xref: /linux/drivers/ata/libata-core.c (revision a17627ef8833ac30622a7b39b7be390e1b174405)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.21"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77 
78 struct workqueue_struct *ata_aux_wq;
79 
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95 
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99 
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103 
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108 
109 
110 /**
111  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112  *	@tf: Taskfile to convert
113  *	@fis: Buffer into which data will output
114  *	@pmp: Port multiplier port
115  *
116  *	Converts a standard ATA taskfile to a Serial ATA
117  *	FIS structure (Register - Host to Device).
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
122 
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 	fis[0] = 0x27;	/* Register - Host to Device FIS */
126 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 					    bit 7 indicates Command FIS */
128 	fis[2] = tf->command;
129 	fis[3] = tf->feature;
130 
131 	fis[4] = tf->lbal;
132 	fis[5] = tf->lbam;
133 	fis[6] = tf->lbah;
134 	fis[7] = tf->device;
135 
136 	fis[8] = tf->hob_lbal;
137 	fis[9] = tf->hob_lbam;
138 	fis[10] = tf->hob_lbah;
139 	fis[11] = tf->hob_feature;
140 
141 	fis[12] = tf->nsect;
142 	fis[13] = tf->hob_nsect;
143 	fis[14] = 0;
144 	fis[15] = tf->ctl;
145 
146 	fis[16] = 0;
147 	fis[17] = 0;
148 	fis[18] = 0;
149 	fis[19] = 0;
150 }
151 
152 /**
153  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154  *	@fis: Buffer from which data will be input
155  *	@tf: Taskfile to output
156  *
157  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
158  *
159  *	LOCKING:
160  *	Inherited from caller.
161  */
162 
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 	tf->command	= fis[2];	/* status */
166 	tf->feature	= fis[3];	/* error */
167 
168 	tf->lbal	= fis[4];
169 	tf->lbam	= fis[5];
170 	tf->lbah	= fis[6];
171 	tf->device	= fis[7];
172 
173 	tf->hob_lbal	= fis[8];
174 	tf->hob_lbam	= fis[9];
175 	tf->hob_lbah	= fis[10];
176 
177 	tf->nsect	= fis[12];
178 	tf->hob_nsect	= fis[13];
179 }
180 
181 static const u8 ata_rw_cmds[] = {
182 	/* pio multi */
183 	ATA_CMD_READ_MULTI,
184 	ATA_CMD_WRITE_MULTI,
185 	ATA_CMD_READ_MULTI_EXT,
186 	ATA_CMD_WRITE_MULTI_EXT,
187 	0,
188 	0,
189 	0,
190 	ATA_CMD_WRITE_MULTI_FUA_EXT,
191 	/* pio */
192 	ATA_CMD_PIO_READ,
193 	ATA_CMD_PIO_WRITE,
194 	ATA_CMD_PIO_READ_EXT,
195 	ATA_CMD_PIO_WRITE_EXT,
196 	0,
197 	0,
198 	0,
199 	0,
200 	/* dma */
201 	ATA_CMD_READ,
202 	ATA_CMD_WRITE,
203 	ATA_CMD_READ_EXT,
204 	ATA_CMD_WRITE_EXT,
205 	0,
206 	0,
207 	0,
208 	ATA_CMD_WRITE_FUA_EXT
209 };
210 
211 /**
212  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
213  *	@tf: command to examine and configure
214  *	@dev: device tf belongs to
215  *
216  *	Examine the device configuration and tf->flags to calculate
217  *	the proper read/write commands and protocol to use.
218  *
219  *	LOCKING:
220  *	caller.
221  */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 	u8 cmd;
225 
226 	int index, fua, lba48, write;
227 
228 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231 
232 	if (dev->flags & ATA_DFLAG_PIO) {
233 		tf->protocol = ATA_PROT_PIO;
234 		index = dev->multi_count ? 0 : 8;
235 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 		/* Unable to use DMA due to host limitation */
237 		tf->protocol = ATA_PROT_PIO;
238 		index = dev->multi_count ? 0 : 8;
239 	} else {
240 		tf->protocol = ATA_PROT_DMA;
241 		index = 16;
242 	}
243 
244 	cmd = ata_rw_cmds[index + fua + lba48 + write];
245 	if (cmd) {
246 		tf->command = cmd;
247 		return 0;
248 	}
249 	return -1;
250 }
251 
252 /**
253  *	ata_tf_read_block - Read block address from ATA taskfile
254  *	@tf: ATA taskfile of interest
255  *	@dev: ATA device @tf belongs to
256  *
257  *	LOCKING:
258  *	None.
259  *
260  *	Read block address from @tf.  This function can handle all
261  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
262  *	flags select the address format to use.
263  *
264  *	RETURNS:
265  *	Block address read from @tf.
266  */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 	u64 block = 0;
270 
271 	if (tf->flags & ATA_TFLAG_LBA) {
272 		if (tf->flags & ATA_TFLAG_LBA48) {
273 			block |= (u64)tf->hob_lbah << 40;
274 			block |= (u64)tf->hob_lbam << 32;
275 			block |= tf->hob_lbal << 24;
276 		} else
277 			block |= (tf->device & 0xf) << 24;
278 
279 		block |= tf->lbah << 16;
280 		block |= tf->lbam << 8;
281 		block |= tf->lbal;
282 	} else {
283 		u32 cyl, head, sect;
284 
285 		cyl = tf->lbam | (tf->lbah << 8);
286 		head = tf->device & 0xf;
287 		sect = tf->lbal;
288 
289 		block = (cyl * dev->heads + head) * dev->sectors + sect;
290 	}
291 
292 	return block;
293 }
294 
295 /**
296  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
297  *	@tf: Target ATA taskfile
298  *	@dev: ATA device @tf belongs to
299  *	@block: Block address
300  *	@n_block: Number of blocks
301  *	@tf_flags: RW/FUA etc...
302  *	@tag: tag
303  *
304  *	LOCKING:
305  *	None.
306  *
307  *	Build ATA taskfile @tf for read/write request described by
308  *	@block, @n_block, @tf_flags and @tag on @dev.
309  *
310  *	RETURNS:
311  *
312  *	0 on success, -ERANGE if the request is too large for @dev,
313  *	-EINVAL if the request is invalid.
314  */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 		    u64 block, u32 n_block, unsigned int tf_flags,
317 		    unsigned int tag)
318 {
319 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 	tf->flags |= tf_flags;
321 
322 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 		/* yay, NCQ */
324 		if (!lba_48_ok(block, n_block))
325 			return -ERANGE;
326 
327 		tf->protocol = ATA_PROT_NCQ;
328 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329 
330 		if (tf->flags & ATA_TFLAG_WRITE)
331 			tf->command = ATA_CMD_FPDMA_WRITE;
332 		else
333 			tf->command = ATA_CMD_FPDMA_READ;
334 
335 		tf->nsect = tag << 3;
336 		tf->hob_feature = (n_block >> 8) & 0xff;
337 		tf->feature = n_block & 0xff;
338 
339 		tf->hob_lbah = (block >> 40) & 0xff;
340 		tf->hob_lbam = (block >> 32) & 0xff;
341 		tf->hob_lbal = (block >> 24) & 0xff;
342 		tf->lbah = (block >> 16) & 0xff;
343 		tf->lbam = (block >> 8) & 0xff;
344 		tf->lbal = block & 0xff;
345 
346 		tf->device = 1 << 6;
347 		if (tf->flags & ATA_TFLAG_FUA)
348 			tf->device |= 1 << 7;
349 	} else if (dev->flags & ATA_DFLAG_LBA) {
350 		tf->flags |= ATA_TFLAG_LBA;
351 
352 		if (lba_28_ok(block, n_block)) {
353 			/* use LBA28 */
354 			tf->device |= (block >> 24) & 0xf;
355 		} else if (lba_48_ok(block, n_block)) {
356 			if (!(dev->flags & ATA_DFLAG_LBA48))
357 				return -ERANGE;
358 
359 			/* use LBA48 */
360 			tf->flags |= ATA_TFLAG_LBA48;
361 
362 			tf->hob_nsect = (n_block >> 8) & 0xff;
363 
364 			tf->hob_lbah = (block >> 40) & 0xff;
365 			tf->hob_lbam = (block >> 32) & 0xff;
366 			tf->hob_lbal = (block >> 24) & 0xff;
367 		} else
368 			/* request too large even for LBA48 */
369 			return -ERANGE;
370 
371 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 			return -EINVAL;
373 
374 		tf->nsect = n_block & 0xff;
375 
376 		tf->lbah = (block >> 16) & 0xff;
377 		tf->lbam = (block >> 8) & 0xff;
378 		tf->lbal = block & 0xff;
379 
380 		tf->device |= ATA_LBA;
381 	} else {
382 		/* CHS */
383 		u32 sect, head, cyl, track;
384 
385 		/* The request -may- be too large for CHS addressing. */
386 		if (!lba_28_ok(block, n_block))
387 			return -ERANGE;
388 
389 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 			return -EINVAL;
391 
392 		/* Convert LBA to CHS */
393 		track = (u32)block / dev->sectors;
394 		cyl   = track / dev->heads;
395 		head  = track % dev->heads;
396 		sect  = (u32)block % dev->sectors + 1;
397 
398 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 			(u32)block, track, cyl, head, sect);
400 
401 		/* Check whether the converted CHS can fit.
402 		   Cylinder: 0-65535
403 		   Head: 0-15
404 		   Sector: 1-255*/
405 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 			return -ERANGE;
407 
408 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 		tf->lbal = sect;
410 		tf->lbam = cyl;
411 		tf->lbah = cyl >> 8;
412 		tf->device |= head;
413 	}
414 
415 	return 0;
416 }
417 
418 /**
419  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420  *	@pio_mask: pio_mask
421  *	@mwdma_mask: mwdma_mask
422  *	@udma_mask: udma_mask
423  *
424  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425  *	unsigned int xfer_mask.
426  *
427  *	LOCKING:
428  *	None.
429  *
430  *	RETURNS:
431  *	Packed xfer_mask.
432  */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 				      unsigned int mwdma_mask,
435 				      unsigned int udma_mask)
436 {
437 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441 
442 /**
443  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444  *	@xfer_mask: xfer_mask to unpack
445  *	@pio_mask: resulting pio_mask
446  *	@mwdma_mask: resulting mwdma_mask
447  *	@udma_mask: resulting udma_mask
448  *
449  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450  *	Any NULL distination masks will be ignored.
451  */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 				unsigned int *pio_mask,
454 				unsigned int *mwdma_mask,
455 				unsigned int *udma_mask)
456 {
457 	if (pio_mask)
458 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 	if (mwdma_mask)
460 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 	if (udma_mask)
462 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464 
465 static const struct ata_xfer_ent {
466 	int shift, bits;
467 	u8 base;
468 } ata_xfer_tbl[] = {
469 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 	{ -1, },
473 };
474 
475 /**
476  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477  *	@xfer_mask: xfer_mask of interest
478  *
479  *	Return matching XFER_* value for @xfer_mask.  Only the highest
480  *	bit of @xfer_mask is considered.
481  *
482  *	LOCKING:
483  *	None.
484  *
485  *	RETURNS:
486  *	Matching XFER_* value, 0 if no match found.
487  */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 	int highbit = fls(xfer_mask) - 1;
491 	const struct ata_xfer_ent *ent;
492 
493 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 			return ent->base + highbit - ent->shift;
496 	return 0;
497 }
498 
499 /**
500  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501  *	@xfer_mode: XFER_* of interest
502  *
503  *	Return matching xfer_mask for @xfer_mode.
504  *
505  *	LOCKING:
506  *	None.
507  *
508  *	RETURNS:
509  *	Matching xfer_mask, 0 if no match found.
510  */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 	const struct ata_xfer_ent *ent;
514 
515 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 			return 1 << (ent->shift + xfer_mode - ent->base);
518 	return 0;
519 }
520 
521 /**
522  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523  *	@xfer_mode: XFER_* of interest
524  *
525  *	Return matching xfer_shift for @xfer_mode.
526  *
527  *	LOCKING:
528  *	None.
529  *
530  *	RETURNS:
531  *	Matching xfer_shift, -1 if no match found.
532  */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 	const struct ata_xfer_ent *ent;
536 
537 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 			return ent->shift;
540 	return -1;
541 }
542 
543 /**
544  *	ata_mode_string - convert xfer_mask to string
545  *	@xfer_mask: mask of bits supported; only highest bit counts.
546  *
547  *	Determine string which represents the highest speed
548  *	(highest bit in @modemask).
549  *
550  *	LOCKING:
551  *	None.
552  *
553  *	RETURNS:
554  *	Constant C string representing highest speed listed in
555  *	@mode_mask, or the constant C string "<n/a>".
556  */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 	static const char * const xfer_mode_str[] = {
560 		"PIO0",
561 		"PIO1",
562 		"PIO2",
563 		"PIO3",
564 		"PIO4",
565 		"PIO5",
566 		"PIO6",
567 		"MWDMA0",
568 		"MWDMA1",
569 		"MWDMA2",
570 		"MWDMA3",
571 		"MWDMA4",
572 		"UDMA/16",
573 		"UDMA/25",
574 		"UDMA/33",
575 		"UDMA/44",
576 		"UDMA/66",
577 		"UDMA/100",
578 		"UDMA/133",
579 		"UDMA7",
580 	};
581 	int highbit;
582 
583 	highbit = fls(xfer_mask) - 1;
584 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 		return xfer_mode_str[highbit];
586 	return "<n/a>";
587 }
588 
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 	static const char * const spd_str[] = {
592 		"1.5 Gbps",
593 		"3.0 Gbps",
594 	};
595 
596 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 		return "<unknown>";
598 	return spd_str[spd - 1];
599 }
600 
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 	if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 		ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 					     ATA_DNXFER_QUIET);
607 		dev->class++;
608 	}
609 }
610 
611 /**
612  *	ata_devchk - PATA device presence detection
613  *	@ap: ATA channel to examine
614  *	@device: Device to examine (starting at zero)
615  *
616  *	This technique was originally described in
617  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
618  *	later found its way into the ATA/ATAPI spec.
619  *
620  *	Write a pattern to the ATA shadow registers,
621  *	and if a device is present, it will respond by
622  *	correctly storing and echoing back the
623  *	ATA shadow register contents.
624  *
625  *	LOCKING:
626  *	caller.
627  */
628 
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 	struct ata_ioports *ioaddr = &ap->ioaddr;
632 	u8 nsect, lbal;
633 
634 	ap->ops->dev_select(ap, device);
635 
636 	iowrite8(0x55, ioaddr->nsect_addr);
637 	iowrite8(0xaa, ioaddr->lbal_addr);
638 
639 	iowrite8(0xaa, ioaddr->nsect_addr);
640 	iowrite8(0x55, ioaddr->lbal_addr);
641 
642 	iowrite8(0x55, ioaddr->nsect_addr);
643 	iowrite8(0xaa, ioaddr->lbal_addr);
644 
645 	nsect = ioread8(ioaddr->nsect_addr);
646 	lbal = ioread8(ioaddr->lbal_addr);
647 
648 	if ((nsect == 0x55) && (lbal == 0xaa))
649 		return 1;	/* we found a device */
650 
651 	return 0;		/* nothing found */
652 }
653 
654 /**
655  *	ata_dev_classify - determine device type based on ATA-spec signature
656  *	@tf: ATA taskfile register set for device to be identified
657  *
658  *	Determine from taskfile register contents whether a device is
659  *	ATA or ATAPI, as per "Signature and persistence" section
660  *	of ATA/PI spec (volume 1, sect 5.14).
661  *
662  *	LOCKING:
663  *	None.
664  *
665  *	RETURNS:
666  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667  *	the event of failure.
668  */
669 
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 	/* Apple's open source Darwin code hints that some devices only
673 	 * put a proper signature into the LBA mid/high registers,
674 	 * So, we only check those.  It's sufficient for uniqueness.
675 	 */
676 
677 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 		DPRINTK("found ATA device by sig\n");
680 		return ATA_DEV_ATA;
681 	}
682 
683 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 		DPRINTK("found ATAPI device by sig\n");
686 		return ATA_DEV_ATAPI;
687 	}
688 
689 	DPRINTK("unknown device\n");
690 	return ATA_DEV_UNKNOWN;
691 }
692 
693 /**
694  *	ata_dev_try_classify - Parse returned ATA device signature
695  *	@ap: ATA channel to examine
696  *	@device: Device to examine (starting at zero)
697  *	@r_err: Value of error register on completion
698  *
699  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700  *	an ATA/ATAPI-defined set of values is placed in the ATA
701  *	shadow registers, indicating the results of device detection
702  *	and diagnostics.
703  *
704  *	Select the ATA device, and read the values from the ATA shadow
705  *	registers.  Then parse according to the Error register value,
706  *	and the spec-defined values examined by ata_dev_classify().
707  *
708  *	LOCKING:
709  *	caller.
710  *
711  *	RETURNS:
712  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713  */
714 
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 	struct ata_taskfile tf;
719 	unsigned int class;
720 	u8 err;
721 
722 	ap->ops->dev_select(ap, device);
723 
724 	memset(&tf, 0, sizeof(tf));
725 
726 	ap->ops->tf_read(ap, &tf);
727 	err = tf.feature;
728 	if (r_err)
729 		*r_err = err;
730 
731 	/* see if device passed diags: if master then continue and warn later */
732 	if (err == 0 && device == 0)
733 		/* diagnostic fail : do nothing _YET_ */
734 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 	else if (err == 1)
736 		/* do nothing */ ;
737 	else if ((device == 0) && (err == 0x81))
738 		/* do nothing */ ;
739 	else
740 		return ATA_DEV_NONE;
741 
742 	/* determine if device is ATA or ATAPI */
743 	class = ata_dev_classify(&tf);
744 
745 	if (class == ATA_DEV_UNKNOWN)
746 		return ATA_DEV_NONE;
747 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 		return ATA_DEV_NONE;
749 	return class;
750 }
751 
752 /**
753  *	ata_id_string - Convert IDENTIFY DEVICE page into string
754  *	@id: IDENTIFY DEVICE results we will examine
755  *	@s: string into which data is output
756  *	@ofs: offset into identify device page
757  *	@len: length of string to return. must be an even number.
758  *
759  *	The strings in the IDENTIFY DEVICE page are broken up into
760  *	16-bit chunks.  Run through the string, and output each
761  *	8-bit chunk linearly, regardless of platform.
762  *
763  *	LOCKING:
764  *	caller.
765  */
766 
767 void ata_id_string(const u16 *id, unsigned char *s,
768 		   unsigned int ofs, unsigned int len)
769 {
770 	unsigned int c;
771 
772 	while (len > 0) {
773 		c = id[ofs] >> 8;
774 		*s = c;
775 		s++;
776 
777 		c = id[ofs] & 0xff;
778 		*s = c;
779 		s++;
780 
781 		ofs++;
782 		len -= 2;
783 	}
784 }
785 
786 /**
787  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788  *	@id: IDENTIFY DEVICE results we will examine
789  *	@s: string into which data is output
790  *	@ofs: offset into identify device page
791  *	@len: length of string to return. must be an odd number.
792  *
793  *	This function is identical to ata_id_string except that it
794  *	trims trailing spaces and terminates the resulting string with
795  *	null.  @len must be actual maximum length (even number) + 1.
796  *
797  *	LOCKING:
798  *	caller.
799  */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 		     unsigned int ofs, unsigned int len)
802 {
803 	unsigned char *p;
804 
805 	WARN_ON(!(len & 1));
806 
807 	ata_id_string(id, s, ofs, len - 1);
808 
809 	p = s + strnlen(s, len - 1);
810 	while (p > s && p[-1] == ' ')
811 		p--;
812 	*p = '\0';
813 }
814 
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 	u64 sectors = 0;
818 
819 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 	sectors |= (tf->hob_lbal & 0xff) << 24;
822 	sectors |= (tf->lbah & 0xff) << 16;
823 	sectors |= (tf->lbam & 0xff) << 8;
824 	sectors |= (tf->lbal & 0xff);
825 
826 	return ++sectors;
827 }
828 
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 	u64 sectors = 0;
832 
833 	sectors |= (tf->device & 0x0f) << 24;
834 	sectors |= (tf->lbah & 0xff) << 16;
835 	sectors |= (tf->lbam & 0xff) << 8;
836 	sectors |= (tf->lbal & 0xff);
837 
838 	return ++sectors;
839 }
840 
841 /**
842  *	ata_read_native_max_address_ext	-	LBA48 native max query
843  *	@dev: Device to query
844  *
845  *	Perform an LBA48 size query upon the device in question. Return the
846  *	actual LBA48 size or zero if the command fails.
847  */
848 
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 	unsigned int err;
852 	struct ata_taskfile tf;
853 
854 	ata_tf_init(dev, &tf);
855 
856 	tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 	tf.protocol |= ATA_PROT_NODATA;
859 	tf.device |= 0x40;
860 
861 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 	if (err)
863 		return 0;
864 
865 	return ata_tf_to_lba48(&tf);
866 }
867 
868 /**
869  *	ata_read_native_max_address	-	LBA28 native max query
870  *	@dev: Device to query
871  *
872  *	Performa an LBA28 size query upon the device in question. Return the
873  *	actual LBA28 size or zero if the command fails.
874  */
875 
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 	unsigned int err;
879 	struct ata_taskfile tf;
880 
881 	ata_tf_init(dev, &tf);
882 
883 	tf.command = ATA_CMD_READ_NATIVE_MAX;
884 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 	tf.protocol |= ATA_PROT_NODATA;
886 	tf.device |= 0x40;
887 
888 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 	if (err)
890 		return 0;
891 
892 	return ata_tf_to_lba(&tf);
893 }
894 
895 /**
896  *	ata_set_native_max_address_ext	-	LBA48 native max set
897  *	@dev: Device to query
898  *	@new_sectors: new max sectors value to set for the device
899  *
900  *	Perform an LBA48 size set max upon the device in question. Return the
901  *	actual LBA48 size or zero if the command fails.
902  */
903 
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 {
906 	unsigned int err;
907 	struct ata_taskfile tf;
908 
909 	new_sectors--;
910 
911 	ata_tf_init(dev, &tf);
912 
913 	tf.command = ATA_CMD_SET_MAX_EXT;
914 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 	tf.protocol |= ATA_PROT_NODATA;
916 	tf.device |= 0x40;
917 
918 	tf.lbal = (new_sectors >> 0) & 0xff;
919 	tf.lbam = (new_sectors >> 8) & 0xff;
920 	tf.lbah = (new_sectors >> 16) & 0xff;
921 
922 	tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 	tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 	tf.hob_lbah = (new_sectors >> 40) & 0xff;
925 
926 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 	if (err)
928 		return 0;
929 
930 	return ata_tf_to_lba48(&tf);
931 }
932 
933 /**
934  *	ata_set_native_max_address	-	LBA28 native max set
935  *	@dev: Device to query
936  *	@new_sectors: new max sectors value to set for the device
937  *
938  *	Perform an LBA28 size set max upon the device in question. Return the
939  *	actual LBA28 size or zero if the command fails.
940  */
941 
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943 {
944 	unsigned int err;
945 	struct ata_taskfile tf;
946 
947 	new_sectors--;
948 
949 	ata_tf_init(dev, &tf);
950 
951 	tf.command = ATA_CMD_SET_MAX;
952 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 	tf.protocol |= ATA_PROT_NODATA;
954 
955 	tf.lbal = (new_sectors >> 0) & 0xff;
956 	tf.lbam = (new_sectors >> 8) & 0xff;
957 	tf.lbah = (new_sectors >> 16) & 0xff;
958 	tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959 
960 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 	if (err)
962 		return 0;
963 
964 	return ata_tf_to_lba(&tf);
965 }
966 
967 /**
968  *	ata_hpa_resize		-	Resize a device with an HPA set
969  *	@dev: Device to resize
970  *
971  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
972  *	it if required to the full size of the media. The caller must check
973  *	the drive has the HPA feature set enabled.
974  */
975 
976 static u64 ata_hpa_resize(struct ata_device *dev)
977 {
978 	u64 sectors = dev->n_sectors;
979 	u64 hpa_sectors;
980 
981 	if (ata_id_has_lba48(dev->id))
982 		hpa_sectors = ata_read_native_max_address_ext(dev);
983 	else
984 		hpa_sectors = ata_read_native_max_address(dev);
985 
986 	/* if no hpa, both should be equal */
987 	ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 				"hpa_sectors = %lld\n",
989 		__FUNCTION__, (long long)sectors, (long long)hpa_sectors);
990 
991 	if (hpa_sectors > sectors) {
992 		ata_dev_printk(dev, KERN_INFO,
993 			"Host Protected Area detected:\n"
994 			"\tcurrent size: %lld sectors\n"
995 			"\tnative size: %lld sectors\n",
996 			(long long)sectors, (long long)hpa_sectors);
997 
998 		if (ata_ignore_hpa) {
999 			if (ata_id_has_lba48(dev->id))
1000 				hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 			else
1002 				hpa_sectors = ata_set_native_max_address(dev,
1003 								hpa_sectors);
1004 
1005 			if (hpa_sectors) {
1006 				ata_dev_printk(dev, KERN_INFO, "native size "
1007 					"increased to %lld sectors\n",
1008 					(long long)hpa_sectors);
1009 				return hpa_sectors;
1010 			}
1011 		}
1012 	}
1013 	return sectors;
1014 }
1015 
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 	if (ata_id_has_lba(id)) {
1019 		if (ata_id_has_lba48(id))
1020 			return ata_id_u64(id, 100);
1021 		else
1022 			return ata_id_u32(id, 60);
1023 	} else {
1024 		if (ata_id_current_chs_valid(id))
1025 			return ata_id_u32(id, 57);
1026 		else
1027 			return id[1] * id[3] * id[6];
1028 	}
1029 }
1030 
1031 /**
1032  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
1033  *	@dev: device to identify
1034  *	@unknown: mode to assume if we cannot tell
1035  *
1036  *	Set up the timing values for the device based upon the identify
1037  *	reported values for the DMA mode. This function is used by drivers
1038  *	which rely upon firmware configured modes, but wish to report the
1039  *	mode correctly when possible.
1040  *
1041  *	In addition we emit similarly formatted messages to the default
1042  *	ata_dev_set_mode handler, in order to provide consistency of
1043  *	presentation.
1044  */
1045 
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 	unsigned int mask;
1049 	u8 mode;
1050 
1051 	/* Pack the DMA modes */
1052 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 	if (dev->id[53] & 0x04)
1054 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055 
1056 	/* Select the mode in use */
1057 	mode = ata_xfer_mask2mode(mask);
1058 
1059 	if (mode != 0) {
1060 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 		       ata_mode_string(mask));
1062 	} else {
1063 		/* SWDMA perhaps ? */
1064 		mode = unknown;
1065 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 	}
1067 
1068 	/* Configure the device reporting */
1069 	dev->xfer_mode = mode;
1070 	dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072 
1073 /**
1074  *	ata_noop_dev_select - Select device 0/1 on ATA bus
1075  *	@ap: ATA channel to manipulate
1076  *	@device: ATA device (numbered from zero) to select
1077  *
1078  *	This function performs no actual function.
1079  *
1080  *	May be used as the dev_select() entry in ata_port_operations.
1081  *
1082  *	LOCKING:
1083  *	caller.
1084  */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088 
1089 
1090 /**
1091  *	ata_std_dev_select - Select device 0/1 on ATA bus
1092  *	@ap: ATA channel to manipulate
1093  *	@device: ATA device (numbered from zero) to select
1094  *
1095  *	Use the method defined in the ATA specification to
1096  *	make either device 0, or device 1, active on the
1097  *	ATA channel.  Works with both PIO and MMIO.
1098  *
1099  *	May be used as the dev_select() entry in ata_port_operations.
1100  *
1101  *	LOCKING:
1102  *	caller.
1103  */
1104 
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 	u8 tmp;
1108 
1109 	if (device == 0)
1110 		tmp = ATA_DEVICE_OBS;
1111 	else
1112 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113 
1114 	iowrite8(tmp, ap->ioaddr.device_addr);
1115 	ata_pause(ap);		/* needed; also flushes, for mmio */
1116 }
1117 
1118 /**
1119  *	ata_dev_select - Select device 0/1 on ATA bus
1120  *	@ap: ATA channel to manipulate
1121  *	@device: ATA device (numbered from zero) to select
1122  *	@wait: non-zero to wait for Status register BSY bit to clear
1123  *	@can_sleep: non-zero if context allows sleeping
1124  *
1125  *	Use the method defined in the ATA specification to
1126  *	make either device 0, or device 1, active on the
1127  *	ATA channel.
1128  *
1129  *	This is a high-level version of ata_std_dev_select(),
1130  *	which additionally provides the services of inserting
1131  *	the proper pauses and status polling, where needed.
1132  *
1133  *	LOCKING:
1134  *	caller.
1135  */
1136 
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 			   unsigned int wait, unsigned int can_sleep)
1139 {
1140 	if (ata_msg_probe(ap))
1141 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 				"device %u, wait %u\n", device, wait);
1143 
1144 	if (wait)
1145 		ata_wait_idle(ap);
1146 
1147 	ap->ops->dev_select(ap, device);
1148 
1149 	if (wait) {
1150 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 			msleep(150);
1152 		ata_wait_idle(ap);
1153 	}
1154 }
1155 
1156 /**
1157  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1158  *	@id: IDENTIFY DEVICE page to dump
1159  *
1160  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1161  *	page.
1162  *
1163  *	LOCKING:
1164  *	caller.
1165  */
1166 
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 	DPRINTK("49==0x%04x  "
1170 		"53==0x%04x  "
1171 		"63==0x%04x  "
1172 		"64==0x%04x  "
1173 		"75==0x%04x  \n",
1174 		id[49],
1175 		id[53],
1176 		id[63],
1177 		id[64],
1178 		id[75]);
1179 	DPRINTK("80==0x%04x  "
1180 		"81==0x%04x  "
1181 		"82==0x%04x  "
1182 		"83==0x%04x  "
1183 		"84==0x%04x  \n",
1184 		id[80],
1185 		id[81],
1186 		id[82],
1187 		id[83],
1188 		id[84]);
1189 	DPRINTK("88==0x%04x  "
1190 		"93==0x%04x\n",
1191 		id[88],
1192 		id[93]);
1193 }
1194 
1195 /**
1196  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197  *	@id: IDENTIFY data to compute xfer mask from
1198  *
1199  *	Compute the xfermask for this device. This is not as trivial
1200  *	as it seems if we must consider early devices correctly.
1201  *
1202  *	FIXME: pre IDE drive timing (do we care ?).
1203  *
1204  *	LOCKING:
1205  *	None.
1206  *
1207  *	RETURNS:
1208  *	Computed xfermask
1209  */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 	unsigned int pio_mask, mwdma_mask, udma_mask;
1213 
1214 	/* Usual case. Word 53 indicates word 64 is valid */
1215 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 		pio_mask <<= 3;
1218 		pio_mask |= 0x7;
1219 	} else {
1220 		/* If word 64 isn't valid then Word 51 high byte holds
1221 		 * the PIO timing number for the maximum. Turn it into
1222 		 * a mask.
1223 		 */
1224 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 		if (mode < 5)	/* Valid PIO range */
1226                 	pio_mask = (2 << mode) - 1;
1227 		else
1228 			pio_mask = 1;
1229 
1230 		/* But wait.. there's more. Design your standards by
1231 		 * committee and you too can get a free iordy field to
1232 		 * process. However its the speeds not the modes that
1233 		 * are supported... Note drivers using the timing API
1234 		 * will get this right anyway
1235 		 */
1236 	}
1237 
1238 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239 
1240 	if (ata_id_is_cfa(id)) {
1241 		/*
1242 		 *	Process compact flash extended modes
1243 		 */
1244 		int pio = id[163] & 0x7;
1245 		int dma = (id[163] >> 3) & 7;
1246 
1247 		if (pio)
1248 			pio_mask |= (1 << 5);
1249 		if (pio > 1)
1250 			pio_mask |= (1 << 6);
1251 		if (dma)
1252 			mwdma_mask |= (1 << 3);
1253 		if (dma > 1)
1254 			mwdma_mask |= (1 << 4);
1255 	}
1256 
1257 	udma_mask = 0;
1258 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260 
1261 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263 
1264 /**
1265  *	ata_port_queue_task - Queue port_task
1266  *	@ap: The ata_port to queue port_task for
1267  *	@fn: workqueue function to be scheduled
1268  *	@data: data for @fn to use
1269  *	@delay: delay time for workqueue function
1270  *
1271  *	Schedule @fn(@data) for execution after @delay jiffies using
1272  *	port_task.  There is one port_task per port and it's the
1273  *	user(low level driver)'s responsibility to make sure that only
1274  *	one task is active at any given time.
1275  *
1276  *	libata core layer takes care of synchronization between
1277  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1278  *	synchronization.
1279  *
1280  *	LOCKING:
1281  *	Inherited from caller.
1282  */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 			 unsigned long delay)
1285 {
1286 	int rc;
1287 
1288 	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 		return;
1290 
1291 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 	ap->port_task_data = data;
1293 
1294 	rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295 
1296 	/* rc == 0 means that another user is using port task */
1297 	WARN_ON(rc == 0);
1298 }
1299 
1300 /**
1301  *	ata_port_flush_task - Flush port_task
1302  *	@ap: The ata_port to flush port_task for
1303  *
1304  *	After this function completes, port_task is guranteed not to
1305  *	be running or scheduled.
1306  *
1307  *	LOCKING:
1308  *	Kernel thread context (may sleep)
1309  */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 	unsigned long flags;
1313 
1314 	DPRINTK("ENTER\n");
1315 
1316 	spin_lock_irqsave(ap->lock, flags);
1317 	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 	spin_unlock_irqrestore(ap->lock, flags);
1319 
1320 	DPRINTK("flush #1\n");
1321 	cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322 
1323 	/*
1324 	 * At this point, if a task is running, it's guaranteed to see
1325 	 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 	 * Cancel and flush.
1327 	 */
1328 	if (!cancel_delayed_work(&ap->port_task)) {
1329 		if (ata_msg_ctl(ap))
1330 			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 					__FUNCTION__);
1332 		cancel_work_sync(&ap->port_task.work);
1333 	}
1334 
1335 	spin_lock_irqsave(ap->lock, flags);
1336 	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 	spin_unlock_irqrestore(ap->lock, flags);
1338 
1339 	if (ata_msg_ctl(ap))
1340 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342 
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 	struct completion *waiting = qc->private_data;
1346 
1347 	complete(waiting);
1348 }
1349 
1350 /**
1351  *	ata_exec_internal_sg - execute libata internal command
1352  *	@dev: Device to which the command is sent
1353  *	@tf: Taskfile registers for the command and the result
1354  *	@cdb: CDB for packet command
1355  *	@dma_dir: Data tranfer direction of the command
1356  *	@sg: sg list for the data buffer of the command
1357  *	@n_elem: Number of sg entries
1358  *
1359  *	Executes libata internal command with timeout.  @tf contains
1360  *	command on entry and result on return.  Timeout and error
1361  *	conditions are reported via return value.  No recovery action
1362  *	is taken after a command times out.  It's caller's duty to
1363  *	clean up after timeout.
1364  *
1365  *	LOCKING:
1366  *	None.  Should be called with kernel context, might sleep.
1367  *
1368  *	RETURNS:
1369  *	Zero on success, AC_ERR_* mask on failure
1370  */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 			      struct ata_taskfile *tf, const u8 *cdb,
1373 			      int dma_dir, struct scatterlist *sg,
1374 			      unsigned int n_elem)
1375 {
1376 	struct ata_port *ap = dev->ap;
1377 	u8 command = tf->command;
1378 	struct ata_queued_cmd *qc;
1379 	unsigned int tag, preempted_tag;
1380 	u32 preempted_sactive, preempted_qc_active;
1381 	DECLARE_COMPLETION_ONSTACK(wait);
1382 	unsigned long flags;
1383 	unsigned int err_mask;
1384 	int rc;
1385 
1386 	spin_lock_irqsave(ap->lock, flags);
1387 
1388 	/* no internal command while frozen */
1389 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 		spin_unlock_irqrestore(ap->lock, flags);
1391 		return AC_ERR_SYSTEM;
1392 	}
1393 
1394 	/* initialize internal qc */
1395 
1396 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1397 	 * drivers choke if any other tag is given.  This breaks
1398 	 * ata_tag_internal() test for those drivers.  Don't use new
1399 	 * EH stuff without converting to it.
1400 	 */
1401 	if (ap->ops->error_handler)
1402 		tag = ATA_TAG_INTERNAL;
1403 	else
1404 		tag = 0;
1405 
1406 	if (test_and_set_bit(tag, &ap->qc_allocated))
1407 		BUG();
1408 	qc = __ata_qc_from_tag(ap, tag);
1409 
1410 	qc->tag = tag;
1411 	qc->scsicmd = NULL;
1412 	qc->ap = ap;
1413 	qc->dev = dev;
1414 	ata_qc_reinit(qc);
1415 
1416 	preempted_tag = ap->active_tag;
1417 	preempted_sactive = ap->sactive;
1418 	preempted_qc_active = ap->qc_active;
1419 	ap->active_tag = ATA_TAG_POISON;
1420 	ap->sactive = 0;
1421 	ap->qc_active = 0;
1422 
1423 	/* prepare & issue qc */
1424 	qc->tf = *tf;
1425 	if (cdb)
1426 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 	qc->dma_dir = dma_dir;
1429 	if (dma_dir != DMA_NONE) {
1430 		unsigned int i, buflen = 0;
1431 
1432 		for (i = 0; i < n_elem; i++)
1433 			buflen += sg[i].length;
1434 
1435 		ata_sg_init(qc, sg, n_elem);
1436 		qc->nbytes = buflen;
1437 	}
1438 
1439 	qc->private_data = &wait;
1440 	qc->complete_fn = ata_qc_complete_internal;
1441 
1442 	ata_qc_issue(qc);
1443 
1444 	spin_unlock_irqrestore(ap->lock, flags);
1445 
1446 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447 
1448 	ata_port_flush_task(ap);
1449 
1450 	if (!rc) {
1451 		spin_lock_irqsave(ap->lock, flags);
1452 
1453 		/* We're racing with irq here.  If we lose, the
1454 		 * following test prevents us from completing the qc
1455 		 * twice.  If we win, the port is frozen and will be
1456 		 * cleaned up by ->post_internal_cmd().
1457 		 */
1458 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 			qc->err_mask |= AC_ERR_TIMEOUT;
1460 
1461 			if (ap->ops->error_handler)
1462 				ata_port_freeze(ap);
1463 			else
1464 				ata_qc_complete(qc);
1465 
1466 			if (ata_msg_warn(ap))
1467 				ata_dev_printk(dev, KERN_WARNING,
1468 					"qc timeout (cmd 0x%x)\n", command);
1469 		}
1470 
1471 		spin_unlock_irqrestore(ap->lock, flags);
1472 	}
1473 
1474 	/* do post_internal_cmd */
1475 	if (ap->ops->post_internal_cmd)
1476 		ap->ops->post_internal_cmd(qc);
1477 
1478 	/* perform minimal error analysis */
1479 	if (qc->flags & ATA_QCFLAG_FAILED) {
1480 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 			qc->err_mask |= AC_ERR_DEV;
1482 
1483 		if (!qc->err_mask)
1484 			qc->err_mask |= AC_ERR_OTHER;
1485 
1486 		if (qc->err_mask & ~AC_ERR_OTHER)
1487 			qc->err_mask &= ~AC_ERR_OTHER;
1488 	}
1489 
1490 	/* finish up */
1491 	spin_lock_irqsave(ap->lock, flags);
1492 
1493 	*tf = qc->result_tf;
1494 	err_mask = qc->err_mask;
1495 
1496 	ata_qc_free(qc);
1497 	ap->active_tag = preempted_tag;
1498 	ap->sactive = preempted_sactive;
1499 	ap->qc_active = preempted_qc_active;
1500 
1501 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 	 * Until those drivers are fixed, we detect the condition
1503 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 	 * port.
1505 	 *
1506 	 * Note that this doesn't change any behavior as internal
1507 	 * command failure results in disabling the device in the
1508 	 * higher layer for LLDDs without new reset/EH callbacks.
1509 	 *
1510 	 * Kill the following code as soon as those drivers are fixed.
1511 	 */
1512 	if (ap->flags & ATA_FLAG_DISABLED) {
1513 		err_mask |= AC_ERR_SYSTEM;
1514 		ata_port_probe(ap);
1515 	}
1516 
1517 	spin_unlock_irqrestore(ap->lock, flags);
1518 
1519 	return err_mask;
1520 }
1521 
1522 /**
1523  *	ata_exec_internal - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@buf: Data buffer of the command
1529  *	@buflen: Length of data buffer
1530  *
1531  *	Wrapper around ata_exec_internal_sg() which takes simple
1532  *	buffer instead of sg list.
1533  *
1534  *	LOCKING:
1535  *	None.  Should be called with kernel context, might sleep.
1536  *
1537  *	RETURNS:
1538  *	Zero on success, AC_ERR_* mask on failure
1539  */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 			   struct ata_taskfile *tf, const u8 *cdb,
1542 			   int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 	struct scatterlist *psg = NULL, sg;
1545 	unsigned int n_elem = 0;
1546 
1547 	if (dma_dir != DMA_NONE) {
1548 		WARN_ON(!buf);
1549 		sg_init_one(&sg, buf, buflen);
1550 		psg = &sg;
1551 		n_elem++;
1552 	}
1553 
1554 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556 
1557 /**
1558  *	ata_do_simple_cmd - execute simple internal command
1559  *	@dev: Device to which the command is sent
1560  *	@cmd: Opcode to execute
1561  *
1562  *	Execute a 'simple' command, that only consists of the opcode
1563  *	'cmd' itself, without filling any other registers
1564  *
1565  *	LOCKING:
1566  *	Kernel thread context (may sleep).
1567  *
1568  *	RETURNS:
1569  *	Zero on success, AC_ERR_* mask on failure
1570  */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 	struct ata_taskfile tf;
1574 
1575 	ata_tf_init(dev, &tf);
1576 
1577 	tf.command = cmd;
1578 	tf.flags |= ATA_TFLAG_DEVICE;
1579 	tf.protocol = ATA_PROT_NODATA;
1580 
1581 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583 
1584 /**
1585  *	ata_pio_need_iordy	-	check if iordy needed
1586  *	@adev: ATA device
1587  *
1588  *	Check if the current speed of the device requires IORDY. Used
1589  *	by various controllers for chip configuration.
1590  */
1591 
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 	/* Controller doesn't support  IORDY. Probably a pointless check
1595 	   as the caller should know this */
1596 	if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 		return 0;
1598 	/* PIO3 and higher it is mandatory */
1599 	if (adev->pio_mode > XFER_PIO_2)
1600 		return 1;
1601 	/* We turn it on when possible */
1602 	if (ata_id_has_iordy(adev->id))
1603 		return 1;
1604 	return 0;
1605 }
1606 
1607 /**
1608  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1609  *	@adev: ATA device
1610  *
1611  *	Compute the highest mode possible if we are not using iordy. Return
1612  *	-1 if no iordy mode is available.
1613  */
1614 
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1619 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 		/* Is the speed faster than the drive allows non IORDY ? */
1621 		if (pio) {
1622 			/* This is cycle times not frequency - watch the logic! */
1623 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1624 				return 3 << ATA_SHIFT_PIO;
1625 			return 7 << ATA_SHIFT_PIO;
1626 		}
1627 	}
1628 	return 3 << ATA_SHIFT_PIO;
1629 }
1630 
1631 /**
1632  *	ata_dev_read_id - Read ID data from the specified device
1633  *	@dev: target device
1634  *	@p_class: pointer to class of the target device (may be changed)
1635  *	@flags: ATA_READID_* flags
1636  *	@id: buffer to read IDENTIFY data into
1637  *
1638  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1639  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1641  *	for pre-ATA4 drives.
1642  *
1643  *	LOCKING:
1644  *	Kernel thread context (may sleep)
1645  *
1646  *	RETURNS:
1647  *	0 on success, -errno otherwise.
1648  */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 		    unsigned int flags, u16 *id)
1651 {
1652 	struct ata_port *ap = dev->ap;
1653 	unsigned int class = *p_class;
1654 	struct ata_taskfile tf;
1655 	unsigned int err_mask = 0;
1656 	const char *reason;
1657 	int may_fallback = 1, tried_spinup = 0;
1658 	int rc;
1659 
1660 	if (ata_msg_ctl(ap))
1661 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662 
1663 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664  retry:
1665 	ata_tf_init(dev, &tf);
1666 
1667 	switch (class) {
1668 	case ATA_DEV_ATA:
1669 		tf.command = ATA_CMD_ID_ATA;
1670 		break;
1671 	case ATA_DEV_ATAPI:
1672 		tf.command = ATA_CMD_ID_ATAPI;
1673 		break;
1674 	default:
1675 		rc = -ENODEV;
1676 		reason = "unsupported class";
1677 		goto err_out;
1678 	}
1679 
1680 	tf.protocol = ATA_PROT_PIO;
1681 
1682 	/* Some devices choke if TF registers contain garbage.  Make
1683 	 * sure those are properly initialized.
1684 	 */
1685 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686 
1687 	/* Device presence detection is unreliable on some
1688 	 * controllers.  Always poll IDENTIFY if available.
1689 	 */
1690 	tf.flags |= ATA_TFLAG_POLLING;
1691 
1692 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1694 	if (err_mask) {
1695 		if (err_mask & AC_ERR_NODEV_HINT) {
1696 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 				ap->print_id, dev->devno);
1698 			return -ENOENT;
1699 		}
1700 
1701 		/* Device or controller might have reported the wrong
1702 		 * device class.  Give a shot at the other IDENTIFY if
1703 		 * the current one is aborted by the device.
1704 		 */
1705 		if (may_fallback &&
1706 		    (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 			may_fallback = 0;
1708 
1709 			if (class == ATA_DEV_ATA)
1710 				class = ATA_DEV_ATAPI;
1711 			else
1712 				class = ATA_DEV_ATA;
1713 			goto retry;
1714 		}
1715 
1716 		rc = -EIO;
1717 		reason = "I/O error";
1718 		goto err_out;
1719 	}
1720 
1721 	/* Falling back doesn't make sense if ID data was read
1722 	 * successfully at least once.
1723 	 */
1724 	may_fallback = 0;
1725 
1726 	swap_buf_le16(id, ATA_ID_WORDS);
1727 
1728 	/* sanity check */
1729 	rc = -EINVAL;
1730 	reason = "device reports illegal type";
1731 
1732 	if (class == ATA_DEV_ATA) {
1733 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 			goto err_out;
1735 	} else {
1736 		if (ata_id_is_ata(id))
1737 			goto err_out;
1738 	}
1739 
1740 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 		tried_spinup = 1;
1742 		/*
1743 		 * Drive powered-up in standby mode, and requires a specific
1744 		 * SET_FEATURES spin-up subcommand before it will accept
1745 		 * anything other than the original IDENTIFY command.
1746 		 */
1747 		ata_tf_init(dev, &tf);
1748 		tf.command = ATA_CMD_SET_FEATURES;
1749 		tf.feature = SETFEATURES_SPINUP;
1750 		tf.protocol = ATA_PROT_NODATA;
1751 		tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 		err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 		if (err_mask) {
1754 			rc = -EIO;
1755 			reason = "SPINUP failed";
1756 			goto err_out;
1757 		}
1758 		/*
1759 		 * If the drive initially returned incomplete IDENTIFY info,
1760 		 * we now must reissue the IDENTIFY command.
1761 		 */
1762 		if (id[2] == 0x37c8)
1763 			goto retry;
1764 	}
1765 
1766 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 		/*
1768 		 * The exact sequence expected by certain pre-ATA4 drives is:
1769 		 * SRST RESET
1770 		 * IDENTIFY
1771 		 * INITIALIZE DEVICE PARAMETERS
1772 		 * anything else..
1773 		 * Some drives were very specific about that exact sequence.
1774 		 */
1775 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 			if (err_mask) {
1778 				rc = -EIO;
1779 				reason = "INIT_DEV_PARAMS failed";
1780 				goto err_out;
1781 			}
1782 
1783 			/* current CHS translation info (id[53-58]) might be
1784 			 * changed. reread the identify device info.
1785 			 */
1786 			flags &= ~ATA_READID_POSTRESET;
1787 			goto retry;
1788 		}
1789 	}
1790 
1791 	*p_class = class;
1792 
1793 	return 0;
1794 
1795  err_out:
1796 	if (ata_msg_warn(ap))
1797 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 	return rc;
1800 }
1801 
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806 
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 			       char *desc, size_t desc_sz)
1809 {
1810 	struct ata_port *ap = dev->ap;
1811 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812 
1813 	if (!ata_id_has_ncq(dev->id)) {
1814 		desc[0] = '\0';
1815 		return;
1816 	}
1817 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 		snprintf(desc, desc_sz, "NCQ (not used)");
1819 		return;
1820 	}
1821 	if (ap->flags & ATA_FLAG_NCQ) {
1822 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 		dev->flags |= ATA_DFLAG_NCQ;
1824 	}
1825 
1826 	if (hdepth >= ddepth)
1827 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 	else
1829 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831 
1832 /**
1833  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1834  *	@dev: Target device to configure
1835  *
1836  *	Configure @dev according to @dev->id.  Generic and low-level
1837  *	driver specific fixups are also applied.
1838  *
1839  *	LOCKING:
1840  *	Kernel thread context (may sleep)
1841  *
1842  *	RETURNS:
1843  *	0 on success, -errno otherwise
1844  */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 	struct ata_port *ap = dev->ap;
1848 	int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 	const u16 *id = dev->id;
1850 	unsigned int xfer_mask;
1851 	char revbuf[7];		/* XYZ-99\0 */
1852 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 	char modelbuf[ATA_ID_PROD_LEN+1];
1854 	int rc;
1855 
1856 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 			       __FUNCTION__);
1859 		return 0;
1860 	}
1861 
1862 	if (ata_msg_probe(ap))
1863 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864 
1865 	/* set _SDD */
1866 	rc = ata_acpi_push_id(dev);
1867 	if (rc) {
1868 		ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 			rc);
1870 	}
1871 
1872 	/* retrieve and execute the ATA task file of _GTF */
1873 	ata_acpi_exec_tfs(ap);
1874 
1875 	/* print device capabilities */
1876 	if (ata_msg_probe(ap))
1877 		ata_dev_printk(dev, KERN_DEBUG,
1878 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 			       __FUNCTION__,
1881 			       id[49], id[82], id[83], id[84],
1882 			       id[85], id[86], id[87], id[88]);
1883 
1884 	/* initialize to-be-configured parameters */
1885 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 	dev->max_sectors = 0;
1887 	dev->cdb_len = 0;
1888 	dev->n_sectors = 0;
1889 	dev->cylinders = 0;
1890 	dev->heads = 0;
1891 	dev->sectors = 0;
1892 
1893 	/*
1894 	 * common ATA, ATAPI feature tests
1895 	 */
1896 
1897 	/* find max transfer mode; for printk only */
1898 	xfer_mask = ata_id_xfermask(id);
1899 
1900 	if (ata_msg_probe(ap))
1901 		ata_dump_id(id);
1902 
1903 	/* ATA-specific feature tests */
1904 	if (dev->class == ATA_DEV_ATA) {
1905 		if (ata_id_is_cfa(id)) {
1906 			if (id[162] & 1) /* CPRM may make this media unusable */
1907 				ata_dev_printk(dev, KERN_WARNING,
1908 					       "supports DRM functions and may "
1909 					       "not be fully accessable.\n");
1910 			snprintf(revbuf, 7, "CFA");
1911 		}
1912 		else
1913 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1914 
1915 		dev->n_sectors = ata_id_n_sectors(id);
1916 
1917 		/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1918 		ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1919 				sizeof(fwrevbuf));
1920 
1921 		ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1922 				sizeof(modelbuf));
1923 
1924 		if (dev->id[59] & 0x100)
1925 			dev->multi_count = dev->id[59] & 0xff;
1926 
1927 		if (ata_id_has_lba(id)) {
1928 			const char *lba_desc;
1929 			char ncq_desc[20];
1930 
1931 			lba_desc = "LBA";
1932 			dev->flags |= ATA_DFLAG_LBA;
1933 			if (ata_id_has_lba48(id)) {
1934 				dev->flags |= ATA_DFLAG_LBA48;
1935 				lba_desc = "LBA48";
1936 
1937 				if (dev->n_sectors >= (1UL << 28) &&
1938 				    ata_id_has_flush_ext(id))
1939 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 			}
1941 
1942 			if (ata_id_hpa_enabled(dev->id))
1943 				dev->n_sectors = ata_hpa_resize(dev);
1944 
1945 			/* config NCQ */
1946 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947 
1948 			/* print device info to dmesg */
1949 			if (ata_msg_drv(ap) && print_info) {
1950 				ata_dev_printk(dev, KERN_INFO,
1951 					"%s: %s, %s, max %s\n",
1952 					revbuf, modelbuf, fwrevbuf,
1953 					ata_mode_string(xfer_mask));
1954 				ata_dev_printk(dev, KERN_INFO,
1955 					"%Lu sectors, multi %u: %s %s\n",
1956 					(unsigned long long)dev->n_sectors,
1957 					dev->multi_count, lba_desc, ncq_desc);
1958 			}
1959 		} else {
1960 			/* CHS */
1961 
1962 			/* Default translation */
1963 			dev->cylinders	= id[1];
1964 			dev->heads	= id[3];
1965 			dev->sectors	= id[6];
1966 
1967 			if (ata_id_current_chs_valid(id)) {
1968 				/* Current CHS translation is valid. */
1969 				dev->cylinders = id[54];
1970 				dev->heads     = id[55];
1971 				dev->sectors   = id[56];
1972 			}
1973 
1974 			/* print device info to dmesg */
1975 			if (ata_msg_drv(ap) && print_info) {
1976 				ata_dev_printk(dev, KERN_INFO,
1977 					"%s: %s, %s, max %s\n",
1978 					revbuf,	modelbuf, fwrevbuf,
1979 					ata_mode_string(xfer_mask));
1980 				ata_dev_printk(dev, KERN_INFO,
1981 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 					(unsigned long long)dev->n_sectors,
1983 					dev->multi_count, dev->cylinders,
1984 					dev->heads, dev->sectors);
1985 			}
1986 		}
1987 
1988 		dev->cdb_len = 16;
1989 	}
1990 
1991 	/* ATAPI-specific feature tests */
1992 	else if (dev->class == ATA_DEV_ATAPI) {
1993 		char *cdb_intr_string = "";
1994 
1995 		rc = atapi_cdb_len(id);
1996 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 			if (ata_msg_warn(ap))
1998 				ata_dev_printk(dev, KERN_WARNING,
1999 					       "unsupported CDB len\n");
2000 			rc = -EINVAL;
2001 			goto err_out_nosup;
2002 		}
2003 		dev->cdb_len = (unsigned int) rc;
2004 
2005 		if (ata_id_cdb_intr(dev->id)) {
2006 			dev->flags |= ATA_DFLAG_CDB_INTR;
2007 			cdb_intr_string = ", CDB intr";
2008 		}
2009 
2010 		/* print device info to dmesg */
2011 		if (ata_msg_drv(ap) && print_info)
2012 			ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
2013 				       ata_mode_string(xfer_mask),
2014 				       cdb_intr_string);
2015 	}
2016 
2017 	/* determine max_sectors */
2018 	dev->max_sectors = ATA_MAX_SECTORS;
2019 	if (dev->flags & ATA_DFLAG_LBA48)
2020 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2021 
2022 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2023 		/* Let the user know. We don't want to disallow opens for
2024 		   rescue purposes, or in case the vendor is just a blithering
2025 		   idiot */
2026                 if (print_info) {
2027 			ata_dev_printk(dev, KERN_WARNING,
2028 "Drive reports diagnostics failure. This may indicate a drive\n");
2029 			ata_dev_printk(dev, KERN_WARNING,
2030 "fault or invalid emulation. Contact drive vendor for information.\n");
2031 		}
2032 	}
2033 
2034 	/* limit bridge transfers to udma5, 200 sectors */
2035 	if (ata_dev_knobble(dev)) {
2036 		if (ata_msg_drv(ap) && print_info)
2037 			ata_dev_printk(dev, KERN_INFO,
2038 				       "applying bridge limits\n");
2039 		dev->udma_mask &= ATA_UDMA5;
2040 		dev->max_sectors = ATA_MAX_SECTORS;
2041 	}
2042 
2043 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2044 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2045 					 dev->max_sectors);
2046 
2047 	/* limit ATAPI DMA to R/W commands only */
2048 	if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2049 		dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2050 
2051 	if (ap->ops->dev_config)
2052 		ap->ops->dev_config(dev);
2053 
2054 	if (ata_msg_probe(ap))
2055 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 			__FUNCTION__, ata_chk_status(ap));
2057 	return 0;
2058 
2059 err_out_nosup:
2060 	if (ata_msg_probe(ap))
2061 		ata_dev_printk(dev, KERN_DEBUG,
2062 			       "%s: EXIT, err\n", __FUNCTION__);
2063 	return rc;
2064 }
2065 
2066 /**
2067  *	ata_cable_40wire	-	return 40 wire cable type
2068  *	@ap: port
2069  *
2070  *	Helper method for drivers which want to hardwire 40 wire cable
2071  *	detection.
2072  */
2073 
2074 int ata_cable_40wire(struct ata_port *ap)
2075 {
2076 	return ATA_CBL_PATA40;
2077 }
2078 
2079 /**
2080  *	ata_cable_80wire	-	return 80 wire cable type
2081  *	@ap: port
2082  *
2083  *	Helper method for drivers which want to hardwire 80 wire cable
2084  *	detection.
2085  */
2086 
2087 int ata_cable_80wire(struct ata_port *ap)
2088 {
2089 	return ATA_CBL_PATA80;
2090 }
2091 
2092 /**
2093  *	ata_cable_unknown	-	return unknown PATA cable.
2094  *	@ap: port
2095  *
2096  *	Helper method for drivers which have no PATA cable detection.
2097  */
2098 
2099 int ata_cable_unknown(struct ata_port *ap)
2100 {
2101 	return ATA_CBL_PATA_UNK;
2102 }
2103 
2104 /**
2105  *	ata_cable_sata	-	return SATA cable type
2106  *	@ap: port
2107  *
2108  *	Helper method for drivers which have SATA cables
2109  */
2110 
2111 int ata_cable_sata(struct ata_port *ap)
2112 {
2113 	return ATA_CBL_SATA;
2114 }
2115 
2116 /**
2117  *	ata_bus_probe - Reset and probe ATA bus
2118  *	@ap: Bus to probe
2119  *
2120  *	Master ATA bus probing function.  Initiates a hardware-dependent
2121  *	bus reset, then attempts to identify any devices found on
2122  *	the bus.
2123  *
2124  *	LOCKING:
2125  *	PCI/etc. bus probe sem.
2126  *
2127  *	RETURNS:
2128  *	Zero on success, negative errno otherwise.
2129  */
2130 
2131 int ata_bus_probe(struct ata_port *ap)
2132 {
2133 	unsigned int classes[ATA_MAX_DEVICES];
2134 	int tries[ATA_MAX_DEVICES];
2135 	int i, rc;
2136 	struct ata_device *dev;
2137 
2138 	ata_port_probe(ap);
2139 
2140 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 		tries[i] = ATA_PROBE_MAX_TRIES;
2142 
2143  retry:
2144 	/* reset and determine device classes */
2145 	ap->ops->phy_reset(ap);
2146 
2147 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2148 		dev = &ap->device[i];
2149 
2150 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2151 		    dev->class != ATA_DEV_UNKNOWN)
2152 			classes[dev->devno] = dev->class;
2153 		else
2154 			classes[dev->devno] = ATA_DEV_NONE;
2155 
2156 		dev->class = ATA_DEV_UNKNOWN;
2157 	}
2158 
2159 	ata_port_probe(ap);
2160 
2161 	/* after the reset the device state is PIO 0 and the controller
2162 	   state is undefined. Record the mode */
2163 
2164 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2165 		ap->device[i].pio_mode = XFER_PIO_0;
2166 
2167 	/* read IDENTIFY page and configure devices. We have to do the identify
2168 	   specific sequence bass-ackwards so that PDIAG- is released by
2169 	   the slave device */
2170 
2171 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
2172 		dev = &ap->device[i];
2173 
2174 		if (tries[i])
2175 			dev->class = classes[i];
2176 
2177 		if (!ata_dev_enabled(dev))
2178 			continue;
2179 
2180 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2181 				     dev->id);
2182 		if (rc)
2183 			goto fail;
2184 	}
2185 
2186 	/* Now ask for the cable type as PDIAG- should have been released */
2187 	if (ap->ops->cable_detect)
2188 		ap->cbl = ap->ops->cable_detect(ap);
2189 
2190 	/* After the identify sequence we can now set up the devices. We do
2191 	   this in the normal order so that the user doesn't get confused */
2192 
2193 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
2194 		dev = &ap->device[i];
2195 		if (!ata_dev_enabled(dev))
2196 			continue;
2197 
2198 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2199 		rc = ata_dev_configure(dev);
2200 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2201 		if (rc)
2202 			goto fail;
2203 	}
2204 
2205 	/* configure transfer mode */
2206 	rc = ata_set_mode(ap, &dev);
2207 	if (rc)
2208 		goto fail;
2209 
2210 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2211 		if (ata_dev_enabled(&ap->device[i]))
2212 			return 0;
2213 
2214 	/* no device present, disable port */
2215 	ata_port_disable(ap);
2216 	ap->ops->port_disable(ap);
2217 	return -ENODEV;
2218 
2219  fail:
2220 	tries[dev->devno]--;
2221 
2222 	switch (rc) {
2223 	case -EINVAL:
2224 		/* eeek, something went very wrong, give up */
2225 		tries[dev->devno] = 0;
2226 		break;
2227 
2228 	case -ENODEV:
2229 		/* give it just one more chance */
2230 		tries[dev->devno] = min(tries[dev->devno], 1);
2231 	case -EIO:
2232 		if (tries[dev->devno] == 1) {
2233 			/* This is the last chance, better to slow
2234 			 * down than lose it.
2235 			 */
2236 			sata_down_spd_limit(ap);
2237 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2238 		}
2239 	}
2240 
2241 	if (!tries[dev->devno])
2242 		ata_dev_disable(dev);
2243 
2244 	goto retry;
2245 }
2246 
2247 /**
2248  *	ata_port_probe - Mark port as enabled
2249  *	@ap: Port for which we indicate enablement
2250  *
2251  *	Modify @ap data structure such that the system
2252  *	thinks that the entire port is enabled.
2253  *
2254  *	LOCKING: host lock, or some other form of
2255  *	serialization.
2256  */
2257 
2258 void ata_port_probe(struct ata_port *ap)
2259 {
2260 	ap->flags &= ~ATA_FLAG_DISABLED;
2261 }
2262 
2263 /**
2264  *	sata_print_link_status - Print SATA link status
2265  *	@ap: SATA port to printk link status about
2266  *
2267  *	This function prints link speed and status of a SATA link.
2268  *
2269  *	LOCKING:
2270  *	None.
2271  */
2272 void sata_print_link_status(struct ata_port *ap)
2273 {
2274 	u32 sstatus, scontrol, tmp;
2275 
2276 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2277 		return;
2278 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
2279 
2280 	if (ata_port_online(ap)) {
2281 		tmp = (sstatus >> 4) & 0xf;
2282 		ata_port_printk(ap, KERN_INFO,
2283 				"SATA link up %s (SStatus %X SControl %X)\n",
2284 				sata_spd_string(tmp), sstatus, scontrol);
2285 	} else {
2286 		ata_port_printk(ap, KERN_INFO,
2287 				"SATA link down (SStatus %X SControl %X)\n",
2288 				sstatus, scontrol);
2289 	}
2290 }
2291 
2292 /**
2293  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
2294  *	@ap: SATA port associated with target SATA PHY.
2295  *
2296  *	This function issues commands to standard SATA Sxxx
2297  *	PHY registers, to wake up the phy (and device), and
2298  *	clear any reset condition.
2299  *
2300  *	LOCKING:
2301  *	PCI/etc. bus probe sem.
2302  *
2303  */
2304 void __sata_phy_reset(struct ata_port *ap)
2305 {
2306 	u32 sstatus;
2307 	unsigned long timeout = jiffies + (HZ * 5);
2308 
2309 	if (ap->flags & ATA_FLAG_SATA_RESET) {
2310 		/* issue phy wake/reset */
2311 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2312 		/* Couldn't find anything in SATA I/II specs, but
2313 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2314 		mdelay(1);
2315 	}
2316 	/* phy wake/clear reset */
2317 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2318 
2319 	/* wait for phy to become ready, if necessary */
2320 	do {
2321 		msleep(200);
2322 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2323 		if ((sstatus & 0xf) != 1)
2324 			break;
2325 	} while (time_before(jiffies, timeout));
2326 
2327 	/* print link status */
2328 	sata_print_link_status(ap);
2329 
2330 	/* TODO: phy layer with polling, timeouts, etc. */
2331 	if (!ata_port_offline(ap))
2332 		ata_port_probe(ap);
2333 	else
2334 		ata_port_disable(ap);
2335 
2336 	if (ap->flags & ATA_FLAG_DISABLED)
2337 		return;
2338 
2339 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2340 		ata_port_disable(ap);
2341 		return;
2342 	}
2343 
2344 	ap->cbl = ATA_CBL_SATA;
2345 }
2346 
2347 /**
2348  *	sata_phy_reset - Reset SATA bus.
2349  *	@ap: SATA port associated with target SATA PHY.
2350  *
2351  *	This function resets the SATA bus, and then probes
2352  *	the bus for devices.
2353  *
2354  *	LOCKING:
2355  *	PCI/etc. bus probe sem.
2356  *
2357  */
2358 void sata_phy_reset(struct ata_port *ap)
2359 {
2360 	__sata_phy_reset(ap);
2361 	if (ap->flags & ATA_FLAG_DISABLED)
2362 		return;
2363 	ata_bus_reset(ap);
2364 }
2365 
2366 /**
2367  *	ata_dev_pair		-	return other device on cable
2368  *	@adev: device
2369  *
2370  *	Obtain the other device on the same cable, or if none is
2371  *	present NULL is returned
2372  */
2373 
2374 struct ata_device *ata_dev_pair(struct ata_device *adev)
2375 {
2376 	struct ata_port *ap = adev->ap;
2377 	struct ata_device *pair = &ap->device[1 - adev->devno];
2378 	if (!ata_dev_enabled(pair))
2379 		return NULL;
2380 	return pair;
2381 }
2382 
2383 /**
2384  *	ata_port_disable - Disable port.
2385  *	@ap: Port to be disabled.
2386  *
2387  *	Modify @ap data structure such that the system
2388  *	thinks that the entire port is disabled, and should
2389  *	never attempt to probe or communicate with devices
2390  *	on this port.
2391  *
2392  *	LOCKING: host lock, or some other form of
2393  *	serialization.
2394  */
2395 
2396 void ata_port_disable(struct ata_port *ap)
2397 {
2398 	ap->device[0].class = ATA_DEV_NONE;
2399 	ap->device[1].class = ATA_DEV_NONE;
2400 	ap->flags |= ATA_FLAG_DISABLED;
2401 }
2402 
2403 /**
2404  *	sata_down_spd_limit - adjust SATA spd limit downward
2405  *	@ap: Port to adjust SATA spd limit for
2406  *
2407  *	Adjust SATA spd limit of @ap downward.  Note that this
2408  *	function only adjusts the limit.  The change must be applied
2409  *	using sata_set_spd().
2410  *
2411  *	LOCKING:
2412  *	Inherited from caller.
2413  *
2414  *	RETURNS:
2415  *	0 on success, negative errno on failure
2416  */
2417 int sata_down_spd_limit(struct ata_port *ap)
2418 {
2419 	u32 sstatus, spd, mask;
2420 	int rc, highbit;
2421 
2422 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2423 	if (rc)
2424 		return rc;
2425 
2426 	mask = ap->sata_spd_limit;
2427 	if (mask <= 1)
2428 		return -EINVAL;
2429 	highbit = fls(mask) - 1;
2430 	mask &= ~(1 << highbit);
2431 
2432 	spd = (sstatus >> 4) & 0xf;
2433 	if (spd <= 1)
2434 		return -EINVAL;
2435 	spd--;
2436 	mask &= (1 << spd) - 1;
2437 	if (!mask)
2438 		return -EINVAL;
2439 
2440 	ap->sata_spd_limit = mask;
2441 
2442 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2443 			sata_spd_string(fls(mask)));
2444 
2445 	return 0;
2446 }
2447 
2448 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2449 {
2450 	u32 spd, limit;
2451 
2452 	if (ap->sata_spd_limit == UINT_MAX)
2453 		limit = 0;
2454 	else
2455 		limit = fls(ap->sata_spd_limit);
2456 
2457 	spd = (*scontrol >> 4) & 0xf;
2458 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2459 
2460 	return spd != limit;
2461 }
2462 
2463 /**
2464  *	sata_set_spd_needed - is SATA spd configuration needed
2465  *	@ap: Port in question
2466  *
2467  *	Test whether the spd limit in SControl matches
2468  *	@ap->sata_spd_limit.  This function is used to determine
2469  *	whether hardreset is necessary to apply SATA spd
2470  *	configuration.
2471  *
2472  *	LOCKING:
2473  *	Inherited from caller.
2474  *
2475  *	RETURNS:
2476  *	1 if SATA spd configuration is needed, 0 otherwise.
2477  */
2478 int sata_set_spd_needed(struct ata_port *ap)
2479 {
2480 	u32 scontrol;
2481 
2482 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2483 		return 0;
2484 
2485 	return __sata_set_spd_needed(ap, &scontrol);
2486 }
2487 
2488 /**
2489  *	sata_set_spd - set SATA spd according to spd limit
2490  *	@ap: Port to set SATA spd for
2491  *
2492  *	Set SATA spd of @ap according to sata_spd_limit.
2493  *
2494  *	LOCKING:
2495  *	Inherited from caller.
2496  *
2497  *	RETURNS:
2498  *	0 if spd doesn't need to be changed, 1 if spd has been
2499  *	changed.  Negative errno if SCR registers are inaccessible.
2500  */
2501 int sata_set_spd(struct ata_port *ap)
2502 {
2503 	u32 scontrol;
2504 	int rc;
2505 
2506 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2507 		return rc;
2508 
2509 	if (!__sata_set_spd_needed(ap, &scontrol))
2510 		return 0;
2511 
2512 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2513 		return rc;
2514 
2515 	return 1;
2516 }
2517 
2518 /*
2519  * This mode timing computation functionality is ported over from
2520  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2521  */
2522 /*
2523  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2524  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2525  * for UDMA6, which is currently supported only by Maxtor drives.
2526  *
2527  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2528  */
2529 
2530 static const struct ata_timing ata_timing[] = {
2531 
2532 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2533 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2534 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2535 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2536 
2537 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2538 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2539 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2540 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2541 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2542 
2543 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2544 
2545 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2546 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2547 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2548 
2549 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2550 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2551 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2552 
2553 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2554 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2555 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2556 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2557 
2558 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2559 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2560 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2561 
2562 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2563 
2564 	{ 0xFF }
2565 };
2566 
2567 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2568 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2569 
2570 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2571 {
2572 	q->setup   = EZ(t->setup   * 1000,  T);
2573 	q->act8b   = EZ(t->act8b   * 1000,  T);
2574 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2575 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2576 	q->active  = EZ(t->active  * 1000,  T);
2577 	q->recover = EZ(t->recover * 1000,  T);
2578 	q->cycle   = EZ(t->cycle   * 1000,  T);
2579 	q->udma    = EZ(t->udma    * 1000, UT);
2580 }
2581 
2582 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2583 		      struct ata_timing *m, unsigned int what)
2584 {
2585 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2586 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2587 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2588 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2589 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2590 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2591 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2592 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2593 }
2594 
2595 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2596 {
2597 	const struct ata_timing *t;
2598 
2599 	for (t = ata_timing; t->mode != speed; t++)
2600 		if (t->mode == 0xFF)
2601 			return NULL;
2602 	return t;
2603 }
2604 
2605 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2606 		       struct ata_timing *t, int T, int UT)
2607 {
2608 	const struct ata_timing *s;
2609 	struct ata_timing p;
2610 
2611 	/*
2612 	 * Find the mode.
2613 	 */
2614 
2615 	if (!(s = ata_timing_find_mode(speed)))
2616 		return -EINVAL;
2617 
2618 	memcpy(t, s, sizeof(*s));
2619 
2620 	/*
2621 	 * If the drive is an EIDE drive, it can tell us it needs extended
2622 	 * PIO/MW_DMA cycle timing.
2623 	 */
2624 
2625 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2626 		memset(&p, 0, sizeof(p));
2627 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2628 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2629 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2630 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2631 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2632 		}
2633 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2634 	}
2635 
2636 	/*
2637 	 * Convert the timing to bus clock counts.
2638 	 */
2639 
2640 	ata_timing_quantize(t, t, T, UT);
2641 
2642 	/*
2643 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2644 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2645 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2646 	 */
2647 
2648 	if (speed > XFER_PIO_6) {
2649 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2650 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2651 	}
2652 
2653 	/*
2654 	 * Lengthen active & recovery time so that cycle time is correct.
2655 	 */
2656 
2657 	if (t->act8b + t->rec8b < t->cyc8b) {
2658 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2659 		t->rec8b = t->cyc8b - t->act8b;
2660 	}
2661 
2662 	if (t->active + t->recover < t->cycle) {
2663 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2664 		t->recover = t->cycle - t->active;
2665 	}
2666 
2667 	/* In a few cases quantisation may produce enough errors to
2668 	   leave t->cycle too low for the sum of active and recovery
2669 	   if so we must correct this */
2670 	if (t->active + t->recover > t->cycle)
2671 		t->cycle = t->active + t->recover;
2672 
2673 	return 0;
2674 }
2675 
2676 /**
2677  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2678  *	@dev: Device to adjust xfer masks
2679  *	@sel: ATA_DNXFER_* selector
2680  *
2681  *	Adjust xfer masks of @dev downward.  Note that this function
2682  *	does not apply the change.  Invoking ata_set_mode() afterwards
2683  *	will apply the limit.
2684  *
2685  *	LOCKING:
2686  *	Inherited from caller.
2687  *
2688  *	RETURNS:
2689  *	0 on success, negative errno on failure
2690  */
2691 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2692 {
2693 	char buf[32];
2694 	unsigned int orig_mask, xfer_mask;
2695 	unsigned int pio_mask, mwdma_mask, udma_mask;
2696 	int quiet, highbit;
2697 
2698 	quiet = !!(sel & ATA_DNXFER_QUIET);
2699 	sel &= ~ATA_DNXFER_QUIET;
2700 
2701 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2702 						  dev->mwdma_mask,
2703 						  dev->udma_mask);
2704 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2705 
2706 	switch (sel) {
2707 	case ATA_DNXFER_PIO:
2708 		highbit = fls(pio_mask) - 1;
2709 		pio_mask &= ~(1 << highbit);
2710 		break;
2711 
2712 	case ATA_DNXFER_DMA:
2713 		if (udma_mask) {
2714 			highbit = fls(udma_mask) - 1;
2715 			udma_mask &= ~(1 << highbit);
2716 			if (!udma_mask)
2717 				return -ENOENT;
2718 		} else if (mwdma_mask) {
2719 			highbit = fls(mwdma_mask) - 1;
2720 			mwdma_mask &= ~(1 << highbit);
2721 			if (!mwdma_mask)
2722 				return -ENOENT;
2723 		}
2724 		break;
2725 
2726 	case ATA_DNXFER_40C:
2727 		udma_mask &= ATA_UDMA_MASK_40C;
2728 		break;
2729 
2730 	case ATA_DNXFER_FORCE_PIO0:
2731 		pio_mask &= 1;
2732 	case ATA_DNXFER_FORCE_PIO:
2733 		mwdma_mask = 0;
2734 		udma_mask = 0;
2735 		break;
2736 
2737 	default:
2738 		BUG();
2739 	}
2740 
2741 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2742 
2743 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2744 		return -ENOENT;
2745 
2746 	if (!quiet) {
2747 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2748 			snprintf(buf, sizeof(buf), "%s:%s",
2749 				 ata_mode_string(xfer_mask),
2750 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2751 		else
2752 			snprintf(buf, sizeof(buf), "%s",
2753 				 ata_mode_string(xfer_mask));
2754 
2755 		ata_dev_printk(dev, KERN_WARNING,
2756 			       "limiting speed to %s\n", buf);
2757 	}
2758 
2759 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2760 			    &dev->udma_mask);
2761 
2762 	return 0;
2763 }
2764 
2765 static int ata_dev_set_mode(struct ata_device *dev)
2766 {
2767 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2768 	unsigned int err_mask;
2769 	int rc;
2770 
2771 	dev->flags &= ~ATA_DFLAG_PIO;
2772 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2773 		dev->flags |= ATA_DFLAG_PIO;
2774 
2775 	err_mask = ata_dev_set_xfermode(dev);
2776 	/* Old CFA may refuse this command, which is just fine */
2777 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2778         	err_mask &= ~AC_ERR_DEV;
2779 
2780 	if (err_mask) {
2781 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2782 			       "(err_mask=0x%x)\n", err_mask);
2783 		return -EIO;
2784 	}
2785 
2786 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2787 	rc = ata_dev_revalidate(dev, 0);
2788 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2789 	if (rc)
2790 		return rc;
2791 
2792 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2793 		dev->xfer_shift, (int)dev->xfer_mode);
2794 
2795 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2796 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2802  *	@ap: port on which timings will be programmed
2803  *	@r_failed_dev: out paramter for failed device
2804  *
2805  *	Standard implementation of the function used to tune and set
2806  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2807  *	ata_dev_set_mode() fails, pointer to the failing device is
2808  *	returned in @r_failed_dev.
2809  *
2810  *	LOCKING:
2811  *	PCI/etc. bus probe sem.
2812  *
2813  *	RETURNS:
2814  *	0 on success, negative errno otherwise
2815  */
2816 
2817 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2818 {
2819 	struct ata_device *dev;
2820 	int i, rc = 0, used_dma = 0, found = 0;
2821 
2822 
2823 	/* step 1: calculate xfer_mask */
2824 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2825 		unsigned int pio_mask, dma_mask;
2826 
2827 		dev = &ap->device[i];
2828 
2829 		if (!ata_dev_enabled(dev))
2830 			continue;
2831 
2832 		ata_dev_xfermask(dev);
2833 
2834 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2835 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2836 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2837 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2838 
2839 		found = 1;
2840 		if (dev->dma_mode)
2841 			used_dma = 1;
2842 	}
2843 	if (!found)
2844 		goto out;
2845 
2846 	/* step 2: always set host PIO timings */
2847 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2848 		dev = &ap->device[i];
2849 		if (!ata_dev_enabled(dev))
2850 			continue;
2851 
2852 		if (!dev->pio_mode) {
2853 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2854 			rc = -EINVAL;
2855 			goto out;
2856 		}
2857 
2858 		dev->xfer_mode = dev->pio_mode;
2859 		dev->xfer_shift = ATA_SHIFT_PIO;
2860 		if (ap->ops->set_piomode)
2861 			ap->ops->set_piomode(ap, dev);
2862 	}
2863 
2864 	/* step 3: set host DMA timings */
2865 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2866 		dev = &ap->device[i];
2867 
2868 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2869 			continue;
2870 
2871 		dev->xfer_mode = dev->dma_mode;
2872 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2873 		if (ap->ops->set_dmamode)
2874 			ap->ops->set_dmamode(ap, dev);
2875 	}
2876 
2877 	/* step 4: update devices' xfer mode */
2878 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2879 		dev = &ap->device[i];
2880 
2881 		/* don't update suspended devices' xfer mode */
2882 		if (!ata_dev_enabled(dev))
2883 			continue;
2884 
2885 		rc = ata_dev_set_mode(dev);
2886 		if (rc)
2887 			goto out;
2888 	}
2889 
2890 	/* Record simplex status. If we selected DMA then the other
2891 	 * host channels are not permitted to do so.
2892 	 */
2893 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2894 		ap->host->simplex_claimed = ap;
2895 
2896  out:
2897 	if (rc)
2898 		*r_failed_dev = dev;
2899 	return rc;
2900 }
2901 
2902 /**
2903  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2904  *	@ap: port on which timings will be programmed
2905  *	@r_failed_dev: out paramter for failed device
2906  *
2907  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2908  *	ata_set_mode() fails, pointer to the failing device is
2909  *	returned in @r_failed_dev.
2910  *
2911  *	LOCKING:
2912  *	PCI/etc. bus probe sem.
2913  *
2914  *	RETURNS:
2915  *	0 on success, negative errno otherwise
2916  */
2917 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2918 {
2919 	/* has private set_mode? */
2920 	if (ap->ops->set_mode)
2921 		return ap->ops->set_mode(ap, r_failed_dev);
2922 	return ata_do_set_mode(ap, r_failed_dev);
2923 }
2924 
2925 /**
2926  *	ata_tf_to_host - issue ATA taskfile to host controller
2927  *	@ap: port to which command is being issued
2928  *	@tf: ATA taskfile register set
2929  *
2930  *	Issues ATA taskfile register set to ATA host controller,
2931  *	with proper synchronization with interrupt handler and
2932  *	other threads.
2933  *
2934  *	LOCKING:
2935  *	spin_lock_irqsave(host lock)
2936  */
2937 
2938 static inline void ata_tf_to_host(struct ata_port *ap,
2939 				  const struct ata_taskfile *tf)
2940 {
2941 	ap->ops->tf_load(ap, tf);
2942 	ap->ops->exec_command(ap, tf);
2943 }
2944 
2945 /**
2946  *	ata_busy_sleep - sleep until BSY clears, or timeout
2947  *	@ap: port containing status register to be polled
2948  *	@tmout_pat: impatience timeout
2949  *	@tmout: overall timeout
2950  *
2951  *	Sleep until ATA Status register bit BSY clears,
2952  *	or a timeout occurs.
2953  *
2954  *	LOCKING:
2955  *	Kernel thread context (may sleep).
2956  *
2957  *	RETURNS:
2958  *	0 on success, -errno otherwise.
2959  */
2960 int ata_busy_sleep(struct ata_port *ap,
2961 		   unsigned long tmout_pat, unsigned long tmout)
2962 {
2963 	unsigned long timer_start, timeout;
2964 	u8 status;
2965 
2966 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2967 	timer_start = jiffies;
2968 	timeout = timer_start + tmout_pat;
2969 	while (status != 0xff && (status & ATA_BUSY) &&
2970 	       time_before(jiffies, timeout)) {
2971 		msleep(50);
2972 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2973 	}
2974 
2975 	if (status != 0xff && (status & ATA_BUSY))
2976 		ata_port_printk(ap, KERN_WARNING,
2977 				"port is slow to respond, please be patient "
2978 				"(Status 0x%x)\n", status);
2979 
2980 	timeout = timer_start + tmout;
2981 	while (status != 0xff && (status & ATA_BUSY) &&
2982 	       time_before(jiffies, timeout)) {
2983 		msleep(50);
2984 		status = ata_chk_status(ap);
2985 	}
2986 
2987 	if (status == 0xff)
2988 		return -ENODEV;
2989 
2990 	if (status & ATA_BUSY) {
2991 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2992 				"(%lu secs, Status 0x%x)\n",
2993 				tmout / HZ, status);
2994 		return -EBUSY;
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 /**
3001  *	ata_wait_ready - sleep until BSY clears, or timeout
3002  *	@ap: port containing status register to be polled
3003  *	@deadline: deadline jiffies for the operation
3004  *
3005  *	Sleep until ATA Status register bit BSY clears, or timeout
3006  *	occurs.
3007  *
3008  *	LOCKING:
3009  *	Kernel thread context (may sleep).
3010  *
3011  *	RETURNS:
3012  *	0 on success, -errno otherwise.
3013  */
3014 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3015 {
3016 	unsigned long start = jiffies;
3017 	int warned = 0;
3018 
3019 	while (1) {
3020 		u8 status = ata_chk_status(ap);
3021 		unsigned long now = jiffies;
3022 
3023 		if (!(status & ATA_BUSY))
3024 			return 0;
3025 		if (!ata_port_online(ap) && status == 0xff)
3026 			return -ENODEV;
3027 		if (time_after(now, deadline))
3028 			return -EBUSY;
3029 
3030 		if (!warned && time_after(now, start + 5 * HZ) &&
3031 		    (deadline - now > 3 * HZ)) {
3032 			ata_port_printk(ap, KERN_WARNING,
3033 				"port is slow to respond, please be patient "
3034 				"(Status 0x%x)\n", status);
3035 			warned = 1;
3036 		}
3037 
3038 		msleep(50);
3039 	}
3040 }
3041 
3042 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3043 			      unsigned long deadline)
3044 {
3045 	struct ata_ioports *ioaddr = &ap->ioaddr;
3046 	unsigned int dev0 = devmask & (1 << 0);
3047 	unsigned int dev1 = devmask & (1 << 1);
3048 	int rc, ret = 0;
3049 
3050 	/* if device 0 was found in ata_devchk, wait for its
3051 	 * BSY bit to clear
3052 	 */
3053 	if (dev0) {
3054 		rc = ata_wait_ready(ap, deadline);
3055 		if (rc) {
3056 			if (rc != -ENODEV)
3057 				return rc;
3058 			ret = rc;
3059 		}
3060 	}
3061 
3062 	/* if device 1 was found in ata_devchk, wait for
3063 	 * register access, then wait for BSY to clear
3064 	 */
3065 	while (dev1) {
3066 		u8 nsect, lbal;
3067 
3068 		ap->ops->dev_select(ap, 1);
3069 		nsect = ioread8(ioaddr->nsect_addr);
3070 		lbal = ioread8(ioaddr->lbal_addr);
3071 		if ((nsect == 1) && (lbal == 1))
3072 			break;
3073 		if (time_after(jiffies, deadline))
3074 			return -EBUSY;
3075 		msleep(50);	/* give drive a breather */
3076 	}
3077 	if (dev1) {
3078 		rc = ata_wait_ready(ap, deadline);
3079 		if (rc) {
3080 			if (rc != -ENODEV)
3081 				return rc;
3082 			ret = rc;
3083 		}
3084 	}
3085 
3086 	/* is all this really necessary? */
3087 	ap->ops->dev_select(ap, 0);
3088 	if (dev1)
3089 		ap->ops->dev_select(ap, 1);
3090 	if (dev0)
3091 		ap->ops->dev_select(ap, 0);
3092 
3093 	return ret;
3094 }
3095 
3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 			     unsigned long deadline)
3098 {
3099 	struct ata_ioports *ioaddr = &ap->ioaddr;
3100 
3101 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3102 
3103 	/* software reset.  causes dev0 to be selected */
3104 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 	udelay(20);	/* FIXME: flush */
3106 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 	udelay(20);	/* FIXME: flush */
3108 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3109 
3110 	/* spec mandates ">= 2ms" before checking status.
3111 	 * We wait 150ms, because that was the magic delay used for
3112 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 	 * between when the ATA command register is written, and then
3114 	 * status is checked.  Because waiting for "a while" before
3115 	 * checking status is fine, post SRST, we perform this magic
3116 	 * delay here as well.
3117 	 *
3118 	 * Old drivers/ide uses the 2mS rule and then waits for ready
3119 	 */
3120 	msleep(150);
3121 
3122 	/* Before we perform post reset processing we want to see if
3123 	 * the bus shows 0xFF because the odd clown forgets the D7
3124 	 * pulldown resistor.
3125 	 */
3126 	if (ata_check_status(ap) == 0xFF)
3127 		return -ENODEV;
3128 
3129 	return ata_bus_post_reset(ap, devmask, deadline);
3130 }
3131 
3132 /**
3133  *	ata_bus_reset - reset host port and associated ATA channel
3134  *	@ap: port to reset
3135  *
3136  *	This is typically the first time we actually start issuing
3137  *	commands to the ATA channel.  We wait for BSY to clear, then
3138  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139  *	result.  Determine what devices, if any, are on the channel
3140  *	by looking at the device 0/1 error register.  Look at the signature
3141  *	stored in each device's taskfile registers, to determine if
3142  *	the device is ATA or ATAPI.
3143  *
3144  *	LOCKING:
3145  *	PCI/etc. bus probe sem.
3146  *	Obtains host lock.
3147  *
3148  *	SIDE EFFECTS:
3149  *	Sets ATA_FLAG_DISABLED if bus reset fails.
3150  */
3151 
3152 void ata_bus_reset(struct ata_port *ap)
3153 {
3154 	struct ata_ioports *ioaddr = &ap->ioaddr;
3155 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 	u8 err;
3157 	unsigned int dev0, dev1 = 0, devmask = 0;
3158 	int rc;
3159 
3160 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3161 
3162 	/* determine if device 0/1 are present */
3163 	if (ap->flags & ATA_FLAG_SATA_RESET)
3164 		dev0 = 1;
3165 	else {
3166 		dev0 = ata_devchk(ap, 0);
3167 		if (slave_possible)
3168 			dev1 = ata_devchk(ap, 1);
3169 	}
3170 
3171 	if (dev0)
3172 		devmask |= (1 << 0);
3173 	if (dev1)
3174 		devmask |= (1 << 1);
3175 
3176 	/* select device 0 again */
3177 	ap->ops->dev_select(ap, 0);
3178 
3179 	/* issue bus reset */
3180 	if (ap->flags & ATA_FLAG_SRST) {
3181 		rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 		if (rc && rc != -ENODEV)
3183 			goto err_out;
3184 	}
3185 
3186 	/*
3187 	 * determine by signature whether we have ATA or ATAPI devices
3188 	 */
3189 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3190 	if ((slave_possible) && (err != 0x81))
3191 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3192 
3193 	/* re-enable interrupts */
3194 	ap->ops->irq_on(ap);
3195 
3196 	/* is double-select really necessary? */
3197 	if (ap->device[1].class != ATA_DEV_NONE)
3198 		ap->ops->dev_select(ap, 1);
3199 	if (ap->device[0].class != ATA_DEV_NONE)
3200 		ap->ops->dev_select(ap, 0);
3201 
3202 	/* if no devices were detected, disable this port */
3203 	if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 	    (ap->device[1].class == ATA_DEV_NONE))
3205 		goto err_out;
3206 
3207 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 		/* set up device control for ATA_FLAG_SATA_RESET */
3209 		iowrite8(ap->ctl, ioaddr->ctl_addr);
3210 	}
3211 
3212 	DPRINTK("EXIT\n");
3213 	return;
3214 
3215 err_out:
3216 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
3217 	ap->ops->port_disable(ap);
3218 
3219 	DPRINTK("EXIT\n");
3220 }
3221 
3222 /**
3223  *	sata_phy_debounce - debounce SATA phy status
3224  *	@ap: ATA port to debounce SATA phy status for
3225  *	@params: timing parameters { interval, duratinon, timeout } in msec
3226  *	@deadline: deadline jiffies for the operation
3227  *
3228  *	Make sure SStatus of @ap reaches stable state, determined by
3229  *	holding the same value where DET is not 1 for @duration polled
3230  *	every @interval, before @timeout.  Timeout constraints the
3231  *	beginning of the stable state.  Because DET gets stuck at 1 on
3232  *	some controllers after hot unplugging, this functions waits
3233  *	until timeout then returns 0 if DET is stable at 1.
3234  *
3235  *	@timeout is further limited by @deadline.  The sooner of the
3236  *	two is used.
3237  *
3238  *	LOCKING:
3239  *	Kernel thread context (may sleep)
3240  *
3241  *	RETURNS:
3242  *	0 on success, -errno on failure.
3243  */
3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 		      unsigned long deadline)
3246 {
3247 	unsigned long interval_msec = params[0];
3248 	unsigned long duration = msecs_to_jiffies(params[1]);
3249 	unsigned long last_jiffies, t;
3250 	u32 last, cur;
3251 	int rc;
3252 
3253 	t = jiffies + msecs_to_jiffies(params[2]);
3254 	if (time_before(t, deadline))
3255 		deadline = t;
3256 
3257 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 		return rc;
3259 	cur &= 0xf;
3260 
3261 	last = cur;
3262 	last_jiffies = jiffies;
3263 
3264 	while (1) {
3265 		msleep(interval_msec);
3266 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 			return rc;
3268 		cur &= 0xf;
3269 
3270 		/* DET stable? */
3271 		if (cur == last) {
3272 			if (cur == 1 && time_before(jiffies, deadline))
3273 				continue;
3274 			if (time_after(jiffies, last_jiffies + duration))
3275 				return 0;
3276 			continue;
3277 		}
3278 
3279 		/* unstable, start over */
3280 		last = cur;
3281 		last_jiffies = jiffies;
3282 
3283 		/* check deadline */
3284 		if (time_after(jiffies, deadline))
3285 			return -EBUSY;
3286 	}
3287 }
3288 
3289 /**
3290  *	sata_phy_resume - resume SATA phy
3291  *	@ap: ATA port to resume SATA phy for
3292  *	@params: timing parameters { interval, duratinon, timeout } in msec
3293  *	@deadline: deadline jiffies for the operation
3294  *
3295  *	Resume SATA phy of @ap and debounce it.
3296  *
3297  *	LOCKING:
3298  *	Kernel thread context (may sleep)
3299  *
3300  *	RETURNS:
3301  *	0 on success, -errno on failure.
3302  */
3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 		    unsigned long deadline)
3305 {
3306 	u32 scontrol;
3307 	int rc;
3308 
3309 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 		return rc;
3311 
3312 	scontrol = (scontrol & 0x0f0) | 0x300;
3313 
3314 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 		return rc;
3316 
3317 	/* Some PHYs react badly if SStatus is pounded immediately
3318 	 * after resuming.  Delay 200ms before debouncing.
3319 	 */
3320 	msleep(200);
3321 
3322 	return sata_phy_debounce(ap, params, deadline);
3323 }
3324 
3325 /**
3326  *	ata_std_prereset - prepare for reset
3327  *	@ap: ATA port to be reset
3328  *	@deadline: deadline jiffies for the operation
3329  *
3330  *	@ap is about to be reset.  Initialize it.  Failure from
3331  *	prereset makes libata abort whole reset sequence and give up
3332  *	that port, so prereset should be best-effort.  It does its
3333  *	best to prepare for reset sequence but if things go wrong, it
3334  *	should just whine, not fail.
3335  *
3336  *	LOCKING:
3337  *	Kernel thread context (may sleep)
3338  *
3339  *	RETURNS:
3340  *	0 on success, -errno otherwise.
3341  */
3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3343 {
3344 	struct ata_eh_context *ehc = &ap->eh_context;
3345 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3346 	int rc;
3347 
3348 	/* handle link resume */
3349 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 		ehc->i.action |= ATA_EH_HARDRESET;
3352 
3353 	/* if we're about to do hardreset, nothing more to do */
3354 	if (ehc->i.action & ATA_EH_HARDRESET)
3355 		return 0;
3356 
3357 	/* if SATA, resume phy */
3358 	if (ap->cbl == ATA_CBL_SATA) {
3359 		rc = sata_phy_resume(ap, timing, deadline);
3360 		/* whine about phy resume failure but proceed */
3361 		if (rc && rc != -EOPNOTSUPP)
3362 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 					"link for reset (errno=%d)\n", rc);
3364 	}
3365 
3366 	/* Wait for !BSY if the controller can wait for the first D2H
3367 	 * Reg FIS and we don't know that no device is attached.
3368 	 */
3369 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 		rc = ata_wait_ready(ap, deadline);
3371 		if (rc && rc != -ENODEV) {
3372 			ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 					"(errno=%d), forcing hardreset\n", rc);
3374 			ehc->i.action |= ATA_EH_HARDRESET;
3375 		}
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 /**
3382  *	ata_std_softreset - reset host port via ATA SRST
3383  *	@ap: port to reset
3384  *	@classes: resulting classes of attached devices
3385  *	@deadline: deadline jiffies for the operation
3386  *
3387  *	Reset host port using ATA SRST.
3388  *
3389  *	LOCKING:
3390  *	Kernel thread context (may sleep)
3391  *
3392  *	RETURNS:
3393  *	0 on success, -errno otherwise.
3394  */
3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 		      unsigned long deadline)
3397 {
3398 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 	unsigned int devmask = 0;
3400 	int rc;
3401 	u8 err;
3402 
3403 	DPRINTK("ENTER\n");
3404 
3405 	if (ata_port_offline(ap)) {
3406 		classes[0] = ATA_DEV_NONE;
3407 		goto out;
3408 	}
3409 
3410 	/* determine if device 0/1 are present */
3411 	if (ata_devchk(ap, 0))
3412 		devmask |= (1 << 0);
3413 	if (slave_possible && ata_devchk(ap, 1))
3414 		devmask |= (1 << 1);
3415 
3416 	/* select device 0 again */
3417 	ap->ops->dev_select(ap, 0);
3418 
3419 	/* issue bus reset */
3420 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 	rc = ata_bus_softreset(ap, devmask, deadline);
3422 	/* if link is occupied, -ENODEV too is an error */
3423 	if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3424 		ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 		return rc;
3426 	}
3427 
3428 	/* determine by signature whether we have ATA or ATAPI devices */
3429 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 	if (slave_possible && err != 0x81)
3431 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3432 
3433  out:
3434 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 	return 0;
3436 }
3437 
3438 /**
3439  *	sata_port_hardreset - reset port via SATA phy reset
3440  *	@ap: port to reset
3441  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3442  *	@deadline: deadline jiffies for the operation
3443  *
3444  *	SATA phy-reset host port using DET bits of SControl register.
3445  *
3446  *	LOCKING:
3447  *	Kernel thread context (may sleep)
3448  *
3449  *	RETURNS:
3450  *	0 on success, -errno otherwise.
3451  */
3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 			unsigned long deadline)
3454 {
3455 	u32 scontrol;
3456 	int rc;
3457 
3458 	DPRINTK("ENTER\n");
3459 
3460 	if (sata_set_spd_needed(ap)) {
3461 		/* SATA spec says nothing about how to reconfigure
3462 		 * spd.  To be on the safe side, turn off phy during
3463 		 * reconfiguration.  This works for at least ICH7 AHCI
3464 		 * and Sil3124.
3465 		 */
3466 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3467 			goto out;
3468 
3469 		scontrol = (scontrol & 0x0f0) | 0x304;
3470 
3471 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3472 			goto out;
3473 
3474 		sata_set_spd(ap);
3475 	}
3476 
3477 	/* issue phy wake/reset */
3478 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3479 		goto out;
3480 
3481 	scontrol = (scontrol & 0x0f0) | 0x301;
3482 
3483 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3484 		goto out;
3485 
3486 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 	 * 10.4.2 says at least 1 ms.
3488 	 */
3489 	msleep(1);
3490 
3491 	/* bring phy back */
3492 	rc = sata_phy_resume(ap, timing, deadline);
3493  out:
3494 	DPRINTK("EXIT, rc=%d\n", rc);
3495 	return rc;
3496 }
3497 
3498 /**
3499  *	sata_std_hardreset - reset host port via SATA phy reset
3500  *	@ap: port to reset
3501  *	@class: resulting class of attached device
3502  *	@deadline: deadline jiffies for the operation
3503  *
3504  *	SATA phy-reset host port using DET bits of SControl register,
3505  *	wait for !BSY and classify the attached device.
3506  *
3507  *	LOCKING:
3508  *	Kernel thread context (may sleep)
3509  *
3510  *	RETURNS:
3511  *	0 on success, -errno otherwise.
3512  */
3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 		       unsigned long deadline)
3515 {
3516 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 	int rc;
3518 
3519 	DPRINTK("ENTER\n");
3520 
3521 	/* do hardreset */
3522 	rc = sata_port_hardreset(ap, timing, deadline);
3523 	if (rc) {
3524 		ata_port_printk(ap, KERN_ERR,
3525 				"COMRESET failed (errno=%d)\n", rc);
3526 		return rc;
3527 	}
3528 
3529 	/* TODO: phy layer with polling, timeouts, etc. */
3530 	if (ata_port_offline(ap)) {
3531 		*class = ATA_DEV_NONE;
3532 		DPRINTK("EXIT, link offline\n");
3533 		return 0;
3534 	}
3535 
3536 	/* wait a while before checking status, see SRST for more info */
3537 	msleep(150);
3538 
3539 	rc = ata_wait_ready(ap, deadline);
3540 	/* link occupied, -ENODEV too is an error */
3541 	if (rc) {
3542 		ata_port_printk(ap, KERN_ERR,
3543 				"COMRESET failed (errno=%d)\n", rc);
3544 		return rc;
3545 	}
3546 
3547 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3548 
3549 	*class = ata_dev_try_classify(ap, 0, NULL);
3550 
3551 	DPRINTK("EXIT, class=%u\n", *class);
3552 	return 0;
3553 }
3554 
3555 /**
3556  *	ata_std_postreset - standard postreset callback
3557  *	@ap: the target ata_port
3558  *	@classes: classes of attached devices
3559  *
3560  *	This function is invoked after a successful reset.  Note that
3561  *	the device might have been reset more than once using
3562  *	different reset methods before postreset is invoked.
3563  *
3564  *	LOCKING:
3565  *	Kernel thread context (may sleep)
3566  */
3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3568 {
3569 	u32 serror;
3570 
3571 	DPRINTK("ENTER\n");
3572 
3573 	/* print link status */
3574 	sata_print_link_status(ap);
3575 
3576 	/* clear SError */
3577 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 		sata_scr_write(ap, SCR_ERROR, serror);
3579 
3580 	/* re-enable interrupts */
3581 	if (!ap->ops->error_handler)
3582 		ap->ops->irq_on(ap);
3583 
3584 	/* is double-select really necessary? */
3585 	if (classes[0] != ATA_DEV_NONE)
3586 		ap->ops->dev_select(ap, 1);
3587 	if (classes[1] != ATA_DEV_NONE)
3588 		ap->ops->dev_select(ap, 0);
3589 
3590 	/* bail out if no device is present */
3591 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 		DPRINTK("EXIT, no device\n");
3593 		return;
3594 	}
3595 
3596 	/* set up device control */
3597 	if (ap->ioaddr.ctl_addr)
3598 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3599 
3600 	DPRINTK("EXIT\n");
3601 }
3602 
3603 /**
3604  *	ata_dev_same_device - Determine whether new ID matches configured device
3605  *	@dev: device to compare against
3606  *	@new_class: class of the new device
3607  *	@new_id: IDENTIFY page of the new device
3608  *
3609  *	Compare @new_class and @new_id against @dev and determine
3610  *	whether @dev is the device indicated by @new_class and
3611  *	@new_id.
3612  *
3613  *	LOCKING:
3614  *	None.
3615  *
3616  *	RETURNS:
3617  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3618  */
3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 			       const u16 *new_id)
3621 {
3622 	const u16 *old_id = dev->id;
3623 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3625 
3626 	if (dev->class != new_class) {
3627 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 			       dev->class, new_class);
3629 		return 0;
3630 	}
3631 
3632 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3636 
3637 	if (strcmp(model[0], model[1])) {
3638 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 			       "'%s' != '%s'\n", model[0], model[1]);
3640 		return 0;
3641 	}
3642 
3643 	if (strcmp(serial[0], serial[1])) {
3644 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 			       "'%s' != '%s'\n", serial[0], serial[1]);
3646 		return 0;
3647 	}
3648 
3649 	return 1;
3650 }
3651 
3652 /**
3653  *	ata_dev_reread_id - Re-read IDENTIFY data
3654  *	@adev: target ATA device
3655  *	@readid_flags: read ID flags
3656  *
3657  *	Re-read IDENTIFY page and make sure @dev is still attached to
3658  *	the port.
3659  *
3660  *	LOCKING:
3661  *	Kernel thread context (may sleep)
3662  *
3663  *	RETURNS:
3664  *	0 on success, negative errno otherwise
3665  */
3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3667 {
3668 	unsigned int class = dev->class;
3669 	u16 *id = (void *)dev->ap->sector_buf;
3670 	int rc;
3671 
3672 	/* read ID data */
3673 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3674 	if (rc)
3675 		return rc;
3676 
3677 	/* is the device still there? */
3678 	if (!ata_dev_same_device(dev, class, id))
3679 		return -ENODEV;
3680 
3681 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3682 	return 0;
3683 }
3684 
3685 /**
3686  *	ata_dev_revalidate - Revalidate ATA device
3687  *	@dev: device to revalidate
3688  *	@readid_flags: read ID flags
3689  *
3690  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3691  *	port and reconfigure it according to the new IDENTIFY page.
3692  *
3693  *	LOCKING:
3694  *	Kernel thread context (may sleep)
3695  *
3696  *	RETURNS:
3697  *	0 on success, negative errno otherwise
3698  */
3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3700 {
3701 	u64 n_sectors = dev->n_sectors;
3702 	int rc;
3703 
3704 	if (!ata_dev_enabled(dev))
3705 		return -ENODEV;
3706 
3707 	/* re-read ID */
3708 	rc = ata_dev_reread_id(dev, readid_flags);
3709 	if (rc)
3710 		goto fail;
3711 
3712 	/* configure device according to the new ID */
3713 	rc = ata_dev_configure(dev);
3714 	if (rc)
3715 		goto fail;
3716 
3717 	/* verify n_sectors hasn't changed */
3718 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 			       "%llu != %llu\n",
3721 			       (unsigned long long)n_sectors,
3722 			       (unsigned long long)dev->n_sectors);
3723 		rc = -ENODEV;
3724 		goto fail;
3725 	}
3726 
3727 	return 0;
3728 
3729  fail:
3730 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3731 	return rc;
3732 }
3733 
3734 struct ata_blacklist_entry {
3735 	const char *model_num;
3736 	const char *model_rev;
3737 	unsigned long horkage;
3738 };
3739 
3740 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 	/* Devices with DMA related problems under Linux */
3742 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3743 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3744 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3745 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3746 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3747 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3748 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3749 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3750 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3751 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3752 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3753 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3754 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3755 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3756 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3757 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3758 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3759 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3760 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3761 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3762 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3763 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3764 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3765 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3766 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3767 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3768 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3770 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3771 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3772 
3773 	/* Weird ATAPI devices */
3774 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 |
3775 						ATA_HORKAGE_DMA_RW_ONLY },
3776 
3777 	/* Devices we expect to fail diagnostics */
3778 
3779 	/* Devices where NCQ should be avoided */
3780 	/* NCQ is slow */
3781         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3782 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3784 	/* NCQ is broken */
3785 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3786 	{ "Maxtor 6B200M0",	"BANC1B10",	ATA_HORKAGE_NONCQ },
3787 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3788 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3789 	/* Blacklist entries taken from Silicon Image 3124/3132
3790 	   Windows driver .inf file - also several Linux problem reports */
3791 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3792 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3793 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3794 
3795 	/* Devices with NCQ limits */
3796 
3797 	/* End Marker */
3798 	{ }
3799 };
3800 
3801 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3802 {
3803 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3804 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3805 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3806 
3807 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3808 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3809 
3810 	while (ad->model_num) {
3811 		if (!strcmp(ad->model_num, model_num)) {
3812 			if (ad->model_rev == NULL)
3813 				return ad->horkage;
3814 			if (!strcmp(ad->model_rev, model_rev))
3815 				return ad->horkage;
3816 		}
3817 		ad++;
3818 	}
3819 	return 0;
3820 }
3821 
3822 static int ata_dma_blacklisted(const struct ata_device *dev)
3823 {
3824 	/* We don't support polling DMA.
3825 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3826 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3827 	 */
3828 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3829 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3830 		return 1;
3831 	return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3832 }
3833 
3834 /**
3835  *	ata_dev_xfermask - Compute supported xfermask of the given device
3836  *	@dev: Device to compute xfermask for
3837  *
3838  *	Compute supported xfermask of @dev and store it in
3839  *	dev->*_mask.  This function is responsible for applying all
3840  *	known limits including host controller limits, device
3841  *	blacklist, etc...
3842  *
3843  *	LOCKING:
3844  *	None.
3845  */
3846 static void ata_dev_xfermask(struct ata_device *dev)
3847 {
3848 	struct ata_port *ap = dev->ap;
3849 	struct ata_host *host = ap->host;
3850 	unsigned long xfer_mask;
3851 
3852 	/* controller modes available */
3853 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3854 				      ap->mwdma_mask, ap->udma_mask);
3855 
3856 	/* drive modes available */
3857 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3858 				       dev->mwdma_mask, dev->udma_mask);
3859 	xfer_mask &= ata_id_xfermask(dev->id);
3860 
3861 	/*
3862 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3863 	 *	cable
3864 	 */
3865 	if (ata_dev_pair(dev)) {
3866 		/* No PIO5 or PIO6 */
3867 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3868 		/* No MWDMA3 or MWDMA 4 */
3869 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3870 	}
3871 
3872 	if (ata_dma_blacklisted(dev)) {
3873 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3874 		ata_dev_printk(dev, KERN_WARNING,
3875 			       "device is on DMA blacklist, disabling DMA\n");
3876 	}
3877 
3878 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3879             host->simplex_claimed && host->simplex_claimed != ap) {
3880 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3881 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3882 			       "other device, disabling DMA\n");
3883 	}
3884 
3885 	if (ap->flags & ATA_FLAG_NO_IORDY)
3886 		xfer_mask &= ata_pio_mask_no_iordy(dev);
3887 
3888 	if (ap->ops->mode_filter)
3889 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3890 
3891 	/* Apply cable rule here.  Don't apply it early because when
3892 	 * we handle hot plug the cable type can itself change.
3893 	 * Check this last so that we know if the transfer rate was
3894 	 * solely limited by the cable.
3895 	 * Unknown or 80 wire cables reported host side are checked
3896 	 * drive side as well. Cases where we know a 40wire cable
3897 	 * is used safely for 80 are not checked here.
3898 	 */
3899 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3900 		/* UDMA/44 or higher would be available */
3901 		if((ap->cbl == ATA_CBL_PATA40) ||
3902    		    (ata_drive_40wire(dev->id) &&
3903 		     (ap->cbl == ATA_CBL_PATA_UNK ||
3904                      ap->cbl == ATA_CBL_PATA80))) {
3905 		      	ata_dev_printk(dev, KERN_WARNING,
3906 				 "limited to UDMA/33 due to 40-wire cable\n");
3907 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3908 		}
3909 
3910 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3911 			    &dev->mwdma_mask, &dev->udma_mask);
3912 }
3913 
3914 /**
3915  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3916  *	@dev: Device to which command will be sent
3917  *
3918  *	Issue SET FEATURES - XFER MODE command to device @dev
3919  *	on port @ap.
3920  *
3921  *	LOCKING:
3922  *	PCI/etc. bus probe sem.
3923  *
3924  *	RETURNS:
3925  *	0 on success, AC_ERR_* mask otherwise.
3926  */
3927 
3928 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3929 {
3930 	struct ata_taskfile tf;
3931 	unsigned int err_mask;
3932 
3933 	/* set up set-features taskfile */
3934 	DPRINTK("set features - xfer mode\n");
3935 
3936 	/* Some controllers and ATAPI devices show flaky interrupt
3937 	 * behavior after setting xfer mode.  Use polling instead.
3938 	 */
3939 	ata_tf_init(dev, &tf);
3940 	tf.command = ATA_CMD_SET_FEATURES;
3941 	tf.feature = SETFEATURES_XFER;
3942 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3943 	tf.protocol = ATA_PROT_NODATA;
3944 	tf.nsect = dev->xfer_mode;
3945 
3946 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3947 
3948 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3949 	return err_mask;
3950 }
3951 
3952 /**
3953  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3954  *	@dev: Device to which command will be sent
3955  *	@heads: Number of heads (taskfile parameter)
3956  *	@sectors: Number of sectors (taskfile parameter)
3957  *
3958  *	LOCKING:
3959  *	Kernel thread context (may sleep)
3960  *
3961  *	RETURNS:
3962  *	0 on success, AC_ERR_* mask otherwise.
3963  */
3964 static unsigned int ata_dev_init_params(struct ata_device *dev,
3965 					u16 heads, u16 sectors)
3966 {
3967 	struct ata_taskfile tf;
3968 	unsigned int err_mask;
3969 
3970 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3971 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3972 		return AC_ERR_INVALID;
3973 
3974 	/* set up init dev params taskfile */
3975 	DPRINTK("init dev params \n");
3976 
3977 	ata_tf_init(dev, &tf);
3978 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3979 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3980 	tf.protocol = ATA_PROT_NODATA;
3981 	tf.nsect = sectors;
3982 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3983 
3984 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3985 
3986 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3987 	return err_mask;
3988 }
3989 
3990 /**
3991  *	ata_sg_clean - Unmap DMA memory associated with command
3992  *	@qc: Command containing DMA memory to be released
3993  *
3994  *	Unmap all mapped DMA memory associated with this command.
3995  *
3996  *	LOCKING:
3997  *	spin_lock_irqsave(host lock)
3998  */
3999 void ata_sg_clean(struct ata_queued_cmd *qc)
4000 {
4001 	struct ata_port *ap = qc->ap;
4002 	struct scatterlist *sg = qc->__sg;
4003 	int dir = qc->dma_dir;
4004 	void *pad_buf = NULL;
4005 
4006 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4007 	WARN_ON(sg == NULL);
4008 
4009 	if (qc->flags & ATA_QCFLAG_SINGLE)
4010 		WARN_ON(qc->n_elem > 1);
4011 
4012 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4013 
4014 	/* if we padded the buffer out to 32-bit bound, and data
4015 	 * xfer direction is from-device, we must copy from the
4016 	 * pad buffer back into the supplied buffer
4017 	 */
4018 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4019 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4020 
4021 	if (qc->flags & ATA_QCFLAG_SG) {
4022 		if (qc->n_elem)
4023 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4024 		/* restore last sg */
4025 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
4026 		if (pad_buf) {
4027 			struct scatterlist *psg = &qc->pad_sgent;
4028 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4029 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4030 			kunmap_atomic(addr, KM_IRQ0);
4031 		}
4032 	} else {
4033 		if (qc->n_elem)
4034 			dma_unmap_single(ap->dev,
4035 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4036 				dir);
4037 		/* restore sg */
4038 		sg->length += qc->pad_len;
4039 		if (pad_buf)
4040 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
4041 			       pad_buf, qc->pad_len);
4042 	}
4043 
4044 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4045 	qc->__sg = NULL;
4046 }
4047 
4048 /**
4049  *	ata_fill_sg - Fill PCI IDE PRD table
4050  *	@qc: Metadata associated with taskfile to be transferred
4051  *
4052  *	Fill PCI IDE PRD (scatter-gather) table with segments
4053  *	associated with the current disk command.
4054  *
4055  *	LOCKING:
4056  *	spin_lock_irqsave(host lock)
4057  *
4058  */
4059 static void ata_fill_sg(struct ata_queued_cmd *qc)
4060 {
4061 	struct ata_port *ap = qc->ap;
4062 	struct scatterlist *sg;
4063 	unsigned int idx;
4064 
4065 	WARN_ON(qc->__sg == NULL);
4066 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4067 
4068 	idx = 0;
4069 	ata_for_each_sg(sg, qc) {
4070 		u32 addr, offset;
4071 		u32 sg_len, len;
4072 
4073 		/* determine if physical DMA addr spans 64K boundary.
4074 		 * Note h/w doesn't support 64-bit, so we unconditionally
4075 		 * truncate dma_addr_t to u32.
4076 		 */
4077 		addr = (u32) sg_dma_address(sg);
4078 		sg_len = sg_dma_len(sg);
4079 
4080 		while (sg_len) {
4081 			offset = addr & 0xffff;
4082 			len = sg_len;
4083 			if ((offset + sg_len) > 0x10000)
4084 				len = 0x10000 - offset;
4085 
4086 			ap->prd[idx].addr = cpu_to_le32(addr);
4087 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4088 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4089 
4090 			idx++;
4091 			sg_len -= len;
4092 			addr += len;
4093 		}
4094 	}
4095 
4096 	if (idx)
4097 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4098 }
4099 /**
4100  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4101  *	@qc: Metadata associated with taskfile to check
4102  *
4103  *	Allow low-level driver to filter ATA PACKET commands, returning
4104  *	a status indicating whether or not it is OK to use DMA for the
4105  *	supplied PACKET command.
4106  *
4107  *	LOCKING:
4108  *	spin_lock_irqsave(host lock)
4109  *
4110  *	RETURNS: 0 when ATAPI DMA can be used
4111  *               nonzero otherwise
4112  */
4113 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4114 {
4115 	struct ata_port *ap = qc->ap;
4116 	int rc = 0; /* Assume ATAPI DMA is OK by default */
4117 
4118 	/* some drives can only do ATAPI DMA on read/write */
4119 	if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4120 		struct scsi_cmnd *cmd = qc->scsicmd;
4121 		u8 *scsicmd = cmd->cmnd;
4122 
4123 		switch (scsicmd[0]) {
4124 		case READ_10:
4125 		case WRITE_10:
4126 		case READ_12:
4127 		case WRITE_12:
4128 		case READ_6:
4129 		case WRITE_6:
4130 			/* atapi dma maybe ok */
4131 			break;
4132 		default:
4133 			/* turn off atapi dma */
4134 			return 1;
4135 		}
4136 	}
4137 
4138 	if (ap->ops->check_atapi_dma)
4139 		rc = ap->ops->check_atapi_dma(qc);
4140 
4141 	return rc;
4142 }
4143 /**
4144  *	ata_qc_prep - Prepare taskfile for submission
4145  *	@qc: Metadata associated with taskfile to be prepared
4146  *
4147  *	Prepare ATA taskfile for submission.
4148  *
4149  *	LOCKING:
4150  *	spin_lock_irqsave(host lock)
4151  */
4152 void ata_qc_prep(struct ata_queued_cmd *qc)
4153 {
4154 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4155 		return;
4156 
4157 	ata_fill_sg(qc);
4158 }
4159 
4160 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4161 
4162 /**
4163  *	ata_sg_init_one - Associate command with memory buffer
4164  *	@qc: Command to be associated
4165  *	@buf: Memory buffer
4166  *	@buflen: Length of memory buffer, in bytes.
4167  *
4168  *	Initialize the data-related elements of queued_cmd @qc
4169  *	to point to a single memory buffer, @buf of byte length @buflen.
4170  *
4171  *	LOCKING:
4172  *	spin_lock_irqsave(host lock)
4173  */
4174 
4175 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4176 {
4177 	qc->flags |= ATA_QCFLAG_SINGLE;
4178 
4179 	qc->__sg = &qc->sgent;
4180 	qc->n_elem = 1;
4181 	qc->orig_n_elem = 1;
4182 	qc->buf_virt = buf;
4183 	qc->nbytes = buflen;
4184 
4185 	sg_init_one(&qc->sgent, buf, buflen);
4186 }
4187 
4188 /**
4189  *	ata_sg_init - Associate command with scatter-gather table.
4190  *	@qc: Command to be associated
4191  *	@sg: Scatter-gather table.
4192  *	@n_elem: Number of elements in s/g table.
4193  *
4194  *	Initialize the data-related elements of queued_cmd @qc
4195  *	to point to a scatter-gather table @sg, containing @n_elem
4196  *	elements.
4197  *
4198  *	LOCKING:
4199  *	spin_lock_irqsave(host lock)
4200  */
4201 
4202 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4203 		 unsigned int n_elem)
4204 {
4205 	qc->flags |= ATA_QCFLAG_SG;
4206 	qc->__sg = sg;
4207 	qc->n_elem = n_elem;
4208 	qc->orig_n_elem = n_elem;
4209 }
4210 
4211 /**
4212  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4213  *	@qc: Command with memory buffer to be mapped.
4214  *
4215  *	DMA-map the memory buffer associated with queued_cmd @qc.
4216  *
4217  *	LOCKING:
4218  *	spin_lock_irqsave(host lock)
4219  *
4220  *	RETURNS:
4221  *	Zero on success, negative on error.
4222  */
4223 
4224 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4225 {
4226 	struct ata_port *ap = qc->ap;
4227 	int dir = qc->dma_dir;
4228 	struct scatterlist *sg = qc->__sg;
4229 	dma_addr_t dma_address;
4230 	int trim_sg = 0;
4231 
4232 	/* we must lengthen transfers to end on a 32-bit boundary */
4233 	qc->pad_len = sg->length & 3;
4234 	if (qc->pad_len) {
4235 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4236 		struct scatterlist *psg = &qc->pad_sgent;
4237 
4238 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4239 
4240 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4241 
4242 		if (qc->tf.flags & ATA_TFLAG_WRITE)
4243 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4244 			       qc->pad_len);
4245 
4246 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4247 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4248 		/* trim sg */
4249 		sg->length -= qc->pad_len;
4250 		if (sg->length == 0)
4251 			trim_sg = 1;
4252 
4253 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4254 			sg->length, qc->pad_len);
4255 	}
4256 
4257 	if (trim_sg) {
4258 		qc->n_elem--;
4259 		goto skip_map;
4260 	}
4261 
4262 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
4263 				     sg->length, dir);
4264 	if (dma_mapping_error(dma_address)) {
4265 		/* restore sg */
4266 		sg->length += qc->pad_len;
4267 		return -1;
4268 	}
4269 
4270 	sg_dma_address(sg) = dma_address;
4271 	sg_dma_len(sg) = sg->length;
4272 
4273 skip_map:
4274 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4275 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4276 
4277 	return 0;
4278 }
4279 
4280 /**
4281  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4282  *	@qc: Command with scatter-gather table to be mapped.
4283  *
4284  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4285  *
4286  *	LOCKING:
4287  *	spin_lock_irqsave(host lock)
4288  *
4289  *	RETURNS:
4290  *	Zero on success, negative on error.
4291  *
4292  */
4293 
4294 static int ata_sg_setup(struct ata_queued_cmd *qc)
4295 {
4296 	struct ata_port *ap = qc->ap;
4297 	struct scatterlist *sg = qc->__sg;
4298 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
4299 	int n_elem, pre_n_elem, dir, trim_sg = 0;
4300 
4301 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4302 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4303 
4304 	/* we must lengthen transfers to end on a 32-bit boundary */
4305 	qc->pad_len = lsg->length & 3;
4306 	if (qc->pad_len) {
4307 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4308 		struct scatterlist *psg = &qc->pad_sgent;
4309 		unsigned int offset;
4310 
4311 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4312 
4313 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4314 
4315 		/*
4316 		 * psg->page/offset are used to copy to-be-written
4317 		 * data in this function or read data in ata_sg_clean.
4318 		 */
4319 		offset = lsg->offset + lsg->length - qc->pad_len;
4320 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4321 		psg->offset = offset_in_page(offset);
4322 
4323 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4324 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4325 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4326 			kunmap_atomic(addr, KM_IRQ0);
4327 		}
4328 
4329 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4330 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4331 		/* trim last sg */
4332 		lsg->length -= qc->pad_len;
4333 		if (lsg->length == 0)
4334 			trim_sg = 1;
4335 
4336 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4337 			qc->n_elem - 1, lsg->length, qc->pad_len);
4338 	}
4339 
4340 	pre_n_elem = qc->n_elem;
4341 	if (trim_sg && pre_n_elem)
4342 		pre_n_elem--;
4343 
4344 	if (!pre_n_elem) {
4345 		n_elem = 0;
4346 		goto skip_map;
4347 	}
4348 
4349 	dir = qc->dma_dir;
4350 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4351 	if (n_elem < 1) {
4352 		/* restore last sg */
4353 		lsg->length += qc->pad_len;
4354 		return -1;
4355 	}
4356 
4357 	DPRINTK("%d sg elements mapped\n", n_elem);
4358 
4359 skip_map:
4360 	qc->n_elem = n_elem;
4361 
4362 	return 0;
4363 }
4364 
4365 /**
4366  *	swap_buf_le16 - swap halves of 16-bit words in place
4367  *	@buf:  Buffer to swap
4368  *	@buf_words:  Number of 16-bit words in buffer.
4369  *
4370  *	Swap halves of 16-bit words if needed to convert from
4371  *	little-endian byte order to native cpu byte order, or
4372  *	vice-versa.
4373  *
4374  *	LOCKING:
4375  *	Inherited from caller.
4376  */
4377 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4378 {
4379 #ifdef __BIG_ENDIAN
4380 	unsigned int i;
4381 
4382 	for (i = 0; i < buf_words; i++)
4383 		buf[i] = le16_to_cpu(buf[i]);
4384 #endif /* __BIG_ENDIAN */
4385 }
4386 
4387 /**
4388  *	ata_data_xfer - Transfer data by PIO
4389  *	@adev: device to target
4390  *	@buf: data buffer
4391  *	@buflen: buffer length
4392  *	@write_data: read/write
4393  *
4394  *	Transfer data from/to the device data register by PIO.
4395  *
4396  *	LOCKING:
4397  *	Inherited from caller.
4398  */
4399 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4400 		   unsigned int buflen, int write_data)
4401 {
4402 	struct ata_port *ap = adev->ap;
4403 	unsigned int words = buflen >> 1;
4404 
4405 	/* Transfer multiple of 2 bytes */
4406 	if (write_data)
4407 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4408 	else
4409 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
4410 
4411 	/* Transfer trailing 1 byte, if any. */
4412 	if (unlikely(buflen & 0x01)) {
4413 		u16 align_buf[1] = { 0 };
4414 		unsigned char *trailing_buf = buf + buflen - 1;
4415 
4416 		if (write_data) {
4417 			memcpy(align_buf, trailing_buf, 1);
4418 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4419 		} else {
4420 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4421 			memcpy(trailing_buf, align_buf, 1);
4422 		}
4423 	}
4424 }
4425 
4426 /**
4427  *	ata_data_xfer_noirq - Transfer data by PIO
4428  *	@adev: device to target
4429  *	@buf: data buffer
4430  *	@buflen: buffer length
4431  *	@write_data: read/write
4432  *
4433  *	Transfer data from/to the device data register by PIO. Do the
4434  *	transfer with interrupts disabled.
4435  *
4436  *	LOCKING:
4437  *	Inherited from caller.
4438  */
4439 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4440 			 unsigned int buflen, int write_data)
4441 {
4442 	unsigned long flags;
4443 	local_irq_save(flags);
4444 	ata_data_xfer(adev, buf, buflen, write_data);
4445 	local_irq_restore(flags);
4446 }
4447 
4448 
4449 /**
4450  *	ata_pio_sector - Transfer a sector of data.
4451  *	@qc: Command on going
4452  *
4453  *	Transfer qc->sect_size bytes of data from/to the ATA device.
4454  *
4455  *	LOCKING:
4456  *	Inherited from caller.
4457  */
4458 
4459 static void ata_pio_sector(struct ata_queued_cmd *qc)
4460 {
4461 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4462 	struct scatterlist *sg = qc->__sg;
4463 	struct ata_port *ap = qc->ap;
4464 	struct page *page;
4465 	unsigned int offset;
4466 	unsigned char *buf;
4467 
4468 	if (qc->curbytes == qc->nbytes - qc->sect_size)
4469 		ap->hsm_task_state = HSM_ST_LAST;
4470 
4471 	page = sg[qc->cursg].page;
4472 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4473 
4474 	/* get the current page and offset */
4475 	page = nth_page(page, (offset >> PAGE_SHIFT));
4476 	offset %= PAGE_SIZE;
4477 
4478 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4479 
4480 	if (PageHighMem(page)) {
4481 		unsigned long flags;
4482 
4483 		/* FIXME: use a bounce buffer */
4484 		local_irq_save(flags);
4485 		buf = kmap_atomic(page, KM_IRQ0);
4486 
4487 		/* do the actual data transfer */
4488 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4489 
4490 		kunmap_atomic(buf, KM_IRQ0);
4491 		local_irq_restore(flags);
4492 	} else {
4493 		buf = page_address(page);
4494 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4495 	}
4496 
4497 	qc->curbytes += qc->sect_size;
4498 	qc->cursg_ofs += qc->sect_size;
4499 
4500 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4501 		qc->cursg++;
4502 		qc->cursg_ofs = 0;
4503 	}
4504 }
4505 
4506 /**
4507  *	ata_pio_sectors - Transfer one or many sectors.
4508  *	@qc: Command on going
4509  *
4510  *	Transfer one or many sectors of data from/to the
4511  *	ATA device for the DRQ request.
4512  *
4513  *	LOCKING:
4514  *	Inherited from caller.
4515  */
4516 
4517 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4518 {
4519 	if (is_multi_taskfile(&qc->tf)) {
4520 		/* READ/WRITE MULTIPLE */
4521 		unsigned int nsect;
4522 
4523 		WARN_ON(qc->dev->multi_count == 0);
4524 
4525 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4526 			    qc->dev->multi_count);
4527 		while (nsect--)
4528 			ata_pio_sector(qc);
4529 	} else
4530 		ata_pio_sector(qc);
4531 }
4532 
4533 /**
4534  *	atapi_send_cdb - Write CDB bytes to hardware
4535  *	@ap: Port to which ATAPI device is attached.
4536  *	@qc: Taskfile currently active
4537  *
4538  *	When device has indicated its readiness to accept
4539  *	a CDB, this function is called.  Send the CDB.
4540  *
4541  *	LOCKING:
4542  *	caller.
4543  */
4544 
4545 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4546 {
4547 	/* send SCSI cdb */
4548 	DPRINTK("send cdb\n");
4549 	WARN_ON(qc->dev->cdb_len < 12);
4550 
4551 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4552 	ata_altstatus(ap); /* flush */
4553 
4554 	switch (qc->tf.protocol) {
4555 	case ATA_PROT_ATAPI:
4556 		ap->hsm_task_state = HSM_ST;
4557 		break;
4558 	case ATA_PROT_ATAPI_NODATA:
4559 		ap->hsm_task_state = HSM_ST_LAST;
4560 		break;
4561 	case ATA_PROT_ATAPI_DMA:
4562 		ap->hsm_task_state = HSM_ST_LAST;
4563 		/* initiate bmdma */
4564 		ap->ops->bmdma_start(qc);
4565 		break;
4566 	}
4567 }
4568 
4569 /**
4570  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4571  *	@qc: Command on going
4572  *	@bytes: number of bytes
4573  *
4574  *	Transfer Transfer data from/to the ATAPI device.
4575  *
4576  *	LOCKING:
4577  *	Inherited from caller.
4578  *
4579  */
4580 
4581 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4582 {
4583 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4584 	struct scatterlist *sg = qc->__sg;
4585 	struct ata_port *ap = qc->ap;
4586 	struct page *page;
4587 	unsigned char *buf;
4588 	unsigned int offset, count;
4589 
4590 	if (qc->curbytes + bytes >= qc->nbytes)
4591 		ap->hsm_task_state = HSM_ST_LAST;
4592 
4593 next_sg:
4594 	if (unlikely(qc->cursg >= qc->n_elem)) {
4595 		/*
4596 		 * The end of qc->sg is reached and the device expects
4597 		 * more data to transfer. In order not to overrun qc->sg
4598 		 * and fulfill length specified in the byte count register,
4599 		 *    - for read case, discard trailing data from the device
4600 		 *    - for write case, padding zero data to the device
4601 		 */
4602 		u16 pad_buf[1] = { 0 };
4603 		unsigned int words = bytes >> 1;
4604 		unsigned int i;
4605 
4606 		if (words) /* warning if bytes > 1 */
4607 			ata_dev_printk(qc->dev, KERN_WARNING,
4608 				       "%u bytes trailing data\n", bytes);
4609 
4610 		for (i = 0; i < words; i++)
4611 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4612 
4613 		ap->hsm_task_state = HSM_ST_LAST;
4614 		return;
4615 	}
4616 
4617 	sg = &qc->__sg[qc->cursg];
4618 
4619 	page = sg->page;
4620 	offset = sg->offset + qc->cursg_ofs;
4621 
4622 	/* get the current page and offset */
4623 	page = nth_page(page, (offset >> PAGE_SHIFT));
4624 	offset %= PAGE_SIZE;
4625 
4626 	/* don't overrun current sg */
4627 	count = min(sg->length - qc->cursg_ofs, bytes);
4628 
4629 	/* don't cross page boundaries */
4630 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4631 
4632 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4633 
4634 	if (PageHighMem(page)) {
4635 		unsigned long flags;
4636 
4637 		/* FIXME: use bounce buffer */
4638 		local_irq_save(flags);
4639 		buf = kmap_atomic(page, KM_IRQ0);
4640 
4641 		/* do the actual data transfer */
4642 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4643 
4644 		kunmap_atomic(buf, KM_IRQ0);
4645 		local_irq_restore(flags);
4646 	} else {
4647 		buf = page_address(page);
4648 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4649 	}
4650 
4651 	bytes -= count;
4652 	qc->curbytes += count;
4653 	qc->cursg_ofs += count;
4654 
4655 	if (qc->cursg_ofs == sg->length) {
4656 		qc->cursg++;
4657 		qc->cursg_ofs = 0;
4658 	}
4659 
4660 	if (bytes)
4661 		goto next_sg;
4662 }
4663 
4664 /**
4665  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4666  *	@qc: Command on going
4667  *
4668  *	Transfer Transfer data from/to the ATAPI device.
4669  *
4670  *	LOCKING:
4671  *	Inherited from caller.
4672  */
4673 
4674 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4675 {
4676 	struct ata_port *ap = qc->ap;
4677 	struct ata_device *dev = qc->dev;
4678 	unsigned int ireason, bc_lo, bc_hi, bytes;
4679 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4680 
4681 	/* Abuse qc->result_tf for temp storage of intermediate TF
4682 	 * here to save some kernel stack usage.
4683 	 * For normal completion, qc->result_tf is not relevant. For
4684 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4685 	 * So, the correctness of qc->result_tf is not affected.
4686 	 */
4687 	ap->ops->tf_read(ap, &qc->result_tf);
4688 	ireason = qc->result_tf.nsect;
4689 	bc_lo = qc->result_tf.lbam;
4690 	bc_hi = qc->result_tf.lbah;
4691 	bytes = (bc_hi << 8) | bc_lo;
4692 
4693 	/* shall be cleared to zero, indicating xfer of data */
4694 	if (ireason & (1 << 0))
4695 		goto err_out;
4696 
4697 	/* make sure transfer direction matches expected */
4698 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4699 	if (do_write != i_write)
4700 		goto err_out;
4701 
4702 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4703 
4704 	__atapi_pio_bytes(qc, bytes);
4705 
4706 	return;
4707 
4708 err_out:
4709 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4710 	qc->err_mask |= AC_ERR_HSM;
4711 	ap->hsm_task_state = HSM_ST_ERR;
4712 }
4713 
4714 /**
4715  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4716  *	@ap: the target ata_port
4717  *	@qc: qc on going
4718  *
4719  *	RETURNS:
4720  *	1 if ok in workqueue, 0 otherwise.
4721  */
4722 
4723 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4724 {
4725 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4726 		return 1;
4727 
4728 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4729 		if (qc->tf.protocol == ATA_PROT_PIO &&
4730 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4731 		    return 1;
4732 
4733 		if (is_atapi_taskfile(&qc->tf) &&
4734 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4735 			return 1;
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 /**
4742  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4743  *	@qc: Command to complete
4744  *	@in_wq: 1 if called from workqueue, 0 otherwise
4745  *
4746  *	Finish @qc which is running on standard HSM.
4747  *
4748  *	LOCKING:
4749  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4750  *	Otherwise, none on entry and grabs host lock.
4751  */
4752 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4753 {
4754 	struct ata_port *ap = qc->ap;
4755 	unsigned long flags;
4756 
4757 	if (ap->ops->error_handler) {
4758 		if (in_wq) {
4759 			spin_lock_irqsave(ap->lock, flags);
4760 
4761 			/* EH might have kicked in while host lock is
4762 			 * released.
4763 			 */
4764 			qc = ata_qc_from_tag(ap, qc->tag);
4765 			if (qc) {
4766 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4767 					ap->ops->irq_on(ap);
4768 					ata_qc_complete(qc);
4769 				} else
4770 					ata_port_freeze(ap);
4771 			}
4772 
4773 			spin_unlock_irqrestore(ap->lock, flags);
4774 		} else {
4775 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4776 				ata_qc_complete(qc);
4777 			else
4778 				ata_port_freeze(ap);
4779 		}
4780 	} else {
4781 		if (in_wq) {
4782 			spin_lock_irqsave(ap->lock, flags);
4783 			ap->ops->irq_on(ap);
4784 			ata_qc_complete(qc);
4785 			spin_unlock_irqrestore(ap->lock, flags);
4786 		} else
4787 			ata_qc_complete(qc);
4788 	}
4789 
4790 	ata_altstatus(ap); /* flush */
4791 }
4792 
4793 /**
4794  *	ata_hsm_move - move the HSM to the next state.
4795  *	@ap: the target ata_port
4796  *	@qc: qc on going
4797  *	@status: current device status
4798  *	@in_wq: 1 if called from workqueue, 0 otherwise
4799  *
4800  *	RETURNS:
4801  *	1 when poll next status needed, 0 otherwise.
4802  */
4803 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4804 		 u8 status, int in_wq)
4805 {
4806 	unsigned long flags = 0;
4807 	int poll_next;
4808 
4809 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4810 
4811 	/* Make sure ata_qc_issue_prot() does not throw things
4812 	 * like DMA polling into the workqueue. Notice that
4813 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4814 	 */
4815 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4816 
4817 fsm_start:
4818 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4819 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4820 
4821 	switch (ap->hsm_task_state) {
4822 	case HSM_ST_FIRST:
4823 		/* Send first data block or PACKET CDB */
4824 
4825 		/* If polling, we will stay in the work queue after
4826 		 * sending the data. Otherwise, interrupt handler
4827 		 * takes over after sending the data.
4828 		 */
4829 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4830 
4831 		/* check device status */
4832 		if (unlikely((status & ATA_DRQ) == 0)) {
4833 			/* handle BSY=0, DRQ=0 as error */
4834 			if (likely(status & (ATA_ERR | ATA_DF)))
4835 				/* device stops HSM for abort/error */
4836 				qc->err_mask |= AC_ERR_DEV;
4837 			else
4838 				/* HSM violation. Let EH handle this */
4839 				qc->err_mask |= AC_ERR_HSM;
4840 
4841 			ap->hsm_task_state = HSM_ST_ERR;
4842 			goto fsm_start;
4843 		}
4844 
4845 		/* Device should not ask for data transfer (DRQ=1)
4846 		 * when it finds something wrong.
4847 		 * We ignore DRQ here and stop the HSM by
4848 		 * changing hsm_task_state to HSM_ST_ERR and
4849 		 * let the EH abort the command or reset the device.
4850 		 */
4851 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4852 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4853 					"error, dev_stat 0x%X\n", status);
4854 			qc->err_mask |= AC_ERR_HSM;
4855 			ap->hsm_task_state = HSM_ST_ERR;
4856 			goto fsm_start;
4857 		}
4858 
4859 		/* Send the CDB (atapi) or the first data block (ata pio out).
4860 		 * During the state transition, interrupt handler shouldn't
4861 		 * be invoked before the data transfer is complete and
4862 		 * hsm_task_state is changed. Hence, the following locking.
4863 		 */
4864 		if (in_wq)
4865 			spin_lock_irqsave(ap->lock, flags);
4866 
4867 		if (qc->tf.protocol == ATA_PROT_PIO) {
4868 			/* PIO data out protocol.
4869 			 * send first data block.
4870 			 */
4871 
4872 			/* ata_pio_sectors() might change the state
4873 			 * to HSM_ST_LAST. so, the state is changed here
4874 			 * before ata_pio_sectors().
4875 			 */
4876 			ap->hsm_task_state = HSM_ST;
4877 			ata_pio_sectors(qc);
4878 			ata_altstatus(ap); /* flush */
4879 		} else
4880 			/* send CDB */
4881 			atapi_send_cdb(ap, qc);
4882 
4883 		if (in_wq)
4884 			spin_unlock_irqrestore(ap->lock, flags);
4885 
4886 		/* if polling, ata_pio_task() handles the rest.
4887 		 * otherwise, interrupt handler takes over from here.
4888 		 */
4889 		break;
4890 
4891 	case HSM_ST:
4892 		/* complete command or read/write the data register */
4893 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4894 			/* ATAPI PIO protocol */
4895 			if ((status & ATA_DRQ) == 0) {
4896 				/* No more data to transfer or device error.
4897 				 * Device error will be tagged in HSM_ST_LAST.
4898 				 */
4899 				ap->hsm_task_state = HSM_ST_LAST;
4900 				goto fsm_start;
4901 			}
4902 
4903 			/* Device should not ask for data transfer (DRQ=1)
4904 			 * when it finds something wrong.
4905 			 * We ignore DRQ here and stop the HSM by
4906 			 * changing hsm_task_state to HSM_ST_ERR and
4907 			 * let the EH abort the command or reset the device.
4908 			 */
4909 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4910 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4911 						"device error, dev_stat 0x%X\n",
4912 						status);
4913 				qc->err_mask |= AC_ERR_HSM;
4914 				ap->hsm_task_state = HSM_ST_ERR;
4915 				goto fsm_start;
4916 			}
4917 
4918 			atapi_pio_bytes(qc);
4919 
4920 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4921 				/* bad ireason reported by device */
4922 				goto fsm_start;
4923 
4924 		} else {
4925 			/* ATA PIO protocol */
4926 			if (unlikely((status & ATA_DRQ) == 0)) {
4927 				/* handle BSY=0, DRQ=0 as error */
4928 				if (likely(status & (ATA_ERR | ATA_DF)))
4929 					/* device stops HSM for abort/error */
4930 					qc->err_mask |= AC_ERR_DEV;
4931 				else
4932 					/* HSM violation. Let EH handle this.
4933 					 * Phantom devices also trigger this
4934 					 * condition.  Mark hint.
4935 					 */
4936 					qc->err_mask |= AC_ERR_HSM |
4937 							AC_ERR_NODEV_HINT;
4938 
4939 				ap->hsm_task_state = HSM_ST_ERR;
4940 				goto fsm_start;
4941 			}
4942 
4943 			/* For PIO reads, some devices may ask for
4944 			 * data transfer (DRQ=1) alone with ERR=1.
4945 			 * We respect DRQ here and transfer one
4946 			 * block of junk data before changing the
4947 			 * hsm_task_state to HSM_ST_ERR.
4948 			 *
4949 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4950 			 * sense since the data block has been
4951 			 * transferred to the device.
4952 			 */
4953 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4954 				/* data might be corrputed */
4955 				qc->err_mask |= AC_ERR_DEV;
4956 
4957 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4958 					ata_pio_sectors(qc);
4959 					ata_altstatus(ap);
4960 					status = ata_wait_idle(ap);
4961 				}
4962 
4963 				if (status & (ATA_BUSY | ATA_DRQ))
4964 					qc->err_mask |= AC_ERR_HSM;
4965 
4966 				/* ata_pio_sectors() might change the
4967 				 * state to HSM_ST_LAST. so, the state
4968 				 * is changed after ata_pio_sectors().
4969 				 */
4970 				ap->hsm_task_state = HSM_ST_ERR;
4971 				goto fsm_start;
4972 			}
4973 
4974 			ata_pio_sectors(qc);
4975 
4976 			if (ap->hsm_task_state == HSM_ST_LAST &&
4977 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4978 				/* all data read */
4979 				ata_altstatus(ap);
4980 				status = ata_wait_idle(ap);
4981 				goto fsm_start;
4982 			}
4983 		}
4984 
4985 		ata_altstatus(ap); /* flush */
4986 		poll_next = 1;
4987 		break;
4988 
4989 	case HSM_ST_LAST:
4990 		if (unlikely(!ata_ok(status))) {
4991 			qc->err_mask |= __ac_err_mask(status);
4992 			ap->hsm_task_state = HSM_ST_ERR;
4993 			goto fsm_start;
4994 		}
4995 
4996 		/* no more data to transfer */
4997 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4998 			ap->print_id, qc->dev->devno, status);
4999 
5000 		WARN_ON(qc->err_mask);
5001 
5002 		ap->hsm_task_state = HSM_ST_IDLE;
5003 
5004 		/* complete taskfile transaction */
5005 		ata_hsm_qc_complete(qc, in_wq);
5006 
5007 		poll_next = 0;
5008 		break;
5009 
5010 	case HSM_ST_ERR:
5011 		/* make sure qc->err_mask is available to
5012 		 * know what's wrong and recover
5013 		 */
5014 		WARN_ON(qc->err_mask == 0);
5015 
5016 		ap->hsm_task_state = HSM_ST_IDLE;
5017 
5018 		/* complete taskfile transaction */
5019 		ata_hsm_qc_complete(qc, in_wq);
5020 
5021 		poll_next = 0;
5022 		break;
5023 	default:
5024 		poll_next = 0;
5025 		BUG();
5026 	}
5027 
5028 	return poll_next;
5029 }
5030 
5031 static void ata_pio_task(struct work_struct *work)
5032 {
5033 	struct ata_port *ap =
5034 		container_of(work, struct ata_port, port_task.work);
5035 	struct ata_queued_cmd *qc = ap->port_task_data;
5036 	u8 status;
5037 	int poll_next;
5038 
5039 fsm_start:
5040 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5041 
5042 	/*
5043 	 * This is purely heuristic.  This is a fast path.
5044 	 * Sometimes when we enter, BSY will be cleared in
5045 	 * a chk-status or two.  If not, the drive is probably seeking
5046 	 * or something.  Snooze for a couple msecs, then
5047 	 * chk-status again.  If still busy, queue delayed work.
5048 	 */
5049 	status = ata_busy_wait(ap, ATA_BUSY, 5);
5050 	if (status & ATA_BUSY) {
5051 		msleep(2);
5052 		status = ata_busy_wait(ap, ATA_BUSY, 10);
5053 		if (status & ATA_BUSY) {
5054 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5055 			return;
5056 		}
5057 	}
5058 
5059 	/* move the HSM */
5060 	poll_next = ata_hsm_move(ap, qc, status, 1);
5061 
5062 	/* another command or interrupt handler
5063 	 * may be running at this point.
5064 	 */
5065 	if (poll_next)
5066 		goto fsm_start;
5067 }
5068 
5069 /**
5070  *	ata_qc_new - Request an available ATA command, for queueing
5071  *	@ap: Port associated with device @dev
5072  *	@dev: Device from whom we request an available command structure
5073  *
5074  *	LOCKING:
5075  *	None.
5076  */
5077 
5078 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5079 {
5080 	struct ata_queued_cmd *qc = NULL;
5081 	unsigned int i;
5082 
5083 	/* no command while frozen */
5084 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5085 		return NULL;
5086 
5087 	/* the last tag is reserved for internal command. */
5088 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5089 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
5090 			qc = __ata_qc_from_tag(ap, i);
5091 			break;
5092 		}
5093 
5094 	if (qc)
5095 		qc->tag = i;
5096 
5097 	return qc;
5098 }
5099 
5100 /**
5101  *	ata_qc_new_init - Request an available ATA command, and initialize it
5102  *	@dev: Device from whom we request an available command structure
5103  *
5104  *	LOCKING:
5105  *	None.
5106  */
5107 
5108 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5109 {
5110 	struct ata_port *ap = dev->ap;
5111 	struct ata_queued_cmd *qc;
5112 
5113 	qc = ata_qc_new(ap);
5114 	if (qc) {
5115 		qc->scsicmd = NULL;
5116 		qc->ap = ap;
5117 		qc->dev = dev;
5118 
5119 		ata_qc_reinit(qc);
5120 	}
5121 
5122 	return qc;
5123 }
5124 
5125 /**
5126  *	ata_qc_free - free unused ata_queued_cmd
5127  *	@qc: Command to complete
5128  *
5129  *	Designed to free unused ata_queued_cmd object
5130  *	in case something prevents using it.
5131  *
5132  *	LOCKING:
5133  *	spin_lock_irqsave(host lock)
5134  */
5135 void ata_qc_free(struct ata_queued_cmd *qc)
5136 {
5137 	struct ata_port *ap = qc->ap;
5138 	unsigned int tag;
5139 
5140 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5141 
5142 	qc->flags = 0;
5143 	tag = qc->tag;
5144 	if (likely(ata_tag_valid(tag))) {
5145 		qc->tag = ATA_TAG_POISON;
5146 		clear_bit(tag, &ap->qc_allocated);
5147 	}
5148 }
5149 
5150 void __ata_qc_complete(struct ata_queued_cmd *qc)
5151 {
5152 	struct ata_port *ap = qc->ap;
5153 
5154 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5155 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5156 
5157 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5158 		ata_sg_clean(qc);
5159 
5160 	/* command should be marked inactive atomically with qc completion */
5161 	if (qc->tf.protocol == ATA_PROT_NCQ)
5162 		ap->sactive &= ~(1 << qc->tag);
5163 	else
5164 		ap->active_tag = ATA_TAG_POISON;
5165 
5166 	/* atapi: mark qc as inactive to prevent the interrupt handler
5167 	 * from completing the command twice later, before the error handler
5168 	 * is called. (when rc != 0 and atapi request sense is needed)
5169 	 */
5170 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5171 	ap->qc_active &= ~(1 << qc->tag);
5172 
5173 	/* call completion callback */
5174 	qc->complete_fn(qc);
5175 }
5176 
5177 static void fill_result_tf(struct ata_queued_cmd *qc)
5178 {
5179 	struct ata_port *ap = qc->ap;
5180 
5181 	qc->result_tf.flags = qc->tf.flags;
5182 	ap->ops->tf_read(ap, &qc->result_tf);
5183 }
5184 
5185 /**
5186  *	ata_qc_complete - Complete an active ATA command
5187  *	@qc: Command to complete
5188  *	@err_mask: ATA Status register contents
5189  *
5190  *	Indicate to the mid and upper layers that an ATA
5191  *	command has completed, with either an ok or not-ok status.
5192  *
5193  *	LOCKING:
5194  *	spin_lock_irqsave(host lock)
5195  */
5196 void ata_qc_complete(struct ata_queued_cmd *qc)
5197 {
5198 	struct ata_port *ap = qc->ap;
5199 
5200 	/* XXX: New EH and old EH use different mechanisms to
5201 	 * synchronize EH with regular execution path.
5202 	 *
5203 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5204 	 * Normal execution path is responsible for not accessing a
5205 	 * failed qc.  libata core enforces the rule by returning NULL
5206 	 * from ata_qc_from_tag() for failed qcs.
5207 	 *
5208 	 * Old EH depends on ata_qc_complete() nullifying completion
5209 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5210 	 * not synchronize with interrupt handler.  Only PIO task is
5211 	 * taken care of.
5212 	 */
5213 	if (ap->ops->error_handler) {
5214 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5215 
5216 		if (unlikely(qc->err_mask))
5217 			qc->flags |= ATA_QCFLAG_FAILED;
5218 
5219 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5220 			if (!ata_tag_internal(qc->tag)) {
5221 				/* always fill result TF for failed qc */
5222 				fill_result_tf(qc);
5223 				ata_qc_schedule_eh(qc);
5224 				return;
5225 			}
5226 		}
5227 
5228 		/* read result TF if requested */
5229 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5230 			fill_result_tf(qc);
5231 
5232 		__ata_qc_complete(qc);
5233 	} else {
5234 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5235 			return;
5236 
5237 		/* read result TF if failed or requested */
5238 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5239 			fill_result_tf(qc);
5240 
5241 		__ata_qc_complete(qc);
5242 	}
5243 }
5244 
5245 /**
5246  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5247  *	@ap: port in question
5248  *	@qc_active: new qc_active mask
5249  *	@finish_qc: LLDD callback invoked before completing a qc
5250  *
5251  *	Complete in-flight commands.  This functions is meant to be
5252  *	called from low-level driver's interrupt routine to complete
5253  *	requests normally.  ap->qc_active and @qc_active is compared
5254  *	and commands are completed accordingly.
5255  *
5256  *	LOCKING:
5257  *	spin_lock_irqsave(host lock)
5258  *
5259  *	RETURNS:
5260  *	Number of completed commands on success, -errno otherwise.
5261  */
5262 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5263 			     void (*finish_qc)(struct ata_queued_cmd *))
5264 {
5265 	int nr_done = 0;
5266 	u32 done_mask;
5267 	int i;
5268 
5269 	done_mask = ap->qc_active ^ qc_active;
5270 
5271 	if (unlikely(done_mask & qc_active)) {
5272 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5273 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5274 		return -EINVAL;
5275 	}
5276 
5277 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5278 		struct ata_queued_cmd *qc;
5279 
5280 		if (!(done_mask & (1 << i)))
5281 			continue;
5282 
5283 		if ((qc = ata_qc_from_tag(ap, i))) {
5284 			if (finish_qc)
5285 				finish_qc(qc);
5286 			ata_qc_complete(qc);
5287 			nr_done++;
5288 		}
5289 	}
5290 
5291 	return nr_done;
5292 }
5293 
5294 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5295 {
5296 	struct ata_port *ap = qc->ap;
5297 
5298 	switch (qc->tf.protocol) {
5299 	case ATA_PROT_NCQ:
5300 	case ATA_PROT_DMA:
5301 	case ATA_PROT_ATAPI_DMA:
5302 		return 1;
5303 
5304 	case ATA_PROT_ATAPI:
5305 	case ATA_PROT_PIO:
5306 		if (ap->flags & ATA_FLAG_PIO_DMA)
5307 			return 1;
5308 
5309 		/* fall through */
5310 
5311 	default:
5312 		return 0;
5313 	}
5314 
5315 	/* never reached */
5316 }
5317 
5318 /**
5319  *	ata_qc_issue - issue taskfile to device
5320  *	@qc: command to issue to device
5321  *
5322  *	Prepare an ATA command to submission to device.
5323  *	This includes mapping the data into a DMA-able
5324  *	area, filling in the S/G table, and finally
5325  *	writing the taskfile to hardware, starting the command.
5326  *
5327  *	LOCKING:
5328  *	spin_lock_irqsave(host lock)
5329  */
5330 void ata_qc_issue(struct ata_queued_cmd *qc)
5331 {
5332 	struct ata_port *ap = qc->ap;
5333 
5334 	/* Make sure only one non-NCQ command is outstanding.  The
5335 	 * check is skipped for old EH because it reuses active qc to
5336 	 * request ATAPI sense.
5337 	 */
5338 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5339 
5340 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5341 		WARN_ON(ap->sactive & (1 << qc->tag));
5342 		ap->sactive |= 1 << qc->tag;
5343 	} else {
5344 		WARN_ON(ap->sactive);
5345 		ap->active_tag = qc->tag;
5346 	}
5347 
5348 	qc->flags |= ATA_QCFLAG_ACTIVE;
5349 	ap->qc_active |= 1 << qc->tag;
5350 
5351 	if (ata_should_dma_map(qc)) {
5352 		if (qc->flags & ATA_QCFLAG_SG) {
5353 			if (ata_sg_setup(qc))
5354 				goto sg_err;
5355 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
5356 			if (ata_sg_setup_one(qc))
5357 				goto sg_err;
5358 		}
5359 	} else {
5360 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
5361 	}
5362 
5363 	ap->ops->qc_prep(qc);
5364 
5365 	qc->err_mask |= ap->ops->qc_issue(qc);
5366 	if (unlikely(qc->err_mask))
5367 		goto err;
5368 	return;
5369 
5370 sg_err:
5371 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5372 	qc->err_mask |= AC_ERR_SYSTEM;
5373 err:
5374 	ata_qc_complete(qc);
5375 }
5376 
5377 /**
5378  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5379  *	@qc: command to issue to device
5380  *
5381  *	Using various libata functions and hooks, this function
5382  *	starts an ATA command.  ATA commands are grouped into
5383  *	classes called "protocols", and issuing each type of protocol
5384  *	is slightly different.
5385  *
5386  *	May be used as the qc_issue() entry in ata_port_operations.
5387  *
5388  *	LOCKING:
5389  *	spin_lock_irqsave(host lock)
5390  *
5391  *	RETURNS:
5392  *	Zero on success, AC_ERR_* mask on failure
5393  */
5394 
5395 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5396 {
5397 	struct ata_port *ap = qc->ap;
5398 
5399 	/* Use polling pio if the LLD doesn't handle
5400 	 * interrupt driven pio and atapi CDB interrupt.
5401 	 */
5402 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
5403 		switch (qc->tf.protocol) {
5404 		case ATA_PROT_PIO:
5405 		case ATA_PROT_NODATA:
5406 		case ATA_PROT_ATAPI:
5407 		case ATA_PROT_ATAPI_NODATA:
5408 			qc->tf.flags |= ATA_TFLAG_POLLING;
5409 			break;
5410 		case ATA_PROT_ATAPI_DMA:
5411 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5412 				/* see ata_dma_blacklisted() */
5413 				BUG();
5414 			break;
5415 		default:
5416 			break;
5417 		}
5418 	}
5419 
5420 	/* select the device */
5421 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5422 
5423 	/* start the command */
5424 	switch (qc->tf.protocol) {
5425 	case ATA_PROT_NODATA:
5426 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5427 			ata_qc_set_polling(qc);
5428 
5429 		ata_tf_to_host(ap, &qc->tf);
5430 		ap->hsm_task_state = HSM_ST_LAST;
5431 
5432 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5433 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5434 
5435 		break;
5436 
5437 	case ATA_PROT_DMA:
5438 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5439 
5440 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5441 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5442 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5443 		ap->hsm_task_state = HSM_ST_LAST;
5444 		break;
5445 
5446 	case ATA_PROT_PIO:
5447 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5448 			ata_qc_set_polling(qc);
5449 
5450 		ata_tf_to_host(ap, &qc->tf);
5451 
5452 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5453 			/* PIO data out protocol */
5454 			ap->hsm_task_state = HSM_ST_FIRST;
5455 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5456 
5457 			/* always send first data block using
5458 			 * the ata_pio_task() codepath.
5459 			 */
5460 		} else {
5461 			/* PIO data in protocol */
5462 			ap->hsm_task_state = HSM_ST;
5463 
5464 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5465 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5466 
5467 			/* if polling, ata_pio_task() handles the rest.
5468 			 * otherwise, interrupt handler takes over from here.
5469 			 */
5470 		}
5471 
5472 		break;
5473 
5474 	case ATA_PROT_ATAPI:
5475 	case ATA_PROT_ATAPI_NODATA:
5476 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5477 			ata_qc_set_polling(qc);
5478 
5479 		ata_tf_to_host(ap, &qc->tf);
5480 
5481 		ap->hsm_task_state = HSM_ST_FIRST;
5482 
5483 		/* send cdb by polling if no cdb interrupt */
5484 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5485 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5486 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5487 		break;
5488 
5489 	case ATA_PROT_ATAPI_DMA:
5490 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5491 
5492 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5493 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5494 		ap->hsm_task_state = HSM_ST_FIRST;
5495 
5496 		/* send cdb by polling if no cdb interrupt */
5497 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5498 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5499 		break;
5500 
5501 	default:
5502 		WARN_ON(1);
5503 		return AC_ERR_SYSTEM;
5504 	}
5505 
5506 	return 0;
5507 }
5508 
5509 /**
5510  *	ata_host_intr - Handle host interrupt for given (port, task)
5511  *	@ap: Port on which interrupt arrived (possibly...)
5512  *	@qc: Taskfile currently active in engine
5513  *
5514  *	Handle host interrupt for given queued command.  Currently,
5515  *	only DMA interrupts are handled.  All other commands are
5516  *	handled via polling with interrupts disabled (nIEN bit).
5517  *
5518  *	LOCKING:
5519  *	spin_lock_irqsave(host lock)
5520  *
5521  *	RETURNS:
5522  *	One if interrupt was handled, zero if not (shared irq).
5523  */
5524 
5525 inline unsigned int ata_host_intr (struct ata_port *ap,
5526 				   struct ata_queued_cmd *qc)
5527 {
5528 	struct ata_eh_info *ehi = &ap->eh_info;
5529 	u8 status, host_stat = 0;
5530 
5531 	VPRINTK("ata%u: protocol %d task_state %d\n",
5532 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5533 
5534 	/* Check whether we are expecting interrupt in this state */
5535 	switch (ap->hsm_task_state) {
5536 	case HSM_ST_FIRST:
5537 		/* Some pre-ATAPI-4 devices assert INTRQ
5538 		 * at this state when ready to receive CDB.
5539 		 */
5540 
5541 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5542 		 * The flag was turned on only for atapi devices.
5543 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5544 		 */
5545 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5546 			goto idle_irq;
5547 		break;
5548 	case HSM_ST_LAST:
5549 		if (qc->tf.protocol == ATA_PROT_DMA ||
5550 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5551 			/* check status of DMA engine */
5552 			host_stat = ap->ops->bmdma_status(ap);
5553 			VPRINTK("ata%u: host_stat 0x%X\n",
5554 				ap->print_id, host_stat);
5555 
5556 			/* if it's not our irq... */
5557 			if (!(host_stat & ATA_DMA_INTR))
5558 				goto idle_irq;
5559 
5560 			/* before we do anything else, clear DMA-Start bit */
5561 			ap->ops->bmdma_stop(qc);
5562 
5563 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5564 				/* error when transfering data to/from memory */
5565 				qc->err_mask |= AC_ERR_HOST_BUS;
5566 				ap->hsm_task_state = HSM_ST_ERR;
5567 			}
5568 		}
5569 		break;
5570 	case HSM_ST:
5571 		break;
5572 	default:
5573 		goto idle_irq;
5574 	}
5575 
5576 	/* check altstatus */
5577 	status = ata_altstatus(ap);
5578 	if (status & ATA_BUSY)
5579 		goto idle_irq;
5580 
5581 	/* check main status, clearing INTRQ */
5582 	status = ata_chk_status(ap);
5583 	if (unlikely(status & ATA_BUSY))
5584 		goto idle_irq;
5585 
5586 	/* ack bmdma irq events */
5587 	ap->ops->irq_clear(ap);
5588 
5589 	ata_hsm_move(ap, qc, status, 0);
5590 
5591 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5592 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5593 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5594 
5595 	return 1;	/* irq handled */
5596 
5597 idle_irq:
5598 	ap->stats.idle_irq++;
5599 
5600 #ifdef ATA_IRQ_TRAP
5601 	if ((ap->stats.idle_irq % 1000) == 0) {
5602 		ap->ops->irq_ack(ap, 0); /* debug trap */
5603 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5604 		return 1;
5605 	}
5606 #endif
5607 	return 0;	/* irq not handled */
5608 }
5609 
5610 /**
5611  *	ata_interrupt - Default ATA host interrupt handler
5612  *	@irq: irq line (unused)
5613  *	@dev_instance: pointer to our ata_host information structure
5614  *
5615  *	Default interrupt handler for PCI IDE devices.  Calls
5616  *	ata_host_intr() for each port that is not disabled.
5617  *
5618  *	LOCKING:
5619  *	Obtains host lock during operation.
5620  *
5621  *	RETURNS:
5622  *	IRQ_NONE or IRQ_HANDLED.
5623  */
5624 
5625 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5626 {
5627 	struct ata_host *host = dev_instance;
5628 	unsigned int i;
5629 	unsigned int handled = 0;
5630 	unsigned long flags;
5631 
5632 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5633 	spin_lock_irqsave(&host->lock, flags);
5634 
5635 	for (i = 0; i < host->n_ports; i++) {
5636 		struct ata_port *ap;
5637 
5638 		ap = host->ports[i];
5639 		if (ap &&
5640 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5641 			struct ata_queued_cmd *qc;
5642 
5643 			qc = ata_qc_from_tag(ap, ap->active_tag);
5644 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5645 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5646 				handled |= ata_host_intr(ap, qc);
5647 		}
5648 	}
5649 
5650 	spin_unlock_irqrestore(&host->lock, flags);
5651 
5652 	return IRQ_RETVAL(handled);
5653 }
5654 
5655 /**
5656  *	sata_scr_valid - test whether SCRs are accessible
5657  *	@ap: ATA port to test SCR accessibility for
5658  *
5659  *	Test whether SCRs are accessible for @ap.
5660  *
5661  *	LOCKING:
5662  *	None.
5663  *
5664  *	RETURNS:
5665  *	1 if SCRs are accessible, 0 otherwise.
5666  */
5667 int sata_scr_valid(struct ata_port *ap)
5668 {
5669 	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5670 }
5671 
5672 /**
5673  *	sata_scr_read - read SCR register of the specified port
5674  *	@ap: ATA port to read SCR for
5675  *	@reg: SCR to read
5676  *	@val: Place to store read value
5677  *
5678  *	Read SCR register @reg of @ap into *@val.  This function is
5679  *	guaranteed to succeed if the cable type of the port is SATA
5680  *	and the port implements ->scr_read.
5681  *
5682  *	LOCKING:
5683  *	None.
5684  *
5685  *	RETURNS:
5686  *	0 on success, negative errno on failure.
5687  */
5688 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5689 {
5690 	if (sata_scr_valid(ap)) {
5691 		*val = ap->ops->scr_read(ap, reg);
5692 		return 0;
5693 	}
5694 	return -EOPNOTSUPP;
5695 }
5696 
5697 /**
5698  *	sata_scr_write - write SCR register of the specified port
5699  *	@ap: ATA port to write SCR for
5700  *	@reg: SCR to write
5701  *	@val: value to write
5702  *
5703  *	Write @val to SCR register @reg of @ap.  This function is
5704  *	guaranteed to succeed if the cable type of the port is SATA
5705  *	and the port implements ->scr_read.
5706  *
5707  *	LOCKING:
5708  *	None.
5709  *
5710  *	RETURNS:
5711  *	0 on success, negative errno on failure.
5712  */
5713 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5714 {
5715 	if (sata_scr_valid(ap)) {
5716 		ap->ops->scr_write(ap, reg, val);
5717 		return 0;
5718 	}
5719 	return -EOPNOTSUPP;
5720 }
5721 
5722 /**
5723  *	sata_scr_write_flush - write SCR register of the specified port and flush
5724  *	@ap: ATA port to write SCR for
5725  *	@reg: SCR to write
5726  *	@val: value to write
5727  *
5728  *	This function is identical to sata_scr_write() except that this
5729  *	function performs flush after writing to the register.
5730  *
5731  *	LOCKING:
5732  *	None.
5733  *
5734  *	RETURNS:
5735  *	0 on success, negative errno on failure.
5736  */
5737 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5738 {
5739 	if (sata_scr_valid(ap)) {
5740 		ap->ops->scr_write(ap, reg, val);
5741 		ap->ops->scr_read(ap, reg);
5742 		return 0;
5743 	}
5744 	return -EOPNOTSUPP;
5745 }
5746 
5747 /**
5748  *	ata_port_online - test whether the given port is online
5749  *	@ap: ATA port to test
5750  *
5751  *	Test whether @ap is online.  Note that this function returns 0
5752  *	if online status of @ap cannot be obtained, so
5753  *	ata_port_online(ap) != !ata_port_offline(ap).
5754  *
5755  *	LOCKING:
5756  *	None.
5757  *
5758  *	RETURNS:
5759  *	1 if the port online status is available and online.
5760  */
5761 int ata_port_online(struct ata_port *ap)
5762 {
5763 	u32 sstatus;
5764 
5765 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5766 		return 1;
5767 	return 0;
5768 }
5769 
5770 /**
5771  *	ata_port_offline - test whether the given port is offline
5772  *	@ap: ATA port to test
5773  *
5774  *	Test whether @ap is offline.  Note that this function returns
5775  *	0 if offline status of @ap cannot be obtained, so
5776  *	ata_port_online(ap) != !ata_port_offline(ap).
5777  *
5778  *	LOCKING:
5779  *	None.
5780  *
5781  *	RETURNS:
5782  *	1 if the port offline status is available and offline.
5783  */
5784 int ata_port_offline(struct ata_port *ap)
5785 {
5786 	u32 sstatus;
5787 
5788 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5789 		return 1;
5790 	return 0;
5791 }
5792 
5793 int ata_flush_cache(struct ata_device *dev)
5794 {
5795 	unsigned int err_mask;
5796 	u8 cmd;
5797 
5798 	if (!ata_try_flush_cache(dev))
5799 		return 0;
5800 
5801 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5802 		cmd = ATA_CMD_FLUSH_EXT;
5803 	else
5804 		cmd = ATA_CMD_FLUSH;
5805 
5806 	err_mask = ata_do_simple_cmd(dev, cmd);
5807 	if (err_mask) {
5808 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5809 		return -EIO;
5810 	}
5811 
5812 	return 0;
5813 }
5814 
5815 #ifdef CONFIG_PM
5816 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5817 			       unsigned int action, unsigned int ehi_flags,
5818 			       int wait)
5819 {
5820 	unsigned long flags;
5821 	int i, rc;
5822 
5823 	for (i = 0; i < host->n_ports; i++) {
5824 		struct ata_port *ap = host->ports[i];
5825 
5826 		/* Previous resume operation might still be in
5827 		 * progress.  Wait for PM_PENDING to clear.
5828 		 */
5829 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5830 			ata_port_wait_eh(ap);
5831 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5832 		}
5833 
5834 		/* request PM ops to EH */
5835 		spin_lock_irqsave(ap->lock, flags);
5836 
5837 		ap->pm_mesg = mesg;
5838 		if (wait) {
5839 			rc = 0;
5840 			ap->pm_result = &rc;
5841 		}
5842 
5843 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5844 		ap->eh_info.action |= action;
5845 		ap->eh_info.flags |= ehi_flags;
5846 
5847 		ata_port_schedule_eh(ap);
5848 
5849 		spin_unlock_irqrestore(ap->lock, flags);
5850 
5851 		/* wait and check result */
5852 		if (wait) {
5853 			ata_port_wait_eh(ap);
5854 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5855 			if (rc)
5856 				return rc;
5857 		}
5858 	}
5859 
5860 	return 0;
5861 }
5862 
5863 /**
5864  *	ata_host_suspend - suspend host
5865  *	@host: host to suspend
5866  *	@mesg: PM message
5867  *
5868  *	Suspend @host.  Actual operation is performed by EH.  This
5869  *	function requests EH to perform PM operations and waits for EH
5870  *	to finish.
5871  *
5872  *	LOCKING:
5873  *	Kernel thread context (may sleep).
5874  *
5875  *	RETURNS:
5876  *	0 on success, -errno on failure.
5877  */
5878 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5879 {
5880 	int rc;
5881 
5882 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5883 	if (rc == 0)
5884 		host->dev->power.power_state = mesg;
5885 	return rc;
5886 }
5887 
5888 /**
5889  *	ata_host_resume - resume host
5890  *	@host: host to resume
5891  *
5892  *	Resume @host.  Actual operation is performed by EH.  This
5893  *	function requests EH to perform PM operations and returns.
5894  *	Note that all resume operations are performed parallely.
5895  *
5896  *	LOCKING:
5897  *	Kernel thread context (may sleep).
5898  */
5899 void ata_host_resume(struct ata_host *host)
5900 {
5901 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5902 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5903 	host->dev->power.power_state = PMSG_ON;
5904 }
5905 #endif
5906 
5907 /**
5908  *	ata_port_start - Set port up for dma.
5909  *	@ap: Port to initialize
5910  *
5911  *	Called just after data structures for each port are
5912  *	initialized.  Allocates space for PRD table.
5913  *
5914  *	May be used as the port_start() entry in ata_port_operations.
5915  *
5916  *	LOCKING:
5917  *	Inherited from caller.
5918  */
5919 int ata_port_start(struct ata_port *ap)
5920 {
5921 	struct device *dev = ap->dev;
5922 	int rc;
5923 
5924 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5925 				      GFP_KERNEL);
5926 	if (!ap->prd)
5927 		return -ENOMEM;
5928 
5929 	rc = ata_pad_alloc(ap, dev);
5930 	if (rc)
5931 		return rc;
5932 
5933 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5934 		(unsigned long long)ap->prd_dma);
5935 	return 0;
5936 }
5937 
5938 /**
5939  *	ata_dev_init - Initialize an ata_device structure
5940  *	@dev: Device structure to initialize
5941  *
5942  *	Initialize @dev in preparation for probing.
5943  *
5944  *	LOCKING:
5945  *	Inherited from caller.
5946  */
5947 void ata_dev_init(struct ata_device *dev)
5948 {
5949 	struct ata_port *ap = dev->ap;
5950 	unsigned long flags;
5951 
5952 	/* SATA spd limit is bound to the first device */
5953 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5954 
5955 	/* High bits of dev->flags are used to record warm plug
5956 	 * requests which occur asynchronously.  Synchronize using
5957 	 * host lock.
5958 	 */
5959 	spin_lock_irqsave(ap->lock, flags);
5960 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5961 	spin_unlock_irqrestore(ap->lock, flags);
5962 
5963 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5964 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5965 	dev->pio_mask = UINT_MAX;
5966 	dev->mwdma_mask = UINT_MAX;
5967 	dev->udma_mask = UINT_MAX;
5968 }
5969 
5970 /**
5971  *	ata_port_alloc - allocate and initialize basic ATA port resources
5972  *	@host: ATA host this allocated port belongs to
5973  *
5974  *	Allocate and initialize basic ATA port resources.
5975  *
5976  *	RETURNS:
5977  *	Allocate ATA port on success, NULL on failure.
5978  *
5979  *	LOCKING:
5980  *	Inherited from calling layer (may sleep).
5981  */
5982 struct ata_port *ata_port_alloc(struct ata_host *host)
5983 {
5984 	struct ata_port *ap;
5985 	unsigned int i;
5986 
5987 	DPRINTK("ENTER\n");
5988 
5989 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5990 	if (!ap)
5991 		return NULL;
5992 
5993 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5994 	ap->lock = &host->lock;
5995 	ap->flags = ATA_FLAG_DISABLED;
5996 	ap->print_id = -1;
5997 	ap->ctl = ATA_DEVCTL_OBS;
5998 	ap->host = host;
5999 	ap->dev = host->dev;
6000 
6001 	ap->hw_sata_spd_limit = UINT_MAX;
6002 	ap->active_tag = ATA_TAG_POISON;
6003 	ap->last_ctl = 0xFF;
6004 
6005 #if defined(ATA_VERBOSE_DEBUG)
6006 	/* turn on all debugging levels */
6007 	ap->msg_enable = 0x00FF;
6008 #elif defined(ATA_DEBUG)
6009 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6010 #else
6011 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6012 #endif
6013 
6014 	INIT_DELAYED_WORK(&ap->port_task, NULL);
6015 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6016 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6017 	INIT_LIST_HEAD(&ap->eh_done_q);
6018 	init_waitqueue_head(&ap->eh_wait_q);
6019 
6020 	ap->cbl = ATA_CBL_NONE;
6021 
6022 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
6023 		struct ata_device *dev = &ap->device[i];
6024 		dev->ap = ap;
6025 		dev->devno = i;
6026 		ata_dev_init(dev);
6027 	}
6028 
6029 #ifdef ATA_IRQ_TRAP
6030 	ap->stats.unhandled_irq = 1;
6031 	ap->stats.idle_irq = 1;
6032 #endif
6033 	return ap;
6034 }
6035 
6036 static void ata_host_release(struct device *gendev, void *res)
6037 {
6038 	struct ata_host *host = dev_get_drvdata(gendev);
6039 	int i;
6040 
6041 	for (i = 0; i < host->n_ports; i++) {
6042 		struct ata_port *ap = host->ports[i];
6043 
6044 		if (!ap)
6045 			continue;
6046 
6047 		if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6048 			ap->ops->port_stop(ap);
6049 	}
6050 
6051 	if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6052 		host->ops->host_stop(host);
6053 
6054 	for (i = 0; i < host->n_ports; i++) {
6055 		struct ata_port *ap = host->ports[i];
6056 
6057 		if (!ap)
6058 			continue;
6059 
6060 		if (ap->scsi_host)
6061 			scsi_host_put(ap->scsi_host);
6062 
6063 		kfree(ap);
6064 		host->ports[i] = NULL;
6065 	}
6066 
6067 	dev_set_drvdata(gendev, NULL);
6068 }
6069 
6070 /**
6071  *	ata_host_alloc - allocate and init basic ATA host resources
6072  *	@dev: generic device this host is associated with
6073  *	@max_ports: maximum number of ATA ports associated with this host
6074  *
6075  *	Allocate and initialize basic ATA host resources.  LLD calls
6076  *	this function to allocate a host, initializes it fully and
6077  *	attaches it using ata_host_register().
6078  *
6079  *	@max_ports ports are allocated and host->n_ports is
6080  *	initialized to @max_ports.  The caller is allowed to decrease
6081  *	host->n_ports before calling ata_host_register().  The unused
6082  *	ports will be automatically freed on registration.
6083  *
6084  *	RETURNS:
6085  *	Allocate ATA host on success, NULL on failure.
6086  *
6087  *	LOCKING:
6088  *	Inherited from calling layer (may sleep).
6089  */
6090 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6091 {
6092 	struct ata_host *host;
6093 	size_t sz;
6094 	int i;
6095 
6096 	DPRINTK("ENTER\n");
6097 
6098 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6099 		return NULL;
6100 
6101 	/* alloc a container for our list of ATA ports (buses) */
6102 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6103 	/* alloc a container for our list of ATA ports (buses) */
6104 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6105 	if (!host)
6106 		goto err_out;
6107 
6108 	devres_add(dev, host);
6109 	dev_set_drvdata(dev, host);
6110 
6111 	spin_lock_init(&host->lock);
6112 	host->dev = dev;
6113 	host->n_ports = max_ports;
6114 
6115 	/* allocate ports bound to this host */
6116 	for (i = 0; i < max_ports; i++) {
6117 		struct ata_port *ap;
6118 
6119 		ap = ata_port_alloc(host);
6120 		if (!ap)
6121 			goto err_out;
6122 
6123 		ap->port_no = i;
6124 		host->ports[i] = ap;
6125 	}
6126 
6127 	devres_remove_group(dev, NULL);
6128 	return host;
6129 
6130  err_out:
6131 	devres_release_group(dev, NULL);
6132 	return NULL;
6133 }
6134 
6135 /**
6136  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6137  *	@dev: generic device this host is associated with
6138  *	@ppi: array of ATA port_info to initialize host with
6139  *	@n_ports: number of ATA ports attached to this host
6140  *
6141  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6142  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6143  *	last entry will be used for the remaining ports.
6144  *
6145  *	RETURNS:
6146  *	Allocate ATA host on success, NULL on failure.
6147  *
6148  *	LOCKING:
6149  *	Inherited from calling layer (may sleep).
6150  */
6151 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6152 				      const struct ata_port_info * const * ppi,
6153 				      int n_ports)
6154 {
6155 	const struct ata_port_info *pi;
6156 	struct ata_host *host;
6157 	int i, j;
6158 
6159 	host = ata_host_alloc(dev, n_ports);
6160 	if (!host)
6161 		return NULL;
6162 
6163 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6164 		struct ata_port *ap = host->ports[i];
6165 
6166 		if (ppi[j])
6167 			pi = ppi[j++];
6168 
6169 		ap->pio_mask = pi->pio_mask;
6170 		ap->mwdma_mask = pi->mwdma_mask;
6171 		ap->udma_mask = pi->udma_mask;
6172 		ap->flags |= pi->flags;
6173 		ap->ops = pi->port_ops;
6174 
6175 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6176 			host->ops = pi->port_ops;
6177 		if (!host->private_data && pi->private_data)
6178 			host->private_data = pi->private_data;
6179 	}
6180 
6181 	return host;
6182 }
6183 
6184 /**
6185  *	ata_host_start - start and freeze ports of an ATA host
6186  *	@host: ATA host to start ports for
6187  *
6188  *	Start and then freeze ports of @host.  Started status is
6189  *	recorded in host->flags, so this function can be called
6190  *	multiple times.  Ports are guaranteed to get started only
6191  *	once.  If host->ops isn't initialized yet, its set to the
6192  *	first non-dummy port ops.
6193  *
6194  *	LOCKING:
6195  *	Inherited from calling layer (may sleep).
6196  *
6197  *	RETURNS:
6198  *	0 if all ports are started successfully, -errno otherwise.
6199  */
6200 int ata_host_start(struct ata_host *host)
6201 {
6202 	int i, rc;
6203 
6204 	if (host->flags & ATA_HOST_STARTED)
6205 		return 0;
6206 
6207 	for (i = 0; i < host->n_ports; i++) {
6208 		struct ata_port *ap = host->ports[i];
6209 
6210 		if (!host->ops && !ata_port_is_dummy(ap))
6211 			host->ops = ap->ops;
6212 
6213 		if (ap->ops->port_start) {
6214 			rc = ap->ops->port_start(ap);
6215 			if (rc) {
6216 				ata_port_printk(ap, KERN_ERR, "failed to "
6217 						"start port (errno=%d)\n", rc);
6218 				goto err_out;
6219 			}
6220 		}
6221 
6222 		ata_eh_freeze_port(ap);
6223 	}
6224 
6225 	host->flags |= ATA_HOST_STARTED;
6226 	return 0;
6227 
6228  err_out:
6229 	while (--i >= 0) {
6230 		struct ata_port *ap = host->ports[i];
6231 
6232 		if (ap->ops->port_stop)
6233 			ap->ops->port_stop(ap);
6234 	}
6235 	return rc;
6236 }
6237 
6238 /**
6239  *	ata_sas_host_init - Initialize a host struct
6240  *	@host:	host to initialize
6241  *	@dev:	device host is attached to
6242  *	@flags:	host flags
6243  *	@ops:	port_ops
6244  *
6245  *	LOCKING:
6246  *	PCI/etc. bus probe sem.
6247  *
6248  */
6249 /* KILLME - the only user left is ipr */
6250 void ata_host_init(struct ata_host *host, struct device *dev,
6251 		   unsigned long flags, const struct ata_port_operations *ops)
6252 {
6253 	spin_lock_init(&host->lock);
6254 	host->dev = dev;
6255 	host->flags = flags;
6256 	host->ops = ops;
6257 }
6258 
6259 /**
6260  *	ata_host_register - register initialized ATA host
6261  *	@host: ATA host to register
6262  *	@sht: template for SCSI host
6263  *
6264  *	Register initialized ATA host.  @host is allocated using
6265  *	ata_host_alloc() and fully initialized by LLD.  This function
6266  *	starts ports, registers @host with ATA and SCSI layers and
6267  *	probe registered devices.
6268  *
6269  *	LOCKING:
6270  *	Inherited from calling layer (may sleep).
6271  *
6272  *	RETURNS:
6273  *	0 on success, -errno otherwise.
6274  */
6275 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6276 {
6277 	int i, rc;
6278 
6279 	/* host must have been started */
6280 	if (!(host->flags & ATA_HOST_STARTED)) {
6281 		dev_printk(KERN_ERR, host->dev,
6282 			   "BUG: trying to register unstarted host\n");
6283 		WARN_ON(1);
6284 		return -EINVAL;
6285 	}
6286 
6287 	/* Blow away unused ports.  This happens when LLD can't
6288 	 * determine the exact number of ports to allocate at
6289 	 * allocation time.
6290 	 */
6291 	for (i = host->n_ports; host->ports[i]; i++)
6292 		kfree(host->ports[i]);
6293 
6294 	/* give ports names and add SCSI hosts */
6295 	for (i = 0; i < host->n_ports; i++)
6296 		host->ports[i]->print_id = ata_print_id++;
6297 
6298 	rc = ata_scsi_add_hosts(host, sht);
6299 	if (rc)
6300 		return rc;
6301 
6302 	/* set cable, sata_spd_limit and report */
6303 	for (i = 0; i < host->n_ports; i++) {
6304 		struct ata_port *ap = host->ports[i];
6305 		int irq_line;
6306 		u32 scontrol;
6307 		unsigned long xfer_mask;
6308 
6309 		/* set SATA cable type if still unset */
6310 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6311 			ap->cbl = ATA_CBL_SATA;
6312 
6313 		/* init sata_spd_limit to the current value */
6314 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6315 			int spd = (scontrol >> 4) & 0xf;
6316 			ap->hw_sata_spd_limit &= (1 << spd) - 1;
6317 		}
6318 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
6319 
6320 		/* report the secondary IRQ for second channel legacy */
6321 		irq_line = host->irq;
6322 		if (i == 1 && host->irq2)
6323 			irq_line = host->irq2;
6324 
6325 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6326 					      ap->udma_mask);
6327 
6328 		/* print per-port info to dmesg */
6329 		if (!ata_port_is_dummy(ap))
6330 			ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6331 					"ctl 0x%p bmdma 0x%p irq %d\n",
6332 					ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6333 					ata_mode_string(xfer_mask),
6334 					ap->ioaddr.cmd_addr,
6335 					ap->ioaddr.ctl_addr,
6336 					ap->ioaddr.bmdma_addr,
6337 					irq_line);
6338 		else
6339 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6340 	}
6341 
6342 	/* perform each probe synchronously */
6343 	DPRINTK("probe begin\n");
6344 	for (i = 0; i < host->n_ports; i++) {
6345 		struct ata_port *ap = host->ports[i];
6346 		int rc;
6347 
6348 		/* probe */
6349 		if (ap->ops->error_handler) {
6350 			struct ata_eh_info *ehi = &ap->eh_info;
6351 			unsigned long flags;
6352 
6353 			ata_port_probe(ap);
6354 
6355 			/* kick EH for boot probing */
6356 			spin_lock_irqsave(ap->lock, flags);
6357 
6358 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6359 			ehi->action |= ATA_EH_SOFTRESET;
6360 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6361 
6362 			ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6363 			ap->pflags |= ATA_PFLAG_LOADING;
6364 			ata_port_schedule_eh(ap);
6365 
6366 			spin_unlock_irqrestore(ap->lock, flags);
6367 
6368 			/* wait for EH to finish */
6369 			ata_port_wait_eh(ap);
6370 		} else {
6371 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6372 			rc = ata_bus_probe(ap);
6373 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
6374 
6375 			if (rc) {
6376 				/* FIXME: do something useful here?
6377 				 * Current libata behavior will
6378 				 * tear down everything when
6379 				 * the module is removed
6380 				 * or the h/w is unplugged.
6381 				 */
6382 			}
6383 		}
6384 	}
6385 
6386 	/* probes are done, now scan each port's disk(s) */
6387 	DPRINTK("host probe begin\n");
6388 	for (i = 0; i < host->n_ports; i++) {
6389 		struct ata_port *ap = host->ports[i];
6390 
6391 		ata_scsi_scan_host(ap);
6392 	}
6393 
6394 	return 0;
6395 }
6396 
6397 /**
6398  *	ata_host_activate - start host, request IRQ and register it
6399  *	@host: target ATA host
6400  *	@irq: IRQ to request
6401  *	@irq_handler: irq_handler used when requesting IRQ
6402  *	@irq_flags: irq_flags used when requesting IRQ
6403  *	@sht: scsi_host_template to use when registering the host
6404  *
6405  *	After allocating an ATA host and initializing it, most libata
6406  *	LLDs perform three steps to activate the host - start host,
6407  *	request IRQ and register it.  This helper takes necessasry
6408  *	arguments and performs the three steps in one go.
6409  *
6410  *	LOCKING:
6411  *	Inherited from calling layer (may sleep).
6412  *
6413  *	RETURNS:
6414  *	0 on success, -errno otherwise.
6415  */
6416 int ata_host_activate(struct ata_host *host, int irq,
6417 		      irq_handler_t irq_handler, unsigned long irq_flags,
6418 		      struct scsi_host_template *sht)
6419 {
6420 	int rc;
6421 
6422 	rc = ata_host_start(host);
6423 	if (rc)
6424 		return rc;
6425 
6426 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6427 			      dev_driver_string(host->dev), host);
6428 	if (rc)
6429 		return rc;
6430 
6431 	rc = ata_host_register(host, sht);
6432 	/* if failed, just free the IRQ and leave ports alone */
6433 	if (rc)
6434 		devm_free_irq(host->dev, irq, host);
6435 
6436 	return rc;
6437 }
6438 
6439 /**
6440  *	ata_port_detach - Detach ATA port in prepration of device removal
6441  *	@ap: ATA port to be detached
6442  *
6443  *	Detach all ATA devices and the associated SCSI devices of @ap;
6444  *	then, remove the associated SCSI host.  @ap is guaranteed to
6445  *	be quiescent on return from this function.
6446  *
6447  *	LOCKING:
6448  *	Kernel thread context (may sleep).
6449  */
6450 void ata_port_detach(struct ata_port *ap)
6451 {
6452 	unsigned long flags;
6453 	int i;
6454 
6455 	if (!ap->ops->error_handler)
6456 		goto skip_eh;
6457 
6458 	/* tell EH we're leaving & flush EH */
6459 	spin_lock_irqsave(ap->lock, flags);
6460 	ap->pflags |= ATA_PFLAG_UNLOADING;
6461 	spin_unlock_irqrestore(ap->lock, flags);
6462 
6463 	ata_port_wait_eh(ap);
6464 
6465 	/* EH is now guaranteed to see UNLOADING, so no new device
6466 	 * will be attached.  Disable all existing devices.
6467 	 */
6468 	spin_lock_irqsave(ap->lock, flags);
6469 
6470 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6471 		ata_dev_disable(&ap->device[i]);
6472 
6473 	spin_unlock_irqrestore(ap->lock, flags);
6474 
6475 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6476 	 * will be skipped and retrials will be terminated with bad
6477 	 * target.
6478 	 */
6479 	spin_lock_irqsave(ap->lock, flags);
6480 	ata_port_freeze(ap);	/* won't be thawed */
6481 	spin_unlock_irqrestore(ap->lock, flags);
6482 
6483 	ata_port_wait_eh(ap);
6484 
6485 	/* Flush hotplug task.  The sequence is similar to
6486 	 * ata_port_flush_task().
6487 	 */
6488 	cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6489 	cancel_delayed_work(&ap->hotplug_task);
6490 	cancel_work_sync(&ap->hotplug_task.work);
6491 
6492  skip_eh:
6493 	/* remove the associated SCSI host */
6494 	scsi_remove_host(ap->scsi_host);
6495 }
6496 
6497 /**
6498  *	ata_host_detach - Detach all ports of an ATA host
6499  *	@host: Host to detach
6500  *
6501  *	Detach all ports of @host.
6502  *
6503  *	LOCKING:
6504  *	Kernel thread context (may sleep).
6505  */
6506 void ata_host_detach(struct ata_host *host)
6507 {
6508 	int i;
6509 
6510 	for (i = 0; i < host->n_ports; i++)
6511 		ata_port_detach(host->ports[i]);
6512 }
6513 
6514 /**
6515  *	ata_std_ports - initialize ioaddr with standard port offsets.
6516  *	@ioaddr: IO address structure to be initialized
6517  *
6518  *	Utility function which initializes data_addr, error_addr,
6519  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6520  *	device_addr, status_addr, and command_addr to standard offsets
6521  *	relative to cmd_addr.
6522  *
6523  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6524  */
6525 
6526 void ata_std_ports(struct ata_ioports *ioaddr)
6527 {
6528 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6529 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6530 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6531 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6532 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6533 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6534 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6535 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6536 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6537 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6538 }
6539 
6540 
6541 #ifdef CONFIG_PCI
6542 
6543 /**
6544  *	ata_pci_remove_one - PCI layer callback for device removal
6545  *	@pdev: PCI device that was removed
6546  *
6547  *	PCI layer indicates to libata via this hook that hot-unplug or
6548  *	module unload event has occurred.  Detach all ports.  Resource
6549  *	release is handled via devres.
6550  *
6551  *	LOCKING:
6552  *	Inherited from PCI layer (may sleep).
6553  */
6554 void ata_pci_remove_one(struct pci_dev *pdev)
6555 {
6556 	struct device *dev = pci_dev_to_dev(pdev);
6557 	struct ata_host *host = dev_get_drvdata(dev);
6558 
6559 	ata_host_detach(host);
6560 }
6561 
6562 /* move to PCI subsystem */
6563 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6564 {
6565 	unsigned long tmp = 0;
6566 
6567 	switch (bits->width) {
6568 	case 1: {
6569 		u8 tmp8 = 0;
6570 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6571 		tmp = tmp8;
6572 		break;
6573 	}
6574 	case 2: {
6575 		u16 tmp16 = 0;
6576 		pci_read_config_word(pdev, bits->reg, &tmp16);
6577 		tmp = tmp16;
6578 		break;
6579 	}
6580 	case 4: {
6581 		u32 tmp32 = 0;
6582 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6583 		tmp = tmp32;
6584 		break;
6585 	}
6586 
6587 	default:
6588 		return -EINVAL;
6589 	}
6590 
6591 	tmp &= bits->mask;
6592 
6593 	return (tmp == bits->val) ? 1 : 0;
6594 }
6595 
6596 #ifdef CONFIG_PM
6597 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6598 {
6599 	pci_save_state(pdev);
6600 	pci_disable_device(pdev);
6601 
6602 	if (mesg.event == PM_EVENT_SUSPEND)
6603 		pci_set_power_state(pdev, PCI_D3hot);
6604 }
6605 
6606 int ata_pci_device_do_resume(struct pci_dev *pdev)
6607 {
6608 	int rc;
6609 
6610 	pci_set_power_state(pdev, PCI_D0);
6611 	pci_restore_state(pdev);
6612 
6613 	rc = pcim_enable_device(pdev);
6614 	if (rc) {
6615 		dev_printk(KERN_ERR, &pdev->dev,
6616 			   "failed to enable device after resume (%d)\n", rc);
6617 		return rc;
6618 	}
6619 
6620 	pci_set_master(pdev);
6621 	return 0;
6622 }
6623 
6624 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6625 {
6626 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6627 	int rc = 0;
6628 
6629 	rc = ata_host_suspend(host, mesg);
6630 	if (rc)
6631 		return rc;
6632 
6633 	ata_pci_device_do_suspend(pdev, mesg);
6634 
6635 	return 0;
6636 }
6637 
6638 int ata_pci_device_resume(struct pci_dev *pdev)
6639 {
6640 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6641 	int rc;
6642 
6643 	rc = ata_pci_device_do_resume(pdev);
6644 	if (rc == 0)
6645 		ata_host_resume(host);
6646 	return rc;
6647 }
6648 #endif /* CONFIG_PM */
6649 
6650 #endif /* CONFIG_PCI */
6651 
6652 
6653 static int __init ata_init(void)
6654 {
6655 	ata_probe_timeout *= HZ;
6656 	ata_wq = create_workqueue("ata");
6657 	if (!ata_wq)
6658 		return -ENOMEM;
6659 
6660 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6661 	if (!ata_aux_wq) {
6662 		destroy_workqueue(ata_wq);
6663 		return -ENOMEM;
6664 	}
6665 
6666 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6667 	return 0;
6668 }
6669 
6670 static void __exit ata_exit(void)
6671 {
6672 	destroy_workqueue(ata_wq);
6673 	destroy_workqueue(ata_aux_wq);
6674 }
6675 
6676 subsys_initcall(ata_init);
6677 module_exit(ata_exit);
6678 
6679 static unsigned long ratelimit_time;
6680 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6681 
6682 int ata_ratelimit(void)
6683 {
6684 	int rc;
6685 	unsigned long flags;
6686 
6687 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6688 
6689 	if (time_after(jiffies, ratelimit_time)) {
6690 		rc = 1;
6691 		ratelimit_time = jiffies + (HZ/5);
6692 	} else
6693 		rc = 0;
6694 
6695 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6696 
6697 	return rc;
6698 }
6699 
6700 /**
6701  *	ata_wait_register - wait until register value changes
6702  *	@reg: IO-mapped register
6703  *	@mask: Mask to apply to read register value
6704  *	@val: Wait condition
6705  *	@interval_msec: polling interval in milliseconds
6706  *	@timeout_msec: timeout in milliseconds
6707  *
6708  *	Waiting for some bits of register to change is a common
6709  *	operation for ATA controllers.  This function reads 32bit LE
6710  *	IO-mapped register @reg and tests for the following condition.
6711  *
6712  *	(*@reg & mask) != val
6713  *
6714  *	If the condition is met, it returns; otherwise, the process is
6715  *	repeated after @interval_msec until timeout.
6716  *
6717  *	LOCKING:
6718  *	Kernel thread context (may sleep)
6719  *
6720  *	RETURNS:
6721  *	The final register value.
6722  */
6723 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6724 		      unsigned long interval_msec,
6725 		      unsigned long timeout_msec)
6726 {
6727 	unsigned long timeout;
6728 	u32 tmp;
6729 
6730 	tmp = ioread32(reg);
6731 
6732 	/* Calculate timeout _after_ the first read to make sure
6733 	 * preceding writes reach the controller before starting to
6734 	 * eat away the timeout.
6735 	 */
6736 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6737 
6738 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6739 		msleep(interval_msec);
6740 		tmp = ioread32(reg);
6741 	}
6742 
6743 	return tmp;
6744 }
6745 
6746 /*
6747  * Dummy port_ops
6748  */
6749 static void ata_dummy_noret(struct ata_port *ap)	{ }
6750 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6751 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6752 
6753 static u8 ata_dummy_check_status(struct ata_port *ap)
6754 {
6755 	return ATA_DRDY;
6756 }
6757 
6758 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6759 {
6760 	return AC_ERR_SYSTEM;
6761 }
6762 
6763 const struct ata_port_operations ata_dummy_port_ops = {
6764 	.port_disable		= ata_port_disable,
6765 	.check_status		= ata_dummy_check_status,
6766 	.check_altstatus	= ata_dummy_check_status,
6767 	.dev_select		= ata_noop_dev_select,
6768 	.qc_prep		= ata_noop_qc_prep,
6769 	.qc_issue		= ata_dummy_qc_issue,
6770 	.freeze			= ata_dummy_noret,
6771 	.thaw			= ata_dummy_noret,
6772 	.error_handler		= ata_dummy_noret,
6773 	.post_internal_cmd	= ata_dummy_qc_noret,
6774 	.irq_clear		= ata_dummy_noret,
6775 	.port_start		= ata_dummy_ret0,
6776 	.port_stop		= ata_dummy_noret,
6777 };
6778 
6779 const struct ata_port_info ata_dummy_port_info = {
6780 	.port_ops		= &ata_dummy_port_ops,
6781 };
6782 
6783 /*
6784  * libata is essentially a library of internal helper functions for
6785  * low-level ATA host controller drivers.  As such, the API/ABI is
6786  * likely to change as new drivers are added and updated.
6787  * Do not depend on ABI/API stability.
6788  */
6789 
6790 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6791 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6792 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6793 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6794 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6795 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6796 EXPORT_SYMBOL_GPL(ata_std_ports);
6797 EXPORT_SYMBOL_GPL(ata_host_init);
6798 EXPORT_SYMBOL_GPL(ata_host_alloc);
6799 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6800 EXPORT_SYMBOL_GPL(ata_host_start);
6801 EXPORT_SYMBOL_GPL(ata_host_register);
6802 EXPORT_SYMBOL_GPL(ata_host_activate);
6803 EXPORT_SYMBOL_GPL(ata_host_detach);
6804 EXPORT_SYMBOL_GPL(ata_sg_init);
6805 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6806 EXPORT_SYMBOL_GPL(ata_hsm_move);
6807 EXPORT_SYMBOL_GPL(ata_qc_complete);
6808 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6809 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6810 EXPORT_SYMBOL_GPL(ata_tf_load);
6811 EXPORT_SYMBOL_GPL(ata_tf_read);
6812 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6813 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6814 EXPORT_SYMBOL_GPL(sata_print_link_status);
6815 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6816 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6817 EXPORT_SYMBOL_GPL(ata_check_status);
6818 EXPORT_SYMBOL_GPL(ata_altstatus);
6819 EXPORT_SYMBOL_GPL(ata_exec_command);
6820 EXPORT_SYMBOL_GPL(ata_port_start);
6821 EXPORT_SYMBOL_GPL(ata_interrupt);
6822 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6823 EXPORT_SYMBOL_GPL(ata_data_xfer);
6824 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6825 EXPORT_SYMBOL_GPL(ata_qc_prep);
6826 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6829 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6830 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6837 EXPORT_SYMBOL_GPL(ata_port_probe);
6838 EXPORT_SYMBOL_GPL(ata_dev_disable);
6839 EXPORT_SYMBOL_GPL(sata_set_spd);
6840 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6841 EXPORT_SYMBOL_GPL(sata_phy_resume);
6842 EXPORT_SYMBOL_GPL(sata_phy_reset);
6843 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6844 EXPORT_SYMBOL_GPL(ata_bus_reset);
6845 EXPORT_SYMBOL_GPL(ata_std_prereset);
6846 EXPORT_SYMBOL_GPL(ata_std_softreset);
6847 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6848 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6849 EXPORT_SYMBOL_GPL(ata_std_postreset);
6850 EXPORT_SYMBOL_GPL(ata_dev_classify);
6851 EXPORT_SYMBOL_GPL(ata_dev_pair);
6852 EXPORT_SYMBOL_GPL(ata_port_disable);
6853 EXPORT_SYMBOL_GPL(ata_ratelimit);
6854 EXPORT_SYMBOL_GPL(ata_wait_register);
6855 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6856 EXPORT_SYMBOL_GPL(ata_wait_ready);
6857 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6858 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6859 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6860 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6861 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6862 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6863 EXPORT_SYMBOL_GPL(ata_host_intr);
6864 EXPORT_SYMBOL_GPL(sata_scr_valid);
6865 EXPORT_SYMBOL_GPL(sata_scr_read);
6866 EXPORT_SYMBOL_GPL(sata_scr_write);
6867 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6868 EXPORT_SYMBOL_GPL(ata_port_online);
6869 EXPORT_SYMBOL_GPL(ata_port_offline);
6870 #ifdef CONFIG_PM
6871 EXPORT_SYMBOL_GPL(ata_host_suspend);
6872 EXPORT_SYMBOL_GPL(ata_host_resume);
6873 #endif /* CONFIG_PM */
6874 EXPORT_SYMBOL_GPL(ata_id_string);
6875 EXPORT_SYMBOL_GPL(ata_id_c_string);
6876 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6877 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6878 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6879 
6880 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6881 EXPORT_SYMBOL_GPL(ata_timing_compute);
6882 EXPORT_SYMBOL_GPL(ata_timing_merge);
6883 
6884 #ifdef CONFIG_PCI
6885 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6886 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6887 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6888 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6889 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6890 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6891 #ifdef CONFIG_PM
6892 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6893 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6894 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6895 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6896 #endif /* CONFIG_PM */
6897 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6898 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6899 #endif /* CONFIG_PCI */
6900 
6901 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6902 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6903 EXPORT_SYMBOL_GPL(ata_port_abort);
6904 EXPORT_SYMBOL_GPL(ata_port_freeze);
6905 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6906 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6907 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6908 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6909 EXPORT_SYMBOL_GPL(ata_do_eh);
6910 EXPORT_SYMBOL_GPL(ata_irq_on);
6911 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6912 EXPORT_SYMBOL_GPL(ata_irq_ack);
6913 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6914 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6915 
6916 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6917 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6918 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6919 EXPORT_SYMBOL_GPL(ata_cable_sata);
6920