1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /* 167 * Iterator helpers. Don't use directly. 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 */ 172 struct ata_link *__ata_port_next_link(struct ata_port *ap, 173 struct ata_link *link, bool dev_only) 174 { 175 /* NULL link indicates start of iteration */ 176 if (!link) { 177 if (dev_only && sata_pmp_attached(ap)) 178 return ap->pmp_link; 179 return &ap->link; 180 } 181 182 /* we just iterated over the host master link, what's next? */ 183 if (link == &ap->link) { 184 if (!sata_pmp_attached(ap)) { 185 if (unlikely(ap->slave_link) && !dev_only) 186 return ap->slave_link; 187 return NULL; 188 } 189 return ap->pmp_link; 190 } 191 192 /* slave_link excludes PMP */ 193 if (unlikely(link == ap->slave_link)) 194 return NULL; 195 196 /* iterate to the next PMP link */ 197 if (++link < ap->pmp_link + ap->nr_pmp_links) 198 return link; 199 return NULL; 200 } 201 202 /** 203 * ata_dev_phys_link - find physical link for a device 204 * @dev: ATA device to look up physical link for 205 * 206 * Look up physical link which @dev is attached to. Note that 207 * this is different from @dev->link only when @dev is on slave 208 * link. For all other cases, it's the same as @dev->link. 209 * 210 * LOCKING: 211 * Don't care. 212 * 213 * RETURNS: 214 * Pointer to the found physical link. 215 */ 216 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 217 { 218 struct ata_port *ap = dev->link->ap; 219 220 if (!ap->slave_link) 221 return dev->link; 222 if (!dev->devno) 223 return &ap->link; 224 return ap->slave_link; 225 } 226 227 /** 228 * ata_force_cbl - force cable type according to libata.force 229 * @ap: ATA port of interest 230 * 231 * Force cable type according to libata.force and whine about it. 232 * The last entry which has matching port number is used, so it 233 * can be specified as part of device force parameters. For 234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 235 * same effect. 236 * 237 * LOCKING: 238 * EH context. 239 */ 240 void ata_force_cbl(struct ata_port *ap) 241 { 242 int i; 243 244 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 245 const struct ata_force_ent *fe = &ata_force_tbl[i]; 246 247 if (fe->port != -1 && fe->port != ap->print_id) 248 continue; 249 250 if (fe->param.cbl == ATA_CBL_NONE) 251 continue; 252 253 ap->cbl = fe->param.cbl; 254 ata_port_printk(ap, KERN_NOTICE, 255 "FORCE: cable set to %s\n", fe->param.name); 256 return; 257 } 258 } 259 260 /** 261 * ata_force_link_limits - force link limits according to libata.force 262 * @link: ATA link of interest 263 * 264 * Force link flags and SATA spd limit according to libata.force 265 * and whine about it. When only the port part is specified 266 * (e.g. 1:), the limit applies to all links connected to both 267 * the host link and all fan-out ports connected via PMP. If the 268 * device part is specified as 0 (e.g. 1.00:), it specifies the 269 * first fan-out link not the host link. Device number 15 always 270 * points to the host link whether PMP is attached or not. If the 271 * controller has slave link, device number 16 points to it. 272 * 273 * LOCKING: 274 * EH context. 275 */ 276 static void ata_force_link_limits(struct ata_link *link) 277 { 278 bool did_spd = false; 279 int linkno = link->pmp; 280 int i; 281 282 if (ata_is_host_link(link)) 283 linkno += 15; 284 285 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 286 const struct ata_force_ent *fe = &ata_force_tbl[i]; 287 288 if (fe->port != -1 && fe->port != link->ap->print_id) 289 continue; 290 291 if (fe->device != -1 && fe->device != linkno) 292 continue; 293 294 /* only honor the first spd limit */ 295 if (!did_spd && fe->param.spd_limit) { 296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 297 ata_link_printk(link, KERN_NOTICE, 298 "FORCE: PHY spd limit set to %s\n", 299 fe->param.name); 300 did_spd = true; 301 } 302 303 /* let lflags stack */ 304 if (fe->param.lflags) { 305 link->flags |= fe->param.lflags; 306 ata_link_printk(link, KERN_NOTICE, 307 "FORCE: link flag 0x%x forced -> 0x%x\n", 308 fe->param.lflags, link->flags); 309 } 310 } 311 } 312 313 /** 314 * ata_force_xfermask - force xfermask according to libata.force 315 * @dev: ATA device of interest 316 * 317 * Force xfer_mask according to libata.force and whine about it. 318 * For consistency with link selection, device number 15 selects 319 * the first device connected to the host link. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 static void ata_force_xfermask(struct ata_device *dev) 325 { 326 int devno = dev->link->pmp + dev->devno; 327 int alt_devno = devno; 328 int i; 329 330 /* allow n.15/16 for devices attached to host port */ 331 if (ata_is_host_link(dev->link)) 332 alt_devno += 15; 333 334 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 335 const struct ata_force_ent *fe = &ata_force_tbl[i]; 336 unsigned long pio_mask, mwdma_mask, udma_mask; 337 338 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 339 continue; 340 341 if (fe->device != -1 && fe->device != devno && 342 fe->device != alt_devno) 343 continue; 344 345 if (!fe->param.xfer_mask) 346 continue; 347 348 ata_unpack_xfermask(fe->param.xfer_mask, 349 &pio_mask, &mwdma_mask, &udma_mask); 350 if (udma_mask) 351 dev->udma_mask = udma_mask; 352 else if (mwdma_mask) { 353 dev->udma_mask = 0; 354 dev->mwdma_mask = mwdma_mask; 355 } else { 356 dev->udma_mask = 0; 357 dev->mwdma_mask = 0; 358 dev->pio_mask = pio_mask; 359 } 360 361 ata_dev_printk(dev, KERN_NOTICE, 362 "FORCE: xfer_mask set to %s\n", fe->param.name); 363 return; 364 } 365 } 366 367 /** 368 * ata_force_horkage - force horkage according to libata.force 369 * @dev: ATA device of interest 370 * 371 * Force horkage according to libata.force and whine about it. 372 * For consistency with link selection, device number 15 selects 373 * the first device connected to the host link. 374 * 375 * LOCKING: 376 * EH context. 377 */ 378 static void ata_force_horkage(struct ata_device *dev) 379 { 380 int devno = dev->link->pmp + dev->devno; 381 int alt_devno = devno; 382 int i; 383 384 /* allow n.15/16 for devices attached to host port */ 385 if (ata_is_host_link(dev->link)) 386 alt_devno += 15; 387 388 for (i = 0; i < ata_force_tbl_size; i++) { 389 const struct ata_force_ent *fe = &ata_force_tbl[i]; 390 391 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 392 continue; 393 394 if (fe->device != -1 && fe->device != devno && 395 fe->device != alt_devno) 396 continue; 397 398 if (!(~dev->horkage & fe->param.horkage_on) && 399 !(dev->horkage & fe->param.horkage_off)) 400 continue; 401 402 dev->horkage |= fe->param.horkage_on; 403 dev->horkage &= ~fe->param.horkage_off; 404 405 ata_dev_printk(dev, KERN_NOTICE, 406 "FORCE: horkage modified (%s)\n", fe->param.name); 407 } 408 } 409 410 /** 411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 412 * @opcode: SCSI opcode 413 * 414 * Determine ATAPI command type from @opcode. 415 * 416 * LOCKING: 417 * None. 418 * 419 * RETURNS: 420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 421 */ 422 int atapi_cmd_type(u8 opcode) 423 { 424 switch (opcode) { 425 case GPCMD_READ_10: 426 case GPCMD_READ_12: 427 return ATAPI_READ; 428 429 case GPCMD_WRITE_10: 430 case GPCMD_WRITE_12: 431 case GPCMD_WRITE_AND_VERIFY_10: 432 return ATAPI_WRITE; 433 434 case GPCMD_READ_CD: 435 case GPCMD_READ_CD_MSF: 436 return ATAPI_READ_CD; 437 438 case ATA_16: 439 case ATA_12: 440 if (atapi_passthru16) 441 return ATAPI_PASS_THRU; 442 /* fall thru */ 443 default: 444 return ATAPI_MISC; 445 } 446 } 447 448 /** 449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 450 * @tf: Taskfile to convert 451 * @pmp: Port multiplier port 452 * @is_cmd: This FIS is for command 453 * @fis: Buffer into which data will output 454 * 455 * Converts a standard ATA taskfile to a Serial ATA 456 * FIS structure (Register - Host to Device). 457 * 458 * LOCKING: 459 * Inherited from caller. 460 */ 461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 462 { 463 fis[0] = 0x27; /* Register - Host to Device FIS */ 464 fis[1] = pmp & 0xf; /* Port multiplier number*/ 465 if (is_cmd) 466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 467 468 fis[2] = tf->command; 469 fis[3] = tf->feature; 470 471 fis[4] = tf->lbal; 472 fis[5] = tf->lbam; 473 fis[6] = tf->lbah; 474 fis[7] = tf->device; 475 476 fis[8] = tf->hob_lbal; 477 fis[9] = tf->hob_lbam; 478 fis[10] = tf->hob_lbah; 479 fis[11] = tf->hob_feature; 480 481 fis[12] = tf->nsect; 482 fis[13] = tf->hob_nsect; 483 fis[14] = 0; 484 fis[15] = tf->ctl; 485 486 fis[16] = 0; 487 fis[17] = 0; 488 fis[18] = 0; 489 fis[19] = 0; 490 } 491 492 /** 493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 494 * @fis: Buffer from which data will be input 495 * @tf: Taskfile to output 496 * 497 * Converts a serial ATA FIS structure to a standard ATA taskfile. 498 * 499 * LOCKING: 500 * Inherited from caller. 501 */ 502 503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 504 { 505 tf->command = fis[2]; /* status */ 506 tf->feature = fis[3]; /* error */ 507 508 tf->lbal = fis[4]; 509 tf->lbam = fis[5]; 510 tf->lbah = fis[6]; 511 tf->device = fis[7]; 512 513 tf->hob_lbal = fis[8]; 514 tf->hob_lbam = fis[9]; 515 tf->hob_lbah = fis[10]; 516 517 tf->nsect = fis[12]; 518 tf->hob_nsect = fis[13]; 519 } 520 521 static const u8 ata_rw_cmds[] = { 522 /* pio multi */ 523 ATA_CMD_READ_MULTI, 524 ATA_CMD_WRITE_MULTI, 525 ATA_CMD_READ_MULTI_EXT, 526 ATA_CMD_WRITE_MULTI_EXT, 527 0, 528 0, 529 0, 530 ATA_CMD_WRITE_MULTI_FUA_EXT, 531 /* pio */ 532 ATA_CMD_PIO_READ, 533 ATA_CMD_PIO_WRITE, 534 ATA_CMD_PIO_READ_EXT, 535 ATA_CMD_PIO_WRITE_EXT, 536 0, 537 0, 538 0, 539 0, 540 /* dma */ 541 ATA_CMD_READ, 542 ATA_CMD_WRITE, 543 ATA_CMD_READ_EXT, 544 ATA_CMD_WRITE_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_FUA_EXT 549 }; 550 551 /** 552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 553 * @tf: command to examine and configure 554 * @dev: device tf belongs to 555 * 556 * Examine the device configuration and tf->flags to calculate 557 * the proper read/write commands and protocol to use. 558 * 559 * LOCKING: 560 * caller. 561 */ 562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 563 { 564 u8 cmd; 565 566 int index, fua, lba48, write; 567 568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 571 572 if (dev->flags & ATA_DFLAG_PIO) { 573 tf->protocol = ATA_PROT_PIO; 574 index = dev->multi_count ? 0 : 8; 575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 576 /* Unable to use DMA due to host limitation */ 577 tf->protocol = ATA_PROT_PIO; 578 index = dev->multi_count ? 0 : 8; 579 } else { 580 tf->protocol = ATA_PROT_DMA; 581 index = 16; 582 } 583 584 cmd = ata_rw_cmds[index + fua + lba48 + write]; 585 if (cmd) { 586 tf->command = cmd; 587 return 0; 588 } 589 return -1; 590 } 591 592 /** 593 * ata_tf_read_block - Read block address from ATA taskfile 594 * @tf: ATA taskfile of interest 595 * @dev: ATA device @tf belongs to 596 * 597 * LOCKING: 598 * None. 599 * 600 * Read block address from @tf. This function can handle all 601 * three address formats - LBA, LBA48 and CHS. tf->protocol and 602 * flags select the address format to use. 603 * 604 * RETURNS: 605 * Block address read from @tf. 606 */ 607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 608 { 609 u64 block = 0; 610 611 if (tf->flags & ATA_TFLAG_LBA) { 612 if (tf->flags & ATA_TFLAG_LBA48) { 613 block |= (u64)tf->hob_lbah << 40; 614 block |= (u64)tf->hob_lbam << 32; 615 block |= (u64)tf->hob_lbal << 24; 616 } else 617 block |= (tf->device & 0xf) << 24; 618 619 block |= tf->lbah << 16; 620 block |= tf->lbam << 8; 621 block |= tf->lbal; 622 } else { 623 u32 cyl, head, sect; 624 625 cyl = tf->lbam | (tf->lbah << 8); 626 head = tf->device & 0xf; 627 sect = tf->lbal; 628 629 block = (cyl * dev->heads + head) * dev->sectors + sect; 630 } 631 632 return block; 633 } 634 635 /** 636 * ata_build_rw_tf - Build ATA taskfile for given read/write request 637 * @tf: Target ATA taskfile 638 * @dev: ATA device @tf belongs to 639 * @block: Block address 640 * @n_block: Number of blocks 641 * @tf_flags: RW/FUA etc... 642 * @tag: tag 643 * 644 * LOCKING: 645 * None. 646 * 647 * Build ATA taskfile @tf for read/write request described by 648 * @block, @n_block, @tf_flags and @tag on @dev. 649 * 650 * RETURNS: 651 * 652 * 0 on success, -ERANGE if the request is too large for @dev, 653 * -EINVAL if the request is invalid. 654 */ 655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 656 u64 block, u32 n_block, unsigned int tf_flags, 657 unsigned int tag) 658 { 659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 660 tf->flags |= tf_flags; 661 662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 663 /* yay, NCQ */ 664 if (!lba_48_ok(block, n_block)) 665 return -ERANGE; 666 667 tf->protocol = ATA_PROT_NCQ; 668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 669 670 if (tf->flags & ATA_TFLAG_WRITE) 671 tf->command = ATA_CMD_FPDMA_WRITE; 672 else 673 tf->command = ATA_CMD_FPDMA_READ; 674 675 tf->nsect = tag << 3; 676 tf->hob_feature = (n_block >> 8) & 0xff; 677 tf->feature = n_block & 0xff; 678 679 tf->hob_lbah = (block >> 40) & 0xff; 680 tf->hob_lbam = (block >> 32) & 0xff; 681 tf->hob_lbal = (block >> 24) & 0xff; 682 tf->lbah = (block >> 16) & 0xff; 683 tf->lbam = (block >> 8) & 0xff; 684 tf->lbal = block & 0xff; 685 686 tf->device = 1 << 6; 687 if (tf->flags & ATA_TFLAG_FUA) 688 tf->device |= 1 << 7; 689 } else if (dev->flags & ATA_DFLAG_LBA) { 690 tf->flags |= ATA_TFLAG_LBA; 691 692 if (lba_28_ok(block, n_block)) { 693 /* use LBA28 */ 694 tf->device |= (block >> 24) & 0xf; 695 } else if (lba_48_ok(block, n_block)) { 696 if (!(dev->flags & ATA_DFLAG_LBA48)) 697 return -ERANGE; 698 699 /* use LBA48 */ 700 tf->flags |= ATA_TFLAG_LBA48; 701 702 tf->hob_nsect = (n_block >> 8) & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 } else 708 /* request too large even for LBA48 */ 709 return -ERANGE; 710 711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 712 return -EINVAL; 713 714 tf->nsect = n_block & 0xff; 715 716 tf->lbah = (block >> 16) & 0xff; 717 tf->lbam = (block >> 8) & 0xff; 718 tf->lbal = block & 0xff; 719 720 tf->device |= ATA_LBA; 721 } else { 722 /* CHS */ 723 u32 sect, head, cyl, track; 724 725 /* The request -may- be too large for CHS addressing. */ 726 if (!lba_28_ok(block, n_block)) 727 return -ERANGE; 728 729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 730 return -EINVAL; 731 732 /* Convert LBA to CHS */ 733 track = (u32)block / dev->sectors; 734 cyl = track / dev->heads; 735 head = track % dev->heads; 736 sect = (u32)block % dev->sectors + 1; 737 738 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 739 (u32)block, track, cyl, head, sect); 740 741 /* Check whether the converted CHS can fit. 742 Cylinder: 0-65535 743 Head: 0-15 744 Sector: 1-255*/ 745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 746 return -ERANGE; 747 748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 749 tf->lbal = sect; 750 tf->lbam = cyl; 751 tf->lbah = cyl >> 8; 752 tf->device |= head; 753 } 754 755 return 0; 756 } 757 758 /** 759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 760 * @pio_mask: pio_mask 761 * @mwdma_mask: mwdma_mask 762 * @udma_mask: udma_mask 763 * 764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 765 * unsigned int xfer_mask. 766 * 767 * LOCKING: 768 * None. 769 * 770 * RETURNS: 771 * Packed xfer_mask. 772 */ 773 unsigned long ata_pack_xfermask(unsigned long pio_mask, 774 unsigned long mwdma_mask, 775 unsigned long udma_mask) 776 { 777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 780 } 781 782 /** 783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 784 * @xfer_mask: xfer_mask to unpack 785 * @pio_mask: resulting pio_mask 786 * @mwdma_mask: resulting mwdma_mask 787 * @udma_mask: resulting udma_mask 788 * 789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 790 * Any NULL distination masks will be ignored. 791 */ 792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 793 unsigned long *mwdma_mask, unsigned long *udma_mask) 794 { 795 if (pio_mask) 796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 797 if (mwdma_mask) 798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 799 if (udma_mask) 800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 801 } 802 803 static const struct ata_xfer_ent { 804 int shift, bits; 805 u8 base; 806 } ata_xfer_tbl[] = { 807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 810 { -1, }, 811 }; 812 813 /** 814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 815 * @xfer_mask: xfer_mask of interest 816 * 817 * Return matching XFER_* value for @xfer_mask. Only the highest 818 * bit of @xfer_mask is considered. 819 * 820 * LOCKING: 821 * None. 822 * 823 * RETURNS: 824 * Matching XFER_* value, 0xff if no match found. 825 */ 826 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 827 { 828 int highbit = fls(xfer_mask) - 1; 829 const struct ata_xfer_ent *ent; 830 831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 833 return ent->base + highbit - ent->shift; 834 return 0xff; 835 } 836 837 /** 838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 839 * @xfer_mode: XFER_* of interest 840 * 841 * Return matching xfer_mask for @xfer_mode. 842 * 843 * LOCKING: 844 * None. 845 * 846 * RETURNS: 847 * Matching xfer_mask, 0 if no match found. 848 */ 849 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 850 { 851 const struct ata_xfer_ent *ent; 852 853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 856 & ~((1 << ent->shift) - 1); 857 return 0; 858 } 859 860 /** 861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 862 * @xfer_mode: XFER_* of interest 863 * 864 * Return matching xfer_shift for @xfer_mode. 865 * 866 * LOCKING: 867 * None. 868 * 869 * RETURNS: 870 * Matching xfer_shift, -1 if no match found. 871 */ 872 int ata_xfer_mode2shift(unsigned long xfer_mode) 873 { 874 const struct ata_xfer_ent *ent; 875 876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 878 return ent->shift; 879 return -1; 880 } 881 882 /** 883 * ata_mode_string - convert xfer_mask to string 884 * @xfer_mask: mask of bits supported; only highest bit counts. 885 * 886 * Determine string which represents the highest speed 887 * (highest bit in @modemask). 888 * 889 * LOCKING: 890 * None. 891 * 892 * RETURNS: 893 * Constant C string representing highest speed listed in 894 * @mode_mask, or the constant C string "<n/a>". 895 */ 896 const char *ata_mode_string(unsigned long xfer_mask) 897 { 898 static const char * const xfer_mode_str[] = { 899 "PIO0", 900 "PIO1", 901 "PIO2", 902 "PIO3", 903 "PIO4", 904 "PIO5", 905 "PIO6", 906 "MWDMA0", 907 "MWDMA1", 908 "MWDMA2", 909 "MWDMA3", 910 "MWDMA4", 911 "UDMA/16", 912 "UDMA/25", 913 "UDMA/33", 914 "UDMA/44", 915 "UDMA/66", 916 "UDMA/100", 917 "UDMA/133", 918 "UDMA7", 919 }; 920 int highbit; 921 922 highbit = fls(xfer_mask) - 1; 923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 924 return xfer_mode_str[highbit]; 925 return "<n/a>"; 926 } 927 928 static const char *sata_spd_string(unsigned int spd) 929 { 930 static const char * const spd_str[] = { 931 "1.5 Gbps", 932 "3.0 Gbps", 933 }; 934 935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 936 return "<unknown>"; 937 return spd_str[spd - 1]; 938 } 939 940 void ata_dev_disable(struct ata_device *dev) 941 { 942 if (ata_dev_enabled(dev)) { 943 if (ata_msg_drv(dev->link->ap)) 944 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 945 ata_acpi_on_disable(dev); 946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 947 ATA_DNXFER_QUIET); 948 dev->class++; 949 } 950 } 951 952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 953 { 954 struct ata_link *link = dev->link; 955 struct ata_port *ap = link->ap; 956 u32 scontrol; 957 unsigned int err_mask; 958 int rc; 959 960 /* 961 * disallow DIPM for drivers which haven't set 962 * ATA_FLAG_IPM. This is because when DIPM is enabled, 963 * phy ready will be set in the interrupt status on 964 * state changes, which will cause some drivers to 965 * think there are errors - additionally drivers will 966 * need to disable hot plug. 967 */ 968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 969 ap->pm_policy = NOT_AVAILABLE; 970 return -EINVAL; 971 } 972 973 /* 974 * For DIPM, we will only enable it for the 975 * min_power setting. 976 * 977 * Why? Because Disks are too stupid to know that 978 * If the host rejects a request to go to SLUMBER 979 * they should retry at PARTIAL, and instead it 980 * just would give up. So, for medium_power to 981 * work at all, we need to only allow HIPM. 982 */ 983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 984 if (rc) 985 return rc; 986 987 switch (policy) { 988 case MIN_POWER: 989 /* no restrictions on IPM transitions */ 990 scontrol &= ~(0x3 << 8); 991 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 992 if (rc) 993 return rc; 994 995 /* enable DIPM */ 996 if (dev->flags & ATA_DFLAG_DIPM) 997 err_mask = ata_dev_set_feature(dev, 998 SETFEATURES_SATA_ENABLE, SATA_DIPM); 999 break; 1000 case MEDIUM_POWER: 1001 /* allow IPM to PARTIAL */ 1002 scontrol &= ~(0x1 << 8); 1003 scontrol |= (0x2 << 8); 1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1005 if (rc) 1006 return rc; 1007 1008 /* 1009 * we don't have to disable DIPM since IPM flags 1010 * disallow transitions to SLUMBER, which effectively 1011 * disable DIPM if it does not support PARTIAL 1012 */ 1013 break; 1014 case NOT_AVAILABLE: 1015 case MAX_PERFORMANCE: 1016 /* disable all IPM transitions */ 1017 scontrol |= (0x3 << 8); 1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1019 if (rc) 1020 return rc; 1021 1022 /* 1023 * we don't have to disable DIPM since IPM flags 1024 * disallow all transitions which effectively 1025 * disable DIPM anyway. 1026 */ 1027 break; 1028 } 1029 1030 /* FIXME: handle SET FEATURES failure */ 1031 (void) err_mask; 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ata_dev_enable_pm - enable SATA interface power management 1038 * @dev: device to enable power management 1039 * @policy: the link power management policy 1040 * 1041 * Enable SATA Interface power management. This will enable 1042 * Device Interface Power Management (DIPM) for min_power 1043 * policy, and then call driver specific callbacks for 1044 * enabling Host Initiated Power management. 1045 * 1046 * Locking: Caller. 1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1048 */ 1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1050 { 1051 int rc = 0; 1052 struct ata_port *ap = dev->link->ap; 1053 1054 /* set HIPM first, then DIPM */ 1055 if (ap->ops->enable_pm) 1056 rc = ap->ops->enable_pm(ap, policy); 1057 if (rc) 1058 goto enable_pm_out; 1059 rc = ata_dev_set_dipm(dev, policy); 1060 1061 enable_pm_out: 1062 if (rc) 1063 ap->pm_policy = MAX_PERFORMANCE; 1064 else 1065 ap->pm_policy = policy; 1066 return /* rc */; /* hopefully we can use 'rc' eventually */ 1067 } 1068 1069 #ifdef CONFIG_PM 1070 /** 1071 * ata_dev_disable_pm - disable SATA interface power management 1072 * @dev: device to disable power management 1073 * 1074 * Disable SATA Interface power management. This will disable 1075 * Device Interface Power Management (DIPM) without changing 1076 * policy, call driver specific callbacks for disabling Host 1077 * Initiated Power management. 1078 * 1079 * Locking: Caller. 1080 * Returns: void 1081 */ 1082 static void ata_dev_disable_pm(struct ata_device *dev) 1083 { 1084 struct ata_port *ap = dev->link->ap; 1085 1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1087 if (ap->ops->disable_pm) 1088 ap->ops->disable_pm(ap); 1089 } 1090 #endif /* CONFIG_PM */ 1091 1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1093 { 1094 ap->pm_policy = policy; 1095 ap->link.eh_info.action |= ATA_EH_LPM; 1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1097 ata_port_schedule_eh(ap); 1098 } 1099 1100 #ifdef CONFIG_PM 1101 static void ata_lpm_enable(struct ata_host *host) 1102 { 1103 struct ata_link *link; 1104 struct ata_port *ap; 1105 struct ata_device *dev; 1106 int i; 1107 1108 for (i = 0; i < host->n_ports; i++) { 1109 ap = host->ports[i]; 1110 ata_port_for_each_link(link, ap) { 1111 ata_link_for_each_dev(dev, link) 1112 ata_dev_disable_pm(dev); 1113 } 1114 } 1115 } 1116 1117 static void ata_lpm_disable(struct ata_host *host) 1118 { 1119 int i; 1120 1121 for (i = 0; i < host->n_ports; i++) { 1122 struct ata_port *ap = host->ports[i]; 1123 ata_lpm_schedule(ap, ap->pm_policy); 1124 } 1125 } 1126 #endif /* CONFIG_PM */ 1127 1128 /** 1129 * ata_dev_classify - determine device type based on ATA-spec signature 1130 * @tf: ATA taskfile register set for device to be identified 1131 * 1132 * Determine from taskfile register contents whether a device is 1133 * ATA or ATAPI, as per "Signature and persistence" section 1134 * of ATA/PI spec (volume 1, sect 5.14). 1135 * 1136 * LOCKING: 1137 * None. 1138 * 1139 * RETURNS: 1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1141 * %ATA_DEV_UNKNOWN the event of failure. 1142 */ 1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1144 { 1145 /* Apple's open source Darwin code hints that some devices only 1146 * put a proper signature into the LBA mid/high registers, 1147 * So, we only check those. It's sufficient for uniqueness. 1148 * 1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1150 * signatures for ATA and ATAPI devices attached on SerialATA, 1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1152 * spec has never mentioned about using different signatures 1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1154 * Multiplier specification began to use 0x69/0x96 to identify 1155 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1157 * 0x69/0x96 shortly and described them as reserved for 1158 * SerialATA. 1159 * 1160 * We follow the current spec and consider that 0x69/0x96 1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1162 */ 1163 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1164 DPRINTK("found ATA device by sig\n"); 1165 return ATA_DEV_ATA; 1166 } 1167 1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1169 DPRINTK("found ATAPI device by sig\n"); 1170 return ATA_DEV_ATAPI; 1171 } 1172 1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1174 DPRINTK("found PMP device by sig\n"); 1175 return ATA_DEV_PMP; 1176 } 1177 1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1179 printk(KERN_INFO "ata: SEMB device ignored\n"); 1180 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1181 } 1182 1183 DPRINTK("unknown device\n"); 1184 return ATA_DEV_UNKNOWN; 1185 } 1186 1187 /** 1188 * ata_id_string - Convert IDENTIFY DEVICE page into string 1189 * @id: IDENTIFY DEVICE results we will examine 1190 * @s: string into which data is output 1191 * @ofs: offset into identify device page 1192 * @len: length of string to return. must be an even number. 1193 * 1194 * The strings in the IDENTIFY DEVICE page are broken up into 1195 * 16-bit chunks. Run through the string, and output each 1196 * 8-bit chunk linearly, regardless of platform. 1197 * 1198 * LOCKING: 1199 * caller. 1200 */ 1201 1202 void ata_id_string(const u16 *id, unsigned char *s, 1203 unsigned int ofs, unsigned int len) 1204 { 1205 unsigned int c; 1206 1207 BUG_ON(len & 1); 1208 1209 while (len > 0) { 1210 c = id[ofs] >> 8; 1211 *s = c; 1212 s++; 1213 1214 c = id[ofs] & 0xff; 1215 *s = c; 1216 s++; 1217 1218 ofs++; 1219 len -= 2; 1220 } 1221 } 1222 1223 /** 1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1225 * @id: IDENTIFY DEVICE results we will examine 1226 * @s: string into which data is output 1227 * @ofs: offset into identify device page 1228 * @len: length of string to return. must be an odd number. 1229 * 1230 * This function is identical to ata_id_string except that it 1231 * trims trailing spaces and terminates the resulting string with 1232 * null. @len must be actual maximum length (even number) + 1. 1233 * 1234 * LOCKING: 1235 * caller. 1236 */ 1237 void ata_id_c_string(const u16 *id, unsigned char *s, 1238 unsigned int ofs, unsigned int len) 1239 { 1240 unsigned char *p; 1241 1242 ata_id_string(id, s, ofs, len - 1); 1243 1244 p = s + strnlen(s, len - 1); 1245 while (p > s && p[-1] == ' ') 1246 p--; 1247 *p = '\0'; 1248 } 1249 1250 static u64 ata_id_n_sectors(const u16 *id) 1251 { 1252 if (ata_id_has_lba(id)) { 1253 if (ata_id_has_lba48(id)) 1254 return ata_id_u64(id, 100); 1255 else 1256 return ata_id_u32(id, 60); 1257 } else { 1258 if (ata_id_current_chs_valid(id)) 1259 return ata_id_u32(id, 57); 1260 else 1261 return id[1] * id[3] * id[6]; 1262 } 1263 } 1264 1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1266 { 1267 u64 sectors = 0; 1268 1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1271 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1272 sectors |= (tf->lbah & 0xff) << 16; 1273 sectors |= (tf->lbam & 0xff) << 8; 1274 sectors |= (tf->lbal & 0xff); 1275 1276 return sectors; 1277 } 1278 1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1280 { 1281 u64 sectors = 0; 1282 1283 sectors |= (tf->device & 0x0f) << 24; 1284 sectors |= (tf->lbah & 0xff) << 16; 1285 sectors |= (tf->lbam & 0xff) << 8; 1286 sectors |= (tf->lbal & 0xff); 1287 1288 return sectors; 1289 } 1290 1291 /** 1292 * ata_read_native_max_address - Read native max address 1293 * @dev: target device 1294 * @max_sectors: out parameter for the result native max address 1295 * 1296 * Perform an LBA48 or LBA28 native size query upon the device in 1297 * question. 1298 * 1299 * RETURNS: 1300 * 0 on success, -EACCES if command is aborted by the drive. 1301 * -EIO on other errors. 1302 */ 1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1304 { 1305 unsigned int err_mask; 1306 struct ata_taskfile tf; 1307 int lba48 = ata_id_has_lba48(dev->id); 1308 1309 ata_tf_init(dev, &tf); 1310 1311 /* always clear all address registers */ 1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1313 1314 if (lba48) { 1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1316 tf.flags |= ATA_TFLAG_LBA48; 1317 } else 1318 tf.command = ATA_CMD_READ_NATIVE_MAX; 1319 1320 tf.protocol |= ATA_PROT_NODATA; 1321 tf.device |= ATA_LBA; 1322 1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1324 if (err_mask) { 1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1326 "max address (err_mask=0x%x)\n", err_mask); 1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1328 return -EACCES; 1329 return -EIO; 1330 } 1331 1332 if (lba48) 1333 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1334 else 1335 *max_sectors = ata_tf_to_lba(&tf) + 1; 1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1337 (*max_sectors)--; 1338 return 0; 1339 } 1340 1341 /** 1342 * ata_set_max_sectors - Set max sectors 1343 * @dev: target device 1344 * @new_sectors: new max sectors value to set for the device 1345 * 1346 * Set max sectors of @dev to @new_sectors. 1347 * 1348 * RETURNS: 1349 * 0 on success, -EACCES if command is aborted or denied (due to 1350 * previous non-volatile SET_MAX) by the drive. -EIO on other 1351 * errors. 1352 */ 1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1354 { 1355 unsigned int err_mask; 1356 struct ata_taskfile tf; 1357 int lba48 = ata_id_has_lba48(dev->id); 1358 1359 new_sectors--; 1360 1361 ata_tf_init(dev, &tf); 1362 1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1364 1365 if (lba48) { 1366 tf.command = ATA_CMD_SET_MAX_EXT; 1367 tf.flags |= ATA_TFLAG_LBA48; 1368 1369 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1370 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1371 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1372 } else { 1373 tf.command = ATA_CMD_SET_MAX; 1374 1375 tf.device |= (new_sectors >> 24) & 0xf; 1376 } 1377 1378 tf.protocol |= ATA_PROT_NODATA; 1379 tf.device |= ATA_LBA; 1380 1381 tf.lbal = (new_sectors >> 0) & 0xff; 1382 tf.lbam = (new_sectors >> 8) & 0xff; 1383 tf.lbah = (new_sectors >> 16) & 0xff; 1384 1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1386 if (err_mask) { 1387 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1388 "max address (err_mask=0x%x)\n", err_mask); 1389 if (err_mask == AC_ERR_DEV && 1390 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1391 return -EACCES; 1392 return -EIO; 1393 } 1394 1395 return 0; 1396 } 1397 1398 /** 1399 * ata_hpa_resize - Resize a device with an HPA set 1400 * @dev: Device to resize 1401 * 1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1403 * it if required to the full size of the media. The caller must check 1404 * the drive has the HPA feature set enabled. 1405 * 1406 * RETURNS: 1407 * 0 on success, -errno on failure. 1408 */ 1409 static int ata_hpa_resize(struct ata_device *dev) 1410 { 1411 struct ata_eh_context *ehc = &dev->link->eh_context; 1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1413 u64 sectors = ata_id_n_sectors(dev->id); 1414 u64 native_sectors; 1415 int rc; 1416 1417 /* do we need to do it? */ 1418 if (dev->class != ATA_DEV_ATA || 1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1421 return 0; 1422 1423 /* read native max address */ 1424 rc = ata_read_native_max_address(dev, &native_sectors); 1425 if (rc) { 1426 /* If device aborted the command or HPA isn't going to 1427 * be unlocked, skip HPA resizing. 1428 */ 1429 if (rc == -EACCES || !ata_ignore_hpa) { 1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1431 "broken, skipping HPA handling\n"); 1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1433 1434 /* we can continue if device aborted the command */ 1435 if (rc == -EACCES) 1436 rc = 0; 1437 } 1438 1439 return rc; 1440 } 1441 1442 /* nothing to do? */ 1443 if (native_sectors <= sectors || !ata_ignore_hpa) { 1444 if (!print_info || native_sectors == sectors) 1445 return 0; 1446 1447 if (native_sectors > sectors) 1448 ata_dev_printk(dev, KERN_INFO, 1449 "HPA detected: current %llu, native %llu\n", 1450 (unsigned long long)sectors, 1451 (unsigned long long)native_sectors); 1452 else if (native_sectors < sectors) 1453 ata_dev_printk(dev, KERN_WARNING, 1454 "native sectors (%llu) is smaller than " 1455 "sectors (%llu)\n", 1456 (unsigned long long)native_sectors, 1457 (unsigned long long)sectors); 1458 return 0; 1459 } 1460 1461 /* let's unlock HPA */ 1462 rc = ata_set_max_sectors(dev, native_sectors); 1463 if (rc == -EACCES) { 1464 /* if device aborted the command, skip HPA resizing */ 1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1466 "(%llu -> %llu), skipping HPA handling\n", 1467 (unsigned long long)sectors, 1468 (unsigned long long)native_sectors); 1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1470 return 0; 1471 } else if (rc) 1472 return rc; 1473 1474 /* re-read IDENTIFY data */ 1475 rc = ata_dev_reread_id(dev, 0); 1476 if (rc) { 1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1478 "data after HPA resizing\n"); 1479 return rc; 1480 } 1481 1482 if (print_info) { 1483 u64 new_sectors = ata_id_n_sectors(dev->id); 1484 ata_dev_printk(dev, KERN_INFO, 1485 "HPA unlocked: %llu -> %llu, native %llu\n", 1486 (unsigned long long)sectors, 1487 (unsigned long long)new_sectors, 1488 (unsigned long long)native_sectors); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * ata_dump_id - IDENTIFY DEVICE info debugging output 1496 * @id: IDENTIFY DEVICE page to dump 1497 * 1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1499 * page. 1500 * 1501 * LOCKING: 1502 * caller. 1503 */ 1504 1505 static inline void ata_dump_id(const u16 *id) 1506 { 1507 DPRINTK("49==0x%04x " 1508 "53==0x%04x " 1509 "63==0x%04x " 1510 "64==0x%04x " 1511 "75==0x%04x \n", 1512 id[49], 1513 id[53], 1514 id[63], 1515 id[64], 1516 id[75]); 1517 DPRINTK("80==0x%04x " 1518 "81==0x%04x " 1519 "82==0x%04x " 1520 "83==0x%04x " 1521 "84==0x%04x \n", 1522 id[80], 1523 id[81], 1524 id[82], 1525 id[83], 1526 id[84]); 1527 DPRINTK("88==0x%04x " 1528 "93==0x%04x\n", 1529 id[88], 1530 id[93]); 1531 } 1532 1533 /** 1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1535 * @id: IDENTIFY data to compute xfer mask from 1536 * 1537 * Compute the xfermask for this device. This is not as trivial 1538 * as it seems if we must consider early devices correctly. 1539 * 1540 * FIXME: pre IDE drive timing (do we care ?). 1541 * 1542 * LOCKING: 1543 * None. 1544 * 1545 * RETURNS: 1546 * Computed xfermask 1547 */ 1548 unsigned long ata_id_xfermask(const u16 *id) 1549 { 1550 unsigned long pio_mask, mwdma_mask, udma_mask; 1551 1552 /* Usual case. Word 53 indicates word 64 is valid */ 1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1555 pio_mask <<= 3; 1556 pio_mask |= 0x7; 1557 } else { 1558 /* If word 64 isn't valid then Word 51 high byte holds 1559 * the PIO timing number for the maximum. Turn it into 1560 * a mask. 1561 */ 1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1563 if (mode < 5) /* Valid PIO range */ 1564 pio_mask = (2 << mode) - 1; 1565 else 1566 pio_mask = 1; 1567 1568 /* But wait.. there's more. Design your standards by 1569 * committee and you too can get a free iordy field to 1570 * process. However its the speeds not the modes that 1571 * are supported... Note drivers using the timing API 1572 * will get this right anyway 1573 */ 1574 } 1575 1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1577 1578 if (ata_id_is_cfa(id)) { 1579 /* 1580 * Process compact flash extended modes 1581 */ 1582 int pio = id[163] & 0x7; 1583 int dma = (id[163] >> 3) & 7; 1584 1585 if (pio) 1586 pio_mask |= (1 << 5); 1587 if (pio > 1) 1588 pio_mask |= (1 << 6); 1589 if (dma) 1590 mwdma_mask |= (1 << 3); 1591 if (dma > 1) 1592 mwdma_mask |= (1 << 4); 1593 } 1594 1595 udma_mask = 0; 1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1598 1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1600 } 1601 1602 /** 1603 * ata_pio_queue_task - Queue port_task 1604 * @ap: The ata_port to queue port_task for 1605 * @data: data for @fn to use 1606 * @delay: delay time in msecs for workqueue function 1607 * 1608 * Schedule @fn(@data) for execution after @delay jiffies using 1609 * port_task. There is one port_task per port and it's the 1610 * user(low level driver)'s responsibility to make sure that only 1611 * one task is active at any given time. 1612 * 1613 * libata core layer takes care of synchronization between 1614 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1615 * synchronization. 1616 * 1617 * LOCKING: 1618 * Inherited from caller. 1619 */ 1620 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1621 { 1622 ap->port_task_data = data; 1623 1624 /* may fail if ata_port_flush_task() in progress */ 1625 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1626 } 1627 1628 /** 1629 * ata_port_flush_task - Flush port_task 1630 * @ap: The ata_port to flush port_task for 1631 * 1632 * After this function completes, port_task is guranteed not to 1633 * be running or scheduled. 1634 * 1635 * LOCKING: 1636 * Kernel thread context (may sleep) 1637 */ 1638 void ata_port_flush_task(struct ata_port *ap) 1639 { 1640 DPRINTK("ENTER\n"); 1641 1642 cancel_rearming_delayed_work(&ap->port_task); 1643 1644 if (ata_msg_ctl(ap)) 1645 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1646 } 1647 1648 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1649 { 1650 struct completion *waiting = qc->private_data; 1651 1652 complete(waiting); 1653 } 1654 1655 /** 1656 * ata_exec_internal_sg - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data tranfer direction of the command 1661 * @sgl: sg list for the data buffer of the command 1662 * @n_elem: Number of sg entries 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Executes libata internal command with timeout. @tf contains 1666 * command on entry and result on return. Timeout and error 1667 * conditions are reported via return value. No recovery action 1668 * is taken after a command times out. It's caller's duty to 1669 * clean up after timeout. 1670 * 1671 * LOCKING: 1672 * None. Should be called with kernel context, might sleep. 1673 * 1674 * RETURNS: 1675 * Zero on success, AC_ERR_* mask on failure 1676 */ 1677 unsigned ata_exec_internal_sg(struct ata_device *dev, 1678 struct ata_taskfile *tf, const u8 *cdb, 1679 int dma_dir, struct scatterlist *sgl, 1680 unsigned int n_elem, unsigned long timeout) 1681 { 1682 struct ata_link *link = dev->link; 1683 struct ata_port *ap = link->ap; 1684 u8 command = tf->command; 1685 int auto_timeout = 0; 1686 struct ata_queued_cmd *qc; 1687 unsigned int tag, preempted_tag; 1688 u32 preempted_sactive, preempted_qc_active; 1689 int preempted_nr_active_links; 1690 DECLARE_COMPLETION_ONSTACK(wait); 1691 unsigned long flags; 1692 unsigned int err_mask; 1693 int rc; 1694 1695 spin_lock_irqsave(ap->lock, flags); 1696 1697 /* no internal command while frozen */ 1698 if (ap->pflags & ATA_PFLAG_FROZEN) { 1699 spin_unlock_irqrestore(ap->lock, flags); 1700 return AC_ERR_SYSTEM; 1701 } 1702 1703 /* initialize internal qc */ 1704 1705 /* XXX: Tag 0 is used for drivers with legacy EH as some 1706 * drivers choke if any other tag is given. This breaks 1707 * ata_tag_internal() test for those drivers. Don't use new 1708 * EH stuff without converting to it. 1709 */ 1710 if (ap->ops->error_handler) 1711 tag = ATA_TAG_INTERNAL; 1712 else 1713 tag = 0; 1714 1715 if (test_and_set_bit(tag, &ap->qc_allocated)) 1716 BUG(); 1717 qc = __ata_qc_from_tag(ap, tag); 1718 1719 qc->tag = tag; 1720 qc->scsicmd = NULL; 1721 qc->ap = ap; 1722 qc->dev = dev; 1723 ata_qc_reinit(qc); 1724 1725 preempted_tag = link->active_tag; 1726 preempted_sactive = link->sactive; 1727 preempted_qc_active = ap->qc_active; 1728 preempted_nr_active_links = ap->nr_active_links; 1729 link->active_tag = ATA_TAG_POISON; 1730 link->sactive = 0; 1731 ap->qc_active = 0; 1732 ap->nr_active_links = 0; 1733 1734 /* prepare & issue qc */ 1735 qc->tf = *tf; 1736 if (cdb) 1737 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1738 qc->flags |= ATA_QCFLAG_RESULT_TF; 1739 qc->dma_dir = dma_dir; 1740 if (dma_dir != DMA_NONE) { 1741 unsigned int i, buflen = 0; 1742 struct scatterlist *sg; 1743 1744 for_each_sg(sgl, sg, n_elem, i) 1745 buflen += sg->length; 1746 1747 ata_sg_init(qc, sgl, n_elem); 1748 qc->nbytes = buflen; 1749 } 1750 1751 qc->private_data = &wait; 1752 qc->complete_fn = ata_qc_complete_internal; 1753 1754 ata_qc_issue(qc); 1755 1756 spin_unlock_irqrestore(ap->lock, flags); 1757 1758 if (!timeout) { 1759 if (ata_probe_timeout) 1760 timeout = ata_probe_timeout * 1000; 1761 else { 1762 timeout = ata_internal_cmd_timeout(dev, command); 1763 auto_timeout = 1; 1764 } 1765 } 1766 1767 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1768 1769 ata_port_flush_task(ap); 1770 1771 if (!rc) { 1772 spin_lock_irqsave(ap->lock, flags); 1773 1774 /* We're racing with irq here. If we lose, the 1775 * following test prevents us from completing the qc 1776 * twice. If we win, the port is frozen and will be 1777 * cleaned up by ->post_internal_cmd(). 1778 */ 1779 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1780 qc->err_mask |= AC_ERR_TIMEOUT; 1781 1782 if (ap->ops->error_handler) 1783 ata_port_freeze(ap); 1784 else 1785 ata_qc_complete(qc); 1786 1787 if (ata_msg_warn(ap)) 1788 ata_dev_printk(dev, KERN_WARNING, 1789 "qc timeout (cmd 0x%x)\n", command); 1790 } 1791 1792 spin_unlock_irqrestore(ap->lock, flags); 1793 } 1794 1795 /* do post_internal_cmd */ 1796 if (ap->ops->post_internal_cmd) 1797 ap->ops->post_internal_cmd(qc); 1798 1799 /* perform minimal error analysis */ 1800 if (qc->flags & ATA_QCFLAG_FAILED) { 1801 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1802 qc->err_mask |= AC_ERR_DEV; 1803 1804 if (!qc->err_mask) 1805 qc->err_mask |= AC_ERR_OTHER; 1806 1807 if (qc->err_mask & ~AC_ERR_OTHER) 1808 qc->err_mask &= ~AC_ERR_OTHER; 1809 } 1810 1811 /* finish up */ 1812 spin_lock_irqsave(ap->lock, flags); 1813 1814 *tf = qc->result_tf; 1815 err_mask = qc->err_mask; 1816 1817 ata_qc_free(qc); 1818 link->active_tag = preempted_tag; 1819 link->sactive = preempted_sactive; 1820 ap->qc_active = preempted_qc_active; 1821 ap->nr_active_links = preempted_nr_active_links; 1822 1823 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1824 * Until those drivers are fixed, we detect the condition 1825 * here, fail the command with AC_ERR_SYSTEM and reenable the 1826 * port. 1827 * 1828 * Note that this doesn't change any behavior as internal 1829 * command failure results in disabling the device in the 1830 * higher layer for LLDDs without new reset/EH callbacks. 1831 * 1832 * Kill the following code as soon as those drivers are fixed. 1833 */ 1834 if (ap->flags & ATA_FLAG_DISABLED) { 1835 err_mask |= AC_ERR_SYSTEM; 1836 ata_port_probe(ap); 1837 } 1838 1839 spin_unlock_irqrestore(ap->lock, flags); 1840 1841 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1842 ata_internal_cmd_timed_out(dev, command); 1843 1844 return err_mask; 1845 } 1846 1847 /** 1848 * ata_exec_internal - execute libata internal command 1849 * @dev: Device to which the command is sent 1850 * @tf: Taskfile registers for the command and the result 1851 * @cdb: CDB for packet command 1852 * @dma_dir: Data tranfer direction of the command 1853 * @buf: Data buffer of the command 1854 * @buflen: Length of data buffer 1855 * @timeout: Timeout in msecs (0 for default) 1856 * 1857 * Wrapper around ata_exec_internal_sg() which takes simple 1858 * buffer instead of sg list. 1859 * 1860 * LOCKING: 1861 * None. Should be called with kernel context, might sleep. 1862 * 1863 * RETURNS: 1864 * Zero on success, AC_ERR_* mask on failure 1865 */ 1866 unsigned ata_exec_internal(struct ata_device *dev, 1867 struct ata_taskfile *tf, const u8 *cdb, 1868 int dma_dir, void *buf, unsigned int buflen, 1869 unsigned long timeout) 1870 { 1871 struct scatterlist *psg = NULL, sg; 1872 unsigned int n_elem = 0; 1873 1874 if (dma_dir != DMA_NONE) { 1875 WARN_ON(!buf); 1876 sg_init_one(&sg, buf, buflen); 1877 psg = &sg; 1878 n_elem++; 1879 } 1880 1881 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1882 timeout); 1883 } 1884 1885 /** 1886 * ata_do_simple_cmd - execute simple internal command 1887 * @dev: Device to which the command is sent 1888 * @cmd: Opcode to execute 1889 * 1890 * Execute a 'simple' command, that only consists of the opcode 1891 * 'cmd' itself, without filling any other registers 1892 * 1893 * LOCKING: 1894 * Kernel thread context (may sleep). 1895 * 1896 * RETURNS: 1897 * Zero on success, AC_ERR_* mask on failure 1898 */ 1899 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1900 { 1901 struct ata_taskfile tf; 1902 1903 ata_tf_init(dev, &tf); 1904 1905 tf.command = cmd; 1906 tf.flags |= ATA_TFLAG_DEVICE; 1907 tf.protocol = ATA_PROT_NODATA; 1908 1909 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1910 } 1911 1912 /** 1913 * ata_pio_need_iordy - check if iordy needed 1914 * @adev: ATA device 1915 * 1916 * Check if the current speed of the device requires IORDY. Used 1917 * by various controllers for chip configuration. 1918 */ 1919 1920 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1921 { 1922 /* Controller doesn't support IORDY. Probably a pointless check 1923 as the caller should know this */ 1924 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1925 return 0; 1926 /* PIO3 and higher it is mandatory */ 1927 if (adev->pio_mode > XFER_PIO_2) 1928 return 1; 1929 /* We turn it on when possible */ 1930 if (ata_id_has_iordy(adev->id)) 1931 return 1; 1932 return 0; 1933 } 1934 1935 /** 1936 * ata_pio_mask_no_iordy - Return the non IORDY mask 1937 * @adev: ATA device 1938 * 1939 * Compute the highest mode possible if we are not using iordy. Return 1940 * -1 if no iordy mode is available. 1941 */ 1942 1943 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1944 { 1945 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1946 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1947 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1948 /* Is the speed faster than the drive allows non IORDY ? */ 1949 if (pio) { 1950 /* This is cycle times not frequency - watch the logic! */ 1951 if (pio > 240) /* PIO2 is 240nS per cycle */ 1952 return 3 << ATA_SHIFT_PIO; 1953 return 7 << ATA_SHIFT_PIO; 1954 } 1955 } 1956 return 3 << ATA_SHIFT_PIO; 1957 } 1958 1959 /** 1960 * ata_do_dev_read_id - default ID read method 1961 * @dev: device 1962 * @tf: proposed taskfile 1963 * @id: data buffer 1964 * 1965 * Issue the identify taskfile and hand back the buffer containing 1966 * identify data. For some RAID controllers and for pre ATA devices 1967 * this function is wrapped or replaced by the driver 1968 */ 1969 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1970 struct ata_taskfile *tf, u16 *id) 1971 { 1972 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1973 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1974 } 1975 1976 /** 1977 * ata_dev_read_id - Read ID data from the specified device 1978 * @dev: target device 1979 * @p_class: pointer to class of the target device (may be changed) 1980 * @flags: ATA_READID_* flags 1981 * @id: buffer to read IDENTIFY data into 1982 * 1983 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1984 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1985 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1986 * for pre-ATA4 drives. 1987 * 1988 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1989 * now we abort if we hit that case. 1990 * 1991 * LOCKING: 1992 * Kernel thread context (may sleep) 1993 * 1994 * RETURNS: 1995 * 0 on success, -errno otherwise. 1996 */ 1997 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1998 unsigned int flags, u16 *id) 1999 { 2000 struct ata_port *ap = dev->link->ap; 2001 unsigned int class = *p_class; 2002 struct ata_taskfile tf; 2003 unsigned int err_mask = 0; 2004 const char *reason; 2005 int may_fallback = 1, tried_spinup = 0; 2006 int rc; 2007 2008 if (ata_msg_ctl(ap)) 2009 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2010 2011 retry: 2012 ata_tf_init(dev, &tf); 2013 2014 switch (class) { 2015 case ATA_DEV_ATA: 2016 tf.command = ATA_CMD_ID_ATA; 2017 break; 2018 case ATA_DEV_ATAPI: 2019 tf.command = ATA_CMD_ID_ATAPI; 2020 break; 2021 default: 2022 rc = -ENODEV; 2023 reason = "unsupported class"; 2024 goto err_out; 2025 } 2026 2027 tf.protocol = ATA_PROT_PIO; 2028 2029 /* Some devices choke if TF registers contain garbage. Make 2030 * sure those are properly initialized. 2031 */ 2032 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2033 2034 /* Device presence detection is unreliable on some 2035 * controllers. Always poll IDENTIFY if available. 2036 */ 2037 tf.flags |= ATA_TFLAG_POLLING; 2038 2039 if (ap->ops->read_id) 2040 err_mask = ap->ops->read_id(dev, &tf, id); 2041 else 2042 err_mask = ata_do_dev_read_id(dev, &tf, id); 2043 2044 if (err_mask) { 2045 if (err_mask & AC_ERR_NODEV_HINT) { 2046 ata_dev_printk(dev, KERN_DEBUG, 2047 "NODEV after polling detection\n"); 2048 return -ENOENT; 2049 } 2050 2051 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2052 /* Device or controller might have reported 2053 * the wrong device class. Give a shot at the 2054 * other IDENTIFY if the current one is 2055 * aborted by the device. 2056 */ 2057 if (may_fallback) { 2058 may_fallback = 0; 2059 2060 if (class == ATA_DEV_ATA) 2061 class = ATA_DEV_ATAPI; 2062 else 2063 class = ATA_DEV_ATA; 2064 goto retry; 2065 } 2066 2067 /* Control reaches here iff the device aborted 2068 * both flavors of IDENTIFYs which happens 2069 * sometimes with phantom devices. 2070 */ 2071 ata_dev_printk(dev, KERN_DEBUG, 2072 "both IDENTIFYs aborted, assuming NODEV\n"); 2073 return -ENOENT; 2074 } 2075 2076 rc = -EIO; 2077 reason = "I/O error"; 2078 goto err_out; 2079 } 2080 2081 /* Falling back doesn't make sense if ID data was read 2082 * successfully at least once. 2083 */ 2084 may_fallback = 0; 2085 2086 swap_buf_le16(id, ATA_ID_WORDS); 2087 2088 /* sanity check */ 2089 rc = -EINVAL; 2090 reason = "device reports invalid type"; 2091 2092 if (class == ATA_DEV_ATA) { 2093 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2094 goto err_out; 2095 } else { 2096 if (ata_id_is_ata(id)) 2097 goto err_out; 2098 } 2099 2100 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2101 tried_spinup = 1; 2102 /* 2103 * Drive powered-up in standby mode, and requires a specific 2104 * SET_FEATURES spin-up subcommand before it will accept 2105 * anything other than the original IDENTIFY command. 2106 */ 2107 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2108 if (err_mask && id[2] != 0x738c) { 2109 rc = -EIO; 2110 reason = "SPINUP failed"; 2111 goto err_out; 2112 } 2113 /* 2114 * If the drive initially returned incomplete IDENTIFY info, 2115 * we now must reissue the IDENTIFY command. 2116 */ 2117 if (id[2] == 0x37c8) 2118 goto retry; 2119 } 2120 2121 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2122 /* 2123 * The exact sequence expected by certain pre-ATA4 drives is: 2124 * SRST RESET 2125 * IDENTIFY (optional in early ATA) 2126 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2127 * anything else.. 2128 * Some drives were very specific about that exact sequence. 2129 * 2130 * Note that ATA4 says lba is mandatory so the second check 2131 * shoud never trigger. 2132 */ 2133 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2134 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2135 if (err_mask) { 2136 rc = -EIO; 2137 reason = "INIT_DEV_PARAMS failed"; 2138 goto err_out; 2139 } 2140 2141 /* current CHS translation info (id[53-58]) might be 2142 * changed. reread the identify device info. 2143 */ 2144 flags &= ~ATA_READID_POSTRESET; 2145 goto retry; 2146 } 2147 } 2148 2149 *p_class = class; 2150 2151 return 0; 2152 2153 err_out: 2154 if (ata_msg_warn(ap)) 2155 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2156 "(%s, err_mask=0x%x)\n", reason, err_mask); 2157 return rc; 2158 } 2159 2160 static inline u8 ata_dev_knobble(struct ata_device *dev) 2161 { 2162 struct ata_port *ap = dev->link->ap; 2163 2164 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2165 return 0; 2166 2167 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2168 } 2169 2170 static void ata_dev_config_ncq(struct ata_device *dev, 2171 char *desc, size_t desc_sz) 2172 { 2173 struct ata_port *ap = dev->link->ap; 2174 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2175 2176 if (!ata_id_has_ncq(dev->id)) { 2177 desc[0] = '\0'; 2178 return; 2179 } 2180 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2181 snprintf(desc, desc_sz, "NCQ (not used)"); 2182 return; 2183 } 2184 if (ap->flags & ATA_FLAG_NCQ) { 2185 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2186 dev->flags |= ATA_DFLAG_NCQ; 2187 } 2188 2189 if (hdepth >= ddepth) 2190 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2191 else 2192 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2193 } 2194 2195 /** 2196 * ata_dev_configure - Configure the specified ATA/ATAPI device 2197 * @dev: Target device to configure 2198 * 2199 * Configure @dev according to @dev->id. Generic and low-level 2200 * driver specific fixups are also applied. 2201 * 2202 * LOCKING: 2203 * Kernel thread context (may sleep) 2204 * 2205 * RETURNS: 2206 * 0 on success, -errno otherwise 2207 */ 2208 int ata_dev_configure(struct ata_device *dev) 2209 { 2210 struct ata_port *ap = dev->link->ap; 2211 struct ata_eh_context *ehc = &dev->link->eh_context; 2212 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2213 const u16 *id = dev->id; 2214 unsigned long xfer_mask; 2215 char revbuf[7]; /* XYZ-99\0 */ 2216 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2217 char modelbuf[ATA_ID_PROD_LEN+1]; 2218 int rc; 2219 2220 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2221 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2222 __func__); 2223 return 0; 2224 } 2225 2226 if (ata_msg_probe(ap)) 2227 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2228 2229 /* set horkage */ 2230 dev->horkage |= ata_dev_blacklisted(dev); 2231 ata_force_horkage(dev); 2232 2233 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2234 ata_dev_printk(dev, KERN_INFO, 2235 "unsupported device, disabling\n"); 2236 ata_dev_disable(dev); 2237 return 0; 2238 } 2239 2240 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2241 dev->class == ATA_DEV_ATAPI) { 2242 ata_dev_printk(dev, KERN_WARNING, 2243 "WARNING: ATAPI is %s, device ignored.\n", 2244 atapi_enabled ? "not supported with this driver" 2245 : "disabled"); 2246 ata_dev_disable(dev); 2247 return 0; 2248 } 2249 2250 /* let ACPI work its magic */ 2251 rc = ata_acpi_on_devcfg(dev); 2252 if (rc) 2253 return rc; 2254 2255 /* massage HPA, do it early as it might change IDENTIFY data */ 2256 rc = ata_hpa_resize(dev); 2257 if (rc) 2258 return rc; 2259 2260 /* print device capabilities */ 2261 if (ata_msg_probe(ap)) 2262 ata_dev_printk(dev, KERN_DEBUG, 2263 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2264 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2265 __func__, 2266 id[49], id[82], id[83], id[84], 2267 id[85], id[86], id[87], id[88]); 2268 2269 /* initialize to-be-configured parameters */ 2270 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2271 dev->max_sectors = 0; 2272 dev->cdb_len = 0; 2273 dev->n_sectors = 0; 2274 dev->cylinders = 0; 2275 dev->heads = 0; 2276 dev->sectors = 0; 2277 2278 /* 2279 * common ATA, ATAPI feature tests 2280 */ 2281 2282 /* find max transfer mode; for printk only */ 2283 xfer_mask = ata_id_xfermask(id); 2284 2285 if (ata_msg_probe(ap)) 2286 ata_dump_id(id); 2287 2288 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2289 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2290 sizeof(fwrevbuf)); 2291 2292 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2293 sizeof(modelbuf)); 2294 2295 /* ATA-specific feature tests */ 2296 if (dev->class == ATA_DEV_ATA) { 2297 if (ata_id_is_cfa(id)) { 2298 if (id[162] & 1) /* CPRM may make this media unusable */ 2299 ata_dev_printk(dev, KERN_WARNING, 2300 "supports DRM functions and may " 2301 "not be fully accessable.\n"); 2302 snprintf(revbuf, 7, "CFA"); 2303 } else { 2304 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2305 /* Warn the user if the device has TPM extensions */ 2306 if (ata_id_has_tpm(id)) 2307 ata_dev_printk(dev, KERN_WARNING, 2308 "supports DRM functions and may " 2309 "not be fully accessable.\n"); 2310 } 2311 2312 dev->n_sectors = ata_id_n_sectors(id); 2313 2314 if (dev->id[59] & 0x100) 2315 dev->multi_count = dev->id[59] & 0xff; 2316 2317 if (ata_id_has_lba(id)) { 2318 const char *lba_desc; 2319 char ncq_desc[20]; 2320 2321 lba_desc = "LBA"; 2322 dev->flags |= ATA_DFLAG_LBA; 2323 if (ata_id_has_lba48(id)) { 2324 dev->flags |= ATA_DFLAG_LBA48; 2325 lba_desc = "LBA48"; 2326 2327 if (dev->n_sectors >= (1UL << 28) && 2328 ata_id_has_flush_ext(id)) 2329 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2330 } 2331 2332 /* config NCQ */ 2333 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2334 2335 /* print device info to dmesg */ 2336 if (ata_msg_drv(ap) && print_info) { 2337 ata_dev_printk(dev, KERN_INFO, 2338 "%s: %s, %s, max %s\n", 2339 revbuf, modelbuf, fwrevbuf, 2340 ata_mode_string(xfer_mask)); 2341 ata_dev_printk(dev, KERN_INFO, 2342 "%Lu sectors, multi %u: %s %s\n", 2343 (unsigned long long)dev->n_sectors, 2344 dev->multi_count, lba_desc, ncq_desc); 2345 } 2346 } else { 2347 /* CHS */ 2348 2349 /* Default translation */ 2350 dev->cylinders = id[1]; 2351 dev->heads = id[3]; 2352 dev->sectors = id[6]; 2353 2354 if (ata_id_current_chs_valid(id)) { 2355 /* Current CHS translation is valid. */ 2356 dev->cylinders = id[54]; 2357 dev->heads = id[55]; 2358 dev->sectors = id[56]; 2359 } 2360 2361 /* print device info to dmesg */ 2362 if (ata_msg_drv(ap) && print_info) { 2363 ata_dev_printk(dev, KERN_INFO, 2364 "%s: %s, %s, max %s\n", 2365 revbuf, modelbuf, fwrevbuf, 2366 ata_mode_string(xfer_mask)); 2367 ata_dev_printk(dev, KERN_INFO, 2368 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2369 (unsigned long long)dev->n_sectors, 2370 dev->multi_count, dev->cylinders, 2371 dev->heads, dev->sectors); 2372 } 2373 } 2374 2375 dev->cdb_len = 16; 2376 } 2377 2378 /* ATAPI-specific feature tests */ 2379 else if (dev->class == ATA_DEV_ATAPI) { 2380 const char *cdb_intr_string = ""; 2381 const char *atapi_an_string = ""; 2382 const char *dma_dir_string = ""; 2383 u32 sntf; 2384 2385 rc = atapi_cdb_len(id); 2386 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2387 if (ata_msg_warn(ap)) 2388 ata_dev_printk(dev, KERN_WARNING, 2389 "unsupported CDB len\n"); 2390 rc = -EINVAL; 2391 goto err_out_nosup; 2392 } 2393 dev->cdb_len = (unsigned int) rc; 2394 2395 /* Enable ATAPI AN if both the host and device have 2396 * the support. If PMP is attached, SNTF is required 2397 * to enable ATAPI AN to discern between PHY status 2398 * changed notifications and ATAPI ANs. 2399 */ 2400 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2401 (!sata_pmp_attached(ap) || 2402 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2403 unsigned int err_mask; 2404 2405 /* issue SET feature command to turn this on */ 2406 err_mask = ata_dev_set_feature(dev, 2407 SETFEATURES_SATA_ENABLE, SATA_AN); 2408 if (err_mask) 2409 ata_dev_printk(dev, KERN_ERR, 2410 "failed to enable ATAPI AN " 2411 "(err_mask=0x%x)\n", err_mask); 2412 else { 2413 dev->flags |= ATA_DFLAG_AN; 2414 atapi_an_string = ", ATAPI AN"; 2415 } 2416 } 2417 2418 if (ata_id_cdb_intr(dev->id)) { 2419 dev->flags |= ATA_DFLAG_CDB_INTR; 2420 cdb_intr_string = ", CDB intr"; 2421 } 2422 2423 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2424 dev->flags |= ATA_DFLAG_DMADIR; 2425 dma_dir_string = ", DMADIR"; 2426 } 2427 2428 /* print device info to dmesg */ 2429 if (ata_msg_drv(ap) && print_info) 2430 ata_dev_printk(dev, KERN_INFO, 2431 "ATAPI: %s, %s, max %s%s%s%s\n", 2432 modelbuf, fwrevbuf, 2433 ata_mode_string(xfer_mask), 2434 cdb_intr_string, atapi_an_string, 2435 dma_dir_string); 2436 } 2437 2438 /* determine max_sectors */ 2439 dev->max_sectors = ATA_MAX_SECTORS; 2440 if (dev->flags & ATA_DFLAG_LBA48) 2441 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2442 2443 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2444 if (ata_id_has_hipm(dev->id)) 2445 dev->flags |= ATA_DFLAG_HIPM; 2446 if (ata_id_has_dipm(dev->id)) 2447 dev->flags |= ATA_DFLAG_DIPM; 2448 } 2449 2450 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2451 200 sectors */ 2452 if (ata_dev_knobble(dev)) { 2453 if (ata_msg_drv(ap) && print_info) 2454 ata_dev_printk(dev, KERN_INFO, 2455 "applying bridge limits\n"); 2456 dev->udma_mask &= ATA_UDMA5; 2457 dev->max_sectors = ATA_MAX_SECTORS; 2458 } 2459 2460 if ((dev->class == ATA_DEV_ATAPI) && 2461 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2462 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2463 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2464 } 2465 2466 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2467 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2468 dev->max_sectors); 2469 2470 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2471 dev->horkage |= ATA_HORKAGE_IPM; 2472 2473 /* reset link pm_policy for this port to no pm */ 2474 ap->pm_policy = MAX_PERFORMANCE; 2475 } 2476 2477 if (ap->ops->dev_config) 2478 ap->ops->dev_config(dev); 2479 2480 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2481 /* Let the user know. We don't want to disallow opens for 2482 rescue purposes, or in case the vendor is just a blithering 2483 idiot. Do this after the dev_config call as some controllers 2484 with buggy firmware may want to avoid reporting false device 2485 bugs */ 2486 2487 if (print_info) { 2488 ata_dev_printk(dev, KERN_WARNING, 2489 "Drive reports diagnostics failure. This may indicate a drive\n"); 2490 ata_dev_printk(dev, KERN_WARNING, 2491 "fault or invalid emulation. Contact drive vendor for information.\n"); 2492 } 2493 } 2494 2495 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2496 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2497 "firmware update to be fully functional.\n"); 2498 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2499 "or visit http://ata.wiki.kernel.org.\n"); 2500 } 2501 2502 return 0; 2503 2504 err_out_nosup: 2505 if (ata_msg_probe(ap)) 2506 ata_dev_printk(dev, KERN_DEBUG, 2507 "%s: EXIT, err\n", __func__); 2508 return rc; 2509 } 2510 2511 /** 2512 * ata_cable_40wire - return 40 wire cable type 2513 * @ap: port 2514 * 2515 * Helper method for drivers which want to hardwire 40 wire cable 2516 * detection. 2517 */ 2518 2519 int ata_cable_40wire(struct ata_port *ap) 2520 { 2521 return ATA_CBL_PATA40; 2522 } 2523 2524 /** 2525 * ata_cable_80wire - return 80 wire cable type 2526 * @ap: port 2527 * 2528 * Helper method for drivers which want to hardwire 80 wire cable 2529 * detection. 2530 */ 2531 2532 int ata_cable_80wire(struct ata_port *ap) 2533 { 2534 return ATA_CBL_PATA80; 2535 } 2536 2537 /** 2538 * ata_cable_unknown - return unknown PATA cable. 2539 * @ap: port 2540 * 2541 * Helper method for drivers which have no PATA cable detection. 2542 */ 2543 2544 int ata_cable_unknown(struct ata_port *ap) 2545 { 2546 return ATA_CBL_PATA_UNK; 2547 } 2548 2549 /** 2550 * ata_cable_ignore - return ignored PATA cable. 2551 * @ap: port 2552 * 2553 * Helper method for drivers which don't use cable type to limit 2554 * transfer mode. 2555 */ 2556 int ata_cable_ignore(struct ata_port *ap) 2557 { 2558 return ATA_CBL_PATA_IGN; 2559 } 2560 2561 /** 2562 * ata_cable_sata - return SATA cable type 2563 * @ap: port 2564 * 2565 * Helper method for drivers which have SATA cables 2566 */ 2567 2568 int ata_cable_sata(struct ata_port *ap) 2569 { 2570 return ATA_CBL_SATA; 2571 } 2572 2573 /** 2574 * ata_bus_probe - Reset and probe ATA bus 2575 * @ap: Bus to probe 2576 * 2577 * Master ATA bus probing function. Initiates a hardware-dependent 2578 * bus reset, then attempts to identify any devices found on 2579 * the bus. 2580 * 2581 * LOCKING: 2582 * PCI/etc. bus probe sem. 2583 * 2584 * RETURNS: 2585 * Zero on success, negative errno otherwise. 2586 */ 2587 2588 int ata_bus_probe(struct ata_port *ap) 2589 { 2590 unsigned int classes[ATA_MAX_DEVICES]; 2591 int tries[ATA_MAX_DEVICES]; 2592 int rc; 2593 struct ata_device *dev; 2594 2595 ata_port_probe(ap); 2596 2597 ata_link_for_each_dev(dev, &ap->link) 2598 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2599 2600 retry: 2601 ata_link_for_each_dev(dev, &ap->link) { 2602 /* If we issue an SRST then an ATA drive (not ATAPI) 2603 * may change configuration and be in PIO0 timing. If 2604 * we do a hard reset (or are coming from power on) 2605 * this is true for ATA or ATAPI. Until we've set a 2606 * suitable controller mode we should not touch the 2607 * bus as we may be talking too fast. 2608 */ 2609 dev->pio_mode = XFER_PIO_0; 2610 2611 /* If the controller has a pio mode setup function 2612 * then use it to set the chipset to rights. Don't 2613 * touch the DMA setup as that will be dealt with when 2614 * configuring devices. 2615 */ 2616 if (ap->ops->set_piomode) 2617 ap->ops->set_piomode(ap, dev); 2618 } 2619 2620 /* reset and determine device classes */ 2621 ap->ops->phy_reset(ap); 2622 2623 ata_link_for_each_dev(dev, &ap->link) { 2624 if (!(ap->flags & ATA_FLAG_DISABLED) && 2625 dev->class != ATA_DEV_UNKNOWN) 2626 classes[dev->devno] = dev->class; 2627 else 2628 classes[dev->devno] = ATA_DEV_NONE; 2629 2630 dev->class = ATA_DEV_UNKNOWN; 2631 } 2632 2633 ata_port_probe(ap); 2634 2635 /* read IDENTIFY page and configure devices. We have to do the identify 2636 specific sequence bass-ackwards so that PDIAG- is released by 2637 the slave device */ 2638 2639 ata_link_for_each_dev_reverse(dev, &ap->link) { 2640 if (tries[dev->devno]) 2641 dev->class = classes[dev->devno]; 2642 2643 if (!ata_dev_enabled(dev)) 2644 continue; 2645 2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2647 dev->id); 2648 if (rc) 2649 goto fail; 2650 } 2651 2652 /* Now ask for the cable type as PDIAG- should have been released */ 2653 if (ap->ops->cable_detect) 2654 ap->cbl = ap->ops->cable_detect(ap); 2655 2656 /* We may have SATA bridge glue hiding here irrespective of the 2657 reported cable types and sensed types */ 2658 ata_link_for_each_dev(dev, &ap->link) { 2659 if (!ata_dev_enabled(dev)) 2660 continue; 2661 /* SATA drives indicate we have a bridge. We don't know which 2662 end of the link the bridge is which is a problem */ 2663 if (ata_id_is_sata(dev->id)) 2664 ap->cbl = ATA_CBL_SATA; 2665 } 2666 2667 /* After the identify sequence we can now set up the devices. We do 2668 this in the normal order so that the user doesn't get confused */ 2669 2670 ata_link_for_each_dev(dev, &ap->link) { 2671 if (!ata_dev_enabled(dev)) 2672 continue; 2673 2674 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2675 rc = ata_dev_configure(dev); 2676 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2677 if (rc) 2678 goto fail; 2679 } 2680 2681 /* configure transfer mode */ 2682 rc = ata_set_mode(&ap->link, &dev); 2683 if (rc) 2684 goto fail; 2685 2686 ata_link_for_each_dev(dev, &ap->link) 2687 if (ata_dev_enabled(dev)) 2688 return 0; 2689 2690 /* no device present, disable port */ 2691 ata_port_disable(ap); 2692 return -ENODEV; 2693 2694 fail: 2695 tries[dev->devno]--; 2696 2697 switch (rc) { 2698 case -EINVAL: 2699 /* eeek, something went very wrong, give up */ 2700 tries[dev->devno] = 0; 2701 break; 2702 2703 case -ENODEV: 2704 /* give it just one more chance */ 2705 tries[dev->devno] = min(tries[dev->devno], 1); 2706 case -EIO: 2707 if (tries[dev->devno] == 1) { 2708 /* This is the last chance, better to slow 2709 * down than lose it. 2710 */ 2711 sata_down_spd_limit(&ap->link); 2712 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2713 } 2714 } 2715 2716 if (!tries[dev->devno]) 2717 ata_dev_disable(dev); 2718 2719 goto retry; 2720 } 2721 2722 /** 2723 * ata_port_probe - Mark port as enabled 2724 * @ap: Port for which we indicate enablement 2725 * 2726 * Modify @ap data structure such that the system 2727 * thinks that the entire port is enabled. 2728 * 2729 * LOCKING: host lock, or some other form of 2730 * serialization. 2731 */ 2732 2733 void ata_port_probe(struct ata_port *ap) 2734 { 2735 ap->flags &= ~ATA_FLAG_DISABLED; 2736 } 2737 2738 /** 2739 * sata_print_link_status - Print SATA link status 2740 * @link: SATA link to printk link status about 2741 * 2742 * This function prints link speed and status of a SATA link. 2743 * 2744 * LOCKING: 2745 * None. 2746 */ 2747 static void sata_print_link_status(struct ata_link *link) 2748 { 2749 u32 sstatus, scontrol, tmp; 2750 2751 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2752 return; 2753 sata_scr_read(link, SCR_CONTROL, &scontrol); 2754 2755 if (ata_phys_link_online(link)) { 2756 tmp = (sstatus >> 4) & 0xf; 2757 ata_link_printk(link, KERN_INFO, 2758 "SATA link up %s (SStatus %X SControl %X)\n", 2759 sata_spd_string(tmp), sstatus, scontrol); 2760 } else { 2761 ata_link_printk(link, KERN_INFO, 2762 "SATA link down (SStatus %X SControl %X)\n", 2763 sstatus, scontrol); 2764 } 2765 } 2766 2767 /** 2768 * ata_dev_pair - return other device on cable 2769 * @adev: device 2770 * 2771 * Obtain the other device on the same cable, or if none is 2772 * present NULL is returned 2773 */ 2774 2775 struct ata_device *ata_dev_pair(struct ata_device *adev) 2776 { 2777 struct ata_link *link = adev->link; 2778 struct ata_device *pair = &link->device[1 - adev->devno]; 2779 if (!ata_dev_enabled(pair)) 2780 return NULL; 2781 return pair; 2782 } 2783 2784 /** 2785 * ata_port_disable - Disable port. 2786 * @ap: Port to be disabled. 2787 * 2788 * Modify @ap data structure such that the system 2789 * thinks that the entire port is disabled, and should 2790 * never attempt to probe or communicate with devices 2791 * on this port. 2792 * 2793 * LOCKING: host lock, or some other form of 2794 * serialization. 2795 */ 2796 2797 void ata_port_disable(struct ata_port *ap) 2798 { 2799 ap->link.device[0].class = ATA_DEV_NONE; 2800 ap->link.device[1].class = ATA_DEV_NONE; 2801 ap->flags |= ATA_FLAG_DISABLED; 2802 } 2803 2804 /** 2805 * sata_down_spd_limit - adjust SATA spd limit downward 2806 * @link: Link to adjust SATA spd limit for 2807 * 2808 * Adjust SATA spd limit of @link downward. Note that this 2809 * function only adjusts the limit. The change must be applied 2810 * using sata_set_spd(). 2811 * 2812 * LOCKING: 2813 * Inherited from caller. 2814 * 2815 * RETURNS: 2816 * 0 on success, negative errno on failure 2817 */ 2818 int sata_down_spd_limit(struct ata_link *link) 2819 { 2820 u32 sstatus, spd, mask; 2821 int rc, highbit; 2822 2823 if (!sata_scr_valid(link)) 2824 return -EOPNOTSUPP; 2825 2826 /* If SCR can be read, use it to determine the current SPD. 2827 * If not, use cached value in link->sata_spd. 2828 */ 2829 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2830 if (rc == 0) 2831 spd = (sstatus >> 4) & 0xf; 2832 else 2833 spd = link->sata_spd; 2834 2835 mask = link->sata_spd_limit; 2836 if (mask <= 1) 2837 return -EINVAL; 2838 2839 /* unconditionally mask off the highest bit */ 2840 highbit = fls(mask) - 1; 2841 mask &= ~(1 << highbit); 2842 2843 /* Mask off all speeds higher than or equal to the current 2844 * one. Force 1.5Gbps if current SPD is not available. 2845 */ 2846 if (spd > 1) 2847 mask &= (1 << (spd - 1)) - 1; 2848 else 2849 mask &= 1; 2850 2851 /* were we already at the bottom? */ 2852 if (!mask) 2853 return -EINVAL; 2854 2855 link->sata_spd_limit = mask; 2856 2857 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2858 sata_spd_string(fls(mask))); 2859 2860 return 0; 2861 } 2862 2863 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2864 { 2865 struct ata_link *host_link = &link->ap->link; 2866 u32 limit, target, spd; 2867 2868 limit = link->sata_spd_limit; 2869 2870 /* Don't configure downstream link faster than upstream link. 2871 * It doesn't speed up anything and some PMPs choke on such 2872 * configuration. 2873 */ 2874 if (!ata_is_host_link(link) && host_link->sata_spd) 2875 limit &= (1 << host_link->sata_spd) - 1; 2876 2877 if (limit == UINT_MAX) 2878 target = 0; 2879 else 2880 target = fls(limit); 2881 2882 spd = (*scontrol >> 4) & 0xf; 2883 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2884 2885 return spd != target; 2886 } 2887 2888 /** 2889 * sata_set_spd_needed - is SATA spd configuration needed 2890 * @link: Link in question 2891 * 2892 * Test whether the spd limit in SControl matches 2893 * @link->sata_spd_limit. This function is used to determine 2894 * whether hardreset is necessary to apply SATA spd 2895 * configuration. 2896 * 2897 * LOCKING: 2898 * Inherited from caller. 2899 * 2900 * RETURNS: 2901 * 1 if SATA spd configuration is needed, 0 otherwise. 2902 */ 2903 static int sata_set_spd_needed(struct ata_link *link) 2904 { 2905 u32 scontrol; 2906 2907 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2908 return 1; 2909 2910 return __sata_set_spd_needed(link, &scontrol); 2911 } 2912 2913 /** 2914 * sata_set_spd - set SATA spd according to spd limit 2915 * @link: Link to set SATA spd for 2916 * 2917 * Set SATA spd of @link according to sata_spd_limit. 2918 * 2919 * LOCKING: 2920 * Inherited from caller. 2921 * 2922 * RETURNS: 2923 * 0 if spd doesn't need to be changed, 1 if spd has been 2924 * changed. Negative errno if SCR registers are inaccessible. 2925 */ 2926 int sata_set_spd(struct ata_link *link) 2927 { 2928 u32 scontrol; 2929 int rc; 2930 2931 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2932 return rc; 2933 2934 if (!__sata_set_spd_needed(link, &scontrol)) 2935 return 0; 2936 2937 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2938 return rc; 2939 2940 return 1; 2941 } 2942 2943 /* 2944 * This mode timing computation functionality is ported over from 2945 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2946 */ 2947 /* 2948 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2949 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2950 * for UDMA6, which is currently supported only by Maxtor drives. 2951 * 2952 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2953 */ 2954 2955 static const struct ata_timing ata_timing[] = { 2956 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2957 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2958 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2959 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2960 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2961 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2962 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2963 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2964 2965 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2966 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2967 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2968 2969 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2970 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2971 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2972 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2973 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2974 2975 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2976 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2977 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2978 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2979 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2980 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2981 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2982 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2983 2984 { 0xFF } 2985 }; 2986 2987 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2988 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2989 2990 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2991 { 2992 q->setup = EZ(t->setup * 1000, T); 2993 q->act8b = EZ(t->act8b * 1000, T); 2994 q->rec8b = EZ(t->rec8b * 1000, T); 2995 q->cyc8b = EZ(t->cyc8b * 1000, T); 2996 q->active = EZ(t->active * 1000, T); 2997 q->recover = EZ(t->recover * 1000, T); 2998 q->cycle = EZ(t->cycle * 1000, T); 2999 q->udma = EZ(t->udma * 1000, UT); 3000 } 3001 3002 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3003 struct ata_timing *m, unsigned int what) 3004 { 3005 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3006 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3007 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3008 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3009 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3010 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3011 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3012 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3013 } 3014 3015 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3016 { 3017 const struct ata_timing *t = ata_timing; 3018 3019 while (xfer_mode > t->mode) 3020 t++; 3021 3022 if (xfer_mode == t->mode) 3023 return t; 3024 return NULL; 3025 } 3026 3027 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3028 struct ata_timing *t, int T, int UT) 3029 { 3030 const struct ata_timing *s; 3031 struct ata_timing p; 3032 3033 /* 3034 * Find the mode. 3035 */ 3036 3037 if (!(s = ata_timing_find_mode(speed))) 3038 return -EINVAL; 3039 3040 memcpy(t, s, sizeof(*s)); 3041 3042 /* 3043 * If the drive is an EIDE drive, it can tell us it needs extended 3044 * PIO/MW_DMA cycle timing. 3045 */ 3046 3047 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3048 memset(&p, 0, sizeof(p)); 3049 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3050 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3051 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3052 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3053 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3054 } 3055 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3056 } 3057 3058 /* 3059 * Convert the timing to bus clock counts. 3060 */ 3061 3062 ata_timing_quantize(t, t, T, UT); 3063 3064 /* 3065 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3066 * S.M.A.R.T * and some other commands. We have to ensure that the 3067 * DMA cycle timing is slower/equal than the fastest PIO timing. 3068 */ 3069 3070 if (speed > XFER_PIO_6) { 3071 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3072 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3073 } 3074 3075 /* 3076 * Lengthen active & recovery time so that cycle time is correct. 3077 */ 3078 3079 if (t->act8b + t->rec8b < t->cyc8b) { 3080 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3081 t->rec8b = t->cyc8b - t->act8b; 3082 } 3083 3084 if (t->active + t->recover < t->cycle) { 3085 t->active += (t->cycle - (t->active + t->recover)) / 2; 3086 t->recover = t->cycle - t->active; 3087 } 3088 3089 /* In a few cases quantisation may produce enough errors to 3090 leave t->cycle too low for the sum of active and recovery 3091 if so we must correct this */ 3092 if (t->active + t->recover > t->cycle) 3093 t->cycle = t->active + t->recover; 3094 3095 return 0; 3096 } 3097 3098 /** 3099 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3100 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3101 * @cycle: cycle duration in ns 3102 * 3103 * Return matching xfer mode for @cycle. The returned mode is of 3104 * the transfer type specified by @xfer_shift. If @cycle is too 3105 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3106 * than the fastest known mode, the fasted mode is returned. 3107 * 3108 * LOCKING: 3109 * None. 3110 * 3111 * RETURNS: 3112 * Matching xfer_mode, 0xff if no match found. 3113 */ 3114 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3115 { 3116 u8 base_mode = 0xff, last_mode = 0xff; 3117 const struct ata_xfer_ent *ent; 3118 const struct ata_timing *t; 3119 3120 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3121 if (ent->shift == xfer_shift) 3122 base_mode = ent->base; 3123 3124 for (t = ata_timing_find_mode(base_mode); 3125 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3126 unsigned short this_cycle; 3127 3128 switch (xfer_shift) { 3129 case ATA_SHIFT_PIO: 3130 case ATA_SHIFT_MWDMA: 3131 this_cycle = t->cycle; 3132 break; 3133 case ATA_SHIFT_UDMA: 3134 this_cycle = t->udma; 3135 break; 3136 default: 3137 return 0xff; 3138 } 3139 3140 if (cycle > this_cycle) 3141 break; 3142 3143 last_mode = t->mode; 3144 } 3145 3146 return last_mode; 3147 } 3148 3149 /** 3150 * ata_down_xfermask_limit - adjust dev xfer masks downward 3151 * @dev: Device to adjust xfer masks 3152 * @sel: ATA_DNXFER_* selector 3153 * 3154 * Adjust xfer masks of @dev downward. Note that this function 3155 * does not apply the change. Invoking ata_set_mode() afterwards 3156 * will apply the limit. 3157 * 3158 * LOCKING: 3159 * Inherited from caller. 3160 * 3161 * RETURNS: 3162 * 0 on success, negative errno on failure 3163 */ 3164 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3165 { 3166 char buf[32]; 3167 unsigned long orig_mask, xfer_mask; 3168 unsigned long pio_mask, mwdma_mask, udma_mask; 3169 int quiet, highbit; 3170 3171 quiet = !!(sel & ATA_DNXFER_QUIET); 3172 sel &= ~ATA_DNXFER_QUIET; 3173 3174 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3175 dev->mwdma_mask, 3176 dev->udma_mask); 3177 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3178 3179 switch (sel) { 3180 case ATA_DNXFER_PIO: 3181 highbit = fls(pio_mask) - 1; 3182 pio_mask &= ~(1 << highbit); 3183 break; 3184 3185 case ATA_DNXFER_DMA: 3186 if (udma_mask) { 3187 highbit = fls(udma_mask) - 1; 3188 udma_mask &= ~(1 << highbit); 3189 if (!udma_mask) 3190 return -ENOENT; 3191 } else if (mwdma_mask) { 3192 highbit = fls(mwdma_mask) - 1; 3193 mwdma_mask &= ~(1 << highbit); 3194 if (!mwdma_mask) 3195 return -ENOENT; 3196 } 3197 break; 3198 3199 case ATA_DNXFER_40C: 3200 udma_mask &= ATA_UDMA_MASK_40C; 3201 break; 3202 3203 case ATA_DNXFER_FORCE_PIO0: 3204 pio_mask &= 1; 3205 case ATA_DNXFER_FORCE_PIO: 3206 mwdma_mask = 0; 3207 udma_mask = 0; 3208 break; 3209 3210 default: 3211 BUG(); 3212 } 3213 3214 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3215 3216 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3217 return -ENOENT; 3218 3219 if (!quiet) { 3220 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3221 snprintf(buf, sizeof(buf), "%s:%s", 3222 ata_mode_string(xfer_mask), 3223 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3224 else 3225 snprintf(buf, sizeof(buf), "%s", 3226 ata_mode_string(xfer_mask)); 3227 3228 ata_dev_printk(dev, KERN_WARNING, 3229 "limiting speed to %s\n", buf); 3230 } 3231 3232 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3233 &dev->udma_mask); 3234 3235 return 0; 3236 } 3237 3238 static int ata_dev_set_mode(struct ata_device *dev) 3239 { 3240 struct ata_eh_context *ehc = &dev->link->eh_context; 3241 const char *dev_err_whine = ""; 3242 int ign_dev_err = 0; 3243 unsigned int err_mask; 3244 int rc; 3245 3246 dev->flags &= ~ATA_DFLAG_PIO; 3247 if (dev->xfer_shift == ATA_SHIFT_PIO) 3248 dev->flags |= ATA_DFLAG_PIO; 3249 3250 err_mask = ata_dev_set_xfermode(dev); 3251 3252 if (err_mask & ~AC_ERR_DEV) 3253 goto fail; 3254 3255 /* revalidate */ 3256 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3257 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3258 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3259 if (rc) 3260 return rc; 3261 3262 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3263 /* Old CFA may refuse this command, which is just fine */ 3264 if (ata_id_is_cfa(dev->id)) 3265 ign_dev_err = 1; 3266 /* Catch several broken garbage emulations plus some pre 3267 ATA devices */ 3268 if (ata_id_major_version(dev->id) == 0 && 3269 dev->pio_mode <= XFER_PIO_2) 3270 ign_dev_err = 1; 3271 /* Some very old devices and some bad newer ones fail 3272 any kind of SET_XFERMODE request but support PIO0-2 3273 timings and no IORDY */ 3274 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3275 ign_dev_err = 1; 3276 } 3277 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3278 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3279 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3280 dev->dma_mode == XFER_MW_DMA_0 && 3281 (dev->id[63] >> 8) & 1) 3282 ign_dev_err = 1; 3283 3284 /* if the device is actually configured correctly, ignore dev err */ 3285 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3286 ign_dev_err = 1; 3287 3288 if (err_mask & AC_ERR_DEV) { 3289 if (!ign_dev_err) 3290 goto fail; 3291 else 3292 dev_err_whine = " (device error ignored)"; 3293 } 3294 3295 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3296 dev->xfer_shift, (int)dev->xfer_mode); 3297 3298 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3299 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3300 dev_err_whine); 3301 3302 return 0; 3303 3304 fail: 3305 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3306 "(err_mask=0x%x)\n", err_mask); 3307 return -EIO; 3308 } 3309 3310 /** 3311 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3312 * @link: link on which timings will be programmed 3313 * @r_failed_dev: out parameter for failed device 3314 * 3315 * Standard implementation of the function used to tune and set 3316 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3317 * ata_dev_set_mode() fails, pointer to the failing device is 3318 * returned in @r_failed_dev. 3319 * 3320 * LOCKING: 3321 * PCI/etc. bus probe sem. 3322 * 3323 * RETURNS: 3324 * 0 on success, negative errno otherwise 3325 */ 3326 3327 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3328 { 3329 struct ata_port *ap = link->ap; 3330 struct ata_device *dev; 3331 int rc = 0, used_dma = 0, found = 0; 3332 3333 /* step 1: calculate xfer_mask */ 3334 ata_link_for_each_dev(dev, link) { 3335 unsigned long pio_mask, dma_mask; 3336 unsigned int mode_mask; 3337 3338 if (!ata_dev_enabled(dev)) 3339 continue; 3340 3341 mode_mask = ATA_DMA_MASK_ATA; 3342 if (dev->class == ATA_DEV_ATAPI) 3343 mode_mask = ATA_DMA_MASK_ATAPI; 3344 else if (ata_id_is_cfa(dev->id)) 3345 mode_mask = ATA_DMA_MASK_CFA; 3346 3347 ata_dev_xfermask(dev); 3348 ata_force_xfermask(dev); 3349 3350 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3351 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3352 3353 if (libata_dma_mask & mode_mask) 3354 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3355 else 3356 dma_mask = 0; 3357 3358 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3359 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3360 3361 found = 1; 3362 if (ata_dma_enabled(dev)) 3363 used_dma = 1; 3364 } 3365 if (!found) 3366 goto out; 3367 3368 /* step 2: always set host PIO timings */ 3369 ata_link_for_each_dev(dev, link) { 3370 if (!ata_dev_enabled(dev)) 3371 continue; 3372 3373 if (dev->pio_mode == 0xff) { 3374 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3375 rc = -EINVAL; 3376 goto out; 3377 } 3378 3379 dev->xfer_mode = dev->pio_mode; 3380 dev->xfer_shift = ATA_SHIFT_PIO; 3381 if (ap->ops->set_piomode) 3382 ap->ops->set_piomode(ap, dev); 3383 } 3384 3385 /* step 3: set host DMA timings */ 3386 ata_link_for_each_dev(dev, link) { 3387 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev)) 3388 continue; 3389 3390 dev->xfer_mode = dev->dma_mode; 3391 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3392 if (ap->ops->set_dmamode) 3393 ap->ops->set_dmamode(ap, dev); 3394 } 3395 3396 /* step 4: update devices' xfer mode */ 3397 ata_link_for_each_dev(dev, link) { 3398 /* don't update suspended devices' xfer mode */ 3399 if (!ata_dev_enabled(dev)) 3400 continue; 3401 3402 rc = ata_dev_set_mode(dev); 3403 if (rc) 3404 goto out; 3405 } 3406 3407 /* Record simplex status. If we selected DMA then the other 3408 * host channels are not permitted to do so. 3409 */ 3410 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3411 ap->host->simplex_claimed = ap; 3412 3413 out: 3414 if (rc) 3415 *r_failed_dev = dev; 3416 return rc; 3417 } 3418 3419 /** 3420 * ata_wait_ready - wait for link to become ready 3421 * @link: link to be waited on 3422 * @deadline: deadline jiffies for the operation 3423 * @check_ready: callback to check link readiness 3424 * 3425 * Wait for @link to become ready. @check_ready should return 3426 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3427 * link doesn't seem to be occupied, other errno for other error 3428 * conditions. 3429 * 3430 * Transient -ENODEV conditions are allowed for 3431 * ATA_TMOUT_FF_WAIT. 3432 * 3433 * LOCKING: 3434 * EH context. 3435 * 3436 * RETURNS: 3437 * 0 if @linke is ready before @deadline; otherwise, -errno. 3438 */ 3439 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3440 int (*check_ready)(struct ata_link *link)) 3441 { 3442 unsigned long start = jiffies; 3443 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3444 int warned = 0; 3445 3446 /* Slave readiness can't be tested separately from master. On 3447 * M/S emulation configuration, this function should be called 3448 * only on the master and it will handle both master and slave. 3449 */ 3450 WARN_ON(link == link->ap->slave_link); 3451 3452 if (time_after(nodev_deadline, deadline)) 3453 nodev_deadline = deadline; 3454 3455 while (1) { 3456 unsigned long now = jiffies; 3457 int ready, tmp; 3458 3459 ready = tmp = check_ready(link); 3460 if (ready > 0) 3461 return 0; 3462 3463 /* -ENODEV could be transient. Ignore -ENODEV if link 3464 * is online. Also, some SATA devices take a long 3465 * time to clear 0xff after reset. For example, 3466 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3467 * GoVault needs even more than that. Wait for 3468 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3469 * 3470 * Note that some PATA controllers (pata_ali) explode 3471 * if status register is read more than once when 3472 * there's no device attached. 3473 */ 3474 if (ready == -ENODEV) { 3475 if (ata_link_online(link)) 3476 ready = 0; 3477 else if ((link->ap->flags & ATA_FLAG_SATA) && 3478 !ata_link_offline(link) && 3479 time_before(now, nodev_deadline)) 3480 ready = 0; 3481 } 3482 3483 if (ready) 3484 return ready; 3485 if (time_after(now, deadline)) 3486 return -EBUSY; 3487 3488 if (!warned && time_after(now, start + 5 * HZ) && 3489 (deadline - now > 3 * HZ)) { 3490 ata_link_printk(link, KERN_WARNING, 3491 "link is slow to respond, please be patient " 3492 "(ready=%d)\n", tmp); 3493 warned = 1; 3494 } 3495 3496 msleep(50); 3497 } 3498 } 3499 3500 /** 3501 * ata_wait_after_reset - wait for link to become ready after reset 3502 * @link: link to be waited on 3503 * @deadline: deadline jiffies for the operation 3504 * @check_ready: callback to check link readiness 3505 * 3506 * Wait for @link to become ready after reset. 3507 * 3508 * LOCKING: 3509 * EH context. 3510 * 3511 * RETURNS: 3512 * 0 if @linke is ready before @deadline; otherwise, -errno. 3513 */ 3514 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3515 int (*check_ready)(struct ata_link *link)) 3516 { 3517 msleep(ATA_WAIT_AFTER_RESET); 3518 3519 return ata_wait_ready(link, deadline, check_ready); 3520 } 3521 3522 /** 3523 * sata_link_debounce - debounce SATA phy status 3524 * @link: ATA link to debounce SATA phy status for 3525 * @params: timing parameters { interval, duratinon, timeout } in msec 3526 * @deadline: deadline jiffies for the operation 3527 * 3528 * Make sure SStatus of @link reaches stable state, determined by 3529 * holding the same value where DET is not 1 for @duration polled 3530 * every @interval, before @timeout. Timeout constraints the 3531 * beginning of the stable state. Because DET gets stuck at 1 on 3532 * some controllers after hot unplugging, this functions waits 3533 * until timeout then returns 0 if DET is stable at 1. 3534 * 3535 * @timeout is further limited by @deadline. The sooner of the 3536 * two is used. 3537 * 3538 * LOCKING: 3539 * Kernel thread context (may sleep) 3540 * 3541 * RETURNS: 3542 * 0 on success, -errno on failure. 3543 */ 3544 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3545 unsigned long deadline) 3546 { 3547 unsigned long interval = params[0]; 3548 unsigned long duration = params[1]; 3549 unsigned long last_jiffies, t; 3550 u32 last, cur; 3551 int rc; 3552 3553 t = ata_deadline(jiffies, params[2]); 3554 if (time_before(t, deadline)) 3555 deadline = t; 3556 3557 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3558 return rc; 3559 cur &= 0xf; 3560 3561 last = cur; 3562 last_jiffies = jiffies; 3563 3564 while (1) { 3565 msleep(interval); 3566 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3567 return rc; 3568 cur &= 0xf; 3569 3570 /* DET stable? */ 3571 if (cur == last) { 3572 if (cur == 1 && time_before(jiffies, deadline)) 3573 continue; 3574 if (time_after(jiffies, 3575 ata_deadline(last_jiffies, duration))) 3576 return 0; 3577 continue; 3578 } 3579 3580 /* unstable, start over */ 3581 last = cur; 3582 last_jiffies = jiffies; 3583 3584 /* Check deadline. If debouncing failed, return 3585 * -EPIPE to tell upper layer to lower link speed. 3586 */ 3587 if (time_after(jiffies, deadline)) 3588 return -EPIPE; 3589 } 3590 } 3591 3592 /** 3593 * sata_link_resume - resume SATA link 3594 * @link: ATA link to resume SATA 3595 * @params: timing parameters { interval, duratinon, timeout } in msec 3596 * @deadline: deadline jiffies for the operation 3597 * 3598 * Resume SATA phy @link and debounce it. 3599 * 3600 * LOCKING: 3601 * Kernel thread context (may sleep) 3602 * 3603 * RETURNS: 3604 * 0 on success, -errno on failure. 3605 */ 3606 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3607 unsigned long deadline) 3608 { 3609 u32 scontrol, serror; 3610 int rc; 3611 3612 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3613 return rc; 3614 3615 scontrol = (scontrol & 0x0f0) | 0x300; 3616 3617 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3618 return rc; 3619 3620 /* Some PHYs react badly if SStatus is pounded immediately 3621 * after resuming. Delay 200ms before debouncing. 3622 */ 3623 msleep(200); 3624 3625 if ((rc = sata_link_debounce(link, params, deadline))) 3626 return rc; 3627 3628 /* clear SError, some PHYs require this even for SRST to work */ 3629 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3630 rc = sata_scr_write(link, SCR_ERROR, serror); 3631 3632 return rc != -EINVAL ? rc : 0; 3633 } 3634 3635 /** 3636 * ata_std_prereset - prepare for reset 3637 * @link: ATA link to be reset 3638 * @deadline: deadline jiffies for the operation 3639 * 3640 * @link is about to be reset. Initialize it. Failure from 3641 * prereset makes libata abort whole reset sequence and give up 3642 * that port, so prereset should be best-effort. It does its 3643 * best to prepare for reset sequence but if things go wrong, it 3644 * should just whine, not fail. 3645 * 3646 * LOCKING: 3647 * Kernel thread context (may sleep) 3648 * 3649 * RETURNS: 3650 * 0 on success, -errno otherwise. 3651 */ 3652 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3653 { 3654 struct ata_port *ap = link->ap; 3655 struct ata_eh_context *ehc = &link->eh_context; 3656 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3657 int rc; 3658 3659 /* if we're about to do hardreset, nothing more to do */ 3660 if (ehc->i.action & ATA_EH_HARDRESET) 3661 return 0; 3662 3663 /* if SATA, resume link */ 3664 if (ap->flags & ATA_FLAG_SATA) { 3665 rc = sata_link_resume(link, timing, deadline); 3666 /* whine about phy resume failure but proceed */ 3667 if (rc && rc != -EOPNOTSUPP) 3668 ata_link_printk(link, KERN_WARNING, "failed to resume " 3669 "link for reset (errno=%d)\n", rc); 3670 } 3671 3672 /* no point in trying softreset on offline link */ 3673 if (ata_phys_link_offline(link)) 3674 ehc->i.action &= ~ATA_EH_SOFTRESET; 3675 3676 return 0; 3677 } 3678 3679 /** 3680 * sata_link_hardreset - reset link via SATA phy reset 3681 * @link: link to reset 3682 * @timing: timing parameters { interval, duratinon, timeout } in msec 3683 * @deadline: deadline jiffies for the operation 3684 * @online: optional out parameter indicating link onlineness 3685 * @check_ready: optional callback to check link readiness 3686 * 3687 * SATA phy-reset @link using DET bits of SControl register. 3688 * After hardreset, link readiness is waited upon using 3689 * ata_wait_ready() if @check_ready is specified. LLDs are 3690 * allowed to not specify @check_ready and wait itself after this 3691 * function returns. Device classification is LLD's 3692 * responsibility. 3693 * 3694 * *@online is set to one iff reset succeeded and @link is online 3695 * after reset. 3696 * 3697 * LOCKING: 3698 * Kernel thread context (may sleep) 3699 * 3700 * RETURNS: 3701 * 0 on success, -errno otherwise. 3702 */ 3703 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3704 unsigned long deadline, 3705 bool *online, int (*check_ready)(struct ata_link *)) 3706 { 3707 u32 scontrol; 3708 int rc; 3709 3710 DPRINTK("ENTER\n"); 3711 3712 if (online) 3713 *online = false; 3714 3715 if (sata_set_spd_needed(link)) { 3716 /* SATA spec says nothing about how to reconfigure 3717 * spd. To be on the safe side, turn off phy during 3718 * reconfiguration. This works for at least ICH7 AHCI 3719 * and Sil3124. 3720 */ 3721 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3722 goto out; 3723 3724 scontrol = (scontrol & 0x0f0) | 0x304; 3725 3726 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3727 goto out; 3728 3729 sata_set_spd(link); 3730 } 3731 3732 /* issue phy wake/reset */ 3733 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3734 goto out; 3735 3736 scontrol = (scontrol & 0x0f0) | 0x301; 3737 3738 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3739 goto out; 3740 3741 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3742 * 10.4.2 says at least 1 ms. 3743 */ 3744 msleep(1); 3745 3746 /* bring link back */ 3747 rc = sata_link_resume(link, timing, deadline); 3748 if (rc) 3749 goto out; 3750 /* if link is offline nothing more to do */ 3751 if (ata_phys_link_offline(link)) 3752 goto out; 3753 3754 /* Link is online. From this point, -ENODEV too is an error. */ 3755 if (online) 3756 *online = true; 3757 3758 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3759 /* If PMP is supported, we have to do follow-up SRST. 3760 * Some PMPs don't send D2H Reg FIS after hardreset if 3761 * the first port is empty. Wait only for 3762 * ATA_TMOUT_PMP_SRST_WAIT. 3763 */ 3764 if (check_ready) { 3765 unsigned long pmp_deadline; 3766 3767 pmp_deadline = ata_deadline(jiffies, 3768 ATA_TMOUT_PMP_SRST_WAIT); 3769 if (time_after(pmp_deadline, deadline)) 3770 pmp_deadline = deadline; 3771 ata_wait_ready(link, pmp_deadline, check_ready); 3772 } 3773 rc = -EAGAIN; 3774 goto out; 3775 } 3776 3777 rc = 0; 3778 if (check_ready) 3779 rc = ata_wait_ready(link, deadline, check_ready); 3780 out: 3781 if (rc && rc != -EAGAIN) { 3782 /* online is set iff link is online && reset succeeded */ 3783 if (online) 3784 *online = false; 3785 ata_link_printk(link, KERN_ERR, 3786 "COMRESET failed (errno=%d)\n", rc); 3787 } 3788 DPRINTK("EXIT, rc=%d\n", rc); 3789 return rc; 3790 } 3791 3792 /** 3793 * sata_std_hardreset - COMRESET w/o waiting or classification 3794 * @link: link to reset 3795 * @class: resulting class of attached device 3796 * @deadline: deadline jiffies for the operation 3797 * 3798 * Standard SATA COMRESET w/o waiting or classification. 3799 * 3800 * LOCKING: 3801 * Kernel thread context (may sleep) 3802 * 3803 * RETURNS: 3804 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3805 */ 3806 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3807 unsigned long deadline) 3808 { 3809 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3810 bool online; 3811 int rc; 3812 3813 /* do hardreset */ 3814 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3815 return online ? -EAGAIN : rc; 3816 } 3817 3818 /** 3819 * ata_std_postreset - standard postreset callback 3820 * @link: the target ata_link 3821 * @classes: classes of attached devices 3822 * 3823 * This function is invoked after a successful reset. Note that 3824 * the device might have been reset more than once using 3825 * different reset methods before postreset is invoked. 3826 * 3827 * LOCKING: 3828 * Kernel thread context (may sleep) 3829 */ 3830 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3831 { 3832 u32 serror; 3833 3834 DPRINTK("ENTER\n"); 3835 3836 /* reset complete, clear SError */ 3837 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3838 sata_scr_write(link, SCR_ERROR, serror); 3839 3840 /* print link status */ 3841 sata_print_link_status(link); 3842 3843 DPRINTK("EXIT\n"); 3844 } 3845 3846 /** 3847 * ata_dev_same_device - Determine whether new ID matches configured device 3848 * @dev: device to compare against 3849 * @new_class: class of the new device 3850 * @new_id: IDENTIFY page of the new device 3851 * 3852 * Compare @new_class and @new_id against @dev and determine 3853 * whether @dev is the device indicated by @new_class and 3854 * @new_id. 3855 * 3856 * LOCKING: 3857 * None. 3858 * 3859 * RETURNS: 3860 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3861 */ 3862 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3863 const u16 *new_id) 3864 { 3865 const u16 *old_id = dev->id; 3866 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3867 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3868 3869 if (dev->class != new_class) { 3870 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3871 dev->class, new_class); 3872 return 0; 3873 } 3874 3875 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3876 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3877 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3878 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3879 3880 if (strcmp(model[0], model[1])) { 3881 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3882 "'%s' != '%s'\n", model[0], model[1]); 3883 return 0; 3884 } 3885 3886 if (strcmp(serial[0], serial[1])) { 3887 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3888 "'%s' != '%s'\n", serial[0], serial[1]); 3889 return 0; 3890 } 3891 3892 return 1; 3893 } 3894 3895 /** 3896 * ata_dev_reread_id - Re-read IDENTIFY data 3897 * @dev: target ATA device 3898 * @readid_flags: read ID flags 3899 * 3900 * Re-read IDENTIFY page and make sure @dev is still attached to 3901 * the port. 3902 * 3903 * LOCKING: 3904 * Kernel thread context (may sleep) 3905 * 3906 * RETURNS: 3907 * 0 on success, negative errno otherwise 3908 */ 3909 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3910 { 3911 unsigned int class = dev->class; 3912 u16 *id = (void *)dev->link->ap->sector_buf; 3913 int rc; 3914 3915 /* read ID data */ 3916 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3917 if (rc) 3918 return rc; 3919 3920 /* is the device still there? */ 3921 if (!ata_dev_same_device(dev, class, id)) 3922 return -ENODEV; 3923 3924 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3925 return 0; 3926 } 3927 3928 /** 3929 * ata_dev_revalidate - Revalidate ATA device 3930 * @dev: device to revalidate 3931 * @new_class: new class code 3932 * @readid_flags: read ID flags 3933 * 3934 * Re-read IDENTIFY page, make sure @dev is still attached to the 3935 * port and reconfigure it according to the new IDENTIFY page. 3936 * 3937 * LOCKING: 3938 * Kernel thread context (may sleep) 3939 * 3940 * RETURNS: 3941 * 0 on success, negative errno otherwise 3942 */ 3943 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3944 unsigned int readid_flags) 3945 { 3946 u64 n_sectors = dev->n_sectors; 3947 int rc; 3948 3949 if (!ata_dev_enabled(dev)) 3950 return -ENODEV; 3951 3952 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3953 if (ata_class_enabled(new_class) && 3954 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3955 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3956 dev->class, new_class); 3957 rc = -ENODEV; 3958 goto fail; 3959 } 3960 3961 /* re-read ID */ 3962 rc = ata_dev_reread_id(dev, readid_flags); 3963 if (rc) 3964 goto fail; 3965 3966 /* configure device according to the new ID */ 3967 rc = ata_dev_configure(dev); 3968 if (rc) 3969 goto fail; 3970 3971 /* verify n_sectors hasn't changed */ 3972 if (dev->class == ATA_DEV_ATA && n_sectors && 3973 dev->n_sectors != n_sectors) { 3974 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3975 "%llu != %llu\n", 3976 (unsigned long long)n_sectors, 3977 (unsigned long long)dev->n_sectors); 3978 3979 /* restore original n_sectors */ 3980 dev->n_sectors = n_sectors; 3981 3982 rc = -ENODEV; 3983 goto fail; 3984 } 3985 3986 return 0; 3987 3988 fail: 3989 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3990 return rc; 3991 } 3992 3993 struct ata_blacklist_entry { 3994 const char *model_num; 3995 const char *model_rev; 3996 unsigned long horkage; 3997 }; 3998 3999 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4000 /* Devices with DMA related problems under Linux */ 4001 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4002 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4003 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4004 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4005 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4006 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4007 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4008 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4009 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4010 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4011 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4012 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4013 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4014 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4015 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4016 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4017 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4018 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4019 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4020 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4021 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4022 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4023 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4024 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4025 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4026 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4027 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4028 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4029 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4030 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4031 /* Odd clown on sil3726/4726 PMPs */ 4032 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4033 4034 /* Weird ATAPI devices */ 4035 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4036 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4037 4038 /* Devices we expect to fail diagnostics */ 4039 4040 /* Devices where NCQ should be avoided */ 4041 /* NCQ is slow */ 4042 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4043 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4044 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4045 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4046 /* NCQ is broken */ 4047 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4048 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4049 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4050 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4051 4052 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4053 { "ST31500341AS", "9JU138", ATA_HORKAGE_NONCQ | 4054 ATA_HORKAGE_FIRMWARE_WARN }, 4055 { "ST31000333AS", "9FZ136", ATA_HORKAGE_NONCQ | 4056 ATA_HORKAGE_FIRMWARE_WARN }, 4057 { "ST3640623AS", "9FZ164", ATA_HORKAGE_NONCQ | 4058 ATA_HORKAGE_FIRMWARE_WARN }, 4059 { "ST3640323AS", "9FZ134", ATA_HORKAGE_NONCQ | 4060 ATA_HORKAGE_FIRMWARE_WARN }, 4061 { "ST3320813AS", "9FZ182", ATA_HORKAGE_NONCQ | 4062 ATA_HORKAGE_FIRMWARE_WARN }, 4063 { "ST3320613AS", "9FZ162", ATA_HORKAGE_NONCQ | 4064 ATA_HORKAGE_FIRMWARE_WARN }, 4065 4066 /* Blacklist entries taken from Silicon Image 3124/3132 4067 Windows driver .inf file - also several Linux problem reports */ 4068 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4069 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4070 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4071 4072 /* devices which puke on READ_NATIVE_MAX */ 4073 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4074 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4075 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4076 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4077 4078 /* Devices which report 1 sector over size HPA */ 4079 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4080 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4081 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4082 4083 /* Devices which get the IVB wrong */ 4084 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4085 /* Maybe we should just blacklist TSSTcorp... */ 4086 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4087 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4088 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4089 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4090 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4091 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4092 4093 /* Devices that do not need bridging limits applied */ 4094 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4095 4096 /* End Marker */ 4097 { } 4098 }; 4099 4100 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4101 { 4102 const char *p; 4103 int len; 4104 4105 /* 4106 * check for trailing wildcard: *\0 4107 */ 4108 p = strchr(patt, wildchar); 4109 if (p && ((*(p + 1)) == 0)) 4110 len = p - patt; 4111 else { 4112 len = strlen(name); 4113 if (!len) { 4114 if (!*patt) 4115 return 0; 4116 return -1; 4117 } 4118 } 4119 4120 return strncmp(patt, name, len); 4121 } 4122 4123 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4124 { 4125 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4126 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4127 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4128 4129 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4130 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4131 4132 while (ad->model_num) { 4133 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4134 if (ad->model_rev == NULL) 4135 return ad->horkage; 4136 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4137 return ad->horkage; 4138 } 4139 ad++; 4140 } 4141 return 0; 4142 } 4143 4144 static int ata_dma_blacklisted(const struct ata_device *dev) 4145 { 4146 /* We don't support polling DMA. 4147 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4148 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4149 */ 4150 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4151 (dev->flags & ATA_DFLAG_CDB_INTR)) 4152 return 1; 4153 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4154 } 4155 4156 /** 4157 * ata_is_40wire - check drive side detection 4158 * @dev: device 4159 * 4160 * Perform drive side detection decoding, allowing for device vendors 4161 * who can't follow the documentation. 4162 */ 4163 4164 static int ata_is_40wire(struct ata_device *dev) 4165 { 4166 if (dev->horkage & ATA_HORKAGE_IVB) 4167 return ata_drive_40wire_relaxed(dev->id); 4168 return ata_drive_40wire(dev->id); 4169 } 4170 4171 /** 4172 * cable_is_40wire - 40/80/SATA decider 4173 * @ap: port to consider 4174 * 4175 * This function encapsulates the policy for speed management 4176 * in one place. At the moment we don't cache the result but 4177 * there is a good case for setting ap->cbl to the result when 4178 * we are called with unknown cables (and figuring out if it 4179 * impacts hotplug at all). 4180 * 4181 * Return 1 if the cable appears to be 40 wire. 4182 */ 4183 4184 static int cable_is_40wire(struct ata_port *ap) 4185 { 4186 struct ata_link *link; 4187 struct ata_device *dev; 4188 4189 /* If the controller thinks we are 40 wire, we are. */ 4190 if (ap->cbl == ATA_CBL_PATA40) 4191 return 1; 4192 4193 /* If the controller thinks we are 80 wire, we are. */ 4194 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4195 return 0; 4196 4197 /* If the system is known to be 40 wire short cable (eg 4198 * laptop), then we allow 80 wire modes even if the drive 4199 * isn't sure. 4200 */ 4201 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4202 return 0; 4203 4204 /* If the controller doesn't know, we scan. 4205 * 4206 * Note: We look for all 40 wire detects at this point. Any 4207 * 80 wire detect is taken to be 80 wire cable because 4208 * - in many setups only the one drive (slave if present) will 4209 * give a valid detect 4210 * - if you have a non detect capable drive you don't want it 4211 * to colour the choice 4212 */ 4213 ata_port_for_each_link(link, ap) { 4214 ata_link_for_each_dev(dev, link) { 4215 if (ata_dev_enabled(dev) && !ata_is_40wire(dev)) 4216 return 0; 4217 } 4218 } 4219 return 1; 4220 } 4221 4222 /** 4223 * ata_dev_xfermask - Compute supported xfermask of the given device 4224 * @dev: Device to compute xfermask for 4225 * 4226 * Compute supported xfermask of @dev and store it in 4227 * dev->*_mask. This function is responsible for applying all 4228 * known limits including host controller limits, device 4229 * blacklist, etc... 4230 * 4231 * LOCKING: 4232 * None. 4233 */ 4234 static void ata_dev_xfermask(struct ata_device *dev) 4235 { 4236 struct ata_link *link = dev->link; 4237 struct ata_port *ap = link->ap; 4238 struct ata_host *host = ap->host; 4239 unsigned long xfer_mask; 4240 4241 /* controller modes available */ 4242 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4243 ap->mwdma_mask, ap->udma_mask); 4244 4245 /* drive modes available */ 4246 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4247 dev->mwdma_mask, dev->udma_mask); 4248 xfer_mask &= ata_id_xfermask(dev->id); 4249 4250 /* 4251 * CFA Advanced TrueIDE timings are not allowed on a shared 4252 * cable 4253 */ 4254 if (ata_dev_pair(dev)) { 4255 /* No PIO5 or PIO6 */ 4256 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4257 /* No MWDMA3 or MWDMA 4 */ 4258 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4259 } 4260 4261 if (ata_dma_blacklisted(dev)) { 4262 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4263 ata_dev_printk(dev, KERN_WARNING, 4264 "device is on DMA blacklist, disabling DMA\n"); 4265 } 4266 4267 if ((host->flags & ATA_HOST_SIMPLEX) && 4268 host->simplex_claimed && host->simplex_claimed != ap) { 4269 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4270 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4271 "other device, disabling DMA\n"); 4272 } 4273 4274 if (ap->flags & ATA_FLAG_NO_IORDY) 4275 xfer_mask &= ata_pio_mask_no_iordy(dev); 4276 4277 if (ap->ops->mode_filter) 4278 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4279 4280 /* Apply cable rule here. Don't apply it early because when 4281 * we handle hot plug the cable type can itself change. 4282 * Check this last so that we know if the transfer rate was 4283 * solely limited by the cable. 4284 * Unknown or 80 wire cables reported host side are checked 4285 * drive side as well. Cases where we know a 40wire cable 4286 * is used safely for 80 are not checked here. 4287 */ 4288 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4289 /* UDMA/44 or higher would be available */ 4290 if (cable_is_40wire(ap)) { 4291 ata_dev_printk(dev, KERN_WARNING, 4292 "limited to UDMA/33 due to 40-wire cable\n"); 4293 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4294 } 4295 4296 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4297 &dev->mwdma_mask, &dev->udma_mask); 4298 } 4299 4300 /** 4301 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4302 * @dev: Device to which command will be sent 4303 * 4304 * Issue SET FEATURES - XFER MODE command to device @dev 4305 * on port @ap. 4306 * 4307 * LOCKING: 4308 * PCI/etc. bus probe sem. 4309 * 4310 * RETURNS: 4311 * 0 on success, AC_ERR_* mask otherwise. 4312 */ 4313 4314 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4315 { 4316 struct ata_taskfile tf; 4317 unsigned int err_mask; 4318 4319 /* set up set-features taskfile */ 4320 DPRINTK("set features - xfer mode\n"); 4321 4322 /* Some controllers and ATAPI devices show flaky interrupt 4323 * behavior after setting xfer mode. Use polling instead. 4324 */ 4325 ata_tf_init(dev, &tf); 4326 tf.command = ATA_CMD_SET_FEATURES; 4327 tf.feature = SETFEATURES_XFER; 4328 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4329 tf.protocol = ATA_PROT_NODATA; 4330 /* If we are using IORDY we must send the mode setting command */ 4331 if (ata_pio_need_iordy(dev)) 4332 tf.nsect = dev->xfer_mode; 4333 /* If the device has IORDY and the controller does not - turn it off */ 4334 else if (ata_id_has_iordy(dev->id)) 4335 tf.nsect = 0x01; 4336 else /* In the ancient relic department - skip all of this */ 4337 return 0; 4338 4339 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4340 4341 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4342 return err_mask; 4343 } 4344 /** 4345 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4346 * @dev: Device to which command will be sent 4347 * @enable: Whether to enable or disable the feature 4348 * @feature: The sector count represents the feature to set 4349 * 4350 * Issue SET FEATURES - SATA FEATURES command to device @dev 4351 * on port @ap with sector count 4352 * 4353 * LOCKING: 4354 * PCI/etc. bus probe sem. 4355 * 4356 * RETURNS: 4357 * 0 on success, AC_ERR_* mask otherwise. 4358 */ 4359 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4360 u8 feature) 4361 { 4362 struct ata_taskfile tf; 4363 unsigned int err_mask; 4364 4365 /* set up set-features taskfile */ 4366 DPRINTK("set features - SATA features\n"); 4367 4368 ata_tf_init(dev, &tf); 4369 tf.command = ATA_CMD_SET_FEATURES; 4370 tf.feature = enable; 4371 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4372 tf.protocol = ATA_PROT_NODATA; 4373 tf.nsect = feature; 4374 4375 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4376 4377 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4378 return err_mask; 4379 } 4380 4381 /** 4382 * ata_dev_init_params - Issue INIT DEV PARAMS command 4383 * @dev: Device to which command will be sent 4384 * @heads: Number of heads (taskfile parameter) 4385 * @sectors: Number of sectors (taskfile parameter) 4386 * 4387 * LOCKING: 4388 * Kernel thread context (may sleep) 4389 * 4390 * RETURNS: 4391 * 0 on success, AC_ERR_* mask otherwise. 4392 */ 4393 static unsigned int ata_dev_init_params(struct ata_device *dev, 4394 u16 heads, u16 sectors) 4395 { 4396 struct ata_taskfile tf; 4397 unsigned int err_mask; 4398 4399 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4400 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4401 return AC_ERR_INVALID; 4402 4403 /* set up init dev params taskfile */ 4404 DPRINTK("init dev params \n"); 4405 4406 ata_tf_init(dev, &tf); 4407 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4408 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4409 tf.protocol = ATA_PROT_NODATA; 4410 tf.nsect = sectors; 4411 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4412 4413 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4414 /* A clean abort indicates an original or just out of spec drive 4415 and we should continue as we issue the setup based on the 4416 drive reported working geometry */ 4417 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4418 err_mask = 0; 4419 4420 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4421 return err_mask; 4422 } 4423 4424 /** 4425 * ata_sg_clean - Unmap DMA memory associated with command 4426 * @qc: Command containing DMA memory to be released 4427 * 4428 * Unmap all mapped DMA memory associated with this command. 4429 * 4430 * LOCKING: 4431 * spin_lock_irqsave(host lock) 4432 */ 4433 void ata_sg_clean(struct ata_queued_cmd *qc) 4434 { 4435 struct ata_port *ap = qc->ap; 4436 struct scatterlist *sg = qc->sg; 4437 int dir = qc->dma_dir; 4438 4439 WARN_ON(sg == NULL); 4440 4441 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4442 4443 if (qc->n_elem) 4444 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4445 4446 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4447 qc->sg = NULL; 4448 } 4449 4450 /** 4451 * atapi_check_dma - Check whether ATAPI DMA can be supported 4452 * @qc: Metadata associated with taskfile to check 4453 * 4454 * Allow low-level driver to filter ATA PACKET commands, returning 4455 * a status indicating whether or not it is OK to use DMA for the 4456 * supplied PACKET command. 4457 * 4458 * LOCKING: 4459 * spin_lock_irqsave(host lock) 4460 * 4461 * RETURNS: 0 when ATAPI DMA can be used 4462 * nonzero otherwise 4463 */ 4464 int atapi_check_dma(struct ata_queued_cmd *qc) 4465 { 4466 struct ata_port *ap = qc->ap; 4467 4468 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4469 * few ATAPI devices choke on such DMA requests. 4470 */ 4471 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4472 unlikely(qc->nbytes & 15)) 4473 return 1; 4474 4475 if (ap->ops->check_atapi_dma) 4476 return ap->ops->check_atapi_dma(qc); 4477 4478 return 0; 4479 } 4480 4481 /** 4482 * ata_std_qc_defer - Check whether a qc needs to be deferred 4483 * @qc: ATA command in question 4484 * 4485 * Non-NCQ commands cannot run with any other command, NCQ or 4486 * not. As upper layer only knows the queue depth, we are 4487 * responsible for maintaining exclusion. This function checks 4488 * whether a new command @qc can be issued. 4489 * 4490 * LOCKING: 4491 * spin_lock_irqsave(host lock) 4492 * 4493 * RETURNS: 4494 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4495 */ 4496 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4497 { 4498 struct ata_link *link = qc->dev->link; 4499 4500 if (qc->tf.protocol == ATA_PROT_NCQ) { 4501 if (!ata_tag_valid(link->active_tag)) 4502 return 0; 4503 } else { 4504 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4505 return 0; 4506 } 4507 4508 return ATA_DEFER_LINK; 4509 } 4510 4511 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4512 4513 /** 4514 * ata_sg_init - Associate command with scatter-gather table. 4515 * @qc: Command to be associated 4516 * @sg: Scatter-gather table. 4517 * @n_elem: Number of elements in s/g table. 4518 * 4519 * Initialize the data-related elements of queued_cmd @qc 4520 * to point to a scatter-gather table @sg, containing @n_elem 4521 * elements. 4522 * 4523 * LOCKING: 4524 * spin_lock_irqsave(host lock) 4525 */ 4526 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4527 unsigned int n_elem) 4528 { 4529 qc->sg = sg; 4530 qc->n_elem = n_elem; 4531 qc->cursg = qc->sg; 4532 } 4533 4534 /** 4535 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4536 * @qc: Command with scatter-gather table to be mapped. 4537 * 4538 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4539 * 4540 * LOCKING: 4541 * spin_lock_irqsave(host lock) 4542 * 4543 * RETURNS: 4544 * Zero on success, negative on error. 4545 * 4546 */ 4547 static int ata_sg_setup(struct ata_queued_cmd *qc) 4548 { 4549 struct ata_port *ap = qc->ap; 4550 unsigned int n_elem; 4551 4552 VPRINTK("ENTER, ata%u\n", ap->print_id); 4553 4554 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4555 if (n_elem < 1) 4556 return -1; 4557 4558 DPRINTK("%d sg elements mapped\n", n_elem); 4559 4560 qc->n_elem = n_elem; 4561 qc->flags |= ATA_QCFLAG_DMAMAP; 4562 4563 return 0; 4564 } 4565 4566 /** 4567 * swap_buf_le16 - swap halves of 16-bit words in place 4568 * @buf: Buffer to swap 4569 * @buf_words: Number of 16-bit words in buffer. 4570 * 4571 * Swap halves of 16-bit words if needed to convert from 4572 * little-endian byte order to native cpu byte order, or 4573 * vice-versa. 4574 * 4575 * LOCKING: 4576 * Inherited from caller. 4577 */ 4578 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4579 { 4580 #ifdef __BIG_ENDIAN 4581 unsigned int i; 4582 4583 for (i = 0; i < buf_words; i++) 4584 buf[i] = le16_to_cpu(buf[i]); 4585 #endif /* __BIG_ENDIAN */ 4586 } 4587 4588 /** 4589 * ata_qc_new - Request an available ATA command, for queueing 4590 * @ap: Port associated with device @dev 4591 * @dev: Device from whom we request an available command structure 4592 * 4593 * LOCKING: 4594 * None. 4595 */ 4596 4597 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4598 { 4599 struct ata_queued_cmd *qc = NULL; 4600 unsigned int i; 4601 4602 /* no command while frozen */ 4603 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4604 return NULL; 4605 4606 /* the last tag is reserved for internal command. */ 4607 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4608 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4609 qc = __ata_qc_from_tag(ap, i); 4610 break; 4611 } 4612 4613 if (qc) 4614 qc->tag = i; 4615 4616 return qc; 4617 } 4618 4619 /** 4620 * ata_qc_new_init - Request an available ATA command, and initialize it 4621 * @dev: Device from whom we request an available command structure 4622 * @tag: command tag 4623 * 4624 * LOCKING: 4625 * None. 4626 */ 4627 4628 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4629 { 4630 struct ata_port *ap = dev->link->ap; 4631 struct ata_queued_cmd *qc; 4632 4633 qc = ata_qc_new(ap); 4634 if (qc) { 4635 qc->scsicmd = NULL; 4636 qc->ap = ap; 4637 qc->dev = dev; 4638 4639 ata_qc_reinit(qc); 4640 } 4641 4642 return qc; 4643 } 4644 4645 /** 4646 * ata_qc_free - free unused ata_queued_cmd 4647 * @qc: Command to complete 4648 * 4649 * Designed to free unused ata_queued_cmd object 4650 * in case something prevents using it. 4651 * 4652 * LOCKING: 4653 * spin_lock_irqsave(host lock) 4654 */ 4655 void ata_qc_free(struct ata_queued_cmd *qc) 4656 { 4657 struct ata_port *ap = qc->ap; 4658 unsigned int tag; 4659 4660 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4661 4662 qc->flags = 0; 4663 tag = qc->tag; 4664 if (likely(ata_tag_valid(tag))) { 4665 qc->tag = ATA_TAG_POISON; 4666 clear_bit(tag, &ap->qc_allocated); 4667 } 4668 } 4669 4670 void __ata_qc_complete(struct ata_queued_cmd *qc) 4671 { 4672 struct ata_port *ap = qc->ap; 4673 struct ata_link *link = qc->dev->link; 4674 4675 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4676 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4677 4678 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4679 ata_sg_clean(qc); 4680 4681 /* command should be marked inactive atomically with qc completion */ 4682 if (qc->tf.protocol == ATA_PROT_NCQ) { 4683 link->sactive &= ~(1 << qc->tag); 4684 if (!link->sactive) 4685 ap->nr_active_links--; 4686 } else { 4687 link->active_tag = ATA_TAG_POISON; 4688 ap->nr_active_links--; 4689 } 4690 4691 /* clear exclusive status */ 4692 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4693 ap->excl_link == link)) 4694 ap->excl_link = NULL; 4695 4696 /* atapi: mark qc as inactive to prevent the interrupt handler 4697 * from completing the command twice later, before the error handler 4698 * is called. (when rc != 0 and atapi request sense is needed) 4699 */ 4700 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4701 ap->qc_active &= ~(1 << qc->tag); 4702 4703 /* call completion callback */ 4704 qc->complete_fn(qc); 4705 } 4706 4707 static void fill_result_tf(struct ata_queued_cmd *qc) 4708 { 4709 struct ata_port *ap = qc->ap; 4710 4711 qc->result_tf.flags = qc->tf.flags; 4712 ap->ops->qc_fill_rtf(qc); 4713 } 4714 4715 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4716 { 4717 struct ata_device *dev = qc->dev; 4718 4719 if (ata_tag_internal(qc->tag)) 4720 return; 4721 4722 if (ata_is_nodata(qc->tf.protocol)) 4723 return; 4724 4725 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4726 return; 4727 4728 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4729 } 4730 4731 /** 4732 * ata_qc_complete - Complete an active ATA command 4733 * @qc: Command to complete 4734 * 4735 * Indicate to the mid and upper layers that an ATA 4736 * command has completed, with either an ok or not-ok status. 4737 * 4738 * LOCKING: 4739 * spin_lock_irqsave(host lock) 4740 */ 4741 void ata_qc_complete(struct ata_queued_cmd *qc) 4742 { 4743 struct ata_port *ap = qc->ap; 4744 4745 /* XXX: New EH and old EH use different mechanisms to 4746 * synchronize EH with regular execution path. 4747 * 4748 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4749 * Normal execution path is responsible for not accessing a 4750 * failed qc. libata core enforces the rule by returning NULL 4751 * from ata_qc_from_tag() for failed qcs. 4752 * 4753 * Old EH depends on ata_qc_complete() nullifying completion 4754 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4755 * not synchronize with interrupt handler. Only PIO task is 4756 * taken care of. 4757 */ 4758 if (ap->ops->error_handler) { 4759 struct ata_device *dev = qc->dev; 4760 struct ata_eh_info *ehi = &dev->link->eh_info; 4761 4762 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4763 4764 if (unlikely(qc->err_mask)) 4765 qc->flags |= ATA_QCFLAG_FAILED; 4766 4767 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4768 if (!ata_tag_internal(qc->tag)) { 4769 /* always fill result TF for failed qc */ 4770 fill_result_tf(qc); 4771 ata_qc_schedule_eh(qc); 4772 return; 4773 } 4774 } 4775 4776 /* read result TF if requested */ 4777 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4778 fill_result_tf(qc); 4779 4780 /* Some commands need post-processing after successful 4781 * completion. 4782 */ 4783 switch (qc->tf.command) { 4784 case ATA_CMD_SET_FEATURES: 4785 if (qc->tf.feature != SETFEATURES_WC_ON && 4786 qc->tf.feature != SETFEATURES_WC_OFF) 4787 break; 4788 /* fall through */ 4789 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4790 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4791 /* revalidate device */ 4792 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4793 ata_port_schedule_eh(ap); 4794 break; 4795 4796 case ATA_CMD_SLEEP: 4797 dev->flags |= ATA_DFLAG_SLEEPING; 4798 break; 4799 } 4800 4801 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4802 ata_verify_xfer(qc); 4803 4804 __ata_qc_complete(qc); 4805 } else { 4806 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4807 return; 4808 4809 /* read result TF if failed or requested */ 4810 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4811 fill_result_tf(qc); 4812 4813 __ata_qc_complete(qc); 4814 } 4815 } 4816 4817 /** 4818 * ata_qc_complete_multiple - Complete multiple qcs successfully 4819 * @ap: port in question 4820 * @qc_active: new qc_active mask 4821 * 4822 * Complete in-flight commands. This functions is meant to be 4823 * called from low-level driver's interrupt routine to complete 4824 * requests normally. ap->qc_active and @qc_active is compared 4825 * and commands are completed accordingly. 4826 * 4827 * LOCKING: 4828 * spin_lock_irqsave(host lock) 4829 * 4830 * RETURNS: 4831 * Number of completed commands on success, -errno otherwise. 4832 */ 4833 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4834 { 4835 int nr_done = 0; 4836 u32 done_mask; 4837 int i; 4838 4839 done_mask = ap->qc_active ^ qc_active; 4840 4841 if (unlikely(done_mask & qc_active)) { 4842 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4843 "(%08x->%08x)\n", ap->qc_active, qc_active); 4844 return -EINVAL; 4845 } 4846 4847 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4848 struct ata_queued_cmd *qc; 4849 4850 if (!(done_mask & (1 << i))) 4851 continue; 4852 4853 if ((qc = ata_qc_from_tag(ap, i))) { 4854 ata_qc_complete(qc); 4855 nr_done++; 4856 } 4857 } 4858 4859 return nr_done; 4860 } 4861 4862 /** 4863 * ata_qc_issue - issue taskfile to device 4864 * @qc: command to issue to device 4865 * 4866 * Prepare an ATA command to submission to device. 4867 * This includes mapping the data into a DMA-able 4868 * area, filling in the S/G table, and finally 4869 * writing the taskfile to hardware, starting the command. 4870 * 4871 * LOCKING: 4872 * spin_lock_irqsave(host lock) 4873 */ 4874 void ata_qc_issue(struct ata_queued_cmd *qc) 4875 { 4876 struct ata_port *ap = qc->ap; 4877 struct ata_link *link = qc->dev->link; 4878 u8 prot = qc->tf.protocol; 4879 4880 /* Make sure only one non-NCQ command is outstanding. The 4881 * check is skipped for old EH because it reuses active qc to 4882 * request ATAPI sense. 4883 */ 4884 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4885 4886 if (ata_is_ncq(prot)) { 4887 WARN_ON(link->sactive & (1 << qc->tag)); 4888 4889 if (!link->sactive) 4890 ap->nr_active_links++; 4891 link->sactive |= 1 << qc->tag; 4892 } else { 4893 WARN_ON(link->sactive); 4894 4895 ap->nr_active_links++; 4896 link->active_tag = qc->tag; 4897 } 4898 4899 qc->flags |= ATA_QCFLAG_ACTIVE; 4900 ap->qc_active |= 1 << qc->tag; 4901 4902 /* We guarantee to LLDs that they will have at least one 4903 * non-zero sg if the command is a data command. 4904 */ 4905 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4906 4907 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4908 (ap->flags & ATA_FLAG_PIO_DMA))) 4909 if (ata_sg_setup(qc)) 4910 goto sg_err; 4911 4912 /* if device is sleeping, schedule reset and abort the link */ 4913 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4914 link->eh_info.action |= ATA_EH_RESET; 4915 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4916 ata_link_abort(link); 4917 return; 4918 } 4919 4920 ap->ops->qc_prep(qc); 4921 4922 qc->err_mask |= ap->ops->qc_issue(qc); 4923 if (unlikely(qc->err_mask)) 4924 goto err; 4925 return; 4926 4927 sg_err: 4928 qc->err_mask |= AC_ERR_SYSTEM; 4929 err: 4930 ata_qc_complete(qc); 4931 } 4932 4933 /** 4934 * sata_scr_valid - test whether SCRs are accessible 4935 * @link: ATA link to test SCR accessibility for 4936 * 4937 * Test whether SCRs are accessible for @link. 4938 * 4939 * LOCKING: 4940 * None. 4941 * 4942 * RETURNS: 4943 * 1 if SCRs are accessible, 0 otherwise. 4944 */ 4945 int sata_scr_valid(struct ata_link *link) 4946 { 4947 struct ata_port *ap = link->ap; 4948 4949 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4950 } 4951 4952 /** 4953 * sata_scr_read - read SCR register of the specified port 4954 * @link: ATA link to read SCR for 4955 * @reg: SCR to read 4956 * @val: Place to store read value 4957 * 4958 * Read SCR register @reg of @link into *@val. This function is 4959 * guaranteed to succeed if @link is ap->link, the cable type of 4960 * the port is SATA and the port implements ->scr_read. 4961 * 4962 * LOCKING: 4963 * None if @link is ap->link. Kernel thread context otherwise. 4964 * 4965 * RETURNS: 4966 * 0 on success, negative errno on failure. 4967 */ 4968 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4969 { 4970 if (ata_is_host_link(link)) { 4971 if (sata_scr_valid(link)) 4972 return link->ap->ops->scr_read(link, reg, val); 4973 return -EOPNOTSUPP; 4974 } 4975 4976 return sata_pmp_scr_read(link, reg, val); 4977 } 4978 4979 /** 4980 * sata_scr_write - write SCR register of the specified port 4981 * @link: ATA link to write SCR for 4982 * @reg: SCR to write 4983 * @val: value to write 4984 * 4985 * Write @val to SCR register @reg of @link. This function is 4986 * guaranteed to succeed if @link is ap->link, the cable type of 4987 * the port is SATA and the port implements ->scr_read. 4988 * 4989 * LOCKING: 4990 * None if @link is ap->link. Kernel thread context otherwise. 4991 * 4992 * RETURNS: 4993 * 0 on success, negative errno on failure. 4994 */ 4995 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4996 { 4997 if (ata_is_host_link(link)) { 4998 if (sata_scr_valid(link)) 4999 return link->ap->ops->scr_write(link, reg, val); 5000 return -EOPNOTSUPP; 5001 } 5002 5003 return sata_pmp_scr_write(link, reg, val); 5004 } 5005 5006 /** 5007 * sata_scr_write_flush - write SCR register of the specified port and flush 5008 * @link: ATA link to write SCR for 5009 * @reg: SCR to write 5010 * @val: value to write 5011 * 5012 * This function is identical to sata_scr_write() except that this 5013 * function performs flush after writing to the register. 5014 * 5015 * LOCKING: 5016 * None if @link is ap->link. Kernel thread context otherwise. 5017 * 5018 * RETURNS: 5019 * 0 on success, negative errno on failure. 5020 */ 5021 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5022 { 5023 if (ata_is_host_link(link)) { 5024 int rc; 5025 5026 if (sata_scr_valid(link)) { 5027 rc = link->ap->ops->scr_write(link, reg, val); 5028 if (rc == 0) 5029 rc = link->ap->ops->scr_read(link, reg, &val); 5030 return rc; 5031 } 5032 return -EOPNOTSUPP; 5033 } 5034 5035 return sata_pmp_scr_write(link, reg, val); 5036 } 5037 5038 /** 5039 * ata_phys_link_online - test whether the given link is online 5040 * @link: ATA link to test 5041 * 5042 * Test whether @link is online. Note that this function returns 5043 * 0 if online status of @link cannot be obtained, so 5044 * ata_link_online(link) != !ata_link_offline(link). 5045 * 5046 * LOCKING: 5047 * None. 5048 * 5049 * RETURNS: 5050 * True if the port online status is available and online. 5051 */ 5052 bool ata_phys_link_online(struct ata_link *link) 5053 { 5054 u32 sstatus; 5055 5056 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5057 (sstatus & 0xf) == 0x3) 5058 return true; 5059 return false; 5060 } 5061 5062 /** 5063 * ata_phys_link_offline - test whether the given link is offline 5064 * @link: ATA link to test 5065 * 5066 * Test whether @link is offline. Note that this function 5067 * returns 0 if offline status of @link cannot be obtained, so 5068 * ata_link_online(link) != !ata_link_offline(link). 5069 * 5070 * LOCKING: 5071 * None. 5072 * 5073 * RETURNS: 5074 * True if the port offline status is available and offline. 5075 */ 5076 bool ata_phys_link_offline(struct ata_link *link) 5077 { 5078 u32 sstatus; 5079 5080 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5081 (sstatus & 0xf) != 0x3) 5082 return true; 5083 return false; 5084 } 5085 5086 /** 5087 * ata_link_online - test whether the given link is online 5088 * @link: ATA link to test 5089 * 5090 * Test whether @link is online. This is identical to 5091 * ata_phys_link_online() when there's no slave link. When 5092 * there's a slave link, this function should only be called on 5093 * the master link and will return true if any of M/S links is 5094 * online. 5095 * 5096 * LOCKING: 5097 * None. 5098 * 5099 * RETURNS: 5100 * True if the port online status is available and online. 5101 */ 5102 bool ata_link_online(struct ata_link *link) 5103 { 5104 struct ata_link *slave = link->ap->slave_link; 5105 5106 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5107 5108 return ata_phys_link_online(link) || 5109 (slave && ata_phys_link_online(slave)); 5110 } 5111 5112 /** 5113 * ata_link_offline - test whether the given link is offline 5114 * @link: ATA link to test 5115 * 5116 * Test whether @link is offline. This is identical to 5117 * ata_phys_link_offline() when there's no slave link. When 5118 * there's a slave link, this function should only be called on 5119 * the master link and will return true if both M/S links are 5120 * offline. 5121 * 5122 * LOCKING: 5123 * None. 5124 * 5125 * RETURNS: 5126 * True if the port offline status is available and offline. 5127 */ 5128 bool ata_link_offline(struct ata_link *link) 5129 { 5130 struct ata_link *slave = link->ap->slave_link; 5131 5132 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5133 5134 return ata_phys_link_offline(link) && 5135 (!slave || ata_phys_link_offline(slave)); 5136 } 5137 5138 #ifdef CONFIG_PM 5139 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5140 unsigned int action, unsigned int ehi_flags, 5141 int wait) 5142 { 5143 unsigned long flags; 5144 int i, rc; 5145 5146 for (i = 0; i < host->n_ports; i++) { 5147 struct ata_port *ap = host->ports[i]; 5148 struct ata_link *link; 5149 5150 /* Previous resume operation might still be in 5151 * progress. Wait for PM_PENDING to clear. 5152 */ 5153 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5154 ata_port_wait_eh(ap); 5155 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5156 } 5157 5158 /* request PM ops to EH */ 5159 spin_lock_irqsave(ap->lock, flags); 5160 5161 ap->pm_mesg = mesg; 5162 if (wait) { 5163 rc = 0; 5164 ap->pm_result = &rc; 5165 } 5166 5167 ap->pflags |= ATA_PFLAG_PM_PENDING; 5168 __ata_port_for_each_link(link, ap) { 5169 link->eh_info.action |= action; 5170 link->eh_info.flags |= ehi_flags; 5171 } 5172 5173 ata_port_schedule_eh(ap); 5174 5175 spin_unlock_irqrestore(ap->lock, flags); 5176 5177 /* wait and check result */ 5178 if (wait) { 5179 ata_port_wait_eh(ap); 5180 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5181 if (rc) 5182 return rc; 5183 } 5184 } 5185 5186 return 0; 5187 } 5188 5189 /** 5190 * ata_host_suspend - suspend host 5191 * @host: host to suspend 5192 * @mesg: PM message 5193 * 5194 * Suspend @host. Actual operation is performed by EH. This 5195 * function requests EH to perform PM operations and waits for EH 5196 * to finish. 5197 * 5198 * LOCKING: 5199 * Kernel thread context (may sleep). 5200 * 5201 * RETURNS: 5202 * 0 on success, -errno on failure. 5203 */ 5204 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5205 { 5206 int rc; 5207 5208 /* 5209 * disable link pm on all ports before requesting 5210 * any pm activity 5211 */ 5212 ata_lpm_enable(host); 5213 5214 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5215 if (rc == 0) 5216 host->dev->power.power_state = mesg; 5217 return rc; 5218 } 5219 5220 /** 5221 * ata_host_resume - resume host 5222 * @host: host to resume 5223 * 5224 * Resume @host. Actual operation is performed by EH. This 5225 * function requests EH to perform PM operations and returns. 5226 * Note that all resume operations are performed parallely. 5227 * 5228 * LOCKING: 5229 * Kernel thread context (may sleep). 5230 */ 5231 void ata_host_resume(struct ata_host *host) 5232 { 5233 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5234 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5235 host->dev->power.power_state = PMSG_ON; 5236 5237 /* reenable link pm */ 5238 ata_lpm_disable(host); 5239 } 5240 #endif 5241 5242 /** 5243 * ata_port_start - Set port up for dma. 5244 * @ap: Port to initialize 5245 * 5246 * Called just after data structures for each port are 5247 * initialized. Allocates space for PRD table. 5248 * 5249 * May be used as the port_start() entry in ata_port_operations. 5250 * 5251 * LOCKING: 5252 * Inherited from caller. 5253 */ 5254 int ata_port_start(struct ata_port *ap) 5255 { 5256 struct device *dev = ap->dev; 5257 5258 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5259 GFP_KERNEL); 5260 if (!ap->prd) 5261 return -ENOMEM; 5262 5263 return 0; 5264 } 5265 5266 /** 5267 * ata_dev_init - Initialize an ata_device structure 5268 * @dev: Device structure to initialize 5269 * 5270 * Initialize @dev in preparation for probing. 5271 * 5272 * LOCKING: 5273 * Inherited from caller. 5274 */ 5275 void ata_dev_init(struct ata_device *dev) 5276 { 5277 struct ata_link *link = ata_dev_phys_link(dev); 5278 struct ata_port *ap = link->ap; 5279 unsigned long flags; 5280 5281 /* SATA spd limit is bound to the attached device, reset together */ 5282 link->sata_spd_limit = link->hw_sata_spd_limit; 5283 link->sata_spd = 0; 5284 5285 /* High bits of dev->flags are used to record warm plug 5286 * requests which occur asynchronously. Synchronize using 5287 * host lock. 5288 */ 5289 spin_lock_irqsave(ap->lock, flags); 5290 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5291 dev->horkage = 0; 5292 spin_unlock_irqrestore(ap->lock, flags); 5293 5294 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5295 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5296 dev->pio_mask = UINT_MAX; 5297 dev->mwdma_mask = UINT_MAX; 5298 dev->udma_mask = UINT_MAX; 5299 } 5300 5301 /** 5302 * ata_link_init - Initialize an ata_link structure 5303 * @ap: ATA port link is attached to 5304 * @link: Link structure to initialize 5305 * @pmp: Port multiplier port number 5306 * 5307 * Initialize @link. 5308 * 5309 * LOCKING: 5310 * Kernel thread context (may sleep) 5311 */ 5312 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5313 { 5314 int i; 5315 5316 /* clear everything except for devices */ 5317 memset(link, 0, offsetof(struct ata_link, device[0])); 5318 5319 link->ap = ap; 5320 link->pmp = pmp; 5321 link->active_tag = ATA_TAG_POISON; 5322 link->hw_sata_spd_limit = UINT_MAX; 5323 5324 /* can't use iterator, ap isn't initialized yet */ 5325 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5326 struct ata_device *dev = &link->device[i]; 5327 5328 dev->link = link; 5329 dev->devno = dev - link->device; 5330 ata_dev_init(dev); 5331 } 5332 } 5333 5334 /** 5335 * sata_link_init_spd - Initialize link->sata_spd_limit 5336 * @link: Link to configure sata_spd_limit for 5337 * 5338 * Initialize @link->[hw_]sata_spd_limit to the currently 5339 * configured value. 5340 * 5341 * LOCKING: 5342 * Kernel thread context (may sleep). 5343 * 5344 * RETURNS: 5345 * 0 on success, -errno on failure. 5346 */ 5347 int sata_link_init_spd(struct ata_link *link) 5348 { 5349 u8 spd; 5350 int rc; 5351 5352 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5353 if (rc) 5354 return rc; 5355 5356 spd = (link->saved_scontrol >> 4) & 0xf; 5357 if (spd) 5358 link->hw_sata_spd_limit &= (1 << spd) - 1; 5359 5360 ata_force_link_limits(link); 5361 5362 link->sata_spd_limit = link->hw_sata_spd_limit; 5363 5364 return 0; 5365 } 5366 5367 /** 5368 * ata_port_alloc - allocate and initialize basic ATA port resources 5369 * @host: ATA host this allocated port belongs to 5370 * 5371 * Allocate and initialize basic ATA port resources. 5372 * 5373 * RETURNS: 5374 * Allocate ATA port on success, NULL on failure. 5375 * 5376 * LOCKING: 5377 * Inherited from calling layer (may sleep). 5378 */ 5379 struct ata_port *ata_port_alloc(struct ata_host *host) 5380 { 5381 struct ata_port *ap; 5382 5383 DPRINTK("ENTER\n"); 5384 5385 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5386 if (!ap) 5387 return NULL; 5388 5389 ap->pflags |= ATA_PFLAG_INITIALIZING; 5390 ap->lock = &host->lock; 5391 ap->flags = ATA_FLAG_DISABLED; 5392 ap->print_id = -1; 5393 ap->ctl = ATA_DEVCTL_OBS; 5394 ap->host = host; 5395 ap->dev = host->dev; 5396 ap->last_ctl = 0xFF; 5397 5398 #if defined(ATA_VERBOSE_DEBUG) 5399 /* turn on all debugging levels */ 5400 ap->msg_enable = 0x00FF; 5401 #elif defined(ATA_DEBUG) 5402 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5403 #else 5404 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5405 #endif 5406 5407 #ifdef CONFIG_ATA_SFF 5408 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5409 #else 5410 INIT_DELAYED_WORK(&ap->port_task, NULL); 5411 #endif 5412 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5413 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5414 INIT_LIST_HEAD(&ap->eh_done_q); 5415 init_waitqueue_head(&ap->eh_wait_q); 5416 init_completion(&ap->park_req_pending); 5417 init_timer_deferrable(&ap->fastdrain_timer); 5418 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5419 ap->fastdrain_timer.data = (unsigned long)ap; 5420 5421 ap->cbl = ATA_CBL_NONE; 5422 5423 ata_link_init(ap, &ap->link, 0); 5424 5425 #ifdef ATA_IRQ_TRAP 5426 ap->stats.unhandled_irq = 1; 5427 ap->stats.idle_irq = 1; 5428 #endif 5429 return ap; 5430 } 5431 5432 static void ata_host_release(struct device *gendev, void *res) 5433 { 5434 struct ata_host *host = dev_get_drvdata(gendev); 5435 int i; 5436 5437 for (i = 0; i < host->n_ports; i++) { 5438 struct ata_port *ap = host->ports[i]; 5439 5440 if (!ap) 5441 continue; 5442 5443 if (ap->scsi_host) 5444 scsi_host_put(ap->scsi_host); 5445 5446 kfree(ap->pmp_link); 5447 kfree(ap->slave_link); 5448 kfree(ap); 5449 host->ports[i] = NULL; 5450 } 5451 5452 dev_set_drvdata(gendev, NULL); 5453 } 5454 5455 /** 5456 * ata_host_alloc - allocate and init basic ATA host resources 5457 * @dev: generic device this host is associated with 5458 * @max_ports: maximum number of ATA ports associated with this host 5459 * 5460 * Allocate and initialize basic ATA host resources. LLD calls 5461 * this function to allocate a host, initializes it fully and 5462 * attaches it using ata_host_register(). 5463 * 5464 * @max_ports ports are allocated and host->n_ports is 5465 * initialized to @max_ports. The caller is allowed to decrease 5466 * host->n_ports before calling ata_host_register(). The unused 5467 * ports will be automatically freed on registration. 5468 * 5469 * RETURNS: 5470 * Allocate ATA host on success, NULL on failure. 5471 * 5472 * LOCKING: 5473 * Inherited from calling layer (may sleep). 5474 */ 5475 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5476 { 5477 struct ata_host *host; 5478 size_t sz; 5479 int i; 5480 5481 DPRINTK("ENTER\n"); 5482 5483 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5484 return NULL; 5485 5486 /* alloc a container for our list of ATA ports (buses) */ 5487 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5488 /* alloc a container for our list of ATA ports (buses) */ 5489 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5490 if (!host) 5491 goto err_out; 5492 5493 devres_add(dev, host); 5494 dev_set_drvdata(dev, host); 5495 5496 spin_lock_init(&host->lock); 5497 host->dev = dev; 5498 host->n_ports = max_ports; 5499 5500 /* allocate ports bound to this host */ 5501 for (i = 0; i < max_ports; i++) { 5502 struct ata_port *ap; 5503 5504 ap = ata_port_alloc(host); 5505 if (!ap) 5506 goto err_out; 5507 5508 ap->port_no = i; 5509 host->ports[i] = ap; 5510 } 5511 5512 devres_remove_group(dev, NULL); 5513 return host; 5514 5515 err_out: 5516 devres_release_group(dev, NULL); 5517 return NULL; 5518 } 5519 5520 /** 5521 * ata_host_alloc_pinfo - alloc host and init with port_info array 5522 * @dev: generic device this host is associated with 5523 * @ppi: array of ATA port_info to initialize host with 5524 * @n_ports: number of ATA ports attached to this host 5525 * 5526 * Allocate ATA host and initialize with info from @ppi. If NULL 5527 * terminated, @ppi may contain fewer entries than @n_ports. The 5528 * last entry will be used for the remaining ports. 5529 * 5530 * RETURNS: 5531 * Allocate ATA host on success, NULL on failure. 5532 * 5533 * LOCKING: 5534 * Inherited from calling layer (may sleep). 5535 */ 5536 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5537 const struct ata_port_info * const * ppi, 5538 int n_ports) 5539 { 5540 const struct ata_port_info *pi; 5541 struct ata_host *host; 5542 int i, j; 5543 5544 host = ata_host_alloc(dev, n_ports); 5545 if (!host) 5546 return NULL; 5547 5548 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5549 struct ata_port *ap = host->ports[i]; 5550 5551 if (ppi[j]) 5552 pi = ppi[j++]; 5553 5554 ap->pio_mask = pi->pio_mask; 5555 ap->mwdma_mask = pi->mwdma_mask; 5556 ap->udma_mask = pi->udma_mask; 5557 ap->flags |= pi->flags; 5558 ap->link.flags |= pi->link_flags; 5559 ap->ops = pi->port_ops; 5560 5561 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5562 host->ops = pi->port_ops; 5563 } 5564 5565 return host; 5566 } 5567 5568 /** 5569 * ata_slave_link_init - initialize slave link 5570 * @ap: port to initialize slave link for 5571 * 5572 * Create and initialize slave link for @ap. This enables slave 5573 * link handling on the port. 5574 * 5575 * In libata, a port contains links and a link contains devices. 5576 * There is single host link but if a PMP is attached to it, 5577 * there can be multiple fan-out links. On SATA, there's usually 5578 * a single device connected to a link but PATA and SATA 5579 * controllers emulating TF based interface can have two - master 5580 * and slave. 5581 * 5582 * However, there are a few controllers which don't fit into this 5583 * abstraction too well - SATA controllers which emulate TF 5584 * interface with both master and slave devices but also have 5585 * separate SCR register sets for each device. These controllers 5586 * need separate links for physical link handling 5587 * (e.g. onlineness, link speed) but should be treated like a 5588 * traditional M/S controller for everything else (e.g. command 5589 * issue, softreset). 5590 * 5591 * slave_link is libata's way of handling this class of 5592 * controllers without impacting core layer too much. For 5593 * anything other than physical link handling, the default host 5594 * link is used for both master and slave. For physical link 5595 * handling, separate @ap->slave_link is used. All dirty details 5596 * are implemented inside libata core layer. From LLD's POV, the 5597 * only difference is that prereset, hardreset and postreset are 5598 * called once more for the slave link, so the reset sequence 5599 * looks like the following. 5600 * 5601 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5602 * softreset(M) -> postreset(M) -> postreset(S) 5603 * 5604 * Note that softreset is called only for the master. Softreset 5605 * resets both M/S by definition, so SRST on master should handle 5606 * both (the standard method will work just fine). 5607 * 5608 * LOCKING: 5609 * Should be called before host is registered. 5610 * 5611 * RETURNS: 5612 * 0 on success, -errno on failure. 5613 */ 5614 int ata_slave_link_init(struct ata_port *ap) 5615 { 5616 struct ata_link *link; 5617 5618 WARN_ON(ap->slave_link); 5619 WARN_ON(ap->flags & ATA_FLAG_PMP); 5620 5621 link = kzalloc(sizeof(*link), GFP_KERNEL); 5622 if (!link) 5623 return -ENOMEM; 5624 5625 ata_link_init(ap, link, 1); 5626 ap->slave_link = link; 5627 return 0; 5628 } 5629 5630 static void ata_host_stop(struct device *gendev, void *res) 5631 { 5632 struct ata_host *host = dev_get_drvdata(gendev); 5633 int i; 5634 5635 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5636 5637 for (i = 0; i < host->n_ports; i++) { 5638 struct ata_port *ap = host->ports[i]; 5639 5640 if (ap->ops->port_stop) 5641 ap->ops->port_stop(ap); 5642 } 5643 5644 if (host->ops->host_stop) 5645 host->ops->host_stop(host); 5646 } 5647 5648 /** 5649 * ata_finalize_port_ops - finalize ata_port_operations 5650 * @ops: ata_port_operations to finalize 5651 * 5652 * An ata_port_operations can inherit from another ops and that 5653 * ops can again inherit from another. This can go on as many 5654 * times as necessary as long as there is no loop in the 5655 * inheritance chain. 5656 * 5657 * Ops tables are finalized when the host is started. NULL or 5658 * unspecified entries are inherited from the closet ancestor 5659 * which has the method and the entry is populated with it. 5660 * After finalization, the ops table directly points to all the 5661 * methods and ->inherits is no longer necessary and cleared. 5662 * 5663 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5664 * 5665 * LOCKING: 5666 * None. 5667 */ 5668 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5669 { 5670 static DEFINE_SPINLOCK(lock); 5671 const struct ata_port_operations *cur; 5672 void **begin = (void **)ops; 5673 void **end = (void **)&ops->inherits; 5674 void **pp; 5675 5676 if (!ops || !ops->inherits) 5677 return; 5678 5679 spin_lock(&lock); 5680 5681 for (cur = ops->inherits; cur; cur = cur->inherits) { 5682 void **inherit = (void **)cur; 5683 5684 for (pp = begin; pp < end; pp++, inherit++) 5685 if (!*pp) 5686 *pp = *inherit; 5687 } 5688 5689 for (pp = begin; pp < end; pp++) 5690 if (IS_ERR(*pp)) 5691 *pp = NULL; 5692 5693 ops->inherits = NULL; 5694 5695 spin_unlock(&lock); 5696 } 5697 5698 /** 5699 * ata_host_start - start and freeze ports of an ATA host 5700 * @host: ATA host to start ports for 5701 * 5702 * Start and then freeze ports of @host. Started status is 5703 * recorded in host->flags, so this function can be called 5704 * multiple times. Ports are guaranteed to get started only 5705 * once. If host->ops isn't initialized yet, its set to the 5706 * first non-dummy port ops. 5707 * 5708 * LOCKING: 5709 * Inherited from calling layer (may sleep). 5710 * 5711 * RETURNS: 5712 * 0 if all ports are started successfully, -errno otherwise. 5713 */ 5714 int ata_host_start(struct ata_host *host) 5715 { 5716 int have_stop = 0; 5717 void *start_dr = NULL; 5718 int i, rc; 5719 5720 if (host->flags & ATA_HOST_STARTED) 5721 return 0; 5722 5723 ata_finalize_port_ops(host->ops); 5724 5725 for (i = 0; i < host->n_ports; i++) { 5726 struct ata_port *ap = host->ports[i]; 5727 5728 ata_finalize_port_ops(ap->ops); 5729 5730 if (!host->ops && !ata_port_is_dummy(ap)) 5731 host->ops = ap->ops; 5732 5733 if (ap->ops->port_stop) 5734 have_stop = 1; 5735 } 5736 5737 if (host->ops->host_stop) 5738 have_stop = 1; 5739 5740 if (have_stop) { 5741 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5742 if (!start_dr) 5743 return -ENOMEM; 5744 } 5745 5746 for (i = 0; i < host->n_ports; i++) { 5747 struct ata_port *ap = host->ports[i]; 5748 5749 if (ap->ops->port_start) { 5750 rc = ap->ops->port_start(ap); 5751 if (rc) { 5752 if (rc != -ENODEV) 5753 dev_printk(KERN_ERR, host->dev, 5754 "failed to start port %d " 5755 "(errno=%d)\n", i, rc); 5756 goto err_out; 5757 } 5758 } 5759 ata_eh_freeze_port(ap); 5760 } 5761 5762 if (start_dr) 5763 devres_add(host->dev, start_dr); 5764 host->flags |= ATA_HOST_STARTED; 5765 return 0; 5766 5767 err_out: 5768 while (--i >= 0) { 5769 struct ata_port *ap = host->ports[i]; 5770 5771 if (ap->ops->port_stop) 5772 ap->ops->port_stop(ap); 5773 } 5774 devres_free(start_dr); 5775 return rc; 5776 } 5777 5778 /** 5779 * ata_sas_host_init - Initialize a host struct 5780 * @host: host to initialize 5781 * @dev: device host is attached to 5782 * @flags: host flags 5783 * @ops: port_ops 5784 * 5785 * LOCKING: 5786 * PCI/etc. bus probe sem. 5787 * 5788 */ 5789 /* KILLME - the only user left is ipr */ 5790 void ata_host_init(struct ata_host *host, struct device *dev, 5791 unsigned long flags, struct ata_port_operations *ops) 5792 { 5793 spin_lock_init(&host->lock); 5794 host->dev = dev; 5795 host->flags = flags; 5796 host->ops = ops; 5797 } 5798 5799 /** 5800 * ata_host_register - register initialized ATA host 5801 * @host: ATA host to register 5802 * @sht: template for SCSI host 5803 * 5804 * Register initialized ATA host. @host is allocated using 5805 * ata_host_alloc() and fully initialized by LLD. This function 5806 * starts ports, registers @host with ATA and SCSI layers and 5807 * probe registered devices. 5808 * 5809 * LOCKING: 5810 * Inherited from calling layer (may sleep). 5811 * 5812 * RETURNS: 5813 * 0 on success, -errno otherwise. 5814 */ 5815 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5816 { 5817 int i, rc; 5818 5819 /* host must have been started */ 5820 if (!(host->flags & ATA_HOST_STARTED)) { 5821 dev_printk(KERN_ERR, host->dev, 5822 "BUG: trying to register unstarted host\n"); 5823 WARN_ON(1); 5824 return -EINVAL; 5825 } 5826 5827 /* Blow away unused ports. This happens when LLD can't 5828 * determine the exact number of ports to allocate at 5829 * allocation time. 5830 */ 5831 for (i = host->n_ports; host->ports[i]; i++) 5832 kfree(host->ports[i]); 5833 5834 /* give ports names and add SCSI hosts */ 5835 for (i = 0; i < host->n_ports; i++) 5836 host->ports[i]->print_id = ata_print_id++; 5837 5838 rc = ata_scsi_add_hosts(host, sht); 5839 if (rc) 5840 return rc; 5841 5842 /* associate with ACPI nodes */ 5843 ata_acpi_associate(host); 5844 5845 /* set cable, sata_spd_limit and report */ 5846 for (i = 0; i < host->n_ports; i++) { 5847 struct ata_port *ap = host->ports[i]; 5848 unsigned long xfer_mask; 5849 5850 /* set SATA cable type if still unset */ 5851 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5852 ap->cbl = ATA_CBL_SATA; 5853 5854 /* init sata_spd_limit to the current value */ 5855 sata_link_init_spd(&ap->link); 5856 if (ap->slave_link) 5857 sata_link_init_spd(ap->slave_link); 5858 5859 /* print per-port info to dmesg */ 5860 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5861 ap->udma_mask); 5862 5863 if (!ata_port_is_dummy(ap)) { 5864 ata_port_printk(ap, KERN_INFO, 5865 "%cATA max %s %s\n", 5866 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5867 ata_mode_string(xfer_mask), 5868 ap->link.eh_info.desc); 5869 ata_ehi_clear_desc(&ap->link.eh_info); 5870 } else 5871 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5872 } 5873 5874 /* perform each probe synchronously */ 5875 DPRINTK("probe begin\n"); 5876 for (i = 0; i < host->n_ports; i++) { 5877 struct ata_port *ap = host->ports[i]; 5878 5879 /* probe */ 5880 if (ap->ops->error_handler) { 5881 struct ata_eh_info *ehi = &ap->link.eh_info; 5882 unsigned long flags; 5883 5884 ata_port_probe(ap); 5885 5886 /* kick EH for boot probing */ 5887 spin_lock_irqsave(ap->lock, flags); 5888 5889 ehi->probe_mask |= ATA_ALL_DEVICES; 5890 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5891 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5892 5893 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5894 ap->pflags |= ATA_PFLAG_LOADING; 5895 ata_port_schedule_eh(ap); 5896 5897 spin_unlock_irqrestore(ap->lock, flags); 5898 5899 /* wait for EH to finish */ 5900 ata_port_wait_eh(ap); 5901 } else { 5902 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5903 rc = ata_bus_probe(ap); 5904 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5905 5906 if (rc) { 5907 /* FIXME: do something useful here? 5908 * Current libata behavior will 5909 * tear down everything when 5910 * the module is removed 5911 * or the h/w is unplugged. 5912 */ 5913 } 5914 } 5915 } 5916 5917 /* probes are done, now scan each port's disk(s) */ 5918 DPRINTK("host probe begin\n"); 5919 for (i = 0; i < host->n_ports; i++) { 5920 struct ata_port *ap = host->ports[i]; 5921 5922 ata_scsi_scan_host(ap, 1); 5923 } 5924 5925 return 0; 5926 } 5927 5928 /** 5929 * ata_host_activate - start host, request IRQ and register it 5930 * @host: target ATA host 5931 * @irq: IRQ to request 5932 * @irq_handler: irq_handler used when requesting IRQ 5933 * @irq_flags: irq_flags used when requesting IRQ 5934 * @sht: scsi_host_template to use when registering the host 5935 * 5936 * After allocating an ATA host and initializing it, most libata 5937 * LLDs perform three steps to activate the host - start host, 5938 * request IRQ and register it. This helper takes necessasry 5939 * arguments and performs the three steps in one go. 5940 * 5941 * An invalid IRQ skips the IRQ registration and expects the host to 5942 * have set polling mode on the port. In this case, @irq_handler 5943 * should be NULL. 5944 * 5945 * LOCKING: 5946 * Inherited from calling layer (may sleep). 5947 * 5948 * RETURNS: 5949 * 0 on success, -errno otherwise. 5950 */ 5951 int ata_host_activate(struct ata_host *host, int irq, 5952 irq_handler_t irq_handler, unsigned long irq_flags, 5953 struct scsi_host_template *sht) 5954 { 5955 int i, rc; 5956 5957 rc = ata_host_start(host); 5958 if (rc) 5959 return rc; 5960 5961 /* Special case for polling mode */ 5962 if (!irq) { 5963 WARN_ON(irq_handler); 5964 return ata_host_register(host, sht); 5965 } 5966 5967 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5968 dev_driver_string(host->dev), host); 5969 if (rc) 5970 return rc; 5971 5972 for (i = 0; i < host->n_ports; i++) 5973 ata_port_desc(host->ports[i], "irq %d", irq); 5974 5975 rc = ata_host_register(host, sht); 5976 /* if failed, just free the IRQ and leave ports alone */ 5977 if (rc) 5978 devm_free_irq(host->dev, irq, host); 5979 5980 return rc; 5981 } 5982 5983 /** 5984 * ata_port_detach - Detach ATA port in prepration of device removal 5985 * @ap: ATA port to be detached 5986 * 5987 * Detach all ATA devices and the associated SCSI devices of @ap; 5988 * then, remove the associated SCSI host. @ap is guaranteed to 5989 * be quiescent on return from this function. 5990 * 5991 * LOCKING: 5992 * Kernel thread context (may sleep). 5993 */ 5994 static void ata_port_detach(struct ata_port *ap) 5995 { 5996 unsigned long flags; 5997 struct ata_link *link; 5998 struct ata_device *dev; 5999 6000 if (!ap->ops->error_handler) 6001 goto skip_eh; 6002 6003 /* tell EH we're leaving & flush EH */ 6004 spin_lock_irqsave(ap->lock, flags); 6005 ap->pflags |= ATA_PFLAG_UNLOADING; 6006 spin_unlock_irqrestore(ap->lock, flags); 6007 6008 ata_port_wait_eh(ap); 6009 6010 /* EH is now guaranteed to see UNLOADING - EH context belongs 6011 * to us. Restore SControl and disable all existing devices. 6012 */ 6013 __ata_port_for_each_link(link, ap) { 6014 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol & 0xff0); 6015 ata_link_for_each_dev(dev, link) 6016 ata_dev_disable(dev); 6017 } 6018 6019 /* Final freeze & EH. All in-flight commands are aborted. EH 6020 * will be skipped and retrials will be terminated with bad 6021 * target. 6022 */ 6023 spin_lock_irqsave(ap->lock, flags); 6024 ata_port_freeze(ap); /* won't be thawed */ 6025 spin_unlock_irqrestore(ap->lock, flags); 6026 6027 ata_port_wait_eh(ap); 6028 cancel_rearming_delayed_work(&ap->hotplug_task); 6029 6030 skip_eh: 6031 /* remove the associated SCSI host */ 6032 scsi_remove_host(ap->scsi_host); 6033 } 6034 6035 /** 6036 * ata_host_detach - Detach all ports of an ATA host 6037 * @host: Host to detach 6038 * 6039 * Detach all ports of @host. 6040 * 6041 * LOCKING: 6042 * Kernel thread context (may sleep). 6043 */ 6044 void ata_host_detach(struct ata_host *host) 6045 { 6046 int i; 6047 6048 for (i = 0; i < host->n_ports; i++) 6049 ata_port_detach(host->ports[i]); 6050 6051 /* the host is dead now, dissociate ACPI */ 6052 ata_acpi_dissociate(host); 6053 } 6054 6055 #ifdef CONFIG_PCI 6056 6057 /** 6058 * ata_pci_remove_one - PCI layer callback for device removal 6059 * @pdev: PCI device that was removed 6060 * 6061 * PCI layer indicates to libata via this hook that hot-unplug or 6062 * module unload event has occurred. Detach all ports. Resource 6063 * release is handled via devres. 6064 * 6065 * LOCKING: 6066 * Inherited from PCI layer (may sleep). 6067 */ 6068 void ata_pci_remove_one(struct pci_dev *pdev) 6069 { 6070 struct device *dev = &pdev->dev; 6071 struct ata_host *host = dev_get_drvdata(dev); 6072 6073 ata_host_detach(host); 6074 } 6075 6076 /* move to PCI subsystem */ 6077 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6078 { 6079 unsigned long tmp = 0; 6080 6081 switch (bits->width) { 6082 case 1: { 6083 u8 tmp8 = 0; 6084 pci_read_config_byte(pdev, bits->reg, &tmp8); 6085 tmp = tmp8; 6086 break; 6087 } 6088 case 2: { 6089 u16 tmp16 = 0; 6090 pci_read_config_word(pdev, bits->reg, &tmp16); 6091 tmp = tmp16; 6092 break; 6093 } 6094 case 4: { 6095 u32 tmp32 = 0; 6096 pci_read_config_dword(pdev, bits->reg, &tmp32); 6097 tmp = tmp32; 6098 break; 6099 } 6100 6101 default: 6102 return -EINVAL; 6103 } 6104 6105 tmp &= bits->mask; 6106 6107 return (tmp == bits->val) ? 1 : 0; 6108 } 6109 6110 #ifdef CONFIG_PM 6111 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6112 { 6113 pci_save_state(pdev); 6114 pci_disable_device(pdev); 6115 6116 if (mesg.event & PM_EVENT_SLEEP) 6117 pci_set_power_state(pdev, PCI_D3hot); 6118 } 6119 6120 int ata_pci_device_do_resume(struct pci_dev *pdev) 6121 { 6122 int rc; 6123 6124 pci_set_power_state(pdev, PCI_D0); 6125 pci_restore_state(pdev); 6126 6127 rc = pcim_enable_device(pdev); 6128 if (rc) { 6129 dev_printk(KERN_ERR, &pdev->dev, 6130 "failed to enable device after resume (%d)\n", rc); 6131 return rc; 6132 } 6133 6134 pci_set_master(pdev); 6135 return 0; 6136 } 6137 6138 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6139 { 6140 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6141 int rc = 0; 6142 6143 rc = ata_host_suspend(host, mesg); 6144 if (rc) 6145 return rc; 6146 6147 ata_pci_device_do_suspend(pdev, mesg); 6148 6149 return 0; 6150 } 6151 6152 int ata_pci_device_resume(struct pci_dev *pdev) 6153 { 6154 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6155 int rc; 6156 6157 rc = ata_pci_device_do_resume(pdev); 6158 if (rc == 0) 6159 ata_host_resume(host); 6160 return rc; 6161 } 6162 #endif /* CONFIG_PM */ 6163 6164 #endif /* CONFIG_PCI */ 6165 6166 static int __init ata_parse_force_one(char **cur, 6167 struct ata_force_ent *force_ent, 6168 const char **reason) 6169 { 6170 /* FIXME: Currently, there's no way to tag init const data and 6171 * using __initdata causes build failure on some versions of 6172 * gcc. Once __initdataconst is implemented, add const to the 6173 * following structure. 6174 */ 6175 static struct ata_force_param force_tbl[] __initdata = { 6176 { "40c", .cbl = ATA_CBL_PATA40 }, 6177 { "80c", .cbl = ATA_CBL_PATA80 }, 6178 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6179 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6180 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6181 { "sata", .cbl = ATA_CBL_SATA }, 6182 { "1.5Gbps", .spd_limit = 1 }, 6183 { "3.0Gbps", .spd_limit = 2 }, 6184 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6185 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6186 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6187 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6188 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6189 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6190 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6191 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6192 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6193 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6194 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6195 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6196 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6197 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6198 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6199 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6200 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6201 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6202 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6203 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6204 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6205 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6206 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6207 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6208 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6209 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6210 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6211 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6212 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6213 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6214 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6215 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6216 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6217 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6218 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6219 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6220 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6221 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6222 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6223 }; 6224 char *start = *cur, *p = *cur; 6225 char *id, *val, *endp; 6226 const struct ata_force_param *match_fp = NULL; 6227 int nr_matches = 0, i; 6228 6229 /* find where this param ends and update *cur */ 6230 while (*p != '\0' && *p != ',') 6231 p++; 6232 6233 if (*p == '\0') 6234 *cur = p; 6235 else 6236 *cur = p + 1; 6237 6238 *p = '\0'; 6239 6240 /* parse */ 6241 p = strchr(start, ':'); 6242 if (!p) { 6243 val = strstrip(start); 6244 goto parse_val; 6245 } 6246 *p = '\0'; 6247 6248 id = strstrip(start); 6249 val = strstrip(p + 1); 6250 6251 /* parse id */ 6252 p = strchr(id, '.'); 6253 if (p) { 6254 *p++ = '\0'; 6255 force_ent->device = simple_strtoul(p, &endp, 10); 6256 if (p == endp || *endp != '\0') { 6257 *reason = "invalid device"; 6258 return -EINVAL; 6259 } 6260 } 6261 6262 force_ent->port = simple_strtoul(id, &endp, 10); 6263 if (p == endp || *endp != '\0') { 6264 *reason = "invalid port/link"; 6265 return -EINVAL; 6266 } 6267 6268 parse_val: 6269 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6270 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6271 const struct ata_force_param *fp = &force_tbl[i]; 6272 6273 if (strncasecmp(val, fp->name, strlen(val))) 6274 continue; 6275 6276 nr_matches++; 6277 match_fp = fp; 6278 6279 if (strcasecmp(val, fp->name) == 0) { 6280 nr_matches = 1; 6281 break; 6282 } 6283 } 6284 6285 if (!nr_matches) { 6286 *reason = "unknown value"; 6287 return -EINVAL; 6288 } 6289 if (nr_matches > 1) { 6290 *reason = "ambigious value"; 6291 return -EINVAL; 6292 } 6293 6294 force_ent->param = *match_fp; 6295 6296 return 0; 6297 } 6298 6299 static void __init ata_parse_force_param(void) 6300 { 6301 int idx = 0, size = 1; 6302 int last_port = -1, last_device = -1; 6303 char *p, *cur, *next; 6304 6305 /* calculate maximum number of params and allocate force_tbl */ 6306 for (p = ata_force_param_buf; *p; p++) 6307 if (*p == ',') 6308 size++; 6309 6310 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6311 if (!ata_force_tbl) { 6312 printk(KERN_WARNING "ata: failed to extend force table, " 6313 "libata.force ignored\n"); 6314 return; 6315 } 6316 6317 /* parse and populate the table */ 6318 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6319 const char *reason = ""; 6320 struct ata_force_ent te = { .port = -1, .device = -1 }; 6321 6322 next = cur; 6323 if (ata_parse_force_one(&next, &te, &reason)) { 6324 printk(KERN_WARNING "ata: failed to parse force " 6325 "parameter \"%s\" (%s)\n", 6326 cur, reason); 6327 continue; 6328 } 6329 6330 if (te.port == -1) { 6331 te.port = last_port; 6332 te.device = last_device; 6333 } 6334 6335 ata_force_tbl[idx++] = te; 6336 6337 last_port = te.port; 6338 last_device = te.device; 6339 } 6340 6341 ata_force_tbl_size = idx; 6342 } 6343 6344 static int __init ata_init(void) 6345 { 6346 ata_parse_force_param(); 6347 6348 ata_wq = create_workqueue("ata"); 6349 if (!ata_wq) 6350 goto free_force_tbl; 6351 6352 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6353 if (!ata_aux_wq) 6354 goto free_wq; 6355 6356 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6357 return 0; 6358 6359 free_wq: 6360 destroy_workqueue(ata_wq); 6361 free_force_tbl: 6362 kfree(ata_force_tbl); 6363 return -ENOMEM; 6364 } 6365 6366 static void __exit ata_exit(void) 6367 { 6368 kfree(ata_force_tbl); 6369 destroy_workqueue(ata_wq); 6370 destroy_workqueue(ata_aux_wq); 6371 } 6372 6373 subsys_initcall(ata_init); 6374 module_exit(ata_exit); 6375 6376 static unsigned long ratelimit_time; 6377 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6378 6379 int ata_ratelimit(void) 6380 { 6381 int rc; 6382 unsigned long flags; 6383 6384 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6385 6386 if (time_after(jiffies, ratelimit_time)) { 6387 rc = 1; 6388 ratelimit_time = jiffies + (HZ/5); 6389 } else 6390 rc = 0; 6391 6392 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6393 6394 return rc; 6395 } 6396 6397 /** 6398 * ata_wait_register - wait until register value changes 6399 * @reg: IO-mapped register 6400 * @mask: Mask to apply to read register value 6401 * @val: Wait condition 6402 * @interval: polling interval in milliseconds 6403 * @timeout: timeout in milliseconds 6404 * 6405 * Waiting for some bits of register to change is a common 6406 * operation for ATA controllers. This function reads 32bit LE 6407 * IO-mapped register @reg and tests for the following condition. 6408 * 6409 * (*@reg & mask) != val 6410 * 6411 * If the condition is met, it returns; otherwise, the process is 6412 * repeated after @interval_msec until timeout. 6413 * 6414 * LOCKING: 6415 * Kernel thread context (may sleep) 6416 * 6417 * RETURNS: 6418 * The final register value. 6419 */ 6420 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6421 unsigned long interval, unsigned long timeout) 6422 { 6423 unsigned long deadline; 6424 u32 tmp; 6425 6426 tmp = ioread32(reg); 6427 6428 /* Calculate timeout _after_ the first read to make sure 6429 * preceding writes reach the controller before starting to 6430 * eat away the timeout. 6431 */ 6432 deadline = ata_deadline(jiffies, timeout); 6433 6434 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6435 msleep(interval); 6436 tmp = ioread32(reg); 6437 } 6438 6439 return tmp; 6440 } 6441 6442 /* 6443 * Dummy port_ops 6444 */ 6445 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6446 { 6447 return AC_ERR_SYSTEM; 6448 } 6449 6450 static void ata_dummy_error_handler(struct ata_port *ap) 6451 { 6452 /* truly dummy */ 6453 } 6454 6455 struct ata_port_operations ata_dummy_port_ops = { 6456 .qc_prep = ata_noop_qc_prep, 6457 .qc_issue = ata_dummy_qc_issue, 6458 .error_handler = ata_dummy_error_handler, 6459 }; 6460 6461 const struct ata_port_info ata_dummy_port_info = { 6462 .port_ops = &ata_dummy_port_ops, 6463 }; 6464 6465 /* 6466 * libata is essentially a library of internal helper functions for 6467 * low-level ATA host controller drivers. As such, the API/ABI is 6468 * likely to change as new drivers are added and updated. 6469 * Do not depend on ABI/API stability. 6470 */ 6471 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6472 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6473 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6474 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6475 EXPORT_SYMBOL_GPL(sata_port_ops); 6476 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6477 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6478 EXPORT_SYMBOL_GPL(__ata_port_next_link); 6479 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6480 EXPORT_SYMBOL_GPL(ata_host_init); 6481 EXPORT_SYMBOL_GPL(ata_host_alloc); 6482 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6483 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6484 EXPORT_SYMBOL_GPL(ata_host_start); 6485 EXPORT_SYMBOL_GPL(ata_host_register); 6486 EXPORT_SYMBOL_GPL(ata_host_activate); 6487 EXPORT_SYMBOL_GPL(ata_host_detach); 6488 EXPORT_SYMBOL_GPL(ata_sg_init); 6489 EXPORT_SYMBOL_GPL(ata_qc_complete); 6490 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6491 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6492 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6493 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6494 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6495 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6496 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6497 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6498 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6499 EXPORT_SYMBOL_GPL(ata_mode_string); 6500 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6501 EXPORT_SYMBOL_GPL(ata_port_start); 6502 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6503 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6504 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6505 EXPORT_SYMBOL_GPL(ata_port_probe); 6506 EXPORT_SYMBOL_GPL(ata_dev_disable); 6507 EXPORT_SYMBOL_GPL(sata_set_spd); 6508 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6509 EXPORT_SYMBOL_GPL(sata_link_debounce); 6510 EXPORT_SYMBOL_GPL(sata_link_resume); 6511 EXPORT_SYMBOL_GPL(ata_std_prereset); 6512 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6513 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6514 EXPORT_SYMBOL_GPL(ata_std_postreset); 6515 EXPORT_SYMBOL_GPL(ata_dev_classify); 6516 EXPORT_SYMBOL_GPL(ata_dev_pair); 6517 EXPORT_SYMBOL_GPL(ata_port_disable); 6518 EXPORT_SYMBOL_GPL(ata_ratelimit); 6519 EXPORT_SYMBOL_GPL(ata_wait_register); 6520 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6521 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6522 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6523 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6524 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6525 EXPORT_SYMBOL_GPL(sata_scr_valid); 6526 EXPORT_SYMBOL_GPL(sata_scr_read); 6527 EXPORT_SYMBOL_GPL(sata_scr_write); 6528 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6529 EXPORT_SYMBOL_GPL(ata_link_online); 6530 EXPORT_SYMBOL_GPL(ata_link_offline); 6531 #ifdef CONFIG_PM 6532 EXPORT_SYMBOL_GPL(ata_host_suspend); 6533 EXPORT_SYMBOL_GPL(ata_host_resume); 6534 #endif /* CONFIG_PM */ 6535 EXPORT_SYMBOL_GPL(ata_id_string); 6536 EXPORT_SYMBOL_GPL(ata_id_c_string); 6537 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6538 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6539 6540 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6541 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6542 EXPORT_SYMBOL_GPL(ata_timing_compute); 6543 EXPORT_SYMBOL_GPL(ata_timing_merge); 6544 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6545 6546 #ifdef CONFIG_PCI 6547 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6548 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6549 #ifdef CONFIG_PM 6550 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6551 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6552 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6553 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6554 #endif /* CONFIG_PM */ 6555 #endif /* CONFIG_PCI */ 6556 6557 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6558 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6559 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6560 EXPORT_SYMBOL_GPL(ata_port_desc); 6561 #ifdef CONFIG_PCI 6562 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6563 #endif /* CONFIG_PCI */ 6564 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6565 EXPORT_SYMBOL_GPL(ata_link_abort); 6566 EXPORT_SYMBOL_GPL(ata_port_abort); 6567 EXPORT_SYMBOL_GPL(ata_port_freeze); 6568 EXPORT_SYMBOL_GPL(sata_async_notification); 6569 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6570 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6571 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6572 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6573 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6574 EXPORT_SYMBOL_GPL(ata_do_eh); 6575 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6576 6577 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6578 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6579 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6580 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6581 EXPORT_SYMBOL_GPL(ata_cable_sata); 6582