xref: /linux/drivers/ata/libata-core.c (revision a0f97e06a43cf524e616f09e6af3398e1e9c1c5b)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.21"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75 
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78 
79 struct workqueue_struct *ata_aux_wq;
80 
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109 
110 
111 /**
112  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113  *	@tf: Taskfile to convert
114  *	@pmp: Port multiplier port
115  *	@is_cmd: This FIS is for command
116  *	@fis: Buffer into which data will output
117  *
118  *	Converts a standard ATA taskfile to a Serial ATA
119  *	FIS structure (Register - Host to Device).
120  *
121  *	LOCKING:
122  *	Inherited from caller.
123  */
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
125 {
126 	fis[0] = 0x27;			/* Register - Host to Device FIS */
127 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
128 	if (is_cmd)
129 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
130 
131 	fis[2] = tf->command;
132 	fis[3] = tf->feature;
133 
134 	fis[4] = tf->lbal;
135 	fis[5] = tf->lbam;
136 	fis[6] = tf->lbah;
137 	fis[7] = tf->device;
138 
139 	fis[8] = tf->hob_lbal;
140 	fis[9] = tf->hob_lbam;
141 	fis[10] = tf->hob_lbah;
142 	fis[11] = tf->hob_feature;
143 
144 	fis[12] = tf->nsect;
145 	fis[13] = tf->hob_nsect;
146 	fis[14] = 0;
147 	fis[15] = tf->ctl;
148 
149 	fis[16] = 0;
150 	fis[17] = 0;
151 	fis[18] = 0;
152 	fis[19] = 0;
153 }
154 
155 /**
156  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157  *	@fis: Buffer from which data will be input
158  *	@tf: Taskfile to output
159  *
160  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
161  *
162  *	LOCKING:
163  *	Inherited from caller.
164  */
165 
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
167 {
168 	tf->command	= fis[2];	/* status */
169 	tf->feature	= fis[3];	/* error */
170 
171 	tf->lbal	= fis[4];
172 	tf->lbam	= fis[5];
173 	tf->lbah	= fis[6];
174 	tf->device	= fis[7];
175 
176 	tf->hob_lbal	= fis[8];
177 	tf->hob_lbam	= fis[9];
178 	tf->hob_lbah	= fis[10];
179 
180 	tf->nsect	= fis[12];
181 	tf->hob_nsect	= fis[13];
182 }
183 
184 static const u8 ata_rw_cmds[] = {
185 	/* pio multi */
186 	ATA_CMD_READ_MULTI,
187 	ATA_CMD_WRITE_MULTI,
188 	ATA_CMD_READ_MULTI_EXT,
189 	ATA_CMD_WRITE_MULTI_EXT,
190 	0,
191 	0,
192 	0,
193 	ATA_CMD_WRITE_MULTI_FUA_EXT,
194 	/* pio */
195 	ATA_CMD_PIO_READ,
196 	ATA_CMD_PIO_WRITE,
197 	ATA_CMD_PIO_READ_EXT,
198 	ATA_CMD_PIO_WRITE_EXT,
199 	0,
200 	0,
201 	0,
202 	0,
203 	/* dma */
204 	ATA_CMD_READ,
205 	ATA_CMD_WRITE,
206 	ATA_CMD_READ_EXT,
207 	ATA_CMD_WRITE_EXT,
208 	0,
209 	0,
210 	0,
211 	ATA_CMD_WRITE_FUA_EXT
212 };
213 
214 /**
215  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
216  *	@tf: command to examine and configure
217  *	@dev: device tf belongs to
218  *
219  *	Examine the device configuration and tf->flags to calculate
220  *	the proper read/write commands and protocol to use.
221  *
222  *	LOCKING:
223  *	caller.
224  */
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 {
227 	u8 cmd;
228 
229 	int index, fua, lba48, write;
230 
231 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
234 
235 	if (dev->flags & ATA_DFLAG_PIO) {
236 		tf->protocol = ATA_PROT_PIO;
237 		index = dev->multi_count ? 0 : 8;
238 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 		/* Unable to use DMA due to host limitation */
240 		tf->protocol = ATA_PROT_PIO;
241 		index = dev->multi_count ? 0 : 8;
242 	} else {
243 		tf->protocol = ATA_PROT_DMA;
244 		index = 16;
245 	}
246 
247 	cmd = ata_rw_cmds[index + fua + lba48 + write];
248 	if (cmd) {
249 		tf->command = cmd;
250 		return 0;
251 	}
252 	return -1;
253 }
254 
255 /**
256  *	ata_tf_read_block - Read block address from ATA taskfile
257  *	@tf: ATA taskfile of interest
258  *	@dev: ATA device @tf belongs to
259  *
260  *	LOCKING:
261  *	None.
262  *
263  *	Read block address from @tf.  This function can handle all
264  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
265  *	flags select the address format to use.
266  *
267  *	RETURNS:
268  *	Block address read from @tf.
269  */
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 {
272 	u64 block = 0;
273 
274 	if (tf->flags & ATA_TFLAG_LBA) {
275 		if (tf->flags & ATA_TFLAG_LBA48) {
276 			block |= (u64)tf->hob_lbah << 40;
277 			block |= (u64)tf->hob_lbam << 32;
278 			block |= tf->hob_lbal << 24;
279 		} else
280 			block |= (tf->device & 0xf) << 24;
281 
282 		block |= tf->lbah << 16;
283 		block |= tf->lbam << 8;
284 		block |= tf->lbal;
285 	} else {
286 		u32 cyl, head, sect;
287 
288 		cyl = tf->lbam | (tf->lbah << 8);
289 		head = tf->device & 0xf;
290 		sect = tf->lbal;
291 
292 		block = (cyl * dev->heads + head) * dev->sectors + sect;
293 	}
294 
295 	return block;
296 }
297 
298 /**
299  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
300  *	@tf: Target ATA taskfile
301  *	@dev: ATA device @tf belongs to
302  *	@block: Block address
303  *	@n_block: Number of blocks
304  *	@tf_flags: RW/FUA etc...
305  *	@tag: tag
306  *
307  *	LOCKING:
308  *	None.
309  *
310  *	Build ATA taskfile @tf for read/write request described by
311  *	@block, @n_block, @tf_flags and @tag on @dev.
312  *
313  *	RETURNS:
314  *
315  *	0 on success, -ERANGE if the request is too large for @dev,
316  *	-EINVAL if the request is invalid.
317  */
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 		    u64 block, u32 n_block, unsigned int tf_flags,
320 		    unsigned int tag)
321 {
322 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 	tf->flags |= tf_flags;
324 
325 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 		/* yay, NCQ */
327 		if (!lba_48_ok(block, n_block))
328 			return -ERANGE;
329 
330 		tf->protocol = ATA_PROT_NCQ;
331 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332 
333 		if (tf->flags & ATA_TFLAG_WRITE)
334 			tf->command = ATA_CMD_FPDMA_WRITE;
335 		else
336 			tf->command = ATA_CMD_FPDMA_READ;
337 
338 		tf->nsect = tag << 3;
339 		tf->hob_feature = (n_block >> 8) & 0xff;
340 		tf->feature = n_block & 0xff;
341 
342 		tf->hob_lbah = (block >> 40) & 0xff;
343 		tf->hob_lbam = (block >> 32) & 0xff;
344 		tf->hob_lbal = (block >> 24) & 0xff;
345 		tf->lbah = (block >> 16) & 0xff;
346 		tf->lbam = (block >> 8) & 0xff;
347 		tf->lbal = block & 0xff;
348 
349 		tf->device = 1 << 6;
350 		if (tf->flags & ATA_TFLAG_FUA)
351 			tf->device |= 1 << 7;
352 	} else if (dev->flags & ATA_DFLAG_LBA) {
353 		tf->flags |= ATA_TFLAG_LBA;
354 
355 		if (lba_28_ok(block, n_block)) {
356 			/* use LBA28 */
357 			tf->device |= (block >> 24) & 0xf;
358 		} else if (lba_48_ok(block, n_block)) {
359 			if (!(dev->flags & ATA_DFLAG_LBA48))
360 				return -ERANGE;
361 
362 			/* use LBA48 */
363 			tf->flags |= ATA_TFLAG_LBA48;
364 
365 			tf->hob_nsect = (n_block >> 8) & 0xff;
366 
367 			tf->hob_lbah = (block >> 40) & 0xff;
368 			tf->hob_lbam = (block >> 32) & 0xff;
369 			tf->hob_lbal = (block >> 24) & 0xff;
370 		} else
371 			/* request too large even for LBA48 */
372 			return -ERANGE;
373 
374 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 			return -EINVAL;
376 
377 		tf->nsect = n_block & 0xff;
378 
379 		tf->lbah = (block >> 16) & 0xff;
380 		tf->lbam = (block >> 8) & 0xff;
381 		tf->lbal = block & 0xff;
382 
383 		tf->device |= ATA_LBA;
384 	} else {
385 		/* CHS */
386 		u32 sect, head, cyl, track;
387 
388 		/* The request -may- be too large for CHS addressing. */
389 		if (!lba_28_ok(block, n_block))
390 			return -ERANGE;
391 
392 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 			return -EINVAL;
394 
395 		/* Convert LBA to CHS */
396 		track = (u32)block / dev->sectors;
397 		cyl   = track / dev->heads;
398 		head  = track % dev->heads;
399 		sect  = (u32)block % dev->sectors + 1;
400 
401 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 			(u32)block, track, cyl, head, sect);
403 
404 		/* Check whether the converted CHS can fit.
405 		   Cylinder: 0-65535
406 		   Head: 0-15
407 		   Sector: 1-255*/
408 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 			return -ERANGE;
410 
411 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 		tf->lbal = sect;
413 		tf->lbam = cyl;
414 		tf->lbah = cyl >> 8;
415 		tf->device |= head;
416 	}
417 
418 	return 0;
419 }
420 
421 /**
422  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423  *	@pio_mask: pio_mask
424  *	@mwdma_mask: mwdma_mask
425  *	@udma_mask: udma_mask
426  *
427  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428  *	unsigned int xfer_mask.
429  *
430  *	LOCKING:
431  *	None.
432  *
433  *	RETURNS:
434  *	Packed xfer_mask.
435  */
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 				      unsigned int mwdma_mask,
438 				      unsigned int udma_mask)
439 {
440 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 }
444 
445 /**
446  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447  *	@xfer_mask: xfer_mask to unpack
448  *	@pio_mask: resulting pio_mask
449  *	@mwdma_mask: resulting mwdma_mask
450  *	@udma_mask: resulting udma_mask
451  *
452  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453  *	Any NULL distination masks will be ignored.
454  */
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 				unsigned int *pio_mask,
457 				unsigned int *mwdma_mask,
458 				unsigned int *udma_mask)
459 {
460 	if (pio_mask)
461 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 	if (mwdma_mask)
463 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 	if (udma_mask)
465 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 }
467 
468 static const struct ata_xfer_ent {
469 	int shift, bits;
470 	u8 base;
471 } ata_xfer_tbl[] = {
472 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 	{ -1, },
476 };
477 
478 /**
479  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480  *	@xfer_mask: xfer_mask of interest
481  *
482  *	Return matching XFER_* value for @xfer_mask.  Only the highest
483  *	bit of @xfer_mask is considered.
484  *
485  *	LOCKING:
486  *	None.
487  *
488  *	RETURNS:
489  *	Matching XFER_* value, 0 if no match found.
490  */
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492 {
493 	int highbit = fls(xfer_mask) - 1;
494 	const struct ata_xfer_ent *ent;
495 
496 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 			return ent->base + highbit - ent->shift;
499 	return 0;
500 }
501 
502 /**
503  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504  *	@xfer_mode: XFER_* of interest
505  *
506  *	Return matching xfer_mask for @xfer_mode.
507  *
508  *	LOCKING:
509  *	None.
510  *
511  *	RETURNS:
512  *	Matching xfer_mask, 0 if no match found.
513  */
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515 {
516 	const struct ata_xfer_ent *ent;
517 
518 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 			return 1 << (ent->shift + xfer_mode - ent->base);
521 	return 0;
522 }
523 
524 /**
525  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526  *	@xfer_mode: XFER_* of interest
527  *
528  *	Return matching xfer_shift for @xfer_mode.
529  *
530  *	LOCKING:
531  *	None.
532  *
533  *	RETURNS:
534  *	Matching xfer_shift, -1 if no match found.
535  */
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
537 {
538 	const struct ata_xfer_ent *ent;
539 
540 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 			return ent->shift;
543 	return -1;
544 }
545 
546 /**
547  *	ata_mode_string - convert xfer_mask to string
548  *	@xfer_mask: mask of bits supported; only highest bit counts.
549  *
550  *	Determine string which represents the highest speed
551  *	(highest bit in @modemask).
552  *
553  *	LOCKING:
554  *	None.
555  *
556  *	RETURNS:
557  *	Constant C string representing highest speed listed in
558  *	@mode_mask, or the constant C string "<n/a>".
559  */
560 static const char *ata_mode_string(unsigned int xfer_mask)
561 {
562 	static const char * const xfer_mode_str[] = {
563 		"PIO0",
564 		"PIO1",
565 		"PIO2",
566 		"PIO3",
567 		"PIO4",
568 		"PIO5",
569 		"PIO6",
570 		"MWDMA0",
571 		"MWDMA1",
572 		"MWDMA2",
573 		"MWDMA3",
574 		"MWDMA4",
575 		"UDMA/16",
576 		"UDMA/25",
577 		"UDMA/33",
578 		"UDMA/44",
579 		"UDMA/66",
580 		"UDMA/100",
581 		"UDMA/133",
582 		"UDMA7",
583 	};
584 	int highbit;
585 
586 	highbit = fls(xfer_mask) - 1;
587 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 		return xfer_mode_str[highbit];
589 	return "<n/a>";
590 }
591 
592 static const char *sata_spd_string(unsigned int spd)
593 {
594 	static const char * const spd_str[] = {
595 		"1.5 Gbps",
596 		"3.0 Gbps",
597 	};
598 
599 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 		return "<unknown>";
601 	return spd_str[spd - 1];
602 }
603 
604 void ata_dev_disable(struct ata_device *dev)
605 {
606 	if (ata_dev_enabled(dev)) {
607 		if (ata_msg_drv(dev->ap))
608 			ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 					     ATA_DNXFER_QUIET);
611 		dev->class++;
612 	}
613 }
614 
615 /**
616  *	ata_devchk - PATA device presence detection
617  *	@ap: ATA channel to examine
618  *	@device: Device to examine (starting at zero)
619  *
620  *	This technique was originally described in
621  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
622  *	later found its way into the ATA/ATAPI spec.
623  *
624  *	Write a pattern to the ATA shadow registers,
625  *	and if a device is present, it will respond by
626  *	correctly storing and echoing back the
627  *	ATA shadow register contents.
628  *
629  *	LOCKING:
630  *	caller.
631  */
632 
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
634 {
635 	struct ata_ioports *ioaddr = &ap->ioaddr;
636 	u8 nsect, lbal;
637 
638 	ap->ops->dev_select(ap, device);
639 
640 	iowrite8(0x55, ioaddr->nsect_addr);
641 	iowrite8(0xaa, ioaddr->lbal_addr);
642 
643 	iowrite8(0xaa, ioaddr->nsect_addr);
644 	iowrite8(0x55, ioaddr->lbal_addr);
645 
646 	iowrite8(0x55, ioaddr->nsect_addr);
647 	iowrite8(0xaa, ioaddr->lbal_addr);
648 
649 	nsect = ioread8(ioaddr->nsect_addr);
650 	lbal = ioread8(ioaddr->lbal_addr);
651 
652 	if ((nsect == 0x55) && (lbal == 0xaa))
653 		return 1;	/* we found a device */
654 
655 	return 0;		/* nothing found */
656 }
657 
658 /**
659  *	ata_dev_classify - determine device type based on ATA-spec signature
660  *	@tf: ATA taskfile register set for device to be identified
661  *
662  *	Determine from taskfile register contents whether a device is
663  *	ATA or ATAPI, as per "Signature and persistence" section
664  *	of ATA/PI spec (volume 1, sect 5.14).
665  *
666  *	LOCKING:
667  *	None.
668  *
669  *	RETURNS:
670  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671  *	the event of failure.
672  */
673 
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
675 {
676 	/* Apple's open source Darwin code hints that some devices only
677 	 * put a proper signature into the LBA mid/high registers,
678 	 * So, we only check those.  It's sufficient for uniqueness.
679 	 */
680 
681 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 		DPRINTK("found ATA device by sig\n");
684 		return ATA_DEV_ATA;
685 	}
686 
687 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 		DPRINTK("found ATAPI device by sig\n");
690 		return ATA_DEV_ATAPI;
691 	}
692 
693 	DPRINTK("unknown device\n");
694 	return ATA_DEV_UNKNOWN;
695 }
696 
697 /**
698  *	ata_dev_try_classify - Parse returned ATA device signature
699  *	@ap: ATA channel to examine
700  *	@device: Device to examine (starting at zero)
701  *	@r_err: Value of error register on completion
702  *
703  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704  *	an ATA/ATAPI-defined set of values is placed in the ATA
705  *	shadow registers, indicating the results of device detection
706  *	and diagnostics.
707  *
708  *	Select the ATA device, and read the values from the ATA shadow
709  *	registers.  Then parse according to the Error register value,
710  *	and the spec-defined values examined by ata_dev_classify().
711  *
712  *	LOCKING:
713  *	caller.
714  *
715  *	RETURNS:
716  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717  */
718 
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
721 {
722 	struct ata_taskfile tf;
723 	unsigned int class;
724 	u8 err;
725 
726 	ap->ops->dev_select(ap, device);
727 
728 	memset(&tf, 0, sizeof(tf));
729 
730 	ap->ops->tf_read(ap, &tf);
731 	err = tf.feature;
732 	if (r_err)
733 		*r_err = err;
734 
735 	/* see if device passed diags: if master then continue and warn later */
736 	if (err == 0 && device == 0)
737 		/* diagnostic fail : do nothing _YET_ */
738 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 	else if (err == 1)
740 		/* do nothing */ ;
741 	else if ((device == 0) && (err == 0x81))
742 		/* do nothing */ ;
743 	else
744 		return ATA_DEV_NONE;
745 
746 	/* determine if device is ATA or ATAPI */
747 	class = ata_dev_classify(&tf);
748 
749 	if (class == ATA_DEV_UNKNOWN)
750 		return ATA_DEV_NONE;
751 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 		return ATA_DEV_NONE;
753 	return class;
754 }
755 
756 /**
757  *	ata_id_string - Convert IDENTIFY DEVICE page into string
758  *	@id: IDENTIFY DEVICE results we will examine
759  *	@s: string into which data is output
760  *	@ofs: offset into identify device page
761  *	@len: length of string to return. must be an even number.
762  *
763  *	The strings in the IDENTIFY DEVICE page are broken up into
764  *	16-bit chunks.  Run through the string, and output each
765  *	8-bit chunk linearly, regardless of platform.
766  *
767  *	LOCKING:
768  *	caller.
769  */
770 
771 void ata_id_string(const u16 *id, unsigned char *s,
772 		   unsigned int ofs, unsigned int len)
773 {
774 	unsigned int c;
775 
776 	while (len > 0) {
777 		c = id[ofs] >> 8;
778 		*s = c;
779 		s++;
780 
781 		c = id[ofs] & 0xff;
782 		*s = c;
783 		s++;
784 
785 		ofs++;
786 		len -= 2;
787 	}
788 }
789 
790 /**
791  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792  *	@id: IDENTIFY DEVICE results we will examine
793  *	@s: string into which data is output
794  *	@ofs: offset into identify device page
795  *	@len: length of string to return. must be an odd number.
796  *
797  *	This function is identical to ata_id_string except that it
798  *	trims trailing spaces and terminates the resulting string with
799  *	null.  @len must be actual maximum length (even number) + 1.
800  *
801  *	LOCKING:
802  *	caller.
803  */
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 		     unsigned int ofs, unsigned int len)
806 {
807 	unsigned char *p;
808 
809 	WARN_ON(!(len & 1));
810 
811 	ata_id_string(id, s, ofs, len - 1);
812 
813 	p = s + strnlen(s, len - 1);
814 	while (p > s && p[-1] == ' ')
815 		p--;
816 	*p = '\0';
817 }
818 
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820 {
821 	u64 sectors = 0;
822 
823 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 	sectors |= (tf->hob_lbal & 0xff) << 24;
826 	sectors |= (tf->lbah & 0xff) << 16;
827 	sectors |= (tf->lbam & 0xff) << 8;
828 	sectors |= (tf->lbal & 0xff);
829 
830 	return ++sectors;
831 }
832 
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834 {
835 	u64 sectors = 0;
836 
837 	sectors |= (tf->device & 0x0f) << 24;
838 	sectors |= (tf->lbah & 0xff) << 16;
839 	sectors |= (tf->lbam & 0xff) << 8;
840 	sectors |= (tf->lbal & 0xff);
841 
842 	return ++sectors;
843 }
844 
845 /**
846  *	ata_read_native_max_address_ext	-	LBA48 native max query
847  *	@dev: Device to query
848  *
849  *	Perform an LBA48 size query upon the device in question. Return the
850  *	actual LBA48 size or zero if the command fails.
851  */
852 
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 {
855 	unsigned int err;
856 	struct ata_taskfile tf;
857 
858 	ata_tf_init(dev, &tf);
859 
860 	tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 	tf.protocol |= ATA_PROT_NODATA;
863 	tf.device |= 0x40;
864 
865 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 	if (err)
867 		return 0;
868 
869 	return ata_tf_to_lba48(&tf);
870 }
871 
872 /**
873  *	ata_read_native_max_address	-	LBA28 native max query
874  *	@dev: Device to query
875  *
876  *	Performa an LBA28 size query upon the device in question. Return the
877  *	actual LBA28 size or zero if the command fails.
878  */
879 
880 static u64 ata_read_native_max_address(struct ata_device *dev)
881 {
882 	unsigned int err;
883 	struct ata_taskfile tf;
884 
885 	ata_tf_init(dev, &tf);
886 
887 	tf.command = ATA_CMD_READ_NATIVE_MAX;
888 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 	tf.protocol |= ATA_PROT_NODATA;
890 	tf.device |= 0x40;
891 
892 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 	if (err)
894 		return 0;
895 
896 	return ata_tf_to_lba(&tf);
897 }
898 
899 /**
900  *	ata_set_native_max_address_ext	-	LBA48 native max set
901  *	@dev: Device to query
902  *	@new_sectors: new max sectors value to set for the device
903  *
904  *	Perform an LBA48 size set max upon the device in question. Return the
905  *	actual LBA48 size or zero if the command fails.
906  */
907 
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 {
910 	unsigned int err;
911 	struct ata_taskfile tf;
912 
913 	new_sectors--;
914 
915 	ata_tf_init(dev, &tf);
916 
917 	tf.command = ATA_CMD_SET_MAX_EXT;
918 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 	tf.protocol |= ATA_PROT_NODATA;
920 	tf.device |= 0x40;
921 
922 	tf.lbal = (new_sectors >> 0) & 0xff;
923 	tf.lbam = (new_sectors >> 8) & 0xff;
924 	tf.lbah = (new_sectors >> 16) & 0xff;
925 
926 	tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 	tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 	tf.hob_lbah = (new_sectors >> 40) & 0xff;
929 
930 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 	if (err)
932 		return 0;
933 
934 	return ata_tf_to_lba48(&tf);
935 }
936 
937 /**
938  *	ata_set_native_max_address	-	LBA28 native max set
939  *	@dev: Device to query
940  *	@new_sectors: new max sectors value to set for the device
941  *
942  *	Perform an LBA28 size set max upon the device in question. Return the
943  *	actual LBA28 size or zero if the command fails.
944  */
945 
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 {
948 	unsigned int err;
949 	struct ata_taskfile tf;
950 
951 	new_sectors--;
952 
953 	ata_tf_init(dev, &tf);
954 
955 	tf.command = ATA_CMD_SET_MAX;
956 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 	tf.protocol |= ATA_PROT_NODATA;
958 
959 	tf.lbal = (new_sectors >> 0) & 0xff;
960 	tf.lbam = (new_sectors >> 8) & 0xff;
961 	tf.lbah = (new_sectors >> 16) & 0xff;
962 	tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963 
964 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 	if (err)
966 		return 0;
967 
968 	return ata_tf_to_lba(&tf);
969 }
970 
971 /**
972  *	ata_hpa_resize		-	Resize a device with an HPA set
973  *	@dev: Device to resize
974  *
975  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
976  *	it if required to the full size of the media. The caller must check
977  *	the drive has the HPA feature set enabled.
978  */
979 
980 static u64 ata_hpa_resize(struct ata_device *dev)
981 {
982 	u64 sectors = dev->n_sectors;
983 	u64 hpa_sectors;
984 
985 	if (ata_id_has_lba48(dev->id))
986 		hpa_sectors = ata_read_native_max_address_ext(dev);
987 	else
988 		hpa_sectors = ata_read_native_max_address(dev);
989 
990 	if (hpa_sectors > sectors) {
991 		ata_dev_printk(dev, KERN_INFO,
992 			"Host Protected Area detected:\n"
993 			"\tcurrent size: %lld sectors\n"
994 			"\tnative size: %lld sectors\n",
995 			(long long)sectors, (long long)hpa_sectors);
996 
997 		if (ata_ignore_hpa) {
998 			if (ata_id_has_lba48(dev->id))
999 				hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 			else
1001 				hpa_sectors = ata_set_native_max_address(dev,
1002 								hpa_sectors);
1003 
1004 			if (hpa_sectors) {
1005 				ata_dev_printk(dev, KERN_INFO, "native size "
1006 					"increased to %lld sectors\n",
1007 					(long long)hpa_sectors);
1008 				return hpa_sectors;
1009 			}
1010 		}
1011 	} else if (hpa_sectors < sectors)
1012 		ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 			       "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 			       (long long)hpa_sectors, (long long)sectors);
1015 
1016 	return sectors;
1017 }
1018 
1019 static u64 ata_id_n_sectors(const u16 *id)
1020 {
1021 	if (ata_id_has_lba(id)) {
1022 		if (ata_id_has_lba48(id))
1023 			return ata_id_u64(id, 100);
1024 		else
1025 			return ata_id_u32(id, 60);
1026 	} else {
1027 		if (ata_id_current_chs_valid(id))
1028 			return ata_id_u32(id, 57);
1029 		else
1030 			return id[1] * id[3] * id[6];
1031 	}
1032 }
1033 
1034 /**
1035  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
1036  *	@dev: device to identify
1037  *	@unknown: mode to assume if we cannot tell
1038  *
1039  *	Set up the timing values for the device based upon the identify
1040  *	reported values for the DMA mode. This function is used by drivers
1041  *	which rely upon firmware configured modes, but wish to report the
1042  *	mode correctly when possible.
1043  *
1044  *	In addition we emit similarly formatted messages to the default
1045  *	ata_dev_set_mode handler, in order to provide consistency of
1046  *	presentation.
1047  */
1048 
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050 {
1051 	unsigned int mask;
1052 	u8 mode;
1053 
1054 	/* Pack the DMA modes */
1055 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 	if (dev->id[53] & 0x04)
1057 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058 
1059 	/* Select the mode in use */
1060 	mode = ata_xfer_mask2mode(mask);
1061 
1062 	if (mode != 0) {
1063 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 		       ata_mode_string(mask));
1065 	} else {
1066 		/* SWDMA perhaps ? */
1067 		mode = unknown;
1068 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 	}
1070 
1071 	/* Configure the device reporting */
1072 	dev->xfer_mode = mode;
1073 	dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 }
1075 
1076 /**
1077  *	ata_noop_dev_select - Select device 0/1 on ATA bus
1078  *	@ap: ATA channel to manipulate
1079  *	@device: ATA device (numbered from zero) to select
1080  *
1081  *	This function performs no actual function.
1082  *
1083  *	May be used as the dev_select() entry in ata_port_operations.
1084  *
1085  *	LOCKING:
1086  *	caller.
1087  */
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089 {
1090 }
1091 
1092 
1093 /**
1094  *	ata_std_dev_select - Select device 0/1 on ATA bus
1095  *	@ap: ATA channel to manipulate
1096  *	@device: ATA device (numbered from zero) to select
1097  *
1098  *	Use the method defined in the ATA specification to
1099  *	make either device 0, or device 1, active on the
1100  *	ATA channel.  Works with both PIO and MMIO.
1101  *
1102  *	May be used as the dev_select() entry in ata_port_operations.
1103  *
1104  *	LOCKING:
1105  *	caller.
1106  */
1107 
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109 {
1110 	u8 tmp;
1111 
1112 	if (device == 0)
1113 		tmp = ATA_DEVICE_OBS;
1114 	else
1115 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116 
1117 	iowrite8(tmp, ap->ioaddr.device_addr);
1118 	ata_pause(ap);		/* needed; also flushes, for mmio */
1119 }
1120 
1121 /**
1122  *	ata_dev_select - Select device 0/1 on ATA bus
1123  *	@ap: ATA channel to manipulate
1124  *	@device: ATA device (numbered from zero) to select
1125  *	@wait: non-zero to wait for Status register BSY bit to clear
1126  *	@can_sleep: non-zero if context allows sleeping
1127  *
1128  *	Use the method defined in the ATA specification to
1129  *	make either device 0, or device 1, active on the
1130  *	ATA channel.
1131  *
1132  *	This is a high-level version of ata_std_dev_select(),
1133  *	which additionally provides the services of inserting
1134  *	the proper pauses and status polling, where needed.
1135  *
1136  *	LOCKING:
1137  *	caller.
1138  */
1139 
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 			   unsigned int wait, unsigned int can_sleep)
1142 {
1143 	if (ata_msg_probe(ap))
1144 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 				"device %u, wait %u\n", device, wait);
1146 
1147 	if (wait)
1148 		ata_wait_idle(ap);
1149 
1150 	ap->ops->dev_select(ap, device);
1151 
1152 	if (wait) {
1153 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 			msleep(150);
1155 		ata_wait_idle(ap);
1156 	}
1157 }
1158 
1159 /**
1160  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1161  *	@id: IDENTIFY DEVICE page to dump
1162  *
1163  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1164  *	page.
1165  *
1166  *	LOCKING:
1167  *	caller.
1168  */
1169 
1170 static inline void ata_dump_id(const u16 *id)
1171 {
1172 	DPRINTK("49==0x%04x  "
1173 		"53==0x%04x  "
1174 		"63==0x%04x  "
1175 		"64==0x%04x  "
1176 		"75==0x%04x  \n",
1177 		id[49],
1178 		id[53],
1179 		id[63],
1180 		id[64],
1181 		id[75]);
1182 	DPRINTK("80==0x%04x  "
1183 		"81==0x%04x  "
1184 		"82==0x%04x  "
1185 		"83==0x%04x  "
1186 		"84==0x%04x  \n",
1187 		id[80],
1188 		id[81],
1189 		id[82],
1190 		id[83],
1191 		id[84]);
1192 	DPRINTK("88==0x%04x  "
1193 		"93==0x%04x\n",
1194 		id[88],
1195 		id[93]);
1196 }
1197 
1198 /**
1199  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200  *	@id: IDENTIFY data to compute xfer mask from
1201  *
1202  *	Compute the xfermask for this device. This is not as trivial
1203  *	as it seems if we must consider early devices correctly.
1204  *
1205  *	FIXME: pre IDE drive timing (do we care ?).
1206  *
1207  *	LOCKING:
1208  *	None.
1209  *
1210  *	RETURNS:
1211  *	Computed xfermask
1212  */
1213 static unsigned int ata_id_xfermask(const u16 *id)
1214 {
1215 	unsigned int pio_mask, mwdma_mask, udma_mask;
1216 
1217 	/* Usual case. Word 53 indicates word 64 is valid */
1218 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 		pio_mask <<= 3;
1221 		pio_mask |= 0x7;
1222 	} else {
1223 		/* If word 64 isn't valid then Word 51 high byte holds
1224 		 * the PIO timing number for the maximum. Turn it into
1225 		 * a mask.
1226 		 */
1227 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 		if (mode < 5)	/* Valid PIO range */
1229                 	pio_mask = (2 << mode) - 1;
1230 		else
1231 			pio_mask = 1;
1232 
1233 		/* But wait.. there's more. Design your standards by
1234 		 * committee and you too can get a free iordy field to
1235 		 * process. However its the speeds not the modes that
1236 		 * are supported... Note drivers using the timing API
1237 		 * will get this right anyway
1238 		 */
1239 	}
1240 
1241 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1242 
1243 	if (ata_id_is_cfa(id)) {
1244 		/*
1245 		 *	Process compact flash extended modes
1246 		 */
1247 		int pio = id[163] & 0x7;
1248 		int dma = (id[163] >> 3) & 7;
1249 
1250 		if (pio)
1251 			pio_mask |= (1 << 5);
1252 		if (pio > 1)
1253 			pio_mask |= (1 << 6);
1254 		if (dma)
1255 			mwdma_mask |= (1 << 3);
1256 		if (dma > 1)
1257 			mwdma_mask |= (1 << 4);
1258 	}
1259 
1260 	udma_mask = 0;
1261 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1263 
1264 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 }
1266 
1267 /**
1268  *	ata_port_queue_task - Queue port_task
1269  *	@ap: The ata_port to queue port_task for
1270  *	@fn: workqueue function to be scheduled
1271  *	@data: data for @fn to use
1272  *	@delay: delay time for workqueue function
1273  *
1274  *	Schedule @fn(@data) for execution after @delay jiffies using
1275  *	port_task.  There is one port_task per port and it's the
1276  *	user(low level driver)'s responsibility to make sure that only
1277  *	one task is active at any given time.
1278  *
1279  *	libata core layer takes care of synchronization between
1280  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1281  *	synchronization.
1282  *
1283  *	LOCKING:
1284  *	Inherited from caller.
1285  */
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 			 unsigned long delay)
1288 {
1289 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 	ap->port_task_data = data;
1291 
1292 	/* may fail if ata_port_flush_task() in progress */
1293 	queue_delayed_work(ata_wq, &ap->port_task, delay);
1294 }
1295 
1296 /**
1297  *	ata_port_flush_task - Flush port_task
1298  *	@ap: The ata_port to flush port_task for
1299  *
1300  *	After this function completes, port_task is guranteed not to
1301  *	be running or scheduled.
1302  *
1303  *	LOCKING:
1304  *	Kernel thread context (may sleep)
1305  */
1306 void ata_port_flush_task(struct ata_port *ap)
1307 {
1308 	DPRINTK("ENTER\n");
1309 
1310 	cancel_rearming_delayed_work(&ap->port_task);
1311 
1312 	if (ata_msg_ctl(ap))
1313 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 }
1315 
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1317 {
1318 	struct completion *waiting = qc->private_data;
1319 
1320 	complete(waiting);
1321 }
1322 
1323 /**
1324  *	ata_exec_internal_sg - execute libata internal command
1325  *	@dev: Device to which the command is sent
1326  *	@tf: Taskfile registers for the command and the result
1327  *	@cdb: CDB for packet command
1328  *	@dma_dir: Data tranfer direction of the command
1329  *	@sg: sg list for the data buffer of the command
1330  *	@n_elem: Number of sg entries
1331  *
1332  *	Executes libata internal command with timeout.  @tf contains
1333  *	command on entry and result on return.  Timeout and error
1334  *	conditions are reported via return value.  No recovery action
1335  *	is taken after a command times out.  It's caller's duty to
1336  *	clean up after timeout.
1337  *
1338  *	LOCKING:
1339  *	None.  Should be called with kernel context, might sleep.
1340  *
1341  *	RETURNS:
1342  *	Zero on success, AC_ERR_* mask on failure
1343  */
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 			      struct ata_taskfile *tf, const u8 *cdb,
1346 			      int dma_dir, struct scatterlist *sg,
1347 			      unsigned int n_elem)
1348 {
1349 	struct ata_port *ap = dev->ap;
1350 	u8 command = tf->command;
1351 	struct ata_queued_cmd *qc;
1352 	unsigned int tag, preempted_tag;
1353 	u32 preempted_sactive, preempted_qc_active;
1354 	DECLARE_COMPLETION_ONSTACK(wait);
1355 	unsigned long flags;
1356 	unsigned int err_mask;
1357 	int rc;
1358 
1359 	spin_lock_irqsave(ap->lock, flags);
1360 
1361 	/* no internal command while frozen */
1362 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 		spin_unlock_irqrestore(ap->lock, flags);
1364 		return AC_ERR_SYSTEM;
1365 	}
1366 
1367 	/* initialize internal qc */
1368 
1369 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1370 	 * drivers choke if any other tag is given.  This breaks
1371 	 * ata_tag_internal() test for those drivers.  Don't use new
1372 	 * EH stuff without converting to it.
1373 	 */
1374 	if (ap->ops->error_handler)
1375 		tag = ATA_TAG_INTERNAL;
1376 	else
1377 		tag = 0;
1378 
1379 	if (test_and_set_bit(tag, &ap->qc_allocated))
1380 		BUG();
1381 	qc = __ata_qc_from_tag(ap, tag);
1382 
1383 	qc->tag = tag;
1384 	qc->scsicmd = NULL;
1385 	qc->ap = ap;
1386 	qc->dev = dev;
1387 	ata_qc_reinit(qc);
1388 
1389 	preempted_tag = ap->active_tag;
1390 	preempted_sactive = ap->sactive;
1391 	preempted_qc_active = ap->qc_active;
1392 	ap->active_tag = ATA_TAG_POISON;
1393 	ap->sactive = 0;
1394 	ap->qc_active = 0;
1395 
1396 	/* prepare & issue qc */
1397 	qc->tf = *tf;
1398 	if (cdb)
1399 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 	qc->dma_dir = dma_dir;
1402 	if (dma_dir != DMA_NONE) {
1403 		unsigned int i, buflen = 0;
1404 
1405 		for (i = 0; i < n_elem; i++)
1406 			buflen += sg[i].length;
1407 
1408 		ata_sg_init(qc, sg, n_elem);
1409 		qc->nbytes = buflen;
1410 	}
1411 
1412 	qc->private_data = &wait;
1413 	qc->complete_fn = ata_qc_complete_internal;
1414 
1415 	ata_qc_issue(qc);
1416 
1417 	spin_unlock_irqrestore(ap->lock, flags);
1418 
1419 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1420 
1421 	ata_port_flush_task(ap);
1422 
1423 	if (!rc) {
1424 		spin_lock_irqsave(ap->lock, flags);
1425 
1426 		/* We're racing with irq here.  If we lose, the
1427 		 * following test prevents us from completing the qc
1428 		 * twice.  If we win, the port is frozen and will be
1429 		 * cleaned up by ->post_internal_cmd().
1430 		 */
1431 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 			qc->err_mask |= AC_ERR_TIMEOUT;
1433 
1434 			if (ap->ops->error_handler)
1435 				ata_port_freeze(ap);
1436 			else
1437 				ata_qc_complete(qc);
1438 
1439 			if (ata_msg_warn(ap))
1440 				ata_dev_printk(dev, KERN_WARNING,
1441 					"qc timeout (cmd 0x%x)\n", command);
1442 		}
1443 
1444 		spin_unlock_irqrestore(ap->lock, flags);
1445 	}
1446 
1447 	/* do post_internal_cmd */
1448 	if (ap->ops->post_internal_cmd)
1449 		ap->ops->post_internal_cmd(qc);
1450 
1451 	/* perform minimal error analysis */
1452 	if (qc->flags & ATA_QCFLAG_FAILED) {
1453 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 			qc->err_mask |= AC_ERR_DEV;
1455 
1456 		if (!qc->err_mask)
1457 			qc->err_mask |= AC_ERR_OTHER;
1458 
1459 		if (qc->err_mask & ~AC_ERR_OTHER)
1460 			qc->err_mask &= ~AC_ERR_OTHER;
1461 	}
1462 
1463 	/* finish up */
1464 	spin_lock_irqsave(ap->lock, flags);
1465 
1466 	*tf = qc->result_tf;
1467 	err_mask = qc->err_mask;
1468 
1469 	ata_qc_free(qc);
1470 	ap->active_tag = preempted_tag;
1471 	ap->sactive = preempted_sactive;
1472 	ap->qc_active = preempted_qc_active;
1473 
1474 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 	 * Until those drivers are fixed, we detect the condition
1476 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 	 * port.
1478 	 *
1479 	 * Note that this doesn't change any behavior as internal
1480 	 * command failure results in disabling the device in the
1481 	 * higher layer for LLDDs without new reset/EH callbacks.
1482 	 *
1483 	 * Kill the following code as soon as those drivers are fixed.
1484 	 */
1485 	if (ap->flags & ATA_FLAG_DISABLED) {
1486 		err_mask |= AC_ERR_SYSTEM;
1487 		ata_port_probe(ap);
1488 	}
1489 
1490 	spin_unlock_irqrestore(ap->lock, flags);
1491 
1492 	return err_mask;
1493 }
1494 
1495 /**
1496  *	ata_exec_internal - execute libata internal command
1497  *	@dev: Device to which the command is sent
1498  *	@tf: Taskfile registers for the command and the result
1499  *	@cdb: CDB for packet command
1500  *	@dma_dir: Data tranfer direction of the command
1501  *	@buf: Data buffer of the command
1502  *	@buflen: Length of data buffer
1503  *
1504  *	Wrapper around ata_exec_internal_sg() which takes simple
1505  *	buffer instead of sg list.
1506  *
1507  *	LOCKING:
1508  *	None.  Should be called with kernel context, might sleep.
1509  *
1510  *	RETURNS:
1511  *	Zero on success, AC_ERR_* mask on failure
1512  */
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 			   struct ata_taskfile *tf, const u8 *cdb,
1515 			   int dma_dir, void *buf, unsigned int buflen)
1516 {
1517 	struct scatterlist *psg = NULL, sg;
1518 	unsigned int n_elem = 0;
1519 
1520 	if (dma_dir != DMA_NONE) {
1521 		WARN_ON(!buf);
1522 		sg_init_one(&sg, buf, buflen);
1523 		psg = &sg;
1524 		n_elem++;
1525 	}
1526 
1527 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1528 }
1529 
1530 /**
1531  *	ata_do_simple_cmd - execute simple internal command
1532  *	@dev: Device to which the command is sent
1533  *	@cmd: Opcode to execute
1534  *
1535  *	Execute a 'simple' command, that only consists of the opcode
1536  *	'cmd' itself, without filling any other registers
1537  *
1538  *	LOCKING:
1539  *	Kernel thread context (may sleep).
1540  *
1541  *	RETURNS:
1542  *	Zero on success, AC_ERR_* mask on failure
1543  */
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1545 {
1546 	struct ata_taskfile tf;
1547 
1548 	ata_tf_init(dev, &tf);
1549 
1550 	tf.command = cmd;
1551 	tf.flags |= ATA_TFLAG_DEVICE;
1552 	tf.protocol = ATA_PROT_NODATA;
1553 
1554 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1555 }
1556 
1557 /**
1558  *	ata_pio_need_iordy	-	check if iordy needed
1559  *	@adev: ATA device
1560  *
1561  *	Check if the current speed of the device requires IORDY. Used
1562  *	by various controllers for chip configuration.
1563  */
1564 
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566 {
1567 	/* Controller doesn't support  IORDY. Probably a pointless check
1568 	   as the caller should know this */
1569 	if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 		return 0;
1571 	/* PIO3 and higher it is mandatory */
1572 	if (adev->pio_mode > XFER_PIO_2)
1573 		return 1;
1574 	/* We turn it on when possible */
1575 	if (ata_id_has_iordy(adev->id))
1576 		return 1;
1577 	return 0;
1578 }
1579 
1580 /**
1581  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1582  *	@adev: ATA device
1583  *
1584  *	Compute the highest mode possible if we are not using iordy. Return
1585  *	-1 if no iordy mode is available.
1586  */
1587 
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589 {
1590 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1592 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 		/* Is the speed faster than the drive allows non IORDY ? */
1594 		if (pio) {
1595 			/* This is cycle times not frequency - watch the logic! */
1596 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1597 				return 3 << ATA_SHIFT_PIO;
1598 			return 7 << ATA_SHIFT_PIO;
1599 		}
1600 	}
1601 	return 3 << ATA_SHIFT_PIO;
1602 }
1603 
1604 /**
1605  *	ata_dev_read_id - Read ID data from the specified device
1606  *	@dev: target device
1607  *	@p_class: pointer to class of the target device (may be changed)
1608  *	@flags: ATA_READID_* flags
1609  *	@id: buffer to read IDENTIFY data into
1610  *
1611  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1612  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1614  *	for pre-ATA4 drives.
1615  *
1616  *	LOCKING:
1617  *	Kernel thread context (may sleep)
1618  *
1619  *	RETURNS:
1620  *	0 on success, -errno otherwise.
1621  */
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 		    unsigned int flags, u16 *id)
1624 {
1625 	struct ata_port *ap = dev->ap;
1626 	unsigned int class = *p_class;
1627 	struct ata_taskfile tf;
1628 	unsigned int err_mask = 0;
1629 	const char *reason;
1630 	int may_fallback = 1, tried_spinup = 0;
1631 	int rc;
1632 
1633 	if (ata_msg_ctl(ap))
1634 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1635 
1636 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637  retry:
1638 	ata_tf_init(dev, &tf);
1639 
1640 	switch (class) {
1641 	case ATA_DEV_ATA:
1642 		tf.command = ATA_CMD_ID_ATA;
1643 		break;
1644 	case ATA_DEV_ATAPI:
1645 		tf.command = ATA_CMD_ID_ATAPI;
1646 		break;
1647 	default:
1648 		rc = -ENODEV;
1649 		reason = "unsupported class";
1650 		goto err_out;
1651 	}
1652 
1653 	tf.protocol = ATA_PROT_PIO;
1654 
1655 	/* Some devices choke if TF registers contain garbage.  Make
1656 	 * sure those are properly initialized.
1657 	 */
1658 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659 
1660 	/* Device presence detection is unreliable on some
1661 	 * controllers.  Always poll IDENTIFY if available.
1662 	 */
1663 	tf.flags |= ATA_TFLAG_POLLING;
1664 
1665 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1667 	if (err_mask) {
1668 		if (err_mask & AC_ERR_NODEV_HINT) {
1669 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 				ap->print_id, dev->devno);
1671 			return -ENOENT;
1672 		}
1673 
1674 		/* Device or controller might have reported the wrong
1675 		 * device class.  Give a shot at the other IDENTIFY if
1676 		 * the current one is aborted by the device.
1677 		 */
1678 		if (may_fallback &&
1679 		    (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 			may_fallback = 0;
1681 
1682 			if (class == ATA_DEV_ATA)
1683 				class = ATA_DEV_ATAPI;
1684 			else
1685 				class = ATA_DEV_ATA;
1686 			goto retry;
1687 		}
1688 
1689 		rc = -EIO;
1690 		reason = "I/O error";
1691 		goto err_out;
1692 	}
1693 
1694 	/* Falling back doesn't make sense if ID data was read
1695 	 * successfully at least once.
1696 	 */
1697 	may_fallback = 0;
1698 
1699 	swap_buf_le16(id, ATA_ID_WORDS);
1700 
1701 	/* sanity check */
1702 	rc = -EINVAL;
1703 	reason = "device reports invalid type";
1704 
1705 	if (class == ATA_DEV_ATA) {
1706 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 			goto err_out;
1708 	} else {
1709 		if (ata_id_is_ata(id))
1710 			goto err_out;
1711 	}
1712 
1713 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 		tried_spinup = 1;
1715 		/*
1716 		 * Drive powered-up in standby mode, and requires a specific
1717 		 * SET_FEATURES spin-up subcommand before it will accept
1718 		 * anything other than the original IDENTIFY command.
1719 		 */
1720 		ata_tf_init(dev, &tf);
1721 		tf.command = ATA_CMD_SET_FEATURES;
1722 		tf.feature = SETFEATURES_SPINUP;
1723 		tf.protocol = ATA_PROT_NODATA;
1724 		tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 		err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 		if (err_mask && id[2] != 0x738c) {
1727 			rc = -EIO;
1728 			reason = "SPINUP failed";
1729 			goto err_out;
1730 		}
1731 		/*
1732 		 * If the drive initially returned incomplete IDENTIFY info,
1733 		 * we now must reissue the IDENTIFY command.
1734 		 */
1735 		if (id[2] == 0x37c8)
1736 			goto retry;
1737 	}
1738 
1739 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1740 		/*
1741 		 * The exact sequence expected by certain pre-ATA4 drives is:
1742 		 * SRST RESET
1743 		 * IDENTIFY
1744 		 * INITIALIZE DEVICE PARAMETERS
1745 		 * anything else..
1746 		 * Some drives were very specific about that exact sequence.
1747 		 */
1748 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 			if (err_mask) {
1751 				rc = -EIO;
1752 				reason = "INIT_DEV_PARAMS failed";
1753 				goto err_out;
1754 			}
1755 
1756 			/* current CHS translation info (id[53-58]) might be
1757 			 * changed. reread the identify device info.
1758 			 */
1759 			flags &= ~ATA_READID_POSTRESET;
1760 			goto retry;
1761 		}
1762 	}
1763 
1764 	*p_class = class;
1765 
1766 	return 0;
1767 
1768  err_out:
1769 	if (ata_msg_warn(ap))
1770 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 	return rc;
1773 }
1774 
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1776 {
1777 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 }
1779 
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 			       char *desc, size_t desc_sz)
1782 {
1783 	struct ata_port *ap = dev->ap;
1784 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785 
1786 	if (!ata_id_has_ncq(dev->id)) {
1787 		desc[0] = '\0';
1788 		return;
1789 	}
1790 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 		snprintf(desc, desc_sz, "NCQ (not used)");
1792 		return;
1793 	}
1794 	if (ap->flags & ATA_FLAG_NCQ) {
1795 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 		dev->flags |= ATA_DFLAG_NCQ;
1797 	}
1798 
1799 	if (hdepth >= ddepth)
1800 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 	else
1802 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803 }
1804 
1805 /**
1806  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1807  *	@dev: Target device to configure
1808  *
1809  *	Configure @dev according to @dev->id.  Generic and low-level
1810  *	driver specific fixups are also applied.
1811  *
1812  *	LOCKING:
1813  *	Kernel thread context (may sleep)
1814  *
1815  *	RETURNS:
1816  *	0 on success, -errno otherwise
1817  */
1818 int ata_dev_configure(struct ata_device *dev)
1819 {
1820 	struct ata_port *ap = dev->ap;
1821 	struct ata_eh_context *ehc = &ap->eh_context;
1822 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 	const u16 *id = dev->id;
1824 	unsigned int xfer_mask;
1825 	char revbuf[7];		/* XYZ-99\0 */
1826 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 	char modelbuf[ATA_ID_PROD_LEN+1];
1828 	int rc;
1829 
1830 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 			       __FUNCTION__);
1833 		return 0;
1834 	}
1835 
1836 	if (ata_msg_probe(ap))
1837 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838 
1839 	/* set horkage */
1840 	dev->horkage |= ata_dev_blacklisted(dev);
1841 
1842 	/* let ACPI work its magic */
1843 	rc = ata_acpi_on_devcfg(dev);
1844 	if (rc)
1845 		return rc;
1846 
1847 	/* print device capabilities */
1848 	if (ata_msg_probe(ap))
1849 		ata_dev_printk(dev, KERN_DEBUG,
1850 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 			       __FUNCTION__,
1853 			       id[49], id[82], id[83], id[84],
1854 			       id[85], id[86], id[87], id[88]);
1855 
1856 	/* initialize to-be-configured parameters */
1857 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 	dev->max_sectors = 0;
1859 	dev->cdb_len = 0;
1860 	dev->n_sectors = 0;
1861 	dev->cylinders = 0;
1862 	dev->heads = 0;
1863 	dev->sectors = 0;
1864 
1865 	/*
1866 	 * common ATA, ATAPI feature tests
1867 	 */
1868 
1869 	/* find max transfer mode; for printk only */
1870 	xfer_mask = ata_id_xfermask(id);
1871 
1872 	if (ata_msg_probe(ap))
1873 		ata_dump_id(id);
1874 
1875 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 			sizeof(fwrevbuf));
1878 
1879 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 			sizeof(modelbuf));
1881 
1882 	/* ATA-specific feature tests */
1883 	if (dev->class == ATA_DEV_ATA) {
1884 		if (ata_id_is_cfa(id)) {
1885 			if (id[162] & 1) /* CPRM may make this media unusable */
1886 				ata_dev_printk(dev, KERN_WARNING,
1887 					       "supports DRM functions and may "
1888 					       "not be fully accessable.\n");
1889 			snprintf(revbuf, 7, "CFA");
1890 		}
1891 		else
1892 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1893 
1894 		dev->n_sectors = ata_id_n_sectors(id);
1895 
1896 		if (dev->id[59] & 0x100)
1897 			dev->multi_count = dev->id[59] & 0xff;
1898 
1899 		if (ata_id_has_lba(id)) {
1900 			const char *lba_desc;
1901 			char ncq_desc[20];
1902 
1903 			lba_desc = "LBA";
1904 			dev->flags |= ATA_DFLAG_LBA;
1905 			if (ata_id_has_lba48(id)) {
1906 				dev->flags |= ATA_DFLAG_LBA48;
1907 				lba_desc = "LBA48";
1908 
1909 				if (dev->n_sectors >= (1UL << 28) &&
1910 				    ata_id_has_flush_ext(id))
1911 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 			}
1913 
1914 			if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1915 			    ata_id_hpa_enabled(dev->id))
1916  				dev->n_sectors = ata_hpa_resize(dev);
1917 
1918 			/* config NCQ */
1919 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1920 
1921 			/* print device info to dmesg */
1922 			if (ata_msg_drv(ap) && print_info) {
1923 				ata_dev_printk(dev, KERN_INFO,
1924 					"%s: %s, %s, max %s\n",
1925 					revbuf, modelbuf, fwrevbuf,
1926 					ata_mode_string(xfer_mask));
1927 				ata_dev_printk(dev, KERN_INFO,
1928 					"%Lu sectors, multi %u: %s %s\n",
1929 					(unsigned long long)dev->n_sectors,
1930 					dev->multi_count, lba_desc, ncq_desc);
1931 			}
1932 		} else {
1933 			/* CHS */
1934 
1935 			/* Default translation */
1936 			dev->cylinders	= id[1];
1937 			dev->heads	= id[3];
1938 			dev->sectors	= id[6];
1939 
1940 			if (ata_id_current_chs_valid(id)) {
1941 				/* Current CHS translation is valid. */
1942 				dev->cylinders = id[54];
1943 				dev->heads     = id[55];
1944 				dev->sectors   = id[56];
1945 			}
1946 
1947 			/* print device info to dmesg */
1948 			if (ata_msg_drv(ap) && print_info) {
1949 				ata_dev_printk(dev, KERN_INFO,
1950 					"%s: %s, %s, max %s\n",
1951 					revbuf,	modelbuf, fwrevbuf,
1952 					ata_mode_string(xfer_mask));
1953 				ata_dev_printk(dev, KERN_INFO,
1954 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1955 					(unsigned long long)dev->n_sectors,
1956 					dev->multi_count, dev->cylinders,
1957 					dev->heads, dev->sectors);
1958 			}
1959 		}
1960 
1961 		dev->cdb_len = 16;
1962 	}
1963 
1964 	/* ATAPI-specific feature tests */
1965 	else if (dev->class == ATA_DEV_ATAPI) {
1966 		char *cdb_intr_string = "";
1967 
1968 		rc = atapi_cdb_len(id);
1969 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1970 			if (ata_msg_warn(ap))
1971 				ata_dev_printk(dev, KERN_WARNING,
1972 					       "unsupported CDB len\n");
1973 			rc = -EINVAL;
1974 			goto err_out_nosup;
1975 		}
1976 		dev->cdb_len = (unsigned int) rc;
1977 
1978 		if (ata_id_cdb_intr(dev->id)) {
1979 			dev->flags |= ATA_DFLAG_CDB_INTR;
1980 			cdb_intr_string = ", CDB intr";
1981 		}
1982 
1983 		/* print device info to dmesg */
1984 		if (ata_msg_drv(ap) && print_info)
1985 			ata_dev_printk(dev, KERN_INFO,
1986 				       "ATAPI: %s, %s, max %s%s\n",
1987 				       modelbuf, fwrevbuf,
1988 				       ata_mode_string(xfer_mask),
1989 				       cdb_intr_string);
1990 	}
1991 
1992 	/* determine max_sectors */
1993 	dev->max_sectors = ATA_MAX_SECTORS;
1994 	if (dev->flags & ATA_DFLAG_LBA48)
1995 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1996 
1997 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1998 		/* Let the user know. We don't want to disallow opens for
1999 		   rescue purposes, or in case the vendor is just a blithering
2000 		   idiot */
2001                 if (print_info) {
2002 			ata_dev_printk(dev, KERN_WARNING,
2003 "Drive reports diagnostics failure. This may indicate a drive\n");
2004 			ata_dev_printk(dev, KERN_WARNING,
2005 "fault or invalid emulation. Contact drive vendor for information.\n");
2006 		}
2007 	}
2008 
2009 	/* limit bridge transfers to udma5, 200 sectors */
2010 	if (ata_dev_knobble(dev)) {
2011 		if (ata_msg_drv(ap) && print_info)
2012 			ata_dev_printk(dev, KERN_INFO,
2013 				       "applying bridge limits\n");
2014 		dev->udma_mask &= ATA_UDMA5;
2015 		dev->max_sectors = ATA_MAX_SECTORS;
2016 	}
2017 
2018 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2019 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2020 					 dev->max_sectors);
2021 
2022 	if (ap->ops->dev_config)
2023 		ap->ops->dev_config(dev);
2024 
2025 	if (ata_msg_probe(ap))
2026 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2027 			__FUNCTION__, ata_chk_status(ap));
2028 	return 0;
2029 
2030 err_out_nosup:
2031 	if (ata_msg_probe(ap))
2032 		ata_dev_printk(dev, KERN_DEBUG,
2033 			       "%s: EXIT, err\n", __FUNCTION__);
2034 	return rc;
2035 }
2036 
2037 /**
2038  *	ata_cable_40wire	-	return 40 wire cable type
2039  *	@ap: port
2040  *
2041  *	Helper method for drivers which want to hardwire 40 wire cable
2042  *	detection.
2043  */
2044 
2045 int ata_cable_40wire(struct ata_port *ap)
2046 {
2047 	return ATA_CBL_PATA40;
2048 }
2049 
2050 /**
2051  *	ata_cable_80wire	-	return 80 wire cable type
2052  *	@ap: port
2053  *
2054  *	Helper method for drivers which want to hardwire 80 wire cable
2055  *	detection.
2056  */
2057 
2058 int ata_cable_80wire(struct ata_port *ap)
2059 {
2060 	return ATA_CBL_PATA80;
2061 }
2062 
2063 /**
2064  *	ata_cable_unknown	-	return unknown PATA cable.
2065  *	@ap: port
2066  *
2067  *	Helper method for drivers which have no PATA cable detection.
2068  */
2069 
2070 int ata_cable_unknown(struct ata_port *ap)
2071 {
2072 	return ATA_CBL_PATA_UNK;
2073 }
2074 
2075 /**
2076  *	ata_cable_sata	-	return SATA cable type
2077  *	@ap: port
2078  *
2079  *	Helper method for drivers which have SATA cables
2080  */
2081 
2082 int ata_cable_sata(struct ata_port *ap)
2083 {
2084 	return ATA_CBL_SATA;
2085 }
2086 
2087 /**
2088  *	ata_bus_probe - Reset and probe ATA bus
2089  *	@ap: Bus to probe
2090  *
2091  *	Master ATA bus probing function.  Initiates a hardware-dependent
2092  *	bus reset, then attempts to identify any devices found on
2093  *	the bus.
2094  *
2095  *	LOCKING:
2096  *	PCI/etc. bus probe sem.
2097  *
2098  *	RETURNS:
2099  *	Zero on success, negative errno otherwise.
2100  */
2101 
2102 int ata_bus_probe(struct ata_port *ap)
2103 {
2104 	unsigned int classes[ATA_MAX_DEVICES];
2105 	int tries[ATA_MAX_DEVICES];
2106 	int i, rc;
2107 	struct ata_device *dev;
2108 
2109 	ata_port_probe(ap);
2110 
2111 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2112 		tries[i] = ATA_PROBE_MAX_TRIES;
2113 
2114  retry:
2115 	/* reset and determine device classes */
2116 	ap->ops->phy_reset(ap);
2117 
2118 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 		dev = &ap->device[i];
2120 
2121 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 		    dev->class != ATA_DEV_UNKNOWN)
2123 			classes[dev->devno] = dev->class;
2124 		else
2125 			classes[dev->devno] = ATA_DEV_NONE;
2126 
2127 		dev->class = ATA_DEV_UNKNOWN;
2128 	}
2129 
2130 	ata_port_probe(ap);
2131 
2132 	/* after the reset the device state is PIO 0 and the controller
2133 	   state is undefined. Record the mode */
2134 
2135 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2136 		ap->device[i].pio_mode = XFER_PIO_0;
2137 
2138 	/* read IDENTIFY page and configure devices. We have to do the identify
2139 	   specific sequence bass-ackwards so that PDIAG- is released by
2140 	   the slave device */
2141 
2142 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
2143 		dev = &ap->device[i];
2144 
2145 		if (tries[i])
2146 			dev->class = classes[i];
2147 
2148 		if (!ata_dev_enabled(dev))
2149 			continue;
2150 
2151 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2152 				     dev->id);
2153 		if (rc)
2154 			goto fail;
2155 	}
2156 
2157 	/* Now ask for the cable type as PDIAG- should have been released */
2158 	if (ap->ops->cable_detect)
2159 		ap->cbl = ap->ops->cable_detect(ap);
2160 
2161 	/* After the identify sequence we can now set up the devices. We do
2162 	   this in the normal order so that the user doesn't get confused */
2163 
2164 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
2165 		dev = &ap->device[i];
2166 		if (!ata_dev_enabled(dev))
2167 			continue;
2168 
2169 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2170 		rc = ata_dev_configure(dev);
2171 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2172 		if (rc)
2173 			goto fail;
2174 	}
2175 
2176 	/* configure transfer mode */
2177 	rc = ata_set_mode(ap, &dev);
2178 	if (rc)
2179 		goto fail;
2180 
2181 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2182 		if (ata_dev_enabled(&ap->device[i]))
2183 			return 0;
2184 
2185 	/* no device present, disable port */
2186 	ata_port_disable(ap);
2187 	ap->ops->port_disable(ap);
2188 	return -ENODEV;
2189 
2190  fail:
2191 	tries[dev->devno]--;
2192 
2193 	switch (rc) {
2194 	case -EINVAL:
2195 		/* eeek, something went very wrong, give up */
2196 		tries[dev->devno] = 0;
2197 		break;
2198 
2199 	case -ENODEV:
2200 		/* give it just one more chance */
2201 		tries[dev->devno] = min(tries[dev->devno], 1);
2202 	case -EIO:
2203 		if (tries[dev->devno] == 1) {
2204 			/* This is the last chance, better to slow
2205 			 * down than lose it.
2206 			 */
2207 			sata_down_spd_limit(ap);
2208 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2209 		}
2210 	}
2211 
2212 	if (!tries[dev->devno])
2213 		ata_dev_disable(dev);
2214 
2215 	goto retry;
2216 }
2217 
2218 /**
2219  *	ata_port_probe - Mark port as enabled
2220  *	@ap: Port for which we indicate enablement
2221  *
2222  *	Modify @ap data structure such that the system
2223  *	thinks that the entire port is enabled.
2224  *
2225  *	LOCKING: host lock, or some other form of
2226  *	serialization.
2227  */
2228 
2229 void ata_port_probe(struct ata_port *ap)
2230 {
2231 	ap->flags &= ~ATA_FLAG_DISABLED;
2232 }
2233 
2234 /**
2235  *	sata_print_link_status - Print SATA link status
2236  *	@ap: SATA port to printk link status about
2237  *
2238  *	This function prints link speed and status of a SATA link.
2239  *
2240  *	LOCKING:
2241  *	None.
2242  */
2243 void sata_print_link_status(struct ata_port *ap)
2244 {
2245 	u32 sstatus, scontrol, tmp;
2246 
2247 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2248 		return;
2249 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
2250 
2251 	if (ata_port_online(ap)) {
2252 		tmp = (sstatus >> 4) & 0xf;
2253 		ata_port_printk(ap, KERN_INFO,
2254 				"SATA link up %s (SStatus %X SControl %X)\n",
2255 				sata_spd_string(tmp), sstatus, scontrol);
2256 	} else {
2257 		ata_port_printk(ap, KERN_INFO,
2258 				"SATA link down (SStatus %X SControl %X)\n",
2259 				sstatus, scontrol);
2260 	}
2261 }
2262 
2263 /**
2264  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
2265  *	@ap: SATA port associated with target SATA PHY.
2266  *
2267  *	This function issues commands to standard SATA Sxxx
2268  *	PHY registers, to wake up the phy (and device), and
2269  *	clear any reset condition.
2270  *
2271  *	LOCKING:
2272  *	PCI/etc. bus probe sem.
2273  *
2274  */
2275 void __sata_phy_reset(struct ata_port *ap)
2276 {
2277 	u32 sstatus;
2278 	unsigned long timeout = jiffies + (HZ * 5);
2279 
2280 	if (ap->flags & ATA_FLAG_SATA_RESET) {
2281 		/* issue phy wake/reset */
2282 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2283 		/* Couldn't find anything in SATA I/II specs, but
2284 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2285 		mdelay(1);
2286 	}
2287 	/* phy wake/clear reset */
2288 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2289 
2290 	/* wait for phy to become ready, if necessary */
2291 	do {
2292 		msleep(200);
2293 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2294 		if ((sstatus & 0xf) != 1)
2295 			break;
2296 	} while (time_before(jiffies, timeout));
2297 
2298 	/* print link status */
2299 	sata_print_link_status(ap);
2300 
2301 	/* TODO: phy layer with polling, timeouts, etc. */
2302 	if (!ata_port_offline(ap))
2303 		ata_port_probe(ap);
2304 	else
2305 		ata_port_disable(ap);
2306 
2307 	if (ap->flags & ATA_FLAG_DISABLED)
2308 		return;
2309 
2310 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2311 		ata_port_disable(ap);
2312 		return;
2313 	}
2314 
2315 	ap->cbl = ATA_CBL_SATA;
2316 }
2317 
2318 /**
2319  *	sata_phy_reset - Reset SATA bus.
2320  *	@ap: SATA port associated with target SATA PHY.
2321  *
2322  *	This function resets the SATA bus, and then probes
2323  *	the bus for devices.
2324  *
2325  *	LOCKING:
2326  *	PCI/etc. bus probe sem.
2327  *
2328  */
2329 void sata_phy_reset(struct ata_port *ap)
2330 {
2331 	__sata_phy_reset(ap);
2332 	if (ap->flags & ATA_FLAG_DISABLED)
2333 		return;
2334 	ata_bus_reset(ap);
2335 }
2336 
2337 /**
2338  *	ata_dev_pair		-	return other device on cable
2339  *	@adev: device
2340  *
2341  *	Obtain the other device on the same cable, or if none is
2342  *	present NULL is returned
2343  */
2344 
2345 struct ata_device *ata_dev_pair(struct ata_device *adev)
2346 {
2347 	struct ata_port *ap = adev->ap;
2348 	struct ata_device *pair = &ap->device[1 - adev->devno];
2349 	if (!ata_dev_enabled(pair))
2350 		return NULL;
2351 	return pair;
2352 }
2353 
2354 /**
2355  *	ata_port_disable - Disable port.
2356  *	@ap: Port to be disabled.
2357  *
2358  *	Modify @ap data structure such that the system
2359  *	thinks that the entire port is disabled, and should
2360  *	never attempt to probe or communicate with devices
2361  *	on this port.
2362  *
2363  *	LOCKING: host lock, or some other form of
2364  *	serialization.
2365  */
2366 
2367 void ata_port_disable(struct ata_port *ap)
2368 {
2369 	ap->device[0].class = ATA_DEV_NONE;
2370 	ap->device[1].class = ATA_DEV_NONE;
2371 	ap->flags |= ATA_FLAG_DISABLED;
2372 }
2373 
2374 /**
2375  *	sata_down_spd_limit - adjust SATA spd limit downward
2376  *	@ap: Port to adjust SATA spd limit for
2377  *
2378  *	Adjust SATA spd limit of @ap downward.  Note that this
2379  *	function only adjusts the limit.  The change must be applied
2380  *	using sata_set_spd().
2381  *
2382  *	LOCKING:
2383  *	Inherited from caller.
2384  *
2385  *	RETURNS:
2386  *	0 on success, negative errno on failure
2387  */
2388 int sata_down_spd_limit(struct ata_port *ap)
2389 {
2390 	u32 sstatus, spd, mask;
2391 	int rc, highbit;
2392 
2393 	if (!sata_scr_valid(ap))
2394 		return -EOPNOTSUPP;
2395 
2396 	/* If SCR can be read, use it to determine the current SPD.
2397 	 * If not, use cached value in ap->sata_spd.
2398 	 */
2399 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2400 	if (rc == 0)
2401 		spd = (sstatus >> 4) & 0xf;
2402 	else
2403 		spd = ap->sata_spd;
2404 
2405 	mask = ap->sata_spd_limit;
2406 	if (mask <= 1)
2407 		return -EINVAL;
2408 
2409 	/* unconditionally mask off the highest bit */
2410 	highbit = fls(mask) - 1;
2411 	mask &= ~(1 << highbit);
2412 
2413 	/* Mask off all speeds higher than or equal to the current
2414 	 * one.  Force 1.5Gbps if current SPD is not available.
2415 	 */
2416 	if (spd > 1)
2417 		mask &= (1 << (spd - 1)) - 1;
2418 	else
2419 		mask &= 1;
2420 
2421 	/* were we already at the bottom? */
2422 	if (!mask)
2423 		return -EINVAL;
2424 
2425 	ap->sata_spd_limit = mask;
2426 
2427 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2428 			sata_spd_string(fls(mask)));
2429 
2430 	return 0;
2431 }
2432 
2433 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2434 {
2435 	u32 spd, limit;
2436 
2437 	if (ap->sata_spd_limit == UINT_MAX)
2438 		limit = 0;
2439 	else
2440 		limit = fls(ap->sata_spd_limit);
2441 
2442 	spd = (*scontrol >> 4) & 0xf;
2443 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2444 
2445 	return spd != limit;
2446 }
2447 
2448 /**
2449  *	sata_set_spd_needed - is SATA spd configuration needed
2450  *	@ap: Port in question
2451  *
2452  *	Test whether the spd limit in SControl matches
2453  *	@ap->sata_spd_limit.  This function is used to determine
2454  *	whether hardreset is necessary to apply SATA spd
2455  *	configuration.
2456  *
2457  *	LOCKING:
2458  *	Inherited from caller.
2459  *
2460  *	RETURNS:
2461  *	1 if SATA spd configuration is needed, 0 otherwise.
2462  */
2463 int sata_set_spd_needed(struct ata_port *ap)
2464 {
2465 	u32 scontrol;
2466 
2467 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2468 		return 0;
2469 
2470 	return __sata_set_spd_needed(ap, &scontrol);
2471 }
2472 
2473 /**
2474  *	sata_set_spd - set SATA spd according to spd limit
2475  *	@ap: Port to set SATA spd for
2476  *
2477  *	Set SATA spd of @ap according to sata_spd_limit.
2478  *
2479  *	LOCKING:
2480  *	Inherited from caller.
2481  *
2482  *	RETURNS:
2483  *	0 if spd doesn't need to be changed, 1 if spd has been
2484  *	changed.  Negative errno if SCR registers are inaccessible.
2485  */
2486 int sata_set_spd(struct ata_port *ap)
2487 {
2488 	u32 scontrol;
2489 	int rc;
2490 
2491 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2492 		return rc;
2493 
2494 	if (!__sata_set_spd_needed(ap, &scontrol))
2495 		return 0;
2496 
2497 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2498 		return rc;
2499 
2500 	return 1;
2501 }
2502 
2503 /*
2504  * This mode timing computation functionality is ported over from
2505  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2506  */
2507 /*
2508  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2509  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2510  * for UDMA6, which is currently supported only by Maxtor drives.
2511  *
2512  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2513  */
2514 
2515 static const struct ata_timing ata_timing[] = {
2516 
2517 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2518 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2519 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2520 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2521 
2522 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2523 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2524 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2525 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2526 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2527 
2528 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2529 
2530 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2531 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2532 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2533 
2534 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2535 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2536 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2537 
2538 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2539 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2540 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2541 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2542 
2543 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2544 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2545 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2546 
2547 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2548 
2549 	{ 0xFF }
2550 };
2551 
2552 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2553 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2554 
2555 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2556 {
2557 	q->setup   = EZ(t->setup   * 1000,  T);
2558 	q->act8b   = EZ(t->act8b   * 1000,  T);
2559 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2560 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2561 	q->active  = EZ(t->active  * 1000,  T);
2562 	q->recover = EZ(t->recover * 1000,  T);
2563 	q->cycle   = EZ(t->cycle   * 1000,  T);
2564 	q->udma    = EZ(t->udma    * 1000, UT);
2565 }
2566 
2567 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2568 		      struct ata_timing *m, unsigned int what)
2569 {
2570 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2571 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2572 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2573 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2574 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2575 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2576 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2577 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2578 }
2579 
2580 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2581 {
2582 	const struct ata_timing *t;
2583 
2584 	for (t = ata_timing; t->mode != speed; t++)
2585 		if (t->mode == 0xFF)
2586 			return NULL;
2587 	return t;
2588 }
2589 
2590 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2591 		       struct ata_timing *t, int T, int UT)
2592 {
2593 	const struct ata_timing *s;
2594 	struct ata_timing p;
2595 
2596 	/*
2597 	 * Find the mode.
2598 	 */
2599 
2600 	if (!(s = ata_timing_find_mode(speed)))
2601 		return -EINVAL;
2602 
2603 	memcpy(t, s, sizeof(*s));
2604 
2605 	/*
2606 	 * If the drive is an EIDE drive, it can tell us it needs extended
2607 	 * PIO/MW_DMA cycle timing.
2608 	 */
2609 
2610 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2611 		memset(&p, 0, sizeof(p));
2612 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2613 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2614 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2615 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2616 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2617 		}
2618 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2619 	}
2620 
2621 	/*
2622 	 * Convert the timing to bus clock counts.
2623 	 */
2624 
2625 	ata_timing_quantize(t, t, T, UT);
2626 
2627 	/*
2628 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2629 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2630 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2631 	 */
2632 
2633 	if (speed > XFER_PIO_6) {
2634 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2635 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2636 	}
2637 
2638 	/*
2639 	 * Lengthen active & recovery time so that cycle time is correct.
2640 	 */
2641 
2642 	if (t->act8b + t->rec8b < t->cyc8b) {
2643 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2644 		t->rec8b = t->cyc8b - t->act8b;
2645 	}
2646 
2647 	if (t->active + t->recover < t->cycle) {
2648 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2649 		t->recover = t->cycle - t->active;
2650 	}
2651 
2652 	/* In a few cases quantisation may produce enough errors to
2653 	   leave t->cycle too low for the sum of active and recovery
2654 	   if so we must correct this */
2655 	if (t->active + t->recover > t->cycle)
2656 		t->cycle = t->active + t->recover;
2657 
2658 	return 0;
2659 }
2660 
2661 /**
2662  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2663  *	@dev: Device to adjust xfer masks
2664  *	@sel: ATA_DNXFER_* selector
2665  *
2666  *	Adjust xfer masks of @dev downward.  Note that this function
2667  *	does not apply the change.  Invoking ata_set_mode() afterwards
2668  *	will apply the limit.
2669  *
2670  *	LOCKING:
2671  *	Inherited from caller.
2672  *
2673  *	RETURNS:
2674  *	0 on success, negative errno on failure
2675  */
2676 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2677 {
2678 	char buf[32];
2679 	unsigned int orig_mask, xfer_mask;
2680 	unsigned int pio_mask, mwdma_mask, udma_mask;
2681 	int quiet, highbit;
2682 
2683 	quiet = !!(sel & ATA_DNXFER_QUIET);
2684 	sel &= ~ATA_DNXFER_QUIET;
2685 
2686 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2687 						  dev->mwdma_mask,
2688 						  dev->udma_mask);
2689 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2690 
2691 	switch (sel) {
2692 	case ATA_DNXFER_PIO:
2693 		highbit = fls(pio_mask) - 1;
2694 		pio_mask &= ~(1 << highbit);
2695 		break;
2696 
2697 	case ATA_DNXFER_DMA:
2698 		if (udma_mask) {
2699 			highbit = fls(udma_mask) - 1;
2700 			udma_mask &= ~(1 << highbit);
2701 			if (!udma_mask)
2702 				return -ENOENT;
2703 		} else if (mwdma_mask) {
2704 			highbit = fls(mwdma_mask) - 1;
2705 			mwdma_mask &= ~(1 << highbit);
2706 			if (!mwdma_mask)
2707 				return -ENOENT;
2708 		}
2709 		break;
2710 
2711 	case ATA_DNXFER_40C:
2712 		udma_mask &= ATA_UDMA_MASK_40C;
2713 		break;
2714 
2715 	case ATA_DNXFER_FORCE_PIO0:
2716 		pio_mask &= 1;
2717 	case ATA_DNXFER_FORCE_PIO:
2718 		mwdma_mask = 0;
2719 		udma_mask = 0;
2720 		break;
2721 
2722 	default:
2723 		BUG();
2724 	}
2725 
2726 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2727 
2728 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2729 		return -ENOENT;
2730 
2731 	if (!quiet) {
2732 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2733 			snprintf(buf, sizeof(buf), "%s:%s",
2734 				 ata_mode_string(xfer_mask),
2735 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2736 		else
2737 			snprintf(buf, sizeof(buf), "%s",
2738 				 ata_mode_string(xfer_mask));
2739 
2740 		ata_dev_printk(dev, KERN_WARNING,
2741 			       "limiting speed to %s\n", buf);
2742 	}
2743 
2744 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2745 			    &dev->udma_mask);
2746 
2747 	return 0;
2748 }
2749 
2750 static int ata_dev_set_mode(struct ata_device *dev)
2751 {
2752 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2753 	unsigned int err_mask;
2754 	int rc;
2755 
2756 	dev->flags &= ~ATA_DFLAG_PIO;
2757 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2758 		dev->flags |= ATA_DFLAG_PIO;
2759 
2760 	err_mask = ata_dev_set_xfermode(dev);
2761 	/* Old CFA may refuse this command, which is just fine */
2762 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2763         	err_mask &= ~AC_ERR_DEV;
2764 
2765 	if (err_mask) {
2766 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2767 			       "(err_mask=0x%x)\n", err_mask);
2768 		return -EIO;
2769 	}
2770 
2771 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2772 	rc = ata_dev_revalidate(dev, 0);
2773 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2774 	if (rc)
2775 		return rc;
2776 
2777 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2778 		dev->xfer_shift, (int)dev->xfer_mode);
2779 
2780 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2781 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2782 	return 0;
2783 }
2784 
2785 /**
2786  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2787  *	@ap: port on which timings will be programmed
2788  *	@r_failed_dev: out paramter for failed device
2789  *
2790  *	Standard implementation of the function used to tune and set
2791  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2792  *	ata_dev_set_mode() fails, pointer to the failing device is
2793  *	returned in @r_failed_dev.
2794  *
2795  *	LOCKING:
2796  *	PCI/etc. bus probe sem.
2797  *
2798  *	RETURNS:
2799  *	0 on success, negative errno otherwise
2800  */
2801 
2802 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2803 {
2804 	struct ata_device *dev;
2805 	int i, rc = 0, used_dma = 0, found = 0;
2806 
2807 
2808 	/* step 1: calculate xfer_mask */
2809 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2810 		unsigned int pio_mask, dma_mask;
2811 
2812 		dev = &ap->device[i];
2813 
2814 		if (!ata_dev_enabled(dev))
2815 			continue;
2816 
2817 		ata_dev_xfermask(dev);
2818 
2819 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2823 
2824 		found = 1;
2825 		if (dev->dma_mode)
2826 			used_dma = 1;
2827 	}
2828 	if (!found)
2829 		goto out;
2830 
2831 	/* step 2: always set host PIO timings */
2832 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2833 		dev = &ap->device[i];
2834 		if (!ata_dev_enabled(dev))
2835 			continue;
2836 
2837 		if (!dev->pio_mode) {
2838 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2839 			rc = -EINVAL;
2840 			goto out;
2841 		}
2842 
2843 		dev->xfer_mode = dev->pio_mode;
2844 		dev->xfer_shift = ATA_SHIFT_PIO;
2845 		if (ap->ops->set_piomode)
2846 			ap->ops->set_piomode(ap, dev);
2847 	}
2848 
2849 	/* step 3: set host DMA timings */
2850 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2851 		dev = &ap->device[i];
2852 
2853 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2854 			continue;
2855 
2856 		dev->xfer_mode = dev->dma_mode;
2857 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2858 		if (ap->ops->set_dmamode)
2859 			ap->ops->set_dmamode(ap, dev);
2860 	}
2861 
2862 	/* step 4: update devices' xfer mode */
2863 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 		dev = &ap->device[i];
2865 
2866 		/* don't update suspended devices' xfer mode */
2867 		if (!ata_dev_enabled(dev))
2868 			continue;
2869 
2870 		rc = ata_dev_set_mode(dev);
2871 		if (rc)
2872 			goto out;
2873 	}
2874 
2875 	/* Record simplex status. If we selected DMA then the other
2876 	 * host channels are not permitted to do so.
2877 	 */
2878 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2879 		ap->host->simplex_claimed = ap;
2880 
2881  out:
2882 	if (rc)
2883 		*r_failed_dev = dev;
2884 	return rc;
2885 }
2886 
2887 /**
2888  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2889  *	@ap: port on which timings will be programmed
2890  *	@r_failed_dev: out paramter for failed device
2891  *
2892  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2893  *	ata_set_mode() fails, pointer to the failing device is
2894  *	returned in @r_failed_dev.
2895  *
2896  *	LOCKING:
2897  *	PCI/etc. bus probe sem.
2898  *
2899  *	RETURNS:
2900  *	0 on success, negative errno otherwise
2901  */
2902 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2903 {
2904 	/* has private set_mode? */
2905 	if (ap->ops->set_mode)
2906 		return ap->ops->set_mode(ap, r_failed_dev);
2907 	return ata_do_set_mode(ap, r_failed_dev);
2908 }
2909 
2910 /**
2911  *	ata_tf_to_host - issue ATA taskfile to host controller
2912  *	@ap: port to which command is being issued
2913  *	@tf: ATA taskfile register set
2914  *
2915  *	Issues ATA taskfile register set to ATA host controller,
2916  *	with proper synchronization with interrupt handler and
2917  *	other threads.
2918  *
2919  *	LOCKING:
2920  *	spin_lock_irqsave(host lock)
2921  */
2922 
2923 static inline void ata_tf_to_host(struct ata_port *ap,
2924 				  const struct ata_taskfile *tf)
2925 {
2926 	ap->ops->tf_load(ap, tf);
2927 	ap->ops->exec_command(ap, tf);
2928 }
2929 
2930 /**
2931  *	ata_busy_sleep - sleep until BSY clears, or timeout
2932  *	@ap: port containing status register to be polled
2933  *	@tmout_pat: impatience timeout
2934  *	@tmout: overall timeout
2935  *
2936  *	Sleep until ATA Status register bit BSY clears,
2937  *	or a timeout occurs.
2938  *
2939  *	LOCKING:
2940  *	Kernel thread context (may sleep).
2941  *
2942  *	RETURNS:
2943  *	0 on success, -errno otherwise.
2944  */
2945 int ata_busy_sleep(struct ata_port *ap,
2946 		   unsigned long tmout_pat, unsigned long tmout)
2947 {
2948 	unsigned long timer_start, timeout;
2949 	u8 status;
2950 
2951 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2952 	timer_start = jiffies;
2953 	timeout = timer_start + tmout_pat;
2954 	while (status != 0xff && (status & ATA_BUSY) &&
2955 	       time_before(jiffies, timeout)) {
2956 		msleep(50);
2957 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2958 	}
2959 
2960 	if (status != 0xff && (status & ATA_BUSY))
2961 		ata_port_printk(ap, KERN_WARNING,
2962 				"port is slow to respond, please be patient "
2963 				"(Status 0x%x)\n", status);
2964 
2965 	timeout = timer_start + tmout;
2966 	while (status != 0xff && (status & ATA_BUSY) &&
2967 	       time_before(jiffies, timeout)) {
2968 		msleep(50);
2969 		status = ata_chk_status(ap);
2970 	}
2971 
2972 	if (status == 0xff)
2973 		return -ENODEV;
2974 
2975 	if (status & ATA_BUSY) {
2976 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2977 				"(%lu secs, Status 0x%x)\n",
2978 				tmout / HZ, status);
2979 		return -EBUSY;
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 /**
2986  *	ata_wait_ready - sleep until BSY clears, or timeout
2987  *	@ap: port containing status register to be polled
2988  *	@deadline: deadline jiffies for the operation
2989  *
2990  *	Sleep until ATA Status register bit BSY clears, or timeout
2991  *	occurs.
2992  *
2993  *	LOCKING:
2994  *	Kernel thread context (may sleep).
2995  *
2996  *	RETURNS:
2997  *	0 on success, -errno otherwise.
2998  */
2999 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3000 {
3001 	unsigned long start = jiffies;
3002 	int warned = 0;
3003 
3004 	while (1) {
3005 		u8 status = ata_chk_status(ap);
3006 		unsigned long now = jiffies;
3007 
3008 		if (!(status & ATA_BUSY))
3009 			return 0;
3010 		if (!ata_port_online(ap) && status == 0xff)
3011 			return -ENODEV;
3012 		if (time_after(now, deadline))
3013 			return -EBUSY;
3014 
3015 		if (!warned && time_after(now, start + 5 * HZ) &&
3016 		    (deadline - now > 3 * HZ)) {
3017 			ata_port_printk(ap, KERN_WARNING,
3018 				"port is slow to respond, please be patient "
3019 				"(Status 0x%x)\n", status);
3020 			warned = 1;
3021 		}
3022 
3023 		msleep(50);
3024 	}
3025 }
3026 
3027 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3028 			      unsigned long deadline)
3029 {
3030 	struct ata_ioports *ioaddr = &ap->ioaddr;
3031 	unsigned int dev0 = devmask & (1 << 0);
3032 	unsigned int dev1 = devmask & (1 << 1);
3033 	int rc, ret = 0;
3034 
3035 	/* if device 0 was found in ata_devchk, wait for its
3036 	 * BSY bit to clear
3037 	 */
3038 	if (dev0) {
3039 		rc = ata_wait_ready(ap, deadline);
3040 		if (rc) {
3041 			if (rc != -ENODEV)
3042 				return rc;
3043 			ret = rc;
3044 		}
3045 	}
3046 
3047 	/* if device 1 was found in ata_devchk, wait for register
3048 	 * access briefly, then wait for BSY to clear.
3049 	 */
3050 	if (dev1) {
3051 		int i;
3052 
3053 		ap->ops->dev_select(ap, 1);
3054 
3055 		/* Wait for register access.  Some ATAPI devices fail
3056 		 * to set nsect/lbal after reset, so don't waste too
3057 		 * much time on it.  We're gonna wait for !BSY anyway.
3058 		 */
3059 		for (i = 0; i < 2; i++) {
3060 			u8 nsect, lbal;
3061 
3062 			nsect = ioread8(ioaddr->nsect_addr);
3063 			lbal = ioread8(ioaddr->lbal_addr);
3064 			if ((nsect == 1) && (lbal == 1))
3065 				break;
3066 			msleep(50);	/* give drive a breather */
3067 		}
3068 
3069 		rc = ata_wait_ready(ap, deadline);
3070 		if (rc) {
3071 			if (rc != -ENODEV)
3072 				return rc;
3073 			ret = rc;
3074 		}
3075 	}
3076 
3077 	/* is all this really necessary? */
3078 	ap->ops->dev_select(ap, 0);
3079 	if (dev1)
3080 		ap->ops->dev_select(ap, 1);
3081 	if (dev0)
3082 		ap->ops->dev_select(ap, 0);
3083 
3084 	return ret;
3085 }
3086 
3087 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3088 			     unsigned long deadline)
3089 {
3090 	struct ata_ioports *ioaddr = &ap->ioaddr;
3091 
3092 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3093 
3094 	/* software reset.  causes dev0 to be selected */
3095 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3096 	udelay(20);	/* FIXME: flush */
3097 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3098 	udelay(20);	/* FIXME: flush */
3099 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3100 
3101 	/* spec mandates ">= 2ms" before checking status.
3102 	 * We wait 150ms, because that was the magic delay used for
3103 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3104 	 * between when the ATA command register is written, and then
3105 	 * status is checked.  Because waiting for "a while" before
3106 	 * checking status is fine, post SRST, we perform this magic
3107 	 * delay here as well.
3108 	 *
3109 	 * Old drivers/ide uses the 2mS rule and then waits for ready
3110 	 */
3111 	msleep(150);
3112 
3113 	/* Before we perform post reset processing we want to see if
3114 	 * the bus shows 0xFF because the odd clown forgets the D7
3115 	 * pulldown resistor.
3116 	 */
3117 	if (ata_check_status(ap) == 0xFF)
3118 		return -ENODEV;
3119 
3120 	return ata_bus_post_reset(ap, devmask, deadline);
3121 }
3122 
3123 /**
3124  *	ata_bus_reset - reset host port and associated ATA channel
3125  *	@ap: port to reset
3126  *
3127  *	This is typically the first time we actually start issuing
3128  *	commands to the ATA channel.  We wait for BSY to clear, then
3129  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3130  *	result.  Determine what devices, if any, are on the channel
3131  *	by looking at the device 0/1 error register.  Look at the signature
3132  *	stored in each device's taskfile registers, to determine if
3133  *	the device is ATA or ATAPI.
3134  *
3135  *	LOCKING:
3136  *	PCI/etc. bus probe sem.
3137  *	Obtains host lock.
3138  *
3139  *	SIDE EFFECTS:
3140  *	Sets ATA_FLAG_DISABLED if bus reset fails.
3141  */
3142 
3143 void ata_bus_reset(struct ata_port *ap)
3144 {
3145 	struct ata_ioports *ioaddr = &ap->ioaddr;
3146 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3147 	u8 err;
3148 	unsigned int dev0, dev1 = 0, devmask = 0;
3149 	int rc;
3150 
3151 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3152 
3153 	/* determine if device 0/1 are present */
3154 	if (ap->flags & ATA_FLAG_SATA_RESET)
3155 		dev0 = 1;
3156 	else {
3157 		dev0 = ata_devchk(ap, 0);
3158 		if (slave_possible)
3159 			dev1 = ata_devchk(ap, 1);
3160 	}
3161 
3162 	if (dev0)
3163 		devmask |= (1 << 0);
3164 	if (dev1)
3165 		devmask |= (1 << 1);
3166 
3167 	/* select device 0 again */
3168 	ap->ops->dev_select(ap, 0);
3169 
3170 	/* issue bus reset */
3171 	if (ap->flags & ATA_FLAG_SRST) {
3172 		rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3173 		if (rc && rc != -ENODEV)
3174 			goto err_out;
3175 	}
3176 
3177 	/*
3178 	 * determine by signature whether we have ATA or ATAPI devices
3179 	 */
3180 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3181 	if ((slave_possible) && (err != 0x81))
3182 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3183 
3184 	/* is double-select really necessary? */
3185 	if (ap->device[1].class != ATA_DEV_NONE)
3186 		ap->ops->dev_select(ap, 1);
3187 	if (ap->device[0].class != ATA_DEV_NONE)
3188 		ap->ops->dev_select(ap, 0);
3189 
3190 	/* if no devices were detected, disable this port */
3191 	if ((ap->device[0].class == ATA_DEV_NONE) &&
3192 	    (ap->device[1].class == ATA_DEV_NONE))
3193 		goto err_out;
3194 
3195 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3196 		/* set up device control for ATA_FLAG_SATA_RESET */
3197 		iowrite8(ap->ctl, ioaddr->ctl_addr);
3198 	}
3199 
3200 	DPRINTK("EXIT\n");
3201 	return;
3202 
3203 err_out:
3204 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
3205 	ap->ops->port_disable(ap);
3206 
3207 	DPRINTK("EXIT\n");
3208 }
3209 
3210 /**
3211  *	sata_phy_debounce - debounce SATA phy status
3212  *	@ap: ATA port to debounce SATA phy status for
3213  *	@params: timing parameters { interval, duratinon, timeout } in msec
3214  *	@deadline: deadline jiffies for the operation
3215  *
3216  *	Make sure SStatus of @ap reaches stable state, determined by
3217  *	holding the same value where DET is not 1 for @duration polled
3218  *	every @interval, before @timeout.  Timeout constraints the
3219  *	beginning of the stable state.  Because DET gets stuck at 1 on
3220  *	some controllers after hot unplugging, this functions waits
3221  *	until timeout then returns 0 if DET is stable at 1.
3222  *
3223  *	@timeout is further limited by @deadline.  The sooner of the
3224  *	two is used.
3225  *
3226  *	LOCKING:
3227  *	Kernel thread context (may sleep)
3228  *
3229  *	RETURNS:
3230  *	0 on success, -errno on failure.
3231  */
3232 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3233 		      unsigned long deadline)
3234 {
3235 	unsigned long interval_msec = params[0];
3236 	unsigned long duration = msecs_to_jiffies(params[1]);
3237 	unsigned long last_jiffies, t;
3238 	u32 last, cur;
3239 	int rc;
3240 
3241 	t = jiffies + msecs_to_jiffies(params[2]);
3242 	if (time_before(t, deadline))
3243 		deadline = t;
3244 
3245 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3246 		return rc;
3247 	cur &= 0xf;
3248 
3249 	last = cur;
3250 	last_jiffies = jiffies;
3251 
3252 	while (1) {
3253 		msleep(interval_msec);
3254 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3255 			return rc;
3256 		cur &= 0xf;
3257 
3258 		/* DET stable? */
3259 		if (cur == last) {
3260 			if (cur == 1 && time_before(jiffies, deadline))
3261 				continue;
3262 			if (time_after(jiffies, last_jiffies + duration))
3263 				return 0;
3264 			continue;
3265 		}
3266 
3267 		/* unstable, start over */
3268 		last = cur;
3269 		last_jiffies = jiffies;
3270 
3271 		/* Check deadline.  If debouncing failed, return
3272 		 * -EPIPE to tell upper layer to lower link speed.
3273 		 */
3274 		if (time_after(jiffies, deadline))
3275 			return -EPIPE;
3276 	}
3277 }
3278 
3279 /**
3280  *	sata_phy_resume - resume SATA phy
3281  *	@ap: ATA port to resume SATA phy for
3282  *	@params: timing parameters { interval, duratinon, timeout } in msec
3283  *	@deadline: deadline jiffies for the operation
3284  *
3285  *	Resume SATA phy of @ap and debounce it.
3286  *
3287  *	LOCKING:
3288  *	Kernel thread context (may sleep)
3289  *
3290  *	RETURNS:
3291  *	0 on success, -errno on failure.
3292  */
3293 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3294 		    unsigned long deadline)
3295 {
3296 	u32 scontrol;
3297 	int rc;
3298 
3299 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3300 		return rc;
3301 
3302 	scontrol = (scontrol & 0x0f0) | 0x300;
3303 
3304 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3305 		return rc;
3306 
3307 	/* Some PHYs react badly if SStatus is pounded immediately
3308 	 * after resuming.  Delay 200ms before debouncing.
3309 	 */
3310 	msleep(200);
3311 
3312 	return sata_phy_debounce(ap, params, deadline);
3313 }
3314 
3315 /**
3316  *	ata_std_prereset - prepare for reset
3317  *	@ap: ATA port to be reset
3318  *	@deadline: deadline jiffies for the operation
3319  *
3320  *	@ap is about to be reset.  Initialize it.  Failure from
3321  *	prereset makes libata abort whole reset sequence and give up
3322  *	that port, so prereset should be best-effort.  It does its
3323  *	best to prepare for reset sequence but if things go wrong, it
3324  *	should just whine, not fail.
3325  *
3326  *	LOCKING:
3327  *	Kernel thread context (may sleep)
3328  *
3329  *	RETURNS:
3330  *	0 on success, -errno otherwise.
3331  */
3332 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3333 {
3334 	struct ata_eh_context *ehc = &ap->eh_context;
3335 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3336 	int rc;
3337 
3338 	/* handle link resume */
3339 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3340 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3341 		ehc->i.action |= ATA_EH_HARDRESET;
3342 
3343 	/* if we're about to do hardreset, nothing more to do */
3344 	if (ehc->i.action & ATA_EH_HARDRESET)
3345 		return 0;
3346 
3347 	/* if SATA, resume phy */
3348 	if (ap->flags & ATA_FLAG_SATA) {
3349 		rc = sata_phy_resume(ap, timing, deadline);
3350 		/* whine about phy resume failure but proceed */
3351 		if (rc && rc != -EOPNOTSUPP)
3352 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
3353 					"link for reset (errno=%d)\n", rc);
3354 	}
3355 
3356 	/* Wait for !BSY if the controller can wait for the first D2H
3357 	 * Reg FIS and we don't know that no device is attached.
3358 	 */
3359 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3360 		rc = ata_wait_ready(ap, deadline);
3361 		if (rc && rc != -ENODEV) {
3362 			ata_port_printk(ap, KERN_WARNING, "device not ready "
3363 					"(errno=%d), forcing hardreset\n", rc);
3364 			ehc->i.action |= ATA_EH_HARDRESET;
3365 		}
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 /**
3372  *	ata_std_softreset - reset host port via ATA SRST
3373  *	@ap: port to reset
3374  *	@classes: resulting classes of attached devices
3375  *	@deadline: deadline jiffies for the operation
3376  *
3377  *	Reset host port using ATA SRST.
3378  *
3379  *	LOCKING:
3380  *	Kernel thread context (may sleep)
3381  *
3382  *	RETURNS:
3383  *	0 on success, -errno otherwise.
3384  */
3385 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3386 		      unsigned long deadline)
3387 {
3388 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3389 	unsigned int devmask = 0;
3390 	int rc;
3391 	u8 err;
3392 
3393 	DPRINTK("ENTER\n");
3394 
3395 	if (ata_port_offline(ap)) {
3396 		classes[0] = ATA_DEV_NONE;
3397 		goto out;
3398 	}
3399 
3400 	/* determine if device 0/1 are present */
3401 	if (ata_devchk(ap, 0))
3402 		devmask |= (1 << 0);
3403 	if (slave_possible && ata_devchk(ap, 1))
3404 		devmask |= (1 << 1);
3405 
3406 	/* select device 0 again */
3407 	ap->ops->dev_select(ap, 0);
3408 
3409 	/* issue bus reset */
3410 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3411 	rc = ata_bus_softreset(ap, devmask, deadline);
3412 	/* if link is occupied, -ENODEV too is an error */
3413 	if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3414 		ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3415 		return rc;
3416 	}
3417 
3418 	/* determine by signature whether we have ATA or ATAPI devices */
3419 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 	if (slave_possible && err != 0x81)
3421 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3422 
3423  out:
3424 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 	return 0;
3426 }
3427 
3428 /**
3429  *	sata_port_hardreset - reset port via SATA phy reset
3430  *	@ap: port to reset
3431  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3432  *	@deadline: deadline jiffies for the operation
3433  *
3434  *	SATA phy-reset host port using DET bits of SControl register.
3435  *
3436  *	LOCKING:
3437  *	Kernel thread context (may sleep)
3438  *
3439  *	RETURNS:
3440  *	0 on success, -errno otherwise.
3441  */
3442 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3443 			unsigned long deadline)
3444 {
3445 	u32 scontrol;
3446 	int rc;
3447 
3448 	DPRINTK("ENTER\n");
3449 
3450 	if (sata_set_spd_needed(ap)) {
3451 		/* SATA spec says nothing about how to reconfigure
3452 		 * spd.  To be on the safe side, turn off phy during
3453 		 * reconfiguration.  This works for at least ICH7 AHCI
3454 		 * and Sil3124.
3455 		 */
3456 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3457 			goto out;
3458 
3459 		scontrol = (scontrol & 0x0f0) | 0x304;
3460 
3461 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3462 			goto out;
3463 
3464 		sata_set_spd(ap);
3465 	}
3466 
3467 	/* issue phy wake/reset */
3468 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3469 		goto out;
3470 
3471 	scontrol = (scontrol & 0x0f0) | 0x301;
3472 
3473 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3474 		goto out;
3475 
3476 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3477 	 * 10.4.2 says at least 1 ms.
3478 	 */
3479 	msleep(1);
3480 
3481 	/* bring phy back */
3482 	rc = sata_phy_resume(ap, timing, deadline);
3483  out:
3484 	DPRINTK("EXIT, rc=%d\n", rc);
3485 	return rc;
3486 }
3487 
3488 /**
3489  *	sata_std_hardreset - reset host port via SATA phy reset
3490  *	@ap: port to reset
3491  *	@class: resulting class of attached device
3492  *	@deadline: deadline jiffies for the operation
3493  *
3494  *	SATA phy-reset host port using DET bits of SControl register,
3495  *	wait for !BSY and classify the attached device.
3496  *
3497  *	LOCKING:
3498  *	Kernel thread context (may sleep)
3499  *
3500  *	RETURNS:
3501  *	0 on success, -errno otherwise.
3502  */
3503 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3504 		       unsigned long deadline)
3505 {
3506 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3507 	int rc;
3508 
3509 	DPRINTK("ENTER\n");
3510 
3511 	/* do hardreset */
3512 	rc = sata_port_hardreset(ap, timing, deadline);
3513 	if (rc) {
3514 		ata_port_printk(ap, KERN_ERR,
3515 				"COMRESET failed (errno=%d)\n", rc);
3516 		return rc;
3517 	}
3518 
3519 	/* TODO: phy layer with polling, timeouts, etc. */
3520 	if (ata_port_offline(ap)) {
3521 		*class = ATA_DEV_NONE;
3522 		DPRINTK("EXIT, link offline\n");
3523 		return 0;
3524 	}
3525 
3526 	/* wait a while before checking status, see SRST for more info */
3527 	msleep(150);
3528 
3529 	rc = ata_wait_ready(ap, deadline);
3530 	/* link occupied, -ENODEV too is an error */
3531 	if (rc) {
3532 		ata_port_printk(ap, KERN_ERR,
3533 				"COMRESET failed (errno=%d)\n", rc);
3534 		return rc;
3535 	}
3536 
3537 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3538 
3539 	*class = ata_dev_try_classify(ap, 0, NULL);
3540 
3541 	DPRINTK("EXIT, class=%u\n", *class);
3542 	return 0;
3543 }
3544 
3545 /**
3546  *	ata_std_postreset - standard postreset callback
3547  *	@ap: the target ata_port
3548  *	@classes: classes of attached devices
3549  *
3550  *	This function is invoked after a successful reset.  Note that
3551  *	the device might have been reset more than once using
3552  *	different reset methods before postreset is invoked.
3553  *
3554  *	LOCKING:
3555  *	Kernel thread context (may sleep)
3556  */
3557 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3558 {
3559 	u32 serror;
3560 
3561 	DPRINTK("ENTER\n");
3562 
3563 	/* print link status */
3564 	sata_print_link_status(ap);
3565 
3566 	/* clear SError */
3567 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3568 		sata_scr_write(ap, SCR_ERROR, serror);
3569 
3570 	/* is double-select really necessary? */
3571 	if (classes[0] != ATA_DEV_NONE)
3572 		ap->ops->dev_select(ap, 1);
3573 	if (classes[1] != ATA_DEV_NONE)
3574 		ap->ops->dev_select(ap, 0);
3575 
3576 	/* bail out if no device is present */
3577 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3578 		DPRINTK("EXIT, no device\n");
3579 		return;
3580 	}
3581 
3582 	/* set up device control */
3583 	if (ap->ioaddr.ctl_addr)
3584 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3585 
3586 	DPRINTK("EXIT\n");
3587 }
3588 
3589 /**
3590  *	ata_dev_same_device - Determine whether new ID matches configured device
3591  *	@dev: device to compare against
3592  *	@new_class: class of the new device
3593  *	@new_id: IDENTIFY page of the new device
3594  *
3595  *	Compare @new_class and @new_id against @dev and determine
3596  *	whether @dev is the device indicated by @new_class and
3597  *	@new_id.
3598  *
3599  *	LOCKING:
3600  *	None.
3601  *
3602  *	RETURNS:
3603  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3604  */
3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 			       const u16 *new_id)
3607 {
3608 	const u16 *old_id = dev->id;
3609 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3611 
3612 	if (dev->class != new_class) {
3613 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3614 			       dev->class, new_class);
3615 		return 0;
3616 	}
3617 
3618 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3622 
3623 	if (strcmp(model[0], model[1])) {
3624 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 			       "'%s' != '%s'\n", model[0], model[1]);
3626 		return 0;
3627 	}
3628 
3629 	if (strcmp(serial[0], serial[1])) {
3630 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 			       "'%s' != '%s'\n", serial[0], serial[1]);
3632 		return 0;
3633 	}
3634 
3635 	return 1;
3636 }
3637 
3638 /**
3639  *	ata_dev_reread_id - Re-read IDENTIFY data
3640  *	@dev: target ATA device
3641  *	@readid_flags: read ID flags
3642  *
3643  *	Re-read IDENTIFY page and make sure @dev is still attached to
3644  *	the port.
3645  *
3646  *	LOCKING:
3647  *	Kernel thread context (may sleep)
3648  *
3649  *	RETURNS:
3650  *	0 on success, negative errno otherwise
3651  */
3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3653 {
3654 	unsigned int class = dev->class;
3655 	u16 *id = (void *)dev->ap->sector_buf;
3656 	int rc;
3657 
3658 	/* read ID data */
3659 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660 	if (rc)
3661 		return rc;
3662 
3663 	/* is the device still there? */
3664 	if (!ata_dev_same_device(dev, class, id))
3665 		return -ENODEV;
3666 
3667 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668 	return 0;
3669 }
3670 
3671 /**
3672  *	ata_dev_revalidate - Revalidate ATA device
3673  *	@dev: device to revalidate
3674  *	@readid_flags: read ID flags
3675  *
3676  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3677  *	port and reconfigure it according to the new IDENTIFY page.
3678  *
3679  *	LOCKING:
3680  *	Kernel thread context (may sleep)
3681  *
3682  *	RETURNS:
3683  *	0 on success, negative errno otherwise
3684  */
3685 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3686 {
3687 	u64 n_sectors = dev->n_sectors;
3688 	int rc;
3689 
3690 	if (!ata_dev_enabled(dev))
3691 		return -ENODEV;
3692 
3693 	/* re-read ID */
3694 	rc = ata_dev_reread_id(dev, readid_flags);
3695 	if (rc)
3696 		goto fail;
3697 
3698 	/* configure device according to the new ID */
3699 	rc = ata_dev_configure(dev);
3700 	if (rc)
3701 		goto fail;
3702 
3703 	/* verify n_sectors hasn't changed */
3704 	if (dev->class == ATA_DEV_ATA && n_sectors &&
3705 	    dev->n_sectors != n_sectors) {
3706 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3707 			       "%llu != %llu\n",
3708 			       (unsigned long long)n_sectors,
3709 			       (unsigned long long)dev->n_sectors);
3710 
3711 		/* restore original n_sectors */
3712 		dev->n_sectors = n_sectors;
3713 
3714 		rc = -ENODEV;
3715 		goto fail;
3716 	}
3717 
3718 	return 0;
3719 
3720  fail:
3721 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3722 	return rc;
3723 }
3724 
3725 struct ata_blacklist_entry {
3726 	const char *model_num;
3727 	const char *model_rev;
3728 	unsigned long horkage;
3729 };
3730 
3731 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3732 	/* Devices with DMA related problems under Linux */
3733 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3734 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3735 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3736 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3737 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3738 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3739 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3740 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3741 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3742 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3743 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3744 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3745 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3746 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3747 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3748 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3749 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3750 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3751 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3752 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3753 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3754 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3755 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3756 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3757 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3758 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3759 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3760 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3761 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3762 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3763 	{ "IOMEGA  ZIP 250       ATAPI", NULL,	ATA_HORKAGE_NODMA }, /* temporary fix */
3764 	{ "IOMEGA  ZIP 250       ATAPI       Floppy",
3765 				NULL,		ATA_HORKAGE_NODMA },
3766 
3767 	/* Weird ATAPI devices */
3768 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3769 
3770 	/* Devices we expect to fail diagnostics */
3771 
3772 	/* Devices where NCQ should be avoided */
3773 	/* NCQ is slow */
3774         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3775 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3776 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3777 	/* NCQ is broken */
3778 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3779 	{ "Maxtor 6B200M0",	"BANC1BM0",	ATA_HORKAGE_NONCQ },
3780 	{ "Maxtor 6B200M0",	"BANC1B10",	ATA_HORKAGE_NONCQ },
3781 	{ "Maxtor 7B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ, },
3782 	{ "Maxtor 7B300S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3783 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3784 	{ "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3785 	 ATA_HORKAGE_NONCQ },
3786 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3787 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3788 	/* Blacklist entries taken from Silicon Image 3124/3132
3789 	   Windows driver .inf file - also several Linux problem reports */
3790 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3791 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3792 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3793 	/* Drives which do spurious command completion */
3794 	{ "HTS541680J9SA00",	"SB2IC7EP",	ATA_HORKAGE_NONCQ, },
3795 	{ "HTS541612J9SA00",	"SBDIC7JP",	ATA_HORKAGE_NONCQ, },
3796 	{ "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3797 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3798 	{ "FUJITSU MHV2080BH",	"00840028",	ATA_HORKAGE_NONCQ, },
3799 	{ "ST9160821AS",	"3.CLF",	ATA_HORKAGE_NONCQ, },
3800 	{ "ST3160812AS",	"3.AD",		ATA_HORKAGE_NONCQ, },
3801 	{ "SAMSUNG HD401LJ",	"ZZ100-15",	ATA_HORKAGE_NONCQ, },
3802 
3803 	/* devices which puke on READ_NATIVE_MAX */
3804 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3805 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3806 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3807 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3808 
3809 	/* End Marker */
3810 	{ }
3811 };
3812 
3813 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3814 {
3815 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3816 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3817 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3818 
3819 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3820 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3821 
3822 	while (ad->model_num) {
3823 		if (!strcmp(ad->model_num, model_num)) {
3824 			if (ad->model_rev == NULL)
3825 				return ad->horkage;
3826 			if (!strcmp(ad->model_rev, model_rev))
3827 				return ad->horkage;
3828 		}
3829 		ad++;
3830 	}
3831 	return 0;
3832 }
3833 
3834 static int ata_dma_blacklisted(const struct ata_device *dev)
3835 {
3836 	/* We don't support polling DMA.
3837 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3838 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3839 	 */
3840 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3841 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3842 		return 1;
3843 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3844 }
3845 
3846 /**
3847  *	ata_dev_xfermask - Compute supported xfermask of the given device
3848  *	@dev: Device to compute xfermask for
3849  *
3850  *	Compute supported xfermask of @dev and store it in
3851  *	dev->*_mask.  This function is responsible for applying all
3852  *	known limits including host controller limits, device
3853  *	blacklist, etc...
3854  *
3855  *	LOCKING:
3856  *	None.
3857  */
3858 static void ata_dev_xfermask(struct ata_device *dev)
3859 {
3860 	struct ata_port *ap = dev->ap;
3861 	struct ata_host *host = ap->host;
3862 	unsigned long xfer_mask;
3863 
3864 	/* controller modes available */
3865 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3866 				      ap->mwdma_mask, ap->udma_mask);
3867 
3868 	/* drive modes available */
3869 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3870 				       dev->mwdma_mask, dev->udma_mask);
3871 	xfer_mask &= ata_id_xfermask(dev->id);
3872 
3873 	/*
3874 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3875 	 *	cable
3876 	 */
3877 	if (ata_dev_pair(dev)) {
3878 		/* No PIO5 or PIO6 */
3879 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3880 		/* No MWDMA3 or MWDMA 4 */
3881 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3882 	}
3883 
3884 	if (ata_dma_blacklisted(dev)) {
3885 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3886 		ata_dev_printk(dev, KERN_WARNING,
3887 			       "device is on DMA blacklist, disabling DMA\n");
3888 	}
3889 
3890 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3891             host->simplex_claimed && host->simplex_claimed != ap) {
3892 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3893 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3894 			       "other device, disabling DMA\n");
3895 	}
3896 
3897 	if (ap->flags & ATA_FLAG_NO_IORDY)
3898 		xfer_mask &= ata_pio_mask_no_iordy(dev);
3899 
3900 	if (ap->ops->mode_filter)
3901 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3902 
3903 	/* Apply cable rule here.  Don't apply it early because when
3904 	 * we handle hot plug the cable type can itself change.
3905 	 * Check this last so that we know if the transfer rate was
3906 	 * solely limited by the cable.
3907 	 * Unknown or 80 wire cables reported host side are checked
3908 	 * drive side as well. Cases where we know a 40wire cable
3909 	 * is used safely for 80 are not checked here.
3910 	 */
3911 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3912 		/* UDMA/44 or higher would be available */
3913 		if((ap->cbl == ATA_CBL_PATA40) ||
3914    		    (ata_drive_40wire(dev->id) &&
3915 		     (ap->cbl == ATA_CBL_PATA_UNK ||
3916                      ap->cbl == ATA_CBL_PATA80))) {
3917 		      	ata_dev_printk(dev, KERN_WARNING,
3918 				 "limited to UDMA/33 due to 40-wire cable\n");
3919 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3920 		}
3921 
3922 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3923 			    &dev->mwdma_mask, &dev->udma_mask);
3924 }
3925 
3926 /**
3927  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3928  *	@dev: Device to which command will be sent
3929  *
3930  *	Issue SET FEATURES - XFER MODE command to device @dev
3931  *	on port @ap.
3932  *
3933  *	LOCKING:
3934  *	PCI/etc. bus probe sem.
3935  *
3936  *	RETURNS:
3937  *	0 on success, AC_ERR_* mask otherwise.
3938  */
3939 
3940 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3941 {
3942 	struct ata_taskfile tf;
3943 	unsigned int err_mask;
3944 
3945 	/* set up set-features taskfile */
3946 	DPRINTK("set features - xfer mode\n");
3947 
3948 	/* Some controllers and ATAPI devices show flaky interrupt
3949 	 * behavior after setting xfer mode.  Use polling instead.
3950 	 */
3951 	ata_tf_init(dev, &tf);
3952 	tf.command = ATA_CMD_SET_FEATURES;
3953 	tf.feature = SETFEATURES_XFER;
3954 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3955 	tf.protocol = ATA_PROT_NODATA;
3956 	tf.nsect = dev->xfer_mode;
3957 
3958 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3959 
3960 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3961 	return err_mask;
3962 }
3963 
3964 /**
3965  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3966  *	@dev: Device to which command will be sent
3967  *	@heads: Number of heads (taskfile parameter)
3968  *	@sectors: Number of sectors (taskfile parameter)
3969  *
3970  *	LOCKING:
3971  *	Kernel thread context (may sleep)
3972  *
3973  *	RETURNS:
3974  *	0 on success, AC_ERR_* mask otherwise.
3975  */
3976 static unsigned int ata_dev_init_params(struct ata_device *dev,
3977 					u16 heads, u16 sectors)
3978 {
3979 	struct ata_taskfile tf;
3980 	unsigned int err_mask;
3981 
3982 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3983 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3984 		return AC_ERR_INVALID;
3985 
3986 	/* set up init dev params taskfile */
3987 	DPRINTK("init dev params \n");
3988 
3989 	ata_tf_init(dev, &tf);
3990 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3991 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3992 	tf.protocol = ATA_PROT_NODATA;
3993 	tf.nsect = sectors;
3994 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3995 
3996 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3997 	/* A clean abort indicates an original or just out of spec drive
3998 	   and we should continue as we issue the setup based on the
3999 	   drive reported working geometry */
4000 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4001 		err_mask = 0;
4002 
4003 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4004 	return err_mask;
4005 }
4006 
4007 /**
4008  *	ata_sg_clean - Unmap DMA memory associated with command
4009  *	@qc: Command containing DMA memory to be released
4010  *
4011  *	Unmap all mapped DMA memory associated with this command.
4012  *
4013  *	LOCKING:
4014  *	spin_lock_irqsave(host lock)
4015  */
4016 void ata_sg_clean(struct ata_queued_cmd *qc)
4017 {
4018 	struct ata_port *ap = qc->ap;
4019 	struct scatterlist *sg = qc->__sg;
4020 	int dir = qc->dma_dir;
4021 	void *pad_buf = NULL;
4022 
4023 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4024 	WARN_ON(sg == NULL);
4025 
4026 	if (qc->flags & ATA_QCFLAG_SINGLE)
4027 		WARN_ON(qc->n_elem > 1);
4028 
4029 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4030 
4031 	/* if we padded the buffer out to 32-bit bound, and data
4032 	 * xfer direction is from-device, we must copy from the
4033 	 * pad buffer back into the supplied buffer
4034 	 */
4035 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4036 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4037 
4038 	if (qc->flags & ATA_QCFLAG_SG) {
4039 		if (qc->n_elem)
4040 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4041 		/* restore last sg */
4042 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
4043 		if (pad_buf) {
4044 			struct scatterlist *psg = &qc->pad_sgent;
4045 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4046 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4047 			kunmap_atomic(addr, KM_IRQ0);
4048 		}
4049 	} else {
4050 		if (qc->n_elem)
4051 			dma_unmap_single(ap->dev,
4052 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4053 				dir);
4054 		/* restore sg */
4055 		sg->length += qc->pad_len;
4056 		if (pad_buf)
4057 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
4058 			       pad_buf, qc->pad_len);
4059 	}
4060 
4061 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4062 	qc->__sg = NULL;
4063 }
4064 
4065 /**
4066  *	ata_fill_sg - Fill PCI IDE PRD table
4067  *	@qc: Metadata associated with taskfile to be transferred
4068  *
4069  *	Fill PCI IDE PRD (scatter-gather) table with segments
4070  *	associated with the current disk command.
4071  *
4072  *	LOCKING:
4073  *	spin_lock_irqsave(host lock)
4074  *
4075  */
4076 static void ata_fill_sg(struct ata_queued_cmd *qc)
4077 {
4078 	struct ata_port *ap = qc->ap;
4079 	struct scatterlist *sg;
4080 	unsigned int idx;
4081 
4082 	WARN_ON(qc->__sg == NULL);
4083 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4084 
4085 	idx = 0;
4086 	ata_for_each_sg(sg, qc) {
4087 		u32 addr, offset;
4088 		u32 sg_len, len;
4089 
4090 		/* determine if physical DMA addr spans 64K boundary.
4091 		 * Note h/w doesn't support 64-bit, so we unconditionally
4092 		 * truncate dma_addr_t to u32.
4093 		 */
4094 		addr = (u32) sg_dma_address(sg);
4095 		sg_len = sg_dma_len(sg);
4096 
4097 		while (sg_len) {
4098 			offset = addr & 0xffff;
4099 			len = sg_len;
4100 			if ((offset + sg_len) > 0x10000)
4101 				len = 0x10000 - offset;
4102 
4103 			ap->prd[idx].addr = cpu_to_le32(addr);
4104 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4105 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4106 
4107 			idx++;
4108 			sg_len -= len;
4109 			addr += len;
4110 		}
4111 	}
4112 
4113 	if (idx)
4114 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4115 }
4116 
4117 /**
4118  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
4119  *	@qc: Metadata associated with taskfile to be transferred
4120  *
4121  *	Fill PCI IDE PRD (scatter-gather) table with segments
4122  *	associated with the current disk command. Perform the fill
4123  *	so that we avoid writing any length 64K records for
4124  *	controllers that don't follow the spec.
4125  *
4126  *	LOCKING:
4127  *	spin_lock_irqsave(host lock)
4128  *
4129  */
4130 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4131 {
4132 	struct ata_port *ap = qc->ap;
4133 	struct scatterlist *sg;
4134 	unsigned int idx;
4135 
4136 	WARN_ON(qc->__sg == NULL);
4137 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4138 
4139 	idx = 0;
4140 	ata_for_each_sg(sg, qc) {
4141 		u32 addr, offset;
4142 		u32 sg_len, len, blen;
4143 
4144  		/* determine if physical DMA addr spans 64K boundary.
4145 		 * Note h/w doesn't support 64-bit, so we unconditionally
4146 		 * truncate dma_addr_t to u32.
4147 		 */
4148 		addr = (u32) sg_dma_address(sg);
4149 		sg_len = sg_dma_len(sg);
4150 
4151 		while (sg_len) {
4152 			offset = addr & 0xffff;
4153 			len = sg_len;
4154 			if ((offset + sg_len) > 0x10000)
4155 				len = 0x10000 - offset;
4156 
4157 			blen = len & 0xffff;
4158 			ap->prd[idx].addr = cpu_to_le32(addr);
4159 			if (blen == 0) {
4160 			   /* Some PATA chipsets like the CS5530 can't
4161 			      cope with 0x0000 meaning 64K as the spec says */
4162 				ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4163 				blen = 0x8000;
4164 				ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4165 			}
4166 			ap->prd[idx].flags_len = cpu_to_le32(blen);
4167 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4168 
4169 			idx++;
4170 			sg_len -= len;
4171 			addr += len;
4172 		}
4173 	}
4174 
4175 	if (idx)
4176 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4177 }
4178 
4179 /**
4180  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4181  *	@qc: Metadata associated with taskfile to check
4182  *
4183  *	Allow low-level driver to filter ATA PACKET commands, returning
4184  *	a status indicating whether or not it is OK to use DMA for the
4185  *	supplied PACKET command.
4186  *
4187  *	LOCKING:
4188  *	spin_lock_irqsave(host lock)
4189  *
4190  *	RETURNS: 0 when ATAPI DMA can be used
4191  *               nonzero otherwise
4192  */
4193 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4194 {
4195 	struct ata_port *ap = qc->ap;
4196 
4197 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4198 	 * few ATAPI devices choke on such DMA requests.
4199 	 */
4200 	if (unlikely(qc->nbytes & 15))
4201 		return 1;
4202 
4203 	if (ap->ops->check_atapi_dma)
4204 		return ap->ops->check_atapi_dma(qc);
4205 
4206 	return 0;
4207 }
4208 
4209 /**
4210  *	ata_qc_prep - Prepare taskfile for submission
4211  *	@qc: Metadata associated with taskfile to be prepared
4212  *
4213  *	Prepare ATA taskfile for submission.
4214  *
4215  *	LOCKING:
4216  *	spin_lock_irqsave(host lock)
4217  */
4218 void ata_qc_prep(struct ata_queued_cmd *qc)
4219 {
4220 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4221 		return;
4222 
4223 	ata_fill_sg(qc);
4224 }
4225 
4226 /**
4227  *	ata_dumb_qc_prep - Prepare taskfile for submission
4228  *	@qc: Metadata associated with taskfile to be prepared
4229  *
4230  *	Prepare ATA taskfile for submission.
4231  *
4232  *	LOCKING:
4233  *	spin_lock_irqsave(host lock)
4234  */
4235 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4236 {
4237 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4238 		return;
4239 
4240 	ata_fill_sg_dumb(qc);
4241 }
4242 
4243 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4244 
4245 /**
4246  *	ata_sg_init_one - Associate command with memory buffer
4247  *	@qc: Command to be associated
4248  *	@buf: Memory buffer
4249  *	@buflen: Length of memory buffer, in bytes.
4250  *
4251  *	Initialize the data-related elements of queued_cmd @qc
4252  *	to point to a single memory buffer, @buf of byte length @buflen.
4253  *
4254  *	LOCKING:
4255  *	spin_lock_irqsave(host lock)
4256  */
4257 
4258 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4259 {
4260 	qc->flags |= ATA_QCFLAG_SINGLE;
4261 
4262 	qc->__sg = &qc->sgent;
4263 	qc->n_elem = 1;
4264 	qc->orig_n_elem = 1;
4265 	qc->buf_virt = buf;
4266 	qc->nbytes = buflen;
4267 
4268 	sg_init_one(&qc->sgent, buf, buflen);
4269 }
4270 
4271 /**
4272  *	ata_sg_init - Associate command with scatter-gather table.
4273  *	@qc: Command to be associated
4274  *	@sg: Scatter-gather table.
4275  *	@n_elem: Number of elements in s/g table.
4276  *
4277  *	Initialize the data-related elements of queued_cmd @qc
4278  *	to point to a scatter-gather table @sg, containing @n_elem
4279  *	elements.
4280  *
4281  *	LOCKING:
4282  *	spin_lock_irqsave(host lock)
4283  */
4284 
4285 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4286 		 unsigned int n_elem)
4287 {
4288 	qc->flags |= ATA_QCFLAG_SG;
4289 	qc->__sg = sg;
4290 	qc->n_elem = n_elem;
4291 	qc->orig_n_elem = n_elem;
4292 }
4293 
4294 /**
4295  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4296  *	@qc: Command with memory buffer to be mapped.
4297  *
4298  *	DMA-map the memory buffer associated with queued_cmd @qc.
4299  *
4300  *	LOCKING:
4301  *	spin_lock_irqsave(host lock)
4302  *
4303  *	RETURNS:
4304  *	Zero on success, negative on error.
4305  */
4306 
4307 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4308 {
4309 	struct ata_port *ap = qc->ap;
4310 	int dir = qc->dma_dir;
4311 	struct scatterlist *sg = qc->__sg;
4312 	dma_addr_t dma_address;
4313 	int trim_sg = 0;
4314 
4315 	/* we must lengthen transfers to end on a 32-bit boundary */
4316 	qc->pad_len = sg->length & 3;
4317 	if (qc->pad_len) {
4318 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4319 		struct scatterlist *psg = &qc->pad_sgent;
4320 
4321 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4322 
4323 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4324 
4325 		if (qc->tf.flags & ATA_TFLAG_WRITE)
4326 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4327 			       qc->pad_len);
4328 
4329 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4330 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4331 		/* trim sg */
4332 		sg->length -= qc->pad_len;
4333 		if (sg->length == 0)
4334 			trim_sg = 1;
4335 
4336 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4337 			sg->length, qc->pad_len);
4338 	}
4339 
4340 	if (trim_sg) {
4341 		qc->n_elem--;
4342 		goto skip_map;
4343 	}
4344 
4345 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
4346 				     sg->length, dir);
4347 	if (dma_mapping_error(dma_address)) {
4348 		/* restore sg */
4349 		sg->length += qc->pad_len;
4350 		return -1;
4351 	}
4352 
4353 	sg_dma_address(sg) = dma_address;
4354 	sg_dma_len(sg) = sg->length;
4355 
4356 skip_map:
4357 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4358 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4359 
4360 	return 0;
4361 }
4362 
4363 /**
4364  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4365  *	@qc: Command with scatter-gather table to be mapped.
4366  *
4367  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4368  *
4369  *	LOCKING:
4370  *	spin_lock_irqsave(host lock)
4371  *
4372  *	RETURNS:
4373  *	Zero on success, negative on error.
4374  *
4375  */
4376 
4377 static int ata_sg_setup(struct ata_queued_cmd *qc)
4378 {
4379 	struct ata_port *ap = qc->ap;
4380 	struct scatterlist *sg = qc->__sg;
4381 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
4382 	int n_elem, pre_n_elem, dir, trim_sg = 0;
4383 
4384 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4385 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4386 
4387 	/* we must lengthen transfers to end on a 32-bit boundary */
4388 	qc->pad_len = lsg->length & 3;
4389 	if (qc->pad_len) {
4390 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4391 		struct scatterlist *psg = &qc->pad_sgent;
4392 		unsigned int offset;
4393 
4394 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4395 
4396 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4397 
4398 		/*
4399 		 * psg->page/offset are used to copy to-be-written
4400 		 * data in this function or read data in ata_sg_clean.
4401 		 */
4402 		offset = lsg->offset + lsg->length - qc->pad_len;
4403 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4404 		psg->offset = offset_in_page(offset);
4405 
4406 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4407 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4408 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4409 			kunmap_atomic(addr, KM_IRQ0);
4410 		}
4411 
4412 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4413 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4414 		/* trim last sg */
4415 		lsg->length -= qc->pad_len;
4416 		if (lsg->length == 0)
4417 			trim_sg = 1;
4418 
4419 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4420 			qc->n_elem - 1, lsg->length, qc->pad_len);
4421 	}
4422 
4423 	pre_n_elem = qc->n_elem;
4424 	if (trim_sg && pre_n_elem)
4425 		pre_n_elem--;
4426 
4427 	if (!pre_n_elem) {
4428 		n_elem = 0;
4429 		goto skip_map;
4430 	}
4431 
4432 	dir = qc->dma_dir;
4433 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4434 	if (n_elem < 1) {
4435 		/* restore last sg */
4436 		lsg->length += qc->pad_len;
4437 		return -1;
4438 	}
4439 
4440 	DPRINTK("%d sg elements mapped\n", n_elem);
4441 
4442 skip_map:
4443 	qc->n_elem = n_elem;
4444 
4445 	return 0;
4446 }
4447 
4448 /**
4449  *	swap_buf_le16 - swap halves of 16-bit words in place
4450  *	@buf:  Buffer to swap
4451  *	@buf_words:  Number of 16-bit words in buffer.
4452  *
4453  *	Swap halves of 16-bit words if needed to convert from
4454  *	little-endian byte order to native cpu byte order, or
4455  *	vice-versa.
4456  *
4457  *	LOCKING:
4458  *	Inherited from caller.
4459  */
4460 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4461 {
4462 #ifdef __BIG_ENDIAN
4463 	unsigned int i;
4464 
4465 	for (i = 0; i < buf_words; i++)
4466 		buf[i] = le16_to_cpu(buf[i]);
4467 #endif /* __BIG_ENDIAN */
4468 }
4469 
4470 /**
4471  *	ata_data_xfer - Transfer data by PIO
4472  *	@adev: device to target
4473  *	@buf: data buffer
4474  *	@buflen: buffer length
4475  *	@write_data: read/write
4476  *
4477  *	Transfer data from/to the device data register by PIO.
4478  *
4479  *	LOCKING:
4480  *	Inherited from caller.
4481  */
4482 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4483 		   unsigned int buflen, int write_data)
4484 {
4485 	struct ata_port *ap = adev->ap;
4486 	unsigned int words = buflen >> 1;
4487 
4488 	/* Transfer multiple of 2 bytes */
4489 	if (write_data)
4490 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4491 	else
4492 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
4493 
4494 	/* Transfer trailing 1 byte, if any. */
4495 	if (unlikely(buflen & 0x01)) {
4496 		u16 align_buf[1] = { 0 };
4497 		unsigned char *trailing_buf = buf + buflen - 1;
4498 
4499 		if (write_data) {
4500 			memcpy(align_buf, trailing_buf, 1);
4501 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4502 		} else {
4503 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4504 			memcpy(trailing_buf, align_buf, 1);
4505 		}
4506 	}
4507 }
4508 
4509 /**
4510  *	ata_data_xfer_noirq - Transfer data by PIO
4511  *	@adev: device to target
4512  *	@buf: data buffer
4513  *	@buflen: buffer length
4514  *	@write_data: read/write
4515  *
4516  *	Transfer data from/to the device data register by PIO. Do the
4517  *	transfer with interrupts disabled.
4518  *
4519  *	LOCKING:
4520  *	Inherited from caller.
4521  */
4522 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4523 			 unsigned int buflen, int write_data)
4524 {
4525 	unsigned long flags;
4526 	local_irq_save(flags);
4527 	ata_data_xfer(adev, buf, buflen, write_data);
4528 	local_irq_restore(flags);
4529 }
4530 
4531 
4532 /**
4533  *	ata_pio_sector - Transfer a sector of data.
4534  *	@qc: Command on going
4535  *
4536  *	Transfer qc->sect_size bytes of data from/to the ATA device.
4537  *
4538  *	LOCKING:
4539  *	Inherited from caller.
4540  */
4541 
4542 static void ata_pio_sector(struct ata_queued_cmd *qc)
4543 {
4544 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4545 	struct scatterlist *sg = qc->__sg;
4546 	struct ata_port *ap = qc->ap;
4547 	struct page *page;
4548 	unsigned int offset;
4549 	unsigned char *buf;
4550 
4551 	if (qc->curbytes == qc->nbytes - qc->sect_size)
4552 		ap->hsm_task_state = HSM_ST_LAST;
4553 
4554 	page = sg[qc->cursg].page;
4555 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4556 
4557 	/* get the current page and offset */
4558 	page = nth_page(page, (offset >> PAGE_SHIFT));
4559 	offset %= PAGE_SIZE;
4560 
4561 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4562 
4563 	if (PageHighMem(page)) {
4564 		unsigned long flags;
4565 
4566 		/* FIXME: use a bounce buffer */
4567 		local_irq_save(flags);
4568 		buf = kmap_atomic(page, KM_IRQ0);
4569 
4570 		/* do the actual data transfer */
4571 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4572 
4573 		kunmap_atomic(buf, KM_IRQ0);
4574 		local_irq_restore(flags);
4575 	} else {
4576 		buf = page_address(page);
4577 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4578 	}
4579 
4580 	qc->curbytes += qc->sect_size;
4581 	qc->cursg_ofs += qc->sect_size;
4582 
4583 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4584 		qc->cursg++;
4585 		qc->cursg_ofs = 0;
4586 	}
4587 }
4588 
4589 /**
4590  *	ata_pio_sectors - Transfer one or many sectors.
4591  *	@qc: Command on going
4592  *
4593  *	Transfer one or many sectors of data from/to the
4594  *	ATA device for the DRQ request.
4595  *
4596  *	LOCKING:
4597  *	Inherited from caller.
4598  */
4599 
4600 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4601 {
4602 	if (is_multi_taskfile(&qc->tf)) {
4603 		/* READ/WRITE MULTIPLE */
4604 		unsigned int nsect;
4605 
4606 		WARN_ON(qc->dev->multi_count == 0);
4607 
4608 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4609 			    qc->dev->multi_count);
4610 		while (nsect--)
4611 			ata_pio_sector(qc);
4612 	} else
4613 		ata_pio_sector(qc);
4614 }
4615 
4616 /**
4617  *	atapi_send_cdb - Write CDB bytes to hardware
4618  *	@ap: Port to which ATAPI device is attached.
4619  *	@qc: Taskfile currently active
4620  *
4621  *	When device has indicated its readiness to accept
4622  *	a CDB, this function is called.  Send the CDB.
4623  *
4624  *	LOCKING:
4625  *	caller.
4626  */
4627 
4628 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4629 {
4630 	/* send SCSI cdb */
4631 	DPRINTK("send cdb\n");
4632 	WARN_ON(qc->dev->cdb_len < 12);
4633 
4634 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4635 	ata_altstatus(ap); /* flush */
4636 
4637 	switch (qc->tf.protocol) {
4638 	case ATA_PROT_ATAPI:
4639 		ap->hsm_task_state = HSM_ST;
4640 		break;
4641 	case ATA_PROT_ATAPI_NODATA:
4642 		ap->hsm_task_state = HSM_ST_LAST;
4643 		break;
4644 	case ATA_PROT_ATAPI_DMA:
4645 		ap->hsm_task_state = HSM_ST_LAST;
4646 		/* initiate bmdma */
4647 		ap->ops->bmdma_start(qc);
4648 		break;
4649 	}
4650 }
4651 
4652 /**
4653  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4654  *	@qc: Command on going
4655  *	@bytes: number of bytes
4656  *
4657  *	Transfer Transfer data from/to the ATAPI device.
4658  *
4659  *	LOCKING:
4660  *	Inherited from caller.
4661  *
4662  */
4663 
4664 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4665 {
4666 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4667 	struct scatterlist *sg = qc->__sg;
4668 	struct ata_port *ap = qc->ap;
4669 	struct page *page;
4670 	unsigned char *buf;
4671 	unsigned int offset, count;
4672 
4673 	if (qc->curbytes + bytes >= qc->nbytes)
4674 		ap->hsm_task_state = HSM_ST_LAST;
4675 
4676 next_sg:
4677 	if (unlikely(qc->cursg >= qc->n_elem)) {
4678 		/*
4679 		 * The end of qc->sg is reached and the device expects
4680 		 * more data to transfer. In order not to overrun qc->sg
4681 		 * and fulfill length specified in the byte count register,
4682 		 *    - for read case, discard trailing data from the device
4683 		 *    - for write case, padding zero data to the device
4684 		 */
4685 		u16 pad_buf[1] = { 0 };
4686 		unsigned int words = bytes >> 1;
4687 		unsigned int i;
4688 
4689 		if (words) /* warning if bytes > 1 */
4690 			ata_dev_printk(qc->dev, KERN_WARNING,
4691 				       "%u bytes trailing data\n", bytes);
4692 
4693 		for (i = 0; i < words; i++)
4694 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4695 
4696 		ap->hsm_task_state = HSM_ST_LAST;
4697 		return;
4698 	}
4699 
4700 	sg = &qc->__sg[qc->cursg];
4701 
4702 	page = sg->page;
4703 	offset = sg->offset + qc->cursg_ofs;
4704 
4705 	/* get the current page and offset */
4706 	page = nth_page(page, (offset >> PAGE_SHIFT));
4707 	offset %= PAGE_SIZE;
4708 
4709 	/* don't overrun current sg */
4710 	count = min(sg->length - qc->cursg_ofs, bytes);
4711 
4712 	/* don't cross page boundaries */
4713 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4714 
4715 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4716 
4717 	if (PageHighMem(page)) {
4718 		unsigned long flags;
4719 
4720 		/* FIXME: use bounce buffer */
4721 		local_irq_save(flags);
4722 		buf = kmap_atomic(page, KM_IRQ0);
4723 
4724 		/* do the actual data transfer */
4725 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4726 
4727 		kunmap_atomic(buf, KM_IRQ0);
4728 		local_irq_restore(flags);
4729 	} else {
4730 		buf = page_address(page);
4731 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4732 	}
4733 
4734 	bytes -= count;
4735 	qc->curbytes += count;
4736 	qc->cursg_ofs += count;
4737 
4738 	if (qc->cursg_ofs == sg->length) {
4739 		qc->cursg++;
4740 		qc->cursg_ofs = 0;
4741 	}
4742 
4743 	if (bytes)
4744 		goto next_sg;
4745 }
4746 
4747 /**
4748  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4749  *	@qc: Command on going
4750  *
4751  *	Transfer Transfer data from/to the ATAPI device.
4752  *
4753  *	LOCKING:
4754  *	Inherited from caller.
4755  */
4756 
4757 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4758 {
4759 	struct ata_port *ap = qc->ap;
4760 	struct ata_device *dev = qc->dev;
4761 	unsigned int ireason, bc_lo, bc_hi, bytes;
4762 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4763 
4764 	/* Abuse qc->result_tf for temp storage of intermediate TF
4765 	 * here to save some kernel stack usage.
4766 	 * For normal completion, qc->result_tf is not relevant. For
4767 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4768 	 * So, the correctness of qc->result_tf is not affected.
4769 	 */
4770 	ap->ops->tf_read(ap, &qc->result_tf);
4771 	ireason = qc->result_tf.nsect;
4772 	bc_lo = qc->result_tf.lbam;
4773 	bc_hi = qc->result_tf.lbah;
4774 	bytes = (bc_hi << 8) | bc_lo;
4775 
4776 	/* shall be cleared to zero, indicating xfer of data */
4777 	if (ireason & (1 << 0))
4778 		goto err_out;
4779 
4780 	/* make sure transfer direction matches expected */
4781 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4782 	if (do_write != i_write)
4783 		goto err_out;
4784 
4785 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4786 
4787 	__atapi_pio_bytes(qc, bytes);
4788 
4789 	return;
4790 
4791 err_out:
4792 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4793 	qc->err_mask |= AC_ERR_HSM;
4794 	ap->hsm_task_state = HSM_ST_ERR;
4795 }
4796 
4797 /**
4798  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4799  *	@ap: the target ata_port
4800  *	@qc: qc on going
4801  *
4802  *	RETURNS:
4803  *	1 if ok in workqueue, 0 otherwise.
4804  */
4805 
4806 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4807 {
4808 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4809 		return 1;
4810 
4811 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4812 		if (qc->tf.protocol == ATA_PROT_PIO &&
4813 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4814 		    return 1;
4815 
4816 		if (is_atapi_taskfile(&qc->tf) &&
4817 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4818 			return 1;
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 /**
4825  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4826  *	@qc: Command to complete
4827  *	@in_wq: 1 if called from workqueue, 0 otherwise
4828  *
4829  *	Finish @qc which is running on standard HSM.
4830  *
4831  *	LOCKING:
4832  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4833  *	Otherwise, none on entry and grabs host lock.
4834  */
4835 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4836 {
4837 	struct ata_port *ap = qc->ap;
4838 	unsigned long flags;
4839 
4840 	if (ap->ops->error_handler) {
4841 		if (in_wq) {
4842 			spin_lock_irqsave(ap->lock, flags);
4843 
4844 			/* EH might have kicked in while host lock is
4845 			 * released.
4846 			 */
4847 			qc = ata_qc_from_tag(ap, qc->tag);
4848 			if (qc) {
4849 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4850 					ap->ops->irq_on(ap);
4851 					ata_qc_complete(qc);
4852 				} else
4853 					ata_port_freeze(ap);
4854 			}
4855 
4856 			spin_unlock_irqrestore(ap->lock, flags);
4857 		} else {
4858 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4859 				ata_qc_complete(qc);
4860 			else
4861 				ata_port_freeze(ap);
4862 		}
4863 	} else {
4864 		if (in_wq) {
4865 			spin_lock_irqsave(ap->lock, flags);
4866 			ap->ops->irq_on(ap);
4867 			ata_qc_complete(qc);
4868 			spin_unlock_irqrestore(ap->lock, flags);
4869 		} else
4870 			ata_qc_complete(qc);
4871 	}
4872 }
4873 
4874 /**
4875  *	ata_hsm_move - move the HSM to the next state.
4876  *	@ap: the target ata_port
4877  *	@qc: qc on going
4878  *	@status: current device status
4879  *	@in_wq: 1 if called from workqueue, 0 otherwise
4880  *
4881  *	RETURNS:
4882  *	1 when poll next status needed, 0 otherwise.
4883  */
4884 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4885 		 u8 status, int in_wq)
4886 {
4887 	unsigned long flags = 0;
4888 	int poll_next;
4889 
4890 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4891 
4892 	/* Make sure ata_qc_issue_prot() does not throw things
4893 	 * like DMA polling into the workqueue. Notice that
4894 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4895 	 */
4896 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4897 
4898 fsm_start:
4899 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4900 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4901 
4902 	switch (ap->hsm_task_state) {
4903 	case HSM_ST_FIRST:
4904 		/* Send first data block or PACKET CDB */
4905 
4906 		/* If polling, we will stay in the work queue after
4907 		 * sending the data. Otherwise, interrupt handler
4908 		 * takes over after sending the data.
4909 		 */
4910 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4911 
4912 		/* check device status */
4913 		if (unlikely((status & ATA_DRQ) == 0)) {
4914 			/* handle BSY=0, DRQ=0 as error */
4915 			if (likely(status & (ATA_ERR | ATA_DF)))
4916 				/* device stops HSM for abort/error */
4917 				qc->err_mask |= AC_ERR_DEV;
4918 			else
4919 				/* HSM violation. Let EH handle this */
4920 				qc->err_mask |= AC_ERR_HSM;
4921 
4922 			ap->hsm_task_state = HSM_ST_ERR;
4923 			goto fsm_start;
4924 		}
4925 
4926 		/* Device should not ask for data transfer (DRQ=1)
4927 		 * when it finds something wrong.
4928 		 * We ignore DRQ here and stop the HSM by
4929 		 * changing hsm_task_state to HSM_ST_ERR and
4930 		 * let the EH abort the command or reset the device.
4931 		 */
4932 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4933 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4934 					"error, dev_stat 0x%X\n", status);
4935 			qc->err_mask |= AC_ERR_HSM;
4936 			ap->hsm_task_state = HSM_ST_ERR;
4937 			goto fsm_start;
4938 		}
4939 
4940 		/* Send the CDB (atapi) or the first data block (ata pio out).
4941 		 * During the state transition, interrupt handler shouldn't
4942 		 * be invoked before the data transfer is complete and
4943 		 * hsm_task_state is changed. Hence, the following locking.
4944 		 */
4945 		if (in_wq)
4946 			spin_lock_irqsave(ap->lock, flags);
4947 
4948 		if (qc->tf.protocol == ATA_PROT_PIO) {
4949 			/* PIO data out protocol.
4950 			 * send first data block.
4951 			 */
4952 
4953 			/* ata_pio_sectors() might change the state
4954 			 * to HSM_ST_LAST. so, the state is changed here
4955 			 * before ata_pio_sectors().
4956 			 */
4957 			ap->hsm_task_state = HSM_ST;
4958 			ata_pio_sectors(qc);
4959 			ata_altstatus(ap); /* flush */
4960 		} else
4961 			/* send CDB */
4962 			atapi_send_cdb(ap, qc);
4963 
4964 		if (in_wq)
4965 			spin_unlock_irqrestore(ap->lock, flags);
4966 
4967 		/* if polling, ata_pio_task() handles the rest.
4968 		 * otherwise, interrupt handler takes over from here.
4969 		 */
4970 		break;
4971 
4972 	case HSM_ST:
4973 		/* complete command or read/write the data register */
4974 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4975 			/* ATAPI PIO protocol */
4976 			if ((status & ATA_DRQ) == 0) {
4977 				/* No more data to transfer or device error.
4978 				 * Device error will be tagged in HSM_ST_LAST.
4979 				 */
4980 				ap->hsm_task_state = HSM_ST_LAST;
4981 				goto fsm_start;
4982 			}
4983 
4984 			/* Device should not ask for data transfer (DRQ=1)
4985 			 * when it finds something wrong.
4986 			 * We ignore DRQ here and stop the HSM by
4987 			 * changing hsm_task_state to HSM_ST_ERR and
4988 			 * let the EH abort the command or reset the device.
4989 			 */
4990 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4991 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4992 						"device error, dev_stat 0x%X\n",
4993 						status);
4994 				qc->err_mask |= AC_ERR_HSM;
4995 				ap->hsm_task_state = HSM_ST_ERR;
4996 				goto fsm_start;
4997 			}
4998 
4999 			atapi_pio_bytes(qc);
5000 
5001 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5002 				/* bad ireason reported by device */
5003 				goto fsm_start;
5004 
5005 		} else {
5006 			/* ATA PIO protocol */
5007 			if (unlikely((status & ATA_DRQ) == 0)) {
5008 				/* handle BSY=0, DRQ=0 as error */
5009 				if (likely(status & (ATA_ERR | ATA_DF)))
5010 					/* device stops HSM for abort/error */
5011 					qc->err_mask |= AC_ERR_DEV;
5012 				else
5013 					/* HSM violation. Let EH handle this.
5014 					 * Phantom devices also trigger this
5015 					 * condition.  Mark hint.
5016 					 */
5017 					qc->err_mask |= AC_ERR_HSM |
5018 							AC_ERR_NODEV_HINT;
5019 
5020 				ap->hsm_task_state = HSM_ST_ERR;
5021 				goto fsm_start;
5022 			}
5023 
5024 			/* For PIO reads, some devices may ask for
5025 			 * data transfer (DRQ=1) alone with ERR=1.
5026 			 * We respect DRQ here and transfer one
5027 			 * block of junk data before changing the
5028 			 * hsm_task_state to HSM_ST_ERR.
5029 			 *
5030 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
5031 			 * sense since the data block has been
5032 			 * transferred to the device.
5033 			 */
5034 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
5035 				/* data might be corrputed */
5036 				qc->err_mask |= AC_ERR_DEV;
5037 
5038 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5039 					ata_pio_sectors(qc);
5040 					ata_altstatus(ap);
5041 					status = ata_wait_idle(ap);
5042 				}
5043 
5044 				if (status & (ATA_BUSY | ATA_DRQ))
5045 					qc->err_mask |= AC_ERR_HSM;
5046 
5047 				/* ata_pio_sectors() might change the
5048 				 * state to HSM_ST_LAST. so, the state
5049 				 * is changed after ata_pio_sectors().
5050 				 */
5051 				ap->hsm_task_state = HSM_ST_ERR;
5052 				goto fsm_start;
5053 			}
5054 
5055 			ata_pio_sectors(qc);
5056 
5057 			if (ap->hsm_task_state == HSM_ST_LAST &&
5058 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5059 				/* all data read */
5060 				ata_altstatus(ap);
5061 				status = ata_wait_idle(ap);
5062 				goto fsm_start;
5063 			}
5064 		}
5065 
5066 		ata_altstatus(ap); /* flush */
5067 		poll_next = 1;
5068 		break;
5069 
5070 	case HSM_ST_LAST:
5071 		if (unlikely(!ata_ok(status))) {
5072 			qc->err_mask |= __ac_err_mask(status);
5073 			ap->hsm_task_state = HSM_ST_ERR;
5074 			goto fsm_start;
5075 		}
5076 
5077 		/* no more data to transfer */
5078 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5079 			ap->print_id, qc->dev->devno, status);
5080 
5081 		WARN_ON(qc->err_mask);
5082 
5083 		ap->hsm_task_state = HSM_ST_IDLE;
5084 
5085 		/* complete taskfile transaction */
5086 		ata_hsm_qc_complete(qc, in_wq);
5087 
5088 		poll_next = 0;
5089 		break;
5090 
5091 	case HSM_ST_ERR:
5092 		/* make sure qc->err_mask is available to
5093 		 * know what's wrong and recover
5094 		 */
5095 		WARN_ON(qc->err_mask == 0);
5096 
5097 		ap->hsm_task_state = HSM_ST_IDLE;
5098 
5099 		/* complete taskfile transaction */
5100 		ata_hsm_qc_complete(qc, in_wq);
5101 
5102 		poll_next = 0;
5103 		break;
5104 	default:
5105 		poll_next = 0;
5106 		BUG();
5107 	}
5108 
5109 	return poll_next;
5110 }
5111 
5112 static void ata_pio_task(struct work_struct *work)
5113 {
5114 	struct ata_port *ap =
5115 		container_of(work, struct ata_port, port_task.work);
5116 	struct ata_queued_cmd *qc = ap->port_task_data;
5117 	u8 status;
5118 	int poll_next;
5119 
5120 fsm_start:
5121 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5122 
5123 	/*
5124 	 * This is purely heuristic.  This is a fast path.
5125 	 * Sometimes when we enter, BSY will be cleared in
5126 	 * a chk-status or two.  If not, the drive is probably seeking
5127 	 * or something.  Snooze for a couple msecs, then
5128 	 * chk-status again.  If still busy, queue delayed work.
5129 	 */
5130 	status = ata_busy_wait(ap, ATA_BUSY, 5);
5131 	if (status & ATA_BUSY) {
5132 		msleep(2);
5133 		status = ata_busy_wait(ap, ATA_BUSY, 10);
5134 		if (status & ATA_BUSY) {
5135 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5136 			return;
5137 		}
5138 	}
5139 
5140 	/* move the HSM */
5141 	poll_next = ata_hsm_move(ap, qc, status, 1);
5142 
5143 	/* another command or interrupt handler
5144 	 * may be running at this point.
5145 	 */
5146 	if (poll_next)
5147 		goto fsm_start;
5148 }
5149 
5150 /**
5151  *	ata_qc_new - Request an available ATA command, for queueing
5152  *	@ap: Port associated with device @dev
5153  *	@dev: Device from whom we request an available command structure
5154  *
5155  *	LOCKING:
5156  *	None.
5157  */
5158 
5159 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5160 {
5161 	struct ata_queued_cmd *qc = NULL;
5162 	unsigned int i;
5163 
5164 	/* no command while frozen */
5165 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5166 		return NULL;
5167 
5168 	/* the last tag is reserved for internal command. */
5169 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5170 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
5171 			qc = __ata_qc_from_tag(ap, i);
5172 			break;
5173 		}
5174 
5175 	if (qc)
5176 		qc->tag = i;
5177 
5178 	return qc;
5179 }
5180 
5181 /**
5182  *	ata_qc_new_init - Request an available ATA command, and initialize it
5183  *	@dev: Device from whom we request an available command structure
5184  *
5185  *	LOCKING:
5186  *	None.
5187  */
5188 
5189 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5190 {
5191 	struct ata_port *ap = dev->ap;
5192 	struct ata_queued_cmd *qc;
5193 
5194 	qc = ata_qc_new(ap);
5195 	if (qc) {
5196 		qc->scsicmd = NULL;
5197 		qc->ap = ap;
5198 		qc->dev = dev;
5199 
5200 		ata_qc_reinit(qc);
5201 	}
5202 
5203 	return qc;
5204 }
5205 
5206 /**
5207  *	ata_qc_free - free unused ata_queued_cmd
5208  *	@qc: Command to complete
5209  *
5210  *	Designed to free unused ata_queued_cmd object
5211  *	in case something prevents using it.
5212  *
5213  *	LOCKING:
5214  *	spin_lock_irqsave(host lock)
5215  */
5216 void ata_qc_free(struct ata_queued_cmd *qc)
5217 {
5218 	struct ata_port *ap = qc->ap;
5219 	unsigned int tag;
5220 
5221 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5222 
5223 	qc->flags = 0;
5224 	tag = qc->tag;
5225 	if (likely(ata_tag_valid(tag))) {
5226 		qc->tag = ATA_TAG_POISON;
5227 		clear_bit(tag, &ap->qc_allocated);
5228 	}
5229 }
5230 
5231 void __ata_qc_complete(struct ata_queued_cmd *qc)
5232 {
5233 	struct ata_port *ap = qc->ap;
5234 
5235 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5236 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5237 
5238 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5239 		ata_sg_clean(qc);
5240 
5241 	/* command should be marked inactive atomically with qc completion */
5242 	if (qc->tf.protocol == ATA_PROT_NCQ)
5243 		ap->sactive &= ~(1 << qc->tag);
5244 	else
5245 		ap->active_tag = ATA_TAG_POISON;
5246 
5247 	/* atapi: mark qc as inactive to prevent the interrupt handler
5248 	 * from completing the command twice later, before the error handler
5249 	 * is called. (when rc != 0 and atapi request sense is needed)
5250 	 */
5251 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5252 	ap->qc_active &= ~(1 << qc->tag);
5253 
5254 	/* call completion callback */
5255 	qc->complete_fn(qc);
5256 }
5257 
5258 static void fill_result_tf(struct ata_queued_cmd *qc)
5259 {
5260 	struct ata_port *ap = qc->ap;
5261 
5262 	qc->result_tf.flags = qc->tf.flags;
5263 	ap->ops->tf_read(ap, &qc->result_tf);
5264 }
5265 
5266 /**
5267  *	ata_qc_complete - Complete an active ATA command
5268  *	@qc: Command to complete
5269  *	@err_mask: ATA Status register contents
5270  *
5271  *	Indicate to the mid and upper layers that an ATA
5272  *	command has completed, with either an ok or not-ok status.
5273  *
5274  *	LOCKING:
5275  *	spin_lock_irqsave(host lock)
5276  */
5277 void ata_qc_complete(struct ata_queued_cmd *qc)
5278 {
5279 	struct ata_port *ap = qc->ap;
5280 
5281 	/* XXX: New EH and old EH use different mechanisms to
5282 	 * synchronize EH with regular execution path.
5283 	 *
5284 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5285 	 * Normal execution path is responsible for not accessing a
5286 	 * failed qc.  libata core enforces the rule by returning NULL
5287 	 * from ata_qc_from_tag() for failed qcs.
5288 	 *
5289 	 * Old EH depends on ata_qc_complete() nullifying completion
5290 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5291 	 * not synchronize with interrupt handler.  Only PIO task is
5292 	 * taken care of.
5293 	 */
5294 	if (ap->ops->error_handler) {
5295 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5296 
5297 		if (unlikely(qc->err_mask))
5298 			qc->flags |= ATA_QCFLAG_FAILED;
5299 
5300 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5301 			if (!ata_tag_internal(qc->tag)) {
5302 				/* always fill result TF for failed qc */
5303 				fill_result_tf(qc);
5304 				ata_qc_schedule_eh(qc);
5305 				return;
5306 			}
5307 		}
5308 
5309 		/* read result TF if requested */
5310 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5311 			fill_result_tf(qc);
5312 
5313 		__ata_qc_complete(qc);
5314 	} else {
5315 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5316 			return;
5317 
5318 		/* read result TF if failed or requested */
5319 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5320 			fill_result_tf(qc);
5321 
5322 		__ata_qc_complete(qc);
5323 	}
5324 }
5325 
5326 /**
5327  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5328  *	@ap: port in question
5329  *	@qc_active: new qc_active mask
5330  *	@finish_qc: LLDD callback invoked before completing a qc
5331  *
5332  *	Complete in-flight commands.  This functions is meant to be
5333  *	called from low-level driver's interrupt routine to complete
5334  *	requests normally.  ap->qc_active and @qc_active is compared
5335  *	and commands are completed accordingly.
5336  *
5337  *	LOCKING:
5338  *	spin_lock_irqsave(host lock)
5339  *
5340  *	RETURNS:
5341  *	Number of completed commands on success, -errno otherwise.
5342  */
5343 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5344 			     void (*finish_qc)(struct ata_queued_cmd *))
5345 {
5346 	int nr_done = 0;
5347 	u32 done_mask;
5348 	int i;
5349 
5350 	done_mask = ap->qc_active ^ qc_active;
5351 
5352 	if (unlikely(done_mask & qc_active)) {
5353 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5354 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5355 		return -EINVAL;
5356 	}
5357 
5358 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5359 		struct ata_queued_cmd *qc;
5360 
5361 		if (!(done_mask & (1 << i)))
5362 			continue;
5363 
5364 		if ((qc = ata_qc_from_tag(ap, i))) {
5365 			if (finish_qc)
5366 				finish_qc(qc);
5367 			ata_qc_complete(qc);
5368 			nr_done++;
5369 		}
5370 	}
5371 
5372 	return nr_done;
5373 }
5374 
5375 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5376 {
5377 	struct ata_port *ap = qc->ap;
5378 
5379 	switch (qc->tf.protocol) {
5380 	case ATA_PROT_NCQ:
5381 	case ATA_PROT_DMA:
5382 	case ATA_PROT_ATAPI_DMA:
5383 		return 1;
5384 
5385 	case ATA_PROT_ATAPI:
5386 	case ATA_PROT_PIO:
5387 		if (ap->flags & ATA_FLAG_PIO_DMA)
5388 			return 1;
5389 
5390 		/* fall through */
5391 
5392 	default:
5393 		return 0;
5394 	}
5395 
5396 	/* never reached */
5397 }
5398 
5399 /**
5400  *	ata_qc_issue - issue taskfile to device
5401  *	@qc: command to issue to device
5402  *
5403  *	Prepare an ATA command to submission to device.
5404  *	This includes mapping the data into a DMA-able
5405  *	area, filling in the S/G table, and finally
5406  *	writing the taskfile to hardware, starting the command.
5407  *
5408  *	LOCKING:
5409  *	spin_lock_irqsave(host lock)
5410  */
5411 void ata_qc_issue(struct ata_queued_cmd *qc)
5412 {
5413 	struct ata_port *ap = qc->ap;
5414 
5415 	/* Make sure only one non-NCQ command is outstanding.  The
5416 	 * check is skipped for old EH because it reuses active qc to
5417 	 * request ATAPI sense.
5418 	 */
5419 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5420 
5421 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5422 		WARN_ON(ap->sactive & (1 << qc->tag));
5423 		ap->sactive |= 1 << qc->tag;
5424 	} else {
5425 		WARN_ON(ap->sactive);
5426 		ap->active_tag = qc->tag;
5427 	}
5428 
5429 	qc->flags |= ATA_QCFLAG_ACTIVE;
5430 	ap->qc_active |= 1 << qc->tag;
5431 
5432 	if (ata_should_dma_map(qc)) {
5433 		if (qc->flags & ATA_QCFLAG_SG) {
5434 			if (ata_sg_setup(qc))
5435 				goto sg_err;
5436 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
5437 			if (ata_sg_setup_one(qc))
5438 				goto sg_err;
5439 		}
5440 	} else {
5441 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
5442 	}
5443 
5444 	ap->ops->qc_prep(qc);
5445 
5446 	qc->err_mask |= ap->ops->qc_issue(qc);
5447 	if (unlikely(qc->err_mask))
5448 		goto err;
5449 	return;
5450 
5451 sg_err:
5452 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5453 	qc->err_mask |= AC_ERR_SYSTEM;
5454 err:
5455 	ata_qc_complete(qc);
5456 }
5457 
5458 /**
5459  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5460  *	@qc: command to issue to device
5461  *
5462  *	Using various libata functions and hooks, this function
5463  *	starts an ATA command.  ATA commands are grouped into
5464  *	classes called "protocols", and issuing each type of protocol
5465  *	is slightly different.
5466  *
5467  *	May be used as the qc_issue() entry in ata_port_operations.
5468  *
5469  *	LOCKING:
5470  *	spin_lock_irqsave(host lock)
5471  *
5472  *	RETURNS:
5473  *	Zero on success, AC_ERR_* mask on failure
5474  */
5475 
5476 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5477 {
5478 	struct ata_port *ap = qc->ap;
5479 
5480 	/* Use polling pio if the LLD doesn't handle
5481 	 * interrupt driven pio and atapi CDB interrupt.
5482 	 */
5483 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
5484 		switch (qc->tf.protocol) {
5485 		case ATA_PROT_PIO:
5486 		case ATA_PROT_NODATA:
5487 		case ATA_PROT_ATAPI:
5488 		case ATA_PROT_ATAPI_NODATA:
5489 			qc->tf.flags |= ATA_TFLAG_POLLING;
5490 			break;
5491 		case ATA_PROT_ATAPI_DMA:
5492 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5493 				/* see ata_dma_blacklisted() */
5494 				BUG();
5495 			break;
5496 		default:
5497 			break;
5498 		}
5499 	}
5500 
5501 	/* select the device */
5502 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5503 
5504 	/* start the command */
5505 	switch (qc->tf.protocol) {
5506 	case ATA_PROT_NODATA:
5507 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5508 			ata_qc_set_polling(qc);
5509 
5510 		ata_tf_to_host(ap, &qc->tf);
5511 		ap->hsm_task_state = HSM_ST_LAST;
5512 
5513 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5514 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5515 
5516 		break;
5517 
5518 	case ATA_PROT_DMA:
5519 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5520 
5521 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5522 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5523 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5524 		ap->hsm_task_state = HSM_ST_LAST;
5525 		break;
5526 
5527 	case ATA_PROT_PIO:
5528 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5529 			ata_qc_set_polling(qc);
5530 
5531 		ata_tf_to_host(ap, &qc->tf);
5532 
5533 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5534 			/* PIO data out protocol */
5535 			ap->hsm_task_state = HSM_ST_FIRST;
5536 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5537 
5538 			/* always send first data block using
5539 			 * the ata_pio_task() codepath.
5540 			 */
5541 		} else {
5542 			/* PIO data in protocol */
5543 			ap->hsm_task_state = HSM_ST;
5544 
5545 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5546 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5547 
5548 			/* if polling, ata_pio_task() handles the rest.
5549 			 * otherwise, interrupt handler takes over from here.
5550 			 */
5551 		}
5552 
5553 		break;
5554 
5555 	case ATA_PROT_ATAPI:
5556 	case ATA_PROT_ATAPI_NODATA:
5557 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5558 			ata_qc_set_polling(qc);
5559 
5560 		ata_tf_to_host(ap, &qc->tf);
5561 
5562 		ap->hsm_task_state = HSM_ST_FIRST;
5563 
5564 		/* send cdb by polling if no cdb interrupt */
5565 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5566 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5567 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5568 		break;
5569 
5570 	case ATA_PROT_ATAPI_DMA:
5571 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5572 
5573 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5574 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5575 		ap->hsm_task_state = HSM_ST_FIRST;
5576 
5577 		/* send cdb by polling if no cdb interrupt */
5578 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5579 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5580 		break;
5581 
5582 	default:
5583 		WARN_ON(1);
5584 		return AC_ERR_SYSTEM;
5585 	}
5586 
5587 	return 0;
5588 }
5589 
5590 /**
5591  *	ata_host_intr - Handle host interrupt for given (port, task)
5592  *	@ap: Port on which interrupt arrived (possibly...)
5593  *	@qc: Taskfile currently active in engine
5594  *
5595  *	Handle host interrupt for given queued command.  Currently,
5596  *	only DMA interrupts are handled.  All other commands are
5597  *	handled via polling with interrupts disabled (nIEN bit).
5598  *
5599  *	LOCKING:
5600  *	spin_lock_irqsave(host lock)
5601  *
5602  *	RETURNS:
5603  *	One if interrupt was handled, zero if not (shared irq).
5604  */
5605 
5606 inline unsigned int ata_host_intr (struct ata_port *ap,
5607 				   struct ata_queued_cmd *qc)
5608 {
5609 	struct ata_eh_info *ehi = &ap->eh_info;
5610 	u8 status, host_stat = 0;
5611 
5612 	VPRINTK("ata%u: protocol %d task_state %d\n",
5613 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5614 
5615 	/* Check whether we are expecting interrupt in this state */
5616 	switch (ap->hsm_task_state) {
5617 	case HSM_ST_FIRST:
5618 		/* Some pre-ATAPI-4 devices assert INTRQ
5619 		 * at this state when ready to receive CDB.
5620 		 */
5621 
5622 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5623 		 * The flag was turned on only for atapi devices.
5624 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5625 		 */
5626 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5627 			goto idle_irq;
5628 		break;
5629 	case HSM_ST_LAST:
5630 		if (qc->tf.protocol == ATA_PROT_DMA ||
5631 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5632 			/* check status of DMA engine */
5633 			host_stat = ap->ops->bmdma_status(ap);
5634 			VPRINTK("ata%u: host_stat 0x%X\n",
5635 				ap->print_id, host_stat);
5636 
5637 			/* if it's not our irq... */
5638 			if (!(host_stat & ATA_DMA_INTR))
5639 				goto idle_irq;
5640 
5641 			/* before we do anything else, clear DMA-Start bit */
5642 			ap->ops->bmdma_stop(qc);
5643 
5644 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5645 				/* error when transfering data to/from memory */
5646 				qc->err_mask |= AC_ERR_HOST_BUS;
5647 				ap->hsm_task_state = HSM_ST_ERR;
5648 			}
5649 		}
5650 		break;
5651 	case HSM_ST:
5652 		break;
5653 	default:
5654 		goto idle_irq;
5655 	}
5656 
5657 	/* check altstatus */
5658 	status = ata_altstatus(ap);
5659 	if (status & ATA_BUSY)
5660 		goto idle_irq;
5661 
5662 	/* check main status, clearing INTRQ */
5663 	status = ata_chk_status(ap);
5664 	if (unlikely(status & ATA_BUSY))
5665 		goto idle_irq;
5666 
5667 	/* ack bmdma irq events */
5668 	ap->ops->irq_clear(ap);
5669 
5670 	ata_hsm_move(ap, qc, status, 0);
5671 
5672 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5673 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5674 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5675 
5676 	return 1;	/* irq handled */
5677 
5678 idle_irq:
5679 	ap->stats.idle_irq++;
5680 
5681 #ifdef ATA_IRQ_TRAP
5682 	if ((ap->stats.idle_irq % 1000) == 0) {
5683 		ap->ops->irq_ack(ap, 0); /* debug trap */
5684 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5685 		return 1;
5686 	}
5687 #endif
5688 	return 0;	/* irq not handled */
5689 }
5690 
5691 /**
5692  *	ata_interrupt - Default ATA host interrupt handler
5693  *	@irq: irq line (unused)
5694  *	@dev_instance: pointer to our ata_host information structure
5695  *
5696  *	Default interrupt handler for PCI IDE devices.  Calls
5697  *	ata_host_intr() for each port that is not disabled.
5698  *
5699  *	LOCKING:
5700  *	Obtains host lock during operation.
5701  *
5702  *	RETURNS:
5703  *	IRQ_NONE or IRQ_HANDLED.
5704  */
5705 
5706 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5707 {
5708 	struct ata_host *host = dev_instance;
5709 	unsigned int i;
5710 	unsigned int handled = 0;
5711 	unsigned long flags;
5712 
5713 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5714 	spin_lock_irqsave(&host->lock, flags);
5715 
5716 	for (i = 0; i < host->n_ports; i++) {
5717 		struct ata_port *ap;
5718 
5719 		ap = host->ports[i];
5720 		if (ap &&
5721 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5722 			struct ata_queued_cmd *qc;
5723 
5724 			qc = ata_qc_from_tag(ap, ap->active_tag);
5725 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5726 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5727 				handled |= ata_host_intr(ap, qc);
5728 		}
5729 	}
5730 
5731 	spin_unlock_irqrestore(&host->lock, flags);
5732 
5733 	return IRQ_RETVAL(handled);
5734 }
5735 
5736 /**
5737  *	sata_scr_valid - test whether SCRs are accessible
5738  *	@ap: ATA port to test SCR accessibility for
5739  *
5740  *	Test whether SCRs are accessible for @ap.
5741  *
5742  *	LOCKING:
5743  *	None.
5744  *
5745  *	RETURNS:
5746  *	1 if SCRs are accessible, 0 otherwise.
5747  */
5748 int sata_scr_valid(struct ata_port *ap)
5749 {
5750 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5751 }
5752 
5753 /**
5754  *	sata_scr_read - read SCR register of the specified port
5755  *	@ap: ATA port to read SCR for
5756  *	@reg: SCR to read
5757  *	@val: Place to store read value
5758  *
5759  *	Read SCR register @reg of @ap into *@val.  This function is
5760  *	guaranteed to succeed if the cable type of the port is SATA
5761  *	and the port implements ->scr_read.
5762  *
5763  *	LOCKING:
5764  *	None.
5765  *
5766  *	RETURNS:
5767  *	0 on success, negative errno on failure.
5768  */
5769 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5770 {
5771 	if (sata_scr_valid(ap))
5772 		return ap->ops->scr_read(ap, reg, val);
5773 	return -EOPNOTSUPP;
5774 }
5775 
5776 /**
5777  *	sata_scr_write - write SCR register of the specified port
5778  *	@ap: ATA port to write SCR for
5779  *	@reg: SCR to write
5780  *	@val: value to write
5781  *
5782  *	Write @val to SCR register @reg of @ap.  This function is
5783  *	guaranteed to succeed if the cable type of the port is SATA
5784  *	and the port implements ->scr_read.
5785  *
5786  *	LOCKING:
5787  *	None.
5788  *
5789  *	RETURNS:
5790  *	0 on success, negative errno on failure.
5791  */
5792 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5793 {
5794 	if (sata_scr_valid(ap))
5795 		return ap->ops->scr_write(ap, reg, val);
5796 	return -EOPNOTSUPP;
5797 }
5798 
5799 /**
5800  *	sata_scr_write_flush - write SCR register of the specified port and flush
5801  *	@ap: ATA port to write SCR for
5802  *	@reg: SCR to write
5803  *	@val: value to write
5804  *
5805  *	This function is identical to sata_scr_write() except that this
5806  *	function performs flush after writing to the register.
5807  *
5808  *	LOCKING:
5809  *	None.
5810  *
5811  *	RETURNS:
5812  *	0 on success, negative errno on failure.
5813  */
5814 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5815 {
5816 	int rc;
5817 
5818 	if (sata_scr_valid(ap)) {
5819 		rc = ap->ops->scr_write(ap, reg, val);
5820 		if (rc == 0)
5821 			rc = ap->ops->scr_read(ap, reg, &val);
5822 		return rc;
5823 	}
5824 	return -EOPNOTSUPP;
5825 }
5826 
5827 /**
5828  *	ata_port_online - test whether the given port is online
5829  *	@ap: ATA port to test
5830  *
5831  *	Test whether @ap is online.  Note that this function returns 0
5832  *	if online status of @ap cannot be obtained, so
5833  *	ata_port_online(ap) != !ata_port_offline(ap).
5834  *
5835  *	LOCKING:
5836  *	None.
5837  *
5838  *	RETURNS:
5839  *	1 if the port online status is available and online.
5840  */
5841 int ata_port_online(struct ata_port *ap)
5842 {
5843 	u32 sstatus;
5844 
5845 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5846 		return 1;
5847 	return 0;
5848 }
5849 
5850 /**
5851  *	ata_port_offline - test whether the given port is offline
5852  *	@ap: ATA port to test
5853  *
5854  *	Test whether @ap is offline.  Note that this function returns
5855  *	0 if offline status of @ap cannot be obtained, so
5856  *	ata_port_online(ap) != !ata_port_offline(ap).
5857  *
5858  *	LOCKING:
5859  *	None.
5860  *
5861  *	RETURNS:
5862  *	1 if the port offline status is available and offline.
5863  */
5864 int ata_port_offline(struct ata_port *ap)
5865 {
5866 	u32 sstatus;
5867 
5868 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5869 		return 1;
5870 	return 0;
5871 }
5872 
5873 int ata_flush_cache(struct ata_device *dev)
5874 {
5875 	unsigned int err_mask;
5876 	u8 cmd;
5877 
5878 	if (!ata_try_flush_cache(dev))
5879 		return 0;
5880 
5881 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5882 		cmd = ATA_CMD_FLUSH_EXT;
5883 	else
5884 		cmd = ATA_CMD_FLUSH;
5885 
5886 	err_mask = ata_do_simple_cmd(dev, cmd);
5887 	if (err_mask) {
5888 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5889 		return -EIO;
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 #ifdef CONFIG_PM
5896 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5897 			       unsigned int action, unsigned int ehi_flags,
5898 			       int wait)
5899 {
5900 	unsigned long flags;
5901 	int i, rc;
5902 
5903 	for (i = 0; i < host->n_ports; i++) {
5904 		struct ata_port *ap = host->ports[i];
5905 
5906 		/* Previous resume operation might still be in
5907 		 * progress.  Wait for PM_PENDING to clear.
5908 		 */
5909 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5910 			ata_port_wait_eh(ap);
5911 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5912 		}
5913 
5914 		/* request PM ops to EH */
5915 		spin_lock_irqsave(ap->lock, flags);
5916 
5917 		ap->pm_mesg = mesg;
5918 		if (wait) {
5919 			rc = 0;
5920 			ap->pm_result = &rc;
5921 		}
5922 
5923 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5924 		ap->eh_info.action |= action;
5925 		ap->eh_info.flags |= ehi_flags;
5926 
5927 		ata_port_schedule_eh(ap);
5928 
5929 		spin_unlock_irqrestore(ap->lock, flags);
5930 
5931 		/* wait and check result */
5932 		if (wait) {
5933 			ata_port_wait_eh(ap);
5934 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5935 			if (rc)
5936 				return rc;
5937 		}
5938 	}
5939 
5940 	return 0;
5941 }
5942 
5943 /**
5944  *	ata_host_suspend - suspend host
5945  *	@host: host to suspend
5946  *	@mesg: PM message
5947  *
5948  *	Suspend @host.  Actual operation is performed by EH.  This
5949  *	function requests EH to perform PM operations and waits for EH
5950  *	to finish.
5951  *
5952  *	LOCKING:
5953  *	Kernel thread context (may sleep).
5954  *
5955  *	RETURNS:
5956  *	0 on success, -errno on failure.
5957  */
5958 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5959 {
5960 	int rc;
5961 
5962 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5963 	if (rc == 0)
5964 		host->dev->power.power_state = mesg;
5965 	return rc;
5966 }
5967 
5968 /**
5969  *	ata_host_resume - resume host
5970  *	@host: host to resume
5971  *
5972  *	Resume @host.  Actual operation is performed by EH.  This
5973  *	function requests EH to perform PM operations and returns.
5974  *	Note that all resume operations are performed parallely.
5975  *
5976  *	LOCKING:
5977  *	Kernel thread context (may sleep).
5978  */
5979 void ata_host_resume(struct ata_host *host)
5980 {
5981 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5982 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5983 	host->dev->power.power_state = PMSG_ON;
5984 }
5985 #endif
5986 
5987 /**
5988  *	ata_port_start - Set port up for dma.
5989  *	@ap: Port to initialize
5990  *
5991  *	Called just after data structures for each port are
5992  *	initialized.  Allocates space for PRD table.
5993  *
5994  *	May be used as the port_start() entry in ata_port_operations.
5995  *
5996  *	LOCKING:
5997  *	Inherited from caller.
5998  */
5999 int ata_port_start(struct ata_port *ap)
6000 {
6001 	struct device *dev = ap->dev;
6002 	int rc;
6003 
6004 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6005 				      GFP_KERNEL);
6006 	if (!ap->prd)
6007 		return -ENOMEM;
6008 
6009 	rc = ata_pad_alloc(ap, dev);
6010 	if (rc)
6011 		return rc;
6012 
6013 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6014 		(unsigned long long)ap->prd_dma);
6015 	return 0;
6016 }
6017 
6018 /**
6019  *	ata_dev_init - Initialize an ata_device structure
6020  *	@dev: Device structure to initialize
6021  *
6022  *	Initialize @dev in preparation for probing.
6023  *
6024  *	LOCKING:
6025  *	Inherited from caller.
6026  */
6027 void ata_dev_init(struct ata_device *dev)
6028 {
6029 	struct ata_port *ap = dev->ap;
6030 	unsigned long flags;
6031 
6032 	/* SATA spd limit is bound to the first device */
6033 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
6034 	ap->sata_spd = 0;
6035 
6036 	/* High bits of dev->flags are used to record warm plug
6037 	 * requests which occur asynchronously.  Synchronize using
6038 	 * host lock.
6039 	 */
6040 	spin_lock_irqsave(ap->lock, flags);
6041 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
6042 	dev->horkage = 0;
6043 	spin_unlock_irqrestore(ap->lock, flags);
6044 
6045 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6046 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6047 	dev->pio_mask = UINT_MAX;
6048 	dev->mwdma_mask = UINT_MAX;
6049 	dev->udma_mask = UINT_MAX;
6050 }
6051 
6052 /**
6053  *	ata_port_alloc - allocate and initialize basic ATA port resources
6054  *	@host: ATA host this allocated port belongs to
6055  *
6056  *	Allocate and initialize basic ATA port resources.
6057  *
6058  *	RETURNS:
6059  *	Allocate ATA port on success, NULL on failure.
6060  *
6061  *	LOCKING:
6062  *	Inherited from calling layer (may sleep).
6063  */
6064 struct ata_port *ata_port_alloc(struct ata_host *host)
6065 {
6066 	struct ata_port *ap;
6067 	unsigned int i;
6068 
6069 	DPRINTK("ENTER\n");
6070 
6071 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6072 	if (!ap)
6073 		return NULL;
6074 
6075 	ap->pflags |= ATA_PFLAG_INITIALIZING;
6076 	ap->lock = &host->lock;
6077 	ap->flags = ATA_FLAG_DISABLED;
6078 	ap->print_id = -1;
6079 	ap->ctl = ATA_DEVCTL_OBS;
6080 	ap->host = host;
6081 	ap->dev = host->dev;
6082 
6083 	ap->hw_sata_spd_limit = UINT_MAX;
6084 	ap->active_tag = ATA_TAG_POISON;
6085 	ap->last_ctl = 0xFF;
6086 
6087 #if defined(ATA_VERBOSE_DEBUG)
6088 	/* turn on all debugging levels */
6089 	ap->msg_enable = 0x00FF;
6090 #elif defined(ATA_DEBUG)
6091 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6092 #else
6093 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6094 #endif
6095 
6096 	INIT_DELAYED_WORK(&ap->port_task, NULL);
6097 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6098 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6099 	INIT_LIST_HEAD(&ap->eh_done_q);
6100 	init_waitqueue_head(&ap->eh_wait_q);
6101 	init_timer_deferrable(&ap->fastdrain_timer);
6102 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6103 	ap->fastdrain_timer.data = (unsigned long)ap;
6104 
6105 	ap->cbl = ATA_CBL_NONE;
6106 
6107 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
6108 		struct ata_device *dev = &ap->device[i];
6109 		dev->ap = ap;
6110 		dev->devno = i;
6111 		ata_dev_init(dev);
6112 	}
6113 
6114 #ifdef ATA_IRQ_TRAP
6115 	ap->stats.unhandled_irq = 1;
6116 	ap->stats.idle_irq = 1;
6117 #endif
6118 	return ap;
6119 }
6120 
6121 static void ata_host_release(struct device *gendev, void *res)
6122 {
6123 	struct ata_host *host = dev_get_drvdata(gendev);
6124 	int i;
6125 
6126 	for (i = 0; i < host->n_ports; i++) {
6127 		struct ata_port *ap = host->ports[i];
6128 
6129 		if (!ap)
6130 			continue;
6131 
6132 		if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6133 			ap->ops->port_stop(ap);
6134 	}
6135 
6136 	if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6137 		host->ops->host_stop(host);
6138 
6139 	for (i = 0; i < host->n_ports; i++) {
6140 		struct ata_port *ap = host->ports[i];
6141 
6142 		if (!ap)
6143 			continue;
6144 
6145 		if (ap->scsi_host)
6146 			scsi_host_put(ap->scsi_host);
6147 
6148 		kfree(ap);
6149 		host->ports[i] = NULL;
6150 	}
6151 
6152 	dev_set_drvdata(gendev, NULL);
6153 }
6154 
6155 /**
6156  *	ata_host_alloc - allocate and init basic ATA host resources
6157  *	@dev: generic device this host is associated with
6158  *	@max_ports: maximum number of ATA ports associated with this host
6159  *
6160  *	Allocate and initialize basic ATA host resources.  LLD calls
6161  *	this function to allocate a host, initializes it fully and
6162  *	attaches it using ata_host_register().
6163  *
6164  *	@max_ports ports are allocated and host->n_ports is
6165  *	initialized to @max_ports.  The caller is allowed to decrease
6166  *	host->n_ports before calling ata_host_register().  The unused
6167  *	ports will be automatically freed on registration.
6168  *
6169  *	RETURNS:
6170  *	Allocate ATA host on success, NULL on failure.
6171  *
6172  *	LOCKING:
6173  *	Inherited from calling layer (may sleep).
6174  */
6175 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6176 {
6177 	struct ata_host *host;
6178 	size_t sz;
6179 	int i;
6180 
6181 	DPRINTK("ENTER\n");
6182 
6183 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6184 		return NULL;
6185 
6186 	/* alloc a container for our list of ATA ports (buses) */
6187 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6188 	/* alloc a container for our list of ATA ports (buses) */
6189 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6190 	if (!host)
6191 		goto err_out;
6192 
6193 	devres_add(dev, host);
6194 	dev_set_drvdata(dev, host);
6195 
6196 	spin_lock_init(&host->lock);
6197 	host->dev = dev;
6198 	host->n_ports = max_ports;
6199 
6200 	/* allocate ports bound to this host */
6201 	for (i = 0; i < max_ports; i++) {
6202 		struct ata_port *ap;
6203 
6204 		ap = ata_port_alloc(host);
6205 		if (!ap)
6206 			goto err_out;
6207 
6208 		ap->port_no = i;
6209 		host->ports[i] = ap;
6210 	}
6211 
6212 	devres_remove_group(dev, NULL);
6213 	return host;
6214 
6215  err_out:
6216 	devres_release_group(dev, NULL);
6217 	return NULL;
6218 }
6219 
6220 /**
6221  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6222  *	@dev: generic device this host is associated with
6223  *	@ppi: array of ATA port_info to initialize host with
6224  *	@n_ports: number of ATA ports attached to this host
6225  *
6226  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6227  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6228  *	last entry will be used for the remaining ports.
6229  *
6230  *	RETURNS:
6231  *	Allocate ATA host on success, NULL on failure.
6232  *
6233  *	LOCKING:
6234  *	Inherited from calling layer (may sleep).
6235  */
6236 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6237 				      const struct ata_port_info * const * ppi,
6238 				      int n_ports)
6239 {
6240 	const struct ata_port_info *pi;
6241 	struct ata_host *host;
6242 	int i, j;
6243 
6244 	host = ata_host_alloc(dev, n_ports);
6245 	if (!host)
6246 		return NULL;
6247 
6248 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6249 		struct ata_port *ap = host->ports[i];
6250 
6251 		if (ppi[j])
6252 			pi = ppi[j++];
6253 
6254 		ap->pio_mask = pi->pio_mask;
6255 		ap->mwdma_mask = pi->mwdma_mask;
6256 		ap->udma_mask = pi->udma_mask;
6257 		ap->flags |= pi->flags;
6258 		ap->ops = pi->port_ops;
6259 
6260 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6261 			host->ops = pi->port_ops;
6262 		if (!host->private_data && pi->private_data)
6263 			host->private_data = pi->private_data;
6264 	}
6265 
6266 	return host;
6267 }
6268 
6269 /**
6270  *	ata_host_start - start and freeze ports of an ATA host
6271  *	@host: ATA host to start ports for
6272  *
6273  *	Start and then freeze ports of @host.  Started status is
6274  *	recorded in host->flags, so this function can be called
6275  *	multiple times.  Ports are guaranteed to get started only
6276  *	once.  If host->ops isn't initialized yet, its set to the
6277  *	first non-dummy port ops.
6278  *
6279  *	LOCKING:
6280  *	Inherited from calling layer (may sleep).
6281  *
6282  *	RETURNS:
6283  *	0 if all ports are started successfully, -errno otherwise.
6284  */
6285 int ata_host_start(struct ata_host *host)
6286 {
6287 	int i, rc;
6288 
6289 	if (host->flags & ATA_HOST_STARTED)
6290 		return 0;
6291 
6292 	for (i = 0; i < host->n_ports; i++) {
6293 		struct ata_port *ap = host->ports[i];
6294 
6295 		if (!host->ops && !ata_port_is_dummy(ap))
6296 			host->ops = ap->ops;
6297 
6298 		if (ap->ops->port_start) {
6299 			rc = ap->ops->port_start(ap);
6300 			if (rc) {
6301 				ata_port_printk(ap, KERN_ERR, "failed to "
6302 						"start port (errno=%d)\n", rc);
6303 				goto err_out;
6304 			}
6305 		}
6306 
6307 		ata_eh_freeze_port(ap);
6308 	}
6309 
6310 	host->flags |= ATA_HOST_STARTED;
6311 	return 0;
6312 
6313  err_out:
6314 	while (--i >= 0) {
6315 		struct ata_port *ap = host->ports[i];
6316 
6317 		if (ap->ops->port_stop)
6318 			ap->ops->port_stop(ap);
6319 	}
6320 	return rc;
6321 }
6322 
6323 /**
6324  *	ata_sas_host_init - Initialize a host struct
6325  *	@host:	host to initialize
6326  *	@dev:	device host is attached to
6327  *	@flags:	host flags
6328  *	@ops:	port_ops
6329  *
6330  *	LOCKING:
6331  *	PCI/etc. bus probe sem.
6332  *
6333  */
6334 /* KILLME - the only user left is ipr */
6335 void ata_host_init(struct ata_host *host, struct device *dev,
6336 		   unsigned long flags, const struct ata_port_operations *ops)
6337 {
6338 	spin_lock_init(&host->lock);
6339 	host->dev = dev;
6340 	host->flags = flags;
6341 	host->ops = ops;
6342 }
6343 
6344 /**
6345  *	ata_host_register - register initialized ATA host
6346  *	@host: ATA host to register
6347  *	@sht: template for SCSI host
6348  *
6349  *	Register initialized ATA host.  @host is allocated using
6350  *	ata_host_alloc() and fully initialized by LLD.  This function
6351  *	starts ports, registers @host with ATA and SCSI layers and
6352  *	probe registered devices.
6353  *
6354  *	LOCKING:
6355  *	Inherited from calling layer (may sleep).
6356  *
6357  *	RETURNS:
6358  *	0 on success, -errno otherwise.
6359  */
6360 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6361 {
6362 	int i, rc;
6363 
6364 	/* host must have been started */
6365 	if (!(host->flags & ATA_HOST_STARTED)) {
6366 		dev_printk(KERN_ERR, host->dev,
6367 			   "BUG: trying to register unstarted host\n");
6368 		WARN_ON(1);
6369 		return -EINVAL;
6370 	}
6371 
6372 	/* Blow away unused ports.  This happens when LLD can't
6373 	 * determine the exact number of ports to allocate at
6374 	 * allocation time.
6375 	 */
6376 	for (i = host->n_ports; host->ports[i]; i++)
6377 		kfree(host->ports[i]);
6378 
6379 	/* give ports names and add SCSI hosts */
6380 	for (i = 0; i < host->n_ports; i++)
6381 		host->ports[i]->print_id = ata_print_id++;
6382 
6383 	rc = ata_scsi_add_hosts(host, sht);
6384 	if (rc)
6385 		return rc;
6386 
6387 	/* associate with ACPI nodes */
6388 	ata_acpi_associate(host);
6389 
6390 	/* set cable, sata_spd_limit and report */
6391 	for (i = 0; i < host->n_ports; i++) {
6392 		struct ata_port *ap = host->ports[i];
6393 		int irq_line;
6394 		u32 scontrol;
6395 		unsigned long xfer_mask;
6396 
6397 		/* set SATA cable type if still unset */
6398 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6399 			ap->cbl = ATA_CBL_SATA;
6400 
6401 		/* init sata_spd_limit to the current value */
6402 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6403 			int spd = (scontrol >> 4) & 0xf;
6404 			if (spd)
6405 				ap->hw_sata_spd_limit &= (1 << spd) - 1;
6406 		}
6407 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
6408 
6409 		/* report the secondary IRQ for second channel legacy */
6410 		irq_line = host->irq;
6411 		if (i == 1 && host->irq2)
6412 			irq_line = host->irq2;
6413 
6414 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6415 					      ap->udma_mask);
6416 
6417 		/* print per-port info to dmesg */
6418 		if (!ata_port_is_dummy(ap))
6419 			ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6420 					"ctl 0x%p bmdma 0x%p irq %d\n",
6421 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6422 					ata_mode_string(xfer_mask),
6423 					ap->ioaddr.cmd_addr,
6424 					ap->ioaddr.ctl_addr,
6425 					ap->ioaddr.bmdma_addr,
6426 					irq_line);
6427 		else
6428 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6429 	}
6430 
6431 	/* perform each probe synchronously */
6432 	DPRINTK("probe begin\n");
6433 	for (i = 0; i < host->n_ports; i++) {
6434 		struct ata_port *ap = host->ports[i];
6435 		int rc;
6436 
6437 		/* probe */
6438 		if (ap->ops->error_handler) {
6439 			struct ata_eh_info *ehi = &ap->eh_info;
6440 			unsigned long flags;
6441 
6442 			ata_port_probe(ap);
6443 
6444 			/* kick EH for boot probing */
6445 			spin_lock_irqsave(ap->lock, flags);
6446 
6447 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6448 			ehi->action |= ATA_EH_SOFTRESET;
6449 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6450 
6451 			ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6452 			ap->pflags |= ATA_PFLAG_LOADING;
6453 			ata_port_schedule_eh(ap);
6454 
6455 			spin_unlock_irqrestore(ap->lock, flags);
6456 
6457 			/* wait for EH to finish */
6458 			ata_port_wait_eh(ap);
6459 		} else {
6460 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6461 			rc = ata_bus_probe(ap);
6462 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
6463 
6464 			if (rc) {
6465 				/* FIXME: do something useful here?
6466 				 * Current libata behavior will
6467 				 * tear down everything when
6468 				 * the module is removed
6469 				 * or the h/w is unplugged.
6470 				 */
6471 			}
6472 		}
6473 	}
6474 
6475 	/* probes are done, now scan each port's disk(s) */
6476 	DPRINTK("host probe begin\n");
6477 	for (i = 0; i < host->n_ports; i++) {
6478 		struct ata_port *ap = host->ports[i];
6479 
6480 		ata_scsi_scan_host(ap, 1);
6481 	}
6482 
6483 	return 0;
6484 }
6485 
6486 /**
6487  *	ata_host_activate - start host, request IRQ and register it
6488  *	@host: target ATA host
6489  *	@irq: IRQ to request
6490  *	@irq_handler: irq_handler used when requesting IRQ
6491  *	@irq_flags: irq_flags used when requesting IRQ
6492  *	@sht: scsi_host_template to use when registering the host
6493  *
6494  *	After allocating an ATA host and initializing it, most libata
6495  *	LLDs perform three steps to activate the host - start host,
6496  *	request IRQ and register it.  This helper takes necessasry
6497  *	arguments and performs the three steps in one go.
6498  *
6499  *	LOCKING:
6500  *	Inherited from calling layer (may sleep).
6501  *
6502  *	RETURNS:
6503  *	0 on success, -errno otherwise.
6504  */
6505 int ata_host_activate(struct ata_host *host, int irq,
6506 		      irq_handler_t irq_handler, unsigned long irq_flags,
6507 		      struct scsi_host_template *sht)
6508 {
6509 	int rc;
6510 
6511 	rc = ata_host_start(host);
6512 	if (rc)
6513 		return rc;
6514 
6515 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6516 			      dev_driver_string(host->dev), host);
6517 	if (rc)
6518 		return rc;
6519 
6520 	/* Used to print device info at probe */
6521 	host->irq = irq;
6522 
6523 	rc = ata_host_register(host, sht);
6524 	/* if failed, just free the IRQ and leave ports alone */
6525 	if (rc)
6526 		devm_free_irq(host->dev, irq, host);
6527 
6528 	return rc;
6529 }
6530 
6531 /**
6532  *	ata_port_detach - Detach ATA port in prepration of device removal
6533  *	@ap: ATA port to be detached
6534  *
6535  *	Detach all ATA devices and the associated SCSI devices of @ap;
6536  *	then, remove the associated SCSI host.  @ap is guaranteed to
6537  *	be quiescent on return from this function.
6538  *
6539  *	LOCKING:
6540  *	Kernel thread context (may sleep).
6541  */
6542 void ata_port_detach(struct ata_port *ap)
6543 {
6544 	unsigned long flags;
6545 	int i;
6546 
6547 	if (!ap->ops->error_handler)
6548 		goto skip_eh;
6549 
6550 	/* tell EH we're leaving & flush EH */
6551 	spin_lock_irqsave(ap->lock, flags);
6552 	ap->pflags |= ATA_PFLAG_UNLOADING;
6553 	spin_unlock_irqrestore(ap->lock, flags);
6554 
6555 	ata_port_wait_eh(ap);
6556 
6557 	/* EH is now guaranteed to see UNLOADING, so no new device
6558 	 * will be attached.  Disable all existing devices.
6559 	 */
6560 	spin_lock_irqsave(ap->lock, flags);
6561 
6562 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6563 		ata_dev_disable(&ap->device[i]);
6564 
6565 	spin_unlock_irqrestore(ap->lock, flags);
6566 
6567 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6568 	 * will be skipped and retrials will be terminated with bad
6569 	 * target.
6570 	 */
6571 	spin_lock_irqsave(ap->lock, flags);
6572 	ata_port_freeze(ap);	/* won't be thawed */
6573 	spin_unlock_irqrestore(ap->lock, flags);
6574 
6575 	ata_port_wait_eh(ap);
6576 	cancel_rearming_delayed_work(&ap->hotplug_task);
6577 
6578  skip_eh:
6579 	/* remove the associated SCSI host */
6580 	scsi_remove_host(ap->scsi_host);
6581 }
6582 
6583 /**
6584  *	ata_host_detach - Detach all ports of an ATA host
6585  *	@host: Host to detach
6586  *
6587  *	Detach all ports of @host.
6588  *
6589  *	LOCKING:
6590  *	Kernel thread context (may sleep).
6591  */
6592 void ata_host_detach(struct ata_host *host)
6593 {
6594 	int i;
6595 
6596 	for (i = 0; i < host->n_ports; i++)
6597 		ata_port_detach(host->ports[i]);
6598 }
6599 
6600 /**
6601  *	ata_std_ports - initialize ioaddr with standard port offsets.
6602  *	@ioaddr: IO address structure to be initialized
6603  *
6604  *	Utility function which initializes data_addr, error_addr,
6605  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6606  *	device_addr, status_addr, and command_addr to standard offsets
6607  *	relative to cmd_addr.
6608  *
6609  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6610  */
6611 
6612 void ata_std_ports(struct ata_ioports *ioaddr)
6613 {
6614 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6615 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6616 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6617 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6618 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6619 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6620 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6621 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6622 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6623 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6624 }
6625 
6626 
6627 #ifdef CONFIG_PCI
6628 
6629 /**
6630  *	ata_pci_remove_one - PCI layer callback for device removal
6631  *	@pdev: PCI device that was removed
6632  *
6633  *	PCI layer indicates to libata via this hook that hot-unplug or
6634  *	module unload event has occurred.  Detach all ports.  Resource
6635  *	release is handled via devres.
6636  *
6637  *	LOCKING:
6638  *	Inherited from PCI layer (may sleep).
6639  */
6640 void ata_pci_remove_one(struct pci_dev *pdev)
6641 {
6642 	struct device *dev = pci_dev_to_dev(pdev);
6643 	struct ata_host *host = dev_get_drvdata(dev);
6644 
6645 	ata_host_detach(host);
6646 }
6647 
6648 /* move to PCI subsystem */
6649 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6650 {
6651 	unsigned long tmp = 0;
6652 
6653 	switch (bits->width) {
6654 	case 1: {
6655 		u8 tmp8 = 0;
6656 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6657 		tmp = tmp8;
6658 		break;
6659 	}
6660 	case 2: {
6661 		u16 tmp16 = 0;
6662 		pci_read_config_word(pdev, bits->reg, &tmp16);
6663 		tmp = tmp16;
6664 		break;
6665 	}
6666 	case 4: {
6667 		u32 tmp32 = 0;
6668 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6669 		tmp = tmp32;
6670 		break;
6671 	}
6672 
6673 	default:
6674 		return -EINVAL;
6675 	}
6676 
6677 	tmp &= bits->mask;
6678 
6679 	return (tmp == bits->val) ? 1 : 0;
6680 }
6681 
6682 #ifdef CONFIG_PM
6683 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6684 {
6685 	pci_save_state(pdev);
6686 	pci_disable_device(pdev);
6687 
6688 	if (mesg.event == PM_EVENT_SUSPEND)
6689 		pci_set_power_state(pdev, PCI_D3hot);
6690 }
6691 
6692 int ata_pci_device_do_resume(struct pci_dev *pdev)
6693 {
6694 	int rc;
6695 
6696 	pci_set_power_state(pdev, PCI_D0);
6697 	pci_restore_state(pdev);
6698 
6699 	rc = pcim_enable_device(pdev);
6700 	if (rc) {
6701 		dev_printk(KERN_ERR, &pdev->dev,
6702 			   "failed to enable device after resume (%d)\n", rc);
6703 		return rc;
6704 	}
6705 
6706 	pci_set_master(pdev);
6707 	return 0;
6708 }
6709 
6710 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6711 {
6712 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6713 	int rc = 0;
6714 
6715 	rc = ata_host_suspend(host, mesg);
6716 	if (rc)
6717 		return rc;
6718 
6719 	ata_pci_device_do_suspend(pdev, mesg);
6720 
6721 	return 0;
6722 }
6723 
6724 int ata_pci_device_resume(struct pci_dev *pdev)
6725 {
6726 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6727 	int rc;
6728 
6729 	rc = ata_pci_device_do_resume(pdev);
6730 	if (rc == 0)
6731 		ata_host_resume(host);
6732 	return rc;
6733 }
6734 #endif /* CONFIG_PM */
6735 
6736 #endif /* CONFIG_PCI */
6737 
6738 
6739 static int __init ata_init(void)
6740 {
6741 	ata_probe_timeout *= HZ;
6742 	ata_wq = create_workqueue("ata");
6743 	if (!ata_wq)
6744 		return -ENOMEM;
6745 
6746 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6747 	if (!ata_aux_wq) {
6748 		destroy_workqueue(ata_wq);
6749 		return -ENOMEM;
6750 	}
6751 
6752 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6753 	return 0;
6754 }
6755 
6756 static void __exit ata_exit(void)
6757 {
6758 	destroy_workqueue(ata_wq);
6759 	destroy_workqueue(ata_aux_wq);
6760 }
6761 
6762 subsys_initcall(ata_init);
6763 module_exit(ata_exit);
6764 
6765 static unsigned long ratelimit_time;
6766 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6767 
6768 int ata_ratelimit(void)
6769 {
6770 	int rc;
6771 	unsigned long flags;
6772 
6773 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6774 
6775 	if (time_after(jiffies, ratelimit_time)) {
6776 		rc = 1;
6777 		ratelimit_time = jiffies + (HZ/5);
6778 	} else
6779 		rc = 0;
6780 
6781 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6782 
6783 	return rc;
6784 }
6785 
6786 /**
6787  *	ata_wait_register - wait until register value changes
6788  *	@reg: IO-mapped register
6789  *	@mask: Mask to apply to read register value
6790  *	@val: Wait condition
6791  *	@interval_msec: polling interval in milliseconds
6792  *	@timeout_msec: timeout in milliseconds
6793  *
6794  *	Waiting for some bits of register to change is a common
6795  *	operation for ATA controllers.  This function reads 32bit LE
6796  *	IO-mapped register @reg and tests for the following condition.
6797  *
6798  *	(*@reg & mask) != val
6799  *
6800  *	If the condition is met, it returns; otherwise, the process is
6801  *	repeated after @interval_msec until timeout.
6802  *
6803  *	LOCKING:
6804  *	Kernel thread context (may sleep)
6805  *
6806  *	RETURNS:
6807  *	The final register value.
6808  */
6809 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6810 		      unsigned long interval_msec,
6811 		      unsigned long timeout_msec)
6812 {
6813 	unsigned long timeout;
6814 	u32 tmp;
6815 
6816 	tmp = ioread32(reg);
6817 
6818 	/* Calculate timeout _after_ the first read to make sure
6819 	 * preceding writes reach the controller before starting to
6820 	 * eat away the timeout.
6821 	 */
6822 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6823 
6824 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6825 		msleep(interval_msec);
6826 		tmp = ioread32(reg);
6827 	}
6828 
6829 	return tmp;
6830 }
6831 
6832 /*
6833  * Dummy port_ops
6834  */
6835 static void ata_dummy_noret(struct ata_port *ap)	{ }
6836 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6837 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6838 
6839 static u8 ata_dummy_check_status(struct ata_port *ap)
6840 {
6841 	return ATA_DRDY;
6842 }
6843 
6844 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6845 {
6846 	return AC_ERR_SYSTEM;
6847 }
6848 
6849 const struct ata_port_operations ata_dummy_port_ops = {
6850 	.port_disable		= ata_port_disable,
6851 	.check_status		= ata_dummy_check_status,
6852 	.check_altstatus	= ata_dummy_check_status,
6853 	.dev_select		= ata_noop_dev_select,
6854 	.qc_prep		= ata_noop_qc_prep,
6855 	.qc_issue		= ata_dummy_qc_issue,
6856 	.freeze			= ata_dummy_noret,
6857 	.thaw			= ata_dummy_noret,
6858 	.error_handler		= ata_dummy_noret,
6859 	.post_internal_cmd	= ata_dummy_qc_noret,
6860 	.irq_clear		= ata_dummy_noret,
6861 	.port_start		= ata_dummy_ret0,
6862 	.port_stop		= ata_dummy_noret,
6863 };
6864 
6865 const struct ata_port_info ata_dummy_port_info = {
6866 	.port_ops		= &ata_dummy_port_ops,
6867 };
6868 
6869 /*
6870  * libata is essentially a library of internal helper functions for
6871  * low-level ATA host controller drivers.  As such, the API/ABI is
6872  * likely to change as new drivers are added and updated.
6873  * Do not depend on ABI/API stability.
6874  */
6875 
6876 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6877 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6878 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6879 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6880 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6881 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6882 EXPORT_SYMBOL_GPL(ata_std_ports);
6883 EXPORT_SYMBOL_GPL(ata_host_init);
6884 EXPORT_SYMBOL_GPL(ata_host_alloc);
6885 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6886 EXPORT_SYMBOL_GPL(ata_host_start);
6887 EXPORT_SYMBOL_GPL(ata_host_register);
6888 EXPORT_SYMBOL_GPL(ata_host_activate);
6889 EXPORT_SYMBOL_GPL(ata_host_detach);
6890 EXPORT_SYMBOL_GPL(ata_sg_init);
6891 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6892 EXPORT_SYMBOL_GPL(ata_hsm_move);
6893 EXPORT_SYMBOL_GPL(ata_qc_complete);
6894 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6895 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6896 EXPORT_SYMBOL_GPL(ata_tf_load);
6897 EXPORT_SYMBOL_GPL(ata_tf_read);
6898 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6899 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6900 EXPORT_SYMBOL_GPL(sata_print_link_status);
6901 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6902 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6903 EXPORT_SYMBOL_GPL(ata_check_status);
6904 EXPORT_SYMBOL_GPL(ata_altstatus);
6905 EXPORT_SYMBOL_GPL(ata_exec_command);
6906 EXPORT_SYMBOL_GPL(ata_port_start);
6907 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6908 EXPORT_SYMBOL_GPL(ata_interrupt);
6909 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6910 EXPORT_SYMBOL_GPL(ata_data_xfer);
6911 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6912 EXPORT_SYMBOL_GPL(ata_qc_prep);
6913 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6914 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6915 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6916 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6917 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6918 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6919 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6920 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6921 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6922 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6924 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6925 EXPORT_SYMBOL_GPL(ata_port_probe);
6926 EXPORT_SYMBOL_GPL(ata_dev_disable);
6927 EXPORT_SYMBOL_GPL(sata_set_spd);
6928 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6929 EXPORT_SYMBOL_GPL(sata_phy_resume);
6930 EXPORT_SYMBOL_GPL(sata_phy_reset);
6931 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6932 EXPORT_SYMBOL_GPL(ata_bus_reset);
6933 EXPORT_SYMBOL_GPL(ata_std_prereset);
6934 EXPORT_SYMBOL_GPL(ata_std_softreset);
6935 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6936 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6937 EXPORT_SYMBOL_GPL(ata_std_postreset);
6938 EXPORT_SYMBOL_GPL(ata_dev_classify);
6939 EXPORT_SYMBOL_GPL(ata_dev_pair);
6940 EXPORT_SYMBOL_GPL(ata_port_disable);
6941 EXPORT_SYMBOL_GPL(ata_ratelimit);
6942 EXPORT_SYMBOL_GPL(ata_wait_register);
6943 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6944 EXPORT_SYMBOL_GPL(ata_wait_ready);
6945 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6946 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6948 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6949 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6950 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6951 EXPORT_SYMBOL_GPL(ata_host_intr);
6952 EXPORT_SYMBOL_GPL(sata_scr_valid);
6953 EXPORT_SYMBOL_GPL(sata_scr_read);
6954 EXPORT_SYMBOL_GPL(sata_scr_write);
6955 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6956 EXPORT_SYMBOL_GPL(ata_port_online);
6957 EXPORT_SYMBOL_GPL(ata_port_offline);
6958 #ifdef CONFIG_PM
6959 EXPORT_SYMBOL_GPL(ata_host_suspend);
6960 EXPORT_SYMBOL_GPL(ata_host_resume);
6961 #endif /* CONFIG_PM */
6962 EXPORT_SYMBOL_GPL(ata_id_string);
6963 EXPORT_SYMBOL_GPL(ata_id_c_string);
6964 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6965 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6966 
6967 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6968 EXPORT_SYMBOL_GPL(ata_timing_compute);
6969 EXPORT_SYMBOL_GPL(ata_timing_merge);
6970 
6971 #ifdef CONFIG_PCI
6972 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6973 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6974 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6975 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6976 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6977 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6978 #ifdef CONFIG_PM
6979 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6980 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6981 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6982 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6983 #endif /* CONFIG_PM */
6984 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6985 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6986 #endif /* CONFIG_PCI */
6987 
6988 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6989 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6990 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6991 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6992 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6993 EXPORT_SYMBOL_GPL(ata_port_abort);
6994 EXPORT_SYMBOL_GPL(ata_port_freeze);
6995 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6996 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6997 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6998 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6999 EXPORT_SYMBOL_GPL(ata_do_eh);
7000 EXPORT_SYMBOL_GPL(ata_irq_on);
7001 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7002 EXPORT_SYMBOL_GPL(ata_irq_ack);
7003 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
7004 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7005 
7006 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7007 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7008 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7009 EXPORT_SYMBOL_GPL(ata_cable_sata);
7010