1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.21" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 75 76 unsigned int ata_print_id = 1; 77 static struct workqueue_struct *ata_wq; 78 79 struct workqueue_struct *ata_aux_wq; 80 81 int atapi_enabled = 1; 82 module_param(atapi_enabled, int, 0444); 83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 84 85 int atapi_dmadir = 0; 86 module_param(atapi_dmadir, int, 0444); 87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 88 89 int libata_fua = 0; 90 module_param_named(fua, libata_fua, int, 0444); 91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 92 93 static int ata_ignore_hpa = 0; 94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 96 97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 98 module_param(ata_probe_timeout, int, 0444); 99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 100 101 int libata_noacpi = 1; 102 module_param_named(noacpi, libata_noacpi, int, 0444); 103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 104 105 MODULE_AUTHOR("Jeff Garzik"); 106 MODULE_DESCRIPTION("Library module for ATA devices"); 107 MODULE_LICENSE("GPL"); 108 MODULE_VERSION(DRV_VERSION); 109 110 111 /** 112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 113 * @tf: Taskfile to convert 114 * @pmp: Port multiplier port 115 * @is_cmd: This FIS is for command 116 * @fis: Buffer into which data will output 117 * 118 * Converts a standard ATA taskfile to a Serial ATA 119 * FIS structure (Register - Host to Device). 120 * 121 * LOCKING: 122 * Inherited from caller. 123 */ 124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 125 { 126 fis[0] = 0x27; /* Register - Host to Device FIS */ 127 fis[1] = pmp & 0xf; /* Port multiplier number*/ 128 if (is_cmd) 129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 130 131 fis[2] = tf->command; 132 fis[3] = tf->feature; 133 134 fis[4] = tf->lbal; 135 fis[5] = tf->lbam; 136 fis[6] = tf->lbah; 137 fis[7] = tf->device; 138 139 fis[8] = tf->hob_lbal; 140 fis[9] = tf->hob_lbam; 141 fis[10] = tf->hob_lbah; 142 fis[11] = tf->hob_feature; 143 144 fis[12] = tf->nsect; 145 fis[13] = tf->hob_nsect; 146 fis[14] = 0; 147 fis[15] = tf->ctl; 148 149 fis[16] = 0; 150 fis[17] = 0; 151 fis[18] = 0; 152 fis[19] = 0; 153 } 154 155 /** 156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 157 * @fis: Buffer from which data will be input 158 * @tf: Taskfile to output 159 * 160 * Converts a serial ATA FIS structure to a standard ATA taskfile. 161 * 162 * LOCKING: 163 * Inherited from caller. 164 */ 165 166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 167 { 168 tf->command = fis[2]; /* status */ 169 tf->feature = fis[3]; /* error */ 170 171 tf->lbal = fis[4]; 172 tf->lbam = fis[5]; 173 tf->lbah = fis[6]; 174 tf->device = fis[7]; 175 176 tf->hob_lbal = fis[8]; 177 tf->hob_lbam = fis[9]; 178 tf->hob_lbah = fis[10]; 179 180 tf->nsect = fis[12]; 181 tf->hob_nsect = fis[13]; 182 } 183 184 static const u8 ata_rw_cmds[] = { 185 /* pio multi */ 186 ATA_CMD_READ_MULTI, 187 ATA_CMD_WRITE_MULTI, 188 ATA_CMD_READ_MULTI_EXT, 189 ATA_CMD_WRITE_MULTI_EXT, 190 0, 191 0, 192 0, 193 ATA_CMD_WRITE_MULTI_FUA_EXT, 194 /* pio */ 195 ATA_CMD_PIO_READ, 196 ATA_CMD_PIO_WRITE, 197 ATA_CMD_PIO_READ_EXT, 198 ATA_CMD_PIO_WRITE_EXT, 199 0, 200 0, 201 0, 202 0, 203 /* dma */ 204 ATA_CMD_READ, 205 ATA_CMD_WRITE, 206 ATA_CMD_READ_EXT, 207 ATA_CMD_WRITE_EXT, 208 0, 209 0, 210 0, 211 ATA_CMD_WRITE_FUA_EXT 212 }; 213 214 /** 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 216 * @tf: command to examine and configure 217 * @dev: device tf belongs to 218 * 219 * Examine the device configuration and tf->flags to calculate 220 * the proper read/write commands and protocol to use. 221 * 222 * LOCKING: 223 * caller. 224 */ 225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 226 { 227 u8 cmd; 228 229 int index, fua, lba48, write; 230 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 234 235 if (dev->flags & ATA_DFLAG_PIO) { 236 tf->protocol = ATA_PROT_PIO; 237 index = dev->multi_count ? 0 : 8; 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 239 /* Unable to use DMA due to host limitation */ 240 tf->protocol = ATA_PROT_PIO; 241 index = dev->multi_count ? 0 : 8; 242 } else { 243 tf->protocol = ATA_PROT_DMA; 244 index = 16; 245 } 246 247 cmd = ata_rw_cmds[index + fua + lba48 + write]; 248 if (cmd) { 249 tf->command = cmd; 250 return 0; 251 } 252 return -1; 253 } 254 255 /** 256 * ata_tf_read_block - Read block address from ATA taskfile 257 * @tf: ATA taskfile of interest 258 * @dev: ATA device @tf belongs to 259 * 260 * LOCKING: 261 * None. 262 * 263 * Read block address from @tf. This function can handle all 264 * three address formats - LBA, LBA48 and CHS. tf->protocol and 265 * flags select the address format to use. 266 * 267 * RETURNS: 268 * Block address read from @tf. 269 */ 270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 271 { 272 u64 block = 0; 273 274 if (tf->flags & ATA_TFLAG_LBA) { 275 if (tf->flags & ATA_TFLAG_LBA48) { 276 block |= (u64)tf->hob_lbah << 40; 277 block |= (u64)tf->hob_lbam << 32; 278 block |= tf->hob_lbal << 24; 279 } else 280 block |= (tf->device & 0xf) << 24; 281 282 block |= tf->lbah << 16; 283 block |= tf->lbam << 8; 284 block |= tf->lbal; 285 } else { 286 u32 cyl, head, sect; 287 288 cyl = tf->lbam | (tf->lbah << 8); 289 head = tf->device & 0xf; 290 sect = tf->lbal; 291 292 block = (cyl * dev->heads + head) * dev->sectors + sect; 293 } 294 295 return block; 296 } 297 298 /** 299 * ata_build_rw_tf - Build ATA taskfile for given read/write request 300 * @tf: Target ATA taskfile 301 * @dev: ATA device @tf belongs to 302 * @block: Block address 303 * @n_block: Number of blocks 304 * @tf_flags: RW/FUA etc... 305 * @tag: tag 306 * 307 * LOCKING: 308 * None. 309 * 310 * Build ATA taskfile @tf for read/write request described by 311 * @block, @n_block, @tf_flags and @tag on @dev. 312 * 313 * RETURNS: 314 * 315 * 0 on success, -ERANGE if the request is too large for @dev, 316 * -EINVAL if the request is invalid. 317 */ 318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 319 u64 block, u32 n_block, unsigned int tf_flags, 320 unsigned int tag) 321 { 322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 323 tf->flags |= tf_flags; 324 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 326 /* yay, NCQ */ 327 if (!lba_48_ok(block, n_block)) 328 return -ERANGE; 329 330 tf->protocol = ATA_PROT_NCQ; 331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 332 333 if (tf->flags & ATA_TFLAG_WRITE) 334 tf->command = ATA_CMD_FPDMA_WRITE; 335 else 336 tf->command = ATA_CMD_FPDMA_READ; 337 338 tf->nsect = tag << 3; 339 tf->hob_feature = (n_block >> 8) & 0xff; 340 tf->feature = n_block & 0xff; 341 342 tf->hob_lbah = (block >> 40) & 0xff; 343 tf->hob_lbam = (block >> 32) & 0xff; 344 tf->hob_lbal = (block >> 24) & 0xff; 345 tf->lbah = (block >> 16) & 0xff; 346 tf->lbam = (block >> 8) & 0xff; 347 tf->lbal = block & 0xff; 348 349 tf->device = 1 << 6; 350 if (tf->flags & ATA_TFLAG_FUA) 351 tf->device |= 1 << 7; 352 } else if (dev->flags & ATA_DFLAG_LBA) { 353 tf->flags |= ATA_TFLAG_LBA; 354 355 if (lba_28_ok(block, n_block)) { 356 /* use LBA28 */ 357 tf->device |= (block >> 24) & 0xf; 358 } else if (lba_48_ok(block, n_block)) { 359 if (!(dev->flags & ATA_DFLAG_LBA48)) 360 return -ERANGE; 361 362 /* use LBA48 */ 363 tf->flags |= ATA_TFLAG_LBA48; 364 365 tf->hob_nsect = (n_block >> 8) & 0xff; 366 367 tf->hob_lbah = (block >> 40) & 0xff; 368 tf->hob_lbam = (block >> 32) & 0xff; 369 tf->hob_lbal = (block >> 24) & 0xff; 370 } else 371 /* request too large even for LBA48 */ 372 return -ERANGE; 373 374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 375 return -EINVAL; 376 377 tf->nsect = n_block & 0xff; 378 379 tf->lbah = (block >> 16) & 0xff; 380 tf->lbam = (block >> 8) & 0xff; 381 tf->lbal = block & 0xff; 382 383 tf->device |= ATA_LBA; 384 } else { 385 /* CHS */ 386 u32 sect, head, cyl, track; 387 388 /* The request -may- be too large for CHS addressing. */ 389 if (!lba_28_ok(block, n_block)) 390 return -ERANGE; 391 392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 393 return -EINVAL; 394 395 /* Convert LBA to CHS */ 396 track = (u32)block / dev->sectors; 397 cyl = track / dev->heads; 398 head = track % dev->heads; 399 sect = (u32)block % dev->sectors + 1; 400 401 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 402 (u32)block, track, cyl, head, sect); 403 404 /* Check whether the converted CHS can fit. 405 Cylinder: 0-65535 406 Head: 0-15 407 Sector: 1-255*/ 408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 409 return -ERANGE; 410 411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 412 tf->lbal = sect; 413 tf->lbam = cyl; 414 tf->lbah = cyl >> 8; 415 tf->device |= head; 416 } 417 418 return 0; 419 } 420 421 /** 422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 423 * @pio_mask: pio_mask 424 * @mwdma_mask: mwdma_mask 425 * @udma_mask: udma_mask 426 * 427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 428 * unsigned int xfer_mask. 429 * 430 * LOCKING: 431 * None. 432 * 433 * RETURNS: 434 * Packed xfer_mask. 435 */ 436 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 437 unsigned int mwdma_mask, 438 unsigned int udma_mask) 439 { 440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 443 } 444 445 /** 446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 447 * @xfer_mask: xfer_mask to unpack 448 * @pio_mask: resulting pio_mask 449 * @mwdma_mask: resulting mwdma_mask 450 * @udma_mask: resulting udma_mask 451 * 452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 453 * Any NULL distination masks will be ignored. 454 */ 455 static void ata_unpack_xfermask(unsigned int xfer_mask, 456 unsigned int *pio_mask, 457 unsigned int *mwdma_mask, 458 unsigned int *udma_mask) 459 { 460 if (pio_mask) 461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 462 if (mwdma_mask) 463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 464 if (udma_mask) 465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 466 } 467 468 static const struct ata_xfer_ent { 469 int shift, bits; 470 u8 base; 471 } ata_xfer_tbl[] = { 472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 475 { -1, }, 476 }; 477 478 /** 479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 480 * @xfer_mask: xfer_mask of interest 481 * 482 * Return matching XFER_* value for @xfer_mask. Only the highest 483 * bit of @xfer_mask is considered. 484 * 485 * LOCKING: 486 * None. 487 * 488 * RETURNS: 489 * Matching XFER_* value, 0 if no match found. 490 */ 491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 492 { 493 int highbit = fls(xfer_mask) - 1; 494 const struct ata_xfer_ent *ent; 495 496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 498 return ent->base + highbit - ent->shift; 499 return 0; 500 } 501 502 /** 503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 504 * @xfer_mode: XFER_* of interest 505 * 506 * Return matching xfer_mask for @xfer_mode. 507 * 508 * LOCKING: 509 * None. 510 * 511 * RETURNS: 512 * Matching xfer_mask, 0 if no match found. 513 */ 514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 515 { 516 const struct ata_xfer_ent *ent; 517 518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 520 return 1 << (ent->shift + xfer_mode - ent->base); 521 return 0; 522 } 523 524 /** 525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 526 * @xfer_mode: XFER_* of interest 527 * 528 * Return matching xfer_shift for @xfer_mode. 529 * 530 * LOCKING: 531 * None. 532 * 533 * RETURNS: 534 * Matching xfer_shift, -1 if no match found. 535 */ 536 static int ata_xfer_mode2shift(unsigned int xfer_mode) 537 { 538 const struct ata_xfer_ent *ent; 539 540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 542 return ent->shift; 543 return -1; 544 } 545 546 /** 547 * ata_mode_string - convert xfer_mask to string 548 * @xfer_mask: mask of bits supported; only highest bit counts. 549 * 550 * Determine string which represents the highest speed 551 * (highest bit in @modemask). 552 * 553 * LOCKING: 554 * None. 555 * 556 * RETURNS: 557 * Constant C string representing highest speed listed in 558 * @mode_mask, or the constant C string "<n/a>". 559 */ 560 static const char *ata_mode_string(unsigned int xfer_mask) 561 { 562 static const char * const xfer_mode_str[] = { 563 "PIO0", 564 "PIO1", 565 "PIO2", 566 "PIO3", 567 "PIO4", 568 "PIO5", 569 "PIO6", 570 "MWDMA0", 571 "MWDMA1", 572 "MWDMA2", 573 "MWDMA3", 574 "MWDMA4", 575 "UDMA/16", 576 "UDMA/25", 577 "UDMA/33", 578 "UDMA/44", 579 "UDMA/66", 580 "UDMA/100", 581 "UDMA/133", 582 "UDMA7", 583 }; 584 int highbit; 585 586 highbit = fls(xfer_mask) - 1; 587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 588 return xfer_mode_str[highbit]; 589 return "<n/a>"; 590 } 591 592 static const char *sata_spd_string(unsigned int spd) 593 { 594 static const char * const spd_str[] = { 595 "1.5 Gbps", 596 "3.0 Gbps", 597 }; 598 599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 600 return "<unknown>"; 601 return spd_str[spd - 1]; 602 } 603 604 void ata_dev_disable(struct ata_device *dev) 605 { 606 if (ata_dev_enabled(dev)) { 607 if (ata_msg_drv(dev->ap)) 608 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 610 ATA_DNXFER_QUIET); 611 dev->class++; 612 } 613 } 614 615 /** 616 * ata_devchk - PATA device presence detection 617 * @ap: ATA channel to examine 618 * @device: Device to examine (starting at zero) 619 * 620 * This technique was originally described in 621 * Hale Landis's ATADRVR (www.ata-atapi.com), and 622 * later found its way into the ATA/ATAPI spec. 623 * 624 * Write a pattern to the ATA shadow registers, 625 * and if a device is present, it will respond by 626 * correctly storing and echoing back the 627 * ATA shadow register contents. 628 * 629 * LOCKING: 630 * caller. 631 */ 632 633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 634 { 635 struct ata_ioports *ioaddr = &ap->ioaddr; 636 u8 nsect, lbal; 637 638 ap->ops->dev_select(ap, device); 639 640 iowrite8(0x55, ioaddr->nsect_addr); 641 iowrite8(0xaa, ioaddr->lbal_addr); 642 643 iowrite8(0xaa, ioaddr->nsect_addr); 644 iowrite8(0x55, ioaddr->lbal_addr); 645 646 iowrite8(0x55, ioaddr->nsect_addr); 647 iowrite8(0xaa, ioaddr->lbal_addr); 648 649 nsect = ioread8(ioaddr->nsect_addr); 650 lbal = ioread8(ioaddr->lbal_addr); 651 652 if ((nsect == 0x55) && (lbal == 0xaa)) 653 return 1; /* we found a device */ 654 655 return 0; /* nothing found */ 656 } 657 658 /** 659 * ata_dev_classify - determine device type based on ATA-spec signature 660 * @tf: ATA taskfile register set for device to be identified 661 * 662 * Determine from taskfile register contents whether a device is 663 * ATA or ATAPI, as per "Signature and persistence" section 664 * of ATA/PI spec (volume 1, sect 5.14). 665 * 666 * LOCKING: 667 * None. 668 * 669 * RETURNS: 670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 671 * the event of failure. 672 */ 673 674 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 675 { 676 /* Apple's open source Darwin code hints that some devices only 677 * put a proper signature into the LBA mid/high registers, 678 * So, we only check those. It's sufficient for uniqueness. 679 */ 680 681 if (((tf->lbam == 0) && (tf->lbah == 0)) || 682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 683 DPRINTK("found ATA device by sig\n"); 684 return ATA_DEV_ATA; 685 } 686 687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 689 DPRINTK("found ATAPI device by sig\n"); 690 return ATA_DEV_ATAPI; 691 } 692 693 DPRINTK("unknown device\n"); 694 return ATA_DEV_UNKNOWN; 695 } 696 697 /** 698 * ata_dev_try_classify - Parse returned ATA device signature 699 * @ap: ATA channel to examine 700 * @device: Device to examine (starting at zero) 701 * @r_err: Value of error register on completion 702 * 703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 704 * an ATA/ATAPI-defined set of values is placed in the ATA 705 * shadow registers, indicating the results of device detection 706 * and diagnostics. 707 * 708 * Select the ATA device, and read the values from the ATA shadow 709 * registers. Then parse according to the Error register value, 710 * and the spec-defined values examined by ata_dev_classify(). 711 * 712 * LOCKING: 713 * caller. 714 * 715 * RETURNS: 716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 717 */ 718 719 unsigned int 720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 721 { 722 struct ata_taskfile tf; 723 unsigned int class; 724 u8 err; 725 726 ap->ops->dev_select(ap, device); 727 728 memset(&tf, 0, sizeof(tf)); 729 730 ap->ops->tf_read(ap, &tf); 731 err = tf.feature; 732 if (r_err) 733 *r_err = err; 734 735 /* see if device passed diags: if master then continue and warn later */ 736 if (err == 0 && device == 0) 737 /* diagnostic fail : do nothing _YET_ */ 738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 739 else if (err == 1) 740 /* do nothing */ ; 741 else if ((device == 0) && (err == 0x81)) 742 /* do nothing */ ; 743 else 744 return ATA_DEV_NONE; 745 746 /* determine if device is ATA or ATAPI */ 747 class = ata_dev_classify(&tf); 748 749 if (class == ATA_DEV_UNKNOWN) 750 return ATA_DEV_NONE; 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 752 return ATA_DEV_NONE; 753 return class; 754 } 755 756 /** 757 * ata_id_string - Convert IDENTIFY DEVICE page into string 758 * @id: IDENTIFY DEVICE results we will examine 759 * @s: string into which data is output 760 * @ofs: offset into identify device page 761 * @len: length of string to return. must be an even number. 762 * 763 * The strings in the IDENTIFY DEVICE page are broken up into 764 * 16-bit chunks. Run through the string, and output each 765 * 8-bit chunk linearly, regardless of platform. 766 * 767 * LOCKING: 768 * caller. 769 */ 770 771 void ata_id_string(const u16 *id, unsigned char *s, 772 unsigned int ofs, unsigned int len) 773 { 774 unsigned int c; 775 776 while (len > 0) { 777 c = id[ofs] >> 8; 778 *s = c; 779 s++; 780 781 c = id[ofs] & 0xff; 782 *s = c; 783 s++; 784 785 ofs++; 786 len -= 2; 787 } 788 } 789 790 /** 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 792 * @id: IDENTIFY DEVICE results we will examine 793 * @s: string into which data is output 794 * @ofs: offset into identify device page 795 * @len: length of string to return. must be an odd number. 796 * 797 * This function is identical to ata_id_string except that it 798 * trims trailing spaces and terminates the resulting string with 799 * null. @len must be actual maximum length (even number) + 1. 800 * 801 * LOCKING: 802 * caller. 803 */ 804 void ata_id_c_string(const u16 *id, unsigned char *s, 805 unsigned int ofs, unsigned int len) 806 { 807 unsigned char *p; 808 809 WARN_ON(!(len & 1)); 810 811 ata_id_string(id, s, ofs, len - 1); 812 813 p = s + strnlen(s, len - 1); 814 while (p > s && p[-1] == ' ') 815 p--; 816 *p = '\0'; 817 } 818 819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 820 { 821 u64 sectors = 0; 822 823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 825 sectors |= (tf->hob_lbal & 0xff) << 24; 826 sectors |= (tf->lbah & 0xff) << 16; 827 sectors |= (tf->lbam & 0xff) << 8; 828 sectors |= (tf->lbal & 0xff); 829 830 return ++sectors; 831 } 832 833 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 834 { 835 u64 sectors = 0; 836 837 sectors |= (tf->device & 0x0f) << 24; 838 sectors |= (tf->lbah & 0xff) << 16; 839 sectors |= (tf->lbam & 0xff) << 8; 840 sectors |= (tf->lbal & 0xff); 841 842 return ++sectors; 843 } 844 845 /** 846 * ata_read_native_max_address_ext - LBA48 native max query 847 * @dev: Device to query 848 * 849 * Perform an LBA48 size query upon the device in question. Return the 850 * actual LBA48 size or zero if the command fails. 851 */ 852 853 static u64 ata_read_native_max_address_ext(struct ata_device *dev) 854 { 855 unsigned int err; 856 struct ata_taskfile tf; 857 858 ata_tf_init(dev, &tf); 859 860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 862 tf.protocol |= ATA_PROT_NODATA; 863 tf.device |= 0x40; 864 865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 866 if (err) 867 return 0; 868 869 return ata_tf_to_lba48(&tf); 870 } 871 872 /** 873 * ata_read_native_max_address - LBA28 native max query 874 * @dev: Device to query 875 * 876 * Performa an LBA28 size query upon the device in question. Return the 877 * actual LBA28 size or zero if the command fails. 878 */ 879 880 static u64 ata_read_native_max_address(struct ata_device *dev) 881 { 882 unsigned int err; 883 struct ata_taskfile tf; 884 885 ata_tf_init(dev, &tf); 886 887 tf.command = ATA_CMD_READ_NATIVE_MAX; 888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 889 tf.protocol |= ATA_PROT_NODATA; 890 tf.device |= 0x40; 891 892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 893 if (err) 894 return 0; 895 896 return ata_tf_to_lba(&tf); 897 } 898 899 /** 900 * ata_set_native_max_address_ext - LBA48 native max set 901 * @dev: Device to query 902 * @new_sectors: new max sectors value to set for the device 903 * 904 * Perform an LBA48 size set max upon the device in question. Return the 905 * actual LBA48 size or zero if the command fails. 906 */ 907 908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) 909 { 910 unsigned int err; 911 struct ata_taskfile tf; 912 913 new_sectors--; 914 915 ata_tf_init(dev, &tf); 916 917 tf.command = ATA_CMD_SET_MAX_EXT; 918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 919 tf.protocol |= ATA_PROT_NODATA; 920 tf.device |= 0x40; 921 922 tf.lbal = (new_sectors >> 0) & 0xff; 923 tf.lbam = (new_sectors >> 8) & 0xff; 924 tf.lbah = (new_sectors >> 16) & 0xff; 925 926 tf.hob_lbal = (new_sectors >> 24) & 0xff; 927 tf.hob_lbam = (new_sectors >> 32) & 0xff; 928 tf.hob_lbah = (new_sectors >> 40) & 0xff; 929 930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 931 if (err) 932 return 0; 933 934 return ata_tf_to_lba48(&tf); 935 } 936 937 /** 938 * ata_set_native_max_address - LBA28 native max set 939 * @dev: Device to query 940 * @new_sectors: new max sectors value to set for the device 941 * 942 * Perform an LBA28 size set max upon the device in question. Return the 943 * actual LBA28 size or zero if the command fails. 944 */ 945 946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) 947 { 948 unsigned int err; 949 struct ata_taskfile tf; 950 951 new_sectors--; 952 953 ata_tf_init(dev, &tf); 954 955 tf.command = ATA_CMD_SET_MAX; 956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 957 tf.protocol |= ATA_PROT_NODATA; 958 959 tf.lbal = (new_sectors >> 0) & 0xff; 960 tf.lbam = (new_sectors >> 8) & 0xff; 961 tf.lbah = (new_sectors >> 16) & 0xff; 962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; 963 964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 965 if (err) 966 return 0; 967 968 return ata_tf_to_lba(&tf); 969 } 970 971 /** 972 * ata_hpa_resize - Resize a device with an HPA set 973 * @dev: Device to resize 974 * 975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 976 * it if required to the full size of the media. The caller must check 977 * the drive has the HPA feature set enabled. 978 */ 979 980 static u64 ata_hpa_resize(struct ata_device *dev) 981 { 982 u64 sectors = dev->n_sectors; 983 u64 hpa_sectors; 984 985 if (ata_id_has_lba48(dev->id)) 986 hpa_sectors = ata_read_native_max_address_ext(dev); 987 else 988 hpa_sectors = ata_read_native_max_address(dev); 989 990 if (hpa_sectors > sectors) { 991 ata_dev_printk(dev, KERN_INFO, 992 "Host Protected Area detected:\n" 993 "\tcurrent size: %lld sectors\n" 994 "\tnative size: %lld sectors\n", 995 (long long)sectors, (long long)hpa_sectors); 996 997 if (ata_ignore_hpa) { 998 if (ata_id_has_lba48(dev->id)) 999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); 1000 else 1001 hpa_sectors = ata_set_native_max_address(dev, 1002 hpa_sectors); 1003 1004 if (hpa_sectors) { 1005 ata_dev_printk(dev, KERN_INFO, "native size " 1006 "increased to %lld sectors\n", 1007 (long long)hpa_sectors); 1008 return hpa_sectors; 1009 } 1010 } 1011 } else if (hpa_sectors < sectors) 1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) " 1013 "is smaller than sectors (%lld)\n", __FUNCTION__, 1014 (long long)hpa_sectors, (long long)sectors); 1015 1016 return sectors; 1017 } 1018 1019 static u64 ata_id_n_sectors(const u16 *id) 1020 { 1021 if (ata_id_has_lba(id)) { 1022 if (ata_id_has_lba48(id)) 1023 return ata_id_u64(id, 100); 1024 else 1025 return ata_id_u32(id, 60); 1026 } else { 1027 if (ata_id_current_chs_valid(id)) 1028 return ata_id_u32(id, 57); 1029 else 1030 return id[1] * id[3] * id[6]; 1031 } 1032 } 1033 1034 /** 1035 * ata_id_to_dma_mode - Identify DMA mode from id block 1036 * @dev: device to identify 1037 * @unknown: mode to assume if we cannot tell 1038 * 1039 * Set up the timing values for the device based upon the identify 1040 * reported values for the DMA mode. This function is used by drivers 1041 * which rely upon firmware configured modes, but wish to report the 1042 * mode correctly when possible. 1043 * 1044 * In addition we emit similarly formatted messages to the default 1045 * ata_dev_set_mode handler, in order to provide consistency of 1046 * presentation. 1047 */ 1048 1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1050 { 1051 unsigned int mask; 1052 u8 mode; 1053 1054 /* Pack the DMA modes */ 1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1056 if (dev->id[53] & 0x04) 1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1058 1059 /* Select the mode in use */ 1060 mode = ata_xfer_mask2mode(mask); 1061 1062 if (mode != 0) { 1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1064 ata_mode_string(mask)); 1065 } else { 1066 /* SWDMA perhaps ? */ 1067 mode = unknown; 1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1069 } 1070 1071 /* Configure the device reporting */ 1072 dev->xfer_mode = mode; 1073 dev->xfer_shift = ata_xfer_mode2shift(mode); 1074 } 1075 1076 /** 1077 * ata_noop_dev_select - Select device 0/1 on ATA bus 1078 * @ap: ATA channel to manipulate 1079 * @device: ATA device (numbered from zero) to select 1080 * 1081 * This function performs no actual function. 1082 * 1083 * May be used as the dev_select() entry in ata_port_operations. 1084 * 1085 * LOCKING: 1086 * caller. 1087 */ 1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1089 { 1090 } 1091 1092 1093 /** 1094 * ata_std_dev_select - Select device 0/1 on ATA bus 1095 * @ap: ATA channel to manipulate 1096 * @device: ATA device (numbered from zero) to select 1097 * 1098 * Use the method defined in the ATA specification to 1099 * make either device 0, or device 1, active on the 1100 * ATA channel. Works with both PIO and MMIO. 1101 * 1102 * May be used as the dev_select() entry in ata_port_operations. 1103 * 1104 * LOCKING: 1105 * caller. 1106 */ 1107 1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1109 { 1110 u8 tmp; 1111 1112 if (device == 0) 1113 tmp = ATA_DEVICE_OBS; 1114 else 1115 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1116 1117 iowrite8(tmp, ap->ioaddr.device_addr); 1118 ata_pause(ap); /* needed; also flushes, for mmio */ 1119 } 1120 1121 /** 1122 * ata_dev_select - Select device 0/1 on ATA bus 1123 * @ap: ATA channel to manipulate 1124 * @device: ATA device (numbered from zero) to select 1125 * @wait: non-zero to wait for Status register BSY bit to clear 1126 * @can_sleep: non-zero if context allows sleeping 1127 * 1128 * Use the method defined in the ATA specification to 1129 * make either device 0, or device 1, active on the 1130 * ATA channel. 1131 * 1132 * This is a high-level version of ata_std_dev_select(), 1133 * which additionally provides the services of inserting 1134 * the proper pauses and status polling, where needed. 1135 * 1136 * LOCKING: 1137 * caller. 1138 */ 1139 1140 void ata_dev_select(struct ata_port *ap, unsigned int device, 1141 unsigned int wait, unsigned int can_sleep) 1142 { 1143 if (ata_msg_probe(ap)) 1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1145 "device %u, wait %u\n", device, wait); 1146 1147 if (wait) 1148 ata_wait_idle(ap); 1149 1150 ap->ops->dev_select(ap, device); 1151 1152 if (wait) { 1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 1154 msleep(150); 1155 ata_wait_idle(ap); 1156 } 1157 } 1158 1159 /** 1160 * ata_dump_id - IDENTIFY DEVICE info debugging output 1161 * @id: IDENTIFY DEVICE page to dump 1162 * 1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1164 * page. 1165 * 1166 * LOCKING: 1167 * caller. 1168 */ 1169 1170 static inline void ata_dump_id(const u16 *id) 1171 { 1172 DPRINTK("49==0x%04x " 1173 "53==0x%04x " 1174 "63==0x%04x " 1175 "64==0x%04x " 1176 "75==0x%04x \n", 1177 id[49], 1178 id[53], 1179 id[63], 1180 id[64], 1181 id[75]); 1182 DPRINTK("80==0x%04x " 1183 "81==0x%04x " 1184 "82==0x%04x " 1185 "83==0x%04x " 1186 "84==0x%04x \n", 1187 id[80], 1188 id[81], 1189 id[82], 1190 id[83], 1191 id[84]); 1192 DPRINTK("88==0x%04x " 1193 "93==0x%04x\n", 1194 id[88], 1195 id[93]); 1196 } 1197 1198 /** 1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1200 * @id: IDENTIFY data to compute xfer mask from 1201 * 1202 * Compute the xfermask for this device. This is not as trivial 1203 * as it seems if we must consider early devices correctly. 1204 * 1205 * FIXME: pre IDE drive timing (do we care ?). 1206 * 1207 * LOCKING: 1208 * None. 1209 * 1210 * RETURNS: 1211 * Computed xfermask 1212 */ 1213 static unsigned int ata_id_xfermask(const u16 *id) 1214 { 1215 unsigned int pio_mask, mwdma_mask, udma_mask; 1216 1217 /* Usual case. Word 53 indicates word 64 is valid */ 1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1220 pio_mask <<= 3; 1221 pio_mask |= 0x7; 1222 } else { 1223 /* If word 64 isn't valid then Word 51 high byte holds 1224 * the PIO timing number for the maximum. Turn it into 1225 * a mask. 1226 */ 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1228 if (mode < 5) /* Valid PIO range */ 1229 pio_mask = (2 << mode) - 1; 1230 else 1231 pio_mask = 1; 1232 1233 /* But wait.. there's more. Design your standards by 1234 * committee and you too can get a free iordy field to 1235 * process. However its the speeds not the modes that 1236 * are supported... Note drivers using the timing API 1237 * will get this right anyway 1238 */ 1239 } 1240 1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1242 1243 if (ata_id_is_cfa(id)) { 1244 /* 1245 * Process compact flash extended modes 1246 */ 1247 int pio = id[163] & 0x7; 1248 int dma = (id[163] >> 3) & 7; 1249 1250 if (pio) 1251 pio_mask |= (1 << 5); 1252 if (pio > 1) 1253 pio_mask |= (1 << 6); 1254 if (dma) 1255 mwdma_mask |= (1 << 3); 1256 if (dma > 1) 1257 mwdma_mask |= (1 << 4); 1258 } 1259 1260 udma_mask = 0; 1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1263 1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1265 } 1266 1267 /** 1268 * ata_port_queue_task - Queue port_task 1269 * @ap: The ata_port to queue port_task for 1270 * @fn: workqueue function to be scheduled 1271 * @data: data for @fn to use 1272 * @delay: delay time for workqueue function 1273 * 1274 * Schedule @fn(@data) for execution after @delay jiffies using 1275 * port_task. There is one port_task per port and it's the 1276 * user(low level driver)'s responsibility to make sure that only 1277 * one task is active at any given time. 1278 * 1279 * libata core layer takes care of synchronization between 1280 * port_task and EH. ata_port_queue_task() may be ignored for EH 1281 * synchronization. 1282 * 1283 * LOCKING: 1284 * Inherited from caller. 1285 */ 1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1287 unsigned long delay) 1288 { 1289 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1290 ap->port_task_data = data; 1291 1292 /* may fail if ata_port_flush_task() in progress */ 1293 queue_delayed_work(ata_wq, &ap->port_task, delay); 1294 } 1295 1296 /** 1297 * ata_port_flush_task - Flush port_task 1298 * @ap: The ata_port to flush port_task for 1299 * 1300 * After this function completes, port_task is guranteed not to 1301 * be running or scheduled. 1302 * 1303 * LOCKING: 1304 * Kernel thread context (may sleep) 1305 */ 1306 void ata_port_flush_task(struct ata_port *ap) 1307 { 1308 DPRINTK("ENTER\n"); 1309 1310 cancel_rearming_delayed_work(&ap->port_task); 1311 1312 if (ata_msg_ctl(ap)) 1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1314 } 1315 1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1317 { 1318 struct completion *waiting = qc->private_data; 1319 1320 complete(waiting); 1321 } 1322 1323 /** 1324 * ata_exec_internal_sg - execute libata internal command 1325 * @dev: Device to which the command is sent 1326 * @tf: Taskfile registers for the command and the result 1327 * @cdb: CDB for packet command 1328 * @dma_dir: Data tranfer direction of the command 1329 * @sg: sg list for the data buffer of the command 1330 * @n_elem: Number of sg entries 1331 * 1332 * Executes libata internal command with timeout. @tf contains 1333 * command on entry and result on return. Timeout and error 1334 * conditions are reported via return value. No recovery action 1335 * is taken after a command times out. It's caller's duty to 1336 * clean up after timeout. 1337 * 1338 * LOCKING: 1339 * None. Should be called with kernel context, might sleep. 1340 * 1341 * RETURNS: 1342 * Zero on success, AC_ERR_* mask on failure 1343 */ 1344 unsigned ata_exec_internal_sg(struct ata_device *dev, 1345 struct ata_taskfile *tf, const u8 *cdb, 1346 int dma_dir, struct scatterlist *sg, 1347 unsigned int n_elem) 1348 { 1349 struct ata_port *ap = dev->ap; 1350 u8 command = tf->command; 1351 struct ata_queued_cmd *qc; 1352 unsigned int tag, preempted_tag; 1353 u32 preempted_sactive, preempted_qc_active; 1354 DECLARE_COMPLETION_ONSTACK(wait); 1355 unsigned long flags; 1356 unsigned int err_mask; 1357 int rc; 1358 1359 spin_lock_irqsave(ap->lock, flags); 1360 1361 /* no internal command while frozen */ 1362 if (ap->pflags & ATA_PFLAG_FROZEN) { 1363 spin_unlock_irqrestore(ap->lock, flags); 1364 return AC_ERR_SYSTEM; 1365 } 1366 1367 /* initialize internal qc */ 1368 1369 /* XXX: Tag 0 is used for drivers with legacy EH as some 1370 * drivers choke if any other tag is given. This breaks 1371 * ata_tag_internal() test for those drivers. Don't use new 1372 * EH stuff without converting to it. 1373 */ 1374 if (ap->ops->error_handler) 1375 tag = ATA_TAG_INTERNAL; 1376 else 1377 tag = 0; 1378 1379 if (test_and_set_bit(tag, &ap->qc_allocated)) 1380 BUG(); 1381 qc = __ata_qc_from_tag(ap, tag); 1382 1383 qc->tag = tag; 1384 qc->scsicmd = NULL; 1385 qc->ap = ap; 1386 qc->dev = dev; 1387 ata_qc_reinit(qc); 1388 1389 preempted_tag = ap->active_tag; 1390 preempted_sactive = ap->sactive; 1391 preempted_qc_active = ap->qc_active; 1392 ap->active_tag = ATA_TAG_POISON; 1393 ap->sactive = 0; 1394 ap->qc_active = 0; 1395 1396 /* prepare & issue qc */ 1397 qc->tf = *tf; 1398 if (cdb) 1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1400 qc->flags |= ATA_QCFLAG_RESULT_TF; 1401 qc->dma_dir = dma_dir; 1402 if (dma_dir != DMA_NONE) { 1403 unsigned int i, buflen = 0; 1404 1405 for (i = 0; i < n_elem; i++) 1406 buflen += sg[i].length; 1407 1408 ata_sg_init(qc, sg, n_elem); 1409 qc->nbytes = buflen; 1410 } 1411 1412 qc->private_data = &wait; 1413 qc->complete_fn = ata_qc_complete_internal; 1414 1415 ata_qc_issue(qc); 1416 1417 spin_unlock_irqrestore(ap->lock, flags); 1418 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1420 1421 ata_port_flush_task(ap); 1422 1423 if (!rc) { 1424 spin_lock_irqsave(ap->lock, flags); 1425 1426 /* We're racing with irq here. If we lose, the 1427 * following test prevents us from completing the qc 1428 * twice. If we win, the port is frozen and will be 1429 * cleaned up by ->post_internal_cmd(). 1430 */ 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1432 qc->err_mask |= AC_ERR_TIMEOUT; 1433 1434 if (ap->ops->error_handler) 1435 ata_port_freeze(ap); 1436 else 1437 ata_qc_complete(qc); 1438 1439 if (ata_msg_warn(ap)) 1440 ata_dev_printk(dev, KERN_WARNING, 1441 "qc timeout (cmd 0x%x)\n", command); 1442 } 1443 1444 spin_unlock_irqrestore(ap->lock, flags); 1445 } 1446 1447 /* do post_internal_cmd */ 1448 if (ap->ops->post_internal_cmd) 1449 ap->ops->post_internal_cmd(qc); 1450 1451 /* perform minimal error analysis */ 1452 if (qc->flags & ATA_QCFLAG_FAILED) { 1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1454 qc->err_mask |= AC_ERR_DEV; 1455 1456 if (!qc->err_mask) 1457 qc->err_mask |= AC_ERR_OTHER; 1458 1459 if (qc->err_mask & ~AC_ERR_OTHER) 1460 qc->err_mask &= ~AC_ERR_OTHER; 1461 } 1462 1463 /* finish up */ 1464 spin_lock_irqsave(ap->lock, flags); 1465 1466 *tf = qc->result_tf; 1467 err_mask = qc->err_mask; 1468 1469 ata_qc_free(qc); 1470 ap->active_tag = preempted_tag; 1471 ap->sactive = preempted_sactive; 1472 ap->qc_active = preempted_qc_active; 1473 1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1475 * Until those drivers are fixed, we detect the condition 1476 * here, fail the command with AC_ERR_SYSTEM and reenable the 1477 * port. 1478 * 1479 * Note that this doesn't change any behavior as internal 1480 * command failure results in disabling the device in the 1481 * higher layer for LLDDs without new reset/EH callbacks. 1482 * 1483 * Kill the following code as soon as those drivers are fixed. 1484 */ 1485 if (ap->flags & ATA_FLAG_DISABLED) { 1486 err_mask |= AC_ERR_SYSTEM; 1487 ata_port_probe(ap); 1488 } 1489 1490 spin_unlock_irqrestore(ap->lock, flags); 1491 1492 return err_mask; 1493 } 1494 1495 /** 1496 * ata_exec_internal - execute libata internal command 1497 * @dev: Device to which the command is sent 1498 * @tf: Taskfile registers for the command and the result 1499 * @cdb: CDB for packet command 1500 * @dma_dir: Data tranfer direction of the command 1501 * @buf: Data buffer of the command 1502 * @buflen: Length of data buffer 1503 * 1504 * Wrapper around ata_exec_internal_sg() which takes simple 1505 * buffer instead of sg list. 1506 * 1507 * LOCKING: 1508 * None. Should be called with kernel context, might sleep. 1509 * 1510 * RETURNS: 1511 * Zero on success, AC_ERR_* mask on failure 1512 */ 1513 unsigned ata_exec_internal(struct ata_device *dev, 1514 struct ata_taskfile *tf, const u8 *cdb, 1515 int dma_dir, void *buf, unsigned int buflen) 1516 { 1517 struct scatterlist *psg = NULL, sg; 1518 unsigned int n_elem = 0; 1519 1520 if (dma_dir != DMA_NONE) { 1521 WARN_ON(!buf); 1522 sg_init_one(&sg, buf, buflen); 1523 psg = &sg; 1524 n_elem++; 1525 } 1526 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1528 } 1529 1530 /** 1531 * ata_do_simple_cmd - execute simple internal command 1532 * @dev: Device to which the command is sent 1533 * @cmd: Opcode to execute 1534 * 1535 * Execute a 'simple' command, that only consists of the opcode 1536 * 'cmd' itself, without filling any other registers 1537 * 1538 * LOCKING: 1539 * Kernel thread context (may sleep). 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1545 { 1546 struct ata_taskfile tf; 1547 1548 ata_tf_init(dev, &tf); 1549 1550 tf.command = cmd; 1551 tf.flags |= ATA_TFLAG_DEVICE; 1552 tf.protocol = ATA_PROT_NODATA; 1553 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1555 } 1556 1557 /** 1558 * ata_pio_need_iordy - check if iordy needed 1559 * @adev: ATA device 1560 * 1561 * Check if the current speed of the device requires IORDY. Used 1562 * by various controllers for chip configuration. 1563 */ 1564 1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1566 { 1567 /* Controller doesn't support IORDY. Probably a pointless check 1568 as the caller should know this */ 1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY) 1570 return 0; 1571 /* PIO3 and higher it is mandatory */ 1572 if (adev->pio_mode > XFER_PIO_2) 1573 return 1; 1574 /* We turn it on when possible */ 1575 if (ata_id_has_iordy(adev->id)) 1576 return 1; 1577 return 0; 1578 } 1579 1580 /** 1581 * ata_pio_mask_no_iordy - Return the non IORDY mask 1582 * @adev: ATA device 1583 * 1584 * Compute the highest mode possible if we are not using iordy. Return 1585 * -1 if no iordy mode is available. 1586 */ 1587 1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1589 { 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1593 /* Is the speed faster than the drive allows non IORDY ? */ 1594 if (pio) { 1595 /* This is cycle times not frequency - watch the logic! */ 1596 if (pio > 240) /* PIO2 is 240nS per cycle */ 1597 return 3 << ATA_SHIFT_PIO; 1598 return 7 << ATA_SHIFT_PIO; 1599 } 1600 } 1601 return 3 << ATA_SHIFT_PIO; 1602 } 1603 1604 /** 1605 * ata_dev_read_id - Read ID data from the specified device 1606 * @dev: target device 1607 * @p_class: pointer to class of the target device (may be changed) 1608 * @flags: ATA_READID_* flags 1609 * @id: buffer to read IDENTIFY data into 1610 * 1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1614 * for pre-ATA4 drives. 1615 * 1616 * LOCKING: 1617 * Kernel thread context (may sleep) 1618 * 1619 * RETURNS: 1620 * 0 on success, -errno otherwise. 1621 */ 1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1623 unsigned int flags, u16 *id) 1624 { 1625 struct ata_port *ap = dev->ap; 1626 unsigned int class = *p_class; 1627 struct ata_taskfile tf; 1628 unsigned int err_mask = 0; 1629 const char *reason; 1630 int may_fallback = 1, tried_spinup = 0; 1631 int rc; 1632 1633 if (ata_msg_ctl(ap)) 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1635 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1637 retry: 1638 ata_tf_init(dev, &tf); 1639 1640 switch (class) { 1641 case ATA_DEV_ATA: 1642 tf.command = ATA_CMD_ID_ATA; 1643 break; 1644 case ATA_DEV_ATAPI: 1645 tf.command = ATA_CMD_ID_ATAPI; 1646 break; 1647 default: 1648 rc = -ENODEV; 1649 reason = "unsupported class"; 1650 goto err_out; 1651 } 1652 1653 tf.protocol = ATA_PROT_PIO; 1654 1655 /* Some devices choke if TF registers contain garbage. Make 1656 * sure those are properly initialized. 1657 */ 1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1659 1660 /* Device presence detection is unreliable on some 1661 * controllers. Always poll IDENTIFY if available. 1662 */ 1663 tf.flags |= ATA_TFLAG_POLLING; 1664 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1666 id, sizeof(id[0]) * ATA_ID_WORDS); 1667 if (err_mask) { 1668 if (err_mask & AC_ERR_NODEV_HINT) { 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1670 ap->print_id, dev->devno); 1671 return -ENOENT; 1672 } 1673 1674 /* Device or controller might have reported the wrong 1675 * device class. Give a shot at the other IDENTIFY if 1676 * the current one is aborted by the device. 1677 */ 1678 if (may_fallback && 1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1680 may_fallback = 0; 1681 1682 if (class == ATA_DEV_ATA) 1683 class = ATA_DEV_ATAPI; 1684 else 1685 class = ATA_DEV_ATA; 1686 goto retry; 1687 } 1688 1689 rc = -EIO; 1690 reason = "I/O error"; 1691 goto err_out; 1692 } 1693 1694 /* Falling back doesn't make sense if ID data was read 1695 * successfully at least once. 1696 */ 1697 may_fallback = 0; 1698 1699 swap_buf_le16(id, ATA_ID_WORDS); 1700 1701 /* sanity check */ 1702 rc = -EINVAL; 1703 reason = "device reports invalid type"; 1704 1705 if (class == ATA_DEV_ATA) { 1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1707 goto err_out; 1708 } else { 1709 if (ata_id_is_ata(id)) 1710 goto err_out; 1711 } 1712 1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1714 tried_spinup = 1; 1715 /* 1716 * Drive powered-up in standby mode, and requires a specific 1717 * SET_FEATURES spin-up subcommand before it will accept 1718 * anything other than the original IDENTIFY command. 1719 */ 1720 ata_tf_init(dev, &tf); 1721 tf.command = ATA_CMD_SET_FEATURES; 1722 tf.feature = SETFEATURES_SPINUP; 1723 tf.protocol = ATA_PROT_NODATA; 1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1726 if (err_mask && id[2] != 0x738c) { 1727 rc = -EIO; 1728 reason = "SPINUP failed"; 1729 goto err_out; 1730 } 1731 /* 1732 * If the drive initially returned incomplete IDENTIFY info, 1733 * we now must reissue the IDENTIFY command. 1734 */ 1735 if (id[2] == 0x37c8) 1736 goto retry; 1737 } 1738 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1740 /* 1741 * The exact sequence expected by certain pre-ATA4 drives is: 1742 * SRST RESET 1743 * IDENTIFY 1744 * INITIALIZE DEVICE PARAMETERS 1745 * anything else.. 1746 * Some drives were very specific about that exact sequence. 1747 */ 1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1750 if (err_mask) { 1751 rc = -EIO; 1752 reason = "INIT_DEV_PARAMS failed"; 1753 goto err_out; 1754 } 1755 1756 /* current CHS translation info (id[53-58]) might be 1757 * changed. reread the identify device info. 1758 */ 1759 flags &= ~ATA_READID_POSTRESET; 1760 goto retry; 1761 } 1762 } 1763 1764 *p_class = class; 1765 1766 return 0; 1767 1768 err_out: 1769 if (ata_msg_warn(ap)) 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1771 "(%s, err_mask=0x%x)\n", reason, err_mask); 1772 return rc; 1773 } 1774 1775 static inline u8 ata_dev_knobble(struct ata_device *dev) 1776 { 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1778 } 1779 1780 static void ata_dev_config_ncq(struct ata_device *dev, 1781 char *desc, size_t desc_sz) 1782 { 1783 struct ata_port *ap = dev->ap; 1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1785 1786 if (!ata_id_has_ncq(dev->id)) { 1787 desc[0] = '\0'; 1788 return; 1789 } 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) { 1791 snprintf(desc, desc_sz, "NCQ (not used)"); 1792 return; 1793 } 1794 if (ap->flags & ATA_FLAG_NCQ) { 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1796 dev->flags |= ATA_DFLAG_NCQ; 1797 } 1798 1799 if (hdepth >= ddepth) 1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1801 else 1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1803 } 1804 1805 /** 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device 1807 * @dev: Target device to configure 1808 * 1809 * Configure @dev according to @dev->id. Generic and low-level 1810 * driver specific fixups are also applied. 1811 * 1812 * LOCKING: 1813 * Kernel thread context (may sleep) 1814 * 1815 * RETURNS: 1816 * 0 on success, -errno otherwise 1817 */ 1818 int ata_dev_configure(struct ata_device *dev) 1819 { 1820 struct ata_port *ap = dev->ap; 1821 struct ata_eh_context *ehc = &ap->eh_context; 1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1823 const u16 *id = dev->id; 1824 unsigned int xfer_mask; 1825 char revbuf[7]; /* XYZ-99\0 */ 1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1827 char modelbuf[ATA_ID_PROD_LEN+1]; 1828 int rc; 1829 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1832 __FUNCTION__); 1833 return 0; 1834 } 1835 1836 if (ata_msg_probe(ap)) 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1838 1839 /* set horkage */ 1840 dev->horkage |= ata_dev_blacklisted(dev); 1841 1842 /* let ACPI work its magic */ 1843 rc = ata_acpi_on_devcfg(dev); 1844 if (rc) 1845 return rc; 1846 1847 /* print device capabilities */ 1848 if (ata_msg_probe(ap)) 1849 ata_dev_printk(dev, KERN_DEBUG, 1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1851 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1852 __FUNCTION__, 1853 id[49], id[82], id[83], id[84], 1854 id[85], id[86], id[87], id[88]); 1855 1856 /* initialize to-be-configured parameters */ 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1858 dev->max_sectors = 0; 1859 dev->cdb_len = 0; 1860 dev->n_sectors = 0; 1861 dev->cylinders = 0; 1862 dev->heads = 0; 1863 dev->sectors = 0; 1864 1865 /* 1866 * common ATA, ATAPI feature tests 1867 */ 1868 1869 /* find max transfer mode; for printk only */ 1870 xfer_mask = ata_id_xfermask(id); 1871 1872 if (ata_msg_probe(ap)) 1873 ata_dump_id(id); 1874 1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1877 sizeof(fwrevbuf)); 1878 1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1880 sizeof(modelbuf)); 1881 1882 /* ATA-specific feature tests */ 1883 if (dev->class == ATA_DEV_ATA) { 1884 if (ata_id_is_cfa(id)) { 1885 if (id[162] & 1) /* CPRM may make this media unusable */ 1886 ata_dev_printk(dev, KERN_WARNING, 1887 "supports DRM functions and may " 1888 "not be fully accessable.\n"); 1889 snprintf(revbuf, 7, "CFA"); 1890 } 1891 else 1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1893 1894 dev->n_sectors = ata_id_n_sectors(id); 1895 1896 if (dev->id[59] & 0x100) 1897 dev->multi_count = dev->id[59] & 0xff; 1898 1899 if (ata_id_has_lba(id)) { 1900 const char *lba_desc; 1901 char ncq_desc[20]; 1902 1903 lba_desc = "LBA"; 1904 dev->flags |= ATA_DFLAG_LBA; 1905 if (ata_id_has_lba48(id)) { 1906 dev->flags |= ATA_DFLAG_LBA48; 1907 lba_desc = "LBA48"; 1908 1909 if (dev->n_sectors >= (1UL << 28) && 1910 ata_id_has_flush_ext(id)) 1911 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1912 } 1913 1914 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) && 1915 ata_id_hpa_enabled(dev->id)) 1916 dev->n_sectors = ata_hpa_resize(dev); 1917 1918 /* config NCQ */ 1919 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1920 1921 /* print device info to dmesg */ 1922 if (ata_msg_drv(ap) && print_info) { 1923 ata_dev_printk(dev, KERN_INFO, 1924 "%s: %s, %s, max %s\n", 1925 revbuf, modelbuf, fwrevbuf, 1926 ata_mode_string(xfer_mask)); 1927 ata_dev_printk(dev, KERN_INFO, 1928 "%Lu sectors, multi %u: %s %s\n", 1929 (unsigned long long)dev->n_sectors, 1930 dev->multi_count, lba_desc, ncq_desc); 1931 } 1932 } else { 1933 /* CHS */ 1934 1935 /* Default translation */ 1936 dev->cylinders = id[1]; 1937 dev->heads = id[3]; 1938 dev->sectors = id[6]; 1939 1940 if (ata_id_current_chs_valid(id)) { 1941 /* Current CHS translation is valid. */ 1942 dev->cylinders = id[54]; 1943 dev->heads = id[55]; 1944 dev->sectors = id[56]; 1945 } 1946 1947 /* print device info to dmesg */ 1948 if (ata_msg_drv(ap) && print_info) { 1949 ata_dev_printk(dev, KERN_INFO, 1950 "%s: %s, %s, max %s\n", 1951 revbuf, modelbuf, fwrevbuf, 1952 ata_mode_string(xfer_mask)); 1953 ata_dev_printk(dev, KERN_INFO, 1954 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1955 (unsigned long long)dev->n_sectors, 1956 dev->multi_count, dev->cylinders, 1957 dev->heads, dev->sectors); 1958 } 1959 } 1960 1961 dev->cdb_len = 16; 1962 } 1963 1964 /* ATAPI-specific feature tests */ 1965 else if (dev->class == ATA_DEV_ATAPI) { 1966 char *cdb_intr_string = ""; 1967 1968 rc = atapi_cdb_len(id); 1969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1970 if (ata_msg_warn(ap)) 1971 ata_dev_printk(dev, KERN_WARNING, 1972 "unsupported CDB len\n"); 1973 rc = -EINVAL; 1974 goto err_out_nosup; 1975 } 1976 dev->cdb_len = (unsigned int) rc; 1977 1978 if (ata_id_cdb_intr(dev->id)) { 1979 dev->flags |= ATA_DFLAG_CDB_INTR; 1980 cdb_intr_string = ", CDB intr"; 1981 } 1982 1983 /* print device info to dmesg */ 1984 if (ata_msg_drv(ap) && print_info) 1985 ata_dev_printk(dev, KERN_INFO, 1986 "ATAPI: %s, %s, max %s%s\n", 1987 modelbuf, fwrevbuf, 1988 ata_mode_string(xfer_mask), 1989 cdb_intr_string); 1990 } 1991 1992 /* determine max_sectors */ 1993 dev->max_sectors = ATA_MAX_SECTORS; 1994 if (dev->flags & ATA_DFLAG_LBA48) 1995 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 1996 1997 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 1998 /* Let the user know. We don't want to disallow opens for 1999 rescue purposes, or in case the vendor is just a blithering 2000 idiot */ 2001 if (print_info) { 2002 ata_dev_printk(dev, KERN_WARNING, 2003 "Drive reports diagnostics failure. This may indicate a drive\n"); 2004 ata_dev_printk(dev, KERN_WARNING, 2005 "fault or invalid emulation. Contact drive vendor for information.\n"); 2006 } 2007 } 2008 2009 /* limit bridge transfers to udma5, 200 sectors */ 2010 if (ata_dev_knobble(dev)) { 2011 if (ata_msg_drv(ap) && print_info) 2012 ata_dev_printk(dev, KERN_INFO, 2013 "applying bridge limits\n"); 2014 dev->udma_mask &= ATA_UDMA5; 2015 dev->max_sectors = ATA_MAX_SECTORS; 2016 } 2017 2018 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2019 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2020 dev->max_sectors); 2021 2022 if (ap->ops->dev_config) 2023 ap->ops->dev_config(dev); 2024 2025 if (ata_msg_probe(ap)) 2026 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2027 __FUNCTION__, ata_chk_status(ap)); 2028 return 0; 2029 2030 err_out_nosup: 2031 if (ata_msg_probe(ap)) 2032 ata_dev_printk(dev, KERN_DEBUG, 2033 "%s: EXIT, err\n", __FUNCTION__); 2034 return rc; 2035 } 2036 2037 /** 2038 * ata_cable_40wire - return 40 wire cable type 2039 * @ap: port 2040 * 2041 * Helper method for drivers which want to hardwire 40 wire cable 2042 * detection. 2043 */ 2044 2045 int ata_cable_40wire(struct ata_port *ap) 2046 { 2047 return ATA_CBL_PATA40; 2048 } 2049 2050 /** 2051 * ata_cable_80wire - return 80 wire cable type 2052 * @ap: port 2053 * 2054 * Helper method for drivers which want to hardwire 80 wire cable 2055 * detection. 2056 */ 2057 2058 int ata_cable_80wire(struct ata_port *ap) 2059 { 2060 return ATA_CBL_PATA80; 2061 } 2062 2063 /** 2064 * ata_cable_unknown - return unknown PATA cable. 2065 * @ap: port 2066 * 2067 * Helper method for drivers which have no PATA cable detection. 2068 */ 2069 2070 int ata_cable_unknown(struct ata_port *ap) 2071 { 2072 return ATA_CBL_PATA_UNK; 2073 } 2074 2075 /** 2076 * ata_cable_sata - return SATA cable type 2077 * @ap: port 2078 * 2079 * Helper method for drivers which have SATA cables 2080 */ 2081 2082 int ata_cable_sata(struct ata_port *ap) 2083 { 2084 return ATA_CBL_SATA; 2085 } 2086 2087 /** 2088 * ata_bus_probe - Reset and probe ATA bus 2089 * @ap: Bus to probe 2090 * 2091 * Master ATA bus probing function. Initiates a hardware-dependent 2092 * bus reset, then attempts to identify any devices found on 2093 * the bus. 2094 * 2095 * LOCKING: 2096 * PCI/etc. bus probe sem. 2097 * 2098 * RETURNS: 2099 * Zero on success, negative errno otherwise. 2100 */ 2101 2102 int ata_bus_probe(struct ata_port *ap) 2103 { 2104 unsigned int classes[ATA_MAX_DEVICES]; 2105 int tries[ATA_MAX_DEVICES]; 2106 int i, rc; 2107 struct ata_device *dev; 2108 2109 ata_port_probe(ap); 2110 2111 for (i = 0; i < ATA_MAX_DEVICES; i++) 2112 tries[i] = ATA_PROBE_MAX_TRIES; 2113 2114 retry: 2115 /* reset and determine device classes */ 2116 ap->ops->phy_reset(ap); 2117 2118 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2119 dev = &ap->device[i]; 2120 2121 if (!(ap->flags & ATA_FLAG_DISABLED) && 2122 dev->class != ATA_DEV_UNKNOWN) 2123 classes[dev->devno] = dev->class; 2124 else 2125 classes[dev->devno] = ATA_DEV_NONE; 2126 2127 dev->class = ATA_DEV_UNKNOWN; 2128 } 2129 2130 ata_port_probe(ap); 2131 2132 /* after the reset the device state is PIO 0 and the controller 2133 state is undefined. Record the mode */ 2134 2135 for (i = 0; i < ATA_MAX_DEVICES; i++) 2136 ap->device[i].pio_mode = XFER_PIO_0; 2137 2138 /* read IDENTIFY page and configure devices. We have to do the identify 2139 specific sequence bass-ackwards so that PDIAG- is released by 2140 the slave device */ 2141 2142 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 2143 dev = &ap->device[i]; 2144 2145 if (tries[i]) 2146 dev->class = classes[i]; 2147 2148 if (!ata_dev_enabled(dev)) 2149 continue; 2150 2151 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2152 dev->id); 2153 if (rc) 2154 goto fail; 2155 } 2156 2157 /* Now ask for the cable type as PDIAG- should have been released */ 2158 if (ap->ops->cable_detect) 2159 ap->cbl = ap->ops->cable_detect(ap); 2160 2161 /* After the identify sequence we can now set up the devices. We do 2162 this in the normal order so that the user doesn't get confused */ 2163 2164 for(i = 0; i < ATA_MAX_DEVICES; i++) { 2165 dev = &ap->device[i]; 2166 if (!ata_dev_enabled(dev)) 2167 continue; 2168 2169 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 2170 rc = ata_dev_configure(dev); 2171 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2172 if (rc) 2173 goto fail; 2174 } 2175 2176 /* configure transfer mode */ 2177 rc = ata_set_mode(ap, &dev); 2178 if (rc) 2179 goto fail; 2180 2181 for (i = 0; i < ATA_MAX_DEVICES; i++) 2182 if (ata_dev_enabled(&ap->device[i])) 2183 return 0; 2184 2185 /* no device present, disable port */ 2186 ata_port_disable(ap); 2187 ap->ops->port_disable(ap); 2188 return -ENODEV; 2189 2190 fail: 2191 tries[dev->devno]--; 2192 2193 switch (rc) { 2194 case -EINVAL: 2195 /* eeek, something went very wrong, give up */ 2196 tries[dev->devno] = 0; 2197 break; 2198 2199 case -ENODEV: 2200 /* give it just one more chance */ 2201 tries[dev->devno] = min(tries[dev->devno], 1); 2202 case -EIO: 2203 if (tries[dev->devno] == 1) { 2204 /* This is the last chance, better to slow 2205 * down than lose it. 2206 */ 2207 sata_down_spd_limit(ap); 2208 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2209 } 2210 } 2211 2212 if (!tries[dev->devno]) 2213 ata_dev_disable(dev); 2214 2215 goto retry; 2216 } 2217 2218 /** 2219 * ata_port_probe - Mark port as enabled 2220 * @ap: Port for which we indicate enablement 2221 * 2222 * Modify @ap data structure such that the system 2223 * thinks that the entire port is enabled. 2224 * 2225 * LOCKING: host lock, or some other form of 2226 * serialization. 2227 */ 2228 2229 void ata_port_probe(struct ata_port *ap) 2230 { 2231 ap->flags &= ~ATA_FLAG_DISABLED; 2232 } 2233 2234 /** 2235 * sata_print_link_status - Print SATA link status 2236 * @ap: SATA port to printk link status about 2237 * 2238 * This function prints link speed and status of a SATA link. 2239 * 2240 * LOCKING: 2241 * None. 2242 */ 2243 void sata_print_link_status(struct ata_port *ap) 2244 { 2245 u32 sstatus, scontrol, tmp; 2246 2247 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 2248 return; 2249 sata_scr_read(ap, SCR_CONTROL, &scontrol); 2250 2251 if (ata_port_online(ap)) { 2252 tmp = (sstatus >> 4) & 0xf; 2253 ata_port_printk(ap, KERN_INFO, 2254 "SATA link up %s (SStatus %X SControl %X)\n", 2255 sata_spd_string(tmp), sstatus, scontrol); 2256 } else { 2257 ata_port_printk(ap, KERN_INFO, 2258 "SATA link down (SStatus %X SControl %X)\n", 2259 sstatus, scontrol); 2260 } 2261 } 2262 2263 /** 2264 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2265 * @ap: SATA port associated with target SATA PHY. 2266 * 2267 * This function issues commands to standard SATA Sxxx 2268 * PHY registers, to wake up the phy (and device), and 2269 * clear any reset condition. 2270 * 2271 * LOCKING: 2272 * PCI/etc. bus probe sem. 2273 * 2274 */ 2275 void __sata_phy_reset(struct ata_port *ap) 2276 { 2277 u32 sstatus; 2278 unsigned long timeout = jiffies + (HZ * 5); 2279 2280 if (ap->flags & ATA_FLAG_SATA_RESET) { 2281 /* issue phy wake/reset */ 2282 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2283 /* Couldn't find anything in SATA I/II specs, but 2284 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2285 mdelay(1); 2286 } 2287 /* phy wake/clear reset */ 2288 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2289 2290 /* wait for phy to become ready, if necessary */ 2291 do { 2292 msleep(200); 2293 sata_scr_read(ap, SCR_STATUS, &sstatus); 2294 if ((sstatus & 0xf) != 1) 2295 break; 2296 } while (time_before(jiffies, timeout)); 2297 2298 /* print link status */ 2299 sata_print_link_status(ap); 2300 2301 /* TODO: phy layer with polling, timeouts, etc. */ 2302 if (!ata_port_offline(ap)) 2303 ata_port_probe(ap); 2304 else 2305 ata_port_disable(ap); 2306 2307 if (ap->flags & ATA_FLAG_DISABLED) 2308 return; 2309 2310 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2311 ata_port_disable(ap); 2312 return; 2313 } 2314 2315 ap->cbl = ATA_CBL_SATA; 2316 } 2317 2318 /** 2319 * sata_phy_reset - Reset SATA bus. 2320 * @ap: SATA port associated with target SATA PHY. 2321 * 2322 * This function resets the SATA bus, and then probes 2323 * the bus for devices. 2324 * 2325 * LOCKING: 2326 * PCI/etc. bus probe sem. 2327 * 2328 */ 2329 void sata_phy_reset(struct ata_port *ap) 2330 { 2331 __sata_phy_reset(ap); 2332 if (ap->flags & ATA_FLAG_DISABLED) 2333 return; 2334 ata_bus_reset(ap); 2335 } 2336 2337 /** 2338 * ata_dev_pair - return other device on cable 2339 * @adev: device 2340 * 2341 * Obtain the other device on the same cable, or if none is 2342 * present NULL is returned 2343 */ 2344 2345 struct ata_device *ata_dev_pair(struct ata_device *adev) 2346 { 2347 struct ata_port *ap = adev->ap; 2348 struct ata_device *pair = &ap->device[1 - adev->devno]; 2349 if (!ata_dev_enabled(pair)) 2350 return NULL; 2351 return pair; 2352 } 2353 2354 /** 2355 * ata_port_disable - Disable port. 2356 * @ap: Port to be disabled. 2357 * 2358 * Modify @ap data structure such that the system 2359 * thinks that the entire port is disabled, and should 2360 * never attempt to probe or communicate with devices 2361 * on this port. 2362 * 2363 * LOCKING: host lock, or some other form of 2364 * serialization. 2365 */ 2366 2367 void ata_port_disable(struct ata_port *ap) 2368 { 2369 ap->device[0].class = ATA_DEV_NONE; 2370 ap->device[1].class = ATA_DEV_NONE; 2371 ap->flags |= ATA_FLAG_DISABLED; 2372 } 2373 2374 /** 2375 * sata_down_spd_limit - adjust SATA spd limit downward 2376 * @ap: Port to adjust SATA spd limit for 2377 * 2378 * Adjust SATA spd limit of @ap downward. Note that this 2379 * function only adjusts the limit. The change must be applied 2380 * using sata_set_spd(). 2381 * 2382 * LOCKING: 2383 * Inherited from caller. 2384 * 2385 * RETURNS: 2386 * 0 on success, negative errno on failure 2387 */ 2388 int sata_down_spd_limit(struct ata_port *ap) 2389 { 2390 u32 sstatus, spd, mask; 2391 int rc, highbit; 2392 2393 if (!sata_scr_valid(ap)) 2394 return -EOPNOTSUPP; 2395 2396 /* If SCR can be read, use it to determine the current SPD. 2397 * If not, use cached value in ap->sata_spd. 2398 */ 2399 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2400 if (rc == 0) 2401 spd = (sstatus >> 4) & 0xf; 2402 else 2403 spd = ap->sata_spd; 2404 2405 mask = ap->sata_spd_limit; 2406 if (mask <= 1) 2407 return -EINVAL; 2408 2409 /* unconditionally mask off the highest bit */ 2410 highbit = fls(mask) - 1; 2411 mask &= ~(1 << highbit); 2412 2413 /* Mask off all speeds higher than or equal to the current 2414 * one. Force 1.5Gbps if current SPD is not available. 2415 */ 2416 if (spd > 1) 2417 mask &= (1 << (spd - 1)) - 1; 2418 else 2419 mask &= 1; 2420 2421 /* were we already at the bottom? */ 2422 if (!mask) 2423 return -EINVAL; 2424 2425 ap->sata_spd_limit = mask; 2426 2427 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2428 sata_spd_string(fls(mask))); 2429 2430 return 0; 2431 } 2432 2433 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2434 { 2435 u32 spd, limit; 2436 2437 if (ap->sata_spd_limit == UINT_MAX) 2438 limit = 0; 2439 else 2440 limit = fls(ap->sata_spd_limit); 2441 2442 spd = (*scontrol >> 4) & 0xf; 2443 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2444 2445 return spd != limit; 2446 } 2447 2448 /** 2449 * sata_set_spd_needed - is SATA spd configuration needed 2450 * @ap: Port in question 2451 * 2452 * Test whether the spd limit in SControl matches 2453 * @ap->sata_spd_limit. This function is used to determine 2454 * whether hardreset is necessary to apply SATA spd 2455 * configuration. 2456 * 2457 * LOCKING: 2458 * Inherited from caller. 2459 * 2460 * RETURNS: 2461 * 1 if SATA spd configuration is needed, 0 otherwise. 2462 */ 2463 int sata_set_spd_needed(struct ata_port *ap) 2464 { 2465 u32 scontrol; 2466 2467 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2468 return 0; 2469 2470 return __sata_set_spd_needed(ap, &scontrol); 2471 } 2472 2473 /** 2474 * sata_set_spd - set SATA spd according to spd limit 2475 * @ap: Port to set SATA spd for 2476 * 2477 * Set SATA spd of @ap according to sata_spd_limit. 2478 * 2479 * LOCKING: 2480 * Inherited from caller. 2481 * 2482 * RETURNS: 2483 * 0 if spd doesn't need to be changed, 1 if spd has been 2484 * changed. Negative errno if SCR registers are inaccessible. 2485 */ 2486 int sata_set_spd(struct ata_port *ap) 2487 { 2488 u32 scontrol; 2489 int rc; 2490 2491 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2492 return rc; 2493 2494 if (!__sata_set_spd_needed(ap, &scontrol)) 2495 return 0; 2496 2497 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2498 return rc; 2499 2500 return 1; 2501 } 2502 2503 /* 2504 * This mode timing computation functionality is ported over from 2505 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2506 */ 2507 /* 2508 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2509 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2510 * for UDMA6, which is currently supported only by Maxtor drives. 2511 * 2512 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2513 */ 2514 2515 static const struct ata_timing ata_timing[] = { 2516 2517 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2518 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2519 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2520 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2521 2522 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2523 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2527 2528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2529 2530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2533 2534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2537 2538 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2539 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2540 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2541 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2542 2543 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2544 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2545 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2546 2547 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2548 2549 { 0xFF } 2550 }; 2551 2552 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2553 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2554 2555 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2556 { 2557 q->setup = EZ(t->setup * 1000, T); 2558 q->act8b = EZ(t->act8b * 1000, T); 2559 q->rec8b = EZ(t->rec8b * 1000, T); 2560 q->cyc8b = EZ(t->cyc8b * 1000, T); 2561 q->active = EZ(t->active * 1000, T); 2562 q->recover = EZ(t->recover * 1000, T); 2563 q->cycle = EZ(t->cycle * 1000, T); 2564 q->udma = EZ(t->udma * 1000, UT); 2565 } 2566 2567 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2568 struct ata_timing *m, unsigned int what) 2569 { 2570 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2571 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2572 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2573 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2574 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2575 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2576 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2577 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2578 } 2579 2580 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2581 { 2582 const struct ata_timing *t; 2583 2584 for (t = ata_timing; t->mode != speed; t++) 2585 if (t->mode == 0xFF) 2586 return NULL; 2587 return t; 2588 } 2589 2590 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2591 struct ata_timing *t, int T, int UT) 2592 { 2593 const struct ata_timing *s; 2594 struct ata_timing p; 2595 2596 /* 2597 * Find the mode. 2598 */ 2599 2600 if (!(s = ata_timing_find_mode(speed))) 2601 return -EINVAL; 2602 2603 memcpy(t, s, sizeof(*s)); 2604 2605 /* 2606 * If the drive is an EIDE drive, it can tell us it needs extended 2607 * PIO/MW_DMA cycle timing. 2608 */ 2609 2610 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2611 memset(&p, 0, sizeof(p)); 2612 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2613 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2614 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2615 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2616 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2617 } 2618 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2619 } 2620 2621 /* 2622 * Convert the timing to bus clock counts. 2623 */ 2624 2625 ata_timing_quantize(t, t, T, UT); 2626 2627 /* 2628 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2629 * S.M.A.R.T * and some other commands. We have to ensure that the 2630 * DMA cycle timing is slower/equal than the fastest PIO timing. 2631 */ 2632 2633 if (speed > XFER_PIO_6) { 2634 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2635 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2636 } 2637 2638 /* 2639 * Lengthen active & recovery time so that cycle time is correct. 2640 */ 2641 2642 if (t->act8b + t->rec8b < t->cyc8b) { 2643 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2644 t->rec8b = t->cyc8b - t->act8b; 2645 } 2646 2647 if (t->active + t->recover < t->cycle) { 2648 t->active += (t->cycle - (t->active + t->recover)) / 2; 2649 t->recover = t->cycle - t->active; 2650 } 2651 2652 /* In a few cases quantisation may produce enough errors to 2653 leave t->cycle too low for the sum of active and recovery 2654 if so we must correct this */ 2655 if (t->active + t->recover > t->cycle) 2656 t->cycle = t->active + t->recover; 2657 2658 return 0; 2659 } 2660 2661 /** 2662 * ata_down_xfermask_limit - adjust dev xfer masks downward 2663 * @dev: Device to adjust xfer masks 2664 * @sel: ATA_DNXFER_* selector 2665 * 2666 * Adjust xfer masks of @dev downward. Note that this function 2667 * does not apply the change. Invoking ata_set_mode() afterwards 2668 * will apply the limit. 2669 * 2670 * LOCKING: 2671 * Inherited from caller. 2672 * 2673 * RETURNS: 2674 * 0 on success, negative errno on failure 2675 */ 2676 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2677 { 2678 char buf[32]; 2679 unsigned int orig_mask, xfer_mask; 2680 unsigned int pio_mask, mwdma_mask, udma_mask; 2681 int quiet, highbit; 2682 2683 quiet = !!(sel & ATA_DNXFER_QUIET); 2684 sel &= ~ATA_DNXFER_QUIET; 2685 2686 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2687 dev->mwdma_mask, 2688 dev->udma_mask); 2689 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2690 2691 switch (sel) { 2692 case ATA_DNXFER_PIO: 2693 highbit = fls(pio_mask) - 1; 2694 pio_mask &= ~(1 << highbit); 2695 break; 2696 2697 case ATA_DNXFER_DMA: 2698 if (udma_mask) { 2699 highbit = fls(udma_mask) - 1; 2700 udma_mask &= ~(1 << highbit); 2701 if (!udma_mask) 2702 return -ENOENT; 2703 } else if (mwdma_mask) { 2704 highbit = fls(mwdma_mask) - 1; 2705 mwdma_mask &= ~(1 << highbit); 2706 if (!mwdma_mask) 2707 return -ENOENT; 2708 } 2709 break; 2710 2711 case ATA_DNXFER_40C: 2712 udma_mask &= ATA_UDMA_MASK_40C; 2713 break; 2714 2715 case ATA_DNXFER_FORCE_PIO0: 2716 pio_mask &= 1; 2717 case ATA_DNXFER_FORCE_PIO: 2718 mwdma_mask = 0; 2719 udma_mask = 0; 2720 break; 2721 2722 default: 2723 BUG(); 2724 } 2725 2726 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2727 2728 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2729 return -ENOENT; 2730 2731 if (!quiet) { 2732 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2733 snprintf(buf, sizeof(buf), "%s:%s", 2734 ata_mode_string(xfer_mask), 2735 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2736 else 2737 snprintf(buf, sizeof(buf), "%s", 2738 ata_mode_string(xfer_mask)); 2739 2740 ata_dev_printk(dev, KERN_WARNING, 2741 "limiting speed to %s\n", buf); 2742 } 2743 2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2745 &dev->udma_mask); 2746 2747 return 0; 2748 } 2749 2750 static int ata_dev_set_mode(struct ata_device *dev) 2751 { 2752 struct ata_eh_context *ehc = &dev->ap->eh_context; 2753 unsigned int err_mask; 2754 int rc; 2755 2756 dev->flags &= ~ATA_DFLAG_PIO; 2757 if (dev->xfer_shift == ATA_SHIFT_PIO) 2758 dev->flags |= ATA_DFLAG_PIO; 2759 2760 err_mask = ata_dev_set_xfermode(dev); 2761 /* Old CFA may refuse this command, which is just fine */ 2762 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2763 err_mask &= ~AC_ERR_DEV; 2764 2765 if (err_mask) { 2766 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2767 "(err_mask=0x%x)\n", err_mask); 2768 return -EIO; 2769 } 2770 2771 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2772 rc = ata_dev_revalidate(dev, 0); 2773 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2774 if (rc) 2775 return rc; 2776 2777 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2778 dev->xfer_shift, (int)dev->xfer_mode); 2779 2780 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2781 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2782 return 0; 2783 } 2784 2785 /** 2786 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2787 * @ap: port on which timings will be programmed 2788 * @r_failed_dev: out paramter for failed device 2789 * 2790 * Standard implementation of the function used to tune and set 2791 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2792 * ata_dev_set_mode() fails, pointer to the failing device is 2793 * returned in @r_failed_dev. 2794 * 2795 * LOCKING: 2796 * PCI/etc. bus probe sem. 2797 * 2798 * RETURNS: 2799 * 0 on success, negative errno otherwise 2800 */ 2801 2802 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2803 { 2804 struct ata_device *dev; 2805 int i, rc = 0, used_dma = 0, found = 0; 2806 2807 2808 /* step 1: calculate xfer_mask */ 2809 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2810 unsigned int pio_mask, dma_mask; 2811 2812 dev = &ap->device[i]; 2813 2814 if (!ata_dev_enabled(dev)) 2815 continue; 2816 2817 ata_dev_xfermask(dev); 2818 2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2823 2824 found = 1; 2825 if (dev->dma_mode) 2826 used_dma = 1; 2827 } 2828 if (!found) 2829 goto out; 2830 2831 /* step 2: always set host PIO timings */ 2832 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2833 dev = &ap->device[i]; 2834 if (!ata_dev_enabled(dev)) 2835 continue; 2836 2837 if (!dev->pio_mode) { 2838 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2839 rc = -EINVAL; 2840 goto out; 2841 } 2842 2843 dev->xfer_mode = dev->pio_mode; 2844 dev->xfer_shift = ATA_SHIFT_PIO; 2845 if (ap->ops->set_piomode) 2846 ap->ops->set_piomode(ap, dev); 2847 } 2848 2849 /* step 3: set host DMA timings */ 2850 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2851 dev = &ap->device[i]; 2852 2853 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2854 continue; 2855 2856 dev->xfer_mode = dev->dma_mode; 2857 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2858 if (ap->ops->set_dmamode) 2859 ap->ops->set_dmamode(ap, dev); 2860 } 2861 2862 /* step 4: update devices' xfer mode */ 2863 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2864 dev = &ap->device[i]; 2865 2866 /* don't update suspended devices' xfer mode */ 2867 if (!ata_dev_enabled(dev)) 2868 continue; 2869 2870 rc = ata_dev_set_mode(dev); 2871 if (rc) 2872 goto out; 2873 } 2874 2875 /* Record simplex status. If we selected DMA then the other 2876 * host channels are not permitted to do so. 2877 */ 2878 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2879 ap->host->simplex_claimed = ap; 2880 2881 out: 2882 if (rc) 2883 *r_failed_dev = dev; 2884 return rc; 2885 } 2886 2887 /** 2888 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2889 * @ap: port on which timings will be programmed 2890 * @r_failed_dev: out paramter for failed device 2891 * 2892 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2893 * ata_set_mode() fails, pointer to the failing device is 2894 * returned in @r_failed_dev. 2895 * 2896 * LOCKING: 2897 * PCI/etc. bus probe sem. 2898 * 2899 * RETURNS: 2900 * 0 on success, negative errno otherwise 2901 */ 2902 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2903 { 2904 /* has private set_mode? */ 2905 if (ap->ops->set_mode) 2906 return ap->ops->set_mode(ap, r_failed_dev); 2907 return ata_do_set_mode(ap, r_failed_dev); 2908 } 2909 2910 /** 2911 * ata_tf_to_host - issue ATA taskfile to host controller 2912 * @ap: port to which command is being issued 2913 * @tf: ATA taskfile register set 2914 * 2915 * Issues ATA taskfile register set to ATA host controller, 2916 * with proper synchronization with interrupt handler and 2917 * other threads. 2918 * 2919 * LOCKING: 2920 * spin_lock_irqsave(host lock) 2921 */ 2922 2923 static inline void ata_tf_to_host(struct ata_port *ap, 2924 const struct ata_taskfile *tf) 2925 { 2926 ap->ops->tf_load(ap, tf); 2927 ap->ops->exec_command(ap, tf); 2928 } 2929 2930 /** 2931 * ata_busy_sleep - sleep until BSY clears, or timeout 2932 * @ap: port containing status register to be polled 2933 * @tmout_pat: impatience timeout 2934 * @tmout: overall timeout 2935 * 2936 * Sleep until ATA Status register bit BSY clears, 2937 * or a timeout occurs. 2938 * 2939 * LOCKING: 2940 * Kernel thread context (may sleep). 2941 * 2942 * RETURNS: 2943 * 0 on success, -errno otherwise. 2944 */ 2945 int ata_busy_sleep(struct ata_port *ap, 2946 unsigned long tmout_pat, unsigned long tmout) 2947 { 2948 unsigned long timer_start, timeout; 2949 u8 status; 2950 2951 status = ata_busy_wait(ap, ATA_BUSY, 300); 2952 timer_start = jiffies; 2953 timeout = timer_start + tmout_pat; 2954 while (status != 0xff && (status & ATA_BUSY) && 2955 time_before(jiffies, timeout)) { 2956 msleep(50); 2957 status = ata_busy_wait(ap, ATA_BUSY, 3); 2958 } 2959 2960 if (status != 0xff && (status & ATA_BUSY)) 2961 ata_port_printk(ap, KERN_WARNING, 2962 "port is slow to respond, please be patient " 2963 "(Status 0x%x)\n", status); 2964 2965 timeout = timer_start + tmout; 2966 while (status != 0xff && (status & ATA_BUSY) && 2967 time_before(jiffies, timeout)) { 2968 msleep(50); 2969 status = ata_chk_status(ap); 2970 } 2971 2972 if (status == 0xff) 2973 return -ENODEV; 2974 2975 if (status & ATA_BUSY) { 2976 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2977 "(%lu secs, Status 0x%x)\n", 2978 tmout / HZ, status); 2979 return -EBUSY; 2980 } 2981 2982 return 0; 2983 } 2984 2985 /** 2986 * ata_wait_ready - sleep until BSY clears, or timeout 2987 * @ap: port containing status register to be polled 2988 * @deadline: deadline jiffies for the operation 2989 * 2990 * Sleep until ATA Status register bit BSY clears, or timeout 2991 * occurs. 2992 * 2993 * LOCKING: 2994 * Kernel thread context (may sleep). 2995 * 2996 * RETURNS: 2997 * 0 on success, -errno otherwise. 2998 */ 2999 int ata_wait_ready(struct ata_port *ap, unsigned long deadline) 3000 { 3001 unsigned long start = jiffies; 3002 int warned = 0; 3003 3004 while (1) { 3005 u8 status = ata_chk_status(ap); 3006 unsigned long now = jiffies; 3007 3008 if (!(status & ATA_BUSY)) 3009 return 0; 3010 if (!ata_port_online(ap) && status == 0xff) 3011 return -ENODEV; 3012 if (time_after(now, deadline)) 3013 return -EBUSY; 3014 3015 if (!warned && time_after(now, start + 5 * HZ) && 3016 (deadline - now > 3 * HZ)) { 3017 ata_port_printk(ap, KERN_WARNING, 3018 "port is slow to respond, please be patient " 3019 "(Status 0x%x)\n", status); 3020 warned = 1; 3021 } 3022 3023 msleep(50); 3024 } 3025 } 3026 3027 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, 3028 unsigned long deadline) 3029 { 3030 struct ata_ioports *ioaddr = &ap->ioaddr; 3031 unsigned int dev0 = devmask & (1 << 0); 3032 unsigned int dev1 = devmask & (1 << 1); 3033 int rc, ret = 0; 3034 3035 /* if device 0 was found in ata_devchk, wait for its 3036 * BSY bit to clear 3037 */ 3038 if (dev0) { 3039 rc = ata_wait_ready(ap, deadline); 3040 if (rc) { 3041 if (rc != -ENODEV) 3042 return rc; 3043 ret = rc; 3044 } 3045 } 3046 3047 /* if device 1 was found in ata_devchk, wait for register 3048 * access briefly, then wait for BSY to clear. 3049 */ 3050 if (dev1) { 3051 int i; 3052 3053 ap->ops->dev_select(ap, 1); 3054 3055 /* Wait for register access. Some ATAPI devices fail 3056 * to set nsect/lbal after reset, so don't waste too 3057 * much time on it. We're gonna wait for !BSY anyway. 3058 */ 3059 for (i = 0; i < 2; i++) { 3060 u8 nsect, lbal; 3061 3062 nsect = ioread8(ioaddr->nsect_addr); 3063 lbal = ioread8(ioaddr->lbal_addr); 3064 if ((nsect == 1) && (lbal == 1)) 3065 break; 3066 msleep(50); /* give drive a breather */ 3067 } 3068 3069 rc = ata_wait_ready(ap, deadline); 3070 if (rc) { 3071 if (rc != -ENODEV) 3072 return rc; 3073 ret = rc; 3074 } 3075 } 3076 3077 /* is all this really necessary? */ 3078 ap->ops->dev_select(ap, 0); 3079 if (dev1) 3080 ap->ops->dev_select(ap, 1); 3081 if (dev0) 3082 ap->ops->dev_select(ap, 0); 3083 3084 return ret; 3085 } 3086 3087 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 3088 unsigned long deadline) 3089 { 3090 struct ata_ioports *ioaddr = &ap->ioaddr; 3091 3092 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3093 3094 /* software reset. causes dev0 to be selected */ 3095 iowrite8(ap->ctl, ioaddr->ctl_addr); 3096 udelay(20); /* FIXME: flush */ 3097 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3098 udelay(20); /* FIXME: flush */ 3099 iowrite8(ap->ctl, ioaddr->ctl_addr); 3100 3101 /* spec mandates ">= 2ms" before checking status. 3102 * We wait 150ms, because that was the magic delay used for 3103 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3104 * between when the ATA command register is written, and then 3105 * status is checked. Because waiting for "a while" before 3106 * checking status is fine, post SRST, we perform this magic 3107 * delay here as well. 3108 * 3109 * Old drivers/ide uses the 2mS rule and then waits for ready 3110 */ 3111 msleep(150); 3112 3113 /* Before we perform post reset processing we want to see if 3114 * the bus shows 0xFF because the odd clown forgets the D7 3115 * pulldown resistor. 3116 */ 3117 if (ata_check_status(ap) == 0xFF) 3118 return -ENODEV; 3119 3120 return ata_bus_post_reset(ap, devmask, deadline); 3121 } 3122 3123 /** 3124 * ata_bus_reset - reset host port and associated ATA channel 3125 * @ap: port to reset 3126 * 3127 * This is typically the first time we actually start issuing 3128 * commands to the ATA channel. We wait for BSY to clear, then 3129 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3130 * result. Determine what devices, if any, are on the channel 3131 * by looking at the device 0/1 error register. Look at the signature 3132 * stored in each device's taskfile registers, to determine if 3133 * the device is ATA or ATAPI. 3134 * 3135 * LOCKING: 3136 * PCI/etc. bus probe sem. 3137 * Obtains host lock. 3138 * 3139 * SIDE EFFECTS: 3140 * Sets ATA_FLAG_DISABLED if bus reset fails. 3141 */ 3142 3143 void ata_bus_reset(struct ata_port *ap) 3144 { 3145 struct ata_ioports *ioaddr = &ap->ioaddr; 3146 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3147 u8 err; 3148 unsigned int dev0, dev1 = 0, devmask = 0; 3149 int rc; 3150 3151 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3152 3153 /* determine if device 0/1 are present */ 3154 if (ap->flags & ATA_FLAG_SATA_RESET) 3155 dev0 = 1; 3156 else { 3157 dev0 = ata_devchk(ap, 0); 3158 if (slave_possible) 3159 dev1 = ata_devchk(ap, 1); 3160 } 3161 3162 if (dev0) 3163 devmask |= (1 << 0); 3164 if (dev1) 3165 devmask |= (1 << 1); 3166 3167 /* select device 0 again */ 3168 ap->ops->dev_select(ap, 0); 3169 3170 /* issue bus reset */ 3171 if (ap->flags & ATA_FLAG_SRST) { 3172 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 3173 if (rc && rc != -ENODEV) 3174 goto err_out; 3175 } 3176 3177 /* 3178 * determine by signature whether we have ATA or ATAPI devices 3179 */ 3180 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 3181 if ((slave_possible) && (err != 0x81)) 3182 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 3183 3184 /* is double-select really necessary? */ 3185 if (ap->device[1].class != ATA_DEV_NONE) 3186 ap->ops->dev_select(ap, 1); 3187 if (ap->device[0].class != ATA_DEV_NONE) 3188 ap->ops->dev_select(ap, 0); 3189 3190 /* if no devices were detected, disable this port */ 3191 if ((ap->device[0].class == ATA_DEV_NONE) && 3192 (ap->device[1].class == ATA_DEV_NONE)) 3193 goto err_out; 3194 3195 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3196 /* set up device control for ATA_FLAG_SATA_RESET */ 3197 iowrite8(ap->ctl, ioaddr->ctl_addr); 3198 } 3199 3200 DPRINTK("EXIT\n"); 3201 return; 3202 3203 err_out: 3204 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3205 ap->ops->port_disable(ap); 3206 3207 DPRINTK("EXIT\n"); 3208 } 3209 3210 /** 3211 * sata_phy_debounce - debounce SATA phy status 3212 * @ap: ATA port to debounce SATA phy status for 3213 * @params: timing parameters { interval, duratinon, timeout } in msec 3214 * @deadline: deadline jiffies for the operation 3215 * 3216 * Make sure SStatus of @ap reaches stable state, determined by 3217 * holding the same value where DET is not 1 for @duration polled 3218 * every @interval, before @timeout. Timeout constraints the 3219 * beginning of the stable state. Because DET gets stuck at 1 on 3220 * some controllers after hot unplugging, this functions waits 3221 * until timeout then returns 0 if DET is stable at 1. 3222 * 3223 * @timeout is further limited by @deadline. The sooner of the 3224 * two is used. 3225 * 3226 * LOCKING: 3227 * Kernel thread context (may sleep) 3228 * 3229 * RETURNS: 3230 * 0 on success, -errno on failure. 3231 */ 3232 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params, 3233 unsigned long deadline) 3234 { 3235 unsigned long interval_msec = params[0]; 3236 unsigned long duration = msecs_to_jiffies(params[1]); 3237 unsigned long last_jiffies, t; 3238 u32 last, cur; 3239 int rc; 3240 3241 t = jiffies + msecs_to_jiffies(params[2]); 3242 if (time_before(t, deadline)) 3243 deadline = t; 3244 3245 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3246 return rc; 3247 cur &= 0xf; 3248 3249 last = cur; 3250 last_jiffies = jiffies; 3251 3252 while (1) { 3253 msleep(interval_msec); 3254 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3255 return rc; 3256 cur &= 0xf; 3257 3258 /* DET stable? */ 3259 if (cur == last) { 3260 if (cur == 1 && time_before(jiffies, deadline)) 3261 continue; 3262 if (time_after(jiffies, last_jiffies + duration)) 3263 return 0; 3264 continue; 3265 } 3266 3267 /* unstable, start over */ 3268 last = cur; 3269 last_jiffies = jiffies; 3270 3271 /* Check deadline. If debouncing failed, return 3272 * -EPIPE to tell upper layer to lower link speed. 3273 */ 3274 if (time_after(jiffies, deadline)) 3275 return -EPIPE; 3276 } 3277 } 3278 3279 /** 3280 * sata_phy_resume - resume SATA phy 3281 * @ap: ATA port to resume SATA phy for 3282 * @params: timing parameters { interval, duratinon, timeout } in msec 3283 * @deadline: deadline jiffies for the operation 3284 * 3285 * Resume SATA phy of @ap and debounce it. 3286 * 3287 * LOCKING: 3288 * Kernel thread context (may sleep) 3289 * 3290 * RETURNS: 3291 * 0 on success, -errno on failure. 3292 */ 3293 int sata_phy_resume(struct ata_port *ap, const unsigned long *params, 3294 unsigned long deadline) 3295 { 3296 u32 scontrol; 3297 int rc; 3298 3299 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3300 return rc; 3301 3302 scontrol = (scontrol & 0x0f0) | 0x300; 3303 3304 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3305 return rc; 3306 3307 /* Some PHYs react badly if SStatus is pounded immediately 3308 * after resuming. Delay 200ms before debouncing. 3309 */ 3310 msleep(200); 3311 3312 return sata_phy_debounce(ap, params, deadline); 3313 } 3314 3315 /** 3316 * ata_std_prereset - prepare for reset 3317 * @ap: ATA port to be reset 3318 * @deadline: deadline jiffies for the operation 3319 * 3320 * @ap is about to be reset. Initialize it. Failure from 3321 * prereset makes libata abort whole reset sequence and give up 3322 * that port, so prereset should be best-effort. It does its 3323 * best to prepare for reset sequence but if things go wrong, it 3324 * should just whine, not fail. 3325 * 3326 * LOCKING: 3327 * Kernel thread context (may sleep) 3328 * 3329 * RETURNS: 3330 * 0 on success, -errno otherwise. 3331 */ 3332 int ata_std_prereset(struct ata_port *ap, unsigned long deadline) 3333 { 3334 struct ata_eh_context *ehc = &ap->eh_context; 3335 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3336 int rc; 3337 3338 /* handle link resume */ 3339 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3340 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 3341 ehc->i.action |= ATA_EH_HARDRESET; 3342 3343 /* if we're about to do hardreset, nothing more to do */ 3344 if (ehc->i.action & ATA_EH_HARDRESET) 3345 return 0; 3346 3347 /* if SATA, resume phy */ 3348 if (ap->flags & ATA_FLAG_SATA) { 3349 rc = sata_phy_resume(ap, timing, deadline); 3350 /* whine about phy resume failure but proceed */ 3351 if (rc && rc != -EOPNOTSUPP) 3352 ata_port_printk(ap, KERN_WARNING, "failed to resume " 3353 "link for reset (errno=%d)\n", rc); 3354 } 3355 3356 /* Wait for !BSY if the controller can wait for the first D2H 3357 * Reg FIS and we don't know that no device is attached. 3358 */ 3359 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) { 3360 rc = ata_wait_ready(ap, deadline); 3361 if (rc && rc != -ENODEV) { 3362 ata_port_printk(ap, KERN_WARNING, "device not ready " 3363 "(errno=%d), forcing hardreset\n", rc); 3364 ehc->i.action |= ATA_EH_HARDRESET; 3365 } 3366 } 3367 3368 return 0; 3369 } 3370 3371 /** 3372 * ata_std_softreset - reset host port via ATA SRST 3373 * @ap: port to reset 3374 * @classes: resulting classes of attached devices 3375 * @deadline: deadline jiffies for the operation 3376 * 3377 * Reset host port using ATA SRST. 3378 * 3379 * LOCKING: 3380 * Kernel thread context (may sleep) 3381 * 3382 * RETURNS: 3383 * 0 on success, -errno otherwise. 3384 */ 3385 int ata_std_softreset(struct ata_port *ap, unsigned int *classes, 3386 unsigned long deadline) 3387 { 3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3389 unsigned int devmask = 0; 3390 int rc; 3391 u8 err; 3392 3393 DPRINTK("ENTER\n"); 3394 3395 if (ata_port_offline(ap)) { 3396 classes[0] = ATA_DEV_NONE; 3397 goto out; 3398 } 3399 3400 /* determine if device 0/1 are present */ 3401 if (ata_devchk(ap, 0)) 3402 devmask |= (1 << 0); 3403 if (slave_possible && ata_devchk(ap, 1)) 3404 devmask |= (1 << 1); 3405 3406 /* select device 0 again */ 3407 ap->ops->dev_select(ap, 0); 3408 3409 /* issue bus reset */ 3410 DPRINTK("about to softreset, devmask=%x\n", devmask); 3411 rc = ata_bus_softreset(ap, devmask, deadline); 3412 /* if link is occupied, -ENODEV too is an error */ 3413 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) { 3414 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc); 3415 return rc; 3416 } 3417 3418 /* determine by signature whether we have ATA or ATAPI devices */ 3419 classes[0] = ata_dev_try_classify(ap, 0, &err); 3420 if (slave_possible && err != 0x81) 3421 classes[1] = ata_dev_try_classify(ap, 1, &err); 3422 3423 out: 3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3425 return 0; 3426 } 3427 3428 /** 3429 * sata_port_hardreset - reset port via SATA phy reset 3430 * @ap: port to reset 3431 * @timing: timing parameters { interval, duratinon, timeout } in msec 3432 * @deadline: deadline jiffies for the operation 3433 * 3434 * SATA phy-reset host port using DET bits of SControl register. 3435 * 3436 * LOCKING: 3437 * Kernel thread context (may sleep) 3438 * 3439 * RETURNS: 3440 * 0 on success, -errno otherwise. 3441 */ 3442 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing, 3443 unsigned long deadline) 3444 { 3445 u32 scontrol; 3446 int rc; 3447 3448 DPRINTK("ENTER\n"); 3449 3450 if (sata_set_spd_needed(ap)) { 3451 /* SATA spec says nothing about how to reconfigure 3452 * spd. To be on the safe side, turn off phy during 3453 * reconfiguration. This works for at least ICH7 AHCI 3454 * and Sil3124. 3455 */ 3456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3457 goto out; 3458 3459 scontrol = (scontrol & 0x0f0) | 0x304; 3460 3461 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3462 goto out; 3463 3464 sata_set_spd(ap); 3465 } 3466 3467 /* issue phy wake/reset */ 3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3469 goto out; 3470 3471 scontrol = (scontrol & 0x0f0) | 0x301; 3472 3473 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3474 goto out; 3475 3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3477 * 10.4.2 says at least 1 ms. 3478 */ 3479 msleep(1); 3480 3481 /* bring phy back */ 3482 rc = sata_phy_resume(ap, timing, deadline); 3483 out: 3484 DPRINTK("EXIT, rc=%d\n", rc); 3485 return rc; 3486 } 3487 3488 /** 3489 * sata_std_hardreset - reset host port via SATA phy reset 3490 * @ap: port to reset 3491 * @class: resulting class of attached device 3492 * @deadline: deadline jiffies for the operation 3493 * 3494 * SATA phy-reset host port using DET bits of SControl register, 3495 * wait for !BSY and classify the attached device. 3496 * 3497 * LOCKING: 3498 * Kernel thread context (may sleep) 3499 * 3500 * RETURNS: 3501 * 0 on success, -errno otherwise. 3502 */ 3503 int sata_std_hardreset(struct ata_port *ap, unsigned int *class, 3504 unsigned long deadline) 3505 { 3506 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3507 int rc; 3508 3509 DPRINTK("ENTER\n"); 3510 3511 /* do hardreset */ 3512 rc = sata_port_hardreset(ap, timing, deadline); 3513 if (rc) { 3514 ata_port_printk(ap, KERN_ERR, 3515 "COMRESET failed (errno=%d)\n", rc); 3516 return rc; 3517 } 3518 3519 /* TODO: phy layer with polling, timeouts, etc. */ 3520 if (ata_port_offline(ap)) { 3521 *class = ATA_DEV_NONE; 3522 DPRINTK("EXIT, link offline\n"); 3523 return 0; 3524 } 3525 3526 /* wait a while before checking status, see SRST for more info */ 3527 msleep(150); 3528 3529 rc = ata_wait_ready(ap, deadline); 3530 /* link occupied, -ENODEV too is an error */ 3531 if (rc) { 3532 ata_port_printk(ap, KERN_ERR, 3533 "COMRESET failed (errno=%d)\n", rc); 3534 return rc; 3535 } 3536 3537 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3538 3539 *class = ata_dev_try_classify(ap, 0, NULL); 3540 3541 DPRINTK("EXIT, class=%u\n", *class); 3542 return 0; 3543 } 3544 3545 /** 3546 * ata_std_postreset - standard postreset callback 3547 * @ap: the target ata_port 3548 * @classes: classes of attached devices 3549 * 3550 * This function is invoked after a successful reset. Note that 3551 * the device might have been reset more than once using 3552 * different reset methods before postreset is invoked. 3553 * 3554 * LOCKING: 3555 * Kernel thread context (may sleep) 3556 */ 3557 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3558 { 3559 u32 serror; 3560 3561 DPRINTK("ENTER\n"); 3562 3563 /* print link status */ 3564 sata_print_link_status(ap); 3565 3566 /* clear SError */ 3567 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3568 sata_scr_write(ap, SCR_ERROR, serror); 3569 3570 /* is double-select really necessary? */ 3571 if (classes[0] != ATA_DEV_NONE) 3572 ap->ops->dev_select(ap, 1); 3573 if (classes[1] != ATA_DEV_NONE) 3574 ap->ops->dev_select(ap, 0); 3575 3576 /* bail out if no device is present */ 3577 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3578 DPRINTK("EXIT, no device\n"); 3579 return; 3580 } 3581 3582 /* set up device control */ 3583 if (ap->ioaddr.ctl_addr) 3584 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3585 3586 DPRINTK("EXIT\n"); 3587 } 3588 3589 /** 3590 * ata_dev_same_device - Determine whether new ID matches configured device 3591 * @dev: device to compare against 3592 * @new_class: class of the new device 3593 * @new_id: IDENTIFY page of the new device 3594 * 3595 * Compare @new_class and @new_id against @dev and determine 3596 * whether @dev is the device indicated by @new_class and 3597 * @new_id. 3598 * 3599 * LOCKING: 3600 * None. 3601 * 3602 * RETURNS: 3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3604 */ 3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3606 const u16 *new_id) 3607 { 3608 const u16 *old_id = dev->id; 3609 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3611 3612 if (dev->class != new_class) { 3613 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3614 dev->class, new_class); 3615 return 0; 3616 } 3617 3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3622 3623 if (strcmp(model[0], model[1])) { 3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3625 "'%s' != '%s'\n", model[0], model[1]); 3626 return 0; 3627 } 3628 3629 if (strcmp(serial[0], serial[1])) { 3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3631 "'%s' != '%s'\n", serial[0], serial[1]); 3632 return 0; 3633 } 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * ata_dev_reread_id - Re-read IDENTIFY data 3640 * @dev: target ATA device 3641 * @readid_flags: read ID flags 3642 * 3643 * Re-read IDENTIFY page and make sure @dev is still attached to 3644 * the port. 3645 * 3646 * LOCKING: 3647 * Kernel thread context (may sleep) 3648 * 3649 * RETURNS: 3650 * 0 on success, negative errno otherwise 3651 */ 3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3653 { 3654 unsigned int class = dev->class; 3655 u16 *id = (void *)dev->ap->sector_buf; 3656 int rc; 3657 3658 /* read ID data */ 3659 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3660 if (rc) 3661 return rc; 3662 3663 /* is the device still there? */ 3664 if (!ata_dev_same_device(dev, class, id)) 3665 return -ENODEV; 3666 3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3668 return 0; 3669 } 3670 3671 /** 3672 * ata_dev_revalidate - Revalidate ATA device 3673 * @dev: device to revalidate 3674 * @readid_flags: read ID flags 3675 * 3676 * Re-read IDENTIFY page, make sure @dev is still attached to the 3677 * port and reconfigure it according to the new IDENTIFY page. 3678 * 3679 * LOCKING: 3680 * Kernel thread context (may sleep) 3681 * 3682 * RETURNS: 3683 * 0 on success, negative errno otherwise 3684 */ 3685 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3686 { 3687 u64 n_sectors = dev->n_sectors; 3688 int rc; 3689 3690 if (!ata_dev_enabled(dev)) 3691 return -ENODEV; 3692 3693 /* re-read ID */ 3694 rc = ata_dev_reread_id(dev, readid_flags); 3695 if (rc) 3696 goto fail; 3697 3698 /* configure device according to the new ID */ 3699 rc = ata_dev_configure(dev); 3700 if (rc) 3701 goto fail; 3702 3703 /* verify n_sectors hasn't changed */ 3704 if (dev->class == ATA_DEV_ATA && n_sectors && 3705 dev->n_sectors != n_sectors) { 3706 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3707 "%llu != %llu\n", 3708 (unsigned long long)n_sectors, 3709 (unsigned long long)dev->n_sectors); 3710 3711 /* restore original n_sectors */ 3712 dev->n_sectors = n_sectors; 3713 3714 rc = -ENODEV; 3715 goto fail; 3716 } 3717 3718 return 0; 3719 3720 fail: 3721 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3722 return rc; 3723 } 3724 3725 struct ata_blacklist_entry { 3726 const char *model_num; 3727 const char *model_rev; 3728 unsigned long horkage; 3729 }; 3730 3731 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3732 /* Devices with DMA related problems under Linux */ 3733 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3734 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3735 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3736 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3737 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3738 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3739 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3740 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3741 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3742 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3743 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3744 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3745 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3746 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3747 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3748 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3749 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3750 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3751 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3752 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3753 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3754 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3755 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3756 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3757 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3758 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3759 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3760 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3761 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3762 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3763 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */ 3764 { "IOMEGA ZIP 250 ATAPI Floppy", 3765 NULL, ATA_HORKAGE_NODMA }, 3766 3767 /* Weird ATAPI devices */ 3768 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3769 3770 /* Devices we expect to fail diagnostics */ 3771 3772 /* Devices where NCQ should be avoided */ 3773 /* NCQ is slow */ 3774 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3775 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3776 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3777 /* NCQ is broken */ 3778 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3779 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ }, 3780 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ }, 3781 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, }, 3782 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3783 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3784 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI", 3785 ATA_HORKAGE_NONCQ }, 3786 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3787 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3788 /* Blacklist entries taken from Silicon Image 3124/3132 3789 Windows driver .inf file - also several Linux problem reports */ 3790 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3791 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3792 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3793 /* Drives which do spurious command completion */ 3794 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, }, 3795 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, }, 3796 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, }, 3797 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3798 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, }, 3799 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, }, 3800 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, }, 3801 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, }, 3802 3803 /* devices which puke on READ_NATIVE_MAX */ 3804 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3805 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3806 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3807 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3808 3809 /* End Marker */ 3810 { } 3811 }; 3812 3813 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 3814 { 3815 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3816 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3817 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3818 3819 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3820 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3821 3822 while (ad->model_num) { 3823 if (!strcmp(ad->model_num, model_num)) { 3824 if (ad->model_rev == NULL) 3825 return ad->horkage; 3826 if (!strcmp(ad->model_rev, model_rev)) 3827 return ad->horkage; 3828 } 3829 ad++; 3830 } 3831 return 0; 3832 } 3833 3834 static int ata_dma_blacklisted(const struct ata_device *dev) 3835 { 3836 /* We don't support polling DMA. 3837 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3838 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3839 */ 3840 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3841 (dev->flags & ATA_DFLAG_CDB_INTR)) 3842 return 1; 3843 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 3844 } 3845 3846 /** 3847 * ata_dev_xfermask - Compute supported xfermask of the given device 3848 * @dev: Device to compute xfermask for 3849 * 3850 * Compute supported xfermask of @dev and store it in 3851 * dev->*_mask. This function is responsible for applying all 3852 * known limits including host controller limits, device 3853 * blacklist, etc... 3854 * 3855 * LOCKING: 3856 * None. 3857 */ 3858 static void ata_dev_xfermask(struct ata_device *dev) 3859 { 3860 struct ata_port *ap = dev->ap; 3861 struct ata_host *host = ap->host; 3862 unsigned long xfer_mask; 3863 3864 /* controller modes available */ 3865 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3866 ap->mwdma_mask, ap->udma_mask); 3867 3868 /* drive modes available */ 3869 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3870 dev->mwdma_mask, dev->udma_mask); 3871 xfer_mask &= ata_id_xfermask(dev->id); 3872 3873 /* 3874 * CFA Advanced TrueIDE timings are not allowed on a shared 3875 * cable 3876 */ 3877 if (ata_dev_pair(dev)) { 3878 /* No PIO5 or PIO6 */ 3879 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3880 /* No MWDMA3 or MWDMA 4 */ 3881 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3882 } 3883 3884 if (ata_dma_blacklisted(dev)) { 3885 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3886 ata_dev_printk(dev, KERN_WARNING, 3887 "device is on DMA blacklist, disabling DMA\n"); 3888 } 3889 3890 if ((host->flags & ATA_HOST_SIMPLEX) && 3891 host->simplex_claimed && host->simplex_claimed != ap) { 3892 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3893 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3894 "other device, disabling DMA\n"); 3895 } 3896 3897 if (ap->flags & ATA_FLAG_NO_IORDY) 3898 xfer_mask &= ata_pio_mask_no_iordy(dev); 3899 3900 if (ap->ops->mode_filter) 3901 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 3902 3903 /* Apply cable rule here. Don't apply it early because when 3904 * we handle hot plug the cable type can itself change. 3905 * Check this last so that we know if the transfer rate was 3906 * solely limited by the cable. 3907 * Unknown or 80 wire cables reported host side are checked 3908 * drive side as well. Cases where we know a 40wire cable 3909 * is used safely for 80 are not checked here. 3910 */ 3911 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 3912 /* UDMA/44 or higher would be available */ 3913 if((ap->cbl == ATA_CBL_PATA40) || 3914 (ata_drive_40wire(dev->id) && 3915 (ap->cbl == ATA_CBL_PATA_UNK || 3916 ap->cbl == ATA_CBL_PATA80))) { 3917 ata_dev_printk(dev, KERN_WARNING, 3918 "limited to UDMA/33 due to 40-wire cable\n"); 3919 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3920 } 3921 3922 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3923 &dev->mwdma_mask, &dev->udma_mask); 3924 } 3925 3926 /** 3927 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3928 * @dev: Device to which command will be sent 3929 * 3930 * Issue SET FEATURES - XFER MODE command to device @dev 3931 * on port @ap. 3932 * 3933 * LOCKING: 3934 * PCI/etc. bus probe sem. 3935 * 3936 * RETURNS: 3937 * 0 on success, AC_ERR_* mask otherwise. 3938 */ 3939 3940 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3941 { 3942 struct ata_taskfile tf; 3943 unsigned int err_mask; 3944 3945 /* set up set-features taskfile */ 3946 DPRINTK("set features - xfer mode\n"); 3947 3948 /* Some controllers and ATAPI devices show flaky interrupt 3949 * behavior after setting xfer mode. Use polling instead. 3950 */ 3951 ata_tf_init(dev, &tf); 3952 tf.command = ATA_CMD_SET_FEATURES; 3953 tf.feature = SETFEATURES_XFER; 3954 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 3955 tf.protocol = ATA_PROT_NODATA; 3956 tf.nsect = dev->xfer_mode; 3957 3958 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3959 3960 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3961 return err_mask; 3962 } 3963 3964 /** 3965 * ata_dev_init_params - Issue INIT DEV PARAMS command 3966 * @dev: Device to which command will be sent 3967 * @heads: Number of heads (taskfile parameter) 3968 * @sectors: Number of sectors (taskfile parameter) 3969 * 3970 * LOCKING: 3971 * Kernel thread context (may sleep) 3972 * 3973 * RETURNS: 3974 * 0 on success, AC_ERR_* mask otherwise. 3975 */ 3976 static unsigned int ata_dev_init_params(struct ata_device *dev, 3977 u16 heads, u16 sectors) 3978 { 3979 struct ata_taskfile tf; 3980 unsigned int err_mask; 3981 3982 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3983 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3984 return AC_ERR_INVALID; 3985 3986 /* set up init dev params taskfile */ 3987 DPRINTK("init dev params \n"); 3988 3989 ata_tf_init(dev, &tf); 3990 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3991 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3992 tf.protocol = ATA_PROT_NODATA; 3993 tf.nsect = sectors; 3994 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3995 3996 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3997 /* A clean abort indicates an original or just out of spec drive 3998 and we should continue as we issue the setup based on the 3999 drive reported working geometry */ 4000 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4001 err_mask = 0; 4002 4003 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4004 return err_mask; 4005 } 4006 4007 /** 4008 * ata_sg_clean - Unmap DMA memory associated with command 4009 * @qc: Command containing DMA memory to be released 4010 * 4011 * Unmap all mapped DMA memory associated with this command. 4012 * 4013 * LOCKING: 4014 * spin_lock_irqsave(host lock) 4015 */ 4016 void ata_sg_clean(struct ata_queued_cmd *qc) 4017 { 4018 struct ata_port *ap = qc->ap; 4019 struct scatterlist *sg = qc->__sg; 4020 int dir = qc->dma_dir; 4021 void *pad_buf = NULL; 4022 4023 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 4024 WARN_ON(sg == NULL); 4025 4026 if (qc->flags & ATA_QCFLAG_SINGLE) 4027 WARN_ON(qc->n_elem > 1); 4028 4029 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4030 4031 /* if we padded the buffer out to 32-bit bound, and data 4032 * xfer direction is from-device, we must copy from the 4033 * pad buffer back into the supplied buffer 4034 */ 4035 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 4036 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4037 4038 if (qc->flags & ATA_QCFLAG_SG) { 4039 if (qc->n_elem) 4040 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4041 /* restore last sg */ 4042 sg[qc->orig_n_elem - 1].length += qc->pad_len; 4043 if (pad_buf) { 4044 struct scatterlist *psg = &qc->pad_sgent; 4045 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4046 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 4047 kunmap_atomic(addr, KM_IRQ0); 4048 } 4049 } else { 4050 if (qc->n_elem) 4051 dma_unmap_single(ap->dev, 4052 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 4053 dir); 4054 /* restore sg */ 4055 sg->length += qc->pad_len; 4056 if (pad_buf) 4057 memcpy(qc->buf_virt + sg->length - qc->pad_len, 4058 pad_buf, qc->pad_len); 4059 } 4060 4061 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4062 qc->__sg = NULL; 4063 } 4064 4065 /** 4066 * ata_fill_sg - Fill PCI IDE PRD table 4067 * @qc: Metadata associated with taskfile to be transferred 4068 * 4069 * Fill PCI IDE PRD (scatter-gather) table with segments 4070 * associated with the current disk command. 4071 * 4072 * LOCKING: 4073 * spin_lock_irqsave(host lock) 4074 * 4075 */ 4076 static void ata_fill_sg(struct ata_queued_cmd *qc) 4077 { 4078 struct ata_port *ap = qc->ap; 4079 struct scatterlist *sg; 4080 unsigned int idx; 4081 4082 WARN_ON(qc->__sg == NULL); 4083 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4084 4085 idx = 0; 4086 ata_for_each_sg(sg, qc) { 4087 u32 addr, offset; 4088 u32 sg_len, len; 4089 4090 /* determine if physical DMA addr spans 64K boundary. 4091 * Note h/w doesn't support 64-bit, so we unconditionally 4092 * truncate dma_addr_t to u32. 4093 */ 4094 addr = (u32) sg_dma_address(sg); 4095 sg_len = sg_dma_len(sg); 4096 4097 while (sg_len) { 4098 offset = addr & 0xffff; 4099 len = sg_len; 4100 if ((offset + sg_len) > 0x10000) 4101 len = 0x10000 - offset; 4102 4103 ap->prd[idx].addr = cpu_to_le32(addr); 4104 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 4105 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4106 4107 idx++; 4108 sg_len -= len; 4109 addr += len; 4110 } 4111 } 4112 4113 if (idx) 4114 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4115 } 4116 4117 /** 4118 * ata_fill_sg_dumb - Fill PCI IDE PRD table 4119 * @qc: Metadata associated with taskfile to be transferred 4120 * 4121 * Fill PCI IDE PRD (scatter-gather) table with segments 4122 * associated with the current disk command. Perform the fill 4123 * so that we avoid writing any length 64K records for 4124 * controllers that don't follow the spec. 4125 * 4126 * LOCKING: 4127 * spin_lock_irqsave(host lock) 4128 * 4129 */ 4130 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 4131 { 4132 struct ata_port *ap = qc->ap; 4133 struct scatterlist *sg; 4134 unsigned int idx; 4135 4136 WARN_ON(qc->__sg == NULL); 4137 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4138 4139 idx = 0; 4140 ata_for_each_sg(sg, qc) { 4141 u32 addr, offset; 4142 u32 sg_len, len, blen; 4143 4144 /* determine if physical DMA addr spans 64K boundary. 4145 * Note h/w doesn't support 64-bit, so we unconditionally 4146 * truncate dma_addr_t to u32. 4147 */ 4148 addr = (u32) sg_dma_address(sg); 4149 sg_len = sg_dma_len(sg); 4150 4151 while (sg_len) { 4152 offset = addr & 0xffff; 4153 len = sg_len; 4154 if ((offset + sg_len) > 0x10000) 4155 len = 0x10000 - offset; 4156 4157 blen = len & 0xffff; 4158 ap->prd[idx].addr = cpu_to_le32(addr); 4159 if (blen == 0) { 4160 /* Some PATA chipsets like the CS5530 can't 4161 cope with 0x0000 meaning 64K as the spec says */ 4162 ap->prd[idx].flags_len = cpu_to_le32(0x8000); 4163 blen = 0x8000; 4164 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000); 4165 } 4166 ap->prd[idx].flags_len = cpu_to_le32(blen); 4167 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4168 4169 idx++; 4170 sg_len -= len; 4171 addr += len; 4172 } 4173 } 4174 4175 if (idx) 4176 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4177 } 4178 4179 /** 4180 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4181 * @qc: Metadata associated with taskfile to check 4182 * 4183 * Allow low-level driver to filter ATA PACKET commands, returning 4184 * a status indicating whether or not it is OK to use DMA for the 4185 * supplied PACKET command. 4186 * 4187 * LOCKING: 4188 * spin_lock_irqsave(host lock) 4189 * 4190 * RETURNS: 0 when ATAPI DMA can be used 4191 * nonzero otherwise 4192 */ 4193 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4194 { 4195 struct ata_port *ap = qc->ap; 4196 4197 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4198 * few ATAPI devices choke on such DMA requests. 4199 */ 4200 if (unlikely(qc->nbytes & 15)) 4201 return 1; 4202 4203 if (ap->ops->check_atapi_dma) 4204 return ap->ops->check_atapi_dma(qc); 4205 4206 return 0; 4207 } 4208 4209 /** 4210 * ata_qc_prep - Prepare taskfile for submission 4211 * @qc: Metadata associated with taskfile to be prepared 4212 * 4213 * Prepare ATA taskfile for submission. 4214 * 4215 * LOCKING: 4216 * spin_lock_irqsave(host lock) 4217 */ 4218 void ata_qc_prep(struct ata_queued_cmd *qc) 4219 { 4220 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4221 return; 4222 4223 ata_fill_sg(qc); 4224 } 4225 4226 /** 4227 * ata_dumb_qc_prep - Prepare taskfile for submission 4228 * @qc: Metadata associated with taskfile to be prepared 4229 * 4230 * Prepare ATA taskfile for submission. 4231 * 4232 * LOCKING: 4233 * spin_lock_irqsave(host lock) 4234 */ 4235 void ata_dumb_qc_prep(struct ata_queued_cmd *qc) 4236 { 4237 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4238 return; 4239 4240 ata_fill_sg_dumb(qc); 4241 } 4242 4243 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4244 4245 /** 4246 * ata_sg_init_one - Associate command with memory buffer 4247 * @qc: Command to be associated 4248 * @buf: Memory buffer 4249 * @buflen: Length of memory buffer, in bytes. 4250 * 4251 * Initialize the data-related elements of queued_cmd @qc 4252 * to point to a single memory buffer, @buf of byte length @buflen. 4253 * 4254 * LOCKING: 4255 * spin_lock_irqsave(host lock) 4256 */ 4257 4258 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4259 { 4260 qc->flags |= ATA_QCFLAG_SINGLE; 4261 4262 qc->__sg = &qc->sgent; 4263 qc->n_elem = 1; 4264 qc->orig_n_elem = 1; 4265 qc->buf_virt = buf; 4266 qc->nbytes = buflen; 4267 4268 sg_init_one(&qc->sgent, buf, buflen); 4269 } 4270 4271 /** 4272 * ata_sg_init - Associate command with scatter-gather table. 4273 * @qc: Command to be associated 4274 * @sg: Scatter-gather table. 4275 * @n_elem: Number of elements in s/g table. 4276 * 4277 * Initialize the data-related elements of queued_cmd @qc 4278 * to point to a scatter-gather table @sg, containing @n_elem 4279 * elements. 4280 * 4281 * LOCKING: 4282 * spin_lock_irqsave(host lock) 4283 */ 4284 4285 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4286 unsigned int n_elem) 4287 { 4288 qc->flags |= ATA_QCFLAG_SG; 4289 qc->__sg = sg; 4290 qc->n_elem = n_elem; 4291 qc->orig_n_elem = n_elem; 4292 } 4293 4294 /** 4295 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4296 * @qc: Command with memory buffer to be mapped. 4297 * 4298 * DMA-map the memory buffer associated with queued_cmd @qc. 4299 * 4300 * LOCKING: 4301 * spin_lock_irqsave(host lock) 4302 * 4303 * RETURNS: 4304 * Zero on success, negative on error. 4305 */ 4306 4307 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4308 { 4309 struct ata_port *ap = qc->ap; 4310 int dir = qc->dma_dir; 4311 struct scatterlist *sg = qc->__sg; 4312 dma_addr_t dma_address; 4313 int trim_sg = 0; 4314 4315 /* we must lengthen transfers to end on a 32-bit boundary */ 4316 qc->pad_len = sg->length & 3; 4317 if (qc->pad_len) { 4318 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4319 struct scatterlist *psg = &qc->pad_sgent; 4320 4321 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4322 4323 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4324 4325 if (qc->tf.flags & ATA_TFLAG_WRITE) 4326 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4327 qc->pad_len); 4328 4329 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4330 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4331 /* trim sg */ 4332 sg->length -= qc->pad_len; 4333 if (sg->length == 0) 4334 trim_sg = 1; 4335 4336 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4337 sg->length, qc->pad_len); 4338 } 4339 4340 if (trim_sg) { 4341 qc->n_elem--; 4342 goto skip_map; 4343 } 4344 4345 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4346 sg->length, dir); 4347 if (dma_mapping_error(dma_address)) { 4348 /* restore sg */ 4349 sg->length += qc->pad_len; 4350 return -1; 4351 } 4352 4353 sg_dma_address(sg) = dma_address; 4354 sg_dma_len(sg) = sg->length; 4355 4356 skip_map: 4357 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4358 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4359 4360 return 0; 4361 } 4362 4363 /** 4364 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4365 * @qc: Command with scatter-gather table to be mapped. 4366 * 4367 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4368 * 4369 * LOCKING: 4370 * spin_lock_irqsave(host lock) 4371 * 4372 * RETURNS: 4373 * Zero on success, negative on error. 4374 * 4375 */ 4376 4377 static int ata_sg_setup(struct ata_queued_cmd *qc) 4378 { 4379 struct ata_port *ap = qc->ap; 4380 struct scatterlist *sg = qc->__sg; 4381 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4382 int n_elem, pre_n_elem, dir, trim_sg = 0; 4383 4384 VPRINTK("ENTER, ata%u\n", ap->print_id); 4385 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4386 4387 /* we must lengthen transfers to end on a 32-bit boundary */ 4388 qc->pad_len = lsg->length & 3; 4389 if (qc->pad_len) { 4390 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4391 struct scatterlist *psg = &qc->pad_sgent; 4392 unsigned int offset; 4393 4394 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4395 4396 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4397 4398 /* 4399 * psg->page/offset are used to copy to-be-written 4400 * data in this function or read data in ata_sg_clean. 4401 */ 4402 offset = lsg->offset + lsg->length - qc->pad_len; 4403 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4404 psg->offset = offset_in_page(offset); 4405 4406 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4407 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4408 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4409 kunmap_atomic(addr, KM_IRQ0); 4410 } 4411 4412 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4413 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4414 /* trim last sg */ 4415 lsg->length -= qc->pad_len; 4416 if (lsg->length == 0) 4417 trim_sg = 1; 4418 4419 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4420 qc->n_elem - 1, lsg->length, qc->pad_len); 4421 } 4422 4423 pre_n_elem = qc->n_elem; 4424 if (trim_sg && pre_n_elem) 4425 pre_n_elem--; 4426 4427 if (!pre_n_elem) { 4428 n_elem = 0; 4429 goto skip_map; 4430 } 4431 4432 dir = qc->dma_dir; 4433 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4434 if (n_elem < 1) { 4435 /* restore last sg */ 4436 lsg->length += qc->pad_len; 4437 return -1; 4438 } 4439 4440 DPRINTK("%d sg elements mapped\n", n_elem); 4441 4442 skip_map: 4443 qc->n_elem = n_elem; 4444 4445 return 0; 4446 } 4447 4448 /** 4449 * swap_buf_le16 - swap halves of 16-bit words in place 4450 * @buf: Buffer to swap 4451 * @buf_words: Number of 16-bit words in buffer. 4452 * 4453 * Swap halves of 16-bit words if needed to convert from 4454 * little-endian byte order to native cpu byte order, or 4455 * vice-versa. 4456 * 4457 * LOCKING: 4458 * Inherited from caller. 4459 */ 4460 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4461 { 4462 #ifdef __BIG_ENDIAN 4463 unsigned int i; 4464 4465 for (i = 0; i < buf_words; i++) 4466 buf[i] = le16_to_cpu(buf[i]); 4467 #endif /* __BIG_ENDIAN */ 4468 } 4469 4470 /** 4471 * ata_data_xfer - Transfer data by PIO 4472 * @adev: device to target 4473 * @buf: data buffer 4474 * @buflen: buffer length 4475 * @write_data: read/write 4476 * 4477 * Transfer data from/to the device data register by PIO. 4478 * 4479 * LOCKING: 4480 * Inherited from caller. 4481 */ 4482 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4483 unsigned int buflen, int write_data) 4484 { 4485 struct ata_port *ap = adev->ap; 4486 unsigned int words = buflen >> 1; 4487 4488 /* Transfer multiple of 2 bytes */ 4489 if (write_data) 4490 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4491 else 4492 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4493 4494 /* Transfer trailing 1 byte, if any. */ 4495 if (unlikely(buflen & 0x01)) { 4496 u16 align_buf[1] = { 0 }; 4497 unsigned char *trailing_buf = buf + buflen - 1; 4498 4499 if (write_data) { 4500 memcpy(align_buf, trailing_buf, 1); 4501 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4502 } else { 4503 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4504 memcpy(trailing_buf, align_buf, 1); 4505 } 4506 } 4507 } 4508 4509 /** 4510 * ata_data_xfer_noirq - Transfer data by PIO 4511 * @adev: device to target 4512 * @buf: data buffer 4513 * @buflen: buffer length 4514 * @write_data: read/write 4515 * 4516 * Transfer data from/to the device data register by PIO. Do the 4517 * transfer with interrupts disabled. 4518 * 4519 * LOCKING: 4520 * Inherited from caller. 4521 */ 4522 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4523 unsigned int buflen, int write_data) 4524 { 4525 unsigned long flags; 4526 local_irq_save(flags); 4527 ata_data_xfer(adev, buf, buflen, write_data); 4528 local_irq_restore(flags); 4529 } 4530 4531 4532 /** 4533 * ata_pio_sector - Transfer a sector of data. 4534 * @qc: Command on going 4535 * 4536 * Transfer qc->sect_size bytes of data from/to the ATA device. 4537 * 4538 * LOCKING: 4539 * Inherited from caller. 4540 */ 4541 4542 static void ata_pio_sector(struct ata_queued_cmd *qc) 4543 { 4544 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4545 struct scatterlist *sg = qc->__sg; 4546 struct ata_port *ap = qc->ap; 4547 struct page *page; 4548 unsigned int offset; 4549 unsigned char *buf; 4550 4551 if (qc->curbytes == qc->nbytes - qc->sect_size) 4552 ap->hsm_task_state = HSM_ST_LAST; 4553 4554 page = sg[qc->cursg].page; 4555 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4556 4557 /* get the current page and offset */ 4558 page = nth_page(page, (offset >> PAGE_SHIFT)); 4559 offset %= PAGE_SIZE; 4560 4561 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4562 4563 if (PageHighMem(page)) { 4564 unsigned long flags; 4565 4566 /* FIXME: use a bounce buffer */ 4567 local_irq_save(flags); 4568 buf = kmap_atomic(page, KM_IRQ0); 4569 4570 /* do the actual data transfer */ 4571 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4572 4573 kunmap_atomic(buf, KM_IRQ0); 4574 local_irq_restore(flags); 4575 } else { 4576 buf = page_address(page); 4577 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4578 } 4579 4580 qc->curbytes += qc->sect_size; 4581 qc->cursg_ofs += qc->sect_size; 4582 4583 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4584 qc->cursg++; 4585 qc->cursg_ofs = 0; 4586 } 4587 } 4588 4589 /** 4590 * ata_pio_sectors - Transfer one or many sectors. 4591 * @qc: Command on going 4592 * 4593 * Transfer one or many sectors of data from/to the 4594 * ATA device for the DRQ request. 4595 * 4596 * LOCKING: 4597 * Inherited from caller. 4598 */ 4599 4600 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4601 { 4602 if (is_multi_taskfile(&qc->tf)) { 4603 /* READ/WRITE MULTIPLE */ 4604 unsigned int nsect; 4605 4606 WARN_ON(qc->dev->multi_count == 0); 4607 4608 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4609 qc->dev->multi_count); 4610 while (nsect--) 4611 ata_pio_sector(qc); 4612 } else 4613 ata_pio_sector(qc); 4614 } 4615 4616 /** 4617 * atapi_send_cdb - Write CDB bytes to hardware 4618 * @ap: Port to which ATAPI device is attached. 4619 * @qc: Taskfile currently active 4620 * 4621 * When device has indicated its readiness to accept 4622 * a CDB, this function is called. Send the CDB. 4623 * 4624 * LOCKING: 4625 * caller. 4626 */ 4627 4628 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4629 { 4630 /* send SCSI cdb */ 4631 DPRINTK("send cdb\n"); 4632 WARN_ON(qc->dev->cdb_len < 12); 4633 4634 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4635 ata_altstatus(ap); /* flush */ 4636 4637 switch (qc->tf.protocol) { 4638 case ATA_PROT_ATAPI: 4639 ap->hsm_task_state = HSM_ST; 4640 break; 4641 case ATA_PROT_ATAPI_NODATA: 4642 ap->hsm_task_state = HSM_ST_LAST; 4643 break; 4644 case ATA_PROT_ATAPI_DMA: 4645 ap->hsm_task_state = HSM_ST_LAST; 4646 /* initiate bmdma */ 4647 ap->ops->bmdma_start(qc); 4648 break; 4649 } 4650 } 4651 4652 /** 4653 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4654 * @qc: Command on going 4655 * @bytes: number of bytes 4656 * 4657 * Transfer Transfer data from/to the ATAPI device. 4658 * 4659 * LOCKING: 4660 * Inherited from caller. 4661 * 4662 */ 4663 4664 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4665 { 4666 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4667 struct scatterlist *sg = qc->__sg; 4668 struct ata_port *ap = qc->ap; 4669 struct page *page; 4670 unsigned char *buf; 4671 unsigned int offset, count; 4672 4673 if (qc->curbytes + bytes >= qc->nbytes) 4674 ap->hsm_task_state = HSM_ST_LAST; 4675 4676 next_sg: 4677 if (unlikely(qc->cursg >= qc->n_elem)) { 4678 /* 4679 * The end of qc->sg is reached and the device expects 4680 * more data to transfer. In order not to overrun qc->sg 4681 * and fulfill length specified in the byte count register, 4682 * - for read case, discard trailing data from the device 4683 * - for write case, padding zero data to the device 4684 */ 4685 u16 pad_buf[1] = { 0 }; 4686 unsigned int words = bytes >> 1; 4687 unsigned int i; 4688 4689 if (words) /* warning if bytes > 1 */ 4690 ata_dev_printk(qc->dev, KERN_WARNING, 4691 "%u bytes trailing data\n", bytes); 4692 4693 for (i = 0; i < words; i++) 4694 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4695 4696 ap->hsm_task_state = HSM_ST_LAST; 4697 return; 4698 } 4699 4700 sg = &qc->__sg[qc->cursg]; 4701 4702 page = sg->page; 4703 offset = sg->offset + qc->cursg_ofs; 4704 4705 /* get the current page and offset */ 4706 page = nth_page(page, (offset >> PAGE_SHIFT)); 4707 offset %= PAGE_SIZE; 4708 4709 /* don't overrun current sg */ 4710 count = min(sg->length - qc->cursg_ofs, bytes); 4711 4712 /* don't cross page boundaries */ 4713 count = min(count, (unsigned int)PAGE_SIZE - offset); 4714 4715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4716 4717 if (PageHighMem(page)) { 4718 unsigned long flags; 4719 4720 /* FIXME: use bounce buffer */ 4721 local_irq_save(flags); 4722 buf = kmap_atomic(page, KM_IRQ0); 4723 4724 /* do the actual data transfer */ 4725 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4726 4727 kunmap_atomic(buf, KM_IRQ0); 4728 local_irq_restore(flags); 4729 } else { 4730 buf = page_address(page); 4731 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4732 } 4733 4734 bytes -= count; 4735 qc->curbytes += count; 4736 qc->cursg_ofs += count; 4737 4738 if (qc->cursg_ofs == sg->length) { 4739 qc->cursg++; 4740 qc->cursg_ofs = 0; 4741 } 4742 4743 if (bytes) 4744 goto next_sg; 4745 } 4746 4747 /** 4748 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4749 * @qc: Command on going 4750 * 4751 * Transfer Transfer data from/to the ATAPI device. 4752 * 4753 * LOCKING: 4754 * Inherited from caller. 4755 */ 4756 4757 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4758 { 4759 struct ata_port *ap = qc->ap; 4760 struct ata_device *dev = qc->dev; 4761 unsigned int ireason, bc_lo, bc_hi, bytes; 4762 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4763 4764 /* Abuse qc->result_tf for temp storage of intermediate TF 4765 * here to save some kernel stack usage. 4766 * For normal completion, qc->result_tf is not relevant. For 4767 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4768 * So, the correctness of qc->result_tf is not affected. 4769 */ 4770 ap->ops->tf_read(ap, &qc->result_tf); 4771 ireason = qc->result_tf.nsect; 4772 bc_lo = qc->result_tf.lbam; 4773 bc_hi = qc->result_tf.lbah; 4774 bytes = (bc_hi << 8) | bc_lo; 4775 4776 /* shall be cleared to zero, indicating xfer of data */ 4777 if (ireason & (1 << 0)) 4778 goto err_out; 4779 4780 /* make sure transfer direction matches expected */ 4781 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4782 if (do_write != i_write) 4783 goto err_out; 4784 4785 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4786 4787 __atapi_pio_bytes(qc, bytes); 4788 4789 return; 4790 4791 err_out: 4792 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4793 qc->err_mask |= AC_ERR_HSM; 4794 ap->hsm_task_state = HSM_ST_ERR; 4795 } 4796 4797 /** 4798 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4799 * @ap: the target ata_port 4800 * @qc: qc on going 4801 * 4802 * RETURNS: 4803 * 1 if ok in workqueue, 0 otherwise. 4804 */ 4805 4806 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4807 { 4808 if (qc->tf.flags & ATA_TFLAG_POLLING) 4809 return 1; 4810 4811 if (ap->hsm_task_state == HSM_ST_FIRST) { 4812 if (qc->tf.protocol == ATA_PROT_PIO && 4813 (qc->tf.flags & ATA_TFLAG_WRITE)) 4814 return 1; 4815 4816 if (is_atapi_taskfile(&qc->tf) && 4817 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4818 return 1; 4819 } 4820 4821 return 0; 4822 } 4823 4824 /** 4825 * ata_hsm_qc_complete - finish a qc running on standard HSM 4826 * @qc: Command to complete 4827 * @in_wq: 1 if called from workqueue, 0 otherwise 4828 * 4829 * Finish @qc which is running on standard HSM. 4830 * 4831 * LOCKING: 4832 * If @in_wq is zero, spin_lock_irqsave(host lock). 4833 * Otherwise, none on entry and grabs host lock. 4834 */ 4835 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4836 { 4837 struct ata_port *ap = qc->ap; 4838 unsigned long flags; 4839 4840 if (ap->ops->error_handler) { 4841 if (in_wq) { 4842 spin_lock_irqsave(ap->lock, flags); 4843 4844 /* EH might have kicked in while host lock is 4845 * released. 4846 */ 4847 qc = ata_qc_from_tag(ap, qc->tag); 4848 if (qc) { 4849 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4850 ap->ops->irq_on(ap); 4851 ata_qc_complete(qc); 4852 } else 4853 ata_port_freeze(ap); 4854 } 4855 4856 spin_unlock_irqrestore(ap->lock, flags); 4857 } else { 4858 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4859 ata_qc_complete(qc); 4860 else 4861 ata_port_freeze(ap); 4862 } 4863 } else { 4864 if (in_wq) { 4865 spin_lock_irqsave(ap->lock, flags); 4866 ap->ops->irq_on(ap); 4867 ata_qc_complete(qc); 4868 spin_unlock_irqrestore(ap->lock, flags); 4869 } else 4870 ata_qc_complete(qc); 4871 } 4872 } 4873 4874 /** 4875 * ata_hsm_move - move the HSM to the next state. 4876 * @ap: the target ata_port 4877 * @qc: qc on going 4878 * @status: current device status 4879 * @in_wq: 1 if called from workqueue, 0 otherwise 4880 * 4881 * RETURNS: 4882 * 1 when poll next status needed, 0 otherwise. 4883 */ 4884 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4885 u8 status, int in_wq) 4886 { 4887 unsigned long flags = 0; 4888 int poll_next; 4889 4890 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4891 4892 /* Make sure ata_qc_issue_prot() does not throw things 4893 * like DMA polling into the workqueue. Notice that 4894 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4895 */ 4896 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4897 4898 fsm_start: 4899 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4900 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4901 4902 switch (ap->hsm_task_state) { 4903 case HSM_ST_FIRST: 4904 /* Send first data block or PACKET CDB */ 4905 4906 /* If polling, we will stay in the work queue after 4907 * sending the data. Otherwise, interrupt handler 4908 * takes over after sending the data. 4909 */ 4910 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4911 4912 /* check device status */ 4913 if (unlikely((status & ATA_DRQ) == 0)) { 4914 /* handle BSY=0, DRQ=0 as error */ 4915 if (likely(status & (ATA_ERR | ATA_DF))) 4916 /* device stops HSM for abort/error */ 4917 qc->err_mask |= AC_ERR_DEV; 4918 else 4919 /* HSM violation. Let EH handle this */ 4920 qc->err_mask |= AC_ERR_HSM; 4921 4922 ap->hsm_task_state = HSM_ST_ERR; 4923 goto fsm_start; 4924 } 4925 4926 /* Device should not ask for data transfer (DRQ=1) 4927 * when it finds something wrong. 4928 * We ignore DRQ here and stop the HSM by 4929 * changing hsm_task_state to HSM_ST_ERR and 4930 * let the EH abort the command or reset the device. 4931 */ 4932 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4933 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4934 "error, dev_stat 0x%X\n", status); 4935 qc->err_mask |= AC_ERR_HSM; 4936 ap->hsm_task_state = HSM_ST_ERR; 4937 goto fsm_start; 4938 } 4939 4940 /* Send the CDB (atapi) or the first data block (ata pio out). 4941 * During the state transition, interrupt handler shouldn't 4942 * be invoked before the data transfer is complete and 4943 * hsm_task_state is changed. Hence, the following locking. 4944 */ 4945 if (in_wq) 4946 spin_lock_irqsave(ap->lock, flags); 4947 4948 if (qc->tf.protocol == ATA_PROT_PIO) { 4949 /* PIO data out protocol. 4950 * send first data block. 4951 */ 4952 4953 /* ata_pio_sectors() might change the state 4954 * to HSM_ST_LAST. so, the state is changed here 4955 * before ata_pio_sectors(). 4956 */ 4957 ap->hsm_task_state = HSM_ST; 4958 ata_pio_sectors(qc); 4959 ata_altstatus(ap); /* flush */ 4960 } else 4961 /* send CDB */ 4962 atapi_send_cdb(ap, qc); 4963 4964 if (in_wq) 4965 spin_unlock_irqrestore(ap->lock, flags); 4966 4967 /* if polling, ata_pio_task() handles the rest. 4968 * otherwise, interrupt handler takes over from here. 4969 */ 4970 break; 4971 4972 case HSM_ST: 4973 /* complete command or read/write the data register */ 4974 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4975 /* ATAPI PIO protocol */ 4976 if ((status & ATA_DRQ) == 0) { 4977 /* No more data to transfer or device error. 4978 * Device error will be tagged in HSM_ST_LAST. 4979 */ 4980 ap->hsm_task_state = HSM_ST_LAST; 4981 goto fsm_start; 4982 } 4983 4984 /* Device should not ask for data transfer (DRQ=1) 4985 * when it finds something wrong. 4986 * We ignore DRQ here and stop the HSM by 4987 * changing hsm_task_state to HSM_ST_ERR and 4988 * let the EH abort the command or reset the device. 4989 */ 4990 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4991 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4992 "device error, dev_stat 0x%X\n", 4993 status); 4994 qc->err_mask |= AC_ERR_HSM; 4995 ap->hsm_task_state = HSM_ST_ERR; 4996 goto fsm_start; 4997 } 4998 4999 atapi_pio_bytes(qc); 5000 5001 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 5002 /* bad ireason reported by device */ 5003 goto fsm_start; 5004 5005 } else { 5006 /* ATA PIO protocol */ 5007 if (unlikely((status & ATA_DRQ) == 0)) { 5008 /* handle BSY=0, DRQ=0 as error */ 5009 if (likely(status & (ATA_ERR | ATA_DF))) 5010 /* device stops HSM for abort/error */ 5011 qc->err_mask |= AC_ERR_DEV; 5012 else 5013 /* HSM violation. Let EH handle this. 5014 * Phantom devices also trigger this 5015 * condition. Mark hint. 5016 */ 5017 qc->err_mask |= AC_ERR_HSM | 5018 AC_ERR_NODEV_HINT; 5019 5020 ap->hsm_task_state = HSM_ST_ERR; 5021 goto fsm_start; 5022 } 5023 5024 /* For PIO reads, some devices may ask for 5025 * data transfer (DRQ=1) alone with ERR=1. 5026 * We respect DRQ here and transfer one 5027 * block of junk data before changing the 5028 * hsm_task_state to HSM_ST_ERR. 5029 * 5030 * For PIO writes, ERR=1 DRQ=1 doesn't make 5031 * sense since the data block has been 5032 * transferred to the device. 5033 */ 5034 if (unlikely(status & (ATA_ERR | ATA_DF))) { 5035 /* data might be corrputed */ 5036 qc->err_mask |= AC_ERR_DEV; 5037 5038 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 5039 ata_pio_sectors(qc); 5040 ata_altstatus(ap); 5041 status = ata_wait_idle(ap); 5042 } 5043 5044 if (status & (ATA_BUSY | ATA_DRQ)) 5045 qc->err_mask |= AC_ERR_HSM; 5046 5047 /* ata_pio_sectors() might change the 5048 * state to HSM_ST_LAST. so, the state 5049 * is changed after ata_pio_sectors(). 5050 */ 5051 ap->hsm_task_state = HSM_ST_ERR; 5052 goto fsm_start; 5053 } 5054 5055 ata_pio_sectors(qc); 5056 5057 if (ap->hsm_task_state == HSM_ST_LAST && 5058 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 5059 /* all data read */ 5060 ata_altstatus(ap); 5061 status = ata_wait_idle(ap); 5062 goto fsm_start; 5063 } 5064 } 5065 5066 ata_altstatus(ap); /* flush */ 5067 poll_next = 1; 5068 break; 5069 5070 case HSM_ST_LAST: 5071 if (unlikely(!ata_ok(status))) { 5072 qc->err_mask |= __ac_err_mask(status); 5073 ap->hsm_task_state = HSM_ST_ERR; 5074 goto fsm_start; 5075 } 5076 5077 /* no more data to transfer */ 5078 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 5079 ap->print_id, qc->dev->devno, status); 5080 5081 WARN_ON(qc->err_mask); 5082 5083 ap->hsm_task_state = HSM_ST_IDLE; 5084 5085 /* complete taskfile transaction */ 5086 ata_hsm_qc_complete(qc, in_wq); 5087 5088 poll_next = 0; 5089 break; 5090 5091 case HSM_ST_ERR: 5092 /* make sure qc->err_mask is available to 5093 * know what's wrong and recover 5094 */ 5095 WARN_ON(qc->err_mask == 0); 5096 5097 ap->hsm_task_state = HSM_ST_IDLE; 5098 5099 /* complete taskfile transaction */ 5100 ata_hsm_qc_complete(qc, in_wq); 5101 5102 poll_next = 0; 5103 break; 5104 default: 5105 poll_next = 0; 5106 BUG(); 5107 } 5108 5109 return poll_next; 5110 } 5111 5112 static void ata_pio_task(struct work_struct *work) 5113 { 5114 struct ata_port *ap = 5115 container_of(work, struct ata_port, port_task.work); 5116 struct ata_queued_cmd *qc = ap->port_task_data; 5117 u8 status; 5118 int poll_next; 5119 5120 fsm_start: 5121 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 5122 5123 /* 5124 * This is purely heuristic. This is a fast path. 5125 * Sometimes when we enter, BSY will be cleared in 5126 * a chk-status or two. If not, the drive is probably seeking 5127 * or something. Snooze for a couple msecs, then 5128 * chk-status again. If still busy, queue delayed work. 5129 */ 5130 status = ata_busy_wait(ap, ATA_BUSY, 5); 5131 if (status & ATA_BUSY) { 5132 msleep(2); 5133 status = ata_busy_wait(ap, ATA_BUSY, 10); 5134 if (status & ATA_BUSY) { 5135 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 5136 return; 5137 } 5138 } 5139 5140 /* move the HSM */ 5141 poll_next = ata_hsm_move(ap, qc, status, 1); 5142 5143 /* another command or interrupt handler 5144 * may be running at this point. 5145 */ 5146 if (poll_next) 5147 goto fsm_start; 5148 } 5149 5150 /** 5151 * ata_qc_new - Request an available ATA command, for queueing 5152 * @ap: Port associated with device @dev 5153 * @dev: Device from whom we request an available command structure 5154 * 5155 * LOCKING: 5156 * None. 5157 */ 5158 5159 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 5160 { 5161 struct ata_queued_cmd *qc = NULL; 5162 unsigned int i; 5163 5164 /* no command while frozen */ 5165 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5166 return NULL; 5167 5168 /* the last tag is reserved for internal command. */ 5169 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 5170 if (!test_and_set_bit(i, &ap->qc_allocated)) { 5171 qc = __ata_qc_from_tag(ap, i); 5172 break; 5173 } 5174 5175 if (qc) 5176 qc->tag = i; 5177 5178 return qc; 5179 } 5180 5181 /** 5182 * ata_qc_new_init - Request an available ATA command, and initialize it 5183 * @dev: Device from whom we request an available command structure 5184 * 5185 * LOCKING: 5186 * None. 5187 */ 5188 5189 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5190 { 5191 struct ata_port *ap = dev->ap; 5192 struct ata_queued_cmd *qc; 5193 5194 qc = ata_qc_new(ap); 5195 if (qc) { 5196 qc->scsicmd = NULL; 5197 qc->ap = ap; 5198 qc->dev = dev; 5199 5200 ata_qc_reinit(qc); 5201 } 5202 5203 return qc; 5204 } 5205 5206 /** 5207 * ata_qc_free - free unused ata_queued_cmd 5208 * @qc: Command to complete 5209 * 5210 * Designed to free unused ata_queued_cmd object 5211 * in case something prevents using it. 5212 * 5213 * LOCKING: 5214 * spin_lock_irqsave(host lock) 5215 */ 5216 void ata_qc_free(struct ata_queued_cmd *qc) 5217 { 5218 struct ata_port *ap = qc->ap; 5219 unsigned int tag; 5220 5221 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5222 5223 qc->flags = 0; 5224 tag = qc->tag; 5225 if (likely(ata_tag_valid(tag))) { 5226 qc->tag = ATA_TAG_POISON; 5227 clear_bit(tag, &ap->qc_allocated); 5228 } 5229 } 5230 5231 void __ata_qc_complete(struct ata_queued_cmd *qc) 5232 { 5233 struct ata_port *ap = qc->ap; 5234 5235 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5236 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5237 5238 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5239 ata_sg_clean(qc); 5240 5241 /* command should be marked inactive atomically with qc completion */ 5242 if (qc->tf.protocol == ATA_PROT_NCQ) 5243 ap->sactive &= ~(1 << qc->tag); 5244 else 5245 ap->active_tag = ATA_TAG_POISON; 5246 5247 /* atapi: mark qc as inactive to prevent the interrupt handler 5248 * from completing the command twice later, before the error handler 5249 * is called. (when rc != 0 and atapi request sense is needed) 5250 */ 5251 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5252 ap->qc_active &= ~(1 << qc->tag); 5253 5254 /* call completion callback */ 5255 qc->complete_fn(qc); 5256 } 5257 5258 static void fill_result_tf(struct ata_queued_cmd *qc) 5259 { 5260 struct ata_port *ap = qc->ap; 5261 5262 qc->result_tf.flags = qc->tf.flags; 5263 ap->ops->tf_read(ap, &qc->result_tf); 5264 } 5265 5266 /** 5267 * ata_qc_complete - Complete an active ATA command 5268 * @qc: Command to complete 5269 * @err_mask: ATA Status register contents 5270 * 5271 * Indicate to the mid and upper layers that an ATA 5272 * command has completed, with either an ok or not-ok status. 5273 * 5274 * LOCKING: 5275 * spin_lock_irqsave(host lock) 5276 */ 5277 void ata_qc_complete(struct ata_queued_cmd *qc) 5278 { 5279 struct ata_port *ap = qc->ap; 5280 5281 /* XXX: New EH and old EH use different mechanisms to 5282 * synchronize EH with regular execution path. 5283 * 5284 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5285 * Normal execution path is responsible for not accessing a 5286 * failed qc. libata core enforces the rule by returning NULL 5287 * from ata_qc_from_tag() for failed qcs. 5288 * 5289 * Old EH depends on ata_qc_complete() nullifying completion 5290 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5291 * not synchronize with interrupt handler. Only PIO task is 5292 * taken care of. 5293 */ 5294 if (ap->ops->error_handler) { 5295 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5296 5297 if (unlikely(qc->err_mask)) 5298 qc->flags |= ATA_QCFLAG_FAILED; 5299 5300 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5301 if (!ata_tag_internal(qc->tag)) { 5302 /* always fill result TF for failed qc */ 5303 fill_result_tf(qc); 5304 ata_qc_schedule_eh(qc); 5305 return; 5306 } 5307 } 5308 5309 /* read result TF if requested */ 5310 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5311 fill_result_tf(qc); 5312 5313 __ata_qc_complete(qc); 5314 } else { 5315 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5316 return; 5317 5318 /* read result TF if failed or requested */ 5319 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5320 fill_result_tf(qc); 5321 5322 __ata_qc_complete(qc); 5323 } 5324 } 5325 5326 /** 5327 * ata_qc_complete_multiple - Complete multiple qcs successfully 5328 * @ap: port in question 5329 * @qc_active: new qc_active mask 5330 * @finish_qc: LLDD callback invoked before completing a qc 5331 * 5332 * Complete in-flight commands. This functions is meant to be 5333 * called from low-level driver's interrupt routine to complete 5334 * requests normally. ap->qc_active and @qc_active is compared 5335 * and commands are completed accordingly. 5336 * 5337 * LOCKING: 5338 * spin_lock_irqsave(host lock) 5339 * 5340 * RETURNS: 5341 * Number of completed commands on success, -errno otherwise. 5342 */ 5343 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5344 void (*finish_qc)(struct ata_queued_cmd *)) 5345 { 5346 int nr_done = 0; 5347 u32 done_mask; 5348 int i; 5349 5350 done_mask = ap->qc_active ^ qc_active; 5351 5352 if (unlikely(done_mask & qc_active)) { 5353 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5354 "(%08x->%08x)\n", ap->qc_active, qc_active); 5355 return -EINVAL; 5356 } 5357 5358 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5359 struct ata_queued_cmd *qc; 5360 5361 if (!(done_mask & (1 << i))) 5362 continue; 5363 5364 if ((qc = ata_qc_from_tag(ap, i))) { 5365 if (finish_qc) 5366 finish_qc(qc); 5367 ata_qc_complete(qc); 5368 nr_done++; 5369 } 5370 } 5371 5372 return nr_done; 5373 } 5374 5375 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5376 { 5377 struct ata_port *ap = qc->ap; 5378 5379 switch (qc->tf.protocol) { 5380 case ATA_PROT_NCQ: 5381 case ATA_PROT_DMA: 5382 case ATA_PROT_ATAPI_DMA: 5383 return 1; 5384 5385 case ATA_PROT_ATAPI: 5386 case ATA_PROT_PIO: 5387 if (ap->flags & ATA_FLAG_PIO_DMA) 5388 return 1; 5389 5390 /* fall through */ 5391 5392 default: 5393 return 0; 5394 } 5395 5396 /* never reached */ 5397 } 5398 5399 /** 5400 * ata_qc_issue - issue taskfile to device 5401 * @qc: command to issue to device 5402 * 5403 * Prepare an ATA command to submission to device. 5404 * This includes mapping the data into a DMA-able 5405 * area, filling in the S/G table, and finally 5406 * writing the taskfile to hardware, starting the command. 5407 * 5408 * LOCKING: 5409 * spin_lock_irqsave(host lock) 5410 */ 5411 void ata_qc_issue(struct ata_queued_cmd *qc) 5412 { 5413 struct ata_port *ap = qc->ap; 5414 5415 /* Make sure only one non-NCQ command is outstanding. The 5416 * check is skipped for old EH because it reuses active qc to 5417 * request ATAPI sense. 5418 */ 5419 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 5420 5421 if (qc->tf.protocol == ATA_PROT_NCQ) { 5422 WARN_ON(ap->sactive & (1 << qc->tag)); 5423 ap->sactive |= 1 << qc->tag; 5424 } else { 5425 WARN_ON(ap->sactive); 5426 ap->active_tag = qc->tag; 5427 } 5428 5429 qc->flags |= ATA_QCFLAG_ACTIVE; 5430 ap->qc_active |= 1 << qc->tag; 5431 5432 if (ata_should_dma_map(qc)) { 5433 if (qc->flags & ATA_QCFLAG_SG) { 5434 if (ata_sg_setup(qc)) 5435 goto sg_err; 5436 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5437 if (ata_sg_setup_one(qc)) 5438 goto sg_err; 5439 } 5440 } else { 5441 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5442 } 5443 5444 ap->ops->qc_prep(qc); 5445 5446 qc->err_mask |= ap->ops->qc_issue(qc); 5447 if (unlikely(qc->err_mask)) 5448 goto err; 5449 return; 5450 5451 sg_err: 5452 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5453 qc->err_mask |= AC_ERR_SYSTEM; 5454 err: 5455 ata_qc_complete(qc); 5456 } 5457 5458 /** 5459 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5460 * @qc: command to issue to device 5461 * 5462 * Using various libata functions and hooks, this function 5463 * starts an ATA command. ATA commands are grouped into 5464 * classes called "protocols", and issuing each type of protocol 5465 * is slightly different. 5466 * 5467 * May be used as the qc_issue() entry in ata_port_operations. 5468 * 5469 * LOCKING: 5470 * spin_lock_irqsave(host lock) 5471 * 5472 * RETURNS: 5473 * Zero on success, AC_ERR_* mask on failure 5474 */ 5475 5476 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5477 { 5478 struct ata_port *ap = qc->ap; 5479 5480 /* Use polling pio if the LLD doesn't handle 5481 * interrupt driven pio and atapi CDB interrupt. 5482 */ 5483 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5484 switch (qc->tf.protocol) { 5485 case ATA_PROT_PIO: 5486 case ATA_PROT_NODATA: 5487 case ATA_PROT_ATAPI: 5488 case ATA_PROT_ATAPI_NODATA: 5489 qc->tf.flags |= ATA_TFLAG_POLLING; 5490 break; 5491 case ATA_PROT_ATAPI_DMA: 5492 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5493 /* see ata_dma_blacklisted() */ 5494 BUG(); 5495 break; 5496 default: 5497 break; 5498 } 5499 } 5500 5501 /* select the device */ 5502 ata_dev_select(ap, qc->dev->devno, 1, 0); 5503 5504 /* start the command */ 5505 switch (qc->tf.protocol) { 5506 case ATA_PROT_NODATA: 5507 if (qc->tf.flags & ATA_TFLAG_POLLING) 5508 ata_qc_set_polling(qc); 5509 5510 ata_tf_to_host(ap, &qc->tf); 5511 ap->hsm_task_state = HSM_ST_LAST; 5512 5513 if (qc->tf.flags & ATA_TFLAG_POLLING) 5514 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5515 5516 break; 5517 5518 case ATA_PROT_DMA: 5519 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5520 5521 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5522 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5523 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5524 ap->hsm_task_state = HSM_ST_LAST; 5525 break; 5526 5527 case ATA_PROT_PIO: 5528 if (qc->tf.flags & ATA_TFLAG_POLLING) 5529 ata_qc_set_polling(qc); 5530 5531 ata_tf_to_host(ap, &qc->tf); 5532 5533 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5534 /* PIO data out protocol */ 5535 ap->hsm_task_state = HSM_ST_FIRST; 5536 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5537 5538 /* always send first data block using 5539 * the ata_pio_task() codepath. 5540 */ 5541 } else { 5542 /* PIO data in protocol */ 5543 ap->hsm_task_state = HSM_ST; 5544 5545 if (qc->tf.flags & ATA_TFLAG_POLLING) 5546 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5547 5548 /* if polling, ata_pio_task() handles the rest. 5549 * otherwise, interrupt handler takes over from here. 5550 */ 5551 } 5552 5553 break; 5554 5555 case ATA_PROT_ATAPI: 5556 case ATA_PROT_ATAPI_NODATA: 5557 if (qc->tf.flags & ATA_TFLAG_POLLING) 5558 ata_qc_set_polling(qc); 5559 5560 ata_tf_to_host(ap, &qc->tf); 5561 5562 ap->hsm_task_state = HSM_ST_FIRST; 5563 5564 /* send cdb by polling if no cdb interrupt */ 5565 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5566 (qc->tf.flags & ATA_TFLAG_POLLING)) 5567 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5568 break; 5569 5570 case ATA_PROT_ATAPI_DMA: 5571 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5572 5573 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5574 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5575 ap->hsm_task_state = HSM_ST_FIRST; 5576 5577 /* send cdb by polling if no cdb interrupt */ 5578 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5579 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5580 break; 5581 5582 default: 5583 WARN_ON(1); 5584 return AC_ERR_SYSTEM; 5585 } 5586 5587 return 0; 5588 } 5589 5590 /** 5591 * ata_host_intr - Handle host interrupt for given (port, task) 5592 * @ap: Port on which interrupt arrived (possibly...) 5593 * @qc: Taskfile currently active in engine 5594 * 5595 * Handle host interrupt for given queued command. Currently, 5596 * only DMA interrupts are handled. All other commands are 5597 * handled via polling with interrupts disabled (nIEN bit). 5598 * 5599 * LOCKING: 5600 * spin_lock_irqsave(host lock) 5601 * 5602 * RETURNS: 5603 * One if interrupt was handled, zero if not (shared irq). 5604 */ 5605 5606 inline unsigned int ata_host_intr (struct ata_port *ap, 5607 struct ata_queued_cmd *qc) 5608 { 5609 struct ata_eh_info *ehi = &ap->eh_info; 5610 u8 status, host_stat = 0; 5611 5612 VPRINTK("ata%u: protocol %d task_state %d\n", 5613 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5614 5615 /* Check whether we are expecting interrupt in this state */ 5616 switch (ap->hsm_task_state) { 5617 case HSM_ST_FIRST: 5618 /* Some pre-ATAPI-4 devices assert INTRQ 5619 * at this state when ready to receive CDB. 5620 */ 5621 5622 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5623 * The flag was turned on only for atapi devices. 5624 * No need to check is_atapi_taskfile(&qc->tf) again. 5625 */ 5626 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5627 goto idle_irq; 5628 break; 5629 case HSM_ST_LAST: 5630 if (qc->tf.protocol == ATA_PROT_DMA || 5631 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5632 /* check status of DMA engine */ 5633 host_stat = ap->ops->bmdma_status(ap); 5634 VPRINTK("ata%u: host_stat 0x%X\n", 5635 ap->print_id, host_stat); 5636 5637 /* if it's not our irq... */ 5638 if (!(host_stat & ATA_DMA_INTR)) 5639 goto idle_irq; 5640 5641 /* before we do anything else, clear DMA-Start bit */ 5642 ap->ops->bmdma_stop(qc); 5643 5644 if (unlikely(host_stat & ATA_DMA_ERR)) { 5645 /* error when transfering data to/from memory */ 5646 qc->err_mask |= AC_ERR_HOST_BUS; 5647 ap->hsm_task_state = HSM_ST_ERR; 5648 } 5649 } 5650 break; 5651 case HSM_ST: 5652 break; 5653 default: 5654 goto idle_irq; 5655 } 5656 5657 /* check altstatus */ 5658 status = ata_altstatus(ap); 5659 if (status & ATA_BUSY) 5660 goto idle_irq; 5661 5662 /* check main status, clearing INTRQ */ 5663 status = ata_chk_status(ap); 5664 if (unlikely(status & ATA_BUSY)) 5665 goto idle_irq; 5666 5667 /* ack bmdma irq events */ 5668 ap->ops->irq_clear(ap); 5669 5670 ata_hsm_move(ap, qc, status, 0); 5671 5672 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5673 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5674 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5675 5676 return 1; /* irq handled */ 5677 5678 idle_irq: 5679 ap->stats.idle_irq++; 5680 5681 #ifdef ATA_IRQ_TRAP 5682 if ((ap->stats.idle_irq % 1000) == 0) { 5683 ap->ops->irq_ack(ap, 0); /* debug trap */ 5684 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5685 return 1; 5686 } 5687 #endif 5688 return 0; /* irq not handled */ 5689 } 5690 5691 /** 5692 * ata_interrupt - Default ATA host interrupt handler 5693 * @irq: irq line (unused) 5694 * @dev_instance: pointer to our ata_host information structure 5695 * 5696 * Default interrupt handler for PCI IDE devices. Calls 5697 * ata_host_intr() for each port that is not disabled. 5698 * 5699 * LOCKING: 5700 * Obtains host lock during operation. 5701 * 5702 * RETURNS: 5703 * IRQ_NONE or IRQ_HANDLED. 5704 */ 5705 5706 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5707 { 5708 struct ata_host *host = dev_instance; 5709 unsigned int i; 5710 unsigned int handled = 0; 5711 unsigned long flags; 5712 5713 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5714 spin_lock_irqsave(&host->lock, flags); 5715 5716 for (i = 0; i < host->n_ports; i++) { 5717 struct ata_port *ap; 5718 5719 ap = host->ports[i]; 5720 if (ap && 5721 !(ap->flags & ATA_FLAG_DISABLED)) { 5722 struct ata_queued_cmd *qc; 5723 5724 qc = ata_qc_from_tag(ap, ap->active_tag); 5725 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5726 (qc->flags & ATA_QCFLAG_ACTIVE)) 5727 handled |= ata_host_intr(ap, qc); 5728 } 5729 } 5730 5731 spin_unlock_irqrestore(&host->lock, flags); 5732 5733 return IRQ_RETVAL(handled); 5734 } 5735 5736 /** 5737 * sata_scr_valid - test whether SCRs are accessible 5738 * @ap: ATA port to test SCR accessibility for 5739 * 5740 * Test whether SCRs are accessible for @ap. 5741 * 5742 * LOCKING: 5743 * None. 5744 * 5745 * RETURNS: 5746 * 1 if SCRs are accessible, 0 otherwise. 5747 */ 5748 int sata_scr_valid(struct ata_port *ap) 5749 { 5750 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5751 } 5752 5753 /** 5754 * sata_scr_read - read SCR register of the specified port 5755 * @ap: ATA port to read SCR for 5756 * @reg: SCR to read 5757 * @val: Place to store read value 5758 * 5759 * Read SCR register @reg of @ap into *@val. This function is 5760 * guaranteed to succeed if the cable type of the port is SATA 5761 * and the port implements ->scr_read. 5762 * 5763 * LOCKING: 5764 * None. 5765 * 5766 * RETURNS: 5767 * 0 on success, negative errno on failure. 5768 */ 5769 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5770 { 5771 if (sata_scr_valid(ap)) 5772 return ap->ops->scr_read(ap, reg, val); 5773 return -EOPNOTSUPP; 5774 } 5775 5776 /** 5777 * sata_scr_write - write SCR register of the specified port 5778 * @ap: ATA port to write SCR for 5779 * @reg: SCR to write 5780 * @val: value to write 5781 * 5782 * Write @val to SCR register @reg of @ap. This function is 5783 * guaranteed to succeed if the cable type of the port is SATA 5784 * and the port implements ->scr_read. 5785 * 5786 * LOCKING: 5787 * None. 5788 * 5789 * RETURNS: 5790 * 0 on success, negative errno on failure. 5791 */ 5792 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5793 { 5794 if (sata_scr_valid(ap)) 5795 return ap->ops->scr_write(ap, reg, val); 5796 return -EOPNOTSUPP; 5797 } 5798 5799 /** 5800 * sata_scr_write_flush - write SCR register of the specified port and flush 5801 * @ap: ATA port to write SCR for 5802 * @reg: SCR to write 5803 * @val: value to write 5804 * 5805 * This function is identical to sata_scr_write() except that this 5806 * function performs flush after writing to the register. 5807 * 5808 * LOCKING: 5809 * None. 5810 * 5811 * RETURNS: 5812 * 0 on success, negative errno on failure. 5813 */ 5814 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5815 { 5816 int rc; 5817 5818 if (sata_scr_valid(ap)) { 5819 rc = ap->ops->scr_write(ap, reg, val); 5820 if (rc == 0) 5821 rc = ap->ops->scr_read(ap, reg, &val); 5822 return rc; 5823 } 5824 return -EOPNOTSUPP; 5825 } 5826 5827 /** 5828 * ata_port_online - test whether the given port is online 5829 * @ap: ATA port to test 5830 * 5831 * Test whether @ap is online. Note that this function returns 0 5832 * if online status of @ap cannot be obtained, so 5833 * ata_port_online(ap) != !ata_port_offline(ap). 5834 * 5835 * LOCKING: 5836 * None. 5837 * 5838 * RETURNS: 5839 * 1 if the port online status is available and online. 5840 */ 5841 int ata_port_online(struct ata_port *ap) 5842 { 5843 u32 sstatus; 5844 5845 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5846 return 1; 5847 return 0; 5848 } 5849 5850 /** 5851 * ata_port_offline - test whether the given port is offline 5852 * @ap: ATA port to test 5853 * 5854 * Test whether @ap is offline. Note that this function returns 5855 * 0 if offline status of @ap cannot be obtained, so 5856 * ata_port_online(ap) != !ata_port_offline(ap). 5857 * 5858 * LOCKING: 5859 * None. 5860 * 5861 * RETURNS: 5862 * 1 if the port offline status is available and offline. 5863 */ 5864 int ata_port_offline(struct ata_port *ap) 5865 { 5866 u32 sstatus; 5867 5868 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5869 return 1; 5870 return 0; 5871 } 5872 5873 int ata_flush_cache(struct ata_device *dev) 5874 { 5875 unsigned int err_mask; 5876 u8 cmd; 5877 5878 if (!ata_try_flush_cache(dev)) 5879 return 0; 5880 5881 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5882 cmd = ATA_CMD_FLUSH_EXT; 5883 else 5884 cmd = ATA_CMD_FLUSH; 5885 5886 err_mask = ata_do_simple_cmd(dev, cmd); 5887 if (err_mask) { 5888 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5889 return -EIO; 5890 } 5891 5892 return 0; 5893 } 5894 5895 #ifdef CONFIG_PM 5896 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5897 unsigned int action, unsigned int ehi_flags, 5898 int wait) 5899 { 5900 unsigned long flags; 5901 int i, rc; 5902 5903 for (i = 0; i < host->n_ports; i++) { 5904 struct ata_port *ap = host->ports[i]; 5905 5906 /* Previous resume operation might still be in 5907 * progress. Wait for PM_PENDING to clear. 5908 */ 5909 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5910 ata_port_wait_eh(ap); 5911 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5912 } 5913 5914 /* request PM ops to EH */ 5915 spin_lock_irqsave(ap->lock, flags); 5916 5917 ap->pm_mesg = mesg; 5918 if (wait) { 5919 rc = 0; 5920 ap->pm_result = &rc; 5921 } 5922 5923 ap->pflags |= ATA_PFLAG_PM_PENDING; 5924 ap->eh_info.action |= action; 5925 ap->eh_info.flags |= ehi_flags; 5926 5927 ata_port_schedule_eh(ap); 5928 5929 spin_unlock_irqrestore(ap->lock, flags); 5930 5931 /* wait and check result */ 5932 if (wait) { 5933 ata_port_wait_eh(ap); 5934 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5935 if (rc) 5936 return rc; 5937 } 5938 } 5939 5940 return 0; 5941 } 5942 5943 /** 5944 * ata_host_suspend - suspend host 5945 * @host: host to suspend 5946 * @mesg: PM message 5947 * 5948 * Suspend @host. Actual operation is performed by EH. This 5949 * function requests EH to perform PM operations and waits for EH 5950 * to finish. 5951 * 5952 * LOCKING: 5953 * Kernel thread context (may sleep). 5954 * 5955 * RETURNS: 5956 * 0 on success, -errno on failure. 5957 */ 5958 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5959 { 5960 int rc; 5961 5962 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5963 if (rc == 0) 5964 host->dev->power.power_state = mesg; 5965 return rc; 5966 } 5967 5968 /** 5969 * ata_host_resume - resume host 5970 * @host: host to resume 5971 * 5972 * Resume @host. Actual operation is performed by EH. This 5973 * function requests EH to perform PM operations and returns. 5974 * Note that all resume operations are performed parallely. 5975 * 5976 * LOCKING: 5977 * Kernel thread context (may sleep). 5978 */ 5979 void ata_host_resume(struct ata_host *host) 5980 { 5981 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5982 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5983 host->dev->power.power_state = PMSG_ON; 5984 } 5985 #endif 5986 5987 /** 5988 * ata_port_start - Set port up for dma. 5989 * @ap: Port to initialize 5990 * 5991 * Called just after data structures for each port are 5992 * initialized. Allocates space for PRD table. 5993 * 5994 * May be used as the port_start() entry in ata_port_operations. 5995 * 5996 * LOCKING: 5997 * Inherited from caller. 5998 */ 5999 int ata_port_start(struct ata_port *ap) 6000 { 6001 struct device *dev = ap->dev; 6002 int rc; 6003 6004 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 6005 GFP_KERNEL); 6006 if (!ap->prd) 6007 return -ENOMEM; 6008 6009 rc = ata_pad_alloc(ap, dev); 6010 if (rc) 6011 return rc; 6012 6013 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 6014 (unsigned long long)ap->prd_dma); 6015 return 0; 6016 } 6017 6018 /** 6019 * ata_dev_init - Initialize an ata_device structure 6020 * @dev: Device structure to initialize 6021 * 6022 * Initialize @dev in preparation for probing. 6023 * 6024 * LOCKING: 6025 * Inherited from caller. 6026 */ 6027 void ata_dev_init(struct ata_device *dev) 6028 { 6029 struct ata_port *ap = dev->ap; 6030 unsigned long flags; 6031 6032 /* SATA spd limit is bound to the first device */ 6033 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6034 ap->sata_spd = 0; 6035 6036 /* High bits of dev->flags are used to record warm plug 6037 * requests which occur asynchronously. Synchronize using 6038 * host lock. 6039 */ 6040 spin_lock_irqsave(ap->lock, flags); 6041 dev->flags &= ~ATA_DFLAG_INIT_MASK; 6042 dev->horkage = 0; 6043 spin_unlock_irqrestore(ap->lock, flags); 6044 6045 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 6046 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 6047 dev->pio_mask = UINT_MAX; 6048 dev->mwdma_mask = UINT_MAX; 6049 dev->udma_mask = UINT_MAX; 6050 } 6051 6052 /** 6053 * ata_port_alloc - allocate and initialize basic ATA port resources 6054 * @host: ATA host this allocated port belongs to 6055 * 6056 * Allocate and initialize basic ATA port resources. 6057 * 6058 * RETURNS: 6059 * Allocate ATA port on success, NULL on failure. 6060 * 6061 * LOCKING: 6062 * Inherited from calling layer (may sleep). 6063 */ 6064 struct ata_port *ata_port_alloc(struct ata_host *host) 6065 { 6066 struct ata_port *ap; 6067 unsigned int i; 6068 6069 DPRINTK("ENTER\n"); 6070 6071 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 6072 if (!ap) 6073 return NULL; 6074 6075 ap->pflags |= ATA_PFLAG_INITIALIZING; 6076 ap->lock = &host->lock; 6077 ap->flags = ATA_FLAG_DISABLED; 6078 ap->print_id = -1; 6079 ap->ctl = ATA_DEVCTL_OBS; 6080 ap->host = host; 6081 ap->dev = host->dev; 6082 6083 ap->hw_sata_spd_limit = UINT_MAX; 6084 ap->active_tag = ATA_TAG_POISON; 6085 ap->last_ctl = 0xFF; 6086 6087 #if defined(ATA_VERBOSE_DEBUG) 6088 /* turn on all debugging levels */ 6089 ap->msg_enable = 0x00FF; 6090 #elif defined(ATA_DEBUG) 6091 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6092 #else 6093 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6094 #endif 6095 6096 INIT_DELAYED_WORK(&ap->port_task, NULL); 6097 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6098 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6099 INIT_LIST_HEAD(&ap->eh_done_q); 6100 init_waitqueue_head(&ap->eh_wait_q); 6101 init_timer_deferrable(&ap->fastdrain_timer); 6102 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 6103 ap->fastdrain_timer.data = (unsigned long)ap; 6104 6105 ap->cbl = ATA_CBL_NONE; 6106 6107 for (i = 0; i < ATA_MAX_DEVICES; i++) { 6108 struct ata_device *dev = &ap->device[i]; 6109 dev->ap = ap; 6110 dev->devno = i; 6111 ata_dev_init(dev); 6112 } 6113 6114 #ifdef ATA_IRQ_TRAP 6115 ap->stats.unhandled_irq = 1; 6116 ap->stats.idle_irq = 1; 6117 #endif 6118 return ap; 6119 } 6120 6121 static void ata_host_release(struct device *gendev, void *res) 6122 { 6123 struct ata_host *host = dev_get_drvdata(gendev); 6124 int i; 6125 6126 for (i = 0; i < host->n_ports; i++) { 6127 struct ata_port *ap = host->ports[i]; 6128 6129 if (!ap) 6130 continue; 6131 6132 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 6133 ap->ops->port_stop(ap); 6134 } 6135 6136 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 6137 host->ops->host_stop(host); 6138 6139 for (i = 0; i < host->n_ports; i++) { 6140 struct ata_port *ap = host->ports[i]; 6141 6142 if (!ap) 6143 continue; 6144 6145 if (ap->scsi_host) 6146 scsi_host_put(ap->scsi_host); 6147 6148 kfree(ap); 6149 host->ports[i] = NULL; 6150 } 6151 6152 dev_set_drvdata(gendev, NULL); 6153 } 6154 6155 /** 6156 * ata_host_alloc - allocate and init basic ATA host resources 6157 * @dev: generic device this host is associated with 6158 * @max_ports: maximum number of ATA ports associated with this host 6159 * 6160 * Allocate and initialize basic ATA host resources. LLD calls 6161 * this function to allocate a host, initializes it fully and 6162 * attaches it using ata_host_register(). 6163 * 6164 * @max_ports ports are allocated and host->n_ports is 6165 * initialized to @max_ports. The caller is allowed to decrease 6166 * host->n_ports before calling ata_host_register(). The unused 6167 * ports will be automatically freed on registration. 6168 * 6169 * RETURNS: 6170 * Allocate ATA host on success, NULL on failure. 6171 * 6172 * LOCKING: 6173 * Inherited from calling layer (may sleep). 6174 */ 6175 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6176 { 6177 struct ata_host *host; 6178 size_t sz; 6179 int i; 6180 6181 DPRINTK("ENTER\n"); 6182 6183 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6184 return NULL; 6185 6186 /* alloc a container for our list of ATA ports (buses) */ 6187 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6188 /* alloc a container for our list of ATA ports (buses) */ 6189 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6190 if (!host) 6191 goto err_out; 6192 6193 devres_add(dev, host); 6194 dev_set_drvdata(dev, host); 6195 6196 spin_lock_init(&host->lock); 6197 host->dev = dev; 6198 host->n_ports = max_ports; 6199 6200 /* allocate ports bound to this host */ 6201 for (i = 0; i < max_ports; i++) { 6202 struct ata_port *ap; 6203 6204 ap = ata_port_alloc(host); 6205 if (!ap) 6206 goto err_out; 6207 6208 ap->port_no = i; 6209 host->ports[i] = ap; 6210 } 6211 6212 devres_remove_group(dev, NULL); 6213 return host; 6214 6215 err_out: 6216 devres_release_group(dev, NULL); 6217 return NULL; 6218 } 6219 6220 /** 6221 * ata_host_alloc_pinfo - alloc host and init with port_info array 6222 * @dev: generic device this host is associated with 6223 * @ppi: array of ATA port_info to initialize host with 6224 * @n_ports: number of ATA ports attached to this host 6225 * 6226 * Allocate ATA host and initialize with info from @ppi. If NULL 6227 * terminated, @ppi may contain fewer entries than @n_ports. The 6228 * last entry will be used for the remaining ports. 6229 * 6230 * RETURNS: 6231 * Allocate ATA host on success, NULL on failure. 6232 * 6233 * LOCKING: 6234 * Inherited from calling layer (may sleep). 6235 */ 6236 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6237 const struct ata_port_info * const * ppi, 6238 int n_ports) 6239 { 6240 const struct ata_port_info *pi; 6241 struct ata_host *host; 6242 int i, j; 6243 6244 host = ata_host_alloc(dev, n_ports); 6245 if (!host) 6246 return NULL; 6247 6248 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6249 struct ata_port *ap = host->ports[i]; 6250 6251 if (ppi[j]) 6252 pi = ppi[j++]; 6253 6254 ap->pio_mask = pi->pio_mask; 6255 ap->mwdma_mask = pi->mwdma_mask; 6256 ap->udma_mask = pi->udma_mask; 6257 ap->flags |= pi->flags; 6258 ap->ops = pi->port_ops; 6259 6260 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6261 host->ops = pi->port_ops; 6262 if (!host->private_data && pi->private_data) 6263 host->private_data = pi->private_data; 6264 } 6265 6266 return host; 6267 } 6268 6269 /** 6270 * ata_host_start - start and freeze ports of an ATA host 6271 * @host: ATA host to start ports for 6272 * 6273 * Start and then freeze ports of @host. Started status is 6274 * recorded in host->flags, so this function can be called 6275 * multiple times. Ports are guaranteed to get started only 6276 * once. If host->ops isn't initialized yet, its set to the 6277 * first non-dummy port ops. 6278 * 6279 * LOCKING: 6280 * Inherited from calling layer (may sleep). 6281 * 6282 * RETURNS: 6283 * 0 if all ports are started successfully, -errno otherwise. 6284 */ 6285 int ata_host_start(struct ata_host *host) 6286 { 6287 int i, rc; 6288 6289 if (host->flags & ATA_HOST_STARTED) 6290 return 0; 6291 6292 for (i = 0; i < host->n_ports; i++) { 6293 struct ata_port *ap = host->ports[i]; 6294 6295 if (!host->ops && !ata_port_is_dummy(ap)) 6296 host->ops = ap->ops; 6297 6298 if (ap->ops->port_start) { 6299 rc = ap->ops->port_start(ap); 6300 if (rc) { 6301 ata_port_printk(ap, KERN_ERR, "failed to " 6302 "start port (errno=%d)\n", rc); 6303 goto err_out; 6304 } 6305 } 6306 6307 ata_eh_freeze_port(ap); 6308 } 6309 6310 host->flags |= ATA_HOST_STARTED; 6311 return 0; 6312 6313 err_out: 6314 while (--i >= 0) { 6315 struct ata_port *ap = host->ports[i]; 6316 6317 if (ap->ops->port_stop) 6318 ap->ops->port_stop(ap); 6319 } 6320 return rc; 6321 } 6322 6323 /** 6324 * ata_sas_host_init - Initialize a host struct 6325 * @host: host to initialize 6326 * @dev: device host is attached to 6327 * @flags: host flags 6328 * @ops: port_ops 6329 * 6330 * LOCKING: 6331 * PCI/etc. bus probe sem. 6332 * 6333 */ 6334 /* KILLME - the only user left is ipr */ 6335 void ata_host_init(struct ata_host *host, struct device *dev, 6336 unsigned long flags, const struct ata_port_operations *ops) 6337 { 6338 spin_lock_init(&host->lock); 6339 host->dev = dev; 6340 host->flags = flags; 6341 host->ops = ops; 6342 } 6343 6344 /** 6345 * ata_host_register - register initialized ATA host 6346 * @host: ATA host to register 6347 * @sht: template for SCSI host 6348 * 6349 * Register initialized ATA host. @host is allocated using 6350 * ata_host_alloc() and fully initialized by LLD. This function 6351 * starts ports, registers @host with ATA and SCSI layers and 6352 * probe registered devices. 6353 * 6354 * LOCKING: 6355 * Inherited from calling layer (may sleep). 6356 * 6357 * RETURNS: 6358 * 0 on success, -errno otherwise. 6359 */ 6360 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6361 { 6362 int i, rc; 6363 6364 /* host must have been started */ 6365 if (!(host->flags & ATA_HOST_STARTED)) { 6366 dev_printk(KERN_ERR, host->dev, 6367 "BUG: trying to register unstarted host\n"); 6368 WARN_ON(1); 6369 return -EINVAL; 6370 } 6371 6372 /* Blow away unused ports. This happens when LLD can't 6373 * determine the exact number of ports to allocate at 6374 * allocation time. 6375 */ 6376 for (i = host->n_ports; host->ports[i]; i++) 6377 kfree(host->ports[i]); 6378 6379 /* give ports names and add SCSI hosts */ 6380 for (i = 0; i < host->n_ports; i++) 6381 host->ports[i]->print_id = ata_print_id++; 6382 6383 rc = ata_scsi_add_hosts(host, sht); 6384 if (rc) 6385 return rc; 6386 6387 /* associate with ACPI nodes */ 6388 ata_acpi_associate(host); 6389 6390 /* set cable, sata_spd_limit and report */ 6391 for (i = 0; i < host->n_ports; i++) { 6392 struct ata_port *ap = host->ports[i]; 6393 int irq_line; 6394 u32 scontrol; 6395 unsigned long xfer_mask; 6396 6397 /* set SATA cable type if still unset */ 6398 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6399 ap->cbl = ATA_CBL_SATA; 6400 6401 /* init sata_spd_limit to the current value */ 6402 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 6403 int spd = (scontrol >> 4) & 0xf; 6404 if (spd) 6405 ap->hw_sata_spd_limit &= (1 << spd) - 1; 6406 } 6407 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6408 6409 /* report the secondary IRQ for second channel legacy */ 6410 irq_line = host->irq; 6411 if (i == 1 && host->irq2) 6412 irq_line = host->irq2; 6413 6414 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6415 ap->udma_mask); 6416 6417 /* print per-port info to dmesg */ 6418 if (!ata_port_is_dummy(ap)) 6419 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 6420 "ctl 0x%p bmdma 0x%p irq %d\n", 6421 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6422 ata_mode_string(xfer_mask), 6423 ap->ioaddr.cmd_addr, 6424 ap->ioaddr.ctl_addr, 6425 ap->ioaddr.bmdma_addr, 6426 irq_line); 6427 else 6428 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6429 } 6430 6431 /* perform each probe synchronously */ 6432 DPRINTK("probe begin\n"); 6433 for (i = 0; i < host->n_ports; i++) { 6434 struct ata_port *ap = host->ports[i]; 6435 int rc; 6436 6437 /* probe */ 6438 if (ap->ops->error_handler) { 6439 struct ata_eh_info *ehi = &ap->eh_info; 6440 unsigned long flags; 6441 6442 ata_port_probe(ap); 6443 6444 /* kick EH for boot probing */ 6445 spin_lock_irqsave(ap->lock, flags); 6446 6447 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 6448 ehi->action |= ATA_EH_SOFTRESET; 6449 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6450 6451 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6452 ap->pflags |= ATA_PFLAG_LOADING; 6453 ata_port_schedule_eh(ap); 6454 6455 spin_unlock_irqrestore(ap->lock, flags); 6456 6457 /* wait for EH to finish */ 6458 ata_port_wait_eh(ap); 6459 } else { 6460 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6461 rc = ata_bus_probe(ap); 6462 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6463 6464 if (rc) { 6465 /* FIXME: do something useful here? 6466 * Current libata behavior will 6467 * tear down everything when 6468 * the module is removed 6469 * or the h/w is unplugged. 6470 */ 6471 } 6472 } 6473 } 6474 6475 /* probes are done, now scan each port's disk(s) */ 6476 DPRINTK("host probe begin\n"); 6477 for (i = 0; i < host->n_ports; i++) { 6478 struct ata_port *ap = host->ports[i]; 6479 6480 ata_scsi_scan_host(ap, 1); 6481 } 6482 6483 return 0; 6484 } 6485 6486 /** 6487 * ata_host_activate - start host, request IRQ and register it 6488 * @host: target ATA host 6489 * @irq: IRQ to request 6490 * @irq_handler: irq_handler used when requesting IRQ 6491 * @irq_flags: irq_flags used when requesting IRQ 6492 * @sht: scsi_host_template to use when registering the host 6493 * 6494 * After allocating an ATA host and initializing it, most libata 6495 * LLDs perform three steps to activate the host - start host, 6496 * request IRQ and register it. This helper takes necessasry 6497 * arguments and performs the three steps in one go. 6498 * 6499 * LOCKING: 6500 * Inherited from calling layer (may sleep). 6501 * 6502 * RETURNS: 6503 * 0 on success, -errno otherwise. 6504 */ 6505 int ata_host_activate(struct ata_host *host, int irq, 6506 irq_handler_t irq_handler, unsigned long irq_flags, 6507 struct scsi_host_template *sht) 6508 { 6509 int rc; 6510 6511 rc = ata_host_start(host); 6512 if (rc) 6513 return rc; 6514 6515 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6516 dev_driver_string(host->dev), host); 6517 if (rc) 6518 return rc; 6519 6520 /* Used to print device info at probe */ 6521 host->irq = irq; 6522 6523 rc = ata_host_register(host, sht); 6524 /* if failed, just free the IRQ and leave ports alone */ 6525 if (rc) 6526 devm_free_irq(host->dev, irq, host); 6527 6528 return rc; 6529 } 6530 6531 /** 6532 * ata_port_detach - Detach ATA port in prepration of device removal 6533 * @ap: ATA port to be detached 6534 * 6535 * Detach all ATA devices and the associated SCSI devices of @ap; 6536 * then, remove the associated SCSI host. @ap is guaranteed to 6537 * be quiescent on return from this function. 6538 * 6539 * LOCKING: 6540 * Kernel thread context (may sleep). 6541 */ 6542 void ata_port_detach(struct ata_port *ap) 6543 { 6544 unsigned long flags; 6545 int i; 6546 6547 if (!ap->ops->error_handler) 6548 goto skip_eh; 6549 6550 /* tell EH we're leaving & flush EH */ 6551 spin_lock_irqsave(ap->lock, flags); 6552 ap->pflags |= ATA_PFLAG_UNLOADING; 6553 spin_unlock_irqrestore(ap->lock, flags); 6554 6555 ata_port_wait_eh(ap); 6556 6557 /* EH is now guaranteed to see UNLOADING, so no new device 6558 * will be attached. Disable all existing devices. 6559 */ 6560 spin_lock_irqsave(ap->lock, flags); 6561 6562 for (i = 0; i < ATA_MAX_DEVICES; i++) 6563 ata_dev_disable(&ap->device[i]); 6564 6565 spin_unlock_irqrestore(ap->lock, flags); 6566 6567 /* Final freeze & EH. All in-flight commands are aborted. EH 6568 * will be skipped and retrials will be terminated with bad 6569 * target. 6570 */ 6571 spin_lock_irqsave(ap->lock, flags); 6572 ata_port_freeze(ap); /* won't be thawed */ 6573 spin_unlock_irqrestore(ap->lock, flags); 6574 6575 ata_port_wait_eh(ap); 6576 cancel_rearming_delayed_work(&ap->hotplug_task); 6577 6578 skip_eh: 6579 /* remove the associated SCSI host */ 6580 scsi_remove_host(ap->scsi_host); 6581 } 6582 6583 /** 6584 * ata_host_detach - Detach all ports of an ATA host 6585 * @host: Host to detach 6586 * 6587 * Detach all ports of @host. 6588 * 6589 * LOCKING: 6590 * Kernel thread context (may sleep). 6591 */ 6592 void ata_host_detach(struct ata_host *host) 6593 { 6594 int i; 6595 6596 for (i = 0; i < host->n_ports; i++) 6597 ata_port_detach(host->ports[i]); 6598 } 6599 6600 /** 6601 * ata_std_ports - initialize ioaddr with standard port offsets. 6602 * @ioaddr: IO address structure to be initialized 6603 * 6604 * Utility function which initializes data_addr, error_addr, 6605 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6606 * device_addr, status_addr, and command_addr to standard offsets 6607 * relative to cmd_addr. 6608 * 6609 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6610 */ 6611 6612 void ata_std_ports(struct ata_ioports *ioaddr) 6613 { 6614 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6615 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6616 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6617 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6618 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6619 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6620 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6621 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6622 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6623 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6624 } 6625 6626 6627 #ifdef CONFIG_PCI 6628 6629 /** 6630 * ata_pci_remove_one - PCI layer callback for device removal 6631 * @pdev: PCI device that was removed 6632 * 6633 * PCI layer indicates to libata via this hook that hot-unplug or 6634 * module unload event has occurred. Detach all ports. Resource 6635 * release is handled via devres. 6636 * 6637 * LOCKING: 6638 * Inherited from PCI layer (may sleep). 6639 */ 6640 void ata_pci_remove_one(struct pci_dev *pdev) 6641 { 6642 struct device *dev = pci_dev_to_dev(pdev); 6643 struct ata_host *host = dev_get_drvdata(dev); 6644 6645 ata_host_detach(host); 6646 } 6647 6648 /* move to PCI subsystem */ 6649 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6650 { 6651 unsigned long tmp = 0; 6652 6653 switch (bits->width) { 6654 case 1: { 6655 u8 tmp8 = 0; 6656 pci_read_config_byte(pdev, bits->reg, &tmp8); 6657 tmp = tmp8; 6658 break; 6659 } 6660 case 2: { 6661 u16 tmp16 = 0; 6662 pci_read_config_word(pdev, bits->reg, &tmp16); 6663 tmp = tmp16; 6664 break; 6665 } 6666 case 4: { 6667 u32 tmp32 = 0; 6668 pci_read_config_dword(pdev, bits->reg, &tmp32); 6669 tmp = tmp32; 6670 break; 6671 } 6672 6673 default: 6674 return -EINVAL; 6675 } 6676 6677 tmp &= bits->mask; 6678 6679 return (tmp == bits->val) ? 1 : 0; 6680 } 6681 6682 #ifdef CONFIG_PM 6683 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6684 { 6685 pci_save_state(pdev); 6686 pci_disable_device(pdev); 6687 6688 if (mesg.event == PM_EVENT_SUSPEND) 6689 pci_set_power_state(pdev, PCI_D3hot); 6690 } 6691 6692 int ata_pci_device_do_resume(struct pci_dev *pdev) 6693 { 6694 int rc; 6695 6696 pci_set_power_state(pdev, PCI_D0); 6697 pci_restore_state(pdev); 6698 6699 rc = pcim_enable_device(pdev); 6700 if (rc) { 6701 dev_printk(KERN_ERR, &pdev->dev, 6702 "failed to enable device after resume (%d)\n", rc); 6703 return rc; 6704 } 6705 6706 pci_set_master(pdev); 6707 return 0; 6708 } 6709 6710 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6711 { 6712 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6713 int rc = 0; 6714 6715 rc = ata_host_suspend(host, mesg); 6716 if (rc) 6717 return rc; 6718 6719 ata_pci_device_do_suspend(pdev, mesg); 6720 6721 return 0; 6722 } 6723 6724 int ata_pci_device_resume(struct pci_dev *pdev) 6725 { 6726 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6727 int rc; 6728 6729 rc = ata_pci_device_do_resume(pdev); 6730 if (rc == 0) 6731 ata_host_resume(host); 6732 return rc; 6733 } 6734 #endif /* CONFIG_PM */ 6735 6736 #endif /* CONFIG_PCI */ 6737 6738 6739 static int __init ata_init(void) 6740 { 6741 ata_probe_timeout *= HZ; 6742 ata_wq = create_workqueue("ata"); 6743 if (!ata_wq) 6744 return -ENOMEM; 6745 6746 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6747 if (!ata_aux_wq) { 6748 destroy_workqueue(ata_wq); 6749 return -ENOMEM; 6750 } 6751 6752 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6753 return 0; 6754 } 6755 6756 static void __exit ata_exit(void) 6757 { 6758 destroy_workqueue(ata_wq); 6759 destroy_workqueue(ata_aux_wq); 6760 } 6761 6762 subsys_initcall(ata_init); 6763 module_exit(ata_exit); 6764 6765 static unsigned long ratelimit_time; 6766 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6767 6768 int ata_ratelimit(void) 6769 { 6770 int rc; 6771 unsigned long flags; 6772 6773 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6774 6775 if (time_after(jiffies, ratelimit_time)) { 6776 rc = 1; 6777 ratelimit_time = jiffies + (HZ/5); 6778 } else 6779 rc = 0; 6780 6781 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6782 6783 return rc; 6784 } 6785 6786 /** 6787 * ata_wait_register - wait until register value changes 6788 * @reg: IO-mapped register 6789 * @mask: Mask to apply to read register value 6790 * @val: Wait condition 6791 * @interval_msec: polling interval in milliseconds 6792 * @timeout_msec: timeout in milliseconds 6793 * 6794 * Waiting for some bits of register to change is a common 6795 * operation for ATA controllers. This function reads 32bit LE 6796 * IO-mapped register @reg and tests for the following condition. 6797 * 6798 * (*@reg & mask) != val 6799 * 6800 * If the condition is met, it returns; otherwise, the process is 6801 * repeated after @interval_msec until timeout. 6802 * 6803 * LOCKING: 6804 * Kernel thread context (may sleep) 6805 * 6806 * RETURNS: 6807 * The final register value. 6808 */ 6809 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6810 unsigned long interval_msec, 6811 unsigned long timeout_msec) 6812 { 6813 unsigned long timeout; 6814 u32 tmp; 6815 6816 tmp = ioread32(reg); 6817 6818 /* Calculate timeout _after_ the first read to make sure 6819 * preceding writes reach the controller before starting to 6820 * eat away the timeout. 6821 */ 6822 timeout = jiffies + (timeout_msec * HZ) / 1000; 6823 6824 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6825 msleep(interval_msec); 6826 tmp = ioread32(reg); 6827 } 6828 6829 return tmp; 6830 } 6831 6832 /* 6833 * Dummy port_ops 6834 */ 6835 static void ata_dummy_noret(struct ata_port *ap) { } 6836 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6837 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6838 6839 static u8 ata_dummy_check_status(struct ata_port *ap) 6840 { 6841 return ATA_DRDY; 6842 } 6843 6844 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6845 { 6846 return AC_ERR_SYSTEM; 6847 } 6848 6849 const struct ata_port_operations ata_dummy_port_ops = { 6850 .port_disable = ata_port_disable, 6851 .check_status = ata_dummy_check_status, 6852 .check_altstatus = ata_dummy_check_status, 6853 .dev_select = ata_noop_dev_select, 6854 .qc_prep = ata_noop_qc_prep, 6855 .qc_issue = ata_dummy_qc_issue, 6856 .freeze = ata_dummy_noret, 6857 .thaw = ata_dummy_noret, 6858 .error_handler = ata_dummy_noret, 6859 .post_internal_cmd = ata_dummy_qc_noret, 6860 .irq_clear = ata_dummy_noret, 6861 .port_start = ata_dummy_ret0, 6862 .port_stop = ata_dummy_noret, 6863 }; 6864 6865 const struct ata_port_info ata_dummy_port_info = { 6866 .port_ops = &ata_dummy_port_ops, 6867 }; 6868 6869 /* 6870 * libata is essentially a library of internal helper functions for 6871 * low-level ATA host controller drivers. As such, the API/ABI is 6872 * likely to change as new drivers are added and updated. 6873 * Do not depend on ABI/API stability. 6874 */ 6875 6876 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6877 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6878 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6879 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6880 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6881 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6882 EXPORT_SYMBOL_GPL(ata_std_ports); 6883 EXPORT_SYMBOL_GPL(ata_host_init); 6884 EXPORT_SYMBOL_GPL(ata_host_alloc); 6885 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6886 EXPORT_SYMBOL_GPL(ata_host_start); 6887 EXPORT_SYMBOL_GPL(ata_host_register); 6888 EXPORT_SYMBOL_GPL(ata_host_activate); 6889 EXPORT_SYMBOL_GPL(ata_host_detach); 6890 EXPORT_SYMBOL_GPL(ata_sg_init); 6891 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6892 EXPORT_SYMBOL_GPL(ata_hsm_move); 6893 EXPORT_SYMBOL_GPL(ata_qc_complete); 6894 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6895 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6896 EXPORT_SYMBOL_GPL(ata_tf_load); 6897 EXPORT_SYMBOL_GPL(ata_tf_read); 6898 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6899 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6900 EXPORT_SYMBOL_GPL(sata_print_link_status); 6901 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6902 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6903 EXPORT_SYMBOL_GPL(ata_check_status); 6904 EXPORT_SYMBOL_GPL(ata_altstatus); 6905 EXPORT_SYMBOL_GPL(ata_exec_command); 6906 EXPORT_SYMBOL_GPL(ata_port_start); 6907 EXPORT_SYMBOL_GPL(ata_sff_port_start); 6908 EXPORT_SYMBOL_GPL(ata_interrupt); 6909 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6910 EXPORT_SYMBOL_GPL(ata_data_xfer); 6911 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6912 EXPORT_SYMBOL_GPL(ata_qc_prep); 6913 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep); 6914 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6915 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6916 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6917 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6918 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6919 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6920 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6921 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6922 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6924 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6925 EXPORT_SYMBOL_GPL(ata_port_probe); 6926 EXPORT_SYMBOL_GPL(ata_dev_disable); 6927 EXPORT_SYMBOL_GPL(sata_set_spd); 6928 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6929 EXPORT_SYMBOL_GPL(sata_phy_resume); 6930 EXPORT_SYMBOL_GPL(sata_phy_reset); 6931 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6932 EXPORT_SYMBOL_GPL(ata_bus_reset); 6933 EXPORT_SYMBOL_GPL(ata_std_prereset); 6934 EXPORT_SYMBOL_GPL(ata_std_softreset); 6935 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6936 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6937 EXPORT_SYMBOL_GPL(ata_std_postreset); 6938 EXPORT_SYMBOL_GPL(ata_dev_classify); 6939 EXPORT_SYMBOL_GPL(ata_dev_pair); 6940 EXPORT_SYMBOL_GPL(ata_port_disable); 6941 EXPORT_SYMBOL_GPL(ata_ratelimit); 6942 EXPORT_SYMBOL_GPL(ata_wait_register); 6943 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6944 EXPORT_SYMBOL_GPL(ata_wait_ready); 6945 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6946 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6948 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6949 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6950 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6951 EXPORT_SYMBOL_GPL(ata_host_intr); 6952 EXPORT_SYMBOL_GPL(sata_scr_valid); 6953 EXPORT_SYMBOL_GPL(sata_scr_read); 6954 EXPORT_SYMBOL_GPL(sata_scr_write); 6955 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6956 EXPORT_SYMBOL_GPL(ata_port_online); 6957 EXPORT_SYMBOL_GPL(ata_port_offline); 6958 #ifdef CONFIG_PM 6959 EXPORT_SYMBOL_GPL(ata_host_suspend); 6960 EXPORT_SYMBOL_GPL(ata_host_resume); 6961 #endif /* CONFIG_PM */ 6962 EXPORT_SYMBOL_GPL(ata_id_string); 6963 EXPORT_SYMBOL_GPL(ata_id_c_string); 6964 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6965 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6966 6967 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6968 EXPORT_SYMBOL_GPL(ata_timing_compute); 6969 EXPORT_SYMBOL_GPL(ata_timing_merge); 6970 6971 #ifdef CONFIG_PCI 6972 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6973 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host); 6974 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma); 6975 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host); 6976 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6977 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6978 #ifdef CONFIG_PM 6979 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6980 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6981 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6982 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6983 #endif /* CONFIG_PM */ 6984 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6985 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6986 #endif /* CONFIG_PCI */ 6987 6988 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6989 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6990 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6991 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6992 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6993 EXPORT_SYMBOL_GPL(ata_port_abort); 6994 EXPORT_SYMBOL_GPL(ata_port_freeze); 6995 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6996 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6997 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6998 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6999 EXPORT_SYMBOL_GPL(ata_do_eh); 7000 EXPORT_SYMBOL_GPL(ata_irq_on); 7001 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 7002 EXPORT_SYMBOL_GPL(ata_irq_ack); 7003 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 7004 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 7005 7006 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7007 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7008 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7009 EXPORT_SYMBOL_GPL(ata_cable_sata); 7010