1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 #define DRV_VERSION "2.21" /* must be exactly four chars */ 63 64 65 /* debounce timing parameters in msecs { interval, duration, timeout } */ 66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 69 70 static unsigned int ata_dev_init_params(struct ata_device *dev, 71 u16 heads, u16 sectors); 72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 73 static void ata_dev_xfermask(struct ata_device *dev); 74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 75 76 unsigned int ata_print_id = 1; 77 static struct workqueue_struct *ata_wq; 78 79 struct workqueue_struct *ata_aux_wq; 80 81 int atapi_enabled = 1; 82 module_param(atapi_enabled, int, 0444); 83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 84 85 int atapi_dmadir = 0; 86 module_param(atapi_dmadir, int, 0444); 87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 88 89 int libata_fua = 0; 90 module_param_named(fua, libata_fua, int, 0444); 91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 92 93 static int ata_ignore_hpa = 0; 94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 96 97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 98 module_param(ata_probe_timeout, int, 0444); 99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 100 101 int libata_noacpi = 1; 102 module_param_named(noacpi, libata_noacpi, int, 0444); 103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set"); 104 105 MODULE_AUTHOR("Jeff Garzik"); 106 MODULE_DESCRIPTION("Library module for ATA devices"); 107 MODULE_LICENSE("GPL"); 108 MODULE_VERSION(DRV_VERSION); 109 110 111 /** 112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 113 * @tf: Taskfile to convert 114 * @fis: Buffer into which data will output 115 * @pmp: Port multiplier port 116 * 117 * Converts a standard ATA taskfile to a Serial ATA 118 * FIS structure (Register - Host to Device). 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) 125 { 126 fis[0] = 0x27; /* Register - Host to Device FIS */ 127 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, 128 bit 7 indicates Command FIS */ 129 fis[2] = tf->command; 130 fis[3] = tf->feature; 131 132 fis[4] = tf->lbal; 133 fis[5] = tf->lbam; 134 fis[6] = tf->lbah; 135 fis[7] = tf->device; 136 137 fis[8] = tf->hob_lbal; 138 fis[9] = tf->hob_lbam; 139 fis[10] = tf->hob_lbah; 140 fis[11] = tf->hob_feature; 141 142 fis[12] = tf->nsect; 143 fis[13] = tf->hob_nsect; 144 fis[14] = 0; 145 fis[15] = tf->ctl; 146 147 fis[16] = 0; 148 fis[17] = 0; 149 fis[18] = 0; 150 fis[19] = 0; 151 } 152 153 /** 154 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 155 * @fis: Buffer from which data will be input 156 * @tf: Taskfile to output 157 * 158 * Converts a serial ATA FIS structure to a standard ATA taskfile. 159 * 160 * LOCKING: 161 * Inherited from caller. 162 */ 163 164 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 165 { 166 tf->command = fis[2]; /* status */ 167 tf->feature = fis[3]; /* error */ 168 169 tf->lbal = fis[4]; 170 tf->lbam = fis[5]; 171 tf->lbah = fis[6]; 172 tf->device = fis[7]; 173 174 tf->hob_lbal = fis[8]; 175 tf->hob_lbam = fis[9]; 176 tf->hob_lbah = fis[10]; 177 178 tf->nsect = fis[12]; 179 tf->hob_nsect = fis[13]; 180 } 181 182 static const u8 ata_rw_cmds[] = { 183 /* pio multi */ 184 ATA_CMD_READ_MULTI, 185 ATA_CMD_WRITE_MULTI, 186 ATA_CMD_READ_MULTI_EXT, 187 ATA_CMD_WRITE_MULTI_EXT, 188 0, 189 0, 190 0, 191 ATA_CMD_WRITE_MULTI_FUA_EXT, 192 /* pio */ 193 ATA_CMD_PIO_READ, 194 ATA_CMD_PIO_WRITE, 195 ATA_CMD_PIO_READ_EXT, 196 ATA_CMD_PIO_WRITE_EXT, 197 0, 198 0, 199 0, 200 0, 201 /* dma */ 202 ATA_CMD_READ, 203 ATA_CMD_WRITE, 204 ATA_CMD_READ_EXT, 205 ATA_CMD_WRITE_EXT, 206 0, 207 0, 208 0, 209 ATA_CMD_WRITE_FUA_EXT 210 }; 211 212 /** 213 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 214 * @tf: command to examine and configure 215 * @dev: device tf belongs to 216 * 217 * Examine the device configuration and tf->flags to calculate 218 * the proper read/write commands and protocol to use. 219 * 220 * LOCKING: 221 * caller. 222 */ 223 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 224 { 225 u8 cmd; 226 227 int index, fua, lba48, write; 228 229 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 230 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 231 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 232 233 if (dev->flags & ATA_DFLAG_PIO) { 234 tf->protocol = ATA_PROT_PIO; 235 index = dev->multi_count ? 0 : 8; 236 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) { 237 /* Unable to use DMA due to host limitation */ 238 tf->protocol = ATA_PROT_PIO; 239 index = dev->multi_count ? 0 : 8; 240 } else { 241 tf->protocol = ATA_PROT_DMA; 242 index = 16; 243 } 244 245 cmd = ata_rw_cmds[index + fua + lba48 + write]; 246 if (cmd) { 247 tf->command = cmd; 248 return 0; 249 } 250 return -1; 251 } 252 253 /** 254 * ata_tf_read_block - Read block address from ATA taskfile 255 * @tf: ATA taskfile of interest 256 * @dev: ATA device @tf belongs to 257 * 258 * LOCKING: 259 * None. 260 * 261 * Read block address from @tf. This function can handle all 262 * three address formats - LBA, LBA48 and CHS. tf->protocol and 263 * flags select the address format to use. 264 * 265 * RETURNS: 266 * Block address read from @tf. 267 */ 268 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 269 { 270 u64 block = 0; 271 272 if (tf->flags & ATA_TFLAG_LBA) { 273 if (tf->flags & ATA_TFLAG_LBA48) { 274 block |= (u64)tf->hob_lbah << 40; 275 block |= (u64)tf->hob_lbam << 32; 276 block |= tf->hob_lbal << 24; 277 } else 278 block |= (tf->device & 0xf) << 24; 279 280 block |= tf->lbah << 16; 281 block |= tf->lbam << 8; 282 block |= tf->lbal; 283 } else { 284 u32 cyl, head, sect; 285 286 cyl = tf->lbam | (tf->lbah << 8); 287 head = tf->device & 0xf; 288 sect = tf->lbal; 289 290 block = (cyl * dev->heads + head) * dev->sectors + sect; 291 } 292 293 return block; 294 } 295 296 /** 297 * ata_build_rw_tf - Build ATA taskfile for given read/write request 298 * @tf: Target ATA taskfile 299 * @dev: ATA device @tf belongs to 300 * @block: Block address 301 * @n_block: Number of blocks 302 * @tf_flags: RW/FUA etc... 303 * @tag: tag 304 * 305 * LOCKING: 306 * None. 307 * 308 * Build ATA taskfile @tf for read/write request described by 309 * @block, @n_block, @tf_flags and @tag on @dev. 310 * 311 * RETURNS: 312 * 313 * 0 on success, -ERANGE if the request is too large for @dev, 314 * -EINVAL if the request is invalid. 315 */ 316 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 317 u64 block, u32 n_block, unsigned int tf_flags, 318 unsigned int tag) 319 { 320 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 321 tf->flags |= tf_flags; 322 323 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 324 /* yay, NCQ */ 325 if (!lba_48_ok(block, n_block)) 326 return -ERANGE; 327 328 tf->protocol = ATA_PROT_NCQ; 329 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 330 331 if (tf->flags & ATA_TFLAG_WRITE) 332 tf->command = ATA_CMD_FPDMA_WRITE; 333 else 334 tf->command = ATA_CMD_FPDMA_READ; 335 336 tf->nsect = tag << 3; 337 tf->hob_feature = (n_block >> 8) & 0xff; 338 tf->feature = n_block & 0xff; 339 340 tf->hob_lbah = (block >> 40) & 0xff; 341 tf->hob_lbam = (block >> 32) & 0xff; 342 tf->hob_lbal = (block >> 24) & 0xff; 343 tf->lbah = (block >> 16) & 0xff; 344 tf->lbam = (block >> 8) & 0xff; 345 tf->lbal = block & 0xff; 346 347 tf->device = 1 << 6; 348 if (tf->flags & ATA_TFLAG_FUA) 349 tf->device |= 1 << 7; 350 } else if (dev->flags & ATA_DFLAG_LBA) { 351 tf->flags |= ATA_TFLAG_LBA; 352 353 if (lba_28_ok(block, n_block)) { 354 /* use LBA28 */ 355 tf->device |= (block >> 24) & 0xf; 356 } else if (lba_48_ok(block, n_block)) { 357 if (!(dev->flags & ATA_DFLAG_LBA48)) 358 return -ERANGE; 359 360 /* use LBA48 */ 361 tf->flags |= ATA_TFLAG_LBA48; 362 363 tf->hob_nsect = (n_block >> 8) & 0xff; 364 365 tf->hob_lbah = (block >> 40) & 0xff; 366 tf->hob_lbam = (block >> 32) & 0xff; 367 tf->hob_lbal = (block >> 24) & 0xff; 368 } else 369 /* request too large even for LBA48 */ 370 return -ERANGE; 371 372 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 373 return -EINVAL; 374 375 tf->nsect = n_block & 0xff; 376 377 tf->lbah = (block >> 16) & 0xff; 378 tf->lbam = (block >> 8) & 0xff; 379 tf->lbal = block & 0xff; 380 381 tf->device |= ATA_LBA; 382 } else { 383 /* CHS */ 384 u32 sect, head, cyl, track; 385 386 /* The request -may- be too large for CHS addressing. */ 387 if (!lba_28_ok(block, n_block)) 388 return -ERANGE; 389 390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 391 return -EINVAL; 392 393 /* Convert LBA to CHS */ 394 track = (u32)block / dev->sectors; 395 cyl = track / dev->heads; 396 head = track % dev->heads; 397 sect = (u32)block % dev->sectors + 1; 398 399 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 400 (u32)block, track, cyl, head, sect); 401 402 /* Check whether the converted CHS can fit. 403 Cylinder: 0-65535 404 Head: 0-15 405 Sector: 1-255*/ 406 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 407 return -ERANGE; 408 409 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 410 tf->lbal = sect; 411 tf->lbam = cyl; 412 tf->lbah = cyl >> 8; 413 tf->device |= head; 414 } 415 416 return 0; 417 } 418 419 /** 420 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 421 * @pio_mask: pio_mask 422 * @mwdma_mask: mwdma_mask 423 * @udma_mask: udma_mask 424 * 425 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 426 * unsigned int xfer_mask. 427 * 428 * LOCKING: 429 * None. 430 * 431 * RETURNS: 432 * Packed xfer_mask. 433 */ 434 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 435 unsigned int mwdma_mask, 436 unsigned int udma_mask) 437 { 438 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 439 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 440 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 441 } 442 443 /** 444 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 445 * @xfer_mask: xfer_mask to unpack 446 * @pio_mask: resulting pio_mask 447 * @mwdma_mask: resulting mwdma_mask 448 * @udma_mask: resulting udma_mask 449 * 450 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 451 * Any NULL distination masks will be ignored. 452 */ 453 static void ata_unpack_xfermask(unsigned int xfer_mask, 454 unsigned int *pio_mask, 455 unsigned int *mwdma_mask, 456 unsigned int *udma_mask) 457 { 458 if (pio_mask) 459 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 460 if (mwdma_mask) 461 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 462 if (udma_mask) 463 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 464 } 465 466 static const struct ata_xfer_ent { 467 int shift, bits; 468 u8 base; 469 } ata_xfer_tbl[] = { 470 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 471 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 472 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 473 { -1, }, 474 }; 475 476 /** 477 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 478 * @xfer_mask: xfer_mask of interest 479 * 480 * Return matching XFER_* value for @xfer_mask. Only the highest 481 * bit of @xfer_mask is considered. 482 * 483 * LOCKING: 484 * None. 485 * 486 * RETURNS: 487 * Matching XFER_* value, 0 if no match found. 488 */ 489 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 490 { 491 int highbit = fls(xfer_mask) - 1; 492 const struct ata_xfer_ent *ent; 493 494 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 495 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 496 return ent->base + highbit - ent->shift; 497 return 0; 498 } 499 500 /** 501 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 502 * @xfer_mode: XFER_* of interest 503 * 504 * Return matching xfer_mask for @xfer_mode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * Matching xfer_mask, 0 if no match found. 511 */ 512 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 513 { 514 const struct ata_xfer_ent *ent; 515 516 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 517 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 518 return 1 << (ent->shift + xfer_mode - ent->base); 519 return 0; 520 } 521 522 /** 523 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 524 * @xfer_mode: XFER_* of interest 525 * 526 * Return matching xfer_shift for @xfer_mode. 527 * 528 * LOCKING: 529 * None. 530 * 531 * RETURNS: 532 * Matching xfer_shift, -1 if no match found. 533 */ 534 static int ata_xfer_mode2shift(unsigned int xfer_mode) 535 { 536 const struct ata_xfer_ent *ent; 537 538 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 539 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 540 return ent->shift; 541 return -1; 542 } 543 544 /** 545 * ata_mode_string - convert xfer_mask to string 546 * @xfer_mask: mask of bits supported; only highest bit counts. 547 * 548 * Determine string which represents the highest speed 549 * (highest bit in @modemask). 550 * 551 * LOCKING: 552 * None. 553 * 554 * RETURNS: 555 * Constant C string representing highest speed listed in 556 * @mode_mask, or the constant C string "<n/a>". 557 */ 558 static const char *ata_mode_string(unsigned int xfer_mask) 559 { 560 static const char * const xfer_mode_str[] = { 561 "PIO0", 562 "PIO1", 563 "PIO2", 564 "PIO3", 565 "PIO4", 566 "PIO5", 567 "PIO6", 568 "MWDMA0", 569 "MWDMA1", 570 "MWDMA2", 571 "MWDMA3", 572 "MWDMA4", 573 "UDMA/16", 574 "UDMA/25", 575 "UDMA/33", 576 "UDMA/44", 577 "UDMA/66", 578 "UDMA/100", 579 "UDMA/133", 580 "UDMA7", 581 }; 582 int highbit; 583 584 highbit = fls(xfer_mask) - 1; 585 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 586 return xfer_mode_str[highbit]; 587 return "<n/a>"; 588 } 589 590 static const char *sata_spd_string(unsigned int spd) 591 { 592 static const char * const spd_str[] = { 593 "1.5 Gbps", 594 "3.0 Gbps", 595 }; 596 597 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 598 return "<unknown>"; 599 return spd_str[spd - 1]; 600 } 601 602 void ata_dev_disable(struct ata_device *dev) 603 { 604 if (ata_dev_enabled(dev)) { 605 if (ata_msg_drv(dev->ap)) 606 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 607 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 608 ATA_DNXFER_QUIET); 609 dev->class++; 610 } 611 } 612 613 /** 614 * ata_devchk - PATA device presence detection 615 * @ap: ATA channel to examine 616 * @device: Device to examine (starting at zero) 617 * 618 * This technique was originally described in 619 * Hale Landis's ATADRVR (www.ata-atapi.com), and 620 * later found its way into the ATA/ATAPI spec. 621 * 622 * Write a pattern to the ATA shadow registers, 623 * and if a device is present, it will respond by 624 * correctly storing and echoing back the 625 * ATA shadow register contents. 626 * 627 * LOCKING: 628 * caller. 629 */ 630 631 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 632 { 633 struct ata_ioports *ioaddr = &ap->ioaddr; 634 u8 nsect, lbal; 635 636 ap->ops->dev_select(ap, device); 637 638 iowrite8(0x55, ioaddr->nsect_addr); 639 iowrite8(0xaa, ioaddr->lbal_addr); 640 641 iowrite8(0xaa, ioaddr->nsect_addr); 642 iowrite8(0x55, ioaddr->lbal_addr); 643 644 iowrite8(0x55, ioaddr->nsect_addr); 645 iowrite8(0xaa, ioaddr->lbal_addr); 646 647 nsect = ioread8(ioaddr->nsect_addr); 648 lbal = ioread8(ioaddr->lbal_addr); 649 650 if ((nsect == 0x55) && (lbal == 0xaa)) 651 return 1; /* we found a device */ 652 653 return 0; /* nothing found */ 654 } 655 656 /** 657 * ata_dev_classify - determine device type based on ATA-spec signature 658 * @tf: ATA taskfile register set for device to be identified 659 * 660 * Determine from taskfile register contents whether a device is 661 * ATA or ATAPI, as per "Signature and persistence" section 662 * of ATA/PI spec (volume 1, sect 5.14). 663 * 664 * LOCKING: 665 * None. 666 * 667 * RETURNS: 668 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN 669 * the event of failure. 670 */ 671 672 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 673 { 674 /* Apple's open source Darwin code hints that some devices only 675 * put a proper signature into the LBA mid/high registers, 676 * So, we only check those. It's sufficient for uniqueness. 677 */ 678 679 if (((tf->lbam == 0) && (tf->lbah == 0)) || 680 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { 681 DPRINTK("found ATA device by sig\n"); 682 return ATA_DEV_ATA; 683 } 684 685 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || 686 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { 687 DPRINTK("found ATAPI device by sig\n"); 688 return ATA_DEV_ATAPI; 689 } 690 691 DPRINTK("unknown device\n"); 692 return ATA_DEV_UNKNOWN; 693 } 694 695 /** 696 * ata_dev_try_classify - Parse returned ATA device signature 697 * @ap: ATA channel to examine 698 * @device: Device to examine (starting at zero) 699 * @r_err: Value of error register on completion 700 * 701 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 702 * an ATA/ATAPI-defined set of values is placed in the ATA 703 * shadow registers, indicating the results of device detection 704 * and diagnostics. 705 * 706 * Select the ATA device, and read the values from the ATA shadow 707 * registers. Then parse according to the Error register value, 708 * and the spec-defined values examined by ata_dev_classify(). 709 * 710 * LOCKING: 711 * caller. 712 * 713 * RETURNS: 714 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 715 */ 716 717 unsigned int 718 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) 719 { 720 struct ata_taskfile tf; 721 unsigned int class; 722 u8 err; 723 724 ap->ops->dev_select(ap, device); 725 726 memset(&tf, 0, sizeof(tf)); 727 728 ap->ops->tf_read(ap, &tf); 729 err = tf.feature; 730 if (r_err) 731 *r_err = err; 732 733 /* see if device passed diags: if master then continue and warn later */ 734 if (err == 0 && device == 0) 735 /* diagnostic fail : do nothing _YET_ */ 736 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; 737 else if (err == 1) 738 /* do nothing */ ; 739 else if ((device == 0) && (err == 0x81)) 740 /* do nothing */ ; 741 else 742 return ATA_DEV_NONE; 743 744 /* determine if device is ATA or ATAPI */ 745 class = ata_dev_classify(&tf); 746 747 if (class == ATA_DEV_UNKNOWN) 748 return ATA_DEV_NONE; 749 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 750 return ATA_DEV_NONE; 751 return class; 752 } 753 754 /** 755 * ata_id_string - Convert IDENTIFY DEVICE page into string 756 * @id: IDENTIFY DEVICE results we will examine 757 * @s: string into which data is output 758 * @ofs: offset into identify device page 759 * @len: length of string to return. must be an even number. 760 * 761 * The strings in the IDENTIFY DEVICE page are broken up into 762 * 16-bit chunks. Run through the string, and output each 763 * 8-bit chunk linearly, regardless of platform. 764 * 765 * LOCKING: 766 * caller. 767 */ 768 769 void ata_id_string(const u16 *id, unsigned char *s, 770 unsigned int ofs, unsigned int len) 771 { 772 unsigned int c; 773 774 while (len > 0) { 775 c = id[ofs] >> 8; 776 *s = c; 777 s++; 778 779 c = id[ofs] & 0xff; 780 *s = c; 781 s++; 782 783 ofs++; 784 len -= 2; 785 } 786 } 787 788 /** 789 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 790 * @id: IDENTIFY DEVICE results we will examine 791 * @s: string into which data is output 792 * @ofs: offset into identify device page 793 * @len: length of string to return. must be an odd number. 794 * 795 * This function is identical to ata_id_string except that it 796 * trims trailing spaces and terminates the resulting string with 797 * null. @len must be actual maximum length (even number) + 1. 798 * 799 * LOCKING: 800 * caller. 801 */ 802 void ata_id_c_string(const u16 *id, unsigned char *s, 803 unsigned int ofs, unsigned int len) 804 { 805 unsigned char *p; 806 807 WARN_ON(!(len & 1)); 808 809 ata_id_string(id, s, ofs, len - 1); 810 811 p = s + strnlen(s, len - 1); 812 while (p > s && p[-1] == ' ') 813 p--; 814 *p = '\0'; 815 } 816 817 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 818 { 819 u64 sectors = 0; 820 821 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 822 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 823 sectors |= (tf->hob_lbal & 0xff) << 24; 824 sectors |= (tf->lbah & 0xff) << 16; 825 sectors |= (tf->lbam & 0xff) << 8; 826 sectors |= (tf->lbal & 0xff); 827 828 return ++sectors; 829 } 830 831 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 832 { 833 u64 sectors = 0; 834 835 sectors |= (tf->device & 0x0f) << 24; 836 sectors |= (tf->lbah & 0xff) << 16; 837 sectors |= (tf->lbam & 0xff) << 8; 838 sectors |= (tf->lbal & 0xff); 839 840 return ++sectors; 841 } 842 843 /** 844 * ata_read_native_max_address_ext - LBA48 native max query 845 * @dev: Device to query 846 * 847 * Perform an LBA48 size query upon the device in question. Return the 848 * actual LBA48 size or zero if the command fails. 849 */ 850 851 static u64 ata_read_native_max_address_ext(struct ata_device *dev) 852 { 853 unsigned int err; 854 struct ata_taskfile tf; 855 856 ata_tf_init(dev, &tf); 857 858 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 859 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 860 tf.protocol |= ATA_PROT_NODATA; 861 tf.device |= 0x40; 862 863 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 864 if (err) 865 return 0; 866 867 return ata_tf_to_lba48(&tf); 868 } 869 870 /** 871 * ata_read_native_max_address - LBA28 native max query 872 * @dev: Device to query 873 * 874 * Performa an LBA28 size query upon the device in question. Return the 875 * actual LBA28 size or zero if the command fails. 876 */ 877 878 static u64 ata_read_native_max_address(struct ata_device *dev) 879 { 880 unsigned int err; 881 struct ata_taskfile tf; 882 883 ata_tf_init(dev, &tf); 884 885 tf.command = ATA_CMD_READ_NATIVE_MAX; 886 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 887 tf.protocol |= ATA_PROT_NODATA; 888 tf.device |= 0x40; 889 890 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 891 if (err) 892 return 0; 893 894 return ata_tf_to_lba(&tf); 895 } 896 897 /** 898 * ata_set_native_max_address_ext - LBA48 native max set 899 * @dev: Device to query 900 * @new_sectors: new max sectors value to set for the device 901 * 902 * Perform an LBA48 size set max upon the device in question. Return the 903 * actual LBA48 size or zero if the command fails. 904 */ 905 906 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors) 907 { 908 unsigned int err; 909 struct ata_taskfile tf; 910 911 new_sectors--; 912 913 ata_tf_init(dev, &tf); 914 915 tf.command = ATA_CMD_SET_MAX_EXT; 916 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR; 917 tf.protocol |= ATA_PROT_NODATA; 918 tf.device |= 0x40; 919 920 tf.lbal = (new_sectors >> 0) & 0xff; 921 tf.lbam = (new_sectors >> 8) & 0xff; 922 tf.lbah = (new_sectors >> 16) & 0xff; 923 924 tf.hob_lbal = (new_sectors >> 24) & 0xff; 925 tf.hob_lbam = (new_sectors >> 32) & 0xff; 926 tf.hob_lbah = (new_sectors >> 40) & 0xff; 927 928 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 929 if (err) 930 return 0; 931 932 return ata_tf_to_lba48(&tf); 933 } 934 935 /** 936 * ata_set_native_max_address - LBA28 native max set 937 * @dev: Device to query 938 * @new_sectors: new max sectors value to set for the device 939 * 940 * Perform an LBA28 size set max upon the device in question. Return the 941 * actual LBA28 size or zero if the command fails. 942 */ 943 944 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors) 945 { 946 unsigned int err; 947 struct ata_taskfile tf; 948 949 new_sectors--; 950 951 ata_tf_init(dev, &tf); 952 953 tf.command = ATA_CMD_SET_MAX; 954 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 955 tf.protocol |= ATA_PROT_NODATA; 956 957 tf.lbal = (new_sectors >> 0) & 0xff; 958 tf.lbam = (new_sectors >> 8) & 0xff; 959 tf.lbah = (new_sectors >> 16) & 0xff; 960 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40; 961 962 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 963 if (err) 964 return 0; 965 966 return ata_tf_to_lba(&tf); 967 } 968 969 /** 970 * ata_hpa_resize - Resize a device with an HPA set 971 * @dev: Device to resize 972 * 973 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 974 * it if required to the full size of the media. The caller must check 975 * the drive has the HPA feature set enabled. 976 */ 977 978 static u64 ata_hpa_resize(struct ata_device *dev) 979 { 980 u64 sectors = dev->n_sectors; 981 u64 hpa_sectors; 982 983 if (ata_id_has_lba48(dev->id)) 984 hpa_sectors = ata_read_native_max_address_ext(dev); 985 else 986 hpa_sectors = ata_read_native_max_address(dev); 987 988 if (hpa_sectors > sectors) { 989 ata_dev_printk(dev, KERN_INFO, 990 "Host Protected Area detected:\n" 991 "\tcurrent size: %lld sectors\n" 992 "\tnative size: %lld sectors\n", 993 (long long)sectors, (long long)hpa_sectors); 994 995 if (ata_ignore_hpa) { 996 if (ata_id_has_lba48(dev->id)) 997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors); 998 else 999 hpa_sectors = ata_set_native_max_address(dev, 1000 hpa_sectors); 1001 1002 if (hpa_sectors) { 1003 ata_dev_printk(dev, KERN_INFO, "native size " 1004 "increased to %lld sectors\n", 1005 (long long)hpa_sectors); 1006 return hpa_sectors; 1007 } 1008 } 1009 } else if (hpa_sectors < sectors) 1010 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) " 1011 "is smaller than sectors (%lld)\n", __FUNCTION__, 1012 (long long)hpa_sectors, (long long)sectors); 1013 1014 return sectors; 1015 } 1016 1017 static u64 ata_id_n_sectors(const u16 *id) 1018 { 1019 if (ata_id_has_lba(id)) { 1020 if (ata_id_has_lba48(id)) 1021 return ata_id_u64(id, 100); 1022 else 1023 return ata_id_u32(id, 60); 1024 } else { 1025 if (ata_id_current_chs_valid(id)) 1026 return ata_id_u32(id, 57); 1027 else 1028 return id[1] * id[3] * id[6]; 1029 } 1030 } 1031 1032 /** 1033 * ata_id_to_dma_mode - Identify DMA mode from id block 1034 * @dev: device to identify 1035 * @unknown: mode to assume if we cannot tell 1036 * 1037 * Set up the timing values for the device based upon the identify 1038 * reported values for the DMA mode. This function is used by drivers 1039 * which rely upon firmware configured modes, but wish to report the 1040 * mode correctly when possible. 1041 * 1042 * In addition we emit similarly formatted messages to the default 1043 * ata_dev_set_mode handler, in order to provide consistency of 1044 * presentation. 1045 */ 1046 1047 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1048 { 1049 unsigned int mask; 1050 u8 mode; 1051 1052 /* Pack the DMA modes */ 1053 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1054 if (dev->id[53] & 0x04) 1055 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1056 1057 /* Select the mode in use */ 1058 mode = ata_xfer_mask2mode(mask); 1059 1060 if (mode != 0) { 1061 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1062 ata_mode_string(mask)); 1063 } else { 1064 /* SWDMA perhaps ? */ 1065 mode = unknown; 1066 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1067 } 1068 1069 /* Configure the device reporting */ 1070 dev->xfer_mode = mode; 1071 dev->xfer_shift = ata_xfer_mode2shift(mode); 1072 } 1073 1074 /** 1075 * ata_noop_dev_select - Select device 0/1 on ATA bus 1076 * @ap: ATA channel to manipulate 1077 * @device: ATA device (numbered from zero) to select 1078 * 1079 * This function performs no actual function. 1080 * 1081 * May be used as the dev_select() entry in ata_port_operations. 1082 * 1083 * LOCKING: 1084 * caller. 1085 */ 1086 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1087 { 1088 } 1089 1090 1091 /** 1092 * ata_std_dev_select - Select device 0/1 on ATA bus 1093 * @ap: ATA channel to manipulate 1094 * @device: ATA device (numbered from zero) to select 1095 * 1096 * Use the method defined in the ATA specification to 1097 * make either device 0, or device 1, active on the 1098 * ATA channel. Works with both PIO and MMIO. 1099 * 1100 * May be used as the dev_select() entry in ata_port_operations. 1101 * 1102 * LOCKING: 1103 * caller. 1104 */ 1105 1106 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1107 { 1108 u8 tmp; 1109 1110 if (device == 0) 1111 tmp = ATA_DEVICE_OBS; 1112 else 1113 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1114 1115 iowrite8(tmp, ap->ioaddr.device_addr); 1116 ata_pause(ap); /* needed; also flushes, for mmio */ 1117 } 1118 1119 /** 1120 * ata_dev_select - Select device 0/1 on ATA bus 1121 * @ap: ATA channel to manipulate 1122 * @device: ATA device (numbered from zero) to select 1123 * @wait: non-zero to wait for Status register BSY bit to clear 1124 * @can_sleep: non-zero if context allows sleeping 1125 * 1126 * Use the method defined in the ATA specification to 1127 * make either device 0, or device 1, active on the 1128 * ATA channel. 1129 * 1130 * This is a high-level version of ata_std_dev_select(), 1131 * which additionally provides the services of inserting 1132 * the proper pauses and status polling, where needed. 1133 * 1134 * LOCKING: 1135 * caller. 1136 */ 1137 1138 void ata_dev_select(struct ata_port *ap, unsigned int device, 1139 unsigned int wait, unsigned int can_sleep) 1140 { 1141 if (ata_msg_probe(ap)) 1142 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1143 "device %u, wait %u\n", device, wait); 1144 1145 if (wait) 1146 ata_wait_idle(ap); 1147 1148 ap->ops->dev_select(ap, device); 1149 1150 if (wait) { 1151 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) 1152 msleep(150); 1153 ata_wait_idle(ap); 1154 } 1155 } 1156 1157 /** 1158 * ata_dump_id - IDENTIFY DEVICE info debugging output 1159 * @id: IDENTIFY DEVICE page to dump 1160 * 1161 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1162 * page. 1163 * 1164 * LOCKING: 1165 * caller. 1166 */ 1167 1168 static inline void ata_dump_id(const u16 *id) 1169 { 1170 DPRINTK("49==0x%04x " 1171 "53==0x%04x " 1172 "63==0x%04x " 1173 "64==0x%04x " 1174 "75==0x%04x \n", 1175 id[49], 1176 id[53], 1177 id[63], 1178 id[64], 1179 id[75]); 1180 DPRINTK("80==0x%04x " 1181 "81==0x%04x " 1182 "82==0x%04x " 1183 "83==0x%04x " 1184 "84==0x%04x \n", 1185 id[80], 1186 id[81], 1187 id[82], 1188 id[83], 1189 id[84]); 1190 DPRINTK("88==0x%04x " 1191 "93==0x%04x\n", 1192 id[88], 1193 id[93]); 1194 } 1195 1196 /** 1197 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1198 * @id: IDENTIFY data to compute xfer mask from 1199 * 1200 * Compute the xfermask for this device. This is not as trivial 1201 * as it seems if we must consider early devices correctly. 1202 * 1203 * FIXME: pre IDE drive timing (do we care ?). 1204 * 1205 * LOCKING: 1206 * None. 1207 * 1208 * RETURNS: 1209 * Computed xfermask 1210 */ 1211 static unsigned int ata_id_xfermask(const u16 *id) 1212 { 1213 unsigned int pio_mask, mwdma_mask, udma_mask; 1214 1215 /* Usual case. Word 53 indicates word 64 is valid */ 1216 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1217 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1218 pio_mask <<= 3; 1219 pio_mask |= 0x7; 1220 } else { 1221 /* If word 64 isn't valid then Word 51 high byte holds 1222 * the PIO timing number for the maximum. Turn it into 1223 * a mask. 1224 */ 1225 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1226 if (mode < 5) /* Valid PIO range */ 1227 pio_mask = (2 << mode) - 1; 1228 else 1229 pio_mask = 1; 1230 1231 /* But wait.. there's more. Design your standards by 1232 * committee and you too can get a free iordy field to 1233 * process. However its the speeds not the modes that 1234 * are supported... Note drivers using the timing API 1235 * will get this right anyway 1236 */ 1237 } 1238 1239 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1240 1241 if (ata_id_is_cfa(id)) { 1242 /* 1243 * Process compact flash extended modes 1244 */ 1245 int pio = id[163] & 0x7; 1246 int dma = (id[163] >> 3) & 7; 1247 1248 if (pio) 1249 pio_mask |= (1 << 5); 1250 if (pio > 1) 1251 pio_mask |= (1 << 6); 1252 if (dma) 1253 mwdma_mask |= (1 << 3); 1254 if (dma > 1) 1255 mwdma_mask |= (1 << 4); 1256 } 1257 1258 udma_mask = 0; 1259 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1260 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1261 1262 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1263 } 1264 1265 /** 1266 * ata_port_queue_task - Queue port_task 1267 * @ap: The ata_port to queue port_task for 1268 * @fn: workqueue function to be scheduled 1269 * @data: data for @fn to use 1270 * @delay: delay time for workqueue function 1271 * 1272 * Schedule @fn(@data) for execution after @delay jiffies using 1273 * port_task. There is one port_task per port and it's the 1274 * user(low level driver)'s responsibility to make sure that only 1275 * one task is active at any given time. 1276 * 1277 * libata core layer takes care of synchronization between 1278 * port_task and EH. ata_port_queue_task() may be ignored for EH 1279 * synchronization. 1280 * 1281 * LOCKING: 1282 * Inherited from caller. 1283 */ 1284 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1285 unsigned long delay) 1286 { 1287 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1288 ap->port_task_data = data; 1289 1290 /* may fail if ata_port_flush_task() in progress */ 1291 queue_delayed_work(ata_wq, &ap->port_task, delay); 1292 } 1293 1294 /** 1295 * ata_port_flush_task - Flush port_task 1296 * @ap: The ata_port to flush port_task for 1297 * 1298 * After this function completes, port_task is guranteed not to 1299 * be running or scheduled. 1300 * 1301 * LOCKING: 1302 * Kernel thread context (may sleep) 1303 */ 1304 void ata_port_flush_task(struct ata_port *ap) 1305 { 1306 DPRINTK("ENTER\n"); 1307 1308 cancel_rearming_delayed_work(&ap->port_task); 1309 1310 if (ata_msg_ctl(ap)) 1311 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1312 } 1313 1314 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1315 { 1316 struct completion *waiting = qc->private_data; 1317 1318 complete(waiting); 1319 } 1320 1321 /** 1322 * ata_exec_internal_sg - execute libata internal command 1323 * @dev: Device to which the command is sent 1324 * @tf: Taskfile registers for the command and the result 1325 * @cdb: CDB for packet command 1326 * @dma_dir: Data tranfer direction of the command 1327 * @sg: sg list for the data buffer of the command 1328 * @n_elem: Number of sg entries 1329 * 1330 * Executes libata internal command with timeout. @tf contains 1331 * command on entry and result on return. Timeout and error 1332 * conditions are reported via return value. No recovery action 1333 * is taken after a command times out. It's caller's duty to 1334 * clean up after timeout. 1335 * 1336 * LOCKING: 1337 * None. Should be called with kernel context, might sleep. 1338 * 1339 * RETURNS: 1340 * Zero on success, AC_ERR_* mask on failure 1341 */ 1342 unsigned ata_exec_internal_sg(struct ata_device *dev, 1343 struct ata_taskfile *tf, const u8 *cdb, 1344 int dma_dir, struct scatterlist *sg, 1345 unsigned int n_elem) 1346 { 1347 struct ata_port *ap = dev->ap; 1348 u8 command = tf->command; 1349 struct ata_queued_cmd *qc; 1350 unsigned int tag, preempted_tag; 1351 u32 preempted_sactive, preempted_qc_active; 1352 DECLARE_COMPLETION_ONSTACK(wait); 1353 unsigned long flags; 1354 unsigned int err_mask; 1355 int rc; 1356 1357 spin_lock_irqsave(ap->lock, flags); 1358 1359 /* no internal command while frozen */ 1360 if (ap->pflags & ATA_PFLAG_FROZEN) { 1361 spin_unlock_irqrestore(ap->lock, flags); 1362 return AC_ERR_SYSTEM; 1363 } 1364 1365 /* initialize internal qc */ 1366 1367 /* XXX: Tag 0 is used for drivers with legacy EH as some 1368 * drivers choke if any other tag is given. This breaks 1369 * ata_tag_internal() test for those drivers. Don't use new 1370 * EH stuff without converting to it. 1371 */ 1372 if (ap->ops->error_handler) 1373 tag = ATA_TAG_INTERNAL; 1374 else 1375 tag = 0; 1376 1377 if (test_and_set_bit(tag, &ap->qc_allocated)) 1378 BUG(); 1379 qc = __ata_qc_from_tag(ap, tag); 1380 1381 qc->tag = tag; 1382 qc->scsicmd = NULL; 1383 qc->ap = ap; 1384 qc->dev = dev; 1385 ata_qc_reinit(qc); 1386 1387 preempted_tag = ap->active_tag; 1388 preempted_sactive = ap->sactive; 1389 preempted_qc_active = ap->qc_active; 1390 ap->active_tag = ATA_TAG_POISON; 1391 ap->sactive = 0; 1392 ap->qc_active = 0; 1393 1394 /* prepare & issue qc */ 1395 qc->tf = *tf; 1396 if (cdb) 1397 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1398 qc->flags |= ATA_QCFLAG_RESULT_TF; 1399 qc->dma_dir = dma_dir; 1400 if (dma_dir != DMA_NONE) { 1401 unsigned int i, buflen = 0; 1402 1403 for (i = 0; i < n_elem; i++) 1404 buflen += sg[i].length; 1405 1406 ata_sg_init(qc, sg, n_elem); 1407 qc->nbytes = buflen; 1408 } 1409 1410 qc->private_data = &wait; 1411 qc->complete_fn = ata_qc_complete_internal; 1412 1413 ata_qc_issue(qc); 1414 1415 spin_unlock_irqrestore(ap->lock, flags); 1416 1417 rc = wait_for_completion_timeout(&wait, ata_probe_timeout); 1418 1419 ata_port_flush_task(ap); 1420 1421 if (!rc) { 1422 spin_lock_irqsave(ap->lock, flags); 1423 1424 /* We're racing with irq here. If we lose, the 1425 * following test prevents us from completing the qc 1426 * twice. If we win, the port is frozen and will be 1427 * cleaned up by ->post_internal_cmd(). 1428 */ 1429 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1430 qc->err_mask |= AC_ERR_TIMEOUT; 1431 1432 if (ap->ops->error_handler) 1433 ata_port_freeze(ap); 1434 else 1435 ata_qc_complete(qc); 1436 1437 if (ata_msg_warn(ap)) 1438 ata_dev_printk(dev, KERN_WARNING, 1439 "qc timeout (cmd 0x%x)\n", command); 1440 } 1441 1442 spin_unlock_irqrestore(ap->lock, flags); 1443 } 1444 1445 /* do post_internal_cmd */ 1446 if (ap->ops->post_internal_cmd) 1447 ap->ops->post_internal_cmd(qc); 1448 1449 /* perform minimal error analysis */ 1450 if (qc->flags & ATA_QCFLAG_FAILED) { 1451 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1452 qc->err_mask |= AC_ERR_DEV; 1453 1454 if (!qc->err_mask) 1455 qc->err_mask |= AC_ERR_OTHER; 1456 1457 if (qc->err_mask & ~AC_ERR_OTHER) 1458 qc->err_mask &= ~AC_ERR_OTHER; 1459 } 1460 1461 /* finish up */ 1462 spin_lock_irqsave(ap->lock, flags); 1463 1464 *tf = qc->result_tf; 1465 err_mask = qc->err_mask; 1466 1467 ata_qc_free(qc); 1468 ap->active_tag = preempted_tag; 1469 ap->sactive = preempted_sactive; 1470 ap->qc_active = preempted_qc_active; 1471 1472 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1473 * Until those drivers are fixed, we detect the condition 1474 * here, fail the command with AC_ERR_SYSTEM and reenable the 1475 * port. 1476 * 1477 * Note that this doesn't change any behavior as internal 1478 * command failure results in disabling the device in the 1479 * higher layer for LLDDs without new reset/EH callbacks. 1480 * 1481 * Kill the following code as soon as those drivers are fixed. 1482 */ 1483 if (ap->flags & ATA_FLAG_DISABLED) { 1484 err_mask |= AC_ERR_SYSTEM; 1485 ata_port_probe(ap); 1486 } 1487 1488 spin_unlock_irqrestore(ap->lock, flags); 1489 1490 return err_mask; 1491 } 1492 1493 /** 1494 * ata_exec_internal - execute libata internal command 1495 * @dev: Device to which the command is sent 1496 * @tf: Taskfile registers for the command and the result 1497 * @cdb: CDB for packet command 1498 * @dma_dir: Data tranfer direction of the command 1499 * @buf: Data buffer of the command 1500 * @buflen: Length of data buffer 1501 * 1502 * Wrapper around ata_exec_internal_sg() which takes simple 1503 * buffer instead of sg list. 1504 * 1505 * LOCKING: 1506 * None. Should be called with kernel context, might sleep. 1507 * 1508 * RETURNS: 1509 * Zero on success, AC_ERR_* mask on failure 1510 */ 1511 unsigned ata_exec_internal(struct ata_device *dev, 1512 struct ata_taskfile *tf, const u8 *cdb, 1513 int dma_dir, void *buf, unsigned int buflen) 1514 { 1515 struct scatterlist *psg = NULL, sg; 1516 unsigned int n_elem = 0; 1517 1518 if (dma_dir != DMA_NONE) { 1519 WARN_ON(!buf); 1520 sg_init_one(&sg, buf, buflen); 1521 psg = &sg; 1522 n_elem++; 1523 } 1524 1525 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem); 1526 } 1527 1528 /** 1529 * ata_do_simple_cmd - execute simple internal command 1530 * @dev: Device to which the command is sent 1531 * @cmd: Opcode to execute 1532 * 1533 * Execute a 'simple' command, that only consists of the opcode 1534 * 'cmd' itself, without filling any other registers 1535 * 1536 * LOCKING: 1537 * Kernel thread context (may sleep). 1538 * 1539 * RETURNS: 1540 * Zero on success, AC_ERR_* mask on failure 1541 */ 1542 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1543 { 1544 struct ata_taskfile tf; 1545 1546 ata_tf_init(dev, &tf); 1547 1548 tf.command = cmd; 1549 tf.flags |= ATA_TFLAG_DEVICE; 1550 tf.protocol = ATA_PROT_NODATA; 1551 1552 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1553 } 1554 1555 /** 1556 * ata_pio_need_iordy - check if iordy needed 1557 * @adev: ATA device 1558 * 1559 * Check if the current speed of the device requires IORDY. Used 1560 * by various controllers for chip configuration. 1561 */ 1562 1563 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1564 { 1565 /* Controller doesn't support IORDY. Probably a pointless check 1566 as the caller should know this */ 1567 if (adev->ap->flags & ATA_FLAG_NO_IORDY) 1568 return 0; 1569 /* PIO3 and higher it is mandatory */ 1570 if (adev->pio_mode > XFER_PIO_2) 1571 return 1; 1572 /* We turn it on when possible */ 1573 if (ata_id_has_iordy(adev->id)) 1574 return 1; 1575 return 0; 1576 } 1577 1578 /** 1579 * ata_pio_mask_no_iordy - Return the non IORDY mask 1580 * @adev: ATA device 1581 * 1582 * Compute the highest mode possible if we are not using iordy. Return 1583 * -1 if no iordy mode is available. 1584 */ 1585 1586 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1587 { 1588 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1589 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1590 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1591 /* Is the speed faster than the drive allows non IORDY ? */ 1592 if (pio) { 1593 /* This is cycle times not frequency - watch the logic! */ 1594 if (pio > 240) /* PIO2 is 240nS per cycle */ 1595 return 3 << ATA_SHIFT_PIO; 1596 return 7 << ATA_SHIFT_PIO; 1597 } 1598 } 1599 return 3 << ATA_SHIFT_PIO; 1600 } 1601 1602 /** 1603 * ata_dev_read_id - Read ID data from the specified device 1604 * @dev: target device 1605 * @p_class: pointer to class of the target device (may be changed) 1606 * @flags: ATA_READID_* flags 1607 * @id: buffer to read IDENTIFY data into 1608 * 1609 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1610 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1611 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1612 * for pre-ATA4 drives. 1613 * 1614 * LOCKING: 1615 * Kernel thread context (may sleep) 1616 * 1617 * RETURNS: 1618 * 0 on success, -errno otherwise. 1619 */ 1620 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1621 unsigned int flags, u16 *id) 1622 { 1623 struct ata_port *ap = dev->ap; 1624 unsigned int class = *p_class; 1625 struct ata_taskfile tf; 1626 unsigned int err_mask = 0; 1627 const char *reason; 1628 int may_fallback = 1, tried_spinup = 0; 1629 int rc; 1630 1631 if (ata_msg_ctl(ap)) 1632 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1633 1634 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1635 retry: 1636 ata_tf_init(dev, &tf); 1637 1638 switch (class) { 1639 case ATA_DEV_ATA: 1640 tf.command = ATA_CMD_ID_ATA; 1641 break; 1642 case ATA_DEV_ATAPI: 1643 tf.command = ATA_CMD_ID_ATAPI; 1644 break; 1645 default: 1646 rc = -ENODEV; 1647 reason = "unsupported class"; 1648 goto err_out; 1649 } 1650 1651 tf.protocol = ATA_PROT_PIO; 1652 1653 /* Some devices choke if TF registers contain garbage. Make 1654 * sure those are properly initialized. 1655 */ 1656 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1657 1658 /* Device presence detection is unreliable on some 1659 * controllers. Always poll IDENTIFY if available. 1660 */ 1661 tf.flags |= ATA_TFLAG_POLLING; 1662 1663 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1664 id, sizeof(id[0]) * ATA_ID_WORDS); 1665 if (err_mask) { 1666 if (err_mask & AC_ERR_NODEV_HINT) { 1667 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1668 ap->print_id, dev->devno); 1669 return -ENOENT; 1670 } 1671 1672 /* Device or controller might have reported the wrong 1673 * device class. Give a shot at the other IDENTIFY if 1674 * the current one is aborted by the device. 1675 */ 1676 if (may_fallback && 1677 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1678 may_fallback = 0; 1679 1680 if (class == ATA_DEV_ATA) 1681 class = ATA_DEV_ATAPI; 1682 else 1683 class = ATA_DEV_ATA; 1684 goto retry; 1685 } 1686 1687 rc = -EIO; 1688 reason = "I/O error"; 1689 goto err_out; 1690 } 1691 1692 /* Falling back doesn't make sense if ID data was read 1693 * successfully at least once. 1694 */ 1695 may_fallback = 0; 1696 1697 swap_buf_le16(id, ATA_ID_WORDS); 1698 1699 /* sanity check */ 1700 rc = -EINVAL; 1701 reason = "device reports invalid type"; 1702 1703 if (class == ATA_DEV_ATA) { 1704 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1705 goto err_out; 1706 } else { 1707 if (ata_id_is_ata(id)) 1708 goto err_out; 1709 } 1710 1711 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1712 tried_spinup = 1; 1713 /* 1714 * Drive powered-up in standby mode, and requires a specific 1715 * SET_FEATURES spin-up subcommand before it will accept 1716 * anything other than the original IDENTIFY command. 1717 */ 1718 ata_tf_init(dev, &tf); 1719 tf.command = ATA_CMD_SET_FEATURES; 1720 tf.feature = SETFEATURES_SPINUP; 1721 tf.protocol = ATA_PROT_NODATA; 1722 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1723 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 1724 if (err_mask) { 1725 rc = -EIO; 1726 reason = "SPINUP failed"; 1727 goto err_out; 1728 } 1729 /* 1730 * If the drive initially returned incomplete IDENTIFY info, 1731 * we now must reissue the IDENTIFY command. 1732 */ 1733 if (id[2] == 0x37c8) 1734 goto retry; 1735 } 1736 1737 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1738 /* 1739 * The exact sequence expected by certain pre-ATA4 drives is: 1740 * SRST RESET 1741 * IDENTIFY 1742 * INITIALIZE DEVICE PARAMETERS 1743 * anything else.. 1744 * Some drives were very specific about that exact sequence. 1745 */ 1746 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1747 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1748 if (err_mask) { 1749 rc = -EIO; 1750 reason = "INIT_DEV_PARAMS failed"; 1751 goto err_out; 1752 } 1753 1754 /* current CHS translation info (id[53-58]) might be 1755 * changed. reread the identify device info. 1756 */ 1757 flags &= ~ATA_READID_POSTRESET; 1758 goto retry; 1759 } 1760 } 1761 1762 *p_class = class; 1763 1764 return 0; 1765 1766 err_out: 1767 if (ata_msg_warn(ap)) 1768 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1769 "(%s, err_mask=0x%x)\n", reason, err_mask); 1770 return rc; 1771 } 1772 1773 static inline u8 ata_dev_knobble(struct ata_device *dev) 1774 { 1775 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1776 } 1777 1778 static void ata_dev_config_ncq(struct ata_device *dev, 1779 char *desc, size_t desc_sz) 1780 { 1781 struct ata_port *ap = dev->ap; 1782 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1783 1784 if (!ata_id_has_ncq(dev->id)) { 1785 desc[0] = '\0'; 1786 return; 1787 } 1788 if (dev->horkage & ATA_HORKAGE_NONCQ) { 1789 snprintf(desc, desc_sz, "NCQ (not used)"); 1790 return; 1791 } 1792 if (ap->flags & ATA_FLAG_NCQ) { 1793 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1794 dev->flags |= ATA_DFLAG_NCQ; 1795 } 1796 1797 if (hdepth >= ddepth) 1798 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1799 else 1800 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1801 } 1802 1803 /** 1804 * ata_dev_configure - Configure the specified ATA/ATAPI device 1805 * @dev: Target device to configure 1806 * 1807 * Configure @dev according to @dev->id. Generic and low-level 1808 * driver specific fixups are also applied. 1809 * 1810 * LOCKING: 1811 * Kernel thread context (may sleep) 1812 * 1813 * RETURNS: 1814 * 0 on success, -errno otherwise 1815 */ 1816 int ata_dev_configure(struct ata_device *dev) 1817 { 1818 struct ata_port *ap = dev->ap; 1819 struct ata_eh_context *ehc = &ap->eh_context; 1820 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1821 const u16 *id = dev->id; 1822 unsigned int xfer_mask; 1823 char revbuf[7]; /* XYZ-99\0 */ 1824 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1825 char modelbuf[ATA_ID_PROD_LEN+1]; 1826 int rc; 1827 1828 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1829 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1830 __FUNCTION__); 1831 return 0; 1832 } 1833 1834 if (ata_msg_probe(ap)) 1835 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1836 1837 /* set horkage */ 1838 dev->horkage |= ata_dev_blacklisted(dev); 1839 1840 /* let ACPI work its magic */ 1841 rc = ata_acpi_on_devcfg(dev); 1842 if (rc) 1843 return rc; 1844 1845 /* print device capabilities */ 1846 if (ata_msg_probe(ap)) 1847 ata_dev_printk(dev, KERN_DEBUG, 1848 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1849 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1850 __FUNCTION__, 1851 id[49], id[82], id[83], id[84], 1852 id[85], id[86], id[87], id[88]); 1853 1854 /* initialize to-be-configured parameters */ 1855 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1856 dev->max_sectors = 0; 1857 dev->cdb_len = 0; 1858 dev->n_sectors = 0; 1859 dev->cylinders = 0; 1860 dev->heads = 0; 1861 dev->sectors = 0; 1862 1863 /* 1864 * common ATA, ATAPI feature tests 1865 */ 1866 1867 /* find max transfer mode; for printk only */ 1868 xfer_mask = ata_id_xfermask(id); 1869 1870 if (ata_msg_probe(ap)) 1871 ata_dump_id(id); 1872 1873 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1874 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1875 sizeof(fwrevbuf)); 1876 1877 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1878 sizeof(modelbuf)); 1879 1880 /* ATA-specific feature tests */ 1881 if (dev->class == ATA_DEV_ATA) { 1882 if (ata_id_is_cfa(id)) { 1883 if (id[162] & 1) /* CPRM may make this media unusable */ 1884 ata_dev_printk(dev, KERN_WARNING, 1885 "supports DRM functions and may " 1886 "not be fully accessable.\n"); 1887 snprintf(revbuf, 7, "CFA"); 1888 } 1889 else 1890 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1891 1892 dev->n_sectors = ata_id_n_sectors(id); 1893 1894 if (dev->id[59] & 0x100) 1895 dev->multi_count = dev->id[59] & 0xff; 1896 1897 if (ata_id_has_lba(id)) { 1898 const char *lba_desc; 1899 char ncq_desc[20]; 1900 1901 lba_desc = "LBA"; 1902 dev->flags |= ATA_DFLAG_LBA; 1903 if (ata_id_has_lba48(id)) { 1904 dev->flags |= ATA_DFLAG_LBA48; 1905 lba_desc = "LBA48"; 1906 1907 if (dev->n_sectors >= (1UL << 28) && 1908 ata_id_has_flush_ext(id)) 1909 dev->flags |= ATA_DFLAG_FLUSH_EXT; 1910 } 1911 1912 if (ata_id_hpa_enabled(dev->id)) 1913 dev->n_sectors = ata_hpa_resize(dev); 1914 1915 /* config NCQ */ 1916 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 1917 1918 /* print device info to dmesg */ 1919 if (ata_msg_drv(ap) && print_info) { 1920 ata_dev_printk(dev, KERN_INFO, 1921 "%s: %s, %s, max %s\n", 1922 revbuf, modelbuf, fwrevbuf, 1923 ata_mode_string(xfer_mask)); 1924 ata_dev_printk(dev, KERN_INFO, 1925 "%Lu sectors, multi %u: %s %s\n", 1926 (unsigned long long)dev->n_sectors, 1927 dev->multi_count, lba_desc, ncq_desc); 1928 } 1929 } else { 1930 /* CHS */ 1931 1932 /* Default translation */ 1933 dev->cylinders = id[1]; 1934 dev->heads = id[3]; 1935 dev->sectors = id[6]; 1936 1937 if (ata_id_current_chs_valid(id)) { 1938 /* Current CHS translation is valid. */ 1939 dev->cylinders = id[54]; 1940 dev->heads = id[55]; 1941 dev->sectors = id[56]; 1942 } 1943 1944 /* print device info to dmesg */ 1945 if (ata_msg_drv(ap) && print_info) { 1946 ata_dev_printk(dev, KERN_INFO, 1947 "%s: %s, %s, max %s\n", 1948 revbuf, modelbuf, fwrevbuf, 1949 ata_mode_string(xfer_mask)); 1950 ata_dev_printk(dev, KERN_INFO, 1951 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 1952 (unsigned long long)dev->n_sectors, 1953 dev->multi_count, dev->cylinders, 1954 dev->heads, dev->sectors); 1955 } 1956 } 1957 1958 dev->cdb_len = 16; 1959 } 1960 1961 /* ATAPI-specific feature tests */ 1962 else if (dev->class == ATA_DEV_ATAPI) { 1963 char *cdb_intr_string = ""; 1964 1965 rc = atapi_cdb_len(id); 1966 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 1967 if (ata_msg_warn(ap)) 1968 ata_dev_printk(dev, KERN_WARNING, 1969 "unsupported CDB len\n"); 1970 rc = -EINVAL; 1971 goto err_out_nosup; 1972 } 1973 dev->cdb_len = (unsigned int) rc; 1974 1975 if (ata_id_cdb_intr(dev->id)) { 1976 dev->flags |= ATA_DFLAG_CDB_INTR; 1977 cdb_intr_string = ", CDB intr"; 1978 } 1979 1980 /* print device info to dmesg */ 1981 if (ata_msg_drv(ap) && print_info) 1982 ata_dev_printk(dev, KERN_INFO, 1983 "ATAPI: %s, %s, max %s%s\n", 1984 modelbuf, fwrevbuf, 1985 ata_mode_string(xfer_mask), 1986 cdb_intr_string); 1987 } 1988 1989 /* determine max_sectors */ 1990 dev->max_sectors = ATA_MAX_SECTORS; 1991 if (dev->flags & ATA_DFLAG_LBA48) 1992 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 1993 1994 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 1995 /* Let the user know. We don't want to disallow opens for 1996 rescue purposes, or in case the vendor is just a blithering 1997 idiot */ 1998 if (print_info) { 1999 ata_dev_printk(dev, KERN_WARNING, 2000 "Drive reports diagnostics failure. This may indicate a drive\n"); 2001 ata_dev_printk(dev, KERN_WARNING, 2002 "fault or invalid emulation. Contact drive vendor for information.\n"); 2003 } 2004 } 2005 2006 /* limit bridge transfers to udma5, 200 sectors */ 2007 if (ata_dev_knobble(dev)) { 2008 if (ata_msg_drv(ap) && print_info) 2009 ata_dev_printk(dev, KERN_INFO, 2010 "applying bridge limits\n"); 2011 dev->udma_mask &= ATA_UDMA5; 2012 dev->max_sectors = ATA_MAX_SECTORS; 2013 } 2014 2015 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2016 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2017 dev->max_sectors); 2018 2019 if (ap->ops->dev_config) 2020 ap->ops->dev_config(dev); 2021 2022 if (ata_msg_probe(ap)) 2023 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2024 __FUNCTION__, ata_chk_status(ap)); 2025 return 0; 2026 2027 err_out_nosup: 2028 if (ata_msg_probe(ap)) 2029 ata_dev_printk(dev, KERN_DEBUG, 2030 "%s: EXIT, err\n", __FUNCTION__); 2031 return rc; 2032 } 2033 2034 /** 2035 * ata_cable_40wire - return 40 wire cable type 2036 * @ap: port 2037 * 2038 * Helper method for drivers which want to hardwire 40 wire cable 2039 * detection. 2040 */ 2041 2042 int ata_cable_40wire(struct ata_port *ap) 2043 { 2044 return ATA_CBL_PATA40; 2045 } 2046 2047 /** 2048 * ata_cable_80wire - return 80 wire cable type 2049 * @ap: port 2050 * 2051 * Helper method for drivers which want to hardwire 80 wire cable 2052 * detection. 2053 */ 2054 2055 int ata_cable_80wire(struct ata_port *ap) 2056 { 2057 return ATA_CBL_PATA80; 2058 } 2059 2060 /** 2061 * ata_cable_unknown - return unknown PATA cable. 2062 * @ap: port 2063 * 2064 * Helper method for drivers which have no PATA cable detection. 2065 */ 2066 2067 int ata_cable_unknown(struct ata_port *ap) 2068 { 2069 return ATA_CBL_PATA_UNK; 2070 } 2071 2072 /** 2073 * ata_cable_sata - return SATA cable type 2074 * @ap: port 2075 * 2076 * Helper method for drivers which have SATA cables 2077 */ 2078 2079 int ata_cable_sata(struct ata_port *ap) 2080 { 2081 return ATA_CBL_SATA; 2082 } 2083 2084 /** 2085 * ata_bus_probe - Reset and probe ATA bus 2086 * @ap: Bus to probe 2087 * 2088 * Master ATA bus probing function. Initiates a hardware-dependent 2089 * bus reset, then attempts to identify any devices found on 2090 * the bus. 2091 * 2092 * LOCKING: 2093 * PCI/etc. bus probe sem. 2094 * 2095 * RETURNS: 2096 * Zero on success, negative errno otherwise. 2097 */ 2098 2099 int ata_bus_probe(struct ata_port *ap) 2100 { 2101 unsigned int classes[ATA_MAX_DEVICES]; 2102 int tries[ATA_MAX_DEVICES]; 2103 int i, rc; 2104 struct ata_device *dev; 2105 2106 ata_port_probe(ap); 2107 2108 for (i = 0; i < ATA_MAX_DEVICES; i++) 2109 tries[i] = ATA_PROBE_MAX_TRIES; 2110 2111 retry: 2112 /* reset and determine device classes */ 2113 ap->ops->phy_reset(ap); 2114 2115 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2116 dev = &ap->device[i]; 2117 2118 if (!(ap->flags & ATA_FLAG_DISABLED) && 2119 dev->class != ATA_DEV_UNKNOWN) 2120 classes[dev->devno] = dev->class; 2121 else 2122 classes[dev->devno] = ATA_DEV_NONE; 2123 2124 dev->class = ATA_DEV_UNKNOWN; 2125 } 2126 2127 ata_port_probe(ap); 2128 2129 /* after the reset the device state is PIO 0 and the controller 2130 state is undefined. Record the mode */ 2131 2132 for (i = 0; i < ATA_MAX_DEVICES; i++) 2133 ap->device[i].pio_mode = XFER_PIO_0; 2134 2135 /* read IDENTIFY page and configure devices. We have to do the identify 2136 specific sequence bass-ackwards so that PDIAG- is released by 2137 the slave device */ 2138 2139 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) { 2140 dev = &ap->device[i]; 2141 2142 if (tries[i]) 2143 dev->class = classes[i]; 2144 2145 if (!ata_dev_enabled(dev)) 2146 continue; 2147 2148 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2149 dev->id); 2150 if (rc) 2151 goto fail; 2152 } 2153 2154 /* Now ask for the cable type as PDIAG- should have been released */ 2155 if (ap->ops->cable_detect) 2156 ap->cbl = ap->ops->cable_detect(ap); 2157 2158 /* After the identify sequence we can now set up the devices. We do 2159 this in the normal order so that the user doesn't get confused */ 2160 2161 for(i = 0; i < ATA_MAX_DEVICES; i++) { 2162 dev = &ap->device[i]; 2163 if (!ata_dev_enabled(dev)) 2164 continue; 2165 2166 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; 2167 rc = ata_dev_configure(dev); 2168 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2169 if (rc) 2170 goto fail; 2171 } 2172 2173 /* configure transfer mode */ 2174 rc = ata_set_mode(ap, &dev); 2175 if (rc) 2176 goto fail; 2177 2178 for (i = 0; i < ATA_MAX_DEVICES; i++) 2179 if (ata_dev_enabled(&ap->device[i])) 2180 return 0; 2181 2182 /* no device present, disable port */ 2183 ata_port_disable(ap); 2184 ap->ops->port_disable(ap); 2185 return -ENODEV; 2186 2187 fail: 2188 tries[dev->devno]--; 2189 2190 switch (rc) { 2191 case -EINVAL: 2192 /* eeek, something went very wrong, give up */ 2193 tries[dev->devno] = 0; 2194 break; 2195 2196 case -ENODEV: 2197 /* give it just one more chance */ 2198 tries[dev->devno] = min(tries[dev->devno], 1); 2199 case -EIO: 2200 if (tries[dev->devno] == 1) { 2201 /* This is the last chance, better to slow 2202 * down than lose it. 2203 */ 2204 sata_down_spd_limit(ap); 2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2206 } 2207 } 2208 2209 if (!tries[dev->devno]) 2210 ata_dev_disable(dev); 2211 2212 goto retry; 2213 } 2214 2215 /** 2216 * ata_port_probe - Mark port as enabled 2217 * @ap: Port for which we indicate enablement 2218 * 2219 * Modify @ap data structure such that the system 2220 * thinks that the entire port is enabled. 2221 * 2222 * LOCKING: host lock, or some other form of 2223 * serialization. 2224 */ 2225 2226 void ata_port_probe(struct ata_port *ap) 2227 { 2228 ap->flags &= ~ATA_FLAG_DISABLED; 2229 } 2230 2231 /** 2232 * sata_print_link_status - Print SATA link status 2233 * @ap: SATA port to printk link status about 2234 * 2235 * This function prints link speed and status of a SATA link. 2236 * 2237 * LOCKING: 2238 * None. 2239 */ 2240 void sata_print_link_status(struct ata_port *ap) 2241 { 2242 u32 sstatus, scontrol, tmp; 2243 2244 if (sata_scr_read(ap, SCR_STATUS, &sstatus)) 2245 return; 2246 sata_scr_read(ap, SCR_CONTROL, &scontrol); 2247 2248 if (ata_port_online(ap)) { 2249 tmp = (sstatus >> 4) & 0xf; 2250 ata_port_printk(ap, KERN_INFO, 2251 "SATA link up %s (SStatus %X SControl %X)\n", 2252 sata_spd_string(tmp), sstatus, scontrol); 2253 } else { 2254 ata_port_printk(ap, KERN_INFO, 2255 "SATA link down (SStatus %X SControl %X)\n", 2256 sstatus, scontrol); 2257 } 2258 } 2259 2260 /** 2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2262 * @ap: SATA port associated with target SATA PHY. 2263 * 2264 * This function issues commands to standard SATA Sxxx 2265 * PHY registers, to wake up the phy (and device), and 2266 * clear any reset condition. 2267 * 2268 * LOCKING: 2269 * PCI/etc. bus probe sem. 2270 * 2271 */ 2272 void __sata_phy_reset(struct ata_port *ap) 2273 { 2274 u32 sstatus; 2275 unsigned long timeout = jiffies + (HZ * 5); 2276 2277 if (ap->flags & ATA_FLAG_SATA_RESET) { 2278 /* issue phy wake/reset */ 2279 sata_scr_write_flush(ap, SCR_CONTROL, 0x301); 2280 /* Couldn't find anything in SATA I/II specs, but 2281 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2282 mdelay(1); 2283 } 2284 /* phy wake/clear reset */ 2285 sata_scr_write_flush(ap, SCR_CONTROL, 0x300); 2286 2287 /* wait for phy to become ready, if necessary */ 2288 do { 2289 msleep(200); 2290 sata_scr_read(ap, SCR_STATUS, &sstatus); 2291 if ((sstatus & 0xf) != 1) 2292 break; 2293 } while (time_before(jiffies, timeout)); 2294 2295 /* print link status */ 2296 sata_print_link_status(ap); 2297 2298 /* TODO: phy layer with polling, timeouts, etc. */ 2299 if (!ata_port_offline(ap)) 2300 ata_port_probe(ap); 2301 else 2302 ata_port_disable(ap); 2303 2304 if (ap->flags & ATA_FLAG_DISABLED) 2305 return; 2306 2307 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2308 ata_port_disable(ap); 2309 return; 2310 } 2311 2312 ap->cbl = ATA_CBL_SATA; 2313 } 2314 2315 /** 2316 * sata_phy_reset - Reset SATA bus. 2317 * @ap: SATA port associated with target SATA PHY. 2318 * 2319 * This function resets the SATA bus, and then probes 2320 * the bus for devices. 2321 * 2322 * LOCKING: 2323 * PCI/etc. bus probe sem. 2324 * 2325 */ 2326 void sata_phy_reset(struct ata_port *ap) 2327 { 2328 __sata_phy_reset(ap); 2329 if (ap->flags & ATA_FLAG_DISABLED) 2330 return; 2331 ata_bus_reset(ap); 2332 } 2333 2334 /** 2335 * ata_dev_pair - return other device on cable 2336 * @adev: device 2337 * 2338 * Obtain the other device on the same cable, or if none is 2339 * present NULL is returned 2340 */ 2341 2342 struct ata_device *ata_dev_pair(struct ata_device *adev) 2343 { 2344 struct ata_port *ap = adev->ap; 2345 struct ata_device *pair = &ap->device[1 - adev->devno]; 2346 if (!ata_dev_enabled(pair)) 2347 return NULL; 2348 return pair; 2349 } 2350 2351 /** 2352 * ata_port_disable - Disable port. 2353 * @ap: Port to be disabled. 2354 * 2355 * Modify @ap data structure such that the system 2356 * thinks that the entire port is disabled, and should 2357 * never attempt to probe or communicate with devices 2358 * on this port. 2359 * 2360 * LOCKING: host lock, or some other form of 2361 * serialization. 2362 */ 2363 2364 void ata_port_disable(struct ata_port *ap) 2365 { 2366 ap->device[0].class = ATA_DEV_NONE; 2367 ap->device[1].class = ATA_DEV_NONE; 2368 ap->flags |= ATA_FLAG_DISABLED; 2369 } 2370 2371 /** 2372 * sata_down_spd_limit - adjust SATA spd limit downward 2373 * @ap: Port to adjust SATA spd limit for 2374 * 2375 * Adjust SATA spd limit of @ap downward. Note that this 2376 * function only adjusts the limit. The change must be applied 2377 * using sata_set_spd(). 2378 * 2379 * LOCKING: 2380 * Inherited from caller. 2381 * 2382 * RETURNS: 2383 * 0 on success, negative errno on failure 2384 */ 2385 int sata_down_spd_limit(struct ata_port *ap) 2386 { 2387 u32 sstatus, spd, mask; 2388 int rc, highbit; 2389 2390 rc = sata_scr_read(ap, SCR_STATUS, &sstatus); 2391 if (rc) 2392 return rc; 2393 2394 mask = ap->sata_spd_limit; 2395 if (mask <= 1) 2396 return -EINVAL; 2397 highbit = fls(mask) - 1; 2398 mask &= ~(1 << highbit); 2399 2400 spd = (sstatus >> 4) & 0xf; 2401 if (spd <= 1) 2402 return -EINVAL; 2403 spd--; 2404 mask &= (1 << spd) - 1; 2405 if (!mask) 2406 return -EINVAL; 2407 2408 ap->sata_spd_limit = mask; 2409 2410 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", 2411 sata_spd_string(fls(mask))); 2412 2413 return 0; 2414 } 2415 2416 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) 2417 { 2418 u32 spd, limit; 2419 2420 if (ap->sata_spd_limit == UINT_MAX) 2421 limit = 0; 2422 else 2423 limit = fls(ap->sata_spd_limit); 2424 2425 spd = (*scontrol >> 4) & 0xf; 2426 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2427 2428 return spd != limit; 2429 } 2430 2431 /** 2432 * sata_set_spd_needed - is SATA spd configuration needed 2433 * @ap: Port in question 2434 * 2435 * Test whether the spd limit in SControl matches 2436 * @ap->sata_spd_limit. This function is used to determine 2437 * whether hardreset is necessary to apply SATA spd 2438 * configuration. 2439 * 2440 * LOCKING: 2441 * Inherited from caller. 2442 * 2443 * RETURNS: 2444 * 1 if SATA spd configuration is needed, 0 otherwise. 2445 */ 2446 int sata_set_spd_needed(struct ata_port *ap) 2447 { 2448 u32 scontrol; 2449 2450 if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) 2451 return 0; 2452 2453 return __sata_set_spd_needed(ap, &scontrol); 2454 } 2455 2456 /** 2457 * sata_set_spd - set SATA spd according to spd limit 2458 * @ap: Port to set SATA spd for 2459 * 2460 * Set SATA spd of @ap according to sata_spd_limit. 2461 * 2462 * LOCKING: 2463 * Inherited from caller. 2464 * 2465 * RETURNS: 2466 * 0 if spd doesn't need to be changed, 1 if spd has been 2467 * changed. Negative errno if SCR registers are inaccessible. 2468 */ 2469 int sata_set_spd(struct ata_port *ap) 2470 { 2471 u32 scontrol; 2472 int rc; 2473 2474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 2475 return rc; 2476 2477 if (!__sata_set_spd_needed(ap, &scontrol)) 2478 return 0; 2479 2480 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 2481 return rc; 2482 2483 return 1; 2484 } 2485 2486 /* 2487 * This mode timing computation functionality is ported over from 2488 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2489 */ 2490 /* 2491 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2492 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2493 * for UDMA6, which is currently supported only by Maxtor drives. 2494 * 2495 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2496 */ 2497 2498 static const struct ata_timing ata_timing[] = { 2499 2500 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2501 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2502 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2503 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2504 2505 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2506 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2507 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2508 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2509 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2510 2511 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2512 2513 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2514 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2515 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2516 2517 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2518 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2519 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2520 2521 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2522 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2523 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2524 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2525 2526 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2527 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2528 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2529 2530 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2531 2532 { 0xFF } 2533 }; 2534 2535 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2536 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2537 2538 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2539 { 2540 q->setup = EZ(t->setup * 1000, T); 2541 q->act8b = EZ(t->act8b * 1000, T); 2542 q->rec8b = EZ(t->rec8b * 1000, T); 2543 q->cyc8b = EZ(t->cyc8b * 1000, T); 2544 q->active = EZ(t->active * 1000, T); 2545 q->recover = EZ(t->recover * 1000, T); 2546 q->cycle = EZ(t->cycle * 1000, T); 2547 q->udma = EZ(t->udma * 1000, UT); 2548 } 2549 2550 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2551 struct ata_timing *m, unsigned int what) 2552 { 2553 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2554 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2555 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2556 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2557 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2558 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2559 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2560 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2561 } 2562 2563 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2564 { 2565 const struct ata_timing *t; 2566 2567 for (t = ata_timing; t->mode != speed; t++) 2568 if (t->mode == 0xFF) 2569 return NULL; 2570 return t; 2571 } 2572 2573 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2574 struct ata_timing *t, int T, int UT) 2575 { 2576 const struct ata_timing *s; 2577 struct ata_timing p; 2578 2579 /* 2580 * Find the mode. 2581 */ 2582 2583 if (!(s = ata_timing_find_mode(speed))) 2584 return -EINVAL; 2585 2586 memcpy(t, s, sizeof(*s)); 2587 2588 /* 2589 * If the drive is an EIDE drive, it can tell us it needs extended 2590 * PIO/MW_DMA cycle timing. 2591 */ 2592 2593 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2594 memset(&p, 0, sizeof(p)); 2595 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2596 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2597 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2598 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2599 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2600 } 2601 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2602 } 2603 2604 /* 2605 * Convert the timing to bus clock counts. 2606 */ 2607 2608 ata_timing_quantize(t, t, T, UT); 2609 2610 /* 2611 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2612 * S.M.A.R.T * and some other commands. We have to ensure that the 2613 * DMA cycle timing is slower/equal than the fastest PIO timing. 2614 */ 2615 2616 if (speed > XFER_PIO_6) { 2617 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2618 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2619 } 2620 2621 /* 2622 * Lengthen active & recovery time so that cycle time is correct. 2623 */ 2624 2625 if (t->act8b + t->rec8b < t->cyc8b) { 2626 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2627 t->rec8b = t->cyc8b - t->act8b; 2628 } 2629 2630 if (t->active + t->recover < t->cycle) { 2631 t->active += (t->cycle - (t->active + t->recover)) / 2; 2632 t->recover = t->cycle - t->active; 2633 } 2634 2635 /* In a few cases quantisation may produce enough errors to 2636 leave t->cycle too low for the sum of active and recovery 2637 if so we must correct this */ 2638 if (t->active + t->recover > t->cycle) 2639 t->cycle = t->active + t->recover; 2640 2641 return 0; 2642 } 2643 2644 /** 2645 * ata_down_xfermask_limit - adjust dev xfer masks downward 2646 * @dev: Device to adjust xfer masks 2647 * @sel: ATA_DNXFER_* selector 2648 * 2649 * Adjust xfer masks of @dev downward. Note that this function 2650 * does not apply the change. Invoking ata_set_mode() afterwards 2651 * will apply the limit. 2652 * 2653 * LOCKING: 2654 * Inherited from caller. 2655 * 2656 * RETURNS: 2657 * 0 on success, negative errno on failure 2658 */ 2659 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2660 { 2661 char buf[32]; 2662 unsigned int orig_mask, xfer_mask; 2663 unsigned int pio_mask, mwdma_mask, udma_mask; 2664 int quiet, highbit; 2665 2666 quiet = !!(sel & ATA_DNXFER_QUIET); 2667 sel &= ~ATA_DNXFER_QUIET; 2668 2669 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2670 dev->mwdma_mask, 2671 dev->udma_mask); 2672 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2673 2674 switch (sel) { 2675 case ATA_DNXFER_PIO: 2676 highbit = fls(pio_mask) - 1; 2677 pio_mask &= ~(1 << highbit); 2678 break; 2679 2680 case ATA_DNXFER_DMA: 2681 if (udma_mask) { 2682 highbit = fls(udma_mask) - 1; 2683 udma_mask &= ~(1 << highbit); 2684 if (!udma_mask) 2685 return -ENOENT; 2686 } else if (mwdma_mask) { 2687 highbit = fls(mwdma_mask) - 1; 2688 mwdma_mask &= ~(1 << highbit); 2689 if (!mwdma_mask) 2690 return -ENOENT; 2691 } 2692 break; 2693 2694 case ATA_DNXFER_40C: 2695 udma_mask &= ATA_UDMA_MASK_40C; 2696 break; 2697 2698 case ATA_DNXFER_FORCE_PIO0: 2699 pio_mask &= 1; 2700 case ATA_DNXFER_FORCE_PIO: 2701 mwdma_mask = 0; 2702 udma_mask = 0; 2703 break; 2704 2705 default: 2706 BUG(); 2707 } 2708 2709 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2710 2711 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2712 return -ENOENT; 2713 2714 if (!quiet) { 2715 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2716 snprintf(buf, sizeof(buf), "%s:%s", 2717 ata_mode_string(xfer_mask), 2718 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2719 else 2720 snprintf(buf, sizeof(buf), "%s", 2721 ata_mode_string(xfer_mask)); 2722 2723 ata_dev_printk(dev, KERN_WARNING, 2724 "limiting speed to %s\n", buf); 2725 } 2726 2727 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2728 &dev->udma_mask); 2729 2730 return 0; 2731 } 2732 2733 static int ata_dev_set_mode(struct ata_device *dev) 2734 { 2735 struct ata_eh_context *ehc = &dev->ap->eh_context; 2736 unsigned int err_mask; 2737 int rc; 2738 2739 dev->flags &= ~ATA_DFLAG_PIO; 2740 if (dev->xfer_shift == ATA_SHIFT_PIO) 2741 dev->flags |= ATA_DFLAG_PIO; 2742 2743 err_mask = ata_dev_set_xfermode(dev); 2744 /* Old CFA may refuse this command, which is just fine */ 2745 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2746 err_mask &= ~AC_ERR_DEV; 2747 2748 if (err_mask) { 2749 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2750 "(err_mask=0x%x)\n", err_mask); 2751 return -EIO; 2752 } 2753 2754 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2755 rc = ata_dev_revalidate(dev, 0); 2756 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2757 if (rc) 2758 return rc; 2759 2760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2761 dev->xfer_shift, (int)dev->xfer_mode); 2762 2763 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2764 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2765 return 0; 2766 } 2767 2768 /** 2769 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2770 * @ap: port on which timings will be programmed 2771 * @r_failed_dev: out paramter for failed device 2772 * 2773 * Standard implementation of the function used to tune and set 2774 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2775 * ata_dev_set_mode() fails, pointer to the failing device is 2776 * returned in @r_failed_dev. 2777 * 2778 * LOCKING: 2779 * PCI/etc. bus probe sem. 2780 * 2781 * RETURNS: 2782 * 0 on success, negative errno otherwise 2783 */ 2784 2785 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2786 { 2787 struct ata_device *dev; 2788 int i, rc = 0, used_dma = 0, found = 0; 2789 2790 2791 /* step 1: calculate xfer_mask */ 2792 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2793 unsigned int pio_mask, dma_mask; 2794 2795 dev = &ap->device[i]; 2796 2797 if (!ata_dev_enabled(dev)) 2798 continue; 2799 2800 ata_dev_xfermask(dev); 2801 2802 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2803 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2804 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2805 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2806 2807 found = 1; 2808 if (dev->dma_mode) 2809 used_dma = 1; 2810 } 2811 if (!found) 2812 goto out; 2813 2814 /* step 2: always set host PIO timings */ 2815 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2816 dev = &ap->device[i]; 2817 if (!ata_dev_enabled(dev)) 2818 continue; 2819 2820 if (!dev->pio_mode) { 2821 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2822 rc = -EINVAL; 2823 goto out; 2824 } 2825 2826 dev->xfer_mode = dev->pio_mode; 2827 dev->xfer_shift = ATA_SHIFT_PIO; 2828 if (ap->ops->set_piomode) 2829 ap->ops->set_piomode(ap, dev); 2830 } 2831 2832 /* step 3: set host DMA timings */ 2833 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2834 dev = &ap->device[i]; 2835 2836 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2837 continue; 2838 2839 dev->xfer_mode = dev->dma_mode; 2840 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2841 if (ap->ops->set_dmamode) 2842 ap->ops->set_dmamode(ap, dev); 2843 } 2844 2845 /* step 4: update devices' xfer mode */ 2846 for (i = 0; i < ATA_MAX_DEVICES; i++) { 2847 dev = &ap->device[i]; 2848 2849 /* don't update suspended devices' xfer mode */ 2850 if (!ata_dev_enabled(dev)) 2851 continue; 2852 2853 rc = ata_dev_set_mode(dev); 2854 if (rc) 2855 goto out; 2856 } 2857 2858 /* Record simplex status. If we selected DMA then the other 2859 * host channels are not permitted to do so. 2860 */ 2861 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 2862 ap->host->simplex_claimed = ap; 2863 2864 out: 2865 if (rc) 2866 *r_failed_dev = dev; 2867 return rc; 2868 } 2869 2870 /** 2871 * ata_set_mode - Program timings and issue SET FEATURES - XFER 2872 * @ap: port on which timings will be programmed 2873 * @r_failed_dev: out paramter for failed device 2874 * 2875 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2876 * ata_set_mode() fails, pointer to the failing device is 2877 * returned in @r_failed_dev. 2878 * 2879 * LOCKING: 2880 * PCI/etc. bus probe sem. 2881 * 2882 * RETURNS: 2883 * 0 on success, negative errno otherwise 2884 */ 2885 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) 2886 { 2887 /* has private set_mode? */ 2888 if (ap->ops->set_mode) 2889 return ap->ops->set_mode(ap, r_failed_dev); 2890 return ata_do_set_mode(ap, r_failed_dev); 2891 } 2892 2893 /** 2894 * ata_tf_to_host - issue ATA taskfile to host controller 2895 * @ap: port to which command is being issued 2896 * @tf: ATA taskfile register set 2897 * 2898 * Issues ATA taskfile register set to ATA host controller, 2899 * with proper synchronization with interrupt handler and 2900 * other threads. 2901 * 2902 * LOCKING: 2903 * spin_lock_irqsave(host lock) 2904 */ 2905 2906 static inline void ata_tf_to_host(struct ata_port *ap, 2907 const struct ata_taskfile *tf) 2908 { 2909 ap->ops->tf_load(ap, tf); 2910 ap->ops->exec_command(ap, tf); 2911 } 2912 2913 /** 2914 * ata_busy_sleep - sleep until BSY clears, or timeout 2915 * @ap: port containing status register to be polled 2916 * @tmout_pat: impatience timeout 2917 * @tmout: overall timeout 2918 * 2919 * Sleep until ATA Status register bit BSY clears, 2920 * or a timeout occurs. 2921 * 2922 * LOCKING: 2923 * Kernel thread context (may sleep). 2924 * 2925 * RETURNS: 2926 * 0 on success, -errno otherwise. 2927 */ 2928 int ata_busy_sleep(struct ata_port *ap, 2929 unsigned long tmout_pat, unsigned long tmout) 2930 { 2931 unsigned long timer_start, timeout; 2932 u8 status; 2933 2934 status = ata_busy_wait(ap, ATA_BUSY, 300); 2935 timer_start = jiffies; 2936 timeout = timer_start + tmout_pat; 2937 while (status != 0xff && (status & ATA_BUSY) && 2938 time_before(jiffies, timeout)) { 2939 msleep(50); 2940 status = ata_busy_wait(ap, ATA_BUSY, 3); 2941 } 2942 2943 if (status != 0xff && (status & ATA_BUSY)) 2944 ata_port_printk(ap, KERN_WARNING, 2945 "port is slow to respond, please be patient " 2946 "(Status 0x%x)\n", status); 2947 2948 timeout = timer_start + tmout; 2949 while (status != 0xff && (status & ATA_BUSY) && 2950 time_before(jiffies, timeout)) { 2951 msleep(50); 2952 status = ata_chk_status(ap); 2953 } 2954 2955 if (status == 0xff) 2956 return -ENODEV; 2957 2958 if (status & ATA_BUSY) { 2959 ata_port_printk(ap, KERN_ERR, "port failed to respond " 2960 "(%lu secs, Status 0x%x)\n", 2961 tmout / HZ, status); 2962 return -EBUSY; 2963 } 2964 2965 return 0; 2966 } 2967 2968 /** 2969 * ata_wait_ready - sleep until BSY clears, or timeout 2970 * @ap: port containing status register to be polled 2971 * @deadline: deadline jiffies for the operation 2972 * 2973 * Sleep until ATA Status register bit BSY clears, or timeout 2974 * occurs. 2975 * 2976 * LOCKING: 2977 * Kernel thread context (may sleep). 2978 * 2979 * RETURNS: 2980 * 0 on success, -errno otherwise. 2981 */ 2982 int ata_wait_ready(struct ata_port *ap, unsigned long deadline) 2983 { 2984 unsigned long start = jiffies; 2985 int warned = 0; 2986 2987 while (1) { 2988 u8 status = ata_chk_status(ap); 2989 unsigned long now = jiffies; 2990 2991 if (!(status & ATA_BUSY)) 2992 return 0; 2993 if (!ata_port_online(ap) && status == 0xff) 2994 return -ENODEV; 2995 if (time_after(now, deadline)) 2996 return -EBUSY; 2997 2998 if (!warned && time_after(now, start + 5 * HZ) && 2999 (deadline - now > 3 * HZ)) { 3000 ata_port_printk(ap, KERN_WARNING, 3001 "port is slow to respond, please be patient " 3002 "(Status 0x%x)\n", status); 3003 warned = 1; 3004 } 3005 3006 msleep(50); 3007 } 3008 } 3009 3010 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, 3011 unsigned long deadline) 3012 { 3013 struct ata_ioports *ioaddr = &ap->ioaddr; 3014 unsigned int dev0 = devmask & (1 << 0); 3015 unsigned int dev1 = devmask & (1 << 1); 3016 int rc, ret = 0; 3017 3018 /* if device 0 was found in ata_devchk, wait for its 3019 * BSY bit to clear 3020 */ 3021 if (dev0) { 3022 rc = ata_wait_ready(ap, deadline); 3023 if (rc) { 3024 if (rc != -ENODEV) 3025 return rc; 3026 ret = rc; 3027 } 3028 } 3029 3030 /* if device 1 was found in ata_devchk, wait for register 3031 * access briefly, then wait for BSY to clear. 3032 */ 3033 if (dev1) { 3034 int i; 3035 3036 ap->ops->dev_select(ap, 1); 3037 3038 /* Wait for register access. Some ATAPI devices fail 3039 * to set nsect/lbal after reset, so don't waste too 3040 * much time on it. We're gonna wait for !BSY anyway. 3041 */ 3042 for (i = 0; i < 2; i++) { 3043 u8 nsect, lbal; 3044 3045 nsect = ioread8(ioaddr->nsect_addr); 3046 lbal = ioread8(ioaddr->lbal_addr); 3047 if ((nsect == 1) && (lbal == 1)) 3048 break; 3049 msleep(50); /* give drive a breather */ 3050 } 3051 3052 rc = ata_wait_ready(ap, deadline); 3053 if (rc) { 3054 if (rc != -ENODEV) 3055 return rc; 3056 ret = rc; 3057 } 3058 } 3059 3060 /* is all this really necessary? */ 3061 ap->ops->dev_select(ap, 0); 3062 if (dev1) 3063 ap->ops->dev_select(ap, 1); 3064 if (dev0) 3065 ap->ops->dev_select(ap, 0); 3066 3067 return ret; 3068 } 3069 3070 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 3071 unsigned long deadline) 3072 { 3073 struct ata_ioports *ioaddr = &ap->ioaddr; 3074 3075 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3076 3077 /* software reset. causes dev0 to be selected */ 3078 iowrite8(ap->ctl, ioaddr->ctl_addr); 3079 udelay(20); /* FIXME: flush */ 3080 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3081 udelay(20); /* FIXME: flush */ 3082 iowrite8(ap->ctl, ioaddr->ctl_addr); 3083 3084 /* spec mandates ">= 2ms" before checking status. 3085 * We wait 150ms, because that was the magic delay used for 3086 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3087 * between when the ATA command register is written, and then 3088 * status is checked. Because waiting for "a while" before 3089 * checking status is fine, post SRST, we perform this magic 3090 * delay here as well. 3091 * 3092 * Old drivers/ide uses the 2mS rule and then waits for ready 3093 */ 3094 msleep(150); 3095 3096 /* Before we perform post reset processing we want to see if 3097 * the bus shows 0xFF because the odd clown forgets the D7 3098 * pulldown resistor. 3099 */ 3100 if (ata_check_status(ap) == 0xFF) 3101 return -ENODEV; 3102 3103 return ata_bus_post_reset(ap, devmask, deadline); 3104 } 3105 3106 /** 3107 * ata_bus_reset - reset host port and associated ATA channel 3108 * @ap: port to reset 3109 * 3110 * This is typically the first time we actually start issuing 3111 * commands to the ATA channel. We wait for BSY to clear, then 3112 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3113 * result. Determine what devices, if any, are on the channel 3114 * by looking at the device 0/1 error register. Look at the signature 3115 * stored in each device's taskfile registers, to determine if 3116 * the device is ATA or ATAPI. 3117 * 3118 * LOCKING: 3119 * PCI/etc. bus probe sem. 3120 * Obtains host lock. 3121 * 3122 * SIDE EFFECTS: 3123 * Sets ATA_FLAG_DISABLED if bus reset fails. 3124 */ 3125 3126 void ata_bus_reset(struct ata_port *ap) 3127 { 3128 struct ata_ioports *ioaddr = &ap->ioaddr; 3129 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3130 u8 err; 3131 unsigned int dev0, dev1 = 0, devmask = 0; 3132 int rc; 3133 3134 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3135 3136 /* determine if device 0/1 are present */ 3137 if (ap->flags & ATA_FLAG_SATA_RESET) 3138 dev0 = 1; 3139 else { 3140 dev0 = ata_devchk(ap, 0); 3141 if (slave_possible) 3142 dev1 = ata_devchk(ap, 1); 3143 } 3144 3145 if (dev0) 3146 devmask |= (1 << 0); 3147 if (dev1) 3148 devmask |= (1 << 1); 3149 3150 /* select device 0 again */ 3151 ap->ops->dev_select(ap, 0); 3152 3153 /* issue bus reset */ 3154 if (ap->flags & ATA_FLAG_SRST) { 3155 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 3156 if (rc && rc != -ENODEV) 3157 goto err_out; 3158 } 3159 3160 /* 3161 * determine by signature whether we have ATA or ATAPI devices 3162 */ 3163 ap->device[0].class = ata_dev_try_classify(ap, 0, &err); 3164 if ((slave_possible) && (err != 0x81)) 3165 ap->device[1].class = ata_dev_try_classify(ap, 1, &err); 3166 3167 /* is double-select really necessary? */ 3168 if (ap->device[1].class != ATA_DEV_NONE) 3169 ap->ops->dev_select(ap, 1); 3170 if (ap->device[0].class != ATA_DEV_NONE) 3171 ap->ops->dev_select(ap, 0); 3172 3173 /* if no devices were detected, disable this port */ 3174 if ((ap->device[0].class == ATA_DEV_NONE) && 3175 (ap->device[1].class == ATA_DEV_NONE)) 3176 goto err_out; 3177 3178 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3179 /* set up device control for ATA_FLAG_SATA_RESET */ 3180 iowrite8(ap->ctl, ioaddr->ctl_addr); 3181 } 3182 3183 DPRINTK("EXIT\n"); 3184 return; 3185 3186 err_out: 3187 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3188 ap->ops->port_disable(ap); 3189 3190 DPRINTK("EXIT\n"); 3191 } 3192 3193 /** 3194 * sata_phy_debounce - debounce SATA phy status 3195 * @ap: ATA port to debounce SATA phy status for 3196 * @params: timing parameters { interval, duratinon, timeout } in msec 3197 * @deadline: deadline jiffies for the operation 3198 * 3199 * Make sure SStatus of @ap reaches stable state, determined by 3200 * holding the same value where DET is not 1 for @duration polled 3201 * every @interval, before @timeout. Timeout constraints the 3202 * beginning of the stable state. Because DET gets stuck at 1 on 3203 * some controllers after hot unplugging, this functions waits 3204 * until timeout then returns 0 if DET is stable at 1. 3205 * 3206 * @timeout is further limited by @deadline. The sooner of the 3207 * two is used. 3208 * 3209 * LOCKING: 3210 * Kernel thread context (may sleep) 3211 * 3212 * RETURNS: 3213 * 0 on success, -errno on failure. 3214 */ 3215 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params, 3216 unsigned long deadline) 3217 { 3218 unsigned long interval_msec = params[0]; 3219 unsigned long duration = msecs_to_jiffies(params[1]); 3220 unsigned long last_jiffies, t; 3221 u32 last, cur; 3222 int rc; 3223 3224 t = jiffies + msecs_to_jiffies(params[2]); 3225 if (time_before(t, deadline)) 3226 deadline = t; 3227 3228 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3229 return rc; 3230 cur &= 0xf; 3231 3232 last = cur; 3233 last_jiffies = jiffies; 3234 3235 while (1) { 3236 msleep(interval_msec); 3237 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) 3238 return rc; 3239 cur &= 0xf; 3240 3241 /* DET stable? */ 3242 if (cur == last) { 3243 if (cur == 1 && time_before(jiffies, deadline)) 3244 continue; 3245 if (time_after(jiffies, last_jiffies + duration)) 3246 return 0; 3247 continue; 3248 } 3249 3250 /* unstable, start over */ 3251 last = cur; 3252 last_jiffies = jiffies; 3253 3254 /* check deadline */ 3255 if (time_after(jiffies, deadline)) 3256 return -EBUSY; 3257 } 3258 } 3259 3260 /** 3261 * sata_phy_resume - resume SATA phy 3262 * @ap: ATA port to resume SATA phy for 3263 * @params: timing parameters { interval, duratinon, timeout } in msec 3264 * @deadline: deadline jiffies for the operation 3265 * 3266 * Resume SATA phy of @ap and debounce it. 3267 * 3268 * LOCKING: 3269 * Kernel thread context (may sleep) 3270 * 3271 * RETURNS: 3272 * 0 on success, -errno on failure. 3273 */ 3274 int sata_phy_resume(struct ata_port *ap, const unsigned long *params, 3275 unsigned long deadline) 3276 { 3277 u32 scontrol; 3278 int rc; 3279 3280 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3281 return rc; 3282 3283 scontrol = (scontrol & 0x0f0) | 0x300; 3284 3285 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3286 return rc; 3287 3288 /* Some PHYs react badly if SStatus is pounded immediately 3289 * after resuming. Delay 200ms before debouncing. 3290 */ 3291 msleep(200); 3292 3293 return sata_phy_debounce(ap, params, deadline); 3294 } 3295 3296 /** 3297 * ata_std_prereset - prepare for reset 3298 * @ap: ATA port to be reset 3299 * @deadline: deadline jiffies for the operation 3300 * 3301 * @ap is about to be reset. Initialize it. Failure from 3302 * prereset makes libata abort whole reset sequence and give up 3303 * that port, so prereset should be best-effort. It does its 3304 * best to prepare for reset sequence but if things go wrong, it 3305 * should just whine, not fail. 3306 * 3307 * LOCKING: 3308 * Kernel thread context (may sleep) 3309 * 3310 * RETURNS: 3311 * 0 on success, -errno otherwise. 3312 */ 3313 int ata_std_prereset(struct ata_port *ap, unsigned long deadline) 3314 { 3315 struct ata_eh_context *ehc = &ap->eh_context; 3316 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3317 int rc; 3318 3319 /* handle link resume */ 3320 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3321 (ap->flags & ATA_FLAG_HRST_TO_RESUME)) 3322 ehc->i.action |= ATA_EH_HARDRESET; 3323 3324 /* if we're about to do hardreset, nothing more to do */ 3325 if (ehc->i.action & ATA_EH_HARDRESET) 3326 return 0; 3327 3328 /* if SATA, resume phy */ 3329 if (ap->flags & ATA_FLAG_SATA) { 3330 rc = sata_phy_resume(ap, timing, deadline); 3331 /* whine about phy resume failure but proceed */ 3332 if (rc && rc != -EOPNOTSUPP) 3333 ata_port_printk(ap, KERN_WARNING, "failed to resume " 3334 "link for reset (errno=%d)\n", rc); 3335 } 3336 3337 /* Wait for !BSY if the controller can wait for the first D2H 3338 * Reg FIS and we don't know that no device is attached. 3339 */ 3340 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) { 3341 rc = ata_wait_ready(ap, deadline); 3342 if (rc && rc != -ENODEV) { 3343 ata_port_printk(ap, KERN_WARNING, "device not ready " 3344 "(errno=%d), forcing hardreset\n", rc); 3345 ehc->i.action |= ATA_EH_HARDRESET; 3346 } 3347 } 3348 3349 return 0; 3350 } 3351 3352 /** 3353 * ata_std_softreset - reset host port via ATA SRST 3354 * @ap: port to reset 3355 * @classes: resulting classes of attached devices 3356 * @deadline: deadline jiffies for the operation 3357 * 3358 * Reset host port using ATA SRST. 3359 * 3360 * LOCKING: 3361 * Kernel thread context (may sleep) 3362 * 3363 * RETURNS: 3364 * 0 on success, -errno otherwise. 3365 */ 3366 int ata_std_softreset(struct ata_port *ap, unsigned int *classes, 3367 unsigned long deadline) 3368 { 3369 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3370 unsigned int devmask = 0; 3371 int rc; 3372 u8 err; 3373 3374 DPRINTK("ENTER\n"); 3375 3376 if (ata_port_offline(ap)) { 3377 classes[0] = ATA_DEV_NONE; 3378 goto out; 3379 } 3380 3381 /* determine if device 0/1 are present */ 3382 if (ata_devchk(ap, 0)) 3383 devmask |= (1 << 0); 3384 if (slave_possible && ata_devchk(ap, 1)) 3385 devmask |= (1 << 1); 3386 3387 /* select device 0 again */ 3388 ap->ops->dev_select(ap, 0); 3389 3390 /* issue bus reset */ 3391 DPRINTK("about to softreset, devmask=%x\n", devmask); 3392 rc = ata_bus_softreset(ap, devmask, deadline); 3393 /* if link is occupied, -ENODEV too is an error */ 3394 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) { 3395 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc); 3396 return rc; 3397 } 3398 3399 /* determine by signature whether we have ATA or ATAPI devices */ 3400 classes[0] = ata_dev_try_classify(ap, 0, &err); 3401 if (slave_possible && err != 0x81) 3402 classes[1] = ata_dev_try_classify(ap, 1, &err); 3403 3404 out: 3405 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3406 return 0; 3407 } 3408 3409 /** 3410 * sata_port_hardreset - reset port via SATA phy reset 3411 * @ap: port to reset 3412 * @timing: timing parameters { interval, duratinon, timeout } in msec 3413 * @deadline: deadline jiffies for the operation 3414 * 3415 * SATA phy-reset host port using DET bits of SControl register. 3416 * 3417 * LOCKING: 3418 * Kernel thread context (may sleep) 3419 * 3420 * RETURNS: 3421 * 0 on success, -errno otherwise. 3422 */ 3423 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing, 3424 unsigned long deadline) 3425 { 3426 u32 scontrol; 3427 int rc; 3428 3429 DPRINTK("ENTER\n"); 3430 3431 if (sata_set_spd_needed(ap)) { 3432 /* SATA spec says nothing about how to reconfigure 3433 * spd. To be on the safe side, turn off phy during 3434 * reconfiguration. This works for at least ICH7 AHCI 3435 * and Sil3124. 3436 */ 3437 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3438 goto out; 3439 3440 scontrol = (scontrol & 0x0f0) | 0x304; 3441 3442 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) 3443 goto out; 3444 3445 sata_set_spd(ap); 3446 } 3447 3448 /* issue phy wake/reset */ 3449 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) 3450 goto out; 3451 3452 scontrol = (scontrol & 0x0f0) | 0x301; 3453 3454 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) 3455 goto out; 3456 3457 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3458 * 10.4.2 says at least 1 ms. 3459 */ 3460 msleep(1); 3461 3462 /* bring phy back */ 3463 rc = sata_phy_resume(ap, timing, deadline); 3464 out: 3465 DPRINTK("EXIT, rc=%d\n", rc); 3466 return rc; 3467 } 3468 3469 /** 3470 * sata_std_hardreset - reset host port via SATA phy reset 3471 * @ap: port to reset 3472 * @class: resulting class of attached device 3473 * @deadline: deadline jiffies for the operation 3474 * 3475 * SATA phy-reset host port using DET bits of SControl register, 3476 * wait for !BSY and classify the attached device. 3477 * 3478 * LOCKING: 3479 * Kernel thread context (may sleep) 3480 * 3481 * RETURNS: 3482 * 0 on success, -errno otherwise. 3483 */ 3484 int sata_std_hardreset(struct ata_port *ap, unsigned int *class, 3485 unsigned long deadline) 3486 { 3487 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); 3488 int rc; 3489 3490 DPRINTK("ENTER\n"); 3491 3492 /* do hardreset */ 3493 rc = sata_port_hardreset(ap, timing, deadline); 3494 if (rc) { 3495 ata_port_printk(ap, KERN_ERR, 3496 "COMRESET failed (errno=%d)\n", rc); 3497 return rc; 3498 } 3499 3500 /* TODO: phy layer with polling, timeouts, etc. */ 3501 if (ata_port_offline(ap)) { 3502 *class = ATA_DEV_NONE; 3503 DPRINTK("EXIT, link offline\n"); 3504 return 0; 3505 } 3506 3507 /* wait a while before checking status, see SRST for more info */ 3508 msleep(150); 3509 3510 rc = ata_wait_ready(ap, deadline); 3511 /* link occupied, -ENODEV too is an error */ 3512 if (rc) { 3513 ata_port_printk(ap, KERN_ERR, 3514 "COMRESET failed (errno=%d)\n", rc); 3515 return rc; 3516 } 3517 3518 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3519 3520 *class = ata_dev_try_classify(ap, 0, NULL); 3521 3522 DPRINTK("EXIT, class=%u\n", *class); 3523 return 0; 3524 } 3525 3526 /** 3527 * ata_std_postreset - standard postreset callback 3528 * @ap: the target ata_port 3529 * @classes: classes of attached devices 3530 * 3531 * This function is invoked after a successful reset. Note that 3532 * the device might have been reset more than once using 3533 * different reset methods before postreset is invoked. 3534 * 3535 * LOCKING: 3536 * Kernel thread context (may sleep) 3537 */ 3538 void ata_std_postreset(struct ata_port *ap, unsigned int *classes) 3539 { 3540 u32 serror; 3541 3542 DPRINTK("ENTER\n"); 3543 3544 /* print link status */ 3545 sata_print_link_status(ap); 3546 3547 /* clear SError */ 3548 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) 3549 sata_scr_write(ap, SCR_ERROR, serror); 3550 3551 /* is double-select really necessary? */ 3552 if (classes[0] != ATA_DEV_NONE) 3553 ap->ops->dev_select(ap, 1); 3554 if (classes[1] != ATA_DEV_NONE) 3555 ap->ops->dev_select(ap, 0); 3556 3557 /* bail out if no device is present */ 3558 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3559 DPRINTK("EXIT, no device\n"); 3560 return; 3561 } 3562 3563 /* set up device control */ 3564 if (ap->ioaddr.ctl_addr) 3565 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3566 3567 DPRINTK("EXIT\n"); 3568 } 3569 3570 /** 3571 * ata_dev_same_device - Determine whether new ID matches configured device 3572 * @dev: device to compare against 3573 * @new_class: class of the new device 3574 * @new_id: IDENTIFY page of the new device 3575 * 3576 * Compare @new_class and @new_id against @dev and determine 3577 * whether @dev is the device indicated by @new_class and 3578 * @new_id. 3579 * 3580 * LOCKING: 3581 * None. 3582 * 3583 * RETURNS: 3584 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3585 */ 3586 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3587 const u16 *new_id) 3588 { 3589 const u16 *old_id = dev->id; 3590 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3591 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3592 3593 if (dev->class != new_class) { 3594 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3595 dev->class, new_class); 3596 return 0; 3597 } 3598 3599 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3600 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3601 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3602 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3603 3604 if (strcmp(model[0], model[1])) { 3605 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3606 "'%s' != '%s'\n", model[0], model[1]); 3607 return 0; 3608 } 3609 3610 if (strcmp(serial[0], serial[1])) { 3611 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3612 "'%s' != '%s'\n", serial[0], serial[1]); 3613 return 0; 3614 } 3615 3616 return 1; 3617 } 3618 3619 /** 3620 * ata_dev_reread_id - Re-read IDENTIFY data 3621 * @dev: target ATA device 3622 * @readid_flags: read ID flags 3623 * 3624 * Re-read IDENTIFY page and make sure @dev is still attached to 3625 * the port. 3626 * 3627 * LOCKING: 3628 * Kernel thread context (may sleep) 3629 * 3630 * RETURNS: 3631 * 0 on success, negative errno otherwise 3632 */ 3633 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3634 { 3635 unsigned int class = dev->class; 3636 u16 *id = (void *)dev->ap->sector_buf; 3637 int rc; 3638 3639 /* read ID data */ 3640 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3641 if (rc) 3642 return rc; 3643 3644 /* is the device still there? */ 3645 if (!ata_dev_same_device(dev, class, id)) 3646 return -ENODEV; 3647 3648 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3649 return 0; 3650 } 3651 3652 /** 3653 * ata_dev_revalidate - Revalidate ATA device 3654 * @dev: device to revalidate 3655 * @readid_flags: read ID flags 3656 * 3657 * Re-read IDENTIFY page, make sure @dev is still attached to the 3658 * port and reconfigure it according to the new IDENTIFY page. 3659 * 3660 * LOCKING: 3661 * Kernel thread context (may sleep) 3662 * 3663 * RETURNS: 3664 * 0 on success, negative errno otherwise 3665 */ 3666 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) 3667 { 3668 u64 n_sectors = dev->n_sectors; 3669 int rc; 3670 3671 if (!ata_dev_enabled(dev)) 3672 return -ENODEV; 3673 3674 /* re-read ID */ 3675 rc = ata_dev_reread_id(dev, readid_flags); 3676 if (rc) 3677 goto fail; 3678 3679 /* configure device according to the new ID */ 3680 rc = ata_dev_configure(dev); 3681 if (rc) 3682 goto fail; 3683 3684 /* verify n_sectors hasn't changed */ 3685 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) { 3686 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3687 "%llu != %llu\n", 3688 (unsigned long long)n_sectors, 3689 (unsigned long long)dev->n_sectors); 3690 rc = -ENODEV; 3691 goto fail; 3692 } 3693 3694 return 0; 3695 3696 fail: 3697 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3698 return rc; 3699 } 3700 3701 struct ata_blacklist_entry { 3702 const char *model_num; 3703 const char *model_rev; 3704 unsigned long horkage; 3705 }; 3706 3707 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3708 /* Devices with DMA related problems under Linux */ 3709 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3710 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3711 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3712 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3713 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3714 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3715 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3716 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3717 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3718 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3719 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3720 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3721 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3722 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3723 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3724 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3725 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3726 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3727 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3728 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3729 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3730 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3731 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3732 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3733 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3734 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3735 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3736 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3737 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3738 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3739 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */ 3740 { "IOMEGA ZIP 250 ATAPI Floppy", 3741 NULL, ATA_HORKAGE_NODMA }, 3742 3743 /* Weird ATAPI devices */ 3744 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3745 3746 /* Devices we expect to fail diagnostics */ 3747 3748 /* Devices where NCQ should be avoided */ 3749 /* NCQ is slow */ 3750 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3751 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3752 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3753 /* NCQ is broken */ 3754 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ }, 3755 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ }, 3756 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ }, 3757 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI", 3758 ATA_HORKAGE_NONCQ }, 3759 /* NCQ hard hangs device under heavier load, needs hard power cycle */ 3760 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ }, 3761 /* Blacklist entries taken from Silicon Image 3124/3132 3762 Windows driver .inf file - also several Linux problem reports */ 3763 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3764 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3765 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3766 /* Drives which do spurious command completion */ 3767 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, }, 3768 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, }, 3769 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, }, 3770 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3771 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, }, 3772 3773 /* Devices with NCQ limits */ 3774 3775 /* End Marker */ 3776 { } 3777 }; 3778 3779 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 3780 { 3781 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3782 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3783 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3784 3785 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3786 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3787 3788 while (ad->model_num) { 3789 if (!strcmp(ad->model_num, model_num)) { 3790 if (ad->model_rev == NULL) 3791 return ad->horkage; 3792 if (!strcmp(ad->model_rev, model_rev)) 3793 return ad->horkage; 3794 } 3795 ad++; 3796 } 3797 return 0; 3798 } 3799 3800 static int ata_dma_blacklisted(const struct ata_device *dev) 3801 { 3802 /* We don't support polling DMA. 3803 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3804 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3805 */ 3806 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && 3807 (dev->flags & ATA_DFLAG_CDB_INTR)) 3808 return 1; 3809 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 3810 } 3811 3812 /** 3813 * ata_dev_xfermask - Compute supported xfermask of the given device 3814 * @dev: Device to compute xfermask for 3815 * 3816 * Compute supported xfermask of @dev and store it in 3817 * dev->*_mask. This function is responsible for applying all 3818 * known limits including host controller limits, device 3819 * blacklist, etc... 3820 * 3821 * LOCKING: 3822 * None. 3823 */ 3824 static void ata_dev_xfermask(struct ata_device *dev) 3825 { 3826 struct ata_port *ap = dev->ap; 3827 struct ata_host *host = ap->host; 3828 unsigned long xfer_mask; 3829 3830 /* controller modes available */ 3831 xfer_mask = ata_pack_xfermask(ap->pio_mask, 3832 ap->mwdma_mask, ap->udma_mask); 3833 3834 /* drive modes available */ 3835 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 3836 dev->mwdma_mask, dev->udma_mask); 3837 xfer_mask &= ata_id_xfermask(dev->id); 3838 3839 /* 3840 * CFA Advanced TrueIDE timings are not allowed on a shared 3841 * cable 3842 */ 3843 if (ata_dev_pair(dev)) { 3844 /* No PIO5 or PIO6 */ 3845 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 3846 /* No MWDMA3 or MWDMA 4 */ 3847 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 3848 } 3849 3850 if (ata_dma_blacklisted(dev)) { 3851 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3852 ata_dev_printk(dev, KERN_WARNING, 3853 "device is on DMA blacklist, disabling DMA\n"); 3854 } 3855 3856 if ((host->flags & ATA_HOST_SIMPLEX) && 3857 host->simplex_claimed && host->simplex_claimed != ap) { 3858 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 3859 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 3860 "other device, disabling DMA\n"); 3861 } 3862 3863 if (ap->flags & ATA_FLAG_NO_IORDY) 3864 xfer_mask &= ata_pio_mask_no_iordy(dev); 3865 3866 if (ap->ops->mode_filter) 3867 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 3868 3869 /* Apply cable rule here. Don't apply it early because when 3870 * we handle hot plug the cable type can itself change. 3871 * Check this last so that we know if the transfer rate was 3872 * solely limited by the cable. 3873 * Unknown or 80 wire cables reported host side are checked 3874 * drive side as well. Cases where we know a 40wire cable 3875 * is used safely for 80 are not checked here. 3876 */ 3877 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 3878 /* UDMA/44 or higher would be available */ 3879 if((ap->cbl == ATA_CBL_PATA40) || 3880 (ata_drive_40wire(dev->id) && 3881 (ap->cbl == ATA_CBL_PATA_UNK || 3882 ap->cbl == ATA_CBL_PATA80))) { 3883 ata_dev_printk(dev, KERN_WARNING, 3884 "limited to UDMA/33 due to 40-wire cable\n"); 3885 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 3886 } 3887 3888 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 3889 &dev->mwdma_mask, &dev->udma_mask); 3890 } 3891 3892 /** 3893 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 3894 * @dev: Device to which command will be sent 3895 * 3896 * Issue SET FEATURES - XFER MODE command to device @dev 3897 * on port @ap. 3898 * 3899 * LOCKING: 3900 * PCI/etc. bus probe sem. 3901 * 3902 * RETURNS: 3903 * 0 on success, AC_ERR_* mask otherwise. 3904 */ 3905 3906 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 3907 { 3908 struct ata_taskfile tf; 3909 unsigned int err_mask; 3910 3911 /* set up set-features taskfile */ 3912 DPRINTK("set features - xfer mode\n"); 3913 3914 /* Some controllers and ATAPI devices show flaky interrupt 3915 * behavior after setting xfer mode. Use polling instead. 3916 */ 3917 ata_tf_init(dev, &tf); 3918 tf.command = ATA_CMD_SET_FEATURES; 3919 tf.feature = SETFEATURES_XFER; 3920 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 3921 tf.protocol = ATA_PROT_NODATA; 3922 tf.nsect = dev->xfer_mode; 3923 3924 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3925 3926 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3927 return err_mask; 3928 } 3929 3930 /** 3931 * ata_dev_init_params - Issue INIT DEV PARAMS command 3932 * @dev: Device to which command will be sent 3933 * @heads: Number of heads (taskfile parameter) 3934 * @sectors: Number of sectors (taskfile parameter) 3935 * 3936 * LOCKING: 3937 * Kernel thread context (may sleep) 3938 * 3939 * RETURNS: 3940 * 0 on success, AC_ERR_* mask otherwise. 3941 */ 3942 static unsigned int ata_dev_init_params(struct ata_device *dev, 3943 u16 heads, u16 sectors) 3944 { 3945 struct ata_taskfile tf; 3946 unsigned int err_mask; 3947 3948 /* Number of sectors per track 1-255. Number of heads 1-16 */ 3949 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 3950 return AC_ERR_INVALID; 3951 3952 /* set up init dev params taskfile */ 3953 DPRINTK("init dev params \n"); 3954 3955 ata_tf_init(dev, &tf); 3956 tf.command = ATA_CMD_INIT_DEV_PARAMS; 3957 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 3958 tf.protocol = ATA_PROT_NODATA; 3959 tf.nsect = sectors; 3960 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 3961 3962 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); 3963 3964 DPRINTK("EXIT, err_mask=%x\n", err_mask); 3965 return err_mask; 3966 } 3967 3968 /** 3969 * ata_sg_clean - Unmap DMA memory associated with command 3970 * @qc: Command containing DMA memory to be released 3971 * 3972 * Unmap all mapped DMA memory associated with this command. 3973 * 3974 * LOCKING: 3975 * spin_lock_irqsave(host lock) 3976 */ 3977 void ata_sg_clean(struct ata_queued_cmd *qc) 3978 { 3979 struct ata_port *ap = qc->ap; 3980 struct scatterlist *sg = qc->__sg; 3981 int dir = qc->dma_dir; 3982 void *pad_buf = NULL; 3983 3984 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 3985 WARN_ON(sg == NULL); 3986 3987 if (qc->flags & ATA_QCFLAG_SINGLE) 3988 WARN_ON(qc->n_elem > 1); 3989 3990 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 3991 3992 /* if we padded the buffer out to 32-bit bound, and data 3993 * xfer direction is from-device, we must copy from the 3994 * pad buffer back into the supplied buffer 3995 */ 3996 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 3997 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 3998 3999 if (qc->flags & ATA_QCFLAG_SG) { 4000 if (qc->n_elem) 4001 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4002 /* restore last sg */ 4003 sg[qc->orig_n_elem - 1].length += qc->pad_len; 4004 if (pad_buf) { 4005 struct scatterlist *psg = &qc->pad_sgent; 4006 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4007 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 4008 kunmap_atomic(addr, KM_IRQ0); 4009 } 4010 } else { 4011 if (qc->n_elem) 4012 dma_unmap_single(ap->dev, 4013 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 4014 dir); 4015 /* restore sg */ 4016 sg->length += qc->pad_len; 4017 if (pad_buf) 4018 memcpy(qc->buf_virt + sg->length - qc->pad_len, 4019 pad_buf, qc->pad_len); 4020 } 4021 4022 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4023 qc->__sg = NULL; 4024 } 4025 4026 /** 4027 * ata_fill_sg - Fill PCI IDE PRD table 4028 * @qc: Metadata associated with taskfile to be transferred 4029 * 4030 * Fill PCI IDE PRD (scatter-gather) table with segments 4031 * associated with the current disk command. 4032 * 4033 * LOCKING: 4034 * spin_lock_irqsave(host lock) 4035 * 4036 */ 4037 static void ata_fill_sg(struct ata_queued_cmd *qc) 4038 { 4039 struct ata_port *ap = qc->ap; 4040 struct scatterlist *sg; 4041 unsigned int idx; 4042 4043 WARN_ON(qc->__sg == NULL); 4044 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4045 4046 idx = 0; 4047 ata_for_each_sg(sg, qc) { 4048 u32 addr, offset; 4049 u32 sg_len, len; 4050 4051 /* determine if physical DMA addr spans 64K boundary. 4052 * Note h/w doesn't support 64-bit, so we unconditionally 4053 * truncate dma_addr_t to u32. 4054 */ 4055 addr = (u32) sg_dma_address(sg); 4056 sg_len = sg_dma_len(sg); 4057 4058 while (sg_len) { 4059 offset = addr & 0xffff; 4060 len = sg_len; 4061 if ((offset + sg_len) > 0x10000) 4062 len = 0x10000 - offset; 4063 4064 ap->prd[idx].addr = cpu_to_le32(addr); 4065 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 4066 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4067 4068 idx++; 4069 sg_len -= len; 4070 addr += len; 4071 } 4072 } 4073 4074 if (idx) 4075 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4076 } 4077 4078 /** 4079 * ata_fill_sg_dumb - Fill PCI IDE PRD table 4080 * @qc: Metadata associated with taskfile to be transferred 4081 * 4082 * Fill PCI IDE PRD (scatter-gather) table with segments 4083 * associated with the current disk command. Perform the fill 4084 * so that we avoid writing any length 64K records for 4085 * controllers that don't follow the spec. 4086 * 4087 * LOCKING: 4088 * spin_lock_irqsave(host lock) 4089 * 4090 */ 4091 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 4092 { 4093 struct ata_port *ap = qc->ap; 4094 struct scatterlist *sg; 4095 unsigned int idx; 4096 4097 WARN_ON(qc->__sg == NULL); 4098 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4099 4100 idx = 0; 4101 ata_for_each_sg(sg, qc) { 4102 u32 addr, offset; 4103 u32 sg_len, len, blen; 4104 4105 /* determine if physical DMA addr spans 64K boundary. 4106 * Note h/w doesn't support 64-bit, so we unconditionally 4107 * truncate dma_addr_t to u32. 4108 */ 4109 addr = (u32) sg_dma_address(sg); 4110 sg_len = sg_dma_len(sg); 4111 4112 while (sg_len) { 4113 offset = addr & 0xffff; 4114 len = sg_len; 4115 if ((offset + sg_len) > 0x10000) 4116 len = 0x10000 - offset; 4117 4118 blen = len & 0xffff; 4119 ap->prd[idx].addr = cpu_to_le32(addr); 4120 if (blen == 0) { 4121 /* Some PATA chipsets like the CS5530 can't 4122 cope with 0x0000 meaning 64K as the spec says */ 4123 ap->prd[idx].flags_len = cpu_to_le32(0x8000); 4124 blen = 0x8000; 4125 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000); 4126 } 4127 ap->prd[idx].flags_len = cpu_to_le32(blen); 4128 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4129 4130 idx++; 4131 sg_len -= len; 4132 addr += len; 4133 } 4134 } 4135 4136 if (idx) 4137 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4138 } 4139 4140 /** 4141 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4142 * @qc: Metadata associated with taskfile to check 4143 * 4144 * Allow low-level driver to filter ATA PACKET commands, returning 4145 * a status indicating whether or not it is OK to use DMA for the 4146 * supplied PACKET command. 4147 * 4148 * LOCKING: 4149 * spin_lock_irqsave(host lock) 4150 * 4151 * RETURNS: 0 when ATAPI DMA can be used 4152 * nonzero otherwise 4153 */ 4154 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4155 { 4156 struct ata_port *ap = qc->ap; 4157 4158 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4159 * few ATAPI devices choke on such DMA requests. 4160 */ 4161 if (unlikely(qc->nbytes & 15)) 4162 return 1; 4163 4164 if (ap->ops->check_atapi_dma) 4165 return ap->ops->check_atapi_dma(qc); 4166 4167 return 0; 4168 } 4169 4170 /** 4171 * ata_qc_prep - Prepare taskfile for submission 4172 * @qc: Metadata associated with taskfile to be prepared 4173 * 4174 * Prepare ATA taskfile for submission. 4175 * 4176 * LOCKING: 4177 * spin_lock_irqsave(host lock) 4178 */ 4179 void ata_qc_prep(struct ata_queued_cmd *qc) 4180 { 4181 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4182 return; 4183 4184 ata_fill_sg(qc); 4185 } 4186 4187 /** 4188 * ata_dumb_qc_prep - Prepare taskfile for submission 4189 * @qc: Metadata associated with taskfile to be prepared 4190 * 4191 * Prepare ATA taskfile for submission. 4192 * 4193 * LOCKING: 4194 * spin_lock_irqsave(host lock) 4195 */ 4196 void ata_dumb_qc_prep(struct ata_queued_cmd *qc) 4197 { 4198 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4199 return; 4200 4201 ata_fill_sg_dumb(qc); 4202 } 4203 4204 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4205 4206 /** 4207 * ata_sg_init_one - Associate command with memory buffer 4208 * @qc: Command to be associated 4209 * @buf: Memory buffer 4210 * @buflen: Length of memory buffer, in bytes. 4211 * 4212 * Initialize the data-related elements of queued_cmd @qc 4213 * to point to a single memory buffer, @buf of byte length @buflen. 4214 * 4215 * LOCKING: 4216 * spin_lock_irqsave(host lock) 4217 */ 4218 4219 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4220 { 4221 qc->flags |= ATA_QCFLAG_SINGLE; 4222 4223 qc->__sg = &qc->sgent; 4224 qc->n_elem = 1; 4225 qc->orig_n_elem = 1; 4226 qc->buf_virt = buf; 4227 qc->nbytes = buflen; 4228 4229 sg_init_one(&qc->sgent, buf, buflen); 4230 } 4231 4232 /** 4233 * ata_sg_init - Associate command with scatter-gather table. 4234 * @qc: Command to be associated 4235 * @sg: Scatter-gather table. 4236 * @n_elem: Number of elements in s/g table. 4237 * 4238 * Initialize the data-related elements of queued_cmd @qc 4239 * to point to a scatter-gather table @sg, containing @n_elem 4240 * elements. 4241 * 4242 * LOCKING: 4243 * spin_lock_irqsave(host lock) 4244 */ 4245 4246 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4247 unsigned int n_elem) 4248 { 4249 qc->flags |= ATA_QCFLAG_SG; 4250 qc->__sg = sg; 4251 qc->n_elem = n_elem; 4252 qc->orig_n_elem = n_elem; 4253 } 4254 4255 /** 4256 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4257 * @qc: Command with memory buffer to be mapped. 4258 * 4259 * DMA-map the memory buffer associated with queued_cmd @qc. 4260 * 4261 * LOCKING: 4262 * spin_lock_irqsave(host lock) 4263 * 4264 * RETURNS: 4265 * Zero on success, negative on error. 4266 */ 4267 4268 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4269 { 4270 struct ata_port *ap = qc->ap; 4271 int dir = qc->dma_dir; 4272 struct scatterlist *sg = qc->__sg; 4273 dma_addr_t dma_address; 4274 int trim_sg = 0; 4275 4276 /* we must lengthen transfers to end on a 32-bit boundary */ 4277 qc->pad_len = sg->length & 3; 4278 if (qc->pad_len) { 4279 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4280 struct scatterlist *psg = &qc->pad_sgent; 4281 4282 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4283 4284 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4285 4286 if (qc->tf.flags & ATA_TFLAG_WRITE) 4287 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4288 qc->pad_len); 4289 4290 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4291 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4292 /* trim sg */ 4293 sg->length -= qc->pad_len; 4294 if (sg->length == 0) 4295 trim_sg = 1; 4296 4297 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4298 sg->length, qc->pad_len); 4299 } 4300 4301 if (trim_sg) { 4302 qc->n_elem--; 4303 goto skip_map; 4304 } 4305 4306 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4307 sg->length, dir); 4308 if (dma_mapping_error(dma_address)) { 4309 /* restore sg */ 4310 sg->length += qc->pad_len; 4311 return -1; 4312 } 4313 4314 sg_dma_address(sg) = dma_address; 4315 sg_dma_len(sg) = sg->length; 4316 4317 skip_map: 4318 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4319 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4320 4321 return 0; 4322 } 4323 4324 /** 4325 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4326 * @qc: Command with scatter-gather table to be mapped. 4327 * 4328 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4329 * 4330 * LOCKING: 4331 * spin_lock_irqsave(host lock) 4332 * 4333 * RETURNS: 4334 * Zero on success, negative on error. 4335 * 4336 */ 4337 4338 static int ata_sg_setup(struct ata_queued_cmd *qc) 4339 { 4340 struct ata_port *ap = qc->ap; 4341 struct scatterlist *sg = qc->__sg; 4342 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4343 int n_elem, pre_n_elem, dir, trim_sg = 0; 4344 4345 VPRINTK("ENTER, ata%u\n", ap->print_id); 4346 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4347 4348 /* we must lengthen transfers to end on a 32-bit boundary */ 4349 qc->pad_len = lsg->length & 3; 4350 if (qc->pad_len) { 4351 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4352 struct scatterlist *psg = &qc->pad_sgent; 4353 unsigned int offset; 4354 4355 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4356 4357 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4358 4359 /* 4360 * psg->page/offset are used to copy to-be-written 4361 * data in this function or read data in ata_sg_clean. 4362 */ 4363 offset = lsg->offset + lsg->length - qc->pad_len; 4364 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4365 psg->offset = offset_in_page(offset); 4366 4367 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4368 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4369 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4370 kunmap_atomic(addr, KM_IRQ0); 4371 } 4372 4373 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4374 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4375 /* trim last sg */ 4376 lsg->length -= qc->pad_len; 4377 if (lsg->length == 0) 4378 trim_sg = 1; 4379 4380 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4381 qc->n_elem - 1, lsg->length, qc->pad_len); 4382 } 4383 4384 pre_n_elem = qc->n_elem; 4385 if (trim_sg && pre_n_elem) 4386 pre_n_elem--; 4387 4388 if (!pre_n_elem) { 4389 n_elem = 0; 4390 goto skip_map; 4391 } 4392 4393 dir = qc->dma_dir; 4394 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4395 if (n_elem < 1) { 4396 /* restore last sg */ 4397 lsg->length += qc->pad_len; 4398 return -1; 4399 } 4400 4401 DPRINTK("%d sg elements mapped\n", n_elem); 4402 4403 skip_map: 4404 qc->n_elem = n_elem; 4405 4406 return 0; 4407 } 4408 4409 /** 4410 * swap_buf_le16 - swap halves of 16-bit words in place 4411 * @buf: Buffer to swap 4412 * @buf_words: Number of 16-bit words in buffer. 4413 * 4414 * Swap halves of 16-bit words if needed to convert from 4415 * little-endian byte order to native cpu byte order, or 4416 * vice-versa. 4417 * 4418 * LOCKING: 4419 * Inherited from caller. 4420 */ 4421 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4422 { 4423 #ifdef __BIG_ENDIAN 4424 unsigned int i; 4425 4426 for (i = 0; i < buf_words; i++) 4427 buf[i] = le16_to_cpu(buf[i]); 4428 #endif /* __BIG_ENDIAN */ 4429 } 4430 4431 /** 4432 * ata_data_xfer - Transfer data by PIO 4433 * @adev: device to target 4434 * @buf: data buffer 4435 * @buflen: buffer length 4436 * @write_data: read/write 4437 * 4438 * Transfer data from/to the device data register by PIO. 4439 * 4440 * LOCKING: 4441 * Inherited from caller. 4442 */ 4443 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4444 unsigned int buflen, int write_data) 4445 { 4446 struct ata_port *ap = adev->ap; 4447 unsigned int words = buflen >> 1; 4448 4449 /* Transfer multiple of 2 bytes */ 4450 if (write_data) 4451 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4452 else 4453 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4454 4455 /* Transfer trailing 1 byte, if any. */ 4456 if (unlikely(buflen & 0x01)) { 4457 u16 align_buf[1] = { 0 }; 4458 unsigned char *trailing_buf = buf + buflen - 1; 4459 4460 if (write_data) { 4461 memcpy(align_buf, trailing_buf, 1); 4462 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4463 } else { 4464 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4465 memcpy(trailing_buf, align_buf, 1); 4466 } 4467 } 4468 } 4469 4470 /** 4471 * ata_data_xfer_noirq - Transfer data by PIO 4472 * @adev: device to target 4473 * @buf: data buffer 4474 * @buflen: buffer length 4475 * @write_data: read/write 4476 * 4477 * Transfer data from/to the device data register by PIO. Do the 4478 * transfer with interrupts disabled. 4479 * 4480 * LOCKING: 4481 * Inherited from caller. 4482 */ 4483 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4484 unsigned int buflen, int write_data) 4485 { 4486 unsigned long flags; 4487 local_irq_save(flags); 4488 ata_data_xfer(adev, buf, buflen, write_data); 4489 local_irq_restore(flags); 4490 } 4491 4492 4493 /** 4494 * ata_pio_sector - Transfer a sector of data. 4495 * @qc: Command on going 4496 * 4497 * Transfer qc->sect_size bytes of data from/to the ATA device. 4498 * 4499 * LOCKING: 4500 * Inherited from caller. 4501 */ 4502 4503 static void ata_pio_sector(struct ata_queued_cmd *qc) 4504 { 4505 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4506 struct scatterlist *sg = qc->__sg; 4507 struct ata_port *ap = qc->ap; 4508 struct page *page; 4509 unsigned int offset; 4510 unsigned char *buf; 4511 4512 if (qc->curbytes == qc->nbytes - qc->sect_size) 4513 ap->hsm_task_state = HSM_ST_LAST; 4514 4515 page = sg[qc->cursg].page; 4516 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4517 4518 /* get the current page and offset */ 4519 page = nth_page(page, (offset >> PAGE_SHIFT)); 4520 offset %= PAGE_SIZE; 4521 4522 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4523 4524 if (PageHighMem(page)) { 4525 unsigned long flags; 4526 4527 /* FIXME: use a bounce buffer */ 4528 local_irq_save(flags); 4529 buf = kmap_atomic(page, KM_IRQ0); 4530 4531 /* do the actual data transfer */ 4532 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4533 4534 kunmap_atomic(buf, KM_IRQ0); 4535 local_irq_restore(flags); 4536 } else { 4537 buf = page_address(page); 4538 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4539 } 4540 4541 qc->curbytes += qc->sect_size; 4542 qc->cursg_ofs += qc->sect_size; 4543 4544 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4545 qc->cursg++; 4546 qc->cursg_ofs = 0; 4547 } 4548 } 4549 4550 /** 4551 * ata_pio_sectors - Transfer one or many sectors. 4552 * @qc: Command on going 4553 * 4554 * Transfer one or many sectors of data from/to the 4555 * ATA device for the DRQ request. 4556 * 4557 * LOCKING: 4558 * Inherited from caller. 4559 */ 4560 4561 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4562 { 4563 if (is_multi_taskfile(&qc->tf)) { 4564 /* READ/WRITE MULTIPLE */ 4565 unsigned int nsect; 4566 4567 WARN_ON(qc->dev->multi_count == 0); 4568 4569 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4570 qc->dev->multi_count); 4571 while (nsect--) 4572 ata_pio_sector(qc); 4573 } else 4574 ata_pio_sector(qc); 4575 } 4576 4577 /** 4578 * atapi_send_cdb - Write CDB bytes to hardware 4579 * @ap: Port to which ATAPI device is attached. 4580 * @qc: Taskfile currently active 4581 * 4582 * When device has indicated its readiness to accept 4583 * a CDB, this function is called. Send the CDB. 4584 * 4585 * LOCKING: 4586 * caller. 4587 */ 4588 4589 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4590 { 4591 /* send SCSI cdb */ 4592 DPRINTK("send cdb\n"); 4593 WARN_ON(qc->dev->cdb_len < 12); 4594 4595 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4596 ata_altstatus(ap); /* flush */ 4597 4598 switch (qc->tf.protocol) { 4599 case ATA_PROT_ATAPI: 4600 ap->hsm_task_state = HSM_ST; 4601 break; 4602 case ATA_PROT_ATAPI_NODATA: 4603 ap->hsm_task_state = HSM_ST_LAST; 4604 break; 4605 case ATA_PROT_ATAPI_DMA: 4606 ap->hsm_task_state = HSM_ST_LAST; 4607 /* initiate bmdma */ 4608 ap->ops->bmdma_start(qc); 4609 break; 4610 } 4611 } 4612 4613 /** 4614 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4615 * @qc: Command on going 4616 * @bytes: number of bytes 4617 * 4618 * Transfer Transfer data from/to the ATAPI device. 4619 * 4620 * LOCKING: 4621 * Inherited from caller. 4622 * 4623 */ 4624 4625 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4626 { 4627 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4628 struct scatterlist *sg = qc->__sg; 4629 struct ata_port *ap = qc->ap; 4630 struct page *page; 4631 unsigned char *buf; 4632 unsigned int offset, count; 4633 4634 if (qc->curbytes + bytes >= qc->nbytes) 4635 ap->hsm_task_state = HSM_ST_LAST; 4636 4637 next_sg: 4638 if (unlikely(qc->cursg >= qc->n_elem)) { 4639 /* 4640 * The end of qc->sg is reached and the device expects 4641 * more data to transfer. In order not to overrun qc->sg 4642 * and fulfill length specified in the byte count register, 4643 * - for read case, discard trailing data from the device 4644 * - for write case, padding zero data to the device 4645 */ 4646 u16 pad_buf[1] = { 0 }; 4647 unsigned int words = bytes >> 1; 4648 unsigned int i; 4649 4650 if (words) /* warning if bytes > 1 */ 4651 ata_dev_printk(qc->dev, KERN_WARNING, 4652 "%u bytes trailing data\n", bytes); 4653 4654 for (i = 0; i < words; i++) 4655 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4656 4657 ap->hsm_task_state = HSM_ST_LAST; 4658 return; 4659 } 4660 4661 sg = &qc->__sg[qc->cursg]; 4662 4663 page = sg->page; 4664 offset = sg->offset + qc->cursg_ofs; 4665 4666 /* get the current page and offset */ 4667 page = nth_page(page, (offset >> PAGE_SHIFT)); 4668 offset %= PAGE_SIZE; 4669 4670 /* don't overrun current sg */ 4671 count = min(sg->length - qc->cursg_ofs, bytes); 4672 4673 /* don't cross page boundaries */ 4674 count = min(count, (unsigned int)PAGE_SIZE - offset); 4675 4676 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4677 4678 if (PageHighMem(page)) { 4679 unsigned long flags; 4680 4681 /* FIXME: use bounce buffer */ 4682 local_irq_save(flags); 4683 buf = kmap_atomic(page, KM_IRQ0); 4684 4685 /* do the actual data transfer */ 4686 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4687 4688 kunmap_atomic(buf, KM_IRQ0); 4689 local_irq_restore(flags); 4690 } else { 4691 buf = page_address(page); 4692 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 4693 } 4694 4695 bytes -= count; 4696 qc->curbytes += count; 4697 qc->cursg_ofs += count; 4698 4699 if (qc->cursg_ofs == sg->length) { 4700 qc->cursg++; 4701 qc->cursg_ofs = 0; 4702 } 4703 4704 if (bytes) 4705 goto next_sg; 4706 } 4707 4708 /** 4709 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 4710 * @qc: Command on going 4711 * 4712 * Transfer Transfer data from/to the ATAPI device. 4713 * 4714 * LOCKING: 4715 * Inherited from caller. 4716 */ 4717 4718 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 4719 { 4720 struct ata_port *ap = qc->ap; 4721 struct ata_device *dev = qc->dev; 4722 unsigned int ireason, bc_lo, bc_hi, bytes; 4723 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 4724 4725 /* Abuse qc->result_tf for temp storage of intermediate TF 4726 * here to save some kernel stack usage. 4727 * For normal completion, qc->result_tf is not relevant. For 4728 * error, qc->result_tf is later overwritten by ata_qc_complete(). 4729 * So, the correctness of qc->result_tf is not affected. 4730 */ 4731 ap->ops->tf_read(ap, &qc->result_tf); 4732 ireason = qc->result_tf.nsect; 4733 bc_lo = qc->result_tf.lbam; 4734 bc_hi = qc->result_tf.lbah; 4735 bytes = (bc_hi << 8) | bc_lo; 4736 4737 /* shall be cleared to zero, indicating xfer of data */ 4738 if (ireason & (1 << 0)) 4739 goto err_out; 4740 4741 /* make sure transfer direction matches expected */ 4742 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 4743 if (do_write != i_write) 4744 goto err_out; 4745 4746 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 4747 4748 __atapi_pio_bytes(qc, bytes); 4749 4750 return; 4751 4752 err_out: 4753 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 4754 qc->err_mask |= AC_ERR_HSM; 4755 ap->hsm_task_state = HSM_ST_ERR; 4756 } 4757 4758 /** 4759 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 4760 * @ap: the target ata_port 4761 * @qc: qc on going 4762 * 4763 * RETURNS: 4764 * 1 if ok in workqueue, 0 otherwise. 4765 */ 4766 4767 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 4768 { 4769 if (qc->tf.flags & ATA_TFLAG_POLLING) 4770 return 1; 4771 4772 if (ap->hsm_task_state == HSM_ST_FIRST) { 4773 if (qc->tf.protocol == ATA_PROT_PIO && 4774 (qc->tf.flags & ATA_TFLAG_WRITE)) 4775 return 1; 4776 4777 if (is_atapi_taskfile(&qc->tf) && 4778 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 4779 return 1; 4780 } 4781 4782 return 0; 4783 } 4784 4785 /** 4786 * ata_hsm_qc_complete - finish a qc running on standard HSM 4787 * @qc: Command to complete 4788 * @in_wq: 1 if called from workqueue, 0 otherwise 4789 * 4790 * Finish @qc which is running on standard HSM. 4791 * 4792 * LOCKING: 4793 * If @in_wq is zero, spin_lock_irqsave(host lock). 4794 * Otherwise, none on entry and grabs host lock. 4795 */ 4796 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 4797 { 4798 struct ata_port *ap = qc->ap; 4799 unsigned long flags; 4800 4801 if (ap->ops->error_handler) { 4802 if (in_wq) { 4803 spin_lock_irqsave(ap->lock, flags); 4804 4805 /* EH might have kicked in while host lock is 4806 * released. 4807 */ 4808 qc = ata_qc_from_tag(ap, qc->tag); 4809 if (qc) { 4810 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 4811 ap->ops->irq_on(ap); 4812 ata_qc_complete(qc); 4813 } else 4814 ata_port_freeze(ap); 4815 } 4816 4817 spin_unlock_irqrestore(ap->lock, flags); 4818 } else { 4819 if (likely(!(qc->err_mask & AC_ERR_HSM))) 4820 ata_qc_complete(qc); 4821 else 4822 ata_port_freeze(ap); 4823 } 4824 } else { 4825 if (in_wq) { 4826 spin_lock_irqsave(ap->lock, flags); 4827 ap->ops->irq_on(ap); 4828 ata_qc_complete(qc); 4829 spin_unlock_irqrestore(ap->lock, flags); 4830 } else 4831 ata_qc_complete(qc); 4832 } 4833 } 4834 4835 /** 4836 * ata_hsm_move - move the HSM to the next state. 4837 * @ap: the target ata_port 4838 * @qc: qc on going 4839 * @status: current device status 4840 * @in_wq: 1 if called from workqueue, 0 otherwise 4841 * 4842 * RETURNS: 4843 * 1 when poll next status needed, 0 otherwise. 4844 */ 4845 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 4846 u8 status, int in_wq) 4847 { 4848 unsigned long flags = 0; 4849 int poll_next; 4850 4851 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 4852 4853 /* Make sure ata_qc_issue_prot() does not throw things 4854 * like DMA polling into the workqueue. Notice that 4855 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 4856 */ 4857 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 4858 4859 fsm_start: 4860 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 4861 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 4862 4863 switch (ap->hsm_task_state) { 4864 case HSM_ST_FIRST: 4865 /* Send first data block or PACKET CDB */ 4866 4867 /* If polling, we will stay in the work queue after 4868 * sending the data. Otherwise, interrupt handler 4869 * takes over after sending the data. 4870 */ 4871 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 4872 4873 /* check device status */ 4874 if (unlikely((status & ATA_DRQ) == 0)) { 4875 /* handle BSY=0, DRQ=0 as error */ 4876 if (likely(status & (ATA_ERR | ATA_DF))) 4877 /* device stops HSM for abort/error */ 4878 qc->err_mask |= AC_ERR_DEV; 4879 else 4880 /* HSM violation. Let EH handle this */ 4881 qc->err_mask |= AC_ERR_HSM; 4882 4883 ap->hsm_task_state = HSM_ST_ERR; 4884 goto fsm_start; 4885 } 4886 4887 /* Device should not ask for data transfer (DRQ=1) 4888 * when it finds something wrong. 4889 * We ignore DRQ here and stop the HSM by 4890 * changing hsm_task_state to HSM_ST_ERR and 4891 * let the EH abort the command or reset the device. 4892 */ 4893 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4894 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 4895 "error, dev_stat 0x%X\n", status); 4896 qc->err_mask |= AC_ERR_HSM; 4897 ap->hsm_task_state = HSM_ST_ERR; 4898 goto fsm_start; 4899 } 4900 4901 /* Send the CDB (atapi) or the first data block (ata pio out). 4902 * During the state transition, interrupt handler shouldn't 4903 * be invoked before the data transfer is complete and 4904 * hsm_task_state is changed. Hence, the following locking. 4905 */ 4906 if (in_wq) 4907 spin_lock_irqsave(ap->lock, flags); 4908 4909 if (qc->tf.protocol == ATA_PROT_PIO) { 4910 /* PIO data out protocol. 4911 * send first data block. 4912 */ 4913 4914 /* ata_pio_sectors() might change the state 4915 * to HSM_ST_LAST. so, the state is changed here 4916 * before ata_pio_sectors(). 4917 */ 4918 ap->hsm_task_state = HSM_ST; 4919 ata_pio_sectors(qc); 4920 ata_altstatus(ap); /* flush */ 4921 } else 4922 /* send CDB */ 4923 atapi_send_cdb(ap, qc); 4924 4925 if (in_wq) 4926 spin_unlock_irqrestore(ap->lock, flags); 4927 4928 /* if polling, ata_pio_task() handles the rest. 4929 * otherwise, interrupt handler takes over from here. 4930 */ 4931 break; 4932 4933 case HSM_ST: 4934 /* complete command or read/write the data register */ 4935 if (qc->tf.protocol == ATA_PROT_ATAPI) { 4936 /* ATAPI PIO protocol */ 4937 if ((status & ATA_DRQ) == 0) { 4938 /* No more data to transfer or device error. 4939 * Device error will be tagged in HSM_ST_LAST. 4940 */ 4941 ap->hsm_task_state = HSM_ST_LAST; 4942 goto fsm_start; 4943 } 4944 4945 /* Device should not ask for data transfer (DRQ=1) 4946 * when it finds something wrong. 4947 * We ignore DRQ here and stop the HSM by 4948 * changing hsm_task_state to HSM_ST_ERR and 4949 * let the EH abort the command or reset the device. 4950 */ 4951 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4952 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 4953 "device error, dev_stat 0x%X\n", 4954 status); 4955 qc->err_mask |= AC_ERR_HSM; 4956 ap->hsm_task_state = HSM_ST_ERR; 4957 goto fsm_start; 4958 } 4959 4960 atapi_pio_bytes(qc); 4961 4962 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 4963 /* bad ireason reported by device */ 4964 goto fsm_start; 4965 4966 } else { 4967 /* ATA PIO protocol */ 4968 if (unlikely((status & ATA_DRQ) == 0)) { 4969 /* handle BSY=0, DRQ=0 as error */ 4970 if (likely(status & (ATA_ERR | ATA_DF))) 4971 /* device stops HSM for abort/error */ 4972 qc->err_mask |= AC_ERR_DEV; 4973 else 4974 /* HSM violation. Let EH handle this. 4975 * Phantom devices also trigger this 4976 * condition. Mark hint. 4977 */ 4978 qc->err_mask |= AC_ERR_HSM | 4979 AC_ERR_NODEV_HINT; 4980 4981 ap->hsm_task_state = HSM_ST_ERR; 4982 goto fsm_start; 4983 } 4984 4985 /* For PIO reads, some devices may ask for 4986 * data transfer (DRQ=1) alone with ERR=1. 4987 * We respect DRQ here and transfer one 4988 * block of junk data before changing the 4989 * hsm_task_state to HSM_ST_ERR. 4990 * 4991 * For PIO writes, ERR=1 DRQ=1 doesn't make 4992 * sense since the data block has been 4993 * transferred to the device. 4994 */ 4995 if (unlikely(status & (ATA_ERR | ATA_DF))) { 4996 /* data might be corrputed */ 4997 qc->err_mask |= AC_ERR_DEV; 4998 4999 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 5000 ata_pio_sectors(qc); 5001 ata_altstatus(ap); 5002 status = ata_wait_idle(ap); 5003 } 5004 5005 if (status & (ATA_BUSY | ATA_DRQ)) 5006 qc->err_mask |= AC_ERR_HSM; 5007 5008 /* ata_pio_sectors() might change the 5009 * state to HSM_ST_LAST. so, the state 5010 * is changed after ata_pio_sectors(). 5011 */ 5012 ap->hsm_task_state = HSM_ST_ERR; 5013 goto fsm_start; 5014 } 5015 5016 ata_pio_sectors(qc); 5017 5018 if (ap->hsm_task_state == HSM_ST_LAST && 5019 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 5020 /* all data read */ 5021 ata_altstatus(ap); 5022 status = ata_wait_idle(ap); 5023 goto fsm_start; 5024 } 5025 } 5026 5027 ata_altstatus(ap); /* flush */ 5028 poll_next = 1; 5029 break; 5030 5031 case HSM_ST_LAST: 5032 if (unlikely(!ata_ok(status))) { 5033 qc->err_mask |= __ac_err_mask(status); 5034 ap->hsm_task_state = HSM_ST_ERR; 5035 goto fsm_start; 5036 } 5037 5038 /* no more data to transfer */ 5039 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 5040 ap->print_id, qc->dev->devno, status); 5041 5042 WARN_ON(qc->err_mask); 5043 5044 ap->hsm_task_state = HSM_ST_IDLE; 5045 5046 /* complete taskfile transaction */ 5047 ata_hsm_qc_complete(qc, in_wq); 5048 5049 poll_next = 0; 5050 break; 5051 5052 case HSM_ST_ERR: 5053 /* make sure qc->err_mask is available to 5054 * know what's wrong and recover 5055 */ 5056 WARN_ON(qc->err_mask == 0); 5057 5058 ap->hsm_task_state = HSM_ST_IDLE; 5059 5060 /* complete taskfile transaction */ 5061 ata_hsm_qc_complete(qc, in_wq); 5062 5063 poll_next = 0; 5064 break; 5065 default: 5066 poll_next = 0; 5067 BUG(); 5068 } 5069 5070 return poll_next; 5071 } 5072 5073 static void ata_pio_task(struct work_struct *work) 5074 { 5075 struct ata_port *ap = 5076 container_of(work, struct ata_port, port_task.work); 5077 struct ata_queued_cmd *qc = ap->port_task_data; 5078 u8 status; 5079 int poll_next; 5080 5081 fsm_start: 5082 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 5083 5084 /* 5085 * This is purely heuristic. This is a fast path. 5086 * Sometimes when we enter, BSY will be cleared in 5087 * a chk-status or two. If not, the drive is probably seeking 5088 * or something. Snooze for a couple msecs, then 5089 * chk-status again. If still busy, queue delayed work. 5090 */ 5091 status = ata_busy_wait(ap, ATA_BUSY, 5); 5092 if (status & ATA_BUSY) { 5093 msleep(2); 5094 status = ata_busy_wait(ap, ATA_BUSY, 10); 5095 if (status & ATA_BUSY) { 5096 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 5097 return; 5098 } 5099 } 5100 5101 /* move the HSM */ 5102 poll_next = ata_hsm_move(ap, qc, status, 1); 5103 5104 /* another command or interrupt handler 5105 * may be running at this point. 5106 */ 5107 if (poll_next) 5108 goto fsm_start; 5109 } 5110 5111 /** 5112 * ata_qc_new - Request an available ATA command, for queueing 5113 * @ap: Port associated with device @dev 5114 * @dev: Device from whom we request an available command structure 5115 * 5116 * LOCKING: 5117 * None. 5118 */ 5119 5120 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 5121 { 5122 struct ata_queued_cmd *qc = NULL; 5123 unsigned int i; 5124 5125 /* no command while frozen */ 5126 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5127 return NULL; 5128 5129 /* the last tag is reserved for internal command. */ 5130 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 5131 if (!test_and_set_bit(i, &ap->qc_allocated)) { 5132 qc = __ata_qc_from_tag(ap, i); 5133 break; 5134 } 5135 5136 if (qc) 5137 qc->tag = i; 5138 5139 return qc; 5140 } 5141 5142 /** 5143 * ata_qc_new_init - Request an available ATA command, and initialize it 5144 * @dev: Device from whom we request an available command structure 5145 * 5146 * LOCKING: 5147 * None. 5148 */ 5149 5150 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5151 { 5152 struct ata_port *ap = dev->ap; 5153 struct ata_queued_cmd *qc; 5154 5155 qc = ata_qc_new(ap); 5156 if (qc) { 5157 qc->scsicmd = NULL; 5158 qc->ap = ap; 5159 qc->dev = dev; 5160 5161 ata_qc_reinit(qc); 5162 } 5163 5164 return qc; 5165 } 5166 5167 /** 5168 * ata_qc_free - free unused ata_queued_cmd 5169 * @qc: Command to complete 5170 * 5171 * Designed to free unused ata_queued_cmd object 5172 * in case something prevents using it. 5173 * 5174 * LOCKING: 5175 * spin_lock_irqsave(host lock) 5176 */ 5177 void ata_qc_free(struct ata_queued_cmd *qc) 5178 { 5179 struct ata_port *ap = qc->ap; 5180 unsigned int tag; 5181 5182 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5183 5184 qc->flags = 0; 5185 tag = qc->tag; 5186 if (likely(ata_tag_valid(tag))) { 5187 qc->tag = ATA_TAG_POISON; 5188 clear_bit(tag, &ap->qc_allocated); 5189 } 5190 } 5191 5192 void __ata_qc_complete(struct ata_queued_cmd *qc) 5193 { 5194 struct ata_port *ap = qc->ap; 5195 5196 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5197 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5198 5199 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5200 ata_sg_clean(qc); 5201 5202 /* command should be marked inactive atomically with qc completion */ 5203 if (qc->tf.protocol == ATA_PROT_NCQ) 5204 ap->sactive &= ~(1 << qc->tag); 5205 else 5206 ap->active_tag = ATA_TAG_POISON; 5207 5208 /* atapi: mark qc as inactive to prevent the interrupt handler 5209 * from completing the command twice later, before the error handler 5210 * is called. (when rc != 0 and atapi request sense is needed) 5211 */ 5212 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5213 ap->qc_active &= ~(1 << qc->tag); 5214 5215 /* call completion callback */ 5216 qc->complete_fn(qc); 5217 } 5218 5219 static void fill_result_tf(struct ata_queued_cmd *qc) 5220 { 5221 struct ata_port *ap = qc->ap; 5222 5223 qc->result_tf.flags = qc->tf.flags; 5224 ap->ops->tf_read(ap, &qc->result_tf); 5225 } 5226 5227 /** 5228 * ata_qc_complete - Complete an active ATA command 5229 * @qc: Command to complete 5230 * @err_mask: ATA Status register contents 5231 * 5232 * Indicate to the mid and upper layers that an ATA 5233 * command has completed, with either an ok or not-ok status. 5234 * 5235 * LOCKING: 5236 * spin_lock_irqsave(host lock) 5237 */ 5238 void ata_qc_complete(struct ata_queued_cmd *qc) 5239 { 5240 struct ata_port *ap = qc->ap; 5241 5242 /* XXX: New EH and old EH use different mechanisms to 5243 * synchronize EH with regular execution path. 5244 * 5245 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5246 * Normal execution path is responsible for not accessing a 5247 * failed qc. libata core enforces the rule by returning NULL 5248 * from ata_qc_from_tag() for failed qcs. 5249 * 5250 * Old EH depends on ata_qc_complete() nullifying completion 5251 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5252 * not synchronize with interrupt handler. Only PIO task is 5253 * taken care of. 5254 */ 5255 if (ap->ops->error_handler) { 5256 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5257 5258 if (unlikely(qc->err_mask)) 5259 qc->flags |= ATA_QCFLAG_FAILED; 5260 5261 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5262 if (!ata_tag_internal(qc->tag)) { 5263 /* always fill result TF for failed qc */ 5264 fill_result_tf(qc); 5265 ata_qc_schedule_eh(qc); 5266 return; 5267 } 5268 } 5269 5270 /* read result TF if requested */ 5271 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5272 fill_result_tf(qc); 5273 5274 __ata_qc_complete(qc); 5275 } else { 5276 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5277 return; 5278 5279 /* read result TF if failed or requested */ 5280 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5281 fill_result_tf(qc); 5282 5283 __ata_qc_complete(qc); 5284 } 5285 } 5286 5287 /** 5288 * ata_qc_complete_multiple - Complete multiple qcs successfully 5289 * @ap: port in question 5290 * @qc_active: new qc_active mask 5291 * @finish_qc: LLDD callback invoked before completing a qc 5292 * 5293 * Complete in-flight commands. This functions is meant to be 5294 * called from low-level driver's interrupt routine to complete 5295 * requests normally. ap->qc_active and @qc_active is compared 5296 * and commands are completed accordingly. 5297 * 5298 * LOCKING: 5299 * spin_lock_irqsave(host lock) 5300 * 5301 * RETURNS: 5302 * Number of completed commands on success, -errno otherwise. 5303 */ 5304 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5305 void (*finish_qc)(struct ata_queued_cmd *)) 5306 { 5307 int nr_done = 0; 5308 u32 done_mask; 5309 int i; 5310 5311 done_mask = ap->qc_active ^ qc_active; 5312 5313 if (unlikely(done_mask & qc_active)) { 5314 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5315 "(%08x->%08x)\n", ap->qc_active, qc_active); 5316 return -EINVAL; 5317 } 5318 5319 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5320 struct ata_queued_cmd *qc; 5321 5322 if (!(done_mask & (1 << i))) 5323 continue; 5324 5325 if ((qc = ata_qc_from_tag(ap, i))) { 5326 if (finish_qc) 5327 finish_qc(qc); 5328 ata_qc_complete(qc); 5329 nr_done++; 5330 } 5331 } 5332 5333 return nr_done; 5334 } 5335 5336 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5337 { 5338 struct ata_port *ap = qc->ap; 5339 5340 switch (qc->tf.protocol) { 5341 case ATA_PROT_NCQ: 5342 case ATA_PROT_DMA: 5343 case ATA_PROT_ATAPI_DMA: 5344 return 1; 5345 5346 case ATA_PROT_ATAPI: 5347 case ATA_PROT_PIO: 5348 if (ap->flags & ATA_FLAG_PIO_DMA) 5349 return 1; 5350 5351 /* fall through */ 5352 5353 default: 5354 return 0; 5355 } 5356 5357 /* never reached */ 5358 } 5359 5360 /** 5361 * ata_qc_issue - issue taskfile to device 5362 * @qc: command to issue to device 5363 * 5364 * Prepare an ATA command to submission to device. 5365 * This includes mapping the data into a DMA-able 5366 * area, filling in the S/G table, and finally 5367 * writing the taskfile to hardware, starting the command. 5368 * 5369 * LOCKING: 5370 * spin_lock_irqsave(host lock) 5371 */ 5372 void ata_qc_issue(struct ata_queued_cmd *qc) 5373 { 5374 struct ata_port *ap = qc->ap; 5375 5376 /* Make sure only one non-NCQ command is outstanding. The 5377 * check is skipped for old EH because it reuses active qc to 5378 * request ATAPI sense. 5379 */ 5380 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); 5381 5382 if (qc->tf.protocol == ATA_PROT_NCQ) { 5383 WARN_ON(ap->sactive & (1 << qc->tag)); 5384 ap->sactive |= 1 << qc->tag; 5385 } else { 5386 WARN_ON(ap->sactive); 5387 ap->active_tag = qc->tag; 5388 } 5389 5390 qc->flags |= ATA_QCFLAG_ACTIVE; 5391 ap->qc_active |= 1 << qc->tag; 5392 5393 if (ata_should_dma_map(qc)) { 5394 if (qc->flags & ATA_QCFLAG_SG) { 5395 if (ata_sg_setup(qc)) 5396 goto sg_err; 5397 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5398 if (ata_sg_setup_one(qc)) 5399 goto sg_err; 5400 } 5401 } else { 5402 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5403 } 5404 5405 ap->ops->qc_prep(qc); 5406 5407 qc->err_mask |= ap->ops->qc_issue(qc); 5408 if (unlikely(qc->err_mask)) 5409 goto err; 5410 return; 5411 5412 sg_err: 5413 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5414 qc->err_mask |= AC_ERR_SYSTEM; 5415 err: 5416 ata_qc_complete(qc); 5417 } 5418 5419 /** 5420 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5421 * @qc: command to issue to device 5422 * 5423 * Using various libata functions and hooks, this function 5424 * starts an ATA command. ATA commands are grouped into 5425 * classes called "protocols", and issuing each type of protocol 5426 * is slightly different. 5427 * 5428 * May be used as the qc_issue() entry in ata_port_operations. 5429 * 5430 * LOCKING: 5431 * spin_lock_irqsave(host lock) 5432 * 5433 * RETURNS: 5434 * Zero on success, AC_ERR_* mask on failure 5435 */ 5436 5437 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5438 { 5439 struct ata_port *ap = qc->ap; 5440 5441 /* Use polling pio if the LLD doesn't handle 5442 * interrupt driven pio and atapi CDB interrupt. 5443 */ 5444 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5445 switch (qc->tf.protocol) { 5446 case ATA_PROT_PIO: 5447 case ATA_PROT_NODATA: 5448 case ATA_PROT_ATAPI: 5449 case ATA_PROT_ATAPI_NODATA: 5450 qc->tf.flags |= ATA_TFLAG_POLLING; 5451 break; 5452 case ATA_PROT_ATAPI_DMA: 5453 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5454 /* see ata_dma_blacklisted() */ 5455 BUG(); 5456 break; 5457 default: 5458 break; 5459 } 5460 } 5461 5462 /* select the device */ 5463 ata_dev_select(ap, qc->dev->devno, 1, 0); 5464 5465 /* start the command */ 5466 switch (qc->tf.protocol) { 5467 case ATA_PROT_NODATA: 5468 if (qc->tf.flags & ATA_TFLAG_POLLING) 5469 ata_qc_set_polling(qc); 5470 5471 ata_tf_to_host(ap, &qc->tf); 5472 ap->hsm_task_state = HSM_ST_LAST; 5473 5474 if (qc->tf.flags & ATA_TFLAG_POLLING) 5475 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5476 5477 break; 5478 5479 case ATA_PROT_DMA: 5480 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5481 5482 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5483 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5484 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5485 ap->hsm_task_state = HSM_ST_LAST; 5486 break; 5487 5488 case ATA_PROT_PIO: 5489 if (qc->tf.flags & ATA_TFLAG_POLLING) 5490 ata_qc_set_polling(qc); 5491 5492 ata_tf_to_host(ap, &qc->tf); 5493 5494 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5495 /* PIO data out protocol */ 5496 ap->hsm_task_state = HSM_ST_FIRST; 5497 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5498 5499 /* always send first data block using 5500 * the ata_pio_task() codepath. 5501 */ 5502 } else { 5503 /* PIO data in protocol */ 5504 ap->hsm_task_state = HSM_ST; 5505 5506 if (qc->tf.flags & ATA_TFLAG_POLLING) 5507 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5508 5509 /* if polling, ata_pio_task() handles the rest. 5510 * otherwise, interrupt handler takes over from here. 5511 */ 5512 } 5513 5514 break; 5515 5516 case ATA_PROT_ATAPI: 5517 case ATA_PROT_ATAPI_NODATA: 5518 if (qc->tf.flags & ATA_TFLAG_POLLING) 5519 ata_qc_set_polling(qc); 5520 5521 ata_tf_to_host(ap, &qc->tf); 5522 5523 ap->hsm_task_state = HSM_ST_FIRST; 5524 5525 /* send cdb by polling if no cdb interrupt */ 5526 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5527 (qc->tf.flags & ATA_TFLAG_POLLING)) 5528 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5529 break; 5530 5531 case ATA_PROT_ATAPI_DMA: 5532 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5533 5534 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5535 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5536 ap->hsm_task_state = HSM_ST_FIRST; 5537 5538 /* send cdb by polling if no cdb interrupt */ 5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5540 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5541 break; 5542 5543 default: 5544 WARN_ON(1); 5545 return AC_ERR_SYSTEM; 5546 } 5547 5548 return 0; 5549 } 5550 5551 /** 5552 * ata_host_intr - Handle host interrupt for given (port, task) 5553 * @ap: Port on which interrupt arrived (possibly...) 5554 * @qc: Taskfile currently active in engine 5555 * 5556 * Handle host interrupt for given queued command. Currently, 5557 * only DMA interrupts are handled. All other commands are 5558 * handled via polling with interrupts disabled (nIEN bit). 5559 * 5560 * LOCKING: 5561 * spin_lock_irqsave(host lock) 5562 * 5563 * RETURNS: 5564 * One if interrupt was handled, zero if not (shared irq). 5565 */ 5566 5567 inline unsigned int ata_host_intr (struct ata_port *ap, 5568 struct ata_queued_cmd *qc) 5569 { 5570 struct ata_eh_info *ehi = &ap->eh_info; 5571 u8 status, host_stat = 0; 5572 5573 VPRINTK("ata%u: protocol %d task_state %d\n", 5574 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5575 5576 /* Check whether we are expecting interrupt in this state */ 5577 switch (ap->hsm_task_state) { 5578 case HSM_ST_FIRST: 5579 /* Some pre-ATAPI-4 devices assert INTRQ 5580 * at this state when ready to receive CDB. 5581 */ 5582 5583 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5584 * The flag was turned on only for atapi devices. 5585 * No need to check is_atapi_taskfile(&qc->tf) again. 5586 */ 5587 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5588 goto idle_irq; 5589 break; 5590 case HSM_ST_LAST: 5591 if (qc->tf.protocol == ATA_PROT_DMA || 5592 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5593 /* check status of DMA engine */ 5594 host_stat = ap->ops->bmdma_status(ap); 5595 VPRINTK("ata%u: host_stat 0x%X\n", 5596 ap->print_id, host_stat); 5597 5598 /* if it's not our irq... */ 5599 if (!(host_stat & ATA_DMA_INTR)) 5600 goto idle_irq; 5601 5602 /* before we do anything else, clear DMA-Start bit */ 5603 ap->ops->bmdma_stop(qc); 5604 5605 if (unlikely(host_stat & ATA_DMA_ERR)) { 5606 /* error when transfering data to/from memory */ 5607 qc->err_mask |= AC_ERR_HOST_BUS; 5608 ap->hsm_task_state = HSM_ST_ERR; 5609 } 5610 } 5611 break; 5612 case HSM_ST: 5613 break; 5614 default: 5615 goto idle_irq; 5616 } 5617 5618 /* check altstatus */ 5619 status = ata_altstatus(ap); 5620 if (status & ATA_BUSY) 5621 goto idle_irq; 5622 5623 /* check main status, clearing INTRQ */ 5624 status = ata_chk_status(ap); 5625 if (unlikely(status & ATA_BUSY)) 5626 goto idle_irq; 5627 5628 /* ack bmdma irq events */ 5629 ap->ops->irq_clear(ap); 5630 5631 ata_hsm_move(ap, qc, status, 0); 5632 5633 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5634 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5635 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5636 5637 return 1; /* irq handled */ 5638 5639 idle_irq: 5640 ap->stats.idle_irq++; 5641 5642 #ifdef ATA_IRQ_TRAP 5643 if ((ap->stats.idle_irq % 1000) == 0) { 5644 ap->ops->irq_ack(ap, 0); /* debug trap */ 5645 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5646 return 1; 5647 } 5648 #endif 5649 return 0; /* irq not handled */ 5650 } 5651 5652 /** 5653 * ata_interrupt - Default ATA host interrupt handler 5654 * @irq: irq line (unused) 5655 * @dev_instance: pointer to our ata_host information structure 5656 * 5657 * Default interrupt handler for PCI IDE devices. Calls 5658 * ata_host_intr() for each port that is not disabled. 5659 * 5660 * LOCKING: 5661 * Obtains host lock during operation. 5662 * 5663 * RETURNS: 5664 * IRQ_NONE or IRQ_HANDLED. 5665 */ 5666 5667 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5668 { 5669 struct ata_host *host = dev_instance; 5670 unsigned int i; 5671 unsigned int handled = 0; 5672 unsigned long flags; 5673 5674 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 5675 spin_lock_irqsave(&host->lock, flags); 5676 5677 for (i = 0; i < host->n_ports; i++) { 5678 struct ata_port *ap; 5679 5680 ap = host->ports[i]; 5681 if (ap && 5682 !(ap->flags & ATA_FLAG_DISABLED)) { 5683 struct ata_queued_cmd *qc; 5684 5685 qc = ata_qc_from_tag(ap, ap->active_tag); 5686 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 5687 (qc->flags & ATA_QCFLAG_ACTIVE)) 5688 handled |= ata_host_intr(ap, qc); 5689 } 5690 } 5691 5692 spin_unlock_irqrestore(&host->lock, flags); 5693 5694 return IRQ_RETVAL(handled); 5695 } 5696 5697 /** 5698 * sata_scr_valid - test whether SCRs are accessible 5699 * @ap: ATA port to test SCR accessibility for 5700 * 5701 * Test whether SCRs are accessible for @ap. 5702 * 5703 * LOCKING: 5704 * None. 5705 * 5706 * RETURNS: 5707 * 1 if SCRs are accessible, 0 otherwise. 5708 */ 5709 int sata_scr_valid(struct ata_port *ap) 5710 { 5711 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5712 } 5713 5714 /** 5715 * sata_scr_read - read SCR register of the specified port 5716 * @ap: ATA port to read SCR for 5717 * @reg: SCR to read 5718 * @val: Place to store read value 5719 * 5720 * Read SCR register @reg of @ap into *@val. This function is 5721 * guaranteed to succeed if the cable type of the port is SATA 5722 * and the port implements ->scr_read. 5723 * 5724 * LOCKING: 5725 * None. 5726 * 5727 * RETURNS: 5728 * 0 on success, negative errno on failure. 5729 */ 5730 int sata_scr_read(struct ata_port *ap, int reg, u32 *val) 5731 { 5732 if (sata_scr_valid(ap)) { 5733 *val = ap->ops->scr_read(ap, reg); 5734 return 0; 5735 } 5736 return -EOPNOTSUPP; 5737 } 5738 5739 /** 5740 * sata_scr_write - write SCR register of the specified port 5741 * @ap: ATA port to write SCR for 5742 * @reg: SCR to write 5743 * @val: value to write 5744 * 5745 * Write @val to SCR register @reg of @ap. This function is 5746 * guaranteed to succeed if the cable type of the port is SATA 5747 * and the port implements ->scr_read. 5748 * 5749 * LOCKING: 5750 * None. 5751 * 5752 * RETURNS: 5753 * 0 on success, negative errno on failure. 5754 */ 5755 int sata_scr_write(struct ata_port *ap, int reg, u32 val) 5756 { 5757 if (sata_scr_valid(ap)) { 5758 ap->ops->scr_write(ap, reg, val); 5759 return 0; 5760 } 5761 return -EOPNOTSUPP; 5762 } 5763 5764 /** 5765 * sata_scr_write_flush - write SCR register of the specified port and flush 5766 * @ap: ATA port to write SCR for 5767 * @reg: SCR to write 5768 * @val: value to write 5769 * 5770 * This function is identical to sata_scr_write() except that this 5771 * function performs flush after writing to the register. 5772 * 5773 * LOCKING: 5774 * None. 5775 * 5776 * RETURNS: 5777 * 0 on success, negative errno on failure. 5778 */ 5779 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) 5780 { 5781 if (sata_scr_valid(ap)) { 5782 ap->ops->scr_write(ap, reg, val); 5783 ap->ops->scr_read(ap, reg); 5784 return 0; 5785 } 5786 return -EOPNOTSUPP; 5787 } 5788 5789 /** 5790 * ata_port_online - test whether the given port is online 5791 * @ap: ATA port to test 5792 * 5793 * Test whether @ap is online. Note that this function returns 0 5794 * if online status of @ap cannot be obtained, so 5795 * ata_port_online(ap) != !ata_port_offline(ap). 5796 * 5797 * LOCKING: 5798 * None. 5799 * 5800 * RETURNS: 5801 * 1 if the port online status is available and online. 5802 */ 5803 int ata_port_online(struct ata_port *ap) 5804 { 5805 u32 sstatus; 5806 5807 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) 5808 return 1; 5809 return 0; 5810 } 5811 5812 /** 5813 * ata_port_offline - test whether the given port is offline 5814 * @ap: ATA port to test 5815 * 5816 * Test whether @ap is offline. Note that this function returns 5817 * 0 if offline status of @ap cannot be obtained, so 5818 * ata_port_online(ap) != !ata_port_offline(ap). 5819 * 5820 * LOCKING: 5821 * None. 5822 * 5823 * RETURNS: 5824 * 1 if the port offline status is available and offline. 5825 */ 5826 int ata_port_offline(struct ata_port *ap) 5827 { 5828 u32 sstatus; 5829 5830 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) 5831 return 1; 5832 return 0; 5833 } 5834 5835 int ata_flush_cache(struct ata_device *dev) 5836 { 5837 unsigned int err_mask; 5838 u8 cmd; 5839 5840 if (!ata_try_flush_cache(dev)) 5841 return 0; 5842 5843 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 5844 cmd = ATA_CMD_FLUSH_EXT; 5845 else 5846 cmd = ATA_CMD_FLUSH; 5847 5848 err_mask = ata_do_simple_cmd(dev, cmd); 5849 if (err_mask) { 5850 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 5851 return -EIO; 5852 } 5853 5854 return 0; 5855 } 5856 5857 #ifdef CONFIG_PM 5858 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5859 unsigned int action, unsigned int ehi_flags, 5860 int wait) 5861 { 5862 unsigned long flags; 5863 int i, rc; 5864 5865 for (i = 0; i < host->n_ports; i++) { 5866 struct ata_port *ap = host->ports[i]; 5867 5868 /* Previous resume operation might still be in 5869 * progress. Wait for PM_PENDING to clear. 5870 */ 5871 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5872 ata_port_wait_eh(ap); 5873 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5874 } 5875 5876 /* request PM ops to EH */ 5877 spin_lock_irqsave(ap->lock, flags); 5878 5879 ap->pm_mesg = mesg; 5880 if (wait) { 5881 rc = 0; 5882 ap->pm_result = &rc; 5883 } 5884 5885 ap->pflags |= ATA_PFLAG_PM_PENDING; 5886 ap->eh_info.action |= action; 5887 ap->eh_info.flags |= ehi_flags; 5888 5889 ata_port_schedule_eh(ap); 5890 5891 spin_unlock_irqrestore(ap->lock, flags); 5892 5893 /* wait and check result */ 5894 if (wait) { 5895 ata_port_wait_eh(ap); 5896 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5897 if (rc) 5898 return rc; 5899 } 5900 } 5901 5902 return 0; 5903 } 5904 5905 /** 5906 * ata_host_suspend - suspend host 5907 * @host: host to suspend 5908 * @mesg: PM message 5909 * 5910 * Suspend @host. Actual operation is performed by EH. This 5911 * function requests EH to perform PM operations and waits for EH 5912 * to finish. 5913 * 5914 * LOCKING: 5915 * Kernel thread context (may sleep). 5916 * 5917 * RETURNS: 5918 * 0 on success, -errno on failure. 5919 */ 5920 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5921 { 5922 int rc; 5923 5924 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5925 if (rc == 0) 5926 host->dev->power.power_state = mesg; 5927 return rc; 5928 } 5929 5930 /** 5931 * ata_host_resume - resume host 5932 * @host: host to resume 5933 * 5934 * Resume @host. Actual operation is performed by EH. This 5935 * function requests EH to perform PM operations and returns. 5936 * Note that all resume operations are performed parallely. 5937 * 5938 * LOCKING: 5939 * Kernel thread context (may sleep). 5940 */ 5941 void ata_host_resume(struct ata_host *host) 5942 { 5943 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 5944 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5945 host->dev->power.power_state = PMSG_ON; 5946 } 5947 #endif 5948 5949 /** 5950 * ata_port_start - Set port up for dma. 5951 * @ap: Port to initialize 5952 * 5953 * Called just after data structures for each port are 5954 * initialized. Allocates space for PRD table. 5955 * 5956 * May be used as the port_start() entry in ata_port_operations. 5957 * 5958 * LOCKING: 5959 * Inherited from caller. 5960 */ 5961 int ata_port_start(struct ata_port *ap) 5962 { 5963 struct device *dev = ap->dev; 5964 int rc; 5965 5966 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5967 GFP_KERNEL); 5968 if (!ap->prd) 5969 return -ENOMEM; 5970 5971 rc = ata_pad_alloc(ap, dev); 5972 if (rc) 5973 return rc; 5974 5975 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 5976 (unsigned long long)ap->prd_dma); 5977 return 0; 5978 } 5979 5980 /** 5981 * ata_dev_init - Initialize an ata_device structure 5982 * @dev: Device structure to initialize 5983 * 5984 * Initialize @dev in preparation for probing. 5985 * 5986 * LOCKING: 5987 * Inherited from caller. 5988 */ 5989 void ata_dev_init(struct ata_device *dev) 5990 { 5991 struct ata_port *ap = dev->ap; 5992 unsigned long flags; 5993 5994 /* SATA spd limit is bound to the first device */ 5995 ap->sata_spd_limit = ap->hw_sata_spd_limit; 5996 5997 /* High bits of dev->flags are used to record warm plug 5998 * requests which occur asynchronously. Synchronize using 5999 * host lock. 6000 */ 6001 spin_lock_irqsave(ap->lock, flags); 6002 dev->flags &= ~ATA_DFLAG_INIT_MASK; 6003 spin_unlock_irqrestore(ap->lock, flags); 6004 6005 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 6006 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 6007 dev->pio_mask = UINT_MAX; 6008 dev->mwdma_mask = UINT_MAX; 6009 dev->udma_mask = UINT_MAX; 6010 } 6011 6012 /** 6013 * ata_port_alloc - allocate and initialize basic ATA port resources 6014 * @host: ATA host this allocated port belongs to 6015 * 6016 * Allocate and initialize basic ATA port resources. 6017 * 6018 * RETURNS: 6019 * Allocate ATA port on success, NULL on failure. 6020 * 6021 * LOCKING: 6022 * Inherited from calling layer (may sleep). 6023 */ 6024 struct ata_port *ata_port_alloc(struct ata_host *host) 6025 { 6026 struct ata_port *ap; 6027 unsigned int i; 6028 6029 DPRINTK("ENTER\n"); 6030 6031 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 6032 if (!ap) 6033 return NULL; 6034 6035 ap->pflags |= ATA_PFLAG_INITIALIZING; 6036 ap->lock = &host->lock; 6037 ap->flags = ATA_FLAG_DISABLED; 6038 ap->print_id = -1; 6039 ap->ctl = ATA_DEVCTL_OBS; 6040 ap->host = host; 6041 ap->dev = host->dev; 6042 6043 ap->hw_sata_spd_limit = UINT_MAX; 6044 ap->active_tag = ATA_TAG_POISON; 6045 ap->last_ctl = 0xFF; 6046 6047 #if defined(ATA_VERBOSE_DEBUG) 6048 /* turn on all debugging levels */ 6049 ap->msg_enable = 0x00FF; 6050 #elif defined(ATA_DEBUG) 6051 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6052 #else 6053 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6054 #endif 6055 6056 INIT_DELAYED_WORK(&ap->port_task, NULL); 6057 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6058 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6059 INIT_LIST_HEAD(&ap->eh_done_q); 6060 init_waitqueue_head(&ap->eh_wait_q); 6061 6062 ap->cbl = ATA_CBL_NONE; 6063 6064 for (i = 0; i < ATA_MAX_DEVICES; i++) { 6065 struct ata_device *dev = &ap->device[i]; 6066 dev->ap = ap; 6067 dev->devno = i; 6068 ata_dev_init(dev); 6069 } 6070 6071 #ifdef ATA_IRQ_TRAP 6072 ap->stats.unhandled_irq = 1; 6073 ap->stats.idle_irq = 1; 6074 #endif 6075 return ap; 6076 } 6077 6078 static void ata_host_release(struct device *gendev, void *res) 6079 { 6080 struct ata_host *host = dev_get_drvdata(gendev); 6081 int i; 6082 6083 for (i = 0; i < host->n_ports; i++) { 6084 struct ata_port *ap = host->ports[i]; 6085 6086 if (!ap) 6087 continue; 6088 6089 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 6090 ap->ops->port_stop(ap); 6091 } 6092 6093 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 6094 host->ops->host_stop(host); 6095 6096 for (i = 0; i < host->n_ports; i++) { 6097 struct ata_port *ap = host->ports[i]; 6098 6099 if (!ap) 6100 continue; 6101 6102 if (ap->scsi_host) 6103 scsi_host_put(ap->scsi_host); 6104 6105 kfree(ap); 6106 host->ports[i] = NULL; 6107 } 6108 6109 dev_set_drvdata(gendev, NULL); 6110 } 6111 6112 /** 6113 * ata_host_alloc - allocate and init basic ATA host resources 6114 * @dev: generic device this host is associated with 6115 * @max_ports: maximum number of ATA ports associated with this host 6116 * 6117 * Allocate and initialize basic ATA host resources. LLD calls 6118 * this function to allocate a host, initializes it fully and 6119 * attaches it using ata_host_register(). 6120 * 6121 * @max_ports ports are allocated and host->n_ports is 6122 * initialized to @max_ports. The caller is allowed to decrease 6123 * host->n_ports before calling ata_host_register(). The unused 6124 * ports will be automatically freed on registration. 6125 * 6126 * RETURNS: 6127 * Allocate ATA host on success, NULL on failure. 6128 * 6129 * LOCKING: 6130 * Inherited from calling layer (may sleep). 6131 */ 6132 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6133 { 6134 struct ata_host *host; 6135 size_t sz; 6136 int i; 6137 6138 DPRINTK("ENTER\n"); 6139 6140 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6141 return NULL; 6142 6143 /* alloc a container for our list of ATA ports (buses) */ 6144 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6145 /* alloc a container for our list of ATA ports (buses) */ 6146 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6147 if (!host) 6148 goto err_out; 6149 6150 devres_add(dev, host); 6151 dev_set_drvdata(dev, host); 6152 6153 spin_lock_init(&host->lock); 6154 host->dev = dev; 6155 host->n_ports = max_ports; 6156 6157 /* allocate ports bound to this host */ 6158 for (i = 0; i < max_ports; i++) { 6159 struct ata_port *ap; 6160 6161 ap = ata_port_alloc(host); 6162 if (!ap) 6163 goto err_out; 6164 6165 ap->port_no = i; 6166 host->ports[i] = ap; 6167 } 6168 6169 devres_remove_group(dev, NULL); 6170 return host; 6171 6172 err_out: 6173 devres_release_group(dev, NULL); 6174 return NULL; 6175 } 6176 6177 /** 6178 * ata_host_alloc_pinfo - alloc host and init with port_info array 6179 * @dev: generic device this host is associated with 6180 * @ppi: array of ATA port_info to initialize host with 6181 * @n_ports: number of ATA ports attached to this host 6182 * 6183 * Allocate ATA host and initialize with info from @ppi. If NULL 6184 * terminated, @ppi may contain fewer entries than @n_ports. The 6185 * last entry will be used for the remaining ports. 6186 * 6187 * RETURNS: 6188 * Allocate ATA host on success, NULL on failure. 6189 * 6190 * LOCKING: 6191 * Inherited from calling layer (may sleep). 6192 */ 6193 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6194 const struct ata_port_info * const * ppi, 6195 int n_ports) 6196 { 6197 const struct ata_port_info *pi; 6198 struct ata_host *host; 6199 int i, j; 6200 6201 host = ata_host_alloc(dev, n_ports); 6202 if (!host) 6203 return NULL; 6204 6205 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6206 struct ata_port *ap = host->ports[i]; 6207 6208 if (ppi[j]) 6209 pi = ppi[j++]; 6210 6211 ap->pio_mask = pi->pio_mask; 6212 ap->mwdma_mask = pi->mwdma_mask; 6213 ap->udma_mask = pi->udma_mask; 6214 ap->flags |= pi->flags; 6215 ap->ops = pi->port_ops; 6216 6217 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6218 host->ops = pi->port_ops; 6219 if (!host->private_data && pi->private_data) 6220 host->private_data = pi->private_data; 6221 } 6222 6223 return host; 6224 } 6225 6226 /** 6227 * ata_host_start - start and freeze ports of an ATA host 6228 * @host: ATA host to start ports for 6229 * 6230 * Start and then freeze ports of @host. Started status is 6231 * recorded in host->flags, so this function can be called 6232 * multiple times. Ports are guaranteed to get started only 6233 * once. If host->ops isn't initialized yet, its set to the 6234 * first non-dummy port ops. 6235 * 6236 * LOCKING: 6237 * Inherited from calling layer (may sleep). 6238 * 6239 * RETURNS: 6240 * 0 if all ports are started successfully, -errno otherwise. 6241 */ 6242 int ata_host_start(struct ata_host *host) 6243 { 6244 int i, rc; 6245 6246 if (host->flags & ATA_HOST_STARTED) 6247 return 0; 6248 6249 for (i = 0; i < host->n_ports; i++) { 6250 struct ata_port *ap = host->ports[i]; 6251 6252 if (!host->ops && !ata_port_is_dummy(ap)) 6253 host->ops = ap->ops; 6254 6255 if (ap->ops->port_start) { 6256 rc = ap->ops->port_start(ap); 6257 if (rc) { 6258 ata_port_printk(ap, KERN_ERR, "failed to " 6259 "start port (errno=%d)\n", rc); 6260 goto err_out; 6261 } 6262 } 6263 6264 ata_eh_freeze_port(ap); 6265 } 6266 6267 host->flags |= ATA_HOST_STARTED; 6268 return 0; 6269 6270 err_out: 6271 while (--i >= 0) { 6272 struct ata_port *ap = host->ports[i]; 6273 6274 if (ap->ops->port_stop) 6275 ap->ops->port_stop(ap); 6276 } 6277 return rc; 6278 } 6279 6280 /** 6281 * ata_sas_host_init - Initialize a host struct 6282 * @host: host to initialize 6283 * @dev: device host is attached to 6284 * @flags: host flags 6285 * @ops: port_ops 6286 * 6287 * LOCKING: 6288 * PCI/etc. bus probe sem. 6289 * 6290 */ 6291 /* KILLME - the only user left is ipr */ 6292 void ata_host_init(struct ata_host *host, struct device *dev, 6293 unsigned long flags, const struct ata_port_operations *ops) 6294 { 6295 spin_lock_init(&host->lock); 6296 host->dev = dev; 6297 host->flags = flags; 6298 host->ops = ops; 6299 } 6300 6301 /** 6302 * ata_host_register - register initialized ATA host 6303 * @host: ATA host to register 6304 * @sht: template for SCSI host 6305 * 6306 * Register initialized ATA host. @host is allocated using 6307 * ata_host_alloc() and fully initialized by LLD. This function 6308 * starts ports, registers @host with ATA and SCSI layers and 6309 * probe registered devices. 6310 * 6311 * LOCKING: 6312 * Inherited from calling layer (may sleep). 6313 * 6314 * RETURNS: 6315 * 0 on success, -errno otherwise. 6316 */ 6317 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6318 { 6319 int i, rc; 6320 6321 /* host must have been started */ 6322 if (!(host->flags & ATA_HOST_STARTED)) { 6323 dev_printk(KERN_ERR, host->dev, 6324 "BUG: trying to register unstarted host\n"); 6325 WARN_ON(1); 6326 return -EINVAL; 6327 } 6328 6329 /* Blow away unused ports. This happens when LLD can't 6330 * determine the exact number of ports to allocate at 6331 * allocation time. 6332 */ 6333 for (i = host->n_ports; host->ports[i]; i++) 6334 kfree(host->ports[i]); 6335 6336 /* give ports names and add SCSI hosts */ 6337 for (i = 0; i < host->n_ports; i++) 6338 host->ports[i]->print_id = ata_print_id++; 6339 6340 rc = ata_scsi_add_hosts(host, sht); 6341 if (rc) 6342 return rc; 6343 6344 /* associate with ACPI nodes */ 6345 ata_acpi_associate(host); 6346 6347 /* set cable, sata_spd_limit and report */ 6348 for (i = 0; i < host->n_ports; i++) { 6349 struct ata_port *ap = host->ports[i]; 6350 int irq_line; 6351 u32 scontrol; 6352 unsigned long xfer_mask; 6353 6354 /* set SATA cable type if still unset */ 6355 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6356 ap->cbl = ATA_CBL_SATA; 6357 6358 /* init sata_spd_limit to the current value */ 6359 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { 6360 int spd = (scontrol >> 4) & 0xf; 6361 if (spd) 6362 ap->hw_sata_spd_limit &= (1 << spd) - 1; 6363 } 6364 ap->sata_spd_limit = ap->hw_sata_spd_limit; 6365 6366 /* report the secondary IRQ for second channel legacy */ 6367 irq_line = host->irq; 6368 if (i == 1 && host->irq2) 6369 irq_line = host->irq2; 6370 6371 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6372 ap->udma_mask); 6373 6374 /* print per-port info to dmesg */ 6375 if (!ata_port_is_dummy(ap)) 6376 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p " 6377 "ctl 0x%p bmdma 0x%p irq %d\n", 6378 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6379 ata_mode_string(xfer_mask), 6380 ap->ioaddr.cmd_addr, 6381 ap->ioaddr.ctl_addr, 6382 ap->ioaddr.bmdma_addr, 6383 irq_line); 6384 else 6385 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6386 } 6387 6388 /* perform each probe synchronously */ 6389 DPRINTK("probe begin\n"); 6390 for (i = 0; i < host->n_ports; i++) { 6391 struct ata_port *ap = host->ports[i]; 6392 int rc; 6393 6394 /* probe */ 6395 if (ap->ops->error_handler) { 6396 struct ata_eh_info *ehi = &ap->eh_info; 6397 unsigned long flags; 6398 6399 ata_port_probe(ap); 6400 6401 /* kick EH for boot probing */ 6402 spin_lock_irqsave(ap->lock, flags); 6403 6404 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; 6405 ehi->action |= ATA_EH_SOFTRESET; 6406 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6407 6408 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6409 ap->pflags |= ATA_PFLAG_LOADING; 6410 ata_port_schedule_eh(ap); 6411 6412 spin_unlock_irqrestore(ap->lock, flags); 6413 6414 /* wait for EH to finish */ 6415 ata_port_wait_eh(ap); 6416 } else { 6417 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6418 rc = ata_bus_probe(ap); 6419 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6420 6421 if (rc) { 6422 /* FIXME: do something useful here? 6423 * Current libata behavior will 6424 * tear down everything when 6425 * the module is removed 6426 * or the h/w is unplugged. 6427 */ 6428 } 6429 } 6430 } 6431 6432 /* probes are done, now scan each port's disk(s) */ 6433 DPRINTK("host probe begin\n"); 6434 for (i = 0; i < host->n_ports; i++) { 6435 struct ata_port *ap = host->ports[i]; 6436 6437 ata_scsi_scan_host(ap); 6438 } 6439 6440 return 0; 6441 } 6442 6443 /** 6444 * ata_host_activate - start host, request IRQ and register it 6445 * @host: target ATA host 6446 * @irq: IRQ to request 6447 * @irq_handler: irq_handler used when requesting IRQ 6448 * @irq_flags: irq_flags used when requesting IRQ 6449 * @sht: scsi_host_template to use when registering the host 6450 * 6451 * After allocating an ATA host and initializing it, most libata 6452 * LLDs perform three steps to activate the host - start host, 6453 * request IRQ and register it. This helper takes necessasry 6454 * arguments and performs the three steps in one go. 6455 * 6456 * LOCKING: 6457 * Inherited from calling layer (may sleep). 6458 * 6459 * RETURNS: 6460 * 0 on success, -errno otherwise. 6461 */ 6462 int ata_host_activate(struct ata_host *host, int irq, 6463 irq_handler_t irq_handler, unsigned long irq_flags, 6464 struct scsi_host_template *sht) 6465 { 6466 int rc; 6467 6468 rc = ata_host_start(host); 6469 if (rc) 6470 return rc; 6471 6472 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6473 dev_driver_string(host->dev), host); 6474 if (rc) 6475 return rc; 6476 6477 /* Used to print device info at probe */ 6478 host->irq = irq; 6479 6480 rc = ata_host_register(host, sht); 6481 /* if failed, just free the IRQ and leave ports alone */ 6482 if (rc) 6483 devm_free_irq(host->dev, irq, host); 6484 6485 return rc; 6486 } 6487 6488 /** 6489 * ata_port_detach - Detach ATA port in prepration of device removal 6490 * @ap: ATA port to be detached 6491 * 6492 * Detach all ATA devices and the associated SCSI devices of @ap; 6493 * then, remove the associated SCSI host. @ap is guaranteed to 6494 * be quiescent on return from this function. 6495 * 6496 * LOCKING: 6497 * Kernel thread context (may sleep). 6498 */ 6499 void ata_port_detach(struct ata_port *ap) 6500 { 6501 unsigned long flags; 6502 int i; 6503 6504 if (!ap->ops->error_handler) 6505 goto skip_eh; 6506 6507 /* tell EH we're leaving & flush EH */ 6508 spin_lock_irqsave(ap->lock, flags); 6509 ap->pflags |= ATA_PFLAG_UNLOADING; 6510 spin_unlock_irqrestore(ap->lock, flags); 6511 6512 ata_port_wait_eh(ap); 6513 6514 /* EH is now guaranteed to see UNLOADING, so no new device 6515 * will be attached. Disable all existing devices. 6516 */ 6517 spin_lock_irqsave(ap->lock, flags); 6518 6519 for (i = 0; i < ATA_MAX_DEVICES; i++) 6520 ata_dev_disable(&ap->device[i]); 6521 6522 spin_unlock_irqrestore(ap->lock, flags); 6523 6524 /* Final freeze & EH. All in-flight commands are aborted. EH 6525 * will be skipped and retrials will be terminated with bad 6526 * target. 6527 */ 6528 spin_lock_irqsave(ap->lock, flags); 6529 ata_port_freeze(ap); /* won't be thawed */ 6530 spin_unlock_irqrestore(ap->lock, flags); 6531 6532 ata_port_wait_eh(ap); 6533 cancel_rearming_delayed_work(&ap->hotplug_task); 6534 6535 skip_eh: 6536 /* remove the associated SCSI host */ 6537 scsi_remove_host(ap->scsi_host); 6538 } 6539 6540 /** 6541 * ata_host_detach - Detach all ports of an ATA host 6542 * @host: Host to detach 6543 * 6544 * Detach all ports of @host. 6545 * 6546 * LOCKING: 6547 * Kernel thread context (may sleep). 6548 */ 6549 void ata_host_detach(struct ata_host *host) 6550 { 6551 int i; 6552 6553 for (i = 0; i < host->n_ports; i++) 6554 ata_port_detach(host->ports[i]); 6555 } 6556 6557 /** 6558 * ata_std_ports - initialize ioaddr with standard port offsets. 6559 * @ioaddr: IO address structure to be initialized 6560 * 6561 * Utility function which initializes data_addr, error_addr, 6562 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6563 * device_addr, status_addr, and command_addr to standard offsets 6564 * relative to cmd_addr. 6565 * 6566 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6567 */ 6568 6569 void ata_std_ports(struct ata_ioports *ioaddr) 6570 { 6571 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6572 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6573 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6574 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6575 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6576 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6577 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6578 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6579 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6580 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6581 } 6582 6583 6584 #ifdef CONFIG_PCI 6585 6586 /** 6587 * ata_pci_remove_one - PCI layer callback for device removal 6588 * @pdev: PCI device that was removed 6589 * 6590 * PCI layer indicates to libata via this hook that hot-unplug or 6591 * module unload event has occurred. Detach all ports. Resource 6592 * release is handled via devres. 6593 * 6594 * LOCKING: 6595 * Inherited from PCI layer (may sleep). 6596 */ 6597 void ata_pci_remove_one(struct pci_dev *pdev) 6598 { 6599 struct device *dev = pci_dev_to_dev(pdev); 6600 struct ata_host *host = dev_get_drvdata(dev); 6601 6602 ata_host_detach(host); 6603 } 6604 6605 /* move to PCI subsystem */ 6606 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6607 { 6608 unsigned long tmp = 0; 6609 6610 switch (bits->width) { 6611 case 1: { 6612 u8 tmp8 = 0; 6613 pci_read_config_byte(pdev, bits->reg, &tmp8); 6614 tmp = tmp8; 6615 break; 6616 } 6617 case 2: { 6618 u16 tmp16 = 0; 6619 pci_read_config_word(pdev, bits->reg, &tmp16); 6620 tmp = tmp16; 6621 break; 6622 } 6623 case 4: { 6624 u32 tmp32 = 0; 6625 pci_read_config_dword(pdev, bits->reg, &tmp32); 6626 tmp = tmp32; 6627 break; 6628 } 6629 6630 default: 6631 return -EINVAL; 6632 } 6633 6634 tmp &= bits->mask; 6635 6636 return (tmp == bits->val) ? 1 : 0; 6637 } 6638 6639 #ifdef CONFIG_PM 6640 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6641 { 6642 pci_save_state(pdev); 6643 pci_disable_device(pdev); 6644 6645 if (mesg.event == PM_EVENT_SUSPEND) 6646 pci_set_power_state(pdev, PCI_D3hot); 6647 } 6648 6649 int ata_pci_device_do_resume(struct pci_dev *pdev) 6650 { 6651 int rc; 6652 6653 pci_set_power_state(pdev, PCI_D0); 6654 pci_restore_state(pdev); 6655 6656 rc = pcim_enable_device(pdev); 6657 if (rc) { 6658 dev_printk(KERN_ERR, &pdev->dev, 6659 "failed to enable device after resume (%d)\n", rc); 6660 return rc; 6661 } 6662 6663 pci_set_master(pdev); 6664 return 0; 6665 } 6666 6667 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6668 { 6669 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6670 int rc = 0; 6671 6672 rc = ata_host_suspend(host, mesg); 6673 if (rc) 6674 return rc; 6675 6676 ata_pci_device_do_suspend(pdev, mesg); 6677 6678 return 0; 6679 } 6680 6681 int ata_pci_device_resume(struct pci_dev *pdev) 6682 { 6683 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6684 int rc; 6685 6686 rc = ata_pci_device_do_resume(pdev); 6687 if (rc == 0) 6688 ata_host_resume(host); 6689 return rc; 6690 } 6691 #endif /* CONFIG_PM */ 6692 6693 #endif /* CONFIG_PCI */ 6694 6695 6696 static int __init ata_init(void) 6697 { 6698 ata_probe_timeout *= HZ; 6699 ata_wq = create_workqueue("ata"); 6700 if (!ata_wq) 6701 return -ENOMEM; 6702 6703 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6704 if (!ata_aux_wq) { 6705 destroy_workqueue(ata_wq); 6706 return -ENOMEM; 6707 } 6708 6709 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6710 return 0; 6711 } 6712 6713 static void __exit ata_exit(void) 6714 { 6715 destroy_workqueue(ata_wq); 6716 destroy_workqueue(ata_aux_wq); 6717 } 6718 6719 subsys_initcall(ata_init); 6720 module_exit(ata_exit); 6721 6722 static unsigned long ratelimit_time; 6723 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6724 6725 int ata_ratelimit(void) 6726 { 6727 int rc; 6728 unsigned long flags; 6729 6730 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6731 6732 if (time_after(jiffies, ratelimit_time)) { 6733 rc = 1; 6734 ratelimit_time = jiffies + (HZ/5); 6735 } else 6736 rc = 0; 6737 6738 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6739 6740 return rc; 6741 } 6742 6743 /** 6744 * ata_wait_register - wait until register value changes 6745 * @reg: IO-mapped register 6746 * @mask: Mask to apply to read register value 6747 * @val: Wait condition 6748 * @interval_msec: polling interval in milliseconds 6749 * @timeout_msec: timeout in milliseconds 6750 * 6751 * Waiting for some bits of register to change is a common 6752 * operation for ATA controllers. This function reads 32bit LE 6753 * IO-mapped register @reg and tests for the following condition. 6754 * 6755 * (*@reg & mask) != val 6756 * 6757 * If the condition is met, it returns; otherwise, the process is 6758 * repeated after @interval_msec until timeout. 6759 * 6760 * LOCKING: 6761 * Kernel thread context (may sleep) 6762 * 6763 * RETURNS: 6764 * The final register value. 6765 */ 6766 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6767 unsigned long interval_msec, 6768 unsigned long timeout_msec) 6769 { 6770 unsigned long timeout; 6771 u32 tmp; 6772 6773 tmp = ioread32(reg); 6774 6775 /* Calculate timeout _after_ the first read to make sure 6776 * preceding writes reach the controller before starting to 6777 * eat away the timeout. 6778 */ 6779 timeout = jiffies + (timeout_msec * HZ) / 1000; 6780 6781 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6782 msleep(interval_msec); 6783 tmp = ioread32(reg); 6784 } 6785 6786 return tmp; 6787 } 6788 6789 /* 6790 * Dummy port_ops 6791 */ 6792 static void ata_dummy_noret(struct ata_port *ap) { } 6793 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 6794 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 6795 6796 static u8 ata_dummy_check_status(struct ata_port *ap) 6797 { 6798 return ATA_DRDY; 6799 } 6800 6801 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6802 { 6803 return AC_ERR_SYSTEM; 6804 } 6805 6806 const struct ata_port_operations ata_dummy_port_ops = { 6807 .port_disable = ata_port_disable, 6808 .check_status = ata_dummy_check_status, 6809 .check_altstatus = ata_dummy_check_status, 6810 .dev_select = ata_noop_dev_select, 6811 .qc_prep = ata_noop_qc_prep, 6812 .qc_issue = ata_dummy_qc_issue, 6813 .freeze = ata_dummy_noret, 6814 .thaw = ata_dummy_noret, 6815 .error_handler = ata_dummy_noret, 6816 .post_internal_cmd = ata_dummy_qc_noret, 6817 .irq_clear = ata_dummy_noret, 6818 .port_start = ata_dummy_ret0, 6819 .port_stop = ata_dummy_noret, 6820 }; 6821 6822 const struct ata_port_info ata_dummy_port_info = { 6823 .port_ops = &ata_dummy_port_ops, 6824 }; 6825 6826 /* 6827 * libata is essentially a library of internal helper functions for 6828 * low-level ATA host controller drivers. As such, the API/ABI is 6829 * likely to change as new drivers are added and updated. 6830 * Do not depend on ABI/API stability. 6831 */ 6832 6833 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6834 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6835 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6836 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6837 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6838 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6839 EXPORT_SYMBOL_GPL(ata_std_ports); 6840 EXPORT_SYMBOL_GPL(ata_host_init); 6841 EXPORT_SYMBOL_GPL(ata_host_alloc); 6842 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6843 EXPORT_SYMBOL_GPL(ata_host_start); 6844 EXPORT_SYMBOL_GPL(ata_host_register); 6845 EXPORT_SYMBOL_GPL(ata_host_activate); 6846 EXPORT_SYMBOL_GPL(ata_host_detach); 6847 EXPORT_SYMBOL_GPL(ata_sg_init); 6848 EXPORT_SYMBOL_GPL(ata_sg_init_one); 6849 EXPORT_SYMBOL_GPL(ata_hsm_move); 6850 EXPORT_SYMBOL_GPL(ata_qc_complete); 6851 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6852 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 6853 EXPORT_SYMBOL_GPL(ata_tf_load); 6854 EXPORT_SYMBOL_GPL(ata_tf_read); 6855 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 6856 EXPORT_SYMBOL_GPL(ata_std_dev_select); 6857 EXPORT_SYMBOL_GPL(sata_print_link_status); 6858 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6859 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6860 EXPORT_SYMBOL_GPL(ata_check_status); 6861 EXPORT_SYMBOL_GPL(ata_altstatus); 6862 EXPORT_SYMBOL_GPL(ata_exec_command); 6863 EXPORT_SYMBOL_GPL(ata_port_start); 6864 EXPORT_SYMBOL_GPL(ata_sff_port_start); 6865 EXPORT_SYMBOL_GPL(ata_interrupt); 6866 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6867 EXPORT_SYMBOL_GPL(ata_data_xfer); 6868 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 6869 EXPORT_SYMBOL_GPL(ata_qc_prep); 6870 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep); 6871 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6872 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 6873 EXPORT_SYMBOL_GPL(ata_bmdma_start); 6874 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 6875 EXPORT_SYMBOL_GPL(ata_bmdma_status); 6876 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 6877 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 6878 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 6879 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 6880 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 6881 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 6882 EXPORT_SYMBOL_GPL(ata_port_probe); 6883 EXPORT_SYMBOL_GPL(ata_dev_disable); 6884 EXPORT_SYMBOL_GPL(sata_set_spd); 6885 EXPORT_SYMBOL_GPL(sata_phy_debounce); 6886 EXPORT_SYMBOL_GPL(sata_phy_resume); 6887 EXPORT_SYMBOL_GPL(sata_phy_reset); 6888 EXPORT_SYMBOL_GPL(__sata_phy_reset); 6889 EXPORT_SYMBOL_GPL(ata_bus_reset); 6890 EXPORT_SYMBOL_GPL(ata_std_prereset); 6891 EXPORT_SYMBOL_GPL(ata_std_softreset); 6892 EXPORT_SYMBOL_GPL(sata_port_hardreset); 6893 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6894 EXPORT_SYMBOL_GPL(ata_std_postreset); 6895 EXPORT_SYMBOL_GPL(ata_dev_classify); 6896 EXPORT_SYMBOL_GPL(ata_dev_pair); 6897 EXPORT_SYMBOL_GPL(ata_port_disable); 6898 EXPORT_SYMBOL_GPL(ata_ratelimit); 6899 EXPORT_SYMBOL_GPL(ata_wait_register); 6900 EXPORT_SYMBOL_GPL(ata_busy_sleep); 6901 EXPORT_SYMBOL_GPL(ata_wait_ready); 6902 EXPORT_SYMBOL_GPL(ata_port_queue_task); 6903 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6908 EXPORT_SYMBOL_GPL(ata_host_intr); 6909 EXPORT_SYMBOL_GPL(sata_scr_valid); 6910 EXPORT_SYMBOL_GPL(sata_scr_read); 6911 EXPORT_SYMBOL_GPL(sata_scr_write); 6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6913 EXPORT_SYMBOL_GPL(ata_port_online); 6914 EXPORT_SYMBOL_GPL(ata_port_offline); 6915 #ifdef CONFIG_PM 6916 EXPORT_SYMBOL_GPL(ata_host_suspend); 6917 EXPORT_SYMBOL_GPL(ata_host_resume); 6918 #endif /* CONFIG_PM */ 6919 EXPORT_SYMBOL_GPL(ata_id_string); 6920 EXPORT_SYMBOL_GPL(ata_id_c_string); 6921 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6923 6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6925 EXPORT_SYMBOL_GPL(ata_timing_compute); 6926 EXPORT_SYMBOL_GPL(ata_timing_merge); 6927 6928 #ifdef CONFIG_PCI 6929 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6930 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host); 6931 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma); 6932 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host); 6933 EXPORT_SYMBOL_GPL(ata_pci_init_one); 6934 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6935 #ifdef CONFIG_PM 6936 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6937 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6938 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6939 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6940 #endif /* CONFIG_PM */ 6941 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 6942 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 6943 #endif /* CONFIG_PCI */ 6944 6945 EXPORT_SYMBOL_GPL(ata_eng_timeout); 6946 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6947 EXPORT_SYMBOL_GPL(ata_port_abort); 6948 EXPORT_SYMBOL_GPL(ata_port_freeze); 6949 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6950 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6951 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6952 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6953 EXPORT_SYMBOL_GPL(ata_do_eh); 6954 EXPORT_SYMBOL_GPL(ata_irq_on); 6955 EXPORT_SYMBOL_GPL(ata_dummy_irq_on); 6956 EXPORT_SYMBOL_GPL(ata_irq_ack); 6957 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack); 6958 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 6959 6960 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6961 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6962 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6963 EXPORT_SYMBOL_GPL(ata_cable_sata); 6964