1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_host.h> 64 #include <linux/libata.h> 65 #include <asm/byteorder.h> 66 #include <linux/cdrom.h> 67 68 #include "libata.h" 69 70 71 /* debounce timing parameters in msecs { interval, duration, timeout } */ 72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 75 76 const struct ata_port_operations ata_base_port_ops = { 77 .prereset = ata_std_prereset, 78 .postreset = ata_std_postreset, 79 .error_handler = ata_std_error_handler, 80 }; 81 82 const struct ata_port_operations sata_port_ops = { 83 .inherits = &ata_base_port_ops, 84 85 .qc_defer = ata_std_qc_defer, 86 .hardreset = sata_std_hardreset, 87 }; 88 89 static unsigned int ata_dev_init_params(struct ata_device *dev, 90 u16 heads, u16 sectors); 91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 92 static unsigned int ata_dev_set_feature(struct ata_device *dev, 93 u8 enable, u8 feature); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 static struct workqueue_struct *ata_wq; 99 100 struct workqueue_struct *ata_aux_wq; 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 MODULE_AUTHOR("Jeff Garzik"); 163 MODULE_DESCRIPTION("Library module for ATA devices"); 164 MODULE_LICENSE("GPL"); 165 MODULE_VERSION(DRV_VERSION); 166 167 168 static bool ata_sstatus_online(u32 sstatus) 169 { 170 return (sstatus & 0xf) == 0x3; 171 } 172 173 /** 174 * ata_link_next - link iteration helper 175 * @link: the previous link, NULL to start 176 * @ap: ATA port containing links to iterate 177 * @mode: iteration mode, one of ATA_LITER_* 178 * 179 * LOCKING: 180 * Host lock or EH context. 181 * 182 * RETURNS: 183 * Pointer to the next link. 184 */ 185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 186 enum ata_link_iter_mode mode) 187 { 188 BUG_ON(mode != ATA_LITER_EDGE && 189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 190 191 /* NULL link indicates start of iteration */ 192 if (!link) 193 switch (mode) { 194 case ATA_LITER_EDGE: 195 case ATA_LITER_PMP_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 /* fall through */ 199 case ATA_LITER_HOST_FIRST: 200 return &ap->link; 201 } 202 203 /* we just iterated over the host link, what's next? */ 204 if (link == &ap->link) 205 switch (mode) { 206 case ATA_LITER_HOST_FIRST: 207 if (sata_pmp_attached(ap)) 208 return ap->pmp_link; 209 /* fall through */ 210 case ATA_LITER_PMP_FIRST: 211 if (unlikely(ap->slave_link)) 212 return ap->slave_link; 213 /* fall through */ 214 case ATA_LITER_EDGE: 215 return NULL; 216 } 217 218 /* slave_link excludes PMP */ 219 if (unlikely(link == ap->slave_link)) 220 return NULL; 221 222 /* we were over a PMP link */ 223 if (++link < ap->pmp_link + ap->nr_pmp_links) 224 return link; 225 226 if (mode == ATA_LITER_PMP_FIRST) 227 return &ap->link; 228 229 return NULL; 230 } 231 232 /** 233 * ata_dev_next - device iteration helper 234 * @dev: the previous device, NULL to start 235 * @link: ATA link containing devices to iterate 236 * @mode: iteration mode, one of ATA_DITER_* 237 * 238 * LOCKING: 239 * Host lock or EH context. 240 * 241 * RETURNS: 242 * Pointer to the next device. 243 */ 244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 245 enum ata_dev_iter_mode mode) 246 { 247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 249 250 /* NULL dev indicates start of iteration */ 251 if (!dev) 252 switch (mode) { 253 case ATA_DITER_ENABLED: 254 case ATA_DITER_ALL: 255 dev = link->device; 256 goto check; 257 case ATA_DITER_ENABLED_REVERSE: 258 case ATA_DITER_ALL_REVERSE: 259 dev = link->device + ata_link_max_devices(link) - 1; 260 goto check; 261 } 262 263 next: 264 /* move to the next one */ 265 switch (mode) { 266 case ATA_DITER_ENABLED: 267 case ATA_DITER_ALL: 268 if (++dev < link->device + ata_link_max_devices(link)) 269 goto check; 270 return NULL; 271 case ATA_DITER_ENABLED_REVERSE: 272 case ATA_DITER_ALL_REVERSE: 273 if (--dev >= link->device) 274 goto check; 275 return NULL; 276 } 277 278 check: 279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 280 !ata_dev_enabled(dev)) 281 goto next; 282 return dev; 283 } 284 285 /** 286 * ata_dev_phys_link - find physical link for a device 287 * @dev: ATA device to look up physical link for 288 * 289 * Look up physical link which @dev is attached to. Note that 290 * this is different from @dev->link only when @dev is on slave 291 * link. For all other cases, it's the same as @dev->link. 292 * 293 * LOCKING: 294 * Don't care. 295 * 296 * RETURNS: 297 * Pointer to the found physical link. 298 */ 299 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 300 { 301 struct ata_port *ap = dev->link->ap; 302 303 if (!ap->slave_link) 304 return dev->link; 305 if (!dev->devno) 306 return &ap->link; 307 return ap->slave_link; 308 } 309 310 /** 311 * ata_force_cbl - force cable type according to libata.force 312 * @ap: ATA port of interest 313 * 314 * Force cable type according to libata.force and whine about it. 315 * The last entry which has matching port number is used, so it 316 * can be specified as part of device force parameters. For 317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 318 * same effect. 319 * 320 * LOCKING: 321 * EH context. 322 */ 323 void ata_force_cbl(struct ata_port *ap) 324 { 325 int i; 326 327 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 328 const struct ata_force_ent *fe = &ata_force_tbl[i]; 329 330 if (fe->port != -1 && fe->port != ap->print_id) 331 continue; 332 333 if (fe->param.cbl == ATA_CBL_NONE) 334 continue; 335 336 ap->cbl = fe->param.cbl; 337 ata_port_printk(ap, KERN_NOTICE, 338 "FORCE: cable set to %s\n", fe->param.name); 339 return; 340 } 341 } 342 343 /** 344 * ata_force_link_limits - force link limits according to libata.force 345 * @link: ATA link of interest 346 * 347 * Force link flags and SATA spd limit according to libata.force 348 * and whine about it. When only the port part is specified 349 * (e.g. 1:), the limit applies to all links connected to both 350 * the host link and all fan-out ports connected via PMP. If the 351 * device part is specified as 0 (e.g. 1.00:), it specifies the 352 * first fan-out link not the host link. Device number 15 always 353 * points to the host link whether PMP is attached or not. If the 354 * controller has slave link, device number 16 points to it. 355 * 356 * LOCKING: 357 * EH context. 358 */ 359 static void ata_force_link_limits(struct ata_link *link) 360 { 361 bool did_spd = false; 362 int linkno = link->pmp; 363 int i; 364 365 if (ata_is_host_link(link)) 366 linkno += 15; 367 368 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 369 const struct ata_force_ent *fe = &ata_force_tbl[i]; 370 371 if (fe->port != -1 && fe->port != link->ap->print_id) 372 continue; 373 374 if (fe->device != -1 && fe->device != linkno) 375 continue; 376 377 /* only honor the first spd limit */ 378 if (!did_spd && fe->param.spd_limit) { 379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 380 ata_link_printk(link, KERN_NOTICE, 381 "FORCE: PHY spd limit set to %s\n", 382 fe->param.name); 383 did_spd = true; 384 } 385 386 /* let lflags stack */ 387 if (fe->param.lflags) { 388 link->flags |= fe->param.lflags; 389 ata_link_printk(link, KERN_NOTICE, 390 "FORCE: link flag 0x%x forced -> 0x%x\n", 391 fe->param.lflags, link->flags); 392 } 393 } 394 } 395 396 /** 397 * ata_force_xfermask - force xfermask according to libata.force 398 * @dev: ATA device of interest 399 * 400 * Force xfer_mask according to libata.force and whine about it. 401 * For consistency with link selection, device number 15 selects 402 * the first device connected to the host link. 403 * 404 * LOCKING: 405 * EH context. 406 */ 407 static void ata_force_xfermask(struct ata_device *dev) 408 { 409 int devno = dev->link->pmp + dev->devno; 410 int alt_devno = devno; 411 int i; 412 413 /* allow n.15/16 for devices attached to host port */ 414 if (ata_is_host_link(dev->link)) 415 alt_devno += 15; 416 417 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 418 const struct ata_force_ent *fe = &ata_force_tbl[i]; 419 unsigned long pio_mask, mwdma_mask, udma_mask; 420 421 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 422 continue; 423 424 if (fe->device != -1 && fe->device != devno && 425 fe->device != alt_devno) 426 continue; 427 428 if (!fe->param.xfer_mask) 429 continue; 430 431 ata_unpack_xfermask(fe->param.xfer_mask, 432 &pio_mask, &mwdma_mask, &udma_mask); 433 if (udma_mask) 434 dev->udma_mask = udma_mask; 435 else if (mwdma_mask) { 436 dev->udma_mask = 0; 437 dev->mwdma_mask = mwdma_mask; 438 } else { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = 0; 441 dev->pio_mask = pio_mask; 442 } 443 444 ata_dev_printk(dev, KERN_NOTICE, 445 "FORCE: xfer_mask set to %s\n", fe->param.name); 446 return; 447 } 448 } 449 450 /** 451 * ata_force_horkage - force horkage according to libata.force 452 * @dev: ATA device of interest 453 * 454 * Force horkage according to libata.force and whine about it. 455 * For consistency with link selection, device number 15 selects 456 * the first device connected to the host link. 457 * 458 * LOCKING: 459 * EH context. 460 */ 461 static void ata_force_horkage(struct ata_device *dev) 462 { 463 int devno = dev->link->pmp + dev->devno; 464 int alt_devno = devno; 465 int i; 466 467 /* allow n.15/16 for devices attached to host port */ 468 if (ata_is_host_link(dev->link)) 469 alt_devno += 15; 470 471 for (i = 0; i < ata_force_tbl_size; i++) { 472 const struct ata_force_ent *fe = &ata_force_tbl[i]; 473 474 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 475 continue; 476 477 if (fe->device != -1 && fe->device != devno && 478 fe->device != alt_devno) 479 continue; 480 481 if (!(~dev->horkage & fe->param.horkage_on) && 482 !(dev->horkage & fe->param.horkage_off)) 483 continue; 484 485 dev->horkage |= fe->param.horkage_on; 486 dev->horkage &= ~fe->param.horkage_off; 487 488 ata_dev_printk(dev, KERN_NOTICE, 489 "FORCE: horkage modified (%s)\n", fe->param.name); 490 } 491 } 492 493 /** 494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 495 * @opcode: SCSI opcode 496 * 497 * Determine ATAPI command type from @opcode. 498 * 499 * LOCKING: 500 * None. 501 * 502 * RETURNS: 503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 504 */ 505 int atapi_cmd_type(u8 opcode) 506 { 507 switch (opcode) { 508 case GPCMD_READ_10: 509 case GPCMD_READ_12: 510 return ATAPI_READ; 511 512 case GPCMD_WRITE_10: 513 case GPCMD_WRITE_12: 514 case GPCMD_WRITE_AND_VERIFY_10: 515 return ATAPI_WRITE; 516 517 case GPCMD_READ_CD: 518 case GPCMD_READ_CD_MSF: 519 return ATAPI_READ_CD; 520 521 case ATA_16: 522 case ATA_12: 523 if (atapi_passthru16) 524 return ATAPI_PASS_THRU; 525 /* fall thru */ 526 default: 527 return ATAPI_MISC; 528 } 529 } 530 531 /** 532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 533 * @tf: Taskfile to convert 534 * @pmp: Port multiplier port 535 * @is_cmd: This FIS is for command 536 * @fis: Buffer into which data will output 537 * 538 * Converts a standard ATA taskfile to a Serial ATA 539 * FIS structure (Register - Host to Device). 540 * 541 * LOCKING: 542 * Inherited from caller. 543 */ 544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 545 { 546 fis[0] = 0x27; /* Register - Host to Device FIS */ 547 fis[1] = pmp & 0xf; /* Port multiplier number*/ 548 if (is_cmd) 549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 550 551 fis[2] = tf->command; 552 fis[3] = tf->feature; 553 554 fis[4] = tf->lbal; 555 fis[5] = tf->lbam; 556 fis[6] = tf->lbah; 557 fis[7] = tf->device; 558 559 fis[8] = tf->hob_lbal; 560 fis[9] = tf->hob_lbam; 561 fis[10] = tf->hob_lbah; 562 fis[11] = tf->hob_feature; 563 564 fis[12] = tf->nsect; 565 fis[13] = tf->hob_nsect; 566 fis[14] = 0; 567 fis[15] = tf->ctl; 568 569 fis[16] = 0; 570 fis[17] = 0; 571 fis[18] = 0; 572 fis[19] = 0; 573 } 574 575 /** 576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 577 * @fis: Buffer from which data will be input 578 * @tf: Taskfile to output 579 * 580 * Converts a serial ATA FIS structure to a standard ATA taskfile. 581 * 582 * LOCKING: 583 * Inherited from caller. 584 */ 585 586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 587 { 588 tf->command = fis[2]; /* status */ 589 tf->feature = fis[3]; /* error */ 590 591 tf->lbal = fis[4]; 592 tf->lbam = fis[5]; 593 tf->lbah = fis[6]; 594 tf->device = fis[7]; 595 596 tf->hob_lbal = fis[8]; 597 tf->hob_lbam = fis[9]; 598 tf->hob_lbah = fis[10]; 599 600 tf->nsect = fis[12]; 601 tf->hob_nsect = fis[13]; 602 } 603 604 static const u8 ata_rw_cmds[] = { 605 /* pio multi */ 606 ATA_CMD_READ_MULTI, 607 ATA_CMD_WRITE_MULTI, 608 ATA_CMD_READ_MULTI_EXT, 609 ATA_CMD_WRITE_MULTI_EXT, 610 0, 611 0, 612 0, 613 ATA_CMD_WRITE_MULTI_FUA_EXT, 614 /* pio */ 615 ATA_CMD_PIO_READ, 616 ATA_CMD_PIO_WRITE, 617 ATA_CMD_PIO_READ_EXT, 618 ATA_CMD_PIO_WRITE_EXT, 619 0, 620 0, 621 0, 622 0, 623 /* dma */ 624 ATA_CMD_READ, 625 ATA_CMD_WRITE, 626 ATA_CMD_READ_EXT, 627 ATA_CMD_WRITE_EXT, 628 0, 629 0, 630 0, 631 ATA_CMD_WRITE_FUA_EXT 632 }; 633 634 /** 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 636 * @tf: command to examine and configure 637 * @dev: device tf belongs to 638 * 639 * Examine the device configuration and tf->flags to calculate 640 * the proper read/write commands and protocol to use. 641 * 642 * LOCKING: 643 * caller. 644 */ 645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 646 { 647 u8 cmd; 648 649 int index, fua, lba48, write; 650 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 654 655 if (dev->flags & ATA_DFLAG_PIO) { 656 tf->protocol = ATA_PROT_PIO; 657 index = dev->multi_count ? 0 : 8; 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 659 /* Unable to use DMA due to host limitation */ 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else { 663 tf->protocol = ATA_PROT_DMA; 664 index = 16; 665 } 666 667 cmd = ata_rw_cmds[index + fua + lba48 + write]; 668 if (cmd) { 669 tf->command = cmd; 670 return 0; 671 } 672 return -1; 673 } 674 675 /** 676 * ata_tf_read_block - Read block address from ATA taskfile 677 * @tf: ATA taskfile of interest 678 * @dev: ATA device @tf belongs to 679 * 680 * LOCKING: 681 * None. 682 * 683 * Read block address from @tf. This function can handle all 684 * three address formats - LBA, LBA48 and CHS. tf->protocol and 685 * flags select the address format to use. 686 * 687 * RETURNS: 688 * Block address read from @tf. 689 */ 690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 691 { 692 u64 block = 0; 693 694 if (tf->flags & ATA_TFLAG_LBA) { 695 if (tf->flags & ATA_TFLAG_LBA48) { 696 block |= (u64)tf->hob_lbah << 40; 697 block |= (u64)tf->hob_lbam << 32; 698 block |= (u64)tf->hob_lbal << 24; 699 } else 700 block |= (tf->device & 0xf) << 24; 701 702 block |= tf->lbah << 16; 703 block |= tf->lbam << 8; 704 block |= tf->lbal; 705 } else { 706 u32 cyl, head, sect; 707 708 cyl = tf->lbam | (tf->lbah << 8); 709 head = tf->device & 0xf; 710 sect = tf->lbal; 711 712 block = (cyl * dev->heads + head) * dev->sectors + sect; 713 } 714 715 return block; 716 } 717 718 /** 719 * ata_build_rw_tf - Build ATA taskfile for given read/write request 720 * @tf: Target ATA taskfile 721 * @dev: ATA device @tf belongs to 722 * @block: Block address 723 * @n_block: Number of blocks 724 * @tf_flags: RW/FUA etc... 725 * @tag: tag 726 * 727 * LOCKING: 728 * None. 729 * 730 * Build ATA taskfile @tf for read/write request described by 731 * @block, @n_block, @tf_flags and @tag on @dev. 732 * 733 * RETURNS: 734 * 735 * 0 on success, -ERANGE if the request is too large for @dev, 736 * -EINVAL if the request is invalid. 737 */ 738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 739 u64 block, u32 n_block, unsigned int tf_flags, 740 unsigned int tag) 741 { 742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 743 tf->flags |= tf_flags; 744 745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 746 /* yay, NCQ */ 747 if (!lba_48_ok(block, n_block)) 748 return -ERANGE; 749 750 tf->protocol = ATA_PROT_NCQ; 751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 752 753 if (tf->flags & ATA_TFLAG_WRITE) 754 tf->command = ATA_CMD_FPDMA_WRITE; 755 else 756 tf->command = ATA_CMD_FPDMA_READ; 757 758 tf->nsect = tag << 3; 759 tf->hob_feature = (n_block >> 8) & 0xff; 760 tf->feature = n_block & 0xff; 761 762 tf->hob_lbah = (block >> 40) & 0xff; 763 tf->hob_lbam = (block >> 32) & 0xff; 764 tf->hob_lbal = (block >> 24) & 0xff; 765 tf->lbah = (block >> 16) & 0xff; 766 tf->lbam = (block >> 8) & 0xff; 767 tf->lbal = block & 0xff; 768 769 tf->device = 1 << 6; 770 if (tf->flags & ATA_TFLAG_FUA) 771 tf->device |= 1 << 7; 772 } else if (dev->flags & ATA_DFLAG_LBA) { 773 tf->flags |= ATA_TFLAG_LBA; 774 775 if (lba_28_ok(block, n_block)) { 776 /* use LBA28 */ 777 tf->device |= (block >> 24) & 0xf; 778 } else if (lba_48_ok(block, n_block)) { 779 if (!(dev->flags & ATA_DFLAG_LBA48)) 780 return -ERANGE; 781 782 /* use LBA48 */ 783 tf->flags |= ATA_TFLAG_LBA48; 784 785 tf->hob_nsect = (n_block >> 8) & 0xff; 786 787 tf->hob_lbah = (block >> 40) & 0xff; 788 tf->hob_lbam = (block >> 32) & 0xff; 789 tf->hob_lbal = (block >> 24) & 0xff; 790 } else 791 /* request too large even for LBA48 */ 792 return -ERANGE; 793 794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 795 return -EINVAL; 796 797 tf->nsect = n_block & 0xff; 798 799 tf->lbah = (block >> 16) & 0xff; 800 tf->lbam = (block >> 8) & 0xff; 801 tf->lbal = block & 0xff; 802 803 tf->device |= ATA_LBA; 804 } else { 805 /* CHS */ 806 u32 sect, head, cyl, track; 807 808 /* The request -may- be too large for CHS addressing. */ 809 if (!lba_28_ok(block, n_block)) 810 return -ERANGE; 811 812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 813 return -EINVAL; 814 815 /* Convert LBA to CHS */ 816 track = (u32)block / dev->sectors; 817 cyl = track / dev->heads; 818 head = track % dev->heads; 819 sect = (u32)block % dev->sectors + 1; 820 821 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 822 (u32)block, track, cyl, head, sect); 823 824 /* Check whether the converted CHS can fit. 825 Cylinder: 0-65535 826 Head: 0-15 827 Sector: 1-255*/ 828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 829 return -ERANGE; 830 831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 832 tf->lbal = sect; 833 tf->lbam = cyl; 834 tf->lbah = cyl >> 8; 835 tf->device |= head; 836 } 837 838 return 0; 839 } 840 841 /** 842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 843 * @pio_mask: pio_mask 844 * @mwdma_mask: mwdma_mask 845 * @udma_mask: udma_mask 846 * 847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 848 * unsigned int xfer_mask. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Packed xfer_mask. 855 */ 856 unsigned long ata_pack_xfermask(unsigned long pio_mask, 857 unsigned long mwdma_mask, 858 unsigned long udma_mask) 859 { 860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 863 } 864 865 /** 866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 867 * @xfer_mask: xfer_mask to unpack 868 * @pio_mask: resulting pio_mask 869 * @mwdma_mask: resulting mwdma_mask 870 * @udma_mask: resulting udma_mask 871 * 872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 873 * Any NULL distination masks will be ignored. 874 */ 875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 876 unsigned long *mwdma_mask, unsigned long *udma_mask) 877 { 878 if (pio_mask) 879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 880 if (mwdma_mask) 881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 882 if (udma_mask) 883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 884 } 885 886 static const struct ata_xfer_ent { 887 int shift, bits; 888 u8 base; 889 } ata_xfer_tbl[] = { 890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 893 { -1, }, 894 }; 895 896 /** 897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 898 * @xfer_mask: xfer_mask of interest 899 * 900 * Return matching XFER_* value for @xfer_mask. Only the highest 901 * bit of @xfer_mask is considered. 902 * 903 * LOCKING: 904 * None. 905 * 906 * RETURNS: 907 * Matching XFER_* value, 0xff if no match found. 908 */ 909 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 910 { 911 int highbit = fls(xfer_mask) - 1; 912 const struct ata_xfer_ent *ent; 913 914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 916 return ent->base + highbit - ent->shift; 917 return 0xff; 918 } 919 920 /** 921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 922 * @xfer_mode: XFER_* of interest 923 * 924 * Return matching xfer_mask for @xfer_mode. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching xfer_mask, 0 if no match found. 931 */ 932 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 933 { 934 const struct ata_xfer_ent *ent; 935 936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 939 & ~((1 << ent->shift) - 1); 940 return 0; 941 } 942 943 /** 944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_shift for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_shift, -1 if no match found. 954 */ 955 int ata_xfer_mode2shift(unsigned long xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ent->shift; 962 return -1; 963 } 964 965 /** 966 * ata_mode_string - convert xfer_mask to string 967 * @xfer_mask: mask of bits supported; only highest bit counts. 968 * 969 * Determine string which represents the highest speed 970 * (highest bit in @modemask). 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Constant C string representing highest speed listed in 977 * @mode_mask, or the constant C string "<n/a>". 978 */ 979 const char *ata_mode_string(unsigned long xfer_mask) 980 { 981 static const char * const xfer_mode_str[] = { 982 "PIO0", 983 "PIO1", 984 "PIO2", 985 "PIO3", 986 "PIO4", 987 "PIO5", 988 "PIO6", 989 "MWDMA0", 990 "MWDMA1", 991 "MWDMA2", 992 "MWDMA3", 993 "MWDMA4", 994 "UDMA/16", 995 "UDMA/25", 996 "UDMA/33", 997 "UDMA/44", 998 "UDMA/66", 999 "UDMA/100", 1000 "UDMA/133", 1001 "UDMA7", 1002 }; 1003 int highbit; 1004 1005 highbit = fls(xfer_mask) - 1; 1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1007 return xfer_mode_str[highbit]; 1008 return "<n/a>"; 1009 } 1010 1011 static const char *sata_spd_string(unsigned int spd) 1012 { 1013 static const char * const spd_str[] = { 1014 "1.5 Gbps", 1015 "3.0 Gbps", 1016 "6.0 Gbps", 1017 }; 1018 1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1020 return "<unknown>"; 1021 return spd_str[spd - 1]; 1022 } 1023 1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1025 { 1026 struct ata_link *link = dev->link; 1027 struct ata_port *ap = link->ap; 1028 u32 scontrol; 1029 unsigned int err_mask; 1030 int rc; 1031 1032 /* 1033 * disallow DIPM for drivers which haven't set 1034 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1035 * phy ready will be set in the interrupt status on 1036 * state changes, which will cause some drivers to 1037 * think there are errors - additionally drivers will 1038 * need to disable hot plug. 1039 */ 1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1041 ap->pm_policy = NOT_AVAILABLE; 1042 return -EINVAL; 1043 } 1044 1045 /* 1046 * For DIPM, we will only enable it for the 1047 * min_power setting. 1048 * 1049 * Why? Because Disks are too stupid to know that 1050 * If the host rejects a request to go to SLUMBER 1051 * they should retry at PARTIAL, and instead it 1052 * just would give up. So, for medium_power to 1053 * work at all, we need to only allow HIPM. 1054 */ 1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1056 if (rc) 1057 return rc; 1058 1059 switch (policy) { 1060 case MIN_POWER: 1061 /* no restrictions on IPM transitions */ 1062 scontrol &= ~(0x3 << 8); 1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1064 if (rc) 1065 return rc; 1066 1067 /* enable DIPM */ 1068 if (dev->flags & ATA_DFLAG_DIPM) 1069 err_mask = ata_dev_set_feature(dev, 1070 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1071 break; 1072 case MEDIUM_POWER: 1073 /* allow IPM to PARTIAL */ 1074 scontrol &= ~(0x1 << 8); 1075 scontrol |= (0x2 << 8); 1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1077 if (rc) 1078 return rc; 1079 1080 /* 1081 * we don't have to disable DIPM since IPM flags 1082 * disallow transitions to SLUMBER, which effectively 1083 * disable DIPM if it does not support PARTIAL 1084 */ 1085 break; 1086 case NOT_AVAILABLE: 1087 case MAX_PERFORMANCE: 1088 /* disable all IPM transitions */ 1089 scontrol |= (0x3 << 8); 1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1091 if (rc) 1092 return rc; 1093 1094 /* 1095 * we don't have to disable DIPM since IPM flags 1096 * disallow all transitions which effectively 1097 * disable DIPM anyway. 1098 */ 1099 break; 1100 } 1101 1102 /* FIXME: handle SET FEATURES failure */ 1103 (void) err_mask; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ata_dev_enable_pm - enable SATA interface power management 1110 * @dev: device to enable power management 1111 * @policy: the link power management policy 1112 * 1113 * Enable SATA Interface power management. This will enable 1114 * Device Interface Power Management (DIPM) for min_power 1115 * policy, and then call driver specific callbacks for 1116 * enabling Host Initiated Power management. 1117 * 1118 * Locking: Caller. 1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1120 */ 1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1122 { 1123 int rc = 0; 1124 struct ata_port *ap = dev->link->ap; 1125 1126 /* set HIPM first, then DIPM */ 1127 if (ap->ops->enable_pm) 1128 rc = ap->ops->enable_pm(ap, policy); 1129 if (rc) 1130 goto enable_pm_out; 1131 rc = ata_dev_set_dipm(dev, policy); 1132 1133 enable_pm_out: 1134 if (rc) 1135 ap->pm_policy = MAX_PERFORMANCE; 1136 else 1137 ap->pm_policy = policy; 1138 return /* rc */; /* hopefully we can use 'rc' eventually */ 1139 } 1140 1141 #ifdef CONFIG_PM 1142 /** 1143 * ata_dev_disable_pm - disable SATA interface power management 1144 * @dev: device to disable power management 1145 * 1146 * Disable SATA Interface power management. This will disable 1147 * Device Interface Power Management (DIPM) without changing 1148 * policy, call driver specific callbacks for disabling Host 1149 * Initiated Power management. 1150 * 1151 * Locking: Caller. 1152 * Returns: void 1153 */ 1154 static void ata_dev_disable_pm(struct ata_device *dev) 1155 { 1156 struct ata_port *ap = dev->link->ap; 1157 1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1159 if (ap->ops->disable_pm) 1160 ap->ops->disable_pm(ap); 1161 } 1162 #endif /* CONFIG_PM */ 1163 1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1165 { 1166 ap->pm_policy = policy; 1167 ap->link.eh_info.action |= ATA_EH_LPM; 1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1169 ata_port_schedule_eh(ap); 1170 } 1171 1172 #ifdef CONFIG_PM 1173 static void ata_lpm_enable(struct ata_host *host) 1174 { 1175 struct ata_link *link; 1176 struct ata_port *ap; 1177 struct ata_device *dev; 1178 int i; 1179 1180 for (i = 0; i < host->n_ports; i++) { 1181 ap = host->ports[i]; 1182 ata_for_each_link(link, ap, EDGE) { 1183 ata_for_each_dev(dev, link, ALL) 1184 ata_dev_disable_pm(dev); 1185 } 1186 } 1187 } 1188 1189 static void ata_lpm_disable(struct ata_host *host) 1190 { 1191 int i; 1192 1193 for (i = 0; i < host->n_ports; i++) { 1194 struct ata_port *ap = host->ports[i]; 1195 ata_lpm_schedule(ap, ap->pm_policy); 1196 } 1197 } 1198 #endif /* CONFIG_PM */ 1199 1200 /** 1201 * ata_dev_classify - determine device type based on ATA-spec signature 1202 * @tf: ATA taskfile register set for device to be identified 1203 * 1204 * Determine from taskfile register contents whether a device is 1205 * ATA or ATAPI, as per "Signature and persistence" section 1206 * of ATA/PI spec (volume 1, sect 5.14). 1207 * 1208 * LOCKING: 1209 * None. 1210 * 1211 * RETURNS: 1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1213 * %ATA_DEV_UNKNOWN the event of failure. 1214 */ 1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1216 { 1217 /* Apple's open source Darwin code hints that some devices only 1218 * put a proper signature into the LBA mid/high registers, 1219 * So, we only check those. It's sufficient for uniqueness. 1220 * 1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1222 * signatures for ATA and ATAPI devices attached on SerialATA, 1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1224 * spec has never mentioned about using different signatures 1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1226 * Multiplier specification began to use 0x69/0x96 to identify 1227 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1229 * 0x69/0x96 shortly and described them as reserved for 1230 * SerialATA. 1231 * 1232 * We follow the current spec and consider that 0x69/0x96 1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1235 * SEMB signature. This is worked around in 1236 * ata_dev_read_id(). 1237 */ 1238 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1239 DPRINTK("found ATA device by sig\n"); 1240 return ATA_DEV_ATA; 1241 } 1242 1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1244 DPRINTK("found ATAPI device by sig\n"); 1245 return ATA_DEV_ATAPI; 1246 } 1247 1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1249 DPRINTK("found PMP device by sig\n"); 1250 return ATA_DEV_PMP; 1251 } 1252 1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1254 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1255 return ATA_DEV_SEMB; 1256 } 1257 1258 DPRINTK("unknown device\n"); 1259 return ATA_DEV_UNKNOWN; 1260 } 1261 1262 /** 1263 * ata_id_string - Convert IDENTIFY DEVICE page into string 1264 * @id: IDENTIFY DEVICE results we will examine 1265 * @s: string into which data is output 1266 * @ofs: offset into identify device page 1267 * @len: length of string to return. must be an even number. 1268 * 1269 * The strings in the IDENTIFY DEVICE page are broken up into 1270 * 16-bit chunks. Run through the string, and output each 1271 * 8-bit chunk linearly, regardless of platform. 1272 * 1273 * LOCKING: 1274 * caller. 1275 */ 1276 1277 void ata_id_string(const u16 *id, unsigned char *s, 1278 unsigned int ofs, unsigned int len) 1279 { 1280 unsigned int c; 1281 1282 BUG_ON(len & 1); 1283 1284 while (len > 0) { 1285 c = id[ofs] >> 8; 1286 *s = c; 1287 s++; 1288 1289 c = id[ofs] & 0xff; 1290 *s = c; 1291 s++; 1292 1293 ofs++; 1294 len -= 2; 1295 } 1296 } 1297 1298 /** 1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1300 * @id: IDENTIFY DEVICE results we will examine 1301 * @s: string into which data is output 1302 * @ofs: offset into identify device page 1303 * @len: length of string to return. must be an odd number. 1304 * 1305 * This function is identical to ata_id_string except that it 1306 * trims trailing spaces and terminates the resulting string with 1307 * null. @len must be actual maximum length (even number) + 1. 1308 * 1309 * LOCKING: 1310 * caller. 1311 */ 1312 void ata_id_c_string(const u16 *id, unsigned char *s, 1313 unsigned int ofs, unsigned int len) 1314 { 1315 unsigned char *p; 1316 1317 ata_id_string(id, s, ofs, len - 1); 1318 1319 p = s + strnlen(s, len - 1); 1320 while (p > s && p[-1] == ' ') 1321 p--; 1322 *p = '\0'; 1323 } 1324 1325 static u64 ata_id_n_sectors(const u16 *id) 1326 { 1327 if (ata_id_has_lba(id)) { 1328 if (ata_id_has_lba48(id)) 1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1330 else 1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1332 } else { 1333 if (ata_id_current_chs_valid(id)) 1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1335 id[ATA_ID_CUR_SECTORS]; 1336 else 1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1338 id[ATA_ID_SECTORS]; 1339 } 1340 } 1341 1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1343 { 1344 u64 sectors = 0; 1345 1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1349 sectors |= (tf->lbah & 0xff) << 16; 1350 sectors |= (tf->lbam & 0xff) << 8; 1351 sectors |= (tf->lbal & 0xff); 1352 1353 return sectors; 1354 } 1355 1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1357 { 1358 u64 sectors = 0; 1359 1360 sectors |= (tf->device & 0x0f) << 24; 1361 sectors |= (tf->lbah & 0xff) << 16; 1362 sectors |= (tf->lbam & 0xff) << 8; 1363 sectors |= (tf->lbal & 0xff); 1364 1365 return sectors; 1366 } 1367 1368 /** 1369 * ata_read_native_max_address - Read native max address 1370 * @dev: target device 1371 * @max_sectors: out parameter for the result native max address 1372 * 1373 * Perform an LBA48 or LBA28 native size query upon the device in 1374 * question. 1375 * 1376 * RETURNS: 1377 * 0 on success, -EACCES if command is aborted by the drive. 1378 * -EIO on other errors. 1379 */ 1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1381 { 1382 unsigned int err_mask; 1383 struct ata_taskfile tf; 1384 int lba48 = ata_id_has_lba48(dev->id); 1385 1386 ata_tf_init(dev, &tf); 1387 1388 /* always clear all address registers */ 1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1390 1391 if (lba48) { 1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1393 tf.flags |= ATA_TFLAG_LBA48; 1394 } else 1395 tf.command = ATA_CMD_READ_NATIVE_MAX; 1396 1397 tf.protocol |= ATA_PROT_NODATA; 1398 tf.device |= ATA_LBA; 1399 1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1401 if (err_mask) { 1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1403 "max address (err_mask=0x%x)\n", err_mask); 1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1405 return -EACCES; 1406 return -EIO; 1407 } 1408 1409 if (lba48) 1410 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1411 else 1412 *max_sectors = ata_tf_to_lba(&tf) + 1; 1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1414 (*max_sectors)--; 1415 return 0; 1416 } 1417 1418 /** 1419 * ata_set_max_sectors - Set max sectors 1420 * @dev: target device 1421 * @new_sectors: new max sectors value to set for the device 1422 * 1423 * Set max sectors of @dev to @new_sectors. 1424 * 1425 * RETURNS: 1426 * 0 on success, -EACCES if command is aborted or denied (due to 1427 * previous non-volatile SET_MAX) by the drive. -EIO on other 1428 * errors. 1429 */ 1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1431 { 1432 unsigned int err_mask; 1433 struct ata_taskfile tf; 1434 int lba48 = ata_id_has_lba48(dev->id); 1435 1436 new_sectors--; 1437 1438 ata_tf_init(dev, &tf); 1439 1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1441 1442 if (lba48) { 1443 tf.command = ATA_CMD_SET_MAX_EXT; 1444 tf.flags |= ATA_TFLAG_LBA48; 1445 1446 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1447 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1448 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1449 } else { 1450 tf.command = ATA_CMD_SET_MAX; 1451 1452 tf.device |= (new_sectors >> 24) & 0xf; 1453 } 1454 1455 tf.protocol |= ATA_PROT_NODATA; 1456 tf.device |= ATA_LBA; 1457 1458 tf.lbal = (new_sectors >> 0) & 0xff; 1459 tf.lbam = (new_sectors >> 8) & 0xff; 1460 tf.lbah = (new_sectors >> 16) & 0xff; 1461 1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1463 if (err_mask) { 1464 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1465 "max address (err_mask=0x%x)\n", err_mask); 1466 if (err_mask == AC_ERR_DEV && 1467 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1468 return -EACCES; 1469 return -EIO; 1470 } 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * ata_hpa_resize - Resize a device with an HPA set 1477 * @dev: Device to resize 1478 * 1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1480 * it if required to the full size of the media. The caller must check 1481 * the drive has the HPA feature set enabled. 1482 * 1483 * RETURNS: 1484 * 0 on success, -errno on failure. 1485 */ 1486 static int ata_hpa_resize(struct ata_device *dev) 1487 { 1488 struct ata_eh_context *ehc = &dev->link->eh_context; 1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1490 u64 sectors = ata_id_n_sectors(dev->id); 1491 u64 native_sectors; 1492 int rc; 1493 1494 /* do we need to do it? */ 1495 if (dev->class != ATA_DEV_ATA || 1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1498 return 0; 1499 1500 /* read native max address */ 1501 rc = ata_read_native_max_address(dev, &native_sectors); 1502 if (rc) { 1503 /* If device aborted the command or HPA isn't going to 1504 * be unlocked, skip HPA resizing. 1505 */ 1506 if (rc == -EACCES || !ata_ignore_hpa) { 1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1508 "broken, skipping HPA handling\n"); 1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1510 1511 /* we can continue if device aborted the command */ 1512 if (rc == -EACCES) 1513 rc = 0; 1514 } 1515 1516 return rc; 1517 } 1518 dev->n_native_sectors = native_sectors; 1519 1520 /* nothing to do? */ 1521 if (native_sectors <= sectors || !ata_ignore_hpa) { 1522 if (!print_info || native_sectors == sectors) 1523 return 0; 1524 1525 if (native_sectors > sectors) 1526 ata_dev_printk(dev, KERN_INFO, 1527 "HPA detected: current %llu, native %llu\n", 1528 (unsigned long long)sectors, 1529 (unsigned long long)native_sectors); 1530 else if (native_sectors < sectors) 1531 ata_dev_printk(dev, KERN_WARNING, 1532 "native sectors (%llu) is smaller than " 1533 "sectors (%llu)\n", 1534 (unsigned long long)native_sectors, 1535 (unsigned long long)sectors); 1536 return 0; 1537 } 1538 1539 /* let's unlock HPA */ 1540 rc = ata_set_max_sectors(dev, native_sectors); 1541 if (rc == -EACCES) { 1542 /* if device aborted the command, skip HPA resizing */ 1543 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1544 "(%llu -> %llu), skipping HPA handling\n", 1545 (unsigned long long)sectors, 1546 (unsigned long long)native_sectors); 1547 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1548 return 0; 1549 } else if (rc) 1550 return rc; 1551 1552 /* re-read IDENTIFY data */ 1553 rc = ata_dev_reread_id(dev, 0); 1554 if (rc) { 1555 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1556 "data after HPA resizing\n"); 1557 return rc; 1558 } 1559 1560 if (print_info) { 1561 u64 new_sectors = ata_id_n_sectors(dev->id); 1562 ata_dev_printk(dev, KERN_INFO, 1563 "HPA unlocked: %llu -> %llu, native %llu\n", 1564 (unsigned long long)sectors, 1565 (unsigned long long)new_sectors, 1566 (unsigned long long)native_sectors); 1567 } 1568 1569 return 0; 1570 } 1571 1572 /** 1573 * ata_dump_id - IDENTIFY DEVICE info debugging output 1574 * @id: IDENTIFY DEVICE page to dump 1575 * 1576 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1577 * page. 1578 * 1579 * LOCKING: 1580 * caller. 1581 */ 1582 1583 static inline void ata_dump_id(const u16 *id) 1584 { 1585 DPRINTK("49==0x%04x " 1586 "53==0x%04x " 1587 "63==0x%04x " 1588 "64==0x%04x " 1589 "75==0x%04x \n", 1590 id[49], 1591 id[53], 1592 id[63], 1593 id[64], 1594 id[75]); 1595 DPRINTK("80==0x%04x " 1596 "81==0x%04x " 1597 "82==0x%04x " 1598 "83==0x%04x " 1599 "84==0x%04x \n", 1600 id[80], 1601 id[81], 1602 id[82], 1603 id[83], 1604 id[84]); 1605 DPRINTK("88==0x%04x " 1606 "93==0x%04x\n", 1607 id[88], 1608 id[93]); 1609 } 1610 1611 /** 1612 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1613 * @id: IDENTIFY data to compute xfer mask from 1614 * 1615 * Compute the xfermask for this device. This is not as trivial 1616 * as it seems if we must consider early devices correctly. 1617 * 1618 * FIXME: pre IDE drive timing (do we care ?). 1619 * 1620 * LOCKING: 1621 * None. 1622 * 1623 * RETURNS: 1624 * Computed xfermask 1625 */ 1626 unsigned long ata_id_xfermask(const u16 *id) 1627 { 1628 unsigned long pio_mask, mwdma_mask, udma_mask; 1629 1630 /* Usual case. Word 53 indicates word 64 is valid */ 1631 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1632 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1633 pio_mask <<= 3; 1634 pio_mask |= 0x7; 1635 } else { 1636 /* If word 64 isn't valid then Word 51 high byte holds 1637 * the PIO timing number for the maximum. Turn it into 1638 * a mask. 1639 */ 1640 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1641 if (mode < 5) /* Valid PIO range */ 1642 pio_mask = (2 << mode) - 1; 1643 else 1644 pio_mask = 1; 1645 1646 /* But wait.. there's more. Design your standards by 1647 * committee and you too can get a free iordy field to 1648 * process. However its the speeds not the modes that 1649 * are supported... Note drivers using the timing API 1650 * will get this right anyway 1651 */ 1652 } 1653 1654 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1655 1656 if (ata_id_is_cfa(id)) { 1657 /* 1658 * Process compact flash extended modes 1659 */ 1660 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1661 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1662 1663 if (pio) 1664 pio_mask |= (1 << 5); 1665 if (pio > 1) 1666 pio_mask |= (1 << 6); 1667 if (dma) 1668 mwdma_mask |= (1 << 3); 1669 if (dma > 1) 1670 mwdma_mask |= (1 << 4); 1671 } 1672 1673 udma_mask = 0; 1674 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1675 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1676 1677 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1678 } 1679 1680 /** 1681 * ata_pio_queue_task - Queue port_task 1682 * @ap: The ata_port to queue port_task for 1683 * @data: data for @fn to use 1684 * @delay: delay time in msecs for workqueue function 1685 * 1686 * Schedule @fn(@data) for execution after @delay jiffies using 1687 * port_task. There is one port_task per port and it's the 1688 * user(low level driver)'s responsibility to make sure that only 1689 * one task is active at any given time. 1690 * 1691 * libata core layer takes care of synchronization between 1692 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1693 * synchronization. 1694 * 1695 * LOCKING: 1696 * Inherited from caller. 1697 */ 1698 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1699 { 1700 ap->port_task_data = data; 1701 1702 /* may fail if ata_port_flush_task() in progress */ 1703 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1704 } 1705 1706 /** 1707 * ata_port_flush_task - Flush port_task 1708 * @ap: The ata_port to flush port_task for 1709 * 1710 * After this function completes, port_task is guranteed not to 1711 * be running or scheduled. 1712 * 1713 * LOCKING: 1714 * Kernel thread context (may sleep) 1715 */ 1716 void ata_port_flush_task(struct ata_port *ap) 1717 { 1718 DPRINTK("ENTER\n"); 1719 1720 cancel_rearming_delayed_work(&ap->port_task); 1721 1722 if (ata_msg_ctl(ap)) 1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1724 } 1725 1726 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1727 { 1728 struct completion *waiting = qc->private_data; 1729 1730 complete(waiting); 1731 } 1732 1733 /** 1734 * ata_exec_internal_sg - execute libata internal command 1735 * @dev: Device to which the command is sent 1736 * @tf: Taskfile registers for the command and the result 1737 * @cdb: CDB for packet command 1738 * @dma_dir: Data tranfer direction of the command 1739 * @sgl: sg list for the data buffer of the command 1740 * @n_elem: Number of sg entries 1741 * @timeout: Timeout in msecs (0 for default) 1742 * 1743 * Executes libata internal command with timeout. @tf contains 1744 * command on entry and result on return. Timeout and error 1745 * conditions are reported via return value. No recovery action 1746 * is taken after a command times out. It's caller's duty to 1747 * clean up after timeout. 1748 * 1749 * LOCKING: 1750 * None. Should be called with kernel context, might sleep. 1751 * 1752 * RETURNS: 1753 * Zero on success, AC_ERR_* mask on failure 1754 */ 1755 unsigned ata_exec_internal_sg(struct ata_device *dev, 1756 struct ata_taskfile *tf, const u8 *cdb, 1757 int dma_dir, struct scatterlist *sgl, 1758 unsigned int n_elem, unsigned long timeout) 1759 { 1760 struct ata_link *link = dev->link; 1761 struct ata_port *ap = link->ap; 1762 u8 command = tf->command; 1763 int auto_timeout = 0; 1764 struct ata_queued_cmd *qc; 1765 unsigned int tag, preempted_tag; 1766 u32 preempted_sactive, preempted_qc_active; 1767 int preempted_nr_active_links; 1768 DECLARE_COMPLETION_ONSTACK(wait); 1769 unsigned long flags; 1770 unsigned int err_mask; 1771 int rc; 1772 1773 spin_lock_irqsave(ap->lock, flags); 1774 1775 /* no internal command while frozen */ 1776 if (ap->pflags & ATA_PFLAG_FROZEN) { 1777 spin_unlock_irqrestore(ap->lock, flags); 1778 return AC_ERR_SYSTEM; 1779 } 1780 1781 /* initialize internal qc */ 1782 1783 /* XXX: Tag 0 is used for drivers with legacy EH as some 1784 * drivers choke if any other tag is given. This breaks 1785 * ata_tag_internal() test for those drivers. Don't use new 1786 * EH stuff without converting to it. 1787 */ 1788 if (ap->ops->error_handler) 1789 tag = ATA_TAG_INTERNAL; 1790 else 1791 tag = 0; 1792 1793 if (test_and_set_bit(tag, &ap->qc_allocated)) 1794 BUG(); 1795 qc = __ata_qc_from_tag(ap, tag); 1796 1797 qc->tag = tag; 1798 qc->scsicmd = NULL; 1799 qc->ap = ap; 1800 qc->dev = dev; 1801 ata_qc_reinit(qc); 1802 1803 preempted_tag = link->active_tag; 1804 preempted_sactive = link->sactive; 1805 preempted_qc_active = ap->qc_active; 1806 preempted_nr_active_links = ap->nr_active_links; 1807 link->active_tag = ATA_TAG_POISON; 1808 link->sactive = 0; 1809 ap->qc_active = 0; 1810 ap->nr_active_links = 0; 1811 1812 /* prepare & issue qc */ 1813 qc->tf = *tf; 1814 if (cdb) 1815 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1816 qc->flags |= ATA_QCFLAG_RESULT_TF; 1817 qc->dma_dir = dma_dir; 1818 if (dma_dir != DMA_NONE) { 1819 unsigned int i, buflen = 0; 1820 struct scatterlist *sg; 1821 1822 for_each_sg(sgl, sg, n_elem, i) 1823 buflen += sg->length; 1824 1825 ata_sg_init(qc, sgl, n_elem); 1826 qc->nbytes = buflen; 1827 } 1828 1829 qc->private_data = &wait; 1830 qc->complete_fn = ata_qc_complete_internal; 1831 1832 ata_qc_issue(qc); 1833 1834 spin_unlock_irqrestore(ap->lock, flags); 1835 1836 if (!timeout) { 1837 if (ata_probe_timeout) 1838 timeout = ata_probe_timeout * 1000; 1839 else { 1840 timeout = ata_internal_cmd_timeout(dev, command); 1841 auto_timeout = 1; 1842 } 1843 } 1844 1845 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1846 1847 ata_port_flush_task(ap); 1848 1849 if (!rc) { 1850 spin_lock_irqsave(ap->lock, flags); 1851 1852 /* We're racing with irq here. If we lose, the 1853 * following test prevents us from completing the qc 1854 * twice. If we win, the port is frozen and will be 1855 * cleaned up by ->post_internal_cmd(). 1856 */ 1857 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1858 qc->err_mask |= AC_ERR_TIMEOUT; 1859 1860 if (ap->ops->error_handler) 1861 ata_port_freeze(ap); 1862 else 1863 ata_qc_complete(qc); 1864 1865 if (ata_msg_warn(ap)) 1866 ata_dev_printk(dev, KERN_WARNING, 1867 "qc timeout (cmd 0x%x)\n", command); 1868 } 1869 1870 spin_unlock_irqrestore(ap->lock, flags); 1871 } 1872 1873 /* do post_internal_cmd */ 1874 if (ap->ops->post_internal_cmd) 1875 ap->ops->post_internal_cmd(qc); 1876 1877 /* perform minimal error analysis */ 1878 if (qc->flags & ATA_QCFLAG_FAILED) { 1879 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1880 qc->err_mask |= AC_ERR_DEV; 1881 1882 if (!qc->err_mask) 1883 qc->err_mask |= AC_ERR_OTHER; 1884 1885 if (qc->err_mask & ~AC_ERR_OTHER) 1886 qc->err_mask &= ~AC_ERR_OTHER; 1887 } 1888 1889 /* finish up */ 1890 spin_lock_irqsave(ap->lock, flags); 1891 1892 *tf = qc->result_tf; 1893 err_mask = qc->err_mask; 1894 1895 ata_qc_free(qc); 1896 link->active_tag = preempted_tag; 1897 link->sactive = preempted_sactive; 1898 ap->qc_active = preempted_qc_active; 1899 ap->nr_active_links = preempted_nr_active_links; 1900 1901 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1902 * Until those drivers are fixed, we detect the condition 1903 * here, fail the command with AC_ERR_SYSTEM and reenable the 1904 * port. 1905 * 1906 * Note that this doesn't change any behavior as internal 1907 * command failure results in disabling the device in the 1908 * higher layer for LLDDs without new reset/EH callbacks. 1909 * 1910 * Kill the following code as soon as those drivers are fixed. 1911 */ 1912 if (ap->flags & ATA_FLAG_DISABLED) { 1913 err_mask |= AC_ERR_SYSTEM; 1914 ata_port_probe(ap); 1915 } 1916 1917 spin_unlock_irqrestore(ap->lock, flags); 1918 1919 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1920 ata_internal_cmd_timed_out(dev, command); 1921 1922 return err_mask; 1923 } 1924 1925 /** 1926 * ata_exec_internal - execute libata internal command 1927 * @dev: Device to which the command is sent 1928 * @tf: Taskfile registers for the command and the result 1929 * @cdb: CDB for packet command 1930 * @dma_dir: Data tranfer direction of the command 1931 * @buf: Data buffer of the command 1932 * @buflen: Length of data buffer 1933 * @timeout: Timeout in msecs (0 for default) 1934 * 1935 * Wrapper around ata_exec_internal_sg() which takes simple 1936 * buffer instead of sg list. 1937 * 1938 * LOCKING: 1939 * None. Should be called with kernel context, might sleep. 1940 * 1941 * RETURNS: 1942 * Zero on success, AC_ERR_* mask on failure 1943 */ 1944 unsigned ata_exec_internal(struct ata_device *dev, 1945 struct ata_taskfile *tf, const u8 *cdb, 1946 int dma_dir, void *buf, unsigned int buflen, 1947 unsigned long timeout) 1948 { 1949 struct scatterlist *psg = NULL, sg; 1950 unsigned int n_elem = 0; 1951 1952 if (dma_dir != DMA_NONE) { 1953 WARN_ON(!buf); 1954 sg_init_one(&sg, buf, buflen); 1955 psg = &sg; 1956 n_elem++; 1957 } 1958 1959 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1960 timeout); 1961 } 1962 1963 /** 1964 * ata_do_simple_cmd - execute simple internal command 1965 * @dev: Device to which the command is sent 1966 * @cmd: Opcode to execute 1967 * 1968 * Execute a 'simple' command, that only consists of the opcode 1969 * 'cmd' itself, without filling any other registers 1970 * 1971 * LOCKING: 1972 * Kernel thread context (may sleep). 1973 * 1974 * RETURNS: 1975 * Zero on success, AC_ERR_* mask on failure 1976 */ 1977 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1978 { 1979 struct ata_taskfile tf; 1980 1981 ata_tf_init(dev, &tf); 1982 1983 tf.command = cmd; 1984 tf.flags |= ATA_TFLAG_DEVICE; 1985 tf.protocol = ATA_PROT_NODATA; 1986 1987 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1988 } 1989 1990 /** 1991 * ata_pio_need_iordy - check if iordy needed 1992 * @adev: ATA device 1993 * 1994 * Check if the current speed of the device requires IORDY. Used 1995 * by various controllers for chip configuration. 1996 */ 1997 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1998 { 1999 /* Don't set IORDY if we're preparing for reset. IORDY may 2000 * lead to controller lock up on certain controllers if the 2001 * port is not occupied. See bko#11703 for details. 2002 */ 2003 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 2004 return 0; 2005 /* Controller doesn't support IORDY. Probably a pointless 2006 * check as the caller should know this. 2007 */ 2008 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 2009 return 0; 2010 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 2011 if (ata_id_is_cfa(adev->id) 2012 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2013 return 0; 2014 /* PIO3 and higher it is mandatory */ 2015 if (adev->pio_mode > XFER_PIO_2) 2016 return 1; 2017 /* We turn it on when possible */ 2018 if (ata_id_has_iordy(adev->id)) 2019 return 1; 2020 return 0; 2021 } 2022 2023 /** 2024 * ata_pio_mask_no_iordy - Return the non IORDY mask 2025 * @adev: ATA device 2026 * 2027 * Compute the highest mode possible if we are not using iordy. Return 2028 * -1 if no iordy mode is available. 2029 */ 2030 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2031 { 2032 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2033 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2034 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2035 /* Is the speed faster than the drive allows non IORDY ? */ 2036 if (pio) { 2037 /* This is cycle times not frequency - watch the logic! */ 2038 if (pio > 240) /* PIO2 is 240nS per cycle */ 2039 return 3 << ATA_SHIFT_PIO; 2040 return 7 << ATA_SHIFT_PIO; 2041 } 2042 } 2043 return 3 << ATA_SHIFT_PIO; 2044 } 2045 2046 /** 2047 * ata_do_dev_read_id - default ID read method 2048 * @dev: device 2049 * @tf: proposed taskfile 2050 * @id: data buffer 2051 * 2052 * Issue the identify taskfile and hand back the buffer containing 2053 * identify data. For some RAID controllers and for pre ATA devices 2054 * this function is wrapped or replaced by the driver 2055 */ 2056 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2057 struct ata_taskfile *tf, u16 *id) 2058 { 2059 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2060 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2061 } 2062 2063 /** 2064 * ata_dev_read_id - Read ID data from the specified device 2065 * @dev: target device 2066 * @p_class: pointer to class of the target device (may be changed) 2067 * @flags: ATA_READID_* flags 2068 * @id: buffer to read IDENTIFY data into 2069 * 2070 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2071 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2072 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2073 * for pre-ATA4 drives. 2074 * 2075 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2076 * now we abort if we hit that case. 2077 * 2078 * LOCKING: 2079 * Kernel thread context (may sleep) 2080 * 2081 * RETURNS: 2082 * 0 on success, -errno otherwise. 2083 */ 2084 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2085 unsigned int flags, u16 *id) 2086 { 2087 struct ata_port *ap = dev->link->ap; 2088 unsigned int class = *p_class; 2089 struct ata_taskfile tf; 2090 unsigned int err_mask = 0; 2091 const char *reason; 2092 bool is_semb = class == ATA_DEV_SEMB; 2093 int may_fallback = 1, tried_spinup = 0; 2094 int rc; 2095 2096 if (ata_msg_ctl(ap)) 2097 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2098 2099 retry: 2100 ata_tf_init(dev, &tf); 2101 2102 switch (class) { 2103 case ATA_DEV_SEMB: 2104 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2105 case ATA_DEV_ATA: 2106 tf.command = ATA_CMD_ID_ATA; 2107 break; 2108 case ATA_DEV_ATAPI: 2109 tf.command = ATA_CMD_ID_ATAPI; 2110 break; 2111 default: 2112 rc = -ENODEV; 2113 reason = "unsupported class"; 2114 goto err_out; 2115 } 2116 2117 tf.protocol = ATA_PROT_PIO; 2118 2119 /* Some devices choke if TF registers contain garbage. Make 2120 * sure those are properly initialized. 2121 */ 2122 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2123 2124 /* Device presence detection is unreliable on some 2125 * controllers. Always poll IDENTIFY if available. 2126 */ 2127 tf.flags |= ATA_TFLAG_POLLING; 2128 2129 if (ap->ops->read_id) 2130 err_mask = ap->ops->read_id(dev, &tf, id); 2131 else 2132 err_mask = ata_do_dev_read_id(dev, &tf, id); 2133 2134 if (err_mask) { 2135 if (err_mask & AC_ERR_NODEV_HINT) { 2136 ata_dev_printk(dev, KERN_DEBUG, 2137 "NODEV after polling detection\n"); 2138 return -ENOENT; 2139 } 2140 2141 if (is_semb) { 2142 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2143 "device w/ SEMB sig, disabled\n"); 2144 /* SEMB is not supported yet */ 2145 *p_class = ATA_DEV_SEMB_UNSUP; 2146 return 0; 2147 } 2148 2149 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2150 /* Device or controller might have reported 2151 * the wrong device class. Give a shot at the 2152 * other IDENTIFY if the current one is 2153 * aborted by the device. 2154 */ 2155 if (may_fallback) { 2156 may_fallback = 0; 2157 2158 if (class == ATA_DEV_ATA) 2159 class = ATA_DEV_ATAPI; 2160 else 2161 class = ATA_DEV_ATA; 2162 goto retry; 2163 } 2164 2165 /* Control reaches here iff the device aborted 2166 * both flavors of IDENTIFYs which happens 2167 * sometimes with phantom devices. 2168 */ 2169 ata_dev_printk(dev, KERN_DEBUG, 2170 "both IDENTIFYs aborted, assuming NODEV\n"); 2171 return -ENOENT; 2172 } 2173 2174 rc = -EIO; 2175 reason = "I/O error"; 2176 goto err_out; 2177 } 2178 2179 /* Falling back doesn't make sense if ID data was read 2180 * successfully at least once. 2181 */ 2182 may_fallback = 0; 2183 2184 swap_buf_le16(id, ATA_ID_WORDS); 2185 2186 /* sanity check */ 2187 rc = -EINVAL; 2188 reason = "device reports invalid type"; 2189 2190 if (class == ATA_DEV_ATA) { 2191 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2192 goto err_out; 2193 } else { 2194 if (ata_id_is_ata(id)) 2195 goto err_out; 2196 } 2197 2198 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2199 tried_spinup = 1; 2200 /* 2201 * Drive powered-up in standby mode, and requires a specific 2202 * SET_FEATURES spin-up subcommand before it will accept 2203 * anything other than the original IDENTIFY command. 2204 */ 2205 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2206 if (err_mask && id[2] != 0x738c) { 2207 rc = -EIO; 2208 reason = "SPINUP failed"; 2209 goto err_out; 2210 } 2211 /* 2212 * If the drive initially returned incomplete IDENTIFY info, 2213 * we now must reissue the IDENTIFY command. 2214 */ 2215 if (id[2] == 0x37c8) 2216 goto retry; 2217 } 2218 2219 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2220 /* 2221 * The exact sequence expected by certain pre-ATA4 drives is: 2222 * SRST RESET 2223 * IDENTIFY (optional in early ATA) 2224 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2225 * anything else.. 2226 * Some drives were very specific about that exact sequence. 2227 * 2228 * Note that ATA4 says lba is mandatory so the second check 2229 * shoud never trigger. 2230 */ 2231 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2232 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2233 if (err_mask) { 2234 rc = -EIO; 2235 reason = "INIT_DEV_PARAMS failed"; 2236 goto err_out; 2237 } 2238 2239 /* current CHS translation info (id[53-58]) might be 2240 * changed. reread the identify device info. 2241 */ 2242 flags &= ~ATA_READID_POSTRESET; 2243 goto retry; 2244 } 2245 } 2246 2247 *p_class = class; 2248 2249 return 0; 2250 2251 err_out: 2252 if (ata_msg_warn(ap)) 2253 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2254 "(%s, err_mask=0x%x)\n", reason, err_mask); 2255 return rc; 2256 } 2257 2258 static int ata_do_link_spd_horkage(struct ata_device *dev) 2259 { 2260 struct ata_link *plink = ata_dev_phys_link(dev); 2261 u32 target, target_limit; 2262 2263 if (!sata_scr_valid(plink)) 2264 return 0; 2265 2266 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2267 target = 1; 2268 else 2269 return 0; 2270 2271 target_limit = (1 << target) - 1; 2272 2273 /* if already on stricter limit, no need to push further */ 2274 if (plink->sata_spd_limit <= target_limit) 2275 return 0; 2276 2277 plink->sata_spd_limit = target_limit; 2278 2279 /* Request another EH round by returning -EAGAIN if link is 2280 * going faster than the target speed. Forward progress is 2281 * guaranteed by setting sata_spd_limit to target_limit above. 2282 */ 2283 if (plink->sata_spd > target) { 2284 ata_dev_printk(dev, KERN_INFO, 2285 "applying link speed limit horkage to %s\n", 2286 sata_spd_string(target)); 2287 return -EAGAIN; 2288 } 2289 return 0; 2290 } 2291 2292 static inline u8 ata_dev_knobble(struct ata_device *dev) 2293 { 2294 struct ata_port *ap = dev->link->ap; 2295 2296 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2297 return 0; 2298 2299 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2300 } 2301 2302 static void ata_dev_config_ncq(struct ata_device *dev, 2303 char *desc, size_t desc_sz) 2304 { 2305 struct ata_port *ap = dev->link->ap; 2306 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2307 2308 if (!ata_id_has_ncq(dev->id)) { 2309 desc[0] = '\0'; 2310 return; 2311 } 2312 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2313 snprintf(desc, desc_sz, "NCQ (not used)"); 2314 return; 2315 } 2316 if (ap->flags & ATA_FLAG_NCQ) { 2317 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2318 dev->flags |= ATA_DFLAG_NCQ; 2319 } 2320 2321 if (hdepth >= ddepth) 2322 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2323 else 2324 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2325 } 2326 2327 /** 2328 * ata_dev_configure - Configure the specified ATA/ATAPI device 2329 * @dev: Target device to configure 2330 * 2331 * Configure @dev according to @dev->id. Generic and low-level 2332 * driver specific fixups are also applied. 2333 * 2334 * LOCKING: 2335 * Kernel thread context (may sleep) 2336 * 2337 * RETURNS: 2338 * 0 on success, -errno otherwise 2339 */ 2340 int ata_dev_configure(struct ata_device *dev) 2341 { 2342 struct ata_port *ap = dev->link->ap; 2343 struct ata_eh_context *ehc = &dev->link->eh_context; 2344 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2345 const u16 *id = dev->id; 2346 unsigned long xfer_mask; 2347 char revbuf[7]; /* XYZ-99\0 */ 2348 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2349 char modelbuf[ATA_ID_PROD_LEN+1]; 2350 int rc; 2351 2352 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2353 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2354 __func__); 2355 return 0; 2356 } 2357 2358 if (ata_msg_probe(ap)) 2359 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2360 2361 /* set horkage */ 2362 dev->horkage |= ata_dev_blacklisted(dev); 2363 ata_force_horkage(dev); 2364 2365 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2366 ata_dev_printk(dev, KERN_INFO, 2367 "unsupported device, disabling\n"); 2368 ata_dev_disable(dev); 2369 return 0; 2370 } 2371 2372 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2373 dev->class == ATA_DEV_ATAPI) { 2374 ata_dev_printk(dev, KERN_WARNING, 2375 "WARNING: ATAPI is %s, device ignored.\n", 2376 atapi_enabled ? "not supported with this driver" 2377 : "disabled"); 2378 ata_dev_disable(dev); 2379 return 0; 2380 } 2381 2382 rc = ata_do_link_spd_horkage(dev); 2383 if (rc) 2384 return rc; 2385 2386 /* let ACPI work its magic */ 2387 rc = ata_acpi_on_devcfg(dev); 2388 if (rc) 2389 return rc; 2390 2391 /* massage HPA, do it early as it might change IDENTIFY data */ 2392 rc = ata_hpa_resize(dev); 2393 if (rc) 2394 return rc; 2395 2396 /* print device capabilities */ 2397 if (ata_msg_probe(ap)) 2398 ata_dev_printk(dev, KERN_DEBUG, 2399 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2400 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2401 __func__, 2402 id[49], id[82], id[83], id[84], 2403 id[85], id[86], id[87], id[88]); 2404 2405 /* initialize to-be-configured parameters */ 2406 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2407 dev->max_sectors = 0; 2408 dev->cdb_len = 0; 2409 dev->n_sectors = 0; 2410 dev->cylinders = 0; 2411 dev->heads = 0; 2412 dev->sectors = 0; 2413 dev->multi_count = 0; 2414 2415 /* 2416 * common ATA, ATAPI feature tests 2417 */ 2418 2419 /* find max transfer mode; for printk only */ 2420 xfer_mask = ata_id_xfermask(id); 2421 2422 if (ata_msg_probe(ap)) 2423 ata_dump_id(id); 2424 2425 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2426 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2427 sizeof(fwrevbuf)); 2428 2429 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2430 sizeof(modelbuf)); 2431 2432 /* ATA-specific feature tests */ 2433 if (dev->class == ATA_DEV_ATA) { 2434 if (ata_id_is_cfa(id)) { 2435 /* CPRM may make this media unusable */ 2436 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2437 ata_dev_printk(dev, KERN_WARNING, 2438 "supports DRM functions and may " 2439 "not be fully accessable.\n"); 2440 snprintf(revbuf, 7, "CFA"); 2441 } else { 2442 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2443 /* Warn the user if the device has TPM extensions */ 2444 if (ata_id_has_tpm(id)) 2445 ata_dev_printk(dev, KERN_WARNING, 2446 "supports DRM functions and may " 2447 "not be fully accessable.\n"); 2448 } 2449 2450 dev->n_sectors = ata_id_n_sectors(id); 2451 2452 /* get current R/W Multiple count setting */ 2453 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2454 unsigned int max = dev->id[47] & 0xff; 2455 unsigned int cnt = dev->id[59] & 0xff; 2456 /* only recognize/allow powers of two here */ 2457 if (is_power_of_2(max) && is_power_of_2(cnt)) 2458 if (cnt <= max) 2459 dev->multi_count = cnt; 2460 } 2461 2462 if (ata_id_has_lba(id)) { 2463 const char *lba_desc; 2464 char ncq_desc[20]; 2465 2466 lba_desc = "LBA"; 2467 dev->flags |= ATA_DFLAG_LBA; 2468 if (ata_id_has_lba48(id)) { 2469 dev->flags |= ATA_DFLAG_LBA48; 2470 lba_desc = "LBA48"; 2471 2472 if (dev->n_sectors >= (1UL << 28) && 2473 ata_id_has_flush_ext(id)) 2474 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2475 } 2476 2477 /* config NCQ */ 2478 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2479 2480 /* print device info to dmesg */ 2481 if (ata_msg_drv(ap) && print_info) { 2482 ata_dev_printk(dev, KERN_INFO, 2483 "%s: %s, %s, max %s\n", 2484 revbuf, modelbuf, fwrevbuf, 2485 ata_mode_string(xfer_mask)); 2486 ata_dev_printk(dev, KERN_INFO, 2487 "%Lu sectors, multi %u: %s %s\n", 2488 (unsigned long long)dev->n_sectors, 2489 dev->multi_count, lba_desc, ncq_desc); 2490 } 2491 } else { 2492 /* CHS */ 2493 2494 /* Default translation */ 2495 dev->cylinders = id[1]; 2496 dev->heads = id[3]; 2497 dev->sectors = id[6]; 2498 2499 if (ata_id_current_chs_valid(id)) { 2500 /* Current CHS translation is valid. */ 2501 dev->cylinders = id[54]; 2502 dev->heads = id[55]; 2503 dev->sectors = id[56]; 2504 } 2505 2506 /* print device info to dmesg */ 2507 if (ata_msg_drv(ap) && print_info) { 2508 ata_dev_printk(dev, KERN_INFO, 2509 "%s: %s, %s, max %s\n", 2510 revbuf, modelbuf, fwrevbuf, 2511 ata_mode_string(xfer_mask)); 2512 ata_dev_printk(dev, KERN_INFO, 2513 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2514 (unsigned long long)dev->n_sectors, 2515 dev->multi_count, dev->cylinders, 2516 dev->heads, dev->sectors); 2517 } 2518 } 2519 2520 dev->cdb_len = 16; 2521 } 2522 2523 /* ATAPI-specific feature tests */ 2524 else if (dev->class == ATA_DEV_ATAPI) { 2525 const char *cdb_intr_string = ""; 2526 const char *atapi_an_string = ""; 2527 const char *dma_dir_string = ""; 2528 u32 sntf; 2529 2530 rc = atapi_cdb_len(id); 2531 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2532 if (ata_msg_warn(ap)) 2533 ata_dev_printk(dev, KERN_WARNING, 2534 "unsupported CDB len\n"); 2535 rc = -EINVAL; 2536 goto err_out_nosup; 2537 } 2538 dev->cdb_len = (unsigned int) rc; 2539 2540 /* Enable ATAPI AN if both the host and device have 2541 * the support. If PMP is attached, SNTF is required 2542 * to enable ATAPI AN to discern between PHY status 2543 * changed notifications and ATAPI ANs. 2544 */ 2545 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2546 (!sata_pmp_attached(ap) || 2547 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2548 unsigned int err_mask; 2549 2550 /* issue SET feature command to turn this on */ 2551 err_mask = ata_dev_set_feature(dev, 2552 SETFEATURES_SATA_ENABLE, SATA_AN); 2553 if (err_mask) 2554 ata_dev_printk(dev, KERN_ERR, 2555 "failed to enable ATAPI AN " 2556 "(err_mask=0x%x)\n", err_mask); 2557 else { 2558 dev->flags |= ATA_DFLAG_AN; 2559 atapi_an_string = ", ATAPI AN"; 2560 } 2561 } 2562 2563 if (ata_id_cdb_intr(dev->id)) { 2564 dev->flags |= ATA_DFLAG_CDB_INTR; 2565 cdb_intr_string = ", CDB intr"; 2566 } 2567 2568 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2569 dev->flags |= ATA_DFLAG_DMADIR; 2570 dma_dir_string = ", DMADIR"; 2571 } 2572 2573 /* print device info to dmesg */ 2574 if (ata_msg_drv(ap) && print_info) 2575 ata_dev_printk(dev, KERN_INFO, 2576 "ATAPI: %s, %s, max %s%s%s%s\n", 2577 modelbuf, fwrevbuf, 2578 ata_mode_string(xfer_mask), 2579 cdb_intr_string, atapi_an_string, 2580 dma_dir_string); 2581 } 2582 2583 /* determine max_sectors */ 2584 dev->max_sectors = ATA_MAX_SECTORS; 2585 if (dev->flags & ATA_DFLAG_LBA48) 2586 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2587 2588 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2589 if (ata_id_has_hipm(dev->id)) 2590 dev->flags |= ATA_DFLAG_HIPM; 2591 if (ata_id_has_dipm(dev->id)) 2592 dev->flags |= ATA_DFLAG_DIPM; 2593 } 2594 2595 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2596 200 sectors */ 2597 if (ata_dev_knobble(dev)) { 2598 if (ata_msg_drv(ap) && print_info) 2599 ata_dev_printk(dev, KERN_INFO, 2600 "applying bridge limits\n"); 2601 dev->udma_mask &= ATA_UDMA5; 2602 dev->max_sectors = ATA_MAX_SECTORS; 2603 } 2604 2605 if ((dev->class == ATA_DEV_ATAPI) && 2606 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2607 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2608 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2609 } 2610 2611 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2612 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2613 dev->max_sectors); 2614 2615 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2616 dev->horkage |= ATA_HORKAGE_IPM; 2617 2618 /* reset link pm_policy for this port to no pm */ 2619 ap->pm_policy = MAX_PERFORMANCE; 2620 } 2621 2622 if (ap->ops->dev_config) 2623 ap->ops->dev_config(dev); 2624 2625 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2626 /* Let the user know. We don't want to disallow opens for 2627 rescue purposes, or in case the vendor is just a blithering 2628 idiot. Do this after the dev_config call as some controllers 2629 with buggy firmware may want to avoid reporting false device 2630 bugs */ 2631 2632 if (print_info) { 2633 ata_dev_printk(dev, KERN_WARNING, 2634 "Drive reports diagnostics failure. This may indicate a drive\n"); 2635 ata_dev_printk(dev, KERN_WARNING, 2636 "fault or invalid emulation. Contact drive vendor for information.\n"); 2637 } 2638 } 2639 2640 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2641 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2642 "firmware update to be fully functional.\n"); 2643 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2644 "or visit http://ata.wiki.kernel.org.\n"); 2645 } 2646 2647 return 0; 2648 2649 err_out_nosup: 2650 if (ata_msg_probe(ap)) 2651 ata_dev_printk(dev, KERN_DEBUG, 2652 "%s: EXIT, err\n", __func__); 2653 return rc; 2654 } 2655 2656 /** 2657 * ata_cable_40wire - return 40 wire cable type 2658 * @ap: port 2659 * 2660 * Helper method for drivers which want to hardwire 40 wire cable 2661 * detection. 2662 */ 2663 2664 int ata_cable_40wire(struct ata_port *ap) 2665 { 2666 return ATA_CBL_PATA40; 2667 } 2668 2669 /** 2670 * ata_cable_80wire - return 80 wire cable type 2671 * @ap: port 2672 * 2673 * Helper method for drivers which want to hardwire 80 wire cable 2674 * detection. 2675 */ 2676 2677 int ata_cable_80wire(struct ata_port *ap) 2678 { 2679 return ATA_CBL_PATA80; 2680 } 2681 2682 /** 2683 * ata_cable_unknown - return unknown PATA cable. 2684 * @ap: port 2685 * 2686 * Helper method for drivers which have no PATA cable detection. 2687 */ 2688 2689 int ata_cable_unknown(struct ata_port *ap) 2690 { 2691 return ATA_CBL_PATA_UNK; 2692 } 2693 2694 /** 2695 * ata_cable_ignore - return ignored PATA cable. 2696 * @ap: port 2697 * 2698 * Helper method for drivers which don't use cable type to limit 2699 * transfer mode. 2700 */ 2701 int ata_cable_ignore(struct ata_port *ap) 2702 { 2703 return ATA_CBL_PATA_IGN; 2704 } 2705 2706 /** 2707 * ata_cable_sata - return SATA cable type 2708 * @ap: port 2709 * 2710 * Helper method for drivers which have SATA cables 2711 */ 2712 2713 int ata_cable_sata(struct ata_port *ap) 2714 { 2715 return ATA_CBL_SATA; 2716 } 2717 2718 /** 2719 * ata_bus_probe - Reset and probe ATA bus 2720 * @ap: Bus to probe 2721 * 2722 * Master ATA bus probing function. Initiates a hardware-dependent 2723 * bus reset, then attempts to identify any devices found on 2724 * the bus. 2725 * 2726 * LOCKING: 2727 * PCI/etc. bus probe sem. 2728 * 2729 * RETURNS: 2730 * Zero on success, negative errno otherwise. 2731 */ 2732 2733 int ata_bus_probe(struct ata_port *ap) 2734 { 2735 unsigned int classes[ATA_MAX_DEVICES]; 2736 int tries[ATA_MAX_DEVICES]; 2737 int rc; 2738 struct ata_device *dev; 2739 2740 ata_port_probe(ap); 2741 2742 ata_for_each_dev(dev, &ap->link, ALL) 2743 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2744 2745 retry: 2746 ata_for_each_dev(dev, &ap->link, ALL) { 2747 /* If we issue an SRST then an ATA drive (not ATAPI) 2748 * may change configuration and be in PIO0 timing. If 2749 * we do a hard reset (or are coming from power on) 2750 * this is true for ATA or ATAPI. Until we've set a 2751 * suitable controller mode we should not touch the 2752 * bus as we may be talking too fast. 2753 */ 2754 dev->pio_mode = XFER_PIO_0; 2755 2756 /* If the controller has a pio mode setup function 2757 * then use it to set the chipset to rights. Don't 2758 * touch the DMA setup as that will be dealt with when 2759 * configuring devices. 2760 */ 2761 if (ap->ops->set_piomode) 2762 ap->ops->set_piomode(ap, dev); 2763 } 2764 2765 /* reset and determine device classes */ 2766 ap->ops->phy_reset(ap); 2767 2768 ata_for_each_dev(dev, &ap->link, ALL) { 2769 if (!(ap->flags & ATA_FLAG_DISABLED) && 2770 dev->class != ATA_DEV_UNKNOWN) 2771 classes[dev->devno] = dev->class; 2772 else 2773 classes[dev->devno] = ATA_DEV_NONE; 2774 2775 dev->class = ATA_DEV_UNKNOWN; 2776 } 2777 2778 ata_port_probe(ap); 2779 2780 /* read IDENTIFY page and configure devices. We have to do the identify 2781 specific sequence bass-ackwards so that PDIAG- is released by 2782 the slave device */ 2783 2784 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2785 if (tries[dev->devno]) 2786 dev->class = classes[dev->devno]; 2787 2788 if (!ata_dev_enabled(dev)) 2789 continue; 2790 2791 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2792 dev->id); 2793 if (rc) 2794 goto fail; 2795 } 2796 2797 /* Now ask for the cable type as PDIAG- should have been released */ 2798 if (ap->ops->cable_detect) 2799 ap->cbl = ap->ops->cable_detect(ap); 2800 2801 /* We may have SATA bridge glue hiding here irrespective of 2802 * the reported cable types and sensed types. When SATA 2803 * drives indicate we have a bridge, we don't know which end 2804 * of the link the bridge is which is a problem. 2805 */ 2806 ata_for_each_dev(dev, &ap->link, ENABLED) 2807 if (ata_id_is_sata(dev->id)) 2808 ap->cbl = ATA_CBL_SATA; 2809 2810 /* After the identify sequence we can now set up the devices. We do 2811 this in the normal order so that the user doesn't get confused */ 2812 2813 ata_for_each_dev(dev, &ap->link, ENABLED) { 2814 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2815 rc = ata_dev_configure(dev); 2816 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2817 if (rc) 2818 goto fail; 2819 } 2820 2821 /* configure transfer mode */ 2822 rc = ata_set_mode(&ap->link, &dev); 2823 if (rc) 2824 goto fail; 2825 2826 ata_for_each_dev(dev, &ap->link, ENABLED) 2827 return 0; 2828 2829 /* no device present, disable port */ 2830 ata_port_disable(ap); 2831 return -ENODEV; 2832 2833 fail: 2834 tries[dev->devno]--; 2835 2836 switch (rc) { 2837 case -EINVAL: 2838 /* eeek, something went very wrong, give up */ 2839 tries[dev->devno] = 0; 2840 break; 2841 2842 case -ENODEV: 2843 /* give it just one more chance */ 2844 tries[dev->devno] = min(tries[dev->devno], 1); 2845 case -EIO: 2846 if (tries[dev->devno] == 1) { 2847 /* This is the last chance, better to slow 2848 * down than lose it. 2849 */ 2850 sata_down_spd_limit(&ap->link, 0); 2851 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2852 } 2853 } 2854 2855 if (!tries[dev->devno]) 2856 ata_dev_disable(dev); 2857 2858 goto retry; 2859 } 2860 2861 /** 2862 * ata_port_probe - Mark port as enabled 2863 * @ap: Port for which we indicate enablement 2864 * 2865 * Modify @ap data structure such that the system 2866 * thinks that the entire port is enabled. 2867 * 2868 * LOCKING: host lock, or some other form of 2869 * serialization. 2870 */ 2871 2872 void ata_port_probe(struct ata_port *ap) 2873 { 2874 ap->flags &= ~ATA_FLAG_DISABLED; 2875 } 2876 2877 /** 2878 * sata_print_link_status - Print SATA link status 2879 * @link: SATA link to printk link status about 2880 * 2881 * This function prints link speed and status of a SATA link. 2882 * 2883 * LOCKING: 2884 * None. 2885 */ 2886 static void sata_print_link_status(struct ata_link *link) 2887 { 2888 u32 sstatus, scontrol, tmp; 2889 2890 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2891 return; 2892 sata_scr_read(link, SCR_CONTROL, &scontrol); 2893 2894 if (ata_phys_link_online(link)) { 2895 tmp = (sstatus >> 4) & 0xf; 2896 ata_link_printk(link, KERN_INFO, 2897 "SATA link up %s (SStatus %X SControl %X)\n", 2898 sata_spd_string(tmp), sstatus, scontrol); 2899 } else { 2900 ata_link_printk(link, KERN_INFO, 2901 "SATA link down (SStatus %X SControl %X)\n", 2902 sstatus, scontrol); 2903 } 2904 } 2905 2906 /** 2907 * ata_dev_pair - return other device on cable 2908 * @adev: device 2909 * 2910 * Obtain the other device on the same cable, or if none is 2911 * present NULL is returned 2912 */ 2913 2914 struct ata_device *ata_dev_pair(struct ata_device *adev) 2915 { 2916 struct ata_link *link = adev->link; 2917 struct ata_device *pair = &link->device[1 - adev->devno]; 2918 if (!ata_dev_enabled(pair)) 2919 return NULL; 2920 return pair; 2921 } 2922 2923 /** 2924 * ata_port_disable - Disable port. 2925 * @ap: Port to be disabled. 2926 * 2927 * Modify @ap data structure such that the system 2928 * thinks that the entire port is disabled, and should 2929 * never attempt to probe or communicate with devices 2930 * on this port. 2931 * 2932 * LOCKING: host lock, or some other form of 2933 * serialization. 2934 */ 2935 2936 void ata_port_disable(struct ata_port *ap) 2937 { 2938 ap->link.device[0].class = ATA_DEV_NONE; 2939 ap->link.device[1].class = ATA_DEV_NONE; 2940 ap->flags |= ATA_FLAG_DISABLED; 2941 } 2942 2943 /** 2944 * sata_down_spd_limit - adjust SATA spd limit downward 2945 * @link: Link to adjust SATA spd limit for 2946 * @spd_limit: Additional limit 2947 * 2948 * Adjust SATA spd limit of @link downward. Note that this 2949 * function only adjusts the limit. The change must be applied 2950 * using sata_set_spd(). 2951 * 2952 * If @spd_limit is non-zero, the speed is limited to equal to or 2953 * lower than @spd_limit if such speed is supported. If 2954 * @spd_limit is slower than any supported speed, only the lowest 2955 * supported speed is allowed. 2956 * 2957 * LOCKING: 2958 * Inherited from caller. 2959 * 2960 * RETURNS: 2961 * 0 on success, negative errno on failure 2962 */ 2963 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2964 { 2965 u32 sstatus, spd, mask; 2966 int rc, bit; 2967 2968 if (!sata_scr_valid(link)) 2969 return -EOPNOTSUPP; 2970 2971 /* If SCR can be read, use it to determine the current SPD. 2972 * If not, use cached value in link->sata_spd. 2973 */ 2974 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2975 if (rc == 0 && ata_sstatus_online(sstatus)) 2976 spd = (sstatus >> 4) & 0xf; 2977 else 2978 spd = link->sata_spd; 2979 2980 mask = link->sata_spd_limit; 2981 if (mask <= 1) 2982 return -EINVAL; 2983 2984 /* unconditionally mask off the highest bit */ 2985 bit = fls(mask) - 1; 2986 mask &= ~(1 << bit); 2987 2988 /* Mask off all speeds higher than or equal to the current 2989 * one. Force 1.5Gbps if current SPD is not available. 2990 */ 2991 if (spd > 1) 2992 mask &= (1 << (spd - 1)) - 1; 2993 else 2994 mask &= 1; 2995 2996 /* were we already at the bottom? */ 2997 if (!mask) 2998 return -EINVAL; 2999 3000 if (spd_limit) { 3001 if (mask & ((1 << spd_limit) - 1)) 3002 mask &= (1 << spd_limit) - 1; 3003 else { 3004 bit = ffs(mask) - 1; 3005 mask = 1 << bit; 3006 } 3007 } 3008 3009 link->sata_spd_limit = mask; 3010 3011 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 3012 sata_spd_string(fls(mask))); 3013 3014 return 0; 3015 } 3016 3017 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3018 { 3019 struct ata_link *host_link = &link->ap->link; 3020 u32 limit, target, spd; 3021 3022 limit = link->sata_spd_limit; 3023 3024 /* Don't configure downstream link faster than upstream link. 3025 * It doesn't speed up anything and some PMPs choke on such 3026 * configuration. 3027 */ 3028 if (!ata_is_host_link(link) && host_link->sata_spd) 3029 limit &= (1 << host_link->sata_spd) - 1; 3030 3031 if (limit == UINT_MAX) 3032 target = 0; 3033 else 3034 target = fls(limit); 3035 3036 spd = (*scontrol >> 4) & 0xf; 3037 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3038 3039 return spd != target; 3040 } 3041 3042 /** 3043 * sata_set_spd_needed - is SATA spd configuration needed 3044 * @link: Link in question 3045 * 3046 * Test whether the spd limit in SControl matches 3047 * @link->sata_spd_limit. This function is used to determine 3048 * whether hardreset is necessary to apply SATA spd 3049 * configuration. 3050 * 3051 * LOCKING: 3052 * Inherited from caller. 3053 * 3054 * RETURNS: 3055 * 1 if SATA spd configuration is needed, 0 otherwise. 3056 */ 3057 static int sata_set_spd_needed(struct ata_link *link) 3058 { 3059 u32 scontrol; 3060 3061 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3062 return 1; 3063 3064 return __sata_set_spd_needed(link, &scontrol); 3065 } 3066 3067 /** 3068 * sata_set_spd - set SATA spd according to spd limit 3069 * @link: Link to set SATA spd for 3070 * 3071 * Set SATA spd of @link according to sata_spd_limit. 3072 * 3073 * LOCKING: 3074 * Inherited from caller. 3075 * 3076 * RETURNS: 3077 * 0 if spd doesn't need to be changed, 1 if spd has been 3078 * changed. Negative errno if SCR registers are inaccessible. 3079 */ 3080 int sata_set_spd(struct ata_link *link) 3081 { 3082 u32 scontrol; 3083 int rc; 3084 3085 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3086 return rc; 3087 3088 if (!__sata_set_spd_needed(link, &scontrol)) 3089 return 0; 3090 3091 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3092 return rc; 3093 3094 return 1; 3095 } 3096 3097 /* 3098 * This mode timing computation functionality is ported over from 3099 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3100 */ 3101 /* 3102 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3103 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3104 * for UDMA6, which is currently supported only by Maxtor drives. 3105 * 3106 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3107 */ 3108 3109 static const struct ata_timing ata_timing[] = { 3110 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3111 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3112 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3113 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3114 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3115 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3116 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3117 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3118 3119 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3120 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3121 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3122 3123 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3124 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3125 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3126 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3127 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3128 3129 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3130 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3131 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3132 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3133 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3134 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3135 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3136 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3137 3138 { 0xFF } 3139 }; 3140 3141 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3142 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3143 3144 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3145 { 3146 q->setup = EZ(t->setup * 1000, T); 3147 q->act8b = EZ(t->act8b * 1000, T); 3148 q->rec8b = EZ(t->rec8b * 1000, T); 3149 q->cyc8b = EZ(t->cyc8b * 1000, T); 3150 q->active = EZ(t->active * 1000, T); 3151 q->recover = EZ(t->recover * 1000, T); 3152 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3153 q->cycle = EZ(t->cycle * 1000, T); 3154 q->udma = EZ(t->udma * 1000, UT); 3155 } 3156 3157 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3158 struct ata_timing *m, unsigned int what) 3159 { 3160 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3161 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3162 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3163 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3164 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3165 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3166 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3167 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3168 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3169 } 3170 3171 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3172 { 3173 const struct ata_timing *t = ata_timing; 3174 3175 while (xfer_mode > t->mode) 3176 t++; 3177 3178 if (xfer_mode == t->mode) 3179 return t; 3180 return NULL; 3181 } 3182 3183 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3184 struct ata_timing *t, int T, int UT) 3185 { 3186 const struct ata_timing *s; 3187 struct ata_timing p; 3188 3189 /* 3190 * Find the mode. 3191 */ 3192 3193 if (!(s = ata_timing_find_mode(speed))) 3194 return -EINVAL; 3195 3196 memcpy(t, s, sizeof(*s)); 3197 3198 /* 3199 * If the drive is an EIDE drive, it can tell us it needs extended 3200 * PIO/MW_DMA cycle timing. 3201 */ 3202 3203 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3204 memset(&p, 0, sizeof(p)); 3205 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3206 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3207 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3208 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3209 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3210 } 3211 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3212 } 3213 3214 /* 3215 * Convert the timing to bus clock counts. 3216 */ 3217 3218 ata_timing_quantize(t, t, T, UT); 3219 3220 /* 3221 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3222 * S.M.A.R.T * and some other commands. We have to ensure that the 3223 * DMA cycle timing is slower/equal than the fastest PIO timing. 3224 */ 3225 3226 if (speed > XFER_PIO_6) { 3227 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3228 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3229 } 3230 3231 /* 3232 * Lengthen active & recovery time so that cycle time is correct. 3233 */ 3234 3235 if (t->act8b + t->rec8b < t->cyc8b) { 3236 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3237 t->rec8b = t->cyc8b - t->act8b; 3238 } 3239 3240 if (t->active + t->recover < t->cycle) { 3241 t->active += (t->cycle - (t->active + t->recover)) / 2; 3242 t->recover = t->cycle - t->active; 3243 } 3244 3245 /* In a few cases quantisation may produce enough errors to 3246 leave t->cycle too low for the sum of active and recovery 3247 if so we must correct this */ 3248 if (t->active + t->recover > t->cycle) 3249 t->cycle = t->active + t->recover; 3250 3251 return 0; 3252 } 3253 3254 /** 3255 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3256 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3257 * @cycle: cycle duration in ns 3258 * 3259 * Return matching xfer mode for @cycle. The returned mode is of 3260 * the transfer type specified by @xfer_shift. If @cycle is too 3261 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3262 * than the fastest known mode, the fasted mode is returned. 3263 * 3264 * LOCKING: 3265 * None. 3266 * 3267 * RETURNS: 3268 * Matching xfer_mode, 0xff if no match found. 3269 */ 3270 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3271 { 3272 u8 base_mode = 0xff, last_mode = 0xff; 3273 const struct ata_xfer_ent *ent; 3274 const struct ata_timing *t; 3275 3276 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3277 if (ent->shift == xfer_shift) 3278 base_mode = ent->base; 3279 3280 for (t = ata_timing_find_mode(base_mode); 3281 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3282 unsigned short this_cycle; 3283 3284 switch (xfer_shift) { 3285 case ATA_SHIFT_PIO: 3286 case ATA_SHIFT_MWDMA: 3287 this_cycle = t->cycle; 3288 break; 3289 case ATA_SHIFT_UDMA: 3290 this_cycle = t->udma; 3291 break; 3292 default: 3293 return 0xff; 3294 } 3295 3296 if (cycle > this_cycle) 3297 break; 3298 3299 last_mode = t->mode; 3300 } 3301 3302 return last_mode; 3303 } 3304 3305 /** 3306 * ata_down_xfermask_limit - adjust dev xfer masks downward 3307 * @dev: Device to adjust xfer masks 3308 * @sel: ATA_DNXFER_* selector 3309 * 3310 * Adjust xfer masks of @dev downward. Note that this function 3311 * does not apply the change. Invoking ata_set_mode() afterwards 3312 * will apply the limit. 3313 * 3314 * LOCKING: 3315 * Inherited from caller. 3316 * 3317 * RETURNS: 3318 * 0 on success, negative errno on failure 3319 */ 3320 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3321 { 3322 char buf[32]; 3323 unsigned long orig_mask, xfer_mask; 3324 unsigned long pio_mask, mwdma_mask, udma_mask; 3325 int quiet, highbit; 3326 3327 quiet = !!(sel & ATA_DNXFER_QUIET); 3328 sel &= ~ATA_DNXFER_QUIET; 3329 3330 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3331 dev->mwdma_mask, 3332 dev->udma_mask); 3333 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3334 3335 switch (sel) { 3336 case ATA_DNXFER_PIO: 3337 highbit = fls(pio_mask) - 1; 3338 pio_mask &= ~(1 << highbit); 3339 break; 3340 3341 case ATA_DNXFER_DMA: 3342 if (udma_mask) { 3343 highbit = fls(udma_mask) - 1; 3344 udma_mask &= ~(1 << highbit); 3345 if (!udma_mask) 3346 return -ENOENT; 3347 } else if (mwdma_mask) { 3348 highbit = fls(mwdma_mask) - 1; 3349 mwdma_mask &= ~(1 << highbit); 3350 if (!mwdma_mask) 3351 return -ENOENT; 3352 } 3353 break; 3354 3355 case ATA_DNXFER_40C: 3356 udma_mask &= ATA_UDMA_MASK_40C; 3357 break; 3358 3359 case ATA_DNXFER_FORCE_PIO0: 3360 pio_mask &= 1; 3361 case ATA_DNXFER_FORCE_PIO: 3362 mwdma_mask = 0; 3363 udma_mask = 0; 3364 break; 3365 3366 default: 3367 BUG(); 3368 } 3369 3370 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3371 3372 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3373 return -ENOENT; 3374 3375 if (!quiet) { 3376 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3377 snprintf(buf, sizeof(buf), "%s:%s", 3378 ata_mode_string(xfer_mask), 3379 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3380 else 3381 snprintf(buf, sizeof(buf), "%s", 3382 ata_mode_string(xfer_mask)); 3383 3384 ata_dev_printk(dev, KERN_WARNING, 3385 "limiting speed to %s\n", buf); 3386 } 3387 3388 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3389 &dev->udma_mask); 3390 3391 return 0; 3392 } 3393 3394 static int ata_dev_set_mode(struct ata_device *dev) 3395 { 3396 struct ata_port *ap = dev->link->ap; 3397 struct ata_eh_context *ehc = &dev->link->eh_context; 3398 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3399 const char *dev_err_whine = ""; 3400 int ign_dev_err = 0; 3401 unsigned int err_mask = 0; 3402 int rc; 3403 3404 dev->flags &= ~ATA_DFLAG_PIO; 3405 if (dev->xfer_shift == ATA_SHIFT_PIO) 3406 dev->flags |= ATA_DFLAG_PIO; 3407 3408 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3409 dev_err_whine = " (SET_XFERMODE skipped)"; 3410 else { 3411 if (nosetxfer) 3412 ata_dev_printk(dev, KERN_WARNING, 3413 "NOSETXFER but PATA detected - can't " 3414 "skip SETXFER, might malfunction\n"); 3415 err_mask = ata_dev_set_xfermode(dev); 3416 } 3417 3418 if (err_mask & ~AC_ERR_DEV) 3419 goto fail; 3420 3421 /* revalidate */ 3422 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3423 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3424 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3425 if (rc) 3426 return rc; 3427 3428 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3429 /* Old CFA may refuse this command, which is just fine */ 3430 if (ata_id_is_cfa(dev->id)) 3431 ign_dev_err = 1; 3432 /* Catch several broken garbage emulations plus some pre 3433 ATA devices */ 3434 if (ata_id_major_version(dev->id) == 0 && 3435 dev->pio_mode <= XFER_PIO_2) 3436 ign_dev_err = 1; 3437 /* Some very old devices and some bad newer ones fail 3438 any kind of SET_XFERMODE request but support PIO0-2 3439 timings and no IORDY */ 3440 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3441 ign_dev_err = 1; 3442 } 3443 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3444 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3445 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3446 dev->dma_mode == XFER_MW_DMA_0 && 3447 (dev->id[63] >> 8) & 1) 3448 ign_dev_err = 1; 3449 3450 /* if the device is actually configured correctly, ignore dev err */ 3451 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3452 ign_dev_err = 1; 3453 3454 if (err_mask & AC_ERR_DEV) { 3455 if (!ign_dev_err) 3456 goto fail; 3457 else 3458 dev_err_whine = " (device error ignored)"; 3459 } 3460 3461 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3462 dev->xfer_shift, (int)dev->xfer_mode); 3463 3464 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3465 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3466 dev_err_whine); 3467 3468 return 0; 3469 3470 fail: 3471 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3472 "(err_mask=0x%x)\n", err_mask); 3473 return -EIO; 3474 } 3475 3476 /** 3477 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3478 * @link: link on which timings will be programmed 3479 * @r_failed_dev: out parameter for failed device 3480 * 3481 * Standard implementation of the function used to tune and set 3482 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3483 * ata_dev_set_mode() fails, pointer to the failing device is 3484 * returned in @r_failed_dev. 3485 * 3486 * LOCKING: 3487 * PCI/etc. bus probe sem. 3488 * 3489 * RETURNS: 3490 * 0 on success, negative errno otherwise 3491 */ 3492 3493 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3494 { 3495 struct ata_port *ap = link->ap; 3496 struct ata_device *dev; 3497 int rc = 0, used_dma = 0, found = 0; 3498 3499 /* step 1: calculate xfer_mask */ 3500 ata_for_each_dev(dev, link, ENABLED) { 3501 unsigned long pio_mask, dma_mask; 3502 unsigned int mode_mask; 3503 3504 mode_mask = ATA_DMA_MASK_ATA; 3505 if (dev->class == ATA_DEV_ATAPI) 3506 mode_mask = ATA_DMA_MASK_ATAPI; 3507 else if (ata_id_is_cfa(dev->id)) 3508 mode_mask = ATA_DMA_MASK_CFA; 3509 3510 ata_dev_xfermask(dev); 3511 ata_force_xfermask(dev); 3512 3513 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3514 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3515 3516 if (libata_dma_mask & mode_mask) 3517 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3518 else 3519 dma_mask = 0; 3520 3521 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3522 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3523 3524 found = 1; 3525 if (ata_dma_enabled(dev)) 3526 used_dma = 1; 3527 } 3528 if (!found) 3529 goto out; 3530 3531 /* step 2: always set host PIO timings */ 3532 ata_for_each_dev(dev, link, ENABLED) { 3533 if (dev->pio_mode == 0xff) { 3534 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3535 rc = -EINVAL; 3536 goto out; 3537 } 3538 3539 dev->xfer_mode = dev->pio_mode; 3540 dev->xfer_shift = ATA_SHIFT_PIO; 3541 if (ap->ops->set_piomode) 3542 ap->ops->set_piomode(ap, dev); 3543 } 3544 3545 /* step 3: set host DMA timings */ 3546 ata_for_each_dev(dev, link, ENABLED) { 3547 if (!ata_dma_enabled(dev)) 3548 continue; 3549 3550 dev->xfer_mode = dev->dma_mode; 3551 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3552 if (ap->ops->set_dmamode) 3553 ap->ops->set_dmamode(ap, dev); 3554 } 3555 3556 /* step 4: update devices' xfer mode */ 3557 ata_for_each_dev(dev, link, ENABLED) { 3558 rc = ata_dev_set_mode(dev); 3559 if (rc) 3560 goto out; 3561 } 3562 3563 /* Record simplex status. If we selected DMA then the other 3564 * host channels are not permitted to do so. 3565 */ 3566 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3567 ap->host->simplex_claimed = ap; 3568 3569 out: 3570 if (rc) 3571 *r_failed_dev = dev; 3572 return rc; 3573 } 3574 3575 /** 3576 * ata_wait_ready - wait for link to become ready 3577 * @link: link to be waited on 3578 * @deadline: deadline jiffies for the operation 3579 * @check_ready: callback to check link readiness 3580 * 3581 * Wait for @link to become ready. @check_ready should return 3582 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3583 * link doesn't seem to be occupied, other errno for other error 3584 * conditions. 3585 * 3586 * Transient -ENODEV conditions are allowed for 3587 * ATA_TMOUT_FF_WAIT. 3588 * 3589 * LOCKING: 3590 * EH context. 3591 * 3592 * RETURNS: 3593 * 0 if @linke is ready before @deadline; otherwise, -errno. 3594 */ 3595 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3596 int (*check_ready)(struct ata_link *link)) 3597 { 3598 unsigned long start = jiffies; 3599 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3600 int warned = 0; 3601 3602 /* Slave readiness can't be tested separately from master. On 3603 * M/S emulation configuration, this function should be called 3604 * only on the master and it will handle both master and slave. 3605 */ 3606 WARN_ON(link == link->ap->slave_link); 3607 3608 if (time_after(nodev_deadline, deadline)) 3609 nodev_deadline = deadline; 3610 3611 while (1) { 3612 unsigned long now = jiffies; 3613 int ready, tmp; 3614 3615 ready = tmp = check_ready(link); 3616 if (ready > 0) 3617 return 0; 3618 3619 /* -ENODEV could be transient. Ignore -ENODEV if link 3620 * is online. Also, some SATA devices take a long 3621 * time to clear 0xff after reset. For example, 3622 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3623 * GoVault needs even more than that. Wait for 3624 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3625 * 3626 * Note that some PATA controllers (pata_ali) explode 3627 * if status register is read more than once when 3628 * there's no device attached. 3629 */ 3630 if (ready == -ENODEV) { 3631 if (ata_link_online(link)) 3632 ready = 0; 3633 else if ((link->ap->flags & ATA_FLAG_SATA) && 3634 !ata_link_offline(link) && 3635 time_before(now, nodev_deadline)) 3636 ready = 0; 3637 } 3638 3639 if (ready) 3640 return ready; 3641 if (time_after(now, deadline)) 3642 return -EBUSY; 3643 3644 if (!warned && time_after(now, start + 5 * HZ) && 3645 (deadline - now > 3 * HZ)) { 3646 ata_link_printk(link, KERN_WARNING, 3647 "link is slow to respond, please be patient " 3648 "(ready=%d)\n", tmp); 3649 warned = 1; 3650 } 3651 3652 msleep(50); 3653 } 3654 } 3655 3656 /** 3657 * ata_wait_after_reset - wait for link to become ready after reset 3658 * @link: link to be waited on 3659 * @deadline: deadline jiffies for the operation 3660 * @check_ready: callback to check link readiness 3661 * 3662 * Wait for @link to become ready after reset. 3663 * 3664 * LOCKING: 3665 * EH context. 3666 * 3667 * RETURNS: 3668 * 0 if @linke is ready before @deadline; otherwise, -errno. 3669 */ 3670 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3671 int (*check_ready)(struct ata_link *link)) 3672 { 3673 msleep(ATA_WAIT_AFTER_RESET); 3674 3675 return ata_wait_ready(link, deadline, check_ready); 3676 } 3677 3678 /** 3679 * sata_link_debounce - debounce SATA phy status 3680 * @link: ATA link to debounce SATA phy status for 3681 * @params: timing parameters { interval, duratinon, timeout } in msec 3682 * @deadline: deadline jiffies for the operation 3683 * 3684 * Make sure SStatus of @link reaches stable state, determined by 3685 * holding the same value where DET is not 1 for @duration polled 3686 * every @interval, before @timeout. Timeout constraints the 3687 * beginning of the stable state. Because DET gets stuck at 1 on 3688 * some controllers after hot unplugging, this functions waits 3689 * until timeout then returns 0 if DET is stable at 1. 3690 * 3691 * @timeout is further limited by @deadline. The sooner of the 3692 * two is used. 3693 * 3694 * LOCKING: 3695 * Kernel thread context (may sleep) 3696 * 3697 * RETURNS: 3698 * 0 on success, -errno on failure. 3699 */ 3700 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3701 unsigned long deadline) 3702 { 3703 unsigned long interval = params[0]; 3704 unsigned long duration = params[1]; 3705 unsigned long last_jiffies, t; 3706 u32 last, cur; 3707 int rc; 3708 3709 t = ata_deadline(jiffies, params[2]); 3710 if (time_before(t, deadline)) 3711 deadline = t; 3712 3713 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3714 return rc; 3715 cur &= 0xf; 3716 3717 last = cur; 3718 last_jiffies = jiffies; 3719 3720 while (1) { 3721 msleep(interval); 3722 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3723 return rc; 3724 cur &= 0xf; 3725 3726 /* DET stable? */ 3727 if (cur == last) { 3728 if (cur == 1 && time_before(jiffies, deadline)) 3729 continue; 3730 if (time_after(jiffies, 3731 ata_deadline(last_jiffies, duration))) 3732 return 0; 3733 continue; 3734 } 3735 3736 /* unstable, start over */ 3737 last = cur; 3738 last_jiffies = jiffies; 3739 3740 /* Check deadline. If debouncing failed, return 3741 * -EPIPE to tell upper layer to lower link speed. 3742 */ 3743 if (time_after(jiffies, deadline)) 3744 return -EPIPE; 3745 } 3746 } 3747 3748 /** 3749 * sata_link_resume - resume SATA link 3750 * @link: ATA link to resume SATA 3751 * @params: timing parameters { interval, duratinon, timeout } in msec 3752 * @deadline: deadline jiffies for the operation 3753 * 3754 * Resume SATA phy @link and debounce it. 3755 * 3756 * LOCKING: 3757 * Kernel thread context (may sleep) 3758 * 3759 * RETURNS: 3760 * 0 on success, -errno on failure. 3761 */ 3762 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3763 unsigned long deadline) 3764 { 3765 u32 scontrol, serror; 3766 int rc; 3767 3768 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3769 return rc; 3770 3771 scontrol = (scontrol & 0x0f0) | 0x300; 3772 3773 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3774 return rc; 3775 3776 /* Some PHYs react badly if SStatus is pounded immediately 3777 * after resuming. Delay 200ms before debouncing. 3778 */ 3779 msleep(200); 3780 3781 if ((rc = sata_link_debounce(link, params, deadline))) 3782 return rc; 3783 3784 /* clear SError, some PHYs require this even for SRST to work */ 3785 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3786 rc = sata_scr_write(link, SCR_ERROR, serror); 3787 3788 return rc != -EINVAL ? rc : 0; 3789 } 3790 3791 /** 3792 * ata_std_prereset - prepare for reset 3793 * @link: ATA link to be reset 3794 * @deadline: deadline jiffies for the operation 3795 * 3796 * @link is about to be reset. Initialize it. Failure from 3797 * prereset makes libata abort whole reset sequence and give up 3798 * that port, so prereset should be best-effort. It does its 3799 * best to prepare for reset sequence but if things go wrong, it 3800 * should just whine, not fail. 3801 * 3802 * LOCKING: 3803 * Kernel thread context (may sleep) 3804 * 3805 * RETURNS: 3806 * 0 on success, -errno otherwise. 3807 */ 3808 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3809 { 3810 struct ata_port *ap = link->ap; 3811 struct ata_eh_context *ehc = &link->eh_context; 3812 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3813 int rc; 3814 3815 /* if we're about to do hardreset, nothing more to do */ 3816 if (ehc->i.action & ATA_EH_HARDRESET) 3817 return 0; 3818 3819 /* if SATA, resume link */ 3820 if (ap->flags & ATA_FLAG_SATA) { 3821 rc = sata_link_resume(link, timing, deadline); 3822 /* whine about phy resume failure but proceed */ 3823 if (rc && rc != -EOPNOTSUPP) 3824 ata_link_printk(link, KERN_WARNING, "failed to resume " 3825 "link for reset (errno=%d)\n", rc); 3826 } 3827 3828 /* no point in trying softreset on offline link */ 3829 if (ata_phys_link_offline(link)) 3830 ehc->i.action &= ~ATA_EH_SOFTRESET; 3831 3832 return 0; 3833 } 3834 3835 /** 3836 * sata_link_hardreset - reset link via SATA phy reset 3837 * @link: link to reset 3838 * @timing: timing parameters { interval, duratinon, timeout } in msec 3839 * @deadline: deadline jiffies for the operation 3840 * @online: optional out parameter indicating link onlineness 3841 * @check_ready: optional callback to check link readiness 3842 * 3843 * SATA phy-reset @link using DET bits of SControl register. 3844 * After hardreset, link readiness is waited upon using 3845 * ata_wait_ready() if @check_ready is specified. LLDs are 3846 * allowed to not specify @check_ready and wait itself after this 3847 * function returns. Device classification is LLD's 3848 * responsibility. 3849 * 3850 * *@online is set to one iff reset succeeded and @link is online 3851 * after reset. 3852 * 3853 * LOCKING: 3854 * Kernel thread context (may sleep) 3855 * 3856 * RETURNS: 3857 * 0 on success, -errno otherwise. 3858 */ 3859 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3860 unsigned long deadline, 3861 bool *online, int (*check_ready)(struct ata_link *)) 3862 { 3863 u32 scontrol; 3864 int rc; 3865 3866 DPRINTK("ENTER\n"); 3867 3868 if (online) 3869 *online = false; 3870 3871 if (sata_set_spd_needed(link)) { 3872 /* SATA spec says nothing about how to reconfigure 3873 * spd. To be on the safe side, turn off phy during 3874 * reconfiguration. This works for at least ICH7 AHCI 3875 * and Sil3124. 3876 */ 3877 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3878 goto out; 3879 3880 scontrol = (scontrol & 0x0f0) | 0x304; 3881 3882 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3883 goto out; 3884 3885 sata_set_spd(link); 3886 } 3887 3888 /* issue phy wake/reset */ 3889 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3890 goto out; 3891 3892 scontrol = (scontrol & 0x0f0) | 0x301; 3893 3894 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3895 goto out; 3896 3897 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3898 * 10.4.2 says at least 1 ms. 3899 */ 3900 msleep(1); 3901 3902 /* bring link back */ 3903 rc = sata_link_resume(link, timing, deadline); 3904 if (rc) 3905 goto out; 3906 /* if link is offline nothing more to do */ 3907 if (ata_phys_link_offline(link)) 3908 goto out; 3909 3910 /* Link is online. From this point, -ENODEV too is an error. */ 3911 if (online) 3912 *online = true; 3913 3914 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3915 /* If PMP is supported, we have to do follow-up SRST. 3916 * Some PMPs don't send D2H Reg FIS after hardreset if 3917 * the first port is empty. Wait only for 3918 * ATA_TMOUT_PMP_SRST_WAIT. 3919 */ 3920 if (check_ready) { 3921 unsigned long pmp_deadline; 3922 3923 pmp_deadline = ata_deadline(jiffies, 3924 ATA_TMOUT_PMP_SRST_WAIT); 3925 if (time_after(pmp_deadline, deadline)) 3926 pmp_deadline = deadline; 3927 ata_wait_ready(link, pmp_deadline, check_ready); 3928 } 3929 rc = -EAGAIN; 3930 goto out; 3931 } 3932 3933 rc = 0; 3934 if (check_ready) 3935 rc = ata_wait_ready(link, deadline, check_ready); 3936 out: 3937 if (rc && rc != -EAGAIN) { 3938 /* online is set iff link is online && reset succeeded */ 3939 if (online) 3940 *online = false; 3941 ata_link_printk(link, KERN_ERR, 3942 "COMRESET failed (errno=%d)\n", rc); 3943 } 3944 DPRINTK("EXIT, rc=%d\n", rc); 3945 return rc; 3946 } 3947 3948 /** 3949 * sata_std_hardreset - COMRESET w/o waiting or classification 3950 * @link: link to reset 3951 * @class: resulting class of attached device 3952 * @deadline: deadline jiffies for the operation 3953 * 3954 * Standard SATA COMRESET w/o waiting or classification. 3955 * 3956 * LOCKING: 3957 * Kernel thread context (may sleep) 3958 * 3959 * RETURNS: 3960 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3961 */ 3962 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3963 unsigned long deadline) 3964 { 3965 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3966 bool online; 3967 int rc; 3968 3969 /* do hardreset */ 3970 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3971 return online ? -EAGAIN : rc; 3972 } 3973 3974 /** 3975 * ata_std_postreset - standard postreset callback 3976 * @link: the target ata_link 3977 * @classes: classes of attached devices 3978 * 3979 * This function is invoked after a successful reset. Note that 3980 * the device might have been reset more than once using 3981 * different reset methods before postreset is invoked. 3982 * 3983 * LOCKING: 3984 * Kernel thread context (may sleep) 3985 */ 3986 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3987 { 3988 u32 serror; 3989 3990 DPRINTK("ENTER\n"); 3991 3992 /* reset complete, clear SError */ 3993 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3994 sata_scr_write(link, SCR_ERROR, serror); 3995 3996 /* print link status */ 3997 sata_print_link_status(link); 3998 3999 DPRINTK("EXIT\n"); 4000 } 4001 4002 /** 4003 * ata_dev_same_device - Determine whether new ID matches configured device 4004 * @dev: device to compare against 4005 * @new_class: class of the new device 4006 * @new_id: IDENTIFY page of the new device 4007 * 4008 * Compare @new_class and @new_id against @dev and determine 4009 * whether @dev is the device indicated by @new_class and 4010 * @new_id. 4011 * 4012 * LOCKING: 4013 * None. 4014 * 4015 * RETURNS: 4016 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4017 */ 4018 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4019 const u16 *new_id) 4020 { 4021 const u16 *old_id = dev->id; 4022 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4023 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4024 4025 if (dev->class != new_class) { 4026 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 4027 dev->class, new_class); 4028 return 0; 4029 } 4030 4031 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4032 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4033 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4034 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4035 4036 if (strcmp(model[0], model[1])) { 4037 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4038 "'%s' != '%s'\n", model[0], model[1]); 4039 return 0; 4040 } 4041 4042 if (strcmp(serial[0], serial[1])) { 4043 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4044 "'%s' != '%s'\n", serial[0], serial[1]); 4045 return 0; 4046 } 4047 4048 return 1; 4049 } 4050 4051 /** 4052 * ata_dev_reread_id - Re-read IDENTIFY data 4053 * @dev: target ATA device 4054 * @readid_flags: read ID flags 4055 * 4056 * Re-read IDENTIFY page and make sure @dev is still attached to 4057 * the port. 4058 * 4059 * LOCKING: 4060 * Kernel thread context (may sleep) 4061 * 4062 * RETURNS: 4063 * 0 on success, negative errno otherwise 4064 */ 4065 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4066 { 4067 unsigned int class = dev->class; 4068 u16 *id = (void *)dev->link->ap->sector_buf; 4069 int rc; 4070 4071 /* read ID data */ 4072 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4073 if (rc) 4074 return rc; 4075 4076 /* is the device still there? */ 4077 if (!ata_dev_same_device(dev, class, id)) 4078 return -ENODEV; 4079 4080 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4081 return 0; 4082 } 4083 4084 /** 4085 * ata_dev_revalidate - Revalidate ATA device 4086 * @dev: device to revalidate 4087 * @new_class: new class code 4088 * @readid_flags: read ID flags 4089 * 4090 * Re-read IDENTIFY page, make sure @dev is still attached to the 4091 * port and reconfigure it according to the new IDENTIFY page. 4092 * 4093 * LOCKING: 4094 * Kernel thread context (may sleep) 4095 * 4096 * RETURNS: 4097 * 0 on success, negative errno otherwise 4098 */ 4099 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4100 unsigned int readid_flags) 4101 { 4102 u64 n_sectors = dev->n_sectors; 4103 u64 n_native_sectors = dev->n_native_sectors; 4104 int rc; 4105 4106 if (!ata_dev_enabled(dev)) 4107 return -ENODEV; 4108 4109 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4110 if (ata_class_enabled(new_class) && 4111 new_class != ATA_DEV_ATA && 4112 new_class != ATA_DEV_ATAPI && 4113 new_class != ATA_DEV_SEMB) { 4114 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4115 dev->class, new_class); 4116 rc = -ENODEV; 4117 goto fail; 4118 } 4119 4120 /* re-read ID */ 4121 rc = ata_dev_reread_id(dev, readid_flags); 4122 if (rc) 4123 goto fail; 4124 4125 /* configure device according to the new ID */ 4126 rc = ata_dev_configure(dev); 4127 if (rc) 4128 goto fail; 4129 4130 /* verify n_sectors hasn't changed */ 4131 if (dev->class == ATA_DEV_ATA && n_sectors && 4132 dev->n_sectors != n_sectors) { 4133 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch " 4134 "%llu != %llu\n", 4135 (unsigned long long)n_sectors, 4136 (unsigned long long)dev->n_sectors); 4137 /* 4138 * Something could have caused HPA to be unlocked 4139 * involuntarily. If n_native_sectors hasn't changed 4140 * and the new size matches it, keep the device. 4141 */ 4142 if (dev->n_native_sectors == n_native_sectors && 4143 dev->n_sectors > n_sectors && 4144 dev->n_sectors == n_native_sectors) { 4145 ata_dev_printk(dev, KERN_WARNING, 4146 "new n_sectors matches native, probably " 4147 "late HPA unlock, continuing\n"); 4148 /* keep using the old n_sectors */ 4149 dev->n_sectors = n_sectors; 4150 } else { 4151 /* restore original n_[native]_sectors and fail */ 4152 dev->n_native_sectors = n_native_sectors; 4153 dev->n_sectors = n_sectors; 4154 rc = -ENODEV; 4155 goto fail; 4156 } 4157 } 4158 4159 return 0; 4160 4161 fail: 4162 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4163 return rc; 4164 } 4165 4166 struct ata_blacklist_entry { 4167 const char *model_num; 4168 const char *model_rev; 4169 unsigned long horkage; 4170 }; 4171 4172 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4173 /* Devices with DMA related problems under Linux */ 4174 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4175 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4176 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4177 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4178 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4179 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4180 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4181 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4182 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4183 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4184 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4185 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4186 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4187 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4188 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4189 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4190 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4191 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4192 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4193 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4194 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4195 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4196 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4197 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4198 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4199 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4200 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4201 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4202 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4203 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4204 /* Odd clown on sil3726/4726 PMPs */ 4205 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4206 4207 /* Weird ATAPI devices */ 4208 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4209 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4210 4211 /* Devices we expect to fail diagnostics */ 4212 4213 /* Devices where NCQ should be avoided */ 4214 /* NCQ is slow */ 4215 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4216 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4217 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4218 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4219 /* NCQ is broken */ 4220 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4221 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4222 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4223 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4224 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4225 4226 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4227 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4228 ATA_HORKAGE_FIRMWARE_WARN }, 4229 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4230 ATA_HORKAGE_FIRMWARE_WARN }, 4231 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4232 ATA_HORKAGE_FIRMWARE_WARN }, 4233 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4234 ATA_HORKAGE_FIRMWARE_WARN }, 4235 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4236 ATA_HORKAGE_FIRMWARE_WARN }, 4237 4238 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4239 ATA_HORKAGE_FIRMWARE_WARN }, 4240 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4241 ATA_HORKAGE_FIRMWARE_WARN }, 4242 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4243 ATA_HORKAGE_FIRMWARE_WARN }, 4244 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4245 ATA_HORKAGE_FIRMWARE_WARN }, 4246 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4247 ATA_HORKAGE_FIRMWARE_WARN }, 4248 4249 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4250 ATA_HORKAGE_FIRMWARE_WARN }, 4251 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4252 ATA_HORKAGE_FIRMWARE_WARN }, 4253 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4254 ATA_HORKAGE_FIRMWARE_WARN }, 4255 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4256 ATA_HORKAGE_FIRMWARE_WARN }, 4257 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4258 ATA_HORKAGE_FIRMWARE_WARN }, 4259 4260 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4261 ATA_HORKAGE_FIRMWARE_WARN }, 4262 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4263 ATA_HORKAGE_FIRMWARE_WARN }, 4264 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4265 ATA_HORKAGE_FIRMWARE_WARN }, 4266 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4267 ATA_HORKAGE_FIRMWARE_WARN }, 4268 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4269 ATA_HORKAGE_FIRMWARE_WARN }, 4270 4271 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4272 ATA_HORKAGE_FIRMWARE_WARN }, 4273 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4274 ATA_HORKAGE_FIRMWARE_WARN }, 4275 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4276 ATA_HORKAGE_FIRMWARE_WARN }, 4277 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4278 ATA_HORKAGE_FIRMWARE_WARN }, 4279 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4280 ATA_HORKAGE_FIRMWARE_WARN }, 4281 4282 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4283 ATA_HORKAGE_FIRMWARE_WARN }, 4284 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4285 ATA_HORKAGE_FIRMWARE_WARN }, 4286 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4287 ATA_HORKAGE_FIRMWARE_WARN }, 4288 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4289 ATA_HORKAGE_FIRMWARE_WARN }, 4290 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4291 ATA_HORKAGE_FIRMWARE_WARN }, 4292 4293 /* Blacklist entries taken from Silicon Image 3124/3132 4294 Windows driver .inf file - also several Linux problem reports */ 4295 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4296 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4297 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4298 4299 /* devices which puke on READ_NATIVE_MAX */ 4300 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4301 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4302 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4303 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4304 4305 /* this one allows HPA unlocking but fails IOs on the area */ 4306 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4307 4308 /* Devices which report 1 sector over size HPA */ 4309 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4310 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4311 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4312 4313 /* Devices which get the IVB wrong */ 4314 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4315 /* Maybe we should just blacklist TSSTcorp... */ 4316 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4317 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4318 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4319 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4320 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4321 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4322 4323 /* Devices that do not need bridging limits applied */ 4324 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4325 4326 /* Devices which aren't very happy with higher link speeds */ 4327 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4328 4329 /* 4330 * Devices which choke on SETXFER. Applies only if both the 4331 * device and controller are SATA. 4332 */ 4333 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4334 4335 /* End Marker */ 4336 { } 4337 }; 4338 4339 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4340 { 4341 const char *p; 4342 int len; 4343 4344 /* 4345 * check for trailing wildcard: *\0 4346 */ 4347 p = strchr(patt, wildchar); 4348 if (p && ((*(p + 1)) == 0)) 4349 len = p - patt; 4350 else { 4351 len = strlen(name); 4352 if (!len) { 4353 if (!*patt) 4354 return 0; 4355 return -1; 4356 } 4357 } 4358 4359 return strncmp(patt, name, len); 4360 } 4361 4362 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4363 { 4364 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4365 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4366 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4367 4368 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4369 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4370 4371 while (ad->model_num) { 4372 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4373 if (ad->model_rev == NULL) 4374 return ad->horkage; 4375 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4376 return ad->horkage; 4377 } 4378 ad++; 4379 } 4380 return 0; 4381 } 4382 4383 static int ata_dma_blacklisted(const struct ata_device *dev) 4384 { 4385 /* We don't support polling DMA. 4386 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4387 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4388 */ 4389 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4390 (dev->flags & ATA_DFLAG_CDB_INTR)) 4391 return 1; 4392 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4393 } 4394 4395 /** 4396 * ata_is_40wire - check drive side detection 4397 * @dev: device 4398 * 4399 * Perform drive side detection decoding, allowing for device vendors 4400 * who can't follow the documentation. 4401 */ 4402 4403 static int ata_is_40wire(struct ata_device *dev) 4404 { 4405 if (dev->horkage & ATA_HORKAGE_IVB) 4406 return ata_drive_40wire_relaxed(dev->id); 4407 return ata_drive_40wire(dev->id); 4408 } 4409 4410 /** 4411 * cable_is_40wire - 40/80/SATA decider 4412 * @ap: port to consider 4413 * 4414 * This function encapsulates the policy for speed management 4415 * in one place. At the moment we don't cache the result but 4416 * there is a good case for setting ap->cbl to the result when 4417 * we are called with unknown cables (and figuring out if it 4418 * impacts hotplug at all). 4419 * 4420 * Return 1 if the cable appears to be 40 wire. 4421 */ 4422 4423 static int cable_is_40wire(struct ata_port *ap) 4424 { 4425 struct ata_link *link; 4426 struct ata_device *dev; 4427 4428 /* If the controller thinks we are 40 wire, we are. */ 4429 if (ap->cbl == ATA_CBL_PATA40) 4430 return 1; 4431 4432 /* If the controller thinks we are 80 wire, we are. */ 4433 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4434 return 0; 4435 4436 /* If the system is known to be 40 wire short cable (eg 4437 * laptop), then we allow 80 wire modes even if the drive 4438 * isn't sure. 4439 */ 4440 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4441 return 0; 4442 4443 /* If the controller doesn't know, we scan. 4444 * 4445 * Note: We look for all 40 wire detects at this point. Any 4446 * 80 wire detect is taken to be 80 wire cable because 4447 * - in many setups only the one drive (slave if present) will 4448 * give a valid detect 4449 * - if you have a non detect capable drive you don't want it 4450 * to colour the choice 4451 */ 4452 ata_for_each_link(link, ap, EDGE) { 4453 ata_for_each_dev(dev, link, ENABLED) { 4454 if (!ata_is_40wire(dev)) 4455 return 0; 4456 } 4457 } 4458 return 1; 4459 } 4460 4461 /** 4462 * ata_dev_xfermask - Compute supported xfermask of the given device 4463 * @dev: Device to compute xfermask for 4464 * 4465 * Compute supported xfermask of @dev and store it in 4466 * dev->*_mask. This function is responsible for applying all 4467 * known limits including host controller limits, device 4468 * blacklist, etc... 4469 * 4470 * LOCKING: 4471 * None. 4472 */ 4473 static void ata_dev_xfermask(struct ata_device *dev) 4474 { 4475 struct ata_link *link = dev->link; 4476 struct ata_port *ap = link->ap; 4477 struct ata_host *host = ap->host; 4478 unsigned long xfer_mask; 4479 4480 /* controller modes available */ 4481 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4482 ap->mwdma_mask, ap->udma_mask); 4483 4484 /* drive modes available */ 4485 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4486 dev->mwdma_mask, dev->udma_mask); 4487 xfer_mask &= ata_id_xfermask(dev->id); 4488 4489 /* 4490 * CFA Advanced TrueIDE timings are not allowed on a shared 4491 * cable 4492 */ 4493 if (ata_dev_pair(dev)) { 4494 /* No PIO5 or PIO6 */ 4495 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4496 /* No MWDMA3 or MWDMA 4 */ 4497 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4498 } 4499 4500 if (ata_dma_blacklisted(dev)) { 4501 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4502 ata_dev_printk(dev, KERN_WARNING, 4503 "device is on DMA blacklist, disabling DMA\n"); 4504 } 4505 4506 if ((host->flags & ATA_HOST_SIMPLEX) && 4507 host->simplex_claimed && host->simplex_claimed != ap) { 4508 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4509 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4510 "other device, disabling DMA\n"); 4511 } 4512 4513 if (ap->flags & ATA_FLAG_NO_IORDY) 4514 xfer_mask &= ata_pio_mask_no_iordy(dev); 4515 4516 if (ap->ops->mode_filter) 4517 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4518 4519 /* Apply cable rule here. Don't apply it early because when 4520 * we handle hot plug the cable type can itself change. 4521 * Check this last so that we know if the transfer rate was 4522 * solely limited by the cable. 4523 * Unknown or 80 wire cables reported host side are checked 4524 * drive side as well. Cases where we know a 40wire cable 4525 * is used safely for 80 are not checked here. 4526 */ 4527 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4528 /* UDMA/44 or higher would be available */ 4529 if (cable_is_40wire(ap)) { 4530 ata_dev_printk(dev, KERN_WARNING, 4531 "limited to UDMA/33 due to 40-wire cable\n"); 4532 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4533 } 4534 4535 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4536 &dev->mwdma_mask, &dev->udma_mask); 4537 } 4538 4539 /** 4540 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4541 * @dev: Device to which command will be sent 4542 * 4543 * Issue SET FEATURES - XFER MODE command to device @dev 4544 * on port @ap. 4545 * 4546 * LOCKING: 4547 * PCI/etc. bus probe sem. 4548 * 4549 * RETURNS: 4550 * 0 on success, AC_ERR_* mask otherwise. 4551 */ 4552 4553 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4554 { 4555 struct ata_taskfile tf; 4556 unsigned int err_mask; 4557 4558 /* set up set-features taskfile */ 4559 DPRINTK("set features - xfer mode\n"); 4560 4561 /* Some controllers and ATAPI devices show flaky interrupt 4562 * behavior after setting xfer mode. Use polling instead. 4563 */ 4564 ata_tf_init(dev, &tf); 4565 tf.command = ATA_CMD_SET_FEATURES; 4566 tf.feature = SETFEATURES_XFER; 4567 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4568 tf.protocol = ATA_PROT_NODATA; 4569 /* If we are using IORDY we must send the mode setting command */ 4570 if (ata_pio_need_iordy(dev)) 4571 tf.nsect = dev->xfer_mode; 4572 /* If the device has IORDY and the controller does not - turn it off */ 4573 else if (ata_id_has_iordy(dev->id)) 4574 tf.nsect = 0x01; 4575 else /* In the ancient relic department - skip all of this */ 4576 return 0; 4577 4578 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4579 4580 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4581 return err_mask; 4582 } 4583 /** 4584 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4585 * @dev: Device to which command will be sent 4586 * @enable: Whether to enable or disable the feature 4587 * @feature: The sector count represents the feature to set 4588 * 4589 * Issue SET FEATURES - SATA FEATURES command to device @dev 4590 * on port @ap with sector count 4591 * 4592 * LOCKING: 4593 * PCI/etc. bus probe sem. 4594 * 4595 * RETURNS: 4596 * 0 on success, AC_ERR_* mask otherwise. 4597 */ 4598 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4599 u8 feature) 4600 { 4601 struct ata_taskfile tf; 4602 unsigned int err_mask; 4603 4604 /* set up set-features taskfile */ 4605 DPRINTK("set features - SATA features\n"); 4606 4607 ata_tf_init(dev, &tf); 4608 tf.command = ATA_CMD_SET_FEATURES; 4609 tf.feature = enable; 4610 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4611 tf.protocol = ATA_PROT_NODATA; 4612 tf.nsect = feature; 4613 4614 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4615 4616 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4617 return err_mask; 4618 } 4619 4620 /** 4621 * ata_dev_init_params - Issue INIT DEV PARAMS command 4622 * @dev: Device to which command will be sent 4623 * @heads: Number of heads (taskfile parameter) 4624 * @sectors: Number of sectors (taskfile parameter) 4625 * 4626 * LOCKING: 4627 * Kernel thread context (may sleep) 4628 * 4629 * RETURNS: 4630 * 0 on success, AC_ERR_* mask otherwise. 4631 */ 4632 static unsigned int ata_dev_init_params(struct ata_device *dev, 4633 u16 heads, u16 sectors) 4634 { 4635 struct ata_taskfile tf; 4636 unsigned int err_mask; 4637 4638 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4639 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4640 return AC_ERR_INVALID; 4641 4642 /* set up init dev params taskfile */ 4643 DPRINTK("init dev params \n"); 4644 4645 ata_tf_init(dev, &tf); 4646 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4647 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4648 tf.protocol = ATA_PROT_NODATA; 4649 tf.nsect = sectors; 4650 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4651 4652 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4653 /* A clean abort indicates an original or just out of spec drive 4654 and we should continue as we issue the setup based on the 4655 drive reported working geometry */ 4656 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4657 err_mask = 0; 4658 4659 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4660 return err_mask; 4661 } 4662 4663 /** 4664 * ata_sg_clean - Unmap DMA memory associated with command 4665 * @qc: Command containing DMA memory to be released 4666 * 4667 * Unmap all mapped DMA memory associated with this command. 4668 * 4669 * LOCKING: 4670 * spin_lock_irqsave(host lock) 4671 */ 4672 void ata_sg_clean(struct ata_queued_cmd *qc) 4673 { 4674 struct ata_port *ap = qc->ap; 4675 struct scatterlist *sg = qc->sg; 4676 int dir = qc->dma_dir; 4677 4678 WARN_ON_ONCE(sg == NULL); 4679 4680 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4681 4682 if (qc->n_elem) 4683 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4684 4685 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4686 qc->sg = NULL; 4687 } 4688 4689 /** 4690 * atapi_check_dma - Check whether ATAPI DMA can be supported 4691 * @qc: Metadata associated with taskfile to check 4692 * 4693 * Allow low-level driver to filter ATA PACKET commands, returning 4694 * a status indicating whether or not it is OK to use DMA for the 4695 * supplied PACKET command. 4696 * 4697 * LOCKING: 4698 * spin_lock_irqsave(host lock) 4699 * 4700 * RETURNS: 0 when ATAPI DMA can be used 4701 * nonzero otherwise 4702 */ 4703 int atapi_check_dma(struct ata_queued_cmd *qc) 4704 { 4705 struct ata_port *ap = qc->ap; 4706 4707 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4708 * few ATAPI devices choke on such DMA requests. 4709 */ 4710 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4711 unlikely(qc->nbytes & 15)) 4712 return 1; 4713 4714 if (ap->ops->check_atapi_dma) 4715 return ap->ops->check_atapi_dma(qc); 4716 4717 return 0; 4718 } 4719 4720 /** 4721 * ata_std_qc_defer - Check whether a qc needs to be deferred 4722 * @qc: ATA command in question 4723 * 4724 * Non-NCQ commands cannot run with any other command, NCQ or 4725 * not. As upper layer only knows the queue depth, we are 4726 * responsible for maintaining exclusion. This function checks 4727 * whether a new command @qc can be issued. 4728 * 4729 * LOCKING: 4730 * spin_lock_irqsave(host lock) 4731 * 4732 * RETURNS: 4733 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4734 */ 4735 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4736 { 4737 struct ata_link *link = qc->dev->link; 4738 4739 if (qc->tf.protocol == ATA_PROT_NCQ) { 4740 if (!ata_tag_valid(link->active_tag)) 4741 return 0; 4742 } else { 4743 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4744 return 0; 4745 } 4746 4747 return ATA_DEFER_LINK; 4748 } 4749 4750 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4751 4752 /** 4753 * ata_sg_init - Associate command with scatter-gather table. 4754 * @qc: Command to be associated 4755 * @sg: Scatter-gather table. 4756 * @n_elem: Number of elements in s/g table. 4757 * 4758 * Initialize the data-related elements of queued_cmd @qc 4759 * to point to a scatter-gather table @sg, containing @n_elem 4760 * elements. 4761 * 4762 * LOCKING: 4763 * spin_lock_irqsave(host lock) 4764 */ 4765 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4766 unsigned int n_elem) 4767 { 4768 qc->sg = sg; 4769 qc->n_elem = n_elem; 4770 qc->cursg = qc->sg; 4771 } 4772 4773 /** 4774 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4775 * @qc: Command with scatter-gather table to be mapped. 4776 * 4777 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4778 * 4779 * LOCKING: 4780 * spin_lock_irqsave(host lock) 4781 * 4782 * RETURNS: 4783 * Zero on success, negative on error. 4784 * 4785 */ 4786 static int ata_sg_setup(struct ata_queued_cmd *qc) 4787 { 4788 struct ata_port *ap = qc->ap; 4789 unsigned int n_elem; 4790 4791 VPRINTK("ENTER, ata%u\n", ap->print_id); 4792 4793 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4794 if (n_elem < 1) 4795 return -1; 4796 4797 DPRINTK("%d sg elements mapped\n", n_elem); 4798 qc->orig_n_elem = qc->n_elem; 4799 qc->n_elem = n_elem; 4800 qc->flags |= ATA_QCFLAG_DMAMAP; 4801 4802 return 0; 4803 } 4804 4805 /** 4806 * swap_buf_le16 - swap halves of 16-bit words in place 4807 * @buf: Buffer to swap 4808 * @buf_words: Number of 16-bit words in buffer. 4809 * 4810 * Swap halves of 16-bit words if needed to convert from 4811 * little-endian byte order to native cpu byte order, or 4812 * vice-versa. 4813 * 4814 * LOCKING: 4815 * Inherited from caller. 4816 */ 4817 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4818 { 4819 #ifdef __BIG_ENDIAN 4820 unsigned int i; 4821 4822 for (i = 0; i < buf_words; i++) 4823 buf[i] = le16_to_cpu(buf[i]); 4824 #endif /* __BIG_ENDIAN */ 4825 } 4826 4827 /** 4828 * ata_qc_new - Request an available ATA command, for queueing 4829 * @ap: target port 4830 * 4831 * LOCKING: 4832 * None. 4833 */ 4834 4835 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4836 { 4837 struct ata_queued_cmd *qc = NULL; 4838 unsigned int i; 4839 4840 /* no command while frozen */ 4841 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4842 return NULL; 4843 4844 /* the last tag is reserved for internal command. */ 4845 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4846 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4847 qc = __ata_qc_from_tag(ap, i); 4848 break; 4849 } 4850 4851 if (qc) 4852 qc->tag = i; 4853 4854 return qc; 4855 } 4856 4857 /** 4858 * ata_qc_new_init - Request an available ATA command, and initialize it 4859 * @dev: Device from whom we request an available command structure 4860 * 4861 * LOCKING: 4862 * None. 4863 */ 4864 4865 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4866 { 4867 struct ata_port *ap = dev->link->ap; 4868 struct ata_queued_cmd *qc; 4869 4870 qc = ata_qc_new(ap); 4871 if (qc) { 4872 qc->scsicmd = NULL; 4873 qc->ap = ap; 4874 qc->dev = dev; 4875 4876 ata_qc_reinit(qc); 4877 } 4878 4879 return qc; 4880 } 4881 4882 /** 4883 * ata_qc_free - free unused ata_queued_cmd 4884 * @qc: Command to complete 4885 * 4886 * Designed to free unused ata_queued_cmd object 4887 * in case something prevents using it. 4888 * 4889 * LOCKING: 4890 * spin_lock_irqsave(host lock) 4891 */ 4892 void ata_qc_free(struct ata_queued_cmd *qc) 4893 { 4894 struct ata_port *ap = qc->ap; 4895 unsigned int tag; 4896 4897 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4898 4899 qc->flags = 0; 4900 tag = qc->tag; 4901 if (likely(ata_tag_valid(tag))) { 4902 qc->tag = ATA_TAG_POISON; 4903 clear_bit(tag, &ap->qc_allocated); 4904 } 4905 } 4906 4907 void __ata_qc_complete(struct ata_queued_cmd *qc) 4908 { 4909 struct ata_port *ap = qc->ap; 4910 struct ata_link *link = qc->dev->link; 4911 4912 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4913 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4914 4915 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4916 ata_sg_clean(qc); 4917 4918 /* command should be marked inactive atomically with qc completion */ 4919 if (qc->tf.protocol == ATA_PROT_NCQ) { 4920 link->sactive &= ~(1 << qc->tag); 4921 if (!link->sactive) 4922 ap->nr_active_links--; 4923 } else { 4924 link->active_tag = ATA_TAG_POISON; 4925 ap->nr_active_links--; 4926 } 4927 4928 /* clear exclusive status */ 4929 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4930 ap->excl_link == link)) 4931 ap->excl_link = NULL; 4932 4933 /* atapi: mark qc as inactive to prevent the interrupt handler 4934 * from completing the command twice later, before the error handler 4935 * is called. (when rc != 0 and atapi request sense is needed) 4936 */ 4937 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4938 ap->qc_active &= ~(1 << qc->tag); 4939 4940 /* call completion callback */ 4941 qc->complete_fn(qc); 4942 } 4943 4944 static void fill_result_tf(struct ata_queued_cmd *qc) 4945 { 4946 struct ata_port *ap = qc->ap; 4947 4948 qc->result_tf.flags = qc->tf.flags; 4949 ap->ops->qc_fill_rtf(qc); 4950 } 4951 4952 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4953 { 4954 struct ata_device *dev = qc->dev; 4955 4956 if (ata_tag_internal(qc->tag)) 4957 return; 4958 4959 if (ata_is_nodata(qc->tf.protocol)) 4960 return; 4961 4962 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4963 return; 4964 4965 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4966 } 4967 4968 /** 4969 * ata_qc_complete - Complete an active ATA command 4970 * @qc: Command to complete 4971 * 4972 * Indicate to the mid and upper layers that an ATA 4973 * command has completed, with either an ok or not-ok status. 4974 * 4975 * LOCKING: 4976 * spin_lock_irqsave(host lock) 4977 */ 4978 void ata_qc_complete(struct ata_queued_cmd *qc) 4979 { 4980 struct ata_port *ap = qc->ap; 4981 4982 /* XXX: New EH and old EH use different mechanisms to 4983 * synchronize EH with regular execution path. 4984 * 4985 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4986 * Normal execution path is responsible for not accessing a 4987 * failed qc. libata core enforces the rule by returning NULL 4988 * from ata_qc_from_tag() for failed qcs. 4989 * 4990 * Old EH depends on ata_qc_complete() nullifying completion 4991 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4992 * not synchronize with interrupt handler. Only PIO task is 4993 * taken care of. 4994 */ 4995 if (ap->ops->error_handler) { 4996 struct ata_device *dev = qc->dev; 4997 struct ata_eh_info *ehi = &dev->link->eh_info; 4998 4999 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5000 5001 if (unlikely(qc->err_mask)) 5002 qc->flags |= ATA_QCFLAG_FAILED; 5003 5004 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5005 if (!ata_tag_internal(qc->tag)) { 5006 /* always fill result TF for failed qc */ 5007 fill_result_tf(qc); 5008 ata_qc_schedule_eh(qc); 5009 return; 5010 } 5011 } 5012 5013 /* read result TF if requested */ 5014 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5015 fill_result_tf(qc); 5016 5017 /* Some commands need post-processing after successful 5018 * completion. 5019 */ 5020 switch (qc->tf.command) { 5021 case ATA_CMD_SET_FEATURES: 5022 if (qc->tf.feature != SETFEATURES_WC_ON && 5023 qc->tf.feature != SETFEATURES_WC_OFF) 5024 break; 5025 /* fall through */ 5026 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5027 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5028 /* revalidate device */ 5029 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5030 ata_port_schedule_eh(ap); 5031 break; 5032 5033 case ATA_CMD_SLEEP: 5034 dev->flags |= ATA_DFLAG_SLEEPING; 5035 break; 5036 } 5037 5038 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5039 ata_verify_xfer(qc); 5040 5041 __ata_qc_complete(qc); 5042 } else { 5043 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5044 return; 5045 5046 /* read result TF if failed or requested */ 5047 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5048 fill_result_tf(qc); 5049 5050 __ata_qc_complete(qc); 5051 } 5052 } 5053 5054 /** 5055 * ata_qc_complete_multiple - Complete multiple qcs successfully 5056 * @ap: port in question 5057 * @qc_active: new qc_active mask 5058 * 5059 * Complete in-flight commands. This functions is meant to be 5060 * called from low-level driver's interrupt routine to complete 5061 * requests normally. ap->qc_active and @qc_active is compared 5062 * and commands are completed accordingly. 5063 * 5064 * LOCKING: 5065 * spin_lock_irqsave(host lock) 5066 * 5067 * RETURNS: 5068 * Number of completed commands on success, -errno otherwise. 5069 */ 5070 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5071 { 5072 int nr_done = 0; 5073 u32 done_mask; 5074 5075 done_mask = ap->qc_active ^ qc_active; 5076 5077 if (unlikely(done_mask & qc_active)) { 5078 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5079 "(%08x->%08x)\n", ap->qc_active, qc_active); 5080 return -EINVAL; 5081 } 5082 5083 while (done_mask) { 5084 struct ata_queued_cmd *qc; 5085 unsigned int tag = __ffs(done_mask); 5086 5087 qc = ata_qc_from_tag(ap, tag); 5088 if (qc) { 5089 ata_qc_complete(qc); 5090 nr_done++; 5091 } 5092 done_mask &= ~(1 << tag); 5093 } 5094 5095 return nr_done; 5096 } 5097 5098 /** 5099 * ata_qc_issue - issue taskfile to device 5100 * @qc: command to issue to device 5101 * 5102 * Prepare an ATA command to submission to device. 5103 * This includes mapping the data into a DMA-able 5104 * area, filling in the S/G table, and finally 5105 * writing the taskfile to hardware, starting the command. 5106 * 5107 * LOCKING: 5108 * spin_lock_irqsave(host lock) 5109 */ 5110 void ata_qc_issue(struct ata_queued_cmd *qc) 5111 { 5112 struct ata_port *ap = qc->ap; 5113 struct ata_link *link = qc->dev->link; 5114 u8 prot = qc->tf.protocol; 5115 5116 /* Make sure only one non-NCQ command is outstanding. The 5117 * check is skipped for old EH because it reuses active qc to 5118 * request ATAPI sense. 5119 */ 5120 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5121 5122 if (ata_is_ncq(prot)) { 5123 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5124 5125 if (!link->sactive) 5126 ap->nr_active_links++; 5127 link->sactive |= 1 << qc->tag; 5128 } else { 5129 WARN_ON_ONCE(link->sactive); 5130 5131 ap->nr_active_links++; 5132 link->active_tag = qc->tag; 5133 } 5134 5135 qc->flags |= ATA_QCFLAG_ACTIVE; 5136 ap->qc_active |= 1 << qc->tag; 5137 5138 /* We guarantee to LLDs that they will have at least one 5139 * non-zero sg if the command is a data command. 5140 */ 5141 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5142 5143 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5144 (ap->flags & ATA_FLAG_PIO_DMA))) 5145 if (ata_sg_setup(qc)) 5146 goto sg_err; 5147 5148 /* if device is sleeping, schedule reset and abort the link */ 5149 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5150 link->eh_info.action |= ATA_EH_RESET; 5151 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5152 ata_link_abort(link); 5153 return; 5154 } 5155 5156 ap->ops->qc_prep(qc); 5157 5158 qc->err_mask |= ap->ops->qc_issue(qc); 5159 if (unlikely(qc->err_mask)) 5160 goto err; 5161 return; 5162 5163 sg_err: 5164 qc->err_mask |= AC_ERR_SYSTEM; 5165 err: 5166 ata_qc_complete(qc); 5167 } 5168 5169 /** 5170 * sata_scr_valid - test whether SCRs are accessible 5171 * @link: ATA link to test SCR accessibility for 5172 * 5173 * Test whether SCRs are accessible for @link. 5174 * 5175 * LOCKING: 5176 * None. 5177 * 5178 * RETURNS: 5179 * 1 if SCRs are accessible, 0 otherwise. 5180 */ 5181 int sata_scr_valid(struct ata_link *link) 5182 { 5183 struct ata_port *ap = link->ap; 5184 5185 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5186 } 5187 5188 /** 5189 * sata_scr_read - read SCR register of the specified port 5190 * @link: ATA link to read SCR for 5191 * @reg: SCR to read 5192 * @val: Place to store read value 5193 * 5194 * Read SCR register @reg of @link into *@val. This function is 5195 * guaranteed to succeed if @link is ap->link, the cable type of 5196 * the port is SATA and the port implements ->scr_read. 5197 * 5198 * LOCKING: 5199 * None if @link is ap->link. Kernel thread context otherwise. 5200 * 5201 * RETURNS: 5202 * 0 on success, negative errno on failure. 5203 */ 5204 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5205 { 5206 if (ata_is_host_link(link)) { 5207 if (sata_scr_valid(link)) 5208 return link->ap->ops->scr_read(link, reg, val); 5209 return -EOPNOTSUPP; 5210 } 5211 5212 return sata_pmp_scr_read(link, reg, val); 5213 } 5214 5215 /** 5216 * sata_scr_write - write SCR register of the specified port 5217 * @link: ATA link to write SCR for 5218 * @reg: SCR to write 5219 * @val: value to write 5220 * 5221 * Write @val to SCR register @reg of @link. This function is 5222 * guaranteed to succeed if @link is ap->link, the cable type of 5223 * the port is SATA and the port implements ->scr_read. 5224 * 5225 * LOCKING: 5226 * None if @link is ap->link. Kernel thread context otherwise. 5227 * 5228 * RETURNS: 5229 * 0 on success, negative errno on failure. 5230 */ 5231 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5232 { 5233 if (ata_is_host_link(link)) { 5234 if (sata_scr_valid(link)) 5235 return link->ap->ops->scr_write(link, reg, val); 5236 return -EOPNOTSUPP; 5237 } 5238 5239 return sata_pmp_scr_write(link, reg, val); 5240 } 5241 5242 /** 5243 * sata_scr_write_flush - write SCR register of the specified port and flush 5244 * @link: ATA link to write SCR for 5245 * @reg: SCR to write 5246 * @val: value to write 5247 * 5248 * This function is identical to sata_scr_write() except that this 5249 * function performs flush after writing to the register. 5250 * 5251 * LOCKING: 5252 * None if @link is ap->link. Kernel thread context otherwise. 5253 * 5254 * RETURNS: 5255 * 0 on success, negative errno on failure. 5256 */ 5257 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5258 { 5259 if (ata_is_host_link(link)) { 5260 int rc; 5261 5262 if (sata_scr_valid(link)) { 5263 rc = link->ap->ops->scr_write(link, reg, val); 5264 if (rc == 0) 5265 rc = link->ap->ops->scr_read(link, reg, &val); 5266 return rc; 5267 } 5268 return -EOPNOTSUPP; 5269 } 5270 5271 return sata_pmp_scr_write(link, reg, val); 5272 } 5273 5274 /** 5275 * ata_phys_link_online - test whether the given link is online 5276 * @link: ATA link to test 5277 * 5278 * Test whether @link is online. Note that this function returns 5279 * 0 if online status of @link cannot be obtained, so 5280 * ata_link_online(link) != !ata_link_offline(link). 5281 * 5282 * LOCKING: 5283 * None. 5284 * 5285 * RETURNS: 5286 * True if the port online status is available and online. 5287 */ 5288 bool ata_phys_link_online(struct ata_link *link) 5289 { 5290 u32 sstatus; 5291 5292 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5293 ata_sstatus_online(sstatus)) 5294 return true; 5295 return false; 5296 } 5297 5298 /** 5299 * ata_phys_link_offline - test whether the given link is offline 5300 * @link: ATA link to test 5301 * 5302 * Test whether @link is offline. Note that this function 5303 * returns 0 if offline status of @link cannot be obtained, so 5304 * ata_link_online(link) != !ata_link_offline(link). 5305 * 5306 * LOCKING: 5307 * None. 5308 * 5309 * RETURNS: 5310 * True if the port offline status is available and offline. 5311 */ 5312 bool ata_phys_link_offline(struct ata_link *link) 5313 { 5314 u32 sstatus; 5315 5316 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5317 !ata_sstatus_online(sstatus)) 5318 return true; 5319 return false; 5320 } 5321 5322 /** 5323 * ata_link_online - test whether the given link is online 5324 * @link: ATA link to test 5325 * 5326 * Test whether @link is online. This is identical to 5327 * ata_phys_link_online() when there's no slave link. When 5328 * there's a slave link, this function should only be called on 5329 * the master link and will return true if any of M/S links is 5330 * online. 5331 * 5332 * LOCKING: 5333 * None. 5334 * 5335 * RETURNS: 5336 * True if the port online status is available and online. 5337 */ 5338 bool ata_link_online(struct ata_link *link) 5339 { 5340 struct ata_link *slave = link->ap->slave_link; 5341 5342 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5343 5344 return ata_phys_link_online(link) || 5345 (slave && ata_phys_link_online(slave)); 5346 } 5347 5348 /** 5349 * ata_link_offline - test whether the given link is offline 5350 * @link: ATA link to test 5351 * 5352 * Test whether @link is offline. This is identical to 5353 * ata_phys_link_offline() when there's no slave link. When 5354 * there's a slave link, this function should only be called on 5355 * the master link and will return true if both M/S links are 5356 * offline. 5357 * 5358 * LOCKING: 5359 * None. 5360 * 5361 * RETURNS: 5362 * True if the port offline status is available and offline. 5363 */ 5364 bool ata_link_offline(struct ata_link *link) 5365 { 5366 struct ata_link *slave = link->ap->slave_link; 5367 5368 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5369 5370 return ata_phys_link_offline(link) && 5371 (!slave || ata_phys_link_offline(slave)); 5372 } 5373 5374 #ifdef CONFIG_PM 5375 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5376 unsigned int action, unsigned int ehi_flags, 5377 int wait) 5378 { 5379 unsigned long flags; 5380 int i, rc; 5381 5382 for (i = 0; i < host->n_ports; i++) { 5383 struct ata_port *ap = host->ports[i]; 5384 struct ata_link *link; 5385 5386 /* Previous resume operation might still be in 5387 * progress. Wait for PM_PENDING to clear. 5388 */ 5389 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5390 ata_port_wait_eh(ap); 5391 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5392 } 5393 5394 /* request PM ops to EH */ 5395 spin_lock_irqsave(ap->lock, flags); 5396 5397 ap->pm_mesg = mesg; 5398 if (wait) { 5399 rc = 0; 5400 ap->pm_result = &rc; 5401 } 5402 5403 ap->pflags |= ATA_PFLAG_PM_PENDING; 5404 ata_for_each_link(link, ap, HOST_FIRST) { 5405 link->eh_info.action |= action; 5406 link->eh_info.flags |= ehi_flags; 5407 } 5408 5409 ata_port_schedule_eh(ap); 5410 5411 spin_unlock_irqrestore(ap->lock, flags); 5412 5413 /* wait and check result */ 5414 if (wait) { 5415 ata_port_wait_eh(ap); 5416 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5417 if (rc) 5418 return rc; 5419 } 5420 } 5421 5422 return 0; 5423 } 5424 5425 /** 5426 * ata_host_suspend - suspend host 5427 * @host: host to suspend 5428 * @mesg: PM message 5429 * 5430 * Suspend @host. Actual operation is performed by EH. This 5431 * function requests EH to perform PM operations and waits for EH 5432 * to finish. 5433 * 5434 * LOCKING: 5435 * Kernel thread context (may sleep). 5436 * 5437 * RETURNS: 5438 * 0 on success, -errno on failure. 5439 */ 5440 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5441 { 5442 int rc; 5443 5444 /* 5445 * disable link pm on all ports before requesting 5446 * any pm activity 5447 */ 5448 ata_lpm_enable(host); 5449 5450 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5451 if (rc == 0) 5452 host->dev->power.power_state = mesg; 5453 return rc; 5454 } 5455 5456 /** 5457 * ata_host_resume - resume host 5458 * @host: host to resume 5459 * 5460 * Resume @host. Actual operation is performed by EH. This 5461 * function requests EH to perform PM operations and returns. 5462 * Note that all resume operations are performed parallely. 5463 * 5464 * LOCKING: 5465 * Kernel thread context (may sleep). 5466 */ 5467 void ata_host_resume(struct ata_host *host) 5468 { 5469 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5470 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5471 host->dev->power.power_state = PMSG_ON; 5472 5473 /* reenable link pm */ 5474 ata_lpm_disable(host); 5475 } 5476 #endif 5477 5478 /** 5479 * ata_port_start - Set port up for dma. 5480 * @ap: Port to initialize 5481 * 5482 * Called just after data structures for each port are 5483 * initialized. Allocates space for PRD table. 5484 * 5485 * May be used as the port_start() entry in ata_port_operations. 5486 * 5487 * LOCKING: 5488 * Inherited from caller. 5489 */ 5490 int ata_port_start(struct ata_port *ap) 5491 { 5492 struct device *dev = ap->dev; 5493 5494 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5495 GFP_KERNEL); 5496 if (!ap->prd) 5497 return -ENOMEM; 5498 5499 return 0; 5500 } 5501 5502 /** 5503 * ata_dev_init - Initialize an ata_device structure 5504 * @dev: Device structure to initialize 5505 * 5506 * Initialize @dev in preparation for probing. 5507 * 5508 * LOCKING: 5509 * Inherited from caller. 5510 */ 5511 void ata_dev_init(struct ata_device *dev) 5512 { 5513 struct ata_link *link = ata_dev_phys_link(dev); 5514 struct ata_port *ap = link->ap; 5515 unsigned long flags; 5516 5517 /* SATA spd limit is bound to the attached device, reset together */ 5518 link->sata_spd_limit = link->hw_sata_spd_limit; 5519 link->sata_spd = 0; 5520 5521 /* High bits of dev->flags are used to record warm plug 5522 * requests which occur asynchronously. Synchronize using 5523 * host lock. 5524 */ 5525 spin_lock_irqsave(ap->lock, flags); 5526 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5527 dev->horkage = 0; 5528 spin_unlock_irqrestore(ap->lock, flags); 5529 5530 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5531 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5532 dev->pio_mask = UINT_MAX; 5533 dev->mwdma_mask = UINT_MAX; 5534 dev->udma_mask = UINT_MAX; 5535 } 5536 5537 /** 5538 * ata_link_init - Initialize an ata_link structure 5539 * @ap: ATA port link is attached to 5540 * @link: Link structure to initialize 5541 * @pmp: Port multiplier port number 5542 * 5543 * Initialize @link. 5544 * 5545 * LOCKING: 5546 * Kernel thread context (may sleep) 5547 */ 5548 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5549 { 5550 int i; 5551 5552 /* clear everything except for devices */ 5553 memset(link, 0, offsetof(struct ata_link, device[0])); 5554 5555 link->ap = ap; 5556 link->pmp = pmp; 5557 link->active_tag = ATA_TAG_POISON; 5558 link->hw_sata_spd_limit = UINT_MAX; 5559 5560 /* can't use iterator, ap isn't initialized yet */ 5561 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5562 struct ata_device *dev = &link->device[i]; 5563 5564 dev->link = link; 5565 dev->devno = dev - link->device; 5566 ata_dev_init(dev); 5567 } 5568 } 5569 5570 /** 5571 * sata_link_init_spd - Initialize link->sata_spd_limit 5572 * @link: Link to configure sata_spd_limit for 5573 * 5574 * Initialize @link->[hw_]sata_spd_limit to the currently 5575 * configured value. 5576 * 5577 * LOCKING: 5578 * Kernel thread context (may sleep). 5579 * 5580 * RETURNS: 5581 * 0 on success, -errno on failure. 5582 */ 5583 int sata_link_init_spd(struct ata_link *link) 5584 { 5585 u8 spd; 5586 int rc; 5587 5588 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5589 if (rc) 5590 return rc; 5591 5592 spd = (link->saved_scontrol >> 4) & 0xf; 5593 if (spd) 5594 link->hw_sata_spd_limit &= (1 << spd) - 1; 5595 5596 ata_force_link_limits(link); 5597 5598 link->sata_spd_limit = link->hw_sata_spd_limit; 5599 5600 return 0; 5601 } 5602 5603 /** 5604 * ata_port_alloc - allocate and initialize basic ATA port resources 5605 * @host: ATA host this allocated port belongs to 5606 * 5607 * Allocate and initialize basic ATA port resources. 5608 * 5609 * RETURNS: 5610 * Allocate ATA port on success, NULL on failure. 5611 * 5612 * LOCKING: 5613 * Inherited from calling layer (may sleep). 5614 */ 5615 struct ata_port *ata_port_alloc(struct ata_host *host) 5616 { 5617 struct ata_port *ap; 5618 5619 DPRINTK("ENTER\n"); 5620 5621 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5622 if (!ap) 5623 return NULL; 5624 5625 ap->pflags |= ATA_PFLAG_INITIALIZING; 5626 ap->lock = &host->lock; 5627 ap->flags = ATA_FLAG_DISABLED; 5628 ap->print_id = -1; 5629 ap->ctl = ATA_DEVCTL_OBS; 5630 ap->host = host; 5631 ap->dev = host->dev; 5632 ap->last_ctl = 0xFF; 5633 5634 #if defined(ATA_VERBOSE_DEBUG) 5635 /* turn on all debugging levels */ 5636 ap->msg_enable = 0x00FF; 5637 #elif defined(ATA_DEBUG) 5638 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5639 #else 5640 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5641 #endif 5642 5643 #ifdef CONFIG_ATA_SFF 5644 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5645 #else 5646 INIT_DELAYED_WORK(&ap->port_task, NULL); 5647 #endif 5648 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5649 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5650 INIT_LIST_HEAD(&ap->eh_done_q); 5651 init_waitqueue_head(&ap->eh_wait_q); 5652 init_completion(&ap->park_req_pending); 5653 init_timer_deferrable(&ap->fastdrain_timer); 5654 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5655 ap->fastdrain_timer.data = (unsigned long)ap; 5656 5657 ap->cbl = ATA_CBL_NONE; 5658 5659 ata_link_init(ap, &ap->link, 0); 5660 5661 #ifdef ATA_IRQ_TRAP 5662 ap->stats.unhandled_irq = 1; 5663 ap->stats.idle_irq = 1; 5664 #endif 5665 return ap; 5666 } 5667 5668 static void ata_host_release(struct device *gendev, void *res) 5669 { 5670 struct ata_host *host = dev_get_drvdata(gendev); 5671 int i; 5672 5673 for (i = 0; i < host->n_ports; i++) { 5674 struct ata_port *ap = host->ports[i]; 5675 5676 if (!ap) 5677 continue; 5678 5679 if (ap->scsi_host) 5680 scsi_host_put(ap->scsi_host); 5681 5682 kfree(ap->pmp_link); 5683 kfree(ap->slave_link); 5684 kfree(ap); 5685 host->ports[i] = NULL; 5686 } 5687 5688 dev_set_drvdata(gendev, NULL); 5689 } 5690 5691 /** 5692 * ata_host_alloc - allocate and init basic ATA host resources 5693 * @dev: generic device this host is associated with 5694 * @max_ports: maximum number of ATA ports associated with this host 5695 * 5696 * Allocate and initialize basic ATA host resources. LLD calls 5697 * this function to allocate a host, initializes it fully and 5698 * attaches it using ata_host_register(). 5699 * 5700 * @max_ports ports are allocated and host->n_ports is 5701 * initialized to @max_ports. The caller is allowed to decrease 5702 * host->n_ports before calling ata_host_register(). The unused 5703 * ports will be automatically freed on registration. 5704 * 5705 * RETURNS: 5706 * Allocate ATA host on success, NULL on failure. 5707 * 5708 * LOCKING: 5709 * Inherited from calling layer (may sleep). 5710 */ 5711 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5712 { 5713 struct ata_host *host; 5714 size_t sz; 5715 int i; 5716 5717 DPRINTK("ENTER\n"); 5718 5719 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5720 return NULL; 5721 5722 /* alloc a container for our list of ATA ports (buses) */ 5723 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5724 /* alloc a container for our list of ATA ports (buses) */ 5725 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5726 if (!host) 5727 goto err_out; 5728 5729 devres_add(dev, host); 5730 dev_set_drvdata(dev, host); 5731 5732 spin_lock_init(&host->lock); 5733 host->dev = dev; 5734 host->n_ports = max_ports; 5735 5736 /* allocate ports bound to this host */ 5737 for (i = 0; i < max_ports; i++) { 5738 struct ata_port *ap; 5739 5740 ap = ata_port_alloc(host); 5741 if (!ap) 5742 goto err_out; 5743 5744 ap->port_no = i; 5745 host->ports[i] = ap; 5746 } 5747 5748 devres_remove_group(dev, NULL); 5749 return host; 5750 5751 err_out: 5752 devres_release_group(dev, NULL); 5753 return NULL; 5754 } 5755 5756 /** 5757 * ata_host_alloc_pinfo - alloc host and init with port_info array 5758 * @dev: generic device this host is associated with 5759 * @ppi: array of ATA port_info to initialize host with 5760 * @n_ports: number of ATA ports attached to this host 5761 * 5762 * Allocate ATA host and initialize with info from @ppi. If NULL 5763 * terminated, @ppi may contain fewer entries than @n_ports. The 5764 * last entry will be used for the remaining ports. 5765 * 5766 * RETURNS: 5767 * Allocate ATA host on success, NULL on failure. 5768 * 5769 * LOCKING: 5770 * Inherited from calling layer (may sleep). 5771 */ 5772 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5773 const struct ata_port_info * const * ppi, 5774 int n_ports) 5775 { 5776 const struct ata_port_info *pi; 5777 struct ata_host *host; 5778 int i, j; 5779 5780 host = ata_host_alloc(dev, n_ports); 5781 if (!host) 5782 return NULL; 5783 5784 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5785 struct ata_port *ap = host->ports[i]; 5786 5787 if (ppi[j]) 5788 pi = ppi[j++]; 5789 5790 ap->pio_mask = pi->pio_mask; 5791 ap->mwdma_mask = pi->mwdma_mask; 5792 ap->udma_mask = pi->udma_mask; 5793 ap->flags |= pi->flags; 5794 ap->link.flags |= pi->link_flags; 5795 ap->ops = pi->port_ops; 5796 5797 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5798 host->ops = pi->port_ops; 5799 } 5800 5801 return host; 5802 } 5803 5804 /** 5805 * ata_slave_link_init - initialize slave link 5806 * @ap: port to initialize slave link for 5807 * 5808 * Create and initialize slave link for @ap. This enables slave 5809 * link handling on the port. 5810 * 5811 * In libata, a port contains links and a link contains devices. 5812 * There is single host link but if a PMP is attached to it, 5813 * there can be multiple fan-out links. On SATA, there's usually 5814 * a single device connected to a link but PATA and SATA 5815 * controllers emulating TF based interface can have two - master 5816 * and slave. 5817 * 5818 * However, there are a few controllers which don't fit into this 5819 * abstraction too well - SATA controllers which emulate TF 5820 * interface with both master and slave devices but also have 5821 * separate SCR register sets for each device. These controllers 5822 * need separate links for physical link handling 5823 * (e.g. onlineness, link speed) but should be treated like a 5824 * traditional M/S controller for everything else (e.g. command 5825 * issue, softreset). 5826 * 5827 * slave_link is libata's way of handling this class of 5828 * controllers without impacting core layer too much. For 5829 * anything other than physical link handling, the default host 5830 * link is used for both master and slave. For physical link 5831 * handling, separate @ap->slave_link is used. All dirty details 5832 * are implemented inside libata core layer. From LLD's POV, the 5833 * only difference is that prereset, hardreset and postreset are 5834 * called once more for the slave link, so the reset sequence 5835 * looks like the following. 5836 * 5837 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5838 * softreset(M) -> postreset(M) -> postreset(S) 5839 * 5840 * Note that softreset is called only for the master. Softreset 5841 * resets both M/S by definition, so SRST on master should handle 5842 * both (the standard method will work just fine). 5843 * 5844 * LOCKING: 5845 * Should be called before host is registered. 5846 * 5847 * RETURNS: 5848 * 0 on success, -errno on failure. 5849 */ 5850 int ata_slave_link_init(struct ata_port *ap) 5851 { 5852 struct ata_link *link; 5853 5854 WARN_ON(ap->slave_link); 5855 WARN_ON(ap->flags & ATA_FLAG_PMP); 5856 5857 link = kzalloc(sizeof(*link), GFP_KERNEL); 5858 if (!link) 5859 return -ENOMEM; 5860 5861 ata_link_init(ap, link, 1); 5862 ap->slave_link = link; 5863 return 0; 5864 } 5865 5866 static void ata_host_stop(struct device *gendev, void *res) 5867 { 5868 struct ata_host *host = dev_get_drvdata(gendev); 5869 int i; 5870 5871 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5872 5873 for (i = 0; i < host->n_ports; i++) { 5874 struct ata_port *ap = host->ports[i]; 5875 5876 if (ap->ops->port_stop) 5877 ap->ops->port_stop(ap); 5878 } 5879 5880 if (host->ops->host_stop) 5881 host->ops->host_stop(host); 5882 } 5883 5884 /** 5885 * ata_finalize_port_ops - finalize ata_port_operations 5886 * @ops: ata_port_operations to finalize 5887 * 5888 * An ata_port_operations can inherit from another ops and that 5889 * ops can again inherit from another. This can go on as many 5890 * times as necessary as long as there is no loop in the 5891 * inheritance chain. 5892 * 5893 * Ops tables are finalized when the host is started. NULL or 5894 * unspecified entries are inherited from the closet ancestor 5895 * which has the method and the entry is populated with it. 5896 * After finalization, the ops table directly points to all the 5897 * methods and ->inherits is no longer necessary and cleared. 5898 * 5899 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5900 * 5901 * LOCKING: 5902 * None. 5903 */ 5904 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5905 { 5906 static DEFINE_SPINLOCK(lock); 5907 const struct ata_port_operations *cur; 5908 void **begin = (void **)ops; 5909 void **end = (void **)&ops->inherits; 5910 void **pp; 5911 5912 if (!ops || !ops->inherits) 5913 return; 5914 5915 spin_lock(&lock); 5916 5917 for (cur = ops->inherits; cur; cur = cur->inherits) { 5918 void **inherit = (void **)cur; 5919 5920 for (pp = begin; pp < end; pp++, inherit++) 5921 if (!*pp) 5922 *pp = *inherit; 5923 } 5924 5925 for (pp = begin; pp < end; pp++) 5926 if (IS_ERR(*pp)) 5927 *pp = NULL; 5928 5929 ops->inherits = NULL; 5930 5931 spin_unlock(&lock); 5932 } 5933 5934 /** 5935 * ata_host_start - start and freeze ports of an ATA host 5936 * @host: ATA host to start ports for 5937 * 5938 * Start and then freeze ports of @host. Started status is 5939 * recorded in host->flags, so this function can be called 5940 * multiple times. Ports are guaranteed to get started only 5941 * once. If host->ops isn't initialized yet, its set to the 5942 * first non-dummy port ops. 5943 * 5944 * LOCKING: 5945 * Inherited from calling layer (may sleep). 5946 * 5947 * RETURNS: 5948 * 0 if all ports are started successfully, -errno otherwise. 5949 */ 5950 int ata_host_start(struct ata_host *host) 5951 { 5952 int have_stop = 0; 5953 void *start_dr = NULL; 5954 int i, rc; 5955 5956 if (host->flags & ATA_HOST_STARTED) 5957 return 0; 5958 5959 ata_finalize_port_ops(host->ops); 5960 5961 for (i = 0; i < host->n_ports; i++) { 5962 struct ata_port *ap = host->ports[i]; 5963 5964 ata_finalize_port_ops(ap->ops); 5965 5966 if (!host->ops && !ata_port_is_dummy(ap)) 5967 host->ops = ap->ops; 5968 5969 if (ap->ops->port_stop) 5970 have_stop = 1; 5971 } 5972 5973 if (host->ops->host_stop) 5974 have_stop = 1; 5975 5976 if (have_stop) { 5977 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5978 if (!start_dr) 5979 return -ENOMEM; 5980 } 5981 5982 for (i = 0; i < host->n_ports; i++) { 5983 struct ata_port *ap = host->ports[i]; 5984 5985 if (ap->ops->port_start) { 5986 rc = ap->ops->port_start(ap); 5987 if (rc) { 5988 if (rc != -ENODEV) 5989 dev_printk(KERN_ERR, host->dev, 5990 "failed to start port %d " 5991 "(errno=%d)\n", i, rc); 5992 goto err_out; 5993 } 5994 } 5995 ata_eh_freeze_port(ap); 5996 } 5997 5998 if (start_dr) 5999 devres_add(host->dev, start_dr); 6000 host->flags |= ATA_HOST_STARTED; 6001 return 0; 6002 6003 err_out: 6004 while (--i >= 0) { 6005 struct ata_port *ap = host->ports[i]; 6006 6007 if (ap->ops->port_stop) 6008 ap->ops->port_stop(ap); 6009 } 6010 devres_free(start_dr); 6011 return rc; 6012 } 6013 6014 /** 6015 * ata_sas_host_init - Initialize a host struct 6016 * @host: host to initialize 6017 * @dev: device host is attached to 6018 * @flags: host flags 6019 * @ops: port_ops 6020 * 6021 * LOCKING: 6022 * PCI/etc. bus probe sem. 6023 * 6024 */ 6025 /* KILLME - the only user left is ipr */ 6026 void ata_host_init(struct ata_host *host, struct device *dev, 6027 unsigned long flags, struct ata_port_operations *ops) 6028 { 6029 spin_lock_init(&host->lock); 6030 host->dev = dev; 6031 host->flags = flags; 6032 host->ops = ops; 6033 } 6034 6035 6036 static void async_port_probe(void *data, async_cookie_t cookie) 6037 { 6038 int rc; 6039 struct ata_port *ap = data; 6040 6041 /* 6042 * If we're not allowed to scan this host in parallel, 6043 * we need to wait until all previous scans have completed 6044 * before going further. 6045 * Jeff Garzik says this is only within a controller, so we 6046 * don't need to wait for port 0, only for later ports. 6047 */ 6048 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6049 async_synchronize_cookie(cookie); 6050 6051 /* probe */ 6052 if (ap->ops->error_handler) { 6053 struct ata_eh_info *ehi = &ap->link.eh_info; 6054 unsigned long flags; 6055 6056 ata_port_probe(ap); 6057 6058 /* kick EH for boot probing */ 6059 spin_lock_irqsave(ap->lock, flags); 6060 6061 ehi->probe_mask |= ATA_ALL_DEVICES; 6062 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6063 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6064 6065 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6066 ap->pflags |= ATA_PFLAG_LOADING; 6067 ata_port_schedule_eh(ap); 6068 6069 spin_unlock_irqrestore(ap->lock, flags); 6070 6071 /* wait for EH to finish */ 6072 ata_port_wait_eh(ap); 6073 } else { 6074 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6075 rc = ata_bus_probe(ap); 6076 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6077 6078 if (rc) { 6079 /* FIXME: do something useful here? 6080 * Current libata behavior will 6081 * tear down everything when 6082 * the module is removed 6083 * or the h/w is unplugged. 6084 */ 6085 } 6086 } 6087 6088 /* in order to keep device order, we need to synchronize at this point */ 6089 async_synchronize_cookie(cookie); 6090 6091 ata_scsi_scan_host(ap, 1); 6092 6093 } 6094 /** 6095 * ata_host_register - register initialized ATA host 6096 * @host: ATA host to register 6097 * @sht: template for SCSI host 6098 * 6099 * Register initialized ATA host. @host is allocated using 6100 * ata_host_alloc() and fully initialized by LLD. This function 6101 * starts ports, registers @host with ATA and SCSI layers and 6102 * probe registered devices. 6103 * 6104 * LOCKING: 6105 * Inherited from calling layer (may sleep). 6106 * 6107 * RETURNS: 6108 * 0 on success, -errno otherwise. 6109 */ 6110 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6111 { 6112 int i, rc; 6113 6114 /* host must have been started */ 6115 if (!(host->flags & ATA_HOST_STARTED)) { 6116 dev_printk(KERN_ERR, host->dev, 6117 "BUG: trying to register unstarted host\n"); 6118 WARN_ON(1); 6119 return -EINVAL; 6120 } 6121 6122 /* Blow away unused ports. This happens when LLD can't 6123 * determine the exact number of ports to allocate at 6124 * allocation time. 6125 */ 6126 for (i = host->n_ports; host->ports[i]; i++) 6127 kfree(host->ports[i]); 6128 6129 /* give ports names and add SCSI hosts */ 6130 for (i = 0; i < host->n_ports; i++) 6131 host->ports[i]->print_id = ata_print_id++; 6132 6133 rc = ata_scsi_add_hosts(host, sht); 6134 if (rc) 6135 return rc; 6136 6137 /* associate with ACPI nodes */ 6138 ata_acpi_associate(host); 6139 6140 /* set cable, sata_spd_limit and report */ 6141 for (i = 0; i < host->n_ports; i++) { 6142 struct ata_port *ap = host->ports[i]; 6143 unsigned long xfer_mask; 6144 6145 /* set SATA cable type if still unset */ 6146 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6147 ap->cbl = ATA_CBL_SATA; 6148 6149 /* init sata_spd_limit to the current value */ 6150 sata_link_init_spd(&ap->link); 6151 if (ap->slave_link) 6152 sata_link_init_spd(ap->slave_link); 6153 6154 /* print per-port info to dmesg */ 6155 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6156 ap->udma_mask); 6157 6158 if (!ata_port_is_dummy(ap)) { 6159 ata_port_printk(ap, KERN_INFO, 6160 "%cATA max %s %s\n", 6161 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6162 ata_mode_string(xfer_mask), 6163 ap->link.eh_info.desc); 6164 ata_ehi_clear_desc(&ap->link.eh_info); 6165 } else 6166 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6167 } 6168 6169 /* perform each probe asynchronously */ 6170 for (i = 0; i < host->n_ports; i++) { 6171 struct ata_port *ap = host->ports[i]; 6172 async_schedule(async_port_probe, ap); 6173 } 6174 6175 return 0; 6176 } 6177 6178 /** 6179 * ata_host_activate - start host, request IRQ and register it 6180 * @host: target ATA host 6181 * @irq: IRQ to request 6182 * @irq_handler: irq_handler used when requesting IRQ 6183 * @irq_flags: irq_flags used when requesting IRQ 6184 * @sht: scsi_host_template to use when registering the host 6185 * 6186 * After allocating an ATA host and initializing it, most libata 6187 * LLDs perform three steps to activate the host - start host, 6188 * request IRQ and register it. This helper takes necessasry 6189 * arguments and performs the three steps in one go. 6190 * 6191 * An invalid IRQ skips the IRQ registration and expects the host to 6192 * have set polling mode on the port. In this case, @irq_handler 6193 * should be NULL. 6194 * 6195 * LOCKING: 6196 * Inherited from calling layer (may sleep). 6197 * 6198 * RETURNS: 6199 * 0 on success, -errno otherwise. 6200 */ 6201 int ata_host_activate(struct ata_host *host, int irq, 6202 irq_handler_t irq_handler, unsigned long irq_flags, 6203 struct scsi_host_template *sht) 6204 { 6205 int i, rc; 6206 6207 rc = ata_host_start(host); 6208 if (rc) 6209 return rc; 6210 6211 /* Special case for polling mode */ 6212 if (!irq) { 6213 WARN_ON(irq_handler); 6214 return ata_host_register(host, sht); 6215 } 6216 6217 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6218 dev_driver_string(host->dev), host); 6219 if (rc) 6220 return rc; 6221 6222 for (i = 0; i < host->n_ports; i++) 6223 ata_port_desc(host->ports[i], "irq %d", irq); 6224 6225 rc = ata_host_register(host, sht); 6226 /* if failed, just free the IRQ and leave ports alone */ 6227 if (rc) 6228 devm_free_irq(host->dev, irq, host); 6229 6230 return rc; 6231 } 6232 6233 /** 6234 * ata_port_detach - Detach ATA port in prepration of device removal 6235 * @ap: ATA port to be detached 6236 * 6237 * Detach all ATA devices and the associated SCSI devices of @ap; 6238 * then, remove the associated SCSI host. @ap is guaranteed to 6239 * be quiescent on return from this function. 6240 * 6241 * LOCKING: 6242 * Kernel thread context (may sleep). 6243 */ 6244 static void ata_port_detach(struct ata_port *ap) 6245 { 6246 unsigned long flags; 6247 6248 if (!ap->ops->error_handler) 6249 goto skip_eh; 6250 6251 /* tell EH we're leaving & flush EH */ 6252 spin_lock_irqsave(ap->lock, flags); 6253 ap->pflags |= ATA_PFLAG_UNLOADING; 6254 ata_port_schedule_eh(ap); 6255 spin_unlock_irqrestore(ap->lock, flags); 6256 6257 /* wait till EH commits suicide */ 6258 ata_port_wait_eh(ap); 6259 6260 /* it better be dead now */ 6261 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6262 6263 cancel_rearming_delayed_work(&ap->hotplug_task); 6264 6265 skip_eh: 6266 /* remove the associated SCSI host */ 6267 scsi_remove_host(ap->scsi_host); 6268 } 6269 6270 /** 6271 * ata_host_detach - Detach all ports of an ATA host 6272 * @host: Host to detach 6273 * 6274 * Detach all ports of @host. 6275 * 6276 * LOCKING: 6277 * Kernel thread context (may sleep). 6278 */ 6279 void ata_host_detach(struct ata_host *host) 6280 { 6281 int i; 6282 6283 for (i = 0; i < host->n_ports; i++) 6284 ata_port_detach(host->ports[i]); 6285 6286 /* the host is dead now, dissociate ACPI */ 6287 ata_acpi_dissociate(host); 6288 } 6289 6290 #ifdef CONFIG_PCI 6291 6292 /** 6293 * ata_pci_remove_one - PCI layer callback for device removal 6294 * @pdev: PCI device that was removed 6295 * 6296 * PCI layer indicates to libata via this hook that hot-unplug or 6297 * module unload event has occurred. Detach all ports. Resource 6298 * release is handled via devres. 6299 * 6300 * LOCKING: 6301 * Inherited from PCI layer (may sleep). 6302 */ 6303 void ata_pci_remove_one(struct pci_dev *pdev) 6304 { 6305 struct device *dev = &pdev->dev; 6306 struct ata_host *host = dev_get_drvdata(dev); 6307 6308 ata_host_detach(host); 6309 } 6310 6311 /* move to PCI subsystem */ 6312 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6313 { 6314 unsigned long tmp = 0; 6315 6316 switch (bits->width) { 6317 case 1: { 6318 u8 tmp8 = 0; 6319 pci_read_config_byte(pdev, bits->reg, &tmp8); 6320 tmp = tmp8; 6321 break; 6322 } 6323 case 2: { 6324 u16 tmp16 = 0; 6325 pci_read_config_word(pdev, bits->reg, &tmp16); 6326 tmp = tmp16; 6327 break; 6328 } 6329 case 4: { 6330 u32 tmp32 = 0; 6331 pci_read_config_dword(pdev, bits->reg, &tmp32); 6332 tmp = tmp32; 6333 break; 6334 } 6335 6336 default: 6337 return -EINVAL; 6338 } 6339 6340 tmp &= bits->mask; 6341 6342 return (tmp == bits->val) ? 1 : 0; 6343 } 6344 6345 #ifdef CONFIG_PM 6346 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6347 { 6348 pci_save_state(pdev); 6349 pci_disable_device(pdev); 6350 6351 if (mesg.event & PM_EVENT_SLEEP) 6352 pci_set_power_state(pdev, PCI_D3hot); 6353 } 6354 6355 int ata_pci_device_do_resume(struct pci_dev *pdev) 6356 { 6357 int rc; 6358 6359 pci_set_power_state(pdev, PCI_D0); 6360 pci_restore_state(pdev); 6361 6362 rc = pcim_enable_device(pdev); 6363 if (rc) { 6364 dev_printk(KERN_ERR, &pdev->dev, 6365 "failed to enable device after resume (%d)\n", rc); 6366 return rc; 6367 } 6368 6369 pci_set_master(pdev); 6370 return 0; 6371 } 6372 6373 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6374 { 6375 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6376 int rc = 0; 6377 6378 rc = ata_host_suspend(host, mesg); 6379 if (rc) 6380 return rc; 6381 6382 ata_pci_device_do_suspend(pdev, mesg); 6383 6384 return 0; 6385 } 6386 6387 int ata_pci_device_resume(struct pci_dev *pdev) 6388 { 6389 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6390 int rc; 6391 6392 rc = ata_pci_device_do_resume(pdev); 6393 if (rc == 0) 6394 ata_host_resume(host); 6395 return rc; 6396 } 6397 #endif /* CONFIG_PM */ 6398 6399 #endif /* CONFIG_PCI */ 6400 6401 static int __init ata_parse_force_one(char **cur, 6402 struct ata_force_ent *force_ent, 6403 const char **reason) 6404 { 6405 /* FIXME: Currently, there's no way to tag init const data and 6406 * using __initdata causes build failure on some versions of 6407 * gcc. Once __initdataconst is implemented, add const to the 6408 * following structure. 6409 */ 6410 static struct ata_force_param force_tbl[] __initdata = { 6411 { "40c", .cbl = ATA_CBL_PATA40 }, 6412 { "80c", .cbl = ATA_CBL_PATA80 }, 6413 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6414 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6415 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6416 { "sata", .cbl = ATA_CBL_SATA }, 6417 { "1.5Gbps", .spd_limit = 1 }, 6418 { "3.0Gbps", .spd_limit = 2 }, 6419 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6420 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6421 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6422 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6423 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6424 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6425 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6426 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6427 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6428 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6429 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6430 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6431 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6432 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6433 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6434 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6435 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6436 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6437 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6438 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6439 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6440 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6441 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6442 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6443 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6444 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6445 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6446 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6447 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6448 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6449 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6450 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6451 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6452 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6453 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6454 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6455 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6456 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6457 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6458 }; 6459 char *start = *cur, *p = *cur; 6460 char *id, *val, *endp; 6461 const struct ata_force_param *match_fp = NULL; 6462 int nr_matches = 0, i; 6463 6464 /* find where this param ends and update *cur */ 6465 while (*p != '\0' && *p != ',') 6466 p++; 6467 6468 if (*p == '\0') 6469 *cur = p; 6470 else 6471 *cur = p + 1; 6472 6473 *p = '\0'; 6474 6475 /* parse */ 6476 p = strchr(start, ':'); 6477 if (!p) { 6478 val = strstrip(start); 6479 goto parse_val; 6480 } 6481 *p = '\0'; 6482 6483 id = strstrip(start); 6484 val = strstrip(p + 1); 6485 6486 /* parse id */ 6487 p = strchr(id, '.'); 6488 if (p) { 6489 *p++ = '\0'; 6490 force_ent->device = simple_strtoul(p, &endp, 10); 6491 if (p == endp || *endp != '\0') { 6492 *reason = "invalid device"; 6493 return -EINVAL; 6494 } 6495 } 6496 6497 force_ent->port = simple_strtoul(id, &endp, 10); 6498 if (p == endp || *endp != '\0') { 6499 *reason = "invalid port/link"; 6500 return -EINVAL; 6501 } 6502 6503 parse_val: 6504 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6505 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6506 const struct ata_force_param *fp = &force_tbl[i]; 6507 6508 if (strncasecmp(val, fp->name, strlen(val))) 6509 continue; 6510 6511 nr_matches++; 6512 match_fp = fp; 6513 6514 if (strcasecmp(val, fp->name) == 0) { 6515 nr_matches = 1; 6516 break; 6517 } 6518 } 6519 6520 if (!nr_matches) { 6521 *reason = "unknown value"; 6522 return -EINVAL; 6523 } 6524 if (nr_matches > 1) { 6525 *reason = "ambigious value"; 6526 return -EINVAL; 6527 } 6528 6529 force_ent->param = *match_fp; 6530 6531 return 0; 6532 } 6533 6534 static void __init ata_parse_force_param(void) 6535 { 6536 int idx = 0, size = 1; 6537 int last_port = -1, last_device = -1; 6538 char *p, *cur, *next; 6539 6540 /* calculate maximum number of params and allocate force_tbl */ 6541 for (p = ata_force_param_buf; *p; p++) 6542 if (*p == ',') 6543 size++; 6544 6545 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6546 if (!ata_force_tbl) { 6547 printk(KERN_WARNING "ata: failed to extend force table, " 6548 "libata.force ignored\n"); 6549 return; 6550 } 6551 6552 /* parse and populate the table */ 6553 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6554 const char *reason = ""; 6555 struct ata_force_ent te = { .port = -1, .device = -1 }; 6556 6557 next = cur; 6558 if (ata_parse_force_one(&next, &te, &reason)) { 6559 printk(KERN_WARNING "ata: failed to parse force " 6560 "parameter \"%s\" (%s)\n", 6561 cur, reason); 6562 continue; 6563 } 6564 6565 if (te.port == -1) { 6566 te.port = last_port; 6567 te.device = last_device; 6568 } 6569 6570 ata_force_tbl[idx++] = te; 6571 6572 last_port = te.port; 6573 last_device = te.device; 6574 } 6575 6576 ata_force_tbl_size = idx; 6577 } 6578 6579 static int __init ata_init(void) 6580 { 6581 ata_parse_force_param(); 6582 6583 ata_wq = create_workqueue("ata"); 6584 if (!ata_wq) 6585 goto free_force_tbl; 6586 6587 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6588 if (!ata_aux_wq) 6589 goto free_wq; 6590 6591 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6592 return 0; 6593 6594 free_wq: 6595 destroy_workqueue(ata_wq); 6596 free_force_tbl: 6597 kfree(ata_force_tbl); 6598 return -ENOMEM; 6599 } 6600 6601 static void __exit ata_exit(void) 6602 { 6603 kfree(ata_force_tbl); 6604 destroy_workqueue(ata_wq); 6605 destroy_workqueue(ata_aux_wq); 6606 } 6607 6608 subsys_initcall(ata_init); 6609 module_exit(ata_exit); 6610 6611 static unsigned long ratelimit_time; 6612 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6613 6614 int ata_ratelimit(void) 6615 { 6616 int rc; 6617 unsigned long flags; 6618 6619 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6620 6621 if (time_after(jiffies, ratelimit_time)) { 6622 rc = 1; 6623 ratelimit_time = jiffies + (HZ/5); 6624 } else 6625 rc = 0; 6626 6627 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6628 6629 return rc; 6630 } 6631 6632 /** 6633 * ata_wait_register - wait until register value changes 6634 * @reg: IO-mapped register 6635 * @mask: Mask to apply to read register value 6636 * @val: Wait condition 6637 * @interval: polling interval in milliseconds 6638 * @timeout: timeout in milliseconds 6639 * 6640 * Waiting for some bits of register to change is a common 6641 * operation for ATA controllers. This function reads 32bit LE 6642 * IO-mapped register @reg and tests for the following condition. 6643 * 6644 * (*@reg & mask) != val 6645 * 6646 * If the condition is met, it returns; otherwise, the process is 6647 * repeated after @interval_msec until timeout. 6648 * 6649 * LOCKING: 6650 * Kernel thread context (may sleep) 6651 * 6652 * RETURNS: 6653 * The final register value. 6654 */ 6655 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6656 unsigned long interval, unsigned long timeout) 6657 { 6658 unsigned long deadline; 6659 u32 tmp; 6660 6661 tmp = ioread32(reg); 6662 6663 /* Calculate timeout _after_ the first read to make sure 6664 * preceding writes reach the controller before starting to 6665 * eat away the timeout. 6666 */ 6667 deadline = ata_deadline(jiffies, timeout); 6668 6669 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6670 msleep(interval); 6671 tmp = ioread32(reg); 6672 } 6673 6674 return tmp; 6675 } 6676 6677 /* 6678 * Dummy port_ops 6679 */ 6680 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6681 { 6682 return AC_ERR_SYSTEM; 6683 } 6684 6685 static void ata_dummy_error_handler(struct ata_port *ap) 6686 { 6687 /* truly dummy */ 6688 } 6689 6690 struct ata_port_operations ata_dummy_port_ops = { 6691 .qc_prep = ata_noop_qc_prep, 6692 .qc_issue = ata_dummy_qc_issue, 6693 .error_handler = ata_dummy_error_handler, 6694 }; 6695 6696 const struct ata_port_info ata_dummy_port_info = { 6697 .port_ops = &ata_dummy_port_ops, 6698 }; 6699 6700 /* 6701 * libata is essentially a library of internal helper functions for 6702 * low-level ATA host controller drivers. As such, the API/ABI is 6703 * likely to change as new drivers are added and updated. 6704 * Do not depend on ABI/API stability. 6705 */ 6706 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6707 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6708 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6709 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6710 EXPORT_SYMBOL_GPL(sata_port_ops); 6711 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6712 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6713 EXPORT_SYMBOL_GPL(ata_link_next); 6714 EXPORT_SYMBOL_GPL(ata_dev_next); 6715 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6716 EXPORT_SYMBOL_GPL(ata_host_init); 6717 EXPORT_SYMBOL_GPL(ata_host_alloc); 6718 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6719 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6720 EXPORT_SYMBOL_GPL(ata_host_start); 6721 EXPORT_SYMBOL_GPL(ata_host_register); 6722 EXPORT_SYMBOL_GPL(ata_host_activate); 6723 EXPORT_SYMBOL_GPL(ata_host_detach); 6724 EXPORT_SYMBOL_GPL(ata_sg_init); 6725 EXPORT_SYMBOL_GPL(ata_qc_complete); 6726 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6727 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6728 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6729 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6730 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6731 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6732 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6733 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6734 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6735 EXPORT_SYMBOL_GPL(ata_mode_string); 6736 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6737 EXPORT_SYMBOL_GPL(ata_port_start); 6738 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6739 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6740 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6741 EXPORT_SYMBOL_GPL(ata_port_probe); 6742 EXPORT_SYMBOL_GPL(ata_dev_disable); 6743 EXPORT_SYMBOL_GPL(sata_set_spd); 6744 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6745 EXPORT_SYMBOL_GPL(sata_link_debounce); 6746 EXPORT_SYMBOL_GPL(sata_link_resume); 6747 EXPORT_SYMBOL_GPL(ata_std_prereset); 6748 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6749 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6750 EXPORT_SYMBOL_GPL(ata_std_postreset); 6751 EXPORT_SYMBOL_GPL(ata_dev_classify); 6752 EXPORT_SYMBOL_GPL(ata_dev_pair); 6753 EXPORT_SYMBOL_GPL(ata_port_disable); 6754 EXPORT_SYMBOL_GPL(ata_ratelimit); 6755 EXPORT_SYMBOL_GPL(ata_wait_register); 6756 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6757 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6758 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6759 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6760 EXPORT_SYMBOL_GPL(sata_scr_valid); 6761 EXPORT_SYMBOL_GPL(sata_scr_read); 6762 EXPORT_SYMBOL_GPL(sata_scr_write); 6763 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6764 EXPORT_SYMBOL_GPL(ata_link_online); 6765 EXPORT_SYMBOL_GPL(ata_link_offline); 6766 #ifdef CONFIG_PM 6767 EXPORT_SYMBOL_GPL(ata_host_suspend); 6768 EXPORT_SYMBOL_GPL(ata_host_resume); 6769 #endif /* CONFIG_PM */ 6770 EXPORT_SYMBOL_GPL(ata_id_string); 6771 EXPORT_SYMBOL_GPL(ata_id_c_string); 6772 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6773 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6774 6775 EXPORT_SYMBOL_GPL(ata_pio_queue_task); 6776 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6777 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6778 EXPORT_SYMBOL_GPL(ata_timing_compute); 6779 EXPORT_SYMBOL_GPL(ata_timing_merge); 6780 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6781 6782 #ifdef CONFIG_PCI 6783 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6784 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6785 #ifdef CONFIG_PM 6786 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6787 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6788 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6789 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6790 #endif /* CONFIG_PM */ 6791 #endif /* CONFIG_PCI */ 6792 6793 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6794 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6795 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6796 EXPORT_SYMBOL_GPL(ata_port_desc); 6797 #ifdef CONFIG_PCI 6798 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6799 #endif /* CONFIG_PCI */ 6800 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6801 EXPORT_SYMBOL_GPL(ata_link_abort); 6802 EXPORT_SYMBOL_GPL(ata_port_abort); 6803 EXPORT_SYMBOL_GPL(ata_port_freeze); 6804 EXPORT_SYMBOL_GPL(sata_async_notification); 6805 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6806 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6807 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6808 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6809 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6810 EXPORT_SYMBOL_GPL(ata_do_eh); 6811 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6812 6813 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6814 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6815 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6816 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6817 EXPORT_SYMBOL_GPL(ata_cable_sata); 6818