1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /** 167 * ata_link_next - link iteration helper 168 * @link: the previous link, NULL to start 169 * @ap: ATA port containing links to iterate 170 * @mode: iteration mode, one of ATA_LITER_* 171 * 172 * LOCKING: 173 * Host lock or EH context. 174 * 175 * RETURNS: 176 * Pointer to the next link. 177 */ 178 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 179 enum ata_link_iter_mode mode) 180 { 181 BUG_ON(mode != ATA_LITER_EDGE && 182 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 183 184 /* NULL link indicates start of iteration */ 185 if (!link) 186 switch (mode) { 187 case ATA_LITER_EDGE: 188 case ATA_LITER_PMP_FIRST: 189 if (sata_pmp_attached(ap)) 190 return ap->pmp_link; 191 /* fall through */ 192 case ATA_LITER_HOST_FIRST: 193 return &ap->link; 194 } 195 196 /* we just iterated over the host link, what's next? */ 197 if (link == &ap->link) 198 switch (mode) { 199 case ATA_LITER_HOST_FIRST: 200 if (sata_pmp_attached(ap)) 201 return ap->pmp_link; 202 /* fall through */ 203 case ATA_LITER_PMP_FIRST: 204 if (unlikely(ap->slave_link)) 205 return ap->slave_link; 206 /* fall through */ 207 case ATA_LITER_EDGE: 208 return NULL; 209 } 210 211 /* slave_link excludes PMP */ 212 if (unlikely(link == ap->slave_link)) 213 return NULL; 214 215 /* we were over a PMP link */ 216 if (++link < ap->pmp_link + ap->nr_pmp_links) 217 return link; 218 219 if (mode == ATA_LITER_PMP_FIRST) 220 return &ap->link; 221 222 return NULL; 223 } 224 225 /** 226 * ata_dev_next - device iteration helper 227 * @dev: the previous device, NULL to start 228 * @link: ATA link containing devices to iterate 229 * @mode: iteration mode, one of ATA_DITER_* 230 * 231 * LOCKING: 232 * Host lock or EH context. 233 * 234 * RETURNS: 235 * Pointer to the next device. 236 */ 237 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 238 enum ata_dev_iter_mode mode) 239 { 240 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 241 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 242 243 /* NULL dev indicates start of iteration */ 244 if (!dev) 245 switch (mode) { 246 case ATA_DITER_ENABLED: 247 case ATA_DITER_ALL: 248 dev = link->device; 249 goto check; 250 case ATA_DITER_ENABLED_REVERSE: 251 case ATA_DITER_ALL_REVERSE: 252 dev = link->device + ata_link_max_devices(link) - 1; 253 goto check; 254 } 255 256 next: 257 /* move to the next one */ 258 switch (mode) { 259 case ATA_DITER_ENABLED: 260 case ATA_DITER_ALL: 261 if (++dev < link->device + ata_link_max_devices(link)) 262 goto check; 263 return NULL; 264 case ATA_DITER_ENABLED_REVERSE: 265 case ATA_DITER_ALL_REVERSE: 266 if (--dev >= link->device) 267 goto check; 268 return NULL; 269 } 270 271 check: 272 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 273 !ata_dev_enabled(dev)) 274 goto next; 275 return dev; 276 } 277 278 /** 279 * ata_dev_phys_link - find physical link for a device 280 * @dev: ATA device to look up physical link for 281 * 282 * Look up physical link which @dev is attached to. Note that 283 * this is different from @dev->link only when @dev is on slave 284 * link. For all other cases, it's the same as @dev->link. 285 * 286 * LOCKING: 287 * Don't care. 288 * 289 * RETURNS: 290 * Pointer to the found physical link. 291 */ 292 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 293 { 294 struct ata_port *ap = dev->link->ap; 295 296 if (!ap->slave_link) 297 return dev->link; 298 if (!dev->devno) 299 return &ap->link; 300 return ap->slave_link; 301 } 302 303 /** 304 * ata_force_cbl - force cable type according to libata.force 305 * @ap: ATA port of interest 306 * 307 * Force cable type according to libata.force and whine about it. 308 * The last entry which has matching port number is used, so it 309 * can be specified as part of device force parameters. For 310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 311 * same effect. 312 * 313 * LOCKING: 314 * EH context. 315 */ 316 void ata_force_cbl(struct ata_port *ap) 317 { 318 int i; 319 320 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 321 const struct ata_force_ent *fe = &ata_force_tbl[i]; 322 323 if (fe->port != -1 && fe->port != ap->print_id) 324 continue; 325 326 if (fe->param.cbl == ATA_CBL_NONE) 327 continue; 328 329 ap->cbl = fe->param.cbl; 330 ata_port_printk(ap, KERN_NOTICE, 331 "FORCE: cable set to %s\n", fe->param.name); 332 return; 333 } 334 } 335 336 /** 337 * ata_force_link_limits - force link limits according to libata.force 338 * @link: ATA link of interest 339 * 340 * Force link flags and SATA spd limit according to libata.force 341 * and whine about it. When only the port part is specified 342 * (e.g. 1:), the limit applies to all links connected to both 343 * the host link and all fan-out ports connected via PMP. If the 344 * device part is specified as 0 (e.g. 1.00:), it specifies the 345 * first fan-out link not the host link. Device number 15 always 346 * points to the host link whether PMP is attached or not. If the 347 * controller has slave link, device number 16 points to it. 348 * 349 * LOCKING: 350 * EH context. 351 */ 352 static void ata_force_link_limits(struct ata_link *link) 353 { 354 bool did_spd = false; 355 int linkno = link->pmp; 356 int i; 357 358 if (ata_is_host_link(link)) 359 linkno += 15; 360 361 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 362 const struct ata_force_ent *fe = &ata_force_tbl[i]; 363 364 if (fe->port != -1 && fe->port != link->ap->print_id) 365 continue; 366 367 if (fe->device != -1 && fe->device != linkno) 368 continue; 369 370 /* only honor the first spd limit */ 371 if (!did_spd && fe->param.spd_limit) { 372 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 373 ata_link_printk(link, KERN_NOTICE, 374 "FORCE: PHY spd limit set to %s\n", 375 fe->param.name); 376 did_spd = true; 377 } 378 379 /* let lflags stack */ 380 if (fe->param.lflags) { 381 link->flags |= fe->param.lflags; 382 ata_link_printk(link, KERN_NOTICE, 383 "FORCE: link flag 0x%x forced -> 0x%x\n", 384 fe->param.lflags, link->flags); 385 } 386 } 387 } 388 389 /** 390 * ata_force_xfermask - force xfermask according to libata.force 391 * @dev: ATA device of interest 392 * 393 * Force xfer_mask according to libata.force and whine about it. 394 * For consistency with link selection, device number 15 selects 395 * the first device connected to the host link. 396 * 397 * LOCKING: 398 * EH context. 399 */ 400 static void ata_force_xfermask(struct ata_device *dev) 401 { 402 int devno = dev->link->pmp + dev->devno; 403 int alt_devno = devno; 404 int i; 405 406 /* allow n.15/16 for devices attached to host port */ 407 if (ata_is_host_link(dev->link)) 408 alt_devno += 15; 409 410 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 411 const struct ata_force_ent *fe = &ata_force_tbl[i]; 412 unsigned long pio_mask, mwdma_mask, udma_mask; 413 414 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 415 continue; 416 417 if (fe->device != -1 && fe->device != devno && 418 fe->device != alt_devno) 419 continue; 420 421 if (!fe->param.xfer_mask) 422 continue; 423 424 ata_unpack_xfermask(fe->param.xfer_mask, 425 &pio_mask, &mwdma_mask, &udma_mask); 426 if (udma_mask) 427 dev->udma_mask = udma_mask; 428 else if (mwdma_mask) { 429 dev->udma_mask = 0; 430 dev->mwdma_mask = mwdma_mask; 431 } else { 432 dev->udma_mask = 0; 433 dev->mwdma_mask = 0; 434 dev->pio_mask = pio_mask; 435 } 436 437 ata_dev_printk(dev, KERN_NOTICE, 438 "FORCE: xfer_mask set to %s\n", fe->param.name); 439 return; 440 } 441 } 442 443 /** 444 * ata_force_horkage - force horkage according to libata.force 445 * @dev: ATA device of interest 446 * 447 * Force horkage according to libata.force and whine about it. 448 * For consistency with link selection, device number 15 selects 449 * the first device connected to the host link. 450 * 451 * LOCKING: 452 * EH context. 453 */ 454 static void ata_force_horkage(struct ata_device *dev) 455 { 456 int devno = dev->link->pmp + dev->devno; 457 int alt_devno = devno; 458 int i; 459 460 /* allow n.15/16 for devices attached to host port */ 461 if (ata_is_host_link(dev->link)) 462 alt_devno += 15; 463 464 for (i = 0; i < ata_force_tbl_size; i++) { 465 const struct ata_force_ent *fe = &ata_force_tbl[i]; 466 467 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 468 continue; 469 470 if (fe->device != -1 && fe->device != devno && 471 fe->device != alt_devno) 472 continue; 473 474 if (!(~dev->horkage & fe->param.horkage_on) && 475 !(dev->horkage & fe->param.horkage_off)) 476 continue; 477 478 dev->horkage |= fe->param.horkage_on; 479 dev->horkage &= ~fe->param.horkage_off; 480 481 ata_dev_printk(dev, KERN_NOTICE, 482 "FORCE: horkage modified (%s)\n", fe->param.name); 483 } 484 } 485 486 /** 487 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 488 * @opcode: SCSI opcode 489 * 490 * Determine ATAPI command type from @opcode. 491 * 492 * LOCKING: 493 * None. 494 * 495 * RETURNS: 496 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 497 */ 498 int atapi_cmd_type(u8 opcode) 499 { 500 switch (opcode) { 501 case GPCMD_READ_10: 502 case GPCMD_READ_12: 503 return ATAPI_READ; 504 505 case GPCMD_WRITE_10: 506 case GPCMD_WRITE_12: 507 case GPCMD_WRITE_AND_VERIFY_10: 508 return ATAPI_WRITE; 509 510 case GPCMD_READ_CD: 511 case GPCMD_READ_CD_MSF: 512 return ATAPI_READ_CD; 513 514 case ATA_16: 515 case ATA_12: 516 if (atapi_passthru16) 517 return ATAPI_PASS_THRU; 518 /* fall thru */ 519 default: 520 return ATAPI_MISC; 521 } 522 } 523 524 /** 525 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 526 * @tf: Taskfile to convert 527 * @pmp: Port multiplier port 528 * @is_cmd: This FIS is for command 529 * @fis: Buffer into which data will output 530 * 531 * Converts a standard ATA taskfile to a Serial ATA 532 * FIS structure (Register - Host to Device). 533 * 534 * LOCKING: 535 * Inherited from caller. 536 */ 537 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 538 { 539 fis[0] = 0x27; /* Register - Host to Device FIS */ 540 fis[1] = pmp & 0xf; /* Port multiplier number*/ 541 if (is_cmd) 542 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 543 544 fis[2] = tf->command; 545 fis[3] = tf->feature; 546 547 fis[4] = tf->lbal; 548 fis[5] = tf->lbam; 549 fis[6] = tf->lbah; 550 fis[7] = tf->device; 551 552 fis[8] = tf->hob_lbal; 553 fis[9] = tf->hob_lbam; 554 fis[10] = tf->hob_lbah; 555 fis[11] = tf->hob_feature; 556 557 fis[12] = tf->nsect; 558 fis[13] = tf->hob_nsect; 559 fis[14] = 0; 560 fis[15] = tf->ctl; 561 562 fis[16] = 0; 563 fis[17] = 0; 564 fis[18] = 0; 565 fis[19] = 0; 566 } 567 568 /** 569 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 570 * @fis: Buffer from which data will be input 571 * @tf: Taskfile to output 572 * 573 * Converts a serial ATA FIS structure to a standard ATA taskfile. 574 * 575 * LOCKING: 576 * Inherited from caller. 577 */ 578 579 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 580 { 581 tf->command = fis[2]; /* status */ 582 tf->feature = fis[3]; /* error */ 583 584 tf->lbal = fis[4]; 585 tf->lbam = fis[5]; 586 tf->lbah = fis[6]; 587 tf->device = fis[7]; 588 589 tf->hob_lbal = fis[8]; 590 tf->hob_lbam = fis[9]; 591 tf->hob_lbah = fis[10]; 592 593 tf->nsect = fis[12]; 594 tf->hob_nsect = fis[13]; 595 } 596 597 static const u8 ata_rw_cmds[] = { 598 /* pio multi */ 599 ATA_CMD_READ_MULTI, 600 ATA_CMD_WRITE_MULTI, 601 ATA_CMD_READ_MULTI_EXT, 602 ATA_CMD_WRITE_MULTI_EXT, 603 0, 604 0, 605 0, 606 ATA_CMD_WRITE_MULTI_FUA_EXT, 607 /* pio */ 608 ATA_CMD_PIO_READ, 609 ATA_CMD_PIO_WRITE, 610 ATA_CMD_PIO_READ_EXT, 611 ATA_CMD_PIO_WRITE_EXT, 612 0, 613 0, 614 0, 615 0, 616 /* dma */ 617 ATA_CMD_READ, 618 ATA_CMD_WRITE, 619 ATA_CMD_READ_EXT, 620 ATA_CMD_WRITE_EXT, 621 0, 622 0, 623 0, 624 ATA_CMD_WRITE_FUA_EXT 625 }; 626 627 /** 628 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 629 * @tf: command to examine and configure 630 * @dev: device tf belongs to 631 * 632 * Examine the device configuration and tf->flags to calculate 633 * the proper read/write commands and protocol to use. 634 * 635 * LOCKING: 636 * caller. 637 */ 638 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 639 { 640 u8 cmd; 641 642 int index, fua, lba48, write; 643 644 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 645 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 646 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 647 648 if (dev->flags & ATA_DFLAG_PIO) { 649 tf->protocol = ATA_PROT_PIO; 650 index = dev->multi_count ? 0 : 8; 651 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 652 /* Unable to use DMA due to host limitation */ 653 tf->protocol = ATA_PROT_PIO; 654 index = dev->multi_count ? 0 : 8; 655 } else { 656 tf->protocol = ATA_PROT_DMA; 657 index = 16; 658 } 659 660 cmd = ata_rw_cmds[index + fua + lba48 + write]; 661 if (cmd) { 662 tf->command = cmd; 663 return 0; 664 } 665 return -1; 666 } 667 668 /** 669 * ata_tf_read_block - Read block address from ATA taskfile 670 * @tf: ATA taskfile of interest 671 * @dev: ATA device @tf belongs to 672 * 673 * LOCKING: 674 * None. 675 * 676 * Read block address from @tf. This function can handle all 677 * three address formats - LBA, LBA48 and CHS. tf->protocol and 678 * flags select the address format to use. 679 * 680 * RETURNS: 681 * Block address read from @tf. 682 */ 683 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 684 { 685 u64 block = 0; 686 687 if (tf->flags & ATA_TFLAG_LBA) { 688 if (tf->flags & ATA_TFLAG_LBA48) { 689 block |= (u64)tf->hob_lbah << 40; 690 block |= (u64)tf->hob_lbam << 32; 691 block |= (u64)tf->hob_lbal << 24; 692 } else 693 block |= (tf->device & 0xf) << 24; 694 695 block |= tf->lbah << 16; 696 block |= tf->lbam << 8; 697 block |= tf->lbal; 698 } else { 699 u32 cyl, head, sect; 700 701 cyl = tf->lbam | (tf->lbah << 8); 702 head = tf->device & 0xf; 703 sect = tf->lbal; 704 705 block = (cyl * dev->heads + head) * dev->sectors + sect; 706 } 707 708 return block; 709 } 710 711 /** 712 * ata_build_rw_tf - Build ATA taskfile for given read/write request 713 * @tf: Target ATA taskfile 714 * @dev: ATA device @tf belongs to 715 * @block: Block address 716 * @n_block: Number of blocks 717 * @tf_flags: RW/FUA etc... 718 * @tag: tag 719 * 720 * LOCKING: 721 * None. 722 * 723 * Build ATA taskfile @tf for read/write request described by 724 * @block, @n_block, @tf_flags and @tag on @dev. 725 * 726 * RETURNS: 727 * 728 * 0 on success, -ERANGE if the request is too large for @dev, 729 * -EINVAL if the request is invalid. 730 */ 731 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 732 u64 block, u32 n_block, unsigned int tf_flags, 733 unsigned int tag) 734 { 735 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 736 tf->flags |= tf_flags; 737 738 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 739 /* yay, NCQ */ 740 if (!lba_48_ok(block, n_block)) 741 return -ERANGE; 742 743 tf->protocol = ATA_PROT_NCQ; 744 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 745 746 if (tf->flags & ATA_TFLAG_WRITE) 747 tf->command = ATA_CMD_FPDMA_WRITE; 748 else 749 tf->command = ATA_CMD_FPDMA_READ; 750 751 tf->nsect = tag << 3; 752 tf->hob_feature = (n_block >> 8) & 0xff; 753 tf->feature = n_block & 0xff; 754 755 tf->hob_lbah = (block >> 40) & 0xff; 756 tf->hob_lbam = (block >> 32) & 0xff; 757 tf->hob_lbal = (block >> 24) & 0xff; 758 tf->lbah = (block >> 16) & 0xff; 759 tf->lbam = (block >> 8) & 0xff; 760 tf->lbal = block & 0xff; 761 762 tf->device = 1 << 6; 763 if (tf->flags & ATA_TFLAG_FUA) 764 tf->device |= 1 << 7; 765 } else if (dev->flags & ATA_DFLAG_LBA) { 766 tf->flags |= ATA_TFLAG_LBA; 767 768 if (lba_28_ok(block, n_block)) { 769 /* use LBA28 */ 770 tf->device |= (block >> 24) & 0xf; 771 } else if (lba_48_ok(block, n_block)) { 772 if (!(dev->flags & ATA_DFLAG_LBA48)) 773 return -ERANGE; 774 775 /* use LBA48 */ 776 tf->flags |= ATA_TFLAG_LBA48; 777 778 tf->hob_nsect = (n_block >> 8) & 0xff; 779 780 tf->hob_lbah = (block >> 40) & 0xff; 781 tf->hob_lbam = (block >> 32) & 0xff; 782 tf->hob_lbal = (block >> 24) & 0xff; 783 } else 784 /* request too large even for LBA48 */ 785 return -ERANGE; 786 787 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 788 return -EINVAL; 789 790 tf->nsect = n_block & 0xff; 791 792 tf->lbah = (block >> 16) & 0xff; 793 tf->lbam = (block >> 8) & 0xff; 794 tf->lbal = block & 0xff; 795 796 tf->device |= ATA_LBA; 797 } else { 798 /* CHS */ 799 u32 sect, head, cyl, track; 800 801 /* The request -may- be too large for CHS addressing. */ 802 if (!lba_28_ok(block, n_block)) 803 return -ERANGE; 804 805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 806 return -EINVAL; 807 808 /* Convert LBA to CHS */ 809 track = (u32)block / dev->sectors; 810 cyl = track / dev->heads; 811 head = track % dev->heads; 812 sect = (u32)block % dev->sectors + 1; 813 814 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 815 (u32)block, track, cyl, head, sect); 816 817 /* Check whether the converted CHS can fit. 818 Cylinder: 0-65535 819 Head: 0-15 820 Sector: 1-255*/ 821 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 822 return -ERANGE; 823 824 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 825 tf->lbal = sect; 826 tf->lbam = cyl; 827 tf->lbah = cyl >> 8; 828 tf->device |= head; 829 } 830 831 return 0; 832 } 833 834 /** 835 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 836 * @pio_mask: pio_mask 837 * @mwdma_mask: mwdma_mask 838 * @udma_mask: udma_mask 839 * 840 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 841 * unsigned int xfer_mask. 842 * 843 * LOCKING: 844 * None. 845 * 846 * RETURNS: 847 * Packed xfer_mask. 848 */ 849 unsigned long ata_pack_xfermask(unsigned long pio_mask, 850 unsigned long mwdma_mask, 851 unsigned long udma_mask) 852 { 853 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 854 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 855 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 856 } 857 858 /** 859 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 860 * @xfer_mask: xfer_mask to unpack 861 * @pio_mask: resulting pio_mask 862 * @mwdma_mask: resulting mwdma_mask 863 * @udma_mask: resulting udma_mask 864 * 865 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 866 * Any NULL distination masks will be ignored. 867 */ 868 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 869 unsigned long *mwdma_mask, unsigned long *udma_mask) 870 { 871 if (pio_mask) 872 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 873 if (mwdma_mask) 874 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 875 if (udma_mask) 876 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 877 } 878 879 static const struct ata_xfer_ent { 880 int shift, bits; 881 u8 base; 882 } ata_xfer_tbl[] = { 883 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 884 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 885 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 886 { -1, }, 887 }; 888 889 /** 890 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 891 * @xfer_mask: xfer_mask of interest 892 * 893 * Return matching XFER_* value for @xfer_mask. Only the highest 894 * bit of @xfer_mask is considered. 895 * 896 * LOCKING: 897 * None. 898 * 899 * RETURNS: 900 * Matching XFER_* value, 0xff if no match found. 901 */ 902 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 903 { 904 int highbit = fls(xfer_mask) - 1; 905 const struct ata_xfer_ent *ent; 906 907 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 908 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 909 return ent->base + highbit - ent->shift; 910 return 0xff; 911 } 912 913 /** 914 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 915 * @xfer_mode: XFER_* of interest 916 * 917 * Return matching xfer_mask for @xfer_mode. 918 * 919 * LOCKING: 920 * None. 921 * 922 * RETURNS: 923 * Matching xfer_mask, 0 if no match found. 924 */ 925 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 926 { 927 const struct ata_xfer_ent *ent; 928 929 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 930 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 931 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 932 & ~((1 << ent->shift) - 1); 933 return 0; 934 } 935 936 /** 937 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 938 * @xfer_mode: XFER_* of interest 939 * 940 * Return matching xfer_shift for @xfer_mode. 941 * 942 * LOCKING: 943 * None. 944 * 945 * RETURNS: 946 * Matching xfer_shift, -1 if no match found. 947 */ 948 int ata_xfer_mode2shift(unsigned long xfer_mode) 949 { 950 const struct ata_xfer_ent *ent; 951 952 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 953 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 954 return ent->shift; 955 return -1; 956 } 957 958 /** 959 * ata_mode_string - convert xfer_mask to string 960 * @xfer_mask: mask of bits supported; only highest bit counts. 961 * 962 * Determine string which represents the highest speed 963 * (highest bit in @modemask). 964 * 965 * LOCKING: 966 * None. 967 * 968 * RETURNS: 969 * Constant C string representing highest speed listed in 970 * @mode_mask, or the constant C string "<n/a>". 971 */ 972 const char *ata_mode_string(unsigned long xfer_mask) 973 { 974 static const char * const xfer_mode_str[] = { 975 "PIO0", 976 "PIO1", 977 "PIO2", 978 "PIO3", 979 "PIO4", 980 "PIO5", 981 "PIO6", 982 "MWDMA0", 983 "MWDMA1", 984 "MWDMA2", 985 "MWDMA3", 986 "MWDMA4", 987 "UDMA/16", 988 "UDMA/25", 989 "UDMA/33", 990 "UDMA/44", 991 "UDMA/66", 992 "UDMA/100", 993 "UDMA/133", 994 "UDMA7", 995 }; 996 int highbit; 997 998 highbit = fls(xfer_mask) - 1; 999 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1000 return xfer_mode_str[highbit]; 1001 return "<n/a>"; 1002 } 1003 1004 static const char *sata_spd_string(unsigned int spd) 1005 { 1006 static const char * const spd_str[] = { 1007 "1.5 Gbps", 1008 "3.0 Gbps", 1009 }; 1010 1011 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1012 return "<unknown>"; 1013 return spd_str[spd - 1]; 1014 } 1015 1016 void ata_dev_disable(struct ata_device *dev) 1017 { 1018 if (ata_dev_enabled(dev)) { 1019 if (ata_msg_drv(dev->link->ap)) 1020 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 1021 ata_acpi_on_disable(dev); 1022 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 1023 ATA_DNXFER_QUIET); 1024 dev->class++; 1025 } 1026 } 1027 1028 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1029 { 1030 struct ata_link *link = dev->link; 1031 struct ata_port *ap = link->ap; 1032 u32 scontrol; 1033 unsigned int err_mask; 1034 int rc; 1035 1036 /* 1037 * disallow DIPM for drivers which haven't set 1038 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1039 * phy ready will be set in the interrupt status on 1040 * state changes, which will cause some drivers to 1041 * think there are errors - additionally drivers will 1042 * need to disable hot plug. 1043 */ 1044 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1045 ap->pm_policy = NOT_AVAILABLE; 1046 return -EINVAL; 1047 } 1048 1049 /* 1050 * For DIPM, we will only enable it for the 1051 * min_power setting. 1052 * 1053 * Why? Because Disks are too stupid to know that 1054 * If the host rejects a request to go to SLUMBER 1055 * they should retry at PARTIAL, and instead it 1056 * just would give up. So, for medium_power to 1057 * work at all, we need to only allow HIPM. 1058 */ 1059 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1060 if (rc) 1061 return rc; 1062 1063 switch (policy) { 1064 case MIN_POWER: 1065 /* no restrictions on IPM transitions */ 1066 scontrol &= ~(0x3 << 8); 1067 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1068 if (rc) 1069 return rc; 1070 1071 /* enable DIPM */ 1072 if (dev->flags & ATA_DFLAG_DIPM) 1073 err_mask = ata_dev_set_feature(dev, 1074 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1075 break; 1076 case MEDIUM_POWER: 1077 /* allow IPM to PARTIAL */ 1078 scontrol &= ~(0x1 << 8); 1079 scontrol |= (0x2 << 8); 1080 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1081 if (rc) 1082 return rc; 1083 1084 /* 1085 * we don't have to disable DIPM since IPM flags 1086 * disallow transitions to SLUMBER, which effectively 1087 * disable DIPM if it does not support PARTIAL 1088 */ 1089 break; 1090 case NOT_AVAILABLE: 1091 case MAX_PERFORMANCE: 1092 /* disable all IPM transitions */ 1093 scontrol |= (0x3 << 8); 1094 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1095 if (rc) 1096 return rc; 1097 1098 /* 1099 * we don't have to disable DIPM since IPM flags 1100 * disallow all transitions which effectively 1101 * disable DIPM anyway. 1102 */ 1103 break; 1104 } 1105 1106 /* FIXME: handle SET FEATURES failure */ 1107 (void) err_mask; 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * ata_dev_enable_pm - enable SATA interface power management 1114 * @dev: device to enable power management 1115 * @policy: the link power management policy 1116 * 1117 * Enable SATA Interface power management. This will enable 1118 * Device Interface Power Management (DIPM) for min_power 1119 * policy, and then call driver specific callbacks for 1120 * enabling Host Initiated Power management. 1121 * 1122 * Locking: Caller. 1123 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1124 */ 1125 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1126 { 1127 int rc = 0; 1128 struct ata_port *ap = dev->link->ap; 1129 1130 /* set HIPM first, then DIPM */ 1131 if (ap->ops->enable_pm) 1132 rc = ap->ops->enable_pm(ap, policy); 1133 if (rc) 1134 goto enable_pm_out; 1135 rc = ata_dev_set_dipm(dev, policy); 1136 1137 enable_pm_out: 1138 if (rc) 1139 ap->pm_policy = MAX_PERFORMANCE; 1140 else 1141 ap->pm_policy = policy; 1142 return /* rc */; /* hopefully we can use 'rc' eventually */ 1143 } 1144 1145 #ifdef CONFIG_PM 1146 /** 1147 * ata_dev_disable_pm - disable SATA interface power management 1148 * @dev: device to disable power management 1149 * 1150 * Disable SATA Interface power management. This will disable 1151 * Device Interface Power Management (DIPM) without changing 1152 * policy, call driver specific callbacks for disabling Host 1153 * Initiated Power management. 1154 * 1155 * Locking: Caller. 1156 * Returns: void 1157 */ 1158 static void ata_dev_disable_pm(struct ata_device *dev) 1159 { 1160 struct ata_port *ap = dev->link->ap; 1161 1162 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1163 if (ap->ops->disable_pm) 1164 ap->ops->disable_pm(ap); 1165 } 1166 #endif /* CONFIG_PM */ 1167 1168 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1169 { 1170 ap->pm_policy = policy; 1171 ap->link.eh_info.action |= ATA_EH_LPM; 1172 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1173 ata_port_schedule_eh(ap); 1174 } 1175 1176 #ifdef CONFIG_PM 1177 static void ata_lpm_enable(struct ata_host *host) 1178 { 1179 struct ata_link *link; 1180 struct ata_port *ap; 1181 struct ata_device *dev; 1182 int i; 1183 1184 for (i = 0; i < host->n_ports; i++) { 1185 ap = host->ports[i]; 1186 ata_for_each_link(link, ap, EDGE) { 1187 ata_for_each_dev(dev, link, ALL) 1188 ata_dev_disable_pm(dev); 1189 } 1190 } 1191 } 1192 1193 static void ata_lpm_disable(struct ata_host *host) 1194 { 1195 int i; 1196 1197 for (i = 0; i < host->n_ports; i++) { 1198 struct ata_port *ap = host->ports[i]; 1199 ata_lpm_schedule(ap, ap->pm_policy); 1200 } 1201 } 1202 #endif /* CONFIG_PM */ 1203 1204 /** 1205 * ata_dev_classify - determine device type based on ATA-spec signature 1206 * @tf: ATA taskfile register set for device to be identified 1207 * 1208 * Determine from taskfile register contents whether a device is 1209 * ATA or ATAPI, as per "Signature and persistence" section 1210 * of ATA/PI spec (volume 1, sect 5.14). 1211 * 1212 * LOCKING: 1213 * None. 1214 * 1215 * RETURNS: 1216 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1217 * %ATA_DEV_UNKNOWN the event of failure. 1218 */ 1219 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1220 { 1221 /* Apple's open source Darwin code hints that some devices only 1222 * put a proper signature into the LBA mid/high registers, 1223 * So, we only check those. It's sufficient for uniqueness. 1224 * 1225 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1226 * signatures for ATA and ATAPI devices attached on SerialATA, 1227 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1228 * spec has never mentioned about using different signatures 1229 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1230 * Multiplier specification began to use 0x69/0x96 to identify 1231 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1232 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1233 * 0x69/0x96 shortly and described them as reserved for 1234 * SerialATA. 1235 * 1236 * We follow the current spec and consider that 0x69/0x96 1237 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1238 */ 1239 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1240 DPRINTK("found ATA device by sig\n"); 1241 return ATA_DEV_ATA; 1242 } 1243 1244 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1245 DPRINTK("found ATAPI device by sig\n"); 1246 return ATA_DEV_ATAPI; 1247 } 1248 1249 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1250 DPRINTK("found PMP device by sig\n"); 1251 return ATA_DEV_PMP; 1252 } 1253 1254 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1255 printk(KERN_INFO "ata: SEMB device ignored\n"); 1256 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1257 } 1258 1259 DPRINTK("unknown device\n"); 1260 return ATA_DEV_UNKNOWN; 1261 } 1262 1263 /** 1264 * ata_id_string - Convert IDENTIFY DEVICE page into string 1265 * @id: IDENTIFY DEVICE results we will examine 1266 * @s: string into which data is output 1267 * @ofs: offset into identify device page 1268 * @len: length of string to return. must be an even number. 1269 * 1270 * The strings in the IDENTIFY DEVICE page are broken up into 1271 * 16-bit chunks. Run through the string, and output each 1272 * 8-bit chunk linearly, regardless of platform. 1273 * 1274 * LOCKING: 1275 * caller. 1276 */ 1277 1278 void ata_id_string(const u16 *id, unsigned char *s, 1279 unsigned int ofs, unsigned int len) 1280 { 1281 unsigned int c; 1282 1283 BUG_ON(len & 1); 1284 1285 while (len > 0) { 1286 c = id[ofs] >> 8; 1287 *s = c; 1288 s++; 1289 1290 c = id[ofs] & 0xff; 1291 *s = c; 1292 s++; 1293 1294 ofs++; 1295 len -= 2; 1296 } 1297 } 1298 1299 /** 1300 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1301 * @id: IDENTIFY DEVICE results we will examine 1302 * @s: string into which data is output 1303 * @ofs: offset into identify device page 1304 * @len: length of string to return. must be an odd number. 1305 * 1306 * This function is identical to ata_id_string except that it 1307 * trims trailing spaces and terminates the resulting string with 1308 * null. @len must be actual maximum length (even number) + 1. 1309 * 1310 * LOCKING: 1311 * caller. 1312 */ 1313 void ata_id_c_string(const u16 *id, unsigned char *s, 1314 unsigned int ofs, unsigned int len) 1315 { 1316 unsigned char *p; 1317 1318 ata_id_string(id, s, ofs, len - 1); 1319 1320 p = s + strnlen(s, len - 1); 1321 while (p > s && p[-1] == ' ') 1322 p--; 1323 *p = '\0'; 1324 } 1325 1326 static u64 ata_id_n_sectors(const u16 *id) 1327 { 1328 if (ata_id_has_lba(id)) { 1329 if (ata_id_has_lba48(id)) 1330 return ata_id_u64(id, 100); 1331 else 1332 return ata_id_u32(id, 60); 1333 } else { 1334 if (ata_id_current_chs_valid(id)) 1335 return ata_id_u32(id, 57); 1336 else 1337 return id[1] * id[3] * id[6]; 1338 } 1339 } 1340 1341 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1342 { 1343 u64 sectors = 0; 1344 1345 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1346 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1347 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1348 sectors |= (tf->lbah & 0xff) << 16; 1349 sectors |= (tf->lbam & 0xff) << 8; 1350 sectors |= (tf->lbal & 0xff); 1351 1352 return sectors; 1353 } 1354 1355 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1356 { 1357 u64 sectors = 0; 1358 1359 sectors |= (tf->device & 0x0f) << 24; 1360 sectors |= (tf->lbah & 0xff) << 16; 1361 sectors |= (tf->lbam & 0xff) << 8; 1362 sectors |= (tf->lbal & 0xff); 1363 1364 return sectors; 1365 } 1366 1367 /** 1368 * ata_read_native_max_address - Read native max address 1369 * @dev: target device 1370 * @max_sectors: out parameter for the result native max address 1371 * 1372 * Perform an LBA48 or LBA28 native size query upon the device in 1373 * question. 1374 * 1375 * RETURNS: 1376 * 0 on success, -EACCES if command is aborted by the drive. 1377 * -EIO on other errors. 1378 */ 1379 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1380 { 1381 unsigned int err_mask; 1382 struct ata_taskfile tf; 1383 int lba48 = ata_id_has_lba48(dev->id); 1384 1385 ata_tf_init(dev, &tf); 1386 1387 /* always clear all address registers */ 1388 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1389 1390 if (lba48) { 1391 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1392 tf.flags |= ATA_TFLAG_LBA48; 1393 } else 1394 tf.command = ATA_CMD_READ_NATIVE_MAX; 1395 1396 tf.protocol |= ATA_PROT_NODATA; 1397 tf.device |= ATA_LBA; 1398 1399 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1400 if (err_mask) { 1401 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1402 "max address (err_mask=0x%x)\n", err_mask); 1403 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1404 return -EACCES; 1405 return -EIO; 1406 } 1407 1408 if (lba48) 1409 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1410 else 1411 *max_sectors = ata_tf_to_lba(&tf) + 1; 1412 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1413 (*max_sectors)--; 1414 return 0; 1415 } 1416 1417 /** 1418 * ata_set_max_sectors - Set max sectors 1419 * @dev: target device 1420 * @new_sectors: new max sectors value to set for the device 1421 * 1422 * Set max sectors of @dev to @new_sectors. 1423 * 1424 * RETURNS: 1425 * 0 on success, -EACCES if command is aborted or denied (due to 1426 * previous non-volatile SET_MAX) by the drive. -EIO on other 1427 * errors. 1428 */ 1429 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1430 { 1431 unsigned int err_mask; 1432 struct ata_taskfile tf; 1433 int lba48 = ata_id_has_lba48(dev->id); 1434 1435 new_sectors--; 1436 1437 ata_tf_init(dev, &tf); 1438 1439 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1440 1441 if (lba48) { 1442 tf.command = ATA_CMD_SET_MAX_EXT; 1443 tf.flags |= ATA_TFLAG_LBA48; 1444 1445 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1446 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1447 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1448 } else { 1449 tf.command = ATA_CMD_SET_MAX; 1450 1451 tf.device |= (new_sectors >> 24) & 0xf; 1452 } 1453 1454 tf.protocol |= ATA_PROT_NODATA; 1455 tf.device |= ATA_LBA; 1456 1457 tf.lbal = (new_sectors >> 0) & 0xff; 1458 tf.lbam = (new_sectors >> 8) & 0xff; 1459 tf.lbah = (new_sectors >> 16) & 0xff; 1460 1461 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1462 if (err_mask) { 1463 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1464 "max address (err_mask=0x%x)\n", err_mask); 1465 if (err_mask == AC_ERR_DEV && 1466 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1467 return -EACCES; 1468 return -EIO; 1469 } 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * ata_hpa_resize - Resize a device with an HPA set 1476 * @dev: Device to resize 1477 * 1478 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1479 * it if required to the full size of the media. The caller must check 1480 * the drive has the HPA feature set enabled. 1481 * 1482 * RETURNS: 1483 * 0 on success, -errno on failure. 1484 */ 1485 static int ata_hpa_resize(struct ata_device *dev) 1486 { 1487 struct ata_eh_context *ehc = &dev->link->eh_context; 1488 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1489 u64 sectors = ata_id_n_sectors(dev->id); 1490 u64 native_sectors; 1491 int rc; 1492 1493 /* do we need to do it? */ 1494 if (dev->class != ATA_DEV_ATA || 1495 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1496 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1497 return 0; 1498 1499 /* read native max address */ 1500 rc = ata_read_native_max_address(dev, &native_sectors); 1501 if (rc) { 1502 /* If device aborted the command or HPA isn't going to 1503 * be unlocked, skip HPA resizing. 1504 */ 1505 if (rc == -EACCES || !ata_ignore_hpa) { 1506 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1507 "broken, skipping HPA handling\n"); 1508 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1509 1510 /* we can continue if device aborted the command */ 1511 if (rc == -EACCES) 1512 rc = 0; 1513 } 1514 1515 return rc; 1516 } 1517 1518 /* nothing to do? */ 1519 if (native_sectors <= sectors || !ata_ignore_hpa) { 1520 if (!print_info || native_sectors == sectors) 1521 return 0; 1522 1523 if (native_sectors > sectors) 1524 ata_dev_printk(dev, KERN_INFO, 1525 "HPA detected: current %llu, native %llu\n", 1526 (unsigned long long)sectors, 1527 (unsigned long long)native_sectors); 1528 else if (native_sectors < sectors) 1529 ata_dev_printk(dev, KERN_WARNING, 1530 "native sectors (%llu) is smaller than " 1531 "sectors (%llu)\n", 1532 (unsigned long long)native_sectors, 1533 (unsigned long long)sectors); 1534 return 0; 1535 } 1536 1537 /* let's unlock HPA */ 1538 rc = ata_set_max_sectors(dev, native_sectors); 1539 if (rc == -EACCES) { 1540 /* if device aborted the command, skip HPA resizing */ 1541 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1542 "(%llu -> %llu), skipping HPA handling\n", 1543 (unsigned long long)sectors, 1544 (unsigned long long)native_sectors); 1545 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1546 return 0; 1547 } else if (rc) 1548 return rc; 1549 1550 /* re-read IDENTIFY data */ 1551 rc = ata_dev_reread_id(dev, 0); 1552 if (rc) { 1553 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1554 "data after HPA resizing\n"); 1555 return rc; 1556 } 1557 1558 if (print_info) { 1559 u64 new_sectors = ata_id_n_sectors(dev->id); 1560 ata_dev_printk(dev, KERN_INFO, 1561 "HPA unlocked: %llu -> %llu, native %llu\n", 1562 (unsigned long long)sectors, 1563 (unsigned long long)new_sectors, 1564 (unsigned long long)native_sectors); 1565 } 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * ata_dump_id - IDENTIFY DEVICE info debugging output 1572 * @id: IDENTIFY DEVICE page to dump 1573 * 1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1575 * page. 1576 * 1577 * LOCKING: 1578 * caller. 1579 */ 1580 1581 static inline void ata_dump_id(const u16 *id) 1582 { 1583 DPRINTK("49==0x%04x " 1584 "53==0x%04x " 1585 "63==0x%04x " 1586 "64==0x%04x " 1587 "75==0x%04x \n", 1588 id[49], 1589 id[53], 1590 id[63], 1591 id[64], 1592 id[75]); 1593 DPRINTK("80==0x%04x " 1594 "81==0x%04x " 1595 "82==0x%04x " 1596 "83==0x%04x " 1597 "84==0x%04x \n", 1598 id[80], 1599 id[81], 1600 id[82], 1601 id[83], 1602 id[84]); 1603 DPRINTK("88==0x%04x " 1604 "93==0x%04x\n", 1605 id[88], 1606 id[93]); 1607 } 1608 1609 /** 1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1611 * @id: IDENTIFY data to compute xfer mask from 1612 * 1613 * Compute the xfermask for this device. This is not as trivial 1614 * as it seems if we must consider early devices correctly. 1615 * 1616 * FIXME: pre IDE drive timing (do we care ?). 1617 * 1618 * LOCKING: 1619 * None. 1620 * 1621 * RETURNS: 1622 * Computed xfermask 1623 */ 1624 unsigned long ata_id_xfermask(const u16 *id) 1625 { 1626 unsigned long pio_mask, mwdma_mask, udma_mask; 1627 1628 /* Usual case. Word 53 indicates word 64 is valid */ 1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1631 pio_mask <<= 3; 1632 pio_mask |= 0x7; 1633 } else { 1634 /* If word 64 isn't valid then Word 51 high byte holds 1635 * the PIO timing number for the maximum. Turn it into 1636 * a mask. 1637 */ 1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1639 if (mode < 5) /* Valid PIO range */ 1640 pio_mask = (2 << mode) - 1; 1641 else 1642 pio_mask = 1; 1643 1644 /* But wait.. there's more. Design your standards by 1645 * committee and you too can get a free iordy field to 1646 * process. However its the speeds not the modes that 1647 * are supported... Note drivers using the timing API 1648 * will get this right anyway 1649 */ 1650 } 1651 1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1653 1654 if (ata_id_is_cfa(id)) { 1655 /* 1656 * Process compact flash extended modes 1657 */ 1658 int pio = id[163] & 0x7; 1659 int dma = (id[163] >> 3) & 7; 1660 1661 if (pio) 1662 pio_mask |= (1 << 5); 1663 if (pio > 1) 1664 pio_mask |= (1 << 6); 1665 if (dma) 1666 mwdma_mask |= (1 << 3); 1667 if (dma > 1) 1668 mwdma_mask |= (1 << 4); 1669 } 1670 1671 udma_mask = 0; 1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1674 1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1676 } 1677 1678 /** 1679 * ata_pio_queue_task - Queue port_task 1680 * @ap: The ata_port to queue port_task for 1681 * @data: data for @fn to use 1682 * @delay: delay time in msecs for workqueue function 1683 * 1684 * Schedule @fn(@data) for execution after @delay jiffies using 1685 * port_task. There is one port_task per port and it's the 1686 * user(low level driver)'s responsibility to make sure that only 1687 * one task is active at any given time. 1688 * 1689 * libata core layer takes care of synchronization between 1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1691 * synchronization. 1692 * 1693 * LOCKING: 1694 * Inherited from caller. 1695 */ 1696 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1697 { 1698 ap->port_task_data = data; 1699 1700 /* may fail if ata_port_flush_task() in progress */ 1701 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1702 } 1703 1704 /** 1705 * ata_port_flush_task - Flush port_task 1706 * @ap: The ata_port to flush port_task for 1707 * 1708 * After this function completes, port_task is guranteed not to 1709 * be running or scheduled. 1710 * 1711 * LOCKING: 1712 * Kernel thread context (may sleep) 1713 */ 1714 void ata_port_flush_task(struct ata_port *ap) 1715 { 1716 DPRINTK("ENTER\n"); 1717 1718 cancel_rearming_delayed_work(&ap->port_task); 1719 1720 if (ata_msg_ctl(ap)) 1721 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1722 } 1723 1724 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1725 { 1726 struct completion *waiting = qc->private_data; 1727 1728 complete(waiting); 1729 } 1730 1731 /** 1732 * ata_exec_internal_sg - execute libata internal command 1733 * @dev: Device to which the command is sent 1734 * @tf: Taskfile registers for the command and the result 1735 * @cdb: CDB for packet command 1736 * @dma_dir: Data tranfer direction of the command 1737 * @sgl: sg list for the data buffer of the command 1738 * @n_elem: Number of sg entries 1739 * @timeout: Timeout in msecs (0 for default) 1740 * 1741 * Executes libata internal command with timeout. @tf contains 1742 * command on entry and result on return. Timeout and error 1743 * conditions are reported via return value. No recovery action 1744 * is taken after a command times out. It's caller's duty to 1745 * clean up after timeout. 1746 * 1747 * LOCKING: 1748 * None. Should be called with kernel context, might sleep. 1749 * 1750 * RETURNS: 1751 * Zero on success, AC_ERR_* mask on failure 1752 */ 1753 unsigned ata_exec_internal_sg(struct ata_device *dev, 1754 struct ata_taskfile *tf, const u8 *cdb, 1755 int dma_dir, struct scatterlist *sgl, 1756 unsigned int n_elem, unsigned long timeout) 1757 { 1758 struct ata_link *link = dev->link; 1759 struct ata_port *ap = link->ap; 1760 u8 command = tf->command; 1761 int auto_timeout = 0; 1762 struct ata_queued_cmd *qc; 1763 unsigned int tag, preempted_tag; 1764 u32 preempted_sactive, preempted_qc_active; 1765 int preempted_nr_active_links; 1766 DECLARE_COMPLETION_ONSTACK(wait); 1767 unsigned long flags; 1768 unsigned int err_mask; 1769 int rc; 1770 1771 spin_lock_irqsave(ap->lock, flags); 1772 1773 /* no internal command while frozen */ 1774 if (ap->pflags & ATA_PFLAG_FROZEN) { 1775 spin_unlock_irqrestore(ap->lock, flags); 1776 return AC_ERR_SYSTEM; 1777 } 1778 1779 /* initialize internal qc */ 1780 1781 /* XXX: Tag 0 is used for drivers with legacy EH as some 1782 * drivers choke if any other tag is given. This breaks 1783 * ata_tag_internal() test for those drivers. Don't use new 1784 * EH stuff without converting to it. 1785 */ 1786 if (ap->ops->error_handler) 1787 tag = ATA_TAG_INTERNAL; 1788 else 1789 tag = 0; 1790 1791 if (test_and_set_bit(tag, &ap->qc_allocated)) 1792 BUG(); 1793 qc = __ata_qc_from_tag(ap, tag); 1794 1795 qc->tag = tag; 1796 qc->scsicmd = NULL; 1797 qc->ap = ap; 1798 qc->dev = dev; 1799 ata_qc_reinit(qc); 1800 1801 preempted_tag = link->active_tag; 1802 preempted_sactive = link->sactive; 1803 preempted_qc_active = ap->qc_active; 1804 preempted_nr_active_links = ap->nr_active_links; 1805 link->active_tag = ATA_TAG_POISON; 1806 link->sactive = 0; 1807 ap->qc_active = 0; 1808 ap->nr_active_links = 0; 1809 1810 /* prepare & issue qc */ 1811 qc->tf = *tf; 1812 if (cdb) 1813 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1814 qc->flags |= ATA_QCFLAG_RESULT_TF; 1815 qc->dma_dir = dma_dir; 1816 if (dma_dir != DMA_NONE) { 1817 unsigned int i, buflen = 0; 1818 struct scatterlist *sg; 1819 1820 for_each_sg(sgl, sg, n_elem, i) 1821 buflen += sg->length; 1822 1823 ata_sg_init(qc, sgl, n_elem); 1824 qc->nbytes = buflen; 1825 } 1826 1827 qc->private_data = &wait; 1828 qc->complete_fn = ata_qc_complete_internal; 1829 1830 ata_qc_issue(qc); 1831 1832 spin_unlock_irqrestore(ap->lock, flags); 1833 1834 if (!timeout) { 1835 if (ata_probe_timeout) 1836 timeout = ata_probe_timeout * 1000; 1837 else { 1838 timeout = ata_internal_cmd_timeout(dev, command); 1839 auto_timeout = 1; 1840 } 1841 } 1842 1843 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1844 1845 ata_port_flush_task(ap); 1846 1847 if (!rc) { 1848 spin_lock_irqsave(ap->lock, flags); 1849 1850 /* We're racing with irq here. If we lose, the 1851 * following test prevents us from completing the qc 1852 * twice. If we win, the port is frozen and will be 1853 * cleaned up by ->post_internal_cmd(). 1854 */ 1855 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1856 qc->err_mask |= AC_ERR_TIMEOUT; 1857 1858 if (ap->ops->error_handler) 1859 ata_port_freeze(ap); 1860 else 1861 ata_qc_complete(qc); 1862 1863 if (ata_msg_warn(ap)) 1864 ata_dev_printk(dev, KERN_WARNING, 1865 "qc timeout (cmd 0x%x)\n", command); 1866 } 1867 1868 spin_unlock_irqrestore(ap->lock, flags); 1869 } 1870 1871 /* do post_internal_cmd */ 1872 if (ap->ops->post_internal_cmd) 1873 ap->ops->post_internal_cmd(qc); 1874 1875 /* perform minimal error analysis */ 1876 if (qc->flags & ATA_QCFLAG_FAILED) { 1877 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1878 qc->err_mask |= AC_ERR_DEV; 1879 1880 if (!qc->err_mask) 1881 qc->err_mask |= AC_ERR_OTHER; 1882 1883 if (qc->err_mask & ~AC_ERR_OTHER) 1884 qc->err_mask &= ~AC_ERR_OTHER; 1885 } 1886 1887 /* finish up */ 1888 spin_lock_irqsave(ap->lock, flags); 1889 1890 *tf = qc->result_tf; 1891 err_mask = qc->err_mask; 1892 1893 ata_qc_free(qc); 1894 link->active_tag = preempted_tag; 1895 link->sactive = preempted_sactive; 1896 ap->qc_active = preempted_qc_active; 1897 ap->nr_active_links = preempted_nr_active_links; 1898 1899 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1900 * Until those drivers are fixed, we detect the condition 1901 * here, fail the command with AC_ERR_SYSTEM and reenable the 1902 * port. 1903 * 1904 * Note that this doesn't change any behavior as internal 1905 * command failure results in disabling the device in the 1906 * higher layer for LLDDs without new reset/EH callbacks. 1907 * 1908 * Kill the following code as soon as those drivers are fixed. 1909 */ 1910 if (ap->flags & ATA_FLAG_DISABLED) { 1911 err_mask |= AC_ERR_SYSTEM; 1912 ata_port_probe(ap); 1913 } 1914 1915 spin_unlock_irqrestore(ap->lock, flags); 1916 1917 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1918 ata_internal_cmd_timed_out(dev, command); 1919 1920 return err_mask; 1921 } 1922 1923 /** 1924 * ata_exec_internal - execute libata internal command 1925 * @dev: Device to which the command is sent 1926 * @tf: Taskfile registers for the command and the result 1927 * @cdb: CDB for packet command 1928 * @dma_dir: Data tranfer direction of the command 1929 * @buf: Data buffer of the command 1930 * @buflen: Length of data buffer 1931 * @timeout: Timeout in msecs (0 for default) 1932 * 1933 * Wrapper around ata_exec_internal_sg() which takes simple 1934 * buffer instead of sg list. 1935 * 1936 * LOCKING: 1937 * None. Should be called with kernel context, might sleep. 1938 * 1939 * RETURNS: 1940 * Zero on success, AC_ERR_* mask on failure 1941 */ 1942 unsigned ata_exec_internal(struct ata_device *dev, 1943 struct ata_taskfile *tf, const u8 *cdb, 1944 int dma_dir, void *buf, unsigned int buflen, 1945 unsigned long timeout) 1946 { 1947 struct scatterlist *psg = NULL, sg; 1948 unsigned int n_elem = 0; 1949 1950 if (dma_dir != DMA_NONE) { 1951 WARN_ON(!buf); 1952 sg_init_one(&sg, buf, buflen); 1953 psg = &sg; 1954 n_elem++; 1955 } 1956 1957 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1958 timeout); 1959 } 1960 1961 /** 1962 * ata_do_simple_cmd - execute simple internal command 1963 * @dev: Device to which the command is sent 1964 * @cmd: Opcode to execute 1965 * 1966 * Execute a 'simple' command, that only consists of the opcode 1967 * 'cmd' itself, without filling any other registers 1968 * 1969 * LOCKING: 1970 * Kernel thread context (may sleep). 1971 * 1972 * RETURNS: 1973 * Zero on success, AC_ERR_* mask on failure 1974 */ 1975 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1976 { 1977 struct ata_taskfile tf; 1978 1979 ata_tf_init(dev, &tf); 1980 1981 tf.command = cmd; 1982 tf.flags |= ATA_TFLAG_DEVICE; 1983 tf.protocol = ATA_PROT_NODATA; 1984 1985 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1986 } 1987 1988 /** 1989 * ata_pio_need_iordy - check if iordy needed 1990 * @adev: ATA device 1991 * 1992 * Check if the current speed of the device requires IORDY. Used 1993 * by various controllers for chip configuration. 1994 */ 1995 1996 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1997 { 1998 /* Controller doesn't support IORDY. Probably a pointless check 1999 as the caller should know this */ 2000 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 2001 return 0; 2002 /* PIO3 and higher it is mandatory */ 2003 if (adev->pio_mode > XFER_PIO_2) 2004 return 1; 2005 /* We turn it on when possible */ 2006 if (ata_id_has_iordy(adev->id)) 2007 return 1; 2008 return 0; 2009 } 2010 2011 /** 2012 * ata_pio_mask_no_iordy - Return the non IORDY mask 2013 * @adev: ATA device 2014 * 2015 * Compute the highest mode possible if we are not using iordy. Return 2016 * -1 if no iordy mode is available. 2017 */ 2018 2019 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2020 { 2021 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2022 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2023 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2024 /* Is the speed faster than the drive allows non IORDY ? */ 2025 if (pio) { 2026 /* This is cycle times not frequency - watch the logic! */ 2027 if (pio > 240) /* PIO2 is 240nS per cycle */ 2028 return 3 << ATA_SHIFT_PIO; 2029 return 7 << ATA_SHIFT_PIO; 2030 } 2031 } 2032 return 3 << ATA_SHIFT_PIO; 2033 } 2034 2035 /** 2036 * ata_do_dev_read_id - default ID read method 2037 * @dev: device 2038 * @tf: proposed taskfile 2039 * @id: data buffer 2040 * 2041 * Issue the identify taskfile and hand back the buffer containing 2042 * identify data. For some RAID controllers and for pre ATA devices 2043 * this function is wrapped or replaced by the driver 2044 */ 2045 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2046 struct ata_taskfile *tf, u16 *id) 2047 { 2048 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2049 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2050 } 2051 2052 /** 2053 * ata_dev_read_id - Read ID data from the specified device 2054 * @dev: target device 2055 * @p_class: pointer to class of the target device (may be changed) 2056 * @flags: ATA_READID_* flags 2057 * @id: buffer to read IDENTIFY data into 2058 * 2059 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2060 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2061 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2062 * for pre-ATA4 drives. 2063 * 2064 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2065 * now we abort if we hit that case. 2066 * 2067 * LOCKING: 2068 * Kernel thread context (may sleep) 2069 * 2070 * RETURNS: 2071 * 0 on success, -errno otherwise. 2072 */ 2073 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2074 unsigned int flags, u16 *id) 2075 { 2076 struct ata_port *ap = dev->link->ap; 2077 unsigned int class = *p_class; 2078 struct ata_taskfile tf; 2079 unsigned int err_mask = 0; 2080 const char *reason; 2081 int may_fallback = 1, tried_spinup = 0; 2082 int rc; 2083 2084 if (ata_msg_ctl(ap)) 2085 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2086 2087 retry: 2088 ata_tf_init(dev, &tf); 2089 2090 switch (class) { 2091 case ATA_DEV_ATA: 2092 tf.command = ATA_CMD_ID_ATA; 2093 break; 2094 case ATA_DEV_ATAPI: 2095 tf.command = ATA_CMD_ID_ATAPI; 2096 break; 2097 default: 2098 rc = -ENODEV; 2099 reason = "unsupported class"; 2100 goto err_out; 2101 } 2102 2103 tf.protocol = ATA_PROT_PIO; 2104 2105 /* Some devices choke if TF registers contain garbage. Make 2106 * sure those are properly initialized. 2107 */ 2108 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2109 2110 /* Device presence detection is unreliable on some 2111 * controllers. Always poll IDENTIFY if available. 2112 */ 2113 tf.flags |= ATA_TFLAG_POLLING; 2114 2115 if (ap->ops->read_id) 2116 err_mask = ap->ops->read_id(dev, &tf, id); 2117 else 2118 err_mask = ata_do_dev_read_id(dev, &tf, id); 2119 2120 if (err_mask) { 2121 if (err_mask & AC_ERR_NODEV_HINT) { 2122 ata_dev_printk(dev, KERN_DEBUG, 2123 "NODEV after polling detection\n"); 2124 return -ENOENT; 2125 } 2126 2127 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2128 /* Device or controller might have reported 2129 * the wrong device class. Give a shot at the 2130 * other IDENTIFY if the current one is 2131 * aborted by the device. 2132 */ 2133 if (may_fallback) { 2134 may_fallback = 0; 2135 2136 if (class == ATA_DEV_ATA) 2137 class = ATA_DEV_ATAPI; 2138 else 2139 class = ATA_DEV_ATA; 2140 goto retry; 2141 } 2142 2143 /* Control reaches here iff the device aborted 2144 * both flavors of IDENTIFYs which happens 2145 * sometimes with phantom devices. 2146 */ 2147 ata_dev_printk(dev, KERN_DEBUG, 2148 "both IDENTIFYs aborted, assuming NODEV\n"); 2149 return -ENOENT; 2150 } 2151 2152 rc = -EIO; 2153 reason = "I/O error"; 2154 goto err_out; 2155 } 2156 2157 /* Falling back doesn't make sense if ID data was read 2158 * successfully at least once. 2159 */ 2160 may_fallback = 0; 2161 2162 swap_buf_le16(id, ATA_ID_WORDS); 2163 2164 /* sanity check */ 2165 rc = -EINVAL; 2166 reason = "device reports invalid type"; 2167 2168 if (class == ATA_DEV_ATA) { 2169 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2170 goto err_out; 2171 } else { 2172 if (ata_id_is_ata(id)) 2173 goto err_out; 2174 } 2175 2176 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2177 tried_spinup = 1; 2178 /* 2179 * Drive powered-up in standby mode, and requires a specific 2180 * SET_FEATURES spin-up subcommand before it will accept 2181 * anything other than the original IDENTIFY command. 2182 */ 2183 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2184 if (err_mask && id[2] != 0x738c) { 2185 rc = -EIO; 2186 reason = "SPINUP failed"; 2187 goto err_out; 2188 } 2189 /* 2190 * If the drive initially returned incomplete IDENTIFY info, 2191 * we now must reissue the IDENTIFY command. 2192 */ 2193 if (id[2] == 0x37c8) 2194 goto retry; 2195 } 2196 2197 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2198 /* 2199 * The exact sequence expected by certain pre-ATA4 drives is: 2200 * SRST RESET 2201 * IDENTIFY (optional in early ATA) 2202 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2203 * anything else.. 2204 * Some drives were very specific about that exact sequence. 2205 * 2206 * Note that ATA4 says lba is mandatory so the second check 2207 * shoud never trigger. 2208 */ 2209 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2210 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2211 if (err_mask) { 2212 rc = -EIO; 2213 reason = "INIT_DEV_PARAMS failed"; 2214 goto err_out; 2215 } 2216 2217 /* current CHS translation info (id[53-58]) might be 2218 * changed. reread the identify device info. 2219 */ 2220 flags &= ~ATA_READID_POSTRESET; 2221 goto retry; 2222 } 2223 } 2224 2225 *p_class = class; 2226 2227 return 0; 2228 2229 err_out: 2230 if (ata_msg_warn(ap)) 2231 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2232 "(%s, err_mask=0x%x)\n", reason, err_mask); 2233 return rc; 2234 } 2235 2236 static inline u8 ata_dev_knobble(struct ata_device *dev) 2237 { 2238 struct ata_port *ap = dev->link->ap; 2239 2240 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2241 return 0; 2242 2243 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2244 } 2245 2246 static void ata_dev_config_ncq(struct ata_device *dev, 2247 char *desc, size_t desc_sz) 2248 { 2249 struct ata_port *ap = dev->link->ap; 2250 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2251 2252 if (!ata_id_has_ncq(dev->id)) { 2253 desc[0] = '\0'; 2254 return; 2255 } 2256 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2257 snprintf(desc, desc_sz, "NCQ (not used)"); 2258 return; 2259 } 2260 if (ap->flags & ATA_FLAG_NCQ) { 2261 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2262 dev->flags |= ATA_DFLAG_NCQ; 2263 } 2264 2265 if (hdepth >= ddepth) 2266 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2267 else 2268 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2269 } 2270 2271 /** 2272 * ata_dev_configure - Configure the specified ATA/ATAPI device 2273 * @dev: Target device to configure 2274 * 2275 * Configure @dev according to @dev->id. Generic and low-level 2276 * driver specific fixups are also applied. 2277 * 2278 * LOCKING: 2279 * Kernel thread context (may sleep) 2280 * 2281 * RETURNS: 2282 * 0 on success, -errno otherwise 2283 */ 2284 int ata_dev_configure(struct ata_device *dev) 2285 { 2286 struct ata_port *ap = dev->link->ap; 2287 struct ata_eh_context *ehc = &dev->link->eh_context; 2288 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2289 const u16 *id = dev->id; 2290 unsigned long xfer_mask; 2291 char revbuf[7]; /* XYZ-99\0 */ 2292 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2293 char modelbuf[ATA_ID_PROD_LEN+1]; 2294 int rc; 2295 2296 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2297 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2298 __func__); 2299 return 0; 2300 } 2301 2302 if (ata_msg_probe(ap)) 2303 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2304 2305 /* set horkage */ 2306 dev->horkage |= ata_dev_blacklisted(dev); 2307 ata_force_horkage(dev); 2308 2309 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2310 ata_dev_printk(dev, KERN_INFO, 2311 "unsupported device, disabling\n"); 2312 ata_dev_disable(dev); 2313 return 0; 2314 } 2315 2316 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2317 dev->class == ATA_DEV_ATAPI) { 2318 ata_dev_printk(dev, KERN_WARNING, 2319 "WARNING: ATAPI is %s, device ignored.\n", 2320 atapi_enabled ? "not supported with this driver" 2321 : "disabled"); 2322 ata_dev_disable(dev); 2323 return 0; 2324 } 2325 2326 /* let ACPI work its magic */ 2327 rc = ata_acpi_on_devcfg(dev); 2328 if (rc) 2329 return rc; 2330 2331 /* massage HPA, do it early as it might change IDENTIFY data */ 2332 rc = ata_hpa_resize(dev); 2333 if (rc) 2334 return rc; 2335 2336 /* print device capabilities */ 2337 if (ata_msg_probe(ap)) 2338 ata_dev_printk(dev, KERN_DEBUG, 2339 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2340 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2341 __func__, 2342 id[49], id[82], id[83], id[84], 2343 id[85], id[86], id[87], id[88]); 2344 2345 /* initialize to-be-configured parameters */ 2346 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2347 dev->max_sectors = 0; 2348 dev->cdb_len = 0; 2349 dev->n_sectors = 0; 2350 dev->cylinders = 0; 2351 dev->heads = 0; 2352 dev->sectors = 0; 2353 2354 /* 2355 * common ATA, ATAPI feature tests 2356 */ 2357 2358 /* find max transfer mode; for printk only */ 2359 xfer_mask = ata_id_xfermask(id); 2360 2361 if (ata_msg_probe(ap)) 2362 ata_dump_id(id); 2363 2364 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2365 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2366 sizeof(fwrevbuf)); 2367 2368 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2369 sizeof(modelbuf)); 2370 2371 /* ATA-specific feature tests */ 2372 if (dev->class == ATA_DEV_ATA) { 2373 if (ata_id_is_cfa(id)) { 2374 if (id[162] & 1) /* CPRM may make this media unusable */ 2375 ata_dev_printk(dev, KERN_WARNING, 2376 "supports DRM functions and may " 2377 "not be fully accessable.\n"); 2378 snprintf(revbuf, 7, "CFA"); 2379 } else { 2380 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2381 /* Warn the user if the device has TPM extensions */ 2382 if (ata_id_has_tpm(id)) 2383 ata_dev_printk(dev, KERN_WARNING, 2384 "supports DRM functions and may " 2385 "not be fully accessable.\n"); 2386 } 2387 2388 dev->n_sectors = ata_id_n_sectors(id); 2389 2390 if (dev->id[59] & 0x100) 2391 dev->multi_count = dev->id[59] & 0xff; 2392 2393 if (ata_id_has_lba(id)) { 2394 const char *lba_desc; 2395 char ncq_desc[20]; 2396 2397 lba_desc = "LBA"; 2398 dev->flags |= ATA_DFLAG_LBA; 2399 if (ata_id_has_lba48(id)) { 2400 dev->flags |= ATA_DFLAG_LBA48; 2401 lba_desc = "LBA48"; 2402 2403 if (dev->n_sectors >= (1UL << 28) && 2404 ata_id_has_flush_ext(id)) 2405 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2406 } 2407 2408 /* config NCQ */ 2409 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2410 2411 /* print device info to dmesg */ 2412 if (ata_msg_drv(ap) && print_info) { 2413 ata_dev_printk(dev, KERN_INFO, 2414 "%s: %s, %s, max %s\n", 2415 revbuf, modelbuf, fwrevbuf, 2416 ata_mode_string(xfer_mask)); 2417 ata_dev_printk(dev, KERN_INFO, 2418 "%Lu sectors, multi %u: %s %s\n", 2419 (unsigned long long)dev->n_sectors, 2420 dev->multi_count, lba_desc, ncq_desc); 2421 } 2422 } else { 2423 /* CHS */ 2424 2425 /* Default translation */ 2426 dev->cylinders = id[1]; 2427 dev->heads = id[3]; 2428 dev->sectors = id[6]; 2429 2430 if (ata_id_current_chs_valid(id)) { 2431 /* Current CHS translation is valid. */ 2432 dev->cylinders = id[54]; 2433 dev->heads = id[55]; 2434 dev->sectors = id[56]; 2435 } 2436 2437 /* print device info to dmesg */ 2438 if (ata_msg_drv(ap) && print_info) { 2439 ata_dev_printk(dev, KERN_INFO, 2440 "%s: %s, %s, max %s\n", 2441 revbuf, modelbuf, fwrevbuf, 2442 ata_mode_string(xfer_mask)); 2443 ata_dev_printk(dev, KERN_INFO, 2444 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2445 (unsigned long long)dev->n_sectors, 2446 dev->multi_count, dev->cylinders, 2447 dev->heads, dev->sectors); 2448 } 2449 } 2450 2451 dev->cdb_len = 16; 2452 } 2453 2454 /* ATAPI-specific feature tests */ 2455 else if (dev->class == ATA_DEV_ATAPI) { 2456 const char *cdb_intr_string = ""; 2457 const char *atapi_an_string = ""; 2458 const char *dma_dir_string = ""; 2459 u32 sntf; 2460 2461 rc = atapi_cdb_len(id); 2462 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2463 if (ata_msg_warn(ap)) 2464 ata_dev_printk(dev, KERN_WARNING, 2465 "unsupported CDB len\n"); 2466 rc = -EINVAL; 2467 goto err_out_nosup; 2468 } 2469 dev->cdb_len = (unsigned int) rc; 2470 2471 /* Enable ATAPI AN if both the host and device have 2472 * the support. If PMP is attached, SNTF is required 2473 * to enable ATAPI AN to discern between PHY status 2474 * changed notifications and ATAPI ANs. 2475 */ 2476 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2477 (!sata_pmp_attached(ap) || 2478 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2479 unsigned int err_mask; 2480 2481 /* issue SET feature command to turn this on */ 2482 err_mask = ata_dev_set_feature(dev, 2483 SETFEATURES_SATA_ENABLE, SATA_AN); 2484 if (err_mask) 2485 ata_dev_printk(dev, KERN_ERR, 2486 "failed to enable ATAPI AN " 2487 "(err_mask=0x%x)\n", err_mask); 2488 else { 2489 dev->flags |= ATA_DFLAG_AN; 2490 atapi_an_string = ", ATAPI AN"; 2491 } 2492 } 2493 2494 if (ata_id_cdb_intr(dev->id)) { 2495 dev->flags |= ATA_DFLAG_CDB_INTR; 2496 cdb_intr_string = ", CDB intr"; 2497 } 2498 2499 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2500 dev->flags |= ATA_DFLAG_DMADIR; 2501 dma_dir_string = ", DMADIR"; 2502 } 2503 2504 /* print device info to dmesg */ 2505 if (ata_msg_drv(ap) && print_info) 2506 ata_dev_printk(dev, KERN_INFO, 2507 "ATAPI: %s, %s, max %s%s%s%s\n", 2508 modelbuf, fwrevbuf, 2509 ata_mode_string(xfer_mask), 2510 cdb_intr_string, atapi_an_string, 2511 dma_dir_string); 2512 } 2513 2514 /* determine max_sectors */ 2515 dev->max_sectors = ATA_MAX_SECTORS; 2516 if (dev->flags & ATA_DFLAG_LBA48) 2517 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2518 2519 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2520 if (ata_id_has_hipm(dev->id)) 2521 dev->flags |= ATA_DFLAG_HIPM; 2522 if (ata_id_has_dipm(dev->id)) 2523 dev->flags |= ATA_DFLAG_DIPM; 2524 } 2525 2526 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2527 200 sectors */ 2528 if (ata_dev_knobble(dev)) { 2529 if (ata_msg_drv(ap) && print_info) 2530 ata_dev_printk(dev, KERN_INFO, 2531 "applying bridge limits\n"); 2532 dev->udma_mask &= ATA_UDMA5; 2533 dev->max_sectors = ATA_MAX_SECTORS; 2534 } 2535 2536 if ((dev->class == ATA_DEV_ATAPI) && 2537 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2538 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2539 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2540 } 2541 2542 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2543 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2544 dev->max_sectors); 2545 2546 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2547 dev->horkage |= ATA_HORKAGE_IPM; 2548 2549 /* reset link pm_policy for this port to no pm */ 2550 ap->pm_policy = MAX_PERFORMANCE; 2551 } 2552 2553 if (ap->ops->dev_config) 2554 ap->ops->dev_config(dev); 2555 2556 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2557 /* Let the user know. We don't want to disallow opens for 2558 rescue purposes, or in case the vendor is just a blithering 2559 idiot. Do this after the dev_config call as some controllers 2560 with buggy firmware may want to avoid reporting false device 2561 bugs */ 2562 2563 if (print_info) { 2564 ata_dev_printk(dev, KERN_WARNING, 2565 "Drive reports diagnostics failure. This may indicate a drive\n"); 2566 ata_dev_printk(dev, KERN_WARNING, 2567 "fault or invalid emulation. Contact drive vendor for information.\n"); 2568 } 2569 } 2570 2571 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2572 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2573 "firmware update to be fully functional.\n"); 2574 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2575 "or visit http://ata.wiki.kernel.org.\n"); 2576 } 2577 2578 return 0; 2579 2580 err_out_nosup: 2581 if (ata_msg_probe(ap)) 2582 ata_dev_printk(dev, KERN_DEBUG, 2583 "%s: EXIT, err\n", __func__); 2584 return rc; 2585 } 2586 2587 /** 2588 * ata_cable_40wire - return 40 wire cable type 2589 * @ap: port 2590 * 2591 * Helper method for drivers which want to hardwire 40 wire cable 2592 * detection. 2593 */ 2594 2595 int ata_cable_40wire(struct ata_port *ap) 2596 { 2597 return ATA_CBL_PATA40; 2598 } 2599 2600 /** 2601 * ata_cable_80wire - return 80 wire cable type 2602 * @ap: port 2603 * 2604 * Helper method for drivers which want to hardwire 80 wire cable 2605 * detection. 2606 */ 2607 2608 int ata_cable_80wire(struct ata_port *ap) 2609 { 2610 return ATA_CBL_PATA80; 2611 } 2612 2613 /** 2614 * ata_cable_unknown - return unknown PATA cable. 2615 * @ap: port 2616 * 2617 * Helper method for drivers which have no PATA cable detection. 2618 */ 2619 2620 int ata_cable_unknown(struct ata_port *ap) 2621 { 2622 return ATA_CBL_PATA_UNK; 2623 } 2624 2625 /** 2626 * ata_cable_ignore - return ignored PATA cable. 2627 * @ap: port 2628 * 2629 * Helper method for drivers which don't use cable type to limit 2630 * transfer mode. 2631 */ 2632 int ata_cable_ignore(struct ata_port *ap) 2633 { 2634 return ATA_CBL_PATA_IGN; 2635 } 2636 2637 /** 2638 * ata_cable_sata - return SATA cable type 2639 * @ap: port 2640 * 2641 * Helper method for drivers which have SATA cables 2642 */ 2643 2644 int ata_cable_sata(struct ata_port *ap) 2645 { 2646 return ATA_CBL_SATA; 2647 } 2648 2649 /** 2650 * ata_bus_probe - Reset and probe ATA bus 2651 * @ap: Bus to probe 2652 * 2653 * Master ATA bus probing function. Initiates a hardware-dependent 2654 * bus reset, then attempts to identify any devices found on 2655 * the bus. 2656 * 2657 * LOCKING: 2658 * PCI/etc. bus probe sem. 2659 * 2660 * RETURNS: 2661 * Zero on success, negative errno otherwise. 2662 */ 2663 2664 int ata_bus_probe(struct ata_port *ap) 2665 { 2666 unsigned int classes[ATA_MAX_DEVICES]; 2667 int tries[ATA_MAX_DEVICES]; 2668 int rc; 2669 struct ata_device *dev; 2670 2671 ata_port_probe(ap); 2672 2673 ata_for_each_dev(dev, &ap->link, ALL) 2674 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2675 2676 retry: 2677 ata_for_each_dev(dev, &ap->link, ALL) { 2678 /* If we issue an SRST then an ATA drive (not ATAPI) 2679 * may change configuration and be in PIO0 timing. If 2680 * we do a hard reset (or are coming from power on) 2681 * this is true for ATA or ATAPI. Until we've set a 2682 * suitable controller mode we should not touch the 2683 * bus as we may be talking too fast. 2684 */ 2685 dev->pio_mode = XFER_PIO_0; 2686 2687 /* If the controller has a pio mode setup function 2688 * then use it to set the chipset to rights. Don't 2689 * touch the DMA setup as that will be dealt with when 2690 * configuring devices. 2691 */ 2692 if (ap->ops->set_piomode) 2693 ap->ops->set_piomode(ap, dev); 2694 } 2695 2696 /* reset and determine device classes */ 2697 ap->ops->phy_reset(ap); 2698 2699 ata_for_each_dev(dev, &ap->link, ALL) { 2700 if (!(ap->flags & ATA_FLAG_DISABLED) && 2701 dev->class != ATA_DEV_UNKNOWN) 2702 classes[dev->devno] = dev->class; 2703 else 2704 classes[dev->devno] = ATA_DEV_NONE; 2705 2706 dev->class = ATA_DEV_UNKNOWN; 2707 } 2708 2709 ata_port_probe(ap); 2710 2711 /* read IDENTIFY page and configure devices. We have to do the identify 2712 specific sequence bass-ackwards so that PDIAG- is released by 2713 the slave device */ 2714 2715 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2716 if (tries[dev->devno]) 2717 dev->class = classes[dev->devno]; 2718 2719 if (!ata_dev_enabled(dev)) 2720 continue; 2721 2722 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2723 dev->id); 2724 if (rc) 2725 goto fail; 2726 } 2727 2728 /* Now ask for the cable type as PDIAG- should have been released */ 2729 if (ap->ops->cable_detect) 2730 ap->cbl = ap->ops->cable_detect(ap); 2731 2732 /* We may have SATA bridge glue hiding here irrespective of 2733 * the reported cable types and sensed types. When SATA 2734 * drives indicate we have a bridge, we don't know which end 2735 * of the link the bridge is which is a problem. 2736 */ 2737 ata_for_each_dev(dev, &ap->link, ENABLED) 2738 if (ata_id_is_sata(dev->id)) 2739 ap->cbl = ATA_CBL_SATA; 2740 2741 /* After the identify sequence we can now set up the devices. We do 2742 this in the normal order so that the user doesn't get confused */ 2743 2744 ata_for_each_dev(dev, &ap->link, ENABLED) { 2745 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2746 rc = ata_dev_configure(dev); 2747 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2748 if (rc) 2749 goto fail; 2750 } 2751 2752 /* configure transfer mode */ 2753 rc = ata_set_mode(&ap->link, &dev); 2754 if (rc) 2755 goto fail; 2756 2757 ata_for_each_dev(dev, &ap->link, ENABLED) 2758 return 0; 2759 2760 /* no device present, disable port */ 2761 ata_port_disable(ap); 2762 return -ENODEV; 2763 2764 fail: 2765 tries[dev->devno]--; 2766 2767 switch (rc) { 2768 case -EINVAL: 2769 /* eeek, something went very wrong, give up */ 2770 tries[dev->devno] = 0; 2771 break; 2772 2773 case -ENODEV: 2774 /* give it just one more chance */ 2775 tries[dev->devno] = min(tries[dev->devno], 1); 2776 case -EIO: 2777 if (tries[dev->devno] == 1) { 2778 /* This is the last chance, better to slow 2779 * down than lose it. 2780 */ 2781 sata_down_spd_limit(&ap->link); 2782 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2783 } 2784 } 2785 2786 if (!tries[dev->devno]) 2787 ata_dev_disable(dev); 2788 2789 goto retry; 2790 } 2791 2792 /** 2793 * ata_port_probe - Mark port as enabled 2794 * @ap: Port for which we indicate enablement 2795 * 2796 * Modify @ap data structure such that the system 2797 * thinks that the entire port is enabled. 2798 * 2799 * LOCKING: host lock, or some other form of 2800 * serialization. 2801 */ 2802 2803 void ata_port_probe(struct ata_port *ap) 2804 { 2805 ap->flags &= ~ATA_FLAG_DISABLED; 2806 } 2807 2808 /** 2809 * sata_print_link_status - Print SATA link status 2810 * @link: SATA link to printk link status about 2811 * 2812 * This function prints link speed and status of a SATA link. 2813 * 2814 * LOCKING: 2815 * None. 2816 */ 2817 static void sata_print_link_status(struct ata_link *link) 2818 { 2819 u32 sstatus, scontrol, tmp; 2820 2821 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2822 return; 2823 sata_scr_read(link, SCR_CONTROL, &scontrol); 2824 2825 if (ata_phys_link_online(link)) { 2826 tmp = (sstatus >> 4) & 0xf; 2827 ata_link_printk(link, KERN_INFO, 2828 "SATA link up %s (SStatus %X SControl %X)\n", 2829 sata_spd_string(tmp), sstatus, scontrol); 2830 } else { 2831 ata_link_printk(link, KERN_INFO, 2832 "SATA link down (SStatus %X SControl %X)\n", 2833 sstatus, scontrol); 2834 } 2835 } 2836 2837 /** 2838 * ata_dev_pair - return other device on cable 2839 * @adev: device 2840 * 2841 * Obtain the other device on the same cable, or if none is 2842 * present NULL is returned 2843 */ 2844 2845 struct ata_device *ata_dev_pair(struct ata_device *adev) 2846 { 2847 struct ata_link *link = adev->link; 2848 struct ata_device *pair = &link->device[1 - adev->devno]; 2849 if (!ata_dev_enabled(pair)) 2850 return NULL; 2851 return pair; 2852 } 2853 2854 /** 2855 * ata_port_disable - Disable port. 2856 * @ap: Port to be disabled. 2857 * 2858 * Modify @ap data structure such that the system 2859 * thinks that the entire port is disabled, and should 2860 * never attempt to probe or communicate with devices 2861 * on this port. 2862 * 2863 * LOCKING: host lock, or some other form of 2864 * serialization. 2865 */ 2866 2867 void ata_port_disable(struct ata_port *ap) 2868 { 2869 ap->link.device[0].class = ATA_DEV_NONE; 2870 ap->link.device[1].class = ATA_DEV_NONE; 2871 ap->flags |= ATA_FLAG_DISABLED; 2872 } 2873 2874 /** 2875 * sata_down_spd_limit - adjust SATA spd limit downward 2876 * @link: Link to adjust SATA spd limit for 2877 * 2878 * Adjust SATA spd limit of @link downward. Note that this 2879 * function only adjusts the limit. The change must be applied 2880 * using sata_set_spd(). 2881 * 2882 * LOCKING: 2883 * Inherited from caller. 2884 * 2885 * RETURNS: 2886 * 0 on success, negative errno on failure 2887 */ 2888 int sata_down_spd_limit(struct ata_link *link) 2889 { 2890 u32 sstatus, spd, mask; 2891 int rc, highbit; 2892 2893 if (!sata_scr_valid(link)) 2894 return -EOPNOTSUPP; 2895 2896 /* If SCR can be read, use it to determine the current SPD. 2897 * If not, use cached value in link->sata_spd. 2898 */ 2899 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2900 if (rc == 0) 2901 spd = (sstatus >> 4) & 0xf; 2902 else 2903 spd = link->sata_spd; 2904 2905 mask = link->sata_spd_limit; 2906 if (mask <= 1) 2907 return -EINVAL; 2908 2909 /* unconditionally mask off the highest bit */ 2910 highbit = fls(mask) - 1; 2911 mask &= ~(1 << highbit); 2912 2913 /* Mask off all speeds higher than or equal to the current 2914 * one. Force 1.5Gbps if current SPD is not available. 2915 */ 2916 if (spd > 1) 2917 mask &= (1 << (spd - 1)) - 1; 2918 else 2919 mask &= 1; 2920 2921 /* were we already at the bottom? */ 2922 if (!mask) 2923 return -EINVAL; 2924 2925 link->sata_spd_limit = mask; 2926 2927 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2928 sata_spd_string(fls(mask))); 2929 2930 return 0; 2931 } 2932 2933 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2934 { 2935 struct ata_link *host_link = &link->ap->link; 2936 u32 limit, target, spd; 2937 2938 limit = link->sata_spd_limit; 2939 2940 /* Don't configure downstream link faster than upstream link. 2941 * It doesn't speed up anything and some PMPs choke on such 2942 * configuration. 2943 */ 2944 if (!ata_is_host_link(link) && host_link->sata_spd) 2945 limit &= (1 << host_link->sata_spd) - 1; 2946 2947 if (limit == UINT_MAX) 2948 target = 0; 2949 else 2950 target = fls(limit); 2951 2952 spd = (*scontrol >> 4) & 0xf; 2953 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2954 2955 return spd != target; 2956 } 2957 2958 /** 2959 * sata_set_spd_needed - is SATA spd configuration needed 2960 * @link: Link in question 2961 * 2962 * Test whether the spd limit in SControl matches 2963 * @link->sata_spd_limit. This function is used to determine 2964 * whether hardreset is necessary to apply SATA spd 2965 * configuration. 2966 * 2967 * LOCKING: 2968 * Inherited from caller. 2969 * 2970 * RETURNS: 2971 * 1 if SATA spd configuration is needed, 0 otherwise. 2972 */ 2973 static int sata_set_spd_needed(struct ata_link *link) 2974 { 2975 u32 scontrol; 2976 2977 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2978 return 1; 2979 2980 return __sata_set_spd_needed(link, &scontrol); 2981 } 2982 2983 /** 2984 * sata_set_spd - set SATA spd according to spd limit 2985 * @link: Link to set SATA spd for 2986 * 2987 * Set SATA spd of @link according to sata_spd_limit. 2988 * 2989 * LOCKING: 2990 * Inherited from caller. 2991 * 2992 * RETURNS: 2993 * 0 if spd doesn't need to be changed, 1 if spd has been 2994 * changed. Negative errno if SCR registers are inaccessible. 2995 */ 2996 int sata_set_spd(struct ata_link *link) 2997 { 2998 u32 scontrol; 2999 int rc; 3000 3001 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3002 return rc; 3003 3004 if (!__sata_set_spd_needed(link, &scontrol)) 3005 return 0; 3006 3007 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3008 return rc; 3009 3010 return 1; 3011 } 3012 3013 /* 3014 * This mode timing computation functionality is ported over from 3015 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3016 */ 3017 /* 3018 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3019 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3020 * for UDMA6, which is currently supported only by Maxtor drives. 3021 * 3022 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3023 */ 3024 3025 static const struct ata_timing ata_timing[] = { 3026 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 3027 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 3028 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 3029 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 3030 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 3031 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 3032 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 3033 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 3034 3035 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 3036 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 3037 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 3038 3039 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 3040 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 3041 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 3042 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 3043 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 3044 3045 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3046 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3047 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 3048 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 3049 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 3050 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 3051 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 3052 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 3053 3054 { 0xFF } 3055 }; 3056 3057 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3058 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3059 3060 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3061 { 3062 q->setup = EZ(t->setup * 1000, T); 3063 q->act8b = EZ(t->act8b * 1000, T); 3064 q->rec8b = EZ(t->rec8b * 1000, T); 3065 q->cyc8b = EZ(t->cyc8b * 1000, T); 3066 q->active = EZ(t->active * 1000, T); 3067 q->recover = EZ(t->recover * 1000, T); 3068 q->cycle = EZ(t->cycle * 1000, T); 3069 q->udma = EZ(t->udma * 1000, UT); 3070 } 3071 3072 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3073 struct ata_timing *m, unsigned int what) 3074 { 3075 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3076 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3077 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3078 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3079 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3080 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3081 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3082 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3083 } 3084 3085 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3086 { 3087 const struct ata_timing *t = ata_timing; 3088 3089 while (xfer_mode > t->mode) 3090 t++; 3091 3092 if (xfer_mode == t->mode) 3093 return t; 3094 return NULL; 3095 } 3096 3097 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3098 struct ata_timing *t, int T, int UT) 3099 { 3100 const struct ata_timing *s; 3101 struct ata_timing p; 3102 3103 /* 3104 * Find the mode. 3105 */ 3106 3107 if (!(s = ata_timing_find_mode(speed))) 3108 return -EINVAL; 3109 3110 memcpy(t, s, sizeof(*s)); 3111 3112 /* 3113 * If the drive is an EIDE drive, it can tell us it needs extended 3114 * PIO/MW_DMA cycle timing. 3115 */ 3116 3117 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3118 memset(&p, 0, sizeof(p)); 3119 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3120 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3121 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3122 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3123 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3124 } 3125 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3126 } 3127 3128 /* 3129 * Convert the timing to bus clock counts. 3130 */ 3131 3132 ata_timing_quantize(t, t, T, UT); 3133 3134 /* 3135 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3136 * S.M.A.R.T * and some other commands. We have to ensure that the 3137 * DMA cycle timing is slower/equal than the fastest PIO timing. 3138 */ 3139 3140 if (speed > XFER_PIO_6) { 3141 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3142 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3143 } 3144 3145 /* 3146 * Lengthen active & recovery time so that cycle time is correct. 3147 */ 3148 3149 if (t->act8b + t->rec8b < t->cyc8b) { 3150 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3151 t->rec8b = t->cyc8b - t->act8b; 3152 } 3153 3154 if (t->active + t->recover < t->cycle) { 3155 t->active += (t->cycle - (t->active + t->recover)) / 2; 3156 t->recover = t->cycle - t->active; 3157 } 3158 3159 /* In a few cases quantisation may produce enough errors to 3160 leave t->cycle too low for the sum of active and recovery 3161 if so we must correct this */ 3162 if (t->active + t->recover > t->cycle) 3163 t->cycle = t->active + t->recover; 3164 3165 return 0; 3166 } 3167 3168 /** 3169 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3170 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3171 * @cycle: cycle duration in ns 3172 * 3173 * Return matching xfer mode for @cycle. The returned mode is of 3174 * the transfer type specified by @xfer_shift. If @cycle is too 3175 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3176 * than the fastest known mode, the fasted mode is returned. 3177 * 3178 * LOCKING: 3179 * None. 3180 * 3181 * RETURNS: 3182 * Matching xfer_mode, 0xff if no match found. 3183 */ 3184 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3185 { 3186 u8 base_mode = 0xff, last_mode = 0xff; 3187 const struct ata_xfer_ent *ent; 3188 const struct ata_timing *t; 3189 3190 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3191 if (ent->shift == xfer_shift) 3192 base_mode = ent->base; 3193 3194 for (t = ata_timing_find_mode(base_mode); 3195 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3196 unsigned short this_cycle; 3197 3198 switch (xfer_shift) { 3199 case ATA_SHIFT_PIO: 3200 case ATA_SHIFT_MWDMA: 3201 this_cycle = t->cycle; 3202 break; 3203 case ATA_SHIFT_UDMA: 3204 this_cycle = t->udma; 3205 break; 3206 default: 3207 return 0xff; 3208 } 3209 3210 if (cycle > this_cycle) 3211 break; 3212 3213 last_mode = t->mode; 3214 } 3215 3216 return last_mode; 3217 } 3218 3219 /** 3220 * ata_down_xfermask_limit - adjust dev xfer masks downward 3221 * @dev: Device to adjust xfer masks 3222 * @sel: ATA_DNXFER_* selector 3223 * 3224 * Adjust xfer masks of @dev downward. Note that this function 3225 * does not apply the change. Invoking ata_set_mode() afterwards 3226 * will apply the limit. 3227 * 3228 * LOCKING: 3229 * Inherited from caller. 3230 * 3231 * RETURNS: 3232 * 0 on success, negative errno on failure 3233 */ 3234 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3235 { 3236 char buf[32]; 3237 unsigned long orig_mask, xfer_mask; 3238 unsigned long pio_mask, mwdma_mask, udma_mask; 3239 int quiet, highbit; 3240 3241 quiet = !!(sel & ATA_DNXFER_QUIET); 3242 sel &= ~ATA_DNXFER_QUIET; 3243 3244 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3245 dev->mwdma_mask, 3246 dev->udma_mask); 3247 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3248 3249 switch (sel) { 3250 case ATA_DNXFER_PIO: 3251 highbit = fls(pio_mask) - 1; 3252 pio_mask &= ~(1 << highbit); 3253 break; 3254 3255 case ATA_DNXFER_DMA: 3256 if (udma_mask) { 3257 highbit = fls(udma_mask) - 1; 3258 udma_mask &= ~(1 << highbit); 3259 if (!udma_mask) 3260 return -ENOENT; 3261 } else if (mwdma_mask) { 3262 highbit = fls(mwdma_mask) - 1; 3263 mwdma_mask &= ~(1 << highbit); 3264 if (!mwdma_mask) 3265 return -ENOENT; 3266 } 3267 break; 3268 3269 case ATA_DNXFER_40C: 3270 udma_mask &= ATA_UDMA_MASK_40C; 3271 break; 3272 3273 case ATA_DNXFER_FORCE_PIO0: 3274 pio_mask &= 1; 3275 case ATA_DNXFER_FORCE_PIO: 3276 mwdma_mask = 0; 3277 udma_mask = 0; 3278 break; 3279 3280 default: 3281 BUG(); 3282 } 3283 3284 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3285 3286 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3287 return -ENOENT; 3288 3289 if (!quiet) { 3290 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3291 snprintf(buf, sizeof(buf), "%s:%s", 3292 ata_mode_string(xfer_mask), 3293 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3294 else 3295 snprintf(buf, sizeof(buf), "%s", 3296 ata_mode_string(xfer_mask)); 3297 3298 ata_dev_printk(dev, KERN_WARNING, 3299 "limiting speed to %s\n", buf); 3300 } 3301 3302 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3303 &dev->udma_mask); 3304 3305 return 0; 3306 } 3307 3308 static int ata_dev_set_mode(struct ata_device *dev) 3309 { 3310 struct ata_eh_context *ehc = &dev->link->eh_context; 3311 const char *dev_err_whine = ""; 3312 int ign_dev_err = 0; 3313 unsigned int err_mask; 3314 int rc; 3315 3316 dev->flags &= ~ATA_DFLAG_PIO; 3317 if (dev->xfer_shift == ATA_SHIFT_PIO) 3318 dev->flags |= ATA_DFLAG_PIO; 3319 3320 err_mask = ata_dev_set_xfermode(dev); 3321 3322 if (err_mask & ~AC_ERR_DEV) 3323 goto fail; 3324 3325 /* revalidate */ 3326 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3327 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3328 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3329 if (rc) 3330 return rc; 3331 3332 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3333 /* Old CFA may refuse this command, which is just fine */ 3334 if (ata_id_is_cfa(dev->id)) 3335 ign_dev_err = 1; 3336 /* Catch several broken garbage emulations plus some pre 3337 ATA devices */ 3338 if (ata_id_major_version(dev->id) == 0 && 3339 dev->pio_mode <= XFER_PIO_2) 3340 ign_dev_err = 1; 3341 /* Some very old devices and some bad newer ones fail 3342 any kind of SET_XFERMODE request but support PIO0-2 3343 timings and no IORDY */ 3344 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3345 ign_dev_err = 1; 3346 } 3347 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3348 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3349 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3350 dev->dma_mode == XFER_MW_DMA_0 && 3351 (dev->id[63] >> 8) & 1) 3352 ign_dev_err = 1; 3353 3354 /* if the device is actually configured correctly, ignore dev err */ 3355 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3356 ign_dev_err = 1; 3357 3358 if (err_mask & AC_ERR_DEV) { 3359 if (!ign_dev_err) 3360 goto fail; 3361 else 3362 dev_err_whine = " (device error ignored)"; 3363 } 3364 3365 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3366 dev->xfer_shift, (int)dev->xfer_mode); 3367 3368 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3369 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3370 dev_err_whine); 3371 3372 return 0; 3373 3374 fail: 3375 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3376 "(err_mask=0x%x)\n", err_mask); 3377 return -EIO; 3378 } 3379 3380 /** 3381 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3382 * @link: link on which timings will be programmed 3383 * @r_failed_dev: out parameter for failed device 3384 * 3385 * Standard implementation of the function used to tune and set 3386 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3387 * ata_dev_set_mode() fails, pointer to the failing device is 3388 * returned in @r_failed_dev. 3389 * 3390 * LOCKING: 3391 * PCI/etc. bus probe sem. 3392 * 3393 * RETURNS: 3394 * 0 on success, negative errno otherwise 3395 */ 3396 3397 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3398 { 3399 struct ata_port *ap = link->ap; 3400 struct ata_device *dev; 3401 int rc = 0, used_dma = 0, found = 0; 3402 3403 /* step 1: calculate xfer_mask */ 3404 ata_for_each_dev(dev, link, ENABLED) { 3405 unsigned long pio_mask, dma_mask; 3406 unsigned int mode_mask; 3407 3408 mode_mask = ATA_DMA_MASK_ATA; 3409 if (dev->class == ATA_DEV_ATAPI) 3410 mode_mask = ATA_DMA_MASK_ATAPI; 3411 else if (ata_id_is_cfa(dev->id)) 3412 mode_mask = ATA_DMA_MASK_CFA; 3413 3414 ata_dev_xfermask(dev); 3415 ata_force_xfermask(dev); 3416 3417 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3418 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3419 3420 if (libata_dma_mask & mode_mask) 3421 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3422 else 3423 dma_mask = 0; 3424 3425 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3426 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3427 3428 found = 1; 3429 if (ata_dma_enabled(dev)) 3430 used_dma = 1; 3431 } 3432 if (!found) 3433 goto out; 3434 3435 /* step 2: always set host PIO timings */ 3436 ata_for_each_dev(dev, link, ENABLED) { 3437 if (dev->pio_mode == 0xff) { 3438 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3439 rc = -EINVAL; 3440 goto out; 3441 } 3442 3443 dev->xfer_mode = dev->pio_mode; 3444 dev->xfer_shift = ATA_SHIFT_PIO; 3445 if (ap->ops->set_piomode) 3446 ap->ops->set_piomode(ap, dev); 3447 } 3448 3449 /* step 3: set host DMA timings */ 3450 ata_for_each_dev(dev, link, ENABLED) { 3451 if (!ata_dma_enabled(dev)) 3452 continue; 3453 3454 dev->xfer_mode = dev->dma_mode; 3455 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3456 if (ap->ops->set_dmamode) 3457 ap->ops->set_dmamode(ap, dev); 3458 } 3459 3460 /* step 4: update devices' xfer mode */ 3461 ata_for_each_dev(dev, link, ENABLED) { 3462 rc = ata_dev_set_mode(dev); 3463 if (rc) 3464 goto out; 3465 } 3466 3467 /* Record simplex status. If we selected DMA then the other 3468 * host channels are not permitted to do so. 3469 */ 3470 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3471 ap->host->simplex_claimed = ap; 3472 3473 out: 3474 if (rc) 3475 *r_failed_dev = dev; 3476 return rc; 3477 } 3478 3479 /** 3480 * ata_wait_ready - wait for link to become ready 3481 * @link: link to be waited on 3482 * @deadline: deadline jiffies for the operation 3483 * @check_ready: callback to check link readiness 3484 * 3485 * Wait for @link to become ready. @check_ready should return 3486 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3487 * link doesn't seem to be occupied, other errno for other error 3488 * conditions. 3489 * 3490 * Transient -ENODEV conditions are allowed for 3491 * ATA_TMOUT_FF_WAIT. 3492 * 3493 * LOCKING: 3494 * EH context. 3495 * 3496 * RETURNS: 3497 * 0 if @linke is ready before @deadline; otherwise, -errno. 3498 */ 3499 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3500 int (*check_ready)(struct ata_link *link)) 3501 { 3502 unsigned long start = jiffies; 3503 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3504 int warned = 0; 3505 3506 /* Slave readiness can't be tested separately from master. On 3507 * M/S emulation configuration, this function should be called 3508 * only on the master and it will handle both master and slave. 3509 */ 3510 WARN_ON(link == link->ap->slave_link); 3511 3512 if (time_after(nodev_deadline, deadline)) 3513 nodev_deadline = deadline; 3514 3515 while (1) { 3516 unsigned long now = jiffies; 3517 int ready, tmp; 3518 3519 ready = tmp = check_ready(link); 3520 if (ready > 0) 3521 return 0; 3522 3523 /* -ENODEV could be transient. Ignore -ENODEV if link 3524 * is online. Also, some SATA devices take a long 3525 * time to clear 0xff after reset. For example, 3526 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3527 * GoVault needs even more than that. Wait for 3528 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3529 * 3530 * Note that some PATA controllers (pata_ali) explode 3531 * if status register is read more than once when 3532 * there's no device attached. 3533 */ 3534 if (ready == -ENODEV) { 3535 if (ata_link_online(link)) 3536 ready = 0; 3537 else if ((link->ap->flags & ATA_FLAG_SATA) && 3538 !ata_link_offline(link) && 3539 time_before(now, nodev_deadline)) 3540 ready = 0; 3541 } 3542 3543 if (ready) 3544 return ready; 3545 if (time_after(now, deadline)) 3546 return -EBUSY; 3547 3548 if (!warned && time_after(now, start + 5 * HZ) && 3549 (deadline - now > 3 * HZ)) { 3550 ata_link_printk(link, KERN_WARNING, 3551 "link is slow to respond, please be patient " 3552 "(ready=%d)\n", tmp); 3553 warned = 1; 3554 } 3555 3556 msleep(50); 3557 } 3558 } 3559 3560 /** 3561 * ata_wait_after_reset - wait for link to become ready after reset 3562 * @link: link to be waited on 3563 * @deadline: deadline jiffies for the operation 3564 * @check_ready: callback to check link readiness 3565 * 3566 * Wait for @link to become ready after reset. 3567 * 3568 * LOCKING: 3569 * EH context. 3570 * 3571 * RETURNS: 3572 * 0 if @linke is ready before @deadline; otherwise, -errno. 3573 */ 3574 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3575 int (*check_ready)(struct ata_link *link)) 3576 { 3577 msleep(ATA_WAIT_AFTER_RESET); 3578 3579 return ata_wait_ready(link, deadline, check_ready); 3580 } 3581 3582 /** 3583 * sata_link_debounce - debounce SATA phy status 3584 * @link: ATA link to debounce SATA phy status for 3585 * @params: timing parameters { interval, duratinon, timeout } in msec 3586 * @deadline: deadline jiffies for the operation 3587 * 3588 * Make sure SStatus of @link reaches stable state, determined by 3589 * holding the same value where DET is not 1 for @duration polled 3590 * every @interval, before @timeout. Timeout constraints the 3591 * beginning of the stable state. Because DET gets stuck at 1 on 3592 * some controllers after hot unplugging, this functions waits 3593 * until timeout then returns 0 if DET is stable at 1. 3594 * 3595 * @timeout is further limited by @deadline. The sooner of the 3596 * two is used. 3597 * 3598 * LOCKING: 3599 * Kernel thread context (may sleep) 3600 * 3601 * RETURNS: 3602 * 0 on success, -errno on failure. 3603 */ 3604 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3605 unsigned long deadline) 3606 { 3607 unsigned long interval = params[0]; 3608 unsigned long duration = params[1]; 3609 unsigned long last_jiffies, t; 3610 u32 last, cur; 3611 int rc; 3612 3613 t = ata_deadline(jiffies, params[2]); 3614 if (time_before(t, deadline)) 3615 deadline = t; 3616 3617 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3618 return rc; 3619 cur &= 0xf; 3620 3621 last = cur; 3622 last_jiffies = jiffies; 3623 3624 while (1) { 3625 msleep(interval); 3626 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3627 return rc; 3628 cur &= 0xf; 3629 3630 /* DET stable? */ 3631 if (cur == last) { 3632 if (cur == 1 && time_before(jiffies, deadline)) 3633 continue; 3634 if (time_after(jiffies, 3635 ata_deadline(last_jiffies, duration))) 3636 return 0; 3637 continue; 3638 } 3639 3640 /* unstable, start over */ 3641 last = cur; 3642 last_jiffies = jiffies; 3643 3644 /* Check deadline. If debouncing failed, return 3645 * -EPIPE to tell upper layer to lower link speed. 3646 */ 3647 if (time_after(jiffies, deadline)) 3648 return -EPIPE; 3649 } 3650 } 3651 3652 /** 3653 * sata_link_resume - resume SATA link 3654 * @link: ATA link to resume SATA 3655 * @params: timing parameters { interval, duratinon, timeout } in msec 3656 * @deadline: deadline jiffies for the operation 3657 * 3658 * Resume SATA phy @link and debounce it. 3659 * 3660 * LOCKING: 3661 * Kernel thread context (may sleep) 3662 * 3663 * RETURNS: 3664 * 0 on success, -errno on failure. 3665 */ 3666 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3667 unsigned long deadline) 3668 { 3669 u32 scontrol, serror; 3670 int rc; 3671 3672 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3673 return rc; 3674 3675 scontrol = (scontrol & 0x0f0) | 0x300; 3676 3677 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3678 return rc; 3679 3680 /* Some PHYs react badly if SStatus is pounded immediately 3681 * after resuming. Delay 200ms before debouncing. 3682 */ 3683 msleep(200); 3684 3685 if ((rc = sata_link_debounce(link, params, deadline))) 3686 return rc; 3687 3688 /* clear SError, some PHYs require this even for SRST to work */ 3689 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3690 rc = sata_scr_write(link, SCR_ERROR, serror); 3691 3692 return rc != -EINVAL ? rc : 0; 3693 } 3694 3695 /** 3696 * ata_std_prereset - prepare for reset 3697 * @link: ATA link to be reset 3698 * @deadline: deadline jiffies for the operation 3699 * 3700 * @link is about to be reset. Initialize it. Failure from 3701 * prereset makes libata abort whole reset sequence and give up 3702 * that port, so prereset should be best-effort. It does its 3703 * best to prepare for reset sequence but if things go wrong, it 3704 * should just whine, not fail. 3705 * 3706 * LOCKING: 3707 * Kernel thread context (may sleep) 3708 * 3709 * RETURNS: 3710 * 0 on success, -errno otherwise. 3711 */ 3712 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3713 { 3714 struct ata_port *ap = link->ap; 3715 struct ata_eh_context *ehc = &link->eh_context; 3716 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3717 int rc; 3718 3719 /* if we're about to do hardreset, nothing more to do */ 3720 if (ehc->i.action & ATA_EH_HARDRESET) 3721 return 0; 3722 3723 /* if SATA, resume link */ 3724 if (ap->flags & ATA_FLAG_SATA) { 3725 rc = sata_link_resume(link, timing, deadline); 3726 /* whine about phy resume failure but proceed */ 3727 if (rc && rc != -EOPNOTSUPP) 3728 ata_link_printk(link, KERN_WARNING, "failed to resume " 3729 "link for reset (errno=%d)\n", rc); 3730 } 3731 3732 /* no point in trying softreset on offline link */ 3733 if (ata_phys_link_offline(link)) 3734 ehc->i.action &= ~ATA_EH_SOFTRESET; 3735 3736 return 0; 3737 } 3738 3739 /** 3740 * sata_link_hardreset - reset link via SATA phy reset 3741 * @link: link to reset 3742 * @timing: timing parameters { interval, duratinon, timeout } in msec 3743 * @deadline: deadline jiffies for the operation 3744 * @online: optional out parameter indicating link onlineness 3745 * @check_ready: optional callback to check link readiness 3746 * 3747 * SATA phy-reset @link using DET bits of SControl register. 3748 * After hardreset, link readiness is waited upon using 3749 * ata_wait_ready() if @check_ready is specified. LLDs are 3750 * allowed to not specify @check_ready and wait itself after this 3751 * function returns. Device classification is LLD's 3752 * responsibility. 3753 * 3754 * *@online is set to one iff reset succeeded and @link is online 3755 * after reset. 3756 * 3757 * LOCKING: 3758 * Kernel thread context (may sleep) 3759 * 3760 * RETURNS: 3761 * 0 on success, -errno otherwise. 3762 */ 3763 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3764 unsigned long deadline, 3765 bool *online, int (*check_ready)(struct ata_link *)) 3766 { 3767 u32 scontrol; 3768 int rc; 3769 3770 DPRINTK("ENTER\n"); 3771 3772 if (online) 3773 *online = false; 3774 3775 if (sata_set_spd_needed(link)) { 3776 /* SATA spec says nothing about how to reconfigure 3777 * spd. To be on the safe side, turn off phy during 3778 * reconfiguration. This works for at least ICH7 AHCI 3779 * and Sil3124. 3780 */ 3781 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3782 goto out; 3783 3784 scontrol = (scontrol & 0x0f0) | 0x304; 3785 3786 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3787 goto out; 3788 3789 sata_set_spd(link); 3790 } 3791 3792 /* issue phy wake/reset */ 3793 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3794 goto out; 3795 3796 scontrol = (scontrol & 0x0f0) | 0x301; 3797 3798 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3799 goto out; 3800 3801 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3802 * 10.4.2 says at least 1 ms. 3803 */ 3804 msleep(1); 3805 3806 /* bring link back */ 3807 rc = sata_link_resume(link, timing, deadline); 3808 if (rc) 3809 goto out; 3810 /* if link is offline nothing more to do */ 3811 if (ata_phys_link_offline(link)) 3812 goto out; 3813 3814 /* Link is online. From this point, -ENODEV too is an error. */ 3815 if (online) 3816 *online = true; 3817 3818 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3819 /* If PMP is supported, we have to do follow-up SRST. 3820 * Some PMPs don't send D2H Reg FIS after hardreset if 3821 * the first port is empty. Wait only for 3822 * ATA_TMOUT_PMP_SRST_WAIT. 3823 */ 3824 if (check_ready) { 3825 unsigned long pmp_deadline; 3826 3827 pmp_deadline = ata_deadline(jiffies, 3828 ATA_TMOUT_PMP_SRST_WAIT); 3829 if (time_after(pmp_deadline, deadline)) 3830 pmp_deadline = deadline; 3831 ata_wait_ready(link, pmp_deadline, check_ready); 3832 } 3833 rc = -EAGAIN; 3834 goto out; 3835 } 3836 3837 rc = 0; 3838 if (check_ready) 3839 rc = ata_wait_ready(link, deadline, check_ready); 3840 out: 3841 if (rc && rc != -EAGAIN) { 3842 /* online is set iff link is online && reset succeeded */ 3843 if (online) 3844 *online = false; 3845 ata_link_printk(link, KERN_ERR, 3846 "COMRESET failed (errno=%d)\n", rc); 3847 } 3848 DPRINTK("EXIT, rc=%d\n", rc); 3849 return rc; 3850 } 3851 3852 /** 3853 * sata_std_hardreset - COMRESET w/o waiting or classification 3854 * @link: link to reset 3855 * @class: resulting class of attached device 3856 * @deadline: deadline jiffies for the operation 3857 * 3858 * Standard SATA COMRESET w/o waiting or classification. 3859 * 3860 * LOCKING: 3861 * Kernel thread context (may sleep) 3862 * 3863 * RETURNS: 3864 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3865 */ 3866 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3867 unsigned long deadline) 3868 { 3869 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3870 bool online; 3871 int rc; 3872 3873 /* do hardreset */ 3874 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3875 return online ? -EAGAIN : rc; 3876 } 3877 3878 /** 3879 * ata_std_postreset - standard postreset callback 3880 * @link: the target ata_link 3881 * @classes: classes of attached devices 3882 * 3883 * This function is invoked after a successful reset. Note that 3884 * the device might have been reset more than once using 3885 * different reset methods before postreset is invoked. 3886 * 3887 * LOCKING: 3888 * Kernel thread context (may sleep) 3889 */ 3890 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3891 { 3892 u32 serror; 3893 3894 DPRINTK("ENTER\n"); 3895 3896 /* reset complete, clear SError */ 3897 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3898 sata_scr_write(link, SCR_ERROR, serror); 3899 3900 /* print link status */ 3901 sata_print_link_status(link); 3902 3903 DPRINTK("EXIT\n"); 3904 } 3905 3906 /** 3907 * ata_dev_same_device - Determine whether new ID matches configured device 3908 * @dev: device to compare against 3909 * @new_class: class of the new device 3910 * @new_id: IDENTIFY page of the new device 3911 * 3912 * Compare @new_class and @new_id against @dev and determine 3913 * whether @dev is the device indicated by @new_class and 3914 * @new_id. 3915 * 3916 * LOCKING: 3917 * None. 3918 * 3919 * RETURNS: 3920 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3921 */ 3922 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3923 const u16 *new_id) 3924 { 3925 const u16 *old_id = dev->id; 3926 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3927 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3928 3929 if (dev->class != new_class) { 3930 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3931 dev->class, new_class); 3932 return 0; 3933 } 3934 3935 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3936 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3937 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3938 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3939 3940 if (strcmp(model[0], model[1])) { 3941 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3942 "'%s' != '%s'\n", model[0], model[1]); 3943 return 0; 3944 } 3945 3946 if (strcmp(serial[0], serial[1])) { 3947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3948 "'%s' != '%s'\n", serial[0], serial[1]); 3949 return 0; 3950 } 3951 3952 return 1; 3953 } 3954 3955 /** 3956 * ata_dev_reread_id - Re-read IDENTIFY data 3957 * @dev: target ATA device 3958 * @readid_flags: read ID flags 3959 * 3960 * Re-read IDENTIFY page and make sure @dev is still attached to 3961 * the port. 3962 * 3963 * LOCKING: 3964 * Kernel thread context (may sleep) 3965 * 3966 * RETURNS: 3967 * 0 on success, negative errno otherwise 3968 */ 3969 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3970 { 3971 unsigned int class = dev->class; 3972 u16 *id = (void *)dev->link->ap->sector_buf; 3973 int rc; 3974 3975 /* read ID data */ 3976 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3977 if (rc) 3978 return rc; 3979 3980 /* is the device still there? */ 3981 if (!ata_dev_same_device(dev, class, id)) 3982 return -ENODEV; 3983 3984 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3985 return 0; 3986 } 3987 3988 /** 3989 * ata_dev_revalidate - Revalidate ATA device 3990 * @dev: device to revalidate 3991 * @new_class: new class code 3992 * @readid_flags: read ID flags 3993 * 3994 * Re-read IDENTIFY page, make sure @dev is still attached to the 3995 * port and reconfigure it according to the new IDENTIFY page. 3996 * 3997 * LOCKING: 3998 * Kernel thread context (may sleep) 3999 * 4000 * RETURNS: 4001 * 0 on success, negative errno otherwise 4002 */ 4003 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4004 unsigned int readid_flags) 4005 { 4006 u64 n_sectors = dev->n_sectors; 4007 int rc; 4008 4009 if (!ata_dev_enabled(dev)) 4010 return -ENODEV; 4011 4012 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4013 if (ata_class_enabled(new_class) && 4014 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 4015 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4016 dev->class, new_class); 4017 rc = -ENODEV; 4018 goto fail; 4019 } 4020 4021 /* re-read ID */ 4022 rc = ata_dev_reread_id(dev, readid_flags); 4023 if (rc) 4024 goto fail; 4025 4026 /* configure device according to the new ID */ 4027 rc = ata_dev_configure(dev); 4028 if (rc) 4029 goto fail; 4030 4031 /* verify n_sectors hasn't changed */ 4032 if (dev->class == ATA_DEV_ATA && n_sectors && 4033 dev->n_sectors != n_sectors) { 4034 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 4035 "%llu != %llu\n", 4036 (unsigned long long)n_sectors, 4037 (unsigned long long)dev->n_sectors); 4038 4039 /* restore original n_sectors */ 4040 dev->n_sectors = n_sectors; 4041 4042 rc = -ENODEV; 4043 goto fail; 4044 } 4045 4046 return 0; 4047 4048 fail: 4049 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4050 return rc; 4051 } 4052 4053 struct ata_blacklist_entry { 4054 const char *model_num; 4055 const char *model_rev; 4056 unsigned long horkage; 4057 }; 4058 4059 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4060 /* Devices with DMA related problems under Linux */ 4061 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4062 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4063 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4064 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4065 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4066 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4067 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4068 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4069 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4070 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4071 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4077 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4078 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4079 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4080 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4081 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4082 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4083 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4084 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4085 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4086 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4087 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4088 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4089 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4090 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4091 /* Odd clown on sil3726/4726 PMPs */ 4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4093 4094 /* Weird ATAPI devices */ 4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4097 4098 /* Devices we expect to fail diagnostics */ 4099 4100 /* Devices where NCQ should be avoided */ 4101 /* NCQ is slow */ 4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4106 /* NCQ is broken */ 4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4112 4113 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4114 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4115 ATA_HORKAGE_FIRMWARE_WARN }, 4116 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4117 ATA_HORKAGE_FIRMWARE_WARN }, 4118 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4119 ATA_HORKAGE_FIRMWARE_WARN }, 4120 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4121 ATA_HORKAGE_FIRMWARE_WARN }, 4122 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4123 ATA_HORKAGE_FIRMWARE_WARN }, 4124 4125 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4126 ATA_HORKAGE_FIRMWARE_WARN }, 4127 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4128 ATA_HORKAGE_FIRMWARE_WARN }, 4129 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4130 ATA_HORKAGE_FIRMWARE_WARN }, 4131 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4132 ATA_HORKAGE_FIRMWARE_WARN }, 4133 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4134 ATA_HORKAGE_FIRMWARE_WARN }, 4135 4136 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4137 ATA_HORKAGE_FIRMWARE_WARN }, 4138 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4139 ATA_HORKAGE_FIRMWARE_WARN }, 4140 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4141 ATA_HORKAGE_FIRMWARE_WARN }, 4142 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4143 ATA_HORKAGE_FIRMWARE_WARN }, 4144 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4145 ATA_HORKAGE_FIRMWARE_WARN }, 4146 4147 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4148 ATA_HORKAGE_FIRMWARE_WARN }, 4149 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4150 ATA_HORKAGE_FIRMWARE_WARN }, 4151 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4152 ATA_HORKAGE_FIRMWARE_WARN }, 4153 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4154 ATA_HORKAGE_FIRMWARE_WARN }, 4155 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4156 ATA_HORKAGE_FIRMWARE_WARN }, 4157 4158 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4159 ATA_HORKAGE_FIRMWARE_WARN }, 4160 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4161 ATA_HORKAGE_FIRMWARE_WARN }, 4162 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4163 ATA_HORKAGE_FIRMWARE_WARN }, 4164 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4165 ATA_HORKAGE_FIRMWARE_WARN }, 4166 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4167 ATA_HORKAGE_FIRMWARE_WARN }, 4168 4169 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4170 ATA_HORKAGE_FIRMWARE_WARN }, 4171 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4172 ATA_HORKAGE_FIRMWARE_WARN }, 4173 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4174 ATA_HORKAGE_FIRMWARE_WARN }, 4175 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4176 ATA_HORKAGE_FIRMWARE_WARN }, 4177 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4178 ATA_HORKAGE_FIRMWARE_WARN }, 4179 4180 /* Blacklist entries taken from Silicon Image 3124/3132 4181 Windows driver .inf file - also several Linux problem reports */ 4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4185 4186 /* devices which puke on READ_NATIVE_MAX */ 4187 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4188 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4189 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4190 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4191 4192 /* Devices which report 1 sector over size HPA */ 4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4196 4197 /* Devices which get the IVB wrong */ 4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4199 /* Maybe we should just blacklist TSSTcorp... */ 4200 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4201 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4202 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4203 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4204 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4205 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4206 4207 /* Devices that do not need bridging limits applied */ 4208 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4209 4210 /* End Marker */ 4211 { } 4212 }; 4213 4214 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4215 { 4216 const char *p; 4217 int len; 4218 4219 /* 4220 * check for trailing wildcard: *\0 4221 */ 4222 p = strchr(patt, wildchar); 4223 if (p && ((*(p + 1)) == 0)) 4224 len = p - patt; 4225 else { 4226 len = strlen(name); 4227 if (!len) { 4228 if (!*patt) 4229 return 0; 4230 return -1; 4231 } 4232 } 4233 4234 return strncmp(patt, name, len); 4235 } 4236 4237 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4238 { 4239 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4240 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4241 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4242 4243 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4244 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4245 4246 while (ad->model_num) { 4247 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4248 if (ad->model_rev == NULL) 4249 return ad->horkage; 4250 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4251 return ad->horkage; 4252 } 4253 ad++; 4254 } 4255 return 0; 4256 } 4257 4258 static int ata_dma_blacklisted(const struct ata_device *dev) 4259 { 4260 /* We don't support polling DMA. 4261 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4262 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4263 */ 4264 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4265 (dev->flags & ATA_DFLAG_CDB_INTR)) 4266 return 1; 4267 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4268 } 4269 4270 /** 4271 * ata_is_40wire - check drive side detection 4272 * @dev: device 4273 * 4274 * Perform drive side detection decoding, allowing for device vendors 4275 * who can't follow the documentation. 4276 */ 4277 4278 static int ata_is_40wire(struct ata_device *dev) 4279 { 4280 if (dev->horkage & ATA_HORKAGE_IVB) 4281 return ata_drive_40wire_relaxed(dev->id); 4282 return ata_drive_40wire(dev->id); 4283 } 4284 4285 /** 4286 * cable_is_40wire - 40/80/SATA decider 4287 * @ap: port to consider 4288 * 4289 * This function encapsulates the policy for speed management 4290 * in one place. At the moment we don't cache the result but 4291 * there is a good case for setting ap->cbl to the result when 4292 * we are called with unknown cables (and figuring out if it 4293 * impacts hotplug at all). 4294 * 4295 * Return 1 if the cable appears to be 40 wire. 4296 */ 4297 4298 static int cable_is_40wire(struct ata_port *ap) 4299 { 4300 struct ata_link *link; 4301 struct ata_device *dev; 4302 4303 /* If the controller thinks we are 40 wire, we are. */ 4304 if (ap->cbl == ATA_CBL_PATA40) 4305 return 1; 4306 4307 /* If the controller thinks we are 80 wire, we are. */ 4308 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4309 return 0; 4310 4311 /* If the system is known to be 40 wire short cable (eg 4312 * laptop), then we allow 80 wire modes even if the drive 4313 * isn't sure. 4314 */ 4315 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4316 return 0; 4317 4318 /* If the controller doesn't know, we scan. 4319 * 4320 * Note: We look for all 40 wire detects at this point. Any 4321 * 80 wire detect is taken to be 80 wire cable because 4322 * - in many setups only the one drive (slave if present) will 4323 * give a valid detect 4324 * - if you have a non detect capable drive you don't want it 4325 * to colour the choice 4326 */ 4327 ata_for_each_link(link, ap, EDGE) { 4328 ata_for_each_dev(dev, link, ENABLED) { 4329 if (!ata_is_40wire(dev)) 4330 return 0; 4331 } 4332 } 4333 return 1; 4334 } 4335 4336 /** 4337 * ata_dev_xfermask - Compute supported xfermask of the given device 4338 * @dev: Device to compute xfermask for 4339 * 4340 * Compute supported xfermask of @dev and store it in 4341 * dev->*_mask. This function is responsible for applying all 4342 * known limits including host controller limits, device 4343 * blacklist, etc... 4344 * 4345 * LOCKING: 4346 * None. 4347 */ 4348 static void ata_dev_xfermask(struct ata_device *dev) 4349 { 4350 struct ata_link *link = dev->link; 4351 struct ata_port *ap = link->ap; 4352 struct ata_host *host = ap->host; 4353 unsigned long xfer_mask; 4354 4355 /* controller modes available */ 4356 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4357 ap->mwdma_mask, ap->udma_mask); 4358 4359 /* drive modes available */ 4360 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4361 dev->mwdma_mask, dev->udma_mask); 4362 xfer_mask &= ata_id_xfermask(dev->id); 4363 4364 /* 4365 * CFA Advanced TrueIDE timings are not allowed on a shared 4366 * cable 4367 */ 4368 if (ata_dev_pair(dev)) { 4369 /* No PIO5 or PIO6 */ 4370 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4371 /* No MWDMA3 or MWDMA 4 */ 4372 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4373 } 4374 4375 if (ata_dma_blacklisted(dev)) { 4376 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4377 ata_dev_printk(dev, KERN_WARNING, 4378 "device is on DMA blacklist, disabling DMA\n"); 4379 } 4380 4381 if ((host->flags & ATA_HOST_SIMPLEX) && 4382 host->simplex_claimed && host->simplex_claimed != ap) { 4383 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4384 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4385 "other device, disabling DMA\n"); 4386 } 4387 4388 if (ap->flags & ATA_FLAG_NO_IORDY) 4389 xfer_mask &= ata_pio_mask_no_iordy(dev); 4390 4391 if (ap->ops->mode_filter) 4392 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4393 4394 /* Apply cable rule here. Don't apply it early because when 4395 * we handle hot plug the cable type can itself change. 4396 * Check this last so that we know if the transfer rate was 4397 * solely limited by the cable. 4398 * Unknown or 80 wire cables reported host side are checked 4399 * drive side as well. Cases where we know a 40wire cable 4400 * is used safely for 80 are not checked here. 4401 */ 4402 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4403 /* UDMA/44 or higher would be available */ 4404 if (cable_is_40wire(ap)) { 4405 ata_dev_printk(dev, KERN_WARNING, 4406 "limited to UDMA/33 due to 40-wire cable\n"); 4407 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4408 } 4409 4410 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4411 &dev->mwdma_mask, &dev->udma_mask); 4412 } 4413 4414 /** 4415 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4416 * @dev: Device to which command will be sent 4417 * 4418 * Issue SET FEATURES - XFER MODE command to device @dev 4419 * on port @ap. 4420 * 4421 * LOCKING: 4422 * PCI/etc. bus probe sem. 4423 * 4424 * RETURNS: 4425 * 0 on success, AC_ERR_* mask otherwise. 4426 */ 4427 4428 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4429 { 4430 struct ata_taskfile tf; 4431 unsigned int err_mask; 4432 4433 /* set up set-features taskfile */ 4434 DPRINTK("set features - xfer mode\n"); 4435 4436 /* Some controllers and ATAPI devices show flaky interrupt 4437 * behavior after setting xfer mode. Use polling instead. 4438 */ 4439 ata_tf_init(dev, &tf); 4440 tf.command = ATA_CMD_SET_FEATURES; 4441 tf.feature = SETFEATURES_XFER; 4442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4443 tf.protocol = ATA_PROT_NODATA; 4444 /* If we are using IORDY we must send the mode setting command */ 4445 if (ata_pio_need_iordy(dev)) 4446 tf.nsect = dev->xfer_mode; 4447 /* If the device has IORDY and the controller does not - turn it off */ 4448 else if (ata_id_has_iordy(dev->id)) 4449 tf.nsect = 0x01; 4450 else /* In the ancient relic department - skip all of this */ 4451 return 0; 4452 4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4454 4455 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4456 return err_mask; 4457 } 4458 /** 4459 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4460 * @dev: Device to which command will be sent 4461 * @enable: Whether to enable or disable the feature 4462 * @feature: The sector count represents the feature to set 4463 * 4464 * Issue SET FEATURES - SATA FEATURES command to device @dev 4465 * on port @ap with sector count 4466 * 4467 * LOCKING: 4468 * PCI/etc. bus probe sem. 4469 * 4470 * RETURNS: 4471 * 0 on success, AC_ERR_* mask otherwise. 4472 */ 4473 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4474 u8 feature) 4475 { 4476 struct ata_taskfile tf; 4477 unsigned int err_mask; 4478 4479 /* set up set-features taskfile */ 4480 DPRINTK("set features - SATA features\n"); 4481 4482 ata_tf_init(dev, &tf); 4483 tf.command = ATA_CMD_SET_FEATURES; 4484 tf.feature = enable; 4485 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4486 tf.protocol = ATA_PROT_NODATA; 4487 tf.nsect = feature; 4488 4489 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4490 4491 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4492 return err_mask; 4493 } 4494 4495 /** 4496 * ata_dev_init_params - Issue INIT DEV PARAMS command 4497 * @dev: Device to which command will be sent 4498 * @heads: Number of heads (taskfile parameter) 4499 * @sectors: Number of sectors (taskfile parameter) 4500 * 4501 * LOCKING: 4502 * Kernel thread context (may sleep) 4503 * 4504 * RETURNS: 4505 * 0 on success, AC_ERR_* mask otherwise. 4506 */ 4507 static unsigned int ata_dev_init_params(struct ata_device *dev, 4508 u16 heads, u16 sectors) 4509 { 4510 struct ata_taskfile tf; 4511 unsigned int err_mask; 4512 4513 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4514 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4515 return AC_ERR_INVALID; 4516 4517 /* set up init dev params taskfile */ 4518 DPRINTK("init dev params \n"); 4519 4520 ata_tf_init(dev, &tf); 4521 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4522 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4523 tf.protocol = ATA_PROT_NODATA; 4524 tf.nsect = sectors; 4525 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4526 4527 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4528 /* A clean abort indicates an original or just out of spec drive 4529 and we should continue as we issue the setup based on the 4530 drive reported working geometry */ 4531 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4532 err_mask = 0; 4533 4534 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4535 return err_mask; 4536 } 4537 4538 /** 4539 * ata_sg_clean - Unmap DMA memory associated with command 4540 * @qc: Command containing DMA memory to be released 4541 * 4542 * Unmap all mapped DMA memory associated with this command. 4543 * 4544 * LOCKING: 4545 * spin_lock_irqsave(host lock) 4546 */ 4547 void ata_sg_clean(struct ata_queued_cmd *qc) 4548 { 4549 struct ata_port *ap = qc->ap; 4550 struct scatterlist *sg = qc->sg; 4551 int dir = qc->dma_dir; 4552 4553 WARN_ON(sg == NULL); 4554 4555 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4556 4557 if (qc->n_elem) 4558 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4559 4560 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4561 qc->sg = NULL; 4562 } 4563 4564 /** 4565 * atapi_check_dma - Check whether ATAPI DMA can be supported 4566 * @qc: Metadata associated with taskfile to check 4567 * 4568 * Allow low-level driver to filter ATA PACKET commands, returning 4569 * a status indicating whether or not it is OK to use DMA for the 4570 * supplied PACKET command. 4571 * 4572 * LOCKING: 4573 * spin_lock_irqsave(host lock) 4574 * 4575 * RETURNS: 0 when ATAPI DMA can be used 4576 * nonzero otherwise 4577 */ 4578 int atapi_check_dma(struct ata_queued_cmd *qc) 4579 { 4580 struct ata_port *ap = qc->ap; 4581 4582 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4583 * few ATAPI devices choke on such DMA requests. 4584 */ 4585 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4586 unlikely(qc->nbytes & 15)) 4587 return 1; 4588 4589 if (ap->ops->check_atapi_dma) 4590 return ap->ops->check_atapi_dma(qc); 4591 4592 return 0; 4593 } 4594 4595 /** 4596 * ata_std_qc_defer - Check whether a qc needs to be deferred 4597 * @qc: ATA command in question 4598 * 4599 * Non-NCQ commands cannot run with any other command, NCQ or 4600 * not. As upper layer only knows the queue depth, we are 4601 * responsible for maintaining exclusion. This function checks 4602 * whether a new command @qc can be issued. 4603 * 4604 * LOCKING: 4605 * spin_lock_irqsave(host lock) 4606 * 4607 * RETURNS: 4608 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4609 */ 4610 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4611 { 4612 struct ata_link *link = qc->dev->link; 4613 4614 if (qc->tf.protocol == ATA_PROT_NCQ) { 4615 if (!ata_tag_valid(link->active_tag)) 4616 return 0; 4617 } else { 4618 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4619 return 0; 4620 } 4621 4622 return ATA_DEFER_LINK; 4623 } 4624 4625 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4626 4627 /** 4628 * ata_sg_init - Associate command with scatter-gather table. 4629 * @qc: Command to be associated 4630 * @sg: Scatter-gather table. 4631 * @n_elem: Number of elements in s/g table. 4632 * 4633 * Initialize the data-related elements of queued_cmd @qc 4634 * to point to a scatter-gather table @sg, containing @n_elem 4635 * elements. 4636 * 4637 * LOCKING: 4638 * spin_lock_irqsave(host lock) 4639 */ 4640 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4641 unsigned int n_elem) 4642 { 4643 qc->sg = sg; 4644 qc->n_elem = n_elem; 4645 qc->cursg = qc->sg; 4646 } 4647 4648 /** 4649 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4650 * @qc: Command with scatter-gather table to be mapped. 4651 * 4652 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4653 * 4654 * LOCKING: 4655 * spin_lock_irqsave(host lock) 4656 * 4657 * RETURNS: 4658 * Zero on success, negative on error. 4659 * 4660 */ 4661 static int ata_sg_setup(struct ata_queued_cmd *qc) 4662 { 4663 struct ata_port *ap = qc->ap; 4664 unsigned int n_elem; 4665 4666 VPRINTK("ENTER, ata%u\n", ap->print_id); 4667 4668 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4669 if (n_elem < 1) 4670 return -1; 4671 4672 DPRINTK("%d sg elements mapped\n", n_elem); 4673 4674 qc->n_elem = n_elem; 4675 qc->flags |= ATA_QCFLAG_DMAMAP; 4676 4677 return 0; 4678 } 4679 4680 /** 4681 * swap_buf_le16 - swap halves of 16-bit words in place 4682 * @buf: Buffer to swap 4683 * @buf_words: Number of 16-bit words in buffer. 4684 * 4685 * Swap halves of 16-bit words if needed to convert from 4686 * little-endian byte order to native cpu byte order, or 4687 * vice-versa. 4688 * 4689 * LOCKING: 4690 * Inherited from caller. 4691 */ 4692 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4693 { 4694 #ifdef __BIG_ENDIAN 4695 unsigned int i; 4696 4697 for (i = 0; i < buf_words; i++) 4698 buf[i] = le16_to_cpu(buf[i]); 4699 #endif /* __BIG_ENDIAN */ 4700 } 4701 4702 /** 4703 * ata_qc_new - Request an available ATA command, for queueing 4704 * @ap: Port associated with device @dev 4705 * @dev: Device from whom we request an available command structure 4706 * 4707 * LOCKING: 4708 * None. 4709 */ 4710 4711 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4712 { 4713 struct ata_queued_cmd *qc = NULL; 4714 unsigned int i; 4715 4716 /* no command while frozen */ 4717 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4718 return NULL; 4719 4720 /* the last tag is reserved for internal command. */ 4721 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4722 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4723 qc = __ata_qc_from_tag(ap, i); 4724 break; 4725 } 4726 4727 if (qc) 4728 qc->tag = i; 4729 4730 return qc; 4731 } 4732 4733 /** 4734 * ata_qc_new_init - Request an available ATA command, and initialize it 4735 * @dev: Device from whom we request an available command structure 4736 * 4737 * LOCKING: 4738 * None. 4739 */ 4740 4741 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4742 { 4743 struct ata_port *ap = dev->link->ap; 4744 struct ata_queued_cmd *qc; 4745 4746 qc = ata_qc_new(ap); 4747 if (qc) { 4748 qc->scsicmd = NULL; 4749 qc->ap = ap; 4750 qc->dev = dev; 4751 4752 ata_qc_reinit(qc); 4753 } 4754 4755 return qc; 4756 } 4757 4758 /** 4759 * ata_qc_free - free unused ata_queued_cmd 4760 * @qc: Command to complete 4761 * 4762 * Designed to free unused ata_queued_cmd object 4763 * in case something prevents using it. 4764 * 4765 * LOCKING: 4766 * spin_lock_irqsave(host lock) 4767 */ 4768 void ata_qc_free(struct ata_queued_cmd *qc) 4769 { 4770 struct ata_port *ap = qc->ap; 4771 unsigned int tag; 4772 4773 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4774 4775 qc->flags = 0; 4776 tag = qc->tag; 4777 if (likely(ata_tag_valid(tag))) { 4778 qc->tag = ATA_TAG_POISON; 4779 clear_bit(tag, &ap->qc_allocated); 4780 } 4781 } 4782 4783 void __ata_qc_complete(struct ata_queued_cmd *qc) 4784 { 4785 struct ata_port *ap = qc->ap; 4786 struct ata_link *link = qc->dev->link; 4787 4788 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4789 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4790 4791 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4792 ata_sg_clean(qc); 4793 4794 /* command should be marked inactive atomically with qc completion */ 4795 if (qc->tf.protocol == ATA_PROT_NCQ) { 4796 link->sactive &= ~(1 << qc->tag); 4797 if (!link->sactive) 4798 ap->nr_active_links--; 4799 } else { 4800 link->active_tag = ATA_TAG_POISON; 4801 ap->nr_active_links--; 4802 } 4803 4804 /* clear exclusive status */ 4805 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4806 ap->excl_link == link)) 4807 ap->excl_link = NULL; 4808 4809 /* atapi: mark qc as inactive to prevent the interrupt handler 4810 * from completing the command twice later, before the error handler 4811 * is called. (when rc != 0 and atapi request sense is needed) 4812 */ 4813 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4814 ap->qc_active &= ~(1 << qc->tag); 4815 4816 /* call completion callback */ 4817 qc->complete_fn(qc); 4818 } 4819 4820 static void fill_result_tf(struct ata_queued_cmd *qc) 4821 { 4822 struct ata_port *ap = qc->ap; 4823 4824 qc->result_tf.flags = qc->tf.flags; 4825 ap->ops->qc_fill_rtf(qc); 4826 } 4827 4828 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4829 { 4830 struct ata_device *dev = qc->dev; 4831 4832 if (ata_tag_internal(qc->tag)) 4833 return; 4834 4835 if (ata_is_nodata(qc->tf.protocol)) 4836 return; 4837 4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4839 return; 4840 4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4842 } 4843 4844 /** 4845 * ata_qc_complete - Complete an active ATA command 4846 * @qc: Command to complete 4847 * 4848 * Indicate to the mid and upper layers that an ATA 4849 * command has completed, with either an ok or not-ok status. 4850 * 4851 * LOCKING: 4852 * spin_lock_irqsave(host lock) 4853 */ 4854 void ata_qc_complete(struct ata_queued_cmd *qc) 4855 { 4856 struct ata_port *ap = qc->ap; 4857 4858 /* XXX: New EH and old EH use different mechanisms to 4859 * synchronize EH with regular execution path. 4860 * 4861 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4862 * Normal execution path is responsible for not accessing a 4863 * failed qc. libata core enforces the rule by returning NULL 4864 * from ata_qc_from_tag() for failed qcs. 4865 * 4866 * Old EH depends on ata_qc_complete() nullifying completion 4867 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4868 * not synchronize with interrupt handler. Only PIO task is 4869 * taken care of. 4870 */ 4871 if (ap->ops->error_handler) { 4872 struct ata_device *dev = qc->dev; 4873 struct ata_eh_info *ehi = &dev->link->eh_info; 4874 4875 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4876 4877 if (unlikely(qc->err_mask)) 4878 qc->flags |= ATA_QCFLAG_FAILED; 4879 4880 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4881 if (!ata_tag_internal(qc->tag)) { 4882 /* always fill result TF for failed qc */ 4883 fill_result_tf(qc); 4884 ata_qc_schedule_eh(qc); 4885 return; 4886 } 4887 } 4888 4889 /* read result TF if requested */ 4890 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4891 fill_result_tf(qc); 4892 4893 /* Some commands need post-processing after successful 4894 * completion. 4895 */ 4896 switch (qc->tf.command) { 4897 case ATA_CMD_SET_FEATURES: 4898 if (qc->tf.feature != SETFEATURES_WC_ON && 4899 qc->tf.feature != SETFEATURES_WC_OFF) 4900 break; 4901 /* fall through */ 4902 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4903 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4904 /* revalidate device */ 4905 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4906 ata_port_schedule_eh(ap); 4907 break; 4908 4909 case ATA_CMD_SLEEP: 4910 dev->flags |= ATA_DFLAG_SLEEPING; 4911 break; 4912 } 4913 4914 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4915 ata_verify_xfer(qc); 4916 4917 __ata_qc_complete(qc); 4918 } else { 4919 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4920 return; 4921 4922 /* read result TF if failed or requested */ 4923 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4924 fill_result_tf(qc); 4925 4926 __ata_qc_complete(qc); 4927 } 4928 } 4929 4930 /** 4931 * ata_qc_complete_multiple - Complete multiple qcs successfully 4932 * @ap: port in question 4933 * @qc_active: new qc_active mask 4934 * 4935 * Complete in-flight commands. This functions is meant to be 4936 * called from low-level driver's interrupt routine to complete 4937 * requests normally. ap->qc_active and @qc_active is compared 4938 * and commands are completed accordingly. 4939 * 4940 * LOCKING: 4941 * spin_lock_irqsave(host lock) 4942 * 4943 * RETURNS: 4944 * Number of completed commands on success, -errno otherwise. 4945 */ 4946 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4947 { 4948 int nr_done = 0; 4949 u32 done_mask; 4950 int i; 4951 4952 done_mask = ap->qc_active ^ qc_active; 4953 4954 if (unlikely(done_mask & qc_active)) { 4955 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4956 "(%08x->%08x)\n", ap->qc_active, qc_active); 4957 return -EINVAL; 4958 } 4959 4960 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4961 struct ata_queued_cmd *qc; 4962 4963 if (!(done_mask & (1 << i))) 4964 continue; 4965 4966 if ((qc = ata_qc_from_tag(ap, i))) { 4967 ata_qc_complete(qc); 4968 nr_done++; 4969 } 4970 } 4971 4972 return nr_done; 4973 } 4974 4975 /** 4976 * ata_qc_issue - issue taskfile to device 4977 * @qc: command to issue to device 4978 * 4979 * Prepare an ATA command to submission to device. 4980 * This includes mapping the data into a DMA-able 4981 * area, filling in the S/G table, and finally 4982 * writing the taskfile to hardware, starting the command. 4983 * 4984 * LOCKING: 4985 * spin_lock_irqsave(host lock) 4986 */ 4987 void ata_qc_issue(struct ata_queued_cmd *qc) 4988 { 4989 struct ata_port *ap = qc->ap; 4990 struct ata_link *link = qc->dev->link; 4991 u8 prot = qc->tf.protocol; 4992 4993 /* Make sure only one non-NCQ command is outstanding. The 4994 * check is skipped for old EH because it reuses active qc to 4995 * request ATAPI sense. 4996 */ 4997 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4998 4999 if (ata_is_ncq(prot)) { 5000 WARN_ON(link->sactive & (1 << qc->tag)); 5001 5002 if (!link->sactive) 5003 ap->nr_active_links++; 5004 link->sactive |= 1 << qc->tag; 5005 } else { 5006 WARN_ON(link->sactive); 5007 5008 ap->nr_active_links++; 5009 link->active_tag = qc->tag; 5010 } 5011 5012 qc->flags |= ATA_QCFLAG_ACTIVE; 5013 ap->qc_active |= 1 << qc->tag; 5014 5015 /* We guarantee to LLDs that they will have at least one 5016 * non-zero sg if the command is a data command. 5017 */ 5018 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5019 5020 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5021 (ap->flags & ATA_FLAG_PIO_DMA))) 5022 if (ata_sg_setup(qc)) 5023 goto sg_err; 5024 5025 /* if device is sleeping, schedule reset and abort the link */ 5026 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5027 link->eh_info.action |= ATA_EH_RESET; 5028 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5029 ata_link_abort(link); 5030 return; 5031 } 5032 5033 ap->ops->qc_prep(qc); 5034 5035 qc->err_mask |= ap->ops->qc_issue(qc); 5036 if (unlikely(qc->err_mask)) 5037 goto err; 5038 return; 5039 5040 sg_err: 5041 qc->err_mask |= AC_ERR_SYSTEM; 5042 err: 5043 ata_qc_complete(qc); 5044 } 5045 5046 /** 5047 * sata_scr_valid - test whether SCRs are accessible 5048 * @link: ATA link to test SCR accessibility for 5049 * 5050 * Test whether SCRs are accessible for @link. 5051 * 5052 * LOCKING: 5053 * None. 5054 * 5055 * RETURNS: 5056 * 1 if SCRs are accessible, 0 otherwise. 5057 */ 5058 int sata_scr_valid(struct ata_link *link) 5059 { 5060 struct ata_port *ap = link->ap; 5061 5062 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5063 } 5064 5065 /** 5066 * sata_scr_read - read SCR register of the specified port 5067 * @link: ATA link to read SCR for 5068 * @reg: SCR to read 5069 * @val: Place to store read value 5070 * 5071 * Read SCR register @reg of @link into *@val. This function is 5072 * guaranteed to succeed if @link is ap->link, the cable type of 5073 * the port is SATA and the port implements ->scr_read. 5074 * 5075 * LOCKING: 5076 * None if @link is ap->link. Kernel thread context otherwise. 5077 * 5078 * RETURNS: 5079 * 0 on success, negative errno on failure. 5080 */ 5081 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5082 { 5083 if (ata_is_host_link(link)) { 5084 if (sata_scr_valid(link)) 5085 return link->ap->ops->scr_read(link, reg, val); 5086 return -EOPNOTSUPP; 5087 } 5088 5089 return sata_pmp_scr_read(link, reg, val); 5090 } 5091 5092 /** 5093 * sata_scr_write - write SCR register of the specified port 5094 * @link: ATA link to write SCR for 5095 * @reg: SCR to write 5096 * @val: value to write 5097 * 5098 * Write @val to SCR register @reg of @link. This function is 5099 * guaranteed to succeed if @link is ap->link, the cable type of 5100 * the port is SATA and the port implements ->scr_read. 5101 * 5102 * LOCKING: 5103 * None if @link is ap->link. Kernel thread context otherwise. 5104 * 5105 * RETURNS: 5106 * 0 on success, negative errno on failure. 5107 */ 5108 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5109 { 5110 if (ata_is_host_link(link)) { 5111 if (sata_scr_valid(link)) 5112 return link->ap->ops->scr_write(link, reg, val); 5113 return -EOPNOTSUPP; 5114 } 5115 5116 return sata_pmp_scr_write(link, reg, val); 5117 } 5118 5119 /** 5120 * sata_scr_write_flush - write SCR register of the specified port and flush 5121 * @link: ATA link to write SCR for 5122 * @reg: SCR to write 5123 * @val: value to write 5124 * 5125 * This function is identical to sata_scr_write() except that this 5126 * function performs flush after writing to the register. 5127 * 5128 * LOCKING: 5129 * None if @link is ap->link. Kernel thread context otherwise. 5130 * 5131 * RETURNS: 5132 * 0 on success, negative errno on failure. 5133 */ 5134 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5135 { 5136 if (ata_is_host_link(link)) { 5137 int rc; 5138 5139 if (sata_scr_valid(link)) { 5140 rc = link->ap->ops->scr_write(link, reg, val); 5141 if (rc == 0) 5142 rc = link->ap->ops->scr_read(link, reg, &val); 5143 return rc; 5144 } 5145 return -EOPNOTSUPP; 5146 } 5147 5148 return sata_pmp_scr_write(link, reg, val); 5149 } 5150 5151 /** 5152 * ata_phys_link_online - test whether the given link is online 5153 * @link: ATA link to test 5154 * 5155 * Test whether @link is online. Note that this function returns 5156 * 0 if online status of @link cannot be obtained, so 5157 * ata_link_online(link) != !ata_link_offline(link). 5158 * 5159 * LOCKING: 5160 * None. 5161 * 5162 * RETURNS: 5163 * True if the port online status is available and online. 5164 */ 5165 bool ata_phys_link_online(struct ata_link *link) 5166 { 5167 u32 sstatus; 5168 5169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5170 (sstatus & 0xf) == 0x3) 5171 return true; 5172 return false; 5173 } 5174 5175 /** 5176 * ata_phys_link_offline - test whether the given link is offline 5177 * @link: ATA link to test 5178 * 5179 * Test whether @link is offline. Note that this function 5180 * returns 0 if offline status of @link cannot be obtained, so 5181 * ata_link_online(link) != !ata_link_offline(link). 5182 * 5183 * LOCKING: 5184 * None. 5185 * 5186 * RETURNS: 5187 * True if the port offline status is available and offline. 5188 */ 5189 bool ata_phys_link_offline(struct ata_link *link) 5190 { 5191 u32 sstatus; 5192 5193 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5194 (sstatus & 0xf) != 0x3) 5195 return true; 5196 return false; 5197 } 5198 5199 /** 5200 * ata_link_online - test whether the given link is online 5201 * @link: ATA link to test 5202 * 5203 * Test whether @link is online. This is identical to 5204 * ata_phys_link_online() when there's no slave link. When 5205 * there's a slave link, this function should only be called on 5206 * the master link and will return true if any of M/S links is 5207 * online. 5208 * 5209 * LOCKING: 5210 * None. 5211 * 5212 * RETURNS: 5213 * True if the port online status is available and online. 5214 */ 5215 bool ata_link_online(struct ata_link *link) 5216 { 5217 struct ata_link *slave = link->ap->slave_link; 5218 5219 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5220 5221 return ata_phys_link_online(link) || 5222 (slave && ata_phys_link_online(slave)); 5223 } 5224 5225 /** 5226 * ata_link_offline - test whether the given link is offline 5227 * @link: ATA link to test 5228 * 5229 * Test whether @link is offline. This is identical to 5230 * ata_phys_link_offline() when there's no slave link. When 5231 * there's a slave link, this function should only be called on 5232 * the master link and will return true if both M/S links are 5233 * offline. 5234 * 5235 * LOCKING: 5236 * None. 5237 * 5238 * RETURNS: 5239 * True if the port offline status is available and offline. 5240 */ 5241 bool ata_link_offline(struct ata_link *link) 5242 { 5243 struct ata_link *slave = link->ap->slave_link; 5244 5245 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5246 5247 return ata_phys_link_offline(link) && 5248 (!slave || ata_phys_link_offline(slave)); 5249 } 5250 5251 #ifdef CONFIG_PM 5252 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5253 unsigned int action, unsigned int ehi_flags, 5254 int wait) 5255 { 5256 unsigned long flags; 5257 int i, rc; 5258 5259 for (i = 0; i < host->n_ports; i++) { 5260 struct ata_port *ap = host->ports[i]; 5261 struct ata_link *link; 5262 5263 /* Previous resume operation might still be in 5264 * progress. Wait for PM_PENDING to clear. 5265 */ 5266 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5267 ata_port_wait_eh(ap); 5268 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5269 } 5270 5271 /* request PM ops to EH */ 5272 spin_lock_irqsave(ap->lock, flags); 5273 5274 ap->pm_mesg = mesg; 5275 if (wait) { 5276 rc = 0; 5277 ap->pm_result = &rc; 5278 } 5279 5280 ap->pflags |= ATA_PFLAG_PM_PENDING; 5281 ata_for_each_link(link, ap, HOST_FIRST) { 5282 link->eh_info.action |= action; 5283 link->eh_info.flags |= ehi_flags; 5284 } 5285 5286 ata_port_schedule_eh(ap); 5287 5288 spin_unlock_irqrestore(ap->lock, flags); 5289 5290 /* wait and check result */ 5291 if (wait) { 5292 ata_port_wait_eh(ap); 5293 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5294 if (rc) 5295 return rc; 5296 } 5297 } 5298 5299 return 0; 5300 } 5301 5302 /** 5303 * ata_host_suspend - suspend host 5304 * @host: host to suspend 5305 * @mesg: PM message 5306 * 5307 * Suspend @host. Actual operation is performed by EH. This 5308 * function requests EH to perform PM operations and waits for EH 5309 * to finish. 5310 * 5311 * LOCKING: 5312 * Kernel thread context (may sleep). 5313 * 5314 * RETURNS: 5315 * 0 on success, -errno on failure. 5316 */ 5317 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5318 { 5319 int rc; 5320 5321 /* 5322 * disable link pm on all ports before requesting 5323 * any pm activity 5324 */ 5325 ata_lpm_enable(host); 5326 5327 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5328 if (rc == 0) 5329 host->dev->power.power_state = mesg; 5330 return rc; 5331 } 5332 5333 /** 5334 * ata_host_resume - resume host 5335 * @host: host to resume 5336 * 5337 * Resume @host. Actual operation is performed by EH. This 5338 * function requests EH to perform PM operations and returns. 5339 * Note that all resume operations are performed parallely. 5340 * 5341 * LOCKING: 5342 * Kernel thread context (may sleep). 5343 */ 5344 void ata_host_resume(struct ata_host *host) 5345 { 5346 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5347 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5348 host->dev->power.power_state = PMSG_ON; 5349 5350 /* reenable link pm */ 5351 ata_lpm_disable(host); 5352 } 5353 #endif 5354 5355 /** 5356 * ata_port_start - Set port up for dma. 5357 * @ap: Port to initialize 5358 * 5359 * Called just after data structures for each port are 5360 * initialized. Allocates space for PRD table. 5361 * 5362 * May be used as the port_start() entry in ata_port_operations. 5363 * 5364 * LOCKING: 5365 * Inherited from caller. 5366 */ 5367 int ata_port_start(struct ata_port *ap) 5368 { 5369 struct device *dev = ap->dev; 5370 5371 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5372 GFP_KERNEL); 5373 if (!ap->prd) 5374 return -ENOMEM; 5375 5376 return 0; 5377 } 5378 5379 /** 5380 * ata_dev_init - Initialize an ata_device structure 5381 * @dev: Device structure to initialize 5382 * 5383 * Initialize @dev in preparation for probing. 5384 * 5385 * LOCKING: 5386 * Inherited from caller. 5387 */ 5388 void ata_dev_init(struct ata_device *dev) 5389 { 5390 struct ata_link *link = ata_dev_phys_link(dev); 5391 struct ata_port *ap = link->ap; 5392 unsigned long flags; 5393 5394 /* SATA spd limit is bound to the attached device, reset together */ 5395 link->sata_spd_limit = link->hw_sata_spd_limit; 5396 link->sata_spd = 0; 5397 5398 /* High bits of dev->flags are used to record warm plug 5399 * requests which occur asynchronously. Synchronize using 5400 * host lock. 5401 */ 5402 spin_lock_irqsave(ap->lock, flags); 5403 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5404 dev->horkage = 0; 5405 spin_unlock_irqrestore(ap->lock, flags); 5406 5407 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5408 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5409 dev->pio_mask = UINT_MAX; 5410 dev->mwdma_mask = UINT_MAX; 5411 dev->udma_mask = UINT_MAX; 5412 } 5413 5414 /** 5415 * ata_link_init - Initialize an ata_link structure 5416 * @ap: ATA port link is attached to 5417 * @link: Link structure to initialize 5418 * @pmp: Port multiplier port number 5419 * 5420 * Initialize @link. 5421 * 5422 * LOCKING: 5423 * Kernel thread context (may sleep) 5424 */ 5425 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5426 { 5427 int i; 5428 5429 /* clear everything except for devices */ 5430 memset(link, 0, offsetof(struct ata_link, device[0])); 5431 5432 link->ap = ap; 5433 link->pmp = pmp; 5434 link->active_tag = ATA_TAG_POISON; 5435 link->hw_sata_spd_limit = UINT_MAX; 5436 5437 /* can't use iterator, ap isn't initialized yet */ 5438 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5439 struct ata_device *dev = &link->device[i]; 5440 5441 dev->link = link; 5442 dev->devno = dev - link->device; 5443 ata_dev_init(dev); 5444 } 5445 } 5446 5447 /** 5448 * sata_link_init_spd - Initialize link->sata_spd_limit 5449 * @link: Link to configure sata_spd_limit for 5450 * 5451 * Initialize @link->[hw_]sata_spd_limit to the currently 5452 * configured value. 5453 * 5454 * LOCKING: 5455 * Kernel thread context (may sleep). 5456 * 5457 * RETURNS: 5458 * 0 on success, -errno on failure. 5459 */ 5460 int sata_link_init_spd(struct ata_link *link) 5461 { 5462 u8 spd; 5463 int rc; 5464 5465 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5466 if (rc) 5467 return rc; 5468 5469 spd = (link->saved_scontrol >> 4) & 0xf; 5470 if (spd) 5471 link->hw_sata_spd_limit &= (1 << spd) - 1; 5472 5473 ata_force_link_limits(link); 5474 5475 link->sata_spd_limit = link->hw_sata_spd_limit; 5476 5477 return 0; 5478 } 5479 5480 /** 5481 * ata_port_alloc - allocate and initialize basic ATA port resources 5482 * @host: ATA host this allocated port belongs to 5483 * 5484 * Allocate and initialize basic ATA port resources. 5485 * 5486 * RETURNS: 5487 * Allocate ATA port on success, NULL on failure. 5488 * 5489 * LOCKING: 5490 * Inherited from calling layer (may sleep). 5491 */ 5492 struct ata_port *ata_port_alloc(struct ata_host *host) 5493 { 5494 struct ata_port *ap; 5495 5496 DPRINTK("ENTER\n"); 5497 5498 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5499 if (!ap) 5500 return NULL; 5501 5502 ap->pflags |= ATA_PFLAG_INITIALIZING; 5503 ap->lock = &host->lock; 5504 ap->flags = ATA_FLAG_DISABLED; 5505 ap->print_id = -1; 5506 ap->ctl = ATA_DEVCTL_OBS; 5507 ap->host = host; 5508 ap->dev = host->dev; 5509 ap->last_ctl = 0xFF; 5510 5511 #if defined(ATA_VERBOSE_DEBUG) 5512 /* turn on all debugging levels */ 5513 ap->msg_enable = 0x00FF; 5514 #elif defined(ATA_DEBUG) 5515 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5516 #else 5517 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5518 #endif 5519 5520 #ifdef CONFIG_ATA_SFF 5521 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5522 #else 5523 INIT_DELAYED_WORK(&ap->port_task, NULL); 5524 #endif 5525 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5526 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5527 INIT_LIST_HEAD(&ap->eh_done_q); 5528 init_waitqueue_head(&ap->eh_wait_q); 5529 init_completion(&ap->park_req_pending); 5530 init_timer_deferrable(&ap->fastdrain_timer); 5531 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5532 ap->fastdrain_timer.data = (unsigned long)ap; 5533 5534 ap->cbl = ATA_CBL_NONE; 5535 5536 ata_link_init(ap, &ap->link, 0); 5537 5538 #ifdef ATA_IRQ_TRAP 5539 ap->stats.unhandled_irq = 1; 5540 ap->stats.idle_irq = 1; 5541 #endif 5542 return ap; 5543 } 5544 5545 static void ata_host_release(struct device *gendev, void *res) 5546 { 5547 struct ata_host *host = dev_get_drvdata(gendev); 5548 int i; 5549 5550 for (i = 0; i < host->n_ports; i++) { 5551 struct ata_port *ap = host->ports[i]; 5552 5553 if (!ap) 5554 continue; 5555 5556 if (ap->scsi_host) 5557 scsi_host_put(ap->scsi_host); 5558 5559 kfree(ap->pmp_link); 5560 kfree(ap->slave_link); 5561 kfree(ap); 5562 host->ports[i] = NULL; 5563 } 5564 5565 dev_set_drvdata(gendev, NULL); 5566 } 5567 5568 /** 5569 * ata_host_alloc - allocate and init basic ATA host resources 5570 * @dev: generic device this host is associated with 5571 * @max_ports: maximum number of ATA ports associated with this host 5572 * 5573 * Allocate and initialize basic ATA host resources. LLD calls 5574 * this function to allocate a host, initializes it fully and 5575 * attaches it using ata_host_register(). 5576 * 5577 * @max_ports ports are allocated and host->n_ports is 5578 * initialized to @max_ports. The caller is allowed to decrease 5579 * host->n_ports before calling ata_host_register(). The unused 5580 * ports will be automatically freed on registration. 5581 * 5582 * RETURNS: 5583 * Allocate ATA host on success, NULL on failure. 5584 * 5585 * LOCKING: 5586 * Inherited from calling layer (may sleep). 5587 */ 5588 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5589 { 5590 struct ata_host *host; 5591 size_t sz; 5592 int i; 5593 5594 DPRINTK("ENTER\n"); 5595 5596 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5597 return NULL; 5598 5599 /* alloc a container for our list of ATA ports (buses) */ 5600 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5601 /* alloc a container for our list of ATA ports (buses) */ 5602 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5603 if (!host) 5604 goto err_out; 5605 5606 devres_add(dev, host); 5607 dev_set_drvdata(dev, host); 5608 5609 spin_lock_init(&host->lock); 5610 host->dev = dev; 5611 host->n_ports = max_ports; 5612 5613 /* allocate ports bound to this host */ 5614 for (i = 0; i < max_ports; i++) { 5615 struct ata_port *ap; 5616 5617 ap = ata_port_alloc(host); 5618 if (!ap) 5619 goto err_out; 5620 5621 ap->port_no = i; 5622 host->ports[i] = ap; 5623 } 5624 5625 devres_remove_group(dev, NULL); 5626 return host; 5627 5628 err_out: 5629 devres_release_group(dev, NULL); 5630 return NULL; 5631 } 5632 5633 /** 5634 * ata_host_alloc_pinfo - alloc host and init with port_info array 5635 * @dev: generic device this host is associated with 5636 * @ppi: array of ATA port_info to initialize host with 5637 * @n_ports: number of ATA ports attached to this host 5638 * 5639 * Allocate ATA host and initialize with info from @ppi. If NULL 5640 * terminated, @ppi may contain fewer entries than @n_ports. The 5641 * last entry will be used for the remaining ports. 5642 * 5643 * RETURNS: 5644 * Allocate ATA host on success, NULL on failure. 5645 * 5646 * LOCKING: 5647 * Inherited from calling layer (may sleep). 5648 */ 5649 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5650 const struct ata_port_info * const * ppi, 5651 int n_ports) 5652 { 5653 const struct ata_port_info *pi; 5654 struct ata_host *host; 5655 int i, j; 5656 5657 host = ata_host_alloc(dev, n_ports); 5658 if (!host) 5659 return NULL; 5660 5661 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5662 struct ata_port *ap = host->ports[i]; 5663 5664 if (ppi[j]) 5665 pi = ppi[j++]; 5666 5667 ap->pio_mask = pi->pio_mask; 5668 ap->mwdma_mask = pi->mwdma_mask; 5669 ap->udma_mask = pi->udma_mask; 5670 ap->flags |= pi->flags; 5671 ap->link.flags |= pi->link_flags; 5672 ap->ops = pi->port_ops; 5673 5674 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5675 host->ops = pi->port_ops; 5676 } 5677 5678 return host; 5679 } 5680 5681 /** 5682 * ata_slave_link_init - initialize slave link 5683 * @ap: port to initialize slave link for 5684 * 5685 * Create and initialize slave link for @ap. This enables slave 5686 * link handling on the port. 5687 * 5688 * In libata, a port contains links and a link contains devices. 5689 * There is single host link but if a PMP is attached to it, 5690 * there can be multiple fan-out links. On SATA, there's usually 5691 * a single device connected to a link but PATA and SATA 5692 * controllers emulating TF based interface can have two - master 5693 * and slave. 5694 * 5695 * However, there are a few controllers which don't fit into this 5696 * abstraction too well - SATA controllers which emulate TF 5697 * interface with both master and slave devices but also have 5698 * separate SCR register sets for each device. These controllers 5699 * need separate links for physical link handling 5700 * (e.g. onlineness, link speed) but should be treated like a 5701 * traditional M/S controller for everything else (e.g. command 5702 * issue, softreset). 5703 * 5704 * slave_link is libata's way of handling this class of 5705 * controllers without impacting core layer too much. For 5706 * anything other than physical link handling, the default host 5707 * link is used for both master and slave. For physical link 5708 * handling, separate @ap->slave_link is used. All dirty details 5709 * are implemented inside libata core layer. From LLD's POV, the 5710 * only difference is that prereset, hardreset and postreset are 5711 * called once more for the slave link, so the reset sequence 5712 * looks like the following. 5713 * 5714 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5715 * softreset(M) -> postreset(M) -> postreset(S) 5716 * 5717 * Note that softreset is called only for the master. Softreset 5718 * resets both M/S by definition, so SRST on master should handle 5719 * both (the standard method will work just fine). 5720 * 5721 * LOCKING: 5722 * Should be called before host is registered. 5723 * 5724 * RETURNS: 5725 * 0 on success, -errno on failure. 5726 */ 5727 int ata_slave_link_init(struct ata_port *ap) 5728 { 5729 struct ata_link *link; 5730 5731 WARN_ON(ap->slave_link); 5732 WARN_ON(ap->flags & ATA_FLAG_PMP); 5733 5734 link = kzalloc(sizeof(*link), GFP_KERNEL); 5735 if (!link) 5736 return -ENOMEM; 5737 5738 ata_link_init(ap, link, 1); 5739 ap->slave_link = link; 5740 return 0; 5741 } 5742 5743 static void ata_host_stop(struct device *gendev, void *res) 5744 { 5745 struct ata_host *host = dev_get_drvdata(gendev); 5746 int i; 5747 5748 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5749 5750 for (i = 0; i < host->n_ports; i++) { 5751 struct ata_port *ap = host->ports[i]; 5752 5753 if (ap->ops->port_stop) 5754 ap->ops->port_stop(ap); 5755 } 5756 5757 if (host->ops->host_stop) 5758 host->ops->host_stop(host); 5759 } 5760 5761 /** 5762 * ata_finalize_port_ops - finalize ata_port_operations 5763 * @ops: ata_port_operations to finalize 5764 * 5765 * An ata_port_operations can inherit from another ops and that 5766 * ops can again inherit from another. This can go on as many 5767 * times as necessary as long as there is no loop in the 5768 * inheritance chain. 5769 * 5770 * Ops tables are finalized when the host is started. NULL or 5771 * unspecified entries are inherited from the closet ancestor 5772 * which has the method and the entry is populated with it. 5773 * After finalization, the ops table directly points to all the 5774 * methods and ->inherits is no longer necessary and cleared. 5775 * 5776 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5777 * 5778 * LOCKING: 5779 * None. 5780 */ 5781 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5782 { 5783 static DEFINE_SPINLOCK(lock); 5784 const struct ata_port_operations *cur; 5785 void **begin = (void **)ops; 5786 void **end = (void **)&ops->inherits; 5787 void **pp; 5788 5789 if (!ops || !ops->inherits) 5790 return; 5791 5792 spin_lock(&lock); 5793 5794 for (cur = ops->inherits; cur; cur = cur->inherits) { 5795 void **inherit = (void **)cur; 5796 5797 for (pp = begin; pp < end; pp++, inherit++) 5798 if (!*pp) 5799 *pp = *inherit; 5800 } 5801 5802 for (pp = begin; pp < end; pp++) 5803 if (IS_ERR(*pp)) 5804 *pp = NULL; 5805 5806 ops->inherits = NULL; 5807 5808 spin_unlock(&lock); 5809 } 5810 5811 /** 5812 * ata_host_start - start and freeze ports of an ATA host 5813 * @host: ATA host to start ports for 5814 * 5815 * Start and then freeze ports of @host. Started status is 5816 * recorded in host->flags, so this function can be called 5817 * multiple times. Ports are guaranteed to get started only 5818 * once. If host->ops isn't initialized yet, its set to the 5819 * first non-dummy port ops. 5820 * 5821 * LOCKING: 5822 * Inherited from calling layer (may sleep). 5823 * 5824 * RETURNS: 5825 * 0 if all ports are started successfully, -errno otherwise. 5826 */ 5827 int ata_host_start(struct ata_host *host) 5828 { 5829 int have_stop = 0; 5830 void *start_dr = NULL; 5831 int i, rc; 5832 5833 if (host->flags & ATA_HOST_STARTED) 5834 return 0; 5835 5836 ata_finalize_port_ops(host->ops); 5837 5838 for (i = 0; i < host->n_ports; i++) { 5839 struct ata_port *ap = host->ports[i]; 5840 5841 ata_finalize_port_ops(ap->ops); 5842 5843 if (!host->ops && !ata_port_is_dummy(ap)) 5844 host->ops = ap->ops; 5845 5846 if (ap->ops->port_stop) 5847 have_stop = 1; 5848 } 5849 5850 if (host->ops->host_stop) 5851 have_stop = 1; 5852 5853 if (have_stop) { 5854 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5855 if (!start_dr) 5856 return -ENOMEM; 5857 } 5858 5859 for (i = 0; i < host->n_ports; i++) { 5860 struct ata_port *ap = host->ports[i]; 5861 5862 if (ap->ops->port_start) { 5863 rc = ap->ops->port_start(ap); 5864 if (rc) { 5865 if (rc != -ENODEV) 5866 dev_printk(KERN_ERR, host->dev, 5867 "failed to start port %d " 5868 "(errno=%d)\n", i, rc); 5869 goto err_out; 5870 } 5871 } 5872 ata_eh_freeze_port(ap); 5873 } 5874 5875 if (start_dr) 5876 devres_add(host->dev, start_dr); 5877 host->flags |= ATA_HOST_STARTED; 5878 return 0; 5879 5880 err_out: 5881 while (--i >= 0) { 5882 struct ata_port *ap = host->ports[i]; 5883 5884 if (ap->ops->port_stop) 5885 ap->ops->port_stop(ap); 5886 } 5887 devres_free(start_dr); 5888 return rc; 5889 } 5890 5891 /** 5892 * ata_sas_host_init - Initialize a host struct 5893 * @host: host to initialize 5894 * @dev: device host is attached to 5895 * @flags: host flags 5896 * @ops: port_ops 5897 * 5898 * LOCKING: 5899 * PCI/etc. bus probe sem. 5900 * 5901 */ 5902 /* KILLME - the only user left is ipr */ 5903 void ata_host_init(struct ata_host *host, struct device *dev, 5904 unsigned long flags, struct ata_port_operations *ops) 5905 { 5906 spin_lock_init(&host->lock); 5907 host->dev = dev; 5908 host->flags = flags; 5909 host->ops = ops; 5910 } 5911 5912 /** 5913 * ata_host_register - register initialized ATA host 5914 * @host: ATA host to register 5915 * @sht: template for SCSI host 5916 * 5917 * Register initialized ATA host. @host is allocated using 5918 * ata_host_alloc() and fully initialized by LLD. This function 5919 * starts ports, registers @host with ATA and SCSI layers and 5920 * probe registered devices. 5921 * 5922 * LOCKING: 5923 * Inherited from calling layer (may sleep). 5924 * 5925 * RETURNS: 5926 * 0 on success, -errno otherwise. 5927 */ 5928 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5929 { 5930 int i, rc; 5931 5932 /* host must have been started */ 5933 if (!(host->flags & ATA_HOST_STARTED)) { 5934 dev_printk(KERN_ERR, host->dev, 5935 "BUG: trying to register unstarted host\n"); 5936 WARN_ON(1); 5937 return -EINVAL; 5938 } 5939 5940 /* Blow away unused ports. This happens when LLD can't 5941 * determine the exact number of ports to allocate at 5942 * allocation time. 5943 */ 5944 for (i = host->n_ports; host->ports[i]; i++) 5945 kfree(host->ports[i]); 5946 5947 /* give ports names and add SCSI hosts */ 5948 for (i = 0; i < host->n_ports; i++) 5949 host->ports[i]->print_id = ata_print_id++; 5950 5951 rc = ata_scsi_add_hosts(host, sht); 5952 if (rc) 5953 return rc; 5954 5955 /* associate with ACPI nodes */ 5956 ata_acpi_associate(host); 5957 5958 /* set cable, sata_spd_limit and report */ 5959 for (i = 0; i < host->n_ports; i++) { 5960 struct ata_port *ap = host->ports[i]; 5961 unsigned long xfer_mask; 5962 5963 /* set SATA cable type if still unset */ 5964 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5965 ap->cbl = ATA_CBL_SATA; 5966 5967 /* init sata_spd_limit to the current value */ 5968 sata_link_init_spd(&ap->link); 5969 if (ap->slave_link) 5970 sata_link_init_spd(ap->slave_link); 5971 5972 /* print per-port info to dmesg */ 5973 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5974 ap->udma_mask); 5975 5976 if (!ata_port_is_dummy(ap)) { 5977 ata_port_printk(ap, KERN_INFO, 5978 "%cATA max %s %s\n", 5979 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5980 ata_mode_string(xfer_mask), 5981 ap->link.eh_info.desc); 5982 ata_ehi_clear_desc(&ap->link.eh_info); 5983 } else 5984 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5985 } 5986 5987 /* perform each probe synchronously */ 5988 DPRINTK("probe begin\n"); 5989 for (i = 0; i < host->n_ports; i++) { 5990 struct ata_port *ap = host->ports[i]; 5991 5992 /* probe */ 5993 if (ap->ops->error_handler) { 5994 struct ata_eh_info *ehi = &ap->link.eh_info; 5995 unsigned long flags; 5996 5997 ata_port_probe(ap); 5998 5999 /* kick EH for boot probing */ 6000 spin_lock_irqsave(ap->lock, flags); 6001 6002 ehi->probe_mask |= ATA_ALL_DEVICES; 6003 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6004 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6005 6006 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6007 ap->pflags |= ATA_PFLAG_LOADING; 6008 ata_port_schedule_eh(ap); 6009 6010 spin_unlock_irqrestore(ap->lock, flags); 6011 6012 /* wait for EH to finish */ 6013 ata_port_wait_eh(ap); 6014 } else { 6015 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6016 rc = ata_bus_probe(ap); 6017 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6018 6019 if (rc) { 6020 /* FIXME: do something useful here? 6021 * Current libata behavior will 6022 * tear down everything when 6023 * the module is removed 6024 * or the h/w is unplugged. 6025 */ 6026 } 6027 } 6028 } 6029 6030 /* probes are done, now scan each port's disk(s) */ 6031 DPRINTK("host probe begin\n"); 6032 for (i = 0; i < host->n_ports; i++) { 6033 struct ata_port *ap = host->ports[i]; 6034 6035 ata_scsi_scan_host(ap, 1); 6036 } 6037 6038 return 0; 6039 } 6040 6041 /** 6042 * ata_host_activate - start host, request IRQ and register it 6043 * @host: target ATA host 6044 * @irq: IRQ to request 6045 * @irq_handler: irq_handler used when requesting IRQ 6046 * @irq_flags: irq_flags used when requesting IRQ 6047 * @sht: scsi_host_template to use when registering the host 6048 * 6049 * After allocating an ATA host and initializing it, most libata 6050 * LLDs perform three steps to activate the host - start host, 6051 * request IRQ and register it. This helper takes necessasry 6052 * arguments and performs the three steps in one go. 6053 * 6054 * An invalid IRQ skips the IRQ registration and expects the host to 6055 * have set polling mode on the port. In this case, @irq_handler 6056 * should be NULL. 6057 * 6058 * LOCKING: 6059 * Inherited from calling layer (may sleep). 6060 * 6061 * RETURNS: 6062 * 0 on success, -errno otherwise. 6063 */ 6064 int ata_host_activate(struct ata_host *host, int irq, 6065 irq_handler_t irq_handler, unsigned long irq_flags, 6066 struct scsi_host_template *sht) 6067 { 6068 int i, rc; 6069 6070 rc = ata_host_start(host); 6071 if (rc) 6072 return rc; 6073 6074 /* Special case for polling mode */ 6075 if (!irq) { 6076 WARN_ON(irq_handler); 6077 return ata_host_register(host, sht); 6078 } 6079 6080 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6081 dev_driver_string(host->dev), host); 6082 if (rc) 6083 return rc; 6084 6085 for (i = 0; i < host->n_ports; i++) 6086 ata_port_desc(host->ports[i], "irq %d", irq); 6087 6088 rc = ata_host_register(host, sht); 6089 /* if failed, just free the IRQ and leave ports alone */ 6090 if (rc) 6091 devm_free_irq(host->dev, irq, host); 6092 6093 return rc; 6094 } 6095 6096 /** 6097 * ata_port_detach - Detach ATA port in prepration of device removal 6098 * @ap: ATA port to be detached 6099 * 6100 * Detach all ATA devices and the associated SCSI devices of @ap; 6101 * then, remove the associated SCSI host. @ap is guaranteed to 6102 * be quiescent on return from this function. 6103 * 6104 * LOCKING: 6105 * Kernel thread context (may sleep). 6106 */ 6107 static void ata_port_detach(struct ata_port *ap) 6108 { 6109 unsigned long flags; 6110 6111 if (!ap->ops->error_handler) 6112 goto skip_eh; 6113 6114 /* tell EH we're leaving & flush EH */ 6115 spin_lock_irqsave(ap->lock, flags); 6116 ap->pflags |= ATA_PFLAG_UNLOADING; 6117 ata_port_schedule_eh(ap); 6118 spin_unlock_irqrestore(ap->lock, flags); 6119 6120 /* wait till EH commits suicide */ 6121 ata_port_wait_eh(ap); 6122 6123 /* it better be dead now */ 6124 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6125 6126 cancel_rearming_delayed_work(&ap->hotplug_task); 6127 6128 skip_eh: 6129 /* remove the associated SCSI host */ 6130 scsi_remove_host(ap->scsi_host); 6131 } 6132 6133 /** 6134 * ata_host_detach - Detach all ports of an ATA host 6135 * @host: Host to detach 6136 * 6137 * Detach all ports of @host. 6138 * 6139 * LOCKING: 6140 * Kernel thread context (may sleep). 6141 */ 6142 void ata_host_detach(struct ata_host *host) 6143 { 6144 int i; 6145 6146 for (i = 0; i < host->n_ports; i++) 6147 ata_port_detach(host->ports[i]); 6148 6149 /* the host is dead now, dissociate ACPI */ 6150 ata_acpi_dissociate(host); 6151 } 6152 6153 #ifdef CONFIG_PCI 6154 6155 /** 6156 * ata_pci_remove_one - PCI layer callback for device removal 6157 * @pdev: PCI device that was removed 6158 * 6159 * PCI layer indicates to libata via this hook that hot-unplug or 6160 * module unload event has occurred. Detach all ports. Resource 6161 * release is handled via devres. 6162 * 6163 * LOCKING: 6164 * Inherited from PCI layer (may sleep). 6165 */ 6166 void ata_pci_remove_one(struct pci_dev *pdev) 6167 { 6168 struct device *dev = &pdev->dev; 6169 struct ata_host *host = dev_get_drvdata(dev); 6170 6171 ata_host_detach(host); 6172 } 6173 6174 /* move to PCI subsystem */ 6175 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6176 { 6177 unsigned long tmp = 0; 6178 6179 switch (bits->width) { 6180 case 1: { 6181 u8 tmp8 = 0; 6182 pci_read_config_byte(pdev, bits->reg, &tmp8); 6183 tmp = tmp8; 6184 break; 6185 } 6186 case 2: { 6187 u16 tmp16 = 0; 6188 pci_read_config_word(pdev, bits->reg, &tmp16); 6189 tmp = tmp16; 6190 break; 6191 } 6192 case 4: { 6193 u32 tmp32 = 0; 6194 pci_read_config_dword(pdev, bits->reg, &tmp32); 6195 tmp = tmp32; 6196 break; 6197 } 6198 6199 default: 6200 return -EINVAL; 6201 } 6202 6203 tmp &= bits->mask; 6204 6205 return (tmp == bits->val) ? 1 : 0; 6206 } 6207 6208 #ifdef CONFIG_PM 6209 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6210 { 6211 pci_save_state(pdev); 6212 pci_disable_device(pdev); 6213 6214 if (mesg.event & PM_EVENT_SLEEP) 6215 pci_set_power_state(pdev, PCI_D3hot); 6216 } 6217 6218 int ata_pci_device_do_resume(struct pci_dev *pdev) 6219 { 6220 int rc; 6221 6222 pci_set_power_state(pdev, PCI_D0); 6223 pci_restore_state(pdev); 6224 6225 rc = pcim_enable_device(pdev); 6226 if (rc) { 6227 dev_printk(KERN_ERR, &pdev->dev, 6228 "failed to enable device after resume (%d)\n", rc); 6229 return rc; 6230 } 6231 6232 pci_set_master(pdev); 6233 return 0; 6234 } 6235 6236 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6237 { 6238 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6239 int rc = 0; 6240 6241 rc = ata_host_suspend(host, mesg); 6242 if (rc) 6243 return rc; 6244 6245 ata_pci_device_do_suspend(pdev, mesg); 6246 6247 return 0; 6248 } 6249 6250 int ata_pci_device_resume(struct pci_dev *pdev) 6251 { 6252 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6253 int rc; 6254 6255 rc = ata_pci_device_do_resume(pdev); 6256 if (rc == 0) 6257 ata_host_resume(host); 6258 return rc; 6259 } 6260 #endif /* CONFIG_PM */ 6261 6262 #endif /* CONFIG_PCI */ 6263 6264 static int __init ata_parse_force_one(char **cur, 6265 struct ata_force_ent *force_ent, 6266 const char **reason) 6267 { 6268 /* FIXME: Currently, there's no way to tag init const data and 6269 * using __initdata causes build failure on some versions of 6270 * gcc. Once __initdataconst is implemented, add const to the 6271 * following structure. 6272 */ 6273 static struct ata_force_param force_tbl[] __initdata = { 6274 { "40c", .cbl = ATA_CBL_PATA40 }, 6275 { "80c", .cbl = ATA_CBL_PATA80 }, 6276 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6277 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6278 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6279 { "sata", .cbl = ATA_CBL_SATA }, 6280 { "1.5Gbps", .spd_limit = 1 }, 6281 { "3.0Gbps", .spd_limit = 2 }, 6282 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6283 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6284 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6285 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6286 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6287 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6288 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6289 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6290 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6291 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6292 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6293 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6294 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6295 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6296 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6297 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6298 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6299 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6300 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6301 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6302 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6303 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6304 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6305 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6306 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6307 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6308 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6309 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6310 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6311 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6312 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6313 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6314 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6315 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6316 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6317 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6318 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6319 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6320 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6321 }; 6322 char *start = *cur, *p = *cur; 6323 char *id, *val, *endp; 6324 const struct ata_force_param *match_fp = NULL; 6325 int nr_matches = 0, i; 6326 6327 /* find where this param ends and update *cur */ 6328 while (*p != '\0' && *p != ',') 6329 p++; 6330 6331 if (*p == '\0') 6332 *cur = p; 6333 else 6334 *cur = p + 1; 6335 6336 *p = '\0'; 6337 6338 /* parse */ 6339 p = strchr(start, ':'); 6340 if (!p) { 6341 val = strstrip(start); 6342 goto parse_val; 6343 } 6344 *p = '\0'; 6345 6346 id = strstrip(start); 6347 val = strstrip(p + 1); 6348 6349 /* parse id */ 6350 p = strchr(id, '.'); 6351 if (p) { 6352 *p++ = '\0'; 6353 force_ent->device = simple_strtoul(p, &endp, 10); 6354 if (p == endp || *endp != '\0') { 6355 *reason = "invalid device"; 6356 return -EINVAL; 6357 } 6358 } 6359 6360 force_ent->port = simple_strtoul(id, &endp, 10); 6361 if (p == endp || *endp != '\0') { 6362 *reason = "invalid port/link"; 6363 return -EINVAL; 6364 } 6365 6366 parse_val: 6367 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6368 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6369 const struct ata_force_param *fp = &force_tbl[i]; 6370 6371 if (strncasecmp(val, fp->name, strlen(val))) 6372 continue; 6373 6374 nr_matches++; 6375 match_fp = fp; 6376 6377 if (strcasecmp(val, fp->name) == 0) { 6378 nr_matches = 1; 6379 break; 6380 } 6381 } 6382 6383 if (!nr_matches) { 6384 *reason = "unknown value"; 6385 return -EINVAL; 6386 } 6387 if (nr_matches > 1) { 6388 *reason = "ambigious value"; 6389 return -EINVAL; 6390 } 6391 6392 force_ent->param = *match_fp; 6393 6394 return 0; 6395 } 6396 6397 static void __init ata_parse_force_param(void) 6398 { 6399 int idx = 0, size = 1; 6400 int last_port = -1, last_device = -1; 6401 char *p, *cur, *next; 6402 6403 /* calculate maximum number of params and allocate force_tbl */ 6404 for (p = ata_force_param_buf; *p; p++) 6405 if (*p == ',') 6406 size++; 6407 6408 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6409 if (!ata_force_tbl) { 6410 printk(KERN_WARNING "ata: failed to extend force table, " 6411 "libata.force ignored\n"); 6412 return; 6413 } 6414 6415 /* parse and populate the table */ 6416 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6417 const char *reason = ""; 6418 struct ata_force_ent te = { .port = -1, .device = -1 }; 6419 6420 next = cur; 6421 if (ata_parse_force_one(&next, &te, &reason)) { 6422 printk(KERN_WARNING "ata: failed to parse force " 6423 "parameter \"%s\" (%s)\n", 6424 cur, reason); 6425 continue; 6426 } 6427 6428 if (te.port == -1) { 6429 te.port = last_port; 6430 te.device = last_device; 6431 } 6432 6433 ata_force_tbl[idx++] = te; 6434 6435 last_port = te.port; 6436 last_device = te.device; 6437 } 6438 6439 ata_force_tbl_size = idx; 6440 } 6441 6442 static int __init ata_init(void) 6443 { 6444 ata_parse_force_param(); 6445 6446 ata_wq = create_workqueue("ata"); 6447 if (!ata_wq) 6448 goto free_force_tbl; 6449 6450 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6451 if (!ata_aux_wq) 6452 goto free_wq; 6453 6454 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6455 return 0; 6456 6457 free_wq: 6458 destroy_workqueue(ata_wq); 6459 free_force_tbl: 6460 kfree(ata_force_tbl); 6461 return -ENOMEM; 6462 } 6463 6464 static void __exit ata_exit(void) 6465 { 6466 kfree(ata_force_tbl); 6467 destroy_workqueue(ata_wq); 6468 destroy_workqueue(ata_aux_wq); 6469 } 6470 6471 subsys_initcall(ata_init); 6472 module_exit(ata_exit); 6473 6474 static unsigned long ratelimit_time; 6475 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6476 6477 int ata_ratelimit(void) 6478 { 6479 int rc; 6480 unsigned long flags; 6481 6482 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6483 6484 if (time_after(jiffies, ratelimit_time)) { 6485 rc = 1; 6486 ratelimit_time = jiffies + (HZ/5); 6487 } else 6488 rc = 0; 6489 6490 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6491 6492 return rc; 6493 } 6494 6495 /** 6496 * ata_wait_register - wait until register value changes 6497 * @reg: IO-mapped register 6498 * @mask: Mask to apply to read register value 6499 * @val: Wait condition 6500 * @interval: polling interval in milliseconds 6501 * @timeout: timeout in milliseconds 6502 * 6503 * Waiting for some bits of register to change is a common 6504 * operation for ATA controllers. This function reads 32bit LE 6505 * IO-mapped register @reg and tests for the following condition. 6506 * 6507 * (*@reg & mask) != val 6508 * 6509 * If the condition is met, it returns; otherwise, the process is 6510 * repeated after @interval_msec until timeout. 6511 * 6512 * LOCKING: 6513 * Kernel thread context (may sleep) 6514 * 6515 * RETURNS: 6516 * The final register value. 6517 */ 6518 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6519 unsigned long interval, unsigned long timeout) 6520 { 6521 unsigned long deadline; 6522 u32 tmp; 6523 6524 tmp = ioread32(reg); 6525 6526 /* Calculate timeout _after_ the first read to make sure 6527 * preceding writes reach the controller before starting to 6528 * eat away the timeout. 6529 */ 6530 deadline = ata_deadline(jiffies, timeout); 6531 6532 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6533 msleep(interval); 6534 tmp = ioread32(reg); 6535 } 6536 6537 return tmp; 6538 } 6539 6540 /* 6541 * Dummy port_ops 6542 */ 6543 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6544 { 6545 return AC_ERR_SYSTEM; 6546 } 6547 6548 static void ata_dummy_error_handler(struct ata_port *ap) 6549 { 6550 /* truly dummy */ 6551 } 6552 6553 struct ata_port_operations ata_dummy_port_ops = { 6554 .qc_prep = ata_noop_qc_prep, 6555 .qc_issue = ata_dummy_qc_issue, 6556 .error_handler = ata_dummy_error_handler, 6557 }; 6558 6559 const struct ata_port_info ata_dummy_port_info = { 6560 .port_ops = &ata_dummy_port_ops, 6561 }; 6562 6563 /* 6564 * libata is essentially a library of internal helper functions for 6565 * low-level ATA host controller drivers. As such, the API/ABI is 6566 * likely to change as new drivers are added and updated. 6567 * Do not depend on ABI/API stability. 6568 */ 6569 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6570 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6571 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6572 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6573 EXPORT_SYMBOL_GPL(sata_port_ops); 6574 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6575 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6576 EXPORT_SYMBOL_GPL(ata_link_next); 6577 EXPORT_SYMBOL_GPL(ata_dev_next); 6578 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6579 EXPORT_SYMBOL_GPL(ata_host_init); 6580 EXPORT_SYMBOL_GPL(ata_host_alloc); 6581 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6582 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6583 EXPORT_SYMBOL_GPL(ata_host_start); 6584 EXPORT_SYMBOL_GPL(ata_host_register); 6585 EXPORT_SYMBOL_GPL(ata_host_activate); 6586 EXPORT_SYMBOL_GPL(ata_host_detach); 6587 EXPORT_SYMBOL_GPL(ata_sg_init); 6588 EXPORT_SYMBOL_GPL(ata_qc_complete); 6589 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6590 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6591 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6592 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6593 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6594 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6595 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6596 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6597 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6598 EXPORT_SYMBOL_GPL(ata_mode_string); 6599 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6600 EXPORT_SYMBOL_GPL(ata_port_start); 6601 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6602 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6603 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6604 EXPORT_SYMBOL_GPL(ata_port_probe); 6605 EXPORT_SYMBOL_GPL(ata_dev_disable); 6606 EXPORT_SYMBOL_GPL(sata_set_spd); 6607 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6608 EXPORT_SYMBOL_GPL(sata_link_debounce); 6609 EXPORT_SYMBOL_GPL(sata_link_resume); 6610 EXPORT_SYMBOL_GPL(ata_std_prereset); 6611 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6612 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6613 EXPORT_SYMBOL_GPL(ata_std_postreset); 6614 EXPORT_SYMBOL_GPL(ata_dev_classify); 6615 EXPORT_SYMBOL_GPL(ata_dev_pair); 6616 EXPORT_SYMBOL_GPL(ata_port_disable); 6617 EXPORT_SYMBOL_GPL(ata_ratelimit); 6618 EXPORT_SYMBOL_GPL(ata_wait_register); 6619 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6620 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6621 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6622 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6623 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6624 EXPORT_SYMBOL_GPL(sata_scr_valid); 6625 EXPORT_SYMBOL_GPL(sata_scr_read); 6626 EXPORT_SYMBOL_GPL(sata_scr_write); 6627 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6628 EXPORT_SYMBOL_GPL(ata_link_online); 6629 EXPORT_SYMBOL_GPL(ata_link_offline); 6630 #ifdef CONFIG_PM 6631 EXPORT_SYMBOL_GPL(ata_host_suspend); 6632 EXPORT_SYMBOL_GPL(ata_host_resume); 6633 #endif /* CONFIG_PM */ 6634 EXPORT_SYMBOL_GPL(ata_id_string); 6635 EXPORT_SYMBOL_GPL(ata_id_c_string); 6636 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6637 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6638 6639 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6640 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6641 EXPORT_SYMBOL_GPL(ata_timing_compute); 6642 EXPORT_SYMBOL_GPL(ata_timing_merge); 6643 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6644 6645 #ifdef CONFIG_PCI 6646 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6647 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6648 #ifdef CONFIG_PM 6649 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6650 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6651 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6652 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6653 #endif /* CONFIG_PM */ 6654 #endif /* CONFIG_PCI */ 6655 6656 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6657 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6658 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6659 EXPORT_SYMBOL_GPL(ata_port_desc); 6660 #ifdef CONFIG_PCI 6661 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6662 #endif /* CONFIG_PCI */ 6663 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6664 EXPORT_SYMBOL_GPL(ata_link_abort); 6665 EXPORT_SYMBOL_GPL(ata_port_abort); 6666 EXPORT_SYMBOL_GPL(ata_port_freeze); 6667 EXPORT_SYMBOL_GPL(sata_async_notification); 6668 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6669 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6670 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6671 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6672 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6673 EXPORT_SYMBOL_GPL(ata_do_eh); 6674 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6675 6676 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6677 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6678 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6679 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6680 EXPORT_SYMBOL_GPL(ata_cable_sata); 6681