xref: /linux/drivers/ata/libata-core.c (revision afca12e35e711ae8f97e835a3704cc305592eac9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
502 static inline void ata_force_link_limits(struct ata_link *link) { }
503 static inline void ata_force_xfermask(struct ata_device *dev) { }
504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	0,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578  *	@dev: target device for the taskfile
579  *	@tf: taskfile to examine and configure
580  *
581  *	Examine the device configuration and tf->flags to determine
582  *	the proper read/write command and protocol to use for @tf.
583  *
584  *	LOCKING:
585  *	caller.
586  */
587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 				   struct ata_taskfile *tf)
589 {
590 	u8 cmd;
591 
592 	int index, fua, lba48, write;
593 
594 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 
598 	if (dev->flags & ATA_DFLAG_PIO) {
599 		tf->protocol = ATA_PROT_PIO;
600 		index = dev->multi_count ? 0 : 8;
601 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 		/* Unable to use DMA due to host limitation */
603 		tf->protocol = ATA_PROT_PIO;
604 		index = dev->multi_count ? 0 : 8;
605 	} else {
606 		tf->protocol = ATA_PROT_DMA;
607 		index = 16;
608 	}
609 
610 	cmd = ata_rw_cmds[index + fua + lba48 + write];
611 	if (!cmd)
612 		return false;
613 
614 	tf->command = cmd;
615 
616 	return true;
617 }
618 
619 /**
620  *	ata_tf_read_block - Read block address from ATA taskfile
621  *	@tf: ATA taskfile of interest
622  *	@dev: ATA device @tf belongs to
623  *
624  *	LOCKING:
625  *	None.
626  *
627  *	Read block address from @tf.  This function can handle all
628  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629  *	flags select the address format to use.
630  *
631  *	RETURNS:
632  *	Block address read from @tf.
633  */
634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 	u64 block = 0;
637 
638 	if (tf->flags & ATA_TFLAG_LBA) {
639 		if (tf->flags & ATA_TFLAG_LBA48) {
640 			block |= (u64)tf->hob_lbah << 40;
641 			block |= (u64)tf->hob_lbam << 32;
642 			block |= (u64)tf->hob_lbal << 24;
643 		} else
644 			block |= (tf->device & 0xf) << 24;
645 
646 		block |= tf->lbah << 16;
647 		block |= tf->lbam << 8;
648 		block |= tf->lbal;
649 	} else {
650 		u32 cyl, head, sect;
651 
652 		cyl = tf->lbam | (tf->lbah << 8);
653 		head = tf->device & 0xf;
654 		sect = tf->lbal;
655 
656 		if (!sect) {
657 			ata_dev_warn(dev,
658 				     "device reported invalid CHS sector 0\n");
659 			return U64_MAX;
660 		}
661 
662 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 	}
664 
665 	return block;
666 }
667 
668 /*
669  * Set a taskfile command duration limit index.
670  */
671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 	struct ata_taskfile *tf = &qc->tf;
674 
675 	if (tf->protocol == ATA_PROT_NCQ)
676 		tf->auxiliary |= cdl;
677 	else
678 		tf->feature |= cdl;
679 
680 	/*
681 	 * Mark this command as having a CDL and request the result
682 	 * task file so that we can inspect the sense data available
683 	 * bit on completion.
684 	 */
685 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687 
688 /**
689  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690  *	@qc: Metadata associated with the taskfile to build
691  *	@block: Block address
692  *	@n_block: Number of blocks
693  *	@tf_flags: RW/FUA etc...
694  *	@cdl: Command duration limit index
695  *	@class: IO priority class
696  *
697  *	LOCKING:
698  *	None.
699  *
700  *	Build ATA taskfile for the command @qc for read/write request described
701  *	by @block, @n_block, @tf_flags and @class.
702  *
703  *	RETURNS:
704  *
705  *	0 on success, -ERANGE if the request is too large for @dev,
706  *	-EINVAL if the request is invalid.
707  */
708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 		    unsigned int tf_flags, int cdl, int class)
710 {
711 	struct ata_taskfile *tf = &qc->tf;
712 	struct ata_device *dev = qc->dev;
713 
714 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 	tf->flags |= tf_flags;
716 
717 	if (ata_ncq_enabled(dev)) {
718 		/* yay, NCQ */
719 		if (!lba_48_ok(block, n_block))
720 			return -ERANGE;
721 
722 		tf->protocol = ATA_PROT_NCQ;
723 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724 
725 		if (tf->flags & ATA_TFLAG_WRITE)
726 			tf->command = ATA_CMD_FPDMA_WRITE;
727 		else
728 			tf->command = ATA_CMD_FPDMA_READ;
729 
730 		tf->nsect = qc->hw_tag << 3;
731 		tf->hob_feature = (n_block >> 8) & 0xff;
732 		tf->feature = n_block & 0xff;
733 
734 		tf->hob_lbah = (block >> 40) & 0xff;
735 		tf->hob_lbam = (block >> 32) & 0xff;
736 		tf->hob_lbal = (block >> 24) & 0xff;
737 		tf->lbah = (block >> 16) & 0xff;
738 		tf->lbam = (block >> 8) & 0xff;
739 		tf->lbal = block & 0xff;
740 
741 		tf->device = ATA_LBA;
742 		if (tf->flags & ATA_TFLAG_FUA)
743 			tf->device |= 1 << 7;
744 
745 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 		    class == IOPRIO_CLASS_RT)
747 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748 
749 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 			ata_set_tf_cdl(qc, cdl);
751 
752 	} else if (dev->flags & ATA_DFLAG_LBA) {
753 		tf->flags |= ATA_TFLAG_LBA;
754 
755 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 			ata_set_tf_cdl(qc, cdl);
757 
758 		/* Both FUA writes and a CDL index require 48-bit commands */
759 		if (!(tf->flags & ATA_TFLAG_FUA) &&
760 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 		    lba_28_ok(block, n_block)) {
762 			/* use LBA28 */
763 			tf->device |= (block >> 24) & 0xf;
764 		} else if (lba_48_ok(block, n_block)) {
765 			if (!(dev->flags & ATA_DFLAG_LBA48))
766 				return -ERANGE;
767 
768 			/* use LBA48 */
769 			tf->flags |= ATA_TFLAG_LBA48;
770 
771 			tf->hob_nsect = (n_block >> 8) & 0xff;
772 
773 			tf->hob_lbah = (block >> 40) & 0xff;
774 			tf->hob_lbam = (block >> 32) & 0xff;
775 			tf->hob_lbal = (block >> 24) & 0xff;
776 		} else {
777 			/* request too large even for LBA48 */
778 			return -ERANGE;
779 		}
780 
781 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 			return -EINVAL;
783 
784 		tf->nsect = n_block & 0xff;
785 
786 		tf->lbah = (block >> 16) & 0xff;
787 		tf->lbam = (block >> 8) & 0xff;
788 		tf->lbal = block & 0xff;
789 
790 		tf->device |= ATA_LBA;
791 	} else {
792 		/* CHS */
793 		u32 sect, head, cyl, track;
794 
795 		/* The request -may- be too large for CHS addressing. */
796 		if (!lba_28_ok(block, n_block))
797 			return -ERANGE;
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		/* Convert LBA to CHS */
803 		track = (u32)block / dev->sectors;
804 		cyl   = track / dev->heads;
805 		head  = track % dev->heads;
806 		sect  = (u32)block % dev->sectors + 1;
807 
808 		/* Check whether the converted CHS can fit.
809 		   Cylinder: 0-65535
810 		   Head: 0-15
811 		   Sector: 1-255*/
812 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 			return -ERANGE;
814 
815 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 		tf->lbal = sect;
817 		tf->lbam = cyl;
818 		tf->lbah = cyl >> 8;
819 		tf->device |= head;
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827  *	@pio_mask: pio_mask
828  *	@mwdma_mask: mwdma_mask
829  *	@udma_mask: udma_mask
830  *
831  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832  *	unsigned int xfer_mask.
833  *
834  *	LOCKING:
835  *	None.
836  *
837  *	RETURNS:
838  *	Packed xfer_mask.
839  */
840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 			       unsigned int mwdma_mask,
842 			       unsigned int udma_mask)
843 {
844 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849 
850 /**
851  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852  *	@xfer_mask: xfer_mask to unpack
853  *	@pio_mask: resulting pio_mask
854  *	@mwdma_mask: resulting mwdma_mask
855  *	@udma_mask: resulting udma_mask
856  *
857  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858  *	Any NULL destination masks will be ignored.
859  */
860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 	if (pio_mask)
864 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 	if (mwdma_mask)
866 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 	if (udma_mask)
868 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870 
871 static const struct ata_xfer_ent {
872 	int shift, bits;
873 	u8 base;
874 } ata_xfer_tbl[] = {
875 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 	{ -1, },
879 };
880 
881 /**
882  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883  *	@xfer_mask: xfer_mask of interest
884  *
885  *	Return matching XFER_* value for @xfer_mask.  Only the highest
886  *	bit of @xfer_mask is considered.
887  *
888  *	LOCKING:
889  *	None.
890  *
891  *	RETURNS:
892  *	Matching XFER_* value, 0xff if no match found.
893  */
894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 	int highbit = fls(xfer_mask) - 1;
897 	const struct ata_xfer_ent *ent;
898 
899 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 			return ent->base + highbit - ent->shift;
902 	return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905 
906 /**
907  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908  *	@xfer_mode: XFER_* of interest
909  *
910  *	Return matching xfer_mask for @xfer_mode.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching xfer_mask, 0 if no match found.
917  */
918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 				& ~((1 << ent->shift) - 1);
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929 
930 /**
931  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_shift for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_shift, -1 if no match found.
941  */
942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ent->shift;
949 	return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952 
953 /**
954  *	ata_mode_string - convert xfer_mask to string
955  *	@xfer_mask: mask of bits supported; only highest bit counts.
956  *
957  *	Determine string which represents the highest speed
958  *	(highest bit in @modemask).
959  *
960  *	LOCKING:
961  *	None.
962  *
963  *	RETURNS:
964  *	Constant C string representing highest speed listed in
965  *	@mode_mask, or the constant C string "<n/a>".
966  */
967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 	static const char * const xfer_mode_str[] = {
970 		"PIO0",
971 		"PIO1",
972 		"PIO2",
973 		"PIO3",
974 		"PIO4",
975 		"PIO5",
976 		"PIO6",
977 		"MWDMA0",
978 		"MWDMA1",
979 		"MWDMA2",
980 		"MWDMA3",
981 		"MWDMA4",
982 		"UDMA/16",
983 		"UDMA/25",
984 		"UDMA/33",
985 		"UDMA/44",
986 		"UDMA/66",
987 		"UDMA/100",
988 		"UDMA/133",
989 		"UDMA7",
990 	};
991 	int highbit;
992 
993 	highbit = fls(xfer_mask) - 1;
994 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 		return xfer_mode_str[highbit];
996 	return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999 
1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 	static const char * const spd_str[] = {
1003 		"1.5 Gbps",
1004 		"3.0 Gbps",
1005 		"6.0 Gbps",
1006 	};
1007 
1008 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 		return "<unknown>";
1010 	return spd_str[spd - 1];
1011 }
1012 
1013 /**
1014  *	ata_dev_classify - determine device type based on ATA-spec signature
1015  *	@tf: ATA taskfile register set for device to be identified
1016  *
1017  *	Determine from taskfile register contents whether a device is
1018  *	ATA or ATAPI, as per "Signature and persistence" section
1019  *	of ATA/PI spec (volume 1, sect 5.14).
1020  *
1021  *	LOCKING:
1022  *	None.
1023  *
1024  *	RETURNS:
1025  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027  */
1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 	/* Apple's open source Darwin code hints that some devices only
1031 	 * put a proper signature into the LBA mid/high registers,
1032 	 * So, we only check those.  It's sufficient for uniqueness.
1033 	 *
1034 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037 	 * spec has never mentioned about using different signatures
1038 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039 	 * Multiplier specification began to use 0x69/0x96 to identify
1040 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 	 * 0x69/0x96 shortly and described them as reserved for
1043 	 * SerialATA.
1044 	 *
1045 	 * We follow the current spec and consider that 0x69/0x96
1046 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 	 * SEMB signature.  This is worked around in
1049 	 * ata_dev_read_id().
1050 	 */
1051 	if (tf->lbam == 0 && tf->lbah == 0)
1052 		return ATA_DEV_ATA;
1053 
1054 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 		return ATA_DEV_ATAPI;
1056 
1057 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 		return ATA_DEV_PMP;
1059 
1060 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 		return ATA_DEV_SEMB;
1062 
1063 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 		return ATA_DEV_ZAC;
1065 
1066 	return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069 
1070 /**
1071  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072  *	@id: IDENTIFY DEVICE results we will examine
1073  *	@s: string into which data is output
1074  *	@ofs: offset into identify device page
1075  *	@len: length of string to return. must be an even number.
1076  *
1077  *	The strings in the IDENTIFY DEVICE page are broken up into
1078  *	16-bit chunks.  Run through the string, and output each
1079  *	8-bit chunk linearly, regardless of platform.
1080  *
1081  *	LOCKING:
1082  *	caller.
1083  */
1084 
1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 		   unsigned int ofs, unsigned int len)
1087 {
1088 	unsigned int c;
1089 
1090 	BUG_ON(len & 1);
1091 
1092 	while (len > 0) {
1093 		c = id[ofs] >> 8;
1094 		*s = c;
1095 		s++;
1096 
1097 		c = id[ofs] & 0xff;
1098 		*s = c;
1099 		s++;
1100 
1101 		ofs++;
1102 		len -= 2;
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106 
1107 /**
1108  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109  *	@id: IDENTIFY DEVICE results we will examine
1110  *	@s: string into which data is output
1111  *	@ofs: offset into identify device page
1112  *	@len: length of string to return. must be an odd number.
1113  *
1114  *	This function is identical to ata_id_string except that it
1115  *	trims trailing spaces and terminates the resulting string with
1116  *	null.  @len must be actual maximum length (even number) + 1.
1117  *
1118  *	LOCKING:
1119  *	caller.
1120  */
1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 		     unsigned int ofs, unsigned int len)
1123 {
1124 	unsigned char *p;
1125 
1126 	ata_id_string(id, s, ofs, len - 1);
1127 
1128 	p = s + strnlen(s, len - 1);
1129 	while (p > s && p[-1] == ' ')
1130 		p--;
1131 	*p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134 
1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 	if (ata_id_has_lba(id)) {
1138 		if (ata_id_has_lba48(id))
1139 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140 
1141 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 	}
1143 
1144 	if (ata_id_current_chs_valid(id))
1145 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 		       (u32)id[ATA_ID_CUR_SECTORS];
1147 
1148 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 	       (u32)id[ATA_ID_SECTORS];
1150 }
1151 
1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 	u64 sectors = 0;
1155 
1156 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 	sectors |= (tf->lbah & 0xff) << 16;
1160 	sectors |= (tf->lbam & 0xff) << 8;
1161 	sectors |= (tf->lbal & 0xff);
1162 
1163 	return sectors;
1164 }
1165 
1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 	u64 sectors = 0;
1169 
1170 	sectors |= (tf->device & 0x0f) << 24;
1171 	sectors |= (tf->lbah & 0xff) << 16;
1172 	sectors |= (tf->lbam & 0xff) << 8;
1173 	sectors |= (tf->lbal & 0xff);
1174 
1175 	return sectors;
1176 }
1177 
1178 /**
1179  *	ata_read_native_max_address - Read native max address
1180  *	@dev: target device
1181  *	@max_sectors: out parameter for the result native max address
1182  *
1183  *	Perform an LBA48 or LBA28 native size query upon the device in
1184  *	question.
1185  *
1186  *	RETURNS:
1187  *	0 on success, -EACCES if command is aborted by the drive.
1188  *	-EIO on other errors.
1189  */
1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 	unsigned int err_mask;
1193 	struct ata_taskfile tf;
1194 	int lba48 = ata_id_has_lba48(dev->id);
1195 
1196 	ata_tf_init(dev, &tf);
1197 
1198 	/* always clear all address registers */
1199 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200 
1201 	if (lba48) {
1202 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 		tf.flags |= ATA_TFLAG_LBA48;
1204 	} else
1205 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206 
1207 	tf.protocol = ATA_PROT_NODATA;
1208 	tf.device |= ATA_LBA;
1209 
1210 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 	if (err_mask) {
1212 		ata_dev_warn(dev,
1213 			     "failed to read native max address (err_mask=0x%x)\n",
1214 			     err_mask);
1215 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 			return -EACCES;
1217 		return -EIO;
1218 	}
1219 
1220 	if (lba48)
1221 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 	else
1223 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 		(*max_sectors)--;
1226 	return 0;
1227 }
1228 
1229 /**
1230  *	ata_set_max_sectors - Set max sectors
1231  *	@dev: target device
1232  *	@new_sectors: new max sectors value to set for the device
1233  *
1234  *	Set max sectors of @dev to @new_sectors.
1235  *
1236  *	RETURNS:
1237  *	0 on success, -EACCES if command is aborted or denied (due to
1238  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239  *	errors.
1240  */
1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 	unsigned int err_mask;
1244 	struct ata_taskfile tf;
1245 	int lba48 = ata_id_has_lba48(dev->id);
1246 
1247 	new_sectors--;
1248 
1249 	ata_tf_init(dev, &tf);
1250 
1251 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252 
1253 	if (lba48) {
1254 		tf.command = ATA_CMD_SET_MAX_EXT;
1255 		tf.flags |= ATA_TFLAG_LBA48;
1256 
1257 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 	} else {
1261 		tf.command = ATA_CMD_SET_MAX;
1262 
1263 		tf.device |= (new_sectors >> 24) & 0xf;
1264 	}
1265 
1266 	tf.protocol = ATA_PROT_NODATA;
1267 	tf.device |= ATA_LBA;
1268 
1269 	tf.lbal = (new_sectors >> 0) & 0xff;
1270 	tf.lbam = (new_sectors >> 8) & 0xff;
1271 	tf.lbah = (new_sectors >> 16) & 0xff;
1272 
1273 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 	if (err_mask) {
1275 		ata_dev_warn(dev,
1276 			     "failed to set max address (err_mask=0x%x)\n",
1277 			     err_mask);
1278 		if (err_mask == AC_ERR_DEV &&
1279 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 			return -EACCES;
1281 		return -EIO;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  *	ata_hpa_resize		-	Resize a device with an HPA set
1289  *	@dev: Device to resize
1290  *
1291  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292  *	it if required to the full size of the media. The caller must check
1293  *	the drive has the HPA feature set enabled.
1294  *
1295  *	RETURNS:
1296  *	0 on success, -errno on failure.
1297  */
1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 	bool print_info = ata_dev_print_info(dev);
1301 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 	u64 sectors = ata_id_n_sectors(dev->id);
1303 	u64 native_sectors;
1304 	int rc;
1305 
1306 	/* do we need to do it? */
1307 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 		return 0;
1311 
1312 	/* read native max address */
1313 	rc = ata_read_native_max_address(dev, &native_sectors);
1314 	if (rc) {
1315 		/* If device aborted the command or HPA isn't going to
1316 		 * be unlocked, skip HPA resizing.
1317 		 */
1318 		if (rc == -EACCES || !unlock_hpa) {
1319 			ata_dev_warn(dev,
1320 				     "HPA support seems broken, skipping HPA handling\n");
1321 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322 
1323 			/* we can continue if device aborted the command */
1324 			if (rc == -EACCES)
1325 				rc = 0;
1326 		}
1327 
1328 		return rc;
1329 	}
1330 	dev->n_native_sectors = native_sectors;
1331 
1332 	/* nothing to do? */
1333 	if (native_sectors <= sectors || !unlock_hpa) {
1334 		if (!print_info || native_sectors == sectors)
1335 			return 0;
1336 
1337 		if (native_sectors > sectors)
1338 			ata_dev_info(dev,
1339 				"HPA detected: current %llu, native %llu\n",
1340 				(unsigned long long)sectors,
1341 				(unsigned long long)native_sectors);
1342 		else if (native_sectors < sectors)
1343 			ata_dev_warn(dev,
1344 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345 				(unsigned long long)native_sectors,
1346 				(unsigned long long)sectors);
1347 		return 0;
1348 	}
1349 
1350 	/* let's unlock HPA */
1351 	rc = ata_set_max_sectors(dev, native_sectors);
1352 	if (rc == -EACCES) {
1353 		/* if device aborted the command, skip HPA resizing */
1354 		ata_dev_warn(dev,
1355 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 			     (unsigned long long)sectors,
1357 			     (unsigned long long)native_sectors);
1358 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 		return 0;
1360 	} else if (rc)
1361 		return rc;
1362 
1363 	/* re-read IDENTIFY data */
1364 	rc = ata_dev_reread_id(dev, 0);
1365 	if (rc) {
1366 		ata_dev_err(dev,
1367 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368 		return rc;
1369 	}
1370 
1371 	if (print_info) {
1372 		u64 new_sectors = ata_id_n_sectors(dev->id);
1373 		ata_dev_info(dev,
1374 			"HPA unlocked: %llu -> %llu, native %llu\n",
1375 			(unsigned long long)sectors,
1376 			(unsigned long long)new_sectors,
1377 			(unsigned long long)native_sectors);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385  *	@dev: device from which the information is fetched
1386  *	@id: IDENTIFY DEVICE page to dump
1387  *
1388  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389  *	page.
1390  *
1391  *	LOCKING:
1392  *	caller.
1393  */
1394 
1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 	ata_dev_dbg(dev,
1398 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400 		"88==0x%04x  93==0x%04x\n",
1401 		id[49], id[53], id[63], id[64], id[75], id[80],
1402 		id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404 
1405 /**
1406  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407  *	@id: IDENTIFY data to compute xfer mask from
1408  *
1409  *	Compute the xfermask for this device. This is not as trivial
1410  *	as it seems if we must consider early devices correctly.
1411  *
1412  *	FIXME: pre IDE drive timing (do we care ?).
1413  *
1414  *	LOCKING:
1415  *	None.
1416  *
1417  *	RETURNS:
1418  *	Computed xfermask
1419  */
1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 	unsigned int pio_mask, mwdma_mask, udma_mask;
1423 
1424 	/* Usual case. Word 53 indicates word 64 is valid */
1425 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 		pio_mask <<= 3;
1428 		pio_mask |= 0x7;
1429 	} else {
1430 		/* If word 64 isn't valid then Word 51 high byte holds
1431 		 * the PIO timing number for the maximum. Turn it into
1432 		 * a mask.
1433 		 */
1434 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 		if (mode < 5)	/* Valid PIO range */
1436 			pio_mask = (2 << mode) - 1;
1437 		else
1438 			pio_mask = 1;
1439 
1440 		/* But wait.. there's more. Design your standards by
1441 		 * committee and you too can get a free iordy field to
1442 		 * process. However it is the speeds not the modes that
1443 		 * are supported... Note drivers using the timing API
1444 		 * will get this right anyway
1445 		 */
1446 	}
1447 
1448 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449 
1450 	if (ata_id_is_cfa(id)) {
1451 		/*
1452 		 *	Process compact flash extended modes
1453 		 */
1454 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456 
1457 		if (pio)
1458 			pio_mask |= (1 << 5);
1459 		if (pio > 1)
1460 			pio_mask |= (1 << 6);
1461 		if (dma)
1462 			mwdma_mask |= (1 << 3);
1463 		if (dma > 1)
1464 			mwdma_mask |= (1 << 4);
1465 	}
1466 
1467 	udma_mask = 0;
1468 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470 
1471 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474 
1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 	struct completion *waiting = qc->private_data;
1478 
1479 	complete(waiting);
1480 }
1481 
1482 /**
1483  *	ata_exec_internal_sg - execute libata internal command
1484  *	@dev: Device to which the command is sent
1485  *	@tf: Taskfile registers for the command and the result
1486  *	@cdb: CDB for packet command
1487  *	@dma_dir: Data transfer direction of the command
1488  *	@sgl: sg list for the data buffer of the command
1489  *	@n_elem: Number of sg entries
1490  *	@timeout: Timeout in msecs (0 for default)
1491  *
1492  *	Executes libata internal command with timeout.  @tf contains
1493  *	command on entry and result on return.  Timeout and error
1494  *	conditions are reported via return value.  No recovery action
1495  *	is taken after a command times out.  It's caller's duty to
1496  *	clean up after timeout.
1497  *
1498  *	LOCKING:
1499  *	None.  Should be called with kernel context, might sleep.
1500  *
1501  *	RETURNS:
1502  *	Zero on success, AC_ERR_* mask on failure
1503  */
1504 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 				     struct ata_taskfile *tf, const u8 *cdb,
1506 				     int dma_dir, struct scatterlist *sgl,
1507 				     unsigned int n_elem, unsigned int timeout)
1508 {
1509 	struct ata_link *link = dev->link;
1510 	struct ata_port *ap = link->ap;
1511 	u8 command = tf->command;
1512 	int auto_timeout = 0;
1513 	struct ata_queued_cmd *qc;
1514 	unsigned int preempted_tag;
1515 	u32 preempted_sactive;
1516 	u64 preempted_qc_active;
1517 	int preempted_nr_active_links;
1518 	DECLARE_COMPLETION_ONSTACK(wait);
1519 	unsigned long flags;
1520 	unsigned int err_mask;
1521 	int rc;
1522 
1523 	spin_lock_irqsave(ap->lock, flags);
1524 
1525 	/* no internal command while frozen */
1526 	if (ata_port_is_frozen(ap)) {
1527 		spin_unlock_irqrestore(ap->lock, flags);
1528 		return AC_ERR_SYSTEM;
1529 	}
1530 
1531 	/* initialize internal qc */
1532 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533 
1534 	qc->tag = ATA_TAG_INTERNAL;
1535 	qc->hw_tag = 0;
1536 	qc->scsicmd = NULL;
1537 	qc->ap = ap;
1538 	qc->dev = dev;
1539 	ata_qc_reinit(qc);
1540 
1541 	preempted_tag = link->active_tag;
1542 	preempted_sactive = link->sactive;
1543 	preempted_qc_active = ap->qc_active;
1544 	preempted_nr_active_links = ap->nr_active_links;
1545 	link->active_tag = ATA_TAG_POISON;
1546 	link->sactive = 0;
1547 	ap->qc_active = 0;
1548 	ap->nr_active_links = 0;
1549 
1550 	/* prepare & issue qc */
1551 	qc->tf = *tf;
1552 	if (cdb)
1553 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554 
1555 	/* some SATA bridges need us to indicate data xfer direction */
1556 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 	    dma_dir == DMA_FROM_DEVICE)
1558 		qc->tf.feature |= ATAPI_DMADIR;
1559 
1560 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 	qc->dma_dir = dma_dir;
1562 	if (dma_dir != DMA_NONE) {
1563 		unsigned int i, buflen = 0;
1564 		struct scatterlist *sg;
1565 
1566 		for_each_sg(sgl, sg, n_elem, i)
1567 			buflen += sg->length;
1568 
1569 		ata_sg_init(qc, sgl, n_elem);
1570 		qc->nbytes = buflen;
1571 	}
1572 
1573 	qc->private_data = &wait;
1574 	qc->complete_fn = ata_qc_complete_internal;
1575 
1576 	ata_qc_issue(qc);
1577 
1578 	spin_unlock_irqrestore(ap->lock, flags);
1579 
1580 	if (!timeout) {
1581 		if (ata_probe_timeout)
1582 			timeout = ata_probe_timeout * 1000;
1583 		else {
1584 			timeout = ata_internal_cmd_timeout(dev, command);
1585 			auto_timeout = 1;
1586 		}
1587 	}
1588 
1589 	ata_eh_release(ap);
1590 
1591 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592 
1593 	ata_eh_acquire(ap);
1594 
1595 	ata_sff_flush_pio_task(ap);
1596 
1597 	if (!rc) {
1598 		spin_lock_irqsave(ap->lock, flags);
1599 
1600 		/* We're racing with irq here.  If we lose, the
1601 		 * following test prevents us from completing the qc
1602 		 * twice.  If we win, the port is frozen and will be
1603 		 * cleaned up by ->post_internal_cmd().
1604 		 */
1605 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 			qc->err_mask |= AC_ERR_TIMEOUT;
1607 
1608 			ata_port_freeze(ap);
1609 
1610 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 				     timeout, command);
1612 		}
1613 
1614 		spin_unlock_irqrestore(ap->lock, flags);
1615 	}
1616 
1617 	/* do post_internal_cmd */
1618 	if (ap->ops->post_internal_cmd)
1619 		ap->ops->post_internal_cmd(qc);
1620 
1621 	/* perform minimal error analysis */
1622 	if (qc->flags & ATA_QCFLAG_EH) {
1623 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 			qc->err_mask |= AC_ERR_DEV;
1625 
1626 		if (!qc->err_mask)
1627 			qc->err_mask |= AC_ERR_OTHER;
1628 
1629 		if (qc->err_mask & ~AC_ERR_OTHER)
1630 			qc->err_mask &= ~AC_ERR_OTHER;
1631 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 		qc->result_tf.status |= ATA_SENSE;
1633 	}
1634 
1635 	/* finish up */
1636 	spin_lock_irqsave(ap->lock, flags);
1637 
1638 	*tf = qc->result_tf;
1639 	err_mask = qc->err_mask;
1640 
1641 	ata_qc_free(qc);
1642 	link->active_tag = preempted_tag;
1643 	link->sactive = preempted_sactive;
1644 	ap->qc_active = preempted_qc_active;
1645 	ap->nr_active_links = preempted_nr_active_links;
1646 
1647 	spin_unlock_irqrestore(ap->lock, flags);
1648 
1649 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 		ata_internal_cmd_timed_out(dev, command);
1651 
1652 	return err_mask;
1653 }
1654 
1655 /**
1656  *	ata_exec_internal - execute libata internal command
1657  *	@dev: Device to which the command is sent
1658  *	@tf: Taskfile registers for the command and the result
1659  *	@cdb: CDB for packet command
1660  *	@dma_dir: Data transfer direction of the command
1661  *	@buf: Data buffer of the command
1662  *	@buflen: Length of data buffer
1663  *	@timeout: Timeout in msecs (0 for default)
1664  *
1665  *	Wrapper around ata_exec_internal_sg() which takes simple
1666  *	buffer instead of sg list.
1667  *
1668  *	LOCKING:
1669  *	None.  Should be called with kernel context, might sleep.
1670  *
1671  *	RETURNS:
1672  *	Zero on success, AC_ERR_* mask on failure
1673  */
1674 unsigned ata_exec_internal(struct ata_device *dev,
1675 			   struct ata_taskfile *tf, const u8 *cdb,
1676 			   int dma_dir, void *buf, unsigned int buflen,
1677 			   unsigned int timeout)
1678 {
1679 	struct scatterlist *psg = NULL, sg;
1680 	unsigned int n_elem = 0;
1681 
1682 	if (dma_dir != DMA_NONE) {
1683 		WARN_ON(!buf);
1684 		sg_init_one(&sg, buf, buflen);
1685 		psg = &sg;
1686 		n_elem++;
1687 	}
1688 
1689 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690 				    timeout);
1691 }
1692 
1693 /**
1694  *	ata_pio_need_iordy	-	check if iordy needed
1695  *	@adev: ATA device
1696  *
1697  *	Check if the current speed of the device requires IORDY. Used
1698  *	by various controllers for chip configuration.
1699  */
1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701 {
1702 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1703 	 * lead to controller lock up on certain controllers if the
1704 	 * port is not occupied.  See bko#11703 for details.
1705 	 */
1706 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 		return 0;
1708 	/* Controller doesn't support IORDY.  Probably a pointless
1709 	 * check as the caller should know this.
1710 	 */
1711 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 		return 0;
1713 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1714 	if (ata_id_is_cfa(adev->id)
1715 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 		return 0;
1717 	/* PIO3 and higher it is mandatory */
1718 	if (adev->pio_mode > XFER_PIO_2)
1719 		return 1;
1720 	/* We turn it on when possible */
1721 	if (ata_id_has_iordy(adev->id))
1722 		return 1;
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726 
1727 /**
1728  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1729  *	@adev: ATA device
1730  *
1731  *	Compute the highest mode possible if we are not using iordy. Return
1732  *	-1 if no iordy mode is available.
1733  */
1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735 {
1736 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1738 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 		/* Is the speed faster than the drive allows non IORDY ? */
1740 		if (pio) {
1741 			/* This is cycle times not frequency - watch the logic! */
1742 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1743 				return 3 << ATA_SHIFT_PIO;
1744 			return 7 << ATA_SHIFT_PIO;
1745 		}
1746 	}
1747 	return 3 << ATA_SHIFT_PIO;
1748 }
1749 
1750 /**
1751  *	ata_do_dev_read_id		-	default ID read method
1752  *	@dev: device
1753  *	@tf: proposed taskfile
1754  *	@id: data buffer
1755  *
1756  *	Issue the identify taskfile and hand back the buffer containing
1757  *	identify data. For some RAID controllers and for pre ATA devices
1758  *	this function is wrapped or replaced by the driver
1759  */
1760 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 				struct ata_taskfile *tf, __le16 *id)
1762 {
1763 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765 }
1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767 
1768 /**
1769  *	ata_dev_read_id - Read ID data from the specified device
1770  *	@dev: target device
1771  *	@p_class: pointer to class of the target device (may be changed)
1772  *	@flags: ATA_READID_* flags
1773  *	@id: buffer to read IDENTIFY data into
1774  *
1775  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1776  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1778  *	for pre-ATA4 drives.
1779  *
1780  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781  *	now we abort if we hit that case.
1782  *
1783  *	LOCKING:
1784  *	Kernel thread context (may sleep)
1785  *
1786  *	RETURNS:
1787  *	0 on success, -errno otherwise.
1788  */
1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 		    unsigned int flags, u16 *id)
1791 {
1792 	struct ata_port *ap = dev->link->ap;
1793 	unsigned int class = *p_class;
1794 	struct ata_taskfile tf;
1795 	unsigned int err_mask = 0;
1796 	const char *reason;
1797 	bool is_semb = class == ATA_DEV_SEMB;
1798 	int may_fallback = 1, tried_spinup = 0;
1799 	int rc;
1800 
1801 retry:
1802 	ata_tf_init(dev, &tf);
1803 
1804 	switch (class) {
1805 	case ATA_DEV_SEMB:
1806 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1807 		fallthrough;
1808 	case ATA_DEV_ATA:
1809 	case ATA_DEV_ZAC:
1810 		tf.command = ATA_CMD_ID_ATA;
1811 		break;
1812 	case ATA_DEV_ATAPI:
1813 		tf.command = ATA_CMD_ID_ATAPI;
1814 		break;
1815 	default:
1816 		rc = -ENODEV;
1817 		reason = "unsupported class";
1818 		goto err_out;
1819 	}
1820 
1821 	tf.protocol = ATA_PROT_PIO;
1822 
1823 	/* Some devices choke if TF registers contain garbage.  Make
1824 	 * sure those are properly initialized.
1825 	 */
1826 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827 
1828 	/* Device presence detection is unreliable on some
1829 	 * controllers.  Always poll IDENTIFY if available.
1830 	 */
1831 	tf.flags |= ATA_TFLAG_POLLING;
1832 
1833 	if (ap->ops->read_id)
1834 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 	else
1836 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837 
1838 	if (err_mask) {
1839 		if (err_mask & AC_ERR_NODEV_HINT) {
1840 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 			return -ENOENT;
1842 		}
1843 
1844 		if (is_semb) {
1845 			ata_dev_info(dev,
1846 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 			/* SEMB is not supported yet */
1848 			*p_class = ATA_DEV_SEMB_UNSUP;
1849 			return 0;
1850 		}
1851 
1852 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 			/* Device or controller might have reported
1854 			 * the wrong device class.  Give a shot at the
1855 			 * other IDENTIFY if the current one is
1856 			 * aborted by the device.
1857 			 */
1858 			if (may_fallback) {
1859 				may_fallback = 0;
1860 
1861 				if (class == ATA_DEV_ATA)
1862 					class = ATA_DEV_ATAPI;
1863 				else
1864 					class = ATA_DEV_ATA;
1865 				goto retry;
1866 			}
1867 
1868 			/* Control reaches here iff the device aborted
1869 			 * both flavors of IDENTIFYs which happens
1870 			 * sometimes with phantom devices.
1871 			 */
1872 			ata_dev_dbg(dev,
1873 				    "both IDENTIFYs aborted, assuming NODEV\n");
1874 			return -ENOENT;
1875 		}
1876 
1877 		rc = -EIO;
1878 		reason = "I/O error";
1879 		goto err_out;
1880 	}
1881 
1882 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 		ata_dev_info(dev, "dumping IDENTIFY data, "
1884 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1885 			    class, may_fallback, tried_spinup);
1886 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888 	}
1889 
1890 	/* Falling back doesn't make sense if ID data was read
1891 	 * successfully at least once.
1892 	 */
1893 	may_fallback = 0;
1894 
1895 	swap_buf_le16(id, ATA_ID_WORDS);
1896 
1897 	/* sanity check */
1898 	rc = -EINVAL;
1899 	reason = "device reports invalid type";
1900 
1901 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 			goto err_out;
1904 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 							ata_id_is_ata(id)) {
1906 			ata_dev_dbg(dev,
1907 				"host indicates ignore ATA devices, ignored\n");
1908 			return -ENOENT;
1909 		}
1910 	} else {
1911 		if (ata_id_is_ata(id))
1912 			goto err_out;
1913 	}
1914 
1915 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 		tried_spinup = 1;
1917 		/*
1918 		 * Drive powered-up in standby mode, and requires a specific
1919 		 * SET_FEATURES spin-up subcommand before it will accept
1920 		 * anything other than the original IDENTIFY command.
1921 		 */
1922 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923 		if (err_mask && id[2] != 0x738c) {
1924 			rc = -EIO;
1925 			reason = "SPINUP failed";
1926 			goto err_out;
1927 		}
1928 		/*
1929 		 * If the drive initially returned incomplete IDENTIFY info,
1930 		 * we now must reissue the IDENTIFY command.
1931 		 */
1932 		if (id[2] == 0x37c8)
1933 			goto retry;
1934 	}
1935 
1936 	if ((flags & ATA_READID_POSTRESET) &&
1937 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 		/*
1939 		 * The exact sequence expected by certain pre-ATA4 drives is:
1940 		 * SRST RESET
1941 		 * IDENTIFY (optional in early ATA)
1942 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 		 * anything else..
1944 		 * Some drives were very specific about that exact sequence.
1945 		 *
1946 		 * Note that ATA4 says lba is mandatory so the second check
1947 		 * should never trigger.
1948 		 */
1949 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951 			if (err_mask) {
1952 				rc = -EIO;
1953 				reason = "INIT_DEV_PARAMS failed";
1954 				goto err_out;
1955 			}
1956 
1957 			/* current CHS translation info (id[53-58]) might be
1958 			 * changed. reread the identify device info.
1959 			 */
1960 			flags &= ~ATA_READID_POSTRESET;
1961 			goto retry;
1962 		}
1963 	}
1964 
1965 	*p_class = class;
1966 
1967 	return 0;
1968 
1969  err_out:
1970 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 		     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_read_log_page - read a specific log page
1977  *	@dev: target device
1978  *	@log: log to read
1979  *	@page: page to read
1980  *	@buf: buffer to store read page
1981  *	@sectors: number of sectors to read
1982  *
1983  *	Read log page using READ_LOG_EXT command.
1984  *
1985  *	LOCKING:
1986  *	Kernel thread context (may sleep).
1987  *
1988  *	RETURNS:
1989  *	0 on success, AC_ERR_* mask otherwise.
1990  */
1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 			       u8 page, void *buf, unsigned int sectors)
1993 {
1994 	unsigned long ap_flags = dev->link->ap->flags;
1995 	struct ata_taskfile tf;
1996 	unsigned int err_mask;
1997 	bool dma = false;
1998 
1999 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2000 
2001 	/*
2002 	 * Return error without actually issuing the command on controllers
2003 	 * which e.g. lockup on a read log page.
2004 	 */
2005 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 		return AC_ERR_DEV;
2007 
2008 retry:
2009 	ata_tf_init(dev, &tf);
2010 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2011 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 		tf.protocol = ATA_PROT_DMA;
2014 		dma = true;
2015 	} else {
2016 		tf.command = ATA_CMD_READ_LOG_EXT;
2017 		tf.protocol = ATA_PROT_PIO;
2018 		dma = false;
2019 	}
2020 	tf.lbal = log;
2021 	tf.lbam = page;
2022 	tf.nsect = sectors;
2023 	tf.hob_nsect = sectors >> 8;
2024 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025 
2026 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 				     buf, sectors * ATA_SECT_SIZE, 0);
2028 
2029 	if (err_mask) {
2030 		if (dma) {
2031 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 			if (!ata_port_is_frozen(dev->link->ap))
2033 				goto retry;
2034 		}
2035 		ata_dev_err(dev,
2036 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2037 			    (unsigned int)log, (unsigned int)page, err_mask);
2038 	}
2039 
2040 	return err_mask;
2041 }
2042 
2043 static int ata_log_supported(struct ata_device *dev, u8 log)
2044 {
2045 	struct ata_port *ap = dev->link->ap;
2046 
2047 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2048 		return 0;
2049 
2050 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2051 		return 0;
2052 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2053 }
2054 
2055 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2056 {
2057 	struct ata_port *ap = dev->link->ap;
2058 	unsigned int err, i;
2059 
2060 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2061 		return false;
2062 
2063 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2064 		/*
2065 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2066 		 * with ACS-3 (ATA version 10). Warn about the missing log
2067 		 * for drives which implement this ATA level or above.
2068 		 */
2069 		if (ata_id_major_version(dev->id) >= 10)
2070 			ata_dev_warn(dev,
2071 				"ATA Identify Device Log not supported\n");
2072 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2073 		return false;
2074 	}
2075 
2076 	/*
2077 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2078 	 * supported.
2079 	 */
2080 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2081 				1);
2082 	if (err)
2083 		return false;
2084 
2085 	for (i = 0; i < ap->sector_buf[8]; i++) {
2086 		if (ap->sector_buf[9 + i] == page)
2087 			return true;
2088 	}
2089 
2090 	return false;
2091 }
2092 
2093 static int ata_do_link_spd_horkage(struct ata_device *dev)
2094 {
2095 	struct ata_link *plink = ata_dev_phys_link(dev);
2096 	u32 target, target_limit;
2097 
2098 	if (!sata_scr_valid(plink))
2099 		return 0;
2100 
2101 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2102 		target = 1;
2103 	else
2104 		return 0;
2105 
2106 	target_limit = (1 << target) - 1;
2107 
2108 	/* if already on stricter limit, no need to push further */
2109 	if (plink->sata_spd_limit <= target_limit)
2110 		return 0;
2111 
2112 	plink->sata_spd_limit = target_limit;
2113 
2114 	/* Request another EH round by returning -EAGAIN if link is
2115 	 * going faster than the target speed.  Forward progress is
2116 	 * guaranteed by setting sata_spd_limit to target_limit above.
2117 	 */
2118 	if (plink->sata_spd > target) {
2119 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2120 			     sata_spd_string(target));
2121 		return -EAGAIN;
2122 	}
2123 	return 0;
2124 }
2125 
2126 static inline u8 ata_dev_knobble(struct ata_device *dev)
2127 {
2128 	struct ata_port *ap = dev->link->ap;
2129 
2130 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2131 		return 0;
2132 
2133 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2134 }
2135 
2136 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2137 {
2138 	struct ata_port *ap = dev->link->ap;
2139 	unsigned int err_mask;
2140 
2141 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2142 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2143 		return;
2144 	}
2145 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 				     0, ap->sector_buf, 1);
2147 	if (!err_mask) {
2148 		u8 *cmds = dev->ncq_send_recv_cmds;
2149 
2150 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2151 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2152 
2153 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2154 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2155 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2156 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2157 		}
2158 	}
2159 }
2160 
2161 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2162 {
2163 	struct ata_port *ap = dev->link->ap;
2164 	unsigned int err_mask;
2165 
2166 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2167 		ata_dev_warn(dev,
2168 			     "NCQ Send/Recv Log not supported\n");
2169 		return;
2170 	}
2171 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2172 				     0, ap->sector_buf, 1);
2173 	if (!err_mask) {
2174 		u8 *cmds = dev->ncq_non_data_cmds;
2175 
2176 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2177 	}
2178 }
2179 
2180 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2181 {
2182 	struct ata_port *ap = dev->link->ap;
2183 	unsigned int err_mask;
2184 
2185 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2186 		return;
2187 
2188 	err_mask = ata_read_log_page(dev,
2189 				     ATA_LOG_IDENTIFY_DEVICE,
2190 				     ATA_LOG_SATA_SETTINGS,
2191 				     ap->sector_buf,
2192 				     1);
2193 	if (err_mask)
2194 		goto not_supported;
2195 
2196 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2197 		goto not_supported;
2198 
2199 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2200 
2201 	return;
2202 
2203 not_supported:
2204 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2205 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2206 }
2207 
2208 static bool ata_dev_check_adapter(struct ata_device *dev,
2209 				  unsigned short vendor_id)
2210 {
2211 	struct pci_dev *pcidev = NULL;
2212 	struct device *parent_dev = NULL;
2213 
2214 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2215 	     parent_dev = parent_dev->parent) {
2216 		if (dev_is_pci(parent_dev)) {
2217 			pcidev = to_pci_dev(parent_dev);
2218 			if (pcidev->vendor == vendor_id)
2219 				return true;
2220 			break;
2221 		}
2222 	}
2223 
2224 	return false;
2225 }
2226 
2227 static int ata_dev_config_ncq(struct ata_device *dev,
2228 			       char *desc, size_t desc_sz)
2229 {
2230 	struct ata_port *ap = dev->link->ap;
2231 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2232 	unsigned int err_mask;
2233 	char *aa_desc = "";
2234 
2235 	if (!ata_id_has_ncq(dev->id)) {
2236 		desc[0] = '\0';
2237 		return 0;
2238 	}
2239 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2240 		return 0;
2241 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2242 		snprintf(desc, desc_sz, "NCQ (not used)");
2243 		return 0;
2244 	}
2245 
2246 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2247 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2248 		snprintf(desc, desc_sz, "NCQ (not used)");
2249 		return 0;
2250 	}
2251 
2252 	if (ap->flags & ATA_FLAG_NCQ) {
2253 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2254 		dev->flags |= ATA_DFLAG_NCQ;
2255 	}
2256 
2257 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2258 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2259 		ata_id_has_fpdma_aa(dev->id)) {
2260 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2261 			SATA_FPDMA_AA);
2262 		if (err_mask) {
2263 			ata_dev_err(dev,
2264 				    "failed to enable AA (error_mask=0x%x)\n",
2265 				    err_mask);
2266 			if (err_mask != AC_ERR_DEV) {
2267 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2268 				return -EIO;
2269 			}
2270 		} else
2271 			aa_desc = ", AA";
2272 	}
2273 
2274 	if (hdepth >= ddepth)
2275 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2276 	else
2277 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2278 			ddepth, aa_desc);
2279 
2280 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2281 		if (ata_id_has_ncq_send_and_recv(dev->id))
2282 			ata_dev_config_ncq_send_recv(dev);
2283 		if (ata_id_has_ncq_non_data(dev->id))
2284 			ata_dev_config_ncq_non_data(dev);
2285 		if (ata_id_has_ncq_prio(dev->id))
2286 			ata_dev_config_ncq_prio(dev);
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2293 {
2294 	unsigned int err_mask;
2295 
2296 	if (!ata_id_has_sense_reporting(dev->id))
2297 		return;
2298 
2299 	if (ata_id_sense_reporting_enabled(dev->id))
2300 		return;
2301 
2302 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2303 	if (err_mask) {
2304 		ata_dev_dbg(dev,
2305 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2306 			    err_mask);
2307 	}
2308 }
2309 
2310 static void ata_dev_config_zac(struct ata_device *dev)
2311 {
2312 	struct ata_port *ap = dev->link->ap;
2313 	unsigned int err_mask;
2314 	u8 *identify_buf = ap->sector_buf;
2315 
2316 	dev->zac_zones_optimal_open = U32_MAX;
2317 	dev->zac_zones_optimal_nonseq = U32_MAX;
2318 	dev->zac_zones_max_open = U32_MAX;
2319 
2320 	/*
2321 	 * Always set the 'ZAC' flag for Host-managed devices.
2322 	 */
2323 	if (dev->class == ATA_DEV_ZAC)
2324 		dev->flags |= ATA_DFLAG_ZAC;
2325 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2326 		/*
2327 		 * Check for host-aware devices.
2328 		 */
2329 		dev->flags |= ATA_DFLAG_ZAC;
2330 
2331 	if (!(dev->flags & ATA_DFLAG_ZAC))
2332 		return;
2333 
2334 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2335 		ata_dev_warn(dev,
2336 			     "ATA Zoned Information Log not supported\n");
2337 		return;
2338 	}
2339 
2340 	/*
2341 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2342 	 */
2343 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2344 				     ATA_LOG_ZONED_INFORMATION,
2345 				     identify_buf, 1);
2346 	if (!err_mask) {
2347 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2348 
2349 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2350 		if ((zoned_cap >> 63))
2351 			dev->zac_zoned_cap = (zoned_cap & 1);
2352 		opt_open = get_unaligned_le64(&identify_buf[24]);
2353 		if ((opt_open >> 63))
2354 			dev->zac_zones_optimal_open = (u32)opt_open;
2355 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2356 		if ((opt_nonseq >> 63))
2357 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2358 		max_open = get_unaligned_le64(&identify_buf[40]);
2359 		if ((max_open >> 63))
2360 			dev->zac_zones_max_open = (u32)max_open;
2361 	}
2362 }
2363 
2364 static void ata_dev_config_trusted(struct ata_device *dev)
2365 {
2366 	struct ata_port *ap = dev->link->ap;
2367 	u64 trusted_cap;
2368 	unsigned int err;
2369 
2370 	if (!ata_id_has_trusted(dev->id))
2371 		return;
2372 
2373 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2374 		ata_dev_warn(dev,
2375 			     "Security Log not supported\n");
2376 		return;
2377 	}
2378 
2379 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2380 			ap->sector_buf, 1);
2381 	if (err)
2382 		return;
2383 
2384 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2385 	if (!(trusted_cap & (1ULL << 63))) {
2386 		ata_dev_dbg(dev,
2387 			    "Trusted Computing capability qword not valid!\n");
2388 		return;
2389 	}
2390 
2391 	if (trusted_cap & (1 << 0))
2392 		dev->flags |= ATA_DFLAG_TRUSTED;
2393 }
2394 
2395 static void ata_dev_config_cdl(struct ata_device *dev)
2396 {
2397 	struct ata_port *ap = dev->link->ap;
2398 	unsigned int err_mask;
2399 	bool cdl_enabled;
2400 	u64 val;
2401 
2402 	if (ata_id_major_version(dev->id) < 12)
2403 		goto not_supported;
2404 
2405 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2406 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2407 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2408 		goto not_supported;
2409 
2410 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2411 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2412 				     ap->sector_buf, 1);
2413 	if (err_mask)
2414 		goto not_supported;
2415 
2416 	/* Check Command Duration Limit Supported bits */
2417 	val = get_unaligned_le64(&ap->sector_buf[168]);
2418 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2419 		goto not_supported;
2420 
2421 	/* Warn the user if command duration guideline is not supported */
2422 	if (!(val & BIT_ULL(1)))
2423 		ata_dev_warn(dev,
2424 			"Command duration guideline is not supported\n");
2425 
2426 	/*
2427 	 * We must have support for the sense data for successful NCQ commands
2428 	 * log indicated by the successful NCQ command sense data supported bit.
2429 	 */
2430 	val = get_unaligned_le64(&ap->sector_buf[8]);
2431 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2432 		ata_dev_warn(dev,
2433 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2434 		goto not_supported;
2435 	}
2436 
2437 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2438 	if (!ata_id_has_ncq_autosense(dev->id)) {
2439 		ata_dev_warn(dev,
2440 			"CDL supported but NCQ autosense is not supported\n");
2441 		goto not_supported;
2442 	}
2443 
2444 	/*
2445 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2446 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2447 	 */
2448 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2449 				     ATA_LOG_CURRENT_SETTINGS,
2450 				     ap->sector_buf, 1);
2451 	if (err_mask)
2452 		goto not_supported;
2453 
2454 	val = get_unaligned_le64(&ap->sector_buf[8]);
2455 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2456 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2457 		if (!cdl_enabled) {
2458 			/* Enable CDL on the device */
2459 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2460 			if (err_mask) {
2461 				ata_dev_err(dev,
2462 					    "Enable CDL feature failed\n");
2463 				goto not_supported;
2464 			}
2465 		}
2466 	} else {
2467 		if (cdl_enabled) {
2468 			/* Disable CDL on the device */
2469 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2470 			if (err_mask) {
2471 				ata_dev_err(dev,
2472 					    "Disable CDL feature failed\n");
2473 				goto not_supported;
2474 			}
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2480 	 * sense data for successful NCQ commands is enabled to work properly.
2481 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2482 	 * if supported.
2483 	 */
2484 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2485 		err_mask = ata_dev_set_feature(dev,
2486 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2487 		if (err_mask) {
2488 			ata_dev_warn(dev,
2489 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2490 				     err_mask);
2491 			goto not_supported;
2492 		}
2493 	}
2494 
2495 	/*
2496 	 * Allocate a buffer to handle reading the sense data for successful
2497 	 * NCQ Commands log page for commands using a CDL with one of the limit
2498 	 * policy set to 0xD (successful completion with sense data available
2499 	 * bit set).
2500 	 */
2501 	if (!ap->ncq_sense_buf) {
2502 		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2503 		if (!ap->ncq_sense_buf)
2504 			goto not_supported;
2505 	}
2506 
2507 	/*
2508 	 * Command duration limits is supported: cache the CDL log page 18h
2509 	 * (command duration descriptors).
2510 	 */
2511 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2512 	if (err_mask) {
2513 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2514 		goto not_supported;
2515 	}
2516 
2517 	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2518 	dev->flags |= ATA_DFLAG_CDL;
2519 
2520 	return;
2521 
2522 not_supported:
2523 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2524 	kfree(ap->ncq_sense_buf);
2525 	ap->ncq_sense_buf = NULL;
2526 }
2527 
2528 static int ata_dev_config_lba(struct ata_device *dev)
2529 {
2530 	const u16 *id = dev->id;
2531 	const char *lba_desc;
2532 	char ncq_desc[24];
2533 	int ret;
2534 
2535 	dev->flags |= ATA_DFLAG_LBA;
2536 
2537 	if (ata_id_has_lba48(id)) {
2538 		lba_desc = "LBA48";
2539 		dev->flags |= ATA_DFLAG_LBA48;
2540 		if (dev->n_sectors >= (1UL << 28) &&
2541 		    ata_id_has_flush_ext(id))
2542 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2543 	} else {
2544 		lba_desc = "LBA";
2545 	}
2546 
2547 	/* config NCQ */
2548 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2549 
2550 	/* print device info to dmesg */
2551 	if (ata_dev_print_info(dev))
2552 		ata_dev_info(dev,
2553 			     "%llu sectors, multi %u: %s %s\n",
2554 			     (unsigned long long)dev->n_sectors,
2555 			     dev->multi_count, lba_desc, ncq_desc);
2556 
2557 	return ret;
2558 }
2559 
2560 static void ata_dev_config_chs(struct ata_device *dev)
2561 {
2562 	const u16 *id = dev->id;
2563 
2564 	if (ata_id_current_chs_valid(id)) {
2565 		/* Current CHS translation is valid. */
2566 		dev->cylinders = id[54];
2567 		dev->heads     = id[55];
2568 		dev->sectors   = id[56];
2569 	} else {
2570 		/* Default translation */
2571 		dev->cylinders	= id[1];
2572 		dev->heads	= id[3];
2573 		dev->sectors	= id[6];
2574 	}
2575 
2576 	/* print device info to dmesg */
2577 	if (ata_dev_print_info(dev))
2578 		ata_dev_info(dev,
2579 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2580 			     (unsigned long long)dev->n_sectors,
2581 			     dev->multi_count, dev->cylinders,
2582 			     dev->heads, dev->sectors);
2583 }
2584 
2585 static void ata_dev_config_fua(struct ata_device *dev)
2586 {
2587 	/* Ignore FUA support if its use is disabled globally */
2588 	if (!libata_fua)
2589 		goto nofua;
2590 
2591 	/* Ignore devices without support for WRITE DMA FUA EXT */
2592 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2593 		goto nofua;
2594 
2595 	/* Ignore known bad devices and devices that lack NCQ support */
2596 	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2597 		goto nofua;
2598 
2599 	dev->flags |= ATA_DFLAG_FUA;
2600 
2601 	return;
2602 
2603 nofua:
2604 	dev->flags &= ~ATA_DFLAG_FUA;
2605 }
2606 
2607 static void ata_dev_config_devslp(struct ata_device *dev)
2608 {
2609 	u8 *sata_setting = dev->link->ap->sector_buf;
2610 	unsigned int err_mask;
2611 	int i, j;
2612 
2613 	/*
2614 	 * Check device sleep capability. Get DevSlp timing variables
2615 	 * from SATA Settings page of Identify Device Data Log.
2616 	 */
2617 	if (!ata_id_has_devslp(dev->id) ||
2618 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2619 		return;
2620 
2621 	err_mask = ata_read_log_page(dev,
2622 				     ATA_LOG_IDENTIFY_DEVICE,
2623 				     ATA_LOG_SATA_SETTINGS,
2624 				     sata_setting, 1);
2625 	if (err_mask)
2626 		return;
2627 
2628 	dev->flags |= ATA_DFLAG_DEVSLP;
2629 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2630 		j = ATA_LOG_DEVSLP_OFFSET + i;
2631 		dev->devslp_timing[i] = sata_setting[j];
2632 	}
2633 }
2634 
2635 static void ata_dev_config_cpr(struct ata_device *dev)
2636 {
2637 	unsigned int err_mask;
2638 	size_t buf_len;
2639 	int i, nr_cpr = 0;
2640 	struct ata_cpr_log *cpr_log = NULL;
2641 	u8 *desc, *buf = NULL;
2642 
2643 	if (ata_id_major_version(dev->id) < 11)
2644 		goto out;
2645 
2646 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2647 	if (buf_len == 0)
2648 		goto out;
2649 
2650 	/*
2651 	 * Read the concurrent positioning ranges log (0x47). We can have at
2652 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2653 	 * size, so use the size reported in the GPL directory. Reading beyond
2654 	 * the supported length will result in an error.
2655 	 */
2656 	buf_len <<= 9;
2657 	buf = kzalloc(buf_len, GFP_KERNEL);
2658 	if (!buf)
2659 		goto out;
2660 
2661 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2662 				     0, buf, buf_len >> 9);
2663 	if (err_mask)
2664 		goto out;
2665 
2666 	nr_cpr = buf[0];
2667 	if (!nr_cpr)
2668 		goto out;
2669 
2670 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2671 	if (!cpr_log)
2672 		goto out;
2673 
2674 	cpr_log->nr_cpr = nr_cpr;
2675 	desc = &buf[64];
2676 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2677 		cpr_log->cpr[i].num = desc[0];
2678 		cpr_log->cpr[i].num_storage_elements = desc[1];
2679 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2680 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2681 	}
2682 
2683 out:
2684 	swap(dev->cpr_log, cpr_log);
2685 	kfree(cpr_log);
2686 	kfree(buf);
2687 }
2688 
2689 static void ata_dev_print_features(struct ata_device *dev)
2690 {
2691 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2692 		return;
2693 
2694 	ata_dev_info(dev,
2695 		     "Features:%s%s%s%s%s%s%s%s\n",
2696 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2697 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2698 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2699 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2700 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2701 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2702 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2703 		     dev->cpr_log ? " CPR" : "");
2704 }
2705 
2706 /**
2707  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2708  *	@dev: Target device to configure
2709  *
2710  *	Configure @dev according to @dev->id.  Generic and low-level
2711  *	driver specific fixups are also applied.
2712  *
2713  *	LOCKING:
2714  *	Kernel thread context (may sleep)
2715  *
2716  *	RETURNS:
2717  *	0 on success, -errno otherwise
2718  */
2719 int ata_dev_configure(struct ata_device *dev)
2720 {
2721 	struct ata_port *ap = dev->link->ap;
2722 	bool print_info = ata_dev_print_info(dev);
2723 	const u16 *id = dev->id;
2724 	unsigned int xfer_mask;
2725 	unsigned int err_mask;
2726 	char revbuf[7];		/* XYZ-99\0 */
2727 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2728 	char modelbuf[ATA_ID_PROD_LEN+1];
2729 	int rc;
2730 
2731 	if (!ata_dev_enabled(dev)) {
2732 		ata_dev_dbg(dev, "no device\n");
2733 		return 0;
2734 	}
2735 
2736 	/* set horkage */
2737 	dev->horkage |= ata_dev_blacklisted(dev);
2738 	ata_force_horkage(dev);
2739 
2740 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2741 		ata_dev_info(dev, "unsupported device, disabling\n");
2742 		ata_dev_disable(dev);
2743 		return 0;
2744 	}
2745 
2746 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2747 	    dev->class == ATA_DEV_ATAPI) {
2748 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2749 			     atapi_enabled ? "not supported with this driver"
2750 			     : "disabled");
2751 		ata_dev_disable(dev);
2752 		return 0;
2753 	}
2754 
2755 	rc = ata_do_link_spd_horkage(dev);
2756 	if (rc)
2757 		return rc;
2758 
2759 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2760 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2761 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2762 		dev->horkage |= ATA_HORKAGE_NOLPM;
2763 
2764 	if (ap->flags & ATA_FLAG_NO_LPM)
2765 		dev->horkage |= ATA_HORKAGE_NOLPM;
2766 
2767 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2768 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2769 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2770 	}
2771 
2772 	/* let ACPI work its magic */
2773 	rc = ata_acpi_on_devcfg(dev);
2774 	if (rc)
2775 		return rc;
2776 
2777 	/* massage HPA, do it early as it might change IDENTIFY data */
2778 	rc = ata_hpa_resize(dev);
2779 	if (rc)
2780 		return rc;
2781 
2782 	/* print device capabilities */
2783 	ata_dev_dbg(dev,
2784 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2785 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2786 		    __func__,
2787 		    id[49], id[82], id[83], id[84],
2788 		    id[85], id[86], id[87], id[88]);
2789 
2790 	/* initialize to-be-configured parameters */
2791 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2792 	dev->max_sectors = 0;
2793 	dev->cdb_len = 0;
2794 	dev->n_sectors = 0;
2795 	dev->cylinders = 0;
2796 	dev->heads = 0;
2797 	dev->sectors = 0;
2798 	dev->multi_count = 0;
2799 
2800 	/*
2801 	 * common ATA, ATAPI feature tests
2802 	 */
2803 
2804 	/* find max transfer mode; for printk only */
2805 	xfer_mask = ata_id_xfermask(id);
2806 
2807 	ata_dump_id(dev, id);
2808 
2809 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2810 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2811 			sizeof(fwrevbuf));
2812 
2813 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2814 			sizeof(modelbuf));
2815 
2816 	/* ATA-specific feature tests */
2817 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2818 		if (ata_id_is_cfa(id)) {
2819 			/* CPRM may make this media unusable */
2820 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2821 				ata_dev_warn(dev,
2822 	"supports DRM functions and may not be fully accessible\n");
2823 			snprintf(revbuf, 7, "CFA");
2824 		} else {
2825 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2826 			/* Warn the user if the device has TPM extensions */
2827 			if (ata_id_has_tpm(id))
2828 				ata_dev_warn(dev,
2829 	"supports DRM functions and may not be fully accessible\n");
2830 		}
2831 
2832 		dev->n_sectors = ata_id_n_sectors(id);
2833 
2834 		/* get current R/W Multiple count setting */
2835 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2836 			unsigned int max = dev->id[47] & 0xff;
2837 			unsigned int cnt = dev->id[59] & 0xff;
2838 			/* only recognize/allow powers of two here */
2839 			if (is_power_of_2(max) && is_power_of_2(cnt))
2840 				if (cnt <= max)
2841 					dev->multi_count = cnt;
2842 		}
2843 
2844 		/* print device info to dmesg */
2845 		if (print_info)
2846 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2847 				     revbuf, modelbuf, fwrevbuf,
2848 				     ata_mode_string(xfer_mask));
2849 
2850 		if (ata_id_has_lba(id)) {
2851 			rc = ata_dev_config_lba(dev);
2852 			if (rc)
2853 				return rc;
2854 		} else {
2855 			ata_dev_config_chs(dev);
2856 		}
2857 
2858 		ata_dev_config_fua(dev);
2859 		ata_dev_config_devslp(dev);
2860 		ata_dev_config_sense_reporting(dev);
2861 		ata_dev_config_zac(dev);
2862 		ata_dev_config_trusted(dev);
2863 		ata_dev_config_cpr(dev);
2864 		ata_dev_config_cdl(dev);
2865 		dev->cdb_len = 32;
2866 
2867 		if (print_info)
2868 			ata_dev_print_features(dev);
2869 	}
2870 
2871 	/* ATAPI-specific feature tests */
2872 	else if (dev->class == ATA_DEV_ATAPI) {
2873 		const char *cdb_intr_string = "";
2874 		const char *atapi_an_string = "";
2875 		const char *dma_dir_string = "";
2876 		u32 sntf;
2877 
2878 		rc = atapi_cdb_len(id);
2879 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2880 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2881 			rc = -EINVAL;
2882 			goto err_out_nosup;
2883 		}
2884 		dev->cdb_len = (unsigned int) rc;
2885 
2886 		/* Enable ATAPI AN if both the host and device have
2887 		 * the support.  If PMP is attached, SNTF is required
2888 		 * to enable ATAPI AN to discern between PHY status
2889 		 * changed notifications and ATAPI ANs.
2890 		 */
2891 		if (atapi_an &&
2892 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2893 		    (!sata_pmp_attached(ap) ||
2894 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2895 			/* issue SET feature command to turn this on */
2896 			err_mask = ata_dev_set_feature(dev,
2897 					SETFEATURES_SATA_ENABLE, SATA_AN);
2898 			if (err_mask)
2899 				ata_dev_err(dev,
2900 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2901 					    err_mask);
2902 			else {
2903 				dev->flags |= ATA_DFLAG_AN;
2904 				atapi_an_string = ", ATAPI AN";
2905 			}
2906 		}
2907 
2908 		if (ata_id_cdb_intr(dev->id)) {
2909 			dev->flags |= ATA_DFLAG_CDB_INTR;
2910 			cdb_intr_string = ", CDB intr";
2911 		}
2912 
2913 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2914 			dev->flags |= ATA_DFLAG_DMADIR;
2915 			dma_dir_string = ", DMADIR";
2916 		}
2917 
2918 		if (ata_id_has_da(dev->id)) {
2919 			dev->flags |= ATA_DFLAG_DA;
2920 			zpodd_init(dev);
2921 		}
2922 
2923 		/* print device info to dmesg */
2924 		if (print_info)
2925 			ata_dev_info(dev,
2926 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2927 				     modelbuf, fwrevbuf,
2928 				     ata_mode_string(xfer_mask),
2929 				     cdb_intr_string, atapi_an_string,
2930 				     dma_dir_string);
2931 	}
2932 
2933 	/* determine max_sectors */
2934 	dev->max_sectors = ATA_MAX_SECTORS;
2935 	if (dev->flags & ATA_DFLAG_LBA48)
2936 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2937 
2938 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2939 	   200 sectors */
2940 	if (ata_dev_knobble(dev)) {
2941 		if (print_info)
2942 			ata_dev_info(dev, "applying bridge limits\n");
2943 		dev->udma_mask &= ATA_UDMA5;
2944 		dev->max_sectors = ATA_MAX_SECTORS;
2945 	}
2946 
2947 	if ((dev->class == ATA_DEV_ATAPI) &&
2948 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2949 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2950 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2951 	}
2952 
2953 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2954 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2955 					 dev->max_sectors);
2956 
2957 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2958 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2959 					 dev->max_sectors);
2960 
2961 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2962 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2963 
2964 	if (ap->ops->dev_config)
2965 		ap->ops->dev_config(dev);
2966 
2967 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2968 		/* Let the user know. We don't want to disallow opens for
2969 		   rescue purposes, or in case the vendor is just a blithering
2970 		   idiot. Do this after the dev_config call as some controllers
2971 		   with buggy firmware may want to avoid reporting false device
2972 		   bugs */
2973 
2974 		if (print_info) {
2975 			ata_dev_warn(dev,
2976 "Drive reports diagnostics failure. This may indicate a drive\n");
2977 			ata_dev_warn(dev,
2978 "fault or invalid emulation. Contact drive vendor for information.\n");
2979 		}
2980 	}
2981 
2982 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2983 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2984 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2985 	}
2986 
2987 	return 0;
2988 
2989 err_out_nosup:
2990 	return rc;
2991 }
2992 
2993 /**
2994  *	ata_cable_40wire	-	return 40 wire cable type
2995  *	@ap: port
2996  *
2997  *	Helper method for drivers which want to hardwire 40 wire cable
2998  *	detection.
2999  */
3000 
3001 int ata_cable_40wire(struct ata_port *ap)
3002 {
3003 	return ATA_CBL_PATA40;
3004 }
3005 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3006 
3007 /**
3008  *	ata_cable_80wire	-	return 80 wire cable type
3009  *	@ap: port
3010  *
3011  *	Helper method for drivers which want to hardwire 80 wire cable
3012  *	detection.
3013  */
3014 
3015 int ata_cable_80wire(struct ata_port *ap)
3016 {
3017 	return ATA_CBL_PATA80;
3018 }
3019 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3020 
3021 /**
3022  *	ata_cable_unknown	-	return unknown PATA cable.
3023  *	@ap: port
3024  *
3025  *	Helper method for drivers which have no PATA cable detection.
3026  */
3027 
3028 int ata_cable_unknown(struct ata_port *ap)
3029 {
3030 	return ATA_CBL_PATA_UNK;
3031 }
3032 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3033 
3034 /**
3035  *	ata_cable_ignore	-	return ignored PATA cable.
3036  *	@ap: port
3037  *
3038  *	Helper method for drivers which don't use cable type to limit
3039  *	transfer mode.
3040  */
3041 int ata_cable_ignore(struct ata_port *ap)
3042 {
3043 	return ATA_CBL_PATA_IGN;
3044 }
3045 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3046 
3047 /**
3048  *	ata_cable_sata	-	return SATA cable type
3049  *	@ap: port
3050  *
3051  *	Helper method for drivers which have SATA cables
3052  */
3053 
3054 int ata_cable_sata(struct ata_port *ap)
3055 {
3056 	return ATA_CBL_SATA;
3057 }
3058 EXPORT_SYMBOL_GPL(ata_cable_sata);
3059 
3060 /**
3061  *	sata_print_link_status - Print SATA link status
3062  *	@link: SATA link to printk link status about
3063  *
3064  *	This function prints link speed and status of a SATA link.
3065  *
3066  *	LOCKING:
3067  *	None.
3068  */
3069 static void sata_print_link_status(struct ata_link *link)
3070 {
3071 	u32 sstatus, scontrol, tmp;
3072 
3073 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3074 		return;
3075 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3076 		return;
3077 
3078 	if (ata_phys_link_online(link)) {
3079 		tmp = (sstatus >> 4) & 0xf;
3080 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3081 			      sata_spd_string(tmp), sstatus, scontrol);
3082 	} else {
3083 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3084 			      sstatus, scontrol);
3085 	}
3086 }
3087 
3088 /**
3089  *	ata_dev_pair		-	return other device on cable
3090  *	@adev: device
3091  *
3092  *	Obtain the other device on the same cable, or if none is
3093  *	present NULL is returned
3094  */
3095 
3096 struct ata_device *ata_dev_pair(struct ata_device *adev)
3097 {
3098 	struct ata_link *link = adev->link;
3099 	struct ata_device *pair = &link->device[1 - adev->devno];
3100 	if (!ata_dev_enabled(pair))
3101 		return NULL;
3102 	return pair;
3103 }
3104 EXPORT_SYMBOL_GPL(ata_dev_pair);
3105 
3106 /**
3107  *	sata_down_spd_limit - adjust SATA spd limit downward
3108  *	@link: Link to adjust SATA spd limit for
3109  *	@spd_limit: Additional limit
3110  *
3111  *	Adjust SATA spd limit of @link downward.  Note that this
3112  *	function only adjusts the limit.  The change must be applied
3113  *	using sata_set_spd().
3114  *
3115  *	If @spd_limit is non-zero, the speed is limited to equal to or
3116  *	lower than @spd_limit if such speed is supported.  If
3117  *	@spd_limit is slower than any supported speed, only the lowest
3118  *	supported speed is allowed.
3119  *
3120  *	LOCKING:
3121  *	Inherited from caller.
3122  *
3123  *	RETURNS:
3124  *	0 on success, negative errno on failure
3125  */
3126 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3127 {
3128 	u32 sstatus, spd, mask;
3129 	int rc, bit;
3130 
3131 	if (!sata_scr_valid(link))
3132 		return -EOPNOTSUPP;
3133 
3134 	/* If SCR can be read, use it to determine the current SPD.
3135 	 * If not, use cached value in link->sata_spd.
3136 	 */
3137 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3138 	if (rc == 0 && ata_sstatus_online(sstatus))
3139 		spd = (sstatus >> 4) & 0xf;
3140 	else
3141 		spd = link->sata_spd;
3142 
3143 	mask = link->sata_spd_limit;
3144 	if (mask <= 1)
3145 		return -EINVAL;
3146 
3147 	/* unconditionally mask off the highest bit */
3148 	bit = fls(mask) - 1;
3149 	mask &= ~(1 << bit);
3150 
3151 	/*
3152 	 * Mask off all speeds higher than or equal to the current one.  At
3153 	 * this point, if current SPD is not available and we previously
3154 	 * recorded the link speed from SStatus, the driver has already
3155 	 * masked off the highest bit so mask should already be 1 or 0.
3156 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3157 	 * not previously recorded speed from SStatus.  Just return in this
3158 	 * case.
3159 	 */
3160 	if (spd > 1)
3161 		mask &= (1 << (spd - 1)) - 1;
3162 	else if (link->sata_spd)
3163 		return -EINVAL;
3164 
3165 	/* were we already at the bottom? */
3166 	if (!mask)
3167 		return -EINVAL;
3168 
3169 	if (spd_limit) {
3170 		if (mask & ((1 << spd_limit) - 1))
3171 			mask &= (1 << spd_limit) - 1;
3172 		else {
3173 			bit = ffs(mask) - 1;
3174 			mask = 1 << bit;
3175 		}
3176 	}
3177 
3178 	link->sata_spd_limit = mask;
3179 
3180 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3181 		      sata_spd_string(fls(mask)));
3182 
3183 	return 0;
3184 }
3185 
3186 #ifdef CONFIG_ATA_ACPI
3187 /**
3188  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3189  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3190  *	@cycle: cycle duration in ns
3191  *
3192  *	Return matching xfer mode for @cycle.  The returned mode is of
3193  *	the transfer type specified by @xfer_shift.  If @cycle is too
3194  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3195  *	than the fastest known mode, the fasted mode is returned.
3196  *
3197  *	LOCKING:
3198  *	None.
3199  *
3200  *	RETURNS:
3201  *	Matching xfer_mode, 0xff if no match found.
3202  */
3203 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3204 {
3205 	u8 base_mode = 0xff, last_mode = 0xff;
3206 	const struct ata_xfer_ent *ent;
3207 	const struct ata_timing *t;
3208 
3209 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3210 		if (ent->shift == xfer_shift)
3211 			base_mode = ent->base;
3212 
3213 	for (t = ata_timing_find_mode(base_mode);
3214 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3215 		unsigned short this_cycle;
3216 
3217 		switch (xfer_shift) {
3218 		case ATA_SHIFT_PIO:
3219 		case ATA_SHIFT_MWDMA:
3220 			this_cycle = t->cycle;
3221 			break;
3222 		case ATA_SHIFT_UDMA:
3223 			this_cycle = t->udma;
3224 			break;
3225 		default:
3226 			return 0xff;
3227 		}
3228 
3229 		if (cycle > this_cycle)
3230 			break;
3231 
3232 		last_mode = t->mode;
3233 	}
3234 
3235 	return last_mode;
3236 }
3237 #endif
3238 
3239 /**
3240  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3241  *	@dev: Device to adjust xfer masks
3242  *	@sel: ATA_DNXFER_* selector
3243  *
3244  *	Adjust xfer masks of @dev downward.  Note that this function
3245  *	does not apply the change.  Invoking ata_set_mode() afterwards
3246  *	will apply the limit.
3247  *
3248  *	LOCKING:
3249  *	Inherited from caller.
3250  *
3251  *	RETURNS:
3252  *	0 on success, negative errno on failure
3253  */
3254 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3255 {
3256 	char buf[32];
3257 	unsigned int orig_mask, xfer_mask;
3258 	unsigned int pio_mask, mwdma_mask, udma_mask;
3259 	int quiet, highbit;
3260 
3261 	quiet = !!(sel & ATA_DNXFER_QUIET);
3262 	sel &= ~ATA_DNXFER_QUIET;
3263 
3264 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3265 						  dev->mwdma_mask,
3266 						  dev->udma_mask);
3267 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3268 
3269 	switch (sel) {
3270 	case ATA_DNXFER_PIO:
3271 		highbit = fls(pio_mask) - 1;
3272 		pio_mask &= ~(1 << highbit);
3273 		break;
3274 
3275 	case ATA_DNXFER_DMA:
3276 		if (udma_mask) {
3277 			highbit = fls(udma_mask) - 1;
3278 			udma_mask &= ~(1 << highbit);
3279 			if (!udma_mask)
3280 				return -ENOENT;
3281 		} else if (mwdma_mask) {
3282 			highbit = fls(mwdma_mask) - 1;
3283 			mwdma_mask &= ~(1 << highbit);
3284 			if (!mwdma_mask)
3285 				return -ENOENT;
3286 		}
3287 		break;
3288 
3289 	case ATA_DNXFER_40C:
3290 		udma_mask &= ATA_UDMA_MASK_40C;
3291 		break;
3292 
3293 	case ATA_DNXFER_FORCE_PIO0:
3294 		pio_mask &= 1;
3295 		fallthrough;
3296 	case ATA_DNXFER_FORCE_PIO:
3297 		mwdma_mask = 0;
3298 		udma_mask = 0;
3299 		break;
3300 
3301 	default:
3302 		BUG();
3303 	}
3304 
3305 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3306 
3307 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3308 		return -ENOENT;
3309 
3310 	if (!quiet) {
3311 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3312 			snprintf(buf, sizeof(buf), "%s:%s",
3313 				 ata_mode_string(xfer_mask),
3314 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3315 		else
3316 			snprintf(buf, sizeof(buf), "%s",
3317 				 ata_mode_string(xfer_mask));
3318 
3319 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3320 	}
3321 
3322 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3323 			    &dev->udma_mask);
3324 
3325 	return 0;
3326 }
3327 
3328 static int ata_dev_set_mode(struct ata_device *dev)
3329 {
3330 	struct ata_port *ap = dev->link->ap;
3331 	struct ata_eh_context *ehc = &dev->link->eh_context;
3332 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3333 	const char *dev_err_whine = "";
3334 	int ign_dev_err = 0;
3335 	unsigned int err_mask = 0;
3336 	int rc;
3337 
3338 	dev->flags &= ~ATA_DFLAG_PIO;
3339 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3340 		dev->flags |= ATA_DFLAG_PIO;
3341 
3342 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3343 		dev_err_whine = " (SET_XFERMODE skipped)";
3344 	else {
3345 		if (nosetxfer)
3346 			ata_dev_warn(dev,
3347 				     "NOSETXFER but PATA detected - can't "
3348 				     "skip SETXFER, might malfunction\n");
3349 		err_mask = ata_dev_set_xfermode(dev);
3350 	}
3351 
3352 	if (err_mask & ~AC_ERR_DEV)
3353 		goto fail;
3354 
3355 	/* revalidate */
3356 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3357 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3358 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3359 	if (rc)
3360 		return rc;
3361 
3362 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3363 		/* Old CFA may refuse this command, which is just fine */
3364 		if (ata_id_is_cfa(dev->id))
3365 			ign_dev_err = 1;
3366 		/* Catch several broken garbage emulations plus some pre
3367 		   ATA devices */
3368 		if (ata_id_major_version(dev->id) == 0 &&
3369 					dev->pio_mode <= XFER_PIO_2)
3370 			ign_dev_err = 1;
3371 		/* Some very old devices and some bad newer ones fail
3372 		   any kind of SET_XFERMODE request but support PIO0-2
3373 		   timings and no IORDY */
3374 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3375 			ign_dev_err = 1;
3376 	}
3377 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3378 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3379 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3380 	    dev->dma_mode == XFER_MW_DMA_0 &&
3381 	    (dev->id[63] >> 8) & 1)
3382 		ign_dev_err = 1;
3383 
3384 	/* if the device is actually configured correctly, ignore dev err */
3385 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3386 		ign_dev_err = 1;
3387 
3388 	if (err_mask & AC_ERR_DEV) {
3389 		if (!ign_dev_err)
3390 			goto fail;
3391 		else
3392 			dev_err_whine = " (device error ignored)";
3393 	}
3394 
3395 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3396 		    dev->xfer_shift, (int)dev->xfer_mode);
3397 
3398 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3399 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3400 		ata_dev_info(dev, "configured for %s%s\n",
3401 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3402 			     dev_err_whine);
3403 
3404 	return 0;
3405 
3406  fail:
3407 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3408 	return -EIO;
3409 }
3410 
3411 /**
3412  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3413  *	@link: link on which timings will be programmed
3414  *	@r_failed_dev: out parameter for failed device
3415  *
3416  *	Standard implementation of the function used to tune and set
3417  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3418  *	ata_dev_set_mode() fails, pointer to the failing device is
3419  *	returned in @r_failed_dev.
3420  *
3421  *	LOCKING:
3422  *	PCI/etc. bus probe sem.
3423  *
3424  *	RETURNS:
3425  *	0 on success, negative errno otherwise
3426  */
3427 
3428 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3429 {
3430 	struct ata_port *ap = link->ap;
3431 	struct ata_device *dev;
3432 	int rc = 0, used_dma = 0, found = 0;
3433 
3434 	/* step 1: calculate xfer_mask */
3435 	ata_for_each_dev(dev, link, ENABLED) {
3436 		unsigned int pio_mask, dma_mask;
3437 		unsigned int mode_mask;
3438 
3439 		mode_mask = ATA_DMA_MASK_ATA;
3440 		if (dev->class == ATA_DEV_ATAPI)
3441 			mode_mask = ATA_DMA_MASK_ATAPI;
3442 		else if (ata_id_is_cfa(dev->id))
3443 			mode_mask = ATA_DMA_MASK_CFA;
3444 
3445 		ata_dev_xfermask(dev);
3446 		ata_force_xfermask(dev);
3447 
3448 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3449 
3450 		if (libata_dma_mask & mode_mask)
3451 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3452 						     dev->udma_mask);
3453 		else
3454 			dma_mask = 0;
3455 
3456 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3457 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3458 
3459 		found = 1;
3460 		if (ata_dma_enabled(dev))
3461 			used_dma = 1;
3462 	}
3463 	if (!found)
3464 		goto out;
3465 
3466 	/* step 2: always set host PIO timings */
3467 	ata_for_each_dev(dev, link, ENABLED) {
3468 		if (dev->pio_mode == 0xff) {
3469 			ata_dev_warn(dev, "no PIO support\n");
3470 			rc = -EINVAL;
3471 			goto out;
3472 		}
3473 
3474 		dev->xfer_mode = dev->pio_mode;
3475 		dev->xfer_shift = ATA_SHIFT_PIO;
3476 		if (ap->ops->set_piomode)
3477 			ap->ops->set_piomode(ap, dev);
3478 	}
3479 
3480 	/* step 3: set host DMA timings */
3481 	ata_for_each_dev(dev, link, ENABLED) {
3482 		if (!ata_dma_enabled(dev))
3483 			continue;
3484 
3485 		dev->xfer_mode = dev->dma_mode;
3486 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3487 		if (ap->ops->set_dmamode)
3488 			ap->ops->set_dmamode(ap, dev);
3489 	}
3490 
3491 	/* step 4: update devices' xfer mode */
3492 	ata_for_each_dev(dev, link, ENABLED) {
3493 		rc = ata_dev_set_mode(dev);
3494 		if (rc)
3495 			goto out;
3496 	}
3497 
3498 	/* Record simplex status. If we selected DMA then the other
3499 	 * host channels are not permitted to do so.
3500 	 */
3501 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3502 		ap->host->simplex_claimed = ap;
3503 
3504  out:
3505 	if (rc)
3506 		*r_failed_dev = dev;
3507 	return rc;
3508 }
3509 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3510 
3511 /**
3512  *	ata_wait_ready - wait for link to become ready
3513  *	@link: link to be waited on
3514  *	@deadline: deadline jiffies for the operation
3515  *	@check_ready: callback to check link readiness
3516  *
3517  *	Wait for @link to become ready.  @check_ready should return
3518  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3519  *	link doesn't seem to be occupied, other errno for other error
3520  *	conditions.
3521  *
3522  *	Transient -ENODEV conditions are allowed for
3523  *	ATA_TMOUT_FF_WAIT.
3524  *
3525  *	LOCKING:
3526  *	EH context.
3527  *
3528  *	RETURNS:
3529  *	0 if @link is ready before @deadline; otherwise, -errno.
3530  */
3531 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3532 		   int (*check_ready)(struct ata_link *link))
3533 {
3534 	unsigned long start = jiffies;
3535 	unsigned long nodev_deadline;
3536 	int warned = 0;
3537 
3538 	/* choose which 0xff timeout to use, read comment in libata.h */
3539 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3540 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3541 	else
3542 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3543 
3544 	/* Slave readiness can't be tested separately from master.  On
3545 	 * M/S emulation configuration, this function should be called
3546 	 * only on the master and it will handle both master and slave.
3547 	 */
3548 	WARN_ON(link == link->ap->slave_link);
3549 
3550 	if (time_after(nodev_deadline, deadline))
3551 		nodev_deadline = deadline;
3552 
3553 	while (1) {
3554 		unsigned long now = jiffies;
3555 		int ready, tmp;
3556 
3557 		ready = tmp = check_ready(link);
3558 		if (ready > 0)
3559 			return 0;
3560 
3561 		/*
3562 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3563 		 * is online.  Also, some SATA devices take a long
3564 		 * time to clear 0xff after reset.  Wait for
3565 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3566 		 * offline.
3567 		 *
3568 		 * Note that some PATA controllers (pata_ali) explode
3569 		 * if status register is read more than once when
3570 		 * there's no device attached.
3571 		 */
3572 		if (ready == -ENODEV) {
3573 			if (ata_link_online(link))
3574 				ready = 0;
3575 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3576 				 !ata_link_offline(link) &&
3577 				 time_before(now, nodev_deadline))
3578 				ready = 0;
3579 		}
3580 
3581 		if (ready)
3582 			return ready;
3583 		if (time_after(now, deadline))
3584 			return -EBUSY;
3585 
3586 		if (!warned && time_after(now, start + 5 * HZ) &&
3587 		    (deadline - now > 3 * HZ)) {
3588 			ata_link_warn(link,
3589 				"link is slow to respond, please be patient "
3590 				"(ready=%d)\n", tmp);
3591 			warned = 1;
3592 		}
3593 
3594 		ata_msleep(link->ap, 50);
3595 	}
3596 }
3597 
3598 /**
3599  *	ata_wait_after_reset - wait for link to become ready after reset
3600  *	@link: link to be waited on
3601  *	@deadline: deadline jiffies for the operation
3602  *	@check_ready: callback to check link readiness
3603  *
3604  *	Wait for @link to become ready after reset.
3605  *
3606  *	LOCKING:
3607  *	EH context.
3608  *
3609  *	RETURNS:
3610  *	0 if @link is ready before @deadline; otherwise, -errno.
3611  */
3612 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3613 				int (*check_ready)(struct ata_link *link))
3614 {
3615 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3616 
3617 	return ata_wait_ready(link, deadline, check_ready);
3618 }
3619 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3620 
3621 /**
3622  *	ata_std_prereset - prepare for reset
3623  *	@link: ATA link to be reset
3624  *	@deadline: deadline jiffies for the operation
3625  *
3626  *	@link is about to be reset.  Initialize it.  Failure from
3627  *	prereset makes libata abort whole reset sequence and give up
3628  *	that port, so prereset should be best-effort.  It does its
3629  *	best to prepare for reset sequence but if things go wrong, it
3630  *	should just whine, not fail.
3631  *
3632  *	LOCKING:
3633  *	Kernel thread context (may sleep)
3634  *
3635  *	RETURNS:
3636  *	Always 0.
3637  */
3638 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3639 {
3640 	struct ata_port *ap = link->ap;
3641 	struct ata_eh_context *ehc = &link->eh_context;
3642 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3643 	int rc;
3644 
3645 	/* if we're about to do hardreset, nothing more to do */
3646 	if (ehc->i.action & ATA_EH_HARDRESET)
3647 		return 0;
3648 
3649 	/* if SATA, resume link */
3650 	if (ap->flags & ATA_FLAG_SATA) {
3651 		rc = sata_link_resume(link, timing, deadline);
3652 		/* whine about phy resume failure but proceed */
3653 		if (rc && rc != -EOPNOTSUPP)
3654 			ata_link_warn(link,
3655 				      "failed to resume link for reset (errno=%d)\n",
3656 				      rc);
3657 	}
3658 
3659 	/* no point in trying softreset on offline link */
3660 	if (ata_phys_link_offline(link))
3661 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3662 
3663 	return 0;
3664 }
3665 EXPORT_SYMBOL_GPL(ata_std_prereset);
3666 
3667 /**
3668  *	sata_std_hardreset - COMRESET w/o waiting or classification
3669  *	@link: link to reset
3670  *	@class: resulting class of attached device
3671  *	@deadline: deadline jiffies for the operation
3672  *
3673  *	Standard SATA COMRESET w/o waiting or classification.
3674  *
3675  *	LOCKING:
3676  *	Kernel thread context (may sleep)
3677  *
3678  *	RETURNS:
3679  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3680  */
3681 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3682 		       unsigned long deadline)
3683 {
3684 	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3685 	bool online;
3686 	int rc;
3687 
3688 	/* do hardreset */
3689 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3690 	return online ? -EAGAIN : rc;
3691 }
3692 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3693 
3694 /**
3695  *	ata_std_postreset - standard postreset callback
3696  *	@link: the target ata_link
3697  *	@classes: classes of attached devices
3698  *
3699  *	This function is invoked after a successful reset.  Note that
3700  *	the device might have been reset more than once using
3701  *	different reset methods before postreset is invoked.
3702  *
3703  *	LOCKING:
3704  *	Kernel thread context (may sleep)
3705  */
3706 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3707 {
3708 	u32 serror;
3709 
3710 	/* reset complete, clear SError */
3711 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3712 		sata_scr_write(link, SCR_ERROR, serror);
3713 
3714 	/* print link status */
3715 	sata_print_link_status(link);
3716 }
3717 EXPORT_SYMBOL_GPL(ata_std_postreset);
3718 
3719 /**
3720  *	ata_dev_same_device - Determine whether new ID matches configured device
3721  *	@dev: device to compare against
3722  *	@new_class: class of the new device
3723  *	@new_id: IDENTIFY page of the new device
3724  *
3725  *	Compare @new_class and @new_id against @dev and determine
3726  *	whether @dev is the device indicated by @new_class and
3727  *	@new_id.
3728  *
3729  *	LOCKING:
3730  *	None.
3731  *
3732  *	RETURNS:
3733  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3734  */
3735 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3736 			       const u16 *new_id)
3737 {
3738 	const u16 *old_id = dev->id;
3739 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3740 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3741 
3742 	if (dev->class != new_class) {
3743 		ata_dev_info(dev, "class mismatch %d != %d\n",
3744 			     dev->class, new_class);
3745 		return 0;
3746 	}
3747 
3748 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3749 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3750 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3751 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3752 
3753 	if (strcmp(model[0], model[1])) {
3754 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3755 			     model[0], model[1]);
3756 		return 0;
3757 	}
3758 
3759 	if (strcmp(serial[0], serial[1])) {
3760 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3761 			     serial[0], serial[1]);
3762 		return 0;
3763 	}
3764 
3765 	return 1;
3766 }
3767 
3768 /**
3769  *	ata_dev_reread_id - Re-read IDENTIFY data
3770  *	@dev: target ATA device
3771  *	@readid_flags: read ID flags
3772  *
3773  *	Re-read IDENTIFY page and make sure @dev is still attached to
3774  *	the port.
3775  *
3776  *	LOCKING:
3777  *	Kernel thread context (may sleep)
3778  *
3779  *	RETURNS:
3780  *	0 on success, negative errno otherwise
3781  */
3782 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3783 {
3784 	unsigned int class = dev->class;
3785 	u16 *id = (void *)dev->link->ap->sector_buf;
3786 	int rc;
3787 
3788 	/* read ID data */
3789 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3790 	if (rc)
3791 		return rc;
3792 
3793 	/* is the device still there? */
3794 	if (!ata_dev_same_device(dev, class, id))
3795 		return -ENODEV;
3796 
3797 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3798 	return 0;
3799 }
3800 
3801 /**
3802  *	ata_dev_revalidate - Revalidate ATA device
3803  *	@dev: device to revalidate
3804  *	@new_class: new class code
3805  *	@readid_flags: read ID flags
3806  *
3807  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3808  *	port and reconfigure it according to the new IDENTIFY page.
3809  *
3810  *	LOCKING:
3811  *	Kernel thread context (may sleep)
3812  *
3813  *	RETURNS:
3814  *	0 on success, negative errno otherwise
3815  */
3816 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3817 		       unsigned int readid_flags)
3818 {
3819 	u64 n_sectors = dev->n_sectors;
3820 	u64 n_native_sectors = dev->n_native_sectors;
3821 	int rc;
3822 
3823 	if (!ata_dev_enabled(dev))
3824 		return -ENODEV;
3825 
3826 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3827 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3828 		ata_dev_info(dev, "class mismatch %u != %u\n",
3829 			     dev->class, new_class);
3830 		rc = -ENODEV;
3831 		goto fail;
3832 	}
3833 
3834 	/* re-read ID */
3835 	rc = ata_dev_reread_id(dev, readid_flags);
3836 	if (rc)
3837 		goto fail;
3838 
3839 	/* configure device according to the new ID */
3840 	rc = ata_dev_configure(dev);
3841 	if (rc)
3842 		goto fail;
3843 
3844 	/* verify n_sectors hasn't changed */
3845 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3846 	    dev->n_sectors == n_sectors)
3847 		return 0;
3848 
3849 	/* n_sectors has changed */
3850 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3851 		     (unsigned long long)n_sectors,
3852 		     (unsigned long long)dev->n_sectors);
3853 
3854 	/*
3855 	 * Something could have caused HPA to be unlocked
3856 	 * involuntarily.  If n_native_sectors hasn't changed and the
3857 	 * new size matches it, keep the device.
3858 	 */
3859 	if (dev->n_native_sectors == n_native_sectors &&
3860 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3861 		ata_dev_warn(dev,
3862 			     "new n_sectors matches native, probably "
3863 			     "late HPA unlock, n_sectors updated\n");
3864 		/* use the larger n_sectors */
3865 		return 0;
3866 	}
3867 
3868 	/*
3869 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3870 	 * unlocking HPA in those cases.
3871 	 *
3872 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3873 	 */
3874 	if (dev->n_native_sectors == n_native_sectors &&
3875 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3876 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3877 		ata_dev_warn(dev,
3878 			     "old n_sectors matches native, probably "
3879 			     "late HPA lock, will try to unlock HPA\n");
3880 		/* try unlocking HPA */
3881 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3882 		rc = -EIO;
3883 	} else
3884 		rc = -ENODEV;
3885 
3886 	/* restore original n_[native_]sectors and fail */
3887 	dev->n_native_sectors = n_native_sectors;
3888 	dev->n_sectors = n_sectors;
3889  fail:
3890 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3891 	return rc;
3892 }
3893 
3894 struct ata_blacklist_entry {
3895 	const char *model_num;
3896 	const char *model_rev;
3897 	unsigned long horkage;
3898 };
3899 
3900 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3901 	/* Devices with DMA related problems under Linux */
3902 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3903 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3904 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3905 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3906 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3907 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3908 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3909 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3910 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3911 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3912 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3913 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3914 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3915 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3916 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3917 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3918 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3919 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3920 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3921 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3922 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3923 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3924 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3925 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3926 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3927 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3928 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3929 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3930 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3931 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3932 	/* Odd clown on sil3726/4726 PMPs */
3933 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3934 	/* Similar story with ASMedia 1092 */
3935 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3936 
3937 	/* Weird ATAPI devices */
3938 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3939 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3940 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3941 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3942 
3943 	/*
3944 	 * Causes silent data corruption with higher max sects.
3945 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3946 	 */
3947 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3948 
3949 	/*
3950 	 * These devices time out with higher max sects.
3951 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3952 	 */
3953 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3954 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3955 
3956 	/* Devices we expect to fail diagnostics */
3957 
3958 	/* Devices where NCQ should be avoided */
3959 	/* NCQ is slow */
3960 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3961 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
3962 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3963 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3964 	/* NCQ is broken */
3965 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3966 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3967 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3968 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3969 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3970 
3971 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3972 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3973 						ATA_HORKAGE_FIRMWARE_WARN },
3974 
3975 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3976 						ATA_HORKAGE_FIRMWARE_WARN },
3977 
3978 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3979 						ATA_HORKAGE_FIRMWARE_WARN },
3980 
3981 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3982 						ATA_HORKAGE_FIRMWARE_WARN },
3983 
3984 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3985 	   the ST disks also have LPM issues */
3986 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3987 						ATA_HORKAGE_NOLPM },
3988 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3989 
3990 	/* Blacklist entries taken from Silicon Image 3124/3132
3991 	   Windows driver .inf file - also several Linux problem reports */
3992 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
3993 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
3994 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
3995 
3996 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3997 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
3998 
3999 	/* Sandisk SD7/8/9s lock up hard on large trims */
4000 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4001 
4002 	/* devices which puke on READ_NATIVE_MAX */
4003 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4004 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4005 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4006 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4007 
4008 	/* this one allows HPA unlocking but fails IOs on the area */
4009 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4010 
4011 	/* Devices which report 1 sector over size HPA */
4012 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4013 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4014 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4015 
4016 	/* Devices which get the IVB wrong */
4017 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4018 	/* Maybe we should just blacklist TSSTcorp... */
4019 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4020 
4021 	/* Devices that do not need bridging limits applied */
4022 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4023 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4024 
4025 	/* Devices which aren't very happy with higher link speeds */
4026 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4027 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4028 
4029 	/*
4030 	 * Devices which choke on SETXFER.  Applies only if both the
4031 	 * device and controller are SATA.
4032 	 */
4033 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4034 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4035 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4036 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4037 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4038 
4039 	/* These specific Pioneer models have LPM issues */
4040 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4041 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4042 
4043 	/* Crucial BX100 SSD 500GB has broken LPM support */
4044 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4045 
4046 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4047 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4048 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4049 						ATA_HORKAGE_NOLPM },
4050 	/* 512GB MX100 with newer firmware has only LPM issues */
4051 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4052 						ATA_HORKAGE_NOLPM },
4053 
4054 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4055 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4056 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4057 						ATA_HORKAGE_NOLPM },
4058 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4059 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4060 						ATA_HORKAGE_NOLPM },
4061 
4062 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4063 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4064 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4065 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4066 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4067 
4068 	/* devices that don't properly handle queued TRIM commands */
4069 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4070 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4071 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4072 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4073 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4074 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4075 	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4076 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4077 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4078 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4079 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4080 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4081 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4082 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4083 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4084 						ATA_HORKAGE_NO_DMA_LOG |
4085 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4086 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4087 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4088 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4089 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4090 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4091 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4092 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4093 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4094 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4095 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4096 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4097 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4098 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4099 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4100 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4101 
4102 	/* devices that don't properly handle TRIM commands */
4103 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4104 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4105 
4106 	/*
4107 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4108 	 * (Return Zero After Trim) flags in the ATA Command Set are
4109 	 * unreliable in the sense that they only define what happens if
4110 	 * the device successfully executed the DSM TRIM command. TRIM
4111 	 * is only advisory, however, and the device is free to silently
4112 	 * ignore all or parts of the request.
4113 	 *
4114 	 * Whitelist drives that are known to reliably return zeroes
4115 	 * after TRIM.
4116 	 */
4117 
4118 	/*
4119 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4120 	 * that model before whitelisting all other intel SSDs.
4121 	 */
4122 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4123 
4124 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4125 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4126 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4127 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4128 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4129 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4130 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4131 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4132 
4133 	/*
4134 	 * Some WD SATA-I drives spin up and down erratically when the link
4135 	 * is put into the slumber mode.  We don't have full list of the
4136 	 * affected devices.  Disable LPM if the device matches one of the
4137 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4138 	 * lost too.
4139 	 *
4140 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4141 	 */
4142 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4143 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4144 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4145 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4146 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4147 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4148 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4149 
4150 	/*
4151 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4152 	 * log page is accessed. Ensure we never ask for this log page with
4153 	 * these devices.
4154 	 */
4155 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4156 
4157 	/* Buggy FUA */
4158 	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4159 	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4160 	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4161 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4162 
4163 	/* End Marker */
4164 	{ }
4165 };
4166 
4167 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4168 {
4169 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4170 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4171 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4172 
4173 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4174 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4175 
4176 	while (ad->model_num) {
4177 		if (glob_match(ad->model_num, model_num)) {
4178 			if (ad->model_rev == NULL)
4179 				return ad->horkage;
4180 			if (glob_match(ad->model_rev, model_rev))
4181 				return ad->horkage;
4182 		}
4183 		ad++;
4184 	}
4185 	return 0;
4186 }
4187 
4188 static int ata_dma_blacklisted(const struct ata_device *dev)
4189 {
4190 	/* We don't support polling DMA.
4191 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4192 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4193 	 */
4194 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4195 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4196 		return 1;
4197 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4198 }
4199 
4200 /**
4201  *	ata_is_40wire		-	check drive side detection
4202  *	@dev: device
4203  *
4204  *	Perform drive side detection decoding, allowing for device vendors
4205  *	who can't follow the documentation.
4206  */
4207 
4208 static int ata_is_40wire(struct ata_device *dev)
4209 {
4210 	if (dev->horkage & ATA_HORKAGE_IVB)
4211 		return ata_drive_40wire_relaxed(dev->id);
4212 	return ata_drive_40wire(dev->id);
4213 }
4214 
4215 /**
4216  *	cable_is_40wire		-	40/80/SATA decider
4217  *	@ap: port to consider
4218  *
4219  *	This function encapsulates the policy for speed management
4220  *	in one place. At the moment we don't cache the result but
4221  *	there is a good case for setting ap->cbl to the result when
4222  *	we are called with unknown cables (and figuring out if it
4223  *	impacts hotplug at all).
4224  *
4225  *	Return 1 if the cable appears to be 40 wire.
4226  */
4227 
4228 static int cable_is_40wire(struct ata_port *ap)
4229 {
4230 	struct ata_link *link;
4231 	struct ata_device *dev;
4232 
4233 	/* If the controller thinks we are 40 wire, we are. */
4234 	if (ap->cbl == ATA_CBL_PATA40)
4235 		return 1;
4236 
4237 	/* If the controller thinks we are 80 wire, we are. */
4238 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4239 		return 0;
4240 
4241 	/* If the system is known to be 40 wire short cable (eg
4242 	 * laptop), then we allow 80 wire modes even if the drive
4243 	 * isn't sure.
4244 	 */
4245 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4246 		return 0;
4247 
4248 	/* If the controller doesn't know, we scan.
4249 	 *
4250 	 * Note: We look for all 40 wire detects at this point.  Any
4251 	 *       80 wire detect is taken to be 80 wire cable because
4252 	 * - in many setups only the one drive (slave if present) will
4253 	 *   give a valid detect
4254 	 * - if you have a non detect capable drive you don't want it
4255 	 *   to colour the choice
4256 	 */
4257 	ata_for_each_link(link, ap, EDGE) {
4258 		ata_for_each_dev(dev, link, ENABLED) {
4259 			if (!ata_is_40wire(dev))
4260 				return 0;
4261 		}
4262 	}
4263 	return 1;
4264 }
4265 
4266 /**
4267  *	ata_dev_xfermask - Compute supported xfermask of the given device
4268  *	@dev: Device to compute xfermask for
4269  *
4270  *	Compute supported xfermask of @dev and store it in
4271  *	dev->*_mask.  This function is responsible for applying all
4272  *	known limits including host controller limits, device
4273  *	blacklist, etc...
4274  *
4275  *	LOCKING:
4276  *	None.
4277  */
4278 static void ata_dev_xfermask(struct ata_device *dev)
4279 {
4280 	struct ata_link *link = dev->link;
4281 	struct ata_port *ap = link->ap;
4282 	struct ata_host *host = ap->host;
4283 	unsigned int xfer_mask;
4284 
4285 	/* controller modes available */
4286 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4287 				      ap->mwdma_mask, ap->udma_mask);
4288 
4289 	/* drive modes available */
4290 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4291 				       dev->mwdma_mask, dev->udma_mask);
4292 	xfer_mask &= ata_id_xfermask(dev->id);
4293 
4294 	/*
4295 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4296 	 *	cable
4297 	 */
4298 	if (ata_dev_pair(dev)) {
4299 		/* No PIO5 or PIO6 */
4300 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4301 		/* No MWDMA3 or MWDMA 4 */
4302 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4303 	}
4304 
4305 	if (ata_dma_blacklisted(dev)) {
4306 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4307 		ata_dev_warn(dev,
4308 			     "device is on DMA blacklist, disabling DMA\n");
4309 	}
4310 
4311 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4312 	    host->simplex_claimed && host->simplex_claimed != ap) {
4313 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4314 		ata_dev_warn(dev,
4315 			     "simplex DMA is claimed by other device, disabling DMA\n");
4316 	}
4317 
4318 	if (ap->flags & ATA_FLAG_NO_IORDY)
4319 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4320 
4321 	if (ap->ops->mode_filter)
4322 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4323 
4324 	/* Apply cable rule here.  Don't apply it early because when
4325 	 * we handle hot plug the cable type can itself change.
4326 	 * Check this last so that we know if the transfer rate was
4327 	 * solely limited by the cable.
4328 	 * Unknown or 80 wire cables reported host side are checked
4329 	 * drive side as well. Cases where we know a 40wire cable
4330 	 * is used safely for 80 are not checked here.
4331 	 */
4332 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4333 		/* UDMA/44 or higher would be available */
4334 		if (cable_is_40wire(ap)) {
4335 			ata_dev_warn(dev,
4336 				     "limited to UDMA/33 due to 40-wire cable\n");
4337 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4338 		}
4339 
4340 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4341 			    &dev->mwdma_mask, &dev->udma_mask);
4342 }
4343 
4344 /**
4345  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4346  *	@dev: Device to which command will be sent
4347  *
4348  *	Issue SET FEATURES - XFER MODE command to device @dev
4349  *	on port @ap.
4350  *
4351  *	LOCKING:
4352  *	PCI/etc. bus probe sem.
4353  *
4354  *	RETURNS:
4355  *	0 on success, AC_ERR_* mask otherwise.
4356  */
4357 
4358 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4359 {
4360 	struct ata_taskfile tf;
4361 
4362 	/* set up set-features taskfile */
4363 	ata_dev_dbg(dev, "set features - xfer mode\n");
4364 
4365 	/* Some controllers and ATAPI devices show flaky interrupt
4366 	 * behavior after setting xfer mode.  Use polling instead.
4367 	 */
4368 	ata_tf_init(dev, &tf);
4369 	tf.command = ATA_CMD_SET_FEATURES;
4370 	tf.feature = SETFEATURES_XFER;
4371 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4372 	tf.protocol = ATA_PROT_NODATA;
4373 	/* If we are using IORDY we must send the mode setting command */
4374 	if (ata_pio_need_iordy(dev))
4375 		tf.nsect = dev->xfer_mode;
4376 	/* If the device has IORDY and the controller does not - turn it off */
4377  	else if (ata_id_has_iordy(dev->id))
4378 		tf.nsect = 0x01;
4379 	else /* In the ancient relic department - skip all of this */
4380 		return 0;
4381 
4382 	/*
4383 	 * On some disks, this command causes spin-up, so we need longer
4384 	 * timeout.
4385 	 */
4386 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4387 }
4388 
4389 /**
4390  *	ata_dev_set_feature - Issue SET FEATURES
4391  *	@dev: Device to which command will be sent
4392  *	@subcmd: The SET FEATURES subcommand to be sent
4393  *	@action: The sector count represents a subcommand specific action
4394  *
4395  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4396  *
4397  *	LOCKING:
4398  *	PCI/etc. bus probe sem.
4399  *
4400  *	RETURNS:
4401  *	0 on success, AC_ERR_* mask otherwise.
4402  */
4403 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4404 {
4405 	struct ata_taskfile tf;
4406 	unsigned int timeout = 0;
4407 
4408 	/* set up set-features taskfile */
4409 	ata_dev_dbg(dev, "set features\n");
4410 
4411 	ata_tf_init(dev, &tf);
4412 	tf.command = ATA_CMD_SET_FEATURES;
4413 	tf.feature = subcmd;
4414 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4415 	tf.protocol = ATA_PROT_NODATA;
4416 	tf.nsect = action;
4417 
4418 	if (subcmd == SETFEATURES_SPINUP)
4419 		timeout = ata_probe_timeout ?
4420 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4421 
4422 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4423 }
4424 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4425 
4426 /**
4427  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4428  *	@dev: Device to which command will be sent
4429  *	@heads: Number of heads (taskfile parameter)
4430  *	@sectors: Number of sectors (taskfile parameter)
4431  *
4432  *	LOCKING:
4433  *	Kernel thread context (may sleep)
4434  *
4435  *	RETURNS:
4436  *	0 on success, AC_ERR_* mask otherwise.
4437  */
4438 static unsigned int ata_dev_init_params(struct ata_device *dev,
4439 					u16 heads, u16 sectors)
4440 {
4441 	struct ata_taskfile tf;
4442 	unsigned int err_mask;
4443 
4444 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4445 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4446 		return AC_ERR_INVALID;
4447 
4448 	/* set up init dev params taskfile */
4449 	ata_dev_dbg(dev, "init dev params \n");
4450 
4451 	ata_tf_init(dev, &tf);
4452 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4453 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4454 	tf.protocol = ATA_PROT_NODATA;
4455 	tf.nsect = sectors;
4456 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4457 
4458 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4459 	/* A clean abort indicates an original or just out of spec drive
4460 	   and we should continue as we issue the setup based on the
4461 	   drive reported working geometry */
4462 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4463 		err_mask = 0;
4464 
4465 	return err_mask;
4466 }
4467 
4468 /**
4469  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4470  *	@qc: Metadata associated with taskfile to check
4471  *
4472  *	Allow low-level driver to filter ATA PACKET commands, returning
4473  *	a status indicating whether or not it is OK to use DMA for the
4474  *	supplied PACKET command.
4475  *
4476  *	LOCKING:
4477  *	spin_lock_irqsave(host lock)
4478  *
4479  *	RETURNS: 0 when ATAPI DMA can be used
4480  *               nonzero otherwise
4481  */
4482 int atapi_check_dma(struct ata_queued_cmd *qc)
4483 {
4484 	struct ata_port *ap = qc->ap;
4485 
4486 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4487 	 * few ATAPI devices choke on such DMA requests.
4488 	 */
4489 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4490 	    unlikely(qc->nbytes & 15))
4491 		return 1;
4492 
4493 	if (ap->ops->check_atapi_dma)
4494 		return ap->ops->check_atapi_dma(qc);
4495 
4496 	return 0;
4497 }
4498 
4499 /**
4500  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4501  *	@qc: ATA command in question
4502  *
4503  *	Non-NCQ commands cannot run with any other command, NCQ or
4504  *	not.  As upper layer only knows the queue depth, we are
4505  *	responsible for maintaining exclusion.  This function checks
4506  *	whether a new command @qc can be issued.
4507  *
4508  *	LOCKING:
4509  *	spin_lock_irqsave(host lock)
4510  *
4511  *	RETURNS:
4512  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4513  */
4514 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4515 {
4516 	struct ata_link *link = qc->dev->link;
4517 
4518 	if (ata_is_ncq(qc->tf.protocol)) {
4519 		if (!ata_tag_valid(link->active_tag))
4520 			return 0;
4521 	} else {
4522 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4523 			return 0;
4524 	}
4525 
4526 	return ATA_DEFER_LINK;
4527 }
4528 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4529 
4530 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4531 {
4532 	return AC_ERR_OK;
4533 }
4534 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4535 
4536 /**
4537  *	ata_sg_init - Associate command with scatter-gather table.
4538  *	@qc: Command to be associated
4539  *	@sg: Scatter-gather table.
4540  *	@n_elem: Number of elements in s/g table.
4541  *
4542  *	Initialize the data-related elements of queued_cmd @qc
4543  *	to point to a scatter-gather table @sg, containing @n_elem
4544  *	elements.
4545  *
4546  *	LOCKING:
4547  *	spin_lock_irqsave(host lock)
4548  */
4549 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4550 		 unsigned int n_elem)
4551 {
4552 	qc->sg = sg;
4553 	qc->n_elem = n_elem;
4554 	qc->cursg = qc->sg;
4555 }
4556 
4557 #ifdef CONFIG_HAS_DMA
4558 
4559 /**
4560  *	ata_sg_clean - Unmap DMA memory associated with command
4561  *	@qc: Command containing DMA memory to be released
4562  *
4563  *	Unmap all mapped DMA memory associated with this command.
4564  *
4565  *	LOCKING:
4566  *	spin_lock_irqsave(host lock)
4567  */
4568 static void ata_sg_clean(struct ata_queued_cmd *qc)
4569 {
4570 	struct ata_port *ap = qc->ap;
4571 	struct scatterlist *sg = qc->sg;
4572 	int dir = qc->dma_dir;
4573 
4574 	WARN_ON_ONCE(sg == NULL);
4575 
4576 	if (qc->n_elem)
4577 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4578 
4579 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4580 	qc->sg = NULL;
4581 }
4582 
4583 /**
4584  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4585  *	@qc: Command with scatter-gather table to be mapped.
4586  *
4587  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4588  *
4589  *	LOCKING:
4590  *	spin_lock_irqsave(host lock)
4591  *
4592  *	RETURNS:
4593  *	Zero on success, negative on error.
4594  *
4595  */
4596 static int ata_sg_setup(struct ata_queued_cmd *qc)
4597 {
4598 	struct ata_port *ap = qc->ap;
4599 	unsigned int n_elem;
4600 
4601 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4602 	if (n_elem < 1)
4603 		return -1;
4604 
4605 	qc->orig_n_elem = qc->n_elem;
4606 	qc->n_elem = n_elem;
4607 	qc->flags |= ATA_QCFLAG_DMAMAP;
4608 
4609 	return 0;
4610 }
4611 
4612 #else /* !CONFIG_HAS_DMA */
4613 
4614 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4615 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4616 
4617 #endif /* !CONFIG_HAS_DMA */
4618 
4619 /**
4620  *	swap_buf_le16 - swap halves of 16-bit words in place
4621  *	@buf:  Buffer to swap
4622  *	@buf_words:  Number of 16-bit words in buffer.
4623  *
4624  *	Swap halves of 16-bit words if needed to convert from
4625  *	little-endian byte order to native cpu byte order, or
4626  *	vice-versa.
4627  *
4628  *	LOCKING:
4629  *	Inherited from caller.
4630  */
4631 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4632 {
4633 #ifdef __BIG_ENDIAN
4634 	unsigned int i;
4635 
4636 	for (i = 0; i < buf_words; i++)
4637 		buf[i] = le16_to_cpu(buf[i]);
4638 #endif /* __BIG_ENDIAN */
4639 }
4640 
4641 /**
4642  *	ata_qc_free - free unused ata_queued_cmd
4643  *	@qc: Command to complete
4644  *
4645  *	Designed to free unused ata_queued_cmd object
4646  *	in case something prevents using it.
4647  *
4648  *	LOCKING:
4649  *	spin_lock_irqsave(host lock)
4650  */
4651 void ata_qc_free(struct ata_queued_cmd *qc)
4652 {
4653 	qc->flags = 0;
4654 	if (ata_tag_valid(qc->tag))
4655 		qc->tag = ATA_TAG_POISON;
4656 }
4657 
4658 void __ata_qc_complete(struct ata_queued_cmd *qc)
4659 {
4660 	struct ata_port *ap;
4661 	struct ata_link *link;
4662 
4663 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4664 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4665 	ap = qc->ap;
4666 	link = qc->dev->link;
4667 
4668 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4669 		ata_sg_clean(qc);
4670 
4671 	/* command should be marked inactive atomically with qc completion */
4672 	if (ata_is_ncq(qc->tf.protocol)) {
4673 		link->sactive &= ~(1 << qc->hw_tag);
4674 		if (!link->sactive)
4675 			ap->nr_active_links--;
4676 	} else {
4677 		link->active_tag = ATA_TAG_POISON;
4678 		ap->nr_active_links--;
4679 	}
4680 
4681 	/* clear exclusive status */
4682 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4683 		     ap->excl_link == link))
4684 		ap->excl_link = NULL;
4685 
4686 	/* atapi: mark qc as inactive to prevent the interrupt handler
4687 	 * from completing the command twice later, before the error handler
4688 	 * is called. (when rc != 0 and atapi request sense is needed)
4689 	 */
4690 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4691 	ap->qc_active &= ~(1ULL << qc->tag);
4692 
4693 	/* call completion callback */
4694 	qc->complete_fn(qc);
4695 }
4696 
4697 static void fill_result_tf(struct ata_queued_cmd *qc)
4698 {
4699 	struct ata_port *ap = qc->ap;
4700 
4701 	qc->result_tf.flags = qc->tf.flags;
4702 	ap->ops->qc_fill_rtf(qc);
4703 }
4704 
4705 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4706 {
4707 	struct ata_device *dev = qc->dev;
4708 
4709 	if (!ata_is_data(qc->tf.protocol))
4710 		return;
4711 
4712 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4713 		return;
4714 
4715 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4716 }
4717 
4718 /**
4719  *	ata_qc_complete - Complete an active ATA command
4720  *	@qc: Command to complete
4721  *
4722  *	Indicate to the mid and upper layers that an ATA command has
4723  *	completed, with either an ok or not-ok status.
4724  *
4725  *	Refrain from calling this function multiple times when
4726  *	successfully completing multiple NCQ commands.
4727  *	ata_qc_complete_multiple() should be used instead, which will
4728  *	properly update IRQ expect state.
4729  *
4730  *	LOCKING:
4731  *	spin_lock_irqsave(host lock)
4732  */
4733 void ata_qc_complete(struct ata_queued_cmd *qc)
4734 {
4735 	struct ata_port *ap = qc->ap;
4736 	struct ata_device *dev = qc->dev;
4737 	struct ata_eh_info *ehi = &dev->link->eh_info;
4738 
4739 	/* Trigger the LED (if available) */
4740 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4741 
4742 	/*
4743 	 * In order to synchronize EH with the regular execution path, a qc that
4744 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4745 	 *
4746 	 * The normal execution path is responsible for not accessing a qc owned
4747 	 * by EH.  libata core enforces the rule by returning NULL from
4748 	 * ata_qc_from_tag() for qcs owned by EH.
4749 	 */
4750 	if (unlikely(qc->err_mask))
4751 		qc->flags |= ATA_QCFLAG_EH;
4752 
4753 	/*
4754 	 * Finish internal commands without any further processing and always
4755 	 * with the result TF filled.
4756 	 */
4757 	if (unlikely(ata_tag_internal(qc->tag))) {
4758 		fill_result_tf(qc);
4759 		trace_ata_qc_complete_internal(qc);
4760 		__ata_qc_complete(qc);
4761 		return;
4762 	}
4763 
4764 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4765 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4766 		fill_result_tf(qc);
4767 		trace_ata_qc_complete_failed(qc);
4768 		ata_qc_schedule_eh(qc);
4769 		return;
4770 	}
4771 
4772 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4773 
4774 	/* read result TF if requested */
4775 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4776 		fill_result_tf(qc);
4777 
4778 	trace_ata_qc_complete_done(qc);
4779 
4780 	/*
4781 	 * For CDL commands that completed without an error, check if we have
4782 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4783 	 * been aborted by the device due to a limit timeout using the policy
4784 	 * 0xD. For these commands, invoke EH to get the command sense data.
4785 	 */
4786 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4787 	    qc->result_tf.status & ATA_SENSE) {
4788 		/*
4789 		 * Tell SCSI EH to not overwrite scmd->result even if this
4790 		 * command is finished with result SAM_STAT_GOOD.
4791 		 */
4792 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4793 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4794 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4795 
4796 		/*
4797 		 * set pending so that ata_qc_schedule_eh() does not trigger
4798 		 * fast drain, and freeze the port.
4799 		 */
4800 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4801 		ata_qc_schedule_eh(qc);
4802 		return;
4803 	}
4804 
4805 	/* Some commands need post-processing after successful completion. */
4806 	switch (qc->tf.command) {
4807 	case ATA_CMD_SET_FEATURES:
4808 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4809 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4810 		    qc->tf.feature != SETFEATURES_RA_ON &&
4811 		    qc->tf.feature != SETFEATURES_RA_OFF)
4812 			break;
4813 		fallthrough;
4814 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4815 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4816 		/* revalidate device */
4817 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4818 		ata_port_schedule_eh(ap);
4819 		break;
4820 
4821 	case ATA_CMD_SLEEP:
4822 		dev->flags |= ATA_DFLAG_SLEEPING;
4823 		break;
4824 	}
4825 
4826 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4827 		ata_verify_xfer(qc);
4828 
4829 	__ata_qc_complete(qc);
4830 }
4831 EXPORT_SYMBOL_GPL(ata_qc_complete);
4832 
4833 /**
4834  *	ata_qc_get_active - get bitmask of active qcs
4835  *	@ap: port in question
4836  *
4837  *	LOCKING:
4838  *	spin_lock_irqsave(host lock)
4839  *
4840  *	RETURNS:
4841  *	Bitmask of active qcs
4842  */
4843 u64 ata_qc_get_active(struct ata_port *ap)
4844 {
4845 	u64 qc_active = ap->qc_active;
4846 
4847 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4848 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4849 		qc_active |= (1 << 0);
4850 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4851 	}
4852 
4853 	return qc_active;
4854 }
4855 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4856 
4857 /**
4858  *	ata_qc_issue - issue taskfile to device
4859  *	@qc: command to issue to device
4860  *
4861  *	Prepare an ATA command to submission to device.
4862  *	This includes mapping the data into a DMA-able
4863  *	area, filling in the S/G table, and finally
4864  *	writing the taskfile to hardware, starting the command.
4865  *
4866  *	LOCKING:
4867  *	spin_lock_irqsave(host lock)
4868  */
4869 void ata_qc_issue(struct ata_queued_cmd *qc)
4870 {
4871 	struct ata_port *ap = qc->ap;
4872 	struct ata_link *link = qc->dev->link;
4873 	u8 prot = qc->tf.protocol;
4874 
4875 	/* Make sure only one non-NCQ command is outstanding. */
4876 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4877 
4878 	if (ata_is_ncq(prot)) {
4879 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4880 
4881 		if (!link->sactive)
4882 			ap->nr_active_links++;
4883 		link->sactive |= 1 << qc->hw_tag;
4884 	} else {
4885 		WARN_ON_ONCE(link->sactive);
4886 
4887 		ap->nr_active_links++;
4888 		link->active_tag = qc->tag;
4889 	}
4890 
4891 	qc->flags |= ATA_QCFLAG_ACTIVE;
4892 	ap->qc_active |= 1ULL << qc->tag;
4893 
4894 	/*
4895 	 * We guarantee to LLDs that they will have at least one
4896 	 * non-zero sg if the command is a data command.
4897 	 */
4898 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4899 		goto sys_err;
4900 
4901 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4902 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4903 		if (ata_sg_setup(qc))
4904 			goto sys_err;
4905 
4906 	/* if device is sleeping, schedule reset and abort the link */
4907 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4908 		link->eh_info.action |= ATA_EH_RESET;
4909 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4910 		ata_link_abort(link);
4911 		return;
4912 	}
4913 
4914 	trace_ata_qc_prep(qc);
4915 	qc->err_mask |= ap->ops->qc_prep(qc);
4916 	if (unlikely(qc->err_mask))
4917 		goto err;
4918 	trace_ata_qc_issue(qc);
4919 	qc->err_mask |= ap->ops->qc_issue(qc);
4920 	if (unlikely(qc->err_mask))
4921 		goto err;
4922 	return;
4923 
4924 sys_err:
4925 	qc->err_mask |= AC_ERR_SYSTEM;
4926 err:
4927 	ata_qc_complete(qc);
4928 }
4929 
4930 /**
4931  *	ata_phys_link_online - test whether the given link is online
4932  *	@link: ATA link to test
4933  *
4934  *	Test whether @link is online.  Note that this function returns
4935  *	0 if online status of @link cannot be obtained, so
4936  *	ata_link_online(link) != !ata_link_offline(link).
4937  *
4938  *	LOCKING:
4939  *	None.
4940  *
4941  *	RETURNS:
4942  *	True if the port online status is available and online.
4943  */
4944 bool ata_phys_link_online(struct ata_link *link)
4945 {
4946 	u32 sstatus;
4947 
4948 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4949 	    ata_sstatus_online(sstatus))
4950 		return true;
4951 	return false;
4952 }
4953 
4954 /**
4955  *	ata_phys_link_offline - test whether the given link is offline
4956  *	@link: ATA link to test
4957  *
4958  *	Test whether @link is offline.  Note that this function
4959  *	returns 0 if offline status of @link cannot be obtained, so
4960  *	ata_link_online(link) != !ata_link_offline(link).
4961  *
4962  *	LOCKING:
4963  *	None.
4964  *
4965  *	RETURNS:
4966  *	True if the port offline status is available and offline.
4967  */
4968 bool ata_phys_link_offline(struct ata_link *link)
4969 {
4970 	u32 sstatus;
4971 
4972 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4973 	    !ata_sstatus_online(sstatus))
4974 		return true;
4975 	return false;
4976 }
4977 
4978 /**
4979  *	ata_link_online - test whether the given link is online
4980  *	@link: ATA link to test
4981  *
4982  *	Test whether @link is online.  This is identical to
4983  *	ata_phys_link_online() when there's no slave link.  When
4984  *	there's a slave link, this function should only be called on
4985  *	the master link and will return true if any of M/S links is
4986  *	online.
4987  *
4988  *	LOCKING:
4989  *	None.
4990  *
4991  *	RETURNS:
4992  *	True if the port online status is available and online.
4993  */
4994 bool ata_link_online(struct ata_link *link)
4995 {
4996 	struct ata_link *slave = link->ap->slave_link;
4997 
4998 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4999 
5000 	return ata_phys_link_online(link) ||
5001 		(slave && ata_phys_link_online(slave));
5002 }
5003 EXPORT_SYMBOL_GPL(ata_link_online);
5004 
5005 /**
5006  *	ata_link_offline - test whether the given link is offline
5007  *	@link: ATA link to test
5008  *
5009  *	Test whether @link is offline.  This is identical to
5010  *	ata_phys_link_offline() when there's no slave link.  When
5011  *	there's a slave link, this function should only be called on
5012  *	the master link and will return true if both M/S links are
5013  *	offline.
5014  *
5015  *	LOCKING:
5016  *	None.
5017  *
5018  *	RETURNS:
5019  *	True if the port offline status is available and offline.
5020  */
5021 bool ata_link_offline(struct ata_link *link)
5022 {
5023 	struct ata_link *slave = link->ap->slave_link;
5024 
5025 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5026 
5027 	return ata_phys_link_offline(link) &&
5028 		(!slave || ata_phys_link_offline(slave));
5029 }
5030 EXPORT_SYMBOL_GPL(ata_link_offline);
5031 
5032 #ifdef CONFIG_PM
5033 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5034 				unsigned int action, unsigned int ehi_flags,
5035 				bool async)
5036 {
5037 	struct ata_link *link;
5038 	unsigned long flags;
5039 
5040 	/* Previous resume operation might still be in
5041 	 * progress.  Wait for PM_PENDING to clear.
5042 	 */
5043 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5044 		ata_port_wait_eh(ap);
5045 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5046 	}
5047 
5048 	/* request PM ops to EH */
5049 	spin_lock_irqsave(ap->lock, flags);
5050 
5051 	ap->pm_mesg = mesg;
5052 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5053 	ata_for_each_link(link, ap, HOST_FIRST) {
5054 		link->eh_info.action |= action;
5055 		link->eh_info.flags |= ehi_flags;
5056 	}
5057 
5058 	ata_port_schedule_eh(ap);
5059 
5060 	spin_unlock_irqrestore(ap->lock, flags);
5061 
5062 	if (!async) {
5063 		ata_port_wait_eh(ap);
5064 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5065 	}
5066 }
5067 
5068 /*
5069  * On some hardware, device fails to respond after spun down for suspend.  As
5070  * the device won't be used before being resumed, we don't need to touch the
5071  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5072  *
5073  * http://thread.gmane.org/gmane.linux.ide/46764
5074  */
5075 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5076 						 | ATA_EHI_NO_AUTOPSY
5077 						 | ATA_EHI_NO_RECOVERY;
5078 
5079 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5080 {
5081 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5082 }
5083 
5084 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5085 {
5086 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5087 }
5088 
5089 static int ata_port_pm_suspend(struct device *dev)
5090 {
5091 	struct ata_port *ap = to_ata_port(dev);
5092 
5093 	if (pm_runtime_suspended(dev))
5094 		return 0;
5095 
5096 	ata_port_suspend(ap, PMSG_SUSPEND);
5097 	return 0;
5098 }
5099 
5100 static int ata_port_pm_freeze(struct device *dev)
5101 {
5102 	struct ata_port *ap = to_ata_port(dev);
5103 
5104 	if (pm_runtime_suspended(dev))
5105 		return 0;
5106 
5107 	ata_port_suspend(ap, PMSG_FREEZE);
5108 	return 0;
5109 }
5110 
5111 static int ata_port_pm_poweroff(struct device *dev)
5112 {
5113 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5114 	return 0;
5115 }
5116 
5117 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5118 						| ATA_EHI_QUIET;
5119 
5120 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5121 {
5122 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5123 }
5124 
5125 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5126 {
5127 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5128 }
5129 
5130 static int ata_port_pm_resume(struct device *dev)
5131 {
5132 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5133 	pm_runtime_disable(dev);
5134 	pm_runtime_set_active(dev);
5135 	pm_runtime_enable(dev);
5136 	return 0;
5137 }
5138 
5139 /*
5140  * For ODDs, the upper layer will poll for media change every few seconds,
5141  * which will make it enter and leave suspend state every few seconds. And
5142  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5143  * is very little and the ODD may malfunction after constantly being reset.
5144  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5145  * ODD is attached to the port.
5146  */
5147 static int ata_port_runtime_idle(struct device *dev)
5148 {
5149 	struct ata_port *ap = to_ata_port(dev);
5150 	struct ata_link *link;
5151 	struct ata_device *adev;
5152 
5153 	ata_for_each_link(link, ap, HOST_FIRST) {
5154 		ata_for_each_dev(adev, link, ENABLED)
5155 			if (adev->class == ATA_DEV_ATAPI &&
5156 			    !zpodd_dev_enabled(adev))
5157 				return -EBUSY;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static int ata_port_runtime_suspend(struct device *dev)
5164 {
5165 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5166 	return 0;
5167 }
5168 
5169 static int ata_port_runtime_resume(struct device *dev)
5170 {
5171 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5172 	return 0;
5173 }
5174 
5175 static const struct dev_pm_ops ata_port_pm_ops = {
5176 	.suspend = ata_port_pm_suspend,
5177 	.resume = ata_port_pm_resume,
5178 	.freeze = ata_port_pm_freeze,
5179 	.thaw = ata_port_pm_resume,
5180 	.poweroff = ata_port_pm_poweroff,
5181 	.restore = ata_port_pm_resume,
5182 
5183 	.runtime_suspend = ata_port_runtime_suspend,
5184 	.runtime_resume = ata_port_runtime_resume,
5185 	.runtime_idle = ata_port_runtime_idle,
5186 };
5187 
5188 /* sas ports don't participate in pm runtime management of ata_ports,
5189  * and need to resume ata devices at the domain level, not the per-port
5190  * level. sas suspend/resume is async to allow parallel port recovery
5191  * since sas has multiple ata_port instances per Scsi_Host.
5192  */
5193 void ata_sas_port_suspend(struct ata_port *ap)
5194 {
5195 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5196 }
5197 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5198 
5199 void ata_sas_port_resume(struct ata_port *ap)
5200 {
5201 	ata_port_resume_async(ap, PMSG_RESUME);
5202 }
5203 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5204 
5205 /**
5206  *	ata_host_suspend - suspend host
5207  *	@host: host to suspend
5208  *	@mesg: PM message
5209  *
5210  *	Suspend @host.  Actual operation is performed by port suspend.
5211  */
5212 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5213 {
5214 	host->dev->power.power_state = mesg;
5215 }
5216 EXPORT_SYMBOL_GPL(ata_host_suspend);
5217 
5218 /**
5219  *	ata_host_resume - resume host
5220  *	@host: host to resume
5221  *
5222  *	Resume @host.  Actual operation is performed by port resume.
5223  */
5224 void ata_host_resume(struct ata_host *host)
5225 {
5226 	host->dev->power.power_state = PMSG_ON;
5227 }
5228 EXPORT_SYMBOL_GPL(ata_host_resume);
5229 #endif
5230 
5231 const struct device_type ata_port_type = {
5232 	.name = "ata_port",
5233 #ifdef CONFIG_PM
5234 	.pm = &ata_port_pm_ops,
5235 #endif
5236 };
5237 
5238 /**
5239  *	ata_dev_init - Initialize an ata_device structure
5240  *	@dev: Device structure to initialize
5241  *
5242  *	Initialize @dev in preparation for probing.
5243  *
5244  *	LOCKING:
5245  *	Inherited from caller.
5246  */
5247 void ata_dev_init(struct ata_device *dev)
5248 {
5249 	struct ata_link *link = ata_dev_phys_link(dev);
5250 	struct ata_port *ap = link->ap;
5251 	unsigned long flags;
5252 
5253 	/* SATA spd limit is bound to the attached device, reset together */
5254 	link->sata_spd_limit = link->hw_sata_spd_limit;
5255 	link->sata_spd = 0;
5256 
5257 	/* High bits of dev->flags are used to record warm plug
5258 	 * requests which occur asynchronously.  Synchronize using
5259 	 * host lock.
5260 	 */
5261 	spin_lock_irqsave(ap->lock, flags);
5262 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5263 	dev->horkage = 0;
5264 	spin_unlock_irqrestore(ap->lock, flags);
5265 
5266 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5267 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5268 	dev->pio_mask = UINT_MAX;
5269 	dev->mwdma_mask = UINT_MAX;
5270 	dev->udma_mask = UINT_MAX;
5271 }
5272 
5273 /**
5274  *	ata_link_init - Initialize an ata_link structure
5275  *	@ap: ATA port link is attached to
5276  *	@link: Link structure to initialize
5277  *	@pmp: Port multiplier port number
5278  *
5279  *	Initialize @link.
5280  *
5281  *	LOCKING:
5282  *	Kernel thread context (may sleep)
5283  */
5284 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5285 {
5286 	int i;
5287 
5288 	/* clear everything except for devices */
5289 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5290 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5291 
5292 	link->ap = ap;
5293 	link->pmp = pmp;
5294 	link->active_tag = ATA_TAG_POISON;
5295 	link->hw_sata_spd_limit = UINT_MAX;
5296 
5297 	/* can't use iterator, ap isn't initialized yet */
5298 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5299 		struct ata_device *dev = &link->device[i];
5300 
5301 		dev->link = link;
5302 		dev->devno = dev - link->device;
5303 #ifdef CONFIG_ATA_ACPI
5304 		dev->gtf_filter = ata_acpi_gtf_filter;
5305 #endif
5306 		ata_dev_init(dev);
5307 	}
5308 }
5309 
5310 /**
5311  *	sata_link_init_spd - Initialize link->sata_spd_limit
5312  *	@link: Link to configure sata_spd_limit for
5313  *
5314  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5315  *	configured value.
5316  *
5317  *	LOCKING:
5318  *	Kernel thread context (may sleep).
5319  *
5320  *	RETURNS:
5321  *	0 on success, -errno on failure.
5322  */
5323 int sata_link_init_spd(struct ata_link *link)
5324 {
5325 	u8 spd;
5326 	int rc;
5327 
5328 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5329 	if (rc)
5330 		return rc;
5331 
5332 	spd = (link->saved_scontrol >> 4) & 0xf;
5333 	if (spd)
5334 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5335 
5336 	ata_force_link_limits(link);
5337 
5338 	link->sata_spd_limit = link->hw_sata_spd_limit;
5339 
5340 	return 0;
5341 }
5342 
5343 /**
5344  *	ata_port_alloc - allocate and initialize basic ATA port resources
5345  *	@host: ATA host this allocated port belongs to
5346  *
5347  *	Allocate and initialize basic ATA port resources.
5348  *
5349  *	RETURNS:
5350  *	Allocate ATA port on success, NULL on failure.
5351  *
5352  *	LOCKING:
5353  *	Inherited from calling layer (may sleep).
5354  */
5355 struct ata_port *ata_port_alloc(struct ata_host *host)
5356 {
5357 	struct ata_port *ap;
5358 
5359 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5360 	if (!ap)
5361 		return NULL;
5362 
5363 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5364 	ap->lock = &host->lock;
5365 	ap->print_id = -1;
5366 	ap->local_port_no = -1;
5367 	ap->host = host;
5368 	ap->dev = host->dev;
5369 
5370 	mutex_init(&ap->scsi_scan_mutex);
5371 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5372 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5373 	INIT_LIST_HEAD(&ap->eh_done_q);
5374 	init_waitqueue_head(&ap->eh_wait_q);
5375 	init_completion(&ap->park_req_pending);
5376 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5377 		    TIMER_DEFERRABLE);
5378 
5379 	ap->cbl = ATA_CBL_NONE;
5380 
5381 	ata_link_init(ap, &ap->link, 0);
5382 
5383 #ifdef ATA_IRQ_TRAP
5384 	ap->stats.unhandled_irq = 1;
5385 	ap->stats.idle_irq = 1;
5386 #endif
5387 	ata_sff_port_init(ap);
5388 
5389 	return ap;
5390 }
5391 
5392 static void ata_devres_release(struct device *gendev, void *res)
5393 {
5394 	struct ata_host *host = dev_get_drvdata(gendev);
5395 	int i;
5396 
5397 	for (i = 0; i < host->n_ports; i++) {
5398 		struct ata_port *ap = host->ports[i];
5399 
5400 		if (!ap)
5401 			continue;
5402 
5403 		if (ap->scsi_host)
5404 			scsi_host_put(ap->scsi_host);
5405 
5406 	}
5407 
5408 	dev_set_drvdata(gendev, NULL);
5409 	ata_host_put(host);
5410 }
5411 
5412 static void ata_host_release(struct kref *kref)
5413 {
5414 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5415 	int i;
5416 
5417 	for (i = 0; i < host->n_ports; i++) {
5418 		struct ata_port *ap = host->ports[i];
5419 
5420 		kfree(ap->pmp_link);
5421 		kfree(ap->slave_link);
5422 		kfree(ap->ncq_sense_buf);
5423 		kfree(ap);
5424 		host->ports[i] = NULL;
5425 	}
5426 	kfree(host);
5427 }
5428 
5429 void ata_host_get(struct ata_host *host)
5430 {
5431 	kref_get(&host->kref);
5432 }
5433 
5434 void ata_host_put(struct ata_host *host)
5435 {
5436 	kref_put(&host->kref, ata_host_release);
5437 }
5438 EXPORT_SYMBOL_GPL(ata_host_put);
5439 
5440 /**
5441  *	ata_host_alloc - allocate and init basic ATA host resources
5442  *	@dev: generic device this host is associated with
5443  *	@max_ports: maximum number of ATA ports associated with this host
5444  *
5445  *	Allocate and initialize basic ATA host resources.  LLD calls
5446  *	this function to allocate a host, initializes it fully and
5447  *	attaches it using ata_host_register().
5448  *
5449  *	@max_ports ports are allocated and host->n_ports is
5450  *	initialized to @max_ports.  The caller is allowed to decrease
5451  *	host->n_ports before calling ata_host_register().  The unused
5452  *	ports will be automatically freed on registration.
5453  *
5454  *	RETURNS:
5455  *	Allocate ATA host on success, NULL on failure.
5456  *
5457  *	LOCKING:
5458  *	Inherited from calling layer (may sleep).
5459  */
5460 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5461 {
5462 	struct ata_host *host;
5463 	size_t sz;
5464 	int i;
5465 	void *dr;
5466 
5467 	/* alloc a container for our list of ATA ports (buses) */
5468 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5469 	host = kzalloc(sz, GFP_KERNEL);
5470 	if (!host)
5471 		return NULL;
5472 
5473 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5474 		goto err_free;
5475 
5476 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5477 	if (!dr)
5478 		goto err_out;
5479 
5480 	devres_add(dev, dr);
5481 	dev_set_drvdata(dev, host);
5482 
5483 	spin_lock_init(&host->lock);
5484 	mutex_init(&host->eh_mutex);
5485 	host->dev = dev;
5486 	host->n_ports = max_ports;
5487 	kref_init(&host->kref);
5488 
5489 	/* allocate ports bound to this host */
5490 	for (i = 0; i < max_ports; i++) {
5491 		struct ata_port *ap;
5492 
5493 		ap = ata_port_alloc(host);
5494 		if (!ap)
5495 			goto err_out;
5496 
5497 		ap->port_no = i;
5498 		host->ports[i] = ap;
5499 	}
5500 
5501 	devres_remove_group(dev, NULL);
5502 	return host;
5503 
5504  err_out:
5505 	devres_release_group(dev, NULL);
5506  err_free:
5507 	kfree(host);
5508 	return NULL;
5509 }
5510 EXPORT_SYMBOL_GPL(ata_host_alloc);
5511 
5512 /**
5513  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5514  *	@dev: generic device this host is associated with
5515  *	@ppi: array of ATA port_info to initialize host with
5516  *	@n_ports: number of ATA ports attached to this host
5517  *
5518  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5519  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5520  *	last entry will be used for the remaining ports.
5521  *
5522  *	RETURNS:
5523  *	Allocate ATA host on success, NULL on failure.
5524  *
5525  *	LOCKING:
5526  *	Inherited from calling layer (may sleep).
5527  */
5528 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5529 				      const struct ata_port_info * const * ppi,
5530 				      int n_ports)
5531 {
5532 	const struct ata_port_info *pi = &ata_dummy_port_info;
5533 	struct ata_host *host;
5534 	int i, j;
5535 
5536 	host = ata_host_alloc(dev, n_ports);
5537 	if (!host)
5538 		return NULL;
5539 
5540 	for (i = 0, j = 0; i < host->n_ports; i++) {
5541 		struct ata_port *ap = host->ports[i];
5542 
5543 		if (ppi[j])
5544 			pi = ppi[j++];
5545 
5546 		ap->pio_mask = pi->pio_mask;
5547 		ap->mwdma_mask = pi->mwdma_mask;
5548 		ap->udma_mask = pi->udma_mask;
5549 		ap->flags |= pi->flags;
5550 		ap->link.flags |= pi->link_flags;
5551 		ap->ops = pi->port_ops;
5552 
5553 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5554 			host->ops = pi->port_ops;
5555 	}
5556 
5557 	return host;
5558 }
5559 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5560 
5561 static void ata_host_stop(struct device *gendev, void *res)
5562 {
5563 	struct ata_host *host = dev_get_drvdata(gendev);
5564 	int i;
5565 
5566 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5567 
5568 	for (i = 0; i < host->n_ports; i++) {
5569 		struct ata_port *ap = host->ports[i];
5570 
5571 		if (ap->ops->port_stop)
5572 			ap->ops->port_stop(ap);
5573 	}
5574 
5575 	if (host->ops->host_stop)
5576 		host->ops->host_stop(host);
5577 }
5578 
5579 /**
5580  *	ata_finalize_port_ops - finalize ata_port_operations
5581  *	@ops: ata_port_operations to finalize
5582  *
5583  *	An ata_port_operations can inherit from another ops and that
5584  *	ops can again inherit from another.  This can go on as many
5585  *	times as necessary as long as there is no loop in the
5586  *	inheritance chain.
5587  *
5588  *	Ops tables are finalized when the host is started.  NULL or
5589  *	unspecified entries are inherited from the closet ancestor
5590  *	which has the method and the entry is populated with it.
5591  *	After finalization, the ops table directly points to all the
5592  *	methods and ->inherits is no longer necessary and cleared.
5593  *
5594  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5595  *
5596  *	LOCKING:
5597  *	None.
5598  */
5599 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5600 {
5601 	static DEFINE_SPINLOCK(lock);
5602 	const struct ata_port_operations *cur;
5603 	void **begin = (void **)ops;
5604 	void **end = (void **)&ops->inherits;
5605 	void **pp;
5606 
5607 	if (!ops || !ops->inherits)
5608 		return;
5609 
5610 	spin_lock(&lock);
5611 
5612 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5613 		void **inherit = (void **)cur;
5614 
5615 		for (pp = begin; pp < end; pp++, inherit++)
5616 			if (!*pp)
5617 				*pp = *inherit;
5618 	}
5619 
5620 	for (pp = begin; pp < end; pp++)
5621 		if (IS_ERR(*pp))
5622 			*pp = NULL;
5623 
5624 	ops->inherits = NULL;
5625 
5626 	spin_unlock(&lock);
5627 }
5628 
5629 /**
5630  *	ata_host_start - start and freeze ports of an ATA host
5631  *	@host: ATA host to start ports for
5632  *
5633  *	Start and then freeze ports of @host.  Started status is
5634  *	recorded in host->flags, so this function can be called
5635  *	multiple times.  Ports are guaranteed to get started only
5636  *	once.  If host->ops is not initialized yet, it is set to the
5637  *	first non-dummy port ops.
5638  *
5639  *	LOCKING:
5640  *	Inherited from calling layer (may sleep).
5641  *
5642  *	RETURNS:
5643  *	0 if all ports are started successfully, -errno otherwise.
5644  */
5645 int ata_host_start(struct ata_host *host)
5646 {
5647 	int have_stop = 0;
5648 	void *start_dr = NULL;
5649 	int i, rc;
5650 
5651 	if (host->flags & ATA_HOST_STARTED)
5652 		return 0;
5653 
5654 	ata_finalize_port_ops(host->ops);
5655 
5656 	for (i = 0; i < host->n_ports; i++) {
5657 		struct ata_port *ap = host->ports[i];
5658 
5659 		ata_finalize_port_ops(ap->ops);
5660 
5661 		if (!host->ops && !ata_port_is_dummy(ap))
5662 			host->ops = ap->ops;
5663 
5664 		if (ap->ops->port_stop)
5665 			have_stop = 1;
5666 	}
5667 
5668 	if (host->ops && host->ops->host_stop)
5669 		have_stop = 1;
5670 
5671 	if (have_stop) {
5672 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5673 		if (!start_dr)
5674 			return -ENOMEM;
5675 	}
5676 
5677 	for (i = 0; i < host->n_ports; i++) {
5678 		struct ata_port *ap = host->ports[i];
5679 
5680 		if (ap->ops->port_start) {
5681 			rc = ap->ops->port_start(ap);
5682 			if (rc) {
5683 				if (rc != -ENODEV)
5684 					dev_err(host->dev,
5685 						"failed to start port %d (errno=%d)\n",
5686 						i, rc);
5687 				goto err_out;
5688 			}
5689 		}
5690 		ata_eh_freeze_port(ap);
5691 	}
5692 
5693 	if (start_dr)
5694 		devres_add(host->dev, start_dr);
5695 	host->flags |= ATA_HOST_STARTED;
5696 	return 0;
5697 
5698  err_out:
5699 	while (--i >= 0) {
5700 		struct ata_port *ap = host->ports[i];
5701 
5702 		if (ap->ops->port_stop)
5703 			ap->ops->port_stop(ap);
5704 	}
5705 	devres_free(start_dr);
5706 	return rc;
5707 }
5708 EXPORT_SYMBOL_GPL(ata_host_start);
5709 
5710 /**
5711  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5712  *	@host:	host to initialize
5713  *	@dev:	device host is attached to
5714  *	@ops:	port_ops
5715  *
5716  */
5717 void ata_host_init(struct ata_host *host, struct device *dev,
5718 		   struct ata_port_operations *ops)
5719 {
5720 	spin_lock_init(&host->lock);
5721 	mutex_init(&host->eh_mutex);
5722 	host->n_tags = ATA_MAX_QUEUE;
5723 	host->dev = dev;
5724 	host->ops = ops;
5725 	kref_init(&host->kref);
5726 }
5727 EXPORT_SYMBOL_GPL(ata_host_init);
5728 
5729 void ata_port_probe(struct ata_port *ap)
5730 {
5731 	struct ata_eh_info *ehi = &ap->link.eh_info;
5732 	unsigned long flags;
5733 
5734 	/* kick EH for boot probing */
5735 	spin_lock_irqsave(ap->lock, flags);
5736 
5737 	ehi->probe_mask |= ATA_ALL_DEVICES;
5738 	ehi->action |= ATA_EH_RESET;
5739 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5740 
5741 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5742 	ap->pflags |= ATA_PFLAG_LOADING;
5743 	ata_port_schedule_eh(ap);
5744 
5745 	spin_unlock_irqrestore(ap->lock, flags);
5746 }
5747 EXPORT_SYMBOL_GPL(ata_port_probe);
5748 
5749 static void async_port_probe(void *data, async_cookie_t cookie)
5750 {
5751 	struct ata_port *ap = data;
5752 
5753 	/*
5754 	 * If we're not allowed to scan this host in parallel,
5755 	 * we need to wait until all previous scans have completed
5756 	 * before going further.
5757 	 * Jeff Garzik says this is only within a controller, so we
5758 	 * don't need to wait for port 0, only for later ports.
5759 	 */
5760 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5761 		async_synchronize_cookie(cookie);
5762 
5763 	ata_port_probe(ap);
5764 	ata_port_wait_eh(ap);
5765 
5766 	/* in order to keep device order, we need to synchronize at this point */
5767 	async_synchronize_cookie(cookie);
5768 
5769 	ata_scsi_scan_host(ap, 1);
5770 }
5771 
5772 /**
5773  *	ata_host_register - register initialized ATA host
5774  *	@host: ATA host to register
5775  *	@sht: template for SCSI host
5776  *
5777  *	Register initialized ATA host.  @host is allocated using
5778  *	ata_host_alloc() and fully initialized by LLD.  This function
5779  *	starts ports, registers @host with ATA and SCSI layers and
5780  *	probe registered devices.
5781  *
5782  *	LOCKING:
5783  *	Inherited from calling layer (may sleep).
5784  *
5785  *	RETURNS:
5786  *	0 on success, -errno otherwise.
5787  */
5788 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5789 {
5790 	int i, rc;
5791 
5792 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5793 
5794 	/* host must have been started */
5795 	if (!(host->flags & ATA_HOST_STARTED)) {
5796 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5797 		WARN_ON(1);
5798 		return -EINVAL;
5799 	}
5800 
5801 	/* Blow away unused ports.  This happens when LLD can't
5802 	 * determine the exact number of ports to allocate at
5803 	 * allocation time.
5804 	 */
5805 	for (i = host->n_ports; host->ports[i]; i++)
5806 		kfree(host->ports[i]);
5807 
5808 	/* give ports names and add SCSI hosts */
5809 	for (i = 0; i < host->n_ports; i++) {
5810 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5811 		host->ports[i]->local_port_no = i + 1;
5812 	}
5813 
5814 	/* Create associated sysfs transport objects  */
5815 	for (i = 0; i < host->n_ports; i++) {
5816 		rc = ata_tport_add(host->dev,host->ports[i]);
5817 		if (rc) {
5818 			goto err_tadd;
5819 		}
5820 	}
5821 
5822 	rc = ata_scsi_add_hosts(host, sht);
5823 	if (rc)
5824 		goto err_tadd;
5825 
5826 	/* set cable, sata_spd_limit and report */
5827 	for (i = 0; i < host->n_ports; i++) {
5828 		struct ata_port *ap = host->ports[i];
5829 		unsigned int xfer_mask;
5830 
5831 		/* set SATA cable type if still unset */
5832 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5833 			ap->cbl = ATA_CBL_SATA;
5834 
5835 		/* init sata_spd_limit to the current value */
5836 		sata_link_init_spd(&ap->link);
5837 		if (ap->slave_link)
5838 			sata_link_init_spd(ap->slave_link);
5839 
5840 		/* print per-port info to dmesg */
5841 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5842 					      ap->udma_mask);
5843 
5844 		if (!ata_port_is_dummy(ap)) {
5845 			ata_port_info(ap, "%cATA max %s %s\n",
5846 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5847 				      ata_mode_string(xfer_mask),
5848 				      ap->link.eh_info.desc);
5849 			ata_ehi_clear_desc(&ap->link.eh_info);
5850 		} else
5851 			ata_port_info(ap, "DUMMY\n");
5852 	}
5853 
5854 	/* perform each probe asynchronously */
5855 	for (i = 0; i < host->n_ports; i++) {
5856 		struct ata_port *ap = host->ports[i];
5857 		ap->cookie = async_schedule(async_port_probe, ap);
5858 	}
5859 
5860 	return 0;
5861 
5862  err_tadd:
5863 	while (--i >= 0) {
5864 		ata_tport_delete(host->ports[i]);
5865 	}
5866 	return rc;
5867 
5868 }
5869 EXPORT_SYMBOL_GPL(ata_host_register);
5870 
5871 /**
5872  *	ata_host_activate - start host, request IRQ and register it
5873  *	@host: target ATA host
5874  *	@irq: IRQ to request
5875  *	@irq_handler: irq_handler used when requesting IRQ
5876  *	@irq_flags: irq_flags used when requesting IRQ
5877  *	@sht: scsi_host_template to use when registering the host
5878  *
5879  *	After allocating an ATA host and initializing it, most libata
5880  *	LLDs perform three steps to activate the host - start host,
5881  *	request IRQ and register it.  This helper takes necessary
5882  *	arguments and performs the three steps in one go.
5883  *
5884  *	An invalid IRQ skips the IRQ registration and expects the host to
5885  *	have set polling mode on the port. In this case, @irq_handler
5886  *	should be NULL.
5887  *
5888  *	LOCKING:
5889  *	Inherited from calling layer (may sleep).
5890  *
5891  *	RETURNS:
5892  *	0 on success, -errno otherwise.
5893  */
5894 int ata_host_activate(struct ata_host *host, int irq,
5895 		      irq_handler_t irq_handler, unsigned long irq_flags,
5896 		      const struct scsi_host_template *sht)
5897 {
5898 	int i, rc;
5899 	char *irq_desc;
5900 
5901 	rc = ata_host_start(host);
5902 	if (rc)
5903 		return rc;
5904 
5905 	/* Special case for polling mode */
5906 	if (!irq) {
5907 		WARN_ON(irq_handler);
5908 		return ata_host_register(host, sht);
5909 	}
5910 
5911 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5912 				  dev_driver_string(host->dev),
5913 				  dev_name(host->dev));
5914 	if (!irq_desc)
5915 		return -ENOMEM;
5916 
5917 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5918 			      irq_desc, host);
5919 	if (rc)
5920 		return rc;
5921 
5922 	for (i = 0; i < host->n_ports; i++)
5923 		ata_port_desc(host->ports[i], "irq %d", irq);
5924 
5925 	rc = ata_host_register(host, sht);
5926 	/* if failed, just free the IRQ and leave ports alone */
5927 	if (rc)
5928 		devm_free_irq(host->dev, irq, host);
5929 
5930 	return rc;
5931 }
5932 EXPORT_SYMBOL_GPL(ata_host_activate);
5933 
5934 /**
5935  *	ata_port_detach - Detach ATA port in preparation of device removal
5936  *	@ap: ATA port to be detached
5937  *
5938  *	Detach all ATA devices and the associated SCSI devices of @ap;
5939  *	then, remove the associated SCSI host.  @ap is guaranteed to
5940  *	be quiescent on return from this function.
5941  *
5942  *	LOCKING:
5943  *	Kernel thread context (may sleep).
5944  */
5945 static void ata_port_detach(struct ata_port *ap)
5946 {
5947 	unsigned long flags;
5948 	struct ata_link *link;
5949 	struct ata_device *dev;
5950 
5951 	/* tell EH we're leaving & flush EH */
5952 	spin_lock_irqsave(ap->lock, flags);
5953 	ap->pflags |= ATA_PFLAG_UNLOADING;
5954 	ata_port_schedule_eh(ap);
5955 	spin_unlock_irqrestore(ap->lock, flags);
5956 
5957 	/* wait till EH commits suicide */
5958 	ata_port_wait_eh(ap);
5959 
5960 	/* it better be dead now */
5961 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5962 
5963 	cancel_delayed_work_sync(&ap->hotplug_task);
5964 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5965 
5966 	/* clean up zpodd on port removal */
5967 	ata_for_each_link(link, ap, HOST_FIRST) {
5968 		ata_for_each_dev(dev, link, ALL) {
5969 			if (zpodd_dev_enabled(dev))
5970 				zpodd_exit(dev);
5971 		}
5972 	}
5973 	if (ap->pmp_link) {
5974 		int i;
5975 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5976 			ata_tlink_delete(&ap->pmp_link[i]);
5977 	}
5978 	/* remove the associated SCSI host */
5979 	scsi_remove_host(ap->scsi_host);
5980 	ata_tport_delete(ap);
5981 }
5982 
5983 /**
5984  *	ata_host_detach - Detach all ports of an ATA host
5985  *	@host: Host to detach
5986  *
5987  *	Detach all ports of @host.
5988  *
5989  *	LOCKING:
5990  *	Kernel thread context (may sleep).
5991  */
5992 void ata_host_detach(struct ata_host *host)
5993 {
5994 	int i;
5995 
5996 	for (i = 0; i < host->n_ports; i++) {
5997 		/* Ensure ata_port probe has completed */
5998 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5999 		ata_port_detach(host->ports[i]);
6000 	}
6001 
6002 	/* the host is dead now, dissociate ACPI */
6003 	ata_acpi_dissociate(host);
6004 }
6005 EXPORT_SYMBOL_GPL(ata_host_detach);
6006 
6007 #ifdef CONFIG_PCI
6008 
6009 /**
6010  *	ata_pci_remove_one - PCI layer callback for device removal
6011  *	@pdev: PCI device that was removed
6012  *
6013  *	PCI layer indicates to libata via this hook that hot-unplug or
6014  *	module unload event has occurred.  Detach all ports.  Resource
6015  *	release is handled via devres.
6016  *
6017  *	LOCKING:
6018  *	Inherited from PCI layer (may sleep).
6019  */
6020 void ata_pci_remove_one(struct pci_dev *pdev)
6021 {
6022 	struct ata_host *host = pci_get_drvdata(pdev);
6023 
6024 	ata_host_detach(host);
6025 }
6026 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6027 
6028 void ata_pci_shutdown_one(struct pci_dev *pdev)
6029 {
6030 	struct ata_host *host = pci_get_drvdata(pdev);
6031 	int i;
6032 
6033 	for (i = 0; i < host->n_ports; i++) {
6034 		struct ata_port *ap = host->ports[i];
6035 
6036 		ap->pflags |= ATA_PFLAG_FROZEN;
6037 
6038 		/* Disable port interrupts */
6039 		if (ap->ops->freeze)
6040 			ap->ops->freeze(ap);
6041 
6042 		/* Stop the port DMA engines */
6043 		if (ap->ops->port_stop)
6044 			ap->ops->port_stop(ap);
6045 	}
6046 }
6047 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6048 
6049 /* move to PCI subsystem */
6050 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6051 {
6052 	unsigned long tmp = 0;
6053 
6054 	switch (bits->width) {
6055 	case 1: {
6056 		u8 tmp8 = 0;
6057 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6058 		tmp = tmp8;
6059 		break;
6060 	}
6061 	case 2: {
6062 		u16 tmp16 = 0;
6063 		pci_read_config_word(pdev, bits->reg, &tmp16);
6064 		tmp = tmp16;
6065 		break;
6066 	}
6067 	case 4: {
6068 		u32 tmp32 = 0;
6069 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6070 		tmp = tmp32;
6071 		break;
6072 	}
6073 
6074 	default:
6075 		return -EINVAL;
6076 	}
6077 
6078 	tmp &= bits->mask;
6079 
6080 	return (tmp == bits->val) ? 1 : 0;
6081 }
6082 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6083 
6084 #ifdef CONFIG_PM
6085 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6086 {
6087 	pci_save_state(pdev);
6088 	pci_disable_device(pdev);
6089 
6090 	if (mesg.event & PM_EVENT_SLEEP)
6091 		pci_set_power_state(pdev, PCI_D3hot);
6092 }
6093 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6094 
6095 int ata_pci_device_do_resume(struct pci_dev *pdev)
6096 {
6097 	int rc;
6098 
6099 	pci_set_power_state(pdev, PCI_D0);
6100 	pci_restore_state(pdev);
6101 
6102 	rc = pcim_enable_device(pdev);
6103 	if (rc) {
6104 		dev_err(&pdev->dev,
6105 			"failed to enable device after resume (%d)\n", rc);
6106 		return rc;
6107 	}
6108 
6109 	pci_set_master(pdev);
6110 	return 0;
6111 }
6112 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6113 
6114 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6115 {
6116 	struct ata_host *host = pci_get_drvdata(pdev);
6117 
6118 	ata_host_suspend(host, mesg);
6119 
6120 	ata_pci_device_do_suspend(pdev, mesg);
6121 
6122 	return 0;
6123 }
6124 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6125 
6126 int ata_pci_device_resume(struct pci_dev *pdev)
6127 {
6128 	struct ata_host *host = pci_get_drvdata(pdev);
6129 	int rc;
6130 
6131 	rc = ata_pci_device_do_resume(pdev);
6132 	if (rc == 0)
6133 		ata_host_resume(host);
6134 	return rc;
6135 }
6136 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6137 #endif /* CONFIG_PM */
6138 #endif /* CONFIG_PCI */
6139 
6140 /**
6141  *	ata_platform_remove_one - Platform layer callback for device removal
6142  *	@pdev: Platform device that was removed
6143  *
6144  *	Platform layer indicates to libata via this hook that hot-unplug or
6145  *	module unload event has occurred.  Detach all ports.  Resource
6146  *	release is handled via devres.
6147  *
6148  *	LOCKING:
6149  *	Inherited from platform layer (may sleep).
6150  */
6151 void ata_platform_remove_one(struct platform_device *pdev)
6152 {
6153 	struct ata_host *host = platform_get_drvdata(pdev);
6154 
6155 	ata_host_detach(host);
6156 }
6157 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6158 
6159 #ifdef CONFIG_ATA_FORCE
6160 
6161 #define force_cbl(name, flag)				\
6162 	{ #name,	.cbl		= (flag) }
6163 
6164 #define force_spd_limit(spd, val)			\
6165 	{ #spd,	.spd_limit		= (val) }
6166 
6167 #define force_xfer(mode, shift)				\
6168 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6169 
6170 #define force_lflag_on(name, flags)			\
6171 	{ #name,	.lflags_on	= (flags) }
6172 
6173 #define force_lflag_onoff(name, flags)			\
6174 	{ "no" #name,	.lflags_on	= (flags) },	\
6175 	{ #name,	.lflags_off	= (flags) }
6176 
6177 #define force_horkage_on(name, flag)			\
6178 	{ #name,	.horkage_on	= (flag) }
6179 
6180 #define force_horkage_onoff(name, flag)			\
6181 	{ "no" #name,	.horkage_on	= (flag) },	\
6182 	{ #name,	.horkage_off	= (flag) }
6183 
6184 static const struct ata_force_param force_tbl[] __initconst = {
6185 	force_cbl(40c,			ATA_CBL_PATA40),
6186 	force_cbl(80c,			ATA_CBL_PATA80),
6187 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6188 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6189 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6190 	force_cbl(sata,			ATA_CBL_SATA),
6191 
6192 	force_spd_limit(1.5Gbps,	1),
6193 	force_spd_limit(3.0Gbps,	2),
6194 
6195 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6196 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6197 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6198 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6199 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6200 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6201 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6202 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6203 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6204 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6205 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6206 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6207 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6208 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6209 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6210 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6211 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6212 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6213 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6214 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6215 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6216 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6217 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6218 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6219 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6220 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6221 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6222 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6223 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6224 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6225 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6226 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6227 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6228 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6229 
6230 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6231 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6232 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6233 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6234 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6235 
6236 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6237 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6238 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6239 
6240 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6241 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6242 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6243 
6244 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6245 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6246 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6247 
6248 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6249 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6250 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6251 
6252 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6253 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6254 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6255 
6256 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6257 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6258 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6259 	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6260 
6261 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6262 };
6263 
6264 static int __init ata_parse_force_one(char **cur,
6265 				      struct ata_force_ent *force_ent,
6266 				      const char **reason)
6267 {
6268 	char *start = *cur, *p = *cur;
6269 	char *id, *val, *endp;
6270 	const struct ata_force_param *match_fp = NULL;
6271 	int nr_matches = 0, i;
6272 
6273 	/* find where this param ends and update *cur */
6274 	while (*p != '\0' && *p != ',')
6275 		p++;
6276 
6277 	if (*p == '\0')
6278 		*cur = p;
6279 	else
6280 		*cur = p + 1;
6281 
6282 	*p = '\0';
6283 
6284 	/* parse */
6285 	p = strchr(start, ':');
6286 	if (!p) {
6287 		val = strstrip(start);
6288 		goto parse_val;
6289 	}
6290 	*p = '\0';
6291 
6292 	id = strstrip(start);
6293 	val = strstrip(p + 1);
6294 
6295 	/* parse id */
6296 	p = strchr(id, '.');
6297 	if (p) {
6298 		*p++ = '\0';
6299 		force_ent->device = simple_strtoul(p, &endp, 10);
6300 		if (p == endp || *endp != '\0') {
6301 			*reason = "invalid device";
6302 			return -EINVAL;
6303 		}
6304 	}
6305 
6306 	force_ent->port = simple_strtoul(id, &endp, 10);
6307 	if (id == endp || *endp != '\0') {
6308 		*reason = "invalid port/link";
6309 		return -EINVAL;
6310 	}
6311 
6312  parse_val:
6313 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6314 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6315 		const struct ata_force_param *fp = &force_tbl[i];
6316 
6317 		if (strncasecmp(val, fp->name, strlen(val)))
6318 			continue;
6319 
6320 		nr_matches++;
6321 		match_fp = fp;
6322 
6323 		if (strcasecmp(val, fp->name) == 0) {
6324 			nr_matches = 1;
6325 			break;
6326 		}
6327 	}
6328 
6329 	if (!nr_matches) {
6330 		*reason = "unknown value";
6331 		return -EINVAL;
6332 	}
6333 	if (nr_matches > 1) {
6334 		*reason = "ambiguous value";
6335 		return -EINVAL;
6336 	}
6337 
6338 	force_ent->param = *match_fp;
6339 
6340 	return 0;
6341 }
6342 
6343 static void __init ata_parse_force_param(void)
6344 {
6345 	int idx = 0, size = 1;
6346 	int last_port = -1, last_device = -1;
6347 	char *p, *cur, *next;
6348 
6349 	/* Calculate maximum number of params and allocate ata_force_tbl */
6350 	for (p = ata_force_param_buf; *p; p++)
6351 		if (*p == ',')
6352 			size++;
6353 
6354 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6355 	if (!ata_force_tbl) {
6356 		printk(KERN_WARNING "ata: failed to extend force table, "
6357 		       "libata.force ignored\n");
6358 		return;
6359 	}
6360 
6361 	/* parse and populate the table */
6362 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6363 		const char *reason = "";
6364 		struct ata_force_ent te = { .port = -1, .device = -1 };
6365 
6366 		next = cur;
6367 		if (ata_parse_force_one(&next, &te, &reason)) {
6368 			printk(KERN_WARNING "ata: failed to parse force "
6369 			       "parameter \"%s\" (%s)\n",
6370 			       cur, reason);
6371 			continue;
6372 		}
6373 
6374 		if (te.port == -1) {
6375 			te.port = last_port;
6376 			te.device = last_device;
6377 		}
6378 
6379 		ata_force_tbl[idx++] = te;
6380 
6381 		last_port = te.port;
6382 		last_device = te.device;
6383 	}
6384 
6385 	ata_force_tbl_size = idx;
6386 }
6387 
6388 static void ata_free_force_param(void)
6389 {
6390 	kfree(ata_force_tbl);
6391 }
6392 #else
6393 static inline void ata_parse_force_param(void) { }
6394 static inline void ata_free_force_param(void) { }
6395 #endif
6396 
6397 static int __init ata_init(void)
6398 {
6399 	int rc;
6400 
6401 	ata_parse_force_param();
6402 
6403 	rc = ata_sff_init();
6404 	if (rc) {
6405 		ata_free_force_param();
6406 		return rc;
6407 	}
6408 
6409 	libata_transport_init();
6410 	ata_scsi_transport_template = ata_attach_transport();
6411 	if (!ata_scsi_transport_template) {
6412 		ata_sff_exit();
6413 		rc = -ENOMEM;
6414 		goto err_out;
6415 	}
6416 
6417 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6418 	return 0;
6419 
6420 err_out:
6421 	return rc;
6422 }
6423 
6424 static void __exit ata_exit(void)
6425 {
6426 	ata_release_transport(ata_scsi_transport_template);
6427 	libata_transport_exit();
6428 	ata_sff_exit();
6429 	ata_free_force_param();
6430 }
6431 
6432 subsys_initcall(ata_init);
6433 module_exit(ata_exit);
6434 
6435 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6436 
6437 int ata_ratelimit(void)
6438 {
6439 	return __ratelimit(&ratelimit);
6440 }
6441 EXPORT_SYMBOL_GPL(ata_ratelimit);
6442 
6443 /**
6444  *	ata_msleep - ATA EH owner aware msleep
6445  *	@ap: ATA port to attribute the sleep to
6446  *	@msecs: duration to sleep in milliseconds
6447  *
6448  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6449  *	ownership is released before going to sleep and reacquired
6450  *	after the sleep is complete.  IOW, other ports sharing the
6451  *	@ap->host will be allowed to own the EH while this task is
6452  *	sleeping.
6453  *
6454  *	LOCKING:
6455  *	Might sleep.
6456  */
6457 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6458 {
6459 	bool owns_eh = ap && ap->host->eh_owner == current;
6460 
6461 	if (owns_eh)
6462 		ata_eh_release(ap);
6463 
6464 	if (msecs < 20) {
6465 		unsigned long usecs = msecs * USEC_PER_MSEC;
6466 		usleep_range(usecs, usecs + 50);
6467 	} else {
6468 		msleep(msecs);
6469 	}
6470 
6471 	if (owns_eh)
6472 		ata_eh_acquire(ap);
6473 }
6474 EXPORT_SYMBOL_GPL(ata_msleep);
6475 
6476 /**
6477  *	ata_wait_register - wait until register value changes
6478  *	@ap: ATA port to wait register for, can be NULL
6479  *	@reg: IO-mapped register
6480  *	@mask: Mask to apply to read register value
6481  *	@val: Wait condition
6482  *	@interval: polling interval in milliseconds
6483  *	@timeout: timeout in milliseconds
6484  *
6485  *	Waiting for some bits of register to change is a common
6486  *	operation for ATA controllers.  This function reads 32bit LE
6487  *	IO-mapped register @reg and tests for the following condition.
6488  *
6489  *	(*@reg & mask) != val
6490  *
6491  *	If the condition is met, it returns; otherwise, the process is
6492  *	repeated after @interval_msec until timeout.
6493  *
6494  *	LOCKING:
6495  *	Kernel thread context (may sleep)
6496  *
6497  *	RETURNS:
6498  *	The final register value.
6499  */
6500 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6501 		      unsigned int interval, unsigned int timeout)
6502 {
6503 	unsigned long deadline;
6504 	u32 tmp;
6505 
6506 	tmp = ioread32(reg);
6507 
6508 	/* Calculate timeout _after_ the first read to make sure
6509 	 * preceding writes reach the controller before starting to
6510 	 * eat away the timeout.
6511 	 */
6512 	deadline = ata_deadline(jiffies, timeout);
6513 
6514 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6515 		ata_msleep(ap, interval);
6516 		tmp = ioread32(reg);
6517 	}
6518 
6519 	return tmp;
6520 }
6521 EXPORT_SYMBOL_GPL(ata_wait_register);
6522 
6523 /*
6524  * Dummy port_ops
6525  */
6526 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6527 {
6528 	return AC_ERR_SYSTEM;
6529 }
6530 
6531 static void ata_dummy_error_handler(struct ata_port *ap)
6532 {
6533 	/* truly dummy */
6534 }
6535 
6536 struct ata_port_operations ata_dummy_port_ops = {
6537 	.qc_prep		= ata_noop_qc_prep,
6538 	.qc_issue		= ata_dummy_qc_issue,
6539 	.error_handler		= ata_dummy_error_handler,
6540 	.sched_eh		= ata_std_sched_eh,
6541 	.end_eh			= ata_std_end_eh,
6542 };
6543 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6544 
6545 const struct ata_port_info ata_dummy_port_info = {
6546 	.port_ops		= &ata_dummy_port_ops,
6547 };
6548 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6549 
6550 void ata_print_version(const struct device *dev, const char *version)
6551 {
6552 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6553 }
6554 EXPORT_SYMBOL(ata_print_version);
6555 
6556 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6557 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6558 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6559 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6560 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6561