1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <linux/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 static unsigned int ata_dev_init_params(struct ata_device *dev, 76 u16 heads, u16 sectors); 77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 78 static void ata_dev_xfermask(struct ata_device *dev); 79 static unsigned int ata_dev_quirks(const struct ata_device *dev); 80 81 static DEFINE_IDA(ata_ida); 82 83 #ifdef CONFIG_ATA_FORCE 84 struct ata_force_param { 85 const char *name; 86 u8 cbl; 87 u8 spd_limit; 88 unsigned int xfer_mask; 89 unsigned int quirk_on; 90 unsigned int quirk_off; 91 u16 lflags_on; 92 u16 lflags_off; 93 }; 94 95 struct ata_force_ent { 96 int port; 97 int device; 98 struct ata_force_param param; 99 }; 100 101 static struct ata_force_ent *ata_force_tbl; 102 static int ata_force_tbl_size; 103 104 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 105 /* param_buf is thrown away after initialization, disallow read */ 106 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 107 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 108 #endif 109 110 static int atapi_enabled = 1; 111 module_param(atapi_enabled, int, 0444); 112 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 113 114 static int atapi_dmadir = 0; 115 module_param(atapi_dmadir, int, 0444); 116 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 117 118 int atapi_passthru16 = 1; 119 module_param(atapi_passthru16, int, 0444); 120 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 121 122 int libata_fua = 0; 123 module_param_named(fua, libata_fua, int, 0444); 124 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 125 126 static int ata_ignore_hpa; 127 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 128 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 129 130 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 131 module_param_named(dma, libata_dma_mask, int, 0444); 132 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 133 134 static int ata_probe_timeout; 135 module_param(ata_probe_timeout, int, 0444); 136 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 137 138 int libata_noacpi = 0; 139 module_param_named(noacpi, libata_noacpi, int, 0444); 140 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 141 142 int libata_allow_tpm = 0; 143 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 144 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 145 146 static int atapi_an; 147 module_param(atapi_an, int, 0444); 148 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 149 150 MODULE_AUTHOR("Jeff Garzik"); 151 MODULE_DESCRIPTION("Library module for ATA devices"); 152 MODULE_LICENSE("GPL"); 153 MODULE_VERSION(DRV_VERSION); 154 155 static inline bool ata_dev_print_info(const struct ata_device *dev) 156 { 157 struct ata_eh_context *ehc = &dev->link->eh_context; 158 159 return ehc->i.flags & ATA_EHI_PRINTINFO; 160 } 161 162 /** 163 * ata_link_next - link iteration helper 164 * @link: the previous link, NULL to start 165 * @ap: ATA port containing links to iterate 166 * @mode: iteration mode, one of ATA_LITER_* 167 * 168 * LOCKING: 169 * Host lock or EH context. 170 * 171 * RETURNS: 172 * Pointer to the next link. 173 */ 174 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 175 enum ata_link_iter_mode mode) 176 { 177 BUG_ON(mode != ATA_LITER_EDGE && 178 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 179 180 /* NULL link indicates start of iteration */ 181 if (!link) 182 switch (mode) { 183 case ATA_LITER_EDGE: 184 case ATA_LITER_PMP_FIRST: 185 if (sata_pmp_attached(ap)) 186 return ap->pmp_link; 187 fallthrough; 188 case ATA_LITER_HOST_FIRST: 189 return &ap->link; 190 } 191 192 /* we just iterated over the host link, what's next? */ 193 if (link == &ap->link) 194 switch (mode) { 195 case ATA_LITER_HOST_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 fallthrough; 199 case ATA_LITER_PMP_FIRST: 200 if (unlikely(ap->slave_link)) 201 return ap->slave_link; 202 fallthrough; 203 case ATA_LITER_EDGE: 204 return NULL; 205 } 206 207 /* slave_link excludes PMP */ 208 if (unlikely(link == ap->slave_link)) 209 return NULL; 210 211 /* we were over a PMP link */ 212 if (++link < ap->pmp_link + ap->nr_pmp_links) 213 return link; 214 215 if (mode == ATA_LITER_PMP_FIRST) 216 return &ap->link; 217 218 return NULL; 219 } 220 EXPORT_SYMBOL_GPL(ata_link_next); 221 222 /** 223 * ata_dev_next - device iteration helper 224 * @dev: the previous device, NULL to start 225 * @link: ATA link containing devices to iterate 226 * @mode: iteration mode, one of ATA_DITER_* 227 * 228 * LOCKING: 229 * Host lock or EH context. 230 * 231 * RETURNS: 232 * Pointer to the next device. 233 */ 234 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 235 enum ata_dev_iter_mode mode) 236 { 237 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 238 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 239 240 /* NULL dev indicates start of iteration */ 241 if (!dev) 242 switch (mode) { 243 case ATA_DITER_ENABLED: 244 case ATA_DITER_ALL: 245 dev = link->device; 246 goto check; 247 case ATA_DITER_ENABLED_REVERSE: 248 case ATA_DITER_ALL_REVERSE: 249 dev = link->device + ata_link_max_devices(link) - 1; 250 goto check; 251 } 252 253 next: 254 /* move to the next one */ 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 if (++dev < link->device + ata_link_max_devices(link)) 259 goto check; 260 return NULL; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 if (--dev >= link->device) 264 goto check; 265 return NULL; 266 } 267 268 check: 269 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 270 !ata_dev_enabled(dev)) 271 goto next; 272 return dev; 273 } 274 EXPORT_SYMBOL_GPL(ata_dev_next); 275 276 /** 277 * ata_dev_phys_link - find physical link for a device 278 * @dev: ATA device to look up physical link for 279 * 280 * Look up physical link which @dev is attached to. Note that 281 * this is different from @dev->link only when @dev is on slave 282 * link. For all other cases, it's the same as @dev->link. 283 * 284 * LOCKING: 285 * Don't care. 286 * 287 * RETURNS: 288 * Pointer to the found physical link. 289 */ 290 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 291 { 292 struct ata_port *ap = dev->link->ap; 293 294 if (!ap->slave_link) 295 return dev->link; 296 if (!dev->devno) 297 return &ap->link; 298 return ap->slave_link; 299 } 300 301 #ifdef CONFIG_ATA_FORCE 302 /** 303 * ata_force_cbl - force cable type according to libata.force 304 * @ap: ATA port of interest 305 * 306 * Force cable type according to libata.force and whine about it. 307 * The last entry which has matching port number is used, so it 308 * can be specified as part of device force parameters. For 309 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 310 * same effect. 311 * 312 * LOCKING: 313 * EH context. 314 */ 315 void ata_force_cbl(struct ata_port *ap) 316 { 317 int i; 318 319 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 320 const struct ata_force_ent *fe = &ata_force_tbl[i]; 321 322 if (fe->port != -1 && fe->port != ap->print_id) 323 continue; 324 325 if (fe->param.cbl == ATA_CBL_NONE) 326 continue; 327 328 ap->cbl = fe->param.cbl; 329 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 330 return; 331 } 332 } 333 334 /** 335 * ata_force_link_limits - force link limits according to libata.force 336 * @link: ATA link of interest 337 * 338 * Force link flags and SATA spd limit according to libata.force 339 * and whine about it. When only the port part is specified 340 * (e.g. 1:), the limit applies to all links connected to both 341 * the host link and all fan-out ports connected via PMP. If the 342 * device part is specified as 0 (e.g. 1.00:), it specifies the 343 * first fan-out link not the host link. Device number 15 always 344 * points to the host link whether PMP is attached or not. If the 345 * controller has slave link, device number 16 points to it. 346 * 347 * LOCKING: 348 * EH context. 349 */ 350 static void ata_force_link_limits(struct ata_link *link) 351 { 352 bool did_spd = false; 353 int linkno = link->pmp; 354 int i; 355 356 if (ata_is_host_link(link)) 357 linkno += 15; 358 359 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 360 const struct ata_force_ent *fe = &ata_force_tbl[i]; 361 362 if (fe->port != -1 && fe->port != link->ap->print_id) 363 continue; 364 365 if (fe->device != -1 && fe->device != linkno) 366 continue; 367 368 /* only honor the first spd limit */ 369 if (!did_spd && fe->param.spd_limit) { 370 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 371 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 372 fe->param.name); 373 did_spd = true; 374 } 375 376 /* let lflags stack */ 377 if (fe->param.lflags_on) { 378 link->flags |= fe->param.lflags_on; 379 ata_link_notice(link, 380 "FORCE: link flag 0x%x forced -> 0x%x\n", 381 fe->param.lflags_on, link->flags); 382 } 383 if (fe->param.lflags_off) { 384 link->flags &= ~fe->param.lflags_off; 385 ata_link_notice(link, 386 "FORCE: link flag 0x%x cleared -> 0x%x\n", 387 fe->param.lflags_off, link->flags); 388 } 389 } 390 } 391 392 /** 393 * ata_force_xfermask - force xfermask according to libata.force 394 * @dev: ATA device of interest 395 * 396 * Force xfer_mask according to libata.force and whine about it. 397 * For consistency with link selection, device number 15 selects 398 * the first device connected to the host link. 399 * 400 * LOCKING: 401 * EH context. 402 */ 403 static void ata_force_xfermask(struct ata_device *dev) 404 { 405 int devno = dev->link->pmp + dev->devno; 406 int alt_devno = devno; 407 int i; 408 409 /* allow n.15/16 for devices attached to host port */ 410 if (ata_is_host_link(dev->link)) 411 alt_devno += 15; 412 413 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 414 const struct ata_force_ent *fe = &ata_force_tbl[i]; 415 unsigned int pio_mask, mwdma_mask, udma_mask; 416 417 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 418 continue; 419 420 if (fe->device != -1 && fe->device != devno && 421 fe->device != alt_devno) 422 continue; 423 424 if (!fe->param.xfer_mask) 425 continue; 426 427 ata_unpack_xfermask(fe->param.xfer_mask, 428 &pio_mask, &mwdma_mask, &udma_mask); 429 if (udma_mask) 430 dev->udma_mask = udma_mask; 431 else if (mwdma_mask) { 432 dev->udma_mask = 0; 433 dev->mwdma_mask = mwdma_mask; 434 } else { 435 dev->udma_mask = 0; 436 dev->mwdma_mask = 0; 437 dev->pio_mask = pio_mask; 438 } 439 440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 441 fe->param.name); 442 return; 443 } 444 } 445 446 /** 447 * ata_force_quirks - force quirks according to libata.force 448 * @dev: ATA device of interest 449 * 450 * Force quirks according to libata.force and whine about it. 451 * For consistency with link selection, device number 15 selects 452 * the first device connected to the host link. 453 * 454 * LOCKING: 455 * EH context. 456 */ 457 static void ata_force_quirks(struct ata_device *dev) 458 { 459 int devno = dev->link->pmp + dev->devno; 460 int alt_devno = devno; 461 int i; 462 463 /* allow n.15/16 for devices attached to host port */ 464 if (ata_is_host_link(dev->link)) 465 alt_devno += 15; 466 467 for (i = 0; i < ata_force_tbl_size; i++) { 468 const struct ata_force_ent *fe = &ata_force_tbl[i]; 469 470 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 471 continue; 472 473 if (fe->device != -1 && fe->device != devno && 474 fe->device != alt_devno) 475 continue; 476 477 if (!(~dev->quirks & fe->param.quirk_on) && 478 !(dev->quirks & fe->param.quirk_off)) 479 continue; 480 481 dev->quirks |= fe->param.quirk_on; 482 dev->quirks &= ~fe->param.quirk_off; 483 484 ata_dev_notice(dev, "FORCE: modified (%s)\n", 485 fe->param.name); 486 } 487 } 488 #else 489 static inline void ata_force_link_limits(struct ata_link *link) { } 490 static inline void ata_force_xfermask(struct ata_device *dev) { } 491 static inline void ata_force_quirks(struct ata_device *dev) { } 492 #endif 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 fallthrough; 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 EXPORT_SYMBOL_GPL(atapi_cmd_type); 532 533 static const u8 ata_rw_cmds[] = { 534 /* pio multi */ 535 ATA_CMD_READ_MULTI, 536 ATA_CMD_WRITE_MULTI, 537 ATA_CMD_READ_MULTI_EXT, 538 ATA_CMD_WRITE_MULTI_EXT, 539 0, 540 0, 541 0, 542 0, 543 /* pio */ 544 ATA_CMD_PIO_READ, 545 ATA_CMD_PIO_WRITE, 546 ATA_CMD_PIO_READ_EXT, 547 ATA_CMD_PIO_WRITE_EXT, 548 0, 549 0, 550 0, 551 0, 552 /* dma */ 553 ATA_CMD_READ, 554 ATA_CMD_WRITE, 555 ATA_CMD_READ_EXT, 556 ATA_CMD_WRITE_EXT, 557 0, 558 0, 559 0, 560 ATA_CMD_WRITE_FUA_EXT 561 }; 562 563 /** 564 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 565 * @dev: target device for the taskfile 566 * @tf: taskfile to examine and configure 567 * 568 * Examine the device configuration and tf->flags to determine 569 * the proper read/write command and protocol to use for @tf. 570 * 571 * LOCKING: 572 * caller. 573 */ 574 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 575 struct ata_taskfile *tf) 576 { 577 u8 cmd; 578 579 int index, fua, lba48, write; 580 581 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 582 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 583 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 584 585 if (dev->flags & ATA_DFLAG_PIO) { 586 tf->protocol = ATA_PROT_PIO; 587 index = dev->multi_count ? 0 : 8; 588 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 589 /* Unable to use DMA due to host limitation */ 590 tf->protocol = ATA_PROT_PIO; 591 index = dev->multi_count ? 0 : 8; 592 } else { 593 tf->protocol = ATA_PROT_DMA; 594 index = 16; 595 } 596 597 cmd = ata_rw_cmds[index + fua + lba48 + write]; 598 if (!cmd) 599 return false; 600 601 tf->command = cmd; 602 603 return true; 604 } 605 606 /** 607 * ata_tf_read_block - Read block address from ATA taskfile 608 * @tf: ATA taskfile of interest 609 * @dev: ATA device @tf belongs to 610 * 611 * LOCKING: 612 * None. 613 * 614 * Read block address from @tf. This function can handle all 615 * three address formats - LBA, LBA48 and CHS. tf->protocol and 616 * flags select the address format to use. 617 * 618 * RETURNS: 619 * Block address read from @tf. 620 */ 621 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 622 { 623 u64 block = 0; 624 625 if (tf->flags & ATA_TFLAG_LBA) { 626 if (tf->flags & ATA_TFLAG_LBA48) { 627 block |= (u64)tf->hob_lbah << 40; 628 block |= (u64)tf->hob_lbam << 32; 629 block |= (u64)tf->hob_lbal << 24; 630 } else 631 block |= (tf->device & 0xf) << 24; 632 633 block |= tf->lbah << 16; 634 block |= tf->lbam << 8; 635 block |= tf->lbal; 636 } else { 637 u32 cyl, head, sect; 638 639 cyl = tf->lbam | (tf->lbah << 8); 640 head = tf->device & 0xf; 641 sect = tf->lbal; 642 643 if (!sect) { 644 ata_dev_warn(dev, 645 "device reported invalid CHS sector 0\n"); 646 return U64_MAX; 647 } 648 649 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 650 } 651 652 return block; 653 } 654 655 /* 656 * Set a taskfile command duration limit index. 657 */ 658 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 659 { 660 struct ata_taskfile *tf = &qc->tf; 661 662 if (tf->protocol == ATA_PROT_NCQ) 663 tf->auxiliary |= cdl; 664 else 665 tf->feature |= cdl; 666 667 /* 668 * Mark this command as having a CDL and request the result 669 * task file so that we can inspect the sense data available 670 * bit on completion. 671 */ 672 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 673 } 674 675 /** 676 * ata_build_rw_tf - Build ATA taskfile for given read/write request 677 * @qc: Metadata associated with the taskfile to build 678 * @block: Block address 679 * @n_block: Number of blocks 680 * @tf_flags: RW/FUA etc... 681 * @cdl: Command duration limit index 682 * @class: IO priority class 683 * 684 * LOCKING: 685 * None. 686 * 687 * Build ATA taskfile for the command @qc for read/write request described 688 * by @block, @n_block, @tf_flags and @class. 689 * 690 * RETURNS: 691 * 692 * 0 on success, -ERANGE if the request is too large for @dev, 693 * -EINVAL if the request is invalid. 694 */ 695 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 696 unsigned int tf_flags, int cdl, int class) 697 { 698 struct ata_taskfile *tf = &qc->tf; 699 struct ata_device *dev = qc->dev; 700 701 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 702 tf->flags |= tf_flags; 703 704 if (ata_ncq_enabled(dev)) { 705 /* yay, NCQ */ 706 if (!lba_48_ok(block, n_block)) 707 return -ERANGE; 708 709 tf->protocol = ATA_PROT_NCQ; 710 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 711 712 if (tf->flags & ATA_TFLAG_WRITE) 713 tf->command = ATA_CMD_FPDMA_WRITE; 714 else 715 tf->command = ATA_CMD_FPDMA_READ; 716 717 tf->nsect = qc->hw_tag << 3; 718 tf->hob_feature = (n_block >> 8) & 0xff; 719 tf->feature = n_block & 0xff; 720 721 tf->hob_lbah = (block >> 40) & 0xff; 722 tf->hob_lbam = (block >> 32) & 0xff; 723 tf->hob_lbal = (block >> 24) & 0xff; 724 tf->lbah = (block >> 16) & 0xff; 725 tf->lbam = (block >> 8) & 0xff; 726 tf->lbal = block & 0xff; 727 728 tf->device = ATA_LBA; 729 if (tf->flags & ATA_TFLAG_FUA) 730 tf->device |= 1 << 7; 731 732 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 733 class == IOPRIO_CLASS_RT) 734 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 735 736 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 737 ata_set_tf_cdl(qc, cdl); 738 739 } else if (dev->flags & ATA_DFLAG_LBA) { 740 tf->flags |= ATA_TFLAG_LBA; 741 742 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 743 ata_set_tf_cdl(qc, cdl); 744 745 /* Both FUA writes and a CDL index require 48-bit commands */ 746 if (!(tf->flags & ATA_TFLAG_FUA) && 747 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 748 lba_28_ok(block, n_block)) { 749 /* use LBA28 */ 750 tf->device |= (block >> 24) & 0xf; 751 } else if (lba_48_ok(block, n_block)) { 752 if (!(dev->flags & ATA_DFLAG_LBA48)) 753 return -ERANGE; 754 755 /* use LBA48 */ 756 tf->flags |= ATA_TFLAG_LBA48; 757 758 tf->hob_nsect = (n_block >> 8) & 0xff; 759 760 tf->hob_lbah = (block >> 40) & 0xff; 761 tf->hob_lbam = (block >> 32) & 0xff; 762 tf->hob_lbal = (block >> 24) & 0xff; 763 } else { 764 /* request too large even for LBA48 */ 765 return -ERANGE; 766 } 767 768 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 769 return -EINVAL; 770 771 tf->nsect = n_block & 0xff; 772 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device |= ATA_LBA; 778 } else { 779 /* CHS */ 780 u32 sect, head, cyl, track; 781 782 /* The request -may- be too large for CHS addressing. */ 783 if (!lba_28_ok(block, n_block)) 784 return -ERANGE; 785 786 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 787 return -EINVAL; 788 789 /* Convert LBA to CHS */ 790 track = (u32)block / dev->sectors; 791 cyl = track / dev->heads; 792 head = track % dev->heads; 793 sect = (u32)block % dev->sectors + 1; 794 795 /* Check whether the converted CHS can fit. 796 Cylinder: 0-65535 797 Head: 0-15 798 Sector: 1-255*/ 799 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 800 return -ERANGE; 801 802 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 803 tf->lbal = sect; 804 tf->lbam = cyl; 805 tf->lbah = cyl >> 8; 806 tf->device |= head; 807 } 808 809 return 0; 810 } 811 812 /** 813 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 814 * @pio_mask: pio_mask 815 * @mwdma_mask: mwdma_mask 816 * @udma_mask: udma_mask 817 * 818 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 819 * unsigned int xfer_mask. 820 * 821 * LOCKING: 822 * None. 823 * 824 * RETURNS: 825 * Packed xfer_mask. 826 */ 827 unsigned int ata_pack_xfermask(unsigned int pio_mask, 828 unsigned int mwdma_mask, 829 unsigned int udma_mask) 830 { 831 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 832 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 833 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 834 } 835 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 836 837 /** 838 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 839 * @xfer_mask: xfer_mask to unpack 840 * @pio_mask: resulting pio_mask 841 * @mwdma_mask: resulting mwdma_mask 842 * @udma_mask: resulting udma_mask 843 * 844 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 845 * Any NULL destination masks will be ignored. 846 */ 847 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 848 unsigned int *mwdma_mask, unsigned int *udma_mask) 849 { 850 if (pio_mask) 851 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 852 if (mwdma_mask) 853 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 854 if (udma_mask) 855 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 856 } 857 858 static const struct ata_xfer_ent { 859 int shift, bits; 860 u8 base; 861 } ata_xfer_tbl[] = { 862 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 863 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 864 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 865 { -1, }, 866 }; 867 868 /** 869 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 870 * @xfer_mask: xfer_mask of interest 871 * 872 * Return matching XFER_* value for @xfer_mask. Only the highest 873 * bit of @xfer_mask is considered. 874 * 875 * LOCKING: 876 * None. 877 * 878 * RETURNS: 879 * Matching XFER_* value, 0xff if no match found. 880 */ 881 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 882 { 883 int highbit = fls(xfer_mask) - 1; 884 const struct ata_xfer_ent *ent; 885 886 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 887 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 888 return ent->base + highbit - ent->shift; 889 return 0xff; 890 } 891 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 892 893 /** 894 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 895 * @xfer_mode: XFER_* of interest 896 * 897 * Return matching xfer_mask for @xfer_mode. 898 * 899 * LOCKING: 900 * None. 901 * 902 * RETURNS: 903 * Matching xfer_mask, 0 if no match found. 904 */ 905 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 906 { 907 const struct ata_xfer_ent *ent; 908 909 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 910 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 911 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 912 & ~((1 << ent->shift) - 1); 913 return 0; 914 } 915 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 916 917 /** 918 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 919 * @xfer_mode: XFER_* of interest 920 * 921 * Return matching xfer_shift for @xfer_mode. 922 * 923 * LOCKING: 924 * None. 925 * 926 * RETURNS: 927 * Matching xfer_shift, -1 if no match found. 928 */ 929 int ata_xfer_mode2shift(u8 xfer_mode) 930 { 931 const struct ata_xfer_ent *ent; 932 933 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 934 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 935 return ent->shift; 936 return -1; 937 } 938 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 939 940 /** 941 * ata_mode_string - convert xfer_mask to string 942 * @xfer_mask: mask of bits supported; only highest bit counts. 943 * 944 * Determine string which represents the highest speed 945 * (highest bit in @modemask). 946 * 947 * LOCKING: 948 * None. 949 * 950 * RETURNS: 951 * Constant C string representing highest speed listed in 952 * @mode_mask, or the constant C string "<n/a>". 953 */ 954 const char *ata_mode_string(unsigned int xfer_mask) 955 { 956 static const char * const xfer_mode_str[] = { 957 "PIO0", 958 "PIO1", 959 "PIO2", 960 "PIO3", 961 "PIO4", 962 "PIO5", 963 "PIO6", 964 "MWDMA0", 965 "MWDMA1", 966 "MWDMA2", 967 "MWDMA3", 968 "MWDMA4", 969 "UDMA/16", 970 "UDMA/25", 971 "UDMA/33", 972 "UDMA/44", 973 "UDMA/66", 974 "UDMA/100", 975 "UDMA/133", 976 "UDMA7", 977 }; 978 int highbit; 979 980 highbit = fls(xfer_mask) - 1; 981 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 982 return xfer_mode_str[highbit]; 983 return "<n/a>"; 984 } 985 EXPORT_SYMBOL_GPL(ata_mode_string); 986 987 const char *sata_spd_string(unsigned int spd) 988 { 989 static const char * const spd_str[] = { 990 "1.5 Gbps", 991 "3.0 Gbps", 992 "6.0 Gbps", 993 }; 994 995 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 996 return "<unknown>"; 997 return spd_str[spd - 1]; 998 } 999 1000 /** 1001 * ata_dev_classify - determine device type based on ATA-spec signature 1002 * @tf: ATA taskfile register set for device to be identified 1003 * 1004 * Determine from taskfile register contents whether a device is 1005 * ATA or ATAPI, as per "Signature and persistence" section 1006 * of ATA/PI spec (volume 1, sect 5.14). 1007 * 1008 * LOCKING: 1009 * None. 1010 * 1011 * RETURNS: 1012 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1013 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1014 */ 1015 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1016 { 1017 /* Apple's open source Darwin code hints that some devices only 1018 * put a proper signature into the LBA mid/high registers, 1019 * So, we only check those. It's sufficient for uniqueness. 1020 * 1021 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1022 * signatures for ATA and ATAPI devices attached on SerialATA, 1023 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1024 * spec has never mentioned about using different signatures 1025 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1026 * Multiplier specification began to use 0x69/0x96 to identify 1027 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1028 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1029 * 0x69/0x96 shortly and described them as reserved for 1030 * SerialATA. 1031 * 1032 * We follow the current spec and consider that 0x69/0x96 1033 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1034 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1035 * SEMB signature. This is worked around in 1036 * ata_dev_read_id(). 1037 */ 1038 if (tf->lbam == 0 && tf->lbah == 0) 1039 return ATA_DEV_ATA; 1040 1041 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1042 return ATA_DEV_ATAPI; 1043 1044 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1045 return ATA_DEV_PMP; 1046 1047 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1048 return ATA_DEV_SEMB; 1049 1050 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1051 return ATA_DEV_ZAC; 1052 1053 return ATA_DEV_UNKNOWN; 1054 } 1055 EXPORT_SYMBOL_GPL(ata_dev_classify); 1056 1057 /** 1058 * ata_id_string - Convert IDENTIFY DEVICE page into string 1059 * @id: IDENTIFY DEVICE results we will examine 1060 * @s: string into which data is output 1061 * @ofs: offset into identify device page 1062 * @len: length of string to return. must be an even number. 1063 * 1064 * The strings in the IDENTIFY DEVICE page are broken up into 1065 * 16-bit chunks. Run through the string, and output each 1066 * 8-bit chunk linearly, regardless of platform. 1067 * 1068 * LOCKING: 1069 * caller. 1070 */ 1071 1072 void ata_id_string(const u16 *id, unsigned char *s, 1073 unsigned int ofs, unsigned int len) 1074 { 1075 unsigned int c; 1076 1077 BUG_ON(len & 1); 1078 1079 while (len > 0) { 1080 c = id[ofs] >> 8; 1081 *s = c; 1082 s++; 1083 1084 c = id[ofs] & 0xff; 1085 *s = c; 1086 s++; 1087 1088 ofs++; 1089 len -= 2; 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(ata_id_string); 1093 1094 /** 1095 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an odd number. 1100 * 1101 * This function is identical to ata_id_string except that it 1102 * trims trailing spaces and terminates the resulting string with 1103 * null. @len must be actual maximum length (even number) + 1. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 void ata_id_c_string(const u16 *id, unsigned char *s, 1109 unsigned int ofs, unsigned int len) 1110 { 1111 unsigned char *p; 1112 1113 ata_id_string(id, s, ofs, len - 1); 1114 1115 p = s + strnlen(s, len - 1); 1116 while (p > s && p[-1] == ' ') 1117 p--; 1118 *p = '\0'; 1119 } 1120 EXPORT_SYMBOL_GPL(ata_id_c_string); 1121 1122 static u64 ata_id_n_sectors(const u16 *id) 1123 { 1124 if (ata_id_has_lba(id)) { 1125 if (ata_id_has_lba48(id)) 1126 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1127 1128 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1129 } 1130 1131 if (ata_id_current_chs_valid(id)) 1132 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1133 (u32)id[ATA_ID_CUR_SECTORS]; 1134 1135 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1136 (u32)id[ATA_ID_SECTORS]; 1137 } 1138 1139 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1144 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1145 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1146 sectors |= (tf->lbah & 0xff) << 16; 1147 sectors |= (tf->lbam & 0xff) << 8; 1148 sectors |= (tf->lbal & 0xff); 1149 1150 return sectors; 1151 } 1152 1153 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1154 { 1155 u64 sectors = 0; 1156 1157 sectors |= (tf->device & 0x0f) << 24; 1158 sectors |= (tf->lbah & 0xff) << 16; 1159 sectors |= (tf->lbam & 0xff) << 8; 1160 sectors |= (tf->lbal & 0xff); 1161 1162 return sectors; 1163 } 1164 1165 /** 1166 * ata_read_native_max_address - Read native max address 1167 * @dev: target device 1168 * @max_sectors: out parameter for the result native max address 1169 * 1170 * Perform an LBA48 or LBA28 native size query upon the device in 1171 * question. 1172 * 1173 * RETURNS: 1174 * 0 on success, -EACCES if command is aborted by the drive. 1175 * -EIO on other errors. 1176 */ 1177 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1178 { 1179 unsigned int err_mask; 1180 struct ata_taskfile tf; 1181 int lba48 = ata_id_has_lba48(dev->id); 1182 1183 ata_tf_init(dev, &tf); 1184 1185 /* always clear all address registers */ 1186 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1187 1188 if (lba48) { 1189 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1190 tf.flags |= ATA_TFLAG_LBA48; 1191 } else 1192 tf.command = ATA_CMD_READ_NATIVE_MAX; 1193 1194 tf.protocol = ATA_PROT_NODATA; 1195 tf.device |= ATA_LBA; 1196 1197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1198 if (err_mask) { 1199 ata_dev_warn(dev, 1200 "failed to read native max address (err_mask=0x%x)\n", 1201 err_mask); 1202 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1203 return -EACCES; 1204 return -EIO; 1205 } 1206 1207 if (lba48) 1208 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1209 else 1210 *max_sectors = ata_tf_to_lba(&tf) + 1; 1211 if (dev->quirks & ATA_QUIRK_HPA_SIZE) 1212 (*max_sectors)--; 1213 return 0; 1214 } 1215 1216 /** 1217 * ata_set_max_sectors - Set max sectors 1218 * @dev: target device 1219 * @new_sectors: new max sectors value to set for the device 1220 * 1221 * Set max sectors of @dev to @new_sectors. 1222 * 1223 * RETURNS: 1224 * 0 on success, -EACCES if command is aborted or denied (due to 1225 * previous non-volatile SET_MAX) by the drive. -EIO on other 1226 * errors. 1227 */ 1228 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1229 { 1230 unsigned int err_mask; 1231 struct ata_taskfile tf; 1232 int lba48 = ata_id_has_lba48(dev->id); 1233 1234 new_sectors--; 1235 1236 ata_tf_init(dev, &tf); 1237 1238 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1239 1240 if (lba48) { 1241 tf.command = ATA_CMD_SET_MAX_EXT; 1242 tf.flags |= ATA_TFLAG_LBA48; 1243 1244 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1245 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1246 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1247 } else { 1248 tf.command = ATA_CMD_SET_MAX; 1249 1250 tf.device |= (new_sectors >> 24) & 0xf; 1251 } 1252 1253 tf.protocol = ATA_PROT_NODATA; 1254 tf.device |= ATA_LBA; 1255 1256 tf.lbal = (new_sectors >> 0) & 0xff; 1257 tf.lbam = (new_sectors >> 8) & 0xff; 1258 tf.lbah = (new_sectors >> 16) & 0xff; 1259 1260 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1261 if (err_mask) { 1262 ata_dev_warn(dev, 1263 "failed to set max address (err_mask=0x%x)\n", 1264 err_mask); 1265 if (err_mask == AC_ERR_DEV && 1266 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1267 return -EACCES; 1268 return -EIO; 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * ata_hpa_resize - Resize a device with an HPA set 1276 * @dev: Device to resize 1277 * 1278 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1279 * it if required to the full size of the media. The caller must check 1280 * the drive has the HPA feature set enabled. 1281 * 1282 * RETURNS: 1283 * 0 on success, -errno on failure. 1284 */ 1285 static int ata_hpa_resize(struct ata_device *dev) 1286 { 1287 bool print_info = ata_dev_print_info(dev); 1288 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1289 u64 sectors = ata_id_n_sectors(dev->id); 1290 u64 native_sectors; 1291 int rc; 1292 1293 /* do we need to do it? */ 1294 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1295 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1296 (dev->quirks & ATA_QUIRK_BROKEN_HPA)) 1297 return 0; 1298 1299 /* read native max address */ 1300 rc = ata_read_native_max_address(dev, &native_sectors); 1301 if (rc) { 1302 /* If device aborted the command or HPA isn't going to 1303 * be unlocked, skip HPA resizing. 1304 */ 1305 if (rc == -EACCES || !unlock_hpa) { 1306 ata_dev_warn(dev, 1307 "HPA support seems broken, skipping HPA handling\n"); 1308 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1309 1310 /* we can continue if device aborted the command */ 1311 if (rc == -EACCES) 1312 rc = 0; 1313 } 1314 1315 return rc; 1316 } 1317 dev->n_native_sectors = native_sectors; 1318 1319 /* nothing to do? */ 1320 if (native_sectors <= sectors || !unlock_hpa) { 1321 if (!print_info || native_sectors == sectors) 1322 return 0; 1323 1324 if (native_sectors > sectors) 1325 ata_dev_info(dev, 1326 "HPA detected: current %llu, native %llu\n", 1327 (unsigned long long)sectors, 1328 (unsigned long long)native_sectors); 1329 else if (native_sectors < sectors) 1330 ata_dev_warn(dev, 1331 "native sectors (%llu) is smaller than sectors (%llu)\n", 1332 (unsigned long long)native_sectors, 1333 (unsigned long long)sectors); 1334 return 0; 1335 } 1336 1337 /* let's unlock HPA */ 1338 rc = ata_set_max_sectors(dev, native_sectors); 1339 if (rc == -EACCES) { 1340 /* if device aborted the command, skip HPA resizing */ 1341 ata_dev_warn(dev, 1342 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1343 (unsigned long long)sectors, 1344 (unsigned long long)native_sectors); 1345 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1346 return 0; 1347 } else if (rc) 1348 return rc; 1349 1350 /* re-read IDENTIFY data */ 1351 rc = ata_dev_reread_id(dev, 0); 1352 if (rc) { 1353 ata_dev_err(dev, 1354 "failed to re-read IDENTIFY data after HPA resizing\n"); 1355 return rc; 1356 } 1357 1358 if (print_info) { 1359 u64 new_sectors = ata_id_n_sectors(dev->id); 1360 ata_dev_info(dev, 1361 "HPA unlocked: %llu -> %llu, native %llu\n", 1362 (unsigned long long)sectors, 1363 (unsigned long long)new_sectors, 1364 (unsigned long long)native_sectors); 1365 } 1366 1367 return 0; 1368 } 1369 1370 /** 1371 * ata_dump_id - IDENTIFY DEVICE info debugging output 1372 * @dev: device from which the information is fetched 1373 * @id: IDENTIFY DEVICE page to dump 1374 * 1375 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1376 * page. 1377 * 1378 * LOCKING: 1379 * caller. 1380 */ 1381 1382 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1383 { 1384 ata_dev_dbg(dev, 1385 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1386 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1387 "88==0x%04x 93==0x%04x\n", 1388 id[49], id[53], id[63], id[64], id[75], id[80], 1389 id[81], id[82], id[83], id[84], id[88], id[93]); 1390 } 1391 1392 /** 1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1394 * @id: IDENTIFY data to compute xfer mask from 1395 * 1396 * Compute the xfermask for this device. This is not as trivial 1397 * as it seems if we must consider early devices correctly. 1398 * 1399 * FIXME: pre IDE drive timing (do we care ?). 1400 * 1401 * LOCKING: 1402 * None. 1403 * 1404 * RETURNS: 1405 * Computed xfermask 1406 */ 1407 unsigned int ata_id_xfermask(const u16 *id) 1408 { 1409 unsigned int pio_mask, mwdma_mask, udma_mask; 1410 1411 /* Usual case. Word 53 indicates word 64 is valid */ 1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1414 pio_mask <<= 3; 1415 pio_mask |= 0x7; 1416 } else { 1417 /* If word 64 isn't valid then Word 51 high byte holds 1418 * the PIO timing number for the maximum. Turn it into 1419 * a mask. 1420 */ 1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1422 if (mode < 5) /* Valid PIO range */ 1423 pio_mask = (2 << mode) - 1; 1424 else 1425 pio_mask = 1; 1426 1427 /* But wait.. there's more. Design your standards by 1428 * committee and you too can get a free iordy field to 1429 * process. However it is the speeds not the modes that 1430 * are supported... Note drivers using the timing API 1431 * will get this right anyway 1432 */ 1433 } 1434 1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1436 1437 if (ata_id_is_cfa(id)) { 1438 /* 1439 * Process compact flash extended modes 1440 */ 1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1443 1444 if (pio) 1445 pio_mask |= (1 << 5); 1446 if (pio > 1) 1447 pio_mask |= (1 << 6); 1448 if (dma) 1449 mwdma_mask |= (1 << 3); 1450 if (dma > 1) 1451 mwdma_mask |= (1 << 4); 1452 } 1453 1454 udma_mask = 0; 1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1457 1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1459 } 1460 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1461 1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1463 { 1464 struct completion *waiting = qc->private_data; 1465 1466 complete(waiting); 1467 } 1468 1469 /** 1470 * ata_exec_internal - execute libata internal command 1471 * @dev: Device to which the command is sent 1472 * @tf: Taskfile registers for the command and the result 1473 * @cdb: CDB for packet command 1474 * @dma_dir: Data transfer direction of the command 1475 * @buf: Data buffer of the command 1476 * @buflen: Length of data buffer 1477 * @timeout: Timeout in msecs (0 for default) 1478 * 1479 * Executes libata internal command with timeout. @tf contains 1480 * the command on entry and the result on return. Timeout and error 1481 * conditions are reported via the return value. No recovery action 1482 * is taken after a command times out. It is the caller's duty to 1483 * clean up after timeout. 1484 * 1485 * LOCKING: 1486 * None. Should be called with kernel context, might sleep. 1487 * 1488 * RETURNS: 1489 * Zero on success, AC_ERR_* mask on failure 1490 */ 1491 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1492 const u8 *cdb, enum dma_data_direction dma_dir, 1493 void *buf, unsigned int buflen, 1494 unsigned int timeout) 1495 { 1496 struct ata_link *link = dev->link; 1497 struct ata_port *ap = link->ap; 1498 u8 command = tf->command; 1499 struct ata_queued_cmd *qc; 1500 struct scatterlist sgl; 1501 unsigned int preempted_tag; 1502 u32 preempted_sactive; 1503 u64 preempted_qc_active; 1504 int preempted_nr_active_links; 1505 bool auto_timeout = false; 1506 DECLARE_COMPLETION_ONSTACK(wait); 1507 unsigned long flags; 1508 unsigned int err_mask; 1509 int rc; 1510 1511 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1512 return AC_ERR_INVALID; 1513 1514 spin_lock_irqsave(ap->lock, flags); 1515 1516 /* No internal command while frozen */ 1517 if (ata_port_is_frozen(ap)) { 1518 spin_unlock_irqrestore(ap->lock, flags); 1519 return AC_ERR_SYSTEM; 1520 } 1521 1522 /* Initialize internal qc */ 1523 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1524 1525 qc->tag = ATA_TAG_INTERNAL; 1526 qc->hw_tag = 0; 1527 qc->scsicmd = NULL; 1528 qc->ap = ap; 1529 qc->dev = dev; 1530 ata_qc_reinit(qc); 1531 1532 preempted_tag = link->active_tag; 1533 preempted_sactive = link->sactive; 1534 preempted_qc_active = ap->qc_active; 1535 preempted_nr_active_links = ap->nr_active_links; 1536 link->active_tag = ATA_TAG_POISON; 1537 link->sactive = 0; 1538 ap->qc_active = 0; 1539 ap->nr_active_links = 0; 1540 1541 /* Prepare and issue qc */ 1542 qc->tf = *tf; 1543 if (cdb) 1544 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1545 1546 /* Some SATA bridges need us to indicate data xfer direction */ 1547 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1548 dma_dir == DMA_FROM_DEVICE) 1549 qc->tf.feature |= ATAPI_DMADIR; 1550 1551 qc->flags |= ATA_QCFLAG_RESULT_TF; 1552 qc->dma_dir = dma_dir; 1553 if (dma_dir != DMA_NONE) { 1554 sg_init_one(&sgl, buf, buflen); 1555 ata_sg_init(qc, &sgl, 1); 1556 qc->nbytes = buflen; 1557 } 1558 1559 qc->private_data = &wait; 1560 qc->complete_fn = ata_qc_complete_internal; 1561 1562 ata_qc_issue(qc); 1563 1564 spin_unlock_irqrestore(ap->lock, flags); 1565 1566 if (!timeout) { 1567 if (ata_probe_timeout) { 1568 timeout = ata_probe_timeout * 1000; 1569 } else { 1570 timeout = ata_internal_cmd_timeout(dev, command); 1571 auto_timeout = true; 1572 } 1573 } 1574 1575 ata_eh_release(ap); 1576 1577 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1578 1579 ata_eh_acquire(ap); 1580 1581 ata_sff_flush_pio_task(ap); 1582 1583 if (!rc) { 1584 /* 1585 * We are racing with irq here. If we lose, the following test 1586 * prevents us from completing the qc twice. If we win, the port 1587 * is frozen and will be cleaned up by ->post_internal_cmd(). 1588 */ 1589 spin_lock_irqsave(ap->lock, flags); 1590 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1591 qc->err_mask |= AC_ERR_TIMEOUT; 1592 ata_port_freeze(ap); 1593 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1594 timeout, command); 1595 } 1596 spin_unlock_irqrestore(ap->lock, flags); 1597 } 1598 1599 if (ap->ops->post_internal_cmd) 1600 ap->ops->post_internal_cmd(qc); 1601 1602 /* Perform minimal error analysis */ 1603 if (qc->flags & ATA_QCFLAG_EH) { 1604 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1605 qc->err_mask |= AC_ERR_DEV; 1606 1607 if (!qc->err_mask) 1608 qc->err_mask |= AC_ERR_OTHER; 1609 1610 if (qc->err_mask & ~AC_ERR_OTHER) 1611 qc->err_mask &= ~AC_ERR_OTHER; 1612 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1613 qc->result_tf.status |= ATA_SENSE; 1614 } 1615 1616 /* Finish up */ 1617 spin_lock_irqsave(ap->lock, flags); 1618 1619 *tf = qc->result_tf; 1620 err_mask = qc->err_mask; 1621 1622 ata_qc_free(qc); 1623 link->active_tag = preempted_tag; 1624 link->sactive = preempted_sactive; 1625 ap->qc_active = preempted_qc_active; 1626 ap->nr_active_links = preempted_nr_active_links; 1627 1628 spin_unlock_irqrestore(ap->lock, flags); 1629 1630 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1631 ata_internal_cmd_timed_out(dev, command); 1632 1633 return err_mask; 1634 } 1635 1636 /** 1637 * ata_pio_need_iordy - check if iordy needed 1638 * @adev: ATA device 1639 * 1640 * Check if the current speed of the device requires IORDY. Used 1641 * by various controllers for chip configuration. 1642 */ 1643 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1644 { 1645 /* Don't set IORDY if we're preparing for reset. IORDY may 1646 * lead to controller lock up on certain controllers if the 1647 * port is not occupied. See bko#11703 for details. 1648 */ 1649 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1650 return 0; 1651 /* Controller doesn't support IORDY. Probably a pointless 1652 * check as the caller should know this. 1653 */ 1654 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1655 return 0; 1656 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1657 if (ata_id_is_cfa(adev->id) 1658 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1659 return 0; 1660 /* PIO3 and higher it is mandatory */ 1661 if (adev->pio_mode > XFER_PIO_2) 1662 return 1; 1663 /* We turn it on when possible */ 1664 if (ata_id_has_iordy(adev->id)) 1665 return 1; 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1669 1670 /** 1671 * ata_pio_mask_no_iordy - Return the non IORDY mask 1672 * @adev: ATA device 1673 * 1674 * Compute the highest mode possible if we are not using iordy. Return 1675 * -1 if no iordy mode is available. 1676 */ 1677 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1678 { 1679 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1680 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1681 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1682 /* Is the speed faster than the drive allows non IORDY ? */ 1683 if (pio) { 1684 /* This is cycle times not frequency - watch the logic! */ 1685 if (pio > 240) /* PIO2 is 240nS per cycle */ 1686 return 3 << ATA_SHIFT_PIO; 1687 return 7 << ATA_SHIFT_PIO; 1688 } 1689 } 1690 return 3 << ATA_SHIFT_PIO; 1691 } 1692 1693 /** 1694 * ata_do_dev_read_id - default ID read method 1695 * @dev: device 1696 * @tf: proposed taskfile 1697 * @id: data buffer 1698 * 1699 * Issue the identify taskfile and hand back the buffer containing 1700 * identify data. For some RAID controllers and for pre ATA devices 1701 * this function is wrapped or replaced by the driver 1702 */ 1703 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1704 struct ata_taskfile *tf, __le16 *id) 1705 { 1706 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1707 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1708 } 1709 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1710 1711 /** 1712 * ata_dev_read_id - Read ID data from the specified device 1713 * @dev: target device 1714 * @p_class: pointer to class of the target device (may be changed) 1715 * @flags: ATA_READID_* flags 1716 * @id: buffer to read IDENTIFY data into 1717 * 1718 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1719 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1720 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1721 * for pre-ATA4 drives. 1722 * 1723 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1724 * now we abort if we hit that case. 1725 * 1726 * LOCKING: 1727 * Kernel thread context (may sleep) 1728 * 1729 * RETURNS: 1730 * 0 on success, -errno otherwise. 1731 */ 1732 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1733 unsigned int flags, u16 *id) 1734 { 1735 struct ata_port *ap = dev->link->ap; 1736 unsigned int class = *p_class; 1737 struct ata_taskfile tf; 1738 unsigned int err_mask = 0; 1739 const char *reason; 1740 bool is_semb = class == ATA_DEV_SEMB; 1741 int may_fallback = 1, tried_spinup = 0; 1742 int rc; 1743 1744 retry: 1745 ata_tf_init(dev, &tf); 1746 1747 switch (class) { 1748 case ATA_DEV_SEMB: 1749 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1750 fallthrough; 1751 case ATA_DEV_ATA: 1752 case ATA_DEV_ZAC: 1753 tf.command = ATA_CMD_ID_ATA; 1754 break; 1755 case ATA_DEV_ATAPI: 1756 tf.command = ATA_CMD_ID_ATAPI; 1757 break; 1758 default: 1759 rc = -ENODEV; 1760 reason = "unsupported class"; 1761 goto err_out; 1762 } 1763 1764 tf.protocol = ATA_PROT_PIO; 1765 1766 /* Some devices choke if TF registers contain garbage. Make 1767 * sure those are properly initialized. 1768 */ 1769 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1770 1771 /* Device presence detection is unreliable on some 1772 * controllers. Always poll IDENTIFY if available. 1773 */ 1774 tf.flags |= ATA_TFLAG_POLLING; 1775 1776 if (ap->ops->read_id) 1777 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1778 else 1779 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1780 1781 if (err_mask) { 1782 if (err_mask & AC_ERR_NODEV_HINT) { 1783 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1784 return -ENOENT; 1785 } 1786 1787 if (is_semb) { 1788 ata_dev_info(dev, 1789 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1790 /* SEMB is not supported yet */ 1791 *p_class = ATA_DEV_SEMB_UNSUP; 1792 return 0; 1793 } 1794 1795 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1796 /* Device or controller might have reported 1797 * the wrong device class. Give a shot at the 1798 * other IDENTIFY if the current one is 1799 * aborted by the device. 1800 */ 1801 if (may_fallback) { 1802 may_fallback = 0; 1803 1804 if (class == ATA_DEV_ATA) 1805 class = ATA_DEV_ATAPI; 1806 else 1807 class = ATA_DEV_ATA; 1808 goto retry; 1809 } 1810 1811 /* Control reaches here iff the device aborted 1812 * both flavors of IDENTIFYs which happens 1813 * sometimes with phantom devices. 1814 */ 1815 ata_dev_dbg(dev, 1816 "both IDENTIFYs aborted, assuming NODEV\n"); 1817 return -ENOENT; 1818 } 1819 1820 rc = -EIO; 1821 reason = "I/O error"; 1822 goto err_out; 1823 } 1824 1825 if (dev->quirks & ATA_QUIRK_DUMP_ID) { 1826 ata_dev_info(dev, "dumping IDENTIFY data, " 1827 "class=%d may_fallback=%d tried_spinup=%d\n", 1828 class, may_fallback, tried_spinup); 1829 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1830 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1831 } 1832 1833 /* Falling back doesn't make sense if ID data was read 1834 * successfully at least once. 1835 */ 1836 may_fallback = 0; 1837 1838 swap_buf_le16(id, ATA_ID_WORDS); 1839 1840 /* sanity check */ 1841 rc = -EINVAL; 1842 reason = "device reports invalid type"; 1843 1844 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1845 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1846 goto err_out; 1847 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1848 ata_id_is_ata(id)) { 1849 ata_dev_dbg(dev, 1850 "host indicates ignore ATA devices, ignored\n"); 1851 return -ENOENT; 1852 } 1853 } else { 1854 if (ata_id_is_ata(id)) 1855 goto err_out; 1856 } 1857 1858 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1859 tried_spinup = 1; 1860 /* 1861 * Drive powered-up in standby mode, and requires a specific 1862 * SET_FEATURES spin-up subcommand before it will accept 1863 * anything other than the original IDENTIFY command. 1864 */ 1865 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1866 if (err_mask && id[2] != 0x738c) { 1867 rc = -EIO; 1868 reason = "SPINUP failed"; 1869 goto err_out; 1870 } 1871 /* 1872 * If the drive initially returned incomplete IDENTIFY info, 1873 * we now must reissue the IDENTIFY command. 1874 */ 1875 if (id[2] == 0x37c8) 1876 goto retry; 1877 } 1878 1879 if ((flags & ATA_READID_POSTRESET) && 1880 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1881 /* 1882 * The exact sequence expected by certain pre-ATA4 drives is: 1883 * SRST RESET 1884 * IDENTIFY (optional in early ATA) 1885 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1886 * anything else.. 1887 * Some drives were very specific about that exact sequence. 1888 * 1889 * Note that ATA4 says lba is mandatory so the second check 1890 * should never trigger. 1891 */ 1892 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1893 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1894 if (err_mask) { 1895 rc = -EIO; 1896 reason = "INIT_DEV_PARAMS failed"; 1897 goto err_out; 1898 } 1899 1900 /* current CHS translation info (id[53-58]) might be 1901 * changed. reread the identify device info. 1902 */ 1903 flags &= ~ATA_READID_POSTRESET; 1904 goto retry; 1905 } 1906 } 1907 1908 *p_class = class; 1909 1910 return 0; 1911 1912 err_out: 1913 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1914 reason, err_mask); 1915 return rc; 1916 } 1917 1918 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1919 bool set_active) 1920 { 1921 /* Only applies to ATA and ZAC devices */ 1922 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1923 return false; 1924 1925 ata_tf_init(dev, tf); 1926 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1927 tf->protocol = ATA_PROT_NODATA; 1928 1929 if (set_active) { 1930 /* VERIFY for 1 sector at lba=0 */ 1931 tf->command = ATA_CMD_VERIFY; 1932 tf->nsect = 1; 1933 if (dev->flags & ATA_DFLAG_LBA) { 1934 tf->flags |= ATA_TFLAG_LBA; 1935 tf->device |= ATA_LBA; 1936 } else { 1937 /* CHS */ 1938 tf->lbal = 0x1; /* sect */ 1939 } 1940 } else { 1941 tf->command = ATA_CMD_STANDBYNOW1; 1942 } 1943 1944 return true; 1945 } 1946 1947 static bool ata_dev_power_is_active(struct ata_device *dev) 1948 { 1949 struct ata_taskfile tf; 1950 unsigned int err_mask; 1951 1952 ata_tf_init(dev, &tf); 1953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1954 tf.protocol = ATA_PROT_NODATA; 1955 tf.command = ATA_CMD_CHK_POWER; 1956 1957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1958 if (err_mask) { 1959 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 1960 err_mask); 1961 /* 1962 * Assume we are in standby mode so that we always force a 1963 * spinup in ata_dev_power_set_active(). 1964 */ 1965 return false; 1966 } 1967 1968 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 1969 1970 /* Active or idle */ 1971 return tf.nsect == 0xff; 1972 } 1973 1974 /** 1975 * ata_dev_power_set_standby - Set a device power mode to standby 1976 * @dev: target device 1977 * 1978 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 1979 * For an HDD device, this spins down the disks. 1980 * 1981 * LOCKING: 1982 * Kernel thread context (may sleep). 1983 */ 1984 void ata_dev_power_set_standby(struct ata_device *dev) 1985 { 1986 unsigned long ap_flags = dev->link->ap->flags; 1987 struct ata_taskfile tf; 1988 unsigned int err_mask; 1989 1990 /* If the device is already sleeping or in standby, do nothing. */ 1991 if ((dev->flags & ATA_DFLAG_SLEEPING) || 1992 !ata_dev_power_is_active(dev)) 1993 return; 1994 1995 /* 1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 1997 * causing some drives to spin up and down again. For these, do nothing 1998 * if we are being called on shutdown. 1999 */ 2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2001 system_state == SYSTEM_POWER_OFF) 2002 return; 2003 2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2005 system_entering_hibernation()) 2006 return; 2007 2008 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2009 if (!ata_dev_power_init_tf(dev, &tf, false)) 2010 return; 2011 2012 ata_dev_notice(dev, "Entering standby power mode\n"); 2013 2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2015 if (err_mask) 2016 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2017 err_mask); 2018 } 2019 2020 /** 2021 * ata_dev_power_set_active - Set a device power mode to active 2022 * @dev: target device 2023 * 2024 * Issue a VERIFY command to enter to ensure that the device is in the 2025 * active power mode. For a spun-down HDD (standby or idle power mode), 2026 * the VERIFY command will complete after the disk spins up. 2027 * 2028 * LOCKING: 2029 * Kernel thread context (may sleep). 2030 */ 2031 void ata_dev_power_set_active(struct ata_device *dev) 2032 { 2033 struct ata_taskfile tf; 2034 unsigned int err_mask; 2035 2036 /* 2037 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2038 * if supported by the device. 2039 */ 2040 if (!ata_dev_power_init_tf(dev, &tf, true)) 2041 return; 2042 2043 /* 2044 * Check the device power state & condition and force a spinup with 2045 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2046 */ 2047 if (ata_dev_power_is_active(dev)) 2048 return; 2049 2050 ata_dev_notice(dev, "Entering active power mode\n"); 2051 2052 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2053 if (err_mask) 2054 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2055 err_mask); 2056 } 2057 2058 /** 2059 * ata_read_log_page - read a specific log page 2060 * @dev: target device 2061 * @log: log to read 2062 * @page: page to read 2063 * @buf: buffer to store read page 2064 * @sectors: number of sectors to read 2065 * 2066 * Read log page using READ_LOG_EXT command. 2067 * 2068 * LOCKING: 2069 * Kernel thread context (may sleep). 2070 * 2071 * RETURNS: 2072 * 0 on success, AC_ERR_* mask otherwise. 2073 */ 2074 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2075 u8 page, void *buf, unsigned int sectors) 2076 { 2077 unsigned long ap_flags = dev->link->ap->flags; 2078 struct ata_taskfile tf; 2079 unsigned int err_mask; 2080 bool dma = false; 2081 2082 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2083 2084 /* 2085 * Return error without actually issuing the command on controllers 2086 * which e.g. lockup on a read log page. 2087 */ 2088 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2089 return AC_ERR_DEV; 2090 2091 retry: 2092 ata_tf_init(dev, &tf); 2093 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2094 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) { 2095 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2096 tf.protocol = ATA_PROT_DMA; 2097 dma = true; 2098 } else { 2099 tf.command = ATA_CMD_READ_LOG_EXT; 2100 tf.protocol = ATA_PROT_PIO; 2101 dma = false; 2102 } 2103 tf.lbal = log; 2104 tf.lbam = page; 2105 tf.nsect = sectors; 2106 tf.hob_nsect = sectors >> 8; 2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2108 2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2110 buf, sectors * ATA_SECT_SIZE, 0); 2111 2112 if (err_mask) { 2113 if (dma) { 2114 dev->quirks |= ATA_QUIRK_NO_DMA_LOG; 2115 if (!ata_port_is_frozen(dev->link->ap)) 2116 goto retry; 2117 } 2118 ata_dev_err(dev, 2119 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2120 (unsigned int)log, (unsigned int)page, err_mask); 2121 } 2122 2123 return err_mask; 2124 } 2125 2126 static int ata_log_supported(struct ata_device *dev, u8 log) 2127 { 2128 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR) 2129 return 0; 2130 2131 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1)) 2132 return 0; 2133 return get_unaligned_le16(&dev->sector_buf[log * 2]); 2134 } 2135 2136 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2137 { 2138 unsigned int err, i; 2139 2140 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG) 2141 return false; 2142 2143 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2144 /* 2145 * IDENTIFY DEVICE data log is defined as mandatory starting 2146 * with ACS-3 (ATA version 10). Warn about the missing log 2147 * for drives which implement this ATA level or above. 2148 */ 2149 if (ata_id_major_version(dev->id) >= 10) 2150 ata_dev_warn(dev, 2151 "ATA Identify Device Log not supported\n"); 2152 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG; 2153 return false; 2154 } 2155 2156 /* 2157 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2158 * supported. 2159 */ 2160 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, 2161 dev->sector_buf, 1); 2162 if (err) 2163 return false; 2164 2165 for (i = 0; i < dev->sector_buf[8]; i++) { 2166 if (dev->sector_buf[9 + i] == page) 2167 return true; 2168 } 2169 2170 return false; 2171 } 2172 2173 static int ata_do_link_spd_quirk(struct ata_device *dev) 2174 { 2175 struct ata_link *plink = ata_dev_phys_link(dev); 2176 u32 target, target_limit; 2177 2178 if (!sata_scr_valid(plink)) 2179 return 0; 2180 2181 if (dev->quirks & ATA_QUIRK_1_5_GBPS) 2182 target = 1; 2183 else 2184 return 0; 2185 2186 target_limit = (1 << target) - 1; 2187 2188 /* if already on stricter limit, no need to push further */ 2189 if (plink->sata_spd_limit <= target_limit) 2190 return 0; 2191 2192 plink->sata_spd_limit = target_limit; 2193 2194 /* Request another EH round by returning -EAGAIN if link is 2195 * going faster than the target speed. Forward progress is 2196 * guaranteed by setting sata_spd_limit to target_limit above. 2197 */ 2198 if (plink->sata_spd > target) { 2199 ata_dev_info(dev, "applying link speed limit quirk to %s\n", 2200 sata_spd_string(target)); 2201 return -EAGAIN; 2202 } 2203 return 0; 2204 } 2205 2206 static inline bool ata_dev_knobble(struct ata_device *dev) 2207 { 2208 struct ata_port *ap = dev->link->ap; 2209 2210 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK) 2211 return false; 2212 2213 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2214 } 2215 2216 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2217 { 2218 unsigned int err_mask; 2219 2220 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2221 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2222 return; 2223 } 2224 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2225 0, dev->sector_buf, 1); 2226 if (!err_mask) { 2227 u8 *cmds = dev->ncq_send_recv_cmds; 2228 2229 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2230 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2231 2232 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) { 2233 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2234 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2235 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2236 } 2237 } 2238 } 2239 2240 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2241 { 2242 unsigned int err_mask; 2243 2244 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2245 ata_dev_warn(dev, 2246 "NCQ Send/Recv Log not supported\n"); 2247 return; 2248 } 2249 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2250 0, dev->sector_buf, 1); 2251 if (!err_mask) 2252 memcpy(dev->ncq_non_data_cmds, dev->sector_buf, 2253 ATA_LOG_NCQ_NON_DATA_SIZE); 2254 } 2255 2256 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2257 { 2258 unsigned int err_mask; 2259 2260 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2261 return; 2262 2263 err_mask = ata_read_log_page(dev, 2264 ATA_LOG_IDENTIFY_DEVICE, 2265 ATA_LOG_SATA_SETTINGS, 2266 dev->sector_buf, 1); 2267 if (err_mask) 2268 goto not_supported; 2269 2270 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2271 goto not_supported; 2272 2273 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2274 2275 return; 2276 2277 not_supported: 2278 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2279 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2280 } 2281 2282 static bool ata_dev_check_adapter(struct ata_device *dev, 2283 unsigned short vendor_id) 2284 { 2285 struct pci_dev *pcidev = NULL; 2286 struct device *parent_dev = NULL; 2287 2288 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2289 parent_dev = parent_dev->parent) { 2290 if (dev_is_pci(parent_dev)) { 2291 pcidev = to_pci_dev(parent_dev); 2292 if (pcidev->vendor == vendor_id) 2293 return true; 2294 break; 2295 } 2296 } 2297 2298 return false; 2299 } 2300 2301 static int ata_dev_config_ncq(struct ata_device *dev, 2302 char *desc, size_t desc_sz) 2303 { 2304 struct ata_port *ap = dev->link->ap; 2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2306 unsigned int err_mask; 2307 char *aa_desc = ""; 2308 2309 if (!ata_id_has_ncq(dev->id)) { 2310 desc[0] = '\0'; 2311 return 0; 2312 } 2313 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2314 return 0; 2315 if (dev->quirks & ATA_QUIRK_NONCQ) { 2316 snprintf(desc, desc_sz, "NCQ (not used)"); 2317 return 0; 2318 } 2319 2320 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI && 2321 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2322 snprintf(desc, desc_sz, "NCQ (not used)"); 2323 return 0; 2324 } 2325 2326 if (ap->flags & ATA_FLAG_NCQ) { 2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2328 dev->flags |= ATA_DFLAG_NCQ; 2329 } 2330 2331 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) && 2332 (ap->flags & ATA_FLAG_FPDMA_AA) && 2333 ata_id_has_fpdma_aa(dev->id)) { 2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2335 SATA_FPDMA_AA); 2336 if (err_mask) { 2337 ata_dev_err(dev, 2338 "failed to enable AA (error_mask=0x%x)\n", 2339 err_mask); 2340 if (err_mask != AC_ERR_DEV) { 2341 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA; 2342 return -EIO; 2343 } 2344 } else 2345 aa_desc = ", AA"; 2346 } 2347 2348 if (hdepth >= ddepth) 2349 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2350 else 2351 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2352 ddepth, aa_desc); 2353 2354 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2355 if (ata_id_has_ncq_send_and_recv(dev->id)) 2356 ata_dev_config_ncq_send_recv(dev); 2357 if (ata_id_has_ncq_non_data(dev->id)) 2358 ata_dev_config_ncq_non_data(dev); 2359 if (ata_id_has_ncq_prio(dev->id)) 2360 ata_dev_config_ncq_prio(dev); 2361 } 2362 2363 return 0; 2364 } 2365 2366 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2367 { 2368 unsigned int err_mask; 2369 2370 if (!ata_id_has_sense_reporting(dev->id)) 2371 return; 2372 2373 if (ata_id_sense_reporting_enabled(dev->id)) 2374 return; 2375 2376 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2377 if (err_mask) { 2378 ata_dev_dbg(dev, 2379 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2380 err_mask); 2381 } 2382 } 2383 2384 static void ata_dev_config_zac(struct ata_device *dev) 2385 { 2386 unsigned int err_mask; 2387 u8 *identify_buf = dev->sector_buf; 2388 2389 dev->zac_zones_optimal_open = U32_MAX; 2390 dev->zac_zones_optimal_nonseq = U32_MAX; 2391 dev->zac_zones_max_open = U32_MAX; 2392 2393 /* 2394 * Always set the 'ZAC' flag for Host-managed devices. 2395 */ 2396 if (dev->class == ATA_DEV_ZAC) 2397 dev->flags |= ATA_DFLAG_ZAC; 2398 else if (ata_id_zoned_cap(dev->id) == 0x01) 2399 /* 2400 * Check for host-aware devices. 2401 */ 2402 dev->flags |= ATA_DFLAG_ZAC; 2403 2404 if (!(dev->flags & ATA_DFLAG_ZAC)) 2405 return; 2406 2407 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2408 ata_dev_warn(dev, 2409 "ATA Zoned Information Log not supported\n"); 2410 return; 2411 } 2412 2413 /* 2414 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2415 */ 2416 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2417 ATA_LOG_ZONED_INFORMATION, 2418 identify_buf, 1); 2419 if (!err_mask) { 2420 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2421 2422 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2423 if ((zoned_cap >> 63)) 2424 dev->zac_zoned_cap = (zoned_cap & 1); 2425 opt_open = get_unaligned_le64(&identify_buf[24]); 2426 if ((opt_open >> 63)) 2427 dev->zac_zones_optimal_open = (u32)opt_open; 2428 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2429 if ((opt_nonseq >> 63)) 2430 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2431 max_open = get_unaligned_le64(&identify_buf[40]); 2432 if ((max_open >> 63)) 2433 dev->zac_zones_max_open = (u32)max_open; 2434 } 2435 } 2436 2437 static void ata_dev_config_trusted(struct ata_device *dev) 2438 { 2439 u64 trusted_cap; 2440 unsigned int err; 2441 2442 if (!ata_id_has_trusted(dev->id)) 2443 return; 2444 2445 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2446 ata_dev_warn(dev, 2447 "Security Log not supported\n"); 2448 return; 2449 } 2450 2451 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2452 dev->sector_buf, 1); 2453 if (err) 2454 return; 2455 2456 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]); 2457 if (!(trusted_cap & (1ULL << 63))) { 2458 ata_dev_dbg(dev, 2459 "Trusted Computing capability qword not valid!\n"); 2460 return; 2461 } 2462 2463 if (trusted_cap & (1 << 0)) 2464 dev->flags |= ATA_DFLAG_TRUSTED; 2465 } 2466 2467 void ata_dev_cleanup_cdl_resources(struct ata_device *dev) 2468 { 2469 kfree(dev->cdl); 2470 dev->cdl = NULL; 2471 } 2472 2473 static int ata_dev_init_cdl_resources(struct ata_device *dev) 2474 { 2475 struct ata_cdl *cdl = dev->cdl; 2476 unsigned int err_mask; 2477 2478 if (!cdl) { 2479 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL); 2480 if (!cdl) 2481 return -ENOMEM; 2482 dev->cdl = cdl; 2483 } 2484 2485 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf, 2486 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE); 2487 if (err_mask) { 2488 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2489 ata_dev_cleanup_cdl_resources(dev); 2490 return -EIO; 2491 } 2492 2493 return 0; 2494 } 2495 2496 static void ata_dev_config_cdl(struct ata_device *dev) 2497 { 2498 unsigned int err_mask; 2499 bool cdl_enabled; 2500 u64 val; 2501 int ret; 2502 2503 if (ata_id_major_version(dev->id) < 11) 2504 goto not_supported; 2505 2506 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2507 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2508 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2509 goto not_supported; 2510 2511 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2512 ATA_LOG_SUPPORTED_CAPABILITIES, 2513 dev->sector_buf, 1); 2514 if (err_mask) 2515 goto not_supported; 2516 2517 /* Check Command Duration Limit Supported bits */ 2518 val = get_unaligned_le64(&dev->sector_buf[168]); 2519 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2520 goto not_supported; 2521 2522 /* Warn the user if command duration guideline is not supported */ 2523 if (!(val & BIT_ULL(1))) 2524 ata_dev_warn(dev, 2525 "Command duration guideline is not supported\n"); 2526 2527 /* 2528 * We must have support for the sense data for successful NCQ commands 2529 * log indicated by the successful NCQ command sense data supported bit. 2530 */ 2531 val = get_unaligned_le64(&dev->sector_buf[8]); 2532 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2533 ata_dev_warn(dev, 2534 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2535 goto not_supported; 2536 } 2537 2538 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2539 if (!ata_id_has_ncq_autosense(dev->id)) { 2540 ata_dev_warn(dev, 2541 "CDL supported but NCQ autosense is not supported\n"); 2542 goto not_supported; 2543 } 2544 2545 /* 2546 * If CDL is marked as enabled, make sure the feature is enabled too. 2547 * Conversely, if CDL is disabled, make sure the feature is turned off. 2548 */ 2549 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2550 ATA_LOG_CURRENT_SETTINGS, 2551 dev->sector_buf, 1); 2552 if (err_mask) 2553 goto not_supported; 2554 2555 val = get_unaligned_le64(&dev->sector_buf[8]); 2556 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2557 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2558 if (!cdl_enabled) { 2559 /* Enable CDL on the device */ 2560 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2561 if (err_mask) { 2562 ata_dev_err(dev, 2563 "Enable CDL feature failed\n"); 2564 goto not_supported; 2565 } 2566 } 2567 } else { 2568 if (cdl_enabled) { 2569 /* Disable CDL on the device */ 2570 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2571 if (err_mask) { 2572 ata_dev_err(dev, 2573 "Disable CDL feature failed\n"); 2574 goto not_supported; 2575 } 2576 } 2577 } 2578 2579 /* 2580 * While CDL itself has to be enabled using sysfs, CDL requires that 2581 * sense data for successful NCQ commands is enabled to work properly. 2582 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2583 * if supported. 2584 */ 2585 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2586 err_mask = ata_dev_set_feature(dev, 2587 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2588 if (err_mask) { 2589 ata_dev_warn(dev, 2590 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2591 err_mask); 2592 goto not_supported; 2593 } 2594 } 2595 2596 /* CDL is supported: allocate and initialize needed resources. */ 2597 ret = ata_dev_init_cdl_resources(dev); 2598 if (ret) { 2599 ata_dev_warn(dev, "Initialize CDL resources failed\n"); 2600 goto not_supported; 2601 } 2602 2603 dev->flags |= ATA_DFLAG_CDL; 2604 2605 return; 2606 2607 not_supported: 2608 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2609 ata_dev_cleanup_cdl_resources(dev); 2610 } 2611 2612 static int ata_dev_config_lba(struct ata_device *dev) 2613 { 2614 const u16 *id = dev->id; 2615 const char *lba_desc; 2616 char ncq_desc[32]; 2617 int ret; 2618 2619 dev->flags |= ATA_DFLAG_LBA; 2620 2621 if (ata_id_has_lba48(id)) { 2622 lba_desc = "LBA48"; 2623 dev->flags |= ATA_DFLAG_LBA48; 2624 if (dev->n_sectors >= (1UL << 28) && 2625 ata_id_has_flush_ext(id)) 2626 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2627 } else { 2628 lba_desc = "LBA"; 2629 } 2630 2631 /* config NCQ */ 2632 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2633 2634 /* print device info to dmesg */ 2635 if (ata_dev_print_info(dev)) 2636 ata_dev_info(dev, 2637 "%llu sectors, multi %u: %s %s\n", 2638 (unsigned long long)dev->n_sectors, 2639 dev->multi_count, lba_desc, ncq_desc); 2640 2641 return ret; 2642 } 2643 2644 static void ata_dev_config_chs(struct ata_device *dev) 2645 { 2646 const u16 *id = dev->id; 2647 2648 if (ata_id_current_chs_valid(id)) { 2649 /* Current CHS translation is valid. */ 2650 dev->cylinders = id[54]; 2651 dev->heads = id[55]; 2652 dev->sectors = id[56]; 2653 } else { 2654 /* Default translation */ 2655 dev->cylinders = id[1]; 2656 dev->heads = id[3]; 2657 dev->sectors = id[6]; 2658 } 2659 2660 /* print device info to dmesg */ 2661 if (ata_dev_print_info(dev)) 2662 ata_dev_info(dev, 2663 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2664 (unsigned long long)dev->n_sectors, 2665 dev->multi_count, dev->cylinders, 2666 dev->heads, dev->sectors); 2667 } 2668 2669 static void ata_dev_config_fua(struct ata_device *dev) 2670 { 2671 /* Ignore FUA support if its use is disabled globally */ 2672 if (!libata_fua) 2673 goto nofua; 2674 2675 /* Ignore devices without support for WRITE DMA FUA EXT */ 2676 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2677 goto nofua; 2678 2679 /* Ignore known bad devices and devices that lack NCQ support */ 2680 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA)) 2681 goto nofua; 2682 2683 dev->flags |= ATA_DFLAG_FUA; 2684 2685 return; 2686 2687 nofua: 2688 dev->flags &= ~ATA_DFLAG_FUA; 2689 } 2690 2691 static void ata_dev_config_devslp(struct ata_device *dev) 2692 { 2693 u8 *sata_setting = dev->sector_buf; 2694 unsigned int err_mask; 2695 int i, j; 2696 2697 /* 2698 * Check device sleep capability. Get DevSlp timing variables 2699 * from SATA Settings page of Identify Device Data Log. 2700 */ 2701 if (!ata_id_has_devslp(dev->id) || 2702 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2703 return; 2704 2705 err_mask = ata_read_log_page(dev, 2706 ATA_LOG_IDENTIFY_DEVICE, 2707 ATA_LOG_SATA_SETTINGS, 2708 sata_setting, 1); 2709 if (err_mask) 2710 return; 2711 2712 dev->flags |= ATA_DFLAG_DEVSLP; 2713 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2714 j = ATA_LOG_DEVSLP_OFFSET + i; 2715 dev->devslp_timing[i] = sata_setting[j]; 2716 } 2717 } 2718 2719 static void ata_dev_config_cpr(struct ata_device *dev) 2720 { 2721 unsigned int err_mask; 2722 size_t buf_len; 2723 int i, nr_cpr = 0; 2724 struct ata_cpr_log *cpr_log = NULL; 2725 u8 *desc, *buf = NULL; 2726 2727 if (ata_id_major_version(dev->id) < 11) 2728 goto out; 2729 2730 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2731 if (buf_len == 0) 2732 goto out; 2733 2734 /* 2735 * Read the concurrent positioning ranges log (0x47). We can have at 2736 * most 255 32B range descriptors plus a 64B header. This log varies in 2737 * size, so use the size reported in the GPL directory. Reading beyond 2738 * the supported length will result in an error. 2739 */ 2740 buf_len <<= 9; 2741 buf = kzalloc(buf_len, GFP_KERNEL); 2742 if (!buf) 2743 goto out; 2744 2745 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2746 0, buf, buf_len >> 9); 2747 if (err_mask) 2748 goto out; 2749 2750 nr_cpr = buf[0]; 2751 if (!nr_cpr) 2752 goto out; 2753 2754 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2755 if (!cpr_log) 2756 goto out; 2757 2758 cpr_log->nr_cpr = nr_cpr; 2759 desc = &buf[64]; 2760 for (i = 0; i < nr_cpr; i++, desc += 32) { 2761 cpr_log->cpr[i].num = desc[0]; 2762 cpr_log->cpr[i].num_storage_elements = desc[1]; 2763 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2764 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2765 } 2766 2767 out: 2768 swap(dev->cpr_log, cpr_log); 2769 kfree(cpr_log); 2770 kfree(buf); 2771 } 2772 2773 static void ata_dev_print_features(struct ata_device *dev) 2774 { 2775 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2776 return; 2777 2778 ata_dev_info(dev, 2779 "Features:%s%s%s%s%s%s%s%s\n", 2780 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2781 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2782 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2783 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2784 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2785 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2786 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2787 dev->cpr_log ? " CPR" : ""); 2788 } 2789 2790 /** 2791 * ata_dev_configure - Configure the specified ATA/ATAPI device 2792 * @dev: Target device to configure 2793 * 2794 * Configure @dev according to @dev->id. Generic and low-level 2795 * driver specific fixups are also applied. 2796 * 2797 * LOCKING: 2798 * Kernel thread context (may sleep) 2799 * 2800 * RETURNS: 2801 * 0 on success, -errno otherwise 2802 */ 2803 int ata_dev_configure(struct ata_device *dev) 2804 { 2805 struct ata_port *ap = dev->link->ap; 2806 bool print_info = ata_dev_print_info(dev); 2807 const u16 *id = dev->id; 2808 unsigned int xfer_mask; 2809 unsigned int err_mask; 2810 char revbuf[7]; /* XYZ-99\0 */ 2811 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2812 char modelbuf[ATA_ID_PROD_LEN+1]; 2813 int rc; 2814 2815 if (!ata_dev_enabled(dev)) { 2816 ata_dev_dbg(dev, "no device\n"); 2817 return 0; 2818 } 2819 2820 /* Set quirks */ 2821 dev->quirks |= ata_dev_quirks(dev); 2822 ata_force_quirks(dev); 2823 2824 if (dev->quirks & ATA_QUIRK_DISABLE) { 2825 ata_dev_info(dev, "unsupported device, disabling\n"); 2826 ata_dev_disable(dev); 2827 return 0; 2828 } 2829 2830 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2831 dev->class == ATA_DEV_ATAPI) { 2832 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2833 atapi_enabled ? "not supported with this driver" 2834 : "disabled"); 2835 ata_dev_disable(dev); 2836 return 0; 2837 } 2838 2839 rc = ata_do_link_spd_quirk(dev); 2840 if (rc) 2841 return rc; 2842 2843 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) && 2845 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2846 dev->quirks |= ATA_QUIRK_NOLPM; 2847 2848 if (ap->flags & ATA_FLAG_NO_LPM) 2849 dev->quirks |= ATA_QUIRK_NOLPM; 2850 2851 if (dev->quirks & ATA_QUIRK_NOLPM) { 2852 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2853 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2854 } 2855 2856 /* let ACPI work its magic */ 2857 rc = ata_acpi_on_devcfg(dev); 2858 if (rc) 2859 return rc; 2860 2861 /* massage HPA, do it early as it might change IDENTIFY data */ 2862 rc = ata_hpa_resize(dev); 2863 if (rc) 2864 return rc; 2865 2866 /* print device capabilities */ 2867 ata_dev_dbg(dev, 2868 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2869 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2870 __func__, 2871 id[49], id[82], id[83], id[84], 2872 id[85], id[86], id[87], id[88]); 2873 2874 /* initialize to-be-configured parameters */ 2875 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2876 dev->max_sectors = 0; 2877 dev->cdb_len = 0; 2878 dev->n_sectors = 0; 2879 dev->cylinders = 0; 2880 dev->heads = 0; 2881 dev->sectors = 0; 2882 dev->multi_count = 0; 2883 2884 /* 2885 * common ATA, ATAPI feature tests 2886 */ 2887 2888 /* find max transfer mode; for printk only */ 2889 xfer_mask = ata_id_xfermask(id); 2890 2891 ata_dump_id(dev, id); 2892 2893 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2894 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2895 sizeof(fwrevbuf)); 2896 2897 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2898 sizeof(modelbuf)); 2899 2900 /* ATA-specific feature tests */ 2901 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2902 if (ata_id_is_cfa(id)) { 2903 /* CPRM may make this media unusable */ 2904 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2905 ata_dev_warn(dev, 2906 "supports DRM functions and may not be fully accessible\n"); 2907 snprintf(revbuf, 7, "CFA"); 2908 } else { 2909 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2910 /* Warn the user if the device has TPM extensions */ 2911 if (ata_id_has_tpm(id)) 2912 ata_dev_warn(dev, 2913 "supports DRM functions and may not be fully accessible\n"); 2914 } 2915 2916 dev->n_sectors = ata_id_n_sectors(id); 2917 2918 /* get current R/W Multiple count setting */ 2919 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2920 unsigned int max = dev->id[47] & 0xff; 2921 unsigned int cnt = dev->id[59] & 0xff; 2922 /* only recognize/allow powers of two here */ 2923 if (is_power_of_2(max) && is_power_of_2(cnt)) 2924 if (cnt <= max) 2925 dev->multi_count = cnt; 2926 } 2927 2928 /* print device info to dmesg */ 2929 if (print_info) 2930 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2931 revbuf, modelbuf, fwrevbuf, 2932 ata_mode_string(xfer_mask)); 2933 2934 if (ata_id_has_lba(id)) { 2935 rc = ata_dev_config_lba(dev); 2936 if (rc) 2937 return rc; 2938 } else { 2939 ata_dev_config_chs(dev); 2940 } 2941 2942 ata_dev_config_fua(dev); 2943 ata_dev_config_devslp(dev); 2944 ata_dev_config_sense_reporting(dev); 2945 ata_dev_config_zac(dev); 2946 ata_dev_config_trusted(dev); 2947 ata_dev_config_cpr(dev); 2948 ata_dev_config_cdl(dev); 2949 dev->cdb_len = 32; 2950 2951 if (print_info) 2952 ata_dev_print_features(dev); 2953 } 2954 2955 /* ATAPI-specific feature tests */ 2956 else if (dev->class == ATA_DEV_ATAPI) { 2957 const char *cdb_intr_string = ""; 2958 const char *atapi_an_string = ""; 2959 const char *dma_dir_string = ""; 2960 u32 sntf; 2961 2962 rc = atapi_cdb_len(id); 2963 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2964 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2965 rc = -EINVAL; 2966 goto err_out_nosup; 2967 } 2968 dev->cdb_len = (unsigned int) rc; 2969 2970 /* Enable ATAPI AN if both the host and device have 2971 * the support. If PMP is attached, SNTF is required 2972 * to enable ATAPI AN to discern between PHY status 2973 * changed notifications and ATAPI ANs. 2974 */ 2975 if (atapi_an && 2976 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2977 (!sata_pmp_attached(ap) || 2978 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2979 /* issue SET feature command to turn this on */ 2980 err_mask = ata_dev_set_feature(dev, 2981 SETFEATURES_SATA_ENABLE, SATA_AN); 2982 if (err_mask) 2983 ata_dev_err(dev, 2984 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2985 err_mask); 2986 else { 2987 dev->flags |= ATA_DFLAG_AN; 2988 atapi_an_string = ", ATAPI AN"; 2989 } 2990 } 2991 2992 if (ata_id_cdb_intr(dev->id)) { 2993 dev->flags |= ATA_DFLAG_CDB_INTR; 2994 cdb_intr_string = ", CDB intr"; 2995 } 2996 2997 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) || 2998 atapi_id_dmadir(dev->id)) { 2999 dev->flags |= ATA_DFLAG_DMADIR; 3000 dma_dir_string = ", DMADIR"; 3001 } 3002 3003 if (ata_id_has_da(dev->id)) { 3004 dev->flags |= ATA_DFLAG_DA; 3005 zpodd_init(dev); 3006 } 3007 3008 /* print device info to dmesg */ 3009 if (print_info) 3010 ata_dev_info(dev, 3011 "ATAPI: %s, %s, max %s%s%s%s\n", 3012 modelbuf, fwrevbuf, 3013 ata_mode_string(xfer_mask), 3014 cdb_intr_string, atapi_an_string, 3015 dma_dir_string); 3016 } 3017 3018 /* determine max_sectors */ 3019 dev->max_sectors = ATA_MAX_SECTORS; 3020 if (dev->flags & ATA_DFLAG_LBA48) 3021 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3022 3023 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3024 200 sectors */ 3025 if (ata_dev_knobble(dev)) { 3026 if (print_info) 3027 ata_dev_info(dev, "applying bridge limits\n"); 3028 dev->udma_mask &= ATA_UDMA5; 3029 dev->max_sectors = ATA_MAX_SECTORS; 3030 } 3031 3032 if ((dev->class == ATA_DEV_ATAPI) && 3033 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3034 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3035 dev->quirks |= ATA_QUIRK_STUCK_ERR; 3036 } 3037 3038 if (dev->quirks & ATA_QUIRK_MAX_SEC_128) 3039 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3040 dev->max_sectors); 3041 3042 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024) 3043 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3044 dev->max_sectors); 3045 3046 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48) 3047 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3048 3049 if (ap->ops->dev_config) 3050 ap->ops->dev_config(dev); 3051 3052 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) { 3053 /* Let the user know. We don't want to disallow opens for 3054 rescue purposes, or in case the vendor is just a blithering 3055 idiot. Do this after the dev_config call as some controllers 3056 with buggy firmware may want to avoid reporting false device 3057 bugs */ 3058 3059 if (print_info) { 3060 ata_dev_warn(dev, 3061 "Drive reports diagnostics failure. This may indicate a drive\n"); 3062 ata_dev_warn(dev, 3063 "fault or invalid emulation. Contact drive vendor for information.\n"); 3064 } 3065 } 3066 3067 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) { 3068 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3069 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3070 } 3071 3072 return 0; 3073 3074 err_out_nosup: 3075 return rc; 3076 } 3077 3078 /** 3079 * ata_cable_40wire - return 40 wire cable type 3080 * @ap: port 3081 * 3082 * Helper method for drivers which want to hardwire 40 wire cable 3083 * detection. 3084 */ 3085 3086 int ata_cable_40wire(struct ata_port *ap) 3087 { 3088 return ATA_CBL_PATA40; 3089 } 3090 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3091 3092 /** 3093 * ata_cable_80wire - return 80 wire cable type 3094 * @ap: port 3095 * 3096 * Helper method for drivers which want to hardwire 80 wire cable 3097 * detection. 3098 */ 3099 3100 int ata_cable_80wire(struct ata_port *ap) 3101 { 3102 return ATA_CBL_PATA80; 3103 } 3104 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3105 3106 /** 3107 * ata_cable_unknown - return unknown PATA cable. 3108 * @ap: port 3109 * 3110 * Helper method for drivers which have no PATA cable detection. 3111 */ 3112 3113 int ata_cable_unknown(struct ata_port *ap) 3114 { 3115 return ATA_CBL_PATA_UNK; 3116 } 3117 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3118 3119 /** 3120 * ata_cable_ignore - return ignored PATA cable. 3121 * @ap: port 3122 * 3123 * Helper method for drivers which don't use cable type to limit 3124 * transfer mode. 3125 */ 3126 int ata_cable_ignore(struct ata_port *ap) 3127 { 3128 return ATA_CBL_PATA_IGN; 3129 } 3130 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3131 3132 /** 3133 * ata_cable_sata - return SATA cable type 3134 * @ap: port 3135 * 3136 * Helper method for drivers which have SATA cables 3137 */ 3138 3139 int ata_cable_sata(struct ata_port *ap) 3140 { 3141 return ATA_CBL_SATA; 3142 } 3143 EXPORT_SYMBOL_GPL(ata_cable_sata); 3144 3145 /** 3146 * sata_print_link_status - Print SATA link status 3147 * @link: SATA link to printk link status about 3148 * 3149 * This function prints link speed and status of a SATA link. 3150 * 3151 * LOCKING: 3152 * None. 3153 */ 3154 static void sata_print_link_status(struct ata_link *link) 3155 { 3156 u32 sstatus, scontrol, tmp; 3157 3158 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3159 return; 3160 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3161 return; 3162 3163 if (ata_phys_link_online(link)) { 3164 tmp = (sstatus >> 4) & 0xf; 3165 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3166 sata_spd_string(tmp), sstatus, scontrol); 3167 } else { 3168 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3169 sstatus, scontrol); 3170 } 3171 } 3172 3173 /** 3174 * ata_dev_pair - return other device on cable 3175 * @adev: device 3176 * 3177 * Obtain the other device on the same cable, or if none is 3178 * present NULL is returned 3179 */ 3180 3181 struct ata_device *ata_dev_pair(struct ata_device *adev) 3182 { 3183 struct ata_link *link = adev->link; 3184 struct ata_device *pair = &link->device[1 - adev->devno]; 3185 if (!ata_dev_enabled(pair)) 3186 return NULL; 3187 return pair; 3188 } 3189 EXPORT_SYMBOL_GPL(ata_dev_pair); 3190 3191 #ifdef CONFIG_ATA_ACPI 3192 /** 3193 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3194 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3195 * @cycle: cycle duration in ns 3196 * 3197 * Return matching xfer mode for @cycle. The returned mode is of 3198 * the transfer type specified by @xfer_shift. If @cycle is too 3199 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3200 * than the fastest known mode, the fasted mode is returned. 3201 * 3202 * LOCKING: 3203 * None. 3204 * 3205 * RETURNS: 3206 * Matching xfer_mode, 0xff if no match found. 3207 */ 3208 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3209 { 3210 u8 base_mode = 0xff, last_mode = 0xff; 3211 const struct ata_xfer_ent *ent; 3212 const struct ata_timing *t; 3213 3214 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3215 if (ent->shift == xfer_shift) 3216 base_mode = ent->base; 3217 3218 for (t = ata_timing_find_mode(base_mode); 3219 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3220 unsigned short this_cycle; 3221 3222 switch (xfer_shift) { 3223 case ATA_SHIFT_PIO: 3224 case ATA_SHIFT_MWDMA: 3225 this_cycle = t->cycle; 3226 break; 3227 case ATA_SHIFT_UDMA: 3228 this_cycle = t->udma; 3229 break; 3230 default: 3231 return 0xff; 3232 } 3233 3234 if (cycle > this_cycle) 3235 break; 3236 3237 last_mode = t->mode; 3238 } 3239 3240 return last_mode; 3241 } 3242 #endif 3243 3244 /** 3245 * ata_down_xfermask_limit - adjust dev xfer masks downward 3246 * @dev: Device to adjust xfer masks 3247 * @sel: ATA_DNXFER_* selector 3248 * 3249 * Adjust xfer masks of @dev downward. Note that this function 3250 * does not apply the change. Invoking ata_set_mode() afterwards 3251 * will apply the limit. 3252 * 3253 * LOCKING: 3254 * Inherited from caller. 3255 * 3256 * RETURNS: 3257 * 0 on success, negative errno on failure 3258 */ 3259 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3260 { 3261 char buf[32]; 3262 unsigned int orig_mask, xfer_mask; 3263 unsigned int pio_mask, mwdma_mask, udma_mask; 3264 int quiet, highbit; 3265 3266 quiet = !!(sel & ATA_DNXFER_QUIET); 3267 sel &= ~ATA_DNXFER_QUIET; 3268 3269 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3270 dev->mwdma_mask, 3271 dev->udma_mask); 3272 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3273 3274 switch (sel) { 3275 case ATA_DNXFER_PIO: 3276 highbit = fls(pio_mask) - 1; 3277 pio_mask &= ~(1 << highbit); 3278 break; 3279 3280 case ATA_DNXFER_DMA: 3281 if (udma_mask) { 3282 highbit = fls(udma_mask) - 1; 3283 udma_mask &= ~(1 << highbit); 3284 if (!udma_mask) 3285 return -ENOENT; 3286 } else if (mwdma_mask) { 3287 highbit = fls(mwdma_mask) - 1; 3288 mwdma_mask &= ~(1 << highbit); 3289 if (!mwdma_mask) 3290 return -ENOENT; 3291 } 3292 break; 3293 3294 case ATA_DNXFER_40C: 3295 udma_mask &= ATA_UDMA_MASK_40C; 3296 break; 3297 3298 case ATA_DNXFER_FORCE_PIO0: 3299 pio_mask &= 1; 3300 fallthrough; 3301 case ATA_DNXFER_FORCE_PIO: 3302 mwdma_mask = 0; 3303 udma_mask = 0; 3304 break; 3305 3306 default: 3307 BUG(); 3308 } 3309 3310 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3311 3312 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3313 return -ENOENT; 3314 3315 if (!quiet) { 3316 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3317 snprintf(buf, sizeof(buf), "%s:%s", 3318 ata_mode_string(xfer_mask), 3319 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3320 else 3321 snprintf(buf, sizeof(buf), "%s", 3322 ata_mode_string(xfer_mask)); 3323 3324 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3325 } 3326 3327 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3328 &dev->udma_mask); 3329 3330 return 0; 3331 } 3332 3333 static int ata_dev_set_mode(struct ata_device *dev) 3334 { 3335 struct ata_port *ap = dev->link->ap; 3336 struct ata_eh_context *ehc = &dev->link->eh_context; 3337 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER; 3338 const char *dev_err_whine = ""; 3339 int ign_dev_err = 0; 3340 unsigned int err_mask = 0; 3341 int rc; 3342 3343 dev->flags &= ~ATA_DFLAG_PIO; 3344 if (dev->xfer_shift == ATA_SHIFT_PIO) 3345 dev->flags |= ATA_DFLAG_PIO; 3346 3347 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3348 dev_err_whine = " (SET_XFERMODE skipped)"; 3349 else { 3350 if (nosetxfer) 3351 ata_dev_warn(dev, 3352 "NOSETXFER but PATA detected - can't " 3353 "skip SETXFER, might malfunction\n"); 3354 err_mask = ata_dev_set_xfermode(dev); 3355 } 3356 3357 if (err_mask & ~AC_ERR_DEV) 3358 goto fail; 3359 3360 /* revalidate */ 3361 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3362 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3363 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3364 if (rc) 3365 return rc; 3366 3367 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3368 /* Old CFA may refuse this command, which is just fine */ 3369 if (ata_id_is_cfa(dev->id)) 3370 ign_dev_err = 1; 3371 /* Catch several broken garbage emulations plus some pre 3372 ATA devices */ 3373 if (ata_id_major_version(dev->id) == 0 && 3374 dev->pio_mode <= XFER_PIO_2) 3375 ign_dev_err = 1; 3376 /* Some very old devices and some bad newer ones fail 3377 any kind of SET_XFERMODE request but support PIO0-2 3378 timings and no IORDY */ 3379 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3380 ign_dev_err = 1; 3381 } 3382 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3383 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3384 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3385 dev->dma_mode == XFER_MW_DMA_0 && 3386 (dev->id[63] >> 8) & 1) 3387 ign_dev_err = 1; 3388 3389 /* if the device is actually configured correctly, ignore dev err */ 3390 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3391 ign_dev_err = 1; 3392 3393 if (err_mask & AC_ERR_DEV) { 3394 if (!ign_dev_err) 3395 goto fail; 3396 else 3397 dev_err_whine = " (device error ignored)"; 3398 } 3399 3400 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3401 dev->xfer_shift, (int)dev->xfer_mode); 3402 3403 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3404 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3405 ata_dev_info(dev, "configured for %s%s\n", 3406 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3407 dev_err_whine); 3408 3409 return 0; 3410 3411 fail: 3412 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3413 return -EIO; 3414 } 3415 3416 /** 3417 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3418 * @link: link on which timings will be programmed 3419 * @r_failed_dev: out parameter for failed device 3420 * 3421 * Standard implementation of the function used to tune and set 3422 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3423 * ata_dev_set_mode() fails, pointer to the failing device is 3424 * returned in @r_failed_dev. 3425 * 3426 * LOCKING: 3427 * PCI/etc. bus probe sem. 3428 * 3429 * RETURNS: 3430 * 0 on success, negative errno otherwise 3431 */ 3432 3433 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3434 { 3435 struct ata_port *ap = link->ap; 3436 struct ata_device *dev; 3437 int rc = 0, used_dma = 0, found = 0; 3438 3439 /* step 1: calculate xfer_mask */ 3440 ata_for_each_dev(dev, link, ENABLED) { 3441 unsigned int pio_mask, dma_mask; 3442 unsigned int mode_mask; 3443 3444 mode_mask = ATA_DMA_MASK_ATA; 3445 if (dev->class == ATA_DEV_ATAPI) 3446 mode_mask = ATA_DMA_MASK_ATAPI; 3447 else if (ata_id_is_cfa(dev->id)) 3448 mode_mask = ATA_DMA_MASK_CFA; 3449 3450 ata_dev_xfermask(dev); 3451 ata_force_xfermask(dev); 3452 3453 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3454 3455 if (libata_dma_mask & mode_mask) 3456 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3457 dev->udma_mask); 3458 else 3459 dma_mask = 0; 3460 3461 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3462 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3463 3464 found = 1; 3465 if (ata_dma_enabled(dev)) 3466 used_dma = 1; 3467 } 3468 if (!found) 3469 goto out; 3470 3471 /* step 2: always set host PIO timings */ 3472 ata_for_each_dev(dev, link, ENABLED) { 3473 if (dev->pio_mode == 0xff) { 3474 ata_dev_warn(dev, "no PIO support\n"); 3475 rc = -EINVAL; 3476 goto out; 3477 } 3478 3479 dev->xfer_mode = dev->pio_mode; 3480 dev->xfer_shift = ATA_SHIFT_PIO; 3481 if (ap->ops->set_piomode) 3482 ap->ops->set_piomode(ap, dev); 3483 } 3484 3485 /* step 3: set host DMA timings */ 3486 ata_for_each_dev(dev, link, ENABLED) { 3487 if (!ata_dma_enabled(dev)) 3488 continue; 3489 3490 dev->xfer_mode = dev->dma_mode; 3491 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3492 if (ap->ops->set_dmamode) 3493 ap->ops->set_dmamode(ap, dev); 3494 } 3495 3496 /* step 4: update devices' xfer mode */ 3497 ata_for_each_dev(dev, link, ENABLED) { 3498 rc = ata_dev_set_mode(dev); 3499 if (rc) 3500 goto out; 3501 } 3502 3503 /* Record simplex status. If we selected DMA then the other 3504 * host channels are not permitted to do so. 3505 */ 3506 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3507 ap->host->simplex_claimed = ap; 3508 3509 out: 3510 if (rc) 3511 *r_failed_dev = dev; 3512 return rc; 3513 } 3514 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3515 3516 /** 3517 * ata_wait_ready - wait for link to become ready 3518 * @link: link to be waited on 3519 * @deadline: deadline jiffies for the operation 3520 * @check_ready: callback to check link readiness 3521 * 3522 * Wait for @link to become ready. @check_ready should return 3523 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3524 * link doesn't seem to be occupied, other errno for other error 3525 * conditions. 3526 * 3527 * Transient -ENODEV conditions are allowed for 3528 * ATA_TMOUT_FF_WAIT. 3529 * 3530 * LOCKING: 3531 * EH context. 3532 * 3533 * RETURNS: 3534 * 0 if @link is ready before @deadline; otherwise, -errno. 3535 */ 3536 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3537 int (*check_ready)(struct ata_link *link)) 3538 { 3539 unsigned long start = jiffies; 3540 unsigned long nodev_deadline; 3541 int warned = 0; 3542 3543 /* choose which 0xff timeout to use, read comment in libata.h */ 3544 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3545 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3546 else 3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3548 3549 /* Slave readiness can't be tested separately from master. On 3550 * M/S emulation configuration, this function should be called 3551 * only on the master and it will handle both master and slave. 3552 */ 3553 WARN_ON(link == link->ap->slave_link); 3554 3555 if (time_after(nodev_deadline, deadline)) 3556 nodev_deadline = deadline; 3557 3558 while (1) { 3559 unsigned long now = jiffies; 3560 int ready, tmp; 3561 3562 ready = tmp = check_ready(link); 3563 if (ready > 0) 3564 return 0; 3565 3566 /* 3567 * -ENODEV could be transient. Ignore -ENODEV if link 3568 * is online. Also, some SATA devices take a long 3569 * time to clear 0xff after reset. Wait for 3570 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3571 * offline. 3572 * 3573 * Note that some PATA controllers (pata_ali) explode 3574 * if status register is read more than once when 3575 * there's no device attached. 3576 */ 3577 if (ready == -ENODEV) { 3578 if (ata_link_online(link)) 3579 ready = 0; 3580 else if ((link->ap->flags & ATA_FLAG_SATA) && 3581 !ata_link_offline(link) && 3582 time_before(now, nodev_deadline)) 3583 ready = 0; 3584 } 3585 3586 if (ready) 3587 return ready; 3588 if (time_after(now, deadline)) 3589 return -EBUSY; 3590 3591 if (!warned && time_after(now, start + 5 * HZ) && 3592 (deadline - now > 3 * HZ)) { 3593 ata_link_warn(link, 3594 "link is slow to respond, please be patient " 3595 "(ready=%d)\n", tmp); 3596 warned = 1; 3597 } 3598 3599 ata_msleep(link->ap, 50); 3600 } 3601 } 3602 3603 /** 3604 * ata_wait_after_reset - wait for link to become ready after reset 3605 * @link: link to be waited on 3606 * @deadline: deadline jiffies for the operation 3607 * @check_ready: callback to check link readiness 3608 * 3609 * Wait for @link to become ready after reset. 3610 * 3611 * LOCKING: 3612 * EH context. 3613 * 3614 * RETURNS: 3615 * 0 if @link is ready before @deadline; otherwise, -errno. 3616 */ 3617 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3618 int (*check_ready)(struct ata_link *link)) 3619 { 3620 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3621 3622 return ata_wait_ready(link, deadline, check_ready); 3623 } 3624 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3625 3626 /** 3627 * ata_std_prereset - prepare for reset 3628 * @link: ATA link to be reset 3629 * @deadline: deadline jiffies for the operation 3630 * 3631 * @link is about to be reset. Initialize it. Failure from 3632 * prereset makes libata abort whole reset sequence and give up 3633 * that port, so prereset should be best-effort. It does its 3634 * best to prepare for reset sequence but if things go wrong, it 3635 * should just whine, not fail. 3636 * 3637 * LOCKING: 3638 * Kernel thread context (may sleep) 3639 * 3640 * RETURNS: 3641 * Always 0. 3642 */ 3643 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3644 { 3645 struct ata_port *ap = link->ap; 3646 struct ata_eh_context *ehc = &link->eh_context; 3647 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3648 int rc; 3649 3650 /* if we're about to do hardreset, nothing more to do */ 3651 if (ehc->i.action & ATA_EH_HARDRESET) 3652 return 0; 3653 3654 /* if SATA, resume link */ 3655 if (ap->flags & ATA_FLAG_SATA) { 3656 rc = sata_link_resume(link, timing, deadline); 3657 /* whine about phy resume failure but proceed */ 3658 if (rc && rc != -EOPNOTSUPP) 3659 ata_link_warn(link, 3660 "failed to resume link for reset (errno=%d)\n", 3661 rc); 3662 } 3663 3664 /* no point in trying softreset on offline link */ 3665 if (ata_phys_link_offline(link)) 3666 ehc->i.action &= ~ATA_EH_SOFTRESET; 3667 3668 return 0; 3669 } 3670 EXPORT_SYMBOL_GPL(ata_std_prereset); 3671 3672 /** 3673 * ata_std_postreset - standard postreset callback 3674 * @link: the target ata_link 3675 * @classes: classes of attached devices 3676 * 3677 * This function is invoked after a successful reset. Note that 3678 * the device might have been reset more than once using 3679 * different reset methods before postreset is invoked. 3680 * 3681 * LOCKING: 3682 * Kernel thread context (may sleep) 3683 */ 3684 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3685 { 3686 u32 serror; 3687 3688 /* reset complete, clear SError */ 3689 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3690 sata_scr_write(link, SCR_ERROR, serror); 3691 3692 /* print link status */ 3693 sata_print_link_status(link); 3694 } 3695 EXPORT_SYMBOL_GPL(ata_std_postreset); 3696 3697 /** 3698 * ata_dev_same_device - Determine whether new ID matches configured device 3699 * @dev: device to compare against 3700 * @new_class: class of the new device 3701 * @new_id: IDENTIFY page of the new device 3702 * 3703 * Compare @new_class and @new_id against @dev and determine 3704 * whether @dev is the device indicated by @new_class and 3705 * @new_id. 3706 * 3707 * LOCKING: 3708 * None. 3709 * 3710 * RETURNS: 3711 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3712 */ 3713 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3714 const u16 *new_id) 3715 { 3716 const u16 *old_id = dev->id; 3717 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3718 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3719 3720 if (dev->class != new_class) { 3721 ata_dev_info(dev, "class mismatch %d != %d\n", 3722 dev->class, new_class); 3723 return 0; 3724 } 3725 3726 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3727 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3728 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3729 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3730 3731 if (strcmp(model[0], model[1])) { 3732 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3733 model[0], model[1]); 3734 return 0; 3735 } 3736 3737 if (strcmp(serial[0], serial[1])) { 3738 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3739 serial[0], serial[1]); 3740 return 0; 3741 } 3742 3743 return 1; 3744 } 3745 3746 /** 3747 * ata_dev_reread_id - Re-read IDENTIFY data 3748 * @dev: target ATA device 3749 * @readid_flags: read ID flags 3750 * 3751 * Re-read IDENTIFY page and make sure @dev is still attached to 3752 * the port. 3753 * 3754 * LOCKING: 3755 * Kernel thread context (may sleep) 3756 * 3757 * RETURNS: 3758 * 0 on success, negative errno otherwise 3759 */ 3760 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3761 { 3762 unsigned int class = dev->class; 3763 u16 *id = (void *)dev->sector_buf; 3764 int rc; 3765 3766 /* read ID data */ 3767 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3768 if (rc) 3769 return rc; 3770 3771 /* is the device still there? */ 3772 if (!ata_dev_same_device(dev, class, id)) 3773 return -ENODEV; 3774 3775 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3776 return 0; 3777 } 3778 3779 /** 3780 * ata_dev_revalidate - Revalidate ATA device 3781 * @dev: device to revalidate 3782 * @new_class: new class code 3783 * @readid_flags: read ID flags 3784 * 3785 * Re-read IDENTIFY page, make sure @dev is still attached to the 3786 * port and reconfigure it according to the new IDENTIFY page. 3787 * 3788 * LOCKING: 3789 * Kernel thread context (may sleep) 3790 * 3791 * RETURNS: 3792 * 0 on success, negative errno otherwise 3793 */ 3794 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3795 unsigned int readid_flags) 3796 { 3797 u64 n_sectors = dev->n_sectors; 3798 u64 n_native_sectors = dev->n_native_sectors; 3799 int rc; 3800 3801 if (!ata_dev_enabled(dev)) 3802 return -ENODEV; 3803 3804 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3805 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3806 ata_dev_info(dev, "class mismatch %u != %u\n", 3807 dev->class, new_class); 3808 rc = -ENODEV; 3809 goto fail; 3810 } 3811 3812 /* re-read ID */ 3813 rc = ata_dev_reread_id(dev, readid_flags); 3814 if (rc) 3815 goto fail; 3816 3817 /* configure device according to the new ID */ 3818 rc = ata_dev_configure(dev); 3819 if (rc) 3820 goto fail; 3821 3822 /* verify n_sectors hasn't changed */ 3823 if (dev->class != ATA_DEV_ATA || !n_sectors || 3824 dev->n_sectors == n_sectors) 3825 return 0; 3826 3827 /* n_sectors has changed */ 3828 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3829 (unsigned long long)n_sectors, 3830 (unsigned long long)dev->n_sectors); 3831 3832 /* 3833 * Something could have caused HPA to be unlocked 3834 * involuntarily. If n_native_sectors hasn't changed and the 3835 * new size matches it, keep the device. 3836 */ 3837 if (dev->n_native_sectors == n_native_sectors && 3838 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3839 ata_dev_warn(dev, 3840 "new n_sectors matches native, probably " 3841 "late HPA unlock, n_sectors updated\n"); 3842 /* use the larger n_sectors */ 3843 return 0; 3844 } 3845 3846 /* 3847 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3848 * unlocking HPA in those cases. 3849 * 3850 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3851 */ 3852 if (dev->n_native_sectors == n_native_sectors && 3853 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3854 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) { 3855 ata_dev_warn(dev, 3856 "old n_sectors matches native, probably " 3857 "late HPA lock, will try to unlock HPA\n"); 3858 /* try unlocking HPA */ 3859 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3860 rc = -EIO; 3861 } else 3862 rc = -ENODEV; 3863 3864 /* restore original n_[native_]sectors and fail */ 3865 dev->n_native_sectors = n_native_sectors; 3866 dev->n_sectors = n_sectors; 3867 fail: 3868 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3869 return rc; 3870 } 3871 3872 static const char * const ata_quirk_names[] = { 3873 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic", 3874 [__ATA_QUIRK_NODMA] = "nodma", 3875 [__ATA_QUIRK_NONCQ] = "noncq", 3876 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128", 3877 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa", 3878 [__ATA_QUIRK_DISABLE] = "disable", 3879 [__ATA_QUIRK_HPA_SIZE] = "hpasize", 3880 [__ATA_QUIRK_IVB] = "ivb", 3881 [__ATA_QUIRK_STUCK_ERR] = "stuckerr", 3882 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok", 3883 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma", 3884 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn", 3885 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps", 3886 [__ATA_QUIRK_NOSETXFER] = "nosetxfer", 3887 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa", 3888 [__ATA_QUIRK_DUMP_ID] = "dumpid", 3889 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48", 3890 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir", 3891 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim", 3892 [__ATA_QUIRK_NOLPM] = "nolpm", 3893 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm", 3894 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim", 3895 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog", 3896 [__ATA_QUIRK_NOTRIM] = "notrim", 3897 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024", 3898 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m", 3899 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati", 3900 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog", 3901 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir", 3902 [__ATA_QUIRK_NO_FUA] = "nofua", 3903 }; 3904 3905 static void ata_dev_print_quirks(const struct ata_device *dev, 3906 const char *model, const char *rev, 3907 unsigned int quirks) 3908 { 3909 struct ata_eh_context *ehc = &dev->link->eh_context; 3910 int n = 0, i; 3911 size_t sz; 3912 char *str; 3913 3914 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS) 3915 return; 3916 3917 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS; 3918 3919 if (!quirks) 3920 return; 3921 3922 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16; 3923 str = kmalloc(sz, GFP_KERNEL); 3924 if (!str) 3925 return; 3926 3927 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:", 3928 model, rev); 3929 3930 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) { 3931 if (quirks & (1U << i)) 3932 n += snprintf(str + n, sz - n, 3933 " %s", ata_quirk_names[i]); 3934 } 3935 3936 ata_dev_warn(dev, "%s\n", str); 3937 3938 kfree(str); 3939 } 3940 3941 struct ata_dev_quirks_entry { 3942 const char *model_num; 3943 const char *model_rev; 3944 unsigned int quirks; 3945 }; 3946 3947 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = { 3948 /* Devices with DMA related problems under Linux */ 3949 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA }, 3950 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA }, 3951 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA }, 3952 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA }, 3953 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA }, 3954 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA }, 3955 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA }, 3956 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA }, 3957 { "CRD-8400B", NULL, ATA_QUIRK_NODMA }, 3958 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA }, 3959 { "CRD-84", NULL, ATA_QUIRK_NODMA }, 3960 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA }, 3961 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA }, 3962 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA }, 3963 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA }, 3964 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA }, 3965 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA }, 3966 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA }, 3967 { "CD-532E-A", NULL, ATA_QUIRK_NODMA }, 3968 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA }, 3969 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA }, 3970 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA }, 3971 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA }, 3972 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA }, 3973 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA }, 3974 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA }, 3975 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA }, 3976 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA }, 3977 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA }, 3978 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA }, 3979 /* Odd clown on sil3726/4726 PMPs */ 3980 { "Config Disk", NULL, ATA_QUIRK_DISABLE }, 3981 /* Similar story with ASMedia 1092 */ 3982 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE }, 3983 3984 /* Weird ATAPI devices */ 3985 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 }, 3986 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA }, 3987 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 3988 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 3989 3990 /* 3991 * Causes silent data corruption with higher max sects. 3992 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3993 */ 3994 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 }, 3995 3996 /* 3997 * These devices time out with higher max sects. 3998 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3999 */ 4000 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4001 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4002 4003 /* Devices we expect to fail diagnostics */ 4004 4005 /* Devices where NCQ should be avoided */ 4006 /* NCQ is slow */ 4007 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ }, 4008 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ }, 4009 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4010 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ }, 4011 /* NCQ is broken */ 4012 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ }, 4013 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ }, 4014 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ }, 4015 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ }, 4016 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ }, 4017 4018 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4019 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4020 ATA_QUIRK_FIRMWARE_WARN }, 4021 4022 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4023 ATA_QUIRK_FIRMWARE_WARN }, 4024 4025 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4026 ATA_QUIRK_FIRMWARE_WARN }, 4027 4028 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4029 ATA_QUIRK_FIRMWARE_WARN }, 4030 4031 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4032 the ST disks also have LPM issues */ 4033 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA | 4034 ATA_QUIRK_NOLPM }, 4035 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA }, 4036 4037 /* Blacklist entries taken from Silicon Image 3124/3132 4038 Windows driver .inf file - also several Linux problem reports */ 4039 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ }, 4040 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ }, 4041 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ }, 4042 4043 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4044 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ }, 4045 4046 /* Sandisk SD7/8/9s lock up hard on large trims */ 4047 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M }, 4048 4049 /* devices which puke on READ_NATIVE_MAX */ 4050 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA }, 4051 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA }, 4052 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA }, 4053 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA }, 4054 4055 /* this one allows HPA unlocking but fails IOs on the area */ 4056 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA }, 4057 4058 /* Devices which report 1 sector over size HPA */ 4059 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE }, 4060 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE }, 4061 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE }, 4062 4063 /* Devices which get the IVB wrong */ 4064 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB }, 4065 /* Maybe we should just add all TSSTcorp devices... */ 4066 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB }, 4067 4068 /* Devices that do not need bridging limits applied */ 4069 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK }, 4070 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK }, 4071 4072 /* Devices which aren't very happy with higher link speeds */ 4073 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS }, 4074 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS }, 4075 4076 /* 4077 * Devices which choke on SETXFER. Applies only if both the 4078 * device and controller are SATA. 4079 */ 4080 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER }, 4081 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER }, 4082 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER }, 4083 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER }, 4084 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER }, 4085 4086 /* These specific Pioneer models have LPM issues */ 4087 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM }, 4088 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM }, 4089 4090 /* Crucial devices with broken LPM support */ 4091 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM }, 4092 4093 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4094 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4095 ATA_QUIRK_ZERO_AFTER_TRIM | 4096 ATA_QUIRK_NOLPM }, 4097 /* 512GB MX100 with newer firmware has only LPM issues */ 4098 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM | 4099 ATA_QUIRK_NOLPM }, 4100 4101 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4102 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4103 ATA_QUIRK_ZERO_AFTER_TRIM | 4104 ATA_QUIRK_NOLPM }, 4105 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4106 ATA_QUIRK_ZERO_AFTER_TRIM | 4107 ATA_QUIRK_NOLPM }, 4108 4109 /* AMD Radeon devices with broken LPM support */ 4110 { "R3SL240G", NULL, ATA_QUIRK_NOLPM }, 4111 4112 /* Apacer models with LPM issues */ 4113 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM }, 4114 4115 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4116 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM }, 4117 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM }, 4118 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM }, 4119 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM }, 4120 4121 /* devices that don't properly handle queued TRIM commands */ 4122 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4123 ATA_QUIRK_ZERO_AFTER_TRIM }, 4124 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4125 ATA_QUIRK_ZERO_AFTER_TRIM }, 4126 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4127 ATA_QUIRK_ZERO_AFTER_TRIM }, 4128 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4129 ATA_QUIRK_ZERO_AFTER_TRIM, }, 4130 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4131 ATA_QUIRK_ZERO_AFTER_TRIM }, 4132 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4133 ATA_QUIRK_ZERO_AFTER_TRIM }, 4134 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4135 ATA_QUIRK_ZERO_AFTER_TRIM }, 4136 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4137 ATA_QUIRK_NO_DMA_LOG | 4138 ATA_QUIRK_ZERO_AFTER_TRIM }, 4139 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4140 ATA_QUIRK_ZERO_AFTER_TRIM }, 4141 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4142 ATA_QUIRK_ZERO_AFTER_TRIM }, 4143 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4144 ATA_QUIRK_ZERO_AFTER_TRIM | 4145 ATA_QUIRK_NO_NCQ_ON_ATI }, 4146 { "Samsung SSD 870 QVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4147 ATA_QUIRK_ZERO_AFTER_TRIM | 4148 ATA_QUIRK_NO_NCQ_ON_ATI | 4149 ATA_QUIRK_NOLPM }, 4150 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4151 ATA_QUIRK_ZERO_AFTER_TRIM | 4152 ATA_QUIRK_NO_NCQ_ON_ATI }, 4153 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4154 ATA_QUIRK_ZERO_AFTER_TRIM | 4155 ATA_QUIRK_NO_NCQ_ON_ATI, }, 4156 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4157 ATA_QUIRK_ZERO_AFTER_TRIM }, 4158 4159 /* devices that don't properly handle TRIM commands */ 4160 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM }, 4161 { "M88V29*", NULL, ATA_QUIRK_NOTRIM }, 4162 4163 /* 4164 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4165 * (Return Zero After Trim) flags in the ATA Command Set are 4166 * unreliable in the sense that they only define what happens if 4167 * the device successfully executed the DSM TRIM command. TRIM 4168 * is only advisory, however, and the device is free to silently 4169 * ignore all or parts of the request. 4170 * 4171 * Whitelist drives that are known to reliably return zeroes 4172 * after TRIM. 4173 */ 4174 4175 /* 4176 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4177 * that model before whitelisting all other intel SSDs. 4178 */ 4179 { "INTEL*SSDSC2MH*", NULL, 0 }, 4180 4181 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4182 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4183 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4184 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4185 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4186 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4187 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4188 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4189 4190 /* 4191 * Some WD SATA-I drives spin up and down erratically when the link 4192 * is put into the slumber mode. We don't have full list of the 4193 * affected devices. Disable LPM if the device matches one of the 4194 * known prefixes and is SATA-1. As a side effect LPM partial is 4195 * lost too. 4196 * 4197 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4198 */ 4199 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4200 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4201 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4202 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4203 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4204 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4205 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4206 4207 /* 4208 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4209 * log page is accessed. Ensure we never ask for this log page with 4210 * these devices. 4211 */ 4212 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR }, 4213 4214 /* Buggy FUA */ 4215 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA }, 4216 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA }, 4217 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA }, 4218 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA }, 4219 4220 /* End Marker */ 4221 { } 4222 }; 4223 4224 static unsigned int ata_dev_quirks(const struct ata_device *dev) 4225 { 4226 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4227 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4228 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks; 4229 4230 /* dev->quirks is an unsigned int. */ 4231 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32); 4232 4233 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4234 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4235 4236 while (ad->model_num) { 4237 if (glob_match(ad->model_num, model_num) && 4238 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4239 ata_dev_print_quirks(dev, model_num, model_rev, 4240 ad->quirks); 4241 return ad->quirks; 4242 } 4243 ad++; 4244 } 4245 return 0; 4246 } 4247 4248 static bool ata_dev_nodma(const struct ata_device *dev) 4249 { 4250 /* 4251 * We do not support polling DMA. Deny DMA for those ATAPI devices 4252 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in 4253 * the HSM_ST_LAST state. 4254 */ 4255 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4256 (dev->flags & ATA_DFLAG_CDB_INTR)) 4257 return true; 4258 return dev->quirks & ATA_QUIRK_NODMA; 4259 } 4260 4261 /** 4262 * ata_is_40wire - check drive side detection 4263 * @dev: device 4264 * 4265 * Perform drive side detection decoding, allowing for device vendors 4266 * who can't follow the documentation. 4267 */ 4268 4269 static int ata_is_40wire(struct ata_device *dev) 4270 { 4271 if (dev->quirks & ATA_QUIRK_IVB) 4272 return ata_drive_40wire_relaxed(dev->id); 4273 return ata_drive_40wire(dev->id); 4274 } 4275 4276 /** 4277 * cable_is_40wire - 40/80/SATA decider 4278 * @ap: port to consider 4279 * 4280 * This function encapsulates the policy for speed management 4281 * in one place. At the moment we don't cache the result but 4282 * there is a good case for setting ap->cbl to the result when 4283 * we are called with unknown cables (and figuring out if it 4284 * impacts hotplug at all). 4285 * 4286 * Return 1 if the cable appears to be 40 wire. 4287 */ 4288 4289 static int cable_is_40wire(struct ata_port *ap) 4290 { 4291 struct ata_link *link; 4292 struct ata_device *dev; 4293 4294 /* If the controller thinks we are 40 wire, we are. */ 4295 if (ap->cbl == ATA_CBL_PATA40) 4296 return 1; 4297 4298 /* If the controller thinks we are 80 wire, we are. */ 4299 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4300 return 0; 4301 4302 /* If the system is known to be 40 wire short cable (eg 4303 * laptop), then we allow 80 wire modes even if the drive 4304 * isn't sure. 4305 */ 4306 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4307 return 0; 4308 4309 /* If the controller doesn't know, we scan. 4310 * 4311 * Note: We look for all 40 wire detects at this point. Any 4312 * 80 wire detect is taken to be 80 wire cable because 4313 * - in many setups only the one drive (slave if present) will 4314 * give a valid detect 4315 * - if you have a non detect capable drive you don't want it 4316 * to colour the choice 4317 */ 4318 ata_for_each_link(link, ap, EDGE) { 4319 ata_for_each_dev(dev, link, ENABLED) { 4320 if (!ata_is_40wire(dev)) 4321 return 0; 4322 } 4323 } 4324 return 1; 4325 } 4326 4327 /** 4328 * ata_dev_xfermask - Compute supported xfermask of the given device 4329 * @dev: Device to compute xfermask for 4330 * 4331 * Compute supported xfermask of @dev and store it in 4332 * dev->*_mask. This function is responsible for applying all 4333 * known limits including host controller limits, device quirks, etc... 4334 * 4335 * LOCKING: 4336 * None. 4337 */ 4338 static void ata_dev_xfermask(struct ata_device *dev) 4339 { 4340 struct ata_link *link = dev->link; 4341 struct ata_port *ap = link->ap; 4342 struct ata_host *host = ap->host; 4343 unsigned int xfer_mask; 4344 4345 /* controller modes available */ 4346 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4347 ap->mwdma_mask, ap->udma_mask); 4348 4349 /* drive modes available */ 4350 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4351 dev->mwdma_mask, dev->udma_mask); 4352 xfer_mask &= ata_id_xfermask(dev->id); 4353 4354 /* 4355 * CFA Advanced TrueIDE timings are not allowed on a shared 4356 * cable 4357 */ 4358 if (ata_dev_pair(dev)) { 4359 /* No PIO5 or PIO6 */ 4360 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4361 /* No MWDMA3 or MWDMA 4 */ 4362 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4363 } 4364 4365 if (ata_dev_nodma(dev)) { 4366 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4367 ata_dev_warn(dev, 4368 "device does not support DMA, disabling DMA\n"); 4369 } 4370 4371 if ((host->flags & ATA_HOST_SIMPLEX) && 4372 host->simplex_claimed && host->simplex_claimed != ap) { 4373 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4374 ata_dev_warn(dev, 4375 "simplex DMA is claimed by other device, disabling DMA\n"); 4376 } 4377 4378 if (ap->flags & ATA_FLAG_NO_IORDY) 4379 xfer_mask &= ata_pio_mask_no_iordy(dev); 4380 4381 if (ap->ops->mode_filter) 4382 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4383 4384 /* Apply cable rule here. Don't apply it early because when 4385 * we handle hot plug the cable type can itself change. 4386 * Check this last so that we know if the transfer rate was 4387 * solely limited by the cable. 4388 * Unknown or 80 wire cables reported host side are checked 4389 * drive side as well. Cases where we know a 40wire cable 4390 * is used safely for 80 are not checked here. 4391 */ 4392 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4393 /* UDMA/44 or higher would be available */ 4394 if (cable_is_40wire(ap)) { 4395 ata_dev_warn(dev, 4396 "limited to UDMA/33 due to 40-wire cable\n"); 4397 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4398 } 4399 4400 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4401 &dev->mwdma_mask, &dev->udma_mask); 4402 } 4403 4404 /** 4405 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4406 * @dev: Device to which command will be sent 4407 * 4408 * Issue SET FEATURES - XFER MODE command to device @dev 4409 * on port @ap. 4410 * 4411 * LOCKING: 4412 * PCI/etc. bus probe sem. 4413 * 4414 * RETURNS: 4415 * 0 on success, AC_ERR_* mask otherwise. 4416 */ 4417 4418 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4419 { 4420 struct ata_taskfile tf; 4421 4422 /* set up set-features taskfile */ 4423 ata_dev_dbg(dev, "set features - xfer mode\n"); 4424 4425 /* Some controllers and ATAPI devices show flaky interrupt 4426 * behavior after setting xfer mode. Use polling instead. 4427 */ 4428 ata_tf_init(dev, &tf); 4429 tf.command = ATA_CMD_SET_FEATURES; 4430 tf.feature = SETFEATURES_XFER; 4431 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4432 tf.protocol = ATA_PROT_NODATA; 4433 /* If we are using IORDY we must send the mode setting command */ 4434 if (ata_pio_need_iordy(dev)) 4435 tf.nsect = dev->xfer_mode; 4436 /* If the device has IORDY and the controller does not - turn it off */ 4437 else if (ata_id_has_iordy(dev->id)) 4438 tf.nsect = 0x01; 4439 else /* In the ancient relic department - skip all of this */ 4440 return 0; 4441 4442 /* 4443 * On some disks, this command causes spin-up, so we need longer 4444 * timeout. 4445 */ 4446 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4447 } 4448 4449 /** 4450 * ata_dev_set_feature - Issue SET FEATURES 4451 * @dev: Device to which command will be sent 4452 * @subcmd: The SET FEATURES subcommand to be sent 4453 * @action: The sector count represents a subcommand specific action 4454 * 4455 * Issue SET FEATURES command to device @dev on port @ap with sector count 4456 * 4457 * LOCKING: 4458 * PCI/etc. bus probe sem. 4459 * 4460 * RETURNS: 4461 * 0 on success, AC_ERR_* mask otherwise. 4462 */ 4463 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4464 { 4465 struct ata_taskfile tf; 4466 unsigned int timeout = 0; 4467 4468 /* set up set-features taskfile */ 4469 ata_dev_dbg(dev, "set features\n"); 4470 4471 ata_tf_init(dev, &tf); 4472 tf.command = ATA_CMD_SET_FEATURES; 4473 tf.feature = subcmd; 4474 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4475 tf.protocol = ATA_PROT_NODATA; 4476 tf.nsect = action; 4477 4478 if (subcmd == SETFEATURES_SPINUP) 4479 timeout = ata_probe_timeout ? 4480 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4481 4482 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4483 } 4484 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4485 4486 /** 4487 * ata_dev_init_params - Issue INIT DEV PARAMS command 4488 * @dev: Device to which command will be sent 4489 * @heads: Number of heads (taskfile parameter) 4490 * @sectors: Number of sectors (taskfile parameter) 4491 * 4492 * LOCKING: 4493 * Kernel thread context (may sleep) 4494 * 4495 * RETURNS: 4496 * 0 on success, AC_ERR_* mask otherwise. 4497 */ 4498 static unsigned int ata_dev_init_params(struct ata_device *dev, 4499 u16 heads, u16 sectors) 4500 { 4501 struct ata_taskfile tf; 4502 unsigned int err_mask; 4503 4504 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4505 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4506 return AC_ERR_INVALID; 4507 4508 /* set up init dev params taskfile */ 4509 ata_dev_dbg(dev, "init dev params \n"); 4510 4511 ata_tf_init(dev, &tf); 4512 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4513 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4514 tf.protocol = ATA_PROT_NODATA; 4515 tf.nsect = sectors; 4516 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4517 4518 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4519 /* A clean abort indicates an original or just out of spec drive 4520 and we should continue as we issue the setup based on the 4521 drive reported working geometry */ 4522 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4523 err_mask = 0; 4524 4525 return err_mask; 4526 } 4527 4528 /** 4529 * atapi_check_dma - Check whether ATAPI DMA can be supported 4530 * @qc: Metadata associated with taskfile to check 4531 * 4532 * Allow low-level driver to filter ATA PACKET commands, returning 4533 * a status indicating whether or not it is OK to use DMA for the 4534 * supplied PACKET command. 4535 * 4536 * LOCKING: 4537 * spin_lock_irqsave(host lock) 4538 * 4539 * RETURNS: 0 when ATAPI DMA can be used 4540 * nonzero otherwise 4541 */ 4542 int atapi_check_dma(struct ata_queued_cmd *qc) 4543 { 4544 struct ata_port *ap = qc->ap; 4545 4546 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4547 * few ATAPI devices choke on such DMA requests. 4548 */ 4549 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) && 4550 unlikely(qc->nbytes & 15)) 4551 return 1; 4552 4553 if (ap->ops->check_atapi_dma) 4554 return ap->ops->check_atapi_dma(qc); 4555 4556 return 0; 4557 } 4558 4559 /** 4560 * ata_std_qc_defer - Check whether a qc needs to be deferred 4561 * @qc: ATA command in question 4562 * 4563 * Non-NCQ commands cannot run with any other command, NCQ or 4564 * not. As upper layer only knows the queue depth, we are 4565 * responsible for maintaining exclusion. This function checks 4566 * whether a new command @qc can be issued. 4567 * 4568 * LOCKING: 4569 * spin_lock_irqsave(host lock) 4570 * 4571 * RETURNS: 4572 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4573 */ 4574 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4575 { 4576 struct ata_link *link = qc->dev->link; 4577 4578 if (ata_is_ncq(qc->tf.protocol)) { 4579 if (!ata_tag_valid(link->active_tag)) 4580 return 0; 4581 } else { 4582 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4583 return 0; 4584 } 4585 4586 return ATA_DEFER_LINK; 4587 } 4588 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4589 4590 /** 4591 * ata_sg_init - Associate command with scatter-gather table. 4592 * @qc: Command to be associated 4593 * @sg: Scatter-gather table. 4594 * @n_elem: Number of elements in s/g table. 4595 * 4596 * Initialize the data-related elements of queued_cmd @qc 4597 * to point to a scatter-gather table @sg, containing @n_elem 4598 * elements. 4599 * 4600 * LOCKING: 4601 * spin_lock_irqsave(host lock) 4602 */ 4603 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4604 unsigned int n_elem) 4605 { 4606 qc->sg = sg; 4607 qc->n_elem = n_elem; 4608 qc->cursg = qc->sg; 4609 } 4610 4611 #ifdef CONFIG_HAS_DMA 4612 4613 /** 4614 * ata_sg_clean - Unmap DMA memory associated with command 4615 * @qc: Command containing DMA memory to be released 4616 * 4617 * Unmap all mapped DMA memory associated with this command. 4618 * 4619 * LOCKING: 4620 * spin_lock_irqsave(host lock) 4621 */ 4622 static void ata_sg_clean(struct ata_queued_cmd *qc) 4623 { 4624 struct ata_port *ap = qc->ap; 4625 struct scatterlist *sg = qc->sg; 4626 int dir = qc->dma_dir; 4627 4628 WARN_ON_ONCE(sg == NULL); 4629 4630 if (qc->n_elem) 4631 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4632 4633 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4634 qc->sg = NULL; 4635 } 4636 4637 /** 4638 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4639 * @qc: Command with scatter-gather table to be mapped. 4640 * 4641 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4642 * 4643 * LOCKING: 4644 * spin_lock_irqsave(host lock) 4645 * 4646 * RETURNS: 4647 * Zero on success, negative on error. 4648 * 4649 */ 4650 static int ata_sg_setup(struct ata_queued_cmd *qc) 4651 { 4652 struct ata_port *ap = qc->ap; 4653 unsigned int n_elem; 4654 4655 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4656 if (n_elem < 1) 4657 return -1; 4658 4659 qc->orig_n_elem = qc->n_elem; 4660 qc->n_elem = n_elem; 4661 qc->flags |= ATA_QCFLAG_DMAMAP; 4662 4663 return 0; 4664 } 4665 4666 #else /* !CONFIG_HAS_DMA */ 4667 4668 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4669 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4670 4671 #endif /* !CONFIG_HAS_DMA */ 4672 4673 /** 4674 * swap_buf_le16 - swap halves of 16-bit words in place 4675 * @buf: Buffer to swap 4676 * @buf_words: Number of 16-bit words in buffer. 4677 * 4678 * Swap halves of 16-bit words if needed to convert from 4679 * little-endian byte order to native cpu byte order, or 4680 * vice-versa. 4681 * 4682 * LOCKING: 4683 * Inherited from caller. 4684 */ 4685 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4686 { 4687 #ifdef __BIG_ENDIAN 4688 unsigned int i; 4689 4690 for (i = 0; i < buf_words; i++) 4691 buf[i] = le16_to_cpu(buf[i]); 4692 #endif /* __BIG_ENDIAN */ 4693 } 4694 4695 /** 4696 * ata_qc_free - free unused ata_queued_cmd 4697 * @qc: Command to complete 4698 * 4699 * Designed to free unused ata_queued_cmd object 4700 * in case something prevents using it. 4701 * 4702 * LOCKING: 4703 * spin_lock_irqsave(host lock) 4704 */ 4705 void ata_qc_free(struct ata_queued_cmd *qc) 4706 { 4707 qc->flags = 0; 4708 if (ata_tag_valid(qc->tag)) 4709 qc->tag = ATA_TAG_POISON; 4710 } 4711 4712 void __ata_qc_complete(struct ata_queued_cmd *qc) 4713 { 4714 struct ata_port *ap; 4715 struct ata_link *link; 4716 4717 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE))) 4718 return; 4719 4720 ap = qc->ap; 4721 link = qc->dev->link; 4722 4723 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4724 ata_sg_clean(qc); 4725 4726 /* command should be marked inactive atomically with qc completion */ 4727 if (ata_is_ncq(qc->tf.protocol)) { 4728 link->sactive &= ~(1 << qc->hw_tag); 4729 if (!link->sactive) 4730 ap->nr_active_links--; 4731 } else { 4732 link->active_tag = ATA_TAG_POISON; 4733 ap->nr_active_links--; 4734 } 4735 4736 /* clear exclusive status */ 4737 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4738 ap->excl_link == link)) 4739 ap->excl_link = NULL; 4740 4741 /* 4742 * Mark qc as inactive to prevent the port interrupt handler from 4743 * completing the command twice later, before the error handler is 4744 * called. 4745 */ 4746 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4747 ap->qc_active &= ~(1ULL << qc->tag); 4748 4749 /* call completion callback */ 4750 qc->complete_fn(qc); 4751 } 4752 4753 static void fill_result_tf(struct ata_queued_cmd *qc) 4754 { 4755 struct ata_port *ap = qc->ap; 4756 4757 /* 4758 * rtf may already be filled (e.g. for successful NCQ commands). 4759 * If that is the case, we have nothing to do. 4760 */ 4761 if (qc->flags & ATA_QCFLAG_RTF_FILLED) 4762 return; 4763 4764 qc->result_tf.flags = qc->tf.flags; 4765 ap->ops->qc_fill_rtf(qc); 4766 qc->flags |= ATA_QCFLAG_RTF_FILLED; 4767 } 4768 4769 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4770 { 4771 struct ata_device *dev = qc->dev; 4772 4773 if (!ata_is_data(qc->tf.protocol)) 4774 return; 4775 4776 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4777 return; 4778 4779 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4780 } 4781 4782 /** 4783 * ata_qc_complete - Complete an active ATA command 4784 * @qc: Command to complete 4785 * 4786 * Indicate to the mid and upper layers that an ATA command has 4787 * completed, with either an ok or not-ok status. 4788 * 4789 * Refrain from calling this function multiple times when 4790 * successfully completing multiple NCQ commands. 4791 * ata_qc_complete_multiple() should be used instead, which will 4792 * properly update IRQ expect state. 4793 * 4794 * LOCKING: 4795 * spin_lock_irqsave(host lock) 4796 */ 4797 void ata_qc_complete(struct ata_queued_cmd *qc) 4798 { 4799 struct ata_port *ap = qc->ap; 4800 struct ata_device *dev = qc->dev; 4801 struct ata_eh_info *ehi = &dev->link->eh_info; 4802 4803 /* Trigger the LED (if available) */ 4804 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4805 4806 /* 4807 * In order to synchronize EH with the regular execution path, a qc that 4808 * is owned by EH is marked with ATA_QCFLAG_EH. 4809 * 4810 * The normal execution path is responsible for not accessing a qc owned 4811 * by EH. libata core enforces the rule by returning NULL from 4812 * ata_qc_from_tag() for qcs owned by EH. 4813 */ 4814 if (unlikely(qc->err_mask)) 4815 qc->flags |= ATA_QCFLAG_EH; 4816 4817 /* 4818 * Finish internal commands without any further processing and always 4819 * with the result TF filled. 4820 */ 4821 if (unlikely(ata_tag_internal(qc->tag))) { 4822 fill_result_tf(qc); 4823 trace_ata_qc_complete_internal(qc); 4824 __ata_qc_complete(qc); 4825 return; 4826 } 4827 4828 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4829 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4830 fill_result_tf(qc); 4831 trace_ata_qc_complete_failed(qc); 4832 ata_qc_schedule_eh(qc); 4833 return; 4834 } 4835 4836 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4837 4838 /* read result TF if requested */ 4839 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4840 fill_result_tf(qc); 4841 4842 trace_ata_qc_complete_done(qc); 4843 4844 /* 4845 * For CDL commands that completed without an error, check if we have 4846 * sense data (ATA_SENSE is set). If we do, then the command may have 4847 * been aborted by the device due to a limit timeout using the policy 4848 * 0xD. For these commands, invoke EH to get the command sense data. 4849 */ 4850 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4851 qc->result_tf.status & ATA_SENSE) { 4852 /* 4853 * Tell SCSI EH to not overwrite scmd->result even if this 4854 * command is finished with result SAM_STAT_GOOD. 4855 */ 4856 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4857 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4858 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4859 4860 /* 4861 * set pending so that ata_qc_schedule_eh() does not trigger 4862 * fast drain, and freeze the port. 4863 */ 4864 ap->pflags |= ATA_PFLAG_EH_PENDING; 4865 ata_qc_schedule_eh(qc); 4866 return; 4867 } 4868 4869 /* Some commands need post-processing after successful completion. */ 4870 switch (qc->tf.command) { 4871 case ATA_CMD_SET_FEATURES: 4872 if (qc->tf.feature != SETFEATURES_WC_ON && 4873 qc->tf.feature != SETFEATURES_WC_OFF && 4874 qc->tf.feature != SETFEATURES_RA_ON && 4875 qc->tf.feature != SETFEATURES_RA_OFF) 4876 break; 4877 fallthrough; 4878 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4879 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4880 /* revalidate device */ 4881 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4882 ata_port_schedule_eh(ap); 4883 break; 4884 4885 case ATA_CMD_SLEEP: 4886 dev->flags |= ATA_DFLAG_SLEEPING; 4887 break; 4888 } 4889 4890 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4891 ata_verify_xfer(qc); 4892 4893 __ata_qc_complete(qc); 4894 } 4895 EXPORT_SYMBOL_GPL(ata_qc_complete); 4896 4897 /** 4898 * ata_qc_get_active - get bitmask of active qcs 4899 * @ap: port in question 4900 * 4901 * LOCKING: 4902 * spin_lock_irqsave(host lock) 4903 * 4904 * RETURNS: 4905 * Bitmask of active qcs 4906 */ 4907 u64 ata_qc_get_active(struct ata_port *ap) 4908 { 4909 u64 qc_active = ap->qc_active; 4910 4911 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4912 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4913 qc_active |= (1 << 0); 4914 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4915 } 4916 4917 return qc_active; 4918 } 4919 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4920 4921 /** 4922 * ata_qc_issue - issue taskfile to device 4923 * @qc: command to issue to device 4924 * 4925 * Prepare an ATA command to submission to device. 4926 * This includes mapping the data into a DMA-able 4927 * area, filling in the S/G table, and finally 4928 * writing the taskfile to hardware, starting the command. 4929 * 4930 * LOCKING: 4931 * spin_lock_irqsave(host lock) 4932 */ 4933 void ata_qc_issue(struct ata_queued_cmd *qc) 4934 { 4935 struct ata_port *ap = qc->ap; 4936 struct ata_link *link = qc->dev->link; 4937 u8 prot = qc->tf.protocol; 4938 4939 /* Make sure only one non-NCQ command is outstanding. */ 4940 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4941 4942 if (ata_is_ncq(prot)) { 4943 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4944 4945 if (!link->sactive) 4946 ap->nr_active_links++; 4947 link->sactive |= 1 << qc->hw_tag; 4948 } else { 4949 WARN_ON_ONCE(link->sactive); 4950 4951 ap->nr_active_links++; 4952 link->active_tag = qc->tag; 4953 } 4954 4955 qc->flags |= ATA_QCFLAG_ACTIVE; 4956 ap->qc_active |= 1ULL << qc->tag; 4957 4958 /* 4959 * We guarantee to LLDs that they will have at least one 4960 * non-zero sg if the command is a data command. 4961 */ 4962 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4963 goto sys_err; 4964 4965 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4966 (ap->flags & ATA_FLAG_PIO_DMA))) 4967 if (ata_sg_setup(qc)) 4968 goto sys_err; 4969 4970 /* if device is sleeping, schedule reset and abort the link */ 4971 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4972 link->eh_info.action |= ATA_EH_RESET; 4973 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4974 ata_link_abort(link); 4975 return; 4976 } 4977 4978 if (ap->ops->qc_prep) { 4979 trace_ata_qc_prep(qc); 4980 qc->err_mask |= ap->ops->qc_prep(qc); 4981 if (unlikely(qc->err_mask)) 4982 goto err; 4983 } 4984 4985 trace_ata_qc_issue(qc); 4986 qc->err_mask |= ap->ops->qc_issue(qc); 4987 if (unlikely(qc->err_mask)) 4988 goto err; 4989 return; 4990 4991 sys_err: 4992 qc->err_mask |= AC_ERR_SYSTEM; 4993 err: 4994 ata_qc_complete(qc); 4995 } 4996 4997 /** 4998 * ata_phys_link_online - test whether the given link is online 4999 * @link: ATA link to test 5000 * 5001 * Test whether @link is online. Note that this function returns 5002 * 0 if online status of @link cannot be obtained, so 5003 * ata_link_online(link) != !ata_link_offline(link). 5004 * 5005 * LOCKING: 5006 * None. 5007 * 5008 * RETURNS: 5009 * True if the port online status is available and online. 5010 */ 5011 bool ata_phys_link_online(struct ata_link *link) 5012 { 5013 u32 sstatus; 5014 5015 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5016 ata_sstatus_online(sstatus)) 5017 return true; 5018 return false; 5019 } 5020 5021 /** 5022 * ata_phys_link_offline - test whether the given link is offline 5023 * @link: ATA link to test 5024 * 5025 * Test whether @link is offline. Note that this function 5026 * returns 0 if offline status of @link cannot be obtained, so 5027 * ata_link_online(link) != !ata_link_offline(link). 5028 * 5029 * LOCKING: 5030 * None. 5031 * 5032 * RETURNS: 5033 * True if the port offline status is available and offline. 5034 */ 5035 bool ata_phys_link_offline(struct ata_link *link) 5036 { 5037 u32 sstatus; 5038 5039 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5040 !ata_sstatus_online(sstatus)) 5041 return true; 5042 return false; 5043 } 5044 5045 /** 5046 * ata_link_online - test whether the given link is online 5047 * @link: ATA link to test 5048 * 5049 * Test whether @link is online. This is identical to 5050 * ata_phys_link_online() when there's no slave link. When 5051 * there's a slave link, this function should only be called on 5052 * the master link and will return true if any of M/S links is 5053 * online. 5054 * 5055 * LOCKING: 5056 * None. 5057 * 5058 * RETURNS: 5059 * True if the port online status is available and online. 5060 */ 5061 bool ata_link_online(struct ata_link *link) 5062 { 5063 struct ata_link *slave = link->ap->slave_link; 5064 5065 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5066 5067 return ata_phys_link_online(link) || 5068 (slave && ata_phys_link_online(slave)); 5069 } 5070 EXPORT_SYMBOL_GPL(ata_link_online); 5071 5072 /** 5073 * ata_link_offline - test whether the given link is offline 5074 * @link: ATA link to test 5075 * 5076 * Test whether @link is offline. This is identical to 5077 * ata_phys_link_offline() when there's no slave link. When 5078 * there's a slave link, this function should only be called on 5079 * the master link and will return true if both M/S links are 5080 * offline. 5081 * 5082 * LOCKING: 5083 * None. 5084 * 5085 * RETURNS: 5086 * True if the port offline status is available and offline. 5087 */ 5088 bool ata_link_offline(struct ata_link *link) 5089 { 5090 struct ata_link *slave = link->ap->slave_link; 5091 5092 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5093 5094 return ata_phys_link_offline(link) && 5095 (!slave || ata_phys_link_offline(slave)); 5096 } 5097 EXPORT_SYMBOL_GPL(ata_link_offline); 5098 5099 #ifdef CONFIG_PM 5100 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5101 unsigned int action, unsigned int ehi_flags, 5102 bool async) 5103 { 5104 struct ata_link *link; 5105 unsigned long flags; 5106 5107 spin_lock_irqsave(ap->lock, flags); 5108 5109 /* 5110 * A previous PM operation might still be in progress. Wait for 5111 * ATA_PFLAG_PM_PENDING to clear. 5112 */ 5113 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5114 spin_unlock_irqrestore(ap->lock, flags); 5115 ata_port_wait_eh(ap); 5116 spin_lock_irqsave(ap->lock, flags); 5117 } 5118 5119 /* Request PM operation to EH */ 5120 ap->pm_mesg = mesg; 5121 ap->pflags |= ATA_PFLAG_PM_PENDING; 5122 ata_for_each_link(link, ap, HOST_FIRST) { 5123 link->eh_info.action |= action; 5124 link->eh_info.flags |= ehi_flags; 5125 } 5126 5127 ata_port_schedule_eh(ap); 5128 5129 spin_unlock_irqrestore(ap->lock, flags); 5130 5131 if (!async) 5132 ata_port_wait_eh(ap); 5133 } 5134 5135 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5136 bool async) 5137 { 5138 /* 5139 * We are about to suspend the port, so we do not care about 5140 * scsi_rescan_device() calls scheduled by previous resume operations. 5141 * The next resume will schedule the rescan again. So cancel any rescan 5142 * that is not done yet. 5143 */ 5144 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5145 5146 /* 5147 * On some hardware, device fails to respond after spun down for 5148 * suspend. As the device will not be used until being resumed, we 5149 * do not need to touch the device. Ask EH to skip the usual stuff 5150 * and proceed directly to suspend. 5151 * 5152 * http://thread.gmane.org/gmane.linux.ide/46764 5153 */ 5154 ata_port_request_pm(ap, mesg, 0, 5155 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5156 ATA_EHI_NO_RECOVERY, 5157 async); 5158 } 5159 5160 static int ata_port_pm_suspend(struct device *dev) 5161 { 5162 struct ata_port *ap = to_ata_port(dev); 5163 5164 if (pm_runtime_suspended(dev)) 5165 return 0; 5166 5167 ata_port_suspend(ap, PMSG_SUSPEND, false); 5168 return 0; 5169 } 5170 5171 static int ata_port_pm_freeze(struct device *dev) 5172 { 5173 struct ata_port *ap = to_ata_port(dev); 5174 5175 if (pm_runtime_suspended(dev)) 5176 return 0; 5177 5178 ata_port_suspend(ap, PMSG_FREEZE, false); 5179 return 0; 5180 } 5181 5182 static int ata_port_pm_poweroff(struct device *dev) 5183 { 5184 if (!pm_runtime_suspended(dev)) 5185 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5186 return 0; 5187 } 5188 5189 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5190 bool async) 5191 { 5192 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5193 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5194 async); 5195 } 5196 5197 static int ata_port_pm_resume(struct device *dev) 5198 { 5199 if (!pm_runtime_suspended(dev)) 5200 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5201 return 0; 5202 } 5203 5204 /* 5205 * For ODDs, the upper layer will poll for media change every few seconds, 5206 * which will make it enter and leave suspend state every few seconds. And 5207 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5208 * is very little and the ODD may malfunction after constantly being reset. 5209 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5210 * ODD is attached to the port. 5211 */ 5212 static int ata_port_runtime_idle(struct device *dev) 5213 { 5214 struct ata_port *ap = to_ata_port(dev); 5215 struct ata_link *link; 5216 struct ata_device *adev; 5217 5218 ata_for_each_link(link, ap, HOST_FIRST) { 5219 ata_for_each_dev(adev, link, ENABLED) 5220 if (adev->class == ATA_DEV_ATAPI && 5221 !zpodd_dev_enabled(adev)) 5222 return -EBUSY; 5223 } 5224 5225 return 0; 5226 } 5227 5228 static int ata_port_runtime_suspend(struct device *dev) 5229 { 5230 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5231 return 0; 5232 } 5233 5234 static int ata_port_runtime_resume(struct device *dev) 5235 { 5236 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5237 return 0; 5238 } 5239 5240 static const struct dev_pm_ops ata_port_pm_ops = { 5241 .suspend = ata_port_pm_suspend, 5242 .resume = ata_port_pm_resume, 5243 .freeze = ata_port_pm_freeze, 5244 .thaw = ata_port_pm_resume, 5245 .poweroff = ata_port_pm_poweroff, 5246 .restore = ata_port_pm_resume, 5247 5248 .runtime_suspend = ata_port_runtime_suspend, 5249 .runtime_resume = ata_port_runtime_resume, 5250 .runtime_idle = ata_port_runtime_idle, 5251 }; 5252 5253 /* sas ports don't participate in pm runtime management of ata_ports, 5254 * and need to resume ata devices at the domain level, not the per-port 5255 * level. sas suspend/resume is async to allow parallel port recovery 5256 * since sas has multiple ata_port instances per Scsi_Host. 5257 */ 5258 void ata_sas_port_suspend(struct ata_port *ap) 5259 { 5260 ata_port_suspend(ap, PMSG_SUSPEND, true); 5261 } 5262 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5263 5264 void ata_sas_port_resume(struct ata_port *ap) 5265 { 5266 ata_port_resume(ap, PMSG_RESUME, true); 5267 } 5268 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5269 5270 /** 5271 * ata_host_suspend - suspend host 5272 * @host: host to suspend 5273 * @mesg: PM message 5274 * 5275 * Suspend @host. Actual operation is performed by port suspend. 5276 */ 5277 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5278 { 5279 host->dev->power.power_state = mesg; 5280 } 5281 EXPORT_SYMBOL_GPL(ata_host_suspend); 5282 5283 /** 5284 * ata_host_resume - resume host 5285 * @host: host to resume 5286 * 5287 * Resume @host. Actual operation is performed by port resume. 5288 */ 5289 void ata_host_resume(struct ata_host *host) 5290 { 5291 host->dev->power.power_state = PMSG_ON; 5292 } 5293 EXPORT_SYMBOL_GPL(ata_host_resume); 5294 #endif 5295 5296 const struct device_type ata_port_type = { 5297 .name = ATA_PORT_TYPE_NAME, 5298 #ifdef CONFIG_PM 5299 .pm = &ata_port_pm_ops, 5300 #endif 5301 }; 5302 5303 /** 5304 * ata_dev_init - Initialize an ata_device structure 5305 * @dev: Device structure to initialize 5306 * 5307 * Initialize @dev in preparation for probing. 5308 * 5309 * LOCKING: 5310 * Inherited from caller. 5311 */ 5312 void ata_dev_init(struct ata_device *dev) 5313 { 5314 struct ata_link *link = ata_dev_phys_link(dev); 5315 struct ata_port *ap = link->ap; 5316 unsigned long flags; 5317 5318 /* SATA spd limit is bound to the attached device, reset together */ 5319 link->sata_spd_limit = link->hw_sata_spd_limit; 5320 link->sata_spd = 0; 5321 5322 /* High bits of dev->flags are used to record warm plug 5323 * requests which occur asynchronously. Synchronize using 5324 * host lock. 5325 */ 5326 spin_lock_irqsave(ap->lock, flags); 5327 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5328 dev->quirks = 0; 5329 spin_unlock_irqrestore(ap->lock, flags); 5330 5331 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5332 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5333 dev->pio_mask = UINT_MAX; 5334 dev->mwdma_mask = UINT_MAX; 5335 dev->udma_mask = UINT_MAX; 5336 } 5337 5338 /** 5339 * ata_link_init - Initialize an ata_link structure 5340 * @ap: ATA port link is attached to 5341 * @link: Link structure to initialize 5342 * @pmp: Port multiplier port number 5343 * 5344 * Initialize @link. 5345 * 5346 * LOCKING: 5347 * Kernel thread context (may sleep) 5348 */ 5349 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5350 { 5351 int i; 5352 5353 /* clear everything except for devices */ 5354 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5355 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5356 5357 link->ap = ap; 5358 link->pmp = pmp; 5359 link->active_tag = ATA_TAG_POISON; 5360 link->hw_sata_spd_limit = UINT_MAX; 5361 5362 /* can't use iterator, ap isn't initialized yet */ 5363 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5364 struct ata_device *dev = &link->device[i]; 5365 5366 dev->link = link; 5367 dev->devno = dev - link->device; 5368 #ifdef CONFIG_ATA_ACPI 5369 dev->gtf_filter = ata_acpi_gtf_filter; 5370 #endif 5371 ata_dev_init(dev); 5372 } 5373 } 5374 5375 /** 5376 * sata_link_init_spd - Initialize link->sata_spd_limit 5377 * @link: Link to configure sata_spd_limit for 5378 * 5379 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5380 * configured value. 5381 * 5382 * LOCKING: 5383 * Kernel thread context (may sleep). 5384 * 5385 * RETURNS: 5386 * 0 on success, -errno on failure. 5387 */ 5388 int sata_link_init_spd(struct ata_link *link) 5389 { 5390 u8 spd; 5391 int rc; 5392 5393 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5394 if (rc) 5395 return rc; 5396 5397 spd = (link->saved_scontrol >> 4) & 0xf; 5398 if (spd) 5399 link->hw_sata_spd_limit &= (1 << spd) - 1; 5400 5401 ata_force_link_limits(link); 5402 5403 link->sata_spd_limit = link->hw_sata_spd_limit; 5404 5405 return 0; 5406 } 5407 5408 /** 5409 * ata_port_alloc - allocate and initialize basic ATA port resources 5410 * @host: ATA host this allocated port belongs to 5411 * 5412 * Allocate and initialize basic ATA port resources. 5413 * 5414 * RETURNS: 5415 * Allocate ATA port on success, NULL on failure. 5416 * 5417 * LOCKING: 5418 * Inherited from calling layer (may sleep). 5419 */ 5420 struct ata_port *ata_port_alloc(struct ata_host *host) 5421 { 5422 struct ata_port *ap; 5423 int id; 5424 5425 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5426 if (!ap) 5427 return NULL; 5428 5429 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5430 ap->lock = &host->lock; 5431 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL); 5432 if (id < 0) { 5433 kfree(ap); 5434 return NULL; 5435 } 5436 ap->print_id = id; 5437 ap->host = host; 5438 ap->dev = host->dev; 5439 5440 mutex_init(&ap->scsi_scan_mutex); 5441 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5442 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5443 INIT_LIST_HEAD(&ap->eh_done_q); 5444 init_waitqueue_head(&ap->eh_wait_q); 5445 init_completion(&ap->park_req_pending); 5446 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5447 TIMER_DEFERRABLE); 5448 5449 ap->cbl = ATA_CBL_NONE; 5450 5451 ata_link_init(ap, &ap->link, 0); 5452 5453 #ifdef ATA_IRQ_TRAP 5454 ap->stats.unhandled_irq = 1; 5455 ap->stats.idle_irq = 1; 5456 #endif 5457 ata_sff_port_init(ap); 5458 5459 return ap; 5460 } 5461 EXPORT_SYMBOL_GPL(ata_port_alloc); 5462 5463 void ata_port_free(struct ata_port *ap) 5464 { 5465 if (!ap) 5466 return; 5467 5468 kfree(ap->pmp_link); 5469 kfree(ap->slave_link); 5470 ida_free(&ata_ida, ap->print_id); 5471 kfree(ap); 5472 } 5473 EXPORT_SYMBOL_GPL(ata_port_free); 5474 5475 static void ata_devres_release(struct device *gendev, void *res) 5476 { 5477 struct ata_host *host = dev_get_drvdata(gendev); 5478 int i; 5479 5480 for (i = 0; i < host->n_ports; i++) { 5481 struct ata_port *ap = host->ports[i]; 5482 5483 if (!ap) 5484 continue; 5485 5486 if (ap->scsi_host) 5487 scsi_host_put(ap->scsi_host); 5488 5489 } 5490 5491 dev_set_drvdata(gendev, NULL); 5492 ata_host_put(host); 5493 } 5494 5495 static void ata_host_release(struct kref *kref) 5496 { 5497 struct ata_host *host = container_of(kref, struct ata_host, kref); 5498 int i; 5499 5500 for (i = 0; i < host->n_ports; i++) { 5501 ata_port_free(host->ports[i]); 5502 host->ports[i] = NULL; 5503 } 5504 kfree(host); 5505 } 5506 5507 void ata_host_get(struct ata_host *host) 5508 { 5509 kref_get(&host->kref); 5510 } 5511 5512 void ata_host_put(struct ata_host *host) 5513 { 5514 kref_put(&host->kref, ata_host_release); 5515 } 5516 EXPORT_SYMBOL_GPL(ata_host_put); 5517 5518 /** 5519 * ata_host_alloc - allocate and init basic ATA host resources 5520 * @dev: generic device this host is associated with 5521 * @n_ports: the number of ATA ports associated with this host 5522 * 5523 * Allocate and initialize basic ATA host resources. LLD calls 5524 * this function to allocate a host, initializes it fully and 5525 * attaches it using ata_host_register(). 5526 * 5527 * RETURNS: 5528 * Allocate ATA host on success, NULL on failure. 5529 * 5530 * LOCKING: 5531 * Inherited from calling layer (may sleep). 5532 */ 5533 struct ata_host *ata_host_alloc(struct device *dev, int n_ports) 5534 { 5535 struct ata_host *host; 5536 size_t sz; 5537 int i; 5538 void *dr; 5539 5540 /* alloc a container for our list of ATA ports (buses) */ 5541 sz = sizeof(struct ata_host) + n_ports * sizeof(void *); 5542 host = kzalloc(sz, GFP_KERNEL); 5543 if (!host) 5544 return NULL; 5545 5546 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5547 kfree(host); 5548 return NULL; 5549 } 5550 5551 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5552 if (!dr) { 5553 kfree(host); 5554 goto err_out; 5555 } 5556 5557 devres_add(dev, dr); 5558 dev_set_drvdata(dev, host); 5559 5560 spin_lock_init(&host->lock); 5561 mutex_init(&host->eh_mutex); 5562 host->dev = dev; 5563 host->n_ports = n_ports; 5564 kref_init(&host->kref); 5565 5566 /* allocate ports bound to this host */ 5567 for (i = 0; i < n_ports; i++) { 5568 struct ata_port *ap; 5569 5570 ap = ata_port_alloc(host); 5571 if (!ap) 5572 goto err_out; 5573 5574 ap->port_no = i; 5575 host->ports[i] = ap; 5576 } 5577 5578 devres_remove_group(dev, NULL); 5579 return host; 5580 5581 err_out: 5582 devres_release_group(dev, NULL); 5583 return NULL; 5584 } 5585 EXPORT_SYMBOL_GPL(ata_host_alloc); 5586 5587 /** 5588 * ata_host_alloc_pinfo - alloc host and init with port_info array 5589 * @dev: generic device this host is associated with 5590 * @ppi: array of ATA port_info to initialize host with 5591 * @n_ports: number of ATA ports attached to this host 5592 * 5593 * Allocate ATA host and initialize with info from @ppi. If NULL 5594 * terminated, @ppi may contain fewer entries than @n_ports. The 5595 * last entry will be used for the remaining ports. 5596 * 5597 * RETURNS: 5598 * Allocate ATA host on success, NULL on failure. 5599 * 5600 * LOCKING: 5601 * Inherited from calling layer (may sleep). 5602 */ 5603 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5604 const struct ata_port_info * const * ppi, 5605 int n_ports) 5606 { 5607 const struct ata_port_info *pi = &ata_dummy_port_info; 5608 struct ata_host *host; 5609 int i, j; 5610 5611 host = ata_host_alloc(dev, n_ports); 5612 if (!host) 5613 return NULL; 5614 5615 for (i = 0, j = 0; i < host->n_ports; i++) { 5616 struct ata_port *ap = host->ports[i]; 5617 5618 if (ppi[j]) 5619 pi = ppi[j++]; 5620 5621 ap->pio_mask = pi->pio_mask; 5622 ap->mwdma_mask = pi->mwdma_mask; 5623 ap->udma_mask = pi->udma_mask; 5624 ap->flags |= pi->flags; 5625 ap->link.flags |= pi->link_flags; 5626 ap->ops = pi->port_ops; 5627 5628 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5629 host->ops = pi->port_ops; 5630 } 5631 5632 return host; 5633 } 5634 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5635 5636 static void ata_host_stop(struct device *gendev, void *res) 5637 { 5638 struct ata_host *host = dev_get_drvdata(gendev); 5639 int i; 5640 5641 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5642 5643 for (i = 0; i < host->n_ports; i++) { 5644 struct ata_port *ap = host->ports[i]; 5645 5646 if (ap->ops->port_stop) 5647 ap->ops->port_stop(ap); 5648 } 5649 5650 if (host->ops->host_stop) 5651 host->ops->host_stop(host); 5652 } 5653 5654 /** 5655 * ata_finalize_port_ops - finalize ata_port_operations 5656 * @ops: ata_port_operations to finalize 5657 * 5658 * An ata_port_operations can inherit from another ops and that 5659 * ops can again inherit from another. This can go on as many 5660 * times as necessary as long as there is no loop in the 5661 * inheritance chain. 5662 * 5663 * Ops tables are finalized when the host is started. NULL or 5664 * unspecified entries are inherited from the closet ancestor 5665 * which has the method and the entry is populated with it. 5666 * After finalization, the ops table directly points to all the 5667 * methods and ->inherits is no longer necessary and cleared. 5668 * 5669 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5670 * 5671 * LOCKING: 5672 * None. 5673 */ 5674 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5675 { 5676 static DEFINE_SPINLOCK(lock); 5677 const struct ata_port_operations *cur; 5678 void **begin = (void **)ops; 5679 void **end = (void **)&ops->inherits; 5680 void **pp; 5681 5682 if (!ops || !ops->inherits) 5683 return; 5684 5685 spin_lock(&lock); 5686 5687 for (cur = ops->inherits; cur; cur = cur->inherits) { 5688 void **inherit = (void **)cur; 5689 5690 for (pp = begin; pp < end; pp++, inherit++) 5691 if (!*pp) 5692 *pp = *inherit; 5693 } 5694 5695 for (pp = begin; pp < end; pp++) 5696 if (IS_ERR(*pp)) 5697 *pp = NULL; 5698 5699 ops->inherits = NULL; 5700 5701 spin_unlock(&lock); 5702 } 5703 5704 /** 5705 * ata_host_start - start and freeze ports of an ATA host 5706 * @host: ATA host to start ports for 5707 * 5708 * Start and then freeze ports of @host. Started status is 5709 * recorded in host->flags, so this function can be called 5710 * multiple times. Ports are guaranteed to get started only 5711 * once. If host->ops is not initialized yet, it is set to the 5712 * first non-dummy port ops. 5713 * 5714 * LOCKING: 5715 * Inherited from calling layer (may sleep). 5716 * 5717 * RETURNS: 5718 * 0 if all ports are started successfully, -errno otherwise. 5719 */ 5720 int ata_host_start(struct ata_host *host) 5721 { 5722 int have_stop = 0; 5723 void *start_dr = NULL; 5724 int i, rc; 5725 5726 if (host->flags & ATA_HOST_STARTED) 5727 return 0; 5728 5729 ata_finalize_port_ops(host->ops); 5730 5731 for (i = 0; i < host->n_ports; i++) { 5732 struct ata_port *ap = host->ports[i]; 5733 5734 ata_finalize_port_ops(ap->ops); 5735 5736 if (!host->ops && !ata_port_is_dummy(ap)) 5737 host->ops = ap->ops; 5738 5739 if (ap->ops->port_stop) 5740 have_stop = 1; 5741 } 5742 5743 if (host->ops && host->ops->host_stop) 5744 have_stop = 1; 5745 5746 if (have_stop) { 5747 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5748 if (!start_dr) 5749 return -ENOMEM; 5750 } 5751 5752 for (i = 0; i < host->n_ports; i++) { 5753 struct ata_port *ap = host->ports[i]; 5754 5755 if (ap->ops->port_start) { 5756 rc = ap->ops->port_start(ap); 5757 if (rc) { 5758 if (rc != -ENODEV) 5759 dev_err(host->dev, 5760 "failed to start port %d (errno=%d)\n", 5761 i, rc); 5762 goto err_out; 5763 } 5764 } 5765 ata_eh_freeze_port(ap); 5766 } 5767 5768 if (start_dr) 5769 devres_add(host->dev, start_dr); 5770 host->flags |= ATA_HOST_STARTED; 5771 return 0; 5772 5773 err_out: 5774 while (--i >= 0) { 5775 struct ata_port *ap = host->ports[i]; 5776 5777 if (ap->ops->port_stop) 5778 ap->ops->port_stop(ap); 5779 } 5780 devres_free(start_dr); 5781 return rc; 5782 } 5783 EXPORT_SYMBOL_GPL(ata_host_start); 5784 5785 /** 5786 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5787 * @host: host to initialize 5788 * @dev: device host is attached to 5789 * @ops: port_ops 5790 * 5791 */ 5792 void ata_host_init(struct ata_host *host, struct device *dev, 5793 struct ata_port_operations *ops) 5794 { 5795 spin_lock_init(&host->lock); 5796 mutex_init(&host->eh_mutex); 5797 host->n_tags = ATA_MAX_QUEUE; 5798 host->dev = dev; 5799 host->ops = ops; 5800 kref_init(&host->kref); 5801 } 5802 EXPORT_SYMBOL_GPL(ata_host_init); 5803 5804 void ata_port_probe(struct ata_port *ap) 5805 { 5806 struct ata_eh_info *ehi = &ap->link.eh_info; 5807 unsigned long flags; 5808 5809 /* kick EH for boot probing */ 5810 spin_lock_irqsave(ap->lock, flags); 5811 5812 ehi->probe_mask |= ATA_ALL_DEVICES; 5813 ehi->action |= ATA_EH_RESET; 5814 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5815 5816 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5817 ap->pflags |= ATA_PFLAG_LOADING; 5818 ata_port_schedule_eh(ap); 5819 5820 spin_unlock_irqrestore(ap->lock, flags); 5821 } 5822 EXPORT_SYMBOL_GPL(ata_port_probe); 5823 5824 static void async_port_probe(void *data, async_cookie_t cookie) 5825 { 5826 struct ata_port *ap = data; 5827 5828 /* 5829 * If we're not allowed to scan this host in parallel, 5830 * we need to wait until all previous scans have completed 5831 * before going further. 5832 * Jeff Garzik says this is only within a controller, so we 5833 * don't need to wait for port 0, only for later ports. 5834 */ 5835 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5836 async_synchronize_cookie(cookie); 5837 5838 ata_port_probe(ap); 5839 ata_port_wait_eh(ap); 5840 5841 /* in order to keep device order, we need to synchronize at this point */ 5842 async_synchronize_cookie(cookie); 5843 5844 ata_scsi_scan_host(ap, 1); 5845 } 5846 5847 /** 5848 * ata_host_register - register initialized ATA host 5849 * @host: ATA host to register 5850 * @sht: template for SCSI host 5851 * 5852 * Register initialized ATA host. @host is allocated using 5853 * ata_host_alloc() and fully initialized by LLD. This function 5854 * starts ports, registers @host with ATA and SCSI layers and 5855 * probe registered devices. 5856 * 5857 * LOCKING: 5858 * Inherited from calling layer (may sleep). 5859 * 5860 * RETURNS: 5861 * 0 on success, -errno otherwise. 5862 */ 5863 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5864 { 5865 int i, rc; 5866 5867 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5868 5869 /* host must have been started */ 5870 if (!(host->flags & ATA_HOST_STARTED)) { 5871 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5872 WARN_ON(1); 5873 return -EINVAL; 5874 } 5875 5876 /* Create associated sysfs transport objects */ 5877 for (i = 0; i < host->n_ports; i++) { 5878 rc = ata_tport_add(host->dev,host->ports[i]); 5879 if (rc) { 5880 goto err_tadd; 5881 } 5882 } 5883 5884 rc = ata_scsi_add_hosts(host, sht); 5885 if (rc) 5886 goto err_tadd; 5887 5888 /* set cable, sata_spd_limit and report */ 5889 for (i = 0; i < host->n_ports; i++) { 5890 struct ata_port *ap = host->ports[i]; 5891 unsigned int xfer_mask; 5892 5893 /* set SATA cable type if still unset */ 5894 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5895 ap->cbl = ATA_CBL_SATA; 5896 5897 /* init sata_spd_limit to the current value */ 5898 sata_link_init_spd(&ap->link); 5899 if (ap->slave_link) 5900 sata_link_init_spd(ap->slave_link); 5901 5902 /* print per-port info to dmesg */ 5903 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5904 ap->udma_mask); 5905 5906 if (!ata_port_is_dummy(ap)) { 5907 ata_port_info(ap, "%cATA max %s %s\n", 5908 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5909 ata_mode_string(xfer_mask), 5910 ap->link.eh_info.desc); 5911 ata_ehi_clear_desc(&ap->link.eh_info); 5912 } else 5913 ata_port_info(ap, "DUMMY\n"); 5914 } 5915 5916 /* perform each probe asynchronously */ 5917 for (i = 0; i < host->n_ports; i++) { 5918 struct ata_port *ap = host->ports[i]; 5919 ap->cookie = async_schedule(async_port_probe, ap); 5920 } 5921 5922 return 0; 5923 5924 err_tadd: 5925 while (--i >= 0) { 5926 ata_tport_delete(host->ports[i]); 5927 } 5928 return rc; 5929 5930 } 5931 EXPORT_SYMBOL_GPL(ata_host_register); 5932 5933 /** 5934 * ata_host_activate - start host, request IRQ and register it 5935 * @host: target ATA host 5936 * @irq: IRQ to request 5937 * @irq_handler: irq_handler used when requesting IRQ 5938 * @irq_flags: irq_flags used when requesting IRQ 5939 * @sht: scsi_host_template to use when registering the host 5940 * 5941 * After allocating an ATA host and initializing it, most libata 5942 * LLDs perform three steps to activate the host - start host, 5943 * request IRQ and register it. This helper takes necessary 5944 * arguments and performs the three steps in one go. 5945 * 5946 * An invalid IRQ skips the IRQ registration and expects the host to 5947 * have set polling mode on the port. In this case, @irq_handler 5948 * should be NULL. 5949 * 5950 * LOCKING: 5951 * Inherited from calling layer (may sleep). 5952 * 5953 * RETURNS: 5954 * 0 on success, -errno otherwise. 5955 */ 5956 int ata_host_activate(struct ata_host *host, int irq, 5957 irq_handler_t irq_handler, unsigned long irq_flags, 5958 const struct scsi_host_template *sht) 5959 { 5960 int i, rc; 5961 char *irq_desc; 5962 5963 rc = ata_host_start(host); 5964 if (rc) 5965 return rc; 5966 5967 /* Special case for polling mode */ 5968 if (!irq) { 5969 WARN_ON(irq_handler); 5970 return ata_host_register(host, sht); 5971 } 5972 5973 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5974 dev_driver_string(host->dev), 5975 dev_name(host->dev)); 5976 if (!irq_desc) 5977 return -ENOMEM; 5978 5979 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5980 irq_desc, host); 5981 if (rc) 5982 return rc; 5983 5984 for (i = 0; i < host->n_ports; i++) 5985 ata_port_desc_misc(host->ports[i], irq); 5986 5987 rc = ata_host_register(host, sht); 5988 /* if failed, just free the IRQ and leave ports alone */ 5989 if (rc) 5990 devm_free_irq(host->dev, irq, host); 5991 5992 return rc; 5993 } 5994 EXPORT_SYMBOL_GPL(ata_host_activate); 5995 5996 /** 5997 * ata_dev_free_resources - Free a device resources 5998 * @dev: Target ATA device 5999 * 6000 * Free resources allocated to support a device features. 6001 * 6002 * LOCKING: 6003 * Kernel thread context (may sleep). 6004 */ 6005 void ata_dev_free_resources(struct ata_device *dev) 6006 { 6007 if (zpodd_dev_enabled(dev)) 6008 zpodd_exit(dev); 6009 6010 ata_dev_cleanup_cdl_resources(dev); 6011 } 6012 6013 /** 6014 * ata_port_detach - Detach ATA port in preparation of device removal 6015 * @ap: ATA port to be detached 6016 * 6017 * Detach all ATA devices and the associated SCSI devices of @ap; 6018 * then, remove the associated SCSI host. @ap is guaranteed to 6019 * be quiescent on return from this function. 6020 * 6021 * LOCKING: 6022 * Kernel thread context (may sleep). 6023 */ 6024 static void ata_port_detach(struct ata_port *ap) 6025 { 6026 unsigned long flags; 6027 struct ata_link *link; 6028 struct ata_device *dev; 6029 6030 /* Ensure ata_port probe has completed */ 6031 async_synchronize_cookie(ap->cookie + 1); 6032 6033 /* Wait for any ongoing EH */ 6034 ata_port_wait_eh(ap); 6035 6036 mutex_lock(&ap->scsi_scan_mutex); 6037 spin_lock_irqsave(ap->lock, flags); 6038 6039 /* Remove scsi devices */ 6040 ata_for_each_link(link, ap, HOST_FIRST) { 6041 ata_for_each_dev(dev, link, ALL) { 6042 if (dev->sdev) { 6043 spin_unlock_irqrestore(ap->lock, flags); 6044 scsi_remove_device(dev->sdev); 6045 spin_lock_irqsave(ap->lock, flags); 6046 dev->sdev = NULL; 6047 } 6048 } 6049 } 6050 6051 /* Tell EH to disable all devices */ 6052 ap->pflags |= ATA_PFLAG_UNLOADING; 6053 ata_port_schedule_eh(ap); 6054 6055 spin_unlock_irqrestore(ap->lock, flags); 6056 mutex_unlock(&ap->scsi_scan_mutex); 6057 6058 /* wait till EH commits suicide */ 6059 ata_port_wait_eh(ap); 6060 6061 /* it better be dead now */ 6062 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6063 6064 cancel_delayed_work_sync(&ap->hotplug_task); 6065 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6066 6067 /* Delete port multiplier link transport devices */ 6068 if (ap->pmp_link) { 6069 int i; 6070 6071 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6072 ata_tlink_delete(&ap->pmp_link[i]); 6073 } 6074 6075 /* Remove the associated SCSI host */ 6076 scsi_remove_host(ap->scsi_host); 6077 ata_tport_delete(ap); 6078 } 6079 6080 /** 6081 * ata_host_detach - Detach all ports of an ATA host 6082 * @host: Host to detach 6083 * 6084 * Detach all ports of @host. 6085 * 6086 * LOCKING: 6087 * Kernel thread context (may sleep). 6088 */ 6089 void ata_host_detach(struct ata_host *host) 6090 { 6091 int i; 6092 6093 for (i = 0; i < host->n_ports; i++) 6094 ata_port_detach(host->ports[i]); 6095 6096 /* the host is dead now, dissociate ACPI */ 6097 ata_acpi_dissociate(host); 6098 } 6099 EXPORT_SYMBOL_GPL(ata_host_detach); 6100 6101 #ifdef CONFIG_PCI 6102 6103 /** 6104 * ata_pci_remove_one - PCI layer callback for device removal 6105 * @pdev: PCI device that was removed 6106 * 6107 * PCI layer indicates to libata via this hook that hot-unplug or 6108 * module unload event has occurred. Detach all ports. Resource 6109 * release is handled via devres. 6110 * 6111 * LOCKING: 6112 * Inherited from PCI layer (may sleep). 6113 */ 6114 void ata_pci_remove_one(struct pci_dev *pdev) 6115 { 6116 struct ata_host *host = pci_get_drvdata(pdev); 6117 6118 ata_host_detach(host); 6119 } 6120 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6121 6122 void ata_pci_shutdown_one(struct pci_dev *pdev) 6123 { 6124 struct ata_host *host = pci_get_drvdata(pdev); 6125 int i; 6126 6127 for (i = 0; i < host->n_ports; i++) { 6128 struct ata_port *ap = host->ports[i]; 6129 6130 ap->pflags |= ATA_PFLAG_FROZEN; 6131 6132 /* Disable port interrupts */ 6133 if (ap->ops->freeze) 6134 ap->ops->freeze(ap); 6135 6136 /* Stop the port DMA engines */ 6137 if (ap->ops->port_stop) 6138 ap->ops->port_stop(ap); 6139 } 6140 } 6141 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6142 6143 /* move to PCI subsystem */ 6144 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6145 { 6146 unsigned long tmp = 0; 6147 6148 switch (bits->width) { 6149 case 1: { 6150 u8 tmp8 = 0; 6151 pci_read_config_byte(pdev, bits->reg, &tmp8); 6152 tmp = tmp8; 6153 break; 6154 } 6155 case 2: { 6156 u16 tmp16 = 0; 6157 pci_read_config_word(pdev, bits->reg, &tmp16); 6158 tmp = tmp16; 6159 break; 6160 } 6161 case 4: { 6162 u32 tmp32 = 0; 6163 pci_read_config_dword(pdev, bits->reg, &tmp32); 6164 tmp = tmp32; 6165 break; 6166 } 6167 6168 default: 6169 return -EINVAL; 6170 } 6171 6172 tmp &= bits->mask; 6173 6174 return (tmp == bits->val) ? 1 : 0; 6175 } 6176 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6177 6178 #ifdef CONFIG_PM 6179 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6180 { 6181 pci_save_state(pdev); 6182 pci_disable_device(pdev); 6183 6184 if (mesg.event & PM_EVENT_SLEEP) 6185 pci_set_power_state(pdev, PCI_D3hot); 6186 } 6187 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6188 6189 int ata_pci_device_do_resume(struct pci_dev *pdev) 6190 { 6191 int rc; 6192 6193 pci_set_power_state(pdev, PCI_D0); 6194 pci_restore_state(pdev); 6195 6196 rc = pcim_enable_device(pdev); 6197 if (rc) { 6198 dev_err(&pdev->dev, 6199 "failed to enable device after resume (%d)\n", rc); 6200 return rc; 6201 } 6202 6203 pci_set_master(pdev); 6204 return 0; 6205 } 6206 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6207 6208 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6209 { 6210 struct ata_host *host = pci_get_drvdata(pdev); 6211 6212 ata_host_suspend(host, mesg); 6213 6214 ata_pci_device_do_suspend(pdev, mesg); 6215 6216 return 0; 6217 } 6218 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6219 6220 int ata_pci_device_resume(struct pci_dev *pdev) 6221 { 6222 struct ata_host *host = pci_get_drvdata(pdev); 6223 int rc; 6224 6225 rc = ata_pci_device_do_resume(pdev); 6226 if (rc == 0) 6227 ata_host_resume(host); 6228 return rc; 6229 } 6230 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6231 #endif /* CONFIG_PM */ 6232 #endif /* CONFIG_PCI */ 6233 6234 /** 6235 * ata_platform_remove_one - Platform layer callback for device removal 6236 * @pdev: Platform device that was removed 6237 * 6238 * Platform layer indicates to libata via this hook that hot-unplug or 6239 * module unload event has occurred. Detach all ports. Resource 6240 * release is handled via devres. 6241 * 6242 * LOCKING: 6243 * Inherited from platform layer (may sleep). 6244 */ 6245 void ata_platform_remove_one(struct platform_device *pdev) 6246 { 6247 struct ata_host *host = platform_get_drvdata(pdev); 6248 6249 ata_host_detach(host); 6250 } 6251 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6252 6253 #ifdef CONFIG_ATA_FORCE 6254 6255 #define force_cbl(name, flag) \ 6256 { #name, .cbl = (flag) } 6257 6258 #define force_spd_limit(spd, val) \ 6259 { #spd, .spd_limit = (val) } 6260 6261 #define force_xfer(mode, shift) \ 6262 { #mode, .xfer_mask = (1UL << (shift)) } 6263 6264 #define force_lflag_on(name, flags) \ 6265 { #name, .lflags_on = (flags) } 6266 6267 #define force_lflag_onoff(name, flags) \ 6268 { "no" #name, .lflags_on = (flags) }, \ 6269 { #name, .lflags_off = (flags) } 6270 6271 #define force_quirk_on(name, flag) \ 6272 { #name, .quirk_on = (flag) } 6273 6274 #define force_quirk_onoff(name, flag) \ 6275 { "no" #name, .quirk_on = (flag) }, \ 6276 { #name, .quirk_off = (flag) } 6277 6278 static const struct ata_force_param force_tbl[] __initconst = { 6279 force_cbl(40c, ATA_CBL_PATA40), 6280 force_cbl(80c, ATA_CBL_PATA80), 6281 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6282 force_cbl(unk, ATA_CBL_PATA_UNK), 6283 force_cbl(ign, ATA_CBL_PATA_IGN), 6284 force_cbl(sata, ATA_CBL_SATA), 6285 6286 force_spd_limit(1.5Gbps, 1), 6287 force_spd_limit(3.0Gbps, 2), 6288 6289 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6290 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6291 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6292 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6293 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6294 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6295 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6296 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6297 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6298 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6299 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6300 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6301 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6302 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6303 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6304 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6305 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6306 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6307 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6308 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6309 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6310 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6311 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6312 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6313 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6314 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6315 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6316 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6317 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6318 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6319 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6320 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6321 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6322 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6323 6324 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6325 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6326 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6327 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6328 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6329 6330 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ), 6331 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM), 6332 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI), 6333 6334 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM), 6335 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM), 6336 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M), 6337 6338 force_quirk_onoff(dma, ATA_QUIRK_NODMA), 6339 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR), 6340 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA), 6341 6342 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG), 6343 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG), 6344 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR), 6345 6346 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128), 6347 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024), 6348 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48), 6349 6350 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM), 6351 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER), 6352 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID), 6353 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA), 6354 6355 force_quirk_on(disable, ATA_QUIRK_DISABLE), 6356 }; 6357 6358 static int __init ata_parse_force_one(char **cur, 6359 struct ata_force_ent *force_ent, 6360 const char **reason) 6361 { 6362 char *start = *cur, *p = *cur; 6363 char *id, *val, *endp; 6364 const struct ata_force_param *match_fp = NULL; 6365 int nr_matches = 0, i; 6366 6367 /* find where this param ends and update *cur */ 6368 while (*p != '\0' && *p != ',') 6369 p++; 6370 6371 if (*p == '\0') 6372 *cur = p; 6373 else 6374 *cur = p + 1; 6375 6376 *p = '\0'; 6377 6378 /* parse */ 6379 p = strchr(start, ':'); 6380 if (!p) { 6381 val = strstrip(start); 6382 goto parse_val; 6383 } 6384 *p = '\0'; 6385 6386 id = strstrip(start); 6387 val = strstrip(p + 1); 6388 6389 /* parse id */ 6390 p = strchr(id, '.'); 6391 if (p) { 6392 *p++ = '\0'; 6393 force_ent->device = simple_strtoul(p, &endp, 10); 6394 if (p == endp || *endp != '\0') { 6395 *reason = "invalid device"; 6396 return -EINVAL; 6397 } 6398 } 6399 6400 force_ent->port = simple_strtoul(id, &endp, 10); 6401 if (id == endp || *endp != '\0') { 6402 *reason = "invalid port/link"; 6403 return -EINVAL; 6404 } 6405 6406 parse_val: 6407 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6408 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6409 const struct ata_force_param *fp = &force_tbl[i]; 6410 6411 if (strncasecmp(val, fp->name, strlen(val))) 6412 continue; 6413 6414 nr_matches++; 6415 match_fp = fp; 6416 6417 if (strcasecmp(val, fp->name) == 0) { 6418 nr_matches = 1; 6419 break; 6420 } 6421 } 6422 6423 if (!nr_matches) { 6424 *reason = "unknown value"; 6425 return -EINVAL; 6426 } 6427 if (nr_matches > 1) { 6428 *reason = "ambiguous value"; 6429 return -EINVAL; 6430 } 6431 6432 force_ent->param = *match_fp; 6433 6434 return 0; 6435 } 6436 6437 static void __init ata_parse_force_param(void) 6438 { 6439 int idx = 0, size = 1; 6440 int last_port = -1, last_device = -1; 6441 char *p, *cur, *next; 6442 6443 /* Calculate maximum number of params and allocate ata_force_tbl */ 6444 for (p = ata_force_param_buf; *p; p++) 6445 if (*p == ',') 6446 size++; 6447 6448 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6449 if (!ata_force_tbl) { 6450 printk(KERN_WARNING "ata: failed to extend force table, " 6451 "libata.force ignored\n"); 6452 return; 6453 } 6454 6455 /* parse and populate the table */ 6456 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6457 const char *reason = ""; 6458 struct ata_force_ent te = { .port = -1, .device = -1 }; 6459 6460 next = cur; 6461 if (ata_parse_force_one(&next, &te, &reason)) { 6462 printk(KERN_WARNING "ata: failed to parse force " 6463 "parameter \"%s\" (%s)\n", 6464 cur, reason); 6465 continue; 6466 } 6467 6468 if (te.port == -1) { 6469 te.port = last_port; 6470 te.device = last_device; 6471 } 6472 6473 ata_force_tbl[idx++] = te; 6474 6475 last_port = te.port; 6476 last_device = te.device; 6477 } 6478 6479 ata_force_tbl_size = idx; 6480 } 6481 6482 static void ata_free_force_param(void) 6483 { 6484 kfree(ata_force_tbl); 6485 } 6486 #else 6487 static inline void ata_parse_force_param(void) { } 6488 static inline void ata_free_force_param(void) { } 6489 #endif 6490 6491 static int __init ata_init(void) 6492 { 6493 int rc; 6494 6495 ata_parse_force_param(); 6496 6497 rc = ata_sff_init(); 6498 if (rc) { 6499 ata_free_force_param(); 6500 return rc; 6501 } 6502 6503 libata_transport_init(); 6504 ata_scsi_transport_template = ata_attach_transport(); 6505 if (!ata_scsi_transport_template) { 6506 ata_sff_exit(); 6507 rc = -ENOMEM; 6508 goto err_out; 6509 } 6510 6511 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6512 return 0; 6513 6514 err_out: 6515 return rc; 6516 } 6517 6518 static void __exit ata_exit(void) 6519 { 6520 ata_release_transport(ata_scsi_transport_template); 6521 libata_transport_exit(); 6522 ata_sff_exit(); 6523 ata_free_force_param(); 6524 } 6525 6526 subsys_initcall(ata_init); 6527 module_exit(ata_exit); 6528 6529 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6530 6531 int ata_ratelimit(void) 6532 { 6533 return __ratelimit(&ratelimit); 6534 } 6535 EXPORT_SYMBOL_GPL(ata_ratelimit); 6536 6537 /** 6538 * ata_msleep - ATA EH owner aware msleep 6539 * @ap: ATA port to attribute the sleep to 6540 * @msecs: duration to sleep in milliseconds 6541 * 6542 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6543 * ownership is released before going to sleep and reacquired 6544 * after the sleep is complete. IOW, other ports sharing the 6545 * @ap->host will be allowed to own the EH while this task is 6546 * sleeping. 6547 * 6548 * LOCKING: 6549 * Might sleep. 6550 */ 6551 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6552 { 6553 bool owns_eh = ap && ap->host->eh_owner == current; 6554 6555 if (owns_eh) 6556 ata_eh_release(ap); 6557 6558 if (msecs < 20) { 6559 unsigned long usecs = msecs * USEC_PER_MSEC; 6560 usleep_range(usecs, usecs + 50); 6561 } else { 6562 msleep(msecs); 6563 } 6564 6565 if (owns_eh) 6566 ata_eh_acquire(ap); 6567 } 6568 EXPORT_SYMBOL_GPL(ata_msleep); 6569 6570 /** 6571 * ata_wait_register - wait until register value changes 6572 * @ap: ATA port to wait register for, can be NULL 6573 * @reg: IO-mapped register 6574 * @mask: Mask to apply to read register value 6575 * @val: Wait condition 6576 * @interval: polling interval in milliseconds 6577 * @timeout: timeout in milliseconds 6578 * 6579 * Waiting for some bits of register to change is a common 6580 * operation for ATA controllers. This function reads 32bit LE 6581 * IO-mapped register @reg and tests for the following condition. 6582 * 6583 * (*@reg & mask) != val 6584 * 6585 * If the condition is met, it returns; otherwise, the process is 6586 * repeated after @interval_msec until timeout. 6587 * 6588 * LOCKING: 6589 * Kernel thread context (may sleep) 6590 * 6591 * RETURNS: 6592 * The final register value. 6593 */ 6594 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6595 unsigned int interval, unsigned int timeout) 6596 { 6597 unsigned long deadline; 6598 u32 tmp; 6599 6600 tmp = ioread32(reg); 6601 6602 /* Calculate timeout _after_ the first read to make sure 6603 * preceding writes reach the controller before starting to 6604 * eat away the timeout. 6605 */ 6606 deadline = ata_deadline(jiffies, timeout); 6607 6608 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6609 ata_msleep(ap, interval); 6610 tmp = ioread32(reg); 6611 } 6612 6613 return tmp; 6614 } 6615 EXPORT_SYMBOL_GPL(ata_wait_register); 6616 6617 /* 6618 * Dummy port_ops 6619 */ 6620 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6621 { 6622 return AC_ERR_SYSTEM; 6623 } 6624 6625 static void ata_dummy_error_handler(struct ata_port *ap) 6626 { 6627 /* truly dummy */ 6628 } 6629 6630 struct ata_port_operations ata_dummy_port_ops = { 6631 .qc_issue = ata_dummy_qc_issue, 6632 .error_handler = ata_dummy_error_handler, 6633 .sched_eh = ata_std_sched_eh, 6634 .end_eh = ata_std_end_eh, 6635 }; 6636 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6637 6638 const struct ata_port_info ata_dummy_port_info = { 6639 .port_ops = &ata_dummy_port_ops, 6640 }; 6641 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6642 6643 void ata_print_version(const struct device *dev, const char *version) 6644 { 6645 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6646 } 6647 EXPORT_SYMBOL(ata_print_version); 6648 6649 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6650 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6651 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6652 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6653 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6654