1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal_sg - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @sgl: sg list for the data buffer of the command 1489 * @n_elem: Number of sg entries 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * command on entry and result on return. Timeout and error 1494 * conditions are reported via return value. No recovery action 1495 * is taken after a command times out. It's caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1505 struct ata_taskfile *tf, const u8 *cdb, 1506 int dma_dir, struct scatterlist *sgl, 1507 unsigned int n_elem, unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 int auto_timeout = 0; 1513 struct ata_queued_cmd *qc; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 DECLARE_COMPLETION_ONSTACK(wait); 1519 unsigned long flags; 1520 unsigned int err_mask; 1521 int rc; 1522 1523 spin_lock_irqsave(ap->lock, flags); 1524 1525 /* no internal command while frozen */ 1526 if (ata_port_is_frozen(ap)) { 1527 spin_unlock_irqrestore(ap->lock, flags); 1528 return AC_ERR_SYSTEM; 1529 } 1530 1531 /* initialize internal qc */ 1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1533 1534 qc->tag = ATA_TAG_INTERNAL; 1535 qc->hw_tag = 0; 1536 qc->scsicmd = NULL; 1537 qc->ap = ap; 1538 qc->dev = dev; 1539 ata_qc_reinit(qc); 1540 1541 preempted_tag = link->active_tag; 1542 preempted_sactive = link->sactive; 1543 preempted_qc_active = ap->qc_active; 1544 preempted_nr_active_links = ap->nr_active_links; 1545 link->active_tag = ATA_TAG_POISON; 1546 link->sactive = 0; 1547 ap->qc_active = 0; 1548 ap->nr_active_links = 0; 1549 1550 /* prepare & issue qc */ 1551 qc->tf = *tf; 1552 if (cdb) 1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1554 1555 /* some SATA bridges need us to indicate data xfer direction */ 1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1557 dma_dir == DMA_FROM_DEVICE) 1558 qc->tf.feature |= ATAPI_DMADIR; 1559 1560 qc->flags |= ATA_QCFLAG_RESULT_TF; 1561 qc->dma_dir = dma_dir; 1562 if (dma_dir != DMA_NONE) { 1563 unsigned int i, buflen = 0; 1564 struct scatterlist *sg; 1565 1566 for_each_sg(sgl, sg, n_elem, i) 1567 buflen += sg->length; 1568 1569 ata_sg_init(qc, sgl, n_elem); 1570 qc->nbytes = buflen; 1571 } 1572 1573 qc->private_data = &wait; 1574 qc->complete_fn = ata_qc_complete_internal; 1575 1576 ata_qc_issue(qc); 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 1580 if (!timeout) { 1581 if (ata_probe_timeout) 1582 timeout = ata_probe_timeout * 1000; 1583 else { 1584 timeout = ata_internal_cmd_timeout(dev, command); 1585 auto_timeout = 1; 1586 } 1587 } 1588 1589 ata_eh_release(ap); 1590 1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1592 1593 ata_eh_acquire(ap); 1594 1595 ata_sff_flush_pio_task(ap); 1596 1597 if (!rc) { 1598 spin_lock_irqsave(ap->lock, flags); 1599 1600 /* We're racing with irq here. If we lose, the 1601 * following test prevents us from completing the qc 1602 * twice. If we win, the port is frozen and will be 1603 * cleaned up by ->post_internal_cmd(). 1604 */ 1605 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1606 qc->err_mask |= AC_ERR_TIMEOUT; 1607 1608 ata_port_freeze(ap); 1609 1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1611 timeout, command); 1612 } 1613 1614 spin_unlock_irqrestore(ap->lock, flags); 1615 } 1616 1617 /* do post_internal_cmd */ 1618 if (ap->ops->post_internal_cmd) 1619 ap->ops->post_internal_cmd(qc); 1620 1621 /* perform minimal error analysis */ 1622 if (qc->flags & ATA_QCFLAG_EH) { 1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1624 qc->err_mask |= AC_ERR_DEV; 1625 1626 if (!qc->err_mask) 1627 qc->err_mask |= AC_ERR_OTHER; 1628 1629 if (qc->err_mask & ~AC_ERR_OTHER) 1630 qc->err_mask &= ~AC_ERR_OTHER; 1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1632 qc->result_tf.status |= ATA_SENSE; 1633 } 1634 1635 /* finish up */ 1636 spin_lock_irqsave(ap->lock, flags); 1637 1638 *tf = qc->result_tf; 1639 err_mask = qc->err_mask; 1640 1641 ata_qc_free(qc); 1642 link->active_tag = preempted_tag; 1643 link->sactive = preempted_sactive; 1644 ap->qc_active = preempted_qc_active; 1645 ap->nr_active_links = preempted_nr_active_links; 1646 1647 spin_unlock_irqrestore(ap->lock, flags); 1648 1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1650 ata_internal_cmd_timed_out(dev, command); 1651 1652 return err_mask; 1653 } 1654 1655 /** 1656 * ata_exec_internal - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data transfer direction of the command 1661 * @buf: Data buffer of the command 1662 * @buflen: Length of data buffer 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Wrapper around ata_exec_internal_sg() which takes simple 1666 * buffer instead of sg list. 1667 * 1668 * LOCKING: 1669 * None. Should be called with kernel context, might sleep. 1670 * 1671 * RETURNS: 1672 * Zero on success, AC_ERR_* mask on failure 1673 */ 1674 unsigned ata_exec_internal(struct ata_device *dev, 1675 struct ata_taskfile *tf, const u8 *cdb, 1676 int dma_dir, void *buf, unsigned int buflen, 1677 unsigned int timeout) 1678 { 1679 struct scatterlist *psg = NULL, sg; 1680 unsigned int n_elem = 0; 1681 1682 if (dma_dir != DMA_NONE) { 1683 WARN_ON(!buf); 1684 sg_init_one(&sg, buf, buflen); 1685 psg = &sg; 1686 n_elem++; 1687 } 1688 1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1690 timeout); 1691 } 1692 1693 /** 1694 * ata_pio_need_iordy - check if iordy needed 1695 * @adev: ATA device 1696 * 1697 * Check if the current speed of the device requires IORDY. Used 1698 * by various controllers for chip configuration. 1699 */ 1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1701 { 1702 /* Don't set IORDY if we're preparing for reset. IORDY may 1703 * lead to controller lock up on certain controllers if the 1704 * port is not occupied. See bko#11703 for details. 1705 */ 1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1707 return 0; 1708 /* Controller doesn't support IORDY. Probably a pointless 1709 * check as the caller should know this. 1710 */ 1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1712 return 0; 1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1714 if (ata_id_is_cfa(adev->id) 1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1716 return 0; 1717 /* PIO3 and higher it is mandatory */ 1718 if (adev->pio_mode > XFER_PIO_2) 1719 return 1; 1720 /* We turn it on when possible */ 1721 if (ata_id_has_iordy(adev->id)) 1722 return 1; 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1726 1727 /** 1728 * ata_pio_mask_no_iordy - Return the non IORDY mask 1729 * @adev: ATA device 1730 * 1731 * Compute the highest mode possible if we are not using iordy. Return 1732 * -1 if no iordy mode is available. 1733 */ 1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1735 { 1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1738 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1739 /* Is the speed faster than the drive allows non IORDY ? */ 1740 if (pio) { 1741 /* This is cycle times not frequency - watch the logic! */ 1742 if (pio > 240) /* PIO2 is 240nS per cycle */ 1743 return 3 << ATA_SHIFT_PIO; 1744 return 7 << ATA_SHIFT_PIO; 1745 } 1746 } 1747 return 3 << ATA_SHIFT_PIO; 1748 } 1749 1750 /** 1751 * ata_do_dev_read_id - default ID read method 1752 * @dev: device 1753 * @tf: proposed taskfile 1754 * @id: data buffer 1755 * 1756 * Issue the identify taskfile and hand back the buffer containing 1757 * identify data. For some RAID controllers and for pre ATA devices 1758 * this function is wrapped or replaced by the driver 1759 */ 1760 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1761 struct ata_taskfile *tf, __le16 *id) 1762 { 1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1765 } 1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1767 1768 /** 1769 * ata_dev_read_id - Read ID data from the specified device 1770 * @dev: target device 1771 * @p_class: pointer to class of the target device (may be changed) 1772 * @flags: ATA_READID_* flags 1773 * @id: buffer to read IDENTIFY data into 1774 * 1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1778 * for pre-ATA4 drives. 1779 * 1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1781 * now we abort if we hit that case. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1790 unsigned int flags, u16 *id) 1791 { 1792 struct ata_port *ap = dev->link->ap; 1793 unsigned int class = *p_class; 1794 struct ata_taskfile tf; 1795 unsigned int err_mask = 0; 1796 const char *reason; 1797 bool is_semb = class == ATA_DEV_SEMB; 1798 int may_fallback = 1, tried_spinup = 0; 1799 int rc; 1800 1801 retry: 1802 ata_tf_init(dev, &tf); 1803 1804 switch (class) { 1805 case ATA_DEV_SEMB: 1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1807 fallthrough; 1808 case ATA_DEV_ATA: 1809 case ATA_DEV_ZAC: 1810 tf.command = ATA_CMD_ID_ATA; 1811 break; 1812 case ATA_DEV_ATAPI: 1813 tf.command = ATA_CMD_ID_ATAPI; 1814 break; 1815 default: 1816 rc = -ENODEV; 1817 reason = "unsupported class"; 1818 goto err_out; 1819 } 1820 1821 tf.protocol = ATA_PROT_PIO; 1822 1823 /* Some devices choke if TF registers contain garbage. Make 1824 * sure those are properly initialized. 1825 */ 1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1827 1828 /* Device presence detection is unreliable on some 1829 * controllers. Always poll IDENTIFY if available. 1830 */ 1831 tf.flags |= ATA_TFLAG_POLLING; 1832 1833 if (ap->ops->read_id) 1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1835 else 1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1837 1838 if (err_mask) { 1839 if (err_mask & AC_ERR_NODEV_HINT) { 1840 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1841 return -ENOENT; 1842 } 1843 1844 if (is_semb) { 1845 ata_dev_info(dev, 1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1847 /* SEMB is not supported yet */ 1848 *p_class = ATA_DEV_SEMB_UNSUP; 1849 return 0; 1850 } 1851 1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1853 /* Device or controller might have reported 1854 * the wrong device class. Give a shot at the 1855 * other IDENTIFY if the current one is 1856 * aborted by the device. 1857 */ 1858 if (may_fallback) { 1859 may_fallback = 0; 1860 1861 if (class == ATA_DEV_ATA) 1862 class = ATA_DEV_ATAPI; 1863 else 1864 class = ATA_DEV_ATA; 1865 goto retry; 1866 } 1867 1868 /* Control reaches here iff the device aborted 1869 * both flavors of IDENTIFYs which happens 1870 * sometimes with phantom devices. 1871 */ 1872 ata_dev_dbg(dev, 1873 "both IDENTIFYs aborted, assuming NODEV\n"); 1874 return -ENOENT; 1875 } 1876 1877 rc = -EIO; 1878 reason = "I/O error"; 1879 goto err_out; 1880 } 1881 1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1883 ata_dev_info(dev, "dumping IDENTIFY data, " 1884 "class=%d may_fallback=%d tried_spinup=%d\n", 1885 class, may_fallback, tried_spinup); 1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1888 } 1889 1890 /* Falling back doesn't make sense if ID data was read 1891 * successfully at least once. 1892 */ 1893 may_fallback = 0; 1894 1895 swap_buf_le16(id, ATA_ID_WORDS); 1896 1897 /* sanity check */ 1898 rc = -EINVAL; 1899 reason = "device reports invalid type"; 1900 1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1903 goto err_out; 1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1905 ata_id_is_ata(id)) { 1906 ata_dev_dbg(dev, 1907 "host indicates ignore ATA devices, ignored\n"); 1908 return -ENOENT; 1909 } 1910 } else { 1911 if (ata_id_is_ata(id)) 1912 goto err_out; 1913 } 1914 1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1916 tried_spinup = 1; 1917 /* 1918 * Drive powered-up in standby mode, and requires a specific 1919 * SET_FEATURES spin-up subcommand before it will accept 1920 * anything other than the original IDENTIFY command. 1921 */ 1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1923 if (err_mask && id[2] != 0x738c) { 1924 rc = -EIO; 1925 reason = "SPINUP failed"; 1926 goto err_out; 1927 } 1928 /* 1929 * If the drive initially returned incomplete IDENTIFY info, 1930 * we now must reissue the IDENTIFY command. 1931 */ 1932 if (id[2] == 0x37c8) 1933 goto retry; 1934 } 1935 1936 if ((flags & ATA_READID_POSTRESET) && 1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1938 /* 1939 * The exact sequence expected by certain pre-ATA4 drives is: 1940 * SRST RESET 1941 * IDENTIFY (optional in early ATA) 1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1943 * anything else.. 1944 * Some drives were very specific about that exact sequence. 1945 * 1946 * Note that ATA4 says lba is mandatory so the second check 1947 * should never trigger. 1948 */ 1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1950 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1951 if (err_mask) { 1952 rc = -EIO; 1953 reason = "INIT_DEV_PARAMS failed"; 1954 goto err_out; 1955 } 1956 1957 /* current CHS translation info (id[53-58]) might be 1958 * changed. reread the identify device info. 1959 */ 1960 flags &= ~ATA_READID_POSTRESET; 1961 goto retry; 1962 } 1963 } 1964 1965 *p_class = class; 1966 1967 return 0; 1968 1969 err_out: 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_read_log_page - read a specific log page 1977 * @dev: target device 1978 * @log: log to read 1979 * @page: page to read 1980 * @buf: buffer to store read page 1981 * @sectors: number of sectors to read 1982 * 1983 * Read log page using READ_LOG_EXT command. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep). 1987 * 1988 * RETURNS: 1989 * 0 on success, AC_ERR_* mask otherwise. 1990 */ 1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1992 u8 page, void *buf, unsigned int sectors) 1993 { 1994 unsigned long ap_flags = dev->link->ap->flags; 1995 struct ata_taskfile tf; 1996 unsigned int err_mask; 1997 bool dma = false; 1998 1999 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2000 2001 /* 2002 * Return error without actually issuing the command on controllers 2003 * which e.g. lockup on a read log page. 2004 */ 2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2006 return AC_ERR_DEV; 2007 2008 retry: 2009 ata_tf_init(dev, &tf); 2010 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2013 tf.protocol = ATA_PROT_DMA; 2014 dma = true; 2015 } else { 2016 tf.command = ATA_CMD_READ_LOG_EXT; 2017 tf.protocol = ATA_PROT_PIO; 2018 dma = false; 2019 } 2020 tf.lbal = log; 2021 tf.lbam = page; 2022 tf.nsect = sectors; 2023 tf.hob_nsect = sectors >> 8; 2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2025 2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2027 buf, sectors * ATA_SECT_SIZE, 0); 2028 2029 if (err_mask) { 2030 if (dma) { 2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2032 if (!ata_port_is_frozen(dev->link->ap)) 2033 goto retry; 2034 } 2035 ata_dev_err(dev, 2036 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2037 (unsigned int)log, (unsigned int)page, err_mask); 2038 } 2039 2040 return err_mask; 2041 } 2042 2043 static int ata_log_supported(struct ata_device *dev, u8 log) 2044 { 2045 struct ata_port *ap = dev->link->ap; 2046 2047 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2048 return 0; 2049 2050 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2051 return 0; 2052 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2053 } 2054 2055 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2056 { 2057 struct ata_port *ap = dev->link->ap; 2058 unsigned int err, i; 2059 2060 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2061 return false; 2062 2063 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2064 /* 2065 * IDENTIFY DEVICE data log is defined as mandatory starting 2066 * with ACS-3 (ATA version 10). Warn about the missing log 2067 * for drives which implement this ATA level or above. 2068 */ 2069 if (ata_id_major_version(dev->id) >= 10) 2070 ata_dev_warn(dev, 2071 "ATA Identify Device Log not supported\n"); 2072 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2073 return false; 2074 } 2075 2076 /* 2077 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2078 * supported. 2079 */ 2080 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2081 1); 2082 if (err) 2083 return false; 2084 2085 for (i = 0; i < ap->sector_buf[8]; i++) { 2086 if (ap->sector_buf[9 + i] == page) 2087 return true; 2088 } 2089 2090 return false; 2091 } 2092 2093 static int ata_do_link_spd_horkage(struct ata_device *dev) 2094 { 2095 struct ata_link *plink = ata_dev_phys_link(dev); 2096 u32 target, target_limit; 2097 2098 if (!sata_scr_valid(plink)) 2099 return 0; 2100 2101 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2102 target = 1; 2103 else 2104 return 0; 2105 2106 target_limit = (1 << target) - 1; 2107 2108 /* if already on stricter limit, no need to push further */ 2109 if (plink->sata_spd_limit <= target_limit) 2110 return 0; 2111 2112 plink->sata_spd_limit = target_limit; 2113 2114 /* Request another EH round by returning -EAGAIN if link is 2115 * going faster than the target speed. Forward progress is 2116 * guaranteed by setting sata_spd_limit to target_limit above. 2117 */ 2118 if (plink->sata_spd > target) { 2119 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2120 sata_spd_string(target)); 2121 return -EAGAIN; 2122 } 2123 return 0; 2124 } 2125 2126 static inline u8 ata_dev_knobble(struct ata_device *dev) 2127 { 2128 struct ata_port *ap = dev->link->ap; 2129 2130 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2131 return 0; 2132 2133 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2134 } 2135 2136 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2137 { 2138 struct ata_port *ap = dev->link->ap; 2139 unsigned int err_mask; 2140 2141 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2142 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2143 return; 2144 } 2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2146 0, ap->sector_buf, 1); 2147 if (!err_mask) { 2148 u8 *cmds = dev->ncq_send_recv_cmds; 2149 2150 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2151 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2152 2153 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2154 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2155 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2156 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2157 } 2158 } 2159 } 2160 2161 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2162 { 2163 struct ata_port *ap = dev->link->ap; 2164 unsigned int err_mask; 2165 2166 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2167 ata_dev_warn(dev, 2168 "NCQ Send/Recv Log not supported\n"); 2169 return; 2170 } 2171 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2172 0, ap->sector_buf, 1); 2173 if (!err_mask) { 2174 u8 *cmds = dev->ncq_non_data_cmds; 2175 2176 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2177 } 2178 } 2179 2180 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2181 { 2182 struct ata_port *ap = dev->link->ap; 2183 unsigned int err_mask; 2184 2185 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2186 return; 2187 2188 err_mask = ata_read_log_page(dev, 2189 ATA_LOG_IDENTIFY_DEVICE, 2190 ATA_LOG_SATA_SETTINGS, 2191 ap->sector_buf, 2192 1); 2193 if (err_mask) 2194 goto not_supported; 2195 2196 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2197 goto not_supported; 2198 2199 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2200 2201 return; 2202 2203 not_supported: 2204 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2205 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2206 } 2207 2208 static bool ata_dev_check_adapter(struct ata_device *dev, 2209 unsigned short vendor_id) 2210 { 2211 struct pci_dev *pcidev = NULL; 2212 struct device *parent_dev = NULL; 2213 2214 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2215 parent_dev = parent_dev->parent) { 2216 if (dev_is_pci(parent_dev)) { 2217 pcidev = to_pci_dev(parent_dev); 2218 if (pcidev->vendor == vendor_id) 2219 return true; 2220 break; 2221 } 2222 } 2223 2224 return false; 2225 } 2226 2227 static int ata_dev_config_ncq(struct ata_device *dev, 2228 char *desc, size_t desc_sz) 2229 { 2230 struct ata_port *ap = dev->link->ap; 2231 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2232 unsigned int err_mask; 2233 char *aa_desc = ""; 2234 2235 if (!ata_id_has_ncq(dev->id)) { 2236 desc[0] = '\0'; 2237 return 0; 2238 } 2239 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2240 return 0; 2241 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2242 snprintf(desc, desc_sz, "NCQ (not used)"); 2243 return 0; 2244 } 2245 2246 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2247 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2248 snprintf(desc, desc_sz, "NCQ (not used)"); 2249 return 0; 2250 } 2251 2252 if (ap->flags & ATA_FLAG_NCQ) { 2253 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2254 dev->flags |= ATA_DFLAG_NCQ; 2255 } 2256 2257 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2258 (ap->flags & ATA_FLAG_FPDMA_AA) && 2259 ata_id_has_fpdma_aa(dev->id)) { 2260 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2261 SATA_FPDMA_AA); 2262 if (err_mask) { 2263 ata_dev_err(dev, 2264 "failed to enable AA (error_mask=0x%x)\n", 2265 err_mask); 2266 if (err_mask != AC_ERR_DEV) { 2267 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2268 return -EIO; 2269 } 2270 } else 2271 aa_desc = ", AA"; 2272 } 2273 2274 if (hdepth >= ddepth) 2275 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2276 else 2277 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2278 ddepth, aa_desc); 2279 2280 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2281 if (ata_id_has_ncq_send_and_recv(dev->id)) 2282 ata_dev_config_ncq_send_recv(dev); 2283 if (ata_id_has_ncq_non_data(dev->id)) 2284 ata_dev_config_ncq_non_data(dev); 2285 if (ata_id_has_ncq_prio(dev->id)) 2286 ata_dev_config_ncq_prio(dev); 2287 } 2288 2289 return 0; 2290 } 2291 2292 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2293 { 2294 unsigned int err_mask; 2295 2296 if (!ata_id_has_sense_reporting(dev->id)) 2297 return; 2298 2299 if (ata_id_sense_reporting_enabled(dev->id)) 2300 return; 2301 2302 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2303 if (err_mask) { 2304 ata_dev_dbg(dev, 2305 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2306 err_mask); 2307 } 2308 } 2309 2310 static void ata_dev_config_zac(struct ata_device *dev) 2311 { 2312 struct ata_port *ap = dev->link->ap; 2313 unsigned int err_mask; 2314 u8 *identify_buf = ap->sector_buf; 2315 2316 dev->zac_zones_optimal_open = U32_MAX; 2317 dev->zac_zones_optimal_nonseq = U32_MAX; 2318 dev->zac_zones_max_open = U32_MAX; 2319 2320 /* 2321 * Always set the 'ZAC' flag for Host-managed devices. 2322 */ 2323 if (dev->class == ATA_DEV_ZAC) 2324 dev->flags |= ATA_DFLAG_ZAC; 2325 else if (ata_id_zoned_cap(dev->id) == 0x01) 2326 /* 2327 * Check for host-aware devices. 2328 */ 2329 dev->flags |= ATA_DFLAG_ZAC; 2330 2331 if (!(dev->flags & ATA_DFLAG_ZAC)) 2332 return; 2333 2334 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2335 ata_dev_warn(dev, 2336 "ATA Zoned Information Log not supported\n"); 2337 return; 2338 } 2339 2340 /* 2341 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2342 */ 2343 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2344 ATA_LOG_ZONED_INFORMATION, 2345 identify_buf, 1); 2346 if (!err_mask) { 2347 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2348 2349 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2350 if ((zoned_cap >> 63)) 2351 dev->zac_zoned_cap = (zoned_cap & 1); 2352 opt_open = get_unaligned_le64(&identify_buf[24]); 2353 if ((opt_open >> 63)) 2354 dev->zac_zones_optimal_open = (u32)opt_open; 2355 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2356 if ((opt_nonseq >> 63)) 2357 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2358 max_open = get_unaligned_le64(&identify_buf[40]); 2359 if ((max_open >> 63)) 2360 dev->zac_zones_max_open = (u32)max_open; 2361 } 2362 } 2363 2364 static void ata_dev_config_trusted(struct ata_device *dev) 2365 { 2366 struct ata_port *ap = dev->link->ap; 2367 u64 trusted_cap; 2368 unsigned int err; 2369 2370 if (!ata_id_has_trusted(dev->id)) 2371 return; 2372 2373 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2374 ata_dev_warn(dev, 2375 "Security Log not supported\n"); 2376 return; 2377 } 2378 2379 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2380 ap->sector_buf, 1); 2381 if (err) 2382 return; 2383 2384 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2385 if (!(trusted_cap & (1ULL << 63))) { 2386 ata_dev_dbg(dev, 2387 "Trusted Computing capability qword not valid!\n"); 2388 return; 2389 } 2390 2391 if (trusted_cap & (1 << 0)) 2392 dev->flags |= ATA_DFLAG_TRUSTED; 2393 } 2394 2395 static void ata_dev_config_cdl(struct ata_device *dev) 2396 { 2397 struct ata_port *ap = dev->link->ap; 2398 unsigned int err_mask; 2399 bool cdl_enabled; 2400 u64 val; 2401 2402 if (ata_id_major_version(dev->id) < 12) 2403 goto not_supported; 2404 2405 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2406 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2407 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2408 goto not_supported; 2409 2410 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2411 ATA_LOG_SUPPORTED_CAPABILITIES, 2412 ap->sector_buf, 1); 2413 if (err_mask) 2414 goto not_supported; 2415 2416 /* Check Command Duration Limit Supported bits */ 2417 val = get_unaligned_le64(&ap->sector_buf[168]); 2418 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2419 goto not_supported; 2420 2421 /* Warn the user if command duration guideline is not supported */ 2422 if (!(val & BIT_ULL(1))) 2423 ata_dev_warn(dev, 2424 "Command duration guideline is not supported\n"); 2425 2426 /* 2427 * We must have support for the sense data for successful NCQ commands 2428 * log indicated by the successful NCQ command sense data supported bit. 2429 */ 2430 val = get_unaligned_le64(&ap->sector_buf[8]); 2431 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2432 ata_dev_warn(dev, 2433 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2434 goto not_supported; 2435 } 2436 2437 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2438 if (!ata_id_has_ncq_autosense(dev->id)) { 2439 ata_dev_warn(dev, 2440 "CDL supported but NCQ autosense is not supported\n"); 2441 goto not_supported; 2442 } 2443 2444 /* 2445 * If CDL is marked as enabled, make sure the feature is enabled too. 2446 * Conversely, if CDL is disabled, make sure the feature is turned off. 2447 */ 2448 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2449 ATA_LOG_CURRENT_SETTINGS, 2450 ap->sector_buf, 1); 2451 if (err_mask) 2452 goto not_supported; 2453 2454 val = get_unaligned_le64(&ap->sector_buf[8]); 2455 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2456 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2457 if (!cdl_enabled) { 2458 /* Enable CDL on the device */ 2459 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2460 if (err_mask) { 2461 ata_dev_err(dev, 2462 "Enable CDL feature failed\n"); 2463 goto not_supported; 2464 } 2465 } 2466 } else { 2467 if (cdl_enabled) { 2468 /* Disable CDL on the device */ 2469 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2470 if (err_mask) { 2471 ata_dev_err(dev, 2472 "Disable CDL feature failed\n"); 2473 goto not_supported; 2474 } 2475 } 2476 } 2477 2478 /* 2479 * While CDL itself has to be enabled using sysfs, CDL requires that 2480 * sense data for successful NCQ commands is enabled to work properly. 2481 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2482 * if supported. 2483 */ 2484 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2485 err_mask = ata_dev_set_feature(dev, 2486 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2487 if (err_mask) { 2488 ata_dev_warn(dev, 2489 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2490 err_mask); 2491 goto not_supported; 2492 } 2493 } 2494 2495 /* 2496 * Allocate a buffer to handle reading the sense data for successful 2497 * NCQ Commands log page for commands using a CDL with one of the limit 2498 * policy set to 0xD (successful completion with sense data available 2499 * bit set). 2500 */ 2501 if (!ap->ncq_sense_buf) { 2502 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2503 if (!ap->ncq_sense_buf) 2504 goto not_supported; 2505 } 2506 2507 /* 2508 * Command duration limits is supported: cache the CDL log page 18h 2509 * (command duration descriptors). 2510 */ 2511 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2512 if (err_mask) { 2513 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2514 goto not_supported; 2515 } 2516 2517 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2518 dev->flags |= ATA_DFLAG_CDL; 2519 2520 return; 2521 2522 not_supported: 2523 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2524 kfree(ap->ncq_sense_buf); 2525 ap->ncq_sense_buf = NULL; 2526 } 2527 2528 static int ata_dev_config_lba(struct ata_device *dev) 2529 { 2530 const u16 *id = dev->id; 2531 const char *lba_desc; 2532 char ncq_desc[24]; 2533 int ret; 2534 2535 dev->flags |= ATA_DFLAG_LBA; 2536 2537 if (ata_id_has_lba48(id)) { 2538 lba_desc = "LBA48"; 2539 dev->flags |= ATA_DFLAG_LBA48; 2540 if (dev->n_sectors >= (1UL << 28) && 2541 ata_id_has_flush_ext(id)) 2542 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2543 } else { 2544 lba_desc = "LBA"; 2545 } 2546 2547 /* config NCQ */ 2548 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2549 2550 /* print device info to dmesg */ 2551 if (ata_dev_print_info(dev)) 2552 ata_dev_info(dev, 2553 "%llu sectors, multi %u: %s %s\n", 2554 (unsigned long long)dev->n_sectors, 2555 dev->multi_count, lba_desc, ncq_desc); 2556 2557 return ret; 2558 } 2559 2560 static void ata_dev_config_chs(struct ata_device *dev) 2561 { 2562 const u16 *id = dev->id; 2563 2564 if (ata_id_current_chs_valid(id)) { 2565 /* Current CHS translation is valid. */ 2566 dev->cylinders = id[54]; 2567 dev->heads = id[55]; 2568 dev->sectors = id[56]; 2569 } else { 2570 /* Default translation */ 2571 dev->cylinders = id[1]; 2572 dev->heads = id[3]; 2573 dev->sectors = id[6]; 2574 } 2575 2576 /* print device info to dmesg */ 2577 if (ata_dev_print_info(dev)) 2578 ata_dev_info(dev, 2579 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2580 (unsigned long long)dev->n_sectors, 2581 dev->multi_count, dev->cylinders, 2582 dev->heads, dev->sectors); 2583 } 2584 2585 static void ata_dev_config_fua(struct ata_device *dev) 2586 { 2587 /* Ignore FUA support if its use is disabled globally */ 2588 if (!libata_fua) 2589 goto nofua; 2590 2591 /* Ignore devices without support for WRITE DMA FUA EXT */ 2592 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2593 goto nofua; 2594 2595 /* Ignore known bad devices and devices that lack NCQ support */ 2596 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2597 goto nofua; 2598 2599 dev->flags |= ATA_DFLAG_FUA; 2600 2601 return; 2602 2603 nofua: 2604 dev->flags &= ~ATA_DFLAG_FUA; 2605 } 2606 2607 static void ata_dev_config_devslp(struct ata_device *dev) 2608 { 2609 u8 *sata_setting = dev->link->ap->sector_buf; 2610 unsigned int err_mask; 2611 int i, j; 2612 2613 /* 2614 * Check device sleep capability. Get DevSlp timing variables 2615 * from SATA Settings page of Identify Device Data Log. 2616 */ 2617 if (!ata_id_has_devslp(dev->id) || 2618 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2619 return; 2620 2621 err_mask = ata_read_log_page(dev, 2622 ATA_LOG_IDENTIFY_DEVICE, 2623 ATA_LOG_SATA_SETTINGS, 2624 sata_setting, 1); 2625 if (err_mask) 2626 return; 2627 2628 dev->flags |= ATA_DFLAG_DEVSLP; 2629 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2630 j = ATA_LOG_DEVSLP_OFFSET + i; 2631 dev->devslp_timing[i] = sata_setting[j]; 2632 } 2633 } 2634 2635 static void ata_dev_config_cpr(struct ata_device *dev) 2636 { 2637 unsigned int err_mask; 2638 size_t buf_len; 2639 int i, nr_cpr = 0; 2640 struct ata_cpr_log *cpr_log = NULL; 2641 u8 *desc, *buf = NULL; 2642 2643 if (ata_id_major_version(dev->id) < 11) 2644 goto out; 2645 2646 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2647 if (buf_len == 0) 2648 goto out; 2649 2650 /* 2651 * Read the concurrent positioning ranges log (0x47). We can have at 2652 * most 255 32B range descriptors plus a 64B header. This log varies in 2653 * size, so use the size reported in the GPL directory. Reading beyond 2654 * the supported length will result in an error. 2655 */ 2656 buf_len <<= 9; 2657 buf = kzalloc(buf_len, GFP_KERNEL); 2658 if (!buf) 2659 goto out; 2660 2661 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2662 0, buf, buf_len >> 9); 2663 if (err_mask) 2664 goto out; 2665 2666 nr_cpr = buf[0]; 2667 if (!nr_cpr) 2668 goto out; 2669 2670 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2671 if (!cpr_log) 2672 goto out; 2673 2674 cpr_log->nr_cpr = nr_cpr; 2675 desc = &buf[64]; 2676 for (i = 0; i < nr_cpr; i++, desc += 32) { 2677 cpr_log->cpr[i].num = desc[0]; 2678 cpr_log->cpr[i].num_storage_elements = desc[1]; 2679 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2680 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2681 } 2682 2683 out: 2684 swap(dev->cpr_log, cpr_log); 2685 kfree(cpr_log); 2686 kfree(buf); 2687 } 2688 2689 static void ata_dev_print_features(struct ata_device *dev) 2690 { 2691 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2692 return; 2693 2694 ata_dev_info(dev, 2695 "Features:%s%s%s%s%s%s%s%s\n", 2696 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2697 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2698 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2699 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2700 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2701 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2702 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2703 dev->cpr_log ? " CPR" : ""); 2704 } 2705 2706 /** 2707 * ata_dev_configure - Configure the specified ATA/ATAPI device 2708 * @dev: Target device to configure 2709 * 2710 * Configure @dev according to @dev->id. Generic and low-level 2711 * driver specific fixups are also applied. 2712 * 2713 * LOCKING: 2714 * Kernel thread context (may sleep) 2715 * 2716 * RETURNS: 2717 * 0 on success, -errno otherwise 2718 */ 2719 int ata_dev_configure(struct ata_device *dev) 2720 { 2721 struct ata_port *ap = dev->link->ap; 2722 bool print_info = ata_dev_print_info(dev); 2723 const u16 *id = dev->id; 2724 unsigned int xfer_mask; 2725 unsigned int err_mask; 2726 char revbuf[7]; /* XYZ-99\0 */ 2727 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2728 char modelbuf[ATA_ID_PROD_LEN+1]; 2729 int rc; 2730 2731 if (!ata_dev_enabled(dev)) { 2732 ata_dev_dbg(dev, "no device\n"); 2733 return 0; 2734 } 2735 2736 /* set horkage */ 2737 dev->horkage |= ata_dev_blacklisted(dev); 2738 ata_force_horkage(dev); 2739 2740 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2741 ata_dev_info(dev, "unsupported device, disabling\n"); 2742 ata_dev_disable(dev); 2743 return 0; 2744 } 2745 2746 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2747 dev->class == ATA_DEV_ATAPI) { 2748 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2749 atapi_enabled ? "not supported with this driver" 2750 : "disabled"); 2751 ata_dev_disable(dev); 2752 return 0; 2753 } 2754 2755 rc = ata_do_link_spd_horkage(dev); 2756 if (rc) 2757 return rc; 2758 2759 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2760 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2761 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2762 dev->horkage |= ATA_HORKAGE_NOLPM; 2763 2764 if (ap->flags & ATA_FLAG_NO_LPM) 2765 dev->horkage |= ATA_HORKAGE_NOLPM; 2766 2767 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2768 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2769 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2770 } 2771 2772 /* let ACPI work its magic */ 2773 rc = ata_acpi_on_devcfg(dev); 2774 if (rc) 2775 return rc; 2776 2777 /* massage HPA, do it early as it might change IDENTIFY data */ 2778 rc = ata_hpa_resize(dev); 2779 if (rc) 2780 return rc; 2781 2782 /* print device capabilities */ 2783 ata_dev_dbg(dev, 2784 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2785 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2786 __func__, 2787 id[49], id[82], id[83], id[84], 2788 id[85], id[86], id[87], id[88]); 2789 2790 /* initialize to-be-configured parameters */ 2791 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2792 dev->max_sectors = 0; 2793 dev->cdb_len = 0; 2794 dev->n_sectors = 0; 2795 dev->cylinders = 0; 2796 dev->heads = 0; 2797 dev->sectors = 0; 2798 dev->multi_count = 0; 2799 2800 /* 2801 * common ATA, ATAPI feature tests 2802 */ 2803 2804 /* find max transfer mode; for printk only */ 2805 xfer_mask = ata_id_xfermask(id); 2806 2807 ata_dump_id(dev, id); 2808 2809 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2810 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2811 sizeof(fwrevbuf)); 2812 2813 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2814 sizeof(modelbuf)); 2815 2816 /* ATA-specific feature tests */ 2817 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2818 if (ata_id_is_cfa(id)) { 2819 /* CPRM may make this media unusable */ 2820 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2821 ata_dev_warn(dev, 2822 "supports DRM functions and may not be fully accessible\n"); 2823 snprintf(revbuf, 7, "CFA"); 2824 } else { 2825 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2826 /* Warn the user if the device has TPM extensions */ 2827 if (ata_id_has_tpm(id)) 2828 ata_dev_warn(dev, 2829 "supports DRM functions and may not be fully accessible\n"); 2830 } 2831 2832 dev->n_sectors = ata_id_n_sectors(id); 2833 2834 /* get current R/W Multiple count setting */ 2835 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2836 unsigned int max = dev->id[47] & 0xff; 2837 unsigned int cnt = dev->id[59] & 0xff; 2838 /* only recognize/allow powers of two here */ 2839 if (is_power_of_2(max) && is_power_of_2(cnt)) 2840 if (cnt <= max) 2841 dev->multi_count = cnt; 2842 } 2843 2844 /* print device info to dmesg */ 2845 if (print_info) 2846 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2847 revbuf, modelbuf, fwrevbuf, 2848 ata_mode_string(xfer_mask)); 2849 2850 if (ata_id_has_lba(id)) { 2851 rc = ata_dev_config_lba(dev); 2852 if (rc) 2853 return rc; 2854 } else { 2855 ata_dev_config_chs(dev); 2856 } 2857 2858 ata_dev_config_fua(dev); 2859 ata_dev_config_devslp(dev); 2860 ata_dev_config_sense_reporting(dev); 2861 ata_dev_config_zac(dev); 2862 ata_dev_config_trusted(dev); 2863 ata_dev_config_cpr(dev); 2864 ata_dev_config_cdl(dev); 2865 dev->cdb_len = 32; 2866 2867 if (print_info) 2868 ata_dev_print_features(dev); 2869 } 2870 2871 /* ATAPI-specific feature tests */ 2872 else if (dev->class == ATA_DEV_ATAPI) { 2873 const char *cdb_intr_string = ""; 2874 const char *atapi_an_string = ""; 2875 const char *dma_dir_string = ""; 2876 u32 sntf; 2877 2878 rc = atapi_cdb_len(id); 2879 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2880 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2881 rc = -EINVAL; 2882 goto err_out_nosup; 2883 } 2884 dev->cdb_len = (unsigned int) rc; 2885 2886 /* Enable ATAPI AN if both the host and device have 2887 * the support. If PMP is attached, SNTF is required 2888 * to enable ATAPI AN to discern between PHY status 2889 * changed notifications and ATAPI ANs. 2890 */ 2891 if (atapi_an && 2892 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2893 (!sata_pmp_attached(ap) || 2894 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2895 /* issue SET feature command to turn this on */ 2896 err_mask = ata_dev_set_feature(dev, 2897 SETFEATURES_SATA_ENABLE, SATA_AN); 2898 if (err_mask) 2899 ata_dev_err(dev, 2900 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2901 err_mask); 2902 else { 2903 dev->flags |= ATA_DFLAG_AN; 2904 atapi_an_string = ", ATAPI AN"; 2905 } 2906 } 2907 2908 if (ata_id_cdb_intr(dev->id)) { 2909 dev->flags |= ATA_DFLAG_CDB_INTR; 2910 cdb_intr_string = ", CDB intr"; 2911 } 2912 2913 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2914 dev->flags |= ATA_DFLAG_DMADIR; 2915 dma_dir_string = ", DMADIR"; 2916 } 2917 2918 if (ata_id_has_da(dev->id)) { 2919 dev->flags |= ATA_DFLAG_DA; 2920 zpodd_init(dev); 2921 } 2922 2923 /* print device info to dmesg */ 2924 if (print_info) 2925 ata_dev_info(dev, 2926 "ATAPI: %s, %s, max %s%s%s%s\n", 2927 modelbuf, fwrevbuf, 2928 ata_mode_string(xfer_mask), 2929 cdb_intr_string, atapi_an_string, 2930 dma_dir_string); 2931 } 2932 2933 /* determine max_sectors */ 2934 dev->max_sectors = ATA_MAX_SECTORS; 2935 if (dev->flags & ATA_DFLAG_LBA48) 2936 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2937 2938 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2939 200 sectors */ 2940 if (ata_dev_knobble(dev)) { 2941 if (print_info) 2942 ata_dev_info(dev, "applying bridge limits\n"); 2943 dev->udma_mask &= ATA_UDMA5; 2944 dev->max_sectors = ATA_MAX_SECTORS; 2945 } 2946 2947 if ((dev->class == ATA_DEV_ATAPI) && 2948 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2949 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2950 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2951 } 2952 2953 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2954 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2955 dev->max_sectors); 2956 2957 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2958 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2959 dev->max_sectors); 2960 2961 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2962 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2963 2964 if (ap->ops->dev_config) 2965 ap->ops->dev_config(dev); 2966 2967 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2968 /* Let the user know. We don't want to disallow opens for 2969 rescue purposes, or in case the vendor is just a blithering 2970 idiot. Do this after the dev_config call as some controllers 2971 with buggy firmware may want to avoid reporting false device 2972 bugs */ 2973 2974 if (print_info) { 2975 ata_dev_warn(dev, 2976 "Drive reports diagnostics failure. This may indicate a drive\n"); 2977 ata_dev_warn(dev, 2978 "fault or invalid emulation. Contact drive vendor for information.\n"); 2979 } 2980 } 2981 2982 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2983 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2984 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2985 } 2986 2987 return 0; 2988 2989 err_out_nosup: 2990 return rc; 2991 } 2992 2993 /** 2994 * ata_cable_40wire - return 40 wire cable type 2995 * @ap: port 2996 * 2997 * Helper method for drivers which want to hardwire 40 wire cable 2998 * detection. 2999 */ 3000 3001 int ata_cable_40wire(struct ata_port *ap) 3002 { 3003 return ATA_CBL_PATA40; 3004 } 3005 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3006 3007 /** 3008 * ata_cable_80wire - return 80 wire cable type 3009 * @ap: port 3010 * 3011 * Helper method for drivers which want to hardwire 80 wire cable 3012 * detection. 3013 */ 3014 3015 int ata_cable_80wire(struct ata_port *ap) 3016 { 3017 return ATA_CBL_PATA80; 3018 } 3019 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3020 3021 /** 3022 * ata_cable_unknown - return unknown PATA cable. 3023 * @ap: port 3024 * 3025 * Helper method for drivers which have no PATA cable detection. 3026 */ 3027 3028 int ata_cable_unknown(struct ata_port *ap) 3029 { 3030 return ATA_CBL_PATA_UNK; 3031 } 3032 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3033 3034 /** 3035 * ata_cable_ignore - return ignored PATA cable. 3036 * @ap: port 3037 * 3038 * Helper method for drivers which don't use cable type to limit 3039 * transfer mode. 3040 */ 3041 int ata_cable_ignore(struct ata_port *ap) 3042 { 3043 return ATA_CBL_PATA_IGN; 3044 } 3045 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3046 3047 /** 3048 * ata_cable_sata - return SATA cable type 3049 * @ap: port 3050 * 3051 * Helper method for drivers which have SATA cables 3052 */ 3053 3054 int ata_cable_sata(struct ata_port *ap) 3055 { 3056 return ATA_CBL_SATA; 3057 } 3058 EXPORT_SYMBOL_GPL(ata_cable_sata); 3059 3060 /** 3061 * sata_print_link_status - Print SATA link status 3062 * @link: SATA link to printk link status about 3063 * 3064 * This function prints link speed and status of a SATA link. 3065 * 3066 * LOCKING: 3067 * None. 3068 */ 3069 static void sata_print_link_status(struct ata_link *link) 3070 { 3071 u32 sstatus, scontrol, tmp; 3072 3073 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3074 return; 3075 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3076 return; 3077 3078 if (ata_phys_link_online(link)) { 3079 tmp = (sstatus >> 4) & 0xf; 3080 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3081 sata_spd_string(tmp), sstatus, scontrol); 3082 } else { 3083 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3084 sstatus, scontrol); 3085 } 3086 } 3087 3088 /** 3089 * ata_dev_pair - return other device on cable 3090 * @adev: device 3091 * 3092 * Obtain the other device on the same cable, or if none is 3093 * present NULL is returned 3094 */ 3095 3096 struct ata_device *ata_dev_pair(struct ata_device *adev) 3097 { 3098 struct ata_link *link = adev->link; 3099 struct ata_device *pair = &link->device[1 - adev->devno]; 3100 if (!ata_dev_enabled(pair)) 3101 return NULL; 3102 return pair; 3103 } 3104 EXPORT_SYMBOL_GPL(ata_dev_pair); 3105 3106 /** 3107 * sata_down_spd_limit - adjust SATA spd limit downward 3108 * @link: Link to adjust SATA spd limit for 3109 * @spd_limit: Additional limit 3110 * 3111 * Adjust SATA spd limit of @link downward. Note that this 3112 * function only adjusts the limit. The change must be applied 3113 * using sata_set_spd(). 3114 * 3115 * If @spd_limit is non-zero, the speed is limited to equal to or 3116 * lower than @spd_limit if such speed is supported. If 3117 * @spd_limit is slower than any supported speed, only the lowest 3118 * supported speed is allowed. 3119 * 3120 * LOCKING: 3121 * Inherited from caller. 3122 * 3123 * RETURNS: 3124 * 0 on success, negative errno on failure 3125 */ 3126 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3127 { 3128 u32 sstatus, spd, mask; 3129 int rc, bit; 3130 3131 if (!sata_scr_valid(link)) 3132 return -EOPNOTSUPP; 3133 3134 /* If SCR can be read, use it to determine the current SPD. 3135 * If not, use cached value in link->sata_spd. 3136 */ 3137 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3138 if (rc == 0 && ata_sstatus_online(sstatus)) 3139 spd = (sstatus >> 4) & 0xf; 3140 else 3141 spd = link->sata_spd; 3142 3143 mask = link->sata_spd_limit; 3144 if (mask <= 1) 3145 return -EINVAL; 3146 3147 /* unconditionally mask off the highest bit */ 3148 bit = fls(mask) - 1; 3149 mask &= ~(1 << bit); 3150 3151 /* 3152 * Mask off all speeds higher than or equal to the current one. At 3153 * this point, if current SPD is not available and we previously 3154 * recorded the link speed from SStatus, the driver has already 3155 * masked off the highest bit so mask should already be 1 or 0. 3156 * Otherwise, we should not force 1.5Gbps on a link where we have 3157 * not previously recorded speed from SStatus. Just return in this 3158 * case. 3159 */ 3160 if (spd > 1) 3161 mask &= (1 << (spd - 1)) - 1; 3162 else if (link->sata_spd) 3163 return -EINVAL; 3164 3165 /* were we already at the bottom? */ 3166 if (!mask) 3167 return -EINVAL; 3168 3169 if (spd_limit) { 3170 if (mask & ((1 << spd_limit) - 1)) 3171 mask &= (1 << spd_limit) - 1; 3172 else { 3173 bit = ffs(mask) - 1; 3174 mask = 1 << bit; 3175 } 3176 } 3177 3178 link->sata_spd_limit = mask; 3179 3180 ata_link_warn(link, "limiting SATA link speed to %s\n", 3181 sata_spd_string(fls(mask))); 3182 3183 return 0; 3184 } 3185 3186 #ifdef CONFIG_ATA_ACPI 3187 /** 3188 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3189 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3190 * @cycle: cycle duration in ns 3191 * 3192 * Return matching xfer mode for @cycle. The returned mode is of 3193 * the transfer type specified by @xfer_shift. If @cycle is too 3194 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3195 * than the fastest known mode, the fasted mode is returned. 3196 * 3197 * LOCKING: 3198 * None. 3199 * 3200 * RETURNS: 3201 * Matching xfer_mode, 0xff if no match found. 3202 */ 3203 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3204 { 3205 u8 base_mode = 0xff, last_mode = 0xff; 3206 const struct ata_xfer_ent *ent; 3207 const struct ata_timing *t; 3208 3209 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3210 if (ent->shift == xfer_shift) 3211 base_mode = ent->base; 3212 3213 for (t = ata_timing_find_mode(base_mode); 3214 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3215 unsigned short this_cycle; 3216 3217 switch (xfer_shift) { 3218 case ATA_SHIFT_PIO: 3219 case ATA_SHIFT_MWDMA: 3220 this_cycle = t->cycle; 3221 break; 3222 case ATA_SHIFT_UDMA: 3223 this_cycle = t->udma; 3224 break; 3225 default: 3226 return 0xff; 3227 } 3228 3229 if (cycle > this_cycle) 3230 break; 3231 3232 last_mode = t->mode; 3233 } 3234 3235 return last_mode; 3236 } 3237 #endif 3238 3239 /** 3240 * ata_down_xfermask_limit - adjust dev xfer masks downward 3241 * @dev: Device to adjust xfer masks 3242 * @sel: ATA_DNXFER_* selector 3243 * 3244 * Adjust xfer masks of @dev downward. Note that this function 3245 * does not apply the change. Invoking ata_set_mode() afterwards 3246 * will apply the limit. 3247 * 3248 * LOCKING: 3249 * Inherited from caller. 3250 * 3251 * RETURNS: 3252 * 0 on success, negative errno on failure 3253 */ 3254 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3255 { 3256 char buf[32]; 3257 unsigned int orig_mask, xfer_mask; 3258 unsigned int pio_mask, mwdma_mask, udma_mask; 3259 int quiet, highbit; 3260 3261 quiet = !!(sel & ATA_DNXFER_QUIET); 3262 sel &= ~ATA_DNXFER_QUIET; 3263 3264 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3265 dev->mwdma_mask, 3266 dev->udma_mask); 3267 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3268 3269 switch (sel) { 3270 case ATA_DNXFER_PIO: 3271 highbit = fls(pio_mask) - 1; 3272 pio_mask &= ~(1 << highbit); 3273 break; 3274 3275 case ATA_DNXFER_DMA: 3276 if (udma_mask) { 3277 highbit = fls(udma_mask) - 1; 3278 udma_mask &= ~(1 << highbit); 3279 if (!udma_mask) 3280 return -ENOENT; 3281 } else if (mwdma_mask) { 3282 highbit = fls(mwdma_mask) - 1; 3283 mwdma_mask &= ~(1 << highbit); 3284 if (!mwdma_mask) 3285 return -ENOENT; 3286 } 3287 break; 3288 3289 case ATA_DNXFER_40C: 3290 udma_mask &= ATA_UDMA_MASK_40C; 3291 break; 3292 3293 case ATA_DNXFER_FORCE_PIO0: 3294 pio_mask &= 1; 3295 fallthrough; 3296 case ATA_DNXFER_FORCE_PIO: 3297 mwdma_mask = 0; 3298 udma_mask = 0; 3299 break; 3300 3301 default: 3302 BUG(); 3303 } 3304 3305 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3306 3307 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3308 return -ENOENT; 3309 3310 if (!quiet) { 3311 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3312 snprintf(buf, sizeof(buf), "%s:%s", 3313 ata_mode_string(xfer_mask), 3314 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3315 else 3316 snprintf(buf, sizeof(buf), "%s", 3317 ata_mode_string(xfer_mask)); 3318 3319 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3320 } 3321 3322 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3323 &dev->udma_mask); 3324 3325 return 0; 3326 } 3327 3328 static int ata_dev_set_mode(struct ata_device *dev) 3329 { 3330 struct ata_port *ap = dev->link->ap; 3331 struct ata_eh_context *ehc = &dev->link->eh_context; 3332 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3333 const char *dev_err_whine = ""; 3334 int ign_dev_err = 0; 3335 unsigned int err_mask = 0; 3336 int rc; 3337 3338 dev->flags &= ~ATA_DFLAG_PIO; 3339 if (dev->xfer_shift == ATA_SHIFT_PIO) 3340 dev->flags |= ATA_DFLAG_PIO; 3341 3342 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3343 dev_err_whine = " (SET_XFERMODE skipped)"; 3344 else { 3345 if (nosetxfer) 3346 ata_dev_warn(dev, 3347 "NOSETXFER but PATA detected - can't " 3348 "skip SETXFER, might malfunction\n"); 3349 err_mask = ata_dev_set_xfermode(dev); 3350 } 3351 3352 if (err_mask & ~AC_ERR_DEV) 3353 goto fail; 3354 3355 /* revalidate */ 3356 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3357 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3358 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3359 if (rc) 3360 return rc; 3361 3362 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3363 /* Old CFA may refuse this command, which is just fine */ 3364 if (ata_id_is_cfa(dev->id)) 3365 ign_dev_err = 1; 3366 /* Catch several broken garbage emulations plus some pre 3367 ATA devices */ 3368 if (ata_id_major_version(dev->id) == 0 && 3369 dev->pio_mode <= XFER_PIO_2) 3370 ign_dev_err = 1; 3371 /* Some very old devices and some bad newer ones fail 3372 any kind of SET_XFERMODE request but support PIO0-2 3373 timings and no IORDY */ 3374 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3375 ign_dev_err = 1; 3376 } 3377 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3378 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3379 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3380 dev->dma_mode == XFER_MW_DMA_0 && 3381 (dev->id[63] >> 8) & 1) 3382 ign_dev_err = 1; 3383 3384 /* if the device is actually configured correctly, ignore dev err */ 3385 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3386 ign_dev_err = 1; 3387 3388 if (err_mask & AC_ERR_DEV) { 3389 if (!ign_dev_err) 3390 goto fail; 3391 else 3392 dev_err_whine = " (device error ignored)"; 3393 } 3394 3395 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3396 dev->xfer_shift, (int)dev->xfer_mode); 3397 3398 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3399 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3400 ata_dev_info(dev, "configured for %s%s\n", 3401 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3402 dev_err_whine); 3403 3404 return 0; 3405 3406 fail: 3407 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3408 return -EIO; 3409 } 3410 3411 /** 3412 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3413 * @link: link on which timings will be programmed 3414 * @r_failed_dev: out parameter for failed device 3415 * 3416 * Standard implementation of the function used to tune and set 3417 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3418 * ata_dev_set_mode() fails, pointer to the failing device is 3419 * returned in @r_failed_dev. 3420 * 3421 * LOCKING: 3422 * PCI/etc. bus probe sem. 3423 * 3424 * RETURNS: 3425 * 0 on success, negative errno otherwise 3426 */ 3427 3428 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3429 { 3430 struct ata_port *ap = link->ap; 3431 struct ata_device *dev; 3432 int rc = 0, used_dma = 0, found = 0; 3433 3434 /* step 1: calculate xfer_mask */ 3435 ata_for_each_dev(dev, link, ENABLED) { 3436 unsigned int pio_mask, dma_mask; 3437 unsigned int mode_mask; 3438 3439 mode_mask = ATA_DMA_MASK_ATA; 3440 if (dev->class == ATA_DEV_ATAPI) 3441 mode_mask = ATA_DMA_MASK_ATAPI; 3442 else if (ata_id_is_cfa(dev->id)) 3443 mode_mask = ATA_DMA_MASK_CFA; 3444 3445 ata_dev_xfermask(dev); 3446 ata_force_xfermask(dev); 3447 3448 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3449 3450 if (libata_dma_mask & mode_mask) 3451 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3452 dev->udma_mask); 3453 else 3454 dma_mask = 0; 3455 3456 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3457 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3458 3459 found = 1; 3460 if (ata_dma_enabled(dev)) 3461 used_dma = 1; 3462 } 3463 if (!found) 3464 goto out; 3465 3466 /* step 2: always set host PIO timings */ 3467 ata_for_each_dev(dev, link, ENABLED) { 3468 if (dev->pio_mode == 0xff) { 3469 ata_dev_warn(dev, "no PIO support\n"); 3470 rc = -EINVAL; 3471 goto out; 3472 } 3473 3474 dev->xfer_mode = dev->pio_mode; 3475 dev->xfer_shift = ATA_SHIFT_PIO; 3476 if (ap->ops->set_piomode) 3477 ap->ops->set_piomode(ap, dev); 3478 } 3479 3480 /* step 3: set host DMA timings */ 3481 ata_for_each_dev(dev, link, ENABLED) { 3482 if (!ata_dma_enabled(dev)) 3483 continue; 3484 3485 dev->xfer_mode = dev->dma_mode; 3486 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3487 if (ap->ops->set_dmamode) 3488 ap->ops->set_dmamode(ap, dev); 3489 } 3490 3491 /* step 4: update devices' xfer mode */ 3492 ata_for_each_dev(dev, link, ENABLED) { 3493 rc = ata_dev_set_mode(dev); 3494 if (rc) 3495 goto out; 3496 } 3497 3498 /* Record simplex status. If we selected DMA then the other 3499 * host channels are not permitted to do so. 3500 */ 3501 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3502 ap->host->simplex_claimed = ap; 3503 3504 out: 3505 if (rc) 3506 *r_failed_dev = dev; 3507 return rc; 3508 } 3509 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3510 3511 /** 3512 * ata_wait_ready - wait for link to become ready 3513 * @link: link to be waited on 3514 * @deadline: deadline jiffies for the operation 3515 * @check_ready: callback to check link readiness 3516 * 3517 * Wait for @link to become ready. @check_ready should return 3518 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3519 * link doesn't seem to be occupied, other errno for other error 3520 * conditions. 3521 * 3522 * Transient -ENODEV conditions are allowed for 3523 * ATA_TMOUT_FF_WAIT. 3524 * 3525 * LOCKING: 3526 * EH context. 3527 * 3528 * RETURNS: 3529 * 0 if @link is ready before @deadline; otherwise, -errno. 3530 */ 3531 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3532 int (*check_ready)(struct ata_link *link)) 3533 { 3534 unsigned long start = jiffies; 3535 unsigned long nodev_deadline; 3536 int warned = 0; 3537 3538 /* choose which 0xff timeout to use, read comment in libata.h */ 3539 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3540 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3541 else 3542 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3543 3544 /* Slave readiness can't be tested separately from master. On 3545 * M/S emulation configuration, this function should be called 3546 * only on the master and it will handle both master and slave. 3547 */ 3548 WARN_ON(link == link->ap->slave_link); 3549 3550 if (time_after(nodev_deadline, deadline)) 3551 nodev_deadline = deadline; 3552 3553 while (1) { 3554 unsigned long now = jiffies; 3555 int ready, tmp; 3556 3557 ready = tmp = check_ready(link); 3558 if (ready > 0) 3559 return 0; 3560 3561 /* 3562 * -ENODEV could be transient. Ignore -ENODEV if link 3563 * is online. Also, some SATA devices take a long 3564 * time to clear 0xff after reset. Wait for 3565 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3566 * offline. 3567 * 3568 * Note that some PATA controllers (pata_ali) explode 3569 * if status register is read more than once when 3570 * there's no device attached. 3571 */ 3572 if (ready == -ENODEV) { 3573 if (ata_link_online(link)) 3574 ready = 0; 3575 else if ((link->ap->flags & ATA_FLAG_SATA) && 3576 !ata_link_offline(link) && 3577 time_before(now, nodev_deadline)) 3578 ready = 0; 3579 } 3580 3581 if (ready) 3582 return ready; 3583 if (time_after(now, deadline)) 3584 return -EBUSY; 3585 3586 if (!warned && time_after(now, start + 5 * HZ) && 3587 (deadline - now > 3 * HZ)) { 3588 ata_link_warn(link, 3589 "link is slow to respond, please be patient " 3590 "(ready=%d)\n", tmp); 3591 warned = 1; 3592 } 3593 3594 ata_msleep(link->ap, 50); 3595 } 3596 } 3597 3598 /** 3599 * ata_wait_after_reset - wait for link to become ready after reset 3600 * @link: link to be waited on 3601 * @deadline: deadline jiffies for the operation 3602 * @check_ready: callback to check link readiness 3603 * 3604 * Wait for @link to become ready after reset. 3605 * 3606 * LOCKING: 3607 * EH context. 3608 * 3609 * RETURNS: 3610 * 0 if @link is ready before @deadline; otherwise, -errno. 3611 */ 3612 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3613 int (*check_ready)(struct ata_link *link)) 3614 { 3615 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3616 3617 return ata_wait_ready(link, deadline, check_ready); 3618 } 3619 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3620 3621 /** 3622 * ata_std_prereset - prepare for reset 3623 * @link: ATA link to be reset 3624 * @deadline: deadline jiffies for the operation 3625 * 3626 * @link is about to be reset. Initialize it. Failure from 3627 * prereset makes libata abort whole reset sequence and give up 3628 * that port, so prereset should be best-effort. It does its 3629 * best to prepare for reset sequence but if things go wrong, it 3630 * should just whine, not fail. 3631 * 3632 * LOCKING: 3633 * Kernel thread context (may sleep) 3634 * 3635 * RETURNS: 3636 * Always 0. 3637 */ 3638 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3639 { 3640 struct ata_port *ap = link->ap; 3641 struct ata_eh_context *ehc = &link->eh_context; 3642 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3643 int rc; 3644 3645 /* if we're about to do hardreset, nothing more to do */ 3646 if (ehc->i.action & ATA_EH_HARDRESET) 3647 return 0; 3648 3649 /* if SATA, resume link */ 3650 if (ap->flags & ATA_FLAG_SATA) { 3651 rc = sata_link_resume(link, timing, deadline); 3652 /* whine about phy resume failure but proceed */ 3653 if (rc && rc != -EOPNOTSUPP) 3654 ata_link_warn(link, 3655 "failed to resume link for reset (errno=%d)\n", 3656 rc); 3657 } 3658 3659 /* no point in trying softreset on offline link */ 3660 if (ata_phys_link_offline(link)) 3661 ehc->i.action &= ~ATA_EH_SOFTRESET; 3662 3663 return 0; 3664 } 3665 EXPORT_SYMBOL_GPL(ata_std_prereset); 3666 3667 /** 3668 * sata_std_hardreset - COMRESET w/o waiting or classification 3669 * @link: link to reset 3670 * @class: resulting class of attached device 3671 * @deadline: deadline jiffies for the operation 3672 * 3673 * Standard SATA COMRESET w/o waiting or classification. 3674 * 3675 * LOCKING: 3676 * Kernel thread context (may sleep) 3677 * 3678 * RETURNS: 3679 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3680 */ 3681 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3682 unsigned long deadline) 3683 { 3684 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context); 3685 bool online; 3686 int rc; 3687 3688 /* do hardreset */ 3689 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3690 return online ? -EAGAIN : rc; 3691 } 3692 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3693 3694 /** 3695 * ata_std_postreset - standard postreset callback 3696 * @link: the target ata_link 3697 * @classes: classes of attached devices 3698 * 3699 * This function is invoked after a successful reset. Note that 3700 * the device might have been reset more than once using 3701 * different reset methods before postreset is invoked. 3702 * 3703 * LOCKING: 3704 * Kernel thread context (may sleep) 3705 */ 3706 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3707 { 3708 u32 serror; 3709 3710 /* reset complete, clear SError */ 3711 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3712 sata_scr_write(link, SCR_ERROR, serror); 3713 3714 /* print link status */ 3715 sata_print_link_status(link); 3716 } 3717 EXPORT_SYMBOL_GPL(ata_std_postreset); 3718 3719 /** 3720 * ata_dev_same_device - Determine whether new ID matches configured device 3721 * @dev: device to compare against 3722 * @new_class: class of the new device 3723 * @new_id: IDENTIFY page of the new device 3724 * 3725 * Compare @new_class and @new_id against @dev and determine 3726 * whether @dev is the device indicated by @new_class and 3727 * @new_id. 3728 * 3729 * LOCKING: 3730 * None. 3731 * 3732 * RETURNS: 3733 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3734 */ 3735 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3736 const u16 *new_id) 3737 { 3738 const u16 *old_id = dev->id; 3739 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3740 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3741 3742 if (dev->class != new_class) { 3743 ata_dev_info(dev, "class mismatch %d != %d\n", 3744 dev->class, new_class); 3745 return 0; 3746 } 3747 3748 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3749 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3750 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3751 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3752 3753 if (strcmp(model[0], model[1])) { 3754 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3755 model[0], model[1]); 3756 return 0; 3757 } 3758 3759 if (strcmp(serial[0], serial[1])) { 3760 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3761 serial[0], serial[1]); 3762 return 0; 3763 } 3764 3765 return 1; 3766 } 3767 3768 /** 3769 * ata_dev_reread_id - Re-read IDENTIFY data 3770 * @dev: target ATA device 3771 * @readid_flags: read ID flags 3772 * 3773 * Re-read IDENTIFY page and make sure @dev is still attached to 3774 * the port. 3775 * 3776 * LOCKING: 3777 * Kernel thread context (may sleep) 3778 * 3779 * RETURNS: 3780 * 0 on success, negative errno otherwise 3781 */ 3782 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3783 { 3784 unsigned int class = dev->class; 3785 u16 *id = (void *)dev->link->ap->sector_buf; 3786 int rc; 3787 3788 /* read ID data */ 3789 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3790 if (rc) 3791 return rc; 3792 3793 /* is the device still there? */ 3794 if (!ata_dev_same_device(dev, class, id)) 3795 return -ENODEV; 3796 3797 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3798 return 0; 3799 } 3800 3801 /** 3802 * ata_dev_revalidate - Revalidate ATA device 3803 * @dev: device to revalidate 3804 * @new_class: new class code 3805 * @readid_flags: read ID flags 3806 * 3807 * Re-read IDENTIFY page, make sure @dev is still attached to the 3808 * port and reconfigure it according to the new IDENTIFY page. 3809 * 3810 * LOCKING: 3811 * Kernel thread context (may sleep) 3812 * 3813 * RETURNS: 3814 * 0 on success, negative errno otherwise 3815 */ 3816 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3817 unsigned int readid_flags) 3818 { 3819 u64 n_sectors = dev->n_sectors; 3820 u64 n_native_sectors = dev->n_native_sectors; 3821 int rc; 3822 3823 if (!ata_dev_enabled(dev)) 3824 return -ENODEV; 3825 3826 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3827 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3828 ata_dev_info(dev, "class mismatch %u != %u\n", 3829 dev->class, new_class); 3830 rc = -ENODEV; 3831 goto fail; 3832 } 3833 3834 /* re-read ID */ 3835 rc = ata_dev_reread_id(dev, readid_flags); 3836 if (rc) 3837 goto fail; 3838 3839 /* configure device according to the new ID */ 3840 rc = ata_dev_configure(dev); 3841 if (rc) 3842 goto fail; 3843 3844 /* verify n_sectors hasn't changed */ 3845 if (dev->class != ATA_DEV_ATA || !n_sectors || 3846 dev->n_sectors == n_sectors) 3847 return 0; 3848 3849 /* n_sectors has changed */ 3850 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3851 (unsigned long long)n_sectors, 3852 (unsigned long long)dev->n_sectors); 3853 3854 /* 3855 * Something could have caused HPA to be unlocked 3856 * involuntarily. If n_native_sectors hasn't changed and the 3857 * new size matches it, keep the device. 3858 */ 3859 if (dev->n_native_sectors == n_native_sectors && 3860 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3861 ata_dev_warn(dev, 3862 "new n_sectors matches native, probably " 3863 "late HPA unlock, n_sectors updated\n"); 3864 /* use the larger n_sectors */ 3865 return 0; 3866 } 3867 3868 /* 3869 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3870 * unlocking HPA in those cases. 3871 * 3872 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3873 */ 3874 if (dev->n_native_sectors == n_native_sectors && 3875 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3876 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3877 ata_dev_warn(dev, 3878 "old n_sectors matches native, probably " 3879 "late HPA lock, will try to unlock HPA\n"); 3880 /* try unlocking HPA */ 3881 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3882 rc = -EIO; 3883 } else 3884 rc = -ENODEV; 3885 3886 /* restore original n_[native_]sectors and fail */ 3887 dev->n_native_sectors = n_native_sectors; 3888 dev->n_sectors = n_sectors; 3889 fail: 3890 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3891 return rc; 3892 } 3893 3894 struct ata_blacklist_entry { 3895 const char *model_num; 3896 const char *model_rev; 3897 unsigned long horkage; 3898 }; 3899 3900 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3901 /* Devices with DMA related problems under Linux */ 3902 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3903 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3904 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3905 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3906 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3907 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3908 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3909 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3910 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3911 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3912 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3913 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3914 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3915 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3916 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3917 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3918 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3919 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3920 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3921 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3922 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3923 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3924 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3925 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3926 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3927 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3928 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3929 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3930 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3931 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3932 /* Odd clown on sil3726/4726 PMPs */ 3933 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3934 /* Similar story with ASMedia 1092 */ 3935 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3936 3937 /* Weird ATAPI devices */ 3938 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3939 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3940 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3941 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3942 3943 /* 3944 * Causes silent data corruption with higher max sects. 3945 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3946 */ 3947 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3948 3949 /* 3950 * These devices time out with higher max sects. 3951 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3952 */ 3953 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3954 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3955 3956 /* Devices we expect to fail diagnostics */ 3957 3958 /* Devices where NCQ should be avoided */ 3959 /* NCQ is slow */ 3960 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3961 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 3962 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3963 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3964 /* NCQ is broken */ 3965 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3966 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3967 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3968 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3969 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3970 3971 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3972 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3973 ATA_HORKAGE_FIRMWARE_WARN }, 3974 3975 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3976 ATA_HORKAGE_FIRMWARE_WARN }, 3977 3978 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3979 ATA_HORKAGE_FIRMWARE_WARN }, 3980 3981 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3982 ATA_HORKAGE_FIRMWARE_WARN }, 3983 3984 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3985 the ST disks also have LPM issues */ 3986 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3987 ATA_HORKAGE_NOLPM }, 3988 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3989 3990 /* Blacklist entries taken from Silicon Image 3124/3132 3991 Windows driver .inf file - also several Linux problem reports */ 3992 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 3993 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 3994 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 3995 3996 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3997 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 3998 3999 /* Sandisk SD7/8/9s lock up hard on large trims */ 4000 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4001 4002 /* devices which puke on READ_NATIVE_MAX */ 4003 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4004 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4005 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4006 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4007 4008 /* this one allows HPA unlocking but fails IOs on the area */ 4009 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4010 4011 /* Devices which report 1 sector over size HPA */ 4012 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4013 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4014 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4015 4016 /* Devices which get the IVB wrong */ 4017 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4018 /* Maybe we should just blacklist TSSTcorp... */ 4019 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4020 4021 /* Devices that do not need bridging limits applied */ 4022 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4023 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4024 4025 /* Devices which aren't very happy with higher link speeds */ 4026 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4027 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4028 4029 /* 4030 * Devices which choke on SETXFER. Applies only if both the 4031 * device and controller are SATA. 4032 */ 4033 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4034 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4035 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4036 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4037 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4038 4039 /* These specific Pioneer models have LPM issues */ 4040 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4041 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4042 4043 /* Crucial BX100 SSD 500GB has broken LPM support */ 4044 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4045 4046 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4047 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4048 ATA_HORKAGE_ZERO_AFTER_TRIM | 4049 ATA_HORKAGE_NOLPM }, 4050 /* 512GB MX100 with newer firmware has only LPM issues */ 4051 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4052 ATA_HORKAGE_NOLPM }, 4053 4054 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4055 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4056 ATA_HORKAGE_ZERO_AFTER_TRIM | 4057 ATA_HORKAGE_NOLPM }, 4058 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4059 ATA_HORKAGE_ZERO_AFTER_TRIM | 4060 ATA_HORKAGE_NOLPM }, 4061 4062 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4063 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4064 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4065 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4066 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4067 4068 /* devices that don't properly handle queued TRIM commands */ 4069 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4070 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4071 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4072 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4073 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4074 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4075 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4076 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4077 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4078 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4079 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4080 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4081 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4082 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4083 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4084 ATA_HORKAGE_NO_DMA_LOG | 4085 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4086 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4087 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4088 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4089 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4090 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4091 ATA_HORKAGE_ZERO_AFTER_TRIM | 4092 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4093 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4094 ATA_HORKAGE_ZERO_AFTER_TRIM | 4095 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4096 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4097 ATA_HORKAGE_ZERO_AFTER_TRIM | 4098 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4099 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4100 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4101 4102 /* devices that don't properly handle TRIM commands */ 4103 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4104 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4105 4106 /* 4107 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4108 * (Return Zero After Trim) flags in the ATA Command Set are 4109 * unreliable in the sense that they only define what happens if 4110 * the device successfully executed the DSM TRIM command. TRIM 4111 * is only advisory, however, and the device is free to silently 4112 * ignore all or parts of the request. 4113 * 4114 * Whitelist drives that are known to reliably return zeroes 4115 * after TRIM. 4116 */ 4117 4118 /* 4119 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4120 * that model before whitelisting all other intel SSDs. 4121 */ 4122 { "INTEL*SSDSC2MH*", NULL, 0 }, 4123 4124 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4125 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4126 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4127 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4128 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4129 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4130 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4131 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4132 4133 /* 4134 * Some WD SATA-I drives spin up and down erratically when the link 4135 * is put into the slumber mode. We don't have full list of the 4136 * affected devices. Disable LPM if the device matches one of the 4137 * known prefixes and is SATA-1. As a side effect LPM partial is 4138 * lost too. 4139 * 4140 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4141 */ 4142 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4143 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4144 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4145 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4146 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4147 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4148 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4149 4150 /* 4151 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4152 * log page is accessed. Ensure we never ask for this log page with 4153 * these devices. 4154 */ 4155 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4156 4157 /* Buggy FUA */ 4158 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4159 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4160 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4161 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4162 4163 /* End Marker */ 4164 { } 4165 }; 4166 4167 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4168 { 4169 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4170 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4171 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4172 4173 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4174 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4175 4176 while (ad->model_num) { 4177 if (glob_match(ad->model_num, model_num)) { 4178 if (ad->model_rev == NULL) 4179 return ad->horkage; 4180 if (glob_match(ad->model_rev, model_rev)) 4181 return ad->horkage; 4182 } 4183 ad++; 4184 } 4185 return 0; 4186 } 4187 4188 static int ata_dma_blacklisted(const struct ata_device *dev) 4189 { 4190 /* We don't support polling DMA. 4191 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4192 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4193 */ 4194 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4195 (dev->flags & ATA_DFLAG_CDB_INTR)) 4196 return 1; 4197 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4198 } 4199 4200 /** 4201 * ata_is_40wire - check drive side detection 4202 * @dev: device 4203 * 4204 * Perform drive side detection decoding, allowing for device vendors 4205 * who can't follow the documentation. 4206 */ 4207 4208 static int ata_is_40wire(struct ata_device *dev) 4209 { 4210 if (dev->horkage & ATA_HORKAGE_IVB) 4211 return ata_drive_40wire_relaxed(dev->id); 4212 return ata_drive_40wire(dev->id); 4213 } 4214 4215 /** 4216 * cable_is_40wire - 40/80/SATA decider 4217 * @ap: port to consider 4218 * 4219 * This function encapsulates the policy for speed management 4220 * in one place. At the moment we don't cache the result but 4221 * there is a good case for setting ap->cbl to the result when 4222 * we are called with unknown cables (and figuring out if it 4223 * impacts hotplug at all). 4224 * 4225 * Return 1 if the cable appears to be 40 wire. 4226 */ 4227 4228 static int cable_is_40wire(struct ata_port *ap) 4229 { 4230 struct ata_link *link; 4231 struct ata_device *dev; 4232 4233 /* If the controller thinks we are 40 wire, we are. */ 4234 if (ap->cbl == ATA_CBL_PATA40) 4235 return 1; 4236 4237 /* If the controller thinks we are 80 wire, we are. */ 4238 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4239 return 0; 4240 4241 /* If the system is known to be 40 wire short cable (eg 4242 * laptop), then we allow 80 wire modes even if the drive 4243 * isn't sure. 4244 */ 4245 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4246 return 0; 4247 4248 /* If the controller doesn't know, we scan. 4249 * 4250 * Note: We look for all 40 wire detects at this point. Any 4251 * 80 wire detect is taken to be 80 wire cable because 4252 * - in many setups only the one drive (slave if present) will 4253 * give a valid detect 4254 * - if you have a non detect capable drive you don't want it 4255 * to colour the choice 4256 */ 4257 ata_for_each_link(link, ap, EDGE) { 4258 ata_for_each_dev(dev, link, ENABLED) { 4259 if (!ata_is_40wire(dev)) 4260 return 0; 4261 } 4262 } 4263 return 1; 4264 } 4265 4266 /** 4267 * ata_dev_xfermask - Compute supported xfermask of the given device 4268 * @dev: Device to compute xfermask for 4269 * 4270 * Compute supported xfermask of @dev and store it in 4271 * dev->*_mask. This function is responsible for applying all 4272 * known limits including host controller limits, device 4273 * blacklist, etc... 4274 * 4275 * LOCKING: 4276 * None. 4277 */ 4278 static void ata_dev_xfermask(struct ata_device *dev) 4279 { 4280 struct ata_link *link = dev->link; 4281 struct ata_port *ap = link->ap; 4282 struct ata_host *host = ap->host; 4283 unsigned int xfer_mask; 4284 4285 /* controller modes available */ 4286 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4287 ap->mwdma_mask, ap->udma_mask); 4288 4289 /* drive modes available */ 4290 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4291 dev->mwdma_mask, dev->udma_mask); 4292 xfer_mask &= ata_id_xfermask(dev->id); 4293 4294 /* 4295 * CFA Advanced TrueIDE timings are not allowed on a shared 4296 * cable 4297 */ 4298 if (ata_dev_pair(dev)) { 4299 /* No PIO5 or PIO6 */ 4300 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4301 /* No MWDMA3 or MWDMA 4 */ 4302 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4303 } 4304 4305 if (ata_dma_blacklisted(dev)) { 4306 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4307 ata_dev_warn(dev, 4308 "device is on DMA blacklist, disabling DMA\n"); 4309 } 4310 4311 if ((host->flags & ATA_HOST_SIMPLEX) && 4312 host->simplex_claimed && host->simplex_claimed != ap) { 4313 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4314 ata_dev_warn(dev, 4315 "simplex DMA is claimed by other device, disabling DMA\n"); 4316 } 4317 4318 if (ap->flags & ATA_FLAG_NO_IORDY) 4319 xfer_mask &= ata_pio_mask_no_iordy(dev); 4320 4321 if (ap->ops->mode_filter) 4322 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4323 4324 /* Apply cable rule here. Don't apply it early because when 4325 * we handle hot plug the cable type can itself change. 4326 * Check this last so that we know if the transfer rate was 4327 * solely limited by the cable. 4328 * Unknown or 80 wire cables reported host side are checked 4329 * drive side as well. Cases where we know a 40wire cable 4330 * is used safely for 80 are not checked here. 4331 */ 4332 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4333 /* UDMA/44 or higher would be available */ 4334 if (cable_is_40wire(ap)) { 4335 ata_dev_warn(dev, 4336 "limited to UDMA/33 due to 40-wire cable\n"); 4337 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4338 } 4339 4340 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4341 &dev->mwdma_mask, &dev->udma_mask); 4342 } 4343 4344 /** 4345 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4346 * @dev: Device to which command will be sent 4347 * 4348 * Issue SET FEATURES - XFER MODE command to device @dev 4349 * on port @ap. 4350 * 4351 * LOCKING: 4352 * PCI/etc. bus probe sem. 4353 * 4354 * RETURNS: 4355 * 0 on success, AC_ERR_* mask otherwise. 4356 */ 4357 4358 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4359 { 4360 struct ata_taskfile tf; 4361 4362 /* set up set-features taskfile */ 4363 ata_dev_dbg(dev, "set features - xfer mode\n"); 4364 4365 /* Some controllers and ATAPI devices show flaky interrupt 4366 * behavior after setting xfer mode. Use polling instead. 4367 */ 4368 ata_tf_init(dev, &tf); 4369 tf.command = ATA_CMD_SET_FEATURES; 4370 tf.feature = SETFEATURES_XFER; 4371 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4372 tf.protocol = ATA_PROT_NODATA; 4373 /* If we are using IORDY we must send the mode setting command */ 4374 if (ata_pio_need_iordy(dev)) 4375 tf.nsect = dev->xfer_mode; 4376 /* If the device has IORDY and the controller does not - turn it off */ 4377 else if (ata_id_has_iordy(dev->id)) 4378 tf.nsect = 0x01; 4379 else /* In the ancient relic department - skip all of this */ 4380 return 0; 4381 4382 /* 4383 * On some disks, this command causes spin-up, so we need longer 4384 * timeout. 4385 */ 4386 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4387 } 4388 4389 /** 4390 * ata_dev_set_feature - Issue SET FEATURES 4391 * @dev: Device to which command will be sent 4392 * @subcmd: The SET FEATURES subcommand to be sent 4393 * @action: The sector count represents a subcommand specific action 4394 * 4395 * Issue SET FEATURES command to device @dev on port @ap with sector count 4396 * 4397 * LOCKING: 4398 * PCI/etc. bus probe sem. 4399 * 4400 * RETURNS: 4401 * 0 on success, AC_ERR_* mask otherwise. 4402 */ 4403 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4404 { 4405 struct ata_taskfile tf; 4406 unsigned int timeout = 0; 4407 4408 /* set up set-features taskfile */ 4409 ata_dev_dbg(dev, "set features\n"); 4410 4411 ata_tf_init(dev, &tf); 4412 tf.command = ATA_CMD_SET_FEATURES; 4413 tf.feature = subcmd; 4414 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4415 tf.protocol = ATA_PROT_NODATA; 4416 tf.nsect = action; 4417 4418 if (subcmd == SETFEATURES_SPINUP) 4419 timeout = ata_probe_timeout ? 4420 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4421 4422 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4423 } 4424 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4425 4426 /** 4427 * ata_dev_init_params - Issue INIT DEV PARAMS command 4428 * @dev: Device to which command will be sent 4429 * @heads: Number of heads (taskfile parameter) 4430 * @sectors: Number of sectors (taskfile parameter) 4431 * 4432 * LOCKING: 4433 * Kernel thread context (may sleep) 4434 * 4435 * RETURNS: 4436 * 0 on success, AC_ERR_* mask otherwise. 4437 */ 4438 static unsigned int ata_dev_init_params(struct ata_device *dev, 4439 u16 heads, u16 sectors) 4440 { 4441 struct ata_taskfile tf; 4442 unsigned int err_mask; 4443 4444 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4445 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4446 return AC_ERR_INVALID; 4447 4448 /* set up init dev params taskfile */ 4449 ata_dev_dbg(dev, "init dev params \n"); 4450 4451 ata_tf_init(dev, &tf); 4452 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4453 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4454 tf.protocol = ATA_PROT_NODATA; 4455 tf.nsect = sectors; 4456 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4457 4458 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4459 /* A clean abort indicates an original or just out of spec drive 4460 and we should continue as we issue the setup based on the 4461 drive reported working geometry */ 4462 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4463 err_mask = 0; 4464 4465 return err_mask; 4466 } 4467 4468 /** 4469 * atapi_check_dma - Check whether ATAPI DMA can be supported 4470 * @qc: Metadata associated with taskfile to check 4471 * 4472 * Allow low-level driver to filter ATA PACKET commands, returning 4473 * a status indicating whether or not it is OK to use DMA for the 4474 * supplied PACKET command. 4475 * 4476 * LOCKING: 4477 * spin_lock_irqsave(host lock) 4478 * 4479 * RETURNS: 0 when ATAPI DMA can be used 4480 * nonzero otherwise 4481 */ 4482 int atapi_check_dma(struct ata_queued_cmd *qc) 4483 { 4484 struct ata_port *ap = qc->ap; 4485 4486 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4487 * few ATAPI devices choke on such DMA requests. 4488 */ 4489 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4490 unlikely(qc->nbytes & 15)) 4491 return 1; 4492 4493 if (ap->ops->check_atapi_dma) 4494 return ap->ops->check_atapi_dma(qc); 4495 4496 return 0; 4497 } 4498 4499 /** 4500 * ata_std_qc_defer - Check whether a qc needs to be deferred 4501 * @qc: ATA command in question 4502 * 4503 * Non-NCQ commands cannot run with any other command, NCQ or 4504 * not. As upper layer only knows the queue depth, we are 4505 * responsible for maintaining exclusion. This function checks 4506 * whether a new command @qc can be issued. 4507 * 4508 * LOCKING: 4509 * spin_lock_irqsave(host lock) 4510 * 4511 * RETURNS: 4512 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4513 */ 4514 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4515 { 4516 struct ata_link *link = qc->dev->link; 4517 4518 if (ata_is_ncq(qc->tf.protocol)) { 4519 if (!ata_tag_valid(link->active_tag)) 4520 return 0; 4521 } else { 4522 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4523 return 0; 4524 } 4525 4526 return ATA_DEFER_LINK; 4527 } 4528 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4529 4530 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4531 { 4532 return AC_ERR_OK; 4533 } 4534 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4535 4536 /** 4537 * ata_sg_init - Associate command with scatter-gather table. 4538 * @qc: Command to be associated 4539 * @sg: Scatter-gather table. 4540 * @n_elem: Number of elements in s/g table. 4541 * 4542 * Initialize the data-related elements of queued_cmd @qc 4543 * to point to a scatter-gather table @sg, containing @n_elem 4544 * elements. 4545 * 4546 * LOCKING: 4547 * spin_lock_irqsave(host lock) 4548 */ 4549 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4550 unsigned int n_elem) 4551 { 4552 qc->sg = sg; 4553 qc->n_elem = n_elem; 4554 qc->cursg = qc->sg; 4555 } 4556 4557 #ifdef CONFIG_HAS_DMA 4558 4559 /** 4560 * ata_sg_clean - Unmap DMA memory associated with command 4561 * @qc: Command containing DMA memory to be released 4562 * 4563 * Unmap all mapped DMA memory associated with this command. 4564 * 4565 * LOCKING: 4566 * spin_lock_irqsave(host lock) 4567 */ 4568 static void ata_sg_clean(struct ata_queued_cmd *qc) 4569 { 4570 struct ata_port *ap = qc->ap; 4571 struct scatterlist *sg = qc->sg; 4572 int dir = qc->dma_dir; 4573 4574 WARN_ON_ONCE(sg == NULL); 4575 4576 if (qc->n_elem) 4577 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4578 4579 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4580 qc->sg = NULL; 4581 } 4582 4583 /** 4584 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4585 * @qc: Command with scatter-gather table to be mapped. 4586 * 4587 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4588 * 4589 * LOCKING: 4590 * spin_lock_irqsave(host lock) 4591 * 4592 * RETURNS: 4593 * Zero on success, negative on error. 4594 * 4595 */ 4596 static int ata_sg_setup(struct ata_queued_cmd *qc) 4597 { 4598 struct ata_port *ap = qc->ap; 4599 unsigned int n_elem; 4600 4601 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4602 if (n_elem < 1) 4603 return -1; 4604 4605 qc->orig_n_elem = qc->n_elem; 4606 qc->n_elem = n_elem; 4607 qc->flags |= ATA_QCFLAG_DMAMAP; 4608 4609 return 0; 4610 } 4611 4612 #else /* !CONFIG_HAS_DMA */ 4613 4614 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4615 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4616 4617 #endif /* !CONFIG_HAS_DMA */ 4618 4619 /** 4620 * swap_buf_le16 - swap halves of 16-bit words in place 4621 * @buf: Buffer to swap 4622 * @buf_words: Number of 16-bit words in buffer. 4623 * 4624 * Swap halves of 16-bit words if needed to convert from 4625 * little-endian byte order to native cpu byte order, or 4626 * vice-versa. 4627 * 4628 * LOCKING: 4629 * Inherited from caller. 4630 */ 4631 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4632 { 4633 #ifdef __BIG_ENDIAN 4634 unsigned int i; 4635 4636 for (i = 0; i < buf_words; i++) 4637 buf[i] = le16_to_cpu(buf[i]); 4638 #endif /* __BIG_ENDIAN */ 4639 } 4640 4641 /** 4642 * ata_qc_free - free unused ata_queued_cmd 4643 * @qc: Command to complete 4644 * 4645 * Designed to free unused ata_queued_cmd object 4646 * in case something prevents using it. 4647 * 4648 * LOCKING: 4649 * spin_lock_irqsave(host lock) 4650 */ 4651 void ata_qc_free(struct ata_queued_cmd *qc) 4652 { 4653 qc->flags = 0; 4654 if (ata_tag_valid(qc->tag)) 4655 qc->tag = ATA_TAG_POISON; 4656 } 4657 4658 void __ata_qc_complete(struct ata_queued_cmd *qc) 4659 { 4660 struct ata_port *ap; 4661 struct ata_link *link; 4662 4663 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4664 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4665 ap = qc->ap; 4666 link = qc->dev->link; 4667 4668 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4669 ata_sg_clean(qc); 4670 4671 /* command should be marked inactive atomically with qc completion */ 4672 if (ata_is_ncq(qc->tf.protocol)) { 4673 link->sactive &= ~(1 << qc->hw_tag); 4674 if (!link->sactive) 4675 ap->nr_active_links--; 4676 } else { 4677 link->active_tag = ATA_TAG_POISON; 4678 ap->nr_active_links--; 4679 } 4680 4681 /* clear exclusive status */ 4682 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4683 ap->excl_link == link)) 4684 ap->excl_link = NULL; 4685 4686 /* atapi: mark qc as inactive to prevent the interrupt handler 4687 * from completing the command twice later, before the error handler 4688 * is called. (when rc != 0 and atapi request sense is needed) 4689 */ 4690 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4691 ap->qc_active &= ~(1ULL << qc->tag); 4692 4693 /* call completion callback */ 4694 qc->complete_fn(qc); 4695 } 4696 4697 static void fill_result_tf(struct ata_queued_cmd *qc) 4698 { 4699 struct ata_port *ap = qc->ap; 4700 4701 qc->result_tf.flags = qc->tf.flags; 4702 ap->ops->qc_fill_rtf(qc); 4703 } 4704 4705 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4706 { 4707 struct ata_device *dev = qc->dev; 4708 4709 if (!ata_is_data(qc->tf.protocol)) 4710 return; 4711 4712 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4713 return; 4714 4715 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4716 } 4717 4718 /** 4719 * ata_qc_complete - Complete an active ATA command 4720 * @qc: Command to complete 4721 * 4722 * Indicate to the mid and upper layers that an ATA command has 4723 * completed, with either an ok or not-ok status. 4724 * 4725 * Refrain from calling this function multiple times when 4726 * successfully completing multiple NCQ commands. 4727 * ata_qc_complete_multiple() should be used instead, which will 4728 * properly update IRQ expect state. 4729 * 4730 * LOCKING: 4731 * spin_lock_irqsave(host lock) 4732 */ 4733 void ata_qc_complete(struct ata_queued_cmd *qc) 4734 { 4735 struct ata_port *ap = qc->ap; 4736 struct ata_device *dev = qc->dev; 4737 struct ata_eh_info *ehi = &dev->link->eh_info; 4738 4739 /* Trigger the LED (if available) */ 4740 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4741 4742 /* 4743 * In order to synchronize EH with the regular execution path, a qc that 4744 * is owned by EH is marked with ATA_QCFLAG_EH. 4745 * 4746 * The normal execution path is responsible for not accessing a qc owned 4747 * by EH. libata core enforces the rule by returning NULL from 4748 * ata_qc_from_tag() for qcs owned by EH. 4749 */ 4750 if (unlikely(qc->err_mask)) 4751 qc->flags |= ATA_QCFLAG_EH; 4752 4753 /* 4754 * Finish internal commands without any further processing and always 4755 * with the result TF filled. 4756 */ 4757 if (unlikely(ata_tag_internal(qc->tag))) { 4758 fill_result_tf(qc); 4759 trace_ata_qc_complete_internal(qc); 4760 __ata_qc_complete(qc); 4761 return; 4762 } 4763 4764 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4765 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4766 fill_result_tf(qc); 4767 trace_ata_qc_complete_failed(qc); 4768 ata_qc_schedule_eh(qc); 4769 return; 4770 } 4771 4772 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4773 4774 /* read result TF if requested */ 4775 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4776 fill_result_tf(qc); 4777 4778 trace_ata_qc_complete_done(qc); 4779 4780 /* 4781 * For CDL commands that completed without an error, check if we have 4782 * sense data (ATA_SENSE is set). If we do, then the command may have 4783 * been aborted by the device due to a limit timeout using the policy 4784 * 0xD. For these commands, invoke EH to get the command sense data. 4785 */ 4786 if (qc->result_tf.status & ATA_SENSE && 4787 ((ata_is_ncq(qc->tf.protocol) && 4788 dev->flags & ATA_DFLAG_CDL_ENABLED) || 4789 (!ata_is_ncq(qc->tf.protocol) && 4790 ata_id_sense_reporting_enabled(dev->id)))) { 4791 /* 4792 * Tell SCSI EH to not overwrite scmd->result even if this 4793 * command is finished with result SAM_STAT_GOOD. 4794 */ 4795 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4796 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4797 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4798 4799 /* 4800 * set pending so that ata_qc_schedule_eh() does not trigger 4801 * fast drain, and freeze the port. 4802 */ 4803 ap->pflags |= ATA_PFLAG_EH_PENDING; 4804 ata_qc_schedule_eh(qc); 4805 return; 4806 } 4807 4808 /* Some commands need post-processing after successful completion. */ 4809 switch (qc->tf.command) { 4810 case ATA_CMD_SET_FEATURES: 4811 if (qc->tf.feature != SETFEATURES_WC_ON && 4812 qc->tf.feature != SETFEATURES_WC_OFF && 4813 qc->tf.feature != SETFEATURES_RA_ON && 4814 qc->tf.feature != SETFEATURES_RA_OFF) 4815 break; 4816 fallthrough; 4817 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4818 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4819 /* revalidate device */ 4820 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4821 ata_port_schedule_eh(ap); 4822 break; 4823 4824 case ATA_CMD_SLEEP: 4825 dev->flags |= ATA_DFLAG_SLEEPING; 4826 break; 4827 } 4828 4829 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4830 ata_verify_xfer(qc); 4831 4832 __ata_qc_complete(qc); 4833 } 4834 EXPORT_SYMBOL_GPL(ata_qc_complete); 4835 4836 /** 4837 * ata_qc_get_active - get bitmask of active qcs 4838 * @ap: port in question 4839 * 4840 * LOCKING: 4841 * spin_lock_irqsave(host lock) 4842 * 4843 * RETURNS: 4844 * Bitmask of active qcs 4845 */ 4846 u64 ata_qc_get_active(struct ata_port *ap) 4847 { 4848 u64 qc_active = ap->qc_active; 4849 4850 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4851 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4852 qc_active |= (1 << 0); 4853 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4854 } 4855 4856 return qc_active; 4857 } 4858 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4859 4860 /** 4861 * ata_qc_issue - issue taskfile to device 4862 * @qc: command to issue to device 4863 * 4864 * Prepare an ATA command to submission to device. 4865 * This includes mapping the data into a DMA-able 4866 * area, filling in the S/G table, and finally 4867 * writing the taskfile to hardware, starting the command. 4868 * 4869 * LOCKING: 4870 * spin_lock_irqsave(host lock) 4871 */ 4872 void ata_qc_issue(struct ata_queued_cmd *qc) 4873 { 4874 struct ata_port *ap = qc->ap; 4875 struct ata_link *link = qc->dev->link; 4876 u8 prot = qc->tf.protocol; 4877 4878 /* Make sure only one non-NCQ command is outstanding. */ 4879 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4880 4881 if (ata_is_ncq(prot)) { 4882 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4883 4884 if (!link->sactive) 4885 ap->nr_active_links++; 4886 link->sactive |= 1 << qc->hw_tag; 4887 } else { 4888 WARN_ON_ONCE(link->sactive); 4889 4890 ap->nr_active_links++; 4891 link->active_tag = qc->tag; 4892 } 4893 4894 qc->flags |= ATA_QCFLAG_ACTIVE; 4895 ap->qc_active |= 1ULL << qc->tag; 4896 4897 /* 4898 * We guarantee to LLDs that they will have at least one 4899 * non-zero sg if the command is a data command. 4900 */ 4901 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4902 goto sys_err; 4903 4904 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4905 (ap->flags & ATA_FLAG_PIO_DMA))) 4906 if (ata_sg_setup(qc)) 4907 goto sys_err; 4908 4909 /* if device is sleeping, schedule reset and abort the link */ 4910 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4911 link->eh_info.action |= ATA_EH_RESET; 4912 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4913 ata_link_abort(link); 4914 return; 4915 } 4916 4917 trace_ata_qc_prep(qc); 4918 qc->err_mask |= ap->ops->qc_prep(qc); 4919 if (unlikely(qc->err_mask)) 4920 goto err; 4921 trace_ata_qc_issue(qc); 4922 qc->err_mask |= ap->ops->qc_issue(qc); 4923 if (unlikely(qc->err_mask)) 4924 goto err; 4925 return; 4926 4927 sys_err: 4928 qc->err_mask |= AC_ERR_SYSTEM; 4929 err: 4930 ata_qc_complete(qc); 4931 } 4932 4933 /** 4934 * ata_phys_link_online - test whether the given link is online 4935 * @link: ATA link to test 4936 * 4937 * Test whether @link is online. Note that this function returns 4938 * 0 if online status of @link cannot be obtained, so 4939 * ata_link_online(link) != !ata_link_offline(link). 4940 * 4941 * LOCKING: 4942 * None. 4943 * 4944 * RETURNS: 4945 * True if the port online status is available and online. 4946 */ 4947 bool ata_phys_link_online(struct ata_link *link) 4948 { 4949 u32 sstatus; 4950 4951 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4952 ata_sstatus_online(sstatus)) 4953 return true; 4954 return false; 4955 } 4956 4957 /** 4958 * ata_phys_link_offline - test whether the given link is offline 4959 * @link: ATA link to test 4960 * 4961 * Test whether @link is offline. Note that this function 4962 * returns 0 if offline status of @link cannot be obtained, so 4963 * ata_link_online(link) != !ata_link_offline(link). 4964 * 4965 * LOCKING: 4966 * None. 4967 * 4968 * RETURNS: 4969 * True if the port offline status is available and offline. 4970 */ 4971 bool ata_phys_link_offline(struct ata_link *link) 4972 { 4973 u32 sstatus; 4974 4975 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4976 !ata_sstatus_online(sstatus)) 4977 return true; 4978 return false; 4979 } 4980 4981 /** 4982 * ata_link_online - test whether the given link is online 4983 * @link: ATA link to test 4984 * 4985 * Test whether @link is online. This is identical to 4986 * ata_phys_link_online() when there's no slave link. When 4987 * there's a slave link, this function should only be called on 4988 * the master link and will return true if any of M/S links is 4989 * online. 4990 * 4991 * LOCKING: 4992 * None. 4993 * 4994 * RETURNS: 4995 * True if the port online status is available and online. 4996 */ 4997 bool ata_link_online(struct ata_link *link) 4998 { 4999 struct ata_link *slave = link->ap->slave_link; 5000 5001 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5002 5003 return ata_phys_link_online(link) || 5004 (slave && ata_phys_link_online(slave)); 5005 } 5006 EXPORT_SYMBOL_GPL(ata_link_online); 5007 5008 /** 5009 * ata_link_offline - test whether the given link is offline 5010 * @link: ATA link to test 5011 * 5012 * Test whether @link is offline. This is identical to 5013 * ata_phys_link_offline() when there's no slave link. When 5014 * there's a slave link, this function should only be called on 5015 * the master link and will return true if both M/S links are 5016 * offline. 5017 * 5018 * LOCKING: 5019 * None. 5020 * 5021 * RETURNS: 5022 * True if the port offline status is available and offline. 5023 */ 5024 bool ata_link_offline(struct ata_link *link) 5025 { 5026 struct ata_link *slave = link->ap->slave_link; 5027 5028 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5029 5030 return ata_phys_link_offline(link) && 5031 (!slave || ata_phys_link_offline(slave)); 5032 } 5033 EXPORT_SYMBOL_GPL(ata_link_offline); 5034 5035 #ifdef CONFIG_PM 5036 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5037 unsigned int action, unsigned int ehi_flags, 5038 bool async) 5039 { 5040 struct ata_link *link; 5041 unsigned long flags; 5042 5043 /* Previous resume operation might still be in 5044 * progress. Wait for PM_PENDING to clear. 5045 */ 5046 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5047 ata_port_wait_eh(ap); 5048 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5049 } 5050 5051 /* request PM ops to EH */ 5052 spin_lock_irqsave(ap->lock, flags); 5053 5054 ap->pm_mesg = mesg; 5055 ap->pflags |= ATA_PFLAG_PM_PENDING; 5056 ata_for_each_link(link, ap, HOST_FIRST) { 5057 link->eh_info.action |= action; 5058 link->eh_info.flags |= ehi_flags; 5059 } 5060 5061 ata_port_schedule_eh(ap); 5062 5063 spin_unlock_irqrestore(ap->lock, flags); 5064 5065 if (!async) { 5066 ata_port_wait_eh(ap); 5067 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5068 } 5069 } 5070 5071 /* 5072 * On some hardware, device fails to respond after spun down for suspend. As 5073 * the device won't be used before being resumed, we don't need to touch the 5074 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5075 * 5076 * http://thread.gmane.org/gmane.linux.ide/46764 5077 */ 5078 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5079 | ATA_EHI_NO_AUTOPSY 5080 | ATA_EHI_NO_RECOVERY; 5081 5082 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5083 { 5084 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5085 } 5086 5087 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5088 { 5089 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5090 } 5091 5092 static int ata_port_pm_suspend(struct device *dev) 5093 { 5094 struct ata_port *ap = to_ata_port(dev); 5095 5096 if (pm_runtime_suspended(dev)) 5097 return 0; 5098 5099 ata_port_suspend(ap, PMSG_SUSPEND); 5100 return 0; 5101 } 5102 5103 static int ata_port_pm_freeze(struct device *dev) 5104 { 5105 struct ata_port *ap = to_ata_port(dev); 5106 5107 if (pm_runtime_suspended(dev)) 5108 return 0; 5109 5110 ata_port_suspend(ap, PMSG_FREEZE); 5111 return 0; 5112 } 5113 5114 static int ata_port_pm_poweroff(struct device *dev) 5115 { 5116 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5117 return 0; 5118 } 5119 5120 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5121 | ATA_EHI_QUIET; 5122 5123 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5124 { 5125 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5126 } 5127 5128 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5129 { 5130 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5131 } 5132 5133 static int ata_port_pm_resume(struct device *dev) 5134 { 5135 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5136 pm_runtime_disable(dev); 5137 pm_runtime_set_active(dev); 5138 pm_runtime_enable(dev); 5139 return 0; 5140 } 5141 5142 /* 5143 * For ODDs, the upper layer will poll for media change every few seconds, 5144 * which will make it enter and leave suspend state every few seconds. And 5145 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5146 * is very little and the ODD may malfunction after constantly being reset. 5147 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5148 * ODD is attached to the port. 5149 */ 5150 static int ata_port_runtime_idle(struct device *dev) 5151 { 5152 struct ata_port *ap = to_ata_port(dev); 5153 struct ata_link *link; 5154 struct ata_device *adev; 5155 5156 ata_for_each_link(link, ap, HOST_FIRST) { 5157 ata_for_each_dev(adev, link, ENABLED) 5158 if (adev->class == ATA_DEV_ATAPI && 5159 !zpodd_dev_enabled(adev)) 5160 return -EBUSY; 5161 } 5162 5163 return 0; 5164 } 5165 5166 static int ata_port_runtime_suspend(struct device *dev) 5167 { 5168 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5169 return 0; 5170 } 5171 5172 static int ata_port_runtime_resume(struct device *dev) 5173 { 5174 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5175 return 0; 5176 } 5177 5178 static const struct dev_pm_ops ata_port_pm_ops = { 5179 .suspend = ata_port_pm_suspend, 5180 .resume = ata_port_pm_resume, 5181 .freeze = ata_port_pm_freeze, 5182 .thaw = ata_port_pm_resume, 5183 .poweroff = ata_port_pm_poweroff, 5184 .restore = ata_port_pm_resume, 5185 5186 .runtime_suspend = ata_port_runtime_suspend, 5187 .runtime_resume = ata_port_runtime_resume, 5188 .runtime_idle = ata_port_runtime_idle, 5189 }; 5190 5191 /* sas ports don't participate in pm runtime management of ata_ports, 5192 * and need to resume ata devices at the domain level, not the per-port 5193 * level. sas suspend/resume is async to allow parallel port recovery 5194 * since sas has multiple ata_port instances per Scsi_Host. 5195 */ 5196 void ata_sas_port_suspend(struct ata_port *ap) 5197 { 5198 ata_port_suspend_async(ap, PMSG_SUSPEND); 5199 } 5200 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5201 5202 void ata_sas_port_resume(struct ata_port *ap) 5203 { 5204 ata_port_resume_async(ap, PMSG_RESUME); 5205 } 5206 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5207 5208 /** 5209 * ata_host_suspend - suspend host 5210 * @host: host to suspend 5211 * @mesg: PM message 5212 * 5213 * Suspend @host. Actual operation is performed by port suspend. 5214 */ 5215 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5216 { 5217 host->dev->power.power_state = mesg; 5218 } 5219 EXPORT_SYMBOL_GPL(ata_host_suspend); 5220 5221 /** 5222 * ata_host_resume - resume host 5223 * @host: host to resume 5224 * 5225 * Resume @host. Actual operation is performed by port resume. 5226 */ 5227 void ata_host_resume(struct ata_host *host) 5228 { 5229 host->dev->power.power_state = PMSG_ON; 5230 } 5231 EXPORT_SYMBOL_GPL(ata_host_resume); 5232 #endif 5233 5234 const struct device_type ata_port_type = { 5235 .name = "ata_port", 5236 #ifdef CONFIG_PM 5237 .pm = &ata_port_pm_ops, 5238 #endif 5239 }; 5240 5241 /** 5242 * ata_dev_init - Initialize an ata_device structure 5243 * @dev: Device structure to initialize 5244 * 5245 * Initialize @dev in preparation for probing. 5246 * 5247 * LOCKING: 5248 * Inherited from caller. 5249 */ 5250 void ata_dev_init(struct ata_device *dev) 5251 { 5252 struct ata_link *link = ata_dev_phys_link(dev); 5253 struct ata_port *ap = link->ap; 5254 unsigned long flags; 5255 5256 /* SATA spd limit is bound to the attached device, reset together */ 5257 link->sata_spd_limit = link->hw_sata_spd_limit; 5258 link->sata_spd = 0; 5259 5260 /* High bits of dev->flags are used to record warm plug 5261 * requests which occur asynchronously. Synchronize using 5262 * host lock. 5263 */ 5264 spin_lock_irqsave(ap->lock, flags); 5265 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5266 dev->horkage = 0; 5267 spin_unlock_irqrestore(ap->lock, flags); 5268 5269 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5270 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5271 dev->pio_mask = UINT_MAX; 5272 dev->mwdma_mask = UINT_MAX; 5273 dev->udma_mask = UINT_MAX; 5274 } 5275 5276 /** 5277 * ata_link_init - Initialize an ata_link structure 5278 * @ap: ATA port link is attached to 5279 * @link: Link structure to initialize 5280 * @pmp: Port multiplier port number 5281 * 5282 * Initialize @link. 5283 * 5284 * LOCKING: 5285 * Kernel thread context (may sleep) 5286 */ 5287 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5288 { 5289 int i; 5290 5291 /* clear everything except for devices */ 5292 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5293 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5294 5295 link->ap = ap; 5296 link->pmp = pmp; 5297 link->active_tag = ATA_TAG_POISON; 5298 link->hw_sata_spd_limit = UINT_MAX; 5299 5300 /* can't use iterator, ap isn't initialized yet */ 5301 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5302 struct ata_device *dev = &link->device[i]; 5303 5304 dev->link = link; 5305 dev->devno = dev - link->device; 5306 #ifdef CONFIG_ATA_ACPI 5307 dev->gtf_filter = ata_acpi_gtf_filter; 5308 #endif 5309 ata_dev_init(dev); 5310 } 5311 } 5312 5313 /** 5314 * sata_link_init_spd - Initialize link->sata_spd_limit 5315 * @link: Link to configure sata_spd_limit for 5316 * 5317 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5318 * configured value. 5319 * 5320 * LOCKING: 5321 * Kernel thread context (may sleep). 5322 * 5323 * RETURNS: 5324 * 0 on success, -errno on failure. 5325 */ 5326 int sata_link_init_spd(struct ata_link *link) 5327 { 5328 u8 spd; 5329 int rc; 5330 5331 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5332 if (rc) 5333 return rc; 5334 5335 spd = (link->saved_scontrol >> 4) & 0xf; 5336 if (spd) 5337 link->hw_sata_spd_limit &= (1 << spd) - 1; 5338 5339 ata_force_link_limits(link); 5340 5341 link->sata_spd_limit = link->hw_sata_spd_limit; 5342 5343 return 0; 5344 } 5345 5346 /** 5347 * ata_port_alloc - allocate and initialize basic ATA port resources 5348 * @host: ATA host this allocated port belongs to 5349 * 5350 * Allocate and initialize basic ATA port resources. 5351 * 5352 * RETURNS: 5353 * Allocate ATA port on success, NULL on failure. 5354 * 5355 * LOCKING: 5356 * Inherited from calling layer (may sleep). 5357 */ 5358 struct ata_port *ata_port_alloc(struct ata_host *host) 5359 { 5360 struct ata_port *ap; 5361 5362 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5363 if (!ap) 5364 return NULL; 5365 5366 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5367 ap->lock = &host->lock; 5368 ap->print_id = -1; 5369 ap->local_port_no = -1; 5370 ap->host = host; 5371 ap->dev = host->dev; 5372 5373 mutex_init(&ap->scsi_scan_mutex); 5374 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5375 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5376 INIT_LIST_HEAD(&ap->eh_done_q); 5377 init_waitqueue_head(&ap->eh_wait_q); 5378 init_completion(&ap->park_req_pending); 5379 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5380 TIMER_DEFERRABLE); 5381 5382 ap->cbl = ATA_CBL_NONE; 5383 5384 ata_link_init(ap, &ap->link, 0); 5385 5386 #ifdef ATA_IRQ_TRAP 5387 ap->stats.unhandled_irq = 1; 5388 ap->stats.idle_irq = 1; 5389 #endif 5390 ata_sff_port_init(ap); 5391 5392 return ap; 5393 } 5394 5395 static void ata_devres_release(struct device *gendev, void *res) 5396 { 5397 struct ata_host *host = dev_get_drvdata(gendev); 5398 int i; 5399 5400 for (i = 0; i < host->n_ports; i++) { 5401 struct ata_port *ap = host->ports[i]; 5402 5403 if (!ap) 5404 continue; 5405 5406 if (ap->scsi_host) 5407 scsi_host_put(ap->scsi_host); 5408 5409 } 5410 5411 dev_set_drvdata(gendev, NULL); 5412 ata_host_put(host); 5413 } 5414 5415 static void ata_host_release(struct kref *kref) 5416 { 5417 struct ata_host *host = container_of(kref, struct ata_host, kref); 5418 int i; 5419 5420 for (i = 0; i < host->n_ports; i++) { 5421 struct ata_port *ap = host->ports[i]; 5422 5423 kfree(ap->pmp_link); 5424 kfree(ap->slave_link); 5425 kfree(ap->ncq_sense_buf); 5426 kfree(ap); 5427 host->ports[i] = NULL; 5428 } 5429 kfree(host); 5430 } 5431 5432 void ata_host_get(struct ata_host *host) 5433 { 5434 kref_get(&host->kref); 5435 } 5436 5437 void ata_host_put(struct ata_host *host) 5438 { 5439 kref_put(&host->kref, ata_host_release); 5440 } 5441 EXPORT_SYMBOL_GPL(ata_host_put); 5442 5443 /** 5444 * ata_host_alloc - allocate and init basic ATA host resources 5445 * @dev: generic device this host is associated with 5446 * @max_ports: maximum number of ATA ports associated with this host 5447 * 5448 * Allocate and initialize basic ATA host resources. LLD calls 5449 * this function to allocate a host, initializes it fully and 5450 * attaches it using ata_host_register(). 5451 * 5452 * @max_ports ports are allocated and host->n_ports is 5453 * initialized to @max_ports. The caller is allowed to decrease 5454 * host->n_ports before calling ata_host_register(). The unused 5455 * ports will be automatically freed on registration. 5456 * 5457 * RETURNS: 5458 * Allocate ATA host on success, NULL on failure. 5459 * 5460 * LOCKING: 5461 * Inherited from calling layer (may sleep). 5462 */ 5463 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5464 { 5465 struct ata_host *host; 5466 size_t sz; 5467 int i; 5468 void *dr; 5469 5470 /* alloc a container for our list of ATA ports (buses) */ 5471 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5472 host = kzalloc(sz, GFP_KERNEL); 5473 if (!host) 5474 return NULL; 5475 5476 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5477 goto err_free; 5478 5479 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5480 if (!dr) 5481 goto err_out; 5482 5483 devres_add(dev, dr); 5484 dev_set_drvdata(dev, host); 5485 5486 spin_lock_init(&host->lock); 5487 mutex_init(&host->eh_mutex); 5488 host->dev = dev; 5489 host->n_ports = max_ports; 5490 kref_init(&host->kref); 5491 5492 /* allocate ports bound to this host */ 5493 for (i = 0; i < max_ports; i++) { 5494 struct ata_port *ap; 5495 5496 ap = ata_port_alloc(host); 5497 if (!ap) 5498 goto err_out; 5499 5500 ap->port_no = i; 5501 host->ports[i] = ap; 5502 } 5503 5504 devres_remove_group(dev, NULL); 5505 return host; 5506 5507 err_out: 5508 devres_release_group(dev, NULL); 5509 err_free: 5510 kfree(host); 5511 return NULL; 5512 } 5513 EXPORT_SYMBOL_GPL(ata_host_alloc); 5514 5515 /** 5516 * ata_host_alloc_pinfo - alloc host and init with port_info array 5517 * @dev: generic device this host is associated with 5518 * @ppi: array of ATA port_info to initialize host with 5519 * @n_ports: number of ATA ports attached to this host 5520 * 5521 * Allocate ATA host and initialize with info from @ppi. If NULL 5522 * terminated, @ppi may contain fewer entries than @n_ports. The 5523 * last entry will be used for the remaining ports. 5524 * 5525 * RETURNS: 5526 * Allocate ATA host on success, NULL on failure. 5527 * 5528 * LOCKING: 5529 * Inherited from calling layer (may sleep). 5530 */ 5531 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5532 const struct ata_port_info * const * ppi, 5533 int n_ports) 5534 { 5535 const struct ata_port_info *pi = &ata_dummy_port_info; 5536 struct ata_host *host; 5537 int i, j; 5538 5539 host = ata_host_alloc(dev, n_ports); 5540 if (!host) 5541 return NULL; 5542 5543 for (i = 0, j = 0; i < host->n_ports; i++) { 5544 struct ata_port *ap = host->ports[i]; 5545 5546 if (ppi[j]) 5547 pi = ppi[j++]; 5548 5549 ap->pio_mask = pi->pio_mask; 5550 ap->mwdma_mask = pi->mwdma_mask; 5551 ap->udma_mask = pi->udma_mask; 5552 ap->flags |= pi->flags; 5553 ap->link.flags |= pi->link_flags; 5554 ap->ops = pi->port_ops; 5555 5556 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5557 host->ops = pi->port_ops; 5558 } 5559 5560 return host; 5561 } 5562 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5563 5564 static void ata_host_stop(struct device *gendev, void *res) 5565 { 5566 struct ata_host *host = dev_get_drvdata(gendev); 5567 int i; 5568 5569 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5570 5571 for (i = 0; i < host->n_ports; i++) { 5572 struct ata_port *ap = host->ports[i]; 5573 5574 if (ap->ops->port_stop) 5575 ap->ops->port_stop(ap); 5576 } 5577 5578 if (host->ops->host_stop) 5579 host->ops->host_stop(host); 5580 } 5581 5582 /** 5583 * ata_finalize_port_ops - finalize ata_port_operations 5584 * @ops: ata_port_operations to finalize 5585 * 5586 * An ata_port_operations can inherit from another ops and that 5587 * ops can again inherit from another. This can go on as many 5588 * times as necessary as long as there is no loop in the 5589 * inheritance chain. 5590 * 5591 * Ops tables are finalized when the host is started. NULL or 5592 * unspecified entries are inherited from the closet ancestor 5593 * which has the method and the entry is populated with it. 5594 * After finalization, the ops table directly points to all the 5595 * methods and ->inherits is no longer necessary and cleared. 5596 * 5597 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5598 * 5599 * LOCKING: 5600 * None. 5601 */ 5602 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5603 { 5604 static DEFINE_SPINLOCK(lock); 5605 const struct ata_port_operations *cur; 5606 void **begin = (void **)ops; 5607 void **end = (void **)&ops->inherits; 5608 void **pp; 5609 5610 if (!ops || !ops->inherits) 5611 return; 5612 5613 spin_lock(&lock); 5614 5615 for (cur = ops->inherits; cur; cur = cur->inherits) { 5616 void **inherit = (void **)cur; 5617 5618 for (pp = begin; pp < end; pp++, inherit++) 5619 if (!*pp) 5620 *pp = *inherit; 5621 } 5622 5623 for (pp = begin; pp < end; pp++) 5624 if (IS_ERR(*pp)) 5625 *pp = NULL; 5626 5627 ops->inherits = NULL; 5628 5629 spin_unlock(&lock); 5630 } 5631 5632 /** 5633 * ata_host_start - start and freeze ports of an ATA host 5634 * @host: ATA host to start ports for 5635 * 5636 * Start and then freeze ports of @host. Started status is 5637 * recorded in host->flags, so this function can be called 5638 * multiple times. Ports are guaranteed to get started only 5639 * once. If host->ops is not initialized yet, it is set to the 5640 * first non-dummy port ops. 5641 * 5642 * LOCKING: 5643 * Inherited from calling layer (may sleep). 5644 * 5645 * RETURNS: 5646 * 0 if all ports are started successfully, -errno otherwise. 5647 */ 5648 int ata_host_start(struct ata_host *host) 5649 { 5650 int have_stop = 0; 5651 void *start_dr = NULL; 5652 int i, rc; 5653 5654 if (host->flags & ATA_HOST_STARTED) 5655 return 0; 5656 5657 ata_finalize_port_ops(host->ops); 5658 5659 for (i = 0; i < host->n_ports; i++) { 5660 struct ata_port *ap = host->ports[i]; 5661 5662 ata_finalize_port_ops(ap->ops); 5663 5664 if (!host->ops && !ata_port_is_dummy(ap)) 5665 host->ops = ap->ops; 5666 5667 if (ap->ops->port_stop) 5668 have_stop = 1; 5669 } 5670 5671 if (host->ops && host->ops->host_stop) 5672 have_stop = 1; 5673 5674 if (have_stop) { 5675 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5676 if (!start_dr) 5677 return -ENOMEM; 5678 } 5679 5680 for (i = 0; i < host->n_ports; i++) { 5681 struct ata_port *ap = host->ports[i]; 5682 5683 if (ap->ops->port_start) { 5684 rc = ap->ops->port_start(ap); 5685 if (rc) { 5686 if (rc != -ENODEV) 5687 dev_err(host->dev, 5688 "failed to start port %d (errno=%d)\n", 5689 i, rc); 5690 goto err_out; 5691 } 5692 } 5693 ata_eh_freeze_port(ap); 5694 } 5695 5696 if (start_dr) 5697 devres_add(host->dev, start_dr); 5698 host->flags |= ATA_HOST_STARTED; 5699 return 0; 5700 5701 err_out: 5702 while (--i >= 0) { 5703 struct ata_port *ap = host->ports[i]; 5704 5705 if (ap->ops->port_stop) 5706 ap->ops->port_stop(ap); 5707 } 5708 devres_free(start_dr); 5709 return rc; 5710 } 5711 EXPORT_SYMBOL_GPL(ata_host_start); 5712 5713 /** 5714 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5715 * @host: host to initialize 5716 * @dev: device host is attached to 5717 * @ops: port_ops 5718 * 5719 */ 5720 void ata_host_init(struct ata_host *host, struct device *dev, 5721 struct ata_port_operations *ops) 5722 { 5723 spin_lock_init(&host->lock); 5724 mutex_init(&host->eh_mutex); 5725 host->n_tags = ATA_MAX_QUEUE; 5726 host->dev = dev; 5727 host->ops = ops; 5728 kref_init(&host->kref); 5729 } 5730 EXPORT_SYMBOL_GPL(ata_host_init); 5731 5732 void ata_port_probe(struct ata_port *ap) 5733 { 5734 struct ata_eh_info *ehi = &ap->link.eh_info; 5735 unsigned long flags; 5736 5737 /* kick EH for boot probing */ 5738 spin_lock_irqsave(ap->lock, flags); 5739 5740 ehi->probe_mask |= ATA_ALL_DEVICES; 5741 ehi->action |= ATA_EH_RESET; 5742 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5743 5744 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5745 ap->pflags |= ATA_PFLAG_LOADING; 5746 ata_port_schedule_eh(ap); 5747 5748 spin_unlock_irqrestore(ap->lock, flags); 5749 } 5750 EXPORT_SYMBOL_GPL(ata_port_probe); 5751 5752 static void async_port_probe(void *data, async_cookie_t cookie) 5753 { 5754 struct ata_port *ap = data; 5755 5756 /* 5757 * If we're not allowed to scan this host in parallel, 5758 * we need to wait until all previous scans have completed 5759 * before going further. 5760 * Jeff Garzik says this is only within a controller, so we 5761 * don't need to wait for port 0, only for later ports. 5762 */ 5763 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5764 async_synchronize_cookie(cookie); 5765 5766 ata_port_probe(ap); 5767 ata_port_wait_eh(ap); 5768 5769 /* in order to keep device order, we need to synchronize at this point */ 5770 async_synchronize_cookie(cookie); 5771 5772 ata_scsi_scan_host(ap, 1); 5773 } 5774 5775 /** 5776 * ata_host_register - register initialized ATA host 5777 * @host: ATA host to register 5778 * @sht: template for SCSI host 5779 * 5780 * Register initialized ATA host. @host is allocated using 5781 * ata_host_alloc() and fully initialized by LLD. This function 5782 * starts ports, registers @host with ATA and SCSI layers and 5783 * probe registered devices. 5784 * 5785 * LOCKING: 5786 * Inherited from calling layer (may sleep). 5787 * 5788 * RETURNS: 5789 * 0 on success, -errno otherwise. 5790 */ 5791 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5792 { 5793 int i, rc; 5794 5795 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5796 5797 /* host must have been started */ 5798 if (!(host->flags & ATA_HOST_STARTED)) { 5799 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5800 WARN_ON(1); 5801 return -EINVAL; 5802 } 5803 5804 /* Blow away unused ports. This happens when LLD can't 5805 * determine the exact number of ports to allocate at 5806 * allocation time. 5807 */ 5808 for (i = host->n_ports; host->ports[i]; i++) 5809 kfree(host->ports[i]); 5810 5811 /* give ports names and add SCSI hosts */ 5812 for (i = 0; i < host->n_ports; i++) { 5813 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5814 host->ports[i]->local_port_no = i + 1; 5815 } 5816 5817 /* Create associated sysfs transport objects */ 5818 for (i = 0; i < host->n_ports; i++) { 5819 rc = ata_tport_add(host->dev,host->ports[i]); 5820 if (rc) { 5821 goto err_tadd; 5822 } 5823 } 5824 5825 rc = ata_scsi_add_hosts(host, sht); 5826 if (rc) 5827 goto err_tadd; 5828 5829 /* set cable, sata_spd_limit and report */ 5830 for (i = 0; i < host->n_ports; i++) { 5831 struct ata_port *ap = host->ports[i]; 5832 unsigned int xfer_mask; 5833 5834 /* set SATA cable type if still unset */ 5835 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5836 ap->cbl = ATA_CBL_SATA; 5837 5838 /* init sata_spd_limit to the current value */ 5839 sata_link_init_spd(&ap->link); 5840 if (ap->slave_link) 5841 sata_link_init_spd(ap->slave_link); 5842 5843 /* print per-port info to dmesg */ 5844 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5845 ap->udma_mask); 5846 5847 if (!ata_port_is_dummy(ap)) { 5848 ata_port_info(ap, "%cATA max %s %s\n", 5849 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5850 ata_mode_string(xfer_mask), 5851 ap->link.eh_info.desc); 5852 ata_ehi_clear_desc(&ap->link.eh_info); 5853 } else 5854 ata_port_info(ap, "DUMMY\n"); 5855 } 5856 5857 /* perform each probe asynchronously */ 5858 for (i = 0; i < host->n_ports; i++) { 5859 struct ata_port *ap = host->ports[i]; 5860 ap->cookie = async_schedule(async_port_probe, ap); 5861 } 5862 5863 return 0; 5864 5865 err_tadd: 5866 while (--i >= 0) { 5867 ata_tport_delete(host->ports[i]); 5868 } 5869 return rc; 5870 5871 } 5872 EXPORT_SYMBOL_GPL(ata_host_register); 5873 5874 /** 5875 * ata_host_activate - start host, request IRQ and register it 5876 * @host: target ATA host 5877 * @irq: IRQ to request 5878 * @irq_handler: irq_handler used when requesting IRQ 5879 * @irq_flags: irq_flags used when requesting IRQ 5880 * @sht: scsi_host_template to use when registering the host 5881 * 5882 * After allocating an ATA host and initializing it, most libata 5883 * LLDs perform three steps to activate the host - start host, 5884 * request IRQ and register it. This helper takes necessary 5885 * arguments and performs the three steps in one go. 5886 * 5887 * An invalid IRQ skips the IRQ registration and expects the host to 5888 * have set polling mode on the port. In this case, @irq_handler 5889 * should be NULL. 5890 * 5891 * LOCKING: 5892 * Inherited from calling layer (may sleep). 5893 * 5894 * RETURNS: 5895 * 0 on success, -errno otherwise. 5896 */ 5897 int ata_host_activate(struct ata_host *host, int irq, 5898 irq_handler_t irq_handler, unsigned long irq_flags, 5899 const struct scsi_host_template *sht) 5900 { 5901 int i, rc; 5902 char *irq_desc; 5903 5904 rc = ata_host_start(host); 5905 if (rc) 5906 return rc; 5907 5908 /* Special case for polling mode */ 5909 if (!irq) { 5910 WARN_ON(irq_handler); 5911 return ata_host_register(host, sht); 5912 } 5913 5914 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5915 dev_driver_string(host->dev), 5916 dev_name(host->dev)); 5917 if (!irq_desc) 5918 return -ENOMEM; 5919 5920 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5921 irq_desc, host); 5922 if (rc) 5923 return rc; 5924 5925 for (i = 0; i < host->n_ports; i++) 5926 ata_port_desc(host->ports[i], "irq %d", irq); 5927 5928 rc = ata_host_register(host, sht); 5929 /* if failed, just free the IRQ and leave ports alone */ 5930 if (rc) 5931 devm_free_irq(host->dev, irq, host); 5932 5933 return rc; 5934 } 5935 EXPORT_SYMBOL_GPL(ata_host_activate); 5936 5937 /** 5938 * ata_port_detach - Detach ATA port in preparation of device removal 5939 * @ap: ATA port to be detached 5940 * 5941 * Detach all ATA devices and the associated SCSI devices of @ap; 5942 * then, remove the associated SCSI host. @ap is guaranteed to 5943 * be quiescent on return from this function. 5944 * 5945 * LOCKING: 5946 * Kernel thread context (may sleep). 5947 */ 5948 static void ata_port_detach(struct ata_port *ap) 5949 { 5950 unsigned long flags; 5951 struct ata_link *link; 5952 struct ata_device *dev; 5953 5954 /* tell EH we're leaving & flush EH */ 5955 spin_lock_irqsave(ap->lock, flags); 5956 ap->pflags |= ATA_PFLAG_UNLOADING; 5957 ata_port_schedule_eh(ap); 5958 spin_unlock_irqrestore(ap->lock, flags); 5959 5960 /* wait till EH commits suicide */ 5961 ata_port_wait_eh(ap); 5962 5963 /* it better be dead now */ 5964 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5965 5966 cancel_delayed_work_sync(&ap->hotplug_task); 5967 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5968 5969 /* clean up zpodd on port removal */ 5970 ata_for_each_link(link, ap, HOST_FIRST) { 5971 ata_for_each_dev(dev, link, ALL) { 5972 if (zpodd_dev_enabled(dev)) 5973 zpodd_exit(dev); 5974 } 5975 } 5976 if (ap->pmp_link) { 5977 int i; 5978 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5979 ata_tlink_delete(&ap->pmp_link[i]); 5980 } 5981 /* remove the associated SCSI host */ 5982 scsi_remove_host(ap->scsi_host); 5983 ata_tport_delete(ap); 5984 } 5985 5986 /** 5987 * ata_host_detach - Detach all ports of an ATA host 5988 * @host: Host to detach 5989 * 5990 * Detach all ports of @host. 5991 * 5992 * LOCKING: 5993 * Kernel thread context (may sleep). 5994 */ 5995 void ata_host_detach(struct ata_host *host) 5996 { 5997 int i; 5998 5999 for (i = 0; i < host->n_ports; i++) { 6000 /* Ensure ata_port probe has completed */ 6001 async_synchronize_cookie(host->ports[i]->cookie + 1); 6002 ata_port_detach(host->ports[i]); 6003 } 6004 6005 /* the host is dead now, dissociate ACPI */ 6006 ata_acpi_dissociate(host); 6007 } 6008 EXPORT_SYMBOL_GPL(ata_host_detach); 6009 6010 #ifdef CONFIG_PCI 6011 6012 /** 6013 * ata_pci_remove_one - PCI layer callback for device removal 6014 * @pdev: PCI device that was removed 6015 * 6016 * PCI layer indicates to libata via this hook that hot-unplug or 6017 * module unload event has occurred. Detach all ports. Resource 6018 * release is handled via devres. 6019 * 6020 * LOCKING: 6021 * Inherited from PCI layer (may sleep). 6022 */ 6023 void ata_pci_remove_one(struct pci_dev *pdev) 6024 { 6025 struct ata_host *host = pci_get_drvdata(pdev); 6026 6027 ata_host_detach(host); 6028 } 6029 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6030 6031 void ata_pci_shutdown_one(struct pci_dev *pdev) 6032 { 6033 struct ata_host *host = pci_get_drvdata(pdev); 6034 int i; 6035 6036 for (i = 0; i < host->n_ports; i++) { 6037 struct ata_port *ap = host->ports[i]; 6038 6039 ap->pflags |= ATA_PFLAG_FROZEN; 6040 6041 /* Disable port interrupts */ 6042 if (ap->ops->freeze) 6043 ap->ops->freeze(ap); 6044 6045 /* Stop the port DMA engines */ 6046 if (ap->ops->port_stop) 6047 ap->ops->port_stop(ap); 6048 } 6049 } 6050 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6051 6052 /* move to PCI subsystem */ 6053 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6054 { 6055 unsigned long tmp = 0; 6056 6057 switch (bits->width) { 6058 case 1: { 6059 u8 tmp8 = 0; 6060 pci_read_config_byte(pdev, bits->reg, &tmp8); 6061 tmp = tmp8; 6062 break; 6063 } 6064 case 2: { 6065 u16 tmp16 = 0; 6066 pci_read_config_word(pdev, bits->reg, &tmp16); 6067 tmp = tmp16; 6068 break; 6069 } 6070 case 4: { 6071 u32 tmp32 = 0; 6072 pci_read_config_dword(pdev, bits->reg, &tmp32); 6073 tmp = tmp32; 6074 break; 6075 } 6076 6077 default: 6078 return -EINVAL; 6079 } 6080 6081 tmp &= bits->mask; 6082 6083 return (tmp == bits->val) ? 1 : 0; 6084 } 6085 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6086 6087 #ifdef CONFIG_PM 6088 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6089 { 6090 pci_save_state(pdev); 6091 pci_disable_device(pdev); 6092 6093 if (mesg.event & PM_EVENT_SLEEP) 6094 pci_set_power_state(pdev, PCI_D3hot); 6095 } 6096 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6097 6098 int ata_pci_device_do_resume(struct pci_dev *pdev) 6099 { 6100 int rc; 6101 6102 pci_set_power_state(pdev, PCI_D0); 6103 pci_restore_state(pdev); 6104 6105 rc = pcim_enable_device(pdev); 6106 if (rc) { 6107 dev_err(&pdev->dev, 6108 "failed to enable device after resume (%d)\n", rc); 6109 return rc; 6110 } 6111 6112 pci_set_master(pdev); 6113 return 0; 6114 } 6115 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6116 6117 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6118 { 6119 struct ata_host *host = pci_get_drvdata(pdev); 6120 6121 ata_host_suspend(host, mesg); 6122 6123 ata_pci_device_do_suspend(pdev, mesg); 6124 6125 return 0; 6126 } 6127 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6128 6129 int ata_pci_device_resume(struct pci_dev *pdev) 6130 { 6131 struct ata_host *host = pci_get_drvdata(pdev); 6132 int rc; 6133 6134 rc = ata_pci_device_do_resume(pdev); 6135 if (rc == 0) 6136 ata_host_resume(host); 6137 return rc; 6138 } 6139 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6140 #endif /* CONFIG_PM */ 6141 #endif /* CONFIG_PCI */ 6142 6143 /** 6144 * ata_platform_remove_one - Platform layer callback for device removal 6145 * @pdev: Platform device that was removed 6146 * 6147 * Platform layer indicates to libata via this hook that hot-unplug or 6148 * module unload event has occurred. Detach all ports. Resource 6149 * release is handled via devres. 6150 * 6151 * LOCKING: 6152 * Inherited from platform layer (may sleep). 6153 */ 6154 void ata_platform_remove_one(struct platform_device *pdev) 6155 { 6156 struct ata_host *host = platform_get_drvdata(pdev); 6157 6158 ata_host_detach(host); 6159 } 6160 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6161 6162 #ifdef CONFIG_ATA_FORCE 6163 6164 #define force_cbl(name, flag) \ 6165 { #name, .cbl = (flag) } 6166 6167 #define force_spd_limit(spd, val) \ 6168 { #spd, .spd_limit = (val) } 6169 6170 #define force_xfer(mode, shift) \ 6171 { #mode, .xfer_mask = (1UL << (shift)) } 6172 6173 #define force_lflag_on(name, flags) \ 6174 { #name, .lflags_on = (flags) } 6175 6176 #define force_lflag_onoff(name, flags) \ 6177 { "no" #name, .lflags_on = (flags) }, \ 6178 { #name, .lflags_off = (flags) } 6179 6180 #define force_horkage_on(name, flag) \ 6181 { #name, .horkage_on = (flag) } 6182 6183 #define force_horkage_onoff(name, flag) \ 6184 { "no" #name, .horkage_on = (flag) }, \ 6185 { #name, .horkage_off = (flag) } 6186 6187 static const struct ata_force_param force_tbl[] __initconst = { 6188 force_cbl(40c, ATA_CBL_PATA40), 6189 force_cbl(80c, ATA_CBL_PATA80), 6190 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6191 force_cbl(unk, ATA_CBL_PATA_UNK), 6192 force_cbl(ign, ATA_CBL_PATA_IGN), 6193 force_cbl(sata, ATA_CBL_SATA), 6194 6195 force_spd_limit(1.5Gbps, 1), 6196 force_spd_limit(3.0Gbps, 2), 6197 6198 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6199 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6200 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6201 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6202 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6203 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6204 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6205 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6206 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6207 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6208 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6209 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6210 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6211 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6212 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6213 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6214 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6215 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6216 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6217 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6218 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6219 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6220 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6221 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6222 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6223 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6224 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6225 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6226 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6227 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6228 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6229 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6230 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6231 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6232 6233 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6234 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6235 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6236 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6237 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6238 6239 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6240 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6241 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6242 6243 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6244 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6245 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6246 6247 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6248 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6249 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6250 6251 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6252 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6253 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6254 6255 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6256 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6257 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6258 6259 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6260 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6261 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6262 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6263 6264 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6265 }; 6266 6267 static int __init ata_parse_force_one(char **cur, 6268 struct ata_force_ent *force_ent, 6269 const char **reason) 6270 { 6271 char *start = *cur, *p = *cur; 6272 char *id, *val, *endp; 6273 const struct ata_force_param *match_fp = NULL; 6274 int nr_matches = 0, i; 6275 6276 /* find where this param ends and update *cur */ 6277 while (*p != '\0' && *p != ',') 6278 p++; 6279 6280 if (*p == '\0') 6281 *cur = p; 6282 else 6283 *cur = p + 1; 6284 6285 *p = '\0'; 6286 6287 /* parse */ 6288 p = strchr(start, ':'); 6289 if (!p) { 6290 val = strstrip(start); 6291 goto parse_val; 6292 } 6293 *p = '\0'; 6294 6295 id = strstrip(start); 6296 val = strstrip(p + 1); 6297 6298 /* parse id */ 6299 p = strchr(id, '.'); 6300 if (p) { 6301 *p++ = '\0'; 6302 force_ent->device = simple_strtoul(p, &endp, 10); 6303 if (p == endp || *endp != '\0') { 6304 *reason = "invalid device"; 6305 return -EINVAL; 6306 } 6307 } 6308 6309 force_ent->port = simple_strtoul(id, &endp, 10); 6310 if (id == endp || *endp != '\0') { 6311 *reason = "invalid port/link"; 6312 return -EINVAL; 6313 } 6314 6315 parse_val: 6316 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6317 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6318 const struct ata_force_param *fp = &force_tbl[i]; 6319 6320 if (strncasecmp(val, fp->name, strlen(val))) 6321 continue; 6322 6323 nr_matches++; 6324 match_fp = fp; 6325 6326 if (strcasecmp(val, fp->name) == 0) { 6327 nr_matches = 1; 6328 break; 6329 } 6330 } 6331 6332 if (!nr_matches) { 6333 *reason = "unknown value"; 6334 return -EINVAL; 6335 } 6336 if (nr_matches > 1) { 6337 *reason = "ambiguous value"; 6338 return -EINVAL; 6339 } 6340 6341 force_ent->param = *match_fp; 6342 6343 return 0; 6344 } 6345 6346 static void __init ata_parse_force_param(void) 6347 { 6348 int idx = 0, size = 1; 6349 int last_port = -1, last_device = -1; 6350 char *p, *cur, *next; 6351 6352 /* Calculate maximum number of params and allocate ata_force_tbl */ 6353 for (p = ata_force_param_buf; *p; p++) 6354 if (*p == ',') 6355 size++; 6356 6357 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6358 if (!ata_force_tbl) { 6359 printk(KERN_WARNING "ata: failed to extend force table, " 6360 "libata.force ignored\n"); 6361 return; 6362 } 6363 6364 /* parse and populate the table */ 6365 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6366 const char *reason = ""; 6367 struct ata_force_ent te = { .port = -1, .device = -1 }; 6368 6369 next = cur; 6370 if (ata_parse_force_one(&next, &te, &reason)) { 6371 printk(KERN_WARNING "ata: failed to parse force " 6372 "parameter \"%s\" (%s)\n", 6373 cur, reason); 6374 continue; 6375 } 6376 6377 if (te.port == -1) { 6378 te.port = last_port; 6379 te.device = last_device; 6380 } 6381 6382 ata_force_tbl[idx++] = te; 6383 6384 last_port = te.port; 6385 last_device = te.device; 6386 } 6387 6388 ata_force_tbl_size = idx; 6389 } 6390 6391 static void ata_free_force_param(void) 6392 { 6393 kfree(ata_force_tbl); 6394 } 6395 #else 6396 static inline void ata_parse_force_param(void) { } 6397 static inline void ata_free_force_param(void) { } 6398 #endif 6399 6400 static int __init ata_init(void) 6401 { 6402 int rc; 6403 6404 ata_parse_force_param(); 6405 6406 rc = ata_sff_init(); 6407 if (rc) { 6408 ata_free_force_param(); 6409 return rc; 6410 } 6411 6412 libata_transport_init(); 6413 ata_scsi_transport_template = ata_attach_transport(); 6414 if (!ata_scsi_transport_template) { 6415 ata_sff_exit(); 6416 rc = -ENOMEM; 6417 goto err_out; 6418 } 6419 6420 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6421 return 0; 6422 6423 err_out: 6424 return rc; 6425 } 6426 6427 static void __exit ata_exit(void) 6428 { 6429 ata_release_transport(ata_scsi_transport_template); 6430 libata_transport_exit(); 6431 ata_sff_exit(); 6432 ata_free_force_param(); 6433 } 6434 6435 subsys_initcall(ata_init); 6436 module_exit(ata_exit); 6437 6438 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6439 6440 int ata_ratelimit(void) 6441 { 6442 return __ratelimit(&ratelimit); 6443 } 6444 EXPORT_SYMBOL_GPL(ata_ratelimit); 6445 6446 /** 6447 * ata_msleep - ATA EH owner aware msleep 6448 * @ap: ATA port to attribute the sleep to 6449 * @msecs: duration to sleep in milliseconds 6450 * 6451 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6452 * ownership is released before going to sleep and reacquired 6453 * after the sleep is complete. IOW, other ports sharing the 6454 * @ap->host will be allowed to own the EH while this task is 6455 * sleeping. 6456 * 6457 * LOCKING: 6458 * Might sleep. 6459 */ 6460 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6461 { 6462 bool owns_eh = ap && ap->host->eh_owner == current; 6463 6464 if (owns_eh) 6465 ata_eh_release(ap); 6466 6467 if (msecs < 20) { 6468 unsigned long usecs = msecs * USEC_PER_MSEC; 6469 usleep_range(usecs, usecs + 50); 6470 } else { 6471 msleep(msecs); 6472 } 6473 6474 if (owns_eh) 6475 ata_eh_acquire(ap); 6476 } 6477 EXPORT_SYMBOL_GPL(ata_msleep); 6478 6479 /** 6480 * ata_wait_register - wait until register value changes 6481 * @ap: ATA port to wait register for, can be NULL 6482 * @reg: IO-mapped register 6483 * @mask: Mask to apply to read register value 6484 * @val: Wait condition 6485 * @interval: polling interval in milliseconds 6486 * @timeout: timeout in milliseconds 6487 * 6488 * Waiting for some bits of register to change is a common 6489 * operation for ATA controllers. This function reads 32bit LE 6490 * IO-mapped register @reg and tests for the following condition. 6491 * 6492 * (*@reg & mask) != val 6493 * 6494 * If the condition is met, it returns; otherwise, the process is 6495 * repeated after @interval_msec until timeout. 6496 * 6497 * LOCKING: 6498 * Kernel thread context (may sleep) 6499 * 6500 * RETURNS: 6501 * The final register value. 6502 */ 6503 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6504 unsigned int interval, unsigned int timeout) 6505 { 6506 unsigned long deadline; 6507 u32 tmp; 6508 6509 tmp = ioread32(reg); 6510 6511 /* Calculate timeout _after_ the first read to make sure 6512 * preceding writes reach the controller before starting to 6513 * eat away the timeout. 6514 */ 6515 deadline = ata_deadline(jiffies, timeout); 6516 6517 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6518 ata_msleep(ap, interval); 6519 tmp = ioread32(reg); 6520 } 6521 6522 return tmp; 6523 } 6524 EXPORT_SYMBOL_GPL(ata_wait_register); 6525 6526 /* 6527 * Dummy port_ops 6528 */ 6529 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6530 { 6531 return AC_ERR_SYSTEM; 6532 } 6533 6534 static void ata_dummy_error_handler(struct ata_port *ap) 6535 { 6536 /* truly dummy */ 6537 } 6538 6539 struct ata_port_operations ata_dummy_port_ops = { 6540 .qc_prep = ata_noop_qc_prep, 6541 .qc_issue = ata_dummy_qc_issue, 6542 .error_handler = ata_dummy_error_handler, 6543 .sched_eh = ata_std_sched_eh, 6544 .end_eh = ata_std_end_eh, 6545 }; 6546 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6547 6548 const struct ata_port_info ata_dummy_port_info = { 6549 .port_ops = &ata_dummy_port_ops, 6550 }; 6551 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6552 6553 void ata_print_version(const struct device *dev, const char *version) 6554 { 6555 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6556 } 6557 EXPORT_SYMBOL(ata_print_version); 6558 6559 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6560 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6561 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6562 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6563 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6564