1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 69 #include "libata.h" 70 71 72 /* debounce timing parameters in msecs { interval, duration, timeout } */ 73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 76 77 const struct ata_port_operations ata_base_port_ops = { 78 .prereset = ata_std_prereset, 79 .postreset = ata_std_postreset, 80 .error_handler = ata_std_error_handler, 81 }; 82 83 const struct ata_port_operations sata_port_ops = { 84 .inherits = &ata_base_port_ops, 85 86 .qc_defer = ata_std_qc_defer, 87 .hardreset = sata_std_hardreset, 88 }; 89 90 static unsigned int ata_dev_init_params(struct ata_device *dev, 91 u16 heads, u16 sectors); 92 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 93 static unsigned int ata_dev_set_feature(struct ata_device *dev, 94 u8 enable, u8 feature); 95 static void ata_dev_xfermask(struct ata_device *dev); 96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 97 98 unsigned int ata_print_id = 1; 99 static struct workqueue_struct *ata_wq; 100 101 struct workqueue_struct *ata_aux_wq; 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 MODULE_AUTHOR("Jeff Garzik"); 164 MODULE_DESCRIPTION("Library module for ATA devices"); 165 MODULE_LICENSE("GPL"); 166 MODULE_VERSION(DRV_VERSION); 167 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 /* fall through */ 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 /* fall through */ 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 233 /** 234 * ata_dev_next - device iteration helper 235 * @dev: the previous device, NULL to start 236 * @link: ATA link containing devices to iterate 237 * @mode: iteration mode, one of ATA_DITER_* 238 * 239 * LOCKING: 240 * Host lock or EH context. 241 * 242 * RETURNS: 243 * Pointer to the next device. 244 */ 245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 246 enum ata_dev_iter_mode mode) 247 { 248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 250 251 /* NULL dev indicates start of iteration */ 252 if (!dev) 253 switch (mode) { 254 case ATA_DITER_ENABLED: 255 case ATA_DITER_ALL: 256 dev = link->device; 257 goto check; 258 case ATA_DITER_ENABLED_REVERSE: 259 case ATA_DITER_ALL_REVERSE: 260 dev = link->device + ata_link_max_devices(link) - 1; 261 goto check; 262 } 263 264 next: 265 /* move to the next one */ 266 switch (mode) { 267 case ATA_DITER_ENABLED: 268 case ATA_DITER_ALL: 269 if (++dev < link->device + ata_link_max_devices(link)) 270 goto check; 271 return NULL; 272 case ATA_DITER_ENABLED_REVERSE: 273 case ATA_DITER_ALL_REVERSE: 274 if (--dev >= link->device) 275 goto check; 276 return NULL; 277 } 278 279 check: 280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 281 !ata_dev_enabled(dev)) 282 goto next; 283 return dev; 284 } 285 286 /** 287 * ata_dev_phys_link - find physical link for a device 288 * @dev: ATA device to look up physical link for 289 * 290 * Look up physical link which @dev is attached to. Note that 291 * this is different from @dev->link only when @dev is on slave 292 * link. For all other cases, it's the same as @dev->link. 293 * 294 * LOCKING: 295 * Don't care. 296 * 297 * RETURNS: 298 * Pointer to the found physical link. 299 */ 300 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 301 { 302 struct ata_port *ap = dev->link->ap; 303 304 if (!ap->slave_link) 305 return dev->link; 306 if (!dev->devno) 307 return &ap->link; 308 return ap->slave_link; 309 } 310 311 /** 312 * ata_force_cbl - force cable type according to libata.force 313 * @ap: ATA port of interest 314 * 315 * Force cable type according to libata.force and whine about it. 316 * The last entry which has matching port number is used, so it 317 * can be specified as part of device force parameters. For 318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 319 * same effect. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 void ata_force_cbl(struct ata_port *ap) 325 { 326 int i; 327 328 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 329 const struct ata_force_ent *fe = &ata_force_tbl[i]; 330 331 if (fe->port != -1 && fe->port != ap->print_id) 332 continue; 333 334 if (fe->param.cbl == ATA_CBL_NONE) 335 continue; 336 337 ap->cbl = fe->param.cbl; 338 ata_port_printk(ap, KERN_NOTICE, 339 "FORCE: cable set to %s\n", fe->param.name); 340 return; 341 } 342 } 343 344 /** 345 * ata_force_link_limits - force link limits according to libata.force 346 * @link: ATA link of interest 347 * 348 * Force link flags and SATA spd limit according to libata.force 349 * and whine about it. When only the port part is specified 350 * (e.g. 1:), the limit applies to all links connected to both 351 * the host link and all fan-out ports connected via PMP. If the 352 * device part is specified as 0 (e.g. 1.00:), it specifies the 353 * first fan-out link not the host link. Device number 15 always 354 * points to the host link whether PMP is attached or not. If the 355 * controller has slave link, device number 16 points to it. 356 * 357 * LOCKING: 358 * EH context. 359 */ 360 static void ata_force_link_limits(struct ata_link *link) 361 { 362 bool did_spd = false; 363 int linkno = link->pmp; 364 int i; 365 366 if (ata_is_host_link(link)) 367 linkno += 15; 368 369 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 370 const struct ata_force_ent *fe = &ata_force_tbl[i]; 371 372 if (fe->port != -1 && fe->port != link->ap->print_id) 373 continue; 374 375 if (fe->device != -1 && fe->device != linkno) 376 continue; 377 378 /* only honor the first spd limit */ 379 if (!did_spd && fe->param.spd_limit) { 380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 381 ata_link_printk(link, KERN_NOTICE, 382 "FORCE: PHY spd limit set to %s\n", 383 fe->param.name); 384 did_spd = true; 385 } 386 387 /* let lflags stack */ 388 if (fe->param.lflags) { 389 link->flags |= fe->param.lflags; 390 ata_link_printk(link, KERN_NOTICE, 391 "FORCE: link flag 0x%x forced -> 0x%x\n", 392 fe->param.lflags, link->flags); 393 } 394 } 395 } 396 397 /** 398 * ata_force_xfermask - force xfermask according to libata.force 399 * @dev: ATA device of interest 400 * 401 * Force xfer_mask according to libata.force and whine about it. 402 * For consistency with link selection, device number 15 selects 403 * the first device connected to the host link. 404 * 405 * LOCKING: 406 * EH context. 407 */ 408 static void ata_force_xfermask(struct ata_device *dev) 409 { 410 int devno = dev->link->pmp + dev->devno; 411 int alt_devno = devno; 412 int i; 413 414 /* allow n.15/16 for devices attached to host port */ 415 if (ata_is_host_link(dev->link)) 416 alt_devno += 15; 417 418 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 419 const struct ata_force_ent *fe = &ata_force_tbl[i]; 420 unsigned long pio_mask, mwdma_mask, udma_mask; 421 422 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 423 continue; 424 425 if (fe->device != -1 && fe->device != devno && 426 fe->device != alt_devno) 427 continue; 428 429 if (!fe->param.xfer_mask) 430 continue; 431 432 ata_unpack_xfermask(fe->param.xfer_mask, 433 &pio_mask, &mwdma_mask, &udma_mask); 434 if (udma_mask) 435 dev->udma_mask = udma_mask; 436 else if (mwdma_mask) { 437 dev->udma_mask = 0; 438 dev->mwdma_mask = mwdma_mask; 439 } else { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = 0; 442 dev->pio_mask = pio_mask; 443 } 444 445 ata_dev_printk(dev, KERN_NOTICE, 446 "FORCE: xfer_mask set to %s\n", fe->param.name); 447 return; 448 } 449 } 450 451 /** 452 * ata_force_horkage - force horkage according to libata.force 453 * @dev: ATA device of interest 454 * 455 * Force horkage according to libata.force and whine about it. 456 * For consistency with link selection, device number 15 selects 457 * the first device connected to the host link. 458 * 459 * LOCKING: 460 * EH context. 461 */ 462 static void ata_force_horkage(struct ata_device *dev) 463 { 464 int devno = dev->link->pmp + dev->devno; 465 int alt_devno = devno; 466 int i; 467 468 /* allow n.15/16 for devices attached to host port */ 469 if (ata_is_host_link(dev->link)) 470 alt_devno += 15; 471 472 for (i = 0; i < ata_force_tbl_size; i++) { 473 const struct ata_force_ent *fe = &ata_force_tbl[i]; 474 475 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 476 continue; 477 478 if (fe->device != -1 && fe->device != devno && 479 fe->device != alt_devno) 480 continue; 481 482 if (!(~dev->horkage & fe->param.horkage_on) && 483 !(dev->horkage & fe->param.horkage_off)) 484 continue; 485 486 dev->horkage |= fe->param.horkage_on; 487 dev->horkage &= ~fe->param.horkage_off; 488 489 ata_dev_printk(dev, KERN_NOTICE, 490 "FORCE: horkage modified (%s)\n", fe->param.name); 491 } 492 } 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 /* fall thru */ 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 532 /** 533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 534 * @tf: Taskfile to convert 535 * @pmp: Port multiplier port 536 * @is_cmd: This FIS is for command 537 * @fis: Buffer into which data will output 538 * 539 * Converts a standard ATA taskfile to a Serial ATA 540 * FIS structure (Register - Host to Device). 541 * 542 * LOCKING: 543 * Inherited from caller. 544 */ 545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 546 { 547 fis[0] = 0x27; /* Register - Host to Device FIS */ 548 fis[1] = pmp & 0xf; /* Port multiplier number*/ 549 if (is_cmd) 550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 551 552 fis[2] = tf->command; 553 fis[3] = tf->feature; 554 555 fis[4] = tf->lbal; 556 fis[5] = tf->lbam; 557 fis[6] = tf->lbah; 558 fis[7] = tf->device; 559 560 fis[8] = tf->hob_lbal; 561 fis[9] = tf->hob_lbam; 562 fis[10] = tf->hob_lbah; 563 fis[11] = tf->hob_feature; 564 565 fis[12] = tf->nsect; 566 fis[13] = tf->hob_nsect; 567 fis[14] = 0; 568 fis[15] = tf->ctl; 569 570 fis[16] = 0; 571 fis[17] = 0; 572 fis[18] = 0; 573 fis[19] = 0; 574 } 575 576 /** 577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 578 * @fis: Buffer from which data will be input 579 * @tf: Taskfile to output 580 * 581 * Converts a serial ATA FIS structure to a standard ATA taskfile. 582 * 583 * LOCKING: 584 * Inherited from caller. 585 */ 586 587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 588 { 589 tf->command = fis[2]; /* status */ 590 tf->feature = fis[3]; /* error */ 591 592 tf->lbal = fis[4]; 593 tf->lbam = fis[5]; 594 tf->lbah = fis[6]; 595 tf->device = fis[7]; 596 597 tf->hob_lbal = fis[8]; 598 tf->hob_lbam = fis[9]; 599 tf->hob_lbah = fis[10]; 600 601 tf->nsect = fis[12]; 602 tf->hob_nsect = fis[13]; 603 } 604 605 static const u8 ata_rw_cmds[] = { 606 /* pio multi */ 607 ATA_CMD_READ_MULTI, 608 ATA_CMD_WRITE_MULTI, 609 ATA_CMD_READ_MULTI_EXT, 610 ATA_CMD_WRITE_MULTI_EXT, 611 0, 612 0, 613 0, 614 ATA_CMD_WRITE_MULTI_FUA_EXT, 615 /* pio */ 616 ATA_CMD_PIO_READ, 617 ATA_CMD_PIO_WRITE, 618 ATA_CMD_PIO_READ_EXT, 619 ATA_CMD_PIO_WRITE_EXT, 620 0, 621 0, 622 0, 623 0, 624 /* dma */ 625 ATA_CMD_READ, 626 ATA_CMD_WRITE, 627 ATA_CMD_READ_EXT, 628 ATA_CMD_WRITE_EXT, 629 0, 630 0, 631 0, 632 ATA_CMD_WRITE_FUA_EXT 633 }; 634 635 /** 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 637 * @tf: command to examine and configure 638 * @dev: device tf belongs to 639 * 640 * Examine the device configuration and tf->flags to calculate 641 * the proper read/write commands and protocol to use. 642 * 643 * LOCKING: 644 * caller. 645 */ 646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 647 { 648 u8 cmd; 649 650 int index, fua, lba48, write; 651 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 655 656 if (dev->flags & ATA_DFLAG_PIO) { 657 tf->protocol = ATA_PROT_PIO; 658 index = dev->multi_count ? 0 : 8; 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 660 /* Unable to use DMA due to host limitation */ 661 tf->protocol = ATA_PROT_PIO; 662 index = dev->multi_count ? 0 : 8; 663 } else { 664 tf->protocol = ATA_PROT_DMA; 665 index = 16; 666 } 667 668 cmd = ata_rw_cmds[index + fua + lba48 + write]; 669 if (cmd) { 670 tf->command = cmd; 671 return 0; 672 } 673 return -1; 674 } 675 676 /** 677 * ata_tf_read_block - Read block address from ATA taskfile 678 * @tf: ATA taskfile of interest 679 * @dev: ATA device @tf belongs to 680 * 681 * LOCKING: 682 * None. 683 * 684 * Read block address from @tf. This function can handle all 685 * three address formats - LBA, LBA48 and CHS. tf->protocol and 686 * flags select the address format to use. 687 * 688 * RETURNS: 689 * Block address read from @tf. 690 */ 691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 692 { 693 u64 block = 0; 694 695 if (tf->flags & ATA_TFLAG_LBA) { 696 if (tf->flags & ATA_TFLAG_LBA48) { 697 block |= (u64)tf->hob_lbah << 40; 698 block |= (u64)tf->hob_lbam << 32; 699 block |= (u64)tf->hob_lbal << 24; 700 } else 701 block |= (tf->device & 0xf) << 24; 702 703 block |= tf->lbah << 16; 704 block |= tf->lbam << 8; 705 block |= tf->lbal; 706 } else { 707 u32 cyl, head, sect; 708 709 cyl = tf->lbam | (tf->lbah << 8); 710 head = tf->device & 0xf; 711 sect = tf->lbal; 712 713 if (!sect) { 714 ata_dev_printk(dev, KERN_WARNING, "device reported " 715 "invalid CHS sector 0\n"); 716 sect = 1; /* oh well */ 717 } 718 719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 720 } 721 722 return block; 723 } 724 725 /** 726 * ata_build_rw_tf - Build ATA taskfile for given read/write request 727 * @tf: Target ATA taskfile 728 * @dev: ATA device @tf belongs to 729 * @block: Block address 730 * @n_block: Number of blocks 731 * @tf_flags: RW/FUA etc... 732 * @tag: tag 733 * 734 * LOCKING: 735 * None. 736 * 737 * Build ATA taskfile @tf for read/write request described by 738 * @block, @n_block, @tf_flags and @tag on @dev. 739 * 740 * RETURNS: 741 * 742 * 0 on success, -ERANGE if the request is too large for @dev, 743 * -EINVAL if the request is invalid. 744 */ 745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 746 u64 block, u32 n_block, unsigned int tf_flags, 747 unsigned int tag) 748 { 749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 750 tf->flags |= tf_flags; 751 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 753 /* yay, NCQ */ 754 if (!lba_48_ok(block, n_block)) 755 return -ERANGE; 756 757 tf->protocol = ATA_PROT_NCQ; 758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 759 760 if (tf->flags & ATA_TFLAG_WRITE) 761 tf->command = ATA_CMD_FPDMA_WRITE; 762 else 763 tf->command = ATA_CMD_FPDMA_READ; 764 765 tf->nsect = tag << 3; 766 tf->hob_feature = (n_block >> 8) & 0xff; 767 tf->feature = n_block & 0xff; 768 769 tf->hob_lbah = (block >> 40) & 0xff; 770 tf->hob_lbam = (block >> 32) & 0xff; 771 tf->hob_lbal = (block >> 24) & 0xff; 772 tf->lbah = (block >> 16) & 0xff; 773 tf->lbam = (block >> 8) & 0xff; 774 tf->lbal = block & 0xff; 775 776 tf->device = 1 << 6; 777 if (tf->flags & ATA_TFLAG_FUA) 778 tf->device |= 1 << 7; 779 } else if (dev->flags & ATA_DFLAG_LBA) { 780 tf->flags |= ATA_TFLAG_LBA; 781 782 if (lba_28_ok(block, n_block)) { 783 /* use LBA28 */ 784 tf->device |= (block >> 24) & 0xf; 785 } else if (lba_48_ok(block, n_block)) { 786 if (!(dev->flags & ATA_DFLAG_LBA48)) 787 return -ERANGE; 788 789 /* use LBA48 */ 790 tf->flags |= ATA_TFLAG_LBA48; 791 792 tf->hob_nsect = (n_block >> 8) & 0xff; 793 794 tf->hob_lbah = (block >> 40) & 0xff; 795 tf->hob_lbam = (block >> 32) & 0xff; 796 tf->hob_lbal = (block >> 24) & 0xff; 797 } else 798 /* request too large even for LBA48 */ 799 return -ERANGE; 800 801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 802 return -EINVAL; 803 804 tf->nsect = n_block & 0xff; 805 806 tf->lbah = (block >> 16) & 0xff; 807 tf->lbam = (block >> 8) & 0xff; 808 tf->lbal = block & 0xff; 809 810 tf->device |= ATA_LBA; 811 } else { 812 /* CHS */ 813 u32 sect, head, cyl, track; 814 815 /* The request -may- be too large for CHS addressing. */ 816 if (!lba_28_ok(block, n_block)) 817 return -ERANGE; 818 819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 820 return -EINVAL; 821 822 /* Convert LBA to CHS */ 823 track = (u32)block / dev->sectors; 824 cyl = track / dev->heads; 825 head = track % dev->heads; 826 sect = (u32)block % dev->sectors + 1; 827 828 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 829 (u32)block, track, cyl, head, sect); 830 831 /* Check whether the converted CHS can fit. 832 Cylinder: 0-65535 833 Head: 0-15 834 Sector: 1-255*/ 835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 836 return -ERANGE; 837 838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 839 tf->lbal = sect; 840 tf->lbam = cyl; 841 tf->lbah = cyl >> 8; 842 tf->device |= head; 843 } 844 845 return 0; 846 } 847 848 /** 849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 850 * @pio_mask: pio_mask 851 * @mwdma_mask: mwdma_mask 852 * @udma_mask: udma_mask 853 * 854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 855 * unsigned int xfer_mask. 856 * 857 * LOCKING: 858 * None. 859 * 860 * RETURNS: 861 * Packed xfer_mask. 862 */ 863 unsigned long ata_pack_xfermask(unsigned long pio_mask, 864 unsigned long mwdma_mask, 865 unsigned long udma_mask) 866 { 867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 870 } 871 872 /** 873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 874 * @xfer_mask: xfer_mask to unpack 875 * @pio_mask: resulting pio_mask 876 * @mwdma_mask: resulting mwdma_mask 877 * @udma_mask: resulting udma_mask 878 * 879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 880 * Any NULL distination masks will be ignored. 881 */ 882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 883 unsigned long *mwdma_mask, unsigned long *udma_mask) 884 { 885 if (pio_mask) 886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 887 if (mwdma_mask) 888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 889 if (udma_mask) 890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 891 } 892 893 static const struct ata_xfer_ent { 894 int shift, bits; 895 u8 base; 896 } ata_xfer_tbl[] = { 897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 900 { -1, }, 901 }; 902 903 /** 904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 905 * @xfer_mask: xfer_mask of interest 906 * 907 * Return matching XFER_* value for @xfer_mask. Only the highest 908 * bit of @xfer_mask is considered. 909 * 910 * LOCKING: 911 * None. 912 * 913 * RETURNS: 914 * Matching XFER_* value, 0xff if no match found. 915 */ 916 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 917 { 918 int highbit = fls(xfer_mask) - 1; 919 const struct ata_xfer_ent *ent; 920 921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 923 return ent->base + highbit - ent->shift; 924 return 0xff; 925 } 926 927 /** 928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 929 * @xfer_mode: XFER_* of interest 930 * 931 * Return matching xfer_mask for @xfer_mode. 932 * 933 * LOCKING: 934 * None. 935 * 936 * RETURNS: 937 * Matching xfer_mask, 0 if no match found. 938 */ 939 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 940 { 941 const struct ata_xfer_ent *ent; 942 943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 946 & ~((1 << ent->shift) - 1); 947 return 0; 948 } 949 950 /** 951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 952 * @xfer_mode: XFER_* of interest 953 * 954 * Return matching xfer_shift for @xfer_mode. 955 * 956 * LOCKING: 957 * None. 958 * 959 * RETURNS: 960 * Matching xfer_shift, -1 if no match found. 961 */ 962 int ata_xfer_mode2shift(unsigned long xfer_mode) 963 { 964 const struct ata_xfer_ent *ent; 965 966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 968 return ent->shift; 969 return -1; 970 } 971 972 /** 973 * ata_mode_string - convert xfer_mask to string 974 * @xfer_mask: mask of bits supported; only highest bit counts. 975 * 976 * Determine string which represents the highest speed 977 * (highest bit in @modemask). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Constant C string representing highest speed listed in 984 * @mode_mask, or the constant C string "<n/a>". 985 */ 986 const char *ata_mode_string(unsigned long xfer_mask) 987 { 988 static const char * const xfer_mode_str[] = { 989 "PIO0", 990 "PIO1", 991 "PIO2", 992 "PIO3", 993 "PIO4", 994 "PIO5", 995 "PIO6", 996 "MWDMA0", 997 "MWDMA1", 998 "MWDMA2", 999 "MWDMA3", 1000 "MWDMA4", 1001 "UDMA/16", 1002 "UDMA/25", 1003 "UDMA/33", 1004 "UDMA/44", 1005 "UDMA/66", 1006 "UDMA/100", 1007 "UDMA/133", 1008 "UDMA7", 1009 }; 1010 int highbit; 1011 1012 highbit = fls(xfer_mask) - 1; 1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1014 return xfer_mode_str[highbit]; 1015 return "<n/a>"; 1016 } 1017 1018 static const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1032 { 1033 struct ata_link *link = dev->link; 1034 struct ata_port *ap = link->ap; 1035 u32 scontrol; 1036 unsigned int err_mask; 1037 int rc; 1038 1039 /* 1040 * disallow DIPM for drivers which haven't set 1041 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1042 * phy ready will be set in the interrupt status on 1043 * state changes, which will cause some drivers to 1044 * think there are errors - additionally drivers will 1045 * need to disable hot plug. 1046 */ 1047 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1048 ap->pm_policy = NOT_AVAILABLE; 1049 return -EINVAL; 1050 } 1051 1052 /* 1053 * For DIPM, we will only enable it for the 1054 * min_power setting. 1055 * 1056 * Why? Because Disks are too stupid to know that 1057 * If the host rejects a request to go to SLUMBER 1058 * they should retry at PARTIAL, and instead it 1059 * just would give up. So, for medium_power to 1060 * work at all, we need to only allow HIPM. 1061 */ 1062 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1063 if (rc) 1064 return rc; 1065 1066 switch (policy) { 1067 case MIN_POWER: 1068 /* no restrictions on IPM transitions */ 1069 scontrol &= ~(0x3 << 8); 1070 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1071 if (rc) 1072 return rc; 1073 1074 /* enable DIPM */ 1075 if (dev->flags & ATA_DFLAG_DIPM) 1076 err_mask = ata_dev_set_feature(dev, 1077 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1078 break; 1079 case MEDIUM_POWER: 1080 /* allow IPM to PARTIAL */ 1081 scontrol &= ~(0x1 << 8); 1082 scontrol |= (0x2 << 8); 1083 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1084 if (rc) 1085 return rc; 1086 1087 /* 1088 * we don't have to disable DIPM since IPM flags 1089 * disallow transitions to SLUMBER, which effectively 1090 * disable DIPM if it does not support PARTIAL 1091 */ 1092 break; 1093 case NOT_AVAILABLE: 1094 case MAX_PERFORMANCE: 1095 /* disable all IPM transitions */ 1096 scontrol |= (0x3 << 8); 1097 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1098 if (rc) 1099 return rc; 1100 1101 /* 1102 * we don't have to disable DIPM since IPM flags 1103 * disallow all transitions which effectively 1104 * disable DIPM anyway. 1105 */ 1106 break; 1107 } 1108 1109 /* FIXME: handle SET FEATURES failure */ 1110 (void) err_mask; 1111 1112 return 0; 1113 } 1114 1115 /** 1116 * ata_dev_enable_pm - enable SATA interface power management 1117 * @dev: device to enable power management 1118 * @policy: the link power management policy 1119 * 1120 * Enable SATA Interface power management. This will enable 1121 * Device Interface Power Management (DIPM) for min_power 1122 * policy, and then call driver specific callbacks for 1123 * enabling Host Initiated Power management. 1124 * 1125 * Locking: Caller. 1126 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1127 */ 1128 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1129 { 1130 int rc = 0; 1131 struct ata_port *ap = dev->link->ap; 1132 1133 /* set HIPM first, then DIPM */ 1134 if (ap->ops->enable_pm) 1135 rc = ap->ops->enable_pm(ap, policy); 1136 if (rc) 1137 goto enable_pm_out; 1138 rc = ata_dev_set_dipm(dev, policy); 1139 1140 enable_pm_out: 1141 if (rc) 1142 ap->pm_policy = MAX_PERFORMANCE; 1143 else 1144 ap->pm_policy = policy; 1145 return /* rc */; /* hopefully we can use 'rc' eventually */ 1146 } 1147 1148 #ifdef CONFIG_PM 1149 /** 1150 * ata_dev_disable_pm - disable SATA interface power management 1151 * @dev: device to disable power management 1152 * 1153 * Disable SATA Interface power management. This will disable 1154 * Device Interface Power Management (DIPM) without changing 1155 * policy, call driver specific callbacks for disabling Host 1156 * Initiated Power management. 1157 * 1158 * Locking: Caller. 1159 * Returns: void 1160 */ 1161 static void ata_dev_disable_pm(struct ata_device *dev) 1162 { 1163 struct ata_port *ap = dev->link->ap; 1164 1165 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1166 if (ap->ops->disable_pm) 1167 ap->ops->disable_pm(ap); 1168 } 1169 #endif /* CONFIG_PM */ 1170 1171 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1172 { 1173 ap->pm_policy = policy; 1174 ap->link.eh_info.action |= ATA_EH_LPM; 1175 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1176 ata_port_schedule_eh(ap); 1177 } 1178 1179 #ifdef CONFIG_PM 1180 static void ata_lpm_enable(struct ata_host *host) 1181 { 1182 struct ata_link *link; 1183 struct ata_port *ap; 1184 struct ata_device *dev; 1185 int i; 1186 1187 for (i = 0; i < host->n_ports; i++) { 1188 ap = host->ports[i]; 1189 ata_for_each_link(link, ap, EDGE) { 1190 ata_for_each_dev(dev, link, ALL) 1191 ata_dev_disable_pm(dev); 1192 } 1193 } 1194 } 1195 1196 static void ata_lpm_disable(struct ata_host *host) 1197 { 1198 int i; 1199 1200 for (i = 0; i < host->n_ports; i++) { 1201 struct ata_port *ap = host->ports[i]; 1202 ata_lpm_schedule(ap, ap->pm_policy); 1203 } 1204 } 1205 #endif /* CONFIG_PM */ 1206 1207 /** 1208 * ata_dev_classify - determine device type based on ATA-spec signature 1209 * @tf: ATA taskfile register set for device to be identified 1210 * 1211 * Determine from taskfile register contents whether a device is 1212 * ATA or ATAPI, as per "Signature and persistence" section 1213 * of ATA/PI spec (volume 1, sect 5.14). 1214 * 1215 * LOCKING: 1216 * None. 1217 * 1218 * RETURNS: 1219 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1220 * %ATA_DEV_UNKNOWN the event of failure. 1221 */ 1222 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1223 { 1224 /* Apple's open source Darwin code hints that some devices only 1225 * put a proper signature into the LBA mid/high registers, 1226 * So, we only check those. It's sufficient for uniqueness. 1227 * 1228 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1229 * signatures for ATA and ATAPI devices attached on SerialATA, 1230 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1231 * spec has never mentioned about using different signatures 1232 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1233 * Multiplier specification began to use 0x69/0x96 to identify 1234 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1235 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1236 * 0x69/0x96 shortly and described them as reserved for 1237 * SerialATA. 1238 * 1239 * We follow the current spec and consider that 0x69/0x96 1240 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1241 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1242 * SEMB signature. This is worked around in 1243 * ata_dev_read_id(). 1244 */ 1245 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1246 DPRINTK("found ATA device by sig\n"); 1247 return ATA_DEV_ATA; 1248 } 1249 1250 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1251 DPRINTK("found ATAPI device by sig\n"); 1252 return ATA_DEV_ATAPI; 1253 } 1254 1255 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1256 DPRINTK("found PMP device by sig\n"); 1257 return ATA_DEV_PMP; 1258 } 1259 1260 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1261 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1262 return ATA_DEV_SEMB; 1263 } 1264 1265 DPRINTK("unknown device\n"); 1266 return ATA_DEV_UNKNOWN; 1267 } 1268 1269 /** 1270 * ata_id_string - Convert IDENTIFY DEVICE page into string 1271 * @id: IDENTIFY DEVICE results we will examine 1272 * @s: string into which data is output 1273 * @ofs: offset into identify device page 1274 * @len: length of string to return. must be an even number. 1275 * 1276 * The strings in the IDENTIFY DEVICE page are broken up into 1277 * 16-bit chunks. Run through the string, and output each 1278 * 8-bit chunk linearly, regardless of platform. 1279 * 1280 * LOCKING: 1281 * caller. 1282 */ 1283 1284 void ata_id_string(const u16 *id, unsigned char *s, 1285 unsigned int ofs, unsigned int len) 1286 { 1287 unsigned int c; 1288 1289 BUG_ON(len & 1); 1290 1291 while (len > 0) { 1292 c = id[ofs] >> 8; 1293 *s = c; 1294 s++; 1295 1296 c = id[ofs] & 0xff; 1297 *s = c; 1298 s++; 1299 1300 ofs++; 1301 len -= 2; 1302 } 1303 } 1304 1305 /** 1306 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1307 * @id: IDENTIFY DEVICE results we will examine 1308 * @s: string into which data is output 1309 * @ofs: offset into identify device page 1310 * @len: length of string to return. must be an odd number. 1311 * 1312 * This function is identical to ata_id_string except that it 1313 * trims trailing spaces and terminates the resulting string with 1314 * null. @len must be actual maximum length (even number) + 1. 1315 * 1316 * LOCKING: 1317 * caller. 1318 */ 1319 void ata_id_c_string(const u16 *id, unsigned char *s, 1320 unsigned int ofs, unsigned int len) 1321 { 1322 unsigned char *p; 1323 1324 ata_id_string(id, s, ofs, len - 1); 1325 1326 p = s + strnlen(s, len - 1); 1327 while (p > s && p[-1] == ' ') 1328 p--; 1329 *p = '\0'; 1330 } 1331 1332 static u64 ata_id_n_sectors(const u16 *id) 1333 { 1334 if (ata_id_has_lba(id)) { 1335 if (ata_id_has_lba48(id)) 1336 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1337 else 1338 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1339 } else { 1340 if (ata_id_current_chs_valid(id)) 1341 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1342 id[ATA_ID_CUR_SECTORS]; 1343 else 1344 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1345 id[ATA_ID_SECTORS]; 1346 } 1347 } 1348 1349 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1350 { 1351 u64 sectors = 0; 1352 1353 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1354 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1355 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1356 sectors |= (tf->lbah & 0xff) << 16; 1357 sectors |= (tf->lbam & 0xff) << 8; 1358 sectors |= (tf->lbal & 0xff); 1359 1360 return sectors; 1361 } 1362 1363 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1364 { 1365 u64 sectors = 0; 1366 1367 sectors |= (tf->device & 0x0f) << 24; 1368 sectors |= (tf->lbah & 0xff) << 16; 1369 sectors |= (tf->lbam & 0xff) << 8; 1370 sectors |= (tf->lbal & 0xff); 1371 1372 return sectors; 1373 } 1374 1375 /** 1376 * ata_read_native_max_address - Read native max address 1377 * @dev: target device 1378 * @max_sectors: out parameter for the result native max address 1379 * 1380 * Perform an LBA48 or LBA28 native size query upon the device in 1381 * question. 1382 * 1383 * RETURNS: 1384 * 0 on success, -EACCES if command is aborted by the drive. 1385 * -EIO on other errors. 1386 */ 1387 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1388 { 1389 unsigned int err_mask; 1390 struct ata_taskfile tf; 1391 int lba48 = ata_id_has_lba48(dev->id); 1392 1393 ata_tf_init(dev, &tf); 1394 1395 /* always clear all address registers */ 1396 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1397 1398 if (lba48) { 1399 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1400 tf.flags |= ATA_TFLAG_LBA48; 1401 } else 1402 tf.command = ATA_CMD_READ_NATIVE_MAX; 1403 1404 tf.protocol |= ATA_PROT_NODATA; 1405 tf.device |= ATA_LBA; 1406 1407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1408 if (err_mask) { 1409 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1410 "max address (err_mask=0x%x)\n", err_mask); 1411 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1412 return -EACCES; 1413 return -EIO; 1414 } 1415 1416 if (lba48) 1417 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1418 else 1419 *max_sectors = ata_tf_to_lba(&tf) + 1; 1420 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1421 (*max_sectors)--; 1422 return 0; 1423 } 1424 1425 /** 1426 * ata_set_max_sectors - Set max sectors 1427 * @dev: target device 1428 * @new_sectors: new max sectors value to set for the device 1429 * 1430 * Set max sectors of @dev to @new_sectors. 1431 * 1432 * RETURNS: 1433 * 0 on success, -EACCES if command is aborted or denied (due to 1434 * previous non-volatile SET_MAX) by the drive. -EIO on other 1435 * errors. 1436 */ 1437 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1438 { 1439 unsigned int err_mask; 1440 struct ata_taskfile tf; 1441 int lba48 = ata_id_has_lba48(dev->id); 1442 1443 new_sectors--; 1444 1445 ata_tf_init(dev, &tf); 1446 1447 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1448 1449 if (lba48) { 1450 tf.command = ATA_CMD_SET_MAX_EXT; 1451 tf.flags |= ATA_TFLAG_LBA48; 1452 1453 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1454 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1455 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1456 } else { 1457 tf.command = ATA_CMD_SET_MAX; 1458 1459 tf.device |= (new_sectors >> 24) & 0xf; 1460 } 1461 1462 tf.protocol |= ATA_PROT_NODATA; 1463 tf.device |= ATA_LBA; 1464 1465 tf.lbal = (new_sectors >> 0) & 0xff; 1466 tf.lbam = (new_sectors >> 8) & 0xff; 1467 tf.lbah = (new_sectors >> 16) & 0xff; 1468 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1470 if (err_mask) { 1471 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1472 "max address (err_mask=0x%x)\n", err_mask); 1473 if (err_mask == AC_ERR_DEV && 1474 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1475 return -EACCES; 1476 return -EIO; 1477 } 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * ata_hpa_resize - Resize a device with an HPA set 1484 * @dev: Device to resize 1485 * 1486 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1487 * it if required to the full size of the media. The caller must check 1488 * the drive has the HPA feature set enabled. 1489 * 1490 * RETURNS: 1491 * 0 on success, -errno on failure. 1492 */ 1493 static int ata_hpa_resize(struct ata_device *dev) 1494 { 1495 struct ata_eh_context *ehc = &dev->link->eh_context; 1496 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1497 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1498 u64 sectors = ata_id_n_sectors(dev->id); 1499 u64 native_sectors; 1500 int rc; 1501 1502 /* do we need to do it? */ 1503 if (dev->class != ATA_DEV_ATA || 1504 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1505 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1506 return 0; 1507 1508 /* read native max address */ 1509 rc = ata_read_native_max_address(dev, &native_sectors); 1510 if (rc) { 1511 /* If device aborted the command or HPA isn't going to 1512 * be unlocked, skip HPA resizing. 1513 */ 1514 if (rc == -EACCES || !unlock_hpa) { 1515 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1516 "broken, skipping HPA handling\n"); 1517 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1518 1519 /* we can continue if device aborted the command */ 1520 if (rc == -EACCES) 1521 rc = 0; 1522 } 1523 1524 return rc; 1525 } 1526 dev->n_native_sectors = native_sectors; 1527 1528 /* nothing to do? */ 1529 if (native_sectors <= sectors || !unlock_hpa) { 1530 if (!print_info || native_sectors == sectors) 1531 return 0; 1532 1533 if (native_sectors > sectors) 1534 ata_dev_printk(dev, KERN_INFO, 1535 "HPA detected: current %llu, native %llu\n", 1536 (unsigned long long)sectors, 1537 (unsigned long long)native_sectors); 1538 else if (native_sectors < sectors) 1539 ata_dev_printk(dev, KERN_WARNING, 1540 "native sectors (%llu) is smaller than " 1541 "sectors (%llu)\n", 1542 (unsigned long long)native_sectors, 1543 (unsigned long long)sectors); 1544 return 0; 1545 } 1546 1547 /* let's unlock HPA */ 1548 rc = ata_set_max_sectors(dev, native_sectors); 1549 if (rc == -EACCES) { 1550 /* if device aborted the command, skip HPA resizing */ 1551 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1552 "(%llu -> %llu), skipping HPA handling\n", 1553 (unsigned long long)sectors, 1554 (unsigned long long)native_sectors); 1555 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1556 return 0; 1557 } else if (rc) 1558 return rc; 1559 1560 /* re-read IDENTIFY data */ 1561 rc = ata_dev_reread_id(dev, 0); 1562 if (rc) { 1563 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1564 "data after HPA resizing\n"); 1565 return rc; 1566 } 1567 1568 if (print_info) { 1569 u64 new_sectors = ata_id_n_sectors(dev->id); 1570 ata_dev_printk(dev, KERN_INFO, 1571 "HPA unlocked: %llu -> %llu, native %llu\n", 1572 (unsigned long long)sectors, 1573 (unsigned long long)new_sectors, 1574 (unsigned long long)native_sectors); 1575 } 1576 1577 return 0; 1578 } 1579 1580 /** 1581 * ata_dump_id - IDENTIFY DEVICE info debugging output 1582 * @id: IDENTIFY DEVICE page to dump 1583 * 1584 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1585 * page. 1586 * 1587 * LOCKING: 1588 * caller. 1589 */ 1590 1591 static inline void ata_dump_id(const u16 *id) 1592 { 1593 DPRINTK("49==0x%04x " 1594 "53==0x%04x " 1595 "63==0x%04x " 1596 "64==0x%04x " 1597 "75==0x%04x \n", 1598 id[49], 1599 id[53], 1600 id[63], 1601 id[64], 1602 id[75]); 1603 DPRINTK("80==0x%04x " 1604 "81==0x%04x " 1605 "82==0x%04x " 1606 "83==0x%04x " 1607 "84==0x%04x \n", 1608 id[80], 1609 id[81], 1610 id[82], 1611 id[83], 1612 id[84]); 1613 DPRINTK("88==0x%04x " 1614 "93==0x%04x\n", 1615 id[88], 1616 id[93]); 1617 } 1618 1619 /** 1620 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1621 * @id: IDENTIFY data to compute xfer mask from 1622 * 1623 * Compute the xfermask for this device. This is not as trivial 1624 * as it seems if we must consider early devices correctly. 1625 * 1626 * FIXME: pre IDE drive timing (do we care ?). 1627 * 1628 * LOCKING: 1629 * None. 1630 * 1631 * RETURNS: 1632 * Computed xfermask 1633 */ 1634 unsigned long ata_id_xfermask(const u16 *id) 1635 { 1636 unsigned long pio_mask, mwdma_mask, udma_mask; 1637 1638 /* Usual case. Word 53 indicates word 64 is valid */ 1639 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1640 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1641 pio_mask <<= 3; 1642 pio_mask |= 0x7; 1643 } else { 1644 /* If word 64 isn't valid then Word 51 high byte holds 1645 * the PIO timing number for the maximum. Turn it into 1646 * a mask. 1647 */ 1648 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1649 if (mode < 5) /* Valid PIO range */ 1650 pio_mask = (2 << mode) - 1; 1651 else 1652 pio_mask = 1; 1653 1654 /* But wait.. there's more. Design your standards by 1655 * committee and you too can get a free iordy field to 1656 * process. However its the speeds not the modes that 1657 * are supported... Note drivers using the timing API 1658 * will get this right anyway 1659 */ 1660 } 1661 1662 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1663 1664 if (ata_id_is_cfa(id)) { 1665 /* 1666 * Process compact flash extended modes 1667 */ 1668 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1669 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1670 1671 if (pio) 1672 pio_mask |= (1 << 5); 1673 if (pio > 1) 1674 pio_mask |= (1 << 6); 1675 if (dma) 1676 mwdma_mask |= (1 << 3); 1677 if (dma > 1) 1678 mwdma_mask |= (1 << 4); 1679 } 1680 1681 udma_mask = 0; 1682 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1683 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1684 1685 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1686 } 1687 1688 /** 1689 * ata_pio_queue_task - Queue port_task 1690 * @ap: The ata_port to queue port_task for 1691 * @data: data for @fn to use 1692 * @delay: delay time in msecs for workqueue function 1693 * 1694 * Schedule @fn(@data) for execution after @delay jiffies using 1695 * port_task. There is one port_task per port and it's the 1696 * user(low level driver)'s responsibility to make sure that only 1697 * one task is active at any given time. 1698 * 1699 * libata core layer takes care of synchronization between 1700 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1701 * synchronization. 1702 * 1703 * LOCKING: 1704 * Inherited from caller. 1705 */ 1706 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1707 { 1708 ap->port_task_data = data; 1709 1710 /* may fail if ata_port_flush_task() in progress */ 1711 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1712 } 1713 1714 /** 1715 * ata_port_flush_task - Flush port_task 1716 * @ap: The ata_port to flush port_task for 1717 * 1718 * After this function completes, port_task is guranteed not to 1719 * be running or scheduled. 1720 * 1721 * LOCKING: 1722 * Kernel thread context (may sleep) 1723 */ 1724 void ata_port_flush_task(struct ata_port *ap) 1725 { 1726 DPRINTK("ENTER\n"); 1727 1728 cancel_rearming_delayed_work(&ap->port_task); 1729 1730 if (ata_msg_ctl(ap)) 1731 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1732 } 1733 1734 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1735 { 1736 struct completion *waiting = qc->private_data; 1737 1738 complete(waiting); 1739 } 1740 1741 /** 1742 * ata_exec_internal_sg - execute libata internal command 1743 * @dev: Device to which the command is sent 1744 * @tf: Taskfile registers for the command and the result 1745 * @cdb: CDB for packet command 1746 * @dma_dir: Data tranfer direction of the command 1747 * @sgl: sg list for the data buffer of the command 1748 * @n_elem: Number of sg entries 1749 * @timeout: Timeout in msecs (0 for default) 1750 * 1751 * Executes libata internal command with timeout. @tf contains 1752 * command on entry and result on return. Timeout and error 1753 * conditions are reported via return value. No recovery action 1754 * is taken after a command times out. It's caller's duty to 1755 * clean up after timeout. 1756 * 1757 * LOCKING: 1758 * None. Should be called with kernel context, might sleep. 1759 * 1760 * RETURNS: 1761 * Zero on success, AC_ERR_* mask on failure 1762 */ 1763 unsigned ata_exec_internal_sg(struct ata_device *dev, 1764 struct ata_taskfile *tf, const u8 *cdb, 1765 int dma_dir, struct scatterlist *sgl, 1766 unsigned int n_elem, unsigned long timeout) 1767 { 1768 struct ata_link *link = dev->link; 1769 struct ata_port *ap = link->ap; 1770 u8 command = tf->command; 1771 int auto_timeout = 0; 1772 struct ata_queued_cmd *qc; 1773 unsigned int tag, preempted_tag; 1774 u32 preempted_sactive, preempted_qc_active; 1775 int preempted_nr_active_links; 1776 DECLARE_COMPLETION_ONSTACK(wait); 1777 unsigned long flags; 1778 unsigned int err_mask; 1779 int rc; 1780 1781 spin_lock_irqsave(ap->lock, flags); 1782 1783 /* no internal command while frozen */ 1784 if (ap->pflags & ATA_PFLAG_FROZEN) { 1785 spin_unlock_irqrestore(ap->lock, flags); 1786 return AC_ERR_SYSTEM; 1787 } 1788 1789 /* initialize internal qc */ 1790 1791 /* XXX: Tag 0 is used for drivers with legacy EH as some 1792 * drivers choke if any other tag is given. This breaks 1793 * ata_tag_internal() test for those drivers. Don't use new 1794 * EH stuff without converting to it. 1795 */ 1796 if (ap->ops->error_handler) 1797 tag = ATA_TAG_INTERNAL; 1798 else 1799 tag = 0; 1800 1801 if (test_and_set_bit(tag, &ap->qc_allocated)) 1802 BUG(); 1803 qc = __ata_qc_from_tag(ap, tag); 1804 1805 qc->tag = tag; 1806 qc->scsicmd = NULL; 1807 qc->ap = ap; 1808 qc->dev = dev; 1809 ata_qc_reinit(qc); 1810 1811 preempted_tag = link->active_tag; 1812 preempted_sactive = link->sactive; 1813 preempted_qc_active = ap->qc_active; 1814 preempted_nr_active_links = ap->nr_active_links; 1815 link->active_tag = ATA_TAG_POISON; 1816 link->sactive = 0; 1817 ap->qc_active = 0; 1818 ap->nr_active_links = 0; 1819 1820 /* prepare & issue qc */ 1821 qc->tf = *tf; 1822 if (cdb) 1823 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1824 qc->flags |= ATA_QCFLAG_RESULT_TF; 1825 qc->dma_dir = dma_dir; 1826 if (dma_dir != DMA_NONE) { 1827 unsigned int i, buflen = 0; 1828 struct scatterlist *sg; 1829 1830 for_each_sg(sgl, sg, n_elem, i) 1831 buflen += sg->length; 1832 1833 ata_sg_init(qc, sgl, n_elem); 1834 qc->nbytes = buflen; 1835 } 1836 1837 qc->private_data = &wait; 1838 qc->complete_fn = ata_qc_complete_internal; 1839 1840 ata_qc_issue(qc); 1841 1842 spin_unlock_irqrestore(ap->lock, flags); 1843 1844 if (!timeout) { 1845 if (ata_probe_timeout) 1846 timeout = ata_probe_timeout * 1000; 1847 else { 1848 timeout = ata_internal_cmd_timeout(dev, command); 1849 auto_timeout = 1; 1850 } 1851 } 1852 1853 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1854 1855 ata_port_flush_task(ap); 1856 1857 if (!rc) { 1858 spin_lock_irqsave(ap->lock, flags); 1859 1860 /* We're racing with irq here. If we lose, the 1861 * following test prevents us from completing the qc 1862 * twice. If we win, the port is frozen and will be 1863 * cleaned up by ->post_internal_cmd(). 1864 */ 1865 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1866 qc->err_mask |= AC_ERR_TIMEOUT; 1867 1868 if (ap->ops->error_handler) 1869 ata_port_freeze(ap); 1870 else 1871 ata_qc_complete(qc); 1872 1873 if (ata_msg_warn(ap)) 1874 ata_dev_printk(dev, KERN_WARNING, 1875 "qc timeout (cmd 0x%x)\n", command); 1876 } 1877 1878 spin_unlock_irqrestore(ap->lock, flags); 1879 } 1880 1881 /* do post_internal_cmd */ 1882 if (ap->ops->post_internal_cmd) 1883 ap->ops->post_internal_cmd(qc); 1884 1885 /* perform minimal error analysis */ 1886 if (qc->flags & ATA_QCFLAG_FAILED) { 1887 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1888 qc->err_mask |= AC_ERR_DEV; 1889 1890 if (!qc->err_mask) 1891 qc->err_mask |= AC_ERR_OTHER; 1892 1893 if (qc->err_mask & ~AC_ERR_OTHER) 1894 qc->err_mask &= ~AC_ERR_OTHER; 1895 } 1896 1897 /* finish up */ 1898 spin_lock_irqsave(ap->lock, flags); 1899 1900 *tf = qc->result_tf; 1901 err_mask = qc->err_mask; 1902 1903 ata_qc_free(qc); 1904 link->active_tag = preempted_tag; 1905 link->sactive = preempted_sactive; 1906 ap->qc_active = preempted_qc_active; 1907 ap->nr_active_links = preempted_nr_active_links; 1908 1909 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1910 * Until those drivers are fixed, we detect the condition 1911 * here, fail the command with AC_ERR_SYSTEM and reenable the 1912 * port. 1913 * 1914 * Note that this doesn't change any behavior as internal 1915 * command failure results in disabling the device in the 1916 * higher layer for LLDDs without new reset/EH callbacks. 1917 * 1918 * Kill the following code as soon as those drivers are fixed. 1919 */ 1920 if (ap->flags & ATA_FLAG_DISABLED) { 1921 err_mask |= AC_ERR_SYSTEM; 1922 ata_port_probe(ap); 1923 } 1924 1925 spin_unlock_irqrestore(ap->lock, flags); 1926 1927 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1928 ata_internal_cmd_timed_out(dev, command); 1929 1930 return err_mask; 1931 } 1932 1933 /** 1934 * ata_exec_internal - execute libata internal command 1935 * @dev: Device to which the command is sent 1936 * @tf: Taskfile registers for the command and the result 1937 * @cdb: CDB for packet command 1938 * @dma_dir: Data tranfer direction of the command 1939 * @buf: Data buffer of the command 1940 * @buflen: Length of data buffer 1941 * @timeout: Timeout in msecs (0 for default) 1942 * 1943 * Wrapper around ata_exec_internal_sg() which takes simple 1944 * buffer instead of sg list. 1945 * 1946 * LOCKING: 1947 * None. Should be called with kernel context, might sleep. 1948 * 1949 * RETURNS: 1950 * Zero on success, AC_ERR_* mask on failure 1951 */ 1952 unsigned ata_exec_internal(struct ata_device *dev, 1953 struct ata_taskfile *tf, const u8 *cdb, 1954 int dma_dir, void *buf, unsigned int buflen, 1955 unsigned long timeout) 1956 { 1957 struct scatterlist *psg = NULL, sg; 1958 unsigned int n_elem = 0; 1959 1960 if (dma_dir != DMA_NONE) { 1961 WARN_ON(!buf); 1962 sg_init_one(&sg, buf, buflen); 1963 psg = &sg; 1964 n_elem++; 1965 } 1966 1967 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1968 timeout); 1969 } 1970 1971 /** 1972 * ata_do_simple_cmd - execute simple internal command 1973 * @dev: Device to which the command is sent 1974 * @cmd: Opcode to execute 1975 * 1976 * Execute a 'simple' command, that only consists of the opcode 1977 * 'cmd' itself, without filling any other registers 1978 * 1979 * LOCKING: 1980 * Kernel thread context (may sleep). 1981 * 1982 * RETURNS: 1983 * Zero on success, AC_ERR_* mask on failure 1984 */ 1985 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1986 { 1987 struct ata_taskfile tf; 1988 1989 ata_tf_init(dev, &tf); 1990 1991 tf.command = cmd; 1992 tf.flags |= ATA_TFLAG_DEVICE; 1993 tf.protocol = ATA_PROT_NODATA; 1994 1995 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1996 } 1997 1998 /** 1999 * ata_pio_need_iordy - check if iordy needed 2000 * @adev: ATA device 2001 * 2002 * Check if the current speed of the device requires IORDY. Used 2003 * by various controllers for chip configuration. 2004 */ 2005 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 2006 { 2007 /* Don't set IORDY if we're preparing for reset. IORDY may 2008 * lead to controller lock up on certain controllers if the 2009 * port is not occupied. See bko#11703 for details. 2010 */ 2011 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 2012 return 0; 2013 /* Controller doesn't support IORDY. Probably a pointless 2014 * check as the caller should know this. 2015 */ 2016 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 2017 return 0; 2018 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 2019 if (ata_id_is_cfa(adev->id) 2020 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2021 return 0; 2022 /* PIO3 and higher it is mandatory */ 2023 if (adev->pio_mode > XFER_PIO_2) 2024 return 1; 2025 /* We turn it on when possible */ 2026 if (ata_id_has_iordy(adev->id)) 2027 return 1; 2028 return 0; 2029 } 2030 2031 /** 2032 * ata_pio_mask_no_iordy - Return the non IORDY mask 2033 * @adev: ATA device 2034 * 2035 * Compute the highest mode possible if we are not using iordy. Return 2036 * -1 if no iordy mode is available. 2037 */ 2038 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2039 { 2040 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2041 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2042 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2043 /* Is the speed faster than the drive allows non IORDY ? */ 2044 if (pio) { 2045 /* This is cycle times not frequency - watch the logic! */ 2046 if (pio > 240) /* PIO2 is 240nS per cycle */ 2047 return 3 << ATA_SHIFT_PIO; 2048 return 7 << ATA_SHIFT_PIO; 2049 } 2050 } 2051 return 3 << ATA_SHIFT_PIO; 2052 } 2053 2054 /** 2055 * ata_do_dev_read_id - default ID read method 2056 * @dev: device 2057 * @tf: proposed taskfile 2058 * @id: data buffer 2059 * 2060 * Issue the identify taskfile and hand back the buffer containing 2061 * identify data. For some RAID controllers and for pre ATA devices 2062 * this function is wrapped or replaced by the driver 2063 */ 2064 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2065 struct ata_taskfile *tf, u16 *id) 2066 { 2067 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2068 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2069 } 2070 2071 /** 2072 * ata_dev_read_id - Read ID data from the specified device 2073 * @dev: target device 2074 * @p_class: pointer to class of the target device (may be changed) 2075 * @flags: ATA_READID_* flags 2076 * @id: buffer to read IDENTIFY data into 2077 * 2078 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2079 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2080 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2081 * for pre-ATA4 drives. 2082 * 2083 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2084 * now we abort if we hit that case. 2085 * 2086 * LOCKING: 2087 * Kernel thread context (may sleep) 2088 * 2089 * RETURNS: 2090 * 0 on success, -errno otherwise. 2091 */ 2092 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2093 unsigned int flags, u16 *id) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 unsigned int class = *p_class; 2097 struct ata_taskfile tf; 2098 unsigned int err_mask = 0; 2099 const char *reason; 2100 bool is_semb = class == ATA_DEV_SEMB; 2101 int may_fallback = 1, tried_spinup = 0; 2102 int rc; 2103 2104 if (ata_msg_ctl(ap)) 2105 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2106 2107 retry: 2108 ata_tf_init(dev, &tf); 2109 2110 switch (class) { 2111 case ATA_DEV_SEMB: 2112 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2113 case ATA_DEV_ATA: 2114 tf.command = ATA_CMD_ID_ATA; 2115 break; 2116 case ATA_DEV_ATAPI: 2117 tf.command = ATA_CMD_ID_ATAPI; 2118 break; 2119 default: 2120 rc = -ENODEV; 2121 reason = "unsupported class"; 2122 goto err_out; 2123 } 2124 2125 tf.protocol = ATA_PROT_PIO; 2126 2127 /* Some devices choke if TF registers contain garbage. Make 2128 * sure those are properly initialized. 2129 */ 2130 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2131 2132 /* Device presence detection is unreliable on some 2133 * controllers. Always poll IDENTIFY if available. 2134 */ 2135 tf.flags |= ATA_TFLAG_POLLING; 2136 2137 if (ap->ops->read_id) 2138 err_mask = ap->ops->read_id(dev, &tf, id); 2139 else 2140 err_mask = ata_do_dev_read_id(dev, &tf, id); 2141 2142 if (err_mask) { 2143 if (err_mask & AC_ERR_NODEV_HINT) { 2144 ata_dev_printk(dev, KERN_DEBUG, 2145 "NODEV after polling detection\n"); 2146 return -ENOENT; 2147 } 2148 2149 if (is_semb) { 2150 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2151 "device w/ SEMB sig, disabled\n"); 2152 /* SEMB is not supported yet */ 2153 *p_class = ATA_DEV_SEMB_UNSUP; 2154 return 0; 2155 } 2156 2157 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2158 /* Device or controller might have reported 2159 * the wrong device class. Give a shot at the 2160 * other IDENTIFY if the current one is 2161 * aborted by the device. 2162 */ 2163 if (may_fallback) { 2164 may_fallback = 0; 2165 2166 if (class == ATA_DEV_ATA) 2167 class = ATA_DEV_ATAPI; 2168 else 2169 class = ATA_DEV_ATA; 2170 goto retry; 2171 } 2172 2173 /* Control reaches here iff the device aborted 2174 * both flavors of IDENTIFYs which happens 2175 * sometimes with phantom devices. 2176 */ 2177 ata_dev_printk(dev, KERN_DEBUG, 2178 "both IDENTIFYs aborted, assuming NODEV\n"); 2179 return -ENOENT; 2180 } 2181 2182 rc = -EIO; 2183 reason = "I/O error"; 2184 goto err_out; 2185 } 2186 2187 /* Falling back doesn't make sense if ID data was read 2188 * successfully at least once. 2189 */ 2190 may_fallback = 0; 2191 2192 swap_buf_le16(id, ATA_ID_WORDS); 2193 2194 /* sanity check */ 2195 rc = -EINVAL; 2196 reason = "device reports invalid type"; 2197 2198 if (class == ATA_DEV_ATA) { 2199 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2200 goto err_out; 2201 } else { 2202 if (ata_id_is_ata(id)) 2203 goto err_out; 2204 } 2205 2206 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2207 tried_spinup = 1; 2208 /* 2209 * Drive powered-up in standby mode, and requires a specific 2210 * SET_FEATURES spin-up subcommand before it will accept 2211 * anything other than the original IDENTIFY command. 2212 */ 2213 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2214 if (err_mask && id[2] != 0x738c) { 2215 rc = -EIO; 2216 reason = "SPINUP failed"; 2217 goto err_out; 2218 } 2219 /* 2220 * If the drive initially returned incomplete IDENTIFY info, 2221 * we now must reissue the IDENTIFY command. 2222 */ 2223 if (id[2] == 0x37c8) 2224 goto retry; 2225 } 2226 2227 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2228 /* 2229 * The exact sequence expected by certain pre-ATA4 drives is: 2230 * SRST RESET 2231 * IDENTIFY (optional in early ATA) 2232 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2233 * anything else.. 2234 * Some drives were very specific about that exact sequence. 2235 * 2236 * Note that ATA4 says lba is mandatory so the second check 2237 * should never trigger. 2238 */ 2239 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2240 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2241 if (err_mask) { 2242 rc = -EIO; 2243 reason = "INIT_DEV_PARAMS failed"; 2244 goto err_out; 2245 } 2246 2247 /* current CHS translation info (id[53-58]) might be 2248 * changed. reread the identify device info. 2249 */ 2250 flags &= ~ATA_READID_POSTRESET; 2251 goto retry; 2252 } 2253 } 2254 2255 *p_class = class; 2256 2257 return 0; 2258 2259 err_out: 2260 if (ata_msg_warn(ap)) 2261 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2262 "(%s, err_mask=0x%x)\n", reason, err_mask); 2263 return rc; 2264 } 2265 2266 static int ata_do_link_spd_horkage(struct ata_device *dev) 2267 { 2268 struct ata_link *plink = ata_dev_phys_link(dev); 2269 u32 target, target_limit; 2270 2271 if (!sata_scr_valid(plink)) 2272 return 0; 2273 2274 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2275 target = 1; 2276 else 2277 return 0; 2278 2279 target_limit = (1 << target) - 1; 2280 2281 /* if already on stricter limit, no need to push further */ 2282 if (plink->sata_spd_limit <= target_limit) 2283 return 0; 2284 2285 plink->sata_spd_limit = target_limit; 2286 2287 /* Request another EH round by returning -EAGAIN if link is 2288 * going faster than the target speed. Forward progress is 2289 * guaranteed by setting sata_spd_limit to target_limit above. 2290 */ 2291 if (plink->sata_spd > target) { 2292 ata_dev_printk(dev, KERN_INFO, 2293 "applying link speed limit horkage to %s\n", 2294 sata_spd_string(target)); 2295 return -EAGAIN; 2296 } 2297 return 0; 2298 } 2299 2300 static inline u8 ata_dev_knobble(struct ata_device *dev) 2301 { 2302 struct ata_port *ap = dev->link->ap; 2303 2304 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2305 return 0; 2306 2307 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2308 } 2309 2310 static int ata_dev_config_ncq(struct ata_device *dev, 2311 char *desc, size_t desc_sz) 2312 { 2313 struct ata_port *ap = dev->link->ap; 2314 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2315 unsigned int err_mask; 2316 char *aa_desc = ""; 2317 2318 if (!ata_id_has_ncq(dev->id)) { 2319 desc[0] = '\0'; 2320 return 0; 2321 } 2322 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2323 snprintf(desc, desc_sz, "NCQ (not used)"); 2324 return 0; 2325 } 2326 if (ap->flags & ATA_FLAG_NCQ) { 2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2328 dev->flags |= ATA_DFLAG_NCQ; 2329 } 2330 2331 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2332 (ap->flags & ATA_FLAG_FPDMA_AA) && 2333 ata_id_has_fpdma_aa(dev->id)) { 2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2335 SATA_FPDMA_AA); 2336 if (err_mask) { 2337 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2338 "(error_mask=0x%x)\n", err_mask); 2339 if (err_mask != AC_ERR_DEV) { 2340 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2341 return -EIO; 2342 } 2343 } else 2344 aa_desc = ", AA"; 2345 } 2346 2347 if (hdepth >= ddepth) 2348 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2349 else 2350 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2351 ddepth, aa_desc); 2352 return 0; 2353 } 2354 2355 /** 2356 * ata_dev_configure - Configure the specified ATA/ATAPI device 2357 * @dev: Target device to configure 2358 * 2359 * Configure @dev according to @dev->id. Generic and low-level 2360 * driver specific fixups are also applied. 2361 * 2362 * LOCKING: 2363 * Kernel thread context (may sleep) 2364 * 2365 * RETURNS: 2366 * 0 on success, -errno otherwise 2367 */ 2368 int ata_dev_configure(struct ata_device *dev) 2369 { 2370 struct ata_port *ap = dev->link->ap; 2371 struct ata_eh_context *ehc = &dev->link->eh_context; 2372 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2373 const u16 *id = dev->id; 2374 unsigned long xfer_mask; 2375 char revbuf[7]; /* XYZ-99\0 */ 2376 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2377 char modelbuf[ATA_ID_PROD_LEN+1]; 2378 int rc; 2379 2380 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2381 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2382 __func__); 2383 return 0; 2384 } 2385 2386 if (ata_msg_probe(ap)) 2387 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2388 2389 /* set horkage */ 2390 dev->horkage |= ata_dev_blacklisted(dev); 2391 ata_force_horkage(dev); 2392 2393 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2394 ata_dev_printk(dev, KERN_INFO, 2395 "unsupported device, disabling\n"); 2396 ata_dev_disable(dev); 2397 return 0; 2398 } 2399 2400 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2401 dev->class == ATA_DEV_ATAPI) { 2402 ata_dev_printk(dev, KERN_WARNING, 2403 "WARNING: ATAPI is %s, device ignored.\n", 2404 atapi_enabled ? "not supported with this driver" 2405 : "disabled"); 2406 ata_dev_disable(dev); 2407 return 0; 2408 } 2409 2410 rc = ata_do_link_spd_horkage(dev); 2411 if (rc) 2412 return rc; 2413 2414 /* let ACPI work its magic */ 2415 rc = ata_acpi_on_devcfg(dev); 2416 if (rc) 2417 return rc; 2418 2419 /* massage HPA, do it early as it might change IDENTIFY data */ 2420 rc = ata_hpa_resize(dev); 2421 if (rc) 2422 return rc; 2423 2424 /* print device capabilities */ 2425 if (ata_msg_probe(ap)) 2426 ata_dev_printk(dev, KERN_DEBUG, 2427 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2428 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2429 __func__, 2430 id[49], id[82], id[83], id[84], 2431 id[85], id[86], id[87], id[88]); 2432 2433 /* initialize to-be-configured parameters */ 2434 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2435 dev->max_sectors = 0; 2436 dev->cdb_len = 0; 2437 dev->n_sectors = 0; 2438 dev->cylinders = 0; 2439 dev->heads = 0; 2440 dev->sectors = 0; 2441 dev->multi_count = 0; 2442 2443 /* 2444 * common ATA, ATAPI feature tests 2445 */ 2446 2447 /* find max transfer mode; for printk only */ 2448 xfer_mask = ata_id_xfermask(id); 2449 2450 if (ata_msg_probe(ap)) 2451 ata_dump_id(id); 2452 2453 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2454 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2455 sizeof(fwrevbuf)); 2456 2457 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2458 sizeof(modelbuf)); 2459 2460 /* ATA-specific feature tests */ 2461 if (dev->class == ATA_DEV_ATA) { 2462 if (ata_id_is_cfa(id)) { 2463 /* CPRM may make this media unusable */ 2464 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2465 ata_dev_printk(dev, KERN_WARNING, 2466 "supports DRM functions and may " 2467 "not be fully accessable.\n"); 2468 snprintf(revbuf, 7, "CFA"); 2469 } else { 2470 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2471 /* Warn the user if the device has TPM extensions */ 2472 if (ata_id_has_tpm(id)) 2473 ata_dev_printk(dev, KERN_WARNING, 2474 "supports DRM functions and may " 2475 "not be fully accessable.\n"); 2476 } 2477 2478 dev->n_sectors = ata_id_n_sectors(id); 2479 2480 /* get current R/W Multiple count setting */ 2481 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2482 unsigned int max = dev->id[47] & 0xff; 2483 unsigned int cnt = dev->id[59] & 0xff; 2484 /* only recognize/allow powers of two here */ 2485 if (is_power_of_2(max) && is_power_of_2(cnt)) 2486 if (cnt <= max) 2487 dev->multi_count = cnt; 2488 } 2489 2490 if (ata_id_has_lba(id)) { 2491 const char *lba_desc; 2492 char ncq_desc[24]; 2493 2494 lba_desc = "LBA"; 2495 dev->flags |= ATA_DFLAG_LBA; 2496 if (ata_id_has_lba48(id)) { 2497 dev->flags |= ATA_DFLAG_LBA48; 2498 lba_desc = "LBA48"; 2499 2500 if (dev->n_sectors >= (1UL << 28) && 2501 ata_id_has_flush_ext(id)) 2502 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2503 } 2504 2505 /* config NCQ */ 2506 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2507 if (rc) 2508 return rc; 2509 2510 /* print device info to dmesg */ 2511 if (ata_msg_drv(ap) && print_info) { 2512 ata_dev_printk(dev, KERN_INFO, 2513 "%s: %s, %s, max %s\n", 2514 revbuf, modelbuf, fwrevbuf, 2515 ata_mode_string(xfer_mask)); 2516 ata_dev_printk(dev, KERN_INFO, 2517 "%Lu sectors, multi %u: %s %s\n", 2518 (unsigned long long)dev->n_sectors, 2519 dev->multi_count, lba_desc, ncq_desc); 2520 } 2521 } else { 2522 /* CHS */ 2523 2524 /* Default translation */ 2525 dev->cylinders = id[1]; 2526 dev->heads = id[3]; 2527 dev->sectors = id[6]; 2528 2529 if (ata_id_current_chs_valid(id)) { 2530 /* Current CHS translation is valid. */ 2531 dev->cylinders = id[54]; 2532 dev->heads = id[55]; 2533 dev->sectors = id[56]; 2534 } 2535 2536 /* print device info to dmesg */ 2537 if (ata_msg_drv(ap) && print_info) { 2538 ata_dev_printk(dev, KERN_INFO, 2539 "%s: %s, %s, max %s\n", 2540 revbuf, modelbuf, fwrevbuf, 2541 ata_mode_string(xfer_mask)); 2542 ata_dev_printk(dev, KERN_INFO, 2543 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2544 (unsigned long long)dev->n_sectors, 2545 dev->multi_count, dev->cylinders, 2546 dev->heads, dev->sectors); 2547 } 2548 } 2549 2550 dev->cdb_len = 16; 2551 } 2552 2553 /* ATAPI-specific feature tests */ 2554 else if (dev->class == ATA_DEV_ATAPI) { 2555 const char *cdb_intr_string = ""; 2556 const char *atapi_an_string = ""; 2557 const char *dma_dir_string = ""; 2558 u32 sntf; 2559 2560 rc = atapi_cdb_len(id); 2561 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2562 if (ata_msg_warn(ap)) 2563 ata_dev_printk(dev, KERN_WARNING, 2564 "unsupported CDB len\n"); 2565 rc = -EINVAL; 2566 goto err_out_nosup; 2567 } 2568 dev->cdb_len = (unsigned int) rc; 2569 2570 /* Enable ATAPI AN if both the host and device have 2571 * the support. If PMP is attached, SNTF is required 2572 * to enable ATAPI AN to discern between PHY status 2573 * changed notifications and ATAPI ANs. 2574 */ 2575 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2576 (!sata_pmp_attached(ap) || 2577 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2578 unsigned int err_mask; 2579 2580 /* issue SET feature command to turn this on */ 2581 err_mask = ata_dev_set_feature(dev, 2582 SETFEATURES_SATA_ENABLE, SATA_AN); 2583 if (err_mask) 2584 ata_dev_printk(dev, KERN_ERR, 2585 "failed to enable ATAPI AN " 2586 "(err_mask=0x%x)\n", err_mask); 2587 else { 2588 dev->flags |= ATA_DFLAG_AN; 2589 atapi_an_string = ", ATAPI AN"; 2590 } 2591 } 2592 2593 if (ata_id_cdb_intr(dev->id)) { 2594 dev->flags |= ATA_DFLAG_CDB_INTR; 2595 cdb_intr_string = ", CDB intr"; 2596 } 2597 2598 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2599 dev->flags |= ATA_DFLAG_DMADIR; 2600 dma_dir_string = ", DMADIR"; 2601 } 2602 2603 /* print device info to dmesg */ 2604 if (ata_msg_drv(ap) && print_info) 2605 ata_dev_printk(dev, KERN_INFO, 2606 "ATAPI: %s, %s, max %s%s%s%s\n", 2607 modelbuf, fwrevbuf, 2608 ata_mode_string(xfer_mask), 2609 cdb_intr_string, atapi_an_string, 2610 dma_dir_string); 2611 } 2612 2613 /* determine max_sectors */ 2614 dev->max_sectors = ATA_MAX_SECTORS; 2615 if (dev->flags & ATA_DFLAG_LBA48) 2616 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2617 2618 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2619 if (ata_id_has_hipm(dev->id)) 2620 dev->flags |= ATA_DFLAG_HIPM; 2621 if (ata_id_has_dipm(dev->id)) 2622 dev->flags |= ATA_DFLAG_DIPM; 2623 } 2624 2625 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2626 200 sectors */ 2627 if (ata_dev_knobble(dev)) { 2628 if (ata_msg_drv(ap) && print_info) 2629 ata_dev_printk(dev, KERN_INFO, 2630 "applying bridge limits\n"); 2631 dev->udma_mask &= ATA_UDMA5; 2632 dev->max_sectors = ATA_MAX_SECTORS; 2633 } 2634 2635 if ((dev->class == ATA_DEV_ATAPI) && 2636 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2637 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2638 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2639 } 2640 2641 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2642 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2643 dev->max_sectors); 2644 2645 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2646 dev->horkage |= ATA_HORKAGE_IPM; 2647 2648 /* reset link pm_policy for this port to no pm */ 2649 ap->pm_policy = MAX_PERFORMANCE; 2650 } 2651 2652 if (ap->ops->dev_config) 2653 ap->ops->dev_config(dev); 2654 2655 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2656 /* Let the user know. We don't want to disallow opens for 2657 rescue purposes, or in case the vendor is just a blithering 2658 idiot. Do this after the dev_config call as some controllers 2659 with buggy firmware may want to avoid reporting false device 2660 bugs */ 2661 2662 if (print_info) { 2663 ata_dev_printk(dev, KERN_WARNING, 2664 "Drive reports diagnostics failure. This may indicate a drive\n"); 2665 ata_dev_printk(dev, KERN_WARNING, 2666 "fault or invalid emulation. Contact drive vendor for information.\n"); 2667 } 2668 } 2669 2670 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2671 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2672 "firmware update to be fully functional.\n"); 2673 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2674 "or visit http://ata.wiki.kernel.org.\n"); 2675 } 2676 2677 return 0; 2678 2679 err_out_nosup: 2680 if (ata_msg_probe(ap)) 2681 ata_dev_printk(dev, KERN_DEBUG, 2682 "%s: EXIT, err\n", __func__); 2683 return rc; 2684 } 2685 2686 /** 2687 * ata_cable_40wire - return 40 wire cable type 2688 * @ap: port 2689 * 2690 * Helper method for drivers which want to hardwire 40 wire cable 2691 * detection. 2692 */ 2693 2694 int ata_cable_40wire(struct ata_port *ap) 2695 { 2696 return ATA_CBL_PATA40; 2697 } 2698 2699 /** 2700 * ata_cable_80wire - return 80 wire cable type 2701 * @ap: port 2702 * 2703 * Helper method for drivers which want to hardwire 80 wire cable 2704 * detection. 2705 */ 2706 2707 int ata_cable_80wire(struct ata_port *ap) 2708 { 2709 return ATA_CBL_PATA80; 2710 } 2711 2712 /** 2713 * ata_cable_unknown - return unknown PATA cable. 2714 * @ap: port 2715 * 2716 * Helper method for drivers which have no PATA cable detection. 2717 */ 2718 2719 int ata_cable_unknown(struct ata_port *ap) 2720 { 2721 return ATA_CBL_PATA_UNK; 2722 } 2723 2724 /** 2725 * ata_cable_ignore - return ignored PATA cable. 2726 * @ap: port 2727 * 2728 * Helper method for drivers which don't use cable type to limit 2729 * transfer mode. 2730 */ 2731 int ata_cable_ignore(struct ata_port *ap) 2732 { 2733 return ATA_CBL_PATA_IGN; 2734 } 2735 2736 /** 2737 * ata_cable_sata - return SATA cable type 2738 * @ap: port 2739 * 2740 * Helper method for drivers which have SATA cables 2741 */ 2742 2743 int ata_cable_sata(struct ata_port *ap) 2744 { 2745 return ATA_CBL_SATA; 2746 } 2747 2748 /** 2749 * ata_bus_probe - Reset and probe ATA bus 2750 * @ap: Bus to probe 2751 * 2752 * Master ATA bus probing function. Initiates a hardware-dependent 2753 * bus reset, then attempts to identify any devices found on 2754 * the bus. 2755 * 2756 * LOCKING: 2757 * PCI/etc. bus probe sem. 2758 * 2759 * RETURNS: 2760 * Zero on success, negative errno otherwise. 2761 */ 2762 2763 int ata_bus_probe(struct ata_port *ap) 2764 { 2765 unsigned int classes[ATA_MAX_DEVICES]; 2766 int tries[ATA_MAX_DEVICES]; 2767 int rc; 2768 struct ata_device *dev; 2769 2770 ata_port_probe(ap); 2771 2772 ata_for_each_dev(dev, &ap->link, ALL) 2773 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2774 2775 retry: 2776 ata_for_each_dev(dev, &ap->link, ALL) { 2777 /* If we issue an SRST then an ATA drive (not ATAPI) 2778 * may change configuration and be in PIO0 timing. If 2779 * we do a hard reset (or are coming from power on) 2780 * this is true for ATA or ATAPI. Until we've set a 2781 * suitable controller mode we should not touch the 2782 * bus as we may be talking too fast. 2783 */ 2784 dev->pio_mode = XFER_PIO_0; 2785 2786 /* If the controller has a pio mode setup function 2787 * then use it to set the chipset to rights. Don't 2788 * touch the DMA setup as that will be dealt with when 2789 * configuring devices. 2790 */ 2791 if (ap->ops->set_piomode) 2792 ap->ops->set_piomode(ap, dev); 2793 } 2794 2795 /* reset and determine device classes */ 2796 ap->ops->phy_reset(ap); 2797 2798 ata_for_each_dev(dev, &ap->link, ALL) { 2799 if (!(ap->flags & ATA_FLAG_DISABLED) && 2800 dev->class != ATA_DEV_UNKNOWN) 2801 classes[dev->devno] = dev->class; 2802 else 2803 classes[dev->devno] = ATA_DEV_NONE; 2804 2805 dev->class = ATA_DEV_UNKNOWN; 2806 } 2807 2808 ata_port_probe(ap); 2809 2810 /* read IDENTIFY page and configure devices. We have to do the identify 2811 specific sequence bass-ackwards so that PDIAG- is released by 2812 the slave device */ 2813 2814 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2815 if (tries[dev->devno]) 2816 dev->class = classes[dev->devno]; 2817 2818 if (!ata_dev_enabled(dev)) 2819 continue; 2820 2821 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2822 dev->id); 2823 if (rc) 2824 goto fail; 2825 } 2826 2827 /* Now ask for the cable type as PDIAG- should have been released */ 2828 if (ap->ops->cable_detect) 2829 ap->cbl = ap->ops->cable_detect(ap); 2830 2831 /* We may have SATA bridge glue hiding here irrespective of 2832 * the reported cable types and sensed types. When SATA 2833 * drives indicate we have a bridge, we don't know which end 2834 * of the link the bridge is which is a problem. 2835 */ 2836 ata_for_each_dev(dev, &ap->link, ENABLED) 2837 if (ata_id_is_sata(dev->id)) 2838 ap->cbl = ATA_CBL_SATA; 2839 2840 /* After the identify sequence we can now set up the devices. We do 2841 this in the normal order so that the user doesn't get confused */ 2842 2843 ata_for_each_dev(dev, &ap->link, ENABLED) { 2844 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2845 rc = ata_dev_configure(dev); 2846 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2847 if (rc) 2848 goto fail; 2849 } 2850 2851 /* configure transfer mode */ 2852 rc = ata_set_mode(&ap->link, &dev); 2853 if (rc) 2854 goto fail; 2855 2856 ata_for_each_dev(dev, &ap->link, ENABLED) 2857 return 0; 2858 2859 /* no device present, disable port */ 2860 ata_port_disable(ap); 2861 return -ENODEV; 2862 2863 fail: 2864 tries[dev->devno]--; 2865 2866 switch (rc) { 2867 case -EINVAL: 2868 /* eeek, something went very wrong, give up */ 2869 tries[dev->devno] = 0; 2870 break; 2871 2872 case -ENODEV: 2873 /* give it just one more chance */ 2874 tries[dev->devno] = min(tries[dev->devno], 1); 2875 case -EIO: 2876 if (tries[dev->devno] == 1) { 2877 /* This is the last chance, better to slow 2878 * down than lose it. 2879 */ 2880 sata_down_spd_limit(&ap->link, 0); 2881 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2882 } 2883 } 2884 2885 if (!tries[dev->devno]) 2886 ata_dev_disable(dev); 2887 2888 goto retry; 2889 } 2890 2891 /** 2892 * ata_port_probe - Mark port as enabled 2893 * @ap: Port for which we indicate enablement 2894 * 2895 * Modify @ap data structure such that the system 2896 * thinks that the entire port is enabled. 2897 * 2898 * LOCKING: host lock, or some other form of 2899 * serialization. 2900 */ 2901 2902 void ata_port_probe(struct ata_port *ap) 2903 { 2904 ap->flags &= ~ATA_FLAG_DISABLED; 2905 } 2906 2907 /** 2908 * sata_print_link_status - Print SATA link status 2909 * @link: SATA link to printk link status about 2910 * 2911 * This function prints link speed and status of a SATA link. 2912 * 2913 * LOCKING: 2914 * None. 2915 */ 2916 static void sata_print_link_status(struct ata_link *link) 2917 { 2918 u32 sstatus, scontrol, tmp; 2919 2920 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2921 return; 2922 sata_scr_read(link, SCR_CONTROL, &scontrol); 2923 2924 if (ata_phys_link_online(link)) { 2925 tmp = (sstatus >> 4) & 0xf; 2926 ata_link_printk(link, KERN_INFO, 2927 "SATA link up %s (SStatus %X SControl %X)\n", 2928 sata_spd_string(tmp), sstatus, scontrol); 2929 } else { 2930 ata_link_printk(link, KERN_INFO, 2931 "SATA link down (SStatus %X SControl %X)\n", 2932 sstatus, scontrol); 2933 } 2934 } 2935 2936 /** 2937 * ata_dev_pair - return other device on cable 2938 * @adev: device 2939 * 2940 * Obtain the other device on the same cable, or if none is 2941 * present NULL is returned 2942 */ 2943 2944 struct ata_device *ata_dev_pair(struct ata_device *adev) 2945 { 2946 struct ata_link *link = adev->link; 2947 struct ata_device *pair = &link->device[1 - adev->devno]; 2948 if (!ata_dev_enabled(pair)) 2949 return NULL; 2950 return pair; 2951 } 2952 2953 /** 2954 * ata_port_disable - Disable port. 2955 * @ap: Port to be disabled. 2956 * 2957 * Modify @ap data structure such that the system 2958 * thinks that the entire port is disabled, and should 2959 * never attempt to probe or communicate with devices 2960 * on this port. 2961 * 2962 * LOCKING: host lock, or some other form of 2963 * serialization. 2964 */ 2965 2966 void ata_port_disable(struct ata_port *ap) 2967 { 2968 ap->link.device[0].class = ATA_DEV_NONE; 2969 ap->link.device[1].class = ATA_DEV_NONE; 2970 ap->flags |= ATA_FLAG_DISABLED; 2971 } 2972 2973 /** 2974 * sata_down_spd_limit - adjust SATA spd limit downward 2975 * @link: Link to adjust SATA spd limit for 2976 * @spd_limit: Additional limit 2977 * 2978 * Adjust SATA spd limit of @link downward. Note that this 2979 * function only adjusts the limit. The change must be applied 2980 * using sata_set_spd(). 2981 * 2982 * If @spd_limit is non-zero, the speed is limited to equal to or 2983 * lower than @spd_limit if such speed is supported. If 2984 * @spd_limit is slower than any supported speed, only the lowest 2985 * supported speed is allowed. 2986 * 2987 * LOCKING: 2988 * Inherited from caller. 2989 * 2990 * RETURNS: 2991 * 0 on success, negative errno on failure 2992 */ 2993 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2994 { 2995 u32 sstatus, spd, mask; 2996 int rc, bit; 2997 2998 if (!sata_scr_valid(link)) 2999 return -EOPNOTSUPP; 3000 3001 /* If SCR can be read, use it to determine the current SPD. 3002 * If not, use cached value in link->sata_spd. 3003 */ 3004 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3005 if (rc == 0 && ata_sstatus_online(sstatus)) 3006 spd = (sstatus >> 4) & 0xf; 3007 else 3008 spd = link->sata_spd; 3009 3010 mask = link->sata_spd_limit; 3011 if (mask <= 1) 3012 return -EINVAL; 3013 3014 /* unconditionally mask off the highest bit */ 3015 bit = fls(mask) - 1; 3016 mask &= ~(1 << bit); 3017 3018 /* Mask off all speeds higher than or equal to the current 3019 * one. Force 1.5Gbps if current SPD is not available. 3020 */ 3021 if (spd > 1) 3022 mask &= (1 << (spd - 1)) - 1; 3023 else 3024 mask &= 1; 3025 3026 /* were we already at the bottom? */ 3027 if (!mask) 3028 return -EINVAL; 3029 3030 if (spd_limit) { 3031 if (mask & ((1 << spd_limit) - 1)) 3032 mask &= (1 << spd_limit) - 1; 3033 else { 3034 bit = ffs(mask) - 1; 3035 mask = 1 << bit; 3036 } 3037 } 3038 3039 link->sata_spd_limit = mask; 3040 3041 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 3042 sata_spd_string(fls(mask))); 3043 3044 return 0; 3045 } 3046 3047 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3048 { 3049 struct ata_link *host_link = &link->ap->link; 3050 u32 limit, target, spd; 3051 3052 limit = link->sata_spd_limit; 3053 3054 /* Don't configure downstream link faster than upstream link. 3055 * It doesn't speed up anything and some PMPs choke on such 3056 * configuration. 3057 */ 3058 if (!ata_is_host_link(link) && host_link->sata_spd) 3059 limit &= (1 << host_link->sata_spd) - 1; 3060 3061 if (limit == UINT_MAX) 3062 target = 0; 3063 else 3064 target = fls(limit); 3065 3066 spd = (*scontrol >> 4) & 0xf; 3067 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3068 3069 return spd != target; 3070 } 3071 3072 /** 3073 * sata_set_spd_needed - is SATA spd configuration needed 3074 * @link: Link in question 3075 * 3076 * Test whether the spd limit in SControl matches 3077 * @link->sata_spd_limit. This function is used to determine 3078 * whether hardreset is necessary to apply SATA spd 3079 * configuration. 3080 * 3081 * LOCKING: 3082 * Inherited from caller. 3083 * 3084 * RETURNS: 3085 * 1 if SATA spd configuration is needed, 0 otherwise. 3086 */ 3087 static int sata_set_spd_needed(struct ata_link *link) 3088 { 3089 u32 scontrol; 3090 3091 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3092 return 1; 3093 3094 return __sata_set_spd_needed(link, &scontrol); 3095 } 3096 3097 /** 3098 * sata_set_spd - set SATA spd according to spd limit 3099 * @link: Link to set SATA spd for 3100 * 3101 * Set SATA spd of @link according to sata_spd_limit. 3102 * 3103 * LOCKING: 3104 * Inherited from caller. 3105 * 3106 * RETURNS: 3107 * 0 if spd doesn't need to be changed, 1 if spd has been 3108 * changed. Negative errno if SCR registers are inaccessible. 3109 */ 3110 int sata_set_spd(struct ata_link *link) 3111 { 3112 u32 scontrol; 3113 int rc; 3114 3115 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3116 return rc; 3117 3118 if (!__sata_set_spd_needed(link, &scontrol)) 3119 return 0; 3120 3121 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3122 return rc; 3123 3124 return 1; 3125 } 3126 3127 /* 3128 * This mode timing computation functionality is ported over from 3129 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3130 */ 3131 /* 3132 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3133 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3134 * for UDMA6, which is currently supported only by Maxtor drives. 3135 * 3136 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3137 */ 3138 3139 static const struct ata_timing ata_timing[] = { 3140 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3141 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3142 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3143 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3144 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3145 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3146 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3147 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3148 3149 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3150 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3151 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3152 3153 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3154 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3155 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3156 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3157 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3158 3159 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3160 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3161 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3162 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3163 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3164 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3165 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3166 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3167 3168 { 0xFF } 3169 }; 3170 3171 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3172 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3173 3174 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3175 { 3176 q->setup = EZ(t->setup * 1000, T); 3177 q->act8b = EZ(t->act8b * 1000, T); 3178 q->rec8b = EZ(t->rec8b * 1000, T); 3179 q->cyc8b = EZ(t->cyc8b * 1000, T); 3180 q->active = EZ(t->active * 1000, T); 3181 q->recover = EZ(t->recover * 1000, T); 3182 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3183 q->cycle = EZ(t->cycle * 1000, T); 3184 q->udma = EZ(t->udma * 1000, UT); 3185 } 3186 3187 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3188 struct ata_timing *m, unsigned int what) 3189 { 3190 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3191 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3192 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3193 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3194 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3195 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3196 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3197 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3198 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3199 } 3200 3201 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3202 { 3203 const struct ata_timing *t = ata_timing; 3204 3205 while (xfer_mode > t->mode) 3206 t++; 3207 3208 if (xfer_mode == t->mode) 3209 return t; 3210 return NULL; 3211 } 3212 3213 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3214 struct ata_timing *t, int T, int UT) 3215 { 3216 const u16 *id = adev->id; 3217 const struct ata_timing *s; 3218 struct ata_timing p; 3219 3220 /* 3221 * Find the mode. 3222 */ 3223 3224 if (!(s = ata_timing_find_mode(speed))) 3225 return -EINVAL; 3226 3227 memcpy(t, s, sizeof(*s)); 3228 3229 /* 3230 * If the drive is an EIDE drive, it can tell us it needs extended 3231 * PIO/MW_DMA cycle timing. 3232 */ 3233 3234 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3235 memset(&p, 0, sizeof(p)); 3236 3237 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3238 if (speed <= XFER_PIO_2) 3239 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3240 else if ((speed <= XFER_PIO_4) || 3241 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3242 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3243 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3244 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3245 3246 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3247 } 3248 3249 /* 3250 * Convert the timing to bus clock counts. 3251 */ 3252 3253 ata_timing_quantize(t, t, T, UT); 3254 3255 /* 3256 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3257 * S.M.A.R.T * and some other commands. We have to ensure that the 3258 * DMA cycle timing is slower/equal than the fastest PIO timing. 3259 */ 3260 3261 if (speed > XFER_PIO_6) { 3262 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3263 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3264 } 3265 3266 /* 3267 * Lengthen active & recovery time so that cycle time is correct. 3268 */ 3269 3270 if (t->act8b + t->rec8b < t->cyc8b) { 3271 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3272 t->rec8b = t->cyc8b - t->act8b; 3273 } 3274 3275 if (t->active + t->recover < t->cycle) { 3276 t->active += (t->cycle - (t->active + t->recover)) / 2; 3277 t->recover = t->cycle - t->active; 3278 } 3279 3280 /* In a few cases quantisation may produce enough errors to 3281 leave t->cycle too low for the sum of active and recovery 3282 if so we must correct this */ 3283 if (t->active + t->recover > t->cycle) 3284 t->cycle = t->active + t->recover; 3285 3286 return 0; 3287 } 3288 3289 /** 3290 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3291 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3292 * @cycle: cycle duration in ns 3293 * 3294 * Return matching xfer mode for @cycle. The returned mode is of 3295 * the transfer type specified by @xfer_shift. If @cycle is too 3296 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3297 * than the fastest known mode, the fasted mode is returned. 3298 * 3299 * LOCKING: 3300 * None. 3301 * 3302 * RETURNS: 3303 * Matching xfer_mode, 0xff if no match found. 3304 */ 3305 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3306 { 3307 u8 base_mode = 0xff, last_mode = 0xff; 3308 const struct ata_xfer_ent *ent; 3309 const struct ata_timing *t; 3310 3311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3312 if (ent->shift == xfer_shift) 3313 base_mode = ent->base; 3314 3315 for (t = ata_timing_find_mode(base_mode); 3316 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3317 unsigned short this_cycle; 3318 3319 switch (xfer_shift) { 3320 case ATA_SHIFT_PIO: 3321 case ATA_SHIFT_MWDMA: 3322 this_cycle = t->cycle; 3323 break; 3324 case ATA_SHIFT_UDMA: 3325 this_cycle = t->udma; 3326 break; 3327 default: 3328 return 0xff; 3329 } 3330 3331 if (cycle > this_cycle) 3332 break; 3333 3334 last_mode = t->mode; 3335 } 3336 3337 return last_mode; 3338 } 3339 3340 /** 3341 * ata_down_xfermask_limit - adjust dev xfer masks downward 3342 * @dev: Device to adjust xfer masks 3343 * @sel: ATA_DNXFER_* selector 3344 * 3345 * Adjust xfer masks of @dev downward. Note that this function 3346 * does not apply the change. Invoking ata_set_mode() afterwards 3347 * will apply the limit. 3348 * 3349 * LOCKING: 3350 * Inherited from caller. 3351 * 3352 * RETURNS: 3353 * 0 on success, negative errno on failure 3354 */ 3355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3356 { 3357 char buf[32]; 3358 unsigned long orig_mask, xfer_mask; 3359 unsigned long pio_mask, mwdma_mask, udma_mask; 3360 int quiet, highbit; 3361 3362 quiet = !!(sel & ATA_DNXFER_QUIET); 3363 sel &= ~ATA_DNXFER_QUIET; 3364 3365 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3366 dev->mwdma_mask, 3367 dev->udma_mask); 3368 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3369 3370 switch (sel) { 3371 case ATA_DNXFER_PIO: 3372 highbit = fls(pio_mask) - 1; 3373 pio_mask &= ~(1 << highbit); 3374 break; 3375 3376 case ATA_DNXFER_DMA: 3377 if (udma_mask) { 3378 highbit = fls(udma_mask) - 1; 3379 udma_mask &= ~(1 << highbit); 3380 if (!udma_mask) 3381 return -ENOENT; 3382 } else if (mwdma_mask) { 3383 highbit = fls(mwdma_mask) - 1; 3384 mwdma_mask &= ~(1 << highbit); 3385 if (!mwdma_mask) 3386 return -ENOENT; 3387 } 3388 break; 3389 3390 case ATA_DNXFER_40C: 3391 udma_mask &= ATA_UDMA_MASK_40C; 3392 break; 3393 3394 case ATA_DNXFER_FORCE_PIO0: 3395 pio_mask &= 1; 3396 case ATA_DNXFER_FORCE_PIO: 3397 mwdma_mask = 0; 3398 udma_mask = 0; 3399 break; 3400 3401 default: 3402 BUG(); 3403 } 3404 3405 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3406 3407 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3408 return -ENOENT; 3409 3410 if (!quiet) { 3411 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3412 snprintf(buf, sizeof(buf), "%s:%s", 3413 ata_mode_string(xfer_mask), 3414 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3415 else 3416 snprintf(buf, sizeof(buf), "%s", 3417 ata_mode_string(xfer_mask)); 3418 3419 ata_dev_printk(dev, KERN_WARNING, 3420 "limiting speed to %s\n", buf); 3421 } 3422 3423 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3424 &dev->udma_mask); 3425 3426 return 0; 3427 } 3428 3429 static int ata_dev_set_mode(struct ata_device *dev) 3430 { 3431 struct ata_port *ap = dev->link->ap; 3432 struct ata_eh_context *ehc = &dev->link->eh_context; 3433 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3434 const char *dev_err_whine = ""; 3435 int ign_dev_err = 0; 3436 unsigned int err_mask = 0; 3437 int rc; 3438 3439 dev->flags &= ~ATA_DFLAG_PIO; 3440 if (dev->xfer_shift == ATA_SHIFT_PIO) 3441 dev->flags |= ATA_DFLAG_PIO; 3442 3443 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3444 dev_err_whine = " (SET_XFERMODE skipped)"; 3445 else { 3446 if (nosetxfer) 3447 ata_dev_printk(dev, KERN_WARNING, 3448 "NOSETXFER but PATA detected - can't " 3449 "skip SETXFER, might malfunction\n"); 3450 err_mask = ata_dev_set_xfermode(dev); 3451 } 3452 3453 if (err_mask & ~AC_ERR_DEV) 3454 goto fail; 3455 3456 /* revalidate */ 3457 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3458 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3459 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3460 if (rc) 3461 return rc; 3462 3463 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3464 /* Old CFA may refuse this command, which is just fine */ 3465 if (ata_id_is_cfa(dev->id)) 3466 ign_dev_err = 1; 3467 /* Catch several broken garbage emulations plus some pre 3468 ATA devices */ 3469 if (ata_id_major_version(dev->id) == 0 && 3470 dev->pio_mode <= XFER_PIO_2) 3471 ign_dev_err = 1; 3472 /* Some very old devices and some bad newer ones fail 3473 any kind of SET_XFERMODE request but support PIO0-2 3474 timings and no IORDY */ 3475 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3476 ign_dev_err = 1; 3477 } 3478 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3479 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3480 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3481 dev->dma_mode == XFER_MW_DMA_0 && 3482 (dev->id[63] >> 8) & 1) 3483 ign_dev_err = 1; 3484 3485 /* if the device is actually configured correctly, ignore dev err */ 3486 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3487 ign_dev_err = 1; 3488 3489 if (err_mask & AC_ERR_DEV) { 3490 if (!ign_dev_err) 3491 goto fail; 3492 else 3493 dev_err_whine = " (device error ignored)"; 3494 } 3495 3496 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3497 dev->xfer_shift, (int)dev->xfer_mode); 3498 3499 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3500 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3501 dev_err_whine); 3502 3503 return 0; 3504 3505 fail: 3506 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3507 "(err_mask=0x%x)\n", err_mask); 3508 return -EIO; 3509 } 3510 3511 /** 3512 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3513 * @link: link on which timings will be programmed 3514 * @r_failed_dev: out parameter for failed device 3515 * 3516 * Standard implementation of the function used to tune and set 3517 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3518 * ata_dev_set_mode() fails, pointer to the failing device is 3519 * returned in @r_failed_dev. 3520 * 3521 * LOCKING: 3522 * PCI/etc. bus probe sem. 3523 * 3524 * RETURNS: 3525 * 0 on success, negative errno otherwise 3526 */ 3527 3528 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3529 { 3530 struct ata_port *ap = link->ap; 3531 struct ata_device *dev; 3532 int rc = 0, used_dma = 0, found = 0; 3533 3534 /* step 1: calculate xfer_mask */ 3535 ata_for_each_dev(dev, link, ENABLED) { 3536 unsigned long pio_mask, dma_mask; 3537 unsigned int mode_mask; 3538 3539 mode_mask = ATA_DMA_MASK_ATA; 3540 if (dev->class == ATA_DEV_ATAPI) 3541 mode_mask = ATA_DMA_MASK_ATAPI; 3542 else if (ata_id_is_cfa(dev->id)) 3543 mode_mask = ATA_DMA_MASK_CFA; 3544 3545 ata_dev_xfermask(dev); 3546 ata_force_xfermask(dev); 3547 3548 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3549 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3550 3551 if (libata_dma_mask & mode_mask) 3552 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3553 else 3554 dma_mask = 0; 3555 3556 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3557 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3558 3559 found = 1; 3560 if (ata_dma_enabled(dev)) 3561 used_dma = 1; 3562 } 3563 if (!found) 3564 goto out; 3565 3566 /* step 2: always set host PIO timings */ 3567 ata_for_each_dev(dev, link, ENABLED) { 3568 if (dev->pio_mode == 0xff) { 3569 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3570 rc = -EINVAL; 3571 goto out; 3572 } 3573 3574 dev->xfer_mode = dev->pio_mode; 3575 dev->xfer_shift = ATA_SHIFT_PIO; 3576 if (ap->ops->set_piomode) 3577 ap->ops->set_piomode(ap, dev); 3578 } 3579 3580 /* step 3: set host DMA timings */ 3581 ata_for_each_dev(dev, link, ENABLED) { 3582 if (!ata_dma_enabled(dev)) 3583 continue; 3584 3585 dev->xfer_mode = dev->dma_mode; 3586 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3587 if (ap->ops->set_dmamode) 3588 ap->ops->set_dmamode(ap, dev); 3589 } 3590 3591 /* step 4: update devices' xfer mode */ 3592 ata_for_each_dev(dev, link, ENABLED) { 3593 rc = ata_dev_set_mode(dev); 3594 if (rc) 3595 goto out; 3596 } 3597 3598 /* Record simplex status. If we selected DMA then the other 3599 * host channels are not permitted to do so. 3600 */ 3601 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3602 ap->host->simplex_claimed = ap; 3603 3604 out: 3605 if (rc) 3606 *r_failed_dev = dev; 3607 return rc; 3608 } 3609 3610 /** 3611 * ata_wait_ready - wait for link to become ready 3612 * @link: link to be waited on 3613 * @deadline: deadline jiffies for the operation 3614 * @check_ready: callback to check link readiness 3615 * 3616 * Wait for @link to become ready. @check_ready should return 3617 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3618 * link doesn't seem to be occupied, other errno for other error 3619 * conditions. 3620 * 3621 * Transient -ENODEV conditions are allowed for 3622 * ATA_TMOUT_FF_WAIT. 3623 * 3624 * LOCKING: 3625 * EH context. 3626 * 3627 * RETURNS: 3628 * 0 if @linke is ready before @deadline; otherwise, -errno. 3629 */ 3630 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3631 int (*check_ready)(struct ata_link *link)) 3632 { 3633 unsigned long start = jiffies; 3634 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3635 int warned = 0; 3636 3637 /* Slave readiness can't be tested separately from master. On 3638 * M/S emulation configuration, this function should be called 3639 * only on the master and it will handle both master and slave. 3640 */ 3641 WARN_ON(link == link->ap->slave_link); 3642 3643 if (time_after(nodev_deadline, deadline)) 3644 nodev_deadline = deadline; 3645 3646 while (1) { 3647 unsigned long now = jiffies; 3648 int ready, tmp; 3649 3650 ready = tmp = check_ready(link); 3651 if (ready > 0) 3652 return 0; 3653 3654 /* -ENODEV could be transient. Ignore -ENODEV if link 3655 * is online. Also, some SATA devices take a long 3656 * time to clear 0xff after reset. For example, 3657 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3658 * GoVault needs even more than that. Wait for 3659 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3660 * 3661 * Note that some PATA controllers (pata_ali) explode 3662 * if status register is read more than once when 3663 * there's no device attached. 3664 */ 3665 if (ready == -ENODEV) { 3666 if (ata_link_online(link)) 3667 ready = 0; 3668 else if ((link->ap->flags & ATA_FLAG_SATA) && 3669 !ata_link_offline(link) && 3670 time_before(now, nodev_deadline)) 3671 ready = 0; 3672 } 3673 3674 if (ready) 3675 return ready; 3676 if (time_after(now, deadline)) 3677 return -EBUSY; 3678 3679 if (!warned && time_after(now, start + 5 * HZ) && 3680 (deadline - now > 3 * HZ)) { 3681 ata_link_printk(link, KERN_WARNING, 3682 "link is slow to respond, please be patient " 3683 "(ready=%d)\n", tmp); 3684 warned = 1; 3685 } 3686 3687 msleep(50); 3688 } 3689 } 3690 3691 /** 3692 * ata_wait_after_reset - wait for link to become ready after reset 3693 * @link: link to be waited on 3694 * @deadline: deadline jiffies for the operation 3695 * @check_ready: callback to check link readiness 3696 * 3697 * Wait for @link to become ready after reset. 3698 * 3699 * LOCKING: 3700 * EH context. 3701 * 3702 * RETURNS: 3703 * 0 if @linke is ready before @deadline; otherwise, -errno. 3704 */ 3705 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3706 int (*check_ready)(struct ata_link *link)) 3707 { 3708 msleep(ATA_WAIT_AFTER_RESET); 3709 3710 return ata_wait_ready(link, deadline, check_ready); 3711 } 3712 3713 /** 3714 * sata_link_debounce - debounce SATA phy status 3715 * @link: ATA link to debounce SATA phy status for 3716 * @params: timing parameters { interval, duratinon, timeout } in msec 3717 * @deadline: deadline jiffies for the operation 3718 * 3719 * Make sure SStatus of @link reaches stable state, determined by 3720 * holding the same value where DET is not 1 for @duration polled 3721 * every @interval, before @timeout. Timeout constraints the 3722 * beginning of the stable state. Because DET gets stuck at 1 on 3723 * some controllers after hot unplugging, this functions waits 3724 * until timeout then returns 0 if DET is stable at 1. 3725 * 3726 * @timeout is further limited by @deadline. The sooner of the 3727 * two is used. 3728 * 3729 * LOCKING: 3730 * Kernel thread context (may sleep) 3731 * 3732 * RETURNS: 3733 * 0 on success, -errno on failure. 3734 */ 3735 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3736 unsigned long deadline) 3737 { 3738 unsigned long interval = params[0]; 3739 unsigned long duration = params[1]; 3740 unsigned long last_jiffies, t; 3741 u32 last, cur; 3742 int rc; 3743 3744 t = ata_deadline(jiffies, params[2]); 3745 if (time_before(t, deadline)) 3746 deadline = t; 3747 3748 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3749 return rc; 3750 cur &= 0xf; 3751 3752 last = cur; 3753 last_jiffies = jiffies; 3754 3755 while (1) { 3756 msleep(interval); 3757 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3758 return rc; 3759 cur &= 0xf; 3760 3761 /* DET stable? */ 3762 if (cur == last) { 3763 if (cur == 1 && time_before(jiffies, deadline)) 3764 continue; 3765 if (time_after(jiffies, 3766 ata_deadline(last_jiffies, duration))) 3767 return 0; 3768 continue; 3769 } 3770 3771 /* unstable, start over */ 3772 last = cur; 3773 last_jiffies = jiffies; 3774 3775 /* Check deadline. If debouncing failed, return 3776 * -EPIPE to tell upper layer to lower link speed. 3777 */ 3778 if (time_after(jiffies, deadline)) 3779 return -EPIPE; 3780 } 3781 } 3782 3783 /** 3784 * sata_link_resume - resume SATA link 3785 * @link: ATA link to resume SATA 3786 * @params: timing parameters { interval, duratinon, timeout } in msec 3787 * @deadline: deadline jiffies for the operation 3788 * 3789 * Resume SATA phy @link and debounce it. 3790 * 3791 * LOCKING: 3792 * Kernel thread context (may sleep) 3793 * 3794 * RETURNS: 3795 * 0 on success, -errno on failure. 3796 */ 3797 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3798 unsigned long deadline) 3799 { 3800 int tries = ATA_LINK_RESUME_TRIES; 3801 u32 scontrol, serror; 3802 int rc; 3803 3804 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3805 return rc; 3806 3807 /* 3808 * Writes to SControl sometimes get ignored under certain 3809 * controllers (ata_piix SIDPR). Make sure DET actually is 3810 * cleared. 3811 */ 3812 do { 3813 scontrol = (scontrol & 0x0f0) | 0x300; 3814 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3815 return rc; 3816 /* 3817 * Some PHYs react badly if SStatus is pounded 3818 * immediately after resuming. Delay 200ms before 3819 * debouncing. 3820 */ 3821 msleep(200); 3822 3823 /* is SControl restored correctly? */ 3824 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3825 return rc; 3826 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3827 3828 if ((scontrol & 0xf0f) != 0x300) { 3829 ata_link_printk(link, KERN_ERR, 3830 "failed to resume link (SControl %X)\n", 3831 scontrol); 3832 return 0; 3833 } 3834 3835 if (tries < ATA_LINK_RESUME_TRIES) 3836 ata_link_printk(link, KERN_WARNING, 3837 "link resume succeeded after %d retries\n", 3838 ATA_LINK_RESUME_TRIES - tries); 3839 3840 if ((rc = sata_link_debounce(link, params, deadline))) 3841 return rc; 3842 3843 /* clear SError, some PHYs require this even for SRST to work */ 3844 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3845 rc = sata_scr_write(link, SCR_ERROR, serror); 3846 3847 return rc != -EINVAL ? rc : 0; 3848 } 3849 3850 /** 3851 * ata_std_prereset - prepare for reset 3852 * @link: ATA link to be reset 3853 * @deadline: deadline jiffies for the operation 3854 * 3855 * @link is about to be reset. Initialize it. Failure from 3856 * prereset makes libata abort whole reset sequence and give up 3857 * that port, so prereset should be best-effort. It does its 3858 * best to prepare for reset sequence but if things go wrong, it 3859 * should just whine, not fail. 3860 * 3861 * LOCKING: 3862 * Kernel thread context (may sleep) 3863 * 3864 * RETURNS: 3865 * 0 on success, -errno otherwise. 3866 */ 3867 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3868 { 3869 struct ata_port *ap = link->ap; 3870 struct ata_eh_context *ehc = &link->eh_context; 3871 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3872 int rc; 3873 3874 /* if we're about to do hardreset, nothing more to do */ 3875 if (ehc->i.action & ATA_EH_HARDRESET) 3876 return 0; 3877 3878 /* if SATA, resume link */ 3879 if (ap->flags & ATA_FLAG_SATA) { 3880 rc = sata_link_resume(link, timing, deadline); 3881 /* whine about phy resume failure but proceed */ 3882 if (rc && rc != -EOPNOTSUPP) 3883 ata_link_printk(link, KERN_WARNING, "failed to resume " 3884 "link for reset (errno=%d)\n", rc); 3885 } 3886 3887 /* no point in trying softreset on offline link */ 3888 if (ata_phys_link_offline(link)) 3889 ehc->i.action &= ~ATA_EH_SOFTRESET; 3890 3891 return 0; 3892 } 3893 3894 /** 3895 * sata_link_hardreset - reset link via SATA phy reset 3896 * @link: link to reset 3897 * @timing: timing parameters { interval, duratinon, timeout } in msec 3898 * @deadline: deadline jiffies for the operation 3899 * @online: optional out parameter indicating link onlineness 3900 * @check_ready: optional callback to check link readiness 3901 * 3902 * SATA phy-reset @link using DET bits of SControl register. 3903 * After hardreset, link readiness is waited upon using 3904 * ata_wait_ready() if @check_ready is specified. LLDs are 3905 * allowed to not specify @check_ready and wait itself after this 3906 * function returns. Device classification is LLD's 3907 * responsibility. 3908 * 3909 * *@online is set to one iff reset succeeded and @link is online 3910 * after reset. 3911 * 3912 * LOCKING: 3913 * Kernel thread context (may sleep) 3914 * 3915 * RETURNS: 3916 * 0 on success, -errno otherwise. 3917 */ 3918 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3919 unsigned long deadline, 3920 bool *online, int (*check_ready)(struct ata_link *)) 3921 { 3922 u32 scontrol; 3923 int rc; 3924 3925 DPRINTK("ENTER\n"); 3926 3927 if (online) 3928 *online = false; 3929 3930 if (sata_set_spd_needed(link)) { 3931 /* SATA spec says nothing about how to reconfigure 3932 * spd. To be on the safe side, turn off phy during 3933 * reconfiguration. This works for at least ICH7 AHCI 3934 * and Sil3124. 3935 */ 3936 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3937 goto out; 3938 3939 scontrol = (scontrol & 0x0f0) | 0x304; 3940 3941 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3942 goto out; 3943 3944 sata_set_spd(link); 3945 } 3946 3947 /* issue phy wake/reset */ 3948 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3949 goto out; 3950 3951 scontrol = (scontrol & 0x0f0) | 0x301; 3952 3953 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3954 goto out; 3955 3956 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3957 * 10.4.2 says at least 1 ms. 3958 */ 3959 msleep(1); 3960 3961 /* bring link back */ 3962 rc = sata_link_resume(link, timing, deadline); 3963 if (rc) 3964 goto out; 3965 /* if link is offline nothing more to do */ 3966 if (ata_phys_link_offline(link)) 3967 goto out; 3968 3969 /* Link is online. From this point, -ENODEV too is an error. */ 3970 if (online) 3971 *online = true; 3972 3973 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3974 /* If PMP is supported, we have to do follow-up SRST. 3975 * Some PMPs don't send D2H Reg FIS after hardreset if 3976 * the first port is empty. Wait only for 3977 * ATA_TMOUT_PMP_SRST_WAIT. 3978 */ 3979 if (check_ready) { 3980 unsigned long pmp_deadline; 3981 3982 pmp_deadline = ata_deadline(jiffies, 3983 ATA_TMOUT_PMP_SRST_WAIT); 3984 if (time_after(pmp_deadline, deadline)) 3985 pmp_deadline = deadline; 3986 ata_wait_ready(link, pmp_deadline, check_ready); 3987 } 3988 rc = -EAGAIN; 3989 goto out; 3990 } 3991 3992 rc = 0; 3993 if (check_ready) 3994 rc = ata_wait_ready(link, deadline, check_ready); 3995 out: 3996 if (rc && rc != -EAGAIN) { 3997 /* online is set iff link is online && reset succeeded */ 3998 if (online) 3999 *online = false; 4000 ata_link_printk(link, KERN_ERR, 4001 "COMRESET failed (errno=%d)\n", rc); 4002 } 4003 DPRINTK("EXIT, rc=%d\n", rc); 4004 return rc; 4005 } 4006 4007 /** 4008 * sata_std_hardreset - COMRESET w/o waiting or classification 4009 * @link: link to reset 4010 * @class: resulting class of attached device 4011 * @deadline: deadline jiffies for the operation 4012 * 4013 * Standard SATA COMRESET w/o waiting or classification. 4014 * 4015 * LOCKING: 4016 * Kernel thread context (may sleep) 4017 * 4018 * RETURNS: 4019 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4020 */ 4021 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4022 unsigned long deadline) 4023 { 4024 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4025 bool online; 4026 int rc; 4027 4028 /* do hardreset */ 4029 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4030 return online ? -EAGAIN : rc; 4031 } 4032 4033 /** 4034 * ata_std_postreset - standard postreset callback 4035 * @link: the target ata_link 4036 * @classes: classes of attached devices 4037 * 4038 * This function is invoked after a successful reset. Note that 4039 * the device might have been reset more than once using 4040 * different reset methods before postreset is invoked. 4041 * 4042 * LOCKING: 4043 * Kernel thread context (may sleep) 4044 */ 4045 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4046 { 4047 u32 serror; 4048 4049 DPRINTK("ENTER\n"); 4050 4051 /* reset complete, clear SError */ 4052 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4053 sata_scr_write(link, SCR_ERROR, serror); 4054 4055 /* print link status */ 4056 sata_print_link_status(link); 4057 4058 DPRINTK("EXIT\n"); 4059 } 4060 4061 /** 4062 * ata_dev_same_device - Determine whether new ID matches configured device 4063 * @dev: device to compare against 4064 * @new_class: class of the new device 4065 * @new_id: IDENTIFY page of the new device 4066 * 4067 * Compare @new_class and @new_id against @dev and determine 4068 * whether @dev is the device indicated by @new_class and 4069 * @new_id. 4070 * 4071 * LOCKING: 4072 * None. 4073 * 4074 * RETURNS: 4075 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4076 */ 4077 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4078 const u16 *new_id) 4079 { 4080 const u16 *old_id = dev->id; 4081 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4082 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4083 4084 if (dev->class != new_class) { 4085 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 4086 dev->class, new_class); 4087 return 0; 4088 } 4089 4090 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4091 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4092 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4093 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4094 4095 if (strcmp(model[0], model[1])) { 4096 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4097 "'%s' != '%s'\n", model[0], model[1]); 4098 return 0; 4099 } 4100 4101 if (strcmp(serial[0], serial[1])) { 4102 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4103 "'%s' != '%s'\n", serial[0], serial[1]); 4104 return 0; 4105 } 4106 4107 return 1; 4108 } 4109 4110 /** 4111 * ata_dev_reread_id - Re-read IDENTIFY data 4112 * @dev: target ATA device 4113 * @readid_flags: read ID flags 4114 * 4115 * Re-read IDENTIFY page and make sure @dev is still attached to 4116 * the port. 4117 * 4118 * LOCKING: 4119 * Kernel thread context (may sleep) 4120 * 4121 * RETURNS: 4122 * 0 on success, negative errno otherwise 4123 */ 4124 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4125 { 4126 unsigned int class = dev->class; 4127 u16 *id = (void *)dev->link->ap->sector_buf; 4128 int rc; 4129 4130 /* read ID data */ 4131 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4132 if (rc) 4133 return rc; 4134 4135 /* is the device still there? */ 4136 if (!ata_dev_same_device(dev, class, id)) 4137 return -ENODEV; 4138 4139 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4140 return 0; 4141 } 4142 4143 /** 4144 * ata_dev_revalidate - Revalidate ATA device 4145 * @dev: device to revalidate 4146 * @new_class: new class code 4147 * @readid_flags: read ID flags 4148 * 4149 * Re-read IDENTIFY page, make sure @dev is still attached to the 4150 * port and reconfigure it according to the new IDENTIFY page. 4151 * 4152 * LOCKING: 4153 * Kernel thread context (may sleep) 4154 * 4155 * RETURNS: 4156 * 0 on success, negative errno otherwise 4157 */ 4158 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4159 unsigned int readid_flags) 4160 { 4161 u64 n_sectors = dev->n_sectors; 4162 u64 n_native_sectors = dev->n_native_sectors; 4163 int rc; 4164 4165 if (!ata_dev_enabled(dev)) 4166 return -ENODEV; 4167 4168 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4169 if (ata_class_enabled(new_class) && 4170 new_class != ATA_DEV_ATA && 4171 new_class != ATA_DEV_ATAPI && 4172 new_class != ATA_DEV_SEMB) { 4173 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4174 dev->class, new_class); 4175 rc = -ENODEV; 4176 goto fail; 4177 } 4178 4179 /* re-read ID */ 4180 rc = ata_dev_reread_id(dev, readid_flags); 4181 if (rc) 4182 goto fail; 4183 4184 /* configure device according to the new ID */ 4185 rc = ata_dev_configure(dev); 4186 if (rc) 4187 goto fail; 4188 4189 /* verify n_sectors hasn't changed */ 4190 if (dev->class != ATA_DEV_ATA || !n_sectors || 4191 dev->n_sectors == n_sectors) 4192 return 0; 4193 4194 /* n_sectors has changed */ 4195 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n", 4196 (unsigned long long)n_sectors, 4197 (unsigned long long)dev->n_sectors); 4198 4199 /* 4200 * Something could have caused HPA to be unlocked 4201 * involuntarily. If n_native_sectors hasn't changed and the 4202 * new size matches it, keep the device. 4203 */ 4204 if (dev->n_native_sectors == n_native_sectors && 4205 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4206 ata_dev_printk(dev, KERN_WARNING, 4207 "new n_sectors matches native, probably " 4208 "late HPA unlock, continuing\n"); 4209 /* keep using the old n_sectors */ 4210 dev->n_sectors = n_sectors; 4211 return 0; 4212 } 4213 4214 /* 4215 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4216 * unlocking HPA in those cases. 4217 * 4218 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4219 */ 4220 if (dev->n_native_sectors == n_native_sectors && 4221 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4222 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4223 ata_dev_printk(dev, KERN_WARNING, 4224 "old n_sectors matches native, probably " 4225 "late HPA lock, will try to unlock HPA\n"); 4226 /* try unlocking HPA */ 4227 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4228 rc = -EIO; 4229 } else 4230 rc = -ENODEV; 4231 4232 /* restore original n_[native_]sectors and fail */ 4233 dev->n_native_sectors = n_native_sectors; 4234 dev->n_sectors = n_sectors; 4235 fail: 4236 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4237 return rc; 4238 } 4239 4240 struct ata_blacklist_entry { 4241 const char *model_num; 4242 const char *model_rev; 4243 unsigned long horkage; 4244 }; 4245 4246 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4247 /* Devices with DMA related problems under Linux */ 4248 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4249 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4250 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4251 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4252 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4253 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4254 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4255 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4256 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4257 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4258 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4259 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4260 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4261 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4262 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4263 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4264 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4265 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4266 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4267 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4268 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4269 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4270 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4271 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4272 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4273 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4274 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4275 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4276 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4277 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4278 /* Odd clown on sil3726/4726 PMPs */ 4279 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4280 4281 /* Weird ATAPI devices */ 4282 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4283 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4284 4285 /* Devices we expect to fail diagnostics */ 4286 4287 /* Devices where NCQ should be avoided */ 4288 /* NCQ is slow */ 4289 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4290 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4291 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4292 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4293 /* NCQ is broken */ 4294 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4295 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4296 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4297 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4298 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4299 4300 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4301 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4302 ATA_HORKAGE_FIRMWARE_WARN }, 4303 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4304 ATA_HORKAGE_FIRMWARE_WARN }, 4305 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4306 ATA_HORKAGE_FIRMWARE_WARN }, 4307 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4308 ATA_HORKAGE_FIRMWARE_WARN }, 4309 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4310 ATA_HORKAGE_FIRMWARE_WARN }, 4311 4312 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4313 ATA_HORKAGE_FIRMWARE_WARN }, 4314 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4315 ATA_HORKAGE_FIRMWARE_WARN }, 4316 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4317 ATA_HORKAGE_FIRMWARE_WARN }, 4318 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4319 ATA_HORKAGE_FIRMWARE_WARN }, 4320 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4321 ATA_HORKAGE_FIRMWARE_WARN }, 4322 4323 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4324 ATA_HORKAGE_FIRMWARE_WARN }, 4325 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4326 ATA_HORKAGE_FIRMWARE_WARN }, 4327 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4328 ATA_HORKAGE_FIRMWARE_WARN }, 4329 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4330 ATA_HORKAGE_FIRMWARE_WARN }, 4331 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4332 ATA_HORKAGE_FIRMWARE_WARN }, 4333 4334 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4335 ATA_HORKAGE_FIRMWARE_WARN }, 4336 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4337 ATA_HORKAGE_FIRMWARE_WARN }, 4338 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4339 ATA_HORKAGE_FIRMWARE_WARN }, 4340 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4341 ATA_HORKAGE_FIRMWARE_WARN }, 4342 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4343 ATA_HORKAGE_FIRMWARE_WARN }, 4344 4345 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4346 ATA_HORKAGE_FIRMWARE_WARN }, 4347 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4348 ATA_HORKAGE_FIRMWARE_WARN }, 4349 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4350 ATA_HORKAGE_FIRMWARE_WARN }, 4351 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4352 ATA_HORKAGE_FIRMWARE_WARN }, 4353 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4354 ATA_HORKAGE_FIRMWARE_WARN }, 4355 4356 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4357 ATA_HORKAGE_FIRMWARE_WARN }, 4358 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4359 ATA_HORKAGE_FIRMWARE_WARN }, 4360 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4361 ATA_HORKAGE_FIRMWARE_WARN }, 4362 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4363 ATA_HORKAGE_FIRMWARE_WARN }, 4364 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4365 ATA_HORKAGE_FIRMWARE_WARN }, 4366 4367 /* Blacklist entries taken from Silicon Image 3124/3132 4368 Windows driver .inf file - also several Linux problem reports */ 4369 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4370 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4371 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4372 4373 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4374 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4375 4376 /* devices which puke on READ_NATIVE_MAX */ 4377 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4378 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4379 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4380 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4381 4382 /* this one allows HPA unlocking but fails IOs on the area */ 4383 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4384 4385 /* Devices which report 1 sector over size HPA */ 4386 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4387 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4388 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4389 4390 /* Devices which get the IVB wrong */ 4391 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4392 /* Maybe we should just blacklist TSSTcorp... */ 4393 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4394 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4395 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4396 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4397 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4398 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4399 4400 /* Devices that do not need bridging limits applied */ 4401 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4402 4403 /* Devices which aren't very happy with higher link speeds */ 4404 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4405 4406 /* 4407 * Devices which choke on SETXFER. Applies only if both the 4408 * device and controller are SATA. 4409 */ 4410 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4411 4412 /* End Marker */ 4413 { } 4414 }; 4415 4416 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4417 { 4418 const char *p; 4419 int len; 4420 4421 /* 4422 * check for trailing wildcard: *\0 4423 */ 4424 p = strchr(patt, wildchar); 4425 if (p && ((*(p + 1)) == 0)) 4426 len = p - patt; 4427 else { 4428 len = strlen(name); 4429 if (!len) { 4430 if (!*patt) 4431 return 0; 4432 return -1; 4433 } 4434 } 4435 4436 return strncmp(patt, name, len); 4437 } 4438 4439 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4440 { 4441 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4442 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4443 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4444 4445 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4446 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4447 4448 while (ad->model_num) { 4449 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4450 if (ad->model_rev == NULL) 4451 return ad->horkage; 4452 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4453 return ad->horkage; 4454 } 4455 ad++; 4456 } 4457 return 0; 4458 } 4459 4460 static int ata_dma_blacklisted(const struct ata_device *dev) 4461 { 4462 /* We don't support polling DMA. 4463 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4464 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4465 */ 4466 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4467 (dev->flags & ATA_DFLAG_CDB_INTR)) 4468 return 1; 4469 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4470 } 4471 4472 /** 4473 * ata_is_40wire - check drive side detection 4474 * @dev: device 4475 * 4476 * Perform drive side detection decoding, allowing for device vendors 4477 * who can't follow the documentation. 4478 */ 4479 4480 static int ata_is_40wire(struct ata_device *dev) 4481 { 4482 if (dev->horkage & ATA_HORKAGE_IVB) 4483 return ata_drive_40wire_relaxed(dev->id); 4484 return ata_drive_40wire(dev->id); 4485 } 4486 4487 /** 4488 * cable_is_40wire - 40/80/SATA decider 4489 * @ap: port to consider 4490 * 4491 * This function encapsulates the policy for speed management 4492 * in one place. At the moment we don't cache the result but 4493 * there is a good case for setting ap->cbl to the result when 4494 * we are called with unknown cables (and figuring out if it 4495 * impacts hotplug at all). 4496 * 4497 * Return 1 if the cable appears to be 40 wire. 4498 */ 4499 4500 static int cable_is_40wire(struct ata_port *ap) 4501 { 4502 struct ata_link *link; 4503 struct ata_device *dev; 4504 4505 /* If the controller thinks we are 40 wire, we are. */ 4506 if (ap->cbl == ATA_CBL_PATA40) 4507 return 1; 4508 4509 /* If the controller thinks we are 80 wire, we are. */ 4510 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4511 return 0; 4512 4513 /* If the system is known to be 40 wire short cable (eg 4514 * laptop), then we allow 80 wire modes even if the drive 4515 * isn't sure. 4516 */ 4517 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4518 return 0; 4519 4520 /* If the controller doesn't know, we scan. 4521 * 4522 * Note: We look for all 40 wire detects at this point. Any 4523 * 80 wire detect is taken to be 80 wire cable because 4524 * - in many setups only the one drive (slave if present) will 4525 * give a valid detect 4526 * - if you have a non detect capable drive you don't want it 4527 * to colour the choice 4528 */ 4529 ata_for_each_link(link, ap, EDGE) { 4530 ata_for_each_dev(dev, link, ENABLED) { 4531 if (!ata_is_40wire(dev)) 4532 return 0; 4533 } 4534 } 4535 return 1; 4536 } 4537 4538 /** 4539 * ata_dev_xfermask - Compute supported xfermask of the given device 4540 * @dev: Device to compute xfermask for 4541 * 4542 * Compute supported xfermask of @dev and store it in 4543 * dev->*_mask. This function is responsible for applying all 4544 * known limits including host controller limits, device 4545 * blacklist, etc... 4546 * 4547 * LOCKING: 4548 * None. 4549 */ 4550 static void ata_dev_xfermask(struct ata_device *dev) 4551 { 4552 struct ata_link *link = dev->link; 4553 struct ata_port *ap = link->ap; 4554 struct ata_host *host = ap->host; 4555 unsigned long xfer_mask; 4556 4557 /* controller modes available */ 4558 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4559 ap->mwdma_mask, ap->udma_mask); 4560 4561 /* drive modes available */ 4562 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4563 dev->mwdma_mask, dev->udma_mask); 4564 xfer_mask &= ata_id_xfermask(dev->id); 4565 4566 /* 4567 * CFA Advanced TrueIDE timings are not allowed on a shared 4568 * cable 4569 */ 4570 if (ata_dev_pair(dev)) { 4571 /* No PIO5 or PIO6 */ 4572 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4573 /* No MWDMA3 or MWDMA 4 */ 4574 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4575 } 4576 4577 if (ata_dma_blacklisted(dev)) { 4578 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4579 ata_dev_printk(dev, KERN_WARNING, 4580 "device is on DMA blacklist, disabling DMA\n"); 4581 } 4582 4583 if ((host->flags & ATA_HOST_SIMPLEX) && 4584 host->simplex_claimed && host->simplex_claimed != ap) { 4585 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4586 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4587 "other device, disabling DMA\n"); 4588 } 4589 4590 if (ap->flags & ATA_FLAG_NO_IORDY) 4591 xfer_mask &= ata_pio_mask_no_iordy(dev); 4592 4593 if (ap->ops->mode_filter) 4594 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4595 4596 /* Apply cable rule here. Don't apply it early because when 4597 * we handle hot plug the cable type can itself change. 4598 * Check this last so that we know if the transfer rate was 4599 * solely limited by the cable. 4600 * Unknown or 80 wire cables reported host side are checked 4601 * drive side as well. Cases where we know a 40wire cable 4602 * is used safely for 80 are not checked here. 4603 */ 4604 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4605 /* UDMA/44 or higher would be available */ 4606 if (cable_is_40wire(ap)) { 4607 ata_dev_printk(dev, KERN_WARNING, 4608 "limited to UDMA/33 due to 40-wire cable\n"); 4609 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4610 } 4611 4612 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4613 &dev->mwdma_mask, &dev->udma_mask); 4614 } 4615 4616 /** 4617 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4618 * @dev: Device to which command will be sent 4619 * 4620 * Issue SET FEATURES - XFER MODE command to device @dev 4621 * on port @ap. 4622 * 4623 * LOCKING: 4624 * PCI/etc. bus probe sem. 4625 * 4626 * RETURNS: 4627 * 0 on success, AC_ERR_* mask otherwise. 4628 */ 4629 4630 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4631 { 4632 struct ata_taskfile tf; 4633 unsigned int err_mask; 4634 4635 /* set up set-features taskfile */ 4636 DPRINTK("set features - xfer mode\n"); 4637 4638 /* Some controllers and ATAPI devices show flaky interrupt 4639 * behavior after setting xfer mode. Use polling instead. 4640 */ 4641 ata_tf_init(dev, &tf); 4642 tf.command = ATA_CMD_SET_FEATURES; 4643 tf.feature = SETFEATURES_XFER; 4644 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4645 tf.protocol = ATA_PROT_NODATA; 4646 /* If we are using IORDY we must send the mode setting command */ 4647 if (ata_pio_need_iordy(dev)) 4648 tf.nsect = dev->xfer_mode; 4649 /* If the device has IORDY and the controller does not - turn it off */ 4650 else if (ata_id_has_iordy(dev->id)) 4651 tf.nsect = 0x01; 4652 else /* In the ancient relic department - skip all of this */ 4653 return 0; 4654 4655 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4656 4657 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4658 return err_mask; 4659 } 4660 /** 4661 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4662 * @dev: Device to which command will be sent 4663 * @enable: Whether to enable or disable the feature 4664 * @feature: The sector count represents the feature to set 4665 * 4666 * Issue SET FEATURES - SATA FEATURES command to device @dev 4667 * on port @ap with sector count 4668 * 4669 * LOCKING: 4670 * PCI/etc. bus probe sem. 4671 * 4672 * RETURNS: 4673 * 0 on success, AC_ERR_* mask otherwise. 4674 */ 4675 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4676 u8 feature) 4677 { 4678 struct ata_taskfile tf; 4679 unsigned int err_mask; 4680 4681 /* set up set-features taskfile */ 4682 DPRINTK("set features - SATA features\n"); 4683 4684 ata_tf_init(dev, &tf); 4685 tf.command = ATA_CMD_SET_FEATURES; 4686 tf.feature = enable; 4687 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4688 tf.protocol = ATA_PROT_NODATA; 4689 tf.nsect = feature; 4690 4691 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4692 4693 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4694 return err_mask; 4695 } 4696 4697 /** 4698 * ata_dev_init_params - Issue INIT DEV PARAMS command 4699 * @dev: Device to which command will be sent 4700 * @heads: Number of heads (taskfile parameter) 4701 * @sectors: Number of sectors (taskfile parameter) 4702 * 4703 * LOCKING: 4704 * Kernel thread context (may sleep) 4705 * 4706 * RETURNS: 4707 * 0 on success, AC_ERR_* mask otherwise. 4708 */ 4709 static unsigned int ata_dev_init_params(struct ata_device *dev, 4710 u16 heads, u16 sectors) 4711 { 4712 struct ata_taskfile tf; 4713 unsigned int err_mask; 4714 4715 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4716 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4717 return AC_ERR_INVALID; 4718 4719 /* set up init dev params taskfile */ 4720 DPRINTK("init dev params \n"); 4721 4722 ata_tf_init(dev, &tf); 4723 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4725 tf.protocol = ATA_PROT_NODATA; 4726 tf.nsect = sectors; 4727 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4728 4729 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4730 /* A clean abort indicates an original or just out of spec drive 4731 and we should continue as we issue the setup based on the 4732 drive reported working geometry */ 4733 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4734 err_mask = 0; 4735 4736 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4737 return err_mask; 4738 } 4739 4740 /** 4741 * ata_sg_clean - Unmap DMA memory associated with command 4742 * @qc: Command containing DMA memory to be released 4743 * 4744 * Unmap all mapped DMA memory associated with this command. 4745 * 4746 * LOCKING: 4747 * spin_lock_irqsave(host lock) 4748 */ 4749 void ata_sg_clean(struct ata_queued_cmd *qc) 4750 { 4751 struct ata_port *ap = qc->ap; 4752 struct scatterlist *sg = qc->sg; 4753 int dir = qc->dma_dir; 4754 4755 WARN_ON_ONCE(sg == NULL); 4756 4757 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4758 4759 if (qc->n_elem) 4760 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4761 4762 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4763 qc->sg = NULL; 4764 } 4765 4766 /** 4767 * atapi_check_dma - Check whether ATAPI DMA can be supported 4768 * @qc: Metadata associated with taskfile to check 4769 * 4770 * Allow low-level driver to filter ATA PACKET commands, returning 4771 * a status indicating whether or not it is OK to use DMA for the 4772 * supplied PACKET command. 4773 * 4774 * LOCKING: 4775 * spin_lock_irqsave(host lock) 4776 * 4777 * RETURNS: 0 when ATAPI DMA can be used 4778 * nonzero otherwise 4779 */ 4780 int atapi_check_dma(struct ata_queued_cmd *qc) 4781 { 4782 struct ata_port *ap = qc->ap; 4783 4784 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4785 * few ATAPI devices choke on such DMA requests. 4786 */ 4787 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4788 unlikely(qc->nbytes & 15)) 4789 return 1; 4790 4791 if (ap->ops->check_atapi_dma) 4792 return ap->ops->check_atapi_dma(qc); 4793 4794 return 0; 4795 } 4796 4797 /** 4798 * ata_std_qc_defer - Check whether a qc needs to be deferred 4799 * @qc: ATA command in question 4800 * 4801 * Non-NCQ commands cannot run with any other command, NCQ or 4802 * not. As upper layer only knows the queue depth, we are 4803 * responsible for maintaining exclusion. This function checks 4804 * whether a new command @qc can be issued. 4805 * 4806 * LOCKING: 4807 * spin_lock_irqsave(host lock) 4808 * 4809 * RETURNS: 4810 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4811 */ 4812 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4813 { 4814 struct ata_link *link = qc->dev->link; 4815 4816 if (qc->tf.protocol == ATA_PROT_NCQ) { 4817 if (!ata_tag_valid(link->active_tag)) 4818 return 0; 4819 } else { 4820 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4821 return 0; 4822 } 4823 4824 return ATA_DEFER_LINK; 4825 } 4826 4827 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4828 4829 /** 4830 * ata_sg_init - Associate command with scatter-gather table. 4831 * @qc: Command to be associated 4832 * @sg: Scatter-gather table. 4833 * @n_elem: Number of elements in s/g table. 4834 * 4835 * Initialize the data-related elements of queued_cmd @qc 4836 * to point to a scatter-gather table @sg, containing @n_elem 4837 * elements. 4838 * 4839 * LOCKING: 4840 * spin_lock_irqsave(host lock) 4841 */ 4842 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4843 unsigned int n_elem) 4844 { 4845 qc->sg = sg; 4846 qc->n_elem = n_elem; 4847 qc->cursg = qc->sg; 4848 } 4849 4850 /** 4851 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4852 * @qc: Command with scatter-gather table to be mapped. 4853 * 4854 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4855 * 4856 * LOCKING: 4857 * spin_lock_irqsave(host lock) 4858 * 4859 * RETURNS: 4860 * Zero on success, negative on error. 4861 * 4862 */ 4863 static int ata_sg_setup(struct ata_queued_cmd *qc) 4864 { 4865 struct ata_port *ap = qc->ap; 4866 unsigned int n_elem; 4867 4868 VPRINTK("ENTER, ata%u\n", ap->print_id); 4869 4870 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4871 if (n_elem < 1) 4872 return -1; 4873 4874 DPRINTK("%d sg elements mapped\n", n_elem); 4875 qc->orig_n_elem = qc->n_elem; 4876 qc->n_elem = n_elem; 4877 qc->flags |= ATA_QCFLAG_DMAMAP; 4878 4879 return 0; 4880 } 4881 4882 /** 4883 * swap_buf_le16 - swap halves of 16-bit words in place 4884 * @buf: Buffer to swap 4885 * @buf_words: Number of 16-bit words in buffer. 4886 * 4887 * Swap halves of 16-bit words if needed to convert from 4888 * little-endian byte order to native cpu byte order, or 4889 * vice-versa. 4890 * 4891 * LOCKING: 4892 * Inherited from caller. 4893 */ 4894 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4895 { 4896 #ifdef __BIG_ENDIAN 4897 unsigned int i; 4898 4899 for (i = 0; i < buf_words; i++) 4900 buf[i] = le16_to_cpu(buf[i]); 4901 #endif /* __BIG_ENDIAN */ 4902 } 4903 4904 /** 4905 * ata_qc_new - Request an available ATA command, for queueing 4906 * @ap: target port 4907 * 4908 * LOCKING: 4909 * None. 4910 */ 4911 4912 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4913 { 4914 struct ata_queued_cmd *qc = NULL; 4915 unsigned int i; 4916 4917 /* no command while frozen */ 4918 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4919 return NULL; 4920 4921 /* the last tag is reserved for internal command. */ 4922 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4923 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4924 qc = __ata_qc_from_tag(ap, i); 4925 break; 4926 } 4927 4928 if (qc) 4929 qc->tag = i; 4930 4931 return qc; 4932 } 4933 4934 /** 4935 * ata_qc_new_init - Request an available ATA command, and initialize it 4936 * @dev: Device from whom we request an available command structure 4937 * 4938 * LOCKING: 4939 * None. 4940 */ 4941 4942 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4943 { 4944 struct ata_port *ap = dev->link->ap; 4945 struct ata_queued_cmd *qc; 4946 4947 qc = ata_qc_new(ap); 4948 if (qc) { 4949 qc->scsicmd = NULL; 4950 qc->ap = ap; 4951 qc->dev = dev; 4952 4953 ata_qc_reinit(qc); 4954 } 4955 4956 return qc; 4957 } 4958 4959 /** 4960 * ata_qc_free - free unused ata_queued_cmd 4961 * @qc: Command to complete 4962 * 4963 * Designed to free unused ata_queued_cmd object 4964 * in case something prevents using it. 4965 * 4966 * LOCKING: 4967 * spin_lock_irqsave(host lock) 4968 */ 4969 void ata_qc_free(struct ata_queued_cmd *qc) 4970 { 4971 struct ata_port *ap; 4972 unsigned int tag; 4973 4974 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4975 ap = qc->ap; 4976 4977 qc->flags = 0; 4978 tag = qc->tag; 4979 if (likely(ata_tag_valid(tag))) { 4980 qc->tag = ATA_TAG_POISON; 4981 clear_bit(tag, &ap->qc_allocated); 4982 } 4983 } 4984 4985 void __ata_qc_complete(struct ata_queued_cmd *qc) 4986 { 4987 struct ata_port *ap; 4988 struct ata_link *link; 4989 4990 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4991 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4992 ap = qc->ap; 4993 link = qc->dev->link; 4994 4995 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4996 ata_sg_clean(qc); 4997 4998 /* command should be marked inactive atomically with qc completion */ 4999 if (qc->tf.protocol == ATA_PROT_NCQ) { 5000 link->sactive &= ~(1 << qc->tag); 5001 if (!link->sactive) 5002 ap->nr_active_links--; 5003 } else { 5004 link->active_tag = ATA_TAG_POISON; 5005 ap->nr_active_links--; 5006 } 5007 5008 /* clear exclusive status */ 5009 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5010 ap->excl_link == link)) 5011 ap->excl_link = NULL; 5012 5013 /* atapi: mark qc as inactive to prevent the interrupt handler 5014 * from completing the command twice later, before the error handler 5015 * is called. (when rc != 0 and atapi request sense is needed) 5016 */ 5017 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5018 ap->qc_active &= ~(1 << qc->tag); 5019 5020 /* call completion callback */ 5021 qc->complete_fn(qc); 5022 } 5023 5024 static void fill_result_tf(struct ata_queued_cmd *qc) 5025 { 5026 struct ata_port *ap = qc->ap; 5027 5028 qc->result_tf.flags = qc->tf.flags; 5029 ap->ops->qc_fill_rtf(qc); 5030 } 5031 5032 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5033 { 5034 struct ata_device *dev = qc->dev; 5035 5036 if (ata_tag_internal(qc->tag)) 5037 return; 5038 5039 if (ata_is_nodata(qc->tf.protocol)) 5040 return; 5041 5042 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5043 return; 5044 5045 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5046 } 5047 5048 /** 5049 * ata_qc_complete - Complete an active ATA command 5050 * @qc: Command to complete 5051 * 5052 * Indicate to the mid and upper layers that an ATA 5053 * command has completed, with either an ok or not-ok status. 5054 * 5055 * LOCKING: 5056 * spin_lock_irqsave(host lock) 5057 */ 5058 void ata_qc_complete(struct ata_queued_cmd *qc) 5059 { 5060 struct ata_port *ap = qc->ap; 5061 5062 /* XXX: New EH and old EH use different mechanisms to 5063 * synchronize EH with regular execution path. 5064 * 5065 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5066 * Normal execution path is responsible for not accessing a 5067 * failed qc. libata core enforces the rule by returning NULL 5068 * from ata_qc_from_tag() for failed qcs. 5069 * 5070 * Old EH depends on ata_qc_complete() nullifying completion 5071 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5072 * not synchronize with interrupt handler. Only PIO task is 5073 * taken care of. 5074 */ 5075 if (ap->ops->error_handler) { 5076 struct ata_device *dev = qc->dev; 5077 struct ata_eh_info *ehi = &dev->link->eh_info; 5078 5079 if (unlikely(qc->err_mask)) 5080 qc->flags |= ATA_QCFLAG_FAILED; 5081 5082 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5083 /* always fill result TF for failed qc */ 5084 fill_result_tf(qc); 5085 5086 if (!ata_tag_internal(qc->tag)) 5087 ata_qc_schedule_eh(qc); 5088 else 5089 __ata_qc_complete(qc); 5090 return; 5091 } 5092 5093 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5094 5095 /* read result TF if requested */ 5096 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5097 fill_result_tf(qc); 5098 5099 /* Some commands need post-processing after successful 5100 * completion. 5101 */ 5102 switch (qc->tf.command) { 5103 case ATA_CMD_SET_FEATURES: 5104 if (qc->tf.feature != SETFEATURES_WC_ON && 5105 qc->tf.feature != SETFEATURES_WC_OFF) 5106 break; 5107 /* fall through */ 5108 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5109 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5110 /* revalidate device */ 5111 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5112 ata_port_schedule_eh(ap); 5113 break; 5114 5115 case ATA_CMD_SLEEP: 5116 dev->flags |= ATA_DFLAG_SLEEPING; 5117 break; 5118 } 5119 5120 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5121 ata_verify_xfer(qc); 5122 5123 __ata_qc_complete(qc); 5124 } else { 5125 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5126 return; 5127 5128 /* read result TF if failed or requested */ 5129 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5130 fill_result_tf(qc); 5131 5132 __ata_qc_complete(qc); 5133 } 5134 } 5135 5136 /** 5137 * ata_qc_complete_multiple - Complete multiple qcs successfully 5138 * @ap: port in question 5139 * @qc_active: new qc_active mask 5140 * 5141 * Complete in-flight commands. This functions is meant to be 5142 * called from low-level driver's interrupt routine to complete 5143 * requests normally. ap->qc_active and @qc_active is compared 5144 * and commands are completed accordingly. 5145 * 5146 * LOCKING: 5147 * spin_lock_irqsave(host lock) 5148 * 5149 * RETURNS: 5150 * Number of completed commands on success, -errno otherwise. 5151 */ 5152 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5153 { 5154 int nr_done = 0; 5155 u32 done_mask; 5156 5157 done_mask = ap->qc_active ^ qc_active; 5158 5159 if (unlikely(done_mask & qc_active)) { 5160 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5161 "(%08x->%08x)\n", ap->qc_active, qc_active); 5162 return -EINVAL; 5163 } 5164 5165 while (done_mask) { 5166 struct ata_queued_cmd *qc; 5167 unsigned int tag = __ffs(done_mask); 5168 5169 qc = ata_qc_from_tag(ap, tag); 5170 if (qc) { 5171 ata_qc_complete(qc); 5172 nr_done++; 5173 } 5174 done_mask &= ~(1 << tag); 5175 } 5176 5177 return nr_done; 5178 } 5179 5180 /** 5181 * ata_qc_issue - issue taskfile to device 5182 * @qc: command to issue to device 5183 * 5184 * Prepare an ATA command to submission to device. 5185 * This includes mapping the data into a DMA-able 5186 * area, filling in the S/G table, and finally 5187 * writing the taskfile to hardware, starting the command. 5188 * 5189 * LOCKING: 5190 * spin_lock_irqsave(host lock) 5191 */ 5192 void ata_qc_issue(struct ata_queued_cmd *qc) 5193 { 5194 struct ata_port *ap = qc->ap; 5195 struct ata_link *link = qc->dev->link; 5196 u8 prot = qc->tf.protocol; 5197 5198 /* Make sure only one non-NCQ command is outstanding. The 5199 * check is skipped for old EH because it reuses active qc to 5200 * request ATAPI sense. 5201 */ 5202 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5203 5204 if (ata_is_ncq(prot)) { 5205 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5206 5207 if (!link->sactive) 5208 ap->nr_active_links++; 5209 link->sactive |= 1 << qc->tag; 5210 } else { 5211 WARN_ON_ONCE(link->sactive); 5212 5213 ap->nr_active_links++; 5214 link->active_tag = qc->tag; 5215 } 5216 5217 qc->flags |= ATA_QCFLAG_ACTIVE; 5218 ap->qc_active |= 1 << qc->tag; 5219 5220 /* We guarantee to LLDs that they will have at least one 5221 * non-zero sg if the command is a data command. 5222 */ 5223 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5224 5225 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5226 (ap->flags & ATA_FLAG_PIO_DMA))) 5227 if (ata_sg_setup(qc)) 5228 goto sg_err; 5229 5230 /* if device is sleeping, schedule reset and abort the link */ 5231 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5232 link->eh_info.action |= ATA_EH_RESET; 5233 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5234 ata_link_abort(link); 5235 return; 5236 } 5237 5238 ap->ops->qc_prep(qc); 5239 5240 qc->err_mask |= ap->ops->qc_issue(qc); 5241 if (unlikely(qc->err_mask)) 5242 goto err; 5243 return; 5244 5245 sg_err: 5246 qc->err_mask |= AC_ERR_SYSTEM; 5247 err: 5248 ata_qc_complete(qc); 5249 } 5250 5251 /** 5252 * sata_scr_valid - test whether SCRs are accessible 5253 * @link: ATA link to test SCR accessibility for 5254 * 5255 * Test whether SCRs are accessible for @link. 5256 * 5257 * LOCKING: 5258 * None. 5259 * 5260 * RETURNS: 5261 * 1 if SCRs are accessible, 0 otherwise. 5262 */ 5263 int sata_scr_valid(struct ata_link *link) 5264 { 5265 struct ata_port *ap = link->ap; 5266 5267 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5268 } 5269 5270 /** 5271 * sata_scr_read - read SCR register of the specified port 5272 * @link: ATA link to read SCR for 5273 * @reg: SCR to read 5274 * @val: Place to store read value 5275 * 5276 * Read SCR register @reg of @link into *@val. This function is 5277 * guaranteed to succeed if @link is ap->link, the cable type of 5278 * the port is SATA and the port implements ->scr_read. 5279 * 5280 * LOCKING: 5281 * None if @link is ap->link. Kernel thread context otherwise. 5282 * 5283 * RETURNS: 5284 * 0 on success, negative errno on failure. 5285 */ 5286 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5287 { 5288 if (ata_is_host_link(link)) { 5289 if (sata_scr_valid(link)) 5290 return link->ap->ops->scr_read(link, reg, val); 5291 return -EOPNOTSUPP; 5292 } 5293 5294 return sata_pmp_scr_read(link, reg, val); 5295 } 5296 5297 /** 5298 * sata_scr_write - write SCR register of the specified port 5299 * @link: ATA link to write SCR for 5300 * @reg: SCR to write 5301 * @val: value to write 5302 * 5303 * Write @val to SCR register @reg of @link. This function is 5304 * guaranteed to succeed if @link is ap->link, the cable type of 5305 * the port is SATA and the port implements ->scr_read. 5306 * 5307 * LOCKING: 5308 * None if @link is ap->link. Kernel thread context otherwise. 5309 * 5310 * RETURNS: 5311 * 0 on success, negative errno on failure. 5312 */ 5313 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5314 { 5315 if (ata_is_host_link(link)) { 5316 if (sata_scr_valid(link)) 5317 return link->ap->ops->scr_write(link, reg, val); 5318 return -EOPNOTSUPP; 5319 } 5320 5321 return sata_pmp_scr_write(link, reg, val); 5322 } 5323 5324 /** 5325 * sata_scr_write_flush - write SCR register of the specified port and flush 5326 * @link: ATA link to write SCR for 5327 * @reg: SCR to write 5328 * @val: value to write 5329 * 5330 * This function is identical to sata_scr_write() except that this 5331 * function performs flush after writing to the register. 5332 * 5333 * LOCKING: 5334 * None if @link is ap->link. Kernel thread context otherwise. 5335 * 5336 * RETURNS: 5337 * 0 on success, negative errno on failure. 5338 */ 5339 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5340 { 5341 if (ata_is_host_link(link)) { 5342 int rc; 5343 5344 if (sata_scr_valid(link)) { 5345 rc = link->ap->ops->scr_write(link, reg, val); 5346 if (rc == 0) 5347 rc = link->ap->ops->scr_read(link, reg, &val); 5348 return rc; 5349 } 5350 return -EOPNOTSUPP; 5351 } 5352 5353 return sata_pmp_scr_write(link, reg, val); 5354 } 5355 5356 /** 5357 * ata_phys_link_online - test whether the given link is online 5358 * @link: ATA link to test 5359 * 5360 * Test whether @link is online. Note that this function returns 5361 * 0 if online status of @link cannot be obtained, so 5362 * ata_link_online(link) != !ata_link_offline(link). 5363 * 5364 * LOCKING: 5365 * None. 5366 * 5367 * RETURNS: 5368 * True if the port online status is available and online. 5369 */ 5370 bool ata_phys_link_online(struct ata_link *link) 5371 { 5372 u32 sstatus; 5373 5374 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5375 ata_sstatus_online(sstatus)) 5376 return true; 5377 return false; 5378 } 5379 5380 /** 5381 * ata_phys_link_offline - test whether the given link is offline 5382 * @link: ATA link to test 5383 * 5384 * Test whether @link is offline. Note that this function 5385 * returns 0 if offline status of @link cannot be obtained, so 5386 * ata_link_online(link) != !ata_link_offline(link). 5387 * 5388 * LOCKING: 5389 * None. 5390 * 5391 * RETURNS: 5392 * True if the port offline status is available and offline. 5393 */ 5394 bool ata_phys_link_offline(struct ata_link *link) 5395 { 5396 u32 sstatus; 5397 5398 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5399 !ata_sstatus_online(sstatus)) 5400 return true; 5401 return false; 5402 } 5403 5404 /** 5405 * ata_link_online - test whether the given link is online 5406 * @link: ATA link to test 5407 * 5408 * Test whether @link is online. This is identical to 5409 * ata_phys_link_online() when there's no slave link. When 5410 * there's a slave link, this function should only be called on 5411 * the master link and will return true if any of M/S links is 5412 * online. 5413 * 5414 * LOCKING: 5415 * None. 5416 * 5417 * RETURNS: 5418 * True if the port online status is available and online. 5419 */ 5420 bool ata_link_online(struct ata_link *link) 5421 { 5422 struct ata_link *slave = link->ap->slave_link; 5423 5424 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5425 5426 return ata_phys_link_online(link) || 5427 (slave && ata_phys_link_online(slave)); 5428 } 5429 5430 /** 5431 * ata_link_offline - test whether the given link is offline 5432 * @link: ATA link to test 5433 * 5434 * Test whether @link is offline. This is identical to 5435 * ata_phys_link_offline() when there's no slave link. When 5436 * there's a slave link, this function should only be called on 5437 * the master link and will return true if both M/S links are 5438 * offline. 5439 * 5440 * LOCKING: 5441 * None. 5442 * 5443 * RETURNS: 5444 * True if the port offline status is available and offline. 5445 */ 5446 bool ata_link_offline(struct ata_link *link) 5447 { 5448 struct ata_link *slave = link->ap->slave_link; 5449 5450 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5451 5452 return ata_phys_link_offline(link) && 5453 (!slave || ata_phys_link_offline(slave)); 5454 } 5455 5456 #ifdef CONFIG_PM 5457 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5458 unsigned int action, unsigned int ehi_flags, 5459 int wait) 5460 { 5461 unsigned long flags; 5462 int i, rc; 5463 5464 for (i = 0; i < host->n_ports; i++) { 5465 struct ata_port *ap = host->ports[i]; 5466 struct ata_link *link; 5467 5468 /* Previous resume operation might still be in 5469 * progress. Wait for PM_PENDING to clear. 5470 */ 5471 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5472 ata_port_wait_eh(ap); 5473 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5474 } 5475 5476 /* request PM ops to EH */ 5477 spin_lock_irqsave(ap->lock, flags); 5478 5479 ap->pm_mesg = mesg; 5480 if (wait) { 5481 rc = 0; 5482 ap->pm_result = &rc; 5483 } 5484 5485 ap->pflags |= ATA_PFLAG_PM_PENDING; 5486 ata_for_each_link(link, ap, HOST_FIRST) { 5487 link->eh_info.action |= action; 5488 link->eh_info.flags |= ehi_flags; 5489 } 5490 5491 ata_port_schedule_eh(ap); 5492 5493 spin_unlock_irqrestore(ap->lock, flags); 5494 5495 /* wait and check result */ 5496 if (wait) { 5497 ata_port_wait_eh(ap); 5498 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5499 if (rc) 5500 return rc; 5501 } 5502 } 5503 5504 return 0; 5505 } 5506 5507 /** 5508 * ata_host_suspend - suspend host 5509 * @host: host to suspend 5510 * @mesg: PM message 5511 * 5512 * Suspend @host. Actual operation is performed by EH. This 5513 * function requests EH to perform PM operations and waits for EH 5514 * to finish. 5515 * 5516 * LOCKING: 5517 * Kernel thread context (may sleep). 5518 * 5519 * RETURNS: 5520 * 0 on success, -errno on failure. 5521 */ 5522 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5523 { 5524 int rc; 5525 5526 /* 5527 * disable link pm on all ports before requesting 5528 * any pm activity 5529 */ 5530 ata_lpm_enable(host); 5531 5532 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5533 if (rc == 0) 5534 host->dev->power.power_state = mesg; 5535 return rc; 5536 } 5537 5538 /** 5539 * ata_host_resume - resume host 5540 * @host: host to resume 5541 * 5542 * Resume @host. Actual operation is performed by EH. This 5543 * function requests EH to perform PM operations and returns. 5544 * Note that all resume operations are performed parallely. 5545 * 5546 * LOCKING: 5547 * Kernel thread context (may sleep). 5548 */ 5549 void ata_host_resume(struct ata_host *host) 5550 { 5551 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5552 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5553 host->dev->power.power_state = PMSG_ON; 5554 5555 /* reenable link pm */ 5556 ata_lpm_disable(host); 5557 } 5558 #endif 5559 5560 /** 5561 * ata_port_start - Set port up for dma. 5562 * @ap: Port to initialize 5563 * 5564 * Called just after data structures for each port are 5565 * initialized. Allocates space for PRD table. 5566 * 5567 * May be used as the port_start() entry in ata_port_operations. 5568 * 5569 * LOCKING: 5570 * Inherited from caller. 5571 */ 5572 int ata_port_start(struct ata_port *ap) 5573 { 5574 struct device *dev = ap->dev; 5575 5576 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5577 GFP_KERNEL); 5578 if (!ap->prd) 5579 return -ENOMEM; 5580 5581 return 0; 5582 } 5583 5584 /** 5585 * ata_dev_init - Initialize an ata_device structure 5586 * @dev: Device structure to initialize 5587 * 5588 * Initialize @dev in preparation for probing. 5589 * 5590 * LOCKING: 5591 * Inherited from caller. 5592 */ 5593 void ata_dev_init(struct ata_device *dev) 5594 { 5595 struct ata_link *link = ata_dev_phys_link(dev); 5596 struct ata_port *ap = link->ap; 5597 unsigned long flags; 5598 5599 /* SATA spd limit is bound to the attached device, reset together */ 5600 link->sata_spd_limit = link->hw_sata_spd_limit; 5601 link->sata_spd = 0; 5602 5603 /* High bits of dev->flags are used to record warm plug 5604 * requests which occur asynchronously. Synchronize using 5605 * host lock. 5606 */ 5607 spin_lock_irqsave(ap->lock, flags); 5608 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5609 dev->horkage = 0; 5610 spin_unlock_irqrestore(ap->lock, flags); 5611 5612 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5613 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5614 dev->pio_mask = UINT_MAX; 5615 dev->mwdma_mask = UINT_MAX; 5616 dev->udma_mask = UINT_MAX; 5617 } 5618 5619 /** 5620 * ata_link_init - Initialize an ata_link structure 5621 * @ap: ATA port link is attached to 5622 * @link: Link structure to initialize 5623 * @pmp: Port multiplier port number 5624 * 5625 * Initialize @link. 5626 * 5627 * LOCKING: 5628 * Kernel thread context (may sleep) 5629 */ 5630 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5631 { 5632 int i; 5633 5634 /* clear everything except for devices */ 5635 memset(link, 0, offsetof(struct ata_link, device[0])); 5636 5637 link->ap = ap; 5638 link->pmp = pmp; 5639 link->active_tag = ATA_TAG_POISON; 5640 link->hw_sata_spd_limit = UINT_MAX; 5641 5642 /* can't use iterator, ap isn't initialized yet */ 5643 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5644 struct ata_device *dev = &link->device[i]; 5645 5646 dev->link = link; 5647 dev->devno = dev - link->device; 5648 #ifdef CONFIG_ATA_ACPI 5649 dev->gtf_filter = ata_acpi_gtf_filter; 5650 #endif 5651 ata_dev_init(dev); 5652 } 5653 } 5654 5655 /** 5656 * sata_link_init_spd - Initialize link->sata_spd_limit 5657 * @link: Link to configure sata_spd_limit for 5658 * 5659 * Initialize @link->[hw_]sata_spd_limit to the currently 5660 * configured value. 5661 * 5662 * LOCKING: 5663 * Kernel thread context (may sleep). 5664 * 5665 * RETURNS: 5666 * 0 on success, -errno on failure. 5667 */ 5668 int sata_link_init_spd(struct ata_link *link) 5669 { 5670 u8 spd; 5671 int rc; 5672 5673 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5674 if (rc) 5675 return rc; 5676 5677 spd = (link->saved_scontrol >> 4) & 0xf; 5678 if (spd) 5679 link->hw_sata_spd_limit &= (1 << spd) - 1; 5680 5681 ata_force_link_limits(link); 5682 5683 link->sata_spd_limit = link->hw_sata_spd_limit; 5684 5685 return 0; 5686 } 5687 5688 /** 5689 * ata_port_alloc - allocate and initialize basic ATA port resources 5690 * @host: ATA host this allocated port belongs to 5691 * 5692 * Allocate and initialize basic ATA port resources. 5693 * 5694 * RETURNS: 5695 * Allocate ATA port on success, NULL on failure. 5696 * 5697 * LOCKING: 5698 * Inherited from calling layer (may sleep). 5699 */ 5700 struct ata_port *ata_port_alloc(struct ata_host *host) 5701 { 5702 struct ata_port *ap; 5703 5704 DPRINTK("ENTER\n"); 5705 5706 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5707 if (!ap) 5708 return NULL; 5709 5710 ap->pflags |= ATA_PFLAG_INITIALIZING; 5711 ap->lock = &host->lock; 5712 ap->flags = ATA_FLAG_DISABLED; 5713 ap->print_id = -1; 5714 ap->ctl = ATA_DEVCTL_OBS; 5715 ap->host = host; 5716 ap->dev = host->dev; 5717 ap->last_ctl = 0xFF; 5718 5719 #if defined(ATA_VERBOSE_DEBUG) 5720 /* turn on all debugging levels */ 5721 ap->msg_enable = 0x00FF; 5722 #elif defined(ATA_DEBUG) 5723 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5724 #else 5725 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5726 #endif 5727 5728 #ifdef CONFIG_ATA_SFF 5729 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5730 #else 5731 INIT_DELAYED_WORK(&ap->port_task, NULL); 5732 #endif 5733 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5734 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5735 INIT_LIST_HEAD(&ap->eh_done_q); 5736 init_waitqueue_head(&ap->eh_wait_q); 5737 init_completion(&ap->park_req_pending); 5738 init_timer_deferrable(&ap->fastdrain_timer); 5739 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5740 ap->fastdrain_timer.data = (unsigned long)ap; 5741 5742 ap->cbl = ATA_CBL_NONE; 5743 5744 ata_link_init(ap, &ap->link, 0); 5745 5746 #ifdef ATA_IRQ_TRAP 5747 ap->stats.unhandled_irq = 1; 5748 ap->stats.idle_irq = 1; 5749 #endif 5750 return ap; 5751 } 5752 5753 static void ata_host_release(struct device *gendev, void *res) 5754 { 5755 struct ata_host *host = dev_get_drvdata(gendev); 5756 int i; 5757 5758 for (i = 0; i < host->n_ports; i++) { 5759 struct ata_port *ap = host->ports[i]; 5760 5761 if (!ap) 5762 continue; 5763 5764 if (ap->scsi_host) 5765 scsi_host_put(ap->scsi_host); 5766 5767 kfree(ap->pmp_link); 5768 kfree(ap->slave_link); 5769 kfree(ap); 5770 host->ports[i] = NULL; 5771 } 5772 5773 dev_set_drvdata(gendev, NULL); 5774 } 5775 5776 /** 5777 * ata_host_alloc - allocate and init basic ATA host resources 5778 * @dev: generic device this host is associated with 5779 * @max_ports: maximum number of ATA ports associated with this host 5780 * 5781 * Allocate and initialize basic ATA host resources. LLD calls 5782 * this function to allocate a host, initializes it fully and 5783 * attaches it using ata_host_register(). 5784 * 5785 * @max_ports ports are allocated and host->n_ports is 5786 * initialized to @max_ports. The caller is allowed to decrease 5787 * host->n_ports before calling ata_host_register(). The unused 5788 * ports will be automatically freed on registration. 5789 * 5790 * RETURNS: 5791 * Allocate ATA host on success, NULL on failure. 5792 * 5793 * LOCKING: 5794 * Inherited from calling layer (may sleep). 5795 */ 5796 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5797 { 5798 struct ata_host *host; 5799 size_t sz; 5800 int i; 5801 5802 DPRINTK("ENTER\n"); 5803 5804 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5805 return NULL; 5806 5807 /* alloc a container for our list of ATA ports (buses) */ 5808 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5809 /* alloc a container for our list of ATA ports (buses) */ 5810 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5811 if (!host) 5812 goto err_out; 5813 5814 devres_add(dev, host); 5815 dev_set_drvdata(dev, host); 5816 5817 spin_lock_init(&host->lock); 5818 host->dev = dev; 5819 host->n_ports = max_ports; 5820 5821 /* allocate ports bound to this host */ 5822 for (i = 0; i < max_ports; i++) { 5823 struct ata_port *ap; 5824 5825 ap = ata_port_alloc(host); 5826 if (!ap) 5827 goto err_out; 5828 5829 ap->port_no = i; 5830 host->ports[i] = ap; 5831 } 5832 5833 devres_remove_group(dev, NULL); 5834 return host; 5835 5836 err_out: 5837 devres_release_group(dev, NULL); 5838 return NULL; 5839 } 5840 5841 /** 5842 * ata_host_alloc_pinfo - alloc host and init with port_info array 5843 * @dev: generic device this host is associated with 5844 * @ppi: array of ATA port_info to initialize host with 5845 * @n_ports: number of ATA ports attached to this host 5846 * 5847 * Allocate ATA host and initialize with info from @ppi. If NULL 5848 * terminated, @ppi may contain fewer entries than @n_ports. The 5849 * last entry will be used for the remaining ports. 5850 * 5851 * RETURNS: 5852 * Allocate ATA host on success, NULL on failure. 5853 * 5854 * LOCKING: 5855 * Inherited from calling layer (may sleep). 5856 */ 5857 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5858 const struct ata_port_info * const * ppi, 5859 int n_ports) 5860 { 5861 const struct ata_port_info *pi; 5862 struct ata_host *host; 5863 int i, j; 5864 5865 host = ata_host_alloc(dev, n_ports); 5866 if (!host) 5867 return NULL; 5868 5869 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5870 struct ata_port *ap = host->ports[i]; 5871 5872 if (ppi[j]) 5873 pi = ppi[j++]; 5874 5875 ap->pio_mask = pi->pio_mask; 5876 ap->mwdma_mask = pi->mwdma_mask; 5877 ap->udma_mask = pi->udma_mask; 5878 ap->flags |= pi->flags; 5879 ap->link.flags |= pi->link_flags; 5880 ap->ops = pi->port_ops; 5881 5882 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5883 host->ops = pi->port_ops; 5884 } 5885 5886 return host; 5887 } 5888 5889 /** 5890 * ata_slave_link_init - initialize slave link 5891 * @ap: port to initialize slave link for 5892 * 5893 * Create and initialize slave link for @ap. This enables slave 5894 * link handling on the port. 5895 * 5896 * In libata, a port contains links and a link contains devices. 5897 * There is single host link but if a PMP is attached to it, 5898 * there can be multiple fan-out links. On SATA, there's usually 5899 * a single device connected to a link but PATA and SATA 5900 * controllers emulating TF based interface can have two - master 5901 * and slave. 5902 * 5903 * However, there are a few controllers which don't fit into this 5904 * abstraction too well - SATA controllers which emulate TF 5905 * interface with both master and slave devices but also have 5906 * separate SCR register sets for each device. These controllers 5907 * need separate links for physical link handling 5908 * (e.g. onlineness, link speed) but should be treated like a 5909 * traditional M/S controller for everything else (e.g. command 5910 * issue, softreset). 5911 * 5912 * slave_link is libata's way of handling this class of 5913 * controllers without impacting core layer too much. For 5914 * anything other than physical link handling, the default host 5915 * link is used for both master and slave. For physical link 5916 * handling, separate @ap->slave_link is used. All dirty details 5917 * are implemented inside libata core layer. From LLD's POV, the 5918 * only difference is that prereset, hardreset and postreset are 5919 * called once more for the slave link, so the reset sequence 5920 * looks like the following. 5921 * 5922 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5923 * softreset(M) -> postreset(M) -> postreset(S) 5924 * 5925 * Note that softreset is called only for the master. Softreset 5926 * resets both M/S by definition, so SRST on master should handle 5927 * both (the standard method will work just fine). 5928 * 5929 * LOCKING: 5930 * Should be called before host is registered. 5931 * 5932 * RETURNS: 5933 * 0 on success, -errno on failure. 5934 */ 5935 int ata_slave_link_init(struct ata_port *ap) 5936 { 5937 struct ata_link *link; 5938 5939 WARN_ON(ap->slave_link); 5940 WARN_ON(ap->flags & ATA_FLAG_PMP); 5941 5942 link = kzalloc(sizeof(*link), GFP_KERNEL); 5943 if (!link) 5944 return -ENOMEM; 5945 5946 ata_link_init(ap, link, 1); 5947 ap->slave_link = link; 5948 return 0; 5949 } 5950 5951 static void ata_host_stop(struct device *gendev, void *res) 5952 { 5953 struct ata_host *host = dev_get_drvdata(gendev); 5954 int i; 5955 5956 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5957 5958 for (i = 0; i < host->n_ports; i++) { 5959 struct ata_port *ap = host->ports[i]; 5960 5961 if (ap->ops->port_stop) 5962 ap->ops->port_stop(ap); 5963 } 5964 5965 if (host->ops->host_stop) 5966 host->ops->host_stop(host); 5967 } 5968 5969 /** 5970 * ata_finalize_port_ops - finalize ata_port_operations 5971 * @ops: ata_port_operations to finalize 5972 * 5973 * An ata_port_operations can inherit from another ops and that 5974 * ops can again inherit from another. This can go on as many 5975 * times as necessary as long as there is no loop in the 5976 * inheritance chain. 5977 * 5978 * Ops tables are finalized when the host is started. NULL or 5979 * unspecified entries are inherited from the closet ancestor 5980 * which has the method and the entry is populated with it. 5981 * After finalization, the ops table directly points to all the 5982 * methods and ->inherits is no longer necessary and cleared. 5983 * 5984 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5985 * 5986 * LOCKING: 5987 * None. 5988 */ 5989 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5990 { 5991 static DEFINE_SPINLOCK(lock); 5992 const struct ata_port_operations *cur; 5993 void **begin = (void **)ops; 5994 void **end = (void **)&ops->inherits; 5995 void **pp; 5996 5997 if (!ops || !ops->inherits) 5998 return; 5999 6000 spin_lock(&lock); 6001 6002 for (cur = ops->inherits; cur; cur = cur->inherits) { 6003 void **inherit = (void **)cur; 6004 6005 for (pp = begin; pp < end; pp++, inherit++) 6006 if (!*pp) 6007 *pp = *inherit; 6008 } 6009 6010 for (pp = begin; pp < end; pp++) 6011 if (IS_ERR(*pp)) 6012 *pp = NULL; 6013 6014 ops->inherits = NULL; 6015 6016 spin_unlock(&lock); 6017 } 6018 6019 /** 6020 * ata_host_start - start and freeze ports of an ATA host 6021 * @host: ATA host to start ports for 6022 * 6023 * Start and then freeze ports of @host. Started status is 6024 * recorded in host->flags, so this function can be called 6025 * multiple times. Ports are guaranteed to get started only 6026 * once. If host->ops isn't initialized yet, its set to the 6027 * first non-dummy port ops. 6028 * 6029 * LOCKING: 6030 * Inherited from calling layer (may sleep). 6031 * 6032 * RETURNS: 6033 * 0 if all ports are started successfully, -errno otherwise. 6034 */ 6035 int ata_host_start(struct ata_host *host) 6036 { 6037 int have_stop = 0; 6038 void *start_dr = NULL; 6039 int i, rc; 6040 6041 if (host->flags & ATA_HOST_STARTED) 6042 return 0; 6043 6044 ata_finalize_port_ops(host->ops); 6045 6046 for (i = 0; i < host->n_ports; i++) { 6047 struct ata_port *ap = host->ports[i]; 6048 6049 ata_finalize_port_ops(ap->ops); 6050 6051 if (!host->ops && !ata_port_is_dummy(ap)) 6052 host->ops = ap->ops; 6053 6054 if (ap->ops->port_stop) 6055 have_stop = 1; 6056 } 6057 6058 if (host->ops->host_stop) 6059 have_stop = 1; 6060 6061 if (have_stop) { 6062 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6063 if (!start_dr) 6064 return -ENOMEM; 6065 } 6066 6067 for (i = 0; i < host->n_ports; i++) { 6068 struct ata_port *ap = host->ports[i]; 6069 6070 if (ap->ops->port_start) { 6071 rc = ap->ops->port_start(ap); 6072 if (rc) { 6073 if (rc != -ENODEV) 6074 dev_printk(KERN_ERR, host->dev, 6075 "failed to start port %d " 6076 "(errno=%d)\n", i, rc); 6077 goto err_out; 6078 } 6079 } 6080 ata_eh_freeze_port(ap); 6081 } 6082 6083 if (start_dr) 6084 devres_add(host->dev, start_dr); 6085 host->flags |= ATA_HOST_STARTED; 6086 return 0; 6087 6088 err_out: 6089 while (--i >= 0) { 6090 struct ata_port *ap = host->ports[i]; 6091 6092 if (ap->ops->port_stop) 6093 ap->ops->port_stop(ap); 6094 } 6095 devres_free(start_dr); 6096 return rc; 6097 } 6098 6099 /** 6100 * ata_sas_host_init - Initialize a host struct 6101 * @host: host to initialize 6102 * @dev: device host is attached to 6103 * @flags: host flags 6104 * @ops: port_ops 6105 * 6106 * LOCKING: 6107 * PCI/etc. bus probe sem. 6108 * 6109 */ 6110 /* KILLME - the only user left is ipr */ 6111 void ata_host_init(struct ata_host *host, struct device *dev, 6112 unsigned long flags, struct ata_port_operations *ops) 6113 { 6114 spin_lock_init(&host->lock); 6115 host->dev = dev; 6116 host->flags = flags; 6117 host->ops = ops; 6118 } 6119 6120 6121 static void async_port_probe(void *data, async_cookie_t cookie) 6122 { 6123 int rc; 6124 struct ata_port *ap = data; 6125 6126 /* 6127 * If we're not allowed to scan this host in parallel, 6128 * we need to wait until all previous scans have completed 6129 * before going further. 6130 * Jeff Garzik says this is only within a controller, so we 6131 * don't need to wait for port 0, only for later ports. 6132 */ 6133 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6134 async_synchronize_cookie(cookie); 6135 6136 /* probe */ 6137 if (ap->ops->error_handler) { 6138 struct ata_eh_info *ehi = &ap->link.eh_info; 6139 unsigned long flags; 6140 6141 ata_port_probe(ap); 6142 6143 /* kick EH for boot probing */ 6144 spin_lock_irqsave(ap->lock, flags); 6145 6146 ehi->probe_mask |= ATA_ALL_DEVICES; 6147 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6148 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6149 6150 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6151 ap->pflags |= ATA_PFLAG_LOADING; 6152 ata_port_schedule_eh(ap); 6153 6154 spin_unlock_irqrestore(ap->lock, flags); 6155 6156 /* wait for EH to finish */ 6157 ata_port_wait_eh(ap); 6158 } else { 6159 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6160 rc = ata_bus_probe(ap); 6161 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6162 6163 if (rc) { 6164 /* FIXME: do something useful here? 6165 * Current libata behavior will 6166 * tear down everything when 6167 * the module is removed 6168 * or the h/w is unplugged. 6169 */ 6170 } 6171 } 6172 6173 /* in order to keep device order, we need to synchronize at this point */ 6174 async_synchronize_cookie(cookie); 6175 6176 ata_scsi_scan_host(ap, 1); 6177 6178 } 6179 /** 6180 * ata_host_register - register initialized ATA host 6181 * @host: ATA host to register 6182 * @sht: template for SCSI host 6183 * 6184 * Register initialized ATA host. @host is allocated using 6185 * ata_host_alloc() and fully initialized by LLD. This function 6186 * starts ports, registers @host with ATA and SCSI layers and 6187 * probe registered devices. 6188 * 6189 * LOCKING: 6190 * Inherited from calling layer (may sleep). 6191 * 6192 * RETURNS: 6193 * 0 on success, -errno otherwise. 6194 */ 6195 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6196 { 6197 int i, rc; 6198 6199 /* host must have been started */ 6200 if (!(host->flags & ATA_HOST_STARTED)) { 6201 dev_printk(KERN_ERR, host->dev, 6202 "BUG: trying to register unstarted host\n"); 6203 WARN_ON(1); 6204 return -EINVAL; 6205 } 6206 6207 /* Blow away unused ports. This happens when LLD can't 6208 * determine the exact number of ports to allocate at 6209 * allocation time. 6210 */ 6211 for (i = host->n_ports; host->ports[i]; i++) 6212 kfree(host->ports[i]); 6213 6214 /* give ports names and add SCSI hosts */ 6215 for (i = 0; i < host->n_ports; i++) 6216 host->ports[i]->print_id = ata_print_id++; 6217 6218 rc = ata_scsi_add_hosts(host, sht); 6219 if (rc) 6220 return rc; 6221 6222 /* associate with ACPI nodes */ 6223 ata_acpi_associate(host); 6224 6225 /* set cable, sata_spd_limit and report */ 6226 for (i = 0; i < host->n_ports; i++) { 6227 struct ata_port *ap = host->ports[i]; 6228 unsigned long xfer_mask; 6229 6230 /* set SATA cable type if still unset */ 6231 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6232 ap->cbl = ATA_CBL_SATA; 6233 6234 /* init sata_spd_limit to the current value */ 6235 sata_link_init_spd(&ap->link); 6236 if (ap->slave_link) 6237 sata_link_init_spd(ap->slave_link); 6238 6239 /* print per-port info to dmesg */ 6240 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6241 ap->udma_mask); 6242 6243 if (!ata_port_is_dummy(ap)) { 6244 ata_port_printk(ap, KERN_INFO, 6245 "%cATA max %s %s\n", 6246 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6247 ata_mode_string(xfer_mask), 6248 ap->link.eh_info.desc); 6249 ata_ehi_clear_desc(&ap->link.eh_info); 6250 } else 6251 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6252 } 6253 6254 /* perform each probe asynchronously */ 6255 for (i = 0; i < host->n_ports; i++) { 6256 struct ata_port *ap = host->ports[i]; 6257 async_schedule(async_port_probe, ap); 6258 } 6259 6260 return 0; 6261 } 6262 6263 /** 6264 * ata_host_activate - start host, request IRQ and register it 6265 * @host: target ATA host 6266 * @irq: IRQ to request 6267 * @irq_handler: irq_handler used when requesting IRQ 6268 * @irq_flags: irq_flags used when requesting IRQ 6269 * @sht: scsi_host_template to use when registering the host 6270 * 6271 * After allocating an ATA host and initializing it, most libata 6272 * LLDs perform three steps to activate the host - start host, 6273 * request IRQ and register it. This helper takes necessasry 6274 * arguments and performs the three steps in one go. 6275 * 6276 * An invalid IRQ skips the IRQ registration and expects the host to 6277 * have set polling mode on the port. In this case, @irq_handler 6278 * should be NULL. 6279 * 6280 * LOCKING: 6281 * Inherited from calling layer (may sleep). 6282 * 6283 * RETURNS: 6284 * 0 on success, -errno otherwise. 6285 */ 6286 int ata_host_activate(struct ata_host *host, int irq, 6287 irq_handler_t irq_handler, unsigned long irq_flags, 6288 struct scsi_host_template *sht) 6289 { 6290 int i, rc; 6291 6292 rc = ata_host_start(host); 6293 if (rc) 6294 return rc; 6295 6296 /* Special case for polling mode */ 6297 if (!irq) { 6298 WARN_ON(irq_handler); 6299 return ata_host_register(host, sht); 6300 } 6301 6302 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6303 dev_driver_string(host->dev), host); 6304 if (rc) 6305 return rc; 6306 6307 for (i = 0; i < host->n_ports; i++) 6308 ata_port_desc(host->ports[i], "irq %d", irq); 6309 6310 rc = ata_host_register(host, sht); 6311 /* if failed, just free the IRQ and leave ports alone */ 6312 if (rc) 6313 devm_free_irq(host->dev, irq, host); 6314 6315 return rc; 6316 } 6317 6318 /** 6319 * ata_port_detach - Detach ATA port in prepration of device removal 6320 * @ap: ATA port to be detached 6321 * 6322 * Detach all ATA devices and the associated SCSI devices of @ap; 6323 * then, remove the associated SCSI host. @ap is guaranteed to 6324 * be quiescent on return from this function. 6325 * 6326 * LOCKING: 6327 * Kernel thread context (may sleep). 6328 */ 6329 static void ata_port_detach(struct ata_port *ap) 6330 { 6331 unsigned long flags; 6332 6333 if (!ap->ops->error_handler) 6334 goto skip_eh; 6335 6336 /* tell EH we're leaving & flush EH */ 6337 spin_lock_irqsave(ap->lock, flags); 6338 ap->pflags |= ATA_PFLAG_UNLOADING; 6339 ata_port_schedule_eh(ap); 6340 spin_unlock_irqrestore(ap->lock, flags); 6341 6342 /* wait till EH commits suicide */ 6343 ata_port_wait_eh(ap); 6344 6345 /* it better be dead now */ 6346 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6347 6348 cancel_rearming_delayed_work(&ap->hotplug_task); 6349 6350 skip_eh: 6351 /* remove the associated SCSI host */ 6352 scsi_remove_host(ap->scsi_host); 6353 } 6354 6355 /** 6356 * ata_host_detach - Detach all ports of an ATA host 6357 * @host: Host to detach 6358 * 6359 * Detach all ports of @host. 6360 * 6361 * LOCKING: 6362 * Kernel thread context (may sleep). 6363 */ 6364 void ata_host_detach(struct ata_host *host) 6365 { 6366 int i; 6367 6368 for (i = 0; i < host->n_ports; i++) 6369 ata_port_detach(host->ports[i]); 6370 6371 /* the host is dead now, dissociate ACPI */ 6372 ata_acpi_dissociate(host); 6373 } 6374 6375 #ifdef CONFIG_PCI 6376 6377 /** 6378 * ata_pci_remove_one - PCI layer callback for device removal 6379 * @pdev: PCI device that was removed 6380 * 6381 * PCI layer indicates to libata via this hook that hot-unplug or 6382 * module unload event has occurred. Detach all ports. Resource 6383 * release is handled via devres. 6384 * 6385 * LOCKING: 6386 * Inherited from PCI layer (may sleep). 6387 */ 6388 void ata_pci_remove_one(struct pci_dev *pdev) 6389 { 6390 struct device *dev = &pdev->dev; 6391 struct ata_host *host = dev_get_drvdata(dev); 6392 6393 ata_host_detach(host); 6394 } 6395 6396 /* move to PCI subsystem */ 6397 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6398 { 6399 unsigned long tmp = 0; 6400 6401 switch (bits->width) { 6402 case 1: { 6403 u8 tmp8 = 0; 6404 pci_read_config_byte(pdev, bits->reg, &tmp8); 6405 tmp = tmp8; 6406 break; 6407 } 6408 case 2: { 6409 u16 tmp16 = 0; 6410 pci_read_config_word(pdev, bits->reg, &tmp16); 6411 tmp = tmp16; 6412 break; 6413 } 6414 case 4: { 6415 u32 tmp32 = 0; 6416 pci_read_config_dword(pdev, bits->reg, &tmp32); 6417 tmp = tmp32; 6418 break; 6419 } 6420 6421 default: 6422 return -EINVAL; 6423 } 6424 6425 tmp &= bits->mask; 6426 6427 return (tmp == bits->val) ? 1 : 0; 6428 } 6429 6430 #ifdef CONFIG_PM 6431 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6432 { 6433 pci_save_state(pdev); 6434 pci_disable_device(pdev); 6435 6436 if (mesg.event & PM_EVENT_SLEEP) 6437 pci_set_power_state(pdev, PCI_D3hot); 6438 } 6439 6440 int ata_pci_device_do_resume(struct pci_dev *pdev) 6441 { 6442 int rc; 6443 6444 pci_set_power_state(pdev, PCI_D0); 6445 pci_restore_state(pdev); 6446 6447 rc = pcim_enable_device(pdev); 6448 if (rc) { 6449 dev_printk(KERN_ERR, &pdev->dev, 6450 "failed to enable device after resume (%d)\n", rc); 6451 return rc; 6452 } 6453 6454 pci_set_master(pdev); 6455 return 0; 6456 } 6457 6458 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6459 { 6460 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6461 int rc = 0; 6462 6463 rc = ata_host_suspend(host, mesg); 6464 if (rc) 6465 return rc; 6466 6467 ata_pci_device_do_suspend(pdev, mesg); 6468 6469 return 0; 6470 } 6471 6472 int ata_pci_device_resume(struct pci_dev *pdev) 6473 { 6474 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6475 int rc; 6476 6477 rc = ata_pci_device_do_resume(pdev); 6478 if (rc == 0) 6479 ata_host_resume(host); 6480 return rc; 6481 } 6482 #endif /* CONFIG_PM */ 6483 6484 #endif /* CONFIG_PCI */ 6485 6486 static int __init ata_parse_force_one(char **cur, 6487 struct ata_force_ent *force_ent, 6488 const char **reason) 6489 { 6490 /* FIXME: Currently, there's no way to tag init const data and 6491 * using __initdata causes build failure on some versions of 6492 * gcc. Once __initdataconst is implemented, add const to the 6493 * following structure. 6494 */ 6495 static struct ata_force_param force_tbl[] __initdata = { 6496 { "40c", .cbl = ATA_CBL_PATA40 }, 6497 { "80c", .cbl = ATA_CBL_PATA80 }, 6498 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6499 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6500 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6501 { "sata", .cbl = ATA_CBL_SATA }, 6502 { "1.5Gbps", .spd_limit = 1 }, 6503 { "3.0Gbps", .spd_limit = 2 }, 6504 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6505 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6506 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6507 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6508 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6509 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6510 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6511 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6512 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6513 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6514 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6515 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6516 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6517 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6518 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6519 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6520 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6521 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6522 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6523 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6524 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6525 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6526 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6527 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6528 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6529 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6530 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6531 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6532 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6533 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6534 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6535 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6536 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6537 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6538 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6539 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6540 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6541 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6542 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6543 }; 6544 char *start = *cur, *p = *cur; 6545 char *id, *val, *endp; 6546 const struct ata_force_param *match_fp = NULL; 6547 int nr_matches = 0, i; 6548 6549 /* find where this param ends and update *cur */ 6550 while (*p != '\0' && *p != ',') 6551 p++; 6552 6553 if (*p == '\0') 6554 *cur = p; 6555 else 6556 *cur = p + 1; 6557 6558 *p = '\0'; 6559 6560 /* parse */ 6561 p = strchr(start, ':'); 6562 if (!p) { 6563 val = strstrip(start); 6564 goto parse_val; 6565 } 6566 *p = '\0'; 6567 6568 id = strstrip(start); 6569 val = strstrip(p + 1); 6570 6571 /* parse id */ 6572 p = strchr(id, '.'); 6573 if (p) { 6574 *p++ = '\0'; 6575 force_ent->device = simple_strtoul(p, &endp, 10); 6576 if (p == endp || *endp != '\0') { 6577 *reason = "invalid device"; 6578 return -EINVAL; 6579 } 6580 } 6581 6582 force_ent->port = simple_strtoul(id, &endp, 10); 6583 if (p == endp || *endp != '\0') { 6584 *reason = "invalid port/link"; 6585 return -EINVAL; 6586 } 6587 6588 parse_val: 6589 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6590 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6591 const struct ata_force_param *fp = &force_tbl[i]; 6592 6593 if (strncasecmp(val, fp->name, strlen(val))) 6594 continue; 6595 6596 nr_matches++; 6597 match_fp = fp; 6598 6599 if (strcasecmp(val, fp->name) == 0) { 6600 nr_matches = 1; 6601 break; 6602 } 6603 } 6604 6605 if (!nr_matches) { 6606 *reason = "unknown value"; 6607 return -EINVAL; 6608 } 6609 if (nr_matches > 1) { 6610 *reason = "ambigious value"; 6611 return -EINVAL; 6612 } 6613 6614 force_ent->param = *match_fp; 6615 6616 return 0; 6617 } 6618 6619 static void __init ata_parse_force_param(void) 6620 { 6621 int idx = 0, size = 1; 6622 int last_port = -1, last_device = -1; 6623 char *p, *cur, *next; 6624 6625 /* calculate maximum number of params and allocate force_tbl */ 6626 for (p = ata_force_param_buf; *p; p++) 6627 if (*p == ',') 6628 size++; 6629 6630 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6631 if (!ata_force_tbl) { 6632 printk(KERN_WARNING "ata: failed to extend force table, " 6633 "libata.force ignored\n"); 6634 return; 6635 } 6636 6637 /* parse and populate the table */ 6638 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6639 const char *reason = ""; 6640 struct ata_force_ent te = { .port = -1, .device = -1 }; 6641 6642 next = cur; 6643 if (ata_parse_force_one(&next, &te, &reason)) { 6644 printk(KERN_WARNING "ata: failed to parse force " 6645 "parameter \"%s\" (%s)\n", 6646 cur, reason); 6647 continue; 6648 } 6649 6650 if (te.port == -1) { 6651 te.port = last_port; 6652 te.device = last_device; 6653 } 6654 6655 ata_force_tbl[idx++] = te; 6656 6657 last_port = te.port; 6658 last_device = te.device; 6659 } 6660 6661 ata_force_tbl_size = idx; 6662 } 6663 6664 static int __init ata_init(void) 6665 { 6666 ata_parse_force_param(); 6667 6668 /* 6669 * FIXME: In UP case, there is only one workqueue thread and if you 6670 * have more than one PIO device, latency is bloody awful, with 6671 * occasional multi-second "hiccups" as one PIO device waits for 6672 * another. It's an ugly wart that users DO occasionally complain 6673 * about; luckily most users have at most one PIO polled device. 6674 */ 6675 ata_wq = create_workqueue("ata"); 6676 if (!ata_wq) 6677 goto free_force_tbl; 6678 6679 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6680 if (!ata_aux_wq) 6681 goto free_wq; 6682 6683 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6684 return 0; 6685 6686 free_wq: 6687 destroy_workqueue(ata_wq); 6688 free_force_tbl: 6689 kfree(ata_force_tbl); 6690 return -ENOMEM; 6691 } 6692 6693 static void __exit ata_exit(void) 6694 { 6695 kfree(ata_force_tbl); 6696 destroy_workqueue(ata_wq); 6697 destroy_workqueue(ata_aux_wq); 6698 } 6699 6700 subsys_initcall(ata_init); 6701 module_exit(ata_exit); 6702 6703 static unsigned long ratelimit_time; 6704 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6705 6706 int ata_ratelimit(void) 6707 { 6708 int rc; 6709 unsigned long flags; 6710 6711 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6712 6713 if (time_after(jiffies, ratelimit_time)) { 6714 rc = 1; 6715 ratelimit_time = jiffies + (HZ/5); 6716 } else 6717 rc = 0; 6718 6719 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6720 6721 return rc; 6722 } 6723 6724 /** 6725 * ata_wait_register - wait until register value changes 6726 * @reg: IO-mapped register 6727 * @mask: Mask to apply to read register value 6728 * @val: Wait condition 6729 * @interval: polling interval in milliseconds 6730 * @timeout: timeout in milliseconds 6731 * 6732 * Waiting for some bits of register to change is a common 6733 * operation for ATA controllers. This function reads 32bit LE 6734 * IO-mapped register @reg and tests for the following condition. 6735 * 6736 * (*@reg & mask) != val 6737 * 6738 * If the condition is met, it returns; otherwise, the process is 6739 * repeated after @interval_msec until timeout. 6740 * 6741 * LOCKING: 6742 * Kernel thread context (may sleep) 6743 * 6744 * RETURNS: 6745 * The final register value. 6746 */ 6747 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6748 unsigned long interval, unsigned long timeout) 6749 { 6750 unsigned long deadline; 6751 u32 tmp; 6752 6753 tmp = ioread32(reg); 6754 6755 /* Calculate timeout _after_ the first read to make sure 6756 * preceding writes reach the controller before starting to 6757 * eat away the timeout. 6758 */ 6759 deadline = ata_deadline(jiffies, timeout); 6760 6761 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6762 msleep(interval); 6763 tmp = ioread32(reg); 6764 } 6765 6766 return tmp; 6767 } 6768 6769 /* 6770 * Dummy port_ops 6771 */ 6772 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6773 { 6774 return AC_ERR_SYSTEM; 6775 } 6776 6777 static void ata_dummy_error_handler(struct ata_port *ap) 6778 { 6779 /* truly dummy */ 6780 } 6781 6782 struct ata_port_operations ata_dummy_port_ops = { 6783 .qc_prep = ata_noop_qc_prep, 6784 .qc_issue = ata_dummy_qc_issue, 6785 .error_handler = ata_dummy_error_handler, 6786 }; 6787 6788 const struct ata_port_info ata_dummy_port_info = { 6789 .port_ops = &ata_dummy_port_ops, 6790 }; 6791 6792 /* 6793 * libata is essentially a library of internal helper functions for 6794 * low-level ATA host controller drivers. As such, the API/ABI is 6795 * likely to change as new drivers are added and updated. 6796 * Do not depend on ABI/API stability. 6797 */ 6798 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6799 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6800 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6801 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6802 EXPORT_SYMBOL_GPL(sata_port_ops); 6803 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6804 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6805 EXPORT_SYMBOL_GPL(ata_link_next); 6806 EXPORT_SYMBOL_GPL(ata_dev_next); 6807 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6808 EXPORT_SYMBOL_GPL(ata_host_init); 6809 EXPORT_SYMBOL_GPL(ata_host_alloc); 6810 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6811 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6812 EXPORT_SYMBOL_GPL(ata_host_start); 6813 EXPORT_SYMBOL_GPL(ata_host_register); 6814 EXPORT_SYMBOL_GPL(ata_host_activate); 6815 EXPORT_SYMBOL_GPL(ata_host_detach); 6816 EXPORT_SYMBOL_GPL(ata_sg_init); 6817 EXPORT_SYMBOL_GPL(ata_qc_complete); 6818 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6819 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6820 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6821 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6822 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6823 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6824 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6825 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6826 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6827 EXPORT_SYMBOL_GPL(ata_mode_string); 6828 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6829 EXPORT_SYMBOL_GPL(ata_port_start); 6830 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6831 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6832 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6833 EXPORT_SYMBOL_GPL(ata_port_probe); 6834 EXPORT_SYMBOL_GPL(ata_dev_disable); 6835 EXPORT_SYMBOL_GPL(sata_set_spd); 6836 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6837 EXPORT_SYMBOL_GPL(sata_link_debounce); 6838 EXPORT_SYMBOL_GPL(sata_link_resume); 6839 EXPORT_SYMBOL_GPL(ata_std_prereset); 6840 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6841 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6842 EXPORT_SYMBOL_GPL(ata_std_postreset); 6843 EXPORT_SYMBOL_GPL(ata_dev_classify); 6844 EXPORT_SYMBOL_GPL(ata_dev_pair); 6845 EXPORT_SYMBOL_GPL(ata_port_disable); 6846 EXPORT_SYMBOL_GPL(ata_ratelimit); 6847 EXPORT_SYMBOL_GPL(ata_wait_register); 6848 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6849 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6850 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6851 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6852 EXPORT_SYMBOL_GPL(sata_scr_valid); 6853 EXPORT_SYMBOL_GPL(sata_scr_read); 6854 EXPORT_SYMBOL_GPL(sata_scr_write); 6855 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6856 EXPORT_SYMBOL_GPL(ata_link_online); 6857 EXPORT_SYMBOL_GPL(ata_link_offline); 6858 #ifdef CONFIG_PM 6859 EXPORT_SYMBOL_GPL(ata_host_suspend); 6860 EXPORT_SYMBOL_GPL(ata_host_resume); 6861 #endif /* CONFIG_PM */ 6862 EXPORT_SYMBOL_GPL(ata_id_string); 6863 EXPORT_SYMBOL_GPL(ata_id_c_string); 6864 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6865 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6866 6867 EXPORT_SYMBOL_GPL(ata_pio_queue_task); 6868 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6869 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6870 EXPORT_SYMBOL_GPL(ata_timing_compute); 6871 EXPORT_SYMBOL_GPL(ata_timing_merge); 6872 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6873 6874 #ifdef CONFIG_PCI 6875 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6876 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6877 #ifdef CONFIG_PM 6878 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6879 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6880 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6881 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6882 #endif /* CONFIG_PM */ 6883 #endif /* CONFIG_PCI */ 6884 6885 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6886 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6887 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6888 EXPORT_SYMBOL_GPL(ata_port_desc); 6889 #ifdef CONFIG_PCI 6890 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6891 #endif /* CONFIG_PCI */ 6892 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6893 EXPORT_SYMBOL_GPL(ata_link_abort); 6894 EXPORT_SYMBOL_GPL(ata_port_abort); 6895 EXPORT_SYMBOL_GPL(ata_port_freeze); 6896 EXPORT_SYMBOL_GPL(sata_async_notification); 6897 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6898 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6899 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6900 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6901 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6902 EXPORT_SYMBOL_GPL(ata_do_eh); 6903 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6904 6905 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6906 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6907 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6908 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6909 EXPORT_SYMBOL_GPL(ata_cable_sata); 6910