xref: /linux/drivers/ata/libata-core.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59 
60 #include "libata.h"
61 
62 #define DRV_VERSION	"2.21"	/* must be exactly four chars */
63 
64 
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
68 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
69 
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 					u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75 
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78 
79 struct workqueue_struct *ata_aux_wq;
80 
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
109 
110 
111 /**
112  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113  *	@tf: Taskfile to convert
114  *	@fis: Buffer into which data will output
115  *	@pmp: Port multiplier port
116  *
117  *	Converts a standard ATA taskfile to a Serial ATA
118  *	FIS structure (Register - Host to Device).
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
125 {
126 	fis[0] = 0x27;	/* Register - Host to Device FIS */
127 	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
128 					    bit 7 indicates Command FIS */
129 	fis[2] = tf->command;
130 	fis[3] = tf->feature;
131 
132 	fis[4] = tf->lbal;
133 	fis[5] = tf->lbam;
134 	fis[6] = tf->lbah;
135 	fis[7] = tf->device;
136 
137 	fis[8] = tf->hob_lbal;
138 	fis[9] = tf->hob_lbam;
139 	fis[10] = tf->hob_lbah;
140 	fis[11] = tf->hob_feature;
141 
142 	fis[12] = tf->nsect;
143 	fis[13] = tf->hob_nsect;
144 	fis[14] = 0;
145 	fis[15] = tf->ctl;
146 
147 	fis[16] = 0;
148 	fis[17] = 0;
149 	fis[18] = 0;
150 	fis[19] = 0;
151 }
152 
153 /**
154  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
155  *	@fis: Buffer from which data will be input
156  *	@tf: Taskfile to output
157  *
158  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
159  *
160  *	LOCKING:
161  *	Inherited from caller.
162  */
163 
164 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
165 {
166 	tf->command	= fis[2];	/* status */
167 	tf->feature	= fis[3];	/* error */
168 
169 	tf->lbal	= fis[4];
170 	tf->lbam	= fis[5];
171 	tf->lbah	= fis[6];
172 	tf->device	= fis[7];
173 
174 	tf->hob_lbal	= fis[8];
175 	tf->hob_lbam	= fis[9];
176 	tf->hob_lbah	= fis[10];
177 
178 	tf->nsect	= fis[12];
179 	tf->hob_nsect	= fis[13];
180 }
181 
182 static const u8 ata_rw_cmds[] = {
183 	/* pio multi */
184 	ATA_CMD_READ_MULTI,
185 	ATA_CMD_WRITE_MULTI,
186 	ATA_CMD_READ_MULTI_EXT,
187 	ATA_CMD_WRITE_MULTI_EXT,
188 	0,
189 	0,
190 	0,
191 	ATA_CMD_WRITE_MULTI_FUA_EXT,
192 	/* pio */
193 	ATA_CMD_PIO_READ,
194 	ATA_CMD_PIO_WRITE,
195 	ATA_CMD_PIO_READ_EXT,
196 	ATA_CMD_PIO_WRITE_EXT,
197 	0,
198 	0,
199 	0,
200 	0,
201 	/* dma */
202 	ATA_CMD_READ,
203 	ATA_CMD_WRITE,
204 	ATA_CMD_READ_EXT,
205 	ATA_CMD_WRITE_EXT,
206 	0,
207 	0,
208 	0,
209 	ATA_CMD_WRITE_FUA_EXT
210 };
211 
212 /**
213  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
214  *	@tf: command to examine and configure
215  *	@dev: device tf belongs to
216  *
217  *	Examine the device configuration and tf->flags to calculate
218  *	the proper read/write commands and protocol to use.
219  *
220  *	LOCKING:
221  *	caller.
222  */
223 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
224 {
225 	u8 cmd;
226 
227 	int index, fua, lba48, write;
228 
229 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
230 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
231 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
232 
233 	if (dev->flags & ATA_DFLAG_PIO) {
234 		tf->protocol = ATA_PROT_PIO;
235 		index = dev->multi_count ? 0 : 8;
236 	} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
237 		/* Unable to use DMA due to host limitation */
238 		tf->protocol = ATA_PROT_PIO;
239 		index = dev->multi_count ? 0 : 8;
240 	} else {
241 		tf->protocol = ATA_PROT_DMA;
242 		index = 16;
243 	}
244 
245 	cmd = ata_rw_cmds[index + fua + lba48 + write];
246 	if (cmd) {
247 		tf->command = cmd;
248 		return 0;
249 	}
250 	return -1;
251 }
252 
253 /**
254  *	ata_tf_read_block - Read block address from ATA taskfile
255  *	@tf: ATA taskfile of interest
256  *	@dev: ATA device @tf belongs to
257  *
258  *	LOCKING:
259  *	None.
260  *
261  *	Read block address from @tf.  This function can handle all
262  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
263  *	flags select the address format to use.
264  *
265  *	RETURNS:
266  *	Block address read from @tf.
267  */
268 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
269 {
270 	u64 block = 0;
271 
272 	if (tf->flags & ATA_TFLAG_LBA) {
273 		if (tf->flags & ATA_TFLAG_LBA48) {
274 			block |= (u64)tf->hob_lbah << 40;
275 			block |= (u64)tf->hob_lbam << 32;
276 			block |= tf->hob_lbal << 24;
277 		} else
278 			block |= (tf->device & 0xf) << 24;
279 
280 		block |= tf->lbah << 16;
281 		block |= tf->lbam << 8;
282 		block |= tf->lbal;
283 	} else {
284 		u32 cyl, head, sect;
285 
286 		cyl = tf->lbam | (tf->lbah << 8);
287 		head = tf->device & 0xf;
288 		sect = tf->lbal;
289 
290 		block = (cyl * dev->heads + head) * dev->sectors + sect;
291 	}
292 
293 	return block;
294 }
295 
296 /**
297  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
298  *	@tf: Target ATA taskfile
299  *	@dev: ATA device @tf belongs to
300  *	@block: Block address
301  *	@n_block: Number of blocks
302  *	@tf_flags: RW/FUA etc...
303  *	@tag: tag
304  *
305  *	LOCKING:
306  *	None.
307  *
308  *	Build ATA taskfile @tf for read/write request described by
309  *	@block, @n_block, @tf_flags and @tag on @dev.
310  *
311  *	RETURNS:
312  *
313  *	0 on success, -ERANGE if the request is too large for @dev,
314  *	-EINVAL if the request is invalid.
315  */
316 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
317 		    u64 block, u32 n_block, unsigned int tf_flags,
318 		    unsigned int tag)
319 {
320 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
321 	tf->flags |= tf_flags;
322 
323 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
324 		/* yay, NCQ */
325 		if (!lba_48_ok(block, n_block))
326 			return -ERANGE;
327 
328 		tf->protocol = ATA_PROT_NCQ;
329 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330 
331 		if (tf->flags & ATA_TFLAG_WRITE)
332 			tf->command = ATA_CMD_FPDMA_WRITE;
333 		else
334 			tf->command = ATA_CMD_FPDMA_READ;
335 
336 		tf->nsect = tag << 3;
337 		tf->hob_feature = (n_block >> 8) & 0xff;
338 		tf->feature = n_block & 0xff;
339 
340 		tf->hob_lbah = (block >> 40) & 0xff;
341 		tf->hob_lbam = (block >> 32) & 0xff;
342 		tf->hob_lbal = (block >> 24) & 0xff;
343 		tf->lbah = (block >> 16) & 0xff;
344 		tf->lbam = (block >> 8) & 0xff;
345 		tf->lbal = block & 0xff;
346 
347 		tf->device = 1 << 6;
348 		if (tf->flags & ATA_TFLAG_FUA)
349 			tf->device |= 1 << 7;
350 	} else if (dev->flags & ATA_DFLAG_LBA) {
351 		tf->flags |= ATA_TFLAG_LBA;
352 
353 		if (lba_28_ok(block, n_block)) {
354 			/* use LBA28 */
355 			tf->device |= (block >> 24) & 0xf;
356 		} else if (lba_48_ok(block, n_block)) {
357 			if (!(dev->flags & ATA_DFLAG_LBA48))
358 				return -ERANGE;
359 
360 			/* use LBA48 */
361 			tf->flags |= ATA_TFLAG_LBA48;
362 
363 			tf->hob_nsect = (n_block >> 8) & 0xff;
364 
365 			tf->hob_lbah = (block >> 40) & 0xff;
366 			tf->hob_lbam = (block >> 32) & 0xff;
367 			tf->hob_lbal = (block >> 24) & 0xff;
368 		} else
369 			/* request too large even for LBA48 */
370 			return -ERANGE;
371 
372 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
373 			return -EINVAL;
374 
375 		tf->nsect = n_block & 0xff;
376 
377 		tf->lbah = (block >> 16) & 0xff;
378 		tf->lbam = (block >> 8) & 0xff;
379 		tf->lbal = block & 0xff;
380 
381 		tf->device |= ATA_LBA;
382 	} else {
383 		/* CHS */
384 		u32 sect, head, cyl, track;
385 
386 		/* The request -may- be too large for CHS addressing. */
387 		if (!lba_28_ok(block, n_block))
388 			return -ERANGE;
389 
390 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 			return -EINVAL;
392 
393 		/* Convert LBA to CHS */
394 		track = (u32)block / dev->sectors;
395 		cyl   = track / dev->heads;
396 		head  = track % dev->heads;
397 		sect  = (u32)block % dev->sectors + 1;
398 
399 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
400 			(u32)block, track, cyl, head, sect);
401 
402 		/* Check whether the converted CHS can fit.
403 		   Cylinder: 0-65535
404 		   Head: 0-15
405 		   Sector: 1-255*/
406 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
407 			return -ERANGE;
408 
409 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
410 		tf->lbal = sect;
411 		tf->lbam = cyl;
412 		tf->lbah = cyl >> 8;
413 		tf->device |= head;
414 	}
415 
416 	return 0;
417 }
418 
419 /**
420  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
421  *	@pio_mask: pio_mask
422  *	@mwdma_mask: mwdma_mask
423  *	@udma_mask: udma_mask
424  *
425  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
426  *	unsigned int xfer_mask.
427  *
428  *	LOCKING:
429  *	None.
430  *
431  *	RETURNS:
432  *	Packed xfer_mask.
433  */
434 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
435 				      unsigned int mwdma_mask,
436 				      unsigned int udma_mask)
437 {
438 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
439 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
440 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
441 }
442 
443 /**
444  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
445  *	@xfer_mask: xfer_mask to unpack
446  *	@pio_mask: resulting pio_mask
447  *	@mwdma_mask: resulting mwdma_mask
448  *	@udma_mask: resulting udma_mask
449  *
450  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
451  *	Any NULL distination masks will be ignored.
452  */
453 static void ata_unpack_xfermask(unsigned int xfer_mask,
454 				unsigned int *pio_mask,
455 				unsigned int *mwdma_mask,
456 				unsigned int *udma_mask)
457 {
458 	if (pio_mask)
459 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
460 	if (mwdma_mask)
461 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
462 	if (udma_mask)
463 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
464 }
465 
466 static const struct ata_xfer_ent {
467 	int shift, bits;
468 	u8 base;
469 } ata_xfer_tbl[] = {
470 	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
471 	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
472 	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
473 	{ -1, },
474 };
475 
476 /**
477  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
478  *	@xfer_mask: xfer_mask of interest
479  *
480  *	Return matching XFER_* value for @xfer_mask.  Only the highest
481  *	bit of @xfer_mask is considered.
482  *
483  *	LOCKING:
484  *	None.
485  *
486  *	RETURNS:
487  *	Matching XFER_* value, 0 if no match found.
488  */
489 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490 {
491 	int highbit = fls(xfer_mask) - 1;
492 	const struct ata_xfer_ent *ent;
493 
494 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
495 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
496 			return ent->base + highbit - ent->shift;
497 	return 0;
498 }
499 
500 /**
501  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
502  *	@xfer_mode: XFER_* of interest
503  *
504  *	Return matching xfer_mask for @xfer_mode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	Matching xfer_mask, 0 if no match found.
511  */
512 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513 {
514 	const struct ata_xfer_ent *ent;
515 
516 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
517 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
518 			return 1 << (ent->shift + xfer_mode - ent->base);
519 	return 0;
520 }
521 
522 /**
523  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
524  *	@xfer_mode: XFER_* of interest
525  *
526  *	Return matching xfer_shift for @xfer_mode.
527  *
528  *	LOCKING:
529  *	None.
530  *
531  *	RETURNS:
532  *	Matching xfer_shift, -1 if no match found.
533  */
534 static int ata_xfer_mode2shift(unsigned int xfer_mode)
535 {
536 	const struct ata_xfer_ent *ent;
537 
538 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
539 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
540 			return ent->shift;
541 	return -1;
542 }
543 
544 /**
545  *	ata_mode_string - convert xfer_mask to string
546  *	@xfer_mask: mask of bits supported; only highest bit counts.
547  *
548  *	Determine string which represents the highest speed
549  *	(highest bit in @modemask).
550  *
551  *	LOCKING:
552  *	None.
553  *
554  *	RETURNS:
555  *	Constant C string representing highest speed listed in
556  *	@mode_mask, or the constant C string "<n/a>".
557  */
558 static const char *ata_mode_string(unsigned int xfer_mask)
559 {
560 	static const char * const xfer_mode_str[] = {
561 		"PIO0",
562 		"PIO1",
563 		"PIO2",
564 		"PIO3",
565 		"PIO4",
566 		"PIO5",
567 		"PIO6",
568 		"MWDMA0",
569 		"MWDMA1",
570 		"MWDMA2",
571 		"MWDMA3",
572 		"MWDMA4",
573 		"UDMA/16",
574 		"UDMA/25",
575 		"UDMA/33",
576 		"UDMA/44",
577 		"UDMA/66",
578 		"UDMA/100",
579 		"UDMA/133",
580 		"UDMA7",
581 	};
582 	int highbit;
583 
584 	highbit = fls(xfer_mask) - 1;
585 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
586 		return xfer_mode_str[highbit];
587 	return "<n/a>";
588 }
589 
590 static const char *sata_spd_string(unsigned int spd)
591 {
592 	static const char * const spd_str[] = {
593 		"1.5 Gbps",
594 		"3.0 Gbps",
595 	};
596 
597 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
598 		return "<unknown>";
599 	return spd_str[spd - 1];
600 }
601 
602 void ata_dev_disable(struct ata_device *dev)
603 {
604 	if (ata_dev_enabled(dev)) {
605 		if (ata_msg_drv(dev->ap))
606 			ata_dev_printk(dev, KERN_WARNING, "disabled\n");
607 		ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
608 					     ATA_DNXFER_QUIET);
609 		dev->class++;
610 	}
611 }
612 
613 /**
614  *	ata_devchk - PATA device presence detection
615  *	@ap: ATA channel to examine
616  *	@device: Device to examine (starting at zero)
617  *
618  *	This technique was originally described in
619  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
620  *	later found its way into the ATA/ATAPI spec.
621  *
622  *	Write a pattern to the ATA shadow registers,
623  *	and if a device is present, it will respond by
624  *	correctly storing and echoing back the
625  *	ATA shadow register contents.
626  *
627  *	LOCKING:
628  *	caller.
629  */
630 
631 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
632 {
633 	struct ata_ioports *ioaddr = &ap->ioaddr;
634 	u8 nsect, lbal;
635 
636 	ap->ops->dev_select(ap, device);
637 
638 	iowrite8(0x55, ioaddr->nsect_addr);
639 	iowrite8(0xaa, ioaddr->lbal_addr);
640 
641 	iowrite8(0xaa, ioaddr->nsect_addr);
642 	iowrite8(0x55, ioaddr->lbal_addr);
643 
644 	iowrite8(0x55, ioaddr->nsect_addr);
645 	iowrite8(0xaa, ioaddr->lbal_addr);
646 
647 	nsect = ioread8(ioaddr->nsect_addr);
648 	lbal = ioread8(ioaddr->lbal_addr);
649 
650 	if ((nsect == 0x55) && (lbal == 0xaa))
651 		return 1;	/* we found a device */
652 
653 	return 0;		/* nothing found */
654 }
655 
656 /**
657  *	ata_dev_classify - determine device type based on ATA-spec signature
658  *	@tf: ATA taskfile register set for device to be identified
659  *
660  *	Determine from taskfile register contents whether a device is
661  *	ATA or ATAPI, as per "Signature and persistence" section
662  *	of ATA/PI spec (volume 1, sect 5.14).
663  *
664  *	LOCKING:
665  *	None.
666  *
667  *	RETURNS:
668  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
669  *	the event of failure.
670  */
671 
672 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
673 {
674 	/* Apple's open source Darwin code hints that some devices only
675 	 * put a proper signature into the LBA mid/high registers,
676 	 * So, we only check those.  It's sufficient for uniqueness.
677 	 */
678 
679 	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
680 	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
681 		DPRINTK("found ATA device by sig\n");
682 		return ATA_DEV_ATA;
683 	}
684 
685 	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
686 	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
687 		DPRINTK("found ATAPI device by sig\n");
688 		return ATA_DEV_ATAPI;
689 	}
690 
691 	DPRINTK("unknown device\n");
692 	return ATA_DEV_UNKNOWN;
693 }
694 
695 /**
696  *	ata_dev_try_classify - Parse returned ATA device signature
697  *	@ap: ATA channel to examine
698  *	@device: Device to examine (starting at zero)
699  *	@r_err: Value of error register on completion
700  *
701  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
702  *	an ATA/ATAPI-defined set of values is placed in the ATA
703  *	shadow registers, indicating the results of device detection
704  *	and diagnostics.
705  *
706  *	Select the ATA device, and read the values from the ATA shadow
707  *	registers.  Then parse according to the Error register value,
708  *	and the spec-defined values examined by ata_dev_classify().
709  *
710  *	LOCKING:
711  *	caller.
712  *
713  *	RETURNS:
714  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
715  */
716 
717 unsigned int
718 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
719 {
720 	struct ata_taskfile tf;
721 	unsigned int class;
722 	u8 err;
723 
724 	ap->ops->dev_select(ap, device);
725 
726 	memset(&tf, 0, sizeof(tf));
727 
728 	ap->ops->tf_read(ap, &tf);
729 	err = tf.feature;
730 	if (r_err)
731 		*r_err = err;
732 
733 	/* see if device passed diags: if master then continue and warn later */
734 	if (err == 0 && device == 0)
735 		/* diagnostic fail : do nothing _YET_ */
736 		ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
737 	else if (err == 1)
738 		/* do nothing */ ;
739 	else if ((device == 0) && (err == 0x81))
740 		/* do nothing */ ;
741 	else
742 		return ATA_DEV_NONE;
743 
744 	/* determine if device is ATA or ATAPI */
745 	class = ata_dev_classify(&tf);
746 
747 	if (class == ATA_DEV_UNKNOWN)
748 		return ATA_DEV_NONE;
749 	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
750 		return ATA_DEV_NONE;
751 	return class;
752 }
753 
754 /**
755  *	ata_id_string - Convert IDENTIFY DEVICE page into string
756  *	@id: IDENTIFY DEVICE results we will examine
757  *	@s: string into which data is output
758  *	@ofs: offset into identify device page
759  *	@len: length of string to return. must be an even number.
760  *
761  *	The strings in the IDENTIFY DEVICE page are broken up into
762  *	16-bit chunks.  Run through the string, and output each
763  *	8-bit chunk linearly, regardless of platform.
764  *
765  *	LOCKING:
766  *	caller.
767  */
768 
769 void ata_id_string(const u16 *id, unsigned char *s,
770 		   unsigned int ofs, unsigned int len)
771 {
772 	unsigned int c;
773 
774 	while (len > 0) {
775 		c = id[ofs] >> 8;
776 		*s = c;
777 		s++;
778 
779 		c = id[ofs] & 0xff;
780 		*s = c;
781 		s++;
782 
783 		ofs++;
784 		len -= 2;
785 	}
786 }
787 
788 /**
789  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
790  *	@id: IDENTIFY DEVICE results we will examine
791  *	@s: string into which data is output
792  *	@ofs: offset into identify device page
793  *	@len: length of string to return. must be an odd number.
794  *
795  *	This function is identical to ata_id_string except that it
796  *	trims trailing spaces and terminates the resulting string with
797  *	null.  @len must be actual maximum length (even number) + 1.
798  *
799  *	LOCKING:
800  *	caller.
801  */
802 void ata_id_c_string(const u16 *id, unsigned char *s,
803 		     unsigned int ofs, unsigned int len)
804 {
805 	unsigned char *p;
806 
807 	WARN_ON(!(len & 1));
808 
809 	ata_id_string(id, s, ofs, len - 1);
810 
811 	p = s + strnlen(s, len - 1);
812 	while (p > s && p[-1] == ' ')
813 		p--;
814 	*p = '\0';
815 }
816 
817 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
818 {
819 	u64 sectors = 0;
820 
821 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
822 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
823 	sectors |= (tf->hob_lbal & 0xff) << 24;
824 	sectors |= (tf->lbah & 0xff) << 16;
825 	sectors |= (tf->lbam & 0xff) << 8;
826 	sectors |= (tf->lbal & 0xff);
827 
828 	return ++sectors;
829 }
830 
831 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
832 {
833 	u64 sectors = 0;
834 
835 	sectors |= (tf->device & 0x0f) << 24;
836 	sectors |= (tf->lbah & 0xff) << 16;
837 	sectors |= (tf->lbam & 0xff) << 8;
838 	sectors |= (tf->lbal & 0xff);
839 
840 	return ++sectors;
841 }
842 
843 /**
844  *	ata_read_native_max_address_ext	-	LBA48 native max query
845  *	@dev: Device to query
846  *
847  *	Perform an LBA48 size query upon the device in question. Return the
848  *	actual LBA48 size or zero if the command fails.
849  */
850 
851 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
852 {
853 	unsigned int err;
854 	struct ata_taskfile tf;
855 
856 	ata_tf_init(dev, &tf);
857 
858 	tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
859 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
860 	tf.protocol |= ATA_PROT_NODATA;
861 	tf.device |= 0x40;
862 
863 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
864 	if (err)
865 		return 0;
866 
867 	return ata_tf_to_lba48(&tf);
868 }
869 
870 /**
871  *	ata_read_native_max_address	-	LBA28 native max query
872  *	@dev: Device to query
873  *
874  *	Performa an LBA28 size query upon the device in question. Return the
875  *	actual LBA28 size or zero if the command fails.
876  */
877 
878 static u64 ata_read_native_max_address(struct ata_device *dev)
879 {
880 	unsigned int err;
881 	struct ata_taskfile tf;
882 
883 	ata_tf_init(dev, &tf);
884 
885 	tf.command = ATA_CMD_READ_NATIVE_MAX;
886 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
887 	tf.protocol |= ATA_PROT_NODATA;
888 	tf.device |= 0x40;
889 
890 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
891 	if (err)
892 		return 0;
893 
894 	return ata_tf_to_lba(&tf);
895 }
896 
897 /**
898  *	ata_set_native_max_address_ext	-	LBA48 native max set
899  *	@dev: Device to query
900  *	@new_sectors: new max sectors value to set for the device
901  *
902  *	Perform an LBA48 size set max upon the device in question. Return the
903  *	actual LBA48 size or zero if the command fails.
904  */
905 
906 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
907 {
908 	unsigned int err;
909 	struct ata_taskfile tf;
910 
911 	new_sectors--;
912 
913 	ata_tf_init(dev, &tf);
914 
915 	tf.command = ATA_CMD_SET_MAX_EXT;
916 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
917 	tf.protocol |= ATA_PROT_NODATA;
918 	tf.device |= 0x40;
919 
920 	tf.lbal = (new_sectors >> 0) & 0xff;
921 	tf.lbam = (new_sectors >> 8) & 0xff;
922 	tf.lbah = (new_sectors >> 16) & 0xff;
923 
924 	tf.hob_lbal = (new_sectors >> 24) & 0xff;
925 	tf.hob_lbam = (new_sectors >> 32) & 0xff;
926 	tf.hob_lbah = (new_sectors >> 40) & 0xff;
927 
928 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
929 	if (err)
930 		return 0;
931 
932 	return ata_tf_to_lba48(&tf);
933 }
934 
935 /**
936  *	ata_set_native_max_address	-	LBA28 native max set
937  *	@dev: Device to query
938  *	@new_sectors: new max sectors value to set for the device
939  *
940  *	Perform an LBA28 size set max upon the device in question. Return the
941  *	actual LBA28 size or zero if the command fails.
942  */
943 
944 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
945 {
946 	unsigned int err;
947 	struct ata_taskfile tf;
948 
949 	new_sectors--;
950 
951 	ata_tf_init(dev, &tf);
952 
953 	tf.command = ATA_CMD_SET_MAX;
954 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
955 	tf.protocol |= ATA_PROT_NODATA;
956 
957 	tf.lbal = (new_sectors >> 0) & 0xff;
958 	tf.lbam = (new_sectors >> 8) & 0xff;
959 	tf.lbah = (new_sectors >> 16) & 0xff;
960 	tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
961 
962 	err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
963 	if (err)
964 		return 0;
965 
966 	return ata_tf_to_lba(&tf);
967 }
968 
969 /**
970  *	ata_hpa_resize		-	Resize a device with an HPA set
971  *	@dev: Device to resize
972  *
973  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
974  *	it if required to the full size of the media. The caller must check
975  *	the drive has the HPA feature set enabled.
976  */
977 
978 static u64 ata_hpa_resize(struct ata_device *dev)
979 {
980 	u64 sectors = dev->n_sectors;
981 	u64 hpa_sectors;
982 
983 	if (ata_id_has_lba48(dev->id))
984 		hpa_sectors = ata_read_native_max_address_ext(dev);
985 	else
986 		hpa_sectors = ata_read_native_max_address(dev);
987 
988 	if (hpa_sectors > sectors) {
989 		ata_dev_printk(dev, KERN_INFO,
990 			"Host Protected Area detected:\n"
991 			"\tcurrent size: %lld sectors\n"
992 			"\tnative size: %lld sectors\n",
993 			(long long)sectors, (long long)hpa_sectors);
994 
995 		if (ata_ignore_hpa) {
996 			if (ata_id_has_lba48(dev->id))
997 				hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 			else
999 				hpa_sectors = ata_set_native_max_address(dev,
1000 								hpa_sectors);
1001 
1002 			if (hpa_sectors) {
1003 				ata_dev_printk(dev, KERN_INFO, "native size "
1004 					"increased to %lld sectors\n",
1005 					(long long)hpa_sectors);
1006 				return hpa_sectors;
1007 			}
1008 		}
1009 	} else if (hpa_sectors < sectors)
1010 		ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1011 			       "is smaller than sectors (%lld)\n", __FUNCTION__,
1012 			       (long long)hpa_sectors, (long long)sectors);
1013 
1014 	return sectors;
1015 }
1016 
1017 static u64 ata_id_n_sectors(const u16 *id)
1018 {
1019 	if (ata_id_has_lba(id)) {
1020 		if (ata_id_has_lba48(id))
1021 			return ata_id_u64(id, 100);
1022 		else
1023 			return ata_id_u32(id, 60);
1024 	} else {
1025 		if (ata_id_current_chs_valid(id))
1026 			return ata_id_u32(id, 57);
1027 		else
1028 			return id[1] * id[3] * id[6];
1029 	}
1030 }
1031 
1032 /**
1033  *	ata_id_to_dma_mode	-	Identify DMA mode from id block
1034  *	@dev: device to identify
1035  *	@unknown: mode to assume if we cannot tell
1036  *
1037  *	Set up the timing values for the device based upon the identify
1038  *	reported values for the DMA mode. This function is used by drivers
1039  *	which rely upon firmware configured modes, but wish to report the
1040  *	mode correctly when possible.
1041  *
1042  *	In addition we emit similarly formatted messages to the default
1043  *	ata_dev_set_mode handler, in order to provide consistency of
1044  *	presentation.
1045  */
1046 
1047 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1048 {
1049 	unsigned int mask;
1050 	u8 mode;
1051 
1052 	/* Pack the DMA modes */
1053 	mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1054 	if (dev->id[53] & 0x04)
1055 		mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1056 
1057 	/* Select the mode in use */
1058 	mode = ata_xfer_mask2mode(mask);
1059 
1060 	if (mode != 0) {
1061 		ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1062 		       ata_mode_string(mask));
1063 	} else {
1064 		/* SWDMA perhaps ? */
1065 		mode = unknown;
1066 		ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1067 	}
1068 
1069 	/* Configure the device reporting */
1070 	dev->xfer_mode = mode;
1071 	dev->xfer_shift = ata_xfer_mode2shift(mode);
1072 }
1073 
1074 /**
1075  *	ata_noop_dev_select - Select device 0/1 on ATA bus
1076  *	@ap: ATA channel to manipulate
1077  *	@device: ATA device (numbered from zero) to select
1078  *
1079  *	This function performs no actual function.
1080  *
1081  *	May be used as the dev_select() entry in ata_port_operations.
1082  *
1083  *	LOCKING:
1084  *	caller.
1085  */
1086 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1087 {
1088 }
1089 
1090 
1091 /**
1092  *	ata_std_dev_select - Select device 0/1 on ATA bus
1093  *	@ap: ATA channel to manipulate
1094  *	@device: ATA device (numbered from zero) to select
1095  *
1096  *	Use the method defined in the ATA specification to
1097  *	make either device 0, or device 1, active on the
1098  *	ATA channel.  Works with both PIO and MMIO.
1099  *
1100  *	May be used as the dev_select() entry in ata_port_operations.
1101  *
1102  *	LOCKING:
1103  *	caller.
1104  */
1105 
1106 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1107 {
1108 	u8 tmp;
1109 
1110 	if (device == 0)
1111 		tmp = ATA_DEVICE_OBS;
1112 	else
1113 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
1114 
1115 	iowrite8(tmp, ap->ioaddr.device_addr);
1116 	ata_pause(ap);		/* needed; also flushes, for mmio */
1117 }
1118 
1119 /**
1120  *	ata_dev_select - Select device 0/1 on ATA bus
1121  *	@ap: ATA channel to manipulate
1122  *	@device: ATA device (numbered from zero) to select
1123  *	@wait: non-zero to wait for Status register BSY bit to clear
1124  *	@can_sleep: non-zero if context allows sleeping
1125  *
1126  *	Use the method defined in the ATA specification to
1127  *	make either device 0, or device 1, active on the
1128  *	ATA channel.
1129  *
1130  *	This is a high-level version of ata_std_dev_select(),
1131  *	which additionally provides the services of inserting
1132  *	the proper pauses and status polling, where needed.
1133  *
1134  *	LOCKING:
1135  *	caller.
1136  */
1137 
1138 void ata_dev_select(struct ata_port *ap, unsigned int device,
1139 			   unsigned int wait, unsigned int can_sleep)
1140 {
1141 	if (ata_msg_probe(ap))
1142 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1143 				"device %u, wait %u\n", device, wait);
1144 
1145 	if (wait)
1146 		ata_wait_idle(ap);
1147 
1148 	ap->ops->dev_select(ap, device);
1149 
1150 	if (wait) {
1151 		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1152 			msleep(150);
1153 		ata_wait_idle(ap);
1154 	}
1155 }
1156 
1157 /**
1158  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1159  *	@id: IDENTIFY DEVICE page to dump
1160  *
1161  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1162  *	page.
1163  *
1164  *	LOCKING:
1165  *	caller.
1166  */
1167 
1168 static inline void ata_dump_id(const u16 *id)
1169 {
1170 	DPRINTK("49==0x%04x  "
1171 		"53==0x%04x  "
1172 		"63==0x%04x  "
1173 		"64==0x%04x  "
1174 		"75==0x%04x  \n",
1175 		id[49],
1176 		id[53],
1177 		id[63],
1178 		id[64],
1179 		id[75]);
1180 	DPRINTK("80==0x%04x  "
1181 		"81==0x%04x  "
1182 		"82==0x%04x  "
1183 		"83==0x%04x  "
1184 		"84==0x%04x  \n",
1185 		id[80],
1186 		id[81],
1187 		id[82],
1188 		id[83],
1189 		id[84]);
1190 	DPRINTK("88==0x%04x  "
1191 		"93==0x%04x\n",
1192 		id[88],
1193 		id[93]);
1194 }
1195 
1196 /**
1197  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1198  *	@id: IDENTIFY data to compute xfer mask from
1199  *
1200  *	Compute the xfermask for this device. This is not as trivial
1201  *	as it seems if we must consider early devices correctly.
1202  *
1203  *	FIXME: pre IDE drive timing (do we care ?).
1204  *
1205  *	LOCKING:
1206  *	None.
1207  *
1208  *	RETURNS:
1209  *	Computed xfermask
1210  */
1211 static unsigned int ata_id_xfermask(const u16 *id)
1212 {
1213 	unsigned int pio_mask, mwdma_mask, udma_mask;
1214 
1215 	/* Usual case. Word 53 indicates word 64 is valid */
1216 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1217 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1218 		pio_mask <<= 3;
1219 		pio_mask |= 0x7;
1220 	} else {
1221 		/* If word 64 isn't valid then Word 51 high byte holds
1222 		 * the PIO timing number for the maximum. Turn it into
1223 		 * a mask.
1224 		 */
1225 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1226 		if (mode < 5)	/* Valid PIO range */
1227                 	pio_mask = (2 << mode) - 1;
1228 		else
1229 			pio_mask = 1;
1230 
1231 		/* But wait.. there's more. Design your standards by
1232 		 * committee and you too can get a free iordy field to
1233 		 * process. However its the speeds not the modes that
1234 		 * are supported... Note drivers using the timing API
1235 		 * will get this right anyway
1236 		 */
1237 	}
1238 
1239 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1240 
1241 	if (ata_id_is_cfa(id)) {
1242 		/*
1243 		 *	Process compact flash extended modes
1244 		 */
1245 		int pio = id[163] & 0x7;
1246 		int dma = (id[163] >> 3) & 7;
1247 
1248 		if (pio)
1249 			pio_mask |= (1 << 5);
1250 		if (pio > 1)
1251 			pio_mask |= (1 << 6);
1252 		if (dma)
1253 			mwdma_mask |= (1 << 3);
1254 		if (dma > 1)
1255 			mwdma_mask |= (1 << 4);
1256 	}
1257 
1258 	udma_mask = 0;
1259 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1260 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1261 
1262 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1263 }
1264 
1265 /**
1266  *	ata_port_queue_task - Queue port_task
1267  *	@ap: The ata_port to queue port_task for
1268  *	@fn: workqueue function to be scheduled
1269  *	@data: data for @fn to use
1270  *	@delay: delay time for workqueue function
1271  *
1272  *	Schedule @fn(@data) for execution after @delay jiffies using
1273  *	port_task.  There is one port_task per port and it's the
1274  *	user(low level driver)'s responsibility to make sure that only
1275  *	one task is active at any given time.
1276  *
1277  *	libata core layer takes care of synchronization between
1278  *	port_task and EH.  ata_port_queue_task() may be ignored for EH
1279  *	synchronization.
1280  *
1281  *	LOCKING:
1282  *	Inherited from caller.
1283  */
1284 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1285 			 unsigned long delay)
1286 {
1287 	PREPARE_DELAYED_WORK(&ap->port_task, fn);
1288 	ap->port_task_data = data;
1289 
1290 	/* may fail if ata_port_flush_task() in progress */
1291 	queue_delayed_work(ata_wq, &ap->port_task, delay);
1292 }
1293 
1294 /**
1295  *	ata_port_flush_task - Flush port_task
1296  *	@ap: The ata_port to flush port_task for
1297  *
1298  *	After this function completes, port_task is guranteed not to
1299  *	be running or scheduled.
1300  *
1301  *	LOCKING:
1302  *	Kernel thread context (may sleep)
1303  */
1304 void ata_port_flush_task(struct ata_port *ap)
1305 {
1306 	DPRINTK("ENTER\n");
1307 
1308 	cancel_rearming_delayed_work(&ap->port_task);
1309 
1310 	if (ata_msg_ctl(ap))
1311 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1312 }
1313 
1314 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1315 {
1316 	struct completion *waiting = qc->private_data;
1317 
1318 	complete(waiting);
1319 }
1320 
1321 /**
1322  *	ata_exec_internal_sg - execute libata internal command
1323  *	@dev: Device to which the command is sent
1324  *	@tf: Taskfile registers for the command and the result
1325  *	@cdb: CDB for packet command
1326  *	@dma_dir: Data tranfer direction of the command
1327  *	@sg: sg list for the data buffer of the command
1328  *	@n_elem: Number of sg entries
1329  *
1330  *	Executes libata internal command with timeout.  @tf contains
1331  *	command on entry and result on return.  Timeout and error
1332  *	conditions are reported via return value.  No recovery action
1333  *	is taken after a command times out.  It's caller's duty to
1334  *	clean up after timeout.
1335  *
1336  *	LOCKING:
1337  *	None.  Should be called with kernel context, might sleep.
1338  *
1339  *	RETURNS:
1340  *	Zero on success, AC_ERR_* mask on failure
1341  */
1342 unsigned ata_exec_internal_sg(struct ata_device *dev,
1343 			      struct ata_taskfile *tf, const u8 *cdb,
1344 			      int dma_dir, struct scatterlist *sg,
1345 			      unsigned int n_elem)
1346 {
1347 	struct ata_port *ap = dev->ap;
1348 	u8 command = tf->command;
1349 	struct ata_queued_cmd *qc;
1350 	unsigned int tag, preempted_tag;
1351 	u32 preempted_sactive, preempted_qc_active;
1352 	DECLARE_COMPLETION_ONSTACK(wait);
1353 	unsigned long flags;
1354 	unsigned int err_mask;
1355 	int rc;
1356 
1357 	spin_lock_irqsave(ap->lock, flags);
1358 
1359 	/* no internal command while frozen */
1360 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1361 		spin_unlock_irqrestore(ap->lock, flags);
1362 		return AC_ERR_SYSTEM;
1363 	}
1364 
1365 	/* initialize internal qc */
1366 
1367 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1368 	 * drivers choke if any other tag is given.  This breaks
1369 	 * ata_tag_internal() test for those drivers.  Don't use new
1370 	 * EH stuff without converting to it.
1371 	 */
1372 	if (ap->ops->error_handler)
1373 		tag = ATA_TAG_INTERNAL;
1374 	else
1375 		tag = 0;
1376 
1377 	if (test_and_set_bit(tag, &ap->qc_allocated))
1378 		BUG();
1379 	qc = __ata_qc_from_tag(ap, tag);
1380 
1381 	qc->tag = tag;
1382 	qc->scsicmd = NULL;
1383 	qc->ap = ap;
1384 	qc->dev = dev;
1385 	ata_qc_reinit(qc);
1386 
1387 	preempted_tag = ap->active_tag;
1388 	preempted_sactive = ap->sactive;
1389 	preempted_qc_active = ap->qc_active;
1390 	ap->active_tag = ATA_TAG_POISON;
1391 	ap->sactive = 0;
1392 	ap->qc_active = 0;
1393 
1394 	/* prepare & issue qc */
1395 	qc->tf = *tf;
1396 	if (cdb)
1397 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1398 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1399 	qc->dma_dir = dma_dir;
1400 	if (dma_dir != DMA_NONE) {
1401 		unsigned int i, buflen = 0;
1402 
1403 		for (i = 0; i < n_elem; i++)
1404 			buflen += sg[i].length;
1405 
1406 		ata_sg_init(qc, sg, n_elem);
1407 		qc->nbytes = buflen;
1408 	}
1409 
1410 	qc->private_data = &wait;
1411 	qc->complete_fn = ata_qc_complete_internal;
1412 
1413 	ata_qc_issue(qc);
1414 
1415 	spin_unlock_irqrestore(ap->lock, flags);
1416 
1417 	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1418 
1419 	ata_port_flush_task(ap);
1420 
1421 	if (!rc) {
1422 		spin_lock_irqsave(ap->lock, flags);
1423 
1424 		/* We're racing with irq here.  If we lose, the
1425 		 * following test prevents us from completing the qc
1426 		 * twice.  If we win, the port is frozen and will be
1427 		 * cleaned up by ->post_internal_cmd().
1428 		 */
1429 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1430 			qc->err_mask |= AC_ERR_TIMEOUT;
1431 
1432 			if (ap->ops->error_handler)
1433 				ata_port_freeze(ap);
1434 			else
1435 				ata_qc_complete(qc);
1436 
1437 			if (ata_msg_warn(ap))
1438 				ata_dev_printk(dev, KERN_WARNING,
1439 					"qc timeout (cmd 0x%x)\n", command);
1440 		}
1441 
1442 		spin_unlock_irqrestore(ap->lock, flags);
1443 	}
1444 
1445 	/* do post_internal_cmd */
1446 	if (ap->ops->post_internal_cmd)
1447 		ap->ops->post_internal_cmd(qc);
1448 
1449 	/* perform minimal error analysis */
1450 	if (qc->flags & ATA_QCFLAG_FAILED) {
1451 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1452 			qc->err_mask |= AC_ERR_DEV;
1453 
1454 		if (!qc->err_mask)
1455 			qc->err_mask |= AC_ERR_OTHER;
1456 
1457 		if (qc->err_mask & ~AC_ERR_OTHER)
1458 			qc->err_mask &= ~AC_ERR_OTHER;
1459 	}
1460 
1461 	/* finish up */
1462 	spin_lock_irqsave(ap->lock, flags);
1463 
1464 	*tf = qc->result_tf;
1465 	err_mask = qc->err_mask;
1466 
1467 	ata_qc_free(qc);
1468 	ap->active_tag = preempted_tag;
1469 	ap->sactive = preempted_sactive;
1470 	ap->qc_active = preempted_qc_active;
1471 
1472 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1473 	 * Until those drivers are fixed, we detect the condition
1474 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1475 	 * port.
1476 	 *
1477 	 * Note that this doesn't change any behavior as internal
1478 	 * command failure results in disabling the device in the
1479 	 * higher layer for LLDDs without new reset/EH callbacks.
1480 	 *
1481 	 * Kill the following code as soon as those drivers are fixed.
1482 	 */
1483 	if (ap->flags & ATA_FLAG_DISABLED) {
1484 		err_mask |= AC_ERR_SYSTEM;
1485 		ata_port_probe(ap);
1486 	}
1487 
1488 	spin_unlock_irqrestore(ap->lock, flags);
1489 
1490 	return err_mask;
1491 }
1492 
1493 /**
1494  *	ata_exec_internal - execute libata internal command
1495  *	@dev: Device to which the command is sent
1496  *	@tf: Taskfile registers for the command and the result
1497  *	@cdb: CDB for packet command
1498  *	@dma_dir: Data tranfer direction of the command
1499  *	@buf: Data buffer of the command
1500  *	@buflen: Length of data buffer
1501  *
1502  *	Wrapper around ata_exec_internal_sg() which takes simple
1503  *	buffer instead of sg list.
1504  *
1505  *	LOCKING:
1506  *	None.  Should be called with kernel context, might sleep.
1507  *
1508  *	RETURNS:
1509  *	Zero on success, AC_ERR_* mask on failure
1510  */
1511 unsigned ata_exec_internal(struct ata_device *dev,
1512 			   struct ata_taskfile *tf, const u8 *cdb,
1513 			   int dma_dir, void *buf, unsigned int buflen)
1514 {
1515 	struct scatterlist *psg = NULL, sg;
1516 	unsigned int n_elem = 0;
1517 
1518 	if (dma_dir != DMA_NONE) {
1519 		WARN_ON(!buf);
1520 		sg_init_one(&sg, buf, buflen);
1521 		psg = &sg;
1522 		n_elem++;
1523 	}
1524 
1525 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1526 }
1527 
1528 /**
1529  *	ata_do_simple_cmd - execute simple internal command
1530  *	@dev: Device to which the command is sent
1531  *	@cmd: Opcode to execute
1532  *
1533  *	Execute a 'simple' command, that only consists of the opcode
1534  *	'cmd' itself, without filling any other registers
1535  *
1536  *	LOCKING:
1537  *	Kernel thread context (may sleep).
1538  *
1539  *	RETURNS:
1540  *	Zero on success, AC_ERR_* mask on failure
1541  */
1542 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1543 {
1544 	struct ata_taskfile tf;
1545 
1546 	ata_tf_init(dev, &tf);
1547 
1548 	tf.command = cmd;
1549 	tf.flags |= ATA_TFLAG_DEVICE;
1550 	tf.protocol = ATA_PROT_NODATA;
1551 
1552 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1553 }
1554 
1555 /**
1556  *	ata_pio_need_iordy	-	check if iordy needed
1557  *	@adev: ATA device
1558  *
1559  *	Check if the current speed of the device requires IORDY. Used
1560  *	by various controllers for chip configuration.
1561  */
1562 
1563 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1564 {
1565 	/* Controller doesn't support  IORDY. Probably a pointless check
1566 	   as the caller should know this */
1567 	if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1568 		return 0;
1569 	/* PIO3 and higher it is mandatory */
1570 	if (adev->pio_mode > XFER_PIO_2)
1571 		return 1;
1572 	/* We turn it on when possible */
1573 	if (ata_id_has_iordy(adev->id))
1574 		return 1;
1575 	return 0;
1576 }
1577 
1578 /**
1579  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1580  *	@adev: ATA device
1581  *
1582  *	Compute the highest mode possible if we are not using iordy. Return
1583  *	-1 if no iordy mode is available.
1584  */
1585 
1586 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1587 {
1588 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1589 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1590 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1591 		/* Is the speed faster than the drive allows non IORDY ? */
1592 		if (pio) {
1593 			/* This is cycle times not frequency - watch the logic! */
1594 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1595 				return 3 << ATA_SHIFT_PIO;
1596 			return 7 << ATA_SHIFT_PIO;
1597 		}
1598 	}
1599 	return 3 << ATA_SHIFT_PIO;
1600 }
1601 
1602 /**
1603  *	ata_dev_read_id - Read ID data from the specified device
1604  *	@dev: target device
1605  *	@p_class: pointer to class of the target device (may be changed)
1606  *	@flags: ATA_READID_* flags
1607  *	@id: buffer to read IDENTIFY data into
1608  *
1609  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1610  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1611  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1612  *	for pre-ATA4 drives.
1613  *
1614  *	LOCKING:
1615  *	Kernel thread context (may sleep)
1616  *
1617  *	RETURNS:
1618  *	0 on success, -errno otherwise.
1619  */
1620 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1621 		    unsigned int flags, u16 *id)
1622 {
1623 	struct ata_port *ap = dev->ap;
1624 	unsigned int class = *p_class;
1625 	struct ata_taskfile tf;
1626 	unsigned int err_mask = 0;
1627 	const char *reason;
1628 	int may_fallback = 1, tried_spinup = 0;
1629 	int rc;
1630 
1631 	if (ata_msg_ctl(ap))
1632 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1633 
1634 	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1635  retry:
1636 	ata_tf_init(dev, &tf);
1637 
1638 	switch (class) {
1639 	case ATA_DEV_ATA:
1640 		tf.command = ATA_CMD_ID_ATA;
1641 		break;
1642 	case ATA_DEV_ATAPI:
1643 		tf.command = ATA_CMD_ID_ATAPI;
1644 		break;
1645 	default:
1646 		rc = -ENODEV;
1647 		reason = "unsupported class";
1648 		goto err_out;
1649 	}
1650 
1651 	tf.protocol = ATA_PROT_PIO;
1652 
1653 	/* Some devices choke if TF registers contain garbage.  Make
1654 	 * sure those are properly initialized.
1655 	 */
1656 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1657 
1658 	/* Device presence detection is unreliable on some
1659 	 * controllers.  Always poll IDENTIFY if available.
1660 	 */
1661 	tf.flags |= ATA_TFLAG_POLLING;
1662 
1663 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1664 				     id, sizeof(id[0]) * ATA_ID_WORDS);
1665 	if (err_mask) {
1666 		if (err_mask & AC_ERR_NODEV_HINT) {
1667 			DPRINTK("ata%u.%d: NODEV after polling detection\n",
1668 				ap->print_id, dev->devno);
1669 			return -ENOENT;
1670 		}
1671 
1672 		/* Device or controller might have reported the wrong
1673 		 * device class.  Give a shot at the other IDENTIFY if
1674 		 * the current one is aborted by the device.
1675 		 */
1676 		if (may_fallback &&
1677 		    (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1678 			may_fallback = 0;
1679 
1680 			if (class == ATA_DEV_ATA)
1681 				class = ATA_DEV_ATAPI;
1682 			else
1683 				class = ATA_DEV_ATA;
1684 			goto retry;
1685 		}
1686 
1687 		rc = -EIO;
1688 		reason = "I/O error";
1689 		goto err_out;
1690 	}
1691 
1692 	/* Falling back doesn't make sense if ID data was read
1693 	 * successfully at least once.
1694 	 */
1695 	may_fallback = 0;
1696 
1697 	swap_buf_le16(id, ATA_ID_WORDS);
1698 
1699 	/* sanity check */
1700 	rc = -EINVAL;
1701 	reason = "device reports invalid type";
1702 
1703 	if (class == ATA_DEV_ATA) {
1704 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1705 			goto err_out;
1706 	} else {
1707 		if (ata_id_is_ata(id))
1708 			goto err_out;
1709 	}
1710 
1711 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1712 		tried_spinup = 1;
1713 		/*
1714 		 * Drive powered-up in standby mode, and requires a specific
1715 		 * SET_FEATURES spin-up subcommand before it will accept
1716 		 * anything other than the original IDENTIFY command.
1717 		 */
1718 		ata_tf_init(dev, &tf);
1719 		tf.command = ATA_CMD_SET_FEATURES;
1720 		tf.feature = SETFEATURES_SPINUP;
1721 		tf.protocol = ATA_PROT_NODATA;
1722 		tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1723 		err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1724 		if (err_mask) {
1725 			rc = -EIO;
1726 			reason = "SPINUP failed";
1727 			goto err_out;
1728 		}
1729 		/*
1730 		 * If the drive initially returned incomplete IDENTIFY info,
1731 		 * we now must reissue the IDENTIFY command.
1732 		 */
1733 		if (id[2] == 0x37c8)
1734 			goto retry;
1735 	}
1736 
1737 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1738 		/*
1739 		 * The exact sequence expected by certain pre-ATA4 drives is:
1740 		 * SRST RESET
1741 		 * IDENTIFY
1742 		 * INITIALIZE DEVICE PARAMETERS
1743 		 * anything else..
1744 		 * Some drives were very specific about that exact sequence.
1745 		 */
1746 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1747 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1748 			if (err_mask) {
1749 				rc = -EIO;
1750 				reason = "INIT_DEV_PARAMS failed";
1751 				goto err_out;
1752 			}
1753 
1754 			/* current CHS translation info (id[53-58]) might be
1755 			 * changed. reread the identify device info.
1756 			 */
1757 			flags &= ~ATA_READID_POSTRESET;
1758 			goto retry;
1759 		}
1760 	}
1761 
1762 	*p_class = class;
1763 
1764 	return 0;
1765 
1766  err_out:
1767 	if (ata_msg_warn(ap))
1768 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1769 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
1770 	return rc;
1771 }
1772 
1773 static inline u8 ata_dev_knobble(struct ata_device *dev)
1774 {
1775 	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1776 }
1777 
1778 static void ata_dev_config_ncq(struct ata_device *dev,
1779 			       char *desc, size_t desc_sz)
1780 {
1781 	struct ata_port *ap = dev->ap;
1782 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1783 
1784 	if (!ata_id_has_ncq(dev->id)) {
1785 		desc[0] = '\0';
1786 		return;
1787 	}
1788 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
1789 		snprintf(desc, desc_sz, "NCQ (not used)");
1790 		return;
1791 	}
1792 	if (ap->flags & ATA_FLAG_NCQ) {
1793 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1794 		dev->flags |= ATA_DFLAG_NCQ;
1795 	}
1796 
1797 	if (hdepth >= ddepth)
1798 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1799 	else
1800 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1801 }
1802 
1803 /**
1804  *	ata_dev_configure - Configure the specified ATA/ATAPI device
1805  *	@dev: Target device to configure
1806  *
1807  *	Configure @dev according to @dev->id.  Generic and low-level
1808  *	driver specific fixups are also applied.
1809  *
1810  *	LOCKING:
1811  *	Kernel thread context (may sleep)
1812  *
1813  *	RETURNS:
1814  *	0 on success, -errno otherwise
1815  */
1816 int ata_dev_configure(struct ata_device *dev)
1817 {
1818 	struct ata_port *ap = dev->ap;
1819 	struct ata_eh_context *ehc = &ap->eh_context;
1820 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1821 	const u16 *id = dev->id;
1822 	unsigned int xfer_mask;
1823 	char revbuf[7];		/* XYZ-99\0 */
1824 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1825 	char modelbuf[ATA_ID_PROD_LEN+1];
1826 	int rc;
1827 
1828 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1829 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1830 			       __FUNCTION__);
1831 		return 0;
1832 	}
1833 
1834 	if (ata_msg_probe(ap))
1835 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1836 
1837 	/* set horkage */
1838 	dev->horkage |= ata_dev_blacklisted(dev);
1839 
1840 	/* let ACPI work its magic */
1841 	rc = ata_acpi_on_devcfg(dev);
1842 	if (rc)
1843 		return rc;
1844 
1845 	/* print device capabilities */
1846 	if (ata_msg_probe(ap))
1847 		ata_dev_printk(dev, KERN_DEBUG,
1848 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1849 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
1850 			       __FUNCTION__,
1851 			       id[49], id[82], id[83], id[84],
1852 			       id[85], id[86], id[87], id[88]);
1853 
1854 	/* initialize to-be-configured parameters */
1855 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
1856 	dev->max_sectors = 0;
1857 	dev->cdb_len = 0;
1858 	dev->n_sectors = 0;
1859 	dev->cylinders = 0;
1860 	dev->heads = 0;
1861 	dev->sectors = 0;
1862 
1863 	/*
1864 	 * common ATA, ATAPI feature tests
1865 	 */
1866 
1867 	/* find max transfer mode; for printk only */
1868 	xfer_mask = ata_id_xfermask(id);
1869 
1870 	if (ata_msg_probe(ap))
1871 		ata_dump_id(id);
1872 
1873 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1874 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1875 			sizeof(fwrevbuf));
1876 
1877 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1878 			sizeof(modelbuf));
1879 
1880 	/* ATA-specific feature tests */
1881 	if (dev->class == ATA_DEV_ATA) {
1882 		if (ata_id_is_cfa(id)) {
1883 			if (id[162] & 1) /* CPRM may make this media unusable */
1884 				ata_dev_printk(dev, KERN_WARNING,
1885 					       "supports DRM functions and may "
1886 					       "not be fully accessable.\n");
1887 			snprintf(revbuf, 7, "CFA");
1888 		}
1889 		else
1890 			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
1891 
1892 		dev->n_sectors = ata_id_n_sectors(id);
1893 
1894 		if (dev->id[59] & 0x100)
1895 			dev->multi_count = dev->id[59] & 0xff;
1896 
1897 		if (ata_id_has_lba(id)) {
1898 			const char *lba_desc;
1899 			char ncq_desc[20];
1900 
1901 			lba_desc = "LBA";
1902 			dev->flags |= ATA_DFLAG_LBA;
1903 			if (ata_id_has_lba48(id)) {
1904 				dev->flags |= ATA_DFLAG_LBA48;
1905 				lba_desc = "LBA48";
1906 
1907 				if (dev->n_sectors >= (1UL << 28) &&
1908 				    ata_id_has_flush_ext(id))
1909 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
1910 			}
1911 
1912 			if (ata_id_hpa_enabled(dev->id))
1913 				dev->n_sectors = ata_hpa_resize(dev);
1914 
1915 			/* config NCQ */
1916 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1917 
1918 			/* print device info to dmesg */
1919 			if (ata_msg_drv(ap) && print_info) {
1920 				ata_dev_printk(dev, KERN_INFO,
1921 					"%s: %s, %s, max %s\n",
1922 					revbuf, modelbuf, fwrevbuf,
1923 					ata_mode_string(xfer_mask));
1924 				ata_dev_printk(dev, KERN_INFO,
1925 					"%Lu sectors, multi %u: %s %s\n",
1926 					(unsigned long long)dev->n_sectors,
1927 					dev->multi_count, lba_desc, ncq_desc);
1928 			}
1929 		} else {
1930 			/* CHS */
1931 
1932 			/* Default translation */
1933 			dev->cylinders	= id[1];
1934 			dev->heads	= id[3];
1935 			dev->sectors	= id[6];
1936 
1937 			if (ata_id_current_chs_valid(id)) {
1938 				/* Current CHS translation is valid. */
1939 				dev->cylinders = id[54];
1940 				dev->heads     = id[55];
1941 				dev->sectors   = id[56];
1942 			}
1943 
1944 			/* print device info to dmesg */
1945 			if (ata_msg_drv(ap) && print_info) {
1946 				ata_dev_printk(dev, KERN_INFO,
1947 					"%s: %s, %s, max %s\n",
1948 					revbuf,	modelbuf, fwrevbuf,
1949 					ata_mode_string(xfer_mask));
1950 				ata_dev_printk(dev, KERN_INFO,
1951 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
1952 					(unsigned long long)dev->n_sectors,
1953 					dev->multi_count, dev->cylinders,
1954 					dev->heads, dev->sectors);
1955 			}
1956 		}
1957 
1958 		dev->cdb_len = 16;
1959 	}
1960 
1961 	/* ATAPI-specific feature tests */
1962 	else if (dev->class == ATA_DEV_ATAPI) {
1963 		char *cdb_intr_string = "";
1964 
1965 		rc = atapi_cdb_len(id);
1966 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1967 			if (ata_msg_warn(ap))
1968 				ata_dev_printk(dev, KERN_WARNING,
1969 					       "unsupported CDB len\n");
1970 			rc = -EINVAL;
1971 			goto err_out_nosup;
1972 		}
1973 		dev->cdb_len = (unsigned int) rc;
1974 
1975 		if (ata_id_cdb_intr(dev->id)) {
1976 			dev->flags |= ATA_DFLAG_CDB_INTR;
1977 			cdb_intr_string = ", CDB intr";
1978 		}
1979 
1980 		/* print device info to dmesg */
1981 		if (ata_msg_drv(ap) && print_info)
1982 			ata_dev_printk(dev, KERN_INFO,
1983 				       "ATAPI: %s, %s, max %s%s\n",
1984 				       modelbuf, fwrevbuf,
1985 				       ata_mode_string(xfer_mask),
1986 				       cdb_intr_string);
1987 	}
1988 
1989 	/* determine max_sectors */
1990 	dev->max_sectors = ATA_MAX_SECTORS;
1991 	if (dev->flags & ATA_DFLAG_LBA48)
1992 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1993 
1994 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1995 		/* Let the user know. We don't want to disallow opens for
1996 		   rescue purposes, or in case the vendor is just a blithering
1997 		   idiot */
1998                 if (print_info) {
1999 			ata_dev_printk(dev, KERN_WARNING,
2000 "Drive reports diagnostics failure. This may indicate a drive\n");
2001 			ata_dev_printk(dev, KERN_WARNING,
2002 "fault or invalid emulation. Contact drive vendor for information.\n");
2003 		}
2004 	}
2005 
2006 	/* limit bridge transfers to udma5, 200 sectors */
2007 	if (ata_dev_knobble(dev)) {
2008 		if (ata_msg_drv(ap) && print_info)
2009 			ata_dev_printk(dev, KERN_INFO,
2010 				       "applying bridge limits\n");
2011 		dev->udma_mask &= ATA_UDMA5;
2012 		dev->max_sectors = ATA_MAX_SECTORS;
2013 	}
2014 
2015 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2016 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2017 					 dev->max_sectors);
2018 
2019 	if (ap->ops->dev_config)
2020 		ap->ops->dev_config(dev);
2021 
2022 	if (ata_msg_probe(ap))
2023 		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2024 			__FUNCTION__, ata_chk_status(ap));
2025 	return 0;
2026 
2027 err_out_nosup:
2028 	if (ata_msg_probe(ap))
2029 		ata_dev_printk(dev, KERN_DEBUG,
2030 			       "%s: EXIT, err\n", __FUNCTION__);
2031 	return rc;
2032 }
2033 
2034 /**
2035  *	ata_cable_40wire	-	return 40 wire cable type
2036  *	@ap: port
2037  *
2038  *	Helper method for drivers which want to hardwire 40 wire cable
2039  *	detection.
2040  */
2041 
2042 int ata_cable_40wire(struct ata_port *ap)
2043 {
2044 	return ATA_CBL_PATA40;
2045 }
2046 
2047 /**
2048  *	ata_cable_80wire	-	return 80 wire cable type
2049  *	@ap: port
2050  *
2051  *	Helper method for drivers which want to hardwire 80 wire cable
2052  *	detection.
2053  */
2054 
2055 int ata_cable_80wire(struct ata_port *ap)
2056 {
2057 	return ATA_CBL_PATA80;
2058 }
2059 
2060 /**
2061  *	ata_cable_unknown	-	return unknown PATA cable.
2062  *	@ap: port
2063  *
2064  *	Helper method for drivers which have no PATA cable detection.
2065  */
2066 
2067 int ata_cable_unknown(struct ata_port *ap)
2068 {
2069 	return ATA_CBL_PATA_UNK;
2070 }
2071 
2072 /**
2073  *	ata_cable_sata	-	return SATA cable type
2074  *	@ap: port
2075  *
2076  *	Helper method for drivers which have SATA cables
2077  */
2078 
2079 int ata_cable_sata(struct ata_port *ap)
2080 {
2081 	return ATA_CBL_SATA;
2082 }
2083 
2084 /**
2085  *	ata_bus_probe - Reset and probe ATA bus
2086  *	@ap: Bus to probe
2087  *
2088  *	Master ATA bus probing function.  Initiates a hardware-dependent
2089  *	bus reset, then attempts to identify any devices found on
2090  *	the bus.
2091  *
2092  *	LOCKING:
2093  *	PCI/etc. bus probe sem.
2094  *
2095  *	RETURNS:
2096  *	Zero on success, negative errno otherwise.
2097  */
2098 
2099 int ata_bus_probe(struct ata_port *ap)
2100 {
2101 	unsigned int classes[ATA_MAX_DEVICES];
2102 	int tries[ATA_MAX_DEVICES];
2103 	int i, rc;
2104 	struct ata_device *dev;
2105 
2106 	ata_port_probe(ap);
2107 
2108 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2109 		tries[i] = ATA_PROBE_MAX_TRIES;
2110 
2111  retry:
2112 	/* reset and determine device classes */
2113 	ap->ops->phy_reset(ap);
2114 
2115 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2116 		dev = &ap->device[i];
2117 
2118 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2119 		    dev->class != ATA_DEV_UNKNOWN)
2120 			classes[dev->devno] = dev->class;
2121 		else
2122 			classes[dev->devno] = ATA_DEV_NONE;
2123 
2124 		dev->class = ATA_DEV_UNKNOWN;
2125 	}
2126 
2127 	ata_port_probe(ap);
2128 
2129 	/* after the reset the device state is PIO 0 and the controller
2130 	   state is undefined. Record the mode */
2131 
2132 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2133 		ap->device[i].pio_mode = XFER_PIO_0;
2134 
2135 	/* read IDENTIFY page and configure devices. We have to do the identify
2136 	   specific sequence bass-ackwards so that PDIAG- is released by
2137 	   the slave device */
2138 
2139 	for (i = ATA_MAX_DEVICES - 1; i >=  0; i--) {
2140 		dev = &ap->device[i];
2141 
2142 		if (tries[i])
2143 			dev->class = classes[i];
2144 
2145 		if (!ata_dev_enabled(dev))
2146 			continue;
2147 
2148 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2149 				     dev->id);
2150 		if (rc)
2151 			goto fail;
2152 	}
2153 
2154 	/* Now ask for the cable type as PDIAG- should have been released */
2155 	if (ap->ops->cable_detect)
2156 		ap->cbl = ap->ops->cable_detect(ap);
2157 
2158 	/* After the identify sequence we can now set up the devices. We do
2159 	   this in the normal order so that the user doesn't get confused */
2160 
2161 	for(i = 0; i < ATA_MAX_DEVICES; i++) {
2162 		dev = &ap->device[i];
2163 		if (!ata_dev_enabled(dev))
2164 			continue;
2165 
2166 		ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2167 		rc = ata_dev_configure(dev);
2168 		ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2169 		if (rc)
2170 			goto fail;
2171 	}
2172 
2173 	/* configure transfer mode */
2174 	rc = ata_set_mode(ap, &dev);
2175 	if (rc)
2176 		goto fail;
2177 
2178 	for (i = 0; i < ATA_MAX_DEVICES; i++)
2179 		if (ata_dev_enabled(&ap->device[i]))
2180 			return 0;
2181 
2182 	/* no device present, disable port */
2183 	ata_port_disable(ap);
2184 	ap->ops->port_disable(ap);
2185 	return -ENODEV;
2186 
2187  fail:
2188 	tries[dev->devno]--;
2189 
2190 	switch (rc) {
2191 	case -EINVAL:
2192 		/* eeek, something went very wrong, give up */
2193 		tries[dev->devno] = 0;
2194 		break;
2195 
2196 	case -ENODEV:
2197 		/* give it just one more chance */
2198 		tries[dev->devno] = min(tries[dev->devno], 1);
2199 	case -EIO:
2200 		if (tries[dev->devno] == 1) {
2201 			/* This is the last chance, better to slow
2202 			 * down than lose it.
2203 			 */
2204 			sata_down_spd_limit(ap);
2205 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 		}
2207 	}
2208 
2209 	if (!tries[dev->devno])
2210 		ata_dev_disable(dev);
2211 
2212 	goto retry;
2213 }
2214 
2215 /**
2216  *	ata_port_probe - Mark port as enabled
2217  *	@ap: Port for which we indicate enablement
2218  *
2219  *	Modify @ap data structure such that the system
2220  *	thinks that the entire port is enabled.
2221  *
2222  *	LOCKING: host lock, or some other form of
2223  *	serialization.
2224  */
2225 
2226 void ata_port_probe(struct ata_port *ap)
2227 {
2228 	ap->flags &= ~ATA_FLAG_DISABLED;
2229 }
2230 
2231 /**
2232  *	sata_print_link_status - Print SATA link status
2233  *	@ap: SATA port to printk link status about
2234  *
2235  *	This function prints link speed and status of a SATA link.
2236  *
2237  *	LOCKING:
2238  *	None.
2239  */
2240 void sata_print_link_status(struct ata_port *ap)
2241 {
2242 	u32 sstatus, scontrol, tmp;
2243 
2244 	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2245 		return;
2246 	sata_scr_read(ap, SCR_CONTROL, &scontrol);
2247 
2248 	if (ata_port_online(ap)) {
2249 		tmp = (sstatus >> 4) & 0xf;
2250 		ata_port_printk(ap, KERN_INFO,
2251 				"SATA link up %s (SStatus %X SControl %X)\n",
2252 				sata_spd_string(tmp), sstatus, scontrol);
2253 	} else {
2254 		ata_port_printk(ap, KERN_INFO,
2255 				"SATA link down (SStatus %X SControl %X)\n",
2256 				sstatus, scontrol);
2257 	}
2258 }
2259 
2260 /**
2261  *	__sata_phy_reset - Wake/reset a low-level SATA PHY
2262  *	@ap: SATA port associated with target SATA PHY.
2263  *
2264  *	This function issues commands to standard SATA Sxxx
2265  *	PHY registers, to wake up the phy (and device), and
2266  *	clear any reset condition.
2267  *
2268  *	LOCKING:
2269  *	PCI/etc. bus probe sem.
2270  *
2271  */
2272 void __sata_phy_reset(struct ata_port *ap)
2273 {
2274 	u32 sstatus;
2275 	unsigned long timeout = jiffies + (HZ * 5);
2276 
2277 	if (ap->flags & ATA_FLAG_SATA_RESET) {
2278 		/* issue phy wake/reset */
2279 		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2280 		/* Couldn't find anything in SATA I/II specs, but
2281 		 * AHCI-1.1 10.4.2 says at least 1 ms. */
2282 		mdelay(1);
2283 	}
2284 	/* phy wake/clear reset */
2285 	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2286 
2287 	/* wait for phy to become ready, if necessary */
2288 	do {
2289 		msleep(200);
2290 		sata_scr_read(ap, SCR_STATUS, &sstatus);
2291 		if ((sstatus & 0xf) != 1)
2292 			break;
2293 	} while (time_before(jiffies, timeout));
2294 
2295 	/* print link status */
2296 	sata_print_link_status(ap);
2297 
2298 	/* TODO: phy layer with polling, timeouts, etc. */
2299 	if (!ata_port_offline(ap))
2300 		ata_port_probe(ap);
2301 	else
2302 		ata_port_disable(ap);
2303 
2304 	if (ap->flags & ATA_FLAG_DISABLED)
2305 		return;
2306 
2307 	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2308 		ata_port_disable(ap);
2309 		return;
2310 	}
2311 
2312 	ap->cbl = ATA_CBL_SATA;
2313 }
2314 
2315 /**
2316  *	sata_phy_reset - Reset SATA bus.
2317  *	@ap: SATA port associated with target SATA PHY.
2318  *
2319  *	This function resets the SATA bus, and then probes
2320  *	the bus for devices.
2321  *
2322  *	LOCKING:
2323  *	PCI/etc. bus probe sem.
2324  *
2325  */
2326 void sata_phy_reset(struct ata_port *ap)
2327 {
2328 	__sata_phy_reset(ap);
2329 	if (ap->flags & ATA_FLAG_DISABLED)
2330 		return;
2331 	ata_bus_reset(ap);
2332 }
2333 
2334 /**
2335  *	ata_dev_pair		-	return other device on cable
2336  *	@adev: device
2337  *
2338  *	Obtain the other device on the same cable, or if none is
2339  *	present NULL is returned
2340  */
2341 
2342 struct ata_device *ata_dev_pair(struct ata_device *adev)
2343 {
2344 	struct ata_port *ap = adev->ap;
2345 	struct ata_device *pair = &ap->device[1 - adev->devno];
2346 	if (!ata_dev_enabled(pair))
2347 		return NULL;
2348 	return pair;
2349 }
2350 
2351 /**
2352  *	ata_port_disable - Disable port.
2353  *	@ap: Port to be disabled.
2354  *
2355  *	Modify @ap data structure such that the system
2356  *	thinks that the entire port is disabled, and should
2357  *	never attempt to probe or communicate with devices
2358  *	on this port.
2359  *
2360  *	LOCKING: host lock, or some other form of
2361  *	serialization.
2362  */
2363 
2364 void ata_port_disable(struct ata_port *ap)
2365 {
2366 	ap->device[0].class = ATA_DEV_NONE;
2367 	ap->device[1].class = ATA_DEV_NONE;
2368 	ap->flags |= ATA_FLAG_DISABLED;
2369 }
2370 
2371 /**
2372  *	sata_down_spd_limit - adjust SATA spd limit downward
2373  *	@ap: Port to adjust SATA spd limit for
2374  *
2375  *	Adjust SATA spd limit of @ap downward.  Note that this
2376  *	function only adjusts the limit.  The change must be applied
2377  *	using sata_set_spd().
2378  *
2379  *	LOCKING:
2380  *	Inherited from caller.
2381  *
2382  *	RETURNS:
2383  *	0 on success, negative errno on failure
2384  */
2385 int sata_down_spd_limit(struct ata_port *ap)
2386 {
2387 	u32 sstatus, spd, mask;
2388 	int rc, highbit;
2389 
2390 	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2391 	if (rc)
2392 		return rc;
2393 
2394 	mask = ap->sata_spd_limit;
2395 	if (mask <= 1)
2396 		return -EINVAL;
2397 	highbit = fls(mask) - 1;
2398 	mask &= ~(1 << highbit);
2399 
2400 	spd = (sstatus >> 4) & 0xf;
2401 	if (spd <= 1)
2402 		return -EINVAL;
2403 	spd--;
2404 	mask &= (1 << spd) - 1;
2405 	if (!mask)
2406 		return -EINVAL;
2407 
2408 	ap->sata_spd_limit = mask;
2409 
2410 	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2411 			sata_spd_string(fls(mask)));
2412 
2413 	return 0;
2414 }
2415 
2416 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2417 {
2418 	u32 spd, limit;
2419 
2420 	if (ap->sata_spd_limit == UINT_MAX)
2421 		limit = 0;
2422 	else
2423 		limit = fls(ap->sata_spd_limit);
2424 
2425 	spd = (*scontrol >> 4) & 0xf;
2426 	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2427 
2428 	return spd != limit;
2429 }
2430 
2431 /**
2432  *	sata_set_spd_needed - is SATA spd configuration needed
2433  *	@ap: Port in question
2434  *
2435  *	Test whether the spd limit in SControl matches
2436  *	@ap->sata_spd_limit.  This function is used to determine
2437  *	whether hardreset is necessary to apply SATA spd
2438  *	configuration.
2439  *
2440  *	LOCKING:
2441  *	Inherited from caller.
2442  *
2443  *	RETURNS:
2444  *	1 if SATA spd configuration is needed, 0 otherwise.
2445  */
2446 int sata_set_spd_needed(struct ata_port *ap)
2447 {
2448 	u32 scontrol;
2449 
2450 	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2451 		return 0;
2452 
2453 	return __sata_set_spd_needed(ap, &scontrol);
2454 }
2455 
2456 /**
2457  *	sata_set_spd - set SATA spd according to spd limit
2458  *	@ap: Port to set SATA spd for
2459  *
2460  *	Set SATA spd of @ap according to sata_spd_limit.
2461  *
2462  *	LOCKING:
2463  *	Inherited from caller.
2464  *
2465  *	RETURNS:
2466  *	0 if spd doesn't need to be changed, 1 if spd has been
2467  *	changed.  Negative errno if SCR registers are inaccessible.
2468  */
2469 int sata_set_spd(struct ata_port *ap)
2470 {
2471 	u32 scontrol;
2472 	int rc;
2473 
2474 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2475 		return rc;
2476 
2477 	if (!__sata_set_spd_needed(ap, &scontrol))
2478 		return 0;
2479 
2480 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2481 		return rc;
2482 
2483 	return 1;
2484 }
2485 
2486 /*
2487  * This mode timing computation functionality is ported over from
2488  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2489  */
2490 /*
2491  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2492  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2493  * for UDMA6, which is currently supported only by Maxtor drives.
2494  *
2495  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2496  */
2497 
2498 static const struct ata_timing ata_timing[] = {
2499 
2500 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2501 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2502 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2503 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2504 
2505 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2506 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2507 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2508 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2509 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2510 
2511 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2512 
2513 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2514 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2515 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2516 
2517 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2518 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2519 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2520 
2521 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2522 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2523 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2524 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2525 
2526 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2527 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2528 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2529 
2530 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2531 
2532 	{ 0xFF }
2533 };
2534 
2535 #define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
2536 #define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
2537 
2538 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2539 {
2540 	q->setup   = EZ(t->setup   * 1000,  T);
2541 	q->act8b   = EZ(t->act8b   * 1000,  T);
2542 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
2543 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2544 	q->active  = EZ(t->active  * 1000,  T);
2545 	q->recover = EZ(t->recover * 1000,  T);
2546 	q->cycle   = EZ(t->cycle   * 1000,  T);
2547 	q->udma    = EZ(t->udma    * 1000, UT);
2548 }
2549 
2550 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2551 		      struct ata_timing *m, unsigned int what)
2552 {
2553 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2554 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2555 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2556 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2557 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2558 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2559 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2560 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2561 }
2562 
2563 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2564 {
2565 	const struct ata_timing *t;
2566 
2567 	for (t = ata_timing; t->mode != speed; t++)
2568 		if (t->mode == 0xFF)
2569 			return NULL;
2570 	return t;
2571 }
2572 
2573 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2574 		       struct ata_timing *t, int T, int UT)
2575 {
2576 	const struct ata_timing *s;
2577 	struct ata_timing p;
2578 
2579 	/*
2580 	 * Find the mode.
2581 	 */
2582 
2583 	if (!(s = ata_timing_find_mode(speed)))
2584 		return -EINVAL;
2585 
2586 	memcpy(t, s, sizeof(*s));
2587 
2588 	/*
2589 	 * If the drive is an EIDE drive, it can tell us it needs extended
2590 	 * PIO/MW_DMA cycle timing.
2591 	 */
2592 
2593 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2594 		memset(&p, 0, sizeof(p));
2595 		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2596 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2597 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2598 		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2599 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2600 		}
2601 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2602 	}
2603 
2604 	/*
2605 	 * Convert the timing to bus clock counts.
2606 	 */
2607 
2608 	ata_timing_quantize(t, t, T, UT);
2609 
2610 	/*
2611 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2612 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2613 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2614 	 */
2615 
2616 	if (speed > XFER_PIO_6) {
2617 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2618 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2619 	}
2620 
2621 	/*
2622 	 * Lengthen active & recovery time so that cycle time is correct.
2623 	 */
2624 
2625 	if (t->act8b + t->rec8b < t->cyc8b) {
2626 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2627 		t->rec8b = t->cyc8b - t->act8b;
2628 	}
2629 
2630 	if (t->active + t->recover < t->cycle) {
2631 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2632 		t->recover = t->cycle - t->active;
2633 	}
2634 
2635 	/* In a few cases quantisation may produce enough errors to
2636 	   leave t->cycle too low for the sum of active and recovery
2637 	   if so we must correct this */
2638 	if (t->active + t->recover > t->cycle)
2639 		t->cycle = t->active + t->recover;
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  *	ata_down_xfermask_limit - adjust dev xfer masks downward
2646  *	@dev: Device to adjust xfer masks
2647  *	@sel: ATA_DNXFER_* selector
2648  *
2649  *	Adjust xfer masks of @dev downward.  Note that this function
2650  *	does not apply the change.  Invoking ata_set_mode() afterwards
2651  *	will apply the limit.
2652  *
2653  *	LOCKING:
2654  *	Inherited from caller.
2655  *
2656  *	RETURNS:
2657  *	0 on success, negative errno on failure
2658  */
2659 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2660 {
2661 	char buf[32];
2662 	unsigned int orig_mask, xfer_mask;
2663 	unsigned int pio_mask, mwdma_mask, udma_mask;
2664 	int quiet, highbit;
2665 
2666 	quiet = !!(sel & ATA_DNXFER_QUIET);
2667 	sel &= ~ATA_DNXFER_QUIET;
2668 
2669 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2670 						  dev->mwdma_mask,
2671 						  dev->udma_mask);
2672 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2673 
2674 	switch (sel) {
2675 	case ATA_DNXFER_PIO:
2676 		highbit = fls(pio_mask) - 1;
2677 		pio_mask &= ~(1 << highbit);
2678 		break;
2679 
2680 	case ATA_DNXFER_DMA:
2681 		if (udma_mask) {
2682 			highbit = fls(udma_mask) - 1;
2683 			udma_mask &= ~(1 << highbit);
2684 			if (!udma_mask)
2685 				return -ENOENT;
2686 		} else if (mwdma_mask) {
2687 			highbit = fls(mwdma_mask) - 1;
2688 			mwdma_mask &= ~(1 << highbit);
2689 			if (!mwdma_mask)
2690 				return -ENOENT;
2691 		}
2692 		break;
2693 
2694 	case ATA_DNXFER_40C:
2695 		udma_mask &= ATA_UDMA_MASK_40C;
2696 		break;
2697 
2698 	case ATA_DNXFER_FORCE_PIO0:
2699 		pio_mask &= 1;
2700 	case ATA_DNXFER_FORCE_PIO:
2701 		mwdma_mask = 0;
2702 		udma_mask = 0;
2703 		break;
2704 
2705 	default:
2706 		BUG();
2707 	}
2708 
2709 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2710 
2711 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2712 		return -ENOENT;
2713 
2714 	if (!quiet) {
2715 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2716 			snprintf(buf, sizeof(buf), "%s:%s",
2717 				 ata_mode_string(xfer_mask),
2718 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2719 		else
2720 			snprintf(buf, sizeof(buf), "%s",
2721 				 ata_mode_string(xfer_mask));
2722 
2723 		ata_dev_printk(dev, KERN_WARNING,
2724 			       "limiting speed to %s\n", buf);
2725 	}
2726 
2727 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2728 			    &dev->udma_mask);
2729 
2730 	return 0;
2731 }
2732 
2733 static int ata_dev_set_mode(struct ata_device *dev)
2734 {
2735 	struct ata_eh_context *ehc = &dev->ap->eh_context;
2736 	unsigned int err_mask;
2737 	int rc;
2738 
2739 	dev->flags &= ~ATA_DFLAG_PIO;
2740 	if (dev->xfer_shift == ATA_SHIFT_PIO)
2741 		dev->flags |= ATA_DFLAG_PIO;
2742 
2743 	err_mask = ata_dev_set_xfermode(dev);
2744 	/* Old CFA may refuse this command, which is just fine */
2745 	if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2746         	err_mask &= ~AC_ERR_DEV;
2747 
2748 	if (err_mask) {
2749 		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2750 			       "(err_mask=0x%x)\n", err_mask);
2751 		return -EIO;
2752 	}
2753 
2754 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
2755 	rc = ata_dev_revalidate(dev, 0);
2756 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2757 	if (rc)
2758 		return rc;
2759 
2760 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2761 		dev->xfer_shift, (int)dev->xfer_mode);
2762 
2763 	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2764 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2765 	return 0;
2766 }
2767 
2768 /**
2769  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2770  *	@ap: port on which timings will be programmed
2771  *	@r_failed_dev: out paramter for failed device
2772  *
2773  *	Standard implementation of the function used to tune and set
2774  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2775  *	ata_dev_set_mode() fails, pointer to the failing device is
2776  *	returned in @r_failed_dev.
2777  *
2778  *	LOCKING:
2779  *	PCI/etc. bus probe sem.
2780  *
2781  *	RETURNS:
2782  *	0 on success, negative errno otherwise
2783  */
2784 
2785 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2786 {
2787 	struct ata_device *dev;
2788 	int i, rc = 0, used_dma = 0, found = 0;
2789 
2790 
2791 	/* step 1: calculate xfer_mask */
2792 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2793 		unsigned int pio_mask, dma_mask;
2794 
2795 		dev = &ap->device[i];
2796 
2797 		if (!ata_dev_enabled(dev))
2798 			continue;
2799 
2800 		ata_dev_xfermask(dev);
2801 
2802 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2803 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2804 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2805 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2806 
2807 		found = 1;
2808 		if (dev->dma_mode)
2809 			used_dma = 1;
2810 	}
2811 	if (!found)
2812 		goto out;
2813 
2814 	/* step 2: always set host PIO timings */
2815 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2816 		dev = &ap->device[i];
2817 		if (!ata_dev_enabled(dev))
2818 			continue;
2819 
2820 		if (!dev->pio_mode) {
2821 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2822 			rc = -EINVAL;
2823 			goto out;
2824 		}
2825 
2826 		dev->xfer_mode = dev->pio_mode;
2827 		dev->xfer_shift = ATA_SHIFT_PIO;
2828 		if (ap->ops->set_piomode)
2829 			ap->ops->set_piomode(ap, dev);
2830 	}
2831 
2832 	/* step 3: set host DMA timings */
2833 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2834 		dev = &ap->device[i];
2835 
2836 		if (!ata_dev_enabled(dev) || !dev->dma_mode)
2837 			continue;
2838 
2839 		dev->xfer_mode = dev->dma_mode;
2840 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2841 		if (ap->ops->set_dmamode)
2842 			ap->ops->set_dmamode(ap, dev);
2843 	}
2844 
2845 	/* step 4: update devices' xfer mode */
2846 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
2847 		dev = &ap->device[i];
2848 
2849 		/* don't update suspended devices' xfer mode */
2850 		if (!ata_dev_enabled(dev))
2851 			continue;
2852 
2853 		rc = ata_dev_set_mode(dev);
2854 		if (rc)
2855 			goto out;
2856 	}
2857 
2858 	/* Record simplex status. If we selected DMA then the other
2859 	 * host channels are not permitted to do so.
2860 	 */
2861 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2862 		ap->host->simplex_claimed = ap;
2863 
2864  out:
2865 	if (rc)
2866 		*r_failed_dev = dev;
2867 	return rc;
2868 }
2869 
2870 /**
2871  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
2872  *	@ap: port on which timings will be programmed
2873  *	@r_failed_dev: out paramter for failed device
2874  *
2875  *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
2876  *	ata_set_mode() fails, pointer to the failing device is
2877  *	returned in @r_failed_dev.
2878  *
2879  *	LOCKING:
2880  *	PCI/etc. bus probe sem.
2881  *
2882  *	RETURNS:
2883  *	0 on success, negative errno otherwise
2884  */
2885 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2886 {
2887 	/* has private set_mode? */
2888 	if (ap->ops->set_mode)
2889 		return ap->ops->set_mode(ap, r_failed_dev);
2890 	return ata_do_set_mode(ap, r_failed_dev);
2891 }
2892 
2893 /**
2894  *	ata_tf_to_host - issue ATA taskfile to host controller
2895  *	@ap: port to which command is being issued
2896  *	@tf: ATA taskfile register set
2897  *
2898  *	Issues ATA taskfile register set to ATA host controller,
2899  *	with proper synchronization with interrupt handler and
2900  *	other threads.
2901  *
2902  *	LOCKING:
2903  *	spin_lock_irqsave(host lock)
2904  */
2905 
2906 static inline void ata_tf_to_host(struct ata_port *ap,
2907 				  const struct ata_taskfile *tf)
2908 {
2909 	ap->ops->tf_load(ap, tf);
2910 	ap->ops->exec_command(ap, tf);
2911 }
2912 
2913 /**
2914  *	ata_busy_sleep - sleep until BSY clears, or timeout
2915  *	@ap: port containing status register to be polled
2916  *	@tmout_pat: impatience timeout
2917  *	@tmout: overall timeout
2918  *
2919  *	Sleep until ATA Status register bit BSY clears,
2920  *	or a timeout occurs.
2921  *
2922  *	LOCKING:
2923  *	Kernel thread context (may sleep).
2924  *
2925  *	RETURNS:
2926  *	0 on success, -errno otherwise.
2927  */
2928 int ata_busy_sleep(struct ata_port *ap,
2929 		   unsigned long tmout_pat, unsigned long tmout)
2930 {
2931 	unsigned long timer_start, timeout;
2932 	u8 status;
2933 
2934 	status = ata_busy_wait(ap, ATA_BUSY, 300);
2935 	timer_start = jiffies;
2936 	timeout = timer_start + tmout_pat;
2937 	while (status != 0xff && (status & ATA_BUSY) &&
2938 	       time_before(jiffies, timeout)) {
2939 		msleep(50);
2940 		status = ata_busy_wait(ap, ATA_BUSY, 3);
2941 	}
2942 
2943 	if (status != 0xff && (status & ATA_BUSY))
2944 		ata_port_printk(ap, KERN_WARNING,
2945 				"port is slow to respond, please be patient "
2946 				"(Status 0x%x)\n", status);
2947 
2948 	timeout = timer_start + tmout;
2949 	while (status != 0xff && (status & ATA_BUSY) &&
2950 	       time_before(jiffies, timeout)) {
2951 		msleep(50);
2952 		status = ata_chk_status(ap);
2953 	}
2954 
2955 	if (status == 0xff)
2956 		return -ENODEV;
2957 
2958 	if (status & ATA_BUSY) {
2959 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
2960 				"(%lu secs, Status 0x%x)\n",
2961 				tmout / HZ, status);
2962 		return -EBUSY;
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 /**
2969  *	ata_wait_ready - sleep until BSY clears, or timeout
2970  *	@ap: port containing status register to be polled
2971  *	@deadline: deadline jiffies for the operation
2972  *
2973  *	Sleep until ATA Status register bit BSY clears, or timeout
2974  *	occurs.
2975  *
2976  *	LOCKING:
2977  *	Kernel thread context (may sleep).
2978  *
2979  *	RETURNS:
2980  *	0 on success, -errno otherwise.
2981  */
2982 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2983 {
2984 	unsigned long start = jiffies;
2985 	int warned = 0;
2986 
2987 	while (1) {
2988 		u8 status = ata_chk_status(ap);
2989 		unsigned long now = jiffies;
2990 
2991 		if (!(status & ATA_BUSY))
2992 			return 0;
2993 		if (!ata_port_online(ap) && status == 0xff)
2994 			return -ENODEV;
2995 		if (time_after(now, deadline))
2996 			return -EBUSY;
2997 
2998 		if (!warned && time_after(now, start + 5 * HZ) &&
2999 		    (deadline - now > 3 * HZ)) {
3000 			ata_port_printk(ap, KERN_WARNING,
3001 				"port is slow to respond, please be patient "
3002 				"(Status 0x%x)\n", status);
3003 			warned = 1;
3004 		}
3005 
3006 		msleep(50);
3007 	}
3008 }
3009 
3010 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3011 			      unsigned long deadline)
3012 {
3013 	struct ata_ioports *ioaddr = &ap->ioaddr;
3014 	unsigned int dev0 = devmask & (1 << 0);
3015 	unsigned int dev1 = devmask & (1 << 1);
3016 	int rc, ret = 0;
3017 
3018 	/* if device 0 was found in ata_devchk, wait for its
3019 	 * BSY bit to clear
3020 	 */
3021 	if (dev0) {
3022 		rc = ata_wait_ready(ap, deadline);
3023 		if (rc) {
3024 			if (rc != -ENODEV)
3025 				return rc;
3026 			ret = rc;
3027 		}
3028 	}
3029 
3030 	/* if device 1 was found in ata_devchk, wait for register
3031 	 * access briefly, then wait for BSY to clear.
3032 	 */
3033 	if (dev1) {
3034 		int i;
3035 
3036 		ap->ops->dev_select(ap, 1);
3037 
3038 		/* Wait for register access.  Some ATAPI devices fail
3039 		 * to set nsect/lbal after reset, so don't waste too
3040 		 * much time on it.  We're gonna wait for !BSY anyway.
3041 		 */
3042 		for (i = 0; i < 2; i++) {
3043 			u8 nsect, lbal;
3044 
3045 			nsect = ioread8(ioaddr->nsect_addr);
3046 			lbal = ioread8(ioaddr->lbal_addr);
3047 			if ((nsect == 1) && (lbal == 1))
3048 				break;
3049 			msleep(50);	/* give drive a breather */
3050 		}
3051 
3052 		rc = ata_wait_ready(ap, deadline);
3053 		if (rc) {
3054 			if (rc != -ENODEV)
3055 				return rc;
3056 			ret = rc;
3057 		}
3058 	}
3059 
3060 	/* is all this really necessary? */
3061 	ap->ops->dev_select(ap, 0);
3062 	if (dev1)
3063 		ap->ops->dev_select(ap, 1);
3064 	if (dev0)
3065 		ap->ops->dev_select(ap, 0);
3066 
3067 	return ret;
3068 }
3069 
3070 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3071 			     unsigned long deadline)
3072 {
3073 	struct ata_ioports *ioaddr = &ap->ioaddr;
3074 
3075 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3076 
3077 	/* software reset.  causes dev0 to be selected */
3078 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3079 	udelay(20);	/* FIXME: flush */
3080 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3081 	udelay(20);	/* FIXME: flush */
3082 	iowrite8(ap->ctl, ioaddr->ctl_addr);
3083 
3084 	/* spec mandates ">= 2ms" before checking status.
3085 	 * We wait 150ms, because that was the magic delay used for
3086 	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3087 	 * between when the ATA command register is written, and then
3088 	 * status is checked.  Because waiting for "a while" before
3089 	 * checking status is fine, post SRST, we perform this magic
3090 	 * delay here as well.
3091 	 *
3092 	 * Old drivers/ide uses the 2mS rule and then waits for ready
3093 	 */
3094 	msleep(150);
3095 
3096 	/* Before we perform post reset processing we want to see if
3097 	 * the bus shows 0xFF because the odd clown forgets the D7
3098 	 * pulldown resistor.
3099 	 */
3100 	if (ata_check_status(ap) == 0xFF)
3101 		return -ENODEV;
3102 
3103 	return ata_bus_post_reset(ap, devmask, deadline);
3104 }
3105 
3106 /**
3107  *	ata_bus_reset - reset host port and associated ATA channel
3108  *	@ap: port to reset
3109  *
3110  *	This is typically the first time we actually start issuing
3111  *	commands to the ATA channel.  We wait for BSY to clear, then
3112  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3113  *	result.  Determine what devices, if any, are on the channel
3114  *	by looking at the device 0/1 error register.  Look at the signature
3115  *	stored in each device's taskfile registers, to determine if
3116  *	the device is ATA or ATAPI.
3117  *
3118  *	LOCKING:
3119  *	PCI/etc. bus probe sem.
3120  *	Obtains host lock.
3121  *
3122  *	SIDE EFFECTS:
3123  *	Sets ATA_FLAG_DISABLED if bus reset fails.
3124  */
3125 
3126 void ata_bus_reset(struct ata_port *ap)
3127 {
3128 	struct ata_ioports *ioaddr = &ap->ioaddr;
3129 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3130 	u8 err;
3131 	unsigned int dev0, dev1 = 0, devmask = 0;
3132 	int rc;
3133 
3134 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3135 
3136 	/* determine if device 0/1 are present */
3137 	if (ap->flags & ATA_FLAG_SATA_RESET)
3138 		dev0 = 1;
3139 	else {
3140 		dev0 = ata_devchk(ap, 0);
3141 		if (slave_possible)
3142 			dev1 = ata_devchk(ap, 1);
3143 	}
3144 
3145 	if (dev0)
3146 		devmask |= (1 << 0);
3147 	if (dev1)
3148 		devmask |= (1 << 1);
3149 
3150 	/* select device 0 again */
3151 	ap->ops->dev_select(ap, 0);
3152 
3153 	/* issue bus reset */
3154 	if (ap->flags & ATA_FLAG_SRST) {
3155 		rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3156 		if (rc && rc != -ENODEV)
3157 			goto err_out;
3158 	}
3159 
3160 	/*
3161 	 * determine by signature whether we have ATA or ATAPI devices
3162 	 */
3163 	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3164 	if ((slave_possible) && (err != 0x81))
3165 		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3166 
3167 	/* is double-select really necessary? */
3168 	if (ap->device[1].class != ATA_DEV_NONE)
3169 		ap->ops->dev_select(ap, 1);
3170 	if (ap->device[0].class != ATA_DEV_NONE)
3171 		ap->ops->dev_select(ap, 0);
3172 
3173 	/* if no devices were detected, disable this port */
3174 	if ((ap->device[0].class == ATA_DEV_NONE) &&
3175 	    (ap->device[1].class == ATA_DEV_NONE))
3176 		goto err_out;
3177 
3178 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3179 		/* set up device control for ATA_FLAG_SATA_RESET */
3180 		iowrite8(ap->ctl, ioaddr->ctl_addr);
3181 	}
3182 
3183 	DPRINTK("EXIT\n");
3184 	return;
3185 
3186 err_out:
3187 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
3188 	ap->ops->port_disable(ap);
3189 
3190 	DPRINTK("EXIT\n");
3191 }
3192 
3193 /**
3194  *	sata_phy_debounce - debounce SATA phy status
3195  *	@ap: ATA port to debounce SATA phy status for
3196  *	@params: timing parameters { interval, duratinon, timeout } in msec
3197  *	@deadline: deadline jiffies for the operation
3198  *
3199  *	Make sure SStatus of @ap reaches stable state, determined by
3200  *	holding the same value where DET is not 1 for @duration polled
3201  *	every @interval, before @timeout.  Timeout constraints the
3202  *	beginning of the stable state.  Because DET gets stuck at 1 on
3203  *	some controllers after hot unplugging, this functions waits
3204  *	until timeout then returns 0 if DET is stable at 1.
3205  *
3206  *	@timeout is further limited by @deadline.  The sooner of the
3207  *	two is used.
3208  *
3209  *	LOCKING:
3210  *	Kernel thread context (may sleep)
3211  *
3212  *	RETURNS:
3213  *	0 on success, -errno on failure.
3214  */
3215 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3216 		      unsigned long deadline)
3217 {
3218 	unsigned long interval_msec = params[0];
3219 	unsigned long duration = msecs_to_jiffies(params[1]);
3220 	unsigned long last_jiffies, t;
3221 	u32 last, cur;
3222 	int rc;
3223 
3224 	t = jiffies + msecs_to_jiffies(params[2]);
3225 	if (time_before(t, deadline))
3226 		deadline = t;
3227 
3228 	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3229 		return rc;
3230 	cur &= 0xf;
3231 
3232 	last = cur;
3233 	last_jiffies = jiffies;
3234 
3235 	while (1) {
3236 		msleep(interval_msec);
3237 		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3238 			return rc;
3239 		cur &= 0xf;
3240 
3241 		/* DET stable? */
3242 		if (cur == last) {
3243 			if (cur == 1 && time_before(jiffies, deadline))
3244 				continue;
3245 			if (time_after(jiffies, last_jiffies + duration))
3246 				return 0;
3247 			continue;
3248 		}
3249 
3250 		/* unstable, start over */
3251 		last = cur;
3252 		last_jiffies = jiffies;
3253 
3254 		/* check deadline */
3255 		if (time_after(jiffies, deadline))
3256 			return -EBUSY;
3257 	}
3258 }
3259 
3260 /**
3261  *	sata_phy_resume - resume SATA phy
3262  *	@ap: ATA port to resume SATA phy for
3263  *	@params: timing parameters { interval, duratinon, timeout } in msec
3264  *	@deadline: deadline jiffies for the operation
3265  *
3266  *	Resume SATA phy of @ap and debounce it.
3267  *
3268  *	LOCKING:
3269  *	Kernel thread context (may sleep)
3270  *
3271  *	RETURNS:
3272  *	0 on success, -errno on failure.
3273  */
3274 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3275 		    unsigned long deadline)
3276 {
3277 	u32 scontrol;
3278 	int rc;
3279 
3280 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3281 		return rc;
3282 
3283 	scontrol = (scontrol & 0x0f0) | 0x300;
3284 
3285 	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3286 		return rc;
3287 
3288 	/* Some PHYs react badly if SStatus is pounded immediately
3289 	 * after resuming.  Delay 200ms before debouncing.
3290 	 */
3291 	msleep(200);
3292 
3293 	return sata_phy_debounce(ap, params, deadline);
3294 }
3295 
3296 /**
3297  *	ata_std_prereset - prepare for reset
3298  *	@ap: ATA port to be reset
3299  *	@deadline: deadline jiffies for the operation
3300  *
3301  *	@ap is about to be reset.  Initialize it.  Failure from
3302  *	prereset makes libata abort whole reset sequence and give up
3303  *	that port, so prereset should be best-effort.  It does its
3304  *	best to prepare for reset sequence but if things go wrong, it
3305  *	should just whine, not fail.
3306  *
3307  *	LOCKING:
3308  *	Kernel thread context (may sleep)
3309  *
3310  *	RETURNS:
3311  *	0 on success, -errno otherwise.
3312  */
3313 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3314 {
3315 	struct ata_eh_context *ehc = &ap->eh_context;
3316 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3317 	int rc;
3318 
3319 	/* handle link resume */
3320 	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3321 	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3322 		ehc->i.action |= ATA_EH_HARDRESET;
3323 
3324 	/* if we're about to do hardreset, nothing more to do */
3325 	if (ehc->i.action & ATA_EH_HARDRESET)
3326 		return 0;
3327 
3328 	/* if SATA, resume phy */
3329 	if (ap->flags & ATA_FLAG_SATA) {
3330 		rc = sata_phy_resume(ap, timing, deadline);
3331 		/* whine about phy resume failure but proceed */
3332 		if (rc && rc != -EOPNOTSUPP)
3333 			ata_port_printk(ap, KERN_WARNING, "failed to resume "
3334 					"link for reset (errno=%d)\n", rc);
3335 	}
3336 
3337 	/* Wait for !BSY if the controller can wait for the first D2H
3338 	 * Reg FIS and we don't know that no device is attached.
3339 	 */
3340 	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3341 		rc = ata_wait_ready(ap, deadline);
3342 		if (rc && rc != -ENODEV) {
3343 			ata_port_printk(ap, KERN_WARNING, "device not ready "
3344 					"(errno=%d), forcing hardreset\n", rc);
3345 			ehc->i.action |= ATA_EH_HARDRESET;
3346 		}
3347 	}
3348 
3349 	return 0;
3350 }
3351 
3352 /**
3353  *	ata_std_softreset - reset host port via ATA SRST
3354  *	@ap: port to reset
3355  *	@classes: resulting classes of attached devices
3356  *	@deadline: deadline jiffies for the operation
3357  *
3358  *	Reset host port using ATA SRST.
3359  *
3360  *	LOCKING:
3361  *	Kernel thread context (may sleep)
3362  *
3363  *	RETURNS:
3364  *	0 on success, -errno otherwise.
3365  */
3366 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3367 		      unsigned long deadline)
3368 {
3369 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3370 	unsigned int devmask = 0;
3371 	int rc;
3372 	u8 err;
3373 
3374 	DPRINTK("ENTER\n");
3375 
3376 	if (ata_port_offline(ap)) {
3377 		classes[0] = ATA_DEV_NONE;
3378 		goto out;
3379 	}
3380 
3381 	/* determine if device 0/1 are present */
3382 	if (ata_devchk(ap, 0))
3383 		devmask |= (1 << 0);
3384 	if (slave_possible && ata_devchk(ap, 1))
3385 		devmask |= (1 << 1);
3386 
3387 	/* select device 0 again */
3388 	ap->ops->dev_select(ap, 0);
3389 
3390 	/* issue bus reset */
3391 	DPRINTK("about to softreset, devmask=%x\n", devmask);
3392 	rc = ata_bus_softreset(ap, devmask, deadline);
3393 	/* if link is occupied, -ENODEV too is an error */
3394 	if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3395 		ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3396 		return rc;
3397 	}
3398 
3399 	/* determine by signature whether we have ATA or ATAPI devices */
3400 	classes[0] = ata_dev_try_classify(ap, 0, &err);
3401 	if (slave_possible && err != 0x81)
3402 		classes[1] = ata_dev_try_classify(ap, 1, &err);
3403 
3404  out:
3405 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3406 	return 0;
3407 }
3408 
3409 /**
3410  *	sata_port_hardreset - reset port via SATA phy reset
3411  *	@ap: port to reset
3412  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3413  *	@deadline: deadline jiffies for the operation
3414  *
3415  *	SATA phy-reset host port using DET bits of SControl register.
3416  *
3417  *	LOCKING:
3418  *	Kernel thread context (may sleep)
3419  *
3420  *	RETURNS:
3421  *	0 on success, -errno otherwise.
3422  */
3423 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3424 			unsigned long deadline)
3425 {
3426 	u32 scontrol;
3427 	int rc;
3428 
3429 	DPRINTK("ENTER\n");
3430 
3431 	if (sata_set_spd_needed(ap)) {
3432 		/* SATA spec says nothing about how to reconfigure
3433 		 * spd.  To be on the safe side, turn off phy during
3434 		 * reconfiguration.  This works for at least ICH7 AHCI
3435 		 * and Sil3124.
3436 		 */
3437 		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3438 			goto out;
3439 
3440 		scontrol = (scontrol & 0x0f0) | 0x304;
3441 
3442 		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3443 			goto out;
3444 
3445 		sata_set_spd(ap);
3446 	}
3447 
3448 	/* issue phy wake/reset */
3449 	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3450 		goto out;
3451 
3452 	scontrol = (scontrol & 0x0f0) | 0x301;
3453 
3454 	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3455 		goto out;
3456 
3457 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3458 	 * 10.4.2 says at least 1 ms.
3459 	 */
3460 	msleep(1);
3461 
3462 	/* bring phy back */
3463 	rc = sata_phy_resume(ap, timing, deadline);
3464  out:
3465 	DPRINTK("EXIT, rc=%d\n", rc);
3466 	return rc;
3467 }
3468 
3469 /**
3470  *	sata_std_hardreset - reset host port via SATA phy reset
3471  *	@ap: port to reset
3472  *	@class: resulting class of attached device
3473  *	@deadline: deadline jiffies for the operation
3474  *
3475  *	SATA phy-reset host port using DET bits of SControl register,
3476  *	wait for !BSY and classify the attached device.
3477  *
3478  *	LOCKING:
3479  *	Kernel thread context (may sleep)
3480  *
3481  *	RETURNS:
3482  *	0 on success, -errno otherwise.
3483  */
3484 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3485 		       unsigned long deadline)
3486 {
3487 	const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3488 	int rc;
3489 
3490 	DPRINTK("ENTER\n");
3491 
3492 	/* do hardreset */
3493 	rc = sata_port_hardreset(ap, timing, deadline);
3494 	if (rc) {
3495 		ata_port_printk(ap, KERN_ERR,
3496 				"COMRESET failed (errno=%d)\n", rc);
3497 		return rc;
3498 	}
3499 
3500 	/* TODO: phy layer with polling, timeouts, etc. */
3501 	if (ata_port_offline(ap)) {
3502 		*class = ATA_DEV_NONE;
3503 		DPRINTK("EXIT, link offline\n");
3504 		return 0;
3505 	}
3506 
3507 	/* wait a while before checking status, see SRST for more info */
3508 	msleep(150);
3509 
3510 	rc = ata_wait_ready(ap, deadline);
3511 	/* link occupied, -ENODEV too is an error */
3512 	if (rc) {
3513 		ata_port_printk(ap, KERN_ERR,
3514 				"COMRESET failed (errno=%d)\n", rc);
3515 		return rc;
3516 	}
3517 
3518 	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
3519 
3520 	*class = ata_dev_try_classify(ap, 0, NULL);
3521 
3522 	DPRINTK("EXIT, class=%u\n", *class);
3523 	return 0;
3524 }
3525 
3526 /**
3527  *	ata_std_postreset - standard postreset callback
3528  *	@ap: the target ata_port
3529  *	@classes: classes of attached devices
3530  *
3531  *	This function is invoked after a successful reset.  Note that
3532  *	the device might have been reset more than once using
3533  *	different reset methods before postreset is invoked.
3534  *
3535  *	LOCKING:
3536  *	Kernel thread context (may sleep)
3537  */
3538 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3539 {
3540 	u32 serror;
3541 
3542 	DPRINTK("ENTER\n");
3543 
3544 	/* print link status */
3545 	sata_print_link_status(ap);
3546 
3547 	/* clear SError */
3548 	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3549 		sata_scr_write(ap, SCR_ERROR, serror);
3550 
3551 	/* is double-select really necessary? */
3552 	if (classes[0] != ATA_DEV_NONE)
3553 		ap->ops->dev_select(ap, 1);
3554 	if (classes[1] != ATA_DEV_NONE)
3555 		ap->ops->dev_select(ap, 0);
3556 
3557 	/* bail out if no device is present */
3558 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3559 		DPRINTK("EXIT, no device\n");
3560 		return;
3561 	}
3562 
3563 	/* set up device control */
3564 	if (ap->ioaddr.ctl_addr)
3565 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3566 
3567 	DPRINTK("EXIT\n");
3568 }
3569 
3570 /**
3571  *	ata_dev_same_device - Determine whether new ID matches configured device
3572  *	@dev: device to compare against
3573  *	@new_class: class of the new device
3574  *	@new_id: IDENTIFY page of the new device
3575  *
3576  *	Compare @new_class and @new_id against @dev and determine
3577  *	whether @dev is the device indicated by @new_class and
3578  *	@new_id.
3579  *
3580  *	LOCKING:
3581  *	None.
3582  *
3583  *	RETURNS:
3584  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3585  */
3586 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3587 			       const u16 *new_id)
3588 {
3589 	const u16 *old_id = dev->id;
3590 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3591 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3592 
3593 	if (dev->class != new_class) {
3594 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3595 			       dev->class, new_class);
3596 		return 0;
3597 	}
3598 
3599 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3600 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3601 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3602 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3603 
3604 	if (strcmp(model[0], model[1])) {
3605 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3606 			       "'%s' != '%s'\n", model[0], model[1]);
3607 		return 0;
3608 	}
3609 
3610 	if (strcmp(serial[0], serial[1])) {
3611 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3612 			       "'%s' != '%s'\n", serial[0], serial[1]);
3613 		return 0;
3614 	}
3615 
3616 	return 1;
3617 }
3618 
3619 /**
3620  *	ata_dev_reread_id - Re-read IDENTIFY data
3621  *	@dev: target ATA device
3622  *	@readid_flags: read ID flags
3623  *
3624  *	Re-read IDENTIFY page and make sure @dev is still attached to
3625  *	the port.
3626  *
3627  *	LOCKING:
3628  *	Kernel thread context (may sleep)
3629  *
3630  *	RETURNS:
3631  *	0 on success, negative errno otherwise
3632  */
3633 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3634 {
3635 	unsigned int class = dev->class;
3636 	u16 *id = (void *)dev->ap->sector_buf;
3637 	int rc;
3638 
3639 	/* read ID data */
3640 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3641 	if (rc)
3642 		return rc;
3643 
3644 	/* is the device still there? */
3645 	if (!ata_dev_same_device(dev, class, id))
3646 		return -ENODEV;
3647 
3648 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3649 	return 0;
3650 }
3651 
3652 /**
3653  *	ata_dev_revalidate - Revalidate ATA device
3654  *	@dev: device to revalidate
3655  *	@readid_flags: read ID flags
3656  *
3657  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3658  *	port and reconfigure it according to the new IDENTIFY page.
3659  *
3660  *	LOCKING:
3661  *	Kernel thread context (may sleep)
3662  *
3663  *	RETURNS:
3664  *	0 on success, negative errno otherwise
3665  */
3666 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3667 {
3668 	u64 n_sectors = dev->n_sectors;
3669 	int rc;
3670 
3671 	if (!ata_dev_enabled(dev))
3672 		return -ENODEV;
3673 
3674 	/* re-read ID */
3675 	rc = ata_dev_reread_id(dev, readid_flags);
3676 	if (rc)
3677 		goto fail;
3678 
3679 	/* configure device according to the new ID */
3680 	rc = ata_dev_configure(dev);
3681 	if (rc)
3682 		goto fail;
3683 
3684 	/* verify n_sectors hasn't changed */
3685 	if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3686 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3687 			       "%llu != %llu\n",
3688 			       (unsigned long long)n_sectors,
3689 			       (unsigned long long)dev->n_sectors);
3690 		rc = -ENODEV;
3691 		goto fail;
3692 	}
3693 
3694 	return 0;
3695 
3696  fail:
3697 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3698 	return rc;
3699 }
3700 
3701 struct ata_blacklist_entry {
3702 	const char *model_num;
3703 	const char *model_rev;
3704 	unsigned long horkage;
3705 };
3706 
3707 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3708 	/* Devices with DMA related problems under Linux */
3709 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3710 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3711 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3712 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3713 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3714 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3715 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3716 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3717 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3718 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
3719 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
3720 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3721 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3722 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3723 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3724 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3725 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
3726 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
3727 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3728 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3729 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3730 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3731 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3732 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3733 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3734 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3735 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3736 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3737 	{ "SAMSUNG CD-ROM SN-124","N001",	ATA_HORKAGE_NODMA },
3738 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3739 	{ "IOMEGA  ZIP 250       ATAPI", NULL,	ATA_HORKAGE_NODMA }, /* temporary fix */
3740 	{ "IOMEGA  ZIP 250       ATAPI       Floppy",
3741 				NULL,		ATA_HORKAGE_NODMA },
3742 
3743 	/* Weird ATAPI devices */
3744 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3745 
3746 	/* Devices we expect to fail diagnostics */
3747 
3748 	/* Devices where NCQ should be avoided */
3749 	/* NCQ is slow */
3750         { "WDC WD740ADFD-00",   NULL,		ATA_HORKAGE_NONCQ },
3751 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3752 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3753 	/* NCQ is broken */
3754 	{ "Maxtor 6L250S0",     "BANC1G10",     ATA_HORKAGE_NONCQ },
3755 	{ "Maxtor 6B200M0",	"BANC1BM0",	ATA_HORKAGE_NONCQ },
3756 	{ "Maxtor 6B200M0",	"BANC1B10",	ATA_HORKAGE_NONCQ },
3757 	{ "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3758 	 ATA_HORKAGE_NONCQ },
3759 	/* NCQ hard hangs device under heavier load, needs hard power cycle */
3760 	{ "Maxtor 6B250S0",	"BANC1B70",	ATA_HORKAGE_NONCQ },
3761 	/* Blacklist entries taken from Silicon Image 3124/3132
3762 	   Windows driver .inf file - also several Linux problem reports */
3763 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3764 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3765 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3766 	/* Drives which do spurious command completion */
3767 	{ "HTS541680J9SA00",	"SB2IC7EP",	ATA_HORKAGE_NONCQ, },
3768 	{ "HTS541612J9SA00",	"SBDIC7JP",	ATA_HORKAGE_NONCQ, },
3769 	{ "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3770 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3771 	{ "FUJITSU MHV2080BH",	"00840028",	ATA_HORKAGE_NONCQ, },
3772 
3773 	/* Devices with NCQ limits */
3774 
3775 	/* End Marker */
3776 	{ }
3777 };
3778 
3779 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3780 {
3781 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
3782 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3783 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
3784 
3785 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3786 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3787 
3788 	while (ad->model_num) {
3789 		if (!strcmp(ad->model_num, model_num)) {
3790 			if (ad->model_rev == NULL)
3791 				return ad->horkage;
3792 			if (!strcmp(ad->model_rev, model_rev))
3793 				return ad->horkage;
3794 		}
3795 		ad++;
3796 	}
3797 	return 0;
3798 }
3799 
3800 static int ata_dma_blacklisted(const struct ata_device *dev)
3801 {
3802 	/* We don't support polling DMA.
3803 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3804 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3805 	 */
3806 	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3807 	    (dev->flags & ATA_DFLAG_CDB_INTR))
3808 		return 1;
3809 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3810 }
3811 
3812 /**
3813  *	ata_dev_xfermask - Compute supported xfermask of the given device
3814  *	@dev: Device to compute xfermask for
3815  *
3816  *	Compute supported xfermask of @dev and store it in
3817  *	dev->*_mask.  This function is responsible for applying all
3818  *	known limits including host controller limits, device
3819  *	blacklist, etc...
3820  *
3821  *	LOCKING:
3822  *	None.
3823  */
3824 static void ata_dev_xfermask(struct ata_device *dev)
3825 {
3826 	struct ata_port *ap = dev->ap;
3827 	struct ata_host *host = ap->host;
3828 	unsigned long xfer_mask;
3829 
3830 	/* controller modes available */
3831 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
3832 				      ap->mwdma_mask, ap->udma_mask);
3833 
3834 	/* drive modes available */
3835 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3836 				       dev->mwdma_mask, dev->udma_mask);
3837 	xfer_mask &= ata_id_xfermask(dev->id);
3838 
3839 	/*
3840 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
3841 	 *	cable
3842 	 */
3843 	if (ata_dev_pair(dev)) {
3844 		/* No PIO5 or PIO6 */
3845 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3846 		/* No MWDMA3 or MWDMA 4 */
3847 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3848 	}
3849 
3850 	if (ata_dma_blacklisted(dev)) {
3851 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3852 		ata_dev_printk(dev, KERN_WARNING,
3853 			       "device is on DMA blacklist, disabling DMA\n");
3854 	}
3855 
3856 	if ((host->flags & ATA_HOST_SIMPLEX) &&
3857             host->simplex_claimed && host->simplex_claimed != ap) {
3858 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3859 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3860 			       "other device, disabling DMA\n");
3861 	}
3862 
3863 	if (ap->flags & ATA_FLAG_NO_IORDY)
3864 		xfer_mask &= ata_pio_mask_no_iordy(dev);
3865 
3866 	if (ap->ops->mode_filter)
3867 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3868 
3869 	/* Apply cable rule here.  Don't apply it early because when
3870 	 * we handle hot plug the cable type can itself change.
3871 	 * Check this last so that we know if the transfer rate was
3872 	 * solely limited by the cable.
3873 	 * Unknown or 80 wire cables reported host side are checked
3874 	 * drive side as well. Cases where we know a 40wire cable
3875 	 * is used safely for 80 are not checked here.
3876 	 */
3877 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3878 		/* UDMA/44 or higher would be available */
3879 		if((ap->cbl == ATA_CBL_PATA40) ||
3880    		    (ata_drive_40wire(dev->id) &&
3881 		     (ap->cbl == ATA_CBL_PATA_UNK ||
3882                      ap->cbl == ATA_CBL_PATA80))) {
3883 		      	ata_dev_printk(dev, KERN_WARNING,
3884 				 "limited to UDMA/33 due to 40-wire cable\n");
3885 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3886 		}
3887 
3888 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3889 			    &dev->mwdma_mask, &dev->udma_mask);
3890 }
3891 
3892 /**
3893  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3894  *	@dev: Device to which command will be sent
3895  *
3896  *	Issue SET FEATURES - XFER MODE command to device @dev
3897  *	on port @ap.
3898  *
3899  *	LOCKING:
3900  *	PCI/etc. bus probe sem.
3901  *
3902  *	RETURNS:
3903  *	0 on success, AC_ERR_* mask otherwise.
3904  */
3905 
3906 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3907 {
3908 	struct ata_taskfile tf;
3909 	unsigned int err_mask;
3910 
3911 	/* set up set-features taskfile */
3912 	DPRINTK("set features - xfer mode\n");
3913 
3914 	/* Some controllers and ATAPI devices show flaky interrupt
3915 	 * behavior after setting xfer mode.  Use polling instead.
3916 	 */
3917 	ata_tf_init(dev, &tf);
3918 	tf.command = ATA_CMD_SET_FEATURES;
3919 	tf.feature = SETFEATURES_XFER;
3920 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3921 	tf.protocol = ATA_PROT_NODATA;
3922 	tf.nsect = dev->xfer_mode;
3923 
3924 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3925 
3926 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3927 	return err_mask;
3928 }
3929 
3930 /**
3931  *	ata_dev_init_params - Issue INIT DEV PARAMS command
3932  *	@dev: Device to which command will be sent
3933  *	@heads: Number of heads (taskfile parameter)
3934  *	@sectors: Number of sectors (taskfile parameter)
3935  *
3936  *	LOCKING:
3937  *	Kernel thread context (may sleep)
3938  *
3939  *	RETURNS:
3940  *	0 on success, AC_ERR_* mask otherwise.
3941  */
3942 static unsigned int ata_dev_init_params(struct ata_device *dev,
3943 					u16 heads, u16 sectors)
3944 {
3945 	struct ata_taskfile tf;
3946 	unsigned int err_mask;
3947 
3948 	/* Number of sectors per track 1-255. Number of heads 1-16 */
3949 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3950 		return AC_ERR_INVALID;
3951 
3952 	/* set up init dev params taskfile */
3953 	DPRINTK("init dev params \n");
3954 
3955 	ata_tf_init(dev, &tf);
3956 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
3957 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3958 	tf.protocol = ATA_PROT_NODATA;
3959 	tf.nsect = sectors;
3960 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3961 
3962 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3963 
3964 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
3965 	return err_mask;
3966 }
3967 
3968 /**
3969  *	ata_sg_clean - Unmap DMA memory associated with command
3970  *	@qc: Command containing DMA memory to be released
3971  *
3972  *	Unmap all mapped DMA memory associated with this command.
3973  *
3974  *	LOCKING:
3975  *	spin_lock_irqsave(host lock)
3976  */
3977 void ata_sg_clean(struct ata_queued_cmd *qc)
3978 {
3979 	struct ata_port *ap = qc->ap;
3980 	struct scatterlist *sg = qc->__sg;
3981 	int dir = qc->dma_dir;
3982 	void *pad_buf = NULL;
3983 
3984 	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3985 	WARN_ON(sg == NULL);
3986 
3987 	if (qc->flags & ATA_QCFLAG_SINGLE)
3988 		WARN_ON(qc->n_elem > 1);
3989 
3990 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3991 
3992 	/* if we padded the buffer out to 32-bit bound, and data
3993 	 * xfer direction is from-device, we must copy from the
3994 	 * pad buffer back into the supplied buffer
3995 	 */
3996 	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3997 		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3998 
3999 	if (qc->flags & ATA_QCFLAG_SG) {
4000 		if (qc->n_elem)
4001 			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4002 		/* restore last sg */
4003 		sg[qc->orig_n_elem - 1].length += qc->pad_len;
4004 		if (pad_buf) {
4005 			struct scatterlist *psg = &qc->pad_sgent;
4006 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4007 			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4008 			kunmap_atomic(addr, KM_IRQ0);
4009 		}
4010 	} else {
4011 		if (qc->n_elem)
4012 			dma_unmap_single(ap->dev,
4013 				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4014 				dir);
4015 		/* restore sg */
4016 		sg->length += qc->pad_len;
4017 		if (pad_buf)
4018 			memcpy(qc->buf_virt + sg->length - qc->pad_len,
4019 			       pad_buf, qc->pad_len);
4020 	}
4021 
4022 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4023 	qc->__sg = NULL;
4024 }
4025 
4026 /**
4027  *	ata_fill_sg - Fill PCI IDE PRD table
4028  *	@qc: Metadata associated with taskfile to be transferred
4029  *
4030  *	Fill PCI IDE PRD (scatter-gather) table with segments
4031  *	associated with the current disk command.
4032  *
4033  *	LOCKING:
4034  *	spin_lock_irqsave(host lock)
4035  *
4036  */
4037 static void ata_fill_sg(struct ata_queued_cmd *qc)
4038 {
4039 	struct ata_port *ap = qc->ap;
4040 	struct scatterlist *sg;
4041 	unsigned int idx;
4042 
4043 	WARN_ON(qc->__sg == NULL);
4044 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4045 
4046 	idx = 0;
4047 	ata_for_each_sg(sg, qc) {
4048 		u32 addr, offset;
4049 		u32 sg_len, len;
4050 
4051 		/* determine if physical DMA addr spans 64K boundary.
4052 		 * Note h/w doesn't support 64-bit, so we unconditionally
4053 		 * truncate dma_addr_t to u32.
4054 		 */
4055 		addr = (u32) sg_dma_address(sg);
4056 		sg_len = sg_dma_len(sg);
4057 
4058 		while (sg_len) {
4059 			offset = addr & 0xffff;
4060 			len = sg_len;
4061 			if ((offset + sg_len) > 0x10000)
4062 				len = 0x10000 - offset;
4063 
4064 			ap->prd[idx].addr = cpu_to_le32(addr);
4065 			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4066 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4067 
4068 			idx++;
4069 			sg_len -= len;
4070 			addr += len;
4071 		}
4072 	}
4073 
4074 	if (idx)
4075 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4076 }
4077 
4078 /**
4079  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
4080  *	@qc: Metadata associated with taskfile to be transferred
4081  *
4082  *	Fill PCI IDE PRD (scatter-gather) table with segments
4083  *	associated with the current disk command. Perform the fill
4084  *	so that we avoid writing any length 64K records for
4085  *	controllers that don't follow the spec.
4086  *
4087  *	LOCKING:
4088  *	spin_lock_irqsave(host lock)
4089  *
4090  */
4091 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4092 {
4093 	struct ata_port *ap = qc->ap;
4094 	struct scatterlist *sg;
4095 	unsigned int idx;
4096 
4097 	WARN_ON(qc->__sg == NULL);
4098 	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4099 
4100 	idx = 0;
4101 	ata_for_each_sg(sg, qc) {
4102 		u32 addr, offset;
4103 		u32 sg_len, len, blen;
4104 
4105  		/* determine if physical DMA addr spans 64K boundary.
4106 		 * Note h/w doesn't support 64-bit, so we unconditionally
4107 		 * truncate dma_addr_t to u32.
4108 		 */
4109 		addr = (u32) sg_dma_address(sg);
4110 		sg_len = sg_dma_len(sg);
4111 
4112 		while (sg_len) {
4113 			offset = addr & 0xffff;
4114 			len = sg_len;
4115 			if ((offset + sg_len) > 0x10000)
4116 				len = 0x10000 - offset;
4117 
4118 			blen = len & 0xffff;
4119 			ap->prd[idx].addr = cpu_to_le32(addr);
4120 			if (blen == 0) {
4121 			   /* Some PATA chipsets like the CS5530 can't
4122 			      cope with 0x0000 meaning 64K as the spec says */
4123 				ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4124 				blen = 0x8000;
4125 				ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4126 			}
4127 			ap->prd[idx].flags_len = cpu_to_le32(blen);
4128 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4129 
4130 			idx++;
4131 			sg_len -= len;
4132 			addr += len;
4133 		}
4134 	}
4135 
4136 	if (idx)
4137 		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4138 }
4139 
4140 /**
4141  *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4142  *	@qc: Metadata associated with taskfile to check
4143  *
4144  *	Allow low-level driver to filter ATA PACKET commands, returning
4145  *	a status indicating whether or not it is OK to use DMA for the
4146  *	supplied PACKET command.
4147  *
4148  *	LOCKING:
4149  *	spin_lock_irqsave(host lock)
4150  *
4151  *	RETURNS: 0 when ATAPI DMA can be used
4152  *               nonzero otherwise
4153  */
4154 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4155 {
4156 	struct ata_port *ap = qc->ap;
4157 
4158 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4159 	 * few ATAPI devices choke on such DMA requests.
4160 	 */
4161 	if (unlikely(qc->nbytes & 15))
4162 		return 1;
4163 
4164 	if (ap->ops->check_atapi_dma)
4165 		return ap->ops->check_atapi_dma(qc);
4166 
4167 	return 0;
4168 }
4169 
4170 /**
4171  *	ata_qc_prep - Prepare taskfile for submission
4172  *	@qc: Metadata associated with taskfile to be prepared
4173  *
4174  *	Prepare ATA taskfile for submission.
4175  *
4176  *	LOCKING:
4177  *	spin_lock_irqsave(host lock)
4178  */
4179 void ata_qc_prep(struct ata_queued_cmd *qc)
4180 {
4181 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4182 		return;
4183 
4184 	ata_fill_sg(qc);
4185 }
4186 
4187 /**
4188  *	ata_dumb_qc_prep - Prepare taskfile for submission
4189  *	@qc: Metadata associated with taskfile to be prepared
4190  *
4191  *	Prepare ATA taskfile for submission.
4192  *
4193  *	LOCKING:
4194  *	spin_lock_irqsave(host lock)
4195  */
4196 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4197 {
4198 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4199 		return;
4200 
4201 	ata_fill_sg_dumb(qc);
4202 }
4203 
4204 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4205 
4206 /**
4207  *	ata_sg_init_one - Associate command with memory buffer
4208  *	@qc: Command to be associated
4209  *	@buf: Memory buffer
4210  *	@buflen: Length of memory buffer, in bytes.
4211  *
4212  *	Initialize the data-related elements of queued_cmd @qc
4213  *	to point to a single memory buffer, @buf of byte length @buflen.
4214  *
4215  *	LOCKING:
4216  *	spin_lock_irqsave(host lock)
4217  */
4218 
4219 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4220 {
4221 	qc->flags |= ATA_QCFLAG_SINGLE;
4222 
4223 	qc->__sg = &qc->sgent;
4224 	qc->n_elem = 1;
4225 	qc->orig_n_elem = 1;
4226 	qc->buf_virt = buf;
4227 	qc->nbytes = buflen;
4228 
4229 	sg_init_one(&qc->sgent, buf, buflen);
4230 }
4231 
4232 /**
4233  *	ata_sg_init - Associate command with scatter-gather table.
4234  *	@qc: Command to be associated
4235  *	@sg: Scatter-gather table.
4236  *	@n_elem: Number of elements in s/g table.
4237  *
4238  *	Initialize the data-related elements of queued_cmd @qc
4239  *	to point to a scatter-gather table @sg, containing @n_elem
4240  *	elements.
4241  *
4242  *	LOCKING:
4243  *	spin_lock_irqsave(host lock)
4244  */
4245 
4246 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4247 		 unsigned int n_elem)
4248 {
4249 	qc->flags |= ATA_QCFLAG_SG;
4250 	qc->__sg = sg;
4251 	qc->n_elem = n_elem;
4252 	qc->orig_n_elem = n_elem;
4253 }
4254 
4255 /**
4256  *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4257  *	@qc: Command with memory buffer to be mapped.
4258  *
4259  *	DMA-map the memory buffer associated with queued_cmd @qc.
4260  *
4261  *	LOCKING:
4262  *	spin_lock_irqsave(host lock)
4263  *
4264  *	RETURNS:
4265  *	Zero on success, negative on error.
4266  */
4267 
4268 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4269 {
4270 	struct ata_port *ap = qc->ap;
4271 	int dir = qc->dma_dir;
4272 	struct scatterlist *sg = qc->__sg;
4273 	dma_addr_t dma_address;
4274 	int trim_sg = 0;
4275 
4276 	/* we must lengthen transfers to end on a 32-bit boundary */
4277 	qc->pad_len = sg->length & 3;
4278 	if (qc->pad_len) {
4279 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4280 		struct scatterlist *psg = &qc->pad_sgent;
4281 
4282 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4283 
4284 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4285 
4286 		if (qc->tf.flags & ATA_TFLAG_WRITE)
4287 			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4288 			       qc->pad_len);
4289 
4290 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4291 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4292 		/* trim sg */
4293 		sg->length -= qc->pad_len;
4294 		if (sg->length == 0)
4295 			trim_sg = 1;
4296 
4297 		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4298 			sg->length, qc->pad_len);
4299 	}
4300 
4301 	if (trim_sg) {
4302 		qc->n_elem--;
4303 		goto skip_map;
4304 	}
4305 
4306 	dma_address = dma_map_single(ap->dev, qc->buf_virt,
4307 				     sg->length, dir);
4308 	if (dma_mapping_error(dma_address)) {
4309 		/* restore sg */
4310 		sg->length += qc->pad_len;
4311 		return -1;
4312 	}
4313 
4314 	sg_dma_address(sg) = dma_address;
4315 	sg_dma_len(sg) = sg->length;
4316 
4317 skip_map:
4318 	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4319 		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4320 
4321 	return 0;
4322 }
4323 
4324 /**
4325  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4326  *	@qc: Command with scatter-gather table to be mapped.
4327  *
4328  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4329  *
4330  *	LOCKING:
4331  *	spin_lock_irqsave(host lock)
4332  *
4333  *	RETURNS:
4334  *	Zero on success, negative on error.
4335  *
4336  */
4337 
4338 static int ata_sg_setup(struct ata_queued_cmd *qc)
4339 {
4340 	struct ata_port *ap = qc->ap;
4341 	struct scatterlist *sg = qc->__sg;
4342 	struct scatterlist *lsg = &sg[qc->n_elem - 1];
4343 	int n_elem, pre_n_elem, dir, trim_sg = 0;
4344 
4345 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4346 	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4347 
4348 	/* we must lengthen transfers to end on a 32-bit boundary */
4349 	qc->pad_len = lsg->length & 3;
4350 	if (qc->pad_len) {
4351 		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4352 		struct scatterlist *psg = &qc->pad_sgent;
4353 		unsigned int offset;
4354 
4355 		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4356 
4357 		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4358 
4359 		/*
4360 		 * psg->page/offset are used to copy to-be-written
4361 		 * data in this function or read data in ata_sg_clean.
4362 		 */
4363 		offset = lsg->offset + lsg->length - qc->pad_len;
4364 		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4365 		psg->offset = offset_in_page(offset);
4366 
4367 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
4368 			void *addr = kmap_atomic(psg->page, KM_IRQ0);
4369 			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4370 			kunmap_atomic(addr, KM_IRQ0);
4371 		}
4372 
4373 		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4374 		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4375 		/* trim last sg */
4376 		lsg->length -= qc->pad_len;
4377 		if (lsg->length == 0)
4378 			trim_sg = 1;
4379 
4380 		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4381 			qc->n_elem - 1, lsg->length, qc->pad_len);
4382 	}
4383 
4384 	pre_n_elem = qc->n_elem;
4385 	if (trim_sg && pre_n_elem)
4386 		pre_n_elem--;
4387 
4388 	if (!pre_n_elem) {
4389 		n_elem = 0;
4390 		goto skip_map;
4391 	}
4392 
4393 	dir = qc->dma_dir;
4394 	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4395 	if (n_elem < 1) {
4396 		/* restore last sg */
4397 		lsg->length += qc->pad_len;
4398 		return -1;
4399 	}
4400 
4401 	DPRINTK("%d sg elements mapped\n", n_elem);
4402 
4403 skip_map:
4404 	qc->n_elem = n_elem;
4405 
4406 	return 0;
4407 }
4408 
4409 /**
4410  *	swap_buf_le16 - swap halves of 16-bit words in place
4411  *	@buf:  Buffer to swap
4412  *	@buf_words:  Number of 16-bit words in buffer.
4413  *
4414  *	Swap halves of 16-bit words if needed to convert from
4415  *	little-endian byte order to native cpu byte order, or
4416  *	vice-versa.
4417  *
4418  *	LOCKING:
4419  *	Inherited from caller.
4420  */
4421 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4422 {
4423 #ifdef __BIG_ENDIAN
4424 	unsigned int i;
4425 
4426 	for (i = 0; i < buf_words; i++)
4427 		buf[i] = le16_to_cpu(buf[i]);
4428 #endif /* __BIG_ENDIAN */
4429 }
4430 
4431 /**
4432  *	ata_data_xfer - Transfer data by PIO
4433  *	@adev: device to target
4434  *	@buf: data buffer
4435  *	@buflen: buffer length
4436  *	@write_data: read/write
4437  *
4438  *	Transfer data from/to the device data register by PIO.
4439  *
4440  *	LOCKING:
4441  *	Inherited from caller.
4442  */
4443 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4444 		   unsigned int buflen, int write_data)
4445 {
4446 	struct ata_port *ap = adev->ap;
4447 	unsigned int words = buflen >> 1;
4448 
4449 	/* Transfer multiple of 2 bytes */
4450 	if (write_data)
4451 		iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4452 	else
4453 		ioread16_rep(ap->ioaddr.data_addr, buf, words);
4454 
4455 	/* Transfer trailing 1 byte, if any. */
4456 	if (unlikely(buflen & 0x01)) {
4457 		u16 align_buf[1] = { 0 };
4458 		unsigned char *trailing_buf = buf + buflen - 1;
4459 
4460 		if (write_data) {
4461 			memcpy(align_buf, trailing_buf, 1);
4462 			iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4463 		} else {
4464 			align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4465 			memcpy(trailing_buf, align_buf, 1);
4466 		}
4467 	}
4468 }
4469 
4470 /**
4471  *	ata_data_xfer_noirq - Transfer data by PIO
4472  *	@adev: device to target
4473  *	@buf: data buffer
4474  *	@buflen: buffer length
4475  *	@write_data: read/write
4476  *
4477  *	Transfer data from/to the device data register by PIO. Do the
4478  *	transfer with interrupts disabled.
4479  *
4480  *	LOCKING:
4481  *	Inherited from caller.
4482  */
4483 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4484 			 unsigned int buflen, int write_data)
4485 {
4486 	unsigned long flags;
4487 	local_irq_save(flags);
4488 	ata_data_xfer(adev, buf, buflen, write_data);
4489 	local_irq_restore(flags);
4490 }
4491 
4492 
4493 /**
4494  *	ata_pio_sector - Transfer a sector of data.
4495  *	@qc: Command on going
4496  *
4497  *	Transfer qc->sect_size bytes of data from/to the ATA device.
4498  *
4499  *	LOCKING:
4500  *	Inherited from caller.
4501  */
4502 
4503 static void ata_pio_sector(struct ata_queued_cmd *qc)
4504 {
4505 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4506 	struct scatterlist *sg = qc->__sg;
4507 	struct ata_port *ap = qc->ap;
4508 	struct page *page;
4509 	unsigned int offset;
4510 	unsigned char *buf;
4511 
4512 	if (qc->curbytes == qc->nbytes - qc->sect_size)
4513 		ap->hsm_task_state = HSM_ST_LAST;
4514 
4515 	page = sg[qc->cursg].page;
4516 	offset = sg[qc->cursg].offset + qc->cursg_ofs;
4517 
4518 	/* get the current page and offset */
4519 	page = nth_page(page, (offset >> PAGE_SHIFT));
4520 	offset %= PAGE_SIZE;
4521 
4522 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4523 
4524 	if (PageHighMem(page)) {
4525 		unsigned long flags;
4526 
4527 		/* FIXME: use a bounce buffer */
4528 		local_irq_save(flags);
4529 		buf = kmap_atomic(page, KM_IRQ0);
4530 
4531 		/* do the actual data transfer */
4532 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4533 
4534 		kunmap_atomic(buf, KM_IRQ0);
4535 		local_irq_restore(flags);
4536 	} else {
4537 		buf = page_address(page);
4538 		ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4539 	}
4540 
4541 	qc->curbytes += qc->sect_size;
4542 	qc->cursg_ofs += qc->sect_size;
4543 
4544 	if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4545 		qc->cursg++;
4546 		qc->cursg_ofs = 0;
4547 	}
4548 }
4549 
4550 /**
4551  *	ata_pio_sectors - Transfer one or many sectors.
4552  *	@qc: Command on going
4553  *
4554  *	Transfer one or many sectors of data from/to the
4555  *	ATA device for the DRQ request.
4556  *
4557  *	LOCKING:
4558  *	Inherited from caller.
4559  */
4560 
4561 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4562 {
4563 	if (is_multi_taskfile(&qc->tf)) {
4564 		/* READ/WRITE MULTIPLE */
4565 		unsigned int nsect;
4566 
4567 		WARN_ON(qc->dev->multi_count == 0);
4568 
4569 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4570 			    qc->dev->multi_count);
4571 		while (nsect--)
4572 			ata_pio_sector(qc);
4573 	} else
4574 		ata_pio_sector(qc);
4575 }
4576 
4577 /**
4578  *	atapi_send_cdb - Write CDB bytes to hardware
4579  *	@ap: Port to which ATAPI device is attached.
4580  *	@qc: Taskfile currently active
4581  *
4582  *	When device has indicated its readiness to accept
4583  *	a CDB, this function is called.  Send the CDB.
4584  *
4585  *	LOCKING:
4586  *	caller.
4587  */
4588 
4589 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4590 {
4591 	/* send SCSI cdb */
4592 	DPRINTK("send cdb\n");
4593 	WARN_ON(qc->dev->cdb_len < 12);
4594 
4595 	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4596 	ata_altstatus(ap); /* flush */
4597 
4598 	switch (qc->tf.protocol) {
4599 	case ATA_PROT_ATAPI:
4600 		ap->hsm_task_state = HSM_ST;
4601 		break;
4602 	case ATA_PROT_ATAPI_NODATA:
4603 		ap->hsm_task_state = HSM_ST_LAST;
4604 		break;
4605 	case ATA_PROT_ATAPI_DMA:
4606 		ap->hsm_task_state = HSM_ST_LAST;
4607 		/* initiate bmdma */
4608 		ap->ops->bmdma_start(qc);
4609 		break;
4610 	}
4611 }
4612 
4613 /**
4614  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
4615  *	@qc: Command on going
4616  *	@bytes: number of bytes
4617  *
4618  *	Transfer Transfer data from/to the ATAPI device.
4619  *
4620  *	LOCKING:
4621  *	Inherited from caller.
4622  *
4623  */
4624 
4625 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4626 {
4627 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4628 	struct scatterlist *sg = qc->__sg;
4629 	struct ata_port *ap = qc->ap;
4630 	struct page *page;
4631 	unsigned char *buf;
4632 	unsigned int offset, count;
4633 
4634 	if (qc->curbytes + bytes >= qc->nbytes)
4635 		ap->hsm_task_state = HSM_ST_LAST;
4636 
4637 next_sg:
4638 	if (unlikely(qc->cursg >= qc->n_elem)) {
4639 		/*
4640 		 * The end of qc->sg is reached and the device expects
4641 		 * more data to transfer. In order not to overrun qc->sg
4642 		 * and fulfill length specified in the byte count register,
4643 		 *    - for read case, discard trailing data from the device
4644 		 *    - for write case, padding zero data to the device
4645 		 */
4646 		u16 pad_buf[1] = { 0 };
4647 		unsigned int words = bytes >> 1;
4648 		unsigned int i;
4649 
4650 		if (words) /* warning if bytes > 1 */
4651 			ata_dev_printk(qc->dev, KERN_WARNING,
4652 				       "%u bytes trailing data\n", bytes);
4653 
4654 		for (i = 0; i < words; i++)
4655 			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4656 
4657 		ap->hsm_task_state = HSM_ST_LAST;
4658 		return;
4659 	}
4660 
4661 	sg = &qc->__sg[qc->cursg];
4662 
4663 	page = sg->page;
4664 	offset = sg->offset + qc->cursg_ofs;
4665 
4666 	/* get the current page and offset */
4667 	page = nth_page(page, (offset >> PAGE_SHIFT));
4668 	offset %= PAGE_SIZE;
4669 
4670 	/* don't overrun current sg */
4671 	count = min(sg->length - qc->cursg_ofs, bytes);
4672 
4673 	/* don't cross page boundaries */
4674 	count = min(count, (unsigned int)PAGE_SIZE - offset);
4675 
4676 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4677 
4678 	if (PageHighMem(page)) {
4679 		unsigned long flags;
4680 
4681 		/* FIXME: use bounce buffer */
4682 		local_irq_save(flags);
4683 		buf = kmap_atomic(page, KM_IRQ0);
4684 
4685 		/* do the actual data transfer */
4686 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4687 
4688 		kunmap_atomic(buf, KM_IRQ0);
4689 		local_irq_restore(flags);
4690 	} else {
4691 		buf = page_address(page);
4692 		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
4693 	}
4694 
4695 	bytes -= count;
4696 	qc->curbytes += count;
4697 	qc->cursg_ofs += count;
4698 
4699 	if (qc->cursg_ofs == sg->length) {
4700 		qc->cursg++;
4701 		qc->cursg_ofs = 0;
4702 	}
4703 
4704 	if (bytes)
4705 		goto next_sg;
4706 }
4707 
4708 /**
4709  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
4710  *	@qc: Command on going
4711  *
4712  *	Transfer Transfer data from/to the ATAPI device.
4713  *
4714  *	LOCKING:
4715  *	Inherited from caller.
4716  */
4717 
4718 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4719 {
4720 	struct ata_port *ap = qc->ap;
4721 	struct ata_device *dev = qc->dev;
4722 	unsigned int ireason, bc_lo, bc_hi, bytes;
4723 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4724 
4725 	/* Abuse qc->result_tf for temp storage of intermediate TF
4726 	 * here to save some kernel stack usage.
4727 	 * For normal completion, qc->result_tf is not relevant. For
4728 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
4729 	 * So, the correctness of qc->result_tf is not affected.
4730 	 */
4731 	ap->ops->tf_read(ap, &qc->result_tf);
4732 	ireason = qc->result_tf.nsect;
4733 	bc_lo = qc->result_tf.lbam;
4734 	bc_hi = qc->result_tf.lbah;
4735 	bytes = (bc_hi << 8) | bc_lo;
4736 
4737 	/* shall be cleared to zero, indicating xfer of data */
4738 	if (ireason & (1 << 0))
4739 		goto err_out;
4740 
4741 	/* make sure transfer direction matches expected */
4742 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4743 	if (do_write != i_write)
4744 		goto err_out;
4745 
4746 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4747 
4748 	__atapi_pio_bytes(qc, bytes);
4749 
4750 	return;
4751 
4752 err_out:
4753 	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4754 	qc->err_mask |= AC_ERR_HSM;
4755 	ap->hsm_task_state = HSM_ST_ERR;
4756 }
4757 
4758 /**
4759  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4760  *	@ap: the target ata_port
4761  *	@qc: qc on going
4762  *
4763  *	RETURNS:
4764  *	1 if ok in workqueue, 0 otherwise.
4765  */
4766 
4767 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4768 {
4769 	if (qc->tf.flags & ATA_TFLAG_POLLING)
4770 		return 1;
4771 
4772 	if (ap->hsm_task_state == HSM_ST_FIRST) {
4773 		if (qc->tf.protocol == ATA_PROT_PIO &&
4774 		    (qc->tf.flags & ATA_TFLAG_WRITE))
4775 		    return 1;
4776 
4777 		if (is_atapi_taskfile(&qc->tf) &&
4778 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4779 			return 1;
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 /**
4786  *	ata_hsm_qc_complete - finish a qc running on standard HSM
4787  *	@qc: Command to complete
4788  *	@in_wq: 1 if called from workqueue, 0 otherwise
4789  *
4790  *	Finish @qc which is running on standard HSM.
4791  *
4792  *	LOCKING:
4793  *	If @in_wq is zero, spin_lock_irqsave(host lock).
4794  *	Otherwise, none on entry and grabs host lock.
4795  */
4796 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4797 {
4798 	struct ata_port *ap = qc->ap;
4799 	unsigned long flags;
4800 
4801 	if (ap->ops->error_handler) {
4802 		if (in_wq) {
4803 			spin_lock_irqsave(ap->lock, flags);
4804 
4805 			/* EH might have kicked in while host lock is
4806 			 * released.
4807 			 */
4808 			qc = ata_qc_from_tag(ap, qc->tag);
4809 			if (qc) {
4810 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4811 					ap->ops->irq_on(ap);
4812 					ata_qc_complete(qc);
4813 				} else
4814 					ata_port_freeze(ap);
4815 			}
4816 
4817 			spin_unlock_irqrestore(ap->lock, flags);
4818 		} else {
4819 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
4820 				ata_qc_complete(qc);
4821 			else
4822 				ata_port_freeze(ap);
4823 		}
4824 	} else {
4825 		if (in_wq) {
4826 			spin_lock_irqsave(ap->lock, flags);
4827 			ap->ops->irq_on(ap);
4828 			ata_qc_complete(qc);
4829 			spin_unlock_irqrestore(ap->lock, flags);
4830 		} else
4831 			ata_qc_complete(qc);
4832 	}
4833 }
4834 
4835 /**
4836  *	ata_hsm_move - move the HSM to the next state.
4837  *	@ap: the target ata_port
4838  *	@qc: qc on going
4839  *	@status: current device status
4840  *	@in_wq: 1 if called from workqueue, 0 otherwise
4841  *
4842  *	RETURNS:
4843  *	1 when poll next status needed, 0 otherwise.
4844  */
4845 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4846 		 u8 status, int in_wq)
4847 {
4848 	unsigned long flags = 0;
4849 	int poll_next;
4850 
4851 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4852 
4853 	/* Make sure ata_qc_issue_prot() does not throw things
4854 	 * like DMA polling into the workqueue. Notice that
4855 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4856 	 */
4857 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4858 
4859 fsm_start:
4860 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4861 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4862 
4863 	switch (ap->hsm_task_state) {
4864 	case HSM_ST_FIRST:
4865 		/* Send first data block or PACKET CDB */
4866 
4867 		/* If polling, we will stay in the work queue after
4868 		 * sending the data. Otherwise, interrupt handler
4869 		 * takes over after sending the data.
4870 		 */
4871 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4872 
4873 		/* check device status */
4874 		if (unlikely((status & ATA_DRQ) == 0)) {
4875 			/* handle BSY=0, DRQ=0 as error */
4876 			if (likely(status & (ATA_ERR | ATA_DF)))
4877 				/* device stops HSM for abort/error */
4878 				qc->err_mask |= AC_ERR_DEV;
4879 			else
4880 				/* HSM violation. Let EH handle this */
4881 				qc->err_mask |= AC_ERR_HSM;
4882 
4883 			ap->hsm_task_state = HSM_ST_ERR;
4884 			goto fsm_start;
4885 		}
4886 
4887 		/* Device should not ask for data transfer (DRQ=1)
4888 		 * when it finds something wrong.
4889 		 * We ignore DRQ here and stop the HSM by
4890 		 * changing hsm_task_state to HSM_ST_ERR and
4891 		 * let the EH abort the command or reset the device.
4892 		 */
4893 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
4894 			ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4895 					"error, dev_stat 0x%X\n", status);
4896 			qc->err_mask |= AC_ERR_HSM;
4897 			ap->hsm_task_state = HSM_ST_ERR;
4898 			goto fsm_start;
4899 		}
4900 
4901 		/* Send the CDB (atapi) or the first data block (ata pio out).
4902 		 * During the state transition, interrupt handler shouldn't
4903 		 * be invoked before the data transfer is complete and
4904 		 * hsm_task_state is changed. Hence, the following locking.
4905 		 */
4906 		if (in_wq)
4907 			spin_lock_irqsave(ap->lock, flags);
4908 
4909 		if (qc->tf.protocol == ATA_PROT_PIO) {
4910 			/* PIO data out protocol.
4911 			 * send first data block.
4912 			 */
4913 
4914 			/* ata_pio_sectors() might change the state
4915 			 * to HSM_ST_LAST. so, the state is changed here
4916 			 * before ata_pio_sectors().
4917 			 */
4918 			ap->hsm_task_state = HSM_ST;
4919 			ata_pio_sectors(qc);
4920 			ata_altstatus(ap); /* flush */
4921 		} else
4922 			/* send CDB */
4923 			atapi_send_cdb(ap, qc);
4924 
4925 		if (in_wq)
4926 			spin_unlock_irqrestore(ap->lock, flags);
4927 
4928 		/* if polling, ata_pio_task() handles the rest.
4929 		 * otherwise, interrupt handler takes over from here.
4930 		 */
4931 		break;
4932 
4933 	case HSM_ST:
4934 		/* complete command or read/write the data register */
4935 		if (qc->tf.protocol == ATA_PROT_ATAPI) {
4936 			/* ATAPI PIO protocol */
4937 			if ((status & ATA_DRQ) == 0) {
4938 				/* No more data to transfer or device error.
4939 				 * Device error will be tagged in HSM_ST_LAST.
4940 				 */
4941 				ap->hsm_task_state = HSM_ST_LAST;
4942 				goto fsm_start;
4943 			}
4944 
4945 			/* Device should not ask for data transfer (DRQ=1)
4946 			 * when it finds something wrong.
4947 			 * We ignore DRQ here and stop the HSM by
4948 			 * changing hsm_task_state to HSM_ST_ERR and
4949 			 * let the EH abort the command or reset the device.
4950 			 */
4951 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4952 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4953 						"device error, dev_stat 0x%X\n",
4954 						status);
4955 				qc->err_mask |= AC_ERR_HSM;
4956 				ap->hsm_task_state = HSM_ST_ERR;
4957 				goto fsm_start;
4958 			}
4959 
4960 			atapi_pio_bytes(qc);
4961 
4962 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4963 				/* bad ireason reported by device */
4964 				goto fsm_start;
4965 
4966 		} else {
4967 			/* ATA PIO protocol */
4968 			if (unlikely((status & ATA_DRQ) == 0)) {
4969 				/* handle BSY=0, DRQ=0 as error */
4970 				if (likely(status & (ATA_ERR | ATA_DF)))
4971 					/* device stops HSM for abort/error */
4972 					qc->err_mask |= AC_ERR_DEV;
4973 				else
4974 					/* HSM violation. Let EH handle this.
4975 					 * Phantom devices also trigger this
4976 					 * condition.  Mark hint.
4977 					 */
4978 					qc->err_mask |= AC_ERR_HSM |
4979 							AC_ERR_NODEV_HINT;
4980 
4981 				ap->hsm_task_state = HSM_ST_ERR;
4982 				goto fsm_start;
4983 			}
4984 
4985 			/* For PIO reads, some devices may ask for
4986 			 * data transfer (DRQ=1) alone with ERR=1.
4987 			 * We respect DRQ here and transfer one
4988 			 * block of junk data before changing the
4989 			 * hsm_task_state to HSM_ST_ERR.
4990 			 *
4991 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
4992 			 * sense since the data block has been
4993 			 * transferred to the device.
4994 			 */
4995 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
4996 				/* data might be corrputed */
4997 				qc->err_mask |= AC_ERR_DEV;
4998 
4999 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5000 					ata_pio_sectors(qc);
5001 					ata_altstatus(ap);
5002 					status = ata_wait_idle(ap);
5003 				}
5004 
5005 				if (status & (ATA_BUSY | ATA_DRQ))
5006 					qc->err_mask |= AC_ERR_HSM;
5007 
5008 				/* ata_pio_sectors() might change the
5009 				 * state to HSM_ST_LAST. so, the state
5010 				 * is changed after ata_pio_sectors().
5011 				 */
5012 				ap->hsm_task_state = HSM_ST_ERR;
5013 				goto fsm_start;
5014 			}
5015 
5016 			ata_pio_sectors(qc);
5017 
5018 			if (ap->hsm_task_state == HSM_ST_LAST &&
5019 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5020 				/* all data read */
5021 				ata_altstatus(ap);
5022 				status = ata_wait_idle(ap);
5023 				goto fsm_start;
5024 			}
5025 		}
5026 
5027 		ata_altstatus(ap); /* flush */
5028 		poll_next = 1;
5029 		break;
5030 
5031 	case HSM_ST_LAST:
5032 		if (unlikely(!ata_ok(status))) {
5033 			qc->err_mask |= __ac_err_mask(status);
5034 			ap->hsm_task_state = HSM_ST_ERR;
5035 			goto fsm_start;
5036 		}
5037 
5038 		/* no more data to transfer */
5039 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5040 			ap->print_id, qc->dev->devno, status);
5041 
5042 		WARN_ON(qc->err_mask);
5043 
5044 		ap->hsm_task_state = HSM_ST_IDLE;
5045 
5046 		/* complete taskfile transaction */
5047 		ata_hsm_qc_complete(qc, in_wq);
5048 
5049 		poll_next = 0;
5050 		break;
5051 
5052 	case HSM_ST_ERR:
5053 		/* make sure qc->err_mask is available to
5054 		 * know what's wrong and recover
5055 		 */
5056 		WARN_ON(qc->err_mask == 0);
5057 
5058 		ap->hsm_task_state = HSM_ST_IDLE;
5059 
5060 		/* complete taskfile transaction */
5061 		ata_hsm_qc_complete(qc, in_wq);
5062 
5063 		poll_next = 0;
5064 		break;
5065 	default:
5066 		poll_next = 0;
5067 		BUG();
5068 	}
5069 
5070 	return poll_next;
5071 }
5072 
5073 static void ata_pio_task(struct work_struct *work)
5074 {
5075 	struct ata_port *ap =
5076 		container_of(work, struct ata_port, port_task.work);
5077 	struct ata_queued_cmd *qc = ap->port_task_data;
5078 	u8 status;
5079 	int poll_next;
5080 
5081 fsm_start:
5082 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5083 
5084 	/*
5085 	 * This is purely heuristic.  This is a fast path.
5086 	 * Sometimes when we enter, BSY will be cleared in
5087 	 * a chk-status or two.  If not, the drive is probably seeking
5088 	 * or something.  Snooze for a couple msecs, then
5089 	 * chk-status again.  If still busy, queue delayed work.
5090 	 */
5091 	status = ata_busy_wait(ap, ATA_BUSY, 5);
5092 	if (status & ATA_BUSY) {
5093 		msleep(2);
5094 		status = ata_busy_wait(ap, ATA_BUSY, 10);
5095 		if (status & ATA_BUSY) {
5096 			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5097 			return;
5098 		}
5099 	}
5100 
5101 	/* move the HSM */
5102 	poll_next = ata_hsm_move(ap, qc, status, 1);
5103 
5104 	/* another command or interrupt handler
5105 	 * may be running at this point.
5106 	 */
5107 	if (poll_next)
5108 		goto fsm_start;
5109 }
5110 
5111 /**
5112  *	ata_qc_new - Request an available ATA command, for queueing
5113  *	@ap: Port associated with device @dev
5114  *	@dev: Device from whom we request an available command structure
5115  *
5116  *	LOCKING:
5117  *	None.
5118  */
5119 
5120 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5121 {
5122 	struct ata_queued_cmd *qc = NULL;
5123 	unsigned int i;
5124 
5125 	/* no command while frozen */
5126 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5127 		return NULL;
5128 
5129 	/* the last tag is reserved for internal command. */
5130 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5131 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
5132 			qc = __ata_qc_from_tag(ap, i);
5133 			break;
5134 		}
5135 
5136 	if (qc)
5137 		qc->tag = i;
5138 
5139 	return qc;
5140 }
5141 
5142 /**
5143  *	ata_qc_new_init - Request an available ATA command, and initialize it
5144  *	@dev: Device from whom we request an available command structure
5145  *
5146  *	LOCKING:
5147  *	None.
5148  */
5149 
5150 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5151 {
5152 	struct ata_port *ap = dev->ap;
5153 	struct ata_queued_cmd *qc;
5154 
5155 	qc = ata_qc_new(ap);
5156 	if (qc) {
5157 		qc->scsicmd = NULL;
5158 		qc->ap = ap;
5159 		qc->dev = dev;
5160 
5161 		ata_qc_reinit(qc);
5162 	}
5163 
5164 	return qc;
5165 }
5166 
5167 /**
5168  *	ata_qc_free - free unused ata_queued_cmd
5169  *	@qc: Command to complete
5170  *
5171  *	Designed to free unused ata_queued_cmd object
5172  *	in case something prevents using it.
5173  *
5174  *	LOCKING:
5175  *	spin_lock_irqsave(host lock)
5176  */
5177 void ata_qc_free(struct ata_queued_cmd *qc)
5178 {
5179 	struct ata_port *ap = qc->ap;
5180 	unsigned int tag;
5181 
5182 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5183 
5184 	qc->flags = 0;
5185 	tag = qc->tag;
5186 	if (likely(ata_tag_valid(tag))) {
5187 		qc->tag = ATA_TAG_POISON;
5188 		clear_bit(tag, &ap->qc_allocated);
5189 	}
5190 }
5191 
5192 void __ata_qc_complete(struct ata_queued_cmd *qc)
5193 {
5194 	struct ata_port *ap = qc->ap;
5195 
5196 	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
5197 	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5198 
5199 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5200 		ata_sg_clean(qc);
5201 
5202 	/* command should be marked inactive atomically with qc completion */
5203 	if (qc->tf.protocol == ATA_PROT_NCQ)
5204 		ap->sactive &= ~(1 << qc->tag);
5205 	else
5206 		ap->active_tag = ATA_TAG_POISON;
5207 
5208 	/* atapi: mark qc as inactive to prevent the interrupt handler
5209 	 * from completing the command twice later, before the error handler
5210 	 * is called. (when rc != 0 and atapi request sense is needed)
5211 	 */
5212 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5213 	ap->qc_active &= ~(1 << qc->tag);
5214 
5215 	/* call completion callback */
5216 	qc->complete_fn(qc);
5217 }
5218 
5219 static void fill_result_tf(struct ata_queued_cmd *qc)
5220 {
5221 	struct ata_port *ap = qc->ap;
5222 
5223 	qc->result_tf.flags = qc->tf.flags;
5224 	ap->ops->tf_read(ap, &qc->result_tf);
5225 }
5226 
5227 /**
5228  *	ata_qc_complete - Complete an active ATA command
5229  *	@qc: Command to complete
5230  *	@err_mask: ATA Status register contents
5231  *
5232  *	Indicate to the mid and upper layers that an ATA
5233  *	command has completed, with either an ok or not-ok status.
5234  *
5235  *	LOCKING:
5236  *	spin_lock_irqsave(host lock)
5237  */
5238 void ata_qc_complete(struct ata_queued_cmd *qc)
5239 {
5240 	struct ata_port *ap = qc->ap;
5241 
5242 	/* XXX: New EH and old EH use different mechanisms to
5243 	 * synchronize EH with regular execution path.
5244 	 *
5245 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5246 	 * Normal execution path is responsible for not accessing a
5247 	 * failed qc.  libata core enforces the rule by returning NULL
5248 	 * from ata_qc_from_tag() for failed qcs.
5249 	 *
5250 	 * Old EH depends on ata_qc_complete() nullifying completion
5251 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5252 	 * not synchronize with interrupt handler.  Only PIO task is
5253 	 * taken care of.
5254 	 */
5255 	if (ap->ops->error_handler) {
5256 		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5257 
5258 		if (unlikely(qc->err_mask))
5259 			qc->flags |= ATA_QCFLAG_FAILED;
5260 
5261 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5262 			if (!ata_tag_internal(qc->tag)) {
5263 				/* always fill result TF for failed qc */
5264 				fill_result_tf(qc);
5265 				ata_qc_schedule_eh(qc);
5266 				return;
5267 			}
5268 		}
5269 
5270 		/* read result TF if requested */
5271 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5272 			fill_result_tf(qc);
5273 
5274 		__ata_qc_complete(qc);
5275 	} else {
5276 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5277 			return;
5278 
5279 		/* read result TF if failed or requested */
5280 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5281 			fill_result_tf(qc);
5282 
5283 		__ata_qc_complete(qc);
5284 	}
5285 }
5286 
5287 /**
5288  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5289  *	@ap: port in question
5290  *	@qc_active: new qc_active mask
5291  *	@finish_qc: LLDD callback invoked before completing a qc
5292  *
5293  *	Complete in-flight commands.  This functions is meant to be
5294  *	called from low-level driver's interrupt routine to complete
5295  *	requests normally.  ap->qc_active and @qc_active is compared
5296  *	and commands are completed accordingly.
5297  *
5298  *	LOCKING:
5299  *	spin_lock_irqsave(host lock)
5300  *
5301  *	RETURNS:
5302  *	Number of completed commands on success, -errno otherwise.
5303  */
5304 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5305 			     void (*finish_qc)(struct ata_queued_cmd *))
5306 {
5307 	int nr_done = 0;
5308 	u32 done_mask;
5309 	int i;
5310 
5311 	done_mask = ap->qc_active ^ qc_active;
5312 
5313 	if (unlikely(done_mask & qc_active)) {
5314 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5315 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5316 		return -EINVAL;
5317 	}
5318 
5319 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5320 		struct ata_queued_cmd *qc;
5321 
5322 		if (!(done_mask & (1 << i)))
5323 			continue;
5324 
5325 		if ((qc = ata_qc_from_tag(ap, i))) {
5326 			if (finish_qc)
5327 				finish_qc(qc);
5328 			ata_qc_complete(qc);
5329 			nr_done++;
5330 		}
5331 	}
5332 
5333 	return nr_done;
5334 }
5335 
5336 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5337 {
5338 	struct ata_port *ap = qc->ap;
5339 
5340 	switch (qc->tf.protocol) {
5341 	case ATA_PROT_NCQ:
5342 	case ATA_PROT_DMA:
5343 	case ATA_PROT_ATAPI_DMA:
5344 		return 1;
5345 
5346 	case ATA_PROT_ATAPI:
5347 	case ATA_PROT_PIO:
5348 		if (ap->flags & ATA_FLAG_PIO_DMA)
5349 			return 1;
5350 
5351 		/* fall through */
5352 
5353 	default:
5354 		return 0;
5355 	}
5356 
5357 	/* never reached */
5358 }
5359 
5360 /**
5361  *	ata_qc_issue - issue taskfile to device
5362  *	@qc: command to issue to device
5363  *
5364  *	Prepare an ATA command to submission to device.
5365  *	This includes mapping the data into a DMA-able
5366  *	area, filling in the S/G table, and finally
5367  *	writing the taskfile to hardware, starting the command.
5368  *
5369  *	LOCKING:
5370  *	spin_lock_irqsave(host lock)
5371  */
5372 void ata_qc_issue(struct ata_queued_cmd *qc)
5373 {
5374 	struct ata_port *ap = qc->ap;
5375 
5376 	/* Make sure only one non-NCQ command is outstanding.  The
5377 	 * check is skipped for old EH because it reuses active qc to
5378 	 * request ATAPI sense.
5379 	 */
5380 	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5381 
5382 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5383 		WARN_ON(ap->sactive & (1 << qc->tag));
5384 		ap->sactive |= 1 << qc->tag;
5385 	} else {
5386 		WARN_ON(ap->sactive);
5387 		ap->active_tag = qc->tag;
5388 	}
5389 
5390 	qc->flags |= ATA_QCFLAG_ACTIVE;
5391 	ap->qc_active |= 1 << qc->tag;
5392 
5393 	if (ata_should_dma_map(qc)) {
5394 		if (qc->flags & ATA_QCFLAG_SG) {
5395 			if (ata_sg_setup(qc))
5396 				goto sg_err;
5397 		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
5398 			if (ata_sg_setup_one(qc))
5399 				goto sg_err;
5400 		}
5401 	} else {
5402 		qc->flags &= ~ATA_QCFLAG_DMAMAP;
5403 	}
5404 
5405 	ap->ops->qc_prep(qc);
5406 
5407 	qc->err_mask |= ap->ops->qc_issue(qc);
5408 	if (unlikely(qc->err_mask))
5409 		goto err;
5410 	return;
5411 
5412 sg_err:
5413 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5414 	qc->err_mask |= AC_ERR_SYSTEM;
5415 err:
5416 	ata_qc_complete(qc);
5417 }
5418 
5419 /**
5420  *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5421  *	@qc: command to issue to device
5422  *
5423  *	Using various libata functions and hooks, this function
5424  *	starts an ATA command.  ATA commands are grouped into
5425  *	classes called "protocols", and issuing each type of protocol
5426  *	is slightly different.
5427  *
5428  *	May be used as the qc_issue() entry in ata_port_operations.
5429  *
5430  *	LOCKING:
5431  *	spin_lock_irqsave(host lock)
5432  *
5433  *	RETURNS:
5434  *	Zero on success, AC_ERR_* mask on failure
5435  */
5436 
5437 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5438 {
5439 	struct ata_port *ap = qc->ap;
5440 
5441 	/* Use polling pio if the LLD doesn't handle
5442 	 * interrupt driven pio and atapi CDB interrupt.
5443 	 */
5444 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
5445 		switch (qc->tf.protocol) {
5446 		case ATA_PROT_PIO:
5447 		case ATA_PROT_NODATA:
5448 		case ATA_PROT_ATAPI:
5449 		case ATA_PROT_ATAPI_NODATA:
5450 			qc->tf.flags |= ATA_TFLAG_POLLING;
5451 			break;
5452 		case ATA_PROT_ATAPI_DMA:
5453 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5454 				/* see ata_dma_blacklisted() */
5455 				BUG();
5456 			break;
5457 		default:
5458 			break;
5459 		}
5460 	}
5461 
5462 	/* select the device */
5463 	ata_dev_select(ap, qc->dev->devno, 1, 0);
5464 
5465 	/* start the command */
5466 	switch (qc->tf.protocol) {
5467 	case ATA_PROT_NODATA:
5468 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5469 			ata_qc_set_polling(qc);
5470 
5471 		ata_tf_to_host(ap, &qc->tf);
5472 		ap->hsm_task_state = HSM_ST_LAST;
5473 
5474 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5475 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5476 
5477 		break;
5478 
5479 	case ATA_PROT_DMA:
5480 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5481 
5482 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5483 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5484 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
5485 		ap->hsm_task_state = HSM_ST_LAST;
5486 		break;
5487 
5488 	case ATA_PROT_PIO:
5489 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5490 			ata_qc_set_polling(qc);
5491 
5492 		ata_tf_to_host(ap, &qc->tf);
5493 
5494 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
5495 			/* PIO data out protocol */
5496 			ap->hsm_task_state = HSM_ST_FIRST;
5497 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5498 
5499 			/* always send first data block using
5500 			 * the ata_pio_task() codepath.
5501 			 */
5502 		} else {
5503 			/* PIO data in protocol */
5504 			ap->hsm_task_state = HSM_ST;
5505 
5506 			if (qc->tf.flags & ATA_TFLAG_POLLING)
5507 				ata_port_queue_task(ap, ata_pio_task, qc, 0);
5508 
5509 			/* if polling, ata_pio_task() handles the rest.
5510 			 * otherwise, interrupt handler takes over from here.
5511 			 */
5512 		}
5513 
5514 		break;
5515 
5516 	case ATA_PROT_ATAPI:
5517 	case ATA_PROT_ATAPI_NODATA:
5518 		if (qc->tf.flags & ATA_TFLAG_POLLING)
5519 			ata_qc_set_polling(qc);
5520 
5521 		ata_tf_to_host(ap, &qc->tf);
5522 
5523 		ap->hsm_task_state = HSM_ST_FIRST;
5524 
5525 		/* send cdb by polling if no cdb interrupt */
5526 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5527 		    (qc->tf.flags & ATA_TFLAG_POLLING))
5528 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5529 		break;
5530 
5531 	case ATA_PROT_ATAPI_DMA:
5532 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5533 
5534 		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
5535 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
5536 		ap->hsm_task_state = HSM_ST_FIRST;
5537 
5538 		/* send cdb by polling if no cdb interrupt */
5539 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5540 			ata_port_queue_task(ap, ata_pio_task, qc, 0);
5541 		break;
5542 
5543 	default:
5544 		WARN_ON(1);
5545 		return AC_ERR_SYSTEM;
5546 	}
5547 
5548 	return 0;
5549 }
5550 
5551 /**
5552  *	ata_host_intr - Handle host interrupt for given (port, task)
5553  *	@ap: Port on which interrupt arrived (possibly...)
5554  *	@qc: Taskfile currently active in engine
5555  *
5556  *	Handle host interrupt for given queued command.  Currently,
5557  *	only DMA interrupts are handled.  All other commands are
5558  *	handled via polling with interrupts disabled (nIEN bit).
5559  *
5560  *	LOCKING:
5561  *	spin_lock_irqsave(host lock)
5562  *
5563  *	RETURNS:
5564  *	One if interrupt was handled, zero if not (shared irq).
5565  */
5566 
5567 inline unsigned int ata_host_intr (struct ata_port *ap,
5568 				   struct ata_queued_cmd *qc)
5569 {
5570 	struct ata_eh_info *ehi = &ap->eh_info;
5571 	u8 status, host_stat = 0;
5572 
5573 	VPRINTK("ata%u: protocol %d task_state %d\n",
5574 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5575 
5576 	/* Check whether we are expecting interrupt in this state */
5577 	switch (ap->hsm_task_state) {
5578 	case HSM_ST_FIRST:
5579 		/* Some pre-ATAPI-4 devices assert INTRQ
5580 		 * at this state when ready to receive CDB.
5581 		 */
5582 
5583 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5584 		 * The flag was turned on only for atapi devices.
5585 		 * No need to check is_atapi_taskfile(&qc->tf) again.
5586 		 */
5587 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5588 			goto idle_irq;
5589 		break;
5590 	case HSM_ST_LAST:
5591 		if (qc->tf.protocol == ATA_PROT_DMA ||
5592 		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5593 			/* check status of DMA engine */
5594 			host_stat = ap->ops->bmdma_status(ap);
5595 			VPRINTK("ata%u: host_stat 0x%X\n",
5596 				ap->print_id, host_stat);
5597 
5598 			/* if it's not our irq... */
5599 			if (!(host_stat & ATA_DMA_INTR))
5600 				goto idle_irq;
5601 
5602 			/* before we do anything else, clear DMA-Start bit */
5603 			ap->ops->bmdma_stop(qc);
5604 
5605 			if (unlikely(host_stat & ATA_DMA_ERR)) {
5606 				/* error when transfering data to/from memory */
5607 				qc->err_mask |= AC_ERR_HOST_BUS;
5608 				ap->hsm_task_state = HSM_ST_ERR;
5609 			}
5610 		}
5611 		break;
5612 	case HSM_ST:
5613 		break;
5614 	default:
5615 		goto idle_irq;
5616 	}
5617 
5618 	/* check altstatus */
5619 	status = ata_altstatus(ap);
5620 	if (status & ATA_BUSY)
5621 		goto idle_irq;
5622 
5623 	/* check main status, clearing INTRQ */
5624 	status = ata_chk_status(ap);
5625 	if (unlikely(status & ATA_BUSY))
5626 		goto idle_irq;
5627 
5628 	/* ack bmdma irq events */
5629 	ap->ops->irq_clear(ap);
5630 
5631 	ata_hsm_move(ap, qc, status, 0);
5632 
5633 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5634 				       qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5635 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5636 
5637 	return 1;	/* irq handled */
5638 
5639 idle_irq:
5640 	ap->stats.idle_irq++;
5641 
5642 #ifdef ATA_IRQ_TRAP
5643 	if ((ap->stats.idle_irq % 1000) == 0) {
5644 		ap->ops->irq_ack(ap, 0); /* debug trap */
5645 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5646 		return 1;
5647 	}
5648 #endif
5649 	return 0;	/* irq not handled */
5650 }
5651 
5652 /**
5653  *	ata_interrupt - Default ATA host interrupt handler
5654  *	@irq: irq line (unused)
5655  *	@dev_instance: pointer to our ata_host information structure
5656  *
5657  *	Default interrupt handler for PCI IDE devices.  Calls
5658  *	ata_host_intr() for each port that is not disabled.
5659  *
5660  *	LOCKING:
5661  *	Obtains host lock during operation.
5662  *
5663  *	RETURNS:
5664  *	IRQ_NONE or IRQ_HANDLED.
5665  */
5666 
5667 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5668 {
5669 	struct ata_host *host = dev_instance;
5670 	unsigned int i;
5671 	unsigned int handled = 0;
5672 	unsigned long flags;
5673 
5674 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5675 	spin_lock_irqsave(&host->lock, flags);
5676 
5677 	for (i = 0; i < host->n_ports; i++) {
5678 		struct ata_port *ap;
5679 
5680 		ap = host->ports[i];
5681 		if (ap &&
5682 		    !(ap->flags & ATA_FLAG_DISABLED)) {
5683 			struct ata_queued_cmd *qc;
5684 
5685 			qc = ata_qc_from_tag(ap, ap->active_tag);
5686 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5687 			    (qc->flags & ATA_QCFLAG_ACTIVE))
5688 				handled |= ata_host_intr(ap, qc);
5689 		}
5690 	}
5691 
5692 	spin_unlock_irqrestore(&host->lock, flags);
5693 
5694 	return IRQ_RETVAL(handled);
5695 }
5696 
5697 /**
5698  *	sata_scr_valid - test whether SCRs are accessible
5699  *	@ap: ATA port to test SCR accessibility for
5700  *
5701  *	Test whether SCRs are accessible for @ap.
5702  *
5703  *	LOCKING:
5704  *	None.
5705  *
5706  *	RETURNS:
5707  *	1 if SCRs are accessible, 0 otherwise.
5708  */
5709 int sata_scr_valid(struct ata_port *ap)
5710 {
5711 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5712 }
5713 
5714 /**
5715  *	sata_scr_read - read SCR register of the specified port
5716  *	@ap: ATA port to read SCR for
5717  *	@reg: SCR to read
5718  *	@val: Place to store read value
5719  *
5720  *	Read SCR register @reg of @ap into *@val.  This function is
5721  *	guaranteed to succeed if the cable type of the port is SATA
5722  *	and the port implements ->scr_read.
5723  *
5724  *	LOCKING:
5725  *	None.
5726  *
5727  *	RETURNS:
5728  *	0 on success, negative errno on failure.
5729  */
5730 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5731 {
5732 	if (sata_scr_valid(ap)) {
5733 		*val = ap->ops->scr_read(ap, reg);
5734 		return 0;
5735 	}
5736 	return -EOPNOTSUPP;
5737 }
5738 
5739 /**
5740  *	sata_scr_write - write SCR register of the specified port
5741  *	@ap: ATA port to write SCR for
5742  *	@reg: SCR to write
5743  *	@val: value to write
5744  *
5745  *	Write @val to SCR register @reg of @ap.  This function is
5746  *	guaranteed to succeed if the cable type of the port is SATA
5747  *	and the port implements ->scr_read.
5748  *
5749  *	LOCKING:
5750  *	None.
5751  *
5752  *	RETURNS:
5753  *	0 on success, negative errno on failure.
5754  */
5755 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5756 {
5757 	if (sata_scr_valid(ap)) {
5758 		ap->ops->scr_write(ap, reg, val);
5759 		return 0;
5760 	}
5761 	return -EOPNOTSUPP;
5762 }
5763 
5764 /**
5765  *	sata_scr_write_flush - write SCR register of the specified port and flush
5766  *	@ap: ATA port to write SCR for
5767  *	@reg: SCR to write
5768  *	@val: value to write
5769  *
5770  *	This function is identical to sata_scr_write() except that this
5771  *	function performs flush after writing to the register.
5772  *
5773  *	LOCKING:
5774  *	None.
5775  *
5776  *	RETURNS:
5777  *	0 on success, negative errno on failure.
5778  */
5779 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5780 {
5781 	if (sata_scr_valid(ap)) {
5782 		ap->ops->scr_write(ap, reg, val);
5783 		ap->ops->scr_read(ap, reg);
5784 		return 0;
5785 	}
5786 	return -EOPNOTSUPP;
5787 }
5788 
5789 /**
5790  *	ata_port_online - test whether the given port is online
5791  *	@ap: ATA port to test
5792  *
5793  *	Test whether @ap is online.  Note that this function returns 0
5794  *	if online status of @ap cannot be obtained, so
5795  *	ata_port_online(ap) != !ata_port_offline(ap).
5796  *
5797  *	LOCKING:
5798  *	None.
5799  *
5800  *	RETURNS:
5801  *	1 if the port online status is available and online.
5802  */
5803 int ata_port_online(struct ata_port *ap)
5804 {
5805 	u32 sstatus;
5806 
5807 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5808 		return 1;
5809 	return 0;
5810 }
5811 
5812 /**
5813  *	ata_port_offline - test whether the given port is offline
5814  *	@ap: ATA port to test
5815  *
5816  *	Test whether @ap is offline.  Note that this function returns
5817  *	0 if offline status of @ap cannot be obtained, so
5818  *	ata_port_online(ap) != !ata_port_offline(ap).
5819  *
5820  *	LOCKING:
5821  *	None.
5822  *
5823  *	RETURNS:
5824  *	1 if the port offline status is available and offline.
5825  */
5826 int ata_port_offline(struct ata_port *ap)
5827 {
5828 	u32 sstatus;
5829 
5830 	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5831 		return 1;
5832 	return 0;
5833 }
5834 
5835 int ata_flush_cache(struct ata_device *dev)
5836 {
5837 	unsigned int err_mask;
5838 	u8 cmd;
5839 
5840 	if (!ata_try_flush_cache(dev))
5841 		return 0;
5842 
5843 	if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5844 		cmd = ATA_CMD_FLUSH_EXT;
5845 	else
5846 		cmd = ATA_CMD_FLUSH;
5847 
5848 	err_mask = ata_do_simple_cmd(dev, cmd);
5849 	if (err_mask) {
5850 		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5851 		return -EIO;
5852 	}
5853 
5854 	return 0;
5855 }
5856 
5857 #ifdef CONFIG_PM
5858 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5859 			       unsigned int action, unsigned int ehi_flags,
5860 			       int wait)
5861 {
5862 	unsigned long flags;
5863 	int i, rc;
5864 
5865 	for (i = 0; i < host->n_ports; i++) {
5866 		struct ata_port *ap = host->ports[i];
5867 
5868 		/* Previous resume operation might still be in
5869 		 * progress.  Wait for PM_PENDING to clear.
5870 		 */
5871 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5872 			ata_port_wait_eh(ap);
5873 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5874 		}
5875 
5876 		/* request PM ops to EH */
5877 		spin_lock_irqsave(ap->lock, flags);
5878 
5879 		ap->pm_mesg = mesg;
5880 		if (wait) {
5881 			rc = 0;
5882 			ap->pm_result = &rc;
5883 		}
5884 
5885 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5886 		ap->eh_info.action |= action;
5887 		ap->eh_info.flags |= ehi_flags;
5888 
5889 		ata_port_schedule_eh(ap);
5890 
5891 		spin_unlock_irqrestore(ap->lock, flags);
5892 
5893 		/* wait and check result */
5894 		if (wait) {
5895 			ata_port_wait_eh(ap);
5896 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5897 			if (rc)
5898 				return rc;
5899 		}
5900 	}
5901 
5902 	return 0;
5903 }
5904 
5905 /**
5906  *	ata_host_suspend - suspend host
5907  *	@host: host to suspend
5908  *	@mesg: PM message
5909  *
5910  *	Suspend @host.  Actual operation is performed by EH.  This
5911  *	function requests EH to perform PM operations and waits for EH
5912  *	to finish.
5913  *
5914  *	LOCKING:
5915  *	Kernel thread context (may sleep).
5916  *
5917  *	RETURNS:
5918  *	0 on success, -errno on failure.
5919  */
5920 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5921 {
5922 	int rc;
5923 
5924 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5925 	if (rc == 0)
5926 		host->dev->power.power_state = mesg;
5927 	return rc;
5928 }
5929 
5930 /**
5931  *	ata_host_resume - resume host
5932  *	@host: host to resume
5933  *
5934  *	Resume @host.  Actual operation is performed by EH.  This
5935  *	function requests EH to perform PM operations and returns.
5936  *	Note that all resume operations are performed parallely.
5937  *
5938  *	LOCKING:
5939  *	Kernel thread context (may sleep).
5940  */
5941 void ata_host_resume(struct ata_host *host)
5942 {
5943 	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5944 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5945 	host->dev->power.power_state = PMSG_ON;
5946 }
5947 #endif
5948 
5949 /**
5950  *	ata_port_start - Set port up for dma.
5951  *	@ap: Port to initialize
5952  *
5953  *	Called just after data structures for each port are
5954  *	initialized.  Allocates space for PRD table.
5955  *
5956  *	May be used as the port_start() entry in ata_port_operations.
5957  *
5958  *	LOCKING:
5959  *	Inherited from caller.
5960  */
5961 int ata_port_start(struct ata_port *ap)
5962 {
5963 	struct device *dev = ap->dev;
5964 	int rc;
5965 
5966 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5967 				      GFP_KERNEL);
5968 	if (!ap->prd)
5969 		return -ENOMEM;
5970 
5971 	rc = ata_pad_alloc(ap, dev);
5972 	if (rc)
5973 		return rc;
5974 
5975 	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5976 		(unsigned long long)ap->prd_dma);
5977 	return 0;
5978 }
5979 
5980 /**
5981  *	ata_dev_init - Initialize an ata_device structure
5982  *	@dev: Device structure to initialize
5983  *
5984  *	Initialize @dev in preparation for probing.
5985  *
5986  *	LOCKING:
5987  *	Inherited from caller.
5988  */
5989 void ata_dev_init(struct ata_device *dev)
5990 {
5991 	struct ata_port *ap = dev->ap;
5992 	unsigned long flags;
5993 
5994 	/* SATA spd limit is bound to the first device */
5995 	ap->sata_spd_limit = ap->hw_sata_spd_limit;
5996 
5997 	/* High bits of dev->flags are used to record warm plug
5998 	 * requests which occur asynchronously.  Synchronize using
5999 	 * host lock.
6000 	 */
6001 	spin_lock_irqsave(ap->lock, flags);
6002 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
6003 	spin_unlock_irqrestore(ap->lock, flags);
6004 
6005 	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6006 	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6007 	dev->pio_mask = UINT_MAX;
6008 	dev->mwdma_mask = UINT_MAX;
6009 	dev->udma_mask = UINT_MAX;
6010 }
6011 
6012 /**
6013  *	ata_port_alloc - allocate and initialize basic ATA port resources
6014  *	@host: ATA host this allocated port belongs to
6015  *
6016  *	Allocate and initialize basic ATA port resources.
6017  *
6018  *	RETURNS:
6019  *	Allocate ATA port on success, NULL on failure.
6020  *
6021  *	LOCKING:
6022  *	Inherited from calling layer (may sleep).
6023  */
6024 struct ata_port *ata_port_alloc(struct ata_host *host)
6025 {
6026 	struct ata_port *ap;
6027 	unsigned int i;
6028 
6029 	DPRINTK("ENTER\n");
6030 
6031 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6032 	if (!ap)
6033 		return NULL;
6034 
6035 	ap->pflags |= ATA_PFLAG_INITIALIZING;
6036 	ap->lock = &host->lock;
6037 	ap->flags = ATA_FLAG_DISABLED;
6038 	ap->print_id = -1;
6039 	ap->ctl = ATA_DEVCTL_OBS;
6040 	ap->host = host;
6041 	ap->dev = host->dev;
6042 
6043 	ap->hw_sata_spd_limit = UINT_MAX;
6044 	ap->active_tag = ATA_TAG_POISON;
6045 	ap->last_ctl = 0xFF;
6046 
6047 #if defined(ATA_VERBOSE_DEBUG)
6048 	/* turn on all debugging levels */
6049 	ap->msg_enable = 0x00FF;
6050 #elif defined(ATA_DEBUG)
6051 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6052 #else
6053 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6054 #endif
6055 
6056 	INIT_DELAYED_WORK(&ap->port_task, NULL);
6057 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6058 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6059 	INIT_LIST_HEAD(&ap->eh_done_q);
6060 	init_waitqueue_head(&ap->eh_wait_q);
6061 
6062 	ap->cbl = ATA_CBL_NONE;
6063 
6064 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
6065 		struct ata_device *dev = &ap->device[i];
6066 		dev->ap = ap;
6067 		dev->devno = i;
6068 		ata_dev_init(dev);
6069 	}
6070 
6071 #ifdef ATA_IRQ_TRAP
6072 	ap->stats.unhandled_irq = 1;
6073 	ap->stats.idle_irq = 1;
6074 #endif
6075 	return ap;
6076 }
6077 
6078 static void ata_host_release(struct device *gendev, void *res)
6079 {
6080 	struct ata_host *host = dev_get_drvdata(gendev);
6081 	int i;
6082 
6083 	for (i = 0; i < host->n_ports; i++) {
6084 		struct ata_port *ap = host->ports[i];
6085 
6086 		if (!ap)
6087 			continue;
6088 
6089 		if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6090 			ap->ops->port_stop(ap);
6091 	}
6092 
6093 	if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6094 		host->ops->host_stop(host);
6095 
6096 	for (i = 0; i < host->n_ports; i++) {
6097 		struct ata_port *ap = host->ports[i];
6098 
6099 		if (!ap)
6100 			continue;
6101 
6102 		if (ap->scsi_host)
6103 			scsi_host_put(ap->scsi_host);
6104 
6105 		kfree(ap);
6106 		host->ports[i] = NULL;
6107 	}
6108 
6109 	dev_set_drvdata(gendev, NULL);
6110 }
6111 
6112 /**
6113  *	ata_host_alloc - allocate and init basic ATA host resources
6114  *	@dev: generic device this host is associated with
6115  *	@max_ports: maximum number of ATA ports associated with this host
6116  *
6117  *	Allocate and initialize basic ATA host resources.  LLD calls
6118  *	this function to allocate a host, initializes it fully and
6119  *	attaches it using ata_host_register().
6120  *
6121  *	@max_ports ports are allocated and host->n_ports is
6122  *	initialized to @max_ports.  The caller is allowed to decrease
6123  *	host->n_ports before calling ata_host_register().  The unused
6124  *	ports will be automatically freed on registration.
6125  *
6126  *	RETURNS:
6127  *	Allocate ATA host on success, NULL on failure.
6128  *
6129  *	LOCKING:
6130  *	Inherited from calling layer (may sleep).
6131  */
6132 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6133 {
6134 	struct ata_host *host;
6135 	size_t sz;
6136 	int i;
6137 
6138 	DPRINTK("ENTER\n");
6139 
6140 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6141 		return NULL;
6142 
6143 	/* alloc a container for our list of ATA ports (buses) */
6144 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6145 	/* alloc a container for our list of ATA ports (buses) */
6146 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6147 	if (!host)
6148 		goto err_out;
6149 
6150 	devres_add(dev, host);
6151 	dev_set_drvdata(dev, host);
6152 
6153 	spin_lock_init(&host->lock);
6154 	host->dev = dev;
6155 	host->n_ports = max_ports;
6156 
6157 	/* allocate ports bound to this host */
6158 	for (i = 0; i < max_ports; i++) {
6159 		struct ata_port *ap;
6160 
6161 		ap = ata_port_alloc(host);
6162 		if (!ap)
6163 			goto err_out;
6164 
6165 		ap->port_no = i;
6166 		host->ports[i] = ap;
6167 	}
6168 
6169 	devres_remove_group(dev, NULL);
6170 	return host;
6171 
6172  err_out:
6173 	devres_release_group(dev, NULL);
6174 	return NULL;
6175 }
6176 
6177 /**
6178  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6179  *	@dev: generic device this host is associated with
6180  *	@ppi: array of ATA port_info to initialize host with
6181  *	@n_ports: number of ATA ports attached to this host
6182  *
6183  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6184  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6185  *	last entry will be used for the remaining ports.
6186  *
6187  *	RETURNS:
6188  *	Allocate ATA host on success, NULL on failure.
6189  *
6190  *	LOCKING:
6191  *	Inherited from calling layer (may sleep).
6192  */
6193 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6194 				      const struct ata_port_info * const * ppi,
6195 				      int n_ports)
6196 {
6197 	const struct ata_port_info *pi;
6198 	struct ata_host *host;
6199 	int i, j;
6200 
6201 	host = ata_host_alloc(dev, n_ports);
6202 	if (!host)
6203 		return NULL;
6204 
6205 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6206 		struct ata_port *ap = host->ports[i];
6207 
6208 		if (ppi[j])
6209 			pi = ppi[j++];
6210 
6211 		ap->pio_mask = pi->pio_mask;
6212 		ap->mwdma_mask = pi->mwdma_mask;
6213 		ap->udma_mask = pi->udma_mask;
6214 		ap->flags |= pi->flags;
6215 		ap->ops = pi->port_ops;
6216 
6217 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6218 			host->ops = pi->port_ops;
6219 		if (!host->private_data && pi->private_data)
6220 			host->private_data = pi->private_data;
6221 	}
6222 
6223 	return host;
6224 }
6225 
6226 /**
6227  *	ata_host_start - start and freeze ports of an ATA host
6228  *	@host: ATA host to start ports for
6229  *
6230  *	Start and then freeze ports of @host.  Started status is
6231  *	recorded in host->flags, so this function can be called
6232  *	multiple times.  Ports are guaranteed to get started only
6233  *	once.  If host->ops isn't initialized yet, its set to the
6234  *	first non-dummy port ops.
6235  *
6236  *	LOCKING:
6237  *	Inherited from calling layer (may sleep).
6238  *
6239  *	RETURNS:
6240  *	0 if all ports are started successfully, -errno otherwise.
6241  */
6242 int ata_host_start(struct ata_host *host)
6243 {
6244 	int i, rc;
6245 
6246 	if (host->flags & ATA_HOST_STARTED)
6247 		return 0;
6248 
6249 	for (i = 0; i < host->n_ports; i++) {
6250 		struct ata_port *ap = host->ports[i];
6251 
6252 		if (!host->ops && !ata_port_is_dummy(ap))
6253 			host->ops = ap->ops;
6254 
6255 		if (ap->ops->port_start) {
6256 			rc = ap->ops->port_start(ap);
6257 			if (rc) {
6258 				ata_port_printk(ap, KERN_ERR, "failed to "
6259 						"start port (errno=%d)\n", rc);
6260 				goto err_out;
6261 			}
6262 		}
6263 
6264 		ata_eh_freeze_port(ap);
6265 	}
6266 
6267 	host->flags |= ATA_HOST_STARTED;
6268 	return 0;
6269 
6270  err_out:
6271 	while (--i >= 0) {
6272 		struct ata_port *ap = host->ports[i];
6273 
6274 		if (ap->ops->port_stop)
6275 			ap->ops->port_stop(ap);
6276 	}
6277 	return rc;
6278 }
6279 
6280 /**
6281  *	ata_sas_host_init - Initialize a host struct
6282  *	@host:	host to initialize
6283  *	@dev:	device host is attached to
6284  *	@flags:	host flags
6285  *	@ops:	port_ops
6286  *
6287  *	LOCKING:
6288  *	PCI/etc. bus probe sem.
6289  *
6290  */
6291 /* KILLME - the only user left is ipr */
6292 void ata_host_init(struct ata_host *host, struct device *dev,
6293 		   unsigned long flags, const struct ata_port_operations *ops)
6294 {
6295 	spin_lock_init(&host->lock);
6296 	host->dev = dev;
6297 	host->flags = flags;
6298 	host->ops = ops;
6299 }
6300 
6301 /**
6302  *	ata_host_register - register initialized ATA host
6303  *	@host: ATA host to register
6304  *	@sht: template for SCSI host
6305  *
6306  *	Register initialized ATA host.  @host is allocated using
6307  *	ata_host_alloc() and fully initialized by LLD.  This function
6308  *	starts ports, registers @host with ATA and SCSI layers and
6309  *	probe registered devices.
6310  *
6311  *	LOCKING:
6312  *	Inherited from calling layer (may sleep).
6313  *
6314  *	RETURNS:
6315  *	0 on success, -errno otherwise.
6316  */
6317 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6318 {
6319 	int i, rc;
6320 
6321 	/* host must have been started */
6322 	if (!(host->flags & ATA_HOST_STARTED)) {
6323 		dev_printk(KERN_ERR, host->dev,
6324 			   "BUG: trying to register unstarted host\n");
6325 		WARN_ON(1);
6326 		return -EINVAL;
6327 	}
6328 
6329 	/* Blow away unused ports.  This happens when LLD can't
6330 	 * determine the exact number of ports to allocate at
6331 	 * allocation time.
6332 	 */
6333 	for (i = host->n_ports; host->ports[i]; i++)
6334 		kfree(host->ports[i]);
6335 
6336 	/* give ports names and add SCSI hosts */
6337 	for (i = 0; i < host->n_ports; i++)
6338 		host->ports[i]->print_id = ata_print_id++;
6339 
6340 	rc = ata_scsi_add_hosts(host, sht);
6341 	if (rc)
6342 		return rc;
6343 
6344 	/* associate with ACPI nodes */
6345 	ata_acpi_associate(host);
6346 
6347 	/* set cable, sata_spd_limit and report */
6348 	for (i = 0; i < host->n_ports; i++) {
6349 		struct ata_port *ap = host->ports[i];
6350 		int irq_line;
6351 		u32 scontrol;
6352 		unsigned long xfer_mask;
6353 
6354 		/* set SATA cable type if still unset */
6355 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6356 			ap->cbl = ATA_CBL_SATA;
6357 
6358 		/* init sata_spd_limit to the current value */
6359 		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6360 			int spd = (scontrol >> 4) & 0xf;
6361 			if (spd)
6362 				ap->hw_sata_spd_limit &= (1 << spd) - 1;
6363 		}
6364 		ap->sata_spd_limit = ap->hw_sata_spd_limit;
6365 
6366 		/* report the secondary IRQ for second channel legacy */
6367 		irq_line = host->irq;
6368 		if (i == 1 && host->irq2)
6369 			irq_line = host->irq2;
6370 
6371 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6372 					      ap->udma_mask);
6373 
6374 		/* print per-port info to dmesg */
6375 		if (!ata_port_is_dummy(ap))
6376 			ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6377 					"ctl 0x%p bmdma 0x%p irq %d\n",
6378 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6379 					ata_mode_string(xfer_mask),
6380 					ap->ioaddr.cmd_addr,
6381 					ap->ioaddr.ctl_addr,
6382 					ap->ioaddr.bmdma_addr,
6383 					irq_line);
6384 		else
6385 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6386 	}
6387 
6388 	/* perform each probe synchronously */
6389 	DPRINTK("probe begin\n");
6390 	for (i = 0; i < host->n_ports; i++) {
6391 		struct ata_port *ap = host->ports[i];
6392 		int rc;
6393 
6394 		/* probe */
6395 		if (ap->ops->error_handler) {
6396 			struct ata_eh_info *ehi = &ap->eh_info;
6397 			unsigned long flags;
6398 
6399 			ata_port_probe(ap);
6400 
6401 			/* kick EH for boot probing */
6402 			spin_lock_irqsave(ap->lock, flags);
6403 
6404 			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6405 			ehi->action |= ATA_EH_SOFTRESET;
6406 			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6407 
6408 			ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6409 			ap->pflags |= ATA_PFLAG_LOADING;
6410 			ata_port_schedule_eh(ap);
6411 
6412 			spin_unlock_irqrestore(ap->lock, flags);
6413 
6414 			/* wait for EH to finish */
6415 			ata_port_wait_eh(ap);
6416 		} else {
6417 			DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6418 			rc = ata_bus_probe(ap);
6419 			DPRINTK("ata%u: bus probe end\n", ap->print_id);
6420 
6421 			if (rc) {
6422 				/* FIXME: do something useful here?
6423 				 * Current libata behavior will
6424 				 * tear down everything when
6425 				 * the module is removed
6426 				 * or the h/w is unplugged.
6427 				 */
6428 			}
6429 		}
6430 	}
6431 
6432 	/* probes are done, now scan each port's disk(s) */
6433 	DPRINTK("host probe begin\n");
6434 	for (i = 0; i < host->n_ports; i++) {
6435 		struct ata_port *ap = host->ports[i];
6436 
6437 		ata_scsi_scan_host(ap);
6438 	}
6439 
6440 	return 0;
6441 }
6442 
6443 /**
6444  *	ata_host_activate - start host, request IRQ and register it
6445  *	@host: target ATA host
6446  *	@irq: IRQ to request
6447  *	@irq_handler: irq_handler used when requesting IRQ
6448  *	@irq_flags: irq_flags used when requesting IRQ
6449  *	@sht: scsi_host_template to use when registering the host
6450  *
6451  *	After allocating an ATA host and initializing it, most libata
6452  *	LLDs perform three steps to activate the host - start host,
6453  *	request IRQ and register it.  This helper takes necessasry
6454  *	arguments and performs the three steps in one go.
6455  *
6456  *	LOCKING:
6457  *	Inherited from calling layer (may sleep).
6458  *
6459  *	RETURNS:
6460  *	0 on success, -errno otherwise.
6461  */
6462 int ata_host_activate(struct ata_host *host, int irq,
6463 		      irq_handler_t irq_handler, unsigned long irq_flags,
6464 		      struct scsi_host_template *sht)
6465 {
6466 	int rc;
6467 
6468 	rc = ata_host_start(host);
6469 	if (rc)
6470 		return rc;
6471 
6472 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6473 			      dev_driver_string(host->dev), host);
6474 	if (rc)
6475 		return rc;
6476 
6477 	/* Used to print device info at probe */
6478 	host->irq = irq;
6479 
6480 	rc = ata_host_register(host, sht);
6481 	/* if failed, just free the IRQ and leave ports alone */
6482 	if (rc)
6483 		devm_free_irq(host->dev, irq, host);
6484 
6485 	return rc;
6486 }
6487 
6488 /**
6489  *	ata_port_detach - Detach ATA port in prepration of device removal
6490  *	@ap: ATA port to be detached
6491  *
6492  *	Detach all ATA devices and the associated SCSI devices of @ap;
6493  *	then, remove the associated SCSI host.  @ap is guaranteed to
6494  *	be quiescent on return from this function.
6495  *
6496  *	LOCKING:
6497  *	Kernel thread context (may sleep).
6498  */
6499 void ata_port_detach(struct ata_port *ap)
6500 {
6501 	unsigned long flags;
6502 	int i;
6503 
6504 	if (!ap->ops->error_handler)
6505 		goto skip_eh;
6506 
6507 	/* tell EH we're leaving & flush EH */
6508 	spin_lock_irqsave(ap->lock, flags);
6509 	ap->pflags |= ATA_PFLAG_UNLOADING;
6510 	spin_unlock_irqrestore(ap->lock, flags);
6511 
6512 	ata_port_wait_eh(ap);
6513 
6514 	/* EH is now guaranteed to see UNLOADING, so no new device
6515 	 * will be attached.  Disable all existing devices.
6516 	 */
6517 	spin_lock_irqsave(ap->lock, flags);
6518 
6519 	for (i = 0; i < ATA_MAX_DEVICES; i++)
6520 		ata_dev_disable(&ap->device[i]);
6521 
6522 	spin_unlock_irqrestore(ap->lock, flags);
6523 
6524 	/* Final freeze & EH.  All in-flight commands are aborted.  EH
6525 	 * will be skipped and retrials will be terminated with bad
6526 	 * target.
6527 	 */
6528 	spin_lock_irqsave(ap->lock, flags);
6529 	ata_port_freeze(ap);	/* won't be thawed */
6530 	spin_unlock_irqrestore(ap->lock, flags);
6531 
6532 	ata_port_wait_eh(ap);
6533 	cancel_rearming_delayed_work(&ap->hotplug_task);
6534 
6535  skip_eh:
6536 	/* remove the associated SCSI host */
6537 	scsi_remove_host(ap->scsi_host);
6538 }
6539 
6540 /**
6541  *	ata_host_detach - Detach all ports of an ATA host
6542  *	@host: Host to detach
6543  *
6544  *	Detach all ports of @host.
6545  *
6546  *	LOCKING:
6547  *	Kernel thread context (may sleep).
6548  */
6549 void ata_host_detach(struct ata_host *host)
6550 {
6551 	int i;
6552 
6553 	for (i = 0; i < host->n_ports; i++)
6554 		ata_port_detach(host->ports[i]);
6555 }
6556 
6557 /**
6558  *	ata_std_ports - initialize ioaddr with standard port offsets.
6559  *	@ioaddr: IO address structure to be initialized
6560  *
6561  *	Utility function which initializes data_addr, error_addr,
6562  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6563  *	device_addr, status_addr, and command_addr to standard offsets
6564  *	relative to cmd_addr.
6565  *
6566  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6567  */
6568 
6569 void ata_std_ports(struct ata_ioports *ioaddr)
6570 {
6571 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6572 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6573 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6574 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6575 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6576 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6577 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6578 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6579 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6580 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6581 }
6582 
6583 
6584 #ifdef CONFIG_PCI
6585 
6586 /**
6587  *	ata_pci_remove_one - PCI layer callback for device removal
6588  *	@pdev: PCI device that was removed
6589  *
6590  *	PCI layer indicates to libata via this hook that hot-unplug or
6591  *	module unload event has occurred.  Detach all ports.  Resource
6592  *	release is handled via devres.
6593  *
6594  *	LOCKING:
6595  *	Inherited from PCI layer (may sleep).
6596  */
6597 void ata_pci_remove_one(struct pci_dev *pdev)
6598 {
6599 	struct device *dev = pci_dev_to_dev(pdev);
6600 	struct ata_host *host = dev_get_drvdata(dev);
6601 
6602 	ata_host_detach(host);
6603 }
6604 
6605 /* move to PCI subsystem */
6606 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6607 {
6608 	unsigned long tmp = 0;
6609 
6610 	switch (bits->width) {
6611 	case 1: {
6612 		u8 tmp8 = 0;
6613 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6614 		tmp = tmp8;
6615 		break;
6616 	}
6617 	case 2: {
6618 		u16 tmp16 = 0;
6619 		pci_read_config_word(pdev, bits->reg, &tmp16);
6620 		tmp = tmp16;
6621 		break;
6622 	}
6623 	case 4: {
6624 		u32 tmp32 = 0;
6625 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6626 		tmp = tmp32;
6627 		break;
6628 	}
6629 
6630 	default:
6631 		return -EINVAL;
6632 	}
6633 
6634 	tmp &= bits->mask;
6635 
6636 	return (tmp == bits->val) ? 1 : 0;
6637 }
6638 
6639 #ifdef CONFIG_PM
6640 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6641 {
6642 	pci_save_state(pdev);
6643 	pci_disable_device(pdev);
6644 
6645 	if (mesg.event == PM_EVENT_SUSPEND)
6646 		pci_set_power_state(pdev, PCI_D3hot);
6647 }
6648 
6649 int ata_pci_device_do_resume(struct pci_dev *pdev)
6650 {
6651 	int rc;
6652 
6653 	pci_set_power_state(pdev, PCI_D0);
6654 	pci_restore_state(pdev);
6655 
6656 	rc = pcim_enable_device(pdev);
6657 	if (rc) {
6658 		dev_printk(KERN_ERR, &pdev->dev,
6659 			   "failed to enable device after resume (%d)\n", rc);
6660 		return rc;
6661 	}
6662 
6663 	pci_set_master(pdev);
6664 	return 0;
6665 }
6666 
6667 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6668 {
6669 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6670 	int rc = 0;
6671 
6672 	rc = ata_host_suspend(host, mesg);
6673 	if (rc)
6674 		return rc;
6675 
6676 	ata_pci_device_do_suspend(pdev, mesg);
6677 
6678 	return 0;
6679 }
6680 
6681 int ata_pci_device_resume(struct pci_dev *pdev)
6682 {
6683 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6684 	int rc;
6685 
6686 	rc = ata_pci_device_do_resume(pdev);
6687 	if (rc == 0)
6688 		ata_host_resume(host);
6689 	return rc;
6690 }
6691 #endif /* CONFIG_PM */
6692 
6693 #endif /* CONFIG_PCI */
6694 
6695 
6696 static int __init ata_init(void)
6697 {
6698 	ata_probe_timeout *= HZ;
6699 	ata_wq = create_workqueue("ata");
6700 	if (!ata_wq)
6701 		return -ENOMEM;
6702 
6703 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6704 	if (!ata_aux_wq) {
6705 		destroy_workqueue(ata_wq);
6706 		return -ENOMEM;
6707 	}
6708 
6709 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6710 	return 0;
6711 }
6712 
6713 static void __exit ata_exit(void)
6714 {
6715 	destroy_workqueue(ata_wq);
6716 	destroy_workqueue(ata_aux_wq);
6717 }
6718 
6719 subsys_initcall(ata_init);
6720 module_exit(ata_exit);
6721 
6722 static unsigned long ratelimit_time;
6723 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6724 
6725 int ata_ratelimit(void)
6726 {
6727 	int rc;
6728 	unsigned long flags;
6729 
6730 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6731 
6732 	if (time_after(jiffies, ratelimit_time)) {
6733 		rc = 1;
6734 		ratelimit_time = jiffies + (HZ/5);
6735 	} else
6736 		rc = 0;
6737 
6738 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6739 
6740 	return rc;
6741 }
6742 
6743 /**
6744  *	ata_wait_register - wait until register value changes
6745  *	@reg: IO-mapped register
6746  *	@mask: Mask to apply to read register value
6747  *	@val: Wait condition
6748  *	@interval_msec: polling interval in milliseconds
6749  *	@timeout_msec: timeout in milliseconds
6750  *
6751  *	Waiting for some bits of register to change is a common
6752  *	operation for ATA controllers.  This function reads 32bit LE
6753  *	IO-mapped register @reg and tests for the following condition.
6754  *
6755  *	(*@reg & mask) != val
6756  *
6757  *	If the condition is met, it returns; otherwise, the process is
6758  *	repeated after @interval_msec until timeout.
6759  *
6760  *	LOCKING:
6761  *	Kernel thread context (may sleep)
6762  *
6763  *	RETURNS:
6764  *	The final register value.
6765  */
6766 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6767 		      unsigned long interval_msec,
6768 		      unsigned long timeout_msec)
6769 {
6770 	unsigned long timeout;
6771 	u32 tmp;
6772 
6773 	tmp = ioread32(reg);
6774 
6775 	/* Calculate timeout _after_ the first read to make sure
6776 	 * preceding writes reach the controller before starting to
6777 	 * eat away the timeout.
6778 	 */
6779 	timeout = jiffies + (timeout_msec * HZ) / 1000;
6780 
6781 	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6782 		msleep(interval_msec);
6783 		tmp = ioread32(reg);
6784 	}
6785 
6786 	return tmp;
6787 }
6788 
6789 /*
6790  * Dummy port_ops
6791  */
6792 static void ata_dummy_noret(struct ata_port *ap)	{ }
6793 static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
6794 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6795 
6796 static u8 ata_dummy_check_status(struct ata_port *ap)
6797 {
6798 	return ATA_DRDY;
6799 }
6800 
6801 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6802 {
6803 	return AC_ERR_SYSTEM;
6804 }
6805 
6806 const struct ata_port_operations ata_dummy_port_ops = {
6807 	.port_disable		= ata_port_disable,
6808 	.check_status		= ata_dummy_check_status,
6809 	.check_altstatus	= ata_dummy_check_status,
6810 	.dev_select		= ata_noop_dev_select,
6811 	.qc_prep		= ata_noop_qc_prep,
6812 	.qc_issue		= ata_dummy_qc_issue,
6813 	.freeze			= ata_dummy_noret,
6814 	.thaw			= ata_dummy_noret,
6815 	.error_handler		= ata_dummy_noret,
6816 	.post_internal_cmd	= ata_dummy_qc_noret,
6817 	.irq_clear		= ata_dummy_noret,
6818 	.port_start		= ata_dummy_ret0,
6819 	.port_stop		= ata_dummy_noret,
6820 };
6821 
6822 const struct ata_port_info ata_dummy_port_info = {
6823 	.port_ops		= &ata_dummy_port_ops,
6824 };
6825 
6826 /*
6827  * libata is essentially a library of internal helper functions for
6828  * low-level ATA host controller drivers.  As such, the API/ABI is
6829  * likely to change as new drivers are added and updated.
6830  * Do not depend on ABI/API stability.
6831  */
6832 
6833 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6834 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6835 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6836 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6837 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6838 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6839 EXPORT_SYMBOL_GPL(ata_std_ports);
6840 EXPORT_SYMBOL_GPL(ata_host_init);
6841 EXPORT_SYMBOL_GPL(ata_host_alloc);
6842 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6843 EXPORT_SYMBOL_GPL(ata_host_start);
6844 EXPORT_SYMBOL_GPL(ata_host_register);
6845 EXPORT_SYMBOL_GPL(ata_host_activate);
6846 EXPORT_SYMBOL_GPL(ata_host_detach);
6847 EXPORT_SYMBOL_GPL(ata_sg_init);
6848 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6849 EXPORT_SYMBOL_GPL(ata_hsm_move);
6850 EXPORT_SYMBOL_GPL(ata_qc_complete);
6851 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6852 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6853 EXPORT_SYMBOL_GPL(ata_tf_load);
6854 EXPORT_SYMBOL_GPL(ata_tf_read);
6855 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6856 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6857 EXPORT_SYMBOL_GPL(sata_print_link_status);
6858 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6859 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6860 EXPORT_SYMBOL_GPL(ata_check_status);
6861 EXPORT_SYMBOL_GPL(ata_altstatus);
6862 EXPORT_SYMBOL_GPL(ata_exec_command);
6863 EXPORT_SYMBOL_GPL(ata_port_start);
6864 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6865 EXPORT_SYMBOL_GPL(ata_interrupt);
6866 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6867 EXPORT_SYMBOL_GPL(ata_data_xfer);
6868 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6869 EXPORT_SYMBOL_GPL(ata_qc_prep);
6870 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6871 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6872 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6873 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6874 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6875 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6876 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6877 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6878 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6879 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6880 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6881 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6882 EXPORT_SYMBOL_GPL(ata_port_probe);
6883 EXPORT_SYMBOL_GPL(ata_dev_disable);
6884 EXPORT_SYMBOL_GPL(sata_set_spd);
6885 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6886 EXPORT_SYMBOL_GPL(sata_phy_resume);
6887 EXPORT_SYMBOL_GPL(sata_phy_reset);
6888 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6889 EXPORT_SYMBOL_GPL(ata_bus_reset);
6890 EXPORT_SYMBOL_GPL(ata_std_prereset);
6891 EXPORT_SYMBOL_GPL(ata_std_softreset);
6892 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6893 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6894 EXPORT_SYMBOL_GPL(ata_std_postreset);
6895 EXPORT_SYMBOL_GPL(ata_dev_classify);
6896 EXPORT_SYMBOL_GPL(ata_dev_pair);
6897 EXPORT_SYMBOL_GPL(ata_port_disable);
6898 EXPORT_SYMBOL_GPL(ata_ratelimit);
6899 EXPORT_SYMBOL_GPL(ata_wait_register);
6900 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6901 EXPORT_SYMBOL_GPL(ata_wait_ready);
6902 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6903 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(ata_host_intr);
6909 EXPORT_SYMBOL_GPL(sata_scr_valid);
6910 EXPORT_SYMBOL_GPL(sata_scr_read);
6911 EXPORT_SYMBOL_GPL(sata_scr_write);
6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6913 EXPORT_SYMBOL_GPL(ata_port_online);
6914 EXPORT_SYMBOL_GPL(ata_port_offline);
6915 #ifdef CONFIG_PM
6916 EXPORT_SYMBOL_GPL(ata_host_suspend);
6917 EXPORT_SYMBOL_GPL(ata_host_resume);
6918 #endif /* CONFIG_PM */
6919 EXPORT_SYMBOL_GPL(ata_id_string);
6920 EXPORT_SYMBOL_GPL(ata_id_c_string);
6921 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6923 
6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6925 EXPORT_SYMBOL_GPL(ata_timing_compute);
6926 EXPORT_SYMBOL_GPL(ata_timing_merge);
6927 
6928 #ifdef CONFIG_PCI
6929 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6930 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6931 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6932 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6933 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6934 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6935 #ifdef CONFIG_PM
6936 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6937 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6938 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6939 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6940 #endif /* CONFIG_PM */
6941 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6942 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6943 #endif /* CONFIG_PCI */
6944 
6945 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6946 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6947 EXPORT_SYMBOL_GPL(ata_port_abort);
6948 EXPORT_SYMBOL_GPL(ata_port_freeze);
6949 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6950 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6951 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6952 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6953 EXPORT_SYMBOL_GPL(ata_do_eh);
6954 EXPORT_SYMBOL_GPL(ata_irq_on);
6955 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6956 EXPORT_SYMBOL_GPL(ata_irq_ack);
6957 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6958 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6959 
6960 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6961 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6962 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6963 EXPORT_SYMBOL_GPL(ata_cable_sata);
6964