1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <scsi/scsi.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_host.h> 63 #include <linux/libata.h> 64 #include <asm/byteorder.h> 65 #include <linux/cdrom.h> 66 67 #include "libata.h" 68 69 70 /* debounce timing parameters in msecs { interval, duration, timeout } */ 71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 74 75 const struct ata_port_operations ata_base_port_ops = { 76 .prereset = ata_std_prereset, 77 .postreset = ata_std_postreset, 78 .error_handler = ata_std_error_handler, 79 }; 80 81 const struct ata_port_operations sata_port_ops = { 82 .inherits = &ata_base_port_ops, 83 84 .qc_defer = ata_std_qc_defer, 85 .hardreset = sata_std_hardreset, 86 }; 87 88 static unsigned int ata_dev_init_params(struct ata_device *dev, 89 u16 heads, u16 sectors); 90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 91 static unsigned int ata_dev_set_feature(struct ata_device *dev, 92 u8 enable, u8 feature); 93 static void ata_dev_xfermask(struct ata_device *dev); 94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 95 96 unsigned int ata_print_id = 1; 97 static struct workqueue_struct *ata_wq; 98 99 struct workqueue_struct *ata_aux_wq; 100 101 struct ata_force_param { 102 const char *name; 103 unsigned int cbl; 104 int spd_limit; 105 unsigned long xfer_mask; 106 unsigned int horkage_on; 107 unsigned int horkage_off; 108 unsigned int lflags; 109 }; 110 111 struct ata_force_ent { 112 int port; 113 int device; 114 struct ata_force_param param; 115 }; 116 117 static struct ata_force_ent *ata_force_tbl; 118 static int ata_force_tbl_size; 119 120 static char ata_force_param_buf[PAGE_SIZE] __initdata; 121 /* param_buf is thrown away after initialization, disallow read */ 122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 124 125 static int atapi_enabled = 1; 126 module_param(atapi_enabled, int, 0444); 127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 128 129 static int atapi_dmadir = 0; 130 module_param(atapi_dmadir, int, 0444); 131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 132 133 int atapi_passthru16 = 1; 134 module_param(atapi_passthru16, int, 0444); 135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 136 137 int libata_fua = 0; 138 module_param_named(fua, libata_fua, int, 0444); 139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 140 141 static int ata_ignore_hpa; 142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 144 145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 146 module_param_named(dma, libata_dma_mask, int, 0444); 147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 148 149 static int ata_probe_timeout; 150 module_param(ata_probe_timeout, int, 0444); 151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 152 153 int libata_noacpi = 0; 154 module_param_named(noacpi, libata_noacpi, int, 0444); 155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 156 157 int libata_allow_tpm = 0; 158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 160 161 MODULE_AUTHOR("Jeff Garzik"); 162 MODULE_DESCRIPTION("Library module for ATA devices"); 163 MODULE_LICENSE("GPL"); 164 MODULE_VERSION(DRV_VERSION); 165 166 167 static bool ata_sstatus_online(u32 sstatus) 168 { 169 return (sstatus & 0xf) == 0x3; 170 } 171 172 /** 173 * ata_link_next - link iteration helper 174 * @link: the previous link, NULL to start 175 * @ap: ATA port containing links to iterate 176 * @mode: iteration mode, one of ATA_LITER_* 177 * 178 * LOCKING: 179 * Host lock or EH context. 180 * 181 * RETURNS: 182 * Pointer to the next link. 183 */ 184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 185 enum ata_link_iter_mode mode) 186 { 187 BUG_ON(mode != ATA_LITER_EDGE && 188 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 189 190 /* NULL link indicates start of iteration */ 191 if (!link) 192 switch (mode) { 193 case ATA_LITER_EDGE: 194 case ATA_LITER_PMP_FIRST: 195 if (sata_pmp_attached(ap)) 196 return ap->pmp_link; 197 /* fall through */ 198 case ATA_LITER_HOST_FIRST: 199 return &ap->link; 200 } 201 202 /* we just iterated over the host link, what's next? */ 203 if (link == &ap->link) 204 switch (mode) { 205 case ATA_LITER_HOST_FIRST: 206 if (sata_pmp_attached(ap)) 207 return ap->pmp_link; 208 /* fall through */ 209 case ATA_LITER_PMP_FIRST: 210 if (unlikely(ap->slave_link)) 211 return ap->slave_link; 212 /* fall through */ 213 case ATA_LITER_EDGE: 214 return NULL; 215 } 216 217 /* slave_link excludes PMP */ 218 if (unlikely(link == ap->slave_link)) 219 return NULL; 220 221 /* we were over a PMP link */ 222 if (++link < ap->pmp_link + ap->nr_pmp_links) 223 return link; 224 225 if (mode == ATA_LITER_PMP_FIRST) 226 return &ap->link; 227 228 return NULL; 229 } 230 231 /** 232 * ata_dev_next - device iteration helper 233 * @dev: the previous device, NULL to start 234 * @link: ATA link containing devices to iterate 235 * @mode: iteration mode, one of ATA_DITER_* 236 * 237 * LOCKING: 238 * Host lock or EH context. 239 * 240 * RETURNS: 241 * Pointer to the next device. 242 */ 243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 244 enum ata_dev_iter_mode mode) 245 { 246 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 247 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 248 249 /* NULL dev indicates start of iteration */ 250 if (!dev) 251 switch (mode) { 252 case ATA_DITER_ENABLED: 253 case ATA_DITER_ALL: 254 dev = link->device; 255 goto check; 256 case ATA_DITER_ENABLED_REVERSE: 257 case ATA_DITER_ALL_REVERSE: 258 dev = link->device + ata_link_max_devices(link) - 1; 259 goto check; 260 } 261 262 next: 263 /* move to the next one */ 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 if (++dev < link->device + ata_link_max_devices(link)) 268 goto check; 269 return NULL; 270 case ATA_DITER_ENABLED_REVERSE: 271 case ATA_DITER_ALL_REVERSE: 272 if (--dev >= link->device) 273 goto check; 274 return NULL; 275 } 276 277 check: 278 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 279 !ata_dev_enabled(dev)) 280 goto next; 281 return dev; 282 } 283 284 /** 285 * ata_dev_phys_link - find physical link for a device 286 * @dev: ATA device to look up physical link for 287 * 288 * Look up physical link which @dev is attached to. Note that 289 * this is different from @dev->link only when @dev is on slave 290 * link. For all other cases, it's the same as @dev->link. 291 * 292 * LOCKING: 293 * Don't care. 294 * 295 * RETURNS: 296 * Pointer to the found physical link. 297 */ 298 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 299 { 300 struct ata_port *ap = dev->link->ap; 301 302 if (!ap->slave_link) 303 return dev->link; 304 if (!dev->devno) 305 return &ap->link; 306 return ap->slave_link; 307 } 308 309 /** 310 * ata_force_cbl - force cable type according to libata.force 311 * @ap: ATA port of interest 312 * 313 * Force cable type according to libata.force and whine about it. 314 * The last entry which has matching port number is used, so it 315 * can be specified as part of device force parameters. For 316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 317 * same effect. 318 * 319 * LOCKING: 320 * EH context. 321 */ 322 void ata_force_cbl(struct ata_port *ap) 323 { 324 int i; 325 326 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 327 const struct ata_force_ent *fe = &ata_force_tbl[i]; 328 329 if (fe->port != -1 && fe->port != ap->print_id) 330 continue; 331 332 if (fe->param.cbl == ATA_CBL_NONE) 333 continue; 334 335 ap->cbl = fe->param.cbl; 336 ata_port_printk(ap, KERN_NOTICE, 337 "FORCE: cable set to %s\n", fe->param.name); 338 return; 339 } 340 } 341 342 /** 343 * ata_force_link_limits - force link limits according to libata.force 344 * @link: ATA link of interest 345 * 346 * Force link flags and SATA spd limit according to libata.force 347 * and whine about it. When only the port part is specified 348 * (e.g. 1:), the limit applies to all links connected to both 349 * the host link and all fan-out ports connected via PMP. If the 350 * device part is specified as 0 (e.g. 1.00:), it specifies the 351 * first fan-out link not the host link. Device number 15 always 352 * points to the host link whether PMP is attached or not. If the 353 * controller has slave link, device number 16 points to it. 354 * 355 * LOCKING: 356 * EH context. 357 */ 358 static void ata_force_link_limits(struct ata_link *link) 359 { 360 bool did_spd = false; 361 int linkno = link->pmp; 362 int i; 363 364 if (ata_is_host_link(link)) 365 linkno += 15; 366 367 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 368 const struct ata_force_ent *fe = &ata_force_tbl[i]; 369 370 if (fe->port != -1 && fe->port != link->ap->print_id) 371 continue; 372 373 if (fe->device != -1 && fe->device != linkno) 374 continue; 375 376 /* only honor the first spd limit */ 377 if (!did_spd && fe->param.spd_limit) { 378 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 379 ata_link_printk(link, KERN_NOTICE, 380 "FORCE: PHY spd limit set to %s\n", 381 fe->param.name); 382 did_spd = true; 383 } 384 385 /* let lflags stack */ 386 if (fe->param.lflags) { 387 link->flags |= fe->param.lflags; 388 ata_link_printk(link, KERN_NOTICE, 389 "FORCE: link flag 0x%x forced -> 0x%x\n", 390 fe->param.lflags, link->flags); 391 } 392 } 393 } 394 395 /** 396 * ata_force_xfermask - force xfermask according to libata.force 397 * @dev: ATA device of interest 398 * 399 * Force xfer_mask according to libata.force and whine about it. 400 * For consistency with link selection, device number 15 selects 401 * the first device connected to the host link. 402 * 403 * LOCKING: 404 * EH context. 405 */ 406 static void ata_force_xfermask(struct ata_device *dev) 407 { 408 int devno = dev->link->pmp + dev->devno; 409 int alt_devno = devno; 410 int i; 411 412 /* allow n.15/16 for devices attached to host port */ 413 if (ata_is_host_link(dev->link)) 414 alt_devno += 15; 415 416 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 417 const struct ata_force_ent *fe = &ata_force_tbl[i]; 418 unsigned long pio_mask, mwdma_mask, udma_mask; 419 420 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 421 continue; 422 423 if (fe->device != -1 && fe->device != devno && 424 fe->device != alt_devno) 425 continue; 426 427 if (!fe->param.xfer_mask) 428 continue; 429 430 ata_unpack_xfermask(fe->param.xfer_mask, 431 &pio_mask, &mwdma_mask, &udma_mask); 432 if (udma_mask) 433 dev->udma_mask = udma_mask; 434 else if (mwdma_mask) { 435 dev->udma_mask = 0; 436 dev->mwdma_mask = mwdma_mask; 437 } else { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = 0; 440 dev->pio_mask = pio_mask; 441 } 442 443 ata_dev_printk(dev, KERN_NOTICE, 444 "FORCE: xfer_mask set to %s\n", fe->param.name); 445 return; 446 } 447 } 448 449 /** 450 * ata_force_horkage - force horkage according to libata.force 451 * @dev: ATA device of interest 452 * 453 * Force horkage according to libata.force and whine about it. 454 * For consistency with link selection, device number 15 selects 455 * the first device connected to the host link. 456 * 457 * LOCKING: 458 * EH context. 459 */ 460 static void ata_force_horkage(struct ata_device *dev) 461 { 462 int devno = dev->link->pmp + dev->devno; 463 int alt_devno = devno; 464 int i; 465 466 /* allow n.15/16 for devices attached to host port */ 467 if (ata_is_host_link(dev->link)) 468 alt_devno += 15; 469 470 for (i = 0; i < ata_force_tbl_size; i++) { 471 const struct ata_force_ent *fe = &ata_force_tbl[i]; 472 473 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 474 continue; 475 476 if (fe->device != -1 && fe->device != devno && 477 fe->device != alt_devno) 478 continue; 479 480 if (!(~dev->horkage & fe->param.horkage_on) && 481 !(dev->horkage & fe->param.horkage_off)) 482 continue; 483 484 dev->horkage |= fe->param.horkage_on; 485 dev->horkage &= ~fe->param.horkage_off; 486 487 ata_dev_printk(dev, KERN_NOTICE, 488 "FORCE: horkage modified (%s)\n", fe->param.name); 489 } 490 } 491 492 /** 493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 494 * @opcode: SCSI opcode 495 * 496 * Determine ATAPI command type from @opcode. 497 * 498 * LOCKING: 499 * None. 500 * 501 * RETURNS: 502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 503 */ 504 int atapi_cmd_type(u8 opcode) 505 { 506 switch (opcode) { 507 case GPCMD_READ_10: 508 case GPCMD_READ_12: 509 return ATAPI_READ; 510 511 case GPCMD_WRITE_10: 512 case GPCMD_WRITE_12: 513 case GPCMD_WRITE_AND_VERIFY_10: 514 return ATAPI_WRITE; 515 516 case GPCMD_READ_CD: 517 case GPCMD_READ_CD_MSF: 518 return ATAPI_READ_CD; 519 520 case ATA_16: 521 case ATA_12: 522 if (atapi_passthru16) 523 return ATAPI_PASS_THRU; 524 /* fall thru */ 525 default: 526 return ATAPI_MISC; 527 } 528 } 529 530 /** 531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 532 * @tf: Taskfile to convert 533 * @pmp: Port multiplier port 534 * @is_cmd: This FIS is for command 535 * @fis: Buffer into which data will output 536 * 537 * Converts a standard ATA taskfile to a Serial ATA 538 * FIS structure (Register - Host to Device). 539 * 540 * LOCKING: 541 * Inherited from caller. 542 */ 543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 544 { 545 fis[0] = 0x27; /* Register - Host to Device FIS */ 546 fis[1] = pmp & 0xf; /* Port multiplier number*/ 547 if (is_cmd) 548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 549 550 fis[2] = tf->command; 551 fis[3] = tf->feature; 552 553 fis[4] = tf->lbal; 554 fis[5] = tf->lbam; 555 fis[6] = tf->lbah; 556 fis[7] = tf->device; 557 558 fis[8] = tf->hob_lbal; 559 fis[9] = tf->hob_lbam; 560 fis[10] = tf->hob_lbah; 561 fis[11] = tf->hob_feature; 562 563 fis[12] = tf->nsect; 564 fis[13] = tf->hob_nsect; 565 fis[14] = 0; 566 fis[15] = tf->ctl; 567 568 fis[16] = 0; 569 fis[17] = 0; 570 fis[18] = 0; 571 fis[19] = 0; 572 } 573 574 /** 575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 576 * @fis: Buffer from which data will be input 577 * @tf: Taskfile to output 578 * 579 * Converts a serial ATA FIS structure to a standard ATA taskfile. 580 * 581 * LOCKING: 582 * Inherited from caller. 583 */ 584 585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 586 { 587 tf->command = fis[2]; /* status */ 588 tf->feature = fis[3]; /* error */ 589 590 tf->lbal = fis[4]; 591 tf->lbam = fis[5]; 592 tf->lbah = fis[6]; 593 tf->device = fis[7]; 594 595 tf->hob_lbal = fis[8]; 596 tf->hob_lbam = fis[9]; 597 tf->hob_lbah = fis[10]; 598 599 tf->nsect = fis[12]; 600 tf->hob_nsect = fis[13]; 601 } 602 603 static const u8 ata_rw_cmds[] = { 604 /* pio multi */ 605 ATA_CMD_READ_MULTI, 606 ATA_CMD_WRITE_MULTI, 607 ATA_CMD_READ_MULTI_EXT, 608 ATA_CMD_WRITE_MULTI_EXT, 609 0, 610 0, 611 0, 612 ATA_CMD_WRITE_MULTI_FUA_EXT, 613 /* pio */ 614 ATA_CMD_PIO_READ, 615 ATA_CMD_PIO_WRITE, 616 ATA_CMD_PIO_READ_EXT, 617 ATA_CMD_PIO_WRITE_EXT, 618 0, 619 0, 620 0, 621 0, 622 /* dma */ 623 ATA_CMD_READ, 624 ATA_CMD_WRITE, 625 ATA_CMD_READ_EXT, 626 ATA_CMD_WRITE_EXT, 627 0, 628 0, 629 0, 630 ATA_CMD_WRITE_FUA_EXT 631 }; 632 633 /** 634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 635 * @tf: command to examine and configure 636 * @dev: device tf belongs to 637 * 638 * Examine the device configuration and tf->flags to calculate 639 * the proper read/write commands and protocol to use. 640 * 641 * LOCKING: 642 * caller. 643 */ 644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 645 { 646 u8 cmd; 647 648 int index, fua, lba48, write; 649 650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 653 654 if (dev->flags & ATA_DFLAG_PIO) { 655 tf->protocol = ATA_PROT_PIO; 656 index = dev->multi_count ? 0 : 8; 657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 658 /* Unable to use DMA due to host limitation */ 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else { 662 tf->protocol = ATA_PROT_DMA; 663 index = 16; 664 } 665 666 cmd = ata_rw_cmds[index + fua + lba48 + write]; 667 if (cmd) { 668 tf->command = cmd; 669 return 0; 670 } 671 return -1; 672 } 673 674 /** 675 * ata_tf_read_block - Read block address from ATA taskfile 676 * @tf: ATA taskfile of interest 677 * @dev: ATA device @tf belongs to 678 * 679 * LOCKING: 680 * None. 681 * 682 * Read block address from @tf. This function can handle all 683 * three address formats - LBA, LBA48 and CHS. tf->protocol and 684 * flags select the address format to use. 685 * 686 * RETURNS: 687 * Block address read from @tf. 688 */ 689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 690 { 691 u64 block = 0; 692 693 if (tf->flags & ATA_TFLAG_LBA) { 694 if (tf->flags & ATA_TFLAG_LBA48) { 695 block |= (u64)tf->hob_lbah << 40; 696 block |= (u64)tf->hob_lbam << 32; 697 block |= (u64)tf->hob_lbal << 24; 698 } else 699 block |= (tf->device & 0xf) << 24; 700 701 block |= tf->lbah << 16; 702 block |= tf->lbam << 8; 703 block |= tf->lbal; 704 } else { 705 u32 cyl, head, sect; 706 707 cyl = tf->lbam | (tf->lbah << 8); 708 head = tf->device & 0xf; 709 sect = tf->lbal; 710 711 block = (cyl * dev->heads + head) * dev->sectors + sect; 712 } 713 714 return block; 715 } 716 717 /** 718 * ata_build_rw_tf - Build ATA taskfile for given read/write request 719 * @tf: Target ATA taskfile 720 * @dev: ATA device @tf belongs to 721 * @block: Block address 722 * @n_block: Number of blocks 723 * @tf_flags: RW/FUA etc... 724 * @tag: tag 725 * 726 * LOCKING: 727 * None. 728 * 729 * Build ATA taskfile @tf for read/write request described by 730 * @block, @n_block, @tf_flags and @tag on @dev. 731 * 732 * RETURNS: 733 * 734 * 0 on success, -ERANGE if the request is too large for @dev, 735 * -EINVAL if the request is invalid. 736 */ 737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 738 u64 block, u32 n_block, unsigned int tf_flags, 739 unsigned int tag) 740 { 741 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 742 tf->flags |= tf_flags; 743 744 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 745 /* yay, NCQ */ 746 if (!lba_48_ok(block, n_block)) 747 return -ERANGE; 748 749 tf->protocol = ATA_PROT_NCQ; 750 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 751 752 if (tf->flags & ATA_TFLAG_WRITE) 753 tf->command = ATA_CMD_FPDMA_WRITE; 754 else 755 tf->command = ATA_CMD_FPDMA_READ; 756 757 tf->nsect = tag << 3; 758 tf->hob_feature = (n_block >> 8) & 0xff; 759 tf->feature = n_block & 0xff; 760 761 tf->hob_lbah = (block >> 40) & 0xff; 762 tf->hob_lbam = (block >> 32) & 0xff; 763 tf->hob_lbal = (block >> 24) & 0xff; 764 tf->lbah = (block >> 16) & 0xff; 765 tf->lbam = (block >> 8) & 0xff; 766 tf->lbal = block & 0xff; 767 768 tf->device = 1 << 6; 769 if (tf->flags & ATA_TFLAG_FUA) 770 tf->device |= 1 << 7; 771 } else if (dev->flags & ATA_DFLAG_LBA) { 772 tf->flags |= ATA_TFLAG_LBA; 773 774 if (lba_28_ok(block, n_block)) { 775 /* use LBA28 */ 776 tf->device |= (block >> 24) & 0xf; 777 } else if (lba_48_ok(block, n_block)) { 778 if (!(dev->flags & ATA_DFLAG_LBA48)) 779 return -ERANGE; 780 781 /* use LBA48 */ 782 tf->flags |= ATA_TFLAG_LBA48; 783 784 tf->hob_nsect = (n_block >> 8) & 0xff; 785 786 tf->hob_lbah = (block >> 40) & 0xff; 787 tf->hob_lbam = (block >> 32) & 0xff; 788 tf->hob_lbal = (block >> 24) & 0xff; 789 } else 790 /* request too large even for LBA48 */ 791 return -ERANGE; 792 793 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 794 return -EINVAL; 795 796 tf->nsect = n_block & 0xff; 797 798 tf->lbah = (block >> 16) & 0xff; 799 tf->lbam = (block >> 8) & 0xff; 800 tf->lbal = block & 0xff; 801 802 tf->device |= ATA_LBA; 803 } else { 804 /* CHS */ 805 u32 sect, head, cyl, track; 806 807 /* The request -may- be too large for CHS addressing. */ 808 if (!lba_28_ok(block, n_block)) 809 return -ERANGE; 810 811 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 812 return -EINVAL; 813 814 /* Convert LBA to CHS */ 815 track = (u32)block / dev->sectors; 816 cyl = track / dev->heads; 817 head = track % dev->heads; 818 sect = (u32)block % dev->sectors + 1; 819 820 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 821 (u32)block, track, cyl, head, sect); 822 823 /* Check whether the converted CHS can fit. 824 Cylinder: 0-65535 825 Head: 0-15 826 Sector: 1-255*/ 827 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 828 return -ERANGE; 829 830 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 831 tf->lbal = sect; 832 tf->lbam = cyl; 833 tf->lbah = cyl >> 8; 834 tf->device |= head; 835 } 836 837 return 0; 838 } 839 840 /** 841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 842 * @pio_mask: pio_mask 843 * @mwdma_mask: mwdma_mask 844 * @udma_mask: udma_mask 845 * 846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 847 * unsigned int xfer_mask. 848 * 849 * LOCKING: 850 * None. 851 * 852 * RETURNS: 853 * Packed xfer_mask. 854 */ 855 unsigned long ata_pack_xfermask(unsigned long pio_mask, 856 unsigned long mwdma_mask, 857 unsigned long udma_mask) 858 { 859 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 860 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 861 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 862 } 863 864 /** 865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 866 * @xfer_mask: xfer_mask to unpack 867 * @pio_mask: resulting pio_mask 868 * @mwdma_mask: resulting mwdma_mask 869 * @udma_mask: resulting udma_mask 870 * 871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 872 * Any NULL distination masks will be ignored. 873 */ 874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 875 unsigned long *mwdma_mask, unsigned long *udma_mask) 876 { 877 if (pio_mask) 878 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 879 if (mwdma_mask) 880 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 881 if (udma_mask) 882 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 883 } 884 885 static const struct ata_xfer_ent { 886 int shift, bits; 887 u8 base; 888 } ata_xfer_tbl[] = { 889 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 890 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 891 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 892 { -1, }, 893 }; 894 895 /** 896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 897 * @xfer_mask: xfer_mask of interest 898 * 899 * Return matching XFER_* value for @xfer_mask. Only the highest 900 * bit of @xfer_mask is considered. 901 * 902 * LOCKING: 903 * None. 904 * 905 * RETURNS: 906 * Matching XFER_* value, 0xff if no match found. 907 */ 908 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 909 { 910 int highbit = fls(xfer_mask) - 1; 911 const struct ata_xfer_ent *ent; 912 913 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 914 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 915 return ent->base + highbit - ent->shift; 916 return 0xff; 917 } 918 919 /** 920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 921 * @xfer_mode: XFER_* of interest 922 * 923 * Return matching xfer_mask for @xfer_mode. 924 * 925 * LOCKING: 926 * None. 927 * 928 * RETURNS: 929 * Matching xfer_mask, 0 if no match found. 930 */ 931 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 932 { 933 const struct ata_xfer_ent *ent; 934 935 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 936 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 937 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 938 & ~((1 << ent->shift) - 1); 939 return 0; 940 } 941 942 /** 943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 944 * @xfer_mode: XFER_* of interest 945 * 946 * Return matching xfer_shift for @xfer_mode. 947 * 948 * LOCKING: 949 * None. 950 * 951 * RETURNS: 952 * Matching xfer_shift, -1 if no match found. 953 */ 954 int ata_xfer_mode2shift(unsigned long xfer_mode) 955 { 956 const struct ata_xfer_ent *ent; 957 958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 960 return ent->shift; 961 return -1; 962 } 963 964 /** 965 * ata_mode_string - convert xfer_mask to string 966 * @xfer_mask: mask of bits supported; only highest bit counts. 967 * 968 * Determine string which represents the highest speed 969 * (highest bit in @modemask). 970 * 971 * LOCKING: 972 * None. 973 * 974 * RETURNS: 975 * Constant C string representing highest speed listed in 976 * @mode_mask, or the constant C string "<n/a>". 977 */ 978 const char *ata_mode_string(unsigned long xfer_mask) 979 { 980 static const char * const xfer_mode_str[] = { 981 "PIO0", 982 "PIO1", 983 "PIO2", 984 "PIO3", 985 "PIO4", 986 "PIO5", 987 "PIO6", 988 "MWDMA0", 989 "MWDMA1", 990 "MWDMA2", 991 "MWDMA3", 992 "MWDMA4", 993 "UDMA/16", 994 "UDMA/25", 995 "UDMA/33", 996 "UDMA/44", 997 "UDMA/66", 998 "UDMA/100", 999 "UDMA/133", 1000 "UDMA7", 1001 }; 1002 int highbit; 1003 1004 highbit = fls(xfer_mask) - 1; 1005 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1006 return xfer_mode_str[highbit]; 1007 return "<n/a>"; 1008 } 1009 1010 static const char *sata_spd_string(unsigned int spd) 1011 { 1012 static const char * const spd_str[] = { 1013 "1.5 Gbps", 1014 "3.0 Gbps", 1015 "6.0 Gbps", 1016 }; 1017 1018 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1019 return "<unknown>"; 1020 return spd_str[spd - 1]; 1021 } 1022 1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1024 { 1025 struct ata_link *link = dev->link; 1026 struct ata_port *ap = link->ap; 1027 u32 scontrol; 1028 unsigned int err_mask; 1029 int rc; 1030 1031 /* 1032 * disallow DIPM for drivers which haven't set 1033 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1034 * phy ready will be set in the interrupt status on 1035 * state changes, which will cause some drivers to 1036 * think there are errors - additionally drivers will 1037 * need to disable hot plug. 1038 */ 1039 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1040 ap->pm_policy = NOT_AVAILABLE; 1041 return -EINVAL; 1042 } 1043 1044 /* 1045 * For DIPM, we will only enable it for the 1046 * min_power setting. 1047 * 1048 * Why? Because Disks are too stupid to know that 1049 * If the host rejects a request to go to SLUMBER 1050 * they should retry at PARTIAL, and instead it 1051 * just would give up. So, for medium_power to 1052 * work at all, we need to only allow HIPM. 1053 */ 1054 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1055 if (rc) 1056 return rc; 1057 1058 switch (policy) { 1059 case MIN_POWER: 1060 /* no restrictions on IPM transitions */ 1061 scontrol &= ~(0x3 << 8); 1062 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1063 if (rc) 1064 return rc; 1065 1066 /* enable DIPM */ 1067 if (dev->flags & ATA_DFLAG_DIPM) 1068 err_mask = ata_dev_set_feature(dev, 1069 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1070 break; 1071 case MEDIUM_POWER: 1072 /* allow IPM to PARTIAL */ 1073 scontrol &= ~(0x1 << 8); 1074 scontrol |= (0x2 << 8); 1075 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1076 if (rc) 1077 return rc; 1078 1079 /* 1080 * we don't have to disable DIPM since IPM flags 1081 * disallow transitions to SLUMBER, which effectively 1082 * disable DIPM if it does not support PARTIAL 1083 */ 1084 break; 1085 case NOT_AVAILABLE: 1086 case MAX_PERFORMANCE: 1087 /* disable all IPM transitions */ 1088 scontrol |= (0x3 << 8); 1089 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1090 if (rc) 1091 return rc; 1092 1093 /* 1094 * we don't have to disable DIPM since IPM flags 1095 * disallow all transitions which effectively 1096 * disable DIPM anyway. 1097 */ 1098 break; 1099 } 1100 1101 /* FIXME: handle SET FEATURES failure */ 1102 (void) err_mask; 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * ata_dev_enable_pm - enable SATA interface power management 1109 * @dev: device to enable power management 1110 * @policy: the link power management policy 1111 * 1112 * Enable SATA Interface power management. This will enable 1113 * Device Interface Power Management (DIPM) for min_power 1114 * policy, and then call driver specific callbacks for 1115 * enabling Host Initiated Power management. 1116 * 1117 * Locking: Caller. 1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1119 */ 1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1121 { 1122 int rc = 0; 1123 struct ata_port *ap = dev->link->ap; 1124 1125 /* set HIPM first, then DIPM */ 1126 if (ap->ops->enable_pm) 1127 rc = ap->ops->enable_pm(ap, policy); 1128 if (rc) 1129 goto enable_pm_out; 1130 rc = ata_dev_set_dipm(dev, policy); 1131 1132 enable_pm_out: 1133 if (rc) 1134 ap->pm_policy = MAX_PERFORMANCE; 1135 else 1136 ap->pm_policy = policy; 1137 return /* rc */; /* hopefully we can use 'rc' eventually */ 1138 } 1139 1140 #ifdef CONFIG_PM 1141 /** 1142 * ata_dev_disable_pm - disable SATA interface power management 1143 * @dev: device to disable power management 1144 * 1145 * Disable SATA Interface power management. This will disable 1146 * Device Interface Power Management (DIPM) without changing 1147 * policy, call driver specific callbacks for disabling Host 1148 * Initiated Power management. 1149 * 1150 * Locking: Caller. 1151 * Returns: void 1152 */ 1153 static void ata_dev_disable_pm(struct ata_device *dev) 1154 { 1155 struct ata_port *ap = dev->link->ap; 1156 1157 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1158 if (ap->ops->disable_pm) 1159 ap->ops->disable_pm(ap); 1160 } 1161 #endif /* CONFIG_PM */ 1162 1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1164 { 1165 ap->pm_policy = policy; 1166 ap->link.eh_info.action |= ATA_EH_LPM; 1167 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1168 ata_port_schedule_eh(ap); 1169 } 1170 1171 #ifdef CONFIG_PM 1172 static void ata_lpm_enable(struct ata_host *host) 1173 { 1174 struct ata_link *link; 1175 struct ata_port *ap; 1176 struct ata_device *dev; 1177 int i; 1178 1179 for (i = 0; i < host->n_ports; i++) { 1180 ap = host->ports[i]; 1181 ata_for_each_link(link, ap, EDGE) { 1182 ata_for_each_dev(dev, link, ALL) 1183 ata_dev_disable_pm(dev); 1184 } 1185 } 1186 } 1187 1188 static void ata_lpm_disable(struct ata_host *host) 1189 { 1190 int i; 1191 1192 for (i = 0; i < host->n_ports; i++) { 1193 struct ata_port *ap = host->ports[i]; 1194 ata_lpm_schedule(ap, ap->pm_policy); 1195 } 1196 } 1197 #endif /* CONFIG_PM */ 1198 1199 /** 1200 * ata_dev_classify - determine device type based on ATA-spec signature 1201 * @tf: ATA taskfile register set for device to be identified 1202 * 1203 * Determine from taskfile register contents whether a device is 1204 * ATA or ATAPI, as per "Signature and persistence" section 1205 * of ATA/PI spec (volume 1, sect 5.14). 1206 * 1207 * LOCKING: 1208 * None. 1209 * 1210 * RETURNS: 1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1212 * %ATA_DEV_UNKNOWN the event of failure. 1213 */ 1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1215 { 1216 /* Apple's open source Darwin code hints that some devices only 1217 * put a proper signature into the LBA mid/high registers, 1218 * So, we only check those. It's sufficient for uniqueness. 1219 * 1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1221 * signatures for ATA and ATAPI devices attached on SerialATA, 1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1223 * spec has never mentioned about using different signatures 1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1225 * Multiplier specification began to use 0x69/0x96 to identify 1226 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1228 * 0x69/0x96 shortly and described them as reserved for 1229 * SerialATA. 1230 * 1231 * We follow the current spec and consider that 0x69/0x96 1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1233 */ 1234 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1235 DPRINTK("found ATA device by sig\n"); 1236 return ATA_DEV_ATA; 1237 } 1238 1239 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1240 DPRINTK("found ATAPI device by sig\n"); 1241 return ATA_DEV_ATAPI; 1242 } 1243 1244 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1245 DPRINTK("found PMP device by sig\n"); 1246 return ATA_DEV_PMP; 1247 } 1248 1249 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1250 printk(KERN_INFO "ata: SEMB device ignored\n"); 1251 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1252 } 1253 1254 DPRINTK("unknown device\n"); 1255 return ATA_DEV_UNKNOWN; 1256 } 1257 1258 /** 1259 * ata_id_string - Convert IDENTIFY DEVICE page into string 1260 * @id: IDENTIFY DEVICE results we will examine 1261 * @s: string into which data is output 1262 * @ofs: offset into identify device page 1263 * @len: length of string to return. must be an even number. 1264 * 1265 * The strings in the IDENTIFY DEVICE page are broken up into 1266 * 16-bit chunks. Run through the string, and output each 1267 * 8-bit chunk linearly, regardless of platform. 1268 * 1269 * LOCKING: 1270 * caller. 1271 */ 1272 1273 void ata_id_string(const u16 *id, unsigned char *s, 1274 unsigned int ofs, unsigned int len) 1275 { 1276 unsigned int c; 1277 1278 BUG_ON(len & 1); 1279 1280 while (len > 0) { 1281 c = id[ofs] >> 8; 1282 *s = c; 1283 s++; 1284 1285 c = id[ofs] & 0xff; 1286 *s = c; 1287 s++; 1288 1289 ofs++; 1290 len -= 2; 1291 } 1292 } 1293 1294 /** 1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1296 * @id: IDENTIFY DEVICE results we will examine 1297 * @s: string into which data is output 1298 * @ofs: offset into identify device page 1299 * @len: length of string to return. must be an odd number. 1300 * 1301 * This function is identical to ata_id_string except that it 1302 * trims trailing spaces and terminates the resulting string with 1303 * null. @len must be actual maximum length (even number) + 1. 1304 * 1305 * LOCKING: 1306 * caller. 1307 */ 1308 void ata_id_c_string(const u16 *id, unsigned char *s, 1309 unsigned int ofs, unsigned int len) 1310 { 1311 unsigned char *p; 1312 1313 ata_id_string(id, s, ofs, len - 1); 1314 1315 p = s + strnlen(s, len - 1); 1316 while (p > s && p[-1] == ' ') 1317 p--; 1318 *p = '\0'; 1319 } 1320 1321 static u64 ata_id_n_sectors(const u16 *id) 1322 { 1323 if (ata_id_has_lba(id)) { 1324 if (ata_id_has_lba48(id)) 1325 return ata_id_u64(id, 100); 1326 else 1327 return ata_id_u32(id, 60); 1328 } else { 1329 if (ata_id_current_chs_valid(id)) 1330 return ata_id_u32(id, 57); 1331 else 1332 return id[1] * id[3] * id[6]; 1333 } 1334 } 1335 1336 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1337 { 1338 u64 sectors = 0; 1339 1340 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1341 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1342 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1343 sectors |= (tf->lbah & 0xff) << 16; 1344 sectors |= (tf->lbam & 0xff) << 8; 1345 sectors |= (tf->lbal & 0xff); 1346 1347 return sectors; 1348 } 1349 1350 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1351 { 1352 u64 sectors = 0; 1353 1354 sectors |= (tf->device & 0x0f) << 24; 1355 sectors |= (tf->lbah & 0xff) << 16; 1356 sectors |= (tf->lbam & 0xff) << 8; 1357 sectors |= (tf->lbal & 0xff); 1358 1359 return sectors; 1360 } 1361 1362 /** 1363 * ata_read_native_max_address - Read native max address 1364 * @dev: target device 1365 * @max_sectors: out parameter for the result native max address 1366 * 1367 * Perform an LBA48 or LBA28 native size query upon the device in 1368 * question. 1369 * 1370 * RETURNS: 1371 * 0 on success, -EACCES if command is aborted by the drive. 1372 * -EIO on other errors. 1373 */ 1374 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1375 { 1376 unsigned int err_mask; 1377 struct ata_taskfile tf; 1378 int lba48 = ata_id_has_lba48(dev->id); 1379 1380 ata_tf_init(dev, &tf); 1381 1382 /* always clear all address registers */ 1383 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1384 1385 if (lba48) { 1386 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1387 tf.flags |= ATA_TFLAG_LBA48; 1388 } else 1389 tf.command = ATA_CMD_READ_NATIVE_MAX; 1390 1391 tf.protocol |= ATA_PROT_NODATA; 1392 tf.device |= ATA_LBA; 1393 1394 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1395 if (err_mask) { 1396 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1397 "max address (err_mask=0x%x)\n", err_mask); 1398 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1399 return -EACCES; 1400 return -EIO; 1401 } 1402 1403 if (lba48) 1404 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1405 else 1406 *max_sectors = ata_tf_to_lba(&tf) + 1; 1407 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1408 (*max_sectors)--; 1409 return 0; 1410 } 1411 1412 /** 1413 * ata_set_max_sectors - Set max sectors 1414 * @dev: target device 1415 * @new_sectors: new max sectors value to set for the device 1416 * 1417 * Set max sectors of @dev to @new_sectors. 1418 * 1419 * RETURNS: 1420 * 0 on success, -EACCES if command is aborted or denied (due to 1421 * previous non-volatile SET_MAX) by the drive. -EIO on other 1422 * errors. 1423 */ 1424 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1425 { 1426 unsigned int err_mask; 1427 struct ata_taskfile tf; 1428 int lba48 = ata_id_has_lba48(dev->id); 1429 1430 new_sectors--; 1431 1432 ata_tf_init(dev, &tf); 1433 1434 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1435 1436 if (lba48) { 1437 tf.command = ATA_CMD_SET_MAX_EXT; 1438 tf.flags |= ATA_TFLAG_LBA48; 1439 1440 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1441 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1442 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1443 } else { 1444 tf.command = ATA_CMD_SET_MAX; 1445 1446 tf.device |= (new_sectors >> 24) & 0xf; 1447 } 1448 1449 tf.protocol |= ATA_PROT_NODATA; 1450 tf.device |= ATA_LBA; 1451 1452 tf.lbal = (new_sectors >> 0) & 0xff; 1453 tf.lbam = (new_sectors >> 8) & 0xff; 1454 tf.lbah = (new_sectors >> 16) & 0xff; 1455 1456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1457 if (err_mask) { 1458 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1459 "max address (err_mask=0x%x)\n", err_mask); 1460 if (err_mask == AC_ERR_DEV && 1461 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1462 return -EACCES; 1463 return -EIO; 1464 } 1465 1466 return 0; 1467 } 1468 1469 /** 1470 * ata_hpa_resize - Resize a device with an HPA set 1471 * @dev: Device to resize 1472 * 1473 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1474 * it if required to the full size of the media. The caller must check 1475 * the drive has the HPA feature set enabled. 1476 * 1477 * RETURNS: 1478 * 0 on success, -errno on failure. 1479 */ 1480 static int ata_hpa_resize(struct ata_device *dev) 1481 { 1482 struct ata_eh_context *ehc = &dev->link->eh_context; 1483 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1484 u64 sectors = ata_id_n_sectors(dev->id); 1485 u64 native_sectors; 1486 int rc; 1487 1488 /* do we need to do it? */ 1489 if (dev->class != ATA_DEV_ATA || 1490 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1491 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1492 return 0; 1493 1494 /* read native max address */ 1495 rc = ata_read_native_max_address(dev, &native_sectors); 1496 if (rc) { 1497 /* If device aborted the command or HPA isn't going to 1498 * be unlocked, skip HPA resizing. 1499 */ 1500 if (rc == -EACCES || !ata_ignore_hpa) { 1501 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1502 "broken, skipping HPA handling\n"); 1503 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1504 1505 /* we can continue if device aborted the command */ 1506 if (rc == -EACCES) 1507 rc = 0; 1508 } 1509 1510 return rc; 1511 } 1512 1513 /* nothing to do? */ 1514 if (native_sectors <= sectors || !ata_ignore_hpa) { 1515 if (!print_info || native_sectors == sectors) 1516 return 0; 1517 1518 if (native_sectors > sectors) 1519 ata_dev_printk(dev, KERN_INFO, 1520 "HPA detected: current %llu, native %llu\n", 1521 (unsigned long long)sectors, 1522 (unsigned long long)native_sectors); 1523 else if (native_sectors < sectors) 1524 ata_dev_printk(dev, KERN_WARNING, 1525 "native sectors (%llu) is smaller than " 1526 "sectors (%llu)\n", 1527 (unsigned long long)native_sectors, 1528 (unsigned long long)sectors); 1529 return 0; 1530 } 1531 1532 /* let's unlock HPA */ 1533 rc = ata_set_max_sectors(dev, native_sectors); 1534 if (rc == -EACCES) { 1535 /* if device aborted the command, skip HPA resizing */ 1536 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1537 "(%llu -> %llu), skipping HPA handling\n", 1538 (unsigned long long)sectors, 1539 (unsigned long long)native_sectors); 1540 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1541 return 0; 1542 } else if (rc) 1543 return rc; 1544 1545 /* re-read IDENTIFY data */ 1546 rc = ata_dev_reread_id(dev, 0); 1547 if (rc) { 1548 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1549 "data after HPA resizing\n"); 1550 return rc; 1551 } 1552 1553 if (print_info) { 1554 u64 new_sectors = ata_id_n_sectors(dev->id); 1555 ata_dev_printk(dev, KERN_INFO, 1556 "HPA unlocked: %llu -> %llu, native %llu\n", 1557 (unsigned long long)sectors, 1558 (unsigned long long)new_sectors, 1559 (unsigned long long)native_sectors); 1560 } 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * ata_dump_id - IDENTIFY DEVICE info debugging output 1567 * @id: IDENTIFY DEVICE page to dump 1568 * 1569 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1570 * page. 1571 * 1572 * LOCKING: 1573 * caller. 1574 */ 1575 1576 static inline void ata_dump_id(const u16 *id) 1577 { 1578 DPRINTK("49==0x%04x " 1579 "53==0x%04x " 1580 "63==0x%04x " 1581 "64==0x%04x " 1582 "75==0x%04x \n", 1583 id[49], 1584 id[53], 1585 id[63], 1586 id[64], 1587 id[75]); 1588 DPRINTK("80==0x%04x " 1589 "81==0x%04x " 1590 "82==0x%04x " 1591 "83==0x%04x " 1592 "84==0x%04x \n", 1593 id[80], 1594 id[81], 1595 id[82], 1596 id[83], 1597 id[84]); 1598 DPRINTK("88==0x%04x " 1599 "93==0x%04x\n", 1600 id[88], 1601 id[93]); 1602 } 1603 1604 /** 1605 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1606 * @id: IDENTIFY data to compute xfer mask from 1607 * 1608 * Compute the xfermask for this device. This is not as trivial 1609 * as it seems if we must consider early devices correctly. 1610 * 1611 * FIXME: pre IDE drive timing (do we care ?). 1612 * 1613 * LOCKING: 1614 * None. 1615 * 1616 * RETURNS: 1617 * Computed xfermask 1618 */ 1619 unsigned long ata_id_xfermask(const u16 *id) 1620 { 1621 unsigned long pio_mask, mwdma_mask, udma_mask; 1622 1623 /* Usual case. Word 53 indicates word 64 is valid */ 1624 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1625 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1626 pio_mask <<= 3; 1627 pio_mask |= 0x7; 1628 } else { 1629 /* If word 64 isn't valid then Word 51 high byte holds 1630 * the PIO timing number for the maximum. Turn it into 1631 * a mask. 1632 */ 1633 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1634 if (mode < 5) /* Valid PIO range */ 1635 pio_mask = (2 << mode) - 1; 1636 else 1637 pio_mask = 1; 1638 1639 /* But wait.. there's more. Design your standards by 1640 * committee and you too can get a free iordy field to 1641 * process. However its the speeds not the modes that 1642 * are supported... Note drivers using the timing API 1643 * will get this right anyway 1644 */ 1645 } 1646 1647 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1648 1649 if (ata_id_is_cfa(id)) { 1650 /* 1651 * Process compact flash extended modes 1652 */ 1653 int pio = id[163] & 0x7; 1654 int dma = (id[163] >> 3) & 7; 1655 1656 if (pio) 1657 pio_mask |= (1 << 5); 1658 if (pio > 1) 1659 pio_mask |= (1 << 6); 1660 if (dma) 1661 mwdma_mask |= (1 << 3); 1662 if (dma > 1) 1663 mwdma_mask |= (1 << 4); 1664 } 1665 1666 udma_mask = 0; 1667 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1668 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1669 1670 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1671 } 1672 1673 /** 1674 * ata_pio_queue_task - Queue port_task 1675 * @ap: The ata_port to queue port_task for 1676 * @data: data for @fn to use 1677 * @delay: delay time in msecs for workqueue function 1678 * 1679 * Schedule @fn(@data) for execution after @delay jiffies using 1680 * port_task. There is one port_task per port and it's the 1681 * user(low level driver)'s responsibility to make sure that only 1682 * one task is active at any given time. 1683 * 1684 * libata core layer takes care of synchronization between 1685 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1686 * synchronization. 1687 * 1688 * LOCKING: 1689 * Inherited from caller. 1690 */ 1691 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1692 { 1693 ap->port_task_data = data; 1694 1695 /* may fail if ata_port_flush_task() in progress */ 1696 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1697 } 1698 1699 /** 1700 * ata_port_flush_task - Flush port_task 1701 * @ap: The ata_port to flush port_task for 1702 * 1703 * After this function completes, port_task is guranteed not to 1704 * be running or scheduled. 1705 * 1706 * LOCKING: 1707 * Kernel thread context (may sleep) 1708 */ 1709 void ata_port_flush_task(struct ata_port *ap) 1710 { 1711 DPRINTK("ENTER\n"); 1712 1713 cancel_rearming_delayed_work(&ap->port_task); 1714 1715 if (ata_msg_ctl(ap)) 1716 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1717 } 1718 1719 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1720 { 1721 struct completion *waiting = qc->private_data; 1722 1723 complete(waiting); 1724 } 1725 1726 /** 1727 * ata_exec_internal_sg - execute libata internal command 1728 * @dev: Device to which the command is sent 1729 * @tf: Taskfile registers for the command and the result 1730 * @cdb: CDB for packet command 1731 * @dma_dir: Data tranfer direction of the command 1732 * @sgl: sg list for the data buffer of the command 1733 * @n_elem: Number of sg entries 1734 * @timeout: Timeout in msecs (0 for default) 1735 * 1736 * Executes libata internal command with timeout. @tf contains 1737 * command on entry and result on return. Timeout and error 1738 * conditions are reported via return value. No recovery action 1739 * is taken after a command times out. It's caller's duty to 1740 * clean up after timeout. 1741 * 1742 * LOCKING: 1743 * None. Should be called with kernel context, might sleep. 1744 * 1745 * RETURNS: 1746 * Zero on success, AC_ERR_* mask on failure 1747 */ 1748 unsigned ata_exec_internal_sg(struct ata_device *dev, 1749 struct ata_taskfile *tf, const u8 *cdb, 1750 int dma_dir, struct scatterlist *sgl, 1751 unsigned int n_elem, unsigned long timeout) 1752 { 1753 struct ata_link *link = dev->link; 1754 struct ata_port *ap = link->ap; 1755 u8 command = tf->command; 1756 int auto_timeout = 0; 1757 struct ata_queued_cmd *qc; 1758 unsigned int tag, preempted_tag; 1759 u32 preempted_sactive, preempted_qc_active; 1760 int preempted_nr_active_links; 1761 DECLARE_COMPLETION_ONSTACK(wait); 1762 unsigned long flags; 1763 unsigned int err_mask; 1764 int rc; 1765 1766 spin_lock_irqsave(ap->lock, flags); 1767 1768 /* no internal command while frozen */ 1769 if (ap->pflags & ATA_PFLAG_FROZEN) { 1770 spin_unlock_irqrestore(ap->lock, flags); 1771 return AC_ERR_SYSTEM; 1772 } 1773 1774 /* initialize internal qc */ 1775 1776 /* XXX: Tag 0 is used for drivers with legacy EH as some 1777 * drivers choke if any other tag is given. This breaks 1778 * ata_tag_internal() test for those drivers. Don't use new 1779 * EH stuff without converting to it. 1780 */ 1781 if (ap->ops->error_handler) 1782 tag = ATA_TAG_INTERNAL; 1783 else 1784 tag = 0; 1785 1786 if (test_and_set_bit(tag, &ap->qc_allocated)) 1787 BUG(); 1788 qc = __ata_qc_from_tag(ap, tag); 1789 1790 qc->tag = tag; 1791 qc->scsicmd = NULL; 1792 qc->ap = ap; 1793 qc->dev = dev; 1794 ata_qc_reinit(qc); 1795 1796 preempted_tag = link->active_tag; 1797 preempted_sactive = link->sactive; 1798 preempted_qc_active = ap->qc_active; 1799 preempted_nr_active_links = ap->nr_active_links; 1800 link->active_tag = ATA_TAG_POISON; 1801 link->sactive = 0; 1802 ap->qc_active = 0; 1803 ap->nr_active_links = 0; 1804 1805 /* prepare & issue qc */ 1806 qc->tf = *tf; 1807 if (cdb) 1808 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1809 qc->flags |= ATA_QCFLAG_RESULT_TF; 1810 qc->dma_dir = dma_dir; 1811 if (dma_dir != DMA_NONE) { 1812 unsigned int i, buflen = 0; 1813 struct scatterlist *sg; 1814 1815 for_each_sg(sgl, sg, n_elem, i) 1816 buflen += sg->length; 1817 1818 ata_sg_init(qc, sgl, n_elem); 1819 qc->nbytes = buflen; 1820 } 1821 1822 qc->private_data = &wait; 1823 qc->complete_fn = ata_qc_complete_internal; 1824 1825 ata_qc_issue(qc); 1826 1827 spin_unlock_irqrestore(ap->lock, flags); 1828 1829 if (!timeout) { 1830 if (ata_probe_timeout) 1831 timeout = ata_probe_timeout * 1000; 1832 else { 1833 timeout = ata_internal_cmd_timeout(dev, command); 1834 auto_timeout = 1; 1835 } 1836 } 1837 1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1839 1840 ata_port_flush_task(ap); 1841 1842 if (!rc) { 1843 spin_lock_irqsave(ap->lock, flags); 1844 1845 /* We're racing with irq here. If we lose, the 1846 * following test prevents us from completing the qc 1847 * twice. If we win, the port is frozen and will be 1848 * cleaned up by ->post_internal_cmd(). 1849 */ 1850 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1851 qc->err_mask |= AC_ERR_TIMEOUT; 1852 1853 if (ap->ops->error_handler) 1854 ata_port_freeze(ap); 1855 else 1856 ata_qc_complete(qc); 1857 1858 if (ata_msg_warn(ap)) 1859 ata_dev_printk(dev, KERN_WARNING, 1860 "qc timeout (cmd 0x%x)\n", command); 1861 } 1862 1863 spin_unlock_irqrestore(ap->lock, flags); 1864 } 1865 1866 /* do post_internal_cmd */ 1867 if (ap->ops->post_internal_cmd) 1868 ap->ops->post_internal_cmd(qc); 1869 1870 /* perform minimal error analysis */ 1871 if (qc->flags & ATA_QCFLAG_FAILED) { 1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1873 qc->err_mask |= AC_ERR_DEV; 1874 1875 if (!qc->err_mask) 1876 qc->err_mask |= AC_ERR_OTHER; 1877 1878 if (qc->err_mask & ~AC_ERR_OTHER) 1879 qc->err_mask &= ~AC_ERR_OTHER; 1880 } 1881 1882 /* finish up */ 1883 spin_lock_irqsave(ap->lock, flags); 1884 1885 *tf = qc->result_tf; 1886 err_mask = qc->err_mask; 1887 1888 ata_qc_free(qc); 1889 link->active_tag = preempted_tag; 1890 link->sactive = preempted_sactive; 1891 ap->qc_active = preempted_qc_active; 1892 ap->nr_active_links = preempted_nr_active_links; 1893 1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1895 * Until those drivers are fixed, we detect the condition 1896 * here, fail the command with AC_ERR_SYSTEM and reenable the 1897 * port. 1898 * 1899 * Note that this doesn't change any behavior as internal 1900 * command failure results in disabling the device in the 1901 * higher layer for LLDDs without new reset/EH callbacks. 1902 * 1903 * Kill the following code as soon as those drivers are fixed. 1904 */ 1905 if (ap->flags & ATA_FLAG_DISABLED) { 1906 err_mask |= AC_ERR_SYSTEM; 1907 ata_port_probe(ap); 1908 } 1909 1910 spin_unlock_irqrestore(ap->lock, flags); 1911 1912 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1913 ata_internal_cmd_timed_out(dev, command); 1914 1915 return err_mask; 1916 } 1917 1918 /** 1919 * ata_exec_internal - execute libata internal command 1920 * @dev: Device to which the command is sent 1921 * @tf: Taskfile registers for the command and the result 1922 * @cdb: CDB for packet command 1923 * @dma_dir: Data tranfer direction of the command 1924 * @buf: Data buffer of the command 1925 * @buflen: Length of data buffer 1926 * @timeout: Timeout in msecs (0 for default) 1927 * 1928 * Wrapper around ata_exec_internal_sg() which takes simple 1929 * buffer instead of sg list. 1930 * 1931 * LOCKING: 1932 * None. Should be called with kernel context, might sleep. 1933 * 1934 * RETURNS: 1935 * Zero on success, AC_ERR_* mask on failure 1936 */ 1937 unsigned ata_exec_internal(struct ata_device *dev, 1938 struct ata_taskfile *tf, const u8 *cdb, 1939 int dma_dir, void *buf, unsigned int buflen, 1940 unsigned long timeout) 1941 { 1942 struct scatterlist *psg = NULL, sg; 1943 unsigned int n_elem = 0; 1944 1945 if (dma_dir != DMA_NONE) { 1946 WARN_ON(!buf); 1947 sg_init_one(&sg, buf, buflen); 1948 psg = &sg; 1949 n_elem++; 1950 } 1951 1952 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1953 timeout); 1954 } 1955 1956 /** 1957 * ata_do_simple_cmd - execute simple internal command 1958 * @dev: Device to which the command is sent 1959 * @cmd: Opcode to execute 1960 * 1961 * Execute a 'simple' command, that only consists of the opcode 1962 * 'cmd' itself, without filling any other registers 1963 * 1964 * LOCKING: 1965 * Kernel thread context (may sleep). 1966 * 1967 * RETURNS: 1968 * Zero on success, AC_ERR_* mask on failure 1969 */ 1970 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1971 { 1972 struct ata_taskfile tf; 1973 1974 ata_tf_init(dev, &tf); 1975 1976 tf.command = cmd; 1977 tf.flags |= ATA_TFLAG_DEVICE; 1978 tf.protocol = ATA_PROT_NODATA; 1979 1980 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1981 } 1982 1983 /** 1984 * ata_pio_need_iordy - check if iordy needed 1985 * @adev: ATA device 1986 * 1987 * Check if the current speed of the device requires IORDY. Used 1988 * by various controllers for chip configuration. 1989 */ 1990 1991 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1992 { 1993 /* Controller doesn't support IORDY. Probably a pointless check 1994 as the caller should know this */ 1995 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1996 return 0; 1997 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1998 if (ata_id_is_cfa(adev->id) 1999 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2000 return 0; 2001 /* PIO3 and higher it is mandatory */ 2002 if (adev->pio_mode > XFER_PIO_2) 2003 return 1; 2004 /* We turn it on when possible */ 2005 if (ata_id_has_iordy(adev->id)) 2006 return 1; 2007 return 0; 2008 } 2009 2010 /** 2011 * ata_pio_mask_no_iordy - Return the non IORDY mask 2012 * @adev: ATA device 2013 * 2014 * Compute the highest mode possible if we are not using iordy. Return 2015 * -1 if no iordy mode is available. 2016 */ 2017 2018 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2019 { 2020 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2021 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2022 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2023 /* Is the speed faster than the drive allows non IORDY ? */ 2024 if (pio) { 2025 /* This is cycle times not frequency - watch the logic! */ 2026 if (pio > 240) /* PIO2 is 240nS per cycle */ 2027 return 3 << ATA_SHIFT_PIO; 2028 return 7 << ATA_SHIFT_PIO; 2029 } 2030 } 2031 return 3 << ATA_SHIFT_PIO; 2032 } 2033 2034 /** 2035 * ata_do_dev_read_id - default ID read method 2036 * @dev: device 2037 * @tf: proposed taskfile 2038 * @id: data buffer 2039 * 2040 * Issue the identify taskfile and hand back the buffer containing 2041 * identify data. For some RAID controllers and for pre ATA devices 2042 * this function is wrapped or replaced by the driver 2043 */ 2044 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2045 struct ata_taskfile *tf, u16 *id) 2046 { 2047 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2048 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2049 } 2050 2051 /** 2052 * ata_dev_read_id - Read ID data from the specified device 2053 * @dev: target device 2054 * @p_class: pointer to class of the target device (may be changed) 2055 * @flags: ATA_READID_* flags 2056 * @id: buffer to read IDENTIFY data into 2057 * 2058 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2059 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2060 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2061 * for pre-ATA4 drives. 2062 * 2063 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2064 * now we abort if we hit that case. 2065 * 2066 * LOCKING: 2067 * Kernel thread context (may sleep) 2068 * 2069 * RETURNS: 2070 * 0 on success, -errno otherwise. 2071 */ 2072 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2073 unsigned int flags, u16 *id) 2074 { 2075 struct ata_port *ap = dev->link->ap; 2076 unsigned int class = *p_class; 2077 struct ata_taskfile tf; 2078 unsigned int err_mask = 0; 2079 const char *reason; 2080 int may_fallback = 1, tried_spinup = 0; 2081 int rc; 2082 2083 if (ata_msg_ctl(ap)) 2084 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2085 2086 retry: 2087 ata_tf_init(dev, &tf); 2088 2089 switch (class) { 2090 case ATA_DEV_ATA: 2091 tf.command = ATA_CMD_ID_ATA; 2092 break; 2093 case ATA_DEV_ATAPI: 2094 tf.command = ATA_CMD_ID_ATAPI; 2095 break; 2096 default: 2097 rc = -ENODEV; 2098 reason = "unsupported class"; 2099 goto err_out; 2100 } 2101 2102 tf.protocol = ATA_PROT_PIO; 2103 2104 /* Some devices choke if TF registers contain garbage. Make 2105 * sure those are properly initialized. 2106 */ 2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2108 2109 /* Device presence detection is unreliable on some 2110 * controllers. Always poll IDENTIFY if available. 2111 */ 2112 tf.flags |= ATA_TFLAG_POLLING; 2113 2114 if (ap->ops->read_id) 2115 err_mask = ap->ops->read_id(dev, &tf, id); 2116 else 2117 err_mask = ata_do_dev_read_id(dev, &tf, id); 2118 2119 if (err_mask) { 2120 if (err_mask & AC_ERR_NODEV_HINT) { 2121 ata_dev_printk(dev, KERN_DEBUG, 2122 "NODEV after polling detection\n"); 2123 return -ENOENT; 2124 } 2125 2126 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2127 /* Device or controller might have reported 2128 * the wrong device class. Give a shot at the 2129 * other IDENTIFY if the current one is 2130 * aborted by the device. 2131 */ 2132 if (may_fallback) { 2133 may_fallback = 0; 2134 2135 if (class == ATA_DEV_ATA) 2136 class = ATA_DEV_ATAPI; 2137 else 2138 class = ATA_DEV_ATA; 2139 goto retry; 2140 } 2141 2142 /* Control reaches here iff the device aborted 2143 * both flavors of IDENTIFYs which happens 2144 * sometimes with phantom devices. 2145 */ 2146 ata_dev_printk(dev, KERN_DEBUG, 2147 "both IDENTIFYs aborted, assuming NODEV\n"); 2148 return -ENOENT; 2149 } 2150 2151 rc = -EIO; 2152 reason = "I/O error"; 2153 goto err_out; 2154 } 2155 2156 /* Falling back doesn't make sense if ID data was read 2157 * successfully at least once. 2158 */ 2159 may_fallback = 0; 2160 2161 swap_buf_le16(id, ATA_ID_WORDS); 2162 2163 /* sanity check */ 2164 rc = -EINVAL; 2165 reason = "device reports invalid type"; 2166 2167 if (class == ATA_DEV_ATA) { 2168 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2169 goto err_out; 2170 } else { 2171 if (ata_id_is_ata(id)) 2172 goto err_out; 2173 } 2174 2175 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2176 tried_spinup = 1; 2177 /* 2178 * Drive powered-up in standby mode, and requires a specific 2179 * SET_FEATURES spin-up subcommand before it will accept 2180 * anything other than the original IDENTIFY command. 2181 */ 2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2183 if (err_mask && id[2] != 0x738c) { 2184 rc = -EIO; 2185 reason = "SPINUP failed"; 2186 goto err_out; 2187 } 2188 /* 2189 * If the drive initially returned incomplete IDENTIFY info, 2190 * we now must reissue the IDENTIFY command. 2191 */ 2192 if (id[2] == 0x37c8) 2193 goto retry; 2194 } 2195 2196 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2197 /* 2198 * The exact sequence expected by certain pre-ATA4 drives is: 2199 * SRST RESET 2200 * IDENTIFY (optional in early ATA) 2201 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2202 * anything else.. 2203 * Some drives were very specific about that exact sequence. 2204 * 2205 * Note that ATA4 says lba is mandatory so the second check 2206 * shoud never trigger. 2207 */ 2208 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2209 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2210 if (err_mask) { 2211 rc = -EIO; 2212 reason = "INIT_DEV_PARAMS failed"; 2213 goto err_out; 2214 } 2215 2216 /* current CHS translation info (id[53-58]) might be 2217 * changed. reread the identify device info. 2218 */ 2219 flags &= ~ATA_READID_POSTRESET; 2220 goto retry; 2221 } 2222 } 2223 2224 *p_class = class; 2225 2226 return 0; 2227 2228 err_out: 2229 if (ata_msg_warn(ap)) 2230 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2231 "(%s, err_mask=0x%x)\n", reason, err_mask); 2232 return rc; 2233 } 2234 2235 static int ata_do_link_spd_horkage(struct ata_device *dev) 2236 { 2237 struct ata_link *plink = ata_dev_phys_link(dev); 2238 u32 target, target_limit; 2239 2240 if (!sata_scr_valid(plink)) 2241 return 0; 2242 2243 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2244 target = 1; 2245 else 2246 return 0; 2247 2248 target_limit = (1 << target) - 1; 2249 2250 /* if already on stricter limit, no need to push further */ 2251 if (plink->sata_spd_limit <= target_limit) 2252 return 0; 2253 2254 plink->sata_spd_limit = target_limit; 2255 2256 /* Request another EH round by returning -EAGAIN if link is 2257 * going faster than the target speed. Forward progress is 2258 * guaranteed by setting sata_spd_limit to target_limit above. 2259 */ 2260 if (plink->sata_spd > target) { 2261 ata_dev_printk(dev, KERN_INFO, 2262 "applying link speed limit horkage to %s\n", 2263 sata_spd_string(target)); 2264 return -EAGAIN; 2265 } 2266 return 0; 2267 } 2268 2269 static inline u8 ata_dev_knobble(struct ata_device *dev) 2270 { 2271 struct ata_port *ap = dev->link->ap; 2272 2273 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2274 return 0; 2275 2276 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2277 } 2278 2279 static void ata_dev_config_ncq(struct ata_device *dev, 2280 char *desc, size_t desc_sz) 2281 { 2282 struct ata_port *ap = dev->link->ap; 2283 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2284 2285 if (!ata_id_has_ncq(dev->id)) { 2286 desc[0] = '\0'; 2287 return; 2288 } 2289 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2290 snprintf(desc, desc_sz, "NCQ (not used)"); 2291 return; 2292 } 2293 if (ap->flags & ATA_FLAG_NCQ) { 2294 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2295 dev->flags |= ATA_DFLAG_NCQ; 2296 } 2297 2298 if (hdepth >= ddepth) 2299 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2300 else 2301 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2302 } 2303 2304 /** 2305 * ata_dev_configure - Configure the specified ATA/ATAPI device 2306 * @dev: Target device to configure 2307 * 2308 * Configure @dev according to @dev->id. Generic and low-level 2309 * driver specific fixups are also applied. 2310 * 2311 * LOCKING: 2312 * Kernel thread context (may sleep) 2313 * 2314 * RETURNS: 2315 * 0 on success, -errno otherwise 2316 */ 2317 int ata_dev_configure(struct ata_device *dev) 2318 { 2319 struct ata_port *ap = dev->link->ap; 2320 struct ata_eh_context *ehc = &dev->link->eh_context; 2321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2322 const u16 *id = dev->id; 2323 unsigned long xfer_mask; 2324 char revbuf[7]; /* XYZ-99\0 */ 2325 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2326 char modelbuf[ATA_ID_PROD_LEN+1]; 2327 int rc; 2328 2329 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2330 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2331 __func__); 2332 return 0; 2333 } 2334 2335 if (ata_msg_probe(ap)) 2336 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2337 2338 /* set horkage */ 2339 dev->horkage |= ata_dev_blacklisted(dev); 2340 ata_force_horkage(dev); 2341 2342 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2343 ata_dev_printk(dev, KERN_INFO, 2344 "unsupported device, disabling\n"); 2345 ata_dev_disable(dev); 2346 return 0; 2347 } 2348 2349 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2350 dev->class == ATA_DEV_ATAPI) { 2351 ata_dev_printk(dev, KERN_WARNING, 2352 "WARNING: ATAPI is %s, device ignored.\n", 2353 atapi_enabled ? "not supported with this driver" 2354 : "disabled"); 2355 ata_dev_disable(dev); 2356 return 0; 2357 } 2358 2359 rc = ata_do_link_spd_horkage(dev); 2360 if (rc) 2361 return rc; 2362 2363 /* let ACPI work its magic */ 2364 rc = ata_acpi_on_devcfg(dev); 2365 if (rc) 2366 return rc; 2367 2368 /* massage HPA, do it early as it might change IDENTIFY data */ 2369 rc = ata_hpa_resize(dev); 2370 if (rc) 2371 return rc; 2372 2373 /* print device capabilities */ 2374 if (ata_msg_probe(ap)) 2375 ata_dev_printk(dev, KERN_DEBUG, 2376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2377 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2378 __func__, 2379 id[49], id[82], id[83], id[84], 2380 id[85], id[86], id[87], id[88]); 2381 2382 /* initialize to-be-configured parameters */ 2383 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2384 dev->max_sectors = 0; 2385 dev->cdb_len = 0; 2386 dev->n_sectors = 0; 2387 dev->cylinders = 0; 2388 dev->heads = 0; 2389 dev->sectors = 0; 2390 2391 /* 2392 * common ATA, ATAPI feature tests 2393 */ 2394 2395 /* find max transfer mode; for printk only */ 2396 xfer_mask = ata_id_xfermask(id); 2397 2398 if (ata_msg_probe(ap)) 2399 ata_dump_id(id); 2400 2401 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2402 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2403 sizeof(fwrevbuf)); 2404 2405 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2406 sizeof(modelbuf)); 2407 2408 /* ATA-specific feature tests */ 2409 if (dev->class == ATA_DEV_ATA) { 2410 if (ata_id_is_cfa(id)) { 2411 if (id[162] & 1) /* CPRM may make this media unusable */ 2412 ata_dev_printk(dev, KERN_WARNING, 2413 "supports DRM functions and may " 2414 "not be fully accessable.\n"); 2415 snprintf(revbuf, 7, "CFA"); 2416 } else { 2417 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2418 /* Warn the user if the device has TPM extensions */ 2419 if (ata_id_has_tpm(id)) 2420 ata_dev_printk(dev, KERN_WARNING, 2421 "supports DRM functions and may " 2422 "not be fully accessable.\n"); 2423 } 2424 2425 dev->n_sectors = ata_id_n_sectors(id); 2426 2427 if (dev->id[59] & 0x100) 2428 dev->multi_count = dev->id[59] & 0xff; 2429 2430 if (ata_id_has_lba(id)) { 2431 const char *lba_desc; 2432 char ncq_desc[20]; 2433 2434 lba_desc = "LBA"; 2435 dev->flags |= ATA_DFLAG_LBA; 2436 if (ata_id_has_lba48(id)) { 2437 dev->flags |= ATA_DFLAG_LBA48; 2438 lba_desc = "LBA48"; 2439 2440 if (dev->n_sectors >= (1UL << 28) && 2441 ata_id_has_flush_ext(id)) 2442 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2443 } 2444 2445 /* config NCQ */ 2446 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2447 2448 /* print device info to dmesg */ 2449 if (ata_msg_drv(ap) && print_info) { 2450 ata_dev_printk(dev, KERN_INFO, 2451 "%s: %s, %s, max %s\n", 2452 revbuf, modelbuf, fwrevbuf, 2453 ata_mode_string(xfer_mask)); 2454 ata_dev_printk(dev, KERN_INFO, 2455 "%Lu sectors, multi %u: %s %s\n", 2456 (unsigned long long)dev->n_sectors, 2457 dev->multi_count, lba_desc, ncq_desc); 2458 } 2459 } else { 2460 /* CHS */ 2461 2462 /* Default translation */ 2463 dev->cylinders = id[1]; 2464 dev->heads = id[3]; 2465 dev->sectors = id[6]; 2466 2467 if (ata_id_current_chs_valid(id)) { 2468 /* Current CHS translation is valid. */ 2469 dev->cylinders = id[54]; 2470 dev->heads = id[55]; 2471 dev->sectors = id[56]; 2472 } 2473 2474 /* print device info to dmesg */ 2475 if (ata_msg_drv(ap) && print_info) { 2476 ata_dev_printk(dev, KERN_INFO, 2477 "%s: %s, %s, max %s\n", 2478 revbuf, modelbuf, fwrevbuf, 2479 ata_mode_string(xfer_mask)); 2480 ata_dev_printk(dev, KERN_INFO, 2481 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2482 (unsigned long long)dev->n_sectors, 2483 dev->multi_count, dev->cylinders, 2484 dev->heads, dev->sectors); 2485 } 2486 } 2487 2488 dev->cdb_len = 16; 2489 } 2490 2491 /* ATAPI-specific feature tests */ 2492 else if (dev->class == ATA_DEV_ATAPI) { 2493 const char *cdb_intr_string = ""; 2494 const char *atapi_an_string = ""; 2495 const char *dma_dir_string = ""; 2496 u32 sntf; 2497 2498 rc = atapi_cdb_len(id); 2499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2500 if (ata_msg_warn(ap)) 2501 ata_dev_printk(dev, KERN_WARNING, 2502 "unsupported CDB len\n"); 2503 rc = -EINVAL; 2504 goto err_out_nosup; 2505 } 2506 dev->cdb_len = (unsigned int) rc; 2507 2508 /* Enable ATAPI AN if both the host and device have 2509 * the support. If PMP is attached, SNTF is required 2510 * to enable ATAPI AN to discern between PHY status 2511 * changed notifications and ATAPI ANs. 2512 */ 2513 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2514 (!sata_pmp_attached(ap) || 2515 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2516 unsigned int err_mask; 2517 2518 /* issue SET feature command to turn this on */ 2519 err_mask = ata_dev_set_feature(dev, 2520 SETFEATURES_SATA_ENABLE, SATA_AN); 2521 if (err_mask) 2522 ata_dev_printk(dev, KERN_ERR, 2523 "failed to enable ATAPI AN " 2524 "(err_mask=0x%x)\n", err_mask); 2525 else { 2526 dev->flags |= ATA_DFLAG_AN; 2527 atapi_an_string = ", ATAPI AN"; 2528 } 2529 } 2530 2531 if (ata_id_cdb_intr(dev->id)) { 2532 dev->flags |= ATA_DFLAG_CDB_INTR; 2533 cdb_intr_string = ", CDB intr"; 2534 } 2535 2536 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2537 dev->flags |= ATA_DFLAG_DMADIR; 2538 dma_dir_string = ", DMADIR"; 2539 } 2540 2541 /* print device info to dmesg */ 2542 if (ata_msg_drv(ap) && print_info) 2543 ata_dev_printk(dev, KERN_INFO, 2544 "ATAPI: %s, %s, max %s%s%s%s\n", 2545 modelbuf, fwrevbuf, 2546 ata_mode_string(xfer_mask), 2547 cdb_intr_string, atapi_an_string, 2548 dma_dir_string); 2549 } 2550 2551 /* determine max_sectors */ 2552 dev->max_sectors = ATA_MAX_SECTORS; 2553 if (dev->flags & ATA_DFLAG_LBA48) 2554 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2555 2556 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2557 if (ata_id_has_hipm(dev->id)) 2558 dev->flags |= ATA_DFLAG_HIPM; 2559 if (ata_id_has_dipm(dev->id)) 2560 dev->flags |= ATA_DFLAG_DIPM; 2561 } 2562 2563 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2564 200 sectors */ 2565 if (ata_dev_knobble(dev)) { 2566 if (ata_msg_drv(ap) && print_info) 2567 ata_dev_printk(dev, KERN_INFO, 2568 "applying bridge limits\n"); 2569 dev->udma_mask &= ATA_UDMA5; 2570 dev->max_sectors = ATA_MAX_SECTORS; 2571 } 2572 2573 if ((dev->class == ATA_DEV_ATAPI) && 2574 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2575 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2576 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2577 } 2578 2579 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2580 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2581 dev->max_sectors); 2582 2583 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2584 dev->horkage |= ATA_HORKAGE_IPM; 2585 2586 /* reset link pm_policy for this port to no pm */ 2587 ap->pm_policy = MAX_PERFORMANCE; 2588 } 2589 2590 if (ap->ops->dev_config) 2591 ap->ops->dev_config(dev); 2592 2593 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2594 /* Let the user know. We don't want to disallow opens for 2595 rescue purposes, or in case the vendor is just a blithering 2596 idiot. Do this after the dev_config call as some controllers 2597 with buggy firmware may want to avoid reporting false device 2598 bugs */ 2599 2600 if (print_info) { 2601 ata_dev_printk(dev, KERN_WARNING, 2602 "Drive reports diagnostics failure. This may indicate a drive\n"); 2603 ata_dev_printk(dev, KERN_WARNING, 2604 "fault or invalid emulation. Contact drive vendor for information.\n"); 2605 } 2606 } 2607 2608 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2609 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2610 "firmware update to be fully functional.\n"); 2611 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2612 "or visit http://ata.wiki.kernel.org.\n"); 2613 } 2614 2615 return 0; 2616 2617 err_out_nosup: 2618 if (ata_msg_probe(ap)) 2619 ata_dev_printk(dev, KERN_DEBUG, 2620 "%s: EXIT, err\n", __func__); 2621 return rc; 2622 } 2623 2624 /** 2625 * ata_cable_40wire - return 40 wire cable type 2626 * @ap: port 2627 * 2628 * Helper method for drivers which want to hardwire 40 wire cable 2629 * detection. 2630 */ 2631 2632 int ata_cable_40wire(struct ata_port *ap) 2633 { 2634 return ATA_CBL_PATA40; 2635 } 2636 2637 /** 2638 * ata_cable_80wire - return 80 wire cable type 2639 * @ap: port 2640 * 2641 * Helper method for drivers which want to hardwire 80 wire cable 2642 * detection. 2643 */ 2644 2645 int ata_cable_80wire(struct ata_port *ap) 2646 { 2647 return ATA_CBL_PATA80; 2648 } 2649 2650 /** 2651 * ata_cable_unknown - return unknown PATA cable. 2652 * @ap: port 2653 * 2654 * Helper method for drivers which have no PATA cable detection. 2655 */ 2656 2657 int ata_cable_unknown(struct ata_port *ap) 2658 { 2659 return ATA_CBL_PATA_UNK; 2660 } 2661 2662 /** 2663 * ata_cable_ignore - return ignored PATA cable. 2664 * @ap: port 2665 * 2666 * Helper method for drivers which don't use cable type to limit 2667 * transfer mode. 2668 */ 2669 int ata_cable_ignore(struct ata_port *ap) 2670 { 2671 return ATA_CBL_PATA_IGN; 2672 } 2673 2674 /** 2675 * ata_cable_sata - return SATA cable type 2676 * @ap: port 2677 * 2678 * Helper method for drivers which have SATA cables 2679 */ 2680 2681 int ata_cable_sata(struct ata_port *ap) 2682 { 2683 return ATA_CBL_SATA; 2684 } 2685 2686 /** 2687 * ata_bus_probe - Reset and probe ATA bus 2688 * @ap: Bus to probe 2689 * 2690 * Master ATA bus probing function. Initiates a hardware-dependent 2691 * bus reset, then attempts to identify any devices found on 2692 * the bus. 2693 * 2694 * LOCKING: 2695 * PCI/etc. bus probe sem. 2696 * 2697 * RETURNS: 2698 * Zero on success, negative errno otherwise. 2699 */ 2700 2701 int ata_bus_probe(struct ata_port *ap) 2702 { 2703 unsigned int classes[ATA_MAX_DEVICES]; 2704 int tries[ATA_MAX_DEVICES]; 2705 int rc; 2706 struct ata_device *dev; 2707 2708 ata_port_probe(ap); 2709 2710 ata_for_each_dev(dev, &ap->link, ALL) 2711 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2712 2713 retry: 2714 ata_for_each_dev(dev, &ap->link, ALL) { 2715 /* If we issue an SRST then an ATA drive (not ATAPI) 2716 * may change configuration and be in PIO0 timing. If 2717 * we do a hard reset (or are coming from power on) 2718 * this is true for ATA or ATAPI. Until we've set a 2719 * suitable controller mode we should not touch the 2720 * bus as we may be talking too fast. 2721 */ 2722 dev->pio_mode = XFER_PIO_0; 2723 2724 /* If the controller has a pio mode setup function 2725 * then use it to set the chipset to rights. Don't 2726 * touch the DMA setup as that will be dealt with when 2727 * configuring devices. 2728 */ 2729 if (ap->ops->set_piomode) 2730 ap->ops->set_piomode(ap, dev); 2731 } 2732 2733 /* reset and determine device classes */ 2734 ap->ops->phy_reset(ap); 2735 2736 ata_for_each_dev(dev, &ap->link, ALL) { 2737 if (!(ap->flags & ATA_FLAG_DISABLED) && 2738 dev->class != ATA_DEV_UNKNOWN) 2739 classes[dev->devno] = dev->class; 2740 else 2741 classes[dev->devno] = ATA_DEV_NONE; 2742 2743 dev->class = ATA_DEV_UNKNOWN; 2744 } 2745 2746 ata_port_probe(ap); 2747 2748 /* read IDENTIFY page and configure devices. We have to do the identify 2749 specific sequence bass-ackwards so that PDIAG- is released by 2750 the slave device */ 2751 2752 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2753 if (tries[dev->devno]) 2754 dev->class = classes[dev->devno]; 2755 2756 if (!ata_dev_enabled(dev)) 2757 continue; 2758 2759 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2760 dev->id); 2761 if (rc) 2762 goto fail; 2763 } 2764 2765 /* Now ask for the cable type as PDIAG- should have been released */ 2766 if (ap->ops->cable_detect) 2767 ap->cbl = ap->ops->cable_detect(ap); 2768 2769 /* We may have SATA bridge glue hiding here irrespective of 2770 * the reported cable types and sensed types. When SATA 2771 * drives indicate we have a bridge, we don't know which end 2772 * of the link the bridge is which is a problem. 2773 */ 2774 ata_for_each_dev(dev, &ap->link, ENABLED) 2775 if (ata_id_is_sata(dev->id)) 2776 ap->cbl = ATA_CBL_SATA; 2777 2778 /* After the identify sequence we can now set up the devices. We do 2779 this in the normal order so that the user doesn't get confused */ 2780 2781 ata_for_each_dev(dev, &ap->link, ENABLED) { 2782 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2783 rc = ata_dev_configure(dev); 2784 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2785 if (rc) 2786 goto fail; 2787 } 2788 2789 /* configure transfer mode */ 2790 rc = ata_set_mode(&ap->link, &dev); 2791 if (rc) 2792 goto fail; 2793 2794 ata_for_each_dev(dev, &ap->link, ENABLED) 2795 return 0; 2796 2797 /* no device present, disable port */ 2798 ata_port_disable(ap); 2799 return -ENODEV; 2800 2801 fail: 2802 tries[dev->devno]--; 2803 2804 switch (rc) { 2805 case -EINVAL: 2806 /* eeek, something went very wrong, give up */ 2807 tries[dev->devno] = 0; 2808 break; 2809 2810 case -ENODEV: 2811 /* give it just one more chance */ 2812 tries[dev->devno] = min(tries[dev->devno], 1); 2813 case -EIO: 2814 if (tries[dev->devno] == 1) { 2815 /* This is the last chance, better to slow 2816 * down than lose it. 2817 */ 2818 sata_down_spd_limit(&ap->link, 0); 2819 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2820 } 2821 } 2822 2823 if (!tries[dev->devno]) 2824 ata_dev_disable(dev); 2825 2826 goto retry; 2827 } 2828 2829 /** 2830 * ata_port_probe - Mark port as enabled 2831 * @ap: Port for which we indicate enablement 2832 * 2833 * Modify @ap data structure such that the system 2834 * thinks that the entire port is enabled. 2835 * 2836 * LOCKING: host lock, or some other form of 2837 * serialization. 2838 */ 2839 2840 void ata_port_probe(struct ata_port *ap) 2841 { 2842 ap->flags &= ~ATA_FLAG_DISABLED; 2843 } 2844 2845 /** 2846 * sata_print_link_status - Print SATA link status 2847 * @link: SATA link to printk link status about 2848 * 2849 * This function prints link speed and status of a SATA link. 2850 * 2851 * LOCKING: 2852 * None. 2853 */ 2854 static void sata_print_link_status(struct ata_link *link) 2855 { 2856 u32 sstatus, scontrol, tmp; 2857 2858 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2859 return; 2860 sata_scr_read(link, SCR_CONTROL, &scontrol); 2861 2862 if (ata_phys_link_online(link)) { 2863 tmp = (sstatus >> 4) & 0xf; 2864 ata_link_printk(link, KERN_INFO, 2865 "SATA link up %s (SStatus %X SControl %X)\n", 2866 sata_spd_string(tmp), sstatus, scontrol); 2867 } else { 2868 ata_link_printk(link, KERN_INFO, 2869 "SATA link down (SStatus %X SControl %X)\n", 2870 sstatus, scontrol); 2871 } 2872 } 2873 2874 /** 2875 * ata_dev_pair - return other device on cable 2876 * @adev: device 2877 * 2878 * Obtain the other device on the same cable, or if none is 2879 * present NULL is returned 2880 */ 2881 2882 struct ata_device *ata_dev_pair(struct ata_device *adev) 2883 { 2884 struct ata_link *link = adev->link; 2885 struct ata_device *pair = &link->device[1 - adev->devno]; 2886 if (!ata_dev_enabled(pair)) 2887 return NULL; 2888 return pair; 2889 } 2890 2891 /** 2892 * ata_port_disable - Disable port. 2893 * @ap: Port to be disabled. 2894 * 2895 * Modify @ap data structure such that the system 2896 * thinks that the entire port is disabled, and should 2897 * never attempt to probe or communicate with devices 2898 * on this port. 2899 * 2900 * LOCKING: host lock, or some other form of 2901 * serialization. 2902 */ 2903 2904 void ata_port_disable(struct ata_port *ap) 2905 { 2906 ap->link.device[0].class = ATA_DEV_NONE; 2907 ap->link.device[1].class = ATA_DEV_NONE; 2908 ap->flags |= ATA_FLAG_DISABLED; 2909 } 2910 2911 /** 2912 * sata_down_spd_limit - adjust SATA spd limit downward 2913 * @link: Link to adjust SATA spd limit for 2914 * @spd_limit: Additional limit 2915 * 2916 * Adjust SATA spd limit of @link downward. Note that this 2917 * function only adjusts the limit. The change must be applied 2918 * using sata_set_spd(). 2919 * 2920 * If @spd_limit is non-zero, the speed is limited to equal to or 2921 * lower than @spd_limit if such speed is supported. If 2922 * @spd_limit is slower than any supported speed, only the lowest 2923 * supported speed is allowed. 2924 * 2925 * LOCKING: 2926 * Inherited from caller. 2927 * 2928 * RETURNS: 2929 * 0 on success, negative errno on failure 2930 */ 2931 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2932 { 2933 u32 sstatus, spd, mask; 2934 int rc, bit; 2935 2936 if (!sata_scr_valid(link)) 2937 return -EOPNOTSUPP; 2938 2939 /* If SCR can be read, use it to determine the current SPD. 2940 * If not, use cached value in link->sata_spd. 2941 */ 2942 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2943 if (rc == 0 && ata_sstatus_online(sstatus)) 2944 spd = (sstatus >> 4) & 0xf; 2945 else 2946 spd = link->sata_spd; 2947 2948 mask = link->sata_spd_limit; 2949 if (mask <= 1) 2950 return -EINVAL; 2951 2952 /* unconditionally mask off the highest bit */ 2953 bit = fls(mask) - 1; 2954 mask &= ~(1 << bit); 2955 2956 /* Mask off all speeds higher than or equal to the current 2957 * one. Force 1.5Gbps if current SPD is not available. 2958 */ 2959 if (spd > 1) 2960 mask &= (1 << (spd - 1)) - 1; 2961 else 2962 mask &= 1; 2963 2964 /* were we already at the bottom? */ 2965 if (!mask) 2966 return -EINVAL; 2967 2968 if (spd_limit) { 2969 if (mask & ((1 << spd_limit) - 1)) 2970 mask &= (1 << spd_limit) - 1; 2971 else { 2972 bit = ffs(mask) - 1; 2973 mask = 1 << bit; 2974 } 2975 } 2976 2977 link->sata_spd_limit = mask; 2978 2979 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2980 sata_spd_string(fls(mask))); 2981 2982 return 0; 2983 } 2984 2985 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2986 { 2987 struct ata_link *host_link = &link->ap->link; 2988 u32 limit, target, spd; 2989 2990 limit = link->sata_spd_limit; 2991 2992 /* Don't configure downstream link faster than upstream link. 2993 * It doesn't speed up anything and some PMPs choke on such 2994 * configuration. 2995 */ 2996 if (!ata_is_host_link(link) && host_link->sata_spd) 2997 limit &= (1 << host_link->sata_spd) - 1; 2998 2999 if (limit == UINT_MAX) 3000 target = 0; 3001 else 3002 target = fls(limit); 3003 3004 spd = (*scontrol >> 4) & 0xf; 3005 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3006 3007 return spd != target; 3008 } 3009 3010 /** 3011 * sata_set_spd_needed - is SATA spd configuration needed 3012 * @link: Link in question 3013 * 3014 * Test whether the spd limit in SControl matches 3015 * @link->sata_spd_limit. This function is used to determine 3016 * whether hardreset is necessary to apply SATA spd 3017 * configuration. 3018 * 3019 * LOCKING: 3020 * Inherited from caller. 3021 * 3022 * RETURNS: 3023 * 1 if SATA spd configuration is needed, 0 otherwise. 3024 */ 3025 static int sata_set_spd_needed(struct ata_link *link) 3026 { 3027 u32 scontrol; 3028 3029 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3030 return 1; 3031 3032 return __sata_set_spd_needed(link, &scontrol); 3033 } 3034 3035 /** 3036 * sata_set_spd - set SATA spd according to spd limit 3037 * @link: Link to set SATA spd for 3038 * 3039 * Set SATA spd of @link according to sata_spd_limit. 3040 * 3041 * LOCKING: 3042 * Inherited from caller. 3043 * 3044 * RETURNS: 3045 * 0 if spd doesn't need to be changed, 1 if spd has been 3046 * changed. Negative errno if SCR registers are inaccessible. 3047 */ 3048 int sata_set_spd(struct ata_link *link) 3049 { 3050 u32 scontrol; 3051 int rc; 3052 3053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3054 return rc; 3055 3056 if (!__sata_set_spd_needed(link, &scontrol)) 3057 return 0; 3058 3059 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3060 return rc; 3061 3062 return 1; 3063 } 3064 3065 /* 3066 * This mode timing computation functionality is ported over from 3067 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3068 */ 3069 /* 3070 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3071 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3072 * for UDMA6, which is currently supported only by Maxtor drives. 3073 * 3074 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3075 */ 3076 3077 static const struct ata_timing ata_timing[] = { 3078 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3079 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3080 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3081 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3082 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3083 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3084 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3085 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3086 3087 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3088 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3089 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3090 3091 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3092 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3093 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3094 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3095 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3096 3097 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3098 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3099 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3100 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3101 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3102 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3103 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3104 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3105 3106 { 0xFF } 3107 }; 3108 3109 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3110 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3111 3112 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3113 { 3114 q->setup = EZ(t->setup * 1000, T); 3115 q->act8b = EZ(t->act8b * 1000, T); 3116 q->rec8b = EZ(t->rec8b * 1000, T); 3117 q->cyc8b = EZ(t->cyc8b * 1000, T); 3118 q->active = EZ(t->active * 1000, T); 3119 q->recover = EZ(t->recover * 1000, T); 3120 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3121 q->cycle = EZ(t->cycle * 1000, T); 3122 q->udma = EZ(t->udma * 1000, UT); 3123 } 3124 3125 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3126 struct ata_timing *m, unsigned int what) 3127 { 3128 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3129 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3130 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3131 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3132 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3133 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3134 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3135 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3136 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3137 } 3138 3139 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3140 { 3141 const struct ata_timing *t = ata_timing; 3142 3143 while (xfer_mode > t->mode) 3144 t++; 3145 3146 if (xfer_mode == t->mode) 3147 return t; 3148 return NULL; 3149 } 3150 3151 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3152 struct ata_timing *t, int T, int UT) 3153 { 3154 const struct ata_timing *s; 3155 struct ata_timing p; 3156 3157 /* 3158 * Find the mode. 3159 */ 3160 3161 if (!(s = ata_timing_find_mode(speed))) 3162 return -EINVAL; 3163 3164 memcpy(t, s, sizeof(*s)); 3165 3166 /* 3167 * If the drive is an EIDE drive, it can tell us it needs extended 3168 * PIO/MW_DMA cycle timing. 3169 */ 3170 3171 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3172 memset(&p, 0, sizeof(p)); 3173 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3174 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3175 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3176 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3177 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3178 } 3179 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3180 } 3181 3182 /* 3183 * Convert the timing to bus clock counts. 3184 */ 3185 3186 ata_timing_quantize(t, t, T, UT); 3187 3188 /* 3189 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3190 * S.M.A.R.T * and some other commands. We have to ensure that the 3191 * DMA cycle timing is slower/equal than the fastest PIO timing. 3192 */ 3193 3194 if (speed > XFER_PIO_6) { 3195 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3196 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3197 } 3198 3199 /* 3200 * Lengthen active & recovery time so that cycle time is correct. 3201 */ 3202 3203 if (t->act8b + t->rec8b < t->cyc8b) { 3204 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3205 t->rec8b = t->cyc8b - t->act8b; 3206 } 3207 3208 if (t->active + t->recover < t->cycle) { 3209 t->active += (t->cycle - (t->active + t->recover)) / 2; 3210 t->recover = t->cycle - t->active; 3211 } 3212 3213 /* In a few cases quantisation may produce enough errors to 3214 leave t->cycle too low for the sum of active and recovery 3215 if so we must correct this */ 3216 if (t->active + t->recover > t->cycle) 3217 t->cycle = t->active + t->recover; 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3224 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3225 * @cycle: cycle duration in ns 3226 * 3227 * Return matching xfer mode for @cycle. The returned mode is of 3228 * the transfer type specified by @xfer_shift. If @cycle is too 3229 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3230 * than the fastest known mode, the fasted mode is returned. 3231 * 3232 * LOCKING: 3233 * None. 3234 * 3235 * RETURNS: 3236 * Matching xfer_mode, 0xff if no match found. 3237 */ 3238 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3239 { 3240 u8 base_mode = 0xff, last_mode = 0xff; 3241 const struct ata_xfer_ent *ent; 3242 const struct ata_timing *t; 3243 3244 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3245 if (ent->shift == xfer_shift) 3246 base_mode = ent->base; 3247 3248 for (t = ata_timing_find_mode(base_mode); 3249 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3250 unsigned short this_cycle; 3251 3252 switch (xfer_shift) { 3253 case ATA_SHIFT_PIO: 3254 case ATA_SHIFT_MWDMA: 3255 this_cycle = t->cycle; 3256 break; 3257 case ATA_SHIFT_UDMA: 3258 this_cycle = t->udma; 3259 break; 3260 default: 3261 return 0xff; 3262 } 3263 3264 if (cycle > this_cycle) 3265 break; 3266 3267 last_mode = t->mode; 3268 } 3269 3270 return last_mode; 3271 } 3272 3273 /** 3274 * ata_down_xfermask_limit - adjust dev xfer masks downward 3275 * @dev: Device to adjust xfer masks 3276 * @sel: ATA_DNXFER_* selector 3277 * 3278 * Adjust xfer masks of @dev downward. Note that this function 3279 * does not apply the change. Invoking ata_set_mode() afterwards 3280 * will apply the limit. 3281 * 3282 * LOCKING: 3283 * Inherited from caller. 3284 * 3285 * RETURNS: 3286 * 0 on success, negative errno on failure 3287 */ 3288 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3289 { 3290 char buf[32]; 3291 unsigned long orig_mask, xfer_mask; 3292 unsigned long pio_mask, mwdma_mask, udma_mask; 3293 int quiet, highbit; 3294 3295 quiet = !!(sel & ATA_DNXFER_QUIET); 3296 sel &= ~ATA_DNXFER_QUIET; 3297 3298 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3299 dev->mwdma_mask, 3300 dev->udma_mask); 3301 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3302 3303 switch (sel) { 3304 case ATA_DNXFER_PIO: 3305 highbit = fls(pio_mask) - 1; 3306 pio_mask &= ~(1 << highbit); 3307 break; 3308 3309 case ATA_DNXFER_DMA: 3310 if (udma_mask) { 3311 highbit = fls(udma_mask) - 1; 3312 udma_mask &= ~(1 << highbit); 3313 if (!udma_mask) 3314 return -ENOENT; 3315 } else if (mwdma_mask) { 3316 highbit = fls(mwdma_mask) - 1; 3317 mwdma_mask &= ~(1 << highbit); 3318 if (!mwdma_mask) 3319 return -ENOENT; 3320 } 3321 break; 3322 3323 case ATA_DNXFER_40C: 3324 udma_mask &= ATA_UDMA_MASK_40C; 3325 break; 3326 3327 case ATA_DNXFER_FORCE_PIO0: 3328 pio_mask &= 1; 3329 case ATA_DNXFER_FORCE_PIO: 3330 mwdma_mask = 0; 3331 udma_mask = 0; 3332 break; 3333 3334 default: 3335 BUG(); 3336 } 3337 3338 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3339 3340 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3341 return -ENOENT; 3342 3343 if (!quiet) { 3344 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3345 snprintf(buf, sizeof(buf), "%s:%s", 3346 ata_mode_string(xfer_mask), 3347 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3348 else 3349 snprintf(buf, sizeof(buf), "%s", 3350 ata_mode_string(xfer_mask)); 3351 3352 ata_dev_printk(dev, KERN_WARNING, 3353 "limiting speed to %s\n", buf); 3354 } 3355 3356 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3357 &dev->udma_mask); 3358 3359 return 0; 3360 } 3361 3362 static int ata_dev_set_mode(struct ata_device *dev) 3363 { 3364 struct ata_eh_context *ehc = &dev->link->eh_context; 3365 const char *dev_err_whine = ""; 3366 int ign_dev_err = 0; 3367 unsigned int err_mask; 3368 int rc; 3369 3370 dev->flags &= ~ATA_DFLAG_PIO; 3371 if (dev->xfer_shift == ATA_SHIFT_PIO) 3372 dev->flags |= ATA_DFLAG_PIO; 3373 3374 err_mask = ata_dev_set_xfermode(dev); 3375 3376 if (err_mask & ~AC_ERR_DEV) 3377 goto fail; 3378 3379 /* revalidate */ 3380 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3381 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3382 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3383 if (rc) 3384 return rc; 3385 3386 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3387 /* Old CFA may refuse this command, which is just fine */ 3388 if (ata_id_is_cfa(dev->id)) 3389 ign_dev_err = 1; 3390 /* Catch several broken garbage emulations plus some pre 3391 ATA devices */ 3392 if (ata_id_major_version(dev->id) == 0 && 3393 dev->pio_mode <= XFER_PIO_2) 3394 ign_dev_err = 1; 3395 /* Some very old devices and some bad newer ones fail 3396 any kind of SET_XFERMODE request but support PIO0-2 3397 timings and no IORDY */ 3398 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3399 ign_dev_err = 1; 3400 } 3401 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3402 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3403 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3404 dev->dma_mode == XFER_MW_DMA_0 && 3405 (dev->id[63] >> 8) & 1) 3406 ign_dev_err = 1; 3407 3408 /* if the device is actually configured correctly, ignore dev err */ 3409 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3410 ign_dev_err = 1; 3411 3412 if (err_mask & AC_ERR_DEV) { 3413 if (!ign_dev_err) 3414 goto fail; 3415 else 3416 dev_err_whine = " (device error ignored)"; 3417 } 3418 3419 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3420 dev->xfer_shift, (int)dev->xfer_mode); 3421 3422 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3423 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3424 dev_err_whine); 3425 3426 return 0; 3427 3428 fail: 3429 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3430 "(err_mask=0x%x)\n", err_mask); 3431 return -EIO; 3432 } 3433 3434 /** 3435 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3436 * @link: link on which timings will be programmed 3437 * @r_failed_dev: out parameter for failed device 3438 * 3439 * Standard implementation of the function used to tune and set 3440 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3441 * ata_dev_set_mode() fails, pointer to the failing device is 3442 * returned in @r_failed_dev. 3443 * 3444 * LOCKING: 3445 * PCI/etc. bus probe sem. 3446 * 3447 * RETURNS: 3448 * 0 on success, negative errno otherwise 3449 */ 3450 3451 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3452 { 3453 struct ata_port *ap = link->ap; 3454 struct ata_device *dev; 3455 int rc = 0, used_dma = 0, found = 0; 3456 3457 /* step 1: calculate xfer_mask */ 3458 ata_for_each_dev(dev, link, ENABLED) { 3459 unsigned long pio_mask, dma_mask; 3460 unsigned int mode_mask; 3461 3462 mode_mask = ATA_DMA_MASK_ATA; 3463 if (dev->class == ATA_DEV_ATAPI) 3464 mode_mask = ATA_DMA_MASK_ATAPI; 3465 else if (ata_id_is_cfa(dev->id)) 3466 mode_mask = ATA_DMA_MASK_CFA; 3467 3468 ata_dev_xfermask(dev); 3469 ata_force_xfermask(dev); 3470 3471 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3472 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3473 3474 if (libata_dma_mask & mode_mask) 3475 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3476 else 3477 dma_mask = 0; 3478 3479 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3480 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3481 3482 found = 1; 3483 if (ata_dma_enabled(dev)) 3484 used_dma = 1; 3485 } 3486 if (!found) 3487 goto out; 3488 3489 /* step 2: always set host PIO timings */ 3490 ata_for_each_dev(dev, link, ENABLED) { 3491 if (dev->pio_mode == 0xff) { 3492 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3493 rc = -EINVAL; 3494 goto out; 3495 } 3496 3497 dev->xfer_mode = dev->pio_mode; 3498 dev->xfer_shift = ATA_SHIFT_PIO; 3499 if (ap->ops->set_piomode) 3500 ap->ops->set_piomode(ap, dev); 3501 } 3502 3503 /* step 3: set host DMA timings */ 3504 ata_for_each_dev(dev, link, ENABLED) { 3505 if (!ata_dma_enabled(dev)) 3506 continue; 3507 3508 dev->xfer_mode = dev->dma_mode; 3509 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3510 if (ap->ops->set_dmamode) 3511 ap->ops->set_dmamode(ap, dev); 3512 } 3513 3514 /* step 4: update devices' xfer mode */ 3515 ata_for_each_dev(dev, link, ENABLED) { 3516 rc = ata_dev_set_mode(dev); 3517 if (rc) 3518 goto out; 3519 } 3520 3521 /* Record simplex status. If we selected DMA then the other 3522 * host channels are not permitted to do so. 3523 */ 3524 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3525 ap->host->simplex_claimed = ap; 3526 3527 out: 3528 if (rc) 3529 *r_failed_dev = dev; 3530 return rc; 3531 } 3532 3533 /** 3534 * ata_wait_ready - wait for link to become ready 3535 * @link: link to be waited on 3536 * @deadline: deadline jiffies for the operation 3537 * @check_ready: callback to check link readiness 3538 * 3539 * Wait for @link to become ready. @check_ready should return 3540 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3541 * link doesn't seem to be occupied, other errno for other error 3542 * conditions. 3543 * 3544 * Transient -ENODEV conditions are allowed for 3545 * ATA_TMOUT_FF_WAIT. 3546 * 3547 * LOCKING: 3548 * EH context. 3549 * 3550 * RETURNS: 3551 * 0 if @linke is ready before @deadline; otherwise, -errno. 3552 */ 3553 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3554 int (*check_ready)(struct ata_link *link)) 3555 { 3556 unsigned long start = jiffies; 3557 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3558 int warned = 0; 3559 3560 /* Slave readiness can't be tested separately from master. On 3561 * M/S emulation configuration, this function should be called 3562 * only on the master and it will handle both master and slave. 3563 */ 3564 WARN_ON(link == link->ap->slave_link); 3565 3566 if (time_after(nodev_deadline, deadline)) 3567 nodev_deadline = deadline; 3568 3569 while (1) { 3570 unsigned long now = jiffies; 3571 int ready, tmp; 3572 3573 ready = tmp = check_ready(link); 3574 if (ready > 0) 3575 return 0; 3576 3577 /* -ENODEV could be transient. Ignore -ENODEV if link 3578 * is online. Also, some SATA devices take a long 3579 * time to clear 0xff after reset. For example, 3580 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3581 * GoVault needs even more than that. Wait for 3582 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3583 * 3584 * Note that some PATA controllers (pata_ali) explode 3585 * if status register is read more than once when 3586 * there's no device attached. 3587 */ 3588 if (ready == -ENODEV) { 3589 if (ata_link_online(link)) 3590 ready = 0; 3591 else if ((link->ap->flags & ATA_FLAG_SATA) && 3592 !ata_link_offline(link) && 3593 time_before(now, nodev_deadline)) 3594 ready = 0; 3595 } 3596 3597 if (ready) 3598 return ready; 3599 if (time_after(now, deadline)) 3600 return -EBUSY; 3601 3602 if (!warned && time_after(now, start + 5 * HZ) && 3603 (deadline - now > 3 * HZ)) { 3604 ata_link_printk(link, KERN_WARNING, 3605 "link is slow to respond, please be patient " 3606 "(ready=%d)\n", tmp); 3607 warned = 1; 3608 } 3609 3610 msleep(50); 3611 } 3612 } 3613 3614 /** 3615 * ata_wait_after_reset - wait for link to become ready after reset 3616 * @link: link to be waited on 3617 * @deadline: deadline jiffies for the operation 3618 * @check_ready: callback to check link readiness 3619 * 3620 * Wait for @link to become ready after reset. 3621 * 3622 * LOCKING: 3623 * EH context. 3624 * 3625 * RETURNS: 3626 * 0 if @linke is ready before @deadline; otherwise, -errno. 3627 */ 3628 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3629 int (*check_ready)(struct ata_link *link)) 3630 { 3631 msleep(ATA_WAIT_AFTER_RESET); 3632 3633 return ata_wait_ready(link, deadline, check_ready); 3634 } 3635 3636 /** 3637 * sata_link_debounce - debounce SATA phy status 3638 * @link: ATA link to debounce SATA phy status for 3639 * @params: timing parameters { interval, duratinon, timeout } in msec 3640 * @deadline: deadline jiffies for the operation 3641 * 3642 * Make sure SStatus of @link reaches stable state, determined by 3643 * holding the same value where DET is not 1 for @duration polled 3644 * every @interval, before @timeout. Timeout constraints the 3645 * beginning of the stable state. Because DET gets stuck at 1 on 3646 * some controllers after hot unplugging, this functions waits 3647 * until timeout then returns 0 if DET is stable at 1. 3648 * 3649 * @timeout is further limited by @deadline. The sooner of the 3650 * two is used. 3651 * 3652 * LOCKING: 3653 * Kernel thread context (may sleep) 3654 * 3655 * RETURNS: 3656 * 0 on success, -errno on failure. 3657 */ 3658 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3659 unsigned long deadline) 3660 { 3661 unsigned long interval = params[0]; 3662 unsigned long duration = params[1]; 3663 unsigned long last_jiffies, t; 3664 u32 last, cur; 3665 int rc; 3666 3667 t = ata_deadline(jiffies, params[2]); 3668 if (time_before(t, deadline)) 3669 deadline = t; 3670 3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3672 return rc; 3673 cur &= 0xf; 3674 3675 last = cur; 3676 last_jiffies = jiffies; 3677 3678 while (1) { 3679 msleep(interval); 3680 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3681 return rc; 3682 cur &= 0xf; 3683 3684 /* DET stable? */ 3685 if (cur == last) { 3686 if (cur == 1 && time_before(jiffies, deadline)) 3687 continue; 3688 if (time_after(jiffies, 3689 ata_deadline(last_jiffies, duration))) 3690 return 0; 3691 continue; 3692 } 3693 3694 /* unstable, start over */ 3695 last = cur; 3696 last_jiffies = jiffies; 3697 3698 /* Check deadline. If debouncing failed, return 3699 * -EPIPE to tell upper layer to lower link speed. 3700 */ 3701 if (time_after(jiffies, deadline)) 3702 return -EPIPE; 3703 } 3704 } 3705 3706 /** 3707 * sata_link_resume - resume SATA link 3708 * @link: ATA link to resume SATA 3709 * @params: timing parameters { interval, duratinon, timeout } in msec 3710 * @deadline: deadline jiffies for the operation 3711 * 3712 * Resume SATA phy @link and debounce it. 3713 * 3714 * LOCKING: 3715 * Kernel thread context (may sleep) 3716 * 3717 * RETURNS: 3718 * 0 on success, -errno on failure. 3719 */ 3720 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3721 unsigned long deadline) 3722 { 3723 u32 scontrol, serror; 3724 int rc; 3725 3726 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3727 return rc; 3728 3729 scontrol = (scontrol & 0x0f0) | 0x300; 3730 3731 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3732 return rc; 3733 3734 /* Some PHYs react badly if SStatus is pounded immediately 3735 * after resuming. Delay 200ms before debouncing. 3736 */ 3737 msleep(200); 3738 3739 if ((rc = sata_link_debounce(link, params, deadline))) 3740 return rc; 3741 3742 /* clear SError, some PHYs require this even for SRST to work */ 3743 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3744 rc = sata_scr_write(link, SCR_ERROR, serror); 3745 3746 return rc != -EINVAL ? rc : 0; 3747 } 3748 3749 /** 3750 * ata_std_prereset - prepare for reset 3751 * @link: ATA link to be reset 3752 * @deadline: deadline jiffies for the operation 3753 * 3754 * @link is about to be reset. Initialize it. Failure from 3755 * prereset makes libata abort whole reset sequence and give up 3756 * that port, so prereset should be best-effort. It does its 3757 * best to prepare for reset sequence but if things go wrong, it 3758 * should just whine, not fail. 3759 * 3760 * LOCKING: 3761 * Kernel thread context (may sleep) 3762 * 3763 * RETURNS: 3764 * 0 on success, -errno otherwise. 3765 */ 3766 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3767 { 3768 struct ata_port *ap = link->ap; 3769 struct ata_eh_context *ehc = &link->eh_context; 3770 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3771 int rc; 3772 3773 /* if we're about to do hardreset, nothing more to do */ 3774 if (ehc->i.action & ATA_EH_HARDRESET) 3775 return 0; 3776 3777 /* if SATA, resume link */ 3778 if (ap->flags & ATA_FLAG_SATA) { 3779 rc = sata_link_resume(link, timing, deadline); 3780 /* whine about phy resume failure but proceed */ 3781 if (rc && rc != -EOPNOTSUPP) 3782 ata_link_printk(link, KERN_WARNING, "failed to resume " 3783 "link for reset (errno=%d)\n", rc); 3784 } 3785 3786 /* no point in trying softreset on offline link */ 3787 if (ata_phys_link_offline(link)) 3788 ehc->i.action &= ~ATA_EH_SOFTRESET; 3789 3790 return 0; 3791 } 3792 3793 /** 3794 * sata_link_hardreset - reset link via SATA phy reset 3795 * @link: link to reset 3796 * @timing: timing parameters { interval, duratinon, timeout } in msec 3797 * @deadline: deadline jiffies for the operation 3798 * @online: optional out parameter indicating link onlineness 3799 * @check_ready: optional callback to check link readiness 3800 * 3801 * SATA phy-reset @link using DET bits of SControl register. 3802 * After hardreset, link readiness is waited upon using 3803 * ata_wait_ready() if @check_ready is specified. LLDs are 3804 * allowed to not specify @check_ready and wait itself after this 3805 * function returns. Device classification is LLD's 3806 * responsibility. 3807 * 3808 * *@online is set to one iff reset succeeded and @link is online 3809 * after reset. 3810 * 3811 * LOCKING: 3812 * Kernel thread context (may sleep) 3813 * 3814 * RETURNS: 3815 * 0 on success, -errno otherwise. 3816 */ 3817 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3818 unsigned long deadline, 3819 bool *online, int (*check_ready)(struct ata_link *)) 3820 { 3821 u32 scontrol; 3822 int rc; 3823 3824 DPRINTK("ENTER\n"); 3825 3826 if (online) 3827 *online = false; 3828 3829 if (sata_set_spd_needed(link)) { 3830 /* SATA spec says nothing about how to reconfigure 3831 * spd. To be on the safe side, turn off phy during 3832 * reconfiguration. This works for at least ICH7 AHCI 3833 * and Sil3124. 3834 */ 3835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3836 goto out; 3837 3838 scontrol = (scontrol & 0x0f0) | 0x304; 3839 3840 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3841 goto out; 3842 3843 sata_set_spd(link); 3844 } 3845 3846 /* issue phy wake/reset */ 3847 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3848 goto out; 3849 3850 scontrol = (scontrol & 0x0f0) | 0x301; 3851 3852 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3853 goto out; 3854 3855 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3856 * 10.4.2 says at least 1 ms. 3857 */ 3858 msleep(1); 3859 3860 /* bring link back */ 3861 rc = sata_link_resume(link, timing, deadline); 3862 if (rc) 3863 goto out; 3864 /* if link is offline nothing more to do */ 3865 if (ata_phys_link_offline(link)) 3866 goto out; 3867 3868 /* Link is online. From this point, -ENODEV too is an error. */ 3869 if (online) 3870 *online = true; 3871 3872 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3873 /* If PMP is supported, we have to do follow-up SRST. 3874 * Some PMPs don't send D2H Reg FIS after hardreset if 3875 * the first port is empty. Wait only for 3876 * ATA_TMOUT_PMP_SRST_WAIT. 3877 */ 3878 if (check_ready) { 3879 unsigned long pmp_deadline; 3880 3881 pmp_deadline = ata_deadline(jiffies, 3882 ATA_TMOUT_PMP_SRST_WAIT); 3883 if (time_after(pmp_deadline, deadline)) 3884 pmp_deadline = deadline; 3885 ata_wait_ready(link, pmp_deadline, check_ready); 3886 } 3887 rc = -EAGAIN; 3888 goto out; 3889 } 3890 3891 rc = 0; 3892 if (check_ready) 3893 rc = ata_wait_ready(link, deadline, check_ready); 3894 out: 3895 if (rc && rc != -EAGAIN) { 3896 /* online is set iff link is online && reset succeeded */ 3897 if (online) 3898 *online = false; 3899 ata_link_printk(link, KERN_ERR, 3900 "COMRESET failed (errno=%d)\n", rc); 3901 } 3902 DPRINTK("EXIT, rc=%d\n", rc); 3903 return rc; 3904 } 3905 3906 /** 3907 * sata_std_hardreset - COMRESET w/o waiting or classification 3908 * @link: link to reset 3909 * @class: resulting class of attached device 3910 * @deadline: deadline jiffies for the operation 3911 * 3912 * Standard SATA COMRESET w/o waiting or classification. 3913 * 3914 * LOCKING: 3915 * Kernel thread context (may sleep) 3916 * 3917 * RETURNS: 3918 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3919 */ 3920 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3921 unsigned long deadline) 3922 { 3923 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3924 bool online; 3925 int rc; 3926 3927 /* do hardreset */ 3928 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3929 return online ? -EAGAIN : rc; 3930 } 3931 3932 /** 3933 * ata_std_postreset - standard postreset callback 3934 * @link: the target ata_link 3935 * @classes: classes of attached devices 3936 * 3937 * This function is invoked after a successful reset. Note that 3938 * the device might have been reset more than once using 3939 * different reset methods before postreset is invoked. 3940 * 3941 * LOCKING: 3942 * Kernel thread context (may sleep) 3943 */ 3944 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3945 { 3946 u32 serror; 3947 3948 DPRINTK("ENTER\n"); 3949 3950 /* reset complete, clear SError */ 3951 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3952 sata_scr_write(link, SCR_ERROR, serror); 3953 3954 /* print link status */ 3955 sata_print_link_status(link); 3956 3957 DPRINTK("EXIT\n"); 3958 } 3959 3960 /** 3961 * ata_dev_same_device - Determine whether new ID matches configured device 3962 * @dev: device to compare against 3963 * @new_class: class of the new device 3964 * @new_id: IDENTIFY page of the new device 3965 * 3966 * Compare @new_class and @new_id against @dev and determine 3967 * whether @dev is the device indicated by @new_class and 3968 * @new_id. 3969 * 3970 * LOCKING: 3971 * None. 3972 * 3973 * RETURNS: 3974 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3975 */ 3976 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3977 const u16 *new_id) 3978 { 3979 const u16 *old_id = dev->id; 3980 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3981 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3982 3983 if (dev->class != new_class) { 3984 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3985 dev->class, new_class); 3986 return 0; 3987 } 3988 3989 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3990 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3991 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3992 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3993 3994 if (strcmp(model[0], model[1])) { 3995 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3996 "'%s' != '%s'\n", model[0], model[1]); 3997 return 0; 3998 } 3999 4000 if (strcmp(serial[0], serial[1])) { 4001 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4002 "'%s' != '%s'\n", serial[0], serial[1]); 4003 return 0; 4004 } 4005 4006 return 1; 4007 } 4008 4009 /** 4010 * ata_dev_reread_id - Re-read IDENTIFY data 4011 * @dev: target ATA device 4012 * @readid_flags: read ID flags 4013 * 4014 * Re-read IDENTIFY page and make sure @dev is still attached to 4015 * the port. 4016 * 4017 * LOCKING: 4018 * Kernel thread context (may sleep) 4019 * 4020 * RETURNS: 4021 * 0 on success, negative errno otherwise 4022 */ 4023 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4024 { 4025 unsigned int class = dev->class; 4026 u16 *id = (void *)dev->link->ap->sector_buf; 4027 int rc; 4028 4029 /* read ID data */ 4030 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4031 if (rc) 4032 return rc; 4033 4034 /* is the device still there? */ 4035 if (!ata_dev_same_device(dev, class, id)) 4036 return -ENODEV; 4037 4038 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4039 return 0; 4040 } 4041 4042 /** 4043 * ata_dev_revalidate - Revalidate ATA device 4044 * @dev: device to revalidate 4045 * @new_class: new class code 4046 * @readid_flags: read ID flags 4047 * 4048 * Re-read IDENTIFY page, make sure @dev is still attached to the 4049 * port and reconfigure it according to the new IDENTIFY page. 4050 * 4051 * LOCKING: 4052 * Kernel thread context (may sleep) 4053 * 4054 * RETURNS: 4055 * 0 on success, negative errno otherwise 4056 */ 4057 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4058 unsigned int readid_flags) 4059 { 4060 u64 n_sectors = dev->n_sectors; 4061 int rc; 4062 4063 if (!ata_dev_enabled(dev)) 4064 return -ENODEV; 4065 4066 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4067 if (ata_class_enabled(new_class) && 4068 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 4069 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4070 dev->class, new_class); 4071 rc = -ENODEV; 4072 goto fail; 4073 } 4074 4075 /* re-read ID */ 4076 rc = ata_dev_reread_id(dev, readid_flags); 4077 if (rc) 4078 goto fail; 4079 4080 /* configure device according to the new ID */ 4081 rc = ata_dev_configure(dev); 4082 if (rc) 4083 goto fail; 4084 4085 /* verify n_sectors hasn't changed */ 4086 if (dev->class == ATA_DEV_ATA && n_sectors && 4087 dev->n_sectors != n_sectors) { 4088 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 4089 "%llu != %llu\n", 4090 (unsigned long long)n_sectors, 4091 (unsigned long long)dev->n_sectors); 4092 4093 /* restore original n_sectors */ 4094 dev->n_sectors = n_sectors; 4095 4096 rc = -ENODEV; 4097 goto fail; 4098 } 4099 4100 return 0; 4101 4102 fail: 4103 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4104 return rc; 4105 } 4106 4107 struct ata_blacklist_entry { 4108 const char *model_num; 4109 const char *model_rev; 4110 unsigned long horkage; 4111 }; 4112 4113 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4114 /* Devices with DMA related problems under Linux */ 4115 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4116 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4117 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4118 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4119 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4120 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4121 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4122 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4123 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4124 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4125 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4126 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4127 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4128 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4129 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4130 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4131 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4132 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4133 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4134 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4135 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4136 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4137 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4138 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4139 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4140 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4141 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4142 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4143 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4144 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4145 /* Odd clown on sil3726/4726 PMPs */ 4146 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4147 4148 /* Weird ATAPI devices */ 4149 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4150 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4151 4152 /* Devices we expect to fail diagnostics */ 4153 4154 /* Devices where NCQ should be avoided */ 4155 /* NCQ is slow */ 4156 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4157 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4158 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4159 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4160 /* NCQ is broken */ 4161 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4162 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4163 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4164 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4165 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4166 4167 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4168 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4169 ATA_HORKAGE_FIRMWARE_WARN }, 4170 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4171 ATA_HORKAGE_FIRMWARE_WARN }, 4172 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4173 ATA_HORKAGE_FIRMWARE_WARN }, 4174 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4175 ATA_HORKAGE_FIRMWARE_WARN }, 4176 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4177 ATA_HORKAGE_FIRMWARE_WARN }, 4178 4179 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4180 ATA_HORKAGE_FIRMWARE_WARN }, 4181 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4182 ATA_HORKAGE_FIRMWARE_WARN }, 4183 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4184 ATA_HORKAGE_FIRMWARE_WARN }, 4185 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4186 ATA_HORKAGE_FIRMWARE_WARN }, 4187 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4188 ATA_HORKAGE_FIRMWARE_WARN }, 4189 4190 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4191 ATA_HORKAGE_FIRMWARE_WARN }, 4192 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4193 ATA_HORKAGE_FIRMWARE_WARN }, 4194 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4195 ATA_HORKAGE_FIRMWARE_WARN }, 4196 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4197 ATA_HORKAGE_FIRMWARE_WARN }, 4198 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4199 ATA_HORKAGE_FIRMWARE_WARN }, 4200 4201 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4202 ATA_HORKAGE_FIRMWARE_WARN }, 4203 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4204 ATA_HORKAGE_FIRMWARE_WARN }, 4205 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4206 ATA_HORKAGE_FIRMWARE_WARN }, 4207 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4208 ATA_HORKAGE_FIRMWARE_WARN }, 4209 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4210 ATA_HORKAGE_FIRMWARE_WARN }, 4211 4212 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4213 ATA_HORKAGE_FIRMWARE_WARN }, 4214 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4215 ATA_HORKAGE_FIRMWARE_WARN }, 4216 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4217 ATA_HORKAGE_FIRMWARE_WARN }, 4218 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4219 ATA_HORKAGE_FIRMWARE_WARN }, 4220 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4221 ATA_HORKAGE_FIRMWARE_WARN }, 4222 4223 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4224 ATA_HORKAGE_FIRMWARE_WARN }, 4225 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4226 ATA_HORKAGE_FIRMWARE_WARN }, 4227 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4228 ATA_HORKAGE_FIRMWARE_WARN }, 4229 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4230 ATA_HORKAGE_FIRMWARE_WARN }, 4231 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4232 ATA_HORKAGE_FIRMWARE_WARN }, 4233 4234 /* Blacklist entries taken from Silicon Image 3124/3132 4235 Windows driver .inf file - also several Linux problem reports */ 4236 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4237 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4238 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4239 4240 /* devices which puke on READ_NATIVE_MAX */ 4241 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4242 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4243 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4244 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4245 4246 /* Devices which report 1 sector over size HPA */ 4247 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4248 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4249 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4250 4251 /* Devices which get the IVB wrong */ 4252 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4253 /* Maybe we should just blacklist TSSTcorp... */ 4254 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4255 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4256 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4257 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4258 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4259 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4260 4261 /* Devices that do not need bridging limits applied */ 4262 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4263 4264 /* Devices which aren't very happy with higher link speeds */ 4265 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4266 4267 /* End Marker */ 4268 { } 4269 }; 4270 4271 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4272 { 4273 const char *p; 4274 int len; 4275 4276 /* 4277 * check for trailing wildcard: *\0 4278 */ 4279 p = strchr(patt, wildchar); 4280 if (p && ((*(p + 1)) == 0)) 4281 len = p - patt; 4282 else { 4283 len = strlen(name); 4284 if (!len) { 4285 if (!*patt) 4286 return 0; 4287 return -1; 4288 } 4289 } 4290 4291 return strncmp(patt, name, len); 4292 } 4293 4294 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4295 { 4296 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4297 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4298 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4299 4300 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4301 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4302 4303 while (ad->model_num) { 4304 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4305 if (ad->model_rev == NULL) 4306 return ad->horkage; 4307 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4308 return ad->horkage; 4309 } 4310 ad++; 4311 } 4312 return 0; 4313 } 4314 4315 static int ata_dma_blacklisted(const struct ata_device *dev) 4316 { 4317 /* We don't support polling DMA. 4318 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4319 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4320 */ 4321 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4322 (dev->flags & ATA_DFLAG_CDB_INTR)) 4323 return 1; 4324 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4325 } 4326 4327 /** 4328 * ata_is_40wire - check drive side detection 4329 * @dev: device 4330 * 4331 * Perform drive side detection decoding, allowing for device vendors 4332 * who can't follow the documentation. 4333 */ 4334 4335 static int ata_is_40wire(struct ata_device *dev) 4336 { 4337 if (dev->horkage & ATA_HORKAGE_IVB) 4338 return ata_drive_40wire_relaxed(dev->id); 4339 return ata_drive_40wire(dev->id); 4340 } 4341 4342 /** 4343 * cable_is_40wire - 40/80/SATA decider 4344 * @ap: port to consider 4345 * 4346 * This function encapsulates the policy for speed management 4347 * in one place. At the moment we don't cache the result but 4348 * there is a good case for setting ap->cbl to the result when 4349 * we are called with unknown cables (and figuring out if it 4350 * impacts hotplug at all). 4351 * 4352 * Return 1 if the cable appears to be 40 wire. 4353 */ 4354 4355 static int cable_is_40wire(struct ata_port *ap) 4356 { 4357 struct ata_link *link; 4358 struct ata_device *dev; 4359 4360 /* If the controller thinks we are 40 wire, we are. */ 4361 if (ap->cbl == ATA_CBL_PATA40) 4362 return 1; 4363 4364 /* If the controller thinks we are 80 wire, we are. */ 4365 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4366 return 0; 4367 4368 /* If the system is known to be 40 wire short cable (eg 4369 * laptop), then we allow 80 wire modes even if the drive 4370 * isn't sure. 4371 */ 4372 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4373 return 0; 4374 4375 /* If the controller doesn't know, we scan. 4376 * 4377 * Note: We look for all 40 wire detects at this point. Any 4378 * 80 wire detect is taken to be 80 wire cable because 4379 * - in many setups only the one drive (slave if present) will 4380 * give a valid detect 4381 * - if you have a non detect capable drive you don't want it 4382 * to colour the choice 4383 */ 4384 ata_for_each_link(link, ap, EDGE) { 4385 ata_for_each_dev(dev, link, ENABLED) { 4386 if (!ata_is_40wire(dev)) 4387 return 0; 4388 } 4389 } 4390 return 1; 4391 } 4392 4393 /** 4394 * ata_dev_xfermask - Compute supported xfermask of the given device 4395 * @dev: Device to compute xfermask for 4396 * 4397 * Compute supported xfermask of @dev and store it in 4398 * dev->*_mask. This function is responsible for applying all 4399 * known limits including host controller limits, device 4400 * blacklist, etc... 4401 * 4402 * LOCKING: 4403 * None. 4404 */ 4405 static void ata_dev_xfermask(struct ata_device *dev) 4406 { 4407 struct ata_link *link = dev->link; 4408 struct ata_port *ap = link->ap; 4409 struct ata_host *host = ap->host; 4410 unsigned long xfer_mask; 4411 4412 /* controller modes available */ 4413 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4414 ap->mwdma_mask, ap->udma_mask); 4415 4416 /* drive modes available */ 4417 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4418 dev->mwdma_mask, dev->udma_mask); 4419 xfer_mask &= ata_id_xfermask(dev->id); 4420 4421 /* 4422 * CFA Advanced TrueIDE timings are not allowed on a shared 4423 * cable 4424 */ 4425 if (ata_dev_pair(dev)) { 4426 /* No PIO5 or PIO6 */ 4427 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4428 /* No MWDMA3 or MWDMA 4 */ 4429 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4430 } 4431 4432 if (ata_dma_blacklisted(dev)) { 4433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4434 ata_dev_printk(dev, KERN_WARNING, 4435 "device is on DMA blacklist, disabling DMA\n"); 4436 } 4437 4438 if ((host->flags & ATA_HOST_SIMPLEX) && 4439 host->simplex_claimed && host->simplex_claimed != ap) { 4440 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4441 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4442 "other device, disabling DMA\n"); 4443 } 4444 4445 if (ap->flags & ATA_FLAG_NO_IORDY) 4446 xfer_mask &= ata_pio_mask_no_iordy(dev); 4447 4448 if (ap->ops->mode_filter) 4449 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4450 4451 /* Apply cable rule here. Don't apply it early because when 4452 * we handle hot plug the cable type can itself change. 4453 * Check this last so that we know if the transfer rate was 4454 * solely limited by the cable. 4455 * Unknown or 80 wire cables reported host side are checked 4456 * drive side as well. Cases where we know a 40wire cable 4457 * is used safely for 80 are not checked here. 4458 */ 4459 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4460 /* UDMA/44 or higher would be available */ 4461 if (cable_is_40wire(ap)) { 4462 ata_dev_printk(dev, KERN_WARNING, 4463 "limited to UDMA/33 due to 40-wire cable\n"); 4464 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4465 } 4466 4467 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4468 &dev->mwdma_mask, &dev->udma_mask); 4469 } 4470 4471 /** 4472 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4473 * @dev: Device to which command will be sent 4474 * 4475 * Issue SET FEATURES - XFER MODE command to device @dev 4476 * on port @ap. 4477 * 4478 * LOCKING: 4479 * PCI/etc. bus probe sem. 4480 * 4481 * RETURNS: 4482 * 0 on success, AC_ERR_* mask otherwise. 4483 */ 4484 4485 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4486 { 4487 struct ata_taskfile tf; 4488 unsigned int err_mask; 4489 4490 /* set up set-features taskfile */ 4491 DPRINTK("set features - xfer mode\n"); 4492 4493 /* Some controllers and ATAPI devices show flaky interrupt 4494 * behavior after setting xfer mode. Use polling instead. 4495 */ 4496 ata_tf_init(dev, &tf); 4497 tf.command = ATA_CMD_SET_FEATURES; 4498 tf.feature = SETFEATURES_XFER; 4499 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4500 tf.protocol = ATA_PROT_NODATA; 4501 /* If we are using IORDY we must send the mode setting command */ 4502 if (ata_pio_need_iordy(dev)) 4503 tf.nsect = dev->xfer_mode; 4504 /* If the device has IORDY and the controller does not - turn it off */ 4505 else if (ata_id_has_iordy(dev->id)) 4506 tf.nsect = 0x01; 4507 else /* In the ancient relic department - skip all of this */ 4508 return 0; 4509 4510 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4511 4512 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4513 return err_mask; 4514 } 4515 /** 4516 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4517 * @dev: Device to which command will be sent 4518 * @enable: Whether to enable or disable the feature 4519 * @feature: The sector count represents the feature to set 4520 * 4521 * Issue SET FEATURES - SATA FEATURES command to device @dev 4522 * on port @ap with sector count 4523 * 4524 * LOCKING: 4525 * PCI/etc. bus probe sem. 4526 * 4527 * RETURNS: 4528 * 0 on success, AC_ERR_* mask otherwise. 4529 */ 4530 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4531 u8 feature) 4532 { 4533 struct ata_taskfile tf; 4534 unsigned int err_mask; 4535 4536 /* set up set-features taskfile */ 4537 DPRINTK("set features - SATA features\n"); 4538 4539 ata_tf_init(dev, &tf); 4540 tf.command = ATA_CMD_SET_FEATURES; 4541 tf.feature = enable; 4542 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4543 tf.protocol = ATA_PROT_NODATA; 4544 tf.nsect = feature; 4545 4546 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4547 4548 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4549 return err_mask; 4550 } 4551 4552 /** 4553 * ata_dev_init_params - Issue INIT DEV PARAMS command 4554 * @dev: Device to which command will be sent 4555 * @heads: Number of heads (taskfile parameter) 4556 * @sectors: Number of sectors (taskfile parameter) 4557 * 4558 * LOCKING: 4559 * Kernel thread context (may sleep) 4560 * 4561 * RETURNS: 4562 * 0 on success, AC_ERR_* mask otherwise. 4563 */ 4564 static unsigned int ata_dev_init_params(struct ata_device *dev, 4565 u16 heads, u16 sectors) 4566 { 4567 struct ata_taskfile tf; 4568 unsigned int err_mask; 4569 4570 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4571 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4572 return AC_ERR_INVALID; 4573 4574 /* set up init dev params taskfile */ 4575 DPRINTK("init dev params \n"); 4576 4577 ata_tf_init(dev, &tf); 4578 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4579 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4580 tf.protocol = ATA_PROT_NODATA; 4581 tf.nsect = sectors; 4582 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4583 4584 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4585 /* A clean abort indicates an original or just out of spec drive 4586 and we should continue as we issue the setup based on the 4587 drive reported working geometry */ 4588 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4589 err_mask = 0; 4590 4591 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4592 return err_mask; 4593 } 4594 4595 /** 4596 * ata_sg_clean - Unmap DMA memory associated with command 4597 * @qc: Command containing DMA memory to be released 4598 * 4599 * Unmap all mapped DMA memory associated with this command. 4600 * 4601 * LOCKING: 4602 * spin_lock_irqsave(host lock) 4603 */ 4604 void ata_sg_clean(struct ata_queued_cmd *qc) 4605 { 4606 struct ata_port *ap = qc->ap; 4607 struct scatterlist *sg = qc->sg; 4608 int dir = qc->dma_dir; 4609 4610 WARN_ON_ONCE(sg == NULL); 4611 4612 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4613 4614 if (qc->n_elem) 4615 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4616 4617 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4618 qc->sg = NULL; 4619 } 4620 4621 /** 4622 * atapi_check_dma - Check whether ATAPI DMA can be supported 4623 * @qc: Metadata associated with taskfile to check 4624 * 4625 * Allow low-level driver to filter ATA PACKET commands, returning 4626 * a status indicating whether or not it is OK to use DMA for the 4627 * supplied PACKET command. 4628 * 4629 * LOCKING: 4630 * spin_lock_irqsave(host lock) 4631 * 4632 * RETURNS: 0 when ATAPI DMA can be used 4633 * nonzero otherwise 4634 */ 4635 int atapi_check_dma(struct ata_queued_cmd *qc) 4636 { 4637 struct ata_port *ap = qc->ap; 4638 4639 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4640 * few ATAPI devices choke on such DMA requests. 4641 */ 4642 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4643 unlikely(qc->nbytes & 15)) 4644 return 1; 4645 4646 if (ap->ops->check_atapi_dma) 4647 return ap->ops->check_atapi_dma(qc); 4648 4649 return 0; 4650 } 4651 4652 /** 4653 * ata_std_qc_defer - Check whether a qc needs to be deferred 4654 * @qc: ATA command in question 4655 * 4656 * Non-NCQ commands cannot run with any other command, NCQ or 4657 * not. As upper layer only knows the queue depth, we are 4658 * responsible for maintaining exclusion. This function checks 4659 * whether a new command @qc can be issued. 4660 * 4661 * LOCKING: 4662 * spin_lock_irqsave(host lock) 4663 * 4664 * RETURNS: 4665 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4666 */ 4667 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4668 { 4669 struct ata_link *link = qc->dev->link; 4670 4671 if (qc->tf.protocol == ATA_PROT_NCQ) { 4672 if (!ata_tag_valid(link->active_tag)) 4673 return 0; 4674 } else { 4675 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4676 return 0; 4677 } 4678 4679 return ATA_DEFER_LINK; 4680 } 4681 4682 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4683 4684 /** 4685 * ata_sg_init - Associate command with scatter-gather table. 4686 * @qc: Command to be associated 4687 * @sg: Scatter-gather table. 4688 * @n_elem: Number of elements in s/g table. 4689 * 4690 * Initialize the data-related elements of queued_cmd @qc 4691 * to point to a scatter-gather table @sg, containing @n_elem 4692 * elements. 4693 * 4694 * LOCKING: 4695 * spin_lock_irqsave(host lock) 4696 */ 4697 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4698 unsigned int n_elem) 4699 { 4700 qc->sg = sg; 4701 qc->n_elem = n_elem; 4702 qc->cursg = qc->sg; 4703 } 4704 4705 /** 4706 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4707 * @qc: Command with scatter-gather table to be mapped. 4708 * 4709 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4710 * 4711 * LOCKING: 4712 * spin_lock_irqsave(host lock) 4713 * 4714 * RETURNS: 4715 * Zero on success, negative on error. 4716 * 4717 */ 4718 static int ata_sg_setup(struct ata_queued_cmd *qc) 4719 { 4720 struct ata_port *ap = qc->ap; 4721 unsigned int n_elem; 4722 4723 VPRINTK("ENTER, ata%u\n", ap->print_id); 4724 4725 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4726 if (n_elem < 1) 4727 return -1; 4728 4729 DPRINTK("%d sg elements mapped\n", n_elem); 4730 4731 qc->n_elem = n_elem; 4732 qc->flags |= ATA_QCFLAG_DMAMAP; 4733 4734 return 0; 4735 } 4736 4737 /** 4738 * swap_buf_le16 - swap halves of 16-bit words in place 4739 * @buf: Buffer to swap 4740 * @buf_words: Number of 16-bit words in buffer. 4741 * 4742 * Swap halves of 16-bit words if needed to convert from 4743 * little-endian byte order to native cpu byte order, or 4744 * vice-versa. 4745 * 4746 * LOCKING: 4747 * Inherited from caller. 4748 */ 4749 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4750 { 4751 #ifdef __BIG_ENDIAN 4752 unsigned int i; 4753 4754 for (i = 0; i < buf_words; i++) 4755 buf[i] = le16_to_cpu(buf[i]); 4756 #endif /* __BIG_ENDIAN */ 4757 } 4758 4759 /** 4760 * ata_qc_new - Request an available ATA command, for queueing 4761 * @ap: target port 4762 * 4763 * LOCKING: 4764 * None. 4765 */ 4766 4767 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4768 { 4769 struct ata_queued_cmd *qc = NULL; 4770 unsigned int i; 4771 4772 /* no command while frozen */ 4773 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4774 return NULL; 4775 4776 /* the last tag is reserved for internal command. */ 4777 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4778 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4779 qc = __ata_qc_from_tag(ap, i); 4780 break; 4781 } 4782 4783 if (qc) 4784 qc->tag = i; 4785 4786 return qc; 4787 } 4788 4789 /** 4790 * ata_qc_new_init - Request an available ATA command, and initialize it 4791 * @dev: Device from whom we request an available command structure 4792 * 4793 * LOCKING: 4794 * None. 4795 */ 4796 4797 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4798 { 4799 struct ata_port *ap = dev->link->ap; 4800 struct ata_queued_cmd *qc; 4801 4802 qc = ata_qc_new(ap); 4803 if (qc) { 4804 qc->scsicmd = NULL; 4805 qc->ap = ap; 4806 qc->dev = dev; 4807 4808 ata_qc_reinit(qc); 4809 } 4810 4811 return qc; 4812 } 4813 4814 /** 4815 * ata_qc_free - free unused ata_queued_cmd 4816 * @qc: Command to complete 4817 * 4818 * Designed to free unused ata_queued_cmd object 4819 * in case something prevents using it. 4820 * 4821 * LOCKING: 4822 * spin_lock_irqsave(host lock) 4823 */ 4824 void ata_qc_free(struct ata_queued_cmd *qc) 4825 { 4826 struct ata_port *ap = qc->ap; 4827 unsigned int tag; 4828 4829 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4830 4831 qc->flags = 0; 4832 tag = qc->tag; 4833 if (likely(ata_tag_valid(tag))) { 4834 qc->tag = ATA_TAG_POISON; 4835 clear_bit(tag, &ap->qc_allocated); 4836 } 4837 } 4838 4839 void __ata_qc_complete(struct ata_queued_cmd *qc) 4840 { 4841 struct ata_port *ap = qc->ap; 4842 struct ata_link *link = qc->dev->link; 4843 4844 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4845 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4846 4847 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4848 ata_sg_clean(qc); 4849 4850 /* command should be marked inactive atomically with qc completion */ 4851 if (qc->tf.protocol == ATA_PROT_NCQ) { 4852 link->sactive &= ~(1 << qc->tag); 4853 if (!link->sactive) 4854 ap->nr_active_links--; 4855 } else { 4856 link->active_tag = ATA_TAG_POISON; 4857 ap->nr_active_links--; 4858 } 4859 4860 /* clear exclusive status */ 4861 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4862 ap->excl_link == link)) 4863 ap->excl_link = NULL; 4864 4865 /* atapi: mark qc as inactive to prevent the interrupt handler 4866 * from completing the command twice later, before the error handler 4867 * is called. (when rc != 0 and atapi request sense is needed) 4868 */ 4869 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4870 ap->qc_active &= ~(1 << qc->tag); 4871 4872 /* call completion callback */ 4873 qc->complete_fn(qc); 4874 } 4875 4876 static void fill_result_tf(struct ata_queued_cmd *qc) 4877 { 4878 struct ata_port *ap = qc->ap; 4879 4880 qc->result_tf.flags = qc->tf.flags; 4881 ap->ops->qc_fill_rtf(qc); 4882 } 4883 4884 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4885 { 4886 struct ata_device *dev = qc->dev; 4887 4888 if (ata_tag_internal(qc->tag)) 4889 return; 4890 4891 if (ata_is_nodata(qc->tf.protocol)) 4892 return; 4893 4894 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4895 return; 4896 4897 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4898 } 4899 4900 /** 4901 * ata_qc_complete - Complete an active ATA command 4902 * @qc: Command to complete 4903 * 4904 * Indicate to the mid and upper layers that an ATA 4905 * command has completed, with either an ok or not-ok status. 4906 * 4907 * LOCKING: 4908 * spin_lock_irqsave(host lock) 4909 */ 4910 void ata_qc_complete(struct ata_queued_cmd *qc) 4911 { 4912 struct ata_port *ap = qc->ap; 4913 4914 /* XXX: New EH and old EH use different mechanisms to 4915 * synchronize EH with regular execution path. 4916 * 4917 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4918 * Normal execution path is responsible for not accessing a 4919 * failed qc. libata core enforces the rule by returning NULL 4920 * from ata_qc_from_tag() for failed qcs. 4921 * 4922 * Old EH depends on ata_qc_complete() nullifying completion 4923 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4924 * not synchronize with interrupt handler. Only PIO task is 4925 * taken care of. 4926 */ 4927 if (ap->ops->error_handler) { 4928 struct ata_device *dev = qc->dev; 4929 struct ata_eh_info *ehi = &dev->link->eh_info; 4930 4931 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4932 4933 if (unlikely(qc->err_mask)) 4934 qc->flags |= ATA_QCFLAG_FAILED; 4935 4936 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4937 if (!ata_tag_internal(qc->tag)) { 4938 /* always fill result TF for failed qc */ 4939 fill_result_tf(qc); 4940 ata_qc_schedule_eh(qc); 4941 return; 4942 } 4943 } 4944 4945 /* read result TF if requested */ 4946 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4947 fill_result_tf(qc); 4948 4949 /* Some commands need post-processing after successful 4950 * completion. 4951 */ 4952 switch (qc->tf.command) { 4953 case ATA_CMD_SET_FEATURES: 4954 if (qc->tf.feature != SETFEATURES_WC_ON && 4955 qc->tf.feature != SETFEATURES_WC_OFF) 4956 break; 4957 /* fall through */ 4958 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4959 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4960 /* revalidate device */ 4961 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4962 ata_port_schedule_eh(ap); 4963 break; 4964 4965 case ATA_CMD_SLEEP: 4966 dev->flags |= ATA_DFLAG_SLEEPING; 4967 break; 4968 } 4969 4970 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4971 ata_verify_xfer(qc); 4972 4973 __ata_qc_complete(qc); 4974 } else { 4975 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4976 return; 4977 4978 /* read result TF if failed or requested */ 4979 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4980 fill_result_tf(qc); 4981 4982 __ata_qc_complete(qc); 4983 } 4984 } 4985 4986 /** 4987 * ata_qc_complete_multiple - Complete multiple qcs successfully 4988 * @ap: port in question 4989 * @qc_active: new qc_active mask 4990 * 4991 * Complete in-flight commands. This functions is meant to be 4992 * called from low-level driver's interrupt routine to complete 4993 * requests normally. ap->qc_active and @qc_active is compared 4994 * and commands are completed accordingly. 4995 * 4996 * LOCKING: 4997 * spin_lock_irqsave(host lock) 4998 * 4999 * RETURNS: 5000 * Number of completed commands on success, -errno otherwise. 5001 */ 5002 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5003 { 5004 int nr_done = 0; 5005 u32 done_mask; 5006 int i; 5007 5008 done_mask = ap->qc_active ^ qc_active; 5009 5010 if (unlikely(done_mask & qc_active)) { 5011 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5012 "(%08x->%08x)\n", ap->qc_active, qc_active); 5013 return -EINVAL; 5014 } 5015 5016 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5017 struct ata_queued_cmd *qc; 5018 5019 if (!(done_mask & (1 << i))) 5020 continue; 5021 5022 if ((qc = ata_qc_from_tag(ap, i))) { 5023 ata_qc_complete(qc); 5024 nr_done++; 5025 } 5026 } 5027 5028 return nr_done; 5029 } 5030 5031 /** 5032 * ata_qc_issue - issue taskfile to device 5033 * @qc: command to issue to device 5034 * 5035 * Prepare an ATA command to submission to device. 5036 * This includes mapping the data into a DMA-able 5037 * area, filling in the S/G table, and finally 5038 * writing the taskfile to hardware, starting the command. 5039 * 5040 * LOCKING: 5041 * spin_lock_irqsave(host lock) 5042 */ 5043 void ata_qc_issue(struct ata_queued_cmd *qc) 5044 { 5045 struct ata_port *ap = qc->ap; 5046 struct ata_link *link = qc->dev->link; 5047 u8 prot = qc->tf.protocol; 5048 5049 /* Make sure only one non-NCQ command is outstanding. The 5050 * check is skipped for old EH because it reuses active qc to 5051 * request ATAPI sense. 5052 */ 5053 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5054 5055 if (ata_is_ncq(prot)) { 5056 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5057 5058 if (!link->sactive) 5059 ap->nr_active_links++; 5060 link->sactive |= 1 << qc->tag; 5061 } else { 5062 WARN_ON_ONCE(link->sactive); 5063 5064 ap->nr_active_links++; 5065 link->active_tag = qc->tag; 5066 } 5067 5068 qc->flags |= ATA_QCFLAG_ACTIVE; 5069 ap->qc_active |= 1 << qc->tag; 5070 5071 /* We guarantee to LLDs that they will have at least one 5072 * non-zero sg if the command is a data command. 5073 */ 5074 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5075 5076 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5077 (ap->flags & ATA_FLAG_PIO_DMA))) 5078 if (ata_sg_setup(qc)) 5079 goto sg_err; 5080 5081 /* if device is sleeping, schedule reset and abort the link */ 5082 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5083 link->eh_info.action |= ATA_EH_RESET; 5084 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5085 ata_link_abort(link); 5086 return; 5087 } 5088 5089 ap->ops->qc_prep(qc); 5090 5091 qc->err_mask |= ap->ops->qc_issue(qc); 5092 if (unlikely(qc->err_mask)) 5093 goto err; 5094 return; 5095 5096 sg_err: 5097 qc->err_mask |= AC_ERR_SYSTEM; 5098 err: 5099 ata_qc_complete(qc); 5100 } 5101 5102 /** 5103 * sata_scr_valid - test whether SCRs are accessible 5104 * @link: ATA link to test SCR accessibility for 5105 * 5106 * Test whether SCRs are accessible for @link. 5107 * 5108 * LOCKING: 5109 * None. 5110 * 5111 * RETURNS: 5112 * 1 if SCRs are accessible, 0 otherwise. 5113 */ 5114 int sata_scr_valid(struct ata_link *link) 5115 { 5116 struct ata_port *ap = link->ap; 5117 5118 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5119 } 5120 5121 /** 5122 * sata_scr_read - read SCR register of the specified port 5123 * @link: ATA link to read SCR for 5124 * @reg: SCR to read 5125 * @val: Place to store read value 5126 * 5127 * Read SCR register @reg of @link into *@val. This function is 5128 * guaranteed to succeed if @link is ap->link, the cable type of 5129 * the port is SATA and the port implements ->scr_read. 5130 * 5131 * LOCKING: 5132 * None if @link is ap->link. Kernel thread context otherwise. 5133 * 5134 * RETURNS: 5135 * 0 on success, negative errno on failure. 5136 */ 5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5138 { 5139 if (ata_is_host_link(link)) { 5140 if (sata_scr_valid(link)) 5141 return link->ap->ops->scr_read(link, reg, val); 5142 return -EOPNOTSUPP; 5143 } 5144 5145 return sata_pmp_scr_read(link, reg, val); 5146 } 5147 5148 /** 5149 * sata_scr_write - write SCR register of the specified port 5150 * @link: ATA link to write SCR for 5151 * @reg: SCR to write 5152 * @val: value to write 5153 * 5154 * Write @val to SCR register @reg of @link. This function is 5155 * guaranteed to succeed if @link is ap->link, the cable type of 5156 * the port is SATA and the port implements ->scr_read. 5157 * 5158 * LOCKING: 5159 * None if @link is ap->link. Kernel thread context otherwise. 5160 * 5161 * RETURNS: 5162 * 0 on success, negative errno on failure. 5163 */ 5164 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5165 { 5166 if (ata_is_host_link(link)) { 5167 if (sata_scr_valid(link)) 5168 return link->ap->ops->scr_write(link, reg, val); 5169 return -EOPNOTSUPP; 5170 } 5171 5172 return sata_pmp_scr_write(link, reg, val); 5173 } 5174 5175 /** 5176 * sata_scr_write_flush - write SCR register of the specified port and flush 5177 * @link: ATA link to write SCR for 5178 * @reg: SCR to write 5179 * @val: value to write 5180 * 5181 * This function is identical to sata_scr_write() except that this 5182 * function performs flush after writing to the register. 5183 * 5184 * LOCKING: 5185 * None if @link is ap->link. Kernel thread context otherwise. 5186 * 5187 * RETURNS: 5188 * 0 on success, negative errno on failure. 5189 */ 5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5191 { 5192 if (ata_is_host_link(link)) { 5193 int rc; 5194 5195 if (sata_scr_valid(link)) { 5196 rc = link->ap->ops->scr_write(link, reg, val); 5197 if (rc == 0) 5198 rc = link->ap->ops->scr_read(link, reg, &val); 5199 return rc; 5200 } 5201 return -EOPNOTSUPP; 5202 } 5203 5204 return sata_pmp_scr_write(link, reg, val); 5205 } 5206 5207 /** 5208 * ata_phys_link_online - test whether the given link is online 5209 * @link: ATA link to test 5210 * 5211 * Test whether @link is online. Note that this function returns 5212 * 0 if online status of @link cannot be obtained, so 5213 * ata_link_online(link) != !ata_link_offline(link). 5214 * 5215 * LOCKING: 5216 * None. 5217 * 5218 * RETURNS: 5219 * True if the port online status is available and online. 5220 */ 5221 bool ata_phys_link_online(struct ata_link *link) 5222 { 5223 u32 sstatus; 5224 5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5226 ata_sstatus_online(sstatus)) 5227 return true; 5228 return false; 5229 } 5230 5231 /** 5232 * ata_phys_link_offline - test whether the given link is offline 5233 * @link: ATA link to test 5234 * 5235 * Test whether @link is offline. Note that this function 5236 * returns 0 if offline status of @link cannot be obtained, so 5237 * ata_link_online(link) != !ata_link_offline(link). 5238 * 5239 * LOCKING: 5240 * None. 5241 * 5242 * RETURNS: 5243 * True if the port offline status is available and offline. 5244 */ 5245 bool ata_phys_link_offline(struct ata_link *link) 5246 { 5247 u32 sstatus; 5248 5249 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5250 !ata_sstatus_online(sstatus)) 5251 return true; 5252 return false; 5253 } 5254 5255 /** 5256 * ata_link_online - test whether the given link is online 5257 * @link: ATA link to test 5258 * 5259 * Test whether @link is online. This is identical to 5260 * ata_phys_link_online() when there's no slave link. When 5261 * there's a slave link, this function should only be called on 5262 * the master link and will return true if any of M/S links is 5263 * online. 5264 * 5265 * LOCKING: 5266 * None. 5267 * 5268 * RETURNS: 5269 * True if the port online status is available and online. 5270 */ 5271 bool ata_link_online(struct ata_link *link) 5272 { 5273 struct ata_link *slave = link->ap->slave_link; 5274 5275 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5276 5277 return ata_phys_link_online(link) || 5278 (slave && ata_phys_link_online(slave)); 5279 } 5280 5281 /** 5282 * ata_link_offline - test whether the given link is offline 5283 * @link: ATA link to test 5284 * 5285 * Test whether @link is offline. This is identical to 5286 * ata_phys_link_offline() when there's no slave link. When 5287 * there's a slave link, this function should only be called on 5288 * the master link and will return true if both M/S links are 5289 * offline. 5290 * 5291 * LOCKING: 5292 * None. 5293 * 5294 * RETURNS: 5295 * True if the port offline status is available and offline. 5296 */ 5297 bool ata_link_offline(struct ata_link *link) 5298 { 5299 struct ata_link *slave = link->ap->slave_link; 5300 5301 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5302 5303 return ata_phys_link_offline(link) && 5304 (!slave || ata_phys_link_offline(slave)); 5305 } 5306 5307 #ifdef CONFIG_PM 5308 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5309 unsigned int action, unsigned int ehi_flags, 5310 int wait) 5311 { 5312 unsigned long flags; 5313 int i, rc; 5314 5315 for (i = 0; i < host->n_ports; i++) { 5316 struct ata_port *ap = host->ports[i]; 5317 struct ata_link *link; 5318 5319 /* Previous resume operation might still be in 5320 * progress. Wait for PM_PENDING to clear. 5321 */ 5322 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5323 ata_port_wait_eh(ap); 5324 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5325 } 5326 5327 /* request PM ops to EH */ 5328 spin_lock_irqsave(ap->lock, flags); 5329 5330 ap->pm_mesg = mesg; 5331 if (wait) { 5332 rc = 0; 5333 ap->pm_result = &rc; 5334 } 5335 5336 ap->pflags |= ATA_PFLAG_PM_PENDING; 5337 ata_for_each_link(link, ap, HOST_FIRST) { 5338 link->eh_info.action |= action; 5339 link->eh_info.flags |= ehi_flags; 5340 } 5341 5342 ata_port_schedule_eh(ap); 5343 5344 spin_unlock_irqrestore(ap->lock, flags); 5345 5346 /* wait and check result */ 5347 if (wait) { 5348 ata_port_wait_eh(ap); 5349 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5350 if (rc) 5351 return rc; 5352 } 5353 } 5354 5355 return 0; 5356 } 5357 5358 /** 5359 * ata_host_suspend - suspend host 5360 * @host: host to suspend 5361 * @mesg: PM message 5362 * 5363 * Suspend @host. Actual operation is performed by EH. This 5364 * function requests EH to perform PM operations and waits for EH 5365 * to finish. 5366 * 5367 * LOCKING: 5368 * Kernel thread context (may sleep). 5369 * 5370 * RETURNS: 5371 * 0 on success, -errno on failure. 5372 */ 5373 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5374 { 5375 int rc; 5376 5377 /* 5378 * disable link pm on all ports before requesting 5379 * any pm activity 5380 */ 5381 ata_lpm_enable(host); 5382 5383 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5384 if (rc == 0) 5385 host->dev->power.power_state = mesg; 5386 return rc; 5387 } 5388 5389 /** 5390 * ata_host_resume - resume host 5391 * @host: host to resume 5392 * 5393 * Resume @host. Actual operation is performed by EH. This 5394 * function requests EH to perform PM operations and returns. 5395 * Note that all resume operations are performed parallely. 5396 * 5397 * LOCKING: 5398 * Kernel thread context (may sleep). 5399 */ 5400 void ata_host_resume(struct ata_host *host) 5401 { 5402 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5403 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5404 host->dev->power.power_state = PMSG_ON; 5405 5406 /* reenable link pm */ 5407 ata_lpm_disable(host); 5408 } 5409 #endif 5410 5411 /** 5412 * ata_port_start - Set port up for dma. 5413 * @ap: Port to initialize 5414 * 5415 * Called just after data structures for each port are 5416 * initialized. Allocates space for PRD table. 5417 * 5418 * May be used as the port_start() entry in ata_port_operations. 5419 * 5420 * LOCKING: 5421 * Inherited from caller. 5422 */ 5423 int ata_port_start(struct ata_port *ap) 5424 { 5425 struct device *dev = ap->dev; 5426 5427 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5428 GFP_KERNEL); 5429 if (!ap->prd) 5430 return -ENOMEM; 5431 5432 return 0; 5433 } 5434 5435 /** 5436 * ata_dev_init - Initialize an ata_device structure 5437 * @dev: Device structure to initialize 5438 * 5439 * Initialize @dev in preparation for probing. 5440 * 5441 * LOCKING: 5442 * Inherited from caller. 5443 */ 5444 void ata_dev_init(struct ata_device *dev) 5445 { 5446 struct ata_link *link = ata_dev_phys_link(dev); 5447 struct ata_port *ap = link->ap; 5448 unsigned long flags; 5449 5450 /* SATA spd limit is bound to the attached device, reset together */ 5451 link->sata_spd_limit = link->hw_sata_spd_limit; 5452 link->sata_spd = 0; 5453 5454 /* High bits of dev->flags are used to record warm plug 5455 * requests which occur asynchronously. Synchronize using 5456 * host lock. 5457 */ 5458 spin_lock_irqsave(ap->lock, flags); 5459 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5460 dev->horkage = 0; 5461 spin_unlock_irqrestore(ap->lock, flags); 5462 5463 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5464 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5465 dev->pio_mask = UINT_MAX; 5466 dev->mwdma_mask = UINT_MAX; 5467 dev->udma_mask = UINT_MAX; 5468 } 5469 5470 /** 5471 * ata_link_init - Initialize an ata_link structure 5472 * @ap: ATA port link is attached to 5473 * @link: Link structure to initialize 5474 * @pmp: Port multiplier port number 5475 * 5476 * Initialize @link. 5477 * 5478 * LOCKING: 5479 * Kernel thread context (may sleep) 5480 */ 5481 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5482 { 5483 int i; 5484 5485 /* clear everything except for devices */ 5486 memset(link, 0, offsetof(struct ata_link, device[0])); 5487 5488 link->ap = ap; 5489 link->pmp = pmp; 5490 link->active_tag = ATA_TAG_POISON; 5491 link->hw_sata_spd_limit = UINT_MAX; 5492 5493 /* can't use iterator, ap isn't initialized yet */ 5494 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5495 struct ata_device *dev = &link->device[i]; 5496 5497 dev->link = link; 5498 dev->devno = dev - link->device; 5499 ata_dev_init(dev); 5500 } 5501 } 5502 5503 /** 5504 * sata_link_init_spd - Initialize link->sata_spd_limit 5505 * @link: Link to configure sata_spd_limit for 5506 * 5507 * Initialize @link->[hw_]sata_spd_limit to the currently 5508 * configured value. 5509 * 5510 * LOCKING: 5511 * Kernel thread context (may sleep). 5512 * 5513 * RETURNS: 5514 * 0 on success, -errno on failure. 5515 */ 5516 int sata_link_init_spd(struct ata_link *link) 5517 { 5518 u8 spd; 5519 int rc; 5520 5521 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5522 if (rc) 5523 return rc; 5524 5525 spd = (link->saved_scontrol >> 4) & 0xf; 5526 if (spd) 5527 link->hw_sata_spd_limit &= (1 << spd) - 1; 5528 5529 ata_force_link_limits(link); 5530 5531 link->sata_spd_limit = link->hw_sata_spd_limit; 5532 5533 return 0; 5534 } 5535 5536 /** 5537 * ata_port_alloc - allocate and initialize basic ATA port resources 5538 * @host: ATA host this allocated port belongs to 5539 * 5540 * Allocate and initialize basic ATA port resources. 5541 * 5542 * RETURNS: 5543 * Allocate ATA port on success, NULL on failure. 5544 * 5545 * LOCKING: 5546 * Inherited from calling layer (may sleep). 5547 */ 5548 struct ata_port *ata_port_alloc(struct ata_host *host) 5549 { 5550 struct ata_port *ap; 5551 5552 DPRINTK("ENTER\n"); 5553 5554 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5555 if (!ap) 5556 return NULL; 5557 5558 ap->pflags |= ATA_PFLAG_INITIALIZING; 5559 ap->lock = &host->lock; 5560 ap->flags = ATA_FLAG_DISABLED; 5561 ap->print_id = -1; 5562 ap->ctl = ATA_DEVCTL_OBS; 5563 ap->host = host; 5564 ap->dev = host->dev; 5565 ap->last_ctl = 0xFF; 5566 5567 #if defined(ATA_VERBOSE_DEBUG) 5568 /* turn on all debugging levels */ 5569 ap->msg_enable = 0x00FF; 5570 #elif defined(ATA_DEBUG) 5571 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5572 #else 5573 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5574 #endif 5575 5576 #ifdef CONFIG_ATA_SFF 5577 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5578 #else 5579 INIT_DELAYED_WORK(&ap->port_task, NULL); 5580 #endif 5581 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5582 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5583 INIT_LIST_HEAD(&ap->eh_done_q); 5584 init_waitqueue_head(&ap->eh_wait_q); 5585 init_completion(&ap->park_req_pending); 5586 init_timer_deferrable(&ap->fastdrain_timer); 5587 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5588 ap->fastdrain_timer.data = (unsigned long)ap; 5589 5590 ap->cbl = ATA_CBL_NONE; 5591 5592 ata_link_init(ap, &ap->link, 0); 5593 5594 #ifdef ATA_IRQ_TRAP 5595 ap->stats.unhandled_irq = 1; 5596 ap->stats.idle_irq = 1; 5597 #endif 5598 return ap; 5599 } 5600 5601 static void ata_host_release(struct device *gendev, void *res) 5602 { 5603 struct ata_host *host = dev_get_drvdata(gendev); 5604 int i; 5605 5606 for (i = 0; i < host->n_ports; i++) { 5607 struct ata_port *ap = host->ports[i]; 5608 5609 if (!ap) 5610 continue; 5611 5612 if (ap->scsi_host) 5613 scsi_host_put(ap->scsi_host); 5614 5615 kfree(ap->pmp_link); 5616 kfree(ap->slave_link); 5617 kfree(ap); 5618 host->ports[i] = NULL; 5619 } 5620 5621 dev_set_drvdata(gendev, NULL); 5622 } 5623 5624 /** 5625 * ata_host_alloc - allocate and init basic ATA host resources 5626 * @dev: generic device this host is associated with 5627 * @max_ports: maximum number of ATA ports associated with this host 5628 * 5629 * Allocate and initialize basic ATA host resources. LLD calls 5630 * this function to allocate a host, initializes it fully and 5631 * attaches it using ata_host_register(). 5632 * 5633 * @max_ports ports are allocated and host->n_ports is 5634 * initialized to @max_ports. The caller is allowed to decrease 5635 * host->n_ports before calling ata_host_register(). The unused 5636 * ports will be automatically freed on registration. 5637 * 5638 * RETURNS: 5639 * Allocate ATA host on success, NULL on failure. 5640 * 5641 * LOCKING: 5642 * Inherited from calling layer (may sleep). 5643 */ 5644 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5645 { 5646 struct ata_host *host; 5647 size_t sz; 5648 int i; 5649 5650 DPRINTK("ENTER\n"); 5651 5652 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5653 return NULL; 5654 5655 /* alloc a container for our list of ATA ports (buses) */ 5656 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5657 /* alloc a container for our list of ATA ports (buses) */ 5658 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5659 if (!host) 5660 goto err_out; 5661 5662 devres_add(dev, host); 5663 dev_set_drvdata(dev, host); 5664 5665 spin_lock_init(&host->lock); 5666 host->dev = dev; 5667 host->n_ports = max_ports; 5668 5669 /* allocate ports bound to this host */ 5670 for (i = 0; i < max_ports; i++) { 5671 struct ata_port *ap; 5672 5673 ap = ata_port_alloc(host); 5674 if (!ap) 5675 goto err_out; 5676 5677 ap->port_no = i; 5678 host->ports[i] = ap; 5679 } 5680 5681 devres_remove_group(dev, NULL); 5682 return host; 5683 5684 err_out: 5685 devres_release_group(dev, NULL); 5686 return NULL; 5687 } 5688 5689 /** 5690 * ata_host_alloc_pinfo - alloc host and init with port_info array 5691 * @dev: generic device this host is associated with 5692 * @ppi: array of ATA port_info to initialize host with 5693 * @n_ports: number of ATA ports attached to this host 5694 * 5695 * Allocate ATA host and initialize with info from @ppi. If NULL 5696 * terminated, @ppi may contain fewer entries than @n_ports. The 5697 * last entry will be used for the remaining ports. 5698 * 5699 * RETURNS: 5700 * Allocate ATA host on success, NULL on failure. 5701 * 5702 * LOCKING: 5703 * Inherited from calling layer (may sleep). 5704 */ 5705 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5706 const struct ata_port_info * const * ppi, 5707 int n_ports) 5708 { 5709 const struct ata_port_info *pi; 5710 struct ata_host *host; 5711 int i, j; 5712 5713 host = ata_host_alloc(dev, n_ports); 5714 if (!host) 5715 return NULL; 5716 5717 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5718 struct ata_port *ap = host->ports[i]; 5719 5720 if (ppi[j]) 5721 pi = ppi[j++]; 5722 5723 ap->pio_mask = pi->pio_mask; 5724 ap->mwdma_mask = pi->mwdma_mask; 5725 ap->udma_mask = pi->udma_mask; 5726 ap->flags |= pi->flags; 5727 ap->link.flags |= pi->link_flags; 5728 ap->ops = pi->port_ops; 5729 5730 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5731 host->ops = pi->port_ops; 5732 } 5733 5734 return host; 5735 } 5736 5737 /** 5738 * ata_slave_link_init - initialize slave link 5739 * @ap: port to initialize slave link for 5740 * 5741 * Create and initialize slave link for @ap. This enables slave 5742 * link handling on the port. 5743 * 5744 * In libata, a port contains links and a link contains devices. 5745 * There is single host link but if a PMP is attached to it, 5746 * there can be multiple fan-out links. On SATA, there's usually 5747 * a single device connected to a link but PATA and SATA 5748 * controllers emulating TF based interface can have two - master 5749 * and slave. 5750 * 5751 * However, there are a few controllers which don't fit into this 5752 * abstraction too well - SATA controllers which emulate TF 5753 * interface with both master and slave devices but also have 5754 * separate SCR register sets for each device. These controllers 5755 * need separate links for physical link handling 5756 * (e.g. onlineness, link speed) but should be treated like a 5757 * traditional M/S controller for everything else (e.g. command 5758 * issue, softreset). 5759 * 5760 * slave_link is libata's way of handling this class of 5761 * controllers without impacting core layer too much. For 5762 * anything other than physical link handling, the default host 5763 * link is used for both master and slave. For physical link 5764 * handling, separate @ap->slave_link is used. All dirty details 5765 * are implemented inside libata core layer. From LLD's POV, the 5766 * only difference is that prereset, hardreset and postreset are 5767 * called once more for the slave link, so the reset sequence 5768 * looks like the following. 5769 * 5770 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5771 * softreset(M) -> postreset(M) -> postreset(S) 5772 * 5773 * Note that softreset is called only for the master. Softreset 5774 * resets both M/S by definition, so SRST on master should handle 5775 * both (the standard method will work just fine). 5776 * 5777 * LOCKING: 5778 * Should be called before host is registered. 5779 * 5780 * RETURNS: 5781 * 0 on success, -errno on failure. 5782 */ 5783 int ata_slave_link_init(struct ata_port *ap) 5784 { 5785 struct ata_link *link; 5786 5787 WARN_ON(ap->slave_link); 5788 WARN_ON(ap->flags & ATA_FLAG_PMP); 5789 5790 link = kzalloc(sizeof(*link), GFP_KERNEL); 5791 if (!link) 5792 return -ENOMEM; 5793 5794 ata_link_init(ap, link, 1); 5795 ap->slave_link = link; 5796 return 0; 5797 } 5798 5799 static void ata_host_stop(struct device *gendev, void *res) 5800 { 5801 struct ata_host *host = dev_get_drvdata(gendev); 5802 int i; 5803 5804 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5805 5806 for (i = 0; i < host->n_ports; i++) { 5807 struct ata_port *ap = host->ports[i]; 5808 5809 if (ap->ops->port_stop) 5810 ap->ops->port_stop(ap); 5811 } 5812 5813 if (host->ops->host_stop) 5814 host->ops->host_stop(host); 5815 } 5816 5817 /** 5818 * ata_finalize_port_ops - finalize ata_port_operations 5819 * @ops: ata_port_operations to finalize 5820 * 5821 * An ata_port_operations can inherit from another ops and that 5822 * ops can again inherit from another. This can go on as many 5823 * times as necessary as long as there is no loop in the 5824 * inheritance chain. 5825 * 5826 * Ops tables are finalized when the host is started. NULL or 5827 * unspecified entries are inherited from the closet ancestor 5828 * which has the method and the entry is populated with it. 5829 * After finalization, the ops table directly points to all the 5830 * methods and ->inherits is no longer necessary and cleared. 5831 * 5832 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5833 * 5834 * LOCKING: 5835 * None. 5836 */ 5837 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5838 { 5839 static DEFINE_SPINLOCK(lock); 5840 const struct ata_port_operations *cur; 5841 void **begin = (void **)ops; 5842 void **end = (void **)&ops->inherits; 5843 void **pp; 5844 5845 if (!ops || !ops->inherits) 5846 return; 5847 5848 spin_lock(&lock); 5849 5850 for (cur = ops->inherits; cur; cur = cur->inherits) { 5851 void **inherit = (void **)cur; 5852 5853 for (pp = begin; pp < end; pp++, inherit++) 5854 if (!*pp) 5855 *pp = *inherit; 5856 } 5857 5858 for (pp = begin; pp < end; pp++) 5859 if (IS_ERR(*pp)) 5860 *pp = NULL; 5861 5862 ops->inherits = NULL; 5863 5864 spin_unlock(&lock); 5865 } 5866 5867 /** 5868 * ata_host_start - start and freeze ports of an ATA host 5869 * @host: ATA host to start ports for 5870 * 5871 * Start and then freeze ports of @host. Started status is 5872 * recorded in host->flags, so this function can be called 5873 * multiple times. Ports are guaranteed to get started only 5874 * once. If host->ops isn't initialized yet, its set to the 5875 * first non-dummy port ops. 5876 * 5877 * LOCKING: 5878 * Inherited from calling layer (may sleep). 5879 * 5880 * RETURNS: 5881 * 0 if all ports are started successfully, -errno otherwise. 5882 */ 5883 int ata_host_start(struct ata_host *host) 5884 { 5885 int have_stop = 0; 5886 void *start_dr = NULL; 5887 int i, rc; 5888 5889 if (host->flags & ATA_HOST_STARTED) 5890 return 0; 5891 5892 ata_finalize_port_ops(host->ops); 5893 5894 for (i = 0; i < host->n_ports; i++) { 5895 struct ata_port *ap = host->ports[i]; 5896 5897 ata_finalize_port_ops(ap->ops); 5898 5899 if (!host->ops && !ata_port_is_dummy(ap)) 5900 host->ops = ap->ops; 5901 5902 if (ap->ops->port_stop) 5903 have_stop = 1; 5904 } 5905 5906 if (host->ops->host_stop) 5907 have_stop = 1; 5908 5909 if (have_stop) { 5910 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5911 if (!start_dr) 5912 return -ENOMEM; 5913 } 5914 5915 for (i = 0; i < host->n_ports; i++) { 5916 struct ata_port *ap = host->ports[i]; 5917 5918 if (ap->ops->port_start) { 5919 rc = ap->ops->port_start(ap); 5920 if (rc) { 5921 if (rc != -ENODEV) 5922 dev_printk(KERN_ERR, host->dev, 5923 "failed to start port %d " 5924 "(errno=%d)\n", i, rc); 5925 goto err_out; 5926 } 5927 } 5928 ata_eh_freeze_port(ap); 5929 } 5930 5931 if (start_dr) 5932 devres_add(host->dev, start_dr); 5933 host->flags |= ATA_HOST_STARTED; 5934 return 0; 5935 5936 err_out: 5937 while (--i >= 0) { 5938 struct ata_port *ap = host->ports[i]; 5939 5940 if (ap->ops->port_stop) 5941 ap->ops->port_stop(ap); 5942 } 5943 devres_free(start_dr); 5944 return rc; 5945 } 5946 5947 /** 5948 * ata_sas_host_init - Initialize a host struct 5949 * @host: host to initialize 5950 * @dev: device host is attached to 5951 * @flags: host flags 5952 * @ops: port_ops 5953 * 5954 * LOCKING: 5955 * PCI/etc. bus probe sem. 5956 * 5957 */ 5958 /* KILLME - the only user left is ipr */ 5959 void ata_host_init(struct ata_host *host, struct device *dev, 5960 unsigned long flags, struct ata_port_operations *ops) 5961 { 5962 spin_lock_init(&host->lock); 5963 host->dev = dev; 5964 host->flags = flags; 5965 host->ops = ops; 5966 } 5967 5968 5969 static void async_port_probe(void *data, async_cookie_t cookie) 5970 { 5971 int rc; 5972 struct ata_port *ap = data; 5973 5974 /* 5975 * If we're not allowed to scan this host in parallel, 5976 * we need to wait until all previous scans have completed 5977 * before going further. 5978 * Jeff Garzik says this is only within a controller, so we 5979 * don't need to wait for port 0, only for later ports. 5980 */ 5981 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5982 async_synchronize_cookie(cookie); 5983 5984 /* probe */ 5985 if (ap->ops->error_handler) { 5986 struct ata_eh_info *ehi = &ap->link.eh_info; 5987 unsigned long flags; 5988 5989 ata_port_probe(ap); 5990 5991 /* kick EH for boot probing */ 5992 spin_lock_irqsave(ap->lock, flags); 5993 5994 ehi->probe_mask |= ATA_ALL_DEVICES; 5995 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5996 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5997 5998 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5999 ap->pflags |= ATA_PFLAG_LOADING; 6000 ata_port_schedule_eh(ap); 6001 6002 spin_unlock_irqrestore(ap->lock, flags); 6003 6004 /* wait for EH to finish */ 6005 ata_port_wait_eh(ap); 6006 } else { 6007 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6008 rc = ata_bus_probe(ap); 6009 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6010 6011 if (rc) { 6012 /* FIXME: do something useful here? 6013 * Current libata behavior will 6014 * tear down everything when 6015 * the module is removed 6016 * or the h/w is unplugged. 6017 */ 6018 } 6019 } 6020 6021 /* in order to keep device order, we need to synchronize at this point */ 6022 async_synchronize_cookie(cookie); 6023 6024 ata_scsi_scan_host(ap, 1); 6025 6026 } 6027 /** 6028 * ata_host_register - register initialized ATA host 6029 * @host: ATA host to register 6030 * @sht: template for SCSI host 6031 * 6032 * Register initialized ATA host. @host is allocated using 6033 * ata_host_alloc() and fully initialized by LLD. This function 6034 * starts ports, registers @host with ATA and SCSI layers and 6035 * probe registered devices. 6036 * 6037 * LOCKING: 6038 * Inherited from calling layer (may sleep). 6039 * 6040 * RETURNS: 6041 * 0 on success, -errno otherwise. 6042 */ 6043 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6044 { 6045 int i, rc; 6046 6047 /* host must have been started */ 6048 if (!(host->flags & ATA_HOST_STARTED)) { 6049 dev_printk(KERN_ERR, host->dev, 6050 "BUG: trying to register unstarted host\n"); 6051 WARN_ON(1); 6052 return -EINVAL; 6053 } 6054 6055 /* Blow away unused ports. This happens when LLD can't 6056 * determine the exact number of ports to allocate at 6057 * allocation time. 6058 */ 6059 for (i = host->n_ports; host->ports[i]; i++) 6060 kfree(host->ports[i]); 6061 6062 /* give ports names and add SCSI hosts */ 6063 for (i = 0; i < host->n_ports; i++) 6064 host->ports[i]->print_id = ata_print_id++; 6065 6066 rc = ata_scsi_add_hosts(host, sht); 6067 if (rc) 6068 return rc; 6069 6070 /* associate with ACPI nodes */ 6071 ata_acpi_associate(host); 6072 6073 /* set cable, sata_spd_limit and report */ 6074 for (i = 0; i < host->n_ports; i++) { 6075 struct ata_port *ap = host->ports[i]; 6076 unsigned long xfer_mask; 6077 6078 /* set SATA cable type if still unset */ 6079 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6080 ap->cbl = ATA_CBL_SATA; 6081 6082 /* init sata_spd_limit to the current value */ 6083 sata_link_init_spd(&ap->link); 6084 if (ap->slave_link) 6085 sata_link_init_spd(ap->slave_link); 6086 6087 /* print per-port info to dmesg */ 6088 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6089 ap->udma_mask); 6090 6091 if (!ata_port_is_dummy(ap)) { 6092 ata_port_printk(ap, KERN_INFO, 6093 "%cATA max %s %s\n", 6094 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6095 ata_mode_string(xfer_mask), 6096 ap->link.eh_info.desc); 6097 ata_ehi_clear_desc(&ap->link.eh_info); 6098 } else 6099 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6100 } 6101 6102 /* perform each probe synchronously */ 6103 DPRINTK("probe begin\n"); 6104 for (i = 0; i < host->n_ports; i++) { 6105 struct ata_port *ap = host->ports[i]; 6106 async_schedule(async_port_probe, ap); 6107 } 6108 DPRINTK("probe end\n"); 6109 6110 return 0; 6111 } 6112 6113 /** 6114 * ata_host_activate - start host, request IRQ and register it 6115 * @host: target ATA host 6116 * @irq: IRQ to request 6117 * @irq_handler: irq_handler used when requesting IRQ 6118 * @irq_flags: irq_flags used when requesting IRQ 6119 * @sht: scsi_host_template to use when registering the host 6120 * 6121 * After allocating an ATA host and initializing it, most libata 6122 * LLDs perform three steps to activate the host - start host, 6123 * request IRQ and register it. This helper takes necessasry 6124 * arguments and performs the three steps in one go. 6125 * 6126 * An invalid IRQ skips the IRQ registration and expects the host to 6127 * have set polling mode on the port. In this case, @irq_handler 6128 * should be NULL. 6129 * 6130 * LOCKING: 6131 * Inherited from calling layer (may sleep). 6132 * 6133 * RETURNS: 6134 * 0 on success, -errno otherwise. 6135 */ 6136 int ata_host_activate(struct ata_host *host, int irq, 6137 irq_handler_t irq_handler, unsigned long irq_flags, 6138 struct scsi_host_template *sht) 6139 { 6140 int i, rc; 6141 6142 rc = ata_host_start(host); 6143 if (rc) 6144 return rc; 6145 6146 /* Special case for polling mode */ 6147 if (!irq) { 6148 WARN_ON(irq_handler); 6149 return ata_host_register(host, sht); 6150 } 6151 6152 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6153 dev_driver_string(host->dev), host); 6154 if (rc) 6155 return rc; 6156 6157 for (i = 0; i < host->n_ports; i++) 6158 ata_port_desc(host->ports[i], "irq %d", irq); 6159 6160 rc = ata_host_register(host, sht); 6161 /* if failed, just free the IRQ and leave ports alone */ 6162 if (rc) 6163 devm_free_irq(host->dev, irq, host); 6164 6165 return rc; 6166 } 6167 6168 /** 6169 * ata_port_detach - Detach ATA port in prepration of device removal 6170 * @ap: ATA port to be detached 6171 * 6172 * Detach all ATA devices and the associated SCSI devices of @ap; 6173 * then, remove the associated SCSI host. @ap is guaranteed to 6174 * be quiescent on return from this function. 6175 * 6176 * LOCKING: 6177 * Kernel thread context (may sleep). 6178 */ 6179 static void ata_port_detach(struct ata_port *ap) 6180 { 6181 unsigned long flags; 6182 6183 if (!ap->ops->error_handler) 6184 goto skip_eh; 6185 6186 /* tell EH we're leaving & flush EH */ 6187 spin_lock_irqsave(ap->lock, flags); 6188 ap->pflags |= ATA_PFLAG_UNLOADING; 6189 ata_port_schedule_eh(ap); 6190 spin_unlock_irqrestore(ap->lock, flags); 6191 6192 /* wait till EH commits suicide */ 6193 ata_port_wait_eh(ap); 6194 6195 /* it better be dead now */ 6196 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6197 6198 cancel_rearming_delayed_work(&ap->hotplug_task); 6199 6200 skip_eh: 6201 /* remove the associated SCSI host */ 6202 scsi_remove_host(ap->scsi_host); 6203 } 6204 6205 /** 6206 * ata_host_detach - Detach all ports of an ATA host 6207 * @host: Host to detach 6208 * 6209 * Detach all ports of @host. 6210 * 6211 * LOCKING: 6212 * Kernel thread context (may sleep). 6213 */ 6214 void ata_host_detach(struct ata_host *host) 6215 { 6216 int i; 6217 6218 for (i = 0; i < host->n_ports; i++) 6219 ata_port_detach(host->ports[i]); 6220 6221 /* the host is dead now, dissociate ACPI */ 6222 ata_acpi_dissociate(host); 6223 } 6224 6225 #ifdef CONFIG_PCI 6226 6227 /** 6228 * ata_pci_remove_one - PCI layer callback for device removal 6229 * @pdev: PCI device that was removed 6230 * 6231 * PCI layer indicates to libata via this hook that hot-unplug or 6232 * module unload event has occurred. Detach all ports. Resource 6233 * release is handled via devres. 6234 * 6235 * LOCKING: 6236 * Inherited from PCI layer (may sleep). 6237 */ 6238 void ata_pci_remove_one(struct pci_dev *pdev) 6239 { 6240 struct device *dev = &pdev->dev; 6241 struct ata_host *host = dev_get_drvdata(dev); 6242 6243 ata_host_detach(host); 6244 } 6245 6246 /* move to PCI subsystem */ 6247 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6248 { 6249 unsigned long tmp = 0; 6250 6251 switch (bits->width) { 6252 case 1: { 6253 u8 tmp8 = 0; 6254 pci_read_config_byte(pdev, bits->reg, &tmp8); 6255 tmp = tmp8; 6256 break; 6257 } 6258 case 2: { 6259 u16 tmp16 = 0; 6260 pci_read_config_word(pdev, bits->reg, &tmp16); 6261 tmp = tmp16; 6262 break; 6263 } 6264 case 4: { 6265 u32 tmp32 = 0; 6266 pci_read_config_dword(pdev, bits->reg, &tmp32); 6267 tmp = tmp32; 6268 break; 6269 } 6270 6271 default: 6272 return -EINVAL; 6273 } 6274 6275 tmp &= bits->mask; 6276 6277 return (tmp == bits->val) ? 1 : 0; 6278 } 6279 6280 #ifdef CONFIG_PM 6281 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6282 { 6283 pci_save_state(pdev); 6284 pci_disable_device(pdev); 6285 6286 if (mesg.event & PM_EVENT_SLEEP) 6287 pci_set_power_state(pdev, PCI_D3hot); 6288 } 6289 6290 int ata_pci_device_do_resume(struct pci_dev *pdev) 6291 { 6292 int rc; 6293 6294 pci_set_power_state(pdev, PCI_D0); 6295 pci_restore_state(pdev); 6296 6297 rc = pcim_enable_device(pdev); 6298 if (rc) { 6299 dev_printk(KERN_ERR, &pdev->dev, 6300 "failed to enable device after resume (%d)\n", rc); 6301 return rc; 6302 } 6303 6304 pci_set_master(pdev); 6305 return 0; 6306 } 6307 6308 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6309 { 6310 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6311 int rc = 0; 6312 6313 rc = ata_host_suspend(host, mesg); 6314 if (rc) 6315 return rc; 6316 6317 ata_pci_device_do_suspend(pdev, mesg); 6318 6319 return 0; 6320 } 6321 6322 int ata_pci_device_resume(struct pci_dev *pdev) 6323 { 6324 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6325 int rc; 6326 6327 rc = ata_pci_device_do_resume(pdev); 6328 if (rc == 0) 6329 ata_host_resume(host); 6330 return rc; 6331 } 6332 #endif /* CONFIG_PM */ 6333 6334 #endif /* CONFIG_PCI */ 6335 6336 static int __init ata_parse_force_one(char **cur, 6337 struct ata_force_ent *force_ent, 6338 const char **reason) 6339 { 6340 /* FIXME: Currently, there's no way to tag init const data and 6341 * using __initdata causes build failure on some versions of 6342 * gcc. Once __initdataconst is implemented, add const to the 6343 * following structure. 6344 */ 6345 static struct ata_force_param force_tbl[] __initdata = { 6346 { "40c", .cbl = ATA_CBL_PATA40 }, 6347 { "80c", .cbl = ATA_CBL_PATA80 }, 6348 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6349 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6350 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6351 { "sata", .cbl = ATA_CBL_SATA }, 6352 { "1.5Gbps", .spd_limit = 1 }, 6353 { "3.0Gbps", .spd_limit = 2 }, 6354 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6355 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6356 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6357 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6358 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6359 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6360 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6361 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6362 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6363 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6364 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6365 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6366 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6367 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6368 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6369 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6370 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6371 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6372 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6373 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6374 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6375 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6376 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6377 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6378 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6379 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6380 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6381 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6382 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6383 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6384 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6385 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6386 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6387 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6388 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6389 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6390 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6391 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6392 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6393 }; 6394 char *start = *cur, *p = *cur; 6395 char *id, *val, *endp; 6396 const struct ata_force_param *match_fp = NULL; 6397 int nr_matches = 0, i; 6398 6399 /* find where this param ends and update *cur */ 6400 while (*p != '\0' && *p != ',') 6401 p++; 6402 6403 if (*p == '\0') 6404 *cur = p; 6405 else 6406 *cur = p + 1; 6407 6408 *p = '\0'; 6409 6410 /* parse */ 6411 p = strchr(start, ':'); 6412 if (!p) { 6413 val = strstrip(start); 6414 goto parse_val; 6415 } 6416 *p = '\0'; 6417 6418 id = strstrip(start); 6419 val = strstrip(p + 1); 6420 6421 /* parse id */ 6422 p = strchr(id, '.'); 6423 if (p) { 6424 *p++ = '\0'; 6425 force_ent->device = simple_strtoul(p, &endp, 10); 6426 if (p == endp || *endp != '\0') { 6427 *reason = "invalid device"; 6428 return -EINVAL; 6429 } 6430 } 6431 6432 force_ent->port = simple_strtoul(id, &endp, 10); 6433 if (p == endp || *endp != '\0') { 6434 *reason = "invalid port/link"; 6435 return -EINVAL; 6436 } 6437 6438 parse_val: 6439 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6440 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6441 const struct ata_force_param *fp = &force_tbl[i]; 6442 6443 if (strncasecmp(val, fp->name, strlen(val))) 6444 continue; 6445 6446 nr_matches++; 6447 match_fp = fp; 6448 6449 if (strcasecmp(val, fp->name) == 0) { 6450 nr_matches = 1; 6451 break; 6452 } 6453 } 6454 6455 if (!nr_matches) { 6456 *reason = "unknown value"; 6457 return -EINVAL; 6458 } 6459 if (nr_matches > 1) { 6460 *reason = "ambigious value"; 6461 return -EINVAL; 6462 } 6463 6464 force_ent->param = *match_fp; 6465 6466 return 0; 6467 } 6468 6469 static void __init ata_parse_force_param(void) 6470 { 6471 int idx = 0, size = 1; 6472 int last_port = -1, last_device = -1; 6473 char *p, *cur, *next; 6474 6475 /* calculate maximum number of params and allocate force_tbl */ 6476 for (p = ata_force_param_buf; *p; p++) 6477 if (*p == ',') 6478 size++; 6479 6480 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6481 if (!ata_force_tbl) { 6482 printk(KERN_WARNING "ata: failed to extend force table, " 6483 "libata.force ignored\n"); 6484 return; 6485 } 6486 6487 /* parse and populate the table */ 6488 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6489 const char *reason = ""; 6490 struct ata_force_ent te = { .port = -1, .device = -1 }; 6491 6492 next = cur; 6493 if (ata_parse_force_one(&next, &te, &reason)) { 6494 printk(KERN_WARNING "ata: failed to parse force " 6495 "parameter \"%s\" (%s)\n", 6496 cur, reason); 6497 continue; 6498 } 6499 6500 if (te.port == -1) { 6501 te.port = last_port; 6502 te.device = last_device; 6503 } 6504 6505 ata_force_tbl[idx++] = te; 6506 6507 last_port = te.port; 6508 last_device = te.device; 6509 } 6510 6511 ata_force_tbl_size = idx; 6512 } 6513 6514 static int __init ata_init(void) 6515 { 6516 ata_parse_force_param(); 6517 6518 ata_wq = create_workqueue("ata"); 6519 if (!ata_wq) 6520 goto free_force_tbl; 6521 6522 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6523 if (!ata_aux_wq) 6524 goto free_wq; 6525 6526 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6527 return 0; 6528 6529 free_wq: 6530 destroy_workqueue(ata_wq); 6531 free_force_tbl: 6532 kfree(ata_force_tbl); 6533 return -ENOMEM; 6534 } 6535 6536 static void __exit ata_exit(void) 6537 { 6538 kfree(ata_force_tbl); 6539 destroy_workqueue(ata_wq); 6540 destroy_workqueue(ata_aux_wq); 6541 } 6542 6543 subsys_initcall(ata_init); 6544 module_exit(ata_exit); 6545 6546 static unsigned long ratelimit_time; 6547 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6548 6549 int ata_ratelimit(void) 6550 { 6551 int rc; 6552 unsigned long flags; 6553 6554 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6555 6556 if (time_after(jiffies, ratelimit_time)) { 6557 rc = 1; 6558 ratelimit_time = jiffies + (HZ/5); 6559 } else 6560 rc = 0; 6561 6562 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6563 6564 return rc; 6565 } 6566 6567 /** 6568 * ata_wait_register - wait until register value changes 6569 * @reg: IO-mapped register 6570 * @mask: Mask to apply to read register value 6571 * @val: Wait condition 6572 * @interval: polling interval in milliseconds 6573 * @timeout: timeout in milliseconds 6574 * 6575 * Waiting for some bits of register to change is a common 6576 * operation for ATA controllers. This function reads 32bit LE 6577 * IO-mapped register @reg and tests for the following condition. 6578 * 6579 * (*@reg & mask) != val 6580 * 6581 * If the condition is met, it returns; otherwise, the process is 6582 * repeated after @interval_msec until timeout. 6583 * 6584 * LOCKING: 6585 * Kernel thread context (may sleep) 6586 * 6587 * RETURNS: 6588 * The final register value. 6589 */ 6590 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6591 unsigned long interval, unsigned long timeout) 6592 { 6593 unsigned long deadline; 6594 u32 tmp; 6595 6596 tmp = ioread32(reg); 6597 6598 /* Calculate timeout _after_ the first read to make sure 6599 * preceding writes reach the controller before starting to 6600 * eat away the timeout. 6601 */ 6602 deadline = ata_deadline(jiffies, timeout); 6603 6604 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6605 msleep(interval); 6606 tmp = ioread32(reg); 6607 } 6608 6609 return tmp; 6610 } 6611 6612 /* 6613 * Dummy port_ops 6614 */ 6615 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6616 { 6617 return AC_ERR_SYSTEM; 6618 } 6619 6620 static void ata_dummy_error_handler(struct ata_port *ap) 6621 { 6622 /* truly dummy */ 6623 } 6624 6625 struct ata_port_operations ata_dummy_port_ops = { 6626 .qc_prep = ata_noop_qc_prep, 6627 .qc_issue = ata_dummy_qc_issue, 6628 .error_handler = ata_dummy_error_handler, 6629 }; 6630 6631 const struct ata_port_info ata_dummy_port_info = { 6632 .port_ops = &ata_dummy_port_ops, 6633 }; 6634 6635 /* 6636 * libata is essentially a library of internal helper functions for 6637 * low-level ATA host controller drivers. As such, the API/ABI is 6638 * likely to change as new drivers are added and updated. 6639 * Do not depend on ABI/API stability. 6640 */ 6641 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6642 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6643 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6644 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6645 EXPORT_SYMBOL_GPL(sata_port_ops); 6646 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6647 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6648 EXPORT_SYMBOL_GPL(ata_link_next); 6649 EXPORT_SYMBOL_GPL(ata_dev_next); 6650 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6651 EXPORT_SYMBOL_GPL(ata_host_init); 6652 EXPORT_SYMBOL_GPL(ata_host_alloc); 6653 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6654 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6655 EXPORT_SYMBOL_GPL(ata_host_start); 6656 EXPORT_SYMBOL_GPL(ata_host_register); 6657 EXPORT_SYMBOL_GPL(ata_host_activate); 6658 EXPORT_SYMBOL_GPL(ata_host_detach); 6659 EXPORT_SYMBOL_GPL(ata_sg_init); 6660 EXPORT_SYMBOL_GPL(ata_qc_complete); 6661 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6662 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6663 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6664 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6665 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6666 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6667 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6668 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6669 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6670 EXPORT_SYMBOL_GPL(ata_mode_string); 6671 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6672 EXPORT_SYMBOL_GPL(ata_port_start); 6673 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6674 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6675 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6676 EXPORT_SYMBOL_GPL(ata_port_probe); 6677 EXPORT_SYMBOL_GPL(ata_dev_disable); 6678 EXPORT_SYMBOL_GPL(sata_set_spd); 6679 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6680 EXPORT_SYMBOL_GPL(sata_link_debounce); 6681 EXPORT_SYMBOL_GPL(sata_link_resume); 6682 EXPORT_SYMBOL_GPL(ata_std_prereset); 6683 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6684 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6685 EXPORT_SYMBOL_GPL(ata_std_postreset); 6686 EXPORT_SYMBOL_GPL(ata_dev_classify); 6687 EXPORT_SYMBOL_GPL(ata_dev_pair); 6688 EXPORT_SYMBOL_GPL(ata_port_disable); 6689 EXPORT_SYMBOL_GPL(ata_ratelimit); 6690 EXPORT_SYMBOL_GPL(ata_wait_register); 6691 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6692 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6693 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6694 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6695 EXPORT_SYMBOL_GPL(sata_scr_valid); 6696 EXPORT_SYMBOL_GPL(sata_scr_read); 6697 EXPORT_SYMBOL_GPL(sata_scr_write); 6698 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6699 EXPORT_SYMBOL_GPL(ata_link_online); 6700 EXPORT_SYMBOL_GPL(ata_link_offline); 6701 #ifdef CONFIG_PM 6702 EXPORT_SYMBOL_GPL(ata_host_suspend); 6703 EXPORT_SYMBOL_GPL(ata_host_resume); 6704 #endif /* CONFIG_PM */ 6705 EXPORT_SYMBOL_GPL(ata_id_string); 6706 EXPORT_SYMBOL_GPL(ata_id_c_string); 6707 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6708 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6709 6710 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6711 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6712 EXPORT_SYMBOL_GPL(ata_timing_compute); 6713 EXPORT_SYMBOL_GPL(ata_timing_merge); 6714 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6715 6716 #ifdef CONFIG_PCI 6717 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6718 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6719 #ifdef CONFIG_PM 6720 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6721 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6722 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6723 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6724 #endif /* CONFIG_PM */ 6725 #endif /* CONFIG_PCI */ 6726 6727 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6728 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6729 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6730 EXPORT_SYMBOL_GPL(ata_port_desc); 6731 #ifdef CONFIG_PCI 6732 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6733 #endif /* CONFIG_PCI */ 6734 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6735 EXPORT_SYMBOL_GPL(ata_link_abort); 6736 EXPORT_SYMBOL_GPL(ata_port_abort); 6737 EXPORT_SYMBOL_GPL(ata_port_freeze); 6738 EXPORT_SYMBOL_GPL(sata_async_notification); 6739 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6740 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6741 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6742 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6743 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6744 EXPORT_SYMBOL_GPL(ata_do_eh); 6745 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6746 6747 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6748 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6749 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6750 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6751 EXPORT_SYMBOL_GPL(ata_cable_sata); 6752