1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <linux/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .reset.prereset = ata_std_prereset, 69 .reset.postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 static unsigned int ata_dev_init_params(struct ata_device *dev, 76 u16 heads, u16 sectors); 77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 78 static void ata_dev_xfermask(struct ata_device *dev); 79 static unsigned int ata_dev_quirks(const struct ata_device *dev); 80 81 static DEFINE_IDA(ata_ida); 82 83 #ifdef CONFIG_ATA_FORCE 84 struct ata_force_param { 85 const char *name; 86 u8 cbl; 87 u8 spd_limit; 88 unsigned int xfer_mask; 89 unsigned int quirk_on; 90 unsigned int quirk_off; 91 unsigned int pflags_on; 92 u16 lflags_on; 93 u16 lflags_off; 94 }; 95 96 struct ata_force_ent { 97 int port; 98 int device; 99 struct ata_force_param param; 100 }; 101 102 static struct ata_force_ent *ata_force_tbl; 103 static int ata_force_tbl_size; 104 105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 106 /* param_buf is thrown away after initialization, disallow read */ 107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 109 #endif 110 111 static int atapi_enabled = 1; 112 module_param(atapi_enabled, int, 0444); 113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 114 115 static int atapi_dmadir = 0; 116 module_param(atapi_dmadir, int, 0444); 117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 118 119 int atapi_passthru16 = 1; 120 module_param(atapi_passthru16, int, 0444); 121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 122 123 int libata_fua = 0; 124 module_param_named(fua, libata_fua, int, 0444); 125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 126 127 static int ata_ignore_hpa; 128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 130 131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 132 module_param_named(dma, libata_dma_mask, int, 0444); 133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 134 135 static int ata_probe_timeout; 136 module_param(ata_probe_timeout, int, 0444); 137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 138 139 int libata_noacpi = 0; 140 module_param_named(noacpi, libata_noacpi, int, 0444); 141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 142 143 int libata_allow_tpm = 0; 144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 146 147 static int atapi_an; 148 module_param(atapi_an, int, 0444); 149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 150 151 MODULE_AUTHOR("Jeff Garzik"); 152 MODULE_DESCRIPTION("Library module for ATA devices"); 153 MODULE_LICENSE("GPL"); 154 MODULE_VERSION(DRV_VERSION); 155 156 static inline bool ata_dev_print_info(const struct ata_device *dev) 157 { 158 struct ata_eh_context *ehc = &dev->link->eh_context; 159 160 return ehc->i.flags & ATA_EHI_PRINTINFO; 161 } 162 163 /** 164 * ata_link_next - link iteration helper 165 * @link: the previous link, NULL to start 166 * @ap: ATA port containing links to iterate 167 * @mode: iteration mode, one of ATA_LITER_* 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 * 172 * RETURNS: 173 * Pointer to the next link. 174 */ 175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 176 enum ata_link_iter_mode mode) 177 { 178 BUG_ON(mode != ATA_LITER_EDGE && 179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 180 181 /* NULL link indicates start of iteration */ 182 if (!link) 183 switch (mode) { 184 case ATA_LITER_EDGE: 185 case ATA_LITER_PMP_FIRST: 186 if (sata_pmp_attached(ap)) 187 return ap->pmp_link; 188 fallthrough; 189 case ATA_LITER_HOST_FIRST: 190 return &ap->link; 191 } 192 193 /* we just iterated over the host link, what's next? */ 194 if (link == &ap->link) 195 switch (mode) { 196 case ATA_LITER_HOST_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_PMP_FIRST: 201 if (unlikely(ap->slave_link)) 202 return ap->slave_link; 203 fallthrough; 204 case ATA_LITER_EDGE: 205 return NULL; 206 } 207 208 /* slave_link excludes PMP */ 209 if (unlikely(link == ap->slave_link)) 210 return NULL; 211 212 /* we were over a PMP link */ 213 if (++link < ap->pmp_link + ap->nr_pmp_links) 214 return link; 215 216 if (mode == ATA_LITER_PMP_FIRST) 217 return &ap->link; 218 219 return NULL; 220 } 221 EXPORT_SYMBOL_GPL(ata_link_next); 222 223 /** 224 * ata_dev_next - device iteration helper 225 * @dev: the previous device, NULL to start 226 * @link: ATA link containing devices to iterate 227 * @mode: iteration mode, one of ATA_DITER_* 228 * 229 * LOCKING: 230 * Host lock or EH context. 231 * 232 * RETURNS: 233 * Pointer to the next device. 234 */ 235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 236 enum ata_dev_iter_mode mode) 237 { 238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 240 241 /* NULL dev indicates start of iteration */ 242 if (!dev) 243 switch (mode) { 244 case ATA_DITER_ENABLED: 245 case ATA_DITER_ALL: 246 dev = link->device; 247 goto check; 248 case ATA_DITER_ENABLED_REVERSE: 249 case ATA_DITER_ALL_REVERSE: 250 dev = link->device + ata_link_max_devices(link) - 1; 251 goto check; 252 } 253 254 next: 255 /* move to the next one */ 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 if (++dev < link->device + ata_link_max_devices(link)) 260 goto check; 261 return NULL; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 if (--dev >= link->device) 265 goto check; 266 return NULL; 267 } 268 269 check: 270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 271 !ata_dev_enabled(dev)) 272 goto next; 273 return dev; 274 } 275 EXPORT_SYMBOL_GPL(ata_dev_next); 276 277 /** 278 * ata_dev_phys_link - find physical link for a device 279 * @dev: ATA device to look up physical link for 280 * 281 * Look up physical link which @dev is attached to. Note that 282 * this is different from @dev->link only when @dev is on slave 283 * link. For all other cases, it's the same as @dev->link. 284 * 285 * LOCKING: 286 * Don't care. 287 * 288 * RETURNS: 289 * Pointer to the found physical link. 290 */ 291 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 292 { 293 struct ata_port *ap = dev->link->ap; 294 295 if (!ap->slave_link) 296 return dev->link; 297 if (!dev->devno) 298 return &ap->link; 299 return ap->slave_link; 300 } 301 302 #ifdef CONFIG_ATA_FORCE 303 /** 304 * ata_force_cbl - force cable type according to libata.force 305 * @ap: ATA port of interest 306 * 307 * Force cable type according to libata.force and whine about it. 308 * The last entry which has matching port number is used, so it 309 * can be specified as part of device force parameters. For 310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 311 * same effect. 312 * 313 * LOCKING: 314 * EH context. 315 */ 316 void ata_force_cbl(struct ata_port *ap) 317 { 318 int i; 319 320 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 321 const struct ata_force_ent *fe = &ata_force_tbl[i]; 322 323 if (fe->port != -1 && fe->port != ap->print_id) 324 continue; 325 326 if (fe->param.cbl == ATA_CBL_NONE) 327 continue; 328 329 ap->cbl = fe->param.cbl; 330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 331 return; 332 } 333 } 334 335 /** 336 * ata_force_pflags - force port flags according to libata.force 337 * @ap: ATA port of interest 338 * 339 * Force port flags according to libata.force and whine about it. 340 * 341 * LOCKING: 342 * EH context. 343 */ 344 static void ata_force_pflags(struct ata_port *ap) 345 { 346 int i; 347 348 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 349 const struct ata_force_ent *fe = &ata_force_tbl[i]; 350 351 if (fe->port != -1 && fe->port != ap->print_id) 352 continue; 353 354 /* let pflags stack */ 355 if (fe->param.pflags_on) { 356 ap->pflags |= fe->param.pflags_on; 357 ata_port_notice(ap, 358 "FORCE: port flag 0x%x forced -> 0x%x\n", 359 fe->param.pflags_on, ap->pflags); 360 } 361 } 362 } 363 364 /** 365 * ata_force_link_limits - force link limits according to libata.force 366 * @link: ATA link of interest 367 * 368 * Force link flags and SATA spd limit according to libata.force 369 * and whine about it. When only the port part is specified 370 * (e.g. 1:), the limit applies to all links connected to both 371 * the host link and all fan-out ports connected via PMP. If the 372 * device part is specified as 0 (e.g. 1.00:), it specifies the 373 * first fan-out link not the host link. Device number 15 always 374 * points to the host link whether PMP is attached or not. If the 375 * controller has slave link, device number 16 points to it. 376 * 377 * LOCKING: 378 * EH context. 379 */ 380 static void ata_force_link_limits(struct ata_link *link) 381 { 382 bool did_spd = false; 383 int linkno = link->pmp; 384 int i; 385 386 if (ata_is_host_link(link)) 387 linkno += 15; 388 389 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 390 const struct ata_force_ent *fe = &ata_force_tbl[i]; 391 392 if (fe->port != -1 && fe->port != link->ap->print_id) 393 continue; 394 395 if (fe->device != -1 && fe->device != linkno) 396 continue; 397 398 /* only honor the first spd limit */ 399 if (!did_spd && fe->param.spd_limit) { 400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 402 fe->param.name); 403 did_spd = true; 404 } 405 406 /* let lflags stack */ 407 if (fe->param.lflags_on) { 408 link->flags |= fe->param.lflags_on; 409 ata_link_notice(link, 410 "FORCE: link flag 0x%x forced -> 0x%x\n", 411 fe->param.lflags_on, link->flags); 412 } 413 if (fe->param.lflags_off) { 414 link->flags &= ~fe->param.lflags_off; 415 ata_link_notice(link, 416 "FORCE: link flag 0x%x cleared -> 0x%x\n", 417 fe->param.lflags_off, link->flags); 418 } 419 } 420 } 421 422 /** 423 * ata_force_xfermask - force xfermask according to libata.force 424 * @dev: ATA device of interest 425 * 426 * Force xfer_mask according to libata.force and whine about it. 427 * For consistency with link selection, device number 15 selects 428 * the first device connected to the host link. 429 * 430 * LOCKING: 431 * EH context. 432 */ 433 static void ata_force_xfermask(struct ata_device *dev) 434 { 435 int devno = dev->link->pmp + dev->devno; 436 int alt_devno = devno; 437 int i; 438 439 /* allow n.15/16 for devices attached to host port */ 440 if (ata_is_host_link(dev->link)) 441 alt_devno += 15; 442 443 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 444 const struct ata_force_ent *fe = &ata_force_tbl[i]; 445 unsigned int pio_mask, mwdma_mask, udma_mask; 446 447 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 448 continue; 449 450 if (fe->device != -1 && fe->device != devno && 451 fe->device != alt_devno) 452 continue; 453 454 if (!fe->param.xfer_mask) 455 continue; 456 457 ata_unpack_xfermask(fe->param.xfer_mask, 458 &pio_mask, &mwdma_mask, &udma_mask); 459 if (udma_mask) 460 dev->udma_mask = udma_mask; 461 else if (mwdma_mask) { 462 dev->udma_mask = 0; 463 dev->mwdma_mask = mwdma_mask; 464 } else { 465 dev->udma_mask = 0; 466 dev->mwdma_mask = 0; 467 dev->pio_mask = pio_mask; 468 } 469 470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 471 fe->param.name); 472 return; 473 } 474 } 475 476 /** 477 * ata_force_quirks - force quirks according to libata.force 478 * @dev: ATA device of interest 479 * 480 * Force quirks according to libata.force and whine about it. 481 * For consistency with link selection, device number 15 selects 482 * the first device connected to the host link. 483 * 484 * LOCKING: 485 * EH context. 486 */ 487 static void ata_force_quirks(struct ata_device *dev) 488 { 489 int devno = dev->link->pmp + dev->devno; 490 int alt_devno = devno; 491 int i; 492 493 /* allow n.15/16 for devices attached to host port */ 494 if (ata_is_host_link(dev->link)) 495 alt_devno += 15; 496 497 for (i = 0; i < ata_force_tbl_size; i++) { 498 const struct ata_force_ent *fe = &ata_force_tbl[i]; 499 500 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 501 continue; 502 503 if (fe->device != -1 && fe->device != devno && 504 fe->device != alt_devno) 505 continue; 506 507 if (!(~dev->quirks & fe->param.quirk_on) && 508 !(dev->quirks & fe->param.quirk_off)) 509 continue; 510 511 dev->quirks |= fe->param.quirk_on; 512 dev->quirks &= ~fe->param.quirk_off; 513 514 ata_dev_notice(dev, "FORCE: modified (%s)\n", 515 fe->param.name); 516 } 517 } 518 #else 519 static inline void ata_force_pflags(struct ata_port *ap) { } 520 static inline void ata_force_link_limits(struct ata_link *link) { } 521 static inline void ata_force_xfermask(struct ata_device *dev) { } 522 static inline void ata_force_quirks(struct ata_device *dev) { } 523 #endif 524 525 /** 526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 527 * @opcode: SCSI opcode 528 * 529 * Determine ATAPI command type from @opcode. 530 * 531 * LOCKING: 532 * None. 533 * 534 * RETURNS: 535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 536 */ 537 int atapi_cmd_type(u8 opcode) 538 { 539 switch (opcode) { 540 case GPCMD_READ_10: 541 case GPCMD_READ_12: 542 return ATAPI_READ; 543 544 case GPCMD_WRITE_10: 545 case GPCMD_WRITE_12: 546 case GPCMD_WRITE_AND_VERIFY_10: 547 return ATAPI_WRITE; 548 549 case GPCMD_READ_CD: 550 case GPCMD_READ_CD_MSF: 551 return ATAPI_READ_CD; 552 553 case ATA_16: 554 case ATA_12: 555 if (atapi_passthru16) 556 return ATAPI_PASS_THRU; 557 fallthrough; 558 default: 559 return ATAPI_MISC; 560 } 561 } 562 EXPORT_SYMBOL_GPL(atapi_cmd_type); 563 564 static const u8 ata_rw_cmds[] = { 565 /* pio multi */ 566 ATA_CMD_READ_MULTI, 567 ATA_CMD_WRITE_MULTI, 568 ATA_CMD_READ_MULTI_EXT, 569 ATA_CMD_WRITE_MULTI_EXT, 570 0, 571 0, 572 0, 573 0, 574 /* pio */ 575 ATA_CMD_PIO_READ, 576 ATA_CMD_PIO_WRITE, 577 ATA_CMD_PIO_READ_EXT, 578 ATA_CMD_PIO_WRITE_EXT, 579 0, 580 0, 581 0, 582 0, 583 /* dma */ 584 ATA_CMD_READ, 585 ATA_CMD_WRITE, 586 ATA_CMD_READ_EXT, 587 ATA_CMD_WRITE_EXT, 588 0, 589 0, 590 0, 591 ATA_CMD_WRITE_FUA_EXT 592 }; 593 594 /** 595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 596 * @dev: target device for the taskfile 597 * @tf: taskfile to examine and configure 598 * 599 * Examine the device configuration and tf->flags to determine 600 * the proper read/write command and protocol to use for @tf. 601 * 602 * LOCKING: 603 * caller. 604 */ 605 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 606 struct ata_taskfile *tf) 607 { 608 u8 cmd; 609 610 int index, fua, lba48, write; 611 612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 615 616 if (dev->flags & ATA_DFLAG_PIO) { 617 tf->protocol = ATA_PROT_PIO; 618 index = dev->multi_count ? 0 : 8; 619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 620 /* Unable to use DMA due to host limitation */ 621 tf->protocol = ATA_PROT_PIO; 622 index = dev->multi_count ? 0 : 8; 623 } else { 624 tf->protocol = ATA_PROT_DMA; 625 index = 16; 626 } 627 628 cmd = ata_rw_cmds[index + fua + lba48 + write]; 629 if (!cmd) 630 return false; 631 632 tf->command = cmd; 633 634 return true; 635 } 636 637 /** 638 * ata_tf_read_block - Read block address from ATA taskfile 639 * @tf: ATA taskfile of interest 640 * @dev: ATA device @tf belongs to 641 * 642 * LOCKING: 643 * None. 644 * 645 * Read block address from @tf. This function can handle all 646 * three address formats - LBA, LBA48 and CHS. tf->protocol and 647 * flags select the address format to use. 648 * 649 * RETURNS: 650 * Block address read from @tf. 651 */ 652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 653 { 654 u64 block = 0; 655 656 if (tf->flags & ATA_TFLAG_LBA) { 657 if (tf->flags & ATA_TFLAG_LBA48) { 658 block |= (u64)tf->hob_lbah << 40; 659 block |= (u64)tf->hob_lbam << 32; 660 block |= (u64)tf->hob_lbal << 24; 661 } else 662 block |= (tf->device & 0xf) << 24; 663 664 block |= tf->lbah << 16; 665 block |= tf->lbam << 8; 666 block |= tf->lbal; 667 } else { 668 u32 cyl, head, sect; 669 670 cyl = tf->lbam | (tf->lbah << 8); 671 head = tf->device & 0xf; 672 sect = tf->lbal; 673 674 if (!sect) { 675 ata_dev_warn(dev, 676 "device reported invalid CHS sector 0\n"); 677 return U64_MAX; 678 } 679 680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 681 } 682 683 return block; 684 } 685 686 /* 687 * Set a taskfile command duration limit index. 688 */ 689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 690 { 691 struct ata_taskfile *tf = &qc->tf; 692 693 if (tf->protocol == ATA_PROT_NCQ) 694 tf->auxiliary |= cdl; 695 else 696 tf->feature |= cdl; 697 698 /* 699 * Mark this command as having a CDL and request the result 700 * task file so that we can inspect the sense data available 701 * bit on completion. 702 */ 703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 704 } 705 706 /** 707 * ata_build_rw_tf - Build ATA taskfile for given read/write request 708 * @qc: Metadata associated with the taskfile to build 709 * @block: Block address 710 * @n_block: Number of blocks 711 * @tf_flags: RW/FUA etc... 712 * @cdl: Command duration limit index 713 * @class: IO priority class 714 * 715 * LOCKING: 716 * None. 717 * 718 * Build ATA taskfile for the command @qc for read/write request described 719 * by @block, @n_block, @tf_flags and @class. 720 * 721 * RETURNS: 722 * 723 * 0 on success, -ERANGE if the request is too large for @dev, 724 * -EINVAL if the request is invalid. 725 */ 726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 727 unsigned int tf_flags, int cdl, int class) 728 { 729 struct ata_taskfile *tf = &qc->tf; 730 struct ata_device *dev = qc->dev; 731 732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 733 tf->flags |= tf_flags; 734 735 if (ata_ncq_enabled(dev)) { 736 /* yay, NCQ */ 737 if (!lba_48_ok(block, n_block)) 738 return -ERANGE; 739 740 tf->protocol = ATA_PROT_NCQ; 741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 742 743 if (tf->flags & ATA_TFLAG_WRITE) 744 tf->command = ATA_CMD_FPDMA_WRITE; 745 else 746 tf->command = ATA_CMD_FPDMA_READ; 747 748 tf->nsect = qc->hw_tag << 3; 749 tf->hob_feature = (n_block >> 8) & 0xff; 750 tf->feature = n_block & 0xff; 751 752 tf->hob_lbah = (block >> 40) & 0xff; 753 tf->hob_lbam = (block >> 32) & 0xff; 754 tf->hob_lbal = (block >> 24) & 0xff; 755 tf->lbah = (block >> 16) & 0xff; 756 tf->lbam = (block >> 8) & 0xff; 757 tf->lbal = block & 0xff; 758 759 tf->device = ATA_LBA; 760 if (tf->flags & ATA_TFLAG_FUA) 761 tf->device |= 1 << 7; 762 763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 764 class == IOPRIO_CLASS_RT) 765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 766 767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 768 ata_set_tf_cdl(qc, cdl); 769 770 } else if (dev->flags & ATA_DFLAG_LBA) { 771 tf->flags |= ATA_TFLAG_LBA; 772 773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 774 ata_set_tf_cdl(qc, cdl); 775 776 /* Both FUA writes and a CDL index require 48-bit commands */ 777 if (!(tf->flags & ATA_TFLAG_FUA) && 778 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 779 lba_28_ok(block, n_block)) { 780 /* use LBA28 */ 781 tf->device |= (block >> 24) & 0xf; 782 } else if (lba_48_ok(block, n_block)) { 783 if (!(dev->flags & ATA_DFLAG_LBA48)) 784 return -ERANGE; 785 786 /* use LBA48 */ 787 tf->flags |= ATA_TFLAG_LBA48; 788 789 tf->hob_nsect = (n_block >> 8) & 0xff; 790 791 tf->hob_lbah = (block >> 40) & 0xff; 792 tf->hob_lbam = (block >> 32) & 0xff; 793 tf->hob_lbal = (block >> 24) & 0xff; 794 } else { 795 /* request too large even for LBA48 */ 796 return -ERANGE; 797 } 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 tf->nsect = n_block & 0xff; 803 804 tf->lbah = (block >> 16) & 0xff; 805 tf->lbam = (block >> 8) & 0xff; 806 tf->lbal = block & 0xff; 807 808 tf->device |= ATA_LBA; 809 } else { 810 /* CHS */ 811 u32 sect, head, cyl, track; 812 813 /* The request -may- be too large for CHS addressing. */ 814 if (!lba_28_ok(block, n_block)) 815 return -ERANGE; 816 817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 818 return -EINVAL; 819 820 /* Convert LBA to CHS */ 821 track = (u32)block / dev->sectors; 822 cyl = track / dev->heads; 823 head = track % dev->heads; 824 sect = (u32)block % dev->sectors + 1; 825 826 /* Check whether the converted CHS can fit. 827 Cylinder: 0-65535 828 Head: 0-15 829 Sector: 1-255*/ 830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 831 return -ERANGE; 832 833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 834 tf->lbal = sect; 835 tf->lbam = cyl; 836 tf->lbah = cyl >> 8; 837 tf->device |= head; 838 } 839 840 return 0; 841 } 842 843 /** 844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 845 * @pio_mask: pio_mask 846 * @mwdma_mask: mwdma_mask 847 * @udma_mask: udma_mask 848 * 849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 850 * unsigned int xfer_mask. 851 * 852 * LOCKING: 853 * None. 854 * 855 * RETURNS: 856 * Packed xfer_mask. 857 */ 858 unsigned int ata_pack_xfermask(unsigned int pio_mask, 859 unsigned int mwdma_mask, 860 unsigned int udma_mask) 861 { 862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 865 } 866 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 867 868 /** 869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 870 * @xfer_mask: xfer_mask to unpack 871 * @pio_mask: resulting pio_mask 872 * @mwdma_mask: resulting mwdma_mask 873 * @udma_mask: resulting udma_mask 874 * 875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 876 * Any NULL destination masks will be ignored. 877 */ 878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 879 unsigned int *mwdma_mask, unsigned int *udma_mask) 880 { 881 if (pio_mask) 882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 883 if (mwdma_mask) 884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 885 if (udma_mask) 886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 887 } 888 889 static const struct ata_xfer_ent { 890 int shift, bits; 891 u8 base; 892 } ata_xfer_tbl[] = { 893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 896 { -1, }, 897 }; 898 899 /** 900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 901 * @xfer_mask: xfer_mask of interest 902 * 903 * Return matching XFER_* value for @xfer_mask. Only the highest 904 * bit of @xfer_mask is considered. 905 * 906 * LOCKING: 907 * None. 908 * 909 * RETURNS: 910 * Matching XFER_* value, 0xff if no match found. 911 */ 912 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 913 { 914 int highbit = fls(xfer_mask) - 1; 915 const struct ata_xfer_ent *ent; 916 917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 919 return ent->base + highbit - ent->shift; 920 return 0xff; 921 } 922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 923 924 /** 925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 926 * @xfer_mode: XFER_* of interest 927 * 928 * Return matching xfer_mask for @xfer_mode. 929 * 930 * LOCKING: 931 * None. 932 * 933 * RETURNS: 934 * Matching xfer_mask, 0 if no match found. 935 */ 936 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 937 { 938 const struct ata_xfer_ent *ent; 939 940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 943 & ~((1 << ent->shift) - 1); 944 return 0; 945 } 946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 947 948 /** 949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 950 * @xfer_mode: XFER_* of interest 951 * 952 * Return matching xfer_shift for @xfer_mode. 953 * 954 * LOCKING: 955 * None. 956 * 957 * RETURNS: 958 * Matching xfer_shift, -1 if no match found. 959 */ 960 int ata_xfer_mode2shift(u8 xfer_mode) 961 { 962 const struct ata_xfer_ent *ent; 963 964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 966 return ent->shift; 967 return -1; 968 } 969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 970 971 /** 972 * ata_mode_string - convert xfer_mask to string 973 * @xfer_mask: mask of bits supported; only highest bit counts. 974 * 975 * Determine string which represents the highest speed 976 * (highest bit in @modemask). 977 * 978 * LOCKING: 979 * None. 980 * 981 * RETURNS: 982 * Constant C string representing highest speed listed in 983 * @mode_mask, or the constant C string "<n/a>". 984 */ 985 const char *ata_mode_string(unsigned int xfer_mask) 986 { 987 static const char * const xfer_mode_str[] = { 988 "PIO0", 989 "PIO1", 990 "PIO2", 991 "PIO3", 992 "PIO4", 993 "PIO5", 994 "PIO6", 995 "MWDMA0", 996 "MWDMA1", 997 "MWDMA2", 998 "MWDMA3", 999 "MWDMA4", 1000 "UDMA/16", 1001 "UDMA/25", 1002 "UDMA/33", 1003 "UDMA/44", 1004 "UDMA/66", 1005 "UDMA/100", 1006 "UDMA/133", 1007 "UDMA7", 1008 }; 1009 int highbit; 1010 1011 highbit = fls(xfer_mask) - 1; 1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1013 return xfer_mode_str[highbit]; 1014 return "<n/a>"; 1015 } 1016 EXPORT_SYMBOL_GPL(ata_mode_string); 1017 1018 const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 /** 1032 * ata_dev_classify - determine device type based on ATA-spec signature 1033 * @tf: ATA taskfile register set for device to be identified 1034 * 1035 * Determine from taskfile register contents whether a device is 1036 * ATA or ATAPI, as per "Signature and persistence" section 1037 * of ATA/PI spec (volume 1, sect 5.14). 1038 * 1039 * LOCKING: 1040 * None. 1041 * 1042 * RETURNS: 1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1045 */ 1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1047 { 1048 /* Apple's open source Darwin code hints that some devices only 1049 * put a proper signature into the LBA mid/high registers, 1050 * So, we only check those. It's sufficient for uniqueness. 1051 * 1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1053 * signatures for ATA and ATAPI devices attached on SerialATA, 1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1055 * spec has never mentioned about using different signatures 1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1057 * Multiplier specification began to use 0x69/0x96 to identify 1058 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1060 * 0x69/0x96 shortly and described them as reserved for 1061 * SerialATA. 1062 * 1063 * We follow the current spec and consider that 0x69/0x96 1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1066 * SEMB signature. This is worked around in 1067 * ata_dev_read_id(). 1068 */ 1069 if (tf->lbam == 0 && tf->lbah == 0) 1070 return ATA_DEV_ATA; 1071 1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1073 return ATA_DEV_ATAPI; 1074 1075 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1076 return ATA_DEV_PMP; 1077 1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1079 return ATA_DEV_SEMB; 1080 1081 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1082 return ATA_DEV_ZAC; 1083 1084 return ATA_DEV_UNKNOWN; 1085 } 1086 EXPORT_SYMBOL_GPL(ata_dev_classify); 1087 1088 /** 1089 * ata_id_string - Convert IDENTIFY DEVICE page into string 1090 * @id: IDENTIFY DEVICE results we will examine 1091 * @s: string into which data is output 1092 * @ofs: offset into identify device page 1093 * @len: length of string to return. must be an even number. 1094 * 1095 * The strings in the IDENTIFY DEVICE page are broken up into 1096 * 16-bit chunks. Run through the string, and output each 1097 * 8-bit chunk linearly, regardless of platform. 1098 * 1099 * LOCKING: 1100 * caller. 1101 */ 1102 1103 void ata_id_string(const u16 *id, unsigned char *s, 1104 unsigned int ofs, unsigned int len) 1105 { 1106 unsigned int c; 1107 1108 BUG_ON(len & 1); 1109 1110 while (len > 0) { 1111 c = id[ofs] >> 8; 1112 *s = c; 1113 s++; 1114 1115 c = id[ofs] & 0xff; 1116 *s = c; 1117 s++; 1118 1119 ofs++; 1120 len -= 2; 1121 } 1122 } 1123 EXPORT_SYMBOL_GPL(ata_id_string); 1124 1125 /** 1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1127 * @id: IDENTIFY DEVICE results we will examine 1128 * @s: string into which data is output 1129 * @ofs: offset into identify device page 1130 * @len: length of string to return. must be an odd number. 1131 * 1132 * This function is identical to ata_id_string except that it 1133 * trims trailing spaces and terminates the resulting string with 1134 * null. @len must be actual maximum length (even number) + 1. 1135 * 1136 * LOCKING: 1137 * caller. 1138 */ 1139 void ata_id_c_string(const u16 *id, unsigned char *s, 1140 unsigned int ofs, unsigned int len) 1141 { 1142 unsigned char *p; 1143 1144 ata_id_string(id, s, ofs, len - 1); 1145 1146 p = s + strnlen(s, len - 1); 1147 while (p > s && p[-1] == ' ') 1148 p--; 1149 *p = '\0'; 1150 } 1151 EXPORT_SYMBOL_GPL(ata_id_c_string); 1152 1153 static u64 ata_id_n_sectors(const u16 *id) 1154 { 1155 if (ata_id_has_lba(id)) { 1156 if (ata_id_has_lba48(id)) 1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1158 1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1160 } 1161 1162 if (ata_id_current_chs_valid(id)) 1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1164 (u32)id[ATA_ID_CUR_SECTORS]; 1165 1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1167 (u32)id[ATA_ID_SECTORS]; 1168 } 1169 1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1171 { 1172 u64 sectors = 0; 1173 1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1177 sectors |= (tf->lbah & 0xff) << 16; 1178 sectors |= (tf->lbam & 0xff) << 8; 1179 sectors |= (tf->lbal & 0xff); 1180 1181 return sectors; 1182 } 1183 1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1185 { 1186 u64 sectors = 0; 1187 1188 sectors |= (tf->device & 0x0f) << 24; 1189 sectors |= (tf->lbah & 0xff) << 16; 1190 sectors |= (tf->lbam & 0xff) << 8; 1191 sectors |= (tf->lbal & 0xff); 1192 1193 return sectors; 1194 } 1195 1196 /** 1197 * ata_read_native_max_address - Read native max address 1198 * @dev: target device 1199 * @max_sectors: out parameter for the result native max address 1200 * 1201 * Perform an LBA48 or LBA28 native size query upon the device in 1202 * question. 1203 * 1204 * RETURNS: 1205 * 0 on success, -EACCES if command is aborted by the drive. 1206 * -EIO on other errors. 1207 */ 1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1209 { 1210 unsigned int err_mask; 1211 struct ata_taskfile tf; 1212 int lba48 = ata_id_has_lba48(dev->id); 1213 1214 ata_tf_init(dev, &tf); 1215 1216 /* always clear all address registers */ 1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1218 1219 if (lba48) { 1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1221 tf.flags |= ATA_TFLAG_LBA48; 1222 } else 1223 tf.command = ATA_CMD_READ_NATIVE_MAX; 1224 1225 tf.protocol = ATA_PROT_NODATA; 1226 tf.device |= ATA_LBA; 1227 1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1229 if (err_mask) { 1230 ata_dev_warn(dev, 1231 "failed to read native max address (err_mask=0x%x)\n", 1232 err_mask); 1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1234 return -EACCES; 1235 return -EIO; 1236 } 1237 1238 if (lba48) 1239 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1240 else 1241 *max_sectors = ata_tf_to_lba(&tf) + 1; 1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE) 1243 (*max_sectors)--; 1244 return 0; 1245 } 1246 1247 /** 1248 * ata_set_max_sectors - Set max sectors 1249 * @dev: target device 1250 * @new_sectors: new max sectors value to set for the device 1251 * 1252 * Set max sectors of @dev to @new_sectors. 1253 * 1254 * RETURNS: 1255 * 0 on success, -EACCES if command is aborted or denied (due to 1256 * previous non-volatile SET_MAX) by the drive. -EIO on other 1257 * errors. 1258 */ 1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1260 { 1261 unsigned int err_mask; 1262 struct ata_taskfile tf; 1263 int lba48 = ata_id_has_lba48(dev->id); 1264 1265 new_sectors--; 1266 1267 ata_tf_init(dev, &tf); 1268 1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1270 1271 if (lba48) { 1272 tf.command = ATA_CMD_SET_MAX_EXT; 1273 tf.flags |= ATA_TFLAG_LBA48; 1274 1275 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1276 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1277 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1278 } else { 1279 tf.command = ATA_CMD_SET_MAX; 1280 1281 tf.device |= (new_sectors >> 24) & 0xf; 1282 } 1283 1284 tf.protocol = ATA_PROT_NODATA; 1285 tf.device |= ATA_LBA; 1286 1287 tf.lbal = (new_sectors >> 0) & 0xff; 1288 tf.lbam = (new_sectors >> 8) & 0xff; 1289 tf.lbah = (new_sectors >> 16) & 0xff; 1290 1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1292 if (err_mask) { 1293 ata_dev_warn(dev, 1294 "failed to set max address (err_mask=0x%x)\n", 1295 err_mask); 1296 if (err_mask == AC_ERR_DEV && 1297 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1298 return -EACCES; 1299 return -EIO; 1300 } 1301 1302 return 0; 1303 } 1304 1305 /** 1306 * ata_hpa_resize - Resize a device with an HPA set 1307 * @dev: Device to resize 1308 * 1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1310 * it if required to the full size of the media. The caller must check 1311 * the drive has the HPA feature set enabled. 1312 * 1313 * RETURNS: 1314 * 0 on success, -errno on failure. 1315 */ 1316 static int ata_hpa_resize(struct ata_device *dev) 1317 { 1318 bool print_info = ata_dev_print_info(dev); 1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1320 u64 sectors = ata_id_n_sectors(dev->id); 1321 u64 native_sectors; 1322 int rc; 1323 1324 /* do we need to do it? */ 1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA)) 1328 return 0; 1329 1330 /* read native max address */ 1331 rc = ata_read_native_max_address(dev, &native_sectors); 1332 if (rc) { 1333 /* If device aborted the command or HPA isn't going to 1334 * be unlocked, skip HPA resizing. 1335 */ 1336 if (rc == -EACCES || !unlock_hpa) { 1337 ata_dev_warn(dev, 1338 "HPA support seems broken, skipping HPA handling\n"); 1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1340 1341 /* we can continue if device aborted the command */ 1342 if (rc == -EACCES) 1343 rc = 0; 1344 } 1345 1346 return rc; 1347 } 1348 dev->n_native_sectors = native_sectors; 1349 1350 /* nothing to do? */ 1351 if (native_sectors <= sectors || !unlock_hpa) { 1352 if (!print_info || native_sectors == sectors) 1353 return 0; 1354 1355 if (native_sectors > sectors) 1356 ata_dev_info(dev, 1357 "HPA detected: current %llu, native %llu\n", 1358 (unsigned long long)sectors, 1359 (unsigned long long)native_sectors); 1360 else if (native_sectors < sectors) 1361 ata_dev_warn(dev, 1362 "native sectors (%llu) is smaller than sectors (%llu)\n", 1363 (unsigned long long)native_sectors, 1364 (unsigned long long)sectors); 1365 return 0; 1366 } 1367 1368 /* let's unlock HPA */ 1369 rc = ata_set_max_sectors(dev, native_sectors); 1370 if (rc == -EACCES) { 1371 /* if device aborted the command, skip HPA resizing */ 1372 ata_dev_warn(dev, 1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1374 (unsigned long long)sectors, 1375 (unsigned long long)native_sectors); 1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1377 return 0; 1378 } else if (rc) 1379 return rc; 1380 1381 /* re-read IDENTIFY data */ 1382 rc = ata_dev_reread_id(dev, 0); 1383 if (rc) { 1384 ata_dev_err(dev, 1385 "failed to re-read IDENTIFY data after HPA resizing\n"); 1386 return rc; 1387 } 1388 1389 if (print_info) { 1390 u64 new_sectors = ata_id_n_sectors(dev->id); 1391 ata_dev_info(dev, 1392 "HPA unlocked: %llu -> %llu, native %llu\n", 1393 (unsigned long long)sectors, 1394 (unsigned long long)new_sectors, 1395 (unsigned long long)native_sectors); 1396 } 1397 1398 return 0; 1399 } 1400 1401 /** 1402 * ata_dump_id - IDENTIFY DEVICE info debugging output 1403 * @dev: device from which the information is fetched 1404 * @id: IDENTIFY DEVICE page to dump 1405 * 1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1407 * page. 1408 * 1409 * LOCKING: 1410 * caller. 1411 */ 1412 1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1414 { 1415 ata_dev_dbg(dev, 1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1418 "88==0x%04x 93==0x%04x\n", 1419 id[49], id[53], id[63], id[64], id[75], id[80], 1420 id[81], id[82], id[83], id[84], id[88], id[93]); 1421 } 1422 1423 /** 1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1425 * @id: IDENTIFY data to compute xfer mask from 1426 * 1427 * Compute the xfermask for this device. This is not as trivial 1428 * as it seems if we must consider early devices correctly. 1429 * 1430 * FIXME: pre IDE drive timing (do we care ?). 1431 * 1432 * LOCKING: 1433 * None. 1434 * 1435 * RETURNS: 1436 * Computed xfermask 1437 */ 1438 unsigned int ata_id_xfermask(const u16 *id) 1439 { 1440 unsigned int pio_mask, mwdma_mask, udma_mask; 1441 1442 /* Usual case. Word 53 indicates word 64 is valid */ 1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1445 pio_mask <<= 3; 1446 pio_mask |= 0x7; 1447 } else { 1448 /* If word 64 isn't valid then Word 51 high byte holds 1449 * the PIO timing number for the maximum. Turn it into 1450 * a mask. 1451 */ 1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1453 if (mode < 5) /* Valid PIO range */ 1454 pio_mask = (2 << mode) - 1; 1455 else 1456 pio_mask = 1; 1457 1458 /* But wait.. there's more. Design your standards by 1459 * committee and you too can get a free iordy field to 1460 * process. However it is the speeds not the modes that 1461 * are supported... Note drivers using the timing API 1462 * will get this right anyway 1463 */ 1464 } 1465 1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1467 1468 if (ata_id_is_cfa(id)) { 1469 /* 1470 * Process compact flash extended modes 1471 */ 1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1474 1475 if (pio) 1476 pio_mask |= (1 << 5); 1477 if (pio > 1) 1478 pio_mask |= (1 << 6); 1479 if (dma) 1480 mwdma_mask |= (1 << 3); 1481 if (dma > 1) 1482 mwdma_mask |= (1 << 4); 1483 } 1484 1485 udma_mask = 0; 1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1488 1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1490 } 1491 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1492 1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1494 { 1495 struct completion *waiting = qc->private_data; 1496 1497 complete(waiting); 1498 } 1499 1500 /** 1501 * ata_exec_internal - execute libata internal command 1502 * @dev: Device to which the command is sent 1503 * @tf: Taskfile registers for the command and the result 1504 * @cdb: CDB for packet command 1505 * @dma_dir: Data transfer direction of the command 1506 * @buf: Data buffer of the command 1507 * @buflen: Length of data buffer 1508 * @timeout: Timeout in msecs (0 for default) 1509 * 1510 * Executes libata internal command with timeout. @tf contains 1511 * the command on entry and the result on return. Timeout and error 1512 * conditions are reported via the return value. No recovery action 1513 * is taken after a command times out. It is the caller's duty to 1514 * clean up after timeout. 1515 * 1516 * LOCKING: 1517 * None. Should be called with kernel context, might sleep. 1518 * 1519 * RETURNS: 1520 * Zero on success, AC_ERR_* mask on failure 1521 */ 1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1523 const u8 *cdb, enum dma_data_direction dma_dir, 1524 void *buf, unsigned int buflen, 1525 unsigned int timeout) 1526 { 1527 struct ata_link *link = dev->link; 1528 struct ata_port *ap = link->ap; 1529 u8 command = tf->command; 1530 struct ata_queued_cmd *qc; 1531 struct scatterlist sgl; 1532 unsigned int preempted_tag; 1533 u32 preempted_sactive; 1534 u64 preempted_qc_active; 1535 int preempted_nr_active_links; 1536 bool auto_timeout = false; 1537 DECLARE_COMPLETION_ONSTACK(wait); 1538 unsigned long flags; 1539 unsigned int err_mask; 1540 int rc; 1541 1542 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1543 return AC_ERR_INVALID; 1544 1545 spin_lock_irqsave(ap->lock, flags); 1546 1547 /* No internal command while frozen */ 1548 if (ata_port_is_frozen(ap)) { 1549 spin_unlock_irqrestore(ap->lock, flags); 1550 return AC_ERR_SYSTEM; 1551 } 1552 1553 /* Initialize internal qc */ 1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1555 1556 qc->tag = ATA_TAG_INTERNAL; 1557 qc->hw_tag = 0; 1558 qc->scsicmd = NULL; 1559 qc->ap = ap; 1560 qc->dev = dev; 1561 ata_qc_reinit(qc); 1562 1563 preempted_tag = link->active_tag; 1564 preempted_sactive = link->sactive; 1565 preempted_qc_active = ap->qc_active; 1566 preempted_nr_active_links = ap->nr_active_links; 1567 link->active_tag = ATA_TAG_POISON; 1568 link->sactive = 0; 1569 ap->qc_active = 0; 1570 ap->nr_active_links = 0; 1571 1572 /* Prepare and issue qc */ 1573 qc->tf = *tf; 1574 if (cdb) 1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1576 1577 /* Some SATA bridges need us to indicate data xfer direction */ 1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1579 dma_dir == DMA_FROM_DEVICE) 1580 qc->tf.feature |= ATAPI_DMADIR; 1581 1582 qc->flags |= ATA_QCFLAG_RESULT_TF; 1583 qc->dma_dir = dma_dir; 1584 if (dma_dir != DMA_NONE) { 1585 sg_init_one(&sgl, buf, buflen); 1586 ata_sg_init(qc, &sgl, 1); 1587 qc->nbytes = buflen; 1588 } 1589 1590 qc->private_data = &wait; 1591 qc->complete_fn = ata_qc_complete_internal; 1592 1593 ata_qc_issue(qc); 1594 1595 spin_unlock_irqrestore(ap->lock, flags); 1596 1597 if (!timeout) { 1598 if (ata_probe_timeout) { 1599 timeout = ata_probe_timeout * 1000; 1600 } else { 1601 timeout = ata_internal_cmd_timeout(dev, command); 1602 auto_timeout = true; 1603 } 1604 } 1605 1606 ata_eh_release(ap); 1607 1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1609 1610 ata_eh_acquire(ap); 1611 1612 ata_sff_flush_pio_task(ap); 1613 1614 if (!rc) { 1615 /* 1616 * We are racing with irq here. If we lose, the following test 1617 * prevents us from completing the qc twice. If we win, the port 1618 * is frozen and will be cleaned up by ->post_internal_cmd(). 1619 */ 1620 spin_lock_irqsave(ap->lock, flags); 1621 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1622 qc->err_mask |= AC_ERR_TIMEOUT; 1623 ata_port_freeze(ap); 1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1625 timeout, command); 1626 } 1627 spin_unlock_irqrestore(ap->lock, flags); 1628 } 1629 1630 if (ap->ops->post_internal_cmd) 1631 ap->ops->post_internal_cmd(qc); 1632 1633 /* Perform minimal error analysis */ 1634 if (qc->flags & ATA_QCFLAG_EH) { 1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1636 qc->err_mask |= AC_ERR_DEV; 1637 1638 if (!qc->err_mask) 1639 qc->err_mask |= AC_ERR_OTHER; 1640 1641 if (qc->err_mask & ~AC_ERR_OTHER) 1642 qc->err_mask &= ~AC_ERR_OTHER; 1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1644 qc->result_tf.status |= ATA_SENSE; 1645 } 1646 1647 /* Finish up */ 1648 spin_lock_irqsave(ap->lock, flags); 1649 1650 *tf = qc->result_tf; 1651 err_mask = qc->err_mask; 1652 1653 ata_qc_free(qc); 1654 link->active_tag = preempted_tag; 1655 link->sactive = preempted_sactive; 1656 ap->qc_active = preempted_qc_active; 1657 ap->nr_active_links = preempted_nr_active_links; 1658 1659 spin_unlock_irqrestore(ap->lock, flags); 1660 1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1662 ata_internal_cmd_timed_out(dev, command); 1663 1664 return err_mask; 1665 } 1666 1667 /** 1668 * ata_pio_need_iordy - check if iordy needed 1669 * @adev: ATA device 1670 * 1671 * Check if the current speed of the device requires IORDY. Used 1672 * by various controllers for chip configuration. 1673 */ 1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1675 { 1676 /* Don't set IORDY if we're preparing for reset. IORDY may 1677 * lead to controller lock up on certain controllers if the 1678 * port is not occupied. See bko#11703 for details. 1679 */ 1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1681 return 0; 1682 /* Controller doesn't support IORDY. Probably a pointless 1683 * check as the caller should know this. 1684 */ 1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1686 return 0; 1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1688 if (ata_id_is_cfa(adev->id) 1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1690 return 0; 1691 /* PIO3 and higher it is mandatory */ 1692 if (adev->pio_mode > XFER_PIO_2) 1693 return 1; 1694 /* We turn it on when possible */ 1695 if (ata_id_has_iordy(adev->id)) 1696 return 1; 1697 return 0; 1698 } 1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1700 1701 /** 1702 * ata_pio_mask_no_iordy - Return the non IORDY mask 1703 * @adev: ATA device 1704 * 1705 * Compute the highest mode possible if we are not using iordy. Return 1706 * -1 if no iordy mode is available. 1707 */ 1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1709 { 1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1712 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1713 /* Is the speed faster than the drive allows non IORDY ? */ 1714 if (pio) { 1715 /* This is cycle times not frequency - watch the logic! */ 1716 if (pio > 240) /* PIO2 is 240nS per cycle */ 1717 return 3 << ATA_SHIFT_PIO; 1718 return 7 << ATA_SHIFT_PIO; 1719 } 1720 } 1721 return 3 << ATA_SHIFT_PIO; 1722 } 1723 1724 /** 1725 * ata_do_dev_read_id - default ID read method 1726 * @dev: device 1727 * @tf: proposed taskfile 1728 * @id: data buffer 1729 * 1730 * Issue the identify taskfile and hand back the buffer containing 1731 * identify data. For some RAID controllers and for pre ATA devices 1732 * this function is wrapped or replaced by the driver 1733 */ 1734 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1735 struct ata_taskfile *tf, __le16 *id) 1736 { 1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1739 } 1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1741 1742 /** 1743 * ata_dev_read_id - Read ID data from the specified device 1744 * @dev: target device 1745 * @p_class: pointer to class of the target device (may be changed) 1746 * @flags: ATA_READID_* flags 1747 * @id: buffer to read IDENTIFY data into 1748 * 1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1752 * for pre-ATA4 drives. 1753 * 1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1755 * now we abort if we hit that case. 1756 * 1757 * LOCKING: 1758 * Kernel thread context (may sleep) 1759 * 1760 * RETURNS: 1761 * 0 on success, -errno otherwise. 1762 */ 1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1764 unsigned int flags, u16 *id) 1765 { 1766 struct ata_port *ap = dev->link->ap; 1767 unsigned int class = *p_class; 1768 struct ata_taskfile tf; 1769 unsigned int err_mask = 0; 1770 const char *reason; 1771 bool is_semb = class == ATA_DEV_SEMB; 1772 int may_fallback = 1, tried_spinup = 0; 1773 int rc; 1774 1775 retry: 1776 ata_tf_init(dev, &tf); 1777 1778 switch (class) { 1779 case ATA_DEV_SEMB: 1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1781 fallthrough; 1782 case ATA_DEV_ATA: 1783 case ATA_DEV_ZAC: 1784 tf.command = ATA_CMD_ID_ATA; 1785 break; 1786 case ATA_DEV_ATAPI: 1787 tf.command = ATA_CMD_ID_ATAPI; 1788 break; 1789 default: 1790 rc = -ENODEV; 1791 reason = "unsupported class"; 1792 goto err_out; 1793 } 1794 1795 tf.protocol = ATA_PROT_PIO; 1796 1797 /* Some devices choke if TF registers contain garbage. Make 1798 * sure those are properly initialized. 1799 */ 1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1801 1802 /* Device presence detection is unreliable on some 1803 * controllers. Always poll IDENTIFY if available. 1804 */ 1805 tf.flags |= ATA_TFLAG_POLLING; 1806 1807 if (ap->ops->read_id) 1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1809 else 1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1811 1812 if (err_mask) { 1813 if (err_mask & AC_ERR_NODEV_HINT) { 1814 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1815 return -ENOENT; 1816 } 1817 1818 if (is_semb) { 1819 ata_dev_info(dev, 1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1821 /* SEMB is not supported yet */ 1822 *p_class = ATA_DEV_SEMB_UNSUP; 1823 return 0; 1824 } 1825 1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1827 /* Device or controller might have reported 1828 * the wrong device class. Give a shot at the 1829 * other IDENTIFY if the current one is 1830 * aborted by the device. 1831 */ 1832 if (may_fallback) { 1833 may_fallback = 0; 1834 1835 if (class == ATA_DEV_ATA) 1836 class = ATA_DEV_ATAPI; 1837 else 1838 class = ATA_DEV_ATA; 1839 goto retry; 1840 } 1841 1842 /* Control reaches here iff the device aborted 1843 * both flavors of IDENTIFYs which happens 1844 * sometimes with phantom devices. 1845 */ 1846 ata_dev_dbg(dev, 1847 "both IDENTIFYs aborted, assuming NODEV\n"); 1848 return -ENOENT; 1849 } 1850 1851 rc = -EIO; 1852 reason = "I/O error"; 1853 goto err_out; 1854 } 1855 1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) { 1857 ata_dev_info(dev, "dumping IDENTIFY data, " 1858 "class=%d may_fallback=%d tried_spinup=%d\n", 1859 class, may_fallback, tried_spinup); 1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1862 } 1863 1864 /* Falling back doesn't make sense if ID data was read 1865 * successfully at least once. 1866 */ 1867 may_fallback = 0; 1868 1869 swap_buf_le16(id, ATA_ID_WORDS); 1870 1871 /* sanity check */ 1872 rc = -EINVAL; 1873 reason = "device reports invalid type"; 1874 1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1877 goto err_out; 1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1879 ata_id_is_ata(id)) { 1880 ata_dev_dbg(dev, 1881 "host indicates ignore ATA devices, ignored\n"); 1882 return -ENOENT; 1883 } 1884 } else { 1885 if (ata_id_is_ata(id)) 1886 goto err_out; 1887 } 1888 1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1890 tried_spinup = 1; 1891 /* 1892 * Drive powered-up in standby mode, and requires a specific 1893 * SET_FEATURES spin-up subcommand before it will accept 1894 * anything other than the original IDENTIFY command. 1895 */ 1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1897 if (err_mask && id[2] != 0x738c) { 1898 rc = -EIO; 1899 reason = "SPINUP failed"; 1900 goto err_out; 1901 } 1902 /* 1903 * If the drive initially returned incomplete IDENTIFY info, 1904 * we now must reissue the IDENTIFY command. 1905 */ 1906 if (id[2] == 0x37c8) 1907 goto retry; 1908 } 1909 1910 if ((flags & ATA_READID_POSTRESET) && 1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1912 /* 1913 * The exact sequence expected by certain pre-ATA4 drives is: 1914 * SRST RESET 1915 * IDENTIFY (optional in early ATA) 1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1917 * anything else.. 1918 * Some drives were very specific about that exact sequence. 1919 * 1920 * Note that ATA4 says lba is mandatory so the second check 1921 * should never trigger. 1922 */ 1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1924 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1925 if (err_mask) { 1926 rc = -EIO; 1927 reason = "INIT_DEV_PARAMS failed"; 1928 goto err_out; 1929 } 1930 1931 /* current CHS translation info (id[53-58]) might be 1932 * changed. reread the identify device info. 1933 */ 1934 flags &= ~ATA_READID_POSTRESET; 1935 goto retry; 1936 } 1937 } 1938 1939 *p_class = class; 1940 1941 return 0; 1942 1943 err_out: 1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1945 reason, err_mask); 1946 return rc; 1947 } 1948 1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1950 bool set_active) 1951 { 1952 /* Only applies to ATA and ZAC devices */ 1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1954 return false; 1955 1956 ata_tf_init(dev, tf); 1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1958 tf->protocol = ATA_PROT_NODATA; 1959 1960 if (set_active) { 1961 /* VERIFY for 1 sector at lba=0 */ 1962 tf->command = ATA_CMD_VERIFY; 1963 tf->nsect = 1; 1964 if (dev->flags & ATA_DFLAG_LBA) { 1965 tf->flags |= ATA_TFLAG_LBA; 1966 tf->device |= ATA_LBA; 1967 } else { 1968 /* CHS */ 1969 tf->lbal = 0x1; /* sect */ 1970 } 1971 } else { 1972 tf->command = ATA_CMD_STANDBYNOW1; 1973 } 1974 1975 return true; 1976 } 1977 1978 static bool ata_dev_power_is_active(struct ata_device *dev) 1979 { 1980 struct ata_taskfile tf; 1981 unsigned int err_mask; 1982 1983 ata_tf_init(dev, &tf); 1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1985 tf.protocol = ATA_PROT_NODATA; 1986 tf.command = ATA_CMD_CHK_POWER; 1987 1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1989 if (err_mask) { 1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 1991 err_mask); 1992 /* 1993 * Assume we are in standby mode so that we always force a 1994 * spinup in ata_dev_power_set_active(). 1995 */ 1996 return false; 1997 } 1998 1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 2000 2001 /* Active or idle */ 2002 return tf.nsect == 0xff; 2003 } 2004 2005 /** 2006 * ata_dev_power_set_standby - Set a device power mode to standby 2007 * @dev: target device 2008 * 2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 2010 * For an HDD device, this spins down the disks. 2011 * 2012 * LOCKING: 2013 * Kernel thread context (may sleep). 2014 */ 2015 void ata_dev_power_set_standby(struct ata_device *dev) 2016 { 2017 unsigned long ap_flags = dev->link->ap->flags; 2018 struct ata_taskfile tf; 2019 unsigned int err_mask; 2020 2021 /* If the device is already sleeping or in standby, do nothing. */ 2022 if ((dev->flags & ATA_DFLAG_SLEEPING) || 2023 !ata_dev_power_is_active(dev)) 2024 return; 2025 2026 /* 2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2028 * causing some drives to spin up and down again. For these, do nothing 2029 * if we are being called on shutdown. 2030 */ 2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2032 system_state == SYSTEM_POWER_OFF) 2033 return; 2034 2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2036 system_entering_hibernation()) 2037 return; 2038 2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2040 if (!ata_dev_power_init_tf(dev, &tf, false)) 2041 return; 2042 2043 ata_dev_notice(dev, "Entering standby power mode\n"); 2044 2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2046 if (err_mask) 2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2048 err_mask); 2049 } 2050 2051 /** 2052 * ata_dev_power_set_active - Set a device power mode to active 2053 * @dev: target device 2054 * 2055 * Issue a VERIFY command to enter to ensure that the device is in the 2056 * active power mode. For a spun-down HDD (standby or idle power mode), 2057 * the VERIFY command will complete after the disk spins up. 2058 * 2059 * LOCKING: 2060 * Kernel thread context (may sleep). 2061 */ 2062 void ata_dev_power_set_active(struct ata_device *dev) 2063 { 2064 struct ata_taskfile tf; 2065 unsigned int err_mask; 2066 2067 /* 2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2069 * if supported by the device. 2070 */ 2071 if (!ata_dev_power_init_tf(dev, &tf, true)) 2072 return; 2073 2074 /* 2075 * Check the device power state & condition and force a spinup with 2076 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2077 */ 2078 if (ata_dev_power_is_active(dev)) 2079 return; 2080 2081 ata_dev_notice(dev, "Entering active power mode\n"); 2082 2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2084 if (err_mask) 2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2086 err_mask); 2087 } 2088 2089 /** 2090 * ata_read_log_page - read a specific log page 2091 * @dev: target device 2092 * @log: log to read 2093 * @page: page to read 2094 * @buf: buffer to store read page 2095 * @sectors: number of sectors to read 2096 * 2097 * Read log page using READ_LOG_EXT command. 2098 * 2099 * LOCKING: 2100 * Kernel thread context (may sleep). 2101 * 2102 * RETURNS: 2103 * 0 on success, AC_ERR_* mask otherwise. 2104 */ 2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2106 u8 page, void *buf, unsigned int sectors) 2107 { 2108 unsigned long ap_flags = dev->link->ap->flags; 2109 struct ata_taskfile tf; 2110 unsigned int err_mask; 2111 bool dma = false; 2112 2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2114 2115 /* 2116 * Return error without actually issuing the command on controllers 2117 * which e.g. lockup on a read log page. 2118 */ 2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2120 return AC_ERR_DEV; 2121 2122 retry: 2123 ata_tf_init(dev, &tf); 2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) { 2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2127 tf.protocol = ATA_PROT_DMA; 2128 dma = true; 2129 } else { 2130 tf.command = ATA_CMD_READ_LOG_EXT; 2131 tf.protocol = ATA_PROT_PIO; 2132 dma = false; 2133 } 2134 tf.lbal = log; 2135 tf.lbam = page; 2136 tf.nsect = sectors; 2137 tf.hob_nsect = sectors >> 8; 2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2139 2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2141 buf, sectors * ATA_SECT_SIZE, 0); 2142 2143 if (err_mask) { 2144 if (dma) { 2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG; 2146 if (!ata_port_is_frozen(dev->link->ap)) 2147 goto retry; 2148 } 2149 ata_dev_err(dev, 2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2151 (unsigned int)log, (unsigned int)page, err_mask); 2152 } 2153 2154 return err_mask; 2155 } 2156 2157 static inline void ata_clear_log_directory(struct ata_device *dev) 2158 { 2159 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE); 2160 } 2161 2162 static int ata_read_log_directory(struct ata_device *dev) 2163 { 2164 u16 version; 2165 2166 /* If the log page is already cached, do nothing. */ 2167 version = get_unaligned_le16(&dev->gp_log_dir[0]); 2168 if (version == 0x0001) 2169 return 0; 2170 2171 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) { 2172 ata_clear_log_directory(dev); 2173 return -EIO; 2174 } 2175 2176 version = get_unaligned_le16(&dev->gp_log_dir[0]); 2177 if (version != 0x0001) { 2178 ata_dev_err(dev, "Invalid log directory version 0x%04x\n", 2179 version); 2180 ata_clear_log_directory(dev); 2181 dev->quirks |= ATA_QUIRK_NO_LOG_DIR; 2182 return -EINVAL; 2183 } 2184 2185 return 0; 2186 } 2187 2188 static int ata_log_supported(struct ata_device *dev, u8 log) 2189 { 2190 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR) 2191 return 0; 2192 2193 if (ata_read_log_directory(dev)) 2194 return 0; 2195 2196 return get_unaligned_le16(&dev->gp_log_dir[log * 2]); 2197 } 2198 2199 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2200 { 2201 unsigned int err, i; 2202 2203 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG) 2204 return false; 2205 2206 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2207 /* 2208 * IDENTIFY DEVICE data log is defined as mandatory starting 2209 * with ACS-3 (ATA version 10). Warn about the missing log 2210 * for drives which implement this ATA level or above. 2211 */ 2212 if (ata_id_major_version(dev->id) >= 10) 2213 ata_dev_warn(dev, 2214 "ATA Identify Device Log not supported\n"); 2215 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG; 2216 return false; 2217 } 2218 2219 /* 2220 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2221 * supported. 2222 */ 2223 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, 2224 dev->sector_buf, 1); 2225 if (err) 2226 return false; 2227 2228 for (i = 0; i < dev->sector_buf[8]; i++) { 2229 if (dev->sector_buf[9 + i] == page) 2230 return true; 2231 } 2232 2233 return false; 2234 } 2235 2236 static int ata_do_link_spd_quirk(struct ata_device *dev) 2237 { 2238 struct ata_link *plink = ata_dev_phys_link(dev); 2239 u32 target, target_limit; 2240 2241 if (!sata_scr_valid(plink)) 2242 return 0; 2243 2244 if (dev->quirks & ATA_QUIRK_1_5_GBPS) 2245 target = 1; 2246 else 2247 return 0; 2248 2249 target_limit = (1 << target) - 1; 2250 2251 /* if already on stricter limit, no need to push further */ 2252 if (plink->sata_spd_limit <= target_limit) 2253 return 0; 2254 2255 plink->sata_spd_limit = target_limit; 2256 2257 /* Request another EH round by returning -EAGAIN if link is 2258 * going faster than the target speed. Forward progress is 2259 * guaranteed by setting sata_spd_limit to target_limit above. 2260 */ 2261 if (plink->sata_spd > target) { 2262 ata_dev_info(dev, "applying link speed limit quirk to %s\n", 2263 sata_spd_string(target)); 2264 return -EAGAIN; 2265 } 2266 return 0; 2267 } 2268 2269 static inline bool ata_dev_knobble(struct ata_device *dev) 2270 { 2271 struct ata_port *ap = dev->link->ap; 2272 2273 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK) 2274 return false; 2275 2276 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2277 } 2278 2279 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2280 { 2281 unsigned int err_mask; 2282 2283 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2284 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2285 return; 2286 } 2287 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2288 0, dev->sector_buf, 1); 2289 if (!err_mask) { 2290 u8 *cmds = dev->ncq_send_recv_cmds; 2291 2292 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2293 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2294 2295 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) { 2296 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2297 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2298 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2299 } 2300 } 2301 } 2302 2303 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2304 { 2305 unsigned int err_mask; 2306 2307 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2308 ata_dev_warn(dev, 2309 "NCQ Non-Data Log not supported\n"); 2310 return; 2311 } 2312 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2313 0, dev->sector_buf, 1); 2314 if (!err_mask) 2315 memcpy(dev->ncq_non_data_cmds, dev->sector_buf, 2316 ATA_LOG_NCQ_NON_DATA_SIZE); 2317 } 2318 2319 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2320 { 2321 unsigned int err_mask; 2322 2323 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2324 return; 2325 2326 err_mask = ata_read_log_page(dev, 2327 ATA_LOG_IDENTIFY_DEVICE, 2328 ATA_LOG_SATA_SETTINGS, 2329 dev->sector_buf, 1); 2330 if (err_mask) 2331 goto not_supported; 2332 2333 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2334 goto not_supported; 2335 2336 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2337 2338 return; 2339 2340 not_supported: 2341 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2342 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2343 } 2344 2345 static bool ata_dev_check_adapter(struct ata_device *dev, 2346 unsigned short vendor_id) 2347 { 2348 struct pci_dev *pcidev = NULL; 2349 struct device *parent_dev = NULL; 2350 2351 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2352 parent_dev = parent_dev->parent) { 2353 if (dev_is_pci(parent_dev)) { 2354 pcidev = to_pci_dev(parent_dev); 2355 if (pcidev->vendor == vendor_id) 2356 return true; 2357 break; 2358 } 2359 } 2360 2361 return false; 2362 } 2363 2364 static int ata_dev_config_ncq(struct ata_device *dev, 2365 char *desc, size_t desc_sz) 2366 { 2367 struct ata_port *ap = dev->link->ap; 2368 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2369 unsigned int err_mask; 2370 char *aa_desc = ""; 2371 2372 if (!ata_id_has_ncq(dev->id)) { 2373 desc[0] = '\0'; 2374 return 0; 2375 } 2376 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2377 return 0; 2378 if (dev->quirks & ATA_QUIRK_NONCQ) { 2379 snprintf(desc, desc_sz, "NCQ (not used)"); 2380 return 0; 2381 } 2382 2383 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI && 2384 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2385 snprintf(desc, desc_sz, "NCQ (not used)"); 2386 return 0; 2387 } 2388 2389 if (ap->flags & ATA_FLAG_NCQ) { 2390 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2391 dev->flags |= ATA_DFLAG_NCQ; 2392 } 2393 2394 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) && 2395 (ap->flags & ATA_FLAG_FPDMA_AA) && 2396 ata_id_has_fpdma_aa(dev->id)) { 2397 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2398 SATA_FPDMA_AA); 2399 if (err_mask) { 2400 ata_dev_err(dev, 2401 "failed to enable AA (error_mask=0x%x)\n", 2402 err_mask); 2403 if (err_mask != AC_ERR_DEV) { 2404 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA; 2405 return -EIO; 2406 } 2407 } else 2408 aa_desc = ", AA"; 2409 } 2410 2411 if (hdepth >= ddepth) 2412 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2413 else 2414 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2415 ddepth, aa_desc); 2416 2417 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2418 if (ata_id_has_ncq_send_and_recv(dev->id)) 2419 ata_dev_config_ncq_send_recv(dev); 2420 if (ata_id_has_ncq_non_data(dev->id)) 2421 ata_dev_config_ncq_non_data(dev); 2422 if (ata_id_has_ncq_prio(dev->id)) 2423 ata_dev_config_ncq_prio(dev); 2424 } 2425 2426 return 0; 2427 } 2428 2429 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2430 { 2431 unsigned int err_mask; 2432 2433 if (!ata_id_has_sense_reporting(dev->id)) 2434 return; 2435 2436 if (ata_id_sense_reporting_enabled(dev->id)) 2437 return; 2438 2439 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2440 if (err_mask) { 2441 ata_dev_dbg(dev, 2442 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2443 err_mask); 2444 } 2445 } 2446 2447 static void ata_dev_config_zac(struct ata_device *dev) 2448 { 2449 unsigned int err_mask; 2450 u8 *identify_buf = dev->sector_buf; 2451 2452 dev->zac_zones_optimal_open = U32_MAX; 2453 dev->zac_zones_optimal_nonseq = U32_MAX; 2454 dev->zac_zones_max_open = U32_MAX; 2455 2456 if (!ata_dev_is_zac(dev)) 2457 return; 2458 2459 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2460 ata_dev_warn(dev, 2461 "ATA Zoned Information Log not supported\n"); 2462 return; 2463 } 2464 2465 /* 2466 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2467 */ 2468 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2469 ATA_LOG_ZONED_INFORMATION, 2470 identify_buf, 1); 2471 if (!err_mask) { 2472 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2473 2474 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2475 if ((zoned_cap >> 63)) 2476 dev->zac_zoned_cap = (zoned_cap & 1); 2477 opt_open = get_unaligned_le64(&identify_buf[24]); 2478 if ((opt_open >> 63)) 2479 dev->zac_zones_optimal_open = (u32)opt_open; 2480 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2481 if ((opt_nonseq >> 63)) 2482 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2483 max_open = get_unaligned_le64(&identify_buf[40]); 2484 if ((max_open >> 63)) 2485 dev->zac_zones_max_open = (u32)max_open; 2486 } 2487 } 2488 2489 static void ata_dev_config_trusted(struct ata_device *dev) 2490 { 2491 u64 trusted_cap; 2492 unsigned int err; 2493 2494 if (!ata_id_has_trusted(dev->id)) 2495 return; 2496 2497 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2498 ata_dev_warn(dev, 2499 "Security Log not supported\n"); 2500 return; 2501 } 2502 2503 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2504 dev->sector_buf, 1); 2505 if (err) 2506 return; 2507 2508 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]); 2509 if (!(trusted_cap & (1ULL << 63))) { 2510 ata_dev_dbg(dev, 2511 "Trusted Computing capability qword not valid!\n"); 2512 return; 2513 } 2514 2515 if (trusted_cap & (1 << 0)) 2516 dev->flags |= ATA_DFLAG_TRUSTED; 2517 } 2518 2519 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev) 2520 { 2521 kfree(dev->cdl); 2522 dev->cdl = NULL; 2523 } 2524 2525 static int ata_dev_init_cdl_resources(struct ata_device *dev) 2526 { 2527 struct ata_cdl *cdl = dev->cdl; 2528 unsigned int err_mask; 2529 2530 if (!cdl) { 2531 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL); 2532 if (!cdl) 2533 return -ENOMEM; 2534 dev->cdl = cdl; 2535 } 2536 2537 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf, 2538 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE); 2539 if (err_mask) { 2540 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2541 ata_dev_cleanup_cdl_resources(dev); 2542 return -EIO; 2543 } 2544 2545 return 0; 2546 } 2547 2548 static void ata_dev_config_cdl(struct ata_device *dev) 2549 { 2550 unsigned int err_mask; 2551 bool cdl_enabled; 2552 u64 val; 2553 int ret; 2554 2555 if (ata_id_major_version(dev->id) < 11) 2556 goto not_supported; 2557 2558 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2559 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2560 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2561 goto not_supported; 2562 2563 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2564 ATA_LOG_SUPPORTED_CAPABILITIES, 2565 dev->sector_buf, 1); 2566 if (err_mask) 2567 goto not_supported; 2568 2569 /* Check Command Duration Limit Supported bits */ 2570 val = get_unaligned_le64(&dev->sector_buf[168]); 2571 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2572 goto not_supported; 2573 2574 /* Warn the user if command duration guideline is not supported */ 2575 if (!(val & BIT_ULL(1))) 2576 ata_dev_warn(dev, 2577 "Command duration guideline is not supported\n"); 2578 2579 /* 2580 * We must have support for the sense data for successful NCQ commands 2581 * log indicated by the successful NCQ command sense data supported bit. 2582 */ 2583 val = get_unaligned_le64(&dev->sector_buf[8]); 2584 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2585 ata_dev_warn(dev, 2586 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2587 goto not_supported; 2588 } 2589 2590 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2591 if (!ata_id_has_ncq_autosense(dev->id)) { 2592 ata_dev_warn(dev, 2593 "CDL supported but NCQ autosense is not supported\n"); 2594 goto not_supported; 2595 } 2596 2597 /* 2598 * If CDL is marked as enabled, make sure the feature is enabled too. 2599 * Conversely, if CDL is disabled, make sure the feature is turned off. 2600 */ 2601 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2602 ATA_LOG_CURRENT_SETTINGS, 2603 dev->sector_buf, 1); 2604 if (err_mask) 2605 goto not_supported; 2606 2607 val = get_unaligned_le64(&dev->sector_buf[8]); 2608 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2609 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2610 if (!cdl_enabled) { 2611 /* Enable CDL on the device */ 2612 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2613 if (err_mask) { 2614 ata_dev_err(dev, 2615 "Enable CDL feature failed\n"); 2616 goto not_supported; 2617 } 2618 } 2619 } else { 2620 if (cdl_enabled) { 2621 /* Disable CDL on the device */ 2622 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2623 if (err_mask) { 2624 ata_dev_err(dev, 2625 "Disable CDL feature failed\n"); 2626 goto not_supported; 2627 } 2628 } 2629 } 2630 2631 /* 2632 * While CDL itself has to be enabled using sysfs, CDL requires that 2633 * sense data for successful NCQ commands is enabled to work properly. 2634 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2635 * if supported. 2636 */ 2637 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2638 err_mask = ata_dev_set_feature(dev, 2639 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2640 if (err_mask) { 2641 ata_dev_warn(dev, 2642 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2643 err_mask); 2644 goto not_supported; 2645 } 2646 } 2647 2648 /* CDL is supported: allocate and initialize needed resources. */ 2649 ret = ata_dev_init_cdl_resources(dev); 2650 if (ret) { 2651 ata_dev_warn(dev, "Initialize CDL resources failed\n"); 2652 goto not_supported; 2653 } 2654 2655 dev->flags |= ATA_DFLAG_CDL; 2656 2657 return; 2658 2659 not_supported: 2660 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2661 ata_dev_cleanup_cdl_resources(dev); 2662 } 2663 2664 static int ata_dev_config_lba(struct ata_device *dev) 2665 { 2666 const u16 *id = dev->id; 2667 const char *lba_desc; 2668 char ncq_desc[32]; 2669 int ret; 2670 2671 dev->flags |= ATA_DFLAG_LBA; 2672 2673 if (ata_id_has_lba48(id)) { 2674 lba_desc = "LBA48"; 2675 dev->flags |= ATA_DFLAG_LBA48; 2676 if (dev->n_sectors >= (1UL << 28) && 2677 ata_id_has_flush_ext(id)) 2678 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2679 } else { 2680 lba_desc = "LBA"; 2681 } 2682 2683 /* config NCQ */ 2684 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2685 2686 /* print device info to dmesg */ 2687 if (ata_dev_print_info(dev)) 2688 ata_dev_info(dev, 2689 "%llu sectors, multi %u: %s %s\n", 2690 (unsigned long long)dev->n_sectors, 2691 dev->multi_count, lba_desc, ncq_desc); 2692 2693 return ret; 2694 } 2695 2696 static void ata_dev_config_chs(struct ata_device *dev) 2697 { 2698 const u16 *id = dev->id; 2699 2700 if (ata_id_current_chs_valid(id)) { 2701 /* Current CHS translation is valid. */ 2702 dev->cylinders = id[54]; 2703 dev->heads = id[55]; 2704 dev->sectors = id[56]; 2705 } else { 2706 /* Default translation */ 2707 dev->cylinders = id[1]; 2708 dev->heads = id[3]; 2709 dev->sectors = id[6]; 2710 } 2711 2712 /* print device info to dmesg */ 2713 if (ata_dev_print_info(dev)) 2714 ata_dev_info(dev, 2715 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2716 (unsigned long long)dev->n_sectors, 2717 dev->multi_count, dev->cylinders, 2718 dev->heads, dev->sectors); 2719 } 2720 2721 static void ata_dev_config_fua(struct ata_device *dev) 2722 { 2723 /* Ignore FUA support if its use is disabled globally */ 2724 if (!libata_fua) 2725 goto nofua; 2726 2727 /* Ignore devices without support for WRITE DMA FUA EXT */ 2728 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2729 goto nofua; 2730 2731 /* Ignore known bad devices and devices that lack NCQ support */ 2732 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA)) 2733 goto nofua; 2734 2735 dev->flags |= ATA_DFLAG_FUA; 2736 2737 return; 2738 2739 nofua: 2740 dev->flags &= ~ATA_DFLAG_FUA; 2741 } 2742 2743 static void ata_dev_config_devslp(struct ata_device *dev) 2744 { 2745 u8 *sata_setting = dev->sector_buf; 2746 unsigned int err_mask; 2747 int i, j; 2748 2749 /* 2750 * Check device sleep capability. Get DevSlp timing variables 2751 * from SATA Settings page of Identify Device Data Log. 2752 */ 2753 if (!ata_id_has_devslp(dev->id) || 2754 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2755 return; 2756 2757 err_mask = ata_read_log_page(dev, 2758 ATA_LOG_IDENTIFY_DEVICE, 2759 ATA_LOG_SATA_SETTINGS, 2760 sata_setting, 1); 2761 if (err_mask) 2762 return; 2763 2764 dev->flags |= ATA_DFLAG_DEVSLP; 2765 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2766 j = ATA_LOG_DEVSLP_OFFSET + i; 2767 dev->devslp_timing[i] = sata_setting[j]; 2768 } 2769 } 2770 2771 static void ata_dev_config_cpr(struct ata_device *dev) 2772 { 2773 unsigned int err_mask; 2774 size_t buf_len; 2775 int i, nr_cpr = 0; 2776 struct ata_cpr_log *cpr_log = NULL; 2777 u8 *desc, *buf = NULL; 2778 2779 if (ata_id_major_version(dev->id) < 11) 2780 goto out; 2781 2782 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2783 if (buf_len == 0) 2784 goto out; 2785 2786 /* 2787 * Read the concurrent positioning ranges log (0x47). We can have at 2788 * most 255 32B range descriptors plus a 64B header. This log varies in 2789 * size, so use the size reported in the GPL directory. Reading beyond 2790 * the supported length will result in an error. 2791 */ 2792 buf_len <<= 9; 2793 buf = kzalloc(buf_len, GFP_KERNEL); 2794 if (!buf) 2795 goto out; 2796 2797 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2798 0, buf, buf_len >> 9); 2799 if (err_mask) 2800 goto out; 2801 2802 nr_cpr = buf[0]; 2803 if (!nr_cpr) 2804 goto out; 2805 2806 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2807 if (!cpr_log) 2808 goto out; 2809 2810 cpr_log->nr_cpr = nr_cpr; 2811 desc = &buf[64]; 2812 for (i = 0; i < nr_cpr; i++, desc += 32) { 2813 cpr_log->cpr[i].num = desc[0]; 2814 cpr_log->cpr[i].num_storage_elements = desc[1]; 2815 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2816 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2817 } 2818 2819 out: 2820 swap(dev->cpr_log, cpr_log); 2821 kfree(cpr_log); 2822 kfree(buf); 2823 } 2824 2825 /* 2826 * Configure features related to link power management. 2827 */ 2828 static void ata_dev_config_lpm(struct ata_device *dev) 2829 { 2830 struct ata_port *ap = dev->link->ap; 2831 unsigned int err_mask; 2832 2833 if (ap->flags & ATA_FLAG_NO_LPM) { 2834 /* 2835 * When the port does not support LPM, we cannot support it on 2836 * the device either. 2837 */ 2838 dev->quirks |= ATA_QUIRK_NOLPM; 2839 } else { 2840 /* 2841 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for 2842 * them. 2843 */ 2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) && 2845 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2846 dev->quirks |= ATA_QUIRK_NOLPM; 2847 2848 /* ATI specific quirk */ 2849 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) && 2850 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) 2851 dev->quirks |= ATA_QUIRK_NOLPM; 2852 } 2853 2854 if (dev->quirks & ATA_QUIRK_NOLPM && 2855 ap->target_lpm_policy != ATA_LPM_MAX_POWER) { 2856 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2857 ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2858 } 2859 2860 /* 2861 * Device Initiated Power Management (DIPM) is normally disabled by 2862 * default on a device. However, DIPM may have been enabled and that 2863 * setting kept even after COMRESET because of the Software Settings 2864 * Preservation feature. So if the port does not support DIPM and the 2865 * device does, disable DIPM on the device. 2866 */ 2867 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) { 2868 err_mask = ata_dev_set_feature(dev, 2869 SETFEATURES_SATA_DISABLE, SATA_DIPM); 2870 if (err_mask && err_mask != AC_ERR_DEV) 2871 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n", 2872 err_mask); 2873 } 2874 } 2875 2876 static void ata_dev_print_features(struct ata_device *dev) 2877 { 2878 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2879 return; 2880 2881 ata_dev_info(dev, 2882 "Features:%s%s%s%s%s%s%s%s%s%s\n", 2883 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2884 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2885 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2886 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2887 ata_id_has_hipm(dev->id) ? " HIPM" : "", 2888 ata_id_has_dipm(dev->id) ? " DIPM" : "", 2889 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2890 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2891 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2892 dev->cpr_log ? " CPR" : ""); 2893 } 2894 2895 /** 2896 * ata_dev_configure - Configure the specified ATA/ATAPI device 2897 * @dev: Target device to configure 2898 * 2899 * Configure @dev according to @dev->id. Generic and low-level 2900 * driver specific fixups are also applied. 2901 * 2902 * LOCKING: 2903 * Kernel thread context (may sleep) 2904 * 2905 * RETURNS: 2906 * 0 on success, -errno otherwise 2907 */ 2908 int ata_dev_configure(struct ata_device *dev) 2909 { 2910 struct ata_port *ap = dev->link->ap; 2911 bool print_info = ata_dev_print_info(dev); 2912 const u16 *id = dev->id; 2913 unsigned int xfer_mask; 2914 unsigned int err_mask; 2915 char revbuf[7]; /* XYZ-99\0 */ 2916 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2917 char modelbuf[ATA_ID_PROD_LEN+1]; 2918 int rc; 2919 2920 if (!ata_dev_enabled(dev)) { 2921 ata_dev_dbg(dev, "no device\n"); 2922 return 0; 2923 } 2924 2925 /* Clear the general purpose log directory cache. */ 2926 ata_clear_log_directory(dev); 2927 2928 /* Set quirks */ 2929 dev->quirks |= ata_dev_quirks(dev); 2930 ata_force_quirks(dev); 2931 2932 if (dev->quirks & ATA_QUIRK_DISABLE) { 2933 ata_dev_info(dev, "unsupported device, disabling\n"); 2934 ata_dev_disable(dev); 2935 return 0; 2936 } 2937 2938 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2939 dev->class == ATA_DEV_ATAPI) { 2940 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2941 atapi_enabled ? "not supported with this driver" 2942 : "disabled"); 2943 ata_dev_disable(dev); 2944 return 0; 2945 } 2946 2947 rc = ata_do_link_spd_quirk(dev); 2948 if (rc) 2949 return rc; 2950 2951 /* let ACPI work its magic */ 2952 rc = ata_acpi_on_devcfg(dev); 2953 if (rc) 2954 return rc; 2955 2956 /* massage HPA, do it early as it might change IDENTIFY data */ 2957 rc = ata_hpa_resize(dev); 2958 if (rc) 2959 return rc; 2960 2961 /* print device capabilities */ 2962 ata_dev_dbg(dev, 2963 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2964 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2965 __func__, 2966 id[49], id[82], id[83], id[84], 2967 id[85], id[86], id[87], id[88]); 2968 2969 /* initialize to-be-configured parameters */ 2970 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2971 dev->max_sectors = 0; 2972 dev->cdb_len = 0; 2973 dev->n_sectors = 0; 2974 dev->cylinders = 0; 2975 dev->heads = 0; 2976 dev->sectors = 0; 2977 dev->multi_count = 0; 2978 2979 /* 2980 * common ATA, ATAPI feature tests 2981 */ 2982 2983 /* find max transfer mode; for printk only */ 2984 xfer_mask = ata_id_xfermask(id); 2985 2986 ata_dump_id(dev, id); 2987 2988 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2989 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2990 sizeof(fwrevbuf)); 2991 2992 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2993 sizeof(modelbuf)); 2994 2995 /* ATA-specific feature tests */ 2996 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2997 if (ata_id_is_cfa(id)) { 2998 /* CPRM may make this media unusable */ 2999 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 3000 ata_dev_warn(dev, 3001 "supports DRM functions and may not be fully accessible\n"); 3002 snprintf(revbuf, 7, "CFA"); 3003 } else { 3004 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 3005 /* Warn the user if the device has TPM extensions */ 3006 if (ata_id_has_tpm(id)) 3007 ata_dev_warn(dev, 3008 "supports DRM functions and may not be fully accessible\n"); 3009 } 3010 3011 dev->n_sectors = ata_id_n_sectors(id); 3012 3013 /* get current R/W Multiple count setting */ 3014 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 3015 unsigned int max = dev->id[47] & 0xff; 3016 unsigned int cnt = dev->id[59] & 0xff; 3017 /* only recognize/allow powers of two here */ 3018 if (is_power_of_2(max) && is_power_of_2(cnt)) 3019 if (cnt <= max) 3020 dev->multi_count = cnt; 3021 } 3022 3023 /* print device info to dmesg */ 3024 if (print_info) 3025 ata_dev_info(dev, "%s: %s, %s, max %s\n", 3026 revbuf, modelbuf, fwrevbuf, 3027 ata_mode_string(xfer_mask)); 3028 3029 if (ata_id_has_lba(id)) { 3030 rc = ata_dev_config_lba(dev); 3031 if (rc) 3032 return rc; 3033 } else { 3034 ata_dev_config_chs(dev); 3035 } 3036 3037 ata_dev_config_lpm(dev); 3038 ata_dev_config_fua(dev); 3039 ata_dev_config_devslp(dev); 3040 ata_dev_config_sense_reporting(dev); 3041 ata_dev_config_zac(dev); 3042 ata_dev_config_trusted(dev); 3043 ata_dev_config_cpr(dev); 3044 ata_dev_config_cdl(dev); 3045 dev->cdb_len = 32; 3046 3047 if (print_info) 3048 ata_dev_print_features(dev); 3049 } 3050 3051 /* ATAPI-specific feature tests */ 3052 else if (dev->class == ATA_DEV_ATAPI) { 3053 const char *cdb_intr_string = ""; 3054 const char *atapi_an_string = ""; 3055 const char *dma_dir_string = ""; 3056 u32 sntf; 3057 3058 rc = atapi_cdb_len(id); 3059 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 3060 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 3061 rc = -EINVAL; 3062 goto err_out_nosup; 3063 } 3064 dev->cdb_len = (unsigned int) rc; 3065 3066 /* Enable ATAPI AN if both the host and device have 3067 * the support. If PMP is attached, SNTF is required 3068 * to enable ATAPI AN to discern between PHY status 3069 * changed notifications and ATAPI ANs. 3070 */ 3071 if (atapi_an && 3072 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 3073 (!sata_pmp_attached(ap) || 3074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 3075 /* issue SET feature command to turn this on */ 3076 err_mask = ata_dev_set_feature(dev, 3077 SETFEATURES_SATA_ENABLE, SATA_AN); 3078 if (err_mask) 3079 ata_dev_err(dev, 3080 "failed to enable ATAPI AN (err_mask=0x%x)\n", 3081 err_mask); 3082 else { 3083 dev->flags |= ATA_DFLAG_AN; 3084 atapi_an_string = ", ATAPI AN"; 3085 } 3086 } 3087 3088 if (ata_id_cdb_intr(dev->id)) { 3089 dev->flags |= ATA_DFLAG_CDB_INTR; 3090 cdb_intr_string = ", CDB intr"; 3091 } 3092 3093 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) || 3094 atapi_id_dmadir(dev->id)) { 3095 dev->flags |= ATA_DFLAG_DMADIR; 3096 dma_dir_string = ", DMADIR"; 3097 } 3098 3099 if (ata_id_has_da(dev->id)) { 3100 dev->flags |= ATA_DFLAG_DA; 3101 zpodd_init(dev); 3102 } 3103 3104 /* print device info to dmesg */ 3105 if (print_info) 3106 ata_dev_info(dev, 3107 "ATAPI: %s, %s, max %s%s%s%s\n", 3108 modelbuf, fwrevbuf, 3109 ata_mode_string(xfer_mask), 3110 cdb_intr_string, atapi_an_string, 3111 dma_dir_string); 3112 } 3113 3114 /* determine max_sectors */ 3115 dev->max_sectors = ATA_MAX_SECTORS; 3116 if (dev->flags & ATA_DFLAG_LBA48) 3117 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3118 3119 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3120 200 sectors */ 3121 if (ata_dev_knobble(dev)) { 3122 if (print_info) 3123 ata_dev_info(dev, "applying bridge limits\n"); 3124 dev->udma_mask &= ATA_UDMA5; 3125 dev->max_sectors = ATA_MAX_SECTORS; 3126 } 3127 3128 if ((dev->class == ATA_DEV_ATAPI) && 3129 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3130 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3131 dev->quirks |= ATA_QUIRK_STUCK_ERR; 3132 } 3133 3134 if (dev->quirks & ATA_QUIRK_MAX_SEC_128) 3135 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3136 dev->max_sectors); 3137 3138 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024) 3139 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3140 dev->max_sectors); 3141 3142 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48) 3143 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3144 3145 if (ap->ops->dev_config) 3146 ap->ops->dev_config(dev); 3147 3148 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) { 3149 /* Let the user know. We don't want to disallow opens for 3150 rescue purposes, or in case the vendor is just a blithering 3151 idiot. Do this after the dev_config call as some controllers 3152 with buggy firmware may want to avoid reporting false device 3153 bugs */ 3154 3155 if (print_info) { 3156 ata_dev_warn(dev, 3157 "Drive reports diagnostics failure. This may indicate a drive\n"); 3158 ata_dev_warn(dev, 3159 "fault or invalid emulation. Contact drive vendor for information.\n"); 3160 } 3161 } 3162 3163 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) { 3164 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3165 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3166 } 3167 3168 return 0; 3169 3170 err_out_nosup: 3171 return rc; 3172 } 3173 3174 /** 3175 * ata_cable_40wire - return 40 wire cable type 3176 * @ap: port 3177 * 3178 * Helper method for drivers which want to hardwire 40 wire cable 3179 * detection. 3180 */ 3181 3182 int ata_cable_40wire(struct ata_port *ap) 3183 { 3184 return ATA_CBL_PATA40; 3185 } 3186 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3187 3188 /** 3189 * ata_cable_80wire - return 80 wire cable type 3190 * @ap: port 3191 * 3192 * Helper method for drivers which want to hardwire 80 wire cable 3193 * detection. 3194 */ 3195 3196 int ata_cable_80wire(struct ata_port *ap) 3197 { 3198 return ATA_CBL_PATA80; 3199 } 3200 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3201 3202 /** 3203 * ata_cable_unknown - return unknown PATA cable. 3204 * @ap: port 3205 * 3206 * Helper method for drivers which have no PATA cable detection. 3207 */ 3208 3209 int ata_cable_unknown(struct ata_port *ap) 3210 { 3211 return ATA_CBL_PATA_UNK; 3212 } 3213 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3214 3215 /** 3216 * ata_cable_ignore - return ignored PATA cable. 3217 * @ap: port 3218 * 3219 * Helper method for drivers which don't use cable type to limit 3220 * transfer mode. 3221 */ 3222 int ata_cable_ignore(struct ata_port *ap) 3223 { 3224 return ATA_CBL_PATA_IGN; 3225 } 3226 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3227 3228 /** 3229 * ata_cable_sata - return SATA cable type 3230 * @ap: port 3231 * 3232 * Helper method for drivers which have SATA cables 3233 */ 3234 3235 int ata_cable_sata(struct ata_port *ap) 3236 { 3237 return ATA_CBL_SATA; 3238 } 3239 EXPORT_SYMBOL_GPL(ata_cable_sata); 3240 3241 /** 3242 * sata_print_link_status - Print SATA link status 3243 * @link: SATA link to printk link status about 3244 * 3245 * This function prints link speed and status of a SATA link. 3246 * 3247 * LOCKING: 3248 * None. 3249 */ 3250 static void sata_print_link_status(struct ata_link *link) 3251 { 3252 u32 sstatus, scontrol, tmp; 3253 3254 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3255 return; 3256 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3257 return; 3258 3259 if (ata_phys_link_online(link)) { 3260 tmp = (sstatus >> 4) & 0xf; 3261 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3262 sata_spd_string(tmp), sstatus, scontrol); 3263 } else { 3264 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3265 sstatus, scontrol); 3266 } 3267 } 3268 3269 /** 3270 * ata_dev_pair - return other device on cable 3271 * @adev: device 3272 * 3273 * Obtain the other device on the same cable, or if none is 3274 * present NULL is returned 3275 */ 3276 3277 struct ata_device *ata_dev_pair(struct ata_device *adev) 3278 { 3279 struct ata_link *link = adev->link; 3280 struct ata_device *pair = &link->device[1 - adev->devno]; 3281 if (!ata_dev_enabled(pair)) 3282 return NULL; 3283 return pair; 3284 } 3285 EXPORT_SYMBOL_GPL(ata_dev_pair); 3286 3287 #ifdef CONFIG_ATA_ACPI 3288 /** 3289 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3290 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3291 * @cycle: cycle duration in ns 3292 * 3293 * Return matching xfer mode for @cycle. The returned mode is of 3294 * the transfer type specified by @xfer_shift. If @cycle is too 3295 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3296 * than the fastest known mode, the fasted mode is returned. 3297 * 3298 * LOCKING: 3299 * None. 3300 * 3301 * RETURNS: 3302 * Matching xfer_mode, 0xff if no match found. 3303 */ 3304 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3305 { 3306 u8 base_mode = 0xff, last_mode = 0xff; 3307 const struct ata_xfer_ent *ent; 3308 const struct ata_timing *t; 3309 3310 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3311 if (ent->shift == xfer_shift) 3312 base_mode = ent->base; 3313 3314 for (t = ata_timing_find_mode(base_mode); 3315 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3316 unsigned short this_cycle; 3317 3318 switch (xfer_shift) { 3319 case ATA_SHIFT_PIO: 3320 case ATA_SHIFT_MWDMA: 3321 this_cycle = t->cycle; 3322 break; 3323 case ATA_SHIFT_UDMA: 3324 this_cycle = t->udma; 3325 break; 3326 default: 3327 return 0xff; 3328 } 3329 3330 if (cycle > this_cycle) 3331 break; 3332 3333 last_mode = t->mode; 3334 } 3335 3336 return last_mode; 3337 } 3338 #endif 3339 3340 /** 3341 * ata_down_xfermask_limit - adjust dev xfer masks downward 3342 * @dev: Device to adjust xfer masks 3343 * @sel: ATA_DNXFER_* selector 3344 * 3345 * Adjust xfer masks of @dev downward. Note that this function 3346 * does not apply the change. Invoking ata_set_mode() afterwards 3347 * will apply the limit. 3348 * 3349 * LOCKING: 3350 * Inherited from caller. 3351 * 3352 * RETURNS: 3353 * 0 on success, negative errno on failure 3354 */ 3355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3356 { 3357 char buf[32]; 3358 unsigned int orig_mask, xfer_mask; 3359 unsigned int pio_mask, mwdma_mask, udma_mask; 3360 int quiet, highbit; 3361 3362 quiet = !!(sel & ATA_DNXFER_QUIET); 3363 sel &= ~ATA_DNXFER_QUIET; 3364 3365 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3366 dev->mwdma_mask, 3367 dev->udma_mask); 3368 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3369 3370 switch (sel) { 3371 case ATA_DNXFER_PIO: 3372 highbit = fls(pio_mask) - 1; 3373 pio_mask &= ~(1 << highbit); 3374 break; 3375 3376 case ATA_DNXFER_DMA: 3377 if (udma_mask) { 3378 highbit = fls(udma_mask) - 1; 3379 udma_mask &= ~(1 << highbit); 3380 if (!udma_mask) 3381 return -ENOENT; 3382 } else if (mwdma_mask) { 3383 highbit = fls(mwdma_mask) - 1; 3384 mwdma_mask &= ~(1 << highbit); 3385 if (!mwdma_mask) 3386 return -ENOENT; 3387 } 3388 break; 3389 3390 case ATA_DNXFER_40C: 3391 udma_mask &= ATA_UDMA_MASK_40C; 3392 break; 3393 3394 case ATA_DNXFER_FORCE_PIO0: 3395 pio_mask &= 1; 3396 fallthrough; 3397 case ATA_DNXFER_FORCE_PIO: 3398 mwdma_mask = 0; 3399 udma_mask = 0; 3400 break; 3401 3402 default: 3403 BUG(); 3404 } 3405 3406 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3407 3408 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3409 return -ENOENT; 3410 3411 if (!quiet) { 3412 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3413 snprintf(buf, sizeof(buf), "%s:%s", 3414 ata_mode_string(xfer_mask), 3415 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3416 else 3417 snprintf(buf, sizeof(buf), "%s", 3418 ata_mode_string(xfer_mask)); 3419 3420 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3421 } 3422 3423 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3424 &dev->udma_mask); 3425 3426 return 0; 3427 } 3428 3429 static int ata_dev_set_mode(struct ata_device *dev) 3430 { 3431 struct ata_port *ap = dev->link->ap; 3432 struct ata_eh_context *ehc = &dev->link->eh_context; 3433 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER; 3434 const char *dev_err_whine = ""; 3435 int ign_dev_err = 0; 3436 unsigned int err_mask = 0; 3437 int rc; 3438 3439 dev->flags &= ~ATA_DFLAG_PIO; 3440 if (dev->xfer_shift == ATA_SHIFT_PIO) 3441 dev->flags |= ATA_DFLAG_PIO; 3442 3443 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3444 dev_err_whine = " (SET_XFERMODE skipped)"; 3445 else { 3446 if (nosetxfer) 3447 ata_dev_warn(dev, 3448 "NOSETXFER but PATA detected - can't " 3449 "skip SETXFER, might malfunction\n"); 3450 err_mask = ata_dev_set_xfermode(dev); 3451 } 3452 3453 if (err_mask & ~AC_ERR_DEV) 3454 goto fail; 3455 3456 /* revalidate */ 3457 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3458 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3459 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3460 if (rc) 3461 return rc; 3462 3463 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3464 /* Old CFA may refuse this command, which is just fine */ 3465 if (ata_id_is_cfa(dev->id)) 3466 ign_dev_err = 1; 3467 /* Catch several broken garbage emulations plus some pre 3468 ATA devices */ 3469 if (ata_id_major_version(dev->id) == 0 && 3470 dev->pio_mode <= XFER_PIO_2) 3471 ign_dev_err = 1; 3472 /* Some very old devices and some bad newer ones fail 3473 any kind of SET_XFERMODE request but support PIO0-2 3474 timings and no IORDY */ 3475 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3476 ign_dev_err = 1; 3477 } 3478 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3479 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3480 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3481 dev->dma_mode == XFER_MW_DMA_0 && 3482 (dev->id[63] >> 8) & 1) 3483 ign_dev_err = 1; 3484 3485 /* if the device is actually configured correctly, ignore dev err */ 3486 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3487 ign_dev_err = 1; 3488 3489 if (err_mask & AC_ERR_DEV) { 3490 if (!ign_dev_err) 3491 goto fail; 3492 else 3493 dev_err_whine = " (device error ignored)"; 3494 } 3495 3496 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3497 dev->xfer_shift, (int)dev->xfer_mode); 3498 3499 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3500 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3501 ata_dev_info(dev, "configured for %s%s\n", 3502 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3503 dev_err_whine); 3504 3505 return 0; 3506 3507 fail: 3508 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3509 return -EIO; 3510 } 3511 3512 /** 3513 * ata_set_mode - Program timings and issue SET FEATURES - XFER 3514 * @link: link on which timings will be programmed 3515 * @r_failed_dev: out parameter for failed device 3516 * 3517 * Standard implementation of the function used to tune and set 3518 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3519 * ata_dev_set_mode() fails, pointer to the failing device is 3520 * returned in @r_failed_dev. 3521 * 3522 * LOCKING: 3523 * PCI/etc. bus probe sem. 3524 * 3525 * RETURNS: 3526 * 0 on success, negative errno otherwise 3527 */ 3528 3529 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3530 { 3531 struct ata_port *ap = link->ap; 3532 struct ata_device *dev; 3533 int rc = 0, used_dma = 0, found = 0; 3534 3535 /* step 1: calculate xfer_mask */ 3536 ata_for_each_dev(dev, link, ENABLED) { 3537 unsigned int pio_mask, dma_mask; 3538 unsigned int mode_mask; 3539 3540 mode_mask = ATA_DMA_MASK_ATA; 3541 if (dev->class == ATA_DEV_ATAPI) 3542 mode_mask = ATA_DMA_MASK_ATAPI; 3543 else if (ata_id_is_cfa(dev->id)) 3544 mode_mask = ATA_DMA_MASK_CFA; 3545 3546 ata_dev_xfermask(dev); 3547 ata_force_xfermask(dev); 3548 3549 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3550 3551 if (libata_dma_mask & mode_mask) 3552 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3553 dev->udma_mask); 3554 else 3555 dma_mask = 0; 3556 3557 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3558 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3559 3560 found = 1; 3561 if (ata_dma_enabled(dev)) 3562 used_dma = 1; 3563 } 3564 if (!found) 3565 goto out; 3566 3567 /* step 2: always set host PIO timings */ 3568 ata_for_each_dev(dev, link, ENABLED) { 3569 if (dev->pio_mode == 0xff) { 3570 ata_dev_warn(dev, "no PIO support\n"); 3571 rc = -EINVAL; 3572 goto out; 3573 } 3574 3575 dev->xfer_mode = dev->pio_mode; 3576 dev->xfer_shift = ATA_SHIFT_PIO; 3577 if (ap->ops->set_piomode) 3578 ap->ops->set_piomode(ap, dev); 3579 } 3580 3581 /* step 3: set host DMA timings */ 3582 ata_for_each_dev(dev, link, ENABLED) { 3583 if (!ata_dma_enabled(dev)) 3584 continue; 3585 3586 dev->xfer_mode = dev->dma_mode; 3587 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3588 if (ap->ops->set_dmamode) 3589 ap->ops->set_dmamode(ap, dev); 3590 } 3591 3592 /* step 4: update devices' xfer mode */ 3593 ata_for_each_dev(dev, link, ENABLED) { 3594 rc = ata_dev_set_mode(dev); 3595 if (rc) 3596 goto out; 3597 } 3598 3599 /* Record simplex status. If we selected DMA then the other 3600 * host channels are not permitted to do so. 3601 */ 3602 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3603 ap->host->simplex_claimed = ap; 3604 3605 out: 3606 if (rc) 3607 *r_failed_dev = dev; 3608 return rc; 3609 } 3610 EXPORT_SYMBOL_GPL(ata_set_mode); 3611 3612 /** 3613 * ata_wait_ready - wait for link to become ready 3614 * @link: link to be waited on 3615 * @deadline: deadline jiffies for the operation 3616 * @check_ready: callback to check link readiness 3617 * 3618 * Wait for @link to become ready. @check_ready should return 3619 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3620 * link doesn't seem to be occupied, other errno for other error 3621 * conditions. 3622 * 3623 * Transient -ENODEV conditions are allowed for 3624 * ATA_TMOUT_FF_WAIT. 3625 * 3626 * LOCKING: 3627 * EH context. 3628 * 3629 * RETURNS: 3630 * 0 if @link is ready before @deadline; otherwise, -errno. 3631 */ 3632 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3633 int (*check_ready)(struct ata_link *link)) 3634 { 3635 unsigned long start = jiffies; 3636 unsigned long nodev_deadline; 3637 int warned = 0; 3638 3639 /* choose which 0xff timeout to use, read comment in libata.h */ 3640 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3641 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3642 else 3643 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3644 3645 /* Slave readiness can't be tested separately from master. On 3646 * M/S emulation configuration, this function should be called 3647 * only on the master and it will handle both master and slave. 3648 */ 3649 WARN_ON(link == link->ap->slave_link); 3650 3651 if (time_after(nodev_deadline, deadline)) 3652 nodev_deadline = deadline; 3653 3654 while (1) { 3655 unsigned long now = jiffies; 3656 int ready, tmp; 3657 3658 ready = tmp = check_ready(link); 3659 if (ready > 0) 3660 return 0; 3661 3662 /* 3663 * -ENODEV could be transient. Ignore -ENODEV if link 3664 * is online. Also, some SATA devices take a long 3665 * time to clear 0xff after reset. Wait for 3666 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3667 * offline. 3668 * 3669 * Note that some PATA controllers (pata_ali) explode 3670 * if status register is read more than once when 3671 * there's no device attached. 3672 */ 3673 if (ready == -ENODEV) { 3674 if (ata_link_online(link)) 3675 ready = 0; 3676 else if ((link->ap->flags & ATA_FLAG_SATA) && 3677 !ata_link_offline(link) && 3678 time_before(now, nodev_deadline)) 3679 ready = 0; 3680 } 3681 3682 if (ready) 3683 return ready; 3684 if (time_after(now, deadline)) 3685 return -EBUSY; 3686 3687 if (!warned && time_after(now, start + 5 * HZ) && 3688 (deadline - now > 3 * HZ)) { 3689 ata_link_warn(link, 3690 "link is slow to respond, please be patient " 3691 "(ready=%d)\n", tmp); 3692 warned = 1; 3693 } 3694 3695 ata_msleep(link->ap, 50); 3696 } 3697 } 3698 3699 /** 3700 * ata_wait_after_reset - wait for link to become ready after reset 3701 * @link: link to be waited on 3702 * @deadline: deadline jiffies for the operation 3703 * @check_ready: callback to check link readiness 3704 * 3705 * Wait for @link to become ready after reset. 3706 * 3707 * LOCKING: 3708 * EH context. 3709 * 3710 * RETURNS: 3711 * 0 if @link is ready before @deadline; otherwise, -errno. 3712 */ 3713 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3714 int (*check_ready)(struct ata_link *link)) 3715 { 3716 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3717 3718 return ata_wait_ready(link, deadline, check_ready); 3719 } 3720 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3721 3722 /** 3723 * ata_std_prereset - prepare for reset 3724 * @link: ATA link to be reset 3725 * @deadline: deadline jiffies for the operation 3726 * 3727 * @link is about to be reset. Initialize it. Failure from 3728 * prereset makes libata abort whole reset sequence and give up 3729 * that port, so prereset should be best-effort. It does its 3730 * best to prepare for reset sequence but if things go wrong, it 3731 * should just whine, not fail. 3732 * 3733 * LOCKING: 3734 * Kernel thread context (may sleep) 3735 * 3736 * RETURNS: 3737 * Always 0. 3738 */ 3739 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3740 { 3741 struct ata_port *ap = link->ap; 3742 struct ata_eh_context *ehc = &link->eh_context; 3743 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3744 int rc; 3745 3746 /* if we're about to do hardreset, nothing more to do */ 3747 if (ehc->i.action & ATA_EH_HARDRESET) 3748 return 0; 3749 3750 /* if SATA, resume link */ 3751 if (ap->flags & ATA_FLAG_SATA) { 3752 rc = sata_link_resume(link, timing, deadline); 3753 /* whine about phy resume failure but proceed */ 3754 if (rc && rc != -EOPNOTSUPP) 3755 ata_link_warn(link, 3756 "failed to resume link for reset (errno=%d)\n", 3757 rc); 3758 } 3759 3760 /* no point in trying softreset on offline link */ 3761 if (ata_phys_link_offline(link)) 3762 ehc->i.action &= ~ATA_EH_SOFTRESET; 3763 3764 return 0; 3765 } 3766 EXPORT_SYMBOL_GPL(ata_std_prereset); 3767 3768 /** 3769 * ata_std_postreset - standard postreset callback 3770 * @link: the target ata_link 3771 * @classes: classes of attached devices 3772 * 3773 * This function is invoked after a successful reset. Note that 3774 * the device might have been reset more than once using 3775 * different reset methods before postreset is invoked. 3776 * 3777 * LOCKING: 3778 * Kernel thread context (may sleep) 3779 */ 3780 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3781 { 3782 u32 serror; 3783 3784 /* reset complete, clear SError */ 3785 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3786 sata_scr_write(link, SCR_ERROR, serror); 3787 3788 /* print link status */ 3789 sata_print_link_status(link); 3790 } 3791 EXPORT_SYMBOL_GPL(ata_std_postreset); 3792 3793 /** 3794 * ata_dev_same_device - Determine whether new ID matches configured device 3795 * @dev: device to compare against 3796 * @new_class: class of the new device 3797 * @new_id: IDENTIFY page of the new device 3798 * 3799 * Compare @new_class and @new_id against @dev and determine 3800 * whether @dev is the device indicated by @new_class and 3801 * @new_id. 3802 * 3803 * LOCKING: 3804 * None. 3805 * 3806 * RETURNS: 3807 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3808 */ 3809 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3810 const u16 *new_id) 3811 { 3812 const u16 *old_id = dev->id; 3813 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3814 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3815 3816 if (dev->class != new_class) { 3817 ata_dev_info(dev, "class mismatch %d != %d\n", 3818 dev->class, new_class); 3819 return 0; 3820 } 3821 3822 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3823 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3824 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3825 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3826 3827 if (strcmp(model[0], model[1])) { 3828 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3829 model[0], model[1]); 3830 return 0; 3831 } 3832 3833 if (strcmp(serial[0], serial[1])) { 3834 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3835 serial[0], serial[1]); 3836 return 0; 3837 } 3838 3839 return 1; 3840 } 3841 3842 /** 3843 * ata_dev_reread_id - Re-read IDENTIFY data 3844 * @dev: target ATA device 3845 * @readid_flags: read ID flags 3846 * 3847 * Re-read IDENTIFY page and make sure @dev is still attached to 3848 * the port. 3849 * 3850 * LOCKING: 3851 * Kernel thread context (may sleep) 3852 * 3853 * RETURNS: 3854 * 0 on success, negative errno otherwise 3855 */ 3856 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3857 { 3858 unsigned int class = dev->class; 3859 u16 *id = (void *)dev->sector_buf; 3860 int rc; 3861 3862 /* read ID data */ 3863 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3864 if (rc) 3865 return rc; 3866 3867 /* is the device still there? */ 3868 if (!ata_dev_same_device(dev, class, id)) 3869 return -ENODEV; 3870 3871 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3872 return 0; 3873 } 3874 3875 /** 3876 * ata_dev_revalidate - Revalidate ATA device 3877 * @dev: device to revalidate 3878 * @new_class: new class code 3879 * @readid_flags: read ID flags 3880 * 3881 * Re-read IDENTIFY page, make sure @dev is still attached to the 3882 * port and reconfigure it according to the new IDENTIFY page. 3883 * 3884 * LOCKING: 3885 * Kernel thread context (may sleep) 3886 * 3887 * RETURNS: 3888 * 0 on success, negative errno otherwise 3889 */ 3890 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3891 unsigned int readid_flags) 3892 { 3893 u64 n_sectors = dev->n_sectors; 3894 u64 n_native_sectors = dev->n_native_sectors; 3895 int rc; 3896 3897 if (!ata_dev_enabled(dev)) 3898 return -ENODEV; 3899 3900 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3901 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3902 ata_dev_info(dev, "class mismatch %u != %u\n", 3903 dev->class, new_class); 3904 rc = -ENODEV; 3905 goto fail; 3906 } 3907 3908 /* re-read ID */ 3909 rc = ata_dev_reread_id(dev, readid_flags); 3910 if (rc) 3911 goto fail; 3912 3913 /* configure device according to the new ID */ 3914 rc = ata_dev_configure(dev); 3915 if (rc) 3916 goto fail; 3917 3918 /* verify n_sectors hasn't changed */ 3919 if (dev->class != ATA_DEV_ATA || !n_sectors || 3920 dev->n_sectors == n_sectors) 3921 return 0; 3922 3923 /* n_sectors has changed */ 3924 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3925 (unsigned long long)n_sectors, 3926 (unsigned long long)dev->n_sectors); 3927 3928 /* 3929 * Something could have caused HPA to be unlocked 3930 * involuntarily. If n_native_sectors hasn't changed and the 3931 * new size matches it, keep the device. 3932 */ 3933 if (dev->n_native_sectors == n_native_sectors && 3934 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3935 ata_dev_warn(dev, 3936 "new n_sectors matches native, probably " 3937 "late HPA unlock, n_sectors updated\n"); 3938 /* use the larger n_sectors */ 3939 return 0; 3940 } 3941 3942 /* 3943 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3944 * unlocking HPA in those cases. 3945 * 3946 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3947 */ 3948 if (dev->n_native_sectors == n_native_sectors && 3949 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3950 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) { 3951 ata_dev_warn(dev, 3952 "old n_sectors matches native, probably " 3953 "late HPA lock, will try to unlock HPA\n"); 3954 /* try unlocking HPA */ 3955 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3956 rc = -EIO; 3957 } else 3958 rc = -ENODEV; 3959 3960 /* restore original n_[native_]sectors and fail */ 3961 dev->n_native_sectors = n_native_sectors; 3962 dev->n_sectors = n_sectors; 3963 fail: 3964 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3965 return rc; 3966 } 3967 3968 static const char * const ata_quirk_names[] = { 3969 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic", 3970 [__ATA_QUIRK_NODMA] = "nodma", 3971 [__ATA_QUIRK_NONCQ] = "noncq", 3972 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128", 3973 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa", 3974 [__ATA_QUIRK_DISABLE] = "disable", 3975 [__ATA_QUIRK_HPA_SIZE] = "hpasize", 3976 [__ATA_QUIRK_IVB] = "ivb", 3977 [__ATA_QUIRK_STUCK_ERR] = "stuckerr", 3978 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok", 3979 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma", 3980 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn", 3981 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps", 3982 [__ATA_QUIRK_NOSETXFER] = "nosetxfer", 3983 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa", 3984 [__ATA_QUIRK_DUMP_ID] = "dumpid", 3985 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48", 3986 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir", 3987 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim", 3988 [__ATA_QUIRK_NOLPM] = "nolpm", 3989 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm", 3990 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim", 3991 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog", 3992 [__ATA_QUIRK_NOTRIM] = "notrim", 3993 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024", 3994 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m", 3995 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati", 3996 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati", 3997 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog", 3998 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir", 3999 [__ATA_QUIRK_NO_FUA] = "nofua", 4000 }; 4001 4002 static void ata_dev_print_quirks(const struct ata_device *dev, 4003 const char *model, const char *rev, 4004 unsigned int quirks) 4005 { 4006 struct ata_eh_context *ehc = &dev->link->eh_context; 4007 int n = 0, i; 4008 size_t sz; 4009 char *str; 4010 4011 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS) 4012 return; 4013 4014 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS; 4015 4016 if (!quirks) 4017 return; 4018 4019 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16; 4020 str = kmalloc(sz, GFP_KERNEL); 4021 if (!str) 4022 return; 4023 4024 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:", 4025 model, rev); 4026 4027 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) { 4028 if (quirks & (1U << i)) 4029 n += snprintf(str + n, sz - n, 4030 " %s", ata_quirk_names[i]); 4031 } 4032 4033 ata_dev_warn(dev, "%s\n", str); 4034 4035 kfree(str); 4036 } 4037 4038 struct ata_dev_quirks_entry { 4039 const char *model_num; 4040 const char *model_rev; 4041 unsigned int quirks; 4042 }; 4043 4044 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = { 4045 /* Devices with DMA related problems under Linux */ 4046 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA }, 4047 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA }, 4048 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA }, 4049 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA }, 4050 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA }, 4051 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA }, 4052 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA }, 4053 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA }, 4054 { "CRD-8400B", NULL, ATA_QUIRK_NODMA }, 4055 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA }, 4056 { "CRD-84", NULL, ATA_QUIRK_NODMA }, 4057 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA }, 4058 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA }, 4059 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA }, 4060 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA }, 4061 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA }, 4062 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA }, 4063 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA }, 4064 { "CD-532E-A", NULL, ATA_QUIRK_NODMA }, 4065 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA }, 4066 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA }, 4067 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA }, 4068 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA }, 4069 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA }, 4070 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA }, 4071 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA }, 4072 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA }, 4073 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA }, 4074 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA }, 4075 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA }, 4076 /* Odd clown on sil3726/4726 PMPs */ 4077 { "Config Disk", NULL, ATA_QUIRK_DISABLE }, 4078 /* Similar story with ASMedia 1092 */ 4079 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE }, 4080 4081 /* Weird ATAPI devices */ 4082 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 }, 4083 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA }, 4084 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4085 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4086 4087 /* 4088 * Causes silent data corruption with higher max sects. 4089 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4090 */ 4091 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 }, 4092 4093 /* 4094 * These devices time out with higher max sects. 4095 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4096 */ 4097 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4098 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4099 4100 /* Devices we expect to fail diagnostics */ 4101 4102 /* Devices where NCQ should be avoided */ 4103 /* NCQ is slow */ 4104 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ }, 4105 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ }, 4106 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4107 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ }, 4108 /* NCQ is broken */ 4109 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ }, 4110 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ }, 4111 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ }, 4112 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ }, 4113 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ }, 4114 4115 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4116 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4117 ATA_QUIRK_FIRMWARE_WARN }, 4118 4119 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4120 ATA_QUIRK_FIRMWARE_WARN }, 4121 4122 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4123 ATA_QUIRK_FIRMWARE_WARN }, 4124 4125 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4126 ATA_QUIRK_FIRMWARE_WARN }, 4127 4128 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4129 the ST disks also have LPM issues */ 4130 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA | 4131 ATA_QUIRK_NOLPM }, 4132 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA }, 4133 4134 /* Blacklist entries taken from Silicon Image 3124/3132 4135 Windows driver .inf file - also several Linux problem reports */ 4136 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ }, 4137 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ }, 4138 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ }, 4139 4140 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4141 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ }, 4142 4143 /* Sandisk SD7/8/9s lock up hard on large trims */ 4144 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M }, 4145 4146 /* devices which puke on READ_NATIVE_MAX */ 4147 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA }, 4148 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA }, 4149 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA }, 4150 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA }, 4151 4152 /* this one allows HPA unlocking but fails IOs on the area */ 4153 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA }, 4154 4155 /* Devices which report 1 sector over size HPA */ 4156 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE }, 4157 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE }, 4158 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE }, 4159 4160 /* Devices which get the IVB wrong */ 4161 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB }, 4162 /* Maybe we should just add all TSSTcorp devices... */ 4163 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB }, 4164 4165 /* Devices that do not need bridging limits applied */ 4166 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK }, 4167 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK }, 4168 4169 /* Devices which aren't very happy with higher link speeds */ 4170 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS }, 4171 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS }, 4172 4173 /* 4174 * Devices which choke on SETXFER. Applies only if both the 4175 * device and controller are SATA. 4176 */ 4177 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER }, 4178 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER }, 4179 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER }, 4180 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER }, 4181 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER }, 4182 4183 /* These specific Pioneer models have LPM issues */ 4184 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM }, 4185 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM }, 4186 4187 /* Crucial devices with broken LPM support */ 4188 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM }, 4189 4190 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4191 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4192 ATA_QUIRK_ZERO_AFTER_TRIM | 4193 ATA_QUIRK_NOLPM }, 4194 /* 512GB MX100 with newer firmware has only LPM issues */ 4195 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM | 4196 ATA_QUIRK_NOLPM }, 4197 4198 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4199 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4200 ATA_QUIRK_ZERO_AFTER_TRIM | 4201 ATA_QUIRK_NOLPM }, 4202 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4203 ATA_QUIRK_ZERO_AFTER_TRIM | 4204 ATA_QUIRK_NOLPM }, 4205 4206 /* AMD Radeon devices with broken LPM support */ 4207 { "R3SL240G", NULL, ATA_QUIRK_NOLPM }, 4208 4209 /* Apacer models with LPM issues */ 4210 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM }, 4211 4212 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4213 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM }, 4214 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM }, 4215 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM }, 4216 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM }, 4217 4218 /* devices that don't properly handle queued TRIM commands */ 4219 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4220 ATA_QUIRK_ZERO_AFTER_TRIM }, 4221 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4222 ATA_QUIRK_ZERO_AFTER_TRIM }, 4223 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4224 ATA_QUIRK_ZERO_AFTER_TRIM }, 4225 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4226 ATA_QUIRK_ZERO_AFTER_TRIM, }, 4227 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4228 ATA_QUIRK_ZERO_AFTER_TRIM }, 4229 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4230 ATA_QUIRK_ZERO_AFTER_TRIM }, 4231 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4232 ATA_QUIRK_ZERO_AFTER_TRIM }, 4233 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4234 ATA_QUIRK_NO_DMA_LOG | 4235 ATA_QUIRK_ZERO_AFTER_TRIM }, 4236 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4237 ATA_QUIRK_ZERO_AFTER_TRIM }, 4238 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4239 ATA_QUIRK_ZERO_AFTER_TRIM }, 4240 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4241 ATA_QUIRK_ZERO_AFTER_TRIM | 4242 ATA_QUIRK_NO_NCQ_ON_ATI | 4243 ATA_QUIRK_NO_LPM_ON_ATI }, 4244 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4245 ATA_QUIRK_ZERO_AFTER_TRIM | 4246 ATA_QUIRK_NO_NCQ_ON_ATI | 4247 ATA_QUIRK_NO_LPM_ON_ATI }, 4248 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4249 ATA_QUIRK_ZERO_AFTER_TRIM | 4250 ATA_QUIRK_NO_NCQ_ON_ATI | 4251 ATA_QUIRK_NO_LPM_ON_ATI }, 4252 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4253 ATA_QUIRK_ZERO_AFTER_TRIM }, 4254 4255 /* devices that don't properly handle TRIM commands */ 4256 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM }, 4257 { "M88V29*", NULL, ATA_QUIRK_NOTRIM }, 4258 4259 /* 4260 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4261 * (Return Zero After Trim) flags in the ATA Command Set are 4262 * unreliable in the sense that they only define what happens if 4263 * the device successfully executed the DSM TRIM command. TRIM 4264 * is only advisory, however, and the device is free to silently 4265 * ignore all or parts of the request. 4266 * 4267 * Whitelist drives that are known to reliably return zeroes 4268 * after TRIM. 4269 */ 4270 4271 /* 4272 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4273 * that model before whitelisting all other intel SSDs. 4274 */ 4275 { "INTEL*SSDSC2MH*", NULL, 0 }, 4276 4277 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4278 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4279 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4280 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4281 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4282 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4283 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4284 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4285 4286 /* 4287 * Some WD SATA-I drives spin up and down erratically when the link 4288 * is put into the slumber mode. We don't have full list of the 4289 * affected devices. Disable LPM if the device matches one of the 4290 * known prefixes and is SATA-1. As a side effect LPM partial is 4291 * lost too. 4292 * 4293 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4294 */ 4295 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4296 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4297 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4298 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4299 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4300 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4301 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4302 4303 /* 4304 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4305 * log page is accessed. Ensure we never ask for this log page with 4306 * these devices. 4307 */ 4308 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR }, 4309 4310 /* Buggy FUA */ 4311 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA }, 4312 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA }, 4313 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA }, 4314 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA }, 4315 4316 /* End Marker */ 4317 { } 4318 }; 4319 4320 static unsigned int ata_dev_quirks(const struct ata_device *dev) 4321 { 4322 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4323 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4324 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks; 4325 4326 /* dev->quirks is an unsigned int. */ 4327 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32); 4328 4329 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4330 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4331 4332 while (ad->model_num) { 4333 if (glob_match(ad->model_num, model_num) && 4334 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4335 ata_dev_print_quirks(dev, model_num, model_rev, 4336 ad->quirks); 4337 return ad->quirks; 4338 } 4339 ad++; 4340 } 4341 return 0; 4342 } 4343 4344 static bool ata_dev_nodma(const struct ata_device *dev) 4345 { 4346 /* 4347 * We do not support polling DMA. Deny DMA for those ATAPI devices 4348 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in 4349 * the HSM_ST_LAST state. 4350 */ 4351 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4352 (dev->flags & ATA_DFLAG_CDB_INTR)) 4353 return true; 4354 return dev->quirks & ATA_QUIRK_NODMA; 4355 } 4356 4357 /** 4358 * ata_is_40wire - check drive side detection 4359 * @dev: device 4360 * 4361 * Perform drive side detection decoding, allowing for device vendors 4362 * who can't follow the documentation. 4363 */ 4364 4365 static int ata_is_40wire(struct ata_device *dev) 4366 { 4367 if (dev->quirks & ATA_QUIRK_IVB) 4368 return ata_drive_40wire_relaxed(dev->id); 4369 return ata_drive_40wire(dev->id); 4370 } 4371 4372 /** 4373 * cable_is_40wire - 40/80/SATA decider 4374 * @ap: port to consider 4375 * 4376 * This function encapsulates the policy for speed management 4377 * in one place. At the moment we don't cache the result but 4378 * there is a good case for setting ap->cbl to the result when 4379 * we are called with unknown cables (and figuring out if it 4380 * impacts hotplug at all). 4381 * 4382 * Return 1 if the cable appears to be 40 wire. 4383 */ 4384 4385 static int cable_is_40wire(struct ata_port *ap) 4386 { 4387 struct ata_link *link; 4388 struct ata_device *dev; 4389 4390 /* If the controller thinks we are 40 wire, we are. */ 4391 if (ap->cbl == ATA_CBL_PATA40) 4392 return 1; 4393 4394 /* If the controller thinks we are 80 wire, we are. */ 4395 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4396 return 0; 4397 4398 /* If the system is known to be 40 wire short cable (eg 4399 * laptop), then we allow 80 wire modes even if the drive 4400 * isn't sure. 4401 */ 4402 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4403 return 0; 4404 4405 /* If the controller doesn't know, we scan. 4406 * 4407 * Note: We look for all 40 wire detects at this point. Any 4408 * 80 wire detect is taken to be 80 wire cable because 4409 * - in many setups only the one drive (slave if present) will 4410 * give a valid detect 4411 * - if you have a non detect capable drive you don't want it 4412 * to colour the choice 4413 */ 4414 ata_for_each_link(link, ap, EDGE) { 4415 ata_for_each_dev(dev, link, ENABLED) { 4416 if (!ata_is_40wire(dev)) 4417 return 0; 4418 } 4419 } 4420 return 1; 4421 } 4422 4423 /** 4424 * ata_dev_xfermask - Compute supported xfermask of the given device 4425 * @dev: Device to compute xfermask for 4426 * 4427 * Compute supported xfermask of @dev and store it in 4428 * dev->*_mask. This function is responsible for applying all 4429 * known limits including host controller limits, device quirks, etc... 4430 * 4431 * LOCKING: 4432 * None. 4433 */ 4434 static void ata_dev_xfermask(struct ata_device *dev) 4435 { 4436 struct ata_link *link = dev->link; 4437 struct ata_port *ap = link->ap; 4438 struct ata_host *host = ap->host; 4439 unsigned int xfer_mask; 4440 4441 /* controller modes available */ 4442 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4443 ap->mwdma_mask, ap->udma_mask); 4444 4445 /* drive modes available */ 4446 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4447 dev->mwdma_mask, dev->udma_mask); 4448 xfer_mask &= ata_id_xfermask(dev->id); 4449 4450 /* 4451 * CFA Advanced TrueIDE timings are not allowed on a shared 4452 * cable 4453 */ 4454 if (ata_dev_pair(dev)) { 4455 /* No PIO5 or PIO6 */ 4456 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4457 /* No MWDMA3 or MWDMA 4 */ 4458 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4459 } 4460 4461 if (ata_dev_nodma(dev)) { 4462 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4463 ata_dev_warn(dev, 4464 "device does not support DMA, disabling DMA\n"); 4465 } 4466 4467 if ((host->flags & ATA_HOST_SIMPLEX) && 4468 host->simplex_claimed && host->simplex_claimed != ap) { 4469 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4470 ata_dev_warn(dev, 4471 "simplex DMA is claimed by other device, disabling DMA\n"); 4472 } 4473 4474 if (ap->flags & ATA_FLAG_NO_IORDY) 4475 xfer_mask &= ata_pio_mask_no_iordy(dev); 4476 4477 if (ap->ops->mode_filter) 4478 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4479 4480 /* Apply cable rule here. Don't apply it early because when 4481 * we handle hot plug the cable type can itself change. 4482 * Check this last so that we know if the transfer rate was 4483 * solely limited by the cable. 4484 * Unknown or 80 wire cables reported host side are checked 4485 * drive side as well. Cases where we know a 40wire cable 4486 * is used safely for 80 are not checked here. 4487 */ 4488 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4489 /* UDMA/44 or higher would be available */ 4490 if (cable_is_40wire(ap)) { 4491 ata_dev_warn(dev, 4492 "limited to UDMA/33 due to 40-wire cable\n"); 4493 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4494 } 4495 4496 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4497 &dev->mwdma_mask, &dev->udma_mask); 4498 } 4499 4500 /** 4501 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4502 * @dev: Device to which command will be sent 4503 * 4504 * Issue SET FEATURES - XFER MODE command to device @dev 4505 * on port @ap. 4506 * 4507 * LOCKING: 4508 * PCI/etc. bus probe sem. 4509 * 4510 * RETURNS: 4511 * 0 on success, AC_ERR_* mask otherwise. 4512 */ 4513 4514 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4515 { 4516 struct ata_taskfile tf; 4517 4518 /* set up set-features taskfile */ 4519 ata_dev_dbg(dev, "set features - xfer mode\n"); 4520 4521 /* Some controllers and ATAPI devices show flaky interrupt 4522 * behavior after setting xfer mode. Use polling instead. 4523 */ 4524 ata_tf_init(dev, &tf); 4525 tf.command = ATA_CMD_SET_FEATURES; 4526 tf.feature = SETFEATURES_XFER; 4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4528 tf.protocol = ATA_PROT_NODATA; 4529 /* If we are using IORDY we must send the mode setting command */ 4530 if (ata_pio_need_iordy(dev)) 4531 tf.nsect = dev->xfer_mode; 4532 /* If the device has IORDY and the controller does not - turn it off */ 4533 else if (ata_id_has_iordy(dev->id)) 4534 tf.nsect = 0x01; 4535 else /* In the ancient relic department - skip all of this */ 4536 return 0; 4537 4538 /* 4539 * On some disks, this command causes spin-up, so we need longer 4540 * timeout. 4541 */ 4542 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4543 } 4544 4545 /** 4546 * ata_dev_set_feature - Issue SET FEATURES 4547 * @dev: Device to which command will be sent 4548 * @subcmd: The SET FEATURES subcommand to be sent 4549 * @action: The sector count represents a subcommand specific action 4550 * 4551 * Issue SET FEATURES command to device @dev on port @ap with sector count 4552 * 4553 * LOCKING: 4554 * PCI/etc. bus probe sem. 4555 * 4556 * RETURNS: 4557 * 0 on success, AC_ERR_* mask otherwise. 4558 */ 4559 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4560 { 4561 struct ata_taskfile tf; 4562 unsigned int timeout = 0; 4563 4564 /* set up set-features taskfile */ 4565 ata_dev_dbg(dev, "set features\n"); 4566 4567 ata_tf_init(dev, &tf); 4568 tf.command = ATA_CMD_SET_FEATURES; 4569 tf.feature = subcmd; 4570 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4571 tf.protocol = ATA_PROT_NODATA; 4572 tf.nsect = action; 4573 4574 if (subcmd == SETFEATURES_SPINUP) 4575 timeout = ata_probe_timeout ? 4576 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4577 4578 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4579 } 4580 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4581 4582 /** 4583 * ata_dev_init_params - Issue INIT DEV PARAMS command 4584 * @dev: Device to which command will be sent 4585 * @heads: Number of heads (taskfile parameter) 4586 * @sectors: Number of sectors (taskfile parameter) 4587 * 4588 * LOCKING: 4589 * Kernel thread context (may sleep) 4590 * 4591 * RETURNS: 4592 * 0 on success, AC_ERR_* mask otherwise. 4593 */ 4594 static unsigned int ata_dev_init_params(struct ata_device *dev, 4595 u16 heads, u16 sectors) 4596 { 4597 struct ata_taskfile tf; 4598 unsigned int err_mask; 4599 4600 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4601 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4602 return AC_ERR_INVALID; 4603 4604 /* set up init dev params taskfile */ 4605 ata_dev_dbg(dev, "init dev params\n"); 4606 4607 ata_tf_init(dev, &tf); 4608 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4609 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4610 tf.protocol = ATA_PROT_NODATA; 4611 tf.nsect = sectors; 4612 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4613 4614 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4615 /* A clean abort indicates an original or just out of spec drive 4616 and we should continue as we issue the setup based on the 4617 drive reported working geometry */ 4618 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4619 err_mask = 0; 4620 4621 return err_mask; 4622 } 4623 4624 /** 4625 * atapi_check_dma - Check whether ATAPI DMA can be supported 4626 * @qc: Metadata associated with taskfile to check 4627 * 4628 * Allow low-level driver to filter ATA PACKET commands, returning 4629 * a status indicating whether or not it is OK to use DMA for the 4630 * supplied PACKET command. 4631 * 4632 * LOCKING: 4633 * spin_lock_irqsave(host lock) 4634 * 4635 * RETURNS: 0 when ATAPI DMA can be used 4636 * nonzero otherwise 4637 */ 4638 int atapi_check_dma(struct ata_queued_cmd *qc) 4639 { 4640 struct ata_port *ap = qc->ap; 4641 4642 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4643 * few ATAPI devices choke on such DMA requests. 4644 */ 4645 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) && 4646 unlikely(qc->nbytes & 15)) 4647 return -EOPNOTSUPP; 4648 4649 if (ap->ops->check_atapi_dma) 4650 return ap->ops->check_atapi_dma(qc); 4651 4652 return 0; 4653 } 4654 4655 /** 4656 * ata_std_qc_defer - Check whether a qc needs to be deferred 4657 * @qc: ATA command in question 4658 * 4659 * Non-NCQ commands cannot run with any other command, NCQ or 4660 * not. As upper layer only knows the queue depth, we are 4661 * responsible for maintaining exclusion. This function checks 4662 * whether a new command @qc can be issued. 4663 * 4664 * LOCKING: 4665 * spin_lock_irqsave(host lock) 4666 * 4667 * RETURNS: 4668 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4669 */ 4670 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4671 { 4672 struct ata_link *link = qc->dev->link; 4673 4674 if (ata_is_ncq(qc->tf.protocol)) { 4675 if (!ata_tag_valid(link->active_tag)) 4676 return 0; 4677 } else { 4678 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4679 return 0; 4680 } 4681 4682 return ATA_DEFER_LINK; 4683 } 4684 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4685 4686 /** 4687 * ata_sg_init - Associate command with scatter-gather table. 4688 * @qc: Command to be associated 4689 * @sg: Scatter-gather table. 4690 * @n_elem: Number of elements in s/g table. 4691 * 4692 * Initialize the data-related elements of queued_cmd @qc 4693 * to point to a scatter-gather table @sg, containing @n_elem 4694 * elements. 4695 * 4696 * LOCKING: 4697 * spin_lock_irqsave(host lock) 4698 */ 4699 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4700 unsigned int n_elem) 4701 { 4702 qc->sg = sg; 4703 qc->n_elem = n_elem; 4704 qc->cursg = qc->sg; 4705 } 4706 4707 #ifdef CONFIG_HAS_DMA 4708 4709 /** 4710 * ata_sg_clean - Unmap DMA memory associated with command 4711 * @qc: Command containing DMA memory to be released 4712 * 4713 * Unmap all mapped DMA memory associated with this command. 4714 * 4715 * LOCKING: 4716 * spin_lock_irqsave(host lock) 4717 */ 4718 static void ata_sg_clean(struct ata_queued_cmd *qc) 4719 { 4720 struct ata_port *ap = qc->ap; 4721 struct scatterlist *sg = qc->sg; 4722 int dir = qc->dma_dir; 4723 4724 WARN_ON_ONCE(sg == NULL); 4725 4726 if (qc->n_elem) 4727 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4728 4729 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4730 qc->sg = NULL; 4731 } 4732 4733 /** 4734 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4735 * @qc: Command with scatter-gather table to be mapped. 4736 * 4737 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4738 * 4739 * LOCKING: 4740 * spin_lock_irqsave(host lock) 4741 * 4742 * RETURNS: 4743 * Zero on success, negative on error. 4744 * 4745 */ 4746 static int ata_sg_setup(struct ata_queued_cmd *qc) 4747 { 4748 struct ata_port *ap = qc->ap; 4749 unsigned int n_elem; 4750 4751 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4752 if (n_elem < 1) 4753 return -1; 4754 4755 qc->orig_n_elem = qc->n_elem; 4756 qc->n_elem = n_elem; 4757 qc->flags |= ATA_QCFLAG_DMAMAP; 4758 4759 return 0; 4760 } 4761 4762 #else /* !CONFIG_HAS_DMA */ 4763 4764 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4765 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4766 4767 #endif /* !CONFIG_HAS_DMA */ 4768 4769 /** 4770 * swap_buf_le16 - swap halves of 16-bit words in place 4771 * @buf: Buffer to swap 4772 * @buf_words: Number of 16-bit words in buffer. 4773 * 4774 * Swap halves of 16-bit words if needed to convert from 4775 * little-endian byte order to native cpu byte order, or 4776 * vice-versa. 4777 * 4778 * LOCKING: 4779 * Inherited from caller. 4780 */ 4781 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4782 { 4783 #ifdef __BIG_ENDIAN 4784 unsigned int i; 4785 4786 for (i = 0; i < buf_words; i++) 4787 buf[i] = le16_to_cpu(buf[i]); 4788 #endif /* __BIG_ENDIAN */ 4789 } 4790 4791 /** 4792 * ata_qc_free - free unused ata_queued_cmd 4793 * @qc: Command to complete 4794 * 4795 * Designed to free unused ata_queued_cmd object 4796 * in case something prevents using it. 4797 * 4798 * LOCKING: 4799 * spin_lock_irqsave(host lock) 4800 */ 4801 void ata_qc_free(struct ata_queued_cmd *qc) 4802 { 4803 qc->flags = 0; 4804 if (ata_tag_valid(qc->tag)) 4805 qc->tag = ATA_TAG_POISON; 4806 } 4807 4808 void __ata_qc_complete(struct ata_queued_cmd *qc) 4809 { 4810 struct ata_port *ap; 4811 struct ata_link *link; 4812 4813 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE))) 4814 return; 4815 4816 ap = qc->ap; 4817 link = qc->dev->link; 4818 4819 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4820 ata_sg_clean(qc); 4821 4822 /* command should be marked inactive atomically with qc completion */ 4823 if (ata_is_ncq(qc->tf.protocol)) { 4824 link->sactive &= ~(1 << qc->hw_tag); 4825 if (!link->sactive) 4826 ap->nr_active_links--; 4827 } else { 4828 link->active_tag = ATA_TAG_POISON; 4829 ap->nr_active_links--; 4830 } 4831 4832 /* clear exclusive status */ 4833 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4834 ap->excl_link == link)) 4835 ap->excl_link = NULL; 4836 4837 /* 4838 * Mark qc as inactive to prevent the port interrupt handler from 4839 * completing the command twice later, before the error handler is 4840 * called. 4841 */ 4842 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4843 ap->qc_active &= ~(1ULL << qc->tag); 4844 4845 /* call completion callback */ 4846 qc->complete_fn(qc); 4847 } 4848 4849 static void fill_result_tf(struct ata_queued_cmd *qc) 4850 { 4851 struct ata_port *ap = qc->ap; 4852 4853 /* 4854 * rtf may already be filled (e.g. for successful NCQ commands). 4855 * If that is the case, we have nothing to do. 4856 */ 4857 if (qc->flags & ATA_QCFLAG_RTF_FILLED) 4858 return; 4859 4860 qc->result_tf.flags = qc->tf.flags; 4861 ap->ops->qc_fill_rtf(qc); 4862 qc->flags |= ATA_QCFLAG_RTF_FILLED; 4863 } 4864 4865 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4866 { 4867 struct ata_device *dev = qc->dev; 4868 4869 if (!ata_is_data(qc->tf.protocol)) 4870 return; 4871 4872 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4873 return; 4874 4875 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4876 } 4877 4878 /** 4879 * ata_qc_complete - Complete an active ATA command 4880 * @qc: Command to complete 4881 * 4882 * Indicate to the mid and upper layers that an ATA command has 4883 * completed, with either an ok or not-ok status. 4884 * 4885 * Refrain from calling this function multiple times when 4886 * successfully completing multiple NCQ commands. 4887 * ata_qc_complete_multiple() should be used instead, which will 4888 * properly update IRQ expect state. 4889 * 4890 * LOCKING: 4891 * spin_lock_irqsave(host lock) 4892 */ 4893 void ata_qc_complete(struct ata_queued_cmd *qc) 4894 { 4895 struct ata_port *ap = qc->ap; 4896 struct ata_device *dev = qc->dev; 4897 struct ata_eh_info *ehi = &dev->link->eh_info; 4898 4899 /* Trigger the LED (if available) */ 4900 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4901 4902 /* 4903 * In order to synchronize EH with the regular execution path, a qc that 4904 * is owned by EH is marked with ATA_QCFLAG_EH. 4905 * 4906 * The normal execution path is responsible for not accessing a qc owned 4907 * by EH. libata core enforces the rule by returning NULL from 4908 * ata_qc_from_tag() for qcs owned by EH. 4909 */ 4910 if (unlikely(qc->err_mask)) 4911 qc->flags |= ATA_QCFLAG_EH; 4912 4913 /* 4914 * Finish internal commands without any further processing and always 4915 * with the result TF filled. 4916 */ 4917 if (unlikely(ata_tag_internal(qc->tag))) { 4918 fill_result_tf(qc); 4919 trace_ata_qc_complete_internal(qc); 4920 __ata_qc_complete(qc); 4921 return; 4922 } 4923 4924 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4925 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4926 fill_result_tf(qc); 4927 trace_ata_qc_complete_failed(qc); 4928 ata_qc_schedule_eh(qc); 4929 return; 4930 } 4931 4932 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4933 4934 /* read result TF if requested */ 4935 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4936 fill_result_tf(qc); 4937 4938 trace_ata_qc_complete_done(qc); 4939 4940 /* 4941 * For CDL commands that completed without an error, check if we have 4942 * sense data (ATA_SENSE is set). If we do, then the command may have 4943 * been aborted by the device due to a limit timeout using the policy 4944 * 0xD. For these commands, invoke EH to get the command sense data. 4945 */ 4946 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4947 qc->result_tf.status & ATA_SENSE) { 4948 /* 4949 * Tell SCSI EH to not overwrite scmd->result even if this 4950 * command is finished with result SAM_STAT_GOOD. 4951 */ 4952 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4953 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4954 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4955 4956 /* 4957 * set pending so that ata_qc_schedule_eh() does not trigger 4958 * fast drain, and freeze the port. 4959 */ 4960 ap->pflags |= ATA_PFLAG_EH_PENDING; 4961 ata_qc_schedule_eh(qc); 4962 return; 4963 } 4964 4965 /* Some commands need post-processing after successful completion. */ 4966 switch (qc->tf.command) { 4967 case ATA_CMD_SET_FEATURES: 4968 if (qc->tf.feature != SETFEATURES_WC_ON && 4969 qc->tf.feature != SETFEATURES_WC_OFF && 4970 qc->tf.feature != SETFEATURES_RA_ON && 4971 qc->tf.feature != SETFEATURES_RA_OFF) 4972 break; 4973 fallthrough; 4974 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4975 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4976 /* revalidate device */ 4977 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4978 ata_port_schedule_eh(ap); 4979 break; 4980 4981 case ATA_CMD_SLEEP: 4982 dev->flags |= ATA_DFLAG_SLEEPING; 4983 break; 4984 } 4985 4986 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4987 ata_verify_xfer(qc); 4988 4989 __ata_qc_complete(qc); 4990 } 4991 EXPORT_SYMBOL_GPL(ata_qc_complete); 4992 4993 /** 4994 * ata_qc_get_active - get bitmask of active qcs 4995 * @ap: port in question 4996 * 4997 * LOCKING: 4998 * spin_lock_irqsave(host lock) 4999 * 5000 * RETURNS: 5001 * Bitmask of active qcs 5002 */ 5003 u64 ata_qc_get_active(struct ata_port *ap) 5004 { 5005 u64 qc_active = ap->qc_active; 5006 5007 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 5008 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 5009 qc_active |= (1 << 0); 5010 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 5011 } 5012 5013 return qc_active; 5014 } 5015 EXPORT_SYMBOL_GPL(ata_qc_get_active); 5016 5017 /** 5018 * ata_qc_issue - issue taskfile to device 5019 * @qc: command to issue to device 5020 * 5021 * Prepare an ATA command to submission to device. 5022 * This includes mapping the data into a DMA-able 5023 * area, filling in the S/G table, and finally 5024 * writing the taskfile to hardware, starting the command. 5025 * 5026 * LOCKING: 5027 * spin_lock_irqsave(host lock) 5028 */ 5029 void ata_qc_issue(struct ata_queued_cmd *qc) 5030 { 5031 struct ata_port *ap = qc->ap; 5032 struct ata_link *link = qc->dev->link; 5033 u8 prot = qc->tf.protocol; 5034 5035 /* Make sure only one non-NCQ command is outstanding. */ 5036 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 5037 5038 if (ata_is_ncq(prot)) { 5039 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5040 5041 if (!link->sactive) 5042 ap->nr_active_links++; 5043 link->sactive |= 1 << qc->hw_tag; 5044 } else { 5045 WARN_ON_ONCE(link->sactive); 5046 5047 ap->nr_active_links++; 5048 link->active_tag = qc->tag; 5049 } 5050 5051 qc->flags |= ATA_QCFLAG_ACTIVE; 5052 ap->qc_active |= 1ULL << qc->tag; 5053 5054 /* 5055 * We guarantee to LLDs that they will have at least one 5056 * non-zero sg if the command is a data command. 5057 */ 5058 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5059 goto sys_err; 5060 5061 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5062 (ap->flags & ATA_FLAG_PIO_DMA))) 5063 if (ata_sg_setup(qc)) 5064 goto sys_err; 5065 5066 /* if device is sleeping, schedule reset and abort the link */ 5067 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5068 link->eh_info.action |= ATA_EH_RESET; 5069 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5070 ata_link_abort(link); 5071 return; 5072 } 5073 5074 if (ap->ops->qc_prep) { 5075 trace_ata_qc_prep(qc); 5076 qc->err_mask |= ap->ops->qc_prep(qc); 5077 if (unlikely(qc->err_mask)) 5078 goto err; 5079 } 5080 5081 trace_ata_qc_issue(qc); 5082 qc->err_mask |= ap->ops->qc_issue(qc); 5083 if (unlikely(qc->err_mask)) 5084 goto err; 5085 return; 5086 5087 sys_err: 5088 qc->err_mask |= AC_ERR_SYSTEM; 5089 err: 5090 ata_qc_complete(qc); 5091 } 5092 5093 /** 5094 * ata_phys_link_online - test whether the given link is online 5095 * @link: ATA link to test 5096 * 5097 * Test whether @link is online. Note that this function returns 5098 * 0 if online status of @link cannot be obtained, so 5099 * ata_link_online(link) != !ata_link_offline(link). 5100 * 5101 * LOCKING: 5102 * None. 5103 * 5104 * RETURNS: 5105 * True if the port online status is available and online. 5106 */ 5107 bool ata_phys_link_online(struct ata_link *link) 5108 { 5109 u32 sstatus; 5110 5111 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5112 ata_sstatus_online(sstatus)) 5113 return true; 5114 return false; 5115 } 5116 5117 /** 5118 * ata_phys_link_offline - test whether the given link is offline 5119 * @link: ATA link to test 5120 * 5121 * Test whether @link is offline. Note that this function 5122 * returns 0 if offline status of @link cannot be obtained, so 5123 * ata_link_online(link) != !ata_link_offline(link). 5124 * 5125 * LOCKING: 5126 * None. 5127 * 5128 * RETURNS: 5129 * True if the port offline status is available and offline. 5130 */ 5131 bool ata_phys_link_offline(struct ata_link *link) 5132 { 5133 u32 sstatus; 5134 5135 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5136 !ata_sstatus_online(sstatus)) 5137 return true; 5138 return false; 5139 } 5140 5141 /** 5142 * ata_link_online - test whether the given link is online 5143 * @link: ATA link to test 5144 * 5145 * Test whether @link is online. This is identical to 5146 * ata_phys_link_online() when there's no slave link. When 5147 * there's a slave link, this function should only be called on 5148 * the master link and will return true if any of M/S links is 5149 * online. 5150 * 5151 * LOCKING: 5152 * None. 5153 * 5154 * RETURNS: 5155 * True if the port online status is available and online. 5156 */ 5157 bool ata_link_online(struct ata_link *link) 5158 { 5159 struct ata_link *slave = link->ap->slave_link; 5160 5161 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5162 5163 return ata_phys_link_online(link) || 5164 (slave && ata_phys_link_online(slave)); 5165 } 5166 EXPORT_SYMBOL_GPL(ata_link_online); 5167 5168 /** 5169 * ata_link_offline - test whether the given link is offline 5170 * @link: ATA link to test 5171 * 5172 * Test whether @link is offline. This is identical to 5173 * ata_phys_link_offline() when there's no slave link. When 5174 * there's a slave link, this function should only be called on 5175 * the master link and will return true if both M/S links are 5176 * offline. 5177 * 5178 * LOCKING: 5179 * None. 5180 * 5181 * RETURNS: 5182 * True if the port offline status is available and offline. 5183 */ 5184 bool ata_link_offline(struct ata_link *link) 5185 { 5186 struct ata_link *slave = link->ap->slave_link; 5187 5188 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5189 5190 return ata_phys_link_offline(link) && 5191 (!slave || ata_phys_link_offline(slave)); 5192 } 5193 EXPORT_SYMBOL_GPL(ata_link_offline); 5194 5195 #ifdef CONFIG_PM 5196 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5197 unsigned int action, unsigned int ehi_flags, 5198 bool async) 5199 { 5200 struct ata_link *link; 5201 unsigned long flags; 5202 5203 spin_lock_irqsave(ap->lock, flags); 5204 5205 /* 5206 * A previous PM operation might still be in progress. Wait for 5207 * ATA_PFLAG_PM_PENDING to clear. 5208 */ 5209 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5210 spin_unlock_irqrestore(ap->lock, flags); 5211 ata_port_wait_eh(ap); 5212 spin_lock_irqsave(ap->lock, flags); 5213 } 5214 5215 /* Request PM operation to EH */ 5216 ap->pm_mesg = mesg; 5217 ap->pflags |= ATA_PFLAG_PM_PENDING; 5218 ata_for_each_link(link, ap, HOST_FIRST) { 5219 link->eh_info.action |= action; 5220 link->eh_info.flags |= ehi_flags; 5221 } 5222 5223 ata_port_schedule_eh(ap); 5224 5225 spin_unlock_irqrestore(ap->lock, flags); 5226 5227 if (!async) 5228 ata_port_wait_eh(ap); 5229 } 5230 5231 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5232 bool async) 5233 { 5234 /* 5235 * We are about to suspend the port, so we do not care about 5236 * scsi_rescan_device() calls scheduled by previous resume operations. 5237 * The next resume will schedule the rescan again. So cancel any rescan 5238 * that is not done yet. 5239 */ 5240 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5241 5242 /* 5243 * On some hardware, device fails to respond after spun down for 5244 * suspend. As the device will not be used until being resumed, we 5245 * do not need to touch the device. Ask EH to skip the usual stuff 5246 * and proceed directly to suspend. 5247 * 5248 * http://thread.gmane.org/gmane.linux.ide/46764 5249 */ 5250 ata_port_request_pm(ap, mesg, 0, 5251 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5252 ATA_EHI_NO_RECOVERY, 5253 async); 5254 } 5255 5256 static int ata_port_pm_suspend(struct device *dev) 5257 { 5258 struct ata_port *ap = to_ata_port(dev); 5259 5260 if (pm_runtime_suspended(dev)) 5261 return 0; 5262 5263 ata_port_suspend(ap, PMSG_SUSPEND, false); 5264 return 0; 5265 } 5266 5267 static int ata_port_pm_freeze(struct device *dev) 5268 { 5269 struct ata_port *ap = to_ata_port(dev); 5270 5271 if (pm_runtime_suspended(dev)) 5272 return 0; 5273 5274 ata_port_suspend(ap, PMSG_FREEZE, false); 5275 return 0; 5276 } 5277 5278 static int ata_port_pm_poweroff(struct device *dev) 5279 { 5280 if (!pm_runtime_suspended(dev)) 5281 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5282 return 0; 5283 } 5284 5285 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5286 bool async) 5287 { 5288 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5289 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5290 async); 5291 } 5292 5293 static int ata_port_pm_resume(struct device *dev) 5294 { 5295 if (!pm_runtime_suspended(dev)) 5296 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5297 return 0; 5298 } 5299 5300 /* 5301 * For ODDs, the upper layer will poll for media change every few seconds, 5302 * which will make it enter and leave suspend state every few seconds. And 5303 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5304 * is very little and the ODD may malfunction after constantly being reset. 5305 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5306 * ODD is attached to the port. 5307 */ 5308 static int ata_port_runtime_idle(struct device *dev) 5309 { 5310 struct ata_port *ap = to_ata_port(dev); 5311 struct ata_link *link; 5312 struct ata_device *adev; 5313 5314 ata_for_each_link(link, ap, HOST_FIRST) { 5315 ata_for_each_dev(adev, link, ENABLED) 5316 if (adev->class == ATA_DEV_ATAPI && 5317 !zpodd_dev_enabled(adev)) 5318 return -EBUSY; 5319 } 5320 5321 return 0; 5322 } 5323 5324 static int ata_port_runtime_suspend(struct device *dev) 5325 { 5326 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5327 return 0; 5328 } 5329 5330 static int ata_port_runtime_resume(struct device *dev) 5331 { 5332 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5333 return 0; 5334 } 5335 5336 static const struct dev_pm_ops ata_port_pm_ops = { 5337 .suspend = ata_port_pm_suspend, 5338 .resume = ata_port_pm_resume, 5339 .freeze = ata_port_pm_freeze, 5340 .thaw = ata_port_pm_resume, 5341 .poweroff = ata_port_pm_poweroff, 5342 .restore = ata_port_pm_resume, 5343 5344 .runtime_suspend = ata_port_runtime_suspend, 5345 .runtime_resume = ata_port_runtime_resume, 5346 .runtime_idle = ata_port_runtime_idle, 5347 }; 5348 5349 /* sas ports don't participate in pm runtime management of ata_ports, 5350 * and need to resume ata devices at the domain level, not the per-port 5351 * level. sas suspend/resume is async to allow parallel port recovery 5352 * since sas has multiple ata_port instances per Scsi_Host. 5353 */ 5354 void ata_sas_port_suspend(struct ata_port *ap) 5355 { 5356 ata_port_suspend(ap, PMSG_SUSPEND, true); 5357 } 5358 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5359 5360 void ata_sas_port_resume(struct ata_port *ap) 5361 { 5362 ata_port_resume(ap, PMSG_RESUME, true); 5363 } 5364 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5365 5366 /** 5367 * ata_host_suspend - suspend host 5368 * @host: host to suspend 5369 * @mesg: PM message 5370 * 5371 * Suspend @host. Actual operation is performed by port suspend. 5372 */ 5373 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5374 { 5375 host->dev->power.power_state = mesg; 5376 } 5377 EXPORT_SYMBOL_GPL(ata_host_suspend); 5378 5379 /** 5380 * ata_host_resume - resume host 5381 * @host: host to resume 5382 * 5383 * Resume @host. Actual operation is performed by port resume. 5384 */ 5385 void ata_host_resume(struct ata_host *host) 5386 { 5387 host->dev->power.power_state = PMSG_ON; 5388 } 5389 EXPORT_SYMBOL_GPL(ata_host_resume); 5390 #endif 5391 5392 const struct device_type ata_port_type = { 5393 .name = ATA_PORT_TYPE_NAME, 5394 #ifdef CONFIG_PM 5395 .pm = &ata_port_pm_ops, 5396 #endif 5397 }; 5398 5399 /** 5400 * ata_dev_init - Initialize an ata_device structure 5401 * @dev: Device structure to initialize 5402 * 5403 * Initialize @dev in preparation for probing. 5404 * 5405 * LOCKING: 5406 * Inherited from caller. 5407 */ 5408 void ata_dev_init(struct ata_device *dev) 5409 { 5410 struct ata_link *link = ata_dev_phys_link(dev); 5411 struct ata_port *ap = link->ap; 5412 unsigned long flags; 5413 5414 /* SATA spd limit is bound to the attached device, reset together */ 5415 link->sata_spd_limit = link->hw_sata_spd_limit; 5416 link->sata_spd = 0; 5417 5418 /* High bits of dev->flags are used to record warm plug 5419 * requests which occur asynchronously. Synchronize using 5420 * host lock. 5421 */ 5422 spin_lock_irqsave(ap->lock, flags); 5423 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5424 dev->quirks = 0; 5425 spin_unlock_irqrestore(ap->lock, flags); 5426 5427 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5428 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5429 dev->pio_mask = UINT_MAX; 5430 dev->mwdma_mask = UINT_MAX; 5431 dev->udma_mask = UINT_MAX; 5432 } 5433 5434 /** 5435 * ata_link_init - Initialize an ata_link structure 5436 * @ap: ATA port link is attached to 5437 * @link: Link structure to initialize 5438 * @pmp: Port multiplier port number 5439 * 5440 * Initialize @link. 5441 * 5442 * LOCKING: 5443 * Kernel thread context (may sleep) 5444 */ 5445 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5446 { 5447 int i; 5448 5449 /* clear everything except for devices */ 5450 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5451 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5452 5453 link->ap = ap; 5454 link->pmp = pmp; 5455 link->active_tag = ATA_TAG_POISON; 5456 link->hw_sata_spd_limit = UINT_MAX; 5457 5458 /* can't use iterator, ap isn't initialized yet */ 5459 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5460 struct ata_device *dev = &link->device[i]; 5461 5462 dev->link = link; 5463 dev->devno = dev - link->device; 5464 #ifdef CONFIG_ATA_ACPI 5465 dev->gtf_filter = ata_acpi_gtf_filter; 5466 #endif 5467 ata_dev_init(dev); 5468 } 5469 } 5470 5471 /** 5472 * sata_link_init_spd - Initialize link->sata_spd_limit 5473 * @link: Link to configure sata_spd_limit for 5474 * 5475 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5476 * configured value. 5477 * 5478 * LOCKING: 5479 * Kernel thread context (may sleep). 5480 * 5481 * RETURNS: 5482 * 0 on success, -errno on failure. 5483 */ 5484 int sata_link_init_spd(struct ata_link *link) 5485 { 5486 u8 spd; 5487 int rc; 5488 5489 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5490 if (rc) 5491 return rc; 5492 5493 spd = (link->saved_scontrol >> 4) & 0xf; 5494 if (spd) 5495 link->hw_sata_spd_limit &= (1 << spd) - 1; 5496 5497 ata_force_link_limits(link); 5498 5499 link->sata_spd_limit = link->hw_sata_spd_limit; 5500 5501 return 0; 5502 } 5503 5504 /** 5505 * ata_port_alloc - allocate and initialize basic ATA port resources 5506 * @host: ATA host this allocated port belongs to 5507 * 5508 * Allocate and initialize basic ATA port resources. 5509 * 5510 * RETURNS: 5511 * Allocate ATA port on success, NULL on failure. 5512 * 5513 * LOCKING: 5514 * Inherited from calling layer (may sleep). 5515 */ 5516 struct ata_port *ata_port_alloc(struct ata_host *host) 5517 { 5518 struct ata_port *ap; 5519 int id; 5520 5521 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5522 if (!ap) 5523 return NULL; 5524 5525 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5526 ap->lock = &host->lock; 5527 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL); 5528 if (id < 0) { 5529 kfree(ap); 5530 return NULL; 5531 } 5532 ap->print_id = id; 5533 ap->host = host; 5534 ap->dev = host->dev; 5535 5536 mutex_init(&ap->scsi_scan_mutex); 5537 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5538 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5539 INIT_LIST_HEAD(&ap->eh_done_q); 5540 init_waitqueue_head(&ap->eh_wait_q); 5541 init_completion(&ap->park_req_pending); 5542 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5543 TIMER_DEFERRABLE); 5544 5545 ap->cbl = ATA_CBL_NONE; 5546 5547 ata_link_init(ap, &ap->link, 0); 5548 5549 #ifdef ATA_IRQ_TRAP 5550 ap->stats.unhandled_irq = 1; 5551 ap->stats.idle_irq = 1; 5552 #endif 5553 ata_sff_port_init(ap); 5554 5555 ata_force_pflags(ap); 5556 5557 return ap; 5558 } 5559 EXPORT_SYMBOL_GPL(ata_port_alloc); 5560 5561 void ata_port_free(struct ata_port *ap) 5562 { 5563 if (!ap) 5564 return; 5565 5566 kfree(ap->pmp_link); 5567 kfree(ap->slave_link); 5568 ida_free(&ata_ida, ap->print_id); 5569 kfree(ap); 5570 } 5571 EXPORT_SYMBOL_GPL(ata_port_free); 5572 5573 static void ata_devres_release(struct device *gendev, void *res) 5574 { 5575 struct ata_host *host = dev_get_drvdata(gendev); 5576 int i; 5577 5578 for (i = 0; i < host->n_ports; i++) { 5579 struct ata_port *ap = host->ports[i]; 5580 5581 if (!ap) 5582 continue; 5583 5584 if (ap->scsi_host) 5585 scsi_host_put(ap->scsi_host); 5586 5587 } 5588 5589 dev_set_drvdata(gendev, NULL); 5590 ata_host_put(host); 5591 } 5592 5593 static void ata_host_release(struct kref *kref) 5594 { 5595 struct ata_host *host = container_of(kref, struct ata_host, kref); 5596 int i; 5597 5598 for (i = 0; i < host->n_ports; i++) { 5599 ata_port_free(host->ports[i]); 5600 host->ports[i] = NULL; 5601 } 5602 kfree(host); 5603 } 5604 5605 void ata_host_get(struct ata_host *host) 5606 { 5607 kref_get(&host->kref); 5608 } 5609 5610 void ata_host_put(struct ata_host *host) 5611 { 5612 kref_put(&host->kref, ata_host_release); 5613 } 5614 EXPORT_SYMBOL_GPL(ata_host_put); 5615 5616 /** 5617 * ata_host_alloc - allocate and init basic ATA host resources 5618 * @dev: generic device this host is associated with 5619 * @n_ports: the number of ATA ports associated with this host 5620 * 5621 * Allocate and initialize basic ATA host resources. LLD calls 5622 * this function to allocate a host, initializes it fully and 5623 * attaches it using ata_host_register(). 5624 * 5625 * RETURNS: 5626 * Allocate ATA host on success, NULL on failure. 5627 * 5628 * LOCKING: 5629 * Inherited from calling layer (may sleep). 5630 */ 5631 struct ata_host *ata_host_alloc(struct device *dev, int n_ports) 5632 { 5633 struct ata_host *host; 5634 size_t sz; 5635 int i; 5636 void *dr; 5637 5638 /* alloc a container for our list of ATA ports (buses) */ 5639 sz = sizeof(struct ata_host) + n_ports * sizeof(void *); 5640 host = kzalloc(sz, GFP_KERNEL); 5641 if (!host) 5642 return NULL; 5643 5644 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5645 kfree(host); 5646 return NULL; 5647 } 5648 5649 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5650 if (!dr) { 5651 kfree(host); 5652 goto err_out; 5653 } 5654 5655 devres_add(dev, dr); 5656 dev_set_drvdata(dev, host); 5657 5658 spin_lock_init(&host->lock); 5659 mutex_init(&host->eh_mutex); 5660 host->dev = dev; 5661 host->n_ports = n_ports; 5662 kref_init(&host->kref); 5663 5664 /* allocate ports bound to this host */ 5665 for (i = 0; i < n_ports; i++) { 5666 struct ata_port *ap; 5667 5668 ap = ata_port_alloc(host); 5669 if (!ap) 5670 goto err_out; 5671 5672 ap->port_no = i; 5673 host->ports[i] = ap; 5674 } 5675 5676 devres_remove_group(dev, NULL); 5677 return host; 5678 5679 err_out: 5680 devres_release_group(dev, NULL); 5681 return NULL; 5682 } 5683 EXPORT_SYMBOL_GPL(ata_host_alloc); 5684 5685 /** 5686 * ata_host_alloc_pinfo - alloc host and init with port_info array 5687 * @dev: generic device this host is associated with 5688 * @ppi: array of ATA port_info to initialize host with 5689 * @n_ports: number of ATA ports attached to this host 5690 * 5691 * Allocate ATA host and initialize with info from @ppi. If NULL 5692 * terminated, @ppi may contain fewer entries than @n_ports. The 5693 * last entry will be used for the remaining ports. 5694 * 5695 * RETURNS: 5696 * Allocate ATA host on success, NULL on failure. 5697 * 5698 * LOCKING: 5699 * Inherited from calling layer (may sleep). 5700 */ 5701 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5702 const struct ata_port_info * const * ppi, 5703 int n_ports) 5704 { 5705 const struct ata_port_info *pi = &ata_dummy_port_info; 5706 struct ata_host *host; 5707 int i, j; 5708 5709 host = ata_host_alloc(dev, n_ports); 5710 if (!host) 5711 return NULL; 5712 5713 for (i = 0, j = 0; i < host->n_ports; i++) { 5714 struct ata_port *ap = host->ports[i]; 5715 5716 if (ppi[j]) 5717 pi = ppi[j++]; 5718 5719 ap->pio_mask = pi->pio_mask; 5720 ap->mwdma_mask = pi->mwdma_mask; 5721 ap->udma_mask = pi->udma_mask; 5722 ap->flags |= pi->flags; 5723 ap->link.flags |= pi->link_flags; 5724 ap->ops = pi->port_ops; 5725 5726 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5727 host->ops = pi->port_ops; 5728 } 5729 5730 return host; 5731 } 5732 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5733 5734 static void ata_host_stop(struct device *gendev, void *res) 5735 { 5736 struct ata_host *host = dev_get_drvdata(gendev); 5737 int i; 5738 5739 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5740 5741 for (i = 0; i < host->n_ports; i++) { 5742 struct ata_port *ap = host->ports[i]; 5743 5744 if (ap->ops->port_stop) 5745 ap->ops->port_stop(ap); 5746 } 5747 5748 if (host->ops->host_stop) 5749 host->ops->host_stop(host); 5750 } 5751 5752 /** 5753 * ata_finalize_port_ops - finalize ata_port_operations 5754 * @ops: ata_port_operations to finalize 5755 * 5756 * An ata_port_operations can inherit from another ops and that 5757 * ops can again inherit from another. This can go on as many 5758 * times as necessary as long as there is no loop in the 5759 * inheritance chain. 5760 * 5761 * Ops tables are finalized when the host is started. NULL or 5762 * unspecified entries are inherited from the closet ancestor 5763 * which has the method and the entry is populated with it. 5764 * After finalization, the ops table directly points to all the 5765 * methods and ->inherits is no longer necessary and cleared. 5766 * 5767 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5768 * 5769 * LOCKING: 5770 * None. 5771 */ 5772 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5773 { 5774 static DEFINE_SPINLOCK(lock); 5775 const struct ata_port_operations *cur; 5776 void **begin = (void **)ops; 5777 void **end = (void **)&ops->inherits; 5778 void **pp; 5779 5780 if (!ops || !ops->inherits) 5781 return; 5782 5783 spin_lock(&lock); 5784 5785 for (cur = ops->inherits; cur; cur = cur->inherits) { 5786 void **inherit = (void **)cur; 5787 5788 for (pp = begin; pp < end; pp++, inherit++) 5789 if (!*pp) 5790 *pp = *inherit; 5791 } 5792 5793 for (pp = begin; pp < end; pp++) 5794 if (IS_ERR(*pp)) 5795 *pp = NULL; 5796 5797 ops->inherits = NULL; 5798 5799 spin_unlock(&lock); 5800 } 5801 5802 /** 5803 * ata_host_start - start and freeze ports of an ATA host 5804 * @host: ATA host to start ports for 5805 * 5806 * Start and then freeze ports of @host. Started status is 5807 * recorded in host->flags, so this function can be called 5808 * multiple times. Ports are guaranteed to get started only 5809 * once. If host->ops is not initialized yet, it is set to the 5810 * first non-dummy port ops. 5811 * 5812 * LOCKING: 5813 * Inherited from calling layer (may sleep). 5814 * 5815 * RETURNS: 5816 * 0 if all ports are started successfully, -errno otherwise. 5817 */ 5818 int ata_host_start(struct ata_host *host) 5819 { 5820 int have_stop = 0; 5821 void *start_dr = NULL; 5822 int i, rc; 5823 5824 if (host->flags & ATA_HOST_STARTED) 5825 return 0; 5826 5827 ata_finalize_port_ops(host->ops); 5828 5829 for (i = 0; i < host->n_ports; i++) { 5830 struct ata_port *ap = host->ports[i]; 5831 5832 ata_finalize_port_ops(ap->ops); 5833 5834 if (!host->ops && !ata_port_is_dummy(ap)) 5835 host->ops = ap->ops; 5836 5837 if (ap->ops->port_stop) 5838 have_stop = 1; 5839 } 5840 5841 if (host->ops && host->ops->host_stop) 5842 have_stop = 1; 5843 5844 if (have_stop) { 5845 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5846 if (!start_dr) 5847 return -ENOMEM; 5848 } 5849 5850 for (i = 0; i < host->n_ports; i++) { 5851 struct ata_port *ap = host->ports[i]; 5852 5853 if (ap->ops->port_start) { 5854 rc = ap->ops->port_start(ap); 5855 if (rc) { 5856 if (rc != -ENODEV) 5857 dev_err(host->dev, 5858 "failed to start port %d (errno=%d)\n", 5859 i, rc); 5860 goto err_out; 5861 } 5862 } 5863 ata_eh_freeze_port(ap); 5864 } 5865 5866 if (start_dr) 5867 devres_add(host->dev, start_dr); 5868 host->flags |= ATA_HOST_STARTED; 5869 return 0; 5870 5871 err_out: 5872 while (--i >= 0) { 5873 struct ata_port *ap = host->ports[i]; 5874 5875 if (ap->ops->port_stop) 5876 ap->ops->port_stop(ap); 5877 } 5878 devres_free(start_dr); 5879 return rc; 5880 } 5881 EXPORT_SYMBOL_GPL(ata_host_start); 5882 5883 /** 5884 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5885 * @host: host to initialize 5886 * @dev: device host is attached to 5887 * @ops: port_ops 5888 * 5889 */ 5890 void ata_host_init(struct ata_host *host, struct device *dev, 5891 struct ata_port_operations *ops) 5892 { 5893 spin_lock_init(&host->lock); 5894 mutex_init(&host->eh_mutex); 5895 host->n_tags = ATA_MAX_QUEUE; 5896 host->dev = dev; 5897 host->ops = ops; 5898 kref_init(&host->kref); 5899 } 5900 EXPORT_SYMBOL_GPL(ata_host_init); 5901 5902 void ata_port_probe(struct ata_port *ap) 5903 { 5904 struct ata_eh_info *ehi = &ap->link.eh_info; 5905 unsigned long flags; 5906 5907 /* kick EH for boot probing */ 5908 spin_lock_irqsave(ap->lock, flags); 5909 5910 ehi->probe_mask |= ATA_ALL_DEVICES; 5911 ehi->action |= ATA_EH_RESET; 5912 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5913 5914 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5915 ap->pflags |= ATA_PFLAG_LOADING; 5916 ata_port_schedule_eh(ap); 5917 5918 spin_unlock_irqrestore(ap->lock, flags); 5919 } 5920 EXPORT_SYMBOL_GPL(ata_port_probe); 5921 5922 static void async_port_probe(void *data, async_cookie_t cookie) 5923 { 5924 struct ata_port *ap = data; 5925 5926 /* 5927 * If we're not allowed to scan this host in parallel, 5928 * we need to wait until all previous scans have completed 5929 * before going further. 5930 * Jeff Garzik says this is only within a controller, so we 5931 * don't need to wait for port 0, only for later ports. 5932 */ 5933 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5934 async_synchronize_cookie(cookie); 5935 5936 ata_port_probe(ap); 5937 ata_port_wait_eh(ap); 5938 5939 /* in order to keep device order, we need to synchronize at this point */ 5940 async_synchronize_cookie(cookie); 5941 5942 ata_scsi_scan_host(ap, 1); 5943 } 5944 5945 /** 5946 * ata_host_register - register initialized ATA host 5947 * @host: ATA host to register 5948 * @sht: template for SCSI host 5949 * 5950 * Register initialized ATA host. @host is allocated using 5951 * ata_host_alloc() and fully initialized by LLD. This function 5952 * starts ports, registers @host with ATA and SCSI layers and 5953 * probe registered devices. 5954 * 5955 * LOCKING: 5956 * Inherited from calling layer (may sleep). 5957 * 5958 * RETURNS: 5959 * 0 on success, -errno otherwise. 5960 */ 5961 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5962 { 5963 int i, rc; 5964 5965 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5966 5967 /* host must have been started */ 5968 if (!(host->flags & ATA_HOST_STARTED)) { 5969 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5970 WARN_ON(1); 5971 return -EINVAL; 5972 } 5973 5974 /* Create associated sysfs transport objects */ 5975 for (i = 0; i < host->n_ports; i++) { 5976 rc = ata_tport_add(host->dev,host->ports[i]); 5977 if (rc) { 5978 goto err_tadd; 5979 } 5980 } 5981 5982 rc = ata_scsi_add_hosts(host, sht); 5983 if (rc) 5984 goto err_tadd; 5985 5986 /* set cable, sata_spd_limit and report */ 5987 for (i = 0; i < host->n_ports; i++) { 5988 struct ata_port *ap = host->ports[i]; 5989 unsigned int xfer_mask; 5990 5991 /* set SATA cable type if still unset */ 5992 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5993 ap->cbl = ATA_CBL_SATA; 5994 5995 /* init sata_spd_limit to the current value */ 5996 sata_link_init_spd(&ap->link); 5997 if (ap->slave_link) 5998 sata_link_init_spd(ap->slave_link); 5999 6000 /* print per-port info to dmesg */ 6001 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6002 ap->udma_mask); 6003 6004 if (!ata_port_is_dummy(ap)) { 6005 ata_port_info(ap, "%cATA max %s %s\n", 6006 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6007 ata_mode_string(xfer_mask), 6008 ap->link.eh_info.desc); 6009 ata_ehi_clear_desc(&ap->link.eh_info); 6010 } else 6011 ata_port_info(ap, "DUMMY\n"); 6012 } 6013 6014 /* perform each probe asynchronously */ 6015 for (i = 0; i < host->n_ports; i++) { 6016 struct ata_port *ap = host->ports[i]; 6017 ap->cookie = async_schedule(async_port_probe, ap); 6018 } 6019 6020 return 0; 6021 6022 err_tadd: 6023 while (--i >= 0) { 6024 ata_tport_delete(host->ports[i]); 6025 } 6026 return rc; 6027 6028 } 6029 EXPORT_SYMBOL_GPL(ata_host_register); 6030 6031 /** 6032 * ata_host_activate - start host, request IRQ and register it 6033 * @host: target ATA host 6034 * @irq: IRQ to request 6035 * @irq_handler: irq_handler used when requesting IRQ 6036 * @irq_flags: irq_flags used when requesting IRQ 6037 * @sht: scsi_host_template to use when registering the host 6038 * 6039 * After allocating an ATA host and initializing it, most libata 6040 * LLDs perform three steps to activate the host - start host, 6041 * request IRQ and register it. This helper takes necessary 6042 * arguments and performs the three steps in one go. 6043 * 6044 * An invalid IRQ skips the IRQ registration and expects the host to 6045 * have set polling mode on the port. In this case, @irq_handler 6046 * should be NULL. 6047 * 6048 * LOCKING: 6049 * Inherited from calling layer (may sleep). 6050 * 6051 * RETURNS: 6052 * 0 on success, -errno otherwise. 6053 */ 6054 int ata_host_activate(struct ata_host *host, int irq, 6055 irq_handler_t irq_handler, unsigned long irq_flags, 6056 const struct scsi_host_template *sht) 6057 { 6058 int i, rc; 6059 char *irq_desc; 6060 6061 rc = ata_host_start(host); 6062 if (rc) 6063 return rc; 6064 6065 /* Special case for polling mode */ 6066 if (!irq) { 6067 WARN_ON(irq_handler); 6068 return ata_host_register(host, sht); 6069 } 6070 6071 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6072 dev_driver_string(host->dev), 6073 dev_name(host->dev)); 6074 if (!irq_desc) 6075 return -ENOMEM; 6076 6077 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6078 irq_desc, host); 6079 if (rc) 6080 return rc; 6081 6082 for (i = 0; i < host->n_ports; i++) 6083 ata_port_desc_misc(host->ports[i], irq); 6084 6085 rc = ata_host_register(host, sht); 6086 /* if failed, just free the IRQ and leave ports alone */ 6087 if (rc) 6088 devm_free_irq(host->dev, irq, host); 6089 6090 return rc; 6091 } 6092 EXPORT_SYMBOL_GPL(ata_host_activate); 6093 6094 /** 6095 * ata_dev_free_resources - Free a device resources 6096 * @dev: Target ATA device 6097 * 6098 * Free resources allocated to support a device features. 6099 * 6100 * LOCKING: 6101 * Kernel thread context (may sleep). 6102 */ 6103 void ata_dev_free_resources(struct ata_device *dev) 6104 { 6105 if (zpodd_dev_enabled(dev)) 6106 zpodd_exit(dev); 6107 6108 ata_dev_cleanup_cdl_resources(dev); 6109 } 6110 6111 /** 6112 * ata_port_detach - Detach ATA port in preparation of device removal 6113 * @ap: ATA port to be detached 6114 * 6115 * Detach all ATA devices and the associated SCSI devices of @ap; 6116 * then, remove the associated SCSI host. @ap is guaranteed to 6117 * be quiescent on return from this function. 6118 * 6119 * LOCKING: 6120 * Kernel thread context (may sleep). 6121 */ 6122 static void ata_port_detach(struct ata_port *ap) 6123 { 6124 unsigned long flags; 6125 struct ata_link *link; 6126 struct ata_device *dev; 6127 6128 /* Ensure ata_port probe has completed */ 6129 async_synchronize_cookie(ap->cookie + 1); 6130 6131 /* Wait for any ongoing EH */ 6132 ata_port_wait_eh(ap); 6133 6134 mutex_lock(&ap->scsi_scan_mutex); 6135 spin_lock_irqsave(ap->lock, flags); 6136 6137 /* Remove scsi devices */ 6138 ata_for_each_link(link, ap, HOST_FIRST) { 6139 ata_for_each_dev(dev, link, ALL) { 6140 if (dev->sdev) { 6141 spin_unlock_irqrestore(ap->lock, flags); 6142 scsi_remove_device(dev->sdev); 6143 spin_lock_irqsave(ap->lock, flags); 6144 dev->sdev = NULL; 6145 } 6146 } 6147 } 6148 6149 /* Tell EH to disable all devices */ 6150 ap->pflags |= ATA_PFLAG_UNLOADING; 6151 ata_port_schedule_eh(ap); 6152 6153 spin_unlock_irqrestore(ap->lock, flags); 6154 mutex_unlock(&ap->scsi_scan_mutex); 6155 6156 /* wait till EH commits suicide */ 6157 ata_port_wait_eh(ap); 6158 6159 /* it better be dead now */ 6160 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6161 6162 cancel_delayed_work_sync(&ap->hotplug_task); 6163 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6164 6165 /* Delete port multiplier link transport devices */ 6166 if (ap->pmp_link) { 6167 int i; 6168 6169 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6170 ata_tlink_delete(&ap->pmp_link[i]); 6171 } 6172 6173 /* Remove the associated SCSI host */ 6174 scsi_remove_host(ap->scsi_host); 6175 ata_tport_delete(ap); 6176 } 6177 6178 /** 6179 * ata_host_detach - Detach all ports of an ATA host 6180 * @host: Host to detach 6181 * 6182 * Detach all ports of @host. 6183 * 6184 * LOCKING: 6185 * Kernel thread context (may sleep). 6186 */ 6187 void ata_host_detach(struct ata_host *host) 6188 { 6189 int i; 6190 6191 for (i = 0; i < host->n_ports; i++) 6192 ata_port_detach(host->ports[i]); 6193 6194 /* the host is dead now, dissociate ACPI */ 6195 ata_acpi_dissociate(host); 6196 } 6197 EXPORT_SYMBOL_GPL(ata_host_detach); 6198 6199 #ifdef CONFIG_PCI 6200 6201 /** 6202 * ata_pci_remove_one - PCI layer callback for device removal 6203 * @pdev: PCI device that was removed 6204 * 6205 * PCI layer indicates to libata via this hook that hot-unplug or 6206 * module unload event has occurred. Detach all ports. Resource 6207 * release is handled via devres. 6208 * 6209 * LOCKING: 6210 * Inherited from PCI layer (may sleep). 6211 */ 6212 void ata_pci_remove_one(struct pci_dev *pdev) 6213 { 6214 struct ata_host *host = pci_get_drvdata(pdev); 6215 6216 ata_host_detach(host); 6217 } 6218 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6219 6220 void ata_pci_shutdown_one(struct pci_dev *pdev) 6221 { 6222 struct ata_host *host = pci_get_drvdata(pdev); 6223 int i; 6224 6225 for (i = 0; i < host->n_ports; i++) { 6226 struct ata_port *ap = host->ports[i]; 6227 6228 ap->pflags |= ATA_PFLAG_FROZEN; 6229 6230 /* Disable port interrupts */ 6231 if (ap->ops->freeze) 6232 ap->ops->freeze(ap); 6233 6234 /* Stop the port DMA engines */ 6235 if (ap->ops->port_stop) 6236 ap->ops->port_stop(ap); 6237 } 6238 } 6239 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6240 6241 /* move to PCI subsystem */ 6242 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6243 { 6244 unsigned long tmp = 0; 6245 6246 switch (bits->width) { 6247 case 1: { 6248 u8 tmp8 = 0; 6249 pci_read_config_byte(pdev, bits->reg, &tmp8); 6250 tmp = tmp8; 6251 break; 6252 } 6253 case 2: { 6254 u16 tmp16 = 0; 6255 pci_read_config_word(pdev, bits->reg, &tmp16); 6256 tmp = tmp16; 6257 break; 6258 } 6259 case 4: { 6260 u32 tmp32 = 0; 6261 pci_read_config_dword(pdev, bits->reg, &tmp32); 6262 tmp = tmp32; 6263 break; 6264 } 6265 6266 default: 6267 return -EINVAL; 6268 } 6269 6270 tmp &= bits->mask; 6271 6272 return (tmp == bits->val) ? 1 : 0; 6273 } 6274 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6275 6276 #ifdef CONFIG_PM 6277 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6278 { 6279 pci_save_state(pdev); 6280 pci_disable_device(pdev); 6281 6282 if (mesg.event & PM_EVENT_SLEEP) 6283 pci_set_power_state(pdev, PCI_D3hot); 6284 } 6285 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6286 6287 int ata_pci_device_do_resume(struct pci_dev *pdev) 6288 { 6289 int rc; 6290 6291 pci_set_power_state(pdev, PCI_D0); 6292 pci_restore_state(pdev); 6293 6294 rc = pcim_enable_device(pdev); 6295 if (rc) { 6296 dev_err(&pdev->dev, 6297 "failed to enable device after resume (%d)\n", rc); 6298 return rc; 6299 } 6300 6301 pci_set_master(pdev); 6302 return 0; 6303 } 6304 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6305 6306 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6307 { 6308 struct ata_host *host = pci_get_drvdata(pdev); 6309 6310 ata_host_suspend(host, mesg); 6311 6312 ata_pci_device_do_suspend(pdev, mesg); 6313 6314 return 0; 6315 } 6316 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6317 6318 int ata_pci_device_resume(struct pci_dev *pdev) 6319 { 6320 struct ata_host *host = pci_get_drvdata(pdev); 6321 int rc; 6322 6323 rc = ata_pci_device_do_resume(pdev); 6324 if (rc == 0) 6325 ata_host_resume(host); 6326 return rc; 6327 } 6328 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6329 #endif /* CONFIG_PM */ 6330 #endif /* CONFIG_PCI */ 6331 6332 /** 6333 * ata_platform_remove_one - Platform layer callback for device removal 6334 * @pdev: Platform device that was removed 6335 * 6336 * Platform layer indicates to libata via this hook that hot-unplug or 6337 * module unload event has occurred. Detach all ports. Resource 6338 * release is handled via devres. 6339 * 6340 * LOCKING: 6341 * Inherited from platform layer (may sleep). 6342 */ 6343 void ata_platform_remove_one(struct platform_device *pdev) 6344 { 6345 struct ata_host *host = platform_get_drvdata(pdev); 6346 6347 ata_host_detach(host); 6348 } 6349 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6350 6351 #ifdef CONFIG_ATA_FORCE 6352 6353 #define force_cbl(name, flag) \ 6354 { #name, .cbl = (flag) } 6355 6356 #define force_spd_limit(spd, val) \ 6357 { #spd, .spd_limit = (val) } 6358 6359 #define force_xfer(mode, shift) \ 6360 { #mode, .xfer_mask = (1UL << (shift)) } 6361 6362 #define force_lflag_on(name, flags) \ 6363 { #name, .lflags_on = (flags) } 6364 6365 #define force_lflag_onoff(name, flags) \ 6366 { "no" #name, .lflags_on = (flags) }, \ 6367 { #name, .lflags_off = (flags) } 6368 6369 #define force_pflag_on(name, flags) \ 6370 { #name, .pflags_on = (flags) } 6371 6372 #define force_quirk_on(name, flag) \ 6373 { #name, .quirk_on = (flag) } 6374 6375 #define force_quirk_onoff(name, flag) \ 6376 { "no" #name, .quirk_on = (flag) }, \ 6377 { #name, .quirk_off = (flag) } 6378 6379 static const struct ata_force_param force_tbl[] __initconst = { 6380 force_cbl(40c, ATA_CBL_PATA40), 6381 force_cbl(80c, ATA_CBL_PATA80), 6382 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6383 force_cbl(unk, ATA_CBL_PATA_UNK), 6384 force_cbl(ign, ATA_CBL_PATA_IGN), 6385 force_cbl(sata, ATA_CBL_SATA), 6386 6387 force_spd_limit(1.5Gbps, 1), 6388 force_spd_limit(3.0Gbps, 2), 6389 6390 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6391 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6392 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6393 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6394 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6395 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6396 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6397 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6398 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6399 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6400 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6401 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6402 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6403 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6404 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6405 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6406 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6407 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6408 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6409 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6410 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6411 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6412 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6413 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6414 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6415 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6416 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6417 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6418 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6419 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6420 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6421 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6422 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6423 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6424 6425 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6426 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6427 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6428 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6429 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6430 6431 force_pflag_on(external, ATA_PFLAG_EXTERNAL), 6432 6433 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ), 6434 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM), 6435 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI), 6436 6437 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM), 6438 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM), 6439 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M), 6440 6441 force_quirk_onoff(dma, ATA_QUIRK_NODMA), 6442 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR), 6443 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA), 6444 6445 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG), 6446 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG), 6447 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR), 6448 6449 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128), 6450 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024), 6451 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48), 6452 6453 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM), 6454 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER), 6455 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID), 6456 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA), 6457 6458 force_quirk_on(disable, ATA_QUIRK_DISABLE), 6459 }; 6460 6461 static int __init ata_parse_force_one(char **cur, 6462 struct ata_force_ent *force_ent, 6463 const char **reason) 6464 { 6465 char *start = *cur, *p = *cur; 6466 char *id, *val, *endp; 6467 const struct ata_force_param *match_fp = NULL; 6468 int nr_matches = 0, i; 6469 6470 /* find where this param ends and update *cur */ 6471 while (*p != '\0' && *p != ',') 6472 p++; 6473 6474 if (*p == '\0') 6475 *cur = p; 6476 else 6477 *cur = p + 1; 6478 6479 *p = '\0'; 6480 6481 /* parse */ 6482 p = strchr(start, ':'); 6483 if (!p) { 6484 val = strstrip(start); 6485 goto parse_val; 6486 } 6487 *p = '\0'; 6488 6489 id = strstrip(start); 6490 val = strstrip(p + 1); 6491 6492 /* parse id */ 6493 p = strchr(id, '.'); 6494 if (p) { 6495 *p++ = '\0'; 6496 force_ent->device = simple_strtoul(p, &endp, 10); 6497 if (p == endp || *endp != '\0') { 6498 *reason = "invalid device"; 6499 return -EINVAL; 6500 } 6501 } 6502 6503 force_ent->port = simple_strtoul(id, &endp, 10); 6504 if (id == endp || *endp != '\0') { 6505 *reason = "invalid port/link"; 6506 return -EINVAL; 6507 } 6508 6509 parse_val: 6510 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6511 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6512 const struct ata_force_param *fp = &force_tbl[i]; 6513 6514 if (strncasecmp(val, fp->name, strlen(val))) 6515 continue; 6516 6517 nr_matches++; 6518 match_fp = fp; 6519 6520 if (strcasecmp(val, fp->name) == 0) { 6521 nr_matches = 1; 6522 break; 6523 } 6524 } 6525 6526 if (!nr_matches) { 6527 *reason = "unknown value"; 6528 return -EINVAL; 6529 } 6530 if (nr_matches > 1) { 6531 *reason = "ambiguous value"; 6532 return -EINVAL; 6533 } 6534 6535 force_ent->param = *match_fp; 6536 6537 return 0; 6538 } 6539 6540 static void __init ata_parse_force_param(void) 6541 { 6542 int idx = 0, size = 1; 6543 int last_port = -1, last_device = -1; 6544 char *p, *cur, *next; 6545 6546 /* Calculate maximum number of params and allocate ata_force_tbl */ 6547 for (p = ata_force_param_buf; *p; p++) 6548 if (*p == ',') 6549 size++; 6550 6551 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6552 if (!ata_force_tbl) { 6553 printk(KERN_WARNING "ata: failed to extend force table, " 6554 "libata.force ignored\n"); 6555 return; 6556 } 6557 6558 /* parse and populate the table */ 6559 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6560 const char *reason = ""; 6561 struct ata_force_ent te = { .port = -1, .device = -1 }; 6562 6563 next = cur; 6564 if (ata_parse_force_one(&next, &te, &reason)) { 6565 printk(KERN_WARNING "ata: failed to parse force " 6566 "parameter \"%s\" (%s)\n", 6567 cur, reason); 6568 continue; 6569 } 6570 6571 if (te.port == -1) { 6572 te.port = last_port; 6573 te.device = last_device; 6574 } 6575 6576 ata_force_tbl[idx++] = te; 6577 6578 last_port = te.port; 6579 last_device = te.device; 6580 } 6581 6582 ata_force_tbl_size = idx; 6583 } 6584 6585 static void ata_free_force_param(void) 6586 { 6587 kfree(ata_force_tbl); 6588 } 6589 #else 6590 static inline void ata_parse_force_param(void) { } 6591 static inline void ata_free_force_param(void) { } 6592 #endif 6593 6594 static int __init ata_init(void) 6595 { 6596 int rc; 6597 6598 ata_parse_force_param(); 6599 6600 rc = ata_sff_init(); 6601 if (rc) { 6602 ata_free_force_param(); 6603 return rc; 6604 } 6605 6606 libata_transport_init(); 6607 ata_scsi_transport_template = ata_attach_transport(); 6608 if (!ata_scsi_transport_template) { 6609 ata_sff_exit(); 6610 rc = -ENOMEM; 6611 goto err_out; 6612 } 6613 6614 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6615 return 0; 6616 6617 err_out: 6618 return rc; 6619 } 6620 6621 static void __exit ata_exit(void) 6622 { 6623 ata_release_transport(ata_scsi_transport_template); 6624 libata_transport_exit(); 6625 ata_sff_exit(); 6626 ata_free_force_param(); 6627 } 6628 6629 subsys_initcall(ata_init); 6630 module_exit(ata_exit); 6631 6632 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6633 6634 int ata_ratelimit(void) 6635 { 6636 return __ratelimit(&ratelimit); 6637 } 6638 EXPORT_SYMBOL_GPL(ata_ratelimit); 6639 6640 /** 6641 * ata_msleep - ATA EH owner aware msleep 6642 * @ap: ATA port to attribute the sleep to 6643 * @msecs: duration to sleep in milliseconds 6644 * 6645 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6646 * ownership is released before going to sleep and reacquired 6647 * after the sleep is complete. IOW, other ports sharing the 6648 * @ap->host will be allowed to own the EH while this task is 6649 * sleeping. 6650 * 6651 * LOCKING: 6652 * Might sleep. 6653 */ 6654 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6655 { 6656 bool owns_eh = ap && ap->host->eh_owner == current; 6657 6658 if (owns_eh) 6659 ata_eh_release(ap); 6660 6661 if (msecs < 20) { 6662 unsigned long usecs = msecs * USEC_PER_MSEC; 6663 usleep_range(usecs, usecs + 50); 6664 } else { 6665 msleep(msecs); 6666 } 6667 6668 if (owns_eh) 6669 ata_eh_acquire(ap); 6670 } 6671 EXPORT_SYMBOL_GPL(ata_msleep); 6672 6673 /** 6674 * ata_wait_register - wait until register value changes 6675 * @ap: ATA port to wait register for, can be NULL 6676 * @reg: IO-mapped register 6677 * @mask: Mask to apply to read register value 6678 * @val: Wait condition 6679 * @interval: polling interval in milliseconds 6680 * @timeout: timeout in milliseconds 6681 * 6682 * Waiting for some bits of register to change is a common 6683 * operation for ATA controllers. This function reads 32bit LE 6684 * IO-mapped register @reg and tests for the following condition. 6685 * 6686 * (*@reg & mask) != val 6687 * 6688 * If the condition is met, it returns; otherwise, the process is 6689 * repeated after @interval_msec until timeout. 6690 * 6691 * LOCKING: 6692 * Kernel thread context (may sleep) 6693 * 6694 * RETURNS: 6695 * The final register value. 6696 */ 6697 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6698 unsigned int interval, unsigned int timeout) 6699 { 6700 unsigned long deadline; 6701 u32 tmp; 6702 6703 tmp = ioread32(reg); 6704 6705 /* Calculate timeout _after_ the first read to make sure 6706 * preceding writes reach the controller before starting to 6707 * eat away the timeout. 6708 */ 6709 deadline = ata_deadline(jiffies, timeout); 6710 6711 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6712 ata_msleep(ap, interval); 6713 tmp = ioread32(reg); 6714 } 6715 6716 return tmp; 6717 } 6718 EXPORT_SYMBOL_GPL(ata_wait_register); 6719 6720 /* 6721 * Dummy port_ops 6722 */ 6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6724 { 6725 return AC_ERR_SYSTEM; 6726 } 6727 6728 static void ata_dummy_error_handler(struct ata_port *ap) 6729 { 6730 /* truly dummy */ 6731 } 6732 6733 struct ata_port_operations ata_dummy_port_ops = { 6734 .qc_issue = ata_dummy_qc_issue, 6735 .error_handler = ata_dummy_error_handler, 6736 .sched_eh = ata_std_sched_eh, 6737 .end_eh = ata_std_end_eh, 6738 }; 6739 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6740 6741 const struct ata_port_info ata_dummy_port_info = { 6742 .port_ops = &ata_dummy_port_ops, 6743 }; 6744 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6745 6746 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6747 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6748 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6749 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6750 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6751