spd limit in SControl matches
3015  *	@link->sata_spd_limit.  This function is used to determine
3016  *	whether hardreset is necessary to apply SATA spd
3017  *	configuration.
3018  *
3019  *	LOCKING:
3020  *	Inherited from caller.
3021  *
3022  *	RETURNS:
3023  *	1 if SATA spd configuration is needed, 0 otherwise.
3024  */
3025 static int sata_set_spd_needed(struct ata_link *link)
3026 {
3027 	u32 scontrol;
3028 
3029 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3030 		return 1;
3031 
3032 	return __sata_set_spd_needed(link, &scontrol);
3033 }
3034 
3035 /**
3036  *	sata_set_spd - set SATA spd according to spd limit
3037  *	@link: Link to set SATA spd for
3038  *
3039  *	Set SATA spd of @link according to sata_spd_limit.
3040  *
3041  *	LOCKING:
3042  *	Inherited from caller.
3043  *
3044  *	RETURNS:
3045  *	0 if spd doesn't need to be changed, 1 if spd has been
3046  *	changed.  Negative errno if SCR registers are inaccessible.
3047  */
3048 int sata_set_spd(struct ata_link *link)
3049 {
3050 	u32 scontrol;
3051 	int rc;
3052 
3053 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3054 		return rc;
3055 
3056 	if (!__sata_set_spd_needed(link, &scontrol))
3057 		return 0;
3058 
3059 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3060 		return rc;
3061 
3062 	return 1;
3063 }
3064 
3065 /*
3066  * This mode timing computation functionality is ported over from
3067  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3068  */
3069 /*
3070  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3071  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3072  * for UDMA6, which is currently supported only by Maxtor drives.
3073  *
3074  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3075  */
3076 
3077 static const struct ata_timing ata_timing[] = {
3078 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3079 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3080 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3081 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3082 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3083 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3084 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3085 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3086 
3087 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3088 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3089 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3090 
3091 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3092 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3093 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3094 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3095 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3096 
3097 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3098 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3099 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3100 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3101 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3102 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3103 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3104 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3105 
3106 	{ 0xFF }
3107 };
3108 
3109 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3110 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3111 
3112 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3113 {
3114 	q->setup	= EZ(t->setup      * 1000,  T);
3115 	q->act8b	= EZ(t->act8b      * 1000,  T);
3116 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3117 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3118 	q->active	= EZ(t->active     * 1000,  T);
3119 	q->recover	= EZ(t->recover    * 1000,  T);
3120 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3121 	q->cycle	= EZ(t->cycle      * 1000,  T);
3122 	q->udma		= EZ(t->udma       * 1000, UT);
3123 }
3124 
3125 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3126 		      struct ata_timing *m, unsigned int what)
3127 {
3128 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3129 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3130 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3131 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3132 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3133 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3134 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3135 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3136 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3137 }
3138 
3139 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3140 {
3141 	const struct ata_timing *t = ata_timing;
3142 
3143 	while (xfer_mode > t->mode)
3144 		t++;
3145 
3146 	if (xfer_mode == t->mode)
3147 		return t;
3148 	return NULL;
3149 }
3150 
3151 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3152 		       struct ata_timing *t, int T, int UT)
3153 {
3154 	const struct ata_timing *s;
3155 	struct ata_timing p;
3156 
3157 	/*
3158 	 * Find the mode.
3159 	 */
3160 
3161 	if (!(s = ata_timing_find_mode(speed)))
3162 		return -EINVAL;
3163 
3164 	memcpy(t, s, sizeof(*s));
3165 
3166 	/*
3167 	 * If the drive is an EIDE drive, it can tell us it needs extended
3168 	 * PIO/MW_DMA cycle timing.
3169 	 */
3170 
3171 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3172 		memset(&p, 0, sizeof(p));
3173 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3174 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3175 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3176 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3177 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3178 		}
3179 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3180 	}
3181 
3182 	/*
3183 	 * Convert the timing to bus clock counts.
3184 	 */
3185 
3186 	ata_timing_quantize(t, t, T, UT);
3187 
3188 	/*
3189 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3190 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3191 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3192 	 */
3193 
3194 	if (speed > XFER_PIO_6) {
3195 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3196 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3197 	}
3198 
3199 	/*
3200 	 * Lengthen active & recovery time so that cycle time is correct.
3201 	 */
3202 
3203 	if (t->act8b + t->rec8b < t->cyc8b) {
3204 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3205 		t->rec8b = t->cyc8b - t->act8b;
3206 	}
3207 
3208 	if (t->active + t->recover < t->cycle) {
3209 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3210 		t->recover = t->cycle - t->active;
3211 	}
3212 
3213 	/* In a few cases quantisation may produce enough errors to
3214 	   leave t->cycle too low for the sum of active and recovery
3215 	   if so we must correct this */
3216 	if (t->active + t->recover > t->cycle)
3217 		t->cycle = t->active + t->recover;
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3224  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3225  *	@cycle: cycle duration in ns
3226  *
3227  *	Return matching xfer mode for @cycle.  The returned mode is of
3228  *	the transfer type specified by @xfer_shift.  If @cycle is too
3229  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3230  *	than the fastest known mode, the fasted mode is returned.
3231  *
3232  *	LOCKING:
3233  *	None.
3234  *
3235  *	RETURNS:
3236  *	Matching xfer_mode, 0xff if no match found.
3237  */
3238 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3239 {
3240 	u8 base_mode = 0xff, last_mode = 0xff;
3241 	const struct ata_xfer_ent *ent;
3242 	const struct ata_timing *t;
3243 
3244 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3245 		if (ent->shift == xfer_shift)
3246 			base_mode = ent->base;
3247 
3248 	for (t = ata_timing_find_mode(base_mode);
3249 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3250 		unsigned short this_cycle;
3251 
3252 		switch (xfer_shift) {
3253 		case ATA_SHIFT_PIO:
3254 		case ATA_SHIFT_MWDMA:
3255 			this_cycle = t->cycle;
3256 			break;
3257 		case ATA_SHIFT_UDMA:
3258 			this_cycle = t->udma;
3259 			break;
3260 		default:
3261 			return 0xff;
3262 		}
3263 
3264 		if (cycle > this_cycle)
3265 			break;
3266 
3267 		last_mode = t->mode;
3268 	}
3269 
3270 	return last_mode;
3271 }
3272 
3273 /**
3274  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3275  *	@dev: Device to adjust xfer masks
3276  *	@sel: ATA_DNXFER_* selector
3277  *
3278  *	Adjust xfer masks of @dev downward.  Note that this function
3279  *	does not apply the change.  Invoking ata_set_mode() afterwards
3280  *	will apply the limit.
3281  *
3282  *	LOCKING:
3283  *	Inherited from caller.
3284  *
3285  *	RETURNS:
3286  *	0 on success, negative errno on failure
3287  */
3288 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3289 {
3290 	char buf[32];
3291 	unsigned long orig_mask, xfer_mask;
3292 	unsigned long pio_mask, mwdma_mask, udma_mask;
3293 	int quiet, highbit;
3294 
3295 	quiet = !!(sel & ATA_DNXFER_QUIET);
3296 	sel &= ~ATA_DNXFER_QUIET;
3297 
3298 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3299 						  dev->mwdma_mask,
3300 						  dev->udma_mask);
3301 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3302 
3303 	switch (sel) {
3304 	case ATA_DNXFER_PIO:
3305 		highbit = fls(pio_mask) - 1;
3306 		pio_mask &= ~(1 << highbit);
3307 		break;
3308 
3309 	case ATA_DNXFER_DMA:
3310 		if (udma_mask) {
3311 			highbit = fls(udma_mask) - 1;
3312 			udma_mask &= ~(1 << highbit);
3313 			if (!udma_mask)
3314 				return -ENOENT;
3315 		} else if (mwdma_mask) {
3316 			highbit = fls(mwdma_mask) - 1;
3317 			mwdma_mask &= ~(1 << highbit);
3318 			if (!mwdma_mask)
3319 				return -ENOENT;
3320 		}
3321 		break;
3322 
3323 	case ATA_DNXFER_40C:
3324 		udma_mask &= ATA_UDMA_MASK_40C;
3325 		break;
3326 
3327 	case ATA_DNXFER_FORCE_PIO0:
3328 		pio_mask &= 1;
3329 	case ATA_DNXFER_FORCE_PIO:
3330 		mwdma_mask = 0;
3331 		udma_mask = 0;
3332 		break;
3333 
3334 	default:
3335 		BUG();
3336 	}
3337 
3338 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3339 
3340 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3341 		return -ENOENT;
3342 
3343 	if (!quiet) {
3344 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3345 			snprintf(buf, sizeof(buf), "%s:%s",
3346 				 ata_mode_string(xfer_mask),
3347 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3348 		else
3349 			snprintf(buf, sizeof(buf), "%s",
3350 				 ata_mode_string(xfer_mask));
3351 
3352 		ata_dev_printk(dev, KERN_WARNING,
3353 			       "limiting speed to %s\n", buf);
3354 	}
3355 
3356 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3357 			    &dev->udma_mask);
3358 
3359 	return 0;
3360 }
3361 
3362 static int ata_dev_set_mode(struct ata_device *dev)
3363 {
3364 	struct ata_eh_context *ehc = &dev->link->eh_context;
3365 	const char *dev_err_whine = "";
3366 	int ign_dev_err = 0;
3367 	unsigned int err_mask;
3368 	int rc;
3369 
3370 	dev->flags &= ~ATA_DFLAG_PIO;
3371 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3372 		dev->flags |= ATA_DFLAG_PIO;
3373 
3374 	err_mask = ata_dev_set_xfermode(dev);
3375 
3376 	if (err_mask & ~AC_ERR_DEV)
3377 		goto fail;
3378 
3379 	/* revalidate */
3380 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3381 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3382 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3383 	if (rc)
3384 		return rc;
3385 
3386 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3387 		/* Old CFA may refuse this command, which is just fine */
3388 		if (ata_id_is_cfa(dev->id))
3389 			ign_dev_err = 1;
3390 		/* Catch several broken garbage emulations plus some pre
3391 		   ATA devices */
3392 		if (ata_id_major_version(dev->id) == 0 &&
3393 					dev->pio_mode <= XFER_PIO_2)
3394 			ign_dev_err = 1;
3395 		/* Some very old devices and some bad newer ones fail
3396 		   any kind of SET_XFERMODE request but support PIO0-2
3397 		   timings and no IORDY */
3398 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3399 			ign_dev_err = 1;
3400 	}
3401 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3402 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3403 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3404 	    dev->dma_mode == XFER_MW_DMA_0 &&
3405 	    (dev->id[63] >> 8) & 1)
3406 		ign_dev_err = 1;
3407 
3408 	/* if the device is actually configured correctly, ignore dev err */
3409 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3410 		ign_dev_err = 1;
3411 
3412 	if (err_mask & AC_ERR_DEV) {
3413 		if (!ign_dev_err)
3414 			goto fail;
3415 		else
3416 			dev_err_whine = " (device error ignored)";
3417 	}
3418 
3419 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3420 		dev->xfer_shift, (int)dev->xfer_mode);
3421 
3422 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3423 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3424 		       dev_err_whine);
3425 
3426 	return 0;
3427 
3428  fail:
3429 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3430 		       "(err_mask=0x%x)\n", err_mask);
3431 	return -EIO;
3432 }
3433 
3434 /**
3435  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3436  *	@link: link on which timings will be programmed
3437  *	@r_failed_dev: out parameter for failed device
3438  *
3439  *	Standard implementation of the function used to tune and set
3440  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3441  *	ata_dev_set_mode() fails, pointer to the failing device is
3442  *	returned in @r_failed_dev.
3443  *
3444  *	LOCKING:
3445  *	PCI/etc. bus probe sem.
3446  *
3447  *	RETURNS:
3448  *	0 on success, negative errno otherwise
3449  */
3450 
3451 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3452 {
3453 	struct ata_port *ap = link->ap;
3454 	struct ata_device *dev;
3455 	int rc = 0, used_dma = 0, found = 0;
3456 
3457 	/* step 1: calculate xfer_mask */
3458 	ata_for_each_dev(dev, link, ENABLED) {
3459 		unsigned long pio_mask, dma_mask;
3460 		unsigned int mode_mask;
3461 
3462 		mode_mask = ATA_DMA_MASK_ATA;
3463 		if (dev->class == ATA_DEV_ATAPI)
3464 			mode_mask = ATA_DMA_MASK_ATAPI;
3465 		else if (ata_id_is_cfa(dev->id))
3466 			mode_mask = ATA_DMA_MASK_CFA;
3467 
3468 		ata_dev_xfermask(dev);
3469 		ata_force_xfermask(dev);
3470 
3471 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3472 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3473 
3474 		if (libata_dma_mask & mode_mask)
3475 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3476 		else
3477 			dma_mask = 0;
3478 
3479 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3480 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3481 
3482 		found = 1;
3483 		if (ata_dma_enabled(dev))
3484 			used_dma = 1;
3485 	}
3486 	if (!found)
3487 		goto out;
3488 
3489 	/* step 2: always set host PIO timings */
3490 	ata_for_each_dev(dev, link, ENABLED) {
3491 		if (dev->pio_mode == 0xff) {
3492 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3493 			rc = -EINVAL;
3494 			goto out;
3495 		}
3496 
3497 		dev->xfer_mode = dev->pio_mode;
3498 		dev->xfer_shift = ATA_SHIFT_PIO;
3499 		if (ap->ops->set_piomode)
3500 			ap->ops->set_piomode(ap, dev);
3501 	}
3502 
3503 	/* step 3: set host DMA timings */
3504 	ata_for_each_dev(dev, link, ENABLED) {
3505 		if (!ata_dma_enabled(dev))
3506 			continue;
3507 
3508 		dev->xfer_mode = dev->dma_mode;
3509 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3510 		if (ap->ops->set_dmamode)
3511 			ap->ops->set_dmamode(ap, dev);
3512 	}
3513 
3514 	/* step 4: update devices' xfer mode */
3515 	ata_for_each_dev(dev, link, ENABLED) {
3516 		rc = ata_dev_set_mode(dev);
3517 		if (rc)
3518 			goto out;
3519 	}
3520 
3521 	/* Record simplex status. If we selected DMA then the other
3522 	 * host channels are not permitted to do so.
3523 	 */
3524 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3525 		ap->host->simplex_claimed = ap;
3526 
3527  out:
3528 	if (rc)
3529 		*r_failed_dev = dev;
3530 	return rc;
3531 }
3532 
3533 /**
3534  *	ata_wait_ready - wait for link to become ready
3535  *	@link: link to be waited on
3536  *	@deadline: deadline jiffies for the operation
3537  *	@check_ready: callback to check link readiness
3538  *
3539  *	Wait for @link to become ready.  @check_ready should return
3540  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3541  *	link doesn't seem to be occupied, other errno for other error
3542  *	conditions.
3543  *
3544  *	Transient -ENODEV conditions are allowed for
3545  *	ATA_TMOUT_FF_WAIT.
3546  *
3547  *	LOCKING:
3548  *	EH context.
3549  *
3550  *	RETURNS:
3551  *	0 if @linke is ready before @deadline; otherwise, -errno.
3552  */
3553 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3554 		   int (*check_ready)(struct ata_link *link))
3555 {
3556 	unsigned long start = jiffies;
3557 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3558 	int warned = 0;
3559 
3560 	/* Slave readiness can't be tested separately from master.  On
3561 	 * M/S emulation configuration, this function should be called
3562 	 * only on the master and it will handle both master and slave.
3563 	 */
3564 	WARN_ON(link == link->ap->slave_link);
3565 
3566 	if (time_after(nodev_deadline, deadline))
3567 		nodev_deadline = deadline;
3568 
3569 	while (1) {
3570 		unsigned long now = jiffies;
3571 		int ready, tmp;
3572 
3573 		ready = tmp = check_ready(link);
3574 		if (ready > 0)
3575 			return 0;
3576 
3577 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3578 		 * is online.  Also, some SATA devices take a long
3579 		 * time to clear 0xff after reset.  For example,
3580 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3581 		 * GoVault needs even more than that.  Wait for
3582 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3583 		 *
3584 		 * Note that some PATA controllers (pata_ali) explode
3585 		 * if status register is read more than once when
3586 		 * there's no device attached.
3587 		 */
3588 		if (ready == -ENODEV) {
3589 			if (ata_link_online(link))
3590 				ready = 0;
3591 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3592 				 !ata_link_offline(link) &&
3593 				 time_before(now, nodev_deadline))
3594 				ready = 0;
3595 		}
3596 
3597 		if (ready)
3598 			return ready;
3599 		if (time_after(now, deadline))
3600 			return -EBUSY;
3601 
3602 		if (!warned && time_after(now, start + 5 * HZ) &&
3603 		    (deadline - now > 3 * HZ)) {
3604 			ata_link_printk(link, KERN_WARNING,
3605 				"link is slow to respond, please be patient "
3606 				"(ready=%d)\n", tmp);
3607 			warned = 1;
3608 		}
3609 
3610 		msleep(50);
3611 	}
3612 }
3613 
3614 /**
3615  *	ata_wait_after_reset - wait for link to become ready after reset
3616  *	@link: link to be waited on
3617  *	@deadline: deadline jiffies for the operation
3618  *	@check_ready: callback to check link readiness
3619  *
3620  *	Wait for @link to become ready after reset.
3621  *
3622  *	LOCKING:
3623  *	EH context.
3624  *
3625  *	RETURNS:
3626  *	0 if @linke is ready before @deadline; otherwise, -errno.
3627  */
3628 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3629 				int (*check_ready)(struct ata_link *link))
3630 {
3631 	msleep(ATA_WAIT_AFTER_RESET);
3632 
3633 	return ata_wait_ready(link, deadline, check_ready);
3634 }
3635 
3636 /**
3637  *	sata_link_debounce - debounce SATA phy status
3638  *	@link: ATA link to debounce SATA phy status for
3639  *	@params: timing parameters { interval, duratinon, timeout } in msec
3640  *	@deadline: deadline jiffies for the operation
3641  *
3642 *	Make sure SStatus of @link reaches stable state, determined by
3643  *	holding the same value where DET is not 1 for @duration polled
3644  *	every @interval, before @timeout.  Timeout constraints the
3645  *	beginning of the stable state.  Because DET gets stuck at 1 on
3646  *	some controllers after hot unplugging, this functions waits
3647  *	until timeout then returns 0 if DET is stable at 1.
3648  *
3649  *	@timeout is further limited by @deadline.  The sooner of the
3650  *	two is used.
3651  *
3652  *	LOCKING:
3653  *	Kernel thread context (may sleep)
3654  *
3655  *	RETURNS:
3656  *	0 on success, -errno on failure.
3657  */
3658 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3659 		       unsigned long deadline)
3660 {
3661 	unsigned long interval = params[0];
3662 	unsigned long duration = params[1];
3663 	unsigned long last_jiffies, t;
3664 	u32 last, cur;
3665 	int rc;
3666 
3667 	t = ata_deadline(jiffies, params[2]);
3668 	if (time_before(t, deadline))
3669 		deadline = t;
3670 
3671 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3672 		return rc;
3673 	cur &= 0xf;
3674 
3675 	last = cur;
3676 	last_jiffies = jiffies;
3677 
3678 	while (1) {
3679 		msleep(interval);
3680 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3681 			return rc;
3682 		cur &= 0xf;
3683 
3684 		/* DET stable? */
3685 		if (cur == last) {
3686 			if (cur == 1 && time_before(jiffies, deadline))
3687 				continue;
3688 			if (time_after(jiffies,
3689 				       ata_deadline(last_jiffies, duration)))
3690 				return 0;
3691 			continue;
3692 		}
3693 
3694 		/* unstable, start over */
3695 		last = cur;
3696 		last_jiffies = jiffies;
3697 
3698 		/* Check deadline.  If debouncing failed, return
3699 		 * -EPIPE to tell upper layer to lower link speed.
3700 		 */
3701 		if (time_after(jiffies, deadline))
3702 			return -EPIPE;
3703 	}
3704 }
3705 
3706 /**
3707  *	sata_link_resume - resume SATA link
3708  *	@link: ATA link to resume SATA
3709  *	@params: timing parameters { interval, duratinon, timeout } in msec
3710  *	@deadline: deadline jiffies for the operation
3711  *
3712  *	Resume SATA phy @link and debounce it.
3713  *
3714  *	LOCKING:
3715  *	Kernel thread context (may sleep)
3716  *
3717  *	RETURNS:
3718  *	0 on success, -errno on failure.
3719  */
3720 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3721 		     unsigned long deadline)
3722 {
3723 	u32 scontrol, serror;
3724 	int rc;
3725 
3726 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3727 		return rc;
3728 
3729 	scontrol = (scontrol & 0x0f0) | 0x300;
3730 
3731 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3732 		return rc;
3733 
3734 	/* Some PHYs react badly if SStatus is pounded immediately
3735 	 * after resuming.  Delay 200ms before debouncing.
3736 	 */
3737 	msleep(200);
3738 
3739 	if ((rc = sata_link_debounce(link, params, deadline)))
3740 		return rc;
3741 
3742 	/* clear SError, some PHYs require this even for SRST to work */
3743 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3744 		rc = sata_scr_write(link, SCR_ERROR, serror);
3745 
3746 	return rc != -EINVAL ? rc : 0;
3747 }
3748 
3749 /**
3750  *	ata_std_prereset - prepare for reset
3751  *	@link: ATA link to be reset
3752  *	@deadline: deadline jiffies for the operation
3753  *
3754  *	@link is about to be reset.  Initialize it.  Failure from
3755  *	prereset makes libata abort whole reset sequence and give up
3756  *	that port, so prereset should be best-effort.  It does its
3757  *	best to prepare for reset sequence but if things go wrong, it
3758  *	should just whine, not fail.
3759  *
3760  *	LOCKING:
3761  *	Kernel thread context (may sleep)
3762  *
3763  *	RETURNS:
3764  *	0 on success, -errno otherwise.
3765  */
3766 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3767 {
3768 	struct ata_port *ap = link->ap;
3769 	struct ata_eh_context *ehc = &link->eh_context;
3770 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3771 	int rc;
3772 
3773 	/* if we're about to do hardreset, nothing more to do */
3774 	if (ehc->i.action & ATA_EH_HARDRESET)
3775 		return 0;
3776 
3777 	/* if SATA, resume link */
3778 	if (ap->flags & ATA_FLAG_SATA) {
3779 		rc = sata_link_resume(link, timing, deadline);
3780 		/* whine about phy resume failure but proceed */
3781 		if (rc && rc != -EOPNOTSUPP)
3782 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3783 					"link for reset (errno=%d)\n", rc);
3784 	}
3785 
3786 	/* no point in trying softreset on offline link */
3787 	if (ata_phys_link_offline(link))
3788 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3789 
3790 	return 0;
3791 }
3792 
3793 /**
3794  *	sata_link_hardreset - reset link via SATA phy reset
3795  *	@link: link to reset
3796  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3797  *	@deadline: deadline jiffies for the operation
3798  *	@online: optional out parameter indicating link onlineness
3799  *	@check_ready: optional callback to check link readiness
3800  *
3801  *	SATA phy-reset @link using DET bits of SControl register.
3802  *	After hardreset, link readiness is waited upon using
3803  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3804  *	allowed to not specify @check_ready and wait itself after this
3805  *	function returns.  Device classification is LLD's
3806  *	responsibility.
3807  *
3808  *	*@online is set to one iff reset succeeded and @link is online
3809  *	after reset.
3810  *
3811  *	LOCKING:
3812  *	Kernel thread context (may sleep)
3813  *
3814  *	RETURNS:
3815  *	0 on success, -errno otherwise.
3816  */
3817 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3818 			unsigned long deadline,
3819 			bool *online, int (*check_ready)(struct ata_link *))
3820 {
3821 	u32 scontrol;
3822 	int rc;
3823 
3824 	DPRINTK("ENTER\n");
3825 
3826 	if (online)
3827 		*online = false;
3828 
3829 	if (sata_set_spd_needed(link)) {
3830 		/* SATA spec says nothing about how to reconfigure
3831 		 * spd.  To be on the safe side, turn off phy during
3832 		 * reconfiguration.  This works for at least ICH7 AHCI
3833 		 * and Sil3124.
3834 		 */
3835 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3836 			goto out;
3837 
3838 		scontrol = (scontrol & 0x0f0) | 0x304;
3839 
3840 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3841 			goto out;
3842 
3843 		sata_set_spd(link);
3844 	}
3845 
3846 	/* issue phy wake/reset */
3847 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3848 		goto out;
3849 
3850 	scontrol = (scontrol & 0x0f0) | 0x301;
3851 
3852 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3853 		goto out;
3854 
3855 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3856 	 * 10.4.2 says at least 1 ms.
3857 	 */
3858 	msleep(1);
3859 
3860 	/* bring link back */
3861 	rc = sata_link_resume(link, timing, deadline);
3862 	if (rc)
3863 		goto out;
3864 	/* if link is offline nothing more to do */
3865 	if (ata_phys_link_offline(link))
3866 		goto out;
3867 
3868 	/* Link is online.  From this point, -ENODEV too is an error. */
3869 	if (online)
3870 		*online = true;
3871 
3872 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3873 		/* If PMP is supported, we have to do follow-up SRST.
3874 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3875 		 * the first port is empty.  Wait only for
3876 		 * ATA_TMOUT_PMP_SRST_WAIT.
3877 		 */
3878 		if (check_ready) {
3879 			unsigned long pmp_deadline;
3880 
3881 			pmp_deadline = ata_deadline(jiffies,
3882 						    ATA_TMOUT_PMP_SRST_WAIT);
3883 			if (time_after(pmp_deadline, deadline))
3884 				pmp_deadline = deadline;
3885 			ata_wait_ready(link, pmp_deadline, check_ready);
3886 		}
3887 		rc = -EAGAIN;
3888 		goto out;
3889 	}
3890 
3891 	rc = 0;
3892 	if (check_ready)
3893 		rc = ata_wait_ready(link, deadline, check_ready);
3894  out:
3895 	if (rc && rc != -EAGAIN) {
3896 		/* online is set iff link is online && reset succeeded */
3897 		if (online)
3898 			*online = false;
3899 		ata_link_printk(link, KERN_ERR,
3900 				"COMRESET failed (errno=%d)\n", rc);
3901 	}
3902 	DPRINTK("EXIT, rc=%d\n", rc);
3903 	return rc;
3904 }
3905 
3906 /**
3907  *	sata_std_hardreset - COMRESET w/o waiting or classification
3908  *	@link: link to reset
3909  *	@class: resulting class of attached device
3910  *	@deadline: deadline jiffies for the operation
3911  *
3912  *	Standard SATA COMRESET w/o waiting or classification.
3913  *
3914  *	LOCKING:
3915  *	Kernel thread context (may sleep)
3916  *
3917  *	RETURNS:
3918  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3919  */
3920 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3921 		       unsigned long deadline)
3922 {
3923 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3924 	bool online;
3925 	int rc;
3926 
3927 	/* do hardreset */
3928 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3929 	return online ? -EAGAIN : rc;
3930 }
3931 
3932 /**
3933  *	ata_std_postreset - standard postreset callback
3934  *	@link: the target ata_link
3935  *	@classes: classes of attached devices
3936  *
3937  *	This function is invoked after a successful reset.  Note that
3938  *	the device might have been reset more than once using
3939  *	different reset methods before postreset is invoked.
3940  *
3941  *	LOCKING:
3942  *	Kernel thread context (may sleep)
3943  */
3944 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3945 {
3946 	u32 serror;
3947 
3948 	DPRINTK("ENTER\n");
3949 
3950 	/* reset complete, clear SError */
3951 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3952 		sata_scr_write(link, SCR_ERROR, serror);
3953 
3954 	/* print link status */
3955 	sata_print_link_status(link);
3956 
3957 	DPRINTK("EXIT\n");
3958 }
3959 
3960 /**
3961  *	ata_dev_same_device - Determine whether new ID matches configured device
3962  *	@dev: device to compare against
3963  *	@new_class: class of the new device
3964  *	@new_id: IDENTIFY page of the new device
3965  *
3966  *	Compare @new_class and @new_id against @dev and determine
3967  *	whether @dev is the device indicated by @new_class and
3968  *	@new_id.
3969  *
3970  *	LOCKING:
3971  *	None.
3972  *
3973  *	RETURNS:
3974  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3975  */
3976 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3977 			       const u16 *new_id)
3978 {
3979 	const u16 *old_id = dev->id;
3980 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3981 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3982 
3983 	if (dev->class != new_class) {
3984 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3985 			       dev->class, new_class);
3986 		return 0;
3987 	}
3988 
3989 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3990 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3991 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3992 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3993 
3994 	if (strcmp(model[0], model[1])) {
3995 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3996 			       "'%s' != '%s'\n", model[0], model[1]);
3997 		return 0;
3998 	}
3999 
4000 	if (strcmp(serial[0], serial[1])) {
4001 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4002 			       "'%s' != '%s'\n", serial[0], serial[1]);
4003 		return 0;
4004 	}
4005 
4006 	return 1;
4007 }
4008 
4009 /**
4010  *	ata_dev_reread_id - Re-read IDENTIFY data
4011  *	@dev: target ATA device
4012  *	@readid_flags: read ID flags
4013  *
4014  *	Re-read IDENTIFY page and make sure @dev is still attached to
4015  *	the port.
4016  *
4017  *	LOCKING:
4018  *	Kernel thread context (may sleep)
4019  *
4020  *	RETURNS:
4021  *	0 on success, negative errno otherwise
4022  */
4023 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4024 {
4025 	unsigned int class = dev->class;
4026 	u16 *id = (void *)dev->link->ap->sector_buf;
4027 	int rc;
4028 
4029 	/* read ID data */
4030 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4031 	if (rc)
4032 		return rc;
4033 
4034 	/* is the device still there? */
4035 	if (!ata_dev_same_device(dev, class, id))
4036 		return -ENODEV;
4037 
4038 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4039 	return 0;
4040 }
4041 
4042 /**
4043  *	ata_dev_revalidate - Revalidate ATA device
4044  *	@dev: device to revalidate
4045  *	@new_class: new class code
4046  *	@readid_flags: read ID flags
4047  *
4048  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4049  *	port and reconfigure it according to the new IDENTIFY page.
4050  *
4051  *	LOCKING:
4052  *	Kernel thread context (may sleep)
4053  *
4054  *	RETURNS:
4055  *	0 on success, negative errno otherwise
4056  */
4057 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4058 		       unsigned int readid_flags)
4059 {
4060 	u64 n_sectors = dev->n_sectors;
4061 	int rc;
4062 
4063 	if (!ata_dev_enabled(dev))
4064 		return -ENODEV;
4065 
4066 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4067 	if (ata_class_enabled(new_class) &&
4068 	    new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4069 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4070 			       dev->class, new_class);
4071 		rc = -ENODEV;
4072 		goto fail;
4073 	}
4074 
4075 	/* re-read ID */
4076 	rc = ata_dev_reread_id(dev, readid_flags);
4077 	if (rc)
4078 		goto fail;
4079 
4080 	/* configure device according to the new ID */
4081 	rc = ata_dev_configure(dev);
4082 	if (rc)
4083 		goto fail;
4084 
4085 	/* verify n_sectors hasn't changed */
4086 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4087 	    dev->n_sectors != n_sectors) {
4088 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4089 			       "%llu != %llu\n",
4090 			       (unsigned long long)n_sectors,
4091 			       (unsigned long long)dev->n_sectors);
4092 
4093 		/* restore original n_sectors */
4094 		dev->n_sectors = n_sectors;
4095 
4096 		rc = -ENODEV;
4097 		goto fail;
4098 	}
4099 
4100 	return 0;
4101 
4102  fail:
4103 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4104 	return rc;
4105 }
4106 
4107 struct ata_blacklist_entry {
4108 	const char *model_num;
4109 	const char *model_rev;
4110 	unsigned long horkage;
4111 };
4112 
4113 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4114 	/* Devices with DMA related problems under Linux */
4115 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4116 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4117 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4118 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4119 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4120 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4121 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4122 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4123 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4124 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4125 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4126 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4127 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4128 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4129 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4130 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4131 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4132 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4133 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4134 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4135 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4136 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4137 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4138 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4139 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4140 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4141 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4142 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4143 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4144 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4145 	/* Odd clown on sil3726/4726 PMPs */
4146 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4147 
4148 	/* Weird ATAPI devices */
4149 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4150 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4151 
4152 	/* Devices we expect to fail diagnostics */
4153 
4154 	/* Devices where NCQ should be avoided */
4155 	/* NCQ is slow */
4156 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4157 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4158 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4159 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4160 	/* NCQ is broken */
4161 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4162 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4163 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4164 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4165 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4166 
4167 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4168 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4169 						ATA_HORKAGE_FIRMWARE_WARN },
4170 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4171 						ATA_HORKAGE_FIRMWARE_WARN },
4172 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4173 						ATA_HORKAGE_FIRMWARE_WARN },
4174 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4175 						ATA_HORKAGE_FIRMWARE_WARN },
4176 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4177 						ATA_HORKAGE_FIRMWARE_WARN },
4178 
4179 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4180 						ATA_HORKAGE_FIRMWARE_WARN },
4181 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4182 						ATA_HORKAGE_FIRMWARE_WARN },
4183 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4184 						ATA_HORKAGE_FIRMWARE_WARN },
4185 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4186 						ATA_HORKAGE_FIRMWARE_WARN },
4187 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4188 						ATA_HORKAGE_FIRMWARE_WARN },
4189 
4190 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4191 						ATA_HORKAGE_FIRMWARE_WARN },
4192 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4193 						ATA_HORKAGE_FIRMWARE_WARN },
4194 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4195 						ATA_HORKAGE_FIRMWARE_WARN },
4196 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4197 						ATA_HORKAGE_FIRMWARE_WARN },
4198 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4199 						ATA_HORKAGE_FIRMWARE_WARN },
4200 
4201 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4202 						ATA_HORKAGE_FIRMWARE_WARN },
4203 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4204 						ATA_HORKAGE_FIRMWARE_WARN },
4205 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4206 						ATA_HORKAGE_FIRMWARE_WARN },
4207 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4208 						ATA_HORKAGE_FIRMWARE_WARN },
4209 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4210 						ATA_HORKAGE_FIRMWARE_WARN },
4211 
4212 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4213 						ATA_HORKAGE_FIRMWARE_WARN },
4214 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4215 						ATA_HORKAGE_FIRMWARE_WARN },
4216 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4217 						ATA_HORKAGE_FIRMWARE_WARN },
4218 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4219 						ATA_HORKAGE_FIRMWARE_WARN },
4220 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4221 						ATA_HORKAGE_FIRMWARE_WARN },
4222 
4223 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4224 						ATA_HORKAGE_FIRMWARE_WARN },
4225 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4226 						ATA_HORKAGE_FIRMWARE_WARN },
4227 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4228 						ATA_HORKAGE_FIRMWARE_WARN },
4229 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4230 						ATA_HORKAGE_FIRMWARE_WARN },
4231 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4232 						ATA_HORKAGE_FIRMWARE_WARN },
4233 
4234 	/* Blacklist entries taken from Silicon Image 3124/3132
4235 	   Windows driver .inf file - also several Linux problem reports */
4236 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4237 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4238 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4239 
4240 	/* devices which puke on READ_NATIVE_MAX */
4241 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4242 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4243 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4244 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4245 
4246 	/* Devices which report 1 sector over size HPA */
4247 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4248 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4249 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4250 
4251 	/* Devices which get the IVB wrong */
4252 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4253 	/* Maybe we should just blacklist TSSTcorp... */
4254 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4255 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4256 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4257 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4258 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4259 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4260 
4261 	/* Devices that do not need bridging limits applied */
4262 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4263 
4264 	/* Devices which aren't very happy with higher link speeds */
4265 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4266 
4267 	/* End Marker */
4268 	{ }
4269 };
4270 
4271 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4272 {
4273 	const char *p;
4274 	int len;
4275 
4276 	/*
4277 	 * check for trailing wildcard: *\0
4278 	 */
4279 	p = strchr(patt, wildchar);
4280 	if (p && ((*(p + 1)) == 0))
4281 		len = p - patt;
4282 	else {
4283 		len = strlen(name);
4284 		if (!len) {
4285 			if (!*patt)
4286 				return 0;
4287 			return -1;
4288 		}
4289 	}
4290 
4291 	return strncmp(patt, name, len);
4292 }
4293 
4294 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4295 {
4296 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4297 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4298 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4299 
4300 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4301 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4302 
4303 	while (ad->model_num) {
4304 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4305 			if (ad->model_rev == NULL)
4306 				return ad->horkage;
4307 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4308 				return ad->horkage;
4309 		}
4310 		ad++;
4311 	}
4312 	return 0;
4313 }
4314 
4315 static int ata_dma_blacklisted(const struct ata_device *dev)
4316 {
4317 	/* We don't support polling DMA.
4318 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4319 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4320 	 */
4321 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4322 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4323 		return 1;
4324 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4325 }
4326 
4327 /**
4328  *	ata_is_40wire		-	check drive side detection
4329  *	@dev: device
4330  *
4331  *	Perform drive side detection decoding, allowing for device vendors
4332  *	who can't follow the documentation.
4333  */
4334 
4335 static int ata_is_40wire(struct ata_device *dev)
4336 {
4337 	if (dev->horkage & ATA_HORKAGE_IVB)
4338 		return ata_drive_40wire_relaxed(dev->id);
4339 	return ata_drive_40wire(dev->id);
4340 }
4341 
4342 /**
4343  *	cable_is_40wire		-	40/80/SATA decider
4344  *	@ap: port to consider
4345  *
4346  *	This function encapsulates the policy for speed management
4347  *	in one place. At the moment we don't cache the result but
4348  *	there is a good case for setting ap->cbl to the result when
4349  *	we are called with unknown cables (and figuring out if it
4350  *	impacts hotplug at all).
4351  *
4352  *	Return 1 if the cable appears to be 40 wire.
4353  */
4354 
4355 static int cable_is_40wire(struct ata_port *ap)
4356 {
4357 	struct ata_link *link;
4358 	struct ata_device *dev;
4359 
4360 	/* If the controller thinks we are 40 wire, we are. */
4361 	if (ap->cbl == ATA_CBL_PATA40)
4362 		return 1;
4363 
4364 	/* If the controller thinks we are 80 wire, we are. */
4365 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4366 		return 0;
4367 
4368 	/* If the system is known to be 40 wire short cable (eg
4369 	 * laptop), then we allow 80 wire modes even if the drive
4370 	 * isn't sure.
4371 	 */
4372 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4373 		return 0;
4374 
4375 	/* If the controller doesn't know, we scan.
4376 	 *
4377 	 * Note: We look for all 40 wire detects at this point.  Any
4378 	 *       80 wire detect is taken to be 80 wire cable because
4379 	 * - in many setups only the one drive (slave if present) will
4380 	 *   give a valid detect
4381 	 * - if you have a non detect capable drive you don't want it
4382 	 *   to colour the choice
4383 	 */
4384 	ata_for_each_link(link, ap, EDGE) {
4385 		ata_for_each_dev(dev, link, ENABLED) {
4386 			if (!ata_is_40wire(dev))
4387 				return 0;
4388 		}
4389 	}
4390 	return 1;
4391 }
4392 
4393 /**
4394  *	ata_dev_xfermask - Compute supported xfermask of the given device
4395  *	@dev: Device to compute xfermask for
4396  *
4397  *	Compute supported xfermask of @dev and store it in
4398  *	dev->*_mask.  This function is responsible for applying all
4399  *	known limits including host controller limits, device
4400  *	blacklist, etc...
4401  *
4402  *	LOCKING:
4403  *	None.
4404  */
4405 static void ata_dev_xfermask(struct ata_device *dev)
4406 {
4407 	struct ata_link *link = dev->link;
4408 	struct ata_port *ap = link->ap;
4409 	struct ata_host *host = ap->host;
4410 	unsigned long xfer_mask;
4411 
4412 	/* controller modes available */
4413 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4414 				      ap->mwdma_mask, ap->udma_mask);
4415 
4416 	/* drive modes available */
4417 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4418 				       dev->mwdma_mask, dev->udma_mask);
4419 	xfer_mask &= ata_id_xfermask(dev->id);
4420 
4421 	/*
4422 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4423 	 *	cable
4424 	 */
4425 	if (ata_dev_pair(dev)) {
4426 		/* No PIO5 or PIO6 */
4427 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4428 		/* No MWDMA3 or MWDMA 4 */
4429 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4430 	}
4431 
4432 	if (ata_dma_blacklisted(dev)) {
4433 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4434 		ata_dev_printk(dev, KERN_WARNING,
4435 			       "device is on DMA blacklist, disabling DMA\n");
4436 	}
4437 
4438 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4439 	    host->simplex_claimed && host->simplex_claimed != ap) {
4440 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4441 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4442 			       "other device, disabling DMA\n");
4443 	}
4444 
4445 	if (ap->flags & ATA_FLAG_NO_IORDY)
4446 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4447 
4448 	if (ap->ops->mode_filter)
4449 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4450 
4451 	/* Apply cable rule here.  Don't apply it early because when
4452 	 * we handle hot plug the cable type can itself change.
4453 	 * Check this last so that we know if the transfer rate was
4454 	 * solely limited by the cable.
4455 	 * Unknown or 80 wire cables reported host side are checked
4456 	 * drive side as well. Cases where we know a 40wire cable
4457 	 * is used safely for 80 are not checked here.
4458 	 */
4459 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4460 		/* UDMA/44 or higher would be available */
4461 		if (cable_is_40wire(ap)) {
4462 			ata_dev_printk(dev, KERN_WARNING,
4463 				 "limited to UDMA/33 due to 40-wire cable\n");
4464 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4465 		}
4466 
4467 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4468 			    &dev->mwdma_mask, &dev->udma_mask);
4469 }
4470 
4471 /**
4472  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4473  *	@dev: Device to which command will be sent
4474  *
4475  *	Issue SET FEATURES - XFER MODE command to device @dev
4476  *	on port @ap.
4477  *
4478  *	LOCKING:
4479  *	PCI/etc. bus probe sem.
4480  *
4481  *	RETURNS:
4482  *	0 on success, AC_ERR_* mask otherwise.
4483  */
4484 
4485 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4486 {
4487 	struct ata_taskfile tf;
4488 	unsigned int err_mask;
4489 
4490 	/* set up set-features taskfile */
4491 	DPRINTK("set features - xfer mode\n");
4492 
4493 	/* Some controllers and ATAPI devices show flaky interrupt
4494 	 * behavior after setting xfer mode.  Use polling instead.
4495 	 */
4496 	ata_tf_init(dev, &tf);
4497 	tf.command = ATA_CMD_SET_FEATURES;
4498 	tf.feature = SETFEATURES_XFER;
4499 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4500 	tf.protocol = ATA_PROT_NODATA;
4501 	/* If we are using IORDY we must send the mode setting command */
4502 	if (ata_pio_need_iordy(dev))
4503 		tf.nsect = dev->xfer_mode;
4504 	/* If the device has IORDY and the controller does not - turn it off */
4505  	else if (ata_id_has_iordy(dev->id))
4506 		tf.nsect = 0x01;
4507 	else /* In the ancient relic department - skip all of this */
4508 		return 0;
4509 
4510 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4511 
4512 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4513 	return err_mask;
4514 }
4515 /**
4516  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4517  *	@dev: Device to which command will be sent
4518  *	@enable: Whether to enable or disable the feature
4519  *	@feature: The sector count represents the feature to set
4520  *
4521  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4522  *	on port @ap with sector count
4523  *
4524  *	LOCKING:
4525  *	PCI/etc. bus probe sem.
4526  *
4527  *	RETURNS:
4528  *	0 on success, AC_ERR_* mask otherwise.
4529  */
4530 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4531 					u8 feature)
4532 {
4533 	struct ata_taskfile tf;
4534 	unsigned int err_mask;
4535 
4536 	/* set up set-features taskfile */
4537 	DPRINTK("set features - SATA features\n");
4538 
4539 	ata_tf_init(dev, &tf);
4540 	tf.command = ATA_CMD_SET_FEATURES;
4541 	tf.feature = enable;
4542 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4543 	tf.protocol = ATA_PROT_NODATA;
4544 	tf.nsect = feature;
4545 
4546 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4547 
4548 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4549 	return err_mask;
4550 }
4551 
4552 /**
4553  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4554  *	@dev: Device to which command will be sent
4555  *	@heads: Number of heads (taskfile parameter)
4556  *	@sectors: Number of sectors (taskfile parameter)
4557  *
4558  *	LOCKING:
4559  *	Kernel thread context (may sleep)
4560  *
4561  *	RETURNS:
4562  *	0 on success, AC_ERR_* mask otherwise.
4563  */
4564 static unsigned int ata_dev_init_params(struct ata_device *dev,
4565 					u16 heads, u16 sectors)
4566 {
4567 	struct ata_taskfile tf;
4568 	unsigned int err_mask;
4569 
4570 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4571 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4572 		return AC_ERR_INVALID;
4573 
4574 	/* set up init dev params taskfile */
4575 	DPRINTK("init dev params \n");
4576 
4577 	ata_tf_init(dev, &tf);
4578 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4579 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4580 	tf.protocol = ATA_PROT_NODATA;
4581 	tf.nsect = sectors;
4582 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4583 
4584 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4585 	/* A clean abort indicates an original or just out of spec drive
4586 	   and we should continue as we issue the setup based on the
4587 	   drive reported working geometry */
4588 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4589 		err_mask = 0;
4590 
4591 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4592 	return err_mask;
4593 }
4594 
4595 /**
4596  *	ata_sg_clean - Unmap DMA memory associated with command
4597  *	@qc: Command containing DMA memory to be released
4598  *
4599  *	Unmap all mapped DMA memory associated with this command.
4600  *
4601  *	LOCKING:
4602  *	spin_lock_irqsave(host lock)
4603  */
4604 void ata_sg_clean(struct ata_queued_cmd *qc)
4605 {
4606 	struct ata_port *ap = qc->ap;
4607 	struct scatterlist *sg = qc->sg;
4608 	int dir = qc->dma_dir;
4609 
4610 	WARN_ON_ONCE(sg == NULL);
4611 
4612 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4613 
4614 	if (qc->n_elem)
4615 		dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4616 
4617 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4618 	qc->sg = NULL;
4619 }
4620 
4621 /**
4622  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4623  *	@qc: Metadata associated with taskfile to check
4624  *
4625  *	Allow low-level driver to filter ATA PACKET commands, returning
4626  *	a status indicating whether or not it is OK to use DMA for the
4627  *	supplied PACKET command.
4628  *
4629  *	LOCKING:
4630  *	spin_lock_irqsave(host lock)
4631  *
4632  *	RETURNS: 0 when ATAPI DMA can be used
4633  *               nonzero otherwise
4634  */
4635 int atapi_check_dma(struct ata_queued_cmd *qc)
4636 {
4637 	struct ata_port *ap = qc->ap;
4638 
4639 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4640 	 * few ATAPI devices choke on such DMA requests.
4641 	 */
4642 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4643 	    unlikely(qc->nbytes & 15))
4644 		return 1;
4645 
4646 	if (ap->ops->check_atapi_dma)
4647 		return ap->ops->check_atapi_dma(qc);
4648 
4649 	return 0;
4650 }
4651 
4652 /**
4653  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4654  *	@qc: ATA command in question
4655  *
4656  *	Non-NCQ commands cannot run with any other command, NCQ or
4657  *	not.  As upper layer only knows the queue depth, we are
4658  *	responsible for maintaining exclusion.  This function checks
4659  *	whether a new command @qc can be issued.
4660  *
4661  *	LOCKING:
4662  *	spin_lock_irqsave(host lock)
4663  *
4664  *	RETURNS:
4665  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4666  */
4667 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4668 {
4669 	struct ata_link *link = qc->dev->link;
4670 
4671 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4672 		if (!ata_tag_valid(link->active_tag))
4673 			return 0;
4674 	} else {
4675 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4676 			return 0;
4677 	}
4678 
4679 	return ATA_DEFER_LINK;
4680 }
4681 
4682 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4683 
4684 /**
4685  *	ata_sg_init - Associate command with scatter-gather table.
4686  *	@qc: Command to be associated
4687  *	@sg: Scatter-gather table.
4688  *	@n_elem: Number of elements in s/g table.
4689  *
4690  *	Initialize the data-related elements of queued_cmd @qc
4691  *	to point to a scatter-gather table @sg, containing @n_elem
4692  *	elements.
4693  *
4694  *	LOCKING:
4695  *	spin_lock_irqsave(host lock)
4696  */
4697 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4698 		 unsigned int n_elem)
4699 {
4700 	qc->sg = sg;
4701 	qc->n_elem = n_elem;
4702 	qc->cursg = qc->sg;
4703 }
4704 
4705 /**
4706  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4707  *	@qc: Command with scatter-gather table to be mapped.
4708  *
4709  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4710  *
4711  *	LOCKING:
4712  *	spin_lock_irqsave(host lock)
4713  *
4714  *	RETURNS:
4715  *	Zero on success, negative on error.
4716  *
4717  */
4718 static int ata_sg_setup(struct ata_queued_cmd *qc)
4719 {
4720 	struct ata_port *ap = qc->ap;
4721 	unsigned int n_elem;
4722 
4723 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4724 
4725 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4726 	if (n_elem < 1)
4727 		return -1;
4728 
4729 	DPRINTK("%d sg elements mapped\n", n_elem);
4730 
4731 	qc->n_elem = n_elem;
4732 	qc->flags |= ATA_QCFLAG_DMAMAP;
4733 
4734 	return 0;
4735 }
4736 
4737 /**
4738  *	swap_buf_le16 - swap halves of 16-bit words in place
4739  *	@buf:  Buffer to swap
4740  *	@buf_words:  Number of 16-bit words in buffer.
4741  *
4742  *	Swap halves of 16-bit words if needed to convert from
4743  *	little-endian byte order to native cpu byte order, or
4744  *	vice-versa.
4745  *
4746  *	LOCKING:
4747  *	Inherited from caller.
4748  */
4749 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4750 {
4751 #ifdef __BIG_ENDIAN
4752 	unsigned int i;
4753 
4754 	for (i = 0; i < buf_words; i++)
4755 		buf[i] = le16_to_cpu(buf[i]);
4756 #endif /* __BIG_ENDIAN */
4757 }
4758 
4759 /**
4760  *	ata_qc_new - Request an available ATA command, for queueing
4761  *	@ap: target port
4762  *
4763  *	LOCKING:
4764  *	None.
4765  */
4766 
4767 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4768 {
4769 	struct ata_queued_cmd *qc = NULL;
4770 	unsigned int i;
4771 
4772 	/* no command while frozen */
4773 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4774 		return NULL;
4775 
4776 	/* the last tag is reserved for internal command. */
4777 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4778 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4779 			qc = __ata_qc_from_tag(ap, i);
4780 			break;
4781 		}
4782 
4783 	if (qc)
4784 		qc->tag = i;
4785 
4786 	return qc;
4787 }
4788 
4789 /**
4790  *	ata_qc_new_init - Request an available ATA command, and initialize it
4791  *	@dev: Device from whom we request an available command structure
4792  *
4793  *	LOCKING:
4794  *	None.
4795  */
4796 
4797 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4798 {
4799 	struct ata_port *ap = dev->link->ap;
4800 	struct ata_queued_cmd *qc;
4801 
4802 	qc = ata_qc_new(ap);
4803 	if (qc) {
4804 		qc->scsicmd = NULL;
4805 		qc->ap = ap;
4806 		qc->dev = dev;
4807 
4808 		ata_qc_reinit(qc);
4809 	}
4810 
4811 	return qc;
4812 }
4813 
4814 /**
4815  *	ata_qc_free - free unused ata_queued_cmd
4816  *	@qc: Command to complete
4817  *
4818  *	Designed to free unused ata_queued_cmd object
4819  *	in case something prevents using it.
4820  *
4821  *	LOCKING:
4822  *	spin_lock_irqsave(host lock)
4823  */
4824 void ata_qc_free(struct ata_queued_cmd *qc)
4825 {
4826 	struct ata_port *ap = qc->ap;
4827 	unsigned int tag;
4828 
4829 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4830 
4831 	qc->flags = 0;
4832 	tag = qc->tag;
4833 	if (likely(ata_tag_valid(tag))) {
4834 		qc->tag = ATA_TAG_POISON;
4835 		clear_bit(tag, &ap->qc_allocated);
4836 	}
4837 }
4838 
4839 void __ata_qc_complete(struct ata_queued_cmd *qc)
4840 {
4841 	struct ata_port *ap = qc->ap;
4842 	struct ata_link *link = qc->dev->link;
4843 
4844 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4845 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4846 
4847 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4848 		ata_sg_clean(qc);
4849 
4850 	/* command should be marked inactive atomically with qc completion */
4851 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4852 		link->sactive &= ~(1 << qc->tag);
4853 		if (!link->sactive)
4854 			ap->nr_active_links--;
4855 	} else {
4856 		link->active_tag = ATA_TAG_POISON;
4857 		ap->nr_active_links--;
4858 	}
4859 
4860 	/* clear exclusive status */
4861 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4862 		     ap->excl_link == link))
4863 		ap->excl_link = NULL;
4864 
4865 	/* atapi: mark qc as inactive to prevent the interrupt handler
4866 	 * from completing the command twice later, before the error handler
4867 	 * is called. (when rc != 0 and atapi request sense is needed)
4868 	 */
4869 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4870 	ap->qc_active &= ~(1 << qc->tag);
4871 
4872 	/* call completion callback */
4873 	qc->complete_fn(qc);
4874 }
4875 
4876 static void fill_result_tf(struct ata_queued_cmd *qc)
4877 {
4878 	struct ata_port *ap = qc->ap;
4879 
4880 	qc->result_tf.flags = qc->tf.flags;
4881 	ap->ops->qc_fill_rtf(qc);
4882 }
4883 
4884 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4885 {
4886 	struct ata_device *dev = qc->dev;
4887 
4888 	if (ata_tag_internal(qc->tag))
4889 		return;
4890 
4891 	if (ata_is_nodata(qc->tf.protocol))
4892 		return;
4893 
4894 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4895 		return;
4896 
4897 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4898 }
4899 
4900 /**
4901  *	ata_qc_complete - Complete an active ATA command
4902  *	@qc: Command to complete
4903  *
4904  *	Indicate to the mid and upper layers that an ATA
4905  *	command has completed, with either an ok or not-ok status.
4906  *
4907  *	LOCKING:
4908  *	spin_lock_irqsave(host lock)
4909  */
4910 void ata_qc_complete(struct ata_queued_cmd *qc)
4911 {
4912 	struct ata_port *ap = qc->ap;
4913 
4914 	/* XXX: New EH and old EH use different mechanisms to
4915 	 * synchronize EH with regular execution path.
4916 	 *
4917 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4918 	 * Normal execution path is responsible for not accessing a
4919 	 * failed qc.  libata core enforces the rule by returning NULL
4920 	 * from ata_qc_from_tag() for failed qcs.
4921 	 *
4922 	 * Old EH depends on ata_qc_complete() nullifying completion
4923 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4924 	 * not synchronize with interrupt handler.  Only PIO task is
4925 	 * taken care of.
4926 	 */
4927 	if (ap->ops->error_handler) {
4928 		struct ata_device *dev = qc->dev;
4929 		struct ata_eh_info *ehi = &dev->link->eh_info;
4930 
4931 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4932 
4933 		if (unlikely(qc->err_mask))
4934 			qc->flags |= ATA_QCFLAG_FAILED;
4935 
4936 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4937 			if (!ata_tag_internal(qc->tag)) {
4938 				/* always fill result TF for failed qc */
4939 				fill_result_tf(qc);
4940 				ata_qc_schedule_eh(qc);
4941 				return;
4942 			}
4943 		}
4944 
4945 		/* read result TF if requested */
4946 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4947 			fill_result_tf(qc);
4948 
4949 		/* Some commands need post-processing after successful
4950 		 * completion.
4951 		 */
4952 		switch (qc->tf.command) {
4953 		case ATA_CMD_SET_FEATURES:
4954 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4955 			    qc->tf.feature != SETFEATURES_WC_OFF)
4956 				break;
4957 			/* fall through */
4958 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4959 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4960 			/* revalidate device */
4961 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4962 			ata_port_schedule_eh(ap);
4963 			break;
4964 
4965 		case ATA_CMD_SLEEP:
4966 			dev->flags |= ATA_DFLAG_SLEEPING;
4967 			break;
4968 		}
4969 
4970 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4971 			ata_verify_xfer(qc);
4972 
4973 		__ata_qc_complete(qc);
4974 	} else {
4975 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4976 			return;
4977 
4978 		/* read result TF if failed or requested */
4979 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4980 			fill_result_tf(qc);
4981 
4982 		__ata_qc_complete(qc);
4983 	}
4984 }
4985 
4986 /**
4987  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4988  *	@ap: port in question
4989  *	@qc_active: new qc_active mask
4990  *
4991  *	Complete in-flight commands.  This functions is meant to be
4992  *	called from low-level driver's interrupt routine to complete
4993  *	requests normally.  ap->qc_active and @qc_active is compared
4994  *	and commands are completed accordingly.
4995  *
4996  *	LOCKING:
4997  *	spin_lock_irqsave(host lock)
4998  *
4999  *	RETURNS:
5000  *	Number of completed commands on success, -errno otherwise.
5001  */
5002 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5003 {
5004 	int nr_done = 0;
5005 	u32 done_mask;
5006 	int i;
5007 
5008 	done_mask = ap->qc_active ^ qc_active;
5009 
5010 	if (unlikely(done_mask & qc_active)) {
5011 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5012 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5013 		return -EINVAL;
5014 	}
5015 
5016 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5017 		struct ata_queued_cmd *qc;
5018 
5019 		if (!(done_mask & (1 << i)))
5020 			continue;
5021 
5022 		if ((qc = ata_qc_from_tag(ap, i))) {
5023 			ata_qc_complete(qc);
5024 			nr_done++;
5025 		}
5026 	}
5027 
5028 	return nr_done;
5029 }
5030 
5031 /**
5032  *	ata_qc_issue - issue taskfile to device
5033  *	@qc: command to issue to device
5034  *
5035  *	Prepare an ATA command to submission to device.
5036  *	This includes mapping the data into a DMA-able
5037  *	area, filling in the S/G table, and finally
5038  *	writing the taskfile to hardware, starting the command.
5039  *
5040  *	LOCKING:
5041  *	spin_lock_irqsave(host lock)
5042  */
5043 void ata_qc_issue(struct ata_queued_cmd *qc)
5044 {
5045 	struct ata_port *ap = qc->ap;
5046 	struct ata_link *link = qc->dev->link;
5047 	u8 prot = qc->tf.protocol;
5048 
5049 	/* Make sure only one non-NCQ command is outstanding.  The
5050 	 * check is skipped for old EH because it reuses active qc to
5051 	 * request ATAPI sense.
5052 	 */
5053 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5054 
5055 	if (ata_is_ncq(prot)) {
5056 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5057 
5058 		if (!link->sactive)
5059 			ap->nr_active_links++;
5060 		link->sactive |= 1 << qc->tag;
5061 	} else {
5062 		WARN_ON_ONCE(link->sactive);
5063 
5064 		ap->nr_active_links++;
5065 		link->active_tag = qc->tag;
5066 	}
5067 
5068 	qc->flags |= ATA_QCFLAG_ACTIVE;
5069 	ap->qc_active |= 1 << qc->tag;
5070 
5071 	/* We guarantee to LLDs that they will have at least one
5072 	 * non-zero sg if the command is a data command.
5073 	 */
5074 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5075 
5076 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5077 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5078 		if (ata_sg_setup(qc))
5079 			goto sg_err;
5080 
5081 	/* if device is sleeping, schedule reset and abort the link */
5082 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5083 		link->eh_info.action |= ATA_EH_RESET;
5084 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5085 		ata_link_abort(link);
5086 		return;
5087 	}
5088 
5089 	ap->ops->qc_prep(qc);
5090 
5091 	qc->err_mask |= ap->ops->qc_issue(qc);
5092 	if (unlikely(qc->err_mask))
5093 		goto err;
5094 	return;
5095 
5096 sg_err:
5097 	qc->err_mask |= AC_ERR_SYSTEM;
5098 err:
5099 	ata_qc_complete(qc);
5100 }
5101 
5102 /**
5103  *	sata_scr_valid - test whether SCRs are accessible
5104  *	@link: ATA link to test SCR accessibility for
5105  *
5106  *	Test whether SCRs are accessible for @link.
5107  *
5108  *	LOCKING:
5109  *	None.
5110  *
5111  *	RETURNS:
5112  *	1 if SCRs are accessible, 0 otherwise.
5113  */
5114 int sata_scr_valid(struct ata_link *link)
5115 {
5116 	struct ata_port *ap = link->ap;
5117 
5118 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5119 }
5120 
5121 /**
5122  *	sata_scr_read - read SCR register of the specified port
5123  *	@link: ATA link to read SCR for
5124  *	@reg: SCR to read
5125  *	@val: Place to store read value
5126  *
5127  *	Read SCR register @reg of @link into *@val.  This function is
5128  *	guaranteed to succeed if @link is ap->link, the cable type of
5129  *	the port is SATA and the port implements ->scr_read.
5130  *
5131  *	LOCKING:
5132  *	None if @link is ap->link.  Kernel thread context otherwise.
5133  *
5134  *	RETURNS:
5135  *	0 on success, negative errno on failure.
5136  */
5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5138 {
5139 	if (ata_is_host_link(link)) {
5140 		if (sata_scr_valid(link))
5141 			return link->ap->ops->scr_read(link, reg, val);
5142 		return -EOPNOTSUPP;
5143 	}
5144 
5145 	return sata_pmp_scr_read(link, reg, val);
5146 }
5147 
5148 /**
5149  *	sata_scr_write - write SCR register of the specified port
5150  *	@link: ATA link to write SCR for
5151  *	@reg: SCR to write
5152  *	@val: value to write
5153  *
5154  *	Write @val to SCR register @reg of @link.  This function is
5155  *	guaranteed to succeed if @link is ap->link, the cable type of
5156  *	the port is SATA and the port implements ->scr_read.
5157  *
5158  *	LOCKING:
5159  *	None if @link is ap->link.  Kernel thread context otherwise.
5160  *
5161  *	RETURNS:
5162  *	0 on success, negative errno on failure.
5163  */
5164 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5165 {
5166 	if (ata_is_host_link(link)) {
5167 		if (sata_scr_valid(link))
5168 			return link->ap->ops->scr_write(link, reg, val);
5169 		return -EOPNOTSUPP;
5170 	}
5171 
5172 	return sata_pmp_scr_write(link, reg, val);
5173 }
5174 
5175 /**
5176  *	sata_scr_write_flush - write SCR register of the specified port and flush
5177  *	@link: ATA link to write SCR for
5178  *	@reg: SCR to write
5179  *	@val: value to write
5180  *
5181  *	This function is identical to sata_scr_write() except that this
5182  *	function performs flush after writing to the register.
5183  *
5184  *	LOCKING:
5185  *	None if @link is ap->link.  Kernel thread context otherwise.
5186  *
5187  *	RETURNS:
5188  *	0 on success, negative errno on failure.
5189  */
5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5191 {
5192 	if (ata_is_host_link(link)) {
5193 		int rc;
5194 
5195 		if (sata_scr_valid(link)) {
5196 			rc = link->ap->ops->scr_write(link, reg, val);
5197 			if (rc == 0)
5198 				rc = link->ap->ops->scr_read(link, reg, &val);
5199 			return rc;
5200 		}
5201 		return -EOPNOTSUPP;
5202 	}
5203 
5204 	return sata_pmp_scr_write(link, reg, val);
5205 }
5206 
5207 /**
5208  *	ata_phys_link_online - test whether the given link is online
5209  *	@link: ATA link to test
5210  *
5211  *	Test whether @link is online.  Note that this function returns
5212  *	0 if online status of @link cannot be obtained, so
5213  *	ata_link_online(link) != !ata_link_offline(link).
5214  *
5215  *	LOCKING:
5216  *	None.
5217  *
5218  *	RETURNS:
5219  *	True if the port online status is available and online.
5220  */
5221 bool ata_phys_link_online(struct ata_link *link)
5222 {
5223 	u32 sstatus;
5224 
5225 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5226 	    ata_sstatus_online(sstatus))
5227 		return true;
5228 	return false;
5229 }
5230 
5231 /**
5232  *	ata_phys_link_offline - test whether the given link is offline
5233  *	@link: ATA link to test
5234  *
5235  *	Test whether @link is offline.  Note that this function
5236  *	returns 0 if offline status of @link cannot be obtained, so
5237  *	ata_link_online(link) != !ata_link_offline(link).
5238  *
5239  *	LOCKING:
5240  *	None.
5241  *
5242  *	RETURNS:
5243  *	True if the port offline status is available and offline.
5244  */
5245 bool ata_phys_link_offline(struct ata_link *link)
5246 {
5247 	u32 sstatus;
5248 
5249 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5250 	    !ata_sstatus_online(sstatus))
5251 		return true;
5252 	return false;
5253 }
5254 
5255 /**
5256  *	ata_link_online - test whether the given link is online
5257  *	@link: ATA link to test
5258  *
5259  *	Test whether @link is online.  This is identical to
5260  *	ata_phys_link_online() when there's no slave link.  When
5261  *	there's a slave link, this function should only be called on
5262  *	the master link and will return true if any of M/S links is
5263  *	online.
5264  *
5265  *	LOCKING:
5266  *	None.
5267  *
5268  *	RETURNS:
5269  *	True if the port online status is available and online.
5270  */
5271 bool ata_link_online(struct ata_link *link)
5272 {
5273 	struct ata_link *slave = link->ap->slave_link;
5274 
5275 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5276 
5277 	return ata_phys_link_online(link) ||
5278 		(slave && ata_phys_link_online(slave));
5279 }
5280 
5281 /**
5282  *	ata_link_offline - test whether the given link is offline
5283  *	@link: ATA link to test
5284  *
5285  *	Test whether @link is offline.  This is identical to
5286  *	ata_phys_link_offline() when there's no slave link.  When
5287  *	there's a slave link, this function should only be called on
5288  *	the master link and will return true if both M/S links are
5289  *	offline.
5290  *
5291  *	LOCKING:
5292  *	None.
5293  *
5294  *	RETURNS:
5295  *	True if the port offline status is available and offline.
5296  */
5297 bool ata_link_offline(struct ata_link *link)
5298 {
5299 	struct ata_link *slave = link->ap->slave_link;
5300 
5301 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5302 
5303 	return ata_phys_link_offline(link) &&
5304 		(!slave || ata_phys_link_offline(slave));
5305 }
5306 
5307 #ifdef CONFIG_PM
5308 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5309 			       unsigned int action, unsigned int ehi_flags,
5310 			       int wait)
5311 {
5312 	unsigned long flags;
5313 	int i, rc;
5314 
5315 	for (i = 0; i < host->n_ports; i++) {
5316 		struct ata_port *ap = host->ports[i];
5317 		struct ata_link *link;
5318 
5319 		/* Previous resume operation might still be in
5320 		 * progress.  Wait for PM_PENDING to clear.
5321 		 */
5322 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323 			ata_port_wait_eh(ap);
5324 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5325 		}
5326 
5327 		/* request PM ops to EH */
5328 		spin_lock_irqsave(ap->lock, flags);
5329 
5330 		ap->pm_mesg = mesg;
5331 		if (wait) {
5332 			rc = 0;
5333 			ap->pm_result = &rc;
5334 		}
5335 
5336 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5337 		ata_for_each_link(link, ap, HOST_FIRST) {
5338 			link->eh_info.action |= action;
5339 			link->eh_info.flags |= ehi_flags;
5340 		}
5341 
5342 		ata_port_schedule_eh(ap);
5343 
5344 		spin_unlock_irqrestore(ap->lock, flags);
5345 
5346 		/* wait and check result */
5347 		if (wait) {
5348 			ata_port_wait_eh(ap);
5349 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5350 			if (rc)
5351 				return rc;
5352 		}
5353 	}
5354 
5355 	return 0;
5356 }
5357 
5358 /**
5359  *	ata_host_suspend - suspend host
5360  *	@host: host to suspend
5361  *	@mesg: PM message
5362  *
5363  *	Suspend @host.  Actual operation is performed by EH.  This
5364  *	function requests EH to perform PM operations and waits for EH
5365  *	to finish.
5366  *
5367  *	LOCKING:
5368  *	Kernel thread context (may sleep).
5369  *
5370  *	RETURNS:
5371  *	0 on success, -errno on failure.
5372  */
5373 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5374 {
5375 	int rc;
5376 
5377 	/*
5378 	 * disable link pm on all ports before requesting
5379 	 * any pm activity
5380 	 */
5381 	ata_lpm_enable(host);
5382 
5383 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5384 	if (rc == 0)
5385 		host->dev->power.power_state = mesg;
5386 	return rc;
5387 }
5388 
5389 /**
5390  *	ata_host_resume - resume host
5391  *	@host: host to resume
5392  *
5393  *	Resume @host.  Actual operation is performed by EH.  This
5394  *	function requests EH to perform PM operations and returns.
5395  *	Note that all resume operations are performed parallely.
5396  *
5397  *	LOCKING:
5398  *	Kernel thread context (may sleep).
5399  */
5400 void ata_host_resume(struct ata_host *host)
5401 {
5402 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5403 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5404 	host->dev->power.power_state = PMSG_ON;
5405 
5406 	/* reenable link pm */
5407 	ata_lpm_disable(host);
5408 }
5409 #endif
5410 
5411 /**
5412  *	ata_port_start - Set port up for dma.
5413  *	@ap: Port to initialize
5414  *
5415  *	Called just after data structures for each port are
5416  *	initialized.  Allocates space for PRD table.
5417  *
5418  *	May be used as the port_start() entry in ata_port_operations.
5419  *
5420  *	LOCKING:
5421  *	Inherited from caller.
5422  */
5423 int ata_port_start(struct ata_port *ap)
5424 {
5425 	struct device *dev = ap->dev;
5426 
5427 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5428 				      GFP_KERNEL);
5429 	if (!ap->prd)
5430 		return -ENOMEM;
5431 
5432 	return 0;
5433 }
5434 
5435 /**
5436  *	ata_dev_init - Initialize an ata_device structure
5437  *	@dev: Device structure to initialize
5438  *
5439  *	Initialize @dev in preparation for probing.
5440  *
5441  *	LOCKING:
5442  *	Inherited from caller.
5443  */
5444 void ata_dev_init(struct ata_device *dev)
5445 {
5446 	struct ata_link *link = ata_dev_phys_link(dev);
5447 	struct ata_port *ap = link->ap;
5448 	unsigned long flags;
5449 
5450 	/* SATA spd limit is bound to the attached device, reset together */
5451 	link->sata_spd_limit = link->hw_sata_spd_limit;
5452 	link->sata_spd = 0;
5453 
5454 	/* High bits of dev->flags are used to record warm plug
5455 	 * requests which occur asynchronously.  Synchronize using
5456 	 * host lock.
5457 	 */
5458 	spin_lock_irqsave(ap->lock, flags);
5459 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5460 	dev->horkage = 0;
5461 	spin_unlock_irqrestore(ap->lock, flags);
5462 
5463 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5464 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5465 	dev->pio_mask = UINT_MAX;
5466 	dev->mwdma_mask = UINT_MAX;
5467 	dev->udma_mask = UINT_MAX;
5468 }
5469 
5470 /**
5471  *	ata_link_init - Initialize an ata_link structure
5472  *	@ap: ATA port link is attached to
5473  *	@link: Link structure to initialize
5474  *	@pmp: Port multiplier port number
5475  *
5476  *	Initialize @link.
5477  *
5478  *	LOCKING:
5479  *	Kernel thread context (may sleep)
5480  */
5481 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5482 {
5483 	int i;
5484 
5485 	/* clear everything except for devices */
5486 	memset(link, 0, offsetof(struct ata_link, device[0]));
5487 
5488 	link->ap = ap;
5489 	link->pmp = pmp;
5490 	link->active_tag = ATA_TAG_POISON;
5491 	link->hw_sata_spd_limit = UINT_MAX;
5492 
5493 	/* can't use iterator, ap isn't initialized yet */
5494 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5495 		struct ata_device *dev = &link->device[i];
5496 
5497 		dev->link = link;
5498 		dev->devno = dev - link->device;
5499 		ata_dev_init(dev);
5500 	}
5501 }
5502 
5503 /**
5504  *	sata_link_init_spd - Initialize link->sata_spd_limit
5505  *	@link: Link to configure sata_spd_limit for
5506  *
5507  *	Initialize @link->[hw_]sata_spd_limit to the currently
5508  *	configured value.
5509  *
5510  *	LOCKING:
5511  *	Kernel thread context (may sleep).
5512  *
5513  *	RETURNS:
5514  *	0 on success, -errno on failure.
5515  */
5516 int sata_link_init_spd(struct ata_link *link)
5517 {
5518 	u8 spd;
5519 	int rc;
5520 
5521 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5522 	if (rc)
5523 		return rc;
5524 
5525 	spd = (link->saved_scontrol >> 4) & 0xf;
5526 	if (spd)
5527 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5528 
5529 	ata_force_link_limits(link);
5530 
5531 	link->sata_spd_limit = link->hw_sata_spd_limit;
5532 
5533 	return 0;
5534 }
5535 
5536 /**
5537  *	ata_port_alloc - allocate and initialize basic ATA port resources
5538  *	@host: ATA host this allocated port belongs to
5539  *
5540  *	Allocate and initialize basic ATA port resources.
5541  *
5542  *	RETURNS:
5543  *	Allocate ATA port on success, NULL on failure.
5544  *
5545  *	LOCKING:
5546  *	Inherited from calling layer (may sleep).
5547  */
5548 struct ata_port *ata_port_alloc(struct ata_host *host)
5549 {
5550 	struct ata_port *ap;
5551 
5552 	DPRINTK("ENTER\n");
5553 
5554 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5555 	if (!ap)
5556 		return NULL;
5557 
5558 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5559 	ap->lock = &host->lock;
5560 	ap->flags = ATA_FLAG_DISABLED;
5561 	ap->print_id = -1;
5562 	ap->ctl = ATA_DEVCTL_OBS;
5563 	ap->host = host;
5564 	ap->dev = host->dev;
5565 	ap->last_ctl = 0xFF;
5566 
5567 #if defined(ATA_VERBOSE_DEBUG)
5568 	/* turn on all debugging levels */
5569 	ap->msg_enable = 0x00FF;
5570 #elif defined(ATA_DEBUG)
5571 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5572 #else
5573 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5574 #endif
5575 
5576 #ifdef CONFIG_ATA_SFF
5577 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5578 #else
5579 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5580 #endif
5581 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5582 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5583 	INIT_LIST_HEAD(&ap->eh_done_q);
5584 	init_waitqueue_head(&ap->eh_wait_q);
5585 	init_completion(&ap->park_req_pending);
5586 	init_timer_deferrable(&ap->fastdrain_timer);
5587 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5588 	ap->fastdrain_timer.data = (unsigned long)ap;
5589 
5590 	ap->cbl = ATA_CBL_NONE;
5591 
5592 	ata_link_init(ap, &ap->link, 0);
5593 
5594 #ifdef ATA_IRQ_TRAP
5595 	ap->stats.unhandled_irq = 1;
5596 	ap->stats.idle_irq = 1;
5597 #endif
5598 	return ap;
5599 }
5600 
5601 static void ata_host_release(struct device *gendev, void *res)
5602 {
5603 	struct ata_host *host = dev_get_drvdata(gendev);
5604 	int i;
5605 
5606 	for (i = 0; i < host->n_ports; i++) {
5607 		struct ata_port *ap = host->ports[i];
5608 
5609 		if (!ap)
5610 			continue;
5611 
5612 		if (ap->scsi_host)
5613 			scsi_host_put(ap->scsi_host);
5614 
5615 		kfree(ap->pmp_link);
5616 		kfree(ap->slave_link);
5617 		kfree(ap);
5618 		host->ports[i] = NULL;
5619 	}
5620 
5621 	dev_set_drvdata(gendev, NULL);
5622 }
5623 
5624 /**
5625  *	ata_host_alloc - allocate and init basic ATA host resources
5626  *	@dev: generic device this host is associated with
5627  *	@max_ports: maximum number of ATA ports associated with this host
5628  *
5629  *	Allocate and initialize basic ATA host resources.  LLD calls
5630  *	this function to allocate a host, initializes it fully and
5631  *	attaches it using ata_host_register().
5632  *
5633  *	@max_ports ports are allocated and host->n_ports is
5634  *	initialized to @max_ports.  The caller is allowed to decrease
5635  *	host->n_ports before calling ata_host_register().  The unused
5636  *	ports will be automatically freed on registration.
5637  *
5638  *	RETURNS:
5639  *	Allocate ATA host on success, NULL on failure.
5640  *
5641  *	LOCKING:
5642  *	Inherited from calling layer (may sleep).
5643  */
5644 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5645 {
5646 	struct ata_host *host;
5647 	size_t sz;
5648 	int i;
5649 
5650 	DPRINTK("ENTER\n");
5651 
5652 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5653 		return NULL;
5654 
5655 	/* alloc a container for our list of ATA ports (buses) */
5656 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5657 	/* alloc a container for our list of ATA ports (buses) */
5658 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5659 	if (!host)
5660 		goto err_out;
5661 
5662 	devres_add(dev, host);
5663 	dev_set_drvdata(dev, host);
5664 
5665 	spin_lock_init(&host->lock);
5666 	host->dev = dev;
5667 	host->n_ports = max_ports;
5668 
5669 	/* allocate ports bound to this host */
5670 	for (i = 0; i < max_ports; i++) {
5671 		struct ata_port *ap;
5672 
5673 		ap = ata_port_alloc(host);
5674 		if (!ap)
5675 			goto err_out;
5676 
5677 		ap->port_no = i;
5678 		host->ports[i] = ap;
5679 	}
5680 
5681 	devres_remove_group(dev, NULL);
5682 	return host;
5683 
5684  err_out:
5685 	devres_release_group(dev, NULL);
5686 	return NULL;
5687 }
5688 
5689 /**
5690  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5691  *	@dev: generic device this host is associated with
5692  *	@ppi: array of ATA port_info to initialize host with
5693  *	@n_ports: number of ATA ports attached to this host
5694  *
5695  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5696  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5697  *	last entry will be used for the remaining ports.
5698  *
5699  *	RETURNS:
5700  *	Allocate ATA host on success, NULL on failure.
5701  *
5702  *	LOCKING:
5703  *	Inherited from calling layer (may sleep).
5704  */
5705 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5706 				      const struct ata_port_info * const * ppi,
5707 				      int n_ports)
5708 {
5709 	const struct ata_port_info *pi;
5710 	struct ata_host *host;
5711 	int i, j;
5712 
5713 	host = ata_host_alloc(dev, n_ports);
5714 	if (!host)
5715 		return NULL;
5716 
5717 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5718 		struct ata_port *ap = host->ports[i];
5719 
5720 		if (ppi[j])
5721 			pi = ppi[j++];
5722 
5723 		ap->pio_mask = pi->pio_mask;
5724 		ap->mwdma_mask = pi->mwdma_mask;
5725 		ap->udma_mask = pi->udma_mask;
5726 		ap->flags |= pi->flags;
5727 		ap->link.flags |= pi->link_flags;
5728 		ap->ops = pi->port_ops;
5729 
5730 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5731 			host->ops = pi->port_ops;
5732 	}
5733 
5734 	return host;
5735 }
5736 
5737 /**
5738  *	ata_slave_link_init - initialize slave link
5739  *	@ap: port to initialize slave link for
5740  *
5741  *	Create and initialize slave link for @ap.  This enables slave
5742  *	link handling on the port.
5743  *
5744  *	In libata, a port contains links and a link contains devices.
5745  *	There is single host link but if a PMP is attached to it,
5746  *	there can be multiple fan-out links.  On SATA, there's usually
5747  *	a single device connected to a link but PATA and SATA
5748  *	controllers emulating TF based interface can have two - master
5749  *	and slave.
5750  *
5751  *	However, there are a few controllers which don't fit into this
5752  *	abstraction too well - SATA controllers which emulate TF
5753  *	interface with both master and slave devices but also have
5754  *	separate SCR register sets for each device.  These controllers
5755  *	need separate links for physical link handling
5756  *	(e.g. onlineness, link speed) but should be treated like a
5757  *	traditional M/S controller for everything else (e.g. command
5758  *	issue, softreset).
5759  *
5760  *	slave_link is libata's way of handling this class of
5761  *	controllers without impacting core layer too much.  For
5762  *	anything other than physical link handling, the default host
5763  *	link is used for both master and slave.  For physical link
5764  *	handling, separate @ap->slave_link is used.  All dirty details
5765  *	are implemented inside libata core layer.  From LLD's POV, the
5766  *	only difference is that prereset, hardreset and postreset are
5767  *	called once more for the slave link, so the reset sequence
5768  *	looks like the following.
5769  *
5770  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5771  *	softreset(M) -> postreset(M) -> postreset(S)
5772  *
5773  *	Note that softreset is called only for the master.  Softreset
5774  *	resets both M/S by definition, so SRST on master should handle
5775  *	both (the standard method will work just fine).
5776  *
5777  *	LOCKING:
5778  *	Should be called before host is registered.
5779  *
5780  *	RETURNS:
5781  *	0 on success, -errno on failure.
5782  */
5783 int ata_slave_link_init(struct ata_port *ap)
5784 {
5785 	struct ata_link *link;
5786 
5787 	WARN_ON(ap->slave_link);
5788 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5789 
5790 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5791 	if (!link)
5792 		return -ENOMEM;
5793 
5794 	ata_link_init(ap, link, 1);
5795 	ap->slave_link = link;
5796 	return 0;
5797 }
5798 
5799 static void ata_host_stop(struct device *gendev, void *res)
5800 {
5801 	struct ata_host *host = dev_get_drvdata(gendev);
5802 	int i;
5803 
5804 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5805 
5806 	for (i = 0; i < host->n_ports; i++) {
5807 		struct ata_port *ap = host->ports[i];
5808 
5809 		if (ap->ops->port_stop)
5810 			ap->ops->port_stop(ap);
5811 	}
5812 
5813 	if (host->ops->host_stop)
5814 		host->ops->host_stop(host);
5815 }
5816 
5817 /**
5818  *	ata_finalize_port_ops - finalize ata_port_operations
5819  *	@ops: ata_port_operations to finalize
5820  *
5821  *	An ata_port_operations can inherit from another ops and that
5822  *	ops can again inherit from another.  This can go on as many
5823  *	times as necessary as long as there is no loop in the
5824  *	inheritance chain.
5825  *
5826  *	Ops tables are finalized when the host is started.  NULL or
5827  *	unspecified entries are inherited from the closet ancestor
5828  *	which has the method and the entry is populated with it.
5829  *	After finalization, the ops table directly points to all the
5830  *	methods and ->inherits is no longer necessary and cleared.
5831  *
5832  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5833  *
5834  *	LOCKING:
5835  *	None.
5836  */
5837 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5838 {
5839 	static DEFINE_SPINLOCK(lock);
5840 	const struct ata_port_operations *cur;
5841 	void **begin = (void **)ops;
5842 	void **end = (void **)&ops->inherits;
5843 	void **pp;
5844 
5845 	if (!ops || !ops->inherits)
5846 		return;
5847 
5848 	spin_lock(&lock);
5849 
5850 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5851 		void **inherit = (void **)cur;
5852 
5853 		for (pp = begin; pp < end; pp++, inherit++)
5854 			if (!*pp)
5855 				*pp = *inherit;
5856 	}
5857 
5858 	for (pp = begin; pp < end; pp++)
5859 		if (IS_ERR(*pp))
5860 			*pp = NULL;
5861 
5862 	ops->inherits = NULL;
5863 
5864 	spin_unlock(&lock);
5865 }
5866 
5867 /**
5868  *	ata_host_start - start and freeze ports of an ATA host
5869  *	@host: ATA host to start ports for
5870  *
5871  *	Start and then freeze ports of @host.  Started status is
5872  *	recorded in host->flags, so this function can be called
5873  *	multiple times.  Ports are guaranteed to get started only
5874  *	once.  If host->ops isn't initialized yet, its set to the
5875  *	first non-dummy port ops.
5876  *
5877  *	LOCKING:
5878  *	Inherited from calling layer (may sleep).
5879  *
5880  *	RETURNS:
5881  *	0 if all ports are started successfully, -errno otherwise.
5882  */
5883 int ata_host_start(struct ata_host *host)
5884 {
5885 	int have_stop = 0;
5886 	void *start_dr = NULL;
5887 	int i, rc;
5888 
5889 	if (host->flags & ATA_HOST_STARTED)
5890 		return 0;
5891 
5892 	ata_finalize_port_ops(host->ops);
5893 
5894 	for (i = 0; i < host->n_ports; i++) {
5895 		struct ata_port *ap = host->ports[i];
5896 
5897 		ata_finalize_port_ops(ap->ops);
5898 
5899 		if (!host->ops && !ata_port_is_dummy(ap))
5900 			host->ops = ap->ops;
5901 
5902 		if (ap->ops->port_stop)
5903 			have_stop = 1;
5904 	}
5905 
5906 	if (host->ops->host_stop)
5907 		have_stop = 1;
5908 
5909 	if (have_stop) {
5910 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5911 		if (!start_dr)
5912 			return -ENOMEM;
5913 	}
5914 
5915 	for (i = 0; i < host->n_ports; i++) {
5916 		struct ata_port *ap = host->ports[i];
5917 
5918 		if (ap->ops->port_start) {
5919 			rc = ap->ops->port_start(ap);
5920 			if (rc) {
5921 				if (rc != -ENODEV)
5922 					dev_printk(KERN_ERR, host->dev,
5923 						"failed to start port %d "
5924 						"(errno=%d)\n", i, rc);
5925 				goto err_out;
5926 			}
5927 		}
5928 		ata_eh_freeze_port(ap);
5929 	}
5930 
5931 	if (start_dr)
5932 		devres_add(host->dev, start_dr);
5933 	host->flags |= ATA_HOST_STARTED;
5934 	return 0;
5935 
5936  err_out:
5937 	while (--i >= 0) {
5938 		struct ata_port *ap = host->ports[i];
5939 
5940 		if (ap->ops->port_stop)
5941 			ap->ops->port_stop(ap);
5942 	}
5943 	devres_free(start_dr);
5944 	return rc;
5945 }
5946 
5947 /**
5948  *	ata_sas_host_init - Initialize a host struct
5949  *	@host:	host to initialize
5950  *	@dev:	device host is attached to
5951  *	@flags:	host flags
5952  *	@ops:	port_ops
5953  *
5954  *	LOCKING:
5955  *	PCI/etc. bus probe sem.
5956  *
5957  */
5958 /* KILLME - the only user left is ipr */
5959 void ata_host_init(struct ata_host *host, struct device *dev,
5960 		   unsigned long flags, struct ata_port_operations *ops)
5961 {
5962 	spin_lock_init(&host->lock);
5963 	host->dev = dev;
5964 	host->flags = flags;
5965 	host->ops = ops;
5966 }
5967 
5968 
5969 static void async_port_probe(void *data, async_cookie_t cookie)
5970 {
5971 	int rc;
5972 	struct ata_port *ap = data;
5973 
5974 	/*
5975 	 * If we're not allowed to scan this host in parallel,
5976 	 * we need to wait until all previous scans have completed
5977 	 * before going further.
5978 	 * Jeff Garzik says this is only within a controller, so we
5979 	 * don't need to wait for port 0, only for later ports.
5980 	 */
5981 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5982 		async_synchronize_cookie(cookie);
5983 
5984 	/* probe */
5985 	if (ap->ops->error_handler) {
5986 		struct ata_eh_info *ehi = &ap->link.eh_info;
5987 		unsigned long flags;
5988 
5989 		ata_port_probe(ap);
5990 
5991 		/* kick EH for boot probing */
5992 		spin_lock_irqsave(ap->lock, flags);
5993 
5994 		ehi->probe_mask |= ATA_ALL_DEVICES;
5995 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5996 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5997 
5998 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5999 		ap->pflags |= ATA_PFLAG_LOADING;
6000 		ata_port_schedule_eh(ap);
6001 
6002 		spin_unlock_irqrestore(ap->lock, flags);
6003 
6004 		/* wait for EH to finish */
6005 		ata_port_wait_eh(ap);
6006 	} else {
6007 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6008 		rc = ata_bus_probe(ap);
6009 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6010 
6011 		if (rc) {
6012 			/* FIXME: do something useful here?
6013 			 * Current libata behavior will
6014 			 * tear down everything when
6015 			 * the module is removed
6016 			 * or the h/w is unplugged.
6017 			 */
6018 		}
6019 	}
6020 
6021 	/* in order to keep device order, we need to synchronize at this point */
6022 	async_synchronize_cookie(cookie);
6023 
6024 	ata_scsi_scan_host(ap, 1);
6025 
6026 }
6027 /**
6028  *	ata_host_register - register initialized ATA host
6029  *	@host: ATA host to register
6030  *	@sht: template for SCSI host
6031  *
6032  *	Register initialized ATA host.  @host is allocated using
6033  *	ata_host_alloc() and fully initialized by LLD.  This function
6034  *	starts ports, registers @host with ATA and SCSI layers and
6035  *	probe registered devices.
6036  *
6037  *	LOCKING:
6038  *	Inherited from calling layer (may sleep).
6039  *
6040  *	RETURNS:
6041  *	0 on success, -errno otherwise.
6042  */
6043 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6044 {
6045 	int i, rc;
6046 
6047 	/* host must have been started */
6048 	if (!(host->flags & ATA_HOST_STARTED)) {
6049 		dev_printk(KERN_ERR, host->dev,
6050 			   "BUG: trying to register unstarted host\n");
6051 		WARN_ON(1);
6052 		return -EINVAL;
6053 	}
6054 
6055 	/* Blow away unused ports.  This happens when LLD can't
6056 	 * determine the exact number of ports to allocate at
6057 	 * allocation time.
6058 	 */
6059 	for (i = host->n_ports; host->ports[i]; i++)
6060 		kfree(host->ports[i]);
6061 
6062 	/* give ports names and add SCSI hosts */
6063 	for (i = 0; i < host->n_ports; i++)
6064 		host->ports[i]->print_id = ata_print_id++;
6065 
6066 	rc = ata_scsi_add_hosts(host, sht);
6067 	if (rc)
6068 		return rc;
6069 
6070 	/* associate with ACPI nodes */
6071 	ata_acpi_associate(host);
6072 
6073 	/* set cable, sata_spd_limit and report */
6074 	for (i = 0; i < host->n_ports; i++) {
6075 		struct ata_port *ap = host->ports[i];
6076 		unsigned long xfer_mask;
6077 
6078 		/* set SATA cable type if still unset */
6079 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6080 			ap->cbl = ATA_CBL_SATA;
6081 
6082 		/* init sata_spd_limit to the current value */
6083 		sata_link_init_spd(&ap->link);
6084 		if (ap->slave_link)
6085 			sata_link_init_spd(ap->slave_link);
6086 
6087 		/* print per-port info to dmesg */
6088 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6089 					      ap->udma_mask);
6090 
6091 		if (!ata_port_is_dummy(ap)) {
6092 			ata_port_printk(ap, KERN_INFO,
6093 					"%cATA max %s %s\n",
6094 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6095 					ata_mode_string(xfer_mask),
6096 					ap->link.eh_info.desc);
6097 			ata_ehi_clear_desc(&ap->link.eh_info);
6098 		} else
6099 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6100 	}
6101 
6102 	/* perform each probe synchronously */
6103 	DPRINTK("probe begin\n");
6104 	for (i = 0; i < host->n_ports; i++) {
6105 		struct ata_port *ap = host->ports[i];
6106 		async_schedule(async_port_probe, ap);
6107 	}
6108 	DPRINTK("probe end\n");
6109 
6110 	return 0;
6111 }
6112 
6113 /**
6114  *	ata_host_activate - start host, request IRQ and register it
6115  *	@host: target ATA host
6116  *	@irq: IRQ to request
6117  *	@irq_handler: irq_handler used when requesting IRQ
6118  *	@irq_flags: irq_flags used when requesting IRQ
6119  *	@sht: scsi_host_template to use when registering the host
6120  *
6121  *	After allocating an ATA host and initializing it, most libata
6122  *	LLDs perform three steps to activate the host - start host,
6123  *	request IRQ and register it.  This helper takes necessasry
6124  *	arguments and performs the three steps in one go.
6125  *
6126  *	An invalid IRQ skips the IRQ registration and expects the host to
6127  *	have set polling mode on the port. In this case, @irq_handler
6128  *	should be NULL.
6129  *
6130  *	LOCKING:
6131  *	Inherited from calling layer (may sleep).
6132  *
6133  *	RETURNS:
6134  *	0 on success, -errno otherwise.
6135  */
6136 int ata_host_activate(struct ata_host *host, int irq,
6137 		      irq_handler_t irq_handler, unsigned long irq_flags,
6138 		      struct scsi_host_template *sht)
6139 {
6140 	int i, rc;
6141 
6142 	rc = ata_host_start(host);
6143 	if (rc)
6144 		return rc;
6145 
6146 	/* Special case for polling mode */
6147 	if (!irq) {
6148 		WARN_ON(irq_handler);
6149 		return ata_host_register(host, sht);
6150 	}
6151 
6152 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6153 			      dev_driver_string(host->dev), host);
6154 	if (rc)
6155 		return rc;
6156 
6157 	for (i = 0; i < host->n_ports; i++)
6158 		ata_port_desc(host->ports[i], "irq %d", irq);
6159 
6160 	rc = ata_host_register(host, sht);
6161 	/* if failed, just free the IRQ and leave ports alone */
6162 	if (rc)
6163 		devm_free_irq(host->dev, irq, host);
6164 
6165 	return rc;
6166 }
6167 
6168 /**
6169  *	ata_port_detach - Detach ATA port in prepration of device removal
6170  *	@ap: ATA port to be detached
6171  *
6172  *	Detach all ATA devices and the associated SCSI devices of @ap;
6173  *	then, remove the associated SCSI host.  @ap is guaranteed to
6174  *	be quiescent on return from this function.
6175  *
6176  *	LOCKING:
6177  *	Kernel thread context (may sleep).
6178  */
6179 static void ata_port_detach(struct ata_port *ap)
6180 {
6181 	unsigned long flags;
6182 
6183 	if (!ap->ops->error_handler)
6184 		goto skip_eh;
6185 
6186 	/* tell EH we're leaving & flush EH */
6187 	spin_lock_irqsave(ap->lock, flags);
6188 	ap->pflags |= ATA_PFLAG_UNLOADING;
6189 	ata_port_schedule_eh(ap);
6190 	spin_unlock_irqrestore(ap->lock, flags);
6191 
6192 	/* wait till EH commits suicide */
6193 	ata_port_wait_eh(ap);
6194 
6195 	/* it better be dead now */
6196 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6197 
6198 	cancel_rearming_delayed_work(&ap->hotplug_task);
6199 
6200  skip_eh:
6201 	/* remove the associated SCSI host */
6202 	scsi_remove_host(ap->scsi_host);
6203 }
6204 
6205 /**
6206  *	ata_host_detach - Detach all ports of an ATA host
6207  *	@host: Host to detach
6208  *
6209  *	Detach all ports of @host.
6210  *
6211  *	LOCKING:
6212  *	Kernel thread context (may sleep).
6213  */
6214 void ata_host_detach(struct ata_host *host)
6215 {
6216 	int i;
6217 
6218 	for (i = 0; i < host->n_ports; i++)
6219 		ata_port_detach(host->ports[i]);
6220 
6221 	/* the host is dead now, dissociate ACPI */
6222 	ata_acpi_dissociate(host);
6223 }
6224 
6225 #ifdef CONFIG_PCI
6226 
6227 /**
6228  *	ata_pci_remove_one - PCI layer callback for device removal
6229  *	@pdev: PCI device that was removed
6230  *
6231  *	PCI layer indicates to libata via this hook that hot-unplug or
6232  *	module unload event has occurred.  Detach all ports.  Resource
6233  *	release is handled via devres.
6234  *
6235  *	LOCKING:
6236  *	Inherited from PCI layer (may sleep).
6237  */
6238 void ata_pci_remove_one(struct pci_dev *pdev)
6239 {
6240 	struct device *dev = &pdev->dev;
6241 	struct ata_host *host = dev_get_drvdata(dev);
6242 
6243 	ata_host_detach(host);
6244 }
6245 
6246 /* move to PCI subsystem */
6247 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6248 {
6249 	unsigned long tmp = 0;
6250 
6251 	switch (bits->width) {
6252 	case 1: {
6253 		u8 tmp8 = 0;
6254 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6255 		tmp = tmp8;
6256 		break;
6257 	}
6258 	case 2: {
6259 		u16 tmp16 = 0;
6260 		pci_read_config_word(pdev, bits->reg, &tmp16);
6261 		tmp = tmp16;
6262 		break;
6263 	}
6264 	case 4: {
6265 		u32 tmp32 = 0;
6266 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6267 		tmp = tmp32;
6268 		break;
6269 	}
6270 
6271 	default:
6272 		return -EINVAL;
6273 	}
6274 
6275 	tmp &= bits->mask;
6276 
6277 	return (tmp == bits->val) ? 1 : 0;
6278 }
6279 
6280 #ifdef CONFIG_PM
6281 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6282 {
6283 	pci_save_state(pdev);
6284 	pci_disable_device(pdev);
6285 
6286 	if (mesg.event & PM_EVENT_SLEEP)
6287 		pci_set_power_state(pdev, PCI_D3hot);
6288 }
6289 
6290 int ata_pci_device_do_resume(struct pci_dev *pdev)
6291 {
6292 	int rc;
6293 
6294 	pci_set_power_state(pdev, PCI_D0);
6295 	pci_restore_state(pdev);
6296 
6297 	rc = pcim_enable_device(pdev);
6298 	if (rc) {
6299 		dev_printk(KERN_ERR, &pdev->dev,
6300 			   "failed to enable device after resume (%d)\n", rc);
6301 		return rc;
6302 	}
6303 
6304 	pci_set_master(pdev);
6305 	return 0;
6306 }
6307 
6308 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6309 {
6310 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6311 	int rc = 0;
6312 
6313 	rc = ata_host_suspend(host, mesg);
6314 	if (rc)
6315 		return rc;
6316 
6317 	ata_pci_device_do_suspend(pdev, mesg);
6318 
6319 	return 0;
6320 }
6321 
6322 int ata_pci_device_resume(struct pci_dev *pdev)
6323 {
6324 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6325 	int rc;
6326 
6327 	rc = ata_pci_device_do_resume(pdev);
6328 	if (rc == 0)
6329 		ata_host_resume(host);
6330 	return rc;
6331 }
6332 #endif /* CONFIG_PM */
6333 
6334 #endif /* CONFIG_PCI */
6335 
6336 static int __init ata_parse_force_one(char **cur,
6337 				      struct ata_force_ent *force_ent,
6338 				      const char **reason)
6339 {
6340 	/* FIXME: Currently, there's no way to tag init const data and
6341 	 * using __initdata causes build failure on some versions of
6342 	 * gcc.  Once __initdataconst is implemented, add const to the
6343 	 * following structure.
6344 	 */
6345 	static struct ata_force_param force_tbl[] __initdata = {
6346 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6347 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6348 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6349 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6350 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6351 		{ "sata",	.cbl		= ATA_CBL_SATA },
6352 		{ "1.5Gbps",	.spd_limit	= 1 },
6353 		{ "3.0Gbps",	.spd_limit	= 2 },
6354 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6355 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6356 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6357 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6358 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6359 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6360 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6361 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6362 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6363 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6364 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6365 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6366 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6367 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6368 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6369 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6370 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6371 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6372 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6373 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6374 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6375 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6376 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6377 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6378 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6379 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6380 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6381 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6382 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6383 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6384 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6385 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6386 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6387 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6388 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6389 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6390 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6391 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6392 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6393 	};
6394 	char *start = *cur, *p = *cur;
6395 	char *id, *val, *endp;
6396 	const struct ata_force_param *match_fp = NULL;
6397 	int nr_matches = 0, i;
6398 
6399 	/* find where this param ends and update *cur */
6400 	while (*p != '\0' && *p != ',')
6401 		p++;
6402 
6403 	if (*p == '\0')
6404 		*cur = p;
6405 	else
6406 		*cur = p + 1;
6407 
6408 	*p = '\0';
6409 
6410 	/* parse */
6411 	p = strchr(start, ':');
6412 	if (!p) {
6413 		val = strstrip(start);
6414 		goto parse_val;
6415 	}
6416 	*p = '\0';
6417 
6418 	id = strstrip(start);
6419 	val = strstrip(p + 1);
6420 
6421 	/* parse id */
6422 	p = strchr(id, '.');
6423 	if (p) {
6424 		*p++ = '\0';
6425 		force_ent->device = simple_strtoul(p, &endp, 10);
6426 		if (p == endp || *endp != '\0') {
6427 			*reason = "invalid device";
6428 			return -EINVAL;
6429 		}
6430 	}
6431 
6432 	force_ent->port = simple_strtoul(id, &endp, 10);
6433 	if (p == endp || *endp != '\0') {
6434 		*reason = "invalid port/link";
6435 		return -EINVAL;
6436 	}
6437 
6438  parse_val:
6439 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6440 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6441 		const struct ata_force_param *fp = &force_tbl[i];
6442 
6443 		if (strncasecmp(val, fp->name, strlen(val)))
6444 			continue;
6445 
6446 		nr_matches++;
6447 		match_fp = fp;
6448 
6449 		if (strcasecmp(val, fp->name) == 0) {
6450 			nr_matches = 1;
6451 			break;
6452 		}
6453 	}
6454 
6455 	if (!nr_matches) {
6456 		*reason = "unknown value";
6457 		return -EINVAL;
6458 	}
6459 	if (nr_matches > 1) {
6460 		*reason = "ambigious value";
6461 		return -EINVAL;
6462 	}
6463 
6464 	force_ent->param = *match_fp;
6465 
6466 	return 0;
6467 }
6468 
6469 static void __init ata_parse_force_param(void)
6470 {
6471 	int idx = 0, size = 1;
6472 	int last_port = -1, last_device = -1;
6473 	char *p, *cur, *next;
6474 
6475 	/* calculate maximum number of params and allocate force_tbl */
6476 	for (p = ata_force_param_buf; *p; p++)
6477 		if (*p == ',')
6478 			size++;
6479 
6480 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6481 	if (!ata_force_tbl) {
6482 		printk(KERN_WARNING "ata: failed to extend force table, "
6483 		       "libata.force ignored\n");
6484 		return;
6485 	}
6486 
6487 	/* parse and populate the table */
6488 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6489 		const char *reason = "";
6490 		struct ata_force_ent te = { .port = -1, .device = -1 };
6491 
6492 		next = cur;
6493 		if (ata_parse_force_one(&next, &te, &reason)) {
6494 			printk(KERN_WARNING "ata: failed to parse force "
6495 			       "parameter \"%s\" (%s)\n",
6496 			       cur, reason);
6497 			continue;
6498 		}
6499 
6500 		if (te.port == -1) {
6501 			te.port = last_port;
6502 			te.device = last_device;
6503 		}
6504 
6505 		ata_force_tbl[idx++] = te;
6506 
6507 		last_port = te.port;
6508 		last_device = te.device;
6509 	}
6510 
6511 	ata_force_tbl_size = idx;
6512 }
6513 
6514 static int __init ata_init(void)
6515 {
6516 	ata_parse_force_param();
6517 
6518 	ata_wq = create_workqueue("ata");
6519 	if (!ata_wq)
6520 		goto free_force_tbl;
6521 
6522 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6523 	if (!ata_aux_wq)
6524 		goto free_wq;
6525 
6526 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6527 	return 0;
6528 
6529 free_wq:
6530 	destroy_workqueue(ata_wq);
6531 free_force_tbl:
6532 	kfree(ata_force_tbl);
6533 	return -ENOMEM;
6534 }
6535 
6536 static void __exit ata_exit(void)
6537 {
6538 	kfree(ata_force_tbl);
6539 	destroy_workqueue(ata_wq);
6540 	destroy_workqueue(ata_aux_wq);
6541 }
6542 
6543 subsys_initcall(ata_init);
6544 module_exit(ata_exit);
6545 
6546 static unsigned long ratelimit_time;
6547 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6548 
6549 int ata_ratelimit(void)
6550 {
6551 	int rc;
6552 	unsigned long flags;
6553 
6554 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6555 
6556 	if (time_after(jiffies, ratelimit_time)) {
6557 		rc = 1;
6558 		ratelimit_time = jiffies + (HZ/5);
6559 	} else
6560 		rc = 0;
6561 
6562 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6563 
6564 	return rc;
6565 }
6566 
6567 /**
6568  *	ata_wait_register - wait until register value changes
6569  *	@reg: IO-mapped register
6570  *	@mask: Mask to apply to read register value
6571  *	@val: Wait condition
6572  *	@interval: polling interval in milliseconds
6573  *	@timeout: timeout in milliseconds
6574  *
6575  *	Waiting for some bits of register to change is a common
6576  *	operation for ATA controllers.  This function reads 32bit LE
6577  *	IO-mapped register @reg and tests for the following condition.
6578  *
6579  *	(*@reg & mask) != val
6580  *
6581  *	If the condition is met, it returns; otherwise, the process is
6582  *	repeated after @interval_msec until timeout.
6583  *
6584  *	LOCKING:
6585  *	Kernel thread context (may sleep)
6586  *
6587  *	RETURNS:
6588  *	The final register value.
6589  */
6590 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6591 		      unsigned long interval, unsigned long timeout)
6592 {
6593 	unsigned long deadline;
6594 	u32 tmp;
6595 
6596 	tmp = ioread32(reg);
6597 
6598 	/* Calculate timeout _after_ the first read to make sure
6599 	 * preceding writes reach the controller before starting to
6600 	 * eat away the timeout.
6601 	 */
6602 	deadline = ata_deadline(jiffies, timeout);
6603 
6604 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6605 		msleep(interval);
6606 		tmp = ioread32(reg);
6607 	}
6608 
6609 	return tmp;
6610 }
6611 
6612 /*
6613  * Dummy port_ops
6614  */
6615 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6616 {
6617 	return AC_ERR_SYSTEM;
6618 }
6619 
6620 static void ata_dummy_error_handler(struct ata_port *ap)
6621 {
6622 	/* truly dummy */
6623 }
6624 
6625 struct ata_port_operations ata_dummy_port_ops = {
6626 	.qc_prep		= ata_noop_qc_prep,
6627 	.qc_issue		= ata_dummy_qc_issue,
6628 	.error_handler		= ata_dummy_error_handler,
6629 };
6630 
6631 const struct ata_port_info ata_dummy_port_info = {
6632 	.port_ops		= &ata_dummy_port_ops,
6633 };
6634 
6635 /*
6636  * libata is essentially a library of internal helper functions for
6637  * low-level ATA host controller drivers.  As such, the API/ABI is
6638  * likely to change as new drivers are added and updated.
6639  * Do not depend on ABI/API stability.
6640  */
6641 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6642 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6643 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6644 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6645 EXPORT_SYMBOL_GPL(sata_port_ops);
6646 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6647 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6648 EXPORT_SYMBOL_GPL(ata_link_next);
6649 EXPORT_SYMBOL_GPL(ata_dev_next);
6650 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6651 EXPORT_SYMBOL_GPL(ata_host_init);
6652 EXPORT_SYMBOL_GPL(ata_host_alloc);
6653 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6654 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6655 EXPORT_SYMBOL_GPL(ata_host_start);
6656 EXPORT_SYMBOL_GPL(ata_host_register);
6657 EXPORT_SYMBOL_GPL(ata_host_activate);
6658 EXPORT_SYMBOL_GPL(ata_host_detach);
6659 EXPORT_SYMBOL_GPL(ata_sg_init);
6660 EXPORT_SYMBOL_GPL(ata_qc_complete);
6661 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6662 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6663 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6664 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6665 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6666 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6667 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6668 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6669 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6670 EXPORT_SYMBOL_GPL(ata_mode_string);
6671 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6672 EXPORT_SYMBOL_GPL(ata_port_start);
6673 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6674 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6675 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6676 EXPORT_SYMBOL_GPL(ata_port_probe);
6677 EXPORT_SYMBOL_GPL(ata_dev_disable);
6678 EXPORT_SYMBOL_GPL(sata_set_spd);
6679 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6680 EXPORT_SYMBOL_GPL(sata_link_debounce);
6681 EXPORT_SYMBOL_GPL(sata_link_resume);
6682 EXPORT_SYMBOL_GPL(ata_std_prereset);
6683 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6684 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6685 EXPORT_SYMBOL_GPL(ata_std_postreset);
6686 EXPORT_SYMBOL_GPL(ata_dev_classify);
6687 EXPORT_SYMBOL_GPL(ata_dev_pair);
6688 EXPORT_SYMBOL_GPL(ata_port_disable);
6689 EXPORT_SYMBOL_GPL(ata_ratelimit);
6690 EXPORT_SYMBOL_GPL(ata_wait_register);
6691 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6692 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6693 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6694 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6695 EXPORT_SYMBOL_GPL(sata_scr_valid);
6696 EXPORT_SYMBOL_GPL(sata_scr_read);
6697 EXPORT_SYMBOL_GPL(sata_scr_write);
6698 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6699 EXPORT_SYMBOL_GPL(ata_link_online);
6700 EXPORT_SYMBOL_GPL(ata_link_offline);
6701 #ifdef CONFIG_PM
6702 EXPORT_SYMBOL_GPL(ata_host_suspend);
6703 EXPORT_SYMBOL_GPL(ata_host_resume);
6704 #endif /* CONFIG_PM */
6705 EXPORT_SYMBOL_GPL(ata_id_string);
6706 EXPORT_SYMBOL_GPL(ata_id_c_string);
6707 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6708 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6709 
6710 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6711 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6712 EXPORT_SYMBOL_GPL(ata_timing_compute);
6713 EXPORT_SYMBOL_GPL(ata_timing_merge);
6714 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6715 
6716 #ifdef CONFIG_PCI
6717 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6718 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6719 #ifdef CONFIG_PM
6720 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6721 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6722 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6723 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6724 #endif /* CONFIG_PM */
6725 #endif /* CONFIG_PCI */
6726 
6727 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6728 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6729 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6730 EXPORT_SYMBOL_GPL(ata_port_desc);
6731 #ifdef CONFIG_PCI
6732 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6733 #endif /* CONFIG_PCI */
6734 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6735 EXPORT_SYMBOL_GPL(ata_link_abort);
6736 EXPORT_SYMBOL_GPL(ata_port_abort);
6737 EXPORT_SYMBOL_GPL(ata_port_freeze);
6738 EXPORT_SYMBOL_GPL(sata_async_notification);
6739 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6740 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6741 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6742 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6743 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6744 EXPORT_SYMBOL_GPL(ata_do_eh);
6745 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6746 
6747 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6748 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6749 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6750 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6751 EXPORT_SYMBOL_GPL(ata_cable_sata);
6752